






In recent years, the single most important development in the field of digital electronics 
has been the microprocessor. Thanks to VLSI (very-large-scale integration), it has grown 
from the simple 4-bit processing element of a quarter-century ago to the complex 32/64-
bit processing unit of the present time.

The Intel and Motorola corporations have been leaders in the development of mi-
croprocessors and associated electronic circuits. Currently, the two frontrunning families 
of microprocessors are the Intel 8086/186/286/386 family and the Motorola 68000/10/ 
20/30 family. The Intel processors are very popular in such personal computers as the 
IBM PC and compatibles. The Motorola processors are equally popular in such personal 
computers as Apple's Macintosh, Commodore's Amiga, and Atari's ST. Most industrial 
controllers and systems, such as image-processing systems, robotic systems, and com-
munication systems, are based on the Motorola 68000 family.

This book focuses on the Motorola family of microprocessors. It is written as a 
college-level text for electrical engineering and technology students, computer engineer-
ing and technology students, and computer science students. It can also serve as a self-
teaching text for practicing engineering and technical personnel.

The book examines general software and hardware concepts of microprocessors, 
as well as microprocessor-based system design and implementation schemes, with spe-
cific reference to the 68000 family of processors. Descriptions of the software and hard-
ware are sufficiently detailed to enable the reader to make use of the concepts in practi-
cal applications. Most of the software and hardware discussions are based on actual 
working models.

The 68000 family consists of the 16-bit 68000 processor, the 8-bit 68008 proces-
sor, the 16-bit virtual memory 68010 processor, the enhanced virtual memory 68012



processor, the 32-bit cache memory 68020 processor, and the 32-bit enhanced cache 
memory 68030 processor. All of the later versions are based on the original 68000. 
Coverage of the text includes the architecture, software, hardware, and application details 
of the 68000 processor, with concepts extended to the other family members. Assembly 
programming techniques, parallel and serial I/O (input/output) interface techniques and 
associated applications, interrupt and DMA (direct memory access) applications, and 
system implementation schemes have been given particular emphasis.

Chapter 1 presents the basic concepts of the 68000 family of microprocessors and 
introduces the architecture of the 68000. The special features of the 68000 family are 
also described. In Chapter 2 the memory organization schemes, data structures, and 
addressing modes associated with the 68000 are covered, along with the instruction for-
mat and structure typical of the 68000 family. The instruction set of the 68000 is pre-
sented in Chapter 3, with particular emphasis on the general flow of the instruction 
structure, the instruction timing, and the instruction groups.

Chapter 4 deals with software and programming techniques and applications of 
the 68000 processor. Assembly programming methods and special software features such 
as macros are examined in detail. The important aspect of exception processing is covered 
in Chapter 5. In this chapter, exception processing resulting from interrupts and error 
conditions is described.

Chapter 6 deals with the hardware structure of the 68000 processor and the inter-
facing techniques with the memory and I/O. Important hardware concepts, such as ad-
dress decoding, read and write bus cycle timing, and the VME and VERSA busing 
schemes, are introduced. This provides a foundation for the discussion on the parallel I/O 
interface to the 68000 and associated applications in Chapter 7. Important parallel 
interface devices, such as the 6821 PIA and 68230 PI/T, are introduced in this chapter. 
Data entry and display applications and position control using stepper motors are pre-
sented, along with hardware and software details. This leads to a description of the serial 
I/O interface to the 68000 and associated applications in Chapter 8. Industry standard 
serial interface devices, such as the 6850 ACIA and 68901 MFP, are introduced. RS-232 
serial data communication and coded data transmission applications are presented, 
including hardware and software details.

Chapter 9 deals with the most important aspects of the interrupts and the DMA 
(direct memory access) schemes associated with the 68000. Such practical applications 
as the daisy chain of interrupts, interrupt-driven gain controllers, and interrupt-driven 
data-acquisition systems with A/D and D/A are presented, again with hardware and soft-
ware details. General concepts of the DMA are presented through a practical application 
using DMA-based high-speed data transfers.

Chapter 10 introduces the 68010 virtual memory processor. The general concepts 
of virtual memory, virtual machines, and the operating system are discussed in detail. 
The additional resources of the 68010 and 68012 processors are also covered, along with 
memory-access fault correction schemes using virtual memory concepts.

In chapter 11 the 32-bit 68020 and 68030 cache memory processors are intro-
duced. The concepts of cache memory organization are discussed. Additional resources 
of the 68020 and 68030 processors and related performance improvements are pre-

sented. An objective comparison between the 68000 and the 68020/30 is also included to 
provide insight into the applications of these very powerful processors.

Finally, the book includes four appendices: Appendix A on number systems, Ap-
pendix B on the 68000 instruction set and condition uses, Appendix C on analog and 
digital converter devices for interfacing, and Appendix D on instruction timing for the 
68000/10 processors.

The material is designed to be used in a two-semester course. For engineering and 
technical students, Chapters 1, 2, 3, 4, 5, and 6 can be covered in the first semester. In 
the second semester, Chapters 7, 8, 9, 10, and 11 can be covered. For computer science 
and software-oriented students, Chapters 1, 2, 3, 4, 5, and 10 can be covered in one 
semester. If instructors choose to introduce hardware before dealing with exceptions, 
they can switch the order of presentation of Chapters 5 and 6.

Each chapter is organized into four or five main sections, each dealing with an 
important topic. In most cases, each section has at least one example problem. The end-
of-chapter problems are especially designed to supplement the material covered in the 
book. Most of these problems have been classroom tested. A comprehensive glossary is 
included at the end of the book.

The book is an outgrowth of several courses on microprocessors and digital sys-
tems taught by the author at Florida International University to engineering, technology. 
and computer science students. The author's association with the Motorola Corporation 
as a consulting professor, teaching their industrial seminars on the 68000 family of pro-
cessors and applications, also significantly contributed to the book's development.

Nothing replaces a hands-on learning experience. Therefore, readers are encour-
aged to apply the software and hardware concepts introduced in this book to practical 
problems using the microcomputer system of their choice.
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It is no exaggeration to say that the microprocessor device has revolutionized digital 
electronics and the computer field. Most of the currently available digital, computer. and 
electronic systems use some form of microprocessor. With processing capability ex-
ceeding several million instructions per second (MIPS), the microprocessor is continu-
ously finding new applications.

The earliest form of the microprocessor was a 4-bit device (4004). It was basically 
used as a 4-bit ALU (arithmetic logic unit) almost a quarter-century ago. The real mi-
croprocessor era started in the early 1970s, when Intel Corporation introduced the 8080 
microprocessor. This was an 8-bit microprocessor, and contained an ALU and bus inter-
face logic on board. It also had several 8-bit registers for storing operands and addresses. 
Although the unit required several power supplies and a power-sequencing scheme, it 
found extensive applications. The success of the 8080 microprocessor led other 
companies to get involved in the development of different forms of microprocessors.

Immediately after launching the 8080 processor, Intel began to improve its design. 
which resulted in the 8085. The 8085 processor is code compatible with the earlier 8080, 
but can operate on a single 5-volt power supply. Almost simultaneously. Motorola 
Corporation introduced the 8-bit 6800 microprocessor with nonmultiplexed data and 
address buses. The 6800 processor also incorporates the concept of double accumulators 
and has an index addressing scheme. The 6800 became an instant success. Several pe-
ripheral devices to interface with the 8085 and the 6800 processors were introduced into 
the market by a number of vendors.

During the mid-1970s, Commodore and Rockwell International introduced the 8-
bit 6502 microprocessor, which also became an instant success. This machine is similar



to the 6800 processor, but includes additional addressing capabilities such as memory 
indirect. The design of the Apple computer was based on the 6502 processor. At about 
the same time, Zilog Corporation introduced the 8-bit Z80 microprocessor. The Z80 is 
code compatible with the 8085 processor. It has additional resources with which to store 
data internally, and it also has the index addressing mode of the 6800 and 6502 proces-
sors. The Z80 processor found extensive applications in the 8-bit field, even though it 
entered the 8-bit market late.

Most of the processors we have mentioned were developed with NMOS technol-
ogy. However ultralow power requirements dictated a processor using CMOS technol-
ogy. RCA Corporation introduced the first CMOS 8-bit 1802 microprocessor for low-
power applications. Pacemakers and several other battery-powered devices use the 1802 
type of processor. Most 8-bit processors have a 64-kilobyte address range.

Emerging applications soon demanded more processing power than 8-bit proces-
sors could provide. Intel corporation was again the leader in introducing the first 16-bit 
8086 microprocessor in 1978. The internal architecture of the 8086 supports 16-bit op-
erations. The external address bus can access 1 megabyte of memory, which was con-
sidered a great advantage. The 8086 has a 16-bit data bus. The 8088 processor is a 
scaled-down version of the 8086, with an 8-bit data bus. The IBM PC contributed to the 
great success of the 8086/88 processors.

To follow the 8086 processor, Motorola Corporation introduced the much more 
powerful and versatile 68000 microprocessor. It has a 16-bit data bus and an effective 
24-bit address bus that can access 16 megabytes. The internal architecture of the 68000 
is designed to support 8-bit, 16-bit, and 32-bit operations. There are several 32-bit data 
registers, each of which can be used as an accumulator. The architecture, linear address 
range, and versatile data-handling capability of the 68000 suited the needs of industry. 
Systems such as Apple's Macintosh further contributed to the popularity of the 68000 
processor. During the same time frame, Zilog corporation introduced its 16-bit Z8000 
processor, which is similar to the 68000 in terms of architecture.

Continuous demand by industry resulted in the development of even more power-
ful processors, such as the 68020 and 68030 in the 68000 family, and the 80386 in the 
8086 family. The present trend of development will continue in the 1990s. In order to 
obtain more dedicated throughput, RISC (reduced instruction set computer chip) devices 
are becoming popular. But the demand for general-purpose processors will continue to 
rise.

Also observed in the microprocessor application market is the popularity of single-
chip microcomputers and controllers, such as Intel's 8051 and Motorola's 68HC11.
These 8-bit devices are suitable for 8-bit I/O interface applications. Sixteen-bit micro-
controller devices are also becoming available.

All of the 8-, 16-, and 32-bit processors we have described are available in various 
packages using different processing techniques.



Objectives
In this chapter we will study:

The 68000 family of microprocessors

Microcomputer configuration of the 68000 family.

Architectural features of the 68000.

Supervisor and user modes of operation 

Special features, such as the queue and pipeline



1.0 INTRODUCTION

The 68000 microprocessor, introduced by Motorola Corporation in the late 1970s, is one 
of the most powerful and widely used 16/32-bit processors. It is the first member of the 
68000 family of processors—a family that includes the 68008, 68010, 68012, 68020, and 
68030 processor devices.

Microcomputer configurations based on these processors are similar. In addition, 
they all have the same basic architecture as that of the 68000. The architecture consists 
of internal registers and pointers and arithmetic logic and control units.

The 68000 operates in two distinct modes: the supervisor mode and the user 
mode. These two modes of operation maintain a relative separation between the operat-
ing system programs and the user programs.1

All processors obtain data from the memory block, perform the appropriate oper-
ations, and store the resulting data back in the memory. Processors in the 68000 family 
are structured to handle the byte (8-bit), word (16-bit), and long-word (32-bit) data el-
ements.2

An understanding of the architecture, modes of operation, and data-handling 
schemes is essential to the study of the 68000 microprocessor and associated designs. It 
will also promote understanding of the other members of the 68000 family.

The material in this chapter will provide the necessary background to understand 
the software and system features of the 68000 processor. The hardware concepts and 
designs of the 68000 will be presented in later chapters.

1.1 THE 68000 FAMILY OF MICROPROCESSORS

As mentioned previously, all processors in the 68000 family support byte, word, and 
long-word operations. We will now briefly introduce the important members of the 
68000 family. Figure 1.1 illustrates the genealogy of these processors; they are devel-
oped using the VLSI (very-large-scale integration) MOS technology.3

The 68000 Microprocessor

The 68000 is the principal device of the 68000 family of microprocessors. The operating 
frequency of the 68000L4 is 4 MHz; for the 68000L12, the operating frequency is 12 
MHz. Several other frequency versions are also available. The 68000 has a 16-bit data 
bus and an effective 24-bit address bus that supports 16 megabytes of address range. 
This microprocessor is normally contained in a 64-pin DIP (dual-in-line package), but it 
is also available in the 68-pin chip-carrier package.

The 68008 Microprocessor

The 68008 is the reduced-bus version of the 68000 processor. It has an 8-bit data bus 
and an effective 20-bit address bus that supports 1 megabyte of address range. The 
68008 is contained in a 48-pin DIP. It is very cost effective in applications involving the 
standard 8-bit I/O (input/output) interface.

The 68010 Microprocessor

The 68010 is the virtual memory microprocessor. It has all the resources of the 68000 
microprocessor. In addition, it has extended internal resources to support the virtual 
memory management schemes. Virtual memory refers to a memory that is not physi-
cally present as a part of the system main memory, but is present as a part of the backup 
memory. This feature allows for error detection and possible error correction in memory 
access faults.

'I he 68010 is pin compatible with the 68000 microprocessor. The 68000 processor 
can he replaced with the 68010 in a system without any hardware changes. Additional 
software can then be written to support the virtual memory schemes.

The 68012 Microprocessor

The 68012 is the enhanced virtual memory microprocessor. It is architecturally identical 
to the 68010. It has an extended address bus that supports 2 gigabytes of address range, 
as well as additional control lines to support the multiprocessing activity. It is contained 
in an 84-pin grid-array package.



The 68020 Microprocessor

The 68020 is the cache memory microprocessor. In addition to all the resources of the 
68010 microprocessor, it has internal resources to support cache memory operation. 
Cache memory is a fast-access memory that holds prefetched information; thus, it speeds 
up the system operation. The 68020 is truly a 32-bit microprocessor. It has a 32-bit data 
bus and a 32-bit address bus that support 4 gigabytes of address range. It also has 
additional control and interface lines to support the coprocessor interface. It is contained 
in a 114-pin grid-array package. The 68020 is considered to be one of the best 32-bit 
microprocessors, and it is one of the most widely used.

The 68030 Microprocessor

The 68030 is the enhanced version of the 68020 microprocessor. In addition to all the 
resources of the 68020, it has internal data cache memory and a memory management 
unit. These additional resources effectively enhance the throughput of the 68030 proces-
sor as compared to the 68020.4

The 68881 Coprocessor

The architecture of the 68881 coprocessor is different from that of other members of the 
68000 family. The 68881 is capable of performing floating-point arithmetic operations 
to 80-bit precision. It can be interfaced to any member of the 68000 family of processors 
to increase the arithmetic processing power of the system.

The 68008 is the lowest member and the 68030 is the highest member of the 
68000 family of processors. The gradation sequence is 68008 -» 68000 —> 68010 -> 
68012 —> 68020 --> 68030. These processors are upward code compatible. The software 
written for a lower level processor will work with a higher level processor. For example, 
the code written on a 68008-based system will work on a 68000-bascd system with a 
similar memory and I/O map. However, the reverse may not be true. Software written 
for a higher level processor, using the additional resources of that processor, will not 
work on a lower level processor. For example, the code written on a 68020-based system 
using the special resources of the 68020 will not work on a 68000-bascd system, which 
lacks those resources.5

The following example problem will review the concepts we have just discussed 
with regard to the 68000 family.

Example 1.1    The 68000 family of processors.
The 68008 and the 68000 processors support 32-bit internal operations. Their external 
data buses are 8 and 16 bits wide. Conceptually compute the relative speed of these two 
processors while transferring

1. byte-size data from memory into one of the internal registers of the processor;

2. word-size data from memory into one of the internal registers of the processor.

Solution

1. Byte (8-bit) transfers: The 68008 has an 8-bit data bus and transfers the byte-size data 
in one unit of time. The 68000 has a 16-bit data bus, out of which only 8 bits are used 
for byte transfers. Byte transfers, then, still take one unit of time.

2. Word (16-bit) transfers: The 68008 transfers a 16-bit word as two bytes. As such, it 
takes two units of time. By contrast, the 68000 transfers the complete word in one 
unit of time. Thus, for word transfers, the 68000 processor is twice as fast as the 
68008 processor.

The memory and I/O (input/output) interface schemes are similar throughout the 
68000 family of processors. This results in a well-structured microcomputer configura-
tion, which we will now introduce.

1.2    TYPICAL MICROCOMPUTER CONFIGURATION OF 
THE 68000 FAMILY

Figure 1.2 illustrates the microcomputer configuration typical of the 68000 family. 
These microprocessors arc of the memory-mapped I/O type, in which the microproces-
sor communicates with an I/O device as if it were one of the memory locations. How-
ever, there are some special instructions in the 68000 family to efficiently deal with I/O 
data.

General Interface Scheme

Each member of the family has appropriate control and interface buses to support the 
synchronous and the asynchronous devices and systems, as shown in Figure 1.2. A bus 
is a group of signal lines. In the synchronous type of interface, data transfers take place 
upon certain clocking or timing events. The peripheral devices belonging to such earlier 
8 bit processors as the 8085, 6800, and Z80 operate in this manner. In the asynchronous 
type of interface, data transfers take place via handshaking. In this protocol, the 
responding device provides an acknowledgment signal to the processor during data 
transfer... Most of the peripherals belonging to the 68000 family and the static memory 
follow this protocol.''

There are also special interfaces. The interrupt mechanism is the traditional means 
by which to gain the attention of the processor by a slow I/O device. The DMA (direct 
memory access) is the traditional means by which to effect high-speed data transfers 
between the memory and I/O without the intervention of the microprocessor. l-icn 
member of the 68000 family supports both of these features explicitly. The system control 
interface consists of the reset, halt, and bus error detection functions. The other interlaces 
of the processor consist of the clock distribution network, system power distribution
network, and the address decoding network. Details of all these functions will be
discussed in later chapters.



Typical 68000-Based Systems

The Macintosh from Apple Computers, Inc., the Amiga from Commodore, Inc., the ST 
from Atari, and the 9716 from Hewlett-Packard are some of the most popular micro-
computer systems based on the 68000 microprocessor. The MEX68KECB microcom-
puter module from Motorola is an excellent 68000-based educational computer for 
learning the software and hardware features of the 68000 microprocessor and associated 
system designs.

An existing microcomputer system with a lower level processor can be upgraded 
to a higher performance processor with appropriate modifications. This is feasible be-
cause of the upward code compatibility.

The following example problem will review our discussion of the 68000-based 
system configuration.

Example 1.2   68000-based systems.
The 68000-based microcomputer is used in a control-system application. The processor 
is required to interface with the 8-bit I/O peripherals belonging to the earlier 6800 and 
Z80 type of processors. These devices respond to appropriate clocking events.

1. What is the preferred type of interface in the 68000? Why?

2. Suppose the 68000 system needs to be upgraded to the 68010. What additional hard-
ware and software resources are required to accomplish this task?

Solution

1. Interfacing the 6800 and Z80 peripherals: Synchronous interface is preferred, 
since these devices are of the synchronous type.

2. Upgrading to the 68010: No additional hardware is required. However, to make full 
use of the capabilities of the 68010, memory management units may be added.

Existing software will function on the upgraded system. However, to make full use 
of the capabilities of the 68010, virtual memory software should be utilized.

The processing activity of a microprocessor depends on its architecture and how its 
internal resources are organized. The 68000 processor is rich in internal resources and 
has a 32-bit internal register architecture. We will now introduce these important 
concepts.

1.3    GENERAL ARCHITECTURE OF THE 
68000 MICROPROCESSOR

The architecture of the 68000 microprocessor serves as the prototype on which all the 
other processors in the family are based. Figure 1.3 illustrates this internal architecture. 
It includes the following features:

eight 32-bit data registers, D0-D7 (Dn)

seven 32-bit address registers, A0-A6       (An)

two 32-bit stack pointers:
user stack pointer, A7 (USP)

supervisory stack pointer, A7' (SSP)

one 32-bit program counter (PC)

one 16-bit status register (SR)

In addition, the 68000 contains a 32-bit arithmetic logic unit (ALU), an instruction de-
coding unit, a control unit, a bus interface unit, and an execution unit. For the sake of 
simplicity, these resources are not indicated in the figure. For the 32-bit registers and the 
data structures, the byte corresponds to the lower 8 bits, the word corresponds to the 
lower l6 bits, and the long word corresponds to all of the 32 bits. We will now provide a 
functional description of the basic features.

Data Registers D0-D7 (Dn)

These eight data registers are for general-purpose data storage and processing. They 
handle bytes (8 bits), words (16 bits), and long words (32 bits) of data. Each of these 
registers can function as an accumulator. An accumulator is a special register that 
provides data operands to the ALU and stores the result from the ALU. In addition, any 
of



the data registers can be used for memory indexing, a process in which a number in the 
data register is added to the base address to obtain the effective address of the data op-
erand. Operations on the data register operands affect the flag bits in the status register.

Address Registers A0-A6 (An)

These seven address registers function as address pointers. They store and operate on 
word- and long-word address operands. By means of these address operands, memory 
can be accessed. The address registers also can be used for general-purpose storage of 
operands of word and long-word size, as well as for memory indexing. The address reg-
isters do not support the byte operands. Operations on the address register operands will 
not affect the flag bits in the status register (except in compare-type operations).

Stack Pointers A7 (USP) and A7' (SSP)

As previously mentioned, the 68000 microprocessor operates in two distinct modes 
called the user mode and the supervisor mode. The former deals with user programs; the 
latter, with system-level programs. In order to maintain a distinction between these 
modes, the 68000 has two 32-bit stack pointers: the user stack pointer (USP or A7)

and the supervisor stack pointer (SSP or A7')- The 68000 can operate in only one of the 
modes at any given time. Either the USP or the SSP controls the system stack, depending 
on the mode of operation. The stack pointers can be initialized to locate the stack 
anywhere within the available memory space of 16 megabytes for the 68000 mi-
croprocessor. They should be initialized at the even word boundaries.

Program Counter (PC)

This 32-bit register keeps track of program space and sequentially obtains the instruc-
tions and associated operands from program space. Program space is that section of 
memory containing the program code.

Only the lower 24 bits of the program counter are brought out as the effective 
address bus for the 68000. This provides an address range of 16 megabytes (224 =16 
megabytes) or 8 megawords (1 word = 2 bytes). The PC operates on an even word 
boundary. It advances to the next sequential program location after fetching the current 
instruction.

Status Register (SR) and Flag Structure

Decision making in the 68000 is dependent upon the flag bits. These flag bits are con-
tained in the status register. Figure 1.4 illustrates the details of the 16-bit status register. 
It is divided into two bytes—a lower byte, called the user byte or the condition code 
register (CCR), and an upper byte, called the system byte.

User Byte   This byte contains the following five flag bits:

C (Carry flag): Set to 1 for arithmetic or logical overflow.

V (Overflow flag):    Set to 1 for overflow in twos-complement operations.

Z  (Zero flag): Set to 1 if the result of the previous operation is zero.

N (Negative flag):    Set to 1 if the most significant bit (MSB) of the 
operand is 1 (signifying a negative number).

X (Extend flag): Similar to the carry flag, but not affected in the data
movement operations.

When these flags are not set to the 1 condition, they remain in the 0 or reset condition. 
Certain instructions may not affect these flags. The details of these variations will be 
discussed when the instruction set is considered in the next chapter.

SYSTEM Byte This is the upper byte of the status register containing the following 
status information relating to the supervisor mode of operation:8

I2- I1, and I0 (Interrupt mask bits):    ret to the required interrupt mask level.
Interrupts above this level are recognized. 
Can specify up to eight levels.



Example 1.3   Architecture and flags of the 68000.
The initial values of the registers DO, Dl, A0, Al, USP, SSP, and the SR are as shown (in 
the hex format).

1. The word operand from DO is added to the corresponding word operand from Dl, 
with the result in Dl (ADD.W D0,D1 instruction). Show the contents of DO, Dl, and 
SR after the addition. Take into account that the ADD instruction affects the flags.

2. The long words in A0 and Al are added to each other, with the result in A0 (ADDA.L 
A1,A0 instruction). Show the contents of A0, Al, and SR after the addition. Use the 
same initial values.

Solution

1. Addition of the word operands in DO and Dl: The word operands consist of the 
lower four hex digits of the register contents. The hex addition is as follows:

S (Supervisor bit):       S = 0 (system in user mode).

S = 1 (system in supervisor mode).

T (Trace bit): T = 0 (system in run mode).
T = 1 (system in trace mode).

The trace condition is set and used for software debugging. The system level op-
eration is guided by the condition of the system byte. We will learn more about this byte 
in subsequent sections of this chapter.

It is convenient to refer to numbers in the hex format, especially when dealing with
data and address operands. In the hex format, the decimal numbers 0-9 are represented 
similarly. The decimal numbers 10, 11, 12, 13, 14, and 15 are represented by the 
alphabetical symbols A, B, C, D, E, and F. In this book the $ sign is used to represent the 
hex digits. Each hex digit takes four bits; for example, $F corresponds to decimal 15 and 
binary 1111. The arithmetic operations in the hex format are performed to the base 16. 
Appendix A provides information about the hex and other number systems.9       -

The following example problem will review our discussion of the architecture of   :-
the 68000 processor.

There is an overflow from the fourth hex digit, which wiil set the carry flag and the 
extend flag. The word result $ 0 1 3 3 will be transferred to the lower word position 
of the Dl register. The upper word of Dl and the register DO are not affected. 
Expanding the result:



The processor examines the flag bits in the status register and controls the program 

flow accordingly. We will study more about this program flow in later chapters on soft-

ware.

Other Resources
Other resources, such as the ALU, the instruction decoder, the execution unit, the bus 
interface unit, and the control unit are also important. The 68000 uses these resources 
very efficiently. They are internal to the processor and cannot be externally accessed. 
Their functions are as follows:

The ALU This arithmetic logic unit performs the arithmetic and logical operations on 
data operands. The size of these operands may be byte, word, or long word. The flag bits 
in the user byte of the status register are affected as a result of ALU operations.

Instruction Decoder This unit decodes instructions and sets up internal conditions for 
the execution unit.

Execution Unit This unit performs actual operations within the processor, such as data 
movement.

Bus Interface Unit This unit drives the address bus with appropriate effective address 
and handles data transfers on the data bus. It also generates and monitors the bus control 
signals necessary for the successful data transfers.

Control Unit This unit generates appropriate control and timing signals within the 
processor and coordinates all processor operations.

Supervisor and User Modes of Operation

All of the processor and system resources and all the instructions are available in the 
supervisor mode, but some cannot be used in the user mode of programming. This con-
dition provides a safety mechanism in that the user cannot inadvertently modify or cor-
rupt the system-level programs and resources. The operating system software is in the 
supervisor mode. These modes of operation are conceptually shown in Figure 1.5.

Supervisor Mode (S=1) This is the highest level or mode of operation. In this mode, the 
68000 processor services system-level tasks, such as reset functions, interrupts, traps, 
tracing, and error conditions. This type of activity is known as exception processing. On 
the power-up reset condition, the S bit in the system byte of the status register is set to 1 
and the 68000 enters the supervisor mode, upon which it executes the reset routine. This 
routine is always a system-initialization program. SSP is the effective stack pointer in the 
supervisor mode.



At the end of the reset exception routine, the processor may clear the S bit in the 
system byte to 0. This puts the processor in the user mode.

User Mode (S=0) This is the lower level of operation. It is for this level that users write 
their normal programs. As we already know, some resources and instructions are not 
functional in this mode of operation. Any attempt to use these resources in the user mode 
results in an error condition whereby control is transferred to the supervisor mode. This 
error condition is known as a privilege violation. USP is the effective system stack
pointer in the user mode.

Figure 1.5 illustrates the intercommunication between the two modes of operation. 
Exception conditions, such as reset, interrupts, errors, traps, and trace, will set the S bit in 
the status register to 1 and move the processor into the supervisor mode. Traps are 
special software instructions that can be used in the user mode in order to move to the
supervisor mode.

The processor moves from the supervisor mode into the user mode if the S bit in 
the system byte is cleared to 0. This is accomplished by executing such software instruc-
tions as the RTE (return from exception), MOVE to SR (move data to status register), 
and others. These instructions are privileged; they can only be used in the supervisor

mode.
The following example problem will review our discussion of the supervisor and

user modes of operation.

1.4 OTHER FEATURES OF THE 68000
FAMILY OF PROCESSORS

The primary objectives in using the 16/32-bit processor are to obtain more processing 
power and more speed. In the 68000 family, these objectives are achieved by means of 
the prefetch-queue and the instruction-pipe architectures.10

The Prefetch Queue

When the processor is internally busy with operations on data corresponding to the cur-
rent instruction, the external data and address buses are relatively free. The bus unit 
within the microprocessor uses these buses to obtain the next instruction code from 
memory. This is known as prefetching. The internal register bank where this code is 
stored has memory in the form of FIFO (first in first out) and is known as the queue. The 
prefetch-queue mechanism overlaps processor activity and thus enhances speed. All 
members of the 68000 family have a two-word prefetch queue.

The Instruction Pipeline

The control unit within the processor sequentially arranges decoded instructions and as-
sociated operands in the form of a pipeline. The execution unit within the processor ob-
tains information from this pipe for its operation. The pipe is structured along FIFO 
lines.

The internal pipeline can be formed by the control unit when the execution unit is 
busy with the previous operation. Thus, there is an overlap of processor activity which 
enhances the speed of operation. The 68020 and 68030 processors have a three-word 
pipe.

1.5 SUMMARY

In this chapter we introduced the 68000 family and outlined the relative features of these 
processors. Motorola entered the 16-bit market in the late 1970s with the 68000.

The 68000 microprocessor has an effective 24-bit address bus and a 16-bit data 
bus; it supports a 16-megabyte address range. The 68000 is normally contained in a 64-
pin DIP package and is also available in a 68-pin grid-array package.

The 68008 is a reduced-bus version of the 68000 processor. It has an effective 20-
bit address bus and an 8-bit data bus; it supports a 1-megabyte address range. It is 
contained in a 48-pin DIP package.

The 68010 is a virtual memory microprocessor. It contains all the resources of the 
68000 and is also pin compatible with the 68000. In addition, the 68010 processor has 
extended internal resources to support virtual memory schemes. The 68012 processor is 
an enhanced version of the 68010 processor with an effective 31-bit address bus that 
supports 2 gigabytes of address range. The 68012 is contained in an 84-pin grid-array 
package.



The 68020 is a 32-bit processor with all the resources of the 68012. The address 
and the data buses are extended to 32 bits. It supports a 4-gigabyte address range. In 
addition, the 68020 processor has internal instruction cache memory and the resources to 
support it. The cache memory holds most recently fetched instructions and supplies them 
to the processor. This speeds up the system operation.

The 68030 is an enhanced version of the 68020 processor with all the resources of 
the 68020. In addition, it has internal data cache memory and a memory management 
unit, further enhancing the throughput of the 68030 as compared to the 68020 processor.

The performance gradation sequence is 68008 -* 68000 -> 68010 -* 68012 -> 
68020 -> 68030. The 68008 is the lowest member of the family and the 68030 is the 
highest. These processors are upward code compatible.

Processors in the 68000 family are provided with proper control and interface 
buses to support synchronous and asynchronous devices. Moreover, the interrupt and the 
DMA operations are fully supported.

The architecture of the 68000 microprocessor forms the basis for that of all the 
other members of the family. It consists of eight 32-bit data registers, seven 32-bit ad-
dress registers, one 32-bit program counter, two 32-bit stack pointers, one 16-bit status 
register, and a 32-bit ALU. The 68000 operates in two distinct modes: the supervisor 
mode and the user mode. This feature serves to maintain separation between the operat-
ing system programs and the user programs.

Each member of the 68000 family has a two-word prefetch queue, which effec-
tively speeds up processor operation. In addition, there is a three-word pipeline in the 
68020 and 68030 processors, speeding up processor operation still further.

(a) the 68000 and 68010 transferring words from memory into the processor internal 
registers;

(b) the 68000 and 68010 transferring words internally from one register into the other.

1.6 Is it possible for the processor to simultaneously address the devices connected to the 
synchronous and asynchronous buses? Why or why not?

1.7 Describe two or more advantages and disadvantages of using synchronous and 
asynchronous interfaces.

1.8 Suppose you are required to scale down a 68000-based system to that of a 68008. In order 
to make the scaled-down version functional,

(a) what hardware modifications are necessary?
(b) what software modifications are necessary?

1.9 List three differences between the data and the address registers in the 68000 family of 
processors.

1.10 Can the USP and the SSP be used simultaneously as stack pointers? Why or why not? Can 
both the stack pointers be initialized at the same location to refer to the stack? Why or 
why not?

1.11 The initial values of the registers in a 68000 register are

State the contents of DO, Dl, A0, Al, and the SR after each of the following operations:

(a) long word in DO added to long word in Dl, with the result in Dl;
(b) byte in DO added to byte in Dl, with the result in DO;
(c) long word from Al transferred into A0.

1.12 Using the initial conditions given in Problem 1.11, state the contents of the affected
registers after each of the following operations:

(a) long word from Dl transferred into Al;
(b) long word in A0 added to long word in Dl, with the result in Dl;
(c) operation (b) repeated, with the result in A0.

1.13 With the initial conditions as stated in Problem 1.11,

(a) is the processor in the user mode or the supervisor mode? Why?
(b) can the processor use all the instructions, given your response to (a)? Why or why not?

1.14 How do the user and the supervisor modes differ?

1.15 The user byte of the SR is $00 initially and the interrupt mask level is set at 6. The 
processor is operating in the supervisor mode. The last addition operation has resulted in a 
word operand $FE00 in data register D7. What are the contents of the status register?

1.16 Repeat Problem 1.15 under the following conditions:

(a) byte result $00 in D6 register;
(b) long-word result $0123456B in Al register.



1.17 Specify what happens under the following conditions:

(a) byte operand addressed in AO;
(b) stack located at an odd boundary, such as $00003401;
(c) memory reference I2345678A made by the 68000.
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Objectives

In this chapter we will study:

Memory organization and selection schemes for the 68000 

Data structures and representation for the 68000 Stack 

memory organization and structure for the 68000 

Instruction format and structure for the 68000 Addressing 

modes for the 68000



2.0 INTRODUCTION

Memory access is an integral part of any computer system operation. For the 68000, 
memory is organized as blocks of even and odd bytes. Data are structured so that bytes 
can be accessed individually, words can be accessed as two bytes, and long words can be 
accessed as two words. This provides an efficient and reliable memory access for data 
operands of varying size.

The stack memory is word-aligned. The program memory, where instructions and 
associated operands reside, is similarly word-aligned. Thus, the complete 16-bit data bus 
of the 68000 is utilized, optimizing the stack and instruction fetch operations.

The 68000 processor has 14 different addressing modes with which to access 
memory. Depending upon the application, any of these addressing modes can be used.

An understanding of memory organization schemes and data structures is essential 
to the study of the addressing modes. We must first learn about these addressing modes 
to understand the instructions, software features, and programming techniques of the 
68000, all of which will be introduced in the next chapter. Note that throughout the book, 
the overbar is used to represent an active low signal. For example, /LDS means that the 
signal LDS is active when it is at the low logic level and is inactive when it is at the high 
logic level.

2.1 MEMORY ORGANIZATION SCHEMES
AND DATA STRUCTURES

The 68000 microprocessor handles the byte, word, and long words of data. The memory 
is organized as 16-bit words and supports the aforementioned data elements.

Memory Organization and Selection Schemes

Figure 2.1 illustrates the memory organization and selection schemes for the 68000. The 
memory is structured as blocks of even and odd bytes. It can be accessed as bytes, 
words, or long words with the help of two strobes: /LDS and /UDS. These are active low 
signals.

/LDS is called the lower data strobe. When it is active, the lower or the odd 
memory byte is selected. /UDS is called the upper data strobe. When it is active, the 
upper or the even memory byte is selected. When both strobes are active, both bytes are 
selected, providing a word access.

The odd byte is connected to the lower eight data bits, D0-D7, of the data bus. The 
even byte is connected to the upper eight data bits, D8-D15, of the data bus.

The 23 address lines, A1-A23, of the address bus provide an effective address 
range of eight megawords. The conventional A0 address line is brought out in the 68000 
as the /LDS and the /UDS strobes. When they are active individually, these two strobes 
select either an odd byte or even byte. This provides an effective address range of 16 
megabytes. An R/W signal from the processor is the read/write strobe. If this R/W 
strobe is at a high logic level, the processor reads the data from the memory. By the

same token, if this signal is at a low logic level, the processor writes the data into the 
memory. Details of these signals will be discussed when we deal with the hardware as-
pects of the 68000.

Data Structures and Representation

Bytes, Words, and Long Words Figure 2.2 illustrates how data are represented in the 
memory. The bytes can be accessed at the even or at the odd address boundaries. The 
word, consisting of two bytes, should be accessed only at the even address boundary. 
Similarly, the long word, consisting of two words, should be accessed only at the even 
address boundary. The word at the lower address corresponds to the higher word element 
of the long word. Word or long-word access at an odd boundary results in an error 
condition called the address error. This error condition transfers control to the 
supervisor mode and the operating system programs.1'2

BCD (Binary Coded Decimal) The decimal numbers are represented in the BCD (binary 
coded decimal) format. Each BCD digit is a 4-bit element. Two BCD digits are 
contained in a byte. For a BCD string, the first BCD digit at the lowest address corre-
sponds to the MSD (most significant digit).



1. Indicate the contents of the memory for the 68000 processor.

2. What will be the contents of a long word read from location $0040E0?

3. Repeat (1) and (2) for the 68008 processor.

Solution

1. Memory contents: Figure 2.3(a) indicates the contents of the memory for the 68000
processor. The memory is word organized. The long word occupies two word posi-
tions, starting at $0040E4. In the long word $2468A840, the first digit, 2, is the MSD 
and the last digit, 0, is the LSD.

The data structures for the 68010 and 68012 processors are similar to those for the 
68000. For the 68008, which has only an 8-bit data bus, the memory is byte organized. 
The /LDS and the /UDS are integrated into a single data strobe, /DS. A word is accessed 
as two sequential bytes for the 68008.3

The following example problem will review our discussion of data structures.

For the BCD data, the leading zero is introduced by the processor, since the 
memory cannot be accessed at 4-bit boundaries.4

2. Long word from $0040E0: The long word from location $0040E0 will be
MSD LSD

I I
$7F4ECAD8.

3. 68008 memory organization: Figure 2.3(b) shows the corresponding results for the
68008 processor. The memory is byte organized. A word occupies two byte
locations.



The stack is always word organized and word aligned. Byte data are put on the 
stack in pairs, preserving the word alignment of the stack. Saving information on the 
stack is known as pushing. Retrieving the information from the stack is known as pop-
ping or pulling. The stack pointer (SP) always points to the top of the stack, where the 
last element has been pushed. The SP predecrements by two for pushing a new word 
onto the stack. Similarly, the SP postincrements by two after pulling a word element 
from the stack. For long-word pushing or pulling, the SP is predecremented or postin-
cremented by four.6 The stack should always be accessed at even boundaries.

A queue is a FIFO (first-in-first-out) data structure in the memory. A queue may 
be implemented to fill in from high memory to low memory, or vice versa. Queues may 
be byte or word organized. They are very helpful in setting up memory tables and 
strings. There can be several queues set up in the memory. The stack and queue are very 
important data structures and are explicitly supported by the addressing modes of the 
68000.

The following example problem on the stack and queue will promote better under-
standing of these structures.

The 68000 processor uses memory-mapped I/O in which the processor considers 
memory and I/O to be similar to one another. The memory organization for the 68000 
family is linear, allowing for access of any memory location without readjusting the ad-
dress mechanism. This simplifies the stack and queue operations, which will now be 
introduced.

Stack and Queue Organization and Structure for the 68000
A stack is a LIFO (last-in-first-out) data structure in the memory. Some of the internal 
registers of the processor are saved automatically on the stack whenever there is a change 
in program flow due to subroutines or exceptions. The system stack pointer (SP) 
controls the stack operation. The stack pointer is either SSP (A7') or USP (A7), 
depending upon the mode of operation. The program counter is saved on the active sys-
tem stack on subroutine calls and is restored from the stack on the returns. On the other 
hand, both the program counter and the status register are saved on the supervisor stack 
during the processing of exceptions, such as interrupts and traps. They are restored on 
return. The system stack fills from high memory to low memory.5

The 68000 is executing a main user program in the user mode and the JSR (jump to 
subroutine) instruction has been encountered. The next instruction to be executed in the 
main program is at PC location $00024A08.

1. Indicate the contents of the stack.

2. The subroutine sets up a memory table in the form of a word-organized queue. AO 
points to the first clement and Al points to the last element in the queue. Conceptu-
alize the queue structure. How many words are contained in the queue?

Solution

1. Stack: Figure 2.4(a) shows the contents of the stack. USP is the system stack pointer, 
since the processor is in the user mode. The USP gets predecremented by four and the 
PC pointing to the next instruction in the main program gets pushed onto the stack.

2. Queue: Figure 2.4(b) shows the conceptual queue structure. It contains [($0000BD18 
- $000OBDO4) + 1] = $15 word elements.



The RTS (return-from-subroutine) instruction restores the stored contents from 
the stack. RTS is the last instruction in any subroutine. On executing the RTS instruction 
in the subroutine of Example 2.2, the contents of the stored PC ($00024A08) are pulled 
from the stack and restored into the PC. This causes the main program to resume, starting 
at $00024A08. This is the location of the next instruction to be executed in the main 
program, while the subroutine is called. The SP is incremented to its original
value: $0000480C.

A subroutine called by another subroutine is said to be nested. Suppose the first 
subroutine calls a second subroutine. The PC pointing to the next instruction to be exe-
cuted in the first subroutine is stored on the stack, on top of the earlier stored PC (cor-
responding to the main routine). The processor then executes the second subroutine. At 
the end of the second subroutine, the RTS instruction is executed. This restores the PC 
corresponding to the first subroutine from the stack. At the end of the first subroutine, 
another RTS instruction is executed. This restores the PC corresponding to the main 
program from the stack. Ultimately, the SP is incremented to its original value. The 
available stack space determines how many of the subroutines can be nested. A similar 
mechanism works for nesting exceptions such as interrupts.7

2.2    INSTRUCTION FORMAT AND STRUCTURE

A software program consists of a sequence of instructions. These instructions are stored 
in program memory in the form of machine code. The program memory is that area in 
memory addressed by the program counter. The program memory is word aligned for 
the 68000.

Instruction Format

For the 68000, instructions are from one to five words, as shown in Figure 2.5. The first 
word, which is called the operation word (op. word) specifies the length of the instruc-
tion and the type of operation to be performed. The remaining words specify the appro-
priate source and destination operands. The processor obtains the source operand, per-
forms the specified operation, and puts the result at the destination. Instructions for the 
68000 have a well-defined structure enabling programmers to clearly identify the source 
and destination operands without ambiguity.

Instruction Structure

An instruction may be of the single- or the double-operand type. For the single-operand 
type, the specified operand is always the destination. For the double-operand type, the 
first operand is the source operand and the second is the destination. We will define and 
use three instructions for our discussion in this chapter. These instructions reference an 
effective address <ea> and are as follows:

The CLR instruction is of the single-operand type; the other two are of the double-
operand type. Figure 2.6 illustrates typical instruction structures for the 68000 processor 
with single and double operands. Most of the instructions are similarly structured. Also, 
in most cases, the data size is explicitly specified to be byte, word, or long word, as 
shown; thus, the same mnemonic statement may be used for different types of data.8

Clearly, the effective address is an integral part of the instruction. In that the 68000 
has 14 distinct addressing modes to specify the effective address, it is a very powerful 
and versatile processor. Some of these modes deal with the register reference, some deal 
with the memory reference, and some deal with the control.



2.3    REGISTER DIRECT AND REGISTER
INDIRECT ADDRESSING MODES       ______________ __________

Motorola Corporation introduced a notation scheme to refer to the registers and operands 
in dealing with the addressing modes and the instructions. We will follow this notation, 
which is given in Figure 2.7.

FIGURE 2.8   Register-related addressing modes for the 68000.

In our discussion we will use the three instructions introduced earlier:

CLR <ea>

ADD <ea>,Dn

MOVE <ea>,<ea>

We will also use the initial values of the registers and operands as given in Figure 2.9 for 
example problems.

It is important to note that although register A7 can be used as an address register 
in any of the addressing modes, extreme care should be exercised. Since A7 is the sys-



ARI with Postincrement ((An)+; n = 1-7) In this mode, too, the specified address 
register contains the address of the data operand. After the operand address is used, the 
address register is incremented by one, two, or four, depending upon whether the size of 
the operand is byte, word, or long word. This mode is very useful in setting up and 
scanning the memory tables. An example follows.

ARI with Predecrement (-(An); n = 1-7) In this mode, the specified address register 
contains the address of the data operand. It is predecremented by one, two, or four to 
generate the effective address, depending upon whether the size of the operand is byte, 
word, or long word. This mode is very useful in setting up and scanning memory tables 
and in multiprecision arithmetic operations. An example follows.

ARI with Displacement (d(An); n = 1-7)   In this mode, the specified address register 
contains the base address. The instruction specifies a sign-extended 16-bit displace-



ment as the extension word. The sign extension provides an effective displacement range 
of +32768 (+32K) for positive words and —32768 (—32K) for negative words. 
(Effective address computations use the sign extension for displacement and index val-
ues. Refer to Appendix A for sign-extension concepts).

The effective address is the sum of the base address and the displacement value. 
The contents of the address register do not change. This mode is very useful in address-
ing different sections of memory, with different displacement values. An example fol-
lows.

ARI with Index and Displacement (d(An,Rn); n = 1-7) In this mode, the specified 
address register (An) contains the base address. The other address, or data, register (Rn) 
contains an index word (or long word), as specified. The instruction also specifies an 8-
bit sign-extended displacement as a part of the extension word. The index operand can be 
a computed variable, which provides a dynamic addressing scheme.

The effective address is the sum of the base address, the index value, and the dis-
placement. The contents of the address and index registers do not change. This mode is 
very useful in addressing different sections and blocks of memory with different index 
and displacement values.9 An example follows.

Depending upon the application, any of the preceding addressing modes can be 
used to specify' either the source or the destination operands. In some instances, not all 
the addressing modes are applicable. The instruction set specifies which modes are ap-
plicable^ and which are not.

Any type of data structure can be set up and handled using the preceding address-
ing modes. For example, the predecrement and postincrement addressing modes can be 
used in conjunction with each other to set up a stack-type or queue-type activity. Within 
the same instruction, the source and destination operands can be specified by different 
addressing modes.

The following example problem provides a review of the register-related address-
ing modes.

Example 2.3   Register addressing modes for the 68000.
According to the instruction structure and the addressing modes discussed so far, specify 
what occurs in each of the following operations. Also, indicate the contents of the cor-
responding registers and the memory locations after each operation. The initial values in 
each case are as shown in Figure 2.9.



2.4    IMMEDIATE, QUICK, ABSOLUTE, RELATIVE, 

AND IMPLICIT ADDRESSING MODES

Figure 2.10 illustrates the aforementioned addressing modes. In the immediate and quick 
addressing mode, the data is explicitly specified as part of the instruction. In the absolute 
addressing mode, the address of the data or of the next instruction is explicitly specified as 
part of the instruction. In the relative addressing mode, a displacement where the data or 
the next instruction is located is explicitly specified as part of the instruction. In the 
implicit addressing mode, instructions make implicit reference to the processor registers. 
We will now discuss the details of these addressing modes using the three instructions 
(CLR <ea>; ADD <ea>,Dn; and MOVE <ea>,<ea>) introduced earlier. The initial values 
of the registers and the operands given in Figure 2.11 will be used for examples.

Immediate Addressing Mode (Imm)

Data are explicitly specified and contained in the extension words of the instruction. 
Data size can be a byte, a word, or a long word. For long-word data operands, two word 
extensions are required. This addressing mode is very useful in initializing the registers 
and the memory. Only the source operand can be specified by this addressing mode. We 
will use a # sign to signify the immediate operand. Examples are as follows:



Quick Addressing Mode (. . . . Q)
This is a variation of the immediate addressing mode. Up to 8 bits of data can be spec-
ified as part of the operation word itself. Thus, this is a single-word instruction and op-
erates faster than the immediate addressing mode. However, the data range is limited to 8 
bits in move operations and to 8 units in arithmetic operations. In this addressing mode, 
all 32 bits of the destination are affected by the sign extension of the data operand. In the 
sign extension, the most significant bit (MSB) of the data operand is replicated to all the 
higher bits (see Appendix A). The instructions allowed in this mode are explicitly 
specified in the instruction set and end with Q (ADDQ, MOVEQ, SUBQ, and so forth). 
An example follows.

Absolute Short and Long Addressing Modes (Abs.W, Abs.L)
In the absolute short addressing mode, a 16-bit address of the data or of the next instruc-
tion is explicitly specified as an extension word within the instruction. In the absolute 
long addressing mode, instead of the 16-bit address, a 32-bit address is specified as two 
extension words within the instruction. The short addressing mode has a range of 64 
kilobytes and the long addressing mode has a range of 16 megabytes. These addressing 
modes are used to access the memory directly. They are also used in program control 
applications to specify the location of the next instruction. Examples are as follows:
CLR.L $0034FE74 Clear the long-word operand starting at memory location

$0034FE74. This is the absolute long addressing mode,
since a 32-bit address of the operand is specified.
Destination <ea> = $0034FE74.
Long-word operand at $0034FE74
(before)       $ 1 A B 2 3 C D 4
(after) $0 0 0 0 0 0 0 0

PC Relative with Displacement Addressing Mode d(PC)

In this addressing mode, a signed displacement is specified as a part of the instruction. 
This displacement is added to the contents of the PC (program counter) to obtain the 
effective address of the operand.

The displacement can be 8 or 16 bits, depending upon the instruction. For an 8-bit 
displacement, the displacement range is 256 bytes; for a 16-bit displacement, it is 64 
kilobytes.

Program control instructions, such as BRANCH instructions, use this type of ad-
dressing mode. In the example that follows, we will introduce a new instruction, BRA 
(branch always). This specifies where the next instruction to be executed is to be found.

*Recall that the PC advances to next word location after fetching the present op.word. 
Thus, the PC will be at $00002002 after fetching the BRA instruction.

PC Relative with Index and Displacement Addressing Mode 
d(PC,Rn)

In this addressing mode, in addition to the displacement, the instruction specifies an in-
dex register. The effective address is the sum of the contents of the PC, the index reg-
ister, and the displacement. The displacement is 8 bits. An example follows.

PC Instruction

S00487708    MOVE.W EC(PC,D0.W),D1    Move the word operand from the source
<ea> into D l . The <ea> calculation is as 
shown.



*PC advances to the next word location ($0048770A) after the MOVE instruction. tSign 
extended to 32 bits. $EC is a negative number that corresponds to -$14 in twos-
complement notation. (Refer to Appendix A for twos-complement concepts.)

The PC relative addressing modes are used extensively in program control appli-
cations. In addition, these addressing modes are used in applications requiring program 
code relocation. In such applications, the program code can be made to reside in any part 
of memory, and the PC can be adjusted accordingly. Any memory reference will be with 
respect to the adjusted PC as the base address and will be valid.

Implicit Addressing Mode
The 68000 has certain instructions that make implicit reference to the processor registers 
(the PC, SR, SP, and so forth). This mode works in conjunction with the other address-
ing modes. Sometimes it is not considered to be a separate addressing mode. An exam-
ple follows.

MOVE.W #$0400,SR Move the immediate word operand $0400 into the SR
(status register).* The source operand is specified by the
immediate addressing mode. Destination <ea>, which is
the SR, is specified by the implicit reference.
SR (before)       not known
SR (after) $0400

*This instruction dealing with the SR is privileged and can only be used in the supervi-

sor mode.

The following example problem provides a review of the addressing modes we 

have discussed.

Example 2.4   Other addressing modes for the 68000.
Use the initial values given in Figure 2.11. Specify what occurs in each of the following 
operations. Indicate the contents of the corresponding registers and memory locations 
after each operation. Consider the same initial values for each of the operations.

1. MOVE.L #$765432AC,$0034FE74

2. ADDQ.B #$04,D1

3. MOVE.W $007A(PC),SR (Contents of PC $0034FE00)

Solution /

1. MOVE.L #$76543fAC,$0034FE74: The source operand is specified by the imme
diate addressing mode and the destination effective address is specified by the abso
lute long addressing mode. The source operand is moved to the destination <ea>./

Source long word = $765432AC
Destination <ea> = $0034FE74

Long-word operand at $0034FE74 (before) = $1AB23CD4
(after) = $765432AC

2. ADDQ.B #$04,D1: The source operand is specified by the quick addressing mode
and the destination operand is specified by the data register direct addressing mode.
Add the immediate (quick) operand to the destination <ea>.

Source operand (byte) = $04.
Destination <ea> = Dl register.

Source data $04 is added to the Dl register.
Dl (before)       $ A B C D E F 0 0
Dl (after) $ A B C D E F 0 4

3. Move.W $007A(PC),SR: With contents of PC = $0034FE00, the effective address
of the source operand is $0034FE7A. The contents at that address (= $9873) are
moved into SR.

SR (after) = $9873

In software applications using the 68000 microprocessor, all of the 14 addressing 
modes can be used in conjunction with each other. Certain addressing modes, however, 
may preclude some instructions. This information is available from the instruction set. 
Care should be taken to ensure that an invalid addressing mode is not used to specify 
operands. Similarly, word and long-word operands should not be accessed at the odd 
address boundaries. To do so would result in error conditions.

2.5    SUMMARY

In this chapter we discussed the memory organization schemes, data structures, and ad-
dressing modes for the 68000 processor.



The memory is organized as 16-bit words consisting of blocks of even and odd 
bytes. The bytes can be accessed individually, the words can be accessed as two bytes, 
and the long words can be accessed as two words. Words and long words should be 
accessed only at the even address boundaries. To do otherwise would result in an error 
condition. The 68000 processor follows memory-mapped I/O (input/output) in which the 
processor communicates with an I/O device as if it were one of the memory locations. 
The total address space for the 68000 processor can be considered as 16 megabytes or 8
megawords.

The important data structures of the 68000 are the stack and the queue. The stack is 
a LIFO data structure in the memory. Some of the internal registers are saved on the 
stack in the case of a change in program flow due to subroutines or exceptions. USP 
controls the stack if the processor is in the user mode; SSP controls the stack if the pro-
cessor is in the supervisor mode. The stack fills from high memory to low memory on a 
push-type stack operation. The stack is word sized and word aligned and should only be 
accessed at even address boundaries.

The queue is a FIFO data structure in the memory and can be set up to fill in from 
high memory to low memory or vice versa. The queue is very useful in setting up tables
and strings.

For the 68000, instructions are from one to five words. The first word, which is the 
operation word (op. word), specifies the type of operation. The rest of the words contain 
the appropriate extensions and operands. The structure of the instruction consists of the 
instruction field and the source and destination fields. Instructions may be of the single-
or double-operand type. In the single-operand type, the specified operand is the 
destination operand on which the given operation is performed. In the double-operand 
type, the first operand is the source operand and the second is the destination operand. 
After performing the operation, the final result is put in the destination.

The 68000 has 14 different addressing modes with which to access the source and 
destination operands. In the register direct addressing modes, either a data register or an 
address register contains the specified operand. In the register indirect addressing (ARI) 
modes, one of the address registers contains the base address. There may be index and 
displacement values specified as a part of the instruction. These may be added to the 
base address to obtain the effective address of the operand.

In the immediate and quick addressing modes, the instruction contains the data 
operand. In the absolute addressing modes, the instruction contains the address of the 
operands. In the PC relative addressing modes, the PC contains the base address. There 
may be index and displacement values specified as part of the instruction. These may be 
added to the base address to obtain the effective address of the operand. The implicit 
addressing mode makes an implicit reference to some of the internal registers of the pro-
cessor.

These addressing modes all can be used in conjunction with one another to specify 
the source and destination operands. The source operand can be specified by one ad-
dressing mode and the destination operand by another. This flexibility allows the 68000 
processor to access operands conveniently and efficiently.

PROBLEMS

2.1 Draw the conceptual memory organization schemes for the following processors:

(a) the 68008 microprocessor;
(b) the 68010 microprocessor.

2.2 The 68000 is accessing a word operand from the memory. The memory word is $234A.
Specify the fallowing:
(a) contents of data bus D0-D7 and D8-D15;
(b) logic levels of the LDS, UDS, and R/W strobes.

2.3 What are the contents of the strobes LDS, UDS, and R/W and the data bus D0-D15 when 
the 68000 is writing the long-word operand IAABBCCDD into memory location $004000.

2.4 Suppose the LDS and the UDS connections have been interchanged in Figure 2.1. What 
would happen in the following situations:

(a) the 68000 is trying to read byte operand $45 from memory location $00001000;
(b) the 68000 is trying to write byte operand $54 into memory location $0000100B.

2.5 Long-word operands $124680AB and $78908762 are stored in sequential memory
locations beginning at $00002000. BCD data string 1200340045974 is stored beginning at
the next sequential location. Show how data are physically stored in the following systems:

(a) the 68000-based system;
(b) the 68008-based system;
(c) the 68010-based system.

2.6 Show how the following data elements are stored in memory for a 68000-based system:

(a) hex string $1234432156788765ABCDDCBA, starting from memory location 
$00004000;

(b) the hex string given in (a), but in the form of a word-aligned queue starting from 
$00004040 and filling in towards high memory address.

2.7 The system stack pointer has an initial value $0OO034AO. Show how the following data
elements are stored on the stack:

first element     $0010 
second element $0020

ninth element    $0090 What are the contents of the 
stack pointer after the ninth element has been stored?

2.8 Fiach subroutine call stores the program counter on the system stack. Each exception-, such
as interrupt, stores the program counter and the status register on the stack.
(a) In a control system application, 128 bytes of stack space is allocated for the user mode 

of operation. How many subroutines can be nested if the stack is not used for any 
other storage?

(b) Repeat (a) if the DO and Dl registers are also to be stored on the stack each time a 
subroutine call occurs. {Note: separate instructions are to be written to store any 
registers other than the PC on the stack during subroutine calls.)

2.9 In a robotics system application using the 68000, 512 bytes of supervisor stack space is
allocated. Each robotics motor requires one interrupt service routine, which nests eight
subroutines.



(a) How much stack space is used up for each robotics motor application?
(b) How many of these robotics operations can be nested?

2.10 Following the instruction format of Figure 2.5, conceptualize how the following
instructions are stored in the memory for a 68000-based system:
(a) CLR.L <ea>; <ea> corresponds to a 32-bit address;
(b) ADD.W <ea>,Dl; <ea> corresponds to a 32-bit address;
(c) MOVE.L <ea>,<ea>; each <ea> corresponds to a 32-bit address.

2.11 Given the instruction structure of Figure 2.6, write instructions to accomplish the

following tasks:
(a) clear a byte in the D7 register;
(b) move a long word from A6 into the D5 register;
(c) add the long-word contents from D6 to the long-word contents of D7, with the result

inD6.
2.12 Write a sequence of instructions to accomplish the following tasks:

(a) add the word contents from D5 to the long-word contents in D6 and put the result in
the D7 register;

(b) clear the long word in the D3 register and transfer the result to the A3 register.

2.13 Using the initial values as given in Figure 2.9, specify the results of the following

operations:

(a) ADD.LD1,D0
(b) ADD.W A0,D1
(c) MOVE.B -(Al).-(Al)

Clearly specify the source and destination addressing modes. Show the contents of the 

affected registers, the SR, and the memory.

2.14 Repeat Problem 2.13 with the condition that the operations are done in sequence, affecting 

the values accordingly.
2.15 Transfer the long-word contents from $0034FE76 into the Dl register using the following

addressing modes:

(a) ARI with displacement;
(b) ARI with index and displacement;
(c) absolute long.
Write the appropriate instruction in each case, using the same initial values given in Figure

2.9. 2.16 The PC is at location $0034FE00 after the appropriate op.word has been read, which 
transfers the long-word contents from S0034FE76 into the Dl register. Write the instructions 
needed to reach this condition using the following addressing modes:

(a) PC relative with displacement;
(b) PC relative with index and displacement;
(c) any other mode of your choice.

Use the initial values given in Figure 2.9. 2.17 Using the same initial values, specify the contents 
of the registers and the memory after accomplishing each of the following operations:

(a) MOVE.L -(A1),(A0)+
(b) ADD.W -(Al).-(Al)
(c) CLR.B $O034FE75

2.18 Repeat Problem 2.17, with the condition that the operations are done in sequence, 
affecting the values accordingly.

2.19 With the initial values of Figure 2.9, which of the following operations are valid and 
which generate error conditions? Why?

(a) ADD.W $0003(A1),DO
(b) MOVE.B $00(A1.DQ,L),D1
(c) JSR $0305      /^

2.20 Specify the results of the following operations, using the same initial values:

(a) ADD.L#$10101010,DO
(b) ADDQ.L #$03,(A1)+
(c) MOVE.L #$00100100,(A1)+

Show the contents of the affected registers, the SR, and the memory.

2.21 Repeat Problem 2.20 with the condition that the operations are done in sequence, affecting 
the values accordingly.

2.22 Specify whether the following are true or false:

(a) the immediate addressing mode cannnot be used to specify the destination operand.
(b) the quick addressing mode can be used to specify data elements of any size.
(c) the PC relative addressing mode cannot be used to specify odd memory locations.
(d) the implicit addressing mode cannot refer to external memory.
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Objectives
In this chapter we will study:

The general instruction set of the 68000 The data movement group of 

instructions and applications Binary and BCD arithmetic groups of 

instructions and applications Logical and bit-manipulation groups of 

instructions and applications Program and system control groups of 

instructions and applications Instruction timing considerations and 

applications

3.0 INTRODUCTION

The 68000 has a powerful instruction set, including 56 generic instruction types. Some of 
these instruction types have several variations. In addition, the 14 addressing modes 
discussed in the previous chapter can be used in conjunction with the instructions. This 
provides the 68000 with tremendous software capability.'

The instructions are designed to follow a consistent structure. The same mnemonic 
statement representing an instruction can be used with appropriate attributes to refer to 
different operand sizes and addressing modes.

A clear understanding of how these instructions work, how they affect the status 
bits in the status register, and which of the addressing modes can be used is essential to 
the study of the software features and the programming techniques of the 68000 proces-
sor.

We will first introduce the general instruction set, categorize it into groups, and 
then discuss the essential features of each of the groups with appropriate illustrations. 
This approach will help us gain better insight into the instruction set. The material cov-
ered will provide the necessary background for writing programs using the 68000 pro-
cessor.

3.1 THE GENERAL INSTRUCTION SET

Figure 3.1 indicates the general instruction set for the 68000 microprocessor in tabular 
form. In the first column the instruction mnemonic used in writing the assembly pro-
grams is given. The second column contains the physical description of the instruction. 
The third column lists the actual operation, and the last columns describe how the flags 
are affected in the case of each instruction. Figure 3.2 shows how the condition codes ate 
computed. In Appendix B, details of the instruction set arc presented.2 The reader should 
refer to this appendix in studying the concepts covered in this chapter.

Interpretation of the Instructions

Consider the second instruction in the table in Figure 3.1. It is the ADD instruction with 
which we are already familiar. The description indicates that it is a binary addition. The 
data operands will be interpreted as binary numbers. The operation indicates that the 
destination operand is added to the source operand, and the final result is put in the des-
tination. We see that all of the condition codes, known as flags or status bits, are af-
fected by this operation. Any of them can be used for decision making in a programming 
sequence.

The syntax, attributes, and addressing modes for the ADD instruction are as fol-
lows (see also Appendix B):3

Assembler Syntax:       ADD <ea>,Dn or ADD Dn,<ea>

Attributes (size): Byte, word, or long word.





Source <ea>: All addressing modes permissible.

Destination <ea>:       Modes An, d(PC), d(PC,Rn), and
immediate are not permissible. Other modes 
can be used.

Clearly, from the preceding information, either the source or the destination oper-
and is a data register and the other operand can be an effective address <ea>. If <ea> is 
the source, all addressing modes are permissible. If <ea> is the destination, some 
addressing modes are not allowed. The instruction can operate on byte, word, and long-
word operands.

Following the preceding guidelines, programmers can easily write valid instruc-
tions. For example,

ADD.L D7,D6 Add long word in D7 to the long word in
D6, with the result in D6.

ADD.B (A5),D3       Add the byte from memory addressed by the 
contents of A5 to the byte in D3, with the result 
in D3.

are valid forms of the ADD instruction. On the other hand,

ADD.W (A5),(A2)      Add the memory words addressed by (A5) and 
(A2), with the result in memory addressed by 
(A2).

ADD.B D6,#$12 Add the byte in D6 to the immediate data
$12 and put the result at the immediate data 
location.

are invalid forms of the ADD instruction. In the former case, a data register does not 
appear as one of the operands. In the latter, the destination operand cannot be specified 
by the immediate addressing mode.

Each instruction may have several variations, depending upon the operands. Con-
sider the first six instructions in the instruction set in Figure 3.1. They are the variations 
of the ADD instruction as shown in Figure 3.3. The 68000 uses the same mnemonic



(ADD in this case), with extensions such as A, I, Q, and X, to signify the different 
variations. The ABCD instruction is specifically made more symbolic to represent the 
BCD data, but it still belongs to the same ADD category.

The 68000 follows this consistent structure for all of its instructions. These in-

structions can be interpreted easily and appropriate forms written for programming and 

the software applications.

The Instruction Groups
The 68000 instructions may be broadly classified into the following groups:

1. data movement;

2. binary integer arithmetic;

3. BCD (binary coded decimal);

4. logic, shift, and rotate;

5. bit manipulation;

6. program control;

7. system control; and
8. special category for extended functions.

The data movement group deals with the physical movement of the source and 
destination operands. The integer, BCD, logic, shift, and rotate groups deal with the 
actual data processing operations. The program control group deals with the decision-
making, conditional, and unconditional branch and jump operations. The bit-
manipulation and the system control groups supplement the other operations mentioned 
above. We will deal with the special category in subsequent chapters.

The following example problem provides a review of the general features of the

instruction set.

Any invalid instruction will generate an error condition known as an illegal in-
struction exception. We will discuss this exception in later chapters.

Figure 3.4 illustrates a standard convention introduced by Motorola to summarize 
the addressing modes, especially while dealing with the instruction set. We will use this 
convention in our discussion. The addressing modes are classified as data, memory, 
control, and alterable types. In the data type, the <ea> refers to a data operand. In the 
memory type, the memory reference is explicit as to where the data operand can be



found. In the control type, the addressing mode can be used for program control. In the 

alterable type, the addressed operand may change.
A single addressing mode can be classified in more than one category.4 Consider 

the ARI mode (An), for example. It can be classified in all four categories. It can address 
data, it can address memory, it can specify a jump or a branch address for program 
control, and the operand addressed by this mode can be allowed to change. On the other 
hand, the immediate (#xxx) addressing mode belongs only to the data-type category. It 
cannot address memory, cannot specify a jump or branch address, and it is unalterable.

3.2    DATA MOVEMENT AND ARITHMETIC 
INSTRUCTION GROUPS

Data movement is an integral part of a computer system operation. The 68000 has a very 
powerful and efficient group of data movement instructions, as shown in Figure 3.5. The 
group consists of several forms of the MOVE, EXG, and SWAP instructions. The 
privileged instructions are indicated with an asterisk; these should be used only in
the supervisor mode.

The first column specifies the instruction in mnemonic form. The second column 
specifies the operand size—a byte (8 bits), a word (16 bits), or a long word (32 bits). The 
third and fourth columns specify the operation and the syntax (or notation). The last 
column specifies the allowed addressing modes. We will now interpret these entries and 
provide some typical illustrations from each of the groups.

Data Movement Instructions
Consider the general MOVE instruction from the table in Figure 3.5. It handles byte, 
word, or long-word operands. Data movement is always from the source to the destina-
tion operand. The notation is MOVE <ea>,<ea>. All addressing modes are allowed for 
the source <ea>. Only data-alterable addressing modes, however, are allowed for the 
destination <ea>. Thus, any addressing mode that does not belong to both the data and 
the alterable types is not allowed. Referring to Figure 3.4, it can be seen that, for the 
MOVE instruction, the following addressing modes are not allowed for the destination 
effective address:

An: Not allowed, since it is not of the data type 

#XXX (immediate): Not allowed, since it is not of the alterable 

type

MOVE instructions dealing with the status register (SR) and the USP are privileged as 
indicated. The EXG (exchange) instruction exchanges the long-word contents of two of 
the specified internal data or address registers. Similarly, the SWAP instruction ex-
changes (swaps) the lower and upper words in a data register.5

Figure 3.6 indicates the initial values of the registers and the memory. We will use 
these values for the examples in this chapter. In the general MOVE instruction, there is 
no overflow, and the C and V flags are reset to 0; the X flag is unaffected (see Appendix 
B for details). An example follows.

MOVE.L D1,D3 Move long-word data from Dl into D3.
Dl (before) $ 1 2 3 4 0 6 7 8
D3 (before) $ 0 0 0 0 0 0 0 8
D3 (after)    $ 1 2 3 4 0 6 7 8
Only the N and Z flags are affected.
The result (new data in D3) is a positive nonzero value. As 
such, N = 0 and Z = 0. 
X N Z V C (after) = 0 0 0 0 0



Example 3.2   Data movement instructions.
In a control system application, the following software is run:

MOVE.W (Al),D1 ;move memory word addressed by (ftl) into Dl
SWAP  Dl ;swap the lower and the upper words in Dl
EXG   D1,D3 ;exchange long words in Dl and D3
MOVE.L D3,D7 ;move long word in D3 into D?

Using the initial values of Figure 3.6, show the contents of the affected registers and the
flags.

Solution

After the MOVE.W (A1),D1 instruction, Dl contains $ABCD5EF6. Jhe'upper word of
Dl is not affected. The data operand $5EF6 is moved to the lower word position of the
Dl register. ~  /

After the SWAP Dl instruction, Dl contains $5EF6ABCD.

After the EXG D1,D3 instruction, the long-word contents of the Dl and D3 registers are 
exchanged. Dl = $00000008; D3 = $5EF6ABCD.

After the MOVE.L D3,D7 instruction, both D3 and D7 contain $5EF6ABCD. The result 
is positive (MSD = $5 = 0101 and the MSB = 0) and is nonzero. As such, N = 0 and Z = 
0. The X flag is unaffected. The C and V flags are reset to zero, since there is no 
overflow in the MOVE operation. The final results are

Binary Integer Arithmetic Instructions

These instructions deal with numbers and arithmetic operations. The 68000 processor 
distinguishes between signed and unsigned numbers. We will briefly discuss this con-
cept in preparation for the discussion that follows. (Refer to Appendix A for details con-
cerning binary and BCD numbers and arithmetic.)6

Consider a byte operand. In unsigned operations it represents a range of $00 to 
M'F, which corresponds to decimal values 0 to 255 as shown in Figure 3.7(a). In signed 
operations, when the MSB of the operand is 0, the operand is considered to be a 
positive number; when the MSB is 1, the operand is considered to be a negative number. 
Thus, $00 to $7F are positive numbers (decimal values 0 to 127) and $80 to $FF are 
negative numbers (decimal values —128 to —1 in the twos-complement form), as shown 
in Figure 3.7(b).



Figures 3.8 and 3.9 illustrate the four categories of binary integer arithmetic in-
structions. They are ADD, SUBTRACT, COMPARE, and MULTIPLY and DIVIDE. 
All belong to the data processing group.

Add and Subtract Instructions   There are five variations of the ADD and SUB
(subtract) instructions, as shown in Figure 3.8. Except in the case of the ADDA and 
SUBA instructions, all five flags are affected. The C and X flags are set to 1 if there is an 
overflow generated from the addition operation. Similarly, the C and X flags are set to 1 
if there is a borrow generated from the subtraction operation. The Z flag is set to 1 if the 
result of either of the operations is zero for the final operand. The N flag is set if the 
MSB of the result is 1. (Refer to Figure 3.2 for computation of the condition codes or 
flags.)

In the signed operations, the V flag is set to 1 when two positive numbers (MSB = 
0 in each case) are added and a negative result (MSB = 1) is generated, or vice versa. 
Similarly, the V flag is set to 1 when a positive number is subtracted from a negative 
number and a positive result is generated, or vice versa. These conditions are known as 
signed overflow. If the signed operations are not of interest, the V flag may be ignored. 
An example follows using the initial values of Figure 3.6.



*ln subtraction operations, the source subtrahend is converted into the twos-complement 
form and added to the destination minuend.

Compare Instructions There are five variations of the compare instruction, as indicated 
in Figure 3.9(a). The source operand is subtracted from the destination operand. The 
result is not stored, but is used to set or reset the flag bits in the condition code register 
(user byte of the SR). The processor uses this information to make decisions and control 
the program flow. The objective of the compare operation is to learn whether an operand 
has reached a particular value. The source and the destination operands (also called 
operand 1 and operand 2) are not affected in compare-type operations. Examples follow 
using the initial values of Figure 3.6.



Multiply, Divide, and Sign-related instructions These instructions are presented in 
Figure 3.9(b). The EXT instruction sign extends a byte to a word (EXT.W) or a word to a 
long word (EXT.L). The objective of this instruction is to increase the size of the operand 
without changing its arithmetic value. Some instructions (ADD, SUB, for example) 
require that both operands be of the same size for computations. The EXT instruction is 
used in such instances. Notice that the operand should be contained in one of
the data registers Dn.

The NEG instruction negates the operand. It subtracts the destination operand from 
$0 and puts the result back in the destination location. In effect, it performs a twos-
complement operation on the operand. The NEGX instruction includes the X flag in the 
computation. Data-alterable addressing modes are allowed for NEG and NEGX 
instructions. Examples follow using the initial values of Figure 3.6.

The MULS and MULU are the signed and the unsigned multiply instructions, re-
spectively. In the signed operations, the operands are considered to be signed binary 
integers. On the other hand, in the unsigned operations, the operands are considered to be 
unsigned binary integers. Similarly, the DIVS and DIVU are the signed and unsigned 
division operations, respectively. In the multiply and divide operations, the destination is 
always a data register Dn. In the multiply operations, the 16-bit source operand (S16) 
and the lower 16 bits of the destination Dn (D16) are multiplied, and the 32-bit product 
is transferred to the 32-bit destination Dn register (D32). Examples follow using the ini-
tial values of Figure 3.6.





Logic, Shift, and Rotate instructions

The basic logic instructions are presented in Figure 3.11. They are the AND, OR, EOR 
(exclusive OR), and the NOT instructions. They operate on the byte, word, and long-
word operands. Consider the two forms of the AND instruction:

AND Dn, <ea> 

AND <ea>,Dn

Either the source or the destination operand has to be in one of the data registers. If the 
source operand is in a data register, the destination <ea> is of the memory-alterable type. 
If the destination operand is in a data register, the source <ea> is of the data type. In the 
other variation of the AND instruction:

ANDI # <data>,<ea>

the source operand is the immediate data and the destination <ea> is of the data-alterable 
type. In all of these cases, the processor performs the AND operation between the 
corresponding bits of the source and the destination operands, with the result in the 
destination. If the destination <ea> is the SR, then it is a privileged instruction. The logic 
instructions affect only the N and Z flags. The N flag is set to 1 if the MSB of the result 
is 1 (negative number). The Z flag is set to 1 if the result is 0. There is no overflow in the 
logical operations; as such, the C and the V flags are always reset to 0. The X flag is not 
affected. However, if the operand is either the SR (status register) or the CCR (condition 
code register), all five flag bits are affected. The OR and the EOR instructions follow the 
same structure as the AND, but they perform the OR and the exclusive OR operations 
between the corresponding bits of the source and the destination operands, with the result 
in the destination. The NOT instruction performs logical inversion (ones-complement 
form) of the operand. The operand is specified by the data-alterable type addressing 
modes.

The shift and rotate instructions are presented in Figure 3.12. They are the ASL 
and ASR (arithmetic shift left and right), LSL and LSR (logical shift left and right), 
ROL and ROR (rotate left and right), and ROXL and ROXR (rotate left and right 
through the X (lag). Consider the three forms of the ASL instruction:

ASL Dx.Dy       ASL #<data>,Dy       ASL <ea>

The first two forms operate on byte, word, or long-word data operands. The destination 
operand is in one of the data registers. The destination operand is shifted left the number 
of times specified by the source operand. The shifted-out MSB goes into the C and X 
flag bits and 0 is shifted into the LSB for each shift operation. When the source operand 
is a data register, it can specify a shift number up to 64 (modulo 64). However, a shift 
count of 32 is sufficient to completely shift zeros into the register. When the source op-
erand is a data clement, the shift count is limited to 8. When an operand is shifted left





once, it amounts to multiplying the operand by 2. Thus, shifting left by 8 positions 

amounts to multiplying by 256: 28 = 256.
For the third form of the ASL instruction, the operand is in memory and is speci-

fied by the memory-alterable addressing modes. The operand size is a word and is
shifted once to the left.

The ASR instruction is similar to the ASL, but shifts the operand in the right di-
rection. The MSB is shifted back into itself to preserve the sign bit of the operand. The 
shifted-out LSB goes into the C and X bits.

In the arithmetic shift operations, the value and the sign bit of the operand can 
change. Furthermore, overflow can occur. As such, all five flags are affected.

The LSL and the LSR instructions are similar to the ASL and the ASR instruc-
tions. However, in case of the LSR instruction, 0 is shifted into the MSB of the operand 
and the LSB is shifted out for each shift. This amounts to dividing the operand by 2.

In case of the ROL instruction, the destination operand is rotated left the number
of times specified by the source operand. The MSB goes into the C flag and into the
LSB position, as shown in Figure 3.12. The ROR instruction is similar to the ROL, but
rotates the operand in the right direction. The ROXL and the ROXR instructions are
similar to the ROL and ROR instructions, but the former pair rotate the operands
through the X flag.

In the logical shift operations (LSL and LSR), and in the rotate operations through 
the X flag (ROXL and ROXR), the signed overflow concept is not required. As such, the 
V flag is reset to 0 and the other four flags are affected. Ir» the normal rotate operations 
(ROL and ROR), the X flag is not affected and the V flag is reset to 0. Only the other 
three flags are affected.

The following example problem provides a review of the logical operations.



The AND operation forces a 0 value to the selected bits in an operand. This is 
called masking. The OR operation forces a 1 value to the selected bits in an operand. 
The EXOR operation selectively inverts and checks the bits in an operand.

Shift and rotate operations are suitable in data processing and logical data manip-
ulation applications. In all cases, the operand is a complete data element. In several in-
stances, bit-level data manipulation is required.9

The MC68000 has bit-manipulation instructions with which to handle bit-level op-
erations more efficiently. We will now discuss these instructions.

Bit-Manipulation Instructions
The bit-manipulation group of instructions are presented in Figure 3.13. They are the 
BCHG (bit change), BCLR (bit clear), BSET (bit set), and BTST (bit test) instructions. 
In each case, the source operand specifies the bit number in a destination operand.10

With all four instructions, the specified bit is first tested and the Z flag is set or 
reset accordingly (Z = 1 if the tested bit is 0, and vice versa). This helps the programmer 
to identify the bit condition before any further bit manipulation. Only the Z flag bit
is affected in this group.

The BCHG instruction changes the logic value of the tested bit from 0 to 1, or vice 
versa. The BCLR instruction clears the specified bit. The BSET instruction sets the 
specified bit. The BTST instruction tests only the specified bit.

If the destination is a data register, then any of the 32 bits can be manipulated 
(modulo 32), as specified by the source operand. On the other hand, if the destination is a 
memory location, then the bit operations are restricted to 8 bits (or a byte). The des-
tination <ea> can be specified by the data-alterable addressing modes. The source op-
erand can either be a data register or an immediate data element. The word-sized oper-
ands are not supported in this group of instructions. In control and I/O type of applica-
tions, bit-manipulation operations are very common.

The following example will help to clarify the bit-manipulation instructions.

It is required to test bit 0, set bit 4, clear bit 6, and change bit 31 of the operand contained 
in the DO register, in the sequence stated.

1. Write a series of bit-manipulation instructions to perform this task.

2. What are the contents of the DO register and the flags after the task has been com-
pleted?

3. If bit-manipulation instructions are not available, what alternate software approach 
may be used to accomplish the task?



Solution

1. Bit-manipulation instructions: Figure 3.14(a) shows the binary (bit) representation 
in the DO register. Figure 3.14(b) shows a series of four bit-manipulation instructions 
to accomplish the task. In all of these operations only the Z flag is affected as indi-
cated. The BTST instruction tests bit 0 of the DO register, which is a zero. As such, 
the Z flag is set to 1. The BSET instruction tests bit 2, which is a zero, sets the Z flag 
to 1, and finally sets the tested bit to 1. The BCLR instruction tests bit 6, which is a 
one, resets the Z flag to 0 (since the tested bit is 1), and finally clears the tested bit to 
0.

The BCHG instruction tests bit 31, which is a zero; sets the Z flag to 1; and 
inverts the tested bit to 1. Thus, at the end of the instruction sequence, the DO register 
contains:

3. Alternate software: Logic and compare instructions must be used, involving an ad-
ditional sequence of instructions.

In addition to data movement, arithmetic, logical, and bit-manipulation instruc-
tions, program and system control instructions are required for implementing software 
programs using the 68000. We will now discuss these instructions.

3.4    PROGRAM AND SYSTEM CONTROL INSTRUCTION GROUPS

In programming applications, it is often necessary to change the program flow condi-
tionally or unconditionally. It is also occasionally required to stop the processor until an 
external event such as an interrupt occurs. In addition, it may be necessary to reset the 
system I/O resources under software control. The 68000 processor has appropriate pro-
gram and system control instructions to support these actions.11

Program Control Instructions

The general program and system control instructions are presented in Figure 3.15. These 
instructions, all of which support program flow, are classified into three types as follows:

Branch-Type Instructions These instructions refer to an effective address <ea>, where 

the next instruction is available. The <ea> is specified by the program counter relative 
addressing mode (d(PC)). The displacement is specified as a part of the instruction. If the 
displacement is 8 bits (d8), it is a short branch operation with a 256-byte range (-128 to 
+127). If the displacement is 16 bits (dl6), it is a long branch operation with a 64-
kilobyte range (-32 to +32 kilobytes). The displacement is added to the contents of the 
program counter (PC) to obtain the effective address. (Recall that the PC is incremented 
by two after fetching the op.word; this value should be used in the computation of the 
<ea> in all branch operations.)

Conditional branch instructions (Bcc) may or may not perform a desired func-
tion, depending on the current value of the processor's condition codes (or flags). 
Branching occurs if the specified condition is met, causing a change in the program





The original PC value (= $001318) is stored on the stack and 
the <ea> (= $001308) is loaded into the PC. The processor 
branches to the subroutine at $001308. This is a short branch, 
since the displacement is 8 bits. *$F0 in twos-complement 
form is a negative number (= -$10). The displacement is a 
negative value.

PC Instruction
$001362    BNE $06(PC)    Branch, if not equal to zero, to the <ea>. This is a conditional 

branch instruction. If the operand from the previous operation is 
not equal to 0, the program branches to <ea>; otherwise it 
proceeds to the next sequential instruction. <ea> = PC value + 
displacement

= $001364 + $06 = $00136A

Some assemblers support explicit extensions to distinguish between short and long 
branches and jumps. We will discuss these features in the next chapter when we deal  \ with 
assemblers and assembly programming techniques.

Jump-Type Instructions The JMP (jump) and the JSR (jump to subroutine) instructions 
are similar to the BRA and BSR instructions. However, in the case of the JMP and JSR, 
the <ea> can be specified by any one of the control addressing modes as well as by the 
PC relative modes.

Return-Type Instructions The RTE (return from exception) is the last instruction to be 
used in an exception service routine. It restores the registers (PC, SR) that were stored on 
the stack when the exception occurred, and returns to the program that was being 
executed at the time of the exception. RTE is a privileged instruction. RTR (return and 
restore) is similar to RTE, but RTR restores only the user byte (or the CCR) from the 
stack rather than the complete SR.

The RTS (return from subroutine) is the last instruction to be used in any subrou-
tine service routines. It restores the PC that was stored on the stack when the subroutine 
call was made and returns to the calling program.

System Control Instructions
These instructions control and coordinate system operation. The RESET instruction gen-
erates a reset pulse on the reset pin of the processor. In system control applications, this 
pulse is used to reset the I/O and the peripheral devices. The STOP instruction initializes 
the status register with the specified data element and stops the processor operation. The 
processor resumes its operation when a hardware interrupt or reset occurs. The RESET 
and the STOP instructions are privileged.

The NOP (no operation) instruction does not perform any task; rather, it advances 
the PC to the next instruction location. Software engineers and programmers use NOP 
instructions to fill sections of the program memory for short delays and for later replace-
ment by active instructions.

The ILLEGAL instruction corresponds to an op.word $4AFC. It causes an illegal   , 
instruction error exception. This exception simulates the illegal error condition in the 
development of the operating system software.

The following example problem provides a review of the program and system control 
group of instructions.

Example 3.6   Program and system control instructions.
Figure 3.17 illustrates 68000-based software in an industrial application. The system is in 
the supervisor mode and the SR contains $2400 initially (all the flags are zero).

1. What does the main program accomplish?

2. What does the subroutine accomplish?

Solution

1. Main program: It initializes DO with a data word $0008 and calls a subroutine at 
$00001030. After the program returns from the subroutine, it generates a reset pulse 
and stops the processor. When an external event such as an interrupt occurs, the pro-
gram advances to the JMP instruction, which makes the program jump back to 
$00001000 (start).

2. Subroutine: This is a delay loop. It decrements the word in DO by 1. If DO is not 
decremented to 0, the BNE instruction causes the program to branch back to 
$00001030, which is the beginning of the delay loop. The loop is terminated when 
the DO register is decremented to 0, and the program advances to the RTS instruc-
tion. The RTS causes the processor to return to the main program. For the values 
indicated, the delay loop runs seven times and exits the eighth time.



In the software of Figure 3.17, we used absolute numbers and hex values to specify 
displacements and the jump and branch operations. This enabled us to show the details of 
the program flow at the machine level. This approach can become tedious and inefficient, 
however, especially if the software contains many loops and conditions. Assembly 
language programming, in which numbers are represented by symbols, is a better 
alternative in developing the software. We will learn more about these programming 
techniques in the following chapter.
In addition to the instruction groups discussed, the 68000 has a special group of 
instructions to support multiple register transfers, linking and unlinking of the stack, 
multiple decision schemes and software interrupts (traps). These complex instructions 
will be discussed in later chapters, after assembly programming concepts are introduced. 
The instruction execution time is another important parameter. It specifies the actual time 
of execution of an instruction including calculation of the <ea> and obtaining the 
operands. We will now present these concepts.

3.5    INSTRUCTION TIMING CONSIDERATIONS

The 68000 is activated by a clock signal (4- to 12-MHz range). Instruction time refers 
to the time required to execute an instruction without any wait states. The fundamental 
unit of time is the processor clock cycle time (T). When the 68000 reads the op.word 
from the program memory, or reads the operands from memory or I/O, it is referred to as 
the read bus cycle. Similarly, when the processor writes the operands into the memory 
or I/O, it is referred to as the write bus cycle. The bus cycle in general may be a read or a 
write bus cycle.

Read/Write Timing
A typical bus cycle takes four clock cycles (or four T-states). The op.word fetch is al-
ways a read operation and takes one read bus cycle. Depending upon the instruction, the 
processor may perform further read operations (to obtain operands) and write operations 
(to write operands). In case of the 68000 and 68010/12 processors, each bus cycle in-
volves a 16-bit data transfer. In case of the 68008, each bus cycle involves an 8-bit data 
transfer (due to an 8-bit data bus). The instruction timing is specified in terms of the total 
number of T-states and the associated read/write bus cycles.

Instruction Timing Computation
Consider the T(R/W) values shown in Figure 3.18 for the 68000. In case of the 
MOVE.W D1,D2 instruction, only the op.word needs to be fetched from the external 
memory, which involves one read operation. The source and the destination operands are 
within the processor; hence, the instruction does not need any further read or write bus 
cycles. Thus, the T(R/W) values are 4(1/0). In case of the MOVE.L (A1),(A2) in-

struction, the processor has to perform the op.word fetch and two more read operations 
of the memory to obtain the long-word source operand at the location addressed by the 
contents of Al. In addition, the processor has to perform two write operations to write the 
long word at the destination location addressed by the contents of A2. Thus, there are 
three read and two write bus cycles, corresponding to 20 T-states. The T(R/W) values 
are 20(3/2).

In case of the MOVE.B -(A3),D6 instruction, the processor has to perform the 
op.word fetch and one more read operation of the memory to obtain the byte operand 
from the source <ea>. The source <ea> is the predecremented A3 and involves address 
computation. The 68000 usually takes two additional T-states to perform the <ea> 
computation. There is no memory write cycle involved, since the destination operand D6 
is within the processor. Thus, the T(R/W) values, including the computation time for the 
<ea>, are 10(2/0). If the computation time overlaps some other processor activity in the 
instruction, the additional T-states are not required. (See Appendices B and D for the 
T(R/W) values for 68000 instructions.)

We will now present an example problem to review instruction timing.

Example 3.7   Instruction timing.
The software of Figure 3.17 is repeated with the T(R/W) values indicated in Figure 3.19.

1. Explain the T(R/W) values for the JSR, RESET, BNE, and RTS instructions. (Obtain 
information from Appendices B and D.)

2. If the 68000 is operating at an 8-MHz clock, compute the execution time for the de-
lay subroutine.

Solution

1. JSR $00001030: The processor fetches the op.word and performs two more read op-
erations to obtain the address operand $00001030. It stores the PC in the main routine 
on the stack, which takes two write operations, before going to the subroutine. Thus, 
the T(R/W) values involve three read and two write bus cycles and 20 T-states. The 
T(R/W) values = 20(3/2).



RESET: The processor needs to fetch only the op.word, involving only one read bus 
cycle. However, the reset pulse is held active for 128 T-states, resulting in T(R/W) 
values = 132(1/0).

BNE FA(PC): The processor fetches the op.word, computes the <ea>, and fetches 
the new op.word at the branched location, if the branch is taken. This involves two 
read bus cycles and address computation, resulting in T(R/W) values = 10(2/0). If the 
branch is not taken, the computed <ea> has to be recomputed to the original value. 
Thus, only one op.word fetch and two computations are involved, resulting in T(R/W) 
values = 8(1/0).

RTS: The processor fetches the op.word, performs two more read operations to ob-
tain the stored PC from the stack, and fetches the new op.word from the new PC 
location. This involves four read bus cycles, resulting in T(R/W) values = 16(4/0).

2. Execution time: The delay timing loop between the NOP and the BNE instruction 
runs seven times (refer to Example 3.6) until DO is decremented to 0. The loop exists 
the eighth time. The computation of the execution time is as follows:

The 68008 timing computation is similar, except that the read and write bus cycles 
transfer a byte of data instead of a word as in the 68000. This makes the 68008 instruc-
tion fetch and execution times (for word and long-word operands) twice as long as in the 
case of the 68000.

3.6    SUMMARY

In this chapter we examined the instruction set of the 68000. It has 56 generic instruc-
tions, some of which have several variations. These instructions follow a consistent 
structure. The same mnemonic representing an instruction can be used with appropriate 
attributes and extensions to refer to different operand sizes and addressing modes.



Some of the instructions for the 68000 are of the single-operand type. In such 
cases, the specified operand is the destination operand on which the given operation is 
performed. Other instructions are of the double-operand type in which the first operand is 
the source operand and the second is the destination operand. The final result is put in the 
destination.

The 68000 instruction set is subdivided into several groups: data movement, binary 
and BCD arithmetic, logical and bit-manipulation, program and system control, and 
special category.

Data movement instructions deal with the physical movement of the data operands. 
The binary arithmetic instructions deal with the binary arithmetic and data processing. 
The BCD instructions deal with decimal numbers. The binary operations are faster than 
the BCD operations. In the multiprecision arithmetic type of operations, the extend (X) 
flag bit is used to carry the result from the previous operation to the current operation.

The logical instructions deal with logical data manipulation and assist data pro-
cessing operations. The bit-manipulation instructions deal with bit-level data manipula-
tions, which are very useful in I/O applications in which a single bit must be tested or 
changed.

The program control instructions deal with conditional and unconditional control 
of the program flow. These instructions are particularly useful in controlling loops, call-
ing subroutines, branching to specified locations on condition, and branching or jumping 
to specified locations unconditionally. For conditional transfers, the instruction checks 
the corresponding flag bits and makes the decision for a transfer.

The system control instructions deal with system functions, such as stopping the 
processor, resetting the peripherals, and so forth. These instructions are used at the op-
erating system level to control and synchronize system operation. In order to enhance 
efficiency of the operating system activity, certain instructions dealing with the status 
register and the stack pointers are classified as privileged instructions. These should only 
be used in the supervisor mode. To do otherwise results in an error condition causing the 
processor to go into the supervisor mode.

Instruction timing is a very important parameter. The read or the write bus cycle 
takes four clock cycles (T-states) without any wait states. The op.word fetch is always a 
read bus cycle. An instruction may consist of several read and write bus cycles. The 
execution time of a program is the compounded execution time of the instructions and 
the program loops.

Assembly language programming, which will be covered in the next chapter, is a 
better way to develop software than using absolute numbers and hex values.

PROBLEMS

Note: All the problems in this section can be reworked using the 68008 processor to compare its 
performance with that of the 68000.

3.1 Which of the following instructions are valid and which are not valid? Give the reason.

(a) MOVEA.L A1.A3
(b) MOVE.W (A1),D0
(c) MOVE.B -(D2),D3

3.2 How many words are each of the following instructions? Give the reason.

(a) MOVE.L #$1234098A,D6
(b) EXG A2.D4
(c) SWAP D3

3.3 Write mnemonic instructions for the following:

(a) move byte in DO into memory addressed by A2;
(b) move byte in memory addressed by A2 into D3;
(c) move long word in memory addressed by A3 into D3;
(d) move long word in D3 into memory addressed by A2.

3.4 Consolidate (a) and (b) of Problem 3.3 into one instruction, if possible. Is this more 
efficient? Why of why not?

3.5 Consolidate (c) and (d) of Problem 3.3 into one instruction, if possible. Is this more 
efficient? Why or why not?

3.6 Which of the following forms are allowed and which are not allowed for the ADD and 
SUB instructions? Give the reason.

(a) ADDQ.L #$0F,D4
(b) SUBI.L #$0034567C,A7
(c) ADDX.B -(A3),-(A1)
(d) SUB.B 0A(PC),D2

3.7 How many words are each of the following instructions? Give the reason.

(a) ADDX.L -(A2),-(A3)
(b) ADD.L$123C(A1,D1.W),D0

3.8 Using the information from Figure 3.4, classify each of the following addressing modes:

(a) immediate addressing mode;
(b) quick addressing mode;
(c) d(PC,Rn);
(d) An.

3.9 Which of the following instructions is likely to generate an error? Why?

(a) SUB.W $1235,DO
(b) MOVE.W #$2400,SR

3.10 Indicate the results of the affected registers and memory after each of the following
operations using the initial values of Figure 3.6:

(a) MOVE.L (A1),(A0)+
(b) ADDQ.W #$07,D0
(c) ADD.W -(A1),-(A1)
(d) SUB.W (A1)+,(A1)+

3.11 Repeat Problem 3.10 on condition that the instructions are used in sequence.





Objectives

In this chapter we will study:

Assembly-level programming techniques for the 68000 

Concepts of software design and implementation 

Practical program development and applications 

Concepts of macros and programs with macros Special 

instruction groups and applications



4.0    INTRODUCTION

The required software for the 68000 microprocessor can be easily developed using as-
semblers and cross assemblers. Assembly language programs use the instruction mne-
monics of the processor. Assemblers and cross assemblers are software utilities that 
convert assembly language programs into the appropriate form of machine code, con-
sisting of binary Is and 0s. Programs written in assembly language are usually more 
efficient with respect to code content and execution time than programs written in such 
higher level languages as BASIC, FORTRAN, PASCAL, and C; however, the higher 
level languages do provide programming ease. Industrial and I/O application programs 
are often written in assembly language. Assembly language programming requires a 
complete understanding of processor architecture, addressing modes, and the instruction
set.1

Software usually refers to programming techniques that take into consideration 
system hardware resources and optimization of code content and execution time. Pro-
gramming refers to code development to accomplish a given task. The terms software 
and programming are used interchangeably in most industrial circles; however, for pur-
poses of this text, we will maintain the distinction between these terms.

Study of assembly language techniques and software considerations will provide 
the knowledge and background necessary to develop assembly language programs and 
software on 68000-based systems.

Most of the programs in this chapter are suitable for any 68000-based hardware; 
thus, our discussions are independent of specific hardware.

4.1 ASSEMBLY LANGUAGE SOFTWARE 
AND PROGRAMMING TECHNIQUES

It is impractical and tedious to use actual addresses and instruction codes in developing 
assembly programs. Symbols and labels can be used in place of the actual addresses if 
assembler utilities are available.2

Assembler, Cross Assembler, Linker, and Loader Utilities
Figure 4.1 illustrates a software system configuration using a host computer, an emula-
tor, and a 68000-based target system. The software development is done on the host 
system and the code is downloaded to the target system for the actual operation.

In Figure 4.2 the various steps involved in the software development process are 
indicated. The assembly-level program is developed with the help of an editor or word-
processor utility, and is known as the source program. The source program file usually 
has an extension (.src); for example, TEST.SRC is the source file in Figure 4.2. After 
correcting any typing errors, the source program is run through the assembler or the 
cross-assembler utility.

Assemblers and Cross Assemblers These are the software utilities that convert a 
program in assembly language into the corresponding machine code. The machine-code 
program is also known as the object code. The corresponding file is TEST.OBJ. If the 
host computer has the same processor as the target system, the assembler utility is used. 
On the other hand, if the computer has a processor different from that of the target sys-
tem, the cross-assembler utility is used. The assembler and the cross-assembler utilities 
are similar to each other in function. They also generate a list file (TEST.LST) contain-



ing the machine code, the instruction mnemonics, symbols, labels, and the translated 
addresses and numbers. This file is very useful in debugging the programs.3

Linkers and Loaders The linker utility provides absolute addresses for the machine-code 
programs in the real operating memory environment of the target system. It also links 
several machine-code programs, if necessary, and provides an absolute file 
(TEST.ABS).

The loader utility provides the required format for the absolute file to be down-
loaded into the target system. For the 68000 family of processors, this is usually the 
Motorola-S format. Another common format is the INTEL-Hex format.

Writing Assembly Programs and Software Development

Most currently available assembler and cross-assembler utilities are of the two-pass type. 
In the first pass, symbols and labels in the assembly source program are converted into 
the corresponding numbers and displacement values. In the second pass, these numbers or 
values are substituted for the existing symbols and labels, and the machine-code file is 
generated. Present-day assembler and cross-assembler utilities are able to identify syntax, 
instruction, and operand errors at the time of assembly and display them. These errors 
then can be corrected and the assembly process repeated.

In developing the source program, assembler directives can be used. These direc-
tives are a set of commands associated with the assemblers and cross assemblers. We 
will introduce those directives typical of most assemblers or cross assemblers. For infor-
mation on additional directives, appropriate manuals may be consulted.4

Figure 4.3 illustrates the assembly source program (TEST.SRC). In Figure 4.4 the 
assembled program listing (TEST.LST) is presented. In the discussion numbers in square 
brackets [ ] refer to the bracketed numbers in the figures, which correspond to important 
assembler directives or events.

[1] Comment directive: Usually a delimiter such as a semicolon (;) is used as an as-
sembler comment directive to introduce the comments. The comments are provided to 
explain the program flow. The assembler will not generate any machine code for a com-
ment, but will include the comment statements in the list file.

The preceding comment statement is listed in the assembled program listing, but it is 
not assembled to machine code.

[2] LLEN and OPT directives: These are the line length and the option directives, 
which specify the printer line length and any specific options. In our example, the line 
length is set at 108 columns. Option A generates an absolute file after the linker opera-
tion.

[3] ORG directive: This is the origin directive. It specifies the starting address of the 
assembled program.





Since the preceding example was used primarily to review the assembly process, 
we did not focus on analyzing the program. This analysis would prove useful to the 
reader to enhance understanding of software development.



Programming and Software Engineering Considerations

From a programmer's point of view, the program in Figure 4.4 is a 33-line program, 
including comments and declarations. Programmers may not be concerned about mem-
ory appropriations and code content. On the other hand, software engineers would make 
sure that appropriate memory was allocated for the buffer. For example, they would ex-
amine lines 32 and 33 of the listed program to ensure that the 128 words of memory 
space was allocated. This may be done in the following way:

which is the requested memory space for the buffer.
Similarly, software engineers also would be concerned about whether the entire 

program was on the even boundaries and whether the entire code content was correct. 
Although there are some traditional distinctions between programmers and software en-
gineers, these distinctions are rapidly vanishing as technologies continue to advance.

4.2    DATA MOVEMENT, DATA-COMPARISON 
SOFTWARE, AND APPLICATIONS

The majority of operations in any computer system deal with data movement between 
two or more locations. For example, in a file-management system, data from one section 
of memory may be moved into another section. Data rearrangement involves extensive 
data-comparison procedures, which we will now examine.

Block Transfer Applications and Software Considerations

The basis for any data movement operation is the block transfer. It usually involves two 
pointers: the first refers to the starting address of the source block and the second to the 
starting address of the destination block. In addition, there is a loop counter, which keeps 
track of the number of data elements being transferred.

Figure 4.5 shows a typical block movement sequence written as a subroutine. DO 
is chosen as the loop counter and is initialized to $100 at line 10. Al is the source pointer 
and A2 is the destination pointer. They are initialized to $00004000 and $00006000 at 
lines 11 and 12. The program loop between lines 16 and 18 transfers successive long 
words from the source block to destination block, until DO is decremented to zero. In 
this case, the number of long words transferred are $100 or 256. At the end of the 
successful block transfer, the software returns to the calling program by means of the 
RTS instruction at line 19.



Data-Sequencing Applications and Software Considerations

In industrial and commercial applications, it is often required to arrange data either in 
ascending or descending order. This is accomplished by comparing the data elements and 
appropriately positioning them. The 68000 predecrement and postincrement addressing 
modes are particularly useful in such applications. Figure 4.6 illustrates data-sequencing 
software as a subroutine. We will now analyze and interpret the results.

FIGURE 4.6   Data-sequencing and sorting software for a typical 68000-based system. 
(Courtesy of Motorola, Inc.)

AO contains the starting address of the string where the highest valued data ele-
ment should be put. The next highest memory locations contain the sequentially de-
creasing values of the string. Al contains the ending address of the string. At line 12, the 
original value of the AO register is stored in A2 for later reference. At line 16, the



stored value of AO is restored. At line 17, two successive words of the string are com-
pared to each other. At line 18, the subroutine branches to the EXCHG routine if the 
second word is larger than the first. If the words are in proper order, the program pro-
ceeds.

At line 19, AO is decremented by two. This adjusts AO for comparison of the next 
two sequential locations. At line 20, AO is compared with Al to check whether it is the 
end of the string. If it is not the end of the string, the program branches back to line 17 
(label NXTPR) to start the next comparison. If it is the end of the string, the program 
returns to the calling program by means of the RTS instruction at line 22.

The EXCHG software module is contained between lines 24 and 27. It obtains two
sequential words as a long word into DO, swaps them, and puts them back in memory. 
This has the effect of exchanging the words. When this happens, the program branches 
back to the very beginning (line 16, labeled BGAGN). This will restart the data 
comparison process. When the routine returns to the calling program, the data string is 
completely adjusted so that the highest valued element is in the lowest memory location.

The following example problem considers software and timing in the data-
sequencing subroutine.



Multiprecision Addition and Subtraction Operations

Instructions employing the extended carry X (such as ADDX, SUBX) can be used to 
conduct multiprecision operations on binary data strings. For BCD operations, the X 
carry bit is always involved. In multiprecision operations, the least significant data ele-
ments are operated upon first (generating X carry). The next higher data elements are 
then operated upon, taking into consideration the previously generated X carry bit. The 
process continues until all data elements in the data string are operated upon.

Figure 4.9 illustrates a multiprecision binary addition program used in a data pro-
cessing application. The source and the destination data strings are addressed by the Al 
and A2 registers, respectively. The Dl and D2 registers are used as working registers.

From line 12 to line 14, the X carry bit and the Dl and D2 registers are cleared and 
initialized to zero. From line 17 to line 19, the two data strings addressed by Al and A2 
are sequentially added, along with the X bit, using the predecrement addressing mode. 
A3 contains the ending address of the destination string.



There are some important software considerations in the preceding example. Even 
if long-word operations are more efficient than word operations, they cannot be done 
correctly if the operation involves an odd number of words. Similarly, if an odd number 
of bytes needs to be added, the corresponding instructions should be byte oriented rather 
than word or long-word oriented.

If the ADDX.W -(A1),-(A2) instruction at line 17 is replaced by the SUBX.W —
(Al), — (A2) instruction, the same software will perform multiprecision subtraction 
operations.

The X bit should always be cleared initially when dealing with operations of the
multiprecision type.

Multiplication and Division Operations

The 68000 microprocessor has signed and unsigned multiply and divide (MULS, 
MULU, DIVS, DIVU) instructions. The destination is always a data register Dn. Mul-
tiplication of two 16-bit unsigned operands results in a 32-bit unsigned result in the des-
tination data register. The unsigned operands can be up to 65535 (216 — 1) and the result 
can be up to 4,294,836,225 which is slightly less than 232. In signed multiplication, the 
multiplier and the multiplicand operands can be positive or negative and can range 
between -21S and +215 - 1 (or between -32768 and +32767). The largest positive or 
negative result can be up to plus or minus 230. The negative result is expressed in twos-
complement notation. Since there is no possibility of obtaining any result beyond the

32-bit size, the carry and the overflow flags are always cleared to zero in multiplication 
operations. The N and Z flags are affected, based upon the result.

Division of a 32-bit destination operand (dividend) by a 16-bit source operand (di-
visor) results in a 16-bit remainder and a 16-bit quotient. The remainder and quotient 
occupy the upper and the lower 16-bit word positions of the 32-bit destination data reg-
ister, respectively. The distinction between signed and unsigned division operations is 
similar to the distinction between signed and unsigned multiplication previously dis-
cussed. With division operations, it is possible to generate a quotient larger than the 
allowed 16 bits. In this circumstance, the overflow flag V will be set to indicate the 
overflow condition. Similarly, if division by 0 is performed, a zero-divide TRAP error 
will result.

In Figure 4.11, multiplication and division software is presented as a subroutine in 
a digital signal processing application. P, Q, and R are unsigned words contained in





4.4    SPECIAL INSTRUCTION GROUPS AND APPLICATIONS

The instruction set of the 68000 family of processors also includes multiple-decision in-
structions (DBcc). There are several instructions related to stack and address operands, 
such as LINK, UNLK, PEA, and LEA. There are also instructions to move multiple 
registers (MOVEM) and move peripheral data (MOVEP). In all of these cases, a single 
instruction performs multiple operations. This provides programming convenience and 
improves memory utilization.6'7

Multiple-Decision Instructions
Figure 4.12 illustrates the sequence of multiple-decision instructions (DBcc). These in-
structions are used to control loops. Upon entering the DBcc instruction loop, the spec-
ified condition is checked. If the condition is true, the program exits the loop and pro-
ceeds to the next instruction in the sequence. If the condition is false, then the specified 
data register is decremented and is checked to see whether it is less than zero (= — 1). If 
it is less than zero, the program exits the loop and proceeds to the next instruction in the 
sequence. Otherwise, the program branches to the specified location. Operands decre-
mented in Dn are of word size.

Figure 4.13 consists of a string-compare program using the DBcc instruction
scheme. At line 13, the Z flag is set to a 1 condition. This corresponds to a false
condition for the DBNE instruction (decrement and branch if not equal to zero). At
line 14, two string operands addressed by (A0)+ and (Al)+ are compared. At line 15,
the DBNE instruction checks whether or not the BNE condition is true (BNE true
leaves Z flag = 0). BNE true implies that the two operands are different. If BNE is
true, the program exits the DBNE loop and proceeds to the next instruction (NOP at
line 16). 1



2. Memory between $4000 and $4FFE is loaded with words $0000; between $5000 and 
$6000 it is loaded with words $AAAA. Repeat (1) using the same initial values for 
Dl, A0, and Al.

Solution
1. DBNE loop termination: Memory between $4000 and $6000 contains word patterns 

$AAAA. As such, the comparison of memory addressed by A0 and Al renders the 
BNE condition false (since the data strings are the same). The program loops between 
lines 14 and 15 until the Dl word is decremented below zero (to -1). At that point the 
DBNE loop is terminated.

Dl is decremented by $FF + $01 = $100 = 256 times to get to -1. Thus, the loop 
is run $100 times. Due to the long-word access and the postincrement addressing 
modes, the A0 and Al registers are incremented by 4 x $100 = $400, to $4400 and 
$5400, respectively. The final contents of the registers are

Any other data register, or any other branching condition (DBEQ, DBGE, and so 
forth) can be used in the DBcc instruction. However, it is important to note that the 
appropriate flag bits must always be preconditioned to render the DBcc condition false at 
the start of the loop.

Address, Stack, and Multiple-Movement Instructions

The LEA (load effective address) instruction moves a 32-bit address operand into an 
address register An. The PEA (push effective address) instruction stacks a specified 32-
bit address operand. Both of these useful instructions do not affect the flags.

The LINK (link) instruction creates a work area on the stack and defines one of the 
address registers as a frame pointer (FP). This pointer is used to address the work area 
on the stack. The UNLK (unlink) instruction effectively removes the work space from 
the stack. The LINK and UNLK instructions are very useful in linking and unlink-

ing the stack area in a multitasking environment in which several tasks are run by the 
processor, as scheduled by the operating system.

The MOVEM (move multiple registers) instruction moves data between the spec-
ified data (Dn) and address (An) registers and the memory, or vice versa. For register-to-
memory transfers, control-alterable and predecrement addressing modes are allowed. For 
memory-to-register transfers, control-alterable and postincrement addressing modes are 
allowed. The data transfers take place in the sequence indicated below. For example, in 
the predecrement addressing mode, the first data transfer involves the A7 register and the 
last data transfer involves the DO register.

The MOVEP instruction moves data between a specified data register and alternate 

even or odd bytes of memory, or vice versa. This instruction is very useful when dealing 
with 8-bit peripherals attached to the 68000 microprocessor. The memory can be 
addressed by the ARI with displacement addressing mode in the MOVEP instructions.8

Figure 4.14 illustrates a typical multitasking type of software. At line 6, the actual 
address corresponding to TABLE is loaded into the Al register. At line 7, the PC relative 
addressing mode is used, and the offset corresponding to TABLE is loaded into the A2 
register. At line 8, the contents of A2 are pushed to the stack.

The MOVEM instruction at line 9 moves the sequential word contents of memory 
addressed by Al into the Dl, D2, D3, and D4 data registers. The MOVEM instruction 
always follows a scanning order (D0-D7, A0-A7), regardless of the order in which they 
arc specified. The first register to be moved (in or out) is DO, then Dl, and so on until 
A7. Thus, the specified registers are first matched with the set sequence, and then the 
data movement operation is conducted.

The LINK Al, #—$0C instruction at line 13 performs several sequential operations 
as follows:

1. Stack Al: Stack contents of Al. SP decrements by four.

2. SP --> Al: Move contents of stack pointer (SP) into Al. This effectively links the stack 
to Al. Al is now referred to as the frame pointer.

3. (SP-$0C) -> SP: Displace the SP by the specified amount of displacement (-$0C). 
This amounts to creating $0C (12 bytes) of work space on the stack.

The MOVEM.W D1-D4, -$8(A1) instruction at line 14 puts word operands from 
the Dl, D2, D3, and D4 registers in the newly created work area on the stack. This 
amounts to passing parameters Dl, D2, D3, and D4 to the other routines via the stack 
work area.







Several MACROS can be defined and used in the same program. A program writ-
ten with MACROS is easy to read and follow. Most software engineers now use 
MACRO functions extensively. It is necessary to be aware, however, of the amount of 
program space available when using MACRO functions. MACRO directives are depen-
dent upon the assembler. Even though most of them are similar, an assembler manual 
should be consulted for details on MACRO directives.

4.6    SUMMARY

In this chapter, we introduced the assembly programming techniques with which to write 
68000 assembly programs. Assemblers for the 68000 family of processors are available 
from several vendors. Most of the assemblers have similar directives. If the host com-
puter has a different processor from the one for which the code is written, a cross as-
sembler is used. Programs written in assembly language usually execute faster than pro-
grams written in such higher level languages as BASIC, FORTRAN, PASCAL, and C.

Assembler directives help in program development. In assembly language pro-
gramming, symbols and labels are used in place of numbers and addresses. This greatly 
increases the readability of the programs. Symbols are usually specified at the beginning 
of the program to declare constants, address values, and variables. Labels are used 
within the body of the program.

Assembly-level programmers should be aware of different forms of instructions 
and addressing modes. They should be also familiar with the register resources and flag 
structure of the processor.

Most programming applications deal with some type of data movement, associated 
data processing, and decision making. The decision-making capability of the processor is 
used in program control applications. The software and the programming applications 
wc considered in this chapter focused on program control.

Software engineers are programmers who are not only concerned with program-
ming per se, but also with hardware resources, code integrity, execution timing, and 
optimization of the operating system.

Instructions such as DBcc, LINK, UNLK, MOVEM, and MOVEP are complex, 
each performing several operations. Use of these instructions makes for shorter, more 
efficient programs.

A MACRO is an assembler utility. A MACRO-function generation is a preproces-
sor step in the assembly process that may result in a sequence of processor instructions. 
When a MACRO function is used, the corresponding program code is substituted. The 
execution of a MACRO function does not involve any stacking operations; hence, it is 
taster than the execution of a subroutine. A MACRO function, however, uses more code 
memory.





4.22 Rewrite the software in Figure 4.14 replacing the LINK and UNLK instructions with
equivalent instructions to accomplish the same task.

Which software—with LINK and UNLK or without—is more memory efficient? 
Why?

4.23 The LINK Al, #-$0C instruction at line 13 of Figure 4.14 is replaced by LINK Al,
#-$10.

(a) Describe the corresponding modification for the UNLK Al instruction.
(b) Indicate the contents of the stack while the software is being executed.
(c) State the values of the Al, A2, and A7 registers after the LINK instruction is 

executed.
(d) State the contents of the Al, A2, and A7 registers after the modified UNLK 

instruction is executed.

4.24 Why are MACRO functions useful? Is there any limit to how many MACRO functions can 
be used? Explain.

4.25 Write a single MACRO function called CLEARD to clear all 32 bits of all the data 
registers.

4.26 Write a single MACRO function called CLEARA to clear all 32 bits of the A0-A6 
address registers. (Note: Address registers cannot be directly cleared!)

4.27 A MACRO function called INIT uses ten 68000 instructions and occupies 32 words of 
program memory space. In a control system software application, the INIT function is used 
eight times with different parameters passed. When the software is assembled, how much 
program space is occupied by all the MACRO functions? Explain.
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5.0 INTRODUCTION

An exception is a deviation from the normal processing sequence. The 68000 processor 
operates in the supervisor mode to handle exceptions. The supervisor mode is entered 
into automatically whenever the 68000 senses and services an exception routine request. 
An exception may be caused by an external hardware condition, an internal instruction, 
or an error condition.

Reset and interrupts are two exceptions caused by the system hardware. Internally 
generated exceptions include instructions, such as TRAPs and CHK, as well as error 
conditions, such as address error, bus error, privilege violation error, illegal instruction 
error, and zero-divide error. Other conditions, such as the TRACE mode of operation, 
also cause exceptions. The processor follows a specific sequence of operations in han-
dling these exceptions.

Study of the exception processing concepts presented in this chapter will provide 
the necessary background to handle exception conditions in the 68000 family of proces-
sors. It will also help explain the user and supervisor modes of operation. The concepts 
apply to all 68000- and 68008-based systems; hence, no specific mention is made of the 
68008. Exception processing for the 68010 and 68020 processors is similar to that for 
the 68000 processor. Due to additional resources and virtual memory schemes, however, 
exception processing for the 68010 and 68020 includes extra features. These features 
will be discussed in later chapters.

5.1 GENERAL CONCEPTS OF EXCEPTION PROCESSING

Exception processing is a privileged mode of operation in which the 68000 microproces-
sor operates in the supervisor mode. In this mode, the S bit in the status register is set to 
1 and the SSP (supervisor stack pointer) controls the stack. Figure 5.1 indicates the 
68000 exceptions with their established priority scheme and the relative timing for rec-
ognizing and starting the exception processing. Group 0 exceptions have the highest pri-
ority; Group 1 exceptions, the next highest; and Group 2 exceptions, the lowest priority. 
Within Group 0, the reset exception has the highest priority.

The Exception Vector Table and Exception Vectors

Exception vectors refer to memory locations from which the processor fetches the ad-
dress of a routine to handle the exception. All exception vectors correspond to a long 
word. There are up to 256 such vectors, occupying 1 kilobyte of memory between 
$000000 and $0003FF. This dedicated memory is called the vector table.1

The vector table for the 68000 is presented in Figure 5.2. The two reset vectors, 0 
and 1, are in the supervisor program space; all other vectors are in the supervisor data 
space.

Reset Exception Processing

Figure 5.3 illustrates the reset exception processing sequence. Reset is a hardware-
activated input to the processor. The reset exception initializes the system; hence, the 
processor does not copy or store any information before starting reset exception process-
ing, as it does for other exceptions. On power-up reset, the processor goes into the su-
pervisor mode, turns the trace condition off, and sets the interrupt mask level at 7 (high-
est). This is a cold start of the system. Reset input can also be activated by a pushbutton 
while the processor is running. In this case, the processor suspends current activity at the 
end of the clock cycle and reinitializes the system. This is referred to as a warm start. A
cold start requires system stabilization and requires more time than a warm start.

In either case, the processor fetches the contents of vector 0 at location $000000 
from the vector table and loads them into the supervisor stack pointer (SSP). It fetches 
the contents of vector 1 at location $000004 from the vector table and loads them into 
the program counter (PC). The processor then executes the reset exception routine be-



ginning at the location addressed by the PC. These two reset vectors are contained in the 
system ROM to retain their values when the power is shut off.2

If a bus error condition occurs while fetching vectors 0 or 1, the processor encoun-
ters a double bus fault condition and goes into a halt state. The hardware has to be de-

bugged before the processor can be restarted. Hardware details relating to the reset, halt, 
and error conditions will be discussed in subsequent chapters.

General Scheme of Exception Processing

As previously mentioned, exception processing is carried out in the supervisor mode. 
When an exception (other than the reset) occurs and is recognized, the processor sus-
pends current execution as indicated in Figure 5.1. It makes a copy of the current status 
register (SR) to retain the original contents. If the processor is already in the supervisor 
mode due to an earlier exception, it continues in that mode to service the current excep-
tion. However, if the processor is in the user mode, it moves into the supervisor mode to 
service the current exception. For exception processing, the stack used is the supervisor 
stack.3

The general exception sequence is presented in Figure 5.4. After setting the S bit to 
1 for the supervisor mode, the trace condition is turned off (T = 0). For interrupts, the 
interrupt mask level is set to the new value. The processor stacks the current PC and the 
copied SR. For address and bus error exceptions, additional processor information is 
stacked. The processor then fetches the appropriate exception-vectored address from the





Interrupt processing is similar to general exception processing. On recognizing the 
interrupt, the processor suspends current activity at the end of the instmction and makes 
a copy of the status register. The processor sets the S bit to 1 and moves into the super-
visor mode. It then sets the interrupt mask level to a new value corresponding to the 
interrupt being recognized. The processor stores the current PC and the copied SR on the 
supervisor stack. The stored PC points to the next instruction to be executed in the 
suspended routine. The processor then fetches the appropriate interrupt-vectored address 
from the vector table and begins the interrupt exception processing starting at that vec-
tored address.

Autovector and User Vector Methods

There are two methods, known as the autovector method and the user vector method, to 
obtain the interrupt vectors and service the interrupting device. In response to the IACK 
signal from the processor, the interrupting I/O device generates the /VPA signal for the 
autovector method, or the DTACK signal for the user vector method.

In the autovector method, the processor obtains the address for the interrupt ser-
vice routine directly from the vector table. Vector 25 corresponds to a level 1 interrupt 
and vector 31 corresponds to a level 7 interrupt. The processor reads the contents of the 
appropriate vector location and loads them into the PC. It begins the interrupt exception 
routine starting at that address.

In the user vector method, an interrupting device provides an 8-bit user vector
number Vn (vector numbers 64 through 255) on the data bus D0-D7. The processor 
reads this vector number and configures the vector location by multiplying the vector 
number by 4. The processor reads the contents of this location and loads them into the 
PC. It then begins the interrupt exception routine starting at that address.

A higher level interrupt can always interrupt a lower level interrupt. The processor 
suspends the lower level interrupt, services the higher level interrupt, and then resumes 
the suspended interrupt processing. Interrupts are nested and serviced in this manner.6

The following example problem provides a review of interrupt exception process-
ing.

Interrupt Mask Levels
The 12, II, and 10 bits of the system byte in the status register specify the interrupt 
mask level. A higher level interrupt than the mask level can interrupt the processor and 
be recognized. Any interrupt lower than or equal to the mask level will not be recog-
nized; it is effectively masked out. The interrupt mask level is automatically adjusted to 
the interrupt level that is being recognized and serviced.

Interrupts 1 through 6 are maskable. Interrupt 7 is a nonmaskable interrupt 
(NMI). Even if the mask level is at 7, if an interrupt 7 occurs and satisfies the timing 
requirements, the processor must recognize and service it. When an interrupt is recog-
nized, the processor generates an interrupt acknowledge cycle by activating the appro-
priate address lines (A1-A23) and the function code outputs FC2, FC1 and FCO.

An external decoder decodes this cycle and provides the corresponding interrupt 
acknowledge signals (IACK1-IACK7) to the interrupting devices. Hardware and timing 
details of these signals will be discussed in subsequent chapters.





2. SR and stack after interrupt 5: The processor completes the CLR.W DO instruction, 
which sets the Z flag to 1 and the other flags to zero, before attending to interrupt 5, 
Thus, the user byte of the SR becomes $04. The system byte remains at $02. The 
processor internally copies these contents of the SR (= $0204) and moves into the 
supervisor mode by setting the S bit to I. It then changes the interrupt mask level to 5. 
Thus, the SR becomes $2504 after interrupt 5, as indicated in Figure 5.7(a).

The PC points to the next instruction (NOP) at location $00001204. The pro-
cessor stores this PC value and the copied SR on the supervisor stack, as indicated in

Figure 5.7(b).
The autovector number for interrupt 5 is 29, corresponding to vector location 

$000074, as indicated in Figure 5.6(b). The contents of this location (= $00008A00) 
are loaded into the PC. Thus, the interrupt 5 exception routine starts at

PC location = $00008A00

3. Interrupt 7: Interrupt 7 is nonmaskable; thus, it is recognized. The processor sus
pends the interrupt 5 routine, makes a copy of the SR, and changes the system byte
to $27 (S bit = 1; mask level = 7). The SR after interrupt 7 is $2704, as indicated in
Figure 5.7(a).

The processor stacks the current PC value (= $00008A4C) and the copied SR
(= $2504), as indicated in Figure 5.7(b).

4. User vector for interrupt 7: User vector number Vn = 64 = $40 for interrupt 7
corresponds to vector location $0100 (= 4 x $40), as indicated in Figure 5.6(b).
The contents of this location (= $00009A44) are loaded into the PC. Thus, the in
terrupt 7 exception routine starts at

PC location = $00009 A44

As previously discussed, the last instruction at the end of an exception routine is 
RTE. When RTE is encountered at the end of the interrupt 7 exception routine, the pro-
cessor restores the stored SR and PC (= $2504 and $00008A4C, respectively), which 
correspond to the suspended interrupt 5 processing, from the stack. The processor then 
resumes the suspended interrupt 5 processing.

Similarly, when RTE is encountered at the end of the interrupt 5 exception routine, 
the processor restores the earlier stored SR and PC (= $0204 and $00001204, re-
spectively), which correspond to the suspended user program, from the stack. The pro-
cessor then resumes the suspended user program.

5.3   TRAP EXCEPTION PROCESSING AND APPLICATIONS

Traps are exceptions caused by instructions. There are 16 TRAP instructions: TRAP #0 

through TRAP #15, corresponding to the vector numbers 32 through 47 of the vector 

table.

Using System Resources in the Supervisor Mode via Traps

Most system resources are under the control of the operating system. In the 68000 family 
of processors, operating system resources can only be handled in the supervisor mode. 
TRAP instructions are similar to software interrupts; they can be used within a program 
to move into the supervisor mode and use the system resources.

Similarly, traps can be used to move into the supervisor mode to use privileged 
instructions. Essentially, traps provide a convenient means of intercommunication be-
tween the user and supervisor modes.7

Trap Software Routines and Applications

Trap exception processing is similar to interrupt processing. When a TRAP instruction is 
encountered, the processor concludes the current instruction, copies the SR internally, and 
moves into the supervisor mode by setting the S bit to 1. The T (trace) bit is turned off. 
The processor then stores the current PC and the copied SR on the supervisor stack. The 
stored PC points to the next instruction after the TRAP instruction in the program.

The processor then fetches the appropriate TRAP-vectored address from the vector 
table, loads it into the PC, and begins the TRAP exception processing starting at that 
address. RTE is the last instruction in any TRAP exception routine. When the RTE in-
struction is encountered, the processor restores the stored PC and SR and resumes the 
original program.

The TRAPV instruction generates an exception (vector 7) if an overflow condition 
is detected in the previous operation. The TRAPV instruction is similar to the TRAP 
instruction, except that TRAPV does not require an operand field and will generate an 
exception only if the overflow (V) flag is set.

The user stack pointer (USP) is considered a system resource and can only be ini-
tialized in the supervisor mode. Figure 5.8 consists of an operating system routine writ-



ten as an exception routine that initializes the USP. This routine starts at $00001200. The 
MOVE.L A2,USP instruction at line 11 initializes the USP with the contents of the A2 
register. The RTE instruction at line 13 returns control back to the calling program.

The user can call this program via a TRAP instruction. The user must load the 
starting address of the exception routine at the vector table location corresponding to the 
TRAP being used. The user must also pass the parameter value for the USP (through the 
A2 register) while calling the TRAP routine.

The following example problem focuses on the software details of TRAP instruc-

tion use.

Example 5.3    Using TRAP exceptions.

Figure 5.8 shows an operating system exception routine starting at $00001200. The routine 

initializes the USP.

1. In order to call the routine, the TRAP #1 instruction must be used. Develop an ap-
propriate software routine that uses TRAP #1 and initializes the USP at $00002000.

2. Is there any priority scheme associated with TRAP instructions? Explain.

Solution
1. Software using TRAP #1: The TRAP #1 vector number is 33, which corresponds to 

vector address location $0084 in the vector table of Figure 5.2. The user can load the 
starting address of the USP initialization routine (= $00001200) into the vector 
location and use the TRAP #1 instruction to call the routine.

A software routine to accomplish the task in question is presented in Figure 5.9. 
Between lines 14 and 16, $00001200 is loaded into vector location $0084. At lines 20 
and 21, an initialization value of $00002000 is loaded into the A2 register (to be passed 
on as the USP parameter for the TRAP #1 routine), and the TRAP #1 routine is called. 
The TRAP #1 exception routine (Figure 5.8) loads the passed-on value ($00002000) 
into the USP and returns to the original calling program. The JMP (A3) instruction at 
line 23 causes an indirect jump to the user I/O routine, the address of which is contained 
in the A3 register. 2. Priority for TRAP instructions: There is no priority scheme for 
TRAP instructions. This is because the TRAPs are software instructions which are 
executed in the sequence of their occurrence in the program.

In general, any TRAP #n (n = 0-15) can be used in the preceding example as long 
as the starting address of the exception routine is loaded into the appropriate vectored 
address location. Each time a TRAP routine is called, the current PC and the copied SR 
are stored on the supervisor stack. The user should ensure that sufficient supervisor stack 
space is available if several TRAP #n instructions are to be nested.

5.4    ERROR-RELATED EXCEPTIONS

The 68000 processor handles error conditions as exceptions in the supervisor mode. Op-
erating system routines are written in the supervisor mode for the 68000 family of pro-
cessors. Error-handling routines to help the user can be written by the operating system 
designer.

Upon detecting an error condition, the processor suspends current execution, cop-
ies the SR, and moves into the supervisor mode. It turns off the trace and stacks the 
copied SR and the current PC (which points to the next instruction in the suspended 
routine). In certain error conditions (bus and address errors, for example), additional



processor information is saved on the stack. The processor then goes to the correspond-
ing vector location in the vector table, fetches the address of the exception routine, and 
executes it in response to the detected error condition.

Illegal Instruction, Unimplemented Instruction, and Privilege-
Violation Conditions

Illegal Instruction The first word of an instruction is always an op.word. When the 
fetched op.word does not correspond to any of the defined op.words, an illegal instruc-
tion error condition occurs. Three bit patterns always force an illegal instruction error 
condition for the 68000 family of processors: $4AFA, $4AFB, and $4AFC. The first two 
patterns are reserved for Motorola; the third is for general use. This exception returns 
control to the operating system in case of any illegal op.codes, thus preventing
unpredictable operation. The vector number for the illegal instruction is 4.

Exception processing for illegal instructions is similar to that for traps. After the
instruction op.code has been fetched and decoding attempted, the processor recognizes
that the execution of an illegal instruction is being attempted. It then starts the exception
processing.

Unimplemented Instruction Op.word patterns with bits 15 through 12 equaling 1010 or 
1111 ($A or $F) are distinguished as unimplemented instructions. When these codes are 
discovered by the processor, unimplemented exception processing results. Higher level 
processors, such as the 68020, use these op.codes for coprocessor support and 
emulations. The vector numbers for the two conditions mentioned are 10 and 11.

Privilege Violation In order to provide system security, some instructions for the 68000 
dealing with the status register, stack pointer, and system operation are privileged. 
Examples are the following:

AND immediate to SR (for status register violation);

EOR immediate to SR (for status register violation);

MOVE to SR (for status register violation);

OR immediate to SR (for status register violation);

MOVE USP (for stack pointer violation);

RTE (return-from-exception instruction);

RESET (reset instruction);

STOP (stop-the-processor instruction).

These instructions may be used only in the supervisor mode. An attempt to use any of 
them in the user mode results in a privilege-violation exception.5'7

Exception processing for a privilege violation is similar to that for an illegal in-
struction. Control is returned to the operating system in case of any privilege violation, 
thus protecting system resources and routines from being modified by the user. The vec-
tor number for the privilege-violation condition is 8.

Uninitialized and Spurious Interrupt Exceptions

Uninitialized Interrupt In the case of the user vector method for interrupt processing, if 
the 68000 family I/O device is not initialized, it provides default vector number 15 
during the interrupt acknowledge cycle. The processor recognizes this as an uninitialized 
interrupt condition and initializes exception processing.

Spurious Interrupt A spurious interrupt condition results from a bus error during the 
interrupt acknowledge cycle. The processor recognizes this condition and initiates spu-
rious interrupt exception processing. The vector number for a spurious interrupt is 24.

Exception processing for uninitialized and spurious interrupts is similar to trap ex-
ception processing. These two exceptions return control to the operating system in case 
of an interrupt vector error, thus preventing any ambiguous interrupt processing.

Zero-Divide, CHK, and Trace Exception Conditions

Zero-Divide Exception A zero-divide exception occurs when division by zero is at-
tempted during the execution of a divide instruction. This exception prevents the 
processor from going into an indefinite loop. The vector number for a zero-divide 
exception is 5.

CHK Exception A CHK exception occurs when the data register associated with the CI 
IK instruction is out of bounds. This exception returns control to the operating system if 
boundaries are crossed in case of a multitasking operation. The vector number for the 
CHK exception is 6.

Trace Exception A trace exception occurs when the T (trace) bit in the system byte of 
the status register is set. When the T bit is set at the beginning of program execution, the 
processor executes one instruction at a time and goes to trace exception. In trace 
exception routines, the results of the instruction just executed are displayed. Essentially, 
the processor goes into a single-step mode for software debugging. The vector number 
for the trace exception is 9.

The zero-divide, CHK, and trace exceptions occur during program execution. They 
prevent the processor from getting hung up on errors. Appropriate exception routines 
that provide proper feedback to the user should be written by the operating system 
designer so that exception conditions can be handled efficiently.

We will now present an example problem to review the error conditions and ex-
ceptions studied thus far.

Example 5.4   Error conditions and exceptions.
A 68000-based system is operating in the user mode. In each of the following situations, 
state whether an error or exception condition will be generated. Indicate the exception 
vectors, as appropriate.





input to the processor instead of the normal /DTACK if the memory or I/O fail to re-

spond within a given time.

Bus error exception processing is similar to address error processing. A bus error 
exception prevents the processor from indefinitely waiting for nonexistent memory or 
I/O to respond. The vector number for the bus error is 2.

The following example problem will enhance our understanding of address and

bus errors.

Example 5.5   Address and bus errors.
For the 68000-based system of Figure 5.11, memory and I/O are physically contained 
between $000000 and $0FFFFF. The initial values of the registers are

SSP = $00000A00       USP = $00002000       SR = $0600

1. The conditions given will result in an error exception sequence when the program is 

run. What type of error is involved? Explain.
2. Indicate the stack format for the error exception in (1).
3. The ADD.L (A0),D0 instruction at line 8 (Figure 5.12) is replaced with the ADD.L 

(A1),D0 instruction, and the program is rerun. Will there be an error condition now? 
How does the stack look for this error?

Solution

1. Error condition: There is a bus error condition. It occurs during the execution of the 
ADD.L (A0),D0 instruction at line 8, while trying to access the source operand. The 
effective address of the source operand [$00FFAA00 (contents of A0)] is beyond the 
available memory and I/O range, and is nonexistent. The interface logic therefore 
generates the /BERR signal, and the processor initiates the bus error exception se-
quence.

2. Stack format: On detecting the bus error condition, the processor moves into the 
supervisor mode. The supervisor stack is used for storing the processor registers and 
the operands.

Figure 5.13 illustrates the supervisor stack format and the contents for the bus 
error exception: the PC corresponds to the next instruction (SUBQ.L #04,D0). SR is 
the copied status register at the time of the exception. Stored op.word $D090 corre-
sponds to the instruction where the bus error occurred. The fault access address 
($00FFAA00) is the actual physical address where the bus error fault condition oc-
curred.

The stored special status word signifies that the fault occurred while reading a 
data operand from user data space.

3. ADD.L (A1),D0 instruction: There is an address error condition. It occurs while 
trying to access the source operand. The effective address of the source operand 
[$OO0OOCC3 (contents of Al)] is within the physical memory, but is odd. The pro-
cessor recognizes this long-word access at an odd address as an address error and 
initiates the address error exception sequence.



The supervisor stack format for the address error is similar to that for the bus error.

When the stack frame for the bus and address errors in the preceding example is 
examined, the fault conditions can be analyzed and corrected. In 68010/12 processors, 
additional information is stored on the stack for possible virtual memory implementation, 
which we will study later, in conjunction with those processors. In 68020/30 processors, 
word and long-word data operands can be accessed at an odd address without generating 
an address error condition.

Double Bus Fault Condition
This is a catastrophic failure in which the processor comes to a complete halt. The double 

bus fault occurs when

a bus error occurs while accessing the reset vectors;
a bus error occurs during the exception processing sequence of an earlier bus or
address error; or
there are nested combinations of bus error and illegal instruction exception

processing operations. The processor also activates the HALT output line, which 

halts any peripherals connected to the halt line. This prevents a system runaway condition. 

Software and hardware must be debugged and the system reinitialized to recover from a 

double bus fault condition.2'4'7

5.5    SUMMARY

An exception condition is a deviation from the normal condition. The 68000 processor 

handles the exception in the supervisor mode.
External hardware conditions, such as reset and interrupts, cause exceptions. So do 

instructions, such as TRAPs and CHK, under certain conditions. Error conditions, such 
as privilege violations, illegal instructions, unimplemented instructions, zero-divide 
operations, bus errors, and address errors, also cause exceptions.

Appropriate software routines written as part of the operating system in the super-

visor mode handle exceptions. On the occurrence of any type of exception, the processor 

moves into the supervisor mode.
One kilo byte of memory between $000000 and $0003FF of a 68000-based system 

corresponds to the exception vector table. This table contains the starting addresses of 
the exceptions. On the occurrence of an exception, the processor fetches the starting ad-
dress of the corresponding exception routine from this table.

The reset exception has the highest priority; it initializes the system resources and 
conditions. Stacking of the registers is not done during reset exception processing. Vec-
tor 0 corresponds to the supervisor stack pointer and vector 1 corresponds to the program 
counter for the reset exception.

Hardware interrupts from the external I/O and peripherals are meant to obtain the 
attention of the processor. The interrupts follow a priority scheme involving the three 
interrupt mask bits of the status register. Interrupt 7 is at the highest priority level and is a 
nonmaskable interrupt (NMI). Interrupts 6 through 1 are at successively lower priority 
levels and are maskable. They can be masked by setting the interrupt mask level in the 
system byte of the status register to a higher level. Interrupt 0 implies that there is no 
pending hardware interrupt.

TRAP instructions are similar to software interrupts; they are used to move from 
the user mode into the supervisor mode. This allows users to employ system-level re-
sources.

A privilege-violation error condition occurs when an attempt is made to use priv-
ileged instructions in the user mode. If an instruction code that does not correspond to 
any of the permissible codes is used, an illegal instruction error condition occurs. When 
an attempt is made to access nonexistent memory or I/O, the external logic activates 
/BERR (bus error) input to the processor. The processor recognizes this and goes into 
bus error exception processing. When a word or long-word access attempt is made at an 
odd address, an address error condition occurs.

The processor does not stack any information for reset exception processing. For 
all other exceptions, the copied SR and the PC (pointing to the next instruction at the 
time of the exception) are stored on the supervisor stack. In the case of address and bus 
error conditions, additional information is also stored. This corresponds to the fault ad-
dress, the instruction that caused the fault condition, the special status word, and so forth.

In the case of nested errors, a double bus fault condition causes the processor to go 
into a complete halt state. During the halt state, the address and data buses are tristated, 
and the control signals negated. The system must be debugged and reinitialized in order 
to recover from a double bus fault condition.



(a) How much minimum stack space is required to store the appropriate registers in the event 
of an interrupt?

(b) How many interrupts can be nested without running out of supervisor stack space?

5.10 Specify the advantages and disadvantages of the autovector and user vector methods. How 
many total user vectors are there?

5.11 In a particular 68000-based system, the starting addresses of the autovectored interrupts are as 
follows:

Indicate the contents of the exception vector table containing the preceding information. 
Clearly identify the vector numbers and vector locations.

5.12 What are the vector numbers and vector locations for the uninitialized and spurious
interrupt exceptions?

What are the primary differences between these two interrupt conditions?

5.13 What are the vector numbers and vector locations for TRAP #3, TRAP #5, TRAP #9,
and TRAP #14.

Is TRAP #15 higher, lower, or at the same priority level as TRAP #0? Explain.

5.14 Suppose it is necessary to run the operating system routine shown in Figure 5.8 as TRAP
#4, which begins at a starting address of $0000140C.

What modifications should be made in this software routine so that it will be 
executed when the user calls TRAP #4?

5.15 Modify the software of Figures 5.8 and 5.9 so that the USP is initialized at $00004000 when 
TRAP #4 (starting at $0000140C) is called by the user routine.

5.16 Write a TRAP #6 routine (for a 68000 system) starting at $000016E0 to reset the system 
peripherals, go into a stop condition, and load SR with $2400. Indicate the contents of the 
appropriate vector locations.

5.17 Write a TRAP #7 routine starting at $00001700 to input a character from an I/O location at 
$0000F800 into the DO register and echo the character to an output terminal at $0000F802. 
Indicate the contents of the appropriate vector locations.

5.18 List the errors that cause exceptions in a 68000-based system in the order of their priority, 
from highest to lowest. Which errors are software related and which are hardware related?

5.19 A 68000-based system is in the user mode. In the following cases specify any error or 
exception conditions:

(a) MOVE.B A1.A2
(b) CLRA.W A3
(c) DC.W $FF00
(d) ANDI.W #$FF0O,SR



5.20 With reference to Problem 5.19, specify the vector numbers and vector locations in case of 
error conditions.

5.21 A system is in the user mode. Identify any error or exception conditions when the software 
that follows is executed. Initially, DO = $00000004; Dl = $0000FFCC.

Where does the processor go in case of an error condition?

5.22 A 68000-based system memory and I/O are between $000000 and $00FFFF. The initial
values of the registers are

A0 = $000FFEEA       Al = $0000CDEF       A2 = $00000CCC       SR = $0404

Specify whether any error conditions occur in each of the following:

(a) MOVEM.L   D0-D7, (A0)
(b) MOVEP.L (Al), D2
(c) CLR.L       $07(A2)

5.23 A 68000-based system memory and I/O are between $000000 and $00FFFF. The initial
values of the registers are

A0 = $000FFEEA   Al = $OOO0CDEF       A2 = $00000CCC       SR = $0404 USP = 

$00002000       SSP = $0OOO0A0O       DO = $00000003

Specify whether there is an error condition in any of the cases that follow. If so, specify the 
error, the exception vector number, and the vector location. Also indicate the contents of the 
stack using the initial values as stated.

(a) ADD.B    (A0),D2
(b) SWAP     Al
(c) CLR.L    $04(A2,D0.W)

5.24 Identify four different instances of a double bus fault condition in a 68000-based system.

5.25 Refer to the supervisor stack contents given in Figure 5.15.

(a) The processor is executing an interrupt 6 routine. When RTE is executed as the last 
instruction of this routine, where does the processor go? Explain.

(b) Another RTE is executed at the end of the resumed routine of (a). Where does the 
processor go? Explain.

(c) The routine that was suspended when interrupt 6 occurred must have been of a certain 
type. State the type and explain.

5.26 In Figure 5.15, the SSP pointing to the top of the stack at initialization must have been what 
initial value? Why?

5.27 Due to a memory read error, the entry $213C in the stack in Figure 5.15 has been read as 
$213B. Where will the processor go to execute the next instruction? Explain.
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Objectives

In this chapter we will study:

Hardware signals and buses of the 68000

Memory and I/O interface schemes and design

Control interface schemes
System-level busing schemes, such as the VERSA and the VME

6.0    INTRODUCTION

In chapters 1 through 5, our focus was on the general architectural features and software 
aspects of the 68000 microprocessor. In this chapter, we will explore the hardware as-
pects of a 68000-based system.

Generally speaking, all microprocessors have an address bus for addressing in-
structions and operands, a data bus for data and operand transfers, and a control bus for 
control and timing signals. A bus is a collection of signals with similar properties. The 
68000 processor has additional busing features for asynchronous and synchronous data 
transfers, interrupt and DMA (direct memory access) transfer operations, and system
control.

The material in this chapter will provide the necessary background to understand 
the essential hardware features of the 68000. In addition, it will provide insight into the

system control and error detection schemes associated with the 68000 family. These 
processors follow memory-mapped I/O schemes, in which the processor communicates 
with an I/O device as if it were one of the memory locations. The word memory will be 
used to refer to both memory and I/O in our discussions, unless otherwise specified.

6.1    68000 HARDWARE SIGNALS AND FUNCTIONS

Figure 6.1 indicates the pin configuration of the 68000, and Figure 6.2 is a system rep-
resentation. The 68000 is contained in a 64-pin DIP package or a 68-pin grid-array 
package. It is fabricated with either NMOS or CMOS technology. For the corresponding 
signal properties, appropriate data books should be referenced.1,2



Address, Data, and Asynchronous Buses for the 68000
The address bus is a 23-bit (A1-A23) unidirectional tristate bus, capable of addressing 8 
megawords (or 16 megabytes) of data or operands. It provides the address of the op-
erands during the read and write bus cycles. During a read bus cycle, the processor reads 
the instructions or source operands from the memory. During a write bus cycle, the 
processor writes data into the memory. During the interrupt acknowledge cycle, address 
lines Al, A2, and A3 provide information about the level of interrupt being serviced. 
Address lines A4 through A23 are set to a high logic level.

The data bus is a 16-bit (D0-D15) bidirectional tristate bus, capable of transfer-
ring byte- or word-sized operands between the processor and the memory (or I/O).

The asynchronous bus is used to control asynchronous data transfers of varying 
response times between the processor and the memory or I/O units. For the 68000 pro-
cessor, the asynchronous bus consists of five control signals:

The 68000 processor activates the /AS, R/*W, /LDS, and/or /UDS signals along 
with the address information for a read or a write bus cycle. The addressed memory (or 
the I/O system) activates an acknowledge signal /DTACK to the processor, while 
providing the data to the processor (read cycle), or accepting the data from the processor 
(write cycle). The processor does not terminate the bus cycle and insert wait states until 
DTACK has been generated. Thus, depending upon the speed of response of the memory 
or the I/O system, data transfers between the processor and these systems vary in the time 
they take. Consequently, we have an asynchronous data-transfer mechanism in the 68000 
family of processors.4

Function Code Outputs

The function code outputs FC2, FC1, and FC0 provide status information about the pro-
cessor, as indicated in Figure 6.4. These outputs from the processor can be used to dis-
tinguish between the user and supervisor modes of operation and between program and 
data space within each mode. When the processor accesses the reset vectors (vectors 0 
and 1) or the program code, it is in the program space. Any other operand access is in



the data space. External logic can be used to decode these function code conditions and 

prevent supervisor memory from being accessed when the processor is in the user 

mode.5

Other Buses and Signals
The synchronous bus in a microprocessor is used to control synchronous or timed data 
transfers between the processor and the memory or I/O. In the 68000, this bus is used to 
interfere with the earlier 6800 family of synchronous peripherals. In a synchronous op-
eration, data transfers take place within a fixed time frame, as opposed to variable timing 
in the case of asynchronous operation. The synchronous bus for the 68000 consists of 
three signals used for 6800 peripheral control:

1. E (enable clock) output;
2. /VMA (valid memory address) output; and

3. /VPA (valid peripheral address) input.

The E clock is one-tenth the frequency of the 68000 clock input and is used to synchro-
nize the 6800 family or similar synchronous peripherals used with the 68000. A VMA 
signal indicates to the 6800 family devices that there is a valid memory address on the 
address lines and that the device should be synchronized to the enable clock. VPA indi-
cates to the processor that the addressed device is a synchronous device. Also, during an 
interrupt acknowledge cycle, /VPA is used by the interrupting device to indicate an 
autovectoring mechanism to the processor.

The arbitration bus is used for direct memory access (DMA) data transfers. In 
such transfers, the processor releases the address, data, and control buses, and external 
logic controls them for direct data transfers. DMA transfers are faster than memory 
transfers requiring processor intervention, since no time is needed for instruction fetch 
cycles. The arbitration bus for the 68000 consists of three arbitration signals:





2. Simultaneous usage of buses: Synchronous and asynchronous buses cannot be used 
simultaneously. Address and data buses are required for each type of data transfer. 
The data transfers must be done one at a time.

3. FC2, FC1, and FCO values: Interrupt servicing activity takes place in the supervisor 

mode. Interrupt vectors are in the supervisor data space (refer to Chapter 5 and Figure 

6.4).

FC2 FC1 FCO = 1 0 1

For the 68008 processor, there are 20 address lines (A0-A19) and 8 data lines (D0-
D7). This processor can address a total of 1 megabyte of memory and I/O. There is only 
one data strobe DS in place of the /LPS and /UDS signals. /VMA and /BGACK signals 
are dropped, and the /IPLO and /IPL2 interrupt signals are integrated for the 48-pin dip 
package (for the 52-pin, they are left intact). All other hardware features of the 68008 are 
similar to those of the 68000 processor.

6.2    MEMORY AND I/O INTERFACE SCHEMES

Memory is an integral part of any computer system. The decoded address bus provides 
selection signals, called chip select (CS) signals to the memory system. Additional se-
lection signals, called chip enable (CE) signals, are used for further selection of mem-
ory systems. Data transfers take place between the processor and the selected memory on 
the data bus. The 68000 processor uses the asynchronous bus to control these transfers. 
The I/O interface is similar to the memory interface.

Memory-Device Types and Memory Concepts
Memory devices can be classified as random access or sequential access. The random-
access read/write memory (RAM) and the read-only memory (ROM) systems are ba-
sically random access, in which access time to all memory locations is the same. RAM 
and ROM devices are used for the main operating memory of the computer system. The 
RAM system is suitable for information storage and retrieval; however, it is a volatile 
system and loses information if the power is turned off.

The industry uses either static or dynamic RAM devices. The static RAM device 
consists of an array of flip-flops contained in a matrix. Each flip-flop acts as a memory 
cell. Static memory devices are available in 8K-by-8 and 32K-by-8 configurations as of 
this writing. A 32K-by-8 RAM device has 256K (262,144) flip-flops in it.

The dynamic RAM (DRAM) stores information in the form of a charge on the 
gate of a single MOS transistor. The dynamic memory cell needs to be refreshed peri-
odically so that charge information will not be lost due to decay. The DRAMs are denser 
than the static RAM devices (usually by a factor of four). One-megabit DRAM devices 
are common as of this writing. The DRAM interface is more complex than the static 
RAM interface. Moreover, the failure rate of DRAM-based systems is greater than that of 
static RAM-based systems. In the DRAM systems, however, error detection and

correction schemes are employed to increase the reliability of the memory system. The 
access time of the MOS RAM (static and dynamic) is approximately 100 to 200 nano-
seconds.

If simple interface and high reliability are required, static RAM systems are pre-
ferred. For high-density applications, DRAM systems with the error correction mecha-
nism are generally preferred.

ROM devices are nonvolatile and retain information even if power to the device 
should be disconnected. For mask-programmable ROMs, the code and data contents 
are programmed at the factory and cannot be changed. The erasable and programmable 
ROMs (EPROMs) can be programmed with the help of EPROM programmer systems. 
The EPROMs are nonvolatile in the system operation. However, they can be erased using 
ultraviolet light or high-voltage pulses and reprogrammed with a new code and data 
using EPROM programmer systems. EPROM devices in denominations of 64K by 8 and 
256K by 8 are common, with access times of approximately 100 to 200 nanoseconds.

NMOS and CMOS RAMs (static and dynamic) are widely used. For fast-access 
memories, bipolar static RAMs are preferable. The ROMs and EPROMs are basically of 
the MOS type. With ultralow-power CMOS RAMs and a battery backup, it is possible to 
obtain a nonvolatile memory system.

Sequential memory systems are nonvolatile and are suitable for backup applica-
tions. They have a larger memory capacity, but also longer access times (up to several 
milliseconds).

In this chapter we will concentrate on the commonly used memory system imple-
mentation with static RAM and ROM/EPROM devices.

Address Decoding, Strobing, and Memory Selection

The 68000 system memory is word organized, consisting of even and odd bytes, as il-
lustrated in Figure 6.6. Higher order address bits are decoded and the CS signals are 
generated. Each CS signal selects a range of memory. Within the range, the same CS 
signal activates both the even and the odd memory units. /UDS and /LDS signals inde-
pendently activate the CE inputs of the even and the odd byte sections of the memory. 
R/W drives the memory units for read or write selection. The low-order address lines are 
directly connected to the memory devices in order to select the actual location within a 
selected memory device.
The lower (or odd) memory byte is connected to data lines D0-D7. The upper (or even) 

byte is connected to data lines D8-D15. An /AS (address strobe) signal enables the decoder 
logic and initiates the memory bus cycle. The /AS, /LDS, /UDS, and the control signals occur 
in a fixed sequence.

Read and Write Timing Considerations

Read Bus Cycle Figure 6.7 illustrates read bus-cycle timing for word operation, Each 
clock cycle is divided into two S-states. SO is the starting state of a bus cycle. During 
SO, all the strobe signals are at their inactive level. The address and data buses



are in their tristate condition. During SI, the processor puts address information on the 
address bus and sets R/*W to a high level to signify a read bus cycle. During S2, the 
strobes (/AS, /LDS, and /UDS) are activated.

One clock cycle (states S3 and S4) is allowed for the external logic to respond. At 
the end of S4, the processor expects /DTACK. One clock cycle after the occurrence of 
/DTACK, the processor accepts data on lines D0-D15 and internally latches it (at the end 
of S6, in this case). During S7, the processor deactivates all of the strobe signals and 
address lines. The memory system recognizes this event and deactivates /DTACK. This 
concludes the read bus cycle, whereupon the processor is ready for the next bus cycle.

The read bus cycle for byte operation is similar. The processor activates /LDS for a 
low (or odd) byte or /UDS for a high (or even) byte, but not both. Without any wait 
states, the read bus cycle for a word or byte operation takes four clock cycles.6

Write Bus Cycle Figure 6.8 illustrates write bus-cycle timing for word operation, which 
is similar to read bus-cycle timing. During state S2, the processor activates the address 
strobe AS and sets R/W to a low level to signify a write cycle. During S3, the processor 
puts data on the data bus. During S4, the processor activates the /LDS and /UDS signals. 
When the memory accepts this data, it is expected to activate /DTACK by the end of 
state S4. If /DTACK occurs by the end of S4, the processor waits one more clock cycle 
(until the end of S6) and deactivates the strobe signals and the address and data lines. 
This completes the write bus cycle. For byte operations, the processor activates only 
/LDS or /UDS, for odd or even bytes.





Wait-state insertion for the read bus cycle is similar to that for the write bus cycle 
for all members of the 68000 family of processors. It should be remembered that the 
68008 processor is a reduced-bus version of the 68000, with a data bus only 8 bits wide.

6.3    MEMORY AND I/O SYSTEM DESIGN CONSIDERATIONS

Any microcomputer system includes RAM (read/write random access memory), ROM 
(read-only random access memory), and I/O (input/output) systems. RAM and I/O can 
be selected only during read or write operations. ROM can be selected only during read 
operations. CS and CE signals are generated in accordance with these constraints.

The Memory Subsystem Design

Figure 6.11 illustrates the details of a 64-kilobyte (64K-by-8) memory system. E0 output 
of the first decoder enables the second decoder. Y0 output of the second decoder drives 
the chip select (/CS) inputs of the even and odd memory units. These units consist of 
32K-by-8 memory devices. /UDS and /LDS further drive the chip enable (/CE) inputs 
and select the even or odd unit, providing a 64K-by-8 configuration. If both units are 
selected, the system becomes a 32-kiloword (32K-by-16) memory system.

The 8-state shift register is the memory controller that provides the /DTACK 
signal to the processor. Initially, all the Q outputs are at a high level (logic 1). The shift 
register is enabled by the corresponding chip select signal (/Y0 in this case), and starts 
shifting a logic 0 from Q0 to Q7 at each CX0 clock transition. Depending upon the 
response time of the memory system, proper Q output is routed as the effective /DTACK 
input to the processor through the DTACK logic. The shift register returns to the all-1 
condition when the enable signal (/Y0 in this case) is removed.

For the 68000 family of processors, the first kilobyte of memory corresponds to 
the vector table. The first eight locations correspond to the reset vectors, which should be 
in the ROM space. In most of the 68000-based systems, these eight locations are 
physical ROM locations. In some systems, additional logic is used to shift the memory



reference of these eight locations to a ROM device elsewhere in the memory map. The 
other part of the vector table can be contained in the RAM space. On system power-up, 
the reset routine initializes the vector table with proper values.

Signal Buffering Considerations
Due to electronic loading constraints, signal buffering is used to increase the drive capa-
bility of the signals. Transceivers are used to accomplish the buffering, as indicated in 
Figure 6.12. A transceiver is a logic device that can transmit a signal in either direction, 
depending upon the direction control. The address and the unidirectional control signals 
are buffered by transceiver bank [1] to go from the processor to the memory or I/O (X to 
Y). The data bus is buffered by transceiver bank [2], which is controlled by the R/*W 
signal. For read operations (when the R/*W signal is at a high level), data flows from the 
memory or I/O to the processor (Y to X), and vice versa.8 In this conceptual framework, 
the memory or I/O system can be expanded to any size.

The following example problem provides a review of memory system design.



memory. CXO is twice the frequency of the CXI processor clock, and two CXO activations 
correspond to one CXI activation. Ql is routed as the /DTACK input to the processor. Thus, 
/DTACK occurs one processor clock after the selection. 4. 8-bit transceiver ICs for 
buffering: Transceiver bank [1] buffers 27 signals and requires 4 ICs. Transceiver bank [2] 
buffers 16 signals and requires 2 ICs.

In our discussion thus far, we have emphasized static RAMs, which are composed 
of flip-flop arrays. Dynamic RAMs, which involve charge storage on a capacitive ele-
ment and periodic refresh of the charge, are becoming increasingly popular. Dynamic 
RAM devices are two to four times denser than static RAMs. However, they require 
complex memory controllers and use interrupts for refresh by the processor. We will 
discuss dynamic RAM implementation schemes along with the interrupts in subsequent
chapters.

As of this writing, 64-kilobyte static memory devices and 256-kilobyte dynamic 
memory devices are becoming available. Some of these devices have an additional se-
lection control input called the output enable (OE), which is similar to the CS and CE 
inputs. The I/O interface is essentially similar to the memory interface. Data books may 
be consulted for design details.9

6.4    CONTROL INTERFACE SCHEMES

In addition to the memory and I/O interface, processors have a control interface. The 
primary hardware signals that control and direct the 68000 microprocessor are RESET, 
HALT, and BERR (bus error). The DMA and interrupt signals (to be discussed later) 
also control the processor. In this section, we will first consider the reset and halt inter-
face and follow with a discussion of timing signals and the bus error.

Reset and Halt Interface
Figure 6.13 illustrates the reset and halt interface with the 68000 processor. For the val-
ues shown, the MC3456 monostable produces a 100-millisecond pulse on the power-up 
reset. This activates both the /RESET and /HALT inputs to the 68000. On power-up, pro-
cessors usually require more time to come to a stable state due to electronic and switch-
ing transients. The 68000 requires at least a 128-clock-cycle time equivalent to come to a 
stable state on the power-up condition. The 100-millisecond reset and halt pulses are 
more than adequate for any 68000 family member. For a reset condition to occur, both 
the /RESET and /HALT inputs should be activated to a low level.

The processor goes into the supervisor mode on reset. Reset exception processing, 
which is always the system initialization routine, starts as soon as the /RESET and 
/HALT are negated (go to high-level). The same sequence of operations occurs for the 
manual reset. The 74LS00 cross-coupled gates debounce the reset switch, providing
clean /RESET and /HALT activation to the processor. Manual activation should last for at

least ten clock cycles. (Refer to Chapter 5 for software details on reset exception pro
cessing.) _____

Of particular interest is the bidirectional property of the RESET line. The proces-
sor can execute a software reset instruction in the supervisor mode. The reset line then 
acts as an output, resetting the other peripherals connected to the 68000. When the pro-
cessor drives the /RESET line as an output, it goes active low for 124 clock cycles.

When the bidirectional /HALT line is used as an input in conjunction with the 
/RESET input and is activated by external circuits, the 68000 goes into a system reset 
condition. On the other hand, if the /HALT input is activated individually, the processor 
is halted after the completion of the current bus cycle. In the halt state, address and data 
lines are put in their high-impedance state, and the control lines are negated; however, 
the DMA control lines are available for bus arbitration. The halt condition of the pro-
cessor is used for hardware troubleshooting and single-step operation. The processor re-
sumes the halted operation soon after the negation of the /HALT input line.

_When a double bus fault condition (Chapter 5) is detected, the processor uses the 
/HALT line as an output and drives it low; this, in turn, halts any devices connected to it.



Bus Error Considerations

Of very special importance in all 68000-based systems is the bus error (/BERR) signal. It 
informs the processor that a bus error has occurred. It originates from a bus error con-
troller, as indicated in Figure 6.14. The bus error controller is usually a watchdog timer; 
that is, a counter circuit reset to zero at the start of each bus cycle, which counts up at 
each clock transition. When it reaches its set maximum count, it generates a pulse 
signifying the time that has lapsed since the start of the last bus cycle.

The 16-state shift register acts as the bus error controller and provides the /BERR 
signal to the processor. All the B outputs are at a high level initially. The controller is 
driven by the ANDed output of /UDS and /LDS signals from the processor. When a new 
bus cycle starts, either /UDS or /LDS, or both, go to a low-active state (logic 0). Thus, 
the controller is enabled during each bus cycle and shifts a logic 0 from BO to B15 at 
each CX7 clock transition. Depending upon the maximum allowed response time of the 
addressed devices, proper B output is routed as the effective /BERR input to the proces-
sor through the /BERR logic.

If the /DTACK is given out by the addressed device within the time permitted, the 
bus cycle is normally terminated and the strobes (/LDS and/or /UDS) go to the inactive 
logic 1 level. This restores the shift register to the all-1 condition, and the /BERR acti-
vation does not occur. Otherwise, logic 0 propagates through the shift register and ulti-
mately reaches the processor as /BERR (through its selected B output). The processor 
then goes into the bus error condition. Software details of bus error exception processing 
are discussed in Chapter 5.

On occasion, a particular bus cycle may be faulty and must be rerun. External logic 
indicates this rerun condition to the 68000 processor by simultaneously activating the 
/BERR and /HALT inputs. On the occurrence of the rerun condition, the processor aborts 
the current bus cycle and goes into a halt state. After the /BERR and /HALT inputs are 
negated (return to a high level), the processor reruns the aborted bus cycle with the same 
address and data values. This helps the processor to correct any immediate errors due to 
hardware transients on the lines.

The following example problem provides a review of the control interface to the 
68000.



The asynchronous bus interface consists of the strobes (/AS, /LDS, /UDS, and 
R/*W) and the /DTACK. The seven-level priority interrupt interface is the standard 
68000 interrupt interface. It consists of the interrupt request signals 1RQ1 through 1RQ7 
and the associated interrupt acknowledge signal IACK.

Several of the VERSA modules can be bused together on a VERSA bus backplane. 
One or more processor modules may be used. All the signals are TTL compatible. Each 
module presents one unit TTL load on the corresponding input signal line. The bus 
drivers on each module are of the open collector type and support up to 16-unit TTL 
loads.

When several VERSA modules are bused together, there should be a bus arbitra-
tion scheme. The VERSA bus supports such a scheme using the five bus arbitration re-
quest signals BR0-BR4 from the requesting modules to a master controller module. The 
master controller responds to the requesting modules by sending a bus clear signal 
(BCLR), if the bus is granted.

The PI interface supports 5, ±12, and ±15 DC voltages and an ample number of 
signal grounds. In addition, there are the numerous fault detection and control lines, in-



eluding /BERR and /HALT. The PI interface is generally sufficient if extended capabili-

ties are not required.

Secondary Interface P2 In order to expand the system to full 32-bit address and 32-bit 
data, a secondary interface through the edge connector P2 is used, as illustrated in Figure 
6.15. This interface also supports 50 I/O lines and serial communications to other systems. 
Although the VERSA busing scheme is gradually being replaced by the VME busing 
scheme, there are still many VERSA schemes in the industry that are being expanded on 
an ongoing basis.

The VME Bus

Redefinition of VERSA bus with emphasis on international standards has resulted in the 
VME bus. The VME bus interfaces with the VME modules as shown in Figure 6.16. It is 
an optimized busing architecture with primary PI and secondary P2 interfaces through 
the respective edge connectors. Up to 16 modules can be interfaced on the backplane 
VME bus. These edge connectors are 96 pins each with functional groups as shown in 
Figure 6.17.

As illustrated in Figures 6.16 and 6.17, the VME busing architecture consists of 
three buses. The VME backplane bus, contained in the PI interface connector, supports 
all of the global resources needed fdr the VME modules. The VMS serial communica-
tions bus (which is also part of the PI interface) supports the serial communication be-
tween two or more VME modules. Similar to the VERSA busing scheme, the PI interface 
in the VME scheme can handle up to 16-bit data transfers and a seven-level priority 
interrupt interface.

The VMX bus, which is part of the P2 interface, is a high-speed parallel bus and is 
local to six adjacent modules. This helps to expand the local subsystem. In most 16-bit 
applications, the PI interface would be sufficient. However, if the system needs to be 
expanded to 32 bits, or if additional I/O or VMX capabilities are required, a P2 interface 
should also be used.

System expansion isxvery easy with the VERSA or VME busing schemes. It is 
sufficient to obtain card cages with the VERSA or VME backplanes and populate them 
with the respective VERSA or VME modules. The photos of Figure 6.18 are of typical 
VERSA and VME card cages and modules.

Detailed specifications are available for both busing schemes. These should be 
consulted for further information, such as bus arbitration methods.

We will now review the system-level busing schemes by means of an example 
problem.

Example 6.5    VERSA and VME busing schemes.
State which of the two busing schemes, the VERSA or the VME, is preferable in the 
following circumstances:

1. an A/D and D/A interface is required;

2. multiprocessing with local I/O and memory resources is required;
3. diagnostics are required.

Give reasons for each of your choices.

Solution

1. A/D and D/A interface: The A/D (analog-to-digital converter) is an I/O device that 
converts an analog input signal into a corresponding digital word and interfaces with





lies, such as the 8086/80286/80386. Products that are compatible with the VMB bus are 

available from several vendors.
Other industry standard busing schemes include the Multibus-11 from Intel Corpo-

ration and the NU bus from Texas Instruments. The system-level properties of these 
buses are similar to those of the VME and VERSA buses. The 68000 family of proces-
sors can interface with both of these buses with equal ease.

6.6    SUMMARY

In this chapter we described the hardware signals of the 68000 processor and their prop-
erties. We also introduced the hardware interface schemes for the 68000.

Memory and I/O interface schemes are very important. The read/write random ac-
cess memory (RAM) is particularly suitable for the storage and retrieval of programs and 
data. The static RAMs store information in flip-Hop arrays. Static RAMs are the systems 
of choice in high-reliability applications. Dynamic RAM (DRAM) devices store 
information on a single MOS transistor memory cell and are denser than static RAMs. 
DRAM-based systems are preferable in applications requiring high density.

ROMs and EPROMs are of the read-only type and are nonvolatile. They are par-
ticularly well suited for storing permanent programs and data elements.

We also studied details of the asynchronous memory and I/O interface, as well as 
read and write bus-cycle timings. A bus cycle is normally terminated when the addressed 
memory or I/O responds to the processor with /DTACK. The processor introduces wait 
states until either /DTACK or /BERR occurs. The occurrence of /BERR signifies a bus 
error. The processor responds by going into exception processing.

On considering the important system control interface schemes relating to /RESET, 
/HALT, and /BERR, we saw that simultaneous activation of both /RESET and /HALT 
results in a system reset condition. Activation of /HALT alone results in a processor halt 
condition. Simultaneous activation of both /HALT and /BERR results in a bus-cycle 
rerun condition. Activation of /BERR alone results in a bus error condition. The processor 
uses the reset pin as an output when executing the /RESET instruction. Similarly, the 
processor uses the halt pin as an output when there is a double bus fault condition.

We ended the chapter with a discussion of the VERSA and VME busing schemes 
and interfaces. The VERSA scheme is more flexible, while the VME scheme is more 
efficient and universal. Other industry standard buses, such as the Multibus-11 from In-
tel and the NU bus from Texas Instruments, are similar to the VME and VERSA buses.

PROBLEMS

6.1 In byte-organized memory, can the /LDS and /UDS signals be gated together to form a 
single chip select? Why or why not?

6.2 Specify the conditions of the address and the data buses in the following circumstances:





7.1    SYNCHRONOUS PARALLEL INTERFACE WITH THE 68000

The earlier 6800 family of peripheral devices are of the synchronous type. These devices 
can be interfaced easily with the 68000 family of processors by means of the synchronous 
bus (/E, /VMA, /VPA signals).3

6821 PIA (Peripheral Interface Adapter) Architecture

The 6821 PIA is one of the most widely used 8-bit parallel interface devices. It is con-
tained in a 40-pin NMOS DIP device. The structure of the PIA is indicated in Figure 7.1. 
It consists of two 8-bit parallel ports A and B and associated control signals CA1, CA2, 
CB1, and CB2. Each port consists of three internal registers:

1. ORA and ORB (output registers A and B);

2. DDRA and DDRB (data direction registers A and B); and

3. CRA and CRB (control registers A and B).

Objectives

In this chapter we will study:

Architecture of the 6821 PIA and 68230 Pl/T devices

Interfacing the PIA and PI/T

I/O applications using the 68000/6821 PIA

Data entry and display applications

Electromechanical applications

7.0    INTRODUCTION

Any microprocessor communicates with the external I/O (input/output) through either a 
parallel or a serial interface. In this chapter, we will concentrate on the parallel interface. 
There are several devices that support either a synchronous or asynchronous parallel 
interface with the 68000 family of processors. The most widely used are the 6821 PIA 
for the synchronous interface and the 68230 PI/T for the asynchronous interface.1'2 Study 
of the material in this chapter will provide the foundation for using the parallel interface 
in practical applications.



The DDR and OR in each port occupy the same address. The control register determines 

the individual access.

Output and Data Direction Registers The output registers (ORA and ORB) interface 
with the external I/O devices and systems and are capable of driving a unit TTL load. 
Each bit of these ports is individually programmable to be either an input or an output. 
The data direction registers (DDRA and DDRB) determine the direction of the output 
register bit. If there is a 0 in the DDR bit position, the corresponding bit is an input. If 
there is a 1 in the DDR bit position, the corresponding bit is an output. For example, if 
$07 (b7 b6 b5 b4 b3 b2 bl bO = 00000111) is written into DDRA, then PA7 through PA3 
are configured as inputs and PA2 through PA0 are configured as outputs.

Control Registers CRA and CRB Control register CRA determines the nature of the 
control lines CA1 and CA2. Figure 7.2 illustrates the typical structure of CRA. De-
pending upon the application, an appropriate control word can be written into CRA to 
configure CA1, CA2, and IRQ A (interrupt request port A). The CRB format is similar to 
that of CRA; it configures CB1, CB2, and IRQB (interrupt request port B) lines. Bit 2 is 
very important in CRA and CRB. When it is 0, the data direction register is selected. 
When it is 1, the output register is selected.

6821 PIA Synchronous Interface with the 68000
The PIA is an 8-bit device and occupies either the lower 8 bits or the upper 8 bits of the 
data bus. To the processor, it resembles four memory locations (ORA/DDRA, CRA,
ORB/DDRB, and CRB).4

Figure 7.1 illustrates the synchronous interface of the 6821 PIA-1 with the 68000 
microprocessor. The decoded address bus, along with the /AS and /VMA signals, gener-
ates the chip selects for the PIA. PIA is connected to the lower data bus D0-D7; ac-
cordingly, /LDS is used to enable PIA-1. The A2 and Al address lines drive the PIA 
register select inputs RSI and RS0 and select either ORA/DDRA, CRA, ORB/DDRB, or 
CRB (for 00, 01, 10, 11 conditions on RSI and RS0).

Interface logic senses the chip select signals and generates the VPA signal to the 
processor. VPA signifies a successful bus cycle and data transfer. The E clock initiates 
the data transfers and concludes the bus cycle.

Interface with any synchronous peripherals is similar to the PIA interface.

I/O Interface and Design Applications

One of the most important requirements of a digital system is the capacity for generating 
timing waveforms to accomplish various tasks at different intervals. With a microcom-
puter, such waveforms can be easily generated with great flexibility.

The following example problem deals with the initialization of the PIA in wave-
form generation.

Example 7.1    6821 PIA-1 I/O application: waveform generation.
In an industrial application, it is necessary to generate an 8-bit binary word, the value of 
which changes as $01, $02, $04, . . ., $08, and another 8-bit binary word, the value of 
which changes in increments of three ($00, $03, $06, . . .). Using the 68000/PIA-l 
interface of Figure 7.1, develop:

1. the necessary hardware

2. the software to accomplish this task. The base address of PIAis at $020021.

Solution

1. Hardware: The hardware of Figure 7.1 is self-contained. To obtain two 8-bit binary 
words, both ports must be configured as outputs. Output drivers may be used to in-
crease drive capability.

2. Software: Figure 7.3 indicates the 68000 operating assembly listings to accomplish 
the given task. Between lines 5 and 10, all the PIA registers are declared. Lines 11 
and 12 initialize the DO and Dl registers to $00000000 and $01. These registers will 
be used in the rest of the software.

Between lines 15 and 18, all the pins of port A and port B are configured as 
outputs by writing $FF into the corresponding data direction registers (DDRs). At 
lines 21 and 22, $04 is written into CRA and CRB, which changes b2 in these control 
registers to 1 and provides access to the output registers instead of the DDRs.

At lines 23 and 24, the byte contents of DO and Dl are output to ports A and B, 
respectively. At line 25, the delay routine is called. At lines 26 and 27, DO is 
incremented by $03 and Dl is rotated one position left. These operations provide the 
next binary words to be output to ports A and B. At line 28, the BRA instruction 
loops the program back to line 23.

The delay routine between lines 31 and 34 produces a software delay, the value 
of which depends on the initial contents of D3. This delay is the amount of time 
during which the output port values remain the same.





7.2    THE 68230 PARALLEL INTERFACE AND TIMER (Pl/T)

Figure 7.4 illustrates the pin configuration and general architecture of the 68230 PI/T 
device. It is contained in a 48-pin DIP package and is fabricated with HMOS technology. 
The 68230 PI/T consists of two bidirectional 8-bit ports A and B and a multipurpose 8-
bit port C. The bits are individually programmable to be either inputs or outputs for all 
three ports. In addition, there is a 4-bit H port for handshake operations. The HI and H2 
lines are associated with port A. The H3 and H4 lines are associated with port B. Port C 
can be configured to handle the interrupts and the DMA functions.

Registers and I/O Ports

The 68230 PI/T consists of 23 active 8-bit registers as shown in Figure 7.5. Information 
written into the appropriate registers by the 68000 processor controls the 68230 opera-
tion. Some of the PI/T registers are read-only and contain the status information pfthe 
I/O operations. The 68000 processor reads this information and performs the appropriate 
I/O functions as defined by the software. The 68230 PI/T device is very complex; how-
ever, we will present some of the basic features. For further detail, data sheets should be 
consulted.

Port Control Registers (PGCR, PACR, PBCR) The modes of operation of ports A and B 
and port H (handshake) are controlled by the control words written into the port general 
control register (PGCR) and the port A/B control registers (PACR/PBCR). These control 
registers are illustrated in Figure 7.6.

Data Direction Registers (PADDR, PBDDR, PCDDR) The direction of each bit in 
the port is determined by the contents of these registers. If there is a 1 in a bit position, 
the corresponding port bit is an output; if there is a 0, the corresponding port bit is an 
input. For example,



Data Registers (PADR, PBDR, PCDR) These registers contain the latched I/O data. 
Input data is latched during a read operation and output data is latched during a write 
operation. When the alternate data registers are used, however, I/O data is not latched, 
and is instantaneous.

Other Registers (PSRR, PSR, PIVR, TIVR) The PSRR controls the service requests of 
the interrupts, DMA, and the signal lines H1-H4. The PSR contains the status

of the handshake port H. The PIVR and TIVR contain the 8-bit address for the interrupt 
vectors to be used by the processor. The other counter/timer-related registers are for tim-
ing applications.

Interfacing the 68230 Pi/T

Figure 7.7 diagrams the required connections between the 68000 and the 68230. The 
68230 PI/T is driven by the 68000 processor clock. The decoded address bus, gated





In the preceding example, because of the selection of the 68230 due to the /LDS
signal, the registers are mapped at consecutive odd byte locations. By changing /LDS to 
/UDS and connecting the data bus of the 68230 to the upper byte of the 68000 data bus 
(D8-D15), the 68230 can be easily mapped at consecutive even bytes. To make full use 
of the 16-bit data bus of the 68000, one PI/T device is interfaced with the lower byte and 
a second PI/T is interfaced with the upper byte of the data bus.

7.3    DATA ENTRY AND DISPLAY SYSTEMS

In any computer system, data entry and data display are of utmost importance. A simple 
data entry mechanism may be a switch or a keyboard. A complex data entry mechanism 
may involve sophisticated sensors. In either case, the processor reads an input port and 
interprets and validates the entered data.

Similarly, a simple data display may be a light-emitting diode (LED). Complex 
data display may involve sophisticated graphics on a terminal. In either case, the pro-
cessor sends the processed data to an output display port.

The Keyboard and Hex Display Interface
As illustrated in Figure 7.8, the keyboard/display interface to the 68000 through the 
68230 PI/T combines data entry and display concepts. The keyboard encoder (74C922) 
activates one of the X columns and scans the Y rows to detect if any key has been 
pressed. When a key is pressed, the 74C922 encodes the X and Y data to corresponding 
binary data on its ABCD outputs. In addition, a data-valid signal is generated on its DV 
output whenever a valid key is pressed.

System Hardware and Software Considerations

Hardware The encoded ABCD signals and the DV signal from the encoder are inter-
faced to port B. Two 7-segment display devices are interfaced to port A. These devices 
(7300 series) have internal decoders and drivers and display the pressed key in hex for-
mat. For this application, port A is configured as an output port and port B as an input 
port.

Software Figure 7.9 is the system flowchart. The assembled listings for the keyboard/ 
display interface are indicated in Figure 7.10.

Between lines 15 and 21 in the listings, the initializations are accomplished. The 
68230 is configured to operate in mode 0 by loading 00 into the PGCR. Port B is con-
figured as input and port A as output by loading 00 and FF into the respective data di-
rection registers PBDDR and PADDR.

The main routine between lines 23 and 36 calls the keycode subroutine to obtain 
valid key code. It then sends the valid key code to port A to be displayed. The main 
routine also calls the check subroutine to check whether any new key has been pressed. 
This is necessary to ensure that the same key is not being recognized all the time. When 
a second key is pressed, the main routine shifts the old key code to the MSD position,





puts the new code in the LSD position, and displays it (lines 31 to 33). The program then 
goes back into the main loop.

The keycode routine between lines 38 and 42 reads port B and loops until the 
data-valid signal is high (signifying that a key has been activated). It then puts the valid 
key code in the lower nibble of the DO register and returns to the main routine.

The check routine between lines 44 and 47 checks whether the same data-valid 
signal is present, signifying that the same key has been kept pressed.

The following example problem provides a review of the keyboard/display inter-
face with the 68000/68230 system.

The preceding example sheds light on the initialization of the appropriate registers 
of the 68230 PI/T. In I/O applications, it is usually necessary to analyze the existing 
software and predict the results, as we have done in the second part of the problem.

The keyboard and segment displays may be replaced by other data entry and dis-
play mechanisms. The concepts we have discussed remain valid. Modifications, such as 
software switch debouncing, can be accomplished by checking the key code for same-
ness with a delay in between.

Other Forms of Keyboard and Interface Schemes

The hex keyboard we have examined is of limited scope. The computer and other key-
boards have up to 128 key positions. A 128-position keyboard can be wired as a 16-by-8 
XY matrix; however, the key positions can be conveniently located. Figure 7.11 shows a 
conceptual 128-position keyboard interface with the 68000 through the 68230 PI/T port 
B.

The processor activates one line of the 16-column input lines (X0-X15) through a 
4/16 decoder connected to lines PB0 through PB3 of the PI/T. It then senses one line of 
the eight-row output lines (Y0-Y7) through an 8/1 multiplexer driven by the lines PB4 
through PB6 of the PI/T. The Z output of the multiplexer is connected to the PB7 line. 
When a key is pressed, the Z output goes active for a unique combination of the digital 
word on lines PB0 through PB6. This essentially generates a 7-bit binary code for the 128-
position keyboard.

In the case described, only port B of the PI/T is used. PB0 through PB6 must be 
configured as outputs and PB7 as input. The software generates a sequential 7-bit word 
on lines PB6 through PB0. When a key is pressed, the PB7 input is activated. The pro-
cessor senses this condition and matches the 7-bit code on lines PB6 through PB0 to the



pressed key. Additional software can process this binary information to generate other 
key codes, such as ASCII. The concept can be extended to any s.ze key matrix.

In order to display one of the 128 keys, more sophisticated display units, such as 
the terminal or alphanumeric type, are required.

7.4    ELECTROMECHANICAL APPLICATIONS ___________________

Many industrial applications depend on position control, which can be accomplished 
with the help of stepper motors. Stepper motors can be controlled by microprocessors 
for flexibility and accuracy. In this section, we will describe a 68000-dnven electrome-
chanical position control system using the stepper motor. •



If the stepper code does not change, the stepper will not rotate and stays in the 
same position. When the code is changed, there is some delay before the stepper re-
sponds. A delay of 10 to 100 milliseconds is typical.

Software The operating listings for the preceding stepper-motor system are given in 
Figure 7.15. Between lines 5 and 21, the required PI/T registers are declared and initial-
ized. The 68230 PI/T is set up for mode 0 operation, with handshake lines disabled. Port 
A is configured as an output port and port B as an input port. The D2 and D3 registers 
are loaded with the first stepper code words for the clockwise and counterclockwise 
routines, as depicted in Figure 7.13.



The READ module between lines 23 and 28 reads the S control word, checks it, 
and branches to the appropriate routines. The NULL module at lines 29 and 30 outputs 
the null code to the stepper and branches back to the READ module.

The CW module between lines 31 and 36 outputs the clockwise code to the step-
per, calls the DLY subroutine for the stepper-response delay, and generates the next 
clockwise sequential code (ROR.B #1,D2 instruction). It then goes into the CW loop 
until the DO register (which contains information about bits b6 through bO of the S con-
trol word) is decremented to zero. In effect, this amounts to rotating the stepper in the 
clockwise direction, as specified by the S control word. Finally, the CW module 
branches back to the READ module.

The CCW module between lines 37 and 42 is similar to the CW module. It rotates 
the stepper in the counterclockwise direction as specified by the S control word. It also 
branches back to the READ module.

The DLY module between lines 43 and 47 generates the delay required for the
stepper motor to respond.

We will now review the stepper-motor interface by means of an example problem.

In the preceding example, we have introduced the very practical modular software 
approach. It involves writing independent software modules with local parameters and 
using them in conjunction with each other to generate system-level software activity.

Position Control Systems

Several stepper motors can be connected to a microcomputer, with each stepper control-
ling one axis. For example, an XY plotter system could have three steppers: X, Y, and Z. 
The X and Y steppers would control the X- and Y-axis motions and the Z stepper would 
control the Z-axis pen motion. Such a system is illustrated in Figure 7.16. Port A of PI/T-
1 drives the X and Y steppers. Ports B and C of PI/T-1 accept the control words from the 
X and Y steppers. Port A of PI/T-2 drives the Z stepper and port B of PI/T-2 accepts the 
control word from the Z stepper.

The software involves reading each control word and moving the corresponding 
stepper accordingly. Software for each stepper is similar to that presented in Figure 7.15. 
Care should be taken to avoid control of one stepper affecting control of another.

A robotic system is a more complex position control system in which as many as 
ten stepper motors control individual movements. A parallel printer interface involves 
controlling three or more stepper motors. The system interface and the software, how-
ever, are similar to those we have described.9



7.5    SUMMARY

In this chapter we introduced the parallel I/O interface with the 68000 processor. Two of 
the most popular and widely used devices are the 6821 PI A and the 68230 PI/T.

The 6821 PI A (peripheral interface adapter) is a synchronous 8-bit parallel inter-
face device, belonging to the earlier 6800 microprocessor. It has two individually pro-
grammable 8-bit I/O ports, A and B, along with the associated control signals. The PIA 
contains six internal registers and occupies four bytes of memory space. The processor 
communicates with the external I/O with the help of these registers.

The 68230 PI/T (parallel interface and timer) is an asynchronous parallel interface 
device belonging to the 68000 family of processors. It has three individually program-
mable 8-bit I/O ports, A, B, and C. In addition, it has a 4-bit handshake control, port H. 
The PI/T contains 23 active 8-bit internal registers and occupies 23 bytes of memory 
space. The PI/T communicates with the external I/O with the help of these registers.

The 68000 family of processors uses memory-mapped I/O in which the I/O inter-
face is similar to the memory interface. The PI A/68000 interface uses the synchronous 
bus. In the case of the PI/T, the asynchronous bus is used.

In the waveform-generation I/O application (Example 7.1), we described the inter-
face of the 68000 and 6821 PIA and the PIA initialization schemes. Waveform genera-
tion can be extended to generate any required timing sequence for digital words.

In our discussion of data entry and display systems, we described the interface of 
external I/O units, such as keyboards and segment displays, to the 68000/68230 PI/T 
systems. Keys can be electrically wired as an XY matrix. The processor generates a dig-
ital word and drives the interface logic for the matrix-type keyboard. The processor then 
senses the key closure through the interface logic and generates the appropriate key code 
for the closed key using software routines.

The stepper-motor interface to the 68000/68230 PI/T system emphasizes electro-
mechanical position control applications. Any complex position control system can be 
easily implemented by means of stepper motors and microcomputer control. A three-
stepper system can control XY plotters and a pen-motion mechanism. A robotic system 
is a more complex position control system in which up to ten stepper motors control 
individual movements.





8.0    INTRODUCTION

Slower I/O systems, such as keyboards, terminals, modems, and other electromechanical 
units, usually communicate with fast processors through a serial interface. This reduces 
the number of external connections to the processor interface.1

Of the several serial interface and communication devices, the 6850 asynchronous 
communications interface adapter (AC1A) and the 68901 multifunction peripheral 
(MFP) are widely used with 68000-based systems. The 6850 ACIA belongs to the earlier 
6800 family and has standard RS-232 interface properties. The 68901 MFP is a 68000-
family serial interface device and has additional ports and interrupt processing logic 
associated with it.



Study of the material in this chapter will provide background knowledge of serial 
data communication concepts. It will also help the reader develop practical applications 
using the serial interface.

8.1    SERIAL DATA COMMUNICATION CONCEPTS

The information sending station is called the transmitter and the information receiving 
station is called the receiver. In serial communications, data travels between the trans-
mitter and the receiver serially on a single line, one bit at a time. The American Stan-
dard Code for Information Interchange (ASCII), as shown in Figure 8.1, is the most 
widely used 7-bit code for serial data communications.2

Figure 8.2 illustrates a typical asynchronous serial data frame. The start bit sig-
nifies the beginning of the serial data frame. The next seven bits (b6-b0) represent the 
ASCII-coded data element. The next bit is the parity bit, which is used for error check-
ing. If even parity is used, the total number of Is in the data frame should be an even 
number, including the parity bit. If odd parity is used, the total number of Is in the data 
frame should be an odd number. If the parity does not check out at the receiving end, the 
data frame is in error and will be rejected. The last bits are the stop bits, signifying the 
end of the data frame. There may be one or two stop bits per serial frame.

A baud rate of 300 is relatively slow, but is standard for such electromechanical 
equipment as keyboards and terminals. With electronic high-speed serial devices, such 
as modems, higher rates of up to 9600 baud are quite common. Other codes, such as the



The control register (CR) is a write-only register and is written by the processor 
to configure the ACIA mode of operation.

The status register (SR) is a read-only register and is at the same address space as 
the CR. It contains the status of the events associated with the ACIA. The processor 
reads and interprets the status information and performs the appropriate operations.

The transmit data register (TDR) is a write-only register. The processor writes 
the 8-bit word to be transmitted into this TDR. The parity and control units in the ACIA 
insert proper parity, start, and stop bits to the data element and generate a complete serial 
frame. The transmit control logic in the ACIA shifts this frame serially on the transmit 
data (TXD) line.

The receive data register (RDR) is a read-only register and is at the same
address space as the TDR. It receives the serial data on the receive data (RXD) input
line and converts it into an 8-bit parallel word. The parity and control units within the
ACIA check and separate the parity, start, and stop bits. The processor reads this 8-bit
data in the RDR when it is ready. Any parity error information is sent to the status
register. ___

The ready-to-send (RTS) and clear-to-send (CTS) lines are handshake signals 
between the ACIA and the I/O units. The data carrier detect (DCD) signal is an input 
to the ACIA and signifies that the transmission carrier is in progress. The register select 
(RS) line is used to select between the CR/SR and the TDR/RDR pairs.

The receive clock (RXCLK) and the transmit clock (TXCLK) are the shift clock 
inputs. They are conditioned by the internal clock generator logic for appropriate receive 
and transmit baud rates.

Modes of Operation and Status Conditions of the ACIA

The contents of the control register, as shown in Figure 8.4(a), control the modes of 
operation of the 6850. The ACIA can activate the interrupt line IRQ, on occurrence of 
such events as filling of the RDR, emptying of the TDR, and activation of the CTS. The 
interrupts can be enabled or disabled by bit 7. RTS output can be configured to be active



high or low, and the associated interrupt activation can be enabled or disabled by bits 6 
and 5. Data formatting can be accomplished by bits 4, 3, and 2. The reset and the clock 
functions are controlled by bits 1 and 0.

The status register illustrated in Figure 8.4(b) contains status information on the 
6850 signals and events. If the interrupt has occurred, b7 is set. Bits 6, 5, and 4 are set for 
parity, overrun, and frame errors, respectively. A parity error occurs when an even 
parity is detected instead of an expected odd parity, or vice versa. An overrun error 
occurs when new data is shifted into the RDR, destroying the old data before it is read by 
the processor. A frame error occurs when the stop bits are not detected as expected at 
the end of the frame.

Bit 3 specifies the activity on the /CTS line. Bit 2 is set if the data carrier is absent. 
Bit 1 is set if the TDR is empty. Bit 0 is set if the RDR is full. The processor reads these 
status conditions and responds accordingly. Reading or writing into the corresponding 
registers clears the flag conditions in the SR.

The following example problem will clarify the internal architecture of the ACIA.





The MC14411 baud/frequency generator IC accepts a 1.8432-MHz crystal input 
and generates several clock rates. For our illustration, we have chosen a 4800-Hz signal 
for the activation of the TXCLK and RXCLK inputs.

For better noise immunity, RS-232 lines are driven by enhanced logic voltage 
swings. Noise immunity is achieved by the MC1488-type TTL-to-RS-232 converter and 
driver device. This device is powered by higher voltages (VDD = +12 volts; VEE = -12 
volts). It converts TTL levels to RS-232 levels. RS-232 levels follow negative logic 
convention. Negative voltage in excess of —3 volts is regarded as logic 1; positive 
voltage in excess of +3 volts is regarded as logic 0. Thus, there is a minimum 6-volt 
swing on the RS-232 lines. This provides sufficient noise immunity for the RS-232 in-
terface.

On the receiving end, signals coming from the RS-232 lines are converted to TTL 
levels by the MC1489-type RS-232-to-TTL converter. The double logic inversion caused 
by the MC1488 and 1489 converters does not cause any system logic mismatch and is 
totally transparent to the user.

RS-232 Interface Application

For most of the standard RS-232 interface applications, approximately four connections 
are used, as shown in Figure 8.6. The TXD and RXD lines are the serial transmit and 
receive data lines. The RTS output of the ACIA is gated as the /DTR (data-terminal-
ready) signal to the RS-232 interface. The /CTS (clear-to-send) signal from the RS-232 
is gated as the /CTS input to the ACIA. The /DCD (data-carrier-detect) input to the 6850 
is connected to ground and is always activated.

When the DTE (68000/6850) is in the receive mode, it expects the DCE to activate 
the /CTS line, signifying that the serial data are coming on the RXD line. The processor 
polls the SR of the ACIA for any error conditions and for /CTS activity. If there are no 
errors, and if the /CTS is active, the processor polls to see if the RDR is full. A full RDR 
implies that the incoming serial data have already been converted into the parallel byte 
form and are available in the RDR. The processor reads the RDR and accepts the 
incoming data.

During the transmit mode, the processor polls to see whether the TDR is empty. If 
it is empty, the processor writes the data byte (to be transmitted serially) into the TDR. 
During this write operation, the RTS line is activated and is communicated to the DCE as 
the /DTR. The DCE checks for the DTR active condition and goes into its routine to 
accept the transmitted data.

We will now present an example problem dealing with the hardware and software 
aspects of the RS-232 interface and serial data communications.

Example 8.3   RS-232 data communications.
Design (1) operating hardware and (2) software based on Figure 8.6. The system will 
receive ASCII characters on RXD from the DCE at 300 baud with a start bit, seven data 
bits, odd parity, and two stop bits.

Echo the same character to the DCE on the TXD line. The DTE and DCE follow 
the standard RS-232 interface format discussed earlier.



Between lines 13 and 17, the software polls the status register of the 6850 until 
the CTS input goes active and the error-free condition is detected. It then proceeds to 
the RECV module.

In the RECV module between lines 18 and 22, the software reads the received 
data byte when the RDR becomes full. The 6850 strips the start, parity, and stop bits 
from the incoming serial data on the RXD line, converts the serial data into a parallel 
data element, and places it in the RDR.

The character echo is accomplished by transmitting the received character back 
to the DCE by means of the TNSM module. Between lines 23 and 27, the software 
polls the status register until the TDR is empty. When the TDR is empty, the software 
writes the received data byte into it to be transmitted back (echoed) to the DCE unit. 
The 6850 adds the start, parity, and stop bits to the data in the TDR, generates a data
frame, and serializes it on the TXD line. The BRA.S INPT instruction at line 28 loops 
the program back to line 14 for the next character.

The software we have just described can be very easily converted to terminal input 
and output software. The NOP instruction at line 27 can be changed to an RTS instruc-
tion and the current software can be called as a subroutine by a main program.

For example, the JSR INPT instruction in a main program enters the software at 
line 14, reads an input character from the terminal, and echoes it to the terminal. It then 
returns to the main program with the value of the input character in the Dl register.

The DCE system should have RS-232-compatible software in it. In the system of 
Figure 8.6, the RTS output of the 6850 ACIA goes high when the TDR is loaded with 
new data. This manifests as low on the /DTR line. The DCE system should poll this 
condition and accept the data accordingly.

8.4    68901 MFP (MULTIFUNCTION PERIPHERAL) 
GENERAL ARCHITECTURE

In addition to serial communication, need often arises for attendant control, timing, I/O, 
and interrupt functions. The 68901 MFP of the 68000 family is a multifunction device 
that is becoming an industry standard for integrated serial, parallel, timing, and interrupt 
applications. In this section, we will examine the architecture of the MFP. The MFP data 
book should be used as an additional reference.8

The A, B, C, and D timers accept external clock inputs from the XTL1 and XTL2 
lines and provide timed pulses on the TAO, TBO, TCO, and TDO lines. In addition, the 
A and B timers can accept external timing inputs on the TAI and TBI lines and measure 
their time duration.

The USART (universal synchronous/asynchronous receiver and transmitter) 
provides serial output on the SO line. It accepts serial input on the SI line. The receive 
and transmit clocks are accepted on the RC and TC inputs and are used for the respective 
data-shifting operations within the USART.

The GPIP (general purpose I/O and interrupt port) has 8-bit parallel I/O capa-
bility on the 10-17 lines. These lines can also be configured as eight external interrupts, 
allowing the MFP to function as an interrupt controller. The associated interrupt control 
logic interlaces with the processor on the /IRQ and the /IACK lines. The /IEO and /IEI 
(interrupt enable output and input) signals are used for daisy chaining the priority inter-
rupts.

The 68901 MFP communicates with the processor on an 8-bit data bus D0-D7. 
There are twenty-four 8-bit registers in the 68901, which are selected by the five register 
select inputs, RS1-RS5. The select and control logic consists of the CS (chip select), DS 
(data strobe), and R/*W (read/write) inputs and the /DTACK (data acknowledge) output.

The RESET input provides the 68901 reset operation. The CLK input advances the 
internal states of the MFP.

In this section we will discuss some details of the registers dealing with the GPIP, 
USART, and timers, emphasizing the utility of the MFP in serial communication appli-
cations. We will deal with the interrupt-related registers in Chapter 9.

Register Structure and Modes of Operation

Figure 8.9 is a tabular representation of the MFP's internal register structure. Contents 
written into the appropriate registers determine the mode of operation of the MFP. Sim-
ilarly, some of the status registers contain status information about events occurring in 
the MFP. The processor reads this status information, interprets it, and performs appropriate 
operations as determined by the software.9



Zero in a bit position of the DDR makes the corresponding GPIP line an input, and vice 
versa. Zero in a bit position of the AER causes an interrupt to be generated on the falling 
edge of the corresponding GPIP input line, and vice versa. These interrupts can be 
masked out by the interrupt mask registers, whereupon the GPIP inputs become normal 
inputs.



Timers A, B, C, and D   The timer data registers TADR, TBDR, TCDR, and TDDR
at displacement addresses $1F, $21, $23, and $25 can be loaded with 8-bit numbers. 
These registers act as down counters and produce pulses on the TAO, TBO, TCO, and 
TDO outputs when they are decremented to zero from the preloaded condition. The timer 
control registers TACR, TBCR, and TCDCR at displacement addresses $19, $1B, and 
$1D determine the mode of operation of the timer registers. Figure 8.10 illustrates the 
format of the TCDCR, which controls timers C and D. A delay mode implies that the 
timer registers are decremented after the prescaling of the input clock. The format of the 
TACR and TBCR registers is similar to that of the TCDCR, but the TACR and TBCR 
individually control the A and B timers.

USART Operation and Control The USART can be configured to operate in a 
synchronous or an asynchronous mode, with different word formats and baud rates. The 
UDR (USART data register) at displacement address $2F acts as a receive data register 
during receive operations and as a transmit data register during transmit operations. The 
UCR (USART control register) at displacement address $29 controls the USART modes 
as shown in Figure 8.11.

The RSR (receive status register) and TSR (transmit status register) at displace-
ment addresses $2B and $2D contain the receiver and transmitter status information as 
shown in Figure 8.12. In our discussion, we will focus on asynchronous serial commu-
nications, since they are more widely used. The MFP is also capable of synchronous 
communications. These involve synchronous protocols and are more complex than asyn-
chronous communications.

We will now present an example problem to enhance our understanding of the 
MFP architecture and register formats.



The 68901 MFP is a 68000-compatible I/O device. The multifunction capabilities of the 
68901 make the I/O interface and applications very efficient and powerful.

68000/68901 and I/O Interface Considerations

Figure 8.13 illustrates the interface details of the 68901 with the 68000 processor and the 
I/O systems. The address decoders (refer to Section 6.3 of Chapter 6) generate the 
required chip select to the MFP. The system reset signal drives the MFP to reset the 
MFP and set default values in the registers. The R/*W signal is interfaced directly for 
read/write operations.10

The MFP is mapped on the lower data byte D7-D0 to facilitate direct transfers of 
the interrupt vector numbers from the MFP to the processor. The /LDS signal drives the 
/DS (data strobe) input for the lower byte data transfers. The A5-A1 address lines drive 
the register select lines RS5-RS1 to address one of the internal 24 registers of the MFP. 
The /DTACK is fed back to the processor through the interface logic. The clock input is 
the same as that for the processor. Another MFP can be mapped on upper byte of the 
data bus by using the /UDS signal in place of the /LDS. Both MFP devices together oc-
cupy the 16-bit data bus for effective word transfers.

The SO and SI (serial out and serial in) lines are interfaced to the serial I/O unit. 
The 2.4576-MHz crystal activates the MFP for proper timing of the timers and the 
USART. The TCO and the TDO timer outputs are fed back as the RC and the TC clock 
inputs. The GPIP I/O port drives an LED display. For the conditions of Figure 8.13, the 
base address of the MFP is $040000. The GPIP is located at $040001, and so on.



Coded Data Communication System
In order to maintain security, data may be coded during data communications. The 
68000/68901 system of Figure 8.13 is well suited for such an application. The data are 
transmitted on the SO line to the I/O system in a coded form and are echoed back on the 
SI line of the MFP. The microprocessor reads and further codes the data, and displays the 
data on the GPIP port LED bank. The coding used for the data communication is the data 
inversion. The coding used for the display is to advance to the next ASCII value. The 
characters to be transmitted are in a memory buffer. A0 refers to the starting address and 
Al refers to the ending address of the buffer.

Figure 8.14 indicates the 68000-based software for this coded data communication 
system. Between lines 6 and 16, the MFP registers that are relevant to this application 
are defined. Between lines 17 and 32, the MFP is initialized as follows (refer to Example 
8.4 for details):

Between lines 33 and 40, the transmit character routine is performed. The character 
from the memory buffer referenced by the A0 register is read into DO. It is coded by 
logical inversion and transmitted on the SO output. This is accomplished by checking bit 
7 of the TSR for logical 1 (signifying that the USART transmit buffer register UDR is 
empty) and then writing the data byte in DO into the UDR, if it is empty.



Between lines 41 and 49, the receive character routine is performed. The echoed 
character from the serial I/O on the SI input is read into Dl after checking that the re-
ceive buffer is full. It is decoded by logical inversion. It is further coded to be the next 
ASCII character by adding 1 to it. Finally, it is output to the LED display on the GPIP 
output port.

Between lines 50 and 53, a delay routine is incorporated. At lines 54 and 55, the 
program checks for the end of the buffer. If the end of the buffer is not indicated, the 
program loops back to start. At line 56, the program goes into an indefinite wait loop.

The following example problem provides a review of the 68000/68901 interface 
and the coded data communication.



The coding in the preceding example is simple. However, it can be made as complex as 
required. The \\ stop-bit concept implies that the second stop bit is only half the period of 
the shift clock. However, the shift clock is 1/16 the frequency of the TC and the RC 
clock inputs. As such, the half stop bit can be accurately sampled by the RC and TC 
clocks. The half stop bit is intended to make the data frame more efficient.

8.6    SUMMARY

In this chapter we introduced some important serial data communication concepts. For 
interfacing slower peripherals and systems to a fast processor, serial communication is 
preferable to parallel communication. The standard asynchronous serial data frame 
consists of a stop bit, a data element, a parity bit, and one or two stop bits. The parity bit 
is for error checking. With serial interface, the number of external connections to the 
processor interface are reduced. This results in a cost efficient, less complex
interface.

One of the industry standard serial communication devices for RS-232 serial com-
munications is the 6850 ACIA (asynchronous communication interface adapter) of the 
earlier 6800 family. It consists of four internal registers: the control register, the status 
register, the transmit register, and the receive register. It accepts an 8-bit parallel word 
from the processor, converts it into RS-232 format, and serializes the data frame for 
"transmission on the serial data link. Similarly, it accepts the serial data from the data 
link, checks the parity, removes the extra bits in the serial frame, converts it into an 8-bit 
parallel word, and supplies it to the processor.

We described interfacing the 68000 using the 6850 ACIA. We also described the 
industry standard RS-232 serial interface using the 6850 ACIA, including the details of a 
hardware and software application.

The 68901 MFP (multifunction peripheral) is a very useful device belonging to the 
68000 family. We described its internal architecture and the particulars of the 68000/ 
68901 MFP interface. The MFP device has integrated capabilities for serial data com-
munications, timing, parallel I/O, interrupts, and DMA. It is particularly useful as a serial 
communication device.

The coded data communication example we presented was meant to provide a 
practical application of the MFP device and also illustrate the concept of data security in 
transmission and receiving. It should be noted, however, that there are more efficient 
data security methods than the one we considered.
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Objectives
In this chapter we will study:

Interrupt interface schemes associated with the 68000 

Interrupt expansion schemes and daisy chaining Interrupt-

driven system applications The DMA interface and 

controllers DMA system interface design

9.0    INTRODUCTION

An interrupt is the traditional way in which the attention of the processor is obtained by 
an external device or a peripheral. By contrast, DMA (direct memory access) is the tra-
ditional way of obtaining control of the processor buses and is used by I/O systems for 
high-speed data transfers.

Interrupts are handled in the supervisor mode. The terms /IRQ and /INT are used 
interchangeably in this chapter to refer to the interrupt request. Study of the material to 
be presented will help the reader understand the interrupt and DMA structure of the 
68000 family of processors so as to implement interrupt-based I/O systems and DMA-
based data transfers.



The reader is advised to review the concepts in Chapter 5 related to exception vec-
tors and interrupts (Sections 5.1 and 5.2) before proceeding further.

9.1    INTERRUPT INTERFACE CONSIDERATIONS ______________

Autovectored and User-vectored Interrupt Logic

Figure 9.1 (p. 237) illustrates the autovectored and user-vectored interrupt logic associ-
ated with the 68000 processor. The I/Q-2 device generates interrupt request /INT3, which 
is encoded onto the /IPL2, /IPL1, and /IPLO inputs of the processor by the 74LS148 
encoder. In response to /INT3, the processor generates an /IACK3 interrupt acknowledge 
signal, which is gated as /VPA input to the processor for autovectoring. During the in-
terrupt acknowledge cycle, the FC2, FC1, and FCO outputs of the processor remain at 
the 111 condition; the A3, A2, and Al address lines contain the interrupt number that is 
being acknowledged. In this case, A3, A2, and Al will be at 011.

The I/O-l device generates interrupt request /INT5. The processor generates the 
corresponding /IACK5 interrupt acknowledge signal, which is routed to the interrupt 
controller of the I/O-l device. In response to /IACK5, the controller provides the interrupt 
vector number on the data bus and activates the /DTACK input to the processor for user 
vectoring. In either case, the processor goes to the appropriate vector location as 
outlined in Chapter 5, and executes the interrupt service routine in the supervisor mode.1

Interrupt Controllers

An interrupt controller is a device that can prioritize interrupts, provide vector numbers 
to the processor, and keep track of the occurrence of the interrupts. The 68901 MFP 
introduced in the previous chapter is such an interrupt controller belonging to the 68000 
family. The MFP handles 16 interrupt channels (8 from the internal sources and 8 from 
the external GPIP lines 10-17 used as interrupt inputs). In Figure 9.2 the priority 
structure of these interrupt channels is indicated. (Refer to Chapter 8 for 68901 MFP 
details.) The MFP controls these interrupts using

the interrupt enable registers A and B (IERA and IERB); the 

interrupt mask registers A and B (IMRA and IMRB); the interrupt 

pending registers A and B (IPRA and IPRB); the interrupt in-service 

registers A and B (ISRA and ISRB); and the interrupt vector register 

(VR).2

Figure 9.3 illustrates the format of the IERA and IERB. These two registers enable 
or disable the interrupts. If the bit is set (= 1), the corresponding interrupt is enabled. If 
the bit is reset (=0 ) , the corresponding interrupt is disabled. When the interrupt is 
enabled, its occurrence will be recognized by the MFP, and the /IRQ will be asserted to 
the processor. All the other interrupt-related registers have bit maps similar to that of the 
IERA/IERB.

Interrupts are masked for a channel by clearing the appropriate bit to 0 in the mask 
registers 1MRA/IMRB. When an interrupt is enabled but masked, it will be recognized 
by the MFP, but the /IRQ will not be asserted to the processor. Instead, the correspond-
ing bit in the interrupt pending registers IPRA/IPRB will be set. The processor can poll 
these registers to determine if an interrupt has occurred.



When a bit in the ISRA/ISRB is set, it implies that the corresponding interrupt 
vector number has been given to the processor and that the interrupt routine is in 
progress.

For external GPIP interrupt inputs, the active edge register (AER) of the MFP is 
used to specify the edge activation. A zero in a bit position makes the corresponding 
interrupt active on a high-to-low transition, and vice versa.

The interrupt vector number is contained in the vector register (VR), as indicated 
in Figure 9.3. The upper four bits are written by the user during initialization. The lower 
four bits are written by the MFP according to the priority scheme of Figure 9.2.

Interrupt Expansion and the Daisy-Chain Mechanism
In 68000-based systems, the MFP interrupt controllers are assigned to one of the seven 
possible interrupt levels of the processor. Each MFP supports up to 16 interrupts (8 in-
ternal and 8 external). However, in systems that are I/O-based to a large extent, there 
may be a requirement to increase the number of interrupt inputs. This can be accom-
plished by daisy chaining the interrupt controllers, as shown in Figure 9.4. The control-
ler closest to the processor (MFP 1, in this case) has the highest priority. It is always 
enabled by keeping its interrupt enable input, /IEI, grounded.

negates its interrupt enable output, /IEO. This, in turn, disables the next controller by 
deactivating its interrupt enable input, /IEI.

On the other hand, if we assume that MFP 2 has generated the /INT, MFP 1 activates 
its /IEO output and enables the MFP 2 controller during the interrupt acknowledge . cycle.
MFP 2, in turn, supplies the vector number to the processor in response to the /IACK 
signal. This enable and disable process continues until the end of the chain.

In the preceding case, it can be seen that a single /INT line can be expanded to 
handle 32 interrupts (16 from each controller). The number of entries in the vector table 
and the electronic loading on the lines determine the practical upper limit for the number 
of controllers on the daisy chain.3

The following example problem provides a review of the interrupt interface to the 
68000 and the daisy-chain mechanism.

Example 9.1    68000 interrupt interface and daisy chain.
Assume that the /IRQ outputs from the daisy-chained controllers of Figure 9.4 activate 
the /IRQ5 input to the 68000 system. (/IRQ and /INT refer to the same thing.)

1. Interrupt 17 from I/O system 2 and interrupt 16 from I/O system 1 occur simulta-
neously and activate the /IRQ5 line to the processor interface logic. Which interrupt 
will be recognized? Assume the interrupts are enabled and are not masked.

2. Suppose it is required to disable all the other interrupts except the GPIP interrupts for 
both controllers. In addition, GPIP interrupts 14-10 should be masked out. What 
words should be written into the interrupt enable and mask registers?

3. If the upper four bits of the vector register for MFP 1 are loaded with $4, what vector 
number is supplied to the processor by MFP 1 for GPIP interrupt 16?

Solution

1. Interrupt recognition: MFP 1 is of higher priority than MFP 2 in the daisy chain. 
Thus, interrupt 16 from MFP 1 will be recognized.

2. Disabling and masking of interrupts: Refer to the bit map of the IERA/IERB (Fig-
ure 9.3).

0 in the bit position disables the interrupt;

1 in the bit position enables the interrupt.

The mask registers IMRA/IMRB have a similar bit map.

0 in the bit position masks the interrupt;

1 in the bit position does not mask the interrupt.









ory cell is 2 milliseconds. This refresh activity can be easily controlled with the help of 
interrupts and software techniques.5,6

A 1-megabyte DRAM device (such as the Motorola MCM511000) is organized as 
512 rows by 2,048 columns. During the first half of the bus cycle, the row address is 
presented to the DRAM and the /RAS (row address strobe) is activated. All 512 cells on 
that row present their information internally to sense amplifiers. During the second half 
of the bus cycle, the column address is presented and the /CAS (column address strobe) 
is activated. One out of the 2,048 columns is selected, and the appropriate data bit is thus 
addressed. For refreshing, it is sufficient that the row address be supplied and RAS 
activated.

Twenty address lines are required to access one out of a million locations. Exter-
nally, ten row address lines (A1-A10) and ten column address lines (A11-A20) are 
multiplexed to drive the ten address lines of the DRAM (pins A0-A9). Internally, these 
twenty effective address lines are adjusted in groups of nine and eleven (to address one 
out of 512 rows and one out of 2,048 columns).

Figure 9.9 illustrates a 1-megaword DRAM system interface with a 68000 proces-
sor, occupying the range between $200000 and $3FFFFF. The 68901 is used as an 
interrupt controller to generate a nonmaskable interrupt (level 7), once every 2 millisec-
onds. The processor recognizes this interrupt and executes 512 sequential NOP instruc-
tions contained in system ROM or EPROM. For the system shown, RAS is generated 
while the address lines A1-A9 from the 68000 change in sequence. This has the effect of 
refreshing the 512 rows (of all the 16 DRAM devices) in sequence. The DRAM is 
selected only when the /CSDRAM and /CAS signals are generated. This happens only 
when the locations in the DRAM are addressed.

If the DRAM is not refreshed within 2-millisecond intervals, the information may 
be lost. The highest priority interrupt is used (in this case, interrupt level 7) so that the 
processor will not mask it and will respond to the refresh operation.

In Figure 9.10, the DRAM refresh software listings are given. During the system 
initialization (reset routine), the DRAM module is called as a subroutine to initialize the 
interrupt controller (in this case, the 68901 MFP). (Refer to Chapter 8 for a description 
of the MFP/68000 interface.) Timer A, with an internal interrupt priority of $D, is used 
in this application to generate a 2-millisecond delay.

Between lines 6 and 11, the MFP registers required for this application are de-
clared. At line 14 the vector register of the MFP is loaded with $40. When timer A 
generates an interrupt, the corresponding vector number is



Between lines 17 and 22, the timer A interrupt is enabled and the timer A data and 
control registers are conditioned to generate an interrupt every 2 milliseconds. At line 25, 
the subroutine returns to the calling program.

The interrupt routine INTR starts at line 26. The NOP codes are sequentially ar-
ranged by means of the DCB.W 512,NOP assembler statement. When interrupt 7 occurs, 
these 512 NOPs are executed and the program returns to the interrupted program by 
means of the RTE instruction at line 27.

The following example problem provides a review of the interrupt controller and 
the DRAM implementation.



Software refresh eliminates the need for additional hardware. In the preceding case, 
12.8 percent of the processor time is devoted exclusively for refreshing 1-megaword of 
memory. Interrupt stacking and unstacking takes a few more clock cycles. In small-to-
medium systems, such an arrangement is acceptable. However, for larger systems with 
more memory, hardware refresh is used with the help of memory management units.

9.3    THE INTERRUPT-DRIVEN DATA-ACQUISITION 
SYSTEM AND APPLICATIONS

The usefulness of any microprocessor-based system is greatly enhanced when it is inter-
faced with the analog word. This can be accomplished easily with the help of A/D (analog-
to-digital) and D/A (digital-to-analog) converters. The processor-to-A/D interface can be 
interrupt driven to make efficient use of the processor time.7

The A/D and D/A Interface

Figure 9.11 illustrates a typical A/D and D/A interface to the 68000 microprocessor 
through the 68230 PI/T (refer to Chapter 7 for PI/T details). ADC 0816 is an 8-bit 16-
channel A/D converter device. By means of the select word DCBA, any one of the 16 
input channels (VIN0-VIN15) can be selected. DCBA = 0000 selects VINO, and DCBA 
=1111 selects VIN15.

All of these analog voltages are signal conditioned and filtered before being applied to 
the A/D converter. Figure 9.12 illustrates a typical signal-conditioning system.



The signal input VSO is buffered by high-input impedance noninverting amplifier Al. 
The Al amplifier has an effective voltage gain of 1 + (R2/R1). VSO input should be in 
the range of 0 to 5 volts for this system. The R3-C network provides low-pass filter 
action to remove switching transients. The A2 amplifier is a voltage follower, the output 
(VINO) of which is applied as inputO (INO) to the A/D converter of Figure 9.11.

The A/D converter digitizes the applied analog input voltage VIN and produces a 
corresponding 8-bit digital word on its B1-B8 outputs. A 640-KHz clock drives the A/D 
converter. The converter is interfaced to port B of the 68230 PI/T. The H3 and H4 
handshake lines control the A/D. A pulse from the microcomputer on the H4 line to the 
START input of the A/D converter starts the conversion of the selected VIN input.

When the conversion is complete, the A/D converter generates a pulse on its EOC (end 
of conversion). It is connected to the H3 handshake input of the 68230 which in turn, 
generates an interrupt to the processor on its PC5/*IRQ line. In this application, /IRQ 
drives a level 2 interrupt (/INT2).

The DAC 0800 D/A converter is interfaced to port A of the 68230 PI/T as indi-
cated. This 8-bit D/A converts the processed digital word on its B1-B8 inputs (sent by 
the processor on its port A) into a corresponding analog voltage VA. VA is filtered using 
the low-pass filter (LPF) amplifier to remove any step and switching transients and to 
provide a reconstructed analog voltage VO. The LPF has a cutoff frequency of 8 KHz, 
which is sufficient in most audio, control, and instrumentation systems.8





A Typical Data-Acquisition System
With appropriate software, the A/D and D/A system of Figures 9.11 and 9.12 can be 
integrated into a useful data-acquisition and instrumentation system. For the 68000-
based system under consideration, the 68230 PI/T resides at the address map between 
$010001 and $01003F. Port A is configured as an 8-bit output port to drive the D/A 
converter. Port B is configured as an 8-bit input port to accept the A/D data.

The handshake signals H3 and H4 are configured for pulse handshake on port B. A 
pulse will be generated on H4 whenever port B is accessed. This pulse starts the A/D 
conversion. When the A/D conversion is complete, H3 input will be activated by the A/D 
converter. This interrupts the processor, which, in turn, reads the digitized data on port B. 
This interrupt handshake between the 68230 PI/T and the 68000 is accomplished by 
configuring the PC5 (port C, pin 5) as an /IRQ to the processor and the PC6 (port C, pin 
6) as the IACK to the 68230 (refer to Figure 9.11).

The user vector method is employed in this application to provide the interrupt 
vector to the processor. The DCBA switches are set to 0000 to select VINO as the ana-
log input. Figure 9.13 (p. 254) illustrates the 68230 initialization required for this appli-
cation.

The flowchart and operating listings for a 68000-based computer using the preced-
ing data-acquisition system are given in Figures 9.14 (p. 255) and 9.15 (pp. 256-257). 
The software configures the 68230 PI/T ports and the CPU registers. The interrupt rou-
tine reads the A/D data (from port B), stores up to 256 data bytes, and outputs the stored 
data in the reverse order to the D/A (on port A). Finally, the software loops back for the
next digitization.

We will now analyze the software and the system response with the help of an
example problem.

Solution

1. Software analysis: Between lines 12 and 28, all the PI/T registers used in this appli-
cation are defined. Between lines 31 and 36, registers DO, A2, and D3 are initialized 
with $00000000, $2100, and $FF, respectively.

Between lines 38 and 43, the PI/T registers are initialized according to Figure 
9.13. At lines 44 and 48, $00002000 is stored at vector location 3E8 and port C is 
configured for interrupt activity (PC5 is an /IRQ and PC6 is an /IACK). Accessing 
port B (at line 49) generates the first H4 pulse to start the A/D process. Between lines 
53 and 56, the processor enables the H3 interrupt and goes into a wait loop-waiting 
for the interrupt to occur at the end of the conversion.

On occurrence of the H3-activated interrupt, the processor fetches the interrupt 
routine address ($00002000) from the vector location $3E8 and starts the interrupt 
exception routine (line 62). At line 62, the H3 interrupt is disabled so that the pro-
cessor will not be reinterrupted by the A/D while it is servicing the interrupt that 
already has been recognized.

At lines 63 and 64, the processor reads the A/D byte from port B and stores it in 
the memory in an ascending order. If 256 bytes of the A/D data are stored, the 
program branches to the final module (lines 65 to 67). Otherwise, the program returns 
to the wait loop by means of the RTE instruction at line 68.

The final module is contained between lines 70 and 79. It outputs 256 bytes of 
the stored A/D data in the memory to the D/A converter through port A in a descend-
ing order. The delay loop (lines 72 to 74) provides delay between successive D/A 
samples. After all 256 samples are output, the program branches back to line 68 and 
the RTF instruction at line 68 returns the program to the wait loop.

2. Interrupt service routine: This routine starts at location $00002000 (line 62).
3. VO waveform: The digitized and stored data (256 bytes) are output to the D/A con-

verter in the reverse order, with delay between the samples (lines 70 to 79 of the 
software). Thus, the reconstructed VO analog signal looks backward, as diagrammed, 
when compared to the corresponding VINO input.



well over 256 bytes. The general hardware and software concepts of the data-acquisition 
and the A/D and D/A interface schemes remain the same, however.

We will now present another example problem in which the importance of D/A 
conversions and associated waveform generation are emphasized.

Example 9.6   Waveform generation using D/A.
With reference to Example 9.5, suppose it is necessary to generate a triangular waveform 
at the output of the D/A converter (connected to port A PADR). Assume all the 
initialization conditions of Example 9.5.

1. Develop the operating software.

2. How is the frequency of the waveform changed?

Solution

1. Operating software: The flowchart and the 68000-based program listings to accom-
plish the task are given in Figure 9.16. The DO register is used as the count register. 
It is incremented and output to port A (with a delay) if the count is between $00 and 
$FF. This provides a positive-going ramp at the output of the D/A. If the DO register 
equals $FF while it is being incremented, it is then decremented and is output to port 
A (with a delay). This provides a negative-going ramp at the output of the D/A. The 
positive- and negative-going ramps generated in sequence provide the required trian-
gular waveform.

2. Changing the frequency: The frequency can be changed by changing the delay 
counter parameter in the instruction MOVE.W #$40,D4. If the number $40 is in-
creased, the frequency proportionally decreases.

In the preceding example, the maximum frequency will be obtained if the delay 
routine is deleted.

9.4    DIRECT MEMORY ACCESS (DMA) CONSIDERATIONS

DMA techniques help accomplish high-speed data transfers between memory and mem-
ory, memory and I/O, and vice versa. The DMA operations are performed with the help 
of DMA controller devices. These controllers obtain the address, data, and the control 
buses from the processor and implement the DMA transfers. During the DMA transfers, 
the processor is logically disconnected from the buses.

General Architecture of the DMA Controllers

Figure 9.17 illustrates a typical DMA system organization. The I/O device requests the 
controller for DMA operation. The DMA controller, in turn, requests the processor, ob-



grant) signal to the controller. The controller, in turn, sends the BGACK (bus grant ac-
knowledge) signal to the processor and takes control of the buses. The DMA controller is 
the bus master until the /BGACK is deactivated. The controller drives the address and 
control buses and performs the DMA operations. The processor regains control of the 
buses after the /BGACK is deactivated.

The 68440 and 68450 DMA Controllers

The 68440 and 68450 are industry standard DMA controller devices belonging to the 
68000 family. The 68440 has two DMA channels, while the 68450 has four DMA chan-
nels. These devices are pin compatible with one another and are contained in a 64-pin 
DIP or a 68-pin grid-array package. They are fabricated with HMOS technology. The 
devices are similar with respect to internal architecture. Both have signals similar to
those of the 68000 processor.

Figure 9.19 illustrates the signal organization for the 68440/450 devices. The
higher order address bus (A8-A23) is multiplexed with the 16-bit data bus (D0-D15).
These buses are demultiplexed by external logic and are connected to the 68000 system
bus. There are two modes of operation for DMA controllers: the CPU mode and the
DMA mode.

In the CPU mode of operation, the processor is the bus master. The DMA con-
troller resembles an external device. The control signals R/*W, /LDS, /UDS, and /AS be-
have as inputs to the DMA controller. The DTACK signal behaves as an output. The 
processor effectively writes or reads information from the DMA controller.

In the DMA mode of operation, the processor releases the control of the buses, 
and the DMA controller becomes the bus master. The aforementioned signals behave in 
a manner opposite to that described. The controller generates all the 68000-compatible 
signals appropriate for data transfers.

The multiplexer control signals control the demultiplex logic for the data and ad-
dress buses to appropriately interface the 68000 system bus. The DMA controller com-
municates with the I/O systems via the device control signals /REQ, /ACK, /PCL, /DTC, 
and /DONE.

The DMA controller communicates with the processor via the bus arbitration sig-
nals /BR, /BG, and /BGACK, and via the interrupt signals /IRQ and /IACK.

Figure 9.20 illustrates the internal register structure of the 68440/68450-type DMA 
controllers. Each channel consists of 17 registers. In addition, each device has a general 
control register, GCR. Some of these registers are initialized by the processor to set up 
the DMA operation. Others present the status information to the processor. We will 
discuss the details of these registers in the following section.

Modes of Operation of the DMA Controllers
When the controller is serving as the bus master, it is in the DMA mode of operation, 
performing the data transfers. This DMA mode allows for two distinct modes: the 
single-address mode and the dual-address mode.



In the single-address mode, the data transfers are between the I/O and memory. 
The controller changes the memory address for successive transfers, but the I/O address 
remains the same. The I/O device is activated by the /ACK signal from the controller. 
The data transfer takes only one bus cycle.

In the dual-address mode, the transfers are between memory and memory. In this 
mode, the controller contains the source and the destination addresses in the MAR and 
DAR registers. Any external peripheral device has sequential address space similar to 
that of memory. The controller generates the source address and reads the source dper-
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low, the data, address, and control buses of the 68000 remain in a high-impedance state 
(refer to Chapter 6, Section 6.1). The DMA controller takes control of these buses, be-
comes the bus master, and begins the data transfers.

Figure 9.22 specifies the typical sequence of events during single-address mode 
transfers from the I/O units to the system memory. Other types of DMA transfers follow 
a similar sequence of events.

DMA Channel initialization

The DMA controller must be initialized in accordance with the system application before 
any DMA activity takes place. For single-address transfers, the processor writes the 
starting address of the memory, the size and number of data operands to be transferred, 
the direction of transfer, and other such information into the appropriate registers of the 
DMA controller. For dual-address-mode transfers, the source and destination operand 
addresses are written into two separate registers.

After the first initialization, further reinitialization of the controller can be done 
internally by the controller, itself, if it is operated in the reload condition.

We will now present an example problem to review the DMA sequence of opera-
tions and initialization schemes.



concludes the current bus cycle. It releases the control of the buses to the DMA controller 
on the occurrence of the BGACK signal.

Only one DMA channel can be serviced at a given time. Two such channels can be 
serviced (one at a time), if a 68440 controller is used. For four such channels, the 68450 
controller should be used. The initialization scheme for each channel is similar to the 
scheme we have described. The DMA channels are prioritized by the controller.

DMA Software Considerations

In DMA applications, the software basically initializes the DMA controller. When the 
peripheral is ready for DMA operation, it usually interrupts the processor. The processor 
recognizes this interrupt and initializes the DMA controller. Thereafter, the DMA request 
can occur at any time. The DMA request should not be allowed prior to, or during, the 
initialization of the DMA controller.

We will now introduce the software for DMA operations with the help of an ex-
ample problem.



1. Develop 68000-based operating software to initialize the DMA controller.
2. Compute the actual time of the DMA transfers, using the software developed. Con-

sider the system (processor and controller) to be operational at 8 MHz.

Solution

1. DMA initialization software: In Figure 9.24, the operating software using the
68000 is given. Between lines 6 and 14, the relevant channel 0 registers of the con
troller (a 68440/450 device) are defined. At line 17, the interrupt 6 vectored address
of $00001200 is loaded into the exception table at location $0078. This is the inter
rupt 6 autovector location.

Between lines 18 and 24, the processor goes into a TASK routine. A task can 
be any processing activity the processor is involved in. For simplicity, we have cho-
sen a three-instruction loop. The processor responds to the interrupt, if the interrupt is 
enabled, and appropriately initializes the DMA channel.

Between lines 25 and 33, the interrupt 6 service routine is contained. This rou-
tine initializes the DMA registers as specified in Example 9.8. After the initialization, 
when the DMA request occurs, the processor gives up the buses to the DMA 
controller to transfer the data, as outlined previously.

2. Time for DMA transfers: After the DMA channel has been set up, the transfer time
is that of the 1-kiloword transfers. The DMA is set up for single-address transfers
from the I/O peripheral to the system memory.

Each word transfer takes one bus cycle, which corresponds to four clock cycles. 
Thus, the timing is as follows:

Examples 9.8 and 9.9 involve the single-address mode of DMA operation. The 
dual-address mode of DMA operation is similar to the single-address mode; for the dual-
address mode, however, each byte or word transfer takes two bus cycles for 68000-based 
systems.

9.6    SUMMARY

In this chapter we considered interrupt and DMA applications related to the 68000 mi-
croprocessor.
___The external interrupts are properly encoded and applied to the /IPL2, /IPL1, and

IPL0 inputs of the 68000 processor. A level 0 interrupt signifies that there is no pending 
interrupt. Interrupt levels 1 through 7 are set on priority, with level 2 higher than level 1, 
and so on. Level 7 is a nonmaskable interrupt (NMI).

These interrupts can be autovectored or device (user) vectored. In autovectoring, 
the processor goes to a fixed vector location. The autovectoring scheme is simple and is 
preferable when a fixed number of interrupt vectors is satisfactory for the application. 
The device-vectoring scheme is more involved, but it provides the scope for interrupt 
expansion. In device vectoring, the interrupting device supplies the corresponding vector 
number.

In order to increase the effective number of interrupts, a daisy-chain mechanism 
with a device-vectoring scheme is used. In the daisy chain, the device closest to the 
processor has the highest priority; the device farthest away has the lowest priority.

Interrupt processing is done in the supervisor mode. After stacking the program 
counter and the copied status register, the 68000 processor obtains the interrupt-vectored 
address from the appropriate vector location and executes the corresponding interrupt 
service routine.

We described the following interrupt-driven systems: the gain-controller system, 
the data-acquisition system, and the dynamic memory system. The discussions helped to 
provide insight into practical interrupt applications. The gain-controller application is 
widely used in industry; for example, in setting up proper motor speeds. In the data-
acquisition system application, A/D and D/A interfaces to the processor are involved. 
The dynamic memory system application deals with interrupt-driven timing in memory 
system designs.

Whenever there is a requirement for high-speed data transfers, DMA (direct mem-
ory access) methods are used. In such methods, an external DMA controller obtains the 
control of the processor buses and implements data transfers without the intervention of 
the processor.

The industry standard 68440 and 68450 DMA controllers belonging to the 68000 
family were introduced in this chapter. The 68440 is a dual-channel DMA controller. 
The 68450 is a quad-channel DMA controller. The devices are compatible with one an-
other.

When there is a requirement for DMA-type data transfers, the DMA controller ar-
bitrates and wins the system buses from the processor. The processor goes into a high-
impedance condition for data and address buses and certain control signals. It goes into 
the inactive condition for other control signals. The DMA controller generates the re-
quired signals for data transfers and acts as the bus master.

DMA transfers can be between memory and I/O or between memory and memory. 
In the former case, they are single-address transfers. The DMA controller activates the 
peripheral at a single fixed address and the memory at a sequential address in the same 
bus cycle. Thus, the single-address mode is the fastest, and is well suited for DMA 
transfers between memory and I/O ports.

When data transfers are from memory to memory, they are dual-address transfers. 
The DMA controller reads the source operand (byte or word) into an internal temporary 
register during one bus cycle, and writes it into the destination location during the next 
bus cycle. Dual-address transfers take two bus cycles for byte or word transfers in 
68000-based systems.

In all DMA applications, the DMA controller must be properly initialized by the 
processor before the actual operation. Otherwise, unpredictable results may occur.



PROBLEMS

9.1 Assume that interrupt 5 is being serviced.

(a) Another level 5 interrupt occurs. Will it be recognized? Why or why not?
(b) Interrupt 7 occurs under the conditions of (a). Will it be recognized? Why or why not?
(c) Interrupt 7 is being serviced. Another level 7 interrupt occurs. Will it be recognized? 

Why or why not?

9.2 In ah 8-MHz 68000 system, /IRQ6 and /IRQ4 occur at the same time.

(a) Which will be recognized? In order to be recognized, specify the required duration of the 
interrupt. ___

(b) The /IRQ6 routine takes 32 microseconds; the /IRQ4 routine takes 64 microseconds. If 
they occur at the same time, specify the required duration of each in order to be 
recognized.

9.3 There are two methods of servicing interrupts: the autovector method and the user-vector 
method. Outline the advantages and disadvantages of each of these methods. Also specify 
applications particularly well suited to one or another of the methods.

9.4 Is the user stack involved in servicing interrupts? Explain.

(a) If subroutines are used in interrupt service routines, which stack is used? Why?
(b) Which stack is used when an interrupt occurs during a user subroutine execution?

9.5 Assume IRQ6 is being serviced. IRQ7 occurs while the processor is fetching the op.code
for the instruction

MOVE.L   #$734512A6,D1

(a) How many T-states have to elapse before /IRQ7 is serviced? Explain. ___
(b) Considering that the SSP is at S00003ABA at the time of the occurrence of /IRQ6, and

the USP is at $00004000, indicate the contents of the appropriate stack when /IRQ7 has 
been recognized.

9.6 The daisy chain is an accepted means of interrupt expansion. Outline the advantages and
the disadvantages of the daisy-chain mechanism.

(a) In which applications is the daisy chain not the method of choice?
(b) In which applications is the daisy chain particularly useful?

9.7 In the daisy-chained system of Figure 9.4, suppose it is necessary for I/O system 2 to have 
higher priority. How should the system be redesigned?

9.8 For the system of Figure 9.4,

(a) how many external devices can be interfaced? Why?
(b) including the internal interrupt sources of the 68901 MFP, how many total interrupt 

requests can be handled? Why?

Note: Problems 9.9, 9.10, 9.13, 9.14, 9.16, 9.18, and 9.22 can be used as the basis for special 

projects involving hardware and software implementation.

9.9 Refer to Figures 9.5 and 9.8. Redesign the hardware and the software so that

(a) the motor speed gradually increases to a maximum and stays there;

(b) the motor speed varies between a maximum and a minimum on the occurrence of each 
timer interrupt.

9.10 In a servo belt system, it is required to increase the motor speed to a maximum, have it
remain stable for 10 units of time, and then gradually reduce it to minimum. The system is
repetitive. Consider one unit of time as the occurrence of the timer interrupt.
Design the hardware and the software needed to implement this system.

9.11 How many steps of gain variation are possible in the system of Figure 9.5 considering all the 
possible software features?

9.12 For the DRAM system of "Figure 9.9, specify what could happen if a lower level interrupt, 
such as level 1, were used for the refresh operation.

9.13 Suppose the DRAM system of Figure 9.9 has to be expanded to accommodate an 
additional 1 megabyte of DRAM starting at $400000. Specify the hardware details.

9.14 Given the conditions of Problem 9.13, suppose it is necessary to modify the software of Figure 
9.10 to refresh the 2 megawords of total DRAM. Redesign the software and implement it.

9.15 What is the maximum amount of DRAM that can be software refreshed using no more 
than 30 percent of processor time?

9.16 Redesign the data-acquisition system described in Section 9.3 so that

(a) the buffer to store the A/D data is 4 kilobytes;
(b) the stored data is output to D/A with an attenuation of two units.

9.17 Additional signal shaping and processing are possible with data-acquisition system 
software. Redesign the software of Problem 9.16 so that the digital attenuation is 2 on 
even samples and 4 on odd samples.

9.18 The data-acquisition system can be easily converted into a digital voltmeter as shown in the 
following diagram. Digits 3 and 4 should display a voltage between 0.0 V and 9.9 V. Digit 2 
should display + or -. Digit 1 should display a flashing 1 if there is an overload condition.



9.19 Specify the complete address map for all four channels of the 68450 DMA controller. 
Why is there only one GCR for all four channels?

9.20 Draw the timing diagrams for the asynchronous bus signals when the DMA controller is in 
the following modes:

(a) the CPU mode, in which the controller resembles an I/O device to the processor;
(b) the DMA mode, in which the controller is the bus master and controls the data 

transfers.

9.21 With reference to the data books on 68440/450 controllers,

(a) discuss the bus arbitration scheme involving BR, BG, and BGACK for single-operand 
transfers and block transfers (assume 1-kiloword transfers);

(b) describe the handshake between the DMA controller and the peripheral device.

9.22 Redesign the system of Figure 9.21 using all-CMOS logic for minimum power operation.

9.23 Specify a sequence of operations similar to that of Figure 9.22 for

(a) dual-address transfers;

(b) port-to-port transfers.

9.24 Repeat Example 9.9 for the following transfers:

(a) 1 kiloword from memory to I/O;
(b) 10 kilowords from memory to I/O.

9.25 Repeat Problem 9.24 for memory-to-memory transfers with the DMA controller in the dual-
address mode.

9.26 Compute the DMA timing assuming the conditions of Problem 9.24. Repeat the 
computation for the conditions of Problem 9.25.
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Objectives

In this chapter we will study:

Virtual memory and virtual machine schemes The 

additional resources of the 68010 and 68012 Virtual 

memory implementation schemes Exception 

processing associated with virtual memory

10.0    INTRODUCTION

The 68010 virtual memory microprocessor has more internal resources than the 68000 
microprocessor. The additional resources are needed to implement designs based on vir-
tual memory. Externally, the 68010 is pin compatible with the 68000 and can access 16 
megabytes of logical memory.'

The 68012 extended virtual memory microprocessor is similar to the 68010 in-
ternally, but has an extended address bus (A1-A29 and A31) that can address 2 gigabytes 
of logical memory.2

When there is a large logical memory space, but only limited physical memory 
space (due to hardware limitations), a virtual memory scheme is used. Such a scheme 
allows for effective implementation of a computer system in the logical address space 
while operating in the actual hardware physical memory space.

Study of the material in this chapter will help the reader understand the virtual 
memory concepts that are fundamental to the implementation of virtual memory system 
designs using the 68010 and 68012 microprocessors.

10.1    VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

For most microcomputer systems, only a fraction of the memory and I/O resources of the 
processor are available. Virtual memory and virtual machine concepts allow the system to 
operate as if full system resources were available, even when only a fraction of them are 
physically represented. This enhances the scope of software and hardware development of 
the microcomputer systems.3

Virtual Memory Schemes

Virtual memory gives the computer user the impression that the entire memory space is 
available for use. It is memory that is not present in the real-time physically accessible 
memory, although it is in the logical memory space of the processor and is contained in 
backup memory, such as disk. When the processor tries to access this memory, a 
memory-access fault occurs. The processor attempts to correct this fault by moving the 
contents from the virtual memory into the physical memory. The processor may move 
some of the physical memory contents into backup memory in order to create space for 
the virtual memory contents to be brought in. Figure 10.1 illustrates a virtual memory 
scheme.

Virtual Machine Schemes

The extension of virtual memory concepts to cover other nonexistent hardware re-
sources, such as the I/O, leads to virtual machine schemes. There may be several local 
operating systems under a governing operating system. Each of these local operating 
systems can access the I/O resources belonging to the others through the governing op-



erating system, as shown in Figure 10.2. These I/O resources may be real, or they may 
be emulated by the governing operating system.4

During emulation, the governing operating system mimics the corresponding I/O 
properties. However, the local operating system addressing these resources considers 
them to be part of its own system. Hence, the concept of the virtual machine: The local 
operating system looks like a user to the governing system, and like a governing oper-
ating system to the user.

We will now present an example problem to review what we have learned about 
virtual memory and the virtual machine.

Example 10.1    Virtual memory and virtual machine concepts.
In a database management system using the 68010 processor, the memory map for phys-
ical memory and I/O is as follows:

2. Now suppose Al = $012345AE. Can the scheme be implemented?
3. Suppose it is necessary to implement an additional I/O system between I1A2300 and 

$1A23FF. Conceptualize the implementation scheme for this virtual machine.

Solution

1. Virtual memory implementation: The 68010 processor has a 16-megabyte logical 
space between $000000 and $FFFFFF. Currently, the 68010 is accessing memory at 
$0C000E. It is outside the physical memory, but is contained in the logical memory 
space. Therefore, the virtual memory scheme is possible.

In Figure 10.3, the conceptual events in the virtual memory implementation 
scheme are indicated. When the memory-access fault is detected, the fault correction 
software and the memory management hardware will move the virtual memory sec-
tion (in which the current reference is made) into the real physical memory. The 
memory reference pointer (Al, in this case) will be readjusted to correspond to the 
remapped memory. Thus, the referenced memory will be made available to the pro-
cessor for the data movement operations.

After the fault has been corrected, the processor resumes its earlier activity. The 
fault correction software is really bus error exception processing software (details to 
be discussed later).

2. Memory access at $012345AE for 68010- and 68012-based systems: The virtual 
memory scheme cannot be implemented for the 68010, since the location $012345AE 
is beyond its logical space. However, in the case of the 68012 processor, the location 
is in the logical space and the virtual memory scheme can be implemented.

3. Virtual machine (I/O between $1A2300 and $1A23FF): When a reference is made 
to this nonexistent I/O, the processor will implement the virtual memory schemes as



we have outlined, with additional emphasis on the emulation of the I/O device prop-
erties and associated operating systems.

In the preceding problem, mention was made of the virtual memory section from 
the backup memory being moved into the physical memory area. The functional details 
of this important virtual memory implementation concept are shown in the flowchart of 
Figure 10.4. A part of the physical memory is assigned as a memory buffer. This buffer 
is used for all the virtual memory transfers. A 64-kilobyte area between $040000 and 
$04FFFF is chosen as the memory buffer for our particular case.

When a virtual memory reference is made, the virtual memory implementation 
software checks whether the memory buffer area has been filled by an earlier virtual 
memory reference. If it has, the software moves the contents of the buffer into the cor-
responding backup memory. The software also readjusts any previously adjusted mem-
ory pointers to their original values.

When the buffer becomes available, the software moves the memory block con-
taining the virtual memory reference from the backup memory into the buffer area. Also, 
the original pointer values are stored and adjusted to refer to the buffered area. After 
these adjustments, any related virtual memory reference will be accessed from the buffer 
area.

The flowchart for an A/D converter type of virtual machine emulation scheme is 
given in Figure 10.5. All the hardware signals are emulated by memory locations. A start 
pulse to the A/D converter starts the actual conversion process (refer to Chapter 9 on 
A/D conversions). This is accomplished by writing a 1 to a memory location (START) 
which mimics the A/D start input and the calling of an A/D subroutine.

The subroutine resets the start location and generates a delay corresponding to the 
actual conversion time of the A/D device. It then writes a data element, n (the initial 
value of n would be $00), into the memory array designated to hold the A/D data. Fi-
nally, the software writes $01 into the EOC (end-of-conversion) location which mimics 
the end-of-conversion pulse and returns the program to the calling routine.

It can be seen that the virtual machine emulation is software intensive and mimics 
hardware operations by writing into appropriate memory locations.

We will now present an example problem to review the actual implementation 
schemes of virtual memory and virtual machines.

Example 10.2    Virtual memory!machine implementation schemes.
The memory buffer for a virtual memory implementation scheme is between $040000 
and $04FFFF (64 kilobytes), as shown in Figure 10.4. A 64-kilobyte block ($0000 to 
SFFFF) containing the virtual memory reference address will be moved from the backup 
memory into the buffer each time virtual memory implementation takes place. (Refer to 
Example 10.1 for the memory map of the 68010-based system.)

1. The MOVE.W    (A1),D1 instruction is executed with Al = $0C000E. Specify the 
actual memory block moved from the backup memory into the buffer memory.

2. What adjusted value will be in the memory pointer Al?
3. For an 8-bit A/D conversion emulation as a virtual machine, how many bytes of A/D 

data array are required for emulating a linear ramp signal?
4. Answer the preceding question for emulating a triangular wave.



Solution

1. Memory block moved into the virtual memory buffer: Memory pointer Al refers 
to an address $0C000E which is not in the physical memory of the system, but which 
is in the logical memory space contained in the backup memory. Therefore, virtual 
memory implementation is possible. The memory block containing the virtual mem-
ory reference $0C000E is between $0C0000 and $0CFFFF. Thus, memory block 
$0C0000 to $0CFFFF is moved into the buffer between $040000 and $04FFFF.

2. Adjusted memory pointer Al: The original Al pointer contents ($0C000E) are 
stored in memory (possibly in the supervisor stack), and the pointer is adjusted to 
hold $04000E. The pointer refers to the corresponding location in the memory buffer 
after the memory movement.

3. Linear ramp A/D emulation: The 8-bit linear ramp data are between $00 and $FF in 
increments of 1. This requires a 256-byte memory array. In addition, two byte 
locations are required to emulate the START and EOC signals, for a total of 258 
locations. Thus, a 258-byte array is required.

4. Triangular wave A/D emulation: A triangular wave takes positive-going and 
negative-going ramps, for a total of 512 byte-sized data elements. Considering the 
START and EOC locations, the required memory array is 514 bytes.

The preceding concepts regarding virtual memory and virtual machine schemes 
apply to all processors having the proper resources. In the next few sections, we will 
describe these resources with reference to the 68010 and 68012 processors.

10.2    ARCHITECTURE OF THE 68010 
AND 68012 MICROPROCESSORS

Figure 10.6 illustrates the general architecture and busing features of the 68010 and 
68012 microprocessors. They contain all the resources of the 68000 microprocessor, 
with additional registers to handle the virtual memory and virtual machine schemes.

Additional Register and Busing Resources

Internally, the 68010 and 68012 processors have a 32-bit vector base register (VBR). In 
addition, they have two 3-bit registers: the SFC (source function code) register and the 
DFC (destination function code) register. These registers help to implement the virtual 
memory management schemes.

VBR (Vector Base Register) This register contains a 32-bit base address, which is meant 
to relocate the exception vector table. This allows for a multioperating system in a 
multiuser environment. Each local operating system may have a different value written 
into the VBR. This leads to different exception tables for different local operating sys-



Busing The 68010 is pin compatible with the 68000 processor. Thus, the 68010 pro-
cessor is contained in a 64-pin DIP or 68-pin grid-array package, as is the 68000. The 
68012, however, has seven more address lines (A24-A29 and A31) to address 2 gi-
gabytes of memory. An additional control line, RMC (read modify write control), is 
included for multiprocessor interfacing. To minimize noise, the 68012 has two additional 
ground pins. It is contained in a standard 84-pin grid-array package. It is not hardware 
compatible with the 68000/68010 processors; thus, hardware must be specially designed 
for the 68012.

The Breakpoint (BKPT) Concept for the 68010 and 68012 When the BKPT #n (n 
= 0-7) instruction is executed, it results in illegal instruction exception processing. The 
function codes and the address bus can further be decoded to generate a hardware 
breakpoint condition for system debugging.

Additional Instructions and Modified Instructions

The table of Figure 10.8 indicates additional instructions (new) and instructions that have 
been modified for the 68010 and 68012 virtual memory processors. The MOVEC, RTD, 
and the MOVES are new instructions and support the virtual memory implemen-

tation. The MOVE SR,<ea> instruction has been modified to be a privileged instruction. 
This facilitates the coexistence of the multiuser and local operating systems under a 
governing operating system. Local operating systems of users are prevented from ac-
cessing the status register. An attempt at such access causes an exception and takes the 
processor to the governing operating system (S bit = 1 in system bytes). The governing 
operating system controls the local operating systems, which are really in the user mode,

Loop Mode The 68010 and 68012 processors go into a loop mode of operation in 
executing a three-instruction loop involving the DBcc (decrement and branch on condi-
tion). The processor keeps the three instructions in the internal instruction queue and 
executes them until the loop condition is satisfied. This circumvents the external memory 
access bus cycles and greatly speeds up the loop operation. Data sheets for the 68010 and 
68012 specify those instructions that are eligible for the loop mode of operation.'5'''

The VBR is usually relocated for each local operating system. The stack is some-
times deallocated (for the governing operating system to input or retrieve information). 
Similarly, the SFC and DFC registers are reconditioned to address any memory space. 
These capabilities are unique to the 68010 and 68012. The rest of the software of these 
processors is similar to that of the 68000 processor.

We will now present an example problem to review the additional resources of the 
68010 and 68012 processors and associated software considerations.

Example 10.3   68010112 additional resources and software.
In Figure 10.9, an initialization routine for the 68010 and 68012 processors is given. 
Assume that the TRAP #14 call, passing parameter 228 in the D7 register, returns the 
control to the governing operating system.





lated). Detailed discussions on system emulations are beyond the scope of this book; 
however, references at the end of the chapter may be consulted for further study.

10.3 MEMORY FAULT CORRECTION SCHEMES

Memory-access faults (or memory faults) are corrected using virtual memory schemes. 
There are two methods by which to implement these schemes: the instruction restart 
method and the instruction continuation method, both widely used in the computer 
industry. The 68010 and 68012 processors follow memory-mapped I/O concepts. The 
memory fault correction schemes are equally applicable for the I/O units of these pro-
cessors.

The instruction Restart Method

Each instruction is organized as a sequence of microcoded modules. Figure 10.10 illus-
trates a microinstruction scheme for a typical instruction:

The instruction op.word is prefetched (during the previous microinstruction mod-

ule A) and stored in the instruction queue. The microinstruction modules A, B, and C 
must be sequentially executed for successful execution of the instruction. The memory-
access fault can occur during the A, B, or C module.

In the instruction restart method, if a memory fault occurs in any micromodule, it 
is corrected (if possible) using virtual memory concepts. Then the complete instruction is 
repeated. For this to happen, the processor should have the internal resources with which 
to copy all the original values of the registers. Although this puts a tremendous resource 
burden on the processor, the instruction restart method is considered to be superior to the 
instruction continuation method. The instruction is finally executed as a complete unit.

The Instruction Continuation Method

The microinstruction sequence for this method is similar to the sequence of Figure 
10.10. The memory fault can occur during the A, B, or C module.

In the instruction continuation method, the memory fault is corrected (if possible) 
using virtual memory concepts. The instruction execution then continues from the cor-
responding microinstruction module where the fault was detected and corrected. In this 
method, it is not necessary to copy the register values, but any interdependence of the 
destination address and source address (as in the case of MOVE.L —(An),—(An)) may 
result in inaccurate results. This method is easy to implement, however, and is suffi-
ciently accurate for most applications.

The 68010/68012 Memory Fault Correction Methods
The 68010 and 68012 microprocessors use the instruction continuation method  To the 
extent poss.ble   Motorola Corporation designed the mstruction m.cromodules to be u     
onally mdependent so as to minimize the fault mteraction. These processor! u virtual 
memory schemes to correct memory-access faults. A memory-access fau   cannot be 
corrected if lt .not within the logical memory space of the processors.



Solution

1. Microinstruction sequence: The sequence is illustrated in Figure 10.11. It consists 
of five microinstruction modules: A, B, C, D, and E.

2. Memory-access fault in source operand: Referring to Figure 10.11, the memory-
access fault occurs during micromodule B. The processor already has completed 
module A. If possible, the processor corrects the memory-access fault during module 
B. The microinstruction sequence continues from B to complete the rest of the in-
struction.

3. Memory-access fault at destination: The access fault occurs during micromodule E. 
The A, B, C, and D modules already have been executed. If possible, the processor 
corrects the fault during module E, which is the last module. The execution then 
continues to the next instruction.

In most cases, the op.word for the next instruction is prefetched during the first 
module of the current instruction. If a fault occurs in prefetching the next op. word, the 
current instruction is completed first. The memory fault correction for the prefetched 
op.word begins after the completion of the current instruction.

10.4    BUS ERROR EXCEPTION PROCESSING 
ASSOCIATED WITH VIRTUAL MEMORY

As previously stated, the 68010 and 68012 processors can correct memory-access faults 
using a virtual memory scheme, if the faults occur within the logical space of the pro-
cessors. The scheme is implemented as a modified bus error exception. The processor 
must store more information on the stack for the modified bus error exception to be able 
to correct memory-related faults. If the memory-access fault occurs beyond the logical 
memory space, the processor reverts to normal bus error exception processing. These 
exceptions are handled in the supervisor mode..

Modified Bus Error (BERR) Exception Processing
In Figure 10.12, the exception vector table for the 68010 and 68012 processors is given. 
It is similar to that of the 68000, with a few additions; for example, the format error 
(vector 14 at offset $038).

Figure 10.13 illustrates the 68010 and 68012 supervisor stack frame for the bus and 
address error conditions. The processors may stack up to 29 words for memory-related 
bus error or address error faults. At relative location $06 from the top of the stack, the 
format and the vector offset entries are of particular importance. If the 4-bit format is 
1000, it refers to a long stack frame with 29 words. If the 4-bit format is 0000, it refers to 
a short stack of 4 words, as shown. Virtual memory schemes are not implemented if the 
shorter frame is used. The 12-bit vector offset is the relative offset of the exception in the 
vector table. This value is $008 for the bus error, $024 for the trace, and so on. The stack 
used is the supervisor stack.

In all types of exceptions, the program counter and the copied status register are 
automatically stacked. At the conclusion of the exception processing routine, the RTE 
(return from exception) is executed. The RTE instruction examines the format code 
(0000 or 1000) and accordingly unstacks either 4 or 29 words into the appropriate reg-
isters. Even though the address error stack frame appears to be similar to the bus error 
stack frame, virtual memory schemes are not implemented for the address error. The 
address error deals with misaligned access of word or long-word operands at the odd 
address boundary for the 68000, 68010, and 68012 processors.

Of particular importance is the special status word at stack relative location $08. 
Detailed in Figure 10.14, the special status word reflects the conditions of the bus activ-
ity at the time of the exception. This information is useful in developing appropriate 
error correction routines using virtual memory principles.

Appropriate software dealing with the normal bus error exception or the modified 
bus error exception should be written as a part of the governing operating system.





The governing operating system software uses the stack information in attempting 
to correct memory-related faults. It should be remembered that the governing operating 
system is the original or default operating system. It is functional in the supervisor mode. 
All the local operating systems are functional in the user mode.

Correction of Memory-related Faults 
Using Virtual Memory Schemes

The most important application of the virtual memory implementation scheme is to cor-
rect memory-access faults. If the memory reference is made to memory that is physically 
nonexistent, but logically existent, the processor can implement the virtual memory 
scheme upon receiving the /BERR (bus error) signal. The processor moves the required 
memory block from the backup memory into the main memory and readjusts the memory 
pointer reference. It then reruns the bus cycle where the fault occurred and continues with 
the rest of the instruction and the program.

Virtual memory software is written as part of the modified bus error exception 
processing. If the memory reference is beyond the logical address space and a bus error 
occurs, a normal bus error exception will be executed, as we have already mentioned.

In Figure 10.16 the operating listings of a 68010-based system are given. In this 
software a memory-access fault is simulated and is being corrected. This is written as 
part of the governing operating system in the supervisor mode. The system has the fol-
lowing memory map:



A detailed listing of the TRAP #2 routine is very complex; hence, we have cho-
sen not to include it given the constraints of the text.

At line 28, the stack is unlinked. The following RTE instruction returns the pro-
cessor to the condition that existed at the time of the bus error. The processor then reruns 
the bus cycle that generated the bus error. It obtains the source operand from a virtual 
location $00812048 (which is now a physical location $00042048 in the RAM buffer) 
and successfully completes the faulted instruction

If the bus error is a normal bus error, the NORMAL module between lines 31 and 
33 will be executed. After unlinking the stack, the program jumps to the address con-
tained at vector location $08. This corresponds to the bus error vector in the default vec-
tor table, and the governing operating system executes the normal bus error exception 
routine.

At the end of the memory-access fault correction, control is returned to the gov-
erning operating system by means of the TRAP #14 function at lines 15 and 16.



We will now present an example problem to gain further insight into the memory 

fault correction schemes.

Example 10.6   Memory fault correction concepts and software.
Refer to the software of Figure 10.16.

1. Describe how the virtual memory concepts are implemented and how the memory-
access fault is corrected.

2. What is the difference between the default vector table and the modified (or relo-
cated) vector table?

3. Why are the LINK and UNLK required?

Solution

1. Memory fault correction: The memory-access fault address has been stacked at an
offset $0A. A 64-kilobyte block around that address has been moved from the
backup memory into the RAM buffer and the memory reference has been readjusted.
The addressed operand in the virtual address ($812048) will be found at the real
physical address ($042048).

Fault Address = $812048 

Corrected Address = $042048

2. Default and modified vector tables: The default table is the table at power-up reset
(VBR = 0). It refers to the original (or governing) operating system exception vec
tors.

The modified vector table is set up separately and is accessed with a finite value 
in VBR to facilitate local operating system or user-defined exception processing. In 
our example, VBR = $2000. All the default vectors are copied to the new vector table 
(refer to Section 10.1). But the bus error vector address is changed, and the bus error 
exception routine is different in the modified table. Initially, the processor goes to the 
default table; after adjusting VBR, it goes to the modified table.

3. LINK and UNLK: These instructions are required to access to the stack without de

stroying the stack pointer.

There are memory correction schemes that are more involved than those presented 
here. However, virtual memory implementation schemes remain the same. Because of 
the difference in the stack frames of the 68000 and 68010 processors, there may be some 
inconsistencies if a 68000-based system is upgraded to a 68010. Some of the governing 
operating system exception routines may have to be rewritten to maintain full functional 
compatibility.

10.5    SUMMARY

In this chapter we introduced the concepts of virtual memory and the virtual machine. 
We also examined the specific features of the 68010 and 68012 microprocessors with 
which these schemes are implemented.

The full addressing capability of any processor refers to the logical address space. 
In many instances, all the available logical address space is not filled with the memory or 
I/O. Only a part of the available address space, called the physical space, is filled with 
real and existing devices. With the help of virtual memory schemes, it is possible to 
realize the entire logical memory space with only a limited amount of physical memory 
present in the system.

Virtual memory refers to a memory reference contained in the logical space of the 
processor, but not contained in the physical memory around the processor. If the virtual 
memory reference is contained in a backup memory, such as a disk, the backup memory 
block can be moved into the physical memory buffer under the control of the operating 
system software. Moreover, the memory reference pointers are adjusted to refer to the 
contents in the buffer area.

At times, the hardware I/O resources may not be physically available, but software 
to operate them needs to be developed. Hardware resources can be emulated using virtual 
memory implementation principles. This embodies the concept of the virtual machine; 
that is, that nonexistent I/O resources can be emulated under software control. The 
emulated virtual machine resources are under the control of the governing operating 
system.

The 68010 and 68012 processors have extra registers with which to handle virtual 
memory and virtual machine schemes. They are the VBR (vector base register) and the 
SFC and DFC (source function code and destination function code registers). The stack 
format for the 68010 and 68012 processors is different from that of the 68000. The 
68010/12 format allows for 29 words for the bus and address error exceptions.

The 68010 processor is pin compatible with the 68000 and can address 16 mega-
bytes of logical memory. The 68012 processor has seven more address lines, and can 
access 2 gigabytes of logical memory. Both the 68010 and 68012 are fully software 
compatible with the 68000.

Memory-access faults can be corrected using virtual memory schemes, if the 
memory access is in the logical memory space. A bus error signal will be generated 
when a reference to the nonexistent physical memory is made. In response to this signal, 
the 68010 and 68012 processors go into bus error exception processing. Using virtual 
memory concepts, a block of memory is moved from the backup memory into the phys-
ical memory. The memory reference is adjusted and the memory-access fault is cor-
rected.

There are two methods for memory-access fault correction: the restart method, and 
the continuation method. In the restart method, the complete instruction where the fault 
occurred is repeated after the fault correction. In the continuation method, the instruction 
is continued from the microstep within the instruction after the memory-access fault 
correction.



The restart method requires that all the microcoded operations of an instruction and 
associated operands be stored. This requires tremendous register resources, as well as 
other resources. The restart method, however, executes the instruction as a unit.

The continuation method is considered sufficiently accurate for most applications 
and does not require that all the microcoded operations of an instruction be stored. The 
continuation method executes the instruction in parts rather than as a single unit, how-
ever. The 68010 and 68012 processors use the continuation method.





11.0    INTRODUCTION

The 68020 is a 32-bit microprocessor with individual 32-bit address and data buses. It 
has a 4-gigabyte logical address space. In addition to all the internal resources of the 
68010 and 68012 processors, it has a chip instruction cache memory. These additional 
features increase the overall throughput of a 68020-based system as compared to the ear-
lier members of the 68000 family.1

The 68030 is an extension of the 68020 processor. Additional features of the 
68030 include the data cache memory and a paged memory management unit (PMMU, 
or simply MMU) on the chip itself, further enhancing the throughput of 68030-based 
systems.

Study of the material in this chapter will provide a comprehensive introduction to 
the 68020 and 68030 processors, cache memory, and memory management operations.

11.1    GENERAL ARCHITECTURE OF THE 68020

The 68020 is contained in a 114-pin grid-array package and is fabricated with VLSI 
MOS technology. Figure 11.1 illustrates the internal architecture of the 68020. It con-
tains all the resources of the 68000, 68010, and 68012, along with some additional re-
sources and modified resources to facilitate cache memory implementation.

Additional Resources and Modified Resources of the 68020
There are three stack pointers in the 68020: the user stack pointer USP (A7) in the user 
mode, the interrupt stack pointer ISP (A7') in the supervisor mode, and the master stack 
pointer MSP (A7") in the supervisor mode. The USP handles the user stack operations. 
The ISP handles the interrupt exceptions and the MSP handles the rest of the exceptions. 
Selection of the stack pointer to be used is made with the help of the S and M bits in the 
system byte of the status register.

The cache control and the cache address registers (CACR and CAAR) are used to 
control the cache memory operations. The vector base register (VBR) and the alternate



source and destination function code registers (SFC and DFC) are used in much the 
same way as in the 68010 processor.2

The user byte of the status register is similar to that of the 68000 processor. The 
system byte is modified, however, as shown in Figure 11.2. The Tl and TO bits deter-
mine the trace mode of operation. The S and M bits select the stack pointer. The inter-
rupt mask bits 12, II, and 10 are similar to those of 68000.

Address, Data, and Control Buses

Figure 11.3 indicates the functional pin structure of the 68020 and Figure 11.4 describes 
the signals. The address and data buses are extended to 32 bits each. Eight-bit byte, 16-
bit word, or 32-bit long-word data operands can be transferred in a single bus cycle. The 
function code outputs FC2, FC1, and FCO specify the type of address space and the 
processor condition. The SIZ1 and SIZO outputs indicate the number of bytes to be fur-
ther transferred at the beginning of each bus cycle.

The external cycle start (/ECS) output indicates that a bus cycle is beginning. The
operand cycle start (/OCS) output is asserted during the first bus cycle of an operand
transfer. The read-modify/write cycle (/RMC) output is similar to that of the 68012 pro
cessor; it indicates that the current bus cycle is an indivisible read-modify/write bus cy
cle. __ _

The address strobe (AS) and the data strobe (DS) outputs indicate the validity of 
the address and the data on the respective buses. The read/write (R/*W) output indicates 
the read or write bus cycle. The data buffer enable (/DBEN) output is similar to the /DS 
signal, but is used to enable the external data buffers. The /DTACK input of the 68000 is



split into /DSACKO and /DSACK1. These two inputs are encoded to specify byte, word, 
or long-word transfers on the data bus.3

The cache disable (/CDIS) input disables the internal cache memory. The interrupt 
priority inputs (/IPL2, /IPL1, and/IPLO) are similar to those of the 68000 processor. The 
autovector (/AVEC) input signifies an autovectored interrupt condition. The interrupt 
pending (/IPEND) input signifies a pending interrupt. The bus arbitration signals (the bus 
request (/BR) input, the bus grant (/BG) output, and the bus grant acknowledge 
(BGACK) input) are similar to those of the 68000 processor and are used for the DMA 
type of transfers. The system control signals (/RESET, /HALT, and /BERR) are also 
similar to those of the 68000 processor. The device operates on 5 volts VDD.

Data Formats, Memory, and I/O Interface Schemes

The 68020 is designed to facilitate byte, word, or long-word data transfers on even or 
odd address boundaries. However, the op.word (instruction word) fetches must be on 
even word boundaries to maintain code compatibility with the earlier 68000 family 
members. If op.word fetches are not on even word boundaries, an address error will 
occur.

Figure 11.5 illustrates a typical memory interface scheme and associated data for-
mats. The 68020 uses memory-mapped I/O concepts similar to those of the other mem-
bers of the family; thus, the memory and I/O interface schemes are similar. An 8-bit byte 
port (b7-b0) is connected to data lines D31-D24. A 16-bit word port (bl5-b0) is connected 
to data lines D31-D16. A 32-bit long-word port (b31-b0) is connected to data lines D31-
D0. The Al and A0 address lines and the SIZ1 and SIZ0 size outputs are decoded to 
provide the byte enable signals BE0, BEl, BE2, and BE3. These signals enable the 
transfer of appropriate bytes.4

Figure 11.6 indicates the DSACK and SIZ signal responses for different data sizes. 
Depending upon the address and the alignment, there can be one, two, three, or four byte 
transfers in a single bus cycle.

We will now present an example problem to review basic concepts relating to the 
68020 processor.





contents and the base unci outer displacements to the indirect address. This addressing 
scheme uses a memory location as a memory pointer.

Figure 11.10 (p. 317) indicates the results that follow from using the new addressing 
modes. When scaling is used, the physical value of the index register is not changed. In 
memory indirect postindexing, the contents of the memory indirect address are 
obtained first. The index and the outer displacements are further added to obtain the 
effective address of the operand. In memory indirect preindexing, the memory indirect 
address is obtained after indexing. The outer displacement is further added to obtain the 
HA of the operand.

In the program counter indirect and program counter memory indirect addressing 
modes, the program counter is used instead of an address register. These modes are suit-
able for relocatable code generation.

Bit-Field Type of Instructions

The bit-field instructions for the 68020 arc given in Figure 11.11 (p. 318). These instructions 
address and manipulate a bit field of variable width (1 to 32 bits), starting from a given 
offset of the effective address. The syntax of the single operand instruction is

If the instruction is of the double-operand type, the other operand is a data register Dn. 'I 
he offset and width fields can be specified as immediate operands or as Dn operands. 
1'or all bit-field instructions, the bit field is first tested and the N and Z flags are adjusted 
accordingly. The specified bit-field operation is then carried out. In Figure 11.12 (p. 
■M1-)) some typical bit-field instruction operations are given in order of complexity.

The bit-field instructions are very helpful in handling bit fields of variable lengths 
and at any effective address location. In the absence of these instructions, a series of 
■"Mructions must be written to accomplish the tasks of this type.



Packed and Unpacked BCD Instructions

The PACK instruction is used to reduce a word-sized two-digit BCD operand into a 
packed 8-bit two-digit BCD operand. The UNPK instruction increases a byte-sized 
two-digit BCD operand into an unpacked 16-bit two-digit BCD operand. Examples fol-
low.

PACK D2,D3,#$0000: The specified immediate data (0000) word is added to the source 
operand in the D2 register. The upper 4 bits of each byte are discarded and the lower 4 
bits of each byte are packed into the destination register D3.





Other Instructions and Enhancements

In the 68020, the divide and multiply instructions are extended to cover 32-bit operands. 
The TRAP instructions are further extended to operate on condition (TRAPcc). The CAS 
(compare and swap) instructions are of the read-modify/write type and enhance system 
throughput. There are also a set of coprocessor instructions (cpxxx) to control the 
coprocessor operation. Figure 11.13 summarizes the 68020 instruction set.

The 68020 processor has an internal 4-word pipe that holds the prefetched instruc-
tions and operands. The pipe is filled whenever there is a two-word vacancy. In the case 
of a change in program flow, the pipe contents are invalidated and the pipe is refilled.6

11.3 CACHE MEMORY CONCEPTS AND ORGANIZATION

Cache memory is a fast-access, high-speed memory designed to hold the most fre-
quently used information. The processor copies the required information from the main 
memory into the cache memory. The cache memory is usually of limited size. As often 
as is necessary, the cached information is updated.

68020 Cache Memory Organization and Operation

The 68020 processor has a 256-byte instruction cache memory on the chip, itself. It is 
organized as 64 long words, as shown in Figure 11.14. Two internal registers, the CACR 
(cache control register) and the CAAR (cache address register), determine the operation 
of the cache memory. The cache memory can be disabled or enabled. When enabled, the 
processor fills in the cache memory with the most recently fetched instructions and uses 
them.

When the processor wants to fetch an instruction, it checks the cache memory to 
determine whether the instruction is in the cache. If it is in the cache, we have what is 
known as a hit condition. If it is not in the cache, we have what is known as a miss 
condition.

For a hit condition, the processor fetches the instruction from the cache and exe-
cutes it. The typical instruction access time from cache corresponds to two clock cycles. 
For a miss condition, the processor fetches the instruction from the external memory and 
executes it. The typical instruction access time from external memory corresponds to 
three clock cycles. Cache memory is always updated with the most recent instructions 
fetched from the external memory. Figure 11.15 indicates timing under cache hit and 
cache miss conditions.

When the processor is obtaining instructions from the cache memory and execut-
ing them, the external bus is free. The bus interface unit accesses data operands during 
this time window. In addition, the prefetch mechanism of the 68000 family is opera-
tional, even with the cache memory. All of these parallel operations enhance the overall 
throughput of the 68020 processor.



Cache Control and Cache Address Registers

The cache memory operation is controlled by the cache control (CACR) and cache ad-
dress (CAAR) registers. These are illustrated in Figure 11.16. Using the CACR, the 
cache memory can be disabled or enabled, the cache entry can be cleared or frozen, or 
the cache memory can be completely cleared. These operations are required during ini-
tialization or when the processor is changing tasks.

The 6-bit index field of the CAAR specifies one of the 64 long words of the cache 
memory. The 24-bit tag, filed along with FC2 function code bit, specifies the address

tag field of the instruction. FC2 is required to distinguish between supervisor and user 
space. In addition, there is a V bit associated with each of the address tag fields in the 
cache memory address area. If the V bit is 1, the corresponding cached instruction is 
valid.

At power-up reset, the CACR is cleared to the all-zero condition and the cache is 
disabled. The cache needs to be properly initialized as a part of the system reset routine. 
The cache registers CACR and CAAR can be accessed only in the supervisor mode (us-
ing the MOVEC instruction).

Sometimes it is necessary to hardware disable the cache memory for debugging 
purposes. This is accomplished by activating the CDIS signal to a low level, as shown in 
Figure 11.14.

We will now present an example problem to review what we have learned about 
cache memory.



With 32-bit aligned access, how many total read and write bus cycles take place on the 
external bus, including the instruction prefetches? 4. Answer the preceding question, 
assuming the cache is enabled and the code is in the cache memory.

Solution

1. Cache disable on reset: The information contained in the cache memory at the time 
of power-up reset does not correspond to any valid code. The cache memory should 
be disabled to prevent the processor from running invalid code from it.

2. Additional cache space: Each long-word cache entry has a 25-bit effective tag ad-
dress field (A31-A8 and FC2 values). Each long-word entry also has an associated V 
bit. Thus, 26 bits of additional cache space is required for each long-word entry.

3. Bus cycles when cache is disabled: Each of the instructions is a single op.word in-
struction. To prefetch four op.words, two read bus cycles are required on the 32-bit 
aligned access. In addition, the instruction MOVE.L (A2)+,D2 requires a read cycle 
to obtain the source operand and the instruction MOVE.L D0,(A3)+ requires a write 
bus cycle to write the destination operand. Thus, the total number of bus cycles 
required is four.

4. Bus cycles when cache is enabled: When the instructions are already in the cache 
and the cache memory is enabled, the instruction fetches will be from the cache. The 
external bus activity is only for the source and the destination operands. Thus, the 
total number of bus cycles required is two.

In the preceding example, the benefits of the cache memory and aligned access are 
apparent. The external bus cycles are greatly reduced, enhancing the throughput. How-
ever, depending upon the alignment, the port size, and the cache memory condition, 
actual bus activity varies.

11.4    GENERAL ARCHITECTURE OF THE 68030

The 68030 is an enhanced 32-bit microprocessor contained in a 128-pin grid-array pack- _
age. It is fabricated with VLSI HMOS technology. It has all the resources of the 68020
processor. In addition, it contains the data cache and the memory management units on
the chip.7 :-

Instruction and Data Cache Memory Organization

The 68030 processor contains a 256-byte instruction cache memory and a separate 256- -
byte data cache memory on the chip. The instruction cache is similar to that of the -68020 
processor, but is organized as a bank of 16 rows of 4 long words. There are 16 ■ address 
tag fields for the 16 rows, consisting of FC2 output and address lines A31-A8. ---



Selection of one of the 16 rows of the cache bank is accomplished by address lines A7-
A4. Selection of one of the long words of a row is accomplished by the A3 and A2 
address lines. The Al address line is used to select the upper or lower word within a long 
word. Each long word is associated with a V bit. The operation of the 68030 instruction 
cache is similar to that of the 68020 processor.

Data cache organization in the 68030 is similar to instruction cache organization. 
In the address tag field, however, the FC1 and FC0 function code bits are also included. 
The processor reads the cached data in the case of a hit condition. When there is a hit 
condition for writing data, the processor writes the data in the cache memory and also in 
the external memory. This is necessary to eliminate any stale data in the external data 
memory.

Additional Software Resources of the 68030 Processor

Figure 11.17 specifies the register architecture of the 68030 processor. In addition to the 
68020 resources, it has extra registers related to the memory management unit 
(MMU). These registers can be handled only in the supervisor mode. The logical address 
space for the 68030 is 4 gigabytes. The physical address space depends upon the available 
hardware and is much less than the logical space. In virtual memory implementation, the 
MMU translates a logical address into an existing physical address. Associated with the 
MMU, there is also an address translation cache (ATC) memory on board for the 68030. 
The ATC has 22 entries consisting of the most recently used address translations.

Whenever there is a requirement for an address translation from a logical address 
to a physical address, the ATC is checked for a hit. For a hit condition, the cached 
translation address is used to locate the instruction or the data operand. For a miss con-
dition, 68030 goes to the external memory to locate the address translation tables and 
obtains the required information.

Figure 11.18 summarizes the functions of the MMU registers and Figure 11.19 
summarizes the additional 68030 instructions to support the MMU functions. These 
MMU instructions are privileged. In Figure 11.20, the relative performance of the 68020 
and 68030 processors is indicated.

Additional Hardware Resources of the 68030 Processor

In Figures 11.21 and 11.22 the 68030 functional signal groups and associated signal de-
scriptions are given. There are additional cache control signals to assist instruction and 
data cache management.

The synchronous termination input (/STERM) is of particular importance. It 
controls synchronous transfers between the processor and the external memory and I/O. 
Synchronous transfers take only two clock cycles, as compared to three clock cycles for 
normal asynchronous transfers. The processor terminates the bus cycle upon receiving 
/STERM. If /STERM is not received, the processor assumes the normal asynchronous 
operation and looks for the /DSACK signals. In synchronous operation, only 32-bit 
aligned transfers are allowed. The other hardware resources of the 68030 function in 
basically the same manner as in the 68020 processor.

We will now present an example problem to review what we have learned about 
the 68030.



memory access. This increases the throughput by 33.3 percent for read operations.
For write operations, since data are also written into the external memory, there 

is no speed advantage. However, the updated data may be used for other read 
operations, ultimately resulting in a speed advantage.

2. MMU on board: The MMU and the associated ATC provide internal 2-cycle access, 
as compared to external 3-cycle access. This, in turn, affords a speed advan-   _ tage of 
33.3 percent.

3. Disadvantages of on-board cache and MMU: Each of the units takes silicon real 
estate and complicates semiconductor processing. Thus, the cost of the unit is in-
creased. Also, the integrated functionality makes debugging and testing difficult.

Figure 11.23 illustrates the internal structure of the very powerful 68030 proces-
sor. As of this writing, considerable system development is still taking place. The con-
cepts we have presented are elementary; for more detailed information, additional refer-
ences should be consulted.8,9



11.5    FUNCTIONAL IMPROVEMENTS IN THE 
68020 AND 68030 PROCESSORS

Even (hough the 68020 and 68030 are based on the prototype architecture of the 68000 
processor, they far exceed the functional capabilities of the 68000. This is primarily due 
to their memory indirect addressing capability, extended instructions for 32-bit operand 
manipulations (such as multiply and divide), cache memory and virtual memory imple-
mentation capabilities, and their enhanced 32-bit data and address buses.

For routine 16/32 bit applications, the 68000 processor with 16-megabyte address 
space is usually sufficient and is widely used. For applications requiring fast operations, 
large memory space (up to 4-gigabyte), and cache memory implementation schemes, the 
68020 and 68030 processors are preferred. If a data cache and memory management are 
also required, the 68030 is the processor of choice.

Memory Indirect Addressing Capability

The 68020 and 68030 processors have the additional memory indirect addressing mode 
as we discussed earlier in the chapter. This addressing mode uses any memory location 
us a memory pointer register, which provides unlimited pointer resources in addition to 
the internal registers. The 68000 processor does not have the memory indirect address-
ing scheme; therefore, it must use one of the seven address registers (A0-A6) for any 
register indirect addressing scheme.

32-Bit Extended Instructions

For the 68020 and 68030 processors, some instructions, such as the multiply (MULU, 
MULS) and divide (D1VU, DIVS), are extended to handle 32-bit operands, producing a 
64-bit result. For the 68000 processor, these instructions operate on 16-bit operands and 
produce 32-bit results. To obtain a 64-bit effective result with the 68000 processor, a 
software routine must be written and executed.

Cache Memory and the Concept of Tag Field

Both the 68020 and 68030 processors have an instruction cache on board, organized as 
64 long words as discussed earlier. The 68030 processor has an additional data cache on 
board. The upper 24-bit address reference (A31-A8) for the instruction cache memory is 
called the address tag. The next 6-bit address reference (A7-A2) is called the address 
index, which selects one out of the 64 cache locations on board.

Bach cache location has a tag field, in which tag information is stored, and an 
instruction field, in which information corresponding to the tag field is stored. If a 
memory reference is made, the stored tag is checked against the current tag for a hit. In 
the event of a hit, the information from the cache is read by the processor. In the event °f 
a miss, the processor goes to the external memory, obtains the instruction, copies it into 
the cache memory, and executes it.



The 68000 and 68010 processors do not have cache memory capability; hence, the 
tag field concept does not apply to them.

The 68020 and 68030 Additional Signal Groups

The 68020 and 68030 processors have all the signal groups of the 68000 processor. In 
the 68020 and 68030, the data bus is extended to 32 bits compared to the 16-bit data bus 
of the 68000. The address bus is extended to 32 bits compared to the 24-bit effective 
address bus of the 68000. The control bus of the 68020 and 68030 processors is extended 
to include two data acknowledge signals (DSACK0 and DSACK1), size signals (SIZ0 
and SIZl), and bus interface signals (OCS, ECS, and RMC).

In addition, the 68020 processor has a cache disable (CDIS) input signal. The 
68030 has four cache-related signals to handle the data and instruction cache on board. 
All of these additional resources increase the throughput of the 68020/30-based system.

Software Considerations for the 68020 and 68030 Processors

The assembly language programming techniques for the 68020 and 68030 processors are 
similar to those for the 68000. Due to additional and enhanced instructions, the effi-
ciency of the software routines for the 68020 and 68030 processors can be increased. In 
case of loop-type operations, for example, instructions are copied into the cache mem-
ory, which further reduces the execution time of the program.

The following example problem deals with the software capabilities of the 68020 
and 68030.

Example 11.4   68020130-processor software.
Suppose a 68020/30-based system is used in a control system application with a software 
routine as shown in Figure 11.24.

1. Assuming the cache is disabled, analyze the software and specify the contents of the 
affected registers after the MULU and DIVU instructions.

2. Assume that the NOP instruction is replaced by the DBRA D3,AGAIN instruction. 
Consider the cache to be enabled. How many times is the AGAIN loop run? How 
many times is the code obtained from the cache memory?

3. Can the same software function on a 68000-based system?

The DIVU.L #$00000100,D2,D0 instruction divides the 64-bit operand contained
in the D2 and D0 registers by the dividend $00000100. The 32-bit quotient is 
put in the D0 register and the 32-bit remainder is put in the D2 register, as shown.



2. DBRA D3,AGAIN instruction: When the NOP is replaced by the DBRA instruc-
tion, the software goes into the AGAIN loop until the D3 register is decremented to -
1 (from its initial value of $200). The code is obtained first from the external memory 
and is copied into the cache. Subsequently, the code is obtained from the cache. Thus, 
the AGAIN loop is run $201 times and the code is obtained from the cache $200 
times.

3. 68000-based system: The code will not function on the 68000 system, since the 32-
bit multiply and divide instructions and the memory indirect addressing modes of the 
software are not defined for the 68000 processor.

11.6    SUMMARY

In this chapter we introduced the 68020 and 68030 32-bit microprocessors with onboard 
cache memory. Both these processors are extensions of the earlier members of the 68000 
family. Both have all the resources of the 68010 and 68012 processors. In addition, they 
have 32-bit address and 32-bit data buses. Both processors also have additional control 
lines to handle the coprocessor interface.

The 68020 and 68030 have a 4-gigabyte logical address space. They can transfer 
up to 32 bits of information in one bus cycle. The data bus can be dynamically sized to 
hold byte, word, or long-word data. This is accomplished by having two data 
acknowledge signals (/DSACK0 and /DSACKl) and two additional SIZ control signals.

The 68020 has an on-chip 256-byte instruction cache memory organized as 64 
long words. The cache memory also contains 64 address tag fields consisting of address 
lines A31-A8. Whenever a program memory reference is made, the processor examines 
the address tag entries for a hit condition. In the event of a hit, the processor fetches the 
instructions from the internal cache. This enhances the overall throughput of the system. 
In the event of a miss, the processor obtains the instruction code from the external mem-
ory for execution and also copies it into the internal cache for subsequent use. A typical 
cache bus cycle corresponds to two clock cycles, compared to three clock cycles for the 
external bus cycle for the 68020 and 68030 processors. By contrast, the 68000 takes 
four clock cycles for a single bus cycle without any wait states.

For the 68020 and 68030 processors, instructions such as multiply and divide are 
extended to operate on 32-bit operands and provide a 64-bit result. These processors use 
an addressing scheme known as memory indirect addressing. In this scheme, any valid 
memory location can serve as a memory pointer. This greatly enhances the addressing 
capabilities of the 68020 and 68030. There are several variations of the memory indirect 
addressing scheme.

In our discussion of the bit-field instructions for the 68020 and 68030 processors, 
we explained how they are used to address bit fields of varying size and operate on them.

The 68030 processor is a further enhancement of the 68020 processor. The 68030 
has an additional 256-byte data cache memory. To prevent the problem of stale data, 
whenever new data are written into the cache memory they are also written into the ex-
ternal memory. A speed advantage is realized when the data cache is used for obtaining 
source operands. The 68030 also has an on-chip memory management unit for imple-
menting address translations and virtual memory schemes. This further increases the 
throughput.

The 68020 and 68030 are not pin compatible with one another. Separate hardware 
must be designed for each. However, they do have similar microcomputer configura-
tions.




























