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PREFACE

In recent years, the single most important development in the field of digital electronics
has been the microprocessor. Thanks to VLSI (very-large-scale integration), it has grown
from the simple 4-bit processing element of a quarter-century ago to the complex 32/64-
bit processing unit of the present time.

The Intel and Motorola corporations have been leaders in the development of mi-
croprocessors and associated electronic circuits. Currently, the two frontrunning families
of microprocessors are the Intel 8086/186/286/386 family and the Motorola 68000/10/
20/30 family. The Intel processors are very popular in such personal computers as the
IBM PC and compatibles. The Motorola processors are equally popular in such personal
computers as Apple's Macintosh, Commodore's Amiga, and Atari's ST. Most industrial
controllers and systems, such as image-processing systems, robotic systems, and com-
munication systems, are based on the Motorola 68000 family.

This book focuses on the Motorola family of microprocessors. It is written as a
college-level text for electrical engineering and technology students, computer engineer-
ing and technology students, and computer science students. It can also serve as a self-
teaching text for practicing engineering and technical personnel.

The book examines general software and hardware concepts of microprocessors,
as well as microprocessor-based system design and implementation schemes, with spe-
cific reference to the 68000 family of processors. Descriptions of the software and hard-
ware are sufficiently detailed to enable the reader to make use of the concepts in practi-
cal applications. Most of the software and hardware discussions are based on actual
working models.

The 68000 family consists of the 16-bit 68000 processor, the 8-bit 68008 proces-
sor, the 16-bit virtual memory 68010 processor, the enhanced virtual memory 68012



processor, the 32-bit cache memory 68020 processor, and the 32-bit enhanced cache
memory 68030 processor. All of the later versions are based on the original 68000.
Coverage of the text includes the architecture, software, hardware, and application details
of the 68000 processor, with concepts extended to the other family members. Assembly
programming techniques, parallel and serial I/O (input/output) interface techniques and
associated applications, interrupt and DMA (direct memory access) applications, and
system implementation schemes have been given particular emphasis.

Chapter 1 presents the basic concepts of the 68000 family of microprocessors and
introduces the architecture of the 68000. The special features of the 68000 family are
also described. In Chapter 2 the memory organization schemes, data structures, and
addressing modes associated with the 68000 are covered, along with the instruction for-
mat and structure typical of the 68000 family. The instruction set of the 68000 is pre-
sented in Chapter 3, with particular emphasis on the general flow of the instruction
structure, the instruction timing, and the instruction groups.

Chapter 4 deals with software and programming techniques and applications of
the 68000 processor. Assembly programming methods and special software features such
as macros are examined in detail. The important aspect of exception processing is covered
in Chapter 5. In this chapter, exception processing resulting from interrupts and error
conditions is described.

Chapter 6 deals with the hardware structure of the 68000 processor and the inter-
facing techniques with the memory and I/O. Important hardware concepts, such as ad-
dress decoding, read and write bus cycle timing, and the VME and VERSA busing
schemes, are introduced. This provides a foundation for the discussion on the parallel I/O
interface to the 68000 and associated applications in Chapter 7. Important parallel
interface devices, such as the 6821 PIA and 68230 PI/T, are introduced in this chapter.
Data entry and display applications and position control using stepper motors are pre-
sented, along with hardware and software details. This leads to a description of the serial
I/O interface to the 68000 and associated applications in Chapter 8. Industry standard
serial interface devices, such as the 6850 ACIA and 68901 MFP, are introduced. RS-232
serial data communication and coded data transmission applications are presented,
including hardware and software details.

Chapter 9 deals with the most important aspects of the interrupts and the DMA
(direct memory access) schemes associated with the 68000. Such practical applications
as the daisy chain of interrupts, interrupt-driven gain controllers, and interrupt-driven
data-acquisition systems with A/D and D/A are presented, again with hardware and soft-
ware details. General concepts of the DMA are presented through a practical application
using DMA-based high-speed data transfers.

Chapter 10 introduces the 68010 virtual memory processor. The general concepts
of virtual memory, virtual machines, and the operating system are discussed in detail.
The additional resources of the 68010 and 68012 processors are also covered, along with
memory-access fault correction schemes using virtual memory concepts.

In chapter 11 the 32-bit 68020 and 68030 cache memory processors are intro-
duced. The concepts of cache memory organization are discussed. Additional resources
of the 68020 and 68030 processors and related performance improvements are pre-

sented. An objective comparison between the 68000 and the 68020/30 is also included to
provide insight into the applications of these very powerful processors.

Finally, the book includes four appendices: Appendix A on number systems, Ap-
pendix B on the 68000 instruction set and condition uses, Appendix C on analog and
digital converter devices for interfacing, and Appendix D on instruction timing for the
68000/10 processors.

The material is designed to be used in a two-semester course. For engineering and
technical students, Chapters 1, 2, 3, 4, 5, and 6 can be covered in the first semester. In
the second semester, Chapters 7, 8, 9, 10, and 11 can be covered. For computer science
and software-oriented students, Chapters 1, 2, 3, 4, 5, and 10 can be covered in one
semester. If instructors choose to introduce hardware before dealing with exceptions,
they can switch the order of presentation of Chapters 5 and 6.

Each chapter is organized into four or five main sections, each dealing with an
important topic. In most cases, each section has at least one example problem. The end-
of-chapter problems are especially designed to supplement the material covered in the
book. Most of these problems have been classroom tested. A comprehensive glossary is
included at the end of the book.

The book is an outgrowth of several courses on microprocessors and digital sys-
tems taught by the author at Florida International University to engineering, technology.
and computer science students. The author's association with the Motorola Corporation
as a consulting professor, teaching their industrial seminars on the 68000 family of pro-
cessors and applications, also significantly contributed to the book's development.

Nothing replaces a hands-on learning experience. Therefore, readers are encour-
aged to apply the software and hardware concepts introduced in this book to practical
problems using the microcomputer system of their choice.
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GLOSSARY 211 The Microprocessor Evolution
INDEX

It is no exaggeration to say that the microprocessor device has revolutionized digital
electronics and the computer field. Most of the currently available digital, computer. and
electronic systems use some form of microprocessor. With processing capability ex-
ceeding several million instructions per second (MIPS), the microprocessor is continu-
ously finding new applications.

The earliest form of the microprocessor was a 4-bit device (4004). It was basically
used as a 4-bit ALU (arithmetic logic unit) almost a quarter-century ago. The real mi-
croprocessor era started in the early 1970s, when Intel Corporation introduced the 8080
microprocessor. This was an 8-bit microprocessor, and contained an ALU and bus inter-
face logic on board. It also had several 8-bit registers for storing operands and addresses.
Although the unit required several power supplies and a power-sequencing scheme, it
found extensive applications. The success of the 8080 microprocessor led other
companies to get involved in the development of different forms of microprocessors.

Immediately after launching the 8080 processor, Intel began to improve its design.
which resulted in the 8085. The 8085 processor is code compatible with the earlier 8080,
but can operate on a single 5-volt power supply. Almost simultaneously. Motorola
Corporation introduced the 8-bit 6800 microprocessor with nonmultiplexed data and
address buses. The 6800 processor also incorporates the concept of double accumulators
and has an index addressing scheme. The 6800 became an instant success. Several pe-
ripheral devices to interface with the 8085 and the 6800 processors were introduced into
the market by a number of vendors.

During the mid-1970s, Commodore and Rockwell International introduced the 8-
bit 6502 microprocessor, which also became an instant success. This machine is similar



to the 6800 processor, but includes additional addressing capabilities such as memory
indirect. The design of the Apple computer was based on the 6502 processor. At about
the same time, Zilog Corporation introduced the 8-bit Z80 microprocessor. The Z80 is
code compatible with the 8085 processor. It has additional resources with which to store
data internally, and it also has the index addressing mode of the 6800 and 6502 proces-
sors. The Z80 processor found extensive applications in the 8-bit field, even though it
entered the 8-bit market late.

Most of the processors we have mentioned were developed with NMOS technol-
ogy. However ultralow power requirements dictated a processor using CMOS technol-
ogy. RCA Corporation introduced the first CMOS 8-bit 1802 microprocessor for low-
power applications. Pacemakers and several other battery-powered devices use the 1802
type of processor. Most 8-bit processors have a 64-kilobyte address range.

Emerging applications soon demanded more processing power than 8-bit proces-
sors could provide. Intel corporation was again the leader in introducing the first 16-bit
8086 microprocessor in 1978. The internal architecture of the 8086 supports 16-bit op-
erations. The external address bus can access 1 megabyte of memory, which was con-
sidered a great advantage. The 8086 has a 16-bit data bus. The 8088 processor is a
scaled-down version of the 8086, with an 8-bit data bus. The IBM PC contributed to the
great success of the 8086/88 processors.

To follow the 8086 processor, Motorola Corporation introduced the much more
powerful and versatile 68000 microprocessor. It has a 16-bit data bus and an effective
24-bit address bus that can access 16 megabytes. The internal architecture of the 68000
is designed to support 8-bit, 16-bit, and 32-bit operations. There are several 32-bit data
registers, each of which can be used as an accumulator. The architecture, linear address
range, and versatile data-handling capability of the 68000 suited the needs of industry.
Systems such as Apple's Macintosh further contributed to the popularity of the 68000
processor. During the same time frame, Zilog corporation introduced its 16-bit Z8000
processor, which is similar to the 68000 in terms of architecture.

Continuous demand by industry resulted in the development of even more power-
ful processors, such as the 68020 and 68030 in the 68000 family, and the 80386 in the
8086 family. The present trend of development will continue in the 1990s. In order to
obtain more dedicated throughput, RISC (reduced instruction set computer chip) devices
are becoming popular. But the demand for general-purpose processors will continue to
rise.

Also observed in the microprocessor application market is the popularity of single-
chip microcomputers and controllers, such as Intel's 8051 and Motorola's 68HCI11.
These 8-bit devices are suitable for 8-bit I/O interface applications. Sixteen-bit micro-
controller devices are also becoming available.

All of the 8-, 16-, and 32-bit processors we have described are available in various
packages using different processing techniques.
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68000/68010/68020
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CHAPTER

1

The 68000 Family of Microprocessors
and Architecture

Objectives

In this chapter we will study:

The 68000 family of microprocessors
Microcomputer configuration of the 68000 family.
Architectural features of the 68000.

Supervisor and user modes of operation

Special features, such as the queue and pipeline



1.0 INTRODUCTION

The 68000 microprocessor, introduced by Motorola Corporation in the late 1970s, is one
of the most powerful and widely used 16/32-bit processors. It is the first member of the
68000 family of processors—a family that includes the 68008, 68010, 68012, 68020, and
68030 processor devices.

Microcomputer configurations based on these processors are similar. In addition,
they all have the same basic architecture as that of the 68000. The architecture consists
of internal registers and pointers and arithmetic logic and control units.

The 68000 operates in two distinct modes: the supervisor mode and the user
mode. These two modes of operation maintain a relative separation between the operat-
ing system programs and the user programs.'

All processors obtain data from the memory block, perform the appropriate oper-
ations, and store the resulting data back in the memory. Processors in the 68000 family
are structured to handle the byte (8-bit), word (16-bit), and long-word (32-bit) data el-
ements.”

An understanding of the architecture, modes of operation, and data-handling
schemes is essential to the study of the 68000 microprocessor and associated designs. It
will also promote understanding of the other members of the 68000 family.

The material in this chapter will provide the necessary background to understand
the software and system features of the 68000 processor. The hardware concepts and
designs of the 68000 will be presented in later chapters.

11 THE 68000 FAMILY OF MICROPROCESSORS

As mentioned previously, all processors in the 68000 family support byte, word, and
long-word operations. We will now briefly introduce the important members of the
68000 family. Figure 1.1 illustrates the genealogy of these processors; they are devel-
oped using the VLSI (very-large-scale integration) MOS technology.’

The 68000 Microprocessor

The 68000 is the principal device of the 68000 family of microprocessors. The operating
frequency of the 68000L4 is 4 MHz; for the 68000L12, the operating frequency is 12
MHz. Several other frequency versions are also available. The 68000 has a 16-bit data
bus and an effective 24-bit address bus that supports 16 megabytes of address range.
This microprocessor is normally contained in a 64-pin DIP (dual-in-line package), but it
is also available in the 68-pin chip-carrier package.

The 68008 Microprocessor

The 68008 is the reduced-bus version of the 68000 processor. It has an 8-bit data bus
and an effective 20-bit address bus that supports 1 megabyte of address range. The
68008 is contained in a 48-pin DIP. It is very cost effective in applications involving the
standard 8-bit I/O (input/output) interface.

GENEALOGY FLOATING
POINT
CO-PROCESSOR

68881
68020

68030

VIRTUAL
MACHINE

6R000L.12

68000110

68000L%
68000L6

PERFORMANCE/FUNCTIONALITY

68008 REDUCED BUS
68000

68000L4
| | 1 I I | .
1979 1980 19381 1982 1983 1584

FIGURE 1.1 Genealogy of the 68000 family of microprocessors. (Courtesy of Motorola, Ine.)

The 68010 Microprocessor

The 68010 is the virtual memory microprocessor. It has all the resources of the 68000
microprocessor. In addition, it has extended internal resources to support the virtual
memory management schemes. Virtual memory refers to a memory that is not physi-
cally present as a part of the system main memory, but is present as a part of the backup
memory. This feature allows for error detection and possible error correction in memory
access faults.

'l he 68010 is pin compatible with the 68000 microprocessor. The 68000 processor
can he replaced with the 68010 in a system without any hardware changes. Additional
software can then be written to support the virtual memory schemes.

The 68012 Microprocessor

The 68012 is the enhanced virtual memory microprocessor. It is architecturally identical
to the 68010. It has an extended address bus that supports 2 gigabytes of address range,
as well as additional control lines to support the multiprocessing activity. It is contained
in an 84-pin grid-array package.



The 68020 Microprocessor

The 68020 is the cache memory microprocessor. In addition to all the resources of the
68010 microprocessor, it has internal resources to support cache memory operation.
Cache memory is a fast-access memory that holds prefetched information; thus, it speeds
up the system operation. The 68020 is truly a 32-bit microprocessor. It has a 32-bit data
bus and a 32-bit address bus that support 4 gigabytes of address range. It also has
additional control and interface lines to support the coprocessor interface. It is contained
in a 114-pin grid-array package. The 68020 is considered to be one of the best 32-bit
microprocessors, and it is one of the most widely used.

The 68030 Microprocessor

The 68030 is the enhanced version of the 68020 microprocessor. In addition to all the
resources of the 68020, it has internal data cache memory and a memory management
unit. These additional resources effectively enhance the throughput of the 68030 proces-
sor as compared to the 68020.*

The 68881 Coprocessor

The architecture of the 68881 coprocessor is different from that of other members of the
68000 family. The 68881 is capable of performing floating-point arithmetic operations
to 80-bit precision. It can be interfaced to any member of the 68000 family of processors
to increase the arithmetic processing power of the system.

The 68008 is the lowest member and the 68030 is the highest member of the
68000 family of processors. The gradation sequence is 68008 -» 68000 —> 68010 ->
68012 —> 68020 --> 68030. These processors are upward code compatible. The software
written for a lower level processor will work with a higher level processor. For example,
the code written on a 68008-based system will work on a 68000-bascd system with a
similar memory and I/O map. However, the reverse may not be true. Software written
for a higher level processor, using the additional resources of that processor, will not
work on a lower level processor. For example, the code written on a 68020-based system
using the special resources of the 68020 will not work on a 68000-bascd system, which
lacks those resources.’

The following example problem will review the concepts we have just discussed
with regard to the 68000 family.

Example 1.1 The 68000 family of processors.

The 68008 and the 68000 processors support 32-bit internal operations. Their external
data buses are 8 and 16 bits wide. Conceptually compute the relative speed of these two
processors while transferring

1. byte-size data from memory into one of the internal registers of the processor;
2. word-size data from memory into one of the internal registers of the processor.

Solution

1. Byte (8-bit) transfers: The 68008 has an 8-bit data bus and transfers the byte-size data
in one unit of time. The 68000 has a 16-bit data bus, out of which only 8 bits are used
for byte transfers. Byte transfers, then, still take one unit of time.

2. Word (16-bit) transfers: The 68008 transfers a 16-bit word as two bytes. As such, it
takes two units of time. By contrast, the 68000 transfers the complete word in one
unit of time. Thus, for word transfers, the 68000 processor is twice as fast as the
68008 processor.

The memory and I/O (input/output) interface schemes are similar throughout the
68000 family of processors. This results in a well-structured microcomputer configura-
tion, which we will now introduce.

1.2 TYPICAL MICROCOMPUTER CONFIGURATION OF
THE 68000 FAMILY

Figure 1.2 illustrates the microcomputer configuration typical of the 68000 family.
These microprocessors arc of the memory-mapped I/O type, in which the microproces-
sor communicates with an I/O device as if it were one of the memory locations. How-
ever, there are some special instructions in the 68000 family to efficiently deal with I/O
data.

General Interface Scheme

Each member of the family has appropriate control and interface buses to support the
synchronous and the asynchronous devices and systems, as shown in Figure 1.2. A bus
is a group of signal lines. In the synchronous type of interface, data transfers take place
upon certain clocking or timing events. The peripheral devices belonging to such earlier
8 bit processors as the 8085, 6800, and Z80 operate in this manner. In the asynchronous
type of interface, data transfers take place via handshaking. In this protocol, the
responding device provides an acknowledgment signal to the processor during data
transfer... Most of the peripherals belonging to the 68000 family and the static memory
follow this protocol."

There are also special interfaces. The interrupt mechanism is the traditional means
by which to gain the attention of the processor by a slow I/O device. The DMA (direct
memory access) is the traditional means by which to effect high-speed data transfers
between the memory and I/O without the intervention of the microprocessor. l-icn
member of the 68000 family supports both of these features explicitly. The system control
interface consists of the reset, halt, and bus error detection functions. The other interlaces
of the processor consist of the clock distribution network, system power distribution
network, and the address decoding network. Details of all these functions will be
discussed in later chapters.
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FIGURE 1.2 Typical microcomputer configuration of the 68000 family of
microprocessors. {Courtesy of Motorola, Inc.)

Typical 68000-Based Systems

The Macintosh from Apple Computers, Inc., the Amiga from Commodore, Inc., the ST
from Atari, and the 9716 from Hewlett-Packard are some of the most popular micro-
computer systems based on the 68000 microprocessor. The MEX68KECB microcom-
puter module from Motorola is an excellent 68000-based educational computer for
learning the software and hardware features of the 68000 microprocessor and associated
system designs.

An existing microcomputer system with a lower level processor can be upgraded
to a higher performance processor with appropriate modifications. This is feasible be-
cause of the upward code compatibility.

The following example problem will review our discussion of the 68000-based
system configuration.

Example 1.2 68000-based systems.

The 68000-based microcomputer is used in a control-system application. The processor
is required to interface with the 8-bit I/O peripherals belonging to the earlier 6800 and
780 type of processors. These devices respond to appropriate clocking events.

1. What is the preferred type of interface in the 680007 Why?

2. Suppose the 68000 system needs to be upgraded to the 68010. What additional hard-
ware and software resources are required to accomplish this task?

Solution

1. Interfacing the 6800 and Z80 peripherals: Synchronous interface is preferred,
since these devices are of the synchronous type.

2. Upgrading to the 68010: No additional hardware is required. However, to make full
use of the capabilities of the 68010, memory management units may be added.

Existing software will function on the upgraded system. However, to make full use
of the capabilities of the 68010, virtual memory software should be utilized.

The processing activity of a microprocessor depends on its architecture and how its
internal resources are organized. The 68000 processor is rich in internal resources and
has a 32-bit internal register architecture. We will now introduce these important
concepts.

1.3 GENERAL ARCHITECTURE OF THE
68000 MICROPROCESSOR

The architecture of the 68000 microprocessor serves as the prototype on which all the
other processors in the family are based. Figure 1.3 illustrates this internal architecture.
It includes the following features:

eight 32-bit data registers, DO-D7 (Dn)
seven 32-bit address registers, A0-A6  (An)
two 32-bit stack pointers:

user stack pointer, A7 (USP)

supervisory stack pointer, A7' (SSP)
one 32-bit program counter (PC)
one 16-bit status register (SR)

In addition, the 68000 contains a 32-bit arithmetic logic unit (ALU), an instruction de-
coding unit, a control unit, a bus interface unit, and an execution unit. For the sake of
simplicity, these resources are not indicated in the figure. For the 32-bit registers and the
data structures, the byte corresponds to the lower 8 bits, the word corresponds to the
lower 16 bits, and the long word corresponds to all of the 32 bits. We will now provide a
functional description of the basic features.

Data Registers D0-D7 (Dn)

These eight data registers are for general-purpose data storage and processing. They
handle bytes (8 bits), words (16 bits), and long words (32 bits) of data. Each of these
registers can function as an accumulator. An accumulator is a special register that
provides data operands to the ALU and stores the result from the ALU. In addition, any
of
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FIGURE 1.3 The internat architecture of the 68000. (Courtesy of Motorola, Inc.)

the data registers can be used for memory indexing, a process in which a number in the
data register is added to the base address to obtain the effective address of the data op-
erand. Operations on the data register operands affect the flag bits in the status register.

Address Registers A0-A6 (An)

These seven address registers function as address pointers. They store and operate on
word- and long-word address operands. By means of these address operands, memory
can be accessed. The address registers also can be used for general-purpose storage of
operands of word and long-word size, as well as for memory indexing. The address reg-
isters do not support the byte operands. Operations on the address register operands will
not affect the flag bits in the status register (except in compare-type operations).

Stack Pointers A7 (USP) and A7' (SSP)

As previously mentioned, the 68000 microprocessor operates in two distinct modes
called the user mode and the supervisor mode. The former deals with user programs; the
latter, with system-level programs. In order to maintain a distinction between these
modes, the 68000 has two 32-bit stack pointers: the user stack pointer (USP or A7)

and the supervisor stack pointer (SSP or A7")- The 68000 can operate in only one of the
modes at any given time. Either the USP or the SSP controls the system stack, depending
on the mode of operation. The stack pointers can be initialized to locate the stack
anywhere within the available memory space of 16 megabytes for the 68000 mi-
croprocessor. They should be initialized at the even word boundaries.

Program Counter (PC)

This 32-bit register keeps track of program space and sequentially obtains the instruc-
tions and associated operands from program space. Program space is that section of
memory containing the program code.

Only the lower 24 bits of the program counter are brought out as the effective
address bus for the 68000. This provides an address range of 16 megabytes (2** =16
megabytes) or 8§ megawords (1 word = 2 bytes). The PC operates on an even word
boundary. It advances to the next sequential program location after fetching the current
instruction.

Status Register (SR) and Flag Structure

Decision making in the 68000 is dependent upon the flag bits. These flag bits are con-
tained in the status register. Figure 1.4 illustrates the details of the 16-bit status register.
It is divided into two bytes—a lower byte, called the user byte or the condition code
register (CCR), and an upper byte, called the system byte.

User Byte This byte contains the following five flag bits:

C (Carry flag):
V (Overflow flag): Setto 1 for overflow in twos-complement operations.

Set to 1 for arithmetic or logical overflow.

Z (Zero flag): Set to 1 if the result of the previous operation is zero.

N (Negative flag): Set to 1 if the most significant bit (MSB) of the
operand is 1 (signifying a negative number).

X (Extend flag): Similar to the carry flag, but not affected in the data

movement operations.

When these flags are not set to the 1 condition, they remain in the 0 or reset condition.
Certain instructions may not affect these flags. The details of these variations will be
discussed when the instruction set is considered in the next chapter.

SYSTEM Byte This is the upper byte of the status register containing the following
status information relating to the supervisor mode of operation:®

12- 11, and 10 (Interrupt mask bits): ret to the required interrupt mask level.
Interrupts above this level are recognized.
Can specify up to eight levels.
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Inc.}
S (Supervisor bit): S =0 (system in user mode).
S =1 (system in supervisor mode).
T (Trace bit): T = 0 (system in run mode).

T =1 (system in trace mode).

The trace condition is set and used for software debugging. The system level op-
eration is guided by the condition of the system byte. We will learn more about this byte
in subsequent sections of this chapter.

It is convenient to refer to numbers in the hex format, especially when dealing with
data and address operands. In the hex format, the decimal numbers 0-9 are represented
similarly. The decimal numbers 10, 11, 12, 13, 14, and 15 are represented by the
alphabetical symbols A, B, C, D, E, and F. In this book the $ sign is used to represent the
hex digits. Each hex digit takes four bits; for example, $F corresponds to decimal 15 and
binary 1111. The arithmetic operations in the hex format are performed to the base 16.

Appendix A provides information about the hex and other number systems.’ -
The following example problem will review our discussion of the architecture of .-
the 68000 processor.

Example 1.3 Architecture and flags of the 68000.
The initial values of the registers DO, DI, A0, Al, USP, SSP, and the SR are as shown (in
the hex format).

DO=$00123456 DI=%$AABBCCDD
A0=500654321 Al=3000A5CO07
SR = $0400

1. The word operand from DO is added to the corresponding word operand from DI,
with the result in DI (ADD.W DO0,D1 instruction). Show the contents of DO, DI, and
SR after the addition. Take into account that the ADD instruction affects the flags.

2. The long words in A0 and Al are added to each other, with the result in A0 (ADDA.L
A1,A0 instruction). Show the contents of A0, Al, and SR after the addition. Use the
same initial values.

Solution

1. Addition of the word operands in DO and DI: The word operands consist of the
lower four hex digits of the register contents. The hex addition is as follows:

Hex wordinDO =% 3456
HexwordinDl =% CCDD
Hex addition =1 0133

There is an overflow from the fourth hex digit, which wiil set the carry flag and the
extend flag. The word result $ 0 1 3 3 will be transferred to the lower word position
of the DI register. The upper word of D1 and the register DO are not affected.
Expanding the result:

bl5 b0
$0133= ?000 0001 0011 001}
MSB : LSB
:it_ can be seen that

the MSB = 0; as such, the N flag = 0
the result is nonzero; as such, the Z flag = 0

no twos-complement
overflow: as such, the V flag = 0
arithmetic overflow; as such, the C flag = 1
the X flag = 1



Thus, the user byte of the SR conNtains

— — —XNZVC
00010001=%11

and the system byte is not affected:

T-8- —121110
0000 0100=§04

The final results are

DO=500123456
DI=$AABB0133
SR = $0411

2. Long-word addition of A0 and Al: Following the same hex addition principles,

The long-word operand in A0 = $ 006 54321
The long-word operand in A1 = 3000 A 5C07
The long-word result =$006F9F28

s transferred to register AQ. Register Al is not affected.

i - It get
This long-word result g ress registers, and op-

The SR also is not affected, since the operation_is on the add
erations on address registers do not affect flag bits.
The finat results are

A0= $006F9F28
Al= $000A5CO7
SR = $0400

The processor examines the flag bits in the status register and controls the program
flow accordingly. We will study more about this program flow in later chapters on soft-

ware.

Other Resources

Other resources, such as the ALU, the instruction decoder, the execution unit, the bus
interface unit, and the control unit are also important. The 68000 uses these resources
very efficiently. They are internal to the processor and cannot be externally accessed.
Their functions are as follows:

The ALU This arithmetic logic unit performs the arithmetic and logical operations on
data operands. The size of these operands may be byte, word, or long word. The flag bits
in the user byte of the status register are affected as a result of ALU operations.

Instruction Decoder This unit decodes instructions and sets up internal conditions for
the execution unit.

Execution Unit This unit performs actual operations within the processor, such as data
movement.

Bus Interface Unit This unit drives the address bus with appropriate effective address
and handles data transfers on the data bus. It also generates and monitors the bus control
signals necessary for the successful data transfers.

Control Unit This unit generates appropriate control and timing signals within the
processor and coordinates all processor operations.

Supervisor and User Modes of Operation

All of the processor and system resources and all the instructions are available in the
supervisor mode, but some cannot be used in the user mode of programming. This con-
dition provides a safety mechanism in that the user cannot inadvertently modify or cor-
rupt the system-level programs and resources. The operating system software is in the
supervisor mode. These modes of operation are conceptually shown in Figure 1.5.

Supervisor Mode (S=1) This is the highest level or mode of operation. In this mode, the
68000 processor services system-level tasks, such as reset functions, interrupts, traps,
tracing, and error conditions. This type of activity is known as exception processing. On
the power-up reset condition, the S bit in the system byte of the status register is set to 1
and the 68000 enters the supervisor mode, upon which it executes the reset routine. This
routine is always a system-initialization program. SSP is the effective stack pointer in the
supervisor mode.

FIGURE 1.5 Supervisor and MCe8000—USER/SUPERVISOR MODES
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68000. (Courtesy of Motorola, during exception processing
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At the end of the reset exception routine, the processor may clear the S bit in the
system byte to 0. This puts the processor in the user mode.

User Mode (S=0) This is the lower level of operation. It is for this level that users write
their normal programs. As we already know, some resources and instructions are not
functional in this mode of operation. Any attempt to use these resources in the user mode
results in an error condition whereby control is transferred to the supervisor mode. This
error condition is known as a privilege violation. USP is the effective system stack
pointer in the user mode.

Figure 1.5 illustrates the intercommunication between the two modes of operation.
Exception conditions, such as reset, interrupts, errors, traps, and trace, will set the S bit in
the status register to 1 and move the processor into the supervisor mode. Traps are
special software instructions that can be used in the user mode in order to move to the
supervisor mode.

The processor moves from the supervisor mode into the user mode if the S bit in
the system byte is cleared to 0. This is accomplished by executing such software instruc-
tions as the RTE (return from exception), MOVE to SR (move data to status register),
and others. These instructions are privileged; they can only be used in the supervisor
mode.

The following example problem will review our discussion of the supervisor and
user modes of operation.

Example 1.4 Supervisor and user modes in the 68000,
The initial values of the USP, SSP, and SR are as follows:

|

USP = $0000480C SSP=$000037A0
SR = $2400

1. Is the processor operating in the user mode or in the supervisor mode? Why?

2. Where is the system stack located?

Solution

1. Processor operating mode: The processor is operating in the supervisor mode, since
the S bit in the system byte is 1. Expanding the system byte of the SR:

$24=$00100100
T § 12U

it can be seen that the § bit is set to 1.

2. System stack: Because the processor is in the supervisor mode, SSP controls the
system stack. As such, the system stack is focated at $ 000037 A 0.

14 OTHER FEATURES OF THE 68000
FAMILY OF PROCESSORS

The primary objectives in using the 16/32-bit processor are to obtain more processing
power and more speed. In the 68000 family, these objectives are achieved by means of
the prefetch-queue and the instruction-pipe architectures.'’

The Prefetch Queue

When the processor is internally busy with operations on data corresponding to the cur-
rent instruction, the external data and address buses are relatively free. The bus unit
within the microprocessor uses these buses to obtain the next instruction code from
memory. This is known as prefetching. The internal register bank where this code is
stored has memory in the form of FIFO (first in first out) and is known as the queue. The
prefetch-queue mechanism overlaps processor activity and thus enhances speed. All
members of the 68000 family have a two-word prefetch queue.

The Instruction Pipeline

The control unit within the processor sequentially arranges decoded instructions and as-
sociated operands in the form of a pipeline. The execution unit within the processor ob-
tains information from this pipe for its operation. The pipe is structured along FIFO
lines.

The internal pipeline can be formed by the control unit when the execution unit is
busy with the previous operation. Thus, there is an overlap of processor activity which
enhances the speed of operation. The 68020 and 68030 processors have a three-word
pipe.

15 SUMMARY

In this chapter we introduced the 68000 family and outlined the relative features of these
processors. Motorola entered the 16-bit market in the late 1970s with the 68000.

The 68000 microprocessor has an effective 24-bit address bus and a 16-bit data
bus; it supports a 16-megabyte address range. The 68000 is normally contained in a 64-
pin DIP package and is also available in a 68-pin grid-array package.

The 68008 is a reduced-bus version of the 68000 processor. It has an effective 20-
bit address bus and an 8-bit data bus; it supports a l-megabyte address range. It is
contained in a 48-pin DIP package.

The 68010 is a virtual memory microprocessor. It contains all the resources of the
68000 and is also pin compatible with the 68000. In addition, the 68010 processor has
extended internal resources to support virtual memory schemes. The 68012 processor is
an enhanced version of the 68010 processor with an effective 31-bit address bus that
supports 2 gigabytes of address range. The 68012 is contained in an 84-pin grid-array
package.



The 68020 is a 32-bit processor with all the resources of the 68012. The address
and the data buses are extended to 32 bits. It supports a 4-gigabyte address range. In
addition, the 68020 processor has internal instruction cache memory and the resources to
support it. The cache memory holds most recently fetched instructions and supplies them
to the processor. This speeds up the system operation.

The 68030 is an enhanced version of the 68020 processor with all the resources of
the 68020. In addition, it has internal data cache memory and a memory management
unit, further enhancing the throughput of the 68030 as compared to the 68020 processor.

The performance gradation sequence is 68008 -* 68000 -> 68010 -* 68012 ->
68020 -> 68030. The 68008 is the lowest member of the family and the 68030 is the
highest. These processors are upward code compatible.

Processors in the 68000 family are provided with proper control and interface
buses to support synchronous and asynchronous devices. Moreover, the interrupt and the
DMA operations are fully supported.

The architecture of the 68000 microprocessor forms the basis for that of all the
other members of the family. It consists of eight 32-bit data registers, seven 32-bit ad-
dress registers, one 32-bit program counter, two 32-bit stack pointers, one 16-bit status
register, and a 32-bit ALU. The 68000 operates in two distinct modes: the supervisor
mode and the user mode. This feature serves to maintain separation between the operat-
ing system programs and the user programs.

Each member of the 68000 family has a two-word prefetch queue, which effec-
tively speeds up processor operation. In addition, there is a three-word pipeline in the
68020 and 68030 processors, speeding up processor operation still further.

PROBLEMS

1.1 What are the physical address spaces for

(a} the 68008 and 68000 processors;
(h) the 68010 and 68012 processors;
(c) the 68020 and 68030 processors.
Specify these address spaces in bytes and words.
1.2 Does software written on a 68000-based system work with a 68020-based system having
the same memory and /O map? What happens if the memory and /O maps are different?
1.3 Specify special conditions that would emable software written on a higher processor, such
as 68010, to function on a lower processor, sitch as 68008,
1.4 Compute the relative speed of the processors in question in the foltowing situations:
(a8} the 63008 and 68000 transferring long words from memory into the processer internal
registers,
(b) the 68008 and 68000 transferring long words from the processor internal registers into
memory.

L5 Compute the relative speed of the processors in question in the following situations:

(a) the 68000 and 68010 transferring words from memory into the processor internal
registers;
(b) the 68000 and 68010 transferring words internally from one register into the other.

1.6 Isit possible for the processor to simultaneously address the devices connected to the
synchronous and asynchronous buses? Why or why not?

1.7 Describe two or more advantages and disadvantages of using synchronous and
asynchronous interfaces.

1.8 Suppose you are required to scale down a 68000-based system to that of a 68008. In order
to make the scaled-down version functional,

(a) what hardware modifications are necessary?
(b) what software modifications are necessary?

1.9 List three differences between the data and the address registers in the 68000 family of
processors.

1.10 Can the USP and the SSP be used simultaneously as stack pointers? Why or why not? Can
both the stack pointers be initialized at the same location to refer to the stack? Why or
why not?

111 The initial values of the registers in a 68000 register are

DE=301020304 DI
AD=3$00135798 Al
USP =3000040A0 SSP
SR = $0304

$A0BOCODO
$00A9753 2
500003404

1]

Il
]

State the contents of DO, DI, A0, Al, and the SR after each of the following operations:

(a) long word in DO added to long word in DI, with the result in DI;
(b) byte in DO added to byte in DI, with the result in DO;
(c) long word from Al transferred into AO.

1.12 Using the initial conditions given in Problem 1.11, state the contents of the affected
registers after each of the following operations:

(a) long word from DI transferred into Al
(b) long word in A0 added to long word in DI, with the result in DI;
(c) operation (b) repeated, with the result in AQ.

1.13 With the initial conditions as stated in Problem 1.11,

(a) is the processor in the user mode or the supervisor mode? Why?

(b) can the processor use all the instructions, given your response to (a)? Why or why not?
1.14 How do the user and the supervisor modes differ?

1.15 The user byte of the SR is $00 initially and the interrupt mask level is set at 6. The
processor is operating in the supervisor mode. The last addition operation has resulted in a
word operand $FE00 in data register D7. What are the contents of the status register?

1.16 Repeat Problem 1.15 under the following conditions:

(a) byte result $00 in D6 register;
(b) long-word result $0123456B in Al register.



1.17 Specify what happens under the following conditions:

(a) byte operand addressed in AO; . , I
(b) stack located at an odd boundary, such as $00003401; (, H A P'I PJR
(c) memory reference 12345678 A made by the 68000.
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In this chapter we will study:

Memory organization and selection schemes for the 68000
Data structures and representation for the 68000 Stack
memory organization and structure for the 68000
Instruction format and structure for the 68000 Addressing
modes for the 68000



2.0 INTRODUCTION

Memory access is an integral part of any computer system operation. For the 68000,
memory is organized as blocks of even and odd bytes. Data are structured so that bytes
can be accessed individually, words can be accessed as two bytes, and long words can be
accessed as two words. This provides an efficient and reliable memory access for data
operands of varying size.

The stack memory is word-aligned. The program memory, where instructions and
associated operands reside, is similarly word-aligned. Thus, the complete 16-bit data bus
of the 68000 is utilized, optimizing the stack and instruction fetch operations.

The 68000 processor has 14 different addressing modes with which to access
memory. Depending upon the application, any of these addressing modes can be used.

An understanding of memory organization schemes and data structures is essential
to the study of the addressing modes. We must first learn about these addressing modes
to understand the instructions, software features, and programming techniques of the
68000, all of which will be introduced in the next chapter. Note that throughout the book,
the overbar is used to represent an active low signal. For example, /[LDS means that the
signal LDS is active when it is at the low logic level and is inactive when it is at the high
logic level.

21 MEMORY ORGANIZATION SCHEMES
AND DATA STRUCTURES

The 68000 microprocessor handles the byte, word, and long words of data. The memory
is organized as 16-bit words and supports the aforementioned data elements.

Memory Organization and Selection Schemes

Figure 2.1 illustrates the memory organization and selection schemes for the 68000. The
memory is structured as blocks of even and odd bytes. It can be accessed as bytes,
words, or long words with the help of two strobes: /LDS and /UDS. These are active low
signals.

/LDS is called the lower data strobe. When it is active, the lower or the odd
memory byte is selected. /UDS is called the upper data strobe. When it is active, the
upper or the even memory byte is selected. When both strobes are active, both bytes are
selected, providing a word access.

The odd byte is connected to the lower eight data bits, DO-D7, of the data bus. The
even byte is connected to the upper eight data bits, D§-D15, of the data bus.

The 23 address lines, A1-A23, of the address bus provide an effective address
range of eight megawords. The conventional A0 address line is brought out in the 68000
as the /LDS and the /UDS strobes. When they are active individually, these two strobes
select either an odd byte or even byte. This provides an effective address range of 16
megabytes. An R/W signal from the processor is the read/write strobe. If this R/W
strobe is at a high logic level, the processor reads the data from the memory. By the

FIGURE 2.1 (a) Memory
organization and (b) selection .
schemes for the 68000. AI-A23 , 23 23
DO-D1S . 16 8 | DO-D7
RAW MEMORY
— QDD
1DS 3
MCE2000 8 b
DEDLE_| MEMORY
— EVEN
ups 3
()
UD§ DS Memory selected
High High None
High Low Lower or odd byte selected
Low High Upper or even byte selected
Low Low Both bytes selected (word)

{b)

same token, if this signal is at a low logic level, the processor writes the data into the
memory. Details of these signals will be discussed when we deal with the hardware as-
pects of the 68000.

Data Structures and Representation

Bytes, Words, and Long Words Figure 2.2 illustrates how data are represented in the
memory. The bytes can be accessed at the even or at the odd address boundaries. The
word, consisting of two bytes, should be accessed only at the even address boundary.
Similarly, the long word, consisting of two words, should be accessed only at the even
address boundary. The word at the lower address corresponds to the higher word element
of the long word. Word or long-word access at an odd boundary results in an error
condition called the address error. This error condition transfers control to the
supervisor mode and the operating system programs.'”

BCD (Binary Coded Decimal) The decimal numbers are represented in the BCD (binary
coded decimal) format. Each BCD digit is a 4-bit element. Two BCD digits are
contained in a byte. For a BCD string, the first BCD digit at the lowest address corre-
sponds to the MSD (most significant digit).
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1 BYTE = & BITS N+2
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FIGURE 2.2 Data representation in mermory for the 68000,

N+1

N+3

N+t
N+3

N+5

N+1
N+3
N+5

N+7

N+1

N+I

N+3

The data structures for the 68010 and 68012 processors are similar to those for the
68000. For the 68008, which has only an 8-bit data bus, the memory is byte organized.
The /LDS and the /UDS are integrated into a single data strobe, /DS. A word is accessed
as two sequential bytes for the 68008.°

The following example problem will review our discussion of data structures.

Example 2.1 Data structures for the 68000,
Suppose that we are required to store the following;

data bytes $7F and $4E at locations $0040E0 and $0040EI;
data word $CADS at location $0040E2;

long data word $2468A840 at the next location;

BCD data string 1234567 starting at the next location.

1. Indicate the contents of the memory for the 68000 processor.
2. What will be the contents of a long word read from location $0040EQ?
3. Repeat (1) and (2) for the 68008 processor.

Solution

1. Memory contents: Figure 2.3(a) indicates the contents of the memory for the 68000
processor. The memory is word organized. The long word occupies two word posi-
tions, starting at $0040E4. In the long word $2468A840, the first digit, 2, is the MSD
and the last digit, 0, is the LSD.

FIGURE 2.3 (a3} Data Even memory Odd memory
structures for the 68000 address address
MICIOProcessor. Even byte 0dd byte
$0040E0 7 F | a E $0040E1
FO040E2 C A D 8
$0040E4 2 4 6 8
A B 4 0
$0040E8 0 1 2 3 $0040E9
$0040EA 4 5 6 7 $0040ER
(a)

For the BCD data, the leading zero is introduced by the processor, since the
memory cannot be accessed at 4-bit boundaries.*
2. Long word from $0040EO: The long word from location $0040E0 will be
MSD LSD
I I
$7FAECADS.
3. 68008 memory organization: Figure 2.3(b) shows the corresponding results for the

68008 processor. The memory is byte organized. A word occupies two byte
locations.

Data
type

Byte

Word

Eong
word

BCD



FIGURE 2.3 (b) The 68008 ?génr:g 1133«1[:
(for Example 2.1}
$0040E0 7 F Byte
$0040E1 4 E
$0040E2 cC A Word
$0040E3 D 8
$0040E4 1 4 ‘va;;g
$0040E5 6 8
$0040E6 A 8
$0040E7 4 0
$0040E8 0 1 BCD
$0040E9 2 3
$0040EA 4 5
$0040EB 6 7

(b)

The 68000 processor uses memory-mapped I/O in which the processor considers
memory and I/O to be similar to one another. The memory organization for the 68000
family is linear, allowing for access of any memory location without readjusting the ad-

dress mechanism. This simplifies the stack and queue operations, which will now be
introduced.

Stack and Queue Organization and Structure for the 68000

A stack is a LIFO (last-in-first-out) data structure in the memory. Some of the internal
registers of the processor are saved automatically on the stack whenever there is a change
in program flow due to subroutines or exceptions. The system stack pointer (SP)
controls the stack operation. The stack pointer is either SSP (A7) or USP (A7),
depending upon the mode of operation. The program counter is saved on the active sys-
tem stack on subroutine calls and is restored from the stack on the returns. On the other
hand, both the program counter and the status register are saved on the supervisor stack
during the processing of exceptions, such as interrupts and traps. They are restored on
return. The system stack fills from high memory to low memory.’

The stack is always word organized and word aligned. Byte data are put on the
stack in pairs, preserving the word alignment of the stack. Saving information on the
stack is known as pushing. Retrieving the information from the stack is known as pop-
ping or pulling. The stack pointer (SP) always points to the top of the stack, where the
last element has been pushed. The SP predecrements by two for pushing a new word
onto the stack. Similarly, the SP postincrements by two after pulling a word element
from the stack. For long-word pushing or pulling, the SP is predecremented or postin-
cremented by four.® The stack should always be accessed at even boundaries.

A queue is a FIFO (first-in-first-out) data structure in the memory. A queue may
be implemented to fill in from high memory to low memory, or vice versa. Queues may
be byte or word organized. They are very helpful in setting up memory tables and
strings. There can be several queues set up in the memory. The stack and queue are very
important data structures and are explicitly supported by the addressing modes of the
68000.

The following example problem on the stack and queue will promote better under-
standing of these structures.

Example 2.2 Stack and queue structures.
The initial values of the USP, SSP, AQ, and Al are as follows:

USP = $0000480C SSP=%$000037A0
AD=3%0000BDO04 Al =30000BD 138

The 68000 is executing a main user program in the user mode and the JSR (jump to
subroutine) instruction has been encountered. The next instruction to be executed in the
main program is at PC location $00024A08.

1. Indicate the contents of the stack.

2. The subroutine sets up a memory table in the form of a word-organized queue. AO
points to the first clement and Al points to the last element in the queue. Conceptu-
alize the queue structure. How many words are contained in the queue?

Solution

1. Stack: Figure 2.4(a) shows the contents of the stack. USP is the system stack pointer,
since the processor is in the user mode. The USP gets predecremented by four and the
PC pointing to the next instruction in the main program gets pushed onto the stack.

2. Queue: Figure 2.4(b) shows the conceptual queue structure. It contains [($0000BD18
- $0000BDO4) + 1] = $15 word elements.



FIGURE 2.4 (a) Contents of Memory address Word memory

meg?g,j;&?hﬁ??:ﬁ;; USP - 4 = $00004808 | 0 O —0_ f i PC (high word)
guz} i 4 A 0O 8 PC (low word)
USP = $0000480C Previous data Initial top of stack
(a)
Memory address Word memory
AD = $00COBD04 First element Queue beginning
$0000BDOG Second element

. .
H

. .

At = $0000BD18 Queue ending

(b)

The RTS (return-from-subroutine) instruction restores the stored contents from
the stack. RTS is the last instruction in any subroutine. On executing the RTS instruction
in the subroutine of Example 2.2, the contents of the stored PC ($00024A08) are pulled
from the stack and restored into the PC. This causes the main program to resume, starting
at $00024A08. This is the location of the next instruction to be executed in the main
program, while the subroutine is called. The SP is incremented to its original
value: $0000480C.

A subroutine called by another subroutine is said to be nested. Suppose the first
subroutine calls a second subroutine. The PC pointing to the next instruction to be exe-
cuted in the first subroutine is stored on the stack, on top of the earlier stored PC (cor-
responding to the main routine). The processor then executes the second subroutine. At
the end of the second subroutine, the RTS instruction is executed. This restores the PC
corresponding to the first subroutine from the stack. At the end of the first subroutine,
another RTS instruction is executed. This restores the PC corresponding to the main
program from the stack. Ultimately, the SP is incremented to its original value. The
available stack space determines how many of the subroutines can be nested. A similar
mechanism works for nesting exceptions such as interrupts.’

2.2 INSTRUCTION FORMAT AND STRUCTURE

A software program consists of a sequence of instructions. These instructions are stored
in program memory in the form of machine code. The program memory is that area in

memory addressed by the program counter. The program memory is word aligned for
the 68000.

Instruction Format

For the 68000, instructions are from one to five words, as shown in Figure 2.5. The first
word, which is called the operation word (op. word) specifies the length of the instruc-
tion and the type of operation to be performed. The remaining words specify the appro-
priate source and destination operands. The processor obtains the source operand, per-
forms the specified operation, and puts the result at the destination. Instructions for the
68000 have a well-defined structure enabling programmers to clearly identify the source
and destination operands without ambiguity.

FIGURE 2.5 instruction format b15 b0
for the 68000. ~ Operation _ ‘
word Operation code and modes First word
Extension word, or |
immediate operand (if any) 0r 2 words
Operands
{data or S ffecti
effective ource effective
aldress of address (if any) Lor 2 words
data)
Destinaticn effective
address {if any) 1 or 2 words

Instruction Structure

An instruction may be of the single- or the double-operand type. For the single-operand
type, the specified operand is always the destination. For the double-operand type, the
first operand is the source operand and the second is the destination. We will define and
use three instructions for our discussion in this chapter. These instructions reference an
effective address <ea> and are as follows:

CLR <ega> Clear the contents of the specified address.

ADD <ea>,Dn Add the contents of the effective address to
the specified data register Da (n = 1-7).

MOVE <ea>>, <ea> Move the contents of the source effective
address to the destination effective address.

The CLR instruction is of the single-operand type; the other two are of the double-
operand type. Figure 2.6 illustrates typical instruction structures for the 68000 processor
with single and double operands. Most of the instructions are similarly structured. Also,
in most cases, the data size is explicitly specified to be byte, word, or long word, as
shown; thus, the same mnemonic statement may be used for different types of data.®

Clearly, the effective address is an integral part of the instruction. In that the 68000
has 14 distinct addressing modes to specify the effective address, it is a very powerful
and versatile processor. Some of these modes deal with the register reference, some deal
with the memory reference, and some deal with the control.
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2.3 REGISTER DIRECT AND REGISTER
INDIRECT ADDRESSING MODES

Motorola Corporation introduced a notation scheme to refer to the registers and operands
in dealing with the addressing modes and the instructions. We will follow this notation,
which is given in Figure 2.7.

Dn Data register (n specifies the register number)
An Address register {n specifies the register number)
Rn Dn or An (n specifies the register number)

PC Program counter

SR Status register

CCR Condition code register (user byte of the SR)
ssp Supervisor stack pointer

USP User stack poinier

SP Active system stack pointer (either SSP or USP)
d8 8-bit displacement value

dls 16-bit displacement value

N Operand size in bytes (N = 1, 2, or 4 for byte, word, or long-word operands)
{An) Contents of the location addressed by An

<ea> Effective address of the operand

FIGURE 2.7 Motorola’s register and operand notation for the 68000 addressing modes
and instructions.

In the register direct addressing modes, either the data or the address registers hold
the data operands. On the other hand, in the register indirect addressing modes, one of
the address registers holds the base address of the data operand. The register-related ad-
dressing modes are indicated in Figure 2.8.

Addressing Mode Syntax Effective Address <ea>

REGISTER DIRECT

Data register direct Dn <ga> =Dnin = 1-7
Address register direct An <ea> = An;n = 1-7
ADDRESS REGISTER
INDIRECT (ARI) {An) <ea> = (An)
ARI with
postincrement {An}+ <¢a> = (An); An+N — An
predecrement —{An) An—N — An ; <ea> = (An)
displacement d(An) <eu> = (An + d16)
index and displacement di{An,Rn) <ega> = (An + Rn + d8)

FIGURE 2.8 Register-related addressing modes for the 68000.
In our discussion we will use the three instructions introduced earlier:

CLR <ea>
ADD <ea>,Dn
MOVE <ea>,<ea>

We will also use the initial values of the registers and operands as given in Figure 2.9 for
example problems.

It is important to note that although register A7 can be used as an address register
in any of the addressing modes, extreme care should be exercised. Since A7 is the sys-

Db =%$123406738 Memory Word
Dl =$ABCDEFOOQ Address Data
A=5%5004876F2

Al —$0034FR78 $0034FE74  1AB2

$0034FE76 iCD4
$0034FETR 5EF6
$0034FE7A 9873
$0034FETC 2408

$00487D6E CDoz2

FIGURE 2.9 |nitial values for the registers and the data operands in memory.



tem stack pointer, it should remain word aligned. In the postincreme.nt and 'predefctr;:-
ment addressing modes, A7 increments or decrements by two, even if the size of the
operand is byte.

Register Direct Addressing Modes

The 63000 has two direct addressing modes: the data register direct and the address reg-
ister direct.

Data Register Direct Addressing Mode (Dn; n = 1-7) In this mctde the speci-
fied data register contains the addressed operand. Examples are as follows:

CILR.L B0 Clear the long word operand in the Do Tegister.
(Single-operand type; DO is the destination.)
DO (before) $12340678
DO (aften) $00000000

CLR.W DI Clear the word operand in the D1 register. The lower word in D1
gets cleared. The upper word in D1 is not affected.
(Single-operand type; D1 is the destination.)
D1 (before) $ABCDEFOO
Di (after) $ABCDO0O0O0O

Address Register Direct Addressing Mode (An; n = 1-7) lIn this mode the
specified address register contains the addressed operand. For example,

Move the long-word operand from AQ into Al.
MOVEAL ADAL A0 is the soufce operand and is not affected.
Al is the destination operand and is changed.
AQ (before) $004876F2
Al (before) $0034FE738
A0 (after) $004 87 6 F 2 (no change)
Al (after) $ 00487 6 F 2 (changed)

The register direct addressing modes are very fast and efﬁcicnt‘in conducting op-
erations on the data operands already present in the CPU internal registers.

Register Indirect Addressing Modes

The 68000 has five indirect addressing modes: the address registf:,r infiirect (ARI), th;
ARI with postincrement, the ARI with predecrement, ll."le ARI with d1§placement, ?:f.
the ARI with index and displacement. All these addressing modes provide memory
erence where the data operand is located.

Address Register Indirect ARI ((An); n = 1=7) In this mode, the specified ad-
dress register contains the address of the data operand. An example follows.

MOVE.B (Al1),D0 Move the byte operand in memory, the address of which is

contained in Al, into DO,

Source <tea™> = (Al) = $0034FE78.

Byie operand at $0034FE78 = $5E.

Destination <<ea™ = DO register

DO (before) $12340678

DO (after) $1234065E
Only the lower byte of DO is changed to 5E. The other part of
D0 is not affected. Al also is not affected,

ARI with Postincrement ((An)+; n =

1-7) In this mode, too, the specified address
register contains the address of the data operand. After the operand address is used, the
address register is incremented by one, two, or four, depending upon whether the size of
the operand is byte, word, or long word. This mode is very useful in setting up and
scanning the memory tables. An example follows.

MOVE.L (A1)+,D1 Move the long-word operand in memory, the address of

which is contained in Al, into the DI register and postin-
crement Al by four.

Source <ea> = (Al) = $0034FE78.

Long word at $0034FE78 = $5EF69873,

Destination <<ea™> = DI register.

D1 (before) $ABCDEFOO

Al (before) $0034FE78
D1 (after) $35EF69873
Al (after) $0034FE7C

ARI with Predecrement (-(An); n = 1-7) In this mode, the specified address register
contains the address of the data operand. It is predecremented by one, two, or four to
generate the effective address, depending upon whether the size of the operand is byte,
word, or long word. This mode is very useful in setting up and scanning memory tables
and in multiprecision arithmetic operations. An example follows.

MOVE.W —(A1),D0O Predecrement Al by two {(since the size of the operand is

word), to obtain the source effective address and move the
word from that address into DO.
Source <ea> = (Al1—2) = $0034FE76,
Word operand at $0034FE76 = $3CD4.
Destination <<ea>> = DO register.
DO (before) $12340678
Al (before) $O034FE 78
DO (after) $12343CD4
Al (after) $0034FE 76

ARI with Displacement (d(An); n=1-7) In this mode, the specified address register
contains the base address. The instruction specifies a sign-extended 16-bit displace-



ment as the extension word. The sign extension provides an effective displacement range
of +32768 (+32K) for positive words and —32768 (—32K) for negative words.
(Effective address computations use the sign extension for displacement and index val-
ues. Refer to Appendix A for sign-extension concepts).

The effective address is the sum of the base address and the displacement value.
The contents of the address register do not change. This mode is very useful in address-
ing different sections of memory, with different displacement values. An example fol-
lows.

d source <.ea.>
AlDIL Move the byte operand from the compute .
MOVEB QU03(AD into the DL register. Effective address comput‘auon by
the processor is as shown (displacement is 16-bit d16):

Contents of Al $0034FET8
+ displacement d16 $00000003
Source <ea> = $0034FE'B

Byte operand at $0034FE7B = $73.

Destination <ea> = DI register.

D1 (before) $ABCDEFO00

Al (before) $0034FET7S8

D1 (after) $ABCDEF73

Al {after) $0034FE73

Only the lower byte of D1 is changed to $73. The other
part of D1 is pot affected. Al also is not affected.

ARI with Index and Displacement (d(An,Rn); n = 1-7) In this mode, the specified
address register (An) contains the base address. The other address, or data, register (Rn)
contains an index word (or long word), as specified. The instruction also specifies an 8-
bit sign-extended displacement as a part of the extension word. The index operand can be
a computed variable, which provides a dynamic addressing scheme.

The effective address is the sum of the base address, the index value, and the dis-
placement. The contents of the address and index registers do not change. This mode is
very useful in addressing different sections and blocks of memory with different index
and displacement values.” An example follows.

he source <.¢a>> into
4{A0,D0.W),D1 Move the word operand from { .
MOVEW O ) D1. The <ea> computation by the processor 1s as

shown (displacement is 8-bit ds).

Contents of AQ  $004876F2

+ index word from DO $00000678
+ displacement d8  $00000004
Source <ea> = $00487D6E

Word operand at $00487D6E = $CDU2.
DO (before) $12340678
D1 (before) SABCDEFO0O
AQ {before) 300487 6F2

DO (after) $12340678
D1 (after) SABCDCDO0O2
A0 (after) $004876F2
Only the lower word of D1 is changed.

Depending upon the application, any of the preceding addressing modes can be
used to specify' either the source or the destination operands. In some instances, not all
the addressing modes are applicable. The instruction set specifies which modes are ap-
plicable” and which are not.

Any type of data structure can be set up and handled using the preceding address-
ing modes. For example, the predecrement and postincrement addressing modes can be
used in conjunction with each other to set up a stack-type or queue-type activity. Within
the same instruction, the source and destination operands can be specified by different
addressing modes.

The following example problem provides a review of the register-related address-
ing modes.

Example 2.3 Register addressing modes for the 68000.

According to the instruction structure and the addressing modes discussed so far, specify
what occurs in each of the following operations. Also, indicate the contents of the cor-
responding registers and the memory locations after each operation. The initial values in
each case are as shown in Figure 2.9.

1. MOVE.B D1,DO
2. CLR.L —(AD) .
3. MOVE. W (A1)+,0A{AQ0,DO. W)

Solution

1. MOVE,B D1,D0: D1 is the source operand. DO is the destination operand. The
source and the destination operands are specified by the data register direct address-

ing mode. The lower byte operand from D1 is moved to D0, Only the lower byte of
DO is changed.

DO (before) $12340678
DO (after) $12340600

2. CLR.L ~(Al): The operand is specified by the ARI with predecrement addressing
mode. Al is predecremented by four (since the operand is long word) to obtain the
effective address, and the long word at the location is cleared.

Destination <ea> = (A1—4) = $0034FE74.
Al (before) $0034FE78
Al (after) $0034FET4



24 IMMEDIATE, QUICK, ABSOLUTE, RELATIVE,

Memory address Memory contents
before after
$0034FE74 1AB2 0000
$0034FE76 3CD4 0000

$0034FE78 SEF6 SEP.?()

3. MOVE.W (Al)+,0A(A0,D0.W): The source operand is spejciﬁed !Jy the ARI with
. postincrement mode of addressing. The destination operand is specified by the ABI
with index and displacement mode of addressing. The word from the source <ea~> 18

moved to the destination <<ea=>.

Source <ea> = (Al) = $003f1FE78.
Destination <ea> computation:
Contents of AQ  $004876F2
+ index word from DO $00000678
+ displacement 48 $0000000A
Destination <ea> = $00487D74
Word at location $0034FE78 ($5EF6) is moved to location $00487D74.
Al (before) $0034FE738
Al (after) $0034FE7C
(postincremented by fou;') ) koo
at $00487D74 {(before not kn
Memery word st & (after) $5EF6

The addressing modes discussed so far address the data or the address opera.llfls.
We will now introduce the other modes that deal with the program control, in addition

to addressing the operands.

AND IMPLICIT ADDRESSING MODES

Figure 2.10 illustrates the aforementioned addressing modes. In the immediate and quick
addressing mode, the data is explicitly specified as part of the instruction. In the absolute
addressing mode, the address of the data or of the next instruction is explicitly specified as
part of the instruction. In the relative addressing mode, a displacement where the data or
the next instruction is located is explicitly specified as part of the instruction. In the
implicit addressing mode, instructions make implicit reference to the processor registers.
We will now discuss the details of these addressing modes using the three instructions
(CLR <ea>; ADD <ea>,Dn; and MOVE <ea>,<ea>) introduced earlier. The initial values
of the registers and the operands given in Figure 2.11 will be used for examples.

Addressing Mode Syntax Effective Address <ea>
Immediate addressing #XXX or IMM <lga> = next one or two
wards of the in-
) struction
Quick addressing/,-z-"" Instruction ends with Q Data contained as part of the

op.word

Absolute siiort addressing

Absolute long addressing

XXXX or ABS.W

XXXXXXXX or ABS.L

<ega> = next word of the
instruction

]

<ga> = next two words of
the instruction

PC relative with displace- di(PC) <ea> = (PC + dl6)
ment
PC relative with index and d(PC.Rn) <ea> = (PC + Rn + d8)
displacement
Irmplicit None <Zea> = PC, S8R, SP. . .
FIGURE 2.10 Immediate, quick, absolute, relative, and implicit addressing modes for
the 68000.

Immediate Addressing Mode (Imm)

Data are explicitly specified and contained in the extension words of the instruction.
Data size can be a byte, a word, or a long word. For long-word data operands, two word
extensions are required. This addressing mode is very useful in initializing the registers
and the memory. Only the source operand can be specified by this addressing mode. We

will use a # sign to signify the immediate operand. Examples are as follows:

DO=$12340678 Memory Word
DI=$ABCDEEOGOD Address Data
i? =$004876F2 $0034FE74 1AB2
=$0034FE78 $0034FE76 3CD4
$0034FE78 SEF6

$0034FE7A 9873

$0034FE7C 2408

$00487D6E CDO2

FIGURE 2.11 Initial values for the registers and the data operands in memory.




Move the immediate data byte $24A into the DO desti-
nation register.

DO (before) $12340678

DO (after) $1234002A

MOVE.B #$2A,D0

MOVE. W #$BBBB,(Al) Move the immediate data word $BBBB into memory

addressed by (A1)
Destination <cea> = (Al) = $0034FE78.

Contents of $0034FE78 (before) $5EF6
. (after) $BBBB

Quick Addressing Mode (. ... Q)

This is a variation of the immediate addressing mode. Up to 8 bits of data can be spec-
ified as part of the operation word itself. Thus, this is a single-word instruction and op-
erates faster than the immediate addressing mode. However, the data range is limited to 8
bits in move operations and to 8 units in arithmetic operations. In this addressing mode,
all 32 bits of the destination are affected by the sign extension of the data operand. In the
sign extension, the most significant bit (MSB) of the data operand is replicated to all the
higher bits (see Appendix A). The instructions allowed in this mode are explicitly
specified in the instruction set and end with Q (ADDQ, MOVEQ, SUBQ, and so forth).
An example follows.

MOVEQ #$43.D0 Move the quick data $43 into the DO destination register.
' Dataoperand=$43={l]l{}00011
MSBE = 0

This MSB is replicated to all the higher bits in DO register.

DO (before) $12340678
DO (after) $00000043.

Absolute Short and Long Addressing Modes (Abs.W, Abs.L)

In the absolute short addressing mode, a 16-bit address of the data or of the next instruc-
tion is explicitly specified as an extension word within the instruction. In the absolute
long addressing mode, instead of the 16-bit address, a 32-bit address is specified as two
extension words within the instruction. The short addressing mode has a range of 64
kilobytes and the long addressing mode has a range of 16 megabytes. These addressing
modes are used to access the memory directly. They are also used in program control
applications to specify the location of the next instruction. Examples are as follows:
CLR.L $0034FE74 Clear the long-word operand starting at memory location

$0034FE74. This is the absolute long addressing mode,

since a 32-bit address of the operand is specified.

Destination <ea> = $0034FE74.

Long-word operand at $0034FE74

(before) $1AB23CD4

(after) $§00000000

MOVE.B DO0,$4000 Move the byte operand from D) into the memory location at
$4000. Destination of the 16-bit address is specified by the
absolute short addressing mode. The upper four digits of the
address are considered to be $0000.

Source operand = byte from DO = $78
- Destination <ea>> = $00004000
Byte operand at $00004000 (before) not known
a (after) $78

PC Relative with Displacement Addressing Mode d(PC)

In this addressing mode, a signed displacement is specified as a part of the instruction.
This displacement is added to the contents of the PC (program counter) to obtain the
effective address of the operand.

The displacement can be 8 or 16 bits, depending upon the instruction. For an 8-bit
displacement, the displacement range is 256 bytes; for a 16-bit displacement, it is 64
kilobytes.

Program control instructions, such as BRANCH instructions, use this type of ad-
dressing mode. In the example that follows, we will introduce a new instruction, BRA
(branch always). This specifies where the next instruction to be executed is to be found.

PC Instruction .

$00002000 BRA 082A(PC) Branch to the specified effective address. The <ca>
calculation is as shown:
Contents of PC after the BRA

instruction*® $00002002
+ sign-extended 16-bit
displacement $0000082A

<¢a> = $0000282C
The program branches to $0000282C and fetches the
next instruction from that location.

*Recall that the PC advances to next word location after fetching the present op.word.
Thus, the PC will be at $00002002 after fetching the BRA instruction.

PC Relative with Index and Displacement Addressing Mode
d(PC,Rn)

In this addressing mode, in addition to the displacement, the instruction specifies an in-
dex register. The effective address is the sum of the contents of the PC, the index reg-
ister, and the displacement. The displacement is 8 bits. An example follows.

PC Instruction

S00487708 MOVE.W EC(PC,D0.W),D1 Move the word operand from the source
<ea> into D1. The <ea> calculation is as
shown.



Contents of PC after the MOVE instruction*  $00487704 1. MOVE.L #$765432AC,$0034FE74

+ sign extended index word from DO $00000678 2. ADDQ.B #304,D1
Indexed address = $00487D82 3. MOVE.W $007A(PC),SR (Contents of PC $0034FE00)
+ sign-extended displacementt = $FFFFFFEC _
<ea> = $00487D6E Solution /
Word operand from $00487D6E = $CDO 2 1. MOVE.L #$76543fAC,$0034FE74: The source operand is specified by the imme
D1 (before) SABCDEF00 diate addressing mode and the destination effective address is specified by the abso
D1(after) $ABCDCDO2 lute long addressing mode. The source operand is moved to the destination <ea>./
*PC advances to the next word location ($0048770A) after the MOVE instruction. tSign Source long word = $765432AC
extended to 32 bits. $EC is a negative number that corresponds to -$14 in twos- Destination <ea> = $0034FE74
complement notation. (Refer to Appendix A for twos-complement concepts.) Long-word operand at $0034FE74 (before) = $1AB23CD4

(after) = $765432AC
The PC relative addressing modes are used extensively in program control appli-

cations. In addition, these addressing modes are used in applications requiring program 2
code relocation. In such applications, the program code can be made to reside in any part

of memory, and the PC can be adjusted accordingly. Any memory reference will be with

respect to the adjusted PC as the base address and will be valid.

. ADDQ.B #$04,D1: The source operand is specified by the quick addressing mode
and the destination operand is specified by the data register direct addressing mode.
Add the immediate (quick) operand to the destination <ea>.

Source operand (byte) = $04.
Destination <ea> = DI register.

Implicit Addressing Mode Source data $04 is added to the DI register.

The 68000 has certain instructions that make implicit reference to the processor registers DI (before) SABCDEFO00
(the PC, SR, SP, and so forth). This mode works in conjunction with the other address- DI (after) SABCDEFO04
ing modes. Sometimes it is not considered to be a separate addressing mode. An exam- ) ]
ple follows. 3. Move.W $OO7A(PC),$R: With contents of PC = $0034FE00, the effective address
of the source operand is $0034FE7A. The contents at that address (= $9873) are
MOVE.W #$0400,SR Move the immediate word operand $0400 into the SR moved into SR.
(status register).* The source operand is specified by the
immediate addressing mode. Destination <ea>, which is SR (after) = $9873

the SR, is specified by the implicit reference.
SR (before) not known
SR (after) $0400

In software applications using the 68000 microprocessor, all of the 14 addressing
*This instruction dealing with the SR is privileged and can only be used in the supervi-

modes can be used in conjunction with each other. Certain addressing modes, however,

sor mode may preclude some instructions. This information is available from the instruction set.
' Care should be taken to ensure that an invalid addressing mode is not used to specify
The following example problem provides a review of the addressing modes we operands. Similarly, word and long-word operands should not be accessed at the odd
) address boundaries. To do so would result in error conditions.
have discussed.

. 2.5 SUMMARY
Example 2.4 Other addressing modes for the 68000.

Use the initial values given in Figure 2.11. Specify what occurs in each of the following In this chapter we discussed the memory organization schemes, data structures, and ad-
operations. Indicate the contents of the corresponding registers and memory locations

dressing modes for the 68000 processor.
after each operation. Consider the same initial values for each of the operations.



The memory is organized as 16-bit words consisting of blocks of even and odd
bytes. The bytes can be accessed individually, the words can be accessed as two bytes,
and the long words can be accessed as two words. Words and long words should be
accessed only at the even address boundaries. To do otherwise would result in an error
condition. The 68000 processor follows memory-mapped 1/O (input/output) in which the
processor communicates with an 1I/0 device as if it were one of the memory locations.
The total address space for the 68000 processor can be considered as 16 megabytes or 8
megawords.

The important data structures of the 68000 are the stack and the queue. The stack is
a LIFO data structure in the memory. Some of the internal registers are saved on the
stack in the case of a change in program flow due to subroutines or exceptions. USP
controls the stack if the processor is in the user mode; SSP controls the stack if the pro-
cessor is in the supervisor mode. The stack fills from high memory to low memory on a
push-type stack operation. The stack is word sized and word aligned and should only be
accessed at even address boundaries.

The queue is a FIFO data structure in the memory and can be set up to fill in from
high memory to low memory or vice versa. The queue is very useful in setting up tables
and strings.

For the 68000, instructions are from one to five words. The first word, which is the
operation word (op. word), specifies the type of operation. The rest of the words contain
the appropriate extensions and operands. The structure of the instruction consists of the
instruction field and the source and destination fields. Instructions may be of the single-
or double-operand type. In the single-operand type, the specified operand is the
destination operand on which the given operation is performed. In the double-operand
type, the first operand is the source operand and the second is the destination operand.
After performing the operation, the final result is put in the destination.

The 68000 has 14 different addressing modes with which to access the source and
destination operands. In the register direct addressing modes, either a data register or an
address register contains the specified operand. In the register indirect addressing (ARI)
modes, one of the address registers contains the base address. There may be index and
displacement values specified as a part of the instruction. These may be added to the
base address to obtain the effective address of the operand.

In the immediate and quick addressing modes, the instruction contains the data
operand. In the absolute addressing modes, the instruction contains the address of the
operands. In the PC relative addressing modes, the PC contains the base address. There
may be index and displacement values specified as part of the instruction. These may be
added to the base address to obtain the effective address of the operand. The implicit
addressing mode makes an implicit reference to some of the internal registers of the pro-
Cessor.

These addressing modes all can be used in conjunction with one another to specify
the source and destination operands. The source operand can be specified by one ad-
dressing mode and the destination operand by another. This flexibility allows the 68000
processor to access operands conveniently and efficiently.

PROBLEMS

2.1

22

23

24

25

2.6

2.7

2.8

29

Draw the conceptual memory organization schemes for the following processors:
(a) the 68008 microprocessor;
(b) the 68010 microprocessor.

The 68000 is accessing a word operand from the memory. The memory word is $234A.
Specify the fallowing:

(a) contents of data bus DO-D7 and D8-D15;

(b) logic levels of the LDS, UDS, and R/W strobes.

What are the contents of the strobes LDS, UDS, and R/W and the data bus DO-D15 when
the 68000 is writing the long-word operand IAABBCCDD into memory location $004000.

Suppose the LDS and the UDS connections have been interchanged in Figure 2.1. What
would happen in the following situations:

(a) the 68000 is trying to read byte operand $45 from memory location $00001000;

(b) the 68000 is trying to write byte operand $54 into memory location $0000100B.
Long-word operands $124680AB and $78908762 are stored in sequential memory
locations beginning at $00002000. BCD data string 1200340045974 is stored beginning at
the next sequential location. Show how data are physically stored in the following systems:
(a) the 68000-based system;

(b) the 68008-based system;

(c) the 68010-based system.

Show how the following data elements are stored in memory for a 68000-based system:
(a) hex string $1234432156788765SABCDDCBA, starting from memory location
$00004000;

(b) the hex string given in (a), but in the form of a word-aligned queue starting from
$00004040 and filling in towards high memory address.
The system stack pointer has an initial value $000034A0. Show how the following data
elements are stored on the stack:
first element  $0010
second element $0020

ninth element  $0090 What are the contents of the

stack pointer after the ninth element has been stored?

Fiach subroutine call stores the program counter on the system stack. Each exception-, such

as interrupt, stores the program counter and the status register on the stack.

(a) Ina control system application, 128 bytes of stack space is allocated for the user mode
of operation. How many subroutines can be nested if the stack is not used for any
other storage?

(b) Repeat (a) if the DO and DI registers are also to be stored on the stack each time a
subroutine call occurs. {Note: separate instructions are to be written to store any
registers other than the PC on the stack during subroutine calls.)

In a robotics system application using the 68000, 512 bytes of supervisor stack space is

allocated. Each robotics motor requires one interrupt service routine, which nests eight
subroutines.



(a) How much stack space is used up for each robotics motor application?
(b) How many of these robotics operations can be nested?
2.10 Following the instruction format of Figure 2.5, conceptualize how the following
instructions are stored in the memory for a 68000-based system:
(a) CLR.L <ea>; <ea> corresponds to a 32-bit address;
(b) ADD.W <ea>,Dl; <ea> corresponds to a 32-bit address;
(¢) MOVE.L <ea>,<ea>; each <ea> corresponds to a 32-bit address.

2.11 Given the instruction structure of Figure 2.6, write instructions to accomplish the

following tasks:

(a) clear a byte in the D7 register;

(b) move a long word from A6 into the DS register;

(c) add the long-word contents from D6 to the long-word contents of D7, with the result
inD6.

2.12 Write a sequence of instructions to accomplish the following tasks:

(a) add the word contents from D5 to the long-word contents in D6 and put the result in
the D7 register;

(b) clear the long word in the D3 register and transfer the result to the A3 register.

2.13 Using the initial values as given in Figure 2.9, specify the results of the following

operations:

(a) ADD.LD1,D0
(b) ADD.W A0,D1
(c) MOVE.B -(Al).-(Al)

Clearly specify the source and destination addressing modes. Show the contents of the

affected registers, the SR, and the memory.

2.14 Repeat Problem 2.13 with the condition that the operations are done in sequence, affecting

the values accordingly.

2.15 Transfer the long-word contents from $0034FE76 into the DI register using the following

addressing modes:

(a) ARI with displacement;

(b) ARI with index and displacement;
(c) absolute long.

Write the appropriate instruction in each case, using the same initial values given in Figure
2.9. 2.16 The PC is at location $0034FE00 after the appropriate op.word has been read, which

transfers the long-word contents from S0034FE76 into the DI register. Write the instructions
needed to reach this condition using the following addressing modes:

(a) PC relative with displacement;
(b) PC relative with index and displacement;
(c) any other mode of your choice.

Use the initial values given in Figure 2.9. 2.17 Using the same initial values, specify the contents

of the registers and the memory after accomplishing each of the following operations:
(a) MOVE.L -(A1),(A0)+
(b) ADD.W -(Al).-(Al)
(c) CLR.B $O034FE75

2.18 Repeat Problem 2.17, with the condition that the operations are done in sequence,
affecting the values accordingly.

2.19 With the initial values of Figure 2.9, which of the following operations are valid and
which generate error conditions? Why?

(a) ADD.W $0003(A1),DO
(b) MOVE.B $00(A1.DQ,L),D1
(c) JSR$0305 /A

2.20 Specify the results of the following operations, using the same initial values:

(a) ADD.L#$10101010,DO

(b) ADDQ.L #$03,(A1)+

(c) MOVE.L #800100100,(A1)+

Show the contents of the affected registers, the SR, and the memory.

2.21 Repeat Problem 2.20 with the condition that the operations are done in sequence, affecting
the values accordingly.

2.22 Specify whether the following are true or false:
(a) the immediate addressing mode cannnot be used to specify the destination operand.
(b) the quick addressing mode can be used to specify data elements of any size.

(c) the PC relative addressing mode cannot be used to specify odd memory locations.
(d) the implicit addressing mode cannot refer to external memory.
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The 68000 Instruction Set :and
Programming Considerations

Objectives
In this chapter we will study:

The general instruction set of the 68000 The data movement group of
instructions and applications Binary and BCD arithmetic groups of
instructions and applications Logical and bit-manipulation groups of
instructions and applications Program and system control groups of
instructions and applications Instruction timing considerations and
applications

3.0 INTRODUCTION

The 68000 has a powerful instruction set, including 56 generic instruction types. Some of
these instruction types have several variations. In addition, the 14 addressing modes
discussed in the previous chapter can be used in conjunction with the instructions. This
provides the 68000 with tremendous software capability.'

The instructions are designed to follow a consistent structure. The same mnemonic
statement representing an instruction can be used with appropriate attributes to refer to
different operand sizes and addressing modes.

A clear understanding of how these instructions work, how they affect the status
bits in the status register, and which of the addressing modes can be used is essential to
the study of the software features and the programming techniques of the 68000 proces-
sor.

We will first introduce the general instruction set, categorize it into groups, and
then discuss the essential features of each of the groups with appropriate illustrations.
This approach will help us gain better insight into the instruction set. The material cov-
ered will provide the necessary background for writing programs using the 68000 pro-
Cessor.

31 THE GENERAL INSTRUCTION SET

Figure 3.1 indicates the general instruction set for the 68000 microprocessor in tabular
form. In the first column the instruction mnemonic used in writing the assembly pro-
grams is given. The second column contains the physical description of the instruction.
The third column lists the actual operation, and the last columns describe how the flags
are affected in the case of each instruction. Figure 3.2 shows how the condition codes ate
computed. In Appendix B, details of the instruction set arc presented.” The reader should
refer to this appendix in studying the concepts covered in this chapter.

Interpretation of the Instructions

Consider the second instruction in the table in Figure 3.1. It is the ADD instruction with
which we are already familiar. The description indicates that it is a binary addition. The
data operands will be interpreted as binary numbers. The operation indicates that the
destination operand is added to the source operand, and the final result is put in the des-
tination. We see that all of the condition codes, known as flags or status bits, are af-
fected by this operation. Any of them can be used for decision making in a programming
sequence.

The syntax, attributes, and addressing modes for the ADD instruction are as fol-
lows (see also Appendix B):’

Assembler Syntax: ADD <ea>,Dn or ADD Dn,<ea>

Attributes (size): Byte, word, or long word.
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TAOVE 1o CCR |Move lo Condition Code {Sourset — CCR [T F @ logical exclusiva OR 9 cleared
MOVE to SR |Move to the Status Register 1Source) — SR i1 ~ logical complement Usf;delined.
A togical AND + alfected FIGURE 3.1 Continued.
V logical OR — unalfected
& lngical exclusive O 0 cleared
- logical complerment 1 set
U undafingd

FIGURE 3.1 The 88000 instruction set sable. (Courtesy of Motorola, Inc}
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FIGURE 3.2 Condition code (flag) computation in the 68000 processor. {Courtesy of

Mototola, Inc.}

Source <ea>: All addressing modes permissible.

Modes An, d(PC), d(PC,Rn), and

immediate are not permissible. Other modes
can be used.

Destination <ea>:

Clearly, from the preceding information, either the source or the destination oper-
and is a data register and the other operand can be an effective address <ea>. If <ea> is
the source, all addressing modes are permissible. If <ea> is the destination, some
addressing modes are not allowed. The instruction can operate on byte, word, and long-
word operands.

Following the preceding guidelines, programmers can easily write valid instruc-
tions. For example,

ADD.L D7,D6 Add long word in D7 to the long word in

D6, with the result in D6.

ADD.B (A5),D3 Add the byte from memory addressed by the

contents of A5 to the byte in D3, with the result
in D3.

are valid forms of the ADD instruction. On the other hand,

ADD.W (A5),(A2) Add the memory words addressed by (AS5) and

(A2), with the result in memory addressed by
(A2).
Add the byte in D6 to the immediate data

$12 and put the result at the immediate data
location.

ADD.B D6,#$12

are invalid forms of the ADD instruction. In the former case, a data register does not
appear as one of the operands. In the latter, the destination operand cannot be specified
by the immediate addressing mode.

Each instruction may have several variations, depending upon the operands. Con-
sider the first six instructions in the instruction set in Figure 3.1. They are the variations
of the ADD instruction as shown in Figure 3.3. The 68000 uses the same mnemonic

ABCD: BCD signifies that the operands are of the BCD type.

ADD: Regular binary addition.

ADDA: A signifies that the destination operand is an address register,
ADDI: I signifies that the source operand is immediate data.

ADDQ:  Q signifies that the source operand is-quick data,

ADDX: X signifies that the extend fag (X) is included in the addition.

FIGURE 3.3 Variations of the ADD instruction in the 68000 instruction set.



(ADD in this case), with extensions such as A, I, Q, and X, to signify the different
variations. The ABCD instruction is specifically made more symbolic to represent the
BCD data, but it still belongs to the same ADD category.

The 68000 follows this consistent structure for all of its instructions. These in-

structions can be interpreted easily and appropriate forms written for programming and
the software applications.

The Instruction Groups
The 68000 instructions may be broadly classified into the following groups:

data movement;
. binary integer arithmetic;
BCD (binary coded decimal);

logic, shift, and rotate;

R

bit manipulation;
6. program control;

7. system control; and
8. special category for extended functions.

The data movement group deals with the physical movement of the source and
destination operands. The integer, BCD, logic, shift, and rotate groups deal with the
actual data processing operations. The program control group deals with the decision-
making, conditional, and unconditional branch and jump operations. The bit-
manipulation and the system control groups supplement the other operations mentioned
above. We will deal with the special category in subsequent chapters.

The following example problem provides a review of the general features of the
instruction set.

le 3.1 The 68000 instruction set. o _
E:: lr:;;lr’ltax and attributes for the ADDA and ADDI are as follows, and permissible ad

dressing modes for the effective addresses arc as specified:

Aftributes Addressing Modes

' All modes allowed for source
<ga>,

An, d(PC), d(PC,Rn), and
immediate modes not allowed for
destination <<¢a>.

Syntax
ADDA <ea> Amn: word, leng word

ADDI #data,<ea>: byte, word, long word

1. Specify whether the following four forms are valid or not. Give the reason(s):

ADDA L A6,A4 ADDA.B A1,A3
ADDLW #$12AC,D7 ADDIL.W #$100E,A3

2. Specify to which groups each of the instructions belongs.

Solution

1. ADDA.I. A6,A4: This instruction is valid since it satisfies all of the guidelines
(single-word instruction).

ADDA.B Al,A3: This instruction is not valid since the byte attribute is not allowed.

ADDI.W #$12AC,D7: This instruction is valid since it satisfies all the guidelines
(two-word instruction).

ADDLW #$100E,A3: This instruction is not valid since the destination <ea>
(= AJ) is not valid.

2. Group: All of the instructions are of the addition type. As such, they belong to the
arithmetic group.

Any invalid instruction will generate an error condition known as an illegal in-
struction exception. We will discuss this exception in later chapters.

Figure 3.4 illustrates a standard convention introduced by Motorola to summarize
the addressing modes, especially while dealing with the instruction set. We will use this
convention in our discussion. The addressing modes are classified as data, memory,
control, and alterable types. In the data type, the <ea> refers to a data operand. In the
memory type, the memory reference is explicit as to where the data operand can be

Effective Address Modes Data Memory Control ~ Alterable
Dn X X
AR X
(An) X X X X
(An)+ X X X
—(An) X X X
d,4(An) X X X X
dg(An,Rx) X X X X
xxxx (Absolute short) X X X X
xxxxxx (Absolute long) X X X X
 #xxx (Immediate) X X

IGURE 3.4 Effective address classification for the 68000. (Courtesy of Motorola, inc.)



found. In the control type, the addressing mode can be used for program control. In the
alterable type, the addressed operand may change.

A single addressing mode can be classified in more than one category.* Consider
the ARI mode (An), for example. It can be classified in all four categories. It can address
data, it can address memory, it can specify a jump or a branch address for program
control, and the operand addressed by this mode can be allowed to change. On the other
hand, the immediate (#xxx) addressing mode belongs only to the data-type category. It
cannot address memory, cannot specify a jump or branch address, and it is unalterable.

3.2 DATA MOVEMENT AND ARITHMETIC
INSTRUCTION GROUPS

Data movement is an integral part of a computer system operation. The 68000 has a very
powerful and efficient group of data movement instructions, as shown in Figure 3.5. The
group consists of several forms of the MOVE, EXG, and SWAP instructions. The
privileged instructions are indicated with an asterisk; these should be used only in

the supervisor mode.

The first column specifies the instruction in mnemonic form. The second column
specifies the operand size—a byte (8 bits), a word (16 bits), or a long word (32 bits). The
third and fourth columns specify the operation and the syntax (or notation). The last
column specifies the allowed addressing modes. We will now interpret these entries and
provide some typical illustrations from each of the groups.

Data Movement Instructions

Consider the general MOVE instruction from the table in Figure 3.5. It handles byte,
word, or long-word operands. Data movement is always from the source to the destina-
tion operand. The notation is MOVE <ea>,<ea>. All addressing modes are allowed for
the source <ea>. Only data-alterable addressing modes, however, are allowed for the
destination <ea>. Thus, any addressing mode that does not belong to both the data and
the alterable types is not allowed. Referring to Figure 3.4, it can be seen that, for the
MOVE instruction, the following addressing modes are not allowed for the destination
effective address:

An: Not allowed, since it is not of the data type

#XXX (immediate): Not allowed, since it is not of the alterable
type

MOVE instructions dealing with the status register (SR) and the USP are privileged as
indicated. The EXG (exchange) instruction exchanges the long-word contents of two of
the specified internal data or address registers. Similarly, the SWAP instruction ex-

changes (swaps) the lower and upper words in a data register.’

Allfowable
Effective
Operand Address
Instruction Size Operation Notation Modes
" SOURCE—ALL
(SOURCE) — ————
MOVE 8.16.32 DESTINATION MOVE {ea},{ca) DEST-—DATA
ALTERABLE
SR — DATA
MOVE from SR 16 DESTINATION MOVE SR, {ca) ALTERABLE
MOVE to CC 16 (SOURCE} — CCR MOVE {ea},CCR DATA
*MOVE to SR 16 (SOURCE) — SR MOVE {ea},SR DATA
USP — An or MOVE USP,An
*MOVE USP 32 An — USP MOVE An,USP o
(SOURCE) — An ALL
MOVEA. 16,32 DESTINATION MOVEA {eq},
IMMEDIATE DATA — o
MOVEQ 32 DESTINATION MOVEQ # {data),Dn
EXG 32 Rx < Ry EXG Rx,Ry —
SWAP 16 Dnlw <> Dnhw SWAP Dn —

FIGURE 35 The 68000 data movement group of instructions. (Courtesy of Motorola

inc.)

Figure 3.6 indicates the initial values of the registers and the memory. We will use
these values for the examples in this chapter. In the general MOVE instruction, there is
no overflow, and the C and V flags are reset to 0; the X flag is unaffected (see Appendix
B for details). An example follows.

MOVE.L D1,D3

Move long-word data from DI into D3.
DI (before) $12340678
D3 (before) § 00000008
D3 (after) $12340678
Only the N and Z flags are affected.
The result (new data in D3) is a positive nonzero value. As
such, N=0and Z =0.

XNZVC (after)=00000




-
$12340678 Memory Address Word Data
- $0034FE?4 lABi
Dl =$ABCDEFO00 $0034FE76 3(206
$0034FE78 51:.F3
p2=$00000004 $0034FE7A 9873
) $0034FE7C 2440
D3=$00000008 $0034FETE 0000
AD=35004876F2 : :
$00487D6E CDD2
Al=$50034FETS $00487D70 2008
A2=$00001000
A3I=%00001303
| System byte | User byte |
000
=$0400=0000 0100 00000
SR8 T § 111 XNZVC
210
FIGURE 3.6 Initial values for the registers and the data operands in memory.
EXG AQAl Exchange the long-word contents of A0 and Al. The flags are

not affected.

AQ (before) $004876F2
Al (before) $0034FE78
AQ (after) $§0034FE78
Al (after) $004876F2
X NZVC (after) =00000

Swap the lower and the upper words in D1.

SWAP DI Dl(%eforc) $ABCDEFQO
D1 (after) $EFO00ABCD .
The N and Z flags are affected. C and V are reset to 0, an y ﬁ
unaffected. The MSB of the result is 1 ($E = 1110) and the
result is a nonzero value. Assuch, N = land Z = 0.
X N Z V C (after) =01000

i instruc-
We will now present an example problem to review the data mwovement inst
tions and operations.

Example 3.2 Data movement instructions.

In a control system application, the following software is run:
MOVE.W (AD),D1 ;move memory word addressed by (ftl) into DI
SWAP DI ;swap the lower and the upper words in DI

EXG  D1,D3 ;exchange long words in DI and D3
MOVE.L D3,D7 ;move long word in D3 into D?

Using the initial values of Figure 3.6, show the contents of the affected registers and the
flags.

Solution

After the MOVE.W (A1),D1 instruction, DI contains $ABCD5EF6. Jhe'upper word of
Dl is not affected. The data operand $5EF6 is moved to the lower word position of the
Dl register. ~/

After the SWAP Dl instruction, DI contains $5EF6ABCD.

After the EXG D1,D3 instruction, the long-word contents of the DI and D3 registers are
exchanged. DI = $00000008; D3 = $5EF6ABCD.

After the MOVE.L D3,D7 instruction, both D3 and D7 contain $5EF6ABCD. The result
is positive (MSD = $5 = 0101 and the MSB = 0) and is nonzero. As such, N=0 and Z =
0. The X flag is unaffected. The C and V flags are reset to zero, since there is no
overflow in the MOVE operation. The final results are

D7=$5EF6ABCD
XNZVC=00000

Binary Integer Arithmetic Instructions

These instructions deal with numbers and arithmetic operations. The 68000 processor
distinguishes between signed and unsigned numbers. We will briefly discuss this con-
cept in preparation for the discussion that follows. (Refer to Appendix A for details con-
cerning binary and BCD numbers and arithmetic.)®

Consider a byte operand. In unsigned operations it represents a range of $00 to
M'F, which corresponds to decimal values 0 to 255 as shown in Figure 3.7(a). In signed
operations, when the MSB of the operand is 0, the operand is considered to be a
positive number; when the MSB is 1, the operand is considered to be a negative number.
Thus, $00 to $7F are positive numbers (decimal values 0 to 127) and $80 to $FF are

negative numbers (decimal values —128 to —1 in the twos-complement form), as shown
in Figure 3.7(b).



Hex 0 7F FF
] | |
I I i
Decimal 0 127 255
Overflow heyond $00 or $FF
sets the C and X flags.
(a)
MSB =1 MSB =0
ch 80 oooooooooooooooo FF 0 01 --------------- ']F
| | ]
[ I I
Decimal -128 A0+ +127
Overflow beyond $80 or $7F sets
the V flag.
(b}

FIGURE 3.7 (a) Unsigned and (b} signed number representation.

Figures 3.8 and 3.9 illustrate the four categories of binary integer arithmetic in-
structions. They are ADD, SUBTRACT, COMPARE, and MULTIPLY and DIVIDE.
All belong to the data processing group.

Add and Subtract Instructions There are five variations of the ADD and SUB
(subtract) instructions, as shown in Figure 3.8. Except in the case of the ADDA and
SUBA instructions, all five flags are affected. The C and X flags are set to 1 if there is an
overflow generated from the addition operation. Similarly, the C and X flags are set to 1
if there is a borrow generated from the subtraction operation. The Z flag is set to 1 if the
result of either of the operations is zero for the final operand. The N flag is set if the
MSB of the result is 1. (Refer to Figure 3.2 for computation of the condition codes or
flags.)

In the signed operations, the V flag is set to 1 when two positive numbers (MSB =
0 in each case) are added and a negative result (MSB = 1) is generated, or vice versa.
Similarly, the V flag is set to 1 when a positive number is subtracted from a negative
number and a positive result is generated, or vice versa. These conditions are known as
signed overflow. If the signed operations are not of interest, the V flag may be ignored.
An example follows using the initial values of Figure 3.6.

Add immediate data byte $6F to byte in DO, with the result in
DO. The destination <Cea>> is data register direct, which be-
longs to the data-alterable type.

Addition = $6F + $78 = $E7 = 1110 0111

DO (before) $12340678

DO (after) $123406E7

ADD.B #3$6F,D0

Allowable
Effective
Operand Address
Instruction Size Operation Notation Modes
{(DESTINATION) + (SOURCE) ALTERABLE
+ = | ADD Dn,{ea} MEMORY
ADD 816,32 | DESTINATION
ADD {ea),Dmn ALL
) (DESTINATION) + (SOURCE) —
ADDA 16,32 DESTINATION ADD {ea),An All
(DESTINATION) + IMMEDIATE DATA
ADDI 816,32 | DATA — DESTINATION ADDL# (data) e2) | 4| TRRABLE
{DESTINATION) + IMMEDIATE
ADDQ 8,10,32 DATA —> DESTINATION ADDQ # {(data),{ea} ALTERABLE
(DESTINATION) + (SOURCE) + | ADDX Dy, Dx —
ADDX 8,16,32 X — DESTINATION ADDX —(Ay), ~-(Ax) —
(a)
Allowable
Effective
Operand Address
Insiruction Size Operation Notation Modes
ALTERABLE
(DESTINATION) — (SOURCE) — | SUB Dn,{ea) MEMORY
SUB 816,32 | DESTINATION
SUB {ea},Dn ALL
(DESTINATION) — (SOURCE) —
SUBA 16,32 DESTINATION SUBA {ea),An ALL
(BESTINATION) — IMMEDIATE DATA
SUBI 8,16,32 | HATA — DESTINATION SUBL # (data),(ea) | ;) TERABLE
(DESTINATION) — IMMEDIATE
SUBK) 8,16,32 DATA — DESTINATION SUBQ # {data},{ea) ALTERAELE
(DESTINATION) — (SOURCE) — | SUBX Dy,Dx
SUBX 8,16,32 X —» DESTINATION SUBX —(Ay), —(Ax) -
(b)

FIGURE 3.8 Binary arithmetic instructions for the 68000, (a) Add-type;
(b) subtract-type. (Courtesy of Motorola, Inc.)




Allowable
Effective
Orera i Address Modes
Instruction pSize Operation Notation
L
CMP 8.16,32 | (OPERAND2) — (OPERAND1) CMP (ea),.Dn AL
r * L
CMPA 16,32 (OPERAND2) — (OPERAND1) | CMPA {ea),An Al
’ DATA
CMPI 1632 | (OPERAND) — IMMEDIATE % cypi #(data) (es) D ERABLE
e DATA
CMPM 2.16,32 | (OPERAND2) — (OPERAND1) | CMPM (Ay) T (AX) + —
(DESTINATION) — 0 DATA
TST 8,16,32 (DESTINATION) TESTED — | TST {ea) ALTERABLE
cC
L —
(@ T
r Allowable
d Ejjfecrﬁed
e ] dress Modes
Instruction P.Size Operation Notation Address
(DESTINATION) Sign-EXTENDED > | ev1 __
EXT 16,32 DESTINATION
(SOURCE)*(DESTINATION] — MULS {ea),Dn | DATA
MULS 16 | DESTINATION
(SOURCE)*(DESTINATION) — MULU {ea),Dn | DATA
MULU 16 DESTINATION
DATA
0 — (DESTINATION) — NEG (ea) A ABLE
NEG 816,32 | DESTINATION
DATA
0 — (DESTINATION} — X — NEGX {ea) D ABLE
NEGX §,16,32 DESTINATION
) DATA
CLR 38,1632 | 0— DESTINATION CLR {ea ALTERABLE
(DESTINATION) + {SOURCE} = DIVS {ea),Dn DATA
DIVS 16 DESTINATION
(DESTINATION) + (SOURCE) — DIVU (e2).Dn | DATA
DIVU 16 DESTINATION
L—
(b}

FIGURE 3.9 (a) Compare-type instructions for the 6

sign-related instructions. {Courtesy of Motorola, Inc.)

58

8000; {b) multiply, divide, and

SUBA.W A0,Al

X and C are 0, since there is no normal overflow. The MSB of
the result is 1 and the result is nonzero. As such, N = | and
Z = 0. The V flag is set since there is an overflow of the result
beyond $7F. It is as if two positive numbers are added ($6F

and $78) and a negative result ($E7) obtained in signed binary
operations.”

XNZVCiafter)=01010

Subtract the word operand in AQ from the word operand in
Al, with the result in Al. All 32 bits of the destination are
affected. The source word is sign extended to 32 bits.

Contents of At $0034FE78
Sign-extended word from AQ $§000076F2
Result of subtraction in Al* 300348786
Al (before) $0034FE78
Al (after) $00348786

Flags are not affected, since the destination <Cea> is an ad-
dress register.

*In subtraction operations, the source subtrahend is converted into the twos-complement
form and added to the destination minuend.

Compare Instructions There are five variations of the compare instruction, as indicated
in Figure 3.9(a). The source operand is subtracted from the destination operand. The
result is not stored, but is used to set or reset the flag bits in the condition code register
(user byte of the SR). The processor uses this information to make decisions and control
the program flow. The objective of the compare operation is to learn whether an operand
has reached a particular value. The source and the destination operands (also called

operand 1 and operand 2) are not affected in compare-type operations. Examples follow
using the initial values of Figure 3.6.

CMP. W DI1,DO

./'
Compare the word in D1 with the word in DO and set or reset
the flags accordingly. (The word in D1 is subtracted from the

word in D0. The result is not stored; DO and D1 are not af-
fected, but the flags change.)
Word operand in DO 30678
Word operand in D1 3EFO0Q0
Result of the subtraction = $1 778
{borrow generated)

DO (before) $12340678
DI (beforey $ABCDEFO00
DG (after) $12340678
Di (after) $ABCDEFO00

X is not affected, but C is affected. Borrow is generated and
C = 1. Nonzero positive result (MSB = 0). Assuch, N =20
and Z = 0. There is no signed overflow and V = 0.
XNZVCafter) =00001



TST.B $0007(Al) Test the destination operand and set or reset the flags accord-
ingly. The tested operand is not affected.
The ARI with displacement addressing mode is used for the
destination <ea>-,
Contents of Al $0034FET7S8
Sign-extended displacement $00000 007

Destination <¢a> =$0034FE7F

Byte operand from $0034FE7F = $00. X is not affected, C =
0, and V = Q (since there is no overflow in the test operation).
The tested destination is positive (MSB = 0) and has a value
of zero. Assuch, N =0and Z = 1.
XNZVCafte) =00100

The TST (test) instruction is very useful in testing the operand and providing the
condition code information without modifying the tested operand.

Multiply, Divide, and Sign-related instructions These instructions are presented in
Figure 3.9(b). The EXT instruction sign extends a byte to a word (EXT.W) or a word to a
long word (EXT.L). The objective of this instruction is to increase the size of the operand
without changing its arithmetic value. Some instructions (ADD, SUB, for example)
require that both operands be of the same size for computations. The EXT instruction is
used in such instances. Notice that the operand should be contained in one of

the data registers Dn.

The NEG instruction negates the operand. It subtracts the destination operand from
$0 and puts the result back in the destination location. In effect, it performs a twos-
complement operation on the operand. The NEGX instruction includes the X flag in the
computation. Data-alterable addressing modes are allowed for NEG and NEGX
instructions. Examples follow using the initial values of Figure 3.6.

Sien extend the word operand in DI to a long word. I'h¢ word oper-
EXTL DI an%i oDl =$EFO0O0. The MSB = 1 (since MSDSE =111 0)

and the operand is considered negative. This MSB is replicated to all

the higher bits in the D1 register.’

D1 (before) $ABCDEFO0

DI (after) $FFFFEFO00 ‘

DI has the same numeric value as it did before, but the size of D1 is

increased to a long word. X is not affected, C = 0, and vV = 0. The

resulting operand is negative (MSB = 1) and nonzero. As such, N =

land Z = 0.
XNZVClaftery=01000
NEG.B D2 Negate the byte operand in D2. Subtract the byte operand in D2 from

$00 and put the result back in D2.

Value to be subtracted from $0 0

Byte operand in D2 $04

Subtracted (negated) resuit = $ FC
(borrow generated)

D2 (before) $00000004

D2 (after) $000000FC

All the flags are affected. Borrow is generated: C = 1 and X = 1.
The resulting eperand ($FC) is negative (MSB = 1) and nonzero. As
such, N = 1 and Z = 0. Signed overflow is not generated and V =
0.

XNZVC(fte)=11001

The MULS and MULU are the signed and the unsigned multiply instructions, re-
spectively. In the signed operations, the operands are considered to be signed binary
integers. On the other hand, in the unsigned operations, the operands are considered to be
unsigned binary integers. Similarly, the DIVS and DIVU are the signed and unsigned
division operations, respectively. In the multiply and divide operations, the destination is
always a data register Dn. In the multiply operations, the 16-bit source operand (S16)
and the lower 16 bits of the destination Dn (D16) are multiplied, and the 32-bit product
is transferred to the 32-bit destination Dn register (D32). Examples follow using the ini-
tial values of Figure 3.6.

MULU D2,D3 Muitiply the word operands from D2 and D3, with the 32-bit re-
sult in D3, The cperands are unsigned.
Multiplicand in D2 (before) 300000004

Multiplier in D3 (before) $00000008
D2 (after) 300000004
Product in D3 (after) $00000020

$4 x $8 = $20 = 32 decimal value. Only the N and Z flags are
affected. X is unaffected. C = 0 and V = 0. The result is posi-
tive (MSB = 0) and is nonzero. As such, N = Q and Z = 0.
XNZVCafter) =300000

MULS #32,D1 Multiply the signed 16-bit operand from D1 and the source oper-
and ($0002), with the 32-bit signed result in DI.
Multiplicand word in D1 (before) $ EFGO
Multiplier source operand $ 0002
Sign-extended product* = $SFFFFDEOQO

*$EF00 X $0002 results in hex string $1DE00. Sign extending the MSB = 1 to th;e
higher bits results in the sign-extended product $FFFFDEQD. |

|
In the division operations, the dividend is contained in a 32-bit destination dflgta
register Dn. The divisor is the 16-bit source operand, specified by one of the data-type
addressing modes. The dividend is divided by the divisor. The 16-bit quotient and the
16-bit remainder are placed in the destination data register, as shown:

| Upper word | Lower word |
B3l mecnvsscanensss bl6 DBLF sevsvevvsvrannn b0
\ ) \ J
Y Y
Remainder Quotient



An example follows.

pIVU D2,D3

Divide the 32-bit dividend in the D3 d
bit divisor in the source D2 register. Place the results as shown in

the preceding diagram. The operands are unsigned.
32-bit dividend operand in D3 (before) = $0000000 8
3

0004

16-hit divisor operand in D2 (vefore)

Upon dividin

D3 (after)

The N, Z, and V flags are affected. X is unaffected and C = 0.
The quotient 18 positive (MSB = 0) and nonzero. As such, N = 0

g, the 16-bit guotient = $0002
the 16-bit remainder = $0000
$00000002

and Z = 0. There is no division overflow and V = 0.

X N Z V C (after) =00000
Note: If the divisor is zero, the zero divide exception occurs.

BCD (Binary Coded Decimal)

The three BCD instructions are p

X flag is always involved in the computations. The ABCD (add BCD) an
(subtract BCD) instructions use only the data register direct

decrement (—(An)) addressing modes

This provides an easy and reliable access to the operands in a
quence, which is required for BCD arithmetic. T
the binary NEGX instruction. All the data-alterable addressing modes are allowed

for the NBCD instruction. Only the X, Z and C flags are affec

tions.® An exampte follows using the

: Operand Operand
Instruction Syntax Size

FIGURE 3.10 BCD instructions.

ABCD D0,D3

ABCD Dn, Dn 3
- (An), —(An} 8

SpCD Dn, Dn 8 Destination,, — S0urce;p — X — Destination
—{An), —{An) 8

Add the BCD byte operand in DG to

Instructions

resented in Figure 3.10. The operand size 1s byte. The
d the $SBCD

(Dn) or the ARI with pre-

for both the source and the destination operands.
low-to-high value se-

he NBCD (negate BCD) is similar 1o

initia} values of Figure 3.6.

Operation

Source,, + Destination o + X — Destination

with the result in D3.

Source BCD byte in DO (before) 78

Destination BCD byte in D3 (before) 08
86

Result of the BCD addition =

l

estination registex by the 16-

ted for the BCD instruc-

1. Resulis of ¢
he software: After the addition, the destination register DO

the BCD byte operand in D3,

D0 (before) 12340678
D3 (before) 00000008
D0 (after) 12340678
D3 (after) 00000086

There is no overflow and th i
e result 15
N 7y e e e 15 nonzero. As such,

In BCD operations, the
, operands are ex
data € L pected to be of th
ype generates an error condition known as the illegal instrﬁcﬁgr? e;ype.t’Any other
ception.

£ IH n p nt- a ar & -
Ine

Exa i
fixe ztgf:; 13S.i.; nafi‘;::;g ;nd BC_D qperations using the 68000,
tine: ing application, the following software is written as a subrou-

MULS D&,D0 'nul
i H tirly word
SUBQ.L #$0 : ply words in D2 an i .
SIVD DL?DS'DD :ggbtract quick data & fgoﬁulg;th result in DO
RTS ; vide long word in DO with g word in DO
‘return from subroutine word in D1

Consider the initial values

DO = $12340678; DI = 30
= ; = 300000006; D2 = $00000
SR=% 0405 =0000 0100 0000 0130‘:

X NZVC

2. If [SUB i
[ Q.L #3%08,D0] is changed to [SUBQ.L #%80,D0], will the software be func

tional? Why or why not?

Solution

$1234067C. Si inlicati

. Signed multiplication of words i 00

. . D2 (=

results in a 32-bit product in DO (= $000019};E) zs (Shoin‘oﬁi) and DO (= $067C)

Overflow generated
{see note)
no 113
$ Multiplicand 067C
S $ Multiplier 0004
ign-extended 32-bit product = $000019F 0

il

ll

i

Note: $C = 12 deci
o ; -
cimal; 4 X $C = 4 X 12 = 48, which is equal to $30, Digit $3 is

the hex ove
_ rflow to th "
fashion. e next hex position. The hex multiplication proceeds in this



e

i = igned di-
After the subtraction, the destination register DO = $000019E8. Unsigned di

e - < as
isi f the dividend in DO (= $000019E8) by the dw1sor.m D1 (E _‘.30&0?) is &

V;IS(;‘OV‘L Ousing the hex-to-decimal and decimal-to-hex cOnversions. ($E = 14.

s L}

Dividend $000019E8 = (1 X 16%) + (9 X 16%) + (14 X 16) + 8 = 6632

Divisor $0006 = 6. The decimal division results in

6632 _ 1105 quotient, with 2 as a remainder
6

Converting the decimal quotient 1105 into hex, we obtain

Quotient 1105 = (4 X 16) + (5 x 1)+ 1= $451

Remainder 2 = $2. ) .
. are put into th
The remainder and the guotient pa . i itive and non-
= $000 _The quotient ($0431) is post
and lower words, and DO = $00020451 The g flag bits N = 0, Z = 0, and

zero and there is no division overflow. As such, the

. is reset 1O Z€I0.
V = 0. The X flag is unaffected and the C flag 15 the calling program. The

,.[..I F TS - - ]
- - - - . i

instruction before the RTS.
The final results are

pDe=$00020451
SR =% 0400

. . - ae
i1l ( ) -

will be generated.

. The
Large numeric strings of data are also casily handled by th;, 68003] gr:pc;:z:ii ey
numeric string of data resides in the memory. The processor obtains

. . 1
ic string i the required operations, at
ized ric string in the memory, performs . ‘
” drht: ireosrl?hmif} ﬁ:l t:nemvory.g\l\fc will deal with these operations when we discuss
stores

software designs; they are known as the multiprecision arithmetic operatio

3.3 LOGICAL AND BIT-MANIPULATION INSTRUCTION GROUPS

groups provide the 63000 with additional data processing and contro! capability.

¢ destination DO as the higher .

Logic, Shift, and Rotate instructions

The basic logic instructions are presented in Figure 3.11. They are the AND, OR, EOR
(exclusive OR), and the NOT instructions. They operate on the byte, word, and long-
word operands. Consider the two forms of the AND instruction:

AND Dn, <ea>
AND <ea>’Dn

Either the source or the destination operand has to be in one of the data registers. If the
source operand is in a data register, the destination <ea> is of the memory-alterable type.
If the destination operand is in a data register, the source <ea> is of the data type. In the
other variation of the AND instruction:

ANDI # <data>,<ea>

the source operand is the immediate data and the destination <ea> is of the data-alterable
type. In all of these cases, the processor performs the AND operation between the
corresponding bits of the source and the destination operands, with the result in the
destination. If the destination <ea> is the SR, then it is a privileged instruction. The logic
instructions affect only the N and Z flags. The N flag is set to 1 if the MSB of the result
is 1 (negative number). The Z flag is set to 1 if the result is 0. There is no overflow in the
logical operations; as such, the C and the V flags are always reset to 0. The X flag is not
affected. However, if the operand is either the SR (status register) or the CCR (condition
code register), all five flag bits are affected. The OR and the EOR instructions follow the
same structure as the AND, but they perform the OR and the exclusive OR operations
between the corresponding bits of the source and the destination operands, with the result
in the destination. The NOT instruction performs logical inversion (ones-complement
form) of the operand. The operand is specified by the data-alterable type addressing
modes.

The shift and rotate instructions are presented in Figure 3.12. They are the ASL
and ASR (arithmetic shift left and right), LSL and LSR (logical shift left and right),
ROL and ROR (rotate left and right), and ROXL and ROXR (rotate left and right
through the X (lag). Consider the three forms of the ASL instruction:

ASL Dx.Dy  ASL #<data>,Dy  ASL <ea>

The first two forms operate on byte, word, or long-word data operands. The destination
operand is in one of the data registers. The destination operand is shifted left the number
of times specified by the source operand. The shifted-out MSB goes into the C and X
flag bits and 0 is shifted into the LSB for each shift operation. When the source operand
is a data register, it can specify a shift number up to 64 (modulo 64). However, a shift
count of 32 is sufficient to completely shift zeros into the register. When the source op-
erand is a data clement, the shift count is limited to 8. When an operand is shifted left
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once, it amounts to multiplying the operand by 2. Thus, shifting left by 8 positions
amounts to multiplying by 256: 2* = 256.

For the third form of the ASL instruction, the operand is in memory and is speci-
fied by the memory-alterable addressing modes. The operand size is a word and is
shifted once to the left.

The ASR instruction is similar to the ASL, but shifts the operand in the right di-
rection. The MSB is shifted back into itself to preserve the sign bit of the operand. The
shifted-out LSB goes into the C and X bits.

In the arithmetic shift operations, the value and the sign bit of the operand can
change. Furthermore, overflow can occur. As such, all five flags are affected.

The LSL and the LSR instructions are similar to the ASL and the ASR instruc-
tions. However, in case of the LSR instruction, 0 is shifted into the MSB of the operand
and the LSB is shifted out for each shift. This amounts to dividing the operand by 2.

In case of the ROL instruction, the destination operand is rotated left the number
of times specified by the source operand. The MSB goes into the C flag and into the
LSB position, as shown in Figure 3.12. The ROR instruction is similar to the ROL, but
rotates the operand in the right direction. The ROXL and the ROXR instructions are
similar to the ROL and ROR instructions, but the former pair rotate the operands
through the X flag.

In the logical shift operations (LSL and LSR), and in the rotate operations through
the X flag (ROXL and ROXR), the signed overflow concept is not required. As such, the
V flag is reset to 0 and the other four flags are affected. Ir» the normal rotate operations

(ROL and ROR), the X flag is not affected and the V flag is reset to 0. Only the other
three flags are affected.

The following example problem provides a review of the logical operations.

Example 3.4 Logical operations.
The initial values of the registers and the operands are as follows:

DO =$123406738 D2=%00000004
Al =30034FET78 XNZVC=00000

initi iti i f the following operations:
Use the same initial conditions each time. Show the results o
1. ANDI.B #$F0,D0 2. ORLB #3$F0.D0 3. EOR1.B #3F0,DO
4, NOT.B DO 5. ASL.B #%2,D0 6. ASR.B #352,D0
7. ROL.B #%$2,.D0 8. ROXR.B #$2,.D0 9, ORI.B #3$1F,CCR

Solution

1000
0000

Destination byte operand in DO = $78
Source operand = $FO

!

I
—
p—
p—
—

1. ANDLB #$F0,D9: If both the source and destination bits are 1, the result bit is 1:

Result
Nonzero result and MSB = 0 XNZVC

01110000
00000

it

2. ORLB #8$F0,D0: If any of the source or destination bits is 1, the result bit is 1

i

Result
Nonzero result and M5B = 1 XNZVC

11111000
01000

il

3. EORLB #$F0,D0: If cither the source or the destination bit is |, but not both, the
result bit is 1:

Result = 10001000
Nonzero result and MSB = 1 XNZVC = 31000

4. NOT.B D0: The operand bits are inverted:

Result = 10000111
Nonzero result and MSB = 1 XNZVC = 01000

5. ASL.B #$2.D0: The operand is shifted left twice:

Result = 11100000
Nonzero result and MSB = 1 XNZVC = F1011

Last MSB shifted out = 1; (Cand X = 1)
Sign (MSB) chianged at least once: (V = 1)

6. ASR.B #$2,D0: The operand is shifted right twice:

Result =000111160
Nonzero result and MSB = 0 XNZVC= 00000
Last LSB shifted out = 0;: (C and X = )
Sign (MSB) did not change: (V = ()

7. ROL.B #$2,D0: The operand is rotated left twice:

Resut = 11100001
Nonzero result and MSB = 1 XNZVC= Q1001
Last MSB rotated = 1: (C = 1)



8. ROXR.B #$2,D0: The operand is rotated right twice through X:

1

00011110
00000

Result
Nonzero result and MSB =0 XNZVC
Last LSB rotated = 0: (C and X = 0)

Note: In cach of the preceding cases, the result is put back in the byte position in the
DO destination register.
9. ORLB #$1F,CCR: The OR immediate operand $1F = 00011111 with the CCR:

Result = 000

1111t
XNZVC i1l

1

All five flags are set

The AND operation forces a 0 value to the selected bits in an operand. This is
called masking. The OR operation forces a 1 value to the selected bits in an operand.
The EXOR operation selectively inverts and checks the bits in an operand.

Shift and rotate operations are suitable in data processing and logical data manip-
ulation applications. In all cases, the operand is a complete data element. In several in-
stances, bit-level data manipulation is required.’

The MC68000 has bit-manipulation instructions with which to handle bit-level op-
erations more efficiently. We will now discuss these instructions.

Bit-Manipulation Instructions

The bit-manipulation group of instructions are presented in Figure 3.13. They are the
BCHG (bit change), BCLR (bit clear), BSET (bit set), and BTST (bit test) instructions.
In each case, the source operand specifies the bit number in a destination operand.'®

With all four instructions, the specified bit is first tested and the Z flag is set or
reset accordingly (Z = 1 if the tested bit is 0, and vice versa). This helps the programmer
to identify the bit condition before any further bit manipulation. Only the Z flag bit
is affected in this group.

The BCHG instruction changes the logic value of the tested bit from 0 to 1, or vice
versa. The BCLR instruction clears the specified bit. The BSET instruction sets the
specified bit. The BTST instruction tests only the specified bit.

If the destination is a data register, then any of the 32 bits can be manipulated
(modulo 32), as specified by the source operand. On the other hand, if the destination is a
memory location, then the bit operations are restricted to 8 bits (or a byte). The des-
tination <ea> can be specified by the data-alterable addressing modes. The source op-
erand can either be a data register or an immediate data element. The word-sized oper-
ands are not supported in this group of instructions. In control and I/O type of applica-
tions, bit-manipulation operations are very common.

The following example will help to clarify the bit-manipulation instructions.

Allowable
Operand Effective
Instruction Size* Operation Notation Address Modes
~{(bit number OF
Destination) —» Z
BCHG Dn {ea}
~(bit number OF  [f—————————
Destination)
~— bit number OF DATA
BCHG 8,32 Destination BCHG # (data},{ea) ALTERABLE
~~(bit number OF
Destination) — Z BCLR Dn,(ea)
0 — bit nummber OF DATA
BCLR 8,32 Destination BCLR # {data},{ca) ALTERABLE
~{bit namber OF
Destination) ___lis_%TMEE‘Sefi L
— Z: 1 — bit number " 771 DATa
BSET 8,32 OF Destination BSET # {data),{ca} ALTERAEBLE
BTST (Dn},{ea DATA
~(bit number OF = |—————————— e ] (EXCLUDING
‘BTST 8,32 Destination) — Z BTST # {data},{ca} IMMEDIATE)

*1. For memory operation, the data size is byte.
2. For data register operation, the data size is fong word.

FIGURE 3.13 The 68000 bit-manipulation instructions. (Courtesy of Motorola, inc.)

Exampie 3.5 Bit manipulations.
The initial conditions of the registers and the operands are as follows;

DO=%$12340678

DI=$ABCDEFO00
XNZVC=00000

It is required to test bit 0, set bit 4, clear bit 6, and change bit 31 of the operand contained
in the DO register, in the sequence stated.

1. Write a series of bit-manipulation instructions to perform this task.

2. What are the contents of the DO register and the flags after the task has been com-

pleted?

3. If bit-manipulation instructions are not available, what alternate software approach
may be used to accomplish the task?




Solution

1. Bit-manipulation instructions: Figure 3.14(a) shows the binary (bit) representation
in the DO register. Figure 3.14(b) shows a series of four bit-manipulation instructions
to accomplish the task. In all of these operations only the Z flag is affected as indi-
cated. The BTST instruction tests bit 0 of the DO register, which is a zero. As such,
the Z flag is set to 1. The BSET instruction tests bit 2, which is a zero, sets the Z flag
to 1, and finally sets the tested bit to 1. The BCLR instruction tests bit 6, which is a
one, resets the Z flag to 0 (since the tested bit is 1), and finally clears the tested bit to
0.

The BCHG instruction tests bit 31, which is a zero; sets the Z flag to 1; and
inverts the tested bit to 1. Thus, at the end of the instruction sequence, the DO register
contains:

b3l-b28 = 1001 = %9
b27-b8 (no change) = $23406
b7-b0 =001 10100 = %34

2, Conients of DU and the flags: The fipal resuits are

DO=$92340634
XNZVC=00100

DO=% 1 2 3 4 0 6 7 8
O 0 0 L+ = « » + v v v o o v s o v v a s n n e o m s e 0111 too00
b bbb bbbbbbbb
31302928 7654 3210
(a)
Instruction DO (b7 ... b0y
b7 b6 b5 b4 b3 b2 bl b XNZVC
0 111106 00 00000
BTST.L #%00,D0 b0 tested and isa D 1
BSET.L #352,D0 b2 tested and set to 1 . 1
BCLR.L #$6.D0 b6 tested and cleared to 0 0
BCHG.L #$1F, D0 D31 tested and inverted 1o 1 1
(h)

FIGURE 2.14 (a) Binary representation for the data in DO and (b) sequence of
instructions {for Example 3.5).

3. Alternate software: Logic and compare instructions must be used, involving an ad-
ditional sequence of instructions.

In addition to data movement, arithmetic, logical, and bit-manipulation instruc-
tions, program and system control instructions are required for implementing software
programs using the 68000. We will now discuss these instructions.

34 PROGRAM AND SYSTEM CONTROL INSTRUCTION GROUPS

In programming applications, it is often necessary to change the program flow condi-
tionally or unconditionally. It is also occasionally required to stop the processor until an
external event such as an interrupt occurs. In addition, it may be necessary to reset the
system I/O resources under software control. The 68000 processor has appropriate pro-
gram and system control instructions to support these actions.''

Program Control Instructions

The general program and system control instructions are presented in Figure 3.15. These
instructions, all of which support program flow, are classified into three types as follows:

Branch-Type Instructions These instructions refer to an effective address <ea>, where

1. branch type: Bcc: Branch on condition
BRA: Unconditional branch
BSR; Branch to subroutine

2. jump type: IMP: Unconditional jump
JSR: Jump to subroutine

3. return type: RTE: Return from exception
RTR: Return and restore
RTS: Return from subroutine

the next instruction is available. The <ea> is specified by the program counter relative
addressing mode (d(PC)). The displacement is specified as a part of the instruction. If the
displacement is 8 bits (d8), it is a short branch operation with a 256-byte range (-128 to
+127). If the displacement is 16 bits (dl6), it is a long branch operation with a 64-
kilobyte range (-32 to +32 kilobytes). The displacement is added to the contents of the
program counter (PC) to obtain the effective address. (Recall that the PC is incremented
by two after fetching the op.word; this value should be used in the computation of the
<ea> in all branch operations.)

Conditional branch instructions (Bcc) may or may not perform a desired func-
tion, depending on the current value of the processor's condition codes (or flags).
Branching occurs if the specified condition is met, causing a change in the program



Allowable
Effective
Operand Address
Instruction Size Operation Notation Modes
g6 | MccteaPC+d—PC Bee(label) PC REL
Bee ! else proceed
BRA 8,16 PC +d— PC BRA {label) PC REL
BSR 8,16 PC - —(S8P); PC + d — PC BSR {label) PC REL
JMP -— DESTINATION — PC IMP (ca} | CONTROL
ISR — PC - —(SP); DESTINATION — PC ISR {ea} CONTROL
NCGP —_ PC +2—=PC NOP —_
*RESET — RESET EXTERNAIL DEVICES RESET —
(SP) + — SR;(SP) + — o
*RTE — PC RTE
(8P} + — CC(SP) + — RTR .
RTR —_ pC
RTS — (8P) + — PC RTS —_
IMMEDIATE DATA — SR; STOP #(data) _
"STOP 16 STOP PROGRAM EXECUTION
*Privileged
Operand '
Instruction Size Operation Notation
TRAP —_ PC— —(SSP); SR——(55P); TRAP #($0-$F)
(VECTOR)—PC
TRAPY e If V then TRAP; TRAPY
else proceed

FiGURE 3.15 Program control instructions for the 68000 {Courtesy of Motorola, Inc.)

flow. Otherwise, the program flow remains unchanged, and the program con:ique§ with
the next sequential instruction. The different forms of the Bec instruction are indicated
in Figure 3.16. . o

The BRA instruction causes an unconditional branch to the specified effective ad-
dress. The BSR instruction stores the PC on the stack and branches to the specified sub-

FIGURE 3.16 Conditional
branch instructions for the CcC carry clear 0100 | C
68000. (Courtesy of Motorola, Cs carry set 0101 C
inc.) EQ equal 0111 Z
GE | greater or equal 1100 | NV + NV
GT greater than 1110 N-V-Z + N-V-Z
HI high w1e | CZ
LE less or cqual 111 Z+ NV NV
LS low or same oot C+Z
LT less than 1101 NV + N-V
Ml minus 1011 N
NE | not equal 0110 | Z
PL | plus 1010 | N
VC | overflow clear | 1000 | V
VS overfiow set 1001 v

rowtine. The branch instructions generate relocatable code, since they belong to the PC
relative addressing mode. Three examples of branch-type instructions follow.

PC Instruction

$001000 BRA 30200(PC)} Unconditional branch to the <ea>. The <lea> computa-
' tion is as follows:
PC value* =3%001002
16-hit signed displacement = § 0200
<ea>=35001202
*PC advances by two after fetching the op.word for the
BRA instruction, thus pointing to $001002.
The <tea™ is loaded into the PC.
PC (before) $001002
PC (after) $o001202
The processor branches to $001202 and executes the pro-
gram starting at that location. This is a long branch, since
the displacement is 16 bits,
PrC Instruction

5001316 BSR $F(PC) Branch to the subroutine at the <.ea>. The <ea> computa-
tion is as follows:
Incremented PC value =%$001318
8-bit signed displacement =$FFFFFO
(twos-complement form)#*
<ea>=$001308




The original PC value (= $001318) is stored on the stack and
the <ea> (= $001308) is loaded into the PC. The processor
branches to the subroutine at $001308. This is a short branch,
since the displacement is 8 bits. *$F0 in twos-complement
form is a negative number (= -$10). The displacement is a
negative value.

PC Instruction
$001362 BNE $06(PC) Branch, if not equal to zero, to the <ea>. This is a conditional
branch instruction. If the operand from the previous operation is
not equal to 0, the program branches to <ea>; otherwise it
proceeds to the next sequential instruction. <ea> = PC value +
displacement
=$001364 + $06 = $00136A

Some assemblers support explicit extensions to distinguish between short and long
branches and jumps. We will discuss these features in the next chapter when we deal \ with
assemblers and assembly programming techniques.

Jump-Type Instructions The JMP (jump) and the JSR (jump to subroutine) instructions
are similar to the BRA and BSR instructions. However, in the case of the JMP and JSR,

the <ea> can be specified by any one of the control addressing modes as well as by the
PC relative modes.

Return-Type Instructions The RTE (return from exception) is the last instruction to be
used in an exception service routine. It restores the registers (PC, SR) that were stored on
the stack when the exception occurred, and returns to the program that was being
executed at the time of the exception. RTE is a privileged instruction. RTR (return and
restore) is similar to RTE, but RTR restores only the user byte (or the CCR) from the
stack rather than the complete SR.

The RTS (return from subroutine) is the last instruction to be used in any subrou-
tine service routines. It restores the PC that was stored on the stack when the subroutine
call was made and returns to the calling program.

System Control Instructions

These instructions control and coordinate system operation. The RESET instruction gen-
erates a reset pulse on the reset pin of the processor. In system control applications, this
pulse is used to reset the I/O and the peripheral devices. The STOP instruction initializes
the status register with the specified data element and stops the processor operation. The
processor resumes its operation when a hardware interrupt or reset occurs. The RESET
and the STOP instructions are privileged.

The NOP (no operation) instruction does not perform any task; rather, it advances
the PC to the next instruction location. Software engineers and programmers use NOP
instructions to fill sections of the program memory for short delays and for later replace-
ment by active instructions.

The ILLEGAL instruction corresponds to an op.word $4AFC. It causes an illegal ,
instruction error exception. This exception simulates the illegal error condition in the
development of the operating system software.

The following example problem provides a review of the program and system control
group of instructions.

Example 3.6 Program and system control instructions.
Figure 3.17 illustrates 68000-based software in an industrial application. The system is in
the supervisor mode and the SR contains $2400 initially (all the flags are zero).

1. What does the main program accomplish?
2. What does the subroutine accomplish?

Solution

1. Main program: It initializes DO with a data word $0008 and calls a subroutine at
$00001030. After the program returns from the subroutine, it generates a reset pulse
and stops the processor. When an external event such as an interrupt occurs, the pro-

gram advances to the JMP instruction, which makes the program jump back to
$00001000 (start).

2. Subroutine: This is a delay loop. It decrements the word in DO by 1. If DO is not
decremented to 0, the BNE instruction causes the program to branch back to
$00001030, which is the beginning of the delay loop. The loop is terminated when
the DO register is decremented to 0, and the program advances to the RTS instruc-
tion. The RTS causes the processor to return to the main program. For the values
indicated, the delay loop runs seven times and exits the eighth time.

Main program
PC Instruction Comment
$00001080 MOVE.W #3%$0008,D0 ;Move data word #3$0008 into DO
$040001004 JSR $00002030 ydJump to subroutine at $0000L030
$00001008 RESET yGenerate reset pulse
$0000100C STOP #%$2500 ;load $2500 into SR ‘and Stop
$ooonow0L0  JMP $00co0L.000 ;Jump to $00001000 (starct)
Subroutine
jooogio3an  wOP ;No operation
$00001032 SUBO.W #%01,DD ;Subtract 1 from DO (decrement DO)
$00001034 BHE $TA(PC) ;If not zero, branch to {ea)r#:*
$0000183L  RTS ;return from subroutine

(eay = Signed displacement + advanced PC

= $FFFFFFFA + $00001036 = $00001030

FIGURE 3.17 Main program and subroutine (for Example 3.6).




In the software of Figure 3.17, we used absolute numbers and hex values to specify
displacements and the jump and branch operations. This enabled us to show the details of
the program flow at the machine level. This approach can become tedious and inefficient,
however, especially if the software contains many loops and conditions. Assembly
language programming, in which numbers are represented by symbols, is a better
alternative in developing the software. We will learn more about these programming
techniques in the following chapter.

In addition to the instruction groups discussed, the 68000 has a special group of
instructions to support multiple register transfers, linking and unlinking of the stack,
multiple decision schemes and software interrupts (traps). These complex instructions
will be discussed in later chapters, after assembly programming concepts are introduced.
The instruction execution time is another important parameter. It specifies the actual time
of execution of an instruction including calculation of the <ea> and obtaining the
operands. We will now present these concepts.

3.5 INSTRUCTION TIMING CONSIDERATIONS

The 68000 is activated by a clock signal (4- to 12-MHz range). Instruction time refers
to the time required to execute an instruction without any wait states. The fundamental
unit of time is the processor clock cycle time (T). When the 68000 reads the op.word
from the program memory, or reads the operands from memory or I/O, it is referred to as
the read bus cycle. Similarly, when the processor writes the operands into the memory
or I/O, it is referred to as the write bus cycle. The bus cycle in general may be a read or a
write bus cycle.

Read/Write Timing

A typical bus cycle takes four clock cycles (or four T-states). The op.word fetch is al-
ways a read operation and takes one read bus cycle. Depending upon the instruction, the
processor may perform further read operations (to obtain operands) and write operations
(to write operands). In case of the 68000 and 68010/12 processors, each bus cycle in-
volves a 16-bit data transfer. In case of the 68008, each bus cycle involves an 8-bit data
transfer (due to an 8-bit data bus). The instruction timing is specified in terms of the total
number of T-states and the associated read/write bus cycles.

Instruction Timing Computation

Instruction T(R/IW) Comment

MOVE.W D1,DZ2 4{1/0) ;Move word in D1l into D2

MOYE.L (AL),(A2) {2y ;ove long werd from memory addressed
?gagnl) into memory addressed by

MOVE.B -(A3),DE 10¢2/0) ifiove byte from memory addressed by

predecremented (A3) into D&

Consider the T(R/W) values shown in Figure 3.18 for the 68000. In case of the
MOVE.W D1,D2 instruction, only the op.word needs to be fetched from the external
memory, which involves one read operation. The source and the destination operands are
within the processor; hence, the instruction does not need any further read or write bus
cycles. Thus, the T(R/W) values are 4(1/0). In case of the MOVE.L (A1),(A2) in-

FIGURE 3.18 T(R/W) values and instruction timing for the 68000,

struction, the processor has to perform the op.word fetch and two more read operations
of the memory to obtain the long-word source operand at the location addressed by the
contents of Al. In addition, the processor has to perform two write operations to write the
long word at the destination location addressed by the contents of A2. Thus, there are
three read and two write bus cycles, corresponding to 20 T-states. The T(R/W) values
are 20(3/2).

In case of the MOVE.B -(A3),D6 instruction, the processor has to perform the
op.word fetch and one more read operation of the memory to obtain the byte operand
from the source <ea>. The source <ea> is the predecremented A3 and involves address
computation. The 68000 usually takes two additional T-states to perform the <ea>
computation. There is no memory write cycle involved, since the destination operand D6
is within the processor. Thus, the T(R/W) values, including the computation time for the
<ea>, are 10(2/0). If the computation time overlaps some other processor activity in the
instruction, the additional T-states are not required. (See Appendices B and D for the
T(R/W) values for 68000 instructions.)

We will now present an example problem to review instruction timing.

Example 3.7 Instruction timing.
The software of Figure 3.17 is repeated with the T(R/W) values indicated in Figure 3.19.

1. Explain the T(R/W) values for the JSR, RESET, BNE, and RTS instructions. (Obtain
information from Appendices B and D.)

2. If the 68000 is operating at an 8-MHz clock, compute the execution time for the de-
lay subroutine.

Solution

1. JSR $00001030: The processor fetches the op.word and performs two more read op-
erations to obtain the address operand $00001030. It stores the PC in the main routine
on the stack, which takes two write operations, before going to the subroutine. Thus,
the T(R/W) values involve three read and two write bus cycles and 20 T-states. The
T(R/W) values = 20(3/2).




Main program

PC

T(RIW)
8(2/0)
26(3:2)

332{10)
a(2/0)
12(3/0)

into DO
$00001030

t pulse

to subroutine at
load $2500 into SR and Stop
Jump to $00001000 (start)

Move data word #$0004

Generate rese

Comment
Jump

*
¥
L
L
¥

$00001.030
$00001.0008

MOVE.W #%$0004a.DC0
#3$2500

Instruction
JSHR
RESET
STOP
JHuPp

$0040u000
$0000%1004
$00001L00CA
soQooinac
$00001010
Subroutine

£(1/0)
4(1/0)
10({&0)
16 (4/0)

branch to {ea)*

Subtract 1 from DO(decrement Do)y
return from subroutine

:Ho operation
BQ.¥ #%$01,.D0 5
S $FA(§C) ;If not zZerc:

NOP
BNE
RTS

$00003030
$000031832
$00001034
$00001036

= a(w0)

nch taken = LO0(2/0)
not taken

*T(R/W) bra

FIGURE 3.19 Instruction-time and execution-time computation for the 68000 {Example

3.7).

RESET: The processor needs to fetch only the op.word, involving only one read bus

cycle. However, the reset pulse is held active for 128 T-states, resulting in T(R/W)
values = 132(1/0).

BNE FA(PC): The processor fetches the op.word, computes the <ea>, and fetches
the new op.word at the branched location, if the branch is taken. This involves two
read bus cycles and address computation, resulting in T(R/W) values = 10(2/0). If the
branch is not taken, the computed <ea> has to be recomputed to the original value.
Thus, only one op.word fetch and two computations are involved, resulting in T(R/W)
values = 8(1/0).

RTS: The processor fetches the op.word, performs two more read operations to ob-
tain the stored PC from the stack, and fetches the new op.word from the new PC
location. This involves four read bus cycles, resulting in T(R/W) values = 16(4/0).

2. Execution time: The delay timing loop between the NOP and the BNE instruction
runs seven times (refer to Example 3.6) until DO is decremented to 0. The loop exists
the eighth time. The computation of the execution time is as follows:

# T-states per loop (between NOP and BNE) = 18
# T-states per seven loops =7 % 18 = 126
# T-states for the eighth and the last loop = 32

(BNE has only eight T-states and RTS has
to be included)
Total # T-states in the delay subroutine =17

[ )

At an 8 MHz clock, each T-state = 1/8 MHz = 0.125 microsecond.

Delay routine execution time = # T-states X time/state
= 176 % 0.125

= 22 microseconds

The 68008 timing computation is similar, except that the read and write bus cycles
transfer a byte of data instead of a word as in the 68000. This makes the 68008 instruc-

tion fetch and execution times (for word and long-word operands) twice as long as in the
case of the 68000.

3.6 SUMMARY

In this chapter we examined the instruction set of the 68000. It has 56 generic instruc-
tions, some of which have several variations. These instructions follow a consistent
structure. The same mnemonic representing an instruction can be used with appropriate
attributes and extensions to refer to different operand sizes and addressing modes.



Some of the instructions for the 68000 are of the single-operand type. In such
cases, the specified operand is the destination operand on which the given operation is
performed. Other instructions are of the double-operand type in which the first operand is
the source operand and the second is the destination operand. The final result is put in the
destination.

The 68000 instruction set is subdivided into several groups: data movement, binary
and BCD arithmetic, logical and bit-manipulation, program and system control, and
special category.

Data movement instructions deal with the physical movement of the data operands.
The binary arithmetic instructions deal with the binary arithmetic and data processing.
The BCD instructions deal with decimal numbers. The binary operations are faster than
the BCD operations. In the multiprecision arithmetic type of operations, the extend (X)
flag bit is used to carry the result from the previous operation to the current operation.

The logical instructions deal with logical data manipulation and assist data pro-
cessing operations. The bit-manipulation instructions deal with bit-level data manipula-
tions, which are very useful in I/O applications in which a single bit must be tested or
changed.

The program control instructions deal with conditional and unconditional control
of the program flow. These instructions are particularly useful in controlling loops, call-
ing subroutines, branching to specified locations on condition, and branching or jumping
to specified locations unconditionally. For conditional transfers, the instruction checks
the corresponding flag bits and makes the decision for a transfer.

The system control instructions deal with system functions, such as stopping the
processor, resetting the peripherals, and so forth. These instructions are used at the op-
erating system level to control and synchronize system operation. In order to enhance
efficiency of the operating system activity, certain instructions dealing with the status
register and the stack pointers are classified as privileged instructions. These should only
be used in the supervisor mode. To do otherwise results in an error condition causing the
processor to go into the supervisor mode.

Instruction timing is a very important parameter. The read or the write bus cycle
takes four clock cycles (T-states) without any wait states. The op.word fetch is always a
read bus cycle. An instruction may consist of several read and write bus cycles. The
execution time of a program is the compounded execution time of the instructions and
the program loops.

Assembly language programming, which will be covered in the next chapter, is a
better way to develop software than using absolute numbers and hex values.

PROBLEMS

Note: All the problems in this section can be reworked using the 68008 processor to compare its
performance with that of the 68000.

3.1

32

33

34

35

3.6

3.7

3.8

39

3.10

3.11

Which of the following instructions are valid and which are not valid? Give the reason.

(a) MOVEA.L A1.A3
(b) MOVE.W (A1),D0
(c) MOVE.B ~(D2),D3

How many words are each of the following instructions? Give the reason.

(a) MOVE.L #$1234098A,D6
(b) EXG A2.D4
(c) SWAPD3

Write mnemonic instructions for the following:

(a) move byte in DO into memory addressed by A2;

(b) move byte in memory addressed by A2 into D3;

(c) move long word in memory addressed by A3 into D3;
(d) move long word in D3 into memory addressed by A2.

Consolidate (a) and (b) of Problem 3.3 into one instruction, if possible. Is this more
efficient? Why of why not?

Consolidate (c) and (d) of Problem 3.3 into one instruction, if possible. Is this more
efficient? Why or why not?

Which of the following forms are allowed and which are not allowed for the ADD and
SUB instructions? Give the reason.

(a) ADDQ.L #$0F,D4

(b) SUBLL #80034567C,A7

(c) ADDX.B -(A3),-(Al)

(d) SUB.B0A(PC),D2

How many words are each of the following instructions? Give the reason.
(a) ADDX.L -(A2),-(A3)

(b) ADD.L$123C(A1,D1.W),DO

Using the information from Figure 3.4, classify each of the following addressing modes:

(a) immediate addressing mode;
(b) quick addressing mode;

(©) d(PCRn),

(d) An.

Which of the following instructions is likely to generate an error? Why?

(a) SUB.W $1235,D0
(b) MOVE.W #$2400,SR

Indicate the results of the affected registers and memory after each of the following
operations using the initial values of Figure 3.6:

() MOVE.L (A1),(A0)+

(b) ADDQ.W #$07,D0

(c) ADD.W -(Al),-(A1)

(d) SUB.W (AD)+,(Al)+

Repeat Problem 3.10 on condition that the instructions are used in sequence.



3,12 The foltowing program is run in sequence:

ADDX.W DO,Dh
SHAP Dl
EXT.L DO
ADDX.L D1.DD

Using the initial values of Figure 3.6, indicate the contents of the affected registers at each
step of the sequence.

3.13 What are the contents of the affected registers and memory after each of the following
operations? Use the initial values of Figure 3.6.
{a) CMP.L DU,D1
(b) CMPA.W AQAL
(¢} TST.L —(Al}

3.14 In the following program, use the initial values of Figure 3.6

NEG.H D&
MOVEA.W Do, A2
CHMPR.W B2 ,AL

What are the values of the affected registers, including the status register?

3.15 What are the results of the following operations? Use the initial conditions of Figure 3.6.
Show the contents of the affected registers and the memory locations.

(a) MULU D2,D1
{b) MULS D1,D2
(c) DIVU D2,D1
(d) DIVS Di,D2

3,16 Write a sequence of instructions to add long words addressed by (Al) and (A2), with the
result in a location addressed by (A3). Use any addressing modes.

3,17 Write a sequence of instructions to compute the average of word operands contained in the
D0--D5 registers, (Hint: you may want to sign extend to long words before the actual
addition!)

3.18 In a control system application as shown in the following diagram, 16-bit X and Y words
are entering the 68000-based system. Registers A0 and Al point to X and Y words. X is
larger than Y and is a positive number. It is required to compute a control word Z, given
by

Z = 025X - YD
and output to 2 location addressed by A2. Write the sequence of instructions as a

subroutine.
Inputs —=——e{ X The Output
from 68000-based Zp————0 to
sensory = Y system transducers

3.19 psipg the initial values of Figure 3.6, compute the results of the following operations and
indicate the contents of the affected registers:

fa) AND.B D2,D1

(by AND.L D1,D0

(¢) EOR.W #3$AA55,D1
(d) NOT.L (Al)

3.20 Repeat Problem 3.19 on condition that the instructions are executed in sequence.

3.21 Compfite the results of the following operations using the initial values of Figure 3.6 and
assuming the operations are executed one at a time.

{a) ROL.W D2,D0
(b} ROR.L #%4,D0
(c) ASL.W #32,D2
(d¢) LSL.L D2,Dt

3.22 Repeat Problem: 3.21 on condition that the instructions are executed in sequence.

3.23 Comp{.lte the resu]ts.of the following operations using the initial values of Figure 3.6 and
assuming the operations are cxecuted in sequence:

(a} BCHG.L #$1E,D0
(b} BTST.B #$3,(ADl}
(¢) BCLR.L D2,Dt

(d) BSET.B #354,—{Al)

3.24 Write a series of instructions to invert the long-word contents of memory contained
between $0034FE74 and $0034FE7C. (Hint: you may want to use conditional branches.)

3.25 Compute the §ffectiv§ address in each of the branch operations listed betow, The PC value
at the branch instruction is $00001040. In each case, specify the condition to be satisfied
for the branch to occur. '

(a) 300001040 BEQ $4A(PC)
(b} $00001040 BNE $FA(PC)
(c} $00001040 BLE $FFOM(PC)
(d) 300001040 BGT 308(PC)

3.26 Write a pIOgl am o clear he memoly h Twe i ns $(]00{) (]()”
I 4 wWOr dS I £1 Ihe locatlo
. 2 and

3.27 Th}ere are 28 word X and Y binary strings in memory. A0 and Al point to the end of the
strings (the least significant words in each case), as shown:

X word Y word
Word 127 Word 127
{A0) — Word O (A} — Worci ]

Write a subroutine te add these strings and store the result in memory addressed by A2.
3.28 Repeat Problem 3.27, performing subtraction instead of addition.
3.29 Repeat Problem 3.27 with BCD data.
3.30 Repeat Problem 3.28 with BCD data.



3.31 Show the T(R/W) values for each of the instructions in the following software subroutme:

PC Insiruction
$000n20a0 CLR.L DO
oe CLR.L (RAL)
D4 ADD.L DO,{RL}
0k RDDQ.L #%02,D0
aa CMPTI.L #$00000400,D0

O BNE $F4{PC)
10 NOP
1 RTS

3.32 Analyze the software of Problem 3.31. What is being accomplished? How many times is

the loop executed before the return insteuction?
Indicate the contents of DO and memory addressed by Al when the program returns
to the calling program.

3.33 The 68000 processor operates on an 8-MHz clock. Compuie the time of execution of the

software in Problem 3.31.

3,34 The 68000 processor operates on an 8-MHz clock. Write a subroutine that will provide a

0.1-second delay time.
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CHAPTER

68000 Software Considerations and
Assembly Programming Applications

Objectives

In this chapter we will study:

Assembly-level programming techniques for the 68000
Concepts of software design and implementation
Practical program development and applications
Concepts of macros and programs with macros Special
instruction groups and applications



4.0 INTRODUCTION

The required software for the 68000 microprocessor can be easily developed using as-
semblers and cross assemblers. Assembly language programs use the instruction mne-
monics of the processor. Assemblers and cross assemblers are software utilities that
convert assembly language programs into the appropriate form of machine code, con-
sisting of binary Is and 0s. Programs written in assembly language are usually more
efficient with respect to code content and execution time than programs written in such
higher level languages as BASIC, FORTRAN, PASCAL, and C; however, the higher
level languages do provide programming ease. Industrial and I/O application programs
are often written in assembly language. Assembly language programming requires a
complete understanding of processor architecture, addressing modes, and the instruction
set.!

Software usually refers to programming techniques that take into consideration
system hardware resources and optimization of code content and execution time. Pro-
gramming refers to code development to accomplish a given task. The terms software
and programming are used interchangeably in most industrial circles; however, for pur-
poses of this text, we will maintain the distinction between these terms.

Study of assembly language techniques and software considerations will provide

the knowledge and background necessary to develop assembly language programs and
software on 68000-based systems.

Most of the programs in this chapter are suitable for any 68000-based hardware;
thus, our discussions are independent of specific hardware.

4.1 ASSEMBLY LANGUAGE SOFTWARE
AND PROGRAMMING TECHNIQUES

It is impractical and tedious to use actual addresses and instruction codes in developing

assembly programs. Symbols and labels can be used in place of the actual addresses if
assembler utilities are available.?

Assembler, Cross Assembler, Linker, and Loader Utilities

Figure 4.1 illustrates a software system configuration using a host computer, an emula-
tor, and a 68000-based target system. The software development is done on the host
system and the code is downloaded to the target system for the actual operation.

In Figure 4.2 the various steps involved in the software development process are
indicated. The assembly-level program is developed with the help of an editor or word-
processor utility, and is known as the source program. The source program file usually
has an extension (.src); for example, TEST.SRC is the source file in Figure 4.2. After

correcting any typing errors, the source program is run through the assembler or the
cross-assembler utility.

FIGURE 4.1 Typical system

configuration for software Host system . The
development 68000 target
) Motorola Dev system
sysiem, VAX, ry
Macintosh,

IBM PC, or others Y

with
[ofiii?-b]er Emuizator or other
s ] interface (such
assembler

as RS 232)

Assemblers and Cross Assemblers These are the software utilities that convert a
program in assembly language into the corresponding machine code. The machine-code
program is also known as the object code. The corresponding file is TEST.OBJ. If the
host computer has the same processor as the target system, the assembler utility is used.
On the other hand, if the computer has a processor different from that of the target sys-
tem, the cross-assembler utility is used. The assembler and the cross-assembler utilities
are similar to each other in function. They also generate a list file (TEST.LST) contain-

FIGURE 4.2 Typical software Process
development process,

Source program

editor

Assembler or
cross assembler

\

Machine code

List file

Linker

Typical file name

development with TEST.SRC

generation : TEST.OBJ

generation TEST.LST

TEST.ABS

Formatted absolute file
for downloading into
target system



ing the machine code, the instruction mnemonics, symbols, labels, and the translated
addresses and numbers. This file is very useful in debugging the programs.’

Linkers and Loaders The linker utility provides absolute addresses for the machine-code
programs in the real operating memory environment of the target system. It also links
several machine-code programs, if necessary, and provides an absolute file
(TEST.ABS).

The loader utility provides the required format for the absolute file to be down-
loaded into the target system. For the 68000 family of processors, this is usually the
Motorola-S format. Another common format is the INTEL-Hex format.

Writing Assembly Programs and Software Development

Most currently available assembler and cross-assembler utilities are of the two-pass type.
In the first pass, symbols and labels in the assembly source program are converted into
the corresponding numbers and displacement values. In the second pass, these numbers or
values are substituted for the existing symbols and labels, and the machine-code file is
generated. Present-day assembler and cross-assembler utilities are able to identify syntax,
instruction, and operand errors at the time of assembly and display them. These errors
then can be corrected and the assembly process repeated.

In developing the source program, assembler directives can be used. These direc-
tives are a set of commands associated with the assemblers and cross assemblers. We
will introduce those directives typical of most assemblers or cross assemblers. For infor-
mation on additional directives, appropriate manuals may be consulted.*

Figure 4.3 illustrates the assembly source program (TEST.SRC). In Figure 4.4 the
assembled program listing (TEST.LST) is presented. In the discussion numbers in square
brackets [ ] refer to the bracketed numbers in the figures, which correspond to important
assembler directives or events.

[1] Comment directive: Usually a delimiter such as a semicolon (;) is used as an as-
sembler comment directive to introduce the comments. The comments are provided to
explain the program flow. The assembler will not generate any machine code for a com-
ment, but will include the comment statements in the list file.

example: ;test.src O\WM\G7 {(at line 1)

The preceding comment statement is listed in the assembled program listing, but it is
not assembled to machine code.

[2] LLEN and OPT directives: These are the line length and the option directives,
which specify the printer line length and any specific options. In our example, the line
length is set at 108 columns. Option A generates an absolute file after the linker opera-
tion.

[3] ORG directive: This is the origin directive. It specifies the starting address of the
assembled program.

:+this is a source program %o Show
;the format of a typical assembly
;language program.

rtest.sroc &W8\E7Y ;11
rdeclaration of length, option
;and origin

LLEN 106 ;[2]
QFT A
GRG $1000 1[3]
;declaration of symbols and values
YALUEL EQU $0008 <[4}
VALGUES EQU $0D0L
PORT EQU $R0Q0

:move valuel inte DO and jump to
;jdelay subroutine
START MOVE.W #VBLUE1l,DO HL]|
BSR DELAY 5161
;output message to port until %
;character and back to start
MOVEA.L #NSGE,AQ
OSPLY MOVE.B ({AD)+,D1
CMPI.B #'%',Dl

BEQ START
MOVE_.B D1,PCRT
JHME DSPLY

;delay subroutine. Loops until DO
;is decremented to 0.
DELAY NOP

SUBQ.W #VALUEZ,DO

BNE DELARY
RTS
;message to be output
;
MSGE e 1ABCDE ——§' ;7]
DBUF DS 128 : [8]

END (9]

FIGURE 4.3 Assembly language source pregram (TEST.SRC) for 68000-based
systems.

example: ORG $1000 (at line 6)

The first instraction of the assembled program will start at PC location $1000, as
can be seen from the assembled listing.
[4] EQU directive and symbols; This is the equate directive. It provides constant or
computed values to the symbols.

example: VALUEL EQU 30008 (at Line 8)



LINE ADDR

0oooopoa
agoococy
10 doooacoo

DBUF
HSGE
START

;this 1s a source progranm to show
;the format of a typical assembly
;language program.

ytest.src WH\A7 )
;declaration of length, option
;and origin

LLEN 108
OPT a
ORG $1000
;declaration of symbols and values
VALUEL EQU $00056
VALUEZ EQU $000%
PORT EQU $Aac0a

;jmove valuel into DO and jump to
;delay subroutine

13 00601000 3D03C 0004 STRART MOVE.W #VALUEL,DO
14 0001004 GLLA 4EVL B3R DELAY
15 ;output message to port until §
1k ;character and back to start
17 00coiccé e07¢C 0000 1028 MOVEA.L #MSGE,AD
18 OOCOL1COE 1cLs DSPLY MOYE.B (Aa0)+,D3
19 0OCG01D10 acoi 0024 CMPI.B #'%',DL
¢ 00002014 G7ERA BEQ START
£} 00G60icle 13CYL 0000 ACOO MOVE.B D1,FPORT
c2 OOCB01D1C 4EF& LOOE JHP DSPL¥ .
c3 ;delay subroutine. Loops until DO
o4 ;is decremented to 0.
apgoLroco 4BV DELAY NOP
Sa gponanee 5340 SUBQ.W #VALUEZ,DO
o7 00G01024 GBFA BNE DELAY
cA 0000l026 4E?S RTS
cq imessage to be output
gg 00001028 4142 4344 MHSGE pc *ABCDE —3!
33 gooolo2c 4520 22D
31 0co0L030 2400
j2 Doporo3z DEUF DS 128
i3 pooolLL3g END
ASSEMBLER ERRORS = o

SYMBOL TRBLE

co00ia032 DELAY goopuo20  DSPLY GOCOLGOE
coocdided  HARG 040000404 PORT CEOOAGOA
pooci0c0c VALUEL 00000008 VALUEZ CQOOOOGO)Y

:[1]

;12)
ME]

i[4]

; [5]
;[6]

7]

;181
19

FIGURE 4.4 Assembled program listing (TEST.LST} corresponding to the source
program in Figure 4.3.

VALUEI is a symbol for which the numerical value is $0008. The assembler re-
places the symbol YALUE] with $0008 in the assembly process by means of the
EQU directive. The other symbols are VALUEZ2 and PORT, the numerical values
of which are $0001 and $A000, respectively.

[5] Label: This is a symbolic representation of the address of a program statement.
Other program statements can refer to this label as the source program is being written.
The assembler configures the appropriate numerical value for the label.

example: START MOVE.W #VALUEL,DO (at line 13)

START is a label, referring to the program location of $00001000, as shown in the
assembled listing. -

Assembly listing (Figure 4.4): The actual program starts at line 13 and reads:
33 0000L000 303C 0oos STRRT MOVE.W #VALUEL,DO

The interpretation of the preceding line is as follows:

13 => Line number generated by the assembler for listing
convenience.

00001000 =3 Hex address of the first instruction, according to the
eartier ORG statement.

303C 0008 => Op.code (303C) and the operand (0008) for the
MOVE.W #VALUELDO instruction. The assem-
bier has substituted 0008 for the symbol VALUEI,

(6] Branch operations: In branch operations, the assembler configures the required dis-
placement to branch to the location specified by the label.

example: BSR DELAY (at line 14)

The op.code is 611A for the preceding instruction, which contains the displacement

(1A) to branch to the location $00001020. This location corresponds to the label
DELAY.

[7] DC directive: This is the define constant directive. It is used to define the byte
(DC.B), the word (DC.W), the long-word (DC.L), or the ASCII character constants.

The ASCII characters are enclosed in single quotation marks (**}.

example: MSGE Jale '"ABCDE —-§1 (at line 31)

Sequential locations starting at $00001028 are filled with the ASCII values: $41 for
A, $42 for B, and so on. MSGE is a label corresponding to the address $00001028.



(8] DS directive: This is the define storage directive. It is used to define storage
space in memory, It can be specified as bytes (DS.B or DB), words (DS.W or DS),
or long words (DS.L). ’

example: DBUF DS 1248 (at line 32)

Storage space of 128 words (256 bytes) is defined as DBUF, starting at location
$00001032.

[9] END directive: This directive signifies the end of the assembly process. Statements
beyond the END directive are not recognized by the assembler.

Other Delimiters and Directives To distinguish among operand types, certain de-
limiters are used. These delimiters depend on the assembler or the cross assembler.
Some of the standard ones are as follows:

$ => hex data or operand
# == immediate data or operand

; = comment beginning

Symbol Table Assemblers and cross assemblers also generate a symbol table as
shown below the program listing in Figure 4.4. It provides a quick reference for the
symbols and labels used in the program.

The following ¢xample problem provides a review of the assembly process of
63000 programs.

Example 4.1 Assembler usage for the 68000,
Refer to the source, assembled, and listed programs of Figures 4.3 and 4.4.

1. Are the statements

FORT DSPLY

symbols or labels? Why? What are their hex values?

2. Where does the program branch after executing the instruction
BEQ START {at line 20}

What is the offset value calculated by the assembler? How is the effective address
value computed?

3. What are the contents of the AD register after executing the instruction
MOVER.L  #MSGE,AQ (at line i7)

What are the details of the op.code and the operands?

Solution

1. Symbols and labels: PORT is a symbol, since it is declared by the BQU directive. It
has a hex value $AQ00.

DSPLY is a label, since it is introduced in the program to identify the corre-
sponding program location. It has a hex value of 0000100E.

PORT = $A000
DSPLY = $0000100E

2. BEQ START: If the branch condition is satisfied, the program branches to location
00001000, which corresponds to the label START. The offset or the displacement
calculated by the assembler is EA, which is a part of the op.code 67EA.

Offset = $EA

Effective address calculation:

PC value after reading the op.code => $0000101 6

+
Sign-extended displacement EA  => $FFFFFFEA
(in twos-complement form) _
Effective address for branch == $00001000
(comresponding to label START)

3. Contents of AD after the MOVEA.L #MSGE,A0 instruction: MSGE is a label
and #MSGE corresponds to the address location $00001028, As such, A0 is {oaded
with the value $00001028.

A0 = $00001628
Op.cede and operand details: Line 17 shows
00001008 207C DOOO 1028 MOVEA.L #MSGE, AN

where

00001008 = > Program location of the instruction
207C =2 Op.code of the instruction
0000 1028 == Operand value moved into AQ

Since the preceding example was used primarily to review the assembly process,
we did not focus on analyzing the program. This analysis would prove useful to the
reader to enhance understanding of software development.



Programming and Software Engineering Considerations

From a programmer's point of view, the program in Figure 4.4 is a 33-line program,
including comments and declarations. Programmers may not be concerned about mem-
ory appropriations and code content. On the other hand, software engineers would make
sure that appropriate memory was allocated for the buffer. For example, they would ex-
amine lines 32 and 33 of the listed program to ensure that the 128 words of memory
space was allocated. This may be done in the following way:

Ending address of the DBUF (line 33) = $00001132
Beginning address of the DBUF (at line 32) => $00001032
Size of the buffer in bytes =2 $00000100

$0100 bytes = 256 bytes = 128 words

which is the requested memory space for the buffer.

Similarly, software engineers also would be concerned about whether the entire
program was on the even boundaries and whether the entire code content was correct.
Although there are some traditional distinctions between programmers and software en-
gineers, these distinctions are rapidly vanishing as technologies continue to advance.

4.2 DATA MOVEMENT, DATA-COMPARISON
SOFTWARE, AND APPLICATIONS

The majority of operations in any computer system deal with data movement between
two or more locations. For example, in a file-management system, data from one section
of memory may be moved into another section. Data rearrangement involves extensive
data-comparison procedures, which we will now examine.

Block Transfer Applications and Software Considerations

The basis for any data movement operation is the block transfer. It usually involves two
pointers: the first refers to the starting address of the source block and the second to the
starting address of the destination block. In addition, there is a loop counter, which keeps
track of the number of data elements being transferred.

Figure 4.5 shows a typical block movement sequence written as a subroutine. DO
is chosen as the loop counter and is initialized to $100 at line 10. Al is the source pointer
and A2 is the destination pointer. They are initialized to $00004000 and $00006000 at
lines 11 and 12. The program loop between lines 16 and 18 transfers successive long
words from the source block to destination block, until DO is decremented to zero. In
this case, the number of long words transferred are $100 or 256. At the end of the
successful block transfer, the software returns to the calling program by means of the
RTS instruction at line 19.

LINE RDDR
g ;block data move Q/8/87
3 " oPT A
£ ORG $1000
= ;initialize RL, A2 with source
b ;yand destination addresses and
7 ;DD with number of words to be
g ;transferred
10 000040040 303C 0u00 INIf MOVE.W #3%0100,D0
11 00001004 227C 0000 4000 MOVEA.L #300004000,81
X2 0000100A 247C 0000 &OOO MOVEA.L #$00C0L0O0CO, AR
13 ;move data from (Al) to (A2)
ig santil DO is decremented to O
1L 00001010 24D9 LOOP MOVE.L (BR1)+, (A2)+
17 000010L2 5340 SUBQ.¥W #%01,D0
14 0000104 ELFA BXNE LOCP
19 0D0OD101E 4AE7?S RTS
20 ireturns to the calling program.
21 000010148 END
ASSEMBLER ERROERS = u}
SYHMBOL TABLE
INIT QD0OGLOOD LOOP 0001010 MARG goooacoon

FIGURE 4.5 Typical 68000-based block movement sequence.

In the example problem that follows, we will consider software and timing in the
block movement sequence.

Example 4.2 Block movement sequence.
Consider the sequence of Figure 4.5,

L. Specify the final values of the Al, A2, and DO registers after the loop has been com-
pleted and the RTS instruction is being executed.

2. The system operates on an 8-MHz clock. Compute the loop execution time T(loop)
to transfer $100 long words,

3. Modify any of the required instructions to transfer $0400 long words. What is the
new execution time of the loop?



Selution

1. Final values: The data movement loop between lines 16 and 18 is run 5100 times
(until DO is decremented to $0000). Each time the Ioop is executed, Al and A2 are
postincremented by four (because of the long-word data transfers). At the end of the
loop, Al and A2 are incremented by $0400 from their initial values.

The final values are

DO = $00000000
Al = $00004400
A2 = $00006400

2. Loop execution time: Using the T(R/W) values (refer to Chapter 3) for lines 16
through 18, we obtain

Line Addr T(R/W)
16 LOOP MOVE.L (A1)+, (A2)+ 2i{3e)
L7 SUBQ.W #301,00 £{1/0)
10 BNE LOOP 102/
(branch)

The total number of T-states is 34, as indicated. This loop is run 256 ($100) times.
The clock period at an 8-MHz clock is 0.125 microsecond. Thus, the total loop ex-
ecution time 1s as follows:

T({loop) = 34 x 256 x 0.125 = 1088 microseconds

3. Modified software: The foop counter DO needs to be changed to $0400 to transfer
$0400 or 1024 long words. Therefore, we modify the instruction at line 10 to

MOVE.W #$0400,D0

to accomplish the task.
Four times as many long words are transferred; hence, the foop time increases

proportionately:

T(loop) = 4 x 1088 = 4352 microseconds

By appropriately initializing the pointer and the counter registers, it is possible to
move any amount of data. However, care shouid be taken not to address unavailable
memory locations or odd memory locations for word and long-word transfers,

Data-Sequencing Applications and Software Considerations

In industrial and commercial applications, it is often required to arrange data either in
ascending or descending order. This is accomplished by comparing the data elements and
appropriately positioning them. The 68000 predecrement and postincrement addressing
modes are particularly useful in such applications. Figure 4.6 illustrates data-sequencing
software as a subroutine. We will now analyze and interpret the results.

LINE ADDR

L ;SEQ.SRC 9/24/88

d ;

3 ;Sequences string of words

4 ;such that largest word is

5 ;yin the lowest location.

b yR0 and Al point to the

v ;beginning and end of the

il ;etring

g OPT A

10 ORG $unG00

131 ;save original value of A0 in AP
12 00001000 2448 MOVEAR.L AO,AC

13 ;compare successive words. If the
14 ;second word is larger, branch to
15 ;EXCHG routine to swap them
1k 00001002 204A BGAGH MOVEA.L AZ,AD
17 00001004 Bls4o NXTPR CHMPMN.W (AD)+, (BROY+

14 0OD0LW00E BE20C BHI.S EXCHG
189 00001008 9LFC OQOoc o0odog SUBR.L #%02,A0O

20 COO0O0LO0E B3CH CMPA.L AOD,AL

21 0000L010 EEF2 BNE.S KITPR

oc 00D0L0Le 4ERS RTS
3 ;exXxchange the two words by swapping
24 DD00L0L4 2020 EXCHG MOVE.L -(2Q),bd
¢S 00001046 4840 SWAP.W DO
¢t 000010L6 2080 MO¥E.L DO, (RQ)

27 0000Ld3A LOEGL BRA.S BGAGHN

£d 0000LOLC END

ASSEMBLER ERROERS = a

S5YMBOL TABLE
BGAGN 00001002 EXCHG 0000L0%4 NARG aoocaoan

NXTPR DOOCLOD04

FIGURE 4.6 Data-sequencing and sorting software for a typical 68000-based system.
(Courtesy of Motorola, Inc.)

AO contains the starting address of the string where the highest valued data ele-
ment should be put. The next highest memory locations contain the sequentially de-
creasing values of the string. Al contains the ending address of the string. At line 12, the
original value of the AO register is stored in A2 for later reference. At line 16, the



stored value of AO is restored. At line 17, two successive words of the string are com-
pared to each other. At line 18, the subroutine branches to the EXCHG routine if the
second word is larger than the first. If the words are in proper order, the program pro-
ceeds.

At line 19, AO is decremented by two. This adjusts AO for comparison of the next
two sequential locations. At line 20, AO is compared with Al to check whether it is the
end of the string. If it is not the end of the string, the program branches back to line 17
(label NXTPR) to start the next comparison. If it is the end of the string, the program
returns to the calling program by means of the RTS instruction at line 22.

The EXCHG software module is contained between lines 24 and 27. It obtains two
sequential words as a long word into DO, swaps them, and puts them back in memory.
This has the effect of exchanging the words. When this happens, the program branches
back to the very beginning (line 16, labeled BGAGN). This will restart the data
comparison process. When the routine returns to the calling program, the data string is
completely adjusted so that the highest valued element is in the lowest memory location.

The following example problem considers software and timing in the data-
sequencing subroutine.

Example 4.3 Data-sequencing software.
For the software of Figure 4.6, the initial values of the A0 and Al registers and the
memory contents are as indicated in Figure 4.7,

FIGURE 4.7 Initial conditions
(for Example 4.3). {Beginning of the string) A0 = $00004000
{End of the string) Al = $00004006

Memory contents at $00004000=">>1234

4002 3678
4004  ABCD
4006 0E7]
4008 4321

1. Following the software of Figure 4.6, specify the data comparisons and rearrange-
ment of data.
2. What are the final values of the AD and Al registers?

3. How many data comparisons must be made to obtain the final string? Is this number
data dependent?

Solution

1. Data comparisons and memory contents: Figure 4.8 shows how the data compar-
isons are made and the final arrangement of the data string in memory. During the
[K]st comparison, data elements 1234 and 5678 are compared and swapped, During

Memory Memory Memory Memory Memory
Address Contents Contents Contents Contents
$00004000 1234, —5678 —5678 —~ABCD
1 2 4
4002 56?8—-'[ J L ]“*1234-“[3} i ]““ABCD [5]“*5 67 8*-—[6]
4004 ABCD ABCD™ 1234 [7]..‘[234"'
4006 0E7 1 CE71 0E71 ~0E71
4008 4321 4321 4321 4321
(a) Inital (b} First (c) Second {d) Final
contents rearrangement rearrangement rearrangernient

FIGURE 4.8 Data comparisons and rearrangement of the data string (for Exarmnple 4,3),

the {2]nd comparison, the rearranged data elements (5678 and 1234) check in proper
sequence and the program proceeds te the [3}rd comparison. During the [3]rd com-
parison, data elements 1234 and ABCD are compared and swapped. The program
then restarts from the beginning. During the [4]th comparison, data elements 5678
and ABCD are compared and swapped. The program then restarts from the begin-
ning. During the [8}th comparison, the rearranged data etements (ABCD and 5678)
check in proper sequence and the program proceeds to the [6]th comparison. The
final rearranged string results after the [7]th comparison, as shown in Figure 4,8(d).

2. Final values of A0 and Al: The process terminates when the conients of A0 are
compared and found fo be equal to those of Al (= $00004006).

A0 = $00004006
Al = 5000040006

3. Number of data comparisons: As shown in Figure 4.8, seven data comparisons are
made. These comparisons are data dependent.

#data comparisons = 7

There are some important software considerations in the preceding example, The
number of comparisons, the number of times the loop gets executed, and the Joop exe-
cution times are totally data dependent and do not have fixed values. When a fixed time
of execution is required, this type of software should be avoided.

4.3 DATA PROCESSING APPLICATIONS
AND SOFTWARE CONSIDERATIONS

Data processing involves extensive arithmetic operations on the data elements. The
68000 microprocessor has very powerful instructions to handle binary and BCD types of

‘data,®



Multiprecision Addition and Subtraction Operations

Instructions employing the extended carry X (such as ADDX, SUBX) can be used to
conduct multiprecision operations on binary data strings. For BCD operations, the X
carry bit is always involved. In multiprecision operations, the least significant data ele-
ments are operated upon first (generating X carry). The next higher data elements are
then operated upon, taking into consideration the previously generated X carry bit. The
process continues until all data elements in the data string are operated upon.

Figure 4.9 illustrates a multiprecision binary addition program used in a data pro-
cessing application. The source and the destination data strings are addressed by the Al
and A2 registers, respectively. The DI and D2 registers are used as working registers.

From line 12 to line 14, the X carry bit and the DI and D2 registers are cleared and
initialized to zero. From line 17 to line 19, the two data strings addressed by Al and A2
are sequentially added, along with the X bit, using the predecrement addressing mode.
A3 contains the ending address of the destination string.

ASSEMBLER ERRORS

AGAIN GCO0O0D14048

NARRG

LINE ADDR

i ;sadd.src 9/85/84

2 v

E| ;performs multiprecision addition

4 ;on two binary strings in memory.

5 ihl-2 refers to the LSD of stringl.
b ;A2-2 refers to the LSD of stringe.
7 ;B3 refers to the end of stringg.

& ;D1 and D2 are the working registers.
9 OPT A

10 ORG $1408

1k ;clear X bit, D1 and DZ registers
12 ocooisDO de3c 00EF ANDI.B #3EF,CCH

13 Q0001404 42481 CLR.L DL

14 D0O0C140B 4c2&¢ CLER.L De

15 ;start multiprecision addition

Lt ;of stringl and stringd.

17 00001408 D549 AGAIN APDX.W -(AL),-(A2)

16 0000140R BSCB CMPA.L A3,RA2

19 Q460140C LCFA BHI.S AGATN

28 ;get ¥ bit inteo DZ and

2k ;put it along with string 2,

cc ;and return to the calling program.
¢l 0O00CGL4A0E D541 ADDX.W DL,be

24 000401410 350¢ HOVE.W D2,-{A2)

o5 00001412 4E71 NOP

26  0000L&L4 4EVS RTS

27 0000L41%6 END

SYMBQL TABLE

gonooogaa

FIGURE 4.9 Multiprecision binary addition program for a 68000-based system.

When A2 is decremented below A3, the loop is terminated. At lines 23 and 24,
the X bit is effectively moved into D2 and is put with the destination string, At line 26,
the routine retums to the calling program. It should be observed that addition proéceds
from a high memory address (where the least significant data elements are present) to-
ward a low memory address {where the most significant data elements are present).

The following example problem addresses software concerns in multiprecision ad-
dition.

Example 4.4 Multiprecision addition.
The initial values of registers A1, A2, and A3 and the memory contents are indicated in
Figure 4.10. Using the multiprecision addition software of Figure 4.9,

Al = 300004006 A2 = 300005006 A3 = $00005000

Source Memory Destination Memory

Address Contents(hex) Address Contents{hex)
$00004000 1234 $00CO5000 F878
4002 5678 5002 C800
4004 ABCD<=LSW 5004 Al0l <=1LSW
(source) {destination}
40006 OE71 5006 200

FIGURE 4.10 Initial conditions for the program in Figure 4.9.

1. compute the result of the addition and indicate the contents of the destination string;
2. state the final values of the Al and A2 registers when RTS is being executed;

3. state what would happen if the ADDX.W ~(A1),—(A2) at line 17 was replaced by
ADDX.L —(A1),—(A2).

Solution

1. Results of the addition: Al and A2 are decremented by two to $00004004 and
$00005004. They refer to the least significant words (LSWs) of the two strings. The
addition proceeds from the LSWs toward the most significant words (MSWs), as fol-
lows:

MSW Next LSW

LSW

Contents of —(A1} 1234 5678 ABCD dded t
Contents of —(A2) F878  C800 AlOl added ©
X carry bit t 1 1 g addedto

OAAD 1E79 4CCE




The final addition result is 0001 OAAD 1E79 4CCE, which is put into memory
sequentially as shown. The final X bit is put at memory location $00004FFE,
The final contents are

Location Contents
$00004FFE 0001
$00005000 0AAD
$00005002 1E79
$00005004 4CCE

2. Final values of Al and A2: Al and A2 are decremented up to $00004000 and
$00005000 due to the ADDX.W —(Al),—(A2) instruction (line L7}, A2 is further
decremented to $S00004FFE due to the MOVE.W D2,~{A2) instruction (line 24).
Thus, the finat values are

Al = 300004000
A2 = $00004FFE

3. Replacement by the ADDX.L —(Al},—(A2) instruction: Long-word additions

would be performed. Instead of three word additions, four word additions would be
performed. Al and A2 would be decremented to final values of $00003FFE and
$00004FFC; however, this task might not be intended.

There are some important software considerations in the preceding example. Even
if long-word operations are more efficient than word operations, they cannot be done
correctly if the operation involves an odd number of words. Similarly, if an odd number
of bytes needs to be added, the corresponding instructions should be byte oriented rather
than word or long-word oriented.

If the ADDX.W -(A1),-(A2) instruction at line 17 is replaced by the SUBX.W —
(Al), — (A2) instruction, the same software will perform multiprecision subtraction
operations.

The X bit should always be cleared initially when dealing with operations of the
multiprecision type.

Multiplication and Division Operations

The 68000 microprocessor has signed and unsigned multiply and divide (MULS,
MULU, DIVS, DIVU) instructions. The destination is always a data register Dn. Mul-
tiplication of two 16-bit unsigned operands results in a 32-bit unsigned result in the des-
tination data register. The unsigned operands can be up to 65535 (2'° — 1) and the result
can be up to 4,294,836,225 which is slightly less than 2°%. In signed multiplication, the
multiplier and the multiplicand operands can be positive or negative and can range
between -2'° and +2"° - 1 (or between -32768 and +32767). The largest positive or
negative result can be up to plus or minus 2*°. The negative result is expressed in twos-
complement notation. Since there is no possibility of obtaining any result beyond the

32-bit size, the carry and the overflow flags are always cleared to zero in multiplication
operations. The N and Z flags are affected, based upon the result.

Division of a 32-bit destination operand (dividend) by a 16-bit source operand (di-
visor) results in a 16-bit remainder and a 16-bit quotient. The remainder and quotient
occupy the upper and the lower 16-bit word positions of the 32-bit destination data reg-
ister, respectively. The distinction between signed and unsigned division operations is
similar to the distinction between signed and unsigned multiplication previously dis-
cussed. With division operations, it is possible to generate a quotient larger than the
allowed 16 bits. In this circumstance, the overflow flag V will be set to indicate the
overflow condition. Similarly, if division by 0 is performed, a zero-divide TRAP error
will result.

In Figure 4.11, multiplication and division software is presented as a subroutine in
a digital signal processing application. P, Q, and R are unsigned words contained in

LINE ADDR
1 ;multiply.src S/25/88
a ;
3 ;P+Q,R unsigpned words contained in
4 ;ascending memory addressed by
5 ;W=P*Q in DO register. Divide W by
[ ;B if R is nonzero value.
7 ;U=W/R in D1 register.
fa! ;D2 is a working register.
9 OPT A
10 ORG #1500
L1 ;clear data registers
12 COD0L400 a2ab CLR.L DO
13 00001402 4281 CLR.L D1
14 00001404 4242 CLR.L De
15 imove P inte DO and multiply by Q
1k ito get W = P¥Q ip DO register
1? 00001406 3014 START MOVE.W (m0O)+,DO
158 0000L<08 CODA MULD {A0Y¥-+,00
19 0000L40R 2200 MOGYE.L DO,DL
20 : ;check for nonzero value of R and
ck ;perform division to get U=W/R in D1
oc 000D0L40C 3410 MOVE.W (AD),DB2
23 000DL40F DC42 0000 CHMPY.W #%$00,D2
¢4 0000L412 bLeO2 BEQ.S FINISH
25 [0o00L4L4 Agce DIVUO D2,D}
ck 0000L4LE 4E7S FIKISH RTS
27 N000L418 END
ASSEMBLER ERRORS = o

SYMBOL TABLE

FINISH 00001435 NARG coDO0ODOQ0CG  START D000 406

FIGURE 4.11 Multiplication and division software for a typical 68000-based system
{Example 4.5),



memory in an ascending order, as specified by the AO register. The product W = P X Q
and the division result U = W/R are to be generated. These results are to be put in the
DO and DI registers.

In order to accomplish the intended task, all the working data registers are cleared
to an all-zero condition from line 12 to line 14. At lines 17 and 18, the P and Q words
are sequentiaily read from the memory using the postincrement mode and are multiplied
- together to generate a 32-bit result in the DO register. At line 19, the result is also
moved into the D1 register.

From line 22 to line 25, word R is moved from memory into the D2 register and is
checked for a nonzero value. In the case of a zero value, the division operation is
skipped; otherwise, it is performed, with the division result in the D1 register. In any
event, the software returns to the calling program by means of the RTS instruction at
line 26.

The following example problem addresses software concerns in multiplication and
division operations.

Example 4.5 Multiplication and division.
Given P = $FFFF, Q = $0002, and R = $0004 in sequential memory locations, using
the software of Figure 4.11,

1. compute the values of W and U and indicate the contents of the DO, D1, and D2
registers and the state of the XNZVC flags when RTS is being executed;

2. repeat (1) if the MULU and DIVU unsigned instructions are replaced by the MULS
and DIVS signed instructions;

3. explain how the calling program obtains the results.

Solution

1. Values of W, U, DO, and D1: Unsigned multiplication is performed as follows:
P value from memory into DO register $FFEF
Q value from memory $0002

Multiplication W = P X Q $0001FFFE == into DU

Unsigned division is performed as follows:

W value from DO into the D1 register $0001FFFE

R value from memory into the D2 register $0004

Division U = W/R: quotient $7FFF => DI low word
remainder $0010 => D1 high word

Result of unsigned multiplication:

W in DO = $0001FFFE
Result of unsigned division;

U in D1 = $00107FFF

Nonzero positive quotient result in DO with no overflow. As such,
XNZVC=-0000

2. Signed multiplication and division results: Signed multiplication and division are
performed as follows;

Multiplication

P value from memory into the DO register $EFFF (equal to — 1}
Q‘ value from memory $0002 (equal to +2)
Signed multiplication W = P X Q $FFFFFFEE (equal to —2)

(sign extended to 32 bits and into DO

in twos-complement form)

Division

W value from the DO register into D $FFFFFFFE (equal to —2)

R value from memory into the D2 register $0004 (equal to +4)

Division U = W/R: quotient $0000 (equal to 0}

D1 low word

remainder $FFEFE (equal to —2)

‘ D1 high word
Result of signed multiplication:

W in D0 = $SFFFFFFFE
Result of signed division:
U in D1 = $FFFE0000
Zero quotient result with no overfiow. As such,
XNZVC =~-0100

3. Results _to the calling program: The multiplication and division results are
communicated to the calling program through the contents of the DO, DI, and D2

registers, A zero value in the D2 register implies that the division has not been
performed.

One of the operands (P in our case) is moved into the data register DO. This is
necessary since multiplication and division instructions require that the destination oper-
and be a data register. Also, the value of the R variable is checked before performing
the division to avoid a division-by-zero error,



ENTER DBcc

4.4 SPECIAL INSTRUCTION GROUPS AND APPLICATIONS

The instruction set of the 68000 family of processors also includes multiple-decision in-
structions (DBcc). There are several instructions related to stack and address operands,
such as LINK, UNLK, PEA, and LEA. There are also instructions to move multiple
registers (MOVEM) and move peripheral data (MOVEP). In all of these cases, a single
instruction performs multiple operations. This provides programming convenience and
improves memory utilization.®’

Multiple-Decision Instructions

Figure 4.12 illustrates the sequence of multiple-decision instructions (DBcc). These in-
structions are used to control loops. Upon entering the DBcc instruction loop, the spec-
ified condition is checked. If the condition is true, the program exits the loop and pro-
ceeds to the next instruction in the sequence. If the condition is false, then the specified
data register is decremented and is checked to see whether it is less than zero (= — 1). If
it is less than zero, the program exits the loop and proceeds to the next instruction in the
sequence. Otherwise, the program branches to the specified location. Operands decre-
mented in Dn are of word size.

PC POINTS
TO NEXT Y #{ EXIT DBcc
INSTRUCTION 1

YES

Dew+ | = Dn p———"

PC+d,,
PC

WHILE COUNT = 0 AND TEST = 0 DO
|TEST}
COUNT: = COUNT -1
END OF WHILE LOOP

FIGURE 4.12 DBcc instruction sequence. (Courtesy of Motorola, Inc.)

Figure 4.13 consists of a string-compare program using the DBcc instruction
scheme. At line 13, the Z flag is set to a 1 condition. This corresponds to a false
condition for the DBNE instruction (decrement and branch if not equal to zero). At
line 14, two string operands addressed by (A0)+ and (Al)+ are compared. At line 15,
the DBNE instruction checks whether or not the BNE condition is true (BNE true
leaves Z flag = 0). BNE true implies that the two operands are different. If BNE is
true, the program exits the DBNE loop and proceeds to the next instruction (NOP at

line 16).

1

LINE ADDR
3 istring.src LO/2ivéd
E| gtwo strings addressed
4 ;by AD and Al are compared
5 ;for sameness, using DBcc.
b ;D1 contains number of long
7 ywords to be compared.
& v
g oPT A
10 CRG $1000
1 ;Set Z flag to 1 and
L2 ;start comparing strings
13 00001000 OO3C 0004 START ORI #$04,CCR
L4 00CCL1005 B3aAA AGAIN CHPM.L (AD)}+,(32)+
1S 000300k S&CH FFFC DBNE DL,RGAIN
16 0000LOC0A 4E7L NOP
17 0000100C 4E?S RTS
18 D0D0OLOOE END
ASSEMBLER ERRORS = 0
SYMBOL TABLE
AGAIN 00001004 NARG Q0000GO0D  START 0ODOOLCEAQ

FIGURE 4.13 String-compare software for a 68000-based system using the DBec
insiruction.

If BNE is false (Z = 1), the DBNE instruction decrements data register D1 and
checks whether it has become negative (D1 < 0). If it is negative, the program proceeds
to the next instruction (NOP at line 16). Otherwise, the program branches back to the
*AGAIN’ loop (line 14).

The following example problem provides a review of the concepts we have just
discussed concerning DBcc usage.

Example 4.6 DBcc usage.
The initial contents of the A0, Al, and DI registers are as follows:

A0 = 500004600 Al = $00005000 D1 = $000000FF

Memory between $4000 and $6000 is loaded with words SAAAA. The program in Fig-
ure 4.13 js run.

1. Specify when the DBNE loop is terminated. What are the contents of the DI, A0,
and Al registers when the loop is terminated?




2. Memory between $4000 and $4FFE is loaded with words $0000; between $5000 and
$6000 it is loaded with words SAAAA. Repeat (1) using the same initial values for
D1, A0, and Al

Solution

1. DBNE loop termination: Memory between $4000 and $6000 contains word patterns
$AAAA. As such, the comparison of memory addressed by A0 and Al renders the
BNE condition false (since the data strings are the same). The program loops between
lines 14 and 15 until the DI word is decremented below zero (to -1). At that point the
DBNE loop is terminated.

Dl is decremented by $FF + $01 = $100 = 256 times to get to -1. Thus, the loop
is run $100 times. Due to the long-word access and the postincrement addressing
modes, the AO and Al registers are incremented by 4 x $100 = $400, to $4400 and
$5400, respectively. The final contents of the registers are

D1 = $0000FFFF (in twos-complement form for —1)
A0 = $00004400
Al = $00005400

2. DBNE termination with modified pattern: The first comparison itself renders the
BNE condition true (since the compared data patterns are different). The DBNE loop
is terminated at the first comparison. However, the AQ and Al registers are postin-
cremented to $4004 and $5004, respectively. The final contents of the registers are

D1 = $000000FF
A0 = $00004004
Al = $00005004

Any other data register, or any other branching condition (DBEQ, DBGE, and so
forth) can be used in the DBcc instruction. However, it is important to note that the
appropriate flag bits must always be preconditioned to render the DBcc condition false at
the start of the loop.

Address, Stack, and Multiple-Movement Instructions

The LEA (load effective address) instruction moves a 32-bit address operand into an
address register An. The PEA (push effective address) instruction stacks a specified 32-
bit address operand. Both of these useful instructions do not affect the flags.

The LINK (link) instruction creates a work area on the stack and defines one of the
address registers as a frame pointer (FP). This pointer is used to address the work area
on the stack. The UNLK (unlink) instruction effectively removes the work space from
the stack. The LINK and UNLK instructions are very useful in linking and unlink-

ing the stack area in a multitasking environment in which several tasks are run by the
processor, as scheduled by the operating system.

The MOVEM (move multiple registers) instruction moves data between the spec-
ified data (Dn) and address (An) registers and the memory, or vice versa. For register-to-
memory transfers, control-alterable and predecrement addressing modes are allowed. For
memory-to-register transfers, control-alterable and postincrement addressing modes are
allowed. The data transfers take place in the sequence indicated below. For example, in
the predecrement addressing mode, the first data transfer involves the A7 register and the
last data transfer involves the DO register.

The MOVERP instruction moves data between a specified data register and alternate

Last First

A7l a6 ---- aolD7{p6]| .-.. | Do | Control and postincrement
addressing modes

polpif ---- |p7iaoball] -... | a7| FPredecrement addressing
mode

even or odd bytes of memory, or vice versa. This instruction is very useful when dealing
with 8-bit peripherals attached to the 68000 microprocessor. The memory can be
addressed by the ARI with displacement addressing mode in the MOVEP instructions.®

Figure 4.14 illustrates a typical multitasking type of software. At line 6, the actual
address corresponding to TABLE is loaded into the Al register. At line 7, the PC relative
addressing mode is used, and the offset corresponding to TABLE is loaded into the A2
register. At line 8, the contents of A2 are pushed to the stack.

The MOVEM instruction at line 9 moves the sequential word contents of memory
addressed by Al into the DI, D2, D3, and D4 data registers. The MOVEM instruction
always follows a scanning order (D0-D7, A0-A7), regardless of the order in which they
arc specified. The first register to be moved (in or out) is DO, then DI, and so on until
A7. Thus, the specified registers are first matched with the set sequence, and then the
data movement operation is conducted.

The LINK Al, #—$0C instruction at line 13 performs several sequential operations
as follows:

1. Stack Al: Stack contents of Al. SP decrements by four.

2. SP --> Al: Move contents of stack pointer (SP) into Al. This effectively links the stack
to Al. Al is now referred to as the frame pointer.

3. (SP-$0C) -> SP: Displace the SP by the specified amount of displacement (-$0C).
This amounts to creating $0C (12 bytes) of work space on the stack.

The MOVEM.W DI1-D4, -$8(A1) instruction at line 14 puts word operands from
the DI, D2, D3, and D4 registers in the newly created work area on the stack. This
amounts to passing parameters DI, D2, D3, and D4 to the other routines via the stack
work area.



LINE ADDR

1 ;gpecial.src 11/8/88

2 ;deals with special instructiocns
3 QPT "B

4 ORG $1000

= ;taskl which initializes pointers
L 0ODODLODD 43FA 1024 4E7YLTASKL LER TABLE,AL

7 00003006 45FRA 00AC LER . TABLE(PC}, A

& 0000L00A 4652 PEA (A2)

a gponlocc 4C91 (O0LE MOVEM.W (Al),D1-D4

10 :1ink with Al as frame pointer
b ;and pass parameters to linked
i ;stack area

13 0DODDLOLO 4ES) FFF4 LINK 3l,#-%0C

14 00004034 48R9 OO0LE TFFFa MOVEM.W DL-D4,-SB(R1)

35 000010LR 4EBS& 102C 4E7?L JSR TASKS

16 00D0LOE0 4ESH UNLK Al

17 00001022 4E7¢S RTS

L8 00001024 1234 ARCB TABLE DC.W $1234,5ARCB

19 00001028 0026 OOLE DC.W $0026, $COLE

20 ;task? here takes the passed on
2h ;parameters and performs.

22 0000102C 0B49 FFFA TRSKZ2 MOVEP.L -$8(AL),DS

23 D000LG3A0 4E?7S RTS

&4 0000303 EXD

ASSEMBLER ERRORS = c
SYMBOL TARELE
NARG 00000000 TABLE DOOG1O24 TASKL 00001000  TASKS oooaioec

FIGURE 4.14 Linking and unlinking the stack for multitasking applications.

At line 15 the program jumps to subroutine TASK2, stariing at line 22. The
MOVEP.L —3$8(A1),D5 instruction at line 22 moves four alternate even bytes from the
work area of the stack into the D5 register. The RTS instruction at line 23 returns the
program to the calling TASK1 program, which resumes at line 16.

The UNLK Al instruction at line 16 performs the following sequential operations:

1. Al --> SP: Restore stack pointer SP from frame pointer Al.
2. Unstack Al; Restore original value of Al. SP increments by four.

The preceding operations effectively unlink the stack and restore the original val-
ues of the frame and stack pointers. The RTS instruction at line 17 effectively returns
this routine to the main calling program.

We will now review the special instructions by means of an example problem.

Examplfs 4.7 Address, stack, and multiple-movement operations.
CPU registers Dn and An are initialized to $00000000. The stack pointer SP is initial-
ized to $000022FE. Us:/ing the software of Figure 4,14,

1. specify the contents of the Al, A2, and DI-D4 registers after the LEA and
MOVEM instructions are executed through line 9;

2. show the contents of the stack during the execution of the preceding instructions;
3. indicate the contents of the DS register when TASK2 (line 22) is executed.

Solution

1. Register contents: The LEA TABLE,Al instruction loads Al with $00001024,
which is the absolute address of TABLE, The LEA TABLE(PC),A? instruction
loads A2 with $0000001C, which is the offset of TABLE from the current PC value.
The current PC value corresponds to $00001008 (op.word location + 2).

The MOVEM.W (A1),D1-D4 instruction Joads the sequential words from
TABLE into the data registers D1, D2, D3, and D4. The contents of the registers are

Al=500001024
A2=%0000001C
DI=%$00001234
D2=$0000AACB
D3I=%00000026
D4=%$0000001L

2. Stack contents: Figure 4.15 indicates the contents of the stack. The stack pointer
decrements by two or four for word or long-word entries. The Jong-word contents of
A2 are stored at $000022FA. The original value of AI, which is to be used as a
frame pointer, is stored next at $000022F6. The current contents of the SP
($000022F6) are transferred to Al. Thus, Al is initialized to act as a frame pointer.
F}thhcrmore, the SP is initialized to a new value equal to $O00022EA ($000022F6 —
displacement $0C). This effectively provides a 12-byte work area on the stack.

Word contents from Dt, D2, D3, and D4 are stored between locations
$000022EE and $000022F4 in the work area by virtue of the MOVEM.W D1-D4
~$8(A1) instruction. Notice that the frame pointer Al is used to access the stacl;
work area. The return address $00001020 from the JSR instruction is stored in the
new stack area at location $000022E6,

When the UNLK instruction is performed, the SP and Al registers are restored
to their starting values of $000022FA and $00001024, respectively. The work area is
effectively unlinked (removed) from the stack.

Contents of DS.: The MOVEP.L —$8(A1),D5 instruction moves four alternate bytes
(long-word equivalent) from the effective address (EA) into the D35 register. The EA



FIGURE 4.15 Stack
sonfiguration for linking and Even Odd
unlinking operations {Example |

4.7).

=5 Word memory <=

Operation Contents of stack

byte byte

Q00022E6 0 0 0 V) Return address after
New stack § ISR (line 16) stored

arca 2es |l 1 0 2 0

- A Em oam owe = - -

SP new value => $000022EA X X X X Existing data

22EC X X X X

{$0C or 12 bytes 22EE 1 2 3 4 Dt word stored
of work space
created on stack) 22F0D A A C

D2 word stored

B
22F2 0 06 2 6 D3 word siored
E

D4 word stored

Al ame 2 $000022F6 | 0 0 0 o | Aloriginal value

stored via LINK

pointer
initialized 22F8 i 0o 2 4
e T T Contants of A2 stored
St?;‘fi%lfp > 2FA | 0 0 0 0 | opp (A2)atline 8

71'0-1—3 af stack for
previous data

$00002300 y ¥y ¥y ¥

is $000022EE. The four alternate bytes are on the even byte boundary and corre-
spond to $12, SAA, $00, and $00. These are loaded into the DS register with $i2 in
the most significant byte position. The contents of D3 are

D5 = $12AA0000

There are some important software considerations in the preceding example prob-
lem. It should be ensured that the work area created (12 bytes) is sufficient for passing
on the parameters between tasks. Also, the linking process should maintain the even
boundaries for both the frame and stack pointers. While unlinking the stack, the frame
pointer should be at the initialized value. Address register indirect (ARI) with displace-
ment is a very convenient mode for accessing the stack work area without modifying the
contents of the frame pointer. It is possible to use any address register as the frame
pointer.

FIGURE 4.16 Defining and
using MACRQ functions. ;acro.src 11/LL/88
{Courtesy of J. Salinger, FIU.) i

OPT A
s ORG $1400
;defining macro EXMP
EXMP MACRO X,Y,Z
ADDQ.\D #%X,Z
NOP
Y
ENDH

sENDM above defines end of macro
yusing the macro EXMP
MOVE.B #3$FF,DC

NOP
ERD

EXKHP.B 8,<MCYE.B #%01,D1>,DC

4.5 MACROS IN SOFTWARE DEVELOPMENT

MACRO is an assembler utility. MACRO-function generation is essentially a preproces-
sor step in the assembly process which may result in a sequence of processor instruc-
tions. Proper parameters are passed in a MACRO-function call.

Figure 4.16 specifies the source code of a software routine containing a user-
defined MACRO function EXMP with parameters X, Y, and Z. Source code following
the MACRO declaration uses the processor instructions and the X, Y, and Z. parﬁmeters.
The ENDM assembler directive concludes the MACRO function.

The actual routine, written at the end of the program block, uses the MACRO
function. The correspondence is as follows:

EXMP.lB ?,<MOVE.B #$01,D1>.D2
: i ]
parameter = >\0 X Y Z

When the source code is assembled, the assembler substitutes the actual instruction code
for the MACRO function. The parameters are integrated into the code, as well. The as-
sembled program is presented in Figure 4.17. It can be seen that the actual code has
been substituted for the MACRO function.

Each time a MACRO function is used, the corresponding code is substituted.
Although it takes up more program space, the MACRO program executes faster than
the subroutines, since no stack activity is involved when the MACRO is used. Also,
:)hr:grammers can define several MACRO functions and develop software around

m,

In the example problem that follows, we will review what we have leamed about
the MACRO.



LINE ADDR

b imacro.src 31/11/88

: " opt B

4 ORG $1400

g :defining macro EXHP
E EXMP MACEQ X,¥,2

? ADDQ.NO #%X,Z

& NOP

g Y

1D ENDHM
1% :ENDM above defines end of macro
12 ;using the macro EXMP
13 0000L400 103C OOFF MOVE.B #S$FF,DU
14 00001404 RXMP.B &,<MOVE.B

#$0L,D1>,D2

14 0000L404 S002 + gggQ.B #38,D2

14 0000L406 4E7L +

14 D0O00x408 123C 000L + MOVE.B #3$01,D)

15 0000140C 4E7D NOP

L& CDO0L40E END

ASSEMBLER ERRORS = u]

FIGURE 4.17 Assembled version of MACRO-based software from Figure 4.16.

Example 4.8 MACRO usage.
Refer to Figures 4.16 and 4.17.

1. Specify where MACROS should be declared and written.
2. Specify how the MACRO function EXMP is assembled and coded.
3. Can a MACRO function be used several times in a software routine? Explain.

Solution

1. MACRO declaration: Most assemblers require that MACRGOS should be dcclare‘d
and written at the very beginning of the program. This ensures that the assembler is
aware of them.

3. MACRO coding: The qualifier \O corresponds to either byte, word, or long word.
In our particular case, it corresponds to byte. The X parameter corresponds to §.
The Z parameter corresponds to the D2 register. The Y parameter corresponds to
the MOVE.B #301,D1 instruction. When the code is assembled, the MACRO
function EXMP is replaced by the actual sequence of instructions given in Figure
4.17.

3. MACRO usage: A MACRO function can be used several times in the program in
which it is defined. The parameters may or may not be the same. Each time the
MACRO function is used, the entire code is substituted.

Several MACROS can be defined and used in the same program. A program writ-
ten with MACROS is easy to read and follow. Most software engineers now use
MACRO functions extensively. It is necessary to be aware, however, of the amount of
program space available when using MACRO functions. MACRO directives are depen-
dent upon the assembler. Even though most of them are similar, an assembler manual
should be consulted for details on MACRO directives.

4.6 SUMMARY

In this chapter, we introduced the assembly programming techniques with which to write
68000 assembly programs. Assemblers for the 68000 family of processors are available
from several vendors. Most of the assemblers have similar directives. If the host com-
puter has a different processor from the one for which the code is written, a cross as-
sembler is used. Programs written in assembly language usually execute faster than pro-
grams written in such higher level languages as BASIC, FORTRAN, PASCAL, and C.

Assembler directives help in program development. In assembly language pro-
gramming, symbols and labels are used in place of numbers and addresses. This greatly
increases the readability of the programs. Symbols are usually specified at the beginning
of the program to declare constants, address values, and variables. Labels are used
within the body of the program.

Assembly-level programmers should be aware of different forms of instructions
and addressing modes. They should be also familiar with the register resources and flag
structure of the processor.

Most programming applications deal with some type of data movement, associated
data processing, and decision making. The decision-making capability of the processor is
used in program control applications. The software and the programming applications
wec considered in this chapter focused on program control.

Software engineers are programmers who are not only concerned with program-
ming per se, but also with hardware resources, code integrity, execution timing, and
optimization of the operating system.

Instructions such as DBcc, LINK, UNLK, MOVEM, and MOVEP are complex,
each performing several operations. Use of these instructions makes for shorter, more
efficient programs.

A MACRO is an assembler utility. A MACRO-function generation is a preproces-
sor step in the assembly process that may result in a sequence of processor instructions.
When a MACRO function is used, the corresponding program code is substituted. The
execution of a MACRO function does not involve any stacking operations; hence, it is
taster than the execution of a subroutine. A MACRO function, however, uses more code
memory.



PROBLEMS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.9

4.10

State the difference (if any) between

(a) assemblers and cross assemblers;

{b) linkers and loaders.

Briefly outline the assembly process. What will happen if the program is written with
instructions not known to the assembler?

Analyze the software in Figurcs 4.3 and 4.4. Does the assembled program contain the
proper machine code for the listed instructions? Explain,

Write a program that will display the following message on the terminal:

MICROCOMPUTERS ARE GOOD TOOLS ;;

Assume there is a DISPLAY subroutine available. ASCII code for the character should be
put into the DO register and the DISPLAY subroutine catled in order to display the
character.

Write an assembly program using 68000 mpemonics and the assembler directives discussed
to accomplish the following objectives:

{a) start the program at Jocation $1200;

{(b) clear the memory words between $2000 and $2400.

Rewrite the software of Figure 4.5 to move $200 long words of data from the location
starting at $6000 to the destination starting at $4000. Start the program at $00001000.
Write a routine to move $2000 words from the location starting at $6000 to the destination
starting at $5000, The memory contents are as follows:

Locétion Contents
$00006000 $0000
6002 30001

6004 %0002

After the program is run, what is contained between $3000 and $50107?

Rewrite the software in Figure 4.5 using byte transfers instead of long-word transfers.

{a} Do byte transfers have a specific advantage over word or long-word transters?
Explain.

(b) What are the disadvantages of byte transfers compared to word or long-word transfers?

Rewrite the software in Figure 4.6 so that the smallest data element is at the lowest

address. The data elements are given in Figure 4.7.

A 68000-pased system operates on an 8-MHz clock. It is required to generate software

delays in a digital control system application.

{a) Write a delay routine to generate a 1-millisecond delay.
(b) Using the software of (a), generate a 10-millisecond delay.
(c) Using the software of (b), generate a 1-second delay.

4.11 If the system was upgraded to a 68000 processor at a 16-MHz clock,

(a} Explain how the delay routines of Problem 4.10 are affected;
(b} modify the software to obtain 1-millisecond, 10-millisecond, and 1-second delays.

4.12 Write 68000-based software as a subroutine to transfer the memory block between $3000

and $3200 to another biock between )3200 and $3600 as shown, without modifying the
data. :

Address Blockl Block2

$3000 $1234 $029A to be put here

$3200 50294 $1234 to be put here

4.13 Repeat Example 4.4 in the chapter given the following memory contents:

4,14

4.15

4.16

417
4,18

Source Address Contents Destination Address Contents
$00004000 $5786 $000065000 $F38A
4002 SAAAA 5002 $Cccee
4004 50202 5004 $1569
4006 $0987 5006 $347E

Using the memory contents indicated in Problem 4.13, write 68000-based software to add
the 4-word source string to the destination string, with the final resulis stored at the
destination.

Using the memory contents indicated in Problem 4,13, write 68000-based software to
subtract the source string from the destination string, with the final result in the
destination.

Write 68000-based software as a subroutine to multiply two words stored at locations
$4000 and $4002, with the resuft stored at location $00004004, The initial contents of
memory at $4000 and $4002 are $0003 and 38888, respectively. Use unsigned
multiplication. What is the final result of the multiplication?

Repeat Problem 4.16 using signed multiplication.

Write software 1o perform unsigned division of X variable by Y variable. X and Y are
stored at $5000 and $5004, respectively. The division resuit should be contained in the D2

- Tegister,

4.19
4.20

4.21

If X = AABBCCO0 and Y = 0008, indicate the contents of D2 after the division.
Repeat Problem 4,18 using signed division.

Rewrite the software in Figure 4.13 using DBEQ in place of DBNE to perform the same
task.

What will happen if the flags are not conditioned before DBce conditions are used?
Can two or more DBcc conditions be nested? Explain. What precautions should be
taken in nesting DBcc, if it is possible,



4.22 Rewrite the software in Figure 4.14 replacing the LINK and UNLK instructions with
equivalent instructions to accomplish the same task.
Which software—with LINK and UNLK or without—is more memory efficient?
Why?
4.23 The LINK Al, #-$0C instruction at line 13 of Figure 4.14 is replaced by LINK Al,
#-$10.
(a) Describe the corresponding modification for the UNLK Al instruction.
(b) Indicate the contents of the stack while the software is being executed.
(c) State the values of the Al, A2, and A7 registers after the LINK instruction is
executed.
(d) State the contents of the Al, A2, and A7 registers after the modified UNLK
instruction is executed.
4.24 Why are MACRO functions useful? Is there any limit to how many MACRO functions can
be used? Explain.
4.25 Write a single MACRO function called CLEARD to clear all 32 bits of all the data
registers.
4.26 Write a single MACRO function called CLEARA to clear all 32 bits of the A0-A6
address registers. (Note: Address registers cannot be directly cleared!)

4.27 A MACRO function called INIT uses ten 68000 instructions and occupies 32 words of
program memory space. In a control system software application, the INIT function is used
eight times with different parameters passed. When the software is assembled, how much
program space is occupied by all the MACRO functions? Explain.
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5.0 INTRODUCTION

An exception is a deviation from the normal processing sequence. The 68000 processor
operates in the supervisor mode to handle exceptions. The supervisor mode is entered
into automatically whenever the 68000 senses and services an exception routine request.
An exception may be caused by an external hardware condition, an internal instruction,
or an error condition.

Reset and interrupts are two exceptions caused by the system hardware. Internally
generated exceptions include instructions, such as TRAPs and CHK, as well as error
conditions, such as address error, bus error, privilege violation error, illegal instruction
error, and zero-divide error. Other conditions, such as the TRACE mode of operation,
also cause exceptions. The processor follows a specific sequence of operations in han-
dling these exceptions.

Study of the exception processing concepts presented in this chapter will provide
the necessary background to handle exception conditions in the 68000 family of proces-
sors. It will also help explain the user and supervisor modes of operation. The concepts
apply to all 68000- and 68008-based systems; hence, no specific mention is made of the
68008. Exception processing for the 68010 and 68020 processors is similar to that for
the 68000 processor. Due to additional resources and virtual memory schemes, however,
exception processing for the 68010 and 68020 includes extra features. These features
will be discussed in later chapters.

51 GENERAL CONCEPTS OF EXCEPTION PROCESSING

Exception processing is a privileged mode of operation in which the 68000 microproces-
sor operates in the supervisor mode. In this mode, the S bit in the status register is set to
1 and the SSP (supervisor stack pointer) controls the stack. Figure 5.1 indicates the
68000 exceptions with their established priority scheme and the relative timing for rec-
ognizing and starting the exception processing. Group 0 exceptions have the highest pri-
ority; Group 1 exceptions, the next highest; and Group 2 exceptions, the lowest priority.
Within Group 0, the reset exception has the highest priority.

The Exception Vector Table and Exception Vectors

Exception vectors refer to memory locations from which the processor fetches the ad-
dress of a routine to handle the exception. All exception vectors correspond to a long
word. There are up to 256 such vectors, occupying 1 kilobyte of memory between
$000000 and $0003FF. This dedicated memory is called the vector table.!

The vector table for the 68000 is presented in Figure 5.2. The two reset vectors, 0
and 1, are in the supervisor program space; all other vectors are in the supervisor data
space.

Priority
Group Excepiion Farticulars of Occurrence
Reset Hardware-activated input for system master
0 control
(Highest
e ddress err in & G :
priority) Address error Errer in addressing operands
Bus error Hardware memory access error
Trace Single-step operation mode
Interrupt Hardware inputs to processor to obtain pro-
1 cessor attention
Ttlegal instruction * Nonexistent instructions or op.codes used
Privitege violation Privileged instructions used in user mode
TRAP Software initiated
5 TRAPY Software initiated on overflow
CHK Data register beyond specified limits
Zero divide . Division by zero encountered

Group 0: Current activity suspended at the end of the clock cycle. Exception processing starts within two
clock cycles.

Group 1: Current activity suspended at the end of the bus cycle or the instruction cycle (for trace and
interrupts). Exception processing starts before the next instruction.

Grouwp 2: Current activity suspended within the instruction cycle. Exception processing starts as an
instruction.

FIGURE 5.1 Exception grouping and priority scheme for the 68000 and the reiative
timing for exception processing.

Reset Exception Processing

Figure 5.3 illustrates the reset exception processing sequence. Reset is a hardware-
activated input to the processor. The reset exception initializes the system; hence, the
processor does not copy or store any information before starting reset exception process-
ing, as it does for other exceptions. On power-up reset, the processor goes into the su-
pervisor mode, turns the trace condition off, and sets the interrupt mask level at 7 (high-
est). This is a cold start of the system. Reset input can also be activated by a pushbutton
while the processor is running. In this case, the processor suspends current activity at the
end of the clock cycle and reinitializes the system. This is referred to as a warm start. A
cold start requires system stabilization and requires more time than a warm start.

In either case, the processor fetches the contents of vector 0 at location $000000
from the vector table and loads them into the supervisor stack pointer (SSP). It fetches
the contents of vector 1 at location $000004 from the vector table and loads them into
the program counter (PC). The processor then executes the reset exception routine be-




ginning at the location addressed by the PC. These two reset vectors are contained in the
system ROM to retain their values when the power is shut off.>

If a bus error condition occurs while fetching vectors 0 or 1, the processor encoun-
ters a double bus fault condition and goes into a halt state. The hardware has to be de-

FIGURE 5.2 Exception vector Address
table for the 68000. (Counesy of N:::l:::rrls} Dec Hex Space Asgsignment
Motorola, nc.) 0 0 000 SP | Reset: Initial SSP
1 004 5P feset: initial PC
2 8 008 sD Bus Error
3 12 00C S0 Addrass Etror
4 16 010 SD {llegat Instruction
5 2 | 04 50 Zero Divide
6 24 018 sD CHK Instruction
7 28 o1C sp TRAPY Instruction
8 32 020 sD Privitage Violation
9 36 024 S0 Trace
10 40 028 5D Line 1010 Emulator
1" a o2C sD Line 1111 Emulator
12 48 sSD {Unassigned, Resarvad)
13 52 034 SD {Unassigned, Reserved]
14 56 sD Format Error
15 60 03C sD Uninitialized Interrupt Vector
16-23 64 040 5D {Unassigned, Reserved)
92 05C -
24 95 50 Spurious Interrupt
25 100 064 sD Level 1 Interrupt Autovector
26 104 068 5D L.evet 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 sD Levst 4 Interrupt Autovector
29 116 074 sD Level § interrupt Autovector
a0 120 078 SD Level § Interrupt Autovector
3 124 07C SD  jLevel 7 Interrupt Autuvecwr__
32-47 128 080 sD TRAP instruction Vectors
188 0BC —
48-83 192 0Co S0 {Unassigned. Reservad}
258 OFF — ]
64-265 256 100 sD User Interrupt Vectors
1020 3FC -

S « I {SUPERVISOR)

T « 0 {TRACE OFF) - _ .
INT. MASK LEVEL 2 7 START VECTOR TABLE

VECT. ADDR. VECT. NO.
y $000000 | SSP MS WORD | g0p
FETCH
VECTOR SSP LS WORD
NO. 00 $000004 | PC MS WORD | g0,
PC LS WORD
CONTENTS OF ,_’\
VECTOR NO. 0 - N
» STACK PTR F’\’
' $0003FC | PC MS WORD | gpg
FETCH
VECTOR PC LS WORD
NO. 01 i
$0003FE | PC MS WORD | g

DOUBLE

BUS PC LS WORD
CONTENTS OF FAULT
VECTOR NO. | f\
= P ]
END
END

FIGURE 6.3 The 68000 reset exception sequence. (Courtesy of Motorola, Inc.)

-

bugged before the processor can be restarted. Hardware details relating to the reset, halt,
and error conditions will be discussed in subsequent chapters.

General Scheme of Exception Processing

As previously mentioned, exception processing is carried out in the supervisor mode.
When an exception (other than the reset) occurs and is recognized, the processor sus-
pends current execution as indicated in Figure 5.1. It makes a copy of the current status
register (SR) to retain the original contents. If the processor is already in the supervisor
mode due to an earlier exception, it continues in that mode to service the current excep-
tion. However, if the processor is in the user mode, it moves into the supervisor mode to
service the current exception. For exception processing, the stack used is the supervisor
stack.’

The general exception sequence is presented in Figure 5.4. After setting the S bit to
1 for the supervisor mode, the trace condition is turned off (T = 0). For interrupts, the
interrupt mask level is set to the new value. The processor stacks the current PC and the
copied SR. For address and bus error exceptions, additional processor information is
stacked. The processor then fetches the appropriate exception-vectored address from the




FIGURE 5.4 The 68000 1. Where are the SSP and the top of th initiali
general exception sequence. START 2 . P ¢ stack initialized on power-up?
( ) . Where does the reset routine start? Why?

(Courtesy of Motorola, Inc.)
¥ 3. Are the contents of the stack memory of any particular value at the power-up reset

Y

COPY STATUS STACK PROGRAM

REGISTER TO COUNTER AND
A TEMPORARY
COPIED STATUS
REGISTER WITH- REGISTER
IN PROCESSOR

¥

X

S, T O IF FETCH CONTENTS
INTERRUPT EX- OF VECTOR AD-
CEPTION, SET DRESS AND PUT

MASK BITS TO INPC
INTERRUPT
LEVEL

END

Y

OBTAIN
VECTOR
NUMBER

vector table and loads it into the PC. It then begins exception processing starting at the

new address.”
The last instruction of an exception routine (other than a reset routine) is RTE (re-

wirn from exception). When the RTE instruction is encountered, the processor restores
the stored PC, SR, and any other information relating to the suspended process from the
stack. It then resumes the execution of the suspended process.

We will now review the reset and general exception sequences with the help of an

example problem.

- Example 5.1 Reset and general exception sequences.
For a particular 68000-based system, the contents of the vector table are as shown:

Vector Hex Hex Word Assignment
Number  Address Contents Type
Q 000000 0000 SSP on reset
0A00
1 000004 0000 PC on reset
8400
2 000008 0000 PC on bus error

8800

condition? Why?

4, What are the prima i -
Iy differences between the reset an i
’ d the general exceptlon S

Solution

1. Initialization of the SSP and to
p of the stack: Long-word contents correspondi
' in
to c\lreictoc;' (c)l at location $000000 are $00000A00. These are fetched by the pfocessogr
and loaded into the SSP, which refers to the top of the stack
stack is initialized at ’ ek Thus, the top of the

SSP = $00000A00

2. Reset roufine: Long-word contents corresponding to vector [ at location $000004
are $000Q8400. These are fetched by the processor and loaded into the PC. Thus, the
reset routine starts at ,

PC = $00008400

3. Initial contents of the stack: For the reset operation, the initial contents of the stack
on powe.r-up are of no consequence. This is because the reset routine initializes the
system; it does not depend on any stacked contents.

4, Differences between reset and general excepti i
. ption sequences: Th
primary differences: “ ¢ following are the

Reset Exception General Exception

e
Processor registers are not stacked. PC and copied SR are at least stacked.

;'go reset vectors to initialize SSP and Only one vector, the contents of which
. are loaded into PC.

No RTE at the end of the reset
routing, and no return address.

RTE at the end of the routine returns
the processor to the suspended

program.

At the end of a successful reset routine, the system is properly initialized and is

- ready to perform other operati i
: _ perations and handle exception conditions. We wi
the details of the other general exceptions. o Wil o sy



5.2 INTERRUPT EXCEPTIONS AND APPLICATIONS

Interrupts are hardware signals from the IO devices and systems  to obtain thialtt§nt10n
of the processor. These signals are encoded and applied as IPL2, IPLL, and IPLQ inputs
to the processor. Figure 5.5 illustrates the 68000 interrupt structurt'a‘ A level 7 interrupt
(PL2 IPL1 IPLO = 0 0 0) has the highest priority and a level 1 interrupt {IPL2 IPL1

+ . . + . 5
IPLO = 1 1 0) has the lowest. A level 0 interrupt signifies that po interrupt is pending.
140 devices and
ISYStCmS with I Priority | MCHR000 steucture for
interface logic encoder interrupts
System byte of SR
17 - 17
Ei:;ﬂgt6 - 16 Tixx| s jxx|xx{rinji
Interrupt | - Il i IPL2
e | LI )
»| TPLO Interrupt mas
DECODER
- Y? -t Al...A23  Address bus
}igﬁ Z . Y6 “* FC2...FCQ Function codes
IACK | |« Y1
»| ¥PA  Valid peripheral
address
»| DTACK Data acknowledge

FIGURE 5.5 The 68000 interrupt structure and interface.

Interrupt Mask Levels

The 12, II, and 10 bits of the system byte in the status register specify the interrupt
mask level. A higher level interrupt than the mask level can interrupt the processor and
be recognized. Any interrupt lower than or equal to the mask level will not be recog-
nized; it is effectively masked out. The interrupt mask level is automatically adjusted to
the interrupt level that is being recognized and serviced.

Interrupts 1 through 6 are maskable. Interrupt 7 is a nonmaskable interrupt
(NMI). Even if the mask level is at 7, if an interrupt 7 occurs and satisfies the timing
requirements, the processor must recognize and service it. When an interrupt is recog-
nized, the processor generates an interrupt acknowledge cycle by activating the appro-
priate address lines (A1-A23) and the function code outputs FC2, FC1 and FCO.

An external decoder decodes this cycle and provides the corresponding interrupt
acknowledge signals (IACK1-IACK?7) to the interrupting devices. Hardware and timing
details of these signals will be discussed in subsequent chapters.

Interrupt processing is similar to general exception processing. On recognizing the
interrupt, the processor suspends current activity at the end of the instmction and makes
a copy of the status register. The processor sets the S bit to 1 and moves into the super-
visor mode. It then sets the interrupt mask level to a new value corresponding to the
interrupt being recognized. The processor stores the current PC and the copied SR on the
supervisor stack. The stored PC points to the next instruction to be executed in the
suspended routine. The processor then fetches the appropriate interrupt-vectored address
from the vector table and begins the interrupt exception processing starting at that vec-
tored address.

Autovector and User Vector Methods

There are two methods, known as the autovector method and the user vector method, to
obtain the interrupt vectors and service the interrupting device. In response to the IACK
signal from the processor, the interrupting I/O device generates the /VPA signal for the
autovector method, or the DTACK signal for the user vector method.

In the autovector method, the processor obtains the address for the interrupt ser-
vice routine directly from the vector table. Vector 25 corresponds to a level 1 interrupt
and vector 31 corresponds to a level 7 interrupt. The processor reads the contents of the
appropriate vector location and loads them into the PC. It begins the interrupt exception
routine starting at that address.

In the user vector method, an interrupting device provides an 8-bit user vector
number Vn (vector numbers 64 through 255) on the data bus D0-D7. The processor
reads this vector number and configures the vector location by multiplying the vector
number by 4. The processor reads the contents of this location and loads them into the
PC. It then begins the interrupt exception routine starting at that address.

A higher level interrupt can always interrupt a lower level interrupt. The processor
suspends the lower level interrupt, services the higher level interrupt, and then resumes
the suspended interrupt processing. Interrupts are nested and serviced in this manner.°

The following example problem provides a review of interrupt exception process-
ing.

Example 5.2 Interyupt exception processing.
Figure 5.6 illustrates an interrupt-driven 68000-based system and the exception vector
table contents. The processor is executing a user program as follows:

PC Mnemonic

$040L200 MOVE.W DO,D3
$001e202 CLR.W DD
$001204 NOP

$001206 JHP {(B4)

The internal register values are

SSP = $00000A00 USP = $0000C400 SR = $0200




FIGURE 5.6 (a) Interrupt-driven /0 systems Electronics MC628000

68000-based system and (b) - — —
cantents of the vector table Printes INT 5 n;:d er 5

y

¥

(Example 5.2}, Decoder ol P01
and
Terminal INT & —  Interface » IPLO

Electronics

Abort INT 7 -

Address
{} I<::> control and data
IACK signals
(a)
Vector # Type Hex address Word Contents
nono
¢ Reset S5P 000000 0A00
0000
1 Reset PC 000004 3400
Interrupt 5 0074 00na
» (aut0) oo 8AGO
0000
Interrupt 6 000078
30 (auto) 8BOO
0000
64 User vector 000100 oAl
(b}

1. Interrupt 5 from the printer. occurs as the processor is executing the CLR.W D0 in-
struction. Will it be recognized? What are the levels of the IPLZ, IPL1, and IFLO
signals for interrupt 57 .

2. Indicate the contents of the SR and the stack after interrupt 5 is rt?cogmzedAan.d is
ready to be serviced. Where does the interrupt S exception routine start if it 1
amtovectored? .

3. When interrupt 5 is being serviced and the PC is pointing te the next instruction at
$00008A4C, interrupt 7 occurs. Indicate the contents of the SR and the stack after

the interrupt is recognized and is ready to be serviced. Assume the user byte remains

at the same value.

4. Assume interrupt 7 provides user vector Vn = 64 = $40. Where does the interrupt 7

exception routine start?

Solution

Figure 5.7 shows the contents of the status register and the supervisor stack.

FIGURE 5.7 (a) Status register
contents and variations and (b}
supervisor stack and contents
as interrupts occur (Example
5.2).

= $0200
at user mode

= $2504 after
interrupt 5

= $2704 after
interrupt 7,

SR as interrupt 7 occurs

PC as interrupt 7 occurs

System byte User byte

b15- - « - - - b§|IBT - + - - - - B0

T 5 12 11 I XN ZVC

ojejo olif{cjojojojojojojo]o

ojell 1{oj1jofotolojoiifo]o

gfog1 tjrjrjojojgjojogt|o]o
(a)

58P Memaory word

$0009F4 2 5 0

$0009F6 ¢ 0 0 \

$0009F8 8 A 4 /

$0009FA o 2 0

$0009FC 0o 0 ¢ \

$0009FE 1 2 0 4 /

$000A00 X X X

ih)

SR as interrupt 5 occurs

PC as interrupt 5 occurs

Top of the initalized stack

L. Interrupt 5: Initiafly, the SR contains $0200. This implies that the processor is in
- the user mode (S bit = 0} and the interrupt mask level is at 2 (12 [1 10 = 0 1 0).
Intertupt 5 is higher than the mask level; thus, it is recognized.
IPL2, IPL1, and IPLO inputs to the processor are active low. To signify inter-

rupt 3, their logic tevels are

IFI2IPLIIPLO =010



2. SR and stack after interrupt 5: The processor completes the CLR.W DO instruction,
which sets the Z flag to 1 and the other flags to zero, before attending to interrupt 5,
Thus, the user byte of the SR becomes $04. The system byte remains at $02. The
processor internally copies these contents of the SR (= $0204) and moves into the
supervisor mode by setting the S bit to I. It then changes the interrupt mask level to 5.
Thus, the SR becomes $2504 after interrupt 5, as indicated in Figure 5.7(a).

The PC points to the next instruction (NOP) at location $00001204. The pro-
cessor stores this PC value and the copied SR on the supervisor stack, as indicated in
Figure 5.7(b).

The autovector number for interrupt 5 is 29, corresponding to vector location
$000074, as indicated in Figure 5.6(b). The contents of this location (= $00008 A00)
are loaded into the PC. Thus, the interrupt 5 exception routine starts at

PC location = $00008A00

3. Interrupt 7: Interrupt 7 is nonmaskable; thus, it is recognized. The processor sus
pends the interrupt 5 routine, makes a copy of the SR, and changes the system byte
to $27 (S bit = 1; mask level = 7). The SR after interrupt 7 is $2704, as indicated in
Figure 5.7(a).

The processor stacks the current PC value (= $00008 A4C) and the copied SR
(= $2504), as indicated in Figure 5.7(b).

4. User vector for interrupt 7: User vector number Vn = 64 = $40 for interrupt 7
corresponds to vector location $0100 (= 4 x $40), as indicated in Figure 5.6(b).

The contents of this location (= $00009A44) are loaded into the PC. Thus, the in
terrupt 7 exception routine starts at

PC location = $00009 A44

As previously discussed, the last instruction at the end of an exception routine is
RTE. When RTE is encountered at the end of the interrupt 7 exception routine, the pro-
cessor restores the stored SR and PC (= $2504 and $00008A4C, respectively), which
correspond to the suspended interrupt 5 processing, from the stack. The processor then
resumes the suspended interrupt 5 processing.

Similarly, when RTE is encountered at the end of the interrupt 5 exception routine,
the processor restores the earlier stored SR and PC (= $0204 and $00001204, re-
spectively), which correspond to the suspended user program, from the stack. The pro-
cessor then resumes the suspended user program.

5.3 TRAP EXCEPTION PROCESSING AND APPLICATIONS

Traps are exceptions caused by instructions. There are 16 TRAP instructions: TRAP #0

through TRAP #15, corresponding to the vector numbers 32 through 47 of the vector
table.

Using System Resources in the Supervisor Mode via Traps

Most system resources are under the control of the operating system. In the 68000 family
of processors, operating system resources can only be handled in the supervisor mode.
TRAP instructions are similar to software interrupts; they can be used within a program
to move into the supervisor mode and use the system resources.

Similarly, traps can be used to move into the supervisor mode to use privileged
instructions. Essentially, traps provide a convenient means of intercommunication be-
tween the user and supervisor modes.’

Trap Software Routines and Applications

Trap exception processing is similar to interrupt processing. When a TRAP instruction is
encountered, the processor concludes the current instruction, copies the SR internally, and
moves into the supervisor mode by setting the S bit to 1. The T (trace) bit is turned off.
The processor then stores the current PC and the copied SR on the supervisor stack. The
stored PC points to the next instruction after the TRAP instruction in the program.

The processor then fetches the appropriate TRAP-vectored address from the vector
table, loads it into the PC, and begins the TRAP exception processing starting at that
address. RTE is the last instruction in any TRAP exception routine. When the RTE in-
struction is encountered, the processor restores the stored PC and SR and resumes the
original program.

The TRAPV instruction generates an exception (vector 7) if an overflow condition
is detected in the previous operation. The TRAPV instruction is similar to the TRAP
instruction, except that TRAPV does not require an operand field and will generate an
exception only if the overflow (V) flag is set.

The user stack pointer (USP) is considered a system resource and can only be ini-
tialized in the supervisor mode. Figure 5.8 consists of an operating system routine writ-

LINE ADDR
1 JTRAP.src 12/31/88
c ;TRAP type exception routine
3 ;which initilalizes the USP
4 ;with the contents of the
5 B2 register
[: -
? OPT A
é ORG $1,200
q ;load contents of A2 into USPE
10 ;and return
- L4 00001200 4ELE MOVE.L &2,USP
12 nooorede 4E7L 4 NOP
13 000gLens 4E?3 ' RTE
L4 000D0L206 END

. _FIGURE 5.8 Operating system exception routine to initialize the USP (Example 5.3).



ten as an exception routine that initializes the USP. This routine starts at $00001200. The
MOVE.L A2,USP instruction at line 11 initializes the USP with the contents of the A2
register. The RTE instruction at line 13 returns control back to the calling program.

The user can call this program via a TRAP instruction. The user must load the
starting address of the exception routine at the vector table location corresponding to the
TRAP being used. The user must also pass the parameter value for the USP (through the
A2 register) while calling the TRAP routine.

LINE ADDR

The following example problem focuses on the software details of TRAP instruc-

tion use.

Example 5.3 Using TRAP exceptions.
Figure 5.8 shows an operating system exception routine starting at $00001200. The routine
initializes the USP.

1. In order to call the routine, the TRAP #1 instruction must be used. Develop an ap-
propriate software routine that uses TRAP #1 and initializes the USP at $00002000.
2. Is there any priority scheme associated with TRAP instructions? Explain.

Solution

1. Software using TRAP #1: The TRAP #1 vector number is 33, which corresponds to
vector address location $0084 in the vector table of Figure 5.2. The user can load the
starting address of the USP initialization routine (= $00001200) into the vector
location and use the TRAP #1 instruction to call the routine.

A software routine to accomplish the task in question is presented in Figure 5.9.
Between lines 14 and 16, $00001200 is loaded into vector location $0084. At lines 20
and 21, an initialization value of $00002000 is loaded into the A2 register (to be passed
on as the USP parameter for the TRAP #1 routine), and the TRAP #1 routine is called.
The TRAP #1 exception routine (Figure 5.8) loads the passed-on value ($00002000)
into the USP and returns to the original calling program. The JMP (A3) instruction at
line 23 causes an indirect jump to the user I/O routine, the address of which is contained
in the A3 register. 2. Priority for TRAP instructions: There is no priority scheme for
TRAP instructions. This is because the TRAPs are software instructions which are
executed in the sequence of their occurrence in the program.

i ;TRAPL .sre 1Z/3W/848

2 yTRAPL routine initializes

E| suser stack pointer

4 ;A0 = $00000000 refers to

S ;the beginning of vector table.

5 ;ITRAPL routine starts at $0000%L200.
7 ;A3 contains the address of user I/Q
i) ;routines.

9 ;
10 . OPT A

11 ORG $001L100

a2 yload TRAP1 address into

3 ;vector location $000000A&4.

14 0000L3%00 207C 0000 oooo
15 0000L1L06 227C 6000 1200
1k 0000110C 2149 0084

MOVEA.L #$00000000,AD
MOVEA.L #$0D0DL200,R8L
MOVE.L AL,$0084(A0)

17 ;jcall TRAPL routine to initialize

14 ithe user stack pointer at $00002000.
14 ) ;pass this stack parameter through Ag.
¢0 00001110 247C 0DO0 2000 MOVEA.L #%$0000200G0,A42

¢l 00003146 4E4L TRRP #1

2e ;jump to user /O routines through (A3)
23 000013118 4ED3 JUP (R}

24 0000L1LLA END

FIGURE 5.9 TRAP1 routine initialization and use by the calling programs {(Example
5.3).

In general, any TRAP #n (n = 0-15) can be used in the preceding example as long
as the starting address of the exception routine is loaded into the appropriate vectored
address location. Each time a TRAP routine is called, the current PC and the copied SR
are stored on the supervisor stack. The user should ensure that sufficient supervisor stack
space is available if several TRAP #n instructions are to be nested.

5.4 ERROR-RELATED EXCEPTIONS

The 68000 processor handles error conditions as exceptions in the supervisor mode. Op-
erating system routines are written in the supervisor mode for the 68000 family of pro-
cessors. Error-handling routines to help the user can be written by the operating system
designer.

Upon detecting an error condition, the processor suspends current execution, cop-
ies the SR, and moves into the supervisor mode. It turns off the trace and stacks the
copied SR and the current PC (which points to the next instruction in the suspended
routine). In certain error conditions (bus and address errors, for example), additional




processor information is saved on the stack. The processor then goes to the correspond-
ing vector location in the vector table, fetches the address of the exception routine, and
executes it in response to the detected error condition.

lllegal Instruction, Unimplemented Instruction, and Privilege-
Violation Conditions

lllegal Instruction The first word of an instruction is always an op.word. When the
fetched op.word does not correspond to any of the defined op.words, an illegal instruc-
tion error condition occurs. Three bit patterns always force an illegal instruction error
condition for the 68000 family of processors: $4AFA, $4AFB, and $4AFC. The first two
patterns are reserved for Motorola; the third is for general use. This exception returns
control to the operating system in case of any illegal op.codes, thus preventing
unpredictable operation. The vector number for the illegal instruction is 4.

Exception processing for illegal instructions is similar to that for traps. After the
instruction op.code has been fetched and decoding attempted, the processor recognizes
that the execution of an illegal instruction is being attempted. It then starts the exception
processing.

Unimplemented Instruction Op.word patterns with bits 15 through 12 equaling 1010 or
1111 ($A or $F) are distinguished as unimplemented instructions. When these codes are
discovered by the processor, unimplemented exception processing results. Higher level
processors, such as the 68020, use these op.codes for coprocessor support and
emulations. The vector numbers for the two conditions mentioned are 10 and 11.

Privilege Violation In order to provide system security, some instructions for the 68000
dealing with the status register, stack pointer, and system operation are privileged.
Examples are the following:

AND immediate to SR (for status register violation);
EOR immediate to SR (for status register violation);
MOVE to SR (for status register violation);
OR immediate to SR (for status register violation);
MOVE USP (for stack pointer violation);
RTE (return-from-exception instruction);
RESET (reset instruction);
STOP (stop-the-processor instruction).
These instructions may be used only in the supervisor mode. An attempt to use any of
them in the user mode results in a privilege-violation exception.””’
Exception processing for a privilege violation is similar to that for an illegal in-
struction. Control is returned to the operating system in case of any privilege violation,

thus protecting system resources and routines from being modified by the user. The vec-
tor number for the privilege-violation condition is 8.

Uninitialized and Spurious Interrupt Exceptions

Uninitialized Interrupt In the case of the user vector method for interrupt processing, if
the 68000 family I/O device is not initialized, it provides default vector number 15
during the interrupt acknowledge cycle. The processor recognizes this as an uninitialized
interrupt condition and initializes exception processing.

Spurious Interrupt A spurious interrupt condition results from a bus error during the
interrupt acknowledge cycle. The processor recognizes this condition and initiates spu-
rious interrupt exception processing. The vector number for a spurious interrupt is 24.

Exception processing for uninitialized and spurious interrupts is similar to trap ex-
ception processing. These two exceptions return control to the operating system in case
of an interrupt vector error, thus preventing any ambiguous interrupt processing.

Zero-Divide, CHK, and Trace Exception Conditions

Zero-Divide Exception A zero-divide exception occurs when division by zero is at-
tempted during the execution of a divide instruction. This exception prevents the
processor from going into an indefinite loop. The vector number for a zero-divide
exception is 5.

CHK Exception A CHK exception occurs when the data register associated with the CI
IK instruction is out of bounds. This exception returns control to the operating system if
boundaries are crossed in case of a multitasking operation. The vector number for the
CHK exception is 6.

Trace Exception A trace exception occurs when the T (trace) bit in the system byte of
the status register is set. When the T bit is set at the beginning of program execution, the
processor executes one instruction at a time and goes to trace exception. In trace
exception routines, the results of the instruction just executed are displayed. Essentially,
the processor goes into a single-step mode for software debugging. The vector number
for the trace exception is 9.

The zero-divide, CHK, and trace exceptions occur during program execution. They
prevent the processor from getting hung up on errors. Appropriate exception routines
that provide proper feedback to the user should be written by the operating system
designer so that exception conditions can be handled efficiently.

We will now present an example problem to review the error conditions and ex-
ceptions studied thus far.

Example 5.4 Error conditions and exceptions.

A 68000-based system is operating in the user mode. In each of the following situations,
state whether an error or exception condition will be generated. Indicate the exception
vectors, as appropriate.



1. The processor tries 0 execute an op.code corresponding to the CLR.W A4 struc-
f1on.

2. The processor tries to execute MOVE. W D6.SR.

3. The processor tries (o execute the following sequence:

CLR.L DD
pIvy DO,DE

Solution

1. CLR.W A4 instruction: This is an illegal instruction, since the address register di-
rect addressing is not defined in the CLR instruction. The processof recognizes this
as an illegal instruction error condition and initiates the exception processing se-
quence. The vector number for the illegal instruction is 4.

2. MOVE.W D6,SR instruction in user mode: Moving information into the status
register while in the user mode results in a privilege-viola{ion error condition. The
processor Yecognizes this and initiates the privilege-violation exception sequence.
The vector number for the privilege violation is 8.

3. CLR.L D0 and DIVU D0,D2 instructions in sequence: The CLR.L DQ instruction
clears the DO register. The DIVU DO0,D? instruction attempts 2 division-by-zero op-
eration, since DO has been cleared earlier to the Zero condition. The processor rec-
ognizes this and initiates the zero-divide exception sequence. The vector number for
a zero-divide exception is 3.

In response to the zero-divide error in the preceding example, an exception routine
will display a message:

division by Zerc attenpted

Suppose this routine starts at address $00001400. This starting address should be loaded
as a long word at location $014 (corresponding to vector number 5) during system ini-
tialization. When the zero-divide error condition OCCUTS, the exception routine will be

executed.

Address and Bus Error Conditions

Address Error An addiess €IT0r 0CCurs when the 68000 processor attempts {0 access
a word or long-word operand or an instruction at an odd address. When the processor
discovers an address etror, it aborts the current bus cycle, copies the SR, and goes into
the supervisor mode. It stores the copied SR, the PC (pointing to the possible next in-
struction), and some additional information on the supervisor stack, as shown in Figue
5.10. The supervisor stack frame for a bus error is similar.>%

b1S bl4  bI3 -
+ + + <b4 b3 b2 bl B

SSP 3> Special status word (see below} R/W| /N [FC2|FC1 JFCO
-A_CC-BBE aldclre_ss ______ High word
Accossaddress L-O w- \;o:d wwwwwwwwww
Instruction register Op, word
Status register
Program counter High word
Program counter Low word

R/W o> Read/write: write = 0 and read = |

I/N => Instruction/mot: Instruction = O and not = 1
FCZz FC1 FCO => Function codas

FIGUR i .
E 5.10 Supervisor stack frame for address and bus errors for the 68000

The stored instructi i i
on register points to the instruction i i
s ot ! structiont in which the addres
as detectod 0’2:3 r:'::lt Tz;]ccess adtliress refers to the actual physical address wh:r:r:l?;
. The special status word ref: i
addtess eor . ers to the actual internal conditi
h Processor ‘at the occurrence of the address error. This information i d_l“ons
software debugging process. won fs tnefulin the
An address error ¢ i
¢ xception prevents the 68000
g n acdress ¢ ‘ $ processor from any word misalign-
accessing instructions or operands. The vector number for the azdress e?osf ]'lg;
is 3.

Bus Error A b
us
emors o /0 thar.mr occurs v.vhen .thc processor attempts to access nonexistent
memory ot /0 Se 1mcr‘face logie activates BERR (bus error) input to the proce
gure 5.11. Time-out circuitry in the interface logic generates gle BSILZS;{)E

65000 processor
Memory interface Memory or 1/
logic:
DTACK Acknowledge
BERR = Titne out
Addressfcontrol -
<> (o Chip
s selects
< ——— > <———— > Daa
FIGURE 5,11

Memory or /O interface, generating DTACK or BERR to the 68000



Solution
input to the processor instead of the normal /DTACK if the memory or I/O fail to re-

1. Error condition: There is a bus error condition. It occurs during the execution of the
ADD.L (A0),DO instruction at line 8, while trying to access the source operand. The
effective address of the source operand [SOOFFAAOQO (contents of A0)] is beyond the

exception prevents the processor from indefinitely waiting for nonexistent memory or available memory and 1/O range, and is nonexistent. The interface logic therefore

I/O to respond. The vector number for the bus error is 2. generates the /BERR signal, and the processor initiates the bus error exception se-

The following example problem will enhance our understanding of address and quence.

bus errors. 2

spond within a given time.
Bus error exception processing is similar to address error processing. A bus error

. Stack format: On detecting the bus error condition, the processor moves into the
supervisor mode. The supervisor stack is used for storing the processor registers and
the operands.

Figure 5.13 illustrates the supervisor stack format and the contents for the bus
error exception: the PC corresponds to the next instruction (SUBQ.L #04,D0). SR is
the copied status register at the time of the exception. Stored op.word $D090 corre-
sponds to the instruction where the bus error occurred. The fault access address
($00FFAAO00) is the actual physical address where the bus error fault condition oc-

Example 5.5 Address and bus errors.
For the 68000-based system of Figure 5.11, memory and I/O are physically contained
between $000000 and $OFFFFF. The initial values of the registers are

SSP = $00000A00  USP = $00002000 SR = $0600

curred.
The program of Figure 5.12 is run.
—| FIGURE 5.13 Supervisor stack 35P Memory waord Stored operand details
contents tor the bus error
LINE ADDR condition (Example 5.5). $0009F2 i _0_ o Special status word (see below)
-perr.src 1/5/89 ' $0G09F4 0 0 F F .
1 ;demonstrates pus and | o E Fault access address thigh word)
g ;agg;ess errgrs $0009F6 A A 0 90 Fault access address (low word)
g gggﬂn L i?;%[l:llgf'ﬁkﬂﬂ 20 $0009F8 L o % 0 Instuction op,word
A00 STRT Lo #§OUFEAACLT Lo s s e s m =

£ ©oo0000 207C DOFE B MOVEA.L  #500000CC3,RL SO009FA [ 0 6 © o0 - -

2 gggg{ﬁg‘é gg;g noaa nccl ADD. L (BE){)%U _________ Copied status register

g D0D0LO0E 5980 gggQ éL ggR’i _ $0009FC i _0_ _0_ _9_ _ﬂ_ | Program counter (high word)

0 GOEE ’ :
]1".3 gggg{gte END : $0009FE 1 _]_ _0_ _0_ —'E" ] Program counger (low word}
$o0oa0e rox X X Top of stack (contains previous operand)
ASSEMBLER ERRORS = O
SYMBOL TABLE .
_ Special status word $0019 corresponds to
STRT 00001000 : bIS + « « + < -+ - . . b5 b4 b3 b2 bl b0
I_NARG 60000600 : : R/W N FC2 FCl FCO
: 0 . P P a s . P 0 1 l 0 0 1
FIGURE 5.12 Software with bus and address errors (Example 5.5).

The stored special status word signifies that the fault occurred while reading a

1. The conditions given will result in an error exception sequence when the program is
run. What type of error is involved? Explain.

. Indicate the stack format for the error exception in (1).

. The ADD.L (A0),DO instruction at line 8 (Figure 5.12) is replaced with the ADD.L
(A1),DO0 instruction, and the program is rerun. Will there be an error condition now?
How does the stack look for this error?

data operand from user data space.

. ADD.L (Al1),DO instruction: There is an address error condition. It occurs while

trying to access the source operand. The effective address of the source operand
[$O0000CC3 (contents of Al)] is within the physical memory, but is odd. The pro-
cessor recognizes this long-word access at an odd address as an address error and
initiates the address error exception sequence.



The supervisor stack format for the address error is similar to that for the bus error.

When the stack frame for the bus and address errors in the preceding example is

examined, the fault conditions can be analyzed and corrected. In 68010/12 processors,
additional information is stored on the stack for possible virtual memory implementation,
which we will study later, in conjunction with those processors. In 68020/30 processors,
word and long-word data operands can be accessed at an odd address without generating
an address error condition.

Double Bus Fault Condition
This is a catastrophic failure in which the processor comes to a complete halt. The double

bus fault occurs when

a bus error occurs while accessing the reset vectors;

a bus error occurs during the exception processing sequence of an earlier bus or

address error; or

there are nested combinations of bus error and illegal instruction exception

processing operations. The processor also activates the HALT output line, which
halts any peripherals connected to the halt line. This prevents a system runaway condition.

Software and hardware must be debugged and the system reinitialized to recover from a

double bus fault condition.>*’

55 SUMMARY

An exception condition is a deviation from the normal condition. The 68000 processor

handles the exception in the supervisor mode.

External hardware conditions, such as reset and interrupts, cause exceptions. So do
instructions, such as TRAPs and CHK, under certain conditions. Error conditions, such
as privilege violations, illegal instructions, unimplemented instructions, zero-divide
operations, bus errors, and address errors, also cause exceptions.

Appropriate software routines written as part of the operating system in the super-
visor mode handle exceptions. On the occurrence of any type of exception, the processor
moves into the supervisor mode.

One kilo byte of memory between $000000 and $0003FF of a 68000-based system
corresponds to the exception vector table. This table contains the starting addresses of
the exceptions. On the occurrence of an exception, the processor fetches the starting ad-
dress of the corresponding exception routine from this table.

The reset exception has the highest priority; it initializes the system resources and
conditions. Stacking of the registers is not done during reset exception processing. Vec-
tor 0 corresponds to the supervisor stack pointer and vector 1 corresponds to the program
counter for the reset exception.

Hardware interrupts from the external I/O and peripherals are meant to obtain the
attention of the processor. The interrupts follow a priority scheme involving the three
interrupt mask bits of the status register. Interrupt 7 is at the highest priority level and is a
nonmaskable interrupt (NMI). Interrupts 6 through 1 are at successively lower priority
levels and are maskable. They can be masked by setting the interrupt mask level in the
system byte of the status register to a higher level. Interrupt O implies that there is no
pending hardware interrupt.

TRAP instructions are similar to software interrupts; they are used to move from
the user mode into the supervisor mode. This allows users to employ system-level re-
sources.

A privilege-violation error condition occurs when an attempt is made to use priv-
ileged instructions in the user mode. If an instruction code that does not correspond to
any of the permissible codes is used, an illegal instruction error condition occurs. When
an attempt is made to access nonexistent memory or I/O, the external logic activates
/BERR (bus error) input to the processor. The processor recognizes this and goes into
bus error exception processing. When a word or long-word access attempt is made at an
odd address, an address error condition occurs.

The processor does not stack any information for reset exception processing. For
all other exceptions, the copied SR and the PC (pointing to the next instruction at the
time of the exception) are stored on the supervisor stack. In the case of address and bus
error conditions, additional information is also stored. This corresponds to the fault ad-
dress, the instruction that caused the fault condition, the special status word, and so forth.

In the case of nested errors, a double bus fault condition causes the processor to go
into a complete halt state. During the halt state, the address and data buses are tristated,
and the control signals negated. The system must be debugged and reinitialized in order
to recover from a double bus fault condition.

PROBLEMS

5.1 How soon does exception processing begin for the following conditions:
(a) reset from pusitbution;
(b) illegal instruction;
() zero-divide.
5.2 How many total exception vectors are in the vector table? How many different exceptions
are serviced?

5.3 Explain why the reset exception takes two vectors, whereas all other exceptions take only
one.



 between a cold start and a warm start? Are there any
. : 0
differences in terms of the exception processing with cold and warm start's. -
iti to initialize the superviser stack a
68000-based system, suppose it is necessary s
> ggggmooo. The reset routine should start at $00001600. Indicate the contents of vector
table Jocations $000 through $008. o
5.6 Write a reset routine under the conditions of Problem 3.5 to reinitialize the

$00003000, the USP at $00002400, and to set the interrupt mask level at 4. II.I addt‘gion,
’ . . e
an interrupt 6 gxception routine starting at address $00004200 is to be loaded into

appropriate autovectored location, The last instruction in the routine should be a STOP
#$2200 instruction,
5.7 Consider the intermipt-driven system of Figure 5.14. o N
(a) The processor is executing a user program and the PC is pomu.ng to the it be
instruction at $00001244. At that instant, interrupt 4 from a printer GCCUrs.

recognized? Explain. ‘ ) . .
B! Indicate the contents of the stack, if the interrupt is recogmzed: s
(b) Interrupt 4 is user vectored with a vector number 72. Iljl(el'ﬂlpt 4 service row .
starting address is $00001620, What is the vector location address and what are
contents of that location? .
(c) What are the contents of the status register

5.4 What is the primary differenc

soon after the recognition of intersupt 47

Interface logic and 68000

FIGURE 5.14 An interrupt- Memory and 1/O
driven 68000 system (for Dynamic RAM N
Problem 5.7). controller
Terminal i Interrupt 3
Printer Tnterrupt 4

Initial values: SSP = $000030000; USP = $000020E0; SR = $0000

i i icing i t 4 from the printer. The user byte
the system of Figure 5.14 is servicing interrupt

58 (S}?I:E: S:tatus rzgistcr is $04. Interrupt 7 from the dynamic memory controlter ott:f:urs as the
processor is executing the MOVE instruction in the Tollowing program segmient.

pC value Instruction
$00001L6AD MOVE.L #£%002211CC,De
REOL.W #c,De

j i i hy not?
Il the interrupt be recognized? Why or ! .
Eah; f:lthe internapt !135 recognized, what are the contents of the super\tlsor s(fzck? .
(¢) Interrupt 7 is autovectored. Where does the processor g0 to obtain the internip!
: . . 9
exception routine starting address? o ,
5.9 In a particular application, the SSP and USP are initialized at $000A00 and $O009EQ,

respectively.

(a) How much minimum stack space is required to store the appropriate registers in the event
of an interrupt?

(b) How many interrupts can be nested without running out of supervisor stack space?

5.10 Specify the advantages and disadvantages of the autovector and user vector methods. How
many total user vectors are there?

5.11 In a particular 68000-based system, the starting addresses of the autovectored interrupts are as
follows:

interrupt 1:  $00001040
interrupt 2: 300001080
interrupt 3:  $00G010C0
interrupt 4:  $00001 100
interrupt 3:  $00001140
interrupt 6:  $00001180
interrupt 7:  $000011C0O

Indicate the contents of the exception vector table containing the preceding information.
Clearly identify the vector numbers and vector locations.
5.12 What are the vector numbers and vector locations for the uninitialized and spurious
interrupt exceptions?
What are the primary differences between these two interrupt conditions?
5.13 What are the vector numbers and vector locations for TRAP #3, TRAP #5, TRAP #9,
and TRAP #14.
Is TRAP #15 higher, lower, or at the same priority level as TRAP #0? Explain.

5.14 Suppose it is necessary to run the operating system routine shown in Figure 5.8 as TRAP
#4, which begins at a starting address of $0000140C.
What modifications should be made in this software routine so that it will be
executed when the user calls TRAP #4?

5.15 Modify the software of Figures 5.8 and 5.9 so that the USP is initialized at $00004000 when
TRAP #4 (starting at $0000140C) is called by the user routine.

5.16 Write a TRAP #6 routine (for a 68000 system) starting at $000016EO to reset the system
peripherals, go into a stop condition, and load SR with $2400. Indicate the contents of the
appropriate vector locations.

5.17 Write a TRAP #7 routine starting at $00001700 to input a character from an I/O location at
$0000F800 into the DO register and echo the character to an output terminal at $0000F802.
Indicate the contents of the appropriate vector locations.

5.18 List the errors that cause exceptions in a 68000-based system in the order of their priority,
from highest to lowest. Which errors are software related and which are hardware related?

5.19 A 68000-based system is in the user mode. In the following cases specify any error or
exception conditions:

(@ MOVEB  Al.A2
(b) CLRAW A3

(c) DC.W $FF00

(d) ANDLW  #$FF0O,SR



5.20

521

5.22

5.23

5.24
5.25

With reference to Problem 5.19, specify the vector numbers and vector locations in case of
error conditions.

A system is in the user mode. Identify any error or exception conditions when the software
that follows is executed. Initially, DO = $00000004; D1 = $0000FFCC.

LOOF MOVE.L B,D2
DIVO no,nea
DBEQ pQ, LOOP
NOP
S5TOP #$0700

Where does the processor go in case of an error condition?

A 68000-based system memory and I/O are between $000000 and $O0FFFF. The initial
values of the registers are

A0 =S$000FFEEA  Al=3$0000CDEF A2 =3$00000CCC SR = $0404

Specify whether any error conditions occur in each of the following:

(a) MOVEM.L D0-D7, (A0)

(b) MOVEP.L (Al), D2

(¢) CLRL  $07(A2)

A 68000-based system memory and I/O are between $000000 and $O0FFFF. The initial
values of the registers are

A0 =$000FFEEA Al=$0O0OO0CDEF A2 =$00000CCC SR = $0404 USP =
$00002000 SSP =$00000A00 DO = $00000003

Specify whether there is an error condition in any of the cases that follow. If so, specify the
error, the exception vector number, and the vector location. Also indicate the contents of the
stack using the initial values as stated.

(a) ADD.B (A0),D2

(b) SWAP Al

(¢) CLR.L $04(A2,D0.W)

Identify four different instances of a double bus fault condition in a 68000-based system.
Refer to the supervisor stack contents given in Figure 5.15.

(a) The processor is executing an interrupt 6 routine. When RTE is executed as the last
instruction of this routine, where does the processor go? Explain.

(b) Another RTE is executed at the end of the resumed routine of (a). Where does the
processor go? Explain.

(c) The routine that was suspended when interrupt 6 occurred must have been of a certain
type. State the type and explain.

FIGURE 5.15 Supervisor stack

contents (for Problems 5.25, SSP = $0000096C=>> | 2300 | Current top of stack
5.26, and 5.27). 0000

1600

000
213C
xxxx | Top of stack at initialization

5.26 In Figure 5.15, the SSP pointing to the top of the stack at initialization must have been what
initial value? Why?

5.27 Due to a memory read error, the entry $213C in the stack in Figure 5.15 has been read as
$213B. Where will the processor go to execute the next instruction? Explain.
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68000 Hardware Considerations
and Design Applications

Objectives

In this chapter we will study:

Hardware signals and buses of the 68000
Memory and I/O interface schemes and design

Control interface schemes
System-level busing schemes, such as the VERSA and the VME

6.0 INTRODUCTION

In chapters 1 through 5, our focus was on the general architectural features and software
aspects of the 68000 microprocessor. In this chapter, we will explore the hardware as-
pects of a 68000-based system.

Generally speaking, all microprocessors have an address bus for addressing in-
structions and operands, a data bus for data and operand transfers, and a control bus for
control and timing signals. A bus is a collection of signals with similar properties. The
68000 processor has additional busing features for asynchronous and synchronous data
transfers, interrupt and DMA (direct memory access) transfer operations, and system
control.

The material in this chapter will provide the necessary background to understand
the essential hardware features of the 68000. In addition, it will provide insight into the

system control and error detection schemes associated with the 68000 family. These
processors follow memory-mapped I/O schemes, in which the processor communicates
with an I/O device as if it were one of the memory locations. The word memory will be
used to refer to both memory and I/O in our discussions, unless otherwise specified.

6.1 68000 HARDWARE SIGNALS AND FUNCTIONS

Figure 6.1 indicates the pin configuration of the 68000, and Figure 6.2 is a system rep-
resentation. The 68000 is contained in a 64-pin DIP package or a 68-pin grid-array
package. It is fabricated with either NMOS or CMOS technology. For the corresponding
signal properties, appropriate data books should be referenced.'”

Data Dd  -—ge] ] 64 |r—pe T}5 Data
D} +—— . 2 63 [——— D¢
D? w————pt 3 62 ———i D7
D! ———] 4 6] [W——- DB
D) —————»] 5 60 | DO
Address strobe 5 et 59 (—————p D10
Upper data strobe UDS #——e—ou 7 58 |M—————p DI1
Lower data strobe in§ +—o—J 3 57 |4——— D12
Read/write RW #————0n] ¢ 56 |————p D13
Pata acknowledge DTACK ———————up] 10 35 |[w——— DI4
Bus grant BG ——————— 1t 34— I}15
Bus grant acknowledge BGACK = ———pd |2 53 |————— V., Ground
Bus request BR ————— 13 52 |———— A23 address
Power Yop =] 14 51— A22
Clock CLY — | 15 50 p——— A2]
Ground Vi ] 16 49 (— V. Power
Halt HALT w+————n 17 48— A20 address
Reset RESET -w——r———p=] 1% 47 |—— A9
Valid memory address VMA ——— ] 19 46 f——  AIR
Enable clock _E ] 20 45— Al7
Valid peripheral address YPA ————p 2] 4 e . AT
Bus error BERR ——— ] 22 43 p———— AlS5
Interrupt priority inpats IPLZ ——————»| 23 42— Al4
PLI » 24 41 > Al3
IPL0 ———————] 25 44— Al2
Function code ocutputs FC! o 24 39 —r— Al
FCl  — 27 38— All
FCO w————d 28 31— A9
Address Al 4——d 29 36 p——————> Af
A? —— 3 5 p———— A7
A} ————] 3 ¥ p—e A6
Ad - 32 33 - A5

—_— Input

p—e  Quiput

i Bidirectionat

Overbars indicate low-active signals.

FIGURE 6.1 The 68000 pin configuration.



Memory or O 68000 processor Memory or HO

FUNCTION CONTROL: | FC2 Al-A23 p| Address
- FCi
- FCO
SYNCHRONOUS DO-D15 |- > Data
CONTROL:
Enable |— E
Valid peripheral address —p1  VPA ) E\:(S%ﬁggEONOUS
i i d = YMA :
Valid Memiory address - ol e srobe
DS —»|  Lower data strobe
UDS w1 Upper data strobe
R/W » Read/write
SYSTEM CONTROL: DTACK | Data acknowledge
Reset | »| RESET
Halt }-— w1 HALT
Bus error 1 BERR
INTERRUPT
CONTROL: / —pl [PL2
8 Level encoded »{ TPLI BUS ARBITRATION
inputs \ = IPLO CONTROL FOR DMA:
b BR [= Bus request
BG & Bus grant
BGACK | Bus grant acknowledge
Clock ——| CLK
Power (2) ———] V.,
Ground (2) ~——t| V.

FIGURE 6.2 System representation of the 68000.

Address, Data, and Asynchronous Buses for the 68000

The address bus is a 23-bit (A1-A23) unidirectional tristate bus, capable of addressing 8
megawords (or 16 megabytes) of data or operands. It provides the address of the op-
erands during the read and write bus cycles. During a read bus cycle, the processor reads
the instructions or source operands from the memory. During a write bus cycle, the
processor writes data into the memory. During the interrupt acknowledge cycle, address
lines Al, A2, and A3 provide information about the level of interrupt being serviced.
Address lines A4 through A23 are set to a high logic level.

The data bus is a 16-bit (D0-D15) bidirectional tristate bus, capable of transfer-
ring byte- or word-sized operands between the processor and the memory (or 1/0).

The asynchronous bus is used to control asynchronous data transfers of varying
response times between the processor and the memory or I/O units. For the 68000 pro-
cessor, the asynchronous bus consists of five control signals:

. AS (address strobe output);

. R/W (read/write output);

. LDS (lower data strobe output);

. UDS (upper data strobe output); and
. DTACK (data acknowledge input).

th B le by -

An AS signal signifies that the address information on the address lines is valid.
An R/W signal at a high level significs a read bus cycle; at a low level, it signifies a
write bus cycle.

When LDS is low, data on lines DO through D7 are selected. This data element is
known as the lower byte (or the odd byte). When UDS is low, data on lines D8
through D15 are selected. This data element is known as the upper byte (or the even
byte). When both LDS and UDS are low, data on lines DO through D15 are selected.
Figure 6.3 illustrates the data-selection scheme.’

Upns LD§ Data Selection

High High Data not selected

High Low Lower byte (D0- D7) selected

Low _ High Upper byte (D8 1215} selected

Low Low Ward (both bytes: D0O-115) selected

FIGURE 6.3 [DS and UDS signals selecting lower or upper data bytes or word of
memory {or I/O).

The 68000 processor activates the /AS, R/*W, /LDS, and/or /UDS signals along
with the address information for a read or a write bus cycle. The addressed memory (or
the I/O system) activates an acknowledge signal /DTACK to the processor, while
providing the data to the processor (read cycle), or accepting the data from the processor
(write cycle). The processor does not terminate the bus cycle and insert wait states until
DTACK has been generated. Thus, depending upon the speed of response of the memory
or the I/O system, data transfers between the processor and these systems vary in the time
they take. Consequently, we have an asynchronous data-transfer mechanism in the 68000
family of processors.*

Function Code Outputs

The function code outputs FC2, FC1, and FCO provide status information about the pro-
cessor, as indicated in Figure 6.4. These outputs from the processor can be used to dis-
tinguish between the user and supervisor modes of operation and between program and
data space within each mode. When the processor accesses the reset vectors (vectors 0
and 1) or the program code, it is in the program space. Any other operand access is in



FC2 FCl FCO State Mode
0 0 0 Reserved for Motorola llJJsei
\] 0 1 Data space Uzt;
o 1 o Program space e
0 i 3 Reserved . .
0 0 Reserved for Motorola upervl
1 0 1 Data space Supervisor
1 0 Program space Supcr\rfsor
: l1 1 Interrupt acknowledge Supervisor

FIGURE 6.4 Function code outputs; associated states and modes.

the data space. External logic can be used to decode these function code conditions and

prevent supervisor memory from being accessed when the processor is in the user
mode.’

Other Buses and Signals

The synchronous bus in a microprocessor is used to control synchronous or timed data
transfers between the processor and the memory or I/O. In the 68000, this bus is used to
interfere with the earlier 6800 family of synchronous peripherals. In a synchronous op-
eration, data transfers take place within a fixed time frame, as opposed to variable timing
in the case of asynchronous operation. The synchronous bus for the 68000 consists of
three signals used for 6800 peripheral control:

1. E (enable clock) output;
2. /VMA (valid memory address) output; and
3. /VPA (valid peripheral address) input.

The E clock is one-tenth the frequency of the 68000 clock input and is used to synchro-
nize the 6800 family or similar synchronous peripherals used with the 68000. A VMA
signal indicates to the 6800 family devices that there is a valid memory address on the
address lines and that the device should be synchronized to the enable clock. VPA indi-
cates to the processor that the addressed device is a synchronous device. Also, during an
interrupt acknowledge cycle, /VPA is used by the interrupting device to indicate an
autovectoring mechanism to the processor.

The arbitration bus is used for direct memory access (DMA) data transfers. In
such transfers, the processor releases the address, data, and control buses, and external
logic controls them for direct data transfers. DMA transfers are faster than memory
transfers requiring processor intervention, since no time is needed for instruction fetch
cycles. The arbitration bus for the 68000 consists of three arbitration signals:

1. BR (bus request input);
2. BG (bus grant output); and
3. BGACK (bus grant acknowiedge input}.

The external logic requests the bus release by activating the BR line. The processor re-
sponds to this request by activating its BG output. The requesting device then acknowl-
edges the response by activating the BGACK and subsequently takes poséession of the
buses. The DMA transfers take place umntil the external logic releases the buses and
BGACK.

The interrupt control bus is used by the external devices to request the attention
of the processor. The processor recognizes these requests and services them in a level-
priority scheme. The interrupt control bus for the 68000 consists of encoded IPL2,
IPL1, and TPLO inputs (IPL stands for interrupt priority level).

The system control bus is used for system initialization and error control. For the
68000, it consists of the RESET and HALT bidirectional signals and the BERR (bus
error) input signal,

The clock input signal advances the processor through the sequential states of op-
eration. For the 68000, each read or write bus cycle (without wait states) consists of
four clock cycles. Any wait states are integral multiples of clock cycles.

The 68000 operates on a 5-volt power supply. Two pins are allocated for the V.
input and two for the ground connection. Some of the signals we mentioned may go into
a tristate or high-Z condition under special conditions. Figure 6.5 is a summary of the
68000 signals.

We will now review the hardware aspects of the 68000 by means of an example
problem.

Example 6.1 68000 signals and definitions.

The 68000 microprocessor employs a memory-mapped I/O approach, in which memory
and YO appear to be similar.

1. With 23 address lines and LDS and UDS signals, how many total memory and IO
bytes can be addressed? Explain.

2, Can the processor use the synchronous bus for I/O transfers and the asynchronous
bus for memory transfers simultaneousiy?

3. What will be the values of the FC2, FC1, and FCOQ outputs while the processor is
fetching interrupt autovector 6. Why?

Solution

1. Memory and I/O bytes: With 23 address lines, 8 megawords (2% = §,388,608) of
memory and 1/0 together can be addressed. LDS and UDS signals further select an
odd or even byte within the word.

Total memory and VO addressing = 8 megawords = 16 megabytes
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2. Simultaneous usage of buses: Synchronous and asynchronous buses cannot be used
simultaneously. Address and data buses are required for each type of data transfer.
The data transfers must be done one at a time.

3. FC2, FC1, and FCO values: Interrupt servicing activity takes place in the supervisor
mode. Interrupt vectors are in the supervisor data space (refer to Chapter 5 and Figure
6.4).

FC2FC1FCO=10 1

For the 68008 processor, there are 20 address lines (A0-A19) and 8 data lines (DO-
D7). This processor can address a total of 1 megabyte of memory and I/O. There is only
one data strobe DS in place of the /LPS and /UDS signals. /VMA and /BGACK signals
are dropped, and the /IPLO and /IPL2 interrupt signals are integrated for the 48-pin dip
package (for the 52-pin, they are left intact). All other hardware features of the 68008 are
similar to those of the 68000 processor.

6.2 MEMORY AND I/O INTERFACE SCHEMES

Memory is an integral part of any computer system. The decoded address bus provides
selection signals, called chip select (CS) signals to the memory system. Additional se-
lection signals, called chip enable (CE) signals, are used for further selection of mem-
ory systems. Data transfers take place between the processor and the selected memory on
the data bus. The 68000 processor uses the asynchronous bus to control these transfers.
The I/O interface is similar to the memory interface.

Memory-Device Types and Memory Concepts

Memory devices can be classified as random access or sequential access. The random-
access read/write memory (RAM) and the read-only memory (ROM) systems are ba-
sically random access, in which access time to all memory locations is the same. RAM
and ROM devices are used for the main operating memory of the computer system. The
RAM system is suitable for information storage and retrieval; however, it is a volatile
system and loses information if the power is turned off.

The industry uses either static or dynamic RAM devices. The static RAM device
consists of an array of flip-flops contained in a matrix. Each flip-flop acts as a memory
cell. Static memory devices are available in 8K-by-8 and 32K-by-8 configurations as of
this writing. A 32K-by-8 RAM device has 256K (262,144) flip-flops in it.

The dynamic RAM (DRAM) stores information in the form of a charge on the
gate of a single MOS transistor. The dynamic memory cell needs to be refreshed peri-
odically so that charge information will not be lost due to decay. The DRAMs are denser
than the static RAM devices (usually by a factor of four). One-megabit DRAM devices
are common as of this writing. The DRAM interface is more complex than the static
RAM interface. Moreover, the failure rate of DRAM-based systems is greater than that of
static RAM-based systems. In the DRAM systems, however, error detection and

correction schemes are employed to increase the reliability of the memory system. The
access time of the MOS RAM (static and dynamic) is approximately 100 to 200 nano-
seconds.

If simple interface and high reliability are required, static RAM systems are pre-
ferred. For high-density applications, DRAM systems with the error correction mecha-
nism are generally preferred.

ROM devices are nonvolatile and retain information even if power to the device
should be disconnected. For mask-programmable ROMs, the code and data contents
are programmed at the factory and cannot be changed. The erasable and programmable
ROMs (EPROMS) can be programmed with the help of EPROM programmer systems.
The EPROMs are nonvolatile in the system operation. However, they can be erased using
ultraviolet light or high-voltage pulses and reprogrammed with a new code and data
using EPROM programmer systems. EPROM devices in denominations of 64K by 8 and
256K by 8 are common, with access times of approximately 100 to 200 nanoseconds.

NMOS and CMOS RAMs (static and dynamic) are widely used. For fast-access
memories, bipolar static RAMs are preferable. The ROMs and EPROMs are basically of
the MOS type. With ultralow-power CMOS RAMs and a battery backup, it is possible to

obtain a nonvolatile memory system.

Sequential memory systems are nonvolatile and are suitable for backup applica-
tions. They have a larger memory capacity, but also longer access times (up to several
milliseconds).

In this chapter we will concentrate on the commonly used memory system imple-
mentation with static RAM and ROM/EPROM devices.

Address Decoding, Strobing, and Memory Selection

The 68000 system memory is word organized, consisting of even and odd bytes, as il-

lustrated in Figure 6.6. Higher order address bits are decoded and the CS signals are

generated. Each CS signal selects a range of memory. Within the range, the same CS
signal activates both the even and the odd memory units. /UDS and /LDS signals inde-
pendently activate the CE inputs of the even and the odd byte sections of the memory.

R/W drives the memory units for read or write selection. The low-order address lines are

directly connected to the memory devices in order to select the actual location within a

selected memory device.

The lower (or odd) memory byte is connected to data lines DO-D7. The upper (or even)
byte is connected to data lines D8-D15. An /AS (address strobe) signal enables the decoder
logic and initiates the memory bus cycle. The /AS, /LDS, /UDS, and the control signals occur
in a fixed sequence.

Read and Write Timing Considerations

Read Bus Cycle Figure 6.7 illustrates read bus-cycle timing for word operation, Each
clock cycle is divided into two S-states. SO is the starting state of a bus cycle. During
SO, all the strobe signals are at their inactive level. The address and data buses
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are in their tristate condition. During SI, the processor puts address information on the
address bus and sets R/*W to a high level to signify a read bus cycle. During S2, the
strobes (/AS, /LDS, and /UDS) are activated.

One clock cycle (states S3 and S4) is allowed for the external logic to respond. At
the end of S4, the processor expects /DTACK. One clock cycle after the occurrence of
/DTACK, the processor accepts data on lines D0-D15 and internally latches it (at the end
of S6, in this case). During S7, the processor deactivates all of the strobe signals and
address lines. The memory system recognizes this event and deactivates /DTACK. This
concludes the read bus cycle, whereupon the processor is ready for the next bus cycle.

The read bus cycle for byte operation is similar. The processor activates /LDS for a
low (or odd) byte or /UDS for a high (or even) byte, but not both. Without any wait
states, the read bus cycle for a word or byte operation takes four clock cycles.®

Write Bus Cycle Figure 6.8 illustrates write bus-cycle timing for word operation, which
is similar to read bus-cycle timing. During state S2, the processor activates the address
strobe AS and sets R/W to a low level to signify a write cycle. During S3, the processor
puts data on the data bus. During S4, the processor activates the /[LDS and /UDS signals.
When the memory accepts this data, it is expected to activate /DTACK by the end of
state S4. If /DTACK occurs by the end of S4, the processor waits one more clock cycle
(until the end of S6) and deactivates the strobe signals and the address and data lines.
This completes the write bus cycle. For byte operations, the processor activates only
/LDS or /UDS, for odd or even bytes.

FIGURE 6.8 The 68000 write
bus-cycle timing for word
operation. (Courtesy of
Motorola, Inc.)

Read-Modify/Write Bus Cycles The read-modify/write operation is required by in-
steuctions such as TAS (test and set). In TAS instruction, the operand is read from
a Jocation into the processor. It is tested, modified, and written back at the same loca-
tion,”
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The read-modify/write bus timing is iltustrated in Figure 6.9. The address content
during the operand read and write cycles remains the same. Data content may change,
however,

156! 87!

F

1 L L '
O

0
[l
1
]
]

[l
Il
1
3
]
1

[
i
1
E
1 L
[ T
[l
] I
] [}
1
[l 3
[}
1
[

3
t
'
1
[l
i
1
i
]
i
[
3
'
[

[
Il
1
]
]
[}
I
1
3
]
i
i
i
3
b

'
]
I
1
]
' [l '
I
1
3
'
[

b
[
|
]
]
Y
I
L
¥
]

1

| *

] ! i
i 3

' '

H ' i '

' [

L ! H

] H t
1

[ ! '

Read Read Write
instruction operand madified
word word operand

FIGURE 6.9 The 68000 read-modify/write bus-cycle timing for word operation.
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Wait States Clearly, DTACK is expected by the end of the S4 state for read and
write bus cycles. If DTACK does not occur by the end of $4, the processor inserts a full
clock eycle as a wait state, at the end of which DTACK is checked for.

The processor inserts wait states until either DTACK or a BERR (bus error) signal
occurs. If BERR occurs, the processor aborts the bus cycle and goes into bus error ex-
ception processing, as discussed in previous chapters.

Timing Considerations of Asynchronous inputs

DTACK is considered an asynchronous control input to the processor. The processor
samples such asynchronous signals on the falling edge of the clock. On the next rising
edge, the processor internally validates the sampled signal. On the next falling edge, the
sampled signal is acted upon by the processor. Thus, there is an inherent clock-cycle

delay to act upon a sampled asynchronous signal. From the read bus cycle of Figure

6.7, it can be observed that DTACK has been sampled at the end of $4 (a failing edge),
internally validated at the end of 85 (a rising edge), and externally acted upon by the
processor at the end of S6 (a falling edge). This clock-cycle delay is intended to elimi-

nate uncertainties in bus operation. The other asynchronous in
es i . nputs to the 68000 proces-
sor are BERR, BR, BGACK, HALT, RESET, and VPA, as indicated in Figure I;.10.

The following example problem provide i i
and timg p P § a review of read and write bus cycles

FIGURE 6.10 The 68000 Signal acted upon
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Example 6_.2 68000 read and write bus-cycle timing,
The 68000 in the system of Figure 6.6 is operating at a 10-MHz clock frequency. Tim-
ings for the\rcad and write cycles are indicated in Figures 6.7 and 6.8.
\\..\\""‘-\\...__ .
1. For the given conditions, what is the read access time?

2. Suppose the processor is reading a byte $4D from Jocation $000FFE. What are the
con.tents of the address bus and data bus and the logic levels of the control signals
during the active read bus cycle?

3. If three wait .states are inserted for writing a word at location $001000, how many
clock cycles is the effective write cycle? When are the wait states inserted?

Solution

1. Read access time: The read access time is defined as the time lapse from when the
address has become stable to when the data have become valid. From Figure 6.7, it
can be observed that this corresponds to the time between the end of S1 and the end

f)f 56; Ithat is, five states, or 2.5 clock cycles. At a 10-MHz clock, each clock cycle
15 100 nanoseconds. Thus,

read access time = 2.5 clock cycles = 250 nanoseconds

Active read.-cycle operation: Location $000FFE is an even address. The even (or
upper) byte is selected by the UDS. Reading data $4D from $000FFE results in



AS is low

LDS is high(not selected)
UDS is low(selected)

DTACK is low(acknowledged)

Address bus (A23- A1) = $000FFE;
Data bus (D7-D0) = tristate;

Data bus (D15-D8) = $4D;

R/W (read operation) = high;

3. Wait states during the write operation: The wait states are inserted after state 5S4,
Each wait state corresponds to one clock cycle. The write bus cycie without wait
states takes four clock cycles. Thus,

write bus cycle with three wait states corresponds to seven clock cycles.

Wait-state insertion for the read bus cycle is similar to that for the write bus cycle
for all members of the 68000 family of processors. It should be remembered that the
68008 processor is a reduced-bus version of the 68000, with a data bus only 8 bits wide.

6.3 MEMORY AND I/0O SYSTEM DESIGN CONSIDERATIONS

Any microcomputer system includes RAM (read/write random access memory), ROM
(read-only random access memory), and I/O (input/output) systems. RAM and I/O can
be selected only during read or write operations. ROM can be selected only during read
operations. CS and CE signals are generated in accordance with these constraints.

The Memory Subsystem Design

Figure 6.11 illustrates the details of a 64-kilobyte (64K-by-8) memory system. E0 output
of the first decoder enables the second decoder. YO output of the second decoder drives
the chip select (/CS) inputs of the even and odd memory units. These units consist of
32K-by-8 memory devices. /UDS and /LDS further drive the chip enable (/CE) inputs
and select the even or odd unit, providing a 64K-by-8 configuration. If both units are
selected, the system becomes a 32-kiloword (32K-by-16) memory system.

The 8-state shift register is the memory controller that provides the /DTACK
signal to the processor. Initially, all the Q outputs are at a high level (logic 1). The shift
register is enabled by the corresponding chip select signal (/YO in this case), and starts
shifting a logic 0 from QO to Q7 at each CXO clock transition. Depending upon the
response time of the memory system, proper Q output is routed as the effective /DTACK
input to the processor through the DTACK logic. The shift register returns to the all-1
condition when the enable signal (/YO in this case) is removed.

For the 68000 family of processors, the first kilobyte of memory corresponds to
the vector table. The first eight locations correspond to the reset vectors, which should be
in the ROM space. In most of the 68000-based systems, these eight locations are
physical ROM locations. In some systems, additional logic is used to shift the memory
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Processor devices j
A3 |—»! ENABLE E0 —»| ENABLE Y0 —» CSI
- 1
4f16 El a/16 > Yi |
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FIGURE 6.11 Memory system and DTACK generation for the 68000.



in a 68000-based system.

reference of these eight locations to a ROM device elsewhere in the memory map. The
other part of the vector table can be contained in the RAM space. On system power-up,
the reset routine initializes the vector table with proper values.

Signal Buffering Considerations

Due to electronic loading constraints, signal buffering is used to increase the drive capa-
bility of the signals. Transceivers are used to accomplish the buffering, as indicated in
Figure 6.12. A transceiver is a logic device that can transmit a signal in either direction,
depending upon the direction control. The address and the unidirectional control signals
are buffered by transceiver bank [1] to go from the processor to the memory or I/O (X to
Y). The data bus is buffered by transceiver bank [2], which is controlled by the R/*W
signal. For read operations (when the R/*W signal is at a high level), data flows from the
memory or I/O to the processor (Y to X), and vice versa.® In this conceptual framework,
the memory or I/O system can be expanded to any size.
The following example problem provides a review of memory system design.

i i 000 f ]
FIGURE 6.12 _Signal buffering '[Fnh:mﬁ;y syslt-zrrlr: Transceiver Memory um(:s3
of Figure 6.3 bank [1] from Figure 6.
Al X1 Yi Ptl
A F——1 x vis == an
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AS X24 ¥24 °5S
LDS P>y : o5s
UDs X27 Y27 R
R/W _
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DIR inpuis
= of
transceiver
bank [2}
Transceiver
bank [2]
X0 Y0 Do
w s KT .
T S X15 Y15 DIS
D15
R/W— DIR

DIR = 0: Transmission from X oY
1: Transmissien from Y o X

Example 6.3 Memory system design.
Refer to the memory system of Figure 6.11.

1. Specify the memory or I/O ranges that can be selected by the EO through E15 signals
from the first decoder and the YO through Y15 signals from the second decoder.

2. The Y14 and Y15 signals are ANDed to generate an /O chip select. What is the
corresponding 14O range?

3. How much delay is there from the time the memory units are selected (YO becoming
active low) until DTACK occurs for the conditions indicated?

4, If the transceiver IC is 8 bits wide, how many such ICs are required for transceiver
banks [1] and (2] in the system of Figure 6,127

Solution

1. Memory or I/O ranges: The first 4/16 decoder divides the available 16-megabyie
address space into 16 equal ranges of 1 megabyte each. Thus, each E output goes
low for a t-megabyte range and selects memory as follows:

ED selects range $000000..$0FFFFF
EI selects range $100000..$1FFFFF

EI5 selects range $F00000..$FFFFFF

The second 4/16 decoder is activated by the EQ output of the first decoder. The sec-
ond decoder further divides this 1-megabyte range into 16 equal ranges of 64 kilo-
bytes each. Thus, each Y output from the second decoder goes low for a 64-kilobyte
range and selects memory as follows:

YO selects range $000000..$00FFFF
Y1 selects range $010000..$01FFFF

Y15 selects range $0F0000. . $0FFFFF

2. YO chip select: From the preceding solution, it can be seen that the Y14 and YI5
ranges are

Y14 = $0E0000 through $OEFFFF Y15 = $0F0000 through $OFFFFF

ANDing these two 64-kilobyte ranges would yield a 128-kilobyte I/O chip select
range between $0E0000 and $OFFFFF.

3. Delay for DTACK occurrence: The QI output of the shift register goes to active
zero two CXO0 clock activations after the YO signal goes active low and selects the



memory. CXO is twice the frequency of the CXI processor clock, and two CXO activations
correspond to one CXI activation. QI is routed as the /DTACK input to the processor. Thus,
/DTACK occurs one processor clock after the selection. 4. 8-bit transceiver ICs for

buffering: Transceiver bank [1] buffers 27 signals and requires 4 ICs. Transceiver bank [2]
buffers 16 signals and requires 2 ICs.

In our discussion thus far, we have emphasized static RAMs, which are composed
of flip-flop arrays. Dynamic RAMs, which involve charge storage on a capacitive ele-
ment and periodic refresh of the charge, are becoming increasingly popular. Dynamic
RAM devices are two to four times denser than static RAMs. However, they require
complex memory controllers and use interrupts for refresh by the processor. We will
discuss dynamic RAM implementation schemes along with the interrupts in subsequent
chapters.

As of this writing, 64-kilobyte static memory devices and 256-kilobyte dynamic
memory devices are becoming available. Some of these devices have an additional se-
lection control input called the output enable (OE), which is similar to the CS and CE

inputs. The I/O interface is essentially similar to the memory interface. Data books may
be consulted for design details.’

6.4 CONTROL INTERFACE SCHEMES

In addition to the memory and I/O interface, processors have a control interface. The
primary hardware signals that control and direct the 68000 microprocessor are RESET,
HALT, and BERR (bus error). The DMA and interrupt signals (to be discussed later)
also control the processor. In this section, we will first consider the reset and halt inter-
face and follow with a discussion of timing signals and the bus error.

Reset and Halt Interface

Figure 6.13 illustrates the reset and halt interface with the 68000 processor. For the val-
ues shown, the MC3456 monostable produces a 100-millisecond pulse on the power-up
reset. This activates both the /RESET and /HALT inputs to the 68000. On power-up, pro-
cessors usually require more time to come to a stable state due to electronic and switch-
ing transients. The 68000 requires at least a 128-clock-cycle time equivalent to come to a
stable state on the power-up condition. The 100-millisecond reset and halt pulses are
more than adequate for any 68000 family member. For a reset condition to occur, both
the /RESET and /HALT inputs should be activated to a low level.

The processor goes into the supervisor mode on reset. Reset exception processing,
which is always the system initialization routine, starts as soon as the /RESET and
/HALT are negated (go to high-level). The same sequence of operations occurs for the
manual reset. The 74LS00 cross-coupled gates debounce the reset switch, providing
clean /RESET and /HALT activation to the processor. Manual activation should last for at

MC6800 — RESET AND HALT
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FIGURE 6.13 Reset and halt interface for the 68000. (Courtesy of Motorola, Inc.)

least ten clock cycles. (Refer to Chapter 5 for software details on reset exception pro
cessing.)

Of particular interest is the bidirectional property of the RESET line. The proces-
sor can execute a software reset instruction in the supervisor mode. The reset line then
acts as an output, resetting the other peripherals connected to the 68000. When the pro-
cessor drives the /RESET line as an output, it goes active low for 124 clock cycles.

When the bidirectional /HALT line is used as an input in conjunction with the
/RESET input and is activated by external circuits, the 68000 goes into a system reset
condition. On the other hand, if the /HALT input is activated individually, the processor
is halted after the completion of the current bus cycle. In the halt state, address and data
lines are put in their high-impedance state, and the control lines are negated; however,
the DMA control lines are available for bus arbitration. The halt condition of the pro-
cessor is used for hardware troubleshooting and single-step operation. The processor re-
sumes the halted operation soon after the negation of the /HALT input line.

_When a double bus fault condition (Chapter 5) is detected, the processor uses the
/HALT line as an output and drives it low; this, in turn, halts any devices connected to it.

MCo3000
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Timing Signals Associated with the 68000

The timing signals associated with the 68000 processor are mdicated in Figure 6.14. A
32-MHz clock signal is derived from a crystal oscillator circuit. The 8-bit binary counter
(divide-by-256) circuit provides the binary signals:

CX0 (divide by 2} at 16 MHz
CX1 (divide by 4) at § MHz

CX7 '(divide by 256) at 1/8 MHz

65000 Address decode
processor and DTACK logic Memory or /O
Address KT
data and Chip selects
contrel address bus,

data bus, and
DTACK signals

UDs

ENABLE
16-STATE SHIFT
REGISTER as bus " §-BIT
error controllet Clk =

cX7 COUNTER

| |

4« + » « +Bl BO ] : Clk [ 32-MHz
B> BI cx1 system clock

— CX0
F—-= B}
. BERE logic —- Time out signals
BERR ® from other memory and Lfo

CLK [#—— CXI (processor clock)

E |—» E clock (for synchronous bus control)

FIGURE 6.14 Bus error and timing signais for the 68000.

The CXO signal is used for DTACK timing generation (refer to Figure 6.11). The CX1
signal runs the processor at 8 MHz. Signals CX2 through CX7 can be used by any other
/O or memory systems. In the case we are now considering, CX7 is used to drive the
bus error control logic. The system clock can be changed to any value that suits the
‘requirements. .

The 68000 processor provides an E (enable) clock as an output. The E clock 18
one-tenth the frequency of processor clock CX1 and is used to drive the 6800 or other
synchronous peripherals.

Bus Error Considerations

Of very special importance in all 68000-based systems is the bus error (/BERR) signal. It
informs the processor that a bus error has occurred. It originates from a bus error con-
troller, as indicated in Figure 6.14. The bus error controller is usually a watchdog timer;
that is, a counter circuit reset to zero at the start of each bus cycle, which counts up at
each clock transition. When it reaches its set maximum count, it generates a pulse
signifying the time that has lapsed since the start of the last bus cycle.

The 16-state shift register acts as the bus error controller and provides the /BERR
signal to the processor. All the B outputs are at a high level initially. The controller is
driven by the ANDed output of /UDS and /LDS signals from the processor. When a new
bus cycle starts, either /UDS or /LDS, or both, go to a low-active state (logic 0). Thus,
the controller is enabled during each bus cycle and shifts a logic 0 from BO to B15 at
each CX7 clock transition. Depending upon the maximum allowed response time of the
addressed devices, proper B output is routed as the effective /BERR input to the proces-
sor through the /BERR logic.

If the /DTACK is given out by the addressed device within the time permitted, the
bus cycle is normally terminated and the strobes (/LDS and/or /UDS) go to the inactive
logic 1 level. This restores the shift register to the all-1 condition, and the /BERR acti-
vation does not occur. Otherwise, logic 0 propagates through the shift register and ulti-
mately reaches the processor as /BERR (through its selected B output). The processor
then goes into the bus error condition. Software details of bus error exception processing
are discussed in Chapter 5.

On occasion, a particular bus cycle may be faulty and must be rerun. External logic
indicates this rerun condition to the 68000 processor by simultaneously activating the
/BERR and /HALT inputs. On the occurrence of the rerun condition, the processor aborts
the current bus cycle and goes into a halt state. After the /BERR and /HALT inputs are
negated (return to a high level), the processor reruns the aborted bus cycle with the same
address and data values. This helps the processor to correct any immediate errors due to
hardware transients on the lines.

The following example problem provides a review of the control interface to the
68000.

Example 6.4 Control interface to the 68000.
The system clock is 32 MHz for the 68000-based systems illustrated in Figures 6.13 and
6.14.

1. What is the frequency of the enable output clock E?
2. What is the minimum amount of time the manual reset should last?

3. The Bl output of the bus error controiler is routed as the BERR input to the proces-
sor. How much time would elapse before the BERR input goes to active low after
the strobes have been activated,




Solution

1. Frequency of the E clock: For the conditions given, the processor clock CX1 =8
MHz. The E clock is one-tenth the frequency of the CX1 clock. Thus,

E clock = CX1/10 = 800 KHz

2. Manuat reset timing T: The manual reset should last for at least ten CX1 processor
clock periods. Thus,

T(reset) = 10 x 1/8 MHz = 1.25 microseconds

3, BERR timing: For the conditions indicated in Figure 6.14, the CX7 clock drives the
bus error controller shift register. The shift register is enabled durng a bus cycle,
when either LDS or UDS, or both, go low active. It takes two CX7 clockings after
the enable to shift a logic 0 to B1 cutput. Bl, in turn, activates the BERR input to
the processor if DTACK does not occur.

Since the CX7 clock at 1/8 MHz corresponds to 8 microseconds, two CX7

clock periods cotrespond to 16 microseconds. Thus, BERR occurs (in the absence of
DTACK) 16 microseconds after the strobe activations.

In the preceding example, a delay of up to 120 microseconds can be obtained by
routing B15 as the BERR input to the processor. If more delay is required, additional
counter or shift register circuits can be incorporated into the system.

6.5 68000-BASED BUSING SCHEMES

In order to support system expansion for the 68000 family of microprocessors, Motorela
introduced two busing schemes: the VERSA bus and the VME bus. Both of these

widely used busing schemes support 8-, 16-, and 32-bit data transfers and the associated

protocols.'®!!

The VERSA Bus

Figure 6,15 illustrates a typical VERSA busing scheme. The hardware interface consists
of two edge connectors:

P1: primary connector— 140-pin interface; and
P2; secondary connector— 120-pin interface.

Primary Interface P1 The primary interface P1 supports 24 address lines, 16 data
lines, and the associated control lines as indicated. The address, data, and control lines
of the P1 interface are those of the 68000 processor.

68000-BASED VERSA MODULE

P 025" -
P1 PRIMARY INTERFACE
Pl EDGE 24 ADDRESS LINES
CONNECTOR B prLIES
) HRONOUS BUS CONTROLS
(8.5" LONG) LEVEL 7 PRIORITY INTERRUPT INTERFACE
i LEVEL 5 ARBITRATION
([40 pins on P1) POWER-
FAULT DETECTION AND CONTROL
REDUNDANT AND EXTRA PINS
P2 SECONDARY INTERFACE
P2 EDGE
CONNECT! O-.IR 30 /O INTERFACE
(6.5" LONGIP 32-BIT EXPANSION
. r_ SERIAL COMMUNICATIONS
(120 pins on P2) POWER AND GROUND
EXTRA PINS

FIGURE 6.i5 VERSA bus P1 and P2 particulars for 68000-based systems.

o The asynchronous bus interface consists of the strobes (/AS, /LDS, /UDS, and
6802)7\/).and the'/DTACK. The §even-level priority interrupt interface is the stal,qdard
0 1nterrupt 1nt§rface. It consists of the interrupt request signals 1RQ1 through 1RQ7
and the associated interrupt acknowledge signal IACK.
o Several of the VERSA modules can be bused together on a VERSA bus backplane.
ne or more processor modules may be used. All the signals are TTL compatible. Each
glgdule presenl:s on(ei: unit TTL load on the corresponding input signal line. The bus
rivers on eac :
driver module are of the open collector type and support up to 16-unit TTL
] V\}Zhen several VERSA modules are bused together, there should be a bus arbitra-
ion scheme. The VERSA bus supports such a scheme using the five bus arbitration re-
?I:lestt mgnais ]?IRO-BR4 from the requesting modules to a master controller module. The
aster controller responds to the requesting modules by sendi j
(BCLR), if the bus is granted. Y sending 2 bus clear signal
The PI interface supports 5, £12, and +15 DC
. s , , voltages and an ample number of
signal grounds. In addition, there are the numerous fault detection and control lines, in-



eluding /BERR and /HALT. The PI interface is generally sufficient if extended capabili-

ties are not required.

Secondary Interface P2 In order to expand the system to full 32-bit address and 32-bit
data, a secondary interface through the edge connector P2 is used, as illustrated in Figure
6.15. This interface also supports 50 I/O lines and serial communications to other systems.
Although the VERSA busing scheme is gradually being replaced by the VME busing
scheme, there are still many VERSA schemes in the industry that are being expanded on
an ongoing basis.
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FIGURE 6.16 VME busing scheme and structure. (Courtesy of Motorola, Inc.}

The VME Bus

Redefinition of VERSA bus with emphasis on international standards has resulted in the
VME bus. The VME bus interfaces with the VME modules as shown in Figure 6.16. It is
an optimized busing architecture with primary PI and secondary P2 interfaces through
the respective edge connectors. Up to 16 modules can be interfaced on the backplane
VME bus. These edge connectors are 96 pins each with functional groups as shown in
Figure 6.17.

As illustrated in Figures 6.16 and 6.17, the VME busing architecture consists of
three buses. The VME backplane bus, contained in the PI interface connector, supports
all of the global resources needed fdr the VME modules. The VMS serial communica-
tions bus (which is also part of the PI interface) supports the serial communication be-
tween two or more VME modules. Similar to the VERSA busing scheme, the PI interface
in the VME scheme can handle up to 16-bit data transfers and a seven-level priority
interrupt interface.

The VMX bus, which is part of the P2 interface, is a high-speed parallel bus and is
local to six adjacent modules. This helps to expand the local subsystem. In most 16-bit
applications, the PI interface would be sufficient. However, if the system needs to be
expanded to 32 bits, or if additional I/O or VMX capabilities are required, a P2 interface
should also be used.

System expansion isxvery easy with the VERSA or VME busing schemes. It is
sufficient to obtain card cages with the VERSA or VME backplanes and populate them
with the respective VERSA or VME modules. The photos of Figure 6.18 are of typical
VERSA and VME card cages and modules.

Detailed specifications are available for both busing schemes. These should be
consulted for further information, such as bus arbitration methods.

We will now review the system-level busing schemes by means of an example
problem.

Example 6.5 VERSA and VME busing schemes.
State which of the two busing schemes, the VERSA or the VME, is preferable in the
following circumstances:

1. an A/D and D/A interface is required;

2. multiprocessing with local I/O and memory resources is required;
3. diagnostics are required.

Give reasons for each of your choices.

Solution

1. A/D and D/A interface: The A/D (analog-to-digital converter) is an I/O device that
converts an analog input signal into a corresponding digital word and interfaces with
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FIGURE 6.17 VME bus P1 and P2 interface particulars.

the microprocessor. The D/A (digital
accepts a digital word from the microproces

analog voltage.

Both the VERSA and VME sc

-to-analog converter) 18 another I/O device that
sor and convexts it into a corresponding

heines are useful with P1 and P2 interfaces. The

VME scheme, however, shares the 50 connections in P2 between 1O and VMX. If
both the 50-pin VO interface and the VMX capability are réquired at the same time,

the VME is limited. In such situati

2. Multiprocessing with local resources:
ble with P1 and P2 interfaces because 0

source expansion.

ons, the VERSA bus is preferable.

Clearly, the VME busing scheme is prefera-
§ well-defined VMX capability for local re-

3. Diagnostics: The VERSA busing scheme 1s preferable because of its well-defined

fault detection and control on the P

interface, itself.

The VME is one of the most popular busing schemes in the industry. Even though
it was developed for the 68000 family of processors, it supports other processor fami-
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lies, such as the 8086/80286/80386. Products that are compatible with the VMB bus are
available from several vendors.

Other industry standard busing schemes include the Multibus-11 from Intel Corpo-
ration and the NU bus from Texas Instruments. The system-level properties of these
buses are similar to those of the VME and VERSA buses. The 68000 family of proces-
sors can interface with both of these buses with equal ease.

6.6 SUMMARY

In this chapter we described the hardware signals of the 68000 processor and their prop-
erties. We also introduced the hardware interface schemes for the 68000.

Memory and I/O interface schemes are very important. The read/write random ac-
cess memory (RAM) is particularly suitable for the storage and retrieval of programs and
data. The static RAMs store information in flip-Hop arrays. Static RAMs are the systems
of choice in high-reliability applications. Dynamic RAM (DRAM) devices store
information on a single MOS transistor memory cell and are denser than static RAMs.
DRAM-based systems are preferable in applications requiring high density.

ROMs and EPROMs are of the read-only type and are nonvolatile. They are par-
ticularly well suited for storing permanent programs and data elements.

We also studied details of the asynchronous memory and I/O interface, as well as
read and write bus-cycle timings. A bus cycle is normally terminated when the addressed
memory or I/O responds to the processor with /DTACK. The processor introduces wait
states until either /DTACK or /BERR occurs. The occurrence of /BERR signifies a bus
error. The processor responds by going into exception processing.

On considering the important system control interface schemes relating to /RESET,
/HALT, and /BERR, we saw that simultaneous activation of both /RESET and /HALT
results in a system reset condition. Activation of /HALT alone results in a processor halt
condition. Simultaneous activation of both /HALT and /BERR results in a bus-cycle
rerun condition. Activation of /BERR alone results in a bus error condition. The processor
uses the reset pin as an output when executing the /RESET instruction. Similarly, the
processor uses the halt pin as an output when there is a double bus fault condition.

We ended the chapter with a discussion of the VERSA and VME busing schemes
and interfaces. The VERSA scheme is more flexible, while the VME scheme is more
efficient and universal. Other industry standard buses, such as the Multibus-11 from In-
tel and the NU bus from Texas Instruments, are similar to the VME and VERSA buses.

PROBLEMS

6.1 Inbyte-organized memory, can the /LDS and /UDS signals be gated together to form a
single chip select? Why or why not?
6.2 Specify the conditions of the address and the data buses in the following circumstances:

{a) AS is inactive, R/W is low; .
(b) AS and UDS are active, LDS is inactive, R/W is high;
(¢) an external HALT signal is received by the processor.

6.3 What are the primary differences between the RAM, ROM, and backup memory, such as
a disk?
(a) Can the EPROM be used where the system stack is to be located? Why or why not?
{b) Can the nermal RAM be used where the reset vectors are located? Why or why not?
() Is it possible 1o use battery backup RAM in place of a disk-type backup memory?

Why or why not?

6.4 In the memory system of Figure 6.6, the 1DS and UDS signals have been interchanged,
Specify the effect on
(a) the memory read operation of the byte, word, and long-word operands;
(b) the memory write operation. _

6.5 Under the conditions given in Problem 6.4, specify how the following operands will be
written into the memory:
{a) MOVE.L D0$1000 DO = $3456789A
(b) MOVEP.L D0,$2000 DO = $AYRT6543

6.6 Refer to the memory system with the timing waveform given in Figures 6.7 and 6.8.

(a) What are the read and write access times if the processor clock CX1 is 4 MHz?
(b} Repeat (a) with 8- and 12-MHz CXI frequencies.
(¢) Repeat (a) and (b) on the condition\{\;f four wait states.

6.7 The 68000 processor performs rcad—modi"fy!write (RMW) operations while executing
instructions such as TAS. Draw the RMW waveform while the processor is performing
TAS at
{(a) tocation $7000,
(b) location $700A.

6.8 For the memory system of Figure 6.1k, what are the chip select (CS) ranges for
{a) the EO through E15 outputs from the fiest decoder;
(b) the Yo through Y15 outputs from the second decoder.

6.9 Design the hardware to generate chip selects to access 4K blocks of memory words as

shown.
68000 ADDRESS I SECODER f—— G50 $0000 - $1 FEE
MICROPROCESSOR BUS AND = CS1  $2000 - $3 FEE
GATING :
- oo (515
AS, LDS, UDS R/W

6.10 In a memory system interface 1o the 68000 microprocessor, the slow memory has a
response time of 250 nanoseconds and the fast memory has a response time of 62.5



nanoseconds, The processor CX1 clock is 8 MHz. A 16-MHz CXO0 clock signal is also
available.
Design a memory controller interface to generate DTACK 1o the pracessor.

6.11 Repeat Problem 6.10 to intexface memory and VO with the following requirements:

(a) a response time of 750 nanoseconds;
(b) a response time of 15 microseconds.

6.12 Obraining the information from data sheets, design the system shown in Figure 6.11 with
real parts.

6.13 Redesign the memory system of Problem 6.12 with high-density parts, such as the
64K-by-8 and 128K-by-8 devices. The RAM should occupy the memory map starting at
lacation $2000.

6.14 Using the 64K-by-8 RAM and EPROM/ROM devices, design a memory system for the
68000 microprocessor with the following memory map {word organized):

$000000 to $007FFE RAM or EPROM
$008000 to $OOBFFE RAM

$00C000 to $00FFFE EPROM/ROM
$010000 to $OLFFFE 17O space

6.15 It is necessary 10 protect the supeevisor memory from being accessed in the user mode.
Describe a scheme to accomplish this while generating chip select logic. (Hint: The
function code signal FC2 has to be used in the logic.)

6.16 Specify the refative advantages and disadvantages of using the address, data, and control
buffering of Figure 6.12.

6.17 Write software to test the memory in the $020000-t0-302EFFE range.

6.18 Design a hardware or software rmethod to test the /O interface connected to the 68000
microprocessor, occupying a range between $010000 and $OVFFFE. (Hint: In the 68000,
/O and memory look similar.}

6.19 Draw the waveforms of the CX0 through CX7 signals in Figure 6.14, given that the
system clock is 32 MHz.,

6.20 Specify all possible valid conditions of the combination of RESET, HALT, and BERR
inputs to the processor. (Nofe: some combinations may be invatid.)

6.21 What would happen if the RESET input stayed active low al! the time? ls therc a possible
remedy?

6.22 State two distinct conditions in which the 68000 uses its
(a) RESET output;

(by HALT output.

6.23 For an 8-MHz 68000 system, what is the minimum time required for the power-up RESET
condition? Why? Describe what happens in the following situations:

(a) the RESET input stays active for only kalf the time;
(b) the RESET stays active for twice the time.

6.24 With regasd to the VERSA and VME busing schemes,

(a) which occupies more physical space?
(b) which is more flexible?

{¢) which is more cost effective?
(d) which is more efficient?

6.25 Is it possible to interface VERSA modules onto the VME bus? If so, indicate how this can
be accomplished.

6,26 Show how the interrupi levets can be increased on

(a) the VERSA busing scheme;
() the VME busing scheme.

6.27 Obtaining the information from appropriate data sheets, show how a system can be
expanded nsing VERSA modules.

6.28 Repeat Problem 6.27 using VME modules.
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CHAPTER

7

The 68000 Parallel
Interface and Applications

Objectives

In this chapter we will study:

Architecture of the 6821 PIA and 68230 PI/T devices
Interfacing the PIA and PI/T

I/O applications using the 68000/6821 PIA

Data entry and display applications
Electromechanical applications

7.0 INTRODUCTION

Any microprocessor communicates with the external I/O (input/output) through either a
parallel or a serial interface. In this chapter, we will concentrate on the parallel interface.
There are several devices that support either a synchronous or asynchronous parallel
interface with the 68000 family of processors. The most widely used are the 6821 PIA
for the synchronous interface and the 68230 PI/T for the asynchronous interface.'” Study
of the material in this chapter will provide the foundation for using the parallel interface
in practical applications.

7.1 SYNCHRONOUS PARALLEL INTERFACE WITH THE 68000

The earlier 6800 family of peripheral devices are of the synchronous type. These devices
can be interfaced easily with the 68000 family of processors by means of the synchronous
bus (/E, /VMA, /VPA signals).’

6821 PIA (Peripheral Interface Adapter) Architecture

The 6821 PIA is one of the most widely used 8-bit parallel interface devices. It is con-
tained in a 40-pin NMOS DIP device. The structure of the PIA is indicated in Figure 7.1.
It consists of two 8-bit parallel ports A and B and associated control signals CA1, CA2,
CB1, and CB2. Each port consists of three internal registers:

1. ORA and ORB (output registers A and B);
2. DDRA and DDRB (data direction registers A and B); and
3. CRA and CRB (control registers A and B).

68000 and logic 6821 PIA-1 and logic IO system
Interrupt g ROA, IRQB
logic
__IDs -»{ CHIP ENABLE
AS VMA, ™,
and decoded > ¢HIPSELECTS Y
address ‘-,I
AZ2Al - RS1, RS0
ORA/DDRA PA7..PAD e > Port A
VPA  f———
CAl = Port A
CRA CAZ - controls
ORB/DDRB PR7..PB} | - Port B
CB1 |- Port B
CRB CB2 = - controls
R/W -+  READ/WRITE
RESET #1  RESET
E - ENABLE CLOCK
Data bus
bi5s. D8
p7..00 > D7..DO

FIGURE 7.4 The 6821 PIA archileciure and interface to the 68000,



The DDR and OR in each port occupy the same address. The control register determines
the individual access.

Output and Data Direction Registers The output registers (ORA and ORB) interface
with the external I/O devices and systems and are capable of driving a unit TTL load.
Each bit of these ports is individually programmable to be either an input or an output.
The data direction registers (DDRA and DDRB) determine the direction of the output
register bit. If there is a 0 in the DDR bit position, the corresponding bit is an input. If
there is a 1 in the DDR bit position, the corresponding bit is an output. For example, if
$07 (b7 b6 b5 b4 b3 b2 bl bO = 00000111) is written into DDRA, then PA7 through PA3
are configured as inputs and PA2 through PAO are configured as outputs.

Control Registers CRA and CRB Control register CRA determines the nature of the
control lines CA1 and CA2. Figure 7.2 illustrates the typical structure of CRA. De-
pending upon the application, an appropriate control word can be written into CRA to
configure CA1l, CA2, and IRQ A (interrupt request port A). The CRB format is similar to
that of CRA; it configures CB1, CB2, and IRQB (interrupt request port B) lines. Bit 2 is
very important in CRA and CRB. When it is 0, the data direction register is selected.
When it is 1, the output register is selected.

b}
FIGURE 7.2 PIA control p7 b6 bS bd b3 b2 bi
register for port A (CRA)' IRQ1|IRQZ} CAZ j CA2 CA2 | DDR/OR CAl | CAlL
_ . . .
by Set ODDRA  : 0 [RQA disabled
Sg*\t;y Séi\l;y I ORA . 1 TIRQA enabled
0 CA2 input -—— :
I CAZ output 0 0 Handshake mode 0 Low transiion ]
0 1 Puise mode on CAl recognized
1 0 CA2 low aciive . .
i 1 CAZ2 high active L High transition

on CAl recognized

6821 PIA Synchronous Interface with the 68000

The PIA is an 8-bit device and occupies either the lower 8 bits or the upper 8 bits of the
data bus. To the processor, it resembles four memory locations (ORA/DDRA, CRA,
ORB/DDRB, and CRB).*

Figure 7.1 illustrates the synchronous interface of the 6821 PIA-1 with the 68000
microprocessor. The decoded address bus, along with the /AS and /VMA signals, gener-
ates the chip selects for the PIA. PIA is connected to the lower data bus D0-D7; ac-
cordingly, /LDS is used to enable PIA-1. The A2 and Al address lines drive the PIA
register select inputs RSI and RS0 and select either ORA/DDRA, CRA, ORB/DDRB, or
CRB (for 00, 01, 10, 11 conditions on RST and RS0).

Interface logic senses the chip select signals and generates the VPA signal to the
processor. VPA signifies a successful bus cycle and data transfer. The E clock initiates
the data transfers and concludes the bus cycle.

Interface with any synchronous peripherals is similar to the PIA interface.

I/O Interface and Design Applications

One of the most important requirements of a digital system is the capacity for generating
timing waveforms to accomplish various tasks at different intervals. With a microcom-
puter, such waveforms can be easily generated with great flexibility.

The following example problem deals with the initialization of the PIA in wave-
form generation.

Example 7.1 6821 PIA-1 1/O application: waveform generation.

In an industrial application, it is necessary to generate an 8-bit binary word, the value of
which changes as $01, $02, $04, . . ., $08, and another 8-bit binary word, the value of
which changes in increments of three ($00, $03, $06, . . .). Using the 68000/PIA-1
interface of Figure 7.1, develop:

1. the necessary hardware
2. the software to accomplish this task. The base address of PIAis at $020021.

Solution

1. Hardware: The hardware of Figure 7.1 is self-contained. To obtain two 8-bit binary
words, both ports must be configured as outputs. Output drivers may be used to in-
crease drive capability.

2. Software: Figure 7.3 indicates the 68000 operating assembly listings to accomplish
the given task. Between lines 5 and 10, all the PIA registers are declared. Lines 11
and 12 initialize the DO and DI registers to $00000000 and $01. These registers will
be used in the rest of the software.

Between lines 15 and 18, all the pins of port A and port B are configured as
outputs by writing $FF into the corresponding data direction registers (DDRs). At
lines 21 and 22, $04 is written into CRA and CRB, which changes b2 in these control
registers to 1 and provides access to the output registers instead of the DDRs.

At lines 23 and 24, the byte contents of DO and DI are output to ports A and B,
respectively. At line 25, the delay routine is called. At lines 26 and 27, DO is
incremented by $03 and DI is rotated one position left. These operations provide the
next binary words to be output to ports A and B. At line 28, the BRA instruction
loops the program back to line 23.

The delay routine between lines 31 and 34 produces a software delay, the value
of which depends on the initial contents of D3. This delay is the amount of time
during which the output port values remain the same.



FIGURE 7.3 The 68000 listings for timing-signai generation with PIA,

LINE ADDR | regis(c:tt'sls POSbSible to interface another PIA to the upper part of data bus. The control
can be appropriately configured in a manner simi )
. er similar to ibed i
1 ;PIL ctr 214789 ple 7.1 to effectively use the control signals. We will deal ‘thth‘at descr}bed in Bram-
2 pinit i%l ize ilﬁ PIA in another example which follows with interfacing the second
3 OP :
4 ORG $1200
¢ pooa0o2l DDRA EQU $020081
b nuuegneg ORA EQU :gggggg Example 7.2 Interfacing a second PIA
7 0002008 CRA EQU In e £ 4.
& 00020025 DDRB EQU $020025 ¢ the control system application described in Example 7.1, it is now necessary to i
9 DOO2002S ORB EQU 50200825 ace a second PIA, PIA-2, onto the upper part of the data bus Ay fo e
10 00po20927 CRB EQU $0200827 .
11 0OO01200 4288 START CLE.L DO 1. - . .
12 0oooL2o2 1238 00031 NOVE.B 03,D1 ) Describe how this can be accomplished.
13 .get access to DDRA & DDRB . What is the memo, 22 oi " ,
B4 .set up Ports A & B as outputs 3 Iti i ry map of PIA-2 given the conditions described?
1% 0000120k aggg oooo o0Ge MOVE.B #300,CRA . rt.li te(ilutred that a low-to-high transition be recognized on CAl to enable the inter
pt and generate a positive pulse on CA?2 fi . -
1L 0O0OOCLZCE 13FC O00GO 0602 MOVE.B #%00,CRB . . X or PIA-2. Explain the
D057 ' that will accomplish this task. P sequence of events
1? 00001216 1LIFC OOFF 0002 MOVE.B #$FF,DDRA
0021 Solution
14 000012LE L3FC OOFF 0002 MOVE.B #$FF,DDEB
.9 00es qet access to OBA & ORB 1. :!gl-fhln;e;*facg: The P}A-Z‘interface is similar to the PIA-1 interface of Figure 7.1
a0 ‘and output data i e following modifications: "
21 0000LRek LIPC 0BO4 00DE MOVE.B #$04,CRA
on23 PIA-2 68
22 NO00L22E 13IFC 00G4 0002 MOVE.B #$04,CRB 000
poa2v Co _ .
53 popolR3kL 13C0O 0002 002 LOOP MOVE.B DO, ORA CHr;I[‘FLmQ? data lines to D8—D15 data lines
oz poogl23ac L3cL Dpone2 0025 MOVE.B D,ORB oth ENABLE to UDS
25 Q0001242 L1LD& BSR.5  DELAY er control, address, and
2L 00001244 5h40 ADDQ.W #$03,D0 chip selects same as PIA-T" .
27 00003246 E319 ROL.B  #%01,D1
28 00001248 GBOEC BRA.S  LOOP 2. Me
gqu oponi24h 4EYL 4 lNOP b . . “d“”'y map of PIA-2: PIA-2 occupies the upper (or even) byte locations com-
jdelay subrout-ie pared to PIA-1. Thus, the base address of PIA-2 i
31, 0ppg124C 363C 0100 DELAY MOVE.W #3$0100,D3 The me ! is at $020020.
32 00001250 5343 AGAIN SUBQ.W #3%01,D3 mory map of PIA-2 is as follows:
33 00001252 66FC BNE.S  AGAIN
34 00001254 4E?S RTS
34 00001256 END ORA/DDRA at $020020
CRA at
BSSEMBLER FRRORS = i $020022
SYMBOL TABLE ORB/DDRE at $020024
AGATN 00001250 CRA DOO20023  CRB 00020027 DDRA 00020021 CRB at $020026
DDRB 00020025 DELAY 0000%24C LOOP 0000123k  ORA  O002002% 3 )
ORB po020025  START 00001200 ’ Confrol word in CRA of PIA-2 for CAl and CA2 control: Using the CRA form
of Figure 7.2, it can be seen that writing a control word a

b7 b6 b3 b4 b3 b2 bl b0

00101111 =8F

E:to CRA t?f PIA-2 defines CA2 as a pulse output, recognizes the CAl low-to-high
ansition from the /O, and activates the IRQA interrupt line to the 68000
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FIGURE 7.4 The 65230 PYT pin diagram and architecture. {Courtesy of Motorola, Inc.}

Consider port A of PIA-2 to be cenfigured as input. In respense to the CAl
transition and corresponding interrupt, the 68000 will access and read port A of PI1A-
2. Whenever the /O port is accessed, a CA2 positive pulse, equal to the duration of
one E clock, will be generated. The I/O device recognizes this pulse on CA2 and
moves (o the next /O operatiﬂn.5

The /O device generates a low-to-high transition on CAl when the next /O
data are available on port A. /O operation becomes repetitive. The pulse-mode op-
cration is equally valid when the port is configured as an output and the processor is
writing data to the /O device.

7.2 THE 68230 PARALLEL INTERFACE AND TIMER (PI/T)

Figure 7.4 illustrates the pin configuration and general architecture of the 68230 PI/T
device. It is contained in a 48-pin DIP package and is fabricated with HMOS technology.
The 68230 PI/T consists of two bidirectional 8-bit ports A and B and a multipurpose 8-
bit port C. The bits are individually programmable to be either inputs or outputs for all
three ports. In addition, there is a 4-bit H port for handshake operations. The HI and H2
lines are associated with port A. The H3 and H4 lines are associated with port B. Port C
can be configured to handle the interrupts and the DMA functions.

Registers and I/O Ports

The 68230 PI/T consists of 23 active 8-bit registers as shown in Figure 7.5. Information
written into the appropriate registers by the 68000 processor controls the 68230 opera-
tion. Some of the PI/T registers are read-only and contain the status information pfthe
I/O operations. The 68000 processor reads this information and performs the appropriate
I/O functions as defined by the software. The 68230 PI/T device is very complex; how-

ever, we will present some of the basic features. For further detail, data sheets should be
consulted.

Port Control Registers (PGCR, PACR, PBCR) The modes of operation of ports A and B
and port H (handshake) are controlled by the control words written into the port general

control register (PGCR) and the port A/B control registers (PACR/PBCR). These control
registers are illustrated in Figure 7.6.

Data Direction Registers (PADDR, PBDDR, PCDDR) The direction of each bit in
the port is determined by the contents of these registers. If there is a 1 in a bit position,

the corresponding port bit is an output; if there is a 0, the corresponding port bit is an
input. For example,

111100600

written inte PADDR configures the lower four bits of port A as inputs and the upper
four bits as outputs.



Number® Symbol Name Function
1 PGCR Port General Control Reg. Controls port modes
3 PSRR Port Service Request Reg. Controls service routines
5 PADDR Port A Data Direction Reg. Controls direction PA
7 PBDDR Port B Data Direction Reg, Controls direction PB
9 PCBDR Port C Data Direction Reg. Controls direction PC
B PIVR Port Interrupt Vector Reg. Contains interrupt vector
D PACR Port A Control Reg. Controls H1/H2
F PBCR Port B Control Reg. Controls H3/H4
31 PADR Port A Data Reg. Contains 11O data PA
13 PBDR Port B Data Reg. Contains [/O data PB
15 PAAR Port A Alternate Data Reg. Contains instant PA
17 PBAR Port B Alternate Data Reg. Contains instant PB
19 PCDR Port C Data Reg. Contains /O data PC
1B PSR Port Status Reg. Contains siatus H1-H4
1D — —— Not used
iF — — Not used
21 TCR Timer Control Reg. Controls timer modes
23 TIVR Timer Interrupt Vector Reg. Contains timer vector
25
27 CPRH Counter Preload Reg. High
29 CPRM Counter Preload Reg. Med. Contains 24-bit preloaded number
2B CPRL Counter Preload Reg. Low
2D —
2F CNTRH Counter Reg. High
31 CNTRM Counter Reg. Med. Acts as a 24-bit counter
33 CNTRL Counter Reg. Low
35 TSR Timer Status Reg. Contains status of counters
37 — — Not used
39 — — Not used
3B — — Not used
3D — —_ Not used
3F — — Not used

*Relative address increment with respect to the base address.

FIGURE 7.5 The 68230 PI/T register structure.

FIGURE 7.6 (a) The PGCR
control register and (b) the
PACR control format.

b7 b6 b5 b4 b3 b2 bl b0

PGCR MODE | HM | HI2| M4 | H3 | H2 | HI
l Mode Sense
00 : Mode 0 => (Ports and bits - (1 : Low active
Unjdirectional  individually 1 : High active
8 bits programmable)
™ {:Disable H34/Hi2
01:Model => {(Ports A and B are 1 : Enabie H34/H12
Unidirectional  together input
16 bits; or output)
10:Mode 2 => (Bach port input for
Bidirectionat read and output for
8 bits; write)
11 :Mode3 3> (Ports A and B together
Bidirectional input for read and
16 bits output for write)
(a)
b7 b6 bS b4 b3 b2 bl b0

PACR SUBMODE | H2 CONTROL

H2 H1 Hi
INT | SVC | STAT

00 : Submode O 0XX :H2 input Specifies
Double-buffered input 1900: H2 output Hl status
negated
01 : Submode 1 . ;
Double-buffered output 101 : H2 output ¢: gllwtzt:;;tggf nd
asserted :
1 X :Bit 0 L e
1 10: H2? handshake {' ’
mode 0 : H2 interrupt disabled
1 : H2 interrupt enabled
110:H2 pulse
mode

(b

of the handshake port H. The PIVR and TIVR contain the 8-bit address for the interrupt

Data Registers (PADR, PBDR, PCDR) These registers contain the latched 1/0 data.
Input data is latched during a read operation and output data is latched during a write

operation. When the alternate data registers are used, however, I/O data is not latched,
and is instantaneous.

Other Registers (PSRR, PSR, PIVR, TIVR) The PSRR controls the service requests of
the interrupts, DMA, and the signal lines H1-H4. The PSR contains the status

vectors to be used by the processor. The other counter/timer-related registers are for tim-
ing applications.
Interfacing the 68230 Pi/T

Figure 7.7 diagrams the required connections between the 68000 and the 68230. The
68230 PI/T is driven by the 68000 processor clock. The decoded address bus, gated
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FIGURE 7.7 Interfacing the 68230 PUT and the 68000,

with LDS, generates _
AS5—Al drive the register select input
isters from the register bank.®

The PY/T data lines D7—~DO are connected to the |
DO, since the 68230 is selected via
sor directly drive the correspondin
PC3, PCS, PC6, and PC7 are interfaced with the 68000 through the

the chip select CS signal to the 68230. The lower addre§s lines
lines RS5-RS1 to select one of the 23 active reg-

ower byte of the data bus D7—
LDS. The R/W and RESET signals from the proces-
g inputs of the PI/T. The multifunction port signals
interrupt control

logic as indicated. PCO, PC1, PC2, and PC4 are available for any other I/O interface.
Ports A, B, and H are used for the I/Q interface.

We will now review the concepts introduced thus far with the help of an example
problem.

Example 7.3 The 68230 PUT interface.

Consider the interface diagrammed in Figure 7.7.

1. What is the address range for the 682307
2. Where are PGCR, PADDR, and PBDDR located?

3. Suppose it is necessary to program port A as an 8-bit output port and port B as out-
put on lines PB7—PB2 and input on lines PB1 and PB0. Configure the appropriate
registers.

Solution

1. Address range: The Y1 output of the address decoder network is active low for the
address range $010000 to $O1FFFF. (Refer to Section 6.3 of Chapter 6.) It is further
gated with the A6 and LDS signals. The CS signal is generated when Y1, LDS, and

Ab are all at a low level, There is a redundant memory map for the 68230 on the odd
address boundary as shown:

Primary —— $010001 to $01003F
$010081 to $0100BF

$010101 to $01013F
Redundant — :

2. Locations of PGCR, PADDR, and PBDDR: Following the given address range

and Figure 7.5, all the registers are sequentially mapped at odd byte locations as
shown (primary): :

PGCR located at 010001
PADDR located at 010005
PBDDR located at 010007

Redundant locations are also possible.

3. A and B ports (refer to Figure 7.6): Both ports are used in the unidirectional 8-bit

mode (mode 0). As such, PGCR, PADDR, and PBDDR should be initialized as in-

dicated in the diagram that follows. The H port is not used, and PACR and PBCR
need not be initialized.



b7 b6 b5 b4 b3 DL Bl DU

Mede U PGCR olo]Jolojlojolojo

A output
Port A cutpu PADDR ) ) 1 | i

Port B: PBO and PBL
inputs; others ontput

PBDDR 1

In the preceding example, because of the selection of the 68230 due to the /LDS
signal, the registers are mapped at consecutive odd byte locations. By changing /LDS to
/UDS and connecting the data bus of the 68230 to the upper byte of the 68000 data bus
(D8-D15), the 68230 can be easily mapped at consecutive even bytes. To make full use
of the 16-bit data bus of the 68000, one PI/T device is interfaced with the lower byte and
a second PI/T is interfaced with the upper byte of the data bus.

7.3 DATAENTRY AND DISPLAY SYSTEMS

In any computer system, data entry and data display are of utmost importance. A simple
data entry mechanism may be a switch or a keyboard. A complex data entry mechanism
may involve sophisticated sensors. In either case, the processor reads an input port and
interprets and validates the entered data.

Similarly, a simple data display may be a light-emitting diode (LED). Complex
data display may involve sophisticated graphics on a terminal. In either case, the pro-
cessor sends the processed data to an output display port.

The Keyboard and Hex Display Interface

As illustrated in Figure 7.8, the keyboard/display interface to the 68000 through the
68230 PI/T combines data entry and display concepts. The keyboard encoder (74C922)
activates one of the X columns and scans the Y rows to detect if any key has been
pressed. When a key is pressed, the 74C922 encodes the X and Y data to corresponding
binary data on its ABCD outputs. In addition, a data-valid signal is generated on its DV
output whenever a valid key is pressed.

System Hardware and Software Considerations

Hardware The encoded ABCD signals and the DV signal from the encoder are inter-
faced to port B. Two 7-segment display devices are interfaced to port A. These devices
(7300 series) have internal decoders and drivers and display the pressed key in hex for-
mat. For this application, port A is configured as an output port and port B as an input
port.

FIGURE 7.8 Keyboard/display 68230 PI/T

interface with the 68000 through HEX 740922 kevboard ( a;;_d 680;)(; .
Ey OAT 5€C Igure . ar

the 68230 PI/T. (Courtesy of keyboard encoder hardware detaiis)

Aldo Aden and Ignacio Martinez:
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2 16
4151617 = V2 B »| PRI
3 15
il I I > v3 c »| pB2
4 14
c d e f . D »| B3
F F F 7 12
t— X4 DV +{ PB4
8
X3
o MASK
X2
i1
X1 0SCI
iLSD Vee
- PAD
- PAl
- PA2
7300 displays -t PA3
with internal L Cind
drivers
MSD Vee
- PA4
-t PAS
-t PAG
- PA7
- Gnd

All capacitors are in microfarads.

Software Figure 7.9 is the system flowchart. The assembled listings for the keyboard/

display interface are indicated in Figure 7.10.

Between lines 15 and 21 in the listings, the initializations are accomplished. The

68230 is configured to operate in mode 0 by loading 00 into the PGCR. Port B is con-
figured as input and port A as output by loading 00 and FF into the respective data di-
rection registers PBDDR and PADDR.

The main routine between lines 23 and 36 calls the keycode subroutine to obtain
valid key code. It then sends the valid key code to port A to be displayed. The main
routine also calls the check subroutine to check whether any new key has been pressed.
This is necessary to ensure that the same key is not being recognized all the time. When
a second key is pressed, the main routine shifts the old key code to the MSD position,
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INITIALIZE: PORT A
OUTPUT; FORT B INPUT

[ L ¥

READ KEYBOARD

NO

YES

DISPLAY IN LSD POSITION

|

READ KEYBOARD AGAIN

YES

NO

i

READ KEYBOARD AGAIN

MICROQ AND PI/T
OPERATIONS

a N

READ PORT B

DATA VALID ?

KEY CODE TO PORT A

READ PORT B

DATA VALLD STILL HiGH?

READ PORTB

NO

YES

DATA VALID ACTIVE
AGAIN?

PREVIOUS CODE TO MSD
PRESENT CODE TO L3D

SHIFT PREVIQUS CODE
4 POSITIONS LEFT

L 4

DISPLAY BOTH DIGITS

BOTH KEY CODES
PORT A

ws|

NO

DATA VALID
STILL HIGH

£
5
&
?
4]

q
L0
L1
Le
13
L4
15
1k

17
14

19
20
21
ea
23
24
25
£k
27
28
29
30
31
3z
EE
34
3s
£
av
38
EG
40
41
42
43
4z,
45
46
47
48

LINE ADDR
1 ; KEYBOARRIVDISPLAY INTERFACE
o; ADEN/MARTINEZ/SUBBARAO 7/8k
3; READS AND DISPLAYS VALID KEY CODE

; L5238 PIL/T REGISTERS DEFINED

poooL000y  PGCR
gooLnogs PRADDR
gooyooay? PBDDR
0oo0L0011  PADR
GcO0LD0L3 PBDR
pooo2000  STERP

P.I.U

LLEN

OFT

ORG
EQD $01C001
EQU $010005
EQU §oi1coov
EQU $01001
EQD $010013
HEQU s$ooeoan

; INITIARLIZE REGISTERS RND PL/T PORTS

goooloco L3FC 0000
0001
0oooioo&é L3FC 00040
goagv
0o0ooi0w0 13FC DOFF
0ae6s
0a0010L8 ebL?C 0001
00DCLBLE 267C andl
ooboige4 2E?C dGao
;KEY PROCESSING AND
aagnyo2a 4<80
0000LB2C 426
00001G2E b1ik
100018340 1660
00001832 4E7D
Jooc1y834 L2na
aoo0y836 6128

a0aL INIT MOYE.B

o0oy MOVE.B
000% MOVE.B
g0yl MOVEA.L
o013 MOVEA.L
2000 MOVER.L

108
A
$1000

;GENERAL CONTROL REG
;PA DATA DIR REG

+PB. DATR DIR REG

;PA DATA REG

;PB DATA REG

;STACK POINTER VALUE

#500,PGCR; MODED
#%00,PBDDR; PB INPUT
#$FF,PADDR;PA OUTPUT
#PRDR,A3;R3 REFERS PADR

#PBDR, R4 ;A4 REFERS PBDR
#5TKP,A?;STACK DEFINED

DISPLAY MAIN ROUTINE:

gocoro3dé
oOco103A
oooolnac
g0ooL03E
ooonxos0
goonuose

&10C
ESDS
pooL
1640
E1ll&
LOES

gooDids4 4E7L

;KEY CODE ROUTINE:READS PB:

0oo0L0s6 10L4
ooooio<a Gaod 0004
gopoi0n4c E7FH
0CO0L04E Ccedd 000F
0001056 4EYS

MAIN CLR.L  DO;CLEAR DO
CLR.L Dl :CLEAR D1

AGRIN BSR.S  KEY CODE
MOVE.B DO, (R3) ; TO DISPLAY
NOP _
MOVE.B Dp0O,DL  ;SAVE OLD KEY
BSR.S CHECK  ;SAME KEY CHECK
BSR.S  KEYCODE ;GET KEY CODE
LSL.B  #4,DL  ;OLD KEY TO MSD
ADD.B  DL,DD  ;TWO KEY CODE
MOYE.B DD, (A3) ;DOUBLE DISPLAY
BSR.S CHECK  ;SAME KEY CHECK
BRA.S  MAIN :LOOP BACK
NOP

KEYCODE MOVE.B
BTST
BEQ. S
AND.B
RTS

;CHECK ROUTINE:CHECKS IF SAME KEY AND

00001058 1014
00anx0sa oa0o0 OCC4
DOD0LOSE GLEFA
00003064 4E?S
0000L06E

CHECK MOVE.B

OBTAINS KEY CODE AS LOW NIBRLE INW DO

(A4),D0;READ KEY
#4,D0 +yDATA VALID 72
KEY CODE

#:0OF, DO

LOOPS UNTIL NEW KEY
(R4),DO;READ KEY

BTST #4,D0
BNE CHECK

RTS

END

FIGURE 7.10 The 68230/68000-based keyboard/display system listings.




puts the new code in the LSD position, and displays it (lines 31 to 33). The program then
goes back into the main loop.

The keycode routine between lines 38 and 42 reads port B and loops until the
data-valid signal is high (signifying that a key has been activated). It then puts the valid
key code in the lower nibble of the DO register and returns to the main routine.

The check routine between lines 44 and 47 checks whether the same data-valid
signal is present, signifying that the same key has been kept pressed.

The following example problem provides a review of the keyboard/display inter-
face with the 68000/68230 system.

Example 7.4 Keyboard/display interface with 68000/68230 system.
Consider the hardware and software of Figures 7.8, 7.9, and 7.10,

1. What happens when the same key is kept pressed continuously?

2. The keys are pressed in sequence as follows:

12345

Indicate how the keys are displayed.

Solution

1. Same key: It will be displayed in the LSD position. The program goes inte an indef-
inite check loop and will not recognize any other key. This concept is known as key
lockout,

2. Key display: After two key entries, the MSD is cleared to the 0 condition. The dis-
play is as follows:

MSD LSD

after 1st key 0
after 2nd key 1
after 3rd key 0
after 4th key 3
after 5th key 0

e R e b e

The preceding example sheds light on the initialization of the appropriate registers
of the 68230 PI/T. In I/O applications, it is usually necessary to analyze the existing
software and predict the results, as we have done in the second part of the problem.

The keyboard and segment displays may be replaced by other data entry and dis-
play mechanisms. The concepts we have discussed remain valid. Modifications, such as
software switch debouncing, can be accomplished by checking the key code for same-
ness with a delay in between.

Other Forms of Keyboard and Interface Schemes

The hex keyboard we have examined is of limited scope. The computer and other key-
boards have up to 128 key positions. A 128-position keyboard can be wired as a 16-by-8
XY matrix; however, the key positions can be conveniently located. Figure 7.11 shows a
conceptual 128-position keyboard interface with the 68000 through the 68230 PI/T port
B.

FIGURE 7.11 Conceptual B/1
128-key position keyboard 16 X 8 key matrix multiplexer
interface fo the 68000.
YO
H Z
KIS ¢v v v e vt X0 Y7
select
4f16 decoder
select
P P PP P PP P
B B BB B B B B
o1 2 3 4 5 b 7
Pont B or the 63230 PI/T

| |

68000 processor

The processor activates one line of the 16-column input lines (X0-X15) through a
4/16 decoder connected to lines PBO through PB3 of the PI/T. It then senses one line of
the eight-row output lines (Y0-Y7) through an 8/1 multiplexer driven by the lines PB4
through PB6 of the PI/T. The Z output of the multiplexer is connected to the PB7 line.
When a key is pressed, the Z output goes active for a unique combination of the digital
word on lines PBO through PB6. This essentially generates a 7-bit binary code for the 128-
position keyboard.

In the case described, only port B of the PI/T is used. PBO through PB6 must be
configured as outputs and PB7 as input. The software generates a sequential 7-bit word
on lines PB6 through PB0O. When a key is pressed, the PB7 input is activated. The pro-
cessor senses this condition and matches the 7-bit code on lines PB6 through PBO to the



pressed key. Additional software can process this binary information to generate other
key codes, such as ASCII. The concept can be extended to any s.ze key matrix.

In order to display one of the 128 keys, more sophisticated display units, such as
the terminal or alphanumeric type, are required.

7.4 ELECTROMECHANICAL APPLICATIONS

Many industrial applications depend on position control, which can be accomplished
with the help of stepper motors. Stepper motors can be controlled by microprocessors
for flexibility and accuracy. In this section, we will describe a 68000-dnven electrome-
chanical position control system using the stepper motor. *

Rotational and Linear Stepper Motors

In Figure 7.12, we see some typical stepper motors. They are available in the range of
0.9 to 7.5 degrees per step. Each stepper motor has four windings: W0, W1, W2, and
W3. When the code on these windings changes in a given sequence, the stepper rofates
one step either clockwise or counterclockwise, as indicated in Figure 7.13. Linear step-
pers have an internal gear mechanism to convert rotational motion into linear motion.

FIGURE 7.12 Typical stepper
motors. (Courtesy of Airpax,
Inc.)

Counter- W Code (hex) W3 W2 Wi Wi Function
clockwise
OF 1 i 1 14 Standby
03 0 o 1 1 First CW code
09 1 0 0 1 Move one step
oc 1 1 1 0 Move one step
06 0 1 1 0 First CCW code
J oF [ 1 1 1 Standby
Clockwise 0: Activates the stepper coil,
1: Deactivates the stepper coil.

FIGURE 7.13 W code word for stepper-motor windings.

Stepper-Motor Interface Considerations

Hardware Figure 7.14 shows interface of a 7.5-degree resolution stepper motor with
the 68000/68230 PI/T system. The four windings (W0- W3} arc connected to port A of
the 68230 PI/T through optoisolators and high-current drivers, as shown. Optoiso-
lators prevent the inductive transients from the motor windings from feeding back into
the microcomputer module. The sensor inputs on port B provide an S control word for
the stepper movement. The format of the S control word is as follows:

b7 bo | bS bd | b3 b2 | bl b0

|1— Number of steps of rotation —D’

b7 = O Clockwise
1 Counterclockwise




¥ MOoLor
68000/65230 recmonics e LINE ADDR
microcompiter glectr Voo ? l:stepper 2t49
“x? w3 OPT A
3 ORG $1c00
SN7406 D3 Q3 4;declare 68230 registers
driver 220 = 5 00CL0OCDL PGCR EQU $0L000L
o DO AN~ b 00010005 PADDR EQU $01L0005
R = ¢ G000xooay FBDDR EQU $010007
A3 ohms B3 | MOCI005/8 8 00010013 PADR EQU $010011
9 DO01001L3 PBDR EQU $010013
v Motor 10 DD0LORLD PACR BQU $01001D
e ? windings 113 000LDGLF PBCR ECGU $01L031F
- o2 w2 12;initialize Port A output & Port B input
PA2 o 13 00001200 13PC G0OC 000L INXIT MOVE.B #$00,PGCR
0aos
14 00001208 L3FC 0000 0001 MOVE.B #$00,PACR
onLD
Voo ? 15 0D001<10 L3FC DOOO 000 MOVE.B #%00,PBCE
Wi OOLF
D1 Ql L6 008012284 13IFC OODC 0ONOL MOVE.B #$00,PBDDE
PAL 2 il _
17 0000Le2d 13FC DAOFF OQOOL MOVE.B #3FF,PADDR
goas
v L8;initialize stepper codes
« 9 19 00001228 143C D033 MOVE.B #$33,D2 ;cw code
Do Qo WO 20 0600122C 163C 00kk HOVE.B #%$bL,D3 ;ccw code
PAD i 00001238 153C OOFF MOVE.B #$FF,D4
A0 cdiread X from PB and rotate stepper accordingly
23 00001234 103% DCOL 0043 READ MOVYE.B PBDR,DO
24 0000124A E704 BEQ.S NULL ;null routine
¢5 oDO0le3ac E3ca LSL.B #1,D0
’ 26 0000L%e3dE b40C BCC.S CH ;Clockwise routine
PR7 = 57 Sensor 27 000812408 L51& BCS5.S CCH  ;counterclockwise
. electronics <‘|:: Sensor inputs 24 08001L242 LOFPO BRR.S READ
. : . 29 00001244 13C4 DCOL 0011 NULL MOYE.B D4,PARDR
PBO [ S0 Ve =3 volis 30 000D1E4R GDES BRA.S  READ
Voo = 12 volts 41 0000124C 13ce 000l 0011 CW MOVE.B D2,PADR
_ J2 oOooglese eLld B5R.S DLY ;delay routine
. . 230 PIT system. 33 0ODOX254 EZ21a ROR.B #L,D2
FIGURE 7.14 Typical interface of the stepper motolr ta:ngltlj'l)e 68000/68 ¥ 3% 0000Ioer cenn SUBO.B ¢ DE
(Courtesy of J. Wongchang, J. Launez, and F. Chorlett, FIU). 35 00001256 LLFZ BNE.S CW
i 0000L2SE &OD& BRA.S READ
37 0O00L25C 1L3C3 O00r 003 CCW  MOVE.B  D3,PADR
Ja 0000%2ke e10A BSR.S DLY ;delay routine
. . 39 C¢OO0032&4 EJLB ROL.B #uL,D3
If the stepper code does not change, the stepper will not rotate and stays in the 40 0000126L 5500 SUBQ.B #2,D0
same position. When the code. is change(.L the.re is some delay before the stepper re- 23 ggggig ‘gi Eggg gggg ‘f;ggn
sponds. A delay of 10 to 100 milliseconds is typical. 43 000D1ELC 2A3C 0OOD &1A8 DLY MOVE.L #25000,D5
44 00001272 4E70 AGAIN NOP
Software The operating listings for the preceding stepper-motor system are given in 45 (0000l2¢4 D48S 0ONO0 DCRD SUBI.L #01,D5
) h . : d initial- 46 0DODOLT7A 66Fh BNE.S  AGAIN
Figure 7.15. Between lines 5 and 21, the required PI/T registers are declared and ini 47 0DODL27C ZE7S RTS
ized. The 68230 PI/T is set up for mode 0 operation, with handshake lines disabled. Port
A is configured as an output port and port B as an input port. The D2 and D3 registers
are loaded with the first stepper code words for the clockwise and counterclockwise FIGURE 7.15 The 68000 assembly listings for the stepper-motor interface.
routines, as depicted in Figure 7.13.




The READ module between lines 23 and 28 reads the S control word, checks it,
and branches to the appropriate routines. The NULL module at lines 29 and 30 outputs
the null code to the stepper and branches back to the READ module.

The CW module between lines 31 and 36 outputs the clockwise code to the step-
per, calls the DLY subroutine for the stepper-response delay, and generates the next
clockwise sequential code (ROR.B #1,D2 instruction). It then goes into the CW loop
until the DO register (which contains information about bits b6 through bO of the S con-
trol word) is decremented to zero. In effect, this amounts to rotating the stepper in the
clockwise direction, as specified by the S control word. Finally, the CW module
branches back to the READ module.

The CCW module between lines 37 and 42 is similar to the CW module. It rotates
the stepper in the counterclockwise direction as specified by the S control word. It also
branches back to the READ module.

The DLY module between lines 43 and 47 generates the delay required for the
stepper motor to respond.

We will now review the stepper-motor interface by means of an example problem.

Example 7.5 The stepper-motor interface.
Consider the stepper-motor intetface described in Figures 7.13, 7.14, and 7.15.

1. Explain in detail how the CCW module works.

2. Assume an 8-MHz processor clock. Compute the approximate delay value for the
DLY routine.

3, The S control word is $OF = 0000 1 11 't. How many times will the stepper rotate
and in which direction?

Solution

1. The CCW module: This module is contained between lines 37 and 42 of Figure
7.15. The software details are as follows:

CCW MOVE.B D3, PRDR ; output counterclockwise
code to stepper.

BSR.S DLY : call the delay routine.'
ROL.B #1.,D1 : generate next CCW code in
the upward sequence.

M Do 1]
SUEBQ.B #2,D0 . subtract 2 fronm 0a.
: ° ' contains left shifted S
control word.

BNE.S CCW : branch back to ccy¥ until
D0 is decremented to
Zerc.

BRA.S READ ;: branch back to READ

module.

2. DLY routine timing Td: The T(R/W) values for the instructions in the DLY routine
are as follows (refer to Section 3.5 of Chapter 3):

T(R'W)
DLY MOVE.L #<5000,D% 12(3/0)
ARGRIN NOP 4(1/0)

SUBI.L #01,D5 16(3/0) i T = 30
BNE.S - AGAIN 10(2/G) branch taken
8(1/0) branch not taken

The AGAIN loop is tun 23,000 times. Each time it takes 30 T-states, as shown. At 8
MHz, each T-state corresponds to 125 nanoscconds. Thus, the approximate delay
time is as follows:

Td = 25,000 x 30 X 125 nanoseconds = 93.75 milliseconds
3. Stepper rotation: For the § control word:
WF=00001111

The rotation is clockwise, since b7 = 0. The stepper rotates 15 times.

In the preceding example, we have introduced the very practical modular software
approach. It involves writing independent software modules with local parameters and
using them in conjunction with each other to generate system-level software activity.

Position Control Systems

Several stepper motors can be connected to a microcomputer, with each stepper control-
ling one axis. For example, an XY plotter system could have three steppers: X, Y, and Z.
The X and Y steppers would control the X- and Y-axis motions and the Z stepper would
control the Z-axis pen motion. Such a system is illustrated in Figure 7.16. Port A of PI/T-
1 drives the X and Y steppers. Ports B and C of PI/T-1 accept the control words from the
X and Y steppers. Port A of PI/T-2 drives the Z stepper and port B of PI/T-2 accepts the
control word from the Z stepper.

The software involves reading each control word and moving the corresponding
stepper accordingly. Software for each stepper is similar to that presented in Figure 7.15.
Care should be taken to avoid control of one stepper affecting control of another.

A robotic system is a more complex position control system in which as many as
ten stepper motors control individual movements. A parallel printer interface involves
controlling three or more stepper motors. The system interface and the software, how-
ever, are similar to those we have described.’



FIGURE 7.16 X-, Y-, and
Z-position control system using
three stepper motors and a
microcomputer interface.

The stepper-motor interface to the 68000/68230 PI/T system emphasizes electro-
mechanical position control applications. Any complex position control system can be
easily implemented by means of stepper motors and microcomputer control. A three-
stepper system can control XY plotters and a pen-motion mechanism. A robotic system
is a more complex position control system in which up to ten stepper motors control

68000 processor 68230 PIT1
Port A
PAT7 . .PA4 1 X stepper
PA3 .. PAD -t Y stepper
D7..D0 K>
Port B
PB?7..PB{ |= X control word
POSC% .. PCO Y control word
68230 PIT2
Port A
PA3 .. PAD | Z stepper
DI5.. D8 K>
Port B
PB7 .. PBO |- Z control word

PIT! on cdd-byte boundary
PITZ on even-byte boundary

7.5 SUMMARY

In this chapter we introduced the parallel I/O interface with the 68000 processor. Two of
the most popular and widely used devices are the 6821 PI A and the 68230 PI/T.

The 6821 PI A (peripheral interface adapter) is a synchronous 8-bit parallel inter-
face device, belonging to the earlier 6800 microprocessor. It has two individually pro-
grammable 8-bit I/O ports, A and B, along with the associated control signals. The PIA
contains six internal registers and occupies four bytes of memory space. The processor
communicates with the external I/O with the help of these registers.

The 68230 PI/T (parallel interface and timer) is an asynchronous parallel interface
device belonging to the 68000 family of processors. It has three individually program-
mable 8-bit I/O ports, A, B, and C. In addition, it has a 4-bit handshake control, port H.
The PI/T contains 23 active 8-bit internal registers and occupies 23 bytes of memory
space. The PI/T communicates with the external I/O with the help of these registers.

The 68000 family of processors uses memory-mapped I/O in which the I/O inter-
face is similar to the memory interface. The PI A/68000 interface uses the synchronous
bus. In the case of the PI/T, the asynchronous bus is used.

In the waveform-generation I/O application (Example 7.1), we described the inter-
face of the 68000 and 6821 PIA and the PIA initialization schemes. Waveform genera-
tion can be extended to generate any required timing sequence for digital words.

In our discussion of data entry and display systems, we described the interface of
external I/O units, such as keyboards and segment displays, to the 68000/68230 PI/T

systems. Keys can be electrically wired as an XY matrix. The processor generates a dig-
ital word and drives the interface logic for the matrix-type keyboard. The processor then
senses the key closure through the interface logic and generates the appropriate key code
for the closed key using software routines.

individual movements.

PROBLEMS

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Using the 68000/6821 P1A interface, develop a waveform-generator system in which
{(a) port A resembles an 8-bit up counter and port B an 8-bit down counter;

(b} medification of the software results in a 16-bit shifi register type system.

Describe the details of the 68000/6821 PIA interface with PIA-1 base address at 3020021
and PIA-2 base address at $020020.

For the I/O system of Figure 7.7, specify the address locations of all of the 68230 PU/T
registers

{(a) in the primary address range;

{b) in the redundant address range.

Redesign the IO system of Figure 7.7 so that the 68230 is contained between 5010001
and $010003F, without any redundancy.

Configure ard write proper words into the appropriate PI/T registers so that

(a) PA7 through PA3 arc owiputs and PA2 through PAQ are inputs,

(b) PB7Y through PB( are bidirectional, and

(¢) handshake lines are not used.

Configure and write proper words into the appropriate PUT registérs so that

(a) ports PA and PB are 16-bit bidirectional,

(b) port H is low active, and

{¢) the H interrupts are disabled.

Redesign the KO system of Figure 7.7 interfacing two 68230 PUT devices. The memory
map indicates PI/T-1 base address at $010000 on an even byte boundary; PI/T-2 base
address at 010001 on an odd byte boundary.

Given the conditions of Problem 7.7, describe the memory map of both 68230 devices in
detail.

State whether the system of Figure 7.7 will function properly under the following
conditions:

{a) L.DS and UDS are interchanged.

{b) LDS is inactive all the time.

Bricfly explain your answers.

Design an IO system with two 68230 PIT devices and conceptualize how to accomplish
the following tasks:

{a) Drive 32 individual relay coils by the 68230 ports,

(b} Drive 16 individual relay coils and read in a 16-bit YO control word.



7.11 Repeat Problem 7.10, with the system driving all 32 relay coils, but also accepting 32-bit

- 7.23 Design a solar tracking system according to Figure 7.17, St ini i
control information on the same ports. (Hing: External multiplexers may be required.) & 8 5y & 2 eppet I, containing optical

schsors, rotates between 0 and 180 degrees in 24 steps and identifies the maximum

7.12 With information from the data sheets, fully explain the operation of the keyboard and the intensity position. Stepper 2, containing the solar plates, then rotates to the maximum
74C922 interface with the 68000/68230 gystem, intensity position, The solar stepper position should be changed once every ten minutes.
7.13 Redesign the keyboard/display interface system to allow for an extended display to 4 hex Also develop the software for this system.
digits. Port C may be used to drive the extra display digits.
Write the software to achieve the display shift. (The old digit is to be shifted io the FIGURE 7.17 For problems . L L)
MSD position and the newest digit is to be displayed in the LSD position.) 723 and 7.24 . Y e
7.14 Analyzing the software of Figure 7.10, *
(a) specify the condition of the display at the time of power-up; 180 — : t
(b) at the beginning of the program; @ 0
{c) when the program is running in the loop and the system reset is activated.

Sensor  Solar

7.15 The following keys have been activated in sequence:
stepper  stepper

1324576809 7.24 Repeat Problem 7.23 so that the solar stepper position

(a) is updated every minuic;

Using the software of Figure 7.10, show how they are displayed in pairs. (b} is updated continuously.

7.16 Modify the software of Figure 7.10 so that

(a) before any key is pressed, 00 will be displayed;
(b) before any key is pressed, a flashing FF will be displayed.

(#fint: The sensor stepper has to scan all 24 positions before moving the solar stepper.)

7.25 A conveyor-helt system is iliustrated in Figure 7.18. The S input controls both steppers, as
shown in the accompanying table. Consider 7.5-degree steppers. Slow movement

7.17 With refgrencc to the software ‘of F’igure 7.. ?0, what will be displayed if two keys are corresponds to 24 steps per minute. Fast movement corresponds to 96 steps per minute.
pressed simultancously? What is this condition called? Design the system with hardware and software.
7.18 Design the hardware and software for the ASCII keyboard interface indicated below. You 7.26 In the preceding problem, the S3 input is a safety input. Design a safety y‘ tem in which
may use the system video monitor to display the typed characters. power will shut down and an alarm will sound if 53 is active high for more than a minute
of a continuous basis.
FIGURE 7,18 For problems §3 52 81 50
ASCH ] 68230 68000 VIDEO 7.25and7.26 INPUTS " PB?;SQ g)‘ FBo
KEYBOARD PUT MICRO DISPLAY
STEPPER-1 - PAG. . PA3
. STEPPER-2 -t PA4 .. PAT
7.19 For the system of Problem 7.18, develop software that will result in key lockout.
7.20 Repeat Problem 7.19 so that key rollover will occur (that is, keys will be identified in the
order of the scanning sequence of the keyboard}. BELT CONTROL 68000/68230 SYSTEM
7.21 With reference to Example 7.5, design a stepper-motor controller system in which the
stepper completes the clockwise rotation of 360 degrees, reverses to perform the 527 S8t}s0 STEPPER-1 STEFPPER-2
counterciockwise rotation, and so on.
. . ol]G6} o STILL STILL
{(a) In %ntewals of 100 milliseconds per step. S CONTROL ofbof STILL CW SLOW
(b} In intervals of one second per step. TABLE ol i1q0 STILL CW FAST
7.22 Redesign the stepper-conirol system of Example 7.5 so that each time the stepper is ? é (1) C\S'TSIII:SW ccg.ﬁ]jf W
activated it goes through tloft CW FAST STILL
(a) a 30-degree rotation; 1l]1¢0 CCW SLOW ST]LE
(b} a 60-degree rotation. e STILL STIL
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Objectives

In this chapter we will study:

Principles of serial data communication

Architecture of the 6850 ACIA and interface with the 68000
Implementation of the RS-232 serial interface

Architecture of the 68901 MFP and interface with the 68000
System applications using the serial interface,

8.0 INTRODUCTION

Slower I/O systems, such as keyboards, terminals, modems, and other electromechanical
units, usually communicate with fast processors through a serial interface. This reduces
the number of external connections to the processor interface.'

Of the several serial interface and communication devices, the 6850 asynchronous
communications interface adapter (AC1A) and the 68901 multifunction peripheral
(MFP) are widely used with 68000-based systems. The 6850 ACIA belongs to the earlier
6800 family and has standard RS-232 interface properties. The 68901 MFP is a 68000-
family serial interface device and has additional ports and interrupt processing logic
associated with it.



Study of the material in this chapter will provide background knowledge of serial
data communication concepts. It will also help the reader develop practical applications
using the serial interface.

8.1 SERIAL DATA COMMUNICATION CONCEPTS

The information sending station is called the transmitter and the information receiving
station is called the receiver. In serial communications, data travels between the trans-
mitter and the receiver serially on a single line, one bit at a time. The American Stan-
dard Code for Information Interchange (ASCII), as shown in Figure 8.1, is the most
widely used 7-bit code for serial data communications.’

MSD 0 i 2 3 4 5 6 7

LSD 600 6ol 010 o011 w0 lor 1o 1l
0 0000 | NUL  DLE SP 0 @ P ' p
1 0001 | SOH  DCI ! 1 A Q a q
2 0010 | STX  DC2 « 2 B R b r
3 g0lt | ETX  DC3 # 3 C S c s
4 0100 | EOT  DC4 $ 4 D T d t
5 0101 | ENQ  NAK % 5 E U e u
6 0110 | ACK  SYN & 6 F v f v
1 0t11 | BEL  ETB ' 7 G w g w
8 1000 | BS CAN ( 8 H X h X
9 1001 | HT EM ) 9 I Y i y
A 1010 | LF SUB * - J Z i z
B (011 | VT ESC + : K { k {
C oo | Fr FS$ , < L \ i q
D 1101 | CR GS - = M ] m 4
E 1110 | so RS , > N 1 n ~

F 113 | s VS / ? o) - o DEL

FIGURE 8.1 ASCIl codes used in microcomputer systems.

Figure 8.2 illustrates a typical asynchronous serial data frame. The start bit sig-
nifies the beginning of the serial data frame. The next seven bits (b6-b0) represent the
ASCII-coded data element. The next bit is the parity bit, which is used for error check-
ing. If even parity is used, the total number of Is in the data frame should be an even
number, including the parity bit. If odd parity is used, the total number of Is in the data
frame should be an odd number. If the parity does not check out at the receiving end, the
data frame is in error and will be rejected. The last bits are the stop bits, signifying the
end of the data frame. There may be one or two stop bits per serial frame.

FIGURE 8.2 Typical serial data b6 b5 b4 B3 b2 bl bD
frame using ASCIl code. ot 0o 1 1L 9 0 1 0 t 1

I 1 s Y o I
I;K:?—bildalaelcmcm:>| ;I

Start Parity S1oP
bit bit bits
Direction of dala transmission

The rate of data transinission is specified in bits per second and is known as the
baud rate. The transmitter and the receiver are adjusted to the same baud rate. The re-
ceiver recovers the data element from the received serial data frame.

The following example problern will further clarify basic serial data communica-
tion concepts.

Example 8.1 Serial data communications.
Refer to Figures 8.1 and 8.2.

1. Specify what ASCH character is being transmitred,
2. What is the type of parity, even or odd?

3. If the data transmission rate is 300 baud, how many ASCIHI characters can be trans-
mitted per second on 4 continuous basis?

Solution

1. ASCH character: The data clement contained in b6—b0 is

1011001 = $59

which corresponds to ASCII character Y.

2. Parity: Including the start and parity bits, the total number of 1s in the data frame is
equal to 4, which is an even number. Thus, the data frame has even parity.

3. Characters per second: Each serial frame, composed of the start, data, parity, and

stop bits, is 11 bits long and represents one character. At 300 baud, the number of

frames per second = 300/11 = 27.2. Thus, 27 characters per second can be
transmitted.

A baud rate of 300 is relatively slow, but is standard for such electromechanical
equipment as keyboards and terminals. With electronic high-speed serial devices, such
as modems, higher rates of up to 9600 baud are quite common. Other codes, such as the



8-bit Extended Binary Coded Decimal Interchange Code (EBCDIC), are also very
popular. In any event, the basic concepts of the serial data communication remain the

same.

8.2 6850 ACIA GENERAL ARCHITECTURE

The ACIA is a 24-pin DIP device fabricated with NMOS technology. It is on¢ of the
industry standard serial communication devices. In Figure 8.3, the pin configuration and
internal architecture of the 6850 ACIA are diagrammed.*

Registers and IO Ports

As showr in Figure 8.3(b), the ACIA consists of four registers:

the controt register (CR);

the status register (SR);

the transmit data register (TDR); and
the receive data register (RDR).

The control register (CR) is a write-only register and is written by the processor
to configure the ACIA mode of operation.

The status register (SR) is a read-only register and is at the same address space as
the CR. It contains the status of the events associated with the ACIA. The processor
reads and interprets the status information and performs the appropriate operations.

The transmit data register (TDR) is a write-only register. The processor writes
the 8-bit word to be transmitted into this TDR. The parity and control units in the ACIA
insert proper parity, start, and stop bits to the data element and generate a complete serial
frame. The transmit control logic in the ACIA shifts this frame serially on the transmit
data (TXD) line.

The receive data register (RDR) is a read-only register and is at the same
address space as the TDR. It receives the serial data on the receive data (RXD) input
line and converts it into an 8-bit parallel word. The parity and control units within the
ACITA check and separate the parity, start, and stop bits. The processor reads this 8-bit
data in the RDR when it is ready. Any parity error information is sent to the status
register. o

The ready-to-send (RTS) and clear-to-send (CTS) lines are handshake signals
between the ACIA and the I/O units. The data carrier detect (DCD) signal is an input
to the ACIA and signifies that the transmission carrier is in progress. The register select
(RS) line is used to select between the CR/SR and the TDR/RDR pairs.

The receive clock (RXCLK) and the transmit clock (TXCLK) are the shift clock
inputs. They are conditioned by the internal clock generator logic for appropriate receive
and transmit baud rates.

GROUND Ve —| 1 24 |4—— €T3 CLEAR TO SEND
RECEIVE DATA RXD —»| 2 23 |4 BTD DATA CARRIER DETECT
RECEIVE CLOCK  RXCLK — 3 22 |[#—— g

TRANSMIT CLOCK ~ TXCLK —~—| 4 21 [#—» D)
READY TQ SEND RTS *——— 5 20 [#4—— I
TRANSMIT DATA XD *+—— 6 10 | D3
INT REQUEST RQ +— 7 18 |[#——» D4 DATA
CHIP SELECT 2 52 ———m! 8 17 |4—— D5 BUS
CHIP SELECT 0 C50 —md 9 16 |#+— Dg
CHIP SELECT | CS1 ———»f 10 |5 [4—— D7
REGISTER SELECT RS ———a] 11 |4 |#——r E ENABLE
POWER Voo —=—»| 12 13 |#—— RW READ/WRITE
{(a}
Processor O interface
interface
DATA BUS -tt———i CR CONTROL REGISTER 8 | —w wrrs
D0..D7 (8} - CT§
[ —— DD
TRQ -— SR STATUS REGISTER 8 [+——— RXD
e TXD)
TOR TRANSMIT DATA REG 8
Chip selects } Timing
CSO,CS  mmmri] RDR RECEIVE DATA REG 8 *———  TXCLK
Cs? )
——— RXCLK
PARITY GEN PARITY CHK
Select/control
electjcontro LOGIC LOGIC Power
RS e -——
RAV ——ei
E —— CLOCK GEN INTERRUPT —— v,
LOGIC. LOGIC
CONTROL UNIT BUFFERS
(b)

FIGURE 8.3 (a) The 6850 ACIA pin diagram and {b) architecture.

Modes of Operation and Status Conditions of the ACIA

The contents of the control register, as shown in Figure 8.4(a), control the modes of
operation of the 6850. The ACIA can activate the interrupt line IRQ, on occurrence of
such events as filling of the RDR, emptying of the TDR, and activation of the CTS. The
interrupts can be enabled or disabled by bit 7. RTS output can be configured to be active



INT RTS DATA CLOCK AND RESET
CONT CONTROL FORMATTING FUNCTIONS
b7 16 b5 bd B3 b2 bl b
——r——
¢ = IRQ DISABLED
= IRQENABLED ¢ 0 DIVIDEBY 1
0 | DIVIDEBY 16
I 1 0 DIVIDE BY 64
¢ ¢ RTS LOW; [RQ DISABLED 1 1 MASTER RESET
0 | RTS LOW, IRQ ENABLED
1 0 RTS HIGH; IRQ DISABLED
1 1 RTS HIGH; IRQ ENABLED WORD S1ZE  PARITY STOPBITS
0 ¢ 0 7 BIT EVEN 2
o 0 7 - oDD 2
01 0 7" EVEN 1
0 1 1 7" oDD 1
100 g - NONE 2
1 0 | g " NONE 1
b 10 g8 " EVEN i
11t g8 " ODD 1
(a)
RQ PE | OVRN FE CTS pch | TDR RDR
b7 b6 bs b4 b3 b2 bl 10
0 = NO INTERRUPT 0 = RDR EMPTY
1 = INTERRUPT OCCURRENCE 1 = RDR FULL
0 =TDR FULL
i = TDREMPTY
0 = DATA CARRIER PRESENT
! = DATA CARRIER ABSENT
¢ = LOW-ACTIVE CTS
1 = HIGH-ACTIVE CTS

PARITY, OVERRUN, FRAME ERROR

0 = NOERROR
1 = CORRESPONDING ERROR

(b}

HoH

FIGURE 8.4 (a) The 6850 ACIA control register (CR) format and (b} status register
format.

high or low, and the associated interrupt activation can be enabled or disabled by bits 6
and 5. Data formatting can be accomplished by bits 4, 3, and 2. The reset and the clock
functions are controlled by bits 1 and 0.

The status register illustrated in Figure 8.4(b) contains status information on the
6850 signals and events. If the interrupt has occurred, b7 is set. Bits 6, 5, and 4 are set for
parity, overrun, and frame errors, respectively. A parity error occurs when an even
parity is detected instead of an expected odd parity, or vice versa. An overrun error
occurs when new data is shifted into the RDR, destroying the old data before it is read by
the processor. A frame error occurs when the stop bits are not detected as expected at
the end of the frame.

Bit 3 specifies the activity on the /CTS line. Bit 2 is set if the data carrier is absent.
Bit 1 is set if the TDR is empty. Bit 0 is set if the RDR is full. The processor reads these
status conditions and responds accordingly. Reading or writing into the corresponding
registers clears the flag conditions in the SR.

The following example problem will clarify the internal architecture of the ACIA.

Example 8.2 6850 ACIA architecture,

In a data transmission application, 6850 is at address space $010041 for CR/SR and at
$010043 for TDR/RDR.

1. Specify the conditions under which each of the registers are addressed.

2. Control word $45 is written into the control register CR. Specify the data format be-
ing transmitted or received,

Solution

1. Register map (refer to Figure 8.3): Register select input RS is used to select the
CR/SR pair (when RS = 0) or the TDR/RDR pair (when RS = 1). The R/W signal
further selects the individual registers as mdicated;

Addressed Location RS R/W  Register Selected

010041 0 0 CR (Write only)
1 SR (Read only)

010043 1 0 TDR (Write only)
1 RDR (Read only)

2. Control word $45 {refer to Figure 8.4]:

b7 bé b3 b4 b3 b2 bl b0
0 1 0 0 0 1 0 |
IRQ RTS 7-bit odd-parity Divide
disubled high active word; 2 stop bits by 16




The data transmission and receiving is configured for a 7-bit odd-parity word with
two stop bits. RXCLK and TXCLK are divided by 16 for the proper baud rate. RTS
is active high and the interrupt is disabled.

The contents of the control register and the associated modes of operation can be
changed under program control. Thus, it is possible to transmit and receive data in a
vartety of formats and at different baud rates.

8.3 THE 6850 ACIA INTERFACE WITH
THE 68000 AND APPLICATIONS

The 6850 ACIA belongs to the earlier 6800 family and requires a synchronous bus in-
terface to the processor. The 63000/6850 ACIA interface is similar to the 68000/6821

PIA interface described in Chapter 7.

68000/6850 Interface Considerations

in serial data communications, the intelligent unit is known as the DTE (data terminal

equipment.) The YO upit that is communicating with the DTE is known as the DCE

{data communication equipment). Figure 8.5 illustrates the DTE/DCE interface. The

63000/6850 system is the DTE. The VO system (a terminal or printer, for example) is
the DCE. The DTE and the DCE communicate on a standard RS-232 serial link.®

Data communication
equipment (DCE}

[ e e

Data terminal
equipment {(DTE)

68000 6850 TTL RS-232 Digital
proc¢ssor ACIA :’\V to to ﬂ network
serial RS§-232 TTL (printer

inter- RS-232 Hy ...}

<7 face AND K———>| anD
device link
RS-232 TTL
to 10 m—

TTiL. R§-232
converters

FIGURE 8.5 The DTE/DCE interface in serial data communications.

In Figure 8.6, the system of Figure 8.5 is detailed. The ACIA requires a synchro-
nous clocking signal for data transfers. This signal is provided by the E clock of the
68000 processor. The address decoder provides an active low Y1 select signat for the
address range $010000 to $OLFFFF (refer to Section 6.3 of Chapter 6). It is further
gated by the VMA (valid memory address) signal from the processor and generates the

-+ DTE :-i RS5-232 link | to DCE
MC1488
68000 TTL/RS-232
Processor Address 6850 ACIA v converter
decoder* OCC TXD
Aloe ;D:)___. to RXD
A23 TXD input of DCE
Vee TR (into [489)%*
- 0 s
Y RTS —:D)—’ to IR
input of DCE
VA »| cso (into 1489)
LS02 NOR
MC1489
. converier
from
iglgeizrum cTs O< - from CTS
] output of DCE
A6 ol s {from [488)
RXD 4<= from TXD
iBs ol T output of BDCE
Cs2 GND (from 1488)
Al —] RS L Ground on R8-232 connector
DCD
ne-n7 k1 AN =
H -\‘ 1 LAayg=121
. Data bus
R/W = R/W
E » E 4800 MC14411 baud/frequency penerator
Hz 1.8432-MHz
TXCLK |-= 2 21 -—_‘l crystal
Interropt =
logic RXCLK [
- 20
g% —j—
IPLI | - IR0
IPLO
*Refer o Section 6.3.

**MC1489 is an RS-232/TTL converter

FIGURE 8.6 The 68000/6850 DTE, RS-232, and DCE functional interface.

€S0 c!uip select for the ACIA. The A6 address line activates the CS{ chip select. The
LDS signal activates the CS2 chip select. The Al address line drives the register select
(RS) input. The other control connections are as shown. The ACIA can be put on the
upper byte of the data bus by using the UDS signal in place of the LDS.”

For the connections shown in Figure 8.6, the 6850 occupies the following memory
map, at the odd byte boundary: $010041 for CR/SR (control register/status register);
$010043 for TDR/RDR (transmit register/receive register).




The MC14411 baud/frequency generator IC accepts a 1.8432-MHz crystal input
and generates several clock rates. For our illustration, we have chosen a 4800-Hz signal
for the activation of the TXCLK and RXCLK inputs.

For better noise immunity, RS-232 lines are driven by enhanced logic voltage
swings. Noise immunity is achieved by the MC1488-type TTL-to-RS-232 converter and
driver device. This device is powered by higher voltages (Vpp = +12 volts; Vgg = -12
volts). It converts TTL levels to RS-232 levels. RS-232 levels follow negative logic
convention. Negative voltage in excess of —3 volts is regarded as logic 1; positive
voltage in excess of +3 volts is regarded as logic 0. Thus, there is a minimum 6-volt
swing on the RS-232 lines. This provides sufficient noise immunity for the RS-232 in-
terface.

On the receiving end, signals coming from the RS-232 lines are converted to TTL
levels by the MC1489-type RS-232-to-TTL converter. The double logic inversion caused
by the MC1488 and 1489 converters does not cause any system logic mismatch and is
totally transparent to the user.

RS-232 Interface Application

For most of the standard RS-232 interface applications, approximately four connections
are used, as shown in Figure 8.6. The TXD and RXD lines are the serial transmit and
receive data lines. The RTS output of the ACIA is gated as the /DTR (data-terminal-
ready) signal to the RS-232 interface. The /CTS (clear-to-send) signal from the RS-232
is gated as the /CTS input to the ACIA. The /DCD (data-carrier-detect) input to the 6850
is connected to ground and is always activated.

When the DTE (68000/6850) is in the receive mode, it expects the DCE to activate
the /CTS line, signifying that the serial data are coming on the RXD line. The processor
polls the SR of the ACIA for any error conditions and for /CTS activity. If there are no
errors, and if the /CTS is active, the processor polls to see if the RDR is full. A full RDR
implies that the incoming serial data have already been converted into the parallel byte
form and are available in the RDR. The processor reads the RDR and accepts the
incoming data.

During the transmit mode, the processor polls to see whether the TDR is empty. If
it is empty, the processor writes the data byte (to be transmitted serially) into the TDR.
During this write operation, the RTS line is activated and is communicated to the DCE as
the /DTR. The DCE checks for the DTR active condition and goes into its routine to
accept the transmitted data.

We will now present an example problem dealing with the hardware and software
aspects of the RS-232 interface and serial data communications.

Example 8.3 RS-232 data communications.
Design (1) operating hardware and (2) software based on Figure 8.6. The system will
receive ASCII characters on RXD from the DCE at 300 baud with a start bit, seven data
bits, odd parity, and two stop bits.

Echo the same character to the DCE on the TXD line. The DTE and DCE follow
the standard RS-232 interface format discussed earlier.

LIKE ADDR
1 ;R3232.SRC 11/22/68
2 iF.1.0
E| OPT A
4 ORG $1000
=1 yDECLARE EAS0 ACIA REGISTERS
& 00010041 ACCR EQU $0L0041 ;CONTROL REG
7 00010041 ACSR EQU $018041 ;STATUS REG
& 00018041 ACTDR EQU 3010043 ;TRANSMIT REG
9 60018043 ACRDR EQU $010043 ;RECEIVE REG
10;master reset and initialize the 64850 BCIA
11} DoCO01000 EBFC 0coo3 opal MOVE.B #$03,ACCR ;MASTER RESET
041
12 00041008 L3IFC 0045 ¢OOL MOVE.B #%45S,ACCRE ;INITIRLIZE
DO4%

14 00001010 1039 00OL 0041 INPT MOVE.B ACSR,DO

165 0CA0LULA BBEF4 BNE.S INPT ; IF S0 LOGP
17?;no0 errors: proceed to check if the RDR iz full
16 J000LDLC 1039 DO0L OQU4)L RECY HOVE.B ACSR,DO

19 DOoDOLD22 0200 0002 ANDI.B #%03,D0
20 0000)02E LPF4 BEQ.5 RECY
21 00081028 3239 0001 D043 HMOVE.B ACRDR,P1;RDR INTO Dl

ec;transmit the received character, if the TDR is empty
©3 000CLO0PE 1039 0001 0043 THSM MOVE.B ACSR,DO

¢4 000010634 0200 gOoaog ANDI.B #$02,D0 ;IS TDR EMPTY?
25 00001038 L7F4 BEQ.S5 'PNSH
ct 0000L03A 13C1 0O01 CD4l MOVE.B DL,ACTDR
27 00001040 4E7) HOP
28 00001042 bOCC BRA.S INPT
cq ;
a0;
ER M
32 00003044 ERD
ASSEMBLER ERRCRS = 0

l3;checks parity, overrun, frame, DCD errors and CTS activity

15 0000102 OO0 gOve ANDI.B #8§7?C,DO ; ANY ERRCRS ?

FIGURE 8.7 The 68000 software listings for the DTE/DCE interface.

Solution

1. Hardware: The hardware of Figure 8.6 is self-contained. The internal control regis-
ter of the 6850 should be configured to obtain a baud rate of 300 from the 4800-Hz
external RXCLK and TXCLK inputs. This can be achieved by selecting the divide-
by-16 option.

2. Software: The actual 68000 software listings to accomplish the task are given in Fig-
ure 8.7. It is necessary to reset the 6850 at the outset to eliminate any residual con-
ditions from previous operations.

. Between lines 10 and 12, the control register is configured for master reset. It
Is reinitialized with $45 for the communication format as shown:



b7 b6 bS bd b3 b2 bl bi)
0 1 0 0 0 1 0 0
IRQ RTS ¥-bit odd-parity Divide
disabled high active waord; 2 stop bits by 16

Between lines 13 and 17, the software polls the status register of the 6850 until
the CTS input goes active and the error-free condition is detected. It then proceeds to
the RECV module.

In the RECV module between lines 18 and 22, the software reads the received
data byte when the RDR becomes full. The 6850 strips the start, parity, and stop bits
from the incoming serial data on the RXD line, converts the serial data into a parallel
data element, and places it in the RDR.

The character echo is accomplished by transmitting the received character back
to the DCE by means of the TNSM module. Between lines 23 and 27, the software
polls the status register until the TDR is empty. When the TDR is empty, the software
writes the received data byte into it to be transmitted back (echoed) to the DCE unit.
The 6850 adds the start, parity, and stop bits to the data in the TDR, generates a data
frame, and serializes it on the TXD line. The BRA.S INPT instruction at line 28 loops
the program back to line 14 for the next character.

The software we have just described can be very easily converted to terminal input
and output software. The NOP instruction at line 27 can be changed to an RTS instruc-
tion and the current software can be called as a subroutine by a main program.

For example, the JSR INPT instruction in a main program enters the software at
line 14, reads an input character from the terminal, and echoes it to the terminal. It then
returns to the main program with the value of the input character in the DI register.

The DCE system should have RS-232-compatible software in it. In the system of
Figure 8.6, the RTS output of the 6850 ACIA goes high when the TDR is loaded with
new data. This manifests as low on the /DTR line. The DCE system should poll this
condition and accept the data accordingly.

8.4 68901 MFP (MULTIFUNCTION PERIPHERAL)
GENERAL ARCHITECTURE

In addition to serial communication, need often arises for attendant control, timing, 1/O,
and interrupt functions. The 68901 MFP of the 68000 family is a multifunction device
that is becoming an industry standard for integrated serial, parallel, timing, and interrupt
applications. In this section, we will examine the architecture of the MFP. The MFP data
book should be used as an additional reference.®

Internal Architecture of the MFP

Figure 8.8 illustrates the pin configuration and internal architecture of the 63901 MFP.
The device is contained in a 48-pin DIP and is fabricated with HMOS technology. It
includes the following features:

four timers for timing applications;
one USART for serial data communications;
one GPIP for 8-bit parallel I/O and external interrupt inputs; and

control logic for the coordination of the various functions.

The A, B, C, and D timers accept external clock inputs from the XTL1 and XTL2
lines and provide timed pulses on the TAO, TBO, TCO, and TDO lines. In addition, the
A and B timers can accept external timing inputs on the TAI and TBI lines and measure
their time duration.

The USART (universal synchronous/asynchronous receiver and transmitter)
provides serial output on the SO line. It accepts serial input on the SI line. The receive
and transmit clocks are accepted on the RC and TC inputs and are used for the respective
data-shifting operations within the USART.

The GPIP (general purpose 1/0 and interrupt port) has 8-bit parallel I/O capa-
bility on the 10-17 lines. These lines can also be configured as eight external interrupts,
allowing the MFP to function as an interrupt controller. The associated interrupt control
logic interlaces with the processor on the /IRQ and the /IACK lines. The /IEO and /IEI
(interrupt enable output and input) signals are used for daisy chaining the priority inter-
rupts.

The 68901 MFP communicates with the processor on an 8-bit data bus D0-D7.
There are twenty-four 8-bit registers in the 68901, which are selected by the five register
select inputs, RS1-RS5. The select and control logic consists of the CS (chip select), DS
(data strobe), and R/*W (read/write) inputs and the /DTACK (data acknowledge) output.

The RESET input provides the 68901 reset operation. The CLK input advances the
internal states of the MFP.

In this section we will discuss some details of the registers dealing with the GPIP,
USART, and timers, emphasizing the utility of the MFP in serial communication appli-
cations. We will deal with the interrupt-related registers in Chapter 9.

Register Structure and Modes of Operation

Figure 8.9 is a tabular representation of the MFP's internal register structure. Contents
written into the appropriate registers determine the mode of operation of the MFP. Sim-
ilarly, some of the status registers contain status information about events occurring in
the MFP. The processor reads this status information, interprets it, and performs appropriate
operations as determined by the software.’
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FIGURE 8.8 (a) Pin diagram of the 68901 multifunction peripheral (MFP) and
{b) architecture. '

Number* Symbaot

Name

Funetion

GPIP
AER
DDR
IERA
IERB
IPRA
IPRB
ISRA
ISRB
IMRA
IMRB
VR
TACR
TBCR
TCDCR
TADR
TBDR
TCDR
TDDR
SCR
UCR
RSR
TSR
UDRT

| S S I S T S O e T R - R e I e S T o Y e o B -

T WO~ AW i =) AL e T ] b —

General-purpose /O register
Active edge register

Data direction register
interrupt enable register A
Interrupt enable register B
Interrupt peading register A
Interrupt pending register B
IntesTupt in-service register A
Interrupt in-service register B
Interrupt mask register A
Interrupt mask register B
Vector register

Timer A control register
Timer B control register
Timers C and D control register
Timer A data register

Timer B data register

Timer C data register

Timer D data register
Synchronous character register
USART control register
Receiver status register
Transmitter status register
USART data register

I/O and interrept interface
Specifies edges
Specifies GPIP direction
Interrupt enable/disable
Interrupt enable/disable
Pending interrupts
Pending interrupts
Interrupt service specify
Interrupt service specify
Masks interrupts

Masks interrupts
Interrupt vector aumber
Specifies timer A
Specifies timer B
Specifies timers C and D
Timer A count number
Timer B count number
Timer C count number
Timer D count number
Specifies synchronous character
Specifies USART
Receiver status
Transmitter status
Recetver/transmitter data

*Relative increment with respect to the base address.
tReceive register in read niode; transmit register in write mode.

FIGURE 8.9 The 68901 MFP internal register structure.

GPIP (General-Purpose /O and Interrupt} Port The following three registers de-
termine the mode of operation of the GPIP port:

GPIP (general-purpose 1/O register): at displacement $01;

AER (active edge register): at displacement $03; and
DDR (data direction register): at displacement $03.

Zero in a bit position of the DDR makes the corresponding GPIP line an input, and vice
versa. Zero in a bit position of the AER causes an interrupt to be generated on the falling
edge of the corresponding GPIP input line, and vice versa. These interrupts can be
masked out by the interrupt mask registers, whereupon the GPIP inputs become normal

inputs.




Timers A, B, C,and D The timer data registers TADR, TBDR, TCDR, and TDDR FIGURE 8.1 USART control b7 b6 b5 b4 b3 b2 bl b

at displacc;ment addresses $1F, $21, $23, and $25 can be loaded with 8-bit numbers. register (UCR) format. UCR a1 $29 | CLK |wLiwLol sT1 15701 PE 1801 o
These registers act as down counters and produce pulses on the TAO, TBO, TCO, and
TDO outputs when they are decremented to zero from the preloaded condition. The timer | Clock|Word lengt| Start/stop | Parity |
control registers TACR, TBCR, and TCDCR at displacement addresses $19, $1B, and 0 clock w—I 0 odd
$1D determine the mode of operation of the timer registers. Figure 8.10 illustrates the 1 16 clock L even
format of the TCDCR, which controls timers C and D. A delay mode implies that the G0 § bits ——— 0 disable
timer registers are decremented after the prescaling of the input clock. The format of the 0L 7 bits 1 enable
TACR and TBCR registers is sirr.lilar to that of the TCDCR, but the TACR and TBCR i? 25,‘:: 00 O stant 0 swop S
individually control the A and B timers. I I -

101 "Ly T A

mo1ror o2t A

( 8: synchronous formal
A: asynchronous format)

FIGURE 8.10 Timer C and D b7 b6 b5 b4 b3 b2 bl b0
controt register (TCDCR) format.  repepacsip | o |ce2|cci| cco| o |pez|pet jpco b7 BF B receive buffer fuil
| <= Timer C contral 2> | <=Timer D control 3> Eg OE 1> overun error
PE 1= parity etror
CC2  CCl1 CCO  Timer C operation mode b4 FE 1= frame error
DC2 DCl DCO  Timer D operation mode b3 B* = break condition (atl 0 data with no stop bits)
o 0 a Timer gtopped b2 CIP* 1= character in progress
0 0 i Delay mode: divide-by-4 prescale bl SS* 1> synchronous strip enable
g : ? . " {g b0 RE 1> receiver enable (processor writes this bit)
: g (l) . 22 ,‘ *These bits have different meaning in synchronous communications.
1 L 0 ‘ oo
1 1 1 ! o0 (a)
b7 BE 1= transmit buffer empty
b6 UE =1 underrun error
USART Operation and Control The USART can be configured to operate in a ::i S;D ]l :; zz‘tjo(:;l I::;:;?Ssgﬁcz}:::‘i;?::]eﬂﬂ;izig::l Sd{g)b] ed
synchronous or an asynchronous mode, with different word formats and baud rates. The b3 B* 1= break character to be transmitted next
UDR (USART data register) at displacement address $2F acts as a receive data register b2 H* HL = 00 = SO high Z
during receive operations and as a transmit data register during transmit operations. The bl L* 0] = SO iow [SO output control]
UCR (USART control register) at displacement address $29 controls the USART modes {0 2 S0 high
as shown in Figure 8.11. : 1] = loop back {transmitter and receiver are inter-
The RSR (receive status register) and TSR (transmit status register) at displace- nally connected)
ment addresses $2B and $2D contain the receiver and transmitter status information as b0 T 1= transmitter enable
shown in Figure 8.12. In our discussion, we will focus on asynchronous serial commu- *The processor writes these bits.
nications, since they are more widely used. The MFP is also capable of synchronous
communications. These involve synchronous protocols and are more complex than asyn- (h)

chronous communications.
We will now present an example problem to enhance our understanding of the
MFP architecture and register formats.

FIGURE 8.12 (a) USART receive status register (ASR) and (b) transmit status register
(TSR) structure.




Example 8.4 68901 registers and architecture. ‘ ‘ _
In a particular data communication application, the MFP is initialized with the fellowing

hex values in the registers:

TCDR TDDR TCDCR UCR
04 04 1 04

RSR TSR DDR GPIP
01 05 FF 07

Using the information presented on the 68901 MFP,

1. specify how the GPIP is configured;
2, specify how the USART is configured;
3. specify how timers C and D are configured.

Solution (Refer to Figures 8.9 through 8.12.)

L. GPIP: $FF = 1 1 £ 1 1 11 L is written into the DDR. It defines each bit of GPIP
port (17—10) as an output. The GPIP register contents 507 =000001 11 are
output to the port making

I7-10=>>00000111

2. USART: $94 = 1 00 10 1 0 0 is written into the UCR. As such, the USART is
configured for an 8-bit odd-parity word with one start and 1.5 stop bits. The shift
clock is 1716 of the respective RC (receive} and TC (transmit) clock inputs.

RSR contains $01 = 0000000 1
and
TSR contains $05 = 00000101
By writing | into b0 of RSR and TSR, both the receiver and the transmitter are en-

abled. The SO (serial output) is held at high level (b2 of TSR = i) during inactive
ransmission.

3., Timers C and D:
TCDR and TDDR contain $04 = 00000100
and
TCPCR contains $11 =00010060 1
Both timers are configured for a delayed and prescaled mode. Divide-by-4 prescaling
has been selected (b4 and b = I in TCDCR). Further divide-by-4 action has been

selected (b2 = 1 in TCDR and TDDR). This provides divide-by-16 action for both
timer cutputs TCO and TDO with reference to the crystal clock input.

The unused registers of the MFP do not effect the other operations: The reset con-
dition of the MFP leaves most of these registers in a default state, which leaves the MFP
in an inactive condition with disabled interrupts.

8.5 68901 MFP INTERFACE WITH
THE 68000 AND APPLICATIONS

The 68901 MFP is a 68000-compatible I/O device. The multifunction capabilities of the
68901 make the I/O interface and applications very efficient and powerful.

68000/68901 and I/O Interface Considerations

Figure 8.13 illustrates the interface details of the 68901 with the 68000 processor and the
I/O systems. The address decoders (refer to Section 6.3 of Chapter 6) generate the
required chip select to the MFP. The system reset signal drives the MFP to reset the
MFP and set default values in the registers. The R/*W signal is interfaced directly for
read/write operations.'’

The MFP is mapped on the lower data byte D7-DO to facilitate direct transfers of
the interrupt vector numbers from the MFP to the processor. The /LDS signal drives the
/DS (data strobe) input for the lower byte data transfers. The A5-A1 address lines drive
the register select lines RS5-RS1 to address one of the internal 24 registers of the MFP.
The /DTACK is fed back to the processor through the interface logic. The clock input is
the same as that for the processor. Another MFP can be mapped on upper byte of the
data bus by using the /UDS signal in place of the /LDS. Both MFP devices together oc-
cupy the 16-bit data bus for effective word transfers.

The SO and SI (serial out and serial in) lines are interfaced to the serial I/O unit.
The 2.4576-MHz crystal activates the MFP for proper timing of the timers and the
USART. The TCO and the TDO timer outputs are fed back as the RC and the TC clock
inputs. The GPIP I/O port drives an LED display. For the conditions of Figure 8.13, the
base address of the MFP is $040000. The GPIP is located at $040001, and so on.
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FIGURE 8.13 The 68901 MFP interface with the 68000 and with 1/Q systems {Example
8.5}.

Coded Data Communication System

In order to maintain security, data may be coded during data communications. The
68000/68901 system of Figure 8.13 is well suited for such an application. The data are
transmitted on the SO line to the I/O system in a coded form and are echoed back on the
SI line of the MFP. The microprocessor reads and further codes the data, and displays the
data on the GPIP port LED bank. The coding used for the data communication is the data
inversion. The coding used for the display is to advance to the next ASCII value. The
characters to be transmitted are in a memory buffer. A0 refers to the starting address and
Al refers to the ending address of the buffer.

Figure 8.14 indicates the 68000-based software for this coded data communication
system. Between lines 6 and 16, the MFP registers that are relevant to this application
are defined. Between lines 17 and 32, the MFP is initialized as follows (refer to Example
8.4 for details):

LINE ADDR

b3;MFP.SRC CODED DATA COMMUNICATION

2yfiu 21849

a;

4 OPT A

= ORG %1000

L;DEFINE b4901 MFP REGISTERS _

? 00040000 BASE EQU $04000C ;BASE ERECG

6 00040001 GPIP EQU BASE+$0} ;GPIF PORT

9 00040005 DDR EQU BASE+%05 ;DATAR DIR REG
10 DOD4ANOLD  TCDCR EQU BASE+51D ;TIKER C/D CONTROL
1) DOCG40023 TCDR EQU BASE+523 ;TIMER C DATR REG
2 2dos0o025 DDR EQU BASE+$2% ;TIMER D DATA REG
13 00D40029 UCR EQU BASE+3$29 ;USART CONTROL REG
L4 DOG04002B RSR EQU BASE+$2B ;RCVR STATUS REG
15 00840020 13R EQU BASE+$2D ;TNSMT STATUS REG
16 B004002F UODR EQU BASE+$cCF ;USART DAETAR REG

17 ;INITIRLIZE GPIP AS QUTPUT
18;INITIALIZE TIMERS C&D INW DIVIDE BY 1L MODE

33,DUDULDDD LAFC OBFF D004 INIT)L MOVE.B #$FF,DDR ;GPIP OUT
¢k DC0OD)M00H ggfu'g 0060 0004 MOYE.B #3%00,GPIP
2¢ 00081010 gggg oooe2 0004 MOVE.B #30<,ICDR
23 00001014 Eggg onoe coB4 HOVE.B #302,TDDR
24 00001020 gg%g 001y 0004 MOVE.B #%L1,TICDCR

25;USART FURTHER CONFIGURED FOR FURTHER DIVIDE BY L&
2b;l START, & DATAR, ODD PARITY & 1 l/@ STOP BITS

a7;

26 0000L026 L3IFC 0094 0004 INITE MOVE.B #394,UCR ;FORMAT
ooz249

29 0000L030 13FC D003 0DO4 MOVE.B #3%0L,RSE ;ENABLE
00cB RCVR

FIGURE 8.14 Coded data communication software for the 68901/68000-based system
{Example 8.5).

GPIP is configured as an 8-bit parallel output port;

USART is configured for 9600 baud, 8 data bits with 1 start and .l% stop bits,
and odd parity;

Timers TC and TD are in a divide-by-£6 mode.

Between lines 33 and 40, the transmit character routine is performed. The character
from the memory buffer referenced by the AO register is read into DO. It is coded by
logical inversion and transmitted on the SO output. This is accomplished by checking bit
7 of the TSR for logical 1 (signifying that the USART transmit buffer register UDR is
empty) and then writing the data byte in DO into the UDR, if it is empty.




30 00003038 13FC 0005 0004 MOVE.B #8$05,TSR :Ewggﬁga Example 8.5 68000/68901 coded data communication.
ghap Consider the hardware and software i
31 0000M040 ZEv1 HOP and soft of Figures 8.13 and 8.14.
32 00O0LO042 4E?1 QP o o
33;REARD IT FROM CHARACTER BUFFER SEQUENTIALLY, CODE IT 1. What are the baud rates for data transmission and receiving?
34;BND TRANSMIT. AC BEGINNING AND AL END OF BUFFER ) ) ‘
35 00001044 L0348 START MOYE.B (AD)+,DO ;IN DD 2. Show how character A will be transmiited on the SO line.
3L 000031045 OAOD COFF FORI.B #%$FF,DO ;INVERT IT 3. Show how character A will be displayed on the LED array.
37 0000%04A 0639 0007 0004 TRSMT BTST.B #%7,TSR ‘ :
0osD 4. When does the WAIT loop at line 56 end? Why is it used?
34 00001052 &7FkR BEQ.S TRSHT.
39 000DLOS4 13¢0 0005 DO&F MOYE.B DO,UDR ;CHRCTR IN Solution
40 00001058 4E7L NOP +BPORT

41 ;RECEIVE CODED CHARARCTER FROM SERIAL PORT INTO D1l

43 0D0D3O5C 0839 GOO? 0004 RCEVE BTST.B #37,RSR 1. Baud rates: The TCDR, TDDR, and the TCDCR are effectively configured for a

0oaa divide-by-16 mode for the crystal input clock. Thus, TCO and TDO timer outputs
43 DNO0D3OE4 67Fb BEQ.S  RCEVE (connected as RC and TC inputs) are at

44 000010LL 1239 D004 OO@F MOVE.B Ug%%DgL ;ggﬁggg §gTo Dl

45 0OOOLOLEC OADL QOFF EORI.B #$FF,DL ; 16 — ,

4b3;CODE AGAIN AND SEND IT TO GPIP LED DISPLAY 2.4576 MHz/16 = 153.6 KHz

47 ;

.8 0GOOLO?0 06LOL 0001 DSPLY ADDI.B #$01,D3 ;NEXT The UCR {USART control register} is configured for a divide-by-16 made to obtain

49 000021074 13CL G004 D00% MOVE.B D1,GPIP effective shift baud rates, given by
S0;SHORT DELAY AND CHECEK END OF BUFFER
51 000opy0rs 343C OF0O MOVE.W #$0FOD,DE Receive baud rate = RC/16 = 9600 baud
S¢ 000CL0RE S342 LOCOP SUBQ.W #%0L,DC .
53 0000LDAG &LFC BEE.S LOOP Transmit baud rate = TC/16 = 9600 baud
94 00001Cac BACA CMPR.L AD,RL ;END OF BUFFER
55 (00001044 GGLBE BNE.S START ;HO: TG START 2. Transmission of character A:
5t 0000L0A8L &OFE WAIT BRA.S WAIT,WAIT LOOP
gg;nnnnwaa 4BE7 L NOP ASCII code for character A = 0 (00000 1 = $41
5q: Inverted code for character A = 10111110 = $BE
=0 0DD01L0BA END
. 1 . . .
ASSEMBLER ERRORS = 0 The 68901 adds the start, odd-parity, and 15 stop bits to the preceding inverted data.

The transmitted data on SO will be as shown; :

0 1 0 1 1 1 1 1 0 1 1
tStart: <" 8-bit inverted data ———">: Odd 1 1 172 :

:bit ¢ Siopar- ¢ stop
ity @ bits 3

FIGURE 8.14 Continued.

3. Display on the LED array: The received character in the inverted form is inverted

Between lines 41 and 49, the receive character routine is performed. The echoed back to the original character A. It is then coded to be the next ASCII character B,

character from the serial I/O on the SI input is read into DI after checking that the re-
ceive buffer is full. It is decoded by logical inversion. It is further coded to be the next
ASCII character by adding 1 to it. Finally, it is output to the LED display on the GPIP
output port.

Between lines 50 and 53, a delay routine is incorporated. At lines 54 and 55, the
program checks for the end of the buffer. If the end of the buffer is not indicated, the
program loops back to start. At line 56, the program goes into an indefinite wait loop.

The following example problem provides a review of the 68000/68901 interface
and the coded data communication.

The ASCII code for B is $42; thus, the LED array displays

$42501000010

0 LED off; 1 LED on.

4. WAIT loop: The WAIT loop can be terminated only by an external interrupt or reset

condition. In situations requiring external excitation, the software wait loops are
used,




The coding in the preceding example is simple. However, it can be made as complex as
required. The \\ stop-bit concept implies that the second stop bit is only half the period of
the shift clock. However, the shift clock is 1/16 the frequency of the TC and the RC
clock inputs. As such, the half stop bit can be accurately sampled by the RC and TC
clocks. The half stop bit is intended to make the data frame more efficient.

8.6 SUMMARY

In this chapter we introduced some important serial data communication concepts. For
interfacing slower peripherals and systems to a fast processor, serial communication is
preferable to parallel communication. The standard asynchronous serial data frame
consists of a stop bit, a data element, a parity bit, and one or two stop bits. The parity bit
is for error checking. With serial interface, the number of external connections to the
processor interface are reduced. This results in a cost efficient, less complex

interface.

One of the industry standard serial communication devices for RS-232 serial com-
munications is the 6850 ACIA (asynchronous communication interface adapter) of the
earlier 6800 family. It consists of four internal registers: the control register, the status
register, the transmit register, and the receive register. It accepts an 8-bit parallel word
from the processor, converts it into RS-232 format, and serializes the data frame for
"transmission on the serial data link. Similarly, it accepts the serial data from the data
link, checks the parity, removes the extra bits in the serial frame, converts it into an 8-bit
parallel word, and supplies it to the processor.

We described interfacing the 68000 using the 6850 ACIA. We also described the
industry standard RS-232 serial interface using the 6850 ACIA, including the details of a
hardware and software application.

The 68901 MFP (multifunction peripheral) is a very useful device belonging to the
68000 family. We described its internal architecture and the particulars of the 68000/
68901 MFP interface. The MFP device has integrated capabilities for serial data com-
munications, timing, parallel I/O, interrupts, and DMA. It is particularly useful as a serial
communication device.

The coded data communication example we presented was meant to provide a
practical application of the MFP device and also illustrate the concept of data security in
transmission and receiving. It should be noted, however, that there are more efficient
data security methods than the one we considered.

PROBLEMS

8.1 Configure the control register of the ACIA to

{a) transmit an 8-bit odd-parity word with one stop b?t;
(b) transmit a 7-bit even-parity word with two stop bits.

8.2
8.3

8.4
8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

Consider an active low RTS in both cases. Use the divide-by-64 option at a 300 baud rate.
Interrupts are disabled,

Repeat Problem 8.1 assuming that the data are to be received rather than transmitted.

The following message has been transmitted using the divide-by-16 option at 1200 baud
with a 7-bit odd-parity format with one start bit and two stop bits:

6850 IS ACIA

(a) Specify the word frame for each’of the characters using ASCII code.

(b} Specify the contents of the control register.

Repeat Problem 8.3 when an 8-bit frame with two stop bits and no pasity is used.

Can the TX and RX baud rates be different? Explain,

(a) If they can be different, how can this be accomplished?

(b} What additional hardware would be required to achieve different baud rates for TX
and RX?

Redesign the RS-232 interface of Figures 8.6 and 8.7 for data communications at

(a) F10 baud;

(b} 4800 baud.

For the 6850 ACIA/RS-232 interface, design the necessary hardware and software

(a) to receive 236 characters of data as a block at 600 baud ard store the data in a buffer,
with a 7-bit even-parity character format;
(b) to transmit the data at 300 baud after the entire black has been received.

Design a 6850-based coded data transmission system that will

(a) receive an ASCII character and also transmit the next highest ASCII character;
(b) receive an ASCII character and also transmit the next lowest ASCII character.

Repeat Probler 8.8 so that the higher and lower ASCII characters are transmitted for each
received character as shown:

Received characters: B K M
Transmitted characters: A C JL LN

Can the 68901 MFP perform several functions simultaneously in reat time? Can it operate
at a frequency different from that of the processor? Explain your answers.

Using Example 8.4, with the crystal at 2.84596 MHz,

(a} what are the TCO and TDO frequencies?

(b} if the TCO and TDO are used as the RC and TC clock inputs, what are the effective
shift rates of the receive ard transmit shift registers of the 689017

Reconfigure the 68901 MFP so that the GPIP has the lower nibble as the input and the
upper nibble as the output, Specify the control words to be written into the appropriate
registers, i

{a) When outputting data on the GPIP, how do the pins configured as inputs behave?
(b} When entering the data, what is read on the pins configured as outputs?



8.13

Reconfigure timers C and D for

(a) delayed divide-by-64 prescale activity for both;

(b) delayed divide-by-200 prescale activity for both with additional divide-by-4 action in
the 68901,

8.14 Can the C and D timers of the 68901 MFP count external events? Why or why not?
8.15 In the system of Figure 8.13, specify the redundant locations for the 68901 MFP registers.

8.16 Redesign the system of Figure 8.13 to atiow for two MFP devices occupying the lower

and upper memory bytes. Indicate all of the hardware details.

8.17 Redesign the software of Figure 8.14 so that reverse coding is done while transmitiing a

received character. For example

Received charactercode A == 010 \0 9/0 0F == %41

Transmitted character code == 10 0/0 0010 = 3§82

8.18 Redesign the system of Figure 8.13 so that

(a) the receive and the transmit baud rates are 1200,
(b) the receive baud rate is 1200, but thg transmit baud rate is 600,

8.19 Repeat Problem 8.17 so that there is reverse coding and also code inversion. For example,

EN

Received character code A === 0100000 1 == %41

Reverse code == 10000010 =582
Inverted reverse

code for transmission == 01111101 =>$7D
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9.0 INTRODUCTION =
An interrupt is the traditional way in which the attention of the processor is obtained by §
an external device or a peripheral. By contrast, DMA (direct memory access) is the tra- g

ditional way of obtaining control of the processor buses and is used by I/O systems for
high-speed data transfers.

Interrupts are handled in the supervisor mode. The terms /IRQ and /INT are used
interchangeably in this chapter to refer to the interrupt request. Study of the material to
be presented will help the reader understand the interrupt and DMA structure of the
68000 family of processors so as to implement interrupt-based I/O systems and DMA-

based data transfers. T T T T T

TIACK

7415138
8 uSec

IACKS

4 uSec
2 pSec
1 pSec

Bus Time Qut
circuitry

TACK3

—q
—

FIGURE 9.1 Autovector and user vector interrupt logic associated with the 68000. (Courtasy of Motorola, Inc.)
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The reader is advised to review the concepts in Chapter 5 related to exception vec-
tors and interrupts (Sections 5.1 and 5.2) before proceeding further.

9.1 INTERRUPT INTERFACE CONSIDERATIONS

Autovectored and User-vectored Interrupt Logic

Figure 9.1 (p. 237) illustrates the autovectored and user-vectored interrupt logic associ-
ated with the 68000 processor. The I/Q-2 device generates interrupt request /INT3, which
is encoded onto the /IPL2, /IPL1, and /IPLO inputs of the processor by the 74LS148
encoder. In response to /INT3, the processor generates an /IACK3 interrupt acknowledge
signal, which is gated as /VPA input to the processor for autovectoring. During the in-
terrupt acknowledge cycle, the FC2, FC1, and FCO outputs of the processor remain at
the 111 condition; the A3, A2, and Al address lines contain the interrupt number that is
being acknowledged. In this case, A3, A2, and Al will be at 011.

The 1/0O-1 device generates interrupt request /INTS. The processor generates the
corresponding /TACKS interrupt acknowledge signal, which is routed to the interrupt
controller of the I/0O-1 device. In response to /IACKS, the controller provides the interrupt
vector number on the data bus and activates the /DTACK input to the processor for user
vectoring. In either case, the processor goes to the appropriate vector location as
outlined in Chapter 5, and executes the interrupt service routine in the supervisor mode.'

Priority Channel Description
highest $OF P11 GPIP interrupt [7
$O0E 1110 GPIP interrupt 16
30D TEDE Timer A
$0C 1100 Receive buffer full
$0B 1011 Receive error
$0A 1010 Transmit buffer empty
$09 ool Transmit error
$08 FQ00 Timer B
$07 o111 GPIP interrupt 15
$06 oLeo GPIP interrupt 14
$05 0101 Timer C
$04 0100 Timer D
$03 00FE1 GPIP interrupt I3
302 0010 GPIP interrupt 12
B0t 0001 GPIP interrupt 11
lowest 300 o000 GPIP interrupt 10

FIGURE 9.2 The 68901 MFP interrupt channels and priority structure. (Courtesy of
Motarola, Inc.}

Interrupt Controllers

An interrupt controller is a device that can prioritize interrupts, provide vector numbers
to the processor, and keep track of the occurrence of the interrupts. The 68901 MFP
introduced in the previous chapter is such an interrupt controller belonging to the 68000
family. The MFP handles 16 interrupt channels (8 from the internal sources and 8 from
the external GPIP lines 10-17 used as interrupt inputs). In Figure 9.2 the priority
structure of these interrupt channels is indicated. (Refer to Chapter 8 for 68901 MFP
details.) The MFP controls these interrupts using

the interrupt enable registers A and B (IERA and IERB); the
interrupt mask registers A and B (IMRA and IMRB); the interrupt
pending registers A and B (IPRA and IPRB); the interrupt in-service
registers A and B (ISRA and ISRB); and the interrupt vector register
(VR).?

Figure 9.3 illustrates the format of the IERA and IERB. These two registers enable
or disable the interrupts. If the bit is set (= 1), the corresponding interrupt is enabled. If
the bit is reset (=0), the corresponding interrupt is disabled. When the interrupt is
enabled, its occurrence will be recognized by the MFP, and the /IRQ will be asserted to
the processor. All the other interrupt-related registers have bit maps similar to that of the
IERA/IERB.

Interrupts are masked for a channel by clearing the appropriate bit to 0 in the mask
registers IMRA/IMRB. When an interrupt is enabled but masked, it will be recognized
by the MFP, but the /IRQ will not be asserted to the processor. Instead, the correspond-
ing bit in the interrupt pending registers IPRA/IPRB will be set. The processor can poll
these registers to determine if an interrupt has occurred.

b7 b6 b5 b b3 b2 bl b
IER A at GPIP GPIP TIMER | R. BUFE RCV T BUFF | TMIT TIMER
dis $07 7 6 A empty error empty €rror B

b7 b& b3 bd b3 b2 bl kO
IERB at GPIP GPIP TIMER | TIMER GPIP GPIP GPIP GPIP
dis $09 5 4 C D 3 2 1 0

b7 ba b5 b4 b3 b2 bl bi}
VR at
dis $17 \zi V6 \E V4 V3 v2 vl vo

T User-written [T <"1 MFP-supplied [T >

dis 2> displacement address of the MFP registers.

FIGURE 9.3 Structure of the interrupt enable registers, [ERA and IERB, and the vector
register, VR.



When a bit in the ISRA/ISRB is set, it implies that the corresponding interrupt
vector number has been given to the processor and that the interrupt routine is in
progress.

For external GPIP interrupt inputs, the active edge register (AER) of the MFP is
used to specify the edge activation. A zero in a bit position makes the corresponding
interrupt active on a high-to-low transition, and vice versa.

The interrupt vector number is contained in the vector register (VR), as indicated
in Figure 9.3. The upper four bits are written by the user during initialization. The lower
four bits are written by the MFP according to the priority scheme of Figure 9.2.

Interrupt Expansion and the Daisy-Chain Mechanism

In 68000-based systems, the MFP interrupt controllers are assigned to one of the seven
possible interrupt levels of the processor. Each MFP supports up to 16 interrupts (8 in-
ternal and 8 external). However, in systems that are I/O-based to a large extent, there
may be a requirement to increase the number of interrupt inputs. This can be accom-
plished by daisy chaining the interrupt controllers, as shown in Figure 9.4. The control-
ler closest to the processor (MFP 1, in this case) has the highest priority. It is always
enabled by keeping its interrupt enable input, /IEI, grounded.

Interrupts from Interrupts frotn
YO system 1 I4C system 2
17 10 I7 10
' IEI IEO IEI IE0
J:_ 68901 MFP 1 68901 MFP 2
- INT TACK INT IACK
INT |
IACK Lt
Interrupt {For the sake of simplicity, DTACK, data bus, and other connections are not indicated.)
legic and
interface
1o the 68000

FIGURE 9.4 Interrupt expansion using the daisy-chain mechanism.

When the processor recognizes the interrupt request on the common INT line, it
sends the acknowledge signal IACK to the controllers. Suppose the interrupt request has
come from MFP 1. MFP 1 accepts the IACK signal, puts the corresponding vector num-
ber on the data bus, and activates the DTACK to the processor. At the same time, it

negates its interrupt enable output, /IEO. This, in turn, disables the next controller by
deactivating its interrupt enable input, /IEI.

On the other hand, if we assume that MFP 2 has generated the /INT, MFP 1 activates
its /IEO output and enables the MFP 2 controller during the interrupt acknowledge . cycle.
MEFP 2, in turn, supplies the vector number to the processor in response to the /IACK
signal. This enable and disable process continues until the end of the chain.

In the preceding case, it can be seen that a single /INT line can be expanded to
handle 32 interrupts (16 from each controller). The number of entries in the vector table
and the electronic loading on the lines determine the practical upper limit for the number
of controllers on the daisy chain.’

The following example problem provides a review of the interrupt interface to the
68000 and the daisy-chain mechanism.

Example 9.1 68000 interrupt interface and daisy chain.
Assume that the /IRQ outputs from the daisy-chained controllers of Figure 9.4 activate
the /TIRQS5 input to the 68000 system. (/IRQ and /INT refer to the same thing.)

1. Interrupt 17 from I/O system 2 and interrupt 16 from I/O system 1 occur simulta-
neously and activate the /IRQS5 line to the processor interface logic. Which interrupt
will be recognized? Assume the interrupts are enabled and are not masked.

2. Suppose it is required to disable all the other interrupts except the GPIP interrupts for
both controllers. In addition, GPIP interrupts 14-10 should be masked out. What
words should be written into the interrupt enable and mask registers?

3. If the upper four bits of the vector register for MFP 1 are loaded with $4, what vector
number is supplied to the processor by MFP 1 for GPIP interrupt 16?

Solution

1. Interrupt recognition: MFP 1 is of higher priority than MFP 2 in the daisy chain.
Thus, interrupt 16 from MFP 1 will be recognized.

2. Disabling and masking of interrupts: Refer to the bit map of the IERA/IERB (Fig-
ure 9.3).

0 in the bit position disables the interrupt;
1 in the bit position enables the interrupt.

The mask registers IMRA/IMRB have a similar bit map.

0 in the bit position masks the interrupt;
1 in the bit position does not mask the interrupt.



To enable all the GPIP interrupts, disable the others, and additionally mask the 14—
10 interrupts, the bit patterns should be written as follows:

b7 b6 b5b4 b3 b2 b1 b0  register
1100 0 0 0 0 intolERA

11001111 intelERB
1100000 0 into MRA
10000090 0 intoMRB

3. Vector number for 16: Refer to Figure 9.2, The channel priority number for 16 is
1110 = $E. This will be loaded into the lower four bits of its vector register by MFP
1. The upper four bits are written by the user to be $4 = 0100, Thus, the vector for
the I6 interrupt corresponds to

01001110 =8%4E

9.2 INTERRUPT-DRIVEN SYSTEM APPLICATIONS

As we already know, the interrupt is a convenient means by which to obtain the atten-
tion of the processor. We will now emphasize this concept by describing practical appli-
cations involving the interrupt-driven gain controllers, DRAM systems, and data-
acquisition systems.

Interrupt-Driven Gain Controller

Figure 9.5 illustrates a digital gain-controller system, The 68901 MFP discussed earlier
is used as an interrupt controller. The GPIP drives a summing amplifier-type D/A
(digital-to-analog) converter. The D/A converier, in turn, drives a power amplifier and a
DC motor.*

The internal B timer of the MFP is used to generate a timed intermapt to the pro-
cessor. The IRQ output from the MFP drives fevel | of the interrupt (IRQ1) of the
68000 processor through the encoder device. Each time the timer is decremented to zero

from a preloaded value, an interrupt is generated by the timer. The 68901 routes that -

interrupt to the processor as IRQI.

When the processor recognizes this interrupt, it generates a higher gain digital
word on the GPIP output, up to the maximum allowed. The processor increases the gain
from a minimum to a maximum value and restarts the gain process. This has the effect
of increasing the motor speed to a maximum at regular time intervals, reducing the
speed to a minimum, and then starting the process again. In industry, such systerns are
used to control conveyer belts.

We will now discuss the design details by means of an example problem.

68000 processor 68901 MFP
- ADDRESS
DATA AND K
CONTROL
Interrupt GPIP port 40K 40K
encoder i3
(Ls 148)
12
—_ 11
TPL2 |- TTeE
— IR(}1 —
IPL]1 |-% Q - IR} 0
IPLO [
2.45- t
Drecoder XTL1
(Ls 138) KHz osc Summing
D/A
____ XTL2
FC2, ECL, FCOD —i = [ACK
VO = — {10 + 2(11) + 4(12) + 8(I})}
A3 A2, AL - )
AS > .
I values => logic0=0V
TIMER B logict =3V
e | DTACK e
DPTACK | LOGIC DTACK 20 K (pot)
Power amp RX

LM 380
( )] 10 e ex LPE
- microfarads section

FIGURE 9.5 The 68000-based interrupt-driven gain controfler system {Example 9.2).

Example 9.2 Interrupt-driven gain controller

For the system of Figure 9.5, the MFP occupies the memory map starting at base ad-
dress $040000 (GPIP at $040001. . .). Develop (1) the operating hardware and (2) the
software so that the motor speed increases to the next value up in 20-second intervals.

Solution

1. Hardware: The hardware of Figure 9.5 is self-contained. If increased drive capabil-
ity is required, additional power amplifier stages can be incorporated. The XTL1
clock input for the MFP is driven by a 2.456-KHz oscillator. The low-pass filter
(LPF) effectively removes any switching transients from the D/A converter.

2. Software: The software initializes the appropriate MFP interrupt and timer-related
registers (refer to Sections 8.4, 8.5, and 9.1). It increases the digital gain word to the
next value up on each timer interrupt occurrence. This digital word is then output to



the GPIP port. (The word is converted to an analog voltage and drives the motor at
the appropriate speed.)

Figure 9.6 details the MFP initialization process. The unused registers are
loaded with the inactive words on system reset. The flowchart and the 68000 pro-
gram listings for the interrupt-driven gain controller are presented in Figures 9.7 and
9.8, respectively.

REGISTER/ADD | b7 | b6 | b5 | o4 | b3 | b2 | o1 | b0 |
/O

GPIP $4000 ¢ BYTE
{ACTS AS GENERAL PURPOSE I/0}

DDR $40005 i 1 1 1 1 1 1 1 => 3$FF
{0 => INPUT: 1 &> OUTPUT)

IERA $40007 Q 0 O [} 1] 0 0 | o> $01
(0 => INT DISABLED;1 3> ENABLED) TIMER B

IMRA $40013 0 o 0 0 L 0 ] 1 = 301
(0 => INT MASKED; I 3> UNMASKED) TIM.ER B

VR 340017 0 1 0 0 g 0 0 0 o> 540
(INTERRUPT VECTOR NUMBER}

TBCR $4001B 0 0 0 0 U 011 0N 0/1 o> $00/$07
{300 => STOP TIMER; $07 => DIVIDE BY 200)

TBDR $40021 1 1 1 1 0 1 0 i <> $F5

FIGURE 9.7 Flowchart for the
interrupt-driven gain controiter
using the 68901 MFP with the
68000,

Events

Line numbers
(see Figure 9.8}

Define 68901 registers

6o 14

Initialize 6890t MFP:
GPIP is output; timer
B interrupt enabled,
speed word in DO reg,

18 to 22

Initialize timer B interrupt vector

2310 26

Set timer B for 20
seconds and stare it

2710 29

Wait for interrupt

301031

Fterrupt
occurred?

Disable timer B:
increment gain word and
output to GPIP;
reinitialize and enable
timer B;
returp from interrupt.

| Bl

32w39

At line 25, the interrupt service routine address of $2000 is loaded into this vector

address location of $120.

At lines 28 and 29, the timer data and control registers (TBDR and TBCR) are

(TIMER PRELOAD VALUE 245 => $F5)

FIGURE 9.6 Initialization of the MFP interrupi-related registers (Example 9.2).

Between lines 6 to 23 in the listings, all the MFP registers used in the software
are declared and initialized. Timer B has an interal priority of 8 (refer to Section
9.1), which presents an effective device interrupt vector of $40 + $08 = $48 to the
processor. This refers to a vector address of

4 X $48 = $120

loaded with $F5 and $07. This enables timer B with a prescale factor of 200. Timer
B counts down and generates an interrupt when it is decremented to zero from the
preset value of $F5 (= 245). With a 2.45-KHz XTL! clock, this generates a 20-
second delay between successive interrupts as shown:

Delay = (prescale factor) X (preset value) X (XTLI1 period)
= (200) x (245) x (1/2.45 KHz) = 20 seconds

At lines 30 and 31, the system goes into a wait loop and waits for the above interrupt
to oceur.
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13
34
15
16
17
18

19
cD
2l
cd
213

24
25

2b
28
4
Eln;
ENT
Je
33
34
35
3L
37

EL:
39

LINE RDDE

noo4oooo
o004000)
oop400685
ooo4aaaz
noo40013
Doos0017
Q040018
poc40021

goonyooa
000010086
goofdnoac
ogoounaLe
D0DO0LOLA

poooxoee

nogoxce2a
ooonyonac
gooawn3a4
0000%03C

pDao0Ld44
0000L046

coode0noo
goooenos
opooe00a
aoonz2G6in
gono2014

oooae0en
pogoedee

13FC
aans
303C
y3co
g&Fq
aooz
0arsg
0013
13FC
ooyn?

cIFC
0xen
4071

L3FC
aa2%
LAFC
001LB
LOFE
&0FC

13FC
00LB
5200
13C0
13FC
oodl
13FC
o0uB
407
4073

O4FF
o0an
o004
cooo
gooo

ooso

oaoao

00FsS
agoo?

gooo

0004
0ars

gao7

yint controller

sFIU 9/7/86

OPT A

ORG ¥1000
;648901 register declarations
BASE EQU 3040000
GPIP EQU BASE+3$0%4
DDR EQU BASE+305
IERA EQU BRSE+$07
IMRA EQU BRSE+$13
VR EQU BASE+$17
TBCR EQU BASE+$1B
TBDR EQU BASE+$2]

;initialize MFP: GPIP is output

;Timer B interrupt enabled

;jinitialize DO with speed word
0004 START MOVE.B #$FF,DDR

MOVE.B #300,D0 yMINIMUN SPEED

aa0L MOVE.E DO,GPIP
ooa4 BSET.B #0,IERA
oan4 BSET.B #0,IMRA
goo4 MOVE.B #%540,VR
yinterrupt address $2DC00 into $L20
2000 MOVE.L #%2000,%120D
NOP
;set Timer B for 20 seconds
aoos MOVE.B #$FS5,TBDR
aaan4 MOVE.B #$07,TBCR ;start timer

WAIT BRA.S WRIT swait for
BRA.S WAIT ;interrupt loop
ORG $2000 ;interrupt routine

aoo04 MOVE.B #%$00,TBCR ;disable timer
ADDO.B #%01L,D0 _;next gain word
apox MOYE.B DO,GPIP ;output to GPIP
ooo4 HOVE.B #3F5,TBDR ;20 sec timer
noo4 MOYE.B #3%07,TBCR ;start timer
NOP
RTE

FIGURE 9.8 Sofiware listings for the interrupt-driven gain controller using the 68901

MFP (Example 9.2).

When the timer B interrupt is generated once every 20 seconds, the processor
goes to the interrupt service routine between lines 32 and 39 (starting address
$2000). The interrupt service routine stops timer B by loading $00 into the TBCR. It
increments and outputs the digital gain word in the DO register to the GPIP. It re-
loads the timer B data register with $F5 and restarts it. The last RTE instruction re-
turns the processor to the wait foop.

The timer B interrupt is communicated to the processor as a level 1 interrupt. The
processor interrupt mask level in the system byte should be initialized to zero for recog-
nizing a level I interrupt. With few modifications to the preceding software, it is possi-
ble to obtain a different result, as we will see in the following example,

Example 9.3 Modified interrupt-driven gain conitroller.
Modify the software in Figure 9.8 so that the gain will not be increased if it is already at
the allowed maximum.

Solution

The maximum allowed gain word is $FF in the DO register. The DO register should only
be incremented if its byte content is less than $FF. The interrupt routine between lines
33 to 39 should be modified as shown:

MOVE.B #%00,TBCR ;disahle timer B

CHP.B #$FF,D0O iconpare DO with $FF

BEQ.S FINAL +if equal branch to final inst

ADDG.B #%01,D0 ;if not increment DO by 1
FINAL HOVE.B D0,GPIP ;youtput new gain word to GPIP

HOVE.B #3F5, TBDR :set timer to 20 seconds

MOVE.B #807,TBCR ;start timer B

HOP

RTE ;jreturn (to wait loop)

It should be noted that when the system reaches the maximum gain condition, it
stays at that condition.

Dynamic Random Access Memory (DRAM) Interface

Because of their higher density, DRAMs are fast replacing the static RAMs in large
memory systems. DRAMSs store binary information in the form of charge on MOS tran-
sistor cells. These cells have to be refreshed (rewritten) periodically, so that the charge
wilt not decay and the information will not be lost. The typical refresh time for a mem-
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FIGURE 9.9 Interrupt-driven DRAM interface to the 68000.

ory cell is 2 milliseconds. This refresh activity can be easily controlled with the help of
interrupts and software techniques.™

A 1-megabyte DRAM device (such as the Motorola MCMS511000) is organized as
512 rows by 2,048 columns. During the first half of the bus cycle, the row address is
presented to the DRAM and the /RAS (row address strobe) is activated. All 512 cells on
that row present their information internally to sense amplifiers. During the second half
of the bus cycle, the column address is presented and the /CAS (column address strobe)
is activated. One out of the 2,048 columns is selected, and the appropriate data bit is thus
addressed. For refreshing, it is sufficient that the row address be supplied and RAS
activated.

Twenty address lines are required to access one out of a million locations. Exter-
nally, ten row address lines (A1-A10) and ten column address lines (A11-A20) are
multiplexed to drive the ten address lines of the DRAM (pins A0-A9). Internally, these
twenty effective address lines are adjusted in groups of nine and eleven (to address one
out of 512 rows and one out of 2,048 columns).

Figure 9.9 illustrates a 1-megaword DRAM system interface with a 68000 proces-
sor, occupying the range between $200000 and $3FFFFF. The 68901 is used as an
interrupt controller to generate a nonmaskable interrupt (level 7), once every 2 millisec-
onds. The processor recognizes this interrupt and executes 512 sequential NOP instruc-
tions contained in system ROM or EPROM. For the system shown, RAS is generated
while the address lines A1-A9 from the 68000 change in sequence. This has the effect of
refreshing the 512 rows (of all the 16 DRAM devices) in sequence. The DRAM is
selected only when the /CSDRAM and /CAS signals are generated. This happens only
when the locations in the DRAM are addressed.

If the DRAM is not refreshed within 2-millisecond intervals, the information may
be lost. The highest priority interrupt is used (in this case, interrupt level 7) so that the
processor will not mask it and will respond to the refresh operation.

In Figure 9.10, the DRAM refresh software listings are given. During the system
initialization (reset routine), the DRAM module is called as a subroutine to initialize the
interrupt controller (in this case, the 68901 MFP). (Refer to Chapter 8 for a description
of the MFP/68000 interface.) Timer A, with an internal interrupt priority of $D, is used
in this application to generate a 2-millisecond delay.

Between lines 6 and 11, the MFP registers required for this application are de-
clared. At line 14 the vector register of the MFP is loaded with $40. When timer A
generates an interrupt, the corresponding vector number is

$40 + priority of timer A = $40 + $D = $4D
The corresponding exception vector location is
4 x vector number = 4 X $4D = $134

At line 15, this vector location is loaded with the starting address of the interrupt service
routine (INTR module).



LINE ADDER
1 sram.src¢ 3/6/69
= ;:DRAM software refresh
3 OPT A
4 ORG $1300
5 ;66901 register declarations
& 0oos0a00 BASE EQU 040000
7 0004cO07 IERA EQU BASE+$07
& 00040013 IMRA BQU BASE+%$13
9 goo4001L7? ¥R EQU BASE+$17
10 00040015 TACR EQU BASE+§19
13y 000400LF TADR EQU BASE+$1F
L2 QOOO4E?L NOP EQU F4E7L
13 rinitialize 68901 for refresh
44 00001300 123FC Q040 DOO4 DRARM MOVE.B #3$40,VR
ool
15 0000L3ca e3FC o000 1336 MOVE.L #INTR,3134
0134 4E?L
15 renable timer A interrupt
1,7 DO00L2L2 04F9 0005 0004 BSET.B #5%,IERA
opov
1A 0000X3%A OB8FQ DOOS CODA4 BSET.B #5,IMRA
o013
19 ;timer A for 2 milliseconds
20 00ogl3ige LAFC 0031 0004 MOVE.B #%53),TADR
ooir
21 0000132R 13FC 000B OOC4 MOVE.B #3%0L,TACR
nowng
22 00003328 4EY7) NOP
23 00001334 4E7YS RTS
24 ;interrupt routine corresponds
25 :to 5LZ locations of NOP codes
2L 00001336 4E71 4E7L IRTR DCE.W 512 ,NOP
27 0000373k 4E?3 RTE
28 000017348 END
A3SEMBLER ERRORS = 3

FIGURE 9.10 Listings for the DRAM refresh software.

Between lines 17 and 22, the timer A interrupt is enabled and the timer A data and
control registers are conditioned to generate an interrupt every 2 milliseconds. At line 25,
the subroutine returns to the calling program.

The interrupt routine INTR starts at line 26. The NOP codes are sequentially ar-
ranged by means of the DCB.W 512,NOP assembler statement. When interrupt 7 occurs,
these 512 NOPs are executed and the program returns to the interrupted program by
means of the RTE instruction at line 27.

The following example problem provides a review of the interrupt controller and
the DRAM implementation.

2. Timer A interrupt:

Exar?zpfe 9.4 Interrupt-driven DRAM implementation,
Consider the DRAM system and software of Figures 9.9 and 9.10.

1. Specify the relative timing of the RAS, MUX, CAS, and DTACK signal generation.

2, Specify how timer A is configured to

generate an interrupt once illisec-
Spec p every 2 millisec

3. What percentage of processor time is taken for refresh?

Solution

1. RAS, MUX, and CAS: AS s generated each time a bus cycle is initiated. RAS is

generated one CX0 (16 MHz) clock period after the AS si nal. RAS I
address on the DRAM pins. o wehes the row

MUX is generated two CXO0 clock periods after the AS sj i
signal. Th
the column address to the DRAM pins. gna is presents

CAS is generated three CXO clock periods after the AS if the CSDRAM signal

is activated. CAS latches the column address on the DRAM pins; the DRAM is se-

lected only after CAS.

DTACK is generated four CXO0 clock periods after the AS signal. This is a
proper timing sequence for data transfers,

' Bit 5 of ’zhe interrupt cnable and interrupt mask registers (IERA
and IMRA) is set to |, enabling the timer A interrupt. When the timer counts down
to zero from the preloaded number, an interrupt is generated. Timer

A is decre-
mented by the XTLI clock. The timing calculation is as follows:

TACR loaded with 6 = 100 prescale factor

TADR loaded with $31 = 49
XTL1 crystal clock = 2.4596 MHz
Thus, |
100 x 49

Timer A countdown period = m = 2 milliseconds

3. Percentage of processor time for refresh: Refre

‘ . _ sh time corresponds to executin
512 NOP instructions. Each NOP instruction tak g

Ins es four CX1 processor clock peri-
ods. The timing caiculation is as follows: ’ '
CX1 8-MHz processor clock = 125 nanoseconds cycle time

NOP execution time = 4 X 125 = 500 nanoseconds

= 0.5 microseconds
512 NOP execution time = 512 x 0.5 = 256 microseconds



These 512 NOPs have to be executed once every 2-millisecond refresh interval.

Thus,
256 microseconds
resh time = — X 100 = 12.8 percent
Percentage ref 2 milliseconds p
ADC 0816 68230 DAC 0800 SIGNAL
A/D CONVERTER PI/T D/A CONVERTER CONDITION
oc
V4 (10V)
vINO —»| INO V. T v+ 7
viNlT —»| INl  OE VREF:+ Ve
: : START | Ha vRer- | 5K
: H EOC »| H3 : vy I
: (MSB) BI » PB7  PA7 »| B (MSB) T ve
: : B » PB6  PAG » B2 VA 5-10K O
: : B3 »! PB5  PA3 +| B3 =0
: : B4 »: PB4 PAd —pe] B4 5-10K
: B3 »| PE2  pa3 o BS our
B6 »| PBZ  pa2 i B6 OV ‘\\/,X\'
: B7 »| PB! PA1 »| B7
LSB) B8 .- | B2 LOW-PASS
E ) > PBO - PAD - R? FILTER
: 2K} (LPF)
Input 0.01
: : select —”-l
VIN 15 —=| IN15 A e =
B |4—
C [— ase T YR
D |-—
CLK
g{o 10-50 K
: imx
™ CLK GD COMP
GD. REF | | =
= NOTES:
68000 processor 1. All C in microfasads.
;md' inferrupt 2. VIN range of 0-5 volis
8754 [+ e J—
i N | PCSRG. Coo00m0 1 LI
TACK2 > PCO/IACK ;
. 3. LPF cutoff frequency is
(Refer to Sections 50 kiloradians (approximately
5.2 and 9.1) 8 KHz).
FIGURE 9.11 Interrupt-driven A/D and D/A interface to the 68000, (Courtesy of Laura

Ruiz and José Zarut, FiUJ}

Software refresh eliminates the need for additional hardware. In the preceding case,
12.8 percent of the processor time is devoted exclusively for refreshing 1-megaword of
memory. Interrupt stacking and unstacking takes a few more clock cycles. In small-to-
medium systems, such an arrangement is acceptable. However, for larger systems with
more memory, hardware refresh is used with the help of memory management units.

9.3 THE INTERRUPT-DRIVEN DATA-ACQUISITION
SYSTEM AND APPLICATIONS

The usefulness of any microprocessor-based system is greatly enhanced when it is inter-
faced with the analog word. This can be accomplished easily with the help of A/D (analog-
to-digital) and D/A (digital-to-analog) converters. The processor-to-A/D interface can be
interrupt driven to make efficient use of the processor time.’

The A/D and D/A Interface

Figure 9.11 illustrates a typical A/D and D/A interface to the 68000 microprocessor
through the 68230 PI/T (refer to Chapter 7 for PI/T details). ADC 0816 is an 8-bit 16-
channel A/D converter device. By means of the select word DCBA, any one of the 16
input channels (VINO-VIN15) can be selected. DCBA = 0000 selects VINO, and DCBA
=1111 selects VIN1S5.

All of these analog voltages are signal conditioned and filtered before being applied to
the A/D converter. Figure 9.12 illustrates a typical signal-conditioning system.

FIGURE 9.12 Analog
signal conditioning for VIN

inputs 1o the A/ 5K ,
p [ converter. N 5K-20K
| N x5 )\AAI ] i, (10 A)’D)
l Al R3 ’
C
0.01 ’I__‘

R2 (5 K-50 K POT)

R
= P v
vso [V | vmo

Al C values in microfarads

Al: Noninverting amplifier
VX0 =(1+R2/RI1) VSO

R? and C compose a low-pass filter
with a radian cutoff frequency of
wo = 1/(R3 X C) radians sec.

A2: “bltage follower with unity gain.
Its output is
VINO = [1/1 + jwiwo)] [VXD]

whcr:eA w is the radian frequency of VS0 input
and j is the imaginary operator.

For low frequencies less than wo, VING = VX0.



The signal input VSO is buffered by high-input impedance noninverting amplifier Al
The Al amplifier has an effective voltage gain of 1 + (R2/R1). VSO input should be in
the range of 0 to 5 volts for this system. The R3-C network provides low-pass filter
action to remove switching transients. The A2 amplifier is a voltage follower, the output
(VINO) of which is applied as inputO (INO) to the A/D converter of Figure 9.11.

The A/D converter digitizes the applied analog input voltage VIN and produces a
corresponding 8-bit digital word on its B1-B8 outputs. A 640-KHz clock drives the A/D
converter. The converter is interfaced to port B of the 68230 PI/T. The H3 and H4
handshake lines control the A/D. A pulse from the microcomputer on the H4 line to the
START input of the A/D converter starts the conversion of the selected VIN input.

Reg and )
address Code Function configured
b7 b6 H5 b4 b3 b2 bE b0
PGCR: Mode 0: 8-bit unidirectional.
general 010 ] 0 ] 11oge e H3 and H4 enabled.
control HI1 and H2 disabled. H3 and
1eg Port H3 j HI | H4H3 H2 HI H4 active high signals.
$010001 mode 0 | H4 | H2 | sense sense
en. 1dis. | _
PSRR: Interrupt handshake:
service *jojojrftrprypopof € PC5 is IRQ; PC6 is IACK.
request . H3 has highest interrupt
?eg SveRy sel Operat. | Prior. ant priotity among H signals.
$010003 PC4 norm seiect | H3 has high
PC5 IRQ priority
PCo TIAK
: Port A is output
Pg{)DrPf ’ i 1 l 1 i 1 | 1 FF
data
dir reg
$010005
DDR: Port B is input
p[?ort B oJojojlojojyojo]o 00
post A
data
dirreg
3030007
PIVR: Interrupt vector: FA,
port in tfvprpurpy)ojprjpoy FA Add. = 4 X FA = 3E8.
veckor 68000 goes to location of 3E8
reg : to obtain add. of int. routine.
$010008
PBCR: Port B submode :
port B o1 01! rpryoefptryo 3A H4 is cutput in puised
cont protocol, H3 is input.
e Submode | H4 handshake | H4 | H3 | H3 H3 interrupl enabled.
$01 {J%OF 0 int | ser } stat

FIGURE 9.13 The 68230 PI/T register initialization for the data-acquisition system.

When the conversion is complete, the A/D converter generates a pulse on its EOC (end
of conversion). It is connected to the H3 handshake input of the 68230 which in turn,
generates an interrupt to the processor on its PC5/*IRQ line. In this application, /IRQ
drives a level 2 interrupt (/INT2).

The DAC 0800 D/A converter is interfaced to port A of the 68230 PI/T as indi-
cated. This 8-bit D/A converts the processed digital word on its B1-B8 inputs (sent by
the processor on its port A) into a corresponding analog voltage VA. VA is filtered using
the low-pass filter (LPF) amplifier to remove any step and switching transients and to
provide a reconstructed analog voltage VO. The LPF has a cutoff frequency of 8 KHz,
which is sufficient in most audio, control, and instrumentation systems.8

FIGURE 9.14 Flowchart for the i

L be
68000-based data-acquisition Evemis (Se;nlsi;::: 9,r135)
system (Example 9.5,

Define 68230 registers [2to 30

Define 256-byte memory
block for data storage

Initialize 68230 registers:
Port B output;
Port A input; 3710 55
H3 input and H4 output

—te Wait loop for interrupt 5610 57

3l to 35

NO

YES

Read A/D converter and store
data sequentially 6210 64

NO
All data stored? 66 to 67
Output to D/A in reverse
order with delay 1w




LINE ADDR

0001000L
pogioon3

o
Ei:erEuagcruu“mI\urue

16 00010005

16 0OcL0O07
119
-0 0001000B
=
2¢ 00010000
c3
24 0001000F
25
ck 00010011
27
28 Aaad03yo013
£q
el
31 00000500
3¢ Qanpp{aog
33

J4 00000964
a5

ElS
ay
38
39 Ooopoo[ac

40 000004914

41 0000091

PGCR
PSRR
PADDER
PBDDR
PIVR
PACR
PBCR
PADR
PBDR

428l
247C 0000 2180

163C OOFF

L3FC 0000 O08L
noca?
13FC CGOFF 000%
0aas
L3FC 002¢ 0001
oool

X O¥OE K K KN

EQU $01.000L
EQU $010003
EQU $01000%
EQU $010007
EQU $01000B
EQU $01000P
EQU $0L,000F
EQU $01001%

EQU $010013

*

*

LLEN 105
OPT R

ADC/DAC SYSTEM INTERFACE

MOTOROLA 68000
2/7/87

Laura Ruiz

ORG $600

Port General
Control Register
Port Service
Request Register
Port B Data
birection Register
Port B Data
Direction Register
Port Interrupt
Yector Register
Port A Contrel
Register

Port B Control
Reglster

Port R Data
Reglister

Port B Data
Register

h e md o= wa
R T I L S IC TR P

CLR.L DO
MOVER.L #%$2100,Aa2 ;memory block
;to store data

sctr to store 256
; bytes in memory

MOVE.B #$FF,D3

Initializing registers
MOVE.B #$00,PBEDDR ;port B: input
MOVE.B #$FF,PADDR ;port BA: ocutput

MOVE.B #%2C,PGCR ;mode 00,H34

42

43 00GGCGH24 13FC DOFA OGOL
oouB

44 0000CRaC 227C N0O00 OU3ES

45 000DGO932 22BC 0000 2000
4b

47 C0OCGY938 13FC 003C 00O
oaG3

46

49 00000940 w039 COOYL, DOL3

50

51

=T

53 00000946 13IFC 003a 0001
oocr

54

55

St DUDO0Y94F bLOPL

57 DO00095%0 &0OF4

55

59

(1]

bEh

&¢ 00002006 33IFC GO3& 0O0%
o0arF

&3 0DDOZ0OA 1038 2001 0013

B4 00002CQO0E 14cCO

b5 0000010 S343

&6 00002032 4A03

B7 0002014 704 4E71

b8 00002018 4E73

&9 '

70 0000201A 13E2 0001

7L 0011

72 00002020 La3ic nos4o

731 00002024 0404 DOdy

74 00002028 LLFA

75

7L 00D00202A 0LO3 DOOL

77 00DOZ202E 0OCD3 OGFF

78 00002032 LEEGL

79 00002034 LOER

79 00002036

ASSEMBLER ERRORS = a

;enabled high
MOYE.B #3%FA,PIVR ;vector int

MOVEA.L #%3E&,Al;vector add(FAa*4)
MOVE.L #$UDDUEDDD,(Al);interrupt
yroutine address

MOVE.B #3%1C,PSRER ;PIRQ,PIACK

;enable H3 at highest priority

MOVE.B PBDR,DN; H4 first pulse.

; Wait for interrupt from ADC when
i conversion is ready

WAIT MOVE.B #$32,PBCR :00 submode

¥

BACK

FINAL
*

DELAY

and pulsed input handshake
mode. HI enabled.

BRA WAIT

BRA WRIT

Interrupt routine : read port B;
output to port A

CRG $2000
MOVE.B #%38,FBCR; HI disabled

MOVE.B PBDR,DC ; read input
MOVE.B DO, (R2)+ ;store in memory

S5UBG #1,D3 ;jdecrement ctr
TST.B D3 ;check if done
BEQ FINRL

RTE sreturn from interrupt

MOVE.B -(A2),PADR;data to port A

MOVE.B #%40,D4
SUBI.B #1,D4
BNE DELAY

;delay

ADDI.B #1,D3
CMPI.B #3%FF,D3

;increment ctr
icheck if done

BNE FINAL 18end more data
BRA BACK ;if 256 data sent,
END ;start back ADC

FIGURE 9.15 Software for the 68000-based data-acquisition system (Example 9.5).
{Courtesy of Laura Ruiz, FIU).

FIGURE 9.15 Continued.




A Typical Data-Acquisition System

With appropriate software, the A/D and D/A system of Figures 9.11 and 9.12 can be
integrated into a useful data-acquisition and instrumentation system. For the 68000-
based system under consideration, the 68230 PI/T resides at the address map between
$010001 and $01003F. Port A is configured as an 8-bit output port to drive the D/A
converter. Port B is configured as an 8-bit input port to accept the A/D data.

The handshake signals H3 and H4 are configured for pulse handshake on port B. A
pulse will be generated on H4 whenever port B is accessed. This pulse starts the A/D
conversion. When the A/D conversion is complete, H3 input will be activated by the A/D
converter. This interrupts the processor, which, in turn, reads the digitized data on port B.
This interrupt handshake between the 68230 PI/T and the 68000 is accomplished by
configuring the PC5 (port C, pin 5) as an /IRQ to the processor and the PC6 (port C, pin
6) as the IACK to the 68230 (refer to Figure 9.11).

The user vector method is employed in this application to provide the interrupt
vector to the processor. The DCBA switches are set to 0000 to select VINO as the ana-
log input. Figure 9.13 (p. 254) illustrates the 68230 initialization required for this appli-
cation.

The flowchart and operating listings for a 68000-based computer using the preced-
ing data-acquisition system are given in Figures 9.14 (p. 255) and 9.15 (pp. 256-257).
The software configures the 68230 PI/T ports and the CPU registers. The interrupt rou-
tine reads the A/D data (from port B), stores up to 256 data bytes, and outputs the stored
data in the reverse order to the D/A (on port A). Finally, the software loops back for the

next digitization.
We will now analyze the software and the system response with the help of an
example problem.

Example 9.5 Data-acquisition system. . _
Consider the data-acquisition system hardware and software of Figures 9.11 through

9.15.

1. Analyze the software. Where is the A/D data stored?

2. Where does the interrupt service routine start?
3. VINO is as shown in the following diagram. Plot reconstructed VO output to scale.

FA'SS

1v N

oy

Time

Solution

1. Software analysis: Between lines 12 and 28, all the PI/T registers used in this appli-
cation are defined. Between lines 31 and 36, registers DO, A2, and D3 are initialized
with $00000000, $2100, and $FF, respectively.

Between lines 38 and 43, the PI/T registers are initialized according to Figure
9.13. At lines 44 and 48, $00002000 is stored at vector location 3E8 and port C is
configured for interrupt activity (PCS5 is an /IRQ and PC6 is an /IACK). Accessing
port B (at line 49) generates the first H4 pulse to start the A/D process. Between lines
53 and 56, the processor enables the H3 interrupt and goes into a wait loop-waiting
for the interrupt to occur at the end of the conversion.

On occurrence of the H3-activated interrupt, the processor fetches the interrupt
routine address ($00002000) from the vector location $3E8 and starts the interrupt
exception routine (line 62). At line 62, the H3 interrupt is disabled so that the pro-
cessor will not be reinterrupted by the A/D while it is servicing the interrupt that
already has been recognized.

At lines 63 and 64, the processor reads the A/D byte from port B and stores it in
the memory in an ascending order. If 256 bytes of the A/D data are stored, the
program branches to the final module (lines 65 to 67). Otherwise, the program returns
to the wait loop by means of the RTE instruction at line 68.

The final module is contained between lines 70 and 79. It outputs 256 bytes of
the stored A/D data in the memory to the D/A converter through port A in a descend-
ing order. The delay loop (lines 72 to 74) provides delay between successive D/A
samples. After all 256 samples are output, the program branches back to line 68 and
the RTF instruction at line 68 returns the program to the wait loop.

Interrupt service routine: This routine starts at location $00002000 (line 62).

3. VO waveform: The digitized and stored data (256 bytes) are output to the D/A con-
verter in the reverse order, with delay between the samples (lines 70 to 79 of the
software). Thus, the reconstructed VO analog signal looks backward, as diagrammed,
when compared to the corresponding VINO input.

N

VO
2V 4 c
e d /’\

\
1v f,7 \

FY

g a

(LAY

Time

" Imerrupt-drivcn. data-acquisition systems are extremely useful in industrial appli-
lons. Data processing may be more involved than a signal reversal, and data storage



well over 256 bytes. The general hardware and software concepts of the data-acquisition

and the A/D and D/A interface schemes remain the same, however.
We will now present another example problem in which the importance of D/A

conversions and associated waveform generation are emphasized.

Example 9.6 Waveform generation using D/A.
With reference to Example 9.5, suppose it is necessary to generate a triangular waveform
at the output of the D/A converter (connected to port A PADR). Assume all the

initialization conditions of Example 9.5.

1. Develop the operating software.
2. How is the frequency of the waveform changed?

Solution

1. Operating software: The flowchart and the 68000-based program listings to accom-
plish the task are given in Figure 9.16. The DO register is used as the count register.
It is incremented and output to port A (with a delay) if the count is between $00 and
$FF. This provides a positive-going ramp at the output of the D/A. If the DO register
equals $FF while it is being incremented, it is then decremented and is output to port
A (with a delay). This provides a negative-going ramp at the output of the D/A. The
positive- and negative-going ramps generated in sequence provide the required trian-
gular waveform.

2. Changing the frequency: The frequency can be changed by changing the delay
counter parameter in the instruction MOVE.W #$40,D4. If the number $40 is in-

creased, the frequency proportionally decreases.

In the preceding example, the maximum frequency will be obtained if the delay

routine is deleted.

9.4 DIRECT MEMORY ACCESS (DMA) CONSIDERATIONS

DMA techniques help accomplish high-speed data transfers between memory and mem-
ory, memory and /O, and vice versa. The DMA operations are performed with the help
of DMA controller devices. These controllers obtain the address, data, and the control
buses from the processor and implement the DMA transfers. During the DMA transfers,
the processor is logically disconnected from the buses.

General Architecture of the DMA Controllers

Figure 9.17 illustrates a typical DMA system organization. The I/O device requests the
controller for DMA operation. The DMA controller, in turn, requests the processor, ob-

FIGURE 916 (a) Flowchart
and (b} 68000 assembly
program listings for the
triangular waveform generation
{Exampie 9.6).

Events

Initialize DO register = 00

—*| Increment DG and outpul to PADR

NO

DO = $FF?

YES

w1 Decrement DO and output to PADR

(n}

i all the initializatijon iti

: " conditions of previ

iare used in this software i Tous example
i initialize DO to $0D

o

DOWN

DELAY
LOOP

MOVE.EB
ADDO.B
BSR.§
MOVE, B
CME. B
BEG.5
BRA. S
SURQ. B
BSR, 5
MOVE . B
CMP . B
BEQ.B
BRA. 5
MOVE . W
DBNE
RTE

#5006, D0
#5501, D0
DELAY
D0, PADR
#SFF,. DD
DOWN

up
#5301, 00
DELAY
DO, PADR
¥300,D0
op

DOWN
#540,D4
04, LOOP

(b}

ilncrement oo

Joutput DO to port A

FLL DD = SFF hranch to DoOWN
tDECREMENT DO

soutput DO ko port A

Fif DO = 500 branch to U

idelay counter initialize
sdelay loop



grant) signal to the controller. The controller, in turn, sends the BGACK (bus grant ac-

68000 DMA 1o Memory knowledge) signal to the processor and takes control of the buses. The DMA controller is
family controlier systemis units the bus master until the /BGACK is deactivated. The controller drives the address and
63000 DMA /0 Memory control buses and performs the DMA operations. The processor regains control of the
buses after the /BGACK is deactivated.
BR e BR
BG »{ BG
BGACK [ BGACK The 68440 and 68450 DMA Controllers
—l I | I | l ] I | l l | Address The 68440 and 68450 are industry standard DMA controller devices belonging to the
bus 68000 family. The 68440 has two DMA channels, while the 68450 has four DMA chan-
nels. These devices are pin compatible with one another and are contained in a 64-pin
l?ua;a DIP or a 68-pin grid-array package. They are fabricated with HMOS technology. The
devices are similar with respect to internal architecture. Both have signals similar to
Comtral those of the 68000 processor.

bus Figure 9.19 illustrates the signal organization for the 68440/450 devices. The
higher order address bus (A8-A23) is multiplexed with the 16-bit data bus (D0-D15).
These buses are demultiplexed by external logic and are connected to the 68000 system
bus. There are two modes of operation for DMA controllers: the CPU mode and the
tains the buses, and performs the DMA data transfers between memory and memory, DMA mode.

FIGURE 9.17 General concept and architecture for the DMA system.

memory and [/O, and vice versa.”'”

Figure 9.18 illustrates the typical DMA bus request timing for the 68000 family of
processors. To request the buses, the DMA contreller activates the BR (bus request) sig-
nal to the processor. The processor recognizes this request and activates the BG (bus

In the CPU mode of operation, the processor is the bus master. The DMA con-
troller resembles an external device. The control signals R/*W, /LDS, /UDS, and /AS be-
have as inputs to the DMA controller. The DTACK signal behaves as an output. The
processor effectively writes or reads information from the DMA controller.

In the DMA mode of operation, the processor releases the control of the buses,
and the DMA controller becomes the bus master. The aforementioned signals behave in
a manner opposite to that described. The controller generates all the 68000-compatible

1

controllers. Each channel consists of 17 registers. In addition, each device has a general
b control register, GCR. Some of these registers are initialized by the processor to set up
oo the DMA operation. Others present the status information to the processor. We will
: : discuss the details of these registers in the following section.

.-t
2 ]

CLOCK . .
LSO SI1S2193:54:95:86187¢ | | { 1S0:SI:S2:53:S4:85:56:87; 1 1 | | signals appropriate for data transfers.
S S T T R S S T A S A S R S A S S A The multiplexer control signals control the demultiplex logic for the data and ad-

ASLDS.UDS « ¢ NN 4 b e e dress buses to appropriately interface the 68000 system bus. The DMA controller com-
A A Vo ; municates with the I/O systems via the device control signals /REQ, /ACK, /PCL, /DTC,
RAW el P o 5 and /DONE.

R Colo — The DMA controller communicates with the processor via the bus arbitration sig-
: — 1 nals /BR, /BG, and /BGACK, and via the interrupt signals /IRQ and /IACK.

DTACK '/ N Figure 9.20 illustrates the internal register structure of the 68440/68450-type DMA

N\

Modes of Operation of the DMA Controllers

When the controller is serving as the bus master, it is in the DMA mode of operation,
performing the data transfers. This DMA mode allows for two distinct modes: the
single-address mode and the dual-address mode.

BGACK | |

|<——- PROCESSOR >|< BUS MASTER —_.l

FIGURE 8.18 DMA bus request, bus grant, and acknowtedge timing. (Courtesy of
Motorola Inc.)




TO 68000 BUS
FUNCTION <> FC2 FCl,FCO DEVICE CONTROL
CONTROL REQ n [#—— Request
ACK n p——— Acknowledge

Lower address <:::> Al. . A7 PCL n [ Peripheral
b control

u DTC | Data transfer

i AS/DO .. A23/DILS complete

Multiplexed <::> SoNE omp

upper address
and data bus
(tc bus through

demux logic}
AS BUS ARBITRATION
R/W [ to 68000 ]
ASYNCHRONOUS < ——>| LDS o
BUS CONTROL ub3 BR |————— Bus request
DTACK BG |-———— Bus grant
BGACK  f—————p Bus grant
= acknowledge
Chip select ] C§

(from decoded
address bus)

BUS ERRORS —————>| BECG..BEC2

INTERRUPT CONTROL

|

IRQ | Int.request
IACK #—— Intacknowledge
MULTIPLEX CONTROL
_ NOTES:
Bus own - OXVSN n"—= oL for
Upper add, strobe - 1 S
Data bus enable -+—— DBEN 68440 dual DMA
Data direction -+—1 DDIR
i — n=0,1,2,73for

High byte HBYTE 68450 quad DMA

Ciock — CLK 68440/68450 pin-

compatible in the
64-pin DIP or GRID
package

FIGURE 9.19 Signal configuration for the 684407450 DMA controller devices.

In the single-address mode, the data transfers are between the I/O and memory.
The controller changes the memory address for successive transfers, but the I/O address
remains the same. The I/O device is activated by the /ACK signal from the controller.
The data transfer takes only one bus cycle.

In the dual-address mode, the transfers are between memory and memory. In this
mode, the controller contains the source and the destination addresses in the MAR and
DAR registers. Any external peripheral device has sequential address space similar to
that of memory. The controller generates the source address and reads the source dper-

OFFSET
$FF

$04
$05
$06
$07
52D
$00
$01
$25
$27
$29
$31
$39
$0a
$1A
$0C
$14

f1C

Notes:

GCR

Channel 0
Channel 1
Channe] 2
Channel 3

FUNCTION

Sets mode of operation

Sets device contro!
Sets operation control
Sets sequence control
Sets channel control
Sets channel priority
Contains channe! status
Contains channel errors
Contains interrupt vector
Contains error interrupt vector
Contains memory function codes
Contains device funciion codes
Containg base function codes
Contains memory transfer count
Contains base transfer count
Contains memory address
Contains device address

Contains base address

always at $FF
between $00 and $3F
between $40 and $7F

#BITS

32
32
32

REGISTER

Beneral control register

device controi register

operation control register

sequence control register

charnel control register

channe? priority register

channel status register

channel error register

hormal interrupt vector register

SITOr interrupt vector register

memory function code register

device function code register

base fonction code register

memory transfer counter

base transfer counter

memory address register

device address register

base address register

between $80 and $BF  for 68450 an) ¥
between $CO and $FF  for 68450 only

FIGURE 9.20 [nternal register architecture for the 684407450,

andci to aABsEMRI Nl ECROROSATY IE GLSIET,
bd s for word or byte transfers

further detail® COntrollerS 4% CompleX devkes; data books should be consulted for and alLaLuOn PreSCnt n

eX3mPle Problem t0 ©VICW ocMA COnCeptSy COntro,,ersy

REMEdure (08 DSOS Sy it SR o

GCR

DCR
OCR
SCR
CHCR
CPR
CSR
CER
NIVR
EIVR
MFCR
DFCR
BFCR
MTCR
BTCR
MAR
DAR

BAR



Example 9.7 DMA concepts and controller architecture.
Review the material covered in Section 9.4 to answer the questions that follow.

1. How many total registers are there for the 68440 and the 68450 devices? Explain.

2. Can all the channels operate simultaneously? Why or why not?

3. Specify the relative address locations of MAR and BAR for channel 2, in the case of
the 68450 controller.

4. At what point does the DMA controller gain control of the buses? Under what con-
ditions?

Solution

1. Number of registers: Each channel has 17 registers. In addition, each device has the
common GCR and a temporary register, TEMP, to hold data in the dual-address

mode. Thus,

the 68440 DDMA has 2 X 17 + GCR + TEMP = 36 registers
the 68450 QDMA has 4 X 17 + GCR + TEMP = 70 registers

2. All channels: Only one channel becomes operational at any given time. This is be-
cause of the bus activity. Each channel can be individually initialized, however.

3. MAR and BAR (refer to Figure 9.20): For channel 2, the relative base address is
$80. As such,

the MAR is at $80 + $0C = $8C
the BAR is at $80 + $1C = $9C

{Note: To obtain the effective addresses, the chip select base address should be
added.)

4. Control of the buses: After receiving the BGACK from the DMA controller, the
processor concludes the current bus cycle. The address, data, and control buses (spe-
cifically, R/W, LDS, UDS, and AS) go into a high-impedance state. At that point,
the DMA controller gains control of the buses.

9.5 THE DMA INTERFACE AND APPLICATIONS

Figure 9.21 illustrates a typical 68000/DMA/I-O interface. This is in the single-address
mode. The /O system is activated by the ACK signal from the DMA controller. DMA
channel 0 is used in this application. :

63060
68000
processor SYSTEM BUS 2 X Ls 373- 68;)41\(;{;150
type tatches controller
BR | BR
BG - - BG
B - ”
GACK AB .. A23 - ggACK
C |- U
7404 A3
AS,
Address : -
dataand |G ADIS
control 2X Ls 245
Lype transceivers
Do .. DIS
MEMOR
Y E[;JI,E -+ DDIR
< Al .. AT - DBEN
R/W,LDS, UDS, AS, DTACK
Address
- decoder w5
Interrupt | | INT |
fnterface LOGIC DO .. D15
REQUEST & REQO
ENABLE - A%%O
[INT6 AND
ACKNOWLEDGE]
INQ —e—— ] [6-BIT DATA
IN15 '_—"_""—ﬁ'-.

Peripheral I/O system

Notes: 1. UAS from controller latches the address lines AR .. A23.

2. DDIR from controller determines the direction of data
(bus to controller or controtler to bus}.
3. DBEN from controller enables data transceivers.

FIGURE 9.21 The 68000/DMA//O peripheral interface (Example 9.8),

DMA Sequence of Operations

;Zer:drz)l;cr:;al‘{O S)flflt]cm activates ic REQ input to the DMA controiler and initiates
processor %}e ‘10n. ‘ e controller, in turn, activates the bus request (Eﬁ) signal to the
The pl‘Oct;ssor allJ‘rocessor_ responds back to the controller by activating the BG output.
sends the EGK(TS;{) colznpletes the current bus cycle. The controller accepts the BR and
by the af: nowledge signal to the processor, This signal is held low active

ontroller until the DMA data transfers have been completed. When BGACK is



low, the data, address, and control buses of the 68000 remain in a high-impedance state
(refer to Chapter 6, Section 6.1). The DMA controller takes control of these buses, be-
comes the bus master, and begins the data transfers.

Figure 9.22 specifies the typical sequence of events during single-address mode
transfers from the I/O units to the system memory. Other types of DMA transfers follow

a similar sequence of events.

PROCESSOR DMA CONTROLLER PERIPHERAL

Ininalizes DMA
controller in

TEsponsc 1o external

signal, such as an

interrupt. " aeTat:
2, Initiates REQO
to DMA contreller

]

|
3. Arbitrates and obtains
sysiem bus:
-+— ER to processor;
—= BG from processor;
e B(!EACK {0 processor.

4. GoEes into high-impedance
state for address and data
buses and negates control signals,
: I
5. Assumes bug ownership;
Activates UAS, DBEN
DDIR signals.
Activates ACK to peripheral

during each read bus cycle.
1

l
Peripheral puts data
on the data bus.
Activates memory _
addrass, LDS,UDS, RfW
signzls. Data written

into memory.
G, Increments MAR.
Decrements MTCER.
7. Repeats steps 5 and 6
until MTCR = 0.
2. DMA completed.

BGACK deactivated.

BUS control released.
|

I
9, Regains bus control
and continues the processing.

FIGURE 9.22 Sequence of DMA operations in the single-address mode.

DMA Channel initialization

The DMA controller must be initialized in accordance with the system application before
any DMA activity takes place. For single-address transfers, the processor writes the
starting address of the memory, the size and number of data operands to be transferred,
the direction of transfer, and other such information into the appropriate registers of the
DMA controller. For dual-address-mode transfers, the source and destination operand
addresses are written into two separate registers.

After the first initialization, further reinitialization of the controller can be done

internally by the controller, itself, if it is operated in the reload condition.
We will now present an example problem to review the DMA sequence of opera-

tions and initialization schemes.

Example 9.8_ DMA sequence and initialization.
Su.pposc a 1-kiloword transfer of data to memory from a peripheral I/O port is required
using the DMA system of Figure 9.21. The DMA controller occupies the memory map
between $012000 and $0120FF.

DMA channel 0 in the single-address mode is used. Memor fi
starts at $00002000, ‘ ¥ or DMA transfers

1. Usi‘ng the 68440 DMA controlter, illustrate the initialization of the DMA internai
registers.

2. If the 68440 is replaced by a 68450 controlier, will there be any change in the ini-
tialization? Why or why not?

3. Interrupt 7 (a nonmaskable interrupt) is being serviced when the DMA request comes
to the processor from the controller. Will it be recognized? If so, specify the se-
quence of events.

Solution

1 Initia.lization: Figure 9.23 illustrates the required initialization of the 68440 channel
0 registers (refer to Section 9.4 for the register map). The device control register
(_DCR) is initialized for a burst mode of transfer for word-sized operands. In addi-
tion, the I/O is activated by ACK. The rest of the register initialization is self-
explanatory,

2. 68450 Initialization: For channels 0 and 1, the initialization sequence remains the
same for the 68440 and 68450 devices, since these devices have the same memory
map.,

3. Interrupt an'd .DMA: A.S soor as the DMA request comes, the processor must re-
spond, even if it is servicing an interrupt fevel 7. It issues the bus grant signal and



FIGURE 9.23 Initialization of Register Contents

the DMA registers (Channel 0). w7 b6 BS B4 b3 b2 bl b0
DCR at
i 0 ¢ 0 528
soi2o04 1 O] 00 V|9
ACK Word .
Burst mode implicit data PCL is status |
OCR at 0 0 90
$012005 | 0 0 1 [t 0 $
| Bir. | Chain | Internal I
memory Word transfers disabled rate set
CHCR ar ol o] of o} sso
soizoor | 1] ) O]°
Start Continue, relead, interrupt disabled I
enable
GCR at Loaded with $00 for default 50 percent duty cycle
$0120FF operation
MTCR at . .
$01211A Loaded with $0400 for 1-kilo word transfers
MAR at Loaded with $00002000, the beginning address
$01200C of the memory for the DMA transfers

The other registers are not explicitly used, and the
defauit conditions on reset are acceptable.

concludes the current bus cycle. It releases the control of the buses to the DMA controller
on the occurrence of the BGACK signal.

Only one DMA channel can be serviced at a given time. Two such channels can be
serviced (one at a time), if a 68440 controller is used. For four such channels, the 68450
controller should be used. The initialization scheme for each channel is similar to the
scheme we have described. The DMA channels are prioritized by the controller.

DMA Software Considerations

In DMA applications, the software basically initializes the DMA controller. When the
peripheral is ready for DMA operation, it usually interrupts the processor. The processor
recognizes this interrupt and initializes the DMA controller. Thereafter, the DMA request
can occur at any time. The DMA request should not be allowed prior to, or during, the

initialization of the DMA controller.
We will now introduce the software for DMA operations with the help of an ex-

ample problem.

Example 9.9  Software for DMA operations,

In the DMA system of Figure 9.21
tialize DMA channel 0. One

.21, interrupt 6 is activated by the peripheral /O to ini-
-kiloword transfers, as specified in Example 9.8, are re-

quired.
LINE ADDR
3 ;DMA INITIALIZATIONS
° ;988 PLUTLU.L
p OPT A
: ORG $1000
i68440/450 registers defin
$ gggLEDUD BASE Eéb SDLEDDﬁd
4 oo 12004 DCR EQU $012004
a ngigggs OCR EQU $012005
0 Doo s CHCR EQU $G1lco0v
o DDDLEDDR MTCR EQU $012000
e uuuiggnc MAR EQU $01200C
13 00003200 TRTG EOU  sooomie
1300 $00041enn
1 aoonras .FECTOH EQU 3Gnva
ins : i
iinitialize inte
37 000o0wo0ao Eagg 0000 1200 STRT MOVE.L #INTE??%ETngeCtor address
18 CO0D1008 LOOL 4E71
19 00001L00C 4E7L ggg TASK
SE 0000100 LOFO BRA STRT
sPro i
e 00001010 4E?L Tth gggsor pertorming a task
23 00003012 5482 ADDQ.L #%02,Db2
gg 00601014 LOFA BRA TASK'
h ;Int #& routine to initlalize DMA
S Loooi ORG $600Ccy200
con gggg gooc oooz MOVE.B #$00,GCR
©d 0ocoolzae gggg 00490 o0oal HMOVE.B #%490,0CH
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1. Develop 68000-based operating software to initialize the DMA controller.
2. Compute the actual time of the DMA transfers, using the software developed. Con-
sider the system (processor and controller) to be operational at 8§ MHz.

Solution

1. DMA initialization software: In Figure 9.24, the operating software using the
68000 is given. Between lines 6 and 14, the relevant channel 0 registers of the con
troller (a 68440/450 device) are defined. At line 17, the interrupt 6 vectored address
of $00001200 is loaded into the exception table at location $0078. This is the inter
rupt 6 autovector location.

Between lines 18 and 24, the processor goes into a TASK routine. A task can
be any processing activity the processor is involved in. For simplicity, we have cho-
sen a three-instruction loop. The processor responds to the interrupt, if the interrupt is
enabled, and appropriately initializes the DMA channel.

Between lines 25 and 33, the interrupt 6 service routine is contained. This rou-
tine initializes the DMA registers as specified in Example 9.8. After the initialization,
when the DMA request occurs, the processor gives up the buses to the DMA
controller to transfer the data, as outlined previously.

2. Time for DMA transfers: After the DMA channel has been set up, the transfer time
is that of the 1-kiloword transfers. The DMA is set up for single-address transfers
from the I/O peripheral to the system memory.

Each word transfer takes one bus cycle, which corresponds to four clock cycles.

Thus, the timing is as follows:

Clock cycle time at 8 MHz = 0.125 microseconds
Bus cycle time = 4 x 0.125 = 0.5 microseconds
1-kiloword DMA time = 1,024 X 0.5 = 512 microseconds.

Examples 9.8 and 9.9 involve the single-address mode of DMA operation. The
dual-address mode of DMA operation is similar to the single-address mode; for the dual-
address mode, however, each byte or word transfer takes two bus cycles for 68000-based

systems.

9.6 SUMMARY

In this chapter we considered interrupt and DMA applications related to the 68000 mi-
CrOprocessor.

_ The external interrupts are properly encoded and applied to the /IPL2, /IPL1, and
IPLO inputs of the 68000 processor. A level 0 interrupt signifies that there is no pending
interrupt. Interrupt levels 1 through 7 are set on priority, with level 2 higher than level 1,
and so on. Level 7 is a nonmaskable interrupt (NMI).

These interrupts can be autovectored or device (user) vectored. In autovectoring,
the processor goes to a fixed vector location. The autovectoring scheme is simple and is
preferable when a fixed number of interrupt vectors is satisfactory for the application.
The device-vectoring scheme is more involved, but it provides the scope for interrupt
expansion. In device vectoring, the interrupting device supplies the corresponding vector

number.

In order to increase the effective number of interrupts, a daisy-chain mechanism
with a device-vectoring scheme is used. In the daisy chain, the device closest to the
processor has the highest priority; the device farthest away has the lowest priority.

Interrupt processing is done in the supervisor mode. After stacking the program
counter and the copied status register, the 68000 processor obtains the interrupt-vectored
address from the appropriate vector location and executes the corresponding interrupt

service routine.

We described the following interrupt-driven systems: the gain-controller system,
the data-acquisition system, and the dynamic memory system. The discussions helped to
provide insight into practical interrupt applications. The gain-controller application is
widely used in industry; for example, in setting up proper motor speeds. In the data-
acquisition system application, A/D and D/A interfaces to the processor are involved.
The dynamic memory system application deals with interrupt-driven timing in memory
system designs.

Whenever there is a requirement for high-speed data transfers, DMA (direct mem-
ory access) methods are used. In such methods, an external DMA controller obtains the
control of the processor buses and implements data transfers without the intervention of
the processor.

The industry standard 68440 and 68450 DMA controllers belonging to the 68000
family were introduced in this chapter. The 68440 is a dual-channel DMA controller.
The 68450 is a quad-channel DMA controller. The devices are compatible with one an-
other.

When there is a requirement for DMA-type data transfers, the DMA controller ar-
bitrates and wins the system buses from the processor. The processor goes into a high-
impedance condition for data and address buses and certain control signals. It goes into
the inactive condition for other control signals. The DMA controller generates the re-
quired signals for data transfers and acts as the bus master.

DMA transfers can be between memory and I/O or between memory and memory.
In the former case, they are single-address transfers. The DMA controller activates the
peripheral at a single fixed address and the memory at a sequential address in the same
bus cycle. Thus, the single-address mode is the fastest, and is well suited for DMA
transfers between memory and I/O ports.

When data transfers are from memory to memory, they are dual-address transfers.
The DMA controller reads the source operand (byte or word) into an internal temporary
register during one bus cycle, and writes it into the destination location during the next
bus cycle. Dual-address transfers take two bus cycles for byte or word transfers in
68000-based systems.

In all DMA applications, the DMA controller must be properly initialized by the
processor before the actual operation. Otherwise, unpredictable results may occur.



PROBLEMS

9.1 Assume that interrupt 5 is being serviced.
(a) Another level 5 interrupt occurs. Will it be recognized? Why or why not?
(b) Interrupt 7 occurs under the conditions of (a). Will it be recognized? Why or why not?
(c¢) Interrupt 7 is being serviced. Another level 7 interrupt occurs. Will it be recognized?
Why or why not?
9.2 In ah 8-MHz 68000 system, /IRQ6 and /IRQ4 occur at the same time.
(a) Which will be recognized? In order to be recognized, specify the required duration of the
interrupt. o
(b) The /IRQ6 routine takes 32 microseconds; the /IRQ4 routine takes 64 microseconds. If
they occur at the same time, specify the required duration of each in order to be
recognized.
9.3 There are two methods of servicing interrupts: the autovector method and the user-vector
method. Outline the advantages and disadvantages of each of these methods. Also specify
applications particularly well suited to one or another of the methods.

9.4 Is the user stack involved in servicing interrupts? Explain.

(a) If subroutines are used in interrupt service routines, which stack is used? Why?
(b) Which stack is used when an interrupt occurs during a user subroutine execution?

9.5 Assume IRQ6 is being serviced. IRQ7 occurs while the processor is fetching the op.code
for the instruction

MOVE.L #$734512A6,D1

(a) How many T-states have to elapse before /IRQ7 is serviced? Explain. -

(b) Considering that the SSP is at SO0003ABA at the time of the occurrence of /IRQ6, and
the USP is at $00004000, indicate the contents of the appropriate stack when /IRQ7 has
been recognized.

9.6 The daisy chain is an accepted means of interrupt expansion. Outline the advantages and
the disadvantages of the daisy-chain mechanism.

(a) In which applications is the daisy chain not the method of choice?
(b) In which applications is the daisy chain particularly useful?
9.7 In the daisy-chained system of Figure 9.4, suppose it is necessary for I/O system 2 to have
higher priority. How should the system be redesigned?
9.8 For the system of Figure 9.4,
(a) how many external devices can be interfaced? Why?

(b) including the internal interrupt sources of the 68901 MFP, how many total interrupt
requests can be handled? Why?

Note: Problems 9.9, 9.10, 9.13, 9.14, 9.16, 9.18, and 9.22 can be used as the basis for special
projects involving hardware and software implementation.
9.9 Refer to Figures 9.5 and 9.8. Redesign the hardware and the software so that

(a) the motor speed gradually increases to a maximum and stays there;

(b) the motor speed varies between a maximum and a minimum on the occurrence of each
timer interrupt.

9.10 In a servo belt system, it is required to increase the motor speed to a maximum, have it
remain stable for 10 units of time, and then gradually reduce it to minimum. The system is
repetitive. Consider one unit of time as the occurrence of the timer interrupt.

Design the hardware and the software needed to implement this system.

9.11 How many steps of gain variation are possible in the system of Figure 9.5 considering all the

possible software features?

9.12 For the DRAM system of "Figure 9.9, specify what could happen if a lower level interrupt,
such as level 1, were used for the refresh operation.

9.13 Suppose the DRAM system of Figure 9.9 has to be expanded to accommodate an
additional 1 megabyte of DRAM starting at $400000. Specify the hardware details.

9.14 Given the conditions of Problem 9.13, suppose it is necessary to modify the software of Figure
9.10 to refresh the 2 megawords of total DRAM. Redesign the software and implement it.

9.15 What is the maximum amount of DRAM that can be software refreshed using no more
than 30 percent of processor time?

9.16 Redesign the data-acquisition system described in Section 9.3 so that

(a) the buffer to store the A/D data is 4 kilobytes;
(b) the stored data is output to D/A with an attenuation of two units.

9.17 Additional signal shaping and processing are possible with data-acquisition system
software. Redesign the software of Problem 9.16 so that the digital attenuation is 2 on
even samples and 4 on odd samples.

9.18 The data-acquisition system can be easily converted into a digital voltmeter as shown in the
following diagram. Digits 3 and 4 should display a voltage between 0.0 V and 9.9 V. Digit 2
should display + or -. Digit 1 should display a flashing 1 if there is an overload condition.

4—digit multiplexed display

1 2 3 4

68000/68230
system

Port A

Port B [#— A/D system |#— VIN

Destgn and implement the system.



9.19

9.20

9.21

9.22
9.23

9.24

9.25

9.26

EN

Specify the complete address map for all four channels of the 68450 DMA controller.
Why is there only one GCR for all four channels?

Draw the timing diagrams for the asynchronous bus signals when the DMA controller is in
the following modes:

(a) the CPU mode, in which the controller resembles an I/O device to the processor;
(b) the DMA mode, in which the controller is the bus master and controls the data
transfers.

With reference to the data books on 68440/450 controllers,

(a) discuss the bus arbitration scheme involving BR, BG, and BGACK for single-operand
transfers and block transfers (assume 1-kiloword transfers);
(b) describe the handshake between the DMA controller and the peripheral device.

Redesign the system of Figure 9.21 using all-CMOS logic for minimum power operation.
Specify a sequence of operations similar to that of Figure 9.22 for

(a) dual-address transfers;

(b) port-to-port transfers.

Repeat Example 9.9 for the following transfers:

(a) 1 kiloword from memory to I/O;
(b) 10 kilowords from memory to 1/O.

Repeat Problem 9.24 for memory-to-memory transfers with the DMA controller in the dual-
address mode.

Compute the DMA timing assuming the conditions of Problem 9.24. Repeat the
computation for the conditions of Problem 9.25.
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CHAPTER

Study of the material in this chapter will help the reader understand the virtual
memory concepts that are fundamental to the implementation of virtual memory system

I 0 designs using the 68010 and 68012 microprocessors.

10.1 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

For most microcomputer systems, only a fraction of the memory and I/O resources of the
processor are available. Virtual memory and virtual machine concepts allow the system to

] if full ilable, h ly a fracti f th
63010 and 63012 Architecture, physicall rpresenied. This nlances fhe $00ps ofsofiware snd aréwaze devlopmment of
- 2 » . ;
Organization, and Applications the microcomputer sytems,

Virtual Memory Schemes

Virtual memory gives the computer user the impression that the entire memory space is
available for use. It is memory that is not present in the real-time physically accessible
memory, although it is in the logical memory space of the processor and is contained in
backup memory, such as disk. When the processor tries to access this memory, a
memory-access fault occurs. The processor attempts to correct this fault by moving the
contents from the virtual memory into the physical memory. The processor may move
some of the physical memory contents into backup memory in order to create space for

Objectives
) ] the virtual memory contents to be brought in. Figure 10.1 illustrates a virtual memory
In this chapter we will study: scheme.
Virtual memory and virtual machine schemes The . .
Virtual Machine Schemes

additional resources of the 68010 and 68012 Virtual

memory implementation schemes Exception The extension of virtual memory concepts to cover other nonexistent hardware re-

processing associated with virtual memory source.s, such as the I/0, leads to Yirtual maghine schemes. There may be several lqcal
operating systems under a governing operating system. Each of these local operating
systems can access the I/O resources belonging to the others through the governing op-

10.0 INTRODUCTION

The 68010 virtual memory microprocessor has more internal resources than the 68000 Data transfers

Microprocessors

microprocessor. The additional resources are needed to implement designs based on vir- (such 26 b
tual memory. Externally, the 68010 is pin compatible with the 68000 and can access 16 690160;2;(;1;) Memory reference . Physical ?emwy
megabytes of logical memory.' - Memory error present In the system

The 68012 extended virtual memory microprocessor is similar to the 68010 in-
ternally, but has an extended address bus (A1-A29 and A31) that can address 2 gigabytes Memory Data transfer

k 2 transfer betw hysical
of logical memory. ¢ een physica

. . .. . cquests and backup memory

When there is a large logical memory space, but only limited physical memory —
space (due to hardware limitations), a virtual memory scheme is used. Such a scheme Memory management Backup memory (contai
allows for effective implementation of a computer system in the logical address space unit Memory contro} virtual meim?:,? ams

while operating in the actual hardware physical memory space.
FIGURE 10.1 Virtual memory concepts in computer systems.
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Users |7i8} Users
control of the GOS

All the IO resources may be real or emulated (virtual}.

FIGURE 10.2 Virtual machine scheme concepts.

erating system, as shown in Figure 10.2. These I/O resources may be real, or they may

be emulated by the governing operating system.”

During emulation, the governing operating system mimics the corresponding I/O
properties. However, the local operating system addressing these resources considers
them to be part of its own system. Hence, the concept of the virtual machine: The local
operating system looks like a user to the governing system, and like a governing oper-

ating system to the user.
We will now present an example problem to review what we have learned about

virtual memory and the virtual machine.

Example 10.1 Virtual memory and virtual machine concepts.
In a database management system using the 68010 processor, the memory map for phys-

ical memory and I/O is as follows:

System ROM/EPROM/RAM = $000000 to $00FFFF (64 kilobytes)
System/User RAM = $010000 to $04FFFF (256 kilobytes)
System /O => $100000 to $1003FF (1,024 bytes)

Assume that appropriate virtual memory management software and hardware have been
implemented.

1. The MOVE.W (A1),PI instruction is executed with Al = $0CO00E. Conceptual-
ize the sequence of events. How is the virtual memory scheme implemented, if im-
plementation is possible?

2. Now suppose Al = $012345AE. Can the scheme be implemented?
3. Suppose it is necessary to implement an additional I/O system between 11 A2300 and
$1A23FF. Conceptualize the implementation scheme for this virtual machine.

Solution

1. Virtual memory implementation: The 68010 processor has a 16-megabyte logical
space between $000000 and $FFFFFF. Currently, the 68010 is accessing memory at
$0CO00E. 1t is outside the physical memory, but is contained in the logical memory
space. Therefore, the virtual memory scheme is possible.

In Figure 10.3, the conceptual events in the virtual memory implementation
scheme are indicated. When the memory-access fault is detected, the fault correction
software and the memory management hardware will move the virtual memory sec-
tion (in which the current reference is made) into the real physical memory. The
memory reference pointer (Al, in this case) will be readjusted to correspond to the
remapped memory. Thus, the referenced memory will be made available to the pro-

cessor for the data movement operations.
After the fault has been corrected, the processor resumes its earlier activity. The

fault correction software is really bus error exception processing software (details to
be discussed later).

2. Memory access at $012345AE for 68010- and 68012-based systems: The virtual
memory scheme cannot be implemented for the 68010, since the location $012345AE
is beyond its logical space. However, in the case of the 68012 processor, the location
is in the logical space and the virtual memory scheme can be implemented.

3. Virtual machine (1/0 between $1A2300 and $1A23FF): When a reference is made
to this nonexistent I/O, the processor will implement the virtual memory schemes as

FIGURE 10.3 Virwal memory —————m Memory

concepts (Example 10.1), access fault
detected (BUS ERROR)

Logical memory space

Readi
68010/68012 ;ﬁiﬁ?d
microprocessors reference Physical memory

f—' f - I.’Oa::acc

Fault correct

software and

Virtual memory

memory

management {in backup

memory)

Remap virtnal memory
into physical memory




FIGURE 10.4 Virival memory
implementation flowchart.

we have outlined, with additional emphasis on the emulation of the I/O device prop-
erties and associated operating systems.

In the preceding problem, mention was made of the virtual memory section from
the backup memory being moved into the physical memory area. The functional details
of this important virtual memory implementation concept are shown in the flowchart of
Figure 10.4. A part of the physical memory is assigned as a memory buffer. This buffer
is used for all the virtual memory transfers. A 64-kilobyte area between $040000 and
$O04FFFF is chosen as the memory buffer for our particular case.

When a virtual memory reference is made, the virtual memory implementation
software checks whether the memory buffer area has been filled by an earlier virtual
memory reference. If it has, the software moves the contents of the buffer into the cor-
responding backup memory. The software also readjusts any previously adjusted mem-
ory pointers to their original values.

When the buffer becomes available, the software moves the memory block con-
taining the virtual memory reference from the backup memory into the buffer area. Also,
the original pointer values are stored and adjusted to refer to the buffered area. After
these adjustments, any related virtual memory reference will be accessed from the buffer

area.

Define memory buffer area
($040000-$04FFFF is buffer)

Virtual memory reference

YES

Buffer full? l
/ Move buffer contents
NO to backup memory and

readjust the pointers
to original values

|

Move virtual memory section
from backup inte buffer area
and adjust memory pointers

for the buffer reference

Proceed with the memory
operations and software

FIGURE 10.5 A/D converter

virtual machine emulation Move $01 to START location
flowchart. and jump to A/D subroutine

I

Reset start location ro $00.
Delay ioop to emplate A/D,
Move daia element o to A/D
tocation n. Increment n for

next operation.

I

Mave $01 to EOC Igcation,
Return from subrontine.

Start conversion

A/D conversion emulation
(for ramp-type input)

A{D conversion complete

The flowchart for an A/D converter type of virtual machine emulation scheme is
given in Figure 10.5. All the hardware signals are emulated by memory locations. A start
pulse to the A/D converter starts the actual conversion process (refer to Chapter 9 on
A/D conversions). This is accomplished by writing a 1 to a memory location (START)
which mimics the A/D start input and the calling of an A/D subroutine.

The subroutine resets the start location and generates a delay corresponding to the
actual conversion time of the A/D device. It then writes a data element, n (the initial
value of n would be $00), into the memory array designated to hold the A/D data. Fi-
nally, the software writes $01 into the EOC (end-of-conversion) location which mimics

the end-of-conversion pulse and returns the program to the calling routine.
It can be seen that the virtual machine emulation is software intensive and mimics

hardware operations by writing into appropriate memory locations.
We will now present an example problem to review the actual implementation

schemes of virtual memory and virtual machines.

Example 10.2  Virtual memory!machine implementation schemes.

The memory buffer for a virtual memory implementation scheme is between $040000
and $04FFFF (64 kilobytes), as shown in Figure 10.4. A 64-kilobyte block ($0000 to
SFFFF) containing the virtual memory reference address will be moved from the backup
memory into the buffer each time virtual memory implementation takes place. (Refer to
Example 10.1 for the memory map of the 68010-based system.)

1. The MOVE.W (A1),DI instruction is executed with Al = $OCO00E. Specify the
actual memory block moved from the backup memory into the buffer memory.

2. What adjusted value will be in the memory pointer Al?

3. For an 8-bit A/D conversion emulation as a virtual machine, how many bytes of A/D
data array are required for emulating a linear ramp signal?

4. Answer the preceding question for emulating a triangular wave.



Solution

1. Memory block moved into the virtual memory buffer: Memory pointer Al refers
to an address $0CO00E which is not in the physical memory of the system, but which
is in the logical memory space contained in the backup memory. Therefore, virtual
memory implementation is possible. The memory block containing the virtual mem-
ory reference $OCOO00E is between $0C0000 and $OCFFFF. Thus, memory block
$0C0000 to SOCFFFF is moved into the buffer between $040000 and $O4FFFF.

2. Adjusted memory pointer Al: The original Al pointer contents ($0CO0OE) are
stored in memory (possibly in the supervisor stack), and the pointer is adjusted to
hold $04000E. The pointer refers to the corresponding location in the memory buffer
after the memory movement.

3. Linear ramp A/D emulation: The 8-bit linear ramp data are between $00 and $FF in
increments of 1. This requires a 256-byte memory array. In addition, two byte
locations are required to emulate the START and EOC signals, for a total of 258
locations. Thus, a 258-byte array is required.

4. Triangular wave A/D emulation: A triangular wave takes positive-going and
negative-going ramps, for a total of 512 byte-sized data elements. Considering the
START and EOC locations, the required memory array is 514 bytes.

The preceding concepts regarding virtual memory and virtual machine schemes
apply to all processors having the proper resources. In the next few sections, we will
describe these resources with reference to the 68010 and 68012 processors.

10.2 ARCHITECTURE OF THE 68010
AND 68012 MICROPROCESSORS

Figure 10.6 illustrates the general architecture and busing features of the 68010 and
68012 microprocessors. They contain all the resources of the 68000 microprocessor,
with additional registers to handle the virtual memory and virtual machine schemes.

Additional Register and Busing Resources

Internally, the 68010 and 68012 processors have a 32-bit vector base register (VBR). In
addition, they have two 3-bit registers: the SFC (source function code) register and the
DFC (destination function code) register. These registers help to implement the virtual
memory management schemes.

VBR (Vector Base Register) This register contains a 32-bit base address, which is meant
to relocate the exception vector table. This allows for a multioperating system in a
multiuser environment. Each local operating system may have a different value written
into the VBR. This leads to different exception tables for different local operating sys-
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FIGURE 10.6 Architecture and additional resources for 68010/68012-type

microprocessors.

The default VBR value {on system reset) is 300006000, which matches that of the

tems.
68000 exception table. This table cormres

ponds to the governing operating system. The

R can be accessed only in the supervisor mode (using the MOVEC instruction)

ist
ac

SF inati
:S é::nd DFC {Sour_ce and Destination Function Code Registers) These reg-
cesse(:;‘n_t:un mformat;on about the function codes (FC2, FCI, and FC0). They can be
In the supervisor mode using the MOVEC instruction. This provides easy ac-



FC2 FCt FCO Cycle Type
0 0 0 Reserved
0 0 1 User data
0 1 G User program
0 l i Reserved
l ¢ 4] Reserved
i 0 1 Supervisor data
1 1 0 Supervisor program
1 1 1 CPU space

FIGURE 10.7 The 68010/68012 function code table.

cess to the program or data space for virtual memory and virtual machine schemes. In
Figure 10.7 the function code table for the 68010 and 68012 is given. The FC2 FC1
FCO = 1 1 | condition is designated as the CPU space, which is further classified as

fotlows:

FC2FCIFCO=111 and A4-A23=1.. .1

is the interrupt acknowledge cycle;

FC2FCIFCO=111 and Al-A23=0...0

is the breakpoint cycle (details to be discussed later).

Busing The 68010 is pin compatible with the 68000 processor. Thus, the 68010 pro-
cessor is contained in a 64-pin DIP or 68-pin grid-array package, as is the 68000. The
68012, however, has seven more address lines (A24-A29 and A31) to address 2 gi-
gabytes of memory. An additional control line, RMC (read modify write control), is
included for multiprocessor interfacing. To minimize noise, the 68012 has two additional
ground pins. It is contained in a standard 84-pin grid-array package. It is not hardware
compatible with the 68000/68010 processors; thus, hardware must be specially designed
for the 68012.

The Breakpoint (BKPT) Concept for the 68010 and 68012 When the BKPT #n (n
= 0-7) instruction is executed, it results in illegal instruction exception processing. The
function codes and the address bus can further be decoded to generate a hardware
breakpoint condition for system debugging.

Additional Instructions and Modified Instructions

The table of Figure 10.8 indicates additional instructions (new) and instructions that have
been modified for the 68010 and 68012 virtual memory processors. The MOVEC, RTD,
and the MOVES are new instructions and support the virtual memory implemen-

Instruction Svntax

Operation
Move control MOVEC Rn,Rc
: » Move long word between Rn (A ivi
Move n or Dn P
eister MOVEC Rec,Rn and Re (SFC,DFC,VBR,USP) ) ar:;jvﬂZ\gved
Return and
weturm an RTD #n Return from subroutine and deallocate Normal
deall #n bytes from stack (n is even} and new
M alt
adg:;s S;;llitc MOVES {ea),Rn Move between effective address and Rn Privileged
(SFC and DFC iti
MOVES Ra(ea are preconditioned) and new
Move status MOVE SR, (ca) M.
: R ove from status register to effectiv i
register address ) :\: ?Jdlﬁed
¢

FIGURE 10.8 Additional and modified instructions for the 68010/68012

tation. The MOVE SR,<ea> instruction has been modified to be a privileged instruction.
This facilitates the coexistence of the multiuser and local operating systems under a
governing operating system. Local operating systems of users are prevented from ac-
cessing the status register. An attempt at such access causes an exception and takes the
processor to the governing operating system (S bit = 1 in system bytes). The governing
operating system controls the local operating systems, which are really in the user mode,

Loop Mode The 68010 and 68012 processors go into a loop mode of operation in
executing a three-instruction loop involving the DBcc (decrement and branch on condi-
tion). The processor keeps the three instructions in the internal instruction queue and
executes them until the loop condition is satisfied. This circumvents the external memory
access bus cycles and greatly speeds up the loop operation. Data sheets for the 68010 and
68012 specify those instructions that are eligible for the loop mode of operation.™"

The VBR is usually relocated for each local operating system. The stack is some-
times deallocated (for the governing operating system to input or retrieve information).
Similarly, the SFC and DFC registers are reconditioned to address any memory space.
These capabilities are unique to the 68010 and 68012. The rest of the software of these
processors is similar to that of the 68000 processor.

We will now present an example problem to review the additional resources of the
68010 and 68012 processors and associated software considerations.

Example 10.3 68010112 additional resources and software.

In Figure 10.9, an initialization routine for the 68010 and 68012 processors is given.
Assume that the TRAP #14 call, passing parameter 228 in the D7 register, returns the
control to the governing operating system.



2, TRAP #1 routine: The vector offset for

3. Mode of operation: The processor mus

4. The stack frame and contents:

1. What tasks are being accomplished in the software? Specify any special features of

68010/12 software.

2. Where is the TRAP #1 routine configured to start after this initialization program

has been run?
3. For running the program, what mode should the processor be in? Why?

4. If the initial value of the corresponding stack pointer is $0700, diagram the stack

frame and its contents.

Solution

LINE ADDR
1L;MEA010.5RC 6ADLIVLE :FIU 11/25/88
c CHIP L0118
3 OPT &
4 ORG $1000
5;MOVE VECTOR TABLE TO NEW RDDRESS
& 00001000 4E7?L START HNOP
7 00001002 eav?c 0000 0000 MOVER.L #%$0,R0 ; AO0=0
8 00001008 227C 0000 2000 MOVER.L #$2000,A1 ;Rl=%$2000
9 0DOO0D100E 103C OOFF MOYE.B #3FF,DO ; DO=FF
10 00001012 22Da AGAIN MOVE.L (BRO)+,{RAl)+
12 00001014 SLCHA FFFC DBRA DO, AGAIN
12;INITIALIZE VBR AND TRAF #1 VECTOR AT $84
13 000010L& 247C D000 2000 REINT MOVEA.L #$2000,A2
14 0000103E 4EVB AAQL MOVEC Ac,VER ; VBR=$2000
15 00001022 257vC 0000 3000 MOVE.L #§53000,3%0084{A2}
0064
1t 0000102& 4EB& 103k 4E?1 JSR FCODE
L1? 0000L030 3E3C 0OO0E4 MOVE.B #c2246,D7  ;TO SYSTEN
16 00001034 4E4E TRAP #14
19 00001036 2L7C 0000 0OOOD FCODE MOVEA.L #30,R3
£0 0004103C 7207 MOVEQ #3$07,D1
£k 00GOLO3E 4E?B 1000 MOVEC DL,S5FC ;SFC=L11l
22 00001042 O0ES3 2000 MOVES.W (A3),D2
23 DO000L04k 4EV4 0008 RTD #38
¢4 OOCO0LOAR 4E7YL NOP
c5;
2L 0000104C END
ASSEMBLER ERRORS = ]
SIMBOL TABLE
AGAIN 0noQLdy2  FCODE 00001036 NARG noooooog
REINT 00001048 START cecooiooo
FIGURE 10.9 Initialization software for 68010/12 processors (Example 10.3).

Between lines 13 and [5,
relocates the vector tabie at R
00000000,

, $84'1"he }\;ector location $2084 (corresponding to the TRAP #1 vector at the offset
) In the relocated vector table) is loaded with $3000. The JSR instruction at li
16 takes the program to the FCODE module. e

The FCODE module is contained b i

’ \ etween lines 19 and 24, i
with $Q?, which corresponds to FC2 FC1 FCo = | ot oy e
gsielF[gclltr‘edé(l?).‘The MOVES.W (A3),D2 instruction forces FC2 FC| FCO =
e a’;:h.d ress lines Al-A23tothe 0. . . 0 condtition during the source operand
eteh. This emulates a break condition externally. The RTD instruction returns the
program to the REINT module, deatlocating the stack by eight words

Finally, control is given to the governi i
) erning o :
TRAP #14 call at lines 17 and 18. : ¥ CPEIRITE syslem by means of the

the vector base register is initialized
o $2000. It
00002000, The default vector table reniains at

H#LT TRAP #1 is $84. With the VBR
the reinitialized TRAP #1 vector location is at $2084, into which $000?]t3%%)(()}0('],
loaded. Thus, the TRAP #! routine would start at $00003000. °

t be in the supervisor mode, since MOVEC

and MOVES are privileged instructions and can only be used in the supervisor

mode.’

The processor is in th i
! ‘ . € supervisor mode. -
sponding supervisor stack frame is as follows: b The come

STACK
58P MEMORY
Low —
address $06FC 00 0 0
PC stored at JSR
$06FE I 0 3 0 instruction
$0700 Old TOP —
RTD adds
the specified $0702 AXXX
offset {$8 in 8 bytes of stack
this case) 30704 AXXX deailocated
to top of
the stack 30706 RXXX
M $0708 New TOP —
SSP after RTD #8 is at
$00000708

1. Software: Between lines 6 and 1§, 256 long words of the originat vector table (start-
ing at $000000) are copied to memory starting at $2000. Of particular importance i$
the AGAIN loop. The 68010 and 68012 processors keep this instruction sequence in
the internal queue for fast execution.

o fThc dgallocated space on the stack is usuall
: m 1or passing the parameters between local op
ON 18 also demonstrated in the software. Whil

MOVES w (A3),D2 instruction, a breakpoi

¥ qsed by the governing operating sys-
cerating systems. The concept of emula-
€ accessing the source operand with the
nt condition has been created (or emu-



lated). Detailed discussions on system emulations are beyond the scope of this book;
however, references at the end of the chapter may be consulted for further study.

10.3 MEMORY FAULT CORRECTION SCHEMES

Memory-access faults (or memory faults) are corrected using virtual memory schemes.
There are two methods by which to implement these schemes: the instruction restart
method and the instruction continuation method, both widely used in the computer
industry. The 68010 and 68012 processors follow memory-mapped I/O concepts. The
memory fault correction schemes are equally applicable for the I/O units of these pro-
Cessors.

The instruction Restart Method

Each instruction is organized as a sequence of microcoded modules. Figure 10.10 illus-
trates a microinstruction scheme for a typical instruction:

The instruction op.word is prefetched (during the previous microinstruction mod-

MOVE. W —(An),~(Am)

ule A) and stored in the instruction queue. The microinstruction modules A, B, and C
must be sequentially executed for successful execution of the instruction. The memory-
access fault can occur during the A, B, or C module.

In the instruction restart method, if a memory fault occurs in any micromodule, it
is corrected (if possible) using virtual memory concepts. Then the complete instruction is
repeated. For this to happen, the processor should have the internal resources with which
to copy all the original values of the registers. Although this puts a tremendous resource
burden on the processor, the instruction restart method is considered to be superior to the
instruction continuation method. The instruction is finally executed as a complete unit.

The Instruction Continuation Method

The microinstruction sequence for this method is similar to the sequence of Figure
10.10. The memory fault can occur during the A, B, or C module.

In the instruction continuation method, the memory fault is corrected (if possible)
using virtual memory concepts. The instruction execution then continues from the cor-
responding microinstruction module where the fault was detected and corrected. In this
method, it is not necessary to copy the register values, but any interdependence of the
destination address and source address (as in the case of MOVE.L —(An),—(An)) may
result in inaccurate results. This method is easy to implement, however, and is suffi-
ciently accurate for most applications.

FIGURE 10.10 Typical

microinstruction sequence and
micromodules for 68010/12

processors,

MOVEW — (AN}, — (AM)

Microinstruction
sequence of the
cutrent
instruction

OP.word for the current instruction
has been prefetched.

Calculate (An - 2) source EA,
Prefetch next instruction.

¥

Read operand from (Ap - 2).
Store (An - 2) in An,
Compute destination EA = (Am - 2).

Write operand value at EA = (Am - 2).
Store (Am —2) value in Am,
Set condition codes in SR, if
applicable,

Results of the

current
mstruction

An decremented to {An—2).
Am decremnented to {Am - 23

Word from (An — 2} moved 1o {Am ~2),

The 68010/68012 Memory Fault Correction Methods

The 68010 and 68012 microprocessors use the instruction continuation method To the
extent poss.ble Motorola Corporation designed the mstruction m.cromodules to be u
onally mdependent so as to minimize the fault mteraction. These processor! , virtual
memory schemes to correct memory-access faults. A memory-access fau cannot be
corrected if ', .not within the logical memory space of the processors.

JSE.rampfe 10.4  Memory fault correction schemes.
uppose the 68010 or 68017 processor must execute the following instruction:

MOVE.L —(Al),~(A3)

L. Conceptualize the microinstruction sequence.

2. Outline the sequence of events if a memo

upper word of the sourc

3. Outline the sequence of
lower word location of t

¢ operand.

ry-access fault occurs while accessing the

events if a memory-access fault occurs while addressing the

he destination operand.




Solution

1. Microinstruction sequence: The sequence is illustrated in Figure 10.11. It consists
of five microinstruction modules: A, B, C, D, and E.

2. Memory-access fault in source operand: Referring to Figure 10.11, the memory-
access fault occurs during micromodule B. The processor already has completed
module A. If possible, the processor corrects the memory-access fault during module
B. The microinstruction sequence continues from B to complete the rest of the in-
struction.

3. Memory-access fault at destination: The access fault occurs during micromodule E.
The A, B, C, and D modules already have been executed. If possible, the processor
corrects the fault during module E, which is the last module. The execution then
continues to the next instruction.

FIGURE 10.11 Microinstruction
sequence for the

MOVE.L —({A1),—(A3}
instruction {(Example 10.4).

MOVEL - (A1), —{Ad)

OP.word for the current instruction
has been prefeiched.

Microinstruction

sequence Compuie {Al - 4) source EA for upper word A

and prefetch next instruction.

!

Compute (Al — 4 + 2) EA for lower word.

¥

Read the lower word from (Al — 4 + 2).

Compute destination EA = (A3 - 4).

¥

Write upper destination word at (A3 —4).

¥y

Write lower word ai (A3 -4 + 2).
Store (A3 -4} in A3,
Set condition codes in SR, if applicable.

Results of the
current Al decremented by 4.
instruction A3 decremented by 4.

Long word from (Al — 4) moved to (A3 —4).

Read upper source word from (Al - 4). B

Store (Al —4}in Al C

Compute EA for lower word = (A3 -4 + 2, D

In most cases, the op.word for the next instruction is prefetched during the first
module of the current instruction. If a fault occurs in prefetching the next op. word, the
current instruction is completed first. The memory fault correction for the prefetched
op.word begins after the completion of the current instruction.

104 BUS ERROR EXCEPTION PROCESSING
ASSOCIATED WITH VIRTUAL MEMORY

As previously stated, the 68010 and 68012 processors can correct memory-access faults
using a virtual memory scheme, if the faults occur within the logical space of the pro-
cessors. The scheme is implemented as a modified bus error exception. The processor
must store more information on the stack for the modified bus error exception to be able
to correct memory-related faults. If the memory-access fault occurs beyond the logical
memory space, the processor reverts to normal bus error exception processing. These
exceptions are handled in the supervisor mode..

Modified Bus Error (BERR) Exception Processing

In Figure 10.12, the exception vector table for the 68010 and 68012 processors is given.
It is similar to that of the 68000, with a few additions; for example, the format error
(vector 14 at offset $038).

Figure 10.13 illustrates the 68010 and 68012 supervisor stack frame for the bus and
address error conditions. The processors may stack up to 29 words for memory-related
bus error or address error faults. At relative location $06 from the top of the stack, the
format and the vector offset entries are of particular importance. If the 4-bit format is
1000, it refers to a long stack frame with 29 words. If the 4-bit format is 0000, it refers to
a short stack of 4 words, as shown. Virtual memory schemes are not implemented if the
shorter frame is used. The 12-bit vector offset is the relative offset of the exception in the
vector table. This value is $008 for the bus error, $024 for the trace, and so on. The stack
used is the supervisor stack.

In all types of exceptions, the program counter and the copied status register are
automatically stacked. At the conclusion of the exception processing routine, the RTE
(return from exception) is executed. The RTE instruction examines the format code
(0000 or 1000) and accordingly unstacks either 4 or 29 words into the appropriate reg-
isters. Even though the address error stack frame appears to be similar to the bus error
stack frame, virtual memory schemes are not implemented for the address error. The
address error deals with misaligned access of word or long-word operands at the odd
address boundary for the 68000, 68010, and 68012 processors.

Of particular importance is the special status word at stack relative location $08.
Detailed in Figure 10.14, the special status word reflects the conditions of the bus activ-
ity at the time of the exception. This information is useful in developing appropriate
error correction routines using virtual memory principles.

Appropriate software dealing with the normal bus error exception or the modified
bus error exception should be written as a part of the governing operating system.



PO FIGURE 10.13  Stack frame for -
Vector _ bus and address errors in SSP+ $00 Status word T
Numbaer(s) | Dsec Hex Spacef Assignment 68010/12 proc eS50rs
0 0 000 SP | Reset: Initial SSP2 ' $02 Program counter high 4-word
1 004 SP  {Reser: Initial PCZ short
$04 Program counter iow stack
2 8 008 S0 Bus Error '
3 12 e sSD Address Error $06 Formar+ Vector offset I
4 16 010 S0 !iregal instruction 508 Special status word —
or;
5 W0 014 8D | Zero Divide
§ 24 018 50 | CHK Instruction 304 Fault address high
7 28 (111 SD | TRAPV Instruction $0C Fault address low
8 32 020 SD | Privilege Violation
g 35 024 SD | Trace $0E Reserved L J
- 2%-word
10 40 028 SD | Line 1010 Emulator $10 Data output buffer long Sta’ck
1" 44 02c S0 Line 1111 Emulator i
121 48 030 sD (Unassigned, Reserved) §i2 Reserved
13 52 034 SD  |iUnassigned, Reserved) $14 Data input buffer
14 56 028 $D  |Format EmorB
$1a Reserved
15 80 03¢ sp Uninitialized interrupt Vector
16-231 54 040 SD  |{Unassigned, Reserved} $18 Instruction register
2 05C -
- 3 1A 16 Words of additional information
24 o6 080 sD Spurious Interrup B for error correction
25 100 064 5D Level 1 Interrupt Autovector $3:8
26 104 | oss SD | Level 2 Interrupt Autovector Previous stack contents
27 108 06C sD Level 3 interrupt Autovector *Format 0000 for short stack and 1000 for long stack
28 12 070 S0 Level 4 Interrupt Autovector :
29 116 074 SD Leval B interrupt Autovector
bis
30 120 078 SD Level & Interrupt Autovactor bl4 bI3 b12 bIl bi0 bY b8 b7 b6 b5 B4 b3 B2 bl bO
31 124 07C 50 |Level 7 Interrupt Autovector : RR | * IF I DFIRM|[HB | BY | gw | = * * "
. *
3247 128 | o080 SD | TRAP Instruction Vectors® FC2| FC1 FCO
188 0BC - _ _ :}:R 5> Rerun; @ for processor and 1 for software rerun
48631 192 | oco SD | {Unassigned, Reserved) : => Instruction fetch
o oFF : _ RM 2> Read, modify, write cycle DE => Dg[a fetch
- = EY > Byte/word transfer for 1/0 HB => High byte
64-255 256 100 SD | User Interrupt Vectors : _ <> Reserved RW => Read/write for 1/0
w20 | 3rc _ : FC2, FC1, FCO > Functicn codes

FIGURE 10.14 Special status word for 68010/68012 processors.

MGTES:
1. Vector numbers 12, 13, 15 through 23, and 48 through 83 are reserved for future enhancements by Motorola, No user peripherst devices | i
should be assigned 1hese numbers. : . We will now present an exam
- Reset vector [0} requires four words, uniika the other vectors which only require two words, and is located in the supervisor program space. the maodified bus error and associate

2 ple problem to review what we have learned about
3. The spurious interrupt vector is teken when therg is 4 bus emror indication during interrupt processing, Refer to Paragraph 4.4.4,
4
5

d stack frame.

. TRAP #n uses vector number 32 + n.
. MCEB010/MCEEN2 only. See Return from Exception Section.

This vector Is unassigned, reserved on the MCE8000 and MCES008. : :
B. SP dengtes supstvisor program space, and SO denotes supervisor data space. : . Ex“mPfe 10.5 680}0}{12 excepu'ons and Supervisor StaCk f
) rame.

Figure 10.15 ingic
. : . ates - - .
FIGURE 10,12 Exception vector tabie for the 68010/12 processors. (Courtesy of : © curred, The top Ofduf : ;?;cﬁoi';te?‘;&%g’e stack after a certain type of exception has oc-
: _ 4 .

Motorola, Inc.)



FIGURE 10.15 Supervisor 35P SUPERVISOR STACK CONTENTS
stack frame and contents for the Bl§ ¢rverescmccriasnranneans b0
68010/12-based system 50600 | o016 o001t 0000 oooe| $2300 SR

(Example 10.5).

$0602 0000 0000 0000 0000 $0000>
PC

$0004 0001 000G 0100 0010 1042

30606 1000 00CC 0000 1000]| $8008 (3]

$0608 000! 0001 0000 0101}F $1105 [2]

$060A | 0000 0000 1000 800 $008]>
. (31

$060C { GO10 0000 0100 1000] $2048

$060E | 0000 0000 0000 0000| $0000 (4]

$0610 :
Other words of the
29-word frame
$04638 Previous stack contents

[1] FORMAT/VECTOR

[2]1 SPECIAL STATUS WORD
[3] FAULT ADDRESS

{4] RESERVED WORD

1. What type of exception has occurred? Can a virtual memory scheme be imple-
mented?

2. What are the conditions at the time of this exception, as indicated in the special sta-
tus word?

3. What is the fault address?

Solution

1. Type of exception: The format/vector offset word at stack location $0606 is $8008.
This is interpreted as follows:

$80038
[ ——
long stack <—J |—> vector offset
frame correspordling to
bus error

A bus error exception has occurred, with a long stack frame. Virtual memory imple-
mentation is possible.

2. Conditions: Examining the special status word $1105 at stack location $0608 and

comparing it with the special status word format of Figure 10.14, we observe

The governing and local op

EPROM/RAM. The RAM
transfers,

$1105s
data fetch «—— 1 L supervisor
condition data space
with processor  word
rerun read

At the time of the exception (bus error
from the supervisor data space.

3. Fault address: The stack contents at

}, the processor is attempting to read a word

$060A and $060C contain the fauit address.

Fault address = $00812048

The governing operating system software uses the stack information in attempting
to correct memory-related faults. It should be remembered that the governing operating
system is the original or default operating system. It is functional in the supervisor mode.
All the local operating systems are functional in the user mode.

Correction of Memory-related Faults
Using Virtual Memory Schemes

The most important application of the virtual memory implementation scheme is to cor-
rect memory-access faults. If the memory reference is made to memory that is physically
nonexistent, but logically existent, the processor can implement the virtual memory
scheme upon receiving the /BERR (bus error) signal. The processor moves the required
memory block from the backup memory into the main memory and readjusts the memory
pointer reference. It then reruns the bus cycle where the fault occurred and continues with
the rest of the instruction and the program.

Virtual memory software is written as part of the modified bus error exception
processing. If the memory reference is beyond the logical address space and a bus error
occurs, a normal bus error exception will be executed, as we have already mentioned.

In Figure 10.16 the operating listings of a 68010-based system are given. In this
software a memory-access fault is simulated and is being corrected. This is written as
part of the governing operating system in the supervisor mode. The system has the fol-
lowing memory map:

System ROM/EPROM/RAM => $000000 to SOOFFEF (64 kilobytes)
System/User RAM = $010000 to $04FFFE (256 kitobytes)
RAM buffer => $040000 to $04FFFF {64 kilobytes)
System 1O = $100000 1o $1003FF (1,024 bytes)

erating'system programs are confained in the system ROM/
buffer is used for virtual memory implementation and data



LINE ADDR
1 ;virteal memory and memory
a fault correction, fiu /48
3 CHIP L8010
4 oPT A
5 ORG $1400
& ;VBR reconfigured at $c000
7 00003400 42F8 2000 LEA $00002000, AC
& 00001404 4E?B 8401 MOVEC AO,VBR
q 0O00o01408 217C DD0O0 14e0 MOVE.L #CORRECT,$08(A0)
coos
10 ;fanlt generation
11 00001410 4?F9 00641 2044 LER $00812048,A3
12 00003436 3013 MOVE.W (A3J),DD
13 00001418 £ETDL NOP
14 sreturn to systenm
15 000DL41R 1LE3C ODE4 MOVE.B #2cd,D?
15 0000L41LE 4E4E TRAP #14

17;modified bus error routine if in
18;1lcgical space. Else normal bus error

19 00001420 4ES4 FFFO CORRECT LINK ARG, #-510

20 DOUol4e4 2E2C OOOE MOVYE.L $OE(A4),D7¢
21 000014e& OC&A? OUFF FFFC CHPI.L #$FFFFFC,D?
o 0000142E 6204 BHI.S NORMAL

P23;trap #2 routine does memory management
24:block transfer between backup and main
2S;nemory and adjust memory reference.

26 00001430 4E4e TRAP #c

27 00001432 4E7Y NOP

28 A000L434 4ESC UNLK R4

£9 00003143% 4E7?3 RTE

30;to normal bus error

31 00003438 2A74 000DSH NORMAL MOVEA.L %0005,RAS
32 0000143C 4ESC UNLEK k4

33 0000L43E 4EDS JHNP {AS)

34 00001440 END

ASSENBLER ERRCRS = 5]

SYMBOL TABLE

CORRECT COo0lL420 NWARG 0000000C WNORMAL 0000%436

FIGURE 10.16 Bus error/memory-access fault correction software for the 68010
(Example 10.6).

At lines 7 and 8, the VBR is initialized to $2000. This is the base address for
the new vector table. At line 9, the modified bus error exception routine address

(CORRECT) is loaded into new bus error vectored location $2008.

This system does not have physical memory beyond $04FFFF (refer to Section

10.1}. Hence, the instructions

LEA $00812048,A3 and MOVE (A3),DO

s

at lines 11 and 12 simulate abus e

: ‘ rror condition. Location $£8] 2¢
ical memory, but is contained in t e

: 8 is beyond the phys-
he logical memory. While exec d Phys

uting the instruction

MOVE.W  (A3),D0

::};isﬁiotis:c; al‘:lfeit\;les a BER[R signal when the source operand is addressed. The pro
: § he internal repis | . : -
10.15). egister and control information on the stack {see Figure

The processor goes to the modified b
19 and 29. The fault address js stored at an

the normal bus error exception routine (NORMAL) at line 3t ’

The modified bus error routine i i
§ executed via the TRAP #2 i 5
memory fault correct software, It transfers 64 kilobytes from the R;LOI\L:l“Ez.ffgrh lii'atls :Ee
0 the

backup memory to create s :
pace for the ne
then transfers a 64-Kilobyte bieck - W virtual memory data to be brought in. It

+32K
memory into the RAM buffer. In thi ) around th.e fault address from the backup

F8LAO47. It adjusts the memory reference as shown:

frem processor 0 phvsi
0 physical
:> Memory managemeny unit memory
¥812048 $042048

Logical address Adjusted physical address

of the RAM buffer

A detailed listing of the TRAP #2 routine is very complex; hence, we have cho-
sen not to include it given the constraints of the text.

At line 28, the stack is unlinked. The following RTE instruction returns the pro-
cessor to the condition that existed at the time of the bus error. The processor then reruns
the bus cycle that generated the bus error. It obtains the source operand from a virtual
location $00812048 (which is now a physical location $00042048 in the RAM buffer)
and successfully completes the faulted instruction

MOVE.W  (A3),D0

If the bus error is a normal bus error, the NORMAL module between lines 31 and
33 will be executed. After unlinking the stack, the program jumps to the address con-
tained at vector location $08. This corresponds to the bus error vector in the default vec-
tor table, and the governing operating system executes the normal bus error exception
routine.

At the end of the memory-access fault correction, control is returned to the gov-

erning operating system by means of the TRAP #14 function at lines 15 and 16.



We will now present an example problem to gain further insight into the memory

fault correction schemes.

Example 10.6 Memory fault correction concepts and software.
Refer to the software of Figure 10.16.

1.

Describe how the virtual memory concepts are implemented and how the memory-

access fault is corrected.
What is the difference between the default vector table and the modified (or relo-

cated) vector table?

. Why are the LINK and UNLK required?

Solution
1. Memory fault correction: The memory-access fault address has been stacked at an

offset $0A. A 64-kilobyte block around that address has been moved from the
backup memory into the RAM buffer and the memory reference has been readjusted.
The addressed operand in the virtual address ($812048) will be found at the real

physical address ($042048).

Fault Address = $812048
Corrected Address = $042048

. Default and modified vector tables: The default table is the table at power-up reset
(VBR =0). It refers to the original (or governing) operating system exception vec
tors.

The modified vector table is set up separately and is accessed with a finite value
in VBR to facilitate local operating system or user-defined exception processing. In
our example, VBR = $2000. All the default vectors are copied to the new vector table
(refer to Section 10.1). But the bus error vector address is changed, and the bus error
exception routine is different in the modified table. Initially, the processor goes to the
default table; after adjusting VBR, it goes to the modified table.

3. LINK and UNLK: These instructions are required to access to the stack without de

stroying the stack pointer.

There are memory correction schemes that are more involved than those presented
here. However, virtual memory implementation schemes remain the same. Because of
the difference in the stack frames of the 68000 and 68010 processors, there may be some
inconsistencies if a 68000-based system is upgraded to a 68010. Some of the governing
operating system exception routines may have to be rewritten to maintain full functional

compatibility.

10.5 SUMMARY

In this chapter we introduced the concepts of virtual memory and the virtual machine.
We also examined the specific features of the 68010 and 68012 microprocessors with
which these schemes are implemented.

The full addressing capability of any processor refers to the logical address space.
In many instances, all the available logical address space is not filled with the memory or
I/0. Only a part of the available address space, called the physical space, is filled with
real and existing devices. With the help of virtual memory schemes, it is possible to
realize the entire logical memory space with only a limited amount of physical memory
present in the system.

Virtual memory refers to a memory reference contained in the logical space of the
processor, but not contained in the physical memory around the processor. If the virtual
memory reference is contained in a backup memory, such as a disk, the backup memory
block can be moved into the physical memory buffer under the control of the operating
system software. Moreover, the memory reference pointers are adjusted to refer to the
contents in the buffer area.

At times, the hardware I/O resources may not be physically available, but software
to operate them needs to be developed. Hardware resources can be emulated using virtual
memory implementation principles. This embodies the concept of the virtual machine;
that is, that nonexistent I/O resources can be emulated under software control. The
emulated virtual machine resources are under the control of the governing operating

system.

The 68010 and 68012 processors have extra registers with which to handle virtual
memory and virtual machine schemes. They are the VBR (vector base register) and the
SFC and DFC (source function code and destination function code registers). The stack
format for the 68010 and 68012 processors is different from that of the 68000. The
68010/12 format allows for 29 words for the bus and address error exceptions.

The 68010 processor is pin compatible with the 68000 and can address 16 mega-
bytes of logical memory. The 68012 processor has seven more address lines, and can
access 2 gigabytes of logical memory. Both the 68010 and 68012 are fully software
compatible with the 68000.

Memory-access faults can be corrected using virtual memory schemes, if the
memory access is in the logical memory space. A bus error signal will be generated
when a reference to the nonexistent physical memory is made. In response to this signal,
the 68010 and 68012 processors go into bus error exception processing. Using virtual
memory concepts, a block of memory is moved from the backup memory into the phys-
ical memory. The memory reference is adjusted and the memory-access fault is cor-

rected.

There are two methods for memory-access fault correction: the restart method, and
the continuation method. In the restart method, the complete instruction where the fault
occurred is repeated after the fault correction. In the continuation method, the instruction
is continued from the microstep within the instruction after the memory-access fault

correction.



The restart method requires that all the microcoded operations of an instruction and
associated operands be stored. This requires tremendous register resources, as well as
other resources. The restart method, however, executes the instruction as a unit.

The continuation method is considered sufficiently accurate for most applications
and does not require that all the microcoded operations of an instruction be stored. The
continuation method executes the instruction in parts rather than as a single unit, how-
ever. The 68010 and 68012 processors use the continuation method.

PROBLEMS

10.1 Redefine the virtual memory and virtual machine concepts in your own terms.
{a} Give an example of virtual memory.
(b) Give an example of the virtual machine.

16.2  Explain why the virtual memory scheme cannot be implemented in the 68000

MICIOpProcessor.
if external resources are added, can the 68000 be changed to a 68010 processor?

Explain.
10.3 Can virtual memory schemes be implemented for
{a) an address error?
(b) a zero-divide error?
State your reasons in each case
10.4 Can virtual machine concepts be extended to replace real machines?

(a) If so, can the rcal machines be dispensed with?
(b} [f not, what is the real usefulness of the virtual machine concept?

10;5 Refer to the system we considered in Examples 10.1 and 10.2. The following instruction
is executed:

ADDX.L -(AD,—(A2)

Al = $080004 and A2 = $08345C.

(a) Which memory block gets moved from the backup memory into the buffer area?
Why?

(b) Where are the Al and A2 register valucs stored? Why?

{c) What arc the adjusted values of the Al and A2 registers?

10.6 A printer O system is emulated using virtual machine concepts. The printer has a print
buffer of 2,048 bytes and six different control signals, such as ready to send, clear to
send, paper out, and the like. In addition, the printer has a 256-byte character buffer.

{a) Fo emulate the printer as a virtual machine, how much memory is required?
{b) If the printer were 1o send an interrupt, how would this be accomplished?
10.7 The 68000 and 68010 are pin compatible with one another.
(a) Will sofowarc written for the 68000 run completely using the 680107 Are therc any

instances in which a marked difference betwe i
‘ en the two proces
evidenced? ? o will be

(b} Repeat (a) if th is i ice i
by p';3 00(0 ) If the software is intended for the 68010 and the device is then replaced
10.8 In a multiuser environment, reconfigure

(a) the vector table for user | starting at $2000;
(b} the vector table for user 2 starting at $4000.

Initiatize locad that i ]
s 10ns so that the TRAP #2 routine for user 1 starts at $1600 and for user 2

10.9 If the RTD instruction is not available (as is the case with the 68000},

((:; write & sequence of instructions to accomplish the task illustrated in Figure 10.9;

compute the time of execution for (a) and compare this with i ion
‘ th

oxeeme the tr p wi e RTD instruction

10.10 If possible, rewrite the software of Figure 10,9

() to emulate an interrupt acknowledge cycle;
(b} to emulate the user YO cycle,

10.11 Obtaining the timing informarion from the data sheets of the 68010

(a) formulate the T(R/W) values for the software of Figure 10.9,
(b} compute the time of execution for (a).
10.12 In the 68010 and 68012 processors, ex

: lain how different 5
ifeeent 4 i, p remt vector tables are used for

User 1  Vector table starting at $2000
User 2 Vector table starting at $4000

Where is the default vector table for both users?

10.13 Indicate the micromodules for the following instructions:
(a) MOVE.L (Al)+,—(AD
(b} MOVEL —(Al), (AD)+

10.14 Repeat problem 10.13 for the following:

(a) ADDLB  #$43,$14(A1,D1.W)
(b) EOR.W D2,(Al)+

10.15 jSUpp()Sf..', 4 memory-access fault occurs while accessing the source operand in the
Instructions that follow. Outline the sequence of events with appropriate micromodules
(a) ADDX.L —(Al),~(Al) |
(b} ADD.L (AD+,D2
Compare the micromodules and specif which ¢ i '
sorbare the pecity which takes more modules and time. Explain
10.16 Can the faults eccurring in the followin
680107 State all of your reasons.
(a) MOVEA.L #8$12345678,A1
ROL.W (AD
(b) IMP  $12345

g sequence of instructions be corrected by the



10.17 Why is the restart method considered superior 10 the continuation method in the field of {a) Specify the se quence of
. 0 ENCE of events.
virtual memory ! _Gw'e] at least three reasops;j - . - (b) Can the error he cormected by virtual mem ‘
What additional resources are required to implement the restart method? done. If not, speci fy your reaso | ory schemes? If so, show how jt can be
10.18 Are the stack structures for the 68000 and 63010 completely compatible with one asons and validate them with Practical examples,

ancther? Why or why not?
(a) If there is any incompatibility, does it create any hardware or software problers in ENDNOTE S

interchanging the 68000 and 650107
(h) Can the incompatibility, if it exists, be corrected by external hardware? Give your
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reasons.
10.19 Given the following software: . >
ok X, AZ: Motoroia Technical Operations, 1985
Virtual Memory and the 68010.” IEEE Micro
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MacGregor, D, and Mothersole, D,

PC Instruction 3(10):24— 39,
$090C MOVE.W DO,$1003 4»M0mmmqhw.mn786&moc7 : .
oV 1087 ourse Notes. Phoenix, AZ: Motoroia Technijcal Operations

an error condition has resulted in accessing the data space at $1003,
ght Loop Mode Raises Microprocese
¢n 31, no. 22 (1983) processor

7. Miller, M.A. “The 68000 Fani i
thier, . amily of Micropro 5. Chg i
Microprocessor: Architecture, Programming. ;:ffsgibﬁ e, .in The 05000

(a) What type of error must it have been?
(b) Indicate the contents of the stack when the 68010 recognizes the error and is ready to Performance (08010).” Electronic De 5i

respond with appropriate exception processing.

10.28 Repeat Problem 10.19 for the following: ‘
1988. cations. Columbus, OH: Merrilj
PC Instruction
$1000 BDDQ.W #$03,3123456L74
NOP

$L00E CLR.B A&

10.21 Specify two exception conditions in which the format code will be
(a) 3$0000;
(b) $1000.

10.22 Rewrite the software of Figure 10.16 so that the physical memory buffer is located
between

(a) $15000 and $18000;
(b} 340000 and $44G00.
10.23 Rewrite the software of Figure §0.16 to make it more efficient

{a) in terms of execution time;
(b) in terms of the program memory space.
10.24 In Example 10.6, suppose the fault-causing instruction is changed to

ADD.L D7{A5)+

A3 = FBBTTO6AA.




11.1 GENERAL ARCHITECTURE OF THE 68020

CHAPTER —_—
FIGURE 11.1 Generaj
architecture of the 68020. N - 50
(Courtesy of Motorola, Inc.) B DATA 1 b2
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The general architecture of the 68020 and 68030 processors CACHE CONTROLREC TR
CACHE ADDRESS REGISTER Sﬁﬁﬁ

The additional resources of the 68020 and 68030

Cache memory organization concepts
Functional improvements of the 68020 and 68030

The 68020 is a 32-bit microprocessor with individual 32-bit address and data buses. It
has a 4-gigabyte logical address space. In addition to all the internal resources of the
68010 and 68012 processors, it has a chip instruction cache memory. These additional
features increase the overall throughput of a 68020-based system as compared to the ear-
lier members of the 68000 family.'

The 68030 is an extension of the 68020 processor. Additional features of the
68030 include the data cache memory and a paged memory management unit (PMMU,
or simply MMU) on the chip itself, further enhancing the throughput of 68030-based
systems.
Study of the material in this chapter will provide a comprehensive introduction to
the 68020 and 68030 processors, cache memory, and memory management operations.

The 68020 is contained in a 114-pin grid-array package and is fabricated with VLSI

MOS technology. Figure 11.1 illustrates the internal architecture of the 68020. It con-
tains all the resources of the 68000, 68010, and 68012, along with some additional re-
sources and modified resources to facilitate cache memory implementation.

Additional Resources and Modified Resources of the 68020
There are three stack pointers in the 68020: the user stack pointer USP (A7) in the user
mode, the interrupt stack pointer ISP (A7') in the supervisor mode, and the master stack
pointer MSP (A7") in the supervisor mode. The USP handles the user stack operations.
The ISP handles the interrupt exceptions and the MSP handles the rest of the exceptions.
Selection of the stack pointer to be used is made with the help of the S and M bits in the
system byte of the status register.

The cache control and the cache address registers (CACR and CAAR) are used to
control the cache memory operations. The vector base register (VBR) and the alternate



FIGURE 1.2 System byte of b15 bi4 b!3 bI2 b1l bI0 b% b8

the 68020 status register. lrel s [ m

l_.J

gl2|1nyiIn

Ly Intercupt mask levet

{similar to 63000}

0 ( MNo trace

0 1 Trace on change of flow 0 x USP {AT

1 0 Trace on instruction execution 1 O ISP (A7)
1 1 Reserved 1 1 MSP (AT

source and destination function code registers (SFC and DFC) are used in much the

same way as in the 68010 processor.’

The user byte of the status register is similar to that of the 68000 processor. The
system byte is modified, however, as shown in Figure 11.2. The Tl and TO bits deter-
mine the trace mode of operation. The S and M bits select the stack pointer. The inter-

rupt mask bits 12, I, and 10 are similar to those of 68000.

FCO-FC2 < Function ¢codes CDI1S Cache control
AO-A3l < Address bug <@ iPLO-IPL2
Interrupt
lpEN]j controt
DO-D31 MC68020 —
Microprocesser
S1Z0 BR
|otl— s
) Bus
Transter size {4-—-—5& -&_—-- administration
BGACK control
- ECS
OCs RESET
¢ e T Bus
.‘_.ﬂ_c._ ?{ALT exception
AS BEAR control
B a—
Asynchronous s
s o ]
control R/W | CLK
DBEN
DSACKO Ve 8)
L DSACK] GND (8)
e —— ]

FIGURE 1.3 Functional pin structure of the 68020. (Courtesy of Motorola, Inc.}

Address, Data, and Control Buses

Figure 11.3 indicates the functional pin structure of the 68020 and Figure 11.4 describes
the signals. The address and data buses are extended to 32 bits each. Eight-bit byte, 16-
bit word, or 32-bit long-word data operands can be transferred in a single bus cycle. The
function code outputs FC2, FCI, and FCO specify the type of address space and the
processor condition. The SIZ1 and SIZO outputs indicate the number of bytes to be fur-
ther transferred at the beginning of each bus cycle.

The external cycle start (/ECS) output indicates that a bus cycle is beginning. The
operand cycle start (/OCS) output is asserted during the first bus cycle of an operand
transfer. The read-modify/write cycle (/RMC) output is similar to that of the 68012 pro
cessor; it indicates that the current bus cycle is an indivisible read-modify/write bus cy
cle.

The address strobe (AS) and the data strobe (DS) outputs indicate the validity of
the address and the data on the respective buses. The read/write (R/*W) output indicates
the read or write bus cycle. The data buffer enable (/DBEN) output is similar to the /DS
signal, but is used to enable the external data buffers. The /DTACK input of the 68000 is

Signal Name Mnemanic Funeti
Address Bus i s
paess | 30-#\31 32-bit address bus used to address any of 4,294, 967,296 byles
o e e FgLODFBC:E 32-@1 dat§ bus used to wansfer 8, 18, 24, ar 32 bits of daia per bus cycla.
- Slzo— 3-pit Tenction code used 10 identify the address space of each bus cycle
S ;r;d:calnes the numt_}er of byles emaining o be transkered far this cycle. These
Rt Mody-Wits Gyt il Pgne.ids. together with AD and Al. define the active sections ol the data bué
TOVIOES an indicator hat the current bus & i ndivisi I
o it o G vele is pait of an indivisible read-rhodily-
rnal Cycle i
— C\;C . St::lt &S Provides an indicaton that a bus Cyole is Daginnng
r acs idenncal o i .
Deration o that of ECS except that OC3 15 assen i
Addross Suabe _ bus cycle of an opetand transfer. o oty during the st
Dot f indicates that a valid address is on thet bug
S Indicates that vailid data j :
214 is 10 be placed on the dala bus by an e i
— _ been placed on the daia bus by the MCEA020. § iemal device of has
Dot Butte Erabre R/wW Deiinas tha bus ransfer as an MPU read or write.
ote Tranator et Size Ack o DBEN Frovides an enabls signal far external data bultars
Chnoy i ' I
wigdge gg:gi(r} Blus EEls.-s,cx:mse signals that indicate the requested dara transfer operation 15 corn
pleted. In addition, these two lines indicate i -
. the size of
. e the external bus port on a
e Prioty Level chus Dynamically disabiles the on-chip cache 10 assist emulalor support.
fo— IPLOHIPLZ Provades an encoded interrupl level o the processor
e bencing AVEC Requests an autovector duling an interrupt acknowledge cycle
S B EEND Indicates that an interrupt is pending.
Bus Gran, g_ Indicates that an external device requirgs bus rmastership.
Bus Gran Acknowldgs G Jndfcates that an external device may assume bus mastesship,
oo BGACK Indicales that an external device has assumed bus mastership
o RESET Syslem reser. -
Bus Eroy HALT Indicates that the processor should suspend bus activiry.
Cloak B_EEER Indicales an invalid ar illegal bus operation is being attempted.
Power Suppy CLK Clack input 1o the processor.
Ground Vo +5 £ 5% voit power sSupply.
GMND Ground connection.

FIG i
URE 11.4 The 68020 signal description. (Courtesy of Motorola, Inc.)



split into /DSACKO and /DSACKI1. These two inputs are encoded to specify byte, word,
or long-word transfers on the data bus.’

The cache disable (/CDIS) input disables the internal cache memory. The interrupt
priority inputs (/IPL2, /IPL1, and/IPLO) are similar to those of the 68000 processor. The
autovector (/AVEC) input signifies an autovectored interrupt condition. The interrupt
pending (/IPEND) input signifies a pending interrupt. The bus arbitration signals (the bus
request (/BR) input, the bus grant (/BG) output, and the bus grant acknowledge
(BGACK) input) are similar to those of the 68000 processor and are used for the DMA
type of transfers. The system control signals (/RESET, /HALT, and /BERR) are also
similar to those of the 68000 processor. The device operates on 5 volts Vpp.

Data Formats, Memory, and I/O Interface Schemes

The 68020 is designed to facilitate byte, word, or long-word data transfers on even or
odd address boundaries. However, the op.word (instruction word) fetches must be on
even word boundaries to maintain code compatibility with the earlier 68000 family
members. If op.word fetches are not on even word boundaries, an address error will
occur.

Figure 11.5 illustrates a typical memory interface scheme and associated data for-
mats. The 68020 uses memory-mapped I/O concepts similar to those of the other mem-
bers of the family; thus, the memory and I/O interface schemes are similar. An 8-bit byte
port (b7-b0) is connected to data lines D31-D24. A 16-bit word port (bl5-b0) is connected
to data lines D31-D16. A 32-bit long-word port (b31-b0) is connected to data lines D31-
DO. The Al and AO address lines and the SIZ1 and SIZ0 size outputs are decoded to
provide the byte enable signals BEO, BEl, BE2, and BE3. These signals enable the
transfer of appropriate bytes.”

Figure 11.6 indicates the DSACK and SIZ signal responses for different data sizes.
Depending upon the address and the alignment, there can be one, two, three, or four byte

transfers in a single bus cycle. ) ) )
We will now present an example problem to review basic concepts relating to the
68020 processor.

68020 processor Logic
[ L S chip selects

DSACKI i BE3

DSAE_I]Z‘E(T) - - BE2

S y BEI

o 120 —> BEO
AS, DS, R/W >
A3l...AD .

D7....D0

Memory or [/ umi

15

Byte 3 (LSB)

Notes 1. DSACKx signals need pull-up resistors to Vo,
2. MISB => mest significant byte; LSB 3> least significant byte.

FIGURE 11.5 Memory and /O general interface scheme for the 68020.

gbit | —— ——
D31..D24 """ Byte 0 (MSB) [* port :
16-bit f
port .
D23..Dl6 [ Byte - 32-bit
- 20
Di5...p8 K=" Byte?2 - :

Data Bus —|
DSACK] DSACKO Activity Sz} SIzZ0 Data Size
1 i not selected
1 1 3 byt
l 0 byte selected l 0 2 bitzz ﬁz::
0 I word selected 0 ! 1 byte more
0 0 iong word selected 0 0 4 bytes more
{a) (b)
FIGURE 11.6 Data bus activit i i
ey y and sefection as functions of (a) DSACK and (b) 8iz

Example 11.1 68020 architecture and data formats.
A 68020-based system has the following memory and /0 map:

Main memory (32-bit wide) = $00000000 to $OOFFFFEF
System I/O (16-bit wide) = $01000000 to $0100FFFF
(8-bit wide) => $01010000 to $O10103FF

1. What are the conditions of the s

stem b - i
value of VBR on reset? ystem byte at power-up reset? What is the defauit

» The processor is executing the following instruction:
MOVE.L Do,(Al)

with DO = $012A46AB; Al = $00004000 i
_ ; = . Indicate the data t 5 3
along with the DSACKx and SiZx signals. # transiers on the bus.



3. The processor is executing the foltlowing instruction:

MOVE.L D0,(A2)

with DO = $012A46AB; A2 = $01000401. indicate the data transfers on the bus,
along with the DSACKx and SIZx signals.

Solution

1. System byte and VBR on reset: In order to be compatible with the other members
of the 68000 family, the system byte is set up for trace off, stack pointer ISP, and
interrupt mask level 7. Similarly, the VBR is set up for the all-zero condition. The

system byte and the VBR are as shown:

bl5 bld4 bhl3 bi2 bil bl0 bY b8

System
byte 2> T

0 0 | o 0 1 | 1
VBR 2> $ 0 0 0 0 0 0 0 0

T 5 M a 12 3 ]

2. MOVE.L DO,(Al1): The destination effective address (Al) = $00004000 is evenly
divisible by 4; as such, it is long-word aligned. All 32 bits of data from D are trans-

ferred to the destination in a single bus cycle, as shown:

MSB LSB
oPO  OPI opP2 oP3
DO = 01 2 A 48 A B
Data bus D3l- D23~ DIS-  Di-
‘ D24 Di6 D$ Do

' ’ ) DSACK1 DSACKO  §iZi §1Z0

$060004000 01 2 A 46 A B 0 0 0 0

3. MOVE.L DA0,(A2): The 16-bit port is connected between data lines D31 and D16.
The destination effective address (A2) = $01000401 is at an odd byte boundary and

is misaligned. However, the long-word data operand is transferred in three bus cy-

cles, During the first bus cycle. the most significant byte (MSB) operand OPO is .
transferred to location $01000401. During the second bus cycle, byte operands OPl
and OP2 are transferred as a word to location $01000402, During the third bus cycle, -
the LSB operand OP3 is transferred to location $01000404. The sequence of opera- .

tions s as shown:

M
SB LSB

OPO 0P| oP2 OP3
Do = 01 2A 46 AB
D3l-  D23-
D24 D16
DSACKI DSACKG §iz)
$01000400 XX 01 $01000407 t 0 0 "o
G
010004
$ 02 2A 46 $01000403 0 1 1
1
$01000404 AB XX $01000405 t 0 0
i

Th ; Y ) ,
bus cl: Et)SbACE-( and SIZ signals specify the actual bus activity. During the first
Duriny [h‘ ‘ Ytes were meant to be transferred, but only one could be transferreci

8 the second bus cycle, 3 bytes were still meant to be transferred, but o;ﬂy twc;

Could bt’: tl‘dnsfel |ed (d‘t a WOI’d) D ring the hl }’ =4 5
Iy . U
y g h t ['d IJLIS c Cl 3 [he la\[ and [‘Cmdmll‘tg

Wi .

misa“gngg ;haiahf:;)nzﬁczewl?iACK ?nd Stz S{gnals, it is possible to execute aligned or

iens cquat ease. Misaligned transfers take more bus cycles,
To further familiarize the read i

. ‘ er with the configuration of the 68020 3

Internal block diagram and layout structure are presented in Figures 11.7 {I:;Ef»‘ﬁbgﬁ e

11.2  ADDITIONAL ADDRESSIN
AND INSTRUCTIONS FOR THE gBE?%DES

The ¢ ; -
lon t?)b]:[ ]‘thFlglzlre 1!..9 {p. 316) indicates the addressing modes of the 68020. In addi
€ addressing modes of the 68000, it has memory indirect and.progra -

i

counter indirect addressin :
£ modes. The ass .
o) can be up 1o 32 signed bis.S - Co Das¢ and outer displacements (bd and

Memory Indirection Addressing Modes and Scaling

Hheneve i 1
I an In sLer " i i ¥
dt‘:‘?( register (Dn ox AI’!) 1S used, its contents are multiplied by a scale



—

Y SEQUENCER
MICROROM
NANOROM I INSTRUCTION
DECODE
‘ &
INSTRUCTION
CONTROL PIPE
SECTION i

f
Y ' I 3

TAG INSTR. OPERAND
SECTION SECTION SECTION CACHE
| execuTionunr 4 )
ADDRESS BUS DATA
PADS CONTROLLER PADS

FIGURE 11.7 Intetnal block diagram of the 68020. (Courtesy of Motorola, Inc.)

contents and the base unci outer displacements to the indirect address. This addressing
scheme uses a memory location as a memory pointer.

Figure 11.10 (p. 317) indicates the results that follow from using the new addressing
modes. When scaling is used, the physical value of the index register is not changed. In
memory indirect postindexing, the contents of the memory indirect address are
obtained first. The index and the outer displacements are further added to obtain the
effective address of the operand. In memory indirect preindexing, the memory indirect
address is obtained after indexing. The outer displacement is further added to obtain the
HA of the operand.

In the program counter indirect and program counter memory indirect addressing
modes, the program counter is used instead of an address register. These modes are suit-
able for relocatable code generation.

Bit-Field Type of Instructions

The bit-field instructions for the 68020 arc given in Figure 11.11 (p. 318). These instructions
address and manipulate a bit field of variable width (1 to 32 bits), starting from a given
offset of the effective address. The syntax of the single operand instruction is

FIGURE 11.8 The 68020 internal structure and layout. (Courtesy of Motorola, Inc.)

BFxxx {ea) {offset; width}

If the instruction is of the double-operand type, the other operand is a data register Dn. 'l
he offset and width fields can be specified as immediate operands or as Dn operands.
1'or all bit-field instructions, the bit field is first tested and the N and Z flags are adjusted
accordingly. The specified bit-field operation is then carried out. In Figure 11.12 (p.
mM'-)) some typical bit-field instruction operations are given in order of complexity.

The bit-field instructions are very helpful in handling bit fields of variable lengths
and at any effective address location. In the absence of these instructions, a series of
m"Mructions must be written to accomplish the tasks of this type.



Addressing Modes Syntax
Register Chract
Dala Regisler Direct Dn
Address Register Direct An
Ragister Indirect
Address Register Indirect (AR
Address Register Indirect with Postincrement LA +
Address Register Indiract with Fredecrament - tan}
Address Register indirect with Displacernent {d1g.AnN)
Register Indirect with Index
Address Register Indirect with Index (8-Bit Displacement! ldlg, An, Xn}
Address Hegister Indirect with Index (Bass Displacement thd, An, Xn)
Kermaory Indirect
Memory Indirect Post-tndexed i[bd, And, Xn,od
Memory [ndirect Pre-Indexed (lbd, An, X0l od)
Frogram Counter Indirect with Displacemeant {dg.FC)
Program Counler indirect with Index
PC Indirect with Index (8-Bil Displacement) {dg,PC.xn)
PC Indirect with Index (Base Displacement) tbd PC XN}
Program Counter Memaory Indirect
PC Memory Indirect Post-lndexed {fbd,PCLXn,odl
PC Memory Indirect Pre-Indexed [bd,PC, Xnl,0d)
Absolute
Absolule Short . Wy
Absolute Long #ex. L
Immediale # < data>
NOTES:

Dn = Data Register, D0-D7
An = Address Register, AQ-AY

dg, dig = A twos-complement, or sign-extended displacement; added as part of the effective address caleulation; sizeis 8 or 16 bits

tdyg and dg are 16- and 8-bit displacernenis); when omitted, assemblers use a vafue of zero.

Xn = Address or data register used as an index register; form s Xn SIZE* SCALE, where 512 is W or L findicales index
register sized and SCALE s 1, 2, 4, or 8 {index register i muluplied by SCALE); use of 31IZE and/or SCALE is aptional

bd = A twos-complement base displacement; when present, size can be 16 or 32 bits.

od = Quter displacement, added as part ol effective address calculalion after any memory indirection; use is optional with a size
ol 16 or 32 bits,

PC = Program Counter

<data> = Immaediate value of 8, 16, or 32 bits
[} = EHeclive address
{ | = Use as indirect address to long word address.

FIGURE 11.9 Addressing modes of the 68020. (Courtesy of Motorota, Inc.)

Packed and Unpacked BCD Instructions

The PACK instruction is used to reduce a word-sized two-digit BCD operand into a
packed 8-bit two-digit BCD operand. The UNPK instruction increases a byte-sized
two-digit BCD operand into an unpacked 16-bit two-digit BCD operand. Examples fol-
low.

PACK D2,D3,#$0000: The specified immediate data (0000) word is added to the source
operand in the D2 register. The upper 4 bits of each byte are discarded and the lower 4
bits of each byte are packed into the destination register D3.

INITIAL CONDITIONS

A0 = $0000ABCD; DO = $00000004, $00004800 0000
Al = F00000008; DI = $00000200; 4802 2222
A2 = 500003000, D2 = $00C0OFOF0; 4804 4444
A3 = $00004000, D3 = $0i2A40AB, 4806 6066
4308 8888
430A 0000

1. ARI with base displacement, index, and scaling:

MOVE.L {08, A3, DI.W * 43,b4 EA calculation;
: : : : A3 L $00004000 +
bd ARl index  scale DI1.W+*4 300000800 +
bd $0000000%
(ARI > Address rcgister indirect) EA = 300004808

Long-word contents corresponding to

EA are moved into D4 register D4 = $88850000

2, Memory indirect postindexed:

MOVE.L ([$1800,A2], DI.W * 8, $15E0}.D4 EA calculation:
T : : : A2L 300003000 +
bd ARI index scale od bd 300001800
memory indirect address = $00004800
conteats of above memory indirect address  $00002222 +
P1.W#3 $00001000 +
od $00001 5E0

EA = 3000048012
Long-word contents cotresponding to
D4 = $22224444

EA are moved into D4 register

3. Memory indirect preindexed:

MOVE.L ([$0800,A2, D1.W * 8], $25E4).D4 EA calculation;
oo : : AZL 300003000 +
bd ARFindex scale od DL.W+*8 $00001000 +
bd $00000800
memory indirect address = $00004800
contents of above memory indirect address  $00002222 +
od $000025E4

EA = 300004806
Long-word conteats corresponding to
EA are moved into D4 register D4 = $66664388

: EIGUHE 11,10 The 68020 scaling and memory indirect addressing modes.




Instruction Operation
BFCHG Test bit field and change from 1 to (0, or vice versa.
BFCLR Test hit field and clear.
BFEXTS Extract signed bit field from source and place into destination.
BFEXTU Extract unsigned bit field from source and place into destination.
BFFFO Find first one in the bit field.
BFINS Insert bit field at specified address.
BFSET Test bit field and sct condition codes.
BFTST Test bit field and set or reset N and Z flags.
Flag conditions: N sct if the MSB of the bit field is 1.
Z set if the bit field is all-zero.
V cleared; C cleared; X unaffected.
FIGURE 11.11 Bit-field instructions for the 68020.
Initialty D2=  $§ x x x x 3 7 3 5
+ data element = § 0 0 0

discard upper 4 bits of each byte :
and pack lower 4 bits of each byte 7 5
‘\\ .

Final D3 value =% x x x x x x 7 5

The source and destination operands can also be specified by the predecrement ARI ad-
dressing mode (PACK  —(An),—(Am),#data).

UNPK D3,D4,#$3030: The source operand in the D3 register is unpacked from 8 bits
to 16 bits, with the upper 4 bits of each byte set to zero. The specified data ($3030) is
added to the unpacked operand. The resulting 16-bit operand is placed in the destination
register D4

Initially D3 = $ x x x x x.x 7 5
// .

unpacked operand

+ dataelement = %
Final D4 value = § x x x x

LS I P ]

5
0
5

W e O
-1 O =]

The source and destination operands can also be specified by the predecrement ARI ad-
dressing mode {UNPK  —(An},—(Am),#data).

In the preceding exampte, with a data element of $3030, the UNPK instruction has con-
verted a normal BCD value into a corresponding ASCII value (BCD 7 => ASCIH 37

BCD 5 = ASCII 35). This illustrates the usefulness of PACK and UNPK instructions

in code conversions.

bits
displacement b7 b6 b5 b4 b3 b2 bl h(

byte address 4007 -8 | 0 1 | 1 1 0 0 $BC
base byte address 4008 = 0 f i 0 1 0 0 0 i $DI1
byte address 4009 +8 0 0 0 I 0 1 0 ] $15
1. BFTST 4008{2:6):
Tests bit field with base address 4008, offset 2 and width 6 bits. Tests bits b5—hO of byte at loca-
tion 4008. N = 0 (MSB b5 is 0); Z = 0 (bit field is nonzero).
2. BFCLR 4008{2:6}:
Performs BFTST operation as above first and returns the N and Z values (0 and 0). Then clears
bits b5—b0 of byte at 4008. (If BFSET is used, then the corresponding bits are set after returning
the N and Z values).
3. BFCHG 4008{2:6}:
After performing the BFTST operation as above and returning the N and Z values (0 and (), tog-
gles (1 to @ and 0 to 1) bits b5~b0 of byte 4008,
4. BFEXTU 4008{—8:16},DI1:
Extracts bit field with base address 4008, offset —8, and width 16 bits. In this case, it extracts
(moves) b7—b0 bits of byte at 4008 into b7—b0 bit positions of the DI register. It further moves
bits b7~b0 of byte at 4007 into bit positions b15—b8 of the D! register. The rest of the bits of the
Dt register are loaded with zeros, since the instruction is unsigned.
DI =%0000BCD 1 '
N =1 {MSB of the bit field (b7 of byte at 4007) = 1)
Z = 0 {nonzero bit-field value)
If BFEXTS (signed extract instruction) is used, the MSB bit of the bit field is sign extended to the
higher bits of the destination register. Thus, BFEXTS  4008{—8:16} yields
BI=3FFFFBCDI
N =1
Z =40
5. BFINS D1,4008{12:4}: (DI=3FFFFBCD 1}
Inserts into bit field with base address 4008, offset 12 the last 4 bits of the D1 register. In this
case, 0 0 0 | bits are inserted in bit positions b3—b( of byte at 4009. N = 0 and Z = 0, since 2
positive nonzero value is inserted.
6. BFFFO  4008{8:8},D2:

Finds first one in the specified bit field at base address 4008 with offset 8 and field width 8 bits.
Returns the effective offset value 10 the D2 register. In this case, the first one is found at b4 of
byte at 4009. This corresponds to an effective offset of t1 = $B.

D2=%0000000B
N = [ (I found in the specified bit field as MSB)
Z =0 (nonzero effective bit field)

" FIGURE 11.12  Bit-field instruction apptications.



Other Instructions and Enhancements

In the 68020, the divide and multiply instructions are extended to cover 32-bit operands.
The TRAP instructions are further extended to operate on condition (TRAPcc). The CAS
(compare and swap) instructions are of the read-modify/write type and enhance system
throughput. There are also a set of coprocessor instructions (cpxxx) to control the
coprocessor operation. Figure 11.13 summarizes the 68020 instruction set.

The 68020 processor has an internal 4-word pipe that holds the prefetched instruc-
tions and operands. The pipe is filled whenever there is a two-word vacancy. In the case
of a change in program flow, the pipe contents are invalidated and the pipe is refilled.®

11.3 CACHE MEMORY CONCEPTS AND ORGANIZATION

Cache memory is a fast-access, high-speed memory designed to hold the most fre-
quently used information. The processor copies the required information from the main
memory into the cache memory. The cache memory is usually of limited size. As often
as is necessary, the cached information is updated.

68020 Cache Memory Organization and Operation

The 68020 processor has a 256-byte instruction cache memory on the chip, itself. It is
organized as 64 long words, as shown in Figure 11.14. Two internal registers, the CACR
(cache control register) and the CAAR (cache address register), determine the operation
of the cache memory. The cache memory can be disabled or enabled. When enabled, the
processor fills in the cache memory with the most recently fetched instructions and uses
them.

When the processor wants to fetch an instruction, it checks the cache memory to
determine whether the instruction is in the cache. If it is in the cache, we have what is
known as a hit condition. If it is not in the cache, we have what is known as a miss
condition.

For a hit condition, the processor fetches the instruction from the cache and exe-
cutes it. The typical instruction access time from cache corresponds to two clock cycles.
For a miss condition, the processor fetches the instruction from the external memory and
executes it. The typical instruction access time from external memory corresponds to
three clock cycles. Cache memory is always updated with the most recent instructions
fetched from the external memory. Figure 11.15 indicates timing under cache hit and
cache miss conditions.

When the processor is obtaining instructions from the cache memory and execut-
ing them, the external bus is free. The bus interface unit accesses data operands during
this time window. In addition, the prefetch mechanism of the 68000 family is opera-
tional, even with the cache memory. All of these parallel operations enhance the overall
throughput of the 68020 processor.

Mnemonic Description Mnemanic Description
ABCD Add Decimal with Extend MULS Signed Muhiply
ADD Add MULL Unsigned Multipty
ADDA Add Addrass NBCD Megate Decimal with Extend
ADDY Add Immediate NEG Negate
ADDQ Add Quick NEGX Negate with Extend
ADDX Add with Extend NOP No Operation
AND Logical AND MOT Logical Complement
ANDI Logical AND [mmediate OR Lagical Inclusive OR
ASL, ASR Arithrretic Shift Left and Right ZRI Logical OR Immediate
Beo Branch Conditianatly PACK Pack BCD
BCHG Test Bit ard Change PEA Push Effective Address
BCLR Test Bit and Clear RESET feset External Devices
BFCHG Test Bit Field and Change ROL. BOA Rotate Left and Right
BFCLR Test Bit Field and Clear ROXL. ROXR| Rotate with Extend Left and Right
BFEXTS Signed Bit Fizld Extract BTD Return and Deallocate
EFEXTU Unsigned Bit Field Extract RTE Return from Exception
BFFFO Bit Field Find First One RTM Return from Module
gE'Sr”’EST TB:;Igli? 'l_'i";z”and st HTE Return and Reslore Conditon Codes
BETST Test Bit Fisld RTE Return from Subroutine
BRA Branch EBCD Subtract Cecimal with Extend
asET Test Bit and Sat Sec Set Conditicnally
BSR Branch to Subroutine g;{;P gtu(g:ract
BTST Test Bit
SUBA Sublract Address

CALLM Call Module 508l Sublract Immediate
CAS Compare and Swap Operands SUBQ Subtract Quick
CAS2 Compare a_nd Swap Duat Operands SUBX Subtract with Extend
CHK Check Regltster Agal.nsl Bound SWAP Swap Register Words
CHK2 Check Register Against Upper and

Lower Bounds TAS Test Operand and Set
CLR Clear TRAF Trap
CMP Compara TRAPC Trap Conditignally
CMPA Compare Address TRAPY Trap on Owverflow
CMPI Compare Immadiate L) Test Operand
CMPM Compare Memory to Memory UNLE Unlink
CMP2 Compare Register Against Upper and  JUNPK Unpack BCD

Lower Bounds : COPROCESSOR INSTRUCTIONS
DBoc Test Conditton, Decrernent and Branch
BIVS, DIVSL] Signed Divide cpBec Branch Conditionally
DIVU, DIVUL | Unsigned Divide cpDBee Test Coprocessor Condition,
EOR Logical Exclusive OR Decrement, and Branch
ECQRI Logical Exclusive OR Irnmediats cpGEN Coprocessor General instruction
EXG Exchange Registers cpRESTORE | festore Internal State of Caprocessor
EXT Jign Exlend cpBSAVE Save Internal State of Coprocessor
JMP Jump cpaee Set Conditionally
JSR Jump 1o Subrautine cpTRAPce | Trap Conditionally
LEA, Load Effective Address
LINK Link and AHocate

|LSL. LSR | Logical Shift Left and Right
MOvE Move
MOVEA Move Address
MOVE CCR | Move Condinon Code Regster
MOVE SR Maove Status Regpster
MOVE USP | Move User Stack Painter
MOVEC Mave Control Register
MOVEM Mave Multiple Registers
| MOVEP WMaove Peripheral

MOVEQ Move Quick
MOVES Move Alternate Address Space




68020 processor

System
externai memory
Bus < > (3-cycle access)
interface
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access) | s CDIS (cache disable}
CAAR
CACR

FIGURE 11.14 The 68020 cache memory organization and operation.

Cache Control and Cache Address Registers

The cache memory operation is controlled by the cache control (CACR) and cache ad-
dress (CAAR) registers. These are illustrated in Figure 11.16. Using the CACR, the
cache memory can be disabled or enabled, the cache entry can be cleared or frozen, or
the cache memory can be completely cleared. These operations are required during ini-
tialization or when the processor is changing tasks.

The 6-bit index field of the CAAR specifies one of the 64 long words of the cache
memory. The 24-bit tag, filed along with FC2 function code bit, specifies the address

PROC i
CLK

DATA ACCESS INSTRUCTION ACCESS DATA ACCESS

ss. KX X X
s —(_____— X

>

MISS REPLACEMENT HIT
. CACHE ACCESS . CACHE _
= "1 ACCESS )

. 3CLKSFOR
'" MISS ot

FIGURE 11,16 (a) Cache b31 b4 b3 b2 bl b0
control register (CACR) and
(bjcacheaddressreglster 0 Frrnasnmn LR R T ] ﬂ C CE F E
{CAAR) formats of the 68020.
C > Clear cache {1 clears all cache entries)
CE => Clearentry {1 clears the CAAR specifted entry)
F => Freeze cache (1 freezes cache entry and update)
E > Enable cache {1 enabies the cache mermory)

(a)

b31 bS8 b7 b2 bl bO

Tag Index Block
24‘—t3it address tag field 6-bit index 2-bit
sp;clfles the address tag of field specifies field

the instruction corresponding I out of 64 specifies

to A31 ., A8 address lines long words upper er
in cache lower
memory word

)

FIGURE 11.15 Cache hit and cache miss timing of the 68020. {Courtesy of Motorola,
Inc.)

tag field of the instruction. FC2 is required to distinguish between supervisor and user
space. In addition, there is a V bit associated with each of the address tag fields in the
cache memory address area. If the V bit is 1, the corresponding cached instruction is
valid.

At power-up reset, the CACR is cleared to the all-zero condition and the cache is
disabled. The cache needs to be properly initialized as a part of the system reset routine.
The cache registers CACR and CAAR can be accessed only in the supervisor mode (us-
ing the MOVEC instruction).

Sometimes it is necessary to hardware disable the cache memory for debugging
purposes. This is accomplished by activating the CDIS signal to a low level, as shown in
Figure 11.14.

We will now present an example problem to review what we have learned about
cache memory.

. Example 11.2 68020 cache memory and performance.
: Consider a 62020-based system.

L. Why is the cache memory disabled on power-up reset?

2. How much additional tag address and other space is required for each long-word
cache entry?

3. Assume the following code is being executed while the cache memory is disabled:

MOVE.L (A2)+,D&
ADD.L D2, DO
NOP

MOVE.L DD, (A3)+



With 32-bit aligned access, how many total read and write bus cycles take place on the
external bus, including the instruction prefetches? 4. Answer the preceding question,
assuming the cache is enabled and the code is in the cache memory.

Solution

1. Cache disable on reset: The information contained in the cache memory at the time
of power-up reset does not correspond to any valid code. The cache memory should
be disabled to prevent the processor from running invalid code from it.

2. Additional cache space: Each long-word cache entry has a 25-bit effective tag ad-
dress field (A31-A8 and FC2 values). Each long-word entry also has an associated V
bit. Thus, 26 bits of additional cache space is required for each long-word entry.

3. Bus cycles when cache is disabled: Each of the instructions is a single op.word in-
struction. To prefetch four op.words, two read bus cycles are required on the 32-bit
aligned access. In addition, the instruction MOVE.L (A2)+,D2 requires a read cycle
to obtain the source operand and the instruction MOVE.L DO,(A3)+ requires a write
bus cycle to write the destination operand. Thus, the total number of bus cycles
required is four.

4. Bus cycles when cache is enabled: When the instructions are already in the cache
and the cache memory is enabled, the instruction fetches will be from the cache. The
external bus activity is only for the source and the destination operands. Thus, the
total number of bus cycles required is two.

In the preceding example, the benefits of the cache memory and aligned access are
apparent. The external bus cycles are greatly reduced, enhancing the throughput. How-
ever, depending upon the alignment, the port size, and the cache memory condition,

actual bus activity varies.

11.4 GENERAL ARCHITECTURE OF THE 68030

The 68030 is an enhanced 32-bit microprocessor contained in a 128-pin grid-array pack-
age. It is fabricated with VLSI HMOS technology. It has all the resources of the 68020
processor. In addition, it contains the data cache and the memory management units on

the chip.”

Instruction and Data Cache Memory Organization

The 68030 processor contains a 256-byte instruction cache memory and a separate 256- -
byte data cache memory on the chip. The instruction cache is similar to that of the -68020
processor, but is organized as a bank of 16 rows of 4 long words. There are 16 m address
tag fields for the 16 rows, consisting of FC2 output and address lines A31-A8. ---
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General architecture of the 68030. (Courtesy of Motorola, Inc.)
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Selection of one of the 16 rows of the cache bank is accomplished by address lines A7-
A4. Selection of one of the long words of a row is accomplished by the A3 and A2
address lines. The Al address line is used to select the upper or lower word within a long
word. Each long word is associated with a V bit. The operation of the 68030 instruction
cache is similar to that of the 68020 processor.

Data cache organization in the 68030 is similar to instruction cache organization.
In the address tag field, however, the FC1 and FCO function code bits are also included.
The processor reads the cached data in the case of a hit condition. When there is a hit
condition for writing data, the processor writes the data in the cache memory and also in
the external memory. This is necessary to eliminate any stale data in the external data
memory.

Additional Software Resources of the 68030 Processor

Figure 11.17 specifies the register architecture of the 68030 processor. In addition to the
68020 resources, it has extra registers related to the memory management unit
(MMU). These registers can be handled only in the supervisor mode. The logical address
space for the 68030 is 4 gigabytes. The physical address space depends upon the available
hardware and is much less than the logical space. In virtual memory implementation, the
MMU translates a logical address into an existing physical address. Associated with the
MMU, there is also an address translation cache (ATC) memory on board for the 68030.
The ATC has 22 entries consisting of the most recently used address translations.

Whenever there is a requirement for an address translation from a logical address
to a physical address, the ATC is checked for a hit. For a hit condition, the cached
translation address is used to locate the instruction or the data operand. For a miss con-
dition, 68030 goes to the external memory to locate the address translation tables and
obtains the required information.

Figure 11.18 summarizes the functions of the MMU registers and Figure 11.19
summarizes the additional 68030 instructions to support the MMU functions. These
MMU instructions are privileged. In Figure 11.20, the relative performance of the 68020
and 68030 processors is indicated.

TC = Translation control: Controls the translation process.

CRP = CPU root pointer; Locates the root pointer in memory for user-level operat-
ing systems.

SRP = Supervisor root pointer: Locates the root pointer in memory for the govern-
ing opcrating system.

TT0 and => Transparent translation registers 0 and 1: The entries here will be trans-

TT1 parent to the ATC and will not be cached.

MMUSR=> MMU status register: Contains the status of the MMU operations.

FIGURE 11.18 68030 MMU register functions.

-

PMOVE = Move to and from MMU registers. (Moves contents between the MMU
registers and the EA .}

PLOAD = Load page descriptor into the ATC from the EA.

PTEST = Test transiation. (Tests the ATC and updates the MMU status register.)

PFLUSH = Flush selected ATC entries as specified by the EA. .

PFLUSHA => Fhush all ATC entries.

_ |

FIGURE 11.19 MMU-related instructions for the 68030,

FIGURE 11.20 Relative LS
performance of the 68020 and
68030 processors. 1 _——-—

68030
68020

Additional Hardware Resources of the 68030 Processor

In Figures 11.21 and 11.22 the 68030 functional signal groups and associated signal de-
scriptions are given. There are additional cache control signals to assist instruction and
data cache management.

The synchronous termination input (/STERM) is of particular importance. It
controls synchronous transfers between the processor and the external memory and I/O.
Synchronous transfers take only two clock cycles, as compared to three clock cycles for
normal asynchronous transfers. The processor terminates the bus cycle upon receiving
/STERM. If /STERM is not received, the processor assumes the normal asynchronous
operation and looks for the /DSACK signals. In synchronous operation, only 32-bit
aligned transfers are allowed. The other hardware resources of the 68030 function in

basically the same manner as in the 68020 processor.
" 68\(?)\73eowi11 now present an example problem to review what we have learned about
the .

EJFample 11.3 The 68030 microprocessor.
With regard to the 68030 microprocessor,

:why i it useful to have a data cache?
.why is it useful to have the MMU on board?
‘what are the disadvantages of the data cache and MMU?

‘Data cache:

In the case of a cache hit for read operations, only two clock cycle data
ransfers are

required, as compared to three clock cycle data transfers for external
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FIGURE 11.21 Functional signal groups of the 68030. (Courtesy of Motorola, Inc.)

memory access. This increases the throughput by 33.3 percent for read operations.

For write operations, since data are also written into the external memory, there
is no speed advantage. However, the updated data may be used for other read
operations, ultimately resulting in a speed advantage.

2. MMU on board: The MMU and the associated ATC provide internal 2-cycle access,
as compared to external 3-cycle access. This, in turn, affords a speed advan- _ tage of
33.3 percent.

3. Disadvantages of on-board cache and MMU: Each of the units takes silicon real
estate and complicates semiconductor processing. Thus, the cost of the unit is in-
creased. Also, the integrated functionality makes debugging and testing difficult.

Figure 11.23 illustrates the internal structure of the very powerful 68030 proces-
sor. As of this writing, considerable system development is still taking place. The con-
cepts we have presented are elementary; for more detailed information, additional refer-

ences should be consulted.®’

Signal Name Mnemaonic Function

Function Codes FCO-FC2 3-bit function code used to identify the address space of each bus cycie

Address Bus AD-431 32-bit aridress bus ysed 10 address any of 4,294,967,296 bytes.

Data Bus -3 32-bit data bus used 10 transfer 8, 18, 24, or 32 bits of data per bus cycie.

Size SIZv8121 Indicate§ the number of bytes remaining 10 be transferred for this cyele,
These signals, togather with AQ and A1, define the active sections of the
data bug, .

Operand Cycle Start ocs !dentlica! operation to that of ECS except that OCS is asserted only during
the first bus cycle of an operand transfer.

External Cycle Start ECS Provides an indication that a bus cycle is beginning,

Read/VWrite RAW Defines the bus transfer as an MPU read oF write.

Read-Modify-Write Cyele RMC Provides an indicator that the current bys cyche is part of an indivisible
read-modify-write operation.

Address Strobe AS Indicates that a valid address 1s on the bus.

Data Strobe [ Indilcates that valid data is to be placed on the data bus by an axternal
device or has been placed on the data bus by the MCEA030.

Data Buffer Enabla DBEN Provides an enable signal for external data buffers,

Data Transfer and Size Acknowledge | DSACKO/DSACKT .B”-S response signals that indicate the requested data transfer operation
is completed. In addition, these two lines indicate the size of the externat
bus port on a cycle-by-cycle basis.

Cache Inhibit In CItN Prevents data from being loaded into the MCBE8030 instruction and data
caches,

Cache Inhibi iti

ache Inhibit Qut clouT _Refllecls the €l bit in ATC entries or a transparent translation register;
indigates that external caches should ignove these accesses,

Cache Burst Hequest CBREQ Indicates a miss in either the instruction or data cache for cachable ac-
cesses.

Cache Bursl Acknowledge CBACK Indicates that accessed device can operate in burst mode.

Interrupt Priority Levei IPLG-iPLZ Provides an encoded interrupt {evel to the pProcessor.

Interrupt Pending IPEND Indicates that an interrupt is pending.

Auto

vector AVEC Requests an autovector during an interrupt acknowledge cycle

Bus R BR i |

equast 2R Indicates that an extarnal device requires bus mastership.

Bus Grant BG i

BG Indicates that an external device may assume hus mastership
Bus 1 ‘
Grant Acknowledga BGACK Indicates that an external device has assumed bus mastership,
Resel RESET System resat,
Halt i
_B HAL tndicates that the processor should suspand bus activity,
us Errol i i i
: u ERR Indicates an invalid or illegal bus operation is being attempted.
ynchro inati j .
nows Termination STERM Bus response signaf that indicates a port size of 32 bits and that data may

- be latched on the next failing clock adge.

ache Disabi i i '

o e CDis Dynamically disables the on-chip cache ta assist emuiator SUPROL,

isabl i i
v g MMUDIS Dynamicaily disables lhe translation mechanism of the MMU,
ICT G

?_jfﬂ.!_ta___rmrStatus STATUS Status indications for debug purposes.

Fipe Refiir i i j

P~y REFILL Indicates when the instruction pipe is beginning to refilt

A CLK Clock input to the processor,

Fowar Syppy
.._.___________Elill__ Voo +5vaolt + 5% power supply.

Groung GND

Ground conneslion.

) . .
IGURE 11.22 Signal descriptions for the 68030, {Courtesy of Motorola, inc.)
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11.5 FUNCTIONAL IMPROVEMENTS IN THE
68020 AND 68030 PROCESSORS

-

Even (hough the 68020 and 68030 are based on the prototype architecture of the 68000
processor, they far exceed the functional capabilities of the 68000. This is primarily due

¢ to their memory indirect addressing capability, extended instructions for 32-bit operand
A manipulations (such as multiply and divide), cache memory and virtual memory imple-
mentation capabilities, and their enhanced 32-bit data and address buses.

SIZE
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.

REGISTER
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For routine 16/32 bit applications, the 68000 processor with 16-megabyte address
space is usually sufficient and is widely used. For applications requiring fast operations,
large memory space (up to 4-gigabyte), and cache memory implementation schemes, the
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68020 and 68030 processors are preferred. If a data cache and memory management are
also required, the 68030 is the processor of choice.
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Memory Indirect Addressing Capability

Insiruction type

The 68020 and 68030 processors have the additional memory indirect addressing mode

STAGE

i

STORE
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CONTROL
LOGIC
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MICROSEQUENCER AND CONTROL

e,
iy
——! ADDRESS
— SECTION
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as we discussed earlier in the chapter. This addressing mode uses any memory location
us a memory pointer register, which provides unlimited pointer resources in addition to
the internal registers. The 68000 processor does not have the memory indirect address-

ing scheme; therefore, it must use one of the seven address registers (A0-A6) for any
register indirect addressing scheme.

EXECUTION LIMIT
PROGRAM
COUNTER
SECTION
DATA
ADDRESS
BUS

32-Bit Extended Instructions

=z

%‘ﬁw For the 68020 and 68030 processors, some instructions, such as the multiply (MULU,

EEB 22 MULS) and divide (D1VU, DIVS), are extended to handle 32-bit operands, producing a

2 %%‘ 64-Dbit result. For the 68000 processor, these instructions operate on 16-bit operands and
P I

produce 32-bit results. To obtain a 64-bit effective result with the 68000 processor, a
software routine must be written and executed.

MICRO BUS
CONTROLLER
BUS CONTROL

SIGNALS

BUS CONTROLLER

MMU
TT
REGISTERS
ATC

Cache Memory and the Concept of Tag Field

PHYSICAL
ADDRESS

Both the 68020 and 68030 processors have an instruction cache on board, organized as
64 long words as discussed earlier. The 68030 processor has an additional data cache on
board. The upper 24-bit address reference (A31-A8) for the instruction cache memory is
called the address tag. The next 6-bit address reference (A7-A2) is called the address
index, which selects one out of the 64 cache locations on board.

Bach cache location has a tag field, in which tag information is stored, and an
instruction field, in which information corresponding to the tag field is stored. If a
memory reference is made, the stored tag is checked against the current tag for a hit. In
the event of a hit, the information from the cache is read by the processor. In the event °f

a miss, the processor goes to the external memory, obtains the instruction, copies it into
the cache memory, and executes it.

DDRESS
PADS

Cn

FIGURE 11.23 Internal structure of the 68030. (Courtesy of Motorola, inc.)

ADDRESS
BUS



The 68000 and 68010 processors do not have cache memory capability; hence, the
tag field concept does not apply to them.

The 68020 and 68030 Additional Signal Groups

The 68020 and 68030 processors have all the signal groups of the 68000 processor. In
the 68020 and 68030, the data bus is extended to 32 bits compared to the 16-bit data bus
of the 68000. The address bus is extended to 32 bits compared to the 24-bit effective
address bus of the 68000. The control bus of the 68020 and 68030 processors is extended
to include two data acknowledge signals (DSACKO and DSACKI), size signals (SIZ0
and SIZI), and bus interface signals (OCS, ECS, and RMC).

In addition, the 68020 processor has a cache disable (CDIS) input signal. The
68030 has four cache-related signals to handle the data and instruction cache on board.
All of these additional resources increase the throughput of the 68020/30-based system.

Software Considerations for the 68020 and 68030 Processors

The assembly language programming techniques for the 68020 and 68030 processors are
similar to those for the 68000. Due to additional and enhanced instructions, the effi-
ciency of the software routines for the 68020 and 68030 processors can be increased. In
case of loop-type operations, for example, instructions are copied into the cache mem-
ory, which further reduces the execution time of the program.

The following example problem deals with the software capabilities of the 68020
and 68030.

Example 11.4 68020130-processor software.
Suppose a 68020/30-based system is used in a control system application with a software
routine as shown in Figure 11.24.

1. Assuming the cache is disabled, analyze the software and specify the contents of the
affected registers after the MULU and DIVU instructions.

2. Assume that the NOP instruction is replaced by the DBRA D3,AGAIN instruction.
Consider the cache to be enabled. How many times is the AGAIN loop run? How
many times is the code obtained from the cache memory?

3. Can the same software function on a 68000-based system?

Solution

1. Software and contents of the registers: The software initializes

Al = $00004000; DO = $22224444; D1 => $00000000 -
D2 = $00000000; D3 = $30000200; D4 = $00000200

;E8020/30 based software
CHIP Laoen
CPT A
ORG $ooo0énoa

rlnitialize registers

;A0 is wemory pointer for nemnory

;indirect addressing mode

EDU is the data register for multiply and divide

START MOVEA.L

#$0000£000, A0
MOVE.L #32222484544,D0
CLR.L D1 iclear D}
CLR.L De ;clear De
MOYE.L #$000OGU20O, D3
MOVE.L D3,D4

sperform long word multiplication and divisi
;mgltiplication is unsigned weion
jdivision is unsigned

7yall numbers are hex decimal

AGRIN MULD.L

#%00000020, D1, b0
DIVU.L #$000001060,02,D40
MOVE.L DO, ((0,A0,DI.Wx4],0)
NOP
Jup START

ﬂG‘tl)JHE 11.24  68020/30-based software for the control system application {(Example

The MULU.L #300000020,D1,D0 instruction multiplies the 32-bit contents of the

DO register with the 32-bit multiplier $20, and puis the 64-bit result in the D1 and
DO pair as shown.

DO (before) $22224444
X mudtipfier $0600060020
result $0000000444488880

he upper 8-digit (32-bit) result is put in the DI register and the lower 8-digit result
»Put in the DO register. Thus, after the multiplication:

DL=>$00000604
Db=>3$544488880

The DIVU.L #$00000100,D2,D0 instruction divides the 64-bit operand contained
in the D2 and DO registers by the dividend $00000100. The 32-bit quotient is
put in the DO register and the 32-bit remainder is put in the D2 register, as shown.




D2 and DO {before) $00000000444838880

divided by dividend $ 00000100
quotient $00444888
remainder $00000080

Thus, after the division,

DO=>>$00444888
D2=>>500000080

2. DBRA D3,AGAIN instruction: When the NOP is replaced by the DBRA instruc-
tion, the software goes into the AGAIN loop until the D3 register is decremented to -
1 (from its initial value of $200). The code is obtained first from the external memory
and is copied into the cache. Subsequently, the code is obtained from the cache. Thus,
the AGAIN loop is run $201 times and the code is obtained from the cache $200
times.

3. 68000-based system: The code will not function on the 68000 system, since the 32-
bit multiply and divide instructions and the memory indirect addressing modes of the
software are not defined for the 68000 processor.

11.6 SUMMARY

In this chapter we introduced the 68020 and 68030 32-bit microprocessors with onboard
cache memory. Both these processors are extensions of the earlier members of the 68000
family. Both have all the resources of the 68010 and 68012 processors. In addition, they
have 32-bit address and 32-bit data buses. Both processors also have additional control
lines to handle the coprocessor interface.

The 68020 and 68030 have a 4-gigabyte logical address space. They can transfer
up to 32 bits of information in one bus cycle. The data bus can be dynamically sized to
hold byte, word, or long-word data. This is accomplished by having two data
acknowledge signals (/DSACKO and /DSACKI) and two additional SIZ control signals.

The 68020 has an on-chip 256-byte instruction cache memory organized as 64
long words. The cache memory also contains 64 address tag fields consisting of address
lines A31-A8. Whenever a program memory reference is made, the processor examines
the address tag entries for a hit condition. In the event of a hit, the processor fetches the
instructions from the internal cache. This enhances the overall throughput of the system.
In the event of a miss, the processor obtains the instruction code from the external mem-
ory for execution and also copies it into the internal cache for subsequent use. A typical
cache bus cycle corresponds to two clock cycles, compared to three clock cycles for the
external bus cycle for the 68020 and 68030 processors. By contrast, the 68000 takes
four clock cycles for a single bus cycle without any wait states.

For the 68020 and 68030 processors, instructions such as multiply and divide are
extended to operate on 32-bit operands and provide a 64-bit result. These processors use
an addressing scheme known as memory indirect addressing. In this scheme, any valid
memory location can serve as a memory pointer. This greatly enhances the addressing
capabilities of the 68020 and 68030. There are several variations of the memory indirect
addressing scheme.

In our discussion of the bit-field instructions for the 68020 and 68030 processors,
we explained how they are used to address bit fields of varying size and operate on them.

The 68030 processor is a further enhancement of the 68020 processor. The 68030
has an additional 256-byte data cache memory. To prevent the problem of stale data,
whenever new data are written into the cache memory they are also written into the ex-
ternal memory. A speed advantage is realized when the data cache is used for obtaining
source operands. The 68030 also has an on-chip memory management unit for imple-
menting address translations and virtual memory schemes. This further increases the
throughput.

The 68020 and 68030 are not pin compatible with one another. Separate hardware
must be designed for each. However, they do have similar microcomputer configura-
tions.

PROBLEMS

© 1.1 Indicate the contents of the system byie of the 68020 processor

(a) during power-up systemn reset;
{b} when the processor is servicing interrupt 5 in the supervisor mode;
{c) under the conditions of (b), when a bus error condition occurs.

‘11,2 Which stack pointer is used in the 63020

{a) when the processor is executing a reset system routine?
(b} when the processor is executing user programs?

ﬁ=_:-:-:-'-11.3 State the conditions of the system byte

(@) when an jnterrupt 7 routine is being executed and thers is a trace on each instruction;
(b} when a bus error routine is being executed with a trace on change of fow,

i 1.4 What is the functional difference between the ECS and OCS signals? Where are they

used?
What should be the condition of the CDIS signal

{a) if the 68020 internal cache is to be disabled continuousty?

(b) if the 68020 internal cache is 1o be disabled for instruction fetches above a certain
address?

The 68020 has the memory map given in Figure 11,25,

Specify the conditions of the DSACKx and SIZx signals and the data bus activity when

the following instructions are exccuted individually:

(a) MOVE.L (A1},Dl: Al = $0000FFFF; long word is $1234AABB

(b) ADD.L. (A1),DI: Al = $0000FFFF; tong word is $1234AABB
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() ADD.L Di1,D2: Di = $1234AARBB; D2 = 3FFFFFEFF

(d) MOVE.L D2,(A4): D2 = SFFFFEFFE: A4 = $01010001 11.13 Consider the bit-ficld memory values given in Figure 1£.27.

Specify the operation for each of the following, including the results of the operation and
the contents of the XNZVC flags:

{a) BFTST 4008{6:8}

main memory (32-bit wide) =$00000000 to $00FFFFFF {b) BFCLR 4008{§:6}
system L/O (16-bit wide) =>$01000000 to $¢100FFFF (¢) BFSET 4008{8:6}
{8-bit wide} =$01010000 to $G10103FF
bits
FIGURE 11.25 Memory and /O map (for Problem 11.6). displacement b7 b6 b5 b4 b3 b2 bl b0
—16 0 0 0 0 0 0 0 1 01
i ) ] : —& 1 0 i l 1 ] 0 0 $BC
11.7 Repeat Problem 11.6, assuming that the instructions are executed in sequence, as a _ base address 4008 = 0 I I 0 ] 0 0 0 1 DI
program, _ +8 0 0 0 1 0 1 ¢ 1 $15
11.8 If the VBR is loaded with $00003000 as a part of a reset routine, specify where the +16 0 1 1 ] 1 0 0 1 579
autovectors ase located for interrupts 6 and 2. '
11.9 Consider the initial conditions given in Figure 11.26. ﬁ .
: .27 - -13).
Indicate the effective address and the data operand in each of the following individual : FIGURE 11 Bit-field memory map {for Problem 11.13)
operations:

11,14 Using the bit map of Figure 11.27, specify the operation for each of the {ollowing,
including the results of the operation and the contents of the XNZVC flags:

(a) BECHG  4009{7:7}
{(b) BFEXTU 4008{—16:22},D1
() BFEXTS  4008{~16:22}.D1

{a) MOVE.W (08,A3,D1.L*8),D4
(b) MOVEP.L. (08,A3,D1.L*4),D5

i? = ;%ggg{%ﬁu g? - g%%g%’ $UOUU:§32 gggg 11.15 Repeat Problem {1.14 for the following:
A2 = $00003000; D2 = $0000FOFO; 4304 | 0000 ((;; o %[;46?2?{112? :];?; DA = SUTTORAD
A3 = $00004000; D3 = $012A40AB; 4806 | 4806 B
. . : ~ 11.16 Perform the following PACK and UNPK operations. Initially, D3 = $x x x x 4 8 4 3;
$0000A000 | 0000 ' Dé=Fxxxxxx2l

A002 | A002 (a) PACK D3,D5,#$0000
Do __ij ; () PACK D3,D5,#$10t0

(¢) UNPK D4,D3,#5%$3030

S ILIT D3 =$xxxx4843; D4 =8$xxxxxx2 l. Write a sequence of instructions, using
PACK and UNPK, to pack the number in D3, convert it into an ASCII code, and place it
in the D5 register.

FIGURE 11.26 Initiai conditions {for Problem 11.9).

:11.18 Suppose it is required to clear an instruction cache entry at address $0010004C for the
68020 processor. What are the contents of the CACR and CAAR registers?

1119 What would happesn if the CAAR and CACR were addressed in the user mode? Why?

[ 1126 The following interrupt routine is being run by the 68020 processor. A4 = $0000A000.
: Assume a 32-bit memory port.

11.10 Use the initial conditions of Figure 1£.26. Indicate the results of the following operations:
(a) ADD.L ([$1800,A3],D1.W,$0400),D2
(b) ADD.L  ({$1800,A3,D0, W#*8],$0A00),D0

11.11 Write appropriate instructions to move long-word contents from location $00008000 to
the D6 register using each of the following addressing modes and proper displacement
values:
(a) EA = {bd,AQ,DO.W*R)
(b) EA => ([$6000,A3].D2. W od)

11.12 Repeat Problem 11.11 vsing all possible addressing modes. Use A3 as the ARI register
and D1 as the index register.

Loop MOVEP.L ($D4DD,A4),D4
ADD.L  #%00000200, D%
BFTST  (B4){0:17}
BNE Loop
RTE
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Consider the cache memory is disabled. Indicate the total number of bus cycles,
including instruction prefetches, required to execute the preceding program.

11.21 Repeat Problem 11.20, assuming the cache memory is enabled.
11.22 Explain the concept of stale data. How does stale data affect system performance?

11.23 Suppose the program of Problem 11.20 is run on a 68030-based system with the
instrtction and the data cache units disabled. Compute the total number of bus cycles
under the following conditions:

(a) asynchronous memory interface;
(b) synchronous memory interface,

11.24 Repeat Problem 11.23, assuming the instruction and data cache units are enabled.
11.25 List three areas in which the 68030 processor can outperform the 68020 processor.

11.26 In the software of Figure 11.24, what is the effective address of the operand in the
MOVE.L DO0,([0,A0,D3.W*4].0) operation?

11.27 What are the contents of the affected registers in Example 11.4 if the MULU and DIVU
instructions are replaced by the MULS and DIVS instructions when the AGAIN loop is
run the first time?
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Number Systems: Binary
and BCD Operations

The digital field deals with the binary number system in which any number is expressed
to the base 2 as a string of binary ones and zeros. The most popular number system is
the decimal system, in which any number is expressed to the base [0. The binary num-
bers can be further expressed in the form of hex codes.

" BINARY AND HEX NUMBER SYSTEMS

- A binary number is expressed as a collection of Is and 0s. Each digit to the left is mul-
tiplied by the corresponding power of two. The addition of these values results in the
appropriate value for the number string.

MSB: Most Significant Bit ~ LSB: Least Significant Bit

Conversion from Binary to Decimal and Hex Decimal Systems

bit position 7 6 5 4 3 2 1 0
MSB) 0 0 L 1 1 0 I [ asB
binary value =~ — - 2° 24 23 — 2 P

O 0 32 16 8§ 0 2 | = 59 decimal

Expressing Jarger binary strings can be very tedious. Four binary bits are grouped

together to form a hex (or hexadecimal) code or a BCD (binary coded decimal) as

339
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TABLE A.1 Decimal, Binary, Hex, ard BCD Number Systems

Binary Number

Decimal Hex Number BCD Number
Number b, b, b, b, Code Code
0 ¢ 0 0 0 1] 0
i 0 0 ] 1 1 1
2 0 ] 1 1] 2 2
3 4] 0 1 1 3 3
4 0 1 0 0 4 4
5 0 1 0 1 5 5
6 0 1 1 0 3} 6
7 0 1 1 I 7 7
3 1 0 1 1] 8 8
g 1 0 0 1 9 9
10 1 0 ] 0 A X
11 1 g i 1 B X
12 1 ; 0 0 C X
13 1 1 0 1 D X
14 1 1 i Q E X
15 | 1 1 1 F X

X === invalid code.

shown in Table A.1. The hex code goes from 0 to F for decimal numbers O to 15. The
BCD cede is valid for decimal numbers 0 to 9, as shown.
Binary number

00111011,
2

is equivalent to hex decimal value 3B, as shown., We will use a dollar sign (§) to rep-
resent the hex numbers. '

Conversion from Decimal to Hex Decimal and Binary Systems By succes-
sively dividing the decimal number by the descending powers of 16, it is possible to
obtain the hex decimal number as shown.

16359
48
11 = $B (remainder)

$3 (quotient)

Decimal value 59 is equal to $3B. Converting $3B to the binary number is relative
easy and is given by

$3B=>0 0 1 1 F O 1 1

Binary and Hex Number Systems

341

Binary and Hex Decimal Arithmetic Operations The binary and hex addition
and subtraction operations are similar to decimal eperations invoiving carry and borrow
concepts. In the binary arithmetic operations, the following identities are used;

fl

0+0=0 0+1=1 t+0=1; 1+ I =0 wih carry;
0—0=0;, 0—1=1withborrow; 1-0=1, 1-—12==40

In hex decimal arithmetic, when the sum of addition exceeds a value of 16, carry to the
next higher hex digit results. Simmilarly, borrow from the next higher hex digit results in
the case of subtraction. The value of borrow to the lower digit equals 16.

Examples
Addition of $FB and $3A using the hex and binary arithmetic:

$EB=> 11111011
$3A= 00111010
5135=1000110101
ca;'ry ca;‘ry

_Subtraction of $3A from $2B using the hex and binary arithmetic:

$32B= 0010t011
$3A= 00111010
111110001

$1F1

borrow  bhorrow

~Muttiplication of $3A by $03 using the hex and binary arithmetic:

$3A=> 00111010

$ 3> 001
$AE 00111010
00111010

010101110

Binary multiplication involves successive left-shift and addition operations, as
shown. Hex multiplication is similar to decimal multiplication and is simpler than binary
muliiplication. The hex division operation is similar to decimal division and is left to the
eader to practice,
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ADC0816, ADC0817

National
Semiconductor

ADCO0816, ADC0817 8-Bit ,P Compatible A/D Converters

with 16-Channel Multiplexer
General Description

The ADCOB16, ADCOB17 data acguisition componant is a
monolithic CMOS device with an B-bit anatog-1o-digital
converter, 16-channal multiplaxer and microprocessor
compatible control logic. The B-bit A/D convarter uses suc-
cessiva approximation as the conversion technique. The
converier features a high impadance chepper slabiiized
comparaior, 3 256R voi age divider with anajog switch tree
and a successive approximation register, The 16-channel
muitiplexer can dlrectly access any one of 16single-
ended analog signais, and provides the logic for addi-
tional channel axpansion. Signal conditioning of any
arialog input signal is eased by direct access to the
multipiexer outpul, and t¢ the Input of the B-bit A/D
converier.

The device eliminates the need for external zero and full-
scale adjustments. Easy interfacing to microprocessors
s provided by the laiched and decoded multiplexer ad-
dress inputs and fatched TTL YRI-STATE® gutputs.

The design of the ADC0816, ADC0817 has been optimized

-y incorporating the most desirable aspecis of several

AJD conversion techniques. The ADCOB18, ADCOB17 of-
fers high speed, high accuracy, minimal {emperature
dependence, excellant long-term accuracy and repaatabil-
ity, and consumas minimal powar. Thase features make
this deviceideally sulted to applications from process and
machine contrel to censymer and automotive applica-
tions, For similar perfermanca in an 8-channel, 28-pin,

Analog-to-Digital Converters

B-bit A/D converter, see the ADCOR08, ADCCE09 data
sheat.

Features

8 Resolution — B-bits

R Tolal unadjusted error — =172 LSB and =1 LS8

W Ho missing codes

A Conversion lime — 100 us

B Singie supply — 5 Ve

B Operates ratiometrically or with 5 ¥p or analog span
adjusted voltage reference

W 16-channel multiplexer with latched control logic

# Easy interface to all microprocessors, or gperates
“gtand along”

W Qulputs meet T2L voltage leval specifications

W 0¥ to 5V analog input voltage range with single 5V
supply

B Mo zero or full-scale adjust required

B S1andard hermetic or molded 40-pin DIP package

B Tempersiure range —40°C to +85°C or -55°C to
+125°C

B Low power consumption — 15 myw

W Latched TRESTATE® output

B Direct access 1o “comparator in” and “multipiexer out™
for signal conditioning
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Electrical Characteristics continueq

" ted.
Digitel Levels and DC Specifications: ADCOBISCJ 4.5V =V, 5.5V, — 55°C =T,= t 125 |c unle::s :: :1 :;t;st: :o
ADCOBI6CC, ADTCIGCCN, ADCOBIZCCN 475V 5V <5.26V, ~ 40°C =T, = + 85°C unless olhe

ADCO0816, ADC0817

Parameter Conditions | Min l Typ | Max I Uniis
DATA QUTPUTS AND EOC (INTERRUPT)
Vourmn Logical “1" Qutput Voltage lg= -~ 360 pA Vee-04 s N
Vour Lagical “0" Qutput Voltage lg=16ma 0.45
Vourg Logical "0 Quiput Voltage ECL | ig=12mA 3 A

-
W W,

laur TRI-STATE Quipul Current vg._. gcc s -

Electrical Characterlistics

= 25° ise noted.
Timing Specifications: Voc="Vage, =5V, Vagr )= GND, I = 1; = 20 ng and T, = 25°C unless otherwi

Max | Unite
Condltions Min Typ
ier
Symbol Parame I
i o0 200 ns
bwrs Minimum Starl Pulse Width r'-:fgwe :) - - .
i e Wi iqure 5}
buvaLE Minimum ALE Pulse Width {l Ig . - "
t Minimum Address Set-Up Time | (Figure 5) " o .
f .
t Minimum Address Hotd Time | (Figure 5) ) iy -
" i "
tp Analog MUX Belay Time Rg =00 Figure 5)
From ALE
7 125 250 ng
Ty t OE Gontrol to Q Logic Stale G, =350 pF, R = 10k {Figure §) 2 " "
. It Hi-Z C| =10 pF, R = 10k {Figure 8 125
e e i 7 20 100 116 ns
1 Conversion Time f. =640 kHz, {Figure 5! (Nole 7} ol .
: 10 640 1
fe Clack Frequency . : N o
] gure :
teoc E0C Delay Time {Figure b} e
10 15 pF
Al Conlrot Inpuls
Ciy Input Capacitance T eTAe oot ot . i "
1 TRI: .
Cour TRL-ST'ATE Qutput
Capacitancs

Ninte 1: Abaciule maximum ratings are thoss valugs keyond which the lite o! tha devica may ba impatrad

Nots 2. Al vlteges are measured with respact lo GNO, unless otherwisa spacifiad. vy
Mote 3: A zener diode ewlsts, internally, from Voo 1 GHE and has a typical Breakdown vollage of 7 0.

i i ad ot one dicde drop
Nele & Two on-chip diodes are lad tosach analog Input which wht iorward cond:cl ?_Jr‘analon m:;::::it:::: ::1:;a:“a;ll;:pvt:z.;:f;:\;!(:““d the supotr
1l 100 mY torward bias ol gither diode, This meang _ !
S:ta'.; :&:ﬁ:::fr?r%ﬁ&}::;:rpﬁ :o:::ill be comrect. To achleve anabaclute 0¥poo 105 ¥ o inpul voltzge rangs will Iharelore require a minim
ag "

ply vollage of 4,900 Vo over

: i = 1, o5 Tl
:‘::is;o:-:::de is dasirad for gn analog inpul oihet than 0.0, or if a narrow fufl-scale span exists (lor example: 0.5V tod.5

iali initial

and iopding.

arrgr ofisel, fuil

can be adjugied to achieve this, Ses Sigure 13

Noted: Comparator (npul cutrent |3 & blas cuirent into or out of the ch Iile)

) ] hag.
han litde tam paraturs dependance (Figure 8). See paragrap B
Note 7: The autputs of tha dala register are updatad ane clogk cycla bafors the riging sdge of EQC.

i it
ie, and naarly srrors. Sae Figues 5. None of These A/Da requires o zero or lull-scaia Bdusl. Howsved,

Tha bias current varlas diraclly with ciack requency and

In} tha

ANA

Functional Description

Multiplexer: The device contains a 16-channal single-
ended anaiog signal multipiaxer. A particular input ehan-
nel is selecied by using the address decoder. Table |
shows tha input states for the address line and the axpan-
sion controf line 10 select any channei. The aderess is
latchad into the decoder on the iow-to-high transilon of
the agdress tatch enablg signal.

I —

TABLE 1
SELECTED ADDRESS LINE EXPANSION CONVERTER CHARACTERISTICS
ANALOG CHANNEL D c ] A | CONTROL The Converter
IND L L i L H
The heart of this single chip datsg acquisition system is its
N1 LitvlL|n H 8-bit analog-to-digital converter. The converteris designed
w2 L Li{iH]|L H to give fast, aceurate, and repeatable conversions over a
N3 L L Hlw " wide range of temperatuces. The converter is partilioned
into 3 majaor sections: the 256K ladder nelwork, the sug.
N4 L H L L H cessive approximation register, and the cormparator. The
ING L H LN H converter's digitai outputs are positive trug.
MG ttm|mw]|L H Tie 256R iadder network approach (Figure 1) was chasen
N7 Llainln H over the convertional Ri2R taddler because of its inherant
monaloenicity, which guarantees ng missing digital codes,
IN8 H L L L H Monotonichyis particularly importani in clased loop feed.
NS H L Liw H back control syslems. A nan-monatonlic relationship can
WO cause oscillations that will be catastrophic tor the
1 HiLlH][L H System. Additionally, the 256R network does not causs
fNT1 H Ll H[H H lead variations on the reference voltage.
IN12 H H L L H The boltom resistor and the top resistor of the iadder
IN13 HinlLln H network in Figure 1 are not the same value a5 the
remainder of the netwark. The difterence in these
IN14 HWIHIHEL H resistors causes the output characteristic o be sym.
IN14 H|lH|H]|H H metrical with the zero 2nd full-scale points of the franster
All Channels OFF x x| x X L curve. The first Gutput transition occurs when _lhe anaiog
signal has reached +1/2 LSB and succeeding output
X =don't care fransitions ocour evary * LSB later up Io lulk-scale.
CORTRAOLE FRON 5.4 R
AEF[#h Oy * ‘ * ‘
>
e %
(F1.) ::
P
R :E N,
A,

AAN
Vi

T " o
COMFAAAT
. (L01

.
26R o .
H
" .
.
[ .
p—
.
«
kRS
aere) o

FIGURE 1. Resistor Ladder and Switch Trea
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Functional Description conitnued)

The succeasive approximati glater (SAR) performa 8
Iterations to approximate the Input vpltage. For any SAR
type converter, n-terationa are required for an n-bit
converter, Figure 2 shows a typicat exampte of a 3-bii
converter. in the ADCOB16, ADC0817, the approximailon

tachnique I8 extended to 8 bits ueing tha 256R network.

The A/D converters si Ive approximation register
(SAR} s resst on the positive edge of the atart conversion
(5C) puise. The convarslon Is bagun on 1he failing adge of
the start corvgrslon pulse, A convaraion in process will be
Inferrupied by raceipt of a new atart converalon pulse.
Continuous converslon may be accompltahed by tylng the
and-of-conversion (E0C) output 1o the SC Input, If used In
this mode, an externai start conversion pulse shouid be
applied after power up, End-ofconversion will go low be-
tween ( and B clock pulses after the rising edge of slart
conversion.

ADC0816, ADC0817

The most important sectlon of the A/D convarier is the
comparator. it I8 this section which is reaponsible for the
ultimale acouracy of the antire converter. It is alsc the
comparater drift which has the greatesi Intiuence on the
repaatability of the device. A chopper-siabilized com-
parator provides the most effective method of satisfying
all the converter requirements.

The chopperstabilized comparator canveris the DT Input
aignal Into an AC signal, This signal Is then ted through a
high gain AC ampliflar and has the OC leve! restorad. This
teehnigque limits the drift component of the amplifler since
the dilft Is a DC component which is not passed by the AC
amplifiar. This makes the entire AID converter axtremaly
insenshive to tamperature, long term drifl and input of{sat
eIrors,

Figure 4 shows a iyplcat arror curve for the ADCOR16 ag
measured using tha procedures outfined in AN-179.

INFINITE RESQLUTION

VOLTAGE
=1/2 L58 TOTAL UNADJUSTED EARDA

m'u'l_“'f_________ o — - A T — T i . 2 e T e £ e
_—

m
- FULLSEALE " PERFECT CONVERTER
1o IDEAL CURVE pm—md- .
ERRORA - 172158 "e s 1DEAL 3BT CONVERTER
w H] A i
Em g wm unansusten~1. oL
o o0 E 1o ERROA 1 1188
E o 3 ABSDLUTE
2 e NONLINEARITY = 172 LSB 3 m ACLURACY
g 6o ; g m L-n‘z 158
QUANTIZATION
W]_ﬂ.' m EARDA
) LT o ¥in
N EELEEE OB 11 26 08 48 SA G M
Wiy AS FRACTION BF FULL SEALE Vin AS FRACTION OF FULLSCALE
FIGUAE 2. 3-BH A/D Transfer Curve FIGURE 3. 3-Bit AID Absolute Accuraty Curve
#1/2 L83 TOTAL UNADJUSTED ERAUR . REFEAENCE LINE
QUANTIZING o TR
ERAGR
FULLSEA

FIGURE 4. Typical Error Curve

ANR

Connection Diagram
Duakin-Line Package
1
firy l. } 2w
1NA ] L
)
m—:. rrelll
ING =t ENPANSION CONTRGL
== 400 &
ey LI
s = LY asoc
LU 2 2000
[EREy 22 i
iz ADCM IR 1
i ADCII1Y [0 2 1ese
N1} e L
2 2
W14 21 A
[T E.. o
T E
)
MULTIPLEXER 5] [ 2
T 5 25 i
START b -7
Ve — L
Pt
COMPARATOR (H b X
) 2
BEF() = = Lotk
173 = oureur
ENaLE
TOF VIEW

Timing Diagram
[y

START m‘} ooy
——— —
ML Iﬂ% I
~— AL e
Vv STANLE ADOAESS
proveeyras 4 - —_
- L_)L
»i H
ANALOC —t e,
myr AT e s — — STAME - —_—

WHLTIFLEXER ——
durpur
ExaELE S p—
(113
- kg --—i ity

——————— . .

FIGURE 5
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ADCO0816, ADC0817

Ta=e5¢

N
' N
e \\

5 15 EN ]
Vin ivi

FIGUAE 7. Multiplaxer Ry va ¥,y
(Voo =Vgep=5V)

Wy CL =50 pF

E1L]

tyg Cp=50pF

by [—

9
BE%

Typical Performance Characterlstics
15 :
fe = 1200 WHx
l =
a5
35 I = G40 hH: f
3 [ Ed
g " /14 £
g _os £
- " /
-t 12 1200 kHz
e 9 125 25 A 5
Yiy VI
FIGUHE 8. Comparator |,y vs Vi
{Veg = Vage =5V)
TRI-STATE® Test Circuits and Timing Diagrams
Lt b tyy CoL=10pF
e | "
Yo v
(%
guTPLT i
ENABLE o
&Hb L
ouTPUT i |
enaple O O . an
4R 10k Vou .
vuTAuT
= = = GHD = T
tomn Who tors CL =10 pF
¥eo Yo . %
¢
guTeUT 9"5“”
104 ENABLE :
GND ——i -
VUTPUT a tom
ENABLE
] Yoo T
o wUTPUT /—
I P——fT
FIGURE 8

0%
Ho
0%
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Applications information
OPERATION
1.0 Ratiometrie Convarglon

The ADCOC818, ADCOBT17? Is designed as a complate Daia
Acquisition System {DAS} tor ratlometric conversion

which is not necessarily related to an absolyts standard.
The voitage Input to the ADCOB16 i oxprossad by the
equation

¥ Dy
Yo —Vz * Dyax— Do

¥in = Input voltage into the ADCOR16
Vis = Fuli-acaie vollaga

¥y = Zero voltage

Dy = Data point being measured
Dax = Maximumn data limit

Butn = Minimum data fimit

{1

A good axample of a ratiometric transducer is a poten-
tiomater used as a positlon sensor. The position of the
wiper i3 directly proportienal to the ouiput voltage which
is aralio of the full-scale voltage across it. Since the data
is representad as a Prepantion of tull-scals, relerance
regquirements are greatly reduced, eliminating a large
source of error and cost for many applications. A major
advantage of the ADC0816, ADCOBI7 |3 that the inpyt
voltage range is equal 1o the supply range so the
transducers can be connacted dirgctly across the supply
and their outputs connectad directly inta the multiplexer
inputs, (Figura =13

Ratiometric transducers such as Polentiometers, strain
gauges, {hermistor bridges, pressure transducers, atc.,
are suitabie for measuring proportiona) redationanips;

maans a system referance miust be used which reiates
the full-scala voltape to the standard volt. For exa mple, if
Voo = Viaer = 5.12V, then the fuli-s calerange is dividad in.
1o 256 standarg steps. The smallest standard stey s 1
LEB which is then 20 my.

2.0 Resi Ladder Limitations

The voltages from the resistor ladder ara compared to the
selected input 8 times in a conversion, These voliages are
coupled to the comparator viaan analog switch traa which
is refergnced to the supply. The voitages at the top, center
and botlom of the ladder muyat ke controlied to maintaln
preper aparation,

The top of the {adder, Refi + ), should not be more positive
than the suppiy, and the bottom ot the ladder, Ref{ -},
shouid not be more Regative than ground. The centar of
the ladder voltage must also be near tha center of the
supply because 1he analag switch tree changes from
N-channel switehas to P-channel switches, These limita.
tions are automaticaily =atisfied In ratiometric systemy
2and can be easily met in ground referenced systems,

Figure 10 shows a Qround referenced system with a
separate supply and reference. in 1his system, the supply
must be trimmed to match the raference voltage. For in.
stance, if a 5.12V reference is used, the supply should be
adjusted to the same voltage within 0.1y,

Ver
AEF i+

(1]
DIGHTAL
ouTPUT
Agyy PROPOATIONAL
10 ANALDG
INPUT
VN _ Vin
L+ o
Lsn U= Jrer = Voo
475V =Voe VREF=5.25v
* Raljomenric Iransducars

=
<

A

DEMME, 17

FIGURE 9, Ratfomstric Convargion System

T
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ADCO0816, ADC0817

Applications Information (continuea)

The ADC0818 needs less than a miliamp of supply current
so devaloping the supply from the refarence is readily
accomplished. In Figure 11 a ground referenced system is
shown which generates the supply from the reference. The
buffer shown can be an op amp of sufficient drive to
supply the milliamp of supply current and the desired bus
drive, or if a capacitive bug is-driven by the outputs a large
capachor witl supply the transient supply current as seen
in Figure 12, The LM301 is overcompensated 1o insura
stability when loaded by the ¥ 4F output capacitor.

The top and bollom ladder voltages cannot axgesd Voo
ang ground, respectiveiy, but they can be symmatrically
lass than Vg and greater than ground. The center of the
ladder voltage should always be near ihe center of the
supply. The sensitivity of the converier can be Increasad,
(i, 8ize of the LSB steps decreased) by using a sym-
motsical reference ayatem. In Figure 13, a 2.5V relerance
is symmoetirically centered about Voof2 since the same
current flows in tdanlical reslstors. This syslem with a
2.5 reference allows the LSB to be half ihe size of the
LS8 in a 5¥ refarence systam.

FIGURE 10, Ground Relerenced
Convarslon System Using Trimmed Supply

AdaT
Ve
SUPPLY vee
3
Vagr REF(+) CIGITAL
ouTPUT
8 REFERENCED
O] a5 our
-
Vin { O & GRDUND
< Ind
REF(-| 158 coyr= N
-I o VREF
475 Voo m YREF 5825V
ADcona, 11

+ Yee
UT HSE
REF DIGITAL DUTPUT
b ) “ Ggur REFERENCED TO
e GROUND
¥nio— ¢
o I
r—- REF{-} 138 YiN
&—] tnvo GouT= Goer
479 Vo = Yaer 5528
ADCoang, 17

FIGUAE 11. Ground Refsrenced Conversion Sysiem with

Reference Gensrattng Yoo Supply

Applications Information (Continued)
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3.0 Convarter Equations

Tpe transition between ad|
Qiven by:

S

Vin=! Vagr ,y— v W
{ AEF+— Vigg o) 256 Tria [¥ VIUE[+ Vier

The center of an output code M is given by:

FIGURE 13, Symmetrically Cantored Refarence

acent codes M oand N+1 I

@

Tl_w output code N for an ar
within the range:

Ne__ Y= Veer_,

----- - x 256 x Absolute Agcuracy ()

VRER 4 — Vigr(_,

5V
Ry ?
AP —at- Vo
. 3.75¢
REF{) use
114 .
- inl
L : :
. -
. DIGITAL QUTPYUT
- Cour PROPOATIONAL TO
. ANALOG INPUT
. LIBV 2 vy £ Tey
w1 * Tno "
4 1.275v
25v RAEF{-)
REFERENCE fig 158
Ra=PR
GHD e
* Ratiomeltic Irangducars

bitrary inpul ara the integers

where: ¥,y = Voltage at comparator inpurt

Vo=l v —v N
’~ FEFL ™ VRERL ) oo [ VIug) + Vaer ) @

VREF+ = Vollage at Ref{ +)
YRer( ;= Voltage at Ref(—)

Vyye = Total unadjusted error voilage (typicatiy
Vagrsy +512)




National
Semiconductor

General Description

Tha DACOS is a monalithic kit high-speed curre_nt-
output  digital-to-analog converter  {DAG) featunng
typical settling times of 100 ns. When used 43081
multiplying DAC, monotonic performance over a | o
1 reference edrrent rangs is possible. The DACOS also
features high compliance complementary current outpyts
to altow differential output vcltf_:ges of 20 Vpp with
simpla resistor loads as shown in Figure 1, The reIereEgeB-
to-fuil-scale current matching of bettelr than +1 -
etiminates the need for fuli scale trims in maost applica:
tions while the nonlinearities of better than !9.1% over
temperature minimizes system error sccumulations,

The noise immune inputs of the DA(_;OB “will aof:ep‘:‘
TTL levels with the logic threshold pin, V. pin. |
grounded. Simple adjustments of tho: IVLC pctenfna
allow direct interface 1o all {ogic farr]llles, The per ?lr-
mance and characteristics of the device are essentia Iv
unchanged over the full 4.5V ta 1RV power sueg\t
range; power dissipation is only 33 mW with #

supplies and is independent of the logic input states,

DACO0800 8-Bit Digital-to-Analog Converter

Digital-to-Analog Converters

The DACOB0OL, BACDEO2L, DACOSDILT, DACE:mtIl.i
nd DACDSQ2LC are 2 direct repiacement for
EDACDB, CACO2A, DACOBC, DACOSE and DACOSH,

respectively.

Typical Applications

0y

MIGITAL INFLTE

s i
81 B2 63 B4 85 BE B7 B4

LECEEIE T

nack

-:EWV—
Iy

an

¥ BT e

FMGURE 1. :20 Vpp Output Dightat-ta-4nalog Coanverter

Features
W Fast settling output current IODSnBs
+
m Full scale error 1 L1%
#* Monlinearity aver temperature rD.f‘
& Full scale current drift 0 ppm/C
& High cutput compliance —10V to +18V
® Complementary current outputs
# |nterface directly with TTL, CMOS, PMOS and
others . y
2 guadrant wide rangs multiplying capability
W Wide powear suppiy range 4.8 10 1'18:
¥ Low power consumption A3 mW at 25
B Low cost
Connection Diagram
Dugl-An-Ling Package
Rt itasns Y U VS compensaTion
EONTROL, ¥y . 5
T5ut — f="YREFi-}
v LRI
4 3
Vgur TR 20 vep TguT == "
WES B = f—nr 152
w-td AL
Pl g6
md 25

TaF VIEW

00800VaA

Ordering Information
ORDER NUMBERS"
TEMPERATLRE N PACKAGE {N16A}
NON LINEARITY RANGE D PACKAGE [D16CH 3 PACKAGE {J164)
= 3 DACOBOZLD | LMDACOSAD
FOTERFS 5? 2;?: T: f,:ois i e DACD802LC) | LMDACOBHS | DACDBOZLEN | LMDACOSHN
10,1% £S 0CSTax
" 25°C | DACOBOOLD | LMDACOSD
*0.99% F5 N f Tz f;):cs ¢ DACO800LC) | LMDACOSES | DACOEDOLEN LMD:E‘C:::;:
0.19% Fz gnng“ = 110 DACDS0ILE | LMDACOSC) | DACOBOILCN | LMD
10.39% F <Ta g

*Mote, Devices may be ordeved by using either order number.

DAC0800

Absolute Maximum Ratings

Supply Voltgge J18Y or A6V
Power Dissipation [Note 1 SO0 mvy
Reference inpyr Dif Fevenral Voltage (V14 1o v15) V7wt
Aeferance input Common-Made Rangs V14, WIB)  y g et
Reference |npyr Current Bma
Logic Inputs Y7 VT plus 36y
Anatag Current Cutputs Figure 24
$torage Termperature -B5°C 10 +150°¢
Lead Temperaturs {Soldaring, 10 secangs) 3000 ¢

Electrical Characteristics Vg = 218V, tpgg

Output characteristics refer 1o both LOUT and IoT

PARAMETER CONDITIONS
Rasolution
Menotoniciy
Menlingariiy
[ Senling Yime To 2 12 LER, AN Bits Swvitched

DM o "OFFT 14 - 35%C

DACOgo0L
DACGEIGLE
PLH. 1PHL  Propagation Dalgy Ta=28"C
Each Biy
Al Bitt Sovrtehed
TClfg Full Scalg Tampro
Yoo Output Yalinge Compignce Fuli Seate Curran Cliange
< WZLSE, Rour > 20 M3 Typ
IEgy Fult Seale Curreny YREF = 10 000V, 14 - 5.000 k0
RIS = 8000 ki1, T4 = 25°C
IFss Full Scane Symmeny IFSa - lpgg
53 Zero Stata Curcenmt
kSR CDurpet Currene Rang: VT - By

VU= —BY - tgy

Legie Input Levals

Vi VLG - OV
Y
Logie tnpwr Current Vig = 0w
i Logic "g" =10V = Wy < 0 RY
I Lagic 1~ VLV £ Hay
Vig Lagic ingun Swing Vo= Ltey
VTHR Laogic Tareshald Range Ve LI5Y
HE Relerance Bias Gurrent
drgt Refarente inpa Stew Ratn fFigre 247

45w < vt gy
-45¢ <y gy
IREF=1ma

FBEIFg. Pawer Supply Sengitivity
PESIEg .

Paaweer Suppty Corram Y& 5% IREE = T mA

Vg = 5y, —15v, TREF » 2ma

Vg 2 215Y, IREE = T mA

PO Power Disupation 5V IREF = 1 ma
S¥, 1BV, tRes » 2ma
15V, IREF - 2ma

MNota 1: The maxi i

inline M packags.

Tempecature iTa!

DACOS0ZLA, LMOACORS
CACGEDIL, LMDACDS

CACOB00LE, LMBacoae,
DACOR01LE, LMD ACORG,
BACORO2LC, LMOACOSH

Operating Conditions

Mt

N

-85
-85

+125
+125
+71
70
+70

=2 mA, Ty < TA = Tax unless otherwise specified,

DACHRozLG DACOBMILC bAconLe
mmmmmmmmm
8 B 8 ] B ] a 8 [
B 8 g ] ¢ a 8
0 019 +0.30
100 135 W 150
100 135
0 150
35 60 36 B0 35 50
kL3 &0 38 60 35 60
0 |e5p 1o +50 £10 80
-10 18 -1 18 =19 L
198 1802 | om0 | 19a] vsn | zpe | 14 199 [ 204
M5 |0 ER | i-14] 23 18
01 1o oz 29 02 10
] 20 21 [ 20 n 0 20 21
] b1} 4.2 ] 20 42 o 20 a4z
8§ LT 0B
20 2] 20
20 [ REL I T -8 [-w
ooz | 1o L T o0z | 1
-10 1w f-e 18 -0 "
-10 135 J-te i35 |- 135
10 [-3B f i3 |-ae -2 |30
80 80 aa
0001 D e o 0.0001] oot
0.00M| 0,01 ooom| om 0.0 o
23 ig 2.3 38 23 38
~43  l-5a -3 | -5g 4,3 5.8
24 38 74 LE:] 24 KX
-84 |-71g 6.4 -7.8 %4 .73
25 38 25 38 25 18
€5 |7a -65 -8 5.6 -1
a3 A 1 5 a3 F3
103 136 109 136 108 136
135 174 136 174 135 174

DACOBOZLT

CACOA0OLS

W

f i [ of the DACOR00, DACOBO anc DACOS02 is 100°
i tha dialindine J or Packege must he derated based on a thermat resistance of 1067 CAY, ju

C. For JPErating at elavated lamperatures, devicas
nCLian 19 ambient, 176° G (or the moldec dust-
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DAC0800

Typlcal Performance Characteristics
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