
AMIGA

DEVLOPERS

CONFERENCE

1990

TABLE OF CONTENTS

Session Article ntle(s) Section

A3000 Expansion Slot A3000 Local Bus Expansion Connector 1

A3000 Expansion Bus The ZDrro Ill Bus Specification 2
A3000 Vuleo Board Form Factor

Desipins a Zorro W Plug-in Card BIGRAM 3

Commodore Ethernet/ Arcnet Cards Arc net 4

Standard Amiga Network Architecture SANA: Standard Amiga Network Architecture 5

AmigaVJSion AmigaVision •• The Amiga's Multimedia 6
Construction Set

CDTV Commodore Dynamic Totalvision 7
General Specifications

CDTV Roundtable CD1V User Interface Design 8

n Publishing and Selling CD-ROM Software Publishing and Selling CD-ROM Software 9

Preferences V2.0 Preferences 10

IFF and IFFParse Using IFF Parse in AppUcations 11
DPaintANIM Brush/FF Format
ECS Display Modes and ILBM CAMG

Debugging Amiga Software Debugging Tools -- Choosing the Right 12
Tool for the lob

Debugging Amlga Software

International Mmketing Ten Steps to Better Translations 13

Commodore's OEM/VAR Programs VAD, VAR, DVAR and OEM Program Summary 14

Scalable Fonts Scalable Fonts: A Decade of Change 15

Compatibility Compatibility: How to Mtk Sure Yow 16
Programs Work with V2.0 and
Later Versions of the Amlga OS

Amiga Standards Standards 17

The CDTV Development Environment CTrac Emulation System for CD1V 18

n Getting the But Image/or Yow
CDlV Application

~-

TABLE OF ~QN~~~

Session

The Amiga 3000

TCPJIP

Novell No&work

AmigaVJSion Workshop

AmigaOS2.0

Workbench 2.0

Commodities Exchanp

Internationalization

Amiga Standards Workshop

Intuition

GadTools

New DOS Calls

boopsi

Programming for SCSI Devices

Exec

A2410 Hi·lles Graphics Card

A3000 System Archilecture

Run-Time Accommodation of Fonts

(continued) · : .)_
c :."'· .. 1." . !~ •..: ~ '

Section

New Commodo~ Amiga Products 19
... . ' ·:; ~

Commodore TCPIIP 20

·.·•· ..
Discussion of A,Uga Client Netware . 21

for Novell NeiWaf'e '"··· ():~~~<.·.~~~~-·· .·; .. · '·~ :
. •,.

AmigaVision: Authorif.ag Hints , .·
. ~~:.:..... . .. : :.::'

Features Outlinefor V2.0
• '.,I'. r;, ·;>::~~:,: -:';;, ·. ·,; .::,. ·.~·

Workbench 2.0 Docwnentatio11 Update · · · ·
The I con Library - .: .· .. ~ .:;,): ·

.:.. .
. · ...

Commodities Exchang~ . .
.. •.. ·.·.r.,-._v'

' .: .. .~... !l\
\ '. ·····.

Internationalization of Software: ·
the locale.library ··

.·
··-.- 0 ••

Implementing ARen in Your Programs

:t

. ,

TJu;jtandard Amiga User Interface and AppShell
Implementation of the Aniiga AppShell _
AppShell Autodocs

Intuition V2.0 Documentation Update

Gadget Toolkit

Using New DOS Calls: Why and How

Basic Object-Oriented Programming
System for Intuition

Programming for SCSI Devices:
· RDB and Autoboot

Exec Version 2.0

A2410 High-Re$oludon Color Graphics Caiod
' '.; . .-· t~.,

A3000 System Architecture ·. ;.

Font Independent Us~r lnterfa~es
!" ._.:'·· .. ··.f,

-4

22

23

24

25

26
.. , .

27
. P• ..
28·

29

30

31

32

33

34

3S

;; 36

37

~-

;,,

I

I
-·~

:·)

· ·':~y:ot)he designations- by manufacturers ~d sellers ~·cfistinguish theirp~ · .• iJ~ as ttademarkS.' . · J · · · .. · ·- • · ,

~~P. is a registered trademark of Commodore-~.
. . ~··· .. ~ '. . . ~. . -' :···~ .: .. '

. ~ 500,.'Amiga 1000, Amiga 2000, Amig~S,_Agn.-Workbench, and.-~ga
· :. : · · .. Kickstart are trademarks of Commodore-Amiga,iln.C. ··· · · ~

Commodore Dynamic Total Vision·and CDTV are regis~..,.marks of~~,
Electronics Limited and ConiQlodore. · ··· · ·~ ,. · ·. · · · .;.'.: ~, .~ ..

~g..a(V.ision is a registered trademark of Commodore El~nicS 14ini~ 8J!d.
'·~. .··· ·. •. J··:,'

, .

. ~S, CBM, Commodore, the Commodore lo~~.flll.d·AUfOCONFIG·axe
. .. \.'· ·•· .

·registered trademarks of Commodore Ele~mcs Limited. - · ·· ··

d.Base is a registered trademark of Ashton-Tate Corporation.

68000, 68020, 68030, 68040 and Motorola are trademarks of Motorola, Inc •

. ~ C and Manx are trademarks of Manx Software Systems.
,_.

Lattice is a registered trademark of Lattice, Inc.

UNIX is a registered trademark of AT&T.

Novell and Netware are registered trademarks of Novell, Inc.

mM is a trademark of International Business Machin. Inc.

Macintosh is a trademark licensed to Apple Computer, Inc.
Apple is a trademark of Apple Computer, Inc.

MS-DOS is a trademark of Microsoft Corporation.

--

~
~t' y·-· -._, ·- ,' ·~

-~

n

n

n

The A3000 Local Bus
Expansion Connector

Revision 1.0

By Scott Schaeffer

The local bus connector provides direct access to the A3000 local bus. This allows any card
connected to this bus full access to the local bus environment. This bus supports 32 bit burst
mode cycles and direct access to the on board 68030. Possible products include CPU
accelerators, cache memory boards, high speed bursting RAM expansion, or high speed 1/0
devices.

Slave Mode Features

The local connector provides direct access to all local bus signals. Any memory or 1/0 port
which resides in this slot must not respond to any address space decoded by either the local
bus logic or the Zorro bus. A local bus slot address space has been defined from Ox0800
0000 to OxOfff ffff. The Gary chip provides a decode of this space on the signal
_RAMSLOT which is valid at address time. This signal may be ignored and the address
decoded by logic on the board if speed is an issue. Local slave devices should also support
the signal_CDN if they co~tain uncachable data.

A signal named_ WAIT is provided for cache support. Asserting this signal will disable
address decoding of Fast RAM on Ramsey and Zorro accesses to Buster. Constraints
imposed by the 68030 allow only 18ns to determine a cache hit. It is often more feasible to
assert _STERM before knowing whether the cycle is a cache hit and rerunning the cycle via
_HALT and _BERR if it is a miss. To achieve this functionality any decoding of the first
cycle by Ramsey or Buster must be disabled by asserting_ WAIT less than lOns after address
valid. If the cycle is determined to be a miss, a rerun is initiated and wait deasserted for the
secondary cycle. Assertion of _WAIT will keep _STERM, _CBACK, etc. tristated by
Buster or Ramsey and may be controlled by the cache control logic.

The A3DDD Local Bus
Expansion Connsctor

1 DevCon90

Master Mode Features

· ~ Bus mastership may be accomplished two ways depending on the desired functionality. The
first mode totally disables the motherboard 68030 and its arbitration logic and allows the
local bus master to take full arbitration responsibility. The second mode allows the on-board
68030 and the local bus accelerator board to share the bus. This allows multiprocessor
capabilities or DMA from the local bus board. This protocol is named fast arbitration and it
requires the local bus card and Buster to share the bus request input into the motherboard
68030.

The first mode (arbitration takeover) requires less logic to implement and may be preferred in
most implementations. The protocol is as follows. First, the local bus card asserts _CBR at
power-on to the motherboard which in tum asserts _BR to the motherboard 68030. Upon
receiving _BG30 from the motherboard the local card asserts _BOSS. Logic on the
motherboard uses _BOSS to force _BGACK30 low to the 68030 only, and not the local bus
_BGACK. In addition the assertion of _BOSS tristates _BG on the motherboard and in turn
the local card should untristate and source its _BG. The local card is now the arbitration
master and must provide arbitration for the local bus. The onboard 68030 is bus-arbitrated

. away and never regains the bus.

PAL equations to implement this are as follows:

CBR = 'b'l; always assert
BOSS = BG30 f BOSS & !poweron_reset;
BG = local_card_bg;
BG.oe = BOSS;

All PAL equations are active high and should be inverted in the output stage of the PAL for
active low assertion.

_CBR is sourced by the local card to the motherboard.

_BOSS is sourced by the local card to the motherboard.

_BG30 is sourced by the motherboard to the local connector.

local_card_bg is sourced by the local card in compliance to the operation of
arbitration defined in the 68030 users manual.

poweron_reset is sourced by the local card and is asserted for a few hundred
nanoseconds after poweron. This clears the feedback path on
the PAL and may be generated by an RC network which is
slewrate cleaned by a Schmitt trigger device.

DevCon90 The A3DOD Lot:sl Bus
Expansion Connector

u

u

n
Timing for takeover mode is not given since all signals are inherently asynchronous. The
untristating of _BG should be later than the tristating of _BG on the motherboard to
minimize contention on that signal.

The second mode (fast arbitration) uses the 68030 arbiter to provide cycle arbitration
between the local card and the motherboard DMA. Since the 68030 provides only a single
bus request input, a scheme refened to as fast arbitration is used between the local card and
Buster-controlled DMA. Bus request is an open collector line which is time-multiplexed
between the local card and Buster. On a positive edge of CPUCLK, Buster will assert _BR if
it requires the bus and _BR is not already assened by the local bus card. On the negative
transition of CPUCLK, the local bus card may assert _BR if it is not already asserted by
Buster. This scheme allows both masters to share a single bus request and also requires only
20ns to resolve the master arbitration.

This mode is very efficient but forces the local card to use high-speed logic since the time
between clock edges is so short. It is strongly suggested that the above logic be incorporated
in a 7 .5ns or faster registered PAL connected to a F38 open collector device. Cock skew
between the clock to this PAL and CPUCLK is critical and it is advised that the local card
generate and source clocks to the motherboard. Skew between CPUCLK and the clock
driving this PAL should be less than 2ns.

The PAL equations for _BR are as follows:

BR_LOCAL. d = ! BR & ! BR_LOCAL & WANTBUS

t BR_LOCAL & !BGACK_LOCAL & !RESET;

BR_LOCAL is an active high output fed into a 74f38 to produce _BR

_BR is raw bus request from the local bus connector (keep this trace
short on the local card)

W ANTBUS is the request from the local card which deasserts after it
sees BR_LOCAL asserted.

BGACK_LOCAL is bgack assened by the local card.

RESET is any reset signal used to prevent poweron latchup of BR_LOCAL.

Note: the above inputs must all meet setup hold requirements of the registered PAL.

The A3DDD Local Bus
Expansion Connector

3 DevCon90

After receiving _BG from the motherboard 68030, the local card drives BGACK (open
collector) and assumes mastership of the bus. It may keep the bus for multiple cycles but
should not hog the bus for extended periods unless it relinquishes the bus when DMA request
is asserted by Buster. Hogging the bus may cause adverse operation of the A3000. Be aware
that the local bus signals must be tristated (AS, DSACK, Address, Data, etc.) prior to
deasserting BGACK. In addition the local card must not drive the bus or BGACK until AS,
DSACK, BERR, HALT, etc. have deasserted.

It is extremely imponant that the bus master timing from the local card emulate operation of
a 25MHZ or 16MHZ 68030 chip exactly as defined by the 68030 user manual. Future
enhancements to the A3000 motherboard chips may incorporate rerun cycles and currently
incorporate burst cycles and cache coherency signals (CDN). Signals received by the local
card from the motherboard provide only the minimum setup and hold required by a 68030.
Do not assume for example that data setup from the motherboard will not significantly
change, i.e., data setup from Fast RAM on subsequent cycles of a burst is much less than a
typical non-burst cycle.

Clock Generation

The A3000 motherboard provides links to disable generation of CPUCLK and CLK90. This
allows the local bus card to maintain better clock skew relationships between its own logic
and that of the motherboard. If a local bus card drives the clock lines, the appropriate

u

jumpers must be moved on the motherboard. CLK90 must be a clock 90 degrees out of U
phase from CPUCLK. It is typically generated from a S tap 25ns delay line, where CLK90 is
the lOns tap when running the system at 25Mhz and CLK90 is the 15ns tap when at 16Mhz.
Note that these clocks are fed through a 7 4f08 to provide clocking to the motherboard. If the
skew generated by the f08 is unaccepable (as in fast arbitration) the socketed fU8 may be
removed and replaced by a header which shorts the appropriate inputs to outputs. Again
careful layout of the clock circuitry is essential for reliable operation.

Local Bus Design Criteria

Any design which plugs into the local bus connector must comply to some basic design rules.

1) Due to inductance in the 200 pin connector to vee and gnd, it is very important to provide
ample bypass capacitance in order to maintain good de vee and gnd levels.

2) All signals from this connector are unbuffered and should not be heavily loaded. A good
rule is 2 ttl loads. In addition receivers and drivers should be located near the connector
and any connector signal should not run over 4 inches in length from the connector
before entering or leaving a driver or receiver.

DevCon90 4 TIJe A3DOO Local Bus
Expansion Connector

u

()

3) Cock generation is especially critical. Keep traces short; ECL routing rules should be
followed if possible. Fan out multiple clocks from a single die to minimize loading per
clock. Light damping resistors minimize radiation but cause clock distortion, so
tune the values carefully.

4) Keep in mind current draw on the A3000 is tight so use CMOS and powerdown DRAM
modes when possible. New FCT devices use significantly lower cunent than F and run
faster.

5) Be aware of heat dissipation issues especially on very high-speed microprocessors.

6) Noise test local bus cards and ensure good AC signal quality since a nasty signal will get
nastier after passing through an inductive connector to the motherboard.

7) Local bus card mounting holes are plated through to ground on the A3000 motherboard
and provide an additional low inductance path to ground Use this path to minimize
ground bounce relative to the motherboard.

Local Bus Connector Signal Descriptions

A description of the signal is not given if it is a standard 68030 input or output. Please refer
to the 68030 user manual.

Pin number Signal name Description

1 _dsack1
2 gnd
3 gnd
4 _halt
5 r_w
6 gnd
7 gnd
8 _bgack
9 _sbr
10 gnd
11 gnd
12 _avec
13 ext90

14 vee
15 vee
16 _rams lot
17 _boss

TIJe A3DOD Local Bus
Expansion Connector

Super DMAC bus request to Buster

clock 90 degrees lagging cpuclk driven
by local bus card (optionally)

Ramsey decode Ox0800 0000 to OxOfff ffff
takeover arbitration control signal

5 DevCon90

18 vee v
19 vee
20 fcO
21 _sterm
22 vee
23 vee
24 fcl
25 _br
26 vee
27 vee
28 _cback
29 _berr
30 reserved
31 _emul attached to CDIS and MMUDIS on the

68030 and a pullup. Could be used to
force disable of MMU and Cache.

32 _cbreq
33 aS
34 reserved
35 gnd
36 aO
37 a9
38 gnd
39 gnd
40 al
41 alO
42 reserved
43 reserved u 44 a2
45 all
46 reserved
47 gnd
48 a3
49 al2
so gnd
51 gnd
52 a4
53 al3
54 reserved
55 _wait disable fastram and Zorro decode
56 aS
57 al4
58 reserved
59 gnd
60 a6
61 al5
62 gnd
63 gnd
64 a7
65 al6
66 reserved
67 reserved

DevCon90 6 The A3000 Local Bus
Expansion Connector

u

68 a24
69 a17
70 reserved
71 gnd
72 a25
73 a18
74 gnd
75 gnd
76 a26
77 a19
78 reserved
79 reserved
80 a27
81 a20
82 reserved
83 gnd
84 a28
85 a21
86 gnd
87 gnd
88 a29
89 a22
90 reserved
91 _dsackl
92 a30
93 a23
94 vee
95 vee
96 a31
97 _ds
98 vee
99 vee
100 _ecs
101 _ciout
102 vee
103 vee
104 dben
105 _bg

106 vee
107 vee
108 z:mc
109 _epurst
110 _fpurst
111 reserved
112 ext elk

113 _ebelr

114 reserved

The ASDDD Local Bus
Expansion Connector

local bus bg is bg from motherboard 030
tristated by _boss assertion

see A3000 logic for reset definitions

feeds 74£08 on motherboard which
sources cpuclka and cpuclkb. Driven
by local bus card (optionally)
ebclr is asserted to indicate that
a zorro expansion device wants the
local bus.

7 DevCon90

115
116
117

118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158

DevCon90

gnd
_ipend

reset -
gnd
gnd
_iplO
sizO
reserved
reserved
_ipl1
fc2
reserved
clk90

_ipl2
siz1
gnd
gnd
_ciin
_as
_fpucs
cpuclka

_ocs
d31
gnd
gnd
d15
d30
gnd
gnd
d14
d29
reserved
_cbr

d13
d28
reserved
gnd
d12
d27
gnd
gnd
d11
d26
reserved

see A3000 logic diagrams for reset
definition

clock which lags cpuclka and cpuclkb
by 90 degrees (input only)

Gary decoded coprocessor select
one of two motherboard clocks which
drive A3000 logic (input only)
25Mhz on 25Mhz system 16Mhz on 16Mhz
system.

coprocessor bus request, br into
motherboard 030 is logical or of
_brand _cbr

8 The A30DD Local Bus
Expansion Connector

u

u

n

n

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

References

_bg30
d10
d25
reserved
gnd
d9
d24
gnd
gnd
d8
d16
reserved
reserved
dO
d17
vee
vee
dl
d18
vee
vee
d2
d19
vee
vee
d3
d20
vee
vee
d4
d21
gnd
gnd
d5
d22
gnd
gnd
d6
d23
gnd
gnd
d7

raw bg from motherboard 68030

Motorola, MC68030 enhanced 32 bit microprocessor user's manual, second edition,
Motorola Inc. number MC68030UMIAD REVl •

•
Tile A3DDD Local Bus
Expansion Connector

9 DevCon90

25.40 [1.00] ~--------------19~:~·:~~~~~~~:~:~~,~------------~·, I

';n

/
03.5 (4 PLS) ~

iO
-i
It)

---+
~

't'

-,....---

';;;
...:-
~
0 ';;;

'N 10 co
oi ~ ,., ...:- co N co 0 ~ ('I

...:' t: ,..; It) en
~ en

~ C'i en
,.... ·10 en
10 ~
oi ~
:::?

A... -+- _.._
't'

~-=::=F~""'-~-=-~=-~ -~ ~......._...== .. ·=· ==--··~--'!'~·-· #\

~ ';() 4.00 _[0.16j
i--,.... ,..,

e e 22.41 (0.88] 134.62 [5.30]
0 0 169.10 [6.661 0 co
a) a)

173.10 [6.81]

LU:S £5S gn.~l~" a.-t~ ~ Com:r.n-ol~c:re :re=crr~

Ol'!lt n~=!!:'·t

! METRIC
TCI.!IIA.'IctS ON D.loiCHSONS MST ::~: 1'!1 !~o!JilSO UH:l£!1 .» :tO. I -.»TO X' I :1::0.2 - PCB LAYOUT c;o ~~Nc-R!IEC O'o'Ul JCO I :1::0.4

I 110 .._..._ CI'UICU N'1 TO A3000 LCl ~ L. S\)S ~ L.CT KIIAIKI'O'I'I':IIOQAol'f', ""roaau

-~v 1 C) 11190 COWiolc:lC.'f£ AIIIC4 INC. A3000 s~ 1 I ~Ev , CbAllCN COOI.,..lll ~ IS'IIC~ AHO
C::OOflCUIIIALI'I'(PIATrOICCIAI-M&C.OIHC.II"- f1t<CSH: I R!l'a~ "'n".ACWM" lin "''011 ... '11011
01~1 M ~ ,..ntlt 'l'l<WCIIOM ~ O::WCOCIOI:

SCALE , /l I SH££T l OF l ! ts Si<l.iC1'.Y ltltOCIItcl. "'-L MQH" AUUt\Q

DevCon90 10 The ASDDD Local Bus
Expansion Connec:tor

u

u

n

n

TuE ZoRRO III Bus
SPECIFICATION

A General Purpose Expansion Bus for
High Performance Amiga Computers

Document Revision 1.00

Atlanta DevCon Release

by Dave Haynie
June 5, 1990

Copyright © 1990 Commodore Technology

·n.

n

n

n

IMPORTANT INFoRMATION

"A life spent making mistakes is not only more honorable but more
useful than a life spent doing nothing."

-George Bernard Shaw

This Document Contains Preliminary Information

The information contained here, while a honest attempt to get as much Zorro Ill
information down on paper as early and accurately as possible, is still somewhat preliminary in
nature and subject to possible errors and omissions. Being early in the life of the Zorro Ill bus,
very few Zorro Ill cards have yet been designed, so some features described here have not
actually been tested in a system, or in some cases, actually implemented as of this writing. That,
of course, is one major reas~n for having a specification in the first place.

Commodore Technology reserves the right to correct any mistake, error, omission, or
viscious lie. Corrections will be published as updates to this document, which will be released as
necessary in as developer-friendly a manner as possible. Revisions will be tracked via the
revison number that appears on the front cover. New revisions will always list the corrections up
front, and developers will be kept up to date on released revisions via the normal CATS
channels.

All information herein is Copyright © 1990 by Commodore Technology, and may not be
reproduced in any form without permission.

The Zorro Ill Bus Specification

H

n

n

AcKNOWLEDGEMENTS

"An is I; science is we."
-Claude Bernard

I'd like to acknowledge the following people and groups, without whom this new stuff would
have been impossible:

• The original Amiga designers, for designing the first microcomputer bus with support
for multiple masters, software board configuration, and room to grow.

• The rest of the A3000 Engineers: Greg Berlin, Hedley Davis, Scott Hood, and Scott
Schaeffer; PCB master Terry Fisher; and the lab maniacs George Terbush and
Brian Fenimore. And of course the boss men, Jeff Porter and Henri Ruben, who
let it all happen.

• The folks who helped review this document, overnight: Joe Augenbraun, Dan Baker,
Hedley Davis, Bryce Nesbitt, and Jeff Porter.

• The Commodore-Amiga software group, and the Commodore Semiconductor Group,
for excellent support in their respective areas.

• Commodore's Developer Support people from both sides of the Atlantic.

• Gold Disk, for some good and relatively bug free electronic publishing software.

• lggy; an excellent cat, an excellent foot warmer.

The Zorro III Bus Specification iii

n

n .-...._

CHAPTER I
1.1
1.2
1.3
1.4
1.5
1.5.1
1.5.2
1.5.3

CHAPTER2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.2
2.3
2.3.1
2.3.2

TABLE oF CoNTENTS

INTRODUCTION
Intended Audience... 1-1
Bug Reports... 1-2
Amiga Bus History ... 1-2
The Zorro III Rationale.. 1-3
Document Revision History... 1-4

Changes for Rev 0.90 .. ."...... 1-5
Changes for Rev 0.91 ... 1-5
Changes for Rev 1.00... 1-5

ZoRRoiiCoMPATIBaiTY
Changes From The A2000 Bus .. 2-2

6800 Bus Interface... 2-2
Bus Memory Mapping and Cache Support................................... 2-2
Bus Synchronization Delays.. 2-3
Zorro II Master Access to Local Slaves ... 2-3
Bus Arbitration and Fairness .. 2-3
Intelligent Cycle Spacing... 2-3
Bus Drive and Termination.. 2-4
DMA Latency and Overlap .. 2-4
Power Supply Differences .. 2-4

Bus Architecture.. 2-5
Signal Description... 2-5

Power Connections.. 2-6
Clock Signals... 2-6

The Zorro Ill Bus Specification v

vi

2.3.3 System Control Signals... 2-7
2.3.4 Slot Control Signals... 2-9
2.3.5 DMA Control Signals.. 2-9
2.3.6 Addressing and Control Signals.. 2-11

CHAPTER 3 Bus ARCHITECTURE

3.1 Basic Zorro III Bus Cycles ... 3-1
3.1.1 Design Goals.. 3-2
3.1.2 Simple Bus Cycle Operation .. 3-2
3.2 Advanced Mode Support Logic ... 3-4
3.2.1 Bus Locking... 3-4
3.2.2 Cache Support.. 3-5
3.3 Multiple Transfer Cycles... 3-5
3.4 Quick Bus Arbitration.. 3-7
3.5 Quick Interrupts... 3-9
3.6 Compatibility with Zorro II Devices.. 3-10

CHAPTER 4 SIGNAL DESCRIPTION

4.1 Power Connections.. 4-1
4.2 Clock Signals... 4-2
4.3 System Control Signals.. 4-2
4.4 · Slot Control Signals ... ············ 4-4 U
4.5 DMA Control Signals.. 4-4
4.6 Address and Related Control Signals.. 4-5
4.7 Data and Related Control Signals.. 4-7

CHAPTERS

5.1
5.2
5.3
5.4

CHAPTER6

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.3

TIMING
Standard Read Cycle Timing... 5-2
Standard Write Cycle Timing .. 5-4
Multiple Transfer Cycle Timing.. 5-6
Quick Interrupt Cycle Timing... 5-8

ELECI'RICAL SPECIFICATIONS

Expansion Bus Loading... 6-1
Standard Signals.. 6-2
Clock Signals... 6-2
Open Collector Signals.. 6-3
Non-bussed Signals.. 6-3

Slot Power Availability.. 6-3
Temperature Range.. 6-3

u

\

n CHAPTER 1 MEcHANICAL sPECIFICATIONs

7.1 Basic Zorro III PIC... 7-2
7.2 PIC with ISA Option.. 7-3
7.3 PIC with Video Option... 7-4

CHAPTER 8 AUTOCONFIGTM

8.1 The AUTOCONFIGTM Mechanism... 8-1
8.2 Register Bit Assignments... 8-2

APPENDICES

A.1 Physical and Logical Signal Names ... A-1
A.2 A Glossary of Tenns.. A-5
A.3 Zorro III Implementations .. A-9

The Zorro Ill Bus Specification vii

I

n

n

n

n

Figure 1-1

Figure 2-1

n Figure 2-2
Figure 2-3

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Table 4-1

Table 6-1

Figure 8-1

TABLES AND FIGURES

A3000 Memory Map... 1-4

A2000 vs. A3000 Bus Termination... 2-5
Expansion Bus Clocks... 2-7
Zorro II Bus Arbitration.. 2-10

Basic Zorro lll Cycles... 3-3
Multiple Transfer Read Cycles.. 3-5
Zorro III Bus Arbitration... 3-8
Interrupt Vector Cycle... 3-9
Zorro II Within Zorro 111........... 3-10

Memory Space Type Codes... 4-5

Zorro III Drive Types... 6-2

Configuration Register Mapping... 8-2

The Zorro III Bus Specification ix

X

n

n

n

CHAPTER 1
INTRODUCTION

"Welcome, my son. Welcome to The Machine."
-Pink Floyd

This document describes the complete Zorro III bus, first implemented in the Amiga
3000 Computer. The Zorro ill bus is a performance 32 bit expansion bus that is also upward
compatible with the Zorro I~ bus (Amiga 2000 expansion bus). The main intent of the Zorro III
bus is to allow fast 32 bit peripherals and memory devices to be added to a high perfonnance
Amiga, such as the Amiga 3000, while at the same time allowing standard Zorro II devices to be
used wherever they make sense in such a system. This compatibility also insures that the Amiga
3000 will have a number of hardware and software compatible expansion devices available upon
introduction, and that Amiga 2000 owners will be able to take their expansion card investment
along with them should they migrate to a higher performance Amiga.

1.1 Intended Audience

This document was written primarily for hardware engineers interested in designing Plug
In Cards for the Zorro lll expansion bus. While it may occasionally be of use to software
engineers interfacing to such Zorro Ill PICs, Amiga system software provides an interface layer
(expansion.library in the Amiga OS) which manages the needs of most card-level software. A
reasonable level of microcomputer knowledge is prerequisite to get much meaning out of these
pages. A good understanding of the Motorola 680x0 processors will be quite useful, as will be
an understanding of the Zorro II expansion bus used on earlier Amiga computers such as the
Amiga2000.

The Zorro III Bus Specification 1-1

1-2

1.2 Bug Reports

This is the second major publication of the Zorro III Bus Specification. While every
effort has been made to keep it as accurate as possible, there is certainly the possibility that some
errors have made it into this document. Anyone finding any error is encouraged to contact
Commodore at the address below:

Dave Haynie/ A3000 Systems Engineering
1200 Wilson Drive
West Chester, PA 19380

Bugs can also be reported on BIX or via Usenet; the appropriate BIX conference has yet to be
determined, though Dave Haynie can be reached on BIX as "hazy"; for U senet users, bug reports
can be sent to the address "{uunet,rutgers}!cbmvax!bugs"; please also copy any such reports to
" { uunet,rutgers} !cbmvax!daveh ".

1.3 Amiga Bus History

The original Amiga computer, the Amiga 1000, was introduced in 1985. While it had no
built-in standard for expandability, the capability for some form of expansion was considered
extremely important; personal computer history up to that date had shown several times that an
open hardware expansion capability was often critical to a personal computer's success and to its

u

capability to adapt to new or unusual applications. The A 1000 was designed with a connector U
giving access to the internal 68000 bus and a few other system signals. Shortly after
introduction, the formal expansion specification for a card chassis that would connect to the
A1000 was published. This bus became commonly known as the Zorro bus*. While the
backplane specification was very easy to implement with 1985 PAL technology based on the
existing 68000 signals, the. specification did incorporate a number of advanced features. Far
more sophisticated than the PC-XT and Apple n buses in common use at the time, the Zorro bus
allowed any slot to master the bus, and it linked expansion cards with the system software.
Addressing jumpers were eliminated, the card's address instead being assigned by software, and
cards could easily be identified by software and linked with appropriate driver programs, all with
a minimum of user intervention.

With the introduction of the Amiga 2000 system, the Zorro bus was changed slightly.
Additional discrete interrupt lines were added, replacing the encoded lines that couldn't easily be
used by any bus resident device. As it turns out, these additional encoded lines weren't any more
useful, as they couldn't be disabled by software, and as such, they're no longer considered an
official part of the Zorro n bus specification (they are supported as part of Zorro Ill). Finally,
the form factor was changed to match that of the mM PC-AT card, acting as both a cost
reduction and allowing the Zorro II bus to offer the PC-AT bus as one optional secondary bus
extension. This modified specification became commonly known as the Zorro II bus, and it's the

• The original "Zorro" name comes from the code name of one of the AlOOO prototype boards. The "Zono" board was the one that followed the
"Lorraine", and was the board in the works when much of the expansion specifications were worked up. Since everyone uses the "Zorro" name,
and no one's suggested a better name, I stick with it throughout this document.

Chapter 1: Introduction

u

n

n

Amiga bus standard that's been in use for most of the Amiga's life. And it's a bus standard that
will continue to be important.

1.4 The Zorro Ill Rationale

With the creation of the Amiga 3000, it became clear that the Zorro II bus would not be
adequate to support all of that system's needs. The Zorro II bus would continue to be quite useful,
as the current Amiga expansion standard, and so it would have to be supported. A few unused
pins on the Zorro II bus and the option of a bus controller custom LSI, gave rise to the Zorro III
design, which supports the following features:

• Compatibility with all Zorro II devices.
• Full 32 bit address path for new devices.
• Full 32 bit data path for new devices.
• Bus speed independent of host system CPU speed.
• High speed bus block transfer mode.
• Bus locking for multiprocessor support.
• Cache disable for simple cache support.
• Fair arbitration for all bus masters.
• Cycle by cycle bus abitration mode.
• High speed interrupt mode.

Some of the advanced features, such as burst modes, are designed in such a way as to make them
optional; both master and slave arbitrate for them. In addition, it is possible with a bit of extra
cleverness, to design a card that automatically configures itself for either Zorro IT or Zorro III
operation, depending on the status of a sensing pin on the bus.

The Zorro Til bus is .physically based on the same 100 pin single piece connector as the
Zorro II bus. While some bus signals remain unchanged throughout bus operation, other signals
change based on the specific bus mode in effect at any time. The bus is geographically mapped
into three main sections, Zorro II Memory Space, Zo"o IIIlO Space, and Zorro Ill Space. The
memory map in Figure 1-1 shows how these three spaces are mapped in the A3000 system. The
Zorro II space is limited to a 16 megabyte region, and since it has DMA access by convention to
chip memory, it is in the original 68000 memory map for any bus implementation. The Zorro III
space can physically be anywhere in 32 bit memory.

The Zorro III bus functions in one of two different major modes, depending on the
memory address on the bus. All bus cycles start with a 32 bit address, since the full 32 bit
address is required for proper cycle typing. If the address is determined to be in Zorro II space, a
Zorro II compatible cycle is initiated, and all responding slave devices are expected to be Zorro II
compatible 16 bit PICs. Should a Zorro m address be detected, the cycle completes when a
Zorro III slave responds or the bus times out, as driven by the motherboard logic. It is very
important that no Zorro liT device respond in Zorro ITI mode to a Zorro II bus access; as the
following chapters will reveal, the two types of cycles make very different use of many of the
expansion bus lines, and serious buffer contention can result if the cycle types are somehow

The Zorro Ill Bus Specification 1-3

1-4

mixed up. The Zorro ITI bus of course started with the Zorro II bus as its necessary base, but the
Zorro ITI bus mechanisms were designed as much as possible to solve specific needs for high end U
Amiga systems, rather than extend any particular Zorro IT philosophy when that philosophy no
longer made any sense. There are actually several variations of the basic Zorro III cycle, though
they all work on the same principles. The variations are for optimization of cycle times and for
service of interrupt vectors. But all of this in due time.

Figure 1-1: A3000 Memory Map
$80000000

$10000000

$08000000

$01000000
$00000000

Zorrom
Expansion

Space

32-Bit Memory
Expansion

Space

A3000
Motherboard

Space

1.5 Document Revision History

I
I

I

I

I
I

I

I
I

I

I
I

I

I
I

I
I

I

I

I
I

I

I
I

I

I
I

I

I Motherboard ROM

Zorroll UO

A2000
Motherboard

Register Space

Zorro II I/O
Expansion Space

Zorron
Memory

Expansion Space

AmigaChip
Memory

$01000000

SOOFOOOOO
SOOE80000

$00880000

SOOAOOOOO

$00200000

$00000000

While there's significantly more real Zorro III hardware actually in existence at the time
of this writing than when the frrst revision of this document was created, various Zorro III issues
are still, from time to time, changing. In order to document these changes, this section was
created Although revision histories often discuss revisions in reverse chronological order, it's
done here in chronological order to keep the subsection numbers consistent between revisions of
this document.

Chapter 1: Introduction

u

u

n 1.5.1 Changes for Rev 0.90

The major changes in Rev 0.90 are actually additions. Specifically, the remaining parts
of the Zorro III Timing (Chapter 5) and Mechanical (Chapter 7) specifications have been
incorporated into this document. Additionally, the Zorro III design example in Appendix A.4
has been deleted. This simple and somewhat kludgy example has been surplanted by a more
useful, straightforward, and throughly explained example, available as the separate document
BIGRAM 8/32: A Complete Zorro Ill Design Example. In general, we expect both documents to
be distributed together, but as always, CATS can assist in the procurement of any missing
information.

1.5.2 Changes for Rev 0.91

In the Introduction (Chapter 1), the official revision history has been added as a standard
part of this document. The Zorro III Bus Architecture (Chaper 3), section 3.5, has been changed
to reflect the revised Quick Interrupt vector allocation mehanism. In the Timing specification
(Chapter 5), corrections have been made: timing parameter 6 was left out of the section 5.3
timing, and timing parameter 19 was incorrectly specificed in section 5.4. In the AUTOCONFIG

·specification (Chapter 8), corrections have been made to the addressing tables for registers 44
and 48. Also the Quick Interrupt Enable bit (register 08:4) and Vector Register (register SO)
have been deleted from the specification. Quick Interrupt Vector allocation is now handled via
an Exec call, a single configuration unit can have several vectors, and the means of storage on a
PIC is up to the designer.

1.5.3 Changes for Rev 1.00

In the AUTOCONFIG specification (Chapter 8), bit 4 of register 08 has been changed to
always read 1 for Zorro III PICs. This change was necessary for compatibility with 1.3, due to a
bug in the 1.3 expansion.library. Also, the nybble write configuration mode for the Zorro Ill
configuration block has been eliminated, only byte and word writes are now supported

The Zorro Ill Bus Specification 1-5

n

ti'\
\(j

()

. ~ .. ,.

9-I

.. . .

n

CHAPTER2

ZORRO II COMPATIBILITY

"In Jersey anything's legal, as long as ya don't get caught."
- Traveling Wilburys

The A3000 bus is a rather extensive superset of the A2000 bus design. The compatibility
is based on distinct bus modes, rather than a simple extension to the existing bus mechanisms.
Through the use of an in~egrated bus controller (the Fat Buster chip), the expansion bus
configures itself differently for the 16 bit A2000-compatible Zorro II modes than the 32 bit Zorro
III modes. As a result, while there are still only 100 pins on the expansion bus, some pins
change function considerably depending on the bus activity that's currently in progress. While
the Zorro II modes of the Zorro III bus are as compatible as possible with the Zorro II bus
specification (especially the A2000 implementation of this specification), there are some small
differences between the two expansion buses.

Aside from these differences, in general, it's important to understand the Zorro II bus in
order to understand the Zorro Ill bus. The general features of the A3000 bus, like
autoconfiguration, the master-slave bus architecture, and the physical attributes come from the
Zorro II expansion bus. Other features of the Zorro III bus address shortcomings of the Zorro II
architecture, but Zorro II has a hand in how some of these shortcomings are solved under Zorro
Ill. Those with a full understanding of the Zorro II bus will mainly be concerned with the
possible bus incompatibilities listed here.

The Zorro III Bus Specification 2-1

2-2

2.1 Changes From The A2000 Bus

While much effort has been made to assure that the Zorro II mode of the A3000 bus is as
compatible as possible with the A2000 bus, there are a few points to consider here. Primarily,
the A3000's Zorro II modes are driven with a state machine that emulates the 68000 bus
protocol. This emulation must be based on the published Motorola specifications detailing
68000 bus behavior. While this has the interesting effect of changing the Zorro II bus from CPU
dependent to CPU independent, there's some margin for trouble. Zorro n PICs also designed to
these specifications should have no trouble in the A3000 bus in most cases. However, anything
designed based on observed 68000 behavior rather than documented 68000 operation is at
serious risk of failing in an A3000 bus, as one might expect. There are also actual documented
differences, which are listed below.

2.1.16800 Bus Interface

A major difference between the A3000 expansion bus in Zorro II mode and the A2000
bus are the absence of the signals NPA and NMA, which comprise the 6800/6502 peripheral
support mechanism that's part of the 68000 bus interface. This mechanism was never a
supported part of the Zorro ll specification, however, and it should not be used by any PIC. Any
Zorro II PIC that depends on NPA or NMA will not work in the A3000 bus. It was, in fact,
impossible to legally use this on the A2000 bus. The E clock is, however, supported on the
Zorro III bus, though its duty cycle may vary in some situations.

2.1.2 Bus Memory Mapping and Cache Support

Another change to the Zorro II implementation is that the bus mapping logic works a
little differently. Zorro II address space is broken up into memory and I/0 address space.
Memory space is the standard 8 megabyte space from $00200000-$009FFFFF. The 1/0 address
space is mapped at $00E80000-$00EFFFFF, and a new 1.5 megabyte section (previously
reserved for motherboard devices) from $00A00000-$00B7FFFF. Zorro II cycles are not
generated for non-Zorro II address space, even for 68000 space resources on the local bus. So,
for example, a CPU access to chip memory would be visible to a Zorro II PIC in an A2000
backplane, but invisible to that same PIC in an A3000 backplane. Since this extra information
on the Zorro II backplane can't be legally used by any PIC anyway, it should not be used by any
existing A2000 PICs.

The reason for the two distinct mapping regions is for cache support of Zorro II PICs.
All access by the local bus* master to Zorro II memory space results in the local bus cache enable
signal being driven and a full port read (eg, both bytes) regardless of the actual data transfer size
being requested. A local bus access to Zorro IT I/0 space results in the local bus cache disable
signal being driven and the data strobes for reads indicating the requested transfer size. This
cache mapping mechanism was first implemented in the A2630 coprocessor card, so it's not an
entirely new concept .
• The local bus, motherboard bus, and CPU bus are the same thing; the immediate 680x0 bus connected directly to the CPU in an Amiga
computer. Current Amiga computers typically support three distinct buses; the expansion bus, local bus, and chip bus. From the point of view of
the expansion bus, the local and chip buses appear as a unified device which may be master or slave to the expansion bus.

Chapter 2: Zorro II Compatibility

u

u

n 2.1.3 Bus Synchronization Delays

Due to the asynchronous nature of the local-to-expansion bus interface for Zorro II
cycles, extra wait states may occasionally be added for local to expansion or expansion to local
cycles. These are generally manifested as delays between consecutive cycles, since the bus
controller is not going to require extra waiting during the cycle -- things will have already been
synchronized at that point. The synchronization problems get more difficult for Zorro II master
access to local bus slaves, and as a result, wait states here are very common. The actual number
of wait states generated in any case will be based on the particular implementation.

2.1.4 Zorro II Master Access to Local Slaves

The only supported local bus resource that's guaranteed accessible to a Zorro II
expansion bus master as a slave device is chip bus memory. All 1/0 devices are implementation
dependent and not supportable via DMA. Any attempted access to unsupported local bus
resources as expansion slaves will result in an error condition being signalled on both the local
and the expansion buses. Most other local bus resources, such as local bus fast memory, are
located outside of Zorro II space on most systems and obviously not available to Zorro II
masters.

2.1.5 Bus Arbitration and Fairness

The Zorro II bus is now arbitrated fairly. The normal slot-based order of precedence is
given to requesting devices, just as in the A2000 implementation. As always, once a bus master
assumes bus mastership, it has the bus for as long as it wants the bus (of course, trouble can
result if a device takes the bus over for too long). Once a master gives up the bus, it will not be
granted it back until all subsequent requests have been seiViced. Bus arbitration at its best will
be slightly slower than in the A2000 implementation, due to the fairness logic, but it is
impossible to jam the arbiter with asynchronous bus requests as in the A2000. The new style
arbiter also holds off bus grants while hidden local bus cycles are in progress, so there's no
guarantee of a minimum time between bus request and bus grant specified.

2.1.6 Intelligent Cycle Spacing

In order to pennit a free intennix of Zorro IT and Zorro Ill cycles, the bus control logic is
capable of making intelligent decisions when spacing bus cycles. In some cases, a Zorro II cycle
has some component that would naturally extend into a following cycle. The cycle spacing logic
detects such a condition, and refuses to start a new cycle until the current one is complete, even if
this extends beyond the defined bounds of a Zorro IT cycle. For Zorro II PICs that really follow
the Zorro II specifications, this should have no effect. However, any Zorro II PIC that holds
signals much beyond the end of a cycle, especially critical signals like /SLAVE and /DTACK,
will likely incur additional wait states on the Zorro III bus. This is not intended as a license for
making sloppy expansion card designs, just an acknowledgement that some Zorro II devices may
cause a conflict with the faster Zorro III bus timings, and the best thing to do about such cases is
to make them work, even with a possible perfonnance penalty.

The Zorro III Bus Specification 2-3

2-4

2.1. 7 Bus Drive and Termination

Finally, the Zorro Ill bus uses different bus termination than that in the A2000. The
Zorro II specification didn't specify the termination expected; backplanes were built that didn't
even have termination. The A2000 bus used a circuit consisting of a capacitor in series with a
resistor to ground for most of the bus signals. This has good reflection cancelling properties
without increasing crosstalk (a major concern on the 2-layer A2000 motherboard), but it does
slow things down measureably. The main reason for the change on the A3000 backplane is to
support the faster Zorro Ill bus modes. The multi-layer A3000 motherboard pennits a

+SV

2200

3300

b) A3000 BusTennlnatlon

Figure 2-1: A2000 vs. A3000 Bus Termination

reasonably high current bus without undue crosstalk. The thevenin tennination makes switching
logic levels start from a midpoint instead of a rail, especially for a bus coming out of tri-state
(which, based on the Zorro III design, happens constantly). This should not cause problems with
Zorro II cards, but it's conceivable that some cards may need to be adjusted to work in this bus
(the Zorro m bus requires somewhat higher current capability than the Zorro II bus does. The
A3000 does not support enough slots for loading to be a likely problem, but future Zorro Til
backplanes will have more slots and make this an important consideration).

2.1.8 DMA Latency and Overlap

Zorro II bus masters in a Zorro III backplane will, in many cases, receive a bus grant
much sooner than they would in a standard Zorro II backplane. Additionally, in some cases,
expansion bus cycles will overlap local bus cycles. The latency incurred on the Zorro II bus
during heavy custom chip activity has been greatly reduced for any Zorro Ill bus master. This
should be transparent to the card in question, though it's a good thing to be aware of.

2.1.9 Power Supply Differences

The Zorro II bus is defined as supplying +5VDC @ 2 Amps to each slot, with one slot
per backplane supplying 5.0VDC @ 4.0 Amps. The Zorro III bus only provides the 5.0VDC @
2.0 Amps for each slot.

Chapter 2: Zorro II Compatibility

u

u

n

n

2.2 Bus Architecture

The Zorro II bus is a simple extention of the 68000 processor bus. Those without a good
knowledge of the 68000 local bus will find The 68000 User's Manual from Motorola an
excellent reference for many Zorro II issues. The A500/A2000 Technical Reference Manual
from Commodore-Amiga is also required reading for any Zorro II design issues, as it includes a
complete description of all the Commodore-Amiga details that aren't part of the 68000
specification.

The basic Zorro II bus is a buffered version of the 68000 processor bus, physically
provided on a 100 pin one-piece connector. The bus is 16 bits wide, and provides 24 bits of
addressing information. A bus cycle looks exactly like a 68000 bus cycle. The cycle is defined
by an address strobe, tenninated by a data transfer strobe, and qualified by a read/write strobe,
some memory space qualifiers, and one or two byte selection strobes. The basic bus cycle runs
for a total of four cycles of a 7 .16MHz clock, though it can be extended to add wait states when
required.

The Zorro II bus adds a number of features to the basic 68000 CPU bus. It supplies
some Amiga system signals that are useful for expansion card designs, such as many of the
Amiga system clocks. The bus provides a default data transfer signal, which expansion cards
can easily use and modify rather than go to the trouble of creating their own. It provides a
number of discrete interrupt lines which are mixeQ. to provide the 68000 with its standard
encoded interrupts. The 68000 bus arbitration protocol is used to allow multiple bus masters;
arbitration of the bus requests are managed by the Zorro II bus controller to avoid contention
between multiple masters. And of course the bus supplies a number of supply voltages for
powering cards.

A powerful aspect of the Zorro II bus is its convention for automatically configuring
expansion cards, AUTOCONFIG™. On system powerup, the system software interrogates each
board to determine what kind of board is installed and how much memory space it needs on the
bus. The software then tells each board where to reside in memory. The bus provides hardware
lines to allow the boards to be configured in a daisy chained fashion regardless of which slots
they occupy and to prevent damage to boards if accidently configured to reside at the same
memory location. Firmware standards also permit software to autoboot or autoinitialize any
board, to match soft-loaded device drivers with individual boards, and to link memory boards
into the appropriate system memory lists.

2.3 Signal Description

The Zorro II bus can be broken down into various logical signal groups. Some of these
groups are unchanged in the Zorro III bus modes, others are drastically different. This section
makes note of the original Zorro II name for each signal and the current Zorro III physical pin
name for each signal, where different. Some of this infonnation will be repeated in the Zorro III
chapters, where appropriate; nothing in this chapter is considered critical to understanding the

() Zorro III bus, but it is useful. As previously mentioned, the A2000 bus signals unsupported by

The Zorro Ill Bus Specification 2-5

2-6

the Zorro II specification have been deleted from the Zorro Ill specification and the A3000
implementation of Zorro Ill; this section will, however, document those signals for reference U
purposes. Please see Appendix A for a complete list with pin numbers of the various logical
signals that appear on the physical bus during the different phases of the Zorro II and Zorro III
bus cycles.

2.3.1 Power Connections

The Zorro m expansion bus provides several different voltages designed to supply
expansion devices. There are no changes here that affect Zorro II cards.

Digital Ground (Ground)
This is the digital supply ground used by all expansion cards as the return path for all
expansion supplies.

Main Supply (+5VDC)
This is the main power supply for all expansion cards, and it is capable of sourcing large
currents; each expansion slot can draw up to 2.0 Amps@ +5VDC. The extra power for
one card in any backplane drawing up to 4.0 Amps @ +5VDC is no longer supported.

Negative Supply (-SVDC)
This is a negative version of the main supply, for small current loads only. There is no
maximum load specified for the Zorro II bus on a per-slot basis; the A2000 U
implementation specifies 0.3 Amps @ -SVDC for the entire system.

High Voltage Supply (+12VDC)
ntis is a higher voltage supply, useful for communications cards and other devices
requiring greater than digital voltage levels. This is intended for relatively small current
loads only. There is no maximum load specified for the Zorro II bus on a per-slot basis;
the A2000 implementation specifies 8.0 Amps @ + 12VDC for the entire system, most of
which is normally devoted to floppy and hard disk drive motors, not slots.

Negative High Supply (-12V)
Negative version of the high voltage supply, also commonly used in communications
applications, and similarly intended for small loads only. There is no maximum load
specified for the Zorro II bus on a per-slot basis; the A2000 implementation specifies 0.3
Amps @ -12VDC for the entire.

2.3.2 Clock Signals

The Zorro Til expansion bus provides clock signals for expansion boards. These clocks
are for synchronous Zorro I~ designs and for other synchronous activity such as bus arbitration.
While originally based on Amiga local bus clocks, these have no guaranteed relationship to any
local bus activity in newer Amiga computers, but are maintained in Amiga computers as part of
the expansion bus specifiation. The relationship between these clocks is illustrated in Figure 2-2.

Chapter 2: Zorro II Compatibility

u

/Cl Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the falling edge
of the 7M system clock.

/C3 Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the rising edge
of the 7M system clock.

CDACClock
This is a 7.16 MHz system clock (7.09 MHz on PAL systems) which trails the 7M clock
by 90° (approximately 35ns).

C7M

CDAC

/Cl

!C3 I
E l

Figure 2-2: Expansion Bus Clocks

E Clock
This is the 68000 generated "E" clock, used for 6800 family peripherals. driven by "E"
and 6502 peripheral~ driven by <ln. This clock is four 7M clocks high, six clocks low, as
per the 68000 spec. Note that the bus does not support the rest of the 68000's 6800/6502
compatible interface; there may be better ways to clock such devices.

1M Clock
This is the 7.16 MHz system clock (7.09 MHz on PAL systems). This clock forms the
basis for all Zorro 11/68000 compatible activity, and for various other system functions,
such as bus arbitration ..

2.3.3 System Control Signals

The signals in this group are available for various types of system control; most of these
have an immediate or near immediate effect on expansion cards and/or the system CPU itself.

Bus Error (/BERR)
This is a general indicator of a bus fault condition. Any expansion card capable of
detecting a hardware error relating directly to that card can assert /BERR when that bus
error condition is detected, especially any sort of harmful hardware error condition. This

The Zorro Ill Bus Specification 2-7

2-8

signal is the strongest possible indicator of a bad situation, as it causes all PICs to get off
the bus, and will usually generate a level 2 exception on the host CPU. For any condition U
that can be handled in software and doesn't pose an immediate threat to hardware,
notification via a standard processor interrupt is the better choice. The bus controller
will drive /BERR in the event of a detected bus collision or DMA error (an attempt by a
bus master to access local bus resources it doesn't have valid access permission for). All
cards must monitor /BERR and be prepared to tri-state all of their on-bus output buffers
whenever this signal is asserted. The current bus master should, if possible, retry the bus
cycle after /BERR is negated unless conditions warrant otherwise. Since any number of
devices may assert /BERR, and all bus cards must monitor it, any device that drives
/BERR must drive with an open collector or similar device capable of sinking at least
12ma, and any device that monitors /BERR should place a minimal load on it (1 "F" type
load or less); This signal is pulled high by a passive backplane resistor.

System Reset (!RST, /BUSRST) = (!RESET, /IORST) for Zorro III
The bus supplies two versions of the system reset signal. The /RST signal is bidirectional
and unbuffered, allowing an expansion card to hard reset the system. It should only be
used by boards that need this reset capability, and is driven only by an open collector or
similar device. The /BUSRST signal is a buffered output-only version of the reset signal
that should be used as the normal reset input to boards not concerned with resetting the
system on their own. All expansion devices are required to reset their autoconfiguration
logic when /BUSRST is asserted This signal is pulled high by a passive backplane
resistor.

System Halt (IHLT)
This signal is similar to the 68000 processor halt signal, and is driven by a PIC with an
open-collector or similar gate only. Its main use is to indicate a full-system reset. Based
on the 68000 conventions, an I/O-only reset, such as initiated by the 680x0 RESET
instruction, will drive only /RST and /BUSRST on the bus. A full-system reset, such as a
powerup reset or a keyboard reset, drives /HLT low as well. PICs that wish to reset the
system CPU as well as the bus and 1/0 devices drive /RST and /HL T, some bus devices
such as processor cards may internally reset only on full-system resets. This signal is
pulled high by a passive backplane resistor.

System Interrupts
Six of the decoded 680x0 interrupt inputs are available on the expansion bus, and these
are labelled as 1INT2, /INT6, /EINTt, /EINT4, fEINTs, /EINT7 on the Zorro II bus. Only
the 11NT2 and /INT6 interrupt inputs are actually supported by Commodore-Amiga as part
of the Zorro II specification; the A2000 hardware did not provide the software the
required support mechanisms for the safe use of these lines. Each of these interrupt lines
are shared by wired ORing, thus each line must be driven by an open-collector or
equivalent output type, and all are pulled high by passive backplane resistors.

Chapter 2: Zorro II Compatibility

u

u

() 2.3.4 Slot Control Signals

n

n

This group of signals is responsible for the control of things that happen between

expansion slots.

Slave (/SLAVEN)
Each slot has its own /SLAVE output, driven actively, all of which go into the collision
detect circuitry. The "N" refers to the expansion slot number of the particular /SLAVE
signal. Whenever a Zorro II PIC is responding to an address on the bus, it must assert its
/SLAVE output within 35ns of /AS asserted. The/SLAVE output must be negated at the
end of a cycle within 50ns of I AS negated. Late /SLAVE assertion on a Zorro II bus can
result in loss of data setup times and other problems. A late /SLAVE negation for Zorro
II cards can cause a collision to be detected on the following cycle. While the Zorro III
sloppy cycle logic eliminates this fatal condition, late /SLAVE negation can nonetheless
slow system perfonnance unnecessarily. If more than one /SLAVE output occurs for the
same address, or if a PIC asserts its /SLAVE output for an address reserved by the local
bus, a collision is registered and results in /BERR being asserted.

Configuration Chain (/CFGINN, /CFGOUTN)
The slot configuration mechanism uses the bus signals /CFGOUTN and /CFGINN, where
"N" refers to the expansion slot number. Each slot has its own version of each, which
make up the configuration chain between Slots. Each subsequent /CFGIN is a result of
all previous /CFGOUTs, going from slot 0 to the last slot on the expansion bus. During
the AUTOCONFIG™ process, an unconfigured Zorro PIC responds to the 64K address
space starting at $00E80000 if its /CFGIN signal is asserted. All unconfigured PICs start
up with /CFGOUT negated. When configured, or told to "shut up", a PIC will assert its
/CFGOUT, which results in the /CFGIN of the next slot being asserted. The backplane
passes on the state . of the previous /CFGOUT to the next /CFGIN for any slot not
occupied by a PIC, so there's no need to sequentially populate the expansion bus slots.

Data Output Enable (DOE)
This signal is used by an expansion card to enable the buffers on the data bus. The main
Zorro II use of this line is to keep PICs from driving data on the bus until any other
device is completely off the bus and the bus buffers are pointing in the correct direction.
This prevents any contention on the data bus.

2.3.5 D MA Control Signals

There are various signals on the expansion bus that coordinate the arbitration of bus
masters. Native Zorro III bus masters use some of the same logical signals, but their arbitration
protocol is considerably different.

PIC is DMA Owner (/OWN)
This signal is asserted by an expansion bus DMA device when it becomes bus master.
This output is to be treated as a wired-OR output between all expansion slots, any of

The Zorro III Bus Specification 2-9

2- 10

which may have a PIC signalling bus mastership. Thus, this should be driven with an
open-collector or similar output by any PIC using it. This signal is the main basis for
data direction calculations between the local and expansion busses, and is pulled up by a
backplane resistor.

Slot Specific Bus Arbitration (/BR.J'i, /BGN)

7M

/BR

/BG

Signals

/OWN

These are the slot- specific /BRN and /BG~ signals, where "N" refers to the expansion slot
number. The bus request from each board is taken in by the bus controller and ultimately
used to take over the system from 680x0 on the local bus. The bus controller eventually
returns one bus grant to the winner among all requesting PICs. From the point of view of

\ -

/BGACK

Figure 2-3: Zarro II Bus Arbitration

the individual PIC, the protocol is very similar to that of the 68000 arbitration
mechanism. The PIC asserts /BRN on the rising edge of 7M; some time later, /BGN is
returned on the falling edge of 7M. The PIC waits for all bus activity to finish, asserts
/OWN followed by /BGACK, then negates /BRN, assuming bus mastership. It retains
mastership until it negates /BGACK followed by /OWN.

Bus Grant Acknowledge (/BGACK)
Any Zorro II PIC that receives a bus grant asserts this signal as long as it maintains bus
mastery. This signal may never be asserted until the bus grant has been received, /AS is
negated, /DT ACK is negated, and /BGACK itself is negated, indicating that all other
potential bus masters have relinquished the bus. This output is driven as a wired-OR
output, so all PICs must drive it with an open collector or equivalent device, and a
passive pullup is supplied by the backplane.

Bus Want/Clear (IGBG) = (/BCLR) for Zorro Ill
This signal is asserted by the bus controller to indicate that a PIC wants to master the bus.
A bus master ass umes that the host CPU wants the bus, and that any time wasted as
master is stealing time from the CPU. To avoid such waste, a master should use cache or
FIFO to grab slow-coming data, and then transfer it all a t once. /BCLR is asserted to
indicate that additionally, another PIC wants the bus, and the current bus master should
get off as soon as possible. This signal is equivalent to /GBG on the A2000 bus.

Chapter 2: Zarro II Compatibility

2.3.6 Addressing and Control Signals

These signals are various items used for the addressing of devices in Zorro II mode by the
local bus and any expansion DMA devices. Most of these signals are very much like 68000
generated bus signals bi-directionally buffered to allow any DMA device on the bus to drive the
local bus when such a device is the bus master.

Read Enable (READ)
This is the read enable for the bus, which is equivalent to the 68000' s R/W output.
READ asserted during a bus cycle indicates a read cycle, READ negated indicates a write
cycle. Note that this signal may become valid in a cycle earlier than a 68000 R/W line
would, but it remains valid at least as long at the cycle's end.

Address Bus (At-A23)
This is logically equivalent to the 68000's address bus, providing 16 megabytes of
address space, although much of that space is not assigned to the expansion bus (see the
memory map in Figure 1-1).

Address Strobe (/AS)= (/CCS) for Zorro III
This is equivalent to the 68000 /AS, called /CCS, for Compatibility Cycle Strobe, in the
Zorro III nomenclature. The falling edge of this strobe indicates that addresses are valid,
the READ line is valid, and a Zorro II cycle is starting. The rising edge signals the end
of a Zorro II bus cycle, signaling the current slave to negate all slave-driven signals as
quickly as possible. Note that /CCS, like I AS, can stay asserted during a
read-modify-write access over multiple cycle boundaries. To correctly support such
cycles, a device must consider both the state of /CCS and the state of the data strobes.
Many current Zorro II cards don't correctly support this 680x0 style bus lock.

Data Bus (Do-Dts)
This is a buffered version of the 680x0 data bus, providing 16 bits of data accessible by
word or either byte. A PIC uses the DOE signal to determine when the bus is to be
driven on reads, and the data strobes to determine when data is valid on writes.

Data Strobes (IUDS, /LDS) = (/DS3, /DS2) for Zorro III
These strobes fall on data valid during writes, and indicate byte select for both reads and
writes. The lower strobe is used for the lower byte (even byte), the upper strobe is used
for the upper byte (odd byte). There is one slight difference between these lines and the
68000 data strobes. On reads of Zorro II memory space, both /DS3 and /DS2 will be
asserted, no matter what the actual size of the requested transfer is. This is required to
support caching of the Zorro II memory space. For Zorro II I/0 space, these strobes
indicate the actual, requested byte enables, just as would a 68000 bus master.

Data Transfer Acknowledge (/DT ACK)
This signal is used to normally terminate both Zorro bus cycles. For Zorro II modes, it is

() equivalent to the 68000's Data Transfer Acknowledge input. It can be asserted by the

The Zorro III Bus Specification 2-11

2-12

bus slave during a Zorro II cycle at any time, but won't be sampled by the bus master
until the falling edge of the S4 state on the bus. Data will subsequently be latched on the "-.)
S6 falling edge after this, and the cycle terminated with /AS negated during S1. If a Zorro
II slave does nothing, this /DTACK will be driven by the bus controller with no wait
states, making the bus essentially a 4 cycle synchronous bus. Any slow device on the bus
that needs wait states has two options. It can modify the automatic /DT ACK negating
XRDY to hold off /DTACK. Alternately, it may assert /OVR to inhibit the bus
controller's generation of /DTACK, allowing the slave to create its own /DTACK. Any
/DT ACK supplied by a slave must be driven with an open-collector or similar type
output; the backplane provides a passive pullup.

Processor Status (FCo-FC2)
These signals are the cycle type or memory space bits, equivalent for the most part with
the 68000 Processor Status outputs. They function mainly as extensions to the bus
address, indicating which type of access is taking place. For Zorro II devices, any use of
these lines must be gated with /BGACK, since they are not driven valid by Zorro IT bus
masters. However, when operating on the Zorro Ill backplane, Zorro II masters that
don't drive the function codes will be seen generating an FCt = 0, which results in a valid
memory access. Zorro II cycles are not generated for invalid memory spaces when the
CPU is the bus master.

/DT ACK Override (/OVR)
This signal is driven by a Zorro n slave to allow that slave to prevent the bus controller's
/DT ACK generation. This allows the slave to generate its own /DT ACK. The previous U
use of this line to disable motherboard memory mapping, which was unsupported on the
A2000 expansion bus, has now been completely removed. The use of XDRY or /OVR in
combination with /DTACK is completely up to the board designer-- both methods are
equally valid ways for a slave to delay /DTACK. In Zorro III mode, this pin is used for
something completely different.

External Ready (XRDY)
This active high signal allows a slave to delay the bus controller's assertion of /DTACK,
in order to add wait states. XRDY must be negated within 60ns of the bus master's
assertion of /AS, and it will remain negated until the slave wants /DTACK. The
/DT ACK signal will be asserted by the bus controller shortly following the assertion of
XRDY, providing the bus cycle is a S4 or later. XRDY is a wired-OR from all PICs, and
as such, must be driven by an open collector or equivalent output. In Zorro III mode, this
pin is used for something completely different.

Chapter 2: Zorro II Compatibility

u

CHAPTER 3
BUS ARCHITECTURE

"We follow in the steps of our ancestory, and that cannot be broken."
-Midnight Oil

While the Zorro II bus design was based in a large part on an already existing bus cycle,
the 68000 cycle, the Zorro III bus design had a much different set of preconditions. It is not
modeled after any particular CPU specific bus protocol, but instead it's a logical outgrowth of
both the need to support Zorro II cards on the same bus and the need to achieve various modem
feature and preformance goals. These goals were summarized in Chapter 1, now they'll be
covered in greater detail here.

3.1 Basic Zorro Ill Bus Cycles

The basic Zorro III bus cycle is a multiplexed address/data cycle which supplies a full 32
bits worth of address and data per simple cycle. The cycle is a fully asynchronous cycle. The
bus master for a given cycle supplies strobes to indicate when address is valid, write data is
valid, and read data may be driven. In return, the bus slave for a cycle supplies a strobe to
indicate that it is responding to a bus address, and a strobe to indicate that it is done with the bus
data for a write cycle, or has supplied valid bus data for a read cycle. The minimum theoretical
bus speed is governed only by setup and hold time requirements for the various bus signals.
Actual bus speeds is always a function of the bus master and bus slave active for a given cycle.
This is considerably different than the way things work under the Zorro II bus, and for several
good reasons, which are explained below.

The Zorro Ill Bus Specification 3-1

3-2

3.1.1 Design Goals

For any computer bus, there are two basic possibilities concerning the fundamental
operation of the bus; it's either synchronous or asynchronous. The difference is simple -- the
synchronous bus is ultimately tied to a clock of some sort, while the asynchronous bus has no
defined relationship to any clock signal. While Motorola specifies the 68000 bus cycle as an
asynchronous cycle, they're really refering to the fact that most 68000 inputs are internally
synchronized with the bus clock, and therefore, synchronous setup times on the bus do not have
to be met to avoid metastability. But the 68000 bus, and the Zarro II bus by extension, are
synchronous buses, based on a single bus clock (called E7M on the Zorro II bus). Most Zarro II
signals are asserted relative to an edge of the bus clock, and most Zorro II inputs are sampled on
an edge of the bus clock. The minimum Zorro II cycle is four bus clocks long, and every wait
state added, regardless of the method, will result in a single additional bus clock wait, regardless
of the asynchronous appearance of the termination and wait signals on the Zorro II bus.

The Zorro m bus is a fully asynchronous bus, in that all bus events are driven by strobes,
and there is no reference clock. The choice of an asynchronous versus a synchronous bus design
is governed by the intended application of the bus. Synchronous designs are preferred when a
CPU and a memory system (eg, master and slave) can be very tightly coupled to each other.
Such designs generally require a tight adherence to timing based on the specific CPU. This is
optimal for tightly coupled systems, such the fast memory on the A3000 local bus. Synchronous
designs can also be easier to do accurately, as the designer can use clock edges for scheduling
events, and there's never any need to waste time in synchronizers to achieve a reliable design.

The design goals for an expansion bus are considerably different. While a fast memory
circuit on a system motherboard can change for every new and better design, it's not feasable to
require redesign of any significant number of expansion cards every time an improved
motherboard design is created. And while a synchronous transfer can be optimal for matched
clocks, it can be very inefficient for mismatched CPU and expansion clocks, as synchronizer
delays must be introduced for any reliable operation. The A3000 project started with the need to
support CPU systems at 16MHz and at 25MHz, and it's obvious that the growth of CPU clock
speed will be here for some time to come. Zorro III cards are based on asynchronous
handshaking between master and slave in both directions. This means that, as long as masters
and slaves manage their own needs, any slave can work with any master. But as masters and
slaves improve with technology, bus transfer speeds can automatically increase, without
rendering any slower cards obsolete. The Zorro Ill bus attempts to address the needs of device
expansion as much as the needs of memory expansion.

3.1.2 Simple Bus Cycle Operation

The normal Zorro III bus cycle is quite different than the Zorro II bus in many respects.
Figure 3-1 shows the basic cycle. There is no bus clock visible on the expansion bus; the
standard Zorro II clocks are still active during Zorro III cycles, but they have no relationship to
the Zorro II bus cycle. Every bus event is based on a relationship to a particular bus strobe, and

u

u

strobes are alternately supplied by master and slave. U

Chapter 3: Bus Architecture

n A Zorro III cycle begins when the bus master simultaneously drives addressing
information on the address bus and memory space codes on the FCN lines, quickly following that
with the assertion of the Full Cycle Strobe, /FCS; this is called the address phase of the bus.
Any active slaves will latch the bus address on the falling edge of /FCS, and the bus master will
tri-state the addressing information very shortly after /FCS is asserted. It's necessary only to
latch A3I-As; the low order A1-A2 addresses and FCN codes are non-multiplexed.

As quickly as possible after /FCS is asserted, a slave device will respond to the bus
address by asserting its /SLAVEN line, and possibly other special-purpose signals. The
autoconfiguration process assigns a unique address range to each PIC base on its needs, just as
on the Zorro II bus. Only one slave may respond to any given bus address; the bus controller
will generate a /BERR signal if more than one slave responds to an address, or if a single slave

Read Write
/FCS \ ~-----------------------------------~! '~--------------------------------~r--
A8-A31 --o ------------------------------------~<=>~----------------------------
AO-A7 --< FCn ~--~>--<~-------------------------------------~>--
READ I \ I
/SLAVEn \ ~----------~! \~------------~~
DOE I \...__ ____ / __

/DSn \ ~------------------~! '~--------------------~~
Data ---------------------------------~<~~> (>--

/DTACK _) ~

Figure 3-1: Basic Zorro III Cycles

responds to an address reserved for the local bus (this is called a bus collision, and should never
happen in normal operation). Slaves don't usually respond to CPU memory space or other
reserved memory space types, as indicated by the memory space code on the FCN lines (see
Chapter 4 for details)!

The data phase is the next part of the cycle, and it's started when the bus master asserts
DOE onto the bus, indicating that data operations can be started. The strobes are the same for
both read and write cycles, but of course the data transfer direction is different.

For a read cycle, the bus master drives at least one of the data strobes /DSN, indicating the
physical transfer size requested (however, cachable slaves must always supply all 32 bits of
data). The slave responds by driving data onto the bus, and then asserting /DTACK. The bus
master then terminates the cycle by negating /FCS, at which point the slave will negate its

The Zorro III Bus Specification 3-3

3-4

/SLAVEN line and tri-state its data. The cycle is done at this point. There are a few actions that
modify a cycle termination, those will be covered in later sections. U

The write cycle starts out the same way, up until DOE is asserted. At this point, it's the
master that must drive data onto the bus, and then assert at least one /DSN line to indicate to the
slave that data is valid and which data bytes are being written. The slave has the data for its use
until it terminates the cycle by asserting /DTACK, at which point the master can negate /FCS
and tri-state its data at any point. For maximum bus bandwidth, the slave can latch data on the
falling edge of the logically ORed data strobes; the bus master doesn't sample /DTACK until
after the data strobes are asserted, so a slave can actually assert /DTACK any time after /FCS.

3.2 Advanced Mode Support Logic

The Zorro m bus provides support for some more advanced things that weren't generally
handled correctly on the Zorro II bus. Amiga computers have traditionally been supporting
things that the more mainstream personal computers haven't. High speed DMA transfers and
expansion coprocessors such as the Bridge Cards have been with the Amiga since the early days,
and high petformance main system CPU s with cache memory are now becoming common. The
Zorro II bus never properly or easily supported such devices; the Zorro III bus attempts to make
support of cache and coprocessor both possible and relatively straightforward. Other new
features are covered in later sections.

3.2.1 Bus Locking

The first advanced modification of the basic bus cycle is bus locking, via the /LOCK
signal. Bus locking is a hardware convention that allows a bus master to guarantee several
cycles will be atomic on the bus. This is necessary to support the sharing of special "mail-box"
memory between a bus m_aster and an alternate PIC-based processor; Bridge Cards are an
example of this kind of device. The Zorro n bus itself supports bus locking via the 68000
convention. However, the 68000 style of bus locking is often difficult to implement, and support
for it was often ignored in Zorro II designs, especially those not directly concerned with
multiprocessor support.

The Zorro lli mechanism involves no change to the basic bus cycle, other than the
monitoring of this /LOCK signal, and as such is much more reasonable to support The /LOCK
signal is asserted by a bus master at address time and maintained across cycles to lock out shared
memory coprocessors, allowing hardware backed semaphores to easily be used between such
coprocessors. We expect multiprocessing will be a greater concern on the Zorro III bus than it is
at present; video coprocessors, RISC devices, and special purpose processors for image
processing or mathematics should find a comfortable home on the Zorro III bus.

3.2.2 Cache Support

The other advanced cycle modifier on the Zorro III bus is the cache inhibit line, /CINH.
On the Zorro n bus, there was originally no caching envisioned, and therefore no real support for

Chapter 3: Bus Architecture

u

u

n

caching of Zorro II PICs. First in the A2630 and later in the Zorro Ill bus's emulation of Zorro
II, conventions were adopted to permit caching of Zorro II cards. These conventions aren't
perfect; MMU tables will sometimes have to supplant this geographic mapping. While Zorro
III doesn't have any cache consistency mechanisms for managing caches between several
caching bus masters, it does allow cards that absolutely must not be cached to assert a cache
inhibit line, /CINH, on a per-cycle basis (asserted at slave time by a responding slave). This
cache management is basically the lowest level of a cache management system, mainly useful
for support of 1/0 and other devices that shouldn't be cached. Software will be required for the
higher levels of cache management.

3.3 Multiple Transfer Cycles (not supported by Level 1 Fat Buster)

The multiplexed address/data design of the Zorro lll bus has some definite advantages.
It allows Zorro lll cards to use the same 100 pin connector as the Zorro II cards, which results
in every bus slot being a 32 bit slot, even if there's an alternate connector in-line with any or all
of the system slots; current alternate connectors include Amiga Video and PC-AT (now
sometimes called ISA, for Industry Standard Architecture, now that it's basically beyond the
control of IBM) compatible connectors. This design also makes implementation of the bus
controller for a system such as the A3000 simpler. And it can result in lower cost for Zorro III
PICs in many cases.

The main disadvantage of the multiplexed bus is that the multiplexing can waste time.
The address access time is the same for multiplexed and non-multiplexed buses, but because of
the multiplexing time, Zorro Ill PICs must wait until data time to assert data, which places a
fixed limit on how soon data can be valid. The Zorro III Multiple Transfer Cycle is a special
mode designed to allow the bus to approach the speed of a non-multiplexed design. This mode
is especially. effective for high speed transfers between memory and 1/0 cards.

As the name implies, the Multiple Transfer Cycle is an extension of the basic full cycle
that results in multiple 32 bit transfers. It starts with a normal full cycle address phase
transaction, where the bus master drives the 32 bit address and asserts the /FCS signal. A
master capable of supporting a Multiple Transfer Cycle will also assert /MTCR at the same
time as /FCS. The slave latches the address and responds by asserting its /SLAVEN line. If the
slave is capable of multiple transfers, it'll also assert /MT ACK, indicating to the bus master
that it's capable of this extended cycle form. If either /MTCR or /MTACK is negated for a
cycle, that cycle will be a basic full cycle.

Assuming the multiple transfer handshake goes through, the multiple cycle continues to
look similar to the basic cycle into the data phase. The bus master asserts DOE (possibly with
write data) and the appropriate /DSN, then the slave responds with /DT ACK (possibly with read
data at the same time), just as usual. Following this, however, the cycle's character changes.
Instead of terminating the cycle by negating /FCS, /DSN, and DOE, the master negates /DSN
and /MTCR, but maintains /FCS and DOE. The slave continues to assert /SLAVEN, and the
bus goes into what's called a short cycle.

The Zorro Ill Bus Specification 3-5

3-6

IFCS \
R~d Wri~

~--------------------------~/ u
A31-A8

/MTCR

A7-A2

READ

DOE

/DSn

Data

/MTACK

/DTACK _) _) _) _)

Figure 3-2: Multiple TransferCycles

The short cycle begins with the bus master driving the low order address lines A1-A2;
these are the non-multiplexed addresses and can change without a new address phase being U
required (this is essentially a page mode, fully random accesses on this 256 byte page). The
READ line may also change at this time. The master will then assert /MTCR to indicate to the
slave that the short cycle is starting. For reads, the appropriate /DSN are asserted simultaneously
with /MTCR, for writes, dat.a and /DSN are asserted slightly after /MTCR. The slave will supply
data for reads, then assert /DTACK, and the bus will will terminate the short cycle and start into
either another short cycle or a full cycle, depending on the multiple cycle handshaking that has
taken place.

The question of whether a subsequent cycle will be a full cycle or a short cycle is
answered by multiple cycle arbitration. If the master can't sustain another short cycle, it will
negate /FCS and DOE along with /MTCR at the end of the current short cycle, terminating the
full cycle as well. The master always samples the state of /MTACK on the falling edge of
/MTCR. If a slave can't support additional short cycles, it negates /MTACK one short cycle
ahead of time. On the following short cycle, the bus master will see that no more short cycles
can be handled by the slave, and fully terminate the multiple transfer cycle once this last short
cycle is done.

PICs aren't absolutely required to support Multiple Transfer Cycles, though it is a highly
recommended feature, especially for memory boards. And of course, all PICs must act
intelligently about such cycles on the bus; a card doesn't request or acknowledge any Multiple
Transfer Cycle it can't support.

Chapter 3: Bus Architecture

u

n 3.4 Quick Bus Arbitration (not supported by Level 1 Fat Buster)

n

The Zorro II bus does an adequate job of supporting multiple bus masters, and the Zorro
III bus extends this somewhat by introducing fair arbitration to Zorro II cards. However, some
desirable features cannot be added directly to the Zorro II arbitration protocol. Specifically,
Zorro III bus arbitration is much faster than the Zorro IT style, it prohibits bus hogging that's
possible under the Zorro II protocol, and it supports intelligent bus load balancing.

Load balancing requires a bit of explanation. A good analogy is to that of software
multitasking; there, an operating system attempts to slice up CPU time between all tasks that
need such time; here, a bus controller attempts to slice up bus time between all masters that need
such time. With preemptive multitasking such as in the Amiga and UNIX OSs, equal CPU time
can be granted to every task (possibly modified by priority levels), and such scheduling is
completely under control of the OS; no task can hog the CPU time at the expense of all others.
An alternate multitasking scheme is a popular add-on to some originally non-multasking
operating systems lately. In this scheme, each task has the CPU until it decides to give up the
CPU, basically making the effectiveness of the CPU sharing at the mercy of each task. This is
exactly the same situation with masters on the Zorro II bus. The Zorro Ill arbitration mechanism
attempts to make bus scheduling under the control of the bus controller, with masters each being
scheduled on a cycle-by-cycle basis.

When a Zorro III PIC wants to master the bus, it registers with the bus controller. This
tells the bus controller to include that PIC in its scheduling of the expansion bus. There may be
any number of other PICs registered with the bus controller at any given time. The CPU is
always scheduled expansion bus time, and other local bus devices, such as a hard disk contoller,
may be registered from time to time.

Once registered, a ~IC sits idle until it receives a grant from the bus controller. A grant
is permission from the bus controller that allows the PIC to master the Zorro m bus for one full
cycle. A PIC always gets one full cycle of bus time when given a grant, and assuming it stays
registered, it may receive additional full cycles. Within the full cycle, the PIC may run any
number of Multiple Transfer Cycles, assuming of course the responding slave supports such
cycles. For multiprocessor support, a PIC will be granted multiple atomic full cycles if it locks
the bus. This feature is Q.D.lx for support of hardware semaphores and other such multiprocessor
needs; it is not intended as a means of bus hogging!

Figure 3-3 shows the basics of Zorro ill bus arbitration, which is pretty simple. While it
uses some of the same signals as the 680x0 inspired Zorro II bus arbitration mechanism, it has
nothing to do with 680x0 bus arbitration; the /BRN and /BGN signals should be thought of as
completely new signals. In order to register with the bus controller as a bus master, a PIC asserts
its private /BRN strobe on the rising edge of the 7M clock, and negates it on the next rising edge.
The bus controller will indicate mastership to a registered bus master by asserting its /BGN.
Once granted the bus, the PIC drives only the standard cycle signals: addresses, /FCS, /EDSN,
data, etc. in a full cycle. The bus controller manages the assertion of /OWN and IBGACK,

(\ which are important only for bus management and Zorro II support. While a scheduling scheme

The Zorro III Bus Specification 3-7

3-8

7M

JBRn \ Register / \ Unregister f

JBGn

/FCS

/OWN

JBGACK

Figure 3-3: Zorro III Bus Arbitration

isn't part of this bus specification, the bus master will only be guaranteed one bus cycle at a time.
The /BON line is negated shortly after the master asserts /FCS unless the bus controller is
planning to grant multiple full cycles to the master. The only thing that'll force the controller to
grant multiple full cycles is a locked bus. Any master that works better with multiple cycles,
such as devices with buffers to empty into memory, should run a Multiple Transfer Cycle to
transfer several longwords during the same full cycle. For this reason, slave cards are
encouraged to support Multiple Transfer Cycles, even if they don't necessarily run any faster
during them.

u

Once a registered bus master has no more work to do, it unregisters with the bus U
controller. This works just like registering -- the PIC asserts /BRN on the rise of 7M, then negates
it on next rising 7M. This is best done during the last cycle the bus master requires on the bus.
If a registered master gets a grant before unregistering and has no work to do, it can unregister
without asserting /FCS, to give back the bus without runing a cycle. It's always far better to
make sure that the master unregisters as quickly as possible. Bus timeout causes an automatic
unregistering of the registered master that was granted that timed-out cycle; this guarantees that
an inactive registered master can't drag down the system. If a master sees a /BERR during a
cycle, it should terminate that cycle immediately and re-try the same cycle. If the retried cycle
results in a IBERR as well, nothing more can be done in hardware; notification of the driver
program is the usual recourse.

The bus controller may have to mix Zorro II style bus arbitration in with Zorro III
arbitration, as Zorro II and Zorro III cards can be freely mixed in a backplane. Because of this,
Multiple Transfer Cycles, and the self-timed nature of Zorro III cards, there's no way to
guarantee the latency between bus grants for a Zorro Ill card. The bus controller does, however,
make sure that all masters are fairly scheduled so that no starvation occurs, if at all possible.
Zorro III cards must use Zorro III style bus arbitration; although current Zorro III backplanes
can't differentiate between Zorro II and Zorro III cards when they request (other than by the
request mechanism), it can't be assumed that a backplane will support Zorro m cycles with
Zorro II mastering, or visa-versa.

Chapter 3: Bus Architecture

n 3.5 Quick Interrupts (not supported by Levell Fat Buster)

~ile the ~rro IT ~us has ~ways supported shared interrupts, the Zorro III bus supports
a mechanism wherein ~e Interrupnng PIC can supply its own vector. This has the potential to
m~e ~uch v~ctored I~terrup~s ~uch faster than conventional Zorro II chained interrupts,
arbitrating the Interrupting device 1n hardware instead of software.

A PIC supporting quick interrupts has on-board registers to store one or more vector
numbers; the numbers are obtained from the OS by the device driver for the PIC, and the
PIC/driver combination must be able to handle the situation in which no additional vectors are
available. During system operation, this PIC will interrupt the system in the normal manner, by

. Figure 3-4: Interrupt Vector Cycle

asserting one of the bus interrupt lines. This interrupt will cause an interrupt vector cycle to take
place on the bus. This cycle arbitrates in hardware between all PICs asserting that interrupt, and
it's a completely different type ofZorro III cycle, as illustrated in Figure 3-4.

The bus controller will start an interrupt vector cycle in response to an interrupt asserted
by any PIC. This cycle starts with /FCS and /MTCR asserted, a FC code of 7 (CPU space), a
CPU space cycle type, given by address lines A16-A19, of 16, and the interrupt number, which is
on At-A3. At this point, called the polling phase, any PIC that has asserted an interrupt and
wants to supply a vector will decode the MS lines, the cycle type, match its interrupt number
against the one on the bus, and assert ISLA VEN if a match occurs. Shortly thereafter, the /MTCR
line is negated, and the slaves all negate ISLA VEN. But the cycle doesn't end.

The next step is called the vector phase. The bus controller asserts one ISLA VEN back to
one of the interrupting PICs, along with /MTCR and /DSo, but no addresses are supplied. That
PIC will then assert its 8 bit vector onto Do-07 of the 32 bit data bus and /DTACK, as quickly as
possible, thus terminating the cycle. The speed here is very critical; an automatic autovector

The Zorro III Bus Specification 3-9

3-10

timeout will occur very quickly, as any actual waiting that's required for the quick interrupt U'
vector is potentially delaying the autovector response for Zorro II style ~nterrupts .. A_ PIC stops
driving its interrupt when it gets the response cycle; it must als~ be posstble for t~ts tnterrupt to
be cleared in software (eg, the PIC must make choice of vectonng vs. autovectonng a software

issue).

1M

CDAC

!FCS

/CCS

A31-A24

A23-Al

/DTACK

DOE

Figure 3-5: Zorro II Within Zorro III

3.6 Compatibility with Zorro II Devices

As detailed in Chapter 2, the Zorro Ill bus supports a bus cycle mode very similar to the
68000-based Zorro ll bus, and is expected to be compatible with all properly designed Zorro n
PICs. As shown in Figure 1-1, Zorro II and Zorro ITI expansion spaces are geographically
mapped on the Zorro Ill bus. The mapping logic resides on the bus, and operates on the bus
address presented for any cycle. Every cycle starts out assuming a Zorro Ill cycle, but the
mapping logic will inscribe a Zorro II cycle within the Zorro lli cycle if the address range is
right. Figure 3-5 details the bus action for this mode.

The cycle starts out with the usual address phase activity; the bus master asserts /FCS
after asserting the full 32 bit address onto the address bus. The bus decoder maps the bus address
asynchronously and quickly, so that by the time /FCS is asserted, the memory space is
determined A Zorro IT space access will cause As-A23 to remain asserted, rather than being
tri-stated along with A24-A3t, as the Zorro Ill cycle normally does. The bus controller synchs the
asynchronous /FCS on the falling edge of CDAC, then drives /CCS (the /AS equivalent) out on
the rising edge of 7M, based on that synched /FCS. For a read cycle, /DS3 and/or /DS2 (the
IUDS and /LOS replacements, respectively) would be asserted along with /CCS; write cycles see
those lines asserted on the next rising edge of 7M, at S4 time. The DOE line is also asserted at
the start of S4.

Chapter 3: Bus Architecture

u

u

n

n

n

The bus controller starts to sample /DT ACK on the falling edge of 7M between S4 and Ss,
adding wait states until /DT ACK is encountered. As per Zorro II specs, the PIC need not create
a /DT ACK unless it needs that level of control; there are Zorro II signals to delay the
controller-generated /DTACK, or take it over when necessary. The controller will drive its
automatic /DT ACK at the start of S4, leaving plenty of time for the sampling to come at Ss.
Once a /DT ACK is encountered, cycle termination begins. The controller latches data on the
falling 7M edge between S6 and S1, and also negates /CCS and the /DSN at this time. Shortly
thereafter, the controller negates /DTACK (when controlling it), DOE, and tri-states the data bus,
getting ready for the next cycle.

The Zorro III Bus Specification 3-11

n

n

n

n

CHAPTER 4
SIGNAL DESCRIPTION

" Pushing back the limits of human achievement, reaching for the stars,

that's not something we do. It's what we are."
-Michael Swaine

The signals detailed here are the Zorro III mode signals. While some of this infonnation
is the same in as the Zorro II signal description of Chaper 2, many like-seeming bus signals
behave differently in Zom:> Ill mode than Zorro II mode. These can be a very important
differences; thus the complete set of signals is detailed here.

4.1 Power Connections

The expansion bus provides several different voltages designed to supply expansion
devices. These are basically the same for the Zorro Ill bus as they were for the Zorro II bus, with
the exception of one pin, and that the specification has been clarified a bit. Note that all Zorro III
PICs must list their power consumption specifications.

Digital Ground (Ground)
This is the digital supply ground used by all expansion cards as the return path for all
expansion supplies.

Main Supply (+5VDC)
This is the main power supply for all expansion cards, and it is capable of sourcing large
currents; each PIC can draw up to 2.0 Amps @ +5VDC.

The Zorro III Bus Specification 4-1

4-2

~~S~~0WO U
This is a negative version of the main supply, for small current loads only; each PIC can

draw up to 60 rnA @ -5WC.

High Voltage Supply (+12VDC)
This is a higher voltage supply, useful for communications cards and other devices
requiring greater that digital voltage levels. This is intended for relatively small current
loads only; each PIC can draw up to 500mA @ + 12VDC.

Negative High Supply (-12V)
Negative version of the high voltage supply, also used in communications applications,
and similarly intended for small loads only; each PIC can draw up to 60 rnA @ -12VDC.

4.2 Clock Signals

The expansion bus provides clock signals for expansion boards. The main use for these
clocks on Zorro III cards is bus arbitration clocking. There is no relationship between any of
these clocks and normal Zorro Ill bus activity. The relationship between these clocks is
illustrated in Figure 2-2.

/C1 Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the falling edge
of the 7M system clock.

/C3 Clock
This is a 3.58 MHz clock (3.55 MHz on PAL systems) that's synched to the rising edge
of the 7M system clock.

CDACClock
This is a 7.16 MHz system clock (7.09 MHz on PAL systems) which trails the 7M clock
by 90° (approximately 35ns).

E Clock
This is the 68000 generated "E" clock, used for 6800 family peripherals driven by "E"
and 6502 peripherals driven by 4>2. This clock is four 7M clocks high, six clocks low, as
per the 68000 spec.

7M Clock
This is the 7.16 MHz system clock (7.09 MHz on PAL systems). This clock drives the
bus master registration mechanism for Zorro Ill bus masters.

4.3 System Control Signals

The signals in this group are available for various types of system control; most of these
have an immediate or near immediate effect on expansion cards and/or the system CPU itself.

Chapter4: Signal Description

u

u

Hardware Bus Error/Interrupt (IBERR)
This is a general indicator of a bus fault condition of some kind. Any expansion card
capable of detecting a hardware error relating directly to that card can assert IBERR when
that bus error condition is detected, especially any sort of hannful hardware error
condition. This signal is the strongest possible indicator of a bad situation, as it causes all
PICs to get off the bus, and will usually generate a level 2 exception on the host CPU.
For any condition that can be handled in software and doesn't pose an immediate threat to
hardware, notification via a standard processor interrupt is the better choice. The bus
controller will drive IBERR in the event of a detected bus collision or DMA error (an
attempt by a bus master to access local bus resources it doesn't have valid access
permission for). All cards must monitor IBERR and be prepared to tri-state all of their
on-bus output buffers whenever this signal is asserted. An expansion bus master will
attempt to retry a cycle aborted by a single IBERR and notify system software in the case
of two subsequent IBERR results. Since any number of devices may assert IBERR, and
all bus cards must monitor it, any device that drives IBERR must drive with an open
collector or similar device, and any device that monitors IBERR should place a minimal
load on it. This signal is pulled high by a passive backplane resistor.

System Reset (!RESET, !IORST)
The bus supplies two versions of the system reset signal. The /RESET signal is
bidirectional and unbuffered, allowing an expansion card to hard reset the system. It
should only be used by boards that need this reset capability, and is driven only by an .
open collector or similar device. The !IORST signal is a buffered output-only version of
the reset signal that should be used as the normal reset input to boards not concerned with
resetting the system on their own. All expansion devices are required to reset their
autoconfiguration logic when /IORST is asserted. These signals are pulled high by
passive backplane resistors.

System Halt (llfl..T)
This signal is driven, along with /RESET, to assert a full-system reset. A full-system
reset is asserted on a powerup reset or a keyboard reset; any PIC that needs to
differentiate between full system and 1/0 reset should monitor~ T and /IORST unless it
also needs to drive a reset condition. This is driven with an open-collector output, or the
equivalent, and pulled up by a backplane resistor.

System Interrupts
Six of the decoded 680x0 interrupt inputs are available on the expansion bus, and these
are labelled as /INTI, /INT2, /INT4, liNTs, /INT6, /INT7. Each of these interrupt lines is
shared by wired ORing, thus each line must be driven by an open-collector or equivalent
output type. Zorro Ill interrupts can be handled Zarro ll style, via autovectors and
daisy-chained polling, or they can be vectored using the quick interrupt protocol
described in Chapter 3. Zorro III cards may use any of these interrupt lines; system
hardware supports them all properly. Any card that is designed for operation in both
Zorro II and Zarro III backplanes must only use /INT2 or /INT6. These signals are pulled n high by passive backplane resistors.

The Zorro III Bus Specification 4-3

4-4

4.4 Slot Control Signals

This group of signals is responsible for the control of things that happen between

expansion slots.

Slave (ISLA VEN)
Each slot has its own ISLA VEN output, driven actively, all of which go into the collision
detect circuitry. The "N" refers to the expansion slot number of the particular ISLA VE
signal. Whenever a Zorro m PIC is responding to an address on the bus, it must assert. its
ISLA VEN output very quickly. If more than one ISLA VEN output occurs for the same
address, or if a PIC asserts its ISLA VEN output for an address reserved by the local bus, a
collision is registered and the bus controller asserts /BERR. The bus controller will assert
ISLA VEN back to the interrupting device selected during a Quick Interrupt cycle, so any
device supporting Quick Interrupts must be capable of tri-stating its ISLA VEN; all others
can drive SLAVEN with a normal active output.

Configuration Chain (/CFGINN, ICFGOUTN)
The slot configuration mechanism uses the bus signals ICFGOUTN and ICFGINN, where
"N" refers to the slot number. Each slot has its own version of both signals, which make
up the configuration chain between slots. Each subsequent ICFGINN is a result of all
previous ICFGOUTs, going from slot 0 to the last slot on the expansion bus. During the
autoconfiguration process, an unconfigured Zorro Ill PIC responds to the 64K address

u

space starting at either $00E80000 or $FFOOOOOO if its ICFGINN signal is asserted. All U
unconfigured PICs start up with ICFGOUTN negated. When configured, or told to "shut
up", a PIC will assert its ICFGOUTN, which results in the ICFGINN of the next slot being
assened. Backplane logic automatically passes on the state of the previous ICFGOUTN
to the next ICFGINN for any slot not occupied by a PIC, so there's no need to
sequentially populat~ the expansion bus slots. ·

Backplane Type Sense (SenseZ3)
This line can be used by the PIC to determine the backplane type. It is grounded on a
Zarro II backplane, but floating on a Zorro III backplane. The Zorro III PIC connects this
signal to a lK pullup resistor to generate a real logic level for this line. It's possible,
though more complicated, to build a Zorro III PIC that can actually run in Zorro II mode
when in a Zorro II backplane. It's hardly necessary or required to support this backward
compatibility mechanism, and in many cases it'll be inpractical. The Zorro III
specification does require that this signal be used, at least, to shut the card down and pass
ICFGIN to ICFGOUT when in a Zorro II backplane.

4.5 DMA Control Signals

There are various signals on the expansion bus that coordinate the arbitration of bus
masters. Zorro II bus masters use some of the same logical signals, but their arbitration protocol
is considerably different.

Chapter 4: Signal Description

u

PIC is DMA Owner (/OWN)

This is asserted by the bus controller when a master is about to go on the bus and
indicates that some master owns the bus. Zorro II bus masters drive this, and some Zorro
III slaves may find a need to monitor it, or /BGACK, to determine who's the bus master.
This is ordinarily not important to Zorro III PICs, and they may not drive this line.

Slot Specific Bus Arbitration (IBRN, /BGN)

These are the slot-specific /BRN and /BGN signals, where "N" refers to the expansion slot
number. The bus request from each board is taken in by the bus controller and ultimately
used to take over the system from the primary bus master, which is always the local
master. Zorro III PICs toggle /BRN to register or unregister as a master with the bus
controller. /BGN is asserted to one registered PIC at a time, on a cycle by cycle basis, to
indicate to the PIC that it gets the bus for one full cycle.

Bus Grant Acknowledge (JBGACK)
Asserted by the bus controller when a master is about to go on the bus. As with /OWN,
most Zorro III PICs ignore this signal, and none may drive it.

Bus Want/Clear (IBCLR)
This signal is asserted by the bus controller to indicate that a PIC wants to master the bus;
Zorro III cards can use this to determine if any Zorro II bus requests are pending; Zorro
III bus requests don't affect /BCLR.

4.6 Address and Related Control Signals

These signals are various items used for the addressing of devices in Zorro III mode by
bus masters either on the bus or from the local bus. The bus controller translates local bus
signals (68030 protocol on the A3000) into Zorro Ill signals; masters are responsible for creating
the appropriate signals via their own bus control logic.

Read Enable (READ)
Read enable for the bus; READ asserted during a bus cycle indicates a read cycle, READ
negated indicates a write cycle. READ is asserted at address time, prior to /FCS, for a
full cycle, and prior to /MTCR for a short cycle. READ stays valid throughout the cycle;
no latching required.

Multiplexed Address Bus (As-A3t)
These signals are driven by the bus master during address time, prior to the assertion of
/FCS. Any responding slave must latch as many of these lines as it needs on the falling
edge of /FCS, as they're tri-stated very shortly after /FCS goes low. These addresses
always include all configuration address bits for normal cycles, and the cycle type
information for Quick Interrupt cycles.

Short Address Bus (A2-A1)
These signals are driven by the bus master during address time, prior to the assertion of

The Zorro III Bus Specification

.....

4-5

4-6

IFCS, for full cycles, and prior to the assertion of /MTCR for short cycles. They stay
valid for the entire full or short cycle, and as such do not need to be latched by

responding slaves.

Memory Space (FCo-FC2)
The memory space bits are an extension to the bus address, tndicattng whtch type of
access is taking place. Zorro Ill PICs must pay close attention to valid memory space
types, as the space type can change the type of the cycle driven by the current bus master.
The encoding is the same as the valid Motorola function codes for normal accesses.
These are driven at address time, and like the low short address, are valid for an entire
short or full cycle.

Table 4-1: Memory Space Type Codes

FCo FCt FC2 Address Space Type Z3 Response

0 0 0 Reserved None
0 0 1 User Data Space Memory
0 1 0 User Program Space Memory
0 1 1 Reserved None
1 0 0 Reserved None
1 0 1 Supervisor Data Space Memory
1 1 0 Supervisor Program Space Memory
1 1 1 CPU Space Interrupts

Compatibility Cycle Strobe (/CCS)
This is equivalent to the Zorro II address strobe, /AS. A Zorro III PIC doesn't use this for
normal operation, but may use it during the autoconfiguration process if configuring at
the Zorro II address. AUTOCONFIG™ cycles at $00E8xxxx always look like Zorro II
cycles, though of coUrse /FCS and the full Zorro Ill address is available, so a card can use
either Zorro II or Zorro lll addressing to start the cycle. However, using the /CCS strobe
can save the designer the need to compare the upper 8 bits of address. Data must be
driven Zorro II style, though if the /DSN lines are respected for reads, /CINH is asserted,
and~ ACK is negated, the resulting Zorro Ill cycle will fit within the expected Zorro II
cycle generated by the bus controller. Yes, that should sound weird; it's based on the
mapping of Zorro ll vs. Zorro lll signals, and of course the fact that /FCS always starts
any cycle. Also note that a bus cycle with /CCS asserted and /FCS negated is always a
Zorro II PIC-as-master cycle. Many Zorro III cards will instead configure at the alternate
$FF00xxxx base address, fully in Zorro III mode, and thus completely ignore this signal.

Full Cycle Strobe (/FCS)
This is the standard Zorro Ill full cycle strobe. This is asserted by the bus master shortly
after addresses are valid on the bus, and signals the start of any kind of Zorro III bus
cycle. Shortly after this line is assened, all the multiplexed addresses will go invalid, so
in general, all slaves latch the bus address on the falling edge of /FCS. Also, /BGN line is
negated for a Zorro III mastered cycle shortly after /FCS is asserted by the master.

Chapter 4: Signal Description

u

u

u

n

n

n

4. 7 Data and Related Control Signals

The data time signals here manage the actual transfer of data between master and slave
for both full and short cycle types. The burst mode signals are here too, as they're basically data
phase signals even through they don't only concern the transfer of data.

Data Output Enable (DOE)
This signal is used by an expansion card to enable the buffers on the data bus. The bus
master drives this line is to keep slave PICs from driving data on the bus until data time.

Data Bus (Do-D3t)
This is the Zorro Ill data bus, which is driven by either the master or the slave when DOE
is asserted by the master (based on READ). It's valid for reads when /DTACK is
asserted by the slave; on writes when at least one of /DSN is asserted by the master, for all
cycle types.

Data Strobes (/DSN)
These strobes fall during data time; /DS3 strobes D24-D3t, while /DSo strobes Do-D1. For
write cycles, these lines signal data valid on the bus. At all times, they indicate which
bytes in the 32 bit data word the bus master is actually interested in. For cachable reads,
all four bytes must be returned, regardless of the value of the sizing strobes. For writes,
only those bytes corresponding to asserted /DSN are written. Only contiguous byte cycles
are supported; e.g. /DS3-o = 2, 4, 5, 6, or 10 is invalid.

Data Transfer Acknowledge (/DT ACK)
This signal is used to normally tenninate a Zorro Ill cycle. The slave is always
responsible for driving this signal. For a read cycle, it asserts /DT ACK as soon as it has
driven valid data on~o the data bus. For a write cycle, it asserts /DTACK as soon as it's
done with the data. Latching the data on writes may be a good idea; that can allow a
slave to end the cycle before it has actually finished writing the data to its local memory.

Cache Inhibit (/CINH)
This line is asserted at the same time as /SLAVEN to indicate to the bus master that the
cycle must not be cached. If a device doesn't support caching, it must assert /CINH and
actually obey the /DSN byte strobes for read cycles. Conversely, if the device supports
caching, /CINH is negated and the device returns all four bytes valid on reads, regardless
of the actual supplied /DSN strobes.

Multiple Cycle Transfers (IMTCRJMT ACK)
These lines comprise the Multiple Transfer Cycle handshake signals. The bus master
asserts /MTCR at the start of data time if it's capable of supporting Multiple Transfer
Cycles, and the slave asserts /MTACK with /SLAVEN if it's capable of supporting
Multiple Transfer Cycles. If the handshake goes through, /MTCR strobes in the short
address and write data as long as the full cycle continues.

The Zorro III Bus Specification 4-7

817

.n '-

0

·.:}.: ~-· ..

CHAPTER 5
TIMING

"When dealing with the insane, the best method is
to pretend to be sane."

-Hermann Hesse

ALL TIMING INFORMATION IS PRELIMINARY

This information is all preliminary. Nothing is expected to get any more speed critical,
but as mentioned previously, the testing of Zorro m designs has just started at the time of this
writing, final bus controllers are not yet available, and only a few PIC designs have even been
conceived.

This section covers the various timing specifications in detail for different Zorro III
operations. It's important to realize that this timing information is a specification. Actual Zorro
III systems may offer much more relaxed timings. Today. The whole point of the specification
is that as long as all Zorro Ill PICs and all Zorro Ill backplanes base things on the timings given
here, they'll always work together nicely. Any design based on the actual characteristics of any
particular backplane will very likely wind up working only on that particular backplane.

The philosophy of timing on the Zorro ITI bus is to keep things as simple as possible
without compromising the performance goals of the bus. Zorro Ill PICs are expected to be based
on F-Series TIL logic, fast PALs, and possibly full custom chip designs. It's very unlikely the
designer will meet any of these specifications with the LS parts left over from old Zorro IT card
designs.

The Zorro Ill Bus Specification 5-1

5.1 Standard Read Cycle Timing

No. Name Symbol Min Max u
I Address setup to /FCS TAFS I5ns

2 Address hold from /FCS THAF IOns

3 IFCS to ISLA VEN delay TsLv 25ns

4 IFCS to DOE delay TDOE 30ns

5 DOE to /DSN delay Tos IOns

6 Data setup to /DTACK TRDs Ons

7 /DT ACK to /FCS off ToFF IOns

8 Master signal hold from /FCS off THMC Ons 5ns

9 Slave signal hold from /FCS off THSC Ons I5ns

II IFCS to /CCS delay Tees 35ns 175ns

I2 /CCS off to /FCS off TovL 40ns u

5-2 Chapter 5: Timing
·u

n
IFCS

J \

A3t-As

-J +--@
~ ~

) 1\
\ v

Q)--t ~

A1-A2 J \
\ J

READ
J \

k1H ®-i ~

/SLAVEN
1-

\ I
1.. 4 ...
I" r

DOE
I \

n ~
/DSN \)

D3t-Do \I-J
\ J

®---- ~
-

/DTACK \~"' 7 .
J

~ @--t ~
/CCS \)

()
The Zorro Ill Bus Specification 5-3

5.2 Standard Write Cycle Timing

No. Name Symbol Min Max u
I Address setup to /FCS TAFS I5ns

2 Address hold from /FCS THAF IOns

3 /FCS to/SLAVEN delay TsLv 25ns

4 /FCS to DOE delay TDOE 30ns

5 DOE to /DSN delay Tos IOns

7 /DT ACK to /FCS off ToFF IOns

8 Master signal hold from /FCS off THMC Ons 5os

9 Slave signal hold from /FCS off THSC Ons 15ns

IO Write data setup to /DSN Twos 5os

II /FCS to /CCS delay Tees 35ns 175ns

I2 /CCS off to /FCS off TovL 40ns u

5-4 Chapter 5: Timing
u

uoJ11J:JJf1Jads sng III o.J.JOZ tJZf.L

u

1/ 1\ S'J'J/
--i ~ HD---t

/ ~ }l'JV.La/
-~ . L ,

v ~
\ v OQ-lEQ

~ ~

\ NSa/

~ u
\ I 300

L
t

1/ 1\ NHAV'lS/
-_. ~ ~

1/ \ OVffil

v 1\
1\ v ZV-LV

--t f-(D

I \

KID
\ 1/

-I
@--t ~

sy-tEV

1/
1\ SJdl u

5.3 Multiple Transfer Cycle Timing u
No. Name Symbol Min Max

1 Address setup to /FCS TAFS 15ns

2 Address hold from /FCS THAF IOns

3 IFCS to /SLAVEN, /MTACK delay TsLv 25ns

4 /FCS to DOE delay TooE 30ns

5 DOE to /DSN, /MTCR delay Tos IOns

6 Data setup to /DTACK TRDS Ons

7 /DTACK to /FCS, /MTCR off ToFF IOns

8 Master signal hold from /FCS off THMC Ons 5ns

9 Slave signal hold from /FCS off Tnsc Ons 15ns

10 Write data setup to /DSN Twos 5ns
u

13 Address, READ setup to /MTCR TAMS 5ns

14 /MTCR off to /MTCR on TREF IOns

15 Address, READ hold from /MTCR THAM Ons

16 /MT ACK off to /MTCR Taco IOns

17 Slave signal hold from /MTCR off THSM Ons 5ns

u
5-6 Chapter 5: Timing

n
IFCS

A3t-As

A1-A2

/MTCR

READ

/SLAVEN

n
/MTACK

DOE

/DSN

D3t-Do

/DTACK

()

The Zorro Ill Bus Specification 5-7

5.4 Quick Interrupt Cycle Timing

u
No. Name Symbol Min Max

1 Address setup to /FCS TAFS I5ns

2 Address hold from /FCS THAF IOns

3 IFCS to ISLA VEN delay TSLV 25ns

.5 DOE to /DSN delay Tos IOns

6 Data setup to /DT ACK TRDS Ons

7 lOT ACK to /FCS off ToFF IOns

8 Master signal hold from /FCS off THMc Ons Sns

9 Slave signal hold from /FCS off Tusc Ons 15ns

14 /MTCR off to /MTCR on TREF IOns

I7 Slave signal hold from /MTCR off THSM Ons Sns

u I8 Poll Phase time TPOL 30ns lOOns

19 Vector Phase start to /DT ACK time TVEC lOOns

5-8
u

Chapter 5: Timing

uoprJ:J!..fpads sng 111 o.J.loz tJlf.L

u

v ~ -1\ }IJV~a/
__. kV

v r\
-r\ v OQ-LQ

v 1\ I Sa/

®-t ~ u
\ v 300

1/ IL v 1\ N3AV'1S/

-1 ~ -1 KY HD---
1/ 1\ 1/ 1\

~
~

vt
I~

81 ~ 1 ..

I i\
\ v ZV-LV

__.
kD

I \
\ I sy-t£V

__. ~
@--t ~

l 1\ SJdl u

OI-S

n

n

0

n

n

CHAPTER 6
Electrical Specifications

" .. ./collected the instruments of life around me, that I might infuse a spark of
being into the lifeless thing that lay at my feet"

-Victor Frankenstein

The Zorro III bus has a number of electrical specifications that are very important for PIC
designers to consider, along with the timing parameters of course. It's extremely important to
base designs on the speci~cation of the backplane, rather than the actual behavior of the
backplane. New backplanes for new machines are designed to conform to the specification, they
are not necessarily based on previous designs. This is expecially important with the Zorro Ill
bus, since timing is far more critical than in the past, and the bus controller is designed from this
specification, rather than the reverse, as in the Amiga 2000.

6.1 Expansion Bus Loading

The Zorro III bus loading is specified based on typical TTL family "F" series buffer
devices, though in reality, compatible CMOS devices are likely to be used in some bus
controllers or PICs. Thus, it's important to accept the TTL levels as a minimum voltage level,
and make sure that all inputs are the appropriate TTL levels, while outputs can be at TIL or
CMOS voltage levels as long as they provide the required source and sink.

The Zorro III Bus Specification 6-1

6-2

While some A2000 designs used "LS" or "ALS" buffers instead of "F", the bus will
generally work with these older cards, at least with current backplane designs such as the A3000 U
backplane. However, Zorro III designs must exactly obey these loading rules; it's very probable
that some future Zorro III machines will have a large number of slots. In such machines, PICs
built on the Zorro IT specification will still work in a lightly loaded bus, but may not function in a
fully loaded bus. All Zorro III PICs built to spec will work in any Zorro III backplane, without
any loading problems, if all loading and timing rules are followed by the PIC designer. The bus

Table 6-1 :.Zorro III Drive Types

Signal Direction High Level Low Level

Standard Loading +140J.1A @ +2.7VDC -3.2mA @ +0.4VDC
Driven +2.5VDC @ -3.0mA +0.4VDC @ +64mA

Clock Loading +201J.A @ +2.7VDC -1.6mA @ +0.4VDC

o.c. Loading +80J.1A @ +2.7VDC -3.2mA @ +0.4VDC
Driven Not Driven +0.4VDC @ +20mA

Non-bussed Loading +80J.1A @ +2.7VDC -l.OmA @ +0.4VDC
Driven +2.5VDC @ -0.4mA +0.4VDC @ +4.0mA

signals are divided up into the four groups shown in Table 6-1, based on the loading
characteristics of the particular signal. The signals in each group are given here.

6.1.1 Standard Signals

The majority of signals on the bus are in this group. These are bussed signals, driven
actively on the bus by F-series (or compatible) drivers such as 74F245, usually tri-stated when
ownership of the signal changed for master and slave, and generally terminated with a
2200,/3300 ~hevenin terminator. PICs can apply two standard loads to each of these signals
when necessary.

/FCS
A2-A1
FCo-FC2
/MTCR

6.1.2 Clock Signals

!CCS
ADs-AD3t
DOE
/MTACK

/DSo-/DS3
SDo-SD1
/IORST

/LOCK
READ
/BCLR

All clock signals on the bus are in this group. Many designs are very sensitive to clock
delay, skew, and rise/fall times, so loading on the clock lines must be kept to a minimum. These
are bussed signals, actively driven by the backplane, and source tenninated with a low value

Chapter 6: Electrical Specifications

u

u

n series resistor. PICs can apply one standard load to each of these signals when necessary. Zorro
II cards have the same clock rules, so there should never be clocking problems when using either
card type in a backplane.

/C3 CDAC /Cl 7M
E Clock

6.1.3 Open Collector Signals

Many of the bus signals are shared via open collector or open drain outputs rather than
via tri-stated signals; this is of course required for some asynchronous things like the shared
interrupt lines, and it works well for other types of signals as well. Of course, a backplane
resistor pulls these lines high, PICs only drive the line low.

/OWN
/DTACK
/INT4
/HLT

6.1.4 Non-bussed Signals

/BGACK
!RESET
liNTs

/CINH
/INTI
/INT6

/BERR
/INT2
/INT1

The non-bussed, or slot specific, signals are involved with only one slot on the bus (eg,
each slot has its own copy). As a result, the drive requirements are much less for these signals.
The backplane provides pullups or pulldowns, as required by the specific signal.

/CFGINN
SenseZ3

6.2 Slot Power Availability

/CFGOUTN
/SLAVEN

/BRN /BON

The system power for the Zorro lll bus is totally based on the slot configurations. A
backplane is always free to supply extra power, but it must meet the minimum requirements
specified here. All PICs must be designed with the minimum specifications in mind, especially
the tolerances.

Pin

5,6
8
10
20

6.3 Temperature Range

Supply

+5 VDC±5%@ 2 Amps
-5 VDC±5%@ 60mA
+ 12 VDC ± 5% @ 500mA
-12 VDC ± 5%@ 60mA

The Zorro III bus is specified for operation over a temperature range of oo C to 70° C.

The Zorro III Bus Specification 6-3

n

n
'

"-....__/

n

n

()

CHAPTER 7
MECHANICAL SPECIFICATIONS

"Never speak more clearly than you think."
-Jeremy Bernstein

This section covers the various mechanical details of Zorro lll cards. Note that these
specifications are considered preliminary.

The Zorro Ill Bus Specification 7-1

1
1 ... "I

~r ~r~~
~ I

!

~1 r;; " I' ""I
T

114.5

7-2

11.55

,,. ~I
~ ~

~
!

-

~
ci a
~
!

-

100.5

Chapter 7: Mechanical Specifications

7.1 Basic Zorro III PIC

This drawing shows
the basic Zorro III PIC. All
of the dimensions are in
millimeters.

u

u

u

n l
.... ~-.. T

~r ~r~~ a J
i

~1 r; ~
I' ~I

T lOCU

114.5

2255

1 ~I
~ ~ ~

~ -.__,;:

i
"' il ::! ~ eo §

·"-~'"""'k ~
!!

= -

i ~
eo fJ ..,
I;

-

=

... ~
c:i ~ ..
~
!9

-L,-=

The Zorro III Bus Specification

7.2 PIC with ISA Option

This drawing shows
the basic Zorro III PIC, with
both Zorro lli and the ISA
Bus fingers specified. All of
the dimensions are in
millimeters.

7-3

1
II' "' !T ~r~~

~ I

~1 r,:: ~
I' "'I

T
114.5

7-4

60 22.55

I,.
'"'' ~ ~

-
-~
~
~ -
~
~ ,.

--=

-

d ..
~
!

-

IOO.S

~
~

---:~

a
: ~
Q

~

:
Q

~
!

~
~

7.3 PIC with Video Option

This drawing shows
the basic Zorro III PIC, with
both Zorro III and the Amiga
Video Slot fmgers specified.
All of the dimensions are in
millimeters. Please consult
the A500/A2000 Technical
Reference Manual for the
fonn factor specification of a
video-only card that will fit
both Amiga 2000 and Amiga
3000 computers.

Chapter 7: Mechanical Specifications

u

u

u

n

CHAPTER 8
AUTOCONFIG™

"The goal of all inanimate objects is to resist man and ultimately defeat him."
-Russell Baker

8.1 The AUTOCONFIG™ Mechanism

The AUTOCONFIG™ mechanism used for the Zorro III bus is an extension of the
original Zorro II configuration mechanism. The main reason for this is that the Zorro II
mechanism works so well, there was little need to change anything. The changes are simply
support for new hardware features on the Zorro m bus.

Amiga autoconfiguration is surprisingly simple. When an Amiga powers up or resets,
every card in the system goes to its unconfigured state. At this point, the most imponant signals
in the system are /CFGINN and /CFGOUTN. As long as a card's /CFGINN line is negated, that
card sits quietly and does nothing on the bus (though memory cards should continue to refresh
even through reset, and any local board activities that don't concern the bus may take place after
!RESET is negated). As part of the unconfigured state, /CFGOUTN is negated by the PIC
immediately on reset.

The configuration process begins when a card's /CFGINN line is asserted, either by the
backplane, if it's the first slot, or via the configuration chain, if it's a later card. The
configuration chain simply ensures that only one unconfigured card will see an asserted
/CFGINN at one time. An unconfigured card that sees its /CFGINN line asserted will respond to a
block of memory called configuration space. In this block, the PIC will assert a set of read-only

The Zorro Ill Bus Specification 8-1

8-2

registers, followed by a set of write-only registers (the read-only registers are also known as
AUTOCONFIG™ ROM). Starting at the base of this block, the read registers describe the U
device's size, type, and other requirements. The operating system reads these, and based on
them, decides what should be written to the board. Some write infonnation is optional, but a
board will always be assigned a base address or be told to shut up. The act of writing the final
bit of base address, or writing anything to a shutup address, will cause the PIC to assert its
/CFGOUTN, enabling the next board in the configuration chain.

The Zorro II configuration space is the 64K memory block $00E8xxxx, which of course
is driven with 16 bit Zorro n cycles; all Zorro II cards configure there. The Zorro Ill
configuration space is the 64K memory block beginning at $FF00xxxx, which is always driven
with 32 bit Zorro m cycles (PICs need only decode A3t-A24 during configuration). A Zorro III
PIC can configure in Zorro II or Zorro m configuration space, at the designer's discretion, but
not both at once. All read registers physically return only the top 4 bits of data, on D3t-D2s for
either bus mode. Write registers are written to support nybble, byte, and word registers for the
same register, again based on what works best in hardware. This design attempts to map into
real hardware as simply as possible. Every AUTOCONFIG™ register is logically considered to
be 8 bits wide; the 8 bits actually being nybbles from two paired addresses.

SOOESOOOO
fjl1 I I I ... -...

..... ' -.................

SFFOOOOOO
!PJIIIIIII

... - ...
' -

....... -
<OOI1~>-I7I615@31211Jol

... :.::::: : ------
... --:.---

Iff! II I I I
SFFOOOlOO b) Zorro III Style Mapping

Figure 8-1: Configuration Register Mapping

The register mappings for the two different blocks are shown in Figure 8-1. All the
bit patterns mentioned in the following sections are logical values. To avoid ambiguity, all
registers are referred to by the number of the first register in the pair, since the frrst pair member
is the same for both mapping schemes. In the actual implementation of these registers, all read
registers except for the 00 register are physically complemented; eg, the logical value of register
3C is always 0, which means in hardware, the upper nybbles of locations $00E8003C and
$00E8003E, or $FF00003C and $FFOOO 13C, both return all 1 's.

8.2 Register Bit Assignments

The actual register assignments are below. Most of the registers are the same as for
the Zorro II bus, but are included here anyway for completeness. The Amiga OS software names
for these registers in the ExpansionRom or Expansion Control structures are included.

Chapter 8: AUTOCONFIG™

u

Reg Z2 Z3 Bit

00 02 100 7,6 These bits encode the PIC type:
(er_Type) 00 Reserved

01 Reserved
10 Zorro III
11 Zorro II

5 If this bit is set, the PIC's memory will be linked into the system free pool.
The Zorro m register 08 may modify the size of the linked memory.

4 Setting this bit tells the OS to read an autoboot ROM.

3 This bit is set to indicate that the next board is related to this one; often
logically separate PICs are physically located on the same card.

2-0 These bits indicate the configuration size of the PIC. This size can be
modified for the Zorro ITI cards by the size extension bit, which is the new
meaning of bit 5 in register 08.

Bits Unextended
000 8 megabytes
001 64 kilobytes
010 128 kilobytes
011 256 kilobytes
100 512 kilobytes
101 1 megabyte
110 2 megabytes
111 4 megabytes

Extended
16 megabytes
32 megabytes
64 megabytes
128 megabytes
256 megabytes
512 megabytes
1 gigabyte
RESERVED

04 06 104 7-0 The device's product number, which is completely up to the manufacturer.
(er_Product) This is generally unique between different products, to help in

identification of system cards, and it must be unique between devices
using the automatic driver binding features.

08 OA 108 7 This was originally an indicator to place the card in the 8 megabyte Zorro
(er_Fiags) II space, when set, or anywhere it'll fit, if cleared. Under the Zorro III

spec, this is set to indicate that the board is basically a memory device,
cleared to indicate that the board is basically an 1/0 device.

6 This bit is set to indicate that the board can't be shut up by software,
cleared to indicate that the board can be shut up.

5 This is the size extension bit. If cleared, the size bits in register 00 mean
the same as under Zorro II, if set, the size bits indicate a new size. The

The Zorro III Bus Specification 8-3

8-4

Reg Z2 Z3 Bit

most common new Zorro m sizes are the smaller ones; all new sized cards
get aligned on their natural boundaries.

4 For OS 1.3 compatibility, must be 1.

3-0 These bits indicate a board's sub-size; the amount of memory actually
used/required by a PIC. For memory boards that auto-link, this is the
actual amount of memory that will be linked into the system free memory
pool. A memory card, with memory starting at the base address, can be
automatically sized by the Operating System. This sub-size option is
intended to support cards with variable setups without requiring variable
physical configuration capability on such cards. It also may greatly
simplify a Zorro m design, since 16 megabyte cards and up can be
designed with a single latch and comparator for base address matching,
while 8 megabyte and smaller PICs require large latch/comparator circuits
not available in standard TIL packages.

Bits
0000
0001
0010
0011
0100
0101
0110

0 0111
1000
1001
1010
1011
1100
1101
1110
1111

Encoding
Logical size matches physical size
Automatically sized by the Operating System
64 kilobytes
128 kilobytes
256 kilobytes
512 kilobytes
1 megabyte
2megabytes
4megabytes
6megabytes
8 megabytes
10 megabytes
12 megabytes
14 megabytes
Reserved
Reserved

For boards that wish to be automatically sized by the operating system, a
few rules apply. The memory is sized in 512K increments, and grows
from the base address upward. Memory wraps are detected, but the design
must ensure that its data bus doesn't float when the sizing routine
addresses memory locations that aren't physically present on the board;
data bus pullups or pulldowns are recommended. This feature is designed
to allow boards to be easily upgraded with additional or increased density
memories without the need for memory configuration jumpers.

Chapter 8: AUTOCONFIG™

u

u

u

n

n

Reg Z2 Z3 Bit

OC OE 10C 7-0
(er _Reserved03)

10 12 110 7-0
14 16 114 7-0

(er _Manufacturer)

18 lA 118 7-0
1C 1E 11C 7-0
20 22 120 7-0
24 26 124 7-0

(er _SerfaiNumber)

28 2A 128 7-0
2C 2E 12C 7-0

(er _lnitDiagVec:)

30 32 130 7-0
(er _ReservedOc:)

34 36 134 7-0
(er _ReservedOd)

38 3A 138 7-0
(er _ReservedOe)

3C 3E 13C 7-0
(er _ Reservedot)

40 42 140 7-0
(ec:_lnterrupt)

44 46 144 7-0
48 4A 148 7-0

(ec:_Z3_High8yte)

(ec: _ BaseAddress)

•

Reserved, must be 0.

Manufacturer's number, high byte.
Manufacturer's number, low bytes. These are unique, and can only be
assigned by Commodore.

Optional serial number, byte 0 (msb)
Optional serial number, byte 1
Optional serial number, byte 2
Optional serial number, byte 3 (lsb)
This is for the manufacturer's use and can contain anything at all. The
main intent is to allow a manufacturer to uniquely identify individual
cards, but it can certainly be used for revision information or other data.

Optional ROM vector, high byte.
Optional ROM vector, low byte.
If the ROM address valid bit (bit 4 of register (00102)) is set, these two
registers provide the sixteen bit offset from the board's base at which the
start of the ROM code is located. If the ROM address valid bit is cleared,
these registers are ignored.

Reserved, must be 0. Unsupported base register reset register under Zorro
n·.

Reserved, must be 0.

Reserved, must be 0.

Reserved, must be 0.

Reserved, must be 0. Unsupported control state register under Zorro II*.

High order base address register, write only.
Low order base address register, write only.
The high order register takes bits 31-24 of the board's configured address,
the low ordered resgister takes bits 23-16. For Zorro III boards configured
in the Zorro II space, the configuration address is written both nybble and
byte wide, with the ordering:

The original Zorro specifications called for a few registers, like these, that remained active after configuration. Support for this is impossible,
since the configuration registers generally disappear when a board is configured, and absolutely must move out of the SOOE8xxxx space. So since
these couldn't really be implemented in hardware, system software has never supponed them. They're included here for historical purposes.

The Zorro III Bus Specification 8-5

8-6

Reg Z2 Z3 Bit

4C 4E 14C 7-0
(ec_Shutup)

50 52 150 7-0
54 56 154 7-0
58 5A 158 7-0
5C 5E 15C 7-0
60 62 160 7-0
64 66 164 7-0
68 6A 168 7-0
6C 6E 16C 7-0
70 72 170 7-0
74 76 174 7-0
78 7A 178 7-0
7C 7E 17C 7-0

Reg Nybble Byte

46 A21-A24 N/A
44 A.3t-A28 A3t-A24
4A At9-At6 N/A
48 A23-A2o A23-At6

Note that writing to register 48 actually configures the board for both
Zorro ll and Zorro ill boards in the Zorro ll configuration block. For
Zorro III PICs in the Zorro m configuration block, the action is slightly
different The software will actually write the configuration as byte and
word wide accesses:

Reg Byte Word

48 A23-At6 N/A
44 A3t-A24 A3t-A16

The actual configuration takes place when register 44 is written, thus
supporting any physical size of configuration register.

Shut up register, write only. Anything written to 4C will cause a board
that supports shut-up to completely disappear until the next reset.

Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.
Reserved, must be 0.

Chapter 8: AUTOCONFIG™

u

u

u

n

n

APPENDICES

"I have been given the freedom to do as I see fit."
-REM

A.l Physical and Logical Signal Names

The Amiga 3000 Bus signals vary based on the particular bus mode in effect. This table
lists each physical pin by physical name, and then by the logical names for Zorro IT mode, Zorro
Ill mode, address phase, and Zorro III data mode, data phase.

The Zorro III Bus Specification A-1

PIN Physical Zorro II Zorro III Zorro III
NO. Name Name Address Phase Data Phase u
1 Ground Ground Ground Ground
2 Ground Ground Ground Ground
3 Ground Ground Ground Ground
4 Ground Ground Ground Ground
5 +5VDC +5VDC +5VDC +5VDC
6 +5VDC +5VDC +5VDC +5VDC
7 /OWN /OWN /OWN /OWN
8 -5VDC -5VDC -5VDC -5VDC
9 /SLAVEN /SLAVEN /SLAVEN /SLAVEN
10 +12VDC +12VDC +12VDC +12VDC
11 /CFGOUTN /CFGOUTN /CFGOUTN /CFGOUTN
12 /CFGINN /CFGINN /CFGINN /CFGINN
13 Ground Ground Ground Ground
14 /C3 /C3 Clock /C3 Clock /C3 Clock
15 CDAC CDACClock CDACClock CDACClock
16 /C1 /C1 Clock /C1 Clock /C1 Clock
17 /CINH /OVR /CINH /CINH
18 /MTCR XRDY /MTCR /MTCR
19 . /INT2 1INT2 /INT2 /INT2
20 -12VDC -12VDC -12VDC -12VDC
21 As As As As u
22 /INT6 /INT6 /INT6 /INT6
23 A6 A6 A6 A6
24 A4 A4 A4 A4
25 Ground Ground Ground Ground
26 A3 A3 A3 A3
27 A2 A2 A2 A2
28 A1 A1 A1 A1
29 /LOCK At /LOCK /LOCK
30 ADs As As Do
31 FCo FCo FCo FCo
32 AD9 A9 A9 Dt
33 FCt FCt FCt FCt
34 AD to A to A to D2
35 FC2 FC2 FC2 FC2
36 ADtt Au Au 03
37 Ground Ground Ground Ground
38 AD12 A12 A12 04
39 ADt3 At3 At3 Os
40 1INT1 (IEINT1) 1INT1 1INT1
41 ADt4 At4 At4 06
42 liNTs (IEINTs) liNTs liNTs

u
A-2 Appendices

n PIN Physical Zorro II Zorro III Zorro III
NO. Name Name Address Phase Data Phase

43 ADts Ats Ats D1
44 /INT4 (/EINT4) /INT4 /INT4
45 ADt6 At6 At6 Ds
46 JBERR JBERR JBERR JBERR
47 AD11 At7 At7 09
48 /MTACK (!VPA) /MTACK /MTACK
49 Ground Ground Ground Ground
50 E Clock E Clock E Clock E Clock
51 /DSo (fVMA) /DSo /DSo
52 ADts Ats Ats Dto
53 /RESET /RST /RESET /RESET
54 ADt9 At9 At9 Du
55 /HLT /HLT /HLT /HLT
56 AD2o A2o A2o D12
57 AD22 A22 A22 Dt4
58 AD21 A2t A2t Dt3
59 A023 A23 A23 Dts
60 JBRN JBRN /BRN JBRN
61 Ground Ground Ground Ground
62 JBGACK JBGACK JBGACK JBGACK
63 AD3t Dts A3t 031
64 /BGN /BGN /BGN /BGN
65 A030 Dt4 A3o 030
66 /DTACK /DTACK /DTACK /DTACK
67 AD29 Dt3 A29 029
68 READ READ READ READ
69 AD2s D12 A2s 028
70 /DS2 ILDS /DS2 /DS2
71 AD21 Du A21 027
72 /DS3 IUDS /DS3 /DS3
73 Ground Ground Ground Ground
74 /CCS /AS /CCS /CCS
75 SDo Do N/A Dt6
76 AD26 Dto A26 026
77 SOt Dt N/A Dt7
78 AD25 09 A25 025
79 SD2 02 N/A Dts
80 AD24 Ds A24 024
81 SD3 03 N/A Dt9
82 SD1 07 N/A 023
83 SD4 04 N/A 020

() 84 SD6 06 N/A D22

The Zorro III Bus Specification A-3

PIN Physical Zorro II Zorro Ill Zorro Ill
NO. Name Name Address Phase Data Phase u
85 Ground Ground Ground Ground
86 SDs Ds N/A D2t
87 Ground Ground Ground Ground
88 Ground Ground Ground Ground
89 Ground Ground Ground Ground
90 Ground Ground Ground Ground
91 SenseZ3 Ground SenseZ3 SenseZ3
92 7M E7M 7M 7M
93 DOE DOE DOE DOE
94 /IORST /BUSRST /IORST /IORST
95 /BCLR /GBG /BCLR /BCLR
96 /INTI {/EINTt) /INTI /INTI
97 IFCS No Connect IFCS IFCS
98 lOSt No Connect lOSt lOSt
99 Ground Ground Ground Ground
100 Ground Ground Ground Ground

u

u
A-4 Appendices

n A.2 A Glossary of Terms

The reader may be unfamiliar with a number of terms used in this document.
Every effort has been made to include all such terms here.

address A byte-numbered memory location. The Zorro II bus is based on a 24
bit address, the Zorro III bus on a 32 bit address.

arbitration The unambiguous selection of one request out of a number of possible
simultaneous requests for a resource. There are two kinds of arbitration
in a Zorro III system; bus arbitration and quick interrupt arbitration.

asserted The active state of a state, regardless of its logic sense.

atomic cycle A cycle or set of cycles that are uninterruptable, and thus treated as a
unit; both Multiple Transfer and LOCKed cycles are considered atomic
under the Zorro III bus.

AUTOCONFIG™ From "automatic configuration", the Zorro bus specification for how
software and hardware cooperate to permit PIC addresses to be set by
software and PIC type information to be determined by software. This is
explained in Chapter 8, and in the A5001A2000 Technical Reference
Manual, available from Commodore-Amiga.

backplane The cage or motherboard subsection into which PICs are inserted. The
Amiga 2000 and Amiga 3000 computers have integral backplanes, the
Amiga 500 and Amiga 1000 computers require add-on backplane cages
for Zorro II compatibility.

burst A short name for Multiple Transfer Cycle mode. Essentially, within one
full Zorro Ill cycle there can be any number of Multiple Transfer Cycles.
Each full cycle has a complete 32 bit address supplied and a complete 32
bit datum transferred Each burst cycle supplies only the 8 bit page
address, but transfers a complete 32 bit datum faster than the standard
full cycle would allow.

bus cycle One complete bus transaction, indicated by the assertion of least one
cycle strobe For any single bus cycle, there is one address, one data
value, one data direction, and one cycle type in effect.

bus hogging When a bus master takes over the bus for an undue amount of time. The
Zorro II bus leaves it completely up to the individual PIC to avoid bus
hogging; the Zorro lli bus schedules PICs with the bus controller to
evenly distribute the bus load.

The Zorro Ill Bus Specification A-5

bus starvation

byte

clock

cool

cycle strobe

data

DMA

DMA latency

device

grant

Guinness

hidden cycles

high

interrupt

A-6

When a master can't get access to the bus, it is said to be starved. On
the Zorro II bus, two busy masters can completely starve a third master.
Complete starvation is impossible on the Zorro III bus, though a bus
hogging Zorro II card can cause similar symptoms.

A collection of eight signals into a logical group, and the smallest
independently addressable quantity on the Zorro bus.

A free running signal driven at a fixed frequency to the bus, used mainly
for clocking state machines on Zorro II cards.

An unreachable goal for some, a way of life for
others. The obvious example of this latter category
being Dave Haynie, pictured at right.

A bus signal that defmes the boundary of a bus cycle; the Zorro II and
Zorro II modes on a Zorro III bus each have their own cycle strobes.
The current bus master always asserts the cycle strobes.

The contents of a memory location. The main purpose of a bus cycle is
to transfer data between two locations. The Zorro II bus is based on a 16
bit data path, the Zorro III bus is based on a 32 bit data path.

Direct Memory Access; devices that have direct access to Zorro III
slaves are said to have DMA capability. These devices are also called
masters.

This is the time between a bus request and a bus grant as seen by a PIC
wishing to become bus master.

A PIC, eg, a Zorro bus master or bus slave.

The result of an arbitrated set of requests is a single grant; there are
grants given for both the bus and quick interrupts.

Attitude adjustment tonic, from Ireland. Said by some to be vital for
sanity, if not normal human life.

Cycles that occur on the local bus of a system, but can't be seen by
devices on the expansion bus.

A signal driven to a logical +5V state is said to be high.

An asynchronous line driven by a PIC to notify the CPU of some event,
usually some hardware event governed by that PIC.

Appendices

n local bus

longword

low

master

motherboard

negated

nybble

paragraph

PIC

request

slave

slot

termination

The main system bus of an Amiga computer is called the local bus. In
general, the main CPU, video chips, chip memory, and any other built-in
resources are on the local bus. The bus controller sits on both the local
and expansion buses and manages the communications between them.

Based on the Motorola conventions, a longword is equal to 4 bytes.

A signal driven to a logical +OV state is said to be low.

The device currently generating addresses for the expansion bus. There
is only one master on the bus at a time, this being insured by the bus
arbitration logic. The master also drives data on writes, the read, cycle,
and data strobes, and several other signals.

The main system circuit board for any Amiga computer. Resources on
the local bus of a machine are often called motherboard resources.

The inactive state of a signal, regardless of its logic sense.

A collection of four bits; one half of a byte. AUTOCONFIGTM ROMs
are physically nybble-wide.

A sequence of closely related sentences, generally expressing and
supporting one succinct idea. This tenn has no special computerese
meaning in any rational, modem system.

Plug In Card. Any Amiga expansion card is called a PIC for short.

Asking for the use of some resource; the Zorro III bus has two kinds of
requests, bus requests and quick interrupt requests.

The device currently responding to the address on the expansion bus.
There is only one slave on the bus at a time; an error is signalled by the
bus collision detect logic if multiple slaves respond to the same address.
The slave also drives data on reads, the transfer acknowledge strobe, and
several other signals.

A physical port on a Zorro backplane, which supplys independent
ISLA YEN, /BRN, and /BGN lines, chained /CFGINN and /CFGOUTN
lines, and is mechanically manifested as a 100 pin single-piece
connector.

Circuitry attached to a bus signal in order to minimize annoying analog
things like ringing, reflections, crosstalk, and possibly random logic
conditions which can arise when a bus is undriven.

The Zorro III Bus Specification A-7

timeout

tri-state

word

Zorro

A-8

A bus cycle terminated by the bus controller instead of by a responding
slave device. If no slave responds to a bus cycle within a reasonable
time period, the bus controller will terminate the cycle to prevent lockup
of the system.

A signal driven to a high impedence condition is said to be tri-stated.

Based on the Motorola conventions, a word is equal to 2 bytes.

The name given to the Amiga bus specification. "Zorro I" refers to the
original design for A 1000 backplane boxes, "Zorro II" refers to the
modification to this specification used for the A2000 and compatible
backplanes, and "Zorro III" refers to the Zorro II compatible bus
specification fmt used in the Amiga 3000 computer.

Appendices

u

u

u

() A.3 Zorro III Implementations

n

n

There aren't actually variable implementation levels supported for the Zorro lli bus; all of
the features are required for compliance with this specification. However, current prototype
Amiga 3000 computers support only a subset of the Zorro III specification published here. This
is, however, upgradable.

The A3000 implementation of the Zorro III bus is driven by a custom controller chip
called Fat Buster. The specification of this chip and the A3000 hardware are fully capable of
supporting the complete Zorro III bus, but the initial silicon on Fat Buster, called the Level 1 Fat
Buster, omits some features. Missing are:

• Support of Multiple Transfer Cycles.
• Support for Zorro ill style bus arbitration.
• Support for Quick Interrupts.

The Level 2 version of Fat Buster is currently under development at Commodore in West
Chester, PA. and should be available very soon. Any developers who immediately intend to
design PICs supporting these features are urged to contact Commodore Amiga Technical
Support/Amiga Developer Support Europe for more infonnation on obtaining samples of this
part for use in A3000 Beta Test systems.

The Zorro Ill Bus Specification A-9

sa:J]puaddy Ol-V

n

0

. ~: .

0

n

A3000 Video Board
Form Factor

The diagram on the next page gives the form factor for video boards for the
Amiga 3000. The A3000 video slot is the 72-pin connector closest to the rear
of the motherboard. It is in-line with the 1 00-pin Zorro ill Expansion Bus
connector.

The schematic also shows the A2000 video board profile for those designing
video cards that are plug-compatible with both the Amiga 3000 and 2000
models.

A3DDD VIdeo Board
Form Factor

1 DevCon90

c

~

~
 g

~

~

)a
, I Cl

'i
~
~

;,
a~

n

2

~a
.

33
9.

70
 [

13
.3

7)
 U

A
X

.
• .

...

JJ
7

.2
0

 (
13

.2
8]

 U
A

X
.

BO
A

RO
 S

IZ
E

~
~
·

I
21

0.
00

 [
8

.2
7

]
~

0
~
(
2
.
1
0

7
.
6
2
~

-
A

2
0

0
0

 V
ID

EX

tE
N

SI
O

N

A
20

00
 B

O
A

RD
 P

R
O

fil
E

I

J..
 ~

1
~

J.
sm

u~
cH

~E
~

~~
 :

5
r
-

1
2

P
LS

.
TY

P
.

co

N

'I
"""

'""
'~
~
-
h

:
I

IK
=

--
1

--
1

__ n
~
JI

J~

I I I I
~ ~
 ;

l ~

'N

~
"':

:!

.
15

5.
76

 J
!:.

ill
.

~ 0 ~

r 47
.9

8
(1

.8
9]

1 _

_
 76.

94
 i
ll

~l

23
.6

0
(0

.9
3

]

~
47

.9
8

(1
.8

9]

1
~

_
l
,
_

l

I
4

)-

~
 ll

r-
--

1
1

 _
_

 ~
1

I
I

-

I
10

.1
6

(0
.4

0
]
I ~

18
 (1

.7
0

L
+

3
6

.2
2

 (
1.

43
).

85
1

_
12

4.
46

4

.9
o

43

.1
8

r1
.1

o1

~
~
-
-
-
-
-
~

--
tl

l.s
a

ro
.os

J
h

;
 II

III
.T

 r.os
]
II I

I

~

~
 nn

nn
1
t
n
g
p
n
~

~
~

hlf
-t!

W
J,

"
R

l.
5

 (
.0

6
)

TY
P

.
U

A
X

.
-l

2.
36

 (.
09

3]
11

I
I···

· (0
.1

0]

~
 I.J

 (
.0

5]
 •

 .
,.

.
H

C

H
A

U
FE

R
.

TY
P

.

Jl
E

IA
!L

A
,_

S

C
A

LE

2
:

1
,

2
P

LS
.

TY
P

.

c

M
E

TR
IC

C

A
D

 G
tH

Q
W

tl
l

:
:
=
1
.
~
-
:
t
.
r

0
1
1
0
~
-

..
 c.

.
.
 C

II
M

1
D

t
G

II
'-

C
I
IO

G
ID

 H

~

~
,
.
,
.
-
n
c
r
~
~
~
~
~
~
C
A
-
.
e
.
 .
..

IIJ"

'IIC
C''"

-._
. c

a
II

K
L

C
M

,.
 ,
..

,.
..

_
.,

.,
 ..

•
..

_
 .
.
 ,
..

.,
. .

..
. ~
e
r
a
.
.
.
.
.
.
.

•
s
:a

.c
&

Y
,.

,.
..

.
JU

.I
IC

M
II

•V
I\

U

t-
~£
!!
:.
1!
1

A
JO

O
D

I

A
J5

00
 /

VI

OF
.O

A

D
A

PT
ER

BR

A
CK

ET
 c

Rr
V

A

,

n

BIGRAMS/32

A Complete Zorro III PIC
Design Example

· Document Revision 1.00

Atlanta DevCon Release

by Dave Haynie
June 10, 1990

Copyright© 1990 Commodore-Amiga, Inc.

n

n

n

n

n

IMPORTANT INFoRMATION

"We don't know a millionth of one percent about anything."
-Thomas Alva Edison

This Document Contains Preliminary Information

The information contained here, while a honest attempt to illustrate a good Zorro III card design,
is still preliminary in nature and subject to possible errors and omissions. At the time of this
writing, some of the features of this design were- not yet testable in an Amiga 3000, as the
enhanced bus controller chip was not yet available. We don't expect any problems with this
design, but it's only responsible to supply you with this caveat.

Commodore Technology reserves the right to correct any mistake, error, omission, or viscious
lie. Corrections will be published as updates to this document, which will be released as
necessary in as developer-friendly a manner as possible. Revisions will be tracked via the
revison number that appears on the front cover.

All information herein is Copyright © 1990 by Commodore-Amiga, Inc., and may not be
reproduced in any form without permission.

BIGRAMB/32 i

u

u

u
ii

n

TABLE oF CoNTENTS

CHAPTER 1 INTRODUCTION
1.1 Intended Audience... 1-1
1.2 A Few Words About AUTOCONFIG... 1-2
1.3 Design Example Goals... 1-2

CHAPTER 2 AUTOCONFIG™ LOGIC DESIGN

2.1 Bus Buffers ... 2-1
2.2 The AUTOCONFIG ROM ... 2-2
2.3 The AUTOCONFIG Registers ... 2-4
2.4 The SLAVE wgic... 2-5

CHAPTER 3 MEMORY SYSTEM DESIGN

3.1 DRAM Refresh.. 3-1
3.1.1 Refresh Arbitration.. 3-2
3.1.2 Refresh Counter... 3-2
3.1.3 Refresh Cycle.. 3-3
3.2 DRAM Access... 3-4
3.2.1 Memory Cycle .. 3-5
3 .2.2 Bank Selection... 3-5
3.2.3 Address Multiplexing.. 3-6

CHAPTER 4 GoiNG FuRTHER

4.1 Designed-In Enhancements .. 4-1

n 4.1.1 The Experimenter's Board? .. 4-2

BIGRAMB/32 iii

iv

4.1.2
4.2
4.2.1
4.2.2
4.2.3

Multiple Cycle Transfer Support... 4-2
Modification Ideas... 4-2

Tighter RAM Cycles.. 4-3
Read/Write Optimizations... 4-3
Standard DRAM Tricks... 4-4

CHAPTER 5 ADDITIONAL ZORRO III ADVICE
5.1 Watch Those Synchronizations .. 5-1
5.2 Design for Speed.. 5-2
5.3 Follow the Specifications ... 5-3

APPENDICES
A.1 PAL Equations... A-1
A.1.1 Autoconfiguration Control PAL.. A-2
A.1.2 Board Control PAL.. A -4
A.1.3 Memory Timing PAL.. A -6
A.1.4 CAS Control PAL... A-8
A.1.5 Refresh Counter PAL.. A -10
A.2 Schematics... A-12
A. 3 Zorro Ill Configuration.. A -18

u

u

u

Table 2-1
Table 2-2
.Figure 3-1

n Figure 3-2
Figure 3-3

TABLES AND FIGURES

Logical AUTOCONFIG Registers ... 2-2
Physical ROM Registers ... 2-3
Refresh Arbitration... 3-2
Refresh Cycle.. 3-3
Memory Access ... 3-4

B/GRAMB/32 v

u

u

u
vi

n

CHAPTER 1
INTRODUCTION

"The curtain rises on a vast primitive wasteland,
not unlike certain pans of New Jersey."

-Woody Allen

This document fully describes an example Zorro m Plug-In-Card (PIC) design for a
simple asynchronous dynamic RAM memory card. Its intent is to describe the procedures and
underlying theories behind.a basic Zorro ill design. However, it is not a Zorro III designer's
bible or any such rulebook. It should provide the designer with a better understanding of Zorro
III PIC design, and perhaps provide a starting point for the beginning Amiga peripheral designer.

1.1 Intended Audience

This document was written primarily for hardware engineers interested in designing Plug
In-Cards for the Zorro III expansion bus. A reasonable level of microcomputer knowledge is a
prerequisite to get much meaning out of these pages. A good understanding of the Zorro III bus
theory, as outlined in The Zorro III Bus Specification (available from Commodore), is essential.
Knowledge of basic TIL digital design with standard MSI and PAL devices is required, as is an
understanding of dynamic RAMs. Familiarity with the Motorola 680x0 processors will also be
quite useful.

While knowledge of Zorro II PIC design will also be useful, such experience mainly
applies to the AUTOCONFIG sections of a PIC design. The signals and design problems for the
Zorro III bus are substantially different than for Zorro II. Zorro lll PICs are expected to run

{) considerably faster than those for Zorro II, leading the circuit designer to faster TIL logic

BIGRAM8132 1-1

1-2

families and more use of fast PAL devices. The additional speeds coupled with 32-bit buses u·
will also lead the circuit board designer to multi-layer boards and more critical routing problems.
While the Zorro II bus and most Zorro II designs are mainly synchronous, the Zorro III bus is
asynchronous. Zorro III designs will typically be either fully asynchronous or self-clocked
synchronous with proper attention to stable synchronization with the bus.

1.2 A Few Words About AUTOCONFIG

If past history is any indication, the frrst thing to mention about Zorro m PIC design is
AUTOCONFIG, the Amiga mechanism for linking hardware plug-ins with software such that
configuration jumpers for addresses are unnecessary, and device driver installation is trivial to
even a novice user. And the first thing to say to a hardware designer about AUTOCONFIG is
Don't Panic. More than any other issue, the AUTOCONFIG system seems to have confused
Zorro II PIC designers. But there's absolutely nothing to fear about AUTOCONFIG; it is a very
simple concept and very simple to implement as an integral part of any PIC's design.

The concept of configuration hasn't changed for Zorro m, and the implementation is very
much the same as for the Zorro II bus. Extensions have been provided for a few Zorro III
advanced features, and a few extra things were added to the specification to make the design of a
32 bit PIC as easy as possible. Other than that, if you know Zorro II configuration, you'll pick
up Zorro m configuration almost instantly. Chapter 2 walks through the creation of an
AUTOCONFIG circuit for Zorro III and discusses the basic logic likely to be in place on any
Zorro III card.

1.3 Design Example Goals

The goal of this example is to design a memory card for the Zorro III bus. While A3000
users won't be running out of motherboard memory (up to 18 Megabytes) quite as fast as A2000
users did, there's already an emerging need for massive memory in Amiga computers. This
RAM card meets the following goals:

• Provides a fully asynchronous design example
• Uses the same ZIP memories as the A3000
• Supports up to 8 Megabytes using 256K x 4 DRAMs, up to 32 Megabytes

with 1M x 4 DRAMs.
• Hopefully functions as a realtively clear design example

And, of course, this is a fully functional design tested to the best of our ability at the time of this
writing.

Chapter 1: Introduction

u

u

n

CHAPTER 2
AUTOCONFIGTM LOGIC DESIGN

"Logic is in the eye of the logician."
-Gloria Steinem

Every PIC design has a few things in common, most noticably an AUTOCONFIG circuit.
While such logic can pretty much be created by rote, an optimal design always will incorporate
the AUTOCONFIG and other Zorro Ill bus logic naturally into the main design. While this
chapter concentrates on the AUTOCONFIG logic, it will cover all of the standard logic elements
of any Zorro m design in a sensible order.

Throughout this and the following chapters, references to the schematic pages in
Appendix 2 will be. Page one of the schematics is found on page A-13 of this document, and
there are six schematic pages. To make things simpler, these will be referred to as S-1 through
S-6.

2.1 Bus Buffers

Just like with Zorro II, all Zorro ITI designs require a number of buffers on the bus logic
signals. No PIC may load any bus signal with more than two F-series equivalent gates, and of
course outputs from the PIC must be able to drive the bus properly. Any unbuffered signal used
by a PIC mut be used close to the bus connector; if a signal trace is longer thaiJ a few inches, it
must be buffered. In addition, due to the dynamic nature of the high-order Zorro III address
lines, some or all of these address lines ~ust be latched for the duration of the bus cycle.

BIGRAM8132 2-1

2-2

The buffering/latching arrangement is shown on S-1. Since this is a slave-only board,
address lines are input-only. Addresses A31-As are transparently latched by 74F373 parts, the U
latch taking place when /FCS is negated. The transparent latching allows the address comparator
to take advantage of the bus's address setup time, important for matching to the board's assigned
address as quickly as possible. The circuitry shown here is the most straightforward, but in
operation, only A24-A2 are actually used once the board select is determined. Thus, a fast enough
comparator circuit can latch an address match rather than the high-order addresses if it saves on
circuit complexity. Since the low order addresses A7-A2 are static, they are simply buffered
coming into the RAM board. The extra buffers in that package are used in this design to buffer
/FCS and READ, two lines used in several places in this design.

Data buffering is quite simple; 031-Do are buffered with bidirectional bus buffers. The
· data direction and buffer enable signals are quite simple. The buffers point out toward the bus
for read cycles when the PIC is selected (/SLAVE asserted), in at all other times; this function is
contained in the U200 PAL. The output enable is asserted when the PIC is selected, the DOE
signal is asserted, and there's no bus error; this function is contained in the U20 1 PAL. Because
the data bus tristates, I use centering resistors to keep it quiet when it's not being driven. If this
design had been supporting Zorro II as well as Zorro III, an additional two data buffers and much
more complicated buffering logic, based on the SENSEZ3 line, would be required.

BGi Bii ~II Description

00 7,6 10 This indicates a Zotro m card.
s 1 The OS will link this as free memory.
4 0 No autoboot/diagnostic ROM.
3 0 Only one logical PIC here.
2-0 001 Using the enendcd size feature, this is a 32 megabyte board.

04 7-0 01010111 Commodore Product $53.
08 7 1 Hint to the OS thiU this is memory. not 1/0

6 0 This board can be shut up.
s 1 Extended sizing being used here.
4 1 This must be 1, for 1.3 compatibility.
3-0 0001 Let the OS calculate the logical size of the memory.

oc 7-0 ()()()()()()()(Reserved.
10 7-0 00000010 Manufacturer's number, high byte.
14 7-0 00000010 Manufacturer's number, low byte. Since this one is a Commodore board, it uses the

Commodore number.
1S.3C 7-0 00000000 All of these are zeroed. This board docs not contain a board serial number or

40 7-0 NIA
boot/diagnostic ROM.
Reserved

44 15-0 CFGADDR This board uses the Zotro m configuration block. It accepts the configuration address as
a single write.

48 7-0 NIA Configuration is completely handled with register 44.
4C 7-0 N/A A write of any value will cause the board to shut up.
S0.7C 7-0 NIA All remaining registers are reserved.

Table 2-1: Logical AUTOCONFIG Registers

2.2 The AUTOCONFIG ROM

The complete AUTOCONFIG ROM is implemented in PAL U200, shown on schematic
page S-2. The design of an AUTOCONFIG ROM is usually very simple, but it does require a
complete understanding of how the board is to be used by the system before it can be done.
Also, a Zorro III configuration ROM is similar to a Zorro II configuration ROM, with just a few
more options available, once the translation for the configuration space chosen is applied.

Chapter 2: AUTOCONFIG™ Logic Design

u

u

First of all, the board must be described. Obviously, this is a Zorro Ill memory board,
and since it's my design, it's also from Commodore. On top of that, it can be ex~and~d up to 3~
megabytes, and it can also be "shut up" if necessary. That's pretty much ~e s~ecificatt~n, now tt
has to be translated into Zorro lll ROM registers. The Zorro Ill Bus Specificanon descnbes these
entries starting on page 8-1. The logical register assignments are illustrated in Table 2-1. The
table actually lists all of the configuration registers on the board (registers 40-7C are reserved as
write registers, not read registers, but they're mentioned here anyway).

The next step in the design process is to convert these bit assignments to actual logic. As
mentioned before, the configuration ROM is implemented as part of the U200 PAL. By design,
configuration ROMs fit nicely in a PAL in most cases. The Zorro n and Zorro III specifications
call for all read resgisters other than register 00 to be inverted in their physical implementation.
Since most bits are logically "0", they '11 be physically "1 ", and "1" is the default output state of a
standard PAL. Also taking into account that each logical register is actually made up of two

Address Il3l QJQ Il22 DZB
00 1 0 1 0
02 0 0 0 1
04 0 1 1 0
06 1 1 0 1
08 0 1 0 0
OA 1 1 1 0
12 1 1 0 1
16 1 1 0 1

OTIIERS 1 1 1 1

Table 2-2: Physical ROM Registers

physical registers, both of which assert data only on the D3t-D2s nybble, the physical register
mapping for all read registers is shown in Table 2-2. The actual PAL equations for this are on
page A-3. These are simply a set of equations, one for each data line, that take into account each
"0" in the above table, and are active only when the board is selected and not yet configured.

While it makes no difference to the equations for our ROM registers, it is a good idea to
point out here the differences in addressing these read registers. Zorro IT boards must respond to
the configuration space $00E8xxxx, and all registers are mapped on word boundaries. Zorro III
boards can respond to the $00E8xxxx address as a 16-bit Zorro II device as well, but many
designs, including this one, will choose instead to respond to the Zorro lll configuration space at
$FFOOxxxx. A board responds to this address as a 32-bit device, and it actually need only
decode the high-order eight bits of this address; both of these facts can save considerably on the
amount of configuration logic necessary for some designs. In both configurations, the first
nybble of each register pair is at the offset from base address given by that register number. In
the Zorro II space, the second nybble is in the next logical word-- the register number plus two.

() Zorro Ill instead maps the second register of the pair at $100 plus the register number. This may

BIGRAM8132 2-3

2-4

sound like the two will be quite different in implementation, but as the example PAL U200
illustrates, if I map As as At in the equations, all ROM equations will be written the same for U
either configuration space. Using this feature and a multiplex of As and At based on the
SENSEZ3 signal can help simplify the design of a card that adjusts to both Zorro II and Zorro m
buses.

2.3 The AUTOCONFIG Registers

This design supports two writable configuration registers, the 16-bit configuration
address register 44 and the shutup register 4C. Recall that configuration address registers are
written in a pattern that allows the designer to choose nybble- or byte-wide configuration latches
for Zorro ll configuration space or byte- or word-wide configuration latches in Zorro m
configuration space. Since Zorro ll space is only sixteen bits wide and writes must line up
consistently, this design would have to latch configuration address bits A3t-A24 on a write to
register 44, followed by configuration address bits .A23-At6 on a write to register 48. Even
though a large board such as this never needs to look at A23-At6 for its configuration address
(Zorro ill PICs always live at their natural boundaries), a board configured in Zorro IT
configuration space isn't configured until a write to register 48. Since this board instead
responds to Zorro m configuration space, the entire sixteen bit configuration address can be
written at once with a write to register 44, and that is also the signal indicating that configuration
of the board is complete.

The register logic starts with the same PAL, U200, as used for our ROM logic. This PAL
has the important low-order addresses going to it, so it's a natural for this. In this design, there U
are two signals created for register support in PAL U200. The first of these is a signal called
/PRE CON, for pre-configuration. The board isn't fully configured until the end of the Zorro Ill
cycle that writes either register 44 or register 4C; /PRECON is asserted during this last write
cycle as soon as data is valid on the bus, and it stays latched until the next reset. The other signal
in U200 that's of immediate importance is the CFGL T signal. This line is responsible for
latching the configuration address on the bus if this final write is a configuration and not a "shut
up" request. This is an active high signal in an inverted-output PAL, so the equation can't be
very complicated. This line is asserted when the board is selected, /PRECON is asserted, and A3
is low, which is true just after /PRE CON is asserted for a write to 44. Like the /PRE CON line,
CFGL T latches until the next reset The remainder of the register logic is elsewhere.

The rest of the configuration control logic is in PAL U201, which creates both the
/CFGOUT and /SLAVE signals, two signals that must be driven out to the backplane. The
/CFGOUT signal is pretty simple. Normally, it is asserted at the end of a cycle in which
/PRECON and /CFGIN are asserted, and latched asserted as long as PRECON also stays
asserted. It also gets asserted if /CFGIN is asserted along with the SENSEZ3 signal negated.
This latter condition indicates that the board has been placed in a Zorro n backplane. This board
can't support Zorro II configuration, so it automatically "shuts up", an action required by the
Zorro Til specification. Note that the SENSEZ3 signal is called JZ2SHUNT in the PAL
equations on page A-5.

Chapter 2: AUTOCONFIG™ Logic Design

u

n The next basic piece of the configuration logic is the configuration latch, which in this
case is the 7 4F37 4 at U202. This edge-triggered latch is ttiggered by the rising edge of CFGL T,
which is asserted when the board's configuration address is written and data is valid on the data
bus. At the end of the configuration address cycle, ICFGOUT is asserted, the address as latched
is now fed into the ISLA VE generation address comparator, and the board is fully configured in
hardware. Since this is an autosized memory board, system software generally will calculate its
size and link it into the free memory pool before the next board is configured, though this
operation can of course change as the configuration software changes.

2.4 The SLAVE Logic

Naturally, this brings up the question of how the ISLA VE logic is implemented. Every
Zorro II or Zorro III board must assert its private ISLA VE line when it is responding to a bus
address. In every case, two addresses must be supported; the configuration space address prior to
configuration, and the software-assigned address after configuration. The method used in this
example is quite similar to techniques used in many Zorro IT designs, and is only slightly more
complex.

The core of a ISLA VE circuit is always an address comparator of some kind. In every
case, the bus address must be compared with the address to which the board responds. The main
comparator in this circuit is the 74F521 at U203. It compares seven bits of possibly-latched bus
address, A3t-A2s, with the corresponding bits on the configuration address latch. This
comparison is called /MATCH on the schematics. Prior to configuration, the 74F374 is
tri-stated, and the outputs going to the comparator are all pulled high, getting the card well on the
way to responding to the $FFOOxxxx configuration space.

The twist in this design is that there is a bit more to this comparison than just a simple
comparator can handle. First of all, the board needs to look at a full eight bits of the $FF00xxxx
address to properly respond during configuration, but only seven bits of address once the board is
configured as a 32-megabyte board. This PAL U20 1 helps out by requiring A24 tobe high for a
ISLA VE response prior to configuration. Zorro III memory cards must monitor the function
codes FCo-FC2. PICs must only respond to a valid User or Supervisor mode Code or Data space
access; such accesses are given as the exclusive-or of FCo with FCt. The ISLA VE signal is
always qualified with the Zorro m full cycle strobe /FCS, and it can occur in only two cases. In
the first case, a qualified match occurs, the board is unconfigured, and /CFGIN is asserted. In the
latter case, a qualified match occurs, the board is configured, and CFGLT is asserted As
previously mentioned, if the board is configured but CFGLT is negated, the board has been "shut
up" rather than configured.

And that is all there is to the basic configuration logic. As demonstrated with 0201, it is
usually quite reasonable to incorporate this logic in with other board logic, where it'll fit the most
efficiently. AUTOCONFIG logic is intended to make it easy on the designer as well as the user;
it's not supposed to scare anyone.

BIGRAMB/32 2-5

u

u
2-6 Chapter 2: AUTOCONFIG™ Logic Design

n

•

CHAPTER 3
MEMORY SYSTEM DESIGN

"/ like them big and stupid."
-Julie Brown

This chapter discusses the actual DRAM logic design for this project. The information
here is going to be far less useful for the designer trying to learn about Zorro III designs, since
this is the part of the board: design which is very specific to the task at hand, a DRAM board.
However, there may be some ideas of a more general applicability. If nothing else, it shows that
a fully asynchronous DRAM design can be done rather simply with a little planning.

3.1 DRAM Refresh

The most complex part of any hand-made DRAM circuitry is very likely to be the refresh
circuitry. Without refresh, DRAM would look pretty much like static memory with a
multiplexed address bus (and the folks at TI and National Semiconductor would be selling quite
a few less DRAM controllers). While there's nothing wrong with off-the-shelf DRAM
controllers, it's really not very difficult to "roll your own".

3.1.1 Refresh Arbitration

If you beilive that DRAM boards are difficult to design, and that refresh is the most
difficult part of such a design, then you must believe that refresh arbitration is the most difficult
part of the refresh logic. So I'll discuss that part fmt, and the rest of the circuitry in this chapter n will then be simpler.

BIGRAMB/32 3-1

3-2

In this design the refresh arbiter is incorporated with the /SLAVE generator. Refresh
arbitration takes place in U201 and is by the nature of the Zorro III bus necessarily U
asynchronous. A refresh request can come in at any time, and must be serviced as soon as
possible without interrupting a cycle. There are three refresh cases: a request outside of a cycle,
a request during a cycle to this card, and a request during a cycle to another card. These cases
are illustrated in Figure 3-1. The problem with any asynchronous refresh arbiter is that it's
impossible to determine at a single point if a cycle is starting or not. This can be though of as a
potential race condition between the refresh request and the start-of-cycle. So the solution is to
create two sampling points, one to give the go-ahead for a refresh cycle, the other to give the
go-ahead for a memory cycle.

IREFREQ ~ \ I \ I
IREFACK \ I \ I \ I
/RBFCYC \ I \ I \ I
IFCS

/MATCH

/SLAVE

DOE

Figure 3-1: Refresh Arbitration

For the latter, you can use the /SLAVE signal. Virtually everything that happens on a
simple Zorro Ill slave card.is gated with/SLAVE. So in order to safely arbitrate refresh, we
generate a refresh acknowledge signal, /REF ACK, which will always be asserted safely before or
safely after/SLAVE. In order to get there before /SLAVE, the /REPACK line will not be
asserted outside of a Full Cycle if the /MATCH line is asserted. Since !MATCH and /FCS must
both be asserted in order to create /SLAVE, and /FCS always follows /SLAVE, the /REPACK
line is guaranteed to get out of U201 prior to/SLAVE, should the refresh request some in just
before the PIC is selected. But once a board is selected on the bus, there's no reason to hold off
refresh if it's a different board being selected, so /REPACK can be asserted during the data time
of some other card's full bus cycle. In either case, the refresh acknowledge is latched as long as
refresh request is held.

3.1.2 Refresh Counter

A simple refresh counter is implemented in PAL U306. Although the board supports
both 256K x 4 or 1 Meg x 4 DRAM, the actual per-row refresh time is the same; the former part
requires a 512 row refresh in 8ms, the latter a 1024 row refresh in 16ms. This amounts to one
refresh request every 15,625ns. However, to build in support for burst mode with page-mode or

Chapter 3: Memory System Design

u

u

()

static column DRAM, we use the TRAS.MAX time here, which is 10,000ns. The PAL counter
actually counts 140ns clocks, so a count of 71 clocks will get us up to 9,940ns, close to the
desired 10,000ns. If burst mode support weren't considered here, a count of 111 clocks could be

used in the counter.

The counting is quite simple; the counter goes from zero to its terminal count, then
asserts the !REFREQ signal. It then holds onto the /REFREQ signal until a refresh cycle is under
way, as indicated by /REFCYC. The /REFCYC line will reset the counter for the duration of the
refresh cycle. The process starts over once the refresh cycle is complete.

The clocked counter is used here simply because it's very easy to understand and, being
fully digital, always works the same way. It could have been a simple one-shot or 555 timer
circuit, as long as component tolerances don't allow the timer to drop below the required refresh
frequency. You may recall reading of the evils of such timers in DRAM hint books. While they

JREFREQ

IREFACK

JREFCYC

/CASOUT

/CASDEL

/CAS

!RAS

!RASDEL

Figure 3-2: Refresh Cycle

aren't optimal, due to the aforementioned component tolerance problems, that's not why you
were warned off. The main reason for avoiding such timers in most DRAM designs is the
problem you're likely to have with an asynchronous refresh request. Since we have already
solved the problem of the asynchronous refresh request here, no asynchronous approach is
inherently evil to this design.

3.1.3 Refresh Cycle

The actual refresh cycle, illustrated in Figure 3-2, is a CAS-before-RAS refresh, and all
memory on board is refreshed at the same time. As soon as a refresh cycle is active (!REFCYC
asserted), PAL U300 will assert the IREFCAS line. !REFCAS will in turn cause the CAS
control PAL, U304, to drive all eight CAS lines. An active /CASDEL or /RASDEL will hold off

BIGRAM8132 3-3

3-4

the assertion of IREFCAS, thus ensuring RAS precharge (TRP) in case the refresh is immediately
following a memory cycle. The IREFCAS line is latched by IMUX until/RASEN comes along, U
so that it's no longer dependent on IREFACK. The IREFACK line will be negated some time
before the end of the CAS-RAS cycle; its main use here is to qualify the start of a refresh cycle.
Once the /RASEN is asserted, IREFCAS is latched by the negated /RASDEL, as is IRASEN.

The /CASOUT line of U300 is also driven at the start of the refresh cycle. This of course
comes back to U300 as the /CASDEL signal. The refresh /RASEN is driven as soon as
/CASDEL is asserted, thereby separating refresh CAS and refresh RAS by roughly the CAS
delay time. The /RASEN line drives the buffered /RAS lines to either bank of memory. Once
asserted, IRASEN is held until IRASDEL wraps back in. The refresh cycle is held until
IRASDEL once again is negated, thus ensuring TRP for the refresh cycle, in the event that this
refresh is taking place right before a memory cycle.

IFCS

/SLAVE

DOE

/DSn

IRAS

IRASDEL

JMUX

/CAS

/CASDEL

/DTACK

Figure 3-3: Memory Access

3.2 DRAM Access

The DRAM read/write access duing a normal memory cycle uses mainly the same parts
for RAS-CAS controlling, along with a few additional bits and pieces to control memory
banking. The logic supports several speeds of DRAM, selection being made via jumpers on the
tap delays used for RAS and CAS timing. Either the 256K x 4 or 1 Meg x 4 parts can be used,
and a jumper is provided to allow the necessary banking modification for this. Finally, hooks are
in place for burst-mode (Multiple Transfer Cycle) support of either page or static column
DRAMs, but at the time of this writing, Zorro III burst mode is not yet implemented in the
A3000 Bus Controller, so this feature can't yet be tested. U

Chapter 3: Memory System Design

3.2.1 Memory Cycle

The basic memory cycle is started by U300 when /SLAVE is asserted and no refresh
cycle is acknowledged or in progress. The cycle start will be held off until /RASDEL is
negated, to ensure TRP after a refresh or a previous memory cycle. The assertion of /RASEN
starts the cycle, and /RASEN is held at least until/DTACK is asserted. Dropping /RAS before
cycle's end lets us gets an early start on RAS precharge, and by /DTACK time the appropriate
/CASXN are certain to have fallen, assuring that data will be held through the cycle's end. Since
/RASEN creates /MUX, however, this· optimization can't be used for SCRAM parts, since that
could result in a column address change before cycle's end (SCRAMs don't latch the column
address). The lOOns tap delay U301 sets the RAS delay, and J300 provides taps for lOOns, SOns,
and 60ns DRAM. The /RASEN line is buffered, as previously mentioned, by two gates from the
7 4F244 at U303, one creating /RASL for the lower bank of 32 memories, the other creating
/RASH for the upper bank of 32 memories. U303 also buffers the first tap from U301, which
becomes /MUX, the line used for multiplexing the DRAM addresses.

The U300 PAL also creates the enable for CAS, the /CASEN line. This is based on
/RASEN, DOE, and /MUX asserted, and it's held through the end of the cycle, until/DTACK is
negated. The /CASEN line qualifies CAS, but it doesn't necessaily start CAS for a full cycle;
further consideration of CAS generation is done elsewhere. There are hooks in U300 to change
the operation of /CASEN in the case of Multiple Transfer Cycles and either page-mode or static
column DRAM. There's logic intended to support this in the PAL equations, but it has not yet

() been tested.

n

Most of the CAS generation is handled in U304, the CAS generation PAL. The CAS
strobes are used to select between two banks of DRAM, and to select the appropriate bytes to
access during write cycles; this is covered in detail in the next section. Other than qualifiying by
bank and byte, the CAS generation PAL qualifies all CAS with READ. During read cycles, all
four bytes in the accessed memory bank are activated, in order to support caching of this
memory. Write cycles, on the other hand, are qualified with the appropriate data strobe, to
assure that data is valid before a write-cycle CAS latches write data. All CAS strobes are of
course qualified by /CASEN. They're also all qualified with /CADDR, which is a strobe that
assures column address setup time to CAS. This is just the 60ns tap from the RAS timing tap
delay. The 40ns tap would just about make it, but leaves absolutely no margin. Since column
access is rarely the limiting factor, the 60ns tap is used, for a 30ns worst case /MUX to /CADDR
delay, assuming a 5% per-tap tolerance on the tap delay.

3.2.2 Bank Selection

The refresh cycle's CAS-before-RAS logic, along with the fact that the whole board is
refreshed at once, keeps things pretty simple when refresh is taking place. A nonnal memory
cycle, however, must take into account the memory devices that actually need to be addressed.
This discussion is concentrating mainly on the 256K x 4 devices, but the same principles apply to
the 1M x 4 devices as well.

BIGRAMB/32 3-5

3-6

The basic memory unit is a 4-bit DRAM, and thus two devices are necessary to form a
byte, the basic unit of interest to the Zorro ill bus. This makes the smallest chunk of 32 bit U
memory a one megabyte chunk. So for the total of eight megabytes, we '11 have eight !-
megabyte memory banks. We want to keep RAS common among all DRAM, so it can't be used
to control banking at all. The best thing to do is divide and conquer, and that's just what we do;
find something to select between these various natural divisions.

As mentioned previously, the /CAS strobes are used to select individual bytes within a
one megabyte bank of memory. This is a very natural use of /CAS, since it's not needed until
late in the memory cycle, and the data strobe lines and write data aren't valid until later in the
cycle either. The CAS PAL could easily generate a /CASo-/CAS3, based directly on
corresponding data strobes /DSo-/DS3. However, there are twice the number of output lines on
this PAL device as needed for four /CAS lines, and we're still looking for a banking mechanism.
With the addition of the MEG4 signal for memory sizing and the address lines A22 and A24, the
PAL comes to drive eight total /CAS lines, controlling not only byte enables but the most
significant RAM bank. For 256K x 4 parts, A22 chooses between two 4-megabyte banks. For 1M
x 4 parts A24 chooses between two 16-megabyte banks.

Within the 4-megabyte banks, another banking control is used. In this case, most of the
work is done by the 74F138 decoder at U305. This device creates a read enable for one of four
device during a read, or a write enable for one of four devices during a write. The selection of
device is controlled by the BKo and BKtlines from U300. BKo and BKt are simply A2o and A21
for 256K x 4 support, or A22 and A23 for 1M x 4 support. That's all there is to bank selection.
Zorro lll autosizing requires board memory to be added from the lowest to the highest address U
on-board, but there are no hardware requirements for this.

3.2.3 Address Multiplexing

There's nothing really complicated about the address multiplexing on this card, but it
should be explained. All of the multiplexing is done with 74F258 multiplexers, and all of them
are multiplexed by the /MUX signal. The frrst four or sixteen megabytes of memory is driven by
/MALo-/MAL9, the second by /MAHo-MAH9, but the multiplexing scheme is identical for both
banks. When /MUX is high, the row addresses /MAo-/MA9 are set to the inverted Ato-At7, At9,
and A2t, respectively. For /MUX low, the column addresses /MAo-/MA9 are set to the inverted
A2-A9, Ats, and Aw, respectively. This organization may seem strange, but it makes A2-A1 (the
Multiple Transfer static addresses), the low-order column addresses, so that Multiple Transfer
Cycles can be supported via fast page or static column DRAM. This banking scheme also makes
/MA9, which is used only by 1M x 4 DRAM, a no-op for 256K x 4 DRAM, since BKo-BKtlook
at Aw and A21.

Chapter 3: Memory System Design

u

CHAPTER 4
GOING FURTHER

"There is more to life than increasing its speed."
-Mahatma Gandhi

In the general case, you can always do better. When specifics get involved, though, you
may not always want to. In the specific case of this design example, you can certainly do a bit
better. And if you want to ~ake this example into a real product at some point, you should do
better (thanks to this article, anyone can do at least this well just by copying).

Currently, with the Revision G Buster chip in a 251vffiz A3000, this design with SOns
DRAM is running at just over half the speed of A3000 local bus memory. But part of that is the
current Zorro m implementation - this same configuration is running only about 15% slower
than our prototype 50ns SRAM board! You can fully expect the Level 2 Buster chip to improve
cycle times considerably, as well as supporting the faster Multiple Transfer Cycles. So, as I said,
you can always do better.

4.1 Designed-In Enhancements

While not quite in the "quick and dirty" category, this example went from start to final
working version in about five working days. Most of the careful design work was spent on
getting the AUTOCONFIG logic correct and understandable, since that's the most likely part of
the design to be replicated in other Zorro III PICs. The actual DRAM part of it was designed,
above all else, to work right the frrst time, since there really wasn't any time to revise the board.
Because I felt that presenting a design example at a Developer's Conference without a working

BIGRAM 8/32 4-1

4-2

sample in hand would cenainly be a cause for developers worry about the design's quality. So
this card was designed to work, above all other concerns. U
4.1.1 The Experimenter's Board?

As it turns out, the original concept for the DRAM memory cycle worked fme, but the
refresh logic has a rather serious flaw that hadn't been considered originally. When the design
was created, the /REPACK signal was seen as the refresh control that stays valid for the entire
refresh cycle, while the /REFCYC signal, then called /REFHOLD, was an end-of-cycle signal
used to control the RAS precharge delay. That didn't work, and fortunately, the current
mechanism could be created by changing the PAL equations, so the board was working a day
after it was built up without a single cut or jumper.

However, the original memory cycle left a bit to be desired. Initially, the CAS enable
didn't go out until the full RAS time had been met (eg, /RASDEL is asserted). This worked, but
made CAS quite a bit later than it could have been. With a single extra wire, the CAS PAL was
modified to hold off CAS until column addresses became valid. This allowd the memory timing
PAL to enable CAS as soon as possible, and resulted in a 15% speedup.

The point here is that the design, as presented, isn't completely fixed. There are a
considerable number of things one could do to change the memory cycle by playing around with
PALs. It's conceivable that even without any additional PCB modifications, the memory cycle
efficiency could be enhanced.

4.1.2 Multiple Cycle Transfer Support

On enhancement that's definitely supported, though untested, is the Zorro Til Multiple
Transfer Cycle. PAL U201., when enabled by J200, will request Multiple Transfer Cycles, and
drive the /BURST line if the bus master acknowledges this with /MTCR. The memory controller
PAL U300 attempts to create proper CAS cycles for a burst transfer, modified by the J303
jumper for fast page or static column mode DRAM. And, as previously memtioned, the address
multiplexing and refresh timeout are designed to support this burst mode as well. Hopefully this
logic would work with a Level 2 Buster that can handle bursts, but it hasn't been tested at the
time of this writing.

4.2 Modification Ideas

Opening up the design to a few PCB modifications can make things much more
interesting. Of course, the ultimate modification might be to throw out the complete DRAM
logic here and simply go to an off-the-shelf DRAM controller. While there's nothing wrong
with that approach, and modem DRAM controllers even have an asynchronous operating mode
that would work very nicely with Zorro Ill, there is still some performance that can be squeezed
from this basic design. Most of these might have been incorporated with an extra day or so
worth of design time.

Chapter 4: Going Further

u

u

n 4.2.1 Tighter RAM Cycles

The entire memory cycle run here is a bit less than optimal. Part of the problem is that
the memory timing and CAS control PALs don't always have the same idea of when CAS should
start. If the controller has a very good idea of when data is going to become valid, whether
driven by TRAe or TeAs, the /DTACK line can be driven optimally. And, of course, the cycle
can be fully TRAc driven, which is usually going to be the fastest possible cycle.

Another less than optimal feature of the design is the TRP assurance logic. In order to
manage TRP between a cycle immediately following refresh or refresh immediately following a
cycle, all new cycles are held off until /RASDEL is negated. This works just fine, but the time
between !RAS negated and /RASDEL negated is very close to the TRAs time. For all standard
DRAMs, the TRP time is less, sometimes much less, than the required time for TRAS. The CAS
precharge time is never a problem for full cycle to full cycle operation, and unlikely to be a
problem for Multiple Transfer Cycles.

The built-in support for Multiple Transfer Cycles can also be improved. The main
problem for such burst cycles that doesn't crop up elsewhere is the TRAs,MAX time of most
DRAMs in burst or static column modes. This board makes sure that a burst transfer can't
exceed this limit by setting the refresh time to something just under TRAS,MAX. When refresh
comes along, it causes /MT ACK to be negated at the appropriate subcycle boundary, thus
making the full cycle terminate so that refresh can take place. This has two shortcomings. First
of all, it makes refresh related slowdowns over 50% more likely than necessary. Additionally,
the start of the burst cycle isn't synchronized with the refresh counter, so a burst can be
interrupted by refresh long before necessary. Ideally, separate counters could be added for burst
and refresh timeouts. Alternately, the refresh counter could be modified to change its count
based on whether or not a burst cycle is under way.

4.2.2 Read/Write Optimizations

A basic principle of Zorro lli slave optimization is that read and write cycles can benefit
from different treatments. In this example, for instance, CAS can be driven before the DOE
signal is received for read cycles, as long as column addresses are valid. If data can be valid on
the card's data bus prior to DOE, then the cycle can be acknowledged only one buffer enable
time after DOE is received. For READ sensing in the DRAM timing PAL (U300), the addresses
used for the DRAM banking logic can easily be moved into another device, freeing up about
seven pins.

Write optimizations would take a bit more logic, but they are possible. The best write
enhancement would be data bus latches. By replacing 74F245 buffers U104-U107 with some
7 4F646 bidirectional latching buffers, and associated control logic, writes can be made very fast.
The falling edge of the /DSN lines can latch data to the board and effect an immediate /DT ACK,
thereby possibly saving some of the TRAS and TeAs time. In fact, this could also help reads, since
a latched data bus would allow the DRAMs to shut off as soon as data's latched, rather than at

{) the end of the Zarro Ill cycle.

B/GRAMB/32 4-3

4-4

4.2.3 Standard DRAM Tricks

As with any DRAM design, the standard DRAM tricks apply here. With a bit of logic
duplication, doubling up on the RAS-CAS and refresh logic, memory bank interleaving can be
used to hide the RAS precharge time in most cases. Multiple Transfer Cycles can be though of
as an automatic page detect, so conventional page mode or static column optimizations may not
be all that useful. Then again, the Zorro III page is only 256 bytes, so perhaps a larger page
could be of some help. Nybble mode memories won't really be of much use; although any burst
cycle resulting from 68030 burst mode will be nybble compatible, there's no guarantee of linear
addressing within a Zorro lll burst cycle.

Always keep in mind the future. The Zorro m bus implementation that's currently on the
A3000, as mentioned before, is already slated to improve. In the future memory will go faster on
the bus than it does now, even if motherboard clocks don't go beyond 25MHz. And we expect
future Zorro ill machines will be running a faster Zorro ill bus, going beyond what's possible in
an A3000 even tomorrow.

Chapter4: Going Further

u

u

CHAPTER 5
ADDITIONAL ZORRO III ADVICE

"Cute rots the intellect."
-Garfield

Going beyond this specific example just a bit, there are a few good things to think about
when working on any Zorro m design. A large portion of this is just plain good design sense.
Those without much design sense or experience should read this chapter twice, and probably
learn more about the first two points from some outside materials.

5.1 Watch Those Synchronizations

The foremost thing to be concerned about when designing for Zorro ill is the fact the the
bus is running asynchronously. Some simple designs will not find this to be any problem.
Obviously a simply UO chip with a lOOns access time can be timed with a delay line, keeping
things very simple. At the other end of the spectrum of complexity, clever clocked VLSI chips
often internally synchronize things, much the way the 680x0 processors handle their
"asynchronous" inputs.

If, however, you're doing your own TIL level design, such as this one, be very careful.
Fully asynchronous circuits can be very tricky to do correctly, missing a strobe by a nanosecond
or so can be fatal, and it may only happen every so often. The best bet is to use overlapping
signals and feedback to create new signals, and never count on delays through PALs or TIL to
provide repeatable delays. Tap delays, while not perfect, are reasonably accurate, and can be n used to design reliable circuits.

B/GRAMB/32 5-1

5-2

Synchronous design is usually easier, and therefore more reliable for the average designer u· .

to create. The problem here is coupling the synchronous design to the Zorro lll bus. Such a
design will have its own clock, but that clock can't reliably sample any Zorro III signal on a
single edge. Double clocking any important Zorro III inputs with high quality flip-flops that go
to clocked logic is a necessity. The problem you '11 have with single clocking, metastability,
won't always be immediately noticed, but it's going to be there. Better to avoid it from the start.

5.2 Design for Speed

Zorro m cards currently run around four times faster than Zorro II cards, and the limit, at
least in theory, is over ten times faster. That should be a good indication that Zorro III designs
are more sensitive to problems than Zorro II cards. To further aggravate the situation, you may
not see any problems until faster Zorro III bus masters come along. So proper design practices
are your best option. There are three main design problems that typically come up.

The speed of the design is one problem area, though it's not that much of a problem if
you're up-to-date on the logic of the 1990s. While FCT and F series TIL are good for buffers
and small logic functions, most fast designs these days rely heavily on programmable logic,
mainly PALs. A single level of PAL logic can replace several levels of TIL, and they're aways
pushing PAL speeds just a little bit more. Larger PLDs and gate arrays (programmable or
custom) are always handy for complex circuits, providing they're fast enough.

Noise problems are partially a result of the higher speeds involved. Eliminating such
problems is achieved via a combination of circuit design and PCB layout. For noise reducing
design, you need bypass capacitors of various sizes in the appropriate places. Every TTL part
should have a small capacitor; we generally use something in the 0.1 ~-0.22~ range. For
DRAM or other surging parts, we use 0.33~ or greater. It's also a good idea to have a high
frequency bypass, maybe 0.01~ or so, and a couple of larger capacitors, something in the
1 0~-1 00~ range, randomly distributed around the design. More noise reduction can be
achieved with good signal termination. Small value series tennination resistors, something in the
220-680 range works well; the values must often be tuned to the design. Tri-statable buses
often benefit from some kind of parallel termination; pullups, pulldowns, or centering resistors
depending on the design.

The other half of the noise problem is solved in PCB layout Zorro ITI boards are almost
certainly all multi-layer boards. Trace lengths are to be kept as short as possible, especially those
on the bus side of a card; it's extremely important to minimize the noise that a card introduces to
the bus. Fast and noisy signals, such as clock lines or fast control signals, should generally be
given priority when routed. Component placement is also a very important job; the lengths of
interconnects is directly affected by this planning. If the circuit designer isn't doing the board
layout personally, he/she should develop a good working relationship with the PCB designer.
Any work done on keeping the design quiet will very likely be time well spent; it's likely to help
out in reliability, operation with other boards in the system, and government noise certifications
such as FCC or FTZ.

Chapter 5: Additional Zorro Ill Advice

u

u

5.3 Follow the Specifications

Let's say it once again! Any current Zorro III bus implementation is likely to be far more
relaxed than the bus specification. That's going to eventually change. A proper design built
today should work in tomorrow's 50MHz superAmiga, a substandard design could fail on an
A3000 with the Enhanced Buster chip. Build in your long term viability at the design stage and
save a great deal of potential future grief. You aren't going to get tested on your design for some
time to come.

B/GRAMB/32 5-3

u

u

u
5-4 Chapter 5: Additional Zorro Ill Advice

n

APPENDICES

"It ain't the meat, it's the motion"
-Southside Johnny

A.l PAL Equations

The following section contains the complete PAL equations for the five PAL devices in
the BIGRAM design. All the equations are in the CUPL™ format, but should be easily
translated to any other format if required. This format uses the & character to represent AND,
the# symbol to represent OR, the$ symbol for XOR, and the ! symbol for negation. Standard
outputs are indicated simply by name, registered outputs are indicated with the .D extension, and
output enables are indicated with the .OE extension. The CUPL TM compiler minimizes equations
where possible; should any equations here appear to be too large, rest assured that they will
actually fit in the specified PAL.

BIGRAMB/32 A-1

A-2

A.l.l Autoconfiguration Control PAL

This device is responsible for providing the AUTOCONFIG™ ROM, registers, and data
buffer direction control. This is to be programmed into a 15ns 16L8 or equivalent device.

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

U200 ;
U200 ;
May 30, 1990 ;
2;
Dave Haynie ;
Commodore-Amiga
BIGRAM ;
U200 ;

I** I
I* *I
I* Zorro III BIGRAM Configuration Control *I
I* *I
I* This device acts as configuration ROM and configuration *I
I* register controller. *I
I* *I
1**1
I* *I
I* DEVICE DATA: *I
I* *I
I* Device: 16L8-15 */
I* Clock: NONE *I
I* unused: NONE */
I* *I
1**1

I* INPUTS: *I
PIN 1 !SLAVE I* Board selected? */
PIN 2 !RST I* Board reset *I
PIN 3 !DS3 I* High order data strobe. *I
PIN 4 READ I* Read cycle strobe *I
PIN 5 A2 I* Bus Addresses. */
PIN 6 A3
PIN 7 A4
PIN 8 AS
PIN 9 A6
PIN 11 ... A1 I* This is really AS. *I
PIN 16 - !CFGOUT I* Board configured? */

I* OUTPUTS: *I
PIN 19 ... D28 I* Configuration data ROM nybble. *I

12 D31 PIN
PIN 13 - D30
PIN 14 ... D29
PIN 15 D DBDIR I* Data buffer direction. */

I* BIDIRECTIONALS: *I
PIN 17 ... !PRECON I* Preconfiguation strobe. *I
PIN 18 ... CFGLT I* Configuration address latch.

I** INTERNAL TERMS: **I
I* Mapping A8 as Al here makes the register pairs line up just
as they would under Zorro II configuration. */

field addr ... [A6 .. 1];

I** OUTPUT TERMS: **I
I* The configuration ROM is created here. The logical ordering
of it is as follows:

REG

00
04
08

oc
10
14
18-3C

76543210

10100001
10010010
10110001

00000000
00000010
00000010
00000000

Zorro III, autolink, 32 megabytes
Product $53
Extended Memory board, supports

Shutup, autosized in software.
Reserved
Manufacturer's code (C-A)

Zeroed options/reserved.

The autoconfiguration specs call for every readable register
except for 0 to be inverted in the physical implementation.
so the resulting map is:

Appendices

*I

u

u

u

ADOR
00
02
04
06
08
OA
oc
OE
10
12
14
16

OTHERS

031 030 029 028
1 0 1 0
0 0 0 1
0 1 1 0
1 1 0 1
0 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 0 1
1 1 1 1
1 1 0 1
1 1 1 1

Only the Zero te~s are explicitly entered here; anything not specifically
driven low will be driven high.
*I
!031

!030

!029

!028

[031 •• 28] .OE

.,. addr:02
f addr:04
f addr:08;

= addr:OO
f addr:02;

= addr:02
f addr:06
f addr:08
f addr:12
f addr:l6;

... addr:OO
f addr:04
f addr:08
f addr:OA;

::::: SLAVE & !CFGOOT & READ;

I* This signal is driven to indicate an address latch request.
Note that the board uses 16 bit configuration write feature
to configure all at once; this isn't available in the Zorro II
configuration space. *I
CFGLT = SLAVE & PRECON & ! A3

f CFGLT & !RST;

I* If the board is told to shut up or configure, this line is
asserted and held through reset. The logical SBOTOP line
is PRECON & !CFGLT, once FCS is negated. *I
PRE CON = SLAVE & OS3 & !READ & addr:4C

f SLAVE & OS3 & !READ & addr:44
f PRECON & !RST;

I* This controls the data buffer direction between the PIC's
local bus and the expansion bus. *I
OBOIR "" SLAVE & READ;

BIGRAMB/32 A-3

A-4

A.l.2 Board Control PAL

This device controls an assornnent of board functions. It creates the /SLAVE,
/CFGOUT, and /MTACK signals for Zorro III. It creates the data buffer enable for the bus
buffers, and the burst-enable line used by the memory system. And it arbitrates DRAM refresh.
This is programmed into a tOns 20L8 or equivalent PAL.

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

U201 ;
U201 ;
May 30, 1990 ;
3 ;
Dave Haynie ;
Commodore-Amiqa
BIGRAM ;
U201 ;

I** I
I* *I
/* Zorro III BIGRAM Board Control *I
I* *I
I* This device controls the main features of the BIGRAM board. */
I* *I
/**/
I* *I
/* DEVICE DATA: */
I* *I
I* Device: 20L8-10 */
I* Clock: NONE *I
I* Unused: 22 (O) *I
I* *I
I** I
I* INPUTS: *I
PIN 1
PIN 2
PIN 3
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8
PIN 9
PIN 10 a

PIN 11 ...
PIN 13 =
PIN 14 =
PIN 20 =
PIN 23 =

/* OUTPUTS: *I
PIN 15 ...
/* BIDIRECTIONALS:

PIN 16 ...
PIN 17 =
PIN 18 =
PIN 19
PIN 21 =

/** INTERNAL TERMS:

!MATCH
CFGLT

!PRECON
!FCS
!CFGIN
FCO
FC1

!REFREQ
!Z2SHUNT
DOE

!BERR
!REFCYC
!BRENB
!MTCR
A24

!OBOE

*I
!CFGOUT
!REFACK
!MTACK
!SLAVE
!BURST

**I

I* Address match from comparator. *I
I* confiquration latch. *l
I* Board was confiqed or shutup. *I
I* Full Cycle Strobe. */
I* confiquration chain in. *I
I* Function codes, don't iqnore these! *I
I* Refresh request from refresh counter */
/* Zorro II backplane bypass. *I
I* Data enable. *I
I* Bus error, all off. */
I* We're in a refresh cycle. *I
I* Burst/Multiple transfer enable. */
I* We're in a multiple cycle. */
I* Latched bus address 24. *I

/* Data buffer output enable. */

I* Board is confiqured. */
I* Refresh acknowledqe. */
I* Multiple transfer acknowledqe. *I
I* Board select. */
I* This is a burst cycle. *I

I* The valid board address consists of a comparator match and a valid
memory space. The valid spaces are as follows:

SPACE FC2 FC1 FCO
Reserved 0 0 0
User Data 0 0 1
User Proqram 0 1 0
Reserved 0 1 1
Reserved 1 0 0
supervisor Data 1 0 1
Supervisor Proqram 1 1 0
CPU 1 1 1

This reduces to the equation used: FCO XOR FC1. The external comparator
only looks at A31 .. A25, which is OK for normal operation (we're a 32
meq board), but bad for confiquration. so if we're not yet confiqured,
A24 must be hiqh for a select match.
*I
select =MATCH & (FCO $ FC1) & (CFGOUT i A24);

Appendices

u

u

u

I* This indicates a normal board select; SLAVE starts the cycle, FCS
cuts it off quickly at the end. *I
hit = SLAVE & FCS;

I* OUTPUT TERMS: *I
I* This output controls the data buffer enable pins. Data buffers
turn on when DOE is asserted and the board is selected, they
turn off as quickly after a cycle ends as possible. *I
OBOE g hit & DOE & !BERR;

I* This signal indicates that the board is configured. The board is
considered configured if actually configured, shut up, or placed
in a Zorro II backplane. It only responds if actually configured,
of course. This signal must only change at the end of a cycle, if
actually operating. *I
CFGOUT PRECON & CFGIN & ! FCS & ! DOE

f PRECON & CFGOUT
f Z2SHUNT & CFGIN;

I* This is the refresh acknowledge cycle. When the a refresh request
comes in, and the coast is clear, thls line is asserted to start
the refresh machine. Determining when the coast is clear, eg,
arbitrating refresh, is the trick to all hand-made DRAM controllers.
This one works pretty simply. The coast is clear when there's no
bus cycle happening, or when a bus cycle is happening but another
slave is responding. The trick is avoid races; res could be
changing just as REFREQ comes in. Therefore, the second half of
this arbiter is in the RAS cycle generation, which doesn't start
until REFACK is negated and SLAVE is asserted. *I
REFACK REFREQ & ! FCS & !MATCH

f REFREQ & FCS & !SLAVE & DOE
f REFACK & REFREQ;

I* The multiple cycle transfer acknowledge. If the jumper enables
them, and a refresh isn't already requested, we'll acknowledge
them. If a refresh request comes in, we'll negate MTACK after
the current cycle finishes, which will result in one more
burst cycle before the full cycle terminates and the refresh
can be acknowledged. I do it this way because I use the
refresh timer to handle the T.RASMAX limitation of the DRAM as
wall as handling refresh. *I
MTACK

MTACK.OE

a hit & BRENB & ! REFREQ
f hit & MTACK & !DOE
f hit & MTACK & MTCR;

... hit;

I* This is SLAVE, the board select line. Most board activity centers
around this line .. If the board is selected and unconfigured,
always respond. Once configured, only respond if it's not shutup
or shunted. This line is held through the cycle's end. *I
SLAVE a select & FCS & CFGIN & !CFGOUT

f select & FCS & CFGLT & CFGOUT;

I* This indicates if the cycle is a burst cycle. The first cycle is
always a non-burst cycle. If, at the end of the first cycle,
MTCR and MTACK are asserted, all subsequent cycles are burst
until FCS is negated. *I
BORST = SLAVE & DOE & MTCR & MTACK

f BURST & FCS;

BIGRAM 8132 A-5

A-6

A.l.3 Memory Timing PAL

This device controls RAS and CAS timing, /DT ACK generation, and high order RAM
banking. This must be programmed into a lOns 20L8 or equivalent device.

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

U300 ;
U300 ;
May 30, 1990 ;
5 ;
Dave Haynie ;
Commodore-Amiga
BIGRAM ;
U300 ;

1**1
I* *I
I* Zorro III BIGRAM DRAM Timing *I
I* *I
I* This device controls the standard and refresh timing of the *I
I* dynamic RAM. Big-Time asynchronicity ahead! This also controls *I
I* banking within a CAS controlled memory bank. *I
I* *I
I** I
I* *I
I* DEVICE DATA: *I
I* *I
I* Device: 20L8-10 *I
I* Clock: NONE *I
I* unused: NONE *I
I* *I
I** I
I* INPUTS: *I
PIN 1 !RASDEL I* RAS strobe delal *I
PIN 2 !MOX I* DRAM Address mu tiplexer *I
PIN 3 !MTCR I* Multiple cycle re~est. *I
PIN 4 !BORST I* We're in burst moe. *I
PIN 5 DOE I* Data time *I
PIN 6 !SLA~ I* The board is responding *I
PIN 7 !REFACK I* We're servicing a refresh request
PIN 8 SCRAM I* We're using static column RAM. *I
PIN 9 A23 I* System addresses *I
PIN 10 ... A22
PIN 11 A21
PIN 13 A20
PIN 14 MEG4 I* 4 Meg parts? *I
PIN 23 ... !CASDEL I* CAS strobe delay *I
I* OUTPUTS: *I
PIN 16 ... !CASEN I* CAS strobe enable *I
PIN 17 "" !CASOUT I* CAS delay input *I
PIN 18 ... !REFCAS I* CAS for refresh *I
PIN 19 ... !REFCYC I* We're in a refresh cycle . *I
PIN 20 !DTACK I* Data is valid on bus *I
PIN 21 !RASEN I* RAS strobe enable *I
PIN 22 BKO I* Small Bank bit 0 *I
PIN 15 ... BK1 I* small Bank bit 1 *I
I** OUTPUT TE~S: **I

*I

I* The data valid signal. Data is valid on the bus if we're not in a refresh
the board is selected, and something's happened. The burst cycle is timed by
CAS delay only. *I
DTACK

DTACK.OE

"'" SLAVE & !BORST & !REFACK & !REFCYC & DOE & RASDEL & CASDEL
i SLAVE & !BORST & DTACK
i SLAVE & BORST & ! REFACK & ! REFCYC & DOE & CASOUT & CASDEL & MTCR
i SLAVE & BORST & DTACK & MTCR;

... SLAVE;

I* The RAS enable strobe. If we're not in refresh, it goes as soon
as we're sure the board is selected. If refresh is called for,
start a RAS cycle after the CAS delay. *I
RASEN "" REFACK &

i REFACK &
i REFACK &
f REFACK &
i REFACK &
i REFCYC &
i REFCYC &

REFCYC & ! RASDEL & ! CASEN & SLAVE
REFCYC & RASEN & ! CASEN & SLAVE
REFCYC & RASEN & CASEN & ! BORST & ! SCRAM & ! DTACK
REFCYC & RASEN & SLAVE & BURST
REFCYC & RASEN & SLAVE & SCRAM
CASDEL & !RASDEL

RASEN & ! RASDEL;

Appendices

u

u

n

n

I* The CAS enable works differently for burst vs. non-burst. For non-burst,
it follows RASEN after DOE and MOX are asserted. In a burst cycle, it
follows MTCR. For refresh, CAS can't be enabled until we're sure that
RASDEL is negated, thus ensuring RAS precharge when a refresh cycle
immediately follows a standard memory cycle. */

CASOUT = !REFACK & !REFCYC & !BURST & RASEN & MUX& DOE
f !REFACK & !REFCYC & !BORST & CASOUT & DTACK & SLAVE • !REFACK & !REFCYC & BORST & !CASDEL & MTCR

' !REFACK & !REFCYC & BORST & CASOUT & MTCR • REFACK & REFCYC & !RASEN & !RASDEL • CASOUT & REFCYC & !RASEN;

I* The actual CAS that goes out is modified by our use of SCRAMs. If
SCRAMs are in use, CASEN goes low and stays low, while CASOOT works
the DTACK line. Otherwise, CASEN and CASOUT are the same. */

CAS EN a ! REFACK & ! REFCYC & ! SCRAM & CASOUT
f ! REFACK & ! REFCYC & SCRAM & CASOUT
f !REFACK & !REFCYC & SCRAM & CASEN & SLAVE;

&

I* This is the rest of the refresh machine. A refresh cycle starts with a
valid refresh acknowledge and the assertion of the standard and refresh
CAS. RAS for refresh is asserted one CASDEL later, and standard CAS is
negated at the same point. The refresh counter will clear REFREQ when
REFCYC is asserted, and clear REFACK when REFREQ is negated. */

REF CAS ... REFACK & REFCYC & !CASDEL & !RASDEL
f REFCAS & REFCYC & !MOX
t REFCAS & REFCYC & RASEN & !RASDEL;

REFCYC cz REFACK & !CASDEL & !RASDEL
t REFCYC & CASOUT & !RASDEL
f REFCYC & RASEN
t REFCYC & RASDEL;

I* Bank control. The bank is controlled by A23 and A22 for 4 Meg memory,
A21 and A20 for 1 Meg memory. *I

BKO ... A22 & MEG4
'A20 & !MEG4;

BKl ... A23 & MEG4
• A21 & !MEG4;

BIGRAMB/32

!RASDEL

A-7

A-8

A.1.4 CAS Control PAL

This device controls the CAS generation and banking. This must be programmed into a
15ns 20L8 PAL device or equivalent.

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

U304 i
0304 i
May 30, 1990 ;
3 i
Dave Haynie ;
Conunodore-Amiqa
BIGRAM ;
0304 i

I** I
I* *I
I* Zorro III BIGRAM DRAM CAS Select *I
I* *I
I* This device controls the CAS strobes, which control DRAM byte *I
I* enables and most siqnificant bank. *I
I* *I
1**1
I* *I
I* DEVICE DATA: *I
I* *I
I* Device: 20L8-15 *I
I* Clock: NONE *I
I* Unused: NONE *I
I* *I
I** I
I* INPUTS: *I
PIN 1
PIN 2
PIN 3
PIN 4
PIN 5
PIN 6
PIN 7
PIN 8
PIN 9
PIN 10 Cl

PIN 11 ...
PIN 13 ...
PIN 14 ::z

PIN 23 ...
I* OUTPUTS: *I
PIN 15 ...
PIN 16 ""' PIN 17 ...
PIN 18
PIN 19 g

PIN 20
PIN 21 ...
PIN 22 ...

!CASEN
!DTACK
!REFCAS
!REFACK
!DS3
!DS2
!DS1
!DSO

SCRAM
READ
MEG4

!CADDR
A24
A22

!CASLO
!CASL1
!CASL2
!CASL3
!CASHO
!CASH1
!CASH2
!CASH3

I* Normal CAS enable *I
I* Zorro III cycle te~nation *I
I* CAS for refresh cycle *I
I* We're in refresh *I
I* Zorro III data strobes *I

I* Usinq static column memories *I
I* Zorro III Read enable *I
I* Are we usinq 4 Meq parts? *I
I* ~olumn Address Valid *I
I* Address lines *I

I* Lower bank CAS *I

I* Upper bank CAS *I

I** INTERNAL TERMS: **I
I* The CAS lines are the hiqhest order banking control. If we're usinq 1 Meq
parts, lower is $0000000-$03fffff, upper is $0400000-$07fffff, so A22 controls
the bankinq. If we're usinq 4 Meg parts, lower is $0000000-$0ffffff, upper is
$1000000-$1ffffff, so A24 controls the bankinq. *I
lower

upper

! A2 4 & MEG4 & CASEN & CAD DR
f ! A22 & ! MEG4 & CASEN & CADDR;
... A2 4 & MEG4 & CAS EN & CAD DR
f A22 & ! MEG4 & CASEN & CADDR;

I** OUTPUT TERMS: **I
I* The CAS terms are simple. There are two banks of memory, and the bankinq
is controlled as above. On writes, the data strobes control the particular
CAS line, and we wait for WRDEL so that data is quaranteed valid on the
DRAM bus . On reads, all CAS lines in a bank are asserted ASAP . On
refresh, all CAS lines are asserted. *I
CASLO .,. lower & !READ & DSO

f lower & READ
f REFCAS;

CASL1 c lower & !READ & DS1 • lower & READ • REFCAS;

Appendices

u

u

u

n CASL2 "" lower & !READ & DS2
i lower & READ
i REFCAS;

CASL3 "" lower & !READ & DS3
i lower & READ
i REFCAS;

CASBO "" upper & !READ & DSO
i upper & READ
i REFCAS;

CASBl ""' upper & !READ & DSl
i upper & READ
i REFCAS;

CASB2 ""' upper & !READ & DS2
i upper & READ
i REFCAS;

CASB3 "" upper & !READ & DS3
i upper &
i REFCAS;

READ

n

n
B/GRAMB/32 A-9

A-10

A.l.S Refresh Counter PAL

This device is responsible for timing the CAS-before-RAS refresh used by the DRAM
system. This must be programmed into a 25ns 16R8 or equivalent device.

PARTNO
NAME
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

U306 ;
U306 ;
May 30, 1990 ;
1 ;
Dave Haynie ;
Commodore-Amiqa
BIGRAM ;
U306 ;

I** I
I* *I
I* Zorro III BIGRAM DRAM Refresh counter. *I
I* *I
I* This device is responsible for generating refresh request. *I
I* *I
I** I
I* *I
I* DEVICE DATA: *I
I* *I
I* Device: 16RB-25 *I
I* Clock: C7M *I
I* Unused: NONE *I
I* *I
I** I

I* INPUTS: *I
PIN 2
PIN 3

!REFACK
!REFCYC

I* BIDIRECTIONALS: *I
PIN 19 .. !REFREQ

I* USED INTERNALLY: *I
PIN 18
PIN 17 •
PIN 16 ...
PIN 15 D

PIN 14 .:::.
PIN 13 D

PIN 12

!RO
!Rl
!R2
!R3
!R4
!R5
!R6

I** INTERNAL TERMS: **I
field count D (R6 .. 0];

I** OUTPUT TERMS: **I

I* We're servicinq a refresh request *I
I* We're in a refresh cycle. *I

I* Refresh request *I

I* counter bits *I

I* The refresh request is asserted when the terminal count has been reached.
It's held until REFHOLD is asserted. *I

REFREQ.D = count:70
t REFREQ & ! REFCYC;

I* The refresh counter is pretty simple. We're assuming one refresh cycle
every 15,625ns, which works out fine for the Bms, 512 row 1 Meg parts
or the 16ms, 1024 row 4 Meg parts. However, the maximum TRAS period
is only 10,000ns, which must be taken into account to support burst
mode. counting 71 140ns C7M clocks qets me to 9,940ns, close enough.
The counter resets when REFCYC comes along. *I
RO.D = !REFCYC & !RO;

R1.D = !REFCYC & RO & !R1 • !REFCYC & !RO & Rl;

R2.D D !REFCYC & RO & Rl & !R2 • !REFCYC & !R1 & R2 • !REFCYC & !RO & R2;

R3.D co !REFCYC & RO & Rl & R2 & !R3
• !REFCYC & !R2 & R3 • !REFCYC & !R1 & R3 • !REFCYC & !RO & R3;

R4.D ... !REFCYC & RO & Rl & R2& R3 & !R4 • !REFCYC & !R3 & R4 • !REFCYC & !R2 & R4

Appendices

u

u

i !REFCYC & !Rl & R4 n i !REFCYC & !RO & R4;

RS.D "" REFCYC & RO & Rl& R2& R3 & R4 & !RS
i REFCYC & !R4 & RS
i REFCYC & !R3 & RS
i REFCYC & !R2 & RS
i REFCYC & !Rl & RS
i REFCYC & !RO & RS;

RG.D "" REFCYC & RO & Rl & R2 & R3 & R4 & RS & !R6
i REFCYC & !RS & R6
i REFCYC & !R4 & R6
i REFCYC & !R3 & R6
i REFCYC & !R2 & R6
i REFCYC & !Rl & R6
i REFCYC & !RO & RG;

n
BIGRAMB/32 A-ll

A-12

A.2 Schematics

The following pages contain the schematics for the example memory board. The list of
parts is as follows:

Capacitors
0.01 JJ.FMLC
0.10 J1F MLC
0.33 JJ.FMLC

47 JLF', 16V Electro
100 J1F, 16V Electro

Resistors
22 n, 5%, 1/4 Watt
lK n, 5%, 1/4 Watt

Resistor Packs
22 n, 4x8
lK n, 9x10

Post Jumpers
3 Pin, 0.100
2 Pin x 3 Pin, 0.100
2 Pin x 4 Pin, 0.100

Integrated Circuits
74F138
74F244
74F245
74F258
74F373
74F374
74F521
PAL 16L8B
PAL 16R8A
PAL20L8B
PAL20L8D
Tap Delay lOOns
Tap Delay SOns
DRAM 256K x 4, SOns

or 1M x 4, 80ns

C109
C100-C107 ,C200-C203,C300-C306,C400-C404
C500,C502,C504,C506,C508,C510,C512,C514,C516,C518,C520,
C522,C524,C526,C528,C530,C600,C602,C604,C606,C608,C610,
C612,C614,C616,C618,C620,C622,C624,C626,C628,C630
C108
CllO,Clll

R300,R301
RlOO

RP300-RP303,RP400-RP404
RPlOO

J200,J302,J303
J300
J301

U305
U303
UlOO,U104-U107
U400-U404
U101-U103
U202
U203
U200
U306
U300,U304
U201
U301
U302
U500-U53l,U600-U631

Appendices

u

u

u

n

n

n

Pr··~ _,r··ar -~-r··~~, -~:r··UF ':r··~ 'r··~~,
~

~~·· ~~:bcuo i±cut ~

.. I f·lllf ~~·~'•iy·•ar fOOUF rOOUF
,.

- ,.
N

!::- ..
r--.....

CNlOO
a:
(/)

•- •It¥

10
- •llf

RIUI_

.. , .
••• ... ~-~~~·E~~~~~~~-~ .. ••• ... -·- ~
Ill ,lK

~UNI TN:$;:;~~==~"~ RltrD
~b&urC... ' ~::~

C7tt,:::

:- n:r
.. - n:J
·- CIU ·- :"

::: ..-..:--~~t'"
1111 ..!!. .J.'

::: !=..!!.:";::=:a·~
1111.!!.

:: .!!. i

rtt 1-: m n QfCl
-FCO

:- IIIII
;,- IIIII
.- IIIU
f.- IIIII
i:,- IIIII
-- llln

nca~"~--._------~

:~:~==~----~-------~ 011 7--
~m:~

~-Ill '!- IIC.

~ :::c•
•- IICU

JERR<~::r---~•ii-111111
:: ~Urr

JST<~=:J.---....;~ 11011

74F244
-"TCR<:::r---------w.C

usoJ ~
11

BUS BUFFERS
<t LATCHES

50(7:0)

BIGRAMB/32

...... FCS -~--~-DAI3ls2J

• y B

AOC31:8J

A-13

A-14

'f .,f'
0•1111 Pllll!ll _ OeiUP POIII:II f·1111'

'· JCS
_CFOIN

FCO
FCI

..REFREQ
_SHUNT

DOE
_BERR

..R£FCYC

---t...c ------

·-~~ ·-

ID Al3la2l

ID 013110)

tl

~-I"J:L
~ftl .,.

17

If: II_

~ftl .,.

~

'7~F3'7~

R0 u2o2 a
I_

• .,,1 a
I_

'n~ g . - ,.eLK Q •• .. a a ••
ft& Ill Q II

p1 c, a -''

* i

+SV

J200 ~ t B~~ST ENABLE

...

. - -
I
.;': .

-~~IlK
jJ RPIOD -J. -:!:-.,

8'7 -,
" 86 II CD

86 "" I&

B~ c; I . 82 .7 81 ~ATCH -· ~ JEBJ ---n- 6 ,. " 6
lr. I 4
If: II 3
lr. I 2

U203
I". • 1
I(; II • 0

"' I

'7~F&21

LPAL2DLBD
l1o 100 s ~. 11 101 ~ 12 102 ~· 13 103
~~ 104 ~. 15 105 8 106
17 107

_;>

18
19
I UJU20
Ill
112

~ 113 ..___

BOARD CONTROL

_PRE CON

CFOLT

PAL18L8B -
-, 10 100 !-

11 101 :--
12 02

0
d

13 103
_ ... 14 104

IS 105 "'
~ 18 co ..

17 01 ..
p 18 "' 19

U200

DBOJR

-
CONFIGURATION

LET'S 00 SURFIN' NON. EVERl'BOD1''S LERRNIN' HOM. COHE ON A SAFAR(NtTH II!

CONFIGURATION RNO
BUFFER CONTROL

0 1110 COIIIIIIOOU IIUIJIIlSII 1'1AC11111!11
111 .. 111H c•r•a•a 111111 11 r• UIPVnlllfO,
CII11CIIII II&. •o IIIII RCIIT PllfiiTT IF
CIIIIIIIH 111111111 IICIIIII• IICo Ill liSle
IIP .. GUCIIII • IIICCUI~I 1r 1111 111 ... 1111
•n-r 1111 •••• •ana rs•1111M "
C-1 II ltiiCIU PIMIIIUio

C·A·D· GENERATED
II _.. Cllllll Mr R .. tl 1111 NC .. II

Appendices

~
';."~·:.~~~ ~ COMMODORE 1: SCHEHR TIC

BlGRAM Ziti ·-:1- -· •- nm• ~l:a I 3 1 X X X X rr·
[ICRU lOIII JSMUT 2 Of' 6

u

u

n
...I!E~ACK
.:RE CYC

C711

_luTCR
RST
DOE

_tELAVE
FACK

AIS1•2l

...

PRL18R8A

•SV

J303 ~ r PRAM/SCRAM

•SV
. J302 ~ r M:MSIZE IM/411

EFREQ

_MUX
2

":"

4 ..RASL

..RASH

:R~~E~c

_CASH I SID l

CAS SELECT

IF LOOKS COULD KILL 1"0 HEED A LICENSE FOR liT FACE

CONTROL AND
MACHINE

MEMORY
REFRESH

Cl IBIQ tCIIIIIIIICU IIIJIIICfiS ftlltHII£1
IIFIIMJIG CPfiiiU 11(1118 II til UIPUillh(D.
CllkFIDOIJ& 110 JIUI: lltiiT IIOP(III cr
CGDHUI IIJiliUI UC:Mll£1, IC· ., Ull·
antot.JUIM 01 OIICI.dllll IF t1UI SICUIMflh
II TIM IMI Pat• tcliTfll niRCIIIU IF
a- II IIIICfLt HHitlta.

c.n.o. GENERATED
It -~ -· Iff II IIIII tt m1 Oltlllll

BIGRAMB/32

~
r-c;.c:.r:l.~ COMMODORE . . ''""' SCHEHATlC . BIGRAM ZIII
r-·~~ .. ,.,.,
,_ 111m rl:ui31XXXX I~'

Rl.l NON£ IK££l 3 QP 6

A-15

A-16

JtUX c
Dl3la0) c

330/470 ·:; II • .- -
I I

lP41JG" ~

~ 330/470 ·:;
rva •
~· .. r\.10 ••. I II • " ..
~·' .

. II • ..
lP~R" ~

330/470 ·g 1'1.11
~~· I
~ ..
Nl I I !VI __._
~•o ·•·
~ I

~· . .
lP4a:f' ~

330/470 0 ~' ,,..
~· .
~.

~· •' I 1\J

~· .,

~· ..
\..it I. -•

lP4cT8 -::?-

-........ Rl31r2)

DRAM ADDRESS
MULTIPLEX

I

I

•

..
~ ..
~
~. .
~-
1.{

i.fo

v

::> _MALl9t0)

74F268

r-C>
fYR g_z .._f_

~ lOB.,

t-~1 11B = JE -lOC ~v 11C _l(f1L-,
IOD .
~~~~ J 

.. . .... I 

R~Fo 

~r 

_t1AHI9t0l 

74{2S8 
•n 

IYR a _z 

~ 
.. 

lOB ., 

t-~1 ~ 
11B = JE .....-. lOC ~.v. r--Y llC Jl I:JL-, • ·_v 

ta IY8w J .. ' 
R 

co
0

1 l~¥1 _j1 
~ 74F-268 

R 

IYn ~_z .~ 

~ lOB., 

t-~1 ij llB = JE .....- . lOC ·_v I ..I IlC _ll ~ 1 ~.v 1. r 100 .. • 
R 

llDw J 
w

0
1 ~~ 

~1 
·.; 

-~ 74F-268 
011£ 

IYR :g _z .. . 
lOB ., 

~I II ~ 
118 = JE I -lOC ....... • llC J[ ~ I ~Y, r 100 .. . ' 

£ 

llDw _l 

R~¥3 co
0

1 ; 

~r 
74F-268 

lOR 
IlR ~ J~ R 

0 

lOB ., 

r r IlB = JE I 

" -. IOC ;-r·_v. I llC Jt f:JL-, 
IOD . 
llDw J .. . I 

co
0

1 ~¥4 
~1 

KOW CAN WE SLEEP WHILE OUR BEDS ARE BURNING! 

0 1910 CIIKIUIDOR£ BUIIII£58 IIACHJICEI 
ID'IIMUII CIIIIIIIO 111111 II 1111 IIIPIIki&IU, 
CIIFIIIlllla. 110 llllll &lCIU PIIPIIU If 
CIIUOIIIIIl 111111111 111:11111, UC. Mf 1111. 
.PIOIIIICUD II IIIICLIIIIIl 01 1111 IIIIIMfUI 
IIIIUI Ill PIIM 1111111 PIUIUIII II 
~~ II ltiiCtU PlllllltO. 

Appendices 

u 

u 

u 



n 

n 

.JIII,IIoDI 

~ C>-----------+~ 

:U8 B===::::::ltt:H 

.JIII.CioQI 

.JIRSL C>--------+-K-1! 

::1111 B:=====:ttU 

...flAIL C>--------+-K-1! 

Jill B===::::::l~l 

LOW MEMORY BANK 
o·---•••-•• , ... nil_. ........... ~ . 

.. ,.a .. •--•-•• 
~ ....... IIU.IIC• •••• --· .... -... ··--··- .. - •tnu ICIUIIIII W -•-•n-••••· 

BIGRAM8!32 A-17 



u 

u 

.JIA&H o------+fl-l!ll!i 
::IIH B=====ltl• 

I Cllll"f ltfii!IIBO I cu•r ltfCII.L I Kll¥! I!!IGIT ClF lllrtl!IIO Ill 1U . 

HIGH MEMORY BANK 

01 ______ 

~ 
............. ~ COMMODORE 

=:!lC::::C-a.'-=at-r.t,..· SCII!IIATJC 
~----...... , •. BIORAH lll I =:cur.:.:':l:.r..':.-:-'• 1=1--___ ,_., ... - ~I31XXXX IT 
--~·:,;:c.::•:::-

u 
A-18 Appendices 



n 

n 

n 

A.3 Zorro III Configuration 

While presumably AmigaOS 2.0 will understand Zorro III AUTOCONFIG conventions, 
the following routine is useful for configuring simple Zorro III boards in an AmigaOS 1.3 
system. Note that many popular MMU configurations don't map in the Zorro III configuration 
space at $FFOOOOOO, so this program is not likely to work with an MMU mapping in place. 

I* A very simple configuration utility for Zorro III boards. This code will 
configure zorro III cards that are placed after any Zorro II cards in 
the A3000. All configuration is done based on 16 meg slots and no magic 
for autoboot, etc. Eventually 2.0 will do this better. *I 

finclude <execltypes.h> 
finclude <execlmemory.h> 
iinclude <librarieslconfigregs.h> 
finclude <librarieslconfiqvars.h> 
finclude <librarieslexpansionbase.h> 

. finclude <stdio.h> 
tinclude <ctype.h> 
tinclude <functions.h> 

I* =--==-=-=-===-~=--=======-==m=-=========--==-=--==-=-===--==·-= *I 
I* Modified configuration information. *I 
I* Extensions to the TYPE field. *I 
tdefine E Z3EXPBASE 
idefine E-Z3EXPSTART 
tdefine E-Z3EXPFINISB 
idefine E-Z3SLOTSIZE 
tdefine E:z3ASIZEINC 

tdefine ERT ZORROII 
tdefine ERT:zoRROIII 

OxffOOOOOOL 
OxlOOOOOOOL 
Ox7fffffffL 
OxOlOOOOOOL 
OxOOOlOOOOL 

ERT NEWBOARD 
oxstr 

I* Extensions to the FLAGS field. *I 
tdefine ERFB EXTENDED 
tdefine ERFF:EXTENDED 

static BoardSize(2](8] Q { 

SL 
(lL<<S) 

{ Ox00800000,0x00010000,0x00020000,0x00040000, 
Ox00080000,0xO~lOOOOO,Ox00200000,0x00400000 }, 

{ Ox01000000,0x02000000,0x04000000,0x08000000, 
OxlOOOOOOO,Ox20000000,0x40000000,0xOOOOOOOO } 

} ; 

tdefine ERFB QUICKVALID 
tdefine ERFF:QUICKVALID 

tdefine ERF SUBMASK 
idefine ERF-SUBSAME 
idefine ERF-SUBAUTO 
idefine ERF-SUBFIXED 
tdefine ERF:SUBRESERVE 

4L 
(1L<<4) 

OxOfL 
OxOOL 
OxOlL 
Ox02L 
OxOeL 

static SubSize(l6] Q { 

OxOOOOOOOO,OxOOOOOOOO,OxOOOlOOOO,Ox00020000, 
Ox00040000,0x00080000,0xOOlOOOOO,Ox00200000, 
Ox00400000,0x00600000,0x00800000,0xOOaOOOOO, 
OxOOcOOOOO,OxOOeOOOOO,OxOOOOOOOO,OxOOOOOOOO 

} ; 

idefine PRVB(x)if (verbose) { printf(x); } 

static BOOL 
static BOOL 
struct ExpansionBase 
static ULONG 

verbose Q TRUE; 
anyone ... FALSE; 
*ExpansionBase; 
Z3Space ... OxlOOOOOOOL; 

I* =--===-==--=-==-===--====-=-===--==-====================-==-aaa *I 
I* These functions are involved in finding a Zorro III board. *I 

I* This function reads the logical value stored at the given Zorro III 
ROM location. This corrects for complements and the differing offsets 
depending on location. *I 

B/GRAMB/32 A-19 



A-20 

UBYTE ReadZ3Reg(base,reg) 
WORD *base; 
WORD reg; 
( 

OLONG *Z3base; 
OWORD result; 

if (base == (WORD *)E EXPANSIONBASE) 
base +• (reg>>1);-
result a ((*base++)&Oxf000)>>8; 
result a ((*base)&Oxf000)>>12; 

else ( 
Z3base a (OLONG *) (base+(reg>>1)); 
result= ((*Z3base)&Oxf0000000)>>24; 
result I= ((*(Z3base+Ox40))&0xf0000000)>>28; 

} 
if (reg) result a -result; 

return (OBYTE)result; 

I* This function types the board in the system, returning the type code. 
There are four possibilities -- no board, a Zorro II board, a Zorro III 
board at the Zorro II configuration slot, and a Zorro III board at the 
Zorro III configuration slot. *I 

fdefine BT NONE 0 
fdefine B~Z2 1 
fdefine BT-Z3 AT Z2 2 
fdefine BT:z3:AT:z3 3 

BYTE TypeOfPIC () 
OBYTE type; 
OWORD manf; 

type a ReadZ3Reg(E EXPANSIONBASE,OxOO); 
manf a ReadZ3Reg(E~ANSIONBASE,Ox10)<<8 I ReadZ3Req(E_EXPANSIONBASE,Ox14); 

if (manf != OxOOOO && manf != Oxffff) ( 
if ((type & ERT TYPEMASK) ...,.. ERT ZORROII) return BT Z2; 
if ((type & ERT~YPEMASK) -= ER~ZORROIII) return B!'_Z3_AT_Z2; 

} 
type= ReadZ3Reg(E Z3EXPBASE,Ox00); 
manf = ReadZ3Req(E:z3EXPBASE,Ox10)<<8 I ReadZ3Reg(E_Z3EXPBASE,Ox14); 

if (manf != OxOOOO && manf !a Oxffff) 
if ((type & ERT_TYPEMASK) ...,.. ERT_ZORROIII) return BT_Z3_AT_Z3; 

return BT_NONE; 

I* This function fills the configuration ROM field of the given 
ConfiqDev, fo~ the given address, based on the appropriate mapping 
rules. *I 

void InitZ3ROM(base,cd) 
WORD *base; 
struct ConfigDev *cd; 
{ 

struct ExpansionRom *rom; 

rom = &cd->cd_Rom; 

rom->er Type a ReadZ3Req(base,Ox00); 
rom->er-product = ReadZ3Reg(base,Ox04); 
rom->er-rlags a ReadZ3Req(base,Ox08); 
rom->er~eserved03 = ReadZ3Reg(base,Ox0c); 
rom->er~nufacturer = ReadZ3Reg(base,Ox10)<< 8 I ReadZ3Reg(base,Ox14); 
rom->er-serialNumber; ReadZ3Req(base,Ox18)<<24 1 ReadZ3Req(base,Oxlc)<<16 
ReadZ3Req(base,Ox20)<< 8 1 ReadZ3Req(base,Ox24); 
rom->er InitDiagVec = ReadZ3Reg(base,Ox28)<< 8 I ReadZ3Reg(base,Ox2c); 
rom->er~eservedOc = ReadZ3Reg(base,Ox30); 
rom->er~eservedOd = ReadZ3Reg(base,Ox34); 
rom->er-aeservedOe a ReadZ3Req(base,Ox38); 
rom->er~eservedOf = ReadZ3Reg(base,Ox3c); 

I* This function locates a zorro III board. If it finds one in the 
unconfigured state, it allocates a ConfiqDev for it, fills in the 
configuration data, and returns that configDev. Otherwise it returns 
NOLL. It knows the basics of what to do should it encounter a 
Zorro II board sitting in the way. *I 

struct ConfigDev *FindZ3Board() 
struct configDev *cd; 

while (TRUE) { 
if (! (cd a AllocConfiqDev())) return NOLL; 

Appendices 

u 

u 

u 



n 

} 

switch (TypeOfPIC()) { 
case BT NONE : 

FreeconfigDev(cd); 
return NULL; 

case BT Z2 : 
PR~("FOUND: Z2 Board, configuring"); 
if (!ReadExpansionRom(E EXPANSIONBASE,cd)) 

if ( ! ConfigBoard (E :EDANSIONBASE, cd) ) 
AddConfigDev (cQ) ; 

anyone = TRUE; 
break; 

case BT Z3 AT Z2 : 
PR~("rbuRb: Z3 Board (Z2 Space), Configuring"); 
InitZ3ROM(E EXPANSIONBASE,cd); 
cd->cd Boar~ddr = (APTR)E EXPANSIONBASE; 
anyone-= TRUE; -
return cd; 

case BT Z3 AT Z3 : 
PR~("rboRb: Z3 Board (Z3 Space), Configuring"); 
InitZ3ROM(E Z3EXPBASE,cd); 
cd->cd Boar~ddr = (APTR)E Z3EXPBASE; 
anyone-= TRUE; -
return cd; 

return NULL; 

I* -=-=-=-====-=-=====--====-========---===-======-==========~ *I 
I* These functions are involved in configuring a Zorro III board. *I 
I* This function writes the configuration address stored in the given 

configDev to the board in the proper way. *I 
void WriteCfgAddr(base,cd) 
UWORD *base; 
struct ConfigDev *cd; 
{ 

OBYTE nybreg(4),bytereg[2),*bytebase; 
UWORD wordreg,i,*wordbase; 

wordreg = (((OLONG)cd->cd BoardAddr)>>l6); 
bytereg(OJ = (OBYTE) (wordreg & OxOOff); 
bytereg[l) = (OBYTE) (wordreg >> 9); 
nybreg[O) = ((bytereg[OJ & Ox0f)<<4); 
nybreg(l) = ((bytereg[O] & OxfO)); 
nybreg[2) = ((bytereg[l) & Ox0f)<<4); 
nybreg[3) = ((bytereg[l) & OxfO)); 

bytebase = (OBYTE *)(base+ 22); 
wordbase = (OWORD *)(base+ 22); 

if (base = (OWORD *)E EXPANSIONBASE) 
(*(bytebase+Ox002)f= nybreg[2); 
(*(bytebase+OxOOO)) = bytereg(l); 
(*(bytebase+Ox006)) = nybreg[l); 
(*(bytebase+Ox004)) = bytereg[O]; 

else { 
(*(bytebase+Oxl04)) = nybreg[OJ; 
(*(bytebase+Ox004)) = bytereg[O]; 
(*(bytebase+OxlOO)) = nybreg[2]; 
(*(wordbase+OxOOO)) = wordreg; 

I* This function automatically sizes the configured board described by the 
given ConfigDev. It doesn't attempt to preserve the contents. *I 

void AutoSizeBoard(cd) 
struct ConfigDev *cd; 
{ 

OLONG i,realmax,logicalsize = 0; 

realmax = ((OLONG)cd->cd_SlotSize) * E_Z3SLOTSIZE + (OLONG)cd->cd_BoardAddr; 

for (i = (OLONG)cd->cd BoardAddr; i < realmax; 1 += E_Z3ASIZEINC) 
*((OLONG *)i) = 0;-

for (i = (OLONG)cd->cd BoardAddr; i < realmax; 1 += E_Z3ASIZEINC) 
if (*((OLONG *)i) r= 0) break; 

} 

*((OLONG *)i) = OxaaSSOOff; 
if (*((OLONG *)i) != OxaaSSOOff) break; 
log1cals1ze += E_Z3ASIZEINC; 

cd->cd_BoardSize = (APTR)logicalsize; 

BIGRAMB/32 A-21 



A-22 

I* This function configures a Zorro III board, based on the initialization 
data in its ConfigOev structure. *I 

void ConfigZ3Board(cd) 
struct ConfigDev *cd; 
{ 

APTR base a cd->cd BoardAddr; 
UWORD sizecode,extended,subsize; 
OLONG physsize,logsize; 
char *memname; 

I* First examine the physical sizing of the board. *I 
sizecode = cd->cd Rom.er Type & ERT MEMSIZE; 
extended = ( (cd->cd_Rom.er_Flags & ERFF_EXTENOED) != 0); 

physsize = BoardSize[extended] [sizecode]; 

cd->cd BoardAddr = (APTR)Z3Space; 
cd->ca-BoardSize = (APTR)physsize; 
cd->cd-SlotAddr = (Z3Space-E Z3EXPSTART)IE Z3SLOTSIZE; 
cd->ca-SlotSize = ((physsize7E Z3SLOTSIZE)50)?(physsizeiE Z3SLOTSIZE):1; 
Z3Space += cd->cd_SlotSize * E:Z3SLOTSIZE; -

I* 

I* Next, process the sub-size, if any. *I 
if (subsize = (cd->cd Flags & ERF SOBMASK)) 

cd->cd_BoardSize ;;: (APTR) SubSi'ze [subsize]; 

if (verbose) { 
printf(" BOARD STATS:"); 
printf(" ADDRESS: $%lx",cd->cd_BoardAddr); 
if (cd->cd BoardSize) 

printf~ SIZE: $%lx",cd->cd_BoardSize); 
else 

printf(" SIZE: AUTOMATIC=>"); 

I* Now, configure the board. *I 
WriteCfgAddr(base,cd); 
if (!cd->cd BoardSize) 

Autosizeboard(cd); 
printf("$%lx",cd->cd_BoardSize); 

if (cd->cd BoardSize && (cd->cd Rom.er Type & ERTF MEMLIST)) { 
strcpyTmemname = (char *)AlrocMem(2t>L,MEMF cLED.), "Zorro III Memory"); 
AddMemList(cd->cd_BoardSize,MEMF_FASTIMEMF~OBLIC,10,cd->cd_BoardAddr,memname); 

AddConfigDev(cd); 

*I 

I* This is the main program. *I 
void main(argc,arqv) 
int argc; 
char *argv[]; 
{ 

int i; 
struct configOev *cd; 

if (!(ExpansionBase = (struct ExpansionBase *)OpenLibrary("expansion.library",OL))) 
printf("Error: Can't open "expansion.library""); 
exit(10); 

} 
if (argc > 1) 

for (i = 1; i < argc; ++i) switch (toupper(arqv[i] [0])) 
case 'Q' : verbose c FALSE; break; 
case 'V' : verbose "" TRUE; break; 

while (cd = FindZ3Board()) ConfigZ3Board(cd); 

if (!anyone) PRVB("No PICs left to configure"); 
CloseLibrary((struct ExpansionBase *)ExpansionBase); 

Appendices 











n 

n 

ARCNET 
by Joseph E. Augenbraun 

Introduction 

ARCNET is designed to be a low cost computer network. It worlcs on a modified token 
passing scheme, has a data rate of 2.5 M bits per second and automatically reconfigures itself 
as nodes are added or removed from the network. Every node has an ID number associated 
with it, the node number being set on a row of 8 DIP switches. ARCNET supports up to 255 
nodes. 

Below is a table comparing ARCNET to several other popular networking alternatives. It 
shows that while Ethernet is significandy faster, ARCNET is less expensive. It also shows 
that while the cost of LocalTalk/AppleTalk is low, the speed is extremely low too. This 
makes ARCNET competitive for applications where the cost of Ethernet is prohibitive, but 
good performance is necessary. 

Network Hardware Local Talk ARCNET Ethernet 
Popular network software Apple Talk Novell TCP/IP 
Speed (Mbit/second) 0.3 2.5 10 
Cost Low Medium High 
Typical Installation Macintosh IBM PC Minicomputers 

There are many different kinds of software that may be run on any given type of network 
hardware; the table gives the most popular. Likewise, the typical installation item is only 
there to give an idea of where each network became most popular. There is now a trend 
towards total separation of network hardware and software (a sort of a mix and match 
approach). Thus you have Apple Macintosh installations running Apple Talk over Ethernet, 
IBM/PC's running Novell over ARCNET, or Commodore's planned implementation of 
TCP/IP for ARCNET. 

Interfaces 

ARCNET allows for different physical transmission mediums, that is "interfaces" . No 
matter which interface is used, protocols remain the same, the interfaces simply differ in 
electrical and topological characteristics. The following interfaces are available for 
ARCNET: 

ARCNET 1 DevCon90 



Star type (sometimes refe"ed to as LAND) 

The star type network uses 93 ohm coax to connect nodes together. Each node on a star 
network is connected to a dedicated port on a device called a "hub". If there is need for more 
devices than pons available on the hub, another hub must be purchased. Communication is 
typically via a 15 volt peak to peak voltage, and there may be up to 2000 feet between any 2 
nodes. This was the original interface available for ARCNET .• 

Server 

Passive Hub Client 

Client 

Client 

When setting up a star network, devices are connected together using either a "passive hub" 
or an "active hub." Passive hubs are inexpensive, but are only used for up to 4 nodes. If more 
nodes are needed in a star networlc, active hubs must be used. They are available with 
different numbers of ports, and can be ganged together, or can be connected as a unit on 
another active hub, as shown below. Note that use of multiple active hubs reduces the 2000 
foot maximum distance between most distant nodes. 

Server 

1st Oient 

2nd Client 

6th Client 

8 Port Active Hub 7th Client 

8th Client 

13th Client 

DevCon90 ARCNET 

u 

u 

u 



n 

Bus type (sometimes refe"ed to as HIT) 

The bus type network also uses 93 ohm coax to connect nodes together, but the ends of the 
cable must also be terminated with 93 ohm terminators. Up to 8 nodes may be connected 

Server ltst Client I 
~93ohm ~ I I ~ 

l2ndClient I - - - - 17th Client I 
together via BNC T connectors as long as the cable length is no greater than 1000 feet. Other 
lengths and numbers of nodes may be used as shown in the table below. 

"'~""UUUCII 
M•'lf 

2 1428fecl-...- 11 783fcet 
3 1356feet 12 711 feet 
4 1285feet 13 640feet 
5 1213feet 14 568fcet 
6 1141 feet 15 496feet 
7 1070feet 16 425fcet 
8 998feet 17 353fcct 
9 926feet 18 281 feet 

10 855foct 19 210fcct 

The number of nodes on a network may be increased by adding things known as "Active 
Links". These are devices that have 2 BNC connectors on them, and can be thought of as 
repeaters from one bus network to another. The active link counts as a node on each of the 2 
buses that it is connecting together. 

Twisted pair 

The twisted pair interface is designed to use ordinary twisted pair cable that is often already 
available in many large buildings. Network cost is reduced because special purpose coax 
cable does not have to be run. 

ARCNET 3 DevCon90 



Fiber optic 

The tiber optic interface uses light as the network medium. The topology is similar to the 
star type network. The advantages of the fiber optic interface is noise immunity and longer 
distances between nodes being possible. 

Combination of Bus and Star 

Bus and star type networks can be combined as long as some simple rules are followed. 
When a bus type device and a star type device are on the same cable, the star device must 

· never be turned off, the star deVice should be at the end of the cable (no terminator is used), 
and the use of passive hubs. is not allowed. The distance from the bus device to the furthest 
node can be no greater than 1500 feet. These rules allow bus type devices to be connected to 
active hubs and star type devices, as shown in the example below: 

Active 
Hub 

Network Protocol 

Data transfer in ARCNET is based on a modified token passing scheme. A token passing 
scheme is one in which a magic cookie, called a token, is passed from one node to another 
until each node has had the token, and the token goes back to the first node. The only node 
which may send a message is the one that cmrently holds the token. ARCNET calls their 
token passing scheme "modified" because all passes of the token are acknowledged by the 
receiving node. 

DevCon90 4 ARCNET 

u 

u 

u 



If a node wishes to send a packet of data it waits until it receives the token. Then the node 
transmits a free buffer enquiry message to the node it wishes to send data to. If the receiving 
node cannot accept the data packet, it transmits back a negative acknowledgement message, 
and the transmitting node gives up (it will try again when it next gets the token) and passes 
the token on to the next node in the chain. If the receiving node can accept the data packet, it 
transmits back an acknowledgement message, the transmitting node sends the data packet, 
and the receiving node verifies the data. If the data was successfully received, the receiving 
node transmits an acknowledge message. If it wasn't, the receiving node doesn't transmit 
anything. If the transmitting node doesn't receive an acknowledge it tries to resend the data 
packet After this is done, the transmitting node passes the token to the next node on the 
chain. 

Line Protocol 

The lowest level of any digital communications medium is the transmission of "1 "' s and 
"0"' s. ARCNET uses something called an "Isochronous" line protocol. This means that 
there is a constant time separating each data bit, whether it is a "1" or a "0". Each bit is 
transmitted in exacdy one 400 ns clock interval. A "1" is indicated with a 200 ns pulse 
within the clock interval A "0" is indicated by the lack of a pulse. Information is 
transmitted as 8 bit bytes. Each byte is preceded by 2 bits of logic "1" and followed by one 
bit of logic "0". Thus it takes eleven clock periods of 400 ns each or 4.4 J.I.S to transmit one 
byte. The line idles in the logic "0" condition. All transmissions start with something called 
an "alert burst". An alert burst is six contiguous intervals of logic "1 ". This allows the 
receiving node to phase lock its receiving clock before any real information is sent There 
are five different kinds of information that may be sent by a node: 

Invitation to transmit 

The invitation to transmit passes the token from one node to another. It consists of an alert 
burst followed by the EOT (End Of Transmission, ASCU Ox4) character, followed by 2 
repeated DID (Destination ID) characters. In this case the DID character is the ID number of 
the next node in the token chain. 

Free buffer enquiries 

The free buffer enquiries message is used to ask another node if it can accept data. It consists 
of an alert burst followed by the the ENQ (ENQuiry, ASCll Ox85) character, followed by 2 
repeated DID characters. In this case the DID character is the ID number of the node that we 
want to send data to. 

ARCNET 5 DevCon90 



Data packet 

This is the message that actually sends data. It consists of an alert burst followed by the SOH 
(Stan Of Header, ASCH Ox1) character, followed by 2 repeated DID characters, which is the 
ID number of the node that we are trying to send data to. This is followed by either the 
COUNT character in the case of a shon packet or ASCU OxO followed by the COUNT 
character in the case of a long packeL The COUNT character is related to the number of data 
bytes as follows: 

Shon Packet: COUNT= 256 - Number of data bytes 
Long Packet: COUNT= 512- Number of data bytes 

This is followed by the data, followed by 2 CRC characters. The CRC polynomial is X16 + 
xl' +r+t. 

Acknowledgement 

This message is used to acknowledge the successful reception of a packet, or as an 
affirmative response to a free buffer enquiries message. The acknowledge message consists 
of the alert burst followed by ACK (ACKnowledge, ASCU Ox86). 

Negative acknowledgement 

This message is used as a negative response to a free buffer enquiries message. It consists of 
an alen burst followed by a NAK (Negative ACKnowledge, ASCU Ox15). 

Network Recontiguration 

Whenever a new node is activated or an existing node doesn't receive the token for 840 ms, a 
NE'IWORK RECONFIGURA TION is performed. The node initiating the NE'IWORK 
RECONFIGURATION starts by sending a RECONFIGURE BURST. This is eight logic 
"1 "'s followed by one logic "0" repeated 765 times. This burst is longer than any other type 
of transmission, which causes the destruction of the token, and the termination of all other 
activity on the network. 

The second phase of the NE'IWORK. RECONFIGURATION starts when any node sees an 
idle line for more than 78.2 J.LS, which only occurs when the token is lost, whether due to the 
first phase of NE'IWORK. RECONFIGURA TION or for some other reason. 

DevCon90 6 ARCNET 

u 

u 



n 

In this phase each node starts an internal timeout of 146 x (255 - ID number) JlS· The NID 
(Next ID) register on each node is set to its own ID number. If any given node doesn't see 
line activity before its timer times out, it tries to pass a token to a node with an ID equal to 
the cmrently stored NID. Within a given network, only the node with the highest ID number 
will try to do this. After generating the token, the node waits for line activity. If there is no 
activity for 74.7 J.I.S, the node increments the NID register (mod 256), and transmits a token 
with that new value. It continues doing this until it finds a node to pass the token to. 

Once the token is successfully passed to the next node, this node releases the line, and the 
next node goes through the same excercise to figure out what the next node in the chain for it 
is. Each node then stores the number of the next node in the chain, so it can instantly pass 
the token to the next node in the chain without having to muck about with transmitting to 
nodes that don't exist. 

The time required for NETWORK RECONFIGURA TION depends on the number of nodes 
and cable lengths, but is normally in the range of 24 - 61 ms. 

There is another facility available known as BROADCAST MESSAGES. A BROADCAST 
MESSAGE allows any given node to transmit data to all nodes simultaneously. ID number 
zero is reserved for this feature, so no node on the network can be assigned ID number zero. 

Commodore Implementation 

Commodore now has ARCNET hardware available for both the ASOO and A2000/A3000. 
The AS60 plugs plugs onto the side of an ASOO, and comes with a replacement power supply 
for your ASOO that prpvides the extra power required to drive the AS60. The AS60 has 
provisions to accept an optional internal! Mbyte memory expansion board. The A2060 
plugs into any 100 pin Zoiro n slot; both cards have bus-type ARCNET interfaces. 

Commodore is currently developing AmigaOOS client software for Novell Netware and 
AmigaJNFS software including TCP/IP support for the Amiga series of computers. Details 
on AmigaJNFS are covered in a seperate DevCon session. + 

ARCNET 7 DevCon90 



:n 

n 

. . 











n 
SANA: Standard Amiga Network 
Architecture 
Preliminary Specification 
by Dale Luck 
Commodore-Amiga, Inc. 

A network is a collection of services that allow the sharing of resources such as printers and 
disk drives by multiple users on a single computer , and the transmission of information such 
as electtonic mail and files from one computer to another. 

Most networks are designed as series of layers, each one using the services of the layer below 
it. Data coming from the application program, traverses the software layers until it reaches 
the physical hardware and is sent to the destination host's physical hardware. The data then 
rises through the layers on the host machine until it reaches the destination application. The 
reason for this layering is to provide a way of solving the myriad of problems that come up in 
a network environment. Some of these problems are: 

Cl Connection failure due to hardware crash or OS crash 

Cl Network traffic jams and congestion 

Cl Packet (unit of information exchange) cormption, loss, delays, duplication, and 
sequence errors . 

Cl Bridging and routing of packets from a host on one network 
to a host on another network 

Cl Multiple logical connections per transpon mechanism 

Cl Concurrent support of different types of network hardware 

Q Providing high level program and user oriented services 

Q Monitoring and maintainability 

Each layer in the architecture provides solutions to one or more of these various problems. 
Higher level layers are able to depend on the lower layers for solutions to low-level problems 
and can then concentrate on providing solutions for higher level problems. 

AmlgaNetworlc 
Architecture 

1 DevCon90 



Existing Layering Models 

The ISO-OSI 7layering model is shown below. (lntemation Standards Organization, Open 
Systems Interconnect) 

Application 

Presentation 

Session 
Transport 

Networlc 
Data Link 
Hardware 

Hardware Specifies electrical characteristics of the transport medium as well as the 
procedures used to arbitrate the use of the data carrying mechanism. 

Data Link Specifies the format of the frames or packets that are sent on the hardware. 
How to recognize frame start and stop as well as some error detection for 
recognizing corrupt packets. It specifies an exchange of acknowledgments 
that allows two machines to know when a packet has been successfully 
transferred. 

Network Specifies the destination addressing and routing. It breaks packets into smaller 
fragments that are too large for the Data Link layer. It takes care of network 
congestion problems. 

Transport Provides end-to-end reliable connection between the destination and source 
hosts. Provides extra level of error detection and correction to make sure that 
no computer in the middle has failed. 

Session Provide authentication, accounting, type of transmission mechanism, insuring 
that a group of network operations are not aborted when only partially 
complete. 

Presentation A collection of routines for data transformations. Useful for data 
compression, translation, and dealing with different type of terminals. 

Application Examples include electronic mail, remote device sharing, and file sharing. 

DevCon90 Amlga Network 
Arch/t8CtUTB 

u 

u 

u 



n 
Not all layers are used for every type of data transfer. Many applications talk directly to the 
transport layer and do their own connection authentication, data translations, and user . 
interface management. 

The Internet Layering Model: 

Application 

Transport 

Internet 

Network Interface 

Hardware 

Application Basically the OSI (session, presentation, and application) in one. 

Transport Also similar to the ISO-Transport layer. However it further insures proper 
delivery by using acknowledgements and retransmission. It also fragments the 
data stream into pieces for lower layers. 

Internet 

Network 
Interface 

Hardware 

Error checking, routing. 

Accepts Internet datagrams formats them for the particular hardware and 
transmits them. 

Same as the OSI model. 

It will be apparent in the following discussion that layering is the appropriate method to use 
for the Amiga network atehitecture. 

Amlga Network 
Architecture 

3 DevCon90 



There are three main questions that when answered help describe a particular network: 

Cl What type of hardware is used to transmit data between computers? 
Ethernet, Arcnet, serial, parallel, FDDI, flashtalk, localtalk 

Cl What protocol is used to send information between programs? 
TCP/IP, IPX/SPX, DECnet, Tops, DDP, XNS 

a What kinds of capabilities does the network provide? 
File sharing, device sharing, electronic mail, remote session 

The hardware connections can usually be summed this way: the higher the cost, the faster 
and more reliable the network. Connection types range from being built into every computer 
such as a standard serial interface at 19200 baud which is basically free, to plug boards that 
support the FDDI (Fiber Optic) standard at 100,000,000 baud which cost about $4000 per 
node. Here is a table of example network hardware available today: 

Hardware Speed Estimated Access 
name bits/sec cost per node Control 

Serial 19,200 $15 None needed 
Local Talk 250,000 $75 CSMAJCA 
Arcnet 2,500,000 $250 Token Bus 
Ethernet 10,000,000 $400 CSMA/CD 
FDDI 100,000,000 $4000 Token Ring 

Protocols give programs the ability to communicate with each other without knowing the 
details of the physical hardware that transmits the data. Various protocols have become 
dominant in different markets and on specific vendors computers: 

TCPIIP is the dominant protocol used on Unix machines. 
DECnet is the dominant protocol used on DEC machines. 

AppleTalk is the dominant protocol used by Apple Macs. 
IPX!SPX (Novell) is one of the protocols used by mM PC compatibles. 
OSI is a recent protocol defined by ISO. 

There are other protocols as well. 

DevCon90 4 Amlga Network 
Art:hltecturs 

u 

u 

u 



Each implementation of a protocol accepts data from a sending program. formats the data in 
a particular way for addressing and error recovery and sends it as a packet to the hardware. 
The receiving hardware accepts the packet of data and sends it to the protocol handler on the 
destination machine. The protocol handler decodes the specially formated packet, extracting 
the original data that the sender transmitted, decodes the fmal destination address and sends 
the data to the intended receiving program. 

Each protocol standard generally has a different way of doing this service since they were 
developed in different environments at different time periods and to take care of different 
needs. They differ on the number of computers they can talk to and how they handle errors. 

Theoretically, each protocol is independent of the actual hardware that transmits the 
information. The types of services that are available to users varies a great deal depending on 
the network. Some support electronic mail (email) from one user to another user. Some 
allow sharing individual printers by more than one user or computer. Some allow backups 
of hard disks on different machines in the network to be done by a single tape drive on one of 
the computers in the network. Some allow file copying from one computer to another, and 
some allow transparent flle access/sharing of entire file systems or directories from one main 
file server to several users on different computers. 

These services are theoretically independent of the protocol used by the network. 

In the world as it exists today, the theoretically possible is not necessarily the available. 

CJ Some protocols are not implemented on some computers. 

CJ Some types of network hardware are not supported by some protocols. 

CJ Most network services and applications do not support all popular protocols. 

CJ Many networks only support one of the available protocols. 

CJ Some applications are written using a particular programming interface to the 
network making it difficult to move that program to another machine that uses 
a similar function interface but with a different syntax. 

Given all these possible compatibility problems how does one define a network architecture 
that will provide interoperability? 

Amlgs Network 
Architecture 

5 DevGon 90 



Definition of lnteroperability 

Interoperability is the ability of software and hardware on multiple machines from multiple 
vendors to communicate meaningfully. The answer is in defining an architecture that is 
hardware and protocol independent and that maintains a consistent and full function interface 
between all the hardware and protocol independent modules. If we take a look at 
dependencies we see that applications and services use protocols and protocols use hardware. 
A very simple layering model can be drawn that shows this: 

Application 

Protocol 

Hardware 

The simple layering model gives the basic idea of dependencies however it implies that only 
a single application talks to a single protocol which interfaces to only a single piece of 
hardware at any one time. 

What we want is to have multiple applications possibly running with multiple protocols over 
more that one type of network hardware. To have more than one protocol access either a 
single piece of hardware or have a single protocol access more than one type of hardware or 
any combination of the two, we cannot have the protocol layer interfacing directly to the 
hardware. There needs to be another layer insulating the two and presenting a set of device 
independent functions to the _protocol software. This layer is the Data Link (ISO-OSI) or the 
Network Interface layer (Internet model). The job of this layer is to: 

0 Accept packets from one or more protocol sources on this computer and 
destined to another computer on this particular network hardware. 

0 Combine them into a stream of packets (multiplexing) and give them to 
the hardware to be sent to the destination computer. 

0 Accept packets from the hardware destined for this local computer and to 
any protocol. 

0 Separate packets based on packet type (demultiplexing) and send them to the 
appropriate protocol service 

0 Hide the details of this particular type of network hardware made by this 
particular vendor from the higher level layers. 

DevGon 90 6 Amlgs Network 
Architecture 



Since the primary job of this layer is the multiplexing and demultiplexing of packets between 
the upper level layers and the lower level hardware layer, we call this Network Multiplexing 
Layer. 

Application 

Protocol 

Network Multiplex 

Hardware 

Novell has additionally split the Network Multiplexor layer into two layers: 

Protocol 

Link Support Layer 

Multiple Link Interface Device 

Hardware 

Quoting from The Open Link Interface Specification: The Novell Position: 

"The Link Support Layer provides the link between a protocol stack 
and the appropriate adapter driver. It controls queues for outbound 
packets and routes received packets to the correct protocol stack." 

The :MLIDs are simple device interface drivers for a particular type of network interface 
hardware made by a particular vendor. The SANA NetMux layer can be seen as doing the 
job of both Novell's LSL and :MLID since we feel that the LSL may need to be tied closer to 
the hardware as well as there may be a severe performance penalty for program control going 
through the additional layer. This position may change in the future given supporting 
evidence for the additional layer. 

Am/ga Networ/c 
Architecture 

7 DevCon90 



How is the NetMux layer going to be implemented on the Amiga? 

Cl Using the Amiga device software model, the NetMux can be sent messages from more 
than one protocol stack and process them in sequential order. This is the nature of an 
Amiga device driver. 

Cl The device driver is responsible for taking care of the hardware specific details, such as 
addressing and local buffering. 

a The device driver will be programmed to accept packets destined for the local address, 
ignoring all other packets. The hardware itself may be able to accomplish this function. 
If not, it will have to be done by software itself. 

Cl By requiring all packets to be self identifying, the device driver will use some type of 
identification function that will allow it to direct the packets to the proper protocol 
stacks. This identification function will be specified by the individual protocol stacks. 

The Protocol Layer 

Each network protocol stack will send packets to and receive packets from the NetMux. 
Since each NetMux will respond to the same commands, making the protocol work with 
different devices will be greatly simplified. 

The network protocol stacks also interface to higher level layers, such as the application 
layer. The protocol stacks must be able to establish and maintain multiple logical connections 
over a single protocol space for one or more concmrent applications. . 

Cl Open and close multiple logical connections from different or the same processes 

a Accept data from multiple processes 

Cl Provide some control over the workings of the logical connection for the application. 
(buffering, etc.) 

a Create protocol packets specifying final process destination based on protocol addressing 
model. 

a Send packets to any required NetMux' s 

a Accept packets from any of the available NetMux' s. 

Cl Strip protocol dependent information and route the data to the intended process. 

DevCon90 8 Amlga Network 
Architecture 

u 

u 

u 



n 

Since each protocol stack must support multiple process's concurrent access to this service, 
the Amiga device model is again used. The message based communication method 
conveniently hides most of the internal details of how this protocol stack does its work. 

Network Interface Library 

Although applications can be written to talk directly to the Protocol layer with the Amiga 
device commands and IOReq's, it is recommended that they be written to use one of the the 
industry standard network interface routines or libraries. 

For example: 

BSD sockets - used on most Unix machines 
TU - usedbyAT&TforSVR4 
NetWare IPC - used by Novell 

The Network Protocol Devices (NPDs) will provide all the capabilities required by the 
Network Interface Libraries. Because the NPDs are a separate layer, not part of the 
application interface routines, and designed to use the Amiga device software model, they 
will support more than one kind of network interface library concurrently. This will make it 
possible to run applications base on BSD sockets at the same time as applications based on 
AT&T's SVR4-TLI interface or applications written using the Novell interface libraries. 

Now we have an additional conceptual layer that is actually part of the application, so our 
model now looks like this: 

Applications 

Network Interface Libraries 

Protocols 

Network Multiplexers 

Hardware 

Amlga Network 
Architecture 

<--Message Interface 

<--Message Interface 

9 DevCon90 



At present, SANA is an on going research and development project. All specifications are 
subject to change. Suggestions, comments, criticisms, and grammar corrections are welcome. 

Additional Commodore-Amiga documents relating to SANA: 

CJ Autodocs for the ipc device mechanism. These describe the current set of commands that 
the Protocol layer must support. 

a Autodocs for the ipcmem device. These describe the current set of commands that the 
Network Multiplexor must support. 

Suggested Reading 

Computer Networks 

lnternetworldng with TCPIIP 

Inside AppleTalk 

The Open Link Interface 

Andrew S. Tanenbaum 

Douglas Comer 

Gursharan Sidhu, Richard Andrews, 
and Alan Oppenheimer 

Specification: The Novell Position Novell, Inc. 

DevCon90 10 Amlga Network 
Architecture 

u 

u 



TABLE OF CONTENTS 

ipc.device 
ipc.device/AbortiO 
ipc.device/BeqiniO 
ipc.device/CloseDevice 
ipc.device/CMD_CLEAR 
ipc.device/CMD FLOSH 
ipc.device/CMD-INVALID 
ipc.device/CMD READ 
ipc.device/CMD-RESET 
ipc.device/CMD-START 
ipc.device/CMD-STOP 
ipc.device/CMD UPDATE 
ipc.device/CMD-WRITE 
ipc.device/Expunqe 
ipc.device/IPCMD_ACCEPT 
ipc.device/IPCMD CONNECT 
ipc.device/IPCMD-DCLOBJECT 
ipc.device/IPCMD:DISCONNECT 
ipc.device/IPCMD_FINDNODENAME 
ipc.device/IPCMD GETPEERNAME 
ipc.device/IPCMD-OOERY 
ipc.device/IPCMD-READMSG 
ipc.device/IPCMD:SELECT 
ipc.device/IPCMD_WRITEMSG 
ipc.device/OpenDevice 

DevCon90 11 Amlga Network 
Archltscturs 



ipc.device 

ipc.device information 

The ipc.device is a sample implementation of the Standard 
Amiga Network Architecture Protocol Device Layer. 
It supports the UNIXDOMAIN address resolution which is a filename 
on the the local system. 

The SANA Protocol Device provides for the creation, maintainance, 
usage, and termination of bidirectional connections between two 
processes. This is a preliminary reference manual and represents 
work in progress. Many of the functions are tentatively defined 
and their actual defination may change in the future. This is to be 
used as draft reference guide for network developers. 

TCP/IP, DECnet, AppleTalk, OSI, etc. would all be implemented 
in a module similar to this module. 

This software module makes use of lower level device drivers known 
as the NetMux layer in SANA. 

For more information you should get a copy of the SANA Theory of 
Operation. SANA = Standard Amiga Network Architecture 

The following commands are required at this time to 
support the current AmigaDos BSD socket emulation library: 

AbortiO, 
Read, 
Accept, 
GetPeerName, 
Query, 
Invalid 

BeginiO, 
Write, 
AddObject, 
Disconnect, 
Select, 

CloseDevice 
Expunge 
Connect 
F indNodeName 
OpenDevice 

The following are unused at this time and may therefor 
be nops are unsupported. Their status may change though. 
At some time in future we will decide their status permanently. 

Clear, 
Reset, 
Update, 

Open Issues: 

Flush, 
Start, 
ReadMsg 

WriteMsg 
Stop 

- Address translation and how it will work with hardware devices 
with varying address widths. Can it be made somewhat device 
independent? 

- Objects are not clearly defined anywhere and you won't have 
a clue of what we mean by them unless you are alreay familiar 
with DECNET. An oject is like an inet bound address. I don't 
know what it maps to in Novell land or AppleTalk. 

DevCon90 12 

ipc.device 

Amlga Network 
Architecture 

u 

u 

u 



ipc.device/AbortiO 

NAME 
AbortiO(ioRequest} -- abort an I/0 request 

Al 

FUNCTION 
This is an exec.library call. 

This function aborts an ioRequest. 

ipc.device/AbortiO 

If the request is active, it is stopped immediately. If the request is 
queued, it is painlessly removed. The request will be returned 
in the same way as if it had normally completed. 

INPUTS 
iORequest -- pointer to the IORequest Block that is to be aborted. 

RESULTS 
io Error 

BUGS 

Amlga Network 
Architecture 

#IOERR_ABORTED (-2} 

13 DevCon90 



ipc.device/BeginiO ipc.device/BeginiO 

NAME 
BeginiO(ioRequest) -- start up an I/0 process 

Al 
FUNCTION 

This function initiates a I/0 request made to the ipc device. 
This is a direct function call to the device. It gives 
the programmer more control over the io operation of the 
device. Most operations can usually be handled with 
exec's DoiO() and SendiO(). This function never blocks 
and control is returned to the caller. 

INPUTS 
ioRequest 

io_Message 
io_Device 
io_Unit 
io_Conunand 
io_Flags 

io Length 
io:oata 

RESULTS 

pointer to an I/O Request Block of size 
io ExtipcSize (see ipc.i for size/definition), 

Amn_ReplyPort is required 
set by OpenDevice 
set by OpenDevice 
needs to be set to proper conunand 
If the IOB_OUICK bit is set the device will 
attempt to finish conunand without 'Replying' 
throught the exec message system. 
The IOB_OUICK bit will be cleared if the 
request will 'Replied' when complete. 
value depends on particular command 
value depends on particular command 

io_Error -- if the BeginiO succeeded, then Error will be null. 
If the BeginiO failed, then the Error will be non-zero. 
I/0 errors won't be reported until the io completes. 

SEE ALSO 
devices/ipc.h 

DevCon90 14 Amlga Network 
Architecture 

u 

u 

u 



ipc.device/CloseDevice ipc.device/CloseDevice 

NAME 
CloseDevice -- close the ipc device 

SYNOPSIS 
CloseDevice(ioRequest) 

Al 
FUNCTION 

This is an exec call that terminat~s communication with the 
ipc device. 

INPUTS 
ioRequest - pointer to ioRequest block initialized by OpenDevice 

SEE ALSO 
ipc.device/OpenDevice 

Amlga Network 
Architecture 

15 DevCon90 



ipc.device/CMD_CLEAR ipc.device/CMD_CLEAR 

NAME 
Clear -- clear internal ipc read buffers. 

FUNCTION 
This command causes device to dump all pending unread data 
on the floor and set bytes available for reading to 0. 
All available data for reading is lost. 

IO REQUEST 
io_Command 

RESULTS 

CMD_CLEAR 

Error -- if the Clear succeeded, then io Error will be null. 
If the Clear failed, then io Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BOGS 
Not implemented and not known to be useful. 

DevCon90 16 Amlga Network 
Architecture 

u 

u 

u 



ipc.device/CMD_FLUSH ipc.device/CMD_FLUSH 

NAME 
Flush -- clear internal ipc write buffers. 

FUNCTION 
This command causes device to dump all pending unwritten data 
on the floor. All data is lost. Abort all I/0 requests. 
Flush will not affect IoRequests actually in progress. 

IO REQUEST 
io_Command 

RESULTS 

CMD_FLUSH 

Error -- if the Flush succeeded, then io Error will be null. 
If the Flush failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 
Not implemented and not known to be useful at this time. 

Am/gs Network 
Architecture 

17 DevCon90 



ipc.device/CMD_INVALID ipc.device/CMD_INVALID 

NAME 
Invalid -- Return with error IOERR_NOCMD 

FUNCTION 
This command causes device driver to reply with an error 
IOERR_NOCMD as defined in exec/errors.h indicating the 
command is not supported. 

IO REQUEST 
io_Command CMD_INVALID 

RESULTS 
Error io_Error is filled with IOERR_NOCMD 

SEE ALSO 

BOGS 

DevConSO 18 Amlga Network 
Architecture 

u 

u 

u 



n 
ipc.device/CMD_READ ipc.device/CMD_READ 

NAME 
Read Read input from ipc connection 

FUNCTION 
This command causes the protocol device to return with a buffer 
of data received from the process on the other end of the 
virtual connection. 

The Query function can be used to check how many characters 
are currently waiting in the ipc buffer. 

This command only guarentees that at most io Length bytes 
will be read. The actual number of bytes read will be 
returned in io_Actual. 

If there are no bytes available to be read at the time the 
request is made, the request will not be replied to until 
some data has arrived. 

The ipcFlags has a special Flag that can be set that will 
cause the device to never block the request even if there 
are no bytes available for reading. In this case io_Actual 
will be set to zero (0) and io_Error will be set to EWOULDBLOCK. 
This flag is called ipc_NOWAITIO. 

CMD_READ 
IO REQUEST 

io_Command 
io_Length 
io_Data 

max number of characters to receive. 
pointer to buffer 

RESULTS 
io Actual -- number of received bytes 
Error -- if the Read succeeded, then io Error will be o. 

If the Read .failed, then io_Error will be non-zero. 
io Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 
ipc.device/IPCMD_QUERY 
ipc.device/CMD_WRITE 

BUGS 

Amlga Network 
Architecture 

19 DevCon90 



ipc.device/CMD_RESET ipc.device/CMD_RESET 

NAME 
Reset -- Reinitialize ipc protocol state machine 

FUNCTION 
This function causes the ipc device to abort all I/0 requests 
both queued and in process. It will close all ipc connections 
and merrily throw all data coming in and data ready to go 
out on the floor. Do not use this function lightly. It is 
intended for testing purposes and for super user applications. 
software that is managing the functions of the entire machine. 

IO REQUEST 
io_Command 

RESULTS 

CMD_RESET 

Error -- if the Reset succeeded, then Error will be null. 
If the Reset failed, then the Error will be non-zero. 

BOGS 
It is not clear that this command should be a standard 
command at this layer of the network protocol. 
This command is presently not implemented. 

DevCon90 20 Amlga Network 
Architecture 

u 

u 

u 



ipc.device/CMD_START ipc.device/CMD_START 

NAME 
Start -- Restart all I/0 on this ipc connection 

FUNCTION 
This command restarts I/0 on this connection. 
I/0 can be paused by a CMD_STOP command. 

IO REQUEST 
io_Command 

RESULTS 

CMD_Start 

Error -- if the Start succeeded, then io Error will be null. 
If the Start failed, then io_Error will be non-zero. 
io Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 
It is not clear whether this function is that useful since 
this layer of the ipc protocol guarantees proper delivery 
of data and does its own flow control. 

Am/ga Network 
Architecture 

21 DevCon90 



ipc.device/CMD_STOP 

NAME 
Stop Pause all I/0 on this ipc connection 

FUNCTION 
This command halts all current I/0 on this connection. 
I/0 can be resumed by a CMD_START command. 

IO REQUEST 
io_Command 

RESULTS 

CMD_STOP 

Error -- if the Stop succeeded, then io Error will be null. 
If the Stop failed, then io Error will be non-zero. 
io Error will indicate problems such as connection 
sh~tdown or network termination. 

SEE ALSO 

BUGS 
It is not clear whether this function is that useful since 
this layer of the ipc protocol quarentees proper delivery 
of data and does its own flow control. 

DevCon90 

ipc.device/CMD_STOP 

Am/ga Nstworlc 
Architecture 

u 

u 

u 



n 

ipc.device/CMD_UPDATE ipc.device/CMD_UPDATE 

NAME 
Update -- Force all write buffers out to connection. 

FUNCTION 
This command causes device to send any data waiting in the 
internal cache to be written to the actual ipc hardware. 

This is used when the upper protocol needs to guarantee that 
every piece of data has actually been sent to the other side. 
Useful for terminal emulators which do not want any buffering 
done by low level software. 

IO REQUEST 
io_Command 

RESULTS 

CMD_UPDATE 

Error -- if the Update succeeded, then io Error will be null. 
If the Update failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

Amlga Network 
Architecture 

DevCon90 



ipc.device/CMD_WRITE ipc.device/CMD_WRITE 

NAME 
Write -- Write output to ipc connection 

FUNCTION 
This command causes data to be sent to a process on the 
other end of the ipc connection. 

If there is more data being sent by this command than can 
be accepted by the connection immediately then block the 
request until all the data has been sent. 

The ipcFlags has a special flag that can be set that will 
cause the device to never block the request. In this case 
then as much data as can be sent will be sent and io actual 
will contain the number of bytes actual sent. If no-bytes 
were written, the IO_Error will be set to EWOULDBLOCK. 
This flag is called ipc_NOWAITIO. 

IO REQUEST 
io Command 
io-Length 
io:oata 

RESULTS 

CMD_WRITE 
number of characters to write 
pointer to buffer 

io_Actual -- number of bytes sent 
Error -- if the Write succeeded, then io Error will be null. 

If the Write failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

DevCon90 24 Amlgs Nstwork 
Architecture 

u 

u 

v 



n 

n 

ipc.device/Expunge ipc.device/Expunge 

NAME 
Expunge -- Free all system resources and dependencies 

FUNCTION 
This function deallocates all memory and functionality associated 
with the ipc device. This includes the data section for 
the ipc device, the break-related message ports, read and 
write queues and buffers, and interrupt vector attachments. If 
the device is currently closed, Expunge takes place immediately. 
If it is Open, the Expunge cannot take place. 

RESULTS 
Error -- if the Expunge succeeded, then Error will be null. 

If the Expunge failed, then the Error will be non-zero. 

Amlga Network 
Architecture 

25 DevCon90 



ipc.device/IPCMD_ACCEPT ipc.device/IPCMD_ACCEPT 

NAME 
Accept -- Accept incoming connection at Object 

FUNCTION 
This command causes device driver to accept a connection 
request at ipc port Object and establish a bidirectional 
communication path to the process requesting the connection. 
The IOReq used must be the same one that was returned by the 
IPCMD OCLOBJECT command. This informqtion is the same 
infor;ation one gets if a CMO_GETPEERNAME is used. 

After successful completion of the ACCEPT command this IOReq 
can the be used for QUERY, READ, WRITES, etc. on this virtual 
connection. 

IO REQUEST 
io_Command IPCMO_ACCEPT 
io Data Points to a buffer for name of peer 
io-Lenqth Size of buffer 

RESULTS 
Error -- if the Accept succeeded, then io Error will be null. 

If the Accept failed, then io Error will be non-zero. 
io Error will indicate proble~ such as network down. If 
there is no pending connection an error will result. 

IO-Actual - number of bytes transmitted to buffer. 

SEE ALSO 
ipcOevice/IPCMO CONNECT 
ipcOevice/IPCMD:AODOBJECT 

BUGS 

DevCon90 26 Amlga Network 
Arch/tet:ture 

u 

u 

u 



n 
ipc.device/IPCMD_CONNECT ipc.device/IPCMD_CONNECT 

NAME 
Connect -- Attempt to connect to ipc port 

FUNCTION 
This command causes the device driver to attempt to establish 
a bidirectional connection to an Object that is waiting 
for connections. 

This command will wait until either a valid connection 
has been established or some sort of error has occured. 
The new flags for NOWAITIO are not supported. This 
command always blocks. The programmer may AbortiO this 
command if they need to time it out. 

IO REQUEST 
io_Command 

RESULTS 

IPCMD_CONNECT 

Error -- if the Connect succeeded, then io_Error will be null. 
If the Connect failed, then io Error will be non-zero. 
io_Error will indicate problemi such as Object not found 
or network down. 

SEE ALSO 
ipcDevice/IPCMD_ACCEPT 

BUGS 

Amlga Network 
Architecture 

27 DevCon90 



ipc.device/IPCMD_DCLOBJECT ipc.device/IPCMD_DCLOBJECT 

NAME 
DclObject -- Declare an Object for accepting a single connection 

FUNCTION 
This command causes device driver to make this Object 
available as a connection point for incoming connections. 

An Object is a single entity that once a connection is made 
it is removed from the table of available connections. 

A task can create multiple Objects with the same name and 
each one in turn will be used up as connections are made. 

The request is not completed until: 
o A connection attempt is started. 
o An error has occured. 
o The request is aborted. 

IO REQUEST 
IPCMD_DCLOBJECT io Command 

io:oata 
io_Length 

pointer to puffer describing object 
size of buffer 

RESULTS 
Error -- if the DclObject succeeded, then io Error will be null. 

If the DclObject failed, then io Error will be non-zero. 
io_Error will indicate problems such as duplicate Object 
or network down. 

SEE ALSO 
ipcDevice/IPCMD_ACCEPT 
ipcDevice/IPCMD_CONNECT 

BUGS 
For device ipc.device: 
If the two name strings are different but really reference 
the same file, the connection will not be made. Also if two 
processes in different directories use the same name relative 
to their current working directory, they will be connected. 

DevCon90 28 Amlga Network 
Archltet:ture 

u 

u 

u 



n ipc.device/IPCMD_DISCONNECT ipc.device/IPCMD_DISCONNECT 

NAME 
Disconnect -- Disconnect from ipc connection 

FUNCTION 
This command causes device driver to disconnect from an 
ipc connection. 
Any data that is waiting to be read by this process will 
be discarded. Any data that has been written will be sent to 
the waiting process on the other end of this connection. To 
completely terminate a connection, both sides must do a 
disconnect. It does not matter who terminates the connection 
first. 

IO REQUEST 
io_Conunand 

RESULTS 

IPCMD_DISCONNECT 

Error -- no error is possible with this command. 

SEE ALSO 
ipcDevice/IPCMD_ACCEPT 
ipcDevice/IPCMD_CONNECT 

BUGS 

Amlga Network 
Architecture 

29 DevCon90 



ipc.device/IPCMD_FINDNODENAME ipc.device/IPCMD_FINDNODENAME 

NAME 
FindNodeName -- Translate Node address to name and vice versa. 

FUNCTION 
Given the address, look up the corresponding name of the 
node in the connection database. 
Given the name look up the corresponding address in the 
connection database. 

IO REQUEST 
io_Command 

RESULTS 

IPCMO_FINDNODENAME 

Error -- if the FindNodeName succeeded, then io Error will be null. 
If the FindNodeName failed, then io Error will be non-zero. 
io_Error will indicate problems such Node not found. 

SEE ALSO 

BUGS 
It may be more clear to have separate commands for: 

DevCon90 

FindNodeNameFromAddress 
FindAddressFromNodeName 

30 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

ipc.device/IPCMO_GETPEERNAME ipc.device/IPCMO_GETPEERNAME 

NAME 
GetPeerName -- Get the name of the peer on this connection 

FUNCTION 
This command returns the name of host that the connection 
is communicating with. 

IO REQUEST 
io_Command 
io_Oata 
io_Length 

RESULTS 

IPCMO_GETPEERNAME 
ptr to buffer to store name 
size of the buffer 

io Actual -- number of bytes in the name of the peer 
Er~or -~ if the Query succeeded, then io_Error will be null. 

If the Query failed, then io Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 
If io_Data is too small io_Error will be set to EFAULT 

SEE ALSO 

BUGS 

Amlga Network 
Architecture 

31 DevCon90 



ipc.device/IPCMD_INTERNAL ipc.device/IPCMD_INTERNAL 

NAME 
Internal -- Internal status of ipc connection 

FUNCTION 
This command is a hook for network developers for qetting 
access to the internals of their network device. The 
parameters are completely dependant on the implementation 
and no attempt at this time is being made to standardize 
anything. 

For the ipc.evice subsystem, CMD_INTERNAL presently fills in 
a buffer pointed to by io_Data with copies of pointers to 

struct Ipcinternal 
{ 

}; 

struct List *Objects; 
struct List *ActiveOjects; 
struct List *PendingSelects; 
struct SignalSemaphore *ss; 

In the interest of leverage and efficiency, a general 
network debugging and monitoring program could possibly be 
written if the developers could standardize on some of the 
internal data structures, but that is usually asking too 
much. ;-) 

IO REQUEST 
io CommandiPCMD INTERNAL 
io-Data points to buffer to put data 
io_Length size of buffer 

RESULTS 
io_Actual -- number of bytes transferred 
Error -- if the Internal command is not supported return 

CMDINVALID. 
Or if the buffer is not big enough. 

SEE ALSO 

BOGS 

DevCon90 32 Amlgs Network 
Architecture 

u 

u 

u 



n 

ipc.device/IPCMD_QUERY ipc.device/IPCMD_QUERY 

NAME 
Query -- Query status of ipc connection 

FUNCTION 
This command causes device driver to report the status 
of the ipc connection. The number of unread bytes in the 
input buffer of the connection are in io_Actual. 
The number of logical messages are also noted somewhere. 
The number of bytes in the first message is also 
available. 

IO REQUEST 
io_Command 

RESULTS 

IPCMD_QUERY 

io Actual -- number of bytes available for reading 
Error -- if the Query succeeded, then io Error will be null. 

If the Query failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 
Current implementation only supports: 

Total bytes readable. 

Am/gs Network 
Architecture 

33 DevCon90 



ipc.device/IPCMD_READMSG ipc.device/IPCMD_READMSG 

NAME 
ReadMsg Read complete message from ipc connection 

FUNCTION 
This is a alternate interface to the read mechanism of the 
virtual circuit and provides a datagram method of delivery. 
This command causes device driver to return with a buffer 
of data received from the process on the other end of the 
connection as sent in a single WriteMsg. 

The Query function can be used to check how many messages 
are currently waiting in the ipc buffer, how big the first 
message is and how many total bytes for all the messages 
are available. 

This command only guarantees that at most io Length bytes 
will be read. The actual number of bytes read will be 
returned in io_Actual. 

Also if there are more than one message available and 
io_Length could handle both, this command will only read 
a single message of data. 

If the first message available to be read has more bytes 
than io_Length, io_Error will be set to IOERR_MESSAGETOOBIG, 
the request will be sent back, and the message will be left 
in the input queue of the ipc connection. 
The size of the message can be gotten with CMD_OUERY. 

If there are no messages available to be read at the time the 
request is made, the request will not be replied to until 
a message has arrived. 

The ipcFlags has a special Flag that can be set that will 
cause the device to never block the request even if there 
are no messages available for reading. In this case io_Actual 
will be set to zero (0) • 
This flag is called ipc_NOWAITIO. 

IO REQUEST 
IPCMD READMSG io Command 

io-Length 
io:oata 

max nUmber of characters to receive. 
pointer to buffer 

RESULTS 
io Actual -- number of received bytes 
Error -- if the ReadMsg succeeded, then io Error will be 0. 

If the ReadMsg failed, then io Error will be non-zero. 
io Error will indicate problems such as connection 
shutdown or network termination or Message too big. 

SEE ALSO 
ipc.device/IPCMD QUERY 
ipc.device/IPCMD:WRITEMSG 

BUGS 

DevCon90 34 Amlga Network 
Art:hltst:ture 

u 

u 

u 



n 

n 

ipc.device/IPCMD_SELECT ipc.device/IPCMD_SELECT 

NAME 
Select -- Select status of ipc connection 

FUNCTION 
The Select command causes the network device to examine a list 
of supplied IOReq's and finish the command if one or more 
conditions are present on those connections. If none of the 
conditions are satisfied the IOReq will be defered. When one 
or more of the conditions is satisfied then the IOReq will be 
finished. 

Conditions to be satisfied: 
Message ready for reading? 
Data available for reading? 
Space available to write data? 
Some sort of exception? (Broken connection, etc.) 

In each of the IOReq's, set the bits in SelectRequest for the 
conditions requested. 

When the IOReq's return, examine the corresponding bits in the 
SelectResults to find out what caused the completion of the select 
command for that IOReq. There may be more that one bits set. 

This command is never completed via QUICKIO it always does a ReplyMsg. 

Setting the User.Flags bit ipcNOWAITIO will cause the device to finish 
the command even if there are no terminating conditions present. The 
SelectResults fields of the IOReqs will be set to zero if none of the 
terminating conditions for that connection were present. This is useful 
for polling a set of connections to see if any are ready or to see if a 
particular connection is still alive. 

If the connection referenced by an IOReq is going down, the IO.io_Error 
field for that IOReq will be seet to nonzero. 

It is illegal to have more than one IOReq on the list that 
point to the same active connection. 

IO REQUEST 
IPCMD SELECT io Command 

io-Data 
SelectRequests 

SelectResults 

RESULTS 

points to a list of IOReq; 
For every IOReq in the list set the bits 
for the conditions for this connection. 
Must be initialized to 0 

SelectResults - treated as a mask. Bits corresponding to 
input available or output ready will be set. 

io_Error - always return null unless Aborted. 

SEE ALSO 

BUGS 

Amlgs Network 
Architecture 

io_Error in the individual IOReq's will 
contain an Error code for exceptions. 

35 DevCon90 



ipc.device/IPCMD_WRITEMSG ipc.device/IPCMD_WRITEMSG 

NAME 
WriteMsg -- Write complete message to ipc connection 

FUNCTION 
This command causes device driver to send a message of 
io_Length bytes to the process on the other end of the 
connection. This is a datagram interface to the virtual 
connection. 

If the message cannot be sent immediately because there 
are not any buffers for this message then block the 
request until the message can be sent. 

The ipcFlags has a special Flag that can be set that will 
cause the device to never block the request even if the 
the message cannot be accepted immediately. In this case 
io Actual will be set to zero (0) • 
This flag is called ipcNOWAITIO. 

IPCMO_WRITEMSG 
IO REQUEST 

io_Command 
io Length 
io:oata 

number of characters in message to send. 
pointer to buffer 

RESULTS 
io Actual -- number of bytes sent 
Error -- if the WriteMsg succeeded, then io_Error will be null. 

If the WriteMsg failed, then io_Error will be non-zero. 
io Error will indicate problems such as connection 
shutdown or network termination 

SEE ALSO 
ipc.device/IPCMD QUERY 
ipc.device/IPCMO:WRITEMSG 

BUGS 

DevCon90 36 Am/ga Network 
Archl(ecture 

u 

u 

u 



n 

ipc.device/OpenDevice ipc.device/OpenDevice 

NAME 
OpenDevice -- Request an opening of the ipc device. 

SYNOPSIS 
error OpenDevice(protocol_name, unit, ioRequest, flags) 
DO AO DO Al Dl 

BYTE OpenDevice(STRPTR, ULONG, struct IOStdipc *, ULONG); 

FUNCTION 
This is an exec call. Exec will search for the device named 
by protocol_name, and if found, ~ill pass this call on to the 
device. 
For the memory protocol device the current name is "ipc.device". 
The ioRequest is initialized for use with BeginiO. All IORequests 
must be initialized with this call. 

This structure is found in ipc.h 
struct IOStdipc { 

struct IOStdReq IO; /* standard Amiga i/o request */ 
struct { 

} ; 

unsigned charSelectRequests; 
undigned charSelectResults; 
struct Node SelectNode; 
unsigned short Flags; 
void *read; /* internal use pointer */ 
void *write; /* internal use pointer */ 

User; /* IOStdReq extension for ipcnet 

INPUTS 
protocol_name 
unit 
ioRequest 

- pointer to literal string "ipc.device" 
- Must be zero 
.- pointer to an ioRequest block of size IOStdReq 

to be initialized by the ipc.device. 

flags 

RESULTS 
DO 
io_Error 

io_Device 

BUGS 

(see devices/ipc.h for the definition) 
- Must be zero for future compatibility 

- same as io_Error 
- If the Open succeeded, then io Error will be null. 

If the Open failed, then io_Error will be non-zero. 
- A pointer to whatever device will handle the calls 

for this unit. This pointer may be different depending 
on what unit is requested. 

SEE ALSO 
ipc.device/CloseDevice 

Amlga Network 
Architecture. 

37 DevCon90 



TABLE OF CONTENTS 

ipcmem.device 
ipcmem.device/AbortiO 
ipcmem.device/BeqiniO 
ipcmem.device/CloseDevice 
ipcmem.device/CMD BROADCAST 
ipcmem.device/CMD=CLEAR 
ipcmem.device/CMD FLUSH 
ipcmem.device/CMD-INVALID 
ipcmem.device/CMD-READ 
ipcmem.device/CMD=RESET 
ipcmem.device/CMD START 
ipcmem.device/CMD-STOP 
ipcmem.device/CMD-UPDATE 
ipcmem.device/CMD=WRITE 
ipcmem.device/Expunqe 
ipcmem.device/IPCMD ADDMULTICASTADDRESS 
ipcmem.device/IPCMD-CONNECT 
ipcmem.device/IPCMD=DELMULTICASTADDRESS 
ipcmem.device/IPCMD DISCONNECT 
ipcmem.device/IPCMD-GETADDRESS 
ipcmem.device/IPCMD-GETSTATS 
ipcmem.device/IPCMD-OUERY 
ipcmem.device/IPCMD-READANDCLEARSTATS 
ipcmem.device/IPCMD-SETADDRESS 
ipemem.device/OpenDevice 

DevCon90 38 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

n 

ipcmem.device ipcmem.device 

ipcmem.device information 

The ipcmem.device is a sample implementation of the Standard 
Amiga Network Architecture Network Multiplexor Device Layer. 

The SANA NetMux Device Layer provides the services for accessing 
the physical network hardware, in this case memory. 
It controls the multiplexing of packets going out on the 
hardware and directs incoming packets from the hardware 
to the proper higher level handler. 

Software that directly controls ethernet hardware, Arcnet 
hardware, FDDI, etc. should support the same commands as the 
ipcmem.device. 

This is a preliminary document and describes work in progress. 
Many of the functions are tentatively defined and their actual 
defination may change in the future. This is to be used as draft 
reference guide for network developers. 

For more information you should get a copy of the SANA Theory of 
Operation. SANA = Standard Amiga Network Architecture 

At present there is no known example implementation or this 
device although one is actually in progress and several more 
are in the planning stages. 

Open Issues: 

Amlga Network 
Architecture 

39 DevCon90 



ipcmem.device/AbortiO 

NAME 
AbortiO(ioRequest) -- abort an I/0 request 

Al 

FUNCTION 
This is an exec.library call. 

This function aborts an ioRequest. 

ipcmem.device/AbortiO 

If the request is active, it is stopped immediately. If the request is 
queued it is removed. The request will be returned 
in the same way as if it had normally completed. 

INPUTS 
ioRequest -- pointer to the IORequest Block that is to be aborted. 

RESULTS 
io_Error 

BUGS 

DevCon90 

iiOERR_ABORTED (-2) 

40 Amlgs Nstwork 
Art:hltet:ture 

u 

u 

u 



n 

n 

ipcmem.device/BeginiO ipcmem.device/BeginiO 

NAME 
BeginiO(ioRequest) -- start up an I/0 process 

Al 
FUNCTION 

This is a direct function call to the device. It is intended for 
more advanced programmers. See exec's OoiO() and SendiO() for 
the normal method of calling devices. 

This function initiates a I/0 request made to the ipc 
device. 

INPUTS 
ioRequest -- pointer to an I/O Request Block of size 

io_ExtipcmemSize (see ipamem.i for size/definition), 
io Message 
io:oevice 
io_Unit 
io_Command 
io_Flags 

io Length 
io:oata 

RESULTS 
io_Error 

A mn_ReplyPort is required 
set by OpenOevice 
set by OpenOevice 
needs to be set to proper command 
If the IOB_QUICK bit is set the device will 
attempt to finish command without 'Replying' 
throught the exec message system. 
The IOB_QUICK bit will be cleared if the 
request will 'Replied' when complete. 
value depends on particular command 
value depends on particular command 

If the command is a not supported then 
io_Error will be set to IOERR_NOCMO 
otherwise io_Error is set by the command 
when the command completes. 

SEE ALSO 
devices/ipcmem.h 

Amlga Network 
Architecture 

41 DevCon90 



ipcmem.device/CloseOevice ipcmem.device/CloseOevice 

NAME 
CloseOevice -- close the ipc device 

SYNOPSIS 
CloseOevice(ioRequest) 

Al 
FUNCTION 

This is an exec call that terminates communication with the 
ipc device. Upon closing, the device's input buffers are freed. 

Note that all IORequests MUST be complete before closing. 
If any are pending, your program must AbortiO() then WaitiO() 
to complete them. 

INPUTS 
ioRequest - pointer to ioRequest block initialized by OpenDevice 

SEE ALSO 
ipcmem.device/OpenOevice 

DevCon90 42 Amlga Network 
Architecture 

u 

u 



ipcmem.device/CMD_BROADCAST ipcmem.device/CMD_BROADCAST 

NAME 
Broadcast -- Broadcast packet on ipc device 

FUNCTION 
This command causes the packet to be sent to all nodes 
on this device via a broadcast mechanism. The actual 
broadcast mechanism is device specific. 

IO REQUEST 
io_Command 
io_Lenqth 
io_Data 

RESULTS 

CMD_BROADCAST 
number of characters to write 
pointer to buffer 

io Actual -- number of bytes sent 
Error -- if the Broadcast succeeded, then io_Error will be null. 

If the Broadcast failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. The broadcast may also fail 
if the network hardware does not support a broadcast mechanism 
and the software is unable to emulate one. 

SEE ALSO 

BUGS 

Amlga Network 
Architecture 

43 DevCon90 



ipcmem.device/CMD_CLEAR ipcmem.device/CMD_CLEAR 

NAME 
Clear -- clear internal device read buffers. 

FUNCTION 
This command causes device to dump all pending unread data 
packets on the floor. 
All available data for reading is lost. 

IO REQUEST 
io_Conunand 

RESULTS 

CMD_CLEAR 

Error -- if the Clear succeeded, then io_Error will be null. 
If the Clear failed, then io Error will be non-zero. 
io Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 
Unimplememted and not known to be useful at this time. 

DevCon90 44 Am/gs Network 
Architecture 

u 

u 

u 



n 

ipcmem.device/CMD_FLUSH ipcmem.device/CMD_FLUSH 

NAME 
Flush -- clear internal ipc write buffers. 

FUNCTION 
This command causes device to dump all pending unwritten 
packets on the floor. All data is lost. Abort all I/0 requests. 
Flush will not affect IoRequests actually in progress. 

IO REQUEST 
io_Command 

RESULTS 

CMD_FLUSH 

Error -- if the Flush succeeded, then io_Error will be null. 
If the Flush failed, then io Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 
Unimplemented and not known to be useful at this time. 

Am/ga Network 
Architecture 

45 DevCon90 



ipcmem.device/CMD_INVALID ipcmem.device/CMD_INVALID 

NAME 
Invalid -- Return with error IOERR_NOCMD 

FUNCTION 
This command causes device driver to reply with an error 
IOERR_NOCMD as defined in exec/errors.h indicating the 
command is not supported. 

IO REQUEST 
io_Command CMD_INVALID 

RESULTS 
Error io_Error is filled with IOERR_NOCMD 

SEE ALSO 

BUGS 

DevCon90 46 Amlga Network 
Architecture 

u 

u 

u 



ipcmem.device/CMD_READ ipcmem.device/CMD_READ 

NAME 
Read Invalid command for ipc-device 

FUNCTION 
This command is not supported since all input must 
first go through a filter. To see how to get data from 
the device check out CMD CONNECT. You will find that 
you are called with a packet ptr and must return in 
a short amount of time after deciding whether to keep 
and copy the packet somewhere else or just return with 
0 rejecting the packet. 

IO REQUEST 
io_Command 

RESULTS 
io_Actual -- 0 

CMD_READ 

Error -- will be ERR_CMDNOTSUPPORTED 

SEE ALSO 
ipcmem.device/CMD_CONNECT 

BUGS 

Amlga Network 
Architecture 

41 DevCon90 



ipcmem.device/CMD_RESET ipcmem.device/CMD_RESET 

NAME 
Reset -- Reset the network device to initialized state 

FUNCTION 
This function causes the device to abort all I/0 requests 
both queued and in process. 
Do not use this function lightly. It is intended for testing 
purposes and for super user applications and software that is 
managing the functions of the entire machine. 

IO REQUEST 
io_Conunand 

RESULTS 

CMO_RESET 

Error -- if the Reset succeeded, then Error will be null. 
If the Reset failed, then the Error will be non-zero. 

BUGS 
It is not clear that this command should be a standard 
command at this layer of the network protocol. 

DevCon90 48 Am/ga Network 
Architecture 

u 

u 



ipcmem.device/CMD_START ipcmem.device/CMD_START 

NAME 
Start -- Restart all I/0 on this ipc device 

FUNCTION 
This command restarts I/0 on this device. 
I/0 can be paused by a CMD_STOP. 

IO REQUEST 
io_Command 

RESULTS 

CMD_Start 

Error -- if the Start succeeded, then io Error will be null. 
If the Start failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 
Not implemented and not know to be useful at this time. 

Amlga Network 
Architecture 

49 DevCon90 



ipcmem.device/CMD_STOP ipcmem.device/CMD_STOP 

NAME 
Stop Pause all I/0 on this ipc device 

FUNCTION 
This command halts all current I/0 on this device. 
I/0 can be resumed by a CMD_START command. 

IO REQUEST 
io_Command 

RESULTS 

CMD_STOP 

Error -- if the Stop succeeded, then io Error will be null. 
If the Stop failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BOGS 
Not implemented and not know to be useful at this time. 

DevCon90 50 Amlga Network 
Archltet:ture 

u 

u 

u 



ipcmem.device/CMD_UPDATE ipcmem.device/CMD_UPDATE 

NAME 
Update -- Force all packets out to device 

FUNCTION 
This command causes the device to send any data waiting in the 
internal cache to be written to the actual ipc hardware. 
Use this command when higher level software needs to insure 
data is sent to the device immediately without waiting for 
additional bytes to put in a larger packet. 

IO REQUEST 
io_Command 

RESULTS 

CMD_UPDATE 

Error -- if the Update succeeded, then io Error will be null. 
If the Update failed, then io Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

Amlgs Network 
Architecture 

51 DevCon90 



ipcmem.device/CMD_WRITE ipcmem.device/CMD_WRITE 

NAME 
Write -- Write packet to network device 

FUNCTION 
This command causes the packet to be sent to a node 
at the specified address. 

If there is more data beinq sent by this command than can 
be accepted by the device immediately then block the 
request until all the data has been sent. 
There may be a maximum packet size acceptable by this 
device. To qet that size use the cmd Query function. 
cmd_Write will return an error if io:Lenqth exceeds the 
maximum packet size allowed for this device. 

IO REQUEST 
io_Command 
io_Lenqth 
io_Data 

RESULTS 

CMD_WRITE 
number of characters to write 
pointer to buffer 

io Actual -- number of bytes sent 
Error -- if the Write succeeded, then io Error will be null. 

If the Write failed, then io Error will be non-zero. 
io_Error will indicate probl;ms such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

DevCon90 52 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

ipcmem.device/Expunge ipcmem.device/Expunge 

NAME 
Expunge -- Free all system resources and dependencies 

FUNCTION 
This function deallocates all memory and functionality associated 
with the ipc device. This includes the data section for 
the ipc device, the break-related message ports, read and 
write queues and buffers, and interrupt vector attachments. If 
the device is currently closed, Expunge takes place immediately. 
If it is Open, the Expunge cannot take place. 

RESULTS 
Error -- if the Expunge succeeded, then Error will be null. 

If the Expunge failed, then the Error will be non-zero. 

Amlgs Network 
Architecture 

53 DevCon90 



ipcmem.device/IPCMD_ADDMULTICASTADDRESS 

NAME 
AddMulticastAddress -- Add the multicast address for this ioreq 

FUNCTION 
This command causes the device driver to enable Multicast packet 
reception for the requested address. 

IO REQUEST 
io_Command IPCMD_ADDMULTICASTADDRESS 
io_Data Pointer to multicast address 
io_Lenqth Size of buffer 

RESULTS 
Error -- if the AddMulticastAddress succeeded, then io_Error will be 
null. If the AddMulticastAddress failed, then io Error will be non-zero. 

io_Error will indicate problems such as Multicast not supported. 

SEE ALSO 
DelMulticastAddress 

BUGS 

DevCon90 54 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

ipcmem.deviceiiPCMD_CONNECT ipcmem.deviceiiPCMD_CONNECT 

NAME 
Connect -- Connect to physical link 

FUNCTION 
This command causes the device driver to physically connect 
to the network and begin r~ceiving and sending packets. 

The caller must supply a PacketType argument. 
The incoming packets are checked against this protocol type 
and if they match are sent to the user. 
Valid PacketType arguments have been arbitrarily set to the 
standard EthernetPacket types. 

ETHERTYPE_NS Ox0600 
ETHERTYPE_IP Ox0800 
ETHERTYPE_ARP Ox0806 
ETHERTYPE_DN Ox6003 
ETHERTYPE_LAT Ox6004 
ETHERTYPE_ATALK Ox809B 
ETHERTYPE_AARP Ox80F3 
ETHERTYPE_RARP Ox8035 
ETHERTYPE_ALL OxOOOO 

I* XNS protocol *I 
I* IP protocol *I 
I* Addr. resolution protocol *I 
I* DECnet protocol *I 
I* LAT protocol *I 
I* Appletalk *I 
I* Appletalk Arp *I 
I* Reverse Arp *I 
I* All Packets (Amiga) *I 

Non ethernet based devices will accept the same PacketType 
arguments and must translate it to the proper PacketType for 
their device. 

The IO_CMD Lookup_PacketType will let the user have access 
to the corresponding PacketType for this device. 

There is a required second argument which must be set to zero. 

At any one time there can be only one listener per PacketType. 
If another user already has connected using the requested 
PacketType an error will be returned with this new connect 
request. 

You must Disconnect for every Connection request. 

IO REQUEST 
io_Command 

RESULTS 

IPCMD_CONNECT 

Error -- if the Connect succeeded, then io_Error will be null. 
If the Connect failed, then io Error will be non-zero. 
io_Error will indicate problem; such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

Amlga Network 
Architecture 

55 DevCon90 



ipcmem.device/IPCMD_DELMOLTICASTAODRESS 

NAME 
DelMultiCastAddress -- Delete the multicast address for this node 

FUNCTION 
This command causes device driver to disable MultiCast packet 
reception for the requested address. 

IO REQUEST 
io_Command IPCMD_DELMULTICASTADDRESS 
io Data Pointer to multicast addresses 
io-Length Size of buffer 

RESULTS 
Error -- if the DelMultiCastAddress succeeded, then io_Error will be 
null. If the DelMultiCastAddress failed, then io Error will be non-zero. 

io_Error will indicate problems such as Multicast not supported. 

SEE ALSO 
AddMulticastAddress 

BOGS 

DevCon90 56 Amlga Network 
Architecture 

u 

u 

u 



n 

ipcmem.device/IPCMD_DISCONNECT ipcmem.device/IPCMD_DISCONNECT 

NAME 
Disconnect -- Disconnect from physical link 

FUNCTION 
This command releases the PacketType packets from being 
sent to this connection and makes them available for 
other connections. If there are no other listeners than 
the packets will be thrown away. 

Decrement the local connect counter. If the connect counter 
reaches zero then really disconnect from the physical device. 
Programmer must disconnect from the device before closing the 
device. 

IO REQUEST 
io_Command 

RESULTS 

IPCMD_DISCONNECT 

Error -- if the Disconnect succeeded, then io_Error will be null. 
If the Disconnect failed, then io Error will be non-zero. 
io Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

Am/ga Network 
Architecture 

51 DevCon90 



ipcmem.device/IPCMD_GETADDRESS ipcmem.device/IPCMD_GETAODRESS 

NAME 
GetAddress -- Get the local address of this node on this network 

FUNCTION 
This command causes device driver to copy the local node 
address into the buffer pointed to by io_Data; 

IO REQUEST 
io Command IPCMD GETADDRESS 
io-Data Pointer to local node address 
io:Length Size of buffer 

RESULTS 
Error -- if the GetAddress succeeded, then io Error will be null. 

If the GetAddress failed, then io Error will be non-zero. 
io_Error will indicate problems such as address not known. 

SEE ALSO 

BUGS 

DevCon90 58 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

n 

ipcmem.device/IPCMD_GETSTATS ipcmem.device/IPCMD_GETSTATS 

NAME 
GetStats -- Get accumulated statistics for this device 

FUNCTION 
This command causes device driver to retrieve various runtime 
statistics for this device. 
The data will be copied into a buffer pointed to by io_Data. 
At most io Length data will be copied. 
Use cmd_OUERY to find out the size of the statistics 
structure for this device. 
The data returned corresponds to the following structure: 

struct IpcDeviceStats 
{ 

} ; 

int packets_received; 
int packets sent; 
int packets:waiting_in; 
int packets_waiting_out; 
int errors; 
int Connections; 
I* More to come */ 

IO REQUEST 
io_Command IPCMO_GETSTATS 
io_Data Pointer to buffer to copy statistics 
io_Length Length of buffer 

RESULTS 
io Actual -- number of bytes available for reading 
Error -- if the GetStats succeeded, then io_Error will be null. 

If the GetStats failed, then io Error will be non-zero. 
io Error will indicate problems-such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

Amlga Network 
Architecture 

59 DevCon90 



ipcmem.device/IPCMO_QUERY ipcmem.device/IPCMD_QUERY 

NAME 
Query -- Query status of ipc device 

FUNCTION 
This command causes device driver to report the status 
and retrieve various information about the device. 
The information is copied into a buffer pointed to b~ 
io_Oata. The format of the data is as follows: 

#define MAX_AOORESS_SIZE 
struct IpcDevQuery 
{ 

8 

unsigned char[MAX_ADDRESS_SIZE] local_address; 

}; 

intaddress_size; /* number of bits */ 
/*of local address that are significant */ 

int MaxPacketsize; 
I* More to come */ 

I* example 3=scsi, S=arcnet, 1= serial, 48=ethernet */ 

IO REQUEST 
io Command IPCMD QUERY 
io-Data Pointer to buffer to copy information 
io:Length Size of buffer 

RESULTS 
io Actual -- number of bytes available for reading 
Error -- if the Query succeeded, then io Error will be null. 

If the Query failed, then io_Error will be non-zero. 
io_Error will indicate problems such as connection 
shutdown or network termination. 

SEE ALSO 

BUGS 

DevCon90 60 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

ipcmem.device/IPCMD_READANDCLEARSTATS 

NAME 
ReadAndClearStats -- Read and Reset statistics counters of ipc device 

FUNCTION 
First copy the current values of the statistics counters 
to the buffer. Then before they have a chance to be 
change, set them to zero. 

IO REQUEST 
io_Command 

RESULTS 

IPCMD_RESETSTATS 

io_Actual -- number of bytes in stat counter buffer 
Error -- if the ReadAndResetStats succeeded, then io_Error will be null. 

If the ReadAndResetStats failed, then io_Error will be non-zero. 

SEE ALSO 

BUGS 
There is still controvery over the defination of this function. 
It's final defination will await more input from the network 
implementors and consultants. 

Am/ga Network 
Architecture 

61 DevCon90 



ipcmem.device/IPCMD_SETADDRESS ipcmem.device/IPCMD_SETADDRESS 

NAME 
SetAddress -- Set the local address of this node on this network 

FUNCTION 
This command causes device driver to set the local node 
address to the address pointed to by io_Data; 

IO REQUEST 
io_Command IPCMD_SETADDRESS 
io_Data Pointer to local node address 
io_Length Size of buffer 

RESULTS 
Error -- if the SetAddress succeeded, then io Error will be null. 

If the SetAddress failed, then io Error will be non-zero. 
io_Error will indicate problems such as address not settable. 

SEE ALSO 

BUGS 

DevCon90 62 Amlga Network 
Architecture 

u 

u 

u 



n 

n 

n 

ipcmem.device/OpenDevice ipcmem.device/OpenDevice 

NAME 
OpenDevice -- Request an opening of the network device. 

SYNOPSIS 
error = OpenDevice(network_device, unit, ioRequest, flags) 
DO AO DO Al Dl 

BYTE OpenDevice(STRPTR, ULONG, struct IOStdipcMem *, ULONG); 

FUNCTION 
This is an exec call. Exec will search for the name pointed to 
by network_device and if found will pass this call on to the device. 
For the sample implementation of the memory device the 
pointer network_device should point to "ipcmem.device". 

INPUTS 
network_ device 
unit 

- pointer to literal string "ipcmem.device" 
- Must be zero 

ioRequest 

flags 

RESULTS 
DO 
io_Error 

io_Device 

- pointer to an ioRequest block of size IOStdReq 
to be initialized by the ipc.device. 
(see devices/ipc.h for the definition) 

- Must be zero for future compatibility 

- same as io_Error 
- If the Open succeeded, then io_Error will be null. 

If the Open failed, then io Error will be non-zero. 
- A pointer to whatever device will handle the calls 

for this unit. This pointer may be different depending 
on what unit is requested. 

BUGS 

SEE ALSO 
ipcmem.device/CloseDevice 

Amlga Network 
Architecture 

63 DevCon90 

\ 



Outline of Producer/Consumer Programs 

Using BSD Sockets: 
Producer() ( 

fd =socket( ••• ); I* create basic connectionless *I 
I* datastructures *I 

bind(fd, ••• ); I* assign name for rendezvous *I 

connection= accept(fd, ••• ); I* wait for consumer *I 

write( connection, .•• ); I* send some data *I 

close( connection); I* close connection *I 

close ( fd); I* remove rendezvous point *I 
} 
Consumer() { 

connection= socket( ••• ); I* create basic connectionless *I 
I* datastructures *I 

connect(connection, ••• ); I* establish connection *I 
I* to waiting producer *I 

read( connection, ••• ); I* get the data *I 

close (connection ); 

Using Amiga Devices: 
Producer() { 

} 

OpenDevice ( protocol.device ); I* establish raw connect *I 

DoCommand( IPCMD_AddObject, ••• ); 

I* present implementation of AddObject waits for *I 
I* a connection to be attempted by consumer *I 
I* assuming that for now. *I 

DoCommand( IPCMD_Accept, ••• ); 

DoCommand( CMD_Write, ; •. ); 

DoCommand( CMD_CloseConnection, 

CloseDevice( protocol.device ); 

I* verify connection *I 

I* send some data *I 

); I* terminate *I 

Consumer() { 
OpenDevice ( protocol.device ); I* establish raw connect *I 

DoCommand( IPCMD_Connect, ..• );I* create connection *I 

DoCommand( CMD_Read, •.• ); 

DoCommand( CMD_CloseConnection, 

CloseDevice( protocol.device ); 

I* get the data *I 

); I* terminate *I 

These examples are very skeletal. They do not contain any 
of the proper extra parameters that must be specified. They 
are only meant at examples of what network code will look like. 

DevCon90 64 Amlga Network 
Architecture 

u 

u 



-
u 









n 

Amiga Vision - The Amiga's 
Multimedia Construction Set 
by John Campbell 

This paper gives an overview of the purpose, functionality, and promise of Amiga Vision. 

Purpose of Amiga Vision 

The Amiga product line has clearly demonstrated success in certain professional video 
marketsl: 

a 1st in Character Generation!fitling products purchased in the 
last 12 months (with a 23.64% share) 

a 1st in Paint Systems purchased in the last 12 months (with a 13.86% share) 
Q 1st in 3D Modeling/ Animation installed base and products purchased in the 

last 12 months (with shares of 49.03% and 67.35% respectively) 
a 2nd in Paint Systems installed base (with a 14.59% share 

to Chryon' s 15.96% share) 
Q 3rd in Character Generation/l'itling installed base (behind 

Chyron and Quanta, with a 6.84% share) 

The success is directly related to the Amiga' s inherent advantages; video compatibility, 
graphics power, multitasking, and affordability. Analysts predict that by 1993 the desktop 
video market "will reach approximately $4.8 billion, up from roughly $907 million in 1989"2. 

Commodore views desktop video, or multimedia, as the big growth mar~et of the 1990s. As 
the 1970s had mainframe data processing the 1980s had desktop publishing, the 1990s will 
unveil the power of multimedia. To be successful, you must sell solutions, not buzzwords. 
Commodore has chosen five specific areas where it has targeted multimedia solutions: 

1. Business Presentations 
2. Education 
3. Training 
4. Simulations 
5. Specialty (Point of sale, public ~as, etc .... ) 

The multimedia approach has clear and significant advantages in each of these areas. 

Am/gaV/s/on- The Amlga's 
Multimedia Construction Set 

1 DevCon90 



Business presentations. With multimedia, business presentations need not be stagnant and 
linear. They can be dynamic through the proper use of color, sound, animation and video. 
They can be interactive, branching along paths desired by the audience. These features tend 
to make presentations more memorable, enjoyable, and persuasive. 

Education. Educational uses of multimedia are not limited to the values of "learn at your 
own pace" or as an educational perk. Multimedia offers the capabilities of video to allow the 
user to see, for instance, the Martin Luther King "I Have a Dream" speech, experience a 
blastoff at Cape Canaveral, or "conduct" a dangerous chemical experiment. Additionally, the 
new medium offers exciting oppornmities for those who have difficulty learning from the 
standard methods of teaching. Possible students include the deaf, the adult illiterate, or 
others for whom the traditional educational systems have not been successful. 

Training. Multimedia has distinct advantages over other forms of hands-on learning when 
used for employee training. Computer based training (CBT) offers a safer learning 
environment than training where expensive machinery or dangerous materials are involved. 
CBT reduces the need for training personnel, particularly in a situation where training will 
take place on multiple sites. Also, CBT makes it easy to evaluate a worker's skills before 
they have to rely on those skills. 

Simulations. A number of companies and government agencies have a need for simulations 
apart from their actual experiments. They wish to show the desired events quickly and 
inexpensively. Video combined with animation can successfully fill these requirements. 

Special Applications. Finally, public areas call out for.a solution to convey information or 
sell product. Malls, museums, point of sale displays, even supermarkets have begun to use 
multimedia solutions to great advantage. 

Software Solution 

The Amiga's a leadership in desktop video makes it an ideal multimedia tool for the five 
functional markets identified above. The only missing element is the software library to fill 
the multitude of requirements in the functional markets. 

Amiga Vision was designed as a tool to help fill this void. It is an iconic, multimedia 
authoring system for developing courseware. It uses an outline metaphor to organize, edit, 
and present information to the user. It takes advantage of the standards already in place in 
the Amiga marketplace and puts the immense power of the Amiga into the hands of the 
masses. 

DevCon90 2 AmlgaVIslon • The Amlga's 
Munlmedla Construction Set 

u 

u 

u 



n 

n 

--~------ ----

Functionality of Amiga Vision 

Design Decisions 

Amiga Vision has two primary design goals: to be intuitive and powerful. To make the 
product as intuitive as possible, we chose: 

Cl Iconic vs. script language 
Cl Outline vs. timeline format 

These decisions make it easy to set up a slide presentation or edit a simple course, but not 
having an inherent script language could limit flexibility. We added the capability to run 
ARexx scripts or executable programs from within a course, effectively giving a door to 
greater functionality, if necessary. However, Amiga Vision is a full programming language. 
Amiga Vision includes control statements, math and string functions, and variable support, 
just like other languages. It differs from other programming languages not just in its 
interface, but also in that it directly supports audio-visual elements such as pictures, sound, 
speech, animation, and videodisc. Amiga Vision also includes d.Basem-compatible database 
capabilities which are useful for the record-keeping many multimedia applications require. 

Structure of tbe Product 

The product has six types of icons and four pull down menus. Courses are designed by 
placing icons in a tree-like structure, double clicking on these icons to select their attributes, 
and then viewing, editing, or saving the flow with the pull down menus. The icons represent 
the basic commands of the Amiga Vision programming language. 

The six icon types are: Control, Interrupt, Data, Wait, A V, and Module. The four pull down 
menus are: Project, Edit, Tools, and System. 

The seven Control Icons allow you to control the flow of your program. They include: 
subroutine call, conditioned goto, goto, loop, exit loop, if then, and if-then-else. A common 
example would be to branch to a different part of your program given input from the user. 

The three Interrupt Icons allow you to stop the flow of your program based upon user input. 
An example would be to give global help regarding how to use your program, or an ability to 
go back to the beginning of a program. 

The seven Data Icons include three icons for dealing with the database, an icon for setting up 
variables, an output icon, and two icons for creating forms for user input. 

AmlgaVIslon • The Amlga's 
Multimedia Construction Sst 

3 DevCon90 



The five Wait Icons are representations of waiting for a condition, mouse input, keyboard 
input, or some author defined time delay. AmigaVision also allows you to logically "and/or" 
these icons or time-out after an author-defined period of time. 

The exciting part of Amiga Vision is its nine A V Icons. In this section you are given control 
over pictures, animations, speech, digitized sounds, music, brushes, shapes, text files, and 
videodisc. By supporting the standards already set in the Amiga community, AmigaVision 
gives both novices and experts impressive control over the contents of their presentation. 
Transitions (such as fades and wipes) are supported to give extra flash to the product. To 
make control of the videodisc easier, a controller is included which is similar in depiction to a 
familiar hand held remote. 

The last icon set is the Module group. These seven icons are more general in nature and aid 
the author in organizing the flow, managing resources, and in using software external to 
Amiga Vision in a course. Included are module, subroutine, quit, return, execute, timer, and 
resource. 

Two icons require some description: execute and resource. Execute opens the door to 
external programs via Workbench, CLI, or ARexx. Resource will cause data to be loaded 
ahead of time, so that, when the data is needed, it will be ready to use . 

Amiga Vision Menus 

The icons are used in conjunction with the four pull down menus to create a course. The four 
menus are Project, Edit, Tools, and System. 

The Project menu is where ypu create or load, save, print, or present your Amiga Vision 
course. You also use this menu to create or install a run-time version of your course. 

The Edit menu gives the author special capabilities to revise a course more easily: collect, 
copy, info, preview, telescope, and search. These features operate much like an outliner or 
word processor. For example, collect allows you to group a bunch of icons into one module. 
This can be helpful for very large flows. Telescope is a toggle switch which allows you to 
expand or contract any icon which has sub-icons or "children". Preview allows you to 
present the course from any selected icon, rather than the beginning of a flow. 

The Tool menu allows you to directly access the Object Editor, Videodisc, and Database. 
The Object Editor allows you to put a variety of objects on the screen, including rectangle, 
polygon, line, circle, ellipses, text, brushes, variables, input pulls and text windows. The 
Videodisc Tool (also called the Videodisc Controller) allows the author to browse a 
videodisc and easily save a sequence to be used in a course. 

DsvCon90 4 AmlgaVIs/on- The Amlga's 
Munlmedla Construction Set 

u 

u 

u 



n The Database Tool allows you to either read in a file or create a new database file. The file 
format is dBaseill-compatible. Through the use of this tool you can set up a database 
structure, choose key fields, and easily input data into those fields. 

One tool that is not accessible from the menu is the Expression Editor. The Expression 
Editor allows you to create variables and expressions, which are useful for conditional 
evaluation. Thirty math functions and twelve logical operators are supported in the 
Expression Editor. 

The System menu is for system wide changes and currently allows you to toggle Workbench 
on and off, provided the windows are closed and non-active. 

The Promise 

To the developer, the promise of Amiga Vision is as varied and exciting as the number of 
software and hardware products on the Amiga. In addition to the value of an increased 
installed base which multimedia solutions will help create, there are specific areas of interest 
to developers: 

1. Creation Programs. Amiga Vision is for presentation and manipulation of 
information which has already been created,. It specifically requires other 
creation programs to have any value. Developers with strong creation 
products who support Amiga standards (as described in Amiga Vision) will 
be listed in every Amiga Vision manual which will be found with every 
CPU bundled with Amiga Vision. 

2. Courseware Develo.pers can choose to use Amiga Vision (possibly in conjunction 
with C or ARexx) to create powerful multimedia applications. 

3. Add-on product§. Amiga Vision emphasizes the need for special add-on products 
such as videodisc players or touch screen drivers. 

4. Prototypes or Trainin&. With Amiga Vision now being bundled, developers can make 
Amiga Vision courses which demonstrate their products or help explain to purchasers 
how to use their products. 

In conclusion, the Amiga is a machine whose enormous capabilities are as yet untapped. It is 
specifically well-positioned to dominate the growing multimedia market Commodore has 
identified target markets and opportunities for developer involvement With Commodore's 
new hardware and software offerings, we believe the Amiga and its developers can be 
successful in the years to come. 

AmlgsV/slon- The Amlgs's 
Multimedia Construction Set 

5 DevCon90 



References 

• 

1. Sheer & Chaskelon Research Inc. 1989. "Amiga Market Shares in the Professional 
Video Market Place". 

2. Presentation Business News, March/April1990. "Study Forecasts Surge in Desktop 
Video by 1995" . 

DevCon90 6 AmlgaVIslon- The Amlga's 
Multimedia Construction Sot 

u 

u 

u 











n 

Commodore Dynamic 
Total Vision: 
General Specifications 

WARNING - The information contained herein is subject to change without notice. 
Commodore specifically does not make any endorsement or representation with respect to 
use, results, or performance of the information (including without limitation its capabilities, 
appropriateness, reliability, currentness or availability.) 

DISCLAIMER - This information is provided "as is" without warranty of any kind, either 
express or implied. The entire risk as to the use of this information is assumed by the user. 
In no event will Commodore or its affiliated companies be liable for any damages, direct, 
incidental, special or consequential, resulting from any defect in the information, even if 
advised of the possibilities of such damages. 

System Overview 

Commodore Dynamic Total Vision (CDTV) is an interactive consumer product cosmetically 
resembling a VCR, intended for the home entertainment environment. Easy to use via an 
infrared remote device (no keyboard required) and based on Amiga technology, it consists of 
a CD ROM drive (with CD Audio capability), a real time clock and remote conttoller. It can 
be easily connected to a TV or monitor and stereo system. 

Target Market 

In general, CDTV is targeted toward the family and the audio and entertainment enthusiast; 
and specifically toward educated adults, ages 24-49, who are interested in their own 
development and in providing their families with the greatest opportunity for advancement. 
This product is the multimedia device that allows them to use their TV s in a more intelligent 
and interactive manner by giving easy access to unlimited educational, informational and 
entertainment-oriented applications using the mutimedia features of graphics and sound 

CDTV 1 DevCon90 
General Specifications 



Major Functions 
Cl Playing Amiga CD ROM software which can integrate various qualities of audio 
Cl Playing CD quality audio while displaying graphics (CD+G) 
Cl Playing standard high-fidelity CO-audio disks 
a Can be expanded to an Amiga computer 
Cl CD MIDI-in/MIDI-out 

Technical Specifications 
Central Processing Unit: 

Cl MC68000 (Motorola) 16/32-bit main CPU 
Cl 7.15909 MHz (NTSC) 
Cl 7.09379 MHz (PAL) [NOTE: CPU speeds can vary when using an external system 

clock such as with genlocking units.] 

Custom Chips: 
Cl Three Amiga specific custom chips (Agnus, Paula, and Denise) which enhance system 

performance by taking over tasks such as handling video, sound, direct memory 
access (DMA), or graphics. 

Cl CDTV will also have other custom chips for handling the CD ROM interface and 
infrared control. 

Memory: 
Cl 1MB chip RAM 
Cl 2k non-volatile RAM reserved for system (clock, prefs, etc.) 
Cl 512kROM 

Internal Slots: 
Cl Intelligent video slot (for optional genlock, RF board, etc.); 15-pin edge connector 
Cl DMA slot for SCSI 

Video outputs: 
Cl Analog ROB, Digital ROB (DB-23 connector) 
Cl Composite video NTSC or PAL (RCA connector) 
Cl Component video Y-C (S connector type for S-VHS and HiS) 
Cl RF Modulated (F connector) 
Cl Optional genlock capabilities via plug-in module. Three-mode (CD, video source or 

mixed) under software control. 

DevCon90 CDTV 
Genemi~Rcat~ns 

-v 

u 



n 

Video Display (General): 
a 400 lines/vertical frequency 60Hz (NTSC) 
a 5 12lines/vertical frequency 50Hz (PAL) 
a Graphic co-processor with beam synced draw, fill, and move modes (blitter) 
a Maximum 1MB video memory (chip memory) 
a Palette of 4096 colors 
a Maximum 6 bitplanes 
a 8 sprites per scanline 

Text Modes: 
a 80 characters/25 lines 
a 60 characters/25 lines 
a Various font sizes and types selectable 
a User-definable screen colors 

Graphics Modes: 
NTSC 

a 320 X 200 non-interlaced; 32 colors 
a 640 X 200 non-interlaced; 16 colors 
a 320 X 400 interlaced; 32 colors 
a 640 X 400 interlaced; 16 colors 
a plus overscan and HAM modes 

PAL 
a 320 X 256 non-interlaced; 32 colours 
a 640 X 256 non-interlaced; 16 colours 
a 320 X 512 interlaced; 32 colours 
a 640 X 512 interlaced; 16 colours 
a plus overscan, HAM, etc. 

CD ROM Drive Spees: 
a Sony /Philips type CD ROM standard mode 1, Mode 2 
a Data readout from disk: 153k/sec (mode 1), 171k/sec (mode 2), 

or 2MB/sec (burst) 
a Average access time: 0.5 sec 
a Maximum access time: 0.8 sec 
a Soft read error: Less than lOe-9 
a Hard read error: Less than lOe-12 
a Seek error: Less than lOe-6 
a Commands: CD ROM, CD-Audio, CD+G 
a MTBF: 10,000 P.O.H. 
a Standard supported: IS0-9660 
a Data Capacity: 540MB (aprox) - [about 700 Amiga floppy disks] 

CDTV 3 
General Spet:ltlcstlons 

DevCon90 



CD Audio Specs: 
a 8X oversampling 
a Audio output: Extemal1.4VRMS, lOK OHM 
a Frequency response: 20-20KHz 
Cl Channel separation: -7SDB (Typical) 
a Harmonic distortion: 0.08% at 1 KHz 
a Dual16-bit D/ A convener plus 64levels of attenuation 
a Maximum audio capacity: 14 hours -AM quality 
a Sample Rates: variable from CD Audio rate (44Khz) to 6Khz 

Computer Generated Audio Specs: 
a 4 independent sound channels (right and left) 
a Complex waveforms 
a Sound buffer up to 128k, unlimited seamless sound 
a 8-bit D/A converter plus 6-bit volume control 

Audio Extras: 
a Capable of sound mapping Amiga over CD-DA sound 

Rear Ports: 
a Centronics Parallel interface 
a RS-232 Serial interface 
a External floppy disk drive interface (Amiga floppy disk drive compatible) 
a Hardwired alternative to IR for keyboard, mouse, joystick 
a 2 audio output ports (RCA type plug) (requires external audio amplifier) 
a :MIDI-in/MIDI-out 

Front Port: 
a Stereo headphone jack 
a Port for optional personal RAM Card (up to 64k) 

Power Consumption: 
a SOW (average AC100-240V, 50/60Hz) 

Environmental Conditions: 
a Operating temperature: s· C to 40• C (non-condensing); 41• F to 104• F 
a Operating humidity: 25% to 80% (non-condensing) 

DevCon90 4 CDTV 
Gensrsl Sp«:/Bcatlons 

u 

u 

u 



n 

Front Panel Display: 
Cl Fluorescent (white characters on black) 
Cl Thne, track, and volume level 
Cl Clock remains lit when unit is turned off 
Cl Display controllable by application 

Front Panel Controls: 
Cl Power On/Off 
Cl Headphone volume Up/Down 
Cl Play/Pause 
Cl Stop 
Cl Forward/Reverse - Scan/Skip 
a corrv 
Cl Reset 

IR (Infrared) Remote Unit Specs: 
Cl Proprietary high-speed IR signal 
Cl Power supplied by 2 AA batteries 
Cl 10 function keys plus Shift key (20 total) 
Cl Up, Down, uft, Right movement button 
Cl '1\vo select keys 
Cl CD audio- Reverse, Forward, Play/Pause, Headphone Volume and Stop keys 
Cl Computer reset function 

Optional Accessories: 
Cl External floppy disk drive 
Cl 'Ii'ackball 
Cl Joystick (third party) 
Cl Keyboard 
Cl MIDI in, out, through (third party) 
Cl Personal RAM or ROM card 
Cl Genlock 
Cl Expansion module to house hard disk drive, modem, floppy disk drive 
Cl ·Keyboard IR interface with trackball 
Cl Keyboard 
Cl '1\vo-player IR interface 

Added Raw Keyboard Codes: 
Cl 6C - Play/Pause 
r:J 60-Stop 

CDTV 
General Spsclflcatlons 

r:J 6E - Fast Forward 
r:J 6F -Fast Reverse 

5 

• 
DevCon90 



n 

n 











n 

n 

Commodore Dynamic 
Total Vision: 
User Interface DeSign 
This document is a working list of user-interface standards for CDTV (Commodore Dynamic 
Total Vision) and presents some of the reasoning behind these proposed standards. This list is 
by no means complete and will be expanded over the next few months. 

The pmpose of these standards is to promote a uniform look and feel to CDTV applications. 
What will this "uniform look and feel" involve? In the scenario presented here, many of the 
Amiga Intuition capabilities will be disallowed as being too complex or counter-intuitive to a 
novice home user. Recommendations will be presented for low-level issues such as a small 
number of fonts and the colors to be used And high-level functions normally left to the 
application developer, such as control panels, list requesters and scrolling functions, will be 
supplied in a toolkit. 

When developer choices of formats and modes of presentation are decreased, the user should 
see an increased uniformity across many different applications. Note that this is not intended 
to limit how the developer presents information or content. For instance, an animation or 
graphic selected by the user will be under complete control of the developer. Also note that 
the use of standard fonts and other elements of the UI standard should greatly reduce the 
level of effort for developers. 

This document should be considered a work in progress. We invite your questions and 
comments. If you would like to become more involved in the creation of UI standards for 
CDTY, contact Gail Wellington at Commodore. 

Characteristics 

The User Interface for CDTV should reflect the target user population and environment; that 
is, it should be designed for use on TV s by unsophisticated and often brand-new computer 
users in a home recreational setting. Therefore, it should have the following characteristics: 

Q Ease of use. 
Q Uniform look and consistency of operation across all similar applications. 
Q Minimum documentation or intuitive operation in any situation. 

CDTV·User 
Interface Design 

1 DevCon90 



TV-Specific Issues 

Since CDTV is targeted for the home market and for use with a television, certain issues 
should be considered which relate to the estimated six- to eight-foot viewing distance and the 
limitations of TV resolution. 

Foremost, remember that televisions are not the same as computer ROB monitors. Television 
is an interlaced, overscanned medium. What looks good on a monitor may look terrible on a 
TV set in the home. It is always a good idea to view your screens on a TV set before you 
commit them to compact disc. No matter how good your application is, if it doesn't look 
good on the home TV set then the users will be disappointed 

Fonts. Simple fonts such as Helvetica, Diamond and TlDles are recommended, but just about 
any font will work if it isn't too fancy in the first place. In completely unscientific tests, we 
found that anything smaller than 20-point type becomes difficult to read from a distance of 
more than ten feet. Also, bro~ast television character generators almost always use 
anti-aliased fonts with a neutral-color outline. Ideally, the outline color is halfway between 
the character color and the background color. Outlines, borders and drop-shadows greatly 
improve readability. Pastel-colored fonts work better than bright or primary colors. 
Off-white works better than pure white. Yellows, greys, and pale blues seem to work best. 
NOTE: We are commissioning a few sets of fonts in various point sizes. They will be 
designed specifically for CDTV and should be freely available to registered developers. 

Colors. Colors should be subdued rather than bright- bright colors tend to bleed on poorly 
adjusted TV sets. If you are using a paint program that has color values in a range from 0 to 
15, we strongly recommend that no value go above 12 or 13. The only safe way to test colors 
and color combinations for display on an NTSC or PAL TV is by using a waveform monitor 
and keeping maximum values around 85% IRE. The best overall advice is to keep the color 
values below saturation and look at the results on a television set. 

Nationality and user preferences selection. While some people may adjust preference 
settings - particularly nationality settings - most people will never touch them (if it ain't 
broke don't fix it). However, certain adjustments will have to be made by the user upon 
power-up or after a loss of power. We will try to make the transition between preferences 
selection and normal use as seamless as possible. 

Television sizes. Bear in mind that some people will be using small TV sets. While we might 
have colored borders around the edges of the screen, developers should work within a "safe" 
area. We will be supplying the specific details on the dimensions of this "safe" area in the 
future- in the meantime, allow at least an inch on all borders (assuming you are using a 
standard Amiga monitor). 

DevCon90 CDTV· User 
Interface Design 

u 

u 

u 



n 

n 

Television colors. Most people don't have their sets adjusted very well so don't rely on 
certain colors representing certain things. There is also the possibility that some people will 
be using black-and-white sets. 

Input/Output Issues 

Many of the keys toward keeping CDTV software consistent and easy-to-use are found in 
how input/output devices are handled. Listed below are some of the issues we've been 
exploring- most are just questions with no definitive answers as of yet. We're still open to 
ideas and suggestions. 

Infrared device. As a positioning device, any remote unit will be awkward to use for fine 
adjustments. For that reason, we probably won't have gadgets for resizing, dragging, etc. As 
an alternative to forcing the user to precisely position a pointer, we felt it would be better to 
have the user cycle through lists of selectable options. We are still working on the specifics 
of these controls, including: establishing a set definition for key functions (such as "help" or 
"return to main screen"); how the IR device will be used to scroll through lists; and the 
control of text speed. Another consideration: there may come a time when an application 
requires some form of text entry and not everyone will own a keyboard. 

Other input devices. How will people use input devices other than the IR remote (keyboard, 
trackballs, joysticks, etc.)? One of the first thoughts is that wherever possible these other 
devices should behave or emulate the same functions as those on the IR remote. For 
example, moving the trackball or joystick to the left or right should be the same as pressing 
the left or right arrow keys on the IR remote. 

Output devices. One of the major challenges CDTV presents is the question of how the 
machine will interact with output devices. 

a Printing. Since we are providing serial and parallel ports it is not unreasonable to assume 
that users will eventually want to print things. Where do they get the printer drivers? 
Will we supply drivers on the Welcome disc or will drivers be included on application 
discs? How will a user select a printer driver? Will we supply a screen dump utility that 
will work for any screen? 

a MIDL Since we are providing a MIDI-out port, how will users use it? Will it be entirely 
application-dependent or will there be occasions when a user will want to direct all audio 
output through a MIDI device? 

a Video. 
a Personal memory cards. This issue raises a number of big questions. What sort of 

DOS will the user be using? What sorts of functions will they need to perform (load, 
save, delete, copy, etc.)? 

CDTV·USBr 
Interface Design 

3 DevCon90 



r:J Disk drives. The personal memory card questions also apply to disk drives (hard or soft). 
What sort of DOS do we supply? What sorts of commands will users need? What sort of 
interface should we supply? 

Screen Issues 

Here are some preUminary goals we have identified for the CDTV interface: 
r:J No Guru screen allowed! 
r:J Inform the user when disk I/0 or processing is going on with something like a gears 

turning animation or a "Zzzzzz," or "Working ••• " message. The goal is to use 
animations wherever possible. 

r:J Support a standard way for the user to navigate menu trees. 
r:J No pointing. 
r:J No double-clicking. 
r:J No dragging. 
r:J No typing - all selections must be in a list or computable. 
r:J No window/task switch - confine activity to a single window of activity. 
r:J Where needed, a type of standard split screen could be used. A function could put the 

second window in one of the 1/4- or 1/9-screen-sized window quadrants. The border for 
the window would be fixed by the called function, and the user would not be able to 
move the new "window." 

r:J Always provide an exit option 

CDTV is heading away from the traditional Workbench-style interface. While Workbench is 
infinitely easier than an MS-OOS interface, it is still too complex and "computerish" for 
many living rooms. If we can accomplish all of the above, there will be: 
r:J No manuals 
r:J 3.2Form 
r:J A single screen (to user) 
r:J No windows because the whole screen is the window (and thus no window borders and 

no window gadgets since there is no window to close or resize) 
r:J No menus 
r:J Ghosting (to indicate an option is not currently selectable) 
r:J A uniform exit icon 

Operation of the Machine 

There are five possible screens, or scenarios, that the user may be presented with upon 
starting up CDTV. Which screen they first see will depend on certain conditions, such as cold 
boot, CO-audio disk in drive, CDTV disc in drive, etc. 

DevCon90 4 CDTV· U86r 
Interface Design 

u 

u 

u 



n 
Proposed CD1V Startup Screens 

Conditions Result 

Cold boot Set Preferences screen 
Ptefs not set in NVR (Non-Volatile RAM) (Prefs) 

Warm boot/reset Insert Disc prompt 
Ptefs set in NVR (ID) 
No disc present 

Warm boot/reset Audio Control Panel 
Prefs set in NVR (ACP) 
CD-Audio or CD+G disk present 

Warm boot/reset CDTV disc auto-boots 
Prefs set in NVR 
CDTV disc present 

Warm boot/reset Disc Error Message 
Prefs set in NVR 
unknown format or damaged disc present 

The ID Screen. The ID screen would be similar to the "Jnsert WB" graphic that Amiga users 
are presented with on start-up. Behind the ID prompt we might have the color cycling disc 
graphic. Later, if there is a CD-Audio disc present (or CD+G with the graphics disabled), the 
user could return tQ this screen and see only the color cycling disc graphic without the ''Insert 
Disc" prompt. Instead, the "Insert Disc" graphic would change to a loaded disc, ready to be 
activated. 

With no disc presen~ the user has only one option from the ID screen: exit to the Prefs screen. 
Of course, they could always insert a disc as insttucted. If there is a CD-Audio or CD+G disc 
present, but the user has exited the ACP back to the ID screen, they will have two slightly 
different options: exit to the Prefs screen, or select the "Activate Disc" icon (which, in this 
case, brings up the ACP screen). If the user inserts an unrecognized format or damaged disk 
they will be presented with the Disc Error Message. 

There will be an exit icon on the main screen of the application which will bring the user 
back to the m screen. 

The Prefs Screen. When the user turns on the machine for the first time, or if there has been 
a power failure, then NVR will not have a copy of the user-specified preference settings. 
Anytime there is no copy of the user-specified prefs in NVR, the first screen the user sees 

CDTV-User 
Interlace Design 

5 DevCon90 



will be the Prefs screen. If there is a CDTV application disc present (or any disc for that 
matter), but prefs are not set in NVR, the user would be presented with the Prefs Screen 
before the application auto-boots. It is also possible for the user to access this screen at other 
times in case they wish to change settings for some reason (daylight savings time changes, for 
example). 

The Prefs screen will always give the user four options: exit Prefs to the ID screen; adjust the 
screen centering; select nationality (key maps); or set the clock. 

Once the Prefs settings are changed and the user exits Prefs, ·a copy of the user-selected 
preferences will be written to NVR. If NVR preferences are not set, and the user exits the 
Prefs screen without setting anything, the default preferences will be copied to NVR. 

If there is a COTV disc present when the user exits Prefs, he or she will return to the ID 
screen for a moment while the application auto-boots. If there is a a CO-Audio or CO+G disc 
present when the user exits Prefs, he or she will return to the ID screen where the "activate 
disc" icon can be selected to get to the ACP. 

The ACP Screen. The ACP is where the user will have options for playing back and 
controlling CO-Audio and CD+G discs. The specifics of the ACP will be supplied at a later 
date. 

The Disc Error Message Screen. This provides a way to signal the user that there is a 
problem with a disk. Either there is a hard error on the disk or they have inserted an 
unreadable format disc. This message could be as simple as flashing the background color of 
the ID screen or as complex as a series of more specific error messages. Either way the 
system has to provide a way to signal the user that all is not well, rather than just locking up. 

To the user, there are only two main screens, ID and Prefs. The ACP will not appear to the 
user unless there is a disc present. If there is a CO-Audio or CD+G disc present the ACP will 
appear to the user as if it were an auto-booting, standardized application screen, (even though 
it will be in ROM.) The two main screen options that the user can access without inserting a 
disc are the Prefs screen and the InsenDisc (ID) screen. Selecting "exit" from ID will bring 
up Prefs. Selecting "exit" from Prefs will bring up ID. 

If there is a CDTV, CO-Audio, or CO+G disc present then the "activate disc" icon should be 
the pre-selected default icon. 

The above startup scenario brings up some rules and questions for application developers: 
a The system must be able to distinguish between a CDTV disc and a CD-Audio or CD+G 

disc. 

DevCon90 6 CDTV· User 
Interface Design 

u 

u 

u 



Cl All applications must be auto-booting. 
a One of the very first things that an application should check for is a match on key-map 

settings in Prefs. If the application does not provide a matching language version, then 
the application must provide the user with an alternate choice or set of choices. 

Cl For the sake of consistency, CBM should provide developers with the code necessary to 
emulate the key-map selecting routine found in the Prefs screen. This code should be 
easily modifiable to ghost key-maps that the application does not currently support. 

Cl Is there a need for a user to get to the ACP if there is no CD-Audio or CD+G disc 
present? 

Q What sort of Error message should we provide in ROM? Should there be more than one 
type of error message? 

Welcome Disc 

We are starting to put together ideas about what should be included on the Welcome Disc (the 
disc included with the machine). One item that should be included is a set of instructions on 
how to use the machine. It has also been suggested that we include application demos. These 
demos will perform two functions: demonstrate the capabilities of the machine and serve as 
advertising for developers. 

Application-Specific Issues 

Obviously, each developer will have their own ideas about how an application should 
perform, what it should do, and how to present it to the user. Some developers will 
completely take over the machine and do things their own way. Other developers will let the 
system and developer tools handle all aspectS of presenting information to the users. In both 
cases we should still try and present the user with a consistent way of doing things. 

Start up. As stated before, all applications should be auto-booting, and all applications 
should check the key-map settings at start-up. 

Instructions. If possible, all applications should try to provide any necessary instructions on 
the disk itself. This can either be done at the start or through the Help function. It probably 
would be a good idea to provide a link to the Help function at all times. 

Help Function. If possible (or necessary) applications should provide Help screens for the 
user. Since we will be designating one key on the IR remote as a Help function, users will 
probably try and ask for help no matter what the application. If the application does not 
require Help screens then either bring the instruction screens back up or de-activate the Help 
key function. 

CDTV-User 
Interface Design 

7 DevCon90 



Error Messages. Somehow we should come up with a standard set of error messages to 
inform users when something is wrong (Personal Memory Card Full, File Not Found, 
Memory Card Not Present, Printer Trouble, etc.) 

Key Maps. Ideally, all applications will be either language-independent or provide versions 
of the program in all languages. Unfortunately, this is probably not going to be the case. 
Developers should be aware that this machine will be sold in many countries. If an 
application does not currently support the language selected in preferences, the user must be 
presented with alternatives. 

Exiting. This may be a minor issue in most cases because the machine will re-boot when a 
new disc is inserted- unless the program has specifically requested an override of the re-boot 
function for multi-disc applications. However, all applications should still try to exit cleanly. 
If any settings or preferences have been altered, then they should be reset before exiting. 

New Ideas - and Sources for Ideas 

This section presents various short lists of topics which are all associated with (a) the manner 
in which information is now currently presented on a computer screen, (b) the sources for 
ideas about new ways of presenting information, or (c) new ways which we might consider. 

Sources for ideas. Look for ways in which information is currently presented in the real 
world. Following a real world metaphor makes the presentation more familiar to users. For 
instance, the desktop model is a real world metaphor. 

Current Computer GUI Paradigms: 
a Tabular data presentation; 
a MFF scan of word indices or ordered "nodes" 
a Allow user to sort on some keys- (fits the network "node" ideas) 
a Landscape: movement through a landscape of icons, or pictorial representation of data 
a Word Searcb/lndexed retrieval 
a Browsing 
a Menu, control panel 
a Game type 
a "Mass Comp" building blocks and connectors 
a Logo- construction oriented 
a Hypercard and hypertext 

DevCon90 8 CDTV· U1111r 
Interface Design 

u 

u 

u 



n 

Sources of ideas, by product categories: 
Cl Current Amiga products and ideas. 
Cl Hypertext ideas 
Cl MAC products, hypercard 
Cl Other existing products: current GUI SQL front ends. 
Cl Object-oriented graphics systems. 
ClCASE 
Cl Educational stuff- Mac, Amiga 

An examination of the physical world reveals a number of information sources that are easily 
tapped by individuals without computers: 
Cl Phone book: white pages (by name); 

yellow pages (by category and name) 
Cl Encyclopedia 
Cl Dictionary 
ClCatalog 
Cl Magazine 
Cl Library card catalog 
Cl Rolodex cards 

ClAtlas 
Cl Landscape scenes- physical movement 
Cl TV preview guide 
Cl TV channels (switching) 
Cl Microfilm 
Cl Microfiche 
Cl Television 

Starting Point for New GUI Paradigms and Metaphors 

Possible paradigms: 
Cl Bookshelf 
Cl Carousel 
ClMap 
Cl Store (shopping mall) 
Cl Flipping channels 

Possible metaphors: 
Cl Table (flat fixed files) 
Cl Fiche 
Cl Rolodex 
Cl Outline 
Cl Network 
Cl Map (2D) 
Cl Landscape 
Cl Hypercard 
Cl Split Screen, of various types 

CDTV·UBBr 
Interface Design 

9 DevCon90 



DB Formats for data to be presented: 
Q Record 
Cl Network 
Q ASCn text, with or without indexes 

Presentation Functional Areas: 

Cl Image data/pixeVbitmapped 
Q Object (e.g., CAD/CAM) 
Q Other graphics forms 

Cl Browse Paradigm: (eg, cockpit/aerial view/map/fiche window) 
Cl Selection menu of fixed items: Icons/box selections/buttons/tools 
Q Network presentation: hypercardlhypenext; selection of next thing. 
a Browse/select/order menu or tools, and mode selection. 

Display Techniques. The physical information systems discussed in the previous section 
suggest a number of computerized display techniques. A number of existing database display 
techniques will also be itemized here. 
Q Table Cl Network 
a Forms a Fiche 
Cl Hypertext a Map 
Cl Hypercard Cl Scene with hot spots 
Cl Outline Cl 3"xS" card with wOld search 
Cl Rolodex Cl Free flowing text with wOld search 
Cl TV "channels" Cl VCR 

Information System-Specific Issues 

Cl Atomicity of data 
Cl Network versus unstructured data: user presentation capability 
a Presentation of selections from lists: visibility of indices and presentation modes for 

bypass of keyboard type selection. 

Database Structures. The previous sections discussed possible presentation paradigms, 
which are the external features of a database. No discussion about databases would be 
complete without a list of possible internal database formats. 
Cl Record (fixed or variable)- with or without indexes 
Cl Network (e.g., Hypercard) 
Cl Relational (interrelated flat files, with dictionary info) 
a ASCU text (with or without indexes) 
a Image (structured or bitmap) 
a Object (e.g., CAD/CAM) 
a Procedural (generates data dynamically) 

DevCon90 1D CDTV· User 
Interface Design 

u 

u 

u 



Atomicity of Data. One of the broadest questions that must be answered before designing a 
new VISual Information System revolves around the "atomicity" of the data. This phrase that 
we have coined bears explaining. A database with a high degree of atomicity is highly regular 
and lends itself to many different display techniques. A database with a low degree of 
atomicity is more "hard wired;" its display paradigm is determined at construction time 
rather than at runtime. 

For example, a database of automobile pans may be constructed with either a high or low 
degree of atomicity. One constructed with a high degree of atomicity might include the part 
number, the part name, the part type, the assembly name and the sub-assembly name for each 
and every part in the automobile. This database could then be displayed as a table, 
microfiche, outline, form or any other format available today or in the future. 

A parts list constructed with a low degree of atomicity may be modeled on an existing parts 
catalog, with exploded views of each assembly displayed graphically. This "hard wired" 
format does not implicitly allow multiple display formats. This does not necessarily mean 
that a database with a low degree of atomicity is necessarily restricted to only one display 
paradigm, but is restricted to the paradigms allowed for at construction time. This is the way 
Hypercard works. 

Some of us believe that providing powerful display paradigms which work with atomic data 
provides the most flexibility with the lowest cost for the data publishers, who construct the 
databases using the provided database tools. Others believe that providing extreme flexibility 
in the presentation of the data, and, in fact, the ability to present each and every piece of data 
in the database differently will provide the nicest, most application-specific presentations. 

The final solution is probably to include aspects of both approaches. Solid and simple display 
paradigms should be available to the data publisher, while allowing the data publisher to tie 
together these displays with a more hard wired shell. In addition, it may be appropriate to 
provide a complete presentation language to the data publisher which would allow complete 
flexibility and an escape mechanism for future enhancements. + 

CDTV • U8111' 
Interface Design 

11 DevCon90 



n 

n 







• 



-----------~--------------~ 



n 

Publishing and Selling 
CD-ROM Software 
by Jim Mackonochie 

There are now nearly 1000 products published and available on CD-ROM, and many more 
have been developed for use internally by large organizations for their own purposes. The 
products fall mainly into the following categories: 

a Text databases 
a Maintenance and service manuals 
a Financial databases (ie. LOTUS One Source) 
a Clip an 

The primary market for these products has been libraries and cmporate institutions. Selling 
into these markets has been through direct sales or via the specialized CD-ROM distributors · 
which have developed over the last few years (ie. Bureau of Electtonic Publishing, EBSCO, 
EDUCORP). 

The primary source for CD-ROM material has been books or subsets of online files. Most 
CD-ROM products are strictly text with a limited target market. But there are a few 
multimedia products suitable for a mass market which have been developed and published on 
CD-ROM. Examples are: 

a Defender of the Crown 
QManhole 
a Cosmic Osmo 
a Whole Earth Catalog 
a Guinness Disc of Records 

(IBM) 
(Macintosh) 
(Macintosh) 
(Macintosh) 
(Macintosh & IBM) 

These have also have been sold through specialized channels because there are not many 
consumers with CD-ROM drives, so mass merchandisers will not handle them. The notable 
exception is Egghead Discount Software, which now stocks a limited range of CD-R OMs. 
All this is about to change with the AMIGA/CD leading the entry of CD-ROM into the mass 
market. 

Publishing and Selling 
CD-ROM Soflwam 

1 DevCon90 



The Characteristics of CD-ROM 

CD-ROM is a storage device and hence a distribution medium - a high-storage-capacity 
distribution medium. The CD-ROM does not add anything more to the text, graphics, audio, 
and animation processing capabilities of the computer, however, the mass storage capacity 
gives opportunities to enhance existing products and create a whole new range of product 
types. 

The economies of publishing on CD-ROM are attractive. Volume manufacturing costs of 
under $1-a-disc are somewhat better than the costs of cartridges in the console market The 
challenge is to create products to open up new sectors and new users in the leisure, education, 
and training markets. 

Software Applications 

The current entertainment markets can be categorized by user as follows: 

Category I - Pre-teens & young teenagers 
Q Arcade games 
Q Sports simulations 

Category 2 - Teenagers & adults 
Q Arcade games 
Q Sports simulations 
Q Adventures/RPG 

Q Vehicle simulations 
Q Environment simulations 
Q Board Game derivatives 

The bulk of the revenue generation is cUITently in category 1 in the USA, though this is not 
the case in Europe. The users worldwide are predominately male, though this characteristic 
is not so marked in the pre-teens. 

The new generation of Amiga/CD products needs to emphasize different benefits for 
different users. For existing home computer and console users, the main benefit is that 
games and products that they already enjoy will be so much better and richer in experience 
with CD-ROM. 

But Amiga/CD products should also be aimed at new users. To do this, new software 
products must be developed that are desirable to consumers who have never been attracted to 
the concept of using computer systems for recreation or self-improvement and learning. 
Most important is to create products that play to the strength of the CD technology, and 
create a market for the whole family. 

DevConSO Publishing and Ss/1/ng 
CD-ROM Software 

u 



n 

CD-ROM Product Concepts 

There are at least two areas that have just begun to be exploited by the computer industry and 
which also appeal to the family market: information- and audio-based products. 

One obvious information product is an encyclopedia with powerful text retrieval software. 
Although 200,000 pages of plain text has its place, it is neither revolutionary nor exciting. 
Better information products will be a blend of text, pictures, audio, and animation. Those 
that explain, inform, demonstrate, and are fun will be the most desirable. 

Remember that the Amiga/CD will be able to play all the mass market CD audio discs, one 
of the most successful mass market products that the consumer electronic market has seen. 
Use audio effectively in your products to create atmosphere, tension, and excitement. Learn 
the lessons from radio and TV and the range of emotions and images that audio can create. 

To create a market for female teenagers, take a lesson from the success of pop videos. The 
CD-ROM technology cannot emulate a linear video, (for the moment) but I can think of a 
variety of products based on music and displaying graphics, animation, and text which are 
well within the current capabilities of CD-ROM. 

CD-ROM Product Design 

Although CD-ROM provides mass storage, there is a down side. The data transfer rate is 
limited.to about 150K a second, and in the worst case it can take over a second to seek and 
find a file to load into RAM. One thing that will kill a product is for a user to be waiting for 
S seconds for something to happen when the expectation is that it should be instantaneous. 
These problems can be overcome with good product design and a knowledge of the computer 
system and medium. · 

Techniques to avoid seek time and transfer rate limitations include: 

Q Loading pointers into RAM on the start up of the application or during 
use of the application. 

Q Concatenating small files into a large file. 
Q Diverting the user while seeking and loading takes place. 
Q Preloading data which is likely to be used at the next stage of an application, 

while the user is manipulating the current stage. 
Q Making the best use of disc geography: putting data on the disc in close 

physical proximity to related data. 
Q Using of compression/decompression techniques to lessen the effect of 

a 150K transfer rate. 

Publishing and Selling 
CD-ROM Software 

3 DevCon90 



A key point in CD-ROM product design is not to force the user through unnecessary sections 
of a program. For example, online instructions can be especially useful to the novice user, 
but the experienced user may not need instructions. The user must have the option to bypass 
such a section. 

Be aware that products are going to be sold in international markets. Currently, the sales of 
Amiga products are larger in Europe than in the. USA. Should a product's screen be 
optimized for NTSC or PAL, or should both be included on the same disc? 

Within Europe, the English speaking market is probably about 40%, but German and French 
speaking markets are significant. This is not a problem for arcade games, but will be for 
multimedia products with a significant text language and audio base. Use the CD-ROM 
capacity to create one multilingual product- it could claim it has educational advantages! 

Future Trends for Distribution and Selling 

With the launch into the mass market of multimedia machines such as the Amiga/CD, we can 
be confident that the software products on CD-ROM will become accepted and handled by 
the existing software distribution channels, it will be just another SKU. 

However, it is possible that other non-computer distribution channels may also be attracted to 
handle CD-ROM products. These channels include books and audio/records, and possibly 
consumer electronic channels which have not previously handled "software". 

Conclusion 

While it is impossible to predict the near future with a high level of accuracy, one thing is 
sure. The whole industry is about to undergo a major change with the use of CD-ROM based 
systems. It offers the opportunity to create fantastic products, the likes of which we could 
only dream about 10 years ago when we were struggling with machines limited to 16K or 
lessofRAM. 

Hopefully it will be profitable; for sure, as always in our industry, it will be fun. + 

DevCon90 4 Publishing and Sslllng 
CD-ROM Software 

u 

u 

u 











n 

V2.0 Preferences 
by Eric Cotton 
June 1990 

The Commodore-Amiga Operating system has, through version 1.3, relied on a finite 
Preferences structure 232 bytes in length. This structure supports a limited definition of the 
user's working environment. The introduction of new peripherals, display modes, etc. as 
well as the attraction of supporting additional user preferences from both Commodore and 
third-party developers suggests the need to update Preferences in a flexible and extensible 
way. This article presents the new design of Preferences implemented in V2 .0. 

OVERVIEW 

Preferences has undergone a complete facelift for V2.0. The most noticeable difference is 
that instead of one Preferences editor program there are now many. Additionally, there are 
many more user-environment settings over which the user has control. 

Environment and Preferences 

Preferences is now part of ENV :. In previous software releases we have indicated that ENV: 
will become an integral part of the Amiga OS. While developing the new Preferences it 
became apparent that Preferences and environment variables share many of the same goals 
and concepts. Thus the two have been merged together. By combining the two we hope to 
enhance the flexibility and usefulness of both. Use of the term "Preferences" continues, 
however, as the name applied to the customary system of programs and data which configure 
the Amiga' s working -environment. This includes the system editors, their data, IPrefs (the 
Intuition Preferences daemon), and any application programs choosing to use the features of 
Environment to organize and maintain configuration information. 

As is the case today, ENV: will normally be assigned to a subdirectory of RAM:, specifically 
RAM:Env. This is where "in use" Preferences are stored. Most system Preferences can be 
found in the Sys directory in ENV :. 

Preferences Data Files 

Preferences items are usually grouped by type into distinct data files. These files reside in 
the logical device ENV :. Each tile contains the Preferences data for a particular class of 
items. For example, one such file, serial.prefs contains the settings and configuration for the 
serial port. 

V.2.D Preferences 1 DevCon90 



Most Preferences data files are duplicated on theW orlcbench disk in the 
SYS:Prefs/Env-Archive directory, referenced with the assign ENV ARC:. In the event of a 
system reset they are copied from their archival storage to ENV: whereupon notification is 
sent to interested parties such as Workbench. 

Editors (Preferences Writers) 

The editors are tools for changing Preferences items. When a user wishes to change settings 
he simply executes the appropriate editor located in the Prefs drawer on his WorkBench. 
While editors can vary in appearance, their internal operations are similar. When invoked, an 
editor opens and reads into its own private memory the data from the ENV: file on which it 
operates. This can be done by the fam;uar DOS functions. If the file does not exist, the 
editor should provide a default setting for each Preferences item (where appropriate). Once it 
has a complete set of data, it initializes its display to reflect the current settings. Then, a user 
interface similar to that of the V1.3 Preferences editor allows the user to modify the state of 
each item. The editor then saves the new data back to the data file in ENV: and, optionally, 
ENVARC:. 

Customers (Preferences Readers) and Notification 

A Preferences customer is any program that reads Preferences. Examples include terminal 
programs inquiring about the configuration of the serial port, word processors which need 
printer setup information, and even W orlcbench. 

Previously, customers relied on Intuition and the NEWPREFS IDCMP to find out about 
Preferences changes. New p~grams, however, should utilize the new filesystem notification 
ability introduced in V2.0. Then each time an editor writes its data, the registered customer 
programs are notified that a change has been made. 

Any process can become a customer and receive notification by calling the new DOS 
function StanNotifyO specifying the name(s) of the data file(s) for which it would like to be 
informed. A message or signal is then sent back to the program when the file (or files) have 
been modified. The customer then has the option of opening the Preferences file to find any 
changes made to the data. 

IPrefs 

IPrefs is short for Intuition Preferences daemon. It is IPrefs job to communicate cenain 
Preferences information from the system Preferences data files to Intuition. 

DevCon90 V2.D Preferences 

u 

u 

u 



COMP ATffiiLITY AND SYSTEM INITIALIZATION 

A degree of compatibility with previous versions of Preferences and the OS must be 
maintained. In this regml, cenain atifacts of the original Preferences and its interface have 
been presetved. 

When the system boots off of a disk containing a DEVS:system-congiguration ftle, the DOS 
will use the data in this file to initialize Intuition's internal Preferences data structure. All 
new V2.0 items will be reset to defaults. Thereafter, any appropriate Preferences files found 
in ENV: will overide the items in the system-configuration file. 

Intuition will continue to suppon the Preferences-related functions, GetPrefsO, 
GetDefPrefs(), and SetPrefsQ. While applications are discouraged from using these 
functions they are nonetheless retained to insure compatibility with programs written before 
V2.0. They operate exactly as before but will only suppon the subset of Preferences data for 
for which Intuition keeps an internal record. 

The SetPrefsO function (if Inform =TRUE) will still cause Intuition to send a message to 
those programs which have the NEWPREFS IDCMP flag set. Again, this mechanism only 
relates to changes in the Intuition Preferences buffer. GetPrefsO will report, to the best of its 
ability, only items which reflect the current state as set by SetPrefs(), and not necessarily by 
new Preferences or environment variables. 

System Initiafization 

System initialization .in V2.0 is as follows: 

Cl DOS reads the DEVS:system-configuration file, if it exists, and calls SetPrefs() 
to set up Intuition's internal Preferences structure. New items are set to default values. 

Cl The archived Preferences/Environment files (ENV ARC:) are copied to ENV: 

Copy >NIL: ENVARC: RAM:Env all quiet 

Cl ENV: is assigned to the RAM:Env directory. 

a The system configuration daemons are started up, and they register for notification 
of their favorite environment files. (Note that the Intuition daemon, IPrefs, is currently 
the only one.) 

V2.D Preferences 3 DevCon90 



Cl The system daemons check for existing files, and if they exist open them. They 
pass along the contents to the interested system module. 

Cl Intuition updates its internal configuration including (for compatibility) its 
Preferences structure. 

Cl The Workbench screen opens for the first time. 

PREFERENCES DATA FILES 

The Preferences data files act as both storage for configuration information and as 
intermediaries between the editors and applications. 

Data Format 

There is no strict structure for Preferences files. They may be ASCll, IFF, binary, or any 
form suggested by the Preferences data therein. Many of the system files are comprised of 
structured binary data and are simply saved as such with a small amount of identifying 
header information. Some, such as pointer.ilbm, are actual IFF n.BMs. 

Data in Use 

Generally RAM:, and in particular ENV:, is where "in use" Preferences data is stored. RAM: 
is preferable over other storage media in that it offers both notification and extremely fast 
access to the data in the files. 

The root of ENV: is reserved for environment variables. System preferences files, such as 
printer.prefs, are assigned to the Sys directory within ENV :. Applications which have their 
own Preferences are encouraged to put them in a directory named after their application. For 
instance, a paint program named My Paint should put its Preferences files in a ENV :My Paint 
directory. This will prevent a name collision if there are multiple applications which all call 
their palette preferences colors.prefs, for example. 

Because RAM is a limited resow:ce, applications which have very large amounts of 
Preferences data should not store it directly in ENV :. Instead, a "pointeru to the actual data 
(such as a filename) should be stored. Thus a screen backdrop picture should be saved on 
disk and the ENV: Preferences would contain little more that the name of the disk file and a 
directory path to it. 

DevCon90 4 V2.D Preferences 

u 

u 

u 



Archived Data Files 

Clearly, Preferences saved to RAM: will not survive system reset. Consequently, all 
Preferences data should also be saved to non-volatile storage such as a hard disk. In this 
regard, a directory in the SYS:Prefs drawer has been created to archive copies of Preferences 
files. The directory is called Env-Archive; it may be referenced by the logical assign 
ENV ARC:. ENV ARC: is structured much like ENV: and in most respects is a copy. The 
content of the data files can differ (see the explanation of Use and Save in the Editors 
section). 

The entire contents of ENV ARC: is copied to ENV: by the startup sequence so appplications 
need not be concerned about copying their Preferences data themselves. They should be 
careful, though, what they put in ENV ARC: since it will find its way into valuable RAM. 

Application programs may choose to put their Preferences files within the application's own 
directory. In that case, if notification is required then it is the application's responsibility to 
copy its Preferences data to an aptly named directory in ENV :. 

J;lecause there is a large overhead for the multitude of small files likely to be stored, an 
optional archiver (not included with V2.0) can be used to concatenate and perhaps compress 
the data. During a system boot, the files can then be extracted from the archive and returned 
toENV: 

Preference Presest 

The directory Sys:Prefs/Presets is available for storage of Preset Preferences. Presets are 
explained in a following section. 

PREFERENCES EDITORS 

Until now the Preferences familiar to most Amiga users was the lone Preferences program 
which operated on a single data structure. Just to change one or two items often involved 
traversing multiple screens in the program. This has all changed in V2.0 with the advent of 
multiple System Preferences Editors. They are kept in the SYS:Prefs drawer on the 
Workbench disk. 

System Editors 

A family of editors are included with V2.0 to allow users to easily modify their working 
environment. While we anticipate that third-parties will eventually provide editors to 
manipulate their particular environment needs, the initial ones are the System Editors. 

V.2.D Preferences 5 DevCon90 



While most of the Preferences options available in V1.3 remain, the user now has much more 
control over his environment than ever before, including the ability to select multiple fonts, 
background patterns for the Workbench, overscan control, additional serial support, etc. But 
unlike the monolithic DEVS:system-configuration file of today, there are multiple files, each 
containing definitions for a particular facet of the system environment Typically, editors 
exist in a one-to-one correspondence with each Preferences file. 

Following is a list of the current system Preferences editors and their data files: 

Font (screenfontprefs, sysfont.prefs, wbfont.prefs)- Specifications of the default screen, 
system, and Workbench fonts (the latter is the font Workbench 
uses for icon labels). 

ICQntrol (icontrol.prefs)- Intuition specific control items including verify timeout, 
command key definitions, etc. 

Input (input.prefs) - Mouse and keyboant control items. 

Overscan (oscan.prefs) - Standard and text overscan areas for the various modes supported 
by this system. 

Palette (palette.ilbm) - Color selections for the Workbench screen. 

Pointer (pointer.ilbm) - Design of the mouse pointer image. 

Printer (printer.prefs) - Printer text preferences as well as the printer driver name. 

PrinterGfx 
(printergfx.prefs) 

ScreenMode 
(screenmode.prefs) 

- Printer graphic preferences. 

- Display information such as the Workbench display mode and the 
raster dimensions. 

Serial (serial.prefs) -Serial port definitions including baud rate, handshaking, parity, etc. 

Time (none) - System and RTC clock date and time. 

WbContig (wbconfig.prefs)- Miscellaneous Workbench specific items. 

WbPattem (win. pat, wb.pat) -The backdrop patterns used in the Workbench and its windows. 

DevCon90 6 V2.D Preferences 

u 

u 

u 



Access to tiles is usually accomplished via the normal DOS commands such as Open(), 
Read(), Write(), etc. Because many of the files are in IFF, the iffparse.library can be used to 
greatly simplify access to the data. Notification to customer programs is handled 
automatically when tiles are properly saved to ENV :. 

Editor Design Guidelines 

Design guidelines for system editors will insure that each presents a famiUar and consistent 
user interface. Functionality is similiar to the V1.3 Preferences program. New user interface 
features have been added, however, to more easily manipulate Preferences data. Editors are 
encouraged to include the following standard operations in menus and/or gadgets: 

Project Menu 

Open - Load data from a Preset file (see Presets, below). The user must specify 
a file's name as well as its path. 

Save As - Save the data with a user-supplied name and path. The new file can be 
used as a "Preset" (see below). Customers will not necessarily be 
notified. 

· Quit - Exit the editor. 

Edit Menu 

Reset to defaults - Reset the editor display with a set of default data. Reasonable 
default values should be built in to each editor. 

Last Saved - Reset the editor with the data in the appropriate .prefs file in 
ENV ARC:. Note that the system editors retrieve the data from the 
ENV ARC:Sys directory. 

Restore - Reset the display to its original configuration (i.e. the original state 
when the editor was first invoked). 

Undo (Optional)- Undo the most recent change the user has made. 

Options Menu 

Save Icons (yes/no) - Controls whether or not the editor will save a project icon with 
each preset saved (see Save As). 

V2.D Preferences 7 DevCon90 



Editor Standard Gadgets 

Save - Save the data to both ENV: and ENV ARC: (archival storage) using the official 
name. Data is protected from system reset. Customers will be notified. The 
editor will terminate. Note that the system editors store their data in the ENV :Sys 
and BNV ARC:Sys directories. 

Use - Save the data to ENV: using the official name. Interested environment customers 
will be notified that a change has been made. Because no change is made to the 
copy in permanent storage, all changes will be lost if the system is reset The 
editor will exit. Note that the system editors store their data in the ENV :Sys 
directory. 

Cancel - Exit the editor, preferences are restored to the original state before the editor 
was invoked. 

Editor CLI Usage 

In addition to the user-friendly interface, many editors should also accept limited commmand 
line arguments when executed from the CLI. In this instance the editor will not always open 
its. window. Instead, the editor will perform the action as detailed in the arguments and no 
further action will be taken. The command template should be of the form: 

FROM,EDIT/S,USFJS,SA VE/S 

FROM can specify a preset (the default FROM is the official file). The switches, EDIT, 
USE, and SAVE, specify th~ action the editor should perform as follows: 

EDIT - Open the editor window and configure the display as directed by the data 
file (preset or otherwise). This is the default switch. 

USE - Perform a "Use" on the data found in the data file. Do not open the 
editor window. 

SAVE - Perform a "Save" on the data found in the data file. Do not open the 
editor window. 

Here are two examples: 

1> Serial FROM Sys:Prefs/Presets/myserial.pre USE 
1> PrinterGfx Sys:Prefs/Presets/mypgfx.pre SAVE 

DevCon90 B V2.0 Preferences 

u 

u 

u 



In the first example the serial device Preferences editor is silently run from the CLL Without 
opening its window the editor loads the myserial.pre serial preset file, performs a Use 
function and then exits. Likewise, in the second example the printer graphics editor runs 
silently but performs a Save function before exiting. 

Preferences Presets 

A new concept introduced in V2.0 is Preferences presets. Presets ~ alternate versions of the 
recognized Preferences files. Their purpose is to support varying configurations of 
Preferences which can be "turned on" at the user's discretion by selecting USE from its 
editor. For example, while the "accepted" definition of the mouse pointer is in pointer.ilbm, 
a user may have an alternate pointer he favors when working with a paint program. By 
saving the new image to a different name with Save As, he can at any point reload the image 
and select Use from within the Pointer editor and change pointers. As explained above, this 
can also be done from the CLL The original version will still be available in the 
ENV ARC:Sys directory. A summary of the procedure is as follows: 

1. Execute the appropriate editor. 
2. The current settings are automatically loaded (i.e. the me with the recognized 

name is loaded). 
3. Change the settings to the new configuration. 
4. Select Save As to store the new settings under a unique name. 
5. Select Cancel. The new preset settings will not take effect. Instead, the original 

configuration remains in effect. 

Then whenever the preset is needed simply: 

6. Execute the editor. 
7. Use the editor's Open menu item to retrieve the preset. 
8. Select USE. (The preset is saved under the "recognized" name.) 
9. The presets settings take effect. 

OrfromCLI: 

6. Execute the editor with the USE switch while specifying the preset as the FROM file. 
The editor will perform a Use operation and terminate without opening its window. 

Or from Workbench (assuming the preset was saved with an icon): 

6. Double-click on the preset's icon. The editor (as identified in the preset icon's 
Default Tool) will perform aU se operation and terminate without opening its 
window. 

V.2.0 Preferences 9 DevCon90 



As a convenience, the directory SYS:Prefs/Presets can be used to store presets. It is the 
default when sleeting Save As from a system editor. 

Utilities 

It is recognized that various utilities may prove useful to facilitate some of the housekeeping 
associated with managing the various manifestations of the Preferences data, including, for 
compatibility, the DEVS:system-configuration file. We may in the future have a utility that 
will allow the user to create a system-configuration file, compatible with earlier versions of 
the OS, from the various system Preferences files. 

PREFERENCES CUSTOMERS 

A Preferences customer is any program that wishes to be informed of changes to Preferences 
items. Unlike the editors, which are the Preferences writers, the customers are the 
Preferences readers. 

Customer programs which once relied on Intuition for notification should evolve to use the 
new filesystem notification system. A program can become a customer by asking for 
notification on any data file(s) stored in ENV: in which it is interested. Thereafter, any time 
a change is made to the data file, the handler will send notification to the customer program. 
The customer then has the option of opening the Preferences file to find any changes made 
to the data. 

As an example, suppose a terminal program needs to know of any changes a user makes to 
the Preferences for the serial pon. By simply registering the name of the serial Preferences 
tile with the handler, the program will be notified every time the tile is changed, including 
creation, removal, or name change. 

Notification Options 

Two types of notification are supported: notification by message and notification by signal. 
A customer that requests notification by message will be sent a Notify Message whenever the 

. tile changes. This message includes a pointer to the customer's NotifyRequest structure (see 
below) which will in tum have a pointer to the name of the Preferences file that has changed. 
Message notification is particularly useful when requesting notification on more than one file. 

An additional feature of message notification is known as "throttling" (via the 
NRF _ W AIT_REPLY flag). When throttling is enabled the handler will not send a second 
notification message for a given file until the application program has returned the first. 

DevCon90 10 V.2.D Prsterencss 

u 

u 

u 



Besides preventing a buildup of messages it will also insure that the customer does not 
wastefully re-read the same data multiple times. The handler will, however, keep track of 
changes and, if necessary, immediately notify the program again after the message is 
returned. 

A customer that requests notification by signal will just be signaled by the handler when the 
file changes and no message will be sent. While this method is faster than message 
notification, it is also much less informative. It is most useful when requesting notification 
on· only one or two files. Throttling is inherently automatic. 

Requesting and Removing Notification 

To request notification a customer program should use the DOS function StartNotify() or its 
packet-level equivalent. A NotifyRequest structure must be passed to the handler. A pointer 
to this structure will be included in the Notify Message every time a specified Preferences file 
changes. Note that the structure will belong to the handler until notification is removed. 

The synopsis for StartNotifyQ is: 

BOOL StartNotify(struct NotifyRequest *) 

The function returns the success or failure of the request. The Notify Request structure is 
listed below. See the C include file dos/notify.h and the DOS autodocs for more complete 
information. 

I* Do not modify or reuse the notifyrequest while active. *I 
I* note: the first LONG of nr_Data bas the lenqth transfered *I 

struct NotifyRequest ( 

}; 

UBYTE *nr Name; 
UBYTE *nr-FullName; I* set by dos - don't touch *I 
ULONG nr UserDatai I* for applications use *I 
ULONG nr:Flaqs; 

union { 
struct ( 
struct MsqPort *nr Port; I* for SEND_MESSAGE *I 
} nr_Msq; -

struct ( 
struct Task *nr Task; I* for SEND SIGNAL *I 
UBYTE nr SiqnalNum; I* for SEND:SIGNAL *I 
UBYTE nr:Pad[3]; 
} nr Siqnal; 

nr_stuff; 

nr_Reserved[4); I* set to 0 *I 

I* internal use by handlers *I 
ULONG nr MsqCount; 
struct MsqPort *nr_Handler; I* handler sent to (for EndNotify) *I 

V.2.D Preferences 11 DevCon90 



The customer selects notification options by setting various flags in the nr_Flags field of the 
NotifyRequest structure. The current flags are: 

tdefine NRF_SEND_MESSAGE 1 /* notification by message */ 
idefine NRF_SEND_SIGNAL 2 /* notification by signal */ 
#define NRF_WAIT_REPLY 8 I* throttle notification messages */ 
#define NRF_NOTIFY_INITIAL 16 /* send initial notification */ 

The latter flag instructs the handler to ;mmediately send notification (message or signal) on 
the selected tiles so that the customer may defer intitial reading until after the program and 
notification have been set up. 

To remove notification call EndNotifyQ (or its packet-level equivalent). The NotifyRequest 
structure will then be returned The synopsis for this function is: 

void EndNotify(struct NotifyRequest *) 

Programs using message notification will receive a pointer to a Notify Message. Its structure 
is as follows: 

struct NotifyMessage 
struct Message nm_ExecMessaqe; 
ULONG nm_Class; 
UWORD nm_ Code; 
struct NotifyRequest *nm_NReq;/* don't modify the request! */ 
ULONG nm_DoNotTouch; /* like it says! */ 
ULONG nm_DoNotTouch2; 

) ; 

Notification Example 

The following code fragment is offered as an example customer requesting message 
notification of the tile "foobar.prefs" in the ENV:myapp directory: 

main() 
{ 

struct NotifyRequest *nr; 
struct NotifyMessaqe *nmsg; 
struct MsgPort *myport; 

nr->nr_Name = nENV:myapp/foobar.prefsn; 
nr->nr_UserData = 1234; 
nr->nr_stuff.nr_Msg.nr_Port = myport; 
nr->nr_Flags = NRF_SEND_MESSAGEINRF_NOTIFY_INITIALINRF_WAIT_REPLY; 

DevCon90 12 V2.D Preferences 

.u 

u 



n 

StartNotify(nr); 

I* 

while (nmaq = (struct NotifyMessaqe *)GetMsq(myport)) 
{ 

if (nmsq->nm_NReq->nr_UserData == 1234) 

* or you can use if (nmsq->pm_NReq -= nr) 
* or 
*I 

if (s~rcmp(nmsq->pm_NReq->nr_Name, "foobar) -- 0) 

ReplyMsq (nmsq) ; 

End.Notify(nr); 

IPREFS 

IPrefs is the Intuition Preferences daemon. Its purpose is to read some of the system 
Preferences mes and pass on the information therein to Intuition. It was written to take 
advantage of the notification feature of RAM: much as an application program might. 

IPrefs should be run from the startup sequence as follows: 

Run >NIL: IPrefs >NIL: 

It is most efficient to run the daemon after the Preferences files are copied from ENV ARC: to 
ENV :. Because IPrefs sets the NRF _NOTIFY _INITIAL flag when requesting notification 
on the files, it will receive immediate notification. 

Thereafter, each time a user selects 'Use' or 'Save' from within an editor, IPrefs will receive 
a notification message and, consequently, read and parse the data file. The information is 
then forwarded to Intuition. Where possible, Intuition will adjust itself to the new settings 
and also update its internal copy of the V1.3 Preferences structure. This will afford a degree 
of compatibility to those application programs which rely on GetPrefsO for their Preference 
information. 

V2.0 Prefarences 13 DevCon90 



IPrefs currently reads and parses the following Preferences files: 

icontrol.prefs 
input.prefs 
overscan.prefs* 
palette.ilbm 
pointer.ilbm 
printer.prefs 
printergfx.prefs 
screenfont.prefs* 
screenmode.prefs* 
serial.prefs 
sysfont.prefs 

Those marked with an asterisk require that The Workbench be reset in order for the 
Preferences to take effect. IPrefs will do this automatically, provided that all windows open 
on the Workbench screen are owned by Workbench. If there are other windows, IPrefs will, 
through a requester, ask that they be closed before it attempts to reset. Once IPrefs senses 
that the Workbench is clear of application windows it will attempt the reset. If, however, it 
fails to reset the Workbench in up to three successive tries then it will wait until the user 
explicitly selects 'Retry' (or 'Cancel') before attempting to do so again. 

IPrefs may be terminated by sending it a CI'RL-C. + 

DevCon90 14 V.2.0 Prsfetences 

u 

u 

u 











Using IFFParse in 
Applications 
by Leo Schwab 

IFFParse.library was created to help simplify the job of parsing IFF files. Unlike other IFF 
file libraries, IFFParse is not form-specific. This means that the job of interpreting the 
structure and contents of the IFF file is up to you. Previous IFF file parsers were either 
simple but not general, or general but not simple. IFFParse tries to be simple and general. 

1. What's IFF Really? 

Many people have a misconception that IFF means image files. This is not the case. IFF is a 
method of portably storing structured information in machine-readable form. The actual 
information can be anything, but the manner in which it is stored is very specifically detailed. 
This specification is the IFF standard. 

It is recommended that you read the IFF standard. Then, read it again. Unfortunately, it is 
written in "standardese" and is difficult to understand in places. However, the standard does 
mention one powerful analogy: they compare an IFF file to a C program. If you keep this 
metaphor in mind, you will be well on your way to understanding IFF file structure. 

One of the IFF FORM's that has been defined is the ILBM standard This is how most 
Amiga bitmap imagery is stored Since this is the most common IFF file, we'll be using this 
frequently as an example. 

2. Handle Management 

IFF files are manipulated through a grey box called an IFFHandle. The term grey box is used 
because only some of the fields in the IFFHandle are publicly documented This handle is 
passed to all IFFParse functions, and contains the current parse state and position in the file. 
An IFFHandle is obtained by calling AllociFFQ, and freed through FreeiFF(). This is the 
only legal way to obtain and dispose of an IFFHandle. 

Using IFFParssln 
Applications 

1 DevCon90 



3. Stream Management 

A stream is a linear array of bytes that may be accessed sequentially or randomly. DOS files 
are streams. IFFParse uses 2.0 Hook structures (defined in utility/hooks.h) to implement a 
general stream management facility. Clients may implement any form of stream using this 
facility. IFFParse uses the facility to prepare a stream for use, read, write, seek, and 
terminate stream transactions. 

On top of this facility, IFFParse has two built-in stream managers: One for unbuffered DOS 
flies, and one for the Clipboard. 

3.1. Initialization 

In the IFFHandle is the public field iff_Stream. This is a longword that contains something 
meaningful to the stream manager. IFFParse never looks at this field itself (not directly, 
anyway). This field is initialized similar to the following: 

iff->iff_Stream = (ULONG) OpenWeirdCustomStream ("foo"); 

In the case of the internal DOS stream handler, iff_Stream is a filehandle as returned by 
OpenO: 

iff->iff_Stream = (ULONG) Open ("filename", MODE_OLDFILE); 

In the case of the internal Clipboard stream manager, iff_Stream is a pointer to a 
ClipboardHandle: 

iff->iff_Stream = (ULONG) OpenClipboard (PRIMARY_CLIP); 

(Note that OpenClipboardO is part of IFFParse.library.) 

Once you've set up the iff_Stream field, you would then set the IFFHandle' s flags and stream 
hook with InitiFF(): 

InitiFF (iff, IFFF_FSEEK I IFFF_RSEEK, &weirdstreamhook); 

The flags are: 

IFFF_FSEEK: This stream has forward-seek capability only. 
IFFF_RSEEK: This stream has random-seek capability. (Note: this tends to imply _FSEEK, 

but it's best to specify both.) 

If neither flag is specified, you're telling IFFParse that it can't seek through the stream. 

DevCon90 2 Using IFFPal'86/n 
Applications 

u 

u 

u 



There are calls to set up the internal DOS and Clipboard handlers: 

InitiFFasDOS (iff); /* Sets up for DOS transaction. */ 
InitiFFasClip (iff); /* Sets up for Clipboard transaction. */ 

IFFParse "knows" the seek capabilities of these streams, so it sets the flags for you. Note: 
IFFParse sets IFFF _FSEEK I IFFF _RSEEK for DOS files. This is not always true (e.g. 
pipes). If the application happens to know that a DOS file has different seek characteristics, 
you may manipulate the seek bits in iff_Flags yourself after calling InitiFFasDOSQ. 

Once initialized, call OpeniFF(): 

error= OpeniFF (iff, IFFF_READ); 

Once you establish a read/write mode (by passing IFFF _READ or IFFF _WRITE), you 
remain in that mode until you call CloseiFF(). 

3.2. Termination 

Termination is simple, just call CloseiFF(). This may be called at any time, and terminates 
IFFParse' s transaction with the stream. The stream itself is not closed. The IFFHandle may 
be reused; you may safely call OpeniFFO on it again. You are responsible for closing the 
streams you opened. 

3.3. Internals 

If you are implementing your own custom stream handler, you will need to know the 
mechanics of hook call-backs, and how to interpret the parameters. The example program 
Look! contains an example of a custom stream call-back. You may use it as a reference (it's 
well-commented). 

4. Parsing 

This is both simple and complicated. It's simple in that it's just one call. It's complicated in 
that you have to seize control of the parser to get your data. 

The parser operates automatically, scanning the file, verifying syntax and layout rules. If left 
to its default behavior, it will scan through the entire file until it reaches the end, whereupon 
it will tell you that it got to the end. 

Using IFFParseln 
Applications 

3 DevCon90 



The whole show is controlled through one call: 

error= ParseiFF (iff, controlmode); 

The control modes are IFFPARSE_SCAN, IFFPARSE_STEP, and IFFPARSE_RAWSTEP. For 
the time being, we will consider only IFFP ARSE _scAN. 

4.1. Controlling Parsing 

ParselFF(), if left to itself, wouldn't do anything useful. Ideally, we want it to stop at 
strategic places so we can look at the scenery. Here's where it can get complicated. 

There are many tools provided to help control the parsing process. They range from simple 
and.mindless to extremely deep and thought- provoking. You'll probably seldom use the 
deep and thought-provoking ones, so we'll cover the common ones. 

4.1.1 StopChunkO 

You can instruct the parser to stop when it encounters a specific IFF chunk by using the 
function StopChunkQ: 

error= StopChunk (iff, ID_ILBM, ID_BODY); 

When the parser encounters the requested chunk, parsing will stop, and ParseiFF() will return 
the value zero. The stream will be positioned ready to read the first data byte in the chunk. 
You may then call ReadChuitkBytesO or ReadChunkRecords() to pull the data out of the 
chunk.. 

You may call StopChunk() any number of times for any number of different chunk types. If 
you wish to identify the chunk on which you've stopped, you may call CurrentChunk() to get 
a pointer to the current ContextNode, and examine the cn_Type and cn_ID fields. 

Using StopChunk(), you can parse IFF files in a manner very similar to the way you're 
probably doing it now, using a state machine. However, this would be a terrible underuse of 
IFFParse. 

DevCon90 4 Using IFFParss/n 
Applications 

u 

u 

u 



n 

4.1.2. PropChunkQIFindPropQ 

In the case of a FORM ll..BM, certain chunks are defined as being able to appear in any 
order. Among these are the BMliD, CMAP, and CAMG. Typically, BMliD appears first, 
followed by CMAP and CAMG, but you can't make this assumption. The IFF and ll..BM 
standards require you to assume these chunks will appear in any order. So ideally, what 
you'd like to do is collect them as they arrive, but not do anything with them until you 
actually need them. 

This is where PropChunk() comes in. The syntax for PropChunkO is identical to 
StopChunk(): 

error= PropChunk (iff, ID_ILBM, ID_BMHD); 

When you call ParseiFF(), the parser will look for chunks declared with PropChunk(). When 
it sees them, the parser will internally copy the contents of the chunk into memory for you 
before continuing its parsing. 

When you're ready to examine the contents of the chunk, you use the function FindProp(): 

StoredProperty = FindProp (iff, ID_ILBM, ID_BMHD); 

FindPropQ returns a pointer to a StoredProperty, which contains the chunk size and data. If 
the chunk was never encountered, NUlL is returned 

This permits you to process the property chunks in any order you wish, regardless of how 
they appeared in the tile. This provides much better control of data interpretation and also 
reduces headaches. 

4.2. Putting It Together 

With just StopChunkQ, PropChunkQ, and ParseiFF(), you can write a viable ll.,BM display 
program. Since IFFParse knows all about IFF structure and scoping, such a display program 
would have the added ability to parse complex FORMs, LISTs, and CATs and attempt to fmd 
imagery buried within. 

Using IFFParse In 
Applications 

5 DevCon90 



Such an TI..,BM reader might appear as follows: 

iff= AllociFF (); 
iff->iff_Stream =Open ("shuttle dog", 
InitiFFasDOS (iff); 
OpeniFF (iff, IFFF_REAO); 
PropChunk (iff, ID_ILBM, ID_BMHO); 
PropChunk (iff, ID_ILBM, ID_CMAP); 
PropChunk (iff, ID_ILBM, ID_CAMG); 
StopChunk (iff, IO_ILBM, IO_BODY); 
ParseiFF (iff, IFFPARSE SCAN); 
if (bmhdprop = FindProp-(iff, ID ILBM, 

configurescreen (bmhdprop); 
else 

die ("No BMHD, no picture."); 
if (cmapprop = FindProp (iff, ID_ILBM, 

setcolors (cmapprop); 
else 

usedefaultcolors (); 
if (camgprop = FindProp (iff, ID_ILBM, 

setdisplaymodes (camgprop); 
decodebody (iff); 
showpicture () ; 
CloseiFF (iff); 
Close (iff->iff_Stream); 
FreeiFF (iff); 

MOOE_OLDFILE); 

IO_BMHO)) 

ID_CMAP)) 

ID_CAMG)) 

Note that error checking, of which there· should be copious amounts, is not present above for 
clari~. · 

4.3. Other Features 

There are other tools available for controlling the parser. Briefly, these are: 

Collection Chunk(): PropChunk() keeps only one copy of the declared chunk (the one cur
rently in scope). Collection Chunk() collects and keeps all copies of the 
declared chunk it encounters. This is useful for chunks such as CRNG. 

StopOnExit(): Whereas StopChunk() will stop the parser just as it enters the declared 
chunk, StopOnExit() will stop just before it leaves the chunk. This is 
useful for fmding the end of FORMs, which would indicate that you've 
collected all possible data in this FORM and may now act on it. 

EntryHandlerQ: This is used to install your own custom chunk entry handler. StopChunk(), 
PropChunk(), and Collection Chunk() are internally built on top of this. 

ExitHandler(): This is used to install your own custom chunk exit handler. StopOnExit() 
is internally built on top of this. 

DevCon90 6 Using IFFPBI'S8/n 
Appllcstlons 

u 

u 

u 



n 

n 

5. Reading Chunk Data 

To read data from a chunk, use the functions ReadChunkBytes() and ReadChunkRecords(). 
Both calls truncate attempts to read past the end of a chunk. For odd-length chunks, the 
parser will skip over the pad bytes for you. 

6. Writing IFF Files 

IFFParse provides facilities for writing IFF files. Again, IFFParse makes no assumptions 
about the data you're writing, and concerns itself with verifying the syntax of your output. 

6.1. Creating Chunks In A File 

Because the IFF specification has nesting and scoping rules, you can nest chunks inside one 
another. One instance "is the BMHD chunk, which is commonly nested inside a FORM 
chunk. Thus, it is necessary for you to inform IFFParse when you are starting and ending 
chunks. 

6.1.1. PushChunkQ 

To telllFFParse you are about to begin writing a new chunk, you use the function 
Push Chunk(): 

error= PushChunk (iff, ID_ILBM, ID_BMHD, chunksize); 

The chunk ID and size are written to the stream. IFFParse will enforce the chunk size you 
specified; attempts to write past the end of the chunk will be truncated. If, as a chunk size 
argument, you pass IFFSIZE_UNKNOWN, the chunk will be expanded in size as you write data 
to it 

6.1.2. PopChunkO 

When you are through writing data to a chunk, you complete the write by calling 
PopChunkO: 

error= PopChunk (iff); 

If you wrote fewer bytes than you declared with PushChunkQ, PopChunk() will return an 
error. If you specified IFFSIZE_UNKNOWN, PopChunk() will seek backward on the 
stream and write the final size. If you specified a chunk size that was odd, PopChunkO will 
write the pad byte automatically. 

Push Chunk() and PopChunkO nest; every call to PushChunkO must have a corresponding 
call to PopChunkQ. 

Using IFFPsrss In 
Appl/cstlons 

7 DevCon90 



6.2. Writing Chunk Data 

This is done with WriteChunkBytesQ and WriteChunkRecords(). If you specified a valid 
chunk size when you called PushChunk(), WriteChunkBytesO and WriteChunkRecords() 
will truncate attempts to write past the end of the chunk. 

6.3. Example 

Code to write an ILBM file might take the following form: 

iff= AllociFF (); 
iff->iff Stream= Open ("foon, MODE NEWFILE); 
InitiFFasDOS (iff); -
OpeniFF (iff, IFFF_WRITE); 
PushChunk (iff, ID ILBM, ID FORM, IFFSIZE UNKNOWN); 
PushChunk (iff, ID-ILBM, ID-BMHD, sizeof (struct BitMapHeader)); 
WriteChunkBytes (iff, &bmhd; sizeof (bmhd)); 
PopChunk (iff); 
PushChunk (iff, ID_ILBM, ID_CMAP, cmapsize); 
WriteChunkBytes (iff, cmapdata, cmapsize); 
PopChunk (iff); 
PushChunk (iff, ID ILBM, ID_BODY, IFFSIZE_UNKNOWN); 
packwritebody (iff); 
PopChunk (iff); 
PopChunk (iff); 
CloseiFF (iff); 
Close (iff->iff Stream); 
FreeiFF (iff);-

Again, er.ror checking is not present for clarity. 

7. A Note On Seekabillty 

As you can see from the above examples, IFFParse works best with a stream that can seek 
randomly. However, it is not possible to seek on some streams (e.g. pipes). 

IFFParse will read and write streams with limited or no seek capability. In the case of 
reading, only forward-seek capability is desireable. Failing this, IFFParse will fake forward 
seeks with a number of short reads. 

In the case of writing, if the stream lacks random seek capability, IFFParse will buffer the 
entire contents of the file until you do the final PopChunk(), or when you CloseiFFO the 
handle. At that time, the entire stream will be written in one go. This buffering happens 
whether or not you specify all the chunk sizes to PushChunkQ. (Note: The current 
implementation of this internal buffering is very inefficient). Be aware that we reserve the 
right to alter this behavior of the parser, to improve performance or reduce memory 
requirements. We mention this behavior on the off chance it is important to you. 

DevCon90 8 Using IFFParssln 
Appllcst/ons 

u 

u 

u 



n 

8. Context Utilities 

Internally, IFFParse maintains IFF nesting and scoping context via a "stack." (Note that it is 
probably easier to think of a stack of things on a table in front of you when reading this 
discussion). It is from this stack concept that we derived the nomenclature PushChunk:O and 
PopChunkQ. Direct access to this stack is not allowed. However, many tools are provided to 
assist in exam;ning and manipulating the context stack. 

As the nesting level increases (as would happen when parsing a nested LIST or FORM), the 
depth of the context stack increases; new elements are added to the top. When these 
contexts expire, the ContextNodes are deleted and the stack shrinks. 

8.1. CurrentChunkQ 

The current context is said to be the top element on the stack. Contextual information is 
stored in a grey-box structure called a ContextNode. You can obtain a pointer to the current 
ContextNode through the function CurrentChunk(): 

currentnode c CurrentChunk (iff); 

The ContextNode tells you the type, ID, and size of the cUITently active chunk. If there is no 
currently active context, NULL is returned. 

8.2. ParentChunkQ 

To find the parent of a context, you call ParentChunk() on the relevant ContextNode: 

parentnode = ParentChunk (currentnode); 

If there is no parent context, NULL is returned. 

8.3. The Default Context 

When you first obtain an IFFHandle through AllociFF(), a hidden default context node is 
created. You cannot get direct access to this node through CurrentChunk() or ParentChunk:Q. 
However, using StoreLocalitem(), you can store information in this context. 

Using IFFPsrse In 
Applications 

9 DevCon90 



9. Context-Specific Data 

ContextNodes can contain user data specific to that context. These data objects are called 
LocalContextltems. LocalContextltems (LCis) are a grey-box structure which contain a 
type, ID, and identification field LCis are used to store context-sensitive data. This data can 
be anything. A ContextNode can contain as many LCis as you want. LCis normally won't 
be dealt with directly (use FindProp() and FindCollection() instead). 

9.1. A Very Brief Overview of LCis 

The IFFHandle contains a list of ContextNodes. Each ContextNode contains a list of 
LocalContextltems. Anything that hangs off an LCI is user-defined 

When you call FindPropQ, you are actually calling a front-end to Find.Localltem(). 
Find.LocalitemO starts at the current context and searches all LCis in that context. If none 
matching the specified type, ID, and ident are found, it proceeds down the context stack to 
the next ContextNode and searches all its LCis. The process repeats until it finds the desired 
LCI (whereupon it returns a pointer to it), or reaches the end without fmding anything (where 
it returns NULL). 

Note that LCis higher in the stack will "override" lower LCis with the same type, ID, and 
ident This is how we handle property scoping. As ContextNodes ate popped off the context 
stack, all its LCis are deleted as well. 

StoredProperties (as returned by Find.Prop()) and chunk handlers are implemented internally 
as LCis, which means they too obey the same nesting and scoping rules. 

10. Error Handling 

IFFParse' s handling of errors is less than ideal. If at any time during reading or writing you 
encounter an error, the IFFHandle is left in an undefined state. Upon detection of an error, 
you should perform an abort sequence and CloseiFF() the IFFHandle. Once CloseiFF() has 
been called, the IFFHandle is restored to sanity and may be reused 

Error recovery is being investigated for a future version of the parser. 

DevCon90 10 Using IFFParss/n 
Applications 

u 

u 

u 



11. Conclusion 

Between this document and the examples, you should have enough knowledge to read and 
write any valid IFF file out there. The FORM type we used most often for testing was 
FORM ll..BM, because it's the most common. However, we also kept an eye towards other 
IFF file types that currently exist or may exist in the future. 

A minor warning: IFFParse is still evolving in subtle ways. It is hoped that these changes 
will be complete by the time you're ready to use it. None of the "common" stuff will change. 
However, you may wish to watch out for changes in the implementation of Entry Handler(), 
ExitHandler(), and SetLocalltem.PurgeQ; we're thinking of re-doing a call-back detail. 
However, please do not let this discourage you from using the parser; unless you're doing 
something extremely esoteric, these changes will not affect you. 

Working with IFF has has become much easier now that the messy job of parsing has been 
taken out of the programmers hands. Attention can be focused on higher-level issues which 
have heretofore been ignored or addressed poorly. Things like the X and Y aspect fields in 
the BIVIHD, what CAMG is really for, how to write a really neat BODY decoder, etc. will get 
the attention they deserve. 

It is our hope thafiFFParse.library will enable the IFF file specification to realize its full 
potential, and encourage Amiga programmers to take advantage of that potential and utilize 
IFF more frequently and more responsibly in the future. 

Stuart H. Ferguson 
123 James Ave. 
Redwood City, CA 94062 
USENET: 

well!shf@ucbvax.Berkeley .EDU 

• 

Using IFFParseln 
Applications 

Leo L. Schwab 
23 Summerhill Court 
Terra Linda, CA 94903-3873 
USENET: well!ewhac@ucbvax.Berkeley.EDU 
BIX: ewhac 
PLink: ewhac 
Phone: (415) 472-1795 

11 DevCon90 



n 

n-



·() 

Dpaint ANIM Brush 
IFF Format 

by Dan Silva 

The ANIM Brushes of DPaint mare saved on disk in the IFF ANIM format Basically, an 
ANIM Form consists of an initial ILBM which is the first frame of the animation, and any 
number of subsequent "~BMs" (which aren't really D...BMs) each of which contains an 
ANHD animation header chunk and a DLTA chunk comprised of the encoded difference 
between a frame and a previous one. 

To use ANIM terminology (for a description of the ANIM format, see the IFF ANIM Spec, 
by Gary Bonham), ANIM Brushes use a type 5 encoding, which is a vertical, byte-oriented 
delta encoding (based on Jim Kent's RIFF). The deltas have an interleave of 1, meaning 
deltas are computed between adjacent frames, rather than between frames 2 apart, which is 
the usual ANIM custom for the purpose of fast hardware page-flipping. Also, the deltas use 
Exclusive OR to allow reversible play. 

However, to my knowledge, all the existing ANIM players in the Amiga world will only play 
type 5 ANIMs which have an interleave of 0 (i.e. 2) and which use a Store operation rather 
than Exclusive OR, so no existing programs will read ANIM Brushes. The job of modifying 
existing ANIM readers to read ANIM Brushes should be simplified, however. 

Here is an outline of the IFF Form structures output by DPaint m as an ANIM Brush. The 
IFF Reader should of course be flexible enough to tolerate variation in what chunks actually 
appear in the initial D...BM. 

Dpslnt ANIM Brush 
IFF Format 

1 DevCon90 



FORM ANIM 
FORM ILBM 

BMHD 
CMAP 
DPPS 
GRAB 
CRNG 
CRNG 
CRNG 
CRNG 
CRNG 
CRNG 
DPAN 
CAMG 
BODY 

FORM ILBM 
ANHD 
DLTA 
FORM ILBM 
ANHD 
DLTA 

FORM ILBM 
ANHD 
DLTA 

FORM ILBM 
ANH 
DLTA 

Here is the format of the DP AN chunk: 

first frame 

my own little chunk 

frame 2 
animation header chunk 
delta mode data 

frame 3 
animation header chunk 
delta mode data 
frame 4 
animation header chunk 
delta mode data 

frame N 
animation header chunk 
delta mode data 

typedef struct { 
UWORD version; 
UWORD nframes; 
ULONG flags; 

I* current version=4 */ 

DPANIMChunk; 

I* number of frames in the animation.*/ 
/* Not used */ 

The version number was necessary during development. At present all I look at is "nframes ". 

DevCon90 2 Dpalnt ANIM Brush 
IFF Format 

u 

u 

u 



n 

Here is the ANHD chunk format: 

typedef struct { 
UBYTE operation; /* =0 set directly 

=1 XOR ILBM mode, 
=2 Long Delta mode, 
=3 Short Delta mode 
=4 Generalize short/long Delta mode, 
=5 Byte Vertical Delta (riff) 
=74 (Eric Grahams compression mode) 

*I 

UBYTE mask; /* XOR ILBM only: plane mask where data is*/ 
UWORD w,h; 
WORD x,y; 
ULONG abstime; 
ULONG reltime; 
UBYTE interleave; /* 0 defaults to 2 */ 
UBYTE padO; /* not used */ 
ULONG bits; /* meaning of bits: 

bitt =0 =1 

0 short data long data 
1 stor XOR 
2 separate info one info for 

for each plane for all planes 
3 not RLC RLC (run length encoded) 
4 horizontal vertical 
5 short info offsets long info offsets 

-------------------------*/ 
UBYTE pad[16]; 

ANIMHdr; 

For ANil\tl Brushes, I set: 

/* RIFF encoding */ animHdr.operation = 5; 
animHdr.interleave = 1; 

curANIMBr.bmob.pict.box.w; 
= curANIMBr.bmob.pict.box.h; 

animHdr.w 
animHdr.h 
animHdr.reltime 
animHdr.abstime 
animHdr.bits 

1; 
0; 
4; /* indicating XOR */ 

-- everything else is set to 0. 

Note: the bits field was actually intended (by the original creator of the ANIM format, Gary 
Bonham of SPARTA, Inc.) for use only with compression method 4. I am using bit 2 of the 
bits field to indicate the Exclusive OR operation in the context of method 5, which seems like 
a reasonable generalization. 

Dpalnt ANIM Brush 
IFF Format 

3 DevCon90 



For an ANIM Brosh with 10 frames, there will be an initial frame followed by 10 Delta's (i.e 
ILBMS containing ANHD and DLTA chunks). Applying the first Delta to the initial frame 
generates the second frame, applying the second Delta to the second frame generates the third 
frame, etc. Applying the last Delta thus brings back the first frame. 

The DLTA chunk begins with 16 LONG plane offets, of which DPaint only uses the ftrst 6 
(at most). These plane offsets are either the offset (in bytes) from the beginning of the DLTA 
chunk to the data for the corresponding plane, or zero, if there was no change in that plane. 
Thus the first plane offset is either 0 or 64. 

(The following description of the method is based on Gary Bonham's rewording of Jim 
Kent's RIFF documentation.) 

Compression/decompression is performed on a plane-by-plane basis. 

Each byte-column of the bitplane is compressed separately. A 320x200 bitplane would have 
40 columns of 200 bytes each. In general, the bitplanes are always an even number of bytes 
wide, so for instance a 17x20 bitplane would have 4 columns of 20 bytes each. 

Each column starts with an op-count followed by a number of ops. If the op-count is zero, 
that's ok, it just means there's no change in this column from the last frame. The ops are of 
three kinds, and followed by a varying amount of data depending on which kind: 

1. SKIP- this is a byte with the hi bit clear that says how many rows to move the "dest" 
pointer forward (i.e. to skip). It is non-zero. 

2. DUMP - this is a byte with the hi bit set. The hi bit is masked off and the remainder is 
a count of the number of bytes of data to XOR directly. It is followed by the bytes to 
copy. 

3. RUN - this is a 0 byte followed by a count byte, followed by a byte value to repeat 
count times, XOR 'ing it into the destination. 

Bear in mind that the data is compressed vertically rather than horizontally, so to get to the 
next byte in the destination you add the number of bytes per row instead of one. 

The Format of DLTA chunks is as described in section 2.2.2 of the ANIM Spec. The 
encoding for type 5 is described in section 2.2.3 of the ANIM Spec . 

• 
DevCon90 4 Dpalnt ANIM Brush 

IFF Format 

u 

u 

u 



ECS Display Modes 
and ILBM CAMG 
by Carolyn Scheppner 

Under previous versions of the Amiga operating system and hardware, the available display 
modes such as HIRES, LACE, HAM, HALFBRITE, DUALPF, and assorted combinations of 
these display modes could all be described in a 16-bit ViewPort mode field (often referred to 
as a viewmode ). 

The 1.3 procedure for storing an Amiga viewmode in an ILBM was to take the 16-bit 
viewmode, mask out the undesirable bits GENLOCK_AUDIO, GENLOCK_ VIDEO, 
VP _HIDE, and SPRITES, and store the result as a long (32-bit) value in a CAMG chunk (the 
upper 16 bits of the long would be 0). 

The 1.3 procedure for reading and ILBM CAMG chunk was to read the 32-bit value, mask 
out the undesirable bits mentioned above, and then use the low word of the result as a 16-bit 
value for ViewPort.Modes or NewScreen.Modes when opening a display. 

The 2.0 operating system and the ECS chips support an extensible number of display modes -
too many to be specified by the previous method where individual bits mapped to a limited 
number of specific display characteristics. Under 2.0, display modes are now specified by a 
32-bit ModeiD which is not stored in the ViewPort, but is instead held in private graphics 
lists of extended display information linked into an extension of the ColorMap structure. 
System functions are provided for accessing this extended display information. A simple 2.0 
function is provided for getting the new 32-bit ModeiD for any ViewPort: 

ULONG modeiD = GetVPModeiD(struct ViewPort *vp); 

The 2.0 scheme for CAMG is to save the entire 32-bit ModeiD, untouched, in the CAMG 
chunk. 

Although ModeiDs are numeric values rather than bit masks, the current 2.0 ModeiDs have 
been specially designed to contain compatible old-style bits in their low word for the 
matching (or closest match) old ViewPort mode. 

ECS Display Modes 
and ILBM CAMG 

1 DevCon90 



For example, the 2.0 ModeiD for a Hires-Interlace display has the HIRES and LACE bits set 
in its low word. And the 2.0 Modem for Productivity-Interlace also has the HIRES and 
LACE bits set in its low word. Because on a non-ECS or non-2.0 system, Hires-Interlace is 
the closest old viewmode available for attempting to display a Productivity-Interlace image. 

By storing the entire 32-bit ModeiD in the CAMG chunk under 2.0, new reader applications 
can attempt to redisplay the image in its intended display mode when possible (i.e., when 
running under 2.0 on a system capable of the display mode). Old readers will not be able to 
use the new display. modes, but their existing code will truncate the new 32-bit ModeiD into 
a 16-bit viewmode which will generally provide an old mode capable of displaying the image 
in some fashion. 

New ILBM readers and readers revised for 2.0 can apply logic such as the following when 
supporting new display modes: 

struct Screen *openidscreen(OLONG modeid,SHORT wide, SHORT high, SHORT deep) 
( 

extern struct Libary *GfxBase; 
struct Screen *screen; 

if(GfxBase->lib_Version >= 36) 
{ 

I* if mode is not available, try a fallback mode *I 
if(ModeNotAvailable(modeid)) modeid = fallbackmode(modeid). 

if(!(ModeNotAvailable(modeid))) I* if mode is available *I 
{ 

DevCon90 

I* We have an available mode id 
Here you may wish to create a custom, or centered, or overscan 
display clip·based on the size of the image. Or just use 
one of the standard clips. 

The 2.0 Display program uses QueryOverscan to get the settings 
of this modeid's OSCAN_TEXT, OSCAN_STANDARD, and OSCAN_MAX. 
Display centers the screen (via TopEdge and LeftEdge) within 
the user's OSCAN_STANDARD settings, and creates a display clip 
by using the same values and then clipping the values to be 
within OSCAN_MAX limits. If the centered screen ends up lower 
than user's OSCAN_TEXT settings, I move it up to same MinY as his 
OSCAN_TEXT --- otherwise his Workbench might peek over the top. 
*I 

/* 
Now use extended OpenScreen or OpenScreenTags for this modeid. 
(this gives you the benefit of system-supported overscan, etc.) 
*I 
} 

ECS Display Modes 
and ILBM CAMG 

u 

u 

u 



if no display opened yet (either not 2.0 or mode not available or can't open) 
{ 

Try an old-style OpenScreen with NewScreen.Modes = mode & VPMODEMASK; 
} 

return(screen); 
} 

I* 
* fallbackmodeid - passed an unavailable modeid, attempts to provide an 
* available replacement modeid to use instead 
*I 

#define VPMODEMASK (~(GENLOCK_AUDIOIGENLOCK_VIDEOIVP_HIDEISPRITES)) 

ULONG fallbackmodeid(ULONG modeid, SHORT wide, SHORT high, SHORT deep) 
{ 

extern struct Library *GfxBase; 
ULONG newmodeid; 

I* if it's an old 1.3-style mode, mask out inappropriate bits 
*I 
if (! (modeid & MONITOR_IO_MASK)) ·newmodeid = modeid & VPMODEMASK; 

else newmodeid = modeid; I* else start with what was passed *I 

if(GfxBase->lib_Version >= 36) 
{ 

if(ModeNotAvailable(newmodeid)) 
{ 

I* Here you should either be asking the user what mode they want 
* OR sear~hing the display database and choosing an appropriate 
* replacement mode based on what you or the user deem important 
* (colors, or aspect, or size, etc.). You could also use a built 
* in table for modes you know about, and substitute mode you wish 
* to use when the desired mode is not available. 
*I 

newmodeid = ??? 
} 

#ifdef DEBUG 
printf ("Trying Ox,08lx instead of Ox,08lx\n",newmodeid,modeid); 

#endif 
return(newmodeid); 

• 
ECS Display Modes 
and ILBM CAMG 

3 DevCon90 



n 

n 

n 



\_) 

u 

---









n Debugging Tools- Choosing the 
Right Tool for the Job 
by Carolyn Scheppner 

Note: Some of the debugging tools supplied on the Devcon disk are from the CATS support 
item "Software Toolkit". Full instructions on the use and options of some of the more 
complex tools such as Wack and Wedge may be found in the Software Toolkit 
manual. 

General Warning: Some debugging tools stress the system, or allow you to wedge into 
arbitrary system routines, or attempt to provoke improperly written code to crash. 
We have attempted to mark these kinds of tools with warnings below. You probably 
should not write to on-backed-up disks or harddisks while using such tools. 

Unless otherwise noted, the following tools are all Copyright (c) 1985,1990 Commodore
Amiga. Inc. All Rights Reserved. They are provided for debugging purposes only and 
may not be redistributed in any manner. 

Watchdog Tools 

Watchdog tools help trap illegal memory accesses. Such accesses are generally caused by 
using improperly initialized variables or structures, or by accessing structures and memory 
that have already been freed. Code with illegal accesses may appear to run fine under most 
circumstances but may fail or crash unexpectedly in the field. 

Unfortunately, it is currently not possible to trap all illegal accesses. If a program is 
accessing or trashing memory in normal legal user memory spaces, or even trashing itself, 
these tools won't catch it in the act. Luckily, a majority of illegal accesses reference low 
memory or freed memory. By using a freed memory invalidation tool like MemMung in 
conjunction with an illegal access watchdog tool, the majority of these problems can be 
caught. 

The best watchdog tools require an MMU. Processor-based tools such as MemWatch and 
WatchMem can watch for writes to low memory. But they can't catch reads of low memory 
or other illegal accesses. 

New MMU-based watchdogs such as Enforcer and CPU can trap all illegal accesses of low 
memory, non-existent memory, and ROM, reporting the exact type of access, as well as the 
offending code's program counter and registers. The debugging information is sent to a 
serial terminal (or parallel printer with CPU's cputrap.par ). 

Debugging Tools· Choosing 
the Right Tool for the Job 

1 DevCon90 



If the illegal access occurs in ROM code, you can generally trace forward on the stack to fmd 
the program address that called the ROM routine. It is then possible to disassemble a 
program in memory at the point it caused the illegal access. Programmers who like to debug 
at a low level may then either immediately recognize the problem, or can compare the code 
disassembled in memory to disassemblies of their object modules (or to their source code if 
the source is in assembler). 

Programmers who prefer to debug at a higher level can compile a debugging version of their 
software to allow them to track which code is executing when the illegal access occurs. This 
can be accomplished by stepping or breakpointing with a debugger, or by inserting remote 
debugging statements (kprintf() or dprintfQ) to the same remote device that is receiving the 
watchdog output. Plain printfO debugging could also be used with Delay()'s to allow time 
for watching both the printf() debugging and the remote watchdog output. 

All software should be tested with a memory invalidator, such as MemMung, running in 
conjunction with one of the illegal access trappers. It is extremely useful to use such tools 
while you are developing so that you can catch illegal accesses right away - they are much 
easier to find without disassembly if you just wrote or changed the code. 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
REQUIRES: 
FOUND ON: 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
REQUIRES: 
FOUND ON: 

Enforcer 
MMU-based Watchdog tool 
Enforcer on I off [parallel) 
Trapping reads and writes of low/non-existent memory 
MMU that is not being used, serial terminal or parallel printer 
Devcon disk 

Cpu/Cputrap (and Cputrap.par) 
CPU/MMU utility with auxiliary watchdog trap handlers 
RUN cputrap (or cputrap.par), then CPU TRAP 
Trapping reads and writes of low/non-existent memory 
MMU that is not be~ng used, serial terminal or parallel printer 
Workbench 2.0 (trap handlers on Devcon disk) 

TOOLNAME: Lawbreaker 
CATEGORY: Test program for Enforcer or CPU/Cputrap 
USAGE: Lawbreaker 
REQUIRES: CPU or Enforcer 
FOUND ON: Devcon disk 

TOOLNAME: 
CATEGORY: 

WatchMem (inspired by HemWatch by John Toebes VIII) 
Processor-based low memory watchdog 

USAGE: 
USED FOR: 

RUN Watchmem [ file I window ] opt n [interval ) (opt n g nocorrect) 
Trapping writes to low memory 

WARNINGS: 

FOUND ON: 

TOOLNAME: 
CATEGORY: 
USAGE: 
REQUIRES: 
USED FOR: 
FOUND ON: 

This processor-based tool can not prevent writes to low memory. It can 
correct them after they occur, but you might crash first. 

Devcon disk, Software Toolkit 

Complainer 
Watchdog trap for A3000 
Complainer ONIOFF (Use with HemHung) 
Serial terminal 
Monitoring accesses of non-existent memory 
Devcon disk 

(bus errors) 

DevCon90 2 Debugging Tools· Choosing 
the Right Tool for the Job 

u 

u 

u 



TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
WARNINGS: 
FOUND ON: 

MemMung 
Memory invalidation tool (more pleasant with Enforcer/CPU) 
RUN MemMung 
Catching accesses of uninitialized and freed memory 
Will provoke bad code to crash if not used with Enforcer/CPU 
Devcon disk, Software Toolkit 

TOOLNAME: IO Torture 
CATEGORY: Sp;cialized watchdog for IORequest re-use 
USAGE: IO_Torture 
USED FOR: Remote monitoring of premature re-use of IORequests 
REQUIRES: Serial terminal 
FOUND ON: Devcon disk 

TOOLNAME: Codewatcher by Michael Plitkins 
CATEGORY: Application resource allocation/deallocation watchdog 
USED FOR: Checking if an application frees its resources properly 
FOUND ON: BIX (?) 

Monitoring Tools 
TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
REQUIRES: 
FOUND ON: 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
REQUIRES: 
WARNINGS: 

FOUND ON: 

Tstat 
Task monitor 
Tstat (CLII I ExecTaskName] [-tickdelay) 
Monitoring PC, regs, stack, signals, etc. of a running task 
Local monitoring is default, serial is optional 
Devcon disk 

Wedge 
System function monitor 
Complex and best done with scripts - type Wedge help for help 
Monitoring the calls to and results from any system function 
Limited local monitoring, serial o~ parallel for full monitoring 
Can bog system down; can crash if calling task has tiny stack. 

Local monitoring can cause recursive looping if functions called 
by text output routines are wedged. 

Devcon disk, Software Toolkit (full instructions with ToolKit) 

TOOLNAME: DevMon (see.DEVICE TOOLS) 

Crash Trapping Tools 

TOOLNAME: SRT 
CATEGORY: 
USAGE: 

Software error trapping wedge (for 1.2/1.3, not 2.0) 
SRT [srt.textfile) (default s:srt.text) 

USED FOR: 
FOUND ON: 

Examining name, registers, PC, SP, of crashed task 
Devcon Disk 

TOOLNAME: TNT 
CATEGORY: Software error trap handler (for all version of OS) 
USAGE: TNT (must be installed before the crash occurs) 
USED FOR: Examining name, registers, PC, SP, of crashed task 
WARNINGS: You may need to do TNT OFF before using a trap-based debugger. 
FOUND ON: Devcon disk 

Debugging Tools- Choosing 
the Right Tool tor the Job 

3 DevCon90 



General Debuggers and Disassemblers 

Many development language packages come with excellent source level debuggers and 
object module disassemblers. In addition, the following tools are useful for debugging 
executables: 

TOOLNAME: Wack (Originated by Carl Sassenrath) 
CATEGORY: Symbolic debugger/disassembler 
USAGE: Wack nprogram [programargs)" (see SW Toolkit for other opts) 
USED FOR: Disassembling, single stepping, breakpointing 
WARNINGS: Improper use could lead to a crash. Wackl.O installs/leaves a 

trap handler. If used with TNT, RUN Wack so only the handler of the 
bg run process will be changed. 

FOUND ON: Devcon disk, Software Toolkit 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
REQUIRES: 
WARNINGS: 
FOUND IN: 

TOOLNAME: 
CATEGORY: 
USED FOR: 
WARNINGS: 
FOUND IN: 

RomWack 
ROM-based debugger 
Enter with exec Debug() function or RomWack command (SW Toolkit) 
Freezing the Amiga while you examine memory remotely 
Serial terminal 
Improper use could lead to a crash. 
the Amiga OS 

Metascope (by Metadigm) 
Multiwindow Intuition interface symbolic debugger/disassembler 
Disassembling, single stepping, breakpointing 
Improper use could lead to a crash. 
Stores (Commercial product) 

System Conr~guration Listers 

Configuration listers are handy for checking the address, version, or presence of various 
system hardware and software items. If you are working with devices or libraries, you can 
use the memory tool Flush tQ flush your device or library from memory and LibList or 
DevList will check that the device or library has actually been removed from the system. 
Config can be used to check a machine's OS and custom chip versions, processor type, and 
configured devices without taking off the cover. 

TOOLNAME: Config 
CATEGORY: Motherboard and Autoconfig configuration lister 
USAGE: Config [debug] 
USED FOR: Checking ROM/Processor/Chip versions, and autoconfig devices 
FOUND ON: Devcon disk 

TOOLNAME: 
CATEGORY: 
OSAGE: 
USED FOR: 
FOUND ON: 

TaskList, LibList, DevList, ModList, (C. Sassenrath) IntList 
System software list display tools 
No arguments for any of these 
Checking address, version, presence, of tasks, libs, devs, etc. 
Devcon disk (see also Memory Tool nFlush") 

TOOLNAME: MemList - see MEMORY TOOLS 

tOOLNAME: DosList - see DOS/DISK TOOLS 

DevCon90 4 Debugging Tools· Choosing 
the Right Tool tor the Job 

u 

u 

u 



Memory Tools 

Most memory tools are used to check for, and debug memory losses and other memory 
allocation and deallocation problems. Avail and Flush can be used together to make sure that 
an application is freeing all of its memory. Flush is required because libraries, devices, and 
fonts loaded from disk will hang around in memory even after they have been closed until 
someone asks for the memory. 

To check your application for memory loss, ammge your Workbench so that you have an 
open shell (for Avail) and can start your application from a different shell or from an icon 
without reammging any windows (rearranging windows causes memory fluctuations). If 
possible, size the shell window for Avail tall enough for the output of two avails and a couple 
of flushes (so that you won't have to write down any numbers). 

Then, without rearranging any windows, do: 

1. Flush 
2. Avail (note these pre-application Available totals) 
3. Start your application 
4. [ optional Avail here to check run-time memory usage ] 
S. Exit your application 
6. Flush 
7. Avail (the Available totals should match the pre-application ones) 

TOOLNAME: Avail 
CATEGORY: Memory free/largest lister 
USAGE: Avail (2.0 has flush opt; use Flush command with earlier Avails) 
USED FOR: Checking memory usage, and memory loss in conjunction with Flush 
FOUND ON: Workbench 

TOOLNAME: Flush 
CATEGORY: Memory flusher (to check for real memory loss) 
USAGE: Flush (Note - Flush does 3 flushes when invoked) 
USED FOR: Flushing all currently unused devices/libraries/fonts from memory 
FOUND ON: Devcon disk (use in conjunction with Avail) 

TOOLNAME: MemMon 
CATEGORY: Memory use recorder (helps narrow search for lost memory) 
USAGE: MemMon (>diskfile) 
USED FOR: Producing a commented record of memory usage 
FOUND ON: Devcon disk 
TOOLNAME: Fraga 
CATEGORY: Memory fragmentation summarizer 
USAGE: Frags [full) 
USED FOR: Checking for memory fragmentation. 
FOUND ON: Devcon disk, Software Toolkit 

Debugging Tools- Choosing 
the Right Tool tor the Job 

5 DevCon90 



TOOLNAME: MemHall 
CATEGORY: Memory allocation overwrite/underwrite monitor 
USAGE: Memwall [all) [fill N) [presize N] [postsize N) (snoop] [supersnoop] 
USED FOR: Findinq thinqs that write outside their allocated memory 

Also for qeneral snoopinq of memory allocations. 
REQUIRES: Serial terminal 
WARNINGS: Some thinqs in the system (such as layers) free memory in smaller chunks 

than they allocated. When this is done, (or when it finds a fill area hit), 
it does NOT let that area actually be deallocated. This can lead to loss of 
memory. Note that presize or postsize may be 0. 

FOUND ON: Devcon Disk 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
FOUND ON: 

MemList 
Full used and free memory chunk lister 
Memlist [>diskfile) 
Debuqqinq fraqmentation/deallocation problems 
Devcon disk, Extras(?) 

'l'OOLNAME: Owner 
CATEGORY: Memory ownership tool 
USAGE: owner [Ox) nnnn ••• (owner ? for help) 
USED FOR: 'l'ryinq to determine ownership of allocated memory 
FOUND ON: DevCon disk 

'l'OOLNAME: Snoop 
CATEGORY: Remote AllocMem/FreeMem debuqqer 
USAGE: Snoop (use SnoopStrip on captured output to isolate unfreed Allocs) 
USED FOR: Debuqqinq unfreed memory problems 
REQUIRES: serial terminal 
FOUND ON: Devcon disk, Software Toolkit 

TOOLNAME: SnoopStrip 
USAGE: SnoopStrip [>outfile] infile 
USED FOR: Strippinq matched allocs/frees from captured snoop output 
FOUND ON: Devcon disk 

'l'OOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
FOUND ON: 

Drip 
Memory loss accumulator 
Drip [threshold] 
determininq chanqe in free memory since last invocation 
Devcon disk, Software Toolkit 

TOOLNAME: Peek 
USAGE: Peek BIWIL [Ox]address [[Ox]compvalue] [[Ox)mask) 
USED FOR: Cbeckinq or script branchinq on contents of a memory address 
FOUND ON: Devcon disk 

TOOLNAME: 
USAGE: 
USED FOR: 
WARNINGS: 
FOUND ON: 

Poke 
Peek BIWIL [Ox)address [Ox)value [[Ox)mask] 
Changing the contents of a memory address 
Obviously, poking where you shouldn't may crash machine. 
Devcon disk 

DevCon90 6 Debugging Tools· Choosing 
the Right Tool for the Job 

u 

u 

u 



DOS/Disk Checking Tools 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
FOUND ON: 

DosList 
Dos device lister 
Doslist [DEVSIVOLSIDIRS] 
Examining the dos device list 
Devcon disk 

TOOLNAME: ShowLocks (Copyright 1988 Chuck McManis) 
CATEGORY: Filelock lister 
USAGE: ShowLocks [volumename:] 
USED FOR: Displaying outstanding locks 
FOUND ON: Software Toolkit 

TOOLNAME: DiskEd 
CATEGORY: 
USAGE: 
USED FOR: 
WARNINGS: 
FOUND ON: 

Disk sector editor 
DiskEd drivename: (see Bantam AmigaDos manual 
Examining and modifying disk sector data 
Improper use can trash disk data or structure. 
Devcon Disk 

Performance Checking Tools 

TOOLNAME: PerfMon 
CATEGORY: System performance monitor 
USAGE: Perfmon 

for instructions) 

USED FOR: Checking for busy waiting and other performance problems 
FOUND ON: Devcon Disk, 1.3 Extras 

Intuition/Graphics Tools 
TOOLNAME: WinList 
USED FOR: Examining addresses, titles, flags, sizes of screens and windows 
FOUND ON: Devcon disk 

TOOLNAME: ShowGfxBase 
USED FOR: Examining GfxBase normal display sizes and flags 
FOUND ON: Devcon disk 

TOOLNAME: ReadPixel 
USED FOR: Reading the XY screen location and color of pixels. Can be 

used to check the size and position of onscreen images. 
USAGE: Readpixel (then click on pixels to read) 
FOUND ON: Devcon disk 

Debugging Tools· Choosing 
the Right Too/lor the Job 

7 DevCon90 



Device Tools 
TOOLNAME: DevMon 
CATEGORY: Device monitor 
USAGE: Devmon name.device unitnum [remote) [hex) [allunits) [full) 

(remote is serial output, full has exec wedges in DoiO, ReplyMsg) 
USED FOR: Monitoring the calls to a device 
REQUIRES: Nothing for local monitoring. Serial terminal optional (slower) 
WARNINGS: Stresses system if wedged into high-usage or time-critical devices 

(such stress could lead to crashes or hangs) 
FOUND ON: Devcon disk 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
FOUND ON: 

Cmd 
Parallel/Serial output capture tool 
Type cmd help for usage 
Debugging printer, serial, and parallel output 
Workbench 1.3 

TOOLNAME: PrinterTest 
CATEGORY: Printer driver test suite 
USAGE: Printertest (then answer y when the correct printer is prompted) 
USED FOR: Testing printer drivers 
FOUND ON: Devcon disk 

TOOLNAME: IO_Torture (see WATCHDOG TOOLS) 

Development Time Bug Prevention/Tracking Tools 
TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
FOUND ON: 

TOOLNAME: 
CATEGORY: 
USAGE: 

RCS 
Source/document control 
See accompanying docs on Fish Disk 282 
Recording changes to source code and documents 
Fish Disk 282 

Autodoc 
Source code autodoc extractor 
See accompanying autodoc.doc 

USED FOR: 
FOUND ON: 

Extracting standard function documentation from your source code 
Devcon disk 

TOOLNAME: 
CATEGORY: 
USAGE: 
USED FOR: 
FOUND ON: 

• 

Bump rev 
Revision bumper 
Bumprev version revname (example: bumprev 36 my rev) 
Updating revision include files (xxx_rev.h and xxi_rev.i) 
Devcon disk 

DevCon90 8 Debugging Tools· Choosing 
the Right Tool tor the Job 

u 

u 



Debugging Amiga Software 
by Carolyn Scheppner 

This article presents some general techniques for debugging software on the Amiga. Before 
you stan programming the Amiga, if sa good idea to read the development guidelines in the 
introduction of the the Addison-Wesley Hardware Manual (ISBN 0-201-18157-6) or ROM 
Kernel Reference Manual: Libraries and Devices (ISBN 0-201-18187-8). These guidelines 
contain imponant rules which are applicable to all Amiga programs, configurations, and 
operating system releases. Addjtional information can be found in the Troubleshooting 
Guide published in Amiga Mail and in the Libraries and Devices manual. These documents 
cover the most common Amiga programming problems. 

Preventing Bugs 

The best way to debug software is to prevent bugs in the first place. Accordingly, here are 
seven basic rules you should always follow when writing Amiga software: 

1. Read the latest autodocs and the include file comments for the functions 
and structures you are using. 

2. Always check retmn values from system functions. Provide a clean way 
out and useful messages if something fails! 

3. Assembler programmers - remember to TST .L DO after system calls, before 
branching. on condition codes. 

4. C Programmers - Use function prototypes for system functions and your own 
functions. It's a little extra work but will save you time in the long run by 
immediately catching most types of improper function cans (missing 
arguments, swapped args, etc.) 

5. Keep a version number in yom code and update the version number whenever 
changes are made. The 2.0 VERSION command can print out the version 
of any executable which contains a specially formatted version string: 

InC: OBYTE *vers~a"\0$VER: programname 36 .10"; 

In Asm: vers DC. B 01 ' $VER: programname 3 6 .1 01 , 0 

Debugging Amlga 
Soflwllte 

1 DevCon90 



6. Document the code changes for each version. This can be done manually 
or by using a document control system such as RCS. 

7. Test your code! Test on different configurations, under low memory 
and error conditions, and in conjunction with various watchdog tools. 
Test your product with MemMung, if possible in conjunction with Enforcer 
or CPU/Cputrap (on A2500) or Complainer (on A3000) to catch uses 
of null pointers and freed memory. 

Finding and Fixing Bugs 

It is hard to generalize about debugging because different kinds of bugs often require very 
different approaches. A bug repon from a user is quite different from a bug that you've just 
introduced in new code! However, all debugging requires some common steps: 

1. Define the problem 
2. Narrow the search and find the bug 
3. Understand, and fix the bug 
4. Make sure you didn't just break something else 

Steps 3 and 4 are the same for all types of bugs, so we'll cover those last. Steps 1 and 2 
require different approaches for different kinds of bugs. Here are some examples. 

You're 1144ed or written new code IIIUI something is broken. 

1. Define the problem. Make sure you can reproduce the problem so you'll know when it's 
gone. Define as "when I do xxx the program does (or doesn't do) do yyy." 

2. Narrow the Search. If you just added a couple of lines of code, and have the same 
development environment as before, check your source code first. Check for misuse of 
existing variables, improper error checking, improper use of system or internal functions, and 
possible changes to conditional program flow. 

If you can't spot the problem, it's time to slow it down and see what's going on. Use a 
source level or symbolic debugger, or print/kprint/dprint debugging, with delays added if 
necessary. One particularly useful type of debugging statement is: 

printf("About to do xxx. k •tld Ptrl•$%1x ••• \n",k,Ptrl); 
Delay(SO); 

DsvCon 90 Debugging Amlga 
Software 

u 

u 

u 



n The delay gives the debugging line time to be output and gives you a chance to read it before 
the action is taken. See mydebug.h on the 1990 DevCon disks for easy ways to add 
conditional debugging statements like this to your code. 

By stepping through or printing out your actions and variables, you will generally be able to 
isolate the bug. If you have isolated the area but still can't find the bug, re-read the autodocs 
for the routines you are using. Check the Troubleshooting Guide in the Addison-Wesley 
Libraries and Devices manual. Check all other uses of the variables in the problem area. If 
all else fails, isolate the problem code by writing the smallest possible example that 
demonstrates the problem. 

If the problem is not present in the smallest possible example, then go back and check your 
code. If the problem is still present, contact CATS for assistance or upload the example to 
BIX (note - one of the quickest ways to find bugs in a small source code example is to upload 
the source to BIX amiga.dev/main and ask what's wrong with it). 

B. Your code luis intermittent problems that you c1111't pin down, or appetJTS to trash 
something under certain comlltions. 

1. Define the problem. It is difficult to reproduce intermittent problems, so try to force 
the problem to show itself. First try running your program with ·MemMung and one of the 
MMU watchdog tools. If you don't have an MMU, use WatchMem and MemMung, but be 
prepared to crash a lot If you don't get any hits, try the same thing during low-memory 
situations, heavy multitasking and device 10, etc. If you are doing Exec device 10, try 
IO_Torture to catch premature reuse of IORequests. Hopefully, you will pick up a hit 

2. Narrow the Search. If you have no MemMung/Enforcer hits, try some debugging 
statements or source level debugging to follow the values of your variables. Use TStat to see 
if your stack usage is high. Check all possible areas where you might be overwriting the end 
of an array or otherwise trashing memory. Re-read the autodocs for the system functions you 
are using. 

If you are reusing an IORequest too soon, check your source code (debugging would just 
slow down your execution and might give the IORequest a chance to complete, masking the 
problem). 

If you have Enforcer hits, use debugging statements or a debugger to step through your code 
WHILE running MemMung and an MMU watchdog tool (or WatchMem). This will allow 
you to pinpoint where the problem OCClU'S. 

Debugging Am/ga 
Soflwate 

3 DevCon90 



C. Your code works fine on one system but not on 11110ther. Or you've received a bug 
report from a user. 

1. Define the problem. First find out the exact configuration of the system the problem 
occurred on. Important elements include memory configuration and addresses, amount of 
free Chip and Fast RAM, processor type, custom chip version, expansion peripherals, OS 
version, and other software in use when the problem occurred. The Config program on the 
1990 DevCon disks is useful for printing out much of this information. 

The memory address ranges can be particularly important now that machines are available 
with memory beyond the 24 bit address limit For example, overwriting a byte array by one 
byte now has a good chance of trashing a 32-bit address variable, or even your routine's 
return address on the stack. 

If a user repons the problem, find out the exact version of your software they are running, 
how they launched the program, and what their stack is set to (if launched from CLI). Try to 
get them to reproduce the problem in a known environment (ie. after booting with a release 
Workbench diskette). Get their phone number and keep it with a record of all of the 
information you can get on the problem. Keep bug reports in an organized form. If you get 
two reports on the same problem, you can be pretty sure that the problem really exists, and 
the combined information may help you track it down. 

2. Narrow the Search. Attempt to reproduce the problem. If you can't reproduce it 
immediately, try stepping through the problem area while using MemMung and a watchdog 
tool. If you don't get any hi~.' try again with less memory available and other tasks running. 
Try to reproduce the user's configuration and environment If you still can not reproduce the 
problem, ask the user to come up with a simple repeatable sequence which causes the 
problem on a system booted with a normal release Workbench disk. 

Read the Troubleshooting guide in the Addison-Wesley Libraries and Devices manual or 
Amiga Mail Technotes for information on the causes for many problems that only show up in 
certain configurations or environments. 

If all else fails, look carefully at your code for misuse of variables or system functions, and 
for improper error-checking or cleanup after any allocation or open. Check that all cleanups 
are done in the proper order. 

DevCon90 Debugging Amlgs 
Software 

u 

u 



D. Your program loses memory. 

1. Define the problem. First make sure that you are actually losing memory. Use Flush 
(from the 1990 DevCon disks) and Avail to check for actual memory loss. 

Set up your system so you have a shell window available and can start your program without 
moving any windows (re-arranging windows causes memory fluctuations). Test for memory 
loss as follows. First, try Flush and Avail a few times to make sure nothing else in your 
system is causing memory to fluctuate. Then perform the following steps. 

l.FLUSH 
2. A V A1L (write down the Fast, Chip, and total memory free) 
3. Start your program and use its features 
4. Exit your program 
5.FLUSH 
6. A V A1L (compare the fast, chip, and total free to previous figures) 
7. If you have a loss, go back to step 2. 

Two problems which show no net loss after exit but cause memory to be used up while you 
are running are: 

Cl Opening diskfonts repeatedly 
Cl Not keeping up with IntuiMessages 

If you are ·opening cU$kfonts, first try OpenFontO in case the font is already in memory. If 
OpenFontO succeeds, check the size and flags against what you asked for. If it is correct, use 
iL Else close it and do OpenDiskFontO instead. If you are asking for voluminous 
IntuiMessages such as MOUSEMOVE, you must keep up with them. If you don't, Intuition 
will continue to allocate new blocks of messages and will not free them until you close the 
window. 

2. Na"ow the search. Try the above test again, but this time just start your program and 
exit immediately. If you do not lose memory, try several times more, using some of your 
program's features, and attempt to determine which part of your program causes the memory 
loss. Check your source code for all opens and allocations and check for matching frees and 
closes, in the proper order, for each of them. 

Debugging Amlgs 
SofttiJiale 

5 DevCon90 



The size of a memory loss can also be a clue to the cause. For example, a loss of exactly 24 
bytes is probably a LockO which has not been UnLockO'd. Knowing the exact size of the 
loss (as determined with Flush and Avail) is important when you try determine which 
allocation is not being freed. 

Some additional tools on the 1990 DevCon disks can help determine where memory losses 
occur. You can use MemMon to record the relative memory usage as you test various pans of 
your program. Snoop can be used to record all memory allocations and frees on a remote 
terminal, after which SnoopStrip can strip out all matching pairs. MemList, which outputs 
the system memory list, can also be used to spot unfreed allocations. 

The Wedge program, which can restrict its reporting to the function calls made by a single 
task or list of tasks, can be used to monitor the allocations and frees done by your task. By 
inserting debugging statements, you can mix status messages ("About to do xxx") with 
Wedge's output. Examine the output for an allocation which matches the size of your loss. 

Removing Bugs 

I mentioned steps 3 and 4 earlier. This is the easy part (finding the bug is the hard part). 
These steps are the same for most debugging problems. 

3. Understand, and Fix the Bug. When you find the bug, make sure you understand it. Don't 
just try something else. If you are having a problem with a system routine, read the autodocs 
and chapter text for that routine. Check the Troubleshooting Guide in the 1.3 Addison
Wesley Libraries and Devices. manual. 

When you understand what is wrong, fix the problem, being especially careful not to affect 
the behavior of any other parts of your program. Carefully document the changes that you 
make and bump the revision number of the program. Note your changes in the initial 
comments of the program, and in the area where the changes were made. 

4. Make Sure You Didn't Break Anything New. Try to reproduce the problem several times 
and make sure it is gone. Thoroughly test the rest of your program and make sure that 
nothing else has been broken by your fix. Test your program in combination with watchdog 
tools such as MemMung and Enforcer or Cpu/Cputtap. 

DevCon90 6 Debugging Am/ga 
Software 

u 

u 

u 



Debugging Tools 

1. NEW MMU Watchdog Tools: Enforcer, CPU/Cputrap, and Complainer 

These new MMU-based Amiga debugging tools provide debugging and quality assurance 
capabilities far beyond what was previously possible. It is now possible to find bugs even in 
code that appears to be working perfectly - the kinds of bugs that could cause serious 
problems on different configurations. These tools are able to trap improper low memory 
accesses, writes to ROM, and accesses of non-existent memory - problems which are 
generally caused by use of freed or improperly initialized pointers or structures. 

All software should be tested with these tools during development, and should be required to 
pass a test with an MMU watchdog in conjunction with MemMung and IO_Tonure before 
being release and distributed 

2. Symbolic and source lePel debuggers 

Symbolic debuggers allow you to trace and single step through your code, and examine or 
change your variables and structures. The source level debuggers which are provided with 
some compilers allow you to trace and single step your code at the source level after 
compiling with special flags. Debuggers can often be used in combination with other 
debugging tools such as MemMung and Enforcer to detect exactly where a problem 
is occurring. 

3. Print/() and kprintlf) I dprintj() debugging 

This simple method of debugging allows you to monitor where you are, what your variables 
contain, and anything else you care to print out. Printf debugging is suitable for any process 
code that is not in a Forbid or Disable (printf breaks a Forbid or Disable). Kprintf (serial) 
and dprintf (parallel) debugging is more flexible and can be used in process, task, or intenupt 
code. The kprintf function is provided in the debug.lib linker library. The parallel version, 
dprintf, is provided in the ddebug.lib linker library. See the debug.lib kprintf autodocs for 
more information on the types of formats handled by kprintf and dprintf. 

Kprintf outputs to the serial port at whatever baud rate the port is cmrendy set to. Generally, 
kprintf is done at 9600 baud with a terminal, or another Amiga running a terminal package, 
connected to your serial port with a null modem serial cable. 

Debugging Amlgs 
SoftwB1'8 

7 DevCon90 



However, it is possible to kprintf to yourself (ie. to a terminal package running on your own 
machine) if you have a modem attached to your serial port, and your terminal package set to 
the baud rate of your modem. Obviously, if the problem you are debugging causes you to 
crash, a remote terminal is a better choice. The ASCll capture feature of your terminal 
package can be used to capture the kprintf debugging output for later examination. 

Remote (kprintf/dprintt) debugging is extremely useful when combined with other remote 
debugging tools such as Enforcer and Cputrap because your own debugging statements will 
be interspersed with the remote output of the other debugging tools, allowing you to track 
what your program is doing when problems occur. 

Printf/kprintf/dprint debugging can be conditionally coded more conveniently by using an 
include file such as mydebug.h (see the DevCon disks). Mydebug.h eliminates the need for 
messy #ifdef and #endif lines around your debugging statements by providing the conditional 
macros D(bugQ), D2(bugQ), and DQ(bugQ) which take printf-style format strings and 
arguments in their inner parens. One handy feature of these macros is that your debugging 
statements can be be quickly changed from printf's to kprintf's or dprintf's by simply setting 
a flag in mydebug.h and recompiling. 

E~le: D(bug(ni'm here now and a=%ldn,a)); 

4. Other ways to debug low -lePel code 

If you can't link with debug.lib, low level code can also be debugged by inserting visual or 
audio cues to let you know w~ere you are. DebTones.asm (in AmigaMail and on the 1990 
DevCon disks) demonstrates a small audio tone macro suitable for debugging low level code. 
Another common method is flashing the power LED (see togl_led.asm), or doing an Intuition 
DisplayBeepO to flash the screen. 

5. Specitilized.t!Bbugging tools 

A variety of specialized debugging tools are available for monitoring and debugging such 
things as system function calls, device 10, process status, memory usage, and software errors. 
These tools can be used without recompiling your program and can provide valuable 
debugging information. See the list of tools accompanying this article in the DevCon notes. 

DevCon90 B Debugging Amlga 
Software 

u 

u 

u 



n 

How to Use MMU Watchdogs and Other Remote Debugging Tools 

Remote Serilll Debugging 

Hardware Setup: When hooking two Amigas together, use a straight RS-232 cable with a 
null-modem adaptor, or use a null-modem cable. When hooking an Amiga up to another 
type of computer or terminal, you may or may not need the null-modem (crossed lines) 
depending on whether the other machine's RS-232 port is designed to be basically a sender 
or a receiver. Avoid connecting lines which are not directly related to RS-232 because 
different computers have various power supplies and grounds on these other lines. My null 
modem debugging cable is wired as follows: 

Amiga 
1------

~ :::::--=--------
7 7 

5,6,8~5,6,8 

2o------- ---- 20 

Software: For remote debugging at 9600 baud, set the sending machine's Preferences to 
9600 baud, and use a 9600 baud terminal or an Amiga running a 9600 baud terminal package 
(preferably with ASCll capture capability) as the receiving machine. Note that other baud 
rates can also be used for most serial debugging because normal serial kprintf's do not 
modify the serial SERPER register and are therefore output at the last baud rate your serial 
hardware was set to. Test your seblp by copying a small text file to SER: or try the ktest 
program from the 1900 DevCon disks. The output should show up on the remote terminal. 

Applications can output serial debugging statements by using kprintf from C or KPrintF from 
assembler and linking with amiga.lib and debug.lib. See the debug.lib autodocs for more 
information. Serial input functions are also available. Also see the mydebug.h conditional 
debugging macros on the 1990 DevCon disks. 

Watchdog software setup: Make sure your test machine is set to the same baud rate as the 
remote terminal you are connected to. Tum on the ASCU capture of your remote terminal. 

For A3000: 
[RUN] MemMung 
[RUN] IO_Torture 
Complainer ON 

Debugging Am/gs 
Softwste 

(removable with CI'RL-C, or BREAK n if RUN) 

9 DevCon90 



For A2500: 
[RUN] MemMung 
[RUN] IO_Tonure 
Enforcer 

(removabl:. with CTRL-C, or BREAK n if RUN) 

For non-MMU machines (warning- encourages bad software to crash!) 
[RUN] MemMung (removable with crRL-C, or BREAK n if RUN) 
[RUN] IO_Torture 
[RUN] WatchMem 

Setup for Local Serial Debugging 

Hardware: If you have a modem attached to your serial port, it is possible to capture your 
own serial debugging output locally. This setup can be useful as long as the problem you are 
debugging is not one which crashes the machine. 

Software: Run a terminal package at your modem's baud rate to capture the kprintfs. You 
probably won't be able to test this setup by copying a file to SER: (since the terminal 
package probably has an exclusive open on the serial device). Instead, use a small program 
like ktest (on the 1990 DevCon disks) to test your setup, or, if you already have an MMU 
watchdog installed, try an ill~v1tl memory accessor such as Lawbreaker. Use the terminal 
package's ASCll capture feat" .J capture your debugging output. 

Watchdog software setup: Same as for remote serial debugging, but first stan up a terminal 
package on the test machine, at the baud rate of the attached modem, with ASCll capture 
nunedon. 

Setup for PIIIYillel Debugging 

Hardware: To set up for parallel debugging, attach a parallel printer to the Amiga 's parallel 
port and tum the printer on. Note - if no device is attached to the parallel port, parallel 
debugging statements will hang waiting for the port hardware. 

Software: Some debugging commands have options for parallel rather than serial output. 
Examples include Cpu used with cputrap.par, and Wedge with the 'p' option. Also, your can 
send your own debugging statements to the parallel port by using dprintf from C, or DPutFmt 
from assembler, and linking with ddebug.lib and amiga.lib. On the 1990 DevCon disks, see 
dtest.asm for an example of calling DPutFmt from assembler, and mydebug.h for debugging 
macros which can use printf, kprintf, or dprintf. 

DevCon90 1D Debugging Am/ga 
Software 

u 

u 

u 



Watchdog software setup: 

For A3000: 
[RUN] MemMung 
[RUN] IO_Tonure 
Complainer.par ON 

For A2500 running 2.0: 
[RUN] MemMung 
[RUN] IO_Torture 
RUN cputrap.par 
CPUttap 

• 

Debugging Am1ga 
Software 

(removable with CfRL-C, or BREAK n if RUN) 

(removable with CfRL-C, or BREAK n if RUN) 

11 DevCon90 



n 

n 

n 











n 

n 

Ten Steps to 
Better Translations 
by Dina Bennett 

You've decided to sell your software overseas. And you've found, to your delight, that many 
of the marketing steps overseas are quite similar to what you've already done in the U.S.A. 
Sure, some of the parameters might be different. But basically you're still searching for 
distributors, negotiating contracts, tailoring a sales campaign ... just like you do in this 
country. 

Everything is so familiar that it's easy to overlook the one essential ingredient for successful 
sales overseas: translation. And then the day arrives when your distributor says, "By the 
way, we do expect your package to be in our native language." 

All of a sudden you have to make major decisions about an unfamiliar issue. There's no time 
to lose and questions abound. What's involved in translation? Who should do it? How will · 
we produce the foreign version? What will the project cost? When can it be delivered? And 
how will we know if the work is done well? 

Few software firms have sufficient on-going translation volume to warrant doing it in-house. 
So the vast majority work with outside vendors who range from professionals to 
moonlighters, agencies to independent contractors. Figuring out who to use and what to 
expect is pretty tough, -especially when you're not even sure what to ask for. Following is a 
brief primer on the ten essentials of internationalization. If you're not yet ready to sell 
overseas, use them to develop a proactive plan of action for the future. If translation is 
already a pressing issue, use them to make sure you have all your bases covered. And if 
you've already done translation, but you're not pleased with the outcome, use them to make 
sure things go better next time. 

1. Evaluate your translation needs. 

First determine what will be translated (manuals, software, training materials, sales pieces). 
Then decide whether you want each piece to match the look of the English original, which 
languages you need and when you need them. Your goal here is to figure out what you want 
done, regardless of who ultimately does the work. 

Ten Steps to 
Better Translations 

1 DevCon90 



2. Select a translation service. 

You can get good recommendations from colleagues in other fmns, or software organizations 
of which you are member. In deciding whether to use a freelancer or an agency, your three 
key selection criteria should be the vendor's direct experience, resources and range of service. 
Experience makes your vendor a leader and a problem-solver, and keeps you from being a 
guinea pig. Resource gives him the ability to absorb the changes in project scope that are 
inevitable when dealing with software. And range of service is helpful because you're likely 
to need such things as project engineering, desktop publishing and printing in addition to 
translation. 

3. Plan the project. 

Use your vendor's experience to help identify key components of the project. Assign clear 
responsibility for each part and notify all the parties of their role. Internationalization 
demands extra time and attention from everyone, above and beyond their nonnal work. If 
everyone agrees that internationalization is a company priority you will be able to set a 
realistic schedule for completion. 

4. Structure the process for efficiency. 

It's usually most practical to work with a vendor who can handle all the services you've 
identified in Step 1. If you use a separate agency for each language pair and service, you're 
multiplying the number of phone calls and crises you'll have to deal with. And you give up 
precious control over the quality and schedule of your project 

The more complex the project, the more it will benefit from having one key person in your 
company with overall responsibility for it. Your international products coordinator can be the 
conduit through whom all project information, questions and problems flow. While he may 
not yet have his own staff, he should have the authority to secure work from other 
departments, such as Engineering and Technical Publications. Your coordinator should have 
an equivalent on the vendor side who is aware of and facilitates every aspect of the project. 

5. Confirm schedules. 

Here is where good planning proves its value. From the basic project schedule you can break 
each component into its respective parts for tracking. There will be times, for example during 
documentation translation, when the translation finn needs little contact with you. But when 
foreign software is being tested, you may need to be in touch every day. 

DevCon90 2 Ten Steps to 
Better Translations 

u 

u 

u 



This is also the time to double-check that the schedule of those crucial to your project hasn't 
changed. Is the freeze date for U.S. software the same? Will your distributor still be 
available for reviews within the agreed upon time frame? 

6. Confirm staffing. 

After everyone has agreed on the target date for availability of foreign versions you can take 
a more realistic look at who's around to help with the project. This is the time to determine 
how much you can realistically handle in-house and still meet deadlines, as well as what 
remains to be contracted out. 

7. Finalize costs. 

Translation and production can be estimated quite precisely if you give the vendor sufficient 
materials on which to base his quote and if you can commit to certain assumptions and 
specifications. However, if your package isn't even in beta testing, you may have to be 
satisfied with an estimate that changes to a fmn quote when U.S. software and documentation 
are frozen. 

Don't neglect to figure your internal costs as well. You may find that it makes better sense to 
contract out more work than to add a staff position that costs you salary and benefits well 
after the project is finished. 

8. Identify support resources within_your company. 

Inevitably there are times when an answer is needed that is crucial to the work. Or when a 
decision must be mad~ concerning product issues impacted by translation. Setting up a team 
with key decision-makers from each department will help you respond quickly to your 
agency's requests. By identifying internal resources beforehand, you can easily tum to the 
right person for information. This takes pressure off of you and minimizes project delays. 

9. Build quality assurance into the process. 

Validation of software against documentation is even more important for foreign versions 
than for the original. In looking at your basic translation costs and your revised release 
schedule, you may be tempted to eliminate this quality control step from the process. Don't. 
Look at it this way: You'd never release a new package in the U.S. without checking it 
thoroughly. And a translation is akin to creating a whole new package. Validation may 
stretch the schedule some and it may add a bit to your total budget. But it pays you back 
tenfold in that the fmal product is every bit as good, and maybe even better, than the original. 

Ten Steps to 
Setter Translations 

3 DevCon90 



10. Incorporate internationalization into future releases. 

There is no doubt that internationalization can be done quicker, easier and at less cost when 
certain guidelines are followed during development. For example, translated text can be 20% 
to 30% longer than the original.' But dialogue boxes, windows and packaging limited to the 
length of English text may not have room for the expanded text. So they have to be 
redesigned, adding to the cost of your foreign version. Software developed for the global 
marketplace includes translation requirements in its specifications and avoids these costly 
extras. In summary, select and work with your translation vendor as you would your law fmn 
or ad agency. To paraphrase a line from the movie Moonstruck, "Good translation costs 
money. It costs money because it saves money." By viewing the relationship as long-term 
you'll find your initial investment returned each time there's a new release or a new language 
to translate. 

Dina Bennett is vice-president of International Language Engineering Corp, 2540 Frontier 
Ave., #200, Boulder, CO 80301 ,·Phone: (303) 447-2363. ILE specializes in software 
internationalization, their European headquarters is in France. + 

DevCon90 4 Ten Steps to 
Better Translations 

u 

u 

u 



u 









V ADs, V ARs, DV ARs and OEMs PROGRAM SUMMARY 

Donna O'Neil 
Technical Support Liaison, OEMIV AR Markets 



VAD'S AND VAA'S 

Proposal: This report outlines the proposed Value Added Sales Programs 
in relation to the existing Professional Dealer Channel. 

The attached information covers: 

o Vertical Specialty Dealer Program (V AD) 

o Value Added Reseller Program (V AR) 

o DVAR (Dealer Value Added Reseller) 

o V AR Application 

o Reseller Agreement with V AR Schedules 

Since our current reseller program obligates the dealer to have a 

u 

traditional storefront, these programs address resellers with specific U 
industry expertise or those wbo ·manufacturer a proprietary hardware I 
software but may not have a traditional retail environment. 

u 



VERTICAL SPECIALTY DEALER (V AD) 

Definition: A Vertical Specialty Dealer is a reseller who has expertise 
and sells into a particular industry. These reseller may add value through 
software and/or hardware and sells integrated solutions to their customer 
base. Accounts will be handled through regions under normal reseller 
terms and conditions. 

Examples: 

o Pro· Video Dealer • sells high end video equipment to corporations, 
education, government, business markets. 

o Pro-Graphics/ Art Dealer • sells high-end graphics/art supplies to the 
creative arts market. 

o Pro-Music Dealer • sells high end· music equipment to the 
enteraunmentmarket. 

Product Requirements: For Resellers with little knowledge of the 
computer industry, market specific bundled configurations of hardware 
and software will be offered. Those with expertise will be able to buy a 
limited product range. 

Yertjcal Specjalty 

Video 

Music 

Graphics/ Arts 

Examples of Product Bundles 

Video 1 and 2 Bundles with genlock added 

MIDI, A2000HD, Monitor, Software 

DPaint, Animate, Sculpt, Digitizer 

Location: Storefront or Showroom Display for the display of 
demonstration equipment. 



VERTICAL AUTHORIZED RESELLER (V AR) 

Definition: A Vertical Authorized Reseller is a reseller who adds value 
to the Amiga product through integration of their proprietary software, 
hardware, or peripherals. The V AR sells their solution into a particular 
industry. 

Market Examples: 

o Laboratory Data Management (Pittsburgh) 

o Heifner Communications (Satellite Communications) 

o Interactive Video 

o Computer Based Training 

Product Requirements: Specific product required to fit total 
solution. 

Location: Non Storefront 

u 

u 

u 



n 

PROGRAM REQUIREMENTS 

SERVICE SUPPORT: PRE-SALE : 
Technical supportwith corporate liason 
Scheduled Engineer Meeting at Corporate 
Service technical and service review 

POST-SALE: 
Technical Bullentins 
Function, Form, Fit Changes 
Q & A Connection 

Non-Disclosure • Beta Test new hardware/software 

MARKETING SUPPORT: 
PR Opportunities 
Referrals 
Promotional Market Advertising 
Joint Marketing 
Trade Shows 
Direct Marketing 

SALES SUPPORT: 
3 V AR Salespersons from Corporate 
1 V AR Support Person 

LAUNCH: Press release to all appropriate media 
Announce Paint Store solution and Laboratory Data 

· Management Systems, others. 
Ad in V ARBusiness 

OTHER MARKET OPPORTUNITIES: 
Service • Customer Configuration 
3rd party products for specific applications 



Value Added Reseller LEVEL 1 

Commitment: 100 • SOOK 

Product Pricing: 31 • 36% Amiga 
39%PC 
Peripherals-Product Specific Quantity Discounts 

Developme~t Funds: 5% 

Shipping: V AR p~ys freight 

Terms: Standard with ability to adjust for project 
volume peaks 

Demo Package: 3/ model maximum demos at 50% off 
Extended terms of 60-90 days with credit 
approval 

Service: Internal or 3rd Party 

Training: Hardware Technology Training 
Service Authorization (where applicable) 
Developer Authorization (where applicable) 

u 

u 

u 



n 

n 

Value Added Reseller LEVEL 2 

Commitment: 500 • 1 million 

Product Pricing: 32 • 37% Amiga 
42%PC 
Peripherals-Product Specific Quantity Discounts 

Development Funds: 5% 

Shipping: Free freight 

Terms: Standard with ability to adjust for project 
volume peaks 

Demo Package: 4/ model maximum demos at SO% off 
Extended terms of 60-90 days with credit 
approval 

Service: Internal or 3rd Party 

Training: Hardware Technology Training 
Service Authorization (where applicable) 
Developer Authorization (where applicable) 



Value Added Reseller LEVEL 3 

Commitment: 1 miiUon + 

Product Pricing: 37 • 41% Amiga 
47%PC 
Peripherals-Product Specific Quantity Discounts 

Development Funds: 5% 

Shipping: Free freight 

Terms: Standard with ability to adjust for project 
volume peaks 

Demo Package: 6/ model maximum demos at SO% off 
Extended terms of 60-90 days with credit 
approval 

Service: Internal or 3rd Party 

Training: Hardware Technology Training 
Service Authorization (where applicable) 
Developer Authorization (where applicable) 

u 

u 

u 



I () 

DEALER VALUE ADDED RESELLER (DV AR) 

Dermition: A small volume value added reseller who sells into a 
particular market and adds value with hardware or software applications. 

Program: Would permit specific Authorized Professional Dealers to sell 
to approved DV AR 's in their local market. Each DV AR would apply to 
Commodore Channel Management for Approval and be assigned to an 
Authorized Reseller. Legitimizes sales opportunity to small V AR. 

The DV AR may purchase product directly from Commodore or from an 
approved aggregator. If the DV AR wishes to purchase directly from 
Commodore the terms are as follows: 

Commitment: 

Product Pricing: 

. Shipping: 

Terms: 

Co-op: 

Service: 

Minimum Order: 

Less than $100,000 

30 • 33% Amiga 

Freight Collect 

Cash In Advance 

No Co-op Funds, No MDF Funds 

Although it is not mandatory for DV AR to be 
authorized service center, service arrangements 
are m~datory through the Authorized Reseller. 

Minimum Order $2500. 



AGGREGATOR (AGAR) 

Defmition: An Authorized Commodore Reseller who agrees to provide 
product and specific services under the terms of an Aggregator 

Addendum to the Reseller Agreement. This addendum will specify by list 
any affiliated resellers and DV AR 's. 

Program: The Aggregator would purchase product under the normal 
price schedule and sell product only to the named affiliates and DV AR 's 
under terms similar to the Commodore direct program. 

u 

Aggregator agrees to inventory 10% of his annual volume committment. 

Aggregator provides first line technical support to affiliates and DV ~· 

Aggregator may extend credit terms and pass co-op through to resellers. 

Aggregator will provide sales support documentation on a monthly basis U 
or as required. 

Rebate: As a result of providing the above services to the Afliliate I 
DV AR, Commodore will rebate the Aggregator 5% of Commodore invoice · 
for any purchase of product for delivery to an Affiliate I DV AR. 

u 



~n 

ORIGINAL EQUIPMENT MANUFACTURER (OEM) 

Definition: Manufacturer of specified products in which Commodore 
hardware components or assembled computer systems are integrated. The 
tinal product is no longer a Commodore product but a product of the 
manufacturer OEM. 

Examples: 

o Colwell General· Kiosk Display (ie. Paint Stores) 

o Neilsen Kellerman • Animated Rowing Machine 

o P.O.S.T. ·In Store Product Advertising (Grocery Stores) 

Product Requirements: Component level and assembled product to 
tit total solution. 

Location: Non-storefront 



PROGRAM REQUIREMENTS 

SERVICE SUPPORT: PRESALE: 
Technical Support witb Inside Liason 
Scheduled Developers Meeting with CATS 
Scheduled Engineering Meeting witb Corporate 
Service Specifications Review 

POST SALE: 
Technical Bullen tins 
Developer Update 
Function, Form, Fit Changes 
Internal Technical Liason 

NON-DISCLOSURE • Beta Test new hardware I software 

MARKETING SUPPORT: 
PR Opportunities 
Joint Marketing 
Trade Shows 
International Marketing 

SALES SUPPORT: 
1 Sales I Technical Liason from Corporate 

LAUNCH: 
Press Release to all appropriate media 

. Announce at DEVCON, June 27th ·30th 

u 

u 

u 



Commodore Business Machines 

Professional V AR Application 

May29, 1990 



The business entity which will own and operate the Commodore Business Machines 
authorization must complete this application. 

Complete SECTIONS 1 through 3 and return to your Regional Sales Office or to the 
following address: · 

SECTION 2 must be completed for each location for which you are seeking authorization. 

v 

Photocopies of SECTION 2 may be made for this purpose. V 



SECTION I: 

APPLICANT PROFILE 
LEGALBUSnmSSNAME: __________________________________ _ 

Dm/A: ______________________________________________ ___ 

BU~SSADDRESS: ____________________________________ _ 

DATE BU~SS ESTABLISHED: FISCAL YEAR ENDS:-----
PRIMARY CONTACT: ----TELEPHONE# _________ _ 

CHECK ONE: _Corporation _Sole Proprietorship 

_Partnership _ Sub-Chapter S Corporation 

PLEASE ATIACH THE FOLLOWING: 

• Corporate Organization Chart 

• Description or other affiliatioDS to include parent, subsidiaries, divisions, and other company 
realtiouships 

• List or priDcipaiiWDes and addresses 

PLEASE COMPLETE THE FOLLOWING QUESTIONS: 

A. Have you or a principal of your organization applied for CBM V AR status before? 

__ Yes (Explain) 

No --
Please describe any current or previous relationship that your company bas had with 
Commodore. --------------------------------------------------

1 



B. Which of the foUowing best describes your business in the location(s) intended for this 
application: (Please check those that apply) 

VuleoVAR Courseware PubUsber Video Production House 

_Computer Based Training _ Music V AR _ Third Party Maintainer 

_ Systems Integrator Mall Order Business _Interactive Video Developer 

_ Graphics Design _CAD/CAM Anima don 

__ o~erS~y=-------------------------------------------

C. Revenue Information: Please provide the doUar revenue by source for the indicated 
period: Preceding 12 Months Next 12 Months 

• Computer Hardware $ 

• Software $ 

• SuppUes $ 

• Consulting $ 

• Service $ 

• Education I Support $ 

• Other : $ 

• Total Revenue $ 

D. What . is your current product line? Please provide your gross annual sales, actual and 
projected by Une: Preceding 12 Months Next 12 Months 

• CBM (if appUcable) $ _____ _ 

• 
• 
• 

2 

u 

u 

u 



n E. If you currently sell Commodore products please report your unit sales for the period 
indicated and a projection for the 12 months following authorization: 

Preceding 12 Months Next 12 Montbs 

• PC 10/20 

• PC40 

• PC60 

• ASOO 

• A2000 

• A2500 

• A3000 

F. How many personal computer systems did I will you sell in the following price ranges? 

Preceding 12 Months Next 12 Months 

• less than $1599 

• $1600 • $2999 

• $3000 • $6499 

• $6500 • $9999 

• $10,000 + 

G. As a company, what is your annual advertising budget for personal computer and 

related products expressed as a percentage of gross sales?--------

How is this annual budget allocated? _Print Ads _ Radio _Television 

_Trade Shows _Yellow Pages _Other Specify:---------

Please include samples of current advertising. 

3 



B. With which of the following do you have official and authorized reseller status? 

CBM mM DEC 

_Apple NEC Others:------

_Compaq _Sun Microsystems 

_Epson AST 

L Describe your specific industry or vertical market expertise. 

Industry/ Vertic:al AppUcation % of Total Sales 

• 
• 
• 

What Is your company's VALUE -ADD? (Please be as specific as Is possible) 

Please include any brochures that describes your VALUE -ADD. 

J. How many VALUE ADDED systems do you sell per month from all applicable 
locations? --------------------
K. How would you describe your sales, service, and support territory? 

_ Local _ Regional _National _ International 

Please describe both the geographic and demographic variables of your target 
~kd~). _______________________________________________ ___ 

4 

u 

u 

u 



L. How are sales distributed by target market? 

Consumer 

Business to Business 

Federal/State/Local Govt. 

Primary/Secondary Education_ 

College/University Education __ 

100% 

M.. Please provide the following: 

• Corporate Sales and Marketing Plan 

• A list of all locations that will be included in this application for professional V AR 
authorization, by name, if appHcable, city and state. Please complete SECTION 2 
for each location for which appHcation is being made. 

n N. How do you sell your products? 

• Inside Sales Person 

• Outside Sales Person 

• Mail Order % --
• Other specify: ----- % --

0. Does your company offer warranty service and support for its existing product lines? 

Yes No At all locations? Yes No 

If yes, do you stock maintenance parts for service? _Yes No 

If no, how will you maintain the Commodore product line? 

3rdParty ___ Whom? ---------------------

P. Do you offer post/ warranty service support for your existing product line? 

5 



SECTION 2: 

LOCATION BUSINESS I MARKETING PROFILE 

(Please complete the following form for each location) 

LOCATION NAl\m: 

ADDRESS: ______ ~---------------------------------

LOCATION~AGER: ____________________________ __ 

DATEOPENED: __________ __ TELEPHONE# ____________ __ 

PLEASE COMPLETE THE FOLLOWING QUESTIONS: 

A. Locations Specifications: (check all that apply) 

Urban Suburban Rural -
Bus. District lndust. Park _Strip Center 

Stand-alone _Shopping Mall Residential 

ArtStore · _Music Store _Others (specify) 

B. What is the percentage of location sales achieved in each market radius? (Complete 
both) 

2S Miles account for_% of location sales 

100 Miles account for_% of location sales 

C. How would you characterize the business area served by this location? 

__ Local National _Regional _International 

6 

u 

u 

u 



D. Please enclose a map of the area of this location and identify the location. Also n designate: 

n 

• Locate sales territory 

• Location of other V ARS in the area in similar industries 

E. Describe the square footage distribution of the area occupied at this location: 

• Sales/demo area 

• Service area · 

• Training/classroom 

• Other:specify ____ _ 

_square feet 

_square feet 

_square feet 

_square feet 

• Total Square Feet _ square feet 

Please provide the following location photographs: (photos or VHS videotape) 

*Sales/demo area *Service area 

* Storage area *Exterior (Frontage and adjacent bulldings) 

H. How many emplf?yees are supported from tbis location? 

Total Full Time Part Time 

• Inside sales reps 

• Outside sales reps 

• Training Personnel 

• Programmers 

• Hardware Engineers_ 

• Tech Support 

• Others:specify: 

• TOTAL 

Describe the specialized staff support for your VALUE • ADD? 

K. Are education classes and seminars provided to customers at this location? 

Yes No --
7 



SECTION 3 

FINANCIAL AND OTHER INFORMATION 

In order to comply with this section, please provide the following documents and/or 
information: 

• Two most recent audited income statements and balance sheets 

• An Annual Report, if applicable 

Bank references 

Other credit references, as appropriate 

This application consists of SECTIONS 1 through 3. If you did not complete a section or 
sub-section please explain: 

I have completed the above application and understand that the information provided is 
being used by Commodore Business Machines to evaluate my application for V AR status. 
The information I have provided is accurate to the best of my knowledge and befief. 

By: Date: --------------------

TiOe (Corporate Officer): -------

u 

u 

u 



n 

n 

AUTHORIZED RESELLER AGREEMENT 

I. API'r.INTUEHT' 
Comrr.adare Business Mac:ninas, Inc. c•coMMODORE1, hareby appoints tha under· 
a~ :ad RESELLER rRESEUER1 and RES ELLER hereby accapu appcimmera asanan
adusive, aulhonzad COMMODORE RESELLER for the dlrea sale of those prochrc:s 
~in alladted Schac1Uie A (•Proctucss1, to thase customera dascribed In anac:tlad 
Schedule B rcustomers1, a the loca110n(s) described In the aaac:nect Sd1edllle c 
rt.acazicn1, subjac:C to the Policies and Pragrams described In aaa.ched Sd1adufa D. 

IL TERII 
&capt as pravicled In Artide IX, this Agreement shall commanoJ on Uta dale hereof and 
terminals one (t) year ltleraafter, and may be axtencled for subsequent ana year periods 
upon the mutual wriUan aureemem of the pazties. 

IlL CONDUCT OF RESELLER BUSINESS 
A. RESCLLER shall use its bast effons to encourage and dewlap the full rataii sales po
tandal fatlba Praduc:ta, and to develop and mairttaln the reputalim and goodwill af COM
MODORE and the Praducls. 

B. RES8.LER sballconduct its busiMSS in iZs own name and alftscwn _.nse and risk. 
and shall be raspansibfa, as an inclependerct c:antraaor, for complianca with all laws and 
raguauons gavaming U1a c:anduc:t of 11s business. 

C. REse.LERsha!l pnwida (i) fuU fn-bausesupponls8Mce forPraducss,iru:luding butnoc 
llmhed Ia, tba seMc8 and repairs ccverad by COMMODORE's c:ansurn• wanantr. (ii) 
shaD empla'f a~a number of personnel who have qualified as c:ampet8nt. trained 
and knawtadgaal*l in the Praducls and the seMc:a and svppart of Ols&amn: and (iii) 
rnainrain a sultabla fadity and suflidant invanfDry of Pracfucls and spare pans to tulil ils 
CUsrDmer ~ COMMODORE will caoparare with AESa.LER by rnaiQng 
available to RESBlER raasanablatraining and mataria!lrelaled to such proctucs supportl 
I8IVicl. 

D. AESEUER shall pravfda COMMODORE with such periodic written ruparts and 
faracasllconamtingthe ProduCIS. mlltull c:anditlonsand CUitcmnas may tram time Ia 
lfma be raascnably raquested by COMMODORE. 

IV. PURCHASES OF PRODUCTS 
A. COMMOOOREshalse!l the PJam:cts to RESSlER. FOB, COMMODORE's distribu
tion pan. in acaxdance wi1h COMMODORE's t~ applicable pricBI. terms and c:ancli
tianl, wtlichCOMMOOOREmayc:hangeframUmetatlme. COMMODOREiball,howavar, 
pnwide at Jat 1tlirty (30) days priarwriUan natk:8 of 11rf price incraase haralndar. Tlla 
to all PradUCII pun:hased by RESEU.ER and all risk of loss cr dama;a. in trand cr 
alawila.ltlall pasala RESELLER when the Praduc:ls ara daliYnd to the c:arri« cr, if 
AESEU.ER bas raqatad a datayln sniJimant. wt1en placed as RESELLER'I d._. as 
d8rarmi1ad by COMMODORE. Unless spdcafly S1ll8d C11 COMMODORE's price list 
tfMII in affact, thlestab6stled Praducl pricas do noc lnduda~lalian.lnsvrance, duly 
cr ta111 of any nazure. ail of such amaurdS baing dii'8CCI'f payable by RESELLS\ 

B. AD cmn far PrDducls shall be nfnllY (90) dzf advanc8, finn narHaiCIIJiaJ* ardell 
wtichlbal becanebinding upanaccaptanca in writing by COMMODORE orbyCOMMO
DORE'SibipmtldafthePracfucuorderad. COMMODORE,..._tblrighltaraj&aatrf 
cnt• taeundlr. FuniHrmare, COMMODO~ may canr:at all cr part ofaa:apcad onSal 
ornrtlsaordelayshipnattafPrvduclsHCOMMODOREdetenninas.fnitssaladilcralian. 
lbal ~} RESELLERhasac:secled i1s c::edillimi in the pun:tasa af Praducls, (U) RESEUER 
il in demul under tl1il Agruamll1l or any adler agraemlltt ralltil; to RESEU.Sl'l 
pun:nasa af PradudS, or (l5) an allacatian of Produdl is ,..._ No aucn mjar:lian. 
cancaliatian,llfusai cr datay shalt be daamad a braach of this AQraemant by COMMO
DORE. 
C. COMMODORE wDJ andeavarto meet RESEI.LER'I requested sh!pmll1l dat•aubjed 
to praduct avaiablily and COt.t.tOOORE's praductian and IUIIPY sc:nactulaL Hawawr, 
COMUODORI:Ihallnatbalil*farnoc~crdMrl. whictiOIXIU'duelac:in:mn
..,._ orC/1118 beyaftd b raasona.bte c:antraL rnu...,.. ai 811'/ sudliiCUIId dally 
or tailull of perDmara. the dale of delivery shall. at the reqaum of COMMODORE. be 
dlflmld tar a piriod equal ta the time lola by raascn al the dally. COMMODORE Wll 
tndaMr to nacity RESS.l.ER in writing of llfiiUCh Mrl ar drcumllance wilhin a 
~limldlrit 1eam1 at same, bu&WIInocballabtl taratrt failunJt.opnMdeiUCh 
nadca. COMMOOORE1818M11he righltamalll partidlhipmlnllwithth&CIIIIIIIIaf1tla 
RESEU.ER. Wl'licftC1111111lltlaiJ nat be unraasanably~and fnvaiawill beillued 
fiCIIc2i'lllllnl~ 

D. Mt clains far defecll or ltlanaQs in PradUCII pun:hllad by RESB.1.ER. cehlrttlan 
daiml ~flam COMMODORE's limited cansum•warramy,ltlall bt .,.....ad in 
wring by RESEL1.ER tD COMMODORE wtltlin siJ1y (60) clays of tba data of shipment bJ 
COMMOOOAE. 

E. IT IS UNDERSTOOD THAT COMMODORE MAKES NO WARRANTJES OR REPRE· 
SENTAnONS AS TO 'THE PRODUCTS SOLO TO RESEU.ER BY COMMODORE. 
INCWDIHG WllHOUT UMJTAnON A14Y IMPUED WARRANTIES OF MERaiANTA· 
BIUTY AND FITNESS FOR A PARTICULAR PURPOSE. EXCEPT AS MAY BE SET 
FORTH IN COMMODORE'S UMITED CONSUMER WARRANTY,IF ANY, ACCOMPA· 
NVING DEUVERY OFlME PRODUCTS. COMMODORE RESERVES THE RJGHTTO 
CHANGE lHE TERMS OF SUCH UMITED CONSUMER W.AMANTY AT ANY nME 
WITHOUT NOnCE AND WITHOUT UASIUTY TO RESELLER OR ANY OTHER PER· 
SONS BY REASON OF ANY SUCH CHANGE UNLESS SUCH CHANGE IS CONSID
ERED UNENFORCEABU: OR UNLAWFUL UNDER APPUCASLE LAW. 

F. THE UABIUTY OF COMMODORE, IF Nrf, FOR DAMAGES RELAnNG TO NIY 
ALLEGEDLY DEFECTIVE PRODUCTS, OR SHORTAGES IN SHIPMENT UNDER Ntf 
LEGAL OR EOUJTASLE THEORY SHALL BE UMITED TO 0) DEFECTS OR SHORT· 
AGES WITH RESPECTTOWHlCHCOMMODORE RECBVESA 'MUTTENNOnCEOF 
THE CLAIM FROM THE RESELLERWITHINSIXTY (60)DAYSOFTHE DATE OF COM
MODORE'S SHIPMENT OF 1ME PRODUCTS: AND (li) IN COMMODORE'S DISCRS· 
nON, COMMODORE MAY El'nfER REPLACE THE PRODUCTS OR REfUND THE 
ACTUAL PPJCS PAID TO COMMODORE BY RESELLER FOR SUCH PRODUCTS. 

G. COMMODORESHAU.HAVENOLJASIUTYFOR(i) INCIDENTALORCONSEOUEH
TIALDAMAGESOFAHYKfHO,ar(D} ACTUALORANYOTHERDAMAGESINEXCESS 
OF THE VAWE OF THIS CONTRACT. 

V. PAYIIEHr 
A. Payment w Praaucas shall be pramptty mada in u.s. dollars. by the c1ua dates sat forth 
In the invaica, at the net irMXca price. and tllara shall be a pana:sy forlale payment az 11% 
par annum or tha maximum lawful intarast rate permitted anSar applicalllelalr. 

B. COMMODORE I'8S8MIS 1ha rf;ht at aD times, either generdy orwilh raspect to 81rf 
spedli:anSarfar Producas,za Withdraw, c::bangeorllmitUie amauru or clura2iDn of paymll1l 
cradil terms. If llrf, tD the AESE.LER. RESEUER further agrees nac to maklq 
dedueciDn of atrt kind from any payments cSue tD COMMODORE heralnd« unless 
RESB.LiR lhatJ hava reatJvacl a written c:radil mamaranctum tram COMMODORE, 
iWthoriZng such daduellan. 

C. Aa HCUrity far any and alllnd&Gtednass of RESELLER Ia COMMODORE undettttis 
Agreement, REsa.LER does hereby gJIIUID COMMODORE a purcnasa mcnay security 
lntaras1fn IMr of COMMODORE, with priority fM1I any Olhar security lrurast.ln and to 
all cf RESaLER'I right. tltlaand lnta.t In and tD: (Q all Praducls new awned crhlnrdar 
~by RESEUER: (i) all accaunts recaival* and cantrza rig1121 naw crhll'lllftar 
81istingarisingframRESEU.ER"sllle.laalacrtranafarofPraclucls;and(mlthepnxadl. 
praducZI and II:IC8Siln of and Ia 811'/ and all cf lbe begcing. RESBJ.ER audaiZII 
COMMODORE 1D perfect such security 1rtanJs1 and will c:acperala in acr:amplisbilg lhf 
same. Hotwt!tlslandng the faragaing, this seauily interast may be subcRtlnalad to the 
lecurily rm..t granled to atrf third palty, appravacl by COMMODORE. who pnwidal 
linarlc:ift; tD RESEU.ER lotU. pun:tlase at Praducll. 

VI. USE CFTRADEIIARJCS AND OTHER PROPRtETARY RIGHTS 
A. Durin; ltlamnn cflhfiAgralmlllt RESEUER may Ul8, cn1J in cannactian will and• 
raasanablfraquired IDr, RESB.I.ER'I aadaiZad sma.advanilanll1land pnxncltian mttll 
PrDducts in accardance dt thil Agr&analt, tile 1lada namas. trademarks. ,.... 
legal. PrGIIillaiY mara. and the lik8 ralaled to the Pracfucls and cwnact cr c:antral8d by 
COMMODORE cr ill aftillatld campanili (the •Piapriataly Marb1, pmvided thai RE
SEUER"I usa of Prcpriatary Mara lhd be in accadance Wilb COMMODORE's apecill
caliona, pala• and diracaiona and shall always c:teany iftdicala tba:l thlama il Ula 
pcvperty of COMMODORE cr a COMMODORE atalialad canpany, as the case mB'f be, 
and 11 diraccad by COMMODORE. RESBJ.ER adlnaWdga thai COll.tODORE may 
aa a:rrume obflclt.oa ~usa crapplicata1 cf 8/lf otlhl PrDprialary Mans. inwtli:h 
fMI1l RESEl.1ER Wi C~a&IUCh usa cr applicalirl u.aot of tha ~ M8k 
immtdiirlly • 

B. RESB.1.m ltldnal (I) use any oflhePraprialary Mara a partafanybUiial rant, 
8IC8Pl as may be ~~~Prawd by COMMODORE In writing: (B) auacn 811'/ name cr mat sa 
~r~JatltlaPracluc:l. Cllb.uran thtran~~and mara ClriQinltf appaarin;t~aaan: (II) add 
to, Clblitarata. deta.r:a or rarnave 11ft nama, Plapriataly Milk cr .a lllftbar e11 thl 
Praducrl cr paa;ing 11aaot. and (lv) ma1c1 any addlllans, delllin cr madilc:alin sa 
the Products witbculU. prilr wriftan 8UihcriZation af COI.IIODORE. 
C. Naain; c:anlililld in Ulil ~stall give RESB.LER any an. idnlt in the 
Prapnay Mira or in llrf pallml. ~ trade SoiCI'MI or Olhar ~ cr 
canfiden1iiJ lnbrndonrallled to the Pr'DGUdl (11C8111thl norMranlfaraaiAI ligtltiD U11 CD 
lh88ltlrl! ra;ui8d tar1he IUhariZIId rasale of Praducls ~ CUstamers as twm pnMded~ 
and RESB.LER specikally dildaim1 ant sucn inlaraa. RESB.I.EFla;raes Ulal a L111 
of the Praprialy MaiU shall Inure to tnt banefil of COMMODORE and its a1filiad 
campaniA 



jill 

VtL. CONFIDEH11AL IHFORMAnON 
RESELLER acknowtectgas thai it may acquire and develop knawledge, infcnnalion and 
masns canceming the PrDdu=s, COMMODORE or its aftiliased c:ampanies and their 
ptaducl:s whlctl are and shall be tha trade seems and canfidential and propnatary Informa
tion of C9MMODORE cr its atfi!latad companies (hereinlfter "CcnftdemiaJ Jnfannation1. 
RESEU.ER Sftall held sucn Confidential lnfcnnalicn in strid confidence and not disclcsa it 
to 01tl811, nar a!fow any unautncnzad petSon, firm cr corporazicn accass to it either befcre 
oraftertarminancn ottttis Agreement, withou1 the priarwriaen consent ct COMMODORE. 
This pravisian sl1aiJ sutYive tetminalian at this Agreement. RESELLER shall not use such 
Conficfamial lntonnatlon in any way at pennft ethers to usa it in any way, c:ammercially or 
ctharwise, that is c:amrary ta the best interests of COMMODORE. 

VID. RELATIONSHIP OF PARTIES 
This ~ment cloas not In any way craata the ralalionshlp of franchise, jcXnl vantura, 
partnership or principal and agent beiWaen COMMODORE and RESEU.ER. RESEI.L.ER 
is an fndepnent contrac=r, and as suc:n. shafl net act cr raprasant lrsalf, dlrac:dy or by 
lmplicaSicn, as aaent for COMMODORE cr assume or crease Brrf obfigaticn an behalf ot or 
in the name of COMMODORE, cr otl'latwise bind COMMODORE In Sit/ manner. 

IX. TERMINATION OF AGREEMENJ' 
A. Eiltlwparty may terminate this Agreement bywriUan notice ta the adler, at wrttfma and 
for any raason, upon thirty (30) days priorwriaen notice. Elher pany may also tenninata 
this Aaraamant effacdva lmmadlalety, in the ewnttbe attserpany braactles any term ofUUs 
Agreement and such breach is not remedied within fifteen (15) days aftarwrtttM no1im of 
IUCb braactl is given. 

B. COMMODOREmayterminarathlsAgresmentbywrtttennoticatDRESELLER.affactiva 
Immediately, upon tba oc:curntnca ot any of Ute allowing awms: (I) If RESEUER fails to 
pay brUte PrDCfuc:ls when payment is clue or make arrangements ta so do wnfdl are 
~ ta COMMODORE; cr (II) upon t1te occurrenca of any dlanga in ttla financial 
c:anditian crmanagamantof RESEU.ER which, in the sola jvdgmant cf COMMODORE. is 
matariafly adY8II8 to RESEUER's ability tD perfatm under this A;raemsnl: or (IB) 
RESELLERdafaullsinanyagraemaruwiUICOMMODOPEorwidlrrrtthlrd panypravidlng 
financing tD RESELLJ:R fat the pun:hasa of PrDducls h818Uftdar, or flY) if RESB.LER 
engages in a c::aunsa of c:anducs wtlictl, in the sola judgement of COMMODORE. subs1an
tially and advalsaly affecls COMMODORE's rapUidon cr lis lntarasrs in the pramotion, 
rnanr.tng or dislribudan of 1ha Products, or is oebarwise deemed to ba iust causa tar 
tarminatian pursuanr to pravaifirtg taws: or (V) RESEUel fails to mairain a Javel of sa. 
and support for Praducts that is raasonabtf satistactary to COMMODORE. 

C. UpanterminalilnoftttisAgraemant, (I) alsumsowingby RESEU.ERtoCOMMODORE 
shill fmmaciialatl bacama clua and payable without nolica and COMMODORE shall 
tharalpon have aft attna rights and rumecliaS of a sellar und•applicaDia law, and as may 
be pravidadinthis A;rBement. (ii) Resal.ERshallcaasa hafdlng itself aulas aCOMMO
DOREAIAIDizad RESB.LERand shalllmmadlata(y raa:many Cantdanliallnfannalionto 
COMMODOREandshal remove all signs. nama. insignia. logos. PrDprialary Mml,and 
attt cdler pnxnotionat adVanising, sales, inbmatioual, tectlnical Ot OCf'lar mazartm wtdch 
ldemlfiiB 01 appa;n to idantitt wtd'l COMMO~ and cfalivar the same fD COMMO
DORE. and (ii) upon COMMODORE's raque&t. RESB.LER shall assemble Procfucts liM 
in imanuxy and malcaUHim available forinspecliDn by COMMODORE at a pla&:8 and time 
whichisraasonabtfc:anvanienttoCOMMODOREandRESEW:R. AllofCOMMODORE's 
rights and ramadias shall ba a:mula1iva and no wan" of any dafaul wat aftaca ant act• 
or subsequlnl defaul 

0. Upon suctl termination, COMMODORE may eiOCl, without cb!igalion,al rapurcnase all 
cr atrf pan of RESEllER's inwntcry of Producs az the lower ct COMMODORE's ltlen 
currant RESEU.SR's prices or COMMODORe's original RESEIJ.ER's ccF.· All RE· 
SEUERProduacraersracaiwdbyCOMMOOOREandnotsnippedcnthedmethaZnctic& • 
cf tanninalion is given or en ltla dale uus Agreement cltlerwise terminal as shall be desmacs .. 
canceUed ar the option ot COMMODORE. 

X. MISCELLANEOUS 
A. ENTIRE AGREEMENT: MOOIFJCAnONS; WAIVERS. This Agreement and the 
aztacnad scnadulas set forth Uta enttra undemancfing between the parties herata and 
supersedes all prier understandings with respect to this subjed ma11er, Which prior 
undemancflngs ara hereby tenninaled. Sudl tenns and c:anctitions of this Agraemem shall 
govern all putetmas of Produds by RESELLER notwithstanding 8lrf terms anc1 c:cnditicns 
set tanh In RESEUER's pUld1as8 cxder. No modific:allon or alteration shall be binding 
unJass axeculad In wrilfng by tha parties. No waiver of any pravision of this Agreement 
(whether or not similar) shall be constiU8d a c:ont!nuing waiver unless expressly sa aad. 

B. GOVERNING LAW AND .AJRISDICTlON. This Agreamant shall ba gavemad by and 
c:ansuuad In accardanca with the laws cf1haCommOC'IW8Ifth cf Pennsytvania. 1ba pana 
a;raa to submit fD the aduliva junsdicdon and venue of u. appropliata couns loc:llod in 
Pannsytvanla tortha pwposa of arry suit, aaion or otharpracaadiftg fn CDnl'l8dlon with 1hil 
Agraement. The patties upray waive ant and all oOjecdons tD julisdidb1 orvanua in 
anyofsuctiCDUrllandharaby=-t1haSsaMc8ctpracasalnrzrtl~may baseiYad 
In the uma manner as any notica herauncfar as sat hxtb below. 

C. UNENFORCEASIUTY. If SJrf part of this A;raement is dedarad Invalid orunanarce
abte by a govemmant authcrtty or court of ~ant jurtlcfiafon from Which decision no 
appeal is or can be 1ak8n. the remaind• ot this Agraamant shall ramain wtid, unlesl the 
ramavm of sucn fnvalld cr unanfan:aabfa pan shall. in the opinion of COMMODORE. have 
the effucl of marerially nullifying or Impairing this AGreement. 
D. AUOITS. COMMODORE raservas the rigtd to audit and lnsped RESEU.ER's becks, 
I8CIII1Sa and operastans reasonably nacessary to verify Pf1'P8I' compJianca with this 
Agroomant. COMMODOREshdglvaaslaas1ten(10)dayspriorwrittannolfcactsucnaucflt 
and canduc:t such audit alb own expense and saely tor the puq2osa of InsUring campli
ancewiththis Agraemsnt. My such aid orinspactionshallo=urcfuring ragularbulinas 
haws and shall nat u~ intarfara wilb RESEU.Efrs bustas activities. All 
btfalrnasbl oblained shall be c::ansidarad confidSfttial. . 

E. NOncE. My nollca required or penniltad to ba pen under this ~reemant shall ba 
fn writing and eilher de!iYerad personally or sent by tam. t!Hgram cr depasited fn the mall. 
postage prepaid. ragistnd orcarti&ld, nJtUm rac3pt ra;uessad, addrassad totha pani8s 
at the adclas appaartng an thalasl pa;a of this A;raamant. and 111a11 be deemed givan 
ttna(3)ctaysaftarthldaSaofmaiBngorcnthadataofpaiiCinaJ.tstaxortelegramdafMiy. 

F. ASSIGNMENT'. ThlsAgnJementandthari;hlsandbnfilltlsraundarshdlnuratathe 
band of1tta p8lti8l and thairmpacaiw IUG:8SIOII and Slligns azatpt- cfua tD the 
pnaa na~Uraof RESEI.LER's c:ammitmants laalndaf, neida'this AQraanant nor any 
righ1sordutialharauncleraretranstara1Hcr8lli;tableor~byRESEU.ER,ait!lar 
Wllunfalily cr by opetaticn of taw. 
G. EXPORT RESTRJcnON. RESEI.1.S1 agra&~ t1ta1 1 craas not intend and will not ship 
cr 1llnlmit (diracdy or indinJdtt) ant Pracmcls pun:hasad under Utis AgnJenalt cr ant 
tiCflnic:d fufamhdiln lunishad by COMMODORE !D RESB.LER with raspect tD the 
ProcU:II,Inviafllian orCIIlU'Mnlixl of any rvJaoria;ulalian ralaling tD 11por11 otthe US. 
govarnmantoranymambarrrdan otCOCOMwhidl has jurisCidlan CMI'COMMOOORE, 
b pill8lll. affilia£ad and IUbsGaJy c:cmpai& 

IN WI1NESS WHEREOF, Uta parties henlto have exacutad this agrasm8tll as of Occcber 11, 1989. 

~~·------------------------------------ COMMODORE BUSINESS MACHINES, INC. 

~----------------------------------- ~-----------------------------------nw. ____________________________________ __ 

~~------------------------------ ~~-------------------------------

~~------------------------------------ Addraa: 1200 Willan Drive 

Wpt Cht!tm: PA 193SQ 

u 

u 

u 



n 

VAR BULLENTIN 

DATE: March 22, 1990 

SUBJECT: General Policies 

In order to insure the end-user satisfaction that is critical to the success of the Amiga and Professional Series 
produc~ lines ("Produc~n), it is essential to provide such end-users, who typically have little familiarity with such 
technically complex products, with high quality individualized presale and postsale support. It is also essential to 
maintain ttained personnel. an inventory of hardware and software products required for the "Solution-Sell", and a 
facility reasonably sufficient to ascertain and supply the end-user's requirements. In addition, Commodore has 
established a Manufacturer's Program and Records Retention policy to further ensure tbat the above programs are 
implimented as intended and continue to benefit the end-user. you as a Commodore V AR and Commodore. 

SALES POUCY: 

V ARS are business organizations that resell Product to 
authorized end-user customers with significant Value 
added to the Product prior to such sale. Value must be 
added through specific proprietary application 
software, proprietary ~ware or proprietary 
peripherals, which are appropriate to the V AR solution 
as described to Commodore. 

V ARS are required to make. every reasonable attempt 
to undemand the requiremen~ of the end-user 
customer so they can recommend a solution specific 
application that may solve the cusromers' business 
requirement. Furthermore, the V AR is required to 
make every reasonable effort to support the end-user 
customer after the delivery of the Product and the 
integrated V AR Solution. 

An sales of Products must be based on a face to face 
meeting with the business customer and V AR. This 
meeting can occur at a V AR business location that has 
been approved by Commodore, an approved trade show 
or similar event or at the end-user customer's site by 
employee of V AR. 

Commodore prohibits the sale of Products by means of 
the methods of caaalog or mail-order delivery as well as 
the sale of Products to any entity for which the V AR is 
not authorized. In the case of V AR Resellers this would 
expressly prohibit the sale of Products independent of 
the significant proprietary software, hardware, and/or 
peripherals which are to be added by Reseller. 

All sales of Product by V AR are intended for use in the 
United States of America and must not be knowingly 
sold for uses external to the United States without the 
express written permission of Commodore. 

TRAINJNG POLICY: 

The V AR location must be capable of perfonning 
comprehensive, hand-on demonstrations of the V AR 
Solution which they sell. The V AR location must be 
uniquely knowledgeable with respect to specific 
market expertise and the resulting V AR Solution and 
must be able to train the business end-user in the 
Product and in the V AR Solution. 

In order to best represent the Product and therefore 
service the end-user customer the V AR must mainrain 
a staff of qualified sales, service, and technical 
personnel meeting the standards set by Commodore. 
This staff must be willing to respond to questions 
concerning the support of the Products and V AR 
Solution. 

MANUFACTURER'S PROGRAM POLICY: 

Commodore will from time-to-dme offer promotional 
programs to support the marketing of Product through 
the V AR base. Such programs shall be governed solely 
by written bullenlins from Commodorers headquarters 
describing the same. V ARS are expected to participate 
in these programs to encourage the development of 
potential solution markets. 

RECORDS RETENTION POLICY: 

The V AR. must mainrain sales records (ie. invoices) for 
all products sold. These records must specifically list 
serial numbers for the Products sold and include the 
end-user customer name, company, address, telephone 
number and dale of sale. 

These records must be maintained for a period of three 
years from the date of sale. These records must be 
made available to Commodore upon all reasonable 
requests, to inspect compliance with Commodore's 
policies and procedures. · 



VAR SCHEDULE 

These schedules relate to dle conttact daled by and between COMMODORE and the reWed 
V AR identified below. Due to the information set forth in these schedules they are subject, from time to time, to 
ammendment by COMMODORE, in its sole discretion. 

SCHEDULE A -Products: 

(Will only include those required for the V AR solution. Must be specific) Reseller is not authorized to sell 
Producrs independent of such V AR Solution. 

SCHEDULE B - Customers: 

Retail end-users, the significant portion whose use of the Amiga is devoted to the V AR. Solution defined as 
follows: • The V AR. Solution 
is for the end-users productive use and is not for resale, rent or lease. End-users whose use of the V AR. Solution 
will not be significant are excluded from this definition. 

SCHEDULE C-Location(s): 

Unless olherwise indicated herein, the single approved localion tbat is identified below adjacent V AR's authorized 
signatUre. 'Ibis location can be an office or a retail storefront providing it is commercially appropriale for the 
V AR Solution. 

SCHEDULE D-Policies and Programs: 

This schedule incorporateS by reference COMMODORE's V AR Operations Guide and such V AR bullendns as 
have been dimibuted to COMMODORE V ARS and are cmrendy in effect (copies atw:hed}. · 

Effective Dare: March 23, 1990 'Ibis document supercedes such schedules as have been previously issued 
relaling to the subject maaer hereof. 

~-------------------- COMMODORE BUSINESS MACHINES, INC. 

By. ________________________ _ By. ________________________ __ 

T~------------------------
True:. ________________________ __ 

Signature:. ____________ _ Signature: ___________________ _ 

~=·----------------------- Address: 1200 Wilson Drive 

West Ches~. PA 19380 

u 

u 

u 



Commodore Business Machines 
OEM Sales Division 

1200 Wilson Drive 

West Chester, PA 19380 

(215) "431-91 00 

I hope you find the enclosed material both helpful and complete in meeting your needs. 
You should find information useful for integrating our products into your line of 
products. 

Contents: 

* 
* 

* 
* 

* 
* 

OEM Relationship Overview 

Product Literature 

Developer Program Application 

Service Center Program Application 

Credit Application 

OEM Agreement (Sample) 

o We need to process at least the Credit Application to release an order for 
developmen~ testing or ongoing order purposes. Send these completed 
documents directly to my attention. 

o Standard Terms are net 30 days on approved credit. 

o All orders must meet a minimum of $2,500 per shipment. 

o All orders are shipped FOB Commodore warehouse Pennsylvania, California or 
Hong Kong collect. 

For more information please contact me at: 

(215) 431-9481 (Telephone) 
(215) 431-9464 (Fax) 

~ 
Donna O'Neil 
Technical Suppon 
Liaison, OEM/V AR Markets 



This Agreement, made and entered into as of , 
19 __ , by and between Commodore Business Machines, Inc., having a 
place of business at 1200 Wilson Drive, West Chester, Pennsylvania 
(hereinafter referred to as "CI") and----·---------
---------' having a place of business at 

(hereinafter referred to as "Companyw). 

In consideration of the mutual covenants and conditions 
herein set forth, the parties hereto do agree as foLlows: 

1. DEFINITIONS 

For purposes of this Agreement, the following ter.ms shall 
have the following meanings: 

A. "Assembly" shall mean the items sold to Company by 
CI, which items are more particularly in attached Exh1bit A. 

B. "Licensed Rights" shall mean technical know-how and 

u 

specifications relating to the Assembly and necessary for the ~ 
perfor.mance of the rights and obligations set forth herein, which 
are owned or controlled by CI during the ter.m of this Agreement. 

c. "Company Products" shall mean the products 
manufactured and marketed by Company and described in attached 
Exhibit B, which will include Assemblies as an integral and 
essential component as well as substantial software and/or hardware 
add~tions developed or manufactured by Company specifically for 
incorporation into and essential components of such products. 

2 • PURCHASE OF PRODUCT 

A. During the ter.m of this Agreement, CI shall sell to 
Company, and Company shall purchase from CI, Assemblies for use as 
components in Company Products according to the Schedule set forth 
in attached Exhibit c. In addition to Assemblies, CI shall sell 
to Company sufficient components for such Assemblies to per.mit 
Company to stock repair parts to provide customer support for 
Company Products. 

B. Company will provide to CI periodic order forecasts, 
and other infor.mation relating to market conditions as may from 
time to time be reasonably requested by CI. Company will provide 
to CI at least ninety (90) days prior written notice of any changes 
to the order forecast. 

1 
u 



c. 
the Assembly: 

CI does not represent, warrant or guarantee that 

(i) 

(ii) 

(iii) 

is or will be compatible or operable with, 
or as a component or part of, Company 
Products; or 
will remain identical to the Assemblies 
being manufactured and sold as of the date 
of this Agreement; or 
as incorporated into Company Products will 
comply with any requirements of the Federal 
Communications Commission, which compliance 
shall be Company's responsibility. 

D. The sale by CI and purchase by Company of Assemblies 
shall be subject to the provisions of this Agreement including the 
ter.ms and conditions described in attached Exhibit D. 

E. Company shall place its first order so that delivery 
will be scheduled no later than --------

3. LICENSE 

A.l. CI hereby grants to Company with each Assembly sold 
to Company hereunder a royalty free, non-exclusive right under the 
Licensed Rights, to use the Assembly solely as a component in 
Company Products, and for no other purpose of any kind or nature. 

2. Except as specifically provided above, all other 
rights under the Licensed Rights are reserved by CI. Company shall 
have no right or license, directly or indirectly, to manufacture 
or have manufactured, produce or duplicate the Assembly or sell, 
transfer, license, lease, market or distribute the Assembly, 
without such substantial additions as are set forth in the 
definition of Company Product, or as a component of or addition to 
any other product. 

B. CI reserves the right to audit and inspect Company's 
books, records and operations to verify the proper use of the 
Licensed Rights. CI shall conduct such audit at its own expense 
and solely for the purpose of insuring compliance with this 
Agreement. Any such audit or inspection shall occur during 
regular business hours and shall not unreasonably interfere with 
Company's business activities. CI shall give Company fifteen (15) 
days prior written notice of the date of such audit or inspection 
and the name of the fir.m or individual who will be conducting the 
audit or inspection. All information obtained shall be considered 
confidential. 

2 



4. TERM 

This Agreement shall commence effective as of the date 
hereof and shall continue for a three (3) year period thereafter. 

5 • TECHNICAL SUPPORT 

CI shall furnish to Company the technical information and 
technical assistance described in attached Exhibit E. 

6. EXPORT RESTRICTION 

Company agrees that it does not intend and will not ship or 
transmit (directly or indirectly) any Assembly purchased under 
this Agreement or any information embodied in the Licensed Rights 
or any other technical information furnished by CI to Company with 
respect to the Assembly, in violation or contravention of any rule 
or regulation relating to exports of the u.s. government or any 
member nation of COCOMwhich has jurisdiction over CI, its parent, 
affiliated and subsidiary companies. 

7. ADVERTISING 

A. Company agrees that it shall provide the following 
credit, or its substantial equivalent, to appear on the initial 
visual display on Company Products which use the Assemblies: 

u 

"Produced with the Commodore AMIGA microcomputer". U 
B. Company also agrees to allow CI to use Company's name 

and the name or designation given by Company to the Company 
Products, in CI's advertising and promotional materials. 

c. Company shall refrain from removing or otherwise 
defacing any CI copyright notices, trademarks and logos existing 
on such Assemblies. 

8. CONFIDENTIAL INFORMATION 

A. All infor.mation disclosed by either party under this 
Agreement which is identified in writing by the disclosing party 
as confidential (hereinafter collectively referred to as 
"Confidential Information"), shall be held by receiving party in 
the strictest confidence and shall not be disclosed to any third 
party or otherwise used, published or made public, except as may 
be reasonably required in the exercise of the rights and licenses 
granted under this Agreement, provided, however, that information 
shall not be deemed to be Confidential Information if it is (i) 
in the public domain through no wrongful act of the receiving 
party~ (ii) rightfully received from a third party without 
restriction and without breach of this Agreement, and which third 
party is itself not bound by a restriction of non-disclosure; (iii) 
approved for release by written authorization of the disclosing 

3 u 



n party; or (iv) already within the recipient's possession or 
knowledge, or which is independently developed and which 
possess~on, knowledge, or independent development shall be 
substantiated by documentary proof. The receiving party warrants 
and represents that it will take all necessary, reasonable measures 
to protect the Confidential Information disclosed pursuant to this 
Agreement. This Section 9 shall survive termination of this 
Agreement. 

B. The receiving party further agrees that it shall not 
make any disclosure of any or all of such Confidential Information 
to anyone, except to its employees and contractors to whom such 
disclosure is necessary to the use for which the rights are granted 
hereunder. The parties shall appropriately notify each employee 
and contractor to whom any such disclosure is made that such 
disclosure is made in confidence and shall be kept in confidence 
by such employee or contractor. 

9 • TERMINATION 

.A. This Agreement may be terminated if either party 
materially defaults in performance of .any of its obligations under 
this Agreement, whereupon the aggrieved party shall notify the 
other party in writing of the alleged default. Such written 
notice shall specify the default and state the aggrieved party's 
intention to te~nate if the default is not cured, whereupon, 
except for breach of Paragraph 2.E., the recipient of the notice 
shall have thirty (30) days to cure the default and, upon a failure 
to so cure, this Agreement shall automatically terminate. 

Notwithstanding the foregoing, it is acknowledged by the 
Parties that any breach or threatened breach of the provisions of 
Paragraphs 3 and 9 of this Agreement shall cause immediate and 
irreparable har.m and substantial injury to CI and accordingly CI 
shall ~e entitled to ~ediate injunctive relief in any court of 
competent jurisdiction which award may be entered in any court of 
competent jurisdiction. 

B. Upon termination of this Agreement, all Licensed 
Rights shall revert to CI and Company shall cease the exercise of 
the Licensed Rights except that CI at its option may elect to (i) 
purchase Company's inventory of Assemblies that have not been 
incorporated into Company Products at a reasonable price no 
greater than CI's original sale price or (ii) permit Company to 
dispose of any Company Product inventory, in existence at the time 
of termination in accordance with the terms of this Agreement. 

4 



10. MISCELLANEOUS 

A. All notices, payments, and statements in connection U 
herewith shall be in writing and shall be addressed as follows: 

TO: 

TO: Commodore Business Machines, Inc. 
1200 Wilson Drive 
West Chester, Pennsylvania 19380. 
Attention: Vice President Sales 

or at such other address as the respective parties may designate 
in writing subsequent to the signing of this Agreement. Such 
notices, payments, and statements shall be rendered by depositing 
them, addressed as aforesaid, certified or registered mail, postage 
prepaid, in the mail and shall be deemed given on the date on which 
they are mailed. 

B. This Agreement shall be governed by the laws of the 
Commonwealth of Pennsylvania, except as to bankruptcy, patents, 
trademarks, and copyrights which are governed by federal law of 
the United States. 

C. This Agreement shall be binding upon and inure to U 
the benefit of the heirs, successors and assigns of CI and CI's 
direct or indirect, parent, affiliated and subsidiary companies 
and Company and Company's direct and indirect parent, affiliated 
and subsidiary companies and their heirs, successors and assigns, 
provided, however, that neither party shall assign any of its 
rights or delegate any of its obligation under this Agreement to 
any third party except as is expressly set forth herein. CI may 
assign its rights and delegate its obligations hereunder i) 
pursuant to a merger, a sale of all of the stock of CI or the sale 
of all or substantially all of its assets, which are related to the 
business which is the subject of this Agreement or ii) to any 
affiliate of CI, to wit: Commodore International Limited, a 
Bahamian corporation ( "CIL"), Commodore Electronics Limited, a 
Bahamian corporation ("CEL"), or any other company in which more 
than fifty percent (SO%) of the stock entitled to vote for the 
election of directors is now or will be hereafter owned by CI, CIL 
or CEL, either directly or indirectly. Upon any such per.mitted 
assignment, the assignee shall be bound to all of the obligations 
of the assignor. 

D. The only relationships between Company and CI that 
are intended to be created by this Agreement are those of supplier 
and purchaser and licensor and licensee. Neither party shall be, 
nor represent itself to be, an agent, employee, partner or joint 

5 u 



venturer of the other, nor shall either party transact any business 
in the name of the other, or on the other's behalf, or in any 
manner or form make promises, representation or warranties or incur 
any liability, direct or indirect, contingent or fixed, for or on 
behalf of the other party. 

E. This Agreement and the Exhibits attached hereto 
constitute the entire Agreement between the parties hereto with 
respect to the subject matter contained herein and supersedes any 
previous oral or written c~mmunications, representations, 
understandings or agreements. All representations under this 
Agreement shall survive te~nation of this Agreement. 

F. This Agreement may be amended, modified, superseded 
or cancelled, and any of the terms herein may be waived, only by 
a written instrument executed by each party hereto or, in the case 
of waiver, by the party or parties waiving compliance. The delay 
or failure of any party at any time or times require performance 
of any requirement hereof shall in no way affect its rights at a 
later time to enforce the same. No waiver by any party of any 
condition or of the breach of any term contained in this Agreement, 
whether by conduct or otherwise, in any one or more instances, 
shall be deemed to be or construed as a further or continuing 
waiver of any such br~ach or of the breach of any other term of 
this Agreement. 

IN WITNESS ·WHEREOF, as of the date first written above, 
the parties have caused this Agreement to be signed by its duly 
authorized officers. 

COMPANY 

BY: ----------------------
Typed Name: 

Title: -------------------
FDM/2103 :pdh 

COMMODORE BUSINESS MACHINES, INC. 
1200 Wilson Drive 
West Chester, Pennsylvania 10380 

BY: --------------------------
Typed Name: ------------------
Title: -----------------------

6 



7 

\ 

EXHIBIT A 

PRODUCTS 

0 

u 

u 



8 

EXHIBIT B 

PRODUCTS 

• 



EXHIBIT C 

ASSEMBLY DELIVERY SCHEDULE 

Quantity Price* 

* Such prices as are set forth herein are based upon 
current costs and purchases in accordance with the quantities 
specified. CI reserves the right to pass on to the Company actual 
cost increases which are incurred by CI for such Assemblies ordered 
by Company after the first twelve months under this Agreement. CI 
also agrees to pass on to Company, on an equal percentage basis, 
any reduction in the published dealer price (other than reductions 
resulting from temporary promotional programs) which is applicable 
at the time of acceptance of any purchase orders submitted 
hereunder. In the event Company fails to comply with the quantity 
committment set forth herein, CI reserves the right, in addition 
to any other legal remedy it might have, to impose a fifteen (15%) 
surcharge on all orders received during any period on which such 
quantity commitment has not been met. 

9 

u 

u 



n 

n 

EXHIBIT D 

TERMS AND CONDITIONS 

A. All orders for Assemblies shall be minimum lots of 300 and 
delivery shall be FOB • The price per unit for 
Assemblies shall not include any transportion, insurance, duty or 
taxes, of any nature. All such amounts shall be paid by the 
Company. 

B. Title to all Assemblies and all risks of loss or damage 
in transit or otherwise, shall pass to the Company ~hen delivered 
to the carrier or, if the Company has requested a delay in 
shipment, when placed at the Company's disposal as determined by 
CI, at CI's place of distribution. 

c. All orders submitted for Assemblies, shall be firm, 
noncancellable orders which shall be binding upon the CI upon its 
acceptance. Unless otherwise agreed to in a writing signed by both 
parties, the Agreement and these Terms and Conditions shall govern 
all sales and purchases of Assemblies, notwithstanding any terms 
and conditions as set forth in the purchase orders of either party 
to this Agreement. 

D. The delay or inability to deliver Assemblies resulting 
from causes beyond the reasonable control of CI, or the failure to 
give notice of the same shall create no liability. The delivery 
date may be extended for a period of time equal to such delay. 

E. All Assemblies shall perform in accordance with technical 
specifications and be warranted free from defects in materials and 
workmanship for a period of ninety ( 90) days from receipt by 
Company. In the event Company discovers such defects, it shall 
return the defective part of the Assembly to CI who shall, at CI's 
sole option, repair or replace such defective part. 

F. EXCEPT FOR THE ABOVE, THERE ARE NO WARRANTIES OR 
REPRESENTATIONS, INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES 
OR MERCHANTABILITY AND FITNESS OF A PARTICULAR PURPOSE. IN NO 
EVENT SHALL CI BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES 
OF ANY KIND, NOR TO ANY INDIVIDUAL OR ENTITY OTHER THAN COMPANY NOR 
FOR DAMAGES IN EXCESS OF VALUE OF THIS CONTRACT. 

G. Payment for the Assemblies shall be made within thirty 
( 30) days of receipt of such Assemblies by Company at the net 
invoice price by letter of credit for foreign delivery and in u.s. 
dollars for _domestic delivery. Late payments shall accrue interest 

10 



at the max~um lawful rate. CI retains a purchase money security 
interest in all Assemblies shipped until the entire purchase price ~ 
has been paid to and received by CI. Company authorizes CI to 
perfect such security interest and will cooperate in accomplishing 
the same. 

H. CI reserves the right at all times, .either generally or 
with respect to any specific order for Assemblies, to withdraw, 
change or limit the amount or duration of payment credit terms, if 
any, to the Company. Company· further agrees not to ·maJce any 
deduction of any kind from any payments due to CI hereunder unless 
Company shall have received official written credit memorandum 
signed by CI authorizing such deduction. 

I. Nothing contained in the Agreement shall give Company 
interest in, or right to use the trademarks "Commodore" or "Amiga" 
or other trade names, trademarks, insignias, logos, proprietary 
marks, and the like, owned or controlled by the CI or its 
affiliated companies, or any patents, copyrights, trade secrets or 
other proprietary or confidential information related to the 
Assemblies, except the use thereof specifically and expressly 
provided in the Agreement, and Company specifically disclaims any 
right in any such Intellectual Property Rights. 

COMPANY CI 

By: ________________________ ___ By: ____________________ _ 

11 

u 

~ 



EXHIBIT E 

TECHNICAL SUPPORT 

Technical Support to be furnished by CI will be the standard 
support package available via the CI Independent Developer Support 
Group. 

Additional technical support may be requested by Company and CI 
will provide the same, at the then prevailing rates, and to the 
extent the required resources are reasonably available. 

12 



n 

n , __ 



u 









u Scalable Fonts: 

u 

u 

A Decade of Change 

By Bob Burns 

The preparation of text documents on personal computers has come full circle. In the late 
1970s, the state of the art in presentation graphics used plotters and characters formed from 
arcs and lines to produce output The characters could be put through the same graphic 
transform matrix as the other elements of the vector picture and could thus be scaled to the 
desired size. Users were attracted by the quick turnaround achieved with the use of the 
personal computer and were willing to compromise on the typefaces available to render their 
text The most popular fonts were those developed by Dr. Hershey for the U.S. Government 
which were distributed through the U.S. National Bureau of Standards. These vector fonts 
produced good plotted output and were available in three styles: Roman, Sans-serif, and 
Fraktur. The Roman and Sans-serif fonts were available in normal and bold weights by 
doubling and tripling the pen strokes. The Hershey fonts have distinctive characteristics: for 
example, the hook on the arm of the capital R. I remain amazed at the contribution of 
Hershey fonts to the industry -- I still see Hershey fonts in printer font packages advertised 
today. But printers in the late 1970s were primarily daisy wheel printers. The graphics 
printers that did exist had poor resolution. The struggle for these 9 pin graphic printers was 
to create a legible letter form that was also differentiable from its italic or bold version. The 
resolution to create letter forms that were recognizable as Tunes Roman vs. Garamond was 
not yet available. 

In the early 1980s, the laser printer and its 300 dpi resolution allowed bitmap characters to 
match the detail of the 1000 dpi plotter with "8 dot wide" pen. Hewlett Packard's Laser Jet 
led the way with fonts that were reminiscent of the classic Times Roman and Helvetica 
typefaces, both by their form and by their abbreviated names TmsRmn and Helv. The 
resolution to distinguish Times Roman from Garamond was now available. But scaling a 
bitmap of a character produced unacceptable results. Each character of each typeface had to 
be hand-edited for each display size. The production of these bit-mapped fonts was thus 
labor-intensive and expensive. This work was not performed by the traditional print type 
houses but by the printer manufacturers and digital type houses instead. 

In 1984, Adobe's PostScript1m broke new ground and went back to the character outlines to 
generate the bitmap characters for the laser printer. Using proprietary technology called 
hinting, they arranged to provide the brand name typeface outlines of the traditional print 

St:a/ab/e Fonts: 1 DevCon90 
A Det:ade of Change 



type houses. The hinting eliminated the need to hand edit the fonts -- it provided good 
quality output at arbitrary sizes. These outlines are composed of arcs and lines like the 
earlier days, though the arcs are typically Bezier instead of just circular, and the path 
describes the outline of the font instead of the pen path. These outlines can have standard 
graphical transforms applied to them. Font hints may then be used to fit the resulting scaled 
outline to the final pixel grid and correct any differences in roundoff so that the result is 
pleasing. For example, stem widths are made consistent. This is the core of what scalable 
fonts are: outlines that can be scaled to arbitrary sizes and look good. This gave the type 
houses entry into the fast growing desktop publishing market without massive effort and gave 
the users familiar fonts to use. The proprietary nature of Adobe's hinting technology gave 
them a lock on the market -- but only for a few years. 

The technology for generating characters continues to progress. Adobe's grip on the industry 
is loosening as competing solutions appear. The industry of fonts on computers falls into 
three camps: font suppliers, font engines, and font users. All suffer from the conflicting 
desire to support an industry standard for electronic type yet maintain the leading role in the 
industry. 

Font suppliers, specifically the major print type houses like Linotype, Monotype, lTC, and 
Compugraphic, now appear to realize the importance of electronic type as a source of 
revenue for their business. When Adobe fli'St introduced PostScripttm, only Linotype quickly 
arranged for their outlines to be used. Now press releases for announced font engines 
routinely mention several type houses that have committed to convert their outlines for use 
with that engine. That these major suppliers are now competing to provide their outlines is 
good for everyone, except perhaps some of the young digital type houses. 

Font engines are now available from several sources. Adobe's success affected the industry 
in many ways. First, users want the benefits of scalable fonts for their non-PostScripttm 
printers -primarily for the HP LaserJet and its clones connected to PCs. Bitstream's 
Fontware and Agfa Compugraphic' s Typographer are two examples of user products to fill 
that need. Second, computer operating system suppliers are frustrated by the fact that the 
market's focus has not been on the computers, but on the print engine connected to them. 
Both Apple (Macintosh) and Microsoft (MS-DOS) feel like the tail is wagging the dog. The 
assimilation of PostScripttm into the OS environment itself using Display PostScriptlm for the 
complete imaging model, as NeJIT'Dl has done, is one way to resolve the conflict -- but it 
keeps Adobe in the relationship. Computer manufacturers want control of the software 
environment so that they can differentiate themselves from one another as they jockey for 
market pre-eminence. 

DevCon90 Scalable Fonts: 
A Decade of Change 



u 

u 

u 

Font houses are frustrated by their inability to compete on a level playing surface. Adobe 
controls PostScripttm hinting technology, so font vendors must either strike a deal with 
Adobe or release unhinted fonts that are of poorer quality. Adobe itself is now producing 
fonts, creating an apparent conflict of interest in facilitating the conversion of third party 
fonts to hinted form. 

Adobe reacted to these pressures by announcing that it will open up its hinting technology, 
but that decision is too little too late. Their offer will only address the concerns of those font 
houses so frustrated by Adobe's control of the font conversion process that they are willing to 
pay Adobe a licensing fee. And competition to Adobe's technology is already here. 

Apple has announced that it will split from reliance on Adobe, build on Quickdraw as an 
imaging model and will release a new font engine called Royal. HP has put its weight behind 
Compugraphic 's lntellifont font engine, used by the Typographer application for the PC and 
by Gold Disk's applications for the Amiga. lntellifont will be an integral part ofHP's next 
generation printer control language, but it appears that HP's attempt to make lntellifont the 
engine for OS/2 Presentation Manager (PM) has failed. HP and Imagen's attempt to 
challenge PostScripttm with the more robust DDL failed when Imagen was unable to deliver 
it, but some of Imagen's principal staff formed Folio, recently acquired by SUN, which is 
offering OpenFonts. OpenFonts consists of the F3 font format, the TypeMaker tool to 
automatically conven other font formats to the F3 format, and TypeScaler which is the font 
engine that produces bitmaps from the F3 outlines. 

Most surprisingly, Microsoft has announced that it will be using Apple's Royal technology. 
Microsoft has hedged the commitment by also announcing it will provide hooks to support 
any font engine in its:imaging model. But if this Apple/Microsoft commitment remains 
intact, Royal will be the strongest contender for dominance in the font engine arena. 
Moreover, indications from Microsoft are that the Royal font engine will be available to third 
parties for modest fees. I think Apple and Microsoft have agreed to eliminate the driving role 
of the font engine in the electronic publishing solution by allowing Royal to become an 
inexpensive commodity, each hoping to regain market control with solutions focused around 
their respective proprietary operating systems and imaging models. This shakeup can be 
good for Commodore, too. The Amiga has the strength of experience in many of the aspects 
of a graphical multi-tasking environment on personal computers. 

Scalable Fonts: 3 DevCon90 
A Decade of Change 



The Amiga Challenge 

The Amiga of the 1980s is missing only a few elements in the challenge for superiority. One 
of these is the weakness of its imaging model caused by its great flexibility. That can be 
compensated for by the programmer. The more difficult failing is the lack of robust font 
support. It is just impossible to produce good text output on both the varying display 
resolutions and the different printer resolutions using the current bitmap text model. This is 
why Commodore has committed to scalable font support for the 1990s. 

The industry today is treating font engines like razors, and the fonts available for them like 
the razor blades. The engines are promoted heavily and are licensed for what is next to 
nothing on the corporate leveL The profit is in the sale of fonts to the end user. For the 
Amiga, we must be sensitive to the fact that the user makes purchases based on value, and 
work to make the fonts available at the lowest possible price. With the font industry as 
unsettled as it is, we will achieve this by providing a promising solution as soon as possible, 
structured so that applications will be insulated from the specifics of the font engine vendor, 
should it be appropriate to change later. 

Scalable Fonts on the Amiga 

Commodore has acquired Agfa Compugraphic' s lntellifont code. lntellifont has several 
advantages that make it appropriate for our use. It is _a mature and proven engine: we have it 
today and can see its results. It also has the recommendation of Hewlett Packard. Fonts are 
available for it today, both on 3.511 MS-DOS disks through several channels and on 
AmigaDOS disks through Gold Disk at more reasonable prices. 

Integration of the Agfa Compugraphic Intellifont font engine into the Amiga system software 
will be performed in three phases, the first of which will provide a way for Amiga 
applications to use fonts created by lntellifont using the Amiga text-related system calls that 
already exist. Specifically, the lntellifont font engine will be used to create diskfont.library 
compatible Amiga fonts. This approach gives a fast start to basic lntellifont access -
Intellifont will be used to generate arbitrary font sizes from the outline data, including limited 
control of features like character slant and emboldening. 

DevCon90 4 Scalable Fonts: 
A IJ6t:ade of Change 

n 











u 

u 

u 

Compatibility: 
byMikeSinz 

Bow to Make Sure Your Programs Win Work 
in V2.0 1111d Later Versions of the Amiga OS 

The Amiga hardware and operating system software were designed with flexibility in mind. 
This has allowed newer models of the Amiga to incorporate advances in technology such as 
faster processors and higher capacity RAM chips without sacrificing software compatibility. 
The newest release of the Amiga operating system, Amiga OS V2.0, includes major 
enhancements to the system software to go along with the many improvements in hardware 
that have been happening over the past few years. These changes will help make the Amiga 
a more competitive product, however, they also present a problem; inevitably some of the 
changes in the system software will have undesirable side-effects on existing applications. 

These side-effects can range from mere cosmetic problems caused by new default colors in 
Preferences to serious flaws (or worse) caused by new display capabilities. Commodore has 
made every effon to maintain compatibility with currently available software and for most 
applications, the changes are invisible. This article outlines the major issues in compatibility 
and the points you should look for when testing your software and hardware products with 
V2.0 or the Amiga 3000. 

New Features and Configurations 

Many of the compatibility issues are visual and stem from the new interface look and the fact 
that the system is more configurable. For instance, there is now more complete support in 
Intuition for overscan screen sizes. It is also easier for the user to select the various 
Workbench screen resolutions, the font to use, and even whether to use a PAL or NTSC 
display. Most all of the system defaults can now be easily changed by the user. 

Compatibility problems also arise from the use of system structUres which are undocumented 
or listed as "private". One of the more common of these is the use of private areas in 
lntuitionBase to try to "force" certain features or options (such as overscan screens with full 
mouse travel). Many system structures have changed. Applications which relied on these 
structures will have problems. 

Another compatibility issue - one which is often overlooked - is the fact that the Amiga 3000 
does not have a 68000 processor, it has only the 68030. This means applications which rely 
on the characteristics of the 68000 (such as its speed) will not operate correctly on the Amiga 
3000. You need to worry about this only if you ignored Commodore's developer guidelines. 

Compatibility: How to Make SUre 
Your Programs Work In V2.D 

1 DevCon90 



Larger Address Space 

A related issue is that both V2.0 and the Amiga 3000 directly support memory in the address 
range above the 24-bit addressing limit of the 68000. The operating system has always 
worked with memory above the 24-bit addressing limit but complete support for such 
memory was missing until now. With the Zorro m 32-bit system bus and the Amiga 3000 
motherboard, even a base Amiga 3000 has memory that is above the 24-bit address limit. 
This means that you will now start getting memory addresses and pointers that have 
something other than zero in the upper byte. 

This will be a problem for anyone who ignores Commodore developer guidelines by using 
the upper byte for flags or other purposes. A more subtle possibility for a problem is a loop 
that goes one byte too far. This happens most with strings and string buffers that are on the 
stack. For instance, suppose you have stored a string on the stack and after the string is some 
pointer or perhaps the return address of the routine. In a system where memory is limited to 
24-bit addresses, a copy operation which goes one byte to far will not be noticed because the 
upper byte of the address following the buffer is zero anyway. However, with addresses 
beyond the 24-bit range the upper byte of an address on the stack is not zero and a copy 
operation which goes one byte too far will change that address. Under these circumstances, 
the bug never appears until the software is run on systems which use the full 32-bit address 
range. 

Hardware Compatibility 

For hardware designers, it is important to make sure that the physical dimensions and 
external connectors of plug-in boards are within Commodore specifications (see the 
A500/A2000 Technical Reference Manual). With the A2000, there was some extra room 
inside the machine for expansion boards but this is now gone on the A3000. For example, 
there are video slot boards which fit in the A2000 that do not fit in the A3000. 

The AU10CONFIG process has also changed. You can no longer assume that two adjacent 
PICs will be configured in two successive AUTOCONFIG memory areas. Since the new 
AUTOCONFIG routine first tries to find out what expansion boards are out there, it could 
decide that a different arrangement is more efficient. 

There are many other points to consider when testing your product for compatibility with 
V2.0 and the Amiga 3000. These are summarized in the outline below. Use the outline as a 
checklist in your testing efforts. 

DevCon90 Compatibility: How to &fake Sure 
Your Programs Work In VI.D 



u 

u 

u 

V2.0 Compatibility Checklist 

I. General changes and issues 

1. Direct ROM calls will never be supported 

2. Depending on CPU or memory timing to make the program pace 
itself will not work. If you need to do critical system timing, 
use the timer.device or cia.resource. The CPU and memory sub-systems 
are not designed for timing. 

3. Depending on the fact that ExecBase or some other system structure 
is in a specific location will not work. For example: ExecBase in 
many machines happens to be at $0676, however, this is not 
guaranteed On some machines ExecBase may be elsewhere. 

4. Depending on the system to have a certain amount of memory free 
will not work. Various parts of the system may need more or less 
memory than older versions and various hardware configurations 
can change this. 

5. Counting on the system to have ONLY :MBMF _CHIP memory or at 
least some MEMF _FAST memory will not work. Likewise, the fact that 
the system does not have any MEMF _FAST memory does not gurantee 
that it has less than 1 meg (or 2 meg). 

6. Depending.on machine hardware states when taking over the machine 
can be very dangerous. For example, in V2.0 CIA-A, timer A has 
the interrupts tmned on by default. 

7. Counting on a certain amount of system stack usage is dangerous. Various 
functions in the system may change in the amount of stack used. Also, 
any call that results in a call to AllocMemO can end up using large amounts 
of stack since AllocMemO may end up needing to go through an ExpungeQ 
process that calls the ExpungeO vectors of various libraries and devices. 
The ExpungeO functions cannot allocate their own stack (they may have 
been called from AllocMemO) hence they use the stack of the calling 
function. This kind of problem can be very difficult to find since it only 
occurs dming a memory panic on a system with lots of libraries which the 
user is no longer using. 

Compatibility: How to Afake SUre 
Your Programs WOI'k In V2.D 

3 DevCon90 



8. Depending on undocumented side-effects of system functions 
is dangerous. When the functions change so will the 
undocumented side effects. 

9. Setting flag bits that are undefined or using private, reserved, 
or undefined fields in systems structures can cause you to break. 

10. Undefined bits in hardware registers should be set to zero as 
they may, in the future, be used for new modes. For instance, 
the ECS chips have some new bits in various registers. It is 
important that they are not set to some random value. The new 
registers are designed to do nothing when set to zero. 

11. Do not write to read-only registers or to addresses in 10 space 
that do not currently have registers. 

12. Do not read from write-only registers or from addresses that 
do not currently have registers. 

13. After a RESET instruction from the CPU, all AUTOCONFIG 
devices are de-configured. This means that AUTOCONFIG 
memory would no longer be there. If you need access to 
items on an AUTOCONFIG device, you cannot RESET. 

II. Chtmges to exec.librll1'J 

1. AddTaskO works 4ifferendy under V2.0. If a program manipulates 
the task list, it will now break. 

2. AddTaskO now needs to do a small AllocMemO in order to implement 
the new features of Exec. Because of this, AddTaskO may now 
fail in low-memory conditions. 

3. New, two-pass AUTOCONFIG, configures all RAM boards before 
other devices. 

4. ExecBase/SysBase is now in MEMF _FAST memory, if available. 
This means that after a RESET instruction, ExecBase may no 
longer be valid. This may cause problems for some copy-protection 
methods that have custom boot blocks. 

DevCon90 Compatibility: How to Make SUre 
Your Programs Work In V.2.D 



u 

u 

u 

5. Supervisor stack is now in MEMF _FAST memory, if available. 
This means that after a RESET instruction, the SSP may no 
longer be valid. Also no supervisor stack operations may 
be done after a RESET. This may cause problems for some 
copy-protection methods that have custom boot blocks. 

6. Exception vectors may now be in MEMF _FAST memory, moved there 
via the VBR in 68010 and higher CPUs. Direct hacking at the 
exception vectors WILL break. You should use Exec to modify 
vectors. 

III. Changes to layers.library 

1. SIMPLE_REFRESH layers are a bit smarter under V2.0. 
Moving a simple refresh layer that was not obscured will 
no longer cause a refresh event for that layer. Unfortunately, 
if your program relied on the refresh event to tell when the 
window moved, this will no longer work. 

2. Sizing a SIMPLE_REFRESH layer does not clear it. An old side-effect 
to sizing a simple refresh layer was that the whole layer was cleared 
and a refresh event for the whole layer occurred (since it was cleared). 
The new system does not clear the layer; any part of the layer that 
existed before the size operation occurred is not given a refresh 
event. Since Intuition windows are built on these layers, the same 
effect is s~n in Intuition windows. Because of this, if your program 
relies on a refresh event after a sizing operation to refresh the window, 
it will not work correctly. If the contents of the layer need refreshing 
after sizing, you will have to clear and refresh those areas . 

. 3. Layers now runs at different speeds. Some operations that used to 
be slow may now be much faster. Under certain conditions, some 
operations may take longer (they now do better de-dicing). It 
is very important that you NOT rely on the timing of the layers, 
other than that they will be as fast as possible. Using the fact 
that moving a layer took some fixed amount of time in order to 
pace an animation or other activity will never work correctly as 
not only can the layers.library change, so can the CPU, which is 
a major part of layers speed. 

Compatibility: How to &fake SUre 
Your Programs Work In V2.D 

5 DevCon90 



6. Use the NewLayerlnfoO function to create the layer 
structures. Do not use FattenLayerlnfoQ, ThinLayerlnfoQ, 
InitLayersQ. (They are now obsolete.) 

7. Some pans of the layers structure has change. While for 2.0 
this has been limited to the areas that were reserved for 
future changes. However, in order to try to stay compatible 
with layers beyond 2.0, developers should not directly 
manipulate any elements of the layer structure or, if there is 
no way around it, should limit themselves to the *front, 
*back, *tp, bounds, Flags, *SuperBitMap, and *DamageList 
elements of the structure. 

IV. Changes to graphics.Ubrary 

1. Any poking into private areas of GfxBase is invalid and unsupported. 

2. Although there is still the notion of PAL-machine vs. NTSC-machine, 
the new display modes support PAL and NTSC screens on any 
machine. Also, do not assume that if the PAL bit is clear, the 
NTSC bit must be set. Both bits clear is reserved for future use. 
If you find both bits clear, the recommended processing is to exit 
gracefully. 

3. Text rendering now handles ColorFonts so there is no need to install 
the ColorFont wedge under V2.0. 

4. Text rendering is now much faster so there is no need to install 
FastFonts under V2.0. 

V. Changes to intuition.library 

1. Intuition has a new state machine. This should fix all of the 
problems with gadget activation, window events, and user mouse 
clicks. For example, closing a window while a string gadget 
is active in it, will no longer leave the system in a state of 
confusion. Operations will now cODeCtly block while the 
objects for that operation are in use. Some of the really 
unusual worlc-arounds may no longer be needed and could, in 
strange cases, modify the behavior of your software. 

DevCon90 , Compatibility: How to Make SUre 
Your Programs Work In V!.D 



u 

u 

u 

2. One of the more complex aspects of the new state machine is 
that of :MENUVERIFY deadlock avoidance. (Note that in all 
of this, only messages you have IDCMP flags set for will be 
delivered.) MENUVERIFY will be aboned in if any one of the 
following happen: 

a. Preferences Verify Timeout elapses, that is, you have 
not responded to the :MENUVERIFY event within that 
time period. 

b. The user releases the menu button before you respond 
to the MENUVERIFY event 

c. You call ModifyiDCMPQ before replying the MENUVERIFY 
event. This usually means that you have not yet seen 
the event. 

d. Intuition can not send the MENUVERIFY event. 

3. When a :MENUVERIFY is aboned since a message can not be removed 
from your message port, the MENUVERIFY message will still be on 
your port. A MENUPICK event-will be sent that has MENUNULL. 
If it was due to the user letting go of the menu button, a 
MENUUP event will also be sent. 

4. Messages you will get (compared with V1.3) after you respond to the 
MENUVERIFY message: 

a. If you :MENU CANCEL after Intuition had timed out, 
you will get an unexpected MENUPICK/MENUNULL 
before you get the expected MENUUP. 

b. If the user lets go of the menu button before Intuition hears 
back from you or it times out, you will receive a MENUUP 
followed by a MENUPICKJMENUNULL whether you 
had responded MENU CANCEL or MENUHOT to the 
MENUVERIFY message. 

Compatibility: How to Make SUre 
Your ProgiiJms Work In VI.D 

7 DevCon90 



S. Software needs to be able to handle the improved flexibility 
that 2.0 has given the average user. Software must be able 
to deal with various system fonts. Font changes are more 
global and selection of default fonts is dangerous if you 
did not plan for it. Using NULL for TextAttrs in IntuiText 
structures could lead to surprises. Likewise, not checking 
the font that was set in the RastPort could lead to surprises. 

6. Do no assume that the window or screen title bars are of a 
preset size. The size is determined based on the font that 
would be used in the title area. 

7. Software must be able to deal with various Workbench screen 
resolutions and depths. The Workbench screen now can be set 
to more than just 640x200 or 640x400. Resolutions may be 
anything from 640x200 on up. Display depth can now range 
from 1 bitplane to the maximum available in the display mode. 

8. The parts of a window that are in the border are now fully 
claimed by Intuition. This includes the thin, color-0 line 
which is inside the color-1 (or BlockPen) line. It also 
includes the area in which there are any border gadgets such as 
the area above the sizing gadget (when th~ sizing gadget is in 
the right border). 

9. The border sizes for the window have always been in the Wmdow 
structure. These are the pixel sizes of the border of the window. 
They are: 

a. Window->BorderLeft 
b. Window->BorderTop 
c. Window->BorderRight 
d Window->BorderBottom 

10. Gadgets that were in the window border area should have had the 
LEFI'/RIGHT/fOPJBOTrOM xxxxBORDER flag set. Due to changes 
in window border rendering by the system, any software that renders 
into the window borders directly may be in for a surprise. The 
best solution is not to render within the border areas of a window. 

DevCon90 B Compatibility: How to Make SUre 
Your Programs Work In V2.D 



u 

u 

u 

11. Detail and block pens are no longer used for the window rendering. 
They are still used for the menus. Custom screens that do not 
use the new OpenScreenTags function of 2.0 will get a "monochrome" 
mode for the windows on that screen. Windows on the Workbench 
screen (or other screens opened in the new 2.0 manner) will use 
the Draw Info from the screen to determine the rendering method. 

VI. Chllnges to diskfont.library 

1. It will now try harder to match the style flags you ask for while at the 
same time trying to reduce disk access. 

2. The .font ftle format has changed. Although the change is minor, anyone 
who is messing with the .font files directly may need to be fixed. Since 
the format is different, the new .font files have a different FCH_ID, too. 
The format change is at the end of each font entry. Some room at the 
end of the font name character array is now used for some new data. 
The FCH_ID on "compatible" font files will change only in the last 
nibble (lowest 4 bits) of the ID. 

3. It is very important that you only set the flags you really want when 
opening a font If you used -1 as the flags (all bits set) or had ttash 
values in the flag fields, you might get surprises. Bitmap font scaling 
is one of these new flags. Thus, if you ask for a size that does not 
exist and you have the scaling flag set, it will scale. 

4. If you ask for a font, be prepared to handle it. Don't ask for an 
arbitrarily. large font in an attempt to get the largest If the font 
doesn't exist in the size that you specify, the system will create it 

VII. Clumges to dos.library 

1. The dos.library is now in C and uses normal stacks. The "strange" 
BCPL actions are gone. · 

2. Under V1.3, dos.library retmn values were passed in d1 as well as dO due 
to a quirk of BCPL. If your code relied on the return in d1, it will break. 
For example, under 1.3 a call to LockO would return the result in dO 
(and d1). UnLockO needs its argument in d1 - if you forget to move it 
from dO into d1 after the LockO call your code will work under 1.3 and 
fail under 2.0. Due to the number of programs that run into this problem, 
there may be a short-term patch for this. 

Compatibility: How to IIske Sure 
Your Progmms Wol'k In V2.D 

9 DevCon90 



3. The dos.library calls should not be made from a task. Some of the 
calls that seemed to work before are now unsafe. 

VIII. Changes to ramUb (that which does OpenLibrary/Device magic) 

1. OpenLibraryO checks LIBS: and the :LIBS/ directory on all 
devices. This should make using a program with custom 
libraries much more of a "Just put the disk into the drive and 
double click" 

2. OpenDevice() checks DEVS: and the :DEVS/ directory on all 
devices. This should make using a program with custom 
devices much more of a "Just put the disk into the drive and 
double click" 

3. Expunge is a bit smarter in that it will make another pass 
over the library list to find any library that was not 
expungeable before but is now. This happens when a library 
or device that is expunged closes another library that could 
now be expunged. 

IX. Clulnges to timer.device 

1. It now correctly allocates all of CIA-A. This means that any 
program that tties to allocate CIA-A will fail. 

2. The time values in the timerequest structure now come back 
as garbage. It was always documented that these values could 
be invalid after the timerequest comes back - now they are. 
This did not happen, in most cases, under V1.3. Software which 
does not reset the fields between timerequests will break. 

3. Timer events do not have to come back in the same Older as 
sent. In 1.3, events that were to come back at the same time 
(or at almost the same time), were returned in the same order 
in which they were sent This was never guaranteed, and in 2.0 
it may not happen. 

DevCon90 1D CompatlbBity: How to &fake SUre 
Your Programs Wotlc In VR.D 



u 

u 

u 

Most of the details on the new Zorro m expansion bus was talked about by Dave Haynie in 
his talk on the Zorro m Bus Specification. It has a section on compatibility with the Zorro n 
bus. I will touch on a few of the points. 

X. Clumges to the luudwtue in the A3000 tuUl Zorro Ill bus 

1. The Amiga 3000 bus controller emulates, for the Zorro n bus, the 
signals of the published Motorola 68000 specifications. Anything 
that is designed based on these specifications should work. 
Things that are designed based on observed 68000 behavior 
rather than the documented 68000 operation is at serious risk. 

2. Some of the 68000 emulation control lines are gone. New signals are 
now on the VP A and VMA lines. 

3. The bus is better terminated. This should mean much less noise 
on the bus. If your card's line drivers are too "light" they may 
not be able to drive the A3000 bus. 

4. The A3000 Buster does fair bus arbittation, which means that if you 
request the bus, you will get it at some point Starvation is now 
impossible. Also, slot position no longer effects the speed at which 
bus grants are given. 

S. Cycles that are not in the Zorro n address space do not generate a 
Zorro n cycle. This lets the system run faster than the limits of 
Zorro n when accessing address ranges that are in the 68000 space 
but not Zorro n space. For example, access to CHIP memory will 
not be visible on the Zorro n bus. Since there was no legal way 
to use any of this on the bus, this should not cause any problems. 

6. A new 1.5 megabyte area for 1/0 devices that is mapped to $00AO 0000 
to $00B7 FFFF • 

• 

ComptJtlblllty: How to Make SUre 
Your Program• Wotlc In VR.D 

11 DsvCon90 



n 

n 

n 











n 

Purpose 

Standards 

By 
Paul Higginbottom 

Manager, Developer Support 

The purpose of this document is to describe the current state of application standards 
for the Amiga and to outline some of Commodore's exciting plans in this area, and the 
cooperation we need from you, our valued developers. 

What are standards? 

Standards are guidelines for the actions of members of a group. However, the benefits 
of complying with standards must be explained in order for them to want to do so. 

While the computer industry has many different standards, the idea of standards is 
not new, and applies to all systems, including societies-e.g., moral standards. 

Now that we know what standards are, what are the benefits of conforming to them? 

Standards promote consistency 

Without standards there would be chaos or anarchy. Imagine life where every member 
of a community does their own thing, without regard to the impact on the community as a 
whole. 

Standards create an environment with fewer intangibles and greater predictability. 
This makes any system easier to understand and live within. 

A concrete example of why standards are important would be traffic lights. Everyone 
knows that red means stop. and green means go. Imagine the outcome if those colors weren't 
standard. Imagine if in one place they decided that red means go and green means stop! 

Standards promote faster progress 

H you adhere to a standard, then enhancing the standard as well as conforming to 
new standards is much easier because only one set of guidelines is required for upgrading to 
that new standard. 

In the absence of any standards, progress is very difficult because each group member 
requires an individual plan. 

Standards and you 

You may be asking: 'Why should I adopt standards?,' or more specifically: 'What 
are the benefits?' Adopting standards will result in: 

Standards 1 DevGon 90 



1. Giving your product a wider appeal-more sales-because of its combination of fa-
miliar and unique features, its standard user interface, and its degree of compatibility U 
with the system and other products. 

2. Reducing your support costs-more profits-because users will not be confused by a 
non-conforming user interface or features, or the product's incompatibility with other 
ones. Remember, no software is an island! 

3. Increased credibility for the Amiga as a whole, and therefore greater appeal and a 
larger installed base to sell to. 

Background 

The quantity and quality of available Amiga software and hardware products has 
increased tremendously since the introduction of our first Amiga model-the A1000-in 
1985. 

Unfortunately, there is a great deal of inconsistency in the features and operation of 
these products which often results in confusion for the end-user. In addition, the lack of 
standards has meant that many products do not work well together. 

User interfaces vary widely, ranging from primitive and inflexible; creative but unus
able; incredibly flexible but confusing; to professional and useful. A standard way for users 
to operate programs and hardware is essential if the Amiga is to become successful as a 
mainstream player. Computer purchasers today-businesses in particular-buy computers 
to make people more productive, and they will often buy the system based upon the fact 
that it requires the least amount of training and expertise to operate. U 
Amiga vs the competition 

The two major competitive platforms for the Amiga in mainstream computing appli
cations are the Apple Macintosh and all of the various PC compatibles. Consider the state 
of standards on those platforms: 

• Macintosh- The Macintosh has become successful in large part because of its rigid and 
standardized operating environment and application software that is very consistent. 

• PCs - There are a vast range of products available for PCs, and the emerging user 
interface standards are Windows under MS-DOS and Presentation Manager under 
OS/2. However, the majority of PC users have not switched to either environment 
yet. 

Amiga standards and tools 

It should be clear by now that standards and compliance with them have a very large 
influence on the success of any system. What follows is an overview of the current Amiga 
standards and examples of their use. 

DevGon 90 2 Standards 

u 



IFF 

Proably the most well defined standard on the Amiga, the interchange file format 
(IFF) allows users to create files in one software package and then use those files in another. 
The most widespread use is with bitmapped graphics files where a user might digitize a 
picture into an IFF file with one package and then place the digitized picture in a document 
with a desktop publishing program. 

There are other types of IFF files, including formats for audio sounds, music, anima
tion, and text. IFF is the multimedia file format for the Amiga. 

Clipboard 

The clipboard device is-unfortunately-a very under-utilized feature of the Amiga 
operating system. We have published articles on how to incorporate it into your programs. 
This feature allows the passive transfer of data by the user between programs that have no 
knowledge of one another. For example, a user could copy some data in a spreadsheet to the 
clipboard, and paste it into their word processing program. This is not the same as active 
transferring of data-often referred to as 'hot-links.' The latter can be implemented through 
the new file notification features of 2.0. 

AmigaDOS 2.0 

2.0 is mentioned here because many of the utilities, tools, and Workbench are excellent 
examples of the standard look and feel. 

At the system level, the following tools are available to allow you to quickly and more n easily implement a standard look and feel: 

1. GadTools-the gadget and menu layout toolkit. 

2. IFFParse.library-toolkit to parse IFF files. 

3. ARexx-macro language provides inter-process communication. 

4. ASL.library-standard file, and font, and 'list' requesters. 

User interface style 

In the ROM J(ernel Libraries and Devices Reference manual are style guidelines 
(p211-220) to assist you in creating applications with a standard look and feel. 

Amiga Vision 

Included with most Amiga models now is Amiga Vision, our icon-based authoring 
language. Amiga Vision allows users and developers to easily create multimedia presentations 
and computer-based training courses. 

Amiga Vision is mentioned here because it represents a good example of look and feel, 
and also runs under 1.3 and 2.0, taking advantage of 2.0 if it is available. Amiga Vision is 
not designed exactly according to the 2.0 look and feel, but should stimulate some ideas. 

Standards 3 DevGon 90 



What's next? 

At Commodore, we realize that it is our job to coordinate the development of stan- U 
dards and to encourage you to adopt them. 

In addition to the current standards outlined above, we are working on the develop
ment of additional standards and tools to make it easier for you to create software, and to 
increase the appeal of your products. 

The two subsections on AppShell and AppBuilder deserve special mention. They are 
tools we are working on that will make it very easy for you to build the standard 'look and 
feel' into your products. Read these sections and other related sections in the 1990 DevCon 
Notes binder. An alpha version of AppShell is included on the DevCon disks. 

Look and feel guide 

A complete style guide is under development that will define in detail a standard look 
and feel for applications. 

Application user interface 

Here is a list of standards to consider when designing an application user interface: 

1. An application's user interface should consist of more than menus and gadgets. 

For example, it is important that a full ARexx interface be available so that appli
cations can be driven from scripts and from a command prompt either in the shell or one 
built into the program. It is also important that applications support the new Workbench 
object-oriented functions (Applcon and AppWindow) to allow more intuitive manipulation 
of projects and actions by the user. U 

2. Separate application functions and their means of invocation. 

Each type of user interface--keystrokes, menus, gadgets, ARexx-is another way to 
invoke the features and functions in your applications. 

The most important -design goal you should adopt is the separation of application 
functions and the means of invoking them. Too often a function is designed to fit the user 
interface and not the other way around. For example, saving a file should not be thought of 
in terms of the 'save' and 'save As ••• ' commands in a 'Project' menu. 

3. Applications should adhere to system preferences by default. 

Some of us may like certain colors, fonts, screen resolutions, and other details, but 
please do not force them on the user. Use system preferences by default, and also allow the 
user to customize and save the application environment. 

4. Applications should support both keyboard and mouse interfaces. 

No matter what preference you might have as to whether applications should be mouse 
or keyboard driven, both should be implemented. Mouse operation tends to help and attract 
new users immensely. Power users on the other hand, often prefer keyboard operation. 

DevGon 90 4 Standards 

u 



5. A final note about application user interfaces ... 

() Remember that a user is trying to get work done with your products. 

n 

The user interface of a product should make getting from point A to point Bas short 
a journey as possible. 

AppShell 

The AppShell is a skeletal application we have developed that implements handlers 
for all of the types of user interface (as outlined above) including: 

1. Workbench- Supports the new Appicon and AppWindow features. 

2. Preferences - Adapts to system preferences unless application-specific preferences are 
present. 

3. J(eyboard input - Processes any and all keyboard input. 

4. Intuition input - Processes all Intuition input. 

5. ARexx - Processes all ARexx interaction. 

6. SIPC- Simple Inter-Process Communication. This is AppShell specific, and is pro
vided for fast communcication between processes. 

7. Asynchronous processes- Allows an application to easily manage multiple projects, 
tools, and other processes such as printing. 

Implemented as a link library and run-time library, AppShell will allow memory re
quirements for multiple applications to become lower through common code. In addition, if 
you create your application using AppShell, you will get all of the above features basically 
for 'free'. 

This tool will be extremely valuable, particularly in the development of new applica
tions you may be planning. While you may not wish to abandon a code base for an existing 
product, you may wish to_ use AppShell to create an upgrade of an existing product as it 
will be the fastest way to implement all of the features mentioned above. 

This project has been coordinated by David Junod, and his notes on this valuable 
tool are included in the 1990 DevCon Notes binder. 

AppBuilder 

The AppBuilder is a tool that is designed to make it quick and easy for you to design 
an application user interface according to the guidelines outlined above. 

More than just designing menus and requesters though, AppBuilder allows the cor
relation of application functions with their multiple means of invocation through menus, 
buttons, keystroke combinations, ARexx commands, etc. 

AppBuilder will be able to output Cor assembler source code, or BLINK compatible 
object code. 

Standards 5 DevGon 90 



AppBuilder will be able to generate data specifically designed to work with the App-
Shell if you so choose. With this option enabled, application development can become as U 
simple as: 

1. Specify the functions within an application and their names using a word processor 
or outline processor. 

2. Specify the means of invocation for the application functions and other user interface 
details with AppBuilder. Outputs object code, for example. 

3. Write and compile your application functions, which generates object code. 

4. Link AppBuilder output, application function object code, and AppShelllink library 
to create finished application. 

5. Test, and loop to any of the previous steps. 

Multimedia 
Some time ago Commodore began looking at developing a MID I standard for the 

Amiga. Such a standard would consist of a software driver that multiple MIDI applications 
could utilize to share common resources such as the serial port. 

We have realized that the MID I issue is actually part of a much larger issue, namely the 
synchronization and allocation of resources for programs using a variety of media, including
but not limited to-Amiga graphics, Amiga audio, MIDI, and SMPTE control of audio and 
video. 

We are investigating the possibility of developing a global synchronization scheme for 
multimedia. This would allow different applications to synchronize together for presentation, 
training, video production and audio production uses. Such a standard would truly increase 
the versatility of the Amiga. U 

A global synchronizer would provide precise, high resolution timing to clients, as well 
as high speed I/0 for data processing. For example, MIDI events would be initially processed 
by a handler and then made available to a chain of servers much in the same way interrupts 
are handled under Exec. 

In addition to global synchronization, there is the problem of resource allocation. For 
example, a laser disc player needs a serial port. So does a touch screen. MIDI control requires 
a serial port, but not just any one, it has to be one that can support 31250 baud. SMPTE 
may be hooked up to a serial port. A sound digitizer may be connected to a parallel port. 
There might be other controllers or controlled devices being accessed through game ports, 
yet more serial ports, or even disk drive ports or expansion slots. 

Constraining the discussion to ports for now, we are also investigating the idea of 
some kind of .I/O port management scheme, whereby ports could be allocated to specific 
needs and could be permanently configured as such via a Preferences type of scheme. For 
example, a person with a full blown multimedia set-up probably is unlikely to change the 
port uses once they have them configured. However, a system with multiple serial ports for 
example, cannot have system software which allocates ports on a first come, first serve basis 
ala the audio device. We need I/0 port management and are investigating it. 

DevGon 90 6 Standards 

u 



Hard disk installation 

(") One area that desparately needs a standard is the way in which applications can be 
installed onto hard drives from floppy disks. 

We are working on an install utility that will be available to you to customize (while 
retaining a standard look and feel) and include with your own products. 

In addition to just moving files from distribution floppy disks to a hard disk, an install 
utility must be capable of reading and modifying disk icons, scripts, and configuration files. 

Networking 

As you probably know, Dale Luck has been coordinating a standard networking soft
ware layer for the Amiga. This will allow the seamless integration of multiple networking 
protocols, even using the same Ethernet network adaptor, for example. 

This is a key step toward the full potential of the Amiga being realized. 

Where do you begin? 

It is our sincere hope that you will work with discipline and speed to make your 
products conform to current and proposed standards. We are working hard to make sure 
that you have examples, tools, documentation to make the journey easier. 

So as the title says, where do you begin? You might begin by making sure the Intuition 
portion of your programs is standard. Take a look at the Preferences editors under 2.0. Take 
a look at Amiga Vision. These are examples to model your products on. By using the tools 
available under 2.0 such as Gad Tools and ASL.library, you can be assured of a standard look 
and feel for many parts of your program. 

Once a standard Intuition look and feel has been accomplished, please add ARexx 
to your programs so that they may work more easily with other applications. Support the 
clipboard. Support Workb~nch. The list goes on, but the benefits are enormous. 

Summary 

As was mentioned at the beginning, the purpose of this document was to describe the 
current state of application standards for the Amiga and to outline some of Commoqore's 
exciting plans in this area which can definitely increase your company's bottom line. 

I hope you are as excited as I am, and agree that we are doing the right things to help 
the Amiga mature into a powerful AND easy to use platform. We are far from complacent 
about our mission though, and we want feedback from you-positive and negative-about 
our strategy and tactics. 

One last note which is worth repeating: A standard way for users to operate programs 
and hardware is essential if the Amiga is to become successful as a mainstream player. 

Standards 7 DevGon 90 



u 

u 

u 









0 



u 

u 

u 

CTrac1M Emulation System 
for CDTV 
by ICOM Simulations, Inc. 

The Cfrac Emulation System for the Commodore CDTV is a product that emulates the CD 
drive of CDTV for the purpose of providing a developer environment capable of making 
rapid changes to a CO-based product. Because of the inherent read-only nature of CD, and 
the specific access times and transfer rates of CD data, a high quality emulation system is 
necessary to allow rapid and accurate development of CD titles. CTrac is designed to 
accomplish that task. 

The CI'rack Emulation System consists of two parts. The first part is a printed circuit card 
that plugs into an Amiga 2500/30 or 3000 and its associated driver software, which is 
known as CTrac Emulator. The second part is the software to create CD-ROM disc images, 
which is known as CI'rac Builder. 

The CI'rac Emulator, along with its driver software running on the above mentioned Amiga 
2500/30 emulates the CD-ROM drive of the CDTV so that a program sees no difference 
between CDTV with an emulation board and a normal CDTV. It does this by completely 
replicating all aspects of the CD subsystem, including recognizing and handling all 
commands to the CD, reading data and the proper transfer rates, emulating CD seek time and 
rotational latency and all other timing characteristics of the CD. It is this level of 
transparency that makes true emulation, rather than approximate simulation, possible. CI'rac 
is capable of handling CD-ROM data, CD-DA (digital audio) data, CD+G data, and subcode 
channel data, all coming from a properly built disk image residing on the Amiga 2500/30 or 
3000. 

The Cfrac Emulator driver software is responsible for interpreting the commands sent to the 
CD-ROM and converting them to disk commands to fetch the required data from the disk 
image residing on the development system's haJd disk. It will then transfer the data to the 
CTrac Emulator so it could be fed at the proper data rate to the CDTV. It would also be 
responsible for emulating the seek time that the CD-ROM requires so as to make the total 
emulation as accurate as possible. 

CTrac Emulation 
System for CDTV 

1 DevCon90 



The second part of the CTrac Emulation System is crrac Builder, which allows a developer 
to take all of the portions of his product, including program files, data files, and CD-DA data 
(if any) and combine them into a single image of a CD-ROM disk. This is exactly equivalent 
to creating a master image from which an actual CD-ROM disk could be manufactured. The 
difference is that the image is created such a manner that the data is ready to be fed to the 
CTrac Emulator so it can be sent to the CDTV as if it came from a CD-ROM disk. Cfrac 
Builder allows a developer to group his files in any manner necessary, and is capable of 
creating multi-track disk images. Cfrac Builder does all the calculations need to provide a 
complete disk image ready for testing, including the IS0-9660 disk format, as well as ECC 
data, data scramble, subcode date, and CD+G data. 

The Cfrac Builder is actually multiple programs. The last program is the image builder, 
which takes in various types of data tracks and outputs a disc image. It is controlled by an 
Image Description file, which will contain a series of commands describing which data files 
will be used as source material for the tracks of the image, as well as in what order they need 
to be included and what, if any, special processing will be needed by a particular track. This 
Image Description file will be a simple text file, which will be generated by the track 
builders. The track builders make up the rest of CTrac Builder. They are responsible for 
creating the individual tracks needed by the disk, and which are used as input for the image 
builder. The track builders will be controlled by a Disk Description, which provides 
information about the disc as a whole, as well as the individual tracks that are part of the disc. 

Commonly asked questions about the CTrac Emulation System: 

Q: Will the Ctrac system allow me a way to transfer my disc image to a CD manufacturer 
to have test discs and final discs made? 

A: Yes. It is intended that crrac will suppon methods of data input to CD manufacturers. 
The first will probably be the Exobyte 8 Track tape recorder, and the second will be a 
Write-Once CD system. Funher details will be announced in the near future. 

Q: Do I have to take my data to a premastering facility so that I can format it properly as 
an ISO 9660 CD? 

A: No CI'rac Builder functions as a complete premastering facility all by itself. No 
additional steps are needed. 

DevCon90 CTrac Emulation 
System lor CDTV 



u 

u 

u 

Q: Now that I can test my CD program with CI'rac Emulator, how will I be able to create 
and test CD Audio (CO-DA) tracks? 

A: The CTrac System is fully capable preparing and emulating CD Audio. (CD Audio is 
also known as CD-DA or Red Book) in fact, you could use CTrac to make Red Book 
compatible audio discs as well as CD-ROMS. 

Q: What size hard disk will I have to have to use the CTrac Emulation System? 

A: CI'rac does not require specific hardware configurations. The size of the emulation disk, 
therefore, depends on the size of your project. We usually recommend at least twice 
as much room as will be filled on the final disc. For example, if you are creating a 
product that will occupy 280 MBytes of data on the CD, a 650 MByte disk should be 
sufficient. 

Q: How will I tell the CDTV that I am using an emulator. Will I have to run a program on 
the CDTV to get the emulation started? 

A: No, the emulation is completely transparent to the CDTV. It cannot tell that an 
emulator has been substituted for its CD-ROM drive. Just start the emulation driver · 
on the Amiga 2500/30, insert the disk to be emulating by opening the disk image file 
in the driver, and reboot the CDTV. It will start up just as if you had inserted a real 
CD in its CD-ROM drive. 

For more information, contact Mike Kawahara or Rick Unland at Commodore Business 
Machines, Inc., or call ICOM Simulations, Inc. at (708) 520-4440. 

CTrac Emulation 
System for CDTV 

3 DevCon90 





u 
Getting The Best Image 

For Your 
CDTV Application 
by Perry Kivolowitz, ASDG, Inc. 

Copyright 1990 By ASDG Incorporated- All Rights Reserved 

1 Overview 

In this article, I will present issues which developers should be aware of when generating 
images for use with the CDTV system. I will also present several techniques for maximizing 
image quality making use of ASDG's The Art Department. 

2 General Issues 

Following is a discussion of issues which relate to displaying imagery on any Amiga based 
U system. 

u 

2.1 Choice Of Video Mode 

The choice of video mode is one of the most basic decisions you will have to make when 
preparing an Amiga based application. The choices which you must make relate to: 

Resolution 

The Amiga offers high and low resolution modes. Each offers some advan
tages but at some cost. 

High ·resolution offers a sharper image and permits more information to be 
displayed at one time. However, it limits the number of colors displayable 
at one time and can degrade system performance. 

Low resolution offers a richer color capability, can use less memory and 
does not impact system performance as much as high resolution. However, 
low resolution screens cannot display as much information and can appear 
"chunky." 

1 



Palette Depth 

The number of colors which will be used during the display of images must 
also be considered. A richer set of colors nearly always produces more pleas
ing results. However, deeper palettes come at the expense of resolution (you 
must forego high resolution if you want more than 16 colors), memory, and 
animation speed. 

Interlace 

The vertical resolution of an image can be doubled by placing the Amiga 
into an interlaced video mode. Interlaced video does not increase the loading 
caused by the display upon the processor but it does double the memory 
requirements of any given display. 

The principal liability of interlaced video is the visible flickering that it 
can cause. Horizontal lines, especially when thin and highly contrasting to 
surrounding pixels, can produce an extremely noticable flicker which can 
become annoying. 

Overscan 

By using overscan, the visible border around an Amiga screen becomes us
able display area. Overscan (which can be along the vertical and horizontal 
dimensions independently) adds to the TV like appearance of an Amiga 
display. An overscanned screen consumes more memory and can drain a. sig
nificant amount of processor speed especially in some high resolution screen 
modes. 

The degree of overscan which is necessary or acceptable varies depending 
upon whom you ask. Many people specify a maximum overscan screen a.s 
768 pixels wide (in high resolution) by 484 high pixels (in interlace) in NTSC 
or 592 pixels high in PAL. However, we recommend a limit of 736 pixels wide 
in high resolution. 

2.2 Mixing Video Modes 

On the Amiga, it is possible to mix different video modes on-screen simultaneously with 
the following restrictions: 

• Different video modes may be horizontally stacked only. Two video modes cannot 
share the same scanline. 

• A small number of lines (approximatley 3 non-interlaced lines) become unusable 
when tra.nsitioning from one video mode to another. Worse still, the mouse cursor 
will become obscured while passing through these lines. 

• Transitioning from one video mode to another consumes a small amount of processor 
bandwidth. 

2 



u 

u 

u 

• If any of the visible screen modes are interlaced, the entire screen will be displayed 
in interlace. 

Within these restrictions, you can see that it is possible to create a display with (for 
example) text displayed in high resolution and four colors and an image displayed in low 
resolution with 64 colors. 

2.3 CHIP Ram Contention 

Some Amiga display modes place a greater load on machine resources than others. The 
following tables indicate a relative amount that a given display mode (without overscan) 
will impact the CPU when it attempts to gain access to a CHIP memory location: 

Horizontal Number Of Bit-Planes 
Resolution 1 2 3 4 5 6 

Low None None None None Some Moderate 
High None None Moderate Considerable - -

Overscan can considerably decrease available processor time. When displaying a high 
resolution four bit-plane screen, for example, the processor is locked out from accessing 
CHIP ram during the display of an entire scanline. It can only access CHIP ram during the 
horizontal and vertical retrace times. Horizontal overscan shortens the available horizontal 
retrace time and vertical overscan further diminishes the length of available vertical retrace 
time. 

Note that the processor i~ not impeded from accessing memory located on the FAST 
memory bus. 

2.4 Memory Requirements 

Each screen mode will consume a different amount of CHIP memory. The following tables 
indicate how much memory is used (in bytes) for each of the given common screen formats: 

Screen 
Size 

320 by 200 
320 by 400 
640 by 200 
640 by 400 
368 by 240 
736 by 480 

1 

8000 
16000 
16000 
32000 
11040 
44160 

Number Of Bit-Planes 
2 I 3 I 4 I 5 6 

16000 24000 32000 40000 48000 
32000 48000 64000 80000 96000 
32000 48000 64000 - -
64000 96000 128000 - -
22080 33120 44160 55200 66240 
88320 132480 176640 - -

3 



2.5 Aspect Ratio 

Each dot displayed on an Amiga screen has a specific shape. Unfortunately, this shape is 
not square. As a consequence, pixel aspect must be considered when displaying images 
from a wide variety of sources. 

Many factors affect the aspect of on-screen pixels. These include: 

Screen Format 

Switching between high and low resolution doubles or halves the number 
of pixels displayed across the screen. Clearly, this affects the width of each 
pixel with high resolution pixels being half as wide as their low resolution 
counterparts. Similarly, switching between interlaced and non-interlaced 
video halves or doubles the number pixels shown vertically. 

Dots on the Amiga screen most closely approach square when in: 

•Low Resolution, Non-Interlaced 

•High Resolution, Interlaced 

In these modes, the ratio of a pixel's width to its height is approximately 10 
to 11 in NTSC. Low resolution pixels shown in interlaced video are approx
imately 5 to 11 (width to height). 

NTSCOrPAL 

PAL video fits more horizontal lines onto the same sized display area. There
fore, PAL systems can come closer to square pixels than NTSC systems. 

Monitor Settings 

Every monitor has controls (often accessible by the user) which affect the 
width and height of the displayed image. Clearly, even the most careful 
planning and compensation for pixel aspect can be undone by the user. 

Without considerations for pixel aspect, images scanned with most optical scanners (which 
produce square pixels) will appear stretched or distorted even when shown in low-res/non
interlaced or hi-res/interlaced modes. 

Other sources of square pixels include 3D modeling programs and images created on non
Amiga computer systems. 

2.6 International Video Formats 

As indicated in the previous section, the differences between NTSC and PAL will affect 
your product development by affecting the aspect of displayed pixels. NTSC and PAL n 

4 



u 

u 

also differ in how much displayable area is available on-screen. The standard height of a 
non-interlaced, non-overscanned NTSC screen is 200 pixels. The same screen on a PAL 
system will be 256 pixels high. 

The problem that different imaging areas present is particularly nasty if you must have 
only one set of images for usage on both NTSC and PAL systems. For example, if an 
image is created for proper viewing on an NTSC system, it will not fill as much of the 
screen and will appear distorted on a PAL machine. If an image is intended for proper 
viewing on an PAL system, then part of the image will be obscured on an NTSC system. 

Therefore we suggest that requiring only one set of imagery for use on both PAL and 
NTSC systems may be an unrealistic goal. We recommend the creation of a separate set 
of images for use on PAL and NTSC systems. Since CD-ROMs are quite large, and other 
internationalization factors will come into play in your software anyway, this may not be 
too unpleasant. 

3 CDTV Specific Issues 

This section contains a discussion of issues which apply specifically to images for use on 
the CDTV system. 

3.1 TV's Not Monitors 

As a developer, you can expect the Amiga owner to have a high resolution computer 
monitor for use on their system. This is not the case with CDTV. The expected display 
device is an ordinary television. This impacts you in two ways: 

1. First, televisions vary incredibly in quality and sharpness. High resolution text 
(for example) which is perfectly readable on your development system may not be 
readable at all on a television. 

2. Second,· the interface to television, composit RGB, is not as precise as the analog 
RGB normally used in Amiga displays. High contrast transitions which appear 
perfectly on your development system may become ugly masses of bleeding color on 
a television. 

Our recommendations include: 

• No CDTV development environment is complete without a cheap color TV running 
in parallel with your high resolution computer monitor. The best way to anticipate 
how your product will look in the consumer's home is to view your product the same 
way the consumer will. 

5 



• A void high contrast transitions especially where text is concerned. Especially avoid 
saturated reds. 

• A void images which are too bright. Specifically, try to keep your brightest colors at 
an intensity of less than 13 (using the Amiga standard scale of 0 to 15). 

3.2 Distance 

The typical computer user views his high resolution computer monitor from no more than 
four feet. The typical television viewer is generally 6 to 10 feet from the set. This means 
that visual detail may be lost simply because the user is further away from the display 
device than you had anticipated. 

This can be a significant advantage: 

• The advantages of dithering become even more pronounced as the viewing distance 
makes it unlikely that the user will be able to discern the individual dots. 

• Low resolution displays (with their richer color palettes) can be much more effective 
than limited palette high resolution displays. The larger viewing distance means 
that richness of color will be much more important than sharpness of dots. 

3.3 Phosphor Burnout 

It is very likely that a CDTV user will leave the device on for long periods of time without 
actually being present to cause the screen display to change. If your application does not 
include a self contained "screen blanker" it is likely that your application will burn a hole 
in the user's television set, not something which is likely to please your customer. 

4 Getting The Best Image 

This section describes various techniques which are helpful in getting the best image quality 
possible for your CDTV images. These techniques assume the use of ASDG 's The Art 
Department (TAD) for image development. 

4.1 Image Sources 

It is possible that no personal computer has ever offered more alternatives for how to 
capture or generate images as the Amiga. How you generate or capture an image can 
significantly affect the quality of your end product. Following is a summary of imagery 
sources and where we recommend their use: 

6 



u 

u 

u 

Color Scanners 

Color scanners should be used whenever you need to capture flat art. Video 
digitizers simply do not have the resolution to provide high quality imagery 
for a broad range of applications. We do not recommend purely gray scale 
scanners for CDTV applications since CDTV is primarily a color device. Ad
ditionally, color scanners can also scan in gray scale and cost only marginally 
more. 

Color scanners also offer advantages in speed and ease of use compared to 
other color image capture systems. 

Video Digitizers 

We recommend video digitizers for capturing non-flat art or for capturing 
images from a live or video source. The quality of the images you can capture 
with a video digitizer is strongly affected by the quality of your video source. 
Specifically, where a video camera is being used, the quality of the camera 
can make or break the image. 

Paint Boxes or Paint Programs 

There are a number of high-end paint boxes which can create enormously 
detailed imagery such as the Quantel and Wavefront systems. Also, images 
created with any personal computer based paint programs such as Deluxe 
Paint, ColorRIX, TIPS, or RIO can be employed. 

9D Modeling Systems 

Three-D modeling systems can play an essential role in image development. 
This is especially true for the creation of complex scenes which cannot be 
scanned or digitized. since they do not actually exist in the real world. 

4.2 Dithering 

Dithering is one of the most important techniques for increasing visual realism in your 
CDTV images. Dithering sacrifices some of the spatial sharpness of the image to dramat
ically increase the color fidelity of the image. 

Carried to an extreme, dithering can produce the appearence of true gray scales on a single 
bit-plane monochrome screen. More typically, the dithering techniques found in TAD can 
produce the impression of hundreds of colors on a 16 color screen, or the impression of 
many thousands of colors on an Extra-Half-Bright or Hold-And-Modify screen. 

TAD offers 7 dithering methods (including the choice of no dithering). We have found our 
Floyd-Steinberg implementation to be suitable in most instances, especially when creating 
images for display on high resolution screens. 

Dithering cannot increase color fidelity where no increase is possible. For instance, there 
is no point in dithering a 32 color picture, if the original image data contained only 32 

7 



colors. In other words, for dithering to have an effect, there must be more colors in the 
original data than there will be in the rendered image. 

TAD can synthesize new colors, however, when its scaling function is used. For example, 
if a 640 by 400 32 color image is scaled down to 320 by 200, TAD can synthesize as 
many as thousands of new colors as it performs the reduction. This is accomplished by 
pixel averaging all the different combinations of the original colors. In this way, the spatial 
resolution lost in reducing the size of an image can often be compensated for with increased 
color range. 

Dithering can sometimes produce unwanted seemingly stray dots. These can be eliminated 
within TAD by slightly increasing the contast and rerendering or by invoking the RIP 
(Remove Isolated Pixels) function. 

4.3 Aspect Correction 

TAD offers highly precise scaling both upwards and downwards in size. When correcting 
for aspect, don't forget that the width can be enlarged rather than always shrinking the 
height. 

An easy way to determine just how far off-square your Amiga/Monitor combination is, is 
to draw a 1 inch square on paper and then scan it in. Using TAD, display the alledged 
square in many diverse screen formats and experiement with the scaling functions to gain 
experience on making a square, square. 

4.4 Interlace 

4.4.1 Making An Interlaced Image 

Interlaced low-resolution images, especially in HAM, can appear exceeding crisp on a 
CDTV display. Interlaced low-resolution is, however, one of those resolution combinations 
which are nowhere near square in aspect. 

To produce an interlaced low-resolution image, simple take your square or near-square 
aspect image and scale down the width by approximately 50 percent. Alternatively, you 
could scale up the height by 100 percent. 

4.4.2 When To Interlace 

Nat ural images (people, places, etc.) can generally be displayed in interlace without sig
nificant flicker problems. Images which have a lot of horizontal lines or have very stark 
transitions from color to color (such as some images created with 3D graphics programs) 
will fare very poorly when displayed in interlace. 

8 



4.4.3 Overcoming Interlace Flicker 

U If you have a problem image which you need to display in interlace, try the following: 

u 

u 

• Try reducing the contrast of the image slightly. This may cause any flickering scan
lines to become more subdued and therefore less noticable. 

• Try scaling the image upwards or downwards slightly. This may cause flickering 
scanlines to be spread over more or fewer displayed scanlines and therefore be less 
noticable. 

4.5 Increasing Visual Punch 

4.5.1 Contrast 

As indicated in the preceding section, a slight increase in contrast can eliminate seeming 
stray dots when rendering a dithered image. A slight increase in contrast can also add a 
considerable amount of visual punch to an image. 

4.5.2 Gamma Correction 

TAD offers variable Gamma Correction (non-linear color correction) which allows you to 
brighten an image without loss of detail which the standard brightness control would cause. 
Increasing the Gamma value of an image can dramatically increase the visual punch of an 
image, can be used as a special effect, or can bring out detail in a dark image. 

4.6 Who's Afraid Of Gray Scale 

Sixteen shades of gray (especially when dithered by TAD) covers the spectrum of grays far 
better than even 64 or 4096 colors covers the spectrum of color. Don't be afraid of using 
gray scale images in your application. 

TAD offers a color to gray scale conversion function which takes into account the relative 
frequency re8ponse of the human eye. The color to gray conversion function can produce 
some exceedingly realistic images. 

4. 7 Flips And Mirrors 

If your subject matter allows for flips and mirror images, you can increase your composition 
flexibility by using a :flip or mirror of an image rather than the original image. For example, 
if a person looking off to the left simply looks better than a person looking off to the right, 
:flip him. 

9 



A void flips or mirrors when text is visible in the image or when displaying technical data 
or drawings when flipping would either be noticable or change the meaning of the image. 

4.8 Genlock Considerations 

It is possible that your application may be used on a CDTV on which there is a Genlock 
device. In this case, Genlocked video will appear through any areas in your imagery which 
are drawn in pen (or color register) 0. 

You can easily make images Genlock opaque in TAD by instructing TAD not to use 
color register 0 during its rendering. This is accomplished in the Palette control panel by 
selecting a non-zero color offet and requesting a CUST (or custom) rendering. 

4.9 Mixing Computer Chosen And Manually Chosen Colors 

If you wish to render text directly over an image you may wish to take the text colors into 
consideration when producing the palette for the image. If the text colors are not taken 
into account, then you will be forced to use one of the colors appearing in the image. This 
often produces unacceptable results. 

Using TAD's palette controls, you can set aside color registers to be used for titling in two 
ways. 

The first method produces images which do not have the reserved color registers appearing 
anywhere in them. This can be done using the same technique as reserving color register 
zero described in the previous section. Simply decrease the number of colors to be used 
and set the offset of color zero to the desired value. 

For example, to reserve four colors for titling within a 32 color image: 

1. Set the total number of colors to 32. This defines the depth of the resulting image. 

2. Set the number of colors to be used to be 28. 

3. Set the offset of color zero to either 0 or 4. Setting this value to zero reserves a block 
of 4 colors after the 28 colors used by the image. Setting this value to 4 reserves 4 
colors prior to the 28 used by the image. 

4. Render the image using the CUST setting. 

5. Set the 4 reserved colors to their desired values. 

6. Save the image to disk. 

This will produce an image which will not contain any reference to the unused block of 
registers. You can modify the unused color registers to any value and not affect the look 
of the image. 

10 



u 
The second method allows you to set aside a given number of colors as before, but then 
allows you to merge these reserved colors into the overall image. This allows you to specify 
specific colors which must be present in the image, and then lets the Art Department do 
the rest. 

Jumping into the above sequence of steps at step 6: 

6. Lock the palette so that TAD does not recreate new colors. 

7. Set the offset of color zero to zero. 

8. Set the number of colors to be used to the total number of colors available. 

9. Rerender the image. 

10. Save the image to disk. 

The image saved to disk will incorporate all of the color available in the screen mode you've 
chosen including the several which you picked by hand. This technique allows you to mix 
automatically chosen colors with ones which you have manually chosen. 

4.10 Merging Palettes 

Another variation on the technique outlined above is the ability to merge the palettes of 
several pictures into a single palette which can be used to display several pictures on the 
same screen at the same time. 

By systematically locking and freeing the palette and restricting the number of colors 
which can be chosen at any' given time, you can extract key color information from several 
images to produce a palette tuned to the needs of all of the images as a group. Then, 
render each image using the entire palette to get even better results. 

5 Summary 

CDTV is represents break-through technology not because it contains whizz-bang Amiga 
technology, but because it bundles this technology in a package perfect for integration into 
the typical consumer's lifestyle. 

While graphics may be important to computers ... imagery is what's important to CDTV. 
Applications which exploit CDTV's rich imaging capability stand a significantly better 
chance at mass acceptance than those which do not. 

Never forget, part of CDTV is quite literally TV. Mastering the techniques and addressing 
issues I have described will make the imagery in your CDTV applications more vivid and 

U true to life and therefore, make them more readily accepted. 

11 



n 

n 

···. 

n 







0 





u 

u 

u 

New Commodore Amiga Products 
by Jeft' Porter 

Director, Product Development 

WARNING: The information contained herein is for the sole purpose of informing 
Commodore's Third Party hardware and software developers of Commodore's new 
product plans. This information may not be published, copied, or distributed in any 
form, including electronic, without the prior written consent of Commodore Business 
Machines, Inc. 

It is important for Commodore and the developer community to work together during the 
development of new hardware or software products because: 

1. Commodore is able to get early feedback on new products. 
2. Developers are better able to plan their product to compliment 

Commodore's products. 
3. Enables Commodore and Developers to fully support new products 

and features at launch time. 

We feel that Commodore is entering the most exciting chapter in our history since the 
original AlOOO nearly four years ago. During the past few years, Commodore has been 
working on the key technology items that are required for the next generation of Amiga 
computers: 

Cl A2620/A2630 The first piece of the puzzle is bigger, faster and better 
microprocessor technology. This started with the A2620 - a 14:MHz 68020 
card for the A2000. But this was not good enough. The A2630 provided a 
full asynchronous design with a 2SMHz 68030 on a single plug in card that 
included up to 4 megabytes of 32 bit fast RAM. 

Q A590/A2091 The second piece of the puzzle is a fast and efficient custom 
DMA interface for SCSI hard drives. The A590 provides a 20MB add on for 
the ASOO with the capability of adding up to 2 megabytes of fast RAM, in 
a compact, attractively styled external case. The A2091 makes use of the same 
circuitty in a plug in card form factor for the A2000. Thoroughly enhanced 
system software rounds out the technology which makes using a hard disk much 
easier than on any other platform. 

New Commdote 
Amlga Produt:ta 

1 DsvCon90 



Q Commodore's strength has traditionally been in it's vertical integration, 
especially our in-house wafer fabrication facility in Valley Forge, PA. 
Over the past 18 months, we have added the capability to design and 
manufacture gate arrays in additional to full custom designs. A vast array of 
high technology CAD tools have helped us leverage our vertical integration 
once more to design more chips, more quickly, and for less cost than 
our competitors. 

It is these key items that lay the foundation for the new Commodore Amiga 3000 Personal 
Computer. Perhaps Personal Workstation is more appropriate, since this small desktop 
design houses a true 32 bit architecture. At the heart of the Amiga 3000 is a 16MHz 
68030/68881 or a 25MHz 68030/68882 providing the basis for a full 32-bit design all around 
(32-bit RAM, 32-bit ROM, 32-bit DMA, 32-bit expansion bus, and a 32-bit interface to Chip 
RAM). 

A3000 Architecture 

Inside, the A3000 has four horizontal expansion slots. The expansion bus features a new 
Zorrom design, which is compatible with nearly all Zorron canis, while providing additional 
address space and speed over Zorro U, yet maintaining the SAME physical plug in card 
connector. Two of the slots have PC-AT compatible connectors in line, and one of the four 
slots has the video slot in line with the 100 pin slot for future software controlled video cards. 

For drives, the A3000 has three bays. The standard configuration is with a 40 megabyte 
19ms hard drive, and one 3.5" floppy drive. One additional free bay is available for either a 
second floppy or second hard drive. All drives are easily installed or removed with just one 
screw. A 135-wan power supply powers the system with a convenient front mounted power 
switch. · 

On board, the A3000 features five new custom chips. Fat Buster controls the new Zorro m 
expansion bus. Ramsey is a fast RAM controller which supports up to 4MB of RAM using 
256Kx4 DRAMs, or 16MB of RAM using 1Mx4 DRAMs. Super DMAC is a 32-bit DMA 
controller for the lwd disk drive. Fat Gary is the system .traffic cop for each of the system's 
resources. Amber is the heart of the display enhancer circuitry. Using the latest in video line 
and field memories, the Amber chip deinterlaces and scan doubles 15KHz video into 31KHz 
video. Of course, the real heart of any Amiga is Agnus which has been extended to address 
2MB of chip RAM. The new ECS Denise chip has many new features which include 
Super-Hires mode, Productivity mode, and programmable transparency for genlocking. For 
more information on the Amiga 3000 architecture and design of plug-in-cards, be sure to stop 
by the technical sessions being given by Commodore hardware engineers Greg Berlin, Dave 
Haynie and Scott Scaeffer. 

DevCon90 



u 

u 

u 

Externally the A3000 features a full compliment of connectors. In addition to the standard 
serial, parallel, and floppy connectors, the A3000 features a DB25 SCSI connector. Two 
video outputs are provided for simultaneous 15 and 31KHz video. Standard stereo RCA 
jacks round out the rear of the unit. The joystick and keyboard connectors are conveniently 
located on the side of the unit for easy access. 

One additional slot is provided internally for complete access to the 68030 microprocessor 
bus. This slot has obvious uses for faster processors such as the 68040. The A3000 is 
complimented with the new Commodore 1950 multiscan monitor and A 10 Stereo Speakers. 
The 1950 monitor features overscan and interlace compatibility unlike most multi-frequency 
monitors on the market today. It's .31mm dot pitch and 15 to 35 KHz design make this 
monitor the perfect match for the A3000. 

The New System Software 

It is imponant however to stress that application software must take advantage of these new 
features. Having the capability of programmable resolutions is a powerful feature not 
matched on the market today. Imagine if you will a spreadsheet or desktop publishing 
package, or even a schematic capture package that opens a 2000x2000 Workbench 
application which can scroll around both vertically and horizontally with the greatest of ease. 
The A3000 can do this today like no other computer in its price range and is begging to be 
utilized. 

The new 2.0 release of the Amiga operating system Software has a wonderful new look and 
feel, with more user preferences than ever before. Now on a multitasking operating system 
we have had to be polite of other programs that are running, but have we always been polite 
to the user? Unfortunately, the answer is no. Be polite to your end user. Let the user 
determine the font they like, and the resolution they want, and other preferences they have 
specified. 

Allowing the end user to select the font of his choice is not the same as defaulting to 
TOP AZ8. We have some very nice Adobe Screen fonts: Times Roman, Helvetica, and 
Courier which for the first time, have the resolution on the A3000 to really make use of them. 
And with the addition of ECS chips to the ASOO and A2000, under 2.0 productivity mode 
displays will look just as good as they do on an A3000, without the expense. 

New Commdore 
Am/ga Produt:tll 

3 DevCon90 



Networking and the Amiga 

Fmally, networking is absolutely critical to our future with the Amiga. With the recently 
introduced Arcnet and Ethernet cards, as well as the multipart serial card, the hardware is in 
place to· connect Ami gas in many different situations. Our direCtion for networking is also 
quite flexible. Dale Luck will be speaking about our new networking standards. Our goal is 
that applications should run over any physical layer (Etherne~ Arcnet, et al.) and any protocol 
(NFS, TCP-IP, Novell, et al.) without the application program needing to deal with it After 
all, we are multitasking. Martin Hunt will be discussing our Amiga/NFS software, and Oxxi 
will be discussing our port of Novell Netware for the Amiga. Joe Augenbraun and Greg 
Rapp will be conducting our own "mini-connectathon" for Novell in the computer room. 
Please make a special effort to tty your programs before the conference is out. 

Also at the conference to discuss the A2410 High Resolution Color Graphics Card is Rich 
Miner and his team from the University of Lowell. Rich will be discussing both the hardware 
and software, and specifically TIGA on the Amiga. If you are writing high end applications 
that need 1024x768 non-interlaced with 256 colors out of 16 million- you won't want to miss 
this talk. 

In summary, we've come a long way these past twelve months, and we need your support to 
make it all happen. We need you to exploit the new features of the A3000 and 2.0. We need 
your support for new standards and the new look. Let the user choose his own preferences 
for fonts and resolution, and listen to him. + 

DevCon90 4 











CoiDIDodore TCP/IP 
by Martin Hunt 

Brief Overview of TCP/IP 

The Internet Protocol Suite was developed by the US Department of Defense to run on the 
ARPANET. It is often referred to as the TCP/IP protocol suite, after its two most common 
protocols, Transmission Control Protocol and Internet Protocol. To encourage its use, the 
DoD funded a version of TCP/IP for UNIX, which Berkeley included in their UNIX 
distribution. By 1983, all computers on the Internet were required to use TCP!IP. 

TCP!IP is more than just a protocol. It is a whole family of protocols and applications. The 
following chart shows the 5 network layers and the corresponding protocols or applications. 

Layer Internet Protocol(s) 

Application Telnet, FI'P, TFfP, SMTP, DNS 

Transport TCP, UDP 

Network IP, ICMP 

Data Link ARP, Ethernet Driver 

Physical Ethernet board and cable, RS232 port, etc. 

Physical Layer 

The physical layer (or hardware layer) is concerned simply with getting ls and Os from one 
location to another. Typical hardware appropriate for TCP!IP includes Ethernet, Arcnet, 
packet radio, satellite links, high-speed modems, etc. Unlike some protocols, TCP/IP deals 
easily with garbled or lost data, making it useful over almost any transmission media 

TCPIIP 1 DevGon 90 



Data Link Layer 

This layer is concerned with breaking the data into manageable chunks, usually called 
packets, and moving it from physical address to physical address. The Address Resolution 
Protocol (ARP) works at this level. ARP translates 48-bit physical addresses into 32-bit 
Internet addresses. 

Network Layer 

The network layer handles routing from one Internet address to another, across networks if 
necessary. There are two Internet network layer protocols: IP and ICMP. IP provides 
computer-to-computer communication. ICMP handles error and control messages. 

Transport Layer 

The transport layer handles communications between processes on different machines. There 
are two Internet transport protocols: TCP and UDP. TCP (Transmission Control Protocol) is 
a reliable, connection-oriented protocol. UDP (User Datagram Protocol) is connectionless. 
The protocol used depends on the application. 

Application Layer 

Some of the more common TCP/IP applications include: 

0 Telnet The Telnet protocol enables terminals to communicate with processes 
over networks. 

0 FfP and TFfP File Transfer Protocol (FfP) and Trivial File transfer Protocol (TFIP) 
transfer ftles to and from remote hosts. 

ODNS 

OSMTP 

DevGon 90 

The Domain Name Service protocol provides a name-to-address 
service. 

The Simple Mail Transfer Protocol provides electronic mail service. 

2 TCP!IP 



u 

u 

u 

UNIX Remote Services 

UNIX includes many networking applications in addition to the standard TCP/IP suite 
applications. Like all network applications, both client and servers are required for a 
connection to succeed. 

Clrcp 

a rsh 

Provides remote copy service. 

Provides for remote execution of commands. 

a rlogin Remote login service that understands trusted hosts and has less overhead than 
Telnet. 

Q finger Allows you to find out about users on remote machines 

Cl ping Determines if another computer is alive 

Sun Extensions 

Q XDR The eXternal Data Representation is a standard for the description and 
encoding of data. It provides a common way to represent data over the 
network. 

Q RPC The Remote Procedure Call specification provides a procedure-oriented 
interface to remote services. 

Q NFS The Sun Network FileSystem protocol provides transparent remote access to 
shared files across networks. The NFS protocol is designed to be portable 
across different machines, operating systems, and network architectures. This 
portability is achieved through the use of RPC and XDR. 

The NFS protocol was intended to be as stateless as possible. That is, a server should not 
need to maintain any information about any of its clients. Stateless servers have an 
advantage over other servers in the event of a failure. An NFS server that crashes need not 
worry about open files, locks, etc. It merely reboots and waits for the next request to process. 

TCPRP 3 DevCon90 



Commodore TCPIIP Software Features 

The Commodore TCPIIP software supports the A2065 Ethernet card or Ameristar Ethernet 
cards. The Commodore AS225 software can support as many cards as you can connect to a 
machine (normally up to 5). It works on any Amiga under 1.3 or 2.0. Requires 1MB RAM. 

The A2065 is a Zorro II card. It provides 15 pin AUI connector for use with thick Ethernet 
(10BASE5) and a BNC connector for use with thin Ethernet (10BASE2). It has been tested 
with Amiga 2000, 2500 and 3000s. 

The Commodore TCP/IP software supports the following basic protocols: 

CJARP CJICMP 
CJIP CJUDP 
CJTCP 

The following applications are included: 

Telnet 
FI'P 
TFfP 
rlogin 
rloginVT 
ping 
finger 
rsh 
rep 
route 

(client only) 
(client and server) 
(client and server) 
(client only) 
(rlogin with VT52/100 emulation, client only) 
(client and server) 
(client and server) 
(client and server, but one command at a time) 
(client only) 
(client and server) 

The following commands and diagnostic programs are included: 

rpcinfo 
showmount 
lance-test 
passwd 

DevCon90 

ls 
chmod 
nets tat 
arp 

4 TCPAP 



u 

u 

u 

Network FileSystem (NF~) 

The networking software also supports Sun XDR, RPC, and NFS (client only). NFS client 
software gives you the ability to mount disks served by an NFS server. Once mounted, 
access to remote NFS volumes is completely transparent That is, you access remote files 
just like they were on a local partition of your hard drive. 

For example, I have an account on cbmvax in directory lusrlsoftenglmartin. In my 
startup-sequence I execute: 

nfsmqr mount cbmvax:/usr/softeng/martin martin: 

This creates a remote partition martin: that is functionally equivalent to my local work: 
partition. If I'm running Workbench, an icon comes up for martin: and I can open it, move 
icons into it, etc. Unless I watch the hard disk light, I don't even realize that the files are 
being stored across the network, not locally. 

NFS server software is available on most UNIX machines, as well as many other operating 
systems. 

TCPRP 5 DevCon90 



Usage Examples 
ping 
Ping is used to see if another machine is alive or to check to see if a connection exists to the 
other machine. 

Usage: ping [-drv] host [data size] [npackets] 

>ping cbmvax 

PING cbmvax (192.9.210.4): 56 data bytes 
64 bytes from 192.9.210.4: icmp seq=O. time=16. ms 
64 bytes from 192.9.210.4: icmp-seq=1. time=O. ms 
64 bytes from 192.9.210.4: icmp:seq=2. time=O. ms 

cbmvax PING Statistics: 
3 packets transmitted, 3 packets received, 0% packet loss round-trip (ms) 
min/avg/max = 0/5/16 

finger 
Finger gives information about remote users 

Usage: finger [user] [@host] 

>finger @ghostwheel 

[ghostwheel] 
Login Name 
rsbx Ray Brand 
martin Martin Hunt 

>finger martin@ghostwheel 

[ghostwheel] 

TTY Idle When Where 
pO 9d Mon 16:04 toaster 
p1 Thu 12:08 pepsi 

Login name: martin In real life: Martin Hunt 
Directory: /usr/ginger/martin Shell: /bin/tcsh 
On since Jun 21 12:08:24 on ttyp1 from pepsi 
47 seconds Idle Time 
No unread mail 
No Plan. 

rep 
rep is the UNIX remote copy command. In UNIX, 

> rep my_file host2: 

would copy my _file to host2 (in your home directory, by default) 
Because the colon ":" is used for volume names on the Amiga, Amiga rep uses an equal sign 
instead. So, 

> rep startup-sequence cbmvax= 

would copy your startup-sequence to cbmvax. You can also use 

> rep startup-sequence cbmvax=start 

to copy startup-sequence to start on cbmvax. 

DevCon90 6 TCPAP 



u 

v 

u 

rsh 
rsh executes remote commands. On the Amiga, rsh works just like UNIX except an rsh into 
an Amiga cannot start up a shell. 

Usage: rsh host commands ••• 

The following command execute the status command on the remote Amiga named coke: 

> rsh coke status 
Process 1: Loaded as command: inet:c/NFSc 
Process 2: Loaded as command: dhO:bin/fixlace 
Process 3: Loaded as command: dhO:bin/dlineart 
Process 4: No command loaded. 
Process 5: Loaded as command: inet:serv/portmapd 
Process 6: Loaded as command: inet:serv/inetd 
Process 7: No command loaded. 
Process 9: Loaded as command: inet:serv/rshd 
Process 10: Loaded as command: status 

For another example of using rsh, see the sample script on the last page. 

rpcinfo 
Gives RPC information on a remote server · 

>rpcinfo -p ghostwheel 

program vers proto port 
100004 2 udp 1027 ypserv 
100004 2 tcp 1024 ypserv 
100004 1 udp 1027 ypserv 
100004 1 tcp 1024 ypserv 
100007 2 tcp 1025 ypbind 
100007 2 udp 1035 ypbind 
100007 1 tcp 1025 ypbind 
100007 1 udp 1035 ypbind 
100009 1 udp 1023 yppasswdd 
100003 2 udp 2049 nfs 
100024 1 udp 1087 status 
100024 1 tcp 1031 status 
100021 1 tcp 1032 nlockmgr 
100021 1 udp 1092 nlockmgr 
100020 1 udp 1095 llockmgr 
100020 1 tcp 1033 llockmgr 
100021 2 tcp 1034 nlockmgr 
100012 1 udp 1115 sprayd 
100011 1 udp 1117 rquotad 
100005 1 udp 1119 mountd 
100008 1 udp 1121 walld 
100002 1 udp 1123 rusersd 
100002 2 udp 1123 rusersd 
100001 1 udp 1126 rstat_svc 
100001 2 udp 1126 rstat_svc 
100001 3 udp 1126 rstat svc 
100015 6 udp 8769 selection_svc 

TCPIIP 7 DevCon90 



showmount 
Shows which remote volumes may be mounted. 

>showmount ghostwheel 

FilesystemGroups 
/usr heartofgold, allsun, allsoft, 
/usr/ghostwheel heartofgold, allsun, allsoft, 
/usr.MC68010/ghostwheel heartofgold, baby, allsun, allsoft, 
/usr.MC68010 heartofgold, allsun, allsoft, 

lance-test 
Tests A2065 cards. 

>lance-test diags 

Ethernet address of board is 00:80:10:00:00:01 

Ethernet Controller Diagnostics 

Buffer memory test •.••.•.••....• PASS 
LANCE configuration test .•....•. PASS 
Interrupt test •••••••••••..••.•• PASS 
LANCE collision logic test ...... PASS 
Internal loopback test .....•.... PASS 

Controller passed diagnostics. 

passwd 
Updates the local password file. Used for remote access from FI'P. 

arp 
Get internet to Ethernet address mappings. 

>arp 

usage: arp hostname 
arp -a 
arp -d hostname 
arp -s hostname ether_addr [temp] [pub] [trail] 
arp -f filename 

>arp -a 

cbmvax (192.9.210.4) at aa:0:4:0:14:8 
qhostwheel (192.9.210.50) at 8:0:20:1:e:1f 

DevCon90 8 TCPRP 



u 

u 

u 

netstat 
Print network statistics. 

usage: netstat [ -Aaihmnrst ] [-p proto] (-I interface] 

>netstat -p tcp 

tcp: 
1619 packets sent 

699 data packets (1539 bytes) 
0 data packets (0 bytes) retransmitted 
865 ack-only packets (788 delayed) 
0 URG only packets 
0 window probe packets 
0 window update packets 
55 control packets 

1257 packets received 
741 acks (for 1581 bytes) 
29 duplicate acks 
0 acks for unsent data 
1047 packets (115880 bytes) received in-sequence 
15 completely duplicate packets (15 bytes) 
0 packets with some dup. data (0 bytes duped) 
15 out-of-order packets (0 bytes) 
0 packets (0 bytes) of data after window 
0 window probes 
5 window update packets 
0 packets received after close 
0 discarded for bad checksums 
0 discarded for bad header offset fields 
0 discarded because packet too short 

22 connection requests 
11 connection accepts 
31 connections established (including accepts) 
44 connections closed (including 0 drops) 
2 embryonic connections dropped 
741 segments updated rtt (of 763 attempts) 
2 retransmit timeouts 

0 connections dropped by rexmit timeout 
0 persist timeouts 
0 keepalive timeouts 

0 keepalive probes sent 
0 connections dropped by keepalive 

>netstat -I aeO 

Name 
a eO 

MtuNetwork 
1500 cbm 

Address 
pepsi 

Ipkts !errs 
8390 0 

Opkts Oerrs Coll 
2378 0 0 

TCPRP 9 DevCon90 



Is 
UNIX Is command for the Amiga. Shows owners and protection bits on NFS volumes. 

For example, 

>list martin:tmp 

Directory "martin:tmp" on Wednesday 20-Jun-90 
.info 81 ----rwed Thursday 
readme 
rfc-index 
work 
3 files - 1 directory -

7128 ----rwed Friday 
136342 ----rw-d Friday 

Dir --p-rwed Today 
308 blocks used 

>ls -1 martin:tmp 

drwxrwxrwx 406 
-rwxrw-rwx 406 
-rwxrw-rwx 406 
-rw-rw-r-- 406 
Dirs:1 Files:3 

chmod 

14 90-06-20 15:31:06 0 
14 90-06-14 11:23:16 2 
14 90-06-15 21:02:37 14 
14 90-06-15 14:48:33 288 

Blocks:304 Bytes:143551 

11:23:16 
21:02:37 
14:48:33 
15:31:06 

Dir work 
81 .info 

7128 readme 
136342 rfc-index 

UNIX chmod function for the Amiga. Can modify NFS volume protection bits. 

>chmod a+w martin:tmp/rfc-index 
>ls -1 martin:tmp 

drwxrwxrwx 406 14 90-06-20 15:31:06 0 Dir work 
-rwxrw-rwx 406 14 90-06-14 11:23:16 2 81 .info 
-rwxrw-rwx 406 14 90-06-15 21:02:37 14 7128 readme 
-rw-rw-rw- 406 14 90-06-15 14:48:33 288 136342 rfc-index 
Dirs:1 Files:3 Blocks:304 Bytes:143551 

DevCon90 10 TCPAP 



u 

u 

u 

SANA 

SANA (Standard Amiga Network Architecture) is the future standard for Amiga networking. 
The current (Beta) release of the networking software does not yet support SANA. It will 
probably be released almost unchanged as version 1.0. However, conversion to SANA will 
be our highest priority. All future networking releases will be fully SANA compliant. 

Once Commodore's SANA implementation is complete, we will make available complete 
specifications, sample code, and libraries for linking to the socket library. 

We strongly encourage anyone developing networking products for the Amiga to use SANA. 
Software conforming to SANA will be compatible with all other SANA-compliant software. 
Additionally, all SANA software will be able to use any hardware with a SANA driver. This 
will make it possible for companies to write networking software that will automatically be 
compatible with all the networking cards available. It will also make it possible for someone 
to develop a new network card (for example, FDDI) without worrying about which 
applications will be able to use the card. 

Future Improvements 

In addition to the upgrading to SANA, we are considering many improvements to the 
networking software. Currently it is very UNIX-like and doesn't fit in well with the Amiga 
philosophy. That will certainly be improved. There are also many applications that we are 
considering, including an NFS server, SMIP, SLIP, and support for our Arc net boards. Of 
course, once we release a SANA version of the networking software, anyone can write 
networking applications. 

TCPRP 11 DevCon90 



Figure 1: The Components of SANA 

Standard Amiga Network Architecture 

· DevCon90 

Other Interfaces TLI 

PROTOCOL STACKS 

Port 

TCP/IP, OECNET, TOPS, Novell 

Ethernet Ethernet Arcnet 
Commodore Brand X 

12 

SANA DRIVER 
SPEC 

t------SANA DRIVERS 

TCPRP 



u 

u 

u 

Security 

Currently the Amiga networking software, like many PC-based networking products, poses a 
potential security problem. Every PC is configured with a machine name and internet 
number. Every user has a usemame, user ID (UID), and group ID (GID). The problem is 
that these are not secure and may be easily changed by a knowledgeable user. 

Some of the important security files you should be aw~ of are: 

hosts.equiv 
This is a system file that lists the trusted hosts. If a machine is included in this list, then 
rlogiri, rsh, rep, etc. will be permitted freely from that machine to your machine. 

exports 
This system file lists which directories will be exported via NFS and which machines 
may access them . 
• rhosts 
This is a user file in the user's home directory. It permits rlogins from specific hosts 
without prompting for a password. 

.netrc 
This is a user file that lists the name and passwords to automatically use when FrP'ing to 
a remote machine. This is always a security problem because account names and 
passwords are listed here in clear text. 

The interim solution to the security problem is to tell your users to not use .netrc and .rhosts 
files. You should also make sure that the hosts.equiv file contains no unsecure machines. 

Preventing illegal access via NFS is difficult, because PCs can change their names easily. 
You can make this more difficult for potential troublemakers by making permanent arp 
entries for each PC Ethernet address. Of course this will make things more difficult in case 
of Ethernet board trouble, but in some cases the additional security may be worth it. 

The best solution to the security problem is to use some kind of authentication service. This 
means that before you use your PC on the network, you will first have to provide a valid 
username and password to some central server which maintains a secure master password 
file. We are looking at several different methods to do this. 

DevCon90 13 TCPRP 



Sample Script for Remote Printing 

This script assumes the use of NFS. It could be written to use rep if NFS is not available . 

• rprint 
.key file/a,homevol/k,username/k,printer/k,number/k,sides/k,type/k 
.bra { 
.ket } 
.def number 2 
.def sides 1 
.def type "ascii" 
.def printer "lpl" 
.def homevol "martin:" 
.def username "martin" 

IF NOT EXISTS {homevol}.prspool 
makedir {homevol}.prspool 
ENDIF . 

delete >NIL: {homevol}.prspool/#? 

copy {file} {h~mevol}.prspool 

run -rsh cbmvax'-1 {username} "cd -{username}/.prspool;lpr -P{printer} 
- -N{number} -K{sides} -D{type} *" 

echo "Done printing" 

• 

TCPAP 14 DevCon90 











u 

u 

u 

Discussion of 

Amiga Client NetWare 

for 

Developed by: 
Scott A Martin 
Timothy S. Patrick 
Michael A Uman 

Beta-Testing: 
Greg Rapp 

Documentation: 
Patricia Cummings 

Novell NetWare 

Concept and Administration: 
John Houston 

(C) 1990 Oxxi, Inc. 



Overview 

Table of Contents 

NetWare Advantages 
Amiga Client NetWare Requirements 
NetWare Market Data 

4 
7 
8 

Record-Locking Using Amiga Client NetWare With WorkBench 1.3 
Function List 10 

Novell NetWare Routines in Amiga Client NetWare 
Summary List 

Internet Packet Exchange 
IPX Device 
IPX Packet Structure 
Event Control Block (ECB) 
Event Service Routine (ESR) 
Summary of IPX Services 

NetWare Core Protocol Library 
Definition 
Explanation of Services 
NCP Library Function Calls, by category 

Glossary 

14 

18 
19 
21 
23 
24 

28 
29 
31 

41 

n 



u 

Amiga Client NetWare 

Overview 

u 

(C) 1990 Oxxi, Inc. 

u 



NetWare Advantages 

Amiga Client NetWare adapts any standard Novell NetWare network to 
allow Amiga computers to act as network clients. Amiga NetWare software · 
installs quickly on an existing Novell NetWare system running Version 2.15 
or higher, takes only minutes, and requires no prior preparation. Once 
Amiga NetWare is installed, Amiga users on the network enjoy all the 
NetWare capabilities available to PC and Macintosh workstations. Amiga 
workstations retain their multi-tasking, graphic environment in addition to 
the full range of Novell NetWare functions. Users receive their own 
personal set of Amiga Preferences -- including network printing preferences 
-- automatically when they login from any Amiga on the network. 

Full NetWare Functionality for the Amiga WorkStation 

Novell-style utilities provide easy selection of standard Novell NetWare 
functions on the Amiga, including: 

File Management and Backup I Archiving 
Printer Definition and Print Job Control 
Inter-User Communication via Mail and Messaging 
Full Accounting Records for all NetWare Services 
User Access and Group Account Management 

Centralized Resources 

Amiga workstation users benefit from centralized software and data 
resources. They can update or change programs once, on the server, rather 
than for each workstation individually; change data and information globally 
to affect every network user; and hide or give access to resources on an 
individual or group basis. Vital files are kept on the server, not on 
vulnerable floppy disks. 

Individual Preferences 

Individual user preferences are supplied automatically at login from any 
workstation. Login scripts can execute both Novell NetWare script 
commands and AmigaDOS commands, to allow both system-wide and 
individual customized logins. Network or local printing is selectable from 
a Net Ware-specific Preferences tool. 

Data Integrity 

Amiga Client Net Ware for Novell Net Ware includes record-locking and file
locking functions for protection of shared data files on the file server. 
These safeguards allow multiple users to access the same data concurrently. 
Protection at the record level is not available for files stored on the local 

4 



u 

u 

u 

Amiga workstation under WorkBench 1.3, but file-locking for locally-stored 
files is provided under the Amiga WorkBench Version 1.3 and higher. 
WorkBench 2.0 will have the record-locking feature as well. 

Inter-Platform Communication 

The Amiga workstation shares resources and data with other workstations, 
regardless of platform. Amiga Client NetWare provides access to and full 
file-transfer utility between the Amiga and IBM PC and Macintosh 
platforms, plus the full range of other NetWare-supported platforms, via the 
network file server. Information is transferred quickly and easily over the 
network, even to remote locations. 

Shared Peripherals 

Printers and other peripherals shared on a network are more fully utilized, 
reducing idle time. The Amiga workstation can print from a file or directly 
from the Amiga application, using the NetWare server as an intelligent 
spooler device. Printing to a network printer via the Novell NetWare 
system is 100% transparent to the Amiga application. 

Shared Applications 

Amiga NetWare users will have access to complex shared-use applications 
such as Electronic Mail systems and multi-user accounting systems. 
Network versions of programs provide shared access and use-management 
for multiple users. Inexpensive workstations can use Novell NetWare file 
server in place of multiple local hard disks. Sophisticated caching 
algorithms allow server processing to approach the speed of a local hard 
drive. 

Send Messages 

A quick-send utility built into Novell NetWare allows private 
communication with any user, or group- and network-wide messaging with 
a single command. Amigas have the same peer-to-peer abilities as PCs on 
the Novell Net Ware network. The user can also communicate via bridges 
to other networks and mainframes, allowing file-transfer, electronic 
messaging and access through third-party bridges from Novell NetWare 
network. Connect your Amiga workstation to mM, Sun, DEC, and other 
network and mainframe platforms. 

Security for Information, Applications 

Individual user files can be protected by password and assignment of access 
rights. Confidential mail areas are automatically created for each user at 
the time the user's name is placed on the network. System security allows 
use of information, applications, and other resources by individuals or 
groups to be controlled. Network security can be designed to protect data 

5 



and software from theft or access by unauthorized persons. Novell 
Net Ware allows assignment of multiple levels of access to files and 
directories, and shared peripherals. 

6 

. '· 

n 



u 

u 

u 

Amiga Client NetWare Requirements 

Software 

Novell NetWare Version 2.15 or higher 
Installed* and operating on network file server 
(Currently will not work with NetWare 386 Version 3.0) 

Amiga Net Ware Version 2.15 or higher 

Amiga WorkBench Version 1.3 or higher 

Hardware 

Amiga Workstation with 512 K or more 

File Server 

LAN Communications Card (CBM ARC-Net or Ethernet) 
(1) for each Amiga workstation 
( 1) for file server 

Cabling and other network connection hardware 

Optional 

Peripherals such as printers and plotters 

Third-party additions to Novell NetWare such as bridges 

• Correct installation of the Novell NetWare network is critical to the 
operation of the Amiga Client Net Ware software, and the installation 
process is not a trivial task; certified Novell dealers (distributors and 
installers) have completed several courses in this procedure. The 
initial network file server installation should be done by a certified 
Novell dealer. Novell makes classes in NetWare installation and 
maintenance available world-wide, either direct or through their 
distributors. It is highly recommended that file server installation be 
accomplished by someone who has attended one of these classes. 

7 

,J 



Novell NetWare Market Data 

Over 500,000 installed servers worldwide 

1989 NetWare User Group survey = 1.8 servers per network 
Independent research report = 1.8 servers per network 

6,000,000 clients 

1989 NetWare User Group survey = 11.7 clients per server 
Independent research report = 13.3 clients per server 

Largest body of applications of any network operating system 

Over 5000 applications 
Over 1500 application developers (ISVs) 

Largest market share of all network operating systems 

40-70% market forecasts by industry analyst 
Nearest competitor = 14-17% 

Widest desktop operating support 

Amiga 
MS-DOS 
Apple Macintosh 
OS/2 
Microsoft Windows 
Desqview 

Broadest server platform support 

PC's (8, 16 and 32-bit) 
UNIX (Prime, NCR, Data General, Altos, Interactive, SCO, Integraph, 
Northern Telecomm, Unisys, Zenith Data Systems, Pyramid, Hewlett Packard, 
etc.) 
Other operating systems (DEC-VMS, Data General-AOS/VS, Wang-VS, etc. 
Super servers (NetFRAME, Compaq-System-Pro, etc.) 

8 



u 

u 

u 

Record-Locking Using 

Amiga Client NetWare 

With WorkBench 1.3 

(C) 1990 Oxxi, Inc. 



Record-Locking Using Amiga Client NetWare With WorkBench 1.3 

Four record-locking routines are available on the Amiga NetWare system. These 
routines, which will be incorporated into AmigaDOS 2.0 to provide record-locking 
capabilities at the individual Amiga computer, are available under WorkBench 1.3 if 
the application stores and handles these records on the Novell NetWare file server. 

Amiga NetWare Record-Locking Routines: 

NAME 
LockRecord - Locks a portion of a file 

SYNOPSIS 
success = LockRecord {fh, offset, length, mode, timeout) 

DO 01 02 D3 04 05 

ULONG LockRecord (BPTR, ULONG, ULONG, ULONG, ULONG) 

FUNCTION 

INPUTS 

This locks a portion of a file for exclusive access. Timeout is how 
long to wait in ticks {1/50 second) for the record to be available. 

Valid modes are: 
RLOCK EXCLUSIVE 
RLOCK-EXCLUSIVE IMMEDIATE 
RLOCK-SHAREO -
RLOCK-SHARED IMMEDIATE 

For the immediate modes, timeout is ignored. 

fh - File handle for which to lock the record 
offset - Record start position 
length - Length of record in bytes 
mode - Type of lock requester 
timeout- Timeout interval; 0 is legal 

RESULT 
success - Success or failure 

10 



u 

u 

u 

NAME 
LockRecords -- Lock a series of records 

SYNOPSIS 
success = LockRecords (record array, timeout) 

DO Dl 02 

BOOL LockRecords (struct RecLock *, ULONG) 

FUNCTION 

INPUTS 

This locks several records within a file for exclusive access. Timeout 
is how long to wait in seconds for the records to be available. 

record_ array - List of records to be locked 
timeout Timeout interval; 0 is legal 

RESULT 
success - Success or failure 

NAME 
U nLockRecord -- Unlock a record 

SYNOPSIS 
success = UnLockRecord (fh, offset, length) 

DO 01 02 03 

BOOL UnLockRecord (BP1R, ULONG, ULONG) 

FUNCTION 

INPUTS 

This releases the specified lock on a file. Note that you must use the 
same filehandle you used to lock the record, and offset and length 
must be the same values used to lock it. Every LockRecord call must 
be balanced with an UnLockRecord call. 

fh - File handle of locked record 
offset - Record start position 
length - Length of record in bytes 

RESULT 
success- Success or failure 

11 



NAME 
UnLockRecords - Unlock a list of records 

SYNOPSIS 
success = UnLockRecords (record array) 

DO Dl 

BOOL UnLockRecords (struct RecLock *) 

FUNCTION 

INPUTS 

This releases an array of record locks obtained using LockRecords. 
You should NOT modify the record array while you have the records 
locked. Every LockRecords caiT must be balanced with art 
UnLockRecord call. 

record_ array - List of records to be unlocked 

RESULT 
success - Success or failure 

12 



u 

u 

u 

Novell NetWare Routines 

in 

Amiga Client NetWare 

Summary List 

(C) 1990 Oxxi, Inc. 



Summary List of Novell NetWare Routines in Amiga Client NetWare 

Utilities (also referred to as routines) in Novell NetWare are of several different 
types, depending on the type of station from which they can be called, and the way 
in which they operate. 

Menu Utilities (Menu) 

The Novell Menu Utilities are programs which allow the selection of many related 
Net Ware functions in a custom window environment. These custom windows have 
been designed to emulate the way in which the Menu Utilities behave on the IBM 
PC workstation. This makes it easy to transfer Novell NetWare experience from the 
PC workstation to the Amiga client. 

Command Line Utilities (CLU) 

CLU routines are Novell NetWare command line utilities; they generally are called 
from the Amiga CLI/Shell, and do not, for the most part, have icons. The single 
tasks they perform are frequently also supported by selections from a Novell Menu 
Utility Program. 

Supervisor 

The Novell NetWare Supervisor is a kind of super-user, with access to server 
management functions not required by the day-to-day use of the network. n 

Utility /Routine Type 

AMIGABACK Menu 

A TOTAL Supervisor 

ATIACH CLU 

BIND FIX Supervisor 

BIND REST Supervisor 

FCONSOLE Menu 

FILER Menu 

FLAG CLU 

Function 

Back up and restore Amiga, Macintosh and 
MS-DOS format files from the file server 
to /from network or local destinations 

Call summary of PAUDIT file. (Only if 
accounting is installed) 

Attach to other servers 

Repairs the bindery files 

Restores previous version of bindery files 

Virtual console utility 

File and subdirectory info and management 
functions 

Change 4 of the 8 attributes of a set of files G 
(read/write, shared, indexed, transactional) 

14 



u 

u 

u 

Utility /Routine 

GRANT 

HIDEFILE 

LOGIN 

LOGOUT 

MAKE USER 

MAKE USER 

MAP 

NDIR 

NPRINT 

NVER 

PAUDIT 

PCONSOLE 

PRINTCON 

PRINTDEF 

PST AT 

PURGE 

REMOVE 

REVOKE 

RIGHTS 

SALVAGE 

Type Function 

CLU Grant trustee rights to users or groups 

Supervisor Hide files so they can't be listed 

CLU Initiate session with network, run login script, 
attach 

CLU End session with network, detach from all 
attached servers or from specified servers 

Menu Creates USR files which can be used to 
create uniform users 

Supervisor-CLU Processes USR files outside of the 
MAKEUSER menu utility 

CLU View, add to, or delete drive mappings 

CLU View file and subdirectory information 

CLU Send DOS or text files to a network printer 

CLU View the version of N etware 

Supervisor 

Menu 

Menu 

Menu 

CLU 

CLU 

CLU 

CLU 

CLU 

CLU 

Use to view system accounting records 

Print Queue/Server Management Functions 

Print Job Configuration job definition 
functions 

Define print devices and forms 

View printer status 

Render all erased files unrecoverable 

Remove a user or group from the trustee 
list of a given directory 

Remove specific trustee rights from user or 
group 

View effective rights in given directory 

Recover files that have been ERASEd but 
not PURGEd 

15 



Utility /Routine Type Function 
------------------- --------------- -------------------------------------------------------- n SECURITY Supervisor Checks for security "holes" in user list 

SEND CLU Send a short message to user or group on 
network 

SETPASS CLU Set or change your password on given server 

SHOWFILE Supervisor Reveal files hidden by the HIDEFILE utility 

SUST CLU View list of servers 

SYSCON Menu User, Group, Supervisor, and Accounting 
functions 

SYSTIME CLU View day of week, time and date on server 

TLIST CLU View the trustee list for a given directory 

USERLIST CLU View list of current users on given server, 
with other info 

VOLINFO Menu Displays Volume utilization information n 
WHO AMI CLU View current username, server, login date 

and time, etc. for each server to which 
attached 

16 



u 

u 

u 

Internet Packet Exchange Protocol 

Peer-to-Peer Communications for the 
Amiga NetWare Network 

(C) 1990 Oxxi, Inc. 



IPX Device 

IPX (Internet Packet Exchange), also known as peer-to-peer communications, is a 
protocol by which two workstations talk to each other with minimal file server 
intervention. In IPX, packets are sent and received on the Network Layer of the OSI 
(Open System Interconnection) model. The only involvement of the file server at this 
level is to deliver the packet to the correct workstation. 

The OSI model contains seven layers used in peer-to-peer communications 

Layer 1 - Physical Layer: consists of the boards, chips, cables and other 
equipment used in the communications. 
Layer 2 • Data Link: concerns itself with tokens, bit pattern, and error 
detection. 
Layer 3 • Network Layer: delivers communication packets on the network. 
Layer 4 • Transport Layer: a watchdog used to make sure that all packets 
arrive in the proper sequence with no duplication. 
Layer 5 - Session Layer: turns connections between machines on and off and 
sets up names and addresses for machines. 
Layer 6 • Presentation Layer: translates data into understandable units for the 
local machine. 
Layer 7 - Application Layer: sets up the interface between the network and 
an application used on the computer. 

Because the IPX packets travel below the Transport layer, much of the error checking () 
(i.e., packet tracing and ordering) is not done. When a packet is sent out, the 
machine does not automatically reply to the packet. It is up to each application to 
set up a information exchange system. Therefore, much care must be taken when 
using this protocol. There is no guarantee that a packet sent from a workstation will 
amve at its destination. Because there is no sequence information, there is also no 
reason why two packets will not arrive in the reverse order that they were sent. 

IPX does have the advantage of speed and performance because of the low overhead 
associated with it. IPX maintains a 95 percent success rate for accurate and ordered 
packet transfer. 

18 



u 

u 

u 

IPX Packet Structure 

Offset 

0 
2 
4 
5 
6 

10 
16 
18 
22 
28 
30 

Checksum Field 

Content 

Checksum 
Length 
Transport Control 
Packet Type 
Destination Network 
Destination Node 
Destination Socket 
Source Network 
Source Node 
Source Socket 
Data Portion 

Type 

BYTE[2] 
BYT£[2] 
BYTE 
BYTE 
BYTE[4] 
BYTE[6] 
BYTE[2] 
BYTE[4]. 
BYTE[6] 
BYTE[2] 
BYTE[O to 546] 

This field is included to conform to the Xerox packet header definition. In IPX, the 
Checksum field is set to OxFFFF. 

Length Field 

This contains the entire length of the packet, including 30 bytes for the header and 
up to 546 bytes for the data. 

Transport Control 

The Transport Control field is used by Net Ware internetwork bridges. It is set to zero 
by IPX before the packet is sent. 

Packet Type 

This field indicates the type of service needed by the packet. IPX users should set 
this field to 0 (Unknown Packet Type) or 4 (Packet Exchange Packet). 

Destination Network 

This is a four byte network number assigned by the system administrator of a 
network. 

Destination Node 

The Destination Node field is six bytes containing the physical address of the 
destination node. A node address of FF FF FF FF FF FF broadcasts the packet to 
all nodes on the destination network. 

19 



Destination Socket 

Sockets are used to direct a packet to the proper process at a workstation. Many 
sockets have been pre-determined or pre-defined, therefore, you must take care in 
choosing a socket number to use. Xerox has reserved the following socket numbers: 

1 
2 
3 
20h-3Fh 
1h-BB8h 
BB9h-

Routing Information Packet 
Echo Protocol Packet 
Error Handler Packet 
Experimental 
Registered with Xerox 
Dynamically assignable 

Xerox has assigned Novell a set of sockets for use by NetWare: 

451 
452 
453 
455 
456 

File Service Packet 
Service Advertising Packet 
Routing Information Packet 
NetBIOS Packet 
Diagnostic Packet 

Those who are writing applications to be used on NetWare IPX should contact Novell 
and obtain a socket number (registered Novell sockets start at 8000h). Novell 
dynamic socket numbers begin at 4000h. 

Source Network 
Source Node 
Source Socket 

These three fields are the same as the destination fields except that they pertain to 
the sending station's information. IPX automatically sets these fields when a packet 
is sent. 

20 



Event Control Block (ECB) 

U An Event Control Block is a data structure containing information used to send and 
receive IPX packets. There are two types of ECB: Send ECB and Receive ECB. 
These ECB's are the same except the Receive ECB does not require a destination 
address in its Immediate Address field (see below), while the Send ECB does require 
the destination address. 

u 

u 

Event Control Block Structure 

The ECB structure is in two parts: the first is a 36-byte fixed portion and the second 
is a list of data fragments (see below). 

Offset Content Type 

0 Link Address BYTE[4] 
4 ESR Address BYTE[4] 
8 In Use Flag BYTE 
9 Completion Code BYTE 

10 Socket Number WORD 
12 IPX Workspace BYTE[4] 
16 Driver Workspace BYTE[12] 

28 Immediate Address BYTE[4] 
34 Fragment Count WORD 

- - - - - - - - - - -- --- - - - - - - - - - - -- - - - --- -
36 Fragment Address 1 BYTE[4] 
40 Fragment Size 1 BYTE[2] 
42 Fragment Address 2 BYTE[4] 
46 Fragment Size 2 BYTE[2] 

(more fragments ... ) 

Link Addre~s 

The Link Address field is used by IPX while the ECB is in use. It is used for 
keeping the ECB in a free list. 

ESR (Event Service Routine) Address 

This field contains the address of an application-defined routine that IPX calls when 
it sends (or receives, depending on the ECB) a packet. This routine will be 
described later in this paper. If no ESR is to be used, this field should be set to 
NULL. 

21 



In Use Flag 

IPX uses this field to show the current status of the ECB. If this field is set to zero, 
then IPX is not currently using this ECB. Otherwise, IPX is actively using the ECB, 
or waiting for the occurrence of an event which the ECB will use. 

·socket Number 

This field contains the socket number on which the ECB will send (or has received) 
a packet. 

IPX V! orkspace 

This is a reserved field used by IPX, and should not be modified by the application, 
unless the ECB-In Use Flag is set to zero. 

Driver Workspace 

The Driver Workspace is a resexved field used by the network driver, and should not 
be modified by the application, unless the ECB-In Use Flag is set to zero. 

Immediate Address 

This field contains the address of the node to which a packet is to be sent, or from 
which it was received. If the packet did not arrive from a local network node, this ~ 
field contains the address of the internetwork bridge used. ' ' 

Fragment Count 

This contains a count of the number of Fragment Descriptors (see below) which are 
associated with this ECB. There must always be at least one Fragment Descriptor 
with an ECB. 

Fragment Descriptor 

A Fragment Descriptor is made up of two parts: 

Offset 

0 
4 

Content 

Fragment Address 
Fragment Size 

Type 

BYTE[4] 
BYTE[2] 

The Fragment Address contains an address in memory to a data block which contains 
a packet to be sent, or which is ready to receive packet data. The Fragment Size 
field gives the size of this block of data. There must be at least one Fragment 
Descriptor with each ECB, and a count of how many there are should be tallied in 
the Fragment Count field. 

22 



u 

u 

u 

In IPX, the first Fragment Descriptor entry must have a Fragment Size of at least 30 
bytes (for the header). Also, all of the fragment sizes added together may not exceed 
the maximum packet size of 576 bytes. 

Event Service Routine (ESR) 

An Event Service Routine is an application-defined procedure which IPX calls after 
a certain event has occurred. An event can be one of the following: 1) a packet is 
sent; 2) a packet is received; 3) an event that rescheduled itself; or 4) an 
application-defined event. ESR's are called once the In Use Flag in the Event 
Control Block has been set to zero. An example of an ESR is a procedure that 
queues up incoming packets for the application to process. 

23 



Summary of IPX Services 

IPXCancelEvent 

This function cancels an ECB event. An example of an ECB event would be 
a send, listen, special purpose event, or an IPX scheduled or re-scheduled 
event. If an event is transferring data from or to the Fragment data areas, 
then the event cannot be cancelled. Also, because of differences in the way 
that Network hardware works, it may not be possible to successfully cancel an 
IPX send request. 

IPXCheckReceive 

This function check whether or not a packet is available to be received .. 

IPXCheckSocket 

This function checks whether or not the specified socket is open. 

IPXCloseSocket 

This function closes an IPX socket. It also cancels any events that have been 
defined by the ECB's associated with the socket. There is no error if the 
socket was not already open. An application must close all sockets that it has 
opened before it destroys its Event Service Routines, otherwise the workstation ~, 
could halt. This function should not be called from within an ESR. ( 1 

IPXConnect 

This function creates a virtual connection between the requesting workstation 
and the address specified in the Event Control Block. 

IPXDisconnectFromTarget 

This function disconnects all connections between the requesting workstation 
and the specified target workstation. 

IPXGetDataAddress 

This function returns the address of a specified data element. (Note: On the 
Amiga, this function returns the address sent to it. It is included only for 
compatibility). 

IPXGetlntemetworkAddress 

Given a 4-byte network address and a 6-byte node address, this function 
returns a 12-byte internetwork address. 

24 



u 

u 

u 

IPXGetlntervalMarker 

This function returns an interval marker representing one IBM PC clock tick 
{approx. 1/18th second). An application can use this function to me~ure the 
elapsed time between two events. This timer is not intended for use with large 
time intervals, i.e. those in which the clock wraps to zero more than once 
between two events. 

IPXGetLocalTarget 

This function returns the value that will be put in an Event Control Block's 
Immediate Address field. The function is passed a 12-byte field consisting of 
the following: 

Bytes 0-3 = Network Number 
Bytes 4-9 = Node Number 
Bytes 10-11 = Socket Number 

Returned is a six byte Immediate Address and the approximate time that it will 
take to send a packet to the target. 

IPXGetStatistics 

This function returns diagnostic statistics maintained by IPX. 

IPXGet Version 

This function returns the major and minor version and the revision of the IPX 
driver that is installed at the workstation. 

IPXHoldEvent 

This function temporarily halts an ECB which has already been submitted. 
The ECB can be restarted with the IPXServiceEvent function. 

IPXInitialize 

This function gets the entry address for the IPX interface. This function must 
be called before any other IPX function can be used. 

IPXListenForPacket 

This function tells IPX to wait for a packet. The address of an Event Control 
Block is passed to this function, which in turn points to the Fragment 
Address(es) and (optionally) an Event Service Routine. The socket specified 
in the ECB must already be open. There may be any number of ECB's 
listening for packets. 

25 



IPXOpenSocket 

This function opens an IPX socket. This must be done before a packet can 0 
be received on that socket. If a socket _number of OxOOOO is sent to the 
function, the first available socket in the range Ox4000 to Ox5000 will be 
opened. This is a dynamic socket as opposed to an assigned socket. A socket 
may not be opened twice. The number of open sockets that a workstation may 
have ranges from the default of 20 to a maximum of 150. This value is 
configurable. 

IPXRelinquishControl 

This function is used on workstations that are co-resident with a NetWare file 
server or bridge. The function temporarily suspends the application so that the 
file server or bridge can process its information. 

IPXResetStatistics 

This function allows certain IPX statistical values to be reset by the application. 

IPXScheduleiPXEvent 

This function schedules an IPX event to occur after a specified time interval 
expires. The interval may be between 0 and 65,535 clock ticks. If this 
function is called twice with the same ECB, then its timer is reset and begins.~_ 
to count down again. The ECB given to this routine specifies a send or a t ' 
receive IPX request and (optionally) an Event Service Routine. This function 
must never be passed an ECB that is currently in use by IPX. 

IPXScheduleSpecialEvent 

This function sets up an events using an Event Control Block that will engage 
after a specific time interval expires. The interval may be between 0 and 
65,535 clock ticks. If this function is called twice with the same ECB, then its 
timer is reset and begins to count down again. 

IPXSendPacket 

This function sends an IPX packet to the destination spe~ified in the Event 
Control Block. The specified socket need NOT be open to send the packet. 
The ECB contains the Fragment Descriptors where the packet is stored in 
memory and (optionally) it contains the address of an Event Service Routine. 

IPXServiceEvent 

This function restarts an ECB which was halted with the IPXHoldEvent 
function. 

26 



u 

Overview of Netware Core Protocol Library 

u (C) 1990 Oxxi, Inc. 

u 



NetWare Core Protocol (NCP) Library 

The NetWare Core Protocol (NCP) library is the library utilized by all programs 
which require communication with the Novell system. These calls are broken into 
several categories describing their function: 

Accounting Services 
AFP Services 
Bindery Services 
Connection & Workstation Services 
Directory Services 
File Services 
Message Services 
Queue Services 
Synchronization Services 
Transaction Tracking Services 

The NetWare Core Protocol library exists as a run-time Amiga Library called 
NCP.library. The current revision of the NCP library is 34.13. 

Oxxi, Inc. will be producing a developer's package with complete information for using 
the NCP.library in developing software to take advantage of this access to the Novell 
Net Ware file server for the Amiga client. 

28 



u 

u 

u 

Explanation of Services 

Accounting Services 

Accounting services is an application program interface (API) that allows a server to 
charge the user for the use of its services. 

Each value-added server determines its own charging rates for each type of service, 
and the file server bindery stores the list of authorized accounting servers and each 
client's accounting information. 

AFP Services 

By adhering strictly to Apple Computer's AppleTalk Filing Protocol (AFP), Netware 
allows DOS, Amiga and Apple data files to be stored on a Netware file server. 
Amiga and Apple files appear in DOS directory listings as DOS files, and in Amiga 
file lists with the complete Amiga filenames, while appearing in Apple folders as 
normal Apple file icons. Amiga icons will appear in Amiga disk and drawer windows 
as Amiga icons. AmigaDos utilizes the AFP services in order to overcome DOS's 
filename limitations. 

Bindery Services 

In a local area network environment, there is the need for a name service which 
provides a way for network resources and clients to be identified. A resource is 
anything that provides a service such as a file server, print server, or database server. 
A client is the user of the services provided· by a resource. Each N etware file server 
maintains a database of the resources and clients available on the network. This 
special-purpose database is called the bindery. 

Connection & Workstation Services 

Connection services are used to create connections between workstations and file 
servers. Workstation services are primarily concerned with the internal tables that the 
shell uses to maintain these connections. 

Directory Services 

The Directory Services calls enable an application program to obtain information 
about volumes and directories; create, rename, and destroy directories; modify a 
directories maximum rights mask; add and delete directory trustees; allocate and 
deallocate directory handles;. and more. 

29 



File Services 

Workstation operating systems provide functions which enable applications to open, 
read, write, close, and delete files. The NetWare shell allows these functions to be 
used to perform the same tasks on the Net Ware (file server) files. 

Net Ware file services calls provide a set of supplementary functions that enable 
applications to manipulate extended file attributes, restore erased files, permanently 
delete files, set and scan file information, and copy files between directories on the 
same file server. 

Message Services 

Message Services is a set of Net Ware APis that enable applications to send broadcast 
messages and pipe messages to up to 100 specified target connections (workstations). 
The sending workstation and the target workstation must be attached to the same 
file server. 

Queue Services 

Queue Services make NetWare's Queue Management System (QMS) available to 
developers. QMS provides a central storage and queueing mechanism that enables 
users to create jobs that are added to the queue. These jobs can be services called 
remotely by an application at another node on the network. 

A job, as used in the context of QMS, is an individual entry in a QMS queue. A job () 
server (or value-added server) is an application that runs on a workstation, or as a 
Value-Added Process (YAP) on a file server or bridge. 

Synchronization Services 

Synchronization Services calls allow the application to control file access 
syncronization through file and record locking mechanisms. 

Transaction Tracking Services 

NetWare Transaction Tracking Services (TIS) is a feature that ensures data integrity 
on ftles that otherwise would be corrupted when updates on the files are interrupted 
by such things as hardware failures or power outages. A transaction is defined as a 
set of one or more operations that must be completed together to maintain file and 
database integrity. TIS guarantees that all writes within a transaction will be 
completed or none will be completed. 

30 



NCP Ubrary Function Calls, by category 

U Accounting Functions: 

u 

u 

GetAccountStatus(): 
Returns the account status of a bindery object. 

SubmitAccountCharge(): 
Updates the account of a bindery object. 

SubmitAccountHold(): 
Reserves a specified amount of an object's account pending a 
SubmitAccountCharge call. 

SubmitAccountNote(): 
Adds a note about an object's account to an audit record. 

AFP Services: 

AFP AllocTemporazyDirHandle(): 
Maps a NetWare directory handle to an AFP directory. 

AFPCreateDir(): 
Creates a directory with an AFP directory name. 

AFPCreateFile(): 
Creates a file with an AFP file name. 

AFPDelete(): 
Deletes the specified file or directory. 

AFPGetBaseiD(): 
Returns the AFP entry ID for the specified AFP file or directory. 

AFPGetFileiDFromHandle(): 
Returns the AFP entry ID for the file specified by the Net Ware handle. 

AFPGetEntcyiDFromPathName(): 
Returns an AFP entry ID for the given path name. 

AFPGetFilelnformation(): 
Returns information about the AFP side of the specified file or directory. 

AFPOpenFileFork(): 
Opens an AFP file fork (data fork or resource fork) from a DOS environment. 

AFPRename(): 
Moves and/or renames a file or directory. 

31 



AFPScanFilelnformation(): 
Returns information about an AFP directory or file. 

AFPSetFilelnformation(): 
Sets information pertaining to the specified AFP file or directory. 

Bindery Services: 

AddBindezyObjectToSet(): 
Adds a bindery object to a set property. 

ChangeBindezyObjectPassword(): 
Changes the password of a bindery object. 

ChangeBindezyObjectSecurity(): 
Allows the supervisor to change the security of a bindery object. 

ChangePropertySecurity(): 
Changes the security of a bindery object's property. 

CloseBindezy(): 
Allows the supervisor to close the bindery. 

' 

CreateBindetyObject(): 
Allows the supervisor to create a bindery object. 

Create Property(): 
Adds a property to a bindery object. 

DeleteBindezyObject(): 
Allows the supervisor to delete a bindery object. 

DeleteBindezyObjectFromSet(): 
Deletes a bindery object from a set property. 

Delete Property(): 
Deletes properties from a bindery object. 

GetBindezyAccessLevel(): 
Returns the requesting workstation's access level to a file server's bindery. 

GetBindezyObjectiD(): 
Returns a bindery object's unique identification number. 

GetBindezyObjectN arne(): 
Returns the name and type of a bindery object. 

32 



u 

u 

u 

IsBindezyObjectlnSet(): 
Determines if a bindery object is a member of a set property. 

OpenBindezy(): 
Allows the supervisor to open the bindery. 

ReadPropertYValue(): 
Returns the value of a bindery object's item or set property. 

RenameBindezyObject(): 
Allows the supervisor to rename a bindery object. 

ScanBindezyObject(): 
Scans the bindery for an object. 

ScanObjectTrusteePath(): 
Returns the directory paths to which an object has trustee rights. 

ScanPropertY(): 
Scans the bindery for an object's properties. 

VerifyBindezyObjectPassword(): 
Verifies the password of a bindery object. 

WritePropertyValue(): 
Writes a value to an item or set property. 

Connection Services: 

AttachToFileServer(): 
Creates an attachment between a workstation and a specified file server. 

DetachFromFileServer(): 
Logs out the bindery object out and detaches the requesting workstation from 
the specified file server. 

GetConnectionlnformation(): 
Returns information about the object logged in to a specified connection. 

GetConnectionNumber(): 
Returns the connection number that the requesting workstation uses to 
communicate with the default file server. 

GetlntemetAddress(): 
Returns a connection's internetwork address. 

33 



GetObjectConnectionList(): 
Returns a list of connection numbers that indicate how many times and under 
what connection numbers a bindery object is logged in to the default file n 
server. 

GetStationAddress(): 
Returns the physical node address of the requesting workstation. 

LoginToFileServer(): 
Logs a bindery object in to the default file server. 

Logout(): 
Issues a network logout request. 

LogoutFromFileServer(): 
Logs out the object but does not detach the workstation from file server. 

Workstation Services: 

EndOfJob(): 
The shell issues this function when an application exits to automatically reset 
the workstation environment. 

GetConnectioniD(): 
Returns the connection ID of a file server. 

GetDefaultConnectioniD(): 
Returns the connection ID of the file server to which request packets are 
currently being sent. 

GetFileServerN arne(): 
Returns the name of a file server. 

GetNetwareShellVersion(): 
Returns the NetWare shell major and minor version numbers and revision 
level. 

GetPreferredConnectioniD(): 
Returns the connection ID of the preferred file server. 

GetPrimaryConnectioniD(): 
Returns the connection ID of the primary file server. 

Get WorkstationEnvironment(): 
Returns information about a workstation's operating system and hardware 
environment. 

34 



IsConnectioniDinUse(): 

u Determines whether a server is attached at the specified server number. 

SetPreferredConnectioniD(): 
Sets the preferred file server. 

SetPrimaryConnectioniD(): 
Sets the primary file server. 

Directory Services: 

AddTrusteeToDirectozy(): 
Adds a trustee to a directory's trustee list. 

AllocPermanentDirector.yHandle(): 
Permanently assigns a workstation drive letter to a network directory. 

AllocTemporazyDirectox:yHandle(): 
Temporarily maps a workstation drive letter to a network directory. 

Create Directory(): 
Creates a directory on the file server. 

u DeallocateDirectoryHandle(): 
Deallocates a permanent or temporary directory handle. 

Delete Directory(): 
Deletes a directory on the file server. 

DeleteTrusteeFromDirectory(): 
Removes a trustee from a directory's trustee list. 

GetDirectoryPath{): 
Returns the directory path of a directory handle. 

GetEffectiveDirectoryRights(): 
Returns the requesting workstation's effective rights to a directory. 

Get V olumelnfo WithHandle(): 
Given a directory handle, returns information about a volume. 

Get Volume Info WithNumber(): 
Given a volume number, returns information about a volume. 

GetVolumeName(): 
Returns a volume name for a volume. 

u 
35 



GetVolumeNumber(): 
Returns the volume number for a volume. 

MapDriveToPath(): 
Maps a path to a device name. 

ModifyMaximumRightsMask(): 
Modifies the maximum rights mask of a directory. 

RenameDirectozy(): 
Renames a directory on the file server. 

ScanDirectozyF orTrustees(): 
Returns a directory's trustee. 

ScanDirectozylnformation(): 
Returns information about the subdirectories below a directory. 

SetDirectozylnformation(): 
Changes a directory's information. 

StripFileServer FromPath(): 
Removes a file server from the front of a path. 

File Services: 

Erase Files(): 
Erases files from a directory. 

FileServerFileCoror(): 
Copies a file, or portion of a file, to another file on the same file server. 

GetExtendedFileAttributes(): 
Returns a files extended file attributes. 

PurgeErasedFiles(): 
Permanently deletes all files that are marked for deletion. 

RestoreErasedFile(): 
Restores one file on the file server that has been marked for deletion by the 
requesting workstation. 

ScanFilelnformation(): 
Returns information about a file. 

SetExtendedFileAttributes(): 
Sets a file's extended attributes. 

36 



SetFileAttributes(): 
Sets a file's attributes. 

SetFilelnfonnation(): 
Sets file information for a file on the server. 

Queue Services: 

AbortServicingOueueJobAndFile(): 
Used to abort the servicing of a job, closes the associated file, and removes 
the job entry from the queue. 

AttachOueueServerToQueue(): 
Attaches a station to a queue as a queue Uob) server. 

ChangeOueueJ obEntry(): 
Changes information in a job's record entry. 

ChangeQueueJ o bPosi tio nO; 
Changes a job's position in a queue. 

ChangeToClientRights(): 
Allows a queue Uob) server to assume the login identity of the client that 
placed the job in the queue. 

CloseFileAndAbortOueueJob(): 
Removes a job from a queue and closes the associated file. 

CloseFileAndStartOueueJob(): 
Closes an associated file and releases the job for servicing. 

CreateOueue(): 
Creates a new queue on a file server. 

CreateOueueJobAndFile(); 
Places a new job in a queue. 

DestroyQueue(): 
Removes a queue from the bindery and file system of a file server. 

De tachOueueServer FromOueue(): 
Removes the requesting station from the queue's list of active queue Uob) 
servers. 

FinishServicingQueueJobAndFile(): 
Allows a queue Uob) server to signal QMS when it has completed a job. 

37 



GetOueueJ obsFileSize(): 
Finds the size of the associated file for a job queue. 

GetOueueJ obList(): 
Provides a list of all jobs contained in a queue. 

ReadOueueJ obEntr:y(): 
Retrieves information about a job in a queue. 

ReadOueueCurrentStatus(): 
Reads the current status of a queue. 

ReadOueueServerCurrentStatus(): 
Reads the current status record of an attached queue (job) server. 

RemoveJobFromOueue(): 
Removes a job from a queue. 

SetOueueCurrentStatus(): 
Controls the addition of jobs and job servers to a queue by setting or clearing 
bits in the queueStatus byte. 

NOTE: Some Novell mM PC QMS calls are not listed. Those unlisted calls 
are currently unsupported. 

Synchronization Services: 

Clear File(): 
Unlocks the specified file and removes it from the log table of the requesting 
workstation. 

ClearFileSet(): 
Unlocks and removes all files in the log table of the requesting workstation. 

CloseSemaphore(): 
Closes a sepaphore. 

ExamineSemaphore(): 
Returns the current value and open count for a semaphore. 

LockPhysicalRecordSet(): 
Attempts to lock all physical records in the log table of the requesting 
workstation. 

LogPhysicalRecord{): 
Logs a physical record into the log table of the requesting workstation and, 
optionally, locks the record. 

38 



u 

u 

u 

OpenSemaphore(): 
Opens the specified semaphore or creates it if it doesn't exist. 

ReleasePhysicalRecord(): -
Unlocks a physical record currently locked in the log table of the requesting 
workstation, but does not remove it from the log table. 

ReleasePhysicalRecordSet(): 
Unlocks all physical records currently locked in the log table of the requesting 
workstation, but does not remove them from the log table. 

SignalSemaphore(): 
Increments the value of a semephore. 

WaitOnSemaphore(): 
Decrements the value of a semaphore. 

NOTE: Some Novell mM PC Synchronization calls are not listed. Those 
unlisted calls are currently unsupported. 

Transaction Tracking Services: 

TISAbortTransaction(): 
Aborts explicit and implicit transactions. 

TISBeginTransaction(): 
Begins an explicit transaction. 

TISEndTransaction(): 
Ends an explicit or implicit transaction and returns a transaction reference 
number. 

TISGetApplicationThresholds(): 
Returns application thresholds for implicit transactions. 

TIS Get W orkstationThresholds(): 
Returns workstation thresholds for implicit transactions. 

TISisAvailable(): 
Verifies whether the default file server supports transaction tracking. 

TTSSetApplicationThresholds(): 
Allows an application to set the number of record locks it can perform without 
starting an implicit transaction. 

TTSSet W orkstationThresholds(): 
Sets workstation thresholds for implicit transactions. 

39 



GLOSSARY 

n 
......... _~ ·-

(C) 1990 Oxxi, Inc. 

0 



GLOSSARY 

u 

APF 

attach 

bindery 

u bridge 

cache 

client 

default server 

u 

Terms included in this glossary are defined as they are 
used in the Novell NetWare and AmigaDOS Manuals. 
Consult a standard computer dictionary for definitions of 
other terms. 

AppleTalk Filing Protocol; a file format which allows the 
file server to handle 32-character names containing the full 
range of Apple- (and Amiga-) allowable characters. The 
AppleTalk Filing Protocol uses two directory entries for 
each file handled, one for the resource fork and one for 
the data fork. · 

To access a file server, particularly to access additional file 
servers after having already logged in to one file server. 

A special-pupose database maintained by the file server's 
operating system, used to monitor the resources and clients 
available on the Novell NetWare network. The bindery 
contains a list of "objects" (users, groups, and file servers) 
and their "properties" (rights, passwords, network addresses, 
etc.). 

A software and hardware connection between two 
networks, usually of similar design. A Net Ware bridge can 
connect networks that use different kinds of network 
boards or transmission media, as long as both sides of the 
connection use the IPX protocol. If a bridge is located 
in a file server, it is an internal bridge; if located in a 
workstation, it is an external bridge. 

To read data into a cache buffer in memory so that the 
data is available the next time it is needed and does not 
have to be read from the disk again. Caching greatly 
increases file server speed, since data in memory can be 
accessed up to 100 times faster than data on disk. 

Any personal computer connected to a Novell Net Ware 
file server. Also: workstation. 

The file server to which your default drive is mapped. In 
other words, the drive you are currently using is mapped 
or assigned to a particular file server, and that file server 
is your default server. Any Novell NetWare commands 
you enter will be directly automatically to the default file 
server unless you specify othenvise. 

41 



directory entries 

effective rights 

file attributes 

file server 

gateway 

group access 

home directory 

In a NetWare volume, information stored in the voume's 
directory table, usually a directory name or filename. A 0, 
directory's trustee list can also take up one or more 
directory entries, depending on how large the list is. The 
maximum number of directory entries that can be created 
on a volume is specified during Novell Net Ware 
installation. Amiga files require an additional directory 
entry on the file server because they are allocated a 
resource fork by the AppleTalk Filing Protocol. 

The rights a user may exercise in a directory. Two factors 
determine effective rights: the trustee rights given a 
particular user, and the directory rights specified in the 
directory's maximum rights mask. Directory rights take 
precedence over trustee rights. 

Distinct from the file attributes of a file under AmigaDOS, 
the Novell NetWare file attributes regulate how a file can 
be handled on the network. For example, a· file with the 
Shareable attribute can be accessed by more than one user 
at the same time. A Read-Only file may be read, but not 
altered. 

A computer that controls all network activity. The Novell 
NetWare operating system is loaded into the file server, 
and all shareable devices are attached to it. The file 
server controls access to shared devices and the system 
security; it also monitors station-to-server communications. 
A dedicated file server can be used only as a file server 
while it is on the network. A non-dedicated file server can 
be used simultaneously as a file server and a workstation. 

A hardware/ software package that allows communication 
between dissimilar protocols (for example, NetWare and 
non-NetWare networks) using industry standard protocols. 

A method of granting equal rights to several users at the 
same time so that they can all access the same directories. 
Rather than tediously assigning the same rights to each of 
a number of individual users, the network supervisor can 
make each user a member of the same group, then assign 
that group the needed rights. 

A network directory that the network supervisor creates 
specifically for a user. The supervisor may include a drive
mapping or assignment statement to this home directory 
in the user's login script. 

42 



internetwork 

u 
IPX 

LAN 

log in 

login 

login script 

u 

map 

network 

password protection 

u peripheral 

Two or more networks connected by an internal or 
external bridge. Users on an internetwork can use the 
resources (such as data and applications files, printers, or 
disk drives) of all connected networks. 

Internet Packet Exchange. A protocol that allows the 
exchange of message packets on an internetwork. With 
IPX, applications running on a Novell NetWare client 
(workstation) can use the NetWare network drivers to 
communicate directly with other workstations, servers or 
devices on the internetwork. IPX is based on Xerox 
Corporation's Internetwork Packet Protocol. 

Local ·Area Network. Novell Net Ware networks are one 
type of LAN. 

(verb) To gain access to the network. Logging in to the 
network involves executing a login script and establishing 
yourself as a user. 

(noun) The process of accessing the network 

The set of instructions that directs your workstation to 
perform specific actions when you log in to the network. 
A system-wide login script instructs all workstations to 
perform the same actions upon login; an individual login 
script executes after the system login script, and instructs 
only the individual workstation. Login scripts are executed 
only upon login, not when the attach command is executed. 

To assign a drive letter (or name, for the Amiga) to a 
chosen directory path on a particular volume of a 
particular file server. Essentially equal to the AmigaDOS 
command Assign. 

A group of computers that can communicate with each 
other, share peripherals (such as hard disks and printers), 
and access remote hosts or other networks. A Net Ware 
network consists of one or more file servers, workstations, 
and peripherals. NetWare network users can share the 
same files (both data and program files), send messages 
directly between individual workstations, and protect files 
with an extensive security system. 

A security feature that requires a user to enter a correct 
password before being allowed to log in to the network. 

A physical device (such as a printer or disk subsystem) 
that is externally attached to a workstation or the network. 

43 



print server 

queue 

read-only 

record-locking 

resource 

resource fork 

rights 

security 

A process that takes print jobs from the print queue and 
sends them to the printer. Print Servers are currently 0, 
embedded in the file server. · 

A data-handling structure that stores, in the order they are 
received, requests (such as print jobs) while they await 
servicing. 

A Novell NetWare file attribute, which provides data 
. protection by allowing the user to read, but not alter, the 

file. 

A feature of the Novell NetWare operating system that 
prevents different users from gaining simultaneous access 
to the same record in a shared file, thus preventing 
overlapping disk writes and ensuring data integrity. 

In Net Ware installation programs, any device, feature, 
circuit board, or built-in circuitry that uses one or more 
of the following to communicate with the file server's 
microprocessor: interrupt lines, D MA lines, 1/0 addresses, 
or RAM or ROM memory addresses. 

The fork of a AFP file (usually Macintosh) which contains 
resources associated with the data. Resources can be 
modified only with the resource editor. Because Amiga f) 
files are handled on the file server using AFP format, each 
Amiga file will have a (currently empty) resource fork. 

Privileges (assigned by the network supervisor) that control 
how users can work with files in a given directory. For 
example, rights control whether a user may read, change 
or delete a file. Trustee rights in a directory are assigned 
to individual users and control what each user can do with 
the files in a directory and its subdirectories. Directory 
rights are assigned in the maximum rights mask of each 
individual directory and restrict the rights of all users in 
the directory (except the network supervisor), overriding 
the individual trustee rights of a user. Directory rights are 
limited to a single directory and do not extend down 
through the directory structure. 

The control over users as they access and work with 
directories and files on the Novell NetWare network. 
There are four levels of Net Ware security: login/password 
security, trustee security, directory security, and file 
attributes security. 

44 



security equivalence 

u 
supervisor 

TIS 

u 
user 

utility 

virtual console 

workstation 

u 

A feature of network security that allows the supervisor 
to quickly and easily assign one user or group the same 
trustee rights as another user or group. 

1. The network supervisor is the person responsible for 
the smooth operation of the whole network. (The 
supervisor may also install the network.) The network 
supervisor maintains the network, reconfiguring and 
updating it as the need arises. 

2. SUPER VISOR is a special usemame automatically 
created when the file server is initialized. This user 
is permanent and cannot be deleted or. renamed. The 
user SUPERVISOR has all rights in all file server 
volumes and directories, and these rights cannot be 
revoked. Other users or groups can be granted a 
security equivalence to SUPERVISOR. 

Transaction Tracking System. A system that protects 
databases from being corrupted if the computer fails in the 
middle of a transaction. Each database change is regarded 
as one transaction, which must be either completed 
successfully or aborted entirely. If the workstation fails 
in the middle of a transaction, the transaction is "backed 
out" and the database is restored to its last completed 
state. 

Any person who logs in to a file server. 

A computer program that conveniently performs one or 
more basic operating system tasks, such as copying files. 

A network station running the Novell NetWare FConsole 
utility, which allows the station to perform as a file server 
console, monitoring and controlling some aspect of file 
server activity. 

Any individual personal computer connected to a Novell 
NetWare network and used to perform tasks through 
applications or utilities. 

45 



n_ 





-







Arniga Vision: 
Authoring Hints 
by Cathy Godfrey 

The following tips will help make your Arniga Vision code more efficient. This will result in 
shoner loading time, faster execution of your file, and save on the amount of memory your 
application requires. 

Keyboard and Mouse Interrupts 

Suppose you create a very simple Amiga Vision application: a slide presentation in which the 
user is shown a series of 35 
picture files. Between each 
picture, the user clicks on the 
mouse to see the next picture or 
presses the Escape key to quit 
(see figure SlideS how-l). 

This is the perfect example of 
where a keyboard interrupt is 
useful. You can replace all your 
Grouped Wait, Keyboard Wait, 
IfThen, and Quit icons with a 
keyboard interrupt routine. 

To tell ArnigaVision what will 
activate the interrupt, you enter 
the name of the key(s) in the 
"Keys" field of the interrupt requester. 

SlideS how-l 

For the Escape key, enter "ESC." 

Once activated (when the user presses the Escape key), the keyboard interrupt will execute 
the actions of its children icons. For this example, we want to quit the presentation, so 
place a Quit icon as the child of the Keyboard Interrupt icon. Now if the Escape key is 
pressed, the user will quit the Amiga Vision application. The resulting code looks like figure 
SlideShow-2. 

Amiga Vision: 1 DevGon 90 
Authoring Hints 



If you require the user to click on a cenain area of the screen to quit (an Exit button, perhaps), 
you can use a mouse interrupt in place of the keyboard interrupt. 

SlideShow-2 

SlideShow-3 

Variables as Filenames 

There is another way to funher 
decrease the number of icons in the 
same slide presentation example 
(figure SlideShow-2). We can use a 
variable in the filename field of one 
Screen icon instead of the thiny-five 
separate icons we are using now. 

First you must make sure that all 
of your picture files have the same 
pathname and same filename, 
except we will give them all a 
different extension. The first 
picture we will store in Work: 
Picrureslpic.l ; the second will be 
in Work:Picrureslpic2; then Work: 
Picrureslpic.3, etc. 

Next create a variable, count, using 
the Variable icon. Initialize it to 
COUNT=O. 

Then insen a Loop icon after the 
Variable icon. Set it to loop for the 
number of pictures that you have (in 
this example, thiny-five). 

Place a second Variable icon to 
increment count each time through 
the loop. 

Now re-specify your Screen icon file name. Enclose the variable pan of the filename in 
square brackets. For example, we would set the filename field to Work:Pictureslpic.[ count]. 
Be sure to set the picture resolution to "File Defined .. " 

Delete all other icons in your flow. The resulting Arniga Vision flow would look like figure 

DevGon 90 2 AmlgsV/slon: 
Authoring Hints 



SlideShow-3. The slide presentation (which was originally over 200 icons long) has now 
been condensed into seven icons. 

One additional hint ... in the 
Loop icon there is a button called 
"VAR." If you place a variable 
name in this field, this variable 
will always hold the current 
counter value at each iteration of 
the loop. If you use the VAR 
field, you don't need the second 
Variable icon to increment count. 
The first time through the loop, 
count will equal 1. Work:Picture/ 
Pic.l will be shown. The second 
time, count equals 2, and Work: 
Picture/Pic.2 will be displayed. 
See figure SlideShow-4 for this 
example code. 

Brushes as Hit Boxes 

SlideShow-4 

In most cases, when you create a hit box or button on the screen, you will want it to change 
(in color, shape, or size) when the user clicks on it. One way to do this is to create two 
full-screen pictures, one with the 
original button and one with the 
selec ted state of the button. The 
disadvantage of this method is 
that you waste time loading in a 
full screen after the user activates 
the hit box. It would be easier to 
load in only the button when the 
hit box is clicked. Amiga Vision 
will allow you to do this if your 
buttons are brushes. 

In the Object Editor, instead of 
using a rectangle or text object as 
your hit box, use a brush object. Brush-I 

In the Brush Info requester there are two string gadgets. The first one holds the pathname of 

Amiga VIsion: 3 DevGon 90 
Authoring Hints 



the brush which is the normal image of your button, the second is for the brush in its selected 
state (see figure Brush-!). You can either choose two separate brushes (one for each state), or 
use the same brush and select different colors for each state. 

Using a brush hit box will speed up your application. As soon as the hit box is activated, the 
user immediately sees the new brush. He/she doesn't have to wait for AmigaVision to load 
and display a full screen picture to get visual feedback. 

General Use 

These examples will explain some of the general features of Amiga Vision: 

1. DATABASE EXAMPLE 

Figure Dbase-! shows an example of a simple Amiga Vision application which uses the 
built-in database feature of the authoring system. This example will allow the user to choose 

·an artist and then view paintings created by that artist. The list of each painting and its artist 

Dbase-1 

is kept in the database, Artist.dbf 

First, a brief description of the 
database we will use for this 
example: Artist.dbf is a database 
created in Amiga Vision (see 
figure Dbase-2). Each record has 
two fields: ARTIST (which 
contains the name of the artist) 
and PlcruRE (which contains 
the filename of a picture created 
by that artist). Listed in this 
database are three paintings by 
Renoir, three by Monet; and one 
by Degas. 

Now back to the Amiga Vision 
flow window ... the first Variable icon initializes two variables: ARTISTNAME and 
FILENAME. ARTISTNAME will keep track of which artist the user selected and 
FILENAME will contain the name of the picture file to be displayed. 

The next two icons (Screen and Wait Mouse) set up a menu. The Screen icon displays the 
menu and the Wait Mouse icon sets up the hit boxes. This menu is a list of the artists that the 
user has to choose from. When the user clicks on an artist, the Variable icon will assign the 

DevGon 90 4 Amlgs VIsion: 
Authoring Hints 



user's response to the variable ARTISTNAME. 

The next icon is called the Select icon. It allows you to access specific records within a 
database. You choose these records by matching one (or more) of the fields with a 
variable(s). In this example we will match the field ARTIST with our variable, 
ARTISTNAME. Every time 
Amiga Vision finds a record in 
which the field ARTIST matches 
the name in the variable 
ARTISTNAME, it will execute 
the actions of the children of the 
Select icon. 

The fust thing Amiga Vision will 
do when it selects a record is to 
execute the Read/Write icon. 
This icon handles input to and 
output from the database. Our 
Read/Write icon will read the 
value in the PICfURE field and 
place it in the variable 
FILENAME. 

Dbase-2 

The Screen icon will use the variable FILENAME to display the picture created by the 
chosen artist. Then the application waits until the user clicks on the mouse. 

When Amiga Vision has searched the entire database for matches, it then executes the actions 
of the Select icon's siblings. Our database example will use a Speech icon to tell the user that 
they have reached the last picture. A final mouse click will end the application. 

The database has many practical applications. This Amiga Vision example, for instance, 
could easily be extended to include images stored on a videodisc. If our database had an 
extra field specifying frame number, we could use the Video icon to show an image of the 
painting stored on a videodisc. Any other information within the database (name of painting, 
year created, etc.) could easily be read from the database and (using the GFX icon) 
graphically overlayed on the video image of the painting. 

2. VIDEO: USE OF THE VIDEO CONTROLLER 

The Video icon allows you to program the actions of a videodisc player within your 
application (see figure Video-1 ). If you want to interactively control the player, use the 

Amiga VIsion: 5 DevGon 90 
Authoring Hints 



Video-I 

Videodisc Controller (see figure 
VideoController-1). The 
Controller allows you to see the 
video playing as you control the 
player. Not only is it a nice 
complement to your Videodisc 
Log of frame numbers, it's a 
great tool for creating a log of 
your videodisc. 

If you just wish to browse your 
videodisc, you can access the 
Controller from the "Tools" 
pull-down menu. The buttons on 
the top left-hand side of the 
requester allow you to control 

the motion of the video. Most of these gadgets have either a right or left arrow. The right 
arrow plays the video forward, the left plays it backwards. For example, if you click on the 
right arrow gadget next to "Step," the video will advance one frame. 

Beneath these controls are four gadgets that allow you to control audio, video and indexing. 
You can set any of these parameters ON or OFF. Note that you 
have independent control of both audio tracks on your 
videodisc. The M 1 and M2 gadgets are memory areas. 
Amiga Vision will allow you to store two separate frame 
numbers temporarily in memory. Click on either Ml or M2 to 
enter the number of the current frame of video into that 
memory location. 

How do you get the frame numbers you've specified in the 
Controller back into the Video icon? First access the Controller 
through the Video icon requester (there is a CONTROLLER 
gadget for just this purpose). Then fill in the numbers of the 
frames you want to play (in the Start and Stop fields) or the 
number of the frame to which you want to search (the Frame Vu:JeoControl/er-1 
field). Before you click on the Save button, press either the 
Play or Search buttons. You can save the settings for either Play or Search, but not both at the 
same time. You must tell Amiga Vision which you wish to save by clicking on that button 
before you select "Save." When this is done, select "Save" and then "OK." You will then 
be returned to the Video requester with the proper frame numbers and videodisc action 
already in the requester. 

DevGon 90 6 Amlga VIsion: 
Authoring Hints 



3. VIDEO: USE TWO BLANK SCREENS 

U When creating an application using a videodisc player, it is helpful to create two IFF picture 
files. The first file (we'll call ClearGraphics.pic) is used to clear all graphics from the 
screen and prepare the program to display video. Using your favorite paint package, create 
an overscan picture of the background color (or color zero). Whenever you want to clear the 
monitor for full-screen video, use the Screen icon to display ClearGraphics.pic. 

u 

u 

There is a second useful flle you can create which we'll call ClearVideo.pic. This is an IFF 
file of any color other than the background color (or color zero). When this file is displayed 
using the Screen icon, the video image will no longer be visible . 

• 

Amlga VIsion: 7 DevCon90 
Authoring Hints 



n 

() 
·._ 

.n 1 
"-._ ' 







0 



0 



u 

u 

u 

Features Outline for V2.0 
by Andy Finkel 

This is a brief outline of some of the new features and enhancements in Version 2.0 of the 
Amiga operating system. The features will be covered in more detail in the individual 
sessions. 

ARexx 
This is now a standard part of the system software. Various programs that come with the 

system can now use and rely on the presence of ARexx. 

ASLUbrary 
This provides standard system requesters: 

Q a file requester 
Q a font requester 

Battclock 
Controls the Real Tune Clock chip 

Battmem 
Controls function bits in memory of the A3000 Real Tune Clock 

Boot Menu 
Q Allows the choice of boot device/partition 
Q Startup-sequence disable feature 

Commodities Excbange 
This provides coordination and c~ntrol of input handlers. 
Standard commodities include: 

Q a window cycle commodity 
Q an autopoint commodity 

Console 
Q Simple refresh character map console 
a Cut andpaste from or to console 

Features OUtline for V2.D 1 DevCon90 



Con-handler 
Cl Rewritten in C 
Cl Improved editing features 
Cl Public screen support 
Cl Cut and paste between CON: windows 
Cl New options: AUTO/WAIT/WINDOW/SCREEN 
Cl Case insensitive history search 
Cl Enhanced command line editing 
Cl "Quiet" opening 

C: commands 
Cl Written in C 
Cl Use the new features of the dos.library 
Cl Smaller, faster 
Cl Commands use pattern matching where it makes sense 
Cl Commands use the ALL option where it makes sense 
Cl Many commands support multiple arguments 

Diskfont 
Cl Font bitmap scaling 

DOS 
Cl Recede of the DOS library in C 
Cl All important BCPL routines will get C interfaces 
Cl Many new DOS functions (pattern patching, readargs, etc.) 
Cl Really, many new DOS functions 

Enhanced Chip Set (ECS) 
ECS consists of Agnus 8372-R3 and Denise 8373-R2a. These are plug compatible 

replacements for the 'Fat' Agnus and Denise, and may be installed in an ASOO or A2000. 
Cl Memory Umits - Agnus 8372-R3 allows up to 1 megabyte of CHIP memory, 

allowing more memory accessible by the custom chips for animation, graphics and 
sound applications. 

IJ Blitter Range - Agnus 8372-R3 enables rectangular blits up to 32k by 32k pixels. 
IJ Mode Resolutions - Installation of 8373-R2a Denise allows display of the new 

SuperHires mode (35 ns pixels) with up to 1280 horizontal pixels per scanline on a 
standard NTSC or PAL display. All the standard Amiga display resolutioll$ and 
depths are still supported. 

a Monitor Scan Rates -The V2.0 Kickstart and ECS chips support a new high
resolution Productivity mode. With the addition of a multi-sync monitor, this mode 
allows 640 x 480, non-interlaced screens in up to four colors. 

DsvCon90 Feature• OUtline for V2.D 



u 

u 

u 

All programs which open and operate in the Workbench screen will automatically 
benefit from Productivity text and graphics. In addition new programs can open 
their own Productivity screens in a system standard fashion. 

Q Genlock Capabilities - Denise 8373-R2a Denise allows four new genlock features: 
ChromaKey allows any color register to control the video overlay 
BitPlaneKey allows any bitplane to enable the video overlay 
Border Blank creates a transparent "frame" surrounding the active area 
BorderNotTransparent makes an opaque "frame" surrounding the active area 

Environment (ENV:) 
This now uses a handler with notification that will combine small environment variables 

into small blocks. (also known as the 2.0 ram handler) 

Exec 
Cl 
Cl 

~hecontrolfiwnctions 

Optimized autoconfig sttategy 
Cl Improved powerup strategy to manage all available memory, coprocessors and 

system options 
Cl 
Q 
Q 
Q 

Supervisor Stack and ExecBase can be in fast memory 
M~ robust method of replacing system modules 
Memory and ROMs are now fully tested before use 
Memory pool manager 

Cl 

Q 
Q 

Exec tests for the 68030 processor and 68882 co-processor, and enables instruction 
burst. Support for using the data cache and data burst has been included. 
Preparations are under way for VlttWll Memory support by Exec (post 2.0). 
Petformance improvements in memory allocation, signal semaphores, intenupt 
dispatching, and general tuning. 

Expansion 
Q Supports Zorro m standard cards 

FileSystem 
Cl FastFileSystem in ROM that supports both DOS'D and DOS\1 disks 
Cl Notification 
Cl Record Locking 
Cl Links 
Cl Variable block size 
Cl Better disk block allocation 

Feature• OUtline for V2.D 3 DevCon90 



Graphics 
CJ Suppon of new resolution modes 
CJ Support of new monitor scan rates 
CJ Built-in A2024 support 
Cl BitMapScale for scaling bitmap structures (including fonts) 

Text speed enhancements 
ColorFont support 
TextExtent and TextFit 
XAttr text attribute to specify X size 

Gadget Toolkit 
Cl Provides a simple way to get and use system standard gadgets and menus 
CJ Provides standard gadget types 
CJ Provides a uniform appearance for programs that use the toolkit 
CJ Provides gadget list management functions . 

Iffparse.library 
Cl Shared library for parsing iff chunks 

Intuition 
CJ New Screens Suppon: 

New modes 
Scrolling/ AutoScrolling 
Overscan support 
Public screens 

CJ New Look windows 
CJ New Gadgets 

Custom gadgets 
New string gadgets 

CJ Custom editing 
CJ Font selections 
CJ Color selections 
CJ "Activated" color selection 
CJ "Replace/fixedfield" modes 
CJ New State Machine 

No more VERIFY deadlocks 
Can call Intuition directly (pass string oflnputEvents) 
Better tablet and programmatic mouse-move support 

CJ · Independent programmable mouse and key repeat backlog limits 
CJ EZRequesterO enhancement to AutoRequest 

DevCon 90 4 Feature• OUtline tot vi.D 



u 

u 

u 

Keymap 
CJ usal map in ROM ( a.k.a. usa) 
CJ Separate keymap.library 
CJ MapANSIO to complement MapRawKeyO 

Layers 
CJ Better dedicing method 

Improved damage control 
Application bacldill for Layer operations 

Math IEEE Single Precision Ubrary 
Alternative to MathFFP that automatically uses the 68881 if available (and other 

peripheral-style math chips). 

Preferences 
CJ Extensible 
CJ More items over which the user has control 
CJ Broken up into smaller Preference entities 
CJ New Look (uses gadtools and asl) 
CJ Uses ENV: handler with notification 
CJ Support for third-party Preferences screens 

Ram-handler 
CJ Written in C 
CJ Supports notification 
CJ Supports "packing" of data in small tiles into a single block 

Ramdrive 
CJ Supports multiple units 

Ramlib 
a Understands the 2.0 AmigaDOS extended assign 

Shell 
a Built-in commands 
CJ A bit of ARexx support in Shell. (recognizes Arexx scripts) 
a Auto-CO 
CJ Process variables and environment variables 
CJ Variable expansion on command line 

Features OUtline for V2.D 5 DevCon90 



Timer 
Now has some new functions, requested by popular demand. 
a Wait 

Similar in nature to the current timer wait functions 
a GetMicroTics() 

Returns the current value of an interna164-bit counter incremented at 715909Hz 
(709379Hz PAL). This is a low-cost function useful for measuring short time 
periods. 

a ReadRTCQ, SetRTCQ, ResetRTC() 
Reads/Sets/Resets the time from the Commodore RTC chip. 

a WaitUntilO 
Returns when the system time is greater than or equal to the requested system time. 

Track disk 
Cl Improved etror handling for marginal disks/drives 
Cl No-click option on drives that support this 
a Faster 
a Doesn't need as much chip ram (can use fast ram for many operations) 

Workbench 

• 

Cl New improved look and feel 
Cl Easier to use: 

Menu redesign into more logical arrangement. 
Backdrop icons, select-all, drag-select, unsnapshot, shoncut keys, Workbench 

startup drawer, can cancel operations like drag, drag-select, select. 
a Can execute any CU command. 
a Asynchronous refresh and program load 
a More intelligent cleanup routine. 
Cl Programmer callable routines 

application menus 
application icons 

a ·User customizable: 
font, colors, patterns, backdrop pattern 

DevCon90 ' Featutea OUtline for VI.D 









0 



u 

u 

u 

Workbench V2.0 Documentation 
Update 

by Dave Berezowski 

This article is an update to the Workbench documentation incorporating new information 
about the V2.0 release. 

V2.0 Workbench User Interface 

Here's a summary of the changes to Workbench for V2.0: 

1\ffiNUS 
MOUSE BUTIONS 
WINDOWS 
ICON TEXT 
STARTUP DRAWER 
ASYNCHRONICITY 

The New Menus 

Standard Workbench menus have been expanded. 
Some new operations have been added. 
Workbench windows have been enhanced. 
Icon text can now be customized. 
This is a "startup-sequence" for Workbench. 
There is now more multitasking to Workbench. 

Under V2.0, the Workbench, Disk, and Special menus have been replaced with Workbench, 
Window, and Icon menus. The Workbench menu contains menu items that generally operate 
on Workbench as a whole. The Window menu contains menu items that work only on the 
active window or icons contained in the active window. The Icons menu contains menu 
items that work only on icons that have been selected. Also, some menu items now have 
command-key (right Amiga) capability. 

Workbench V2.D 
Documentation Update 

1 DevCon90 



The Workbench Menu 

This menu provides functions which are, in general, neither window nor icon specific. 

(new) Backdrop 

(new) Execute Command 

Redraw All 
Update All 

Last Error 

Version 
(new) Quit 

The Window Menu 

This toggles the Workbench window between a backdrop 
and a non-backdrop window. 
This gives you a one line CLI (with a one line history) in 
which virtually any CLI-type command can be executed. 
No change here (formerly Redraw). 
This updates all Workbench windows (except the 
Workbench disk window). Refer to 'Update' in the 
'Window Menu' section below for an explanation. 
DOS error numbers now have a textual string associated 
with them. 
No change here. 
This requests Workbench to pack up and go away 
completely. All resources and memory are freed. You 
cannot quit Workbench if either of the following is true:. 
1. There are Workbench launched programs still running. 
2. Somebody, other than Workbench, is using the 

W orkbench.library (i.e., the library open count is greater 
than 1 ). It is highly recommended that you do not 
quit Workbench unless you have a way of starting it up 
again ( leave a CLI open). The easiest way to do this 
is to launch a newshell just before quitting Workbench. 
To do this, select Execute and type 'NewShell'. You'll 
get a shell that is detached from Workbench. 

This menu performs operations on the currently active window. 

(new) New Drawer 

(new) Open Parent 

Close 

DevCon90 

This quickly creates a new drawer in the active window. The 
new drawer is called Unnamedn where n is a number starting 
at 1. Previous to this, one had to duplicate the Empty drawer 
to create a new drawer (which was very slow). 
This opens and makes activ~ the parent window of the 
currently active window. It is the Workbench equivalent to the 
Parent gadget in a CLI file requester. 
No change here. 

Workbench V2.D 
Documentation Update 



u 

u 

u 

(new) Update 

(new) Select Contents 
Cleanup 

(new) Snapshot 

(new) View By 

(new) Show All 

Workbench V2.D 
Documentation Update 

This scans the directory of the active window and refreshes 
the display. New icons are displayed, any deleted icons are 
removed. A future goal for Workbench is support for 
filesystems that use notification so that this type of updating 
can be done automatically. However, there will always be 
filesystems which do not support automatic updating (like 
those across an Ethernet) that will need this update option. 
Note that with the advent of automatic icon updating via 
PutDiskObject() in icon.library, you should not need to use 
this often. 
This selects all the icons in the active window. 
Cleanup now accounts for the width/height of the text as well 
as the width/height of the gadget. Columns widths are variable 
and are computed by the widest icon in the column. The disk 
icons can also be cleaned up via selecting the Workbench 
window as the active window (see Mouse Buttons below) and 
then selecting this option. 
The active window's size and position are saved to disk when 
'Snapshot Window' is selected. 'Snapshot All' also saves all 
the icons to disk. 

Icons can now be viewed in a textual mode; sorted by Name, 
Date or Size. This option is 'sticky' in that the window will 
open in the last mode it was viewed in. In 'View By Text' 
mode (i.e., View By Name/Date/Size) the font used to display 
the information can be selected by using the preferences editor 
'font' and modifying the system default text' font. 
This shows all the files which do not have a .info file. 
Selecting 'Show All Files' causes Workbench to scan the 
current directory. Any file found in the directory that doesn't 
have a corresponding '.info' file gets either a default drawer, 
tool or project icon created for it The rule used to determine 
if a file should be displayed as a tool or a project is as follows: 
if the file has the execute bit set, it is considered to be a tool; 
otherwise, it is considered to be a project. Selecting 'Show 
Only Icons' causes Workbench to remove any 'fake' icons 
which appeared as a result of selecting 'Show All Files'. If you 
want to turn a 'fake' icon into a real one, drag the fake icon 
into lconEdit (found in the Tools directory) and select save. 
Note that if you do this, the icon will now be started with 
Workbench (vs CLI) arguments. If the program cannot accept 
this it may very well crash the system! 

3 DevCon90 



The Icon Menu 

This menu performs operations on the currently selected icon(s). 

Open 

Copy 

Rename 

Information 

Snapshot 

(new) UnSnapshot 

(new) Leave Out · 

(new) Put Away 

(new) ------

Delete 

Format Disk 

Empty Trash 

DevCon90 

Any icons created by 'Show All Files' are run with CLI type 
arguments. This means, for instance, that one could click on 
the DIR command and see the results. 

This has been re-written. It's much faster and doesn't use up 
all memory! 

This is now refresh asynchronous. The Rename window now 
has a drag bar as well as front-to-back gadgets. 

This has been re-written and is now refresh asynchronous. 

All selected icons are saved to disk. 

All selected icons get their position set to NO_IcoN_POSITION. 

The selected icons are added to the . backdrop file and will 
automatically come up in the Workbench window the next time 
a LoadWb command is performed. They are also 
automatically moved to the Workbench window if they are not 
already there. 

The selected icons are removed from the .backdrop file and 
will not automatically come up in the Workbench window the 
next time a LoadWb command is performed. They are also 
automatically removed from the Workbench window and 
placed in their own window (if open). This function also 
applies to those icons which have been placed in the 
Workbench window but not left oul 

a separator bar. 

No change here (formerly called Discard). 

Format Disk (formerly called Initialize Disk) now puts up a 
requester giving you the choice to either 'Format', 'Re-format' 
or 'Cancel'. 'Re-format' is essentially a 'Format QUICK'. 

No change here. 

4 Workbench VI.D 
Documentation Update 



u 

u 

u 

The Tools Menu 

This is an all new menu. The user menu items (AppMenultems) will go here. Refer to the 
documentation on AddAppMenultem and RemoveAppMenultems in the AutoDoc section of 
this article for more info. 

(new) ResetWB This causes Workbench to close and then re-open all of its windows, 
if possible. It is not possible if there are any non-Workbench or 
application windows open on the Workbench screen. When 
Workbench re-opens, it will use the new current font, font color, 
background pattern, etc. This function is essentially a 
Close WorkbenchO followed by an Open Workbench(). 

Mouse Buttons 

Left Button Pressing and holding the left mouse button enters 'drag select' mode. In this 
mode, a dotted box is drawn and all icons which fall inside this box are 
selected when the button is released. Double-clicking the left mouse button 
inside a window brings that window to the front if that option has been 
enabled in the preferences editor 'WBConfig'. 

Right Button Clicking the right mouse button while dragging icons cancels the operation. 

Windows 

Clicking the right mouse button while drag-selecting cancels the operation. 
Clicking the right mouse button while selecting icons cancels that selection. 
If you want to select all the icons in a window bar one, you can do the 
following: 

1. Chose 'Select All' 
2. While holding down a shift-key, press the left mouse button on the icon 

you want to exclude and then click the right mouse button. The icon is 
now de-selected and the rest of the icons are still selected. 

Workbench Window (formerly the backdrop window) 

This is now just another Workbench window. It can be selected by clicking the left mouse 
button. The backdrop window pattern can be selected by the user via Preferences. The 
Workbench pattern is set to all dots off for this release. Use the preferences editor 
'wbpattern' to change it. Workbench can be toggled back to a backdrop window by selecting 
the 'Backdrop' menu item from the Workbench menu. You can customize the power up 
mode of the Workbench window in the preferences editor 'WBConfig'. 

Worlcbench V2.0 
Documentation Update 

5 DevCon90 



) 

Drawer Windows 

These now have cleaner arrow gadget images and the arrows have been moved to the lower 
right for convenience. The drawer pattern is now user selectable via Preferences. The 
Window pattern is set to all dots off for this release. Use the Preferences editor 'wbpattem' 
to change it. Drawer windows are now active when opened. The fuel gauge is gone. It has 
been replaced by a string in the title bar which displays disk usage (only for disk icon 
windows). 

Icon Text 

The font type and size for an icon is now user selectable via Preferences. The font color and 
draw mode (JAMl or JAM2) are also selectable by using the Preferences editor 'font' and 
modifying the 'Workbench icon text' font. 

Startup Drawer 

Any icon found in the startup drawer 'wbstartup' gets run when Workbench is invoked. 
There are several new tooltypes which can be used to modify the way these icons are 
executed. They are: 

CU This tells Workbench to run this program with CU arguments (as opposed r) 
to Workbench arguments) 

ST ARTPRI=n This allows you to specify the priority in which icons will be launched. 
The default priority is 0, the valid range is -128 to + 127. 

DON01W AIT This tells Workbench not to wait for this icon to finish executing before 
launching the next icon. 

WAIT=n This allows one to specify a minimum time (in seconds) for Workbench 
to wait before continuing on with the next icon. 

Asynchronicity 

Rename and Info are now refresh asynchronous. Refresh Events are also asynchronous. For 
example, if Workbench is opening a drawer and gets a refresh-window event, it will now 
process the event immediately as opposed to waiting for the drawer opening to complete. 

Workbench loading is also asynchronous; it now asynchronously loads the tool you 
double-click on. While Workbench is attempting to load your tool the message "Attempting 
to load program 'program_name' ... " appears in the screen title bar. 

DevCon90 6 Workbench V2.D 
Documentation Update 



u 

u 

u 

Other Workbench Changes 

Here are a few other Workbench changes: 

a The screen title bar now displays how much graphic and other memory is available. 

a Workbench now searches the path from the CLI it was invoked from if it cannot find an 
icon's tool. 

Q Setting a task's priority via a ToolType ofTOOLPRI now works. 

Q Workbench no longer passes a NULL lock for project icons that specify the default tool 
as an absolute path, which was incorrect. (i.e., if the default tool is 'volume:dir/tool', 
Workbench will now pass a lock to 'volume:dir' and a filename of 'tool'). 

Q Workbench now accepts (internal) messages from icon.library when an icon has been 
written to disk via the icon.library call PutDiskObject( 0 or PutDetDiskObjectQ. If the 
window in which the icon lives is open, that icon will be created/updated. 

Q It is no longer possible for the system to lock up due to Workbench having the layers 
locked and another process locking layers as well. For example, in the V1.3 release, 
if you were dragging an icon, and another process did a WindowToFrontQ, the machine 
would lock up. Workbench 2.0 has a layers daemon which looks for such a situation. 
If it detects a lock up, it will abort the operation (which unlocks the layer) thereby 
unfreezing the machine. If you are ever drag selecting or dragging icons and the system 
appears to freeze for a moment and abons the operation, you'll know that Workbench 
has just prevented the system from locking up. · 

Wol'lcbench V2.0 
Documentation Update 

7 DevCon90 



r-~--- -

V2.0 Workbench Programmer Interface 

As of V2.0, Workbench is a callable library. Six calls have been implemented for the V2.0 
release. These are covered in detail in the accompanying autodoc contained in this 
document. 

V2.0 Workbench Test Suite 

Included on the release disk is a suite of programs for testing the new Workbench features. 
These programs must be run from the CLI. These programs open a tiny window in the top 
left comer of the Workbench screen to let you know that they are running. Select the 
Close Window gadget in the appropriate window to remove the Applcon, AppMenultem or 
AppWindow. 

Applcon 

This is a test of the Application Icon interface. It includes calls to AddApplconO and 
RemoveApplcon(). When run, an icon named Appicon will appear on the Workbench. 
Double-clicking or dropping icons on it will cause Workbench to send a message to the 
application which will print (in the CLI window) information about the action. The data 
(image) for the Appicon is contained in the file 'appicon.image'. Alternatively, the data 
could have been created via calling GetDiskObject or GetDetDiskObject in icon. library. 

AppMenultem 

This is a test of the Application Menultem interface. It includes calls to AddAppMenultemO 
and RemoveAppMenuitem(). When run, two menu items (named appmenuiteml and 
appmenuitem2) will be added to the Workbench Tools menu. Selecting either one of these 
menu items will cause Workbench to send a message to the application which will print 
information (in the CU window) about which menuitem was selected. 

AppWindow 

This is a test of the Application Window interface. It includes calls to AddApp Window() 
and RemoveAppWindow(). When run, a window will open in the top left comer of the 
Workbench screen. If icons are dropped on this window, Workbench will send a message to 
the application which will print (in the CLI window) information about the icon(s). 

Workbench AutoDocs 

The autodocs for the new Workbench functions are listed on the following pages. 

DevCon90 8 Workbench V2.D 
Documentation Update 



u 

u 

u 

TABLE OF CONTENTS 

workbench.library/AddAppicon 
workbench.library/AddAppMenuitem 
workbench.library/AddAppWindow 
workbench.library/RemoveAppicon 
workbench.library/RemoveAppMenuitem 
workbench .library /Remo.veAppWindow 

Workbench V2.0 
Documentation Update 

9 DevCon90 



workbench.library/AddApp!con workbench.library/AddAppicon 

NAME 
AddAppicon- add an icon to workbench's list of appicons. (VJ6) 

SYNOPSIS 
Appicon = AddAppicon(id, userdata, text, msqport, lock, diskobj, taglist) 

DO DO Dl AO Al A2 A3 A4 
struct App!con *AddAppicon(ULONG, ULONG, char *, struct MsgPort *, 

struct FileLock *, struct DiskObject *, struct Tag!tem *); 

FUNCTION 
Attempts to add an icon to workbench's list of appicons. If 
successful, the icon is displayed on the workbench window (the same 
place disk icons are displayed) • 
This call is provided to allow applications to be notified when 
a graphical object (not necessarily associated with a file) 
gets 'manipulated'. (explained later) . 
The notification consists of an AppMessage (found in workbench.h/i) 
of type 'MTYPE_APPICON' arriving at the message port you specified. 
The types of 'manipulation' that can occur are: 
1. Double-clicking on the icon. am_NumArgs will be zero and 

am_ArgList will be NULL. 
2. Dropping an icon or icons on your appicon. am_NumArgs will 

be the number of icons dropped on your appicon plus one. 
am_ArgList will be an array of ptrs to WBArg structures. 
Refer to the 'WBStartup Message' section of the RKM for more info. 

3. Dropping your appicon on another icon. NOT SUPPORTED. 

INPUTS 
id - this variable is strictly for your own use and is ignored by 

workbench. Typical uses in C are in switch and case statements, 
and in assembly language table lookup. 

userdata - this variable is strictly for your own use and is ignored 
by workbench. 

text - name of icon (char *) 
lock - lock on the file you want associated with the icon, 

NULL for icons which have no file. 
msgport - pointer to message port workbench will use to send you an 

AppMessage message of type 'MTYPE_APPICON' when your icon 
gets 'manipulated' (explained above). . 

- if NULL, DefaultTool is invoked. NOT IMPLEMENTED! 
diskobj - pointer to a DiskObject structure filled in as follows: 

do_Magic - NULL 
do_Version - NULL 
do_Gadget - ptr to gadget structure filled in as follows: 

NextGadget - NULL 
LeftEdge - NOLL 
TopEdge - NULL 
Width - width of icon hit-box 
Height - height of icon hit-box 
Flags - NULL 
Activation - NULL 
GadgetType - NULL 

DevCon90 10 Workbench V.2.D 
Documentation Update 



u 

u 

u 

GadgetRender - pointer to Image structure filled in as follows: 
LeftEdge - NULL 
TopEdge - NULL 
Width - width of image 
Height - height of image 
Depth - i of bit-planes in image 
ImageData - pointer to actual word aligned bits (CHIP MEM) 
PlanePick - specific to image 
PlaneOnOff - specific to image 
Nextimage - NULL 

SelectRender - pointer to alternate Image struct or NULL 
GadgetText - NULL 
MutualExclude - NULL 
Specialinfo - NULL 
GadgetiD - NULL 
UserData - NULL 

do_Type - NULL 
do_DefaultTool - pointer to default tool string for this icon 

or NULL if there is no default tool. 
do_ToolTypes - array of pointers to tooltype strings for this 

icon or NULL if there are no tooltype strings. 
do_CurrentX - NO_ICON_POSITION (recommended) 
do_CurrentY - NO_ICON_POSITION (recommended) 
do_DrawerData - NULL 
do_ToolWindow - pointer to toolwindow string for icon 

or NULL if there is no toolwindow. 
do_StackSize - stacksize required if DefaultTool is to be invoked 

(an easy way to create one of these (a DiskObject) is to create an icon 
with the V2.0 icon editor and save it out. Your application can then 
call GetDiskObject on it and pass that to AddAppicon.) 

taglist - ptr to a list of tag items. Must be NULL for V2.0. 

RESULTS 
Appicon - a pointer to an appicon structure which you pass to 

RemoveAppicon when you want to remove the icon 

EXAMPLE 

from workbench's list of appicons. NULL 
if workbench was unable to add your icon; typically 
happens under low memory conditions. 

You could design a print-spooler icon and add it to the workbench. 
Any file dropped on the print spooler would be printed. If the 
user double-clicked (opened) your printer-spooler icon, you could 
open a window showing the status of the print spool, allow changes 
to print priorities, allow deletions, etc. If you registered this 
window as an 'appwindow' (explained in workbench.library/AddAppWindow) 
files could also be dropped in the window and added to the spool. 

SEE ALSO 
RemoveAppicon 

BUGS 
Currently Info cannot be obtained on appicons. 

Wotlcbench V2.0 
Documentation Update 

11 DsvCon90 



workbench.library/AddAppMenuitem workbench.library/AddAppMenuitem 

NAME 
AddAppMenuitem- add a menuitem to workbench's list 

of appmenuitems. 

SYNOPSIS 

(V36) 

AppMenuitem = AddAppMenuitem(id, userdata, text, msqport, taglist) 
DO DO 01 AO Al A2 

struct AppMenuitem *AddAppMenuitem(ULONG, ULONG, char *, 
struct MsgPort *, struct Tag!tem *); 

FUNCTION 
Attempt to add the text as a menuitem to workbench's list 
of appmenuitems (the 'Tools' menu strip). 

INPUTS 
id - this variable is strictly for your own use and is ignored by 

workbench. Typical uses in C are in switch and case statements, 
and in assembly language table lookup. 

userdata - this variable is strictly for your own use and is ignored 
by workbench. 

text - text for the menuitem (char *) 
msgport - pointer to message port workbench will use to send you an 

AppMessage message of type 'MTYPE_APPMENUITEM' when your 
menuitem gets selected. 

- if NULL, 'text' is invoked directly as a program. 
(NOT YET IMPLEMENTED! Will probably need to pass 

me a lock or a path so I can LoadSeq the program) . 
taqlist - ptr to a list of tag items. Must be NULL for V2.0. 

RESULTS 
AppMenuitem - a pointer to an appmenuitem structure which you pass to 

RemoveAppMenuitem when you want to remove the menuitem 
from workbench's list of appmenuitems. NULL if 
workbench was unable to add your menuitem; typically 
happens under low memory conditions. 

SEE ALSO 
RemoveAppMenuitem 

BUGS 
Does not handle menuitems running off the bottom of the screen. 
ie. you can currently add too many menuitems and possibly crash. 

DevCon90 12 Worltbench V2.D 
Documentation Update 



u 

u 

u 

workbench.library/AddAppWindow workbench.library/AddAppWindow 

NAME 
AddAppWindow- add a window to workbench's list of appwindows. (V36) 

SYNOPSIS 
AppWindow = AddAppWindow(id, userdata, window, msqport, taglist) 

DO DO Dl AO Al A2 
struct AppWindow *AddAppWindow(ULONG, ULONG, struct Window *, 

struct MsgPort *, struct Tagitem *); 

FUNCTION 
Attempt to add the window to workbench's list of appwindows. 
Nor~ally non-workbench windows (those not opened by workbench) 
cannot have icons dropped in them. This call is provided to 
allow applications to be notified when an icon or icons get 
dropped inside a window that they have registered with workbench. 
The notification consists of an AppMessage (found in workbench.h/i) 
of type 'MTYPE_APPWINDOW' arriving at the message port you specified. 
What you do with the list of icons (pointed to by am_ArgList) is 
up to you, but generally you would want to call GetDiskObjectNew on them. 

INPUTS 
id - this variable is strictly for your own use and is ignored by 

workbench. Typical uses in C are in switch and case statements, 
and in assembly language table lookup. 

userdata - this variable is strictly for your own use and is ignored 
by workbench. 

window - pointer to window to add. 
msqport - pointer to message port workbench will use to send you an 

AppMessage message of type 'MTYPE_APPWINDOW' when your 
window gets an icon or icons dropped in it. 

taglist - ptr to a list of tag items. Must be NULL for V2.0. 

RESULTS 
AppWindow - a pointer to an appwindow structure which you pass to 

RemoveAppWindow when you want to remove the window 

SEE ALSO 

from workbench's list of appwindows. NULL 
if workbench was unable to add your window; typically 
happens under low memory conditions. 

RemoveAppWindow 
The V2.0 icon editor is an example of an app window. Note that app 
window applications generally want to call GetDiskObjectNew 
(as opposed to GetDiskObject) to get the disk object for the icon 
dropped in the window. 

BUGS 
None 

Workbench V2.D 
Documentation Update 

13 DevCon90 



workbench.library/RemoveAppicon workbench.library/RemoveAppicon 

NAME 
RemoveAppicon- remove an icon from workbench's list 

of appicons. 

SYNOPSIS 
error = RemoveAppicon(Appicon) 

DO AO 
BOOL RemoveAppicon(struct Appicon *); 

FUNCTION 

(V36) 

Attempt to remove an appicon from workbench's list of appicons. 

INPUTS 
Appicon - pointer to an Appicon structure returned by AddAppicon. 

RESULTS 
error - TRUE if successful, else FALSE. Typically 'FALSE' would only 

be returned if you tried to remove an appicon that was not 
on workbench's list of appicons. 

SEE ALSO 
AddAppicon 

BUGS 
None 

DevCon90 14 Workbench V2.D 
Documentation Update 



u 

u 

u 

workbench.library/RemoveAppMenuitem workbench.library/RemoveAppMenuitem 

NAME 
RemoveAppMenuitem- remove a menuitem from workbench's list 

of appmenuitems. 

SYNOPSIS 
error = RemoveAppMenuitem(AppMenuitem) 

DO AO 
BOOL RemoveAppMenuitem(struct AppMenuitem *); 

FUNCTION 
Attempt to remove an appmenuitem from workbench's list 
of appmenuitems. 

INPUTS 
AppMenuitem - pointer to an AppMenuitem structure returned by 

AddAppMenuitem. 

RESULTS 

(V36) 

error - TRUE if successful, else FALSE. Typically 'FALSE' would only 
be returned if you tried to remove an appmenuitem that was not 
on workbench's list of appmenuitems. 

SEE ALSO 
AddAppMenuitem 

BUGS 
None 

Wotlcbsnch V2.D 
Documentation Update 

15 DevCon90 



workbench.library/RemoveAppWindow workbench.library/RemoveAppWindow 

NAME 
RemoveAppWindow- remove a window from workbench's list 

of appwindows. 

SYNOPSIS 
error = RemoveAppWindow(AppWindow) 

DO AO 
BOOL RemoveAppWindow(struct AppWindow *); 

FUNCTION 

(V36) 

Attempt to remove an appwindow from workbench's list of appwindows. 

INPUTS 
AppWindow - pointer to an AppWindow structure returned by 

AddAppWindow. 

RESULTS 
error - TRUE if successful, else FALSE. Typically 'FALSE' would only 

be returned if you tried to remove an appwindow that was not 
on workbench's list of appwindows. 

SEE ALSO 
AddAppWindow 

BOGS 
None 

DevCon90 16 Wotlcbench VI.D 
Documentation Update 



u 

u 

u 

Icon Library V2.0 
by Dave Berezowski 

This article is an update to the Icon Library documentation incorporating new information 
about the V2.0 release. The information presented here applies to the V2.0 release and is 
contained in three sections; bug fixes, enhancements, and new library calls. 

V2.0 Icon Library fixes include: 

Cl icon.library now passes enforcer, memmung and io_torture. This means that 
it no longer accesses inapropriate memory locations or re-uses memory· after 
it as freed it. 

Cl the use of :MEMF _CHIP type memory has been reduced. 

Cl PutWBObjectO now closes the file it was writing if it encounters an error. 

V2.0 Icon Library enhancements: 

Cl BumpRevision(), FindToolType() and MatchToolV alue() are now case 
insensitive. This change make it easier for the user and programmer to 
enter or find the correct tool type and match tool values. 

Cl FindToolType() no longer requires an equal sign in the statement. Thus 
a tool type of 'DONOTW AIT' is now recognized whereas under V1.3 
one would have had to enter 'DONOTW AIT='. 

Cl Bump Revision() now uses the underscore character (instead of a space) when 
composing names. It is, however, backwards compatable with V1.3. The 
use of the underscore character removes the burden of enclosing the 
filename in quotes as one must do when a filename contains spaces. 

Icon Llbraty Vf.D 1 DevCon90 



Cl PutDiskObjectO now notifies Workbench (via an internal mechanism) if the 
operation was sucessful. This feature has been coined 'Automatic Icon 
Updating'. After a succesful PutDiskObject(), Workbench will recieve the 
message and either create a new icon or update the old one if the window 
in which the icon would live is open. If Workbench is not running (i.e., a 
LoadWb has not yet been performed) then the notification is bypassed. 

GetDetDiskObject() - read default Workbench disk object from disk. Refer to the 
icon.library autodocs below for a complete description. 

PutDefDiskObject() - write disk object as the default for its type. Refer to the 
icon.library autodocs below for a complete description. 

GetDiskObjectNew() - read in a Workbench disk object from disk. This is the 
preferred call (over GetDiskObject) for those applications 
using the AddAppWindow() library call of workbench.library. 
Refer to the icon.library autodocs below for a complete 
description. 

icon.Ubrary Autodocs 

TABLE OF CONTENTS 

icon.library/AddFreeList 
icon.library/BumpRevision 
icon.library/FindToolType 
icon.library/FreeDiskObject 
icon.library/FreeFreeList 
icon.library/GetDefDiskObject 
icon.library/GetDiskObject 
icon.library/GetDiskObjectNew 
icon.library/MatchToolValue 
icon.library/PutDefDiskObject 
icon.library/PutDiskObject 

DevCon90 2 Icon 1./braty V2.D 



TA
BLE OF CO

N
TEN

TS 

ico
n

.llb
rary

/A
d

d
F

reeL
ist 

ico
n

.lib
rary

/B
u

m
p

R
ev

isio
n

 
ico

n
.lib

rary
/F

in
d

T
o

o
lT

y
p

e 
ico

n
.lib

rary
/F

reeD
isk

O
b

ject 
ic

o
n

.llb
ra

ry
/F

re
e
F

re
e
L

ist 
1

co
n

.l1
b

rary
/G

etD
efD

isk
O

b
ject 

ico
n

.lib
rary

/G
etD

isk
O

b
ject 

ico
n

.lib
rary

/G
etD

isk
O

b
jectN

ev
 

1
co

n
.l1

b
rary

/M
atch

T
o

o
lV

alu
e 

ico
n

.llb
rary

/P
u

tD
efD

isk
O

b
ject 

ico
n

.lib
rary

/P
u

tD
isk

O
b

ject 

·.) 

lcon.doc 
P

age 1 
lcon.doc 

P
a

g
e

2
 

ico
n

.lib
rary

/A
d

d
F

reeL
ist 

N
A

M
E 

ico
n

.lib
rary

/A
d

d
F

reeL
ist 

.) 

A
ddF

reeL
1st 

-
add m

em
ory 

to
 a 

fre
e
 
lis

t. 

SY
N

O
PSIS 
sta

tu
s 

a 
A

d
d

F
reeL

ist(free, 
m

em
, 

len
) 

DO 
AO 

A
l 

A
2 

BOOL A
d

d
F

reeL
1

st(stru
ct 

F
reeL

1
st 

•, 
A

PTR
, 

U
LO

N
G

)t 

FU
N

CTIO
N

 
T

h
is 

ro
u

tin
e adds th

e
 sp

e
c
ifie

d
 m

em
ory 

to
 th

e
 fre

e
 lis

t. 
T

he 
fre

e
 lis

t w
ill b

e ex
ten

d
ed

 
(if re

q
u

ire
d

). 
If th

e
re

 
is

 n
o

t enouqh m
em

ory 
to

 co
m

p
lete th

e
 c

a
ll, 

a 
n

u
ll 

is
 retu

rn
ed

. 

N
ote th

a
t A

d
d

F
reeL

ist d
o

es NOT 
a
llo

c
a
te

 th
e
 req

u
ested

 m
em

ory. 
It o

n
ly

 reco
rd

s th
e
 m

em
ory 

in
 th

e
 fre

e
 
lis

t. 

IN
PU

TS fre
e
 --

a 
p

o
in

te
r to

 a 
F

reeL
ist stru

c
tu

re
 

m
em

 
-
-

th
e
 b

ase o
f th

e
 m

em
ory 

to
 b

e
 reco

rd
ed

 
le

n
 --

th
e
 len

q
th

 o
f th

e
 m

em
ory 

to
 b

e
 reco

rd
ed

 

RESU
LTS 
sta

tu
s --

TRU
E 

if
 th

e
 c

a
ll su

cceed
ed

 e
lse

 FA
LSEt 

SEE A
LSO

 
A

llo
c
!n

try
, 

F
reeE

n
try

, 
F

reeF
reeL

ist 

B
U

G
S N

one 

) 

C
') 



c 
lcon.doc 

P
age3 

ico
n

.llb
rary

/B
u

m
p

R
ev

lslo
n

 
lco

n
.llb

rary
/B

u
m

p
R

ev
isio

n
 

K
M

m
 B

um
pR

evision -
refo

rm
at a 

nam
e 

fo
r a 

seco
n

d
 co

p
y

. 

SY
N

O
PSIS 
re

su
lt a 

B
um

pR
evlslon(new

buf, 
oldnam

e) 
DO 

AO 
A

l 
ch

ar *B
um

pR
evision(char •, 

c
h

a
r *)1 

FU
N

CTIO
N

 
B

um
pR

evision tak
es a 

nam
e 

an
d

 tu
rn

s 
it 

In
to

 a 
•co

p
y

 o
f nam

e•. 
It know

s 
how

 
to

 d
eal w

ith
 co

p
ies o

f c
o

p
ie

s. 
T

he 
ro

u
tin

e
 

w
ill tru

n
c
a
te

 th
e
 new

 
nam

e 
to

 th
e
 m

axim
um

 d
o

s nam
e 

siz
e
 

(c
u

rre
n

tly
 30 c

h
a
ra

c
te

rs). 

IN
PU

TS new
buf -

th
e
 new

 b
u

ffe
r th

a
t w

ill 
re

c
e
iv

e
 th

e
 nam

e 
(it m

ust 
b

e
 a

t 
le

a
st 

31 
c
h

a
ra

c
te

rs 
lo

n
q

). 
oldnam

e -
th

e
 o

rlq
ln

a
l nam

e 

RESU
LTS 
re

su
lt -

a 
p

o
in

te
r to

 new
buf 

EX
A

M
PLE 
o

ld
 nam

e 

•too• 
•copy o

f fo
o

• 
•copy -2

 o
f fo

o
• 

•co
p

y
-1

J9
 o

f fo
o

• 
•copy-foo'~~' 

-
•copy 0 o

f fo
o

• 
•ot23tst7aJot234567B

901234S
67&

9• 

SEE A
LSO

 

BOGS 
N

one 

new
buf 

•co
p

y
 o

f fo
o

• 
•co

p
y

-2
 o

f fo
o

• 
•co

p
y

 -3
-o

C
fo

o
• 

•copy-2U
O

 o
f fo

o
• 

•co
p

y
-o

f co
p

y
 fo

o
• 

•co
p

y
-1

 o
f fo

o
• 

•copy:ot_O
T

23456789012345678901• 

c 
c 

lcon.doc 
P

age4 

lco
n

.lib
rary

/F
in

d
T

o
o

lT
y

p
e 

ico
n

.lib
rary

/F
in

d
T

o
o

lT
y

p
e 

N
A

M
E F

lndT
oolT

ype -
fin

d
 th

e
 v

alu
e o

f a 
T

oolT
ype v

a
ria

b
le

. 

SY
N

O
PSIS 

v
alu

e a 
F

in
d

T
o

o
lT

y
p

e(to
o

lT
y

p
eA

rray
, 

typeN
am

e) 
DO 

AO 
A

l 
c
h

a
r *

F
ln

d
T

o
o

lT
y

p
e(ch

ar ••, 
c
h

a
r *)1 

FU
N

CTIO
N

 
T

h
is fu

n
ctio

n
 

search
es a 

to
o

l ty
p

e a
rra

y
 fo

r a 
q

iv
en

 e
n

try
, 

an
d

 re
tu

rn
s a 

p
o

in
te

r to
 th

a
t e

n
try

. 
T

b
is is

 u
se

fu
l fo

r 
fin

d
ln

q
 

stan
d

ard
 to

o
l 

ty
p

e v
a
ria

b
le

s. 
T

he re
tu

rn
e
d

 
v

alu
e is

 n
o

t a 
new

 copy o
f th

e
 strln

q
 b

u
t is

 o
n

ly
 

a 
p

o
in

te
r to

 th
e
 p

a
rt o

f th
e
 strin

q
 a

fte
r typeN

am
e. 

IN
PU

TS to
o

lT
y

p
e
A

rra
y

-
an a

rra
y

 o
f strin

q
s 

(c
h

a
r*

*
). 

ty
p

eN
am

e-
th

e
 nam

e o
f th

e
 to

o
lty

p
e
 e

n
try

 
(c

h
a
r*

). 

RESU
LTS 
v

alu
e -

a 
p

o
in

te
r to

 a 
strin

q
 th

a
t 

is
 th

e
 v

alu
e bound to

 typeN
am

e, 
o

r N
U

LL 
if

 typeN
am

e 
is

 n
o

t in
 th

e
 to

o
lT

y
p

eA
rray

. 

EXAM
PLE 
A

asum
e th

e
 to

o
l ty

p
e a

rra
y

 h
as tw

o •trin
q

s 
in

 its
 

•riL
E

T
Y

P
E

atex
t• 

•T
£M

P
D

IR
•:t• 

F
indT

oolT
ype( to

o
lT

y
p

eA
rray

, 
•riL

E
T

Y
P

E
• 

) 
re

tu
rn

• 
•te

x
t• 

F
indT

oolT
ype( to

o
lT

y
p

eA
rray

, 
•flle

ty
p

e
• ) 

re
tu

rn
s 

•te
•t• 

F
indT

oolT
ype( to

o
lT

y
p

eA
rray

, 
•TEM

PD
IR

• 
) 

re
tu

rn
• 

•z
t• 

F
indT

oolT
ype( to

o
lT

y
p

eA
rray

, 
•M

A
X

SIZE• 
) 

re
tu

rn
• H

U
LL 

SEE A
LSO

 
M

atchT
oolV

alue 

BOGS 
N

one 

~
 



lcon.doc 
P

ageS
 

lco
n

.llb
rary

/F
reeD

isk
O

b
ject 

ic
o

n
.lib

ra
ry

/F
re

e
D

isk
O

b
je

c
t 

N
A

M
E F

reeD
isk

O
b

ject 
-

fre
e
 a

ll m
em

ory 
in

 a 
W

orkbench 
d

isk
 o

b
je

c
t. 

SY
N

O
PSIS 

F
reeD

isk
O

b
ject(d

isk
o

b
j) 

AO 
v

o
id

 F
reeD

isk
O

b
ject(stru

ct 
D

isk
O

b
ject 

*
)I 

FU
N

CTIO
N

 
T

h
is 

ro
u

tin
e
 fre

e
s 

a
ll m

em
ory 

in
 a 

W
orkbench 

d
isk

 o
b

je
c
t, 

an
d

 th
e
 

o
b

je
c
t 

its
e
lf. 

It 
is

 
im

p
lem

en
ted

 v
ia

 
F

re
e
F

re
e
L

la
t(). 

G
etD

iak
O

b
ject() 

ta
k

e
s c

a
re

 o
f a

ll th
e
 
in

itia
liz

a
tio

n
 re

q
u

ire
d

 
to

 se
t up th

e
 o

b
je

c
t's

 
fre

e
 
lis

t. 
T

h
is p

ro
ced

u
re m

ay 
ONLY 

b
e c

a
lle

d
 on 

a 
D

iak
O

b
ject a

llo
c
a
te

d
 v

ia
 G

etD
isk

O
b

ject(). 

IN
PU

TS d
iak

o
b

j -
-

a 
p

o
in

te
r to

 a 
D

iak
O

b
ject stru

c
tu

re
 

RESU
LTS 
N

one 

SEE A
LSO

 
G

etD
isk

O
b

ject, 
F

re
e
F

re
e
L

ist 

BOGS N
one ) 

lcon.doc 
P

a
g

e
&

 

ic
o

n
.lib

ra
ry

/F
re

e
F

re
e
L

ia
t 

ic
o

n
.llb

ra
ry

/F
re

e
F

re
e
L

ia
t 

) 

N
A

M
E F

reeF
reeL

iat -
fre

e
 a

ll m
em

ory 
in

 a 
fre

e
 
lis

t. 

SY
N

O
PSIS 

F
re

e
F

re
e
L

ist(fre
e
) 

AO 
v

o
id

 F
re

e
F

re
e
L

ist(stru
c
t 

F
reeL

iat 
*

)I 

FU
N

C
TIO

N
 

T
h

is 
ro

u
tin

e
 fre

e
s 

a
ll m

em
ory 

in
 a 

fre
e
 
lis

t, 
and th

e
 

fre
e
 
lis

t 
its

e
lf. 

It 
is

 u
se

fu
l 

fo
r 

e
a
sily

 9
e
ttin

9
 

rid
 o

f a
ll m

em
ory 

in
 a 

a
e
rie

s o
f stru

c
tu

re
s. 

T
h

ere is
 

a 
f
~
e
e
 
lis

t 
in

 a 
W

orkbench 
o

b
je

c
t, 

an
d

 th
is

 c
o

n
ta

in
s 

a
ll th

e
 m

em
ory 

a
sso

c
ia

te
d

 w
ith

 th
a
t o

b
je

c
t. 

A
 F

re
e
L

ist 
is

 a 
lis

t o
f M

em
L

ist 
stru

c
tu

re
s. 

S
e

e
 th

e
 

M
em

L
iat 

an
d

 M
em

E
ntry d

o
cu

m
en

tatio
n

 
fo

r m
ore in

fo
rm

atio
n

. 

I
f
 th

e
 F

re
e
L

ist 
its

e
lf is

 in
 th

e
 fre

e
 
lis

t, 
it m

ust be 
in

 th
e
 firs

t M
em

L
iat 

in
 th

e
 F

re
e
L

ist. 

IN
PU

TS fre
e
 -

-
a 

p
o

in
te

r to
 a 

F
re

e
L

ia
t stru

c
tu

re
 

R
ESU

LTS 
N

one 

SEE A
LSO

 
A

llo
cE

n
try

, 
F

reeE
n

try
, 

A
d

d
F

reeL
iat 

BO
G

S 
N

one 

) 

., 



c 
lcon.doc 

Page 7 

1con.l1brary/G
etD

efD
1skO

bject 
ico

n
.lib

rary
/G

etD
efD

isk
O

b
ject 

N
A

M
E G

etD
efD

iskO
bject -

read
 d

e
fa

u
lt w

b d
isk

 o
b

ject 
from

 d
isk

. 
(V

3
6

) 

SY
N

O
PSIS 
d

isk
o

b
j 

a 
G

etD
efD

isk
O

b
ject(d

ef ty
p

e) 
DO 

DU 
stru

c
t D

lskO
bject •G

etD
lskD

efO
bject(L

O
N

G
), 

FU
N

CTIO
N

 
T

his ro
u

tin
e read

s 
in

 a 
d

e
fa

u
lt W

orkbench 
d

isk
 o

b
ject 

in
 from

 d
isk

. 
T

he v
a
lid

 d
ef ty

p
es can

 b
e found in

 w
orkbench/w

orkbench.h and 
cu

rren
tly

 ln
c!u

d
e W

BD
ISK

 th
ru

 NBGARBAGE 
If th

e c
a
ll 

fa
lls

, 
lt w

ill retu
rn

 
zero

. 
T

he reaso
n

 
fo

r th
e
 fa

ilu
re

 m
ay 

b
e o

b
tain

ed
 

v
ia Io

E
rr(). 

U
slnq th

is ro
u

tin
e p

ro
te

c
ts you 

from
 any fu

tu
re chanqes to

 
th

e w
ay 

d
e
fa

u
lt 

ico
n

s a
re

 sto
re

d
 w

ith
in

 th
e
 sy

stem
. 

IN
PU

TS d
ef ty

p
e
-

d
e
fa

u
lt 

ico
n

 ty
p

e 
(W

BD
ISK

 th
ru

 N
D

K
IC

K
). 

N
ote th

a
t th

e
 

-
d

efin
e 'N

B
D

EV
IC

E' 
is

 n
o

t c
u

rre
n

tly
 su

p
p

o
rted

. 

RESU
LTS 
d

lsk
o

b
j 

th
e d

e
fa

u
lt W

orkbench 
d

isk
 o

b
ject 

in
 q

u
estio

n
 

SEE 
A

LSO
 

P
utD

efD
iskO

bject 

BUGS N
one 

c 
c 

lcon.doc 
P

ageS
 

ico
n

.lib
rary

/G
etD

isk
O

b
ject 

ico
n

.lib
rary

/G
etD

isk
O

b
ject 

N
A

M
E G

etD
lskO

bject -
read

 in
 a 

W
orkbench d

isk
 o

b
ject 

from
 d

isk
. 

SY
N

O
PSIS 

d
lsk

o
b

j 
a 

G
etD

iskO
bject(nam

e) 
DO 

AO 
a
tru

c
t D

isk
O

b
ject 

•G
etD

lak
O

b
ject(ch

ar •), 

FU
N

CTIO
N

 
T

h
is 

ro
u

tin
e
 read

s 
in

 a 
W

orkbench d
isk

 o
b

ject in
 from

 d
isk

. 
T

he 
nam

e 
p

aram
eter w

ill have a 
•.in

fo
• postpended to

 it, 
and th

e
 

in
fo

 file
 o

f th
a
t nam

e w
ill b

e read
. 

If th
e
 c

a
ll fa

ils, 
it w

ill 
re

tu
rn

 zero
. 

T
he 

reaso
n

 fo
r th

e fa
ilu

re
 m

ay 
b

e o
b

tain
ed

 
v

ia
 Io

E
rr (). 

U
slnq th

is ro
u

tin
e
 p

ro
te

c
ts you 

from
 any fu

tu
re

 chanqes to
 

th
e
 w

ay 
leo

n
a a

re
 sto

re
d

 w
ith

in
 th

e sy
stem

. 

A
 F

reeL
ist stru

c
tu

re
 is

 a
llo

c
a
te

d
 ju

st a
fte

r th
e
 D

lskO
bject 

stru
c
tu

re
1

 
F

reeD
isk

O
b

ject m
akes 

u
se o

f th
is to

 q
e
t rid

 o
f th

e
 

m
em

ory 
th

a
t v

as a
llo

c
a
te

d
. 

IN
PU

TS nam
e -

-
nam

e o
f th

e
 o

b
ject 

(ch
ar 

*
) 

o
r NULL 

if
 you 

ju
st w

ant 
a 

D
isk

O
b

ject stru
c
tu

re
 a

llo
c
a
te

d
 fo

r you 
(u

sefu
l w

hen 
c
a
llin

q
 A

ddA
ppicon 

in
 v

o
rk

b
en

ch
.lib

rary
). 

RESU
LTS 
d

lsk
o

b
j -

-
th

e
 W

orkbench d
isk

 o
b

ject in
 q

u
estio

n
 

SEE A
LSO

 
F

reeD
h

k
O

b
ject 

BUGS N
one 

co 



lcon.doc 
P

age 9 

ico
n

.lib
rary

/G
etD

isk
O

b
jectN

ew
 

ico
n

.lib
rary

/G
etD

lsk
O

b
jectN

ew
 

N
A

M
E G

etD
iskO

bjectN
ew

 -
read

 
in

 a 
W

orkbench d
isk

 o
b

je
c
t 

from
 d

isk
. 

(V
3

6
) 

SY
N

O
PSIS 

d
isk

o
b

j 
c 

G
etD

iskO
bjectN

ew
(nam

eJ 
DO 

AO 
stru

c
t D

lskO
bject 

*
G

etD
isk

O
b

ject(ch
ar *

J; 

FU
N

CTIO
N

 
T

his ro
u

tin
e read

s 
in

 a 
W

orkbench d
isk

 o
b

je
c
t 

in
 

from
 d

isk
. 

T
he 

nam
e p

aram
eter w

ill h
av

e a 
•.in

fo
• p

o
stp

en
d

ed
 to

 it, 
and th

e
 

in
fo

 file
 o

f th
a
t nam

e 
w

ill b
e read

. 
If th

e
 c

a
ll 

fa
ils

, 
it w

ill retu
rn

 
zero

. 
T

he 
reaso

n
 

fo
r th

e
 fa

ilu
re

 m
ay 

b
e o

b
tain

ed
 

v
ia Io

E
rr(J. 

U
sinq th

is ro
u

tin
e
 p

ro
te

c
ts you 

from
 any 

fu
tu

re
 ch

an
v

es to
 

th
e w

ay 
ico

n
s a

re
 sto

re
d

 w
ith

in
 th

e
 sy

stem
. 

A
 F

reeL
ist stru

c
tu

re
 is

 a
llo

c
a
te

d
 
ju

st a
fte

r th
e
 D

isk
O

b
ject 

stru
c
tu

re
; 

F
reeD

isk
O

b
ject m

akes 
u

se o
f th

is to
 v

et 
rid

 o
f th

e
 

m
em

ory th
a
t v

as a
llo

c
a
te

d
. 

T
his c

a
ll is 

fu
n

c
tio

n
a
lly

 
id

e
n

tic
a
l to

 G
etD

iskO
bject w

ith
 one ex

cep
tio

n
. 

If its
 c

a
ll to

 G
etD

isk
O

b
ject 

fa
ils

, 
th

is 
fu

n
ctio

n
 c

a
lla

 G
etD

efD
iakO

bject. 
T

his is
 u

sefu
l w

hen 
th

e
re

 
is

 
no 

.in
fo

 file
 fo

r th
e
 ico

n
 you 

a
re

 try
in

g
 

to
 v

et a d
isk

 o
b

je
c
t 

fo
r. 

A
p

p
licatio

n
s th

a
t u

se w
orkbench a

p
p

lic
a
tio

n
 

w
indow

s M
UST 

u
se th

is
 c

a
ll 

if
 th

ey
 w

ant to
 h

an
d

le th
e
 u

ser d
ro

p
p

in
v

 an
 

ico
n

 
(th

a
t d

o
e
sn

't h
av

e a 
.in

fo
 file

) 
on th

e
ir w

indow
. 

T
he V

2.0 
ico

n
 e

d
ito

r program
 is

 an
 exam

ple o
f a 

w
orkbench a

p
p

lic
a
tio

n
 w

indow
 

th
a
t u

ses th
is c

a
ll. 

IN
PU

TS nam
e --

nam
e 

o
f th

e
 o

b
je

c
t 

(ch
ar *) 

o
r NULL 

if
 you 

ju
st w

ant 
a 

D
isk

O
b

ject stru
c
tu

re
 a

llo
c
a
te

d
 fo

r you 
(u

sefu
l w

hen 
c
a
llin

q
 A

ddA
ppicon 

in
 w

o
rk

b
en

ch
.lib

rary
). 

RESU
LTS 
d

isk
o

b
j --

th
e
 w

orkbench 
d

isk
 o

b
je

c
t 

in
 q

u
estio

n
 

SEE ALSO 
F

reeD
iskO

bject 

BUGS N
one ) 

lcon.doc 
P

age 10 

ico
n

.lib
rary

/M
atch

T
o

o
lV

alu
e 

lco
n

.llb
rary

/M
atch

T
o

o
lV

alu
e 

.. ) 

N
A

M
E M

atchT
oolV

alue -
ch

eck
 a 

to
o

l ty
p

e v
a
ria

b
le

 fo
r a 

p
a
rtic

u
la

r v
alu

e. 

SY
N

O
PSIS 
re

su
lt 

o 
M

atch
T

o
o

lV
alu

e(ty
p

eS
trln

v
, 

v
alu

e) 
DO 

AO 
A

l 
BOOL M

atch
T

o
o

lV
alu

e(ch
ar •, 

ch
ar *

); 

FU
N

CTIO
N

 
M

atchT
oolV

alue ls
 u

sefu
l 

fo
r p

arsin
v

 a 
to

o
l ty

p
e v

alu
e fo

r 
a 

know
n 

v
a
lu

e
. 

It know
s 

how
 to

 p
arae th

e
 sy

n
tax

 fo
r a 

to
o

l 
ty

p
e v

alu
e 

(in
 p

a
rtic

u
la

r, 
it know

s 
th

a
t 'I

' 
se

p
a
ra

te
s 

a
lte

rn
a
te

 v
a
lu

e
s). 

N
ote th

a
t th

e
 p

arsin
v

 la
 case in

se
n

sitv
e
. 

IN
PU

TS ty
p

eS
trin

v
 -

a 
T

oolT
ype v

alu
e 

(as re
tu

rn
e
d

 by 
F

1ndT
oolT

ype) 
v

alu
e -

you 
a
re

 in
te

re
ste

d
 if

 v
alu

e ap
p

ears 
in

 ty
p

eS
trin

v
 

RESU
LTS 
re

su
lt -

TRU
E 

if
 th

e
 v

alu
e v

as 
in

 ty
p

e
S

trln
q

.e
la

e
 FA

LSE. 

EXAM
PLE 
A

ssum
e 

th
e
re

 a
re

 tw
o ty

p
e strin

q
a
: 

ty
p

e! 
• 

•te
x

t• 
ty

p
e2

 • 
•a

lb
ic

• 

M
atchT

oolV
alue( ty

p
e
l, 

•te
x

t• 
) 

re
tu

rn
s TRU

E 
M

atchT
oolV

alue( ty
p

e
l, 

•tE
X

T
• 

) 
re

tu
rn

s TRU
E 

M
atchT

oolV
alue( ty

p
e
l, 

•d
a
ta

• 
) 

re
tu

rn
s FA

LSE 
M

atchT
oolV

alue( ty
p

e2
, 

•a
• ) 

re
tu

rn
s TRU

E 
M

atchT
oolV

alue( ty
p

e2
, 

•b
• ) 

re
tu

rn
s TRU

E 
M

atchT
oolV

alue( ty
p

e2
, 

•d
• ) 

re
tu

rn
s FA

LSE 
M

atchT
oolV

alue( ty
p

e2
, 

•a
lb

• ) 
re

tu
rn

s FA
LSE 

S
E

E
 A

LSO
 

F
lndT

oolT
ype 

BU
G

S N
one 

) 

...... 



c 
lcon

.d
oc 

P
age 11 

ico
n

.lib
rary

/P
u

tD
efD

isk
O

b
ject 

ico
n

.lib
rary

/P
u

tD
efD

isk
O

b
ject 

N
A

M
E P

utD
efD

lskO
bject -

w
rite

 d
isk

 o
b

je
c
t as th

e
 d

e
fa

u
lt 

fo
r 

its
 ty

p
e. 

(V
36) 

SY
N

O
PSIS 

sta
tu

s =
 P

u
tD

efD
isk

O
b

ject(d
lsk

o
b

j) 
DO 

AO 
BOOL P

u
tD

efD
lsk

O
b

ject(stru
ct D

lsk
O

b
ject 

*
); 

FU
N

CTIO
N

 
T

h
is ro

u
tin

e w
rites o

u
t a 

D
lsk

O
b

ject stru
c
tu

re
, 

and its
 

asso
ciated

 in
fo

rm
atio

n
. 

If th
e
 c

a
ll fa

lls
, 

a 
zero

 w
ill 

b
e

 retu
rn

ed
. 

T
he 

reaso
n

 
fo

r th
e
 fa

ilu
re

 m
ay 

be o
b

tain
ed

 
v

ia Io
E

rr () • 

N
ote th

a
t th

is 
fu

n
ctio

n
 c

a
lls

 P
u

tD
lsk

O
b

ject in
te

rn
a
lly

 w
hich m

eans 
th

a
t th

is c
a
ll 

(if su
cessfu

l) 
n

o
tifie

s w
orkbench 

th
an

 an leo
n

 has 
been created

/m
o

d
ified

. 

U
sing th

is ro
u

tin
e p

ro
te

c
ts you 

from
 any 

fu
tu

re changes to
 

th
e
 w

ay d
e
fa

u
lt 

ico
n

s a
re

 sto
re

d
 w

ith
in

 th
e
 sy

stem
. 

IN
PU

TS d
lsk

o
b

j --
a 

p
o

in
ter to

 a 
D

lsk
o

b
jeet 

RESU
LTS 
sta

tu
s --

TRU
E 

if
 th

e c
a
ll su

cceed
ed

 e
lse

 FA
LSE 

SEE A
LSO

 
G

etD
efD

iskO
bject 

BUGS N
one 

(_ 
-
-
-
-
-
-

-·-----

c· 
lcon.doc 

P
age 12 

lco
n

.lib
rary

/P
u

tD
lsk

O
b

ject 
leo

n
.llb

rary
/P

u
tD

lsk
O

b
ject 

N
A

M
E P

u
tD

lsk
O

b
ject -

w
rite

 o
u

t a 
D

lskO
bject to

 d
isk

. 

SY
N

O
PSIS 
sta

tu
s 

a 
P

utD
iskO

bject(nam
e, 

d
lsk

o
b

j) 
DO 

AO 
A

l 
BOOL 

P
u

tD
isk

O
b

ject(ch
ar *

, 
stru

c
t D

iskO
bject 

*
)I 

FU
N

CTIO
N

 
T

h
is 

ro
u

tin
e w

rites o
u

t a 
D

lskO
bject stru

c
tu

re
, 

and its
 

asso
ciated

 in
fo

rm
atio

n
. 

T
he 

file
 nam

e o
f th

e
 in

fo
 

file
 w

ill b
e th

e nam
e p

aram
eter w

ith
 a 

•.in
fo

• p
o

stp
en

d
ed

 to
 it. 

If th
e
 c

a
ll fa

lls
, 

a 
zero

 w
ill 

b
e retu

rn
ed

. 
T

he 
reaso

n
 fo

r th
e
 fa

ilu
re

 m
ay 

b
e
 o

b
tain

ed
 

v
ia

 Io
E

rr () • 

A
s 

o
f re

le
a
se

 V
2.0, 

P
utD

lskO
bject 

(if su
cessfu

l) 
n

o
tifie

s w
orkbench 

han an 
leo

n
 h

as been created
/m

o
d

ified
. 

U
sing th

is ro
u

tin
e p

ro
te

c
ts you 

from
 any fu

tu
re

 changes to
 

th
e
 w

ay 
leo

n
a a

re
 sto

re
d

 w
ith

in
 tb

e
 sy

stem
. 

IN
PU

TS nam
e 

-
-

nam
e o

f th
e
 o

b
ject 

(p
o

in
ter to

·a
 c

h
a
ra

c
te

r strin
g

) 
d

lsk
o

b
j --

a 
p

o
in

te
r to

 a 
D

lskO
bject 

RESU
LTS 
•ta

tu
• -

-
TR

U
E

 
if

 th
e
 c

a
ll •u

eceed
ed

 e
lse

 FA
LSE 

SEE A
LSO

 
G

etD
lsk

O
b

jeet, 
F

reeD
lakO

bjeet 

BUGS 
N

one 

C
l) 











u 

Commodities Exchange 

u 

·U 



CONTENTS 

1. Commodities User Manual • • • • • • • • • • • • • • • • 1 
1.1 IN1RODUCTION • • • • • • • • • • • • • • • • • 1 
1.2 INSTALLATION • • • • • • • • • • • • • • • • • • 1 
1.3 CONFIGURATION • • • • • • • • • • • • • • • • • 1 
1.4 EXAMPLES • • • • • • • • • • • • • • • • • • • 3 
1.5 THE EXCHANGE CONTROLLER • • • • • • • • • • • • 5 

2. Commodities Reference Manual • • • • • 6 
2.1 Preface • • • • • • • • • • • • • • • • • 6 
2.2 Introduction • • • • • • • • • • • • • • • • • 6 
2.3 Example Commodities • • • • • • • • • • • • • • • • • • 7 
2.4 COMMODITIES COMPONENTS • • • • • • • • • • • • 9 
2.5 COMMODITIES OVERVIEW • • • • • • • • • • • • • • 10 
2.6 Examples: Object Structure and Implementation • • • • • • • • • • 15 
2. 7 Examples: More Details • • • • • • • • • • • • • • • • 26 

-i- ~ 



u 
1. Commodities User Manual 

1.1 INTRODUCTION 

Commodities Exchange is a system that makes it easy to write programs which monitor the input 
handler food chain. This means they can respond to hot keys, take actions based on mouse 
action or inactivity, or even modify the input stream as it goes by. 

Not only are such programs easier to write using Commodities Exchange, but they are managed 
by a single controller program, Exchange, which provides simple and consistent display and 
control over the programs. 

The components of the system are a support library named "commodities.library", several 
example commodities, and the special controller program Exchange. · 

1.2 INSTALLATION 

Commodities.library must be present in the LIBS: directory or in the LIBS: path. The icons for 
the various programs and the Exchange controller can reside on any disk of your choice. 

U 1.3 CONFIGURATION 

u 

To start a commodity, you simply double click on its icon. There are several example 
commodity programs included on the V2.0 release disks. Each commodity has several argument 
strings that can be passed to it when it is started as follows: 

1. If the commodity is started from the Workbench, the ToolTypes strings can be edited via 
the Info menu item. 

2. If the commodity is staned from the CLI, you can make a single argument out of each 
corresponding ToolType syntax. Example: 

run !Help "CX PRIORITY=l" "CYCLE=shift fl" "MAKEBIG=shift f2" 

Commodities Exchange 1 DevCon 90 



Each commodity can support its own specific ToolType arguments. In addition, all commodities 
support the CX_PRIORITY ToolType: 

CX_PRIORITY The CX_PRIORITY ToolType detennines when a commodity will see 
input relative to the other commodities. The commodity with the highest 
priority will see input before a commodity of lower priority. 

The priority is relative to the other commodities only, ie., it does not affect 
the priority of the task. 

For instance, the commodity programs FKey and !Help let you assign 
functions to the Fl key. If both FKey and !Help are running only the one 
with the highest priority will see the Fl key event. 

All commodities that support windows also support the following ToolTypes: 

CX_POPKEY The CX_POPKEY ToolType means that this commodity supports a pop
up window, and allows you to specify the hot key (or other input event!) 
that will make the program show itself. Such programs can be made to 
disappear either by tenninating completely, or going into an invisible 
("hidden") state. Convention dictates that the Close gadget on a pop-up 
window only makes it disappear, not quit. As you will see, you can either 
quit these programs by another means directly, or via the Exchange 
controller. 

The full syntax description for valid hot key expressions can be found in 
the Commodities Reference Manual. 

CX_POPUP The CX_POPUP ToolType accepts either YES or NO for its input. If YES 
then the commodity will open its window when first run. If NO the 
commodity will run but will not open its window. This is useful for 
putting commodities in the WBStartup drawer. 

Note that a commodity started from the CLI can be tenninated either by typing Control-E, or by 
using the BREAK command of the CLI if the commodity was started in the background with the 
RUN command. Example: 

BREAK TASK 2 E 

Commodities started from the Workbench are killed either through an interface of their own, or 
via the Exchange controller. 

Commodities that do not support a window can be killed by running the program a second time 
either from the WorkBench or the CLI. 

DevCon 90 2 Commodities Exchange 



u 

u 

u 

1.4 EXAMPLES 

There are several commodities included on the 2.0 distribution disks. We '11 describe them 
briefly here. 

lllelp An Intuition keyboard enhancer. lllelp monitors input and when triggered by the 
specified input events it takes several actions corresponding to its ToolTypes. 

CYCLE 

MAKEBIG 

MAKES MALL 

CYCLESCREEN 

Cycles nop-drawer windows back to front. 

Makes a window as large as legally possible without 
moving it 

Makes a window its minimum dimensions. 

Cycles between all the available screens. 

ZIPWINDOW Performs the same function as the zoom gadget in the 
currently active window. 

lllelp has no pop-up window. 

NoCapsLock This program is very simple. It renders the caps lock key ineffective. It has no 
pop-up window. 

AutoPoint 

Blanker 

FKey 

An example of a "Sun-style" window activation program. When the mouse 
pointer is moved the window underneath it is automatically activated. It also has 
no pop-up window. 

This program is a simple screen blanker thats blanks the screen after a certain 
number of seconds of inactivity. It accepts the ToolType SECONDS=xxxx to set 
the default number of seconds before the screen blanks. 

This is a function key assigner which allows you to assign strings to the unshifted 
and shifted function keys. For the non-shifted function keys it accepts ToolTypes 
of the form: 

Fl=status full 
F2=dir all 

FlO=list 

Commodities Exchange 3 DevCon 90 



For the shifted function keys, it accepts ToolTypes of the form: 

SFl=status full 
SF2=dir all 

SFlO=list 

The window also has four buttons at the bottom that allow you to save the current 
settings as ToolType strings in the program's icon. The buttons work as follows: 

Save 

Use 

Cancel 

Saves the current settings as Tool Type strings in the program's 
icon and closes the window. 

Uses the current settings without saving and closes the window. 

Restore the settings to those before the window was opened and 
close the window. 

Quit Terminate FKey without saving the settings. 

Blank This program has a pop-up window, but nothing else. It is provided as a skeleton 
example of a window-based commodity. It responds to all of the Exchange r-) 
controller commands. It also demonstrates the uniqueness feature: if it is running · 
and you try to start it again, it will just pop-up the window for its existing 
invocation and the new invocation will abon. This way, if you forget the pop-up 
hot key for a program, you can get to it either through the Exchange controller 
(see below) or by clicking on the program's icon again. 

This program and its source are available on the DevCon disks. 

Lefty Mouse Swaps the function of the left and right mouse buttons so southpaws can use the 
mouse on the left side of the keyboard. 

This program and its source are available on the DevCon disks. 

MBA Middle Button Action. This commodity converts a middle mouse button event 
into a shift left button event. Useful if you have a three button mouse. 

This program and .its source are available on the DevCon disks. 

DevCon 90 4 Commodities Exchange 



u 

u 

u 

1.5 THE EXCHANGE CONTROLLER 

The Exchange program is actually just another commodity, in that it has a pop-up window and is 
a commodities.library client like the other examples. However, it allows you to view and control 
the other loaded commodities. 

When started, it presents a window with two button panels, a status area, and a scrolling list of 
loaded commodities (including itself). 

The buttons on the left side control the Exchange itself. You can select Hide to make it 
disappear. (The default CX_POPKEY hot key for Exchange is "alt help".) You can select Quit 
to terminate the Exchange controller. 

The display of commodities is operated with the mouse. Selecting an item will cause the status 
area to display more detailed information about 

Title Shows the name of the selected commodity. 

Description Gives a brief description of the commodity. 

Status Shows whether the program is enabled or disabled. 

Once an item is selected, the buttons on the right hand side apply to that item. (Yes, it's OK to 
operate on Exchange itself in this way!) 

The buttons on the right apply to the selected commodity as described below. Note that the 
window keys Show and Hide will be ghosted for commodities that do not support windows. If 
no commodity is selected, all the buttons on the right will be ghosted. 

Show Causes a commodity to pop-up its window. If closed, it will be opened. If open, 
it will be brought to the front. 

Hide 

Disable 

Enable 

Kill 

Commands a commodity to close its pop-up window, but not exit. 

Commodities support this command to turn off their input filtering. This is useful 
to temporarily disable a commodity without actually terminating the program. 

The opposite of the above. Enables a currently disabled commodity 

This causes the selected commodity to terminate. All commodities support this 
command, either through the Exchange controller or by the issuing of a Control-E 
break signal directly to their task. 

Commodities Exchange 5 DevCon 90 



2. Commodities Reference Manual 
2.1 Preface 

In addition to this document, required reading includes the collected function references, the 
application include files, and the example applications provided. Familiarity with the 
input.device, especially the include file <devices/inputevent.h> is necessary. Exec Lists, 
Messages and Message Pons play a fundamental role in the system, and must also be 
understood. 

2.2 Introduction 

Commodities Exchange has as its major component an Amiga Exec library, named 
"commodities.library." If this library is put in logical volume LmS:, it can be opened and used 
by application programs to gain access to input in a very flexible way. In particular,·a 
Commodities application can monitor the Amiga input stream coming from the input.device 
without using an Intuition window or a console. 

To understand the purpose of Commodities Exchange takes a little explanation. The Amiga 
computer provides a low-overhead, message-based multi-tasking operating environment, 
complete with a multi-threaded DOS and Graphics/Windows environment. No other PC 
provides this, yet the impact sometimes seems to be lost on the personal computing community 
atlarge. · 

To some degree, this is explained by surrogate multi-tasking providing a high degree of 
satisfaction on popular competitors such as the Apple Macintosh and mM PC. Small programs 
called Desk Accessories, Pop-Up programs, Resident programs, Terminate-and-Stay-Resident 
programs and the like provide multiple application capability, with some limits. 

Technical problems with the ad-hoc methods of providing these functions on existing 
microcomputers find their way to the user, who must often empirically determine what programs 
may safely coexist, and in what order they must be loaded. 

Most of the technical problems in writing such programs are non-existent on the Amiga. In 
particular, using disk operating system services in pop-up programs is a black art on an IBM PC. 
A principle area of difficulty or awkwardness is the monitoring of input, be it for the purpose of 
triggering a pop-up program, perfonning spelling checking as words are typed, or translating 
keystrokes into sequences. 

DevCon90 6 Commodities Exchange 



u 

u 

u 

On the Amiga, the input problem is fundamentally solved by the input.device which provides an 
endorsed means of adding ninput handlers.~~ Unfortunately, without standards, arbitrary use of 
input handlers by uncooperative programs can quickly lead to incompatibilities or load-order 
dependence even on the Amiga. Furthermore, writing input handlers is far from trivial. 

Which brings us to the goal of the Commodities Exchange. Commodities consists of a single 
input handler which precedes the Intuition input handler. Like Intuition, Commodities will route 
input events to multiple applications. Commodities applications typically are interested in input 
regardless of what window is active, and thus Commodities is used as a simple, standardized 
way of managing the input for Resident type programs. 

Please follow the standards described in this document for user-specification of the input which 
triggers an action, and for establishing the priority of individual Commodities applications. In 
this way many high quality, mutually co-existent It resident" programs can be created by the 
amazing Amiga programming community. 

2.3 Example Commodities 

This section describes the end-user's view of several example Commodities applications. The 
source code for some of these is provided with the release. These programs together illustrate 
the most common principles of Commodities, and will serve as examples for the rest of this 
manual. 

To run any of the following examples, the user must have a copy of the file 
"commodities.library" in their LIBS: directory, where it will be found when the program begins 
execution. All the example applications would normally be started from the Workbench by 
opening (double-clicking) their icon. The ToolTypes information in the icon is used to configure 
the programs. 

lllelp 

The purpose of lllelp is to provide keyboard control of Intuition window operations. This 
reduces the need for using the mouse while doing keyboard intensive work, such as writing 
software or documents. This program was the prime motivation for the Commodities Exchange. 
Managing a multi-tasking user interface is too important a task to assign exclusively to a low
bandwidth device such as a mouse. 

Commodities Exchange 7 DevCon 90 



Currently, IHelp provides five functions: 

CYCLE This function causes the reannost application window on the Workbench 
to be brought to the front and Activated. 

MAKES MALL 

MAKEBIG 

The active window is shrunk to its minimum dimensions. 

The active window is made the maximum size possible respecting its 
limits and the edge of the screen. 

CYCLESCREEN Cycles through the available screens. 

ZIPWINDOW Same as using a windows zoom gadget. 

Each of these functions is assigned to an input event, typically a keystroke such as a function 
key. Pressing the proper key causes the action to take place regardless of which window is 
active or what use the active window may be making of keyboard input. 

In order to allow the user the ability to associate keystrokes (or other events) with these actions, 
the ToolType fields in the programs icon are used. The user selects (but does not open) the icon 
for !Help, and selects "Info" from the Workbench menu. The subsequent display allows the 
addition, editing, and deletion of parameter strings called Tool Types. 

To assign the five functions above to new keystrokes, ToolType items are added or edited to 
read, for example: 

CYCLE=fl 
MAKEBIG=alt fS 
MAKESMALL=shift alt fS 
CYCLESCREEN=f4 
ZIPWINDOW=fS 

The icon is saved, and the next time !Help is loaded these keystrokes prescribed by the user will 
be associated with the program's actions. 

NoCapsLock 

This application is almost invisible to the user. It monitors all keystrokes and insures that the 
CAPSLOCK key on the keyboard never has any effect (regardless of what its little red light 
says). The shift keys still function normally, but the frequent annoying effects of inadvertent 
pressing of the CAPSLOCK key are no more. 

This program provides nothing the user would want to change, so no ToolType fields in its icon 
are used. 

DevCon90 8 Commodities Exchange 



u 
Lefty Mouse 

This commodity swaps the function of the left and right mouse buttons. This is for leftys who 
wish to use the mouse on the left side of the keyboard. Again, no ToolType fields are used. 

Blanker 

This program provides a simple screen blanker that will blank the screen after a certain number 
of seconds of inactivity. It accepts the SECONDS=xxxx ToolType to adjust the default timing. 

MBA 

This program "Middle Button Action" converts a middle mouse button event (not normally used) 
into a shift left button event for extended icon selection. For use on systems with three button 
mice. 

Blank 

Blank is provided as an example of a simple window based commodity. Developers wishing to 
create their own commodities application should start with this example source code. 

2.4 COMMODITIES COMPONENTS 

The Commodities Exchange consists of five components: the commodities .library, the Exchange 
U program, a scanned library, include files and example programs. These are described below. 

u 

Commodities.library 

This is an Amiga Exec library which creates an input handler when it is initialized. It provides a 
large number of functions to manipulate Commodities Objects and Messages, the building 
blocks of a Commodities application. All access to data used by this library is done 
procedurally: no internal data structures are read or modified directly by application programs. 

The functions provided by the library fall into these classes: 

• Object Creation/Deletion 

• Object Linking 

• Object Data Access/Modify 

• Object Type-specific Functions 

• Input Event Matching Utilities 

• Message Routing/Disposing 

The library must be opened (using the Exec function OpenLibrary()) by each Commodities 
application. 

Commodities Exchange 9 DevCon 90 



All parameters to the library, following Amiga library convention, are thirty-two bit quantities. 
Small-integer users must remember that integers and characters are not promoted to thirty-two 
bits by the compiler, so casts must be used. In particular, don't forget to cast boolean and 
priority values to (LONG). 

Exchange Controller Program 

The Exchange Controller program can be be used to see the loaded commodities and perform 
simple operations such as window show/hide or commodity enable/disable. It is also possible to 
use this program to terminate an application. 

Support Scanned Library 

A scanned library is also provided. It is included in amiga.lib. A scanned library contains 
functions which are linked into the executable file of an application. Included are interface 
routines to commodities.library and some utility functions. 

Include Files 

Various include files are provided. For applications, the file <libraries/commodities.h> contains 
the principle infonnation. Assembler versions of the include files do not exist. 

Source Examples 

As mentioned, the source for the programs Blank, Blanker, Leftymouse, MBA, IHelp and 
NoCapsLock is provided on the DevCon disks. 

Commodities Applications 

You write these. They open "commodities.libmry" and perhaps use functions in the scanned 
libmry. They create and interconnect objects (see below) in such a way that particular events 
cause desired actions or notifications. 

2.5 COMMODITIES OVERVIEW 

Objects and Messages 

The basic building block is the Commodities Exchange Object, or CxObj. Each object is of 
some particular 'type' which corresponds to the primitive action that occurs when a 
Commodities Message arrives at the object. The objects are connected together in a large tree 
structure and messages corresponding to input events rattle down different paths in the tree, 
triggering different actions as they encounter different objects. 

One particular object type is the Custom object, which calls an application-provided function 
when a CxMsg arrives, so that programmers can provide virtually any function not available 
with the standard CxObj types. 

DevCon 90 10 Commodities Exchange 



u 

u 

u 

A Commodities Exchange Message, or CxMsg, corresponds with few exceptions to a single 
Input Event. When such a message arrives at a CxObj, an action takes place. This action might 
be the sending of an Exec message to an application message port, the diversion of the CxMsg 
down a sub-tree, or the calling of an application-provided function. 

All objects can be disabled (inactivated), which inhibits any action being taken when a CxMsg 
arrives. The message simply proceeds along to its default next destination. 

Each CxObj is itself an Exec Node; the objects are linked together in linear lists. Each object 
also contains a List Header, which we refer to as its personal list, so branching off from any 
object can be another list. So although the entire linked structure of CxObj' s is indeed a tree, 
there is a definite preferred--or default-direction at each node of the tree. 

Starting with a Master List of CxObj's, CxMsg's visit every object in a list in tum, but certain 
objects can divert them so they head off down another list, normally the personal list of the 
CxObj performing the diversion. 

When (and if) the CxMsg reaches the end of a list, it proceeds from where it was diverted. A 
stack is maintained for each CxMsg to record and recover from multiple diversions. 

Brokers and Application Sub-Trees 

The CxObj 's in the Master List are a special lot. They are called Commodities Brokers and are 
typically in one-to-one correspondence with application programs. They are "representatives" of 
the application programs; the sub-tree starting with the personal list of a Broker consists of the 
CxObj's created by the application. When it is enabled, a Broker will divert all CxMsg's it 
receives down its personal list, into the network of objects the application has set up. 

Support is provided for preventing the creation of duplicate brokers. This gives the application 
an easy way of detennining during its initialization if there is another copy of itself already 
running. The new copy can tenninate, and it can be arranged so that the existing copy be 
notified that a restart attempt was made. A resident but donnant pop-up notepad program might 
take such a notification that it should open up a window and swing into action. 

Standard Objects 

The actions performed by CxObj 's of the standard types are intended to be primitive. An 
application wishing to receive an Exec message when a particular keystroke occurs must create 3 
CxObj's for the task: one to filter the CxMsg's corresponding to the keystroke, and attached to 
its list, a CxObj to send off an Exec Message, and another (optional) to swallow the CxMsg. 

These three are in addition to the application's (single) broker. 

A filter acts by diverting a select set of CxMsg's down its personal list, where they will 
encounter the other two objects who unconditionally perfonn their action. 

Commodities Exchange 11 DevCon90 



Here is a summary of the CxObj types and a brief description of each: 

Broker 

Filter 

TypeFilter 

Signal 

Sender 

Translate 

Debug 

Custom 

Only CxObj's on Master List. Contain a description of the application. Diverts 
everything down its personal list. 

If CxMsg matches some expression, divert 

If CxMsg has type in specified set, divert 

Signals some task when any CxMsg arrives 

Sends copy of CxMsg to some port (asynchronous) 

Replaces CxMsg with a chain of zero or more new input event CxMsg's 

Dumps message contents to debug device (kprintf) 

Calls a programmer-provided function (synchronous) 

There is a more detailed description in the AutoDocs for the functions which create the various 
types of CxObj. 

Custom Objects 

Custom objects take a unique action. They call a function provided by the application 
synchronously with the execution of the Commodities handler. The delicacy of this cannot be 
over-emphasized. The function will execute as part of the input.device task. No DOS or 
Intuition functions may be called. No assumptions can be made about the values of registers 
upon entry. 

All such functions should be kept quick and simple, with a minimum of stack usage. A Custom 
CxObj is the only way to directly modify input events as their CxMsg' s proceed through the 
Commodities network. Uses other than that should be thought about long and hard and again. 

Input Events and Matching Conditions 

As mentioned above, most CxMsgs correspond to lnputEvents. Now is a good time to reread the 
Chapter, The Input Device, in the ROM Kernel Reference Manual. See also the include file 
<devices/inputevent.h>. 

Each input event which reaches the Commodities handler is sent through the CxObj network as a 
CxMsg. If it makes it all the way through (i.e., to the end of the Master List) the contents--which 
may have been changed by some object-- are sent along to subsequent input handlers, including 
Intuition, and along to window (i.e., non-Commodities) applications. 

Flow of an input event CxMsg is determined by its interactions with filter objects. Each filter 
object has a "matching condition" assigned by the application which determines which messages 
will be diverted down the filter's personal list (those that match). 

DevCon90 12 Commodities Exchange 



u 

u 

u 

The internal representation of this matching condition is private, but can be specified by two 
mechanisms. Enhancements and additions to these mechanisms can be expected; provisions for 
upward compatibility are made for both. 

Input Description Strings 

These are the character strings found in the ToolTypes fields described in the introduction to the 
sample program IHelp, section 2.3. 

Each string describes a subset of input events. 

[class] [ { [-] (qual I syn)}] [[-]upstroke] highrnap I ansicode 

The class, qual, syn, and upstroke arguments are optional. The legal values for the arguments are 
lowercase strings as shown below: 

class One of the strings: 

qual 

syn 

upstroke 

highmap 

rawkey, rawmouse, event, pointerpos, timer, newprefs, 
diskremoved, diskinsened. 

If not specified, the class is taken to be raw key. 

Zero or more of the strings: 
shift, rshift, capslock, control, lalt, ralt, lcommand, rcommand, 
numericpad, repeat, midbutton, rbutton, leftbutton, relativemouse, 

A preceding '-' means that the value of the corresponding 
qualifier is to be considered irrelevant. 

One of the strings: 
shift, caps, alt 
shift (means "left or right shift"), 
caps (means "either shift or capslock"), 
alt (means "either alt key"). 

literally "upstroke" 
If this token is absent, only downstrokes are considered 
for rawmouse (mousebuttons) and raw key events. If it is 
present alone, only upstrokes count. If it preceded by 
'-' it means that both up and down strokes are included. 

One of the strings: 
space, backspace, tab, enter, return, esc, del, up, down, 
right, left, help, fl, £2, f3, f4, f5, f6, f7, f8, f9, flO. 

Commodities Exchange 13 DevCon 90 



i 
/ 

ansicode A single character token is interpreted as a character code, 
which is looked up in the system default keymap. 

Examples of strings are: 

"!shift right alt f2" 
"alt shift a" 
"-shift -alt -control help" (help key with or without qualifiers) 
"rawmouse rbutton" (mouse move with menu button down) 

Enhancements to the grammar are anticipated. Every attempt will be made to be compatible 
with the input descriptions of the earlier versions. 

Input Expressions 

Applications can also use a powerful binary specification of the matching condition for a filter. 
In the future, perhaps a more powerful specification may be developed so the data structures for 
the Input Expressions (type IX) are tagged with their version number. This will allow easy 
handling of different specification types co-existing in a future Commodjties version. 

The current Version 2 IX structure is as follows: 

typedef struct { 
UBYTE ix_Version; 
UBYTE ix_Class; 

UWORD 
UWORD 

UWORD 
UWORD 
UWORD 

IX; 

ix_Code; 
ix_CodeMask; 

ix_Qualifier; 
ix_QualMask; 
ix_QualSame; 

Here are the matching conditions that each IX field supports. It specifies a match with an 
lnputEvent. 

ix_ Version Must be set to the manifest constant IX_ VERSION found in the same include file 
<libraries/commodities.h> as the structure definition. 

ix_Qass Must exactly equal the ie_aass field of an lnputEvent to match. 

DevCon90 14 Commodities Exchange 



u 

u 

u 

ix_Code 

ix_CodeMask For every bit set in ix_CodeMask, the state of the corresponding bits in ix_Code 
and ie_Code in the InputEvent must match. Note that whether a keystroke or 
mouse button action is a down- or upstroke is encoded in the ie_Code field of the 
lnputEvent (IE_CODE_UPPREFIX). 

ix_Qualifier 

ix_QualMask 

ix_QualSame The fields ix_QualMask and ix_QualMask work in the same way as for the 
ix_Code: the Mask indicates the "do care" bits in ie_Qualifier, with ix_Qualifier 
specifying the required settings for those bits. The ix_QualSame field is used to 
express simple synonyms in the ie_Qualifier. Using this, you can specify that left 
and right Shift are equivalent and whether the CAPSLOCK qualifier is also 
equivalent. Left- and right-Alt can also be made equivalent. 

Message Routing 

So far a few points have come out about routing CxMsg's: 

• In the absence of some action diverting them, after visiting a CxObj, they will proceed to the 
next node in the same list. 

• They may be diverted down the "personal list" of some CxObj, normally the list belonging to 
the object doing the diverting. Diverting consists of pushing the address of the current 
CxObj onto an internal stack and routing to the first CxObj in the list. 

• When they reach the end of a list of CxObj 's, the address of a CxObj is popped off of their 
stack, and they proceed to the Successor of that object. 

• Reaching the end of the Master List sends the CxMsg to an internal "Zero Object" which 
disposes of the message, first recovering InputEvents from the contents of input event 
messages. 

Application programs (using Custom Objects) can route a message two ways: diverting it down 
the list of some object, or by routing it directly to another object. Future functions may be 
provided for independently pushing or popping the routing stack. 

Note that it makes no sense to try to route a message sent to a port by a sender CxObj. 

2.6 Examples: Object Structure and Implementation · 

With the background so far, it is helpful to consider the object structure used by the example 
programs discussed above. 

Commodities Exchange 15 DevCon 90 



Common 

The code in the Common directory on the DevCon disks is shared by all the commodities. The 
directorys for the individual commodities contain only two files, app.c and app.h. These files 
contain the application specific code only. A commodity is formed by linking the application 
specific app.c with the files in the Common directory. By sharing all non-application specific 
code amongst the commodities it is easier to maintain· a consistent, standard user interface. 
Sharing of the code also facilitates easier maintenance of the non-application specific code. The 
Common directory contains the following files: 

main.c This file contains the main program code as well as the program termination code. 
The code in the file main.c is responsible for the following: 

• Opening the required librarys. 

• Allocating the custom signal if required. 

• Parsing the ToolTypes or command line. 

• Initializing the commodities specific code by calling routines in cx.c. 

• Opening the window (if supported) by calling routines in window .c. 

• Waiting for the CTRL_E termination signal. 

• Waiting for and dispatching all incoming messages both from Intuition and 
the commodities. library. 

cx.c This file contains all the commodities specific setup and shutdown code. This file 
is responsible for the following: 

• Setting up the message port for commodities messages. 

• Setting up the commodities broker. 

• Setting up the hot key if a window is supported. 

• Calling the application specific commodities setup code. 

• Checking the accumulated commodities error codes. 

• Activating the commodities broker. 

DevCon90 16 Commodities Exchange 



u 

u 

u 

window.c 

• Waiting for and handling or dispatching commodities messages including: 

• The message for the applications CX_POPKEY which generates a call to 
window .c to open the pop-up window. 

• A message destined for the application specific code which generates a 
call to handleCustomCXMsg() in the applications app.c module. 

• A CXM_COMMAND message such as CXCl\ID_DISABLE, 
CXCMD_ENABLE, CXCl\ID_UNIQUE, CXCMD_APPEAR, 
CXCMD_DISAPPEAR, CXCMD_KD..L, or a custom command. 

• Shutting down the commodities specific code by: 

• Shutting down the applications custom commodities code in app.c. 

• Deleting all the commodities objects. 

• Clearing the commodities message pon. 

This file contains all the window manipulation code. This file is responsible for 
the following: 

• Setting up the window by: 

• Doing a WindowToFront() if the window is already open or opening the 
window if it is not already open. 

• Setting up the windows message port. 

• Using GadTools.library to add the gadgets and menus to the window 
according to the application supplied routines in app.c. 

• Handling and dispatching Intuition messages such as CLOSEWINDOW, 
REFRESHWINDOW, MENUPICK, and GADGETUP. Application specific 
messages are dispatched to their handlers in app.c. 

• Shutting down the window by: 

• Saving the windows current position and size. 

• Clearing the menus. 

• Closing the window. 

• Removing the gadgets. 

Commodities Exchange 17 DevCon 90 



melp 

lllelp has three hot keys. There is a routine in the support library, HotKey(), that creates these 
groups of objects easily. · 

A hot key triad, to review, consists of a filter object, which is the "trigger" for the hot key. 
Attached to its personal list is a sender which sends a notification message to a pon allocated by 
IHelp. 

The ID field of the several senders differ, so that lllelp can easily tell from which sender the 
messages. were sent. nlelp pays no attention to the data part of the messages it is sent. 

Following the sender in the personal list of the filter is a translator object which translates the 
trigger CxMsg to NULL, in effect swallowing it. 

lllelp, like all good commodities, has a Broker, and the filter objects at the head of the hot keys 
are all attached to its list. 

The commodities specific setup code installs the programs five hot keys as follows: 

BOOL setupiHelp() 
{ 

} 

LONG error; 

AttaehCxObj(broker, 
HotKey( ArgString(ttypes, 

AttaehCxObj(broker, 
HotKey( ArgString(ttypes, 

AttaehCxObj(broker, 
HotKey( ArgString(ttypes, 

AttaehCxObj(broker, 
HotKey( ArgString(ttypes, 

AttaehCxObj(broker, 
HotKey( ArgString(ttypes, 

"CYCLE", "fl"), export, CYCLE) ); 

"MAKEBIG", "f2"), export, MAKEBIG) ); 

"MAKESMALL", "f3"), export, MAKESMALL) ), 

"CYCLESCREEN", "f4"), export, CYCLESCREEl 

"ZIPWINDOW", "f5"), export, ZIPWINDOW) ); 

if (error= CxObjError(broker)) 
{ 

D( printf("aeeumulated broker error %ld0, error) ); 
return(O); 

. } 
return(l); 

DevCon90 18 Commodities Exchange 



u 
The program then receives commodities messages at export and dispatches them as follows: 

VOID MyHandleCXMsg(id) 
ULONG id; 
{ 

switch (id) 
{ 

case CYCLE: 
D( printf("cycleforwardO) ) ; 
cycleforward(); 
break; 

case MAKEBIG: 
D( printf("makebigO) ) ; 
makesize ( (int) MAKEBIG); 
break; 

case MAKESMALL: 
D( printf("makesmallO) ) ; 
makesize ( (int) MAKESMALL) ; 
break; 

case CYCLESCREEN: 

u cyclescreen(); 
break; 

case ZIPWINDOW: 
zipwindow(); 
break; 

Commodities Exchange 19 DevCon90 

u 



NoCapsLock 

Attached to the Broker list of this application is a single filter which watches for all RA WKEY 
events which have the CAPSLOCK bit set. The setup code for the filter follows: 

I* An input expression to match any RAWKEY event with the 
CAPSLOCK qualifier bit set */ 

IX myix = { 
IX_ VERSION, 
IECLASS_RAWKEY, 

I* required *I 

0, 
0, 
IEQUALIFIER_CAPSLOCK, 
IEQUALIFIER_CAPSLOCK, 
0 

I* Code: won't care *I 
I* CodeMask: 0 means don't care about Code *I 
I* qualifier I am interested in */ 
I* and it's the only qualifier of interest */ 
I* synonyms irrelevant *I 

} ; 

BOOL setupNoCapsLock() 
{ 

CxObj *filter; 

filter= CxFilter(NULL); 
if (!filter) 

return(O); 

SetFilteriX(filter, &myix); 
AttachCxObj(filter, CxCustom( nocapsaction, OL)); 

if (CxObjError(filter)) 
{ 

D( printf("nocapslock: filter error %lx0, CxObjError(filter) ) ); 
DeleteCxObjAll(filter); 
return(O); 

} 

AttachCxObj(broker, filter); 
return(TRUE); 

DevCon90 20 Commodities Exchange 



u 

u 

u 

The filter diverts all matching messages down its list where a single custom object can be found. 
The code for the custom object follows: 

void nocapsaction(cxm,co) 
register struct CxMsg *cxm; 
CxObj *co; 
{ 

struct InputEvent *ie; 

D( kprintf("nocapsactionO) ); 

/* i KNOW that all messages getting this far are CXM !EVENT */ 
ie = (struct InputEvent *) CxMsgData(cxm); 

ie->ie_Qualifier &= -rEQUALIFIER_CAPSLOCK; 
} 

This custom object modifies the InputEvent included in each CxMsg it encounters, clearing the 
CAPSLOCK bit It has no effect on other Qualifier bits, so even if the CapsLock key is active, 
the shift keys will function normally. 

Commodities Exchange 21 DevCon90 



MBA 

Attached to the Broker list of this application is a single filter which watches for all 
RA WMOUSE events which have the MBUTION bit set The setup code for the filter follows: 

/* An input expression to match any RAWMOUSE event with the 
MBUTTON qualifier bit set */ 

IX middleix = { 
IX_VERSION, 
IECLASS_RAWMOUSE, 
IECODE_MBUTTON, 
-IECODE_UP_PREFIX, 
0, 
0, 
0 

} ; 

BOOL setupMBA () 
{ 

CxObj *mfilter; 

/* 

/* 
/* 
/* 

/* 

mfilter = CxFilter(NULL); 
if (! mfilter) 

return(O); 

required 

Code 
CodeMask · 
qualifier I am interested 

synonyms irrelevant 

SetFilteriX(mfilter, &middleix); 
AttachCxObj(mfilter, CxCustom( middlebaction, OL)); 

if (CxObjError(mfilter)) 
{ 

in 

*I 

*I 
*I 
*I 

*I 

D( printf("MBA: filter error %lx0, CxObjError(mfilter) ) ); 
DeleteCxObjAll(mfilter); 
return(O); 

} 

AttachCxObj(broker, mfilter); 

return(TRUE); 
} 

DevCon90 22 Commodities Exchange 



u 

u 

u 

This custom object modifies the InputEvent included in each CxMsg it encounters, setting the 
event to a shift left button event as follows: 

void middlebaction(cxm,co) 
register struct CxMsg *cxm; 
CxObj *co; 
{ 

struct InputEvent *ie; 

ie = (struct InputEvent *) CxMsgData(cxm); 

/* i KNOW that all messages getting this far are CXM !EVENT */ 
/* convert middle button into shift left */ 
ie->ie_Code = (ie->ie_Code & IECODE_UP_PREFIX) IECODE_LBUTTON; 
ie->ie_Qualifier I= IEQUALIFIER_LSHIFT; 

Commodities Exchange 23 DevCon90 



Blanker 

Blanker has a single custom object attached to its broker. This custom object checks every 
message that goes by. If a certain number of timer events (which happen every 1Oth of a second) 
go by with no other activity the screen is blanked. Once blanked, any event except a timer event 
will cause the screen to unblan.k. The setup code for blanker follows: 

BOOL setupBlanker(VOID) 
{ 

CxObj *objectlist; 

seconds= Argint( ttypes, "SECONDS", 60 ); 

objectlist=CxCustom( BlankerAction, OL); 

if (CxObjError(objectlist)) 
{ 

D( printf("blanker: filter error %lx0, CxObjError(objectlist) ) ); 
DeleteCxObjAll(objectlist); 
return(O); 

AttachCxObj(broker, objectlist); 
return(TRUE); 

DevCon90 24 Commodities Exchange 



u 

u 

u 

The code for the custom action takes advantage of the custom signal as follows: 

VOID BlankerAction(struct CxMsg *~xm,CxObj *co) 
{ 

register struct InputEvent *ie; 

ie = (struct InputEvent *) CxMsgData(cxm); 

if(ie->ie_Class==IECLASS_TIMER) 
{ 

if (! blanked) 
{ 

/*D( printf("blanked=Ox%lx Bump timeout=%ldO,blanked,timeout);) 
if(++timeout >= ((ULONG) (seconds*lOL))) 

} 

{ 

} 

D( printf("ttiiiii#Blank ScreenO); 
BlankerCommand=BLANK; 
Signal(maintask,csigflag); 
blanked=TRUE; 

else { 
if(ie->ie_Class!=IECLASS TIMER) 
{ 

} 

D( printf("#iii#i#iUnBlankO); 
BlankerCommand=UNBLANK; 
Signal(maintask,csigflag); 
timeout=OL; 
blanked=FALSE; 

Commodities Exchange 25 DevCon 90 



When using a custom signal the application must supply a routine in app.c to handle the custom 
signal as follows: 

VOID MyHandleCustomSignal(VOID) 
{ 

D( kprintf("custom: MyHandleCustomSignal() enterO); ) 
if(BlankerCommand==BLANK) 

Blank(); 
else 

if(BlankerCommand==UNBLANK) 
UnBlank(); 

2. 7 Examples: More Details 

Error Handling 

A well-behaved program must always check that functions which create CxObj's succeed, since 
each object requires some dynamically allocated memory. To make this a little less tedious, it is 
possible to get by testing if an entire list of objects was created successfully, and to recover 
gracefully if not. See the examples. And check for and handle all errors, OK? 

ToolTypes and the Commodities Environment 

Some functions are provided to make it easy to use ToolTypes for providing user control over 
the parameters of your application. Please let the user specify the input description for major 
semantic actions in your programs. 

Also, even if there is no obvious reason in some cases, let the user set the priority for your 
broker. That is the key step to making the functioning of a group of Commodities applications 
independent of the order in which they were loaded. 

Note that the functions provided also support command line argument parsing so commodities 
can be started from the CLI with full user control (this is especially useful for starting up a batch 
of applications from an Execute script file). 

Library version 

Be sure to specify a non-zero version number to the OpenLibrary() call when opening 
Commodities. This insures that the end user does not use your program with a version of the 
library that doesn't support new features you are depending on. 

DevCon 90 26 Commodities Exchange 



u 

u 

u 

Terminating a Commodities Application 

As is shown in the examples, the proper terminating condition of a Commodities application is 
the receipt of the Control-E break signal. This signal will be sent by controller software to the 
task which created a Broker when the user indicates that that Broker's program is to be 
tenninated. It is also easy to send such a signal to a background task started from the CLI. Use 
the "Status" command to find the tasks CLI ID, and then say "Break task <n> E" where <n> is 
the number from the Status output. 

Developing a Commodities application is made more convenient using this convention (we often 
test them in the foreground, and typing Control-E usually works long before the rest of the 
program), and we also don't waste function keys or other input combinations on termination 
commands. 

Pools and Alerts 

The internal data structures used by the commodities.library are allocated and managed by a 
common "pool" mechanism. Normally, this mechanism is invisible to the programmer and end
user. It is used to manage data storage for Commodities objects, messages, Exec messages, and 
InputEvents. 

A recoverable alert will be put up if a program corrupts the secret header of a Commodities data 
structure, or uses an invalid handle in certain operations. Another recoverable alert is posted 
when commodities.library expunges (which is done when the last application closes the library) 
if all data structures are not returned to commodities.library before this time. The frequent 
causes for this are not replying to all the Exec messages Commodities senders send to you, and 
not deleting all the objects that you have created. 

To properly reply all Exec messages sent to your program, a sequence like that used in IHelp is 
advised: 

DeleteCxObjAll(broker); 
while (msg = GetMsg(port)) ReplyMsg(msg); 
CloseLibrary(CxBase); 

Commodities Exchange 27 DevCon 90 



c 
local.h 

P
age 1 

I······································································· 
* 

. 
* 

* * • * * 

CO
PY

RIG
H

TS 

U
N

LESS O
TH

ERW
ISE N

O
TED

, 
A

LL FIL
E

S ARE 
C

o
p

y
ri9

h
t 

(c) 
1990 

C
om

m
odore-A

m
i9a, 

In
c. 

A
ll 

R
i9

h
ts R

eserv
ed

. 

• * * * • 
·······································································I 

I* 
lo

c
a
l.h

 -
D

e
fin

itio
n

s used by stan
d

ard
 m

odules *
I 

tlfd
e
f LA

TTIC
E 

tin
clu

d
e <

c
lib

la
ll p

ro
to

s.h
>

 
fin

clu
d

e <
std

lib
.h

>
 

fin
clu

d
e <

strin
9

.h
>

 
le

n
d

if 

fin
clu

d
e 

•ap
p

.h
• 

I********** I 
I* 

m
ain

.c *I 
1**********1 
ex

tern
 stru

c
t In

tu
ltio

n
B

aae 
ex

tern
 stru

c
t L

ib
rary

 
ex

tern
 a

tru
c
t G

fxB
aae 

ex
tern

 stru
c
t D

o
sL

ib
rary

 
ex

tern
 a

tru
c
t L

ib
rary

 

*
In

tu
ltio

n
B

ase; 
*C

xB
ase; 

*G
fxB

aae; 
*D

O
SB

ase; 
*G

adT
oolaB

aae; 

ex
tern

 a
tru

c
t M

a9P
ort 

*
ex

p
o

rt; 
I* 

com
m

odities m
esaa9ea h

ere 
*

I 
ex

tern
 ULONG 

cx
si9

fla9
1

 

ex
tern

 a
tru

c
t M

a9P
ort 

*
ip

o
rt1

 
ex

tern
 ULONG 

iai9
fla9

1
 

I* 
ai9

n
al fo

r above 
*I 

I* 
In

tu
itio

n
 ID

CH
P 

m
eaaa9ea h

ere 
*I 

I* 
ai9

n
al fo

r above 
*I 

1********1 
I* 

cx
.c *

I 
I******** I 
ex

tern
 ch

ar 
h

o
tk

ey
b

u
ff()l 

I* 
h

o
ld

s th
e
 a

trin
9

 d
eacrib

ln
9

 th
e
 popup *

I 
I* 

h
o

tk
ey

. 
U

sed 
fo

r th
e
 v

in
d

o
v

 title
 

*I 

V
O

ID
 

bandleC
xM

a9(atruct M
eaaa9e 

*
)I 

BOOL aetupC
X

(char *
*

)I 
V

O
ID

 ahutdovnC
X

(V
O

ID
)I 

I************ I 
I* 

v
in

d
o

v
.c *I 

I************ I 
V

O
ID

 
h

an
d

leiM
a9

(atru
ct In

tu
iM

essa9
e *

)I 
a
tru

c
t W

lndov 
*9etN

ew
W

indov(V
O

ID
); 

in
t 

ad
d

G
ad

9
ets(atru

ct N
indov 

*)1 
V

O
ID

 
rem

oveG
ad9eta(V

O
ID

)1 

td
e
fin

e
 PR

IO
R

ITY
 TOOL TY

PE 
•ex

 PR
IO

R
ITY

• 
td

e
fin

e
 PO

P 
ON STA

RT ToO
L TY

PE 
•ex-PO

PU
P• 

td
efin

e PO
PIEY

:TO
O

L_iY
PE -

•cx:PO
PK

E
Y

• 

c 
c 

m
 



m
aln.c 

P
age 1 

I······································································· 
• 

• 
* 

CO
PY

RIG
H

TS 
• * 

U
N

LESS 
O

TH
ERW

ISE N
O

TED
, 

A
LL FIL

E
S A

RE 
* 

C
o

p
y

rig
h

t 
(c) 

1990 
C

om
m

odore-A
m

lga, 
In

c. 
A

ll R
ig

h
ts R

eserv
ed

. 
• 

• • • • * 
·······································································I 

I* * m
ain

.c --
S

k
eleto

n
 program

 fo
r a 

ty
p

ic
a
l C

om
m

odities a
p

p
lic

a
tio

n
. 

*I 

lln
clu

d
e •lo

c
a
l.h

• 

stru
c
t 

In
tu

itio
n

B
ase *

In
tu

itlo
n

B
ase 

a 
N

U
LL; 

stru
c
t L

ib
rary

 
•cx

B
ase 

., N
U

LL; 
stru

c
t G

fxB
ase 

*G
fxB

ase 
., N

U
LL; 

a
tru

c
t D

oaL
ibrary 

*D
O

SB
ase 

., N
U

LL; 
stru

c
t L

ib
rary

 
*G

adT
oolsB

ase 
• 

N
U

LL; 
stru

c
t L

ib
rary

 
*IconB

ase 
.. N

U
LL; 

ch
ar 

*
*

tty
p

es1
 

I* 
th

ese g
lo

b
als a

re
 th

e
 co

n
n

ectio
n

 betw
een th

e
 m

ain program
 

* 
lo

o
p

 and th
e
 tw

o m
essage h

an
d

lin
g

 ro
u

tin
es 

*I 
stru

c
t M

sgP
ort 

*
ex

p
o

rt 
.. NULL1 

I* 
com

m
odities m

essages h
ere 

ULONG 
cx

aig
flag

 
e 

01 
I* 

sig
n

a
l fo

r above 

stru
c
t M

sgP
ort 

*
!p

o
rt 

ULONG 
isig

fla
g

 
.. N

U
LLI 

I* 
In

tu
itio

n
 ID

CM
P m

essages h
ere 

a 
0

; 
I* 

sig
n

a
l fo

r above 

lif
 CSIG

N
A

L 
LORG 
stru

c
t T

ask 
len

d
 if 

ULONG 

c
slg

n
a
l 

=
 -1L

I 
*m

aintask =
 N

U
LL; 

cslg
 fla

g
 

.. OL1 

V
O

ID
 m

ain
(in

t,ch
ar *

*
II 

V
O

ID
 m

ain( arg
c, 

arg
v

 I 
in

t 
argc1 

ch
ar **arqv1 

I 
ULONG 
stru

c
t 

N
( 

ch
ar 

s!g
rcv

d
1

 
M

essage 
*

str1
 

I 
*m

ag; 

*I 
*I *I 
*I 

C
xB

ase 
D

O
SB

ase 
.. (stru

c
t D

o
sL

ib
rary

 *I 
In

tu
itio

n
B

a
se

•(stru
c
t 

In
tu

itio
n

B
ase 

O
p

en
L

ib
rary

(•co
m

m
o

d
ities.lib

rary
•,S

); 
O

p
en

L
ib

rary
(•d

o
s.lib

rary
•,O

)I 

G
fxB

aae 
•(stru

c
t G

fxB
ase 

*I 
G

adT
oolsB

ase • 
Icon B

ase 

*
)O

p
en

L
ib

rary
(•in

tu
itlo

n
.lib

rary
•,3

3
1

1
 

O
p

en
L

ib
rary

(•g
rap

h
ics.lib

rary
•,O

)I 
O

p
en

L
ib

rary
(•g

ad
to

o
ls.lib

rary
•,3

6
1

1
 

O
p

en
L

ib
rary

(•ico
n

.lib
rary

•,3
3

1
1

 

if
 

( 
I 

( In
tu

itio
n

B
ase '' C

xB
ase '' G

fxB
ase '' D

O
SB

ase '' G
adT

oolsB
ase '' IconB

ase 
, I 

D
l( k

p
rin

tf(•m
a
in

.c
: m

ain() 
F

ailed
 to

 open one o
r m

ore lib
ra

rie
s\n

•) 
I; 

term
in

ate U
 1 

lif
 CSIG

N
A

L 
if((c

sig
n

a
l a A

llo
cS

ig
n

al(-1
L

))a .. -1
) 

) 
) 

, 
m

aln.c 
D

l( k
p

rin
tf(•m

a
in

.c
: m

ain() 
F

ailed
 to

 g
et custom

 sig
n

a
l\n

•) 
11 

term
in

ate() 1 

c
sig

fla
g

 • 
1L <

<
csig

n
al; 

m
aintaakaF

indT
ask(O

L
); 

len
d

 if 

I* 
com

m
odities su

p
p

o
rt 

lib
ra

ry
 fu

n
ctio

n
 
to

 fin
d

 arg
v

 o
r to

o
lty

p
ea 

tty
p

ea 
a 

A
rg

A
rray

in
it( arg

c, 
arg

v
 
II 

D
l( 

lf
 

( J N
( 

( 
in

t xx .. o; 
w

h
ile(tty

p
ea[x

x
)) 

( 
p

rin
tf(•tty

p
e
s(O

x
tlx

) .. ts\n
•,x

x
,tty

p
e
a
(x

x
))l 

xx+
+

l 

! 
setupC

X
( 

tty
p

e
s 

) 
) 

D
1( 

k
p

rin
tf(•m

a
in

.c
: m

ain() 
setupC

X
 fa

ile
d

\n
•) 

); 
term

in
ate U

 1 

P
a

g
e

2
 

*I 

s
tr • 

A
rg

S
trin

g
( tty

p
e
a
, 

PO
P ON STA

RT TOOL TY
PE,C

X
 D

EFA
U

LT 
PO

P ON STA
R

T)I 
if(strc

m
p

i(str,•y
e
s•)••O

) 
-

-
-

-
-

-
-

-
setu

p
N

in
d

o
w

(ll 
I* 

w
ill try

 to
 setu

p
 ifo

rt 
*I 

D
l( k

p
rin

tf(•m
a
in

.c
: m

ain() 
A

fter setupN
indow

\n• 
11 

fo
r 

C
u

i 
( 

I* 
e
x

it by c
a
llin

g
 term

in
ate 

*I 

I* 
h

an
d

lin
g

 tw
o p

o
rts: 

* e
ith

e
r w

ill w
ake u

s upf 
* sim

p
le ap

p
ro

ach
 o

fte
n

 w
orks. 

*I 
D

l( k
p

rin
tf(•m

a
in

.c
: m

ain() 
M

altin
g

 fo
r a 

sig
n

al\n
•J 

11 
sig

rcv
d

 • 
W

alt 
( 

SIG
BREA

K
F 

C
T

R
L

 E
 I 

lsig
fla

g
 

I 
cx

alq
flaq

 
I 

c
slq

fla
g

 11 
D

1( 
k

p
rln

tf(•m
a
in

.c
: m

ainC
T

 R
ecT

eved a 
slq

n
al\n

•) 
); 

I* 
com

m
odities co

n
v

en
tio

n
: easy

 to
 k

ill 
*I 

if
 

( 
slg

rcv
d

 ' 
SIG

BREA
K

F 
C

T
R

L
 E

 ) 
( 

-
-

D
l( k

p
d

n
tf(•m

a
in

.c
: m

ain() 
R

ecieved a 
SIG

BREA
K

F 
C

T
R

L
 

E
\n

•) 
) 1 

te
rm

in
a
te

()l 
-

-

U
f CSIG

N
A

L 
if

 
( sig

rcv
d

 ' 
c
sig

fla
q

 ) 
( , 

fen
d

lf 

D
l( k

p
rin

tf(•m
a
in

.c
: m

ain() 
R

ecleved a 
C

ustom
 S

lg
n

al\n
•) 

); 
h

an
d

leC
u

sto
m

S
ig

n
al(); 

w
b

ile(cx
p

o
rt '' 

(m
sqeG

etM
sq(cxport))) 

handleC
xM

sg(m
sg)l 

"' 
w

h
ile(lp

o
rt '' 

(m
sg

•(atru
ct M

easge *)G
T G

etiM
sg

(lp
o

rt))) 
h

an
d

leiM
sg

((stru
ct 

In
tu

lM
essag

e *
lm

sill 

) 

81 



c 
rnaln.c 

P
age3 

) /****i* 
B

lan
k

.ld
/term

in
ate() 

•••••••••••••••••••••••••••••••••••••••••• 
• * 

N
A

M
E 

* 
term

in
ate --

C
leanup a

ll reso
u

rces and e
x

it th
e
 p

ro
;ram

. 
• 

SY
N

O
PSIS 

• 
term

in
ate() 

• • 
V

O
ID

 
t
e
~
n
a
t
e
(
V
O
I
D
)
I
 

* 
FU

N
CTIO

N
 

• 
T

h
is fu

n
ctio

n
 perform

s a
ll th

e
 n

ecessary
 clean

u
p

 fo
r th

e 
• 

com
m

odity and c
a
lls e

x
it() 

to
 retu

rn
 co

n
tro

l to
 th

e
 os. 

• 
N

o m
atter how

 th
e proqram

 e
x

its th
is sh

o
u

ld
 b

e th
e
 la

st fu
n

ctio
n

 
• 

c
a
lle

d
 • 

• * 
IN

PU
TS 

* 
N

one • 
• * 

RESU
LT 

• 
A

ll reso
u

rces a
re

 freed
 and th

e
 p

ro
;ram

 e
x

its • 
• * 

EXAM
PLE 

• 
lf

 (!A
lloclfindow

 0
) 

* 
t
e
~
n
a
t
e
(
)
l
 

• 
N

O
TES 

• 
T

h
is fu

n
ctio

n
 m

ust b
e se

t up so
 th

a
t it can b

e
 c

a
lle

d
 a

t any 
• 

tim
e req

ard
lesa o

f th
e
 c

u
rre

n
t sta

te
 o

f th
e
 proqram

 • 
• * 

BUGS 
• * 

SEE A
LSO

 
• 

shutdow
nC

X
()I 

• 
shutdow

nlfindow
()l 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• *

I 
V

O
ID

 term
in

ate() 
( 

D
l( k

p
rin

tf(•m
ain

.c: 
term

in
ate() 

en
ter\n

•J 
)I 

ahutdow
nC

X
()I 

D
l( 

k
p

rin
tf(•m

ain
.c: 

te
rm

in
a
te

(), 
a
fte

r shutdow
nC

X
()\n•) 

)I 

N
( ahutdow

nN
indow

()l 
D

l( 
k

p
rin

tf(•m
ain

.c: 
te

rm
in

a
te

(), 
a
fte

r shutdow
nN

indow
(J\n•) 

J1 

A
r;A

rrayD
one()l 

/*
e
x

 a
u

p
p

.lib
 fu

n
ctio

n
 

*
/ 

D
l( k

p
rin

tf(•m
ain

.c: 
te

rm
in

a
te

(), 
a
fte

r A
rqA

rrayD
one()\n•) 

)I 

tif CSIG
N

A
L 

if(c
siq

n
a
l 

!a
 -1

) 
F

reeS
iq

n
al(csiq

n
alJ: 

D
l( 

k
p

rin
tf(•m

ain
.c: 

te
rm

in
a
te

(), 
a
fte

r F
reeS

iq
n

al() ()\n
•) 

)I 
ten

d
 if 

D
l( k

p
rin

tf(•m
ain

.c 
term

in
ate() 

cx
aase 

a 
tlx

\n
•,cx

B
ase) 

)I 
D

l( 
k

p
rin

tf(•m
ain

.c 
term

in
ate() 

In
tu

ltio
n

D
ase 

a 
tlx

\n
•,In

tu
itio

n
D

aae) 
)I 

D
l( 

k
p

rin
tf(•m

ain
.c 

term
in

ate() 
G

fxB
aae 

c 
tlx

\n
•,G

fx
B

ase) 
)I 

D
l( k

p
rin

tf(•m
ain

.c 
term

in
ate() 

D
O

SB
ase 

c 
tlx

\n
•,o

o
sa

a
se

) 
)I 

D
l( 

k
p

rin
tf(•m

ain
.c 

term
in

ate() 
G

adT
oolsB

ase 
c 

tlx
\n

•,G
ad

T
o

o
lsD

ase) 
)I 

c 
c 

m
aln.c 

P
age4 

D
l( k

p
rin

tf(•m
atn

.c: 
term

in
ate() 

IconB
ase 

• 
•lx

\n
•,Ico

n
B

ase) 
)I 

if(C
xB

ase) 
1

f(In
tu

1
t1

o
n

B
aseJ 

if
 (G

fxB
ase) 

i
f
 (D

O
SB

ase) 
lf(G

adT
oolsB

ase) 
lf

 (Ico
n

 B
ase) 

C
lo

seL
ib

rary
(C

x
D

ase)l 
C

lo
seL

ib
rary

((stru
ct L

ib
rary

 *
Jin

tu
itio

n
B

ase)J 
C

lo
seL

ib
rary

((stru
ct L

ib
rary

 *)G
fxB

ase)l 
C

lo
seL

ib
rary

((stru
ct L

ib
rary

 *)D
O

SB
ase)J 

C
lo

seL
ib

rary
(G

ad
T

o
o

laB
ase)l 

C
lo

seL
lb

rary
(Ico

n
B

ase)l 

D
l( k

p
rin

tf(•m
atn

.c: 
te

rm
in

a
te

(), 
a
fte

r C
lo

seL
ib

rary
s(J\n

•) 
)I 

e
x

it(O
); 

0 (W
) 



cx.c 
P

age 1 

I······································································· 
• 

• 
• • • 

CO
PY

RIG
H

TS 

U
N

LESS O
TH

ERW
ISE N

O
TED

, 
A

LL 
FIL

E
S ARE 

C
opyriqht 

(c) 
1990 

C
om

m
odore-A

m
iga, 

In
c. 

A
ll R

iq
h

ts R
eserv

ed
. 

• • • • • 
....................................................................... , 

/*
 * cx

.c --
C

om
m

odities 
in

te
rfa

c
e
 

• • 
T

his m
odule h

an
d

les a
ll th

e
 com

m
and 

m
essaqes 

from
 co

m
m

o
d

ities.lib
rary

. 
* C

om
m

ands 
such as H

ID
E 

SHON ENABLE D
ISA

B
LE K

ILL a
re

 sen
t to

 co
m

m
id

ities 
• 

from
 th

e E
xchanqe proqram

 and a
re

 p
ro

cessed
 h

ere. 
*I 

tin
clu

d
e •lo

c
a
l.h

• 

cxobj 
*

b
ro

k
er • 

N
U

LLJ 
I* 

O
ur b

ro
k

er *I 

I* 
a 

little
 q

lo
b

al 
fo

r show
ing th

e
 u

ser th
e
 hotkey 

ch
ar 

h
o

tk
ey

b
u

ff[ 
257 

11 
*I 

stru
c
t N

ew
D

roker m
ynb 

a 
( 

ND V
ER

SIO
N

, 

,, 

CO
M

 N
A

M
E, 

C
O

M
-TITLE, 

CO
M

-D
ESCR, 

N
D

U
:N

O
TIFY

 
I 

N
D

U
_U

N
IQ

U
E, 

o, 
o, 
N

U
L

L
, 

0 

I* 
L

ib
rary

 needs to
 know

 v
ersio

n
 *

/ 
I* 

b
ro

k
er in

te
rn

a
l nam

e 
*

/ 
I* 

com
m

odity title
 

*
/ 

I* 
d

escrip
tio

n
 

*
/ 

I* 
N

e w
ant to

 b
e th

e
 o

n
ly

 b
ro

k
er *

/ 
I* 

w
ith

 th
is nam

e 
and w

e w
ant 

to
 *

/ 
I* 

b
e n

o
tifie

d
 o

f any attem
p

ts 
*

/ 
I* 

to
 add a com

m
odity w

ith
 th

e 
*

/ 
I* 

sam
e nam

e 
*

/ 
I* 

flag
s 

*
/ 

I* 
d

e
fa

u
lt p

rio
rity

 
*

/ 
/*

 p
o

rt, 
w

ill fill 
in

 
*

/ 
I* 

ch
an

n
el 

(reserv
ed

) 
*

/ 

l*
*

*
*

i*
 D

lank.ldlhandleC
xM

sg() 
****************************************** 

• 
N

A
M

E 
* 

handleC
xM

sg 
--

R
andle incom

inq com
m

odities m
essaq

es. 
• 

SY
N

O
PSIS 

• 
handleC

xM
sq(m

.q) 
• 

V
O

ID
 handleC

xM
sg(S

truct M
essage *m

sg)l 
• * 

FU
N

CTIO
N

 
T

his 
fu

n
ctio

n
 h

an
d

les com
m

odities m
essaqes sen

t to
 th

e
 b

ro
k

ers 
m

essage p
o

rt. T
h

is is
 w

ere th
e
 stan

d
ard

 com
m

odities 
featu

res 
such as E

n
ab

le/D
isab

le S
how

/H
ide Q

u
it and H

otK
ey PopU

p a
re

 
• 

h
an

d
led

. 
I
f
 th

e
 

m
essage is

 n
o

t fo
r th

e stan
d

ard
 h

an
d

ler th
en

 th
e 

• 
fu

n
ctio

n
 handleC

ustom
C

X
M

Sg() 
is

 c
a
lle

d
 to

 h
an

d
le a

p
p

lic
a
tio

n
 

sp
e
c
ific

 IEV
EN

TS o
th

erw
ise bandleC

ustom
C

X
C

om
m

and() 
is

 c
a
lle

d
 

to
 h

an
d

le a
p

p
lic

a
tio

n
 sp

e
c
ific

 com
m

odities com
m

and m
essag

es. 

IN
PU

TS m
ag 

m
 A

 com
m

odities m
essage, 

* 
U
S
~
T
 

* 
E

ith
er th

e
 stan

d
ard

 com
m

odities fu
n

ctio
n

 
is perform

ed o
r th

e 
* 

custom
 h

an
d

ler is
 c

a
lle

d
. 

) 

cx.c 
P

a
g

e
2

 

• • 
EXAM

PLE 
• • 

NOTES 
• • 

BUGS 
• • 

SEE A
LSO

 
• ............................................................................. 
• *I 

V
O

ID
 handleC

xM
sg(struct M

essage *m
sg) 

( 

) 

ULONG 
m

sgidl 
ULONG 

m
sqtype1 

m
agid 

.. C
xM

sgiD
( 

m
ag 

) 1 
m

.g
ty

p
e .. C

xM
agType ( m

sq 
) 1 

D
1( 

p
rin

tf(•c
x

.c
: 

handleC
xM

sq() 
e
n

te
r\n

•) 
)
I
 

R
eplyM

sq(m
sq)l 

sw
itcb

(m
.q

ty
p

e) 
( 

case CXM
 IEV

EN
T: 

D
1( 

p
rin

tf(•c
x

.c
: handleC

xM
sq(C

X
M

 IE
V

E
N

T
)\n•) 

,, 
sw

itch(m
sqid) 

-
I 

If( 
case PO

P 
KEY 

ID
: 

O
ll p

rin
tf(•c

x
.c

: 
handleC

xM
sg(PO

P KEY 1
0

)\n
•) 

)I 
aetuplfindow

() 1 
-

-
break1 

, d
e
fa

u
lt: 
0

1
( p

rin
tf(•c

x
.c

: 
handleC

xM
ag(C

U
stom

 M
essag

e)\n
•) 

)J 
bandleC

ustom
C

X
M

ag(m
aqid)J 

break1 
) b
reak

 I 
caae CXM

 
eotM

A
N

D
: 

0
1

( p
rin

tf(•c
x

.c
: 
b
a
n
d
l
e
C
~
g
(
C
X
M
 
~
)
\
n
•
)
 

)I 
sw

itch
 (lllllgid) 

-
( 

case CXCM
D D

ISA
B

LE: 
0

1
( p

rin
tf(•c

x
.c

: 
handleC

xM
llg(C

X
C

M
D

 D
ISA

D
L

E
)\n•) 

)J 
A

ctivateG
xO

bj(broker,O
L

)I 
-

break1 
case CXCM

D EN
A

BLE: 
D

1( 
p

rin
tf(•c

x
.c

: 
handleC

xM
ag(C

X
C

M
D

 
E

N
A

D
L

E
)\n•) 

)J 
A

ctiv
ateC

x
O

b
j(b

ro
k

er,lL
)I 

-
break1 

case CXCM
D A

PPEA
R

: 
/*

 T
im

e to
 p

o
p

 up th
e
 w

indow
 

*
/ 

case CX
CM

D
-U

N
IQ

O
E: 

/*
 Som

eone baa trie
d

 to
 ru

n
 u

s ag
ain

 *
/ 

D
1( 

p
rln

tf(•c
x

.c
: 

handleC
xM

ag(C
X

C
M

D
 A

PPEA
RICX

CM
D

 U
N

IQ
U

E
)\n•) 

)I 
I* 

If aom
eone trie

s
 to

 ru
n

 us a 
second tim

e th
e
 ieco

n
d

 copy 
• 

o
f th

e proqram
 w

ill 
fa

ll and w
e w

ill 
b

e
 sen

t a 
* CXCM

D U
N

IQ
U

E m
essage. 

If w
e

 su
p

p
o

rt a 
w

indow
 th

en
 w

e 
* M

ake o
u

r w
indow

 ap
p

ear sin
ce th

a
t is

 w
hat th

e
 u

ser w
anted. 

• 
If w

e do n
o

t su
p

p
o

rt a w
indow

 th
en

 w
e 

k
ill th

e
 c

u
rre

n
tly

 
* ru

n
n

in
g

 v
ersio

n
 'th

ia
 o

n
e' 

so
 th

a
t th

in
q

s 
lik

e
 au

to
p

o
in

t 
• 

can b
e to

g
g

led
 o

n
/o

ff by 
ru

n
n

in
g

 them
 a 

second tim
e. 

*I 

.) 

..... 
(') 



J 

c if(W
IN

D
O

W
) 

I 
If( aetuplflndow

(); 
) 

e
h

e
 I 

tertllin
ate(); 

) 

cx.c 
P

age3 

b
reak

; 
/*

 th
e
 w

indow
 

*
/ 

case CXCM
D D

ISA
PPEA

R
: 

D
l( p

rin
tf(•c

x
.c

: 
handleC

xM
sq(C

X
C

M
D

 D
ISA

PPE
A

R
)\n•) 

); 
If( 

-
ahutdow

nlflndow
(); 

) b
reak

; 
case CXCM

D K
IL

L
: 

D
l( p

rin
tf(•c

x
.c

: handleC
xM

aq(C
X

C
M

D
 

K
IL

L
)\n•) 

); 
term

in
ate(); 

-
b

reak
; 

d
e
fa

u
lt: 

D
l( p

rin
tf(•c

x
.c

: handleC
xM

aq(C
uatom

 C
om

m
and)\n•) 

); 
handleC

uatom
C

X
C

om
m

and(m
aqid); 

b
reak

; 
) 

/*
 end aw

itch(com
m

and) 
*

/ 
b

reak
; 

/*
 end aw

itch(m
aqtype) 

*
/ 

/*
*

*
*

i*
 B

lank.ld/setupC
X

() 
••••••••••••••••*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
 

* * 
N

A
M

E 
* 

setupC
X

 --
In

itia
liz

e
 co

m
m

o
d

itlea.lib
rary

 sp
e
c
ific

 fe
a
tu

re
s. 

* * 
SY

N
O

PSIS 
* 

re
su

lt 
a 

setupC
X

(ttypea) 
* * 

BOOL setupC
X

(char *
*

tty
p

ea); 
* * * * * * * * * * * * * * * * • * * * * * * * * * * * * * * 

FU
N

CTIO
N

 
T

his fu
n

ctio
n

 perform
a a

ll th
e
 co

m
m

o
d

lties.lib
rary

 sp
e
c
ific

 
setu

p
 req

u
ired

 fo
r a 

stan
d

ard
 com

m
odity. 

I
t se

ta
 up th

e b
ro

k
ers 

m
eaaaqe p

o
rt, 

and p
rio

rity
. A

nd 
se

ta
 c

e
rta

in
 flaq

s 
in

 th
e
 

b
ro

k
er stru

c
tu

re
 so

 th
e
 exchanqe proqram

 w
ill know

 w
hat 

featu
res th

is b
ro

k
er su

p
p

o
rts. 

If tb
e
 com

m
odity su

p
p

o
rts a w

indow
 

th
e w

indow
s 

hotkey la
 added to

 th
e
 b

ro
k

er and th
en

 th
e
 fu

n
ctio

n
 

setupC
uatom

C
X

() 
is

 c
a
lle

d
 to

 setu
p

 th
e
 a

p
p

lic
a
tio

n
 sp

e
c
ific

 
com

m
odities o

b
je

c
ts. 

If a
ll th

is q
o

es w
ell th

e
 b

ro
k

er is
 a

c
tiv

a
te

d
 

and th
e
 fu

n
ctio

n
 re

tu
rn

s TR
U

E. 

IN
PU

TS tty
p

es -
NULL tertllln

ated
 A

rqum
ent array

 co
n

taln
ln

q
 th

is 
ap

p
licatio

n
s TO

O
LTY

PES 
strin

q
s. 

U
S
~
T
 

R
eturns TRUE 

if
 a

ll w
ent OK e

lse
 retu

rn
s FA

LSE. 

EXAM
PLE 
if(aetu

p
C

X
(tty

p
es)) 

I 
p

rln
tf(•C

o
m

m
o

d
ities su

c
c
e
ssfu

lly
 in

itia
liz

e
d

.\n
•); 

e
lse

 I 
p

rin
tf(•co

m
m

o
d

lties 
in

itia
liz

a
tio

n
 e

rro
r!\n

•); 

N
O

TES T
his 

fu
n

ctio
n

 can b
e c

a
lle

d
 a

t anytim
e to

 re
ln

itla
liz

e
 th

e 
com

m
odities code from

 a 
nev se

t o
f arq

u
m

en
ts. 

* 
BUGS 

c * * * * * • 

SEE ALSO 
aetupC

uatom
C

X
(); 

ahutdow
nC

X
 () 1 

ahutodw
nC

ustom
C

X
(); 

cx.c 

(
l 

P
age4 

***************************************************************************** 
* *I 
BOOL aetupC

X
(char *

*
tty

p
ea 

I 
LONG 

e
rro

r; 
If( ch

ar 
*

a
tr; 

) 

D
l( p

rin
tf(•c

x
.c

: 
aetupC

X
() 

e
n

te
r\n

•); 

ahutdow
nC

X
 () 1 

I* 
rem

ove w
hat 

w
as 

and c
re

a
te

 *
/ 

I* 
ev

ery
tb

in
q

 from
 •c

ra
tc

h
 

*
/ 

cx
p

o
rt•C

reateP
o

rt(m
y

n
b

.n
b

 N
am

e,O
L

); 
/*

C
re

a
te

 M
eaaa9e p

o
rt 

*
/ 

if( 
I 

ex
p

o
rt 

) 
-

I 
. 

) 

D
l( p

rln
tf(•c

x
.c

: 
•etupC

X
() 

C
ould n

o
t c

re
a
te

 m
eaaa9e p

o
rt\n

•); 
return(F

A
L

S
E

); 

D
l( p

rin
tf(•c

x
.c

: 
aetupC

X
() 

cx
p

o
rt•O

x
tlx

\n
•,cx

p
o

rt); 
) 

cx
sl9

fla9
 • 

lL
 << cx

p
o

rt->
m

p
_

S
i9

B
it; 

I* 
C

reate al9
n

al m
ask 

fo
r W

alt*/ 

I* 
se

t th
e b

ro
k

ers p
rio

rity
 from

 th
e
 TO

O
LTY

PES o
r from

 d
e
fa

u
lt if

 no *
/ 

I* 
TO

O
LTY

PES a
re

 a
v

a
ila

b
le

. S
et th

e
 b

ro
k

ers M
essa9e p

o
rt. 

*
/ 

m
ynb.nb_P

rl 
• 

A
r9

In
t ( tty

p
e
s, 

PR
IO

R
ITY

_TO
O

L_TY
PE, 

C
X

_D
EFA

O
LT_PR

IO
R

ITY
 

) 1 
m

ynb.nb _P
o

rt • 
ex

p
o

rt 1 

D
l( p

rin
tf(•c

x
.c

a
 

aetupC
X

() 
m

y
n

b
.n

b
_

p
rl•O

x
tlx

\n
•,m

y
n

b
.n

b
_

P
ri); 

) 

I* 
If th

is com
m

odity su
p

p
o

rts a 
w

indow
 th

en
 se

t th
e
 SH

O
W

/RID
E 

fla
9

 
*

/ 
I* 

so
 th

e E
xchan9e c

o
n

tro
lle

r can
 9

b
o

at ita
 q

ad
9

eta ap
p

ro
p

riately
 

*
/ 

If( m
ynb.nb_F

la9s 
I• C

O
F_SB

O
W

_B
ID

E; 
) 

I* 
A

ttem
pt to

 c
re

a
te

 o
u

r b
ro

k
er *

/ 
if

 
( 

I 
( b

ro
k

er • 
C

xB
roker( lm

ynb, 
ROLL 

) 
) 

) 
I ) 

D
l( p

rin
tf(•c

x
.c

: 
setupC

X
() 

co
u

ld
 n

o
t c

re
a
te

 b
ro

k
e
r\n

•); 
shutdow

nC
X

 () 1 
return(F

A
L

S
E

); 

D
l( p

rin
tf(•c

x
.c

: 
aetupC

X
() 

b
ro

k
er•O

x
tlx

\n
•,b

ro
k

er); 
) 

I* 
If th

is com
m

odity su
p

p
o

rts a w
indow

 th
en

 add ita
 R

otK
ey 

now
 

*
/ 

If( I* 
in

sta
ll a 

h
o

tk
ey

 fo
r poppin9 up w

indow
 

*
/ 

A
ttachC

xO
bj(broker, 

B
o

tK
ey

(str•A
r9

S
trin

9
(tty

p
es

1 POPKBY TOOL TY
PE,C

X
 
D
E
F
A
~
T
 PO

P 
K

EY
), 

ex
p

o
rt, PO

P 
KEY 

ID
) 

) 1 
-

-
-

-
-

atrn
cp

y
(h

o
tk

ey
b

u
ff,atr,aizeo

f(h
o

tk
ey

b
u

ff)-1
); 

I* 
S

etup a
ll a

p
p

lic
a
tio

n
 sp

e
c
ific

 com
m

odities o
b

jects 
*

/ 
if( 

! 
aetupcuatom

cX
() 

) 
I 

D
l( p

rin
tf(•c

x
.c

: 
setupC

X
() 

setupC
ustom

C
X

 fa
ile

d
\n

•); 
shutdow

nC
X

(); 
return(F

A
L

S
E

); 

(\1
 

C
') 



/*
 C

heck 
fo

r accum
ulated e

rro
r *

/ 
if 

( e
rro

r 
a 

C
xO

bjE
rror( b

ro
k

er 
) 

( 

cx.c 
P

ageS
 

D
l( p

rin
tf(•c

x
.c

: 
aetupC

X
() 

accum
ulated b

ro
k

er e
rro

r tld
\n

•,e
rro

r) 
); 

ahutdovnC
X

(); 
retu

rn
 

(FA
L

SE
); 

/*
 A

ll v
en

t w
ell so

 a
c
tiv

a
te

 o
u

r b
ro

k
er *

/ 
A

ctiv
ateC

x
O

b
j(b

ro
k

er,lL
); 

D
l( p

rin
tf(•c

x
.c

: 
aetupC

X
() 

re
tu

rn
s TR

U
E•) 

); 
retu

rn
 

(TR
U

E); 

/****i* D
lank.ld/shutdovnC

X
() 

•••••••••••••••••••••••••••••••••••••••••• 
. * 

N
A

M
E 

• 
shutdovnC

X
 --

C
leanup a

ll com
m

odities b
ro

k
ers and h

an
d

lers • 
• * 

SY
N

O
PSIS 

• 
shutdovnC

X
() 

• * 
V

O
ID

 
ahutdovnC

X
(V

O
ID

); 
• • • • • • • • 

FU
N

CTIO
N

 
S

h
u

ts dow
n 

and clean
s up a

ll v
ariab

les and d
ata u

sed
 fo

r au
p

p
o

rtln
9

 
th

e
 co

m
m

o
d

ities.lib
rary

 a
id

e
 o

f th
is com

m
odity. 

T
h

is fu
n

ctio
n

 
M

UST be se
t up so

 th
a
t it can

 b
e c

a
lle

d
 re9

ard
less o

f th
e
 cu

rren
t 

sta
te

 o
f th

e
 proqram

. 
T

h
is 

fu
n

ctio
n

 
h

an
d

les a
ll th

e
 stan

d
ard

 
clean

u
p

 and c
a
lla

 ahutdovncustam
C

X
(); 

to
 clean

u
p

 th
e
 ap

p
licatio

n
 

sp
e
c
ific

 code • 

* 
IN

PU
TS 

• 
N

one • 
• * 

~
S
~
T
 

• 
T

he com
m

odities sp
e
c
ific

 co
d

e is
 clean

ed
 up and m

ade 
ready fo

r 
• 

a 
term

in
ate(); 

o
r a c

a
ll to

 aetupC
X

(); • 
• * 

EXAM
PLE 

• * 
NOTES 

• 
T

he 
firs

t th
in

9
 th

a
t setupC

X
() 

does 
is

 c
a
ll th

is ro
u

tin
e
. T

h
erefo

re 
• 

th
is fu

n
ctio

n
 m

ust w
ork 

ev
en

 b
efo

re your com
m

odity h
as been 

• 
in

itia
liz

e
d

 • 
• * 

DUGS 
• • • • • 

SEE A
LSO

 
setupC

X
() 1 

setupC
uatom

C
X

(); 
shutdow

ncuatom
cX

(); 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• *

I 
V

O
ID

 ahutdow
nC

X
() 

( 
a
tru

c
t M

easa9e 
·
~
9
1
 

D
l( p

rin
tf(•c

x
.c

: 
ahutdow

nC
X

() 
e
n

te
r b

ro
k

er now
: 

tlx
\n

•, 
b

ro
k

er ) 
); 

shutdow
nC

ustom
cx () ;_ 

lf(cx
p

o
rt) 

( 

.) 
) 

, 

cx.c 
D

l( p
rln

tf(•c
x

.c
: 

ahutdow
nC

X
() 

D
eletln

9
 a

ll o
b

jecta\n
•) 

); 
D

eleteC
x

O
b

jA
ll(b

ro
k

er); 
/*

 
sa

fe
, 

even lf
 NULL 

*
/ 

I*
 now

 th
a
t m

essa9es a
re

 sh
u

t o
ff, 

c
le

a
r p

o
rt 

w
h
l
l
e
(
~
9
m
G
e
t
H
s
9
(
c
x
p
o
r
t
)
)
 

R
eplyM

s9(m
59)1 

D
eleteP

o
rt(cx

p
o

rt); 

ex
p

o
rt 

• 
N

U
L

L
; 

C
X

sl9fla9 
a 

0
; 

b
ro

k
er 

a 
N
~
L
;
 

*
I 

D
l( 

p
rin

tf(•c
x

.c
: 

shutdow
nC

X
() 

retu
rn

s\n
•) 

); 

P
age&

 

R
 

) 



c· 
w

lndow
.c 

P
age1 

, ...................................................................... . 
• 

• 
* 

CO
PY

RIG
H

TS 
* 

• • • • 
U

N
LESS O

TH
ERW

ISE RO
TED

, 
A

LL 
FIL

E
S ARE 

C
o

p
y

ri9
h

t 
(c) 

1990 
C

om
m

odore-A
m

i9a, 
In

c
. 

A
ll R

i9
h

ts R
eserv

ed
. 

• • • • 
..............•..........................................•............. , 

I* 
w

indow
.c --

In
tu

itio
n

 In
te

rfa
c
e
 *

/ 

lin
c
lu

d
e
 •lo

c
a
l.h

• 

s
ta

tic
 BY

TE dum
m

y; 

lif
 W

INDOM
 

/*
IIIII A

ll th
e fo

llo
w

in
g

 
is d

isab
led

 if
 th

e
 com

m
odity 

IIIII*
/ 

/*
IIIII does n

o
t su

p
p

o
rt a 

w
indow

. 
IIIII*

/ 

stru
c
t W

indow
 

*w
indow

 • 
H

U
LL; 

/*
 o

u
r w

indow
 
*

/ 

v
o

id
 

•v
i 

a 
N

U
LL; 

stru
c
t S

creen
 

•m
yscreen 

• 
N

U
LL; 

SH
O

RT 
to

p
b

o
rd

er; 
stru

c
t T

ex
tF

o
n

t *
fo

n
t 

a 
N

U
LL; 

stru
c
t G

ad9et 
*

9
list 

• 
N

U
LL; 

stru
c
t M

enu 
*m

enu 
a 

N
U

LL; 
BOOL 

m
enuattached • 

N
U

LL; 
a
tru

c
t D

raw
info *m

ydi 
• 

N
U

LL; 
BOOL 

ID
C

M
PR

efreah • 
N

U
LL; 

I* 
sav

e w
indow

 p
o

sitio
n

a
 and dim

s 
le

ft,to
p

,w
id

th
,h

e
iv

h
t 

*
/ 

s
ta

tic
 NORD savew

indov[ 
4 )•IN

IN
D

O
M

_LEFT,M
IN

D
O

N
_TO

P,M
IN

D
O

M
_M

ID
TH

,M
IN

D
O

W
_R

!IG
H

TJ; 

s
ta

tic
 ch

ar M
in

d
o

v
T

itle(2
5

5
); 

/*
 b

u
ffe

r to
 h

o
ld

 cooked w
indow

 title
 *

/ 

/*
*

*
*

i*
 B

lan
k

.ld
/h

an
d

leiM
S

9
() 

•••••••••••••••••••••••••••••••••••••••••• 
• • 

N
A

M
E 

• • • • • • • • • • • • • • • • • • • • • • • 

handleiM
89 --

H
andle w

indow
 

ID
CM

P m
essa9es • 

SY
N

O
PSIS 
handleiM

avC
m

a9J1 

V
O

ID
 h

an
d

leiM
a;(stru

ct 
In

tu
iM

eaaa;e *m
a9J; 

FU
N

CTIO
N

 
T

h
is fu

n
ctio

n
 

h
an

d
les a

ll th
e
 In

tu
iM

esaa9
ea 

fo
r stan

d
ard

 
com

m
odities 

fu
n

ctio
n

s. 
I
f
 th

e
 m

essa;e is
 fo

r an
 a

p
p

lic
a
tio

n
 

G
ad9et o

r M
enu 

th
e a

p
p

ro
p

ria
te

 a
p

p
lic

a
tio

n
 fu

n
ctio

n
, 

bandleC
uatom

M
enu() 

o
r H

an
d

leG
ad

q
et(J, 

is
 c

a
lle

d
 • 

IN
PU

TS m
av 

• 
T

he c
u

rre
n

t In
tu

iM
easaq

e. 

~
S
~
T
 

T
he ap

p
ro

p
riate actio

n
 
fo

r th
e
 m

esaa9e is p
erfo

rm
ed

. 

EXAM
PLE 

N
O

TES 

BUGS 

SEE ALSO 

c· 
c· 

w
lndow

.c 
P

age2 
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• . , V

O
ID

 
h

an
d

leiM
S

9
(atru

ct In
tu

iM
eaaav

e *m
s;J 

( 
ULONG 
U

N
O

R
D

 
stru

c
t 

c
la

ss; 
co

d
e; 

G
adqet 

*
q

ad
d

reaa; 

c
la

ss 
a 

m
a;->

C
laaa; 

co
d

e 
• 

m
av->

C
ode; 

q
ad

d
reaa • 

(a
tru

c
t G

ad9et 
*) 

m
a9->

IA
ddress; 

D
l( k

p
rin

tf(•w
in

d
o

w
.c: 

handleiM
avC

J 
e
n

te
r\n

•J 
J; 

G
T

_R
eplyiM

89 ( 
(a

tru
c
t M

89 
*) 

m
a9 

) I 

sw
itch

 
C

 c
la

a
a
 ) 

( 
case CLO

SEM
IN

D
O

M
: 

D
l( p

rin
tf(•w

in
d

o
w

.ca 
handleiH

39(C
L

O
SE

M
IN

D
O

W
)\n•J 

J; 
shutdow

nM
indow

(); 
b

reak
; 

/*
 

n
o

t 
reach

ed
 

*
/ 

case 
~
F
R
E
S
H
M
I
N
D
O
M
:
 

D
l( p

rin
tf(•w

in
d

o
w

.ca 
h
a
n
d
l
e
i
H
3
q
(
~
F
R
E
S
B
M
I
N
O
D
M
J
\
n
•
J
 

); 
ID

C
M

PR
efreshaT

R
U

E
; 

refreab
M

in
d

o
w

(); 
ID

C
M

PR
efreabaFA

L
SE

; 
b

reak
; 

caae M
EN

U
PICK

I 
D

l( p
rln

tf(•w
ln

d
o

w
.ca 

handleiM
avC

M
E

N
U

PIC
K

)\n•) 
); 

handleC
uatom

M
enu(code)J 

b
reak

; 
caae G

AD
G

ETU
P 1 

D
lC

 
p

rin
tf(•w

in
d

o
w

.ca 
handleiM

svC
G

A
D

G
ETU

PJ 
G

ad
v

etiD
•tlx

\n
•,,ad

d
resa->

G
ad

v
eti 

D
) 

)
;
 

8
an

d
leG

&
d

q
et(9

&
d

d
ress->

G
ad

v
etiD

' 
G
A
D
T
O
O
~
K
,
c
o
d
e
)
;
 

b
reak

; 

I /****1* B
lank.ld/aetupW

indow
() •••••••••••••••••••••••••••••••••••••••••• 

• * 
N

A
M

E 
• 

aetupW
indow

 
P

erforM
 w

h
atev

er ste
p

s n
ecessary

 to
 m

ake th
e
 

w
indow

 
v

le
ib

le
 • 

• • • • • • • • • • • • • • • • • • • • • 

SY
N

O
PSIS 
aetupM

indov () 

V
O

ID
 

setupM
indow

(V
O

ID
); 

FU
N

CTIO
N

 
T

h
is 

fu
n

ctio
n

 Ia
 u

sed
 to

 m
ake th

e
 w

indow
 v

isib
le

. 
If th

e
 w

indow
 

ia
 n

o
t opened th

la
 

fu
n

ctio
n

 w
ill open lt. 

If th
e
 w

indow
 Ia

 alread
y

 
open it w

ill b
e b

ro
u

v
h

t 
to

 th
e
 fro

n
t 

ao
 It ia

 v
la

lb
le

. T
h

is 
ro

u
tin

e
 h

an
d

les a
ll th

e
 u

9
lin

eas o
f new

 lo
o

k
 and ch

an
9

in
9

 w
indow

 
title

 b
a
r fo

n
t 

h
ei9

h
ta • 

IN
PU

TS 

~
S
U
L
T
 

EXAM
PLE 

N
O

TES 

~
 



w
lndow

.c 
P

age3 

BUGS 
• * 

SEE ALSO 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• *

I 
V

O
ID

 
setupN

indow
() 

f 
D

l( p
rin

tf(•w
in

d
o

w
.c: 

setupN
indow

() 
e
n

te
r\n

•) 
)I 

if(w
indow

) 
I } 

D
l( p

rin
tf(•w

in
d

o
w

.c: 
setupN

indow
() 

N
indow

T
oF

ront()\n•) 
)
I
 

N
indow

T
oF

ront( w
indow

 
)
I
 

retu
rn

1
 

/*
 alread

y
 se

tu
p

, 
n

o
th

in
q

 to
 re

-in
it 

*
/ 

if
 ( 

! 
m

yscreen) 
I 

if( 
! 

(m
yscreenaL

ockP
ubS

creen(N
U

L
L

))) 
I 

D
l( p

rin
tf(•w

in
d

o
w

.c: 
setupN

indow
() 

co
u

ld
 n

o
t L

ockP
ubS

creen()\n•) 
)I 

retu
rn

1
 

} 
D

l( p
rin

tf(•w
in

d
o

w
.c: 

setupN
indow

() 
L

ockPubScreen(N
U

L
L

) 
• 

tlx
\n

•,m
y

screen
) 

)
I
 

i
f
(
 

! 
m

ydi) 
( } 

if( 
! 

(m
ydi•G

etS
creenD

raw
info(m

yscreen))) 
( 

D
l( p

rin
tf(•w

in
d

o
w

.c: 
setupW

indow
() 

co
u

ld
 n

o
t G

etS
creen

D
raw

in
fo

()\n
•) 

)
I
 

re
tu

rn
 I 

D
l( p

rin
tf(•w

in
d

o
w

.c: 
setupN

indow
() 

G
etS

creenD
raw

info(O
xtlx) 

• 
tlx

\n
•,m

y
screen

,m
y

d
 

1
) 

) I 

t
o
p
b
o
r
d
e
r
~
y
s
c
r
e
e
n
-
>
N
B
o
r
T
o
p
 +

 
(m

yscreen->
F

ont->
ta Y

Si&
e 

+1)1 
D

l( p
rin

tf(•w
in

d
o

w
.c: 

setupN
indow

() 
to

p
b

o
rd

er • 
tld

\n
•,to

p
b

o
rd

er) 
)I 

i
f
(
 

I 
v

l) 
( } 

if( 
I 

(v
i-G

etV
isu

alin
fo

(m
y

screen
,T

A
G

 D
O

N
E))) 

( 
-

-
D

l( p
rin

tf(•w
in

d
o

w
.c: 

setupN
indow

() 
co

u
ld

 n
o

t G
etV

isu
alin

fo
()\n

•) 
)I 

q
o

to
 E

X
IT

I 

D
l( p

rin
tf(•w

in
d

o
w

.c: 
setupN

indow
() 

G
etV

isu
alin

fo
() 

a 
tlx

\n
•,v

i) 
)I 

if
 ( 

! 
(w

indow
aqetN

ew
N

indow
())) 

( 
D

l( p
rin

tf(•w
in

d
o

w
.c: 

setupN
indow

() 
co

u
ld

 n
o

t qetN
ew

N
indow

()\n•) 
)I 

q
o

to
 EX

IT1 
I D

l( p
rin

tf(•w
in

d
o

w
.c: 

setupN
indow

() 
qetN

ew
N

indow
() 

a 
tlx

\n
•,w

in
d

o
w

) 
)I 

ip
o

rt 
• 

w
indow

->
U

serP
ortl 

isiq
fla

9
 

a 
lL

 << 
ip

o
rt->

m
p

_
S

i9
B

it1
 

addG
adqets(w

indow
)l 

setupC
ustom

H
ena(); 

if(m
enu) ) 

w
lndow

.c 
P

age4 

if( 
! 

L
ayoutM

enus(m
enu,vl,T

A
G

 D
O

N
E)) 

I 
-

D
l( p

rin
tf(•w

in
d

o
w

.c: 
eetupN

indow
() 

co
u

ld
 n

o
t L

ayoutM
enus()\n•) 

)I 

I m
enuattachedaS

etM
enuS

trip(w
indow

,m
enu)l 

D
l( p

rin
tf(•w

ln
d

o
w

.c: 
setupN

indow
() 

S
etM

enuS
trip() 

• 
tlx

\n
•,m

en
u

attach
ed

) 
)I 

refresh
N

in
d

o
w

()l 

E
X

IT
: 

I /*
*

*
*

i*
 B

lank.ld/shutdow
nN

indow
() 

****************************************** 
* * 

N
A

M
E 

* * * * * * * * * * * * * * 

ehutdow
nN

indow
 -

-
P

erform
 th

e etep
e n

ecessary
 to

 c
lo

se
 th

e w
indow

. 

SY
N

O
PSIS 
shutdow

nN
indow

() 

V
O

ID
 •hatdow

nN
indow

(V
O

ID
)I 

FU
N

CTIO
N

 
C

loees th
e
 w

indow
 and rem

em
bers 

ita
 p

o
sitio

n
 fo

r th
e n

ex
t o

p
en

. 

IN
PU

TS 

RESU
LT 

* 
EXAM

PLE 
* * 

N
O

TES 
* * 

BUGS 
* * 

SEE A
LSO

 
* ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* ., V

O
ID

 •hatdovnw
indow

() 
( 

-) 

lfO
A

D
 

*
w

p
l 

D
l( p

rin
tf(•w

in
d

o
v

.c: 
•hatdow

nw
indow

() 
e
n

te
r\n

•) 
11 

if
 ( 

J w
indow

 
) 

( 
D

l( p
rin

tf(•w
in

d
o

w
.c: 

shutdow
nN

indov() 
w

indow
 n

o
t o

p
en

!\n
•) 

)I 
re

tu
rn

 I 

I*
 

sav
e w

indow
 p

o
sitio

n
 

*
/ 

w
p 

• 
savew

indow
1 

*w
p++ • 

w
indow

->
L

eftE
d;el 

*w
p++ 

a 
w

indov->
T

opE
d;el 

*vp++ 
a w

indov->
N

idthl 
*w

p 
• 

w
indov->

R
ei9ht1 

if(m
en

u
attach

ed
) 

( 
C

learM
enaS

trip(w
indow

)l 
m

enuattached•N
U

L
L

; 
I if(m

enu) 

) 

i!J 



c 
F

reeM
enua(atenu)l 

m
enuaN

U
LLI 

w
lndow

.c 
P

ageS
 

D
l( p

rin
tf(•v

in
d

o
w

.c: 
ahutdovnN

indov() 
C

lo
sin

v
W

in
d

o
w

(tlx
)\n

•,v
in

d
o

w
) 

)I 
C

loseN
indov(vindov)J 

D
l( p

rin
tf(•v

in
d

o
v

.c: 
ahutdovnN

indov() 
a
fte

r C
lo

seN
in

d
o

v
()\n

•) 
)I 

v
in

d
o

v
 

• 
RU

LLI 
ip

o
rt 

.. H
U

LLr 
isiv

fla
v

 .. RU
LLI 

rem
oveG

ad9ets () 1 
D

l( p
rin

tf(•v
in

d
o

v
.c: 

ahutdovnN
indow

() 
a
fte

r rem
oveG

adfJeta()\n•) 
)I 

lf(v
l) 

( 
D

l( p
rin

tf(•v
in

d
o

v
.c: 

shutdovnN
indov() 

F
re

e
V

ia
u

a
lin

fo
(tlx

)\n
•,v

i) 
)I 

F
reeV

iau
alin

fo
(v

i)l 
vieH

U
L

L
I 

) lf(m
y

d
U

 
( ) 

D
l( p

rin
tf(•w

in
d

o
v

.c: 
shutdow

nW
indow

() 
F

reeS
creen

D
raw

in
fo

(tlx
)\n

•,m
y

d
i) 

)I 
F

reescreenD
raw

info(m
yacreen,m

ydi)l 
m

ydiaR
U

LLI 

lf
 (m

y screen
) 

( 
D

l( p
rin

tf(•v
in

d
o

w
.c: 

ahutdovnN
indov() 

U
n

lo
ck

P
u

b
S

creen
(tlx

)\n
•,m

y
acreen

) 
)I 

U
nlockP

ubS
creen(H

U
L

L
,m

yacreen)l 
m

yscreenaN
U

L
L

I 

/••••i• B
lank.ld/vetN

evN
indow

() 
•••••••••••••••••••••••••••••••••••••••••• 

• * 
N

A
M

E 
• 

vetN
evN

indow
 --

O
pen 

th
e
 w

indow
 

rem
em

berin9 th
e
 o

ld
 p

o
stitio

n
 

• 
if

 reo
p

en
in

9
. 

• * 
SY

N
O

PSIS 
• 

w
indow

 • 
IJetN

evN
indov()l 

• • 
stru

c
t W

indow
 

•vetN
evN

indow
(V

O
ID

)I 
• • • • • • • • • • • • • • • 

FU
N

CTIO
N

 
T

hia fu
n

ctio
n

 opens th
e
 com

m
odities w

indow
. 

It au
to

m
atically

 
seta th

e
 w

indow
 title

 to
 re

fle
c
t th

e
 cu

rren
t R

otK
ey. 

If th
e
 

w
indow

 
has alread

y
 been opened o

n
ce th

en
 th

e
 p

rev
io

u
s p

o
sitio

n
 

and a
iz

e
 
(if siz

in
9

 is
 en

ab
led

) 
a
re

 used fo
r th

is open • 

IN
PU

TS N
one. 

U
S
~
T
 

R
eturns a p

o
in

te
r to

 th
e
 opened w

indow
 o

r NULL on e
rro

r • 

EXAM
PLE 

• 
N

O
TES 

• • • • • 

BUGS 

S
E

E
 ALSO 

setupN
lndow

 () : 

c 
( 

w
lndow

.c 
P

age&
 

• 
ahutdow

nN
indow

()l 
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• . , a
tru

c
t 

W
indow

 
•vetN

ew
W

indow
() 

( ) 

a
tru

c
t 

N
evN

indov 
nv1 

W
ORD 

*vp 
a 

aavevindow
1 

D
l( p

rin
tf(•v

in
d

o
v

.c
s vetN

evN
indov() 

e
n

te
r\n

•) 
)I 

ap
rin

tf(N
in

d
o

V
T

itle,•ta: 
R

otK
eyeta•,cO

M
_T

IT
L

E
,hotkeybuff)l 

n
v

.L
eftE

d
v

e 
• 

*vp++r 
nv.T

opE
d9e 

• 
*vp++r 

nv.W
idth 

• 
*vp+

+
l 

nw
.H

eivht 
• 

*vp+
+

l 
n

w
.D

etallP
en

 
• 

(U
BY

TE) 
-11 

nv.B
lockP

en 
• 

(U
BY

TE) 
-11 

nw
.ID

C
M

PFlava 
• 

IFLA
G

SI 
n

v
.F

la9
a 

• 
N

FLA
G

SI 
n

v
.F

iratG
ad

v
et • 

N
U

LLI 
nv.checkM

ark 
• 

N
U

LLI 
n

w
.T

ltle 
• 

W
lndovT

itle1 
n

v
.screen

 
• 

N
U

LLI 
nv.B

itM
ap 

• 
NULL1 

nw
.M

inN
idth 

a 
W

INDON M
IN

 W
ID

TRI 
nw

.M
inR

ei9ht 
a 

W
IN

D
O

N
-M

IN
-R

EIG
R

TI 
1• w

ork aro
u

n
d

 bu9 
*

/ -
-

nv.M
axN

idth 
• 

W
INDOW

 
~
 W

ID
TBI 

nw
.M

axH
el9ht 

• 
W
I
~
M
A
X
-
B
E
I
G
R
T
I
 

nw
.T

ype 
• 

W
BEN

CRJCRB!N
I 

D
l( p

rln
tf(•v

in
d

o
v

.c
s vetN

evN
indow

() 
b

efo
re O

penN
indovT

ava()\n•) 
)I 

re
tu

rn
 

((a
tru

c
t W

indow
 *) 

O
penW

indoV
T

avaC
,nv, 

M
A In

n
erB

elv
h

t
1 NINDOW

 IN
N

ER
R

EIG
B

T, 
N

A
:A

utoA
djuat,T

R
U

E
,M

A
:PubScreen,m

yacreen,T
A

G
_D

O
N

E
))I 

/****1* 
B

lan
k

.ld
/ad

d
G

ad
v

eta() 
•••••••••••••••••••••••••••••••••••••••••• 

• * 
N

A
M

Z 
• 

addG
adveta --

A
dd a

ll th
e
 stan

d
ard

 and ap
p

licatio
n

 sp
e
c
ific

 
• 

v
ad

v
eta to

 th
e
 w

indow
 • 

• • • • • • • • • • • • • • 

SY
N

O
PSIS 
re

su
lt • 

addG
ad9eta(w

indov)l 

ln
t ad

d
G

ad
9

eta(atru
ct W

indow
 

*
v

in
d

o
v

)l 

FU
N

CTIO
N

 
S

eta up th
e
 environatent fo

r v
ad

v
et to

o
lk

it v
ad

9
eta and c

a
lla

 
addC

uatom
G

ad9eta() 
to

 add th
e
 a

p
p

lic
a
tio

n
 sp

e
c
ific

 v
ad

v
eta 

to
 th

e
 w

indow
 • 

IN
PU

TS v
in

d
o

v
 

a 
P

o
in

ter to
 th

e
 w

indow
 • 

* 
R

E
SU

L
T

 
• • 

R
etu

rn
s TRU

E 
if

 a
ll v

en
t w

e
ll, 

FA
LSE o

th
erw

ise. 

* 
EX

A
M

PLE 
• • 

N
O

TES 
• 

CD 
(") 



w
lndow

.c 
P

a
g

e
7

 

• 
BUGS 

• * 
SEE A

LSO
 

* 
setupC

ustom
G

ad9ets(); 
* 

rem
oveG

ad9ets(); 
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
*

I 
in

t ad
d

G
ad

9
ets(stru

ct N
indow

 
*w

indow
) 

( l 

stru
c
t G

ad9et 
*9ad; 

D
1( 

p
rin

tf(•w
in

d
o

w
.c: 

ad
d

G
ad

9
ets() 

e
n

te
r\n

•) 
); 

I*
 

open d
esired

 fo
n

t: 
*

I 
If( 

! 
fo

n
t 

) 
( 

D
1( 

p
rin

tf(•w
in

d
o

w
.c: ad

d
G

ad
9

eta() 
O

penin9 
fo

n
t\n

•) 
); 

if 
(!(fo

n
t 

a 
O

p
en

F
o

n
t(C

m
y

d
eaired

fo
n

t))) 
( 

D
l( p

rin
tf(•w

ln
d

o
v

.c: 
ad

d
G

ad
9

ets() 
C

ould n
o

t open fo
n

t\n
•) 

); 
return(F

A
L

S
E

); 

9ad • 
C

re
a
te

C
o

n
te

x
t(,9

lia
t); 

setu
p

C
u

sto
m

G
ad

9
ets(,9

ad
); 

ifC
19adJ 

( 
D

1( 
p

rin
tf(•w

in
d

o
w

.c: ad
d

G
ad

9
ets() 

e
rro

r ad
d

in
9

 9
ad

9
ets\n

•) 
); 

if(9
lis

t) 
( 

F
reeG

ad
9

etsC
9

list); 
9

lh
teN

U
L

L
; 

) lf(fo
n

t) 
I 

C
lo

seF
o

n
t(fo

n
t); 

font•N
U

L
L

; 
, return(F

A
L

S
E

); 

A
ddG

L
ist(vindov, 

9
lis

t, 
((U

W
O

RD
) 

-1
), 

((U
N

O
RD

) 
-1

), 
N

U
LL); 

R
e
f
r
e
s
b
G
L
i
s
t
(
~
i
n
d
o
v
-
>
F
i
r
s
t
G
a
d
9
e
t
,
 

vindow
, 

N
U

LL, 
((U

W
O

RD
) 

-1
)); 

G
T R

efreshN
indov(vindow

,N
U

L
L

); 
return(T

R
U

E
); 

l*
*

*
*

i*
 B

lan
k

.ld
lrem

o
v

eG
ad

9
ets() 

****************************************** 
• * 

N
A

M
E 

• • • • • • • • • 

rem
oveG

ad9ets -
-

R
em

ove 
an

d
 d

e
a
llo

c
a
te

 a
ll atan

d
ard

 and 
a
p

p
lic

a
tio

n
 9

ad
9

ets 
from

 th
e
 v

in
d

o
v

 • 

SY
N

O
PSIS 
rem

oveG
ad9ets() 

V
O

ID
 

rem
oveG

ad9ets(V
O

ID
); 

FU
N

CTIO
N

 
T

h
is 

fu
n

ctio
n

 p
erfo

rm
s 9

ad
9

et clean
u

p
. 

It 
is

 resp
o

n
sib

le fo
r 

d
eallo

catin
9

 and rem
ovin9 a

ll 9
ad

9
ets from

 th
e
 vindow

 b
efo

re 
it 

la
 clo

sed
 • 

_·) 

• • • • • • • • • • • • • • • 

IN
PU

TS N
one. 

R
E

SU
L

T
 

w
lndow

.c 

A
ll 9

ad
9

ets a
re

 freed
 and rem

oved from
 th

e
 v

in
d

o
v

 • 

EXAM
PLE 

N
O

TES 

BUGS 

U
ses 

th
e
 9

lo
b

al v
a
ria

b
le

 9
lls

t w
hich 

is a 
lin

k
ed

 lis
t o

ff a
ll 

th
e
 9

ad
9

et to
o

lk
it 9

ad
9

ets. 

P
ageS

 

* 
SEE A

LSO
 

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
* *

I 
v

o
id

 rem
oveG

ad9ets() 
( ) 

lf(9
lh

t) 
( 

D
1( 

k
p

rln
tf(•v

in
d

o
v

.c
: 

rem
oveG

ad9ets() 
F

re
e
in

9
G

a
d

9
e
ts(tlx

J\n
•,9

llst) 
); 

F
reeG

ad
9

ets(9
list); 

9list•N
U

L
L

; 

lf
 

(fo
n

t) 
( 

D
l( k

p
rln

tf(•v
ln

d
o

v
.c

: 
rem

oveG
ad9eta() 

C
lo

ain
9

 fo
n

t 
tlx

\n
•, 

fo
n

t) 
); 

C
lo

seF
o

n
t(fo

n
t); 

font•N
U

L
L

; 

fe
n

d
if /*

 W
INDOW

 
*

/ 

) 
) 

...... 
(") 



c 
app.h 

P
age1 

I
*

•
•
•
··································································· 

. 
. 

. 
* 

. 
CO

PY
RIG

H
TS 

* 
• • • • 

U
N

LESS O
TH

ERW
ISE N

O
TED

, 
A

LL FIL
E

S ARE 
C

opyriqht 
(c) 

1990 
C

om
m

odore-A
m

iqa, 
In

c. 
A

ll R
iq

h
ts R

eserved. 

* * • • 
·······································································I 

tifn
d

e
f A

PP 
B

 
td

e
fln

e
 A

PP:a 

U
fd

e
f LA

TTIC
E 

tin
clu

d
e <

c
lib

la
ll p

ro
to

s.h
>

 
tin

clu
d

e 
<
p
r
a
v
m
a
s
l
i
a
d
t
o
o
l
s
_
p
r
a
~
s
.
h
>
 

len
d

 if
 

tin
clu

d
e <

u
tility

ltaq
item

.h
>

 

I······································································ I 
I* 

P
ro

to
ty

p
es fo

r fu
n

ctio
n

s d
eclared

 in
 ap

p
.c and c

a
lle

d
 from

 th
e
 

*
I 

I* 
stan

d
ard

 m
odules. 

*I 
I
*

*
*

*
•
•
•
······························································· I 

V
O

ID
 

setupcustom
G

ad9etsC
struct G

adqet *
*

); 
V

O
ID

 
H

andleG
ad9et(U

L
O

N
G

1 U
LO

N
G

); 
V

O
ID

 
setupcustam

M
enu(V

O
ID

); 
V

O
ID

 handleC
ustom

M
enu(U

N
O

R
D

); 
V

O
ID

 
refreshW

indow
(V

O
ID

); 
BOOL setupC

uetom
cx(V

O
ID

); 
V

O
ID

 
ebutdow

nC
ustom

C
X

(V
O

ID
)I 

V
O

ID
 handleC

ustom
C

X
M

sq(U
L

O
N

G
)J 

V
O

ID
 handleC

ustom
C

X
C

om
m

and(U
L

O
N

G
); 

V
O

ID
 

handleC
uatom

S
i9nal(V

O
ID

)1 

I······································································ I 
I* 

P
ro

to
ty

p
es 

fo
r 

fu
n

ctio
n

s d
eclared

 in
 th

e
 stan

d
ard

 m
odules and 

*I 
I* 

c
a
lle

d
 by ap

p
.c 

*I 
I······································································ I 
V

O
ID

 aetupN
indow

(V
O

ID
)I 

V
O

ID
 shutdow

nN
indow

(V
O

ID
)I 

V
O

ID
 
t
e
~
n
a
t
e
(
V
O
I
D
)
;
 

1
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

•
······················································1

 
I* 

P
ro

to
ty

p
es fo

r fu
n

ctio
n

s d
eclared

 in
 ap

p
licatio

n
 m

odules and 
*I 

I* 
c
a
lle

d
 by ap

p
.c 

*I 
1

······································································1
 

1
······································································1

 
I* 

d
e
fin

itio
n

s fo
r q

lo
b

al v
ariab

les d
eclared

 in
 th

e
 stan

d
ard

 m
odules 

*I 
I* 

referen
ced

 by ap
p

.c 
*I 

l*
*

*
*

··································································t 
ex

tern
 C

xO
bj 

*
b

ro
k

er; 
ex

tern
 SHORT 

to
p

b
o

rd
er; 

ex
tern

 V
O

ID
 

*
v

i; 
ex

tern
 stru

c
t M

enu 
*m

enu; 
ex

tern
 a

tru
c
t L

ib
rary

 
*G

adT
oolsB

aae; 
ex

tern
 stru

c
t G

adqet 
*

q
list; 

ex
tern

 ch
ar 

*
*

tty
p

es; 
ex

tern
 stru

c
t M

aqPort 
*

ex
p

o
rt; 

ex
tern

 stru
c
t In

tu
itio

n
B

aae 
*

In
tu

itlo
n

B
aae; 

ex
tern

 stru
c
t D

raw
info 

*m
ydi; 

ex
tern

 ULONG 
c
a
iq

fla
q

; 
ex

tern
 stru

c
t T

ask 
*m

aintaak; 
ex

tern
 BOOL 

ID
C

H
P

R
efreah; 

c 
c 

8D
P

.h
 

P
age2 

l*
*

•
•
··································································t 

I* 
d

e
fin

itio
n

s fo
r q

lo
b

al v
ariab

les d
eclared

 in
 ap

p
.c and 

*
/ 

I* 
referen

ced
 by th

e
 stan

d
ard

 m
odules. 

*I 
I
*

*
•
··································································· I 

ex
tern

 stru
c
t T

ex
tA

ttr m
y

d
esired

fo
n

t; 

, .........................•••........•...................•••••••....... 1 
I* 

C
om

m
odities sp

e
c
ific

 d
e
fin

itio
n

s. 
*I 

I* 
*I 

I* 
COM

 NAM
E 

-
u

sed
 fo

r th
e
 sc

ro
llin

q
 d

isp
lay

 in
 th

e
 E

xchanqe proqram
 *I 

I* 
C

O
M

-TITLE -
used fo

r th
e
 w

indow
 title

 b
ar and th

e
 lonq d

escrip
tio

n
 *I 

I* 
-

in
 th

e
 E

xchanqe proqram
 

*I 
I* 

COM
 D

ESC 
-

C
om

m
odity d

escrip
tio

n
 used by th

e
 E

xchanqe proqram
 

*I 
I* 

ex
 5EFA

U
LT PR

IO
R

ITY
 -

d
e
fa

u
lt p

rio
rity

 fo
r th

is com
m

odities b
ro

k
er *I 

I* 
-

-
can

 b
e
 o

v
erld

d
en

 by u
sin

q
 ico

n
 TOOL TY

PES 
*I 

I······································································ I 
td

efin
e C

O
M

 
N

A
M

E
 

•alan
k

• 
td

efin
e C

O
M

-TITLE 
•alan

k
• 

td
efin

e CO
M

-D
ESCR •com

m
odities A

p
p

licatio
n

 S
k

eleto
n

• 
td

efin
e CX 5EFA

U
LT 

PR
IO

R
ITY

 
0 

ld
efin

e ex-D
EFA

U
LT-PO

P 
KEY 

(•sh
ift f1

•) 
td

efin
e ex:D

EFA
U

LT:PoP:O
N

_STA
R

T 
(•Y

E
S•) 

I
*

*
•
··································································· I 

I* 
C

ustom
 S

ig
n

al co
n

tro
l 

*
/ 

I* 
*I 

I* 
If CSIG

N
A

L • 
0 th

en
 th

is com
m

odity w
ill NOT have a 

custom
 eiq

n
al 

*I 
I* 

If CSIG
N

A
L • 

1 th
ie

 com
m

odity w
ill eu

p
p

o
rt a custom

 siq
n

a
l 

*I 
I······································································ I 
td

efin
e C

SIG
R

A
L 0 

I······································································ I 
I* 

W
indow

 co
n

tro
l 

*
I 

I* 
*I 

I* 
If NIRDOW

 • 
0 th

en
 th

ia
 com

m
odltJ w

ill NOT have a 
popup w

indow
 

*I 
I* 

If W
INDON • 

1 th
is com

m
odity w

il 
su

p
p

o
rt a popup w

indow
 w

ith
 th

e
 

*I 
I* 

a
ttrib

u
te

s d
efin

ed
 below

. 
*

/ 
, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 
ld

efin
e W

INDON 1 

tif
 W

INDON 
td

efin
e N

(x) 
x 

te
la

e
 

td
efin

e N
(x) 

len
d

 if 

tif
 W

INDON 

ex
tern

 stru
c
t w

indow
 

*w
indow

; 
I* 

o
u

r w
indow

 *I 
ex

tern
 stru

c
t T

extF
ont *

fo
n

t; 

td
efin

e NINDOW
 LEFT 

134 
td

efin
e W

IN
D

O
N

-TO
P 

64 
ld

efin
e W

IN
D

O
N

-N
ID

TR 
362 

td
efin

e N
IN

D
O

N
-R

EIG
R

T 
68 

ld
efin

e N
IN

D
O

N
:IN

N
ER

H
EIG

R
T 

70 

ld
efin

e NINDON SIZ
IN

G
 0 

lif
 W

INDOM
 SIZ

IN
G

 
td

efin
e N

iiD
O

N
 M

AX W
IDTH 

ld
efin

e N
IN

D
O

N
-M

IN
-W

ID
TR 

ld
efin

e W
IN

D
O

N
-M

A
X

-H
EIG

H
T 

ld
efin

e W
IN

D
O

N
-M

IN
-H

EIG
H

T 
ld

efin
e N

FLA
G

S-(A
cTIV

A
TE 

I 
M

PLE REFRESH
 

) 

-1
 

so 
-1

 
3

0
 

W
INDOW

CLOSE 
I 

NINDOHDRAG 
I 

W
IN

D
O

W
SIZIN

G
 

I 
lfiN

D
O

H
D

EPTH
 

I 
S

I 

te
la

i 

I 



app.h 
td

efin
e W

INDOW
 M

AX W
IDTH 

W
INDOW

 W
ID

TH
 

td
efin

e N
IN

D
O

N
-M

IN
-N

ID
TR 

N
IN

D
O

N
-N

ID
TH

 
td

efin
e N

IN
D

O
N

-H
A

X
-H

EIG
BT W

IN
D

O
N

-H
EIG

H
T 

td
efin

e W
IN

D
O

N
-M

IN
-H

EIG
H

T W
IN

D
O

M
-H

EIG
H

T 

P
age3 

td
efin

e M
FLA

G
S-(A

cfiV
A

TE 
I 

M
IN

D
O

RCLO
SE 

I 
NINDOM

DRAG 
I 

M
INDOM

DEPTH 
I 

SIM
PLE 

REFRESH
 

) 
te

n
d

if 
I* 

N
IN

D
O

M
_SIZIN

G
 *I 

-

td
efin

e IFLA
G

S 
(M

EN
U

PICK
 

I 
M

O
U

SEBU
TTO

N
S 

I 
GADGETUP 

I 
GADGETDONN 

NOON 
I 

REFRESHNINDOM
 

) 

td
efin

e PO
P_K

EY
_ID

 
(8

6
L

) 
I* 

hotkey d
e
fin

itio
n

s 
I* 

pop up 
id

e
n

tifie
r 

KOUSEM
OVE 

I 
CLO

SEN
I 

*I 
*I 

I······································································ I 
I* 

G
ad9et co

n
tro

l 
•1 

I* 
*I 

I* 
H

ere a
re

 th
e
 vadvet sp

e
c
ific

 d
e
fin

itio
n

s. N
ote th

a
t th

e
se

 a
re

 
*I 

I* 
in

clu
d

ed
 o

n
ly

 if
 M

IN
D

O
N

a1 
sin

c
e
 q

ad
v

eta m
ake 

no sen
se w

ith
o

u
t a 

*I 
I* 

w
indow

. 
•1

 
1

······································································1
 

td
efin

e GAD R
ID

£ 
1 

td
efin

e G
A

D
:D

I£ 
2 

I······································································ I 
I* 

M
enu co

n
tro

l 
*I 

I* 
*I 

I* 
H

ere a
re

 th
e
 m

enu 
sp

e
c
ific

 d
e
fin

itio
n

s. N
ote th

a
t th

e
se

 a
re

 
*I 

I* 
in

clu
d

ed
 o

n
ly

 if
 N

IN
D

0N
a1 

sin
c
e
 m

enus 
m

ake no sen
se w

ith
o

u
t a 

*I 
I* 

w
indow

. 
*I 

I······································································ I 
td

efin
e M

ENU H
ID

E 
1 

td
efin

e M
EN

U
:D

IE 
2 

te
n

d
if 

I* 
NIRDOW

 *
I 

1
······································································1

 
I* 

D
ebu9 co

n
tro

l 
*I 

I* 
*I 

I* 
T

he firs
t d

efin
e co

n
v

erts any p
rin

tfa
 th

a
t v

o
t 

in
 by m

istak
e in

to
 

*I 
I* 

k
p

rin
tfa

. 
If you 

a
re

 debu9in9 to
 th

e
 co

n
so

le you can chanve 
*

/ 
I* 

k
p

rin
tfs in

to
 p

rin
tfs. 

*I 
I* 

T
he D

l(x) 
d

efin
e c

o
n

tro
ls d

eb
u

9
9

in
9

 in
 th

e
 stan

d
ard

 m
odules. U

se 
*I 

I* 
T

he D
(x) 

m
acro fo

r debu99in9 in
 th

e
 ap

p
.c and a

p
p

lic
a
tio

n
 m

odules. *I 
I······································································ I 
v

o
id

 k
p

rin
tf(ch

ar •, ••• ); 
td

efin
e p

rin
tf k

p
rin

tf 

tifd
e
f DEBUG 

td
efin

e D
l(x) 

x 
td

efin
e D

(x) 
x 

te
la

e
 

td
efin

e D
l(x) 

td
efin

e D
(x) 

1 
ten

d
if /*

 NO DEBUG *I 

te
n

d
if /*

 A
PP_H

 
*

/ 

) 

:J 

) 
) 



c 
app.c 

P
age1 

I······································································· 
* 

• 
• * 

CO
PY

RIG
H

TS 

* 
U

N
L

E
S

S
 O

TBERIIISE N
O

TED
, 

A
L

L
 FIL

E
S A

RE 
* 

C
opyr!9ht 

(c) 
1990 

C
om

m
odore-A

m
iqa, 

In
c
. 

A
ll R

iq
h

ts R
eserv

ed
. 

• 

• • • * • 
·························~·············································! 

I* 
ap

p
.c T

his file
 co

n
tain

s th
e
 cu

sto
m

 co
d

e fo
r a com

m
odity 

*
/ 

I* 
you 

sh
o

u
ld

 b
e
 ab

le to
 w

rite a 
new

 com
m

odity by chan9in9 o
n

ly
 *

/ 
I* 

ap
p

.c and ap
p

.b
 *

/ 

f!n
clu

d
e •ap

p
.h

• 

U
f lfiN

D
O

if 

fd
ef!n

e V
(x) 

((V
O

ID
 

*)x) 

stru
c
t T

ex
tA

ttr m
ydea!redfont 

a 

( ,, 
•to

p
az. fo

n
t •, 

8
, 

o, 
o, 

I* 
N

am
e *I 

I* 
Y

S
h

e *I 
I*

 
S

ty
le *

I 
I*

 
F

la9
s *

I 

V
O

ID
 setupC

ustom
G

ad9ets(9ad) 
stru

c
t G

ad9et 
**9ad; 

( ) 

a
tru

c
t N

evG
ad9et 

ft91 

n
9

.n
9

_
V

isu
alin

fo
•v

i; 

n9.n9 T
opE

d9e 
a 

topborder+
O

; 
n9.D

9-L
eft£dqe 

• 
10; 

n9.D
9-Ifidtb 

B
 

40; 
n9.D

9-8eiqht 
• 

1
2

; 
n9.n9-G

adqetT
ext • 

•R
id

e•; 
n

9
.n

9
:T

ex
tA

ttr 
• 

'm
y

d
esired

fo
n

t; 
n9.n9 G

ad9etiD
 

• 
GAD R

ID
E

; 
D

9.D
9-Fl&

9S 
• NULL; 

n
9

.D
9

-V
isu

alin
fo

 • 
v

i; 
*9ad ; 

C
reateG

ad9et(B
U

T
T

O
N

_K
IN

D
,*qad, 

n9.n9_T
opE

d9e 
• 

to
p

b
o

rd
er+

1
S

t 
n9.n9 L

eftE
dqe 

• 
1

0
; 

nq.n9:1f!dth 
a 

40; 
nq.n9 H

ei9ht 
• 

1
2

; 
n9.ft9-G

ad9etT
ext 

a 
•Q

u
it•; 

n
9

.n
9

:T
ex

tA
ttr 

a 
'm

y
d

esired
fo

n
t; 

n9.n9 G
ad9etiD

 
• 

GAD D
IE

t 
D

9eft9-Fl&
98 

• NULt; 
n

9
.n

9
-V

isu
alin

fo
 • 

v
i; 

*
9

a
d

; C
reateG

ad9et(B
U

T
T

O
N

_K
IN

D
,*qad, 

V
O

ID
 

H
andleG

ad9et(9ad,code) 
ULONG 9ad, co

d
e; 

( 

'n
9

1 TA
G

_D
O

N
E); 

C
n9

1 TA
G

_D
O

N
E); 

D
( 

k
p

rin
tf(•ap

p
: 

R
an

d
leG

ad
9

et(tlx
)\n

•,9
ad

); 
sv

itch
(9

ad
) 

( 
case GAD 

B
ID

E
: 

D
(-k

p
rin

tf(•ap
p

: 
R

andleG
ad9et() 

GAD 
H

ID
E

\n•); 
) 

shutdovnlf!ndov(); 
-

c ) 

break1 
case GAD D

IE
: 

app.c 

D
(-k

p
rin

tf(•ap
p

: 
H

andleG
ad9et() 

G
A

D
 D

IE
\n

•)l 
) 

term
in

ate () 1 
-

V
O

ID
 setupC

ustom
M

enu() 
( t 

stru
c
t N

evM
enu m

ynew
m

enu 
() 

• 
( ., 

NM
 T

IT
L

E
, 

NR ITEM
, 

N
M

-ITEM
, 

N
M

_!N
D

, 

•p
ro

je
c
t•, 

•a
id

e
•, 

•o
u

it•, 
o, 

o, 
•a•, 
•o•, 
o, 

o, 
o, o, 

0
1 

0
, V

(M
EN

U
 

B
ID

E
), 

0
, 

0
1 

V
(H

E
N

U
-D

IE
), 

o, 
o, 

0 
-

m
enu•C

reateM
enua(m

ynew
m

enu,T
A

G
 D

O
N

E)J 
DC 

k
p

rin
tf(•ap

p
a 

createM
enua ritu

rn
a
 m

enu 
• 

tlx
\n

•,m
en

U
)J 

) 

V
O

ID
 handleC

ustom
M

enu(code) 
UlfORD co

d
e; 

( 
a
tru

c
t M

enuitem
 *item

1 
BOOL term

inated•F
A

L
S

E
; 

D
( 

k
p

rin
tf(•a

p
p

: 
h

an
d

leC
u

sto
m

M
en

u
(co

d
e•tlx

)\n
•,co

d
e)J 

v
b

lle
 ((co

d
e I aH

E
N

U
N

U
L

L
) u 

(I te
m

in
a
te

d
)) 

( 
item

•Item
A

d
d

ress(m
en

u
,co

d
e)J 

avitch((int)M
E

N
U

 U
SE

R
D

A
T

A
(item

)) 
( 

-
case M

ENU H
ID

E: 
eh

u
td

o
v

n
lfin

d
o

v
()l 

) I ), 
), 

), 

c 
P

ag
e2 

term
inated•T

R
U

E
I I* 

sin
ce v

in
d

o
v

 ia
 9one N

ex
tS

elect is in
v

a
lid

 eo
 ••• *

/ 
break1 

t 

t 

case M
ENU D

IE
: 

te
m

tn
a
te

 () 1 
break1 

d
e
fa

u
lt a 
break1 

t co
d

e•item
->

N
ex

tS
electl 

DC 
k

p
rin

tf(•ap
p

a 
bandleC

aatom
M

ena n
ex

t co
d

e•tlx
\n

•,co
d

e); 

D
( 

k
p

rin
tf(•ap

p
a 

handleeuatom
M

enu e
x

ite
•)l 

) 

V
O

ID
 

refresh
lfin

d
o

v
() 

( 
if(v

in
d

o
v

) 
( 

!f(ID
C

M
P

R
efresh) 

G
T

_B
eq!nR

efreah( v
in

d
o

v
 )I 

S
etA

P
en(vindov->

R
P

ort,(U
B

Y
T

E
)m

ydl->
drl P

e
n

a
[h

ifillte
x

tP
e
n

)); 
S

etB
P

en
(v

ln
d

o
v

->
R

P
o

rt,(U
B

Y
T

E
)m

y
d

l->
d

rl-P
en

s[b
lfillP

en
))l 

S
e
t
D
r
M
d
(
v
i
n
d
o
v
-
>
R
P
o
r
t
,
J
~
)
I
 

-
S

etF
o

n
t(v

!n
d

o
v

->
R

P
o

rt,fo
n

t)J 
M

ove(vlndov->
R

P
ort,90,(1fO

R
D

) (to
p

b
o

rd
er+

4
0

)); 
T

ex
t(v

ln
d

o
v

->
R

P
o

rt,•Y
o

u
r Im

a9ery B
ere•,1

7
); 

S
etA

P
en(vindov->

R
P

ort,(U
B

Y
T

E
)m

ydl->
dri P

en
s(h

lll9
h

ttex
tP

en
))1

 
S

etB
P

en(vindov->
R

P
ort,(U

B
Y

T
E

)m
ydi->

dr1-P
ens(back9roundP

en))l 
M

ove(vlndov->
R

P
ort,lO

,(IfO
R

D
) (to

p
b

o
rd

er+
4

0
)); 

T
ex

t(v
in

d
o

v
->

R
P

o
rt,•R

lli9
h

t:•,8
)J 

lf(ID
C

M
P

R
efresh) 

~
 



app.c 
P

age3 

G
T

_E
ndR

efresh( w
indow

, 
lL

 )I 

I* 
It 

is p
o

ssib
le th

a
t th

e
 u

ser has selected
 a 

fo
n

t 
so

 larq
e *I 

I* 
th

a
t o

u
r im

aqery w
ill 

fa
ll o

ff th
e bottom

 o
f th

e
 w

indow
 

*I 
I* 

w
e 

R
efreshN

lndow
F

ram
e h

ere in
 case o

u
r b

o
rd

ers w
ere o

v
erw

ritten
 *I 

if((topborder+
N

IN
D

O
W

 IN
N

ERH
EIG

H
T) 

>
 vindov->

H
eiqht) 

. 
R

efreshN
indovF

ram
e(w

indow
)l 

re
tu

rn
t 

te
n

d
if I* 

W
INDOW

 *I 

BOOL setupcuatom
C

X
() 

( 
re

tu
rn

(l) 1 
, V

O
ID

 shutdovnC
uatom

C
X

(J 
( , V
O

ID
 handleC

uatom
C

X
M

$q(ld) 
ULONG ld1 
( ) 

sw
itch

(ld
) 

( 
case 0

: 
d

e
fa

u
lt: 
b

reak
 I 

V
O

ID
 handleC

ustom
C

X
C

om
m

and(ld) 
ULONG ld

l 
( ) 

sw
itcb

(ld
) 

( 
case 0

: 
d

e
fa

u
lt: 
b

reak
 I 

U
f CSIG

N
A

L 
V

O
ID

 handleeustom
S

lqnal(V
O

ID
) 

I ) ten
d

 if
 

) 

'P
' 
~
 

) 
) 



) 

c 
com

m
odltles.h 

P
age1 

fifn
d

e
f LIB

R
A

R
IES CO

M
M

O
D

ITIES R
 

td
efin

e LIB
R

A
R

IES:C
O

M
M

O
D

ITIEs:a 

fifn
d

e
f EXEC TY

PES 
H

 
fin

clu
d

e <
ex

iclty
p

is.h
>

 
te

n
d

if 

I************************* 
* o

b
ject creatio

n
 m

acros 
*************************I 

fd
efin

e C
x

F
ilter(d

) 
td

efin
e C

x
T

y
p

eF
ilter(ty

p
e) 

td
efin

e cx
sen

d
er(p

o
rt,id

) 
fd

efin
e C

x
S

i9
n

al(task
1 si9

) 
fd

efin
e C

x
T

ran
slate(ie) 

td
efin

e C
xD

ebu9(id) 
fd

efin
e cx

cu
sto

m
(actio

n
,id

) 

I*************** 
* B

roker stu
ff 

***************I 

I* 
b

u
ffer siz

e
s 

*I 
td

efin
e CBD NAM

ELEN 
24 

fd
efin

e C
B

D
-TITLELEN

 
40 

td
efin

e csD
:D

ESC
R

LEN
 

40 

I* 
C

xB
roker e

rro
rs 

*I 
fd

efin
e CBERR OK 

0 
fd

efin
e CBERR-SY

SERR 
1 

fd
efin

e CBERR-D
U

P 
2 

td
efin

e CBERR:V
ERSIO

N
 

3 

fd
efin

e N
B_V

ERSIO
N

 
5 

stru
c
t N

ew
B

roker 
I 

BYTE 
nb V

ersio
n

t 
BYTE 

*n5 N
am

et 
BYTE 

*
n

b
-T

itlet 
BYTE 

*nb-D
escrl 

SHORT 
nb_U

nique1 
SHORT 

n
b

 F
la9s1 

BYTE 
n

b
-P

rit 
I* 

new
 in

 v'5 
*I 

C
reateC

xO
bj((L

O
N

G
)C

X
 FILTER

, 
(LO

N
G

) 
d

, 
0) 

C
reateC

xO
bj((L

O
N

G
)C

X
:T

Y
PE

FIL
T

E
R

, 
(LO

N
G

) 
ty

p
e, 

OJ 
C

reateC
xO

bj((L
O

N
G

)ex SEN
D

, 
(LO

N
G

) 
p

o
rt, 

(LO
N

G
) 

id
) 

C
reateC

xO
bj((L

O
N

G
)ex-SIG

N
A

L
,(L

O
N

G
) 

ta
sk

, 
(LO

N
G

) 
siq

) 
C

reateC
xO

bj((L
O

N
G

)ex-T
R

A
N

SL
A

T
E

, 
(LO

N
G

) 
ie

, 
OJ 

C
reateC

xO
bj((L

O
N

G
)C

X
-D

E
B

U
G

, 
(LO

N
G

) 
id

, 
0

) 
ereateexO

bj((L
O

N
G

)ex:cusT
O

M
,(L

O
N

G
)action,(L

O
N

G
)id) 

I* 
N

o e
rro

r 
*I 

I* 
sy

stem
 e

rro
r , 

no m
em

ory, 
e
tc

 
*I 

I* 
u

n
iq

u
en

ess v
io

latio
n

 
*I 

I* 
d

id
n

't u
n

d
erstan

d
 nb_V

ER
SIO

N
 

*I 

I* 
V

ersio
n

 o
f N

ew
B

roker 
stru

c
tu

re
 

*I 

I* 
a
e
t to

 N
B_V

ERSIO
N

 
*I 

a
tru

c
t M

S
;P

ort 
*nb P

o
rtt 

NORD 
nb R

eservedC
hannelt 

)
; 

-
I* 

F
la9

s fo
r nb U

nique *I 
td

efin
e NBU D

U
PtiC

A
TE 

0 
td

efin
e N

Bo-U
N

IQ
U

E 
1 

I* 
p

lan
a 

fo
r 

la
te

r p
o

rt sb
a
rin

; 
*I 

I* 
w

ill n
o

t allo
w

 d
u

p
licates 

*I 
td

efin
e N

BU
:N

O
TIFY

 
2 

I* 
sen

d
s eX

H
_U

N
IQ

U
E to

 e
x

istin
; b

ro
k

er *I 

I* 
F

la;s fo
r nb F

la
;s *I 

td
efin

e 
coF_sR

oH
_H

ID
E

 
4 

I******** 
* cx

u
sr 

********I 

I** 
F

ake d
ata ty

p
es 

fo
r system

 p
riv

a
te

 o
b

jects 
U

fn
d

ef ex
 R

 
ty

p
ed

ef LORG 
exO

bjl 
ty

p
ed

ef LONG 
eX

M
a91 

fen
d

if 

*I 

c· 

I 
I 

I 
I 

c 
com

rnodH
ies.h 

P
ag

e2
 

I* 
P

o
in

ter to
 F

unction re
tu

rn
in

; L
on9 

ty
p

ed
ef LONG 

(*P
F

L
)()t 

I******************************** I 
I** 

C
O

m
m

odities O
b

ject T
ypes 

**I 
I******************************** I 

*I 

td
efin

e ex
 
I
~
I
D
 

0 
I* 

n
o

t a 
v

a
lid

 o
b

ject 
(p

ro
b

ab
ly

 n
u

ll) 
*I 

td
efin

e ex-FIL
T

E
R

 
1 

I* 
in

p
u

t ev
en

t m
essa9es o

n
ly

 
*I 

td
efin

e ex-T
Y

PE
FIL

T
E

R
 

2 
I* 

filte
r on m

essa;e ty
p

e 
*I 

td
efin

e ex-SEN
D

 
3 

I* 
sends a m

esaa9e 
*I 

td
efin

e ex-SIG
N

A
L

 
4 

I* 
sends a 

a
i;n

a
l 

*I 
fd

efin
e eX

-TRA
N

SLA
TE 

5 
I* 

tra
n

sla
te

s IE
 in

to
 ch

ain
 

*I 
td

efin
e ex-B

R
O

K
ER

 
6 

I* 
ap

p
licatio

n
 rep

resen
tativ

e 
*I 

td
efin

e ex-D
EB

U
G

 
l 

I* 
dum

ps 
k

p
rin

tf to
 a

e
ria

l p
o

rt 
*I 

fd
efin

e ex-C
U

STO
M

 
8 

I* 
ap

p
licatio

n
 p

ro
v

id
s fu

n
ctio

n
 

*I 
td

efin
e cx:zE

R
O

 
9 

I* 
sy

stem
 t
e
~
n
a
t
o
r
 node 

*I 

1*****************1 
I** 

CK
M

s9 ty
p

es **I 
1*****************1 
td

efin
e CXM

 U
N

IQ
U

E 
(1

 << 
4

) 
I* 

sen
t dow

n b
ro

k
er by ex

aro
k

er() 
*I 

I* 
O

bsolete'i' subsam
ed b

y
 CX

M
_CO

M
M

M
D

 
(below

) 
*I 

I* 
M

essa9es o
f th

is ty
p

e ra
ttle

 around th
e
 C

om
m

odities 
in

p
u

t netw
ork. 

* T
hey w

ill 
b

e
 sen

t to
 you by a 

sen
d

er o
b

je
c
t, 

and p
assed

 to
 you 

* as a 
synchronous fu

n
ctio

n
 c

a
ll by a C

ustom
 o

b
ject • 

• • 
T

he m
essa9e p

o
rt o

r fu
n

ctio
n

 e
n

try
 p

o
in

t is
 sto

red
 in

 th
e
 o

b
je

c
t, 

• 
and th

e
 ID

 
fie

ld
 o

f th
e
 m

essa9e w
ill b

e se
t to

 w
hat 

you a
rra

n
;e

 
* issu

in
; o

b
je

c
t. 

• * T
he D

ata fie
ld

 w
ill p

o
in

t to
 th

e
 in

p
u

t ev
en

t tri9
9

e
rin

9
 th

e
 

* m
essa9e. 

*I 
td

efin
e C

X
M

_IEV
EN

T 
(1 << 

5) 

I* 
T

hese m
essa9es a

re
 sen

t to
 a 

p
o

rt attach
ed

 to
 your B

ro
k

er. 
• 

T
hey a

re
 sen

t to
 you w

hen 
th

e
 c

o
n

tro
lle

r pr09ram
 w

ants your 
* pr09ram

 to
 do aom

ethin9. 
T

he 
ID

 
fie

ld
 
id

e
n

tifie
s th

e
 com

m
and. 

• • 
T

he D
ata fie

ld
 w

ill b
e u

sed
 la

te
r. 

*I 
fd

efin
e CX

M
_CO

H
M

IN
D

 
(1 << 

6) 

I* 
ID

 v
alu

es 
*I 

td
efln

e exCM
D

 D
ISA

BLE 
(1

5
) 

I* 
p

lease d
isab

le y
o

u
rself 

*I 
td

efln
e exCM

D
-EN

A
BLE 

(1
1

) 
I* 

p
lease en

ab
le y

o
u

rself 
*I 

fd
efln

e exCM
D

-A
PPEA

R 
(1

9
) 

I* 
open your w

indov, 
if

 you can 
*I 

td
efin

e exC
M

D
-D

lSA
PPEA

R
 

(2
1

) 
I* 

90 don:sant 
*I 

td
efln

e exC
M

D
-K

ILL 
(2

3
) 

I* 
vo aw

ay 
fo

r 9ood 
*I 

fd
efln

e exCM
D

:U
N

IQ
U

E 
(2

5
) 

I* 
som

eone trie
d

 to
 c

re
a
te

 a b
ro

k
er 

• 
w

ith
 your nam

e. 
S

u
9

9
est you A

ppear. 
*I 

td
efin

e CX
CM

D
_LIST_eH

G
 

(2
l) 

I* 
U

sed by lx
ch

an
9

e pr09ram
. 

Som
eone *I 

I* 
h

as cban9ed th
e
 b

ro
k

er lis
t 

*I 

I* 
retu

rn
 v

alu
es fo

r B
rokerC

om
m

and()l 
*I 

td
efin

e CM
DE OK 

(0
) 

td
efin

e CM
DE-NOBROKER 

(-1
) 

fd
efin

e CM
DE-NOPORT 

(-2) 
fd

efin
e 

C
M
D
E
:
~
O
H
E
K
 

(-3) 

I* 
IM

PORTANT N
O

TEs 
fo

r V
S: 

: 
O

nly CX
H

_IEV
EN

T m
essa9es a

re
 p

assed
 th

ro
u

9
h

 th
e
 in

p
u

t netw
ork. 

• 
O

th
er ty

p
es o

f m
essa9es a

re
 sen

t to
 an o

p
tio

n
al p

o
rt in

 your b
ro

k
er. 

~
 



com
m

odltles.h 
P

age3 
• • 

T
his m

eans 
th

a
t you m

ust 
te

s
t th

e
 m

essage ty
p

e in
 your m

essage h
an

d
lin

g
, 

• 
if in

p
u

t m
essages 

and com
m

and m
essages com

e 
to

 th
e
 sam

e p
o

rt • 
• • 

O
ld

er program
s have no b

ro
k

er p
o

rt, 
so

 p
ro

cessin
g

 
lo

o
p

s w
hich 

• 
m

ake assum
ptions ab

o
u

t ty
p

e w
o

n
't en

co
u

n
ter th

e
 new

 m
essa;e ty

p
es • 

• * T
he T

y
p

eF
ilter C

xO
bject 

is
 h

ereb
y

 o
b

so
lete • 

• • 
It 

is le
ss co

n
v

en
ien

t 
fo

r th
e
 a

p
p

lic
a
tio

n
, 

b
u

t elim
in

ates te
stin

g
 

• 
fo

r ty
p

e o
f in

p
u

t m
essages. 

*I 

1
··························································1

 
I** 

C
xO

bj 
E

rro
r F

lag
s 

(retu
rn

 v
alu

es 
from

 C
x

O
b

jE
rro

r()) 
**I 

I·························································· I 
td

efin
e COERR ISN

U
LL 

1 
I* 

you c
a
lle

d
 C

xE
rror(N

U
L

L
) 

*I 
fd

efin
e CO

ERR-N
U

LLA
TTA

CH
 

2 
I* 

som
eone attach

ed
 NULL to

 m
y 

lis
t 

*I 
td

e
fin

e
 CO

ERR-BA
D

FILTER 
4 

I* 
a 

b
ad

 filte
r d

e
sc

rip
tio

n
 v

as g
iv

en
 

*I 
fd

efin
e CO

ERR:BA
D

TY
PE 

8 
I* 

unm
atched ty

p
e
-sp

e
c
ific

 o
p

eratio
n

 
*I 

I***** 
• 

1x 

·····I 
fd

efin
e IX

_V
ER

SIO
N

 
2 

stru
c
t In

p
u

tX
p

ressio
n

 
I 

UBYTE 
ix

 V
ersion1 

UBYTE 
ix

:c1
ass1

 

UW
ORD 

1x C
oder 

UKORD 
lx:C

odeM
a11k1 

UM
ORD 

ix
 Q

u
a
lifie

r' 
UKORD 

ix-Q
ualM

aakl 

I* 
m

ust 
b

e
 se

t to
 IX

 V
ER

SIO
N

 
*I 

I* 
c
la

ss m
ust m

atch e
x

a
c
tly

 
*I 

I* 
n

o
rm

ally
 u

sed
 fo

r U
PCO

D
E 

*I 

UKORD 
ix-Q

ualS
am

el 
I* 

synonym
s in

 q
u

a
lifie

r 
*I 

,, 
-

ty
p

ed
ef stru

c
t In

p
u

tX
p

ressio
n

 IX
1 

I* 
Q

ualSam
e id

e
n

tifie
rs *I 

td
efin

e IX
SY

M
 SH

IFT 
1 

td
efin

e IX
SY

M
-CA

PS 
2 

fd
efin

e IX
SY

M
:A

LT 
4 

I* 
le

ft-
and riq

b
t-

s
h

ift a
re

 eq
u

iv
alen

t 
I* 

e
ith

e
r sh

ift o
r cap

s 
lo

ck
 a

re
 eq

u
iv

alen
t 

I* 
le

ft-
and rig

h
t-

a
lt a

re
 eq

u
iv

alen
t 

I* 
co

rresp
o

n
d

in
g

 Q
ualSam

e m
asks *I 

ld
efin

e IX
SY

M
 SH

IFTM
A

SK
 

(IE
Q

U
A

L
IFIE

R
 LSH

IFT 
td

efln
e IX

SY
M

-CA
PSM

A
SK

 
(IX

SY
M

 SRIFTM
A

SK
 

td
efln

e IX
SY

M
:A

LTM
A

SK
 

(IE
Q

U
A

tiFIE
R

_L
A

L
T

 

IEQ
U

A
LIFIER

 R
SH

IFT) 
IEQ

U
A

LIFIER
-C

A
PSLO

C
K

) 
IEQ

U
A

LIFIER
:R

A
LT) 

*I 
*I 
*I 

fd
efln

e IX_NORM
ALQUALS 

O
xlF

F
F

rl* 
fo

r Q
ualM

ask 
fie

ld
: 

av
o

id
 RELA

TIV
EK

O
U

SE *I 

/*
 m

atches n
o

th
in

g
 

td
efln

e N
U

L
L

_IX
(I) 

fen
d

lf 

) 

*I 
((I)->

lx
_

C
lass 

IEC
LA

SS _N
U

LL) 

~
 

) 
) 



n 

n 

n 











·~ 

u Internationalization 

u 

U-

of Software: the locale.library 
by Valentin Pepelea 

Preliminary: the information in this article is subject to change without notice. 
The locale.library is planned for a future version of the Amiga OS. 

The locale.library will be the cornerstone of an internationalized Amiga operating system 
Commodore is planning. The library presented here is not in its final form, and your 
suggestions on how to resolve open issues are welcome. 

Introduction 

Presently, developers must write a special version of their software package for each country 
in which they intend to market it. This task could be difficult depending on how many details 
have to be taken into account. It is often not sufficient to translate the strings into the target 
language - many other items have to be taken into account: 

(J the time and date formats used in the country 
IJ the money symbols and denomination 
a the method of grouping numbers 
Cl the order in which strings must be soned (collation) 
(J the order in which components must appear within a string. 

Objective 

Several other internationalization standards have appeared in recent years. Our goal is not to 
implement any particular one, but rather to draw elements from each of them as they best fit 
our operating system. The Amiga is blessed with a tight and efficient kernel, and we strive to 
keep it that way. 

While not implementing any existing standard, we also try not to prevent third-party 
implementations. Of particular interest to some may be the ANSI C and X/Open NLS 
standards, as implemented in SVR4 for example. The locale.library contains enough 
information to allow compiler writers to fully implement the functions in those standards. 

lntematlonallzatlon of Software: 
thelocale.llbrary 

1 DevCon90 



Categories 

The locale.library is composed of data structures that define the cultural environment of the n 
user, as well as a limited set of functions that manipulate these structures or behave according 
to the information contained within. 

An individual's cultural locale can be divided into two categories: 

Cl The tenitory category comprises the time, date, currency and numerical format 
definitions which depend on which country, state or tenitory the user lives in. 

a The language category defines the character set, collation information and strings 
which vary according to the language or dialect of the user. 

The locale.library contains functions, OpenLanguageO and OpenTerritoryQ, which load in 
memory and return a pointer to corresponding language and territory structures. These 
pointers may be used as parameters for other locale functions; or the information contained 
within the structures may be used directly by the programmer. 

By not defining a global default language and territory, the programmer may write 
applications that allow the user to independently select the elements of his locale. For 
example, an Swiss civil engineer educated in England could use a planning package that 
allows him to write comments in German, draw plans and list measurement in meters, 
calculate the costs in U.S. dollars, and print the time and dates of milestones in typical Swiss 
fashion. Meanwhile, he may prefer dealing with operating system commands and messages n 
in English. 

Thus while this enginner might have used a preferences editor to set his operating system 
default to the English language and Swiss territOry, the application he used allowed him to 
ignore these selections and provided him with the option of using something different for: 

a measurement 
a language 
a currency 
a time and dates. 

The CloseTerritoryO and CloseLangaugeO functions inform the system that access to these 
structures have completed, and they may be flushed out of memory. 

Commodore will be providing language and tenitory tables for the countries in which it sells 
computers. Programs that generate such tables will be provided for those wishing to create 
their own. 

DevCon90 lntamatlonallzatlon of Softwal8: 
the loaleJIInty 

J 



u 

u 

u 

Message catalogues 

In order to facilitate the translation of their software packages, programmers may put all their 
strings in a special file, and retrieve them by number. This way even users may translate the 
software they own by simply modifying these message catalogues. The CatOpen() function 
loads a message catalogue in memory, and pointers to specific sttings can be obtained using 
the CatGets() function. These are defined in the X/Open standard. 

The CatClose() function informs the system that access to the specified catalogue has 
concluded and it may be flushed out if its open count reaches zero. There are cases though, 
when even if the open count reaches zero, we may want to keep the catalogue in memory. 
The commands in ~e c: directory, for example, would be less responsive if they had to load 
their catalogues every time they were launched. For such cases the CAT_PERMANENT 
flag may be set, preventing flushing wh~n the open count reaches zero. 

Preferences 

A Preferences editor will be provided to allow users to select their preferred tenitory 
(country) and language. Workbench disks will come pre-set with the territory and language 
of the country in which they are sold. These selections are expected to be static. Operating 
system commands and applications that have already started are not expected to change their 
behavior if the user changes his preferred tenitory or language meanwhile. 

The locale: directory contains all files pertaining to localization. The files contained in 
locale: are tenitory tables while the directories are language directories in which message 
catalogues can be found. One such catalogue named "date-ctype-collation" contains the 
strings used in the long date format, information on the character set used by the language, 
and the collation information on the language's alphabet. 

Third-party applications may also put their catalogues in the locale:<language> directories, 
but it is recommended to leave such catalogues in the application directory itself. It is 
simpler to find out which catalogues are available that way. 

The functions DefaultLanguage() and DefaultTerritory() will return pointers to the DOS 
defaults, and the literal name of the language or territory can be found out by the 
Node.ln_name field of these structures. The operating system will use the pointers returned 
by these functions as parameters to display information according to the user's locale. 

(Open issue: should the files and directories' names be in English or in their own language? 
What if the language, such as Chinese, uses a different character set and font?) 

Internationalization of Software: 
thelocale.llbrary 

3 DevCon90 



Collation Information 

Two functions are provided in the locale library which. make use of collation information 
from a language table: the ANSI C StrColl() and the StrXCmpQ functions. 

StrCollO compares two strings according to the rules of the language in use. StrXFrmQ 
transforms a string in such a way that if two strings are processed through this function, they 
may be compared using the old strcmp() function and case the same result as if StrColl() had 
been applied to the original strings. 

The *collation fields in the language table either point to a three-pass collation table, or to 
the StrCollO and StrXFrmO functions themselves. Some languages might have collation 
rules that cannot be implemented correctly by using tables - instead they need some roles to 
be hardcoded in the comparison functions. 

Argument Ordering 

The grammar of most languages requires that subjects, objects, adverbs and complements be 
written out in a specific order. Unfortunately, the order differs from language to language. 
For example, "Put volume 'Hello' in drive DFO:" might be said as·"Put in drive DR>:, 
volume 'Hello'" in another language. 

The Exec RawDoFmt() function is therefore updated to support a new formatting argument, 

l) 

"X$", where X specifies the order of the argument. Here is an example usage: r) 

printf("Put %d dollars in box number %d.",l0,3); 
Put 10 dollars in box lumber 3. 

printf("In box number %2$d, put %1$ dollars.n,l0,3); 
In box number 3, put 10 dollars. 

Detailed Description of Structures 

Monetary and numeric information. The information is stored in the lconv structure, as 
defined by ANSI C in <locale.h>. Although it is possible to pack this information in a more 
compact format, compiler writers would then have to write a localeconv() function which 
takes our format and transforms it into the struct lconv format. Storing the information in this 
larger, but complete, manner from the start is preferable. Here are the elements of lconv: 

char *decimal_point 

DevCon90 

The decimal point character used to format non-monetary 
quantities. 

4 lntematlonallzlltlon of Sottwate: 
,. lot:lll&l/lnty 



u 

u 

u 

char *thousands_sep 

char *grouping 

char *int_curr_symbol 

char *currency_symbol 

char *mon_decimal_point 

char *mon_thousands_sep 

char *mon_grouping 

char *positive_sign 

char *negative_sign 

char int_frac_digits 

char frac_digits 

char p_cs_precedes 

char n_cs_precedes 

char p_sign_posn 

char n_sign_posn 

lntematlonsllzatlon of Software: 
thelocale.llbrary 

The character used to separate groups of digits before 
thedecimal-point character in formatted non-monetary 
quantities. 

A string whose elements indicate the size of each group 
of digits in formatted non-monetary quantities. 

The international currency symbol applicable to the 
current locale. The first three characters contain the 
alphabetic international currency symbol in accordance 
with those specified in ISO 4217 Codes for the 
Representation of Currency and Funds. The fourth 
character (immediately preceding the NOLL) is the 
character used to separate the international currency 
symbol from the monetary quantity. 

The currency symbol applicable to the current locale. 

The decimal point used to format monetary quantities. 

The separator for groups of digits before the decimal 
point in formatted monetary quantities. 

A string whose elements indicate the size of each group 
of digits in formatted monetary quantities. 

The string used to indicate a nonnegative-valued 
formatted monetary quantity. 

The string used to indicate a negative-valued formatted 
monetary quantity. 

The number of fractional digits (those after the 
decimal-point) to be displayed in an internationally 
formatted monetary quantity. 

The number of fractional digits (those after the 
decimal-point) to be displayed in a formatted monetary 
quantity. 

Set to. 1 or 0 if the currency_symbol respectively 
precedes or succeeds the value for a nonnegative 
formatted monetary quantity. 

Set to 1 or 0 if the currency_symbol respectively is or 
is not separated by a space from the value for a 
negative formatted monetary quantity. 

Set to a value indicating the positioning of the 
positive_sign for a non-negative formatted monetary 
quantity. 

Set to a value indicating the positioning of the 
negative_sign for a neqative formatted monetary 
quantity. 

5 DevCon90 



The elements *grouping and *mon_groupinq are interpreted according to the following: 

CHAR_MAX 
0 

No further grouping is to be performed. 
The previous element is to be repeatedly used for the remainder of 
the digits. 

other The integer value is the number of digits that comprise the 
current group. The next element is examined to determine the size 
of the next group of digits before the current group. 

The value of p_siqn_posn and n_siqn_posn is interpreted according to the following: 

0 Parentheses surround the quantity and currency_symbol. 
1 The sign string precedes the quantity and currency_symbol. 
2 The sign string succeeds the quantity and currency_symbol. 
3 The sign string immediately precedes the currency_symbol. 
4 The sign string immediately succeeds the currency_symbol. 

In addition ~ the information contained in the lconv structure, the Amiga locale table 
includes two additional entries: 

char *small_currency_symbol The small currency symbol applicable to the 
current locale. 

char metric The measuring system applicable in this 
locale. 
0 The international metric system 
1 The o.s. system 
2 The Imperial system 
4 The British system 

Time and Date Formats 

The way in which the time and date formats are specified aims to be easily expandable. The 
following formats are already supported, and as others are discovered, they can be added: 

Date 

1990-07-04 
4.7.90 
7/4n6 
4.VII.76 
90186 

char short_date_1 

char short_date_2 

char short_date_3 

DevCon90 

Time 

3:30PM 
1530 
15b.30 
15.30 
15:30 

Identifies the first element of the short date format. 

Identifies the second element of the short date format. 

Identifies the third element of the short date format. 

6 ln,.,.tlotMIIDtlon of So..,.: 
the lot:81&11blwy 



u 

u 

char *date_sep_1 The symbol used to separate the first and second elements 
of the short date string. 

char *date-sep_2 The symbol used to separate the second and third elements of 
the short date string. 

char long_date_1 Identifies the first element of the long date format. 

char long_date_2 Identifies the second element of the long date format. 

char long_date_3 Identifies the third element of the long date format. 

char long_date_4 Identifies the fourth element of the long date format. 

char *long_date_sep_1 The symbol used to separate the first and second elements of 
the long date string. 

char *long_date_sep_2 The symbol used to separate the second and third elements of 
the long date string. 

char *long_date_sep_3 The symbol used to separate the third and fourth elements of 
the long date string. 

char time_1 Identifies the first element of the time format. 

char time_2 Identifies the second element of the time format. 

char time_3 Identifies the third element of the time format. 

char *time_separator_1 The symbol used to separate the first and second elements of 
the time string. 

char *time_separator_2 The symbol used to separate the second and third elements of 
the time string. 

The elements short_date and long_ date are interpreted according to the following: 

0 This element is to be left blank. 
1 Full name of day. 
2 Abbreviated name of day. 
3 Day of month, with leading zeros. (04 Jan) [1-31] 
4 Day of month, without leading zeros. (4 Jan) 
5 Day of year, with leading zeros. [1-366] 
6 Day of year, without leading zeros. 
7 Day of week. [1-7] 
8 Full name of month. 
9 Abbreviated name of month. 
10 Month of the year, with leading zeros. (4-04-90) 
11 Month of the year, without leading zeros. (4-4-90) 
12 Month of the year, in Roman numeral format. 
13 Year number, without century. (90) [0-99) 
14 Year number, with century. (1990) [0-65536) 
15 Week number of the year, with leading zeros. [0-53] 

lntem•tlonallatlon of Soltware: 
the/ocale.llbrary 

7 DevCon90 



The elements of the time format identifiers are interpreted as follows: 

0 This element of to be left blank. 
1 Hour of ~he day, in 24 hour format, with leading zeros. (03:30) 
2 Hour of the day, in 24 hour format, without leading zeros. 
3 Hour of the day, in 12 hour format, with leading zeros. 
4 Hour of the day, in 12 hour format, without leading zeros. 
5 Minute of the hour, with leading zeros. 
6 Minute of the hour, without leading zeros. 
7 Second of the minute, with leading zeros. [0-61] 
8 Second of the minute, without leading zeros. 

More element formats may be defined as the need arises. 

Character Type Information 

Through the use of the keymap, the user may assign any character to any keyboard key and 
thus be able to enter any character he wishes. Still there is need for character type 
information for such functions as isalpha(), toupperO, tolowerO, etc. 

There is currently no explicit support for multi-byte character sets nor wide characters, but 
this implementation does not preclude such support. Bit 0 of the Flaqs entry in the language 
structure indicates whether an 8-bit character set or some other mechanism is being used. 

The Amiga currently assumes that the ECMA-94 Latin 1 character set is being used; the "f' 
and ":" characters are hard coded into OS commands and applications. Developers are free to 
use other character sets for non-filesystem endeavors, but they then have to supply the 
appropriate character type information table, which is stored as follows: 

char *is[256] A character type information table. Information about each 
character is stored in the corresponding array cell. 

char *lower 
char *upper 

char space 

Two lists describing how transformation to upper-case or to 
lower-case is to be performed. 

The code of the space character, (" "). 

The information in the character type table is stored as follows: 

is upper 
is lower 
isdigit 
is space 
ispunct 

DevCon90 

= (1<<0) 
= (1<<1) 
a (1<<2) 

(1<<3) 
(1<<4) 

upper-case character. 
lower-case character. 
decimal digit (numeric) character. 
white space character. 
punctuation character. 

, lntematltJMIIatlon of Sotlwate: 
theloa •• lllnly 



u 

u 

u 

iscntrl = (1<<5) control character. 
!sprint = (1<<6) blank. 
isxdigit ::: (1<<7) hexadecimal digit. 

isalpha = (1<<0) or (1<<1) 
isalum (1<<0) or (1<<1) or (1<<2) 
isgraph = (1<<0) or (1<<1) or (1<<2) or (1<<4) 
!sprint = (1<<0) or (1<<1) or (1<<2) or (1<<4) or (1<<6) 

The *lower field is a list of characters, corresponding on a one-to-one basis to the *upper list 
of characters. The lists are started with the lowest valued character and ended with the 
highest valued character in the list. Individual character correspondence is listed by entering 
a higher valued character followed by a lower valued character. 

For example, in English, the lower-case characters a-z are transformed to A-Z in upper-case. 
Their lists would then be: 

*lower: Ox61-0x7A 
*upper: Ox41-0xSA 

In French, there is also thee character (E accent aigu, OxC9) that gets transformed toE 
(0xE9). Since this character is not part of a list, it must precede a lower-ordered character: 

*lower: 
*upper: 

OxC9, Ox61 - Ox7A 
OxE9, Ox41 - OxSA 

The following is the list corresponding to the Amiga character set. It should not be used as is 
with all languages that use this character set because transformation in some langqages are 
different. For example, in French thee ·character might get transformed to E, not E. 

*lower: OxD8 - OxDE, OxCO - OxD6, Ox61 - Ox7A 
*upper: OxF8 - OxFE, OxEO - OxF6, Ox41 - OxSA 

The tolower() and toupperQ functions are supposed to translate only characters which have 
their isupper and islower bits set respectively. The transformation table could thus be 
simplified to: 

*lower: OxCO - OxDE, Ox61 - Ox7A 
*upper: OxEO - OxFE, Ox41 - OxSA 

lntematlonallzstlon of Sottwate: 
thelocsle.llbrary 

9 DevCon90 



locale.library AutoDocs 

NAME 
OpaDT~~itozy -- open a territory table 

SYNOPSIS 
territory 

DO 

FUNCTION 

OpenTerritory(name) 
AO 

This function returns a pointer to a territory table that was previously loaded 
in memory. If the territory table is not already there it will be loaded in from 
disk. First the directory from which the process was launched is searched, then the 
locale: directory. 

INPUTS 
name a pointer to a null terminated string 

RESULTS 
territory a territory table pointer 

SEE ALSO 
CloseTerritory, locale/locale.h 

/************************************************************************* 

NAME 
OpenT•agaaq• -- open a language table 

SYSNOPSIS 
language 

DO 

FUNCTION 

= OpenLanguaqe(name) 
AO 

This function returns a pointer to a lanquage table, if that table has already 
been loaded in memory. If not, the directory from which the calling process was 
launched is searched, then the locale: directory. 

INPUT 
name a pointer to a null terminated string 

RESULTS 
lanquagea language table pointer 

SEE ALSO 
CloseLanguaqe, locale/locale.h 

DevCon90 10 lntematlon•llzlltlon of Software 
the lot:lll&llblary 



u 

u 

u 

/************************************************************************* 
NAME 
Cload~toxy close a territory table 

SYNOPSIS 
CloseTerritory(territory) 

AO 
void CloseTerritory(struct territory *) 

FUNCTION 
This function informs the system that access to the given t~rritory table has 

concluded. If the open count of the territory table reaches zero, it is removed 
from memory unless its PERMANENT flag is set. 

INPUTS 
territory 

SEE ALSO 

a territory table pointer 

OpenTerritory, locale/locale.h 

/************************************************************************* 
NAME 

CloaaLaDguage -- close a language table 

SYNOPSIS 
CloseLanguage(language) 

AO 
void CloseLanguage(struct langua9e *) 

FUNCTION 
This function informs the system that access to the given language table has 

concluded. If the open count of the language table reaches zero, it is removed from 
memory unless its PERMANENT flag is set. 

INPUTS 
language a language table pointer 

SEE ALSO 
OpenLanguage, locale/locale.h 

/************************************************************************* 
NAME 
O.!aalt~~to~ -- return the default territory for system func. 

SYNOPSIS 
territory = DefaultTerritory() 
struct Territory DefaultTerritory(void) 

FUNCTION 
Returns the default territory used in DOS functions such as DateToStr() and 

StrToDate(). The name of the territory file can be determined from the 
territory->Node.ln_Name field. 

RESULTS 
territory a territory table pointer 

SEE ALSO 
locale/locale.h 

lntematlonallat/on of Software: 
thelocale.llbrary 

11 DevCon90 



/************************************************************************* 

NAME 
~au1~ge -- return the default territory for system functions 

SYNOPSIS 
language = DefaultLanguage() 

struct Language DefaultLanguage(void) 

FUNCTION 
Returns the default language used in DOS functions such as DateToStr() and 

StrToDate(). The name of the language directory, and thus the language itself, can 
be determined from the lanquage->Node.ln_Name field. 

RESULTS 
language a language table pointer 

SEE ALSO 
locale/locale.h 

/************************************************************************* 

NAME 
catOpcD -- open a message catalogue 

SYNOPSIS 
catalogue 
DO 

FUNCTION 

CatOpen(name) 
AO 

This function returns a pointer to the named catalogue. If it is not already in 
memory it will first search the directory from which the translation was loaded, 
and finally the locale: directory. 

If the name string contains a ":" character, the locale directory is not searched 
anymore. 

INPUTS 
name a pointer to a null terminated string specifying a catalogue. 

RESULTS 
catalogue a pointer to a message catalogue 

SEE ALSO 
CatClose(), CatGets(), locale/locale.h 

DevCon90 12 tftematiOMIIzatlon of So,_,. 
thelot:al&/lbrary: 



u 

u 

u 

/************************************************************************* 

NAME 
cat~• -- get a message from a message catalogue 

SYNOPSIS 
message~ CatGets(catalogue,set,msgNum,defaultString) 

DO AO DO D1 A1 
char *TranslateMsg(struct Catalogue *,int,int,char *); 

FUNCTION 
This function returns a pointer to the message corresponding to the given table 

and message number. Should the table be a NULL, this function will return the 
default string given. 

INPUTS 
table 
set 

msgNum 

RESULTS 
message 

SEE ALSO 

a translation table 
a set number, not implmented. Use 1 as set number. 
a message number 

a pointer to a null terminated string 

CatOpen(), CatClose(), locale/locale.h 

/************************************************************************* 

NAME 
C.tClo.. -- close a message catalogue 

SYNOPSIS 
CatClose(catalogue) 

AO 
void CatClose(struct Translation*); 

FUNCTION 
This function informs the localisation library that access to the given catalogue 

has been concluded. If the open count of the catalogue reaches zero, it is removed 
from memory, unless its PERMANENT flag is set. 

INPUTS 
catalogue a pointer to a translation table 

SEE ALSO 
CatOpen(), CatGets(), locale/locale.h 

lntemstlonsllzatlon of Sottware: 
thelocale.llbtary 

13 DevCon90 



/************************************************************************* 
NAME 

Stzeo1l -- compare two strings according to collation information 

SYNOPSIS 
result = StrCmp(stringl,string2,language) 

DO AO Al A2 
int StrCmp(char *, char *, struct Language *) 

FUNCTION 
Compares stringl to string2 according to the collation information provided in 

the language table and returns an integer greater than, equal to, or less than 
zero, accordingly as the string pointed to by stringl is greater than, equal to, or 
less than the string pointed to by string2. 

INPUTS 
stringl a pointer to a null terminated string 
string2 a pointer to a null terminated string 
language a pointer to a language table 

RESULTS 
result relationship between stringl and string2 

SEE ALSO 
locale/locale.h 

/************************************************************************* 

NAME 
st~~ -- transform string according to collation information 

SYNOPSIS 
length 
DO 

FUNCTION 

StrXFrm(stringl,string2,size,language) 
AO Al DO A2 

This function transforms the string pointed to by string2 and places the 
resulting string into the array pointed to by stringl. The transformation is such 
that if the strcmp function is applied to two transformed strings, it returns a 
value corresponding to the result returned by the StrColl() function applied to the 
two original strings. No more than 'size' characters are placed into the array 
pointed to by stringl, including the terminating NULL character. If 'size' is zero, 
stringl is permitted to be a NULL pointer. 

a pointer to a null terminated string 
a pointer to a null terminated string 

INPUTS 
stringl 
string2 
size 
language 

maximum numer of characters to be put in stringl 
a pointer to a language table 

RESULTS 
lenqth length of the transformed string. If 'length' is greater than 'size', 

then stringl(] is undetermined. 

SEE ALSO 
StrColl(), locale/locale.h 

DevCon90 14 lntenultlonsllzlltlon of Sottware: 
the /ot:al&llbraty 



u 

u 

u 

/************************************************************************* 

NAME 
Ra~ -- format data into a character stream. 

SYNOPSIS 
RawDoFmt(FormatString, DataStream, PutChProc, PutChData); 

aO al a2 a3 

void RawDoFmt (STRPTR,APTR, void (*) () ,APTR).; 

FUNCTION 
perform "C"-language-like formatting of a data stream, outputting the result a 

character at a time. Where % formatting commands are found in the FormatString, 
they will be replaced with the corresponding element in the DataStream. %% must be 
used in the string if a % is desired in the output. 

Under V36, RawDoFmt() returns a pointer to the end of the DataStream (The next 
argument that would have been processed). This allows multiple formatting passes 
to be made using the same data. 

INPUTS 
FormatString - a "C"-language-like NOLL terminated format string, with the 

following supported % options: 

%[order$] [flags] [width.limit] [length]type 

order - argument number to use for this entry, followed by a "$". 
flags - only one allowed. '-' specifies left justification. 
width -field width. If the first character is a '0', the field will be padded 

with leading O's. 
- must follow the field width, if specified 

limit -maximum number of chars to output from a string (only valid for %s). 
length- size of input data defaults to WORD for types d, x and c, '1' changes 

this to long (32-bit) • 
type - supported types are: 

b - BSTR, data is 32-bit BPTR to byte count followed by a byte string, or 
NULL terminated byte string. A NULL BPTR is treated as an empty string. 

(Added in V36 exec) 
d - decimal 
x - hexadecimal 
s - string, a 32-bit pointer to a NULL terminated byte string. In V36, a 

NULL pointer is treated as an empty string 
c - character 

DataStream - a stream of data that is interpreted according to the format string. 
Often this is a pointer into the task's stack. 

PutChProc - the procedure to call with each character to be output, called as: 
PutChProc(Char, PutChData); 

D0-0:8 A3 

The procedure is called with a NULL Char at the end of the 
format string. 

PutChData - a value that is passed through to the PutChProc procedure. This is 
untouched by RawDoFmt, and may be modified by the PutChProc. 

lntematlonallzstlon of Sottware: 
the IOt:tJI&IIbrary 

15 DsvCon90 



EXAMPLE 

Simple version of the C "sprintf" function. Assumes C-style 
stack-based function conventions. 

long eyecount; 
eyecount=2; 
sprintf(string,"%s have %ld eyes.","Fish",eyecount); 

would produce "Fish have 2 eyes." in the string buffer. 

XDEF _sprintf 
XREF _AbsExecBase 
XREF _LVORawDoFmt 

_sprintf: ; ( ostring, format, {values) ) 
movem.l a2/a3/a6,-(sp) 

move.! 
move.! 
lea.l 
lea.l 
move.! 
jsr 

4 *4 (sp), a3 
5*4(sp),a0 
6*4(sp),al 
stuffChar(pc),a2 
_AbsExecBase,a6 
_LVORawDoFmt(a6) 

movem.l (sp)+,a2/a3/a6 
rts 

;Get the output string pointer 
;Get the FormatString pointer 
;Get the pointer to the DataStream 

;------ PutChProc function used by RawDoFmt ----------
stuffChar: 

move .b dO, (a3) + 
rts 

WARNING 

;Put data to output string 

This Amiga ROM function formats word values in the data stream. 
defaults to longs, you must add an "l" to your % specifications. 
strange for characters, which might look like "%lc". 

SEE ALSO 

If your compiler 
This can get 

Documentation on the C language "printf" call in any C language reference book. 

DevCon90 11 ,.,.tlonsllzlltlon of SotrwaM: 
the lot:ale.llbraty 



u 

u 

u 

dos.library Autodocs (international functions) 

* NAME 
* DateToStr -- Converts a DateStamp to a string 
* 
* SYNOPSIS 
* error = DateToStr(country,datetime) 
* DO AO 01 
* BOOL DateToStr(struct DateTime *) 
* 
* FUNCTION 
* StamptoStr converts an AmigaDOS DateStamp to a human readable ASCII string as 
* requested by your settings in the DateTime structure. 
* 
* INPUTS 
* country - a pointer to a country table; used only with FORMAT_LOC. 
* * DateTime - a pointer to an initialized DateTime structure. 
* structure should be initialized as follows: 

The DateTime 

* * dat_Stamp - a copy of the datestamp you wish to convert to ascii 
* * dat Format - a format byte which specifies the format of the dat StrDate. This 
* can be any of the following (note: If value used is something-other than 
* those below, the default of FORMAT_DOS is used): 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

FORMAT DOS: AmigaDOS format (dd-mmm-yy). 
FORMAT-INT: Internationalformat (yy-mmm-dd). 
FORMAT-USA: American f.ormat (rmn-dd-yy) • 
FORMAT-CON: Canadian format (dd-mm-yy). 
FORMAT:DEF: Default format. Used if the localisation library has 

not been opened yet FORMAT_DOS is used. Otherwise 
the default country table is used. 

FORMAT_LOC: The country table specified is used for determining the 
format, otherwise the country input is ignored. 

* dat_Flags- aflags byte. The only flag which affects this function is: 
* 
* 
* 
* 
* 

DTB_SUBST: If set, a string such as Today, Monday, etc., will be used 
instead of the dat Format specification if possible. 

DTB_FUTURE: Ignored by this-function. 

* dat StrDay- pointer to a buffer to receive the day of the week string.(Monday, 
* -Tuesday, etc.). If null, this string will not be generated. 
* * dat StrDate -pointerto a buffer to receive the date string, in the format 
* -requested by dat Format, subject to possible modifications by DTB_SUBST. 
* If null, this string will not be generated. 
* * dat StrTime -pointerto a buffer to receive the timeof day string. If NULL, 
* - this will not be generated. 
* 
* RESULT 
* error - a non-zero return indicates that the DateStamp was invalid, and could 
* not be converted. Zero indicates that everything went according to plan. 
* 
* SEE ALSO 
* StrtoDate(), libraries/datetime.h 

lntematlona/Izatlon of Software: 
the IOCIII&IIbtary 

17 DevCon90 



* NAME 
* 8t~oDa~ -- Converts a string to a DateStamp 

* SYNOPSIS 
* error= StrToDate(country,datetime) 
* DO AO Dl 
* BOOL StrToDate( struct DateTime * ) 

* FUNCTION 
* Converts a human readable ASCII string into an AmigaDOS DateStamp. 

* INPUTS 
* DateTime - a pointer to an initialized DateTime structure. 
* The DateTime structure should be initialized as follows: 
* 
* dat_Stamp - ignored on input. 
* 
* dat_Format - a format byte which specifies the formatof the dat StrDat. This 
* can be any of the following (note: If value used is something 
* other than those below, the default of FORMAT_DOS is used) : 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

FORMAT DOS: AmigaDOS format (dd-mmm-yy). 
FORMAT-INT: International format (yy-mmm-dd). 
FORMAT:usA: American format (mm-dd-yy). 
FORMAT CON: Canadian format (dd-mm-yy). 
FORMAT:DEF: The default format is used. If the localisation library has 

not been opened yet FORMAT DOS is used. Otherwise 
the default country table-is used. 

FORMAT_LOC: The country table specified is used for determining the format, 
otherwise the country input is ignored. 

* dat_Flags - a flags byte. The only flag which affects this function is: 
* 

DTB SUBST: ignored by this function * 
* 
* 
* 
* 

DTB:FUTURE: If set, indicates that strings such as (stored in dat StrDate) 
"Monday" refer to "nextn monday. Otherwise, if clear, 

strings like nMondayn refer to nlast" Monday. 

* dat_StrDay - ignored by this function. 
* 
* dat StrDate -pointer to valid string representing the date. This can be 
* - a "DTB SUBSTn style string such as nTodayn nTomorrown 
* nMonday~, or it may be a string as specified by the dat_Format 
* byte. This will be converted to the ds_Days portion of the 
* DateStamp. If this pointer is NULL, DateStamp->ds_Days 
* will not be affected. 
* dat StrTime -pointer to a buffer which contains the time in the ASCII format 
* - hh:mm:ss. This will be converted to the ds Minutes and ds Ticks 
* portions of the DateStamp. If this pointer is NULL, ds_Minutes 
* and ds_Ticks will be unchanged. 
* 
* RESULT 
* error - a non-zero return indicates that a conversion could not be performed. 
• A Zero return indicates that the DateTime.dat_Stamp variable contains 
* the converted values. 
* 
* SEE ALSO 
* DateToStr(), libraries/datetime.h 

DevCon90 18 lntematlonaliDIIon of Software: 
the locale.ltlnty 











u 

'U 

u 

1 Corrections to Arexx Developer's Conference Notes 

During the course of several late night wiriting sessions, some errors crept into the manuscript for the AREXX 
developer's Conference Notes. Please excuse the lapse. This correction sheet should clear up the mistakes. 

The most glaring error that occurred is in the method for returning results to the program. While it is true 
that the rm...Resultl field contains the severity level of the error, the standard use of the r!U\esult2 is 
that it returns a pointer to a result string. These listings supercede the ones in the notes: 

2 Further information on AREXX 

There are many functions that will make your life easier. These functions, contained in the AREXX Systems 
Library, rexxsyslib .library, which should be in the libs: directory. 

This means that you need to open it via an OpenLibrary() call. The various routines are listed on page 
111 of the Arexx: User's Reference Manual. 

1 



n ......_ 



u 

u 

u 

doarexx(commatring) 
char *commstring; 
( 
struct RexxMsg *TheRexxMsg, *CreateRexxMsg(); 

if (TheRexxMessage • CreateRexxMsg(MyPort, "MyExtension", "COMMAND")) 
( 

TheRexxMsg->r.m_Args[O] = co~tring; 
FillRexxMsg(TheRexxMsg,l,OxO); 
TheRexxMsg->r.m_Action = RXCOMM; 

I* If you want to, initialize r.m Stdin and r.m StdOut to 
redirect these streams for the invoked command 
You may HAVE to do this this routine is in a program that 
was launched from Workbench 

*I 

Forbid(); 
if(RexxPort = FindPort("REXX")) 

PutMsg(RexxPort, (struct Message *)TheRexxMsg); 
Per.mit(); 

if(RexxPort == NULL) 
puts("Could not open the AREXX Port ••. "); 

else 
return(await(MyPort, TheRexxMsg) ); I* Await also cleans up 

TheRexxMsg 
*I 



n 



u 

u 

u 

I* 
Assume that the message is receives in an outer event processing 
loop, and that we merely need to parse it in this routine. 
*I 

void 
ParseArexxMsg(struct REXXMsg *TheMessage) 
( 
char *CommandString; 
int ArgCounter; 
int StringSize; 
if(TheMessage->r.m Action !• RXCOMM) 
( -

TheMessage->r.m_Resultl • lOL; /* Serious Error */ 

TheMessage->r.m_Result2 • OL; /* if Resultl > 0 then 
this must be 0 

*I 
return; 

) 
else 
( 

TheMessage->r.m Resultl g Dispatch(TheMessage->r.m Args(O]); 
if(TheMessage->r.m Resultl ma OL) -

TheMessage->r.m-Result2 = 
CreateArgString(TheReturnString,strlen(TheReturnString)); 

else 

) 
) 

TheMessage->r.m_Result2 = OL; 

return; 

/*It is assumed that the message handler front end will 
ReplyMsg() for me. 
*I 

doshell(commstring) 
char *commstring; 
( 
struct RexxMsg *TheRexxMsg, *CreateRexxMsg(); 

if (TheRexxMessage • CreateRexxMsg(MyPort, NULL, "CoMMAND•)) 
( 

) 
) 

TheRexxMsg->r.m Args(O] • commstring; 
FillRexxMsg(TheRexxMsg,l,OxO); 
TheRexxMsg->r.m_Action • RXCOMM I RXFF_STRING; 

Forbid(); 
if(RexxPort • FindPort("REXX")) 

PutMsg(RexxPort, (struct Message *)TheRexxMsg); 
Permit(); 

if (RexxPort - NULL) 
puts("Could not open the AREXX Port ••• "); 

else 
return(await(MyPort, TheRexxMsg) ); /*Await also cleans up 

TheRexxMsg 
*I 



0 



u 

u 

u 

Implementing ARexx In Your Programs 
By l(evin Klop 

By now, almost all developers of Amiga software must be aware that ARexx is ene of the most useful tools 
for the so-called "power user". This power user will use ARexx for everything from straight scripting in a 
terminal program to linking two pieces of software together to form a system tailored to his or her criteria. 

As an example, these notes were printed using Amiga'fEXt. However, AmigaTeX is by no means a text 
editor. My favourite text editor can cause ARexx programs to start with the press of a key. Amiga'I'EI"<can 
also understand ARexx. As a result, I bound a simple ARexx program to Right-Amiga-X. This program 
would save my current file and start Amiga'fEXworking on formatting it. 

*** 
Listing 1 

ARexx program used constantly to proofread my DevCon Notes 

I• 
* Example QED <-> TeX ARexx script 

* * Does the following: 

* * 1.) 
* 2.) 
* 3.) 
* 4.) 
* 5.) 

Save (named) file as 'filename' 
Invoke TeX with 'filename' as argument 
Check error code from TeX. 
If error, move cursor to line f 
If no error, invoke the TeX previewer 

* 
* 
•I 
OPTIONS RESULTS I• return strings are ok to send back to ARexx •I 
OPTIONS FAILAT 20 
'STATUS F' I• return file name to ARexx from QED •I 
fname=result 
'WRITE' I* Save file •I 
error=rc 
I• check for error returns - a NO CHANGES #18 error is OK •I 
IF error == 0 I error == 18 THEN DO 

I• add '.tex' extension if missing •I 
scan=INDEX(fname,".tex") 
IF scan > 0 THEN nname=fname 
ELSE nname=fname' .tex' 
I• Start AmigaTeX if it hasn't been started already. 
We determine this by looking for its ARexx port. 
If not found, we start TeX, and wait for the ARexx port. 
Plus we do a check to make sure "WaitForPort" found the 
port, or simply timed out. 

1 Amiga'IEXis a product of Radical Eye software 

Implementing ARexx In Your Programs Page 1 



•I 
IF SHOW(PORTS,'AmigaTeX') = 0 THEN DO 

ADDRESS COMMAND "NEWSHELL con://IITeX FROM s:texscript" 
ADDRESS COMMAND "WaitForPort AmigaTeX" 
END 

IF SHOW(PORTS,'AmigaTeX') THEN DO 
I• Now we send a message to TeX telling it which file to 
process, and a second telling it to come back to us 
at the next TeX prompt. We then check for an error 
condition by sending it the 'ErrorLoc' command. 
TeX sets an ARexx global variable in this case 
formally referred to as an ARexx 'cliplist'. 
•I 
'STATUS P' 
path=result 
ADDRESS 'AmigaTeX' 'CD 'result 
ADDRESS 'AmigaTeX' 'TeXify 'nname 
ADDRESS 'AmigaTeX' 'NextPrompt' 
ADDRESS 'AmigaTeX' 'ErrorLoc' 
texerror=GETCLIP('AmigaTeX.ErrorLoc') 
I• We use an ARexx function here to parse the string 
returned by TeX into a filename, line position, 
and character position. TeX returns all 3 values 
as a single string. 
We then use the info to determine if an error occured, and 
if so, we abort the TeX job, and determine if the 
'filename' error matches the name of the file we 
submitted to TeX for processing. If so, we use the 
line number, and character positioning values to 
position the cursor in QED, and wrap the whole 
thing up with a QED error message. 
If everything went well, we start TeX's previewer, 
and display a short QED message. 
•I 
PARSE var texerror filename linenum charpos 
IF filename = "" THEN DO 

ADDRESS 'AmigaTeX' 'Abort' 
IF nname = filename THEN DO 

'GOTO 'linenum' 'charpos 
END 
'ERROR TeX Error' 

END 
ELSE DO 

END 

scan=INDEX (nname, ". tex") 
fname=LEFT(nname,scan-1) 
ADDRESS COMMAND 'Preview ' £name 

END 
ELSE DO 

'ERROR Could not find TeX' 
END 
END 
ELSE DO 

Implementing ARexx In Your Programs 

n 

Page2 



u 

u 

'ERROR File Save Error' 
END 

If I didn't have ARexx, I would have to manually had to do a Save File in the editor, then type "TEX 
ARexxnotes" then type "PREVIEW ARexxnotes". With ARexx, all this can be done with the press of a 
key. 

However, the user can only make use of this if you the developer implement your program so as to allow 
ARex.'IC to control it. 

1 Basic Design Considerations 

First and foremost, ARexx is a string parser. It manipulates strings of characters, hands them off to 
programs, and awaits results. And therein lies the key to seamlessly implementing ARexx in your programs. 
Your program has to be expecting string input as commands. 

This is somewhat in contravention of the icon-based, point-and-click metaphor that is used by many of the 
graphic presentation systems such as the Amiga. It is generally easier to graft a G UI2 onto a command 
oriented program than the other way around. 

Let us assume that you are designing a text editor. In general, the first thing that one does is decide what 
sort of functions the editor will allow. For example: 

1. Mark a block (only one block allowed) 
2. Cut a marked block to the clipboard 
3. Insert a block from the clipboard into the text 
4. Save a file to disk 
5. Open a new file and read it into the buffer 
6. Jump to a particular line 
7. Search for a string 
8. Search for a string and replace it with another string. 

That seems like the beginning of an editor. 

Next would be to design the commands that cause these things to happen. This necessitates that both 
a Syntax and a Semantics be defined. For example, the Syntax rules might be, "The action comes first, 
is always in capitals, and is followed by a space. Only as many letters of the command as is required for 
identity need be entered. All characters after that point are ignored." That's a syntax and is the definition 
of how to create a valid command. 

Semantics is the definition of how to figure out what the corectly constructed command means. For instance, 
"If a SAVE command is entered without a file name, use the same file name as the input filename." With 
this in mind, we might come up with the following command set: 

U 2 G UI: Graphical User Interface 

Implementing ARexx In Your Programs Page3 



1. MARKBLOCK [BEGIN - END] 
2. CUT 
3. INSERT 
4. SAVE <filename> 
5. OPEN filename 
6. JU?viP linenumber 
7. SEARCH "string to search for' 
8. REPLACE "search string' "replacement string' 

We would now write a command parser that will take commands in this format and call the proper routines 
to do the work. For example, we might call t-his in the following fashion: · 

*** 

Listing 2 
Example Command Dispatcher 

Dispatch(char •InputCommand) 
{ 

} 

switch(InputCommand[O]) 
{ 

} 

case 'M': 
return(MarkBlock(GetSecondWord(InputCommand))); 

case 'C': 
return(CutBlockToClipBoard()); 

case 'I' 
return(InsertBlock()); 

case 'O': 
return(OpenFile(GetSecondWord(InputCommand))); 

case 'J': 
return(JumpToLine(GetSecondWord(InputCommand))); 

case 'R': 
returnReplace(GetSecondWord(InputCommand))); 

case 'S': 
if(InputLine[l]=='E') 

return(SearchFor(GetSecondWord(InputCommand))); 
else 

return(SaveFile(GetSecondWord(InputCommand))); 

This takes a command string in, interprets it according to the semantic rules that we have determined, and 
performs the functions necessary to that command. 

In front of this sits the two front ends - the menu front end and the ARexx front end. For the ARexx front 
end, handling the ARexx messages that will be coming in. The code for the ARexx front end would look 
something like: (") 

Implementing ARexx In Your Programs Page4 



u 

u 

*** 
Listing 3 

ARexx Front End Example Code 

I• Assume that the message is received in an outer even processing 
loop, and that we merely need to parse it in this routine. 
•I 
ParseARexxMsg(struct REXXMsg •TheMessage) 
{ 

} 

char •CommandString; 
int ArgCounter; 
int StringSize; 
if(TheMesage->rm-Action != RXCOMM) 
{ . 

} 
else 
{ 

TheMessage->rnwResultl = 10; I• Serious error •I 
TheMessage->rnwResult2 100; I• "Invalid command packet .. •/ 

StringSize = 0; 
for(ArgCounter=O;ArgCounter<16;ArgCounter++) 

if(TheMessage->rm-Args[ArgCounter]) 
StringSize+= 

strlen(TheMessage->~rgs[ArgCounter]); 

if(CommandString = 

{ 

} 

AllocMem ( (ULONG) StringSize+lL, MEMF ..PUBLIC) ) 

CommandString[O] = '0'; 
for(ArgCounter=O;ArgCounter<16;ArgCounter++) 

strcat(CommandString,TheMessage->cnArgs[ArgCounter]); 

TheMessage->rnwReturnl = Dispatcher(CommandString); 
I• It is assumed that the message handler front end will 
ReplyMsg() for me. 
•I 
} 

Note that this is not the only way to process the messages, but is intended as an example only. 

The basic idea is to get the various strings that are passed to you by ARexx and then to send them 
through your command parser. Return codes (i.e. error codes) are passed back in the rm..Return2 field. 
the SEVERITY of the error is returned in the rm..Returnl field. After filling in these two fields a normal 
ReplyMsg() will send it back to the main ARexx server. 

In order to keep things tidy, it is generally a good idea to have the menu picks also create command strings 
and send those command strings through the parser as well, thus creating a single point of control for 
command handling. Generally I handle this through expanding the Menultem structure to include the 

U command string that will be sent to the command dispatcher. 

Implementing ARexx In Your Programs PageS 



2 Initiating ARexx commands from your program 

Your program doesn't need to only accept commands from ARexx, it can send commands to ARex:x as well. 
This generally is done in one of two ways. 

The first way that commands are sent to ARexx is generally to specify the name of an ARexx program to be 
run. For instance, in the instance of the editor/'IEX interactions, the editor actually tells ARexx, "Execute 
the file TeX.QED." ARexx then goes out and takes the contents of TeX.QED and executes it as an ARexx 
program (The program is listed at the end of these notes as an example). 

In order to send the name of an ARexx program file to ARexx, you fill out a RexxMsg structure. Several 
utilities are available to you to make this easier, much as CreatePort() is available to you to make creating 
message ports easier. 

A RexxMsg looks like the following structure3 

*** 
Listing 4 

RexxMsg structure 

struct RexxMsg { 

} 

APTR rm-Task; 
APTR ~ibBase; 
LONG ~ction; 
LONG rm-Resultl; 
LONG rm-Result2; 
STRPTR ~rgs[l6]; 
struct MsgPort •Dn2assPort; 
STRPTR rnwCommAddr; 
STRPTR rnLFileExt; 
LONG rm-Stdin; 
LONG rm-Stdout; 
LONG rm-avail; 

Your program needs to fill in the following fields: 

1. rm.Action 
2. rm.Args 

All the other necessary fields will be filled in for you if you use the CreateRexxMsg() function. 

The rm-Action field should be initialized with the value RXCOMM in order to start ARexx processing 
a command. If you want to receive the result string that the program leaves you, then OR in the value 

3 Taken from the ARexx include file STORAGE.H included with the original release of ARexx by Bill Hawes 

Implementing ARexx In Your Programs Page6 



u 

u 

U. 

RXFB-RESULT into the rm..Action field. Furthermore, if you are passing just one string in rm..Args(O], 
even though that string contains various commands, then you will probably also want to OR in the value 
RXFB-TOKEN to cause ARexx to re-parse the command string for you before passing it to the invoked 
command file. 

Note, however, that the values that are placed in the rm..Args fields are NOT string pointers, but rather 
pointers to tjhe middle of RexxArg structures. These RexxArg structures are of the following form: 

struct RexxArg { 
LONG ra-Size; 
UWORD ra-Length; 
UBYTE ra..Flags; 
UBYTE ra..Hash; 
BYTE ra..Buff [ 8]; 

} 

*** 
Listing 5 

RexxArg Structure 

and are most easily created using the CreateArgstring() procedure. Note that the rm..ArgsO pointers actually 
point to the ra..Buff field of the RexxArg structure, and that although it is declared as a BYTE array of 8 
values, it actually can be as long as you require for your string. 

The second way that a program can cause ARexx to do something is to send to ARexx the complete 
"program" in the message to ARexx. This form is called a "string file". While not much is said about these 
string files in the "ARexx User's Reference Manual" (and even less said in the Commodore Documentation 
that comes with the Amiga 3000), it is a fairly simple concept. The rx-ARG[O] field points to a string buffer 
that contains the entire ARexx program. 

Such a string file should contain semi-colons in order to separate the individual commands. Also, care should 
be taken about the quoting conventions of ARexx in order to maintain the proper quoting of parameters. 

For example, here is some code from a MAKE utility that uses ARexx as its scripting language as opposed 
to the UNIX Bourne Shell: 

Implementing ARexx In Your Programs Page 7 



*** 
Listing 6 

Sending a String File to ARexx 

doshell(comstring) 
char •comstring; 
{ 

} 

struct RexxMsg •theRexxMsg, •CreateRexxMsg(); 
int i; 
char •TempBuffer; 
ULONG BufferLen; 
if(theRexxMsg Q CreateRexxMsg(MyPort, "" ' "COMMAND") ) 
{ 

} 

BufferLen g strlen(comstring) + SL; 
if ( ! (TempBuffer = (char *)AllocMem(BufferLen, MEMF~UBLIC 1 

MEMF ..CLEAR) ) ) 
{ 

DeleteRexxMsg(theRexxMsg); 
fatal("Could not allocate room for expansion"); 

} 
*((ULONG •)TempBuffer) = BufferLen; 
TempBuffer += 4; 
strcat (TempBuffer, comstring); 
theRexxMsg->rm-Args[O] = TempBuffer; 
TempBuffer -= 4; 
for (i = 1; i < 16; i++) 

theRexxMsg->rm-Args [i] = OL; 
if(FillRexxMsg(theRexxMsg, 1, Ox0)) 
{ 

} 
else 
{ 

} 

theRexxMsg->rm-Action I= RXCO.MM I RXFF -STRING; 
PutMsg(REXXPort, (struct Message •>theRexxMsg); 

FreeMem(TempBuffer, *((ULONG •)TempBuffer)); 
DeleteRexxMsg(theRexxMsg); 
fatal("Could not fill rexx message"); 

return (await(MyPort,theRexxMsg, TempBuffer) ); 

The string file is sent to ARexx in the same manner as the name of an ARexx program is sent, with the 
addition that RXFF ..STRING is OR.ed into the rm..Action field of the RexxMsg structure. The return codes 
are managed in the same fashion as elaborated previously. 

Implementing ARexx In Your Programs PageS 



u 

u 

u 

3 Other ARexx interactions 

There are other interactions that you might want to have with ARexx. For example, there may be times 
that you want to put something into, or fetch something from the ARexx clip list4. To access these, you 
use the various other values for the rm...Action field in the RexxMsg structure, and send a request off to the 
ARexx server. 

There's a lot more to ARexx than can be said in a one hour discussion. Carefully read the available 
documentation that came in the "ARexx Reference Manual", and ask questions. You can contact me at 
k.klop on BIX, K.KLOP on GEnie, or kevin@cbmvax on USENET if you have questions. 

4 The clip list is like a large pool of string variables that ARexx maintains. 

Implementing ARexx In Your Programs Page9 



·n 

n 

n 



_) 









u 

u 

The Amiga AppShell 
The information presented here applies to the first public release of AppShell (Alpha 10). 
This software will only operate under AmigaOS 2.0. Subsequent revisions will contain 
updated material and any changes will be shown in the change section at the end of this set. 

Disclaimer: This is an alpha release. CBM reserves the right to 
violate object code compatibility and even source code compatibility. 
Interfaces and data structure specifications are subject to change based 
on the input received from this early release. 

This Alpha release is for the Developer's Conference only. Please restrict any discussion to 
the appropriate channels, specifically, the amiga.com section of BIX. For comments, use: 

The Amlga AppShell 

BIX: 

Usenet 

us Mail: 

dbaker (currently) 

cbmvax!davidj 

David N. Junod 
Commodore Business Machines, Inc. 
1200 Wilson Drive 
W.Chester, PA 19380 

DevCon90 



CONTENTS 

Partl: The Standard Amiga User Interface and the Amiga AppShell 
This document gives a non-technical overview of the standard Amiga application 

requirements and how the Amiga AppShell provides an easy way to abide by those 
requirements. 

Part2: Amiga AppShell Implementation Notes 
This document details how to develop applications using the AppShell. 

Part3: AppShell AutoDoc 
Documents extracted from the source code of the AppShell. 

DevCon90 The Am/ga AppShe/1 



u 

u 

u 

The Standard Amiga User 
Interface and the 
Amiga Appshell 

by David Junod 

The purpose of this document is to describe the requirements of a standard Amiga application 
user interface and how the Amiga AppShell will ease the developer into those requirements. 

Scope 

This document was developed to provide the following information: 

Cl Benefits of a Standard User Interface 
Cl Overview of the Amiga AppShell 
Cl Elements of the Standard Amiga User Interface 

Benefits of a Standard User Interface 

Consistency 

Consistency in a user interface allows the user to apply previously learned knowledge to each 
new application. The user will spend less time on figuring out how to get work done, and is 
therefore more productive. 

Coexistence 

By following the recommended standard procedures, applications automatically acquire the 
ability to inter-operate, thereby increasing each application's value. 

The Standard Amlga User 
Interface and the Amlga AppShe/1 

1 DevCon90 



Overview of the AppShell 

The requirements of a standard Amiga application can be overwhelming to a new developer. 
The initial learning curve to deve~op on the Amiga is already quite steep, without the 
additional burden of implementing standard features. 

In order to help overcome this initial brick wall, the Amiga AppShell was developed. It 
provides an overall philosophy on programming applications, as well as providing the 
mechanisms required to implement the standard Amiga requirements. 

Philosophy 

The AppShell is designed with the following philosophy in mind: 

Cl The application's functions must be separate from any particular user interface. 
This allows an application to be controlled in a variety of ways; such as by the 
mouse, keyboard, or a scripting language, or even another process. 

Cl The user must be able to personalize the application to fit his or her work habits. 
This could be as simple as setting the colors and font, or as complex as adding 
menu items for often used scripts. Remember, the user is trying to get work done 
and shouldn't be handicapped by any other persons' ideals or quirks. 

Implementation 

The AppShell has been implemented as a combination of a link library and a shared system 
library. 

The use of a shared system library has a number of benefits: 

Cl Application size is greatly reduced - Common code and data all reside in the 
library. 

Cl Memory requirements are greatly reduced- Common code and data is only 
loaded once into memory, regardless of the number of applications running. 

Cl Efficient upgrade capabilities - By installing a new library, all applications 
which use it will also be upda~d. 

DevCon90 The Standard Amlga User 
Interface and the Amlga AppShell 



u 

u 

u 

Elements of the Standard Amiga User Interface 

The sectiori gives basic descriptions of the components required in a standard Amiga 
application. 

The major components are: 

Cl Functions (standard and application specific) 
Cl Graphical User Interface 
Cl Command Interface 
Cl Workbench Interface 
Cl Preferences 
Cl Miscellaneous 

Note that many of the components are user-configurable; these descriptions detail only the 
default aspects of the components. 

Functions 

There are basically two types of functions: application functions and standard functions. 
Application functions are those functions that are unique to the application and standard 
functions are those that provide basic functions that are common to all applications. 

Application-Specific Functions 

Functions are what applications are built upon. For example, a text editor has functions to 
move the cursor up and down, accept keystrokes, and load and save a document. 

Standard Functions 

The AppShell provides many standard functions. These functions fall into two basic 
categories: 

Standard Internal Application Functions - Information on the internal application functions is 
beyond the scope of this document and can be obtained by reading the Amiga AppShell 
Implementation Notes. 

Standard User-Accessible Functions - These would involve functions that are accessible by 
the user of the application. One example is the AppShell' s ability to learn a sequence of 
events and save those events into a macro file. 

The Standard Amlga U•r 
Interface and the Amlga AppShe/1 

3 DsvCon90 



Standard User Accessible Functions 

This section details the standard user accessible functions that the AppShell provides. Some 
of the functions are dependant on certain aspects of a particular user interface; for instance, 
there wouldn't be any control over window operations if the application didn't have a 
window. 

These functions, and their actions, should be duplicated by all future Amiga applications. 

NAME 
ACTIVATE 

ALtAS 

BUTTON 

CMDSHELL 

CLIP 

DEACTIVATE 

DISABLE 

EDIT 

ENABLE 

EXECMACRO 

FAULT 

GET 

GROUP 

DevCon90 

DESCRIPTION 
Activate the default or named window. Activation of a window involves 
de-'iconifying' it, bringing its screen to the front, sizing it to its 
normal size and making it the active window. 

Allows a functions and its parameters to be bound to another name. 

Allows the named button's function and parameters to be edited. 

Opens a command shell whereby the user can interact directly with the 
application at a command level. Allows the user quick access to 
functions or macros that they may use so infrequently that they don't 
desire to bind them to a key, menu or button. 

Save the selected block or clip area to the current clip file. A name 
can be specified. 

Restores the state that the window and screen was in before the 
ACTIVATE function. 

Disable any particular object of the application. Could be a 
function, menu item, button, or other object. 

Provides access to modifiable aspects of the application. 

Enable any particular object of the application. Could be a function, 
menu item, button, or other object. 

Execute the macro that is currently in memory. It could be a macro 
that was learned or loaded. Mainly to be used for transient learned 
macros, more permanent macros would actually be bound to a menu item 
or gadget. 

Return the error message for the given error number. 

Obtain information on the aspects of an object. Such as what node is 
currently selected in a Scrolling List gadget's list of items. 

Allows like objects to be linked together. For example, an APPEDIT 
group could consist of UNDO, MARK, CUT, COPY, PASTE, and ERASE. Then, 
whenever such editing isn't available to user, the group could be 
disabled by with one command. 

4 The Standard Am/ga User 
Interface and the Amlga AppShe/1 



u 

u 

u 

HELP 

HOT KEY 

LEARN 

LOADMACRO 

MENU 

PRIORITY 

RETRIEVE 

RX 

SAVEMACRO 

SELECT 

SET 

STATUS 

STOP 

STUB 

TOBACK 

TOFRONT 

WHY 

WINDOW 

Provides access to information on different aspects of the 
application. Information such as the supported functions, parameters 
required for functions, and even user notes is readily available. 

Allows access to what function a particular key triggers. 

Place the application in a state whereby it remembers each action that 
the user performs and builds a macro containing those actions. 

Will load the named macro into memory for easy access. 

Provides a means of adding, editing, or deleting a menu item. Allows 
access to what function that menu item triggers. 

Provides a means of controlling the priority that the system uses in 
running the application. 

Retrieve from the current clip file into the clip area. A name can b 
specified. 

Allows access to ARexx functions that may have otherwise bee~ rerouted 
by the application. Should only be used if there are name conflicts 
between an application function and an ARexx function. 

Will save the current macro memory to the named file. 

Provides a way to manipulate which object is to be selected. Mainly 
used to access multiple projects. 

Manipulate aspects of an object. 

Provides information on the status of an object, whether it is 
enabled, disabled, opened or closed. 

Stop the named operation. Used for such things as STOP LEARN. 

A function that does absolutely nothing. 

Send a window behind other windows. A name can be specified. 

Send a window to the front of the other windows. A name can be 
specified. 

Return information on what the last error was. 

Provides a means to specifically open or close a window. A name can 
be specified. 

The Standard Amlga User 
Interface and the Amlga AppShe/1 

5 DevCon90 



Graphical User Interface 

This section provides information on Graphical User Interface (GUI) aspect of an 
application. 

Gadgets 

Several new gadget standards have been established in AmigaOS 2.0. These include a new 
visual style, as well as a number of new gadget types. 

The new gadgets now appear three-dimensional. By using a 3D appearance, it is possible to 
convey more information in less space. When a gadget appears to be raised, it is quickly 
identified as being modifiable. A gadget that is always indented, or pushed in, is used for 
display purposes only. 

The new gadget types are: 

Action button 
Checkbox 
Scrolling list 
Radio button 
Cycle gadget 

Palette 
Scroller 
Slider 
Text entry 
Text display 
Numeric entry 
Numeric display 
I con drop box 

Triggers actions or indicates completion. 
Indicate a yes or no condition. 
Allows selection or display of variable length lists of information. 
Allow a single choice out of a list of choices. Mutually exclusive. 
Allow a mutually exclusive choice in a minimal amount of space. 
Used only for selection of a state, should not be used to trigger 
actions. Shift selection would cycle backwards through the 
choices. 
Allow selection of a pen color from the current color palette. 
Slider which is used to scroll information in a display area. 
Analog selection of a choice from a range of choices. 
Entry of a single line of textual information. 
Display textual information. 
Entry of a single line of numeric information. 
Display numeric information. 
Indicate that an area is capable of receiving icons from 
Workbench. 

Keys may be bound to gadgets so that the gadget's action can be controlled from the 
keyboard. Whenever possible, visual feedback is given when the keys are pressed. 
Following is a list of the visual effects that bound keys can have on gadgets. All action 
occurs on the downpress of the key. Note that some of the gadgets make use of the shifted 
and unshifted state of the key. 

DevCon90 6 The Standard Amlga u.., 
Interface and the Amlga AppSheU 



u 

u 

u 

Gadget Action 

Action button When the key is pushed, the gadget appear to press in. When 
the key is released, the gadget appears to come back out. 

Checkbox Toggle the state of the check mark. 

Scrolling list U nshifted would cycle forward through the choices. Shifted 
Radio button would cycle backwards through the choices. 
Cycle gadget 
Palette 
Scroller 
Slider 

Text entry Activate the gadget for entry. 
Numeric entry 

Users have the capability to edit the key that is bound to the gadget They are also provided 
with the ability to add, edit, and delete buttons that are set aside for user configurability. 

The AppShell processes gadget information so that font sensitivity, color sensitivity, and 
internationalization are possible. The AppShell utilizes GadTools and new Intuition features 
for the gadgets. 

Menus 

The AppShell will preprocess menu information so that internationalization is possible. 
Users also have the capability of adding, editing, and deleting menus and menu items for the 
application. 

Keyboard 

The AppShell provides the ability to bind any keystroke or sequence of keystrokes to any 
particular function or macro. 

Standard Tools 

Using the ASL shared system library, the application has access to standard file and font 
requesters. 

The AppShell maintains a list of projects, and whenever multiple files are selected from the 
file requester, they are appended to the project list. The AppShell provides an AppWindow 
requester which allows the user to add, remove, select, and reorder projects in the project list. 

The Standard Amlga User 
Interface and the Amlga AppShe/1 

7 DevCon90 



Command Interface 

Although many feel that a GUI is the easiest way to run an application, others feel that they 
need a direct command-oriented interface to the application. The AppShell provides several 
means to accommodate a command-oriented user interface. 

ARexx 

ARexx is a scripting language that is common to all AmigaOS version 2.0 systems and is 
also generally available for all Amiga computers running AmigaOS 1.2 and greater. ARexx 
provides the user with text-oriented control over an application or group of applications. It 
can be used to link the base functions of an application together to produce new, more 
powerful functions. 

Applications should support the commands described in the Standard User Accessible 
Functions section. 

The ARexx port name should be based on the command name used to invoke the application 
and should be in all upper case. For example, the fictional application Super Paint IV, might 
have a command name of SPIV, would have an ARexx port name of: 

SPIV_AREXX 

If the application allows multiple ARexx ports, then the use count should be appended to the 
base name, giving: 

SPIV_AREXX_l 

Command SheD 

The command shell provides the user with a direct method to access the base functions of the 
application. It achieves this by supplying a console window in which the user can send and 
receive textual information. It also provides the ability to directly nm ARexx scripts without 
having to specifically bind the script to a particular user interface component. 

Keyboard 

Any function or macro can be bound to any particular key or sequence of keys. In addition to 
normal single-key commands, complex multi-key commands, such as Memacs-style 
bindings, are possible. 

DevCon90 8 The Standard Amlga Uaer 
lntsrlace and ths Amlga AppShs/1 



u 

u 

u 

Workbench Interface 

AmigaOS 2.0 provides three new features which allow applications to obtain information 
from Workbench. They are: Applcon, AppMenu, and App Window. 

Applcon 

The Applcon feature offers the application the ability to add an icon to the Workbench 
window and receive messages when an icon is dropped on it or the user double-clicks it. 

The AppShell provides the ability for the application to close down its GUI and appear as an 
icon on the Workbench. Then, when the user double-clicks the icon, the application's GUI 
reactivates. The AppShell remembers the state of the GUI, so that when the user reactivates 
the application, the ours state is restored. 

By using the Applcon feature of receiving messages when icons are dropped on it, the 
AppShell application can receive information on additional projects to manipulate. For 
example, a print spooler application could. have a representative icon on the Workbench 
screen and whenever an icon was dropped into it, the spooler would add the ftle to the print 
queue. Whenever the user double-clicks the icons, the print spooler would open up a window 
showing the contents of the queue and would allow the user to manipulate it. 

AppMenu 

The AppMenu feature allows the user to add applications to the Workbench tool menu. The 
AppShell does not provide any additional support for this User feature. 

AppWindow 

AmigaOS 2.0 allows applications to register with Workbench that they are capable of 
handling icons that are dropped into their window. For example, the user can pick up an icon 
of a document and drop it into the window of a word processor, or the user could select a 
number of ILBM icons and drop them into an application to be made into a slide show. 

The AppShell maintains a list of projects, and whenever multiple projects are dropped into 
the application they are appended to the project list 

The Standard Amlga User 
lnterfacs and the Amlga AppShe/1 

9 DevCon90 



Preferences 

The AppShell provides the application with the functions necessary to accommodate the 
user's preferences. It provides the ability to read and write preference files, as well as 
translate the appropriate aspects of the user interface to utilize those preferences. 

In the case where there is no user preference for the application, the AppShell will default to 
the appropriate Workbench Preference. 

Application preferences which don't require notifying the application, should be stored in a 
directory named config, which should be in the home directory of the application. 

The naming convention is <application name>_ <type>. <file type> where: 

<application name> 

<type> 
<file type> 

The same as the command name used to invoke the 
application. 
The type of the preference file. 
Indicate the format that the file is stored as. 

For example, an application called Super Paint IV might may have a command name of SPIV () 
and would store the following files: 

SPIV _pointer.ilbm 

For the default color palette which is stored as an ILBM IFF 
file. 
For the default pointer sprite which is stored as an lLBM IFF 
file. 

Notice that the <type> and <file type> reflect the names used by the Workbench preference 
files. 

Preference files that do require notifying the application, should be saved in ENV: in a 
directory with the same name as the command name for the application. The preference file 
names should match the naming conventions of non-notification preference files. Permanent 
storage for these preference files would be in ENV ARC: using the same naming conventions. 

DevCon90 10 The Standard Amlga u.., 
Interlace and the Am/ga AppShe/1 



u 

u 

u 

Miscellaneous 

The following is a list of standard features that do not fall into any particular category of their 
own. 

Help 

Help should consist of an asynchronous text/image display process which communicates with 
the application to provide context-sensitive help, which is help based on the current state or 
mode of the application. Whenever the user presses the HELP key, the application sends an 
appropriate ID to the help process. The help process would then be activated and would 
display the corresponding information. The user could then ei~r go through more help 
screens or continue on in the application. 

The AppShell provides all the capabilities and mechanisms required to give the user a 
context sensitive help system. The AppShell maintains ID' s for every component within the 
application and provides a means for the user to inquire for more information on any one of 
them. Help information is contained in customizable text ftles, so that" the user can enhance 
the information with their own notes 

See the Standard User Accessible Functions section for more information. 

Internationalization 

The AppShell requires an application to construct a default text array from which it will 
derive all of its textual information. The AppShell provides a way to utilize the localization 
library to translate the text into the users' preferred language. 

Notification 

This feature provides a means for an application function to be activated whenever a file gets 
modified in any way. 

For example, Workbench asks to be notified when the Preference flles are modified. If the 
Workbench pattern file is modified, Workbench is notified and updates the windows with the 
new pattern. 

The Standard Amlga User 
Interface and the Amlga AppShell 

11 DevCon90 



Tools 

The Tool feature provides a method of launching asynchronous processes within an 
application's environment. These tools could be such things as a calculator, calendar, clock, 
help system, mouse coordinate display, magnifying glass, or even another copy, or clone, of 
the main application itself. 

Using the tools mechanism, the AppShell makes it possible to clone the application. Another 
copy of the application will be launched, using the same settings as the original application. 
Now, multiple projects can be easily started and maintained. 

Tools can either be internal or external to the application. External tools are made available 
as shared system libraries in a sub-directory of libs: named tools. For more information on 
tools, consult the Amiga AppShell Implementation Notes. 

Simple Interprocess Communication 

Due to the internal nature of the AppShell function dispatcher, a simple interprocess 
communication protocol was necessary. This protocol needed the following features: 

Speed High speed communication was a necessity due to the amount of information 
being processed. In order to achieve this, it utilizes standard numeric ID 's and 
a direct bidirectional link with any other process. 

Independence The ability to communicate must not be dependant on anything other than 
Exec and the AppShell. 

Using this protocol, the AppShell communicates with tools and cloned AppShell 
applications. This could be as simple as telling another AppShell application to activate or as 
complex as constantly feeding data on a continually changing process . 

• 

DevCon90 12 The Standard Am/ga U•r 
Interface and the Amlga AppSheU 



u 

u 

u 

Implementation of the 
Amiga AppShell 
by David Junod 

The purpose of this document is to describe, in technical detail, the construction of an 
AppShell application. 

Scope 

This document was written to provide the following information: 

(J Overview of the AppShell Components 
(J Technical Breakdown of the Components 
CJ Overview of the Standard Message Handlers 
CJ Implementation of a Custom Message Handler 

Overview of the AppShell Components 

The Amiga AppShell provides the developer of Amiga applications with the ability to easily 
incorporate a standard, consistent interface for the user. 

The AppShell operates under the theory that applications can be broken into several 
separable modules: 

CJ User Interface 
CJ Application Functions 
CJ Standard Functions 

The means by whicli the user controls an application. 
Functions specific to the application. 
Functions that are common to almost all applications, to 
provide a consistent, solid set of standard operations. 

Of the three, the developer still has to define the first two. But the AppShell provides the 
third and makes the other two much easier. 

Note: Unless otherwise stated, all references to the word "function" refers to either an 
Application Function or a Standard Function. 

Implementation of the 
Amlga AppShell 

1 DevCon90 



The following is a basic breakdown of the major components of the AppShell. 

• activate existing application 
• open required libraries 
·s~ppmrunererp~mg 

locare configuration files 
Workbench 
Shell 

• initialize message handlers (honor preferences) 
·ARexx 
Command Shell 
Commodities 
IDCMP (Intuition and GadTools) 
Simple IPC 
Asynchronous Tools 
Workbench messages (Applcon, AppMenu & AppWindow) 
Others ... 

• handle messages (event processor) until quit 
• shut down message handlers 
• close libraries 

The base initialization and library manipulation routines are within a link library. The 
remaining routines reside in a shared system library. · 

Due to the Alpha state that this software is currently m, some of the features are not yet fully 
implemented. 

DsvCon90 Implementation of the 
Amlga AppShell 



u 

u 

u 

User Interface Description 

The AppShell relies heavily on tags and structure arrays to describe the components of the 
user interface. All tag and structure arrays are unmodified by the AppShell. This allows any 
tag array to be used by different processes. Similarly, the entire AppShell is reentrant. 

Note that not all of the data elements are copied. An effort has been made to indicate 
whether an element is copied or just its pointer is used. 

Function Table 

Every AppShell application has a function table. This table contains information on all the 
application functions, as well as the standard functions provided by each message handler. 
Every command to the application is dispatched by the AppShell function dispatcher to the 
correct function. 

Each message handler can add standard functions to the function table. This ensures that 
each application has a standard base of functions. 

Each function has a short name, which is used to bind the function to any particular user 
interface. A function could be bound to a menu item, a gadget, invoked from a script, or any 
other user interface. 

This short name cannot conflict with any of AppShell' s internal names (function or message 
handler names) or with any of the ARexx keywords. 

Functions can have two different states: 

Disabled 

Enabled 

The function is not able to be invoked. Causes the dispatcher 
to return a failure-level error. 
The function is capable of being invoked. The default state 
of a function. 

A function is disabled by sending the DISABLE command, followed by the function name: 

DISABLE <function> 

A function is enabled by sending the ENABLE command: 

ENABLE <function> 

If the function is bound to any particular graphical user interface item, then that item is also 
visually disabled. For example, a menu or gadget would be ghosted. 

Implementation of the 
Amlga AppShe/1 

3 DevCon90 



Names 

Just about every AppShell item (functions, message handlers, and message handler objects) 
has a unique name. This allows the application to specify what is to be manipulated. 

For example, to disable an application's entire Intuition interface while an ARexx script is 
running, the following command would be issued: 

DISABLE IDCMP 

For greater control, groups can be built by specifying the names of each member of the 
group. Then, any command to the group would affect all its members. 

-
For example, to set up an edit group: 

EDIT GROUP APPEDIT UNDO MARK CUT COPY PASTE ERASE 

This would establish the APPEDIT group with UNDO, MARK, CUT, COPY, PASTE, and 
ERASE as its members. 

To disable a group: 

DISABLE APPEDIT 

This would disable all the members of the APPEDIT group, which would include their 
function table entries and their GUI items (such as their menu items). 

Preferences 

User definable attributes of an application are called preferences. The AppShell provides the 
mechanism to read user preferences and transform the objects of the user interface to comply 
with those preferences. For example, if there is a GUI present in your application, then the 
AppShell allows the user to specify the font and color palette (as well as a number of other 
attributes). 

The Workbench preference editors are used whenever appropriate and therefore, their names 
are used also. For a list of the Workbench preference formats that the AppShell supports, see 
the IDCMP Message Handler section. 

If the user wants to use different preferences for any particular application, then he would 
place the altered file into the application's preference directory. Permanent preference files 
would be placed in a directory config, in the home directory of the application. 

Preferences also involves localization. The AppShell has been designed to make use of the 
localization library when it is present. 

DevCon90 4 lmpltltntmtstlon of the 
Am/ga AppS/JB/1 

n. 



u 

u 

u 

Technical Breakdown of AppShell Components 

Application Variables 

I* common application data *I 
struct Appinfo 
{ 

I* control information *I 
STRPTR ai_TextRtn; I* text return string *I 
LONG ai_Pri_Ret; I* primary error (severity) *I 
LONG ai_Sec_Ret; I* secondary error (actual) *I 
BOOL ai_Done; I* done with main loop? *I 

I* base application information *I 
BPTR ai_ProgDir; I* application base directory *I 
BPTR ai_ConfigDir; I* application preference file directory *I 
STRPTR ai_ProgName; I* application base name *I 
struct DiskObject *ai_ProgDO; I* application tool icon *I 

I* project information *I 
struct List ai_ProjList; I* list of projects *I 
struct ProjNode *ai_CurProj;l* current project node *I 
LONG ai_NumProjs; I* number of projects in the list *I 

I* application information *I 
VOID *ai_UserData; I* UserData *I 

I* READ ONLY Intuition-specific information *I 
struct TextFont *ai_Font; I* font for screen *I 
struct Screen *ai_Screen; I* active screen *I 
struct Window *ai_Window; I* active window *I 
struct MHObject *ai_CurObj; I* active object (gadget usually) *I 
struct Drawinfo *ai_DI; /* Intuition Drawinfo */ 
VOID *ai_VI; /* Gadtools visualinfo */ 
WORD ai_MouseX; I* position at last IOCMP message *I 
WORD ai_MouseY; /* position at last IOCMP message *I 
UWORO ai_TopLine; I* top line *I 

I* AppShell-maintained fields */ 
I* the remainder of the fields are private to the AppShell */ 

} ; 

Implementation of the 
Amlgs AppShsll 

5 DevCon90 



The Applnfo structure contains the following components: 

The following fields can be accessed by message handlers or functions and are used for 
control purposes.: 

ai_TextRtn 

ai_Pri_Ret 

ai_Sec_Ret 

ai Done 

Used by message handler initialization routines to return 
a string to indicate an error. Used by functions to return 
text-based information when there isn't an error. 

Used by functions to return an error level. 

Used by functions to return an error information. Set to the 
index of the error in the error text array. 

Set to TRUE by the application's Quit function, to indicate to 
the event processor that the user wants to shut the application 
down. 

The following fields are for obtaining information on the application itself: 

ai_ProgDir Lock on the directory that the application resides in. 

ai_ConfigDir Lock on the directory that contains the preference files for 
the application. 

ai_ProgName 

ai_ProgDO 

Base name of the application. This name is used to prefix 
preference files, base name of public message ports and other 
public names for the application. 

A pointer to the Workbench icon used to represent the 
application. 

The following fields are for tracking project related information: 

ai_ProjList 

ai_CurProj 

ai_NumProjs 

Exec list of projects. Each project is represented by a 
project node (represented by the ProjNode structure) • 

Current project node (represented by the ProjNode structure) • 

The number of projects in the project list. 

The following field is for application specific data: 

ai_UserData Application specific user data. 

DevCon90 6 Implementation of the 
Am/ga AppShell 



u 

u 

u 

The following fields are maintained by the IDC:MP message handler and are READ ONLY. 
Some of the more timely items are only fresh when the function was triggered by an IDCMP 
message. 

ai_TextFont 

ai_Screen 

ai_Window 

ai_.CurObj 

ai_DI 

ai_VI 
ai_MouseX 

ai_TopLine 

Activation 

Font used for text items inside the window. 

Screen for all the applications' windows. 

Pointer to the window that was active when the function was 
invoked. 

GUI item that triggered the function. 

Drawinfo for the applications screen (used by Intuition) . 

Visualinfo for the applications screen (used by GadTools). 

ai MouseY Coordinates of the mouse when the function was 
invoked. 
The first usable line in a window (based on window title bar 
size plus one) • 

Activation is used when you only want one instance of your application running at any one 
time. To achieve activation using AppShell, the application has to have a single Simple 
InterProcess Communication (SIPC) port. 

If the user attempts to load another copy of the application, then the original application gets 
an Activation message through its SIPC port. This causes the application to come to the 
front, opened and activated. 

The tags required for activation are: 

I* Simple IPC message handler initialization tags *I 
struct Tagitem handle SIPC[] = 
{ -

{APSH_Setup, setup_sipcA}, I* SIPC set up routine *I 
I* make active and only *I {APSH Status, P ACTIVE I P SINGLE}, 

- I* allow one instance *I 
(APSH_Rating, REQUIRED}, I* application requires it *I 
(TAG DONE,} 

} ; -

The tags used in this example are: 

APSH_Setup 

APSH_Status 

APSH_Rating 

Implementation of the 
Amlga AppShe/1 

Pointer to the routine used to initialize the message handler 
system. In this case, it is the Simple Interprocess 
Communications message handler. 

In this case the message handler would be made active at 
initialization time and only one port of the given name is 
allowed. 

Used to indicate if the message handler is optional or 
required. The AppShell will shut down if the message handler is 
required and can't be initialized. 

7 DevCon90 



Library Handling 

The AppShell provides ways to open and close a list of shared system libraries. Libraries can 
be marked as optional or required. AppShell will shut down if the library is required and 
can't be opened. 

An example of the data and tags required for maintaining a number of libraries would be: 

I* library bases *I 
extern ULONG SysBase; 
ULONG IntuitionBase; 
ULONG GadToolsBase; 
ULONG WorkbenchBase; 

I* required for praqmas *I 
I* intuition processing *I 
I* gadtools processing *I 
I* AppWindow processing *I 

I* list of libraries for our application *I 
struct Tagitem libs[) = 
{ 

} ; 

{APSH_LibVersion, 
{APSH_LibStatus, 
{APSH_LibNameTaq, 
{APSH_LibBase, 
{APSH_LibNameTag, 
{APSH_LibBase, 
{APSH_LibNameTaq, 
{APSH_LibStatus, 
{APSH_LibBase, 
{TAG_DONE,} 

36L}, 
REQUIRED}, 
APSH_Intuition}, 
&IntuitionBase}, 
APSH_Gfx}, 
&GfxBase}, 
APSH_Workbench}, 
OPTIONAL}, 
&WorkbenchBase}, 

The tags used in this example are: 

I* minimum version *I 
I* we have to have them ••• *I 

I* not required to run *I 

APSH_LibVersion Used to indicate the minimum library version required. This 
version level is in effect until another APSH_LibVersion is 
specified. 

APSH_LibStatus Indicate whether the application requires the library or not 
REQUIRED or OPTIONAL are the only valid values. This status is 
in effect until another APSH_LibStatus is specified. 

APSH_LibNameTaq A number is used to indicate the library name. See 
<internallappshell.h> for a complete listing of valid name 
tags. 

APSH_LibBase 

DevCon90 

A pointer to the library base variable name. This tag is what 
triggers a library open, so must be placed after any of the Lib 
tags mentioned above. 

B Implementation of the 
Amlgs AppShe/1 



u 

u 

u 

Startup Processing 

The AppShell obtains the following application information once the shared system libraries 
have been opened and before the message handlers have been initialized: 

Home directory 
Preference file directory 
Base name 
Tool icon 

This information is obtained whether the application was called from the Shell or from 
Workbench. If the application was invoked from Workbench, then icon tool type parsing 
applies. Otherwise, the standard Shell READARGS is used. At this time READARGS has 
not been implemented in the AppShell. If multiple projects were passed, they are appended 
to the project list. 

Here is a code fragment showing how the startup arguments are passed to the AppShell. 

I* main loop for our application *I 
extern struct WBStartup *WBenchMsq; 

main (int arqc, char **arqv) 
{ 

HandleApp (arqc, argv, WBenchMsg, our_app); 

Function Table Entries 

All functions that require a user interface are placed in an array called the Function Table. 
The function table is built from entries made up by the Funes structure. 

The Funes structure contains the variables required for a function table entry. Here is what 
the Func structure contains: 

I* function table entry *I 
struct Funes 
{ 

STRPTR fe._Name; I* Name of function *I 
VOID (*fe_Func) (struct Appinfo *, STRPTR, struct Taqitem *); 
ULONG fe_ID; I* IO of function *I 
ULONG fe_Key; I* Hotkey assigned to the function *I 
ULONG fe_HelpiD; I* index into text catalogue for help *I 
ULONG fe_Flaqs; I* Status of function *I 
STRPTR fe_Params; I* Parameters for function *I 
OLONG *fe_GroupiD; I* array of group !D's *I 

} ; 

Implementation of the 
Amlga AppShe/1 

9 DevCon90 



The Funes structure contains the following components: 

fe Name 

fe Func 

fe ID 

fe_Key 

fe_HelpiD 

fe_Flags 

fe_Params 

fe_GroupiD 

A pointer to the short name of the function. This is the name 
that would be used in bindings or scripts. 

Pointer to actual function invoked by the event processor. 

Unique number assigned to the function. This is the number used 
in bindings; such as menu item, gadgets or hot keys. 

Hotkey binding for this function. Whenever the key is pressed, 
the function is dispatched. 

Index into text catalogue for single line help on function. 

Flags set by the event processor. An application can initialize a 
function in the disabled state, by setting the FUNC_DISABLED flag 
in the function table declaration. 

When present, these are the actual parameters that would be passed 
to the function whenever it is invoked. Currently not 
implemented. 

Pointer to a non-zero terminated array of group ID's that this 
function entry belongs in. Currently not implemented. 

Here is an example of how an application would set up the function table: 

I* function ID's *I 
#define NewiD APSH USER ID+lL 
#define OpeniD APSH-USER-ID+2L 
#define SaveiD APSH-USER-ID+3L 
#define QuitiD APSH-USER-ID+4L 
#define LAST_ID APSH_USER_ID+SL 

I* function prototypes *I 
NewFunc (struct Appinfo *, 
OpenFunc (struct Appinfo *, 
SaveFunc (struct Appinfo *, 
QuitFunc (struct Appinfo *, 

I* function table *I 
struct Funes ftable(] 
{ 

STRPTR, 
STRPTR, 
STRPTR, 
STRPTR, 

struct 
struct 
struct 
struct 

NewHID}, 
OpenHID}, 
SaveHID}, 
QuitHID}, 

Tag Item *); 
Tagitem *); 
Tag Item *); 
Tag Item *) ; 

{"NEW", NewFunc, NewiD, 
{"OPEN", OpenFunc, OpeniD, 
{"SAVE", SaveFunc, SaveiD, 
{"QUIT", QuitFunc, QuitiD, 
{NULL, NO_FUNCTION,}, I* end of function table *I 

} ; 

Note that the last NO_FUNCTION is required to mark the end of the function table. 

The application function ID's must start at the predefined (defined in <internallappshell.h>) 
value APSH_USER_ID. 

DevCon90 10 Implementation of the 
Amlga AppSMII 



u 

u 

u 

Once the function table has been defined, actual application functions need to be e~tablished. 
In order to separate the user interface from the functionality of the application, a common 
function interface needs to be defined. Necessary information has to be passed to the 
function regardless of what event triggered the function. Each standard AppShell and 
Application function has a common argument interface. 

I* sample function declaration *I 
StubFunc (ai, line, tl) 

struct Appinfo * ai; 
STRPTR line; 
struct Tagitem *tl; 

I* standard application variables *I 
I* complete command line *I 
I* tag list of attributes *I 

The parameters for the common argument interface are: 

ai A pointer to the Applnfo structure that contains all the global data required for 
this application. 

line -
d 

The complete command line that the function was invoked by. 
Tagltem array of arguments for the function. 

The AppShell provides the capability to maintain multiple projects. These projects could be 
maintained as single threads or multi-threads. A single threaded application, for example, 
could be a print spooler that steps through the list of projects. A multi-threaded application, 
for example, could be a text editor that uses a different process for each project. 

The AppShell uses the ProjNode structure to maintain information on the projects that the 
application is working on. Here is what the ProjNode structure looks like: 

I* information maintained for each project in the project list *I 
struct ProjNode 
{ 

struct Node pn_Node; I* _embedded Exec node *I 

I* AppShell information. Read only for application *I 
struct DateStamp pn Added; I* date stamp when added to list *I 
BPTR pn_ProjDir; - I* lock on project directory *I 
STRPTR pn_ProjPath; I* pointer to the projects' complete name *I 
STRPTR pn_ProjName; I* pointer to the projects' name *I 
struct DiskObject *pn DObj; I* pointer to the projects' icon *I 
LONG pn_ID; 7• use~ selected order *I 
APTR pn_Extensl; I* *** PRIVATE *** SYSTEM USE ONLY *I 
I* Application information *I 
ULONG pn_Status; I* status of project *I 
ULONG pn_ProjiD; I* project ID *I 
UBYTE pn_Name[32]; I* project name *I 
APTR pn_UserData; I* UserData for project *I 
BOOL pn_Changed; I* has project been modified? *I 
APTR pn_Extens2; I* *** PRIVATE *** SYSTEM USE ONLY *I 

} ; 

lmplsmsntstlon of ths 
Amlga AppShe/1 

11 DevCon90 



The following fields are maintained by the AppShell and are available only as read only to 
the application. 

pn_Node Embedded Exec node. 

pn Added Date stamp of when the project was added to the project list. 
Currently not implemented. 

pn_ProjDir Lock on the directory that the project is located in. Maintained 
by the AppShell, NOT to be unlocked by the application. 

pn_ProjPath Pointer to the complete name, including path, of the project. 

pn_ProjName Pointer to the name of the project. 

pn_DObj Pointer to the icon (DiskObject) for this project. 

pn_ID ID used to sort the project list by user selected order. 

pn_Extensl Reserved for AppShell use only. 

The following fields belong to the application. 

pn Status Status of the project. 

pn_Projid Project ID. 

pn_Name Name of the project. 

pn_UserData Application specific data. 

pn_Changed Has the project been edited since last save? 

pn_Extens2 Reserved for AppShell use only. 

DevCon90 12 Implementation of the 
Amlga AppShe/1 



u 

u 

u 

Error and Text Handling 

The application should define the possible text messages that could be used and build an 
array of messages. Then whenever a message is needed, it is referenced by the index into the 
array. 

If an eiTOr is encountered, the index value for the message is placed in ai_sec_Ret, the error 
level is placed in ai_Pri_Ret, and the text is placed in ai_TextRtn. The AppShell will 
then make sure that user is notified of the eiTOr in an appropriate way. For example, if the 
command that encountered the eiTor was triggered directly by the IDCMP message handler, 
then a requester will be displayed. Currently, all messages are displayed using an 
AutoRequester. 

Example: 

/* application error table */ 
STRPTR def text[] = 
{ -

"I'm OK", /* padding */ 
"Illegal transformation on %s", 
NULL /* NULL termination is required */ 

} ; 

/* easy to remember define */ 
#define ERROR_TRANSFORM 1 

/* sample application tags */ 
struct Tagitem our app[] = 
{ -

{APSH FuncTable, ftable}, 
{APsa:oefText, def_text}, 

{TAG DONE,} 
}; -

/* sample function returning an error */ 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
{ 

STRPTR name; 

I* sample error return */ 
ai->ai Pri Ret = RETURN WARN; 
ai->ai:sec:Ret D ERROR_TRANSFORM; 
ai->ai_TextRtn = PrepText (ai, APSH_USER_ID, ERROR_TRANSFORM, name); 

The new tags used in this example are: 

APSH_DefText Pointer to the default text table for this application. 

lmp/smentaUon of the 
Am/ga AppShsll 

13 DevCon90 



Message Handler Initialization 

The AppShell maintains a list of message handlers. It starts by first calling the initialization 
routine of each message handler in the list. These message handlers can be marked as 
optional or required. The AppShell will shut down if a required message handler could not 
be initialized. 

The following is a code fragment that outlines what is necessary to implement an optional 
ARexx message handler in your application: 

/* ARexx message handler initialization tags *I 
struct Tagitem handle_AREXX(] = 
{ 

} ; 

{APSH_Setup, setup_arexxA}, 
{APSH_Extens, 
{APSH_Status, 
{APSH_Rating, 
{TAG_DONE,} 

(ULONG)"our"}, 
P_ACTIVE I P_SINGLE}, 
OPTIONAL}, 

I* application specification tags *I 
struct Taqitem our_app(] = 
{ 

} ; 

{APSH_FuncTable,ftable}, 
{APSH DefText, def text}, 
{APSH-OpenLibraries;libs}, 
{APSH=AddHandler, handle_AREXX}, 
{TAG_DONE,} 

I* main loop for our application *I 
extern struct WBStartup *WBenchMsg; 

main (int argc, char **argv) 
{ 

HandleApp (arqc, argv, WBenchMsq, our_app); 

The new tags used in this example are: 

APSH_AddHandler A pointer to the tags for a message handler for this 
application. There can be multiple instances of this 
tag in this array. 

APSH_Extens 

APSH_FuncTable 

APSH_OpenLibraries 

DevCon90 

ARexx macro file name extension. 

Pointer to the function table for this application. 

A pointer to the library tags for this application. 

14 Implementation of the 
Amlga AppShe/1 



u 

u 

u 

Once the message handler list has been successfully initialized, the AppShell will go into its 
event processing mode. 

While in the event processing mode, the AppShell will wait on the signal bits of all the 
registered message handlers. Whenever an event comes in, the appropriate message handler 
gets called. This process continues until the user indicates that he or she wants to leave the 
application. 

When the application is told to quit, the AppShell enters the shut down mode. While in shut 
down mode, the AppShellloops through the list of message handlers, calling the shut down 
routine of each message handler, until the list is empty. 

Implementation of the 
Am/ga AppShell 

15 DevCon90 



Standard Message Handlers 

The following is an overview of each of the message handlers that are provided in the 
AppShell shared library. Information is given on: 

CJ Short name of the message handler. 
Cl List of tags that the message handler can translate. 
Q Standard Functions that the message handler implements. 
Cl Extended low-level functions that the message implements. 
Cl The preference files that the message handler gets user settings from. Currently 

not implemented. 
Cl A short example on how an application can implement the message handler. 

Even though it isn't a message handler, information on the AppShell is also given due to the 
number of standard functions that it provides. 

Appshell 

The AppShell adds quite a number of standard functions to the function table. It also 
provides a number of function entry points. 

Tags 

APSH_App!nit Function ID to dispatch after the message handlers have been 
initialized, and before entering the event processing stage. 

APSH_AppExit Function ID to dispatch after ai_Done has been set to TRUE, and 
before running shut down on the mes~age handlers. 

APSH_SIG_C Function ID to dispatch when the AC signal is sent to the 
application. Should be set to the Quit function. 

APSH_SIG_D Function ID to dispatch when the AD signal is sent to the 
application. 

APSH_SIG_E Function ID to dispatch when the AE signal is sent to the 
application. 

APSH_SIG_F Function ID to dispatch when the AF signal is sent to the 
application. 

DevCon90 16 Implementation of the 
Amlga AppShell 



u 

u 

u 

Standard Functions 

ALIAS 

DISABLE <name> 

EDIT <name> 

ENABLE <name> 

EXECMACRO 

Link a new command name to an old command name. Partially 
implemented. 

Disable a message handler, function, interface object or group. 
If there is a GUI item, then it will disable that item also, IE 
if the function is bound to a menu item, then it disables that 
menu item. Currently only disables functions and gadgets. 

Edit the named item. Passes to the appropriate message 
handler's editing routine. Currently not implemented. 

Enable a message handler, function, interface object or group. 
Currently only enables functions and gadgets. 

Executes the current macro. Currently not implemented. 

FAULT <error> Returns, in the ai_TextRtn field, the text assigned to <error>. 
Currently not implemented. 

GET <name> (value] Get (value] from <name>. Useful for getting the attributes of 
objects. Currently not implemented. 

GROUP [EDIT] •.. 

HELP [function] 

LEARN [STOP] 

Edit a group. Currently not implemented. 

HELP alone, will return the functions in the function table. 
Help <function> will return information for the function. 
Eventually will bring up a GUI Help system. Currently not 
implemented. 

Start the macro learn process. Causes the dispatcher to 
memorize every function that is passed through it. The STOP 
argument will end the macro learn process. Partially 
implemented. 

LOADMACRO <filename>Load a macro into memory from the named file. Currently not 
implemented. 

SAVEMACRO <filename>Save the current macro to the named file. Currently not 
implemented. 

SET <name> (value] Set <name> to (value] . Useful for setting the attributes of 
objects. Currently not implemented. 

STATUS <name> Will return information on the named object, such as its 
current state (Enabled, Busy, or Disabled), use count, 
parameters, and description. Currently not implemented. 

STOP <name> Stops the named function. Looks for <name> in the function 
table, and passes STOP to it. 

STUB Function which does nothing. 

Implementation of the 
Amlga AppShe/1 

17 DevCon90 



ARexx Message Handler 

The ARexx message handler provides a standard scripting language, as well as string 
oriented interprocess communications. Currently the ARexx message handler only 
implements commands. Variable manipulation routines and function host capabilities are 
planned. 

Message Handler Name 

ARE XX 

Tags 

APSH_ARexxError Function ID to dispatch when there is an ARexx command error. 

APSH_ARexxOK 

APSH_Extens 

APSH_I?ort 

APSH Status 

Defaults to StubiD. 

Function ID to dispatch when an ARexx command succeeds. 
Defaults to StubiD. 

ARexx macro file name extension. Defaults to .rexx. 

Base name for the applications public ARexx port. Defaults to 
the application's base name with _AREXX appended. 

Recognizes: 

P ACTIVE Activate the ARexx message handler at 
initialization time. 

P_INACTIVE Leave the ARexx message handler inactive Causes the 
message handler to reply to each incoming message 
with the return value set to RETURN_WARN. 

P_SINGLE Use the base port name as is. 

!?_MULTIPLE Append _i to the base port name, where # is 
incremented until it finds a unused name. 

Extended Low-Level Message Handler Functions 

AH_SENDCMD 

DevCon90 

Sends the passed command (APSH_CmdString) to ARexx. 

18 Implementation of the 
Amlga AppSheB 



u 

u 

u 

Standard Functions 

RX 

WHY [GET] 

Execute an ARexx command. Only to be used when there is a name 
conflict between an ARexx command name and a function short 
name. Currently not implemented. 

Return more information on the last error. The information is 
placed in the ai_TextRtn field, and could be text or a number 
sprintf()ed into text. 

In an ARexx script, the primary return value should indicate failure level. This command 
allows us to get at the real reason a command may have failed. 

This function is currently not implemented. 

Preferences 

<none> 

Example 

See the Message Handler Initialization section for an example of the set up required for an 
ARexx interface. 

Implementation of the 
Amlga AppShe/1 

19 DevCon90 



Command Shell Message Handler 

The Command Shell Message Handler provides a command shell for the more advanced 
user. It allows the user to directly dispatch any of the functions in the function table. It also 
gives direct access to the power of ARexx without always having to specify the ADDRESS 
or macro file name extension. 

Message Handler Name 

DOS 

Tags 

APSH_CloseMsg Message to display in the Shell before attempting to close it. 
Defaults to "Waiting for macro return". 

APSH_CMDWindow Initial Shell window specification. Defaults to 
"CON:0/150/600/50/Command Shell/CLOSE". 

APSH_Prompt Initial Shell prompt. Defaults to "Cmd>". 

APSH_Status Recognizes: 

P_ACTIVE Open the Command Shell window at initialization 
time. 

P INACTIVE Keep the Command Shell window closed until 
specifically requested to open. 

Extended Low-Level Message Handler Functions 

<none> 

Standard Functions 

CMDSHELL (OPEN/CLOSE] OPEN, opens the command shell window. CLOSE, closes it. 
Defaults to OPEN. 

Preferences 

commandshell.win Window size and placement preferences, includes ZOOM 
settings. 

Example 

struct Tagitem handle_SHELL(] = 
( 

} ; 

(APSH_Setup, setup_dosA}, 
(APSH Status, P INACTIVE}, 
(APSH=Rating, OPTIONAL}, 
(TAG_DONE,} 

DevCon90 20 Implementation of the 
Am/ga AppShe/1 



u 

u 

u 

JDCMP Message Handler 

The IDC:MP message handler provides the application with a Graphical User Interface (GUI) 
through the use of Intuition and GadTools. 

Maintains such things as: 

Q Public or private screens - Manages the Draw Info and Visuallnfo for the application 
screen. Also tracks the public screen information whenever appropriate. 

Q Multiple windows - Manages an unlimited number of application windows. 

Q Translating Workbench preferences - Translate user-interface object description, 
based on user preferences, into GadTools and Intuition objects. For instance, it will 
scale the objects according to the font; or remap images according to the color 
palette. Not completely implemented yet. 

Q Snapshotting window preferences - Manages saving/restoring user preferences for 
individual windows. Includes such things as placement, size, and zoom settings. 
Currently only saved during execution. 

Q GadTool gadgets - Convens object descriptions into GadTools structures and tags. 

CJ Intuition gadgets - Allows complex user defined gadgets, such as the SketchPad used 
in the Icon Edit program. Not cUITently implemented. 

CJ Custom Intuition gadgets - Supports custom intuition gadget classes. Not currently 
implemented. 

CJ User configuration of gadgets - Provides a standard button editing tool. Allows the 
user to define the text, function, and placement of action gadgets (buttons). Not 
currently implemented. 

CJ Nested menus - Allows a function to bring up other menu strips. Not currently 
implemented. 

CJ User configuration of menus - Provides a standard menu item editing tool. Allows 
the user to define the text, function, and plaeement of menu items. Not currently 
implemented. 

Implementation of the 
Amlga AppShell 

21 DevCon90 



a Nested HotKeys - Allows complex keyboard commands, like those provided by 
emacs and vi. Not cUITently implemented. 

a User configuration of HotKeys - Provides a standard HotKey editing tool. Allows the 
user to define a key sequence and its function. Not currently implemented. 

a Images, borders and text - Object management of. images, text and common border 
types. 

a Pointer management - Manages pointer rectangles. For instance, in the SketchPad, 
while the cursor is over the drawing area, the cursor will reflect the current drawing 
state. When the cursor is over any other portion of the window, the cursor would be 
the user's default pointer. Will also load the user's preference in busy pointers. Not 
currently implemented. 

To define GUI items such as buttons, sliders and scrolling lists, we use an array of Object 
structures. Here is what the Object structure looks like (defined in <internallappshell.h> ): 

/*Intuition user-interface object (gadget, border, text, etc •.. */ 
struct Object 
{ 

struct Object *o_NextObject;/* next object in array */ 
ULONG o_Group; /* group that object belongs in */ 
ULONG o_Type; /* type */ 
ULONG o_ObjectiD; /* ID */ 
ULONG o_Flags; /* see gadtools defines */ 
UBYTE o_Key; /* hotkey */ 
STRPTR o_Name; /* name */ 
ULONG o_LabeliD; /* index of label in the text table */ 
struct Rectangle o_Outer; /* size w/label */ 
struct Tagitem *o_Tags; /* tags for object */ 
APTR o_UserData; /* user data for object */ 

} ; 

The Object structure contains the following components: 

o_NextObject Pointer to the next object in the array. 
o_Group The layout group that the object belongs in. 
o_Type Indicates type of objec. The descriptions of the object type are 

in the next section. 
o_ObjectiD Function ID to dispatch when a GadTool event occurs for this 

object. Only valid for GadTool objects. 
o_Flags Object flags. Currently APSH_OBJF_CLOSEWINDOW is the only valid 

flags. 

DevCon90 lmplsmentstlon of the 
Amlga AppShe/1 



u 

u 

u 

o_Key 

o_Name 

o_LabeliD 
o_Outer 

o_UserData 

o_Tags 

HotKey binding for this object. Whenever the key is pressed, the 
o_ObjectiD function is dispatched. If possible, that gadget is 
also visually selected. For example, an action gadget would 
appear visually depressed as long as the key is pressed. If the 
key is bound to a slider or scroller, then pressing the key should 
decrease the value, while SHIFT-key should increase the value. 
Currently only does text gadgets and action gadgets. 
All objects are placed into a list for the window that they belong 
in. o_Name is the name that is used for the list entry (node) for 
this object. This name should be unique to this window. 
A numeric ID assigned to the visual text label for this object. 
The rectangle which describes the placement and size of entire 
object, including the visual label, if pertinent. 
Pointer available to the application for binding data to a 
particular object. Note that the gadget's UserData field is 
currently used by the AppShell, and application user data is 
assigned to the ObjectNode's UserData field. 
Additional parameters for defining the object. A description of 
the available tags follows the next section. 

Following are the valid object types (defined in <internallappshell.h>): 

GadTool gadgets 

OBJ_Generic 
OBJ_Button 
OBJ_Checkbox 
OBJ_Integer 
OBJ_Listview 
OBJ MX 
OBJ_Number 
OBJ_Cycle 
OBJ_Palette 
OBJ_Scroller 
OBJ_Slider 
OBJ_String 
OBJ_Text 

Other gadgets 

OBJ_Display 
OBJ_Select 
OBJ_Dropbox 
OBJ_Gimage 

Images 

OBJ_Image 

Implementation of the 
Amlga AppShe/1 

Action gadget. 
Check box for boolean values. 
String gadget for numeric entry. 
Scrolling list gadget. 
Mutual exclusion gadget. 
Numeric display box. 
Cycle gadget. 
Color palette gadget. 
Scroll gadget. 
Slider gadget. 
String gadget for text entry. 
Text display box. 

Freeform display box. 
Freeform action gadget. 
AppWindow drop box. 
Action gadget with a graphic label. 

Display an image. Could be a scaleable (vector) image. 

DevConSO 



Borders 

OBJ_Plain 
OBJ Bevelin 
OBJ_BevelOut 

Plain border of detail pen color. 
Pushed in 30 border. 
Pushed out 30 border. 

OBJ_OblBevelin Pushed in 30 embossed border. 
OBJ_OblBevelOut Pushed out 30 embossed border. 

Other object types 

OBJ_OuterDim 
OBJ Screen 
OBJ Window 
OBJ_Group 
OBJ VFill 
OBJ_HFill 

Outer dimensions of window. 
Screen dimensions (not supported currently) 
Window 
Group information (not supported currently) 
Vertical fill area (not supported currently) 
Horizontal fill area (not supported currently) 

The following are valid AppShell tags for Objects (GadTool tags apply to objects that 
translate into GadTool gadgets): 

APSH_GTFlags 
APSH_ObjOown 

APSH_ObjHold 

GadTools NewGadget flags to use for this object. 
Function ID to dispatch on the downpress of an Intuition 
gadget. 
Function ID to dispatch when an Intuition gadget is being held 
down. 

APSH ObjRelease Function ID to dispatch on the release of an Intuition gadget. 
APSH=ObjDblClick Function ID to dispatch when an Intuition gadget has been 

double-clicked. 
APSH_ObjAbort Function ID to dispatch when the right mouse button has been 

pressed while an Intuition gadget is active. 
APSH_ObjAltHit Function ID to dispatch when an Intuition gadget is selected 

while holding either ALT key. 
APSH_ObjShiftHit Function ID to dispatch when an Intuition gadget is selected 

while holding either SHIFT key. 
APSH_ObjData Used to provide the data for the object whenever it is of type 

OBJ_Gimage or OBJ_Image. 
APSH_Objinner Rectangle describing the placement and size of a scaleable 

image within an object. Not currently implemented. 
APSH_ObjPointer Used to specify the name of the sprite pointer for the 

rectangle defined by o_Outer. 

Eventually, AppShell will re-layout the objects whenever the object description changes. For 
instance, language localization can cause text length of buttons or menus to change. 

Message Handler Name 

IDCMP 

DevCon90 24 Implementation of the 
Am/ga AppShell 



u 

u 

u 

Tags 

APSH_DefWinFlags 

APSH_GTMenu 

APSH_HotKeys 

APSH_Menu 

APSH_NewScreen 

APSH_NameTag 

APSH_NewScreenTags 

APSH NewWindow 

APSH_NewWindowTags 

APSH_Objects 

APSH Status 

Default window flags. 

GadTools-style NewMenu array. 

Hotkey array used to specify the function binding for any 
particular key. 

Intuition-style menu array (obsolete) . 

NewScreen structure. 

Unique name for any given window environment. 

Tags to use when opening the screen. 

NewWindow structure. 

Tags to use when opening the window. 

Array of objects in the Graphical User Interface. 
Translated into GadTools or Intuition objects, according to 
user preferences. 

Recognizes: 

P_ACTIVE Open the Intuition environment immediately. 

APSH_WindowEnv Information on a single window. 

Extended Low-Level Message Handler Functions 

<none> 

Standard Functions 

ACTIVATE [name] 

DEACTIVATE [name] 

GADGET [EDIT] 

HOTKEY [EDIT] 

MENU [EDIT] •.• 

TOFRONT [name] 

TOBACK [name] 

WINDOW [name] 

lmplemsntatlon of the 
Amlga AppShe/1 

Activates the named window. Activation involves opening the 
window, bringing it to front and making it the ACTIVE 
window. Defaults to MAIN. 

Return an activated window to its prior inactive state. Not 
currently implemented. 

Allows the user to bind a function to an action gadget 
(button). Not currently implemented. 

Allows the user to bind a function to a key. Partially 
implemented. 

Allows the user to bind a function to a menu item. Not 
currently implemented. 

Brings the named window to front. 

Sends the named window. to back. 

Opens the named window. Can also close the window if you 
append CLOSE to the command. 

25 DevCon90 



Preferences 

Handling of preference files is not currently implemented. Following are the files that the 
AppShell will respect. 

palette.prefs Colors to use in custom or public screen. 
po1nter.prefs Normal pointer 
busypo1nter.prefs Busy pointer 
<name>po1nter.prefs Other pointers, such as mode (fill, text, etc) indicators, 

whenever appropriate. 
Screen mode/type screenmode.prefs 

screenfont.prefs 
sysfont .prefs 
w1n.pat 

Screen font, used for menus and window title text. 
Font to use inside the windows. 
Backfill pattern for windows. 

wb.pat 
printer .prefs 
pr1ntergfx.prefs 
<window t1tle>.w1n 

Backfill_pattern for background window or screen. 
Printer preferences (w/notification) 
Graphic printer preferences (w/notification) 
Window size and placement preferences, includes ZOOM 
settings. 

This is a complete example on how to do a "Hello World" application. 

I* Hello.c 
* AppShell application that displays Hello ·world 
*I 

#include <internal/appshell.h> 
#include <internal/appshell_protos.h> 

I* sample function prototypes */ 
VOID CancelFunc (struct Appinfo *, STRPTR, struct Tagitem *); 
VOID QuitFunc (struct Appinfo *, STRPTR, struct Tagitem *); 

/* sample function ID's */ 
enum 

} ; 

OUMMYID APSH_USER_ID, 
OkayiO, 
CanceliD, 
LAST_ID 

/* sample function table */ 
struct Funes func_table[] = 
{ 

} ; 

{"CANCEL", CancelFunc,CanceliD,}, 
{"QUIT", QuitFunc, QuitiD,}, 
{NULL, NO_FUNCTION,} 

DevCon90 Implementation of the 
Amlga AppShell 



u 

u 

u 

I* sample default text table 
STRPTR def_text[] 
{ 

NULL, I* 0 
"Sample Window", I* 1 
"Hello, World!", I* 2 
"Okay", I* 3 
"Cancel", I* 4 
NULL 

} ; 

I* sample object array *I 
struct Object objects[] = 
{ 

*I 

*I 
*I 
*I 
*I 
*I 

{&objects[1], 0, OBJ_Window, NULL, NULL, NULL, "MAIN", 1L, 
{ 1, 1, 0, 0}, }, 

{&objects[2], 1, OBJ_Text, 
{ 10, 14,304, 14}, }, 

NULL, NULL, NULL, "TEXT", 2L, 

{&objects[3], 2, OBJ_Button, QuitiD, APSH_OBJF_CLOSEWINDOW, RETURN, 
"OKAY", 3L, ( 10, 32, 60, 12}, }, 

{NULL, 2, OBJ_Button, CanceliO, APSH_OBJF_CLOSEWINDOW, ESC, 
"CANCEL", 4L, (254, 32, 60, 12},} 

} ; 

I* sample menu array *I 
struct NewMenu menus[] = 
( 

(NM_TITLE, "Project", 
(NM_ITEM, "Quit", 
(NM_END, } 

o, o, o, 0, }, 
"Q", 0, o, V ( QuitiD ), }, 

} ; 

extern ULONG SysBase; 
ULONG GadToolsBase, GfxBase, IntuitionBase; 

I* sample window environment *I 
struct Tagitem window_env[] = 
{ 

} ; 

{APSH_NameTag, 
{APSH_GTMenu, 
{APSH_Objects, 
{TAG_OONE,} 

lmplementaUon of the 
Amlga AppShe/1 

(ULONG) "MAIN"} I 

(ULONG) menus}, 
(ULONG) objects}, 

27 DevCon90 



/* sample tags for shared system libraries */ 
struct Tagitem libraries[] = 
{ 

} ; 

{APSH LibVersion, 
{APSH-LibStatus, 
{APSH-LibNameTag, 
{APSH-LibBase, 
{APSH-LibNameTag, 
{APSH-LibBase, 
{APSH=LibNameTag, 
{APSH_LibBase, 
{TAG_DONE,} 

36L}, 
REQUIRED}, 
APSH_GadTools}, 
&GadToolsBase}, 
APSH_Gfx}, 
&GfxBase}, 
APSH_Intuition}, 
&IntuitionBase}, 

/* sample tags for Intuition interface */ 
struct Tagitem handle_IDCMP[] = 
{ 

} ; 

{APSH_Setup, 
{APSH_WindowEnv, 
{APSH_Status, 
{APSH_Rating, 
{TAG_DONE,} 

setup_idcmpA}, 
(ULONG)window_env}, 
P_ACTIVE}, 
REQUIRED}, 

/* sample main application tag list */ 
struct Tagitem sample_app[] = 
{ 

} ; 

{APSH FuncTable, 
{APSH-DefText, 
{APSH-OpenLibraries, 
{APSH_AddHandler, 
{TAG_DONE,} 

(ULONG)func table}, 
(ULONG)def text}, 
(ULONG)libraries}, 
(ULONG)handle_IDCMP}, 

/* Workbench startup message */ 
extern struct WBStartup *WBenchMsg; 

/* sample main loop. This is it! */ 
VOID main (int argc, char **arqv) 
{ 

HandleApp (argc, argv, WBenchMsg, sample_app); 

/* sample function to dispatch when the cancel button gets pressed */ 
VOID CancelFunc (struct Appinfo *ai, STRPTR cmd, struct Taqitem *tl) 
( 

printf ("Cancel\n"); 
PerfFunc (ai, NULL, "OUIT", tl); 

/* sample Quit function */ 
VOID OuitFunc (struct Appinfo *ai, STRPTR cmd, struct Taqitem *tl) 
( 

printf ("Ouit\n"); 
ai->ai_Done = TRUE; 

DevCon90 lmplllmentstlon of the 
Amlgs AppShe/1 



u 

u 

u 

Simple lnterprocess Communications Message Handler 

The Simple Interprocess Communications Message Handler (SIPC) provides fast and simple 
communications between applications and tools. 

It allows only one invocation of an application to be around. If you click on the icon of an 
already running application, it will tell the application to come to the front and become 
active. 

The tool message handler uses the SIPC to tell tools and applications to shut down. 

Message Handler Name 

SIPC 

Extended Low-Level Message Handler Functions 

<none> 

Standard Functions 

<none> 

Preferences 

<none> 

Implementation of the 
Amlga AppShe/1 

29 DevCon90 

I 

I 



Tool Message Handler 

The Tool Message Handler provides the application with the capability to run asynchronous 
processes. If an application allows multiple projects, the tool message handler offers a way 
for the application to start a new process for each project. It also allows tools relevant to the 
application to be run asynchronously. Such tools could be a calculator, a magnifying glass, 
or even a clock. 

The help system would be a tool that maintains SIPC with the main application. 

Message Handler Name 

TOOL 

Extended Low-Level Message Handler Functions 

<none> 

Standard Functions 

<none> 

Preferences 

<none> 

DevCon90 3D Implementation of the 
Am/gs AppShell . 



u 

u 

u 

Implementing a Message Handler 

The following information is useful when implementing a message handler. 

Each message handler must provide the following low-level message handler functions: 

Q Setup 
Q Open 
Q Handle 
Q Close 

Message handler initialization 
Enable the message handier or one of its objects. 
Translate messages into calls to the AppShell function dispatcher. 
Disable the message handler or one of its objects. 

Q Shutdown Shut down the message handler. 

One of the base components of message handlers is the MHObject structure. This structure 
contains the fields necessary to maintain nested layers of message handler objects. 

I* message handler object node */ 
struct MHObject 
{ 

struct Node mho_Node; /* embedded Exec node */ 
struct List mho_ObjList; /* embedded List of children objects */ 
struct MHObject *mho_Parent; /* pointer to parent object */ 
struct MHObject *mho_CurNode; /* pointer to current child object */ 
ULONG mho_ID; /* numeric ID of object */ 
ULONG mho_Status; /* status of object */ 
APTR mho_SysData; /* message handler data */ 
APTR mho_UserData; /* application data */ 
APTR mho_Extensl; /* *** PRIVATE *** */ 
UBYTE mho_Name[l]; /* ***PRIVATE*** */ 

} ;. 

The MHObject structure contains the following fields: 

mho_Node 
mho_ObjList 

mho_Parent 
mho_CurNode 

mho_ID 
mho_Status 
mho_SysData 
mho_UserData 

Embedded Exec list node structure. 
Embedded Exec list structure for a list of MHObject structures. 
This allows message handler objects to have additional objects 
attached to them. For example, the IDCMP message handler has 
window objects, which have gadget objects. 
Pointer to the parent MHObject for this object. 
Pointer to the currently active MHObject in the mho_ObjList 
list. 
Numeric ID assigned to this record. 
Status of the record, such as enabled or disabled. 
Pointer to data maintained by the message handler. 
This field is provided to the application for its own purposes. 

The remaining fields are private to the AppShell. 

Implementation of the 
Amlga AppShe/1 

31 DevCon90 



Message Handler Initialization 

At initialization time, each message handler must initialize and return the MsgHandler 
structure. This structure is used by the event processor to manage each message handler. 

I* message handler structure *I 
struct MsgHandler 
{ 

struct MHObject mh_Header; I* embedded MHObject structure *I 

struct MsgPort *mh_Port; 
STRPTR mh_PortName; 
ULONG mh_SigBits; 

/* message port for handler */ 
I* pointer to the port name, if public */ 
I* signal bits to watch for *I 

I* low level message handler functions *I 
WORD mh_NumFuncs; I* number of low level msg. handler functions *I 
BOOL (**mh_Func) (struct Appinfo *,struct MsgHandler *,struct Tagitem *); 

STRPTR *mh_DefText; 
APTR mh_Catalogue; 

APTR mh_Extensl; 
APTR mh_Extens2; 

I* default text array */ 
I* *** PRIVATE *** SYSTEM USE ONLY *I 

I* *** PRIVATE *** SYSTEM USE ONLY *I 
I* *** PRIVATE *** SYSTEM USE ONLY *I 

The MsgHandler structure contains the following components: 

mh_Header 

mh_Port 
mh PortName 

mh_SigBits 
mh_NumFuncs 

mh Func 

mh_DefText 

Embedded MHObject structure which contains the base information 
for this message handler. 
The message port that this message handler uses. 
A pointer to the constructed public port name for this message 
handler. 
The signal bits for the message port •. 
Contains the number of low level message handler functions. 
Four are required: Open, Handle, Close, and Shutdown. 
Pointer to an array of low level message handler functions. 
MH_OPEN, MH_HANDLE, MH_CLOSE, and MH_SHUTDOWN are required. 
Pointer to the default text table for this message handler. 

The remainder of the fields are reserved for the AppShell. 

DevCon90 32 lmplsmentatlon of the 
Amlga AppShell 



u 

u 

u 

The following is an example of a minimal message handler initialization routine. 

struct MsgHandler *setup_sipcA (struct Appinfo * ai, struct Tagitem * tl) 
{ 

register struct MsgHandler *mh; 
register struct MHObject *mho; 
register struct SIPCinfo *md; 
register WORD cntr; 
ULONG msize, hstatus; 
STRPTR pname; 
BOOL exist = TRUE; 

I* calculate the amount of memory that we need *I 
msize sizeof (struct MsgHandler) + sizeof (struct SIPCinfo) + 

(SL * sizeof (ULONG)); 

I* allocate instance data *I 
if (mh = (struct MsgHandler *) AllocVec (msize, MEMF_CLEAR MEMF_PUBLIC)) 
{ 

I* get a pointer to the object *I 
mho= &(mh->mh_Header); 

I* initialize the node information *I 
mho->mho Node.ln Type = MH HANDLER T; 
mho->mho-Node.ln-Pri = MH HANDLER P; 
mho->mho=Node.ln:Name = "SIPC"; -

I* initialize the object list */ 
NewList (&(mho->mho_ObjList)); 

I* establish the object id *I 
mho->mho_ID = APSH_SIPC_ID; 

I* establish the object status *I 
mho->mho_Status = (MHS_ENABLED I MHS_CLOSE); 

I* get a pointer to the instance data */ 
mho->mho_SysData = md =MEMORY FOLLOWING (mh); 

I* initialize the message handler functions *I 
mh->mh NumFuncs = 5; . 
mh->mh-Func =MEMORY FOLLOWING (md); 
mh->mh-Func[MH OPEN]-= open sipc; 
mh->mh:Func[MH=HANDLE] = handle_sipc; 
mh->mh_Func[MH_CLOSE] = close_sipc; 
mh->mh_Func[MH_SHUTDOWN] = shutdown_sipc; 
mh->mh_Func[AH_SENDCMD] = send_sipc_command; 

I* get the activation status *I 
hstatus = GetTagData (APSH_Status, NULL, tl); 

/* get the public port name for SIPC *I 
strcpy (ai->ai_WorkText, ai->ai_ProgName); 
strcat (ai->ai_WorkText, "_SIPC"); 
strupr (ai->ai WorkText); 
pname = (UBYTE *) GetTagData (APSH_Port, (ULONG)ai->ai_WorkText, tl); 

lmplemsntatlon of the 
Amlga AppShell 

33 DevCon90 



I* allocate room for the port name *I 
msize = (strlen(pname) + 6L); 
mh->mh PortName = AllocVec (msize, MEMF_CLEAR); 
strcpy-(mh->mh_PortName, pname); 

I* disable multi-tasking for a moment *I 
Forbid (); 

I* get an unique port name *I 
if (hstatus & P_MULTIPLE) 
{ 

I* initialize variables *I 
exist = TRUE; 
cntr = 1; 

while (exist) 
{ 

I* create a name with our base name and a number *I 
sprintf (mh->mh_PortName, "%s_%d", pname, cntr); 

I* see if someone has already taken this name *I 
if (!FindPort (mh->mh PortName)) 

exist = FALSE; -

cntr++; 

I* create our port *I 
if (!(mh->mh_Port = CreatePort (mh->mh_PortName, OL))) 
{ 

I* permit multi-tasking again *I 
Permit (); 

I* set up the error return values *I 
ai->ai Pri Ret = RETURN FAIL; 
ai->ai-Sec-Ret = APSH CLDNT CREATE PORT; 
ai->ai-TextRtn = PrepText (ai, APSH MAIN ID, ai->ai_Sec_Ret, 

- mh->mh_PortName); - -

else 
I* permit multi-tasking again *I 
Permit (); 

else 
{ 

DevCon90 

if (FindPort (mh->mh_PortName)) 
{ 

I* permit multi-tasking again *I 
Permit (); 

I* set up the error return values *I 
ai->ai Pri Ret = RETURN FAIL; 
ai->ai-Sec-Ret = APSH PORT ACTIVE; 
ai->ai:TextRtn = PrepText (ai, APSH_MAIN_IO, ai->ai_Sec_Ret, 

mh->mh_PortName); 

34 Implementation of the 
Am/ga AppShe/1 



u 

u 

u 

else 
{ 

I* create our port *I 
if (!(mh->mh_Port = CreatePort (mh->mh_PortName, OL))) 
{ 

I* permit multi-tasking again *I 
Permit (); 

I* set up the error return values *I 
ai->ai Pri Ret = RETURN FAIL; 
ai->ai-Sec-Ret = APSH CLDNT CREATE PORT; 
ai->ai=TextRtn = PrepText (ai, APSH_MAIN_ID, ai->ai_Sec_Ret, 
mh->mh_PortName); 

else 
I* permit multi-tasking again *I 
Permit (); 

if (ai->ai_Pri_Ret == RETURN_OK) 
( 

I* set up the signal bits *I 
mh->mh_SigBits = (lL << mh->mh_Port->mp_SigBit); 

I* open immediately? *I 
if (hstatus & P_ACTIVE) 
( 

if (open_sipc (ai, mh, tl)) 
return (mh); 

else 
return (mh); 

I* make a nice clean failure path *I 
if (mh->mh Port) 

DeletePort Cmh->mh Port); 
mh->mh_Port = NULL; -

I* free the port name *I 
if (mh->mh PortName) 

FreeVec- ( (APTR) mh->mh_PortName) ; 

I* free the memory block *I 
FreeVec ( (APTR) mh); 
mh :::1 NULL; 

else 
{ 

ai->ai Pri Ret = RETURN FAIL; 
ai->ai-Sec-Ret APSH NOT ENOUGH MEMORY; 
ai->ai:TextRtn = PrepText-(ai, APSH_MAIN_ID, ai->ai_Sec_Ret, NULL); 

return (mh); 

Implementation of the 
Am/ga AppShell 

35 DevCon90 



Message Handler Functions 

Message handlers can add functions to the application, s function table. The functions must 
conform to the AppShell function style (outlined in the Functions section). The functions 
must be ·added to the message handler. initialization routine in following manner: 

I* ID for the Stub function *I 
#define StubiD MYHANDLER_ID+lL 

I* function prototype *I 
VOID StubFunc (struct Appinfo *, STRPTR, struct Tagitem *); 

I* message handler function table segment *I 
struct Funes handler funcs[] = 
{ -

{"STUB", StubFunc, StubiO,}, 
{NULL, NO FUNCTION,} I* end of array *I 

} ; -
I* sample message handler initialization routine *I 
struct MsgHandler * setup_sipcA (struct Appinfo *ai, struct Tagitem *tl) 
{ 

I* set up the signal bits *I 
mh->mh_SigBits = (lL << mh->mh_Port->mp_SigBit); 

I* add the standard functions to the function table *I 
AddFuncEntries (ai, handler_funcs); 

The following is an example of how a standard function can access the message handler's 
data. 

I* sample stub function to show how to obtain a message handlers' data *I 
VOID StubFunc (struct Appinfo *a!, STRPTR cmd, struct Tagitem *tl) 
{ 

} 

register struct MsgHandler * mh; 
register struct MHObject * mho; 
register struct myhinfo * md; 

I* get a pointer to the message handler *I 
if (mho=(struct MHObject *)HandlerData(ai,APSH_Handler,"MYH",TAG_DONE)) 
{ 

I* get a pointer to the message handler data *I 
md = mho->mho_SysData; 

I* manipulate the message handler data *I 

DevCon90 36 Implementation of the 
Am/ga AppShe/1 



u 

u 

u 

Functions can also call the low-level message handler functions. The following is an 
example of how a function can access the low-level message handler functions. 

I* sample stub function to show calling low-level message handler *I 
I* functions *I 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
{ 

HandlerFunc (ai, 
APSH_Handler, "IOCMP", 
APSH_Command, MH_OPEN, 
APSH_NameTag, "MAIN", 
TAG_DONE); 

This example would tell the IDCMP (Intuition) message handler to open the window that has 
the short name "MAIN". 

Message Handler Open 

Each message handler must have an Open routine that enables the message handler or one of 
its objects. 

Here is an example of a minimal message handler Open routine: 

I* sample message handler open function *I 
BOOL open_sipc (struct Appinfo * ai, struct MsgHandler * mh, 

struct Tagitem * tl) 

register struct MHObject *mho= &(mh->mh_Header); 

mho->mho_Status &= ~MHS_CLOSE; 
mho->mho_Status I= MHS_OPEN; 
return (TRUE); 

Implementation of the 
Am/ga AppShe/1 

37 DevCon90 



Multiple Message Handler Objects 

Sometimes it is necessary for a message handler to track several different objects. A custom 
handler can achieve this by maintaining an Exec list, the MHObject field mho_ObjList, of all 
the available objects. A good example is the IDCMP message handler maintaining multiple 
windows. 

Message Handler Handle 

Each message handler must have a Handle routine which mar:ages the messages for its 
message port. It is in charge of translating these message handler events into commands. 

Here is a minimal example of a message handler Handle routine. This example uses the 
Simple IPC message structure as its form of communication: 

I* minimal message handler *I 
BOOL handle_sipc (struct Appinfo * ai, struct MsgHandler * mh, 

struct Tagitem * tl) 

register struct MHObject *mho= &(mh->mh_Header); 
register struct SIPCMessage *msg; 
WORD FunciD = NO_FONCTION; 
while (msg = (struct SIPCMessage *) GetMsg (mh->mh_Port)) 
{ 

I* Get the function number assigned to this message *I 
FunciD = (OWORD) msg->sipc_Type; 

if ((FunciD != NO_FONCTION) && (mho->mho_Status & MHS_OPEN) && 
(mho->mho_Status & MHS_ENABLED)) 

I* Perform the function assigned to this key. *I 
PerfFunc (ai, NOLL, GetFuncName (ai, (OLONG) FunciD), tl); 

} ; 

I* reply to the message *I 
ReplyMsg ((struct Message *) msg); 

return (TRUE); 

DevCon90 38 lmplementlltlon of the 
Amlga AppShe/1 



u 

u 

u 

Message Handler Close 

Each message handler must have a Close routine that disables the message handler or one of 
its objects . 

Here is an example of a minimal message handler Close routine: 

BOOL close_sipc (struct Appinfo * ai, struct MsgHandler * mh, 
struct Tagitem * tl) 

register struct MHObject *mho= &(mh->mh_Header); 

mho->mho_Status &= -MHS_OPEN; 
mho->mho_Status I= MHS_CLOSE; 
return (TRUE); 

Message Handler Shut Down 

When the ai_Done flag is set to TRUE and the ai_NumCmds field equals zero, the AppShell 
enters the shut down phase. This involves going through the list of message handlers and 
calling each handlers' :MH_SHUIDOWN routine. This shut down is performed until the list 
is empty. 

Each message handler's shut down routine is in charge of removing the message handler 
from the message handler list and removing its own resources. 

The following is a minimal message handler Shut Down routine. 

I* minimal message handler shutdown routine *I 
BOOL shutdown_sipc (struct Appinfo * ai, struct MsgHandler * mh, 

struct Tagitem * tl) 

if (mh) 
{ 

Remove ((struct Node*) mh); 

I* make sure there is a message port *I 
if (mh->mh_Port) 
{ 

I* remove the message port *I 
DeletePort (mh->mh_Port); 

I* free the message handler data *I 
FreeVec ( (APTR) mh); 

return (TRUE); 

Implementation of the 
Amlga AppShe/1 

39 DevCon90 



Main AppShell Tags 

APSH_NumArgs 
APSH_ArgList 
APSH_WBStartup 
APSH_ControlPort 
APSH_AppName 
APSH_AppVersion 
APSH_AppCopyright 
APSH_AppAuthor 
APSH FuncTable 
APSH_DefText 
APSH_Appinit 
APSH_AppExit 
APSH_SIG_C 
APSH_SIG_D 
APSH_SIG_E 
APSH SIG F 

APPENDIX A • APPSHELL TAGS 

Number of Shell arguments 
Shell arguments 
Workbench arguments 
SIPC Control port for a cloned AppShell 
Pointer to the application's name 
Pointer to the application's version 
Pointer to the application's (c) notice 
Pointer to the application's author 
Function table for application 
Default text catalogue 
Custom application init function ID 
Custom application shutdown function ID 
SIG_BREAK_C function ID 
SIG_BREAK_D function ID 
SIG_BREAK_E function ID 
SIG_BREAK_F function ID 

Shared System Library handling 

APSH_OpenLibraries 
APSH_LibNameTag 
APSH_LibName 
APSH_LibVersion 
APSH_LibStatus 
APSH_LibBase 
APSH_ARexxSys 
APSH_ARexxSup 
APSH_ASL 
APSH_Commodities 
APSH_DiskFont 
APSH_DOS 
APSH_GadTools 
APSH_Gfx 
APSH_Icon 
APSH_Intuition 
APSH_Layers 
APSH_IFF 
APSH_Translate 
APSH_Utility 
APSH_Workbench 

DevCon90 

Open libraries 
Library name tag 
Library name 
Library version 
Required/optional 
Library base 
rexxsyslib.library 
rexxsupport.library 
asl.library 
commodities.library 
diskfont.library 
dos.library 
gadtools.library 
graphics.library 
icon.library 
intuition.library 
layers.library 
iffparse.library 
translator.library 
utility.library 
workbench.library 

4D Implementation of the 
Amlga AppShell 



u 

u 

u 

Message Handler Routines 

APSH_AddHandler 
APSH_Setup 
APSH Status 
APSH=Rating 
APSH_Port 
APSH_Handler 
APSH CmdData 
APSH=CmdDataLength 
APSH CmdiD 
APSH-CmdString 
APSH=CmdTagList 
APSH Command 
APSH=NameTag 

ARexx Information 

APSH_Extens 
APSH_ARexxError 
APSH_ARexxOK 

Command Shell 

APSH CloseMsg 
APSH=CMDWindow 
APSH_Prompt 

Window Information 

APSH_WindowEnv 
APSH_TextAttr 
APSH_NewScreen 
APSH_NewScreenTags 
APSH Palette 
APSH-NewWindow 
APSH=NewWindowTags 
APSH_HotKeys 
APSH Menu 
APSH-Gadgets 
APSH GTMenu 
APSH=GTGadgets 
APSH_GTFlags 
APSH Objects 
APSH=ObjOown 
APSH_ObjHold 
APSH ObjRelease 
APSH-ObjDblClick 
APSH-ObjAbort 
APSH-ObjAltHit 
APSH-ObjShiftHit 
APSH-ObjData 
APSH-Objinner 
APSH=ObjPointer 
APSH_DefWinFlags 

Implementation of the 
Am/ga AppShell 

Add a message handler to application 
Setup function 
Active, inactive, multiple, etc ..• 
Optional/required, etc .•• 
Name of the message port 
Handler ID 
Command data 
Length of command data 
Command ID (function) 
Command string 
Command tag list 
Handler command 
Name Tag for object 

ARexx macro name extension 
ARexx command ERROR function ID 
ARexx command OK function ID 

Closing message 
Command window spec 
Command window prompt 

Window Environment 
Text Attributes 
NewScreen structure 
Tags for new screen 
Color Palette 
NewWindow structure 
Tags for new window 
HotKey command array 
Intuition-style Menu array 
Intuition-style Gadget array 
GadTools-style Menu array 
GadTools-style NewGadget array 
flags for GadTools objects 
Object array 
Gadget downpress function ID 
Gadget hold function ID 
Gadget release function ID 
Gadget double-click function ID 
Gadget abort function ID 
Gadget ALT hit function ID 
Gadget SHIFT hit function ID 
Gadget image or data 
Inner rectangle 
Pointer name prefix 
Default window flags 

41 DevCon90 



IDC!viP Messages 

APSH_SizeVerify 
APSH_NewSize 
APSH RefreshWindow 
APSH MouseButtons 
APSH_ReqSet 
APSH CloseWindow 
APSH_ReqVerify 
APSH_ReqClear 
APSH_MenuVerify 
APSH_Diskinserted 
APSH DiskRemoved 
APSH_ActiveWindow 
APSH_InactiveWindow 

SIZEVERIFY function ID 
NEWSIZE function ID 
REFRESHWINDOW function ID 
MOUSEBUTTONS function ID 
REQSET function ID 
CLOSEWINDOW function ID 
REQVERIFY function ID 
REQCLEAR function ID 
MENUVERIFY function ID 
DISKINSERTED function ID 
DISKREMOVED function ID 
ACTIVEWINDOW function ID 
INACTIVEWINDOW function ID 

Real or Simulated lntuiMessage fields 

APSH_MsgClass 
APSH_MsgCode 
APSH_MsgQualifier 
APSH_MsgiAddress 
APSH_MsgMouseX 
APSH_MsgMouseY 
APSH_MsgSeconds 
APSH_MsgMicros 
APSH_MsgWindow 

SIPC Message 

APSH SIPCData 
APSH_SIPCDataLength 

Standard Tool Information 

APSH_Tool 
APSH_ToolAddr 
APSH_ToolData 
APSH_ToolStack 
APSH ToolPri 

DevCon90 

Message class 
Message code 
Message qualifier 
Item address 
Mouse X coordinate 
Mouse Y coordinate 
Seconds 
Micros 
Window for event 

Pointer the data passed by a SIPC message 
Length of the SIPC data 

Name of tool 
Address of tool 
Data for tool 
Stack requirements of tool 
Tool process priority 

42 Implementation of the 
Amlga AppSheU 



u 

u 

u 

APPENDIX B ·DEFAULT APPSHELL TEXT TABLE 

TextiD 
APSH NOT_AN_ICON 
APSH_NOT_AVAILABLE 
APSH_PORT_ACTIVE 
APSH_PORT_X_ACTIVE 
APSH_NOT_AN_IFF 
APSH_NOT_AN_IFF_X 
APSH_CLOSE_ALL_WINDOWS 
APSH_CMDSHELL_PROMPT 
APSH_CLDNT_CREATE_X 
APSH_CLDNT_CREATE_PORT 
APSH_CLDNT_CREATE_OBJ 
APSH_CLDNT_CREATE_OBJ_X 
APSH_CLDNT_CREATE_FILE 
APSH_CLDNT_CREATE_FILE_X 
APSH_CLDNT_INIT_X 
APSH_CLDNT_INIT_MSGH 
APSH_CLDNT_LOCK 
APSH_CLDNT_LOCK_DIR 
APSH_CLDNT_LOCK_DIR_X 
APSH_CLDNT_LOCK_PUB 
APSH_CLDNT_LOCK_PUB_X 
APSH_CLDNT_OBTAIN 
APSH_CLDNT_OPEN 
APSH_CLDNT_OPEN_FILE 
APSH_CLDNT_OPEN_FILE_X 
APSH_CLDNT_OPEN_FONT_X 
APSH_CLDNT_OPEN_MACRO 
APSH_CLDNT_OPEN_PREF 
APSH_CLDNT_OPEN_SCREEN 
APSH_CLDNT_OPEN_WINDOW 
APSH_SETOP_TIMER 
APSH_SETOP_HOTKEYS 
APSH_START_PROCESS 
APSH_START_TOOL 
APSH_START_TOOL_X 
APSH_WRITE_FILE 
APSH_WRITE_FILE_X 
APSH_WRITE_MACRO 
APSH_CMOSHELL_WIN 
APSH_NO_NAMETAG_WIN 
APSH_NO_PORT 
APSH_NOT_ENOOGH_MEMORY 
APSH_WAITING_FOR_MACRO 
APSH_DISABLED 

• 
lmplelfl8ntaUon of the 
Am/ga AppShell 

DefaultTe~ 
%s is not an icon. 
%s is not available 
%s port already active 
port, %s, already active 
%s is not an IFF file 
%1$s is not an IFF %2$s file 
Close all windows 
Cmd> 
Could not create %s 
Could not create port, %s 
Could not create object 
Could not create object, %s 
Could not create file 
Could not create file, %s 
Could not initialize %s 
Could not initialize %s message handler 
Could not lock %s 
Could not lock directory 
Could not lock directory, %s 
Could not lock public screen 
Could not lock public screen, %s 
Could not obtain %s 
Could not open %s 
Could not open file 
Could not open file, %s 
Could not open font; %s 
Could not open macro file, %s 
Could not open preference file, %s 
Could not open screen 
Could not open window 
Could not set up timer event 
Could not set up HotKeys 
Could not start process 
Could not start tool 
Could not start tool, %s 
Could not write to file 
Could not write to file, %s 
Could not write to macro file 
CON:0/150/600/50/Command Shell/CLOSE 
No name given for window 
No port name specified 
Not enough memory 
Waiting for macro return 
%s is disabled 

43 DevCon90 



n 

n 

n -· 



u 

u 

u 

AppShell AutoDoc 
TABLE OF CONTENTS 

Link Library Functions 

appshell.lib/HandleApp 
appshell.lib/NotifyOser 

Shared System Library Functions 

appshell.library/APSHGetGadgetlnfo 
appshell.library/BuildParseLine 
appshell.library/FindType 
appshell.library/FreeParseLine 
appshell.library/GetText 
appshell.library/HandleAppAsync 
appshell.library/HandlerData 
appshell.library/HandlerFunc 
appshell.library/MatchValue 
appshell.library/ParseLine 
appshell.library/PerfFunc 
appshell.library/PrepText 
appshell.library/QStrCmpi 
appshell.library/RemoveMsgPort 

Standard Function Table Commands 

appshell.library/ACTIVATE 
appshell.library/ALIAS 
appshell.library/CMDSHELL 
appshell.library/DISABLE 
appshell.library/ENABLE 
appshell.library/HOTKEY 
appshell.library/RX 
appshell.library/TOBACK 
appshell.library/TOFRONT 
appshell.library/VERSION 
appshell.library/WHY 
appshell.library/WINDOW 

AppShe/1 AutoDoc 1 DevCon90 



appshell.lib/HandleApp appshell.lib/HandleApp 

NAME 
HandleApp - startup function for AppShell application 

SYNOPSIS 
results = HandleApp (argc, argv, wbm, attrs) 

BOOL results; 
int argc; 
char **argv; 
struct WBStartup *wbm; 
struct Tagitem *attrs; 

FUNCTION 
This function is the application entry point to the AppShell. 

EXAMPLE 

/* •.• application description tags .•• */ 

extern struct WBStartup *WBenchMsg; 

void main(int argc, char **argv) 
{ 

HandleApp(argc, argv, WBenchMsg, tags); 

INPUTS 
argc - Number of Shell arguments being passed. 
argv - Pointer to the Shell argument list 
wbm- Pointer to the Workbench startup message. 
attrs -Pointer to the application's user interface 

description. 

RESULT 
TRUE - Application was able to initialize and run. 

FALSE - Application failed. AppShell has already informed 
user of what and where the failure was. 

SEE ALSO 
HandleAppAsync () 

DevCon90 AppShe/1 AutoDoc 



u 

u 

u 

appshell.lib/NotifyOser appshell.lib/NotifyOser 

NAME 
NotifyUser - Display a text ·message to the user. 

SYNOPSIS 
NotifyUser (ai, msg, tl) 

struct Appinfo * ai; 
STRPTR msg; 
struct Tagitem * tl; 

FUNCTION 
This function will display a text message to the user. Currently 
uses EasyRequest (AutoRequest if under 1.3) to display messages. 

INPUTS 

ai - Optional pointer to the Appinfo structure for this 
application. 

msg- Pointer to message to display. If this field is NULL, then 
the text will come from the ai->ai_TextRtn field. 

tl - Optional pointer to an array of Tagitems. 

AppShe/1 AutoDoc 3 DevCon90 



appshell.library/APSHGetGadgetinfo appshell.library/APSHGetGadgetinfo 

NAME 
APSHGetGadgetinfo - Obtain a pointer to a gadget and its window. 

SYNOPSIS 
success = APSHGetGadgetinfo (ai, winname, gadname, winptr, gadptr) 

BOOL success; 
struct Appinfo *ai; 
STRPTR winname, gadname; 
ULONG *winptr, *gadptr; 

FUNCTION 
Obtain a pointer to a gadget an~ the window that it belongs in. 

This function is implemented by the IDCMP message handler. 

EXAMPLE 

/* Sample function showing how to use APSHGetGadgetinfo */ 
VOID StubFunc (struct Appinfo * ai, STRPTR cmd, struct Tagitem * tl) 
{ 

struct Gadget *gad; 
struct Window *win; 

/* Get a pointer to the main window, named MAIN, and the Scrolling 
* List gadget, which is named LIST. 

INPUTS 

*I 
if (APSHGetGadgetinfo (ai, "MAIN", "LIST", 

(ULONG *)&win, (ULONG *)&gad)) 

/* ••• do something with the fields ••• *I 
} 

- Pointer to the Appinfo structure ai 
winname - Pointer to the name of the window that the gadget is 

gadname 
winptr 
gadptr 

supposed to be 
- Pointer to the 
- Address of the 
- Address of the 

located in. 
name of the 
variable to 
variable to 

gadget. 
place the window pointer 
place the gadget pointer 

in. 
in. 

RETURN 
success - TRUE indicates that the system was able to locate both 

the named window and gadget. 

DevCon90 

FALSE indicates that. the system was unable to locate 
either the window or the gadget. 

4 AppShell AutoDoc 



u 

u 

u 

appshell.libraryiBuildParseLine appshell.libraryiBuildParseLine 

N~E 
BuildParseLine - Non-destructive string parser 

SYNOPSIS 
handle= BuildParseLine (line, argc, argv); 

STRPTR handle; 
STRPTR line; 
ULONG *argc; 
STRPTR arqv[MAXARGS]; 

FUNCTION 
This function is used to parse a string that may end up being 
passed to another function. It does not modify the passed 
string. Requires a corresponding call to FreeParseLine, when the 
application's function is done with the parsed line. 

INPUTS 
line - Pointer to the string to parse. 
argc - Pointer to variable to hold the number of arguments. 
argv - Pointer to an array to hold the arguments. The array 

must contain MAXARGS entries. 

RETURN 
handle - Pointer to a temporary work area which must be passed 

back to FreeParseLine when done with the parsed array. 

EXAMPLE 

I* sample function showing how to use BuildParseLine & FreeParseLine *I 
function () 
{ 

STRPTR arqv[MAXARGS], handle= NULL; 
ULONG argc; 

I* Parse the command line *I 
handle= BuildParseLine ("ACTIVATE ME", &argc, argv); 

I* Do something with the parsed command line. The strings 
* must be copied before calling FreeParseLine if they are 
* going to be used later. 
*I 

printf("%ld words, first is %s\n", argc, argv[O)); 

I* free the BuildParseLine resources *I 
FreeParseLine(handle); 

SEE ALSO 
FreeParseLine(), ParseLine() 

AppShe/1 AutoDoc 5 DevCon90 



r 

appshell.libraryiFindType appshell.libraryiFindType 

NAME 
FindType - Find the value of a variable. 

SYNOPSIS 
value = FindType(argv, name, defvalue) 

STRPTR value; 
STRPTR argv[MAXARGS]; 
STRPTR name, defvalue; 

FUNCTION 
This function searches a parsed text array for a given entry and 
returns a pointer to the-value bound to that entry. If the entry is 
not found, then a pointer to defvalue is returned. 

EXAMPLE 

I* sample fragment showing how to use FindType *I 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
{ 

STRPTR name; 
STRPTR argv[MAXARG], clone=NULL; 
ULONG argc; 

I* make sure we have a command line */ 
if (cmd) 
{ 

I* parse the command line *I 
clone= BuildParseLine (cmd, &argc, argv); 

/* Get the file name. If there isn't a FILE keyword, then 
* use "config". If the return value is to be used outside 
* of this function, then it must be copied. 
*I 

name= FindType (argv, "FILE", "config"); 

/* free the BuildParseLine *I 
FreeParseLine (clone); 

INPUTS 
argv - Pointer to the preparsed text array. 
name - Entry to search for. 
defvalue - Value to return if name isn't found. 

RESULTS value - A pointer to the string that is the 
value bound to name or defvalue if name isn't found. 

SEE ALSO 
MatchValue(), BuildParseLine(), FreeParseLine(), ParseLine(), 
icon.libraryiFindToolType 

DevCon90 6 AppShell AutoDoc 



u 

u 

u 

appshell.library/FreeParseLine appshell.library/FreeParseLine 

NAME 
FreeParseLine - Free the BuildParseLine temporary work area 

SYNOPSIS 
FreeParseLine(handle) 

STRPTR handle; 

FUNCTION 
Free the temporary work space used by BuildParseLine. A NULL is a 
valid argument. 

INPUTS 
handle 

SEE ALSO 

- Pointer to the return value from BuildParseLine. 

BuildParseLine(), ParseLine() 

AppShe/1 AutoDoc 7 DevCon90 



appshell.libraryiGetText appshell.libraryiGetText 

NAME 
GetText - Obtain a pointer to a permanent read-only text message. 

SYNOPSIS 
text = GetText(ai, base, id, def) 

STRPTR text; 
struct Appinfo *ai; 
ULONG base, id; 
STRPTR def; 

FUNCTION 
Used to obtain a pointer to a permanent text message. The text 
return value must not be modified. 

The main use for this function is for setting up text labels. 

EXAMPLE 

I* sample function to show how to use GetText *I 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
{ 

STRPTR label; 

I* get the current text to use for Okay *I 
label= GetText (ai, APSH_MAIN_IO, APSH_OKAY_TXT, NULL); 

INPUTS 
ai - Pointer to the Appinfo structure for this application. 
base - Text table to use. 

APSH_USER_ID for the application text table. 
APSH_MAIN_ID for the AppShell text table. 
or may provide a custom message handler base ID. 

id - Text Table entry id. 
def- Must be NULL. 

SEE ALSO 
PrepText () 

DevCon90 B AppShell AutoDot: 



u 

u 

u 

appshell.library/HandleAppAsync appshell.library/HandleAppAsync 

NAME 
HandleAppAsync - startup function for an asynchronous AppShell 
application. 

SYNOPSIS 
results = HandleAppAsync (attrs, sipc) 

BOOL results; 
struct Tagitem *attrs; 
struct MsgPort *sipc; 

FUNCTION 
This function is the application entry point for an asynchronous 
AppShell application. This function should be called via the 
Tool Message Handler and allows an AppShell application to have 
multiple projects each with their own process. 

EXAMPLE 

/* This example shows how an application can clone itself to handle 
* multiple projects. 
* 
* APSH_Tool the name to give to the cloned process. 
* APSH_ToolAddr the function to run ansynchronously. 
* APSH_ToolData the user interface tag description. 
*I 

VOID CloneFunc(struct Appinfo *ai, STRPTR args, struct Tagitem *tl) 
( 

INPUTS 

HandlerFunc (ai, 
APSH_Handler, "TOOL", 
APSH_Command, MH_OPEN, 
APSH_Tool, "AppShell_Clone", 
APSH_ToolAddr, HandleAppAsync, 
APSH_ToolData, Cloned_App, 
TAG_DONE); 

attrs -Pointer to the application's user interface 
description. 

sipc - SIPC message port by which the master application 
can control the cloned application. 

RESULT 
TRUE - Application was able to initialize and run. 

FALSE - Application failed. AppShell has already informed 
user of what and where the failure was. 

SEE ALSO 
HandleApp () 

AppShe/1 AutoDoc 9 DevCon90 



appshell.libraryiHandlerData appshell.libraryiHandlerData 

NAME 
HandlerData - Obtain a pointer to a message handlers' instance data 

SYNOPSIS 
HandlerData (struct App!nfo *ai, ULONG tags, ..• ) 

struct Appinfo *ai; 
ULONG tags, ... 

OR 

HandlerDataA (struct Appinfo *ai, struct Tagitem *tl) 

struct Appinfo *ai; 
struct Tagitem *tl; 

FUNCTION 
Used to obtain a pointer to a message handlers' instance data. 
HandlerData is the stack-based variable argument interface, while 
HandlerDataA is the Tagitem array interface. 

EXAMPLE 

I* sample stub function to show how to obtain a message handlers' 
* data 
*I 

VOID StubFunc(struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
( 

INPUTS 

struct MsgHandler *mh; 
struct MHObject *mho; 
struct myhinfo *md; 

I* get a pointer to the message handler data *I 
if (mho = (struc~ MHObject *) 
HandlerData (ai, ,\?SH_Handler, "MYH", TAG_DONE)) 
( 

I* get a pointer to the instance data *I 
md = mho->mho_SysData; 

ai - pointer to the Appinfo structure for this application. 
tags - stack based Tagitems. 

SEE ALSO 
HandlerFunc() 

DevCon90 10 AppShe/1 AutoDoc 



u 

u 

u 

appshell.library/HandlerFunc appshell.libraryiHandlerFunc 

NAME 
HandlerFunc - entry point for a low-level message handler function. 

SYNOPSIS 
HandlerFunc (struct Appinfo *ai, ULONG tags, •.• ) 

struct Appinfo *ai; 
ULONG tags, ..• 

OR 

HandlerFuncA (struct Appinfo *ai, struct Tagitem *tl) 

struct Appinfo *ai; 
struct Tagitem *tl; 

FUNCTION 
Provides an entry point for the low-level message handler functions. 
HandlerFunc is the stack-based variable argument interface, while 
HandlerFuncA is the Tagitem array interface. 

EXAMPLE 

I* sample stub function to show how to call a low-level message 
* handler function. 
* 
* This example tells the IDCMP message handler to open the window 
* (and it's environment) named MAIN. 
*I 

VOID StubFunc(struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
{ 

INPUTS 

HandlerFunc(ai, 
APSH_Handler, "IDCMP", 
APSH_Command, MH_OPEN, 
APSH_NameTag, "MAIN", 
TAG_DONE); 

ai - pointer to the Appinfo structure for this application. 
tags - stack based Tagitems. 

SEE ALSO 
HandlerData() 

AppShs/1 AutoDoc 11 DevCon90 



appshell.libraryiMatchValue appshell.libraryiMatchValue 

NAME 
MatchValue - Check a text argument for a particular flag. 

SYNOPSIS 
value = MatchValue(entry, value) 

BOOL value; 
STRPTR entry, value; 

FUNCTION 
This function searchs to see if a particular text flag is set in 
a text entry. 

EXAMPLE 

I* sample fragment showing how to use MatchValue *I 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
( 

INPUTS 

STRPTR flagstr; 
ULONG flags = NULL; 
STRPTR argv[MAXARG), clone=NULL; 
ULONG argc; 

/* make sure we have a command line *I 
if (cmd) 
( 

/* parse the command line *I 
clone= BuildParseLine (cmd, &argc, arqv); 

/* get the flag entry from the argument list */ 
if (flagstr = FindType (argv, "FLAGS", NULL)) 
{ 

I* see if the CLOSE flag is present *I 
if (MatchValue (flagstr, "CLOSE")) 

flags I= CLOSEWINDOW; 

I* see if the SIZE flag is present *I 
if (MatchValue (flagstr, "SIZE")) 

flags I= NEWSIZE; 

I* free the BuildParseLine *I 
FreeParseLine (clone); 

entry - Entry to search in. 
value - Value to search for. 

RESULTS 
value - TRUE if the value was in the entry, otherwise returns 

FALSE.SEE ALSOFindType(), BuildParseLine(), FreeParseLine(), 
ParseLine(), icon.libraryiMatchToolValue 

DevCon90 12 AppShell AutoDoc 



u 

u 

u 

appshell.library/ParseLine appshell.library/ParseLine 

NAME 
ParseLine - Destructive string parser 

SYNOPSIS 
argc ~ ParseLine (line, argv); 

ULONG argc; 
STRPTR line; 
STRPTR argv[MAXARGS]; 

FUNCTION . 
String parser. Inserts '0' after each word in the passed text 
line. 

INPUTS 
line - Pointer to the string to parse. 
argv - Pointer to an array to hold the arguments. The array 

must contain MAXARGS entries. 

RETURN 
argc - Number of arguments returned in argv 

EXAMPLE 

/* sample function showing how to use ParseLine */ 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
( 

UBYTE text [] ~ "ACTIVATE MEn; 

STRPTR argv[MAXARGS]; 
ULONG argc; 

/* parse the command line */ 
argc = ParseLine (text, argv); 

/* simple display of some of the parse variables */ 
printf("%ld words, first is %s\n", argc, argv[O]); 

SEE ALSO 
BuildParseLitie(), FreeParseLine() 

AppShe/1 AutoDoc 13 DevCon90 



appshell.libraryiPerfFunc appshell.libraryiPerfFunc 

NAME 
PerfFunc - The entry point to all commands in the function table. 

SYNOPSIS 
PerfFunc (ai, fid, cmdline, attrs) 

struct Appinfo *ai; 
ULONG fid; 
STRPTR cmdline; 
struct Tagitem *attrs; 

FUNCTION 
This is the main and only entry point for all commands in the 
function table. In order to respect state, such as whether the 
function is enabled or disabled, function table commands should 
never be called directly. 

If the function isn't in the function table and the ARexx message 
handler has been initialized, then the command is passed to ARexx. 

EXAMPLE 

I* how to call a function using its ID *I 
PerfFunc (ai, QuitiO, NULL, NULL); 

I* how to call a function using its name *I 
PerfFunc (ai, NULL, "QUIT", NULL); 

INPUTS 
ai - Pointer to the Appinfo structure 

- ID of function to perform. fid 
cmdline - Pointer to the text command line to use to trigger the 

attrs 

DevCon90 

command. 
- Pointer to the Tag!tem array to use to triggered the 

command. 

14 AppSiulll AutoDoc 



u 

u 

u 

appshell.library/PrepText appshell.library/PrepText 

NAME 
PrepText -Obtain a pointer to a temporary modifiable text message. 

SYNOPSIS 
text= PrepText(ai, base, id, args, ... ) 

STRPTR text; 
struct Appinfo *ai; 
ULONG base, id; 
APTR args; 

FUNCTION 
Build a temporary text message using a text table entry and the 
passed arguments. The text table entry must contain valid 
RawDoFmt formatting commands. 

The text pointer is only valid until the next call to PrepText. 
There is one PrepText buffer per Appinfo, so each cloned AppShell 
has its own work buffer. The string must be copied to a more 
permanent storage place if you wish to keep it for a longer period. 

The main use for this function is for formatting of temporary 
error messages. 

EXAMPLE 

/* set up error return values */ 
ai->ai_Pri Ret = RETURN_FAIL; 
ai->ai_Sec_Ret = APSH_PORT_ACTIVE; 

/* "%s port already active", pname */ 
ai->ai_TextRtn = PrepText(ai, APSH_MAIN_ID, ai->ai_Sec_Ret, pname); 

INPUTS 
ai - Pointer to the Appinfo structure for this application. 
base - Text table to use. 

APSH_USER_ID for the application text table. 
APSH_MAIN_ID for the AppShell text table. 
or may provide a custom message handler base ID. 

id - Text Table entry id. 
args - Variables to be sprintf'ed into the text entry. 

SEE ALSO 
Get Text() 

AppShs/1 AutoDoc 15 DevCon90 



appshell.libraryiQStrCmpi appshell.libraryiQStrCmpi 

NAME 
QStrCmpi - Quick case insensitive string comparision. 

SYNOPSIS 
success= QStrCmpi (strl, str2); 

BOOL value; 
STRPTR strl, str2; 

FUNCTION 
This function performs a quick, case insensitive, string comparision. 
Stops as soon as it determines that the strings are not the same. 

EXAMPLE 

I* sample code fragment showing how to use QStrCmpi *I 
VOID StubFunc (struct Appinfo *ai, STRPTR cmd, struct Tagitem *tl) 
{ 

STRPTR name; 
STRPTR argv[MAXARG), clone=NULL; 
ULONG argc; 

I* make sure we have a command line *I 
if (cmd) 
{ 

/* parse the command line *I 
clone= BuildParseLine (cmd, &argc, argv); 

I* make sure we have some arguments */ 
if (argc >= 2L) 
{ 

I* check to see if the first argument is CLOSE. 
* Note that FindType(argv, "CLOSE", NULL) could also be 
* used in this example. 

INPUTS 

*I 
if (QStrCmpi (argv [ 11, "CLOSE">) 
{ 

I* do something because of CLOSE */ 
} 

I* free the BuildParseLine *I 
FreeParseLine (clone); 

strl - Pointer to the first string. 
str2 - Pointer to the second string. 

RESULTS 
value - TRUE if the strings are the same, otherwise returns FALSE. 

DevCon90 16 AppShell AutoDoc 



u 

u 

u 

appshell.library/RemoveMsgPort appshell.library/RemoveMsgPort 

NAME 
RemoveMsgPort - Safely remove a message port. 

SYNOPSIS 
RemoveMsgPort (mp); 

struct MsgPort *mp; 

FUNCTION 
This function will remove and reply to all messages that are 
outstanding on a message port before removing the port itself. 

NULL is a valid argument. 

INPUTS 
mp - A pointer to the message port to delete. 

AppShe/1 AutoDoc 17 DevCon90 



appshell.library/ACTIVATE appshell.library/ACTIVATE 

NAME 
ACTIVATE - Activate an AppShell window. 

SYNOPSIS 
ActivateiD Function ID 
ActivateFunc Function prototype 

FUNCTION 
Provides a mechanism to activate an AppShell window. Activation 
involves brinq the screen to front, openinq the window if it is 
hidden, brinqinq the window to front and unzoominq the window if it 
is zoomed. 

As a strinq command line: 

ACTIVATE [name) 

where [name) is a valid window name, defaults to MAIN. 

As a Taqitem attribute list: 

APSH_NameTaq, <name> 
where <name> is a valid window name. 

This function is implemented by the IDCMP messaqe handler. 

SEE ALSO 
TOBACK, TOFRONT, WINDOW 

DevCon90 18 AppShe/1 AutoDoc 



u 

u 

u 

appshell.library/ALIAS appshell.library/ALIAS 

NAME 
ALIAS - Used to build new commands from existing commands. 

SYNOPSIS 
AliasiD 
AliasFunc 

FUNCTION 

Function ID 
Function prototype 

This command is used to build new commands from existing commands 
in the function table. 

As a string command line: 

ALIAS <new> <existing> [parameters] 

where <new> is the new command to add to the function 
table. 

where <existing> is an existing command in the function 
table to assign to the new command. 

where [parameters] are optional parameters for <existing> 
to assign to <new>. 

EXAMPLE 

The following command line would assign the command OPEN to the 
new command name README, and would use READ.ME as the parameter 
to pass. 

ALIAS README OPEN READ.ME 

BUGS 
No tags are implemented. 

AppShell AutoDot: 19 DevCon90 



appshell.library/CMDSHELL appshell.library/CMDSHELL 

NAME· 
CMDSHELL - Open/Close the application command shell. 

SYNOPSIS 
CMDShelliD Function ID 
CMDShellFunc Function prototype 

FUNCTION 
Opens a console window whereby the user can interact directly with 
the application at a command level. Allows the user quick access 
to functions or macros that they may use so infrequently that they 
don't wish to bind them to a key, menu or button. 

As a string command line: 

CMDSHELL [command] 
where [command] is a valid command, defaults to OPEN. 

OPEN Open the command shell. 
CLOSE Close the command shell. 

As a Tagitem attribute list: 

APSH_Command, <command> 
where <command> is a valid command, defaults to MH_OPEN. 

MH OPEN 
MH_CLOSE 

Open the command shell. 
Close the command shell. 

This function is implemented by the DOS message handler. 

DevCon 90 20 AppShe/1 AutoDoc 



u 

u 

u 

appshell.library/DISABLE appshell.library/DISABLE 

NAME 
DISABLE - Disable a function and its interfaces. 

SYNOPSIS 
DisableiD Function ID 
DisableFunc Function prototype 

FUNCTION 
This function allows an application or user to disable a function. 

If the function is attached to a gadget or menu item, then that item 
is also disabled. 

As a string command line: 

DISABLE (name] 

where (name] is a valid function name. 

As a Tagitem attribute list: 

APSH_NameTag, <name> 
where <name> is a valid function name. 

SEE ALSO 
ENABLE 

AppShs/1 AutoDoc 21 DevCon90 



appshell.library/ENABLE 

NAME 
ENABLE - Enable a function and its interfaces. 

SYNOPSIS 
EnableiD 
EnableFunc 

FUNCTION 

Function ID 
Function prototype 

appshell.library/ENABLE 

This function allows an application or user to enable a function. 

If the function is attached to a gadget or menu item, then that item 
is also enabled. 

As a string command line: 

ENABLE [name) 

where [name) is a valid function name. 

As a Tagitem attribute list: 

APSH_NameTag, <name> 
where <name> is a valid function name. 

SEE ALSO 
DISABLE 

DevCon90 AppShe/1 AutoDoc 



u 

u 

u 

appshell.library/HOTKEY appshell.library/HOTKEY 

NAME 
HOTKEY - Bind a keyboard command to a function. 

SYNOPSIS 
HotKeyiD 
HotKeyFunc 

Function ID 
Function prototype 

FUNCTION 
Provides a mechanism to bind a function to a keystroke or sequence 
of keystrokes. 

As a string command line: 

HOTKEY <key> <function name> 

where <key> is the keystroke. 

where <function name> is a valid function name. 

As a Tagitem attribute list: 

APSH_CmdData, <key> 
where <key> is the keystroke. 

APSH_NameTag, <function name> 
where <function name> is a valid function name. 

This function is implemented by the IDCMP message handler. 

BUGS 
Currently doesn't support anything but single, shifted and unshifted, 
alphabetic characters [when called from the command line]. 

AppShe/1 AutoDoc 23 DevCon90 



appshell.library/RX appshell.library/RX 

NAME 
RX - Pass a command through ARexx. 

SYNOPSIS 
RXID 
RXFunc 

FUNCTION 

Function ID 
Function prototype 

Allows access to ARexx functions that may have otherwise been 
rerouted by the application. Should only be used if there are name 
conflicts between an application function and an ARexx function. 

As a string command line: 

RX [command] 

where [command] is a command line to pass to ARexx. 

As a Tagitem attribute list: 

APSH_CmdString, <command> 
where <command> is a command line to pass to ARexx. 

This function is implemented by the ARexx message handler. 

BUGS 
Not currently implemented. 

DevCon90 24 AppShell AutoDot: 



u 

u 

u 

appshell.library/TOBACK appshell.library/TOBACK 

NAME 
TOBACK - Send an AppShell window to the back. 

SYNOPSIS 
ToBackiD 
ToBackFunc 

FUNCTION 

Function ID 
Function prototype 

Provides a mechanism to send an AppShell window to the back of the 
other windows on the same screen. 

As a string command line: 

TOBACK [name 1 

where [name) is a valid window name, defaults to MAIN. 

As a Tagitem attribute list: 

APSH_NameTag, <name> 
where <name> is a valid window name. 

This function is implemented by the IDCMP message handler. 

SEE ALSO 
ACTIVATE, TOFRONT, WINDOW 

AppShe/1 AutoDoc DevCon90 



appshell.library/TOFRONT appshell.library/TOFRONT 

NAME 
TOFRONT - Bring an AppShell window to the front. 

SYNOPSIS 
ToFrontiD Function ID 
ToFrontFunc Function prototype 

FUNCTION 
Provides a mechanism to bring an AppShell window in front of the 
other windows on the same screen. 

As a string command line: 

TOFRONT [name] 

where [name] is a valid window name, defaults to MAIN. 

As a Tagitem attribute list: 

APSH_NameTag, <name> 
where <name> is a valid window name. 

This function is implemented by the IDCMP message handler. 

SEE ALSO 
ACTIVATE, TOBACK, WINDOW 

DevCon90 26 AppShe/1 AutoDoc 



u 

u 

u 

appshell.library/VERSION appshell.library/VERSION 

NAME 
VERSION - Uses NotifyUser() to show the current version. 

SYNOPSIS 
VersioniD Function ID 
VersionFunc Function prototype 

FUNCTION 
Uses NotifyUser() to show the current version of the application or 
the AppShell. 

As a string command line: 

VERSION [APPSHELL] 

[APPSHELL) To display the AppShell version. Defaults 
to showing the application version. 

BUGS 
No tags are implemented. 

AppShell AutoDoc 27 DevCon90 



appshell.library/WHY 

NAME 
WHY - Return information on the last error. 

SYNOPSIS 
WhyiD 
WhyFunc 

FUNCTION 

Function ID 
Function prototype 

appshell.library/WHY 

For scripting purpose, the primary return value of a command should 
return an error level. This limits the error return values to small 
ranges (to be consistent with DOS). Therefore, if commands use the 
secondary return field to contain information on the actual error, 
then this function will allow scripts to obtain information on what 
the last error actually was. 

This command takes no parameters. 

This function is implemented by the ARexx message handler. 

BUGS 
Not currently implemented. 

DevCon90 28 AppShe/1 AutoDoc 



u 

u 

u 

appshell.library/WINDOW appshell.library/WINDOW 

NAME 
WINDOW - Open/Close an AppShell window 

SYNOPSIS 
WindowiD Function ID 
WindowFuncFunction prototype 

FUNCTION 
Provides a mechanism to open or close an AppShell window. 

As a string command line: 

WINDOW [action] [name] 

where [action] is an optional command, defaults to OPEN. 
OPEN To open the window. 
CLOSE To close the window. 

where [name] is a valid window name, defaults to MAIN. 

As a Taqitem attribute list: 

APSH_NameTaq, <name> 
where <name> is a valid window name. 

APSH_Command, <cmd> 
where <cmd> is a valid command. 

MH_OPEN To open the window. 
MH_CLOSE To close the window. 

This function is implemented by the IDCMP message handler. 

SEE ALSO 
ACTIVATE, TOBACK, TOFRONT 

AppShBII AutoDoc RS DevCon90 



n 











u 

u· 

u 

Intuition V2.0 
Documentation Update 
by Jim Mackraz 

This document provides an overview of Intuition V2.0, that is, intuition.library version 36. 
It supercedes notes provided at earlier Developer's Conferences and information provided 
with alpha and beta releases. 

We only provide an quick overview of the various topics here. Detailed specifications for 
new features are provided by the accompanying "autodocs" for intuition.library, and by the 
Intuition include files. 

General Information 

Tagltem Structures and Tag Lists. Throughout the operating system, a new parameter and 
storage mechanism has been introduced. Defined in the include flle utilityltagitem.h, and 
supported by routines in utility.library, arrays of tagged data items are used in several places 
in Intuition to specify attribute/value pairs to functions such as Open WmdowO, 
OpenScreen() and new functions such as SetGadgetAttrsQ. 

In C, a tagged data item is a Tagltem structure, defined below. The field ti_Data often 
contains 32-bit data which is cast to a ULONG. 

struct Tagltem 

} ; 

ULONG ti_Tag; 
ULONG ti_Data; 

/* identifies the type of this item */ 
/* type-specific data, can be a pointer */ 

A "tag list" is an array or chain of arrays of Tagltem structures, specifying a set of 
attribute/value pairs. 

Unless documentation for a particular use of tag lists states otherwise, you should avoid 
duplicate ti_ Tag entries in a tag list and not make any assumptions about the order in which 
tag items in a list are processed. 

Within this array, different data items are identified by the value in ti_ Tag. Items specific to 
an application have a ti_Tag value which has the TAG_USER bit set. System data items 

Intuition V2.D 
Documentation Update 

1 DevCon90 



which can be used by any application have a ti_Tag value with TAG_ USER bit clear. These 
include: 

TAG_IGNORE - a no-op. The data item is ignored. 
TAG_MORE - the ti_Data points to another array of tag items, to support 

''chaining'' of Tagitem arrays. 
TAG_DONE -terminates the tag item ar~ay (or chain). 
TAG_SKIP - ignore the current tag item, and skip succeeding array elements, 

ti_Data in number. 

Note that user tags need only be unique within the particular context of their use. For 
example, the attribute tags defined for Open WmdowO overlap numerically with some tag 
values used by OpenScreenQ, but the same numeric value has different meaning in the 
different contexts. 

You can use tag lists for your own functions. There are numerous support functions in 
utility.library, including FindTagltem(), GetTagData(), and NextTagltemQ. The last is for 
iterating all the items in a tag list and is at the root of almost all the others. 

There is also a particularly handy function, PackBoolTagsQ, which collapses the Boolean 
attributes in a tag list into corresponding bits in a flag word. See the autodocs for 
utility. library for the details. Tagltems are no longer part of Intuition. 

Passing Tag Lists to System Functions - varargs. You can provide Tagltems to functions 
in several ways. Functions Open Wmdow() and OpenScreenO support an extension to 
the structures New Window and NewScreen, respectively, which is a pointer to a tag list of 
window or screen attribute specifications. 

There are also two new functions open WmdowTagList() and OpenScreenTagList() to which 
you pass a NewWmdow and a tag list, or a NewScreen and a tag list 

There are also "varargs" versions of these routines implemented in amiga.lib, 
Open WmdowTagsQ and OpenScreenTagsQ. "Varargs" is a C term used to indicate a 
function which takes a variable number of arguments, such as "printf." 

As an example, here is a complete code fragment to open a screen of "text overscan" 
dimensions ("MoreRows" dimensions): 

screen m OpenScreen( NULL, /* don't bother with a NewScreen */ 
SA_Overscan, OSCAN_TEXT, 
SA_Title, "My Screen", 
TAG_DONE ) ; 

This example illustrates the convenience of a varargs interface to OpenScreen(), and also that 

DevCon90 Intuition V2.D 
Documentation Update 

. .._ 



u 

u 

u 

Intuition supports a lot of default values for screen parameters. 

Other parameters besides tag lists can be provided to Intuition with a varargs interface. The 
function Easy Request() takes printf-style arguments to fill in the "blanks" in p~tf-style 
format strings. There is always a corresponding non-varargs interface underlying all varargs 
system calls - in this case EasyRequestArgs(). 

The name variations distinguishing two similar functions differing only by a varargs interface 
are not consistently applied, unfortunately. 

Function Callback Hooks. Another standard piece of technology used in various places by 
Intuition is the standard application-callback interface implemented by the Hook data 
structure. These are defined in utilitylhooks.h, and specify a register-based parameter 
convention. Examples of calling through a hook and being called via a hook are provided 
in the Intuition examples. 

There were already mechanisms such as interrupts and input handlers where the system calls 
user code but the interface to high-level languages (HLLs) is rarely standardized. The goals 
of Hooks include: 

0 Standard calling conventions are respected by using a register parameter convention. Any 
language which can implement an interrupt handler should be able to support Hooks. 

0 A single assembly language interface routine can be used to interface to several FILL 
hook routines. 

0 A standard method of specifying HLL entry points is used so that portability of FILL 
implementations ~tween compilers is possible. 

0 Future enhancement of the technique is possible. 

IntuitionBase and Private Data. As promised, the non-public portion of the IntuitionBase 
data structure was completely revised for this version of Intuition. There is no public 
information on what it has turned into, nor how it is used. 

Likewise, new additional data for Screen and Wmdow structures has been added without 
publication in public include flies. If there is some chore your application cannot accomplish 
without accessing private data, you are invited to request proper programmatic access to it in 
the next release. · 

Intuition V2.D 
Documentation Update 

3 DevCon90 



The New Look, Draw Info and Pen Spe~ifications. As will be discussed below in a little 
more detail, the new look of Intuition displays is centered around a per-screen data structure 
called a Draw Info. This structure encapsulates all information that Intuition uses for 
rendering the new look, including specification of which pen numbers are used for 
"shadow," "shine" and "text." Screen resolution values are also contained as is other 
useful information. 

See the defmition of struct Draw Info in intuitionlscreens.h. 

Stack Swapping. With the introduction of "New Look" system requesters, the 
function AutoRequest() started using considerably more processor stack than it had in 
previous versions of Intuition. This caused some severe and frequent prob~ems, so code 
was installed to switch stack (unconditionally) when AutoRequest() and Easy Request() 
(and their ilk) are called. 

It turned out that both DOS and the File System had identical code. to guarantee safe stacks 
before calling these routines, so the system enjoyed a net shrinkage in ROM space by 
centralizing this code in Intuition. 

Changes to Windows 

The most important new change is the addition of a tag list specification to Open Wmdow(), 
via either the structure ExtNewWindow or the new functions Open WmdowTagListO and 
Open WindowTags(). See intuitionlintuition.h for a complete list of window attribute tags, 
and the autodocs for detailed explanation of their uses. 

Wmdows borders are rendered quite differently in V2.0, as you've undoubtedly noticed. The 
entire border region (defined as BorderLeft, BorderTop, etc., fields in the Wmdow structure) 
is redrawn every time a window becomes active or inactive. 

The colors used are different than the DetailPen and BlockPen which specified the colors 
under V1.3 and previous versions. We'll describe more about this later. 

Windows can now open on "Public Screens," which we'll discuss later. Such windows are 
called "Visitor Wmdows." There are several ways to open a visitor window on a public 
screen, including all windows which open on the Workbench screen, which are now deemed 
to be visitors. 

Windows support a "Zoom" capability, via a "window zoom gadget" which replaces one of 
the old depth gadgets and an Intuition function named ZipWmdow() (the author has never 
been really happy with the term "zoom;" or "zip" for that matter). 

DevCon90 4 Intuition V.2.D 
Documentation Update 



u 

u 

u 

Intuition's "zooming" consists of storing the current position and dimensions of the window, 
and changing them to the alternate values previously saved for the last "zoom." So it's really 
a swap between "current" and "other" dimensions and position. You can specify your choice 
for the initial "other" dimensions and position when you open your window. 

Besides Zip Wmdow(), other new functions which operate on windows are: 

a ChangeWmdowBoxO - specify simultaneous position and dimension change for a 
window, in absolute (not "delta") coordinates. 

0 Move WmdowinFrontOf() - brings the function of the equivalent layers.library routine 
out to the Intuition user. 

Window Refreshing Procedures. We've certainly learned a lot about refreshing window 
damage over the last couple of years mostly that there are some subtle problems. 

In particular, the BeginRefresh/EndRefresh transaction has some serious windows of 
vulnerability, with failures manifesting themselves as partially-refreshed window visuals. 
The standard simple usage of these functions doesn't cause problems, but using more than 
one refresh "session" (passing FALSE to EndRefreshQ), refreshing through mutiple user 
clip-regions, and needing to hold a layer lock around the refreshing session all require that 
you do things just right 

All Intuition programmers, experts included, should reread the autodocs for BeginRefresh() 
and EndRefresh() to become advised of our current understanding of their best use in 
tricky situations. 

Window Layer Back(ill. Intuition provides access to the new "backfill hook" supponed by 
layers. That means that you can specify a routine which will be called when damage to your 
window is to be filled in, rather than the default "blast to color 0." 

You can provide your replacement hook to Open Wmdow(), so that your window will initially 
be filled in by your own backfill processing. 

This supports pattern backfill in windows, and even "null" backfill, which yields, for 
example, windows which can be opened on a custom bitmap screen without corrupting the 
picture already contained in the bitmap. 

More Window Features. As the autodocs for Open Wmdow() explain, you can specify the 
dimensions of the interior of your window - that is, within the border- and let Intuition add 
on whatever it will for the borders to arrive at the total window dimensions. 

Intuition V2.0 
Documentation Update 

5 DevCon90 



This is best coupled with the new AutoAdjust option for Open Wmdow(), which grants 
Intuition permission to slide or shrink your window dimensions in order to ensure a legal 
initial position and dimension. 

We used up all the Wmdow.Flags bits, and there's a new field, Wmdow.MoreFlags, that will 
have to last us for a while. The only flag yet defmed for that field is not documented, tested, 
nor completely supported at this time, but it has something to do with the "Help" key and 
menus. 

Changes to Screens 

OpenScreenTagList() is the preferred method for passing tag lists when creating a new 
custom screen. The tag list method is frequently more useful for screens than windows, since 
so many screen attributes have reasonable default values. See the autodocs for OpenScreenO 
and the include file intuitionlscreens.h for all the details. 

New Screen Display Modes. We support many new screen modes in V36, and the major 
change is that the display mode specifier is now an abstract 32-bit "ID Key" defined in 
graphicsldisplayinfo.h, and which serves as an index into the new Graphics library display 
database. See the accompanying documentation of this database and new graphics display 
capabilities. 

Programs which perform direct and on-the-fly manipulations of screen viewports are 
supported as best we could Flying mode changes, poking of viewport and view offsets, and 
every other trick we could detect on our development and test equipment are snooped out 
and accommodated. 

Our goal was to ensure that mast tricks that worked on the original Amiga display modes 
would continue to work on those old modes, but new, updated processing would be required 
to manipulate the new modes. 

In particular, the high-order bits of the CAMG ILBM chunk are now relevant However, 
we try to support old programs using new modes by arranging that a reasonable substitute 
for a new mode be used if an old ILBM display program tries to display a picture saved 
in one of the new modes. 

It is also possible for a machine configured for NTSC to open a PAL screen, including a PAL 
Workbench screen, and vice-versa. But it is important to remember that the Workbench being 
in PAL mode does not imply that the default display modes are all going to be PAL. In fact, 
there is not currently support for "tricking" a program that assumes that default operations 
are PAL into opening a PAL screen on an NTSC machine, and vice-versa. 

DevCon 90 6 lntu/Uon V2.0 
DocumentaUon Update 



u 

u 

u 

Screen Coexistence and Coercion. The original Amiga display modes can all be displayed 
simultaneously in separate screens (with some global considerations for interlace). Some of 
the new modes necessarily exclude the possibility of showing other screens in their intended 
mode. For example, the A2024 special modes cannot be displayed simultaneously with 
anything else, including each other. New "31KHz scan rate" screens require that the monitor 
run at a different sync rate (and beam speed) than the old modes, and you cannot drastically 
change the monitor scan rate mid-frame. 

Intuition manages these problems first by decreeing that the frontmost screen will be 
displayed in its intended mode. Other screens behind it will be excluded, (i.e., not visible) if 
necessary, as is the case with A2024 special modes and everything else. (There might be an 
interesting bug in current software with this.) 

Sometimes, Intuition will provide an alternate, or coerced, display mode for a screen behind 
so that it can coexist with the frontmost screen. In doing this, severe aspect ratio distortion 
can occur for the screens behind. Intuition can sometimes compensate for this by switching 
to a higher resolution pixel rate at the sacrifice of some colors, or by introducing interlace to 
shonen the vertical size of pixels. 

These two operations can be independently disabled via the new I Control preferences tool. 

Scrolling, Display Clip and Auto-Scroll. Direct suppon for hardware screen scrolling has 
been added by taking advantage of the flexible display capabilities of the Amiga. You may 
now defme a raster larger than can be displayed and scroll that raster through an on-screen 
viewable region. In this setup, the screen dimensions reflect the raster dimensions and the 
on-screen region is defmed by a new construct named DisplayClip. The specification of 
DisplayClip may be made via OpenScreen(), but this is typically only necessary in an 
overscan situation. 

Note that when you specify an alternate DisplayClip region - whether it is a standard one 
using SA_ Overscan or a specific value such using SA_DClip - the values 
STDSCREENWIDTH and STDSCREENHEIGHT are both relative to the DisplayClip. That 
is, they evaluate to its width and height, respectively. This makes it simpler to do overscan. 
By specifying OSCAN_STANDARD as the data item in the SA_ Overscan tag and setting an 
appropriate width and height to STDSCREENWIDTH and STDSCREENHEIGHT you can 
automatically create overscan displays. In fact, you are even relieved of the burden of 
specifying proper LeftEdge and TopEdge values in some cases. See the autodoc for 
OpenScreen(). 

Two other imponant scrolling features have been added. Screen and DisplayClip positions 
may take negative values to affect scrolling up and left from the default position. Also, 

Intuition V2.D 
Documentation Update 

7 DevCon90 



automatic scrolling to follow the mouse is now supported. There are two ways to do this: by 
using the MoveScreen() function in your application or by using direct Intuition support by 
setting the AUTOS CROLL flag in your NewScreen structure. 

GetScreenData(). This function has served two useful roles: 

0 Provide information about the Workbench screen for programs about to open a window 
on that screen. 

0 Provide information about the Workbench screen for programs which wish to open a 
similarly configured custom screen. 

If the Workbench screen is in one of the new display modes, this latter purpose is not going to 
be well-served, especially since the screen's viewport has only 16 bits of Mode information 
and the new modes must specify 32 bits. To the extent that we don't jeopardize the fll'St 
pwpose, there have been some intense tricks applied to this function in support of the second. 
Also, large scrolling Workbench screens have "tricked" programs which use 
GetScreenData() into opening excessive 2400x1200 pixel windows. You'll want to read the 
autodocs for GetScreenData() carefully, then use LockPubScreen() as its replacement in V36 
and later. 

Screen Colors. You can now specify, using the screen attribute tag SA_ Colors, a set of color 
palette entries to be applied at by OpenScreenQ. This relieves you from the burden of having 
to call LoadRGB4() for your screen, and eliminates unsightly color flashing when you do. 

The initial palette for new screens is determined largely by the graphics function 
GetColorMap(), but Intuition has always overridden colors 0-3 (playfield colors) and 17-19 
(sprites, and sometimes playfi~ld) with values from preferences. Intuition now maintains 32 
screen color preferences values which it will use for deeper Workbench screens and (our little 
secret) 15-color pointer sprites. 

To apply these colors to all new screens would be incompatible, so you must specify the 
Boolean screen attribute SA_FullPalette if you want your screen color map to be initialized to 
all the colors that Intuition ever maintains. 

Public Screens. There's a section below that describes the details of the new public screens 
protocols. For now, be advised that the details are contained in the autodoc for OpenScreen(). 

Draw Info, Pen Specifications and the New Look. We'll talk more about the new look 
below, but the big news is that it could not be safely applied to all custom screens. In 
particular, ignoring the DetailPen and BlockPen designations for window border colors was 

DevCon90 8 Intuition V2.0 
Documentation Update 



u 

u 

u 

not sound. As a result, V36 does not apply the full "3D new look" effect on custom screens 
unless they so specify (as described below). Instead, it uses a version of its "monochrome 
scheme" applied in the screen's DetailPen and BlockPen. 

Rendering for the new look uses information encapsulated in the Draw Info structure of each 
screen. You may acquire a pointer to this data by calling GetScreenDrawinfo(). In that data, 
there is an array of pen numbers used for different drawing purposes, including 3D shine and 
shadow, highlighted window borders, text, text in highlighted borders and so on. 

You may specify replacement values for those pen specifications (sometimes called "pen 
spec" in the documentation) using the screen attribute SA_Pens. You may specify many, a 
few, or zero pens using this tag. Intuition will take the presence of this tag to mean that you 
are a new custom screen, aware of the new look, and will set the DRIF _NEWLOOK flag in 
your screen's Draw Info structure, and give windows in your screen the complete full-blown 
3D new look treatment. 

Miscellaneous Screen Changes. Here are a few small items: 

Cl You can pass the pointer to a longword using the SA_ErrorCode tag, and Intuition will 
provide in that longword a detailed error code to supplement the NULL screen pointer it 
returns in the event of failure. The defined error codes today are: 

OSERR_NOMONITOR 
OSERR_NOCHIPS 
OSERR_NOMEM 
OSERR_NOCHIPMEM 
OSERR_PUBNOTUNIQUE 
OSERR_UNKNOWNMODE 

- named monitor spec not available 
- you need newer custom chips 
- couldn't qet normal memory 
- couldn't qet chipmem 
- public screen name already used 
- don't recognize mode asked for 

You should also assume that there will be more error codes defmed in the future, and 
allow for codes your program doesn't understand 

Cl SCREEN QUIET is really quiet The menu bar layer no longer blasts out a clear region in 
the custom bitmap of a SCREEN QUIET screen. It is created with a "null" layer backfill 
hook. SCREENQUIET screens are finally completely "quiet" 

Cl Multiple System Font Selections. When opening a screen, you can specify a font as a 
pointer to a TextAttr structure. If you provide none, your screen's default font will be the 
cwrent graphics default font (GfxBase.DefaultFont), which is maintained by old and new 
preferences to be some safe, non-proportional conservative font that all programs should 
be able to handle even if it is no longer only topaz. font size 8 or 9. 

Intuition V.2.D 
Documentation Update 

9 DevCon90 



We also maintain via preferences a new font selection by the user, the "default (fancy) screen 
font," which is often proportional-space and taller than normal You can select this font to be 
your screen font (as does the Workbench screen) by using the SA_SysFont attribute tag and 
providing the ti_Data value of 1. 

When a proportional font is used as a screen font, though, we run into problems when the 
windows opening on that screen, especially the Workbench screen, inherit the screen font in 
their rastport. We've found only a few text-oriented programs that work when they are 
surprised with a proportional font. So, we modify an old rule to have an exception: 

The windows opening on a screen will have as their default font the font of the screen, 
unless when the screen opened its font was specified as this new preferred screen font In 
that case, newly opened windows will have their RastPort initialized with the system 
(monospace) default font 

Gadgets 

There is change in the behavior of NewModifyPropQ to minimize redraw flashing when a 
gadget is updated. There is also a separate document about custom gadgets and · 
object-oriented (boopsi) gadget classes, group gadgets, and so on. There's a list of the 
pre-defmed gadget. classes in the "boopsi" section below. The rest of this section is about 
string gadgets. 

String Gadgets. String gadgets have numerous enhancements, most specified by additional 
data defmed in the StringExtend structure, defined in the include flle intuition/ sghooks .h. 
The most significant work was done in the support of proportional fonts. 

The new specifications include the font, the pens, optionally different pens for use when the 
gadget is active, new editing modes including REPLACE mode and FIXED FIELD mode. 

You may also provide a hook which can be used to intercept Intuition's default input 
processing for the gadget, allowing custom editing. See the example StrDemo on the DevCon 
disks, and the contents of intuitionlsghooks.h for details. 

Note that late in the development of V36, two new features were added to this custom editing 
hook: 

0 Your hook is now called to process mouse click input, not just typing. 

0 Your hook is passed an "edit operation code" so you don't have to guess whether 
Intuition's intentions were to delete or insert a character, delete to beginning, or whatever. 

DevCon90 10 lntu/Uon V2.0 
Documentation Update 



u 

u 

u 

There is a function which can be used to replace the global editing processing that Intuition 
does by default for all string gadgets. This function is SetEditHook(), but this feature has 
never been exercised to the knowledge of the author. This function should therefore not be 
used in a commercial product until further notice. H anybody ever gets it working to provide 
"vi-style" editing for string gadgets, though, the author would greatly appreciate a copy. 

For string gadgets which inherit a font larger than they were prepared to contain, Intuition 
will "fall back" to Topaz 8. 

String Gadgets also have the ability to "filter" control characters (which are even invisible in 
some fonts) from being entered into the text. This is globally established as a preferences 
item in the !Control preferences tool. When the filter mode is on, certain control characters 
are used as editing commands, consistent where possible with the same keystrokes used to 
edit input for the console. When fllter mode is on, the user can still enter the occasional 
control character into the text of a string gadget by holding down BOTII the control and 
left-Amiga keys when typing a letter. 

Requesters and System Requesters 

There are some minor enhancements to application requesters (brought up by the Request() 
function or as a DMRequest), but the major work involves system requesters which are 
gotten using the old functions AutoRequestO and BuildSysRequestO and the new functions 
Easy Request() and BuildEasyRequestQ. 

The new EasyRequest functions provide a "printf-style" automatic formatting of system 
requester text and gadget labels, support more than two requester gadgets, and perform 
automatic font-sensitive layout of text and gadgets. Both types of system requesters are now 
implemented in a fancy "new look" design, which, in the case of old-style AutoRequesters, 
happens by Intuition ignoring a large amount of the layout specifications you provide. See 
the autodocs and the Intuition DevCon example EasyReq for several ways you can use 
Easy Requesters. 

The functions AutoRequestO and Easy Request() are synchronous, that is to say, these 
functions don't return until the requester has been "satisfied" either by user input or other 
IDCMP traffic (e.g., DISKINSERTED). 

For each, there are corresponding functions BuildSysRequest() and BuildEasyRequestO that 
return to you a pointer to a window which contains the system requester. You may process 
the input to that window yourself to gain more control over the request An example might 
be timing out the request or, like the IPrefs daemon, watching for circumstances which 
warrant an automatic "Retry." 

Intuition V2.0 
Documentation Update 

·~. 

11 DevCon90 



The input processing for·these windows is not completely trivial, but it is made very easy by 
a new·function SysReqHandler(). See the autodocs for some examples of fancy processing 
made easy. 

System requesters have, since V33, popped the screen they appear on to the front if it was not 
already frontmost. This is to alert the user. With V36, we will subsequently pop that screen 
to the back (NOTE: not "back to where it was") when the requester is satisfied, provided that 
the user did not perform manual screen depth arrangement or .open or close other screens in 
the interim. · 

General Requester Changes. Here are some changes made to general requesters. Some of 
these were introduced to support the new look of system requesters. 

Cl POINTREL now works with Request(), providing a simple method for requesters to 
appear centered in an application window. 

Cl The new flag SIMPLEREQ specifies that you want your requester to be in a simple 
refresh layer. Recommended for saving chip memory and avoiding a large transient 
requirement for chip memory when the requester opens. 

Cl A new flag USEREQIMAGE indicates that your requester has a valid pointer to a linked 
list of Intuition Images in the new Reqlmage field. This list of images will be 
automatically drawn by Intuition when the requester comes up or needs to be redrawn. 
Using boopsi image classes such as fillrectclass, frameiclass, and itexticlass is how the 
system requesters fancy new look is maintained without special refresh code. You can ·do 
almost anything with a boopsi image, and hence have some very fancy requesters 
which are automatically maintained. 

Q The new flag NOREQBACKFILL specifies that your requester layer should have a 
"null" backfill hook, so that it is not cleared before your fancy images described above 
are drawn. This is why system requesters don't flash before the stipple pattern is drawn. 

Cl There is a limit to the number of requesters that Intuition will support for a window, if 
that window is capable of being moved or changed in size. For V36, that limit is 8. 

IDCMP and Event Communication 

New IDCMP Classes. 

Cl CHANGEWINDOW is sent (via IDCMP or through the console) when your window 
position or dimension changes, including changes by new functions ChangeWmdowBoxO 

DevCon90 12 Intuition V:Z.D 
Documentation Update 



u 

u 

u 

and Zip Window(). It generalizes both SIZEWINDOW and the proposed 
MOVEWINDOW messages. 

a IDCMPUPDATE is sent by boopsi gadgets as a more direct connection to the internal 
state changes of custom boopsi gadgets. See the Intuition boopsi examples for 
comparisons to using this and using GADGETUP and FOLLOWMOUSE messages. In 
this message, the qualifier IEQUALIFIER_REPEAT indicates "interim" reports, such 
as a button repeating while held down or a slider being dragged vs. their being released. 
All other qualifiers are meaningless. 

0 MENUHELP is sent in place of MENUPICK if the user presses the Help key while 
operating a menu. This is not yet officially supported and requires that an undocumented 
flag be set 

Other Changes. There are now automatic limits to the number of MOUSEMOVE or 
repeat-key IDCMP messages that Intuition will send to your window before seeing some 
replied. These limits can be independently set when you open your window. The mouse 
queue limit can be changed using the function SetMouseQueueQ. There is as yet no interface 
for changing the repeat queue limit on the fly. You can set these limit values to -1 to get 
effectively unlimited queue or backlog of these messages. 

The middle mouse button is now supported and is transmitted as new values of the 
IntuiMessage.Code field for class MOUSEBUTTONS. 

If you specify the VANILLAKEY IDCMP Flag, you will receive as always VANILLAKEY 
messages for all keyboard downstrokes that translate into single byte character code. But 
now, if you also specify the RA WKEY flag, you will receive RA WKEY reports for those 
downstrokes which do not map to a single byte. This makes it easy to process function keys, 
the cursor keys, or the Help key, without sacrificing the convenience of VANILLAKEY 
messages. 

Verify Functions Abort. The most common system deadlocks were caused by deadly 
embrace around the MENUVERFIFY, SIZEVERIFY, and REQVERIFY messages. Intuition 
used to wait dead for your application's reply to these messages, and if your program was for 
some reason waiting for Intuition input before it would get around to making such a reply, the 
system would deadlock. 

Now, Intuition will time-out these verification transactions after user-specified interval, and 
abort them when the user releases the relevant mouse button, where that makes sense. Your 
program may respond affmnatively to a message like MENUVERIFY at some time after 
Intuition has decided to abort. Your program will receive whatever termination message it 

Intuition V2.0 
Documentation Update 

13 DevCon90 



expects subsequently, even though that might mean sending both a MENUPICK message 
(which your program expects after an affumative response) and a MOUSEBUTIONS/ 
MENUUPmessage (expected when you cancel a MENUVERIFYrequest). 

There might be some quirks that can result - in fact, there are known problems (and tested 
fiXes waiting) with the speed of these transactions and "hanging menu strips"- but we'll 
have no more deadlocks caused by this frequent culprit. 

Images 

We've introduced a few new functions for images, but most of them aren't too useful for 
normal old Intuition images. All the excitement is about new custom images created from 
boopsi classes. There are examples in the boopsi subdirectory of the Intuition DevCon demo 
directory. 

0 DrawlmageStateO is an enhanced DrawlmageQ that delegates to the image the type of 
rendering that should be done to represent a selected, disabled or inactive state. This is 
useful for fancy images attached to fancy gadgets. 

Q EraselmageO clears out (using the new EraseRectO graphics call) the region occupied by 
an image. 

Q PointlnlmageQ asks an image whether a particular XJY point coordinate is contained in 
the image region. This encapsulates the intelligence of things like the BOOLMASK 
feature of V33 gadgets. 

There are some very useful boopsi image classes which you can use to create new images for 
your use in gadgets, menus, requesters, or just to pass to DrawlmageO or DrawlmageState(). 
See the boopsi section for a list 

Public Screens 

Many developers and power users have requested support for "shared custom screens." 
They wish to bring up utilities such as a text editor on an application custom screen such as a 
terminal emulator. A similar request has been made for "multiple Workbench screens" so 
that Workbench application windows can be grouped in separate workspaces and display 
modes best suited for the different Workbench applications that may co-exist. 

It turns out that both of these requests can be satisfied by new support in Intuition for what 
we call "public screens." The complete solution will have three parts: support within 
Intuition, a screen manager utility and, of course, applications which open the new public 

DevCon90 14 Intuition V2.0 
Documentation Update 



u 

u 

u 

screens and their "visitor" windows. 

When opening a screen under the new system, you may declare your screen a public screen 
by specifying a public name string for it. You may also register your task ID and a signal if 
you want to be notified when the last visitor window on your screen closes. A new data 
structure, PubScreenNode, will be installed on a system list with links to your public screen. 

A public screen has a single mode bit named PSNF _PRIVATE which indicates whether the 
screen is available for public use. A public screen is initialized as private so you can open 
your personal application windows (like a backdrop window) before you make the screen 
officially public. 

Once you have a public screen, visitor windows can be opened on it in several ways. If no 
screen name is provided, the visitor window will open on the default public screen. If a name 
is provided, the visitor window will open on the named screen if available. Otherwise a 
default is used. A visitor window can also be opened by using a pointer to the public screen 
obtained with LockPubScreen(). 

There are two global mode bits which also come into play when a visitor window is opened 
on a public screen. If the global mode SHANGHAI is set, Workbench application windows 
will be opened on the default public screen. A second global mode bit is POPPUBSCREEN 
which indicates that a public screen is to be moved to the front when a visitor window opens 
on it. Both the SHANGHAI and POPPUBSCREEN mode bits are intended to be readily 
controllable by the human user - likewise the DefaultPubScreen. 

One example of an application using visitor windows will be the public screen manager 
utility. Its role will be to display the current public screens, allow selection of the default and 
setting of the global m~es SHANGHAI and POPUBSCREEN. An important elaboration 
will be this program's ability to open named public screens listed in a configuration flle at the 
user's command. 

Other special applications of public screens are possible. One operation now supported by an 
Intuition function is "jumping between public screens." In this way an application can move 
between screens in response to a gadget or menu item, or in response to a hotkey. 

An example pro~, PubSC, is included on the DevCon disks. This program demonstrates 
the primitive operations now supported by Intuition. It has been greatly improved since early 
alphas, and is actually a firSt cut at the screen manager utility. Further information for this 
topic can be found in intuitionlscreens.h and in the autodoc sections for OpenWmdow(), 
OpenScreen() and the new support functions. 

Intuition V2.D 
Documentation Update 

15 DevCon90 



Here's a brief list of the functions: 

PubScreenStatus() 

SetDefaultPubScreen() 

GetDefaultPubScreen() 

SetPubScreenModes() 

NextPubScreen() 

Lock/UnlockPubScreen() 

Lock/UnlockPubScreenList() 

Intuition Classes, "boopsi" 

Converts a public screen to private or non-private 
status. Fails if you can't make a screen private 
because it currently has visitors. You do this 
before you close a public screen. 

Establishes a given public screen as the default. 

Returns the name of the default screen for use by the 
screen manager utility (the name is not needed by 
normal applications). 

Sets new values for ~he public screen global modes. 

Helps an application cycle its window between the 
currently available public screens. Note that the 
Workbench screen is a public screen, and will be 
included in the rotation. 

Allows to you to determine that a public screen 
exists, and to insure its existence while you open a 
visitor window on it. This function also serves as 
an improvement over GetScreenOata(), as a fortunate 
side-effect. 

Affords protection while you COPY the Intuition 
public screen list quickly. This is intended for use 
by the public screen manager utility only. 

The term "boopsi" is a lower-case acronym for the "Basic Object-Oriented Programming 
System for Intuition." The key word here is "Basic." 

Boopsi supports custom gadgets, custom images, grouping of gadgets, and interconnections 
between them. It is also very open-ended, and can be extended in many directions for 
general-purpose use. 

You can invent boopsi classes which implement the behavior for the objects they define and 
create. Classes can be private, which means the code for them is linked into your program 
and you don't have to worry about names and attribute IDs colliding with other defined 
classes. Classes can also be public, accessed only by their unique names. In that case, their 
attribute IDs must be picked carefully not to conflict with any others. This will require a 
registration procedure to be implemented by Commodore Applications and Technical 
Support. 

DevCon90 16 Intuition V2.D 
Documentation Update 



u 

u 

u 

There is a separate document on boopsi, to which we refer the reader for all details. We list 
here only a summary of the pre-defined public classes implemented in Intuition, grouped by 
their "baseclass," that is, their inherited ancestor closest to the root 

root class 
Ancestor to all boopsi classes, the only class without a superclass. Implements 
basic object memory allocation and nodes. 

gadgetclass 
Ancestor to all boopsi gadget classes, understands most gadget attributes. 

propgclass 
A very friendly way to use one-dimensional proportional gadgets, including a 
better way to look at Body and ·Pot values, and interconnection capability. 

buttongclass 
A (repeating) boolean command button. 

frbuttonclass 
A high-powered button for the ''new look'' which knows how to frame its general 
contents (label) with an embossed box. 

strgclass 
An easy interface to the new extended string gadgets, with many attributes easily 
defined. Supports interconnection. 

ggclass 
Group-gadget class, this implements a ''composite'' gadget which has other 
gadgets as its members. The DevCon demos illustrate how you can collect several 
related gadgets in one of these group gadgets and have them all interconnected, 
sending your application an IDCMPUPDATE message only when something of interest 
has changed. 

imageclass 
The common ancestor of boopsi image classes. Implements most image attributes 
but draws nothing •. 

frameiclass 
An embossed or recessed rectangular frame, rendered in the proper Drawinfo pens, 
and with enough intelligence to bound or center its contents. 

itexticlass 
A specialized image class implementing something similar to IntuiText. This is 
used by Intuition for forcing the new look on AutoRequesters, and for supporting 
System Requester button gadgets which don't need a full IntuiText allocated for 
them. 

sysiclass 
A class of premade "system images" including all the images for the system 
gadgets, and the gadtools checkmark and button glyphs. These images can be 
created to specified size, scale, and will support all the new look voodoo. 

icclass 
A very simple interconnection node. Maps one set of attributes (understood by 

Intuition V2.D 
Documentation Update 

17 DevCon90 



something notifying other objects of changes) to another set of attribute tags 
(as. understood by the object being notified). The heart of boopsi 
interconnection, often found hanging in a broadcast list. 

modelclass 
A specialization (subclass) of icclass, which adds the notion of a broadcast 
list. You notify these things of ~change, and they broadcast that to their 
whole list, with attribute IDs being mapped independently by the ic's hanging on 
the list to what the other interested objects need to hear. 

The New Look 

The new 3D "embossed" look of Intuition window borders and gadgets is the most obvious 
major change to Intuition. It represents a compromise between our compatibility goals and 
"giving a little to get a lot" in the way of major aesthetic rework: 

There are actually a couple of different "looks" Intuition will apply to a given screen and all 
the windows within that screen. 

Q The full-blown embossed new look, as found on the Workbench screen. This requires that 
we make certain assumptions about which pens to use for different things. We don't 
default to this look (anymore) for custom screens. Only applications that run on the 
Workbench will be confronted with these changes at first. 

Q The monochrome new look. In a single bitplane (two color) screen, there isn't a whole 
lot of 3D embossing you can get. We fall back to· a simpler two-color scheme, with 
specially designed system gadget images suitable for a monochrome presentation. 

Q "Compatible" custom screen new look. Normal custom screens are rendered in a 
two-color version of the monochrome new look. The pens used for this rendering are the 
initial screen DetailPen and BlockPen. All windows are rendered in these same colors. 

If you want your custom screen to be given the full-blown new look, you pass the SA_Pens 
screen attribute tag to OpenScreenQ. 

Draw Info Structure. All the information needed to render the new look is packaged in a data 
structure called Draw Info associated with each screen. You manage a pointer to it by calling 
GetScreenDrawlnfo() and FreeScreenDrawlnfoQ. 

We'll discuss the fields in Draw Info now. See also the structure and flag definitions in 
intuition/ screens .h. 

DevCon 90 18 Intuition V.2.D 
DocumentaUon Update 



u 

u 

u 

dri Version - this field is initialized by Intuition to the value of the constant 
DRI VERSION defined in the version ·of screens.h that Intuition was compiled with. 
That means that if you see that dri_Version is greater than or equal to the value 
of DRI VERSION that your program was compiled with, you can be assured that any 
new fi;lds in Drawinfo that are defined are being supported by Intuition. 

dri Font -this is a pointer to the screen's (open and ready to use) font. Do not 
a~sume that this _font will remain open after you call FreeScreenDrawinfo () . 

dri_Depth - the depth of the screen's bitmap, as provided to OpenScreen. 

dri Resolution - a pair of numbers gotten from the display info database for the 
(lntial) display mode of the screen. These support simple resolution-independent 
constructs, such as drawing square boxes. The values for NTSC HIRES+LACE pixels 
are X = 22 and Y = 26. 

dri_Flags - there is only one flag now defined, DRIF_NEWLOOK. If this flag is set, 
the attribute SA_Pens was provided to OpenScreen(), and the screen is to get the 
full-blown 30 new look treatment. 

dri_NumPens - this is the number of pens defined in dri_Pens. 

dri_Pens - this is an array of drawing pens used for different purposes. The number 
of entries is specified above, and the array is terminatedby Oxffff (-0) . 

The pens defined are: 
detailPen - initial value of Screen.DetailPen 
blockPen - initial value of Screen.BlockPen 
textPen - text on normal backgroundPen 
shinePen - bright edge on bas-relief 
shadowPen - dark edge 
hifillPen - active window fill 
hifilltextPen 
backgroundPen 
hilighttextPen 

- text over hifillPen 
- always 0 for now 
- highlighted text, against backgroundPen 

Elements of the New ;Look. Here is a discussion of the things which make up the new look 
forV36. 

Default pens are defmed for multi-color screens and monochrome (single-bitplane) screens. 
The defaults are: 

Multi-color screens 
detail Pen 
blockPen 
text Pen 
shinePen 
shadow Pen 
hifillPen 
hifilltextPen 
backgroundPen 
hilighttextPen 

Intuition V2.0 
Documentation Update 

(using four colors for new look) 
0 
1 
1 
2 
1 
3 
1 
0 
3 

19 DsvCon90 



Monochrome screens (using four colors for new look) 
detailPen 0 
blockPen 1 
textPen 1 
shinePen 1 
shadowPen 1 
hifillPen 1 
hifilltextPen 0 
backgroundPen 0 
hilighttextPen 1 

Old-style custom screens will get defaults the same as monochrome screens, with "1" and 
"0" replaced with the initial value of the screen's BlockPen and DetailPen, respectively. 

Window Borders are filled in completely, to the (compatible) dimensions defined by 
Wmdow.BorderLeft, Wmdow.BorderTop, Wmdow.BorderBottom, and Wmdow.BorderRight. 
The outer and inner edges of the borders are drawn in a combination of shinePen and 
shadow Pen, and the rest of the border is filled with backgrounciPen or hifillPen, depending on 
whether the window is inactive or active. 

Wmdow title text is rendered in textPen and hifilltextPen, again depending on whether the 
window is inactive or active, respectively. 

After refreshing the borders, Intuition refreshes all border gadgets, then draws the outline 
edges of the border again, to win all "border wars." 

A gadget is determined to be a "border gadget" fttst by the presence of one of the gadget 
Activation flags RIGIITBORDER, LEFrBORDER, TOPBORDER, and 
BOTTOMBORDER. Applications were not rigorous in setting these flags, so now Intuition 
"sniffs out" gadgets which intersect with the border, and sets a private flag bit so it will know 
to refresh these gadgets, too. . · 

Gadgets in the border consist of both system gadgets and application gadgets. The system 
gadgets were replaced by new boopsi buttongclass gadgets, using images from sysiclass. 
These gadgets and images know how to draw themselves in a 3D look or in monchrome, and 
are sensitive to whether the window is active or not. 

Application gadgets in the border are not generally that advanced, and they are not drawn 
differently, except for proportional gadgets. 

Proponional gadgets, especially those with AUTOKNOBs, are given a completely new 
treatment for the new look, but unchanged (we hope) for other uses. A proportional gadget 
gets the new look if either: 

DevCon90 20 Intuition V2.D 
Documentation Update 



u 

u 

u 

a the proportional gadget intersects the window the border. 

0 the new flag PROPNEWLOOK is set in Proplnfo.Flags. 

The images used for system gadgets respect several of the new image draw states defined in 
intuitionlimageclass .h, specifically: 

IDS_NORMAL 
IDS_SELECTED 
IDS_DISABLED 
IDS BOSY 
IDS_INDETERMINATE 
IDS_INACTIVENORMAL 
IDS_INACTIVESELECTED 
IDS_INACTIVEDISABLED 

- what old Drawimage() will yield 
- for selected gadgets 
- for disabled gadgets 
- for future functionality 
- for future functionality 
- normal, in inactive window border 
- selected, in inactive border 
- disabled, in inactive border 

The screen title bar is only partially converted to the new look for V36; it has a new depth 
gadget. The final design will be implemented later. 

System Requesters. Requesters created by AutoRequestO and Easy Request() also get a new 
treatment They are built ou~ of boopsi gadget and image classes, including these: 

0 gadgets are from frbuttonclass, which uses the image class frameiclass shared between all 
gadgets· but stretched suitably for each when rendered. 

Q requester body text is managed by an itexticlass boopsi image. 

Q the background of the requesters is a fillrectclass object. 

Q the "sunken" bevelled region for the text is another frameiclass image. 

Menus 

There was very little enhancement to menus for V36. No pop-up, tear-off, or pie-shaped 
menus. Sorry. There were a few things, though: 

Q ResetMenuStripO is a new function that serves as a quicker version of SetMenuStrip() 
that can be used only under certain circumstances. See the autodoc. 

Q Menu command-key equivalents are processed through the default keymap and use a 
correct algorithm for caseless comparison that doesn't break down on "international" 
characters. 

Intuition V2.0 
Documentation Update 

21 DevCon90 



a The NextSelect cycles that could prune multiple selections from your MENUPICK list 
have been eliminated. ·There is still no solution provided to the fact that the NextSelect 
chain can be severed if the user operates the menus before you're done walking the chain. 

Miscellaneous Items 

Here's a grab-bag of items that can be briefly mentioned: 

a Alerts are now green if recoverable, use their own View structure, and are always in the 
topaz 8 font They don't clobber each other if Display Alert() is called more than once, 
and they never smear the sprite any more. 

0 The intended function for taking over the system, StealiQ, was not implemented. I'm 
really sorry about this one. Maybe next time. 

0 Intuition supports taller and deeper system sprites through the new Preferences methods. 
Our "official" support doesn't extend to attached or very tall sprites, but you can use 
them if you know how ... 

0 RastPort protection. Intuition is now much better about leaving the various RastPorts it 
uses undistur~ except for side-effects of its use that should be felt As an example, 
PrintlText() will not leave any changes to font, pens, or draw mode in the rastport it is 
passed, but it will update the current text position fields, cp_x and cp_y. 

0 The rectangles drawn for interactive dragging or sizing of windows are now not so 
terribly clobbered by collisions with the video beam. 

0 Intuition's uses of Display Beep() go through the library vector, so if you SetFunction() it 
to be an audible noise, you '11 pick up Intuition's uses in string gadget editing, too. 

0 Mouse emulation is done by adding input events through the inputdevice (and the 
command IND_ WRITEEVENT). The old method was to provide an event of class 
IECLASS_POINTERPOS, and to specify within that event absolute or relative 
coordinates in some view-relative "hires-lace coordinates." That wasn't sufficient for 
new super hires modes, and isn't convenient for tablet-driver authors, so we added a new 
input class (you guessed it) IECLASS_NEWPOINTERPOS. This supports several 
methods of specifying mouse movement commands, including "tablet-oriented" 
range/value coordinates within the overall mouse movement boundaries, and "screen 
pixel" coordinates, which makes it trivial to position the mouse over some point in your 
window or screen. 

DevCon90 Intuition V2.0 
Documentation Update 



u 

u 

u 

New User Controls 

There are some new user interface features that will affect the end user. Some of them, such 
as string gadget editing control chars, we discussed above. Here are some more: 

0 The Screen Menu Snap feature brings the upper left corner of a scrolling screen into view 
when operating menus. If you hold the left-Amiga key down when you press the menu 
button, the scre~n will stay at the snapped position when you release the button. 

0 Command keys for depth arranging screens (left-Amiga M and N), for satisfying system 
requesters (left-Amiga B and V), and the qualifier for dragging screens when the mouse is 
not over the screen drag bar (left-Amiga default) can be set to different values in the 
!Control preferences tool. 

0 The screen depth keys used to mean "Workbench to front" and "Workbench to back." 
Now they mean "Workbench to front" and "Frontmost to back" which lets you cycle 
through the screens from the keyboard. 

0 Keyboard methods to move the mouse (amiga-Arrows) are now much better, including 
moving exactly one pixel per keypress (non-repeating, and in the pixels of the active 
window's screen), and have a slow, predictable ramp-up as you hold down the key and it 
repeats. While the cursor keys are repeating, you can tap the shift key for a burst of 
acceleration. Try it 

a Interactive window dragging and sizing can be aboned by pressing the menu key during 
the operation. 

a There is an optional mouse accelerator built into Intuition. It is considerably leaner than 
the one implemented in earlier alpha and beta releases. 

a The window and screen depth gadget pairs have been consolidated into single gadgets. 
When the screen or window is frontmost, selecting the gadget sends it to back. 
Oth.erwise, it is brought to the front. 

0 The window zoom gadget replaces one of the old depth gadgets. 

About the Demos and Examples 

Many of these demos are familiar from previous devcons, but there are some pretty good new 
ones, too. See the README file for the standard logical volume "Assigns" that are used to 
compile and link these examples. Some have a makeflle, others have compilation 

Intuition V2.D 
Documentation Update 23 DevCon90 



instructions in the source file or the READ?v.IE. 

PubSC - Public Screen Demo Program. This program has been completely rewritten 
since the early alphas. It is now an Intuition-based program with command and state gadgets. 
It includes some obsolete but nice gadget- and image-building techniques and also adapts 
itself to fonts of various sizes. It is itself a "visitor" ~dow, and will open on the default 
public screen. 

The command gadgets included are Close Screen, Make Default, Open New and Jump. Each 
command may also be invoked by typing the initial character of the gadget label. 

The Close Screen gadget attempts to close the current screen - that is the public screen that 
the PubSC window opens on. It will not attempt to close the Workbench screen. The gadget 
reports failure if it cannot close the current public screen because other windows are open 
on it 

The Make Default gadget requests that the current screen be made the default public screen. 
This may be selected for the Workbench screen. 

The Open New gadget will open a new public screen, named "Phred." It will report if screen 
"Phred" is already open. If you want to change the mode or name used you will have to 
modify the source. · 

The Jump gadget will cause the PubSC window to "jump" from ~ne public screen to the 
next. This is useful if you have a lot of public screens. 

The state gadgets establish global Intuition public screen modes. They are named "Auto 
Pop-to-front" and "Hijack Wqrkbench." The former determines whether a public screen will 
be moved to the front when a window opens on it The latter determines if application 
windows which are intended for the Workbench screen are diverted to the default public 
screen. This allows you to work in multiple Workbench environments, partitioning your 
projects and minimizing clutter. In addition to the state gadgets, PubSC has text displays 
showing the names of the default and current public screens. 

The source to PubSC is extremely important for understanding public screens. Especially 
important are the procedures for locking a public screen such as the Workbench, adapting a 
window layout to the screen's parameters and font, and opening a visitor window. 

The PubSC example is font-independent but not yet resolution-independent although the 
source shows what needs to be done. PubSC runs from CLI. 

DevCon90 24 Intuition V2.0 
Documentation Update 



u 

u 

u 

ScDemo (formerly SC, also ScreenDemo) -Screen Test Program and Demo. This 
program has been substantially rewritten to take advantage of the simpler new methods for 
opening screens in new modes. The new version also establishes overscanned screen 
dimensions. The program is run from the CLL Typing "?" will give you the available 
options. Open a few screens. Typing "w" opens a wide screen which you can scroll by 
dragging the scroll bar or (by pressing left-Amiga-select). Try a productivity screen. With . 
several screens open, try the new cycling command left-Amiga-M. You can close all the 
screens by typing "q" for quit or by typing "f" for free screens. Read the source file sc.c to 
see the methods for opening the various screen modes and dimensions. 

StrDemo - Demonstration Of New String Gadgets. This program is run from the CU. It 
opens a new screen, a window, and several enhanced string gadgets. This program is most 
impressive if you have ruby 12 and 8 in your fonts: directory. Besides being a test for 
proportional fonts and a demo for some of the new capabilities, this program also 
demonstrates a custom editing hook. Note that "TAB" and "Shift-TAB" will activate gadgets 
in succession. The second gadget from the top also has an editing hook. Pressing up and 
down arrow keys cycle through a list of pre-set choices. Selecting the close gadget in the 
window terminates the program. 

CustGad - Custom Gadget Demo. This program provides a custom gadget example named 
"Dial Gadget." It also uses some floating point calculations. If we had used the IEEE math 
libraries, there would be a problem, since the only task that can use the IEEE libraries is the 
same task that opened them. This illustrates an imponant point Remember that with custom 
gadgets, the code you provide will be run as different tasks, including the inputdevice. It is 
imponant to limit the activity that takes place in the gadget itself, and make more complex 
operations occur in response to a GADGETUP or GADGETDOWN message. 

EasyReq- Example of Using EasyRequestO. Type "EasyReq" from the CLI and the 
resulting requester will tell you how you can experiment with fancy formatting strings and 
arguments. When using this demo, all arguments passed to EasyRequestO are strings (*argvO), 
so the only "printf" formatting commands that makes good sense for the demo is "%s." 

The boopsi Demos Subdirectory. There is a suite of boopsi examples. One sequence of 
demos (dem~l, demo2, demo3, ... ) solves the same problem with increasingly sophisticated 
use of boops1 gadgets and classes, but with decreasing work required by the application 
~'main" pro~ g. There are examples of public and private boopsi class 
unplementattons for gadgets and images, and examples using frame images which bound and 
center their contents. See the README fll~ in that directory. You will want to have a 
9600:baud terminal attached to your Amiga for kprintf output since gadget and image class 
code ts generally not run as your application's task. You'll certainly need kprintf output to 
develop such classes anyway. + 

Intuition V2.D 
Documentation Update 25 DevCon90 



·I 



.J 









u 

u 

u 

The Gadget Toolkit 
by Peter Cherna 

The Gadget Toolkit is anAmiga sJuu.e!l.library designed to simplify the task of creating elegant and efficient 
user interfaces untJer Intuition. It offers a flexible and varied selection of gadgets and menus to help 
programmers through what used to be a difficult part of their task. 

L Introduction 

Intuition, the Amiga's graphical user-interface. is a powerful and flexible environmenL To its credit, Intuition 
allows a software designer a great degree of flexibility in creadng dynamic and powerful user-interfaces. The 
drawback of this flexibility is that programming even sttaightforward usez-interfaces fairly involved, and 
certainly difficult for first-time Intuition programmers. If we consider the saying "Simple things should be 
simple and complex things should be possible", it is clear that Intuition deliven better on the la1ter score than on 
the former. 

What we bave attempted to do with the Gadget Toolkit (GadTools) is to harness the power of Intuition and 
delivez easy-to-use high-level chunks of user-interface.. While GadTools doesn't pretend to answer all the 
possible user-interface needs of every application, it works fiDe alongside those sections of the operating system 
that are designed to meet special needs, such as Intuition's already-familiar gadgets and its new BOOPSI 
object-oriented custom gadget system. By meeting most of the user-incerface needs of most of the applications, 
GadTools should gready simply the problem of designing user-friendly software on the Amiga. 

A key benefit of GadTools is its standardized and elegant look. All applications that use GadTools will share a 
similar appearance and behavior. Users will appeciate a sense of instant familiarity even the first time they use 
your producL As well, the expected prevelance of GadTools means that a developer whose needs extend 
beyond what GadTools offers will create custom gadgets which nonetheless share the look and feel of 
GadTools. 

GadTools provides a significant degree of visual consistency. Cenainly this is true across multiple applications 
that use it, beginning with seveml that are included with AmigaDOS 2.0, such as the Preferences editms, 
WOJkbench's "Infmmation" window, and the Commodities Exchange. There is inlemal consistency between 
different elements of GadTools, too. You will notice that the look is very clean and orderly. Depth is used not 
just for visual embemshment, but as an impor1ant cue.. While the user is free to select something inside a 
"mised" area, the "recessed" 8Je8S are informational only, and clicking in them bas no effect. 

It is very important to realize tbat GadTools is not amenable to "creative" post-processing and tweaking by 
programmers who are looking to achieve sometbing a li1t1e bit different or beyond what GadTools offers. 
Developers are warned to play by the GadTools rules. Only in this way may GadTools grow 8Dd improve 
without hindrance, even allowing future feaDJres to automaticaDy appear in yom software when reasonable. 

Most developers are more concemed with and skilled in their areas of interest (which determine what type of 
product they are developing) tban they are in other aspects needed to complete their producL The author of a 
three-dimensional rendering package would JeaSOnably be more interested in better algorithms tban in tweaking 
menus and gadgets. Understandably, this has led to programs with unortbodox or awkward user-interfaces. 
GadTools will make the path of least-resistance in user-intaface design a path that will present the user with a 
consistent interface of high qualily. A motto for GadTools might be "User-friendly, and programmer-friencDy 
too!" 

The Gadget Toollclt 1 DevCon90 



n. Ingredients of GadTools 

GadTools consists of a body of routines to create, manage, and delete various useful kinds of gadgets, such as 
buttons, sliders, mutually exclusive buttons, and scrolling lists. As well, GadTools allows you to easily create, 
lay-out, and delete Intuition menus. 

To illustrate the kind of flexibility, encapsulated power, and simplicity that GadTools offers, we can look at the 
GadTools slider gadget, which would be used to indicate and conttol the level of something, for example 
volume, speed, or color intensity. While Intuition proportional gadgets deal in the an:ane Body and Pot 
variables to control the slidu knob's size and position, with GadTools the programmer directly specifies the 
minimum and maximum levels of the slider, as well as the current level. A color slider would have a minimum 
level of 0, a maximum of 15, and the current level might be 11. To simplify your event-processing, GadTools 
only sends a message when the knob has moved far enough to cause the slider level (expressed in your terms) to 
change. If a user were to slowly drag the knob of this slider all the way to the right, the program would only 
hear messages for levels 12, 13, 14, and 15, with an optional additional message wben the user released the 
mouse-button. To change the current level from within your program is as simple as calling a function and 
saying that the new level is to be (say) 5. As a final point, the slider is very well-behaved. When the user 
releases the mouse-button, the slider immediately snaps to tbe b'Ue position of that level. If a user wants to set 
his background color to light gray (say red = green= blue= 10), all three color sliders will have their knobs in 
precisely the same position, instead of anywhere in the range that means "ten". 

m. Introduction to Tags and Tag-based Functions 

The Amiga has hundreds of different system structmes, each laden with fields and flags. There must be 
thousands of intriguing bits of information that can be read or written. However, seuing a flag or field in a 
sb'Ucture is far from idea from the system's perspective. This is easily felt, such as when an Intuition 
programmer discovers that it can be a lot harder to disable a gadget than to simply set its GADGDISABLED 
flag. 0~ the more complex the object you deal with, the less appropriate it is to write into structures. 

Sometimes, a bettel' model for many meas of the system is one in wbich all traDsactions are function-based. To 
change an atlribute, the programmer must call a function that sets that atlribute to its desired value. Rather than 
provide a different function for each of the multitude of attributes, a small number of "tag-based" functions 
work quite nicely. Each attribute is specified as a Tagltem, wbich is a unit tbat has a "tag" which identifies the 
atttibute being set, and a corresponding "data" element which contains that atlribute's value (wbich might be a 
number, a pointer, etc.). 

If we allow such functions to accept a variable number ofTagltems, we then have a very powerful set of 
flexible and extensible functions. The caller only specifies those atlributes that he needs, and omits those he 
does noL Many attributes have reasonable defaults if they are left out, though some atlributes may be required 
and the function will fail if they are omitted. 

A function that accepts tags takes a pointer to an may of tag-and-dala pairs. For example, the sequence: 

struct Taqitem mytaqlist[] • 
{ 

} ; 

FRUIT Kind, "Peach", 
FRUIT-Number, 12, 
FRUIT=Juicy, TRUE, 
TAG_DONE, 0, 

CreateFruitA( mytaqlist ); 

DevCon90 The Gadget Toolkit 



u 

u 

u 

This might give you a dozen juicy peaches. If you were to omit the FRUIT_Number Tagltem, you would get 
the default, which might be a single peach. If you omitted the FRUIT_Kind, the function might reasonably fail, 
since there might be no concept of a default kind of fmiL 

The TAG_DONE tag is a special system value to indicate the end of a lag list and is required even if it would be 
the only Tagltem. 

From any programming language, tag-based functions accept an array ofTagltems that is terminated by the 
TAG_DONE tag. From. some languages such as C, there are a1temate entry points (stubs in amiga.lib) which 
accept a more convenient representation in which the tags are built on the caller's stack. These stack-based 
functions typically bear the "natural" name, while the array-based ones often have a post-pended "A" in their 
function name. Thus, we have the stack-based equivalent of the above, namely: 

myfruit a CreateFruit( 
FRUIT Kind, •peach•, 
FRUIT-Number, 12, 
FRUIT:Juicy, TRUE, 
TAG_DONE ) ; 

(Since processing will stop at the TAG_DONE lag, no corresponding data value need be supplied.) 

All GadTools tags begin with a leading "GT". In general, they also have a two-letter mnemonic for the kind of 
gadget in question. For example, slider gadgets recognize lagS such as "GTSL_Level". The GadTools tags are 
defined in <libraries/gadlools.hli>. Ceztain GadTools gadgets also JeCOgDize Inblilion tags such as 
GA_DISABLED and PGA_FREEDOM, which can be found in <inluilionlgadgetclDss.h/i> 

For more infonnation on tags and tag-based functions, you may wish to browse the autodocs, include files, 
examples, and other documentation for utility.library, as well as for gadloolsJibrary and intuition.library. 

IV. GadTools Gadgets 

The heart of GadTools is in its ability to help you aeate and manipulate a sophisticated and varied array of 
gadgets. GadTools suppons the following kinds of gadgets: 

0 Button gadgets (familiar action gadgets. such as "OK" or "Cancelj. 
0 String gadgets (for text entty). 

0 Integer gadgets (for numezic entry). 
0 Checkboxes (for OD/Off items). 

0 Mutually exclusive gadgets (radio buttons). 
0 Cycle (multiple-choice toggle) gadgets. 
0 Sliders (to indicate a level). 
0 Scrollers (to indicate a position in a list or area). 
0 Listviews (scrolling lists of text). 

0 Palette (color selection) gadgets. 
0 Text-display (read-only) gadgets. 
0 Numeric-display (read-only) gadgeu. 

TIJe Gadget Toolkit 3 DevCon90 



A. Manlpuladng GadTools Gadgets 

1. Creating Gadgets 

It is quite easy to create a gadgeL Let us bave a look at the code segment that would create the color slider we 
dicussed earlier: 

sliderqad a CreateGadget( SLIDER_KIND, newgadget, prevgad, 
GTSL_Min, 0, 
GTSL Max, 15, 
GTSL:Level, 12, 
TAG_DONE ) ; 

CreateGadget() typically allocates and initializes all the necessary Intuition structures, including the Gadget, 
IntuiT ext, and Proplnfo structmes, as well as cerlain buffers. 

CreateGadgetO takes a pammeter that detennines wbich of the above kinds of gadget you desire, a pointer to a 
GadTools NewGadget structure (which contains size and labelling information, among other things), and a 
pointer to the previously created gadget, for easy 
linking of gadgets. The list of tags follows these duee parameters. 

Since CreateGadget() is a tag-based function, it is easy to add more tags to get a fancier gadgeL For example, 
GadTools can optionally display the mnning level beside the slider. The caner must supply an sprintfQ-style 
formatting string, and the maximum length that string will resolve to when the number is inserted. 

sliderqad a CreateGadqet( SLIDER_KIND, newgadqet, prevgad, 
GTSL Min, 0, 
GTSL-Max, 15, 
GTSL:Level, 12, 
GTSL LevelFor.mat, "%ld" 
GTSL:MaxLevelLen, 2, 
TAG_DONE ) ; 

The level (0 to lS) would then be displayed beside the slider. 1be formatting Siring could instead be "C~Jid/15", 
so the level would be displayed as "'OilS" through "15/15", if you wished. 

2. Modifying Gadgets 

Some of a gadget's attributes may be cbanged at any time. while others may only be specified at the time the 
gadget is created. For example, you may not change the level-fonnaaing string after the gadget is created. 
However, you may change the slider's level (say to S), and it is easy: 

GT SetGadgetAttrs( slidergad, win, req, 
- GTSL_Level, . S, 

TAG_DONE ) ; 

Tags tbat may only be sent to CreateGadget() and not to GT_SetGadgetAUrs() win be marked as "aeate only". 
Those that are valid parameters to both functions will be marked as "CJeate and set". 

DevCon90 4 The Glldget Toollc/1 



u 

u 

u 

3. Handling Gadget Messages 

When Intuition sends you a message for one of the gadgets, you should get and reply that message through a 
. pair of special GadTools functions, GT_GetiMsg() and GT_ReplyiMsgQ. These functions ensure that you see 
only the gadget events that concan you, and in a desirable form. For sliders, a message only gets through when 
the slider's level actuaDy cbanges, and that level can be found in the IntuiMessage's Code field as in: 

imsg a GT_GetiMSg( win~>UserPort ); 
object - imsg->IAddress; 
class a imsg->Class; 
code a imsg->Code; 
GT_ReplyiMsg( imsg ); 
switch ( class ) 
{ 

case MOUSEMOVE: 
if ( object a= slidergad ) 
{ 

print£( "Slider at level %ld\n", code); 

break; 

4. IDCMP Flags 

The various GadTools gadgets require cenain classes of IDCMP messages in order to work. Each kind of 
gadget requires some of GADGE1UP, GADGETOOWN, MOUSEMOVE, MOUSEBU'ITONS, and 
INTUITICKS. You will find IDCMP definitions for each kind of gadget in <librarieslgadtools.h/i>. For 
example, SLIDERIDCMP is defined to be 

(GADGETUP I GADGETDOWN I MOUSEMOVE) 

Be sure to 'or' together the lDCMP definitions for aD the kinds of gadgets you use (do not add them!). As well, 
even if you have no rendering of your own to do, you may not use NOCAREREFRESH window Oag, and you 
must set the REFRESHWINDOW IDCMP flag. 

B._ The NewGadget Structure 

The NewGadget structure is a set of infonnalion that typically is needed for most kinds of gadgets. Attributes 
that are common to the different gadgets have been placed in the NewGadget sttucture, while those that are 
unique to specific kinds of gadget are specified as tagS sent to CreateGadget(). The NewGadget structure is 
defined as 

struct NewGadget 
{ 

}; 

WORD ng_LeftEdge, nq_TopEdge; 
WORD ng_Width, ng_Height; 
UBYTE * ng_GadgetText; 
struct TextAttr *nq_TextAttr; 
UWORD ng GadqetiD; 
ULONG ng-Flaqs; 
APTR ng-Visualinfo; 
APTR ni.:UserData; 

The Gadget Toolkit 5 DevCon90 



Fields ng_LeftEdge, ng_TopEdge, ng_ Width, and ng_Height define the size and position of the gadget you 
wish to create. Most gadgets have an associated label, which might be the text in a button or beside a 
checkmark. Point ng_GadgetText at the appropriate string. (Note that only the pointer to your text is copied, 
the text itself is not. The string you supply must remain constant and valid for the life of the gadget).· You also 
need to specify an openable font (ng_TextAttr) to use for this label and other text that may be associated with 
the gadget. The ng_Flags field is used to descn'be genezal aspects of the gadget, which include where the 1abel 
is to be placed (on the left side, the right side, centered above, centered below, or dead-center on the gadget), 
and whether the label should be rendered in the highlight color. For most gadget kinds, the label is placed on 
the left by default. Exceptions will be noted. 

For your own use and convenience ng_GadgetiD and ng_UsezData are copied into the resulting gadget 
sttucture. 

The ng_ Visuallnfo field inust be set to a special GadTools structure (the Visuallnfo structure) that contains 
infonnation that is needed to create and render GadTools gadgets. There is a pair of GadTools functions to get 
and free the Visuallnfo pointer. The Visuallnfo sttucture itself is private to GadTools and subject to change. 
For this reason, its contents will not be documented. 

C. The Kinds of GadTools Gadgets 

1. Button Gadgets 

Button gadgets (BUTION_KIND) are perhaps the slmplest and most straightforward kind of GadTools gadget. 
A button gadget would be used for an "OK" or "Save" or a similar action. You will get a hit-select button with 
a raised bevelled border, and the label you supply will be centered on the button's face. Since the label is not 
clipped, be sure that the gadget is wide enough to contain the text you supply. 

Button gadgets recognize only one tag: 

tJ GA_DISABLED (BOOL) - Set this attribute to 1RUE to disable (ghost) the button gadget, to FALSE 
otherwise (defaults to FALSE). (May be done at CreateGadget() time or any time, using 
GT_SetGadgetAttrsQ.) 

When the user selects a button ga~get, your program will receive a GADGETIJP event. 

If clicking on a button causes a requester to appear, for example a button that brings up a color requester or a 
"Quit" button that raises an "Are you sure?" requester, then lhe button text should end in " ••• ", as in "Quit. •• " 

2. Text-Entry and Number-Entry Gadgets 

Text-entry (STRING_KIND) and number-entry (INTEGBR_KIND) gadgets are fairly typical Intuition string 
gadgets. The typing area is contained by a border which is a raised ridge. 

Text-entry gadgets accept the following tags: 

tJ GTST_Siring (STRPrR) -A pointer to the string to be placed into the suing gadget buffer, or NULL to 
get an empty string gadget. The default is NUU.. The string itself is actually copied into the gadget's 
buffer. (This attribute may be set at CreateGadget() time, or later by calling GT_SetGadgetAttrsQ.) 

IJ GTST_MaxChars (UWORD) -The maximum number of cbaracters that tbe suing gadget should hold 
(default of 64). The Siring buffer tbat gets created for you will actually be one bigger than this number, 
in Otder to hold the trailing NUlL. This auribute may only be set at CreateGadget() time. 

DevCon90 6 The Gadget Toolkit 



u 

u 

u 

~ S1RINGA_Justification -This attribute controls the placement of the string within its box, and can be one of 
S1RINGLEFI', S1RINGRIGHT, or S'IRINGCENTER. The default is STRINGLEFI'. (Create only.) 

~ S'IRINGA_ReplaceMode (BOOL)- Set S'IRINGA_ReplaceMode to TRUE to get a string gadget which is in 
replace-mode, as opposed to auto-insert mode. (Create only.) 

~ GA_DISABLED (BOOL) - Set this attribute to TRUE to disable the string gadget, to FALSE otherwise 
(defaults to FALSE). (Create or set) 

Nmnber-entry gadgets accept the following tags: 

~ GTIN_Number (ULONG) - 1be number to be placed into the integer gadgeL The default is zero. (Create 
or set) 

~ GTIN_MaxChars (UWORD) -The maximum number of digits that the integer gadget should hold (defaults 
to 10). The suing buffer that gets created for you will actually be one bigger than this, in order to hold the 
trailing NULL. (Create only.) 

a GA_DISABLED (BOOL)- Set this attribute to TRUE to disable the integer gadget, to FALSE otherwise 
(defaults to FALSE). (Create or seL) 

As with all Intuition siring gadgets, you will receive a GADGETUP message only when the user presses 
~ while typing in the gadget. Note that also tike Intuition sUing gadgets, you do not hear anything if 
the user deactivates the string gadget by clicking elsewhere. Therefore it is a good idea to always check the 
sUing gadget's buffer before you use its contents, instead of just tmcking its contents as you hear GADGETUP 
messages for this gadget. 

To read the string gadget's buffer, look at the Gadget's Sttinglnfo Buffer: 

( ( struct Stringinfo * )gad->Specialinfo )->Buffer 

To detennine the value of an integer gadget, look at the Gadget's Stringlnfo Longlnt in the same way. 

Of oourse, you should always use the GTST_String or GTIN_Number tags to set these values, and never write 
to the Slringlnfo->Buffer.or Stringlnfo->Longlntfields directly. 

3. Chec/cboxes 

Checkboxes (CHECKBOX_KIND) are appropriate whenever you need to present an option which may be 
turned on or off. This kind of gadget consists of a raised box which contains a checkmark if the option is 
selected, or is blank if the option is not selected. Clicking on the box toggles the state of the checkbox. 

The dimensions of a checkbox are currently fixed. If variable-sized cbeckboxes are added in the future, they 
will be done in a compatible manner. Cmrendy the widlb and height specified in the NewGadget structure are 
ignored in favor of the fixed width and height. You may control the checkbox with the following tags: 

a GTCB_Checked (BOOL)- Set this auribute to TRUE to set the gadget's state to "checked", or set it to 
FALSE to mark the gadget as "1Ulchecked" (defaults to FALSE). (Create or set.) 

~ GA_DISABLED (BOOL)- Set this attribute to TRUE to. disable the checkbox, to FALSE otherwise (defaults 
to FALSE). (Create or seL) 

The Gadget Toolkit 7 DevCon90 



You will receive an IntuiMessage with a class of GADGETUP whenever the user selects a checkbox. As this 
gadget always toggles, you can easily track the state of the gadget yourself. Otherwise, feel free to look at the 
gadget->Flags SELECI'ED biL Of course, the gadget structure itself is not synchronized to the lntuiMessages 
you receive. If the user quickly clicks a second time, the SEI..ECTBD bit can toggle again before you get a 
chance to read it. This is true of any of the dynamic fields of tbe gadget structure. It is worth being aware of 
this, although only rarely will you have to account for it in your code. 

4. Mutulllly-Exclusive Gadgets 

You should use mutually exclusive gadgets (MX_KIND), or "radio buttons", when the user must choose one 
option from a short list of possibilities. A set of mutually exclusive gadgets consists of a list of labels, and 
beside each label is a small raised dot. Exacdy one of the dots is recessed and highlighted, to indicate the 
selected choice. The user can pick anothez choice by clicking on any of the .raised dots. This choice will 
become aetive, and the previously selected choice will become inactive. That is, the selected dot will become 
recessed while the previous one will pop out, like the buttons on a car radio. Mutually exclusive gadgets are 
appropriate when there are a small number of choices, perhaps eight or less. 

Mutually exclusive gadgets recognize these tags: 

C GTMX_Labels (STRP1R *) - A NULL-pointer-ttnninateAJ army of strings which are to be the labels beside 
each choice in the set of mutually exclusive gadgets. This may determines how many buttons are created. 
'Ibis may must be supplied to CreateGadgetQ, and may not 
be changed. The strings themselves must remain valid for tbe lifetime of the gadget. (Create only.) 

C GTMX_Active (UWORD) - The ordinal number (counting from zero) of the active choice of the set of 
mutually exclusive gadgets (defaults to zero). (Create or seL) 

C GTMX_Spacing (UWORD) - The amount of space (rows of pixels) that will be placed between successive 
choices in a set of mutually exclusive gadgets (defaults to 1). (Create only.) 

When the user selects a new choice from a set of mutually exclusive gadgets, you will receive a 
GADGETDOWN IntuiMessage. You may look in the IntuiMessage's Code field for the Oldina1 number of the 
new active selection. Curnmdy, mutually exclusive gadgets may not be disabled. 

The ng_GadgetText field of the NewGadget s11UCtUJe is ignored for mutually exclusive gadgets. The text 
position specified in ng_Flags determines whether the item labels are placed to the left or the right of the radio 
buttons themselves. By default, the labels appear on the left. Do not specify PLACETBXT_ABOVE, 
PLACETBXT_BELOW, or PLACETBXT_IN for tbis kind of gadget. 

Like the checkbox, the size of the radio button is CUI'Ielldy fixed, and tbe dimensions you supply in the 
NewGadget structure are ignmed. If in the future the button glyph is made scalable, it will be done in a 
compatible manner. 

5. Cycle Gadgets 

Like mutually exclusive gadgets, cycle gadgets (CYCLB_KIND) allow the user to choose one option from 
among several. The cycle gadget appears as a raised rectangular button with a vatical divider near the left side. 
A circular arrow glyph appears to the left of the dividez, while the current choice appears to the right. Clicking 
on the cycle gadget advances to the next choice, while shift-clicking on it changes it to the previous choice. 
Cycle gadgets are more compact than mutually exclusive gadgets, since only the current choice is displayed. 
They are preferable to mutually exclusive gadgets when a window needs to have several such gadgets (for 
example, the PrinteiGfx Preferences), or when 1l=e is a medium number of choices. If the number of choices 
is much more tban about a dozen, it may become too tius1rating and inefficient for the user to find the desired 
choice. In that case, give the user a listview (scrolling list) instead. 

DevCon90 B Tile Gadget Toolldt 



u 

u 

u 

The tags recognized by cycle gadgets are: 

a GTCY _Labels (STRPIR *) - Like GTMX_Labels, this tag is associaled with a NULL- pointer-tenninated 
array of strings which are the choices that this gadget allows. 1bis army must be supplied to 
CreateGadget(), and may not be changed. The strings themselves must remain valid for the lifetime of the 
gadget. (Create only.) 

a GTCY _Active (UWORD) -The ordinal number (counting from zero) of the active choice of the cycle gadget 
(defaults to zero). (Create or seL) 

When the user clicks or shift-clicks on a cycle gadget. you will receive a GADGE'IUP lntuiMessage. You may 
look in the Code field of the lntuiMessage for the~ number of the new active selection. Currently, cycle 
gadgets may not be disabled. 

6. Sliders 

Sliders are one of the two kinds of proportional gadgets offeml by GadTools. Slider gadgets (SLIDER_KlND) 
are used to control an amount. a level, or an intensity, such as volume or color. Optionally, the cmrent level of 
the slidez may be displayed (in real-time) alongside the gadget. Slider gadgets accept the following tags: 

a GTSL_Min (WORD) - The minimum level of a slidez (defaults to 0). (Create or set.) 

a GTSL_Max (WORD) -The maximum level of a slidez (defaults to 15). (Create or seL) 

a GTSL_Level (WORD) -The cunent level of a slider (defaults to 0). When the level is at its minimum, the 
knob will be all the way to the left (for a horizontal slider) or all the way at the bottom (for a vertical · 
slider). Conversely, the maximwn level conesponds to the knob being to the extreme right or top. (Create 
orseL) 

a GTSL_LeveiFormat (STRPIR) - A C-style formatting stting used to render the slider level beside the slider. 
Be sure to use the '1' (long) modifier for the number. The simplest would be "9&ld". You could make a 
2-digit hexach:imaJ slider with "9&02lx". Things like "'ild homs" are permissible. See the autodocs for 
exec/RawDoFmt() for full details. By default, the level is not displayed. (Create only, but if you specify 
this tag, you must~ provide GTSL_MaxLeveiLen.) 

a GTSL_MaxLevelLen (UWORD) -The maximum length of the stting that will result from yom 
level-formatting string. By default. the level is not displayed. (Create only, but if you specify this tag, you 
must also provide GTSL_LevelFormat.) 

a GTSL_LeveiPlace - To choose where tbe optional display of the level is positioned. It must be one of 
PLACBTBXT_LEFI', PLACETEXT_RIGHT, PLACBTBXT_ABOVE, or PLACBTBXT_BELOW 
(defaults to left). You may place the level anywhere (same or different as the gadget label's place) with 
the following exception: the level and the label may not be both above or both below the gadget. If you 
want them on the same side, allow space in the gadget's Jabel (see the example). (Create only.) 

a GTSL_DispFunc (LONG .(*function)(sttuct Gadget *,WORD) ) - Optional function to convert the level for 
display. A slider to select the number of colors for a screen may oprn1e in screen depth (GTSL_Min = 1, 
GTSL_Max = 5), but actually dispJay the number of colors (2, 4, 8, 16, or 32) by providing a 
GTSL_DispFunc function that retums (1 << level). Yom function must take a pointez to the gadget as the 
first parameter and the level (a WORD) as tbe second, and return the result as a LONG. If you have 
requested that the level be displayed, then by default tbe level is displayed without any conversion. 
(Create only.) 

The GadiJIIt Toolkit 9 DevCon90 



Q GA_IMMEDIATE (BOOL) • Set this to 1RUE to receive a GADGETDOWN lntuiMessage when the user 
presses the mouse button over the slider (defaults to FALSE). (Create only.) 

C GA_REL VERIFY (BOOL) - Set this to 1RUB to receive a GADGETUP lntuiMessage when the user 
releases the mouse button after using tbe slider (defaults to FALSE). (Create only.) 

Q PGA_FREEDOM- Set to LORIENT_ VERT for a vertical slider or LORIENT_HORIZ for a horizontal slider 
(defaults to horizontal). (Create only.) 

Q GA_DISABLBD (BOOL) • Set this aaribute to 1RUE to disable the slider, to FALSE otherwise (defaults to 
FALSE). (Create or seL) 

You may receive up to three different kinds of IntuiMessage when the user plays with a slider, those of Class 
MOUSEMOVE, GADGETUP, and GADGETDOWN. You may examine the lntuiMessage Code field to 
discover the slider's leveL You will hear MOUSEMOVE lntuiMessages whenever the slider's level changes. 
You never hear MOUSEMOVE lntuiMessages when the knob has not moved far enough for the level to 
actually change. For example if your slider runs from 0 to IS and is cmrendy set to 12, if the user drags the 
slider all the way up you will hear no more than three MOUSEMOVEs, one each for 13, 14, and IS. If you 
have set (GA_IMMEDIA1E, 1RUE}, then you will always hear a GADGETDOWN IntuiMessage when the 
user begins to adjust a slider. If you have set ( GA_REL VERIFY, 1RUE}, then you will always hear a 
GADGETUP lntuiMessage when the user finishes adjusting the slider. If you have asked for GADGETUP 
and/or GADGETDOWN lntuiMessages, you will always hear them, even if the level has not changed since the 
previous IntuiMessage. 

Note that the Code field of the lntuiMessage structure is a UWORD, while the slider's level may be negative, 
since it is a WORD. Be sure to copy or cast the lntuiMessage->Code into a WORD if your slider has negative 
levels. 

If the user clicks in the container next to the knob, the sli4er level will increase or decrease by one. If the user 
drags the knob itself, then the knob will snap to the nearest integral position wben it is released. Here is an 
example of the screen-depth slider discussed earlier: 

I* NewGadget initialized here. Note the three spaces 
after "Slider:", to allow a blank plus the two digits 
of the level display */ 

ng.ng_Flags • PLACETEXT_LEFT; 
ng. ng_ Gadget Tellt .. "Slider: "; 

gad • CreateGadget( SLIDER_KIND, gad, &ng, 
GTSL Min, 1, 
GTSL-Max, 5, 
GTSL-Level, current depth, 
GTSL-MaxLevelLen, 2; 
GTSL-LevelFormat, "%2ld", 
GTSL-DispFunc, DepthToColors, 
TAG_DONE ) ; 

LONG DepthToColors( gad, level ) 
struct Gadget *gad; 
WORD level; 
{ 
return ( (WORD) ( 1 <<level) ); 
} 

DevCon90 10 The Gadget Toollclt 



u 

u 

u 

7. Scrollers 

Scrollers (SCROILER_KIND) bear some similarity to slidels, but are used for a quite different job: they allow 
the usez to adjust the position of a view of a larger area. For example, Workbench's windows have scrollers 
that allow you to pan about and see icons tbat are oumde the visible portion of a window. A scrolling list in a 
file requester has a scroller that allows you to see different parts of the whole 1isL A scroller consists of a 
proportional gadget, and usually also has a pair of arrow buttons. 

While the slider deals in minimum, maximum, and cunent level, the scroller understands Total, Visible, and 
Top. For a scrolling list, Total would be the number of items in the whole list, while Visible would be the 
number of lines visible in the list and Top would be the first line shown in the visible part of the lisL Top would 
run from zero to (l'otal-Visible). For an area-scroller such as those in Wodcbench's windows, Total would be 
the height (or width) of the whole area, Visible would be the visible height (or width), and Top would be the top 
(or left) edge of the visible part. 

Scrollers respect the following tags: 

0 GTSC_Top (WORD) - Tbe top line or position visible in the area tbat the scroller represents (defaults to 0). 
(Create or set.) 

0 GTSC_Total (WORD) -The total size of the area tha1 the scroller repteSeDts (defaults to 0). (Create or set.) 

0 GTSC_ Visible (WORD) -The visible size of the area that the scrollez represents (defaults to 2). (Create or 
set.) 

a GTSC_Arrows (UWORD) - Asks for arrow gadgets to be attached to the scroller. The value supplied will be 
used as the width of each arrow button for a horizontal scmller, or the height of each arrow button for a 
vertical scroller (the other dimension will match the whole scroller). By default, no arrows will be 
attached, though we genemlly recommend that you ask for arrows. (Create only.) 

a GA_IMMEDIATE (BOOL)- Set this to 1RUE to receive a GADGETDOWN lntuiMessage when the user 
presses the mouse button over the scroller (defaults to FALSB). (Create only.) 

a GA_REL VERIFY (BOOL) - Set this to 1RUE to receive a GADGB1UP lntuiMessage when the user 
releases the mouse ~tton aft« using tbe scroll« (defaults to FALSE). (Create only.) 

a PGA_FREBDOM- Set to LORIENT_ VERT for a vatical scroller dr LORIBNT_HORIZ for a horizontal 
scroller (defaults to horizontal). (Create only.) GA_DISABLBD (BOOL) - Set this attribute to TRUE to 
disable the scroller, to FALSE otherwise (defaults to FALSB). (Create or set.) 

The IntuiMessages you receive for a scroller gadget are the same in D8IDie as those for a slider (see above), 
including the fact that you only hear a message when tbe mob moves far enough for the Top value to actually 
change. 1be Code field of the lnluiMessage win contain the new Top value of the scroller. H the usez clicks on 
an arrow gadget, the scroller moves by one unit. If the user holds the buUOD down over an arrow gadget, it 
repeats. 

H the usez clicks in the containez next to the knob, the scroller will move by one page, which is the visible 
amount less one. 'Ibis means that when the usez pages duough a scroUing list, any pair of successive views will 
overlap by one line. This helps the user UDdersland the continuity of the lisL If you are using a scroller to pan 
through an area then there will be an overlap of one unit between successive views. We recommend that you 
scale yo1D' Top, Visible, and Total so that one unit represeniS about five to ten pezcent of the visible amounL A 
future GadTools might allow you to explicidy set the amount of overlap. 

The Gadget Toolkit 11 DevCon90 



8. Listview Gadgets 

Listview gadgets (LISTVIEW _KIND) are scrolling lists. They consist of a scrollm' with arrows, an area where 
the list itself is visible, and optionally a place where the CUDalt selection is displayed, which may be editable. 
The user can browse through the list using the scroller or its arrows, and may select an entry by clicking on that 
item. There are a number of tags that are used with listviews: 

Q G1L V _Labels (struct List *) - An Exec list whose nodes' ln_Name fields are to be displayed as items in the 
scrolling lisL If your list is empty, you can use an empty List structure or a NULL value for 
G1L V _Labels. Use a value of(...()) to detach the list from the listview (see below). Defaults to NULL. 
(Create or set.) 

Q G1L V _Top (UWORD) - The top item in the list visible in the listview (defaults to 0). (Create or set.) 

Q G1L V _ReadOnly (BOOL) - Set this to TRUE for a read-only listview, which the user can browse, but not 
select items from (defaults to FALSE). A read-only listview can be recognized because the list area is 
recessed, not raised. (Create only.) 

Q G'IL V _ScrollWidth (UWORD) - The widlh of the scroller to be used in the listview (defaults to 16). (Create 
only.) 

Q G'IL V _ShowSelected (struct Gadget*) - If you want the cunendy selected entry displayed undemeath the 
listview, then use this 1ag. Set its value to NULL to get a read-only (TBXT_KIND) display of the 
currently selected entry, or set it to a pointer to an already- a:eated GadTools string gadget, to allow the 
user to directly edit the current entry. By default, there will be no display of the currently selected entry. 
(Create only.) 

Q G'IL V _Selected (UWORD) - Ordinal number of the item to be placed into the display of the current selection 
under the listview. This tag is ignored if GTL V _ShowSelected is not used. Set it to ( ...()) to have no 
current selection (defaults to ...0). (Create or set.) 

Q LAYOUTA_SPACING (UWORD)- Bxua space (rows of pixels) to be placed between the entries in the 
listview (defaults to zero). (Create only.) 

The only IntuiMessages you ever hear from a listview happen when the usez selects an item from the list. You 
will then receive a GADGE1UP IniUiMessage, and you may look at the Code field of lbat message for the 
ordinal nmnbel' of the item within the list that was selected. 1bis numbel' is independent which part of the list 
the user' has scrolled into view. 

If you auach a display gadget by using tbe Tagltem ( G'IL V _ShoWSelected, NULL), then whenevez the user 
clicks on an entry in the listview it will be copied into tbe display gadget undemeatb. If you want tbis to be 
editable, then you must first create a GadTools suing gadget whose width matches the width of the listview, and 
then use the Tagltem ( G'IL V _ShowSelected, sttinggad}, where sttinggad is a pointer to that gadget. When the 
USC2' selects any entry from the listview, it gets copied into the Siring gadget. As wen. the user can edit the 
string. and you will hear normal string gadget GADGETUP messages when the user presses <BNTBR>. 

The Exec list and its node structures may not be modified while they are auached to the listview, since the list 
might be needed at any time. If you have prepared a whole new List sttucture, you may replace the displayed 
list in a single step by calling GT_SeLOadgetAttrsQ with tbe Tagltem ( G'IL V _Labels, newlist). If you need to 
operate on the list that you have already passed to the listview, detach it by setting the GTL V _Labels attribute 
to ( ...0). When you are done modifying the list, resubmit it by setting G'IL V _,abets to once again point to iL 
This is bettez than first setting the labels to NUlL and later back to your list, since selling G'IL V _Labels to 
NULL will clear the listview. If you do set the G1L V _Labels auribute to (...0), you are expected to set it back 
to something detenninate (a list, or NULL) soon after. 

DevCon90 12 The Gadget Toolkit 



u 

u 

The height you specify for your listview will detennine the number of lines in the list area. When you create a 
listview, it will be no bigger than the size you specify in the NewGadget structure. The size will include the 
current-display gadget (if any) that you have requested via the 011.. V _ShowSelected tag. The listview may end 
up being less tall than you asked for, since its allowable height is as granular as the height of a single line in the 
list area. 

By default, the gadget Jabel will be placed above the listview. You may override this using ng_Fiags. A 
listview may not be disabled. 

9. Palette Gadgets 

Palette gadgets (PALE'IT.E_KIND) let the user pick a color from a set of several. A palette gadget consists of a 
number of colored squares, one for each color available. As well, an indicator square which is filled with the 
currendy selected color is optional. To create a color editor, a palette gadget would be combined with some 
sliders to control red, green, and blue components, for example. 

Palette gadgets use the following tags: 

0 G1P A_Depth (UWORD) -The number ofbitplanes that the palette represents. There will be (1 << depth) 
squares in the palette gadget. The default depth is 1. (Create only.) 

0 G'IP A_ Color (UBYTE) - The selected ~lor of the palette (defaults to 1). (Create or set.) 

0 G1P A_ColorOffset (UBYTE) - The first color to use in the palette. If GTP A_Depth was two and 
G1PA_Color0ffset was four, then the palette would have squares for colors four, five, six, and seven. 
(Defaults to zero). (Create only.) · 

0 GTP A_IndicatorWidth (UWORD) - The desired width of the current-color indicator. By specifying this tag, 
you are asking for an indicator to be placed to the left of the color selection squares. The indicaror will be 
as tall as the gadget itself. By default there is no indicator. (Create only.) 

0 G'IP A_IndicatorWidth (UWORD) - The desired height of the current-color indicator. By specifying this tag, 
you are asking for an indicator to be placed above the color selection squares. The indicator will be as 
wide as the gadget if:self. By default there is no indicator. (Create only.) 

0 GA_DISABLED (BOOL) - Set this aaribute to 1RUE to disable the palette gadget, to FALSE otherwise 
(defaults to FALSE). (Create or set.) 

You will receive a GADGE1UP IntuiMessage when the user selects a color from the palette. The current-color 
indicator is recessed, indicating that clicking on it has no effect. 

If your palette is wide and not tall, you should use the GTP A_IndicatorWidlh tag to put the indicator on the left. 
If your palette is 1all and narrow, put the indicator on top using GTPA_IndicatorHeight. By default, the 
gadget's label will go above the palette gadget, unless you specify GTPA_IndicatorWidth, in which case the 
label will go on the left. In either case, you may override the default by setting the appropriate flag in the 
NewGadget's ng_Fiags field 

The size you specify for your palette gadget will determine how the area is subdivided to make the individual 
color squares. The actual size of the palette gadget will be no bigger than the size you supply, but it can be 
smaller since the color squares will end up all exacdy 
the same size. 

The Gadget Toolkit 13 DevCon90 



10. Text-Display and Number-Display Gadgets 

Text-display (TEXT_KlND) and number-display (NUMBER_KIND) gadgets are read-only displays of 
infonnation. They are useful for displaying information tbat is not editable or selectable. but that you 
nevertheless want to use some of the GadTools formatting and visuals for. Conveniently, they are automatically 
refreshed for you, like all GadTools gadgets. As well, their displayed value can be changed by yoiD' program. 

These gadgets can consist of the label supplied as the NewGadget's ng_GadgetText and/or a fixed or changing 
numeric value or string. 

Text-display gadgets recognize the following tags: 

Q GTIX_Text (STRPrR) -Pointer to the string to be displayed, or NULL for no string (defaults to NULL). 
(Create or set.) 

Q GTIX_Border (BOOL) - Set to 1RUE to place a recessed bolder around the displayed string (defaults to 
FALSE). (Create only.) 

C GTIX_CopyText (BOOL) -This Oag instructs the text-display gadget to copy the supplied GTIX_Text 
string, instead of using only a plinter to the string. 1bis only works for tbe inilia1 value of GTrX_Text set 
at CreateGadget() time. If you subsequently change G'ITX_Text, the new text will be referenced by 
pointer, not copied. (Create only.) 

Number-display gadgets have the following tags: 

Q GTNM_Number (LONG) - The number to be displayed (defaults to zero). (Create or seL) 

Q GTNM_Border (BOOL) - Set to TRUE to place a recessed border around the displayed number (defaults to 
FALSE). (Create only.) 

Text-displBy and number-display gadgets never cause lntuiMessages to be sent, since they are not selectable. 

11. Generic Gadgets 

If you need to define your own gadgets, but you like the conveuience of GadTools gadget creation and deletion, 
you may create a GadTools generiC gadget and use it any way you see fiL In fact, all of the kinds of GadTools 
gadgets are created out of GadTools GENERIC_KJND gadgels. 

The gadget that gets created will heed almost all the information contained in the NewGadget structure you 
supply. If you supply a non-NULL ng_GadgetText, the gadget's GadgetText will point to an IntuiText 
structure with the supplied string and fonL However, do not specify any of the PLACET.EXT ng_Flags, as they 
are currently ignored by GENERIC_KIND gadgets, but this may not always be so. 

It is up to you to set the Flags, Aclivadon, GadgetRendez, SelectRender, MnbJaiE'tClude and SpeQallnfo fields 
of yoiD' gadget structure. As wen, you must set the GadgetType field. but be certain to preserve the bits set in it 
as it comes back from C!eateGadget() - they are non-zero. If you wanted to make a boolean gadget, you would 
therefore say: 

qad->GadqetType I• BOOLGADGET; 

and not 

qad->GadqetType a BOOLGADGET; 

(If you had just used "=", the gadget would not get freed by FreeGadgetsQ.) 

DevCon90 14 The Gadget Toolkit 



u 

u 

u 

D. Functions ror GadTools Gadgets 

GadTools provides a number of functions to create, modify, handle, retiesh, and free gadgets. Some of them 
are used to do new kinds of work, such as CreateGadgetQ and GT_SetGadgetAttrsQ, while others should be 
used in place of similar Intuition functions, to cooperate with GadTools. 

1. CreateGadget() 

As its name implies, CreateGadgetQ (and the tag-army version, CreateGadgetAQ) is used to allocate and 
initialize new GadTools gadgets. CreateGadgetQ takes three parameters, followed by a set of tags. The first 
parameter indicates which kind of gadget you wish to create. You may choose from among the kinds already 
discussed. 

The second parameter is a pointer to the previous gadget you have created. This has three useful effects. First, 
the new gadget is automatically linked into the previous gadget's NextGadget field. Second, if one of the 
gadget creations fails (usually due to low memory, but other causes are possible), then for the next call to 
CreateGadgetQ, previous will be NULL, and CreateGadgetQ will fail instantly. This means that you can 
perform several successive calls to CreateGadgetQ, and only have to check for failure at the end The thild 
reason is that (although you never need to know this) certain calls to CreateGadgetQ actually cause several 
Intuition gadgets to be allocated, and they can be automatically linked in without your interaction only if a 
previous gadget pointer is supplied (see "Documented Side-Effects" for a waming). If several gadgets are 
created, they work together to give you the functionality that is a single GadTools "gadget", and you should 
always act as though the gadget pointer you receive is the one true gadget 

There is one exception to the fact that you only have to check for failure after the last CreateGadgetQ call, and 
that is when you are depending on the successful creation of a gadget Say you wanted to create a suing gadget · 
and save a pointer to the suing buffer. You should do as follows: 

gad= CreateGadget( STRING_KIND, gad, &ng, 
GTST_String, "Hello World", TAG_DONE ); 

if ( gad ) 
( 

} 

stringbuffer • ( ( struct Stringinfo * ) 
( gad->Specialinfo ) )->Buffer; 

I* Creation can continue here: */ 
gad= CreateGadget( ••. _KIND, gad, &ng2, ••• ); 

The third parameter to CreateGadgetQ is a pointer to the NewGadget stmctme, was has been explained earlier, 
and can be found in <librarieslgadtools.h/i>. One nugor benefit of having a reusable NewGadget structure is 
that often many fields do not change, and some fields change incrementally. For example, you typically can set 
the NewGadget's nL Visuallnfo and nLTextAur only once, and never have to modify them again. A set of 
similar gadgets may share size and some positioDal information. You may end up with something like: 

I* Say that the NewGadget structure 'ng' is fully 
initialized here for a button labelled "OK" */ 

gad= CreateGadget( BUTTON_KIND, gad, &ng, TAG_DONE ); 

/*.Modify only those fields that have changed:*/ 
ng.ng GadgetiD++; 
ng.ng-LeftEdge += 80; 
ng.ng_GadgetText m "Cancel"; 
gad • CreateGadget( BUTTON_KIND, gad, &ng, TAG_DONE ); 

The Gadget Toolkit 15 DevCon90 



After the first three parameters comes the tags. As explained earlier, CreateGadgetAO takes a pointer to 
TAG_DONE-terminated array of Tagltems, while CreateGadget() expects to find a set of Tagltems (ending 
with TAG_OONE) on the caller's stack. The tags tbat are valid depend on the kind of gadget being Cieated. 
The individual tags have been explained in the section on each kind of gadget, and may also be found in the 
autodocs for ~GadgetO. Only those tags which are noted as being valid at "create" time may be used. 
Creating certain kinds of gadgets may fall in the absence of some required ·tags. 

All gadgets created by GadTools currently have the GADTOOL_TYPE bit set in their GadgetType field. his 
not correct to depend on this or otherwise assume this will remain true. 

2. G'f _ SetGadgetAttrs() 

To change the auributes of a GadTools gadget after it has been created, you should call the 
GT_SetGadgetAars() function. This function takes a pointer to a GadTools gadget (as returned by 
CreateGadget()) as its first paramelel', followed by a pointer to the gadget's window. The third parameter for 
GT_SetGadgetAttrsO is currendy required to be NULL, but it is resezved as a pointer to a requester, in 
anticipation of a future GadTools that is allowed to be used in IeqUeSte.rS. 

Following these three parametas, you pass a set ofTagltems on the stack (for GT_SetGadgetAttrsQ) or a 
pointer to an array of Tagltems (for GT_SetGadgetAunAO) tbat describe the 811ributes you would like to 
change. As~ the last Tagltem should be TAG_DONB. In the sections descnoing the kinds of gadgets in 
GadTools, the posstble tags are described. Only those marked as valid at "set" time may be changed with 
GT_SetGadgetAttrsQ. The tags are also described in the autodocs for GT_SetGadgetAttrs(). 

When you change a gadget using this function, the gadget will automatically update its visuals. No refresh is 
required, nor should any refresh can be pezfmmed. Note that you may not call GT_SetGadgetAttrsO inside of 
GT_Begin/EndRefresbQ, which is true of other Intuition gadget functions as well. 

Here are some example uses of GT_SetGadgetAttrs(): 

I* Disable a button qadqet *I 
GT_SetGadqetAttrs( buttongad, win, NULL, 

GA_DISABLED, TRUE, 
TAG_DONE ) ; 

I* Change a slider's range to be 1 to 100, currently at 50 *I 
GT_SetGadqetAttrs( sliderqad, win, NULL, 

GTSL Min, 1, 
GTSL-Max, 100, 
GTSL:Level, 50, 
TAG_DONE ) ; 

I* Add a node to the head of listview's list, 
and make it the selected one */ 

GT SetGadqetAttrs( listviewqad, win, NULL, 
-GTLV_Labels, -o, I* detach list before modifying *I 

TAG DONE ) ; 
AddHeadl &lvlabels, &newnode ); 
GT SetGadqetAttrs( listviewqad, win, NULL, 

-GTLV Labels, &lvlabels, I* re-attach list *I 
GTLv:selected, o, 
TAG_DONE ) ; 

DevCon90 16 The Gadget Toolkit 



u 

u 

3. GetVisuaUnfo() and FreeVisuaUnfo() 

In order to ensure their best appearance, GadTools gadgets (and menus- see later) need to know various pieces 
of information about the screen they will appcm on. Before creating any GadTools gadgets or menus, you must 
get this information using the GetVisuallnfoO call. The first pammeter to GetVisuallnfoO is a pointer to the 
screen you will use. GetVisuallnfoO also accepts a set of tagS, though cmrendy none are recognized, so you 
should always use only TAG_DONB. The function returns an abstract handle called the Visuallnfo. You must 
set the nL Visuallnfo field of your NewGadget structures to this handle. As well, certain OadTools menu and 
rendering functions require the Visuallnfo handle. 

There are several ways to get the pointer to the ~n you will be opening your window on. If you are going to 
be using a custom screen, then you get this pointer by calling OpenScreenO or OpenScreenTagsQ. If you are 
opening your window on the default public screen (which is usually the Workbench), then the screen pointer is 
found in window->WScreen. However, usually you will want to create your gadgets and menus before you 
open your window. In that case, you should use the Intuition LockPubScreenO call to get a pointer to the 
default public screen, which also gets you a lock to prevent the screen from closing on you. 

After all the gadgets and menus have been freed, but before you release the screen pointer (by calling 
CloseScreenQ, CloseWindowQ, or UnlockPubScreenQ, depending on your technique), you must call 
Free VisuallnfoQ, which takes the Visuallnfo handle as its parameter. 

The sequeuce of events would then look like this: 

init() 
{ 

myscreen = LockPubScreen ( NULL ) ; 
if ( !myscreen ) 
{ 

cleanup( "Failed to lock default public screen"); 
} 
vi= GetVisualinfo( myscreen ); 
if ( !vi ) 
{ 

cleanup( "Failed to GetVisualinfo" ); 
} 
I* Create your gadgets here *I 
ng.nq_Visualinfo = vi; 

void cleanup(errorstr) 
STRPTR errorstr; 
{ 

I* These functions may be safely called with a NULL parameter: *I 
FreeGadgets( glist ); 
FreeVisualinfo( vi); 

if ( myscreen ) 
UnlockPubScreen( NULL, myscreen ); 

printf(errorstr); 

The Gadget Toolkit 17 DevCon90 



4. GT_Get/Msg() and GT_Reply/Msg() 

You may have noticed that the IntuiMessages you receive from GadTools contain more information (in the 
Code field) than you find in regular Intuition gadget messages, and that a lot of unnecessary messages (mosdy 
MOUSEMOVEs) never seem to be senL This is one of the reasous tbat dealing with GadTools gadgets is much 
easier than dealing with regular Intuition gadgets. Unfortunately tbis sort of thing cannot happen magically, and 
it requires a small amount of cooperation on yom part. This cooperation consists of using the GadTools 
functions GT_GetiMsgQ and GT_ReplyiMsgQ where you would normally have used the Exec GetMsgQ and 
ReplyMsgQ calls to manage your lntuiMessages. 

GT_GetiMsgQ actually calls GetMsgQ to remove a message from the specified pon (your window's UserPmt). 
If the message pertains to a GadTools gadget then some dispatching code in GadTools will be called to process 
the message. What you will receive from GT_GetiMsgQ is actually a copy of the real IntuiMessage, posSibly 
with some supplementary information from Gad'I'ools, such as what you typically find in the Code field. 
GT_ReplyiMsgQ will take care of cleaning up and replying the real IntuiMessage. This description of the inner 
worldngs of GT_GetiMsgQ and GT_ReplyiMsgQ is provided for understanding only; it is crucial that you make 
no assumptions or intelpretadons about the real IntuiMessage. Any such infereuces are very likely to not hold 
true in the future. See the section on docmnented side-effects for more discussion. 

5. GT_RefreshWindow() 

In the usual scheme of things, you create gadgets, add them to your window, and then call Intuition's 
RefreshGListQ function to draw all the gadgetS. To complete lhe rendering of GadTools gadgets, you are also 
required to call the GT _RefleshWindowO function. This function takes a pointer to yom window, and a pointer 
to a requester as its parameters. As GadTools gadgets are not currendy supponed in requesters, the second 
parameter must currendy be NULL. 

6. GT _BeginRefresh() and GT _ EndRefresh() 

By the time you receive a REFRESHWINDOW IDCMP message for yom window, Intuition bas already 
refreshed its gadgets. You then call Intuition's BeginRefreshQ, lhen do your custom 1e11dering operations, and 
finally you call EndRefreshQ. To allow the GadTools gadgets to be fully refreshed, you simply use 
GT_BeginRefreshQ and GT _EndRefreshO in the same way. If you are using GadTools, you may not set yom 
Window's NOCAREREFRESH Flag. Even if you have no custom rendering of yom own, you must have this 
minimum code to handle REFRESHWINDOW IDCMP messages: 

case REFRESHWINDOW: 
GT_BeqinRefresh( win); 
I* your own custom rendering, if any, qoes here */ 
GT_EndRefresh ( win, TRUE ) ; 
break; 

7. FreeGadgets() 

After you bave closed down yom window, it will be time to flee the gadgets tbal you allocated using · 
CleateGadget(). FreeGadgetsQ is a simple call tbal will flee all the GadTools gadgets tbat it finds, beginning 
with the gadget whose pointer you pass to it. Any non-Gad'I'ools gadgets found on the list will not be~ but 
they will not necessarily fOl'Dl a nice list anymore, since any intervening GadTools gadgets will be gone. It is 
safe to call FreeGadgetsQ with a NULL gadget pointer. 

DevCon90 18 The Gadget Toolkit 



u 

u 

u 

8. CreateConlext() 

The Gadget Toolkit requires some per-window context infonnation. CrealeContext() establishes a place for that 
information to go. Before you Cieate any Toolkit gadgets, you should call this function. CreateContextO takes a 
double-pointer to a Gadget s11'11CtU1e as its parameter. Mole specifically, it wants a pointer to a 
NUlL-initialized pointer to a Gadget structure. 'Ibis pointer to the Gadget structuie (glist in the example 
below) may then serve as a bandle to ~e list of gadgets as they are created. 

CreateContextO actually creates an invisible unselectable gadget that you need not worry about. GadTools can 
quickly find this gadget to locate the context information. The retum value of CreateContextO is a pointer to 
this gadget, which should be fed to your first call to CreateGadget(). 

Typically, your code would look like: 

struct Gadget *glist = NULL; 
struct Gadget *gad; 

I* Note well that CreateContext() requires a POINTER to 
a NULL-initialized pointer to struct Gadget: */ 

gad= CreateContext( &glist ); 

I* Your gadget creation code goes here: */ 
gad= CreateGadqet( BUTTON_KIND, gad, ); 
gad= CreateGadget( STRING_KIND, gad, ); 
gad • CreateGadget( MX_KIND, gad, ••• ); 

if ( !gad ) 
{ 

FreeGadgets( glist ); 
exit_error (); 

) 
else 
{ 

AddGList( win, glist, -1, -1, NULL); 
GT RefreshWindow( win, NULL); 
/*-and continue on ••• */ 

9. GT _Filter/Msg() and GT _PostFilter/Msg() 

For most GadTools users, GT_GetiMsgO and GT_ReplyiMsgO work ped'ecdy well. However, in rare cases 
you may find that they pose a bit of a problem. A typical case is when all your messages are supposed to go 
through a centralized ReplyMsgO that cannot be converted to a GT_ReplyiMsgQ. Since calls to GT_GetiMsgO 
and GT_ReplyiMsgO must be paired, there would be a problem. 

For such cases, the GT_FllteriMsgO and GT_PosiFilteriMsg() functions are available. In such a program you 
would use Exec's GetMsg() as usual. When you need to invoke the Gadget Toolkit (for example after having 
determined that this message applies to one of the windows that conlains GadTools gadgets), you should call 
GT_FdteriMsgO, which takes a regular IntuiMessage and returns either a cooked IntuiMessage or a NULL, 
signifying that that message was "cousumed" by a Gad'I'ools gadget. Consumed messages are NOT replied for 
you. 

The Gadget Toolkit 19 DevCon90 



If you do get a filtered message pointer from GT_FdteriMsgO, then you should use it like any message you 
would have got from GT_GetiMsgO. Wben you are done with it, you must call GT_PostFdteriMsgQ. In all 
cases, you MUST then reply the originallntuiMessage using ReplyMsgQ, or do whatever else you need before 
replying. 

I* port is a message port receiving different messages *I 
I* gtwindow is your window that has GadTools gadgets *I 

imsg = GetMsg ( port ) ; 

I* Is this the window with GadTools gadgets? *I 
if ( imsg->IDCMPWindow •• gtwindow ) 
{ 

} 

I* Filter the message and see if action is needed *I 
if ( gtimsg • GT_FilteriMsg ( imsg ) ) 
{ 

·switch ( qtimsg->Class ) 
{ 

I* Act depending on the message *I 

} 
GT_PostFilteriMsg ( gtimsg ) ; 

I* other stuff can go here *I 
ReplyMsg ( imsg ) ; 

It is essential that you make no assumptions about the contents of the W1filtered lnluiMessage (imsg in the 
above example). Only two things are guaranteed: the unfiltered IntuiMessage is guaranteed to be an 
IntuiMessage that needs to be replied to, and that when passed through GT_F'dtetiMsgQ, the unfiltered message 
will produce a meaningful Gad'l'ools IntuiMessage like those described in the section on the different kinds of 
gadgets. The relationship between the unfiltered and fi1taed messages are expected to change. See the section 
on documented side-effects for more inf0l'ID8Iion. 

10. DrawBeveiBo%() 

A key visual signature shared by most GadTools gadgets is the raised or recessed bevelled box. Since you may 
wish to create your own boxes to match, GadTools provides the DrawBeveiBoxO function (and 
DmwBevemoxAO, which takes a pointer to a Tagltem may). DrawBeveiBoxO requiles a pointer to the 
RastPort into which the bevelled box is to be rendered, as well as the dimensions (left. top, width, and height) of 
the desired box. 

A bevelled box may eitht2' be raised (to signify an area of the window which is selectable), or recessed (to 
signify an area of the window in which clicking will bave DO effect). 

DmwBevemoxO recognizes the following tags: 

C GT_ Visuallnfo (AP'IR) - The Visualinfo handle as returned by a prior call to GetVisualinfoQ. This value is 
required. 

Q GTBB_Recessed (BOOL) - Set to TRUE to get a recessed box, otherwise omit this tag entirely to get a raised 
box. 

DevCon90 The Gadget Toollclt 



u 

u 

u 

E. R~ictions on GadTools Gadgets 

The gadgets created by GadTools should be handled with care. They are not designed to be bent, folded, 
stapled, or otherwise mutilated by wanton function calling. Put more succinctly, there is a strict set of functions 
and operations that are permitted on GadTools gadgets. Future releases of GadTools may broaden the set of 
allowed actions, but the restrictions listed here must be heeded. Even if you discover that something works for 
your particular case, be warned that it cannot be guaranteed to always be so. As well, you might be creating an 
illusion, if the trick you concoct only mosdy works, but causes subtle problems down the line. If theze is 
something you need to do to a GadTools gadget that isn't expressly permitted, contact Commodore-Amiga to 
see if we can supply an approved technique. If no such technique is possible, we may consider adding a way in 
a future release. 

You must never selectively or forcibly refresh the gadgets. The only gadget refresh you should ever perfonn is 
the initial RefreshGListO and GT_Refresh WmdowO when you first add your gadgets to the window. You 
should never need to use these kinds of functions at other times. 

You may not selectively remove or add GadTools gadgets· to a window. This bas to do with the number of 
Intuition gadgets that each call to CreateGadgetQ produces, and also bas to do with refresh constraints. If you 
try, you may be disappointed now or in the future.. 

Never use OnGadgetQ or OffGadgetQ or directly modify the GADGDISABLBD Flag bit. The only approved 
way to disable or enable a gadget is to use GT_SetGadgetAttrs() and the GA_DISABLED tag. Those kinds of 
GadTools gadgets that do not support GA_DISABLED may not be disabled with this version of GadTools, 
period. 

You should not be writing into any of the fields of the Gadget structure, or any of the structures that hang off it, 
with the exception noted earlier for GENERIC_KIND gadgets. You should avoid making assumptions about 
the contents of these fields unless you own them (GadgetiD and UserData, for example), or if they are 
guaranteed meaningful (Left, Top, Width, Height, Flags). On occasion, you are specifically invited to read a 
field, for example the Stringlnfo->Buffer field. 

Not writing into the gadget structure means several things. Gatrrools gadgets may not be made relative sized or 
reJative positioned (GRELWIDTII, GRELHEIGHT, GRELBOTIOM, and GRELRIGHT). You may not alter 
the activation (for example changing GADGIMMEDIATE to REI.. VERIFY). You may not modify the imagery 
or the highlighting method. ·These restrictions are not imposed without reason; subtle or blatant problems may 
arise now or in future veiSions of GadTools. 

F. Documented Side-Effects 

There are certain aspects of the behavior of GadTools gadgets that should not be depended on, since we can 
already envision ways in which they might change. To help you remain compatible with future releases of the 
operating system, here are some of the known side-effects that are likely to change. 

If you use GT_FllteriMsgO and GT_PostFdteriMsgQ, never make assumptions about the message before or 
after filtering. By this we mean you should not interpret the unfiltered message, nor assume that it will or will 
not result in certain kinds of filteled message, or wbetber it will result in a consumed message (i.e. 
GT_Fdtez1Msg0 returns NUlL). This is extremely likely to change. 

If you are expecting IN1UITICKS IDCMP messages, be warned that they are consumed when a scroller's 
arrows are repeating. That is, you will not hear IN1UITICKS while the usez is pressing a scroller mows. This 
will not necessarily remain so. 

The Gadget Toolkit 21 DevCon90 



When you call CreateGadget(), one or more actual gadgets may get created. These gadgets, along with the 
corresponding code in Gad'I'ools, define the behavior of the particular kind of GadTools gadget you have 
requested. We docwnent the behavior only. The number or type of actual gadgets you really get is subject to 
change. You should always refer to the gadget pointer you receive from CreateGadget() when you call 
GT_SetGadgetAttrsQ. You never should worry about the others, nor create code which depends on their 
number or form. 

For text-display gadgets, the GITX_CopyText tag does not cause the text to be copied when you later change 
the text with GTrX_TexL 

The PLACBTEXT ng_Fiags are ignored by GENERIC_KIND gadgets. This may not always be so. 

All GadTools gadgets set GADTOOL_TYPE in the gadget's GadgetType field. Do not use this flag to identify 
GadTools gadgets - we cannot guarantee tbal it will always be set. 

The palette gadget subdivides its total area into the individual color squares. Do not assume that the subdivision 
algorithm won't change. 

We are looking at a1temate ways to indicate which color is currendy selected in a palette gadget The 
appearance (but not the basic shape) of the paleUe gadget might change as a result. 

V. GadTools Menus 

The greatest difficulty in creating menus is tbat a large number of finicky structures must be filled out and 
linked. This is bothersome because much of the required information is Olderly and is easier to do 
algorithmically than to do manually. 

As well, there are a lot of details to worry about if you want to do sensible layout of menus. This includes some 
mechanical items such as font-sensitivity, automalic columnization of too-tall menus. and accounting for space 
for checkmarks and Amiga-key equivalents. As weU. them are esthetic consideradons. such as how much 
spacing to provide, whme sub-menus should be placed. and so on. 

The GadTools menu functions support all the features that most applicalions wiD need. This includes: 

0 An easily constructed and legible descripdon of lhe menus. 

0 Font-sensitive layouL 

0 Support for menus and sub-menus. 

0 Sub-menu indicators (a">>" symbol auached to items with sub-menus). 

0 Separator bars for sectioning your menus. 

0 Command-key equivalents. 

0 Checlanarked and mutually exclusive checkmadced menu items. 

0 Graphical menu items. 

DevCon90 The Gadget Too/lclt 



u 

u 

u 

First, let us have a look at how a typical menu strip might be specified: 

struct NewMenu mynewmenu [] a 

( 

} ; 

NM_TITLE, "Project", 
NM_ITEM, "Open ••• ", 
NM_ITEM, "Save", 
NM_ITEM, NM BARLABEL, 
NM_ITEM, "Print", 

NM_SUB, "Draft", 
NM_SUB, "NLQ", 

NM_ITEM, NM BARLABEL, 
NM_ITEM, "Quit ••• ", 

NM_TITLE, "Edit", 
NM_ITEM, "Cut", 
NM_ITEM, "Copy", 
NM_ITEM, "Paste", 
NM_ITEM, NM BARLABEL, 
NM_ITEM, "Undo", 

NM_END, 0, 

0 , o, o, o,}, 
"O", 0, 0, 0, } , 
0 , o, o, o,}, 
0, o, o, 0,}, 
0 , o, o, o,}, 
0, o, o, 0,}, 
0 , o, o, o,}, 
0 , o, o, o,}, 
"Q", o, o, 0,}, 

0, o, o, 0,}, 
"X", 0, 0, 0,}, 
"C", 0, 0, 0,}, 
"V", 0, 0, 0,}, 
0, o, o, 0,}, 
"Z", 0, 0, 0,}, 

0, o, o, 0,}, 

This New Menu speclficalion would produce two menus. The first, called "Project", would have items called 
"Open", "Save", "Print", and "Quit". The "Print" item would have two sub-items. namely "Draft" and "NLQ". 
The "Edit" menu would have "Cut", "Copy", "Paste•, and "Undo" as menu items. with a separator bar just above 
"Undo". As well. the menu strip would have the command key equivalents shown ("0", "Q", "X", etc.) 

The nice thing about New Menu mays is that they can be mad easily. The elements in the New Menu may 
appear in the same order as they will appear on-saeen. there is no need to specify the sub-menus first. the 
menu items (with their sub-menus hooked in) next, and the menu headers (wilh their menu items hooked in) 
last. The indentation used above also helps underline the relationship between menus, menu items, and 
sub-items. 

A. The NewMenu StruCture 

GadTools menus are specified by filling out an anay of NewMenu structme& The New Menu structure is 
defined in <Ubraries/godlools.h/i> as 

struct NewMenu 
( 

} ; 

UBYTE 
STRPTR 
STRPTR 
UWORD 
LONG 
APTR 

nm Type; 
nm:Label; 
nm_CommKey; 
nm Flags; 
nm:MutualExclude; 
nm_UserData; 

The first field, nm_Type, defines what this particular New Menu desaibes. NM_TITLE is used to signify a 
menu heading. To specify an item, use NM_ITEM. Sub-items are declared using NM_SUB. The last entry in 
the array must bave NM_END in tbis field. 

The Gadget Toolkit DevCon90 



Note that this provides an unambiguous and convenient representation. Each NM_1TI'I..E signifies a new menu 
panel. Each NM_ITEM becomes a menu item in that menu panel. All the consecutive NM_SUBs that follow a 
menu item (NM_ITEM) compose that item's sub-menu paneL A subsequent NM_ITBM would be the next item 
in the original panel, while a subsequent NM_TITLE would begin the next menu paneL 

NM_'I'ITLB, NM_ITBM and NM_SUB are used for tex1Ual menu headers, menu items and sub-items 
respectively, in which case run _Label points to the string to be used. This string is not copied. but rather a 
pointer to it is kept. Therefore the string must remain valid for the active life of the menu. GadTools also 
supports graphical menu items and sub-items (Intuition does not allow graphical menu headers). Simply use 
IM_ITEM and IM_SUB instead, and point nm_Label at a valid Image structme. 

Sometimes it is a good idea to put a separator between sees of menu items or sub-items in the same paneL You 
may wish to separate the more drastic menu items ("Quit" or "Delete", for example) from the more mundane 
ones. Gadl'ools will give you a separaror bar if you supply the special constant NM_BARLABEL for the 
nm_Label field of an NM_ITBM or NM_SUB. 

The NewMenu sttucture bas the nm_CommKey field, where you may place a single-character string that is to 
be the Amiga-key equivalent you want for that menu item or sub-item. (Menu headers cannot bave command 
keys.) Note that assigning a command-key equivalent to a menu item that bas sub-items is meaningless and 
should be avoided. Notice that nm_CommKey is a pointez to a string, and not a character itself. This was done 
in pan because routines to support different languages typically tetum strings, not characters. The first 
character of the string is actually copied into the resulting Menultem structme. 

The nm_Fiags field of the New Menu structure corresponds roughly to the Flags field of the Intuition Menu and 
Menultem structures. However, for your convenience the sense of the Intuition MENUENABLBD and 
ITEMENABLED flags are inverted. When using GadTools, menus and menu items (and sub-items) are 
enabled by default. To specify a disabled menu, set the NM_MENUDISABLED fJag in this field. To disable 
an item or sub-item, set the NM_ITBMDISABLED flag. 

As well, the Intuition flag bits COMMSEQ, ITEMTBXT, and HIGHFLAGS (which correspond to whether this 
item bas a command-key equivalent, whether it is textual or graphical, and what method of highligiUing is to be 
used) will be set for you, so do not set these in nm_FJags. 

The nm_FJags field is also used to specify checkmarked menu items. To get a checJanark that the user can 
toggle, set the CHECKIT and MENUTOGGLE flags in the mn_Fiags field. If the item or sub-item is to start its 
life in the checked stare, also set die CHECKED flag. 

Intuition also supports mutual exclusion of checkmatted items, and GadTools gives you easy access to that, too. 
All the items (or sub-items) that are part of a mutually exclusiw set should haw the CHECKIT flag set. Those 
that are to start out checlanarked should also have the CHECKED fJag seL Tbe nm_Mub1a1Exclude field of the 
New Menu structure is a bit-wise representation of the items (in the same menu panel or sub-menu panel) 
excluded by this one. In the simple case of mutual exclusion (each choice excludes all others), set 
nm_Mutual'Exclude to -(l<<ilem number), or (-1), (-2), (-4), (-8), etc. Do not fcqet that separator bars count 
as items too. See the Intuition Menus chapter in the ROM Kemal Manual for full details on menu mutual 
exclusion. 

For your convenience, the New Menu structure also has an nm_UserDara field. 1bis da1a is transferred to a 
special place immediately following the Intuition Menu or Menultem structures that GadTools creates. Use the 
GTMENU_USERDATA(menu) and GTMENUIT.EM_USBRDATA(menuitem) macros in 
<libraries/ gadtools.h/i> to extract or change the UserDala fields of Menus aDd Menultems respectively. 

DsvCon90 24 The Gadget Toolkit 



u 

u 

u 

There are several good uses for a menu's UserData. You could put index numbers there and perform a "switch" 
statement on them, instead of using the Intuition menu numbers. The advantage of this is that the numbers you 
choose remain valid if you rearrange your menus, while the Intuition menu numbers may change. You may 
then also use these numbers as indexes into a stting-databac;e, to achieve language independence in your menus. 
Alternately, an efficient technique is to have a specific bandler function for each menu item, and put a pointer to 
that function in the corresponding item's UserDala field When you receive a :.MENUPICK message, you would 
call the selected item's function. 

B. Functions for GadTools Menus 

1. CreateMenus() 

The CreateMenusO function takes an army of New Menus and creates a set of initialized and linked Intuition 
Menu, Menultem, and IntuiText structures, that need only to be formatted before being used. Like the other 
tag-based functions, there is a CreateMenusAO call that takes a pointer to an array of Tagltems, and a 
CreateMenusO version that expects to find its tags on the stack. The first parameter that CreateMenusO takes is 
a pointer to the array of New Menu struclures desaibed earlier. 

Currently, CreateMenusO recognizes only one tag, namely GTMN_FrontPen, which is the pen number to use 
for menu text and separator bars. This tag has a default value of zero. 

CreateMenusO returns a pointer to the first Menu structure that is created, while all the Menultem structures and 
any other Menu structures hang off the appropriate pointers. If the aeadon fails for some reason (usually due to 
a lack of memory), CreateMenusO will return NULL. If your NewMenu suucture begins with an entry of type 
NM_ITEM or IM_ITEM. then CreateMenusO will reiU1'D a pointer to the first Menultem created, since there 
will be no "first" Menu structure. Before you add the menus to your window (with Intuition's SetMenuStrip() 
function) you must lay them out with LayoutMenusQ. 

2. LayoutMenus() 

The Menu and Menultem structures returned by CreateMenusO contain no size or positional information. This 
infonnation is added in a separate layout step, using LayoutMenusQ. LayoutMenus takes a pointer to a Menu 
structure (the result of CreareMenusO), a VisuaDnfo handle (that you obtained from GetVisuallnfoQ), and a set 
of tags, and fills in all the size, font, and position information for your menu strip. As with the other tag-based 
functions, you may call either LayoutMenusO or LayoutMenusAO. LayoutMenusO returns TRUE if 
successful, and FALSE if" it fails. The usual reason for failure is that the font you supplied cannot be opened. 

LayoutMenusO recognizes a single tag, GTMN_TextAUr, which is a pointer to an openable font (TextAttr 
sttucture) to be used for the menu item and sub-item text. By default, 1he screen's font will be used 

LayoutMenusO takes care of calculating the width, height, and position of each menu item and sub-item, as well 
as positioning the menu panels and the sub-menu panels. (Note that you should not also call 
LayoutMenultemsO after having called LayoutMenusQ). In the event that a menu panel would be too tall for 
the screen, it is broken up into multiple columns. As well, whole menu panels may be shifted left from their 
natural position to ensure tbat they fit on-screen. If you have a large menu combined with a large font, it can 
happen that even with columnizarion and shifting the panel is too big for the screen. Unfortunalely, GadTools 
does not currently provide any protection against tbaL 

It is perfecdy acceptable tore-layout the menus by calling ClearMenuSttip() to remove the menus, 
LayoutMenusO, and then SetMenuStrip(). You would do this if you want to change the menu's font (which is a 
tag to LayoutMenusO) or if you want to change the menu's text (say to a different language). Later, we will 
describe how to do nm-time language switching in menus. 

The Gadget Toolkit DevCon90 



3. LayoUlMenultems() 

LayoutMenultemsO is a similar function to LayoutMenusO, but only affects the menu items (and their 
sub-items) of a single menu panel. 1bis function is useful if you bave an extensible menu (such as the 
Wmkbench 's "Tools" menu). You may for example create a single Menultem by calliDg CreateMenusO with a 
two-entry New Menu array whose first entry is of type NM_ITEM and whose second is of type NM_END. You 
can then remove the menu suip, link this new ilem to the eDd of your extensible menu, call LayoutMenultemsQ 
for that menu, and re-attach the menu strip. · . 

LayoutMenultemsO takes a pointer to the first Menultem to be formatted, the Visuallnfo handle you have 
obtained from GetVisuallnfoQ, and a set of tags (either an array passed to LayoutMenultemsAQ, or stack-based 
tags passed to LayoutMenultemsQ). In addilion to recognizing the same GTMN_Text.Anr tag that 
LayoutMenusO accepts, LayoutMenultans() also knows the GTMN_Menu tag. Use tbis tag to provide the 
pointer to the Menu structure whose FII'Stltem you have passed as the first parametez to this function. We 
recommend that you always provide GTMN_Menu. 

LayoutMenultemsO returns TRUE if it succeeds, and FALSE otherwise. 

4. FreeMenus() 

FreeMenusQ will flee all the memory allocated by the conesponding call to CreateMenus(). Its parameter is the 
Menu (or Menultem) pointer tbat was returned by CreateMenus(). It is safe to call FreeMenusO with a NULL 
parameter. 

C. Restrictions on GadTools Menus 

GadTools menus are regular Intuition menus. Once the menus bave been laid out, you may do anything you 
like with them, including aaaching them or removing them from windows, enabling or disabling items, 
checking or unchecking checkmarked menu items, etc. See the Intuition documenlation for SelMenuSttip(), 
ClearMenuSbipQ, ResetMenuStrip(), OnMenuQ, and OffMenuQ, as well as tbe Intuition Menus chapter of the 
ROM Kema1 Manual for full details. 

If a GadTools-crealed menu suip is not currendy attached to any windows, you may change the text in the menu 
headers (Menu->MenuName), the command-key equivalems (Menultem->Command) or the text or imagery of 
menu items and sub-items, which Can be reached as 

struct IntuiText * )Menuitem->ItemFill )->IText 
or 

struct Image * )Menuitem->ItemFill ) 

You may also link in or unlink menus, menu items, or sub-items. if you wish. Howevea-, do not add sub-irems to 
a menu item that was not created with sub-items, and do not remove all the sub-items from an item that was 
created with some. Also, Intuicion does not like a menu 
header which bas no items. · 

You may make any of these changes, provided you subsequendy call LayoutMeausQ or LayoutMenultemsO as 
appropriate. Then, re-attach your menu sbip using SetMenuSttipO. 

Some of these manipulations mean dW you must walk the menu suip using the usual Intuition-specified 
linkages. Beginning with the first Menu SIIUCtllle, simply follow its Firsdtem pointez to get to the first 
Menultem. 1be Menultem->Subltem pointer will lead you to the sub-menus. Menultems are connected via the 
Menultem->Nexdtem field. Succeaive menu panels are liDked with the Menu->NextMenu pointer. 

DevCon90 The Gadget Too/lclt 



u 

u 

u 

D. Language-Sensitive Menus 

If your want your application to be able to switch the language displayed in your menus, it can be done quite 
easily. Simply detach the menu strip and replace the strings in the IntuiText structures as described above. It 
may be convenient to store some kind of index number in the Menu and Menultem UserDara wbich you can use 
to retrieve the appropriate Siring for the desired language. After all the strings bave been installed. call 
LayoutMenusQ and SetMenuStrip(). 

VL Future Directions 

The 2.0 releaSe of AmigaDOS is the first release to incorporate the Gadget Toolkit From here, we can see 
many directions in which Gad'I'ools should grow. Among the possible enhancements to gadgets are: 

Q Support for GadTools gadgets in Intuition requesters. 

Q Checkbox and radio button glyphs of arbitrary size. 

Q Make all GadTools gadgets obey the GA_DISABLBD tag. 

Q More support to help in font- and language-sensitive gadget layout 

Q A beUer method of indicating the selected color in palette gadgets. 

Q Replacing cycle gadgets by pop-up mtmus. 

Q A fancier listview, supporting such things as multiple selection, highlighting of 
the current selection, editing in the list, etc. 

Q Easing of some of the res1rictions explained earlier. A number of reslrictions may 
be removed just by convening GadTools to use Intuition's BOOPSI object-oriented 
custom gadget system. 

Certain kinds of gadgets ~y grow additional fealllleS and functions. As well, some of the imagery and 
behavior may be improved or altered. Of course, any side effect may cbange in behavior. 

The primary enlvmcemtmts we can imagine for menus bave to do with supporting cases when the menu panels 
end up too large. GadTools may be able to provide some eaor informadon back to the caller to inform the 
application that the menus are too big, and perbaps even by how much. 'Ibe application would then attempt to 
lay out the menus with a smaller font 

It must be stated that none of these ideas constitute any kind of a promise. As well, we are not suggesting how 
soon we may get around to any or all of these. 'Ibe list is given here to show you what we are thinking. 

Vll. Conclusion 

The Gadget Toolkit provides a convenient, flexible, and powerful means of creating a sophisticared 
user-interface for yom Amiga applicalions. A GadTools interface is easy to design and program, and i1 is easy 
for your users to grasp. With Gad'I'ools, we can aD benefit from software tbat can be completed sooner, and 
looks and behaves beuez. • 

The Gadget Toolkit DevCon90 



n 

n. 
. ' 



. \._r 









u 

u 

u 

l 

Using New DOS Calls -
Why and How 
by Randell Jesup 

1. Introduction 

A common issue facing many developers is which new DOS functions to use, and how to use 
them. This paper should give some suggestions and hints towards making effective use of 
the new functionality which is available in 2.0. Not every function is needed by every 
developer, nor should a developer use a new function instead of his own version in every 
case. Hopefully, thou~ the new functions should make it easier and quicker for you to write 
programs for 2.0, or make it possible to write applications which weren't possible before. 

2. Quick Overview 

This is a quick listing of the general classes of new functions available to you under the 2.0 
DOS: 

Q File Change Notification 
Q CooperatiVe Record Locking 
Q Standardized Command-Line Processing 
Q Standardized Pattern-Matching 
Q Simple Buffered Input/Output Routines 
Q More Flexible Handling of Locks and FileHandles 
Q Atomic Directory Scanning 
Q Easy "Thread Process" Creation 
Q Suppon for 3rd-party Shells, System Call 
Q Many Support Functions for Applications, Shells or Commands 

Examples for most of these should be on the example disks. 

Using New DOS Calls
Why and How 

~ ---- --~-

1 DevCon90 



3. Compatibility 

As noted at the '89 Devcon, the DOS has been rewritten in C and some assembler, while 
maintaining compatibility with the old BCPL commands and applications for the time being. 
Certain types of rule-bending or breaking are no longer supported (this is why the pre-2.0 Ed 
doesn't work under 2.0, unfortunately). An example of this is calling BCPL global vector 
routines by using JSR _LV00pen+2(A6). This will not work under 2.0, as DOS now uses a 
normal library jump table. 

Applications which play by the roles (and even many that don't) should continue to work 
with the 2.0 DOS. A number of structures have been expanded; where you see "private" in 
the comments for a field, do not access it in any way if you wish to continue to work under 
future versions. Use the functions provided instead. 

Most public or semi-public structures have remained the same. You are encouraged to try to 
make use of functions where possible, and to avoid certain semi-public fields, such as the 
fl_Link field of locks, since safety of access (and even the type of the contents) cannot be 
guaranteed (and never could be). This mosdy affects debugging utilities such as ShowLocks. 
For debugging and similar utilities, doing things like this can be overlooked, so long as the 
authors understand (and communicate to their users!) that the operation of the program is 
unsafe or relies on things that may change. 

For those trying to write programs that run under 1.3 as well as 2.0, you can use version 
checks to decide to make new calls, or duplicate some of the functionality of 2.0 functions. It 
will be a (hopefully little) while before most of you start requiring 2.0, but you can provide 
some added functionality in the meantime. 

DevCon90 Using New DOS Calla· 
Why and How 



u 

u 

u 

4. Notification 

One of the most interesting and potentially most powerful additions is file change 
notification. This is the ability to have your application notified by message or signal when a 
file is changed in any manner. 

Why and where should Notification be used? 

One possible use of this is hot links between applications. The 2.0 Preferences programs use 
notification to communicate with interested parties (the system or an application). For 
example, when the font selection program writes a new default font file to ENV :sys, your 
program can be notified of this and can adopt the user's new preferred font You can write 
your own configuration/preferences editors for your applications that do similar things 
without having to either have built-in configuration editing or external text files that are read 
at startup or upon user request. 

To give another example of this ability, a page-layout program could be notified of changes 
to objects included in a page, and update .automatically. The user might flip a draw program 
to the front, and revise an image which had been imported to the page-layout program. 
When the draw program writes out the image, the page-layout program would get a 
notification message, reread the file, and update the page for the user. 

This is just a quick, simple example of some of the possibilities this opens up. I expect that 
you, the developers, can come up with some far more inventive ways to ultilize this feature. 
Discuss this, think on it, and talk with other developers to come up with new uses and 
standards for those uses. · 

Bow to use Notification 

To use notification, an application first does a StartNotifyO. It will then receive messages 
when the file changes. Before exiting, the application should call EndNotifyQ. Messages (or 
signals) will be sent if the file is written to, created, deleted, truncated, or has its date 
modified ("touched"). Nothing is sent when the protection bits or file comments are changed 
(or at least nothing is guaranteed to be sent). 

Due to an oversight, Notify Requests aren't created by AllocDosObject under 2.0. This will 
be added to the next release. When you initialize your NotifyRequest, remember to set 
nr_Name to the name of the object, not nr_FullName (which is for DOS to use). Initialize 
nr_Flags to one of NRF _SEND_:MESSAGE or NRF _SEND_SIGNAL, and initialize the 
union as appropriate. The references to COPY _DATA are historical, you should ignore those 
fields. 

Using New DOS Calls· 
Why and How 

3 DevCon90 



Most applications should also set the NRF _ W AIT_REPL Y flag if they're using notification 
by message. This means that the handler will not send your application another notification 
for that tile until you reply the previous one. If the file had changed one or more times 
before you replied, it will notify you again immediately. 

NRF _NOTIFY _INITIAL is useful to avoid special-case processing during startup. It causes 
the handler to send you a change notification when you do StartNotifyO if the file exists 
already. This can save you from having to try to read the file explicitly in your startup; you 
can just let your normal notification handling in your main loop notice it. 

After a successful StartNotifyO, you should not modify your Notify Request until you do an 
EndNotifyO (it's the property of the handler). When you wish to stop notification, call 
EndNotifyQ. EndNotify() will also scan the messages waiting at the MsgPort (for 
NRF _SEND_MESSAGE) and reply any notifications for this NotifyRequest. 

A final word of caution: not all handlers can support notification. In particular, network 
handlers (such as NFS) are unlikely to support it. Check the return codes from StartNotify(), 
and if possible don't make the proper functioning of your program require notification. 
Using the above example, in your page-layout program, allow the user to tell you re-read an 
image (while ~ing it automatically if you can). 

DevCon90 4 Using New DOS CB/Is • 
Why and How 



u 

u 

u 

5. Cooperative Record Locking 

DOS and the filesystems now include a simple form of record locking. This record locking in 
voluntary (cooperative), and is based on Novell formats for specifying record locks. The 
filesystems do not stop other processes from reading or writing a locked area, but they do 
stop other people from locking it when they shouldn't. You can lock one or more records, 
and timeouts are supplied. Locks can be shared (read) or exclusive (usually for write). 

Why and where should Record Locking be used? 

Record locking is useful (perhaps required) when you expect more than one process to be 
updating a portion of a file. Of course, it's particularly useful for database programs, 
especially ones that expect to run in a networked environment. Such environments will 
become far more common in the future. 

Having a record locked does not stop other processes from reading or writing the data. 
However, it does stop other processes from locking it (depending on the modes involved). 
This is why it's cooperative record locking. 

How to use Record Locking 

Record Locking is quite easy to use. To lock a single record, use LockRecord. The timeout 
parameter is in unit of "ticks" (1/50 of a second). If the record is not available by the time 
specified, LockRecord will retmn with an error (see dosldos.h for error codes). You can also 
specify that no timeout should be used (modes REC_SHARED_IMMED and 
REC_EXCLUSIVE_IMMED), and that if the record is not available it return immediately. 

You can lock a record in exclusive or shared modes. Any number of people can lock a 
record in shared mode, while if someone has it locked in exclusive mode, no one else can 
have it locked. Normally, these are thought of as read and write modes. Exclusive locks that 
are waiting for others to unlock cause all requests for the area they cover to wait behind 
them. 

You can request that a series of records be locked. This is done by filling out a RecordLock 
structure (see doslrecord.h), and calling LockRecords. LockReconis takes a RecordLock 
pointer and a timeout. It will attempt to lock the records in sequence, using timeout on each 
lock attempt. If one of the attempts fails, all previously obtained locks are freed and a failure 
is reported. To avoid "deadly embraces'' (deadlocks) you should try to lock the records in the 
same order. In record locks, deadly embraces aren't fatal, since one or the other (perhaps 
both) will dine out eventually. Don't set infinite timeouts when this is possible! 

Unlocking records is done with UnLockRecord and UnLockRecords. You should remove all 
record locks before closing the filehandle. 

Using New DOS Cslls • 
Why and How 

5 DevCon90 



6. Standardized Command-Line Processing 

The same routine used by all the Shell commands is available to applications. ReadArgsO 
prints the familiar prompt when you type "command ?". It allows specifying a fairly 
complex set of command-line options, and does some of the validation for you. It also can be 
used to parse strings from other somces. 

Wby and where should Read.Args be used? 

If you expect to require 2.0 for your application, and your program takes any arguments from 
the shell, then you should use ReadArgs to parse your arguments if possible. This gives a 
consistent and comfortable user interface to users, instead of having to become familiar with 
many different command-line syntaxes and quirks. 

How to use ReadArgs 

Since there are a number of different ways to use ReadArgs, I'll detail a common way of 
using it. 

ReadArgs parses the command line according to a template that is passed to it. This specifies 
the different command-line options and their types. A template consists of a list of options. 
Options are named in "full" names where possible (for example, "Quick" ·instead of "Q"). 
Abbreviations can.also be specified by using "abbrev=option" (for example, .. Q=Quick"). 

Options in the template are separated by commas. To get the results of ReadArgs, examine 
the array of longwords you passed to it (1 entty per option in the template). This may 
should be cleared (or initialized to your default values) before passing to ReadArgs. Exactly 
what is put in a given entty by ReadArgs depends on the type of option. The default is a 
string (a sequence of non-whitespace characters, or delimited by quotes, which will be 
stripped by ReadArgs), in which case the entry will be a pointer. 

DevCon90 6 Using New DOS C.lla • 
Wily and How 



u 

u 

u 

Options can be followed by modifiers, which specify things such as the type of the option. 
Modifiers are specified by following the option with a '/' and a single character modifier. 
Multiple modifiers can be specified by using multiple '/' s. Valid modifiers are: 

IS - Switch. This is considered a boolean variable, and will be set if the option name 
appears in the command-line. The entry is the boolean (0 for not set, non-zero for 
set). 

/K - Keyword. This means that the <>Ption will not be tilled unless the keyword 
appears. For example if the template is "Name/K", then unless "Name=<string>" 
or "Name <string>" appears in the command line, Name will not be filled 

IN - Number. This parameter is considered a decimal number, and will be converted 
by Read.Args. If an invalid number is specified, an error will be returned The 
entry will be a pointer to the longword number (this is how you know if a number 
was specified). 

ff - Toggle. This is similar to a switch, but when specified, it causes the boolean 
value to "toggle". Similar to /S. 

/A - Required. This keyword must be given a value during command-line processing, 
or an error is returned 

IF - Rest of line. If this is specified, the entire rest of the line is taken as the parameter 
for the option, even if other option keywords appear in it. 

1M - Multiple strings. This means the argument will take any number of strings, 
returning them as an atray of strings. Any arguments not considered to be part of 
another option will be added to this option. Only one 1M should be specified in a 
template. Example: for a template "Dir/M,All/S" the command-line "foo bar all 
qwe" will set the boolean "all", and return an atray consisting offoo", "bar", and 
"qwe". The entry in the array will be a pointer to an array of suing pointers, the 
last of which will be NULL. 

There is an interaction between 1M parameters and /A parameters. If there are 
unfilled /A parameters after parsing, it will grab strings from the end of a previous 
1M parameter list to fill the A's. This is used for things like Copy 
("From/~ To/A"). 

Using New DOS Csl/s • 
Why and How 

7 DevConSO 



ReadArgs returns a struct RDArgs if it succeeds. This serves as an .. anchor" to allow 
FreeArgs to free the associated memory. You can also pass in a struct RDArgs to control the 
operation of ReadArgs (nonnally you pass NULL for the parameter, and ReadArgs allocates 
one for you). This allows providing different sources for the arguments, providing your own 
string buffer space for temporary storage, and extended help text. See doslrdargs.h for more 
information on this. Note: if you pass in a struct RDArgs, you must still call FreeArgs to 
release storage that gets attached to it, but you are responsible for freeing the RDArgs 
yourself. 

Here's a bit of sample code to illustrate using ReadArgs. A complete example should appear 
on your example disks. 

I* This is an example of the command-line processing for a print program */ 

idefine TEMPLATE 
idefine OPT_FILES 
idefine OPT_HEADER 
idefine OPT_SPOOL 
idefine OPT PAGE 
idefine OPT:COUNT 

"Files/M/A,Header/K,Spool/S,Page=PageNumber/K/N" 
0 
1 
2 
3 
4 

LONG opts[OPT_COUNT]; I* C guarantees this will be all O's! */ 

struct RDArgs *argsptr; 
char **sptr; 

1*====-===========-===-==========z=:::a=====-=======* I 
I* If ReadArgs() sees anything but zeros passed to it in elements */ 
/* of this array, ReadArgs() will assume that they are defaults. */ 

l*a=============================a=================================*/ 
argsptr = ReadArgs(TEMPLATE, opts, NULL); 

/* argsptr will be NULL if ReadArgs() failed, the secondary result *I 
I* code is fetched by IoErr(). */ 
l*===a===a=:=========================:::============* / 

if (argsptr == NOLL) 
{ 

PrintFault(IoErr(), NULL); I* prints the appropriate err message *I· 

else 
{ 

sptr = opts[OPT_FILES]; 
if (! sptr) 

/* this can never actually happen, due to /A *I 
VPrintf("No files specified!\n",NOLL); 

DevCon90 B Using New DOS Cslls
Why and How 



u 

u 

u 

else 
{ 

VPrintf("files specified:\n",NULL); 

I* last string ptr "is NOLL *I 
while (*sptr) 
{ 

I* VPrintf takes a ptr to an array of arguments! *I 
VPrintf("lt%sln",sptr); 
sptr++; 

I* if option was not specified, it will be NOLL (since buffer started *I 
I* with opt[] array all NOLL). 

*I 

if (opts[OPT_HEADER]) 
{ 

VPrintf("Header is '%s'\n",opts[OPT_HEADER]); 

if (opts[OPT_SPOOL]) 
{ 

VPrintf("Spooling selected\n"); 

if (opts[OPT_PAGE]) 
{ 

I* the actual number can be accessed by 
* ( (long. *) opts [OPT_PAGE] ) 

*I 
VPrintf("~ked to print page %ld\n",opts(OPT_PAGE]); 

I* cleanup *I 
FreeArgs(argsptr); 

Using New DOS Csl/s • 
WhysndHow ' DevConSO 



7. Standardized Pattern-Matching 

Routines for both string pattern matching and directory wildcards are now available. These 
make accessing and manipulating pattern-matched files an easy operation. These routines are 
used by all the commands that allow patterns (most commands). They can also be used to 
search subdirectories as well as the cUlTent directory (as used in "dir all", etc). 

Why and where should Pattern-Matching be used? 

The pattern-matching routines (MatchFirst, MatchNext, MatchEnd) are useful wherever an 
application needs to access files named in a cenain way, or where a user needs to specify 
patterns for objects to work on. The raw pattern routines (ParsePattem, MatchPattem) are 
useful inside applications when you want to allow the user to specify a pattern for some sort 
of selection from strings. 

There are several advantages in using these routines over private pattern-matching routines. 
The size of executeable tiles will be smaller. Development time will be cut as· less code has 
to be written. Also, having a standard method of pattern-matching will assist in providing a 
consistent user interface. 

How to use Pattern-Matching 

The patterns are fairly extensive, and approximate some of the ability ofUnix/grep regular 
expression patterns. Here are the available tokens: 

? 
# 
(ab/cd) 

[abc] 
a-z 
% 

* 

Matches a single character. 
Matches the following expression 0 or more times. 
Matches any one of the items separated by 'I'. 
Negates the following expression. 
Character class: matches any of the characters in the class. 
Character range (only within character classes). 
Matches 0 characters always (useful in "(foolbarl% )"). 
Synonym for "#?", not available by default in 2.0. Available as an option 
that can be turned on. 

"Expression" in the above table means either a single character (ex: 11#?"), or an alternation 
(ex: "#(ablcdlet)"), or a character class (ex: "#[a-ZA-Z] 11

). 

DevCon90 1D Using New DOS Calls
Why and How 



u 

u 

u 

To pattern-match a string, you must first call ParsePattem. This creates a tokenized version 
of your string (into a buffer you supply) that is used by MatchPattem. It also returns whether 
or not the string contained any wildcards. You then call MatchPattem to find if a given 
string matches the tokenized pattern. 

To find files that have names matching a pattern, you call MatchFirst, MatchNext, arid 
MatchEnd These are passed an AnchorPath structure (see dosldosasl.h) as a control 
structure. 

MatchFirst is passed your pattern (you do not pass it through ParsePattem - MatchFll'St does 
that for you) and the control structure. MatchFtrSt normally initializes your AnchorPath 
structure for you, and retmns the first file that matched your pattern, or an error. Note that 
MatchFirst/ MatchNext are unusual for DOS in that they retmn 0 for success, or the error 
code (see dosldos.h), instead of having the application get the error code from loErr(). 

MatchNext gets the next file or directory that matches the pattern, and returns the same codes 
as MatchFirst. 

When looking at the result of MatchFirst/MatchNext, the ap_lnfo field of your AnchorPath 
has the results of an Examine of the object. You normally get the name of the object from 
fib_FileName, and the directory it's in from ap_Current->an_Lock. To access this object, 
normally you would temporarily CurrentDirto the lock, do an action to the file/dir, and then 
CurrentDir back to your original directory. 

There are various bits that control whether MatchNext should "enter" subdirectories and 
other functions, see dosldosasl.h. 

After getting ERROR_NO_MORE_ENTRIES (or any other error, for that matter), you must 
clean up by calling MatchEnd, which frees storage and any locks associated with the 
AnchorPath, after which you can free your AnchorPath. 

Using New DOS Cs/ls • 
Why and How 

11 DevCon90 



8. Simple Buffered Input/Output Routines 

A series of functions to do simplistic buffered 1/0 is available in 2.0 DOS. These are similar 
to ANSI C stdio routines, though not identical. They implement read/write buffers to reduce 
the amount of overhead in doing single character 1/0. 

Why and where should ButTered VO be used? 

The buffered I/0 routines are useful in producing small programs that do not link in large 
amounts of HLL library code, or for people writing in assembler that don't want to write their 
own buffered I/0 routines. They are far more efficient than doing single-character or small 
string reads or writes. 

You can use them in any place you would use C stdio functions. This will mean your 
program will require 2.0, of course. Single and multi-character reads and writes, line reads 
and writes, equivalents of fprintf, etc, and record read/write routines are available. In 
addition, old BCPL-style formatting is available, though not recommended. By using the 
Flush function, you can mix buffered I/0 with unbuffered I/0. 

How to use ButTered VO 

Using buffered I/0 is quite simple. Use the calls as you would the stdio equivalents (note 
that ordering of parameters is sometimes different). The single buffer will switch between 
read and write as needed, maintaining the current effective position in the file. Flush will 
cause unwritten write data to be written, unread read data in the buffer to be dropped, and the 
file position adjusted back to the right spot via Seek. 

When switching between buffered and unbuffered 1/0, you should call Flush to make sure 
the position and integrity of the file is maintained. You should call it when switching in 
either direction. · 

An important point: if you are using buffered 1/0 on your original default lnputO filehandle, 
you must call Flush before reading any data. This is because shells have to stuff the buffer of 
the filehandle with the contents of the command-line to be compatible with 1.3 BCPL 
programs. Taking advantage of this fact is not encouraged. Use GetArguments instead. 

Any unwritten write data in the buffer will be written when the file is closed, and the buffer 
deallocated.. 

SetVBuf currently doesn't do anything very useful, but we plan to allow different buffering 
modes in future releases, as well as the ability to change the size of the buffer. Currently, the 
buffer is flushed on writes of\n, 'n, \r, or \12 for interactive filehandles, or of course when 
the buffer is full. 

DevCon90 12 Using New DOS Clllla
WIJyandHow 

01 



u 

u 

u 

9. More Flexible HandUng of Locks and FlleHandles 

There are a number of new routines that act on locks and filehandles. These greatly increase 
the flexibility available in manipulating objects. In particular, a number of previously 
impossible operations are now supported, such as examining an open filehandle. Some of 
them were possible, but were hard to code. Here's a quick list of some of them: 

NameFromLock () 
NameFromFH () 
ExamineFH () 
DupLockFromFH () 
ParentOfFH () 
OpenFromLock () 
SameLock() 
SetMode () 
ChanqeMode ( ) 
SetFileSize () 
Inhibit() 
Format() 
Relabel() 
AddBuffers() 

Why and where should the new Lock and FDehandle routines be used? 

These routines are useful in many places. SetFileSize allows either truncating or extending 
files. NameFromLock/NameFromFH are useful in many, many places. OpenFromLock 
allows you to exchange a lock for a filehandle on the same object. SetMode does an 
ACTION_SCREEN_MODE, which has exisied since 1.2, but had to be sent as a packet 
before (same for Inhibit, Relabel, and AddBuffers). ChangeMode allows you to change the 
mOde of a lock or filehandle (exclusive to shared, for example). 

Some of these can be duplicated with some work, such as NameFromLock. If you must run 
under 1.3, this may be an option. Many of the others can not be safely duplicated. 

How to use the new Lock and FDehandle routines 

In general, using these routines is fairly simple, and the autodocs should explain most of 
these calls fairly well. Since most of these are based on new filesystem packet types, you 
should be careful to check for errors, such as ACTION_NOT_KNOWN, to deal with older 
filesystems which have not been upgraded yet (mostly older network filesystem 
implementations). 

SameLock checks for ACTION_NOT_KNOWN, and falls back on an alternative method 
(checking the handler address and the fl_Key field). 

· Using New DOS CB/Is • 
Why and How 

13 DevCon90 



10. Atomic Directory Scanning 

There has always been a problem with the semantics of ExNext, in that you can get "funny" 
results if the directory is modified during the period you're reading it. Also, ExNext is not 
extremely fast, even with the new FS (or FFS), since at least 2, and often 4 or 6 or more task 
switches must occur per file. 

This has been dealt with in 2.0 with the ExA1l call. This allows you to get the entire contents 
of a directory in a single call 

Why and where to use ExAII? 

ExA1l can be used in any place you'd use ExNext. In addition, ExA1l supplies you with some 
extra abilities, such as being able to control how much information is retmned (to save 
ram/buffer space), and being able to accept or reject filt?S based on either system 
pattern-matching routines or routines of your own. 

ExAll is up to 3 or 4 times f~ than ExNext for large directories, and avoids potential 
dangers in ExNext. It does require 2.0 to use, of course, so, if you must run under 1.3, you 
must either use a version check, stick with ExNext, or write your own version for 1.3 that 
uses ExNext. This is quite possible, and, in fact, the 2.0 DOS includes such code to handle 
older tilesystems that do not suppon ExA1l yet (such as network handlers). 

How to use ExAII 

To use ExAll, you need a control structure and a buffer for the data. The control structure 
must be allocated by AllocDosObject. Do not violate this if you wish to run under future 
versions of the OS. The data buffer is simply an area of memory. Before you call ExA11, 
you must make sure the eac_LastKey field is NUlL. 

You also must decide how much information you want returned. Each higher level of 
information includes all those below it. The minimum is just the file/dir names, the 
maximum includes essentially everything in a FllelnfoBlock. See doslexall.h for more 
information. 

When ExA1l returns, the return code is FALSE if there is no need to call it again, otherwise it 
returns TRUE. This handles the case of not enough buffer space to return all the entries. It's 
best to avoid calling ExA1l too many times for a directory, since the directory might change 
in between calls, so a reasonably large buffer is a good idea. If ExA1l retmns non-zero, you 
must continue to call ExA1l until it retmns FALSE. 

DevCon90 14 Ualng New DOS Calla
Why and How 



u 

u 

You must also check the value of IoErrQ if ExAll returns NULL. If it's something other than 
ERROR_NO_MORE_ENTRIES, an abnormal error has occurred, and you should go to some 
etTOr-handling code. Another thing you have to deal with is the number of entries returned. 
This is stored in eac_Entries in the control structure. You must handle 0 entries found 
gracefully. 

The data in the buffer consists of subsets of ExAllData structure, depending on how much 
data you asked to be returned Each entry is chained to the next by ead_Next, and the last 
entry has ead_Next =NULL. 

Here's _a partial example of how to use ExAll: 

eac = AllocDosObject(DOS EXALLCONTROL,NULL); 
if ( !eac) -
I* return error or some such *I 

I* Must be zero before calling ExAll the first time *I 
eac->eac_LastKey = 0; 

do 
{ 

more= ExAll(lock, EAData, sizeof(EAData), ED_COMMENT, eac); 
if ((!more) && (IoErr{) !=ERROR NO MORE ENTRIES)) 
{ - - -
I* ExAll failed abnormally - set some error code, return failure *I 

break; 
} 

if (eac->eac_Entries == 0) 
{ 

I* ExAll failed normally with no entries *I 
I* ("more" is *usually* zero) *I 
continuer 

ead = (struct ExAllData *) EAData; 
do 
{ 

I* use ead here *I 

I* qet next ead *I 
ead = ead->ed Next; 

while (ead); -

while (more); 

FreeDosObject(DOS_EXALLCONTROL,eac); 

Using Mlw DOS Calls· 
Why and How 

15 DevCon90 



11. Easy "Thread Process" Creation 

Process creation has been made easier, especially for those wishing to create thread 
processes from subroutines. You can now specify essentially all parameters of the 
environment for the subprocess. This is done by CreateNewProc, which takes a taglist to 
specify options. 

Wby and where should CreateNewProc be used? 

CreateNewProc has a number of uses. It can be used as a replacement for CreateProc to give 
you added control of a few features. It can be used to create processes that are setup like 
Shell processes (CLI structure, etc.) for running subprograms that want a shell-like 
environmenL And it can be used to start arbitrary code (usually subroutines) as a process. 

Threads are a very powerful paradigm for progranuning on a shared- address machine like 
the Amiga. They allow you to easily separate your program into different tasks, for example 
to avoid the program becoming unresponsive when doing disk 1/0, or to continue refreshing 
windows during lengthy operations, etc. Some applications spawn subprocesses now, but 
most are written single-threaded. Also, separating the application like this can often make 
the event loops of the threads much simpler (for example, they might be able to use 
synchronous 1/0 instead of asynchronous, etc). 

How to use CreateNewProc 

CreateNewProc takes a single parameter, a pointer tO a taglist. You must specify one of 
NP _Seglist or NP _Entry. NP _Seglist takes a seglist (as returned by LoadSeg). NP _Entry 
takes a code ptr for the routine to call. 

There are many options, as you can see by examin;ng dosldostags.h. The defaults are for a 
non-CLI process, with copies of your CurrentDir, HomeDir (used for PROGDIR:), priority, 
consoletask, windowptr, and variables. The input and output filehandles default to opellS' of 
NIL:, stack to 4000, and others as shown in dostags.h. This is a fairly reasonable default 
setting for creating threads, though you may wish to modify it (for example, to give a 
descriptive name to the process.) 

If you spawn a thread from your process, you should make sure it exits before your main 
process does (since the code would get freed). Currently, you'll have to do it yourself, since 
NP _NotifyOnDeath and NP _Synchronous are not cmrendy "hooked up". NP _ExitCode and 
NP _ExitData are hooked up, though, and can be used to send a message to your main 
process. Actually, for threads of code from your application, it's easy to have the thread send 
an nrm dead" message to the main process. ExitCode is more useful when the code being 
run is not part of your application. 

DevCon90 16 Using New DOS Calla· 
WIJyandHow 

0 
' ' 



u 

u 

u 

12. Support for 3rd·party Shells, System Call 

There is now support for 3rd-party shells to be the default ''User Shell" in a system-friendly 
manner. This shell will be started whenever the user uses "NewShell" or the Shell icon from 
WB. In addition, the new System() call allows the application to specify which shell the 
command should be sent to. (System() is a more-functional replacement for Execute().) 

Why and where should SystemO be used? 

SystemO is a replacement for Execute(). It allows using an input filehandle without having 
commands executed from it (a strangeness of how Execute() works). Only the command(s) 
specified in the command string are run. System() also can work in an asynchronous fashion 
(it doesn't wait for the command to execute before returning). 

Normally, System() passes commands to the Boot shell (the built-in shell). A tag can specify 
that the command go to either the preferred User Shell, or a specific named Shell (from the 
SYSTEM resident list). 

SystemO should be used where you need to specify a input filehandle, or wish the 
command(s) to be executed by another shell. In general, commands written by the user 
should be passed to the User Shell, and commands built by your application should be passe~ 
to the Boot Shell. This avoids problems with user shells, such as the fact that they may 
interpret the command line in a different way (different special characters, built-in 
commands, etc). 

How to use SystemO 

It's quite easy to use System(). You merely specify a command line, and some optional tags. 
Input and output for the commands defaults to the same as your application, unless you use 
tags to redirect it. The Shell defaults to the Boot Shell unless you use the SYS_UserShell or 
SYS_CustomShell tags. 

SYS_Asynch makes the call return immediately. If you use this, you must specify both input 
and output filehandles, which will be closed by the shell when the command is done. 

SystemO (when not asynchronous) retums the return code of the command, and sets IoErrO 
to the secondary result of the command. 

Using New DOS Cs/ls • 
Why and How 

17 DevConSO 



13. Many Support Functions for Applications, Shells or Commands 

There are a large number of support calls in DOS to make application programming easier. 
Some are mosdy to support filesystems or 3rd party SheDs. Many (or most) could be written 
for 1.3 if you need to. 

A quick list of some of these functions: 

tJ A full set of low.;level Packet routines. 
a Functions for dealing with Process and CLI structure fields. 

(please use these if writing 2.0-specific code!) 
a SplitName, for parsing paths. 
a SedoEtr, to set what loErr returns 
a various routines for printing error strings for different errors. 
a The routines that put up most of the "please insert", etc messages. 
a RunCommand, which shells use to start programs. 
a Routines for creating and removing Assigns. 
a Routines for dealing with the DOS device/volume/assign lists. 

(You must use these if writing 2.0-speclfic code!) 
a Date comparison and conversion routines. 
a Low-level entries to LoadSeg, etc. 
a Resident list handling routines. 
a Support routines for dealing with command lines (Readltem and FmdArg). 
a A string-to-long conversion routine. 
a Routines for splitting or appending to paths. 
a Local/Global variable/alias/etc routines. 

The most interesting of these to applications are the variable routines, path routines, Process 
and CLI functions, and error string routines. See the autodocs for more information on these 
routines. 

14.Summary 

The 2.0 DOS provides a wealth of new features to help you improve or enhance yom 
applications. Few people have a need for every new feature, but most of you will find some 
things that are immediately applicable. In some cases, this gives you opportunities that exist 
on no other system, such as notification, and the tbings that come from it. 

A large part of the new DOS is oriented towards making the c()IDIDand and application 
writer's task easier. This may not affect you for a little while, but 2.0 will become the 
standard in the near future. When this happens, we hope the DOS will save you time in 
design, coding, and especially debugging, while helping all of us provide a more powerful 
and more consistent user interface. We have already seen this in the writing of the new 
commands for 2.0. + 

DevCon90 18 U.lng New DOS Cllllll
WIJyMdHow 











u 

u 

u 

Basic Object Oriented 
Programming System for Intuition 
by Jim Mackraz 

Introduction 
Level 1 
Level 2 
Level 3 
Goals 

Chapter 1: Using.boopsi 
Black Box Objects 
Transparent Base Classes 
Attribute Lists 
Attribute Access Modes 
Varargs Interface 

(Example) 
Functions 
Interconnections 
Interconnections and Simple Models 
Advanced Models 
Idcmp and Other Notification Methods 
Gadget Groups 
Class Documentation Standards 
boopsi Images 

Chapter 2: Custom Gadget Implementation 
Custom Gadget Hooks 
Custom Gadqet Methods 

GM HITTEST 
GM-RENDER 
GM-GOACTIVE 
GM-HANDLEINPUT 
GM:GOINACTIVE 

Chapter 3: OOP Overview and Terminology 
Objects, Methods, Messaqes, Classes 
Inheritance and Transparent Base Classes 
Private vs. Public Classes 

Chapter 4: Writinq boopsi Classes 
Root Class Methods 

OM NEW 
OM-DISPOSE 
OM-ADDTAIL 
OM-REMOVE 
OM-ADDMEMBER 
OM-SET 
OM-GET 
OM-UPDATE 
OM:NOTIFY 

Chapter 5: Advanced Taqitem List Use 
Chapter 6: Boopsi Future 

Boops/ 1 DevCon90 



Introduction 

This document covers new support for creation, interconnection, and grouping of Intuition 
gadgets, and the implementation of "custom gadgets." The system has an object-oriented 
structure and extends usefully to managing other "custom" entities, such as images. 

The new system, informally called boopsi, is designed to be programmed at three different 
levels. 

Levell 
I 

The simplest thing you can do with boopsi is to be a "boopsi user." This means that 
pre-existing gadget and image definitions are used to create gadgets for windows or 
requesters, optionally interconnected and grouped. 

The "classes" of gadget, image, and other objects that might be used include the classes 
defined by Intuition, other public classes provided in packages (libraries) on disk, and private 
classes or custom gadget definitions linked into the program "blindly". 

Using gadgets created from boopsi classes is convenient and powerful. You may do that 
without knowing anything about the machinery used to implement gadgets, shared classes, 
and the underlying object-oriented principles. 

Chapter 1 below presents a "naive gadget user" programmer's guide to programming at this 
first level. Subsequent chapters describe the more sophisticated levels. 

Levell 

At the next level, the programmer writes the code to create a custom gadget. A custom 
gadget is one which renders itself, handles input, and is otherwise managed by code which is 
not part of Intuition proper. 

When you present a custom gadget to Intuition, you provide a pointer to a "function 
callback" Hook structure that Intuition will call for processing during various gadget 
operations. 

DevCon90 Boo psi 



u 

u 

Level3 

The most sophisticated level of programming boopsi is in creating a "gadget class" to provide 
custom gadget processing in a sharable and more powerful framework. Beyond providing 
the basic routines needed to define a custom gadget, a class implementation also supports 
gadget creation and deletion, interconnection between gadgets, and a unified mechanism of 
defining gadget properties, or "attributes." Classes may also be defined to create 
"non-gadgets", such as images and abstract interconnection, broadcast, or calculation objects. 

Classes may be private or public. In the first case, the code implementing the class is linked 
in with your program, the class is not named (at least is not installed in Intuition's official 
shared class list), and constants and function code values are assigned from a "name space" 
that does not conflict ~th the values that might.be assigned to public, shared classes. 

Goals 

This system was designed and implemented to provide more convenient and extensible 
programming of Intuition user interfaces. The system is not intended as the be-ali, end-all 
object-oriented application development system. 

The requirements of this system differ from those normally met by "real" object-oriented 
programming systems. For one, it needs to be small, both in code space and per-object data. 
It also has to be reasonably fast on modest hardware. Another difference is that the system is 
language-independent. If a language can implement an interrupt handler on the Amiga, it can 
be used to create a public class (although the code does not run as an interrupt, but it often 
must run as the input.device task). Unlike many other OOP systems, the inheritance 
mechanism is very loosely coupled, so that third parties will not need to recompile the 
implementations of classes when the classes they are based on are changed in 
·implementation, instance data, or by additions of new identifier constant definitions. Another 
difficult problem is keeping names and ID's unique for shared classes arriving from different 
sources. To keep this problem tractable, there is a "public/private split" in the name space (at 
least the numeric values of constants). This allow you to use classes you implement or 
collect from others as private classes, without registering them to be granted a set of values 
that won't ever collide with other public classes. Lastly, a primary requirement of this 
system is that it be integrated with, and compatible with, existing Intuition operation. 

For more explanation of the object-oriented principles in the system, see Chapter 3, Overview 
and Terminology. 

Boops/ 3 DevCon90 



Chapter 1: Using Boopsi 

Black Box Objects 

You create a gadget from a class by calling the function NewObject(). You pass it an ID 
string or pointer-handle for the class of the gadget (or other objects) you want created, such 
as propgclass to create a proportional gadget, or "boxiclass" to create a box image. This 
"dynamic allocation" of gadgets, images, and other data objects is in contrast to most 
examples of Intuition programming which relies on initialized global "static" data in the 
program load module. 

It also reflects a "black box" approach to programming, which is also a new thing for 
Intuition gadgets. When you are returned a gadget or other data structure from NewObjectQ, 
use it for nothing except as a handle to the various manipulation functions. These functions 
include new ones to perform new boopsi operations such as SetAttrsO and DisposeObject(), 
but also old functions like AddGList(), and RefreshGList(), to remain compatible. 

Transparent Base Classes 

When you create a gadget by calling NewObject(), the returned pointer points to a data 
structure that looks just like the familiar Intuition Gadget structure. You should not rely on 
the expected behavior of any of the fields of this structure unless explicitly documented. It is 
best to avoid making assumptions about the meaning of the Gadget structure fields. When 
you create an Image object, you also are returned a pointer to something that starts off 
looking like a familiar structure, the Image structure, but again, you should use the 
programmatic interface to change or examine the values of the Image sttucture so that you do 
not shortcut the interpretations that the particular class may put on the values it stores in 
various fields. Strive to be blind 

Attribute Lists 

Attributes are used to help specify, notify changes in, and examine the values a gadget or 
other object maintains. Each public attribute of an object in a class is identified by a 32-bit ID 
value called an attribute ID. 

An attribute ID coupled with a 32 bit data value in a Tagltem structure (from 
utilityltagitem.h) is called an attribute-value pair. An may of Tagltem attribute-value pairs 
(or chain of mays) is called an attribute list or tag list. Attribute pairs and lists are the 
vehicles for communicating attribute values and their changes. 

You may specify an attribute list at the time you create an object, passing it to NewObjectQ, 
or you may subsequently set attributes using SetAttrs() (or SetGadgetAttrsQ, about which 
more later). You may inquire the value of only one attribute at a time, using the function 
GetAttt(). 

DevCon90 4 Boo psi 



u 

u 

u 

Attribute Access Modes 

Some attributes may only be set when an object is created, such as the size of the buffer of a 
boopsi string gadget, or the vertical or horizontal freedom of a proportional gadget Other 
attributes might not respond to GetAttrsQ. Some attributes may be updated on the fly by 
interconnections with gadgets or other objects. Those are attributes which support update 
access. 

Gadgets typically have some attributes that change when the gadget gets input from the user, 
such as the state of a button, the value of a slider, or the selected item in a lisL The gadget 
may possess the capability of notifying interested parties via interconnections when these 
values change. Such an attribute has notify access. 

The access mode of each attribute will be documented, as described later. 

Varargs (Variable Number of Arguments) Interface 

There are actually two ways to pass an attribute list to the functions that accept them as 
arguments. One of them is to pass the address of a pre-constructed array of Tagltems. Often, 
it is more convenient or readable to create the array on the stack. 

It works out especially nicely with "standani" C parameter passing conventions. 

The actual entry point for NewObjectQ, for example, is 

NewObjectA( class, classid, taglist ); 

(you only pass one of 'class' or 'classid') 

where taglist is a (the address) an lln'ay ofTagltems containing the desired attribute values 
that are to be used in creating tlie object 

A "varargs" version of the function is named NewObjectQ, and must be provided for each 
implementation of a language that can support iL We will provide this either in amiga.lib or 
as assembler source, or both. 

As an example, here are two ways to create a simple proportional gadget 

Boopsl 5 DevCon90 



Using the initialized array method: 

proptags [ ] g 

80}, 
14}, 
58}, 

struct Tagitem 
{GA Left, 
{GA-Top, 
{GA-Height, 
{GA-Width, 
{GA-RelVerify, 
{PGA Freedom, 
{PGA-Top, 
{PGA-Visible, 
{PGA-Total, 
{ TAG_END,} 

} ; 

20}, 
TRUE}, 
FREEVERT}, 
0}, 
25}, 
100}, 

struct Gadget *propgadget g NewObjectA( NULL, "propgclass", proptags ); 

Using the varargs method: 

struct Gadget *propgadget = NewObject( NULL, "propgclass", 
GA_Left, 80, 
GA Top, 14, 
GA-Height, 58, 
GA-Width, 20, 
GA-RelVerify, TRUE, 
PGA_Freedom, FREEVERT, 
PGA_Top, 0, 
PGA Visible, 25, 
PGA-Total, 100, 
TAG:END ) ; 

Note how convenient it would be to use a more complicated expression to specify any of the 
position or dimension parameters, for instance. 

A quick-and-dirty C implementation of NewObjectQ follows for language implementations 
with "standard" parameter conventions: 

Object 
{ 

*NewObject( Class *class, ClassiD classid, ULONG tag1, ••• ) 

Object *NewObjectA( 
Class *class, ClassiD classid, struct Tagitem *ti); 

return ( NeWObjectA( class, classid, (struct Tagitem *) &tag1 ); 

DevCon90 6 Boo psi 



u 

u 

u 

Functions 

Several functions are designed for use by simple class users. The autodocs for these 
functions go into more detail and are the official reference. We will list both varargs and 
array-based names for functions which take both forms. 

NewObject( class, classid, tagl, valuel, •.. , TAG_ENO 
NewObjectA( class, classid, attrlist ) 

This function, briefly described above, creates an object from the class 
specified. The class can be specified two ways. If the 'class' parameter is 
non-NULL, then it must point to the Class data structure, presumably of a 
private class. 

If the 'class' parameter is NULL, than the 'classid' field must be the ID (a 
null-terminated text) string of.the public, shared class. 

The attribute-value pairs are a taglist (as defined in utility/tagitem.h) 
specifying initial values of selected attributes for object of the given class. 
Attributes with either "New" or "Set" access modes will be recognized. 

Note that all of the following functions apply only to objects which are created 
using this function. 

OisposeObject( object ) 
This function frees any data object created by NewObject(), and associated data. 
Sometimes you provide pointers to data structures as values of some attributes. 
If these data are "granted" to the object, they will be freed when this function 
is called. The class documentation must identify such behavior. 

GetAttr( attrid, object, storage_ptr ) 
This function is used to inquire an object's value for a given attribute. It 
returns non-zero if the attribute IO is recognized by the object's class 
(recognized attributes will be documented). The 'storage_ptr' is a pointer to 
memory storage of the specific type required (and documented) by the attribute. 

SetAttrs( object, tagl, datal, tag2, data2, .•. , TAG_ENO) 
SetAttrsA( object, attrlist ) 

This function is used to specify a new set of attribute values for an existing 
object. Only those attributes documented as having "Set" access will be 
affected. 

For some classes, changing an attribute value using this function will cause 
them to notify the objects they are connected to of the change. Gadgets, 
typically, only notify other objects when the user directly manipulates them 
resulting in a change of a notify access attribute value. 

NOTE WELL: For technical reasons, a separate function is used when changing the 
attributes of a gadget or things connected to a gadget. This function is 
SetGadgetAttrs(), below. 

SetGadgetAttrs(object, window, requester, tagl, datal, ••• , TAG_END) 
SetGadgetAttrsA(object, window, requester, attrlist ) 

This function is the same as SetAttrs, but also provides additional information 
that a gadget needs in order to draw itself in response to changed values (such 
as a change to the position of a proportional gadget slider) • 

Boopsl 7 DevCon90 



It can be used with non-gadget objects just fine (they will ignore the 
gadget-specific information passed), and can be passed NULL as window and 
requester if the gadget is not yet attached to a window or requester. 

This function also serializes changes to a gadget with the input processing and 
other operations that Intuition ·might apply to a gadget, so it is vital that 
this function be used in preference over SetAttrs() whenever a gadget object is 
involved. 

DoMethod( object, MethodiC, paraml, param2, param3 ) 
In object-oriented parlance, the functions that a class defines for the objects 
in that class are called "methods". These are implemented for a boopsi class as 
a single entry point which is passed a function code, or MethodiC, along with 
various other parameters appropriate to the specific method. 

We've seen some methods wrapped up in specific function calls, such as 
DisposeObject() (MethodiD: OM_CISPOSE) and SetAttrs() (MethodiC: OM_SET). This 
function serves as an interface to invoke other method functions that a class 
might define, such as adding an object to a list, or performing some other 
special operation. These additional methods must be documented clearly in the 
class definition to say if they are appropriate for application use (they may be 
only appropriate for internal or subclass implementation uses) and what 
restrictions or warnings must apply. 

Invoking a method function defined by a given class, to be applied with an 
appropriate set of parameters to a given object of that class, is frequently 
called "sending a message to an object" in object-oriented terminology. This is 
a very intuitive metaphor, providing a concrete concept of an object as a black 
box, privately interpreting and acting on the various messages that come its 
way. 

Unfortunately (or perhaps fortunately), the term "Message" is an "overloaded 
term" on the Amiga, conflicting with the Exec Message structure and the ARexx 
RexxMessage. During the implementation, we used the term SendMessage in 
disregard of these conflicts, but renamed this external interface function to 
DoMethod() later in development. 

The function DoMethod() is a varargs version of a function which sends a 
prepackaged parameter structure (always starting with a MethodiC) to the 
routines that implement the class from which the object was created. The 
pre-packetized version of CoMethod() is called OM(). Simple boopsi users will 
probably always use CoMethod(). 

CoMethod() is implemented for standard C conventions in a file named 
classface.asm in the examples, along with some variations useful for class 
implementors. 

DevConSO 8 Boops/ 



u 

u 

u 

Interconnections 

Each gadget class may define some.attributes with "Notify" access mode, which means that 
they will issue fonh notification to interested parties when the value of that attribute changes 
due to user input 

The mechanism that supports this consists of two attributes recognized by "gadgetclass", 
ICA_TARGET and ICA_MAP. (ICA_ stands for "interconnection attribute", and we shall 
see that this aspect of gadgets is borrowed from the simpler interconnection class "icclass".) 

The value of ICA_TARGET is some other object The value of ICA_MAP is a Tagltem list 
of a special kind, defining a mapping from attribute ID's of the source object to attribute ID's 
of the target. 

The class "propgclass" (proportional gadgets) has an attribute namedPGA_TOP, 
conveniently interpreted as the top line of scrolling text controlled by this prop gadget that 
should be displayed (Other attributes specify the total number of lines and the number of 
lines visible at one time.) 

As the user drags the slider knob, the internal value of PGA_ TOP will change. Whenever it 
does change, the prop gadget will "notify it's target through the map list" Let's explore what 
that means. 

Suppose the PGA_TOP value of a slider has changed to 5. Then the propgadget will issue a 
notification of the attribute-value pair { PGA_TOP, 5 }. This will be converted as an internal 
SetAttrs() function applied to the object given as PGA_TARGET. 

But although the target object may well understand the meaning of "5", it probably will not 
recognize the tag PGA_TOP. Thus, the ICA_MAP taglist is used to convert the attribute ID 
to some other value, recognized by the target 

For example, if you specify the ICA_TARGET for a propgadget to be a boopsi string gadget 
(from "strgclass"), and an ICA_MAP list containing: 

{ PGA_TOP, STRINGA_LongVal } 

then when the propgadget issues notification of: 

{ PGA_TOP, 5 } 

the string gadget will receive an internal SetAttrs() call specifying 

{ STRINGA_LongVal, 5 } 

and the string gadget will automatically display the value 5, with no application involvement 
whatsoever. 

Boops/ 9 DevConSO 



Interconnection Class and Simple Models 

The mechanism described provides a data-driven direct interconnection scheme that works 
great whenever the value S here makes the proper sense to both parties in the exchange of 
information. When this happy coincidence doesn't hold up and some conversion is 
necessary, the inevitable glue processing must happen somewhere. 

Also, the connection a gadget supports is limited (in the interest of small gadgets) to a single 
target/map pair. 

a new general class of objects has been introduced. It is called Interconnections or ICs (from 
the class icc lass and its subclasses) and special cases of ICs called Models (from the class 
model class and its subclasses, itself a subclass of icc lass). ICs are simple information 
forwarders. Their only attributes are ICA_T ARGET and ICA_MAP, which work just as 
defined for gadgets, except that ICs don't issue any notifications on their own. 

What a vanilla IC does is take any SetAttrs() it receives and forward it directly to its 
ICA_TARGET after converting the attrlist using its ICA_MAP. The usefulness of such a 
simple class of objects is two-fold. First, ICs are used as nodes in a broadcast list maintained 
by a model (see below). Secondly, specializations (subclasses) of icclass can perform 
intermediate calculations on the attributes coming in before they are sent out the other side to 
its ICA_TARGET. For example, a specialized IC might take the attribute value for a tag 
MY_INTl, multiply it by 10 and issue a notification ofMY_INTlO with the result 

Thus, if we set the target of the prop gadget in our earlier example to be this special IC, and 
the map to include { PGA_TOP, MYINTl } , and the target of the special IC to be our string 
gadget, with map including { MYINTlO, STRINGA_LongVal } , then whenever you drag the 
slider, a value 10 times of th~ slider's current PGA_TOP value will be displayed in the string 
gadget This shows how ICs can be used to encapsulate glue code in a reusable form for a 
data-driven interconnection scheme. 

A model (object frommodelclass or its subclasses) is only a simple extension of the basic 
functionality of an IC but is the center of a whole philosophy of object-oriented 
user-interface programming. 

In its simplest form, a model is just an IC (with ICA_TARGET and ICA_MAP), plus a 
"broadcast list11 of additional objects which it will also notify. Each node on this list will 
receive an update message (an internal SetAttrsO call) of unmapped attributes from the 
model object. Typically, the nodes on this list are primitive ICs, which contain nothing more 
than an ICA_TARGET (such as a gadget) and the appropriate ICA_MAP. 

An example of the broadcast property of the simplest model is in order. Suppose you wanted 
to hook ten propgadgets together so that when the user drags one, the others automatically 

DsvCon90 10 Boo psi 



u 

u 

u 

move to keep the same value of PGA_TOP. The scheme for doing this is not to make the 45 
direct interconnections between the prop gadgets but to use a central model. 

Each propgadget has ICA_TARGET set to our model. Also, each prop gadget is represented 
by a unique IC hanging on the model's broadcast list When one gadget gets input resulting 
in a change to PGA_TOP, it dutifully notifies the model (here we use the trivial maplist 
including { PGA_TOP, PGA_TOP } everywhere). The model in tum notifies all ICs on its 
broadcast list, which notify in turn all the prop gadgets, keeping them in sync. 

As an added bonus, the ICA_TARGET andiCA_MAP attributes of the model are as yet 
unused (they are separate from the broadcast list), and can be used to represent the whole 
group of prop gadgets by notifying the outside world that the set of prop gadgets represented 
by the model has changed its value of PGA_TOP. 

Advanced Models 

The power of boopsi really becomes apparent when you use specializations (subclasses) of 
modele lass. 

Models are extremely useful for calculating and tracking the abstract state of a group of 
gadgets, centralizing and broadcasting notification of changes to this state. 

This type of programming, where the gadgets are interconnected to an abstract model and 
receive update broadcasts when model parameters change, is rooted in a concept from 
Smalltalk called Model-View-Controller. 

In that system, the input aspects of a gadget (Controller) are divorced from the display 
aspects (View). ConlfQllers send change notices to a Model, which in tum feeds back 
information causing a visual update of the original controller's corresponding View, as well 
as any other related View (other gadgets). 

For good or ill, the concept of Controller and View are bound together in the concept of 
"Gadget". For that matter, gadgets individually contain some state information (e.g., 
PGA_TOP) which lends them some aspect of the Model, as well. But when forming 
interconnected networks of gadgets, it is strongly recommended that an abstract model be · 
used to centralize state information and update broadcasts. 

Another example: 

Consider color controls, with two groups of three sliders, R, G, B, and H, S, V. The values of 
the sliders are intimately related. 

The way to handle this is with an abstract color model which maintains attributes 

Boopsl 11 DevCon90 



corresponding to R,G,B,H,S, and V. When any single attribute is changed (such as Red, R) 
the dependent attributes (H, S, and V) are all recalculated to new values. 

If the sliders are hooked up to this model so that the numeric attribute PGA_TOP is mapped 
to one of RGBHSV for each slider, then a change in one value will result in a notification 
broadcast of changes in three of the others attributes. Suitably mapped, each slider will hear 
about a cc:nresponding change to PGA_TOP for the color attribute that it represents. 

Note that one could easily substitute some other gadgets for the sliders, or even· add a string 
gadget for numeric keyed input for each RGB,HSV value. This is without ANY change to the 
code which calculates the relationship between HSV and ROB. 

The beauty of a model-based approach to interconnection becomes more and more apparent 
with experience in its use. 

IDCMP and Other Notification Methods 

As we just saw, ICs and models receive update notices and pass them along, perhaps after 
processing, to other boopsi objects. Other classes of objects may be defined to receive the 
same notification, but to forward the information in a completely different way. 

Your application can get hooked into this interconnection scheme by using a special value for 
the attribute ICA_TARGET, specifically IcrARGET_IDCMP (defined in 
intuitionlicclass.h). This will cause a new IDCI\1PUPDATE IntuiMessage to be sent to your 
application with the !Address field pointing to a Tagltem list Also, if in the corresponding 
ICA_MAP, you specify a target attribute of ICSPECIAL_CODE, you can get the low-order 
16 bits of the cmresponding attribute value to appear in the IntuiMessage.Code field of the 
IDCMPUPDATE message .. 

This means in practice that an application can be notified via IDCMP exactly when change 
occurs to a value of interest, such as PGA_TOP. This is a big improvement over the existing 
two options: GADGETUP and FOLLOWMOUSE. 

Classes which convert boopsi notification messages into still other communications 
protocols, such as ARexx messages, are also possible. 

Whatever fancy replacements for ICs are created, the gadget, model, or IC issuing the 
notifications is blissfully unaware of the true nature of the target 

We have also worked out the design of a couple of ad hoc methods of "asynchronous" 
communication between gadgets, which are also invisible to the notifying object 

DevCon90 12 Boo psi 



u 

u 

u 

Gadget Groups 

One of the more powerful concepts supported by boopsi is composition or grouping of 
objects into a single composite object Defining a complete RGB-HSV slider/string gadget 
set as a single composite gadget is one example of this power. 

Without getting into religious wars, composing objects out of member pieces often serves as 
a better method for defining new objects than using inheritance to extend an existing object 
class. 

You can group a connected or unconnected set of gadgets together within a group gadget 
created from groupgclass, or you may define subclasses of groupgclass which initialize, 
connect, and group all the gadgets necessary to create encapsulated composite gadgets such 
as list scrollers, RGB/HSV controllers, or scrollbars with mows. 

See the suite of boopsi demos on the DevCon disks, demo 1 through demoS for progressing 
boopsi sophistication applied to solving the same problem of a slider with numeric gadget 
and arrows. 

Class Documentation Standards 

The final piece of general information needed by the "naive" boopsi gadget/class user is how 
the classes are documented. Theoretically, you should be able to learn all you need to know 
about using an object of a given class by looking at the documentation for that class. 

There is a twist to that, though, in that classes can inherit behavior and attribute definitions 
and defaults from a unique superclass. That means that if a feature of a superclass is left 
unchanged by some subclass, then you might have to flip back through the documentation up 
the class hierarchy tree to examine what is defined for all superclasses. 

This can be minimized by class implementors re-documenting all important parameters that 
are inherited from the superclass. 

Documentation for a class consists of (at least): 

Definition of the methods that the class supports, beyond those defined by its 
superclass. 

Descriptions of the methods of the superclass that are overridden by this class, 
as well as a list of methods from the superclass that make sense. 

Descriptions of the attributes recognized by the class. The attribute ID symbol 
is listed, along with the type and meaning of the corresponding attribute 
value. 

Boopsl 13 DevCon90 



Each attribute's access mode must be defined. The flavor of our convention is 
borrowed from SunView, in which the access mode of an attribute is described by 
a string of the following capital letters indicating the access modes described: 

I - Initialization 
An attribute with this mode can be established when the object is 
created, by providing it to the NewObject() function. 

S - Set 
An attribute with this mode can be established after the object has been 
created, using either the function SetAttrs (SetGadgetAttrs for gadgets) 
or internal update notification. If some attribute can only handle one 
of these two methods, then it is declared as having 'S' access plus an 
explanatory comment in the docs. 

G - Get 
The value of an attribute with the mode can be retrieved using t~e 
GetAttr() function. 

N - Notify 
An attribute with this mode will give risa to an update notification 
broadcast whenever it is changed. 

* - Special 
There is some special restriction or feature of the processing of this 
attribute which warrants special discussion. 

Any "granted data", i.e., data which are provided to the object along as 
attributes or some other scheme (such as the OM ADDMEMBER method) which are the 
object's responsibility to dispose, must be clearly identified. 

Class documentation for the system-defined classes will be attached to this document. Also, 
see the example programs which are available on the DevCon disks. 

Boopsi Images 

So far , the gadget and intereonnection classes have been stressed. Another important set of 
classes implement a generalization of the Intuition Image structure. These are the subclasses 
of imageclass. 

Image classes return objects which can be used as images in all Intuition contexts. These 
images can be rendered through whatever means the class implementor desires. Image 
classes could be define which implement the traditional bitplane images that are provided by 
struct Image, as well as those functions provided by Border and IntuiText structures. This 
alone would allow the combination of various rendering operations in a single list, rather than 
Intuition's current gross limitations restticting lists of artwork to be homogeneous: 
exclusively Image, IntuiText, or Border. Also, allowing programmers to implement their 
own image classes provides a powerful customization scheme to use whatever rendering they 
want to perform in Intuition contexts. Image classes to draw ellipses, boxes, 3D buttons, 
buttons with rounded endcaps, replacements for the Checkmark and Amigalcon, and images 
which pick their colors appropriate for the Screen palette are all possible. 

DevCon 90 14 Boopsl 

(\ 



u 

u 

u 

Writing an image class is considerably simpler than implementing a gadget or model class 
(images are not involved in user input or interconnection), and is a rewarding place to start. 
You can maintain a stash of binnaps, a nnpras, or other data shared between the image • 
objects created by your class, but you have to be careful to write re-entrant code and use 
semaphores where simultaneous access to the shared data would cause problems. A good 
place to stash a pointer shared data is in the cl_ UserData field of your class structure. 

Using boopsi images, you can enjoy several new functions, including: 

DrawlmageState( rp, image, xoffset, yoffset, state, drawinfo ) 
This is an extension of the old Drawlmage() function which allows you to pass 
more information that some image classes will understand and respect. 

'state': This is a value defined in <intuition/imageclass.h> which tells the 
image how to draw itself, be it normal, selected, disabled, and so on. 

'drawinfo': This is a pointer to a Drawlnfo structure defined in 
<intuition/screens.h>. It specifies an array of pen numbers to be used for 
highlighting, shadow, text, and so on, as well as screen depth and 
resolution information. 

Eraseimage( rastport, image, xoffset, yoffset } 
The default for this is to erase the image's rectangular area, using the new 
EraseRect(} graphics call. This call will pick up the new backfill hook for the 
rastport's layer, if any. 

Specializations of this can be implemented in an image class to erase only that 
portion of the image rectangle that actually contains some image visuals (such 
as a circular button image), but that probably won't be practical until the 
EraseRect() functionality is extended to work with mask or fill operations. 

Pointinlmage( point, image ) 
This function returns success or failure depending on whether the image 
"contains" the given point. This makes it possible to centralize the 
information about an image that a gadget is interested in. 

This way, a button gadget can work with rectangular, round, or odd shaped 
images, without the need to create, install, and manage a separate mask plane or 
know anything about the shape of the image used. 

These functions can be applied to old-fashioned "user-allocated" images, with default 
processing as apptopriate. 

Not all image classes are intended for use in all situations. For example, not all image classes 
will define a "selected" state, which is almost a requirement for use with a gadget. Also, 
some images will know how to stretch themselves to accommodate included text or other 
"labelsn, some may know how to perform like an Autoknob slider. It is also reasonable that 
an image class makes liberal interpretation of the drawing states, even the ones planned for 
future use. We see these variations as healthy. 

It is only critical that documentation for a particular image class specify what the exact 
behavior is for the various states and special operations, and what the intended use is. It is 
then up to the programmer (or hacker-user) to use appropriate images for any given use. 

Boopsl 15 DevCon90 



Chapter 2: Custom Gadget Implementation 

Now we return to our ascent through the levels of programming sophistication that are 
involved in providing these new functions to the application programmer. Implementing a 
gadget class is fairly tricky, but the complexity can be divided between the issues of writing a 
boopsi class; the issues of being a simple gadget, and interconnection/notification issues. 

The issues of implementing a simple gadget can be isolated by studying the implementation 
of a non-boopsi custom gadget, which we explore in this chapter. Together with the 
information in the Chapter 4, Writing Boopsi Classes, the techniques for producing a custom 
gadget class are thus documented. 

A custom gadget, to review, is a gadget which is processed by code external to Intuition, 
code which Intuition calls when gadgets are refreshed or the user clicks the mouse in a 
window, for example. 

The definitions required for implementing a custom gadget can be found in 
<intuitionlcghooks.h> and <intuitionlgadgetclass.h>. 

Custom Gadget Hooks 

Intuition dispatches to the custom gadget implemenla;tion code via a new system structure 
called the Hook (defined in <utilitylhooks.h> ). A custom gadget is identified by a new value 
of GadgetType (CUSTOMGADGET). The address of the Hook structure is installed in the 
unused GadgetMunialExclude field. 

Without going into great detail, a Hook provides an entry point that Intuition can call using 
Amiga register parameter conventions, plus enough information to conveniently transfer 
control to a High-Level Language (m..L) entry point. 

Once the grunt work is out of the way, a custom gadget is implemented with a single main 
entry point (loosely called the "gadget hook routine") which processes a variety of 
"commands" that are passed to it and identified by a command identification parameter (a · 
"function code" or, when thinking of boopsi, a "Method IDn). 

The exact parameters passed to the gadget hook routine are: 
hook- a pointer to the gadget's hook. This provides a convenient handle for 

"extra information" that is common to all gadgets the hook does processing 
for, or as a stash for information that is only needed while a gadget is 
active (there is a guarantee that there will only be ONE active gadget at a 
time, in the eyes of Intuition) • 

gadget - a pointer to the gadget itself 

parameters - a pointer to a parameter packet. The first lonqword of every 
parameter packet is the MethodiD. The subsequent values depend on the 
Method ID. The parameter packets for the various custom gadget hooks are 
defined as structures in <intuition/cghooks.h>. 

DevCon90 16 Boopsl 



u 

u 

u 

All of the various parameter packets contains a pointer to a structure called a Gadgetlnfo. 
This structure contains a collection of context information useful to gadget processing, 
including the requester, window, and screen the gadget occupies, a pointer to a Draw Info 
structure (described above) including pen number assignments and resolution information, 
and a Box representing the size of the "domain" that the gadget resides in, be it requester, 
window, or inner region of a gimmezerozero window. 

Some operations can be applied to a boopsi gadget when the gadget is not attached to a 
window or requester, but for vanilla custom gadgets you can assume a gadgetinfo is passed. 

But there is more to it than that. Sometimes, a requester can be invisible, in which case it has 
no layer or rastport. 

Before custom gadget code can do any rendering, it normally must bid for permission to use 
the rastport and layer required. The function ObtainGIRPortO is passed a Gadgetlnfo 
pointer, and returns a RastPort for rendering. If the returned RastPort pointer is ever NUlL, 
then no rendering should be done by the custom gadget code. 

This simple rule also will guarantee that a full-fledged boopsi gadget won't try to render 
when it's not attached to a window or is otherwise off in space. 

"Gadget Relativity" refers the calculation of gadget position and dimension based on values 
relative to the size of a window or requester. You must perform this calculation yourself 
(converting negative values in the gadget position and dimension fields to positive values) 
according to the flags GRELBOTTOM, GRELWIDTH, and so on, if and only if you 
document that your custom gadget implementation supports these flags. You will need to do 
this for almost every gadget hook command, although you can stash the calculation for the 
period of time while your gadget is the (unique) active gadget. 

Since the behavior of a custom gadget consists solely of the processing done for the various 
commands passed to its hook, we can complete the discussion by describing each hook 
command in tum. See also the example program CustGad distributed on the 1990 DevCon 
disks (earlier versions are obsolete). 

First, a list of the MethodiDs for custom gadgets, from <intuitionlgadgetclass.h> 

Boops/ 

GM HITTEST 
GM-RENDER 
GM-GOACTIVE 
GM-HANDLEINPUT 
GM:GOINACTIVE 

17 DevCon90 



Now we discuss each hook command (or method) in tum. Each is passed a MethodiD and 
Gadgetlnfo parameters. We will mention additional parameters. 

GM HITTEST -
-Parameters include a point in gadget-relative coordinates (relative to the 

Gadget.LeftEdge and Gadget.TopEdge field). 

You should return GMR GADGETHIT if the point counts as a "hit" on your gadget. 
You may assume that Intuition has already verified that the point is in your 
Gadget box (LeftEdgeiTopEdge/Width/Height), so a simple rectangular custom 
gadget can always return GMR_GADGETHIT. 

You should respond with GMR_GADGETHIT properly even if you don't want your 
gadget to go active for some reason (such as it being disabled). This is to 
preserve the notion of "opacity" for your gadget by swallowing clicks that would 
otherwise filter through to objects beneath your gadget. You will get a 
subsequent opportunity to decline to go active. 

GM_RENDER -
Passed a RastPort, ready for use (if non-NULL) and a "redraw moden identifier. 

In this one case, the function ObtainGIRPort() need not be called (Intuition has 
already set up a rastport for rendering a list of gadgets) . 

You are to draw your gadget. Don't forget to handle gadget relativity. 

The nredraw moden has three possible values at present. ~ou should default to 
GREDRAW_REDRAW in your processing: 

GREDRAW REDRAW- full refresh, as resulting from RefreshGList(). Redraw the 
whole thing. 

GREDRAW TOGGLE - if your gadgets, like Intuition's, support GADGHCOMP or 
GADGHBORDER methods of highlighting, you can perform the toggle operation 
when you are passed this redraw mode. 

Intuition refreshes. gadgets in two passes. First it draws all the gadgets 
in their normal state, then it goes back and toggles the highlighting of 
SELECTED gadgets. This has an advantage when gadgets overlap, or when 
GADGHBOX highlighting is applied to abutting gadgets (the highlight box is 
not overwritten by adjacent gadgets), but the experienced Intuition 
programmer knows the downside of toggle highlighting of this nature. 

We recommend that you try to draw once, in response to GREDRAW_REDRAW, in 
the SELECTED state if appropriate, and that you ignore GREDRAW_TOGGLE 
commands. This is easier using the DrawimageState() command. 

GREDRAW_UPDATE - This is not encountered by a simple custom gadget, but is 
provided as a mechanism to update just those parts of a gadget that need to 
change when some attributes change in value. 

'Examples include the slider within a propgadget, and the text within a 
string gadget. 

You may ignore this value or default to GREDRAW REDRAW for simple custom 
gadgets (or even simple boopsi gadgets). 

DevCon90 18 Boo psi 



u 

u 

u 

GM_GOACTIVE -
Passed an input event (possibly NULL), the current gadget-relative position of 
the mouse, and a pointer to a termination code variable. 

After you respond affirmatively to GM HITTEST or when someone calls 
ActivateGadget() for your gadget, you-will be asked to go active by this method. 

If the input event passed'is NULL, you know that some equivalent to 
ActivateGadget has been called. If you don't support this (as buttons should 
not, for example) you should refuse to go active. 

You can make use of the initial input event, if non-NULL. For example, string 
gadgets will position the cursor at this time if the input event is for a mouse 
button click. 

You may also pre-calculate and cache information that will remain constant for 
the duration of a gadget being active at this time. You are guaranteed to 
receive a GM_GOINACTIVE when your gadget stops being active, so you can clean 
up. You are also guaranteed to be the unique active gadget (unless you are 
doing something really tricky like implementing a gadget group, which can be 
active and have an active member, too) • 

The return values and use of the termination code are the same as for 
GM_HANDLEINPUT, described below. 

GM_HANDLEINPUT -
Once you are the active gadget (you've seen GM GOACTIVE and agreed to become 
active) you will be sent all the input Intuition wants gadgets to see in 
GM_HANDLEINPUT calls. 

The information passed is the same as for GM GOACTIVE: an input event (never 
NULL this time) and a termination code pointer. This is where you perform your 
gadget interaction processing. You are also always given the current 
gadget-relative mouse position, transformed for your use. 

If you want to do some rendering (which typically doesn't happen for every mouse 
move or timer tick), you must use ObtainGIRPort() to get a rastport to use. 

You can decide to remain active or stop being active. Intuition will feel free 
to decide that you should go inactive, so you might receive a GM_GOINACTIVE call 
before you think you are done. You should also follow conventions for aborting 
your active state. In particular, you should go inactive if the menu button is 
pressed while you are active (more on this below) . If you declare that you want 
to stop being active, you will receive a subsequent GM_GOINACTIVE call. 

The termination code pointer points to a lonqword variable. When you go 
inactive with the RELVERIFY condition asserted, Intuition will send a GADGETUP 
mes.sage to the application window. The value in the lonqword termination 
variable will be truncated to 16 bits and put in the Code field of the GADGETUP 
IntuiMessage. You should not set any of the upper-16 bits in the lonqword, as 
they are reserved for future features. The value you return from the 
GM_HANDLEINPUT or GM_GOACTIVE processing (normal function return, in DO) 
specifies whether you want to remain active, whether you want a GADGETUP message 
transmitted, and whether the last event should be re-used or swallowed. 

In order to stay active, you return GMR MEACTIVE (which is zero) and no other 
values. To terminate, you return either GMR_REUSE or GMR_NOREUSE, and 

Boops/ 19 DevCon90 



optionally, GMR_VERIFY to issue the GADGETUP message. Here are some examples: 

- User lets go of the mouse button while over a Boolean "command" gadget: 
return (GMR_NOREUSE I GMR_VERIFY) 

- User lets go of the mouse button while NOT over active Boolean "command" 
gadget: return (GMR_NOREUSE) 

- User presses RETURN in a string gadget: return (GMR_NOREUSEJGMR_VERIFY) 

- User clicks outside of the active string gadget: return (GMR REUSE) (note that 
Intuition will then process this click again, to activate other windows or 
gadgets) 

- User presses the menu button while a string gadget is active: return 
(GMR_REUSE) so that your gadget stops being active and Intuition will 
re-process the menudown event and proceed to bring up menus. 

GM GOINACTIVE -
-Passed no special information, you are hereby noticed that you are no longer 

going to be the active gadget. Again, be advised that Intuition may decide to 
"abort" your active gadget, and will send this message to you before your gadget 
thinks that it is done. 

DevCon90 20 Boops/ 



u 

u 

u 

Chapter 3: OOP Overview and Terminology 

It's now time to start talking about implementing boopsi classes. Together with the 
principles in the previous chapter, you will ultimately be able to iniplement a boopsi class of 
custom gadgets or other objects; ultimately a public, shared class. 

We can subdivide the remaining work into two areas. One is the object-oriented basis of 
boopsi classes and their basic mechanisms. The other is the specific methods and 
conventions that the major boopsi classes support. 

We .address the first area in this chapter. It is here that you will learn what kind of 
object-oriented programming system we've really got here, and learn the basics of the 
implementation of famiHar OOP properties such as inheritance, composition, and delegation. 

Objects, Methods, Messages, Classes 

While we cannot hope to provide a suitable background and introduction to comparative 
OOP systems, we will take a stab at defining basic concepts in intuitive terms as we 
encounter them. If you· want to get into a religious war about the difference between an 
object and an instance, or between delegation and inheritance, or even to decree whether 
boopsi is really "object-oriented", here's the chapter to worry about. 

If you'd really prefer, replace all occurrences of the term "object-oriented" with "sort of 
object-oriented-like" if that makes you happy. 

In boopsi, a "class" is a body of code which implements the creation and processing of a data 
structure called an "object." A class is represented by a data structure of type Class 
<intuitionlclasses.h>., which begins with an embedded Hook structure defining the entry 
point to the class "dispatcher" routine. Thus, a Class is an extended version of a Hook, so 
that when the class dispatcher is called, it is passed three things: a pointer to the class, a 
pointer to the object in question (slight variation for creating objects), and a pointer to a 
parameter packet often called a "message" (after Smalltalk) which always begins with a 
MethodiD identifying the operation which should be performed on the object. 

The basic operation of object-oriented programming is to "send a message to an object," 
which means to call the dispatcher for the class the object was created from, passing it the 
address of the class, the address of the object, and a packet of parameters containing the 
MethodiD which identifies the type of operation the "message" is supposed to invoke. This 
is done via the function DoMethodO defined in the file classface.asm. 

Each object contains a pointer to its "true class", which means that you can blindly send a 
message to an object without knowing its class. When programming a class implementation, 
you can explicitly coerce an object to be considered as a member of a specific class, typically 

Boopsl 21 DevCon90 



the superclass of the class you are authoring. Use the function CoerceMethodO in 
classface.asm. 

It is the class dispatcher's job to interpret the MethodiD to perform the appropriate operation 
for the object Most classes in boopsi today use a switchO statement or equivalent to 
dispatch based on MethodiD, but you could implement a cached associative jump table if you 
get off on that type of thing. 

Frequently, messages contain a pointer to an attribute list, described above. The ID space for 
MethodiD's and attribute lists guarantees uniqueness, so you might accidentally try to invoke 
a method Or specify an attribute that an object (actually the object's class) doesn't 
understand, but it will never misinterpret an ID value intended for a different context This 
also means that a class can "borrow" a concept from some unrelated class, just by assigning 
like meaning to the ID' s defined for that other class. This allows gadgets to share some of 
the properties of ICs (targets and maps) without having some incestuous relationship between 
the gadget and IC classes. 

The same message can fruitfully be sent to objects from any class that understands the 
MethodiD, without the caller knowing what class an object derives from. This is because the 
class implementation interprets the code appropriately for its objects. This is terribly 
convenient, eliminating, for example, the need for different functions to create or delete 
every different type of object, and allowing objects to notify anonymous target objects of 
attribute changes. This powerful concept is probably the most importaD.t in OOP, and carries 
the name "polymorphism" (no, not the definition I first learned for that word, either). Boopsi 
handles this quite nicely. 

Inheritance and Transparent Base Classes 

Another grand OOP concept is "inheritance." This is the traditional OOP method of 
selectively specializing the implementation of an existing class by programming only the 
extensions or differences in behavior that distinguish the new class from the original. An 
example, the class "propgclass" of proportional gadgets is a subclass of "gadgetclass." The 
implementation of "propgclass" consists of proportional gadget specific behavior, while most 
general gadget processing is left to the implementation of "gadgetclass." 

When inheritance works, it's great. It is particularly useful in managing default behavior of 
the objects from a class. It's a simple, elegant, powerful concept with great appeal. 

However, inheritance has some big problems, and it's wise, to strongly de-emphasize it in 
creating new classes of gadgets, especially gadgets consisting of multiple components. 

Boopsi maintains simple inheritance via a pointer in the Class structure to the superclass. 
Although it isn't snictly necessary, it is probably wise for all classes to be subclasses of some 

DevCon90 Boopsl 



u 

u 

u 

existing class, insuring that the default processing for object creation and deletion is 
performed for all objects by the common Root class ("rootclass "). 

The subclass relation defmes what is called the "taxonomic hierarchy", also called the "class 
tree." There is an important point to be understood. Sometimes a subclass is called a "child" 
of a class, with the superclass called the "parent class". This extends to the indirect relations 
"ancestor" and "descendent". While these terms have appeal, it is easy for newcomers to the 
topic to confuse the child/parent relationship of the class tree with the very different 
member/composite relationship between a group and its members. 

To avoid this, we dismiss the terms parent/child and ancestor/descendent, and use the terms 
"is some subclass or• or "is some superclass of'' to describe the partial ordering that the 
subclass relation imposes on all classes. A boopsi class has a unique superclass, to be sure, 
but we might refer to "all the superclasses" of a class to refer to all classes linked via the 
superclass relationship from a given class all the way up to the root class. 

The mechanisms of inheritance in boopsi are these: 

All classes have a unique superclass (but a class may have many subclasses) 

The "instance data" composing an object from a given class is a superset of the 
instance data of the class's superclass. 

The dispatching of methods by a class defaults to passing along the message to 
the superclass. 

New methods may be defined in a subclass. 

If a subclass overrides a method defined by a superclass, it may dispatch the 
message to the superclass as part of its processing. 

The tools for the method processing consist of a function that forwards messages to the 
superclass as well as the ability to send any desired message to the superclass. It is vital to 
understand what this means. In boopsi, it means that dispatcher of the superclass will be 
invoked, and will be passed the address of the object, the address of the aass data structure 
for the superclass, and (frequently) the same message. Use the functions DoSuperMethodO 
and DSMO in classface.asm. 

It can be a difficult problem to keep track of the "cUITently executing class" so that referring 
to "the superclass" always means the right thing, especially in a loosely-bound system like 
boopsi. Fortunately, the current class is always passed to the class method dispatcher, so 
successive superclass references can be made explicitly with respect to the currently 
executing class. This point is kind of hard to appreciate if you haven't coded one of these 
systems up from scratch. The hard pan is that the superclass relationship cannot be bound at 
link time (since you don't always get to link the class with its superclass, which may be in 
ROM, for example), which is how common OOP systems seem to do it 

Boopsl DevCon90 



The default case in the dispatcher switch statements is always handled by forwarding the 
message to the superclass. 

The layout of the instance data defined by the class and all superclasses within the object data 
structure is nothing special: the data fields for each class follow those from its superclass in 
contiguous memory. 

One goal was that the instance data for a class could be extended without recompiling any 
subclasses, so the offset from the beginning of an object to the instance data "chunk" for 
some class cannot be known at compile-time or link-time. This eliminates possibility of 
"public" or even "semi-public" data fields in instance data. When a class is initialized, its 
Class structure is filled in with the offset of that class's instance data within the object and 
the size of that data (for determining the offset of the instance data of any subclass). Thus, 
the instance data for each subclass follows the data for the superclass, but class methods must 
derive the offset of the associated instance data at run time. A fast, convenient macro is 
provided to add the base address of the object with the instance offset of the class. 

A message sent to an objects~ off by executing the dispatcher of the object's "true classn; 
the class it was created from. Each object contains a pointer to the object's true class, for just 
this purpose. In the processing, the message may "percolate upn to be processed by the 
superclass, and further superclasses in tum. · 

Method processing for an object thus always is running the code for "some superclass" of an 
object (or its true class). Instance data expected by the processing is always contained in the 
object at the offset defined for the class. Class implementation dispatchers are tilways passed 
a pointer to their own representative class data structure. The "purely black box" interface 
between a class and the instance data of its superclass(es) is essential to reserving 
extensibility of the instance data as described above, but can be terribly inconvenient, but 
since the main purpose of boopsi is to extend the functionality of gadgets and images, which 
are already public data structures, all hope is not lost. 

Boopsi introduces the concept (soon to be common in all meaningful programming systems 
;-) of the 11transparent base class." This means that the pointer to an object which belongs to 
some subclass of "gadgetclass" points to an actual struct Gadget, and likewise the object 
pointer for a subclass of "imageclass" points to a real Image structure. 

As cautioned above, one must be careful in assuming that the meaning a class ascribes to 
these fields is the same as one is accustomed to for traditional gadgets and images, and this 
places a burden on the documentation for a class. But for the performance of gadget 
subclasses this is vital, eliminating the need to send a message up the class tree to retrieve the 
top edge of a gadget or to test the gadget's SELECTED flag. 

DevCon90 24 Boopsl 



u 

u 

u 

Since gadgetclass and imageclass are each direct subclasses of the root class, you can deduce 
that the instance data for the rootclass (which should be considered private and subject to 
changes) precedes the pointer (handle) returned from NewObject(). 

Private vs. Public Classes 

A public class is named (the ClassiD is a pointer to a null-terminated string, such as 
"propgclass" or "imageclass"), and attached to a list of public classes which Intuition 
maintains. These classes can be used by an application program, or used as superclasses for 
other class definitions. 

The method and attribute ID's for public classes must be absolutely unique, which means that 
there.needs to be a mechanism for allocating ID space to programmers wishing to create a 
public class. This mechanism must be implemented by CATS. In the meantime, you can 
create "private" classes, which are implemented exactly the same as public classes, with two 
exceptions: they are not on the public class list, and their ID' s are defined from a name space 
which does not conflict with the public class ID space. You must link the implementation of 
a private class into your application, and see to it that the ID's used by various private don't 
have conflicts that cause problems. The examples (to appear) show how to implement a 
private class. 

Converting a private to a public class consists of redefining all the ID values to public values, 
and adding the class to the public list at initialization. 

Public classes which ~ not implemented by the system can be contained in an Exec library 
constructed so that the classes it contains are inrialized and added to the list when the library 
is first opened See the boopsi example myclass.library. 

Expunging these libraries will be a little tricky, because you may only purge the code for a 
class when all objects created by that class have been disposed. In some cases, this won't 
necessarily follow when the library is closed, so some more conditions are involved 

Boopsl 25 DevCon90 



Chapter 4: Writing Boopsi Classes 

Now that we've discussed the general principles behind boopsi, we need to talk about how to 
actually implement a class. For starters, the include files that will be useful include: 

<ut111ty/hooks.h> 

<ut111ty/tag1tems.h> 

<1ntu1t1on/classes.h> 

<1ntu1t1on/classusr.h) 

Definition of function callback Hook structure 

Ddefinitions for useful ut111ty.l1brary Tagitem 
processing (for attribute lists) 

Class definitions for class implementors 

ID's of Intuition system classes are defined, Method IDs 
and message parameter structures for ·the Root class 
are defined. 

<1ntu1t1on/gadgetclass.h> Method ID's, message structures, and attribute ID's for 
"gadgetclass", "propgclass", "buttonclass", and 
"strgclass". 

<1ntu1t1on/1mageclass.h> Method ID's, message structures, attribute ID's for 
"imageclass" and the subclasses that Intuition 
provides, plus some useful macros for the Image 
"transparent base class. 11 

You will also need to get your hands on some examples, which are on the 1990 Atlanta 
DevCon disks. 

The first thing a class needs to have is a Hook interface to its dispatcher. See the autodocs 
for utility.library and the include file <utilitylhooks.h> for the definitions and the examples 
for Lattice and "vanilla C" implementations of the hook interface. 

When designing a specific class, you must first pick a superolass, and define any additional 
instance data that you want to be contained in the objects you create. You should also define 
any new methods or attributes you want your class to support. 

Y QU need some simple code to initialize a class and its hook. The Intuition routine 
MakeClassO is the last step in this process. See the examples of a private class and copy 
that. When you initialize your class, you specify how large your instance data is, the 
superclass, and the hook interface scheme you will use. 

Now all you need is to implement a dispatcher routine that does the right thing with all the 
MethodiD's it may encounter, and manage the attributes defined for your class and its 
superclasses. 

Since all classes should be subclasses of something, with the exception of the Root class, that 
means that all classes you write will be subclasses-perhaps indirectly so-of the Root class. 
So your class will be expected to implement the Root class methods, or to defer them for 
processing by the superclass. 

DevCon90 26 Boo pal 



u 

u 

u 

Provided below is pseudo-code for processing the Root class methods. Remember that the . 
default case for all class dispatchers should be to pass an unrecognized message along to the 
superclass. 

The Root class method ID' s are: 

OM NEW - create a new object 
OM:DISPOSE - delete an object 
OM ADDTAIL - add the object to some Exec list 
OM:REMOVE - remove the object from a list 
OM ADDMEMBER - for objects which include a list of other objects, add an object to 

-the list 
OM_SET - change the attributes of the object 
OM GET- retrieve the value of one of the object's attributes 
OM-UPDATE - similar to set, but sent via an Interconnection 
OM-NOTIFY - issue OM UPDATE messages to others. This message is typically sent by 

-an object to itself to broadcast changes. 

We now sketch each in tum, but see the DevCon examples for more comments. 

OM_NEW - Creating a new object 

This method is passed the class pointer and message like all others, but it is 
not passed an object (since the whole idea is to create an object) • In the 
normal "slot" for passing an object to a method dispatcher, a pointer to the 
"true class" from which the object is to be created. That way, all superclasses 
can identify if they are the "true class" of the object being created, and the 
Root class can refer to the true class data structure to determine how much 
memory to allocate for all the instance data of the object. 

1) Pass the message along to the superclass. 
Since this is done first by all classes, the result is that the Root class 
will allocate data for the object (the right amount for the "true class") 
and that working "top down" (from the Root class to its subclasses in turn, 
finally the class we are implementing) the instance data for the various 
superclasses-will be initialized. This all happens before we regain control. 
A newly allocated object is returned, ready for us to initialize the 
instance data for this class. 

(With our example of prop gadgets, first the Root class allocates the entire 
data object and initializes the Root object instance data. Then the 
"gadclass" code runs an initializes all Gadget data structures. Finally, 
control is returned to "propgadclass" which initializes propgadget-specific 
instance data, perhaps including some fields which belong to the Gadget 
(such as Gadget.Specialinfo). 

2) Obtain a pointer to your instance data. 
Use the INST_DATA() macro, passing it the pointer to your class and the new 
object. 

3) Initialize your instance data. 

Boops/ 

You may use a combination of default values with values provided in the 
initial attribute list you are passed. In particular, you process all "init 
only" attributes. You may allocate additional memory buffers for your 
object, or even create other objects which are components of an object of 
your class. 

27 DevCon90 



4) Process your initial attribute list. 
After you deal with the "init only" attributes, you pass the attribute list 
and object through the same processing of attributes that you'll apply to an 
OM_SET message. 

5) Patch up the superclass. 
If you aren't happy about the superclasses seeing and making an 
interpretation of certain attributes (for example, a prop gadget can't 
support GADGHBOX gadget highlighting), you may patch them up by sending a 
OM_SET message to the superclass. Alternatively, you can filter "bad" 
attributes out of the attribute list before passing the OM_NEW message to 
the superclass (see Chapter 6, Advanced Tagitem Processing, below) • 

6) Return the object to the caller. 

OM_DISPOSE - Deleting an object 

1) Free any additional memory you allocated. 

2) Dispose of any objects that you created, or that were "granted" to you. 

3) Pass the message up to the superclass, which will eventually reach the Root 
class, which will free all the object instance data. 

OM_ADDTAIL - Add an object to a list 

1) Pass this message up to the superclass. The Root class instance data 
contains a MinNode structure and code to add that node to the list passed in 
the OM_ADDTAIL message. 

OM_REMOVE - Remove an object to a list 

1) Pass to the superclass. The Root class will handle it. 

OM_ADDMEMBER - Add a component object to a List in your object 

If you define a List structure (or MinList) in your instance data, and give 
meaning to this method, pass the address of the list header in an OM_ADDTAIL 
message sent to the new member. 

If you are some subclass of a class implementing this method, such as 
"modelclass" or "groupgclass", pass it along to the superclass. 

Pass it along to the superclass even if you don't understand it. 

You can iterate the objects hanging off of a List structure by using the 
Intuition function NextObject(). 

OM_SET - Change some attribute values according to a program's wishes 

1) Pass the message along to the superclass for processing of attributes that it 
understands. You might want to filter out or subsequently override some 
attributes that you want to handle specially. 

2) Process the attributes that your class recognizes. 

DevCon90 Boo psi 



u 

u 

u 

3) Other processing depends on the nature of the class you are implementing. 
For an Image, you are done. Other special processing of OM_SET for 
different types of things includes: 

For Gadgets: 
If your class is the "true class" of the object (the object was created by 
your class, not one of your subclasses), you should refresh your visuals if 
any attribute value changes dictate a visual change. It is easy to check to 
see if you are the true class, using the OCLASS() macro. 

To refresh, you must call ObtainGIRPort(), passing it the Gadgetinfo pointer 
(if any) provided in the OM SET message. Only perform refresh rendering if 
the RastPort pointer returned is not NULL. Don't forget to call 
ReleaseGIRPort(). You can pass a NULL RastPort pointer to ReleaseGIRPort(). 

If your class is not the true class, it must be some superclass of the true 
class. In this case, perform no refreshing, but return non-zero if some 
changes dictate that you should be refreshed. This information will filter 
down to the true class, so it can tell that refreshing is required. 

For Models and Interconnections: 
If any "abstract state" attributes are changed by the attribute list 
received, then these changes are to be broadcast to all targets. 

Changes to pre-defined IC or Model attributes should not generate 
notification broadcasts. The classes "icclass" and "modelclass" do not 
broadcast changes made by OM SET, but do broadcast anything they receive in 
the OM_UPDATE message. -

Because a model or IC receives an OM SET (or OM UPDATE) may issue forth the 
same, some processing must be done to avoid looping conditions. You can 
send the ICM_CHECKLOOP message to yourself (or your superclass) to see if 
this object has already issued a broadcast, in which case no further 
processing should be done. 

If ICM_CHECKLOOP returns FALSE, you should pass the attribute list to the 
superclass first. This will establish the values of such attributes as 
ICA_TARGET, which you want the superclass to handle. You are only interested 
in any "state" information your class wants to maintain. 

Any changes to the attributes of your superclasses which might generate a 
notification broadcast will do so at this time. If you are a direct 
subclass of "modelclass" or "icclass", you are assured that no broadcasts 
arise from OM_SET. 

If any changes are made to your own class's attributes which have the Notify 
access mode, you should issue an OM NOTIFY message to yourself, which will 
result in the broadcasting of OM_UPDATE messages to all targets. 

For gadget groups: 

Boopsl 

What you have to do here is "delegate" the attributes to the various parties 
interested in them, including: 
- yourself, if you define any special attributes 
- your superclass, for attributes it understands 
- your member gadgets, which the superclass "groupgclass" will take care of 
- any model or models you maintain to give "state meaning" to your gadgets. 

29 DevCon90 



These operations are facilitated by routines in utjljty.ljbrary which create 
filtered versions of the original attribute list you are passed. Deciding 
which objects get delegated which attributes is tricky business. The 
examples provide the best explanation. 

OM_GET- Retrieve an object's attribute 

There are no notification broadcasts involved with this message, so it's much 
simpler than OM SET. If you recognize the attribute you handle the message 
yourself. You might delegate it to a some component, if the attribute is 
intended for it. 

If completely unrecognized, you should pass the message to your superclass. 

OM_NOTIFY - Broadcast an OM_UPDATE message to your target(s) 

This message is defined by "gadgetclass", "icclass", and "modelclass." If you 
are some subclass of these, you should probably pass the message blindly along 
to your superclass. 

It takes the attribute list it is passed, "maps" it according to the ICA MAP 
tagitem list, and issues an OM_UPDATE message to the target ICA_TARGET, and to 
all the nodes in the broadcast list of a model. 

You send this message "to yourself" when you want certain changes in attributes 
broadcast to your target objects. This message should NEVER be generated 
externally. 

OM_UPDATE - Internal interconnection notice of attribute changes. 

For gadgets, the OM UPDATE message and OM SET are handled the same. They both 
represent att.ribute-changes requested by an external source. 

For models and ICs, however, this message means "map and broadcast these changes 
to the target object(s)". 

If you are implementing a subclass of "icclass" or "modelclass", you should 
perform exactly as you·do for OM_SET with one exception: 

Don't pass OM UPDATE to your superclass. It wjll probably bljndly send jt 
unfjltered to-all targets. 

What you probably want to do is issue an explicit OM NOTIFY message with the 
values of any of your attributes that you change. -

Clearly, the explanations of the tricky parts of OM_UPDA TE and OM_SET will only be 
understandable with reference to examples, which are provided. Things are a lot simpler in 
the typical cases than they might seem. For example, most subclasses of "modelclass" or 
"icclass" will probably be direct subclasses of "modelclass", which eliminates the mystery of 
"which superclasses understand and broadcast which attributes?" 

DevCon90 30 Boo psi 



u 

u 

u 

Chap.ter 5: Advanced Tagitem List Use 

The common carrier of information in boopsi is the attribute Tagltem list, as defined by 
utility.library in <utilityltagitem.h>. As you can see, attribute lists you encounter might need 
to be filtered, mapped, or cloned as part of your processing. Utility.library provides several 
utility functions for this. The most common tricky operation you will do is to clone and filter 
an attribute list. 

Whenever you send an OM_NOTIFY message, the list you pass might be modified as part of 
the mapping done. For performance reasons, the list is not cloned or restored, so it really can 
get damaged If you intend to use the list more than once, for example if you are delegating 
the attributes to various objects or broadcasting it to a set of objects, you should send a copy 
of your original list each time. You can use the utility .library QoneTagltems(taglist) for this 
purpose. Then you may perform filtering and mapping to the clone without destroying the 
original. 

If you do this, it is a performance hit to Qone, Modify, and Free the original list for each use. 
You should be aware of another useful function in utility.library, RefreshTagltemClones( 
clonelist, origlist ), which will reinitialize the clone of a list from the original, providing you 
promise that you haven't changed the original since the clone was created. This saves the 
Clone/Free overhead. You should also familiarize yourself with the utility.library functions 
FilterTagltemsO and TaglnArrayQ when parsing out the attributes that you want to delegate 
to various component objects. 

Boops/ 31 DevCon90 



Chapter 6: Boopsi Future 

Down the road, several key areas can be attacked. 

The attribute-value lists, which specify the parameters of the various objects, are very 
suitable for a textual or compiled-data "resource description" of an object which would allow 
a program to use a specification of a set of gadgets, models, and images which is not 
compiled into the program. Unlike other "resource" descriptions for user interface systems, 
the fact that interconnection and grouping of gadgets is data-driven means that the resource 
description can specify interconnections and mapping between objects, and the application's 
window IDCMP. This makes the resulting suite of gadgets created from a resource 
description more useful. · 

A "layout engine" for creating columns, rows, mays, and forms of gadgets which are 
algorithmically sensitive to screen resolution and font size is a goal for boopsi that will not 
make it into the V2.0 release. It can be partially supponed by external processing for the 
interim, but there are a lot of open issues at this time. An interactive "interface building tool" 
can be written to spit out either resources or C-language attribute lists for gadgets, images, 
and interconnections. 

It will be a challenge, writing such a tool, to represent the "Model-Gadgets" philosophy of 
interconnection, since models are abstract quantities, not represented by some on-screen 
imagery. It will also be a challenge to write a modem interface layout tool that provides 
algorithmic concepts of "group", "aligned column", and "of equal height" which are sensitive 
to changes in font and resolution. Older methods which provide only the layout which can be 
accomplished by dragging things around with a mouse are not going to be powerful enough 
to handle various fonts and resolutions. And, of course, a rich set of classes needs to be 
written, to fulfill the needs ~d dreams of Intuition programmers now and in the future. 

DevCon90 32 Boo psi 



S
id

: 

Intuition-C
lasses 

In
tu

itio
n

 C
lasses R

eferen
ce 

(c) 
C

o
p

y
ri9

h
t 1989, 

1990 C
om

m
odore-A

m
iva, 

A
ll R

19hta 
R

eserv
ed

 
F

ira
t V

ersio
n

: Jim
 K

ack
raz, 

Jan
u

ary
 1990 

L
ast R

ev
isio

n
: 

Jim
 H

ack
raz, 

Ju
n

e 1990 
c
la

a
a
.d

o
c
,v

 1
.3

 9
0

/0
6

/2
3

 1
1

:4
3

:1
8

 
jim

m
 E

xp 
$ In

c. 

T
his docum

ent c
o

n
ta

in
s referen

ces 
in

fo
rm

atio
n

 fo
r·eacb

 p
u

b
lic

 
•b

o
o

p
ai• c

la
ss d

efin
ed

 by 
In

tu
itio

n
 V

ersio
n

 3
6

. 

) 

P
age1 

) 

C
laaa: 

C
lass 

ID
: 

S
u

p
erclaas: 

D
e
sc

rip
tio

n
: 

In
clu

d
e F

ile
: 

H
ew

 M
ethods: 

Intuition-C
lasses 

R
oot c

la
ss 

•ro
o

tc
la

a
a
• 

H
one 

B
ase c

la
a
a
 fo

r a
ll o

th
e
r claaaea 

<
in

tu
itio

n
/c

la
a
a
u

sr.h
>

 

P
age2 

O
H

 HEM
 -

c
re

a
te

 a 
new

 o
b

je
c
t. 

T
h

is m
ethod 1

a p
assed

 a 
p

o
in

te
r to

 
-

th
e
 •tru

e
 c

la
a
a
• o

f th
e
 o

b
je

c
t in

 p
lace o

f th
e
 •y

e
t to

 be c
re

a
te

d
• 

o
b

je
c
t. 

T
he R

oot c
la

a
a
 w

ill a
llo

c
a
te

 enouvh m
em

ory 
fo

r a
ll th

e
 

in
sta

n
c
e
 d

a
ta

 o
f th

e
 tru

e
 c

la
a
a
. 

O
K

_D
ISPO

SE -
d

e
le

te
 an

 
o

b
je

c
t. 

T
h

is m
ethod w

ill 
fre

e
 th

e
 sam

e 
am

ount o
f m

em
ory 

aa a
llo

c
a
te

d
 by O

M
_H

EH
. 

O
K

_A
D

D
TA

IL -
ad

d
 an

 o
b

je
c
t to

 an
 E

xec lis
t, 

b
aaed

 on a 
H

inH
ode 

in
 

th
e
 p

riv
a
te

 ro
o

tc
la

ss o
b

je
c
t h

ead
er. 

Y
ou can

 p
ro

v
id

e any 
E

xec lis
t you w

an
t, 

and ite
ra

te
 th

e
 o

b
je

c
ts on th

e
 lis

t 
u

sin
9

 in
tu

itio
n

.lib
ra

ry
/H

e
x

tO
b

je
c
t(). 

OK_REM
OVE 

-
rem

ove an
 o

b
je

c
t from

 an E
xec 

lis
t 

T
he 

fo
llo

v
in

9
 m

ethods a
re

 d
efin

ed
 fo

r a
ll o

b
je

c
ts1 

b
u

t a
re

 no-opa 
in

 th
e
 ro

o
tc

la
a
a
. 

Im
p

lem
en

tatio
n

 fo
r sp

e
c
ific

 au
b

elaaaes Ia 
done to

 su
p

p
o

rt th
e
se

 co
n

v
en

tio
n

s. 

OM
_ADDM

EHBER -
A

dd som
e o

b
je

c
t 

(p
assed

 to
 th

e
 m

ethod) 
to

 th
e
 

•m
em

bership• o
f y

o
u

r o
b

je
c
t, 

w
hich you d

e
fin

e
. 

E
xam

ples 
in

clu
d

e th
e
 •b

ro
ad

cast lis
t•

 o
f IC

'a b
elo

n
9

in
9

 to
 an

 
o

b
je

c
t from

 m
o

d
elclaaa, 

an
d

 th
e
 co

m
p

o
site 9

ad
9

ets o
f 

v
ro

u
P

9
claaa. 

T
h

is is
 ty

p
ic

a
lly

 im
plem

ented by sen
d

ln
9

 
th

e
 O

M
_A

D
D

TA
IL m

esaave to
 th

e
 m

em
ber o

b
je

c
t. 

OM
_REM

M
EM

BER -
R

em
ove 

a m
em

ber o
b

je
c
t p

rev
io

u
sly

 added by 
OM

 ADDM
EM

BER. 
Y

ou ty
p

ic
a
lly

 sen
d

 th
e
 OM

 
R

£
K

O
V

E
 m

easave 
to

-th
e
 m

em
ber o

b
je

c
t. 

-

OM
 SET -

S
et a

ttrib
u

te
s 

from
 p

assed
 a

ttrib
u

te
 lis

t. 
-

T
he R

oot 
c
la

ss 
d

efin
es 

no a
ttrib

u
te

s. 

lM
_G

ET 
-

R
etriv

e one a
ttrib

u
te

. 

O
M

_U
PD

A
TE -

•B
e u

p
d

ated
• o

f e
x

te
rn

a
l ch

an
v

es. 
A

 n
o

-o
p

 fo
r 

R
oot c

la
ss. 

OM
 N

O
TIFY

 
-

•N
o

tify
 o

th
e
rs• o

f ch
an

v
es p

ro
v

id
ed

 in
 th

e
 m

eaaave. 
-

A
 n

o
-o

p
 fo

r th
e
 ro

o
t c

la
a
a
. 

C
han9ed M

ethods: 
H

ot a
p

p
lic

a
b

le
. 

A
ttrib

u
te

s: 
N

one. 

) 

~
 



c 

clasaa 
C

laaa ID
: 

S
u

p
erclaau

 
D

escrip
tio

n
 1 

In
clu

d
e F

ile
: 

N
ew

 M
ethods: 

Intuition-C
lasses 

Im
age c

la
sa

 
•im

ag
eclaaa• 

•ro
o

tc
la

a
a
• 

B
ase c

la
ss fo

r In
tu

itio
n

-co
m

p
atib

le Im
ages 

<
in

taitio
n

/im
ag

eclaaa.h
>

 

IH
 DRAM

 -
D

raw
 th

e im
age in

 th
e
 R

aatP
o

rt p
assed

 in
 th

e
 m

essage, 
-

a
t th

e x
o

ffset and in
 th

e
 sta

te
 p

ro
v

id
ed

 in
 th

e
 m

essage. 

P
age3 

F
or th

is sim
ple b

aaeclaaa, 
i9

n
o

rea th
e
 im

age sta
te

 p
assed

 
and ju

st draw
s 

its
e
lf lik

e
 an

 o
ld

-sty
le

 a
tru

c
t 

Im
age, 

depending 
co

m
p

atib
ly

 on 
im

age d
a
ta

 fie
ld

s, 
in

clu
d

in
g

 Im
ageD

ata. 

IH
 H

ITTEST -
R

eturn TRU
E 

if
 th

e
 p

o
in

t p
assed

 is
 •co

n
tain

ed
• in

 
-

th
e
 Im

age. 
T

hlae b
ase Im

age c
la

ss retu
rn

s TRU
E 

if th
e
 p

o
in

t 
is w

ith
in

 th
e o

ld
 a

tru
c
t 

Im
age box. 

IH
 ERA

SE -
E

rase an 
im

age. 
T

h
is c

la
ss w

ill c
a
ll th

e
 new

 g
rap

h
ics 

-
lib

ra
rJ fu

n
ctio

n
 E

raaeR
ect() 

fo
r ita

 Im
age box. 

NOTE N
ELL: 

th
e va 

ld
ity

 o
f th

e
 box dim

ensions 
(>

a 
0) 

is
 n

o
t te

ste
d

. 

IH
 

H
O

V
E 

~
 erase and redraw

 an
 im

age. 
T

hla 
ia

 in
ten

d
ed

 fo
r au

b
claaaea 

-
cap

ab
le o

f perform
ing an

im
atio

n
 o

r sm
ooth d

rag
g

in
g

 
(e

.g
., 

p
ro

p
 

gadget k
n

o
b

s). 
A

 no-op fo
r th

e
 b

ase Im
age c

la
ss. 

N
ever 

been u
sed

. 

IH
 

FRAKEBOX -
A

 no-op fo
r th

is b
aaeclaaa, 

b
u

t 
Im

plem
ented b

J 
-

Im
age su

b
classes w

hich a
re

 •stre
tc

h
a
b

le
•, 

th
e
 key exam

p e 
b

ein
g

 fram
eiclaaa w

hich p
u

ts an
 em

bossed fram
e around 

a te
x

t la
b

e
l o

r g
ly

p
h

. 
T

he m
essage p

assed
 to

 th
is m

ethod 
co

n
tain

s a p
o

in
ter to

 a 
box d

escrib
in

g
 th

e
 dim

ensions o
f th

e
 

•co
n

ten
ts• th

a
t is

 to
 b

e fram
ed, 

and a 
p

o
in

te
r to

 a 
•fram

e box• 
fo

r th
e
 re

su
lt. 

T
here ia

 a
lso

 a 
•rram

eF
lag

a• fie
ld

 w
hich 

to
d

ay
 baa o

n
ly

 one d
efin

ed
 fla

g
 FR

A
H

EF_SPEC
IFY

. 

T
he 

Id
ea behind th

is fram
e b

u
sin

ess ia
 to

 su
p

p
o

rt m
u

ltip
le 

g
ad

g
ets 

(as 
found 

in
 a 

sy
stem

 req
u

ester) 
w

hich sh
are a 

sin
g

le fram
e 

im
age o

b
je

c
t, 

b
u

t ren
d

er it in
 d

iffe
re

n
t 

dim
ensions ap

p
ro

p
riate fo

r th
e
ir en

clo
sed

 •la
b

e
l.• 

T
he o

p
eratio

n
 o

f th
is m

ethod sh
o

u
ld

 b
e d

efin
ed

 by su
ita

b
le

 
su

b
classes as fo

llo
w

s, 
and re

tu
rn

 n
o

n
-zero

 to
 in

d
ic

a
te

 
th

a
t th

ey
 su

p
p

o
rt th

is m
ethod. 

If FRAM
EF SPEC

IFY
 
is

 n
o

t se
t, 

you sh
o

u
ld

 se
t up th

e
 

povlded fram
e 

box w
ith

 th
e
 p

o
sitio

n
 and dim

ensions o
f th

e
 

fram
e you w

ould ren
d

er to
 en

clo
se tb

e
 co

n
ten

ts box. 
T

h
is 

is an in
q

u
iry

 fu
n

ctio
n

 
u

sed
, 

fo
r exam

ple, 
by a 

g
ad

g
et w

hich 
w

ants to
 know

 w
hat 

siz
e
d

 fram
e dim

ensions to
 p

ass to
 

IH
_D

RA
N

FRA
H

E d
efin

ed
 below

, 
and bow

 to
 c

e
n

te
r th

e
 co

n
ten

ts. 

T
he c

a
lle

r m
ight th

en
 ad

d
 a 

little
 a

e
sth

e
tic

 m
argin by 

in
creasin

g
 

th
e dim

ensions 
(o

r m
ig

h
t d

ecid
e to

 m
ake a 

colum
n o

f fram
ed 

o
b

jects a
ll th

e sam
e w

id
th

 as th
e
 la

rg
e
st o

n
e), 

and having 
done so

, 
can c

a
ll th

e
 m

ethod IH
 FRAHEBOX ag

ain
, 

th
is tim

e 
w

ith
 FRA

H
EF SPEC

IFY
 
s
e
t. 

N
ov, 

y
o

u
r m

ethod is
 ex

p
ected

 to
 

resp
ect th

e-d
im

en
sio

n
s sp

e
c
ifie

d
 in

 th
e
 fram

e box 
(even if

 you 
th

in
k

 th
ey

 are to
o

 am
alll) 

and to
 se

t up o
n

ly
 th

e
 p

o
sitio

n
 o

f th
e
 

fram
e box ap

p
ro

p
riately

 fo
r en

clo
sin

g
 th

e
 p

ro
v

id
ed

 co
n

ten
ts 

box. 
cu

rren
tly

 im
plem

ented fram
e im

age c
la

sse
s alw

ays c
e
n

te
r 

th
e co

n
ten

ts, 
b

u
t fu

tu
re

 c
la

sse
s m

ight w
ant to

 su
p

p
o

rt an 
a
ttrib

u
te

 fo
r o

p
tio

n
al le

ft o
r rig

h
t 

ju
stific

a
tio

n
 o

f th
e
 co

n
ten

ts. 

T
h

an
k

fu
lly

, 
th

e
re

 is
 an

 exam
ple p

ro
v

id
ed

 on th
e
 D

eV
C

on d
isk

s. 

c 
( 

Intuition-C
lasses 

P
age4 

IH
 DRANFRAHE -

Im
age su

b
classes w

hich assig
n

 p
ro

p
er m

eaning to
 

-
th

is c
la

ss 
(e

.g
., 

fram
eim

ageclaas) 
sh

o
u

ld
 resp

ect th
e
 

dim
ensions th

a
t a

re
 p

assed
 in

 th
is m

essage by su
p

erced
in

g
 

th
is m

ethod. 
If th

is b
aaeclass sees th

is m
essage, 

it 
w

ill co
n

v
ert it to

 an
 IH

 DRAM
 m

essage and sen
d

 it back 
to

 th
e
 im

ag
e's •tru

e
 c

la
is•. 

T
h

is w
ay, 

any su
b

class o
f 

im
ag

eclaas w
hich d

o
esn

't im
plem

ent o
r reco

g
n

ize th
e
 

IH
 DRANFRAM

E m
ethod w

ill d
e
fa

u
lt to

 draw
ing th

em
selv

es 
a
t-th

e
ir •n

a
tu

ra
l• d

im
en

sio
n

s. 

IH
_H

ITFR
A

H
E -

P
erform

 a 
h

it te
a
t as above fo

r th
e
 im

age resp
ectin

g
 

th
e
 fram

e dim
ensions p

assed
 in

 th
e
 m

essage. 
U

sefu
l fo

r 
som

ething lik
e
 a 

stre
tc

h
a
b

le
 rounded box. 

T
h

is c
la

ss 
ju

st p
erfo

rm
s th

e
 sam

e as IH
 B

IT
T

E
ST

, 
ig

n
o

rin
g

 th
e
 

dim
ensions p

assed
. 

-

IH
_ERA

SEFRA
K

E -
E

rase an im
age resp

ectin
g

 th
e
 fram

e dim
ensions p

assed
 

in
 th

e
 m

eaaave. 
T

h
is c

la
ss c

a
lla

 E
raseR

ect() 
fo

r th
e
 fram

e 
d

im
en

sio
n

s, 
ag

ain
 n

o
t ch

eck
in

9
 fo

r v
a
lid

ity
. 

C
hanged H

ethodss 
OH_NEN -

In
stan

ce d
ata co

n
tain

s an
 Im

age stru
c
tu

re
, and its

 D
epth 

fie
ld

 is
 in

itia
liz

e
d

 to
 CU

STO
H

IH
A

G
ED

EPTB, 
w

hich id
e
n

tifie
s 

aucb im
aves to

 In
tu

itio
n

. 
T

he N
id

th
 and H

eight fie
ld

s a
re

 
se

t to
 a

rb
itra

ry
 p

o
sitiv

e
 num

bers fo
r sa

fe
ty

, 
b

u
t you sh

o
u

ld
 

alw
ays eatab

liah
m

 them
 to

 som
ething m

ean
in

g
fu

l. 

O
H

_S
E

T
-

A
p

p
lies a

ll su
p

p
o

rted
 a

ttrib
u

te
s, 

retu
rn

s '1
'. 

A
ttrib

u
te

s 1 
IA

 L
E

F
T

 
-

(ISG
) 

IA
-TO

P 
-

(IS
G

) 
IA

-N
ID

TB
 

-
(ISG

) 
IA

-B
EIG

B
T 

-
(ISG

) 
-

T
hese a

ttrib
u

te
s a

re
 sto

red
, 

by th
e
 b

aae Im
age c

la
ss, 

as v
alu

es 
in

 th
e
 fa

m
ilia

r Im
a9e stru

c
tu

re
. 

IA
 FG

PEN
 

-
(ISG

) 
IA

-B
G

PEN
 

-
(ISG

) 
-

T
hese a

ttrib
u

te
s a

re
 m

ain
tain

ed
 in

 th
e
 P

laneP
ick and P

laneonO
ff 

fie
ld

s, 
w

hich co
n

cep
t th

ey
 g

en
eralize. 

IA
 DATA 

-
(ISG

) 
-

A
 p

o
in

te
r to

 v
en

eral im
age •d

a
ta

• •
. T

hla v
alu

e 1
a sto

re
d

 in
 

th
e Im

ageD
ata fie

ld
 o

f th
e
 o

ld
 Im

age stru
c
tu

re
. 

IA
 LIN

EN
ID

TB
 

-
() 

-
A

 no-op fo
r th

e
 b

ase Im
age c

la
ss. 

N
aa 

supposed to
 b

e 
com

m
on 

enou9h 
fo

r m
any 

im
age c

la
sse

s to
 b

e d
efin

ed
 a

t 
th

is to
p

 le
v

e
l. 

IA
 B

IG
B

LIG
B

TPEN
 -

() 
IA

-SBA
D

O
N

PEN
 -

() 
-

T
hese tw

o 
im

a9es a
re

 o
b

so
lete b

efo
re th

e
ir tim

e. 
T

he 
In

ten
d

ed
 fu

n
c
tio

n
a
lity

 is
 su

p
erced

ed
 in

 th
e classes 

th
a
t need it by th

e
 D

raw
info stru

c
tu

re
 p

assed
 to

 
IH

_D
RA

N
 and IH

_D
RA

ifFRA
H

E. 

IA
 PEN

S -
() 

-
D

efined b
u

t n
o

t su
p

p
o

rted
 by th

e
 b

ase c
la

ss. 
P

o
in

ter to
 UM

ORD p
en

s(), 
term

in
ated

 by -0
. 

T
h

is 
can b

e used to
 th

e
 ex

clu
sio

n
 o

f D
raw

lnfo a
ttrib

u
te

s 
o

r p
aram

eters, 
o

r as an o
v

errid
e. 

IA
 RESO

LU
TIO

N
 -

() 
-

A
nother g

re
a
t id

ea su
p

erced
ed

 by D
raw

info. 

~
 



Intuition-C
lasses 

P
ageS

 

) 
) 

lntuH
ion-C

iasses 
P

age&
 

C
lass: 

C
lass ID

: 
S

u
p

erclaaa: 

E
m

bossed Fram
e Im

ave C
lass 

•fram
eiclaaa• 

•tm
av

eclaaa• 
D

escrip
tio

n
: 

In
clu

d
e F

ile
: 

A
 ra

ise
d

, 
sunken, 

o
r ch

ialed
 im

ave c
la

ss au
p

p
o

rtin
v

 
fram

e dim
ensions and In

tu
itio

n
 nev lo

o
k

 p
aram

eters. 
<

in
tu

itio
n

/im
av

eclaaa.b
>

 
N

ev M
ethods: 

N
one, 

b
u

t im
plem

ents som
e o

f th
e
 no-ops 

in
 im

av
eclass. 

C
hanved M

ethods: 
OM

 G
ET -

A
 no-op fo

r th
is c

la
ss, 

fo
r rom

apace co
n

sid
eratio

n
s. 

IM
:D

RA
H

 -
D

ravs th
e
 em

bossed fram
e in

 ita
 n

a
tu

ra
l 

(Im
ave) 

d
im

en
sio

n
s. 

-
Fram

e th
ick

n
ess su

p
p

o
rt o

f IA
_LIN

EN
ID

TB
 
is

 c
u

rre
n

tly
 n

o
t im

plem
ented. 

Fram
e ty

p
e is

 d
eterm

in
ed

 by a
ttrib

u
te

s b
elo

v
, 

co
lo

ra determ
ined 

by D
rav

in
fo

 and su
p

p
o

rts th
e
se

 d
rav

in
v

 sta
te

s: 
ID

S NORM
AL, 

ID
S 

IN
A

CTIV
EN

O
RH

A
L, 

ID
S D

ISA
B

LED
: 

-R
en

d
ers ed

v
ia in

 abadovP
en, 

sh
iieP

en
, 

and backvroundP
en fo

r 
th

e
 in

te
rio

r. 
N

O
TE: 

H
o 9

h
o

atin
9

 is
 done fo

r ID
S D

ISA
B

LED
. 

ID
S 

SELEC
TED

, 
ID

S 
IH

A
C

TIV
ESELEC

TED
: 

-
-R

en
d

ers ed
v

es-in
 ahadovP

en, 
ahlneP

en, 
and h

ifillP
e
n

, 
fo

r 
th

e
 in

te
rio

r. 
IH

 DRAW
FRAHE -

Sam
e as IH

 DRAN, 
b

u
t d

rav
a 

fram
e to

 to
 sp

ecified
 

-
e
x

te
rio

r d
im

en
sio

n
s. 

IH
 FRAHEBOX -

C
en

ters co
n

ten
ts, 

adds dim
ension fo

r fram
e th

ick
n

ess, 
-

p
lu

s an in
te

rio
r m

arvin th
e
 sam

e th
ick

n
ess. 

A
ttrib

u
te

s: 
IA

 RECESSED
 -

(IS
) 

-
S

p
ecifies th

a
t th

e
 fram

e sh
o

u
ld

 b
e recessed

 in
to

 th
e
 d

rav
in

v
 

su
rface 

(ahadovP
en u

sed
 on upper and le

ft ed
v

es). 
D

efau
lt 

is
 FA

LSE, 
a 

ra
ise

d
 fram

e. 
IA

 DOUBLEEM
BOSS -

(IS
) 

-
T

vo n
ested

 em
bossed fram

es 
fo

r •c
b

isle
d

• boxes o
r •rid

v
es• 

H
ot su

p
p

o
rted

. 
lA

 EDGESOHLY -
(IS

) 
-

D
oes 

n
o

t fill 
fram

e, 
ju

st d
rav

a th
e
 ed

v
es. 

IA
 LIN

EN
ID

TB
 -

() 
-

N
ot 

su
p

p
o

rted
, 

b
u

t sh
o

u
ld

 b
e. 

) 

gJ 



c 

C
lass: 

C
lass ID

: 

Intuition-C
lasses 

S
ystem

 Im
age C

lass 
•sy

sic
la

ss• 
undocum

ented su
b

class o
f •im

ag
eclass• 

P
age7 

S
u

p
erclass: 

D
escrip

tio
n

: 
In

clu
d

e F
ile

: 
C

lass fo
r sy

stem
 an

d
 stan

d
ard

 ap
p

licatio
n

 im
ages. 

<
in

tu
itio

n
/im

ag
eclass.h

>
 

N
ew

 M
ethods: 

N
one. 

C
hanged M

ethods: 
OM

_NEM
 -

E
xecutes a draw

ing com
m

ands 
lis

t to
 c

re
a
te

 a 
fast-ren

d
erin

g
 

im
age o

b
ject. 

T
he g

ly
p

h
 o

f th
e
 o

b
je

c
t is d

efin
ed

 by th
e
 a

ttrib
u

te
 

SY
SA

 M
hich. 

T
he 

SY
SIA

 D
raw

info p
aram

eter is *
req

u
ired

*
 a

t 
in

itia
liz

a
tio

n
, 

as 
is

 Y
A

_H
EIG

H
T. 

Im
age siz

e
 d

efau
lts a

re
 e

sta
b

lish
e
d

 by SY
SIA

 S
ize, b

u
t som

e 
im

ages 
(title

 b
ar g

ad
g

et 
im

ages) 
req

u
ire lA

-H
E

IG
H

T
. 

Im
ages are scaled

 to
 th

e
ir d

im
en

sio
n

s. 
-

M
e cu

rren
tly

 do n
o

t change th
e
 p

aram
eters o

f th
ese im

ages 
a
fte

r in
itia

liz
a
tio

n
, 

b
u

t th
e
re

 seem
s to

 b
e
 som

e 
su

p
p

o
rt 

in
 th

e
re

. 
B

etter d
o

cu
m

en
tatio

n
 w

ill 
b

e
 p

ro
v

id
ed

 in
 th

e
 

fu
tu

re. 

A
ttrib

u
te

s: 
SY

SIA
 D

raw
info -

(IS
) 

T
nis a

ttrib
u

te
 m

ust b
e p

assed
 a

t OM
 HEM

 and OM
 SET to

 
allo

w
 th

e im
age to

 b
e g

en
erated

 in
to

 a 
bitm

ap V
cache•. 

SY
SIA

 N
hich -

(I) 
x

aen
tifies w

hich o
f th

e
 sy

stem
 im

age g
ly

p
h

• c
a
lle

r w
an

ts. 
C

onstanta fo
r th

e v
alu

es a
re

 d
efin

ed
 in

 th
e
 in

clu
d

e file
. 

SY
SIA

 S
ize -

(I) 
x

aen
tifies w

hich d
e
fa

u
lt d

im
en

sio
n

s to
 u

se fo
r th

e
 o

b
je

c
t. 

T
his g

en
eralizes In

tu
itio

n
's o

ld
er co

n
cep

t o
f tw

o d
iffe

re
n

t 
system

 im
age d

im
en

sio
n

s. 
T

he sy
stem

 c
u

rre
n

tly
 u

ses 
SY

SISIZ
E

 M
EDRES as th

e
 d

e
fa

u
lt, 

SY
SISIZ

E
 H

IR
ES 

fo
r screen

s 
w

ith title
 b

ars g
re

a
te

r th
an

 22 p
ix

e
ls, in

d
 SY

SISIZ
E

 LO
RES 

fo
r screen

s w
ith fa

t p
ix

e
ls. 

-

( 

C
laaa: 

C
lass ID

: 
S

u
p

erclass: 
D

escrip
tio

n
: 

In
clu

d
e F

ile
: 

N
ew

 M
ethods: 

N
one. 

C
hanged M

ethods: 

Intuition-C
lasses 

In
tu

iT
ex

t Im
age C

lass 
•ite

x
tic

la
ss• 

•im
ag

eclass• 
In

tu
iT

ex
t eq

u
iv

alen
t w

ith
 a

ttrib
u

te
 o

v
errid

e. 
<

in
tu

itio
n

/im
ag

eclass.h
>

 

IM
 DRAM

 -
D

raw
s 

In
tu

iT
ex

t sp
e
c
ifie

d
 as IA

 DATA o
v

errid
in

g
 th

e
 

-
a
ttrib

u
te

s sp
e
c
ifie

d
 in

 th
e
 In

tu
iT

e
x

t-stru
c
tu

re
. 

T
he 

M
ode 

u
sed

 
is

 JA
M

1
1 

th
e
 c

o
lo

r as sp
e
c
ifie

d
 as IA

 FG
PEN

. 
T

he p
o

sitio
n

 o
f th

e
 •ite

x
tic

la
ss• o

b
ject is

 ad
d

id
 to

 th
e
 

p
o

sitio
n

 o
f th

e
 In

tu
iT

ex
t. 

T
h

is c
la

ss w
aa 

d
efin

ed
 to

 m
ake 

new
-looking A

utoR
equesters w

ith
o

u
t 

changing th
e
 In

tu
iT

ex
t stru

c
tu

re
s th

a
t w

ere p
assed

 in
. 

Ita
 

g
en

eral u
sefu

ln
ess is

 q
u

estio
n

ab
le, 

sin
ce a 

norm
al 

im
age te

x
t 

o
b

ject w
ould p

ro
b

ab
ly

 n
o

t carry
 th

e
 ex

tra In
tu

iT
ex

t baggage. 

A
ttrib

u
te

s: 
IA

 DATA -
(ISG

) 
-

P
ro

cessed
 b

lin
d

ly
 by su

p
erclass, m

ust 
b

e
 a p

o
in

ter to
 

a 
norm

al 
In

tu
iT

ex
t stru

c
tu

re
. 

IA
 FG

PEN
 -

(ISG
) 

-
P

ro
cessed

 by su
p

erclass, 
used aa A

Pen w
hen 

draw
ing te

x
t. 

IA
 LEFT, 

IA
 TO

P 
-

(ISG
) 

-
A

dded to
 In

tu
iT

ex
t o

ffse
ts. 

( 

P
ages 

CD 
(¥

) 



C
lass: 

C
lass ID

: 

Intuition-C
lasses 

In
terco

n
n

ectio
n

 C
lass 

•ic
c
la

ss• 
•ro

o
tc

la
ss• 

P
a

g
e

9
 

S
u

p
erclass: 

D
escrip

tio
n

: 
In

clu
d

e F
ile

: 
B

ase c
la

ss o
f sim

p
le fo

rv
ard

in
; in

terco
n

n
ectio

n
. 

<
in

tu
itio

n
/ic

c
la

a
s.h

>
 

N
ew

 M
ethods: 

IC
H

 SETLO
O

P 
ICH

-CL&
A

RLO
O

P 
ICH

-CH
ECK

LO
O

P 
-A

ll o
f th

e
se

 m
ethods 

a
re

 u
sed

 in
te

rn
a
lly

 by su
b

classes to
 

m
ana9e 

a 
•lo

o
p

 in
h

ib
itio

n
• fo

r b
ro

ad
casted

 m
essa9es. 

T
hey 

in
crem

en
t, 

d
ecrem

en
t, 

and re
tu

rn
 th

e
 v

alu
e o

f th
a
t 

co
u

n
ter. 

C
ban;ed M

ethods: 
OM

 SET -
S

eta a
ttrib

u
te

s d
efin

ed
 below

 retu
rn

s 0
. 

N
ote th

a
t th

is is
 NOT th

e
 sam

e b
eh

av
io

r as O
M

_N
O

TIFY
. 

OM
 N

O
TIFY

 -
Issu

es an OK U
PD

A
TE m

esaa9e to
 th

e
 o

b
ject in

d
icated

 
-

by a
ttrib

u
te

 IC
A

_TA
R

G
ET, 

firs
t co

n
v

ertin
; th

e
 a

ttrib
u

te
 

ta
;s acco

rd
in

; to
 ICA

_M
A

P aa d
escrib

ed
 in

 th
e
 accom

panyin; 
boopsi 

referen
ce docum

ent. 

T
he in

te
rn

a
l 

lo
o

p
 co

u
n

t is
 in

crem
en

ted
 u

n
til th

e
 OK UPDATE 

m
ethod 

it in
v

o
k

es on IC
A

 TA
RG

ET 
re

tu
rn

s. 
A

lso
, 

it w
ill 

do n
o

th
in

; a
t a

ll if
 th

a
t lo

o
p

 co
u

n
t w

as 
n

o
n

-zero
 to

 b
e
;in

 
w

ith
, 

ao p
rev

en
tin

; its
e
lf from

 p
a
rtic

ip
a
tin

; in
 an in

fin
ite

 
lo

o
p

in
; situ

a
tio

n
. 

OM
 UPDATE -

R
eceive u

p
d

ate n
o

tices from
 o

th
e
rs. 

T
h

is b
ase IC

 c
la

ss 
-

ju
st p

asses th
e
 m

essa;e a
lo

n
;, 

tre
a
tin

; it ex
actly

 lik
e
 

an OM
 N

O
TIFY

 m
essage. 

su
b

classes v
ill p

ro
b

ab
lJ 

red
efin

e 
th

is m
ethod to

 p
erfo

rm
 a 

c
a
lc

u
la

tio
n

, 
th

e
 reau

 t 
o

f w
hich 

th
ey

 m
i;h

t forw
ard to

 o
th

ers by issu
in

g
 them

aelves an OM
 N

O
TIFY

 
~
~
-

-
U

n
fo

rtu
n

ately
, 

th
is c

la
ss *

co
n

v
erts*

 th
e OM

 SET and OM
 N

O
TIFY

 
m

esaa9es to
 an

 OK N
O

TIFY
 

by chan9in9 th
e
ir M

ethodiD
 fie

ld
, 

and 
does 

n
o

t re
sto

re
 I

t to
 v

h
at 

it o
ri;in

a
lly

 v
as. 

A
ttrib

u
te

s: 
IC

A
 TARGET -

(IS
) 

-T
a
r;e

t o
b

je
c
t fo

r O
K

_U
PD

A
TE m

essag
es. 

S
ee th

e
 docum

ent. 
If th

is a
ttrib

u
te

 is
 ;iv

e
n

 th
e
 v

alu
e ICTA

RG
£T ID

CM
P, 

th
en

 
th

e n
o

tific
a
tio

n
 w

ill c
o

n
sist o

f sen
d

in
g

 an
 I6cH

PU
PD

A
TE 

In
tu

lM
essag

e to
 a v

in
d

o
v

. 
T

he w
indow

 
is d

eterm
in

ed
 by 

th
e G

ad
g

etin
fo

 stru
c
tu

re
 p

assed
 around vhen th

e o
b

ject 
is co

n
n

ected
 to

 ;a
d

g
e
ta

. 

IC
A

 HAP -
(IS

) 
-A

ttrib
u

te
 m

appin; lis
t, 

as d
escrib

ed
 in

 th
e
 docum

ent. 

IC
SPEC

IA
L CODE -

(*) 
T

his Is
 a m

agic •dum
m

y• a
ttrib

u
te

: 
if

 it o
ccu

rs as a 
ta

r9
e
t 

in
 th

e
 IC

A
 M

AP m
apping 

lis
t, 

an
d

 IC
A

 TARGET 
is ICTA

RG
ET ID

CM
P, 

th
en

 th
e
 v

ilu
e
 o

f th
e
 co

rresp
o

n
d

in
g

 n
o

tific
a
tio

n
 a

ttrib
u

te
 

w
ill b

e co
p

ied
 in

to
 th

e
 In

tu
lM

essa;e.C
o

d
e fie

ld
 o

f th
e
 

ID
CM

PU
PD

A
TE m

essa;e 
(ju

st th
e
 lo

w
er six

te
e
n

 b
its o

f th
e
 

a
ttrib

u
te

 v
alu

e v
ill fit). 

T
h

is som
etim

es m
akes 

it p
a
rtic

u
la

rly
 

sim
ple to

 p
ro

cess ID
CM

PU
PD

A
TE m

essa;es v
itb

 a 
sin

g
le

 item
 o

f in
te

re
st. 

) 
) 

C
lass: 

C
lass ID

: 
S

u
p

erclass: 
D

escrip
tlo

n
z 

In
clu

d
e F

ile
: 

H
ew

 M
ethods: 

C
han;ed M

ethods: 

Intuition-C
lasses 

H
odel C

lass 
•m

o
d

elclass• 
•ic

c
la

ss• 
P

ro
v

id
es •b

ro
ad

cast• in
terco

n
n

ectio
n

. 
<

in
tu

itio
n

/ic
c
la

ss.h
>

 
H

one. 

OM
 A

D
D

H
EH

B
ER

-
A

dds 
an o

b
ject to

 th
e
 th

e
 M

O
del's in

te
rn

a
lly

 
-m

a
in

ta
in

e
d

 •b
ro

ad
cast lis

t.•
 

NOTE N
ELL: 

an
y

th
in

; on th
is 

lis
t v

ill b
e D

ISPO
SED

 vhen th
e
 m

odel o
b

je
c
t is

 d
isp

o
sed

. 

OM
_REKHEKBER -

R
em

oves 
o

b
jects added by O

H
_A

D
D

H
EH

BER. 

OM
 D

ISPO
SE -

D
isposes m

em
bers 

o
f th

e
 b

ro
ad

cast lis
t as w

ell 
-
a
s
 its

e
lf. 

OM
 N

O
TIFY

, 
OK UPDATE -

th
ese behave as 

fo
r 

•ic
c
la

sa
•, 

b
u

t 
-

firs
t an OM

 UPDATE m
essage is sen

t to
 a

ll m
em

bers 
o

f 
th

e
 b

ro
ad

cait lis
t, 

un-m
apped. 

T
he m

em
bers o

f th
e
 

b
ro

ad
cast lis

t a
re

 ty
p

ic
a
lly

 IC
's, 

v
b

ich
 have ;a

d
;e

ts 
as th

e
ir ta

r;e
ts

 and ap
p

ro
p

riate m
apping lis

ts
. 

P
age 1

0
 

If ro
u

 a
re

 c
re

a
tin

g
 a 

u
sefu

l su
b

class, 
you v

ill p
ro

b
ab

ly
 w

ant 
to

 
n

tercep
t O

M
_U

PD
A

TE, 
b

u
t p

ass O
M

_N
O

TIFY
 
to

 th
is, 

your •u
p

erclaas. 

A
ttrib

u
te

s: 
IC

A
 M

A
P, 

IC
A

 TARGET -
-sam

e as T
or th

e
 su

p
erclass. 

) 

{:; 



(_ 

C
lass: 

C
lass ID

: 
su

p
erclaaa: 

Intuition-C
lasses 

G
adQ

et 
b

ase c
la

ss 
•;a

d
q

e
tc

la
sa

• 
•ro

o
tc

la
ss• 

P
age 11 

D
escrip

tio
n

: 
In

clu
d

e F
ile

: 
B

ase c
la

ss fo
r In

tu
itio

n
 co

m
p

atib
le ;a

d
;e

t c
la

sse
s 

<
in

tu
itio

n
/;a

d
;e

tc
la

a
s.b

>
 

R
ev M

ethods: 
GH B

ITTEST 
G

H
-REN

D
ER 

G
H

-G
O

A
CTIV

E 
Q

tH
A

N
D

LEIN
PU

T 
G

M
-G

O
IN

A
CTIV

E 
-

P
lease see th

e
 C

h
ap

ter 
th

e
 docum

ent 
fo

r nov. 
2

1 
C

ustom
 G

adget 
Im

p
lem

en
tatio

n
, 

in
 

C
hanged M

ethods: 
OM HEN -

In
itia

liz
e
s tran

sp
aren

t G
adget 

stru
c
tu

re
. 

L
eftE

dge 
-

and T
opE

dge are se
t to

 O
, 

W
idth and H

eight a
re

 a
rb

itra
ry

 
co

n
stan

ts w
hich you sh

o
u

ld
 o

v
e
rrid

e
. 

S
eta up G

adgetT
ype 

to
 COSTOM

GADGET, 
and in

sta
lls a 

p
o

in
te

r to
 th

e
 •g

ad
g

etclaaa• 
d

ata stru
c
tu

re
 in

 th
e K

utualE
xclude fie

ld
. 

T
hese o

b
jects 

a
re

 alao
 v

a
lid

 •cuatom
 g

ad
g

ets.• 

L
inks se

lf in
to

 a 
N

extG
adget 

lin
k

ed
 lis

t if
 GA PREV

IO
U

S 
b 

p
assed

 to
 O

H
_N

EN
. 

-

OH UPDATE and OM
 SET a

re
 uaed sim

p
ly

 to
 ch

an
;e th

e
 a

ttrib
u

te
a
. 

T
h

is •;a
d

g
e
tc

la
a
i• does n

o
t im

plem
ent any co

n
crete g

ad
g

ets, 
so

 
au

b
clasaes w

ill do m
ore, 

as o
u

tlin
e
d

 in
 C

h
ap

ter 4
. 

OH N
O

TIFY
 -

T
h

is c
la

ss w
ill issu

e
 an

 •Ic
-lik

e
• OM

 UPDATE m
eaaave 

to-IC
A

 TARGET through IC
A

 M
A

P. 
S

u
b

classes o
f •v

a
i;e

tc
la

a
a
• a

re
 

a
d

v
ise

i to
 le

t th
e aupercT

aaa h
an

d
le th

is m
ethod. 

A
ttrib

u
tes&

 
GA LEFT -

(IS
) 

G
lC

TO
P -

(IS
) 

G
A

-N
ID

TB 
-

(IS
) 

G
A

-H
EIG

BT -
(IS

) 
-

T
heae correapond to

 p
o

sitio
n

 
In

tu
itio

n
 G

adget stru
c
tu

re
. 

•g
ad

q
et re

la
tiv

ity
• fla

q
a
. 

GA RELRIG
BT -

(IS
) 

G
A

-RELBO
TTO

H
 -

(IS
) 

G
A

-RELN
ID

TB 
-

(IS
) 

and dim
enaion fie

ld
s 

in
 th

e
 

S
ettin

q
 th

ese •c
le

a
ra

• th
e
 

G
A

-RELBEIG
BT -

(IS
) 

-
T

heae a
re

 a
lte

rn
a
tiv

e
 p

o
aitio

n
/d

im
en

aio
n

 a
ttrib

u
te

s. 
S

e
ttin

; 
th

eae ato
rea th

e co
rresp

o
n

d
in

g
 d

ata in
 th

e L
eft/T

o
p

/N
id

th
/H

eiq
h

t 
G

adget 
fie

ld
s, 

re
a
p

., 
and se

t th
e
 co

rreap
o

n
d

in
g

 flag
 

G
RELRIG

H
T, 

G
RELBO

TTO
H

, 
and ao

 o
n

. 

GA 
IN

TU
ITEX

T -
(IS

) 
G

A
-TEX

T -
(IS

) 
G

A
-LA

BELIK
A

G
E -

(IS
) 

-
T

hia co
p

ies th
e ti D

ata v
alu

e b
lin

d
ly

 in
to

 G
adget.G

adgetT
ext, 

and aets th
e flaga-L

A
B

E
L

ST
R

IH
G

 and LA
BELIK

A
G

E as ap
p

ro
p

riate 
in

 G
ad

g
et.F

lag
a. 

GA IN
TU

ITEX
T req

u
irea th

a
t t1

 D
ata b

e 
an In

tu
iT

ex
t p

o
in

te
r; as w

ith
 o

ld
-sty

le
 ;ad

g
eta7

 
GA TEX

T 
tak

es a p
o

in
ter a 

n
u

ll-term
!n

ated
 a

trin
q

 
(U

BY
TE 

•). -G
A

 LA
BELIM

A
G

E 
tak

es a 
p

o
in

ter to
 a 

(b
o

o
p

al) 
im

age. 
-

C
laaaea w

hich su
p

p
o

rt th
e
 a

ttrib
u

te
s o

th
er th

an
 GA IN

TU
ITEX

T 
m

uat 
docum

ent 
them

aelvea ap
p

ro
p

riately
, 

b
u

t th
is fic

ility
 

allo
w

s ua 
to

 have low
-overhead te

x
t q

ad
g

ets and g
ad

g
ets w

ith
 

ico
n

ic la
b

e
la

. 

( 
c 

lntuH
ion-C

iasses 
P

age 12 

T
he g

ad
g

et 
•im

age• a
ttrib

u
te

 GA IM
AGE 

is
 u

sed
, 

in
 c

la
sse

s 
frb

u
tto

n
claaa, 

to
 p

o
in

t to
 th

e
 lsh

ared
) 

fram
e im

age th
a
t 

co
n

tain
s th

e
 im

age o
r th

e
 b

u
tto

n
 ;ly

p
h

. 

GA IM
AGE -

(IS
) 

-
T

h
is m

ay b
e a 

boopai lm
aqe o

r a 
req

u
lar lm

aqe. 
T

hings a
re

 
d

esig
n

ed
 so

 th
a
t th

e
 im

age m
ay b

e sh
ared

 betw
een g

ad
q

ets. 
T

he 
im

age w
ill NOT b

e d
isp

o
sed

 w
hen 

th
e g

ad
g

et o
b

je
c
t ia

 d
isp

o
sed

. 

G
A

'B
O

R
D

E
R

-
(IS

) 
G

A
-SELECTREN

D
ER -

(IS
) 

G
A

-ID
 -

(IS
) 

G
A

-U
SERD

A
TA

 -
(IS

) 
G

A
-SPEC

IA
LIN

FO
 -

(IS
) 

-
A

ll o
f th

is ;ro
u

p
 o

f a
ttrib

u
te

s co
rreap

o
n

d
s m

ore o
r le

a
s o

b
v

io
u

sly
 

w
ith

 fie
ld

s 
in

 stru
c
t G

ad
q

et. 

GA D
ISA

BLED
 -

(IS
) 

G
A

-G
ZZG

A
D

G
ET -

(IS
) 

G
A

-SELECTED
 -

(IS
) 

GA-ENDGADGET -
(IS

) 
G

A
-IK

H
ED

IA
TE -

(IS
) 

G
A

-RELV
ERIFY

 
-

(IS
) 

GA-FOLLOM
M

OUSE -
(IS

) 
G

A
-RIG

BTBO
RD

ER -
(IS

) 
G

A
-LEFTBO

RD
ER -

(IS
) 

G
A

-TO
PBO

RD
ER -

(IS
) 

GA-BOTTOM
BORDER -

(IS
) 

G
A

-TO
G

G
LESELECT -

(IS
) 

G
A

-SY
SG

A
D

G
ET 

-
(IS

) 
-

T
h

is ;ro
u

p
 co

rresp
o

n
d

s to
 B

oolean a
ttrib

u
te

s 
(flaq

a) 
in

 stru
c
t 

G
adqet. 

T
h

is c
la

ss w
ill p

u
t th

e
 c

o
rre

c
t fla

q
 in

 th
e
 c

o
rre

c
t 

fie
ld

. 
Y

ou 
can

 paaa any n
o

n
-zero

 v
alu

e in
 th

e
 ti D

ata ta
q

 
fie

ld
 to

 cau
se th

e
 co

rresp
o

n
d

in
q

 fla
q

 to
 b

e se
t. -P

ass zero
 

to
 c

le
a
r. 

GA H
IG

H
LIG

H
T -

(IS
) 

-
S

eta th
e
 •G

A
D

G
H

IG
B

B
ITs• 

p
o

rtio
n

 o
f G

ad
g

et.F
laq

s to
 th

e 
a
ttrib

u
te

 v
alu

e in
 ti_

D
ata. 

GA SY
SG

TY
PE -

(IS
) 

-
S

eta th
e
 •sy

stem
 q

ad
q

et ty
p

e• p
o

rtio
n

 o
f G

adqet.G
adqetT

ype to
 

th
e
 

(m
asked) 

v
alu

e in
 ti_

D
ata. 

IC
A

 TARGET -
(IS

) 
IC

A
-H

A
P 

-· 
(IS

) 
-T

h
eae a

re
 ;iv

e
n

 th
e
 sam

e m
eaning as 

in
 •ic

c
la

a
s•, 

from
 w

hich 
th

ey
 a

re
 •b

o
rro

w
ed

•. 
B

eata th
e
 b

e
ll o

u
t o

f m
u

ltip
le in

h
eritan

ce, 
d

o
e
sn

't it?
 

N
ote: 

th
e
re

 a
re

 no •G
et• access a

ttrib
u

te
s, 

to
 sav

e code ap
ace and 

to
 em

brace th
e
 •tran

ap
aren

t b
ase c

la
ss• p

rin
c
ip

le
. 

If a 
su

b
class 

needa you to
 u

se th
e
 OK G

ET m
ethod to

 access any o
f th

ese a
ttrib

u
te

s, 
it m

ay 
ao docum

ent. 
-

I 



C
lass: 

C
lass ID

: 
S

u
p

erclass: 
D

escrip
tio

n
: 

In
clu

d
e F

lle
: 

N
ew

 M
ethods: 

N
one. 

lntuH
ion-C

iasses 

P
ro

p
o

rtio
n

al 9
ad

g
et c

la
ss 

•p
ro

P
9

class• 
•v

ad
9

etclass• 
E

xtended fu
n

ctio
n

 p
ro

p
o

rtio
n

al g
ad

g
ets. 

<
in

tu
itio

n
/9

ad
g

etclass.h
>

 

C
hanged M

ethods: 
A

ll m
ethods d

efin
ed

 by •9
ad

g
etclass• a

re
 handled to

 
p

ro
v

id
e co

m
p

atib
le p

ro
p

o
rtio

n
al 9

ad
9

et p
ro

cessin
9

. 

OM
 SET, 

OM
 UPDATE -

C
hanges a

ttrib
u

te
s and, 

if
 needed and 

if 
-

p
ro

P
9

class is
 th

e •tru
e
 c

la
ss•, 

w
ill u

p
d

ate th
e
 slid

e
r 

v
isu

a
ls by u

p
d

atin
9

 th
e
 knob p

o
sitio

n
 and d

im
en

sio
n

s. 

G
M

 H
A

N
D

LEIN
PU

T -
If th

e
 knob p

o
sitio

n
 chan9es su

ffic
ie

n
tly

 to
 

-
m

ake a 
d

iffe
re

n
t in

 PGA TO
P, 

w
ill issu

e
 an OH N

O
TIFY

 
m

essage, 
w

ith
 a

ttrib
u

te
i PG

A
 TO

P 
and GA ID

. 
!h

e
 

O
PU

F IN
TER

IM
 flag

 w
ill b

e
 s

e
t fo

r in
term

ed
iate m

essages 
iaau

id
 w

h
ile th

e
 m

ouse d
ra9

9
in

9
 th

e
 slid

e
r knob. 

W
ill issu

e
 a m

eaaa9e w
ith

 O
PU

F 
IN

TER
IM

 c
le

a
r w

hen 
done, 

w
hich is th

o
 •fin

a
l v

a
lu

e
•. 

-

A
ttrib

u
te

s: 
GA IM

AGE 
-

(I) 
G

A
-BO

RD
ER 

-
(I) 

-
I
f
 you 

d
o

n
't p

ass GA IM
AGE to

 N
eV

O
bject(), 

th
e
 9

ad
g

et w
ill 

c
re

a
te

 and u
se an A

U
!oK

N
O

B
. 

L
ikew

ise if
 you p

ass 
(th

e 

P
age 13 

•ille
v

a
l• a

ttrib
u

te
) 

G
A

_BO
RD

ER: 
an

 AUTOKNOB w
ill b

e
 u

sed
 in

ste
a
d

. 

GA H
IG

H
LIG

H
T -

(I) 
-

GADGHBOX h
i9

h
li9

h
tin

9
 is

 n
o

t allo
w

ed
, 

and w
ill b

e co
n

v
erted

 to
 

GADGHBOX. 

GA SPEC
IA

LIN
FO

 -
() 

-
T

h
is a

ttrib
u

te
d

 is
 •fo

rced
• to

 p
o

in
t to

 th
e
 P

ro
p

in
fo

 a
llo

c
a
te

d
 

fo
r o

b
jects o

f th
is c

la
ss. 

O
ther •v

ad
9

etclass• a
ttrib

u
te

s a
re

 p
assed

 alo
n

v
 to

 th
e
 au

p
o

rclaas. 

PGA FREEDOM
 -

(IG
) 

-M
ay 

b
e ONE o

f FREEBO
RIZ o

r FR
EEV

ER
T. 

T
he d

e
fa

u
lt 

1
e
 FR

EEV
ER

T. 

PGA &
ORDERLESS -

(I) 
-M

oans th
e
 sam

e as P
ro

p
in

fo
.F

lav
a BO

RD
ERLESS. 

PGA H
O

RIZPO
T 

PG
A

-V
ERTPO

T 
PG

A
-RO

RIZBO
D

Y
 

PG
A

-V
ERTBO

D
Y

 
-T

h
ese a

re
 d

efin
ed

 in
 th

e
 in

clu
d

e file
 b

u
t o

b
so

lete and 
w

ill n
o

t b
e su

p
p

o
rted

. 
C

lass •p
ro

P
9

class• su
p

p
o

rts 
9

ad
g

ets th
a
t a

re
 v

e
rtic

a
l o

r h
o

rizo
n

tally
 fre

e
, 

b
u

t n
o

t b
o

th
. 

PGA TO
P 

-
(ISG

N
U

) 
PG

A
-V

ISIB
LE -

(ISU
) 

PG
A

-TO
TA

L 
-

(ISU
) 

-T
h

ese a
ttrib

u
te

s a
re

 v
ery

 u
sefu

l rep
lacem

en
ts to

 P
ot and B

ody 
v

a
ria

b
le

s. 
T

her a
re

 b
aaed

 on th
e
 u

se o
f p

ro
p

o
rtio

n
al v

ad
9

eta 
to

 co
n

tro
l aero

 lin
9

 te
x

t. 
W

hen. sc
ro

llin
9

 100 lin
e
a
 o

f 
te

x
t 

in
 a 

25 
lin

e
 v

isib
le

 w
indow

, 
you w

ould se
t PGA TOTAL to

 100, 
PGA V

ISIB
L

E
 to

 25, 
and w

atch
 PGA TO

P 
run from

 0 to
 l5

 
(th

o
 

to
p

-lin
e
 o

f th
e
 la

st p
a9

e). 
-

) 
) 

Intuition-C
lasses 

P
age 14 

A
ll 

in
te

rn
a
l p

ro
p

 9
ad

9
et v

alu
es w

ill b
e c

a
lc

u
la

te
d

 b
ased

 on 
th

ese 
(dependinv on w

hether th
o

 9
ad

q
et is

 FREERO
RIZ o

r FR
EEV

ER
T). 

•co
n

tain
er c

lic
k

s• fo
r page 

jum
ps w

ill leav
e an o

v
erlap

 
o

f one lin
e
, 

u
n

less th
e
 v

alu
e PGA V

ISIB
L

E
 
is

 1
1 

in
 w

hich case 
th

o
 p

ro
p

 v
ad

v
et acta as an in

te
g

e
r num

eric slid
e
r tak

in
v

 
v

alu
es from

 0 to
 PG

A
_TO

TA
L -

1
. 

NOTE N
E

LL th
a
t PGA TO

P 
has n

o
tify

 access. 
A

ll th
re

e
 o

f 
th

ese a
ttrib

u
te

s h
iv

e •u
p

d
ate access•, 

so
 th

ey
 can 

b
e
 co

n
tro

lled
 v

ia 
in

terco
n

n
ectio

n
•. 

) 

~
 



c 
Intuition-C

lasses 

C
lass: 

C
laaa ID

: 
S

trin
9

 9
a
d

;e
t c

la
ss 

•str;c
la

a
a
• 

•v
ad

v
etclass• 

S
u

p
erclaaaz 

D
eacd

p
tlo

cu
 

In
clu

d
e F

U
ez 

R
ev M

ethods: 
H

one. 

In
tu

itio
n

 co
m

p
atib

le a
trin

9
 v

ad
v

ets. 
<

in
tu

itio
n

/v
ad

v
etclaaa.h

>
 

C
hanted M

ethods: 
A

ll m
ethods d

efin
ed

 by •v
ad

v
etclaaa• a

re
 handled to

 
p

ro
v

id
e co

m
p

atib
le strin

9
 ;a

d
;e

t p
ro

cessin
v

. 

OM
 HEN -

S
eta up S

trin
v

in
fo

 and S
trin

v
E

x
ten

d
 stru

c
tu

re
s. 

-
H

ill a
llo

c
a
te

 a B
u

ffer if
 needed and w

ill u
se sh

ared
 

d
ata b

u
ffers fo

r U
ndoB

uffer and H
orkB

uffer if th
e 

H
axC

hara 
is leas th

an
 SG

_D
EFA

U
LTH

A
X

CRA
RS 

(1
2

8
). 

D
efau

lt te
x

t pens a
re

 FG
 

a 
1

1 
BG 

a 
01 

A
ttrib

u
te

s: 
~
r
o
 

-
c
u
~
 

-
H

ill b
e in

clu
d

ed
 in

 O
H

_N
O

TIFY
 m

eaaaves v
en

erated
. 

S
T
R
I
N
~
 H

axC
hara 

-
(I) 

S
T
R
I
N
~
-
B
u
f
f
e
r
 

-
(I) 

ST
R

IN
G

A
-U

ndoB
uffer 

-
(I) 

ST
R

IN
G

A
-H

orkB
uffer 

-
(I) 

S
p

ecify
 v

ario
u

s b
u

ffe
rs d

efin
ed

 fo
r a

trin
; ;ad

v
eta and 

•ex
ten

d
ed

 a
trin

9
 v

a
d

;e
ta

.• 
If y

o
u

r v
alu

e o
f STRIN

G
A

 M
axchara 

ia
 le

a
s th

an
 SG DEFAULTHAXCHARS 

(120 fo
r n

o
v

), 
th

en
 th

is 
c
la

ss can p
ro

v
iae a

ll th
ese b

u
ffe

rs fo
r you. 

N
ote th

a
t U

ndoB
uffer and N

orkB
uffer can b

e sh
ared

 by m
any 

sep
arate ;ad

v
ets1 p

ro
v

id
in

; th
ey

 a
re

 as larv
e as th

e
 la

rv
e
a
t 

M
axC

hara 
th

ey
 v

i 1 en
co

u
n

ter. 

STRIN
G

A
 B

ufferP
os 

-
(ISU

) 
ST

R
IN

G
A

-D
ispPos 

-
(ISU

) 
F

am
iliar cu

rso
r and sc

ro
ll p

o
sitio

n
. 

STRIN
G

A
 A

ltK
eyM

ap 
-

(IS
) 

sam
i aa S

trin
v

in
fo

.A
ltK

ey
M

ap
. 

STRIN
G

A
 F

ont 
-

(IS
) 

P
age 15 

F
o

n
t fo

r strin
9

 g
ad

v
et te

x
t. 

M
ust 

b
e an OPEN 

(atru
ct T

extF
ont 

*
). 

STRIN
G

A
 P

ens 
-

(IS
) 

P
en-num

bers, 
packed aa tv

o
 sh

o
rts in

to
 a 

lonvvord, 
fo

r 
ren

d
erin

9
 ;ad

v
et te

x
t. 

STRIN
G

A
 A

ctiveP
ena 

-
(IS

) 
O

p
tio

n
al pen num

bers, 
packed aa tv

o
 sh

o
rts in

to
 a 

lo
n

v
v

o
rd

, 
fo

r 
ren

d
erin

9
 vadvet te

x
t, 

w
hen 

th
e
 v

ad
v

et ia
 a

c
tiv

e
. 

STRIN
G

A
 E

ditH
ook 

-
(I) 

C
ustom

 strin
9

 9
ad

;et e
d

it hook 
(docum

ented elsew
h

ere). 

STRIN
G

A
 E

ditH
odes 

-
(IS

) 
V

alue tak
en

 from
 

fla9
a d

efin
ed

 in
 avhooka.b fo

r in
itia

l 
e
d

itin
9

 m
odes. 

STRIN
G

A
 R

eplaceH
ode -

(IS
) 

ST
R

IN
G

A
-FixedFieldM

ode 
-

(IS
) 

ST
R

IN
G

A
-N

oFilterM
O

de 
-

(IS
) 

T
h

eie th
re

e
 are in

d
ep

en
d

en
t B

oolean eq
u

iv
alen

ts to
 th

e in
d

iv
id

u
al 

flav
a th

a
t you 

can a
e
t fo

r ST
R

IN
G

A
_E

ditH
odea. 

STRIN
G

A
 Ju

stific
a
tio

n
-

(IS
) 

T
akia th

e v
alu

es STRIN
G

CEN
TER, 

STRIN
G

RIG
H

T and STRIN
G

LEFT 
(w

hich 
is 0

). 

( 
c 

Intuition-C
lasses 

P
age 16 

STRIN
G

A
 L

oft;V
al 

-
(ISG

H
U

) 
H

hen you 
sp

ecify
 th

ia
 to

 a 
strin

g
 g

ad
g

et o
b

je
c
t, 

it m
eans 

firs
t 

th
a
t th

e
 v

ad
;et is

 ftov 
fo

r in
te

g
e
r e

n
try

 o
n

ly
, 

and th
e
 v

alu
e 

o
f th

e
 g

ad
;et tak

es th
e num

eric v
alu

e p
assed

 in
 ti D

ata. 
N

ote th
a
t th

ia
 a

ttrib
u

te
 baa n

o
tify

 and u
p

d
ate acciaa. 

STRIN
G

A
 T

extV
al 

-
(ISG

N
U

) 
W

hen you sp
ecify

 th
is to

 a 
strin

g
 ;a

d
g

e
t o

b
je

c
t, 

it m
eans 

fira
t 

th
a
t th

e
 g

ad
;et ia

 nov fo
r te

x
t en

try
 o

n
ly

, 
and tb

e
 v

alu
e 

o
f tb

e
 g

a
d

;e
t ia

 co
p

ied
 from

 th
e
 strin

g
 v

alu
e p

assed
 aa a 

UBYTE 
p

o
in

te
r in

 ti_
D

ata. 
N

ote th
a
t th

is a
ttrib

u
te

 baa n
o

tify
 and u

p
d

ate acceaa. 

N
o

tific
a
tio

n
 m

eaaa;ea w
ill b

e issu
ed

 w
henever tb

e
 g

ad
v

et chooses 
to

 go in
a
c
tiv

e
 

(n
o

t w
hen 

it ia
 ab

o
rted

). 
T

he O
PO

F 
IN

TER
IM

 fla
; 

is
 alv

ay
a c

le
a
r. 

-

Q
 
~
 



C
lass: 

C
lass ID

: 
S

u
p

erclass: 
D

escrip
tio

n
: 

In
clu

d
e F

ile
: 

New M
ethods: 

N
one 

Intuition-C
lasses 

G
roup g

ad
g

et c
la

ss 
•g

ro
u

p
q

class• 
•g

ad
g

etclass• 
C

om
posite g

ad
g

et o
b

jects 
<

in
tu

itio
n

/g
ad

g
etclass.h

>
 

P
age 17 

C
hanged M

ethods: 
OM

 SET -
P

asses m
ost a

ttrib
u

te
s to

 su
p

erclass 
(it's

 •g
ad

g
et se

lf•), 
-

b
u

t p
ro

p
ag

ates changes in
 p

o
sitio

n
 to

 its
 m

em
bers 

ap
p

ro
p

riately
. 

A
lso, 

GA W
IDTH 

and GA H
EIG

H
T a

re
 calcu

lated
 from

 th
e
 p

o
sitio

n
 and 

d
i=

en
sio

n
 o

f th
e
 m

em
bership. 

OM
 ADDHEM

BER -
a 

g
ad

g
et 

is
 added to

 th
e
 group lis

t. 
T

he p
ro

cessin
g

 
-

to
 p

ro
p

ag
ate v

ad
g

et m
ethods 

(fo
r a

c
tiv

a
tio

n
 and in

p
u

t) 
is •ex

trem
ely

*
 

co
m

p
licated

. 
D

o n
o

t try
 to

 m
ess w

ith
 th

is to
o

 m
uch. 

A
dd th

e
 

9
ad

9
ets you w

ant 
in

 th
e
 9

ro
u

p
 ri9

h
t a

fte
r you 

c
re

a
te

 it and 
leav

e them
 th

e
re

 u
n

til you. a
re

 done. 

NOTE N
ELL th

a
t a

ll m
em

ber 9
ad

g
eta w

ill b
e d

eleted
 by O

M
_D

ISPO
SE. 

A
ll gadget m

ethods -
h

an
d

led
 th

ro
u

g
h

 m
agic. 

O
M

_D
ISPO

SE -
th

is c
la

ss w
ill d

isp
o

se a
ll m

em
ber g

ad
g

ets. 

A
ttrib

u
te

s: 
LAYOUTA O

RIEN
TA

TIO
N

 
LA

Y
O

U
TA

-SPA
CIN

G
 

LA
Y

O
U

TA
-LA

Y
O

U
TO

BJ 
T

heie a
ttrib

u
te

s, 
fo

r ap
ecify

in
9

 sim
p

le lay
o

u
t p

aram
eters and 

a 
•lay

o
u

t o
b

je
c
t d

eleg
ate• a

re
 n

o
t 

im
plem

ented. 

G
A

_N
ID

TH
, 

G
A

_REIG
H

T are c
a
lc

u
la

te
d

 from
 th

e
 m

em
bership. 

GA LEFT, 
and GA rO

SIT
IO

N
 -

(IS
) 

-
T

hese a
re

 p
ro

p
ag

ated
 m

a9
ically

 to
 th

e
 m

em
bership. 

G
A

_RELN
ID

TH
, 

G
A

_RELH
EIG

H
T, 

and so
 on a

re
 n

o
t su

p
p

o
rted

. 

) 
) 

Intuition-C
lasses 

P
age 18 

C
lass: 

C
lass ID

: 
su

p
erclaas: 

B
u

tto
n

 G
ad9et C

lass 
•b

u
tto

n
9

class• 
•g

ad
g

etclass• 
D

escrip
tio

n
: 

In
clu

d
e F

ile
: 

A
 (rep

eatin
9

) 
com

m
and 

b
u

tto
n

 g
ad

g
et. 

<
in

tu
itio

n
/g

ad
g

etclasa.h
>

 
N

ew
 M

ethods: 
N

one. 

C
hanged M

ethods: 
G

M
_H

ITTEST -
D

eleg
ates th

is q
u

estio
n

 to
 ita

 G
A

_IM
A

G
£ a

ttrib
u

te
. 

GM
 H

A
N

D
LEIN

rU
T -

H
ill behave lik

e
 a 

b
u

tto
n

, 
b

u
t co

n
tin

u
o

u
sly

 
-

issu
es O

M
_N

O
TIFY

 m
essages 

fo
r each

 IEC
LA

SS_TIM
ER

 ev
en

t. 

F
lag

 O
PU

F_IN
TER

IH
 w

ill b
e
 se

t fo
r a

ll b
u

t th
e
 la

st n
o

tific
a
tio

n
. 

T
he n

o
tifie

d
 a

ttrib
u

te
 is GA ID

, 
w

ith
 a 

tw
ist: th

e
 v

alu
e sen

t 
w

ill b
e
 th

e
 •n

eg
ativ

e*
 o

f G
aagetiD

 if
 th

e
 p

o
in

te
r ia

 n
o

t 
c
u

rre
n

tly
 o

v
er th

e
 g

ad
g

et im
age. 

GM
 RENDER -

A
ll ren

d
erin

g
 is p

assed
 alo

n
g

 to
 th

e
 G

adgetR
ender 

-
Im

age. 
T

he sta
te

 p
ro

v
id

ed
 ls one o

f: 
ID

S 
IN

A
CTIV

ESELECTED
 

ID
S-IN

A
CTIV

EN
O

RM
A

L 
ID

S-SELEC
TED

 
ID

S:N
O

RM
A

L 

C
u

rren
tly

, m
ore w

ork 
needs to

 b
e done to

 su
p

p
o

rt th
e
 G

A
_D

ISA
BLED

 
a
ttrib

u
te

. 

A
ttrib

u
te

s: 
GA IM

AGE -
(IS

) 
-

C
hanging th

e
 im

ave w
ill cau

se th
e
 v

ad
g

et to
 re

fre
sh

 its
e
lf. 

) 

~
 

• 



c 

C
lass: 

C
lass ID

: 
S

u
p

erclass: 
D

escrip
tio

n
s 

In
clu

d
e F

lla
: 

H
ew

 M
ethods: 

H
one. 

Intuition-classes 

F
ram

ed C
om

m
and B

u
tto

n
 G

ad9et 
•frb

u
tto

n
c
la

sa
• 

•b
u

tto
n

9
claas• 

A
 b

u
tto

n
 9

ad
9

et th
a
t know

s 
bow

 to
 o

u
tlin

e
 its

 
•la

b
e
l• w

ith
in

 a 
sh

ared
 •fram

e lm
a9

e•. 
<

in
tu

itio
n

/Z
Z

Z
.h

>
 

P
age 19 

C
hanved M

ethods: 
OH_HEN -

W
ill se

t up 
ita

 d
im

en
sio

n
s dependin9 on G

A
_IM

A
G

£
1 

in
clu

d
in

9
 

su
p

p
o

rt fo
r fram

e 
lm

avea. 
If GA 

IM
AGE u

n
d

erstan
d

s th
e
 

1M
 FRAHEBOX m

ethod, 
d

im
en

sio
n

s a
re

 c
a
lc

u
la

te
d

 to
 su

rro
u

n
d

 
tb

i •la
b

e
l• stash

ed
 in

 G
ad9etT

ext
1 

w
hich can

 b
e 

G
A

_IH
TU

ITEX
T, 

G
A

_TEX
T

1 
o

r G
A

_LA
BELIM

A
G

E. 

OM
 SET -

If you chan9a th
e
 d

im
en

sio
n

s, 
w

ill a
d

ju
st th

e
 co

n
ten

ts 
-

by u
sin

9
 IH_FRAM

EBOX w
ith

 FR
A

H
E

IF_SPE
C

IFY
. 

G
H

_H
ITTEST -

uaea IH
_R

ITFR
A

H
E. 

GH RENDER -
u

ses 1M
 DRAW

FRAM
E. 

F
ira

t draw
s th

e
 •fram

e•, 
th

en
 

-d
ra

w
s th

e
 •co

n
ten

ts• o
r •la

b
e
l• d

escrib
ed

 under OM
_HEW

. 

A
ttrib

u
tes a 

GA W
ID

TB, 
GA BEIG

BT -
(IS

J 
-

If you cian
9

e th
e
se

, 
th

e
 co

n
ten

ts w
ill b

e
 read

ju
sted

 and 
th

e 9
ad

v
at re-ren

d
ered

. 

c 
( 

~
 











u 

u 

Programming for SCSI: 
The RigidDiskBlock and 
Kickstart 2.0 Autoboot Strategies 

by Steve Beats and Bob Burns 

SCSI Direct Command 

The HD_SCSIC:MD (IO_COMMAND value 28) was introduced to provide more flexibility 
when accessing devices attached to SCSI controllers. It provides a mechanism for passing 
SCSI and SCSI-2 command blocks directly to the devices and receiving optional sense data 
should that command fail. It is not possible to map every available SCSI function to the 
standard Amiga device commands because SCSI devices provide several functions that are 
."non-standard" in terms of the Amiga I/0 model. The HD_SCSICMD function serves to 
bridge this gap. 

The primary function of HD _SCSIC:MD is to provide an interface to SCSI tape drives, 
although other hardware can be just as easily supported. It also allows special commands to 
be sent to hard drives to modify various drive parameters that are nonnally maccessible or 
which differ from drive to drive. 

To date, the principal user ofHD_SCSICMD is the HDToomox program supplied by 
Commodore. This program is used to partition drives and set up filesystem segments on a 
reserved area of the disk. HDToolBox uses the following SCSI commands during various 
setup scenarios: 

SCSI Command Used by HDToolBox 

INQUIRY to fmd out if the unit is a hard drive and find 
some of the disk geometry 

READ CAPACITY to fmd total number of blocks available 

MODE_SENSE to fmd more information on drive geometry 

FORMAT UNIT for initial formatting and bad block mapping 

REQUEST SENSE to handle errors 

REASSIGN BLOCKS (optional) to map out bad blocks 

Programming for SCSI 1 DevCon90 



,· .. ~ 



u Reading and writing of the RigidDiskBlock area (described later) is performed using normal 
Amiga CMD_READ and CMD_ WRITE commands. For the sake of compatibility, any new 
non-SCSI controller should support the subset of SCSI commands listed in the table above by 
using the HD_SCSICMD request. This will allow end users to employ the same hard disk 
partitioning program for all kinds of hard disk controllers. An example is the A590 hard disk 
controller that supports both SCSI and XT-type drives. The XT side is handled by a separate 
driver that can interpret this subset of SCSI commands (including READ, WRITE and TEST 
UNIT READY) which allows HDToolBox to use the same commands for both devices. 

Checking Up on SCSI Devices 

Determining if HD_SCSICMD is supponed by a device driver is a simple case of sending a 
benign SCSI command to unit 0 of the device. It doesn't matter if a device is hooked up or 
not since the error returns will be sufficient to figure out what went wrong. The best 
command to send is a TEST UNIT READY since this doesn't alter the media or cause any 
1/0 (except for sense data if there was a SCSI error). A valid return, or HFERR_BadStatus, 
HFERR_SelTrmeout, HFERR_SelfUnit, or HFERR_NoBoard all indicate that the 
HD _SCSICMD is supported. 

Finding out which SCSI addresses are populated is more difficult The sure way is to attempt 
to open all available units. Since there are 56 possible SCSI addresses per controller card and 
timeouts can take up to two seconds, this is not always a good solution. It could take almost 

U two minutes to scan every available SCSI address if long timeouts are enabled. 

u 

SCSI unit numbers are calculated as: 

SCSI_ID + LUN*lO 

Thus, unit 0 would mean address 0, LUN 0, while unit 13 means address 3, LUN 1. In the 
overwhelming majority of cases there are no LUNs above 0 so it is sufficient to just try units 
0 through 6 (7 is usually reserved for the controller). In the cases where the controller ID is 
variable, then addresses 0 through 7 should be tried - but watch out for HFERR_SelfU nit 
which means that an attempt was made to open a SCSI unit at an address that is reserved for 
the controller card. 

When all LUN addresses are to be scanned, watch out for devices that respond to every 
logical unit number even though they are configured as logical unit 0. The A590 and A2091 
have a jumper to disable access to LUNs greater than 0 (the A3000 uses bits in the 
battery-backed RAM). Since other controllers may not support this, it is necessary to run 
other sanity checks instead. 

DevCon90 2 Programming for SCSI 



(\ 
. --

n 

n 



u 

u 

u 

When multiple LUNs are opened at the same SCSI address the safest thing to do is issue a 
RESERVE command to each of the units. If the target supports the RESERVE command, 
and the multiple LUN s are really the same unit, then only one reservation will ~ucceed. 
Don't forget to issue a corresponding RELEASE command when fmished. If the unit doesn't 
support the RESERVE command then it is possible to fill in the LUN field in the command 
block. Most units that open at all LUN addresses will fail with ll...LEGAL FIELD IN CDB if 
this address does not match theii" actual LUN. There are some drives that will always fail if a 
non-zero LUN is specified in the command block, even if their LUN is greater than zero. 

Once a SCSI device has been successfully opened, don't assume it's a tape or a hard drive. 
Always send an INQUIRY command to determine the device type followed by a TEST UNIT 
READY to determine the state of the media. Before attempting any access to the media, it is 
advisable to send a MODE SENSE command to determine the block size. A few controllers 
will lock up if presented with a request for 512 bytes when the block size is larger than this. 
Under 2.0, variable block size devices are fully supported by the filing system so it's no 
longer safe to assume 512-byte blocks. 

HD_SCSIC?YID is executed in the same manner as all other Amiga device commands. It can 
be sent via DoiOO or Send.IO() though IOF _QUICK will always be false. In the IORequest, 
io_Data will point at the struct SCSICmd and io_Length should be set to sizeof(struct 
SCSICmd). The io_Actual and io_Offset fields are not used. 

The SCSICmd Structure 

The following is an extract from deviceslscsidisk.h detailing the format of struct SCSICmd. 
Detailed descriptions of important fields follow. 

struct SCSICmd { 
UWORD *scsi_Data; · 

} ; 

ULONG scsi_Length; 

ULONG scsi Actual; 
UBYTE *scsi-Command; 
UWORD scsi-CmdLength; 
UWORD scsi-CmdActual; 
UBYTE scsi-Flags; 
UBYTE scsi=Status; 
UBYTE *scsi_SenseData; 

UWORD scsi_SenseLength; 

UWORD scsi_SenseActual; 

Programming for SCSI 

I* word aligned data for SCSI Data Phase *I 
I* (optional) data need not be byte aligned *I 
I* (optional) data need not be bus accessible *I 
I* even length of Data area *I 
I* (optional) data can have odd length *I 
I* (optional) data length can be > 2**24 *I 
I* actual Data used *I 
I* SCSI Command (same options as scsi_Data) *I 
I* length of Command *I 
I* actual Command used *I 
I* includes intended data direction *I 
I* SCSI status of command *I 
I* sense data: filled if SCSIF [OLD)AUTOSENSE */ 
I* is set and scsi_Status has CHECK CONDITION *I 
I* (bit 1) set *I 
I* size of scsi SenseData, also bytes to */ 
/* request wl SCSIF_AUTOSENSE, must be 4 •• 255 *I 
I* amount actually fetched (0 means no sense) *I 

3 DevCon90 



n 

n 



u 

u 

1*----- scsi Flags -----*1 
ldefine SCSIF WRITE 
I define SCSIF-READ 
ldefine SCSIB=READ_WRITE 

0 I* intended data direction is out *I 
l I* intended data direction is in *I 
o I* (the bit to test) *I 

0 I* no automatic request sense *I idefine SCSIF NOSENSE 
Ide fine SCSIF =AUTOSENSE 2 I* do standard extended request sense *I 

I* on check condition *I 
ldefine SCSIF _OLDAUTOSENSE 6 I* do 4 byte non-extended request *I 

ldefine SCSIB AUTOSENSE 
Ide fine SCSIB = OLDAUTOSENSE 

I* sense on check condition *I 
l /* (the bit to test) */ 
2 I* (the bit to test) */ 

1*----- SCSI io Error values -----*1 
idefineHFERR_S~fUnit 40 I* cannot issue SCSI command to self *I 
ide fine HFERR DMA 41 /* DMA error *I 
ldefineHFERR=Phase 42 I* illegal or unexpected SCSI phase *I 
ldefineHFERR_Parity 43 I* SCSI parity error*/ 
Ide fine HFERR Sel Timeout 4 4 /* Select timed out *I 
ldefine HFERR=BadStatus 45 I* status and/or sense error *I 

/*----- OpenDevice io Error values -----*/ 
Ide fine HFERR_NoBoard- 50 I* Open failed for non-existant board *I 

scsi Data 
This field points to the data buffer for the SCSI data phase (if any is expected). 
It is generally the job of the driver software to ensure that the given buffer is 

DMA-accessible and to drop to programmed 1/0 if it isn't. Unfortunately, 
many controllers don't do complete checks and will lose data, or put it in the 
wrong place if the address is outside DMA-addressable memory. Titis is 
gradually being ftxed by newer driver releases. The filing system provides 
a stop-gap fix with the AddressMask parameter in the mountlist However, 
it is safest to restrict all direct reads and writes to CHIP RAM. 

scsi_Length 
This is the expected length of data to be transferred. If an unknown amount 
of data is to be transferred from target to host, always set this up to be larger 
than the most data expected. Some controllers explicitly use scsi_Length as 
the amount of data to transfer. In the case of variable length transfers (such as 
MODE SENSE) this can cause the driver to lock up since it will be waiting for 
a command complete message when there is really more data to transfer. The 
A2091, A590 and A3000 drivers always do programmed 1/0 for data transfers 
of less than 256 bytes. This prevents DMA problems with odd byte lengths. 

scsi Flags 
- These flags contain the intended data direction for the SCSI command It is 

not strictly nescessary to set the data direction flag since the SCSI protocol 
will inform the driver which direction data transfers will be going. However, 
some controllers use this info to set up DMA before issuing the command. It 
can also be used as a sanity check in case the data phase goes the wrong way. 

DevCon90 4 Programming for SCSI 



0 

n 

'-' 

nl 

_,_ 



u 

u 

SCSIF _AUTOSENSE is used to make the driver perform an automatic REQUEST 
SENSE if the target returns CHECK CONDmON for a SCSI command. The 
reason for wanting this done by the driver is because of the multi-tasking nature 
of the Amiga. If two tasks were accessing the same drive and the fmt received a 
CHECK CONDmON the second would destroy the sense information when it 
sent a command. AUTOSENSE prevents the caller from having to make two 1/0 
requests and removes this window of vulnerability. 

scsi SensActual 
- If SCSIF _AUTOSENSE is set it is important to initialize this field to 0 before 

issuing a SCSICMD. The reason is that some drivers don't supportAUTOSENSE 
so it's imponant to intialize this field for them. Remember, scsi_SenseData is only 
for AUTOSENSE. If a REQUEST SENSE command is sent to the drive directly 
then the data will be deposited in the buffer pointed to by scsi_Data as usual. 

One thing to remember is that HD _SCSICMD is geared towards an initiator role so it can't be 
expected to perform target-like operations. You can only send commands to a device, not 
receive them from an initiator. There is no provision for SCSI messaging either. 1bis is 
mainly due to the interactive nature of the extended messages (such as synchronous transfer 
requests) which have to be handled by the driver because it knows the limitations of the 
controller card and has to be made aware of such protocol changes. 

RigidDiskBlock - Fields and Implementation 

The RigidDiskBlock standard was born from the same development effort as HD _SCSICMD 
and as a result has a heavy bias towards SCSL However, there is nothing in the RDB 
specification that makes it unusable for devices using other bus protocols. The XT-style disks 
used in the A590 also support the RDB standard. 

The RDB scheme was designed to allow the automatic mounting of all partitions on a hard 
drive and subsequent· booting from the highest priority partition even if it has a soft loaded 
filing system. Disks can be removed from one controller and plugged into another 
(supporting the RDB scheme) and will carry with it all the necessary information for 
mounting and booting with them. 

The preferred method of creating RigidDiskBlocks is with the HDToolBox program supplied 
by Commodore. However, there is nothing to prevent other tools being written to perform 
the same function. 

· When a driver is initialized, it uses the information contained in the RDB to mount the 
required partitions and mark them as boatable if needed. The driver is also responsible for 
loading any filing systems that are required if they are not already available on the 
filesystem.resource list. File-systems are added to the resource according to DosType and 
version number. 

Programming for SCSI 5 DevCon90 



.1 

1 

1 

1 

0 II 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

n1 
- 1 

1 

1 

1 

"'~· 1 

"- 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

n1 
1 

1 

1 

1 



u 

u 

u 

Here is a listing of deviceslhardblocks.h that describes all the fields in the ROB specification. 
1*--------------------------------------------------------------------
* 
* This file describes blocks of data that exist on a hard disk 
* to describe that disk. They are not generically accessible to 
* the user as they do not appear on any DOS drive. The blocks 
* are tagged with a unique identifier, checksummed, and linked 
* together. The root of these blocks is the RigidDiskBlock. 
* 
* The RigidDiskBlock must exist on the disk within the first 
* ROB LOCATION LIMIT blocks. This inhibits the use of the zero 
* cylinder in an AmigaDOS partition: although it is strictly 
* possible to store the RigidDiskBlock data in the reserved 
* area of a partition, this practice is discouraged since the 
* reserved blocks of a partition are overwritten by •Format", 
* "Install", "DiskCopy", etc. The recommended disk layout, 
* then, is to use the first cylinder(s) to store all the drive 
* data specified by these blocks: i.e. partition descriptions, 
* file system load images, drive bad block maps, spare blocks,, etc. 
*------------------------------------------------------------------*1 I* 
* NOTE 
* optional block addresses below contain $ffffffff 
* a NULL address, as zero is a valid address 

to indicate 

*I 
struct RigidDiskBlock { 

ULONG rdb ID; I* 4 character identifier *I 
I* size of this checksummed structure *I ULONG rdb-SummedLongs; 

LONG rdb-ChkSum; 
ULONG rdb-HostiD; 
ULONG rdb:slockBytes; 
ULONG rdb Flags; 

I* block checksum (lonqword sum to zero) *I 
I* SCSI Target ID of host *I 

); 

I* block liit heads *I 
ULONG rdb BadBlockList; 
ULONG rdb-PartitionList; 
ULONG rdb-FileSysHeaderList; 
ULONG rdb:Driveinit; 

I* size of disk blocks *I 
I* see below for defines *I 

I* optional bad block list *I 
I* optional first partition block *I 
I* optional file system header block */ 
I* optional drive-specific init code *I 
I* Driveinit(lun,rdb,ior): •c• stk' dO/aOial *I 

ULONG rdb Reservedl[6); I* set to Sffffffff *I 
I* physical-drive characteristics *I 
ULONG rdb Cylinders; I* number of drive cylinders *I 
ULONG rdb-Sectors; I* sectors per track *I 
ULONG rdb-Heads; I* number of drive heads *I 
ULONG rdb-Interleave; I* interleave *I 
ULONG rdb-Park; I* landing zone cylinder *I 
ULONG rdb-Reserved2[3); 
ULONG rdb-WritePreComp; 
ULONG rdb-ReducedWrito; 
ULONG rdb-StepRate; 
ULONG rdb-Reserved3[5]; 

·I* starting cylinder: write precompensation */ 
I* starting cylinder: reduced write current */ 
I* drive step rate *I 

I* logical drive characteristics *I 
ULONG rdb RDBBlocksLo; I* low block of range reserved for hardblocks *I 
ULONG rdb-RDBBlocksHi; I* high block of range for these hardblocks *I 
ULONG rdb-LoCylinder; I* low cylinder of partitionable disk area *I 
ULONG rdb-HiCylinder; I* high cylinder of partitionable data area */ 
ULONG rdb-CylBlocks; I* number of blocks available per cylinder *I 
ULONG rdb-AutoParkSeconds; I* zero for no auto park *I 
ULONG rdb-Reserved4[2]; 
I* drive identification */ 
char rdb DiskVendor[BJ; 
char rdb-DiskProduct(l6); 
char rdb-DiskRevision[4); 
char rdb-ControllerVendor[B); 
char rdb-ControllerProduct[16]; 
char rdb-ControllerRevision(4); 
ULONG rdb:ReservedS(lO); 

DevCon 90 6 Programming for SCSI 



n 



u 

u 

u 

tdefine IDNAME_RIGIDDISK Ox5244534B I* 'RDSK' *I 

tdefine RDB_LOCATION_LIMIT 16 

idefine RDBFB LAST 0 
tdefine RDBFF-LAST 
tdefine RDBFB-LASTLUN 
idefine RDBFF-LASTLUN 
idefine RDBFB-LASTTID 
idefine RDBFF=LASTTID 
idefine RDBFB NORESELECT 
tdefine RDBFF-NORESELECT 
idefine RDBFB-DISKID 
idefine RDBFF-DISKID 
idefine RDBFB-CTRLRID 
idefine RDBFF=CTRLRID 

I* 
OxOlL I* 
1 I* 
Ox02L I* 
2 I* 
Ox04L I* 

3 I* 
Ox08L I* 
4 I* 
Ox10L 

no disks exist to be configured after *I 
this one on this controller *I 

no LUNs exist to be configured qreater *I 
than this one at this SCSI Tarqet ID *I 

no Tarqet IDs exist to be configured *I 
qreater than this one on this SCSI bus *I 

don't bother tryinq to perform reselection *I 
when talkinq to this drive *I 

rdb_Disk ••• identification valid *I 

5 I* rdb_Controller ••• identification valid *I 
Ox20L 

l*------------------------------------------------------------------*1 struct BadBlockEntry ( 
ULONG bbe BadBlock; I* block number of bad block *I 
ULONG bbe:GoodBlock; I* block number of replacement block *I 

}; 

struct BadBlockBlock { 
ULONG bbb ID; I* 4 character identifier *I 
ULONG bbb-SummedLonqs; I* size of this checksummed structure *I 
LONG bbb-ChkSum; I* block checksum (1onqword sum to zero) *I 
ULONG bbb-HostiD; I* SCSI Tarqet ID of host *I 
ULONG bbb-Next; I* block number of the next BadBlockBlock *I 
ULONG bbb-Reserved; 
struct BadBlockEntry bbb BlockPairs[61); I* bad block entry pairs *I 
I* note [61) assumes 512-byte blocks *I 

) ; 

idefine IDNAME_BADBLOCK Ox42414442 I* 'BADB' *I 

l*------------------------------------------------------------------*1 
struct PartitionBlock { 

ULONG pb_ID; I* 4 character identifier *I 
ULONG pb_SummedLon9s; I* size of this checksummed structure */ 
LONG pb_ChkSum; 
ULONG pb_HostiD; 
ULONG pb Next; 
ULONG pb-Fla9s; 

I* block checksum (lonqword sum to zero) *I 
I* SCSI Tar9et ID of host *I 

}; 

ULONG pb-Reserved1[2); 
ULONG pb-DevFlaqs; 
UBYTE pb:oriveName[32); 

ULONG 
ULONG 
ULONG 

pb Reserved2[15); 
pb-Environment[l7); 
pb:EReserved[lS); 

I* block number of the next PartitionBlock *I 
I* see below for defines *I 

/* preferred flaqs for OpenDevice *I 
I* preferred DOS device name: BSTR form *I 

I* (not used if this name is in use) *I 
I* filler to 32 lonqwords *I 
I* environment vector for this partition *I 
I* reserved for future environment vector *I 

idefine IDNAME_PARTITION Ox50415254 I* 'PART' */ 

tdefine PBFB_BOOTABLE 
idefine PBFF_BOOTABLE 
idefine PBFB_NOMOUNT 
ldefine PBFF_NOMOUNT 

0 I* this partition is intended to be bootable *I 
1L /* (expected directories and files exist) */ 
1 /* do not mount this partition (e.9. manually */ 
2L /* mounted, but space reserved here) */ 

l*------------------------------------------------------------------*1 

Programming for SCSI 7 DevCon90 



n 

n 



u 

u 

,, 
v 

u 

struct FileSysHeaderBlock ( 

); 

ULONG 
ULONG 
LONG 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 

ULONG 
ULONG 

ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
LONG 
LONG 
LONG 

LONG 
ULONG 
ULONG 

fhb IO; I* 4 character identifier *I 
fhb-SummedLongs;l* size of this checksummed structure *I 
fhb-ChkSum; I* block checksum (longword sum to zero) *I 
fhb-HostiD; I* SCSI Target ID of host *I 
fhb-Next; I* block number of next FileSysHeaderBlock *I 
fhb-Flags; I* see below for defines *I 
fhb-Reservedl[2); 
fhb-DosType; I* file system description: match this with *I 

- I* partition environment's OE_DOSTYPE entry *I 
fhb Version; I* release version of this code *I 
fhb:PatchFlags; I* bits set for those of the following that *I 

I* need to be substituted into a standard *I 
I* device node for this file system: e.g. *I 
I* Oxl80 to substitute SegList ' GlobalVec *I 

fhb_Type; I* device node type: zero *I 
fhb Task; I* standard dos "task" field: zero *I 
fhb-Lock; I* not used for devices: zero *I 
fhb-Handler; I* filename to loadseg: zero placeholder *I 
fhb-StackSize; I* stacksize to use when starting task *I 
fhb:Priority; I* task priority when starting task *I 
fhb_Startup; I* startup msg: zero placeholder *I 
fhb_SegListBlocks;l* first of linked list of LoadSegBlocks: *I 

I* note that this entry requires some *I 
I* processing before substitution *I 

fhb_GlobalVec; I* BCPL global vector when starting task *I 
fhb_Reserved2[23];1* (those reserved by PatchFlags) *I 
fhb_Reserved3[21]; 

ldefineiDNAHE_FILESYSHEADER Ox46534844 I* 'FSHO' *I 

struct LoadSegBlock { 
ULONG lsb ID; I* 4 character identifier *I 
ULONG lsb-SummedLonqs;l* size of this checksummed structure *I 
LONG lsb:chkSum; I* block checksum (lonqword sum to zero) */ 
ULONG lsb_HostiD; I* SCSI Target ID of host *I 
ULONG lsb_Next; I* block number of the next LoadSeqBlock *I 
ULONG lsb_LoadData[123];/* data for "loadseg" *I 
I* note [123] assumes 512 byte blocks *I 

) ; 
tdefineiDNAME_LOADSEG Ox4C534547 I* 'LSEG' *I 

tendif I* DEVICES_HARDBLOCKS_H */ 

How the Driver Uses the RDB and Partition List 

The information contained in the RigidDiskBlock and subsequent Partition blocks, et al., is 
used by a driver in the following manner. 

After determining that the target device is a hard disk (using INQUIRY), the driver will scan 
the frrst RDB_LOCATION_LIMIT (16) blocks looking for a block with the RDSK identifier 
and a correct sum-to-zero checksum. If no RDB is found then the driver will give up and not 
attempt to mount any partitions for this unit If the RDB is found then the driver looks to see 
if there's a partition list for this unit (rdb_PartitionList). If none, then just the rdb_Flags will 
be used to determine if there are any LUNs or units after this one. This is used for early 
termination of the search for units on bootup. 

DevCon90 8 Programming for SCSI 



0 ·-

.n 

,_ 

n 



v 

u 

u 

If a partition list is present, and the partition blocks have the correct ID and checksum, then 
for each partition block the driver does the following: 

1. Check the PBFB_NOMOUNT flag. If set then this partition is just reserving space. Skip 
to the next partition without mounting the current one. 

2. If PBFB_NOMOUNT is false, then the partition is to be mounted. The driver fetches the 
given drivename from pb_DriveName. This name will be of the form dhO, work, wb_2.x, 
etc. A check is made to see if this name already exists on eb_MountList or DOS 's device 
list. If it does, then the name is algorithmically altered to remove duplicates. The A590, 
A2091 andA3000 append .n (where n is a number) unless a name ending with .n is found. 
In this case the name is changed to .n+ 1 and the search for duplicates re-tried. 

3. Next the driver constructs a parameter packet for MakeDOSNode() using the (possibly 
altered) drivename and information about the Exec device name and unit number. 
MakeDOSN odeO is called to create a DOS device node. It also constructs a ftle system 
startup message from the given information and fills in defaults for the ROM filing system. 

4. If MakeDOSNode() succeeds then the driver checks to see if the entry is using a standard 
(DOS\D) filing system. If not, then the routine for patching in non-standard filing systems 
is called (see "Alien File Systems" below). 

5. Now that the DOS node has been set up and the correct filing system segment has been 
associated with it, the driver checks PBFB_BOOTABLE to see if this partition is marked 
as boatable. If the partition is not boatable, or this is not autoboot time (DiagArea = 0) 
then the driver simply calls AddDosNode() to enqueue the DOS device node. If the 
partition is boatable, then the driver constructs a bootnode and enqueues it on 
eb_MountList using the bootpri from the environment vector. If this bootpri is -128 then 
the partition is not considered boatable. 

Alien File Systems 

When a ftling system other than the ROM filing system is to be used, the following steps 
take place: 

1. First, open filesystem.resource in preparation for fmding the filesystem segment we want. 
If ftlesystem.resource doesn't exist then create it and add it Via Add.Resource. Under 2.0 
the resource is created by the system early on in the initialization sequence. Under 1.3 it is 
the responsibility of the fmt RDB driver to create it. 

2. Scan ftlesystem.resource looking for a ftlesystem that matches theDOSType and version 
that we want. If it exists go to step four. 

3. Since the driver couldn't fmd the filesystem it needed, it will have to load it from the 
RDB area. The list of FileSysHeaderBlocks (pointed to by the RDSK block) is scanned 
for a ftlesystem of the required DosType and version. If none is found then the driver will 
give up and abort the mounting of the partition. If the required filesystem is found, then it 
is LoadSeg'ed from the LSEG blocks and added as a new entry to the ftlesystem.resource. 

Programming for SCSI 9 DevCon90 



n --· 

n 

n 
/ 



u 

u 

u 

4. The SegList pointer of the found or loaded fllesystem is held in the FileSysEntry structure 
(which is basically an environment vector for this filing system). Using the patchflags, 
the driver now patches the newly created environment vector (pointed to by the new 
DosNode) with the values in the FileSysEntry being used. This ensures that the partition 
will have the correct filing system set up with the correct mount variables using a shared 
SegList. 

The eb_Mountlist will now be set up with prioritized bootnodes and maybe some 
non-bootable, but mounted partitions. The system bootstrap will now take over. 

Amiga BootStrap 

At priority -40 in the system module initialization sequence, after most other modules are 
initialized, appropriate expansion boards are configured. Appropriate boards will match a 
FindConfigDev(, -1, -1) -- these are all boards on the expansion library board list 
Furthermore, they will meet all of the following conditions: 

1. CDB_CONFIGME set in cd_Flags 

2. ERTB_DIAGVALID set in cd_Rom er_Type 
3. Diagnostic area pointer (in cd_Rom er_ReservedOc) is non-zero 
4. DAC_CONFIGTllviE set in da_Config 

5. At least one valid resident tag within the diagnostic area, the first of which is used by 
lnitResident() below. This resident structure was patched to be valid during the ROM 
diagnostic routine run when the expansion library first initialized the board. 

Boards meeting all these conditions are initialized with the standard InitResident() 
mechanism, with a null seglist The board initialization code can find its ConfigDev structure 
with the expansion library's GetCurrentBindingQ function. This is an appropriate time for 
drivers to Enqueue() a boot node on the expansion library's eb_MountList for use by the strap 
module below, and clear CDB_CONFIG1\1E so a BindDrivers command will not try to 
initialize the board a second time. 

This module will also enqueue nodes for 3.5" trackdisk.device units. These nodes will be at 
the following priorities: 

Priority Drive 

5 dfO: 
-10 dfl: 
-20 df2: 
-30 df3: 

Next, at priority -60 in the system module initialization sequence, the strap module is 
invoked. Nodes from the prioritized eb_MountList list are used in priority order in attempts 

DevCon90 10 Programming for SCSI 



n 
J 

'-' 

n 



u 

u 

u 

to boot. An item on the list is given a chance to boot via one of two different mechanisms, 
depending on whether it uses boot code read in off the disk (BootBlocks), or uses boot code 
provided in the device ConfigDev diagnostic area (BootPoint). Aoppies always use the 
BootBlacks. Other entries put on the eb_Mountl.ist (e.g. hard disk partitions) used the 
BootPoint mechanism for 1.3, but can use either for 1.4. 

The eb_Mountl.ist is modified before each boot attempt, and then restored and re-modified 
for the next attempt if the boot fails. The node associated with the current boot attempt is 
placed at the head of the eb_Mountl.ist. Nodes marked as unusable under AmigaDOS are 
. removed from the list. Nodes are marked as unusable by setting the most significant bit of 
the longword bn_DeviceNode->dn_Handler. This is used, for example, to keep UNIX 
partitions off the AmigaDOS device list when booting AmigaDOS instead of UNIX. 

The selection of which of the two different boot mechanisms proceeds as follows: 

1. The node must be valid boot node, i.e., it must meet both of the following conditions: 
a) In_ Type is NT_BOOTNODE 
b) bn_DeviceNode is non-zero 

2. The type of boot is determined by looking at the DosEnvec pointed to by fssm_Environ 
pointed to by the dn_Startup in the bn_DeviceNode: 

a) if the de_ TableSize is less ihan DE_BOOTBLOCKS, or the de_BootBlocks entry is 
zero, BootPoint booting is specified, otherwise 

b) de_BootBlocks contains the number of blocks to read in from the beginning of the 
partition, and the checksum for BootBlacks booting. 

For BootBlacks booting: 

1. The disk device must contain valid boot blocks: 
a) the device and unit from dn_Stanup opens successfully, 
b) memory is available for the <de_BootBlocks> * <de_SizeBlock> * 4 bytes of boot 

block code, 
c) the device commands CMD_CLEAR, TD_CHANGENUM, and CMD_READ of the 

boot blocks execute without error, 
d) the boot blocks start with the three characters "DOS" and pass the longword 

checksum (with carry wraparound), and 
e) memory is available to construct a boot node on the eb_Mountl.ist to describe the 

floppy. If a device error is reported in l.c., or if memory is not available for l.b. or 
l.e., a recoverable alert is presented before continuing. 

2. The boot code in the boot blocks is invoked as follows: 
a) The address of the entry point for the boot code is offset BB_ENTRY into the boot 

blocks in memory. 
b) The boot code is invoked with the 10 Request used to issue the device commands in 

l.c. above in register Al, with the io_Offset pointing to the beginning of the partition 
(the origin of the boot blocks) and SysBase in A6. 

Programming for SCSI 11 DevCon90 



'1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

.1 

1 

1 

1 

n1 
1 

1 

1 

1 

i -i 1 

~1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

()1 
1 

1 

1 

1 



v 

u 

3. The boot code returns with results in both DO and AO. 
a) Non-zero DO indicates boot failure. The recoverable alert AN_BootError is presented 

before continuing. 
b) Zero DO indicates AO contains a pointer to the function to complete the boot 1bis 

completion function is chained with SysBase in A6 after the strap module frees all its 
resources. It is usually the DOS library initialization function, from the dos.library 
resident tag. Return from this function is identical to return from the strap module 
itself. 

For BootPo~nt booting: 

1. The eb_MountList node must contain a valid BootPoint: 
a) ConfigDev pointer (in ln_Name) is non-zero, 
b) Diagnostic area pointer (in cd_Rom er_ReservedOc) is non-zero, 
c) DAC_CONFIGTIME set in da_Config. 

2. The boot routine of a valid boot node is invoked as follows: 
a) The address of the boot routine is calculated from da_BootPoint 
b) The resulting boot routine is invoked with the ConfigDev pointer on the stack in C 

fashion: i.e., (*boot)(configDev); Moreover, register A2 will contain the address of 
the associated eb_MountList node. 

3. Return from the boot routine indicates failure to boot 

If all entries fail to boot, the user is prompted to put a boatable disk into a floppy drive with 
the "strap screen." The system floppy drives are polled for new disks. When one appears, 
the strap screen is removed and the appropriate boot mechanism is applied as described 
above. The process of prompting and trying continues till a successful boot occurs. 

Changes from Vl.3 

The following modules have .changed: 

romboot 

strap ,o· 

dos 

- romboot is no longer an Exec library: RomBoot() is no longer public. 
A module at priority -40 still exists to do the same diagnostic area 
configuration. Floppies are explicitly put on the eb_MountList 
Strap presents a new strap screen (i.e., changed the hand screen). Strap 
can boot from any floppy. Code is fixed to boot from non-floppy at a 
priority higher than five. BootBlocks support for eb_MountList entries 
added. BootPoint eb_MountList node parameter in A2 made official. 

- DOS no longer has special code to start up non-boot floppies. 

The following include flies have changed: 

dosljilehandler.[hi} - de_BootBlocks added 
libraries/expansionbase.[hi] -fields privatized 
libraries/romboot_base.[hi} -no longer exists: BootNode now in expansionbase.[hi] + 

DsvCon90 12 Programming for SCSI 



n 

n 







u 

u 

u 

Exec Version 2.0 

The system executive (Exec) remains largely 1mcbanged in appearance for version 2.0 Kickstart. Why fix 
the parts that are already very good? For 2.0, Exec has changes to support .new machines and memory 
configurations, optimimzations, programmer conveniences, and more support for the new 68020, 68030 
and 68040 processors. 

Long Word Alignment 

The 68020 and 68030 processors are object code compatible with the 68000. Unless the 68000 code 
depends on CPU speed for timing, or bnUs a nde, it should run without change. However, there are some 
simple steps that you can take to ensure optimmn performance with these newer chips. 

The 68020 and 68030 both have full 32 bit data busses. Under ideal conditions, each memory access takes 
place 32 bits at a time. However, 32 bit reads are restricted by hardware to addresses that are an even 
multiple of 4 bytes. 

$0000 $ffffeeee 

$0004 $ddddcccc 

A 32 bit access of location $0000 or $0004 will occur in one step. A 32 bit access of location $0002 will be 
broken up by the jmx:essor into two parts, and will take twice as long. To see what this means for your 
code, consider an example: 

struct GoodStruct 

char *qs_Text; 

ULONG qs_This; 

UBYTE qs_That; 

UBYTE qs Foe; 

struct BadStruct 

UBYTE bs_That; 

char *bs_Text; 

ULONG bs_This; 

UBYTE bs_Foo; 

UWORD qs_Fum; UWORD qs_Fum; 

struct MinList qs_Thinqs; struct List bs_Thinqs; 
} } 

The C structure on the left shows a layout optimized for speed. An pointers and long objects are grouped 
together at the start of the sttucture. The two UBYTB objects are grouped together to save space and 
maintain 4-byte alignment. 

The structure on the righi shows a bad layout. By mixing the data sizes the processor will be forced into 
twice as much work to fetch the same clara. In the bad sttucture the compiler is forced to pad the sttucture 
after each UBYTB, wasting space. 

Note that the good structure used a MinList structure instead of a List structure. The MinList contains only 
the fields needed by most programs, and has the bonus of preserving alignment. Whenever including 
system structures, be sme to check the length (The structure reference chart in Appendix H of the Addison
Wesley ROM Kernel MtliUIIll: Includes tmd Autodocs is designed to ease just this task). 

The effect of alignment is not smalL Uncia' one rest of the well-known Dhtystone benchmark, a misaligned 
stack cost 1/Sth of the execution speed -over 1,000 dhrystones. 

Exec Version 2.0 1 



Exec Ubraries (Ubs:) 

Library writers should be aware tbat the V36 MakeLibmryO call now adjusts the location of your libmry 
base to be longword aligned. The LIB_POSSIZE and LIB_NEGSJZE fields are updated appropriately. 
Under V1.3 your alignment depended on how many functions the libmry contained. Since a "struct 
Library" is 34 bytes long (not a 4 byte multiple), the first entry should fix up the alignment. For example: 

struct FooBase ( 
struct Library 
UWORD 
ULONG 
struct MinList 

}; 

Exec Semaphores 

fb_Library; 
fb_Flaqs;. 
fb_SysLib; 
fb_FooList; 

The system functions Forbid()/Pemlit() and Disable()/EIIable() have been vasdy ovemsed. For many 
applicalions the Semaphore mechanism is prefeued. ForbidQJPenuitO aDd DisableQ/Enable lock out all 
other tasks from the system; semaphores only a1l'ect tasks tbat are compeling for the same resources • 

. A good analogy is to consider a semaphore like ttaflic light. A "red" semaphore prevents other cars from 
using an intersection; a "green" semaphore means it's safe to use. ForbidO, on the otber band, 
immediately stops all other cars, no matter wbat intersection they are near. The Disable() function is even 
worse, it not only stops all cars, but tums of' their engines. An example of how to use semaphores is shown 
below: 

, .. 

.. , 

A simple "do nothinq• example of Exec siqnal semaphore use. 
When the semaphore is owned by a task, attempted access by other 
tasks will block. A nestinq count is maintained, so the current 
task can safely call ObtainSemaphore() on the same semaphore • 

tinclude •exec/types.h• 
tinclude •exec/semaphores.b• 

struct SiqnalSemaphore LockSemaphore; 

void main() 
( 

InitSemapbore(,LockSemapbore); 

ObtainSemapbore(,LockSemapbore); 
printf("This task now owns the semaphore.\n"); 

ReleaseSemaphore(,LockSemaphore); 

Exec Devices (dew:) 

Our official documentation on how to write an Exec device is the ramdrive.device example from the 
Addison-Wesley ROM Kunel Mtllllllll: Includes and Autodocs. While this example is very old, it does 
provide an overview of tbe type of things Exec devices mast do, and contaim many helpful comments. 

The DISABLE macro is vastly overused by many devices; progmmmers should carefully review all uses of 
DISABLE, and consider tbe altemalives. In many cues the DISABLE can be e1imiDated. In 01be:r cases it 

2 Exec Version 2.0 



u 

u 

u 

can be replaced by disabling just the interrupts of your type. For example, if your device driver works on 
the PORTS interrupt chain, you can disable the ports interrupt with: 

move. w IINTF _PORTS, intena (ax) 

Other interrupts will continue to run. 

Caches and Other Secret Hiding Places 

All Motorola processors support some form of cache or pefetch mechanism to enhance performance. The 
prefetch can overlap the time it takes to execute instructions, then the cached or prefetched dara can be 
accessed by the CPU without the delay of a regular memory access. The effect of the caches is usually, but 
not always, transparent to software. 

Motorola Cache Capability Outline 

68000 One word prefetch 
68010 Two word prefetch 
68020 256 byte instruction-only cache. direct-mapped 
68030 256 byte instruction-only cache, plus a 256 

byte data cache. Both direct-mapped. On-chip MMU. 
68040 4K instruction-only cache, 4K data cache with copyback. 

Both caches are.four-way set associative. Separate data 
and instruction Memory Management Units. 

Exec processor flags (ExecBase->AttnFlags) 

I* Processors and Co-processors: *I 
#define AFB_68010 0 I* also set for 68020 *I 
#define AFB_68020 1 I* also set for 68030 *I 
#define AFB_68030 2 
#define AFB_68040 3 
#define AFB 68881 4 I* also set for 68882 *I 
#define AFB:68882 5 

#define AFF_68010 (lL<<O) 
#define AFF_68020 (lL<<l) 
fdefine AFF_68030 (1L<<2) 
tdefine AFF_68040 (1L<<3) 
#define AFF_68881 (1L<<4) 
idefine AFF_68882 (1L<<5) 

The 68000 bas the simplest prefetch mechanism. The bus conuollel' is constandy ttying to pull in an 
"extra" wcm:l, often before the c:unent instruction bas executed. If you W8lCh the cycle-by-cycle activity on 
the 68000 bus this results in seemingly chaotic intelmixing of data 8Dd ins1ruction accesses Sometimes a 
prefetcbed instruction will be discarded because of the eifect of a branch or interrupL A discarded prefetch 
is the reason the shmt branch instruction take& 4 more cycles tban you might expecL 

The 68010 adds a second word of prefetch. The primary benefit is the ability of the processor to 
automatically lock in the prefetched instructions. Here is an example: 

Exec Version 2.0 3 



loop: move.! (aO)+, (al)+ 
c:lbra dO, loop 

;(20 cycles) 
; (10 cycles) 

On the 68000 the total execution time for the loop is 30 cycles. On the 68010 the time drops to just 22 
cycles. 

The 68020 introduces the first true instruction cache. The entries are ammged as 64 long words. The 
address of each instruction prefetch is indexed into an array of comparison tags. If the comparison 
matches, the data is pulled from the cache and no external bus cycle is needed. The supervisor bit (FC2 
from the function code) is stored with each cache entry. Instructions cached in the supervisor mode will not 
match instructions cached in the user mode. 

The 68030 has the same size instruction cache as the 68020, but it is organized as 16 entries of 4 long 
words each. 'lbe grouping of 4 long words is to support the burst fill capability of the 68030. In addition to 
the instruction cache, the 68030 also has a data cache. It is critical that areas of memory containing 10 
registels are not cached. 

Here is a map of the 16 megabyte Amiga memory space, showing what areas should be cached. 

Address Description Data cache status 

-above 24 bits- A300_0 Extended memory area Controlled by Zorro III rules 
$FOOOOO-$FFFFFF ROM & reserved space Cache 
$E80000-$EFFFFF Autoconfig I/O space No cache 
$DFFOOO•$DFFFFF Custom chip registers No cache 
$COOOOO-$D7FFFF Internal expansion memory Cache 
$A00000-$BFFFFF 8520 IO chips No cache ~ 
$200000-$9FFFFF Autoconfig Conditional 
$000000-$1FFFFF Chip memory Cache instructions only 

If data in chip memory was ever cached, the system would have major problems. DMA devices like the 
blitter and disk hardware can write dilecdy to memory. without involving the CPU. Whatevez data was in 
the cache would become stale. Any DMA device driver exposes the a risk of stale cache data. 

The autoconfig areas· present special problems too. There are two main types of autoconfig boards. The 
first contains 1/0 chips or status registers. the second contains memory. While you want the cache enabled 
for the memory, enabling the cache for chip registers would cause a disasttz. 

Two solutions are in use. One solution places an memory boards in the lower 8 megabyte address space, 
and an 110 boards in the upper address space. The areas are then defined to be cacbable or not. as 
appropriate. This works wen but limits the number of 1/0 type slots to eighL 'lbe second solution retains 
the full ftexibility, but at a cost. The Memory Management Unit (MMU) is used to map all areas of 
memory. The cache status of each "page" can be individually specified in that case. 

What the Heck Is a Write Allocate Bit? 

'lbe 68030 has a bit called "Write allocate". The wonling in the 68030 manual is tricky, and it may take 
several readings to figure out what is going on. Here is a condensed version: 

WA=O Write cycles that hit replace the cached data. 
Write cycles that miss do not modify the cache. 

WA=l Write cycles that hit replace the cache data. 
Write cycles that miss invalidate the current line, and 
(if possible) update the cache. 

The problem is tbat the processor stores the ftmction ~ bits with. each cache tag. Supezvisor mode 
access is seen differendy than usez mode access. For use wtth the Amiga, W A must always be equal to 1. 

4 Exec Version 2.0 



u 

u 

u 

If W A=O the following situation can corrupt the cache: 

User code reads location X, setting the valid bit in the cache. 

Supervisor code writes to location X. Since the function codes 
are part of the taq, the. write misses the cache. 

User code now reads location x, and qets the old data. 

Things get even trickier because of a cenain "f~" of the 68030 data cache. A longword aligned write 
that is longword aligned will allocate a _valid_ entry in the data cache, _EVEN IF THE HARDWARE 
ASSERTS CACHE INHIBIT_. The only way past tbis "feature" is to use tbe MMU to specify cacheing on 
a page-by-page basis. 

How to Avoid Falling Into a Cache 

All the caches explained above are somewhat "dumb." Nothing tells the cache about modifications to data 
or instructions that might be resident in the cache. In particular, the assumption is made that the instruction 
stream will not be written to. This is the reason for the rule against writing self-modifying ccxle. 

An additional wrinkle is introduced by Direct Memory Access devices (DMA). DMA access can change 
memory, without informing the CPU. So the risk of outdated (or "stalej data in the caches is much greater 
in a DMA system. V2.0 Exec provides system calls that DMA device drivers can use to clear out or ftush 
the possibly bad data from the caches. 

See the description of the CacheConttolO Exec calls. 

TABLE OF CONTENTS 

exec.library/AbortiO 
exec.library/AllocVec. 
exec.library/CacheClearE 
exec.library/CacheClearU 
exec.library/CacheControl 
exec.library/ColdReboot 
exec.library/CreateiORequest 
exec.library/CreateMsqPort 
exec.library/CreatePrivatePool 
exec.library/DeleteiORequest 
exec.library/DeleteMsqPort 
exec.library/DeletePrivatePool 
exec.library/FreeVec 
exec.library/ObtainSemaphoreShared 
exec.library/RawDoFmt 
exec.library/Supervisor 

Exec Version 2.0 5 



New execltypes.h 

lifndef EXEC_TYPES_H 
ldefine EXEC_TYPES_H 
I* 
** $Id: types.h,v 36.7 90105110 01:07:17 bryce Exp Locker: bryce$ 
** 
** Data typinq. Must be included before any other Amiqa include. 
** 
** (C) Copyriqht 1985,1986,1987,1988,1989 Commodore-Amiqa, Inc. 
** All Riqhts Reserved 
*I 

#cldlne INCLUDE_ VERSION 36,. Venlaa of tile IDcbzde flla Ia-. (Do aot 

uae ddslabel for OpeaLibnrJO caDsl) •1 

tdefine GLOBAL extern 
ldefine IMPORT extern 
ldefine STATIC static 
tdefine REGISTER reqister 

#tfiJdetVOID 

#deflae vom void 

#eadlf 

I* the declaratory use of an external *I 
I* reference to an external *I 
I* a local static variable *I 
I* a (hopefully) reqister variable *I 

,. WARNING: API'R was redeflaecl for the Vl.4 IDdades! APl'R Is a •1 
I• 32·Blt Absolllte MemOI'J PobWr. C polatcr matb wiD DOt •1 
,. operate aa API'Il- ue "tJLONG *" laltead. •I 
#U'ndef APTR_TYPEDEF 
#deflae API'Il_TYPEDEF 
lJpedelvolcl 

#endlf 

6 

•APTR; ,. 32-blt IDltJped palatcr ., 

Exec Version 2.0 



u 

u 

u 

New exedtypes.b 

typedef lonq LONG; I* siqned 32-bit quantity *I 
typedef unsiqned lonq ULONG; I* unsiqned 32-bit quantity *I 
typedef unsiqned lonq LONGBITS; I* 32 bits manipulated individually *I 
typedef short WORD; I* siqned 16-bit quantity *I 
typedef unsiqned short UWORD; I* unsiqned 16-bit quantity *I 
typedef unsiqned short WORDBITS; I* 16 bits manipulated individually *I 
typedef siqned char BYTE; I* siqned 8-bit quantity *I 
typedef unsiqned char UBYTE; I* unsiqned 8-bit quantity *I 
typedef unsiqned char BYTEBITS; I* 8 bits manipulated individually *I 
typedef short RPTR; I* siqned relative pointer *I 
typedef unsiqned char *STRPTR; I* strinq pointer (NULL terminated) *I 

I* For compatibility only: (don't use in new code) *I 
typedef short 
typedef unsiqned short 
typedef short 
typedef unsiqned short 
typedef ULONG 

I* Types with specific 
typedef float 
typedef double 
typedef short · 
typedef unsiqned char 

tdefine TRUE 
ldefine FALSE 
Ufndef NULL 

SHORT; 
USHORT; 
COON~; 

UCOUNT; 
CPTR; 

semantics 
FLOAT; 
DOUBLE; 
BOOL; 
TEXT; 

1 

0 

ldefine NULL OL 
fendif 

tdefine BYTEMASK OxFF 

I* siqned 16-bit quantity (use WORD) *I 
I* unsiqned 16-bit quantity (use UWORD) *I 

*I 

J- LIBRARY_ VERSION II aow obtolete. Pleae a. LmRARY_MINIMtJM •1 
,. or code die specUic mlalmum 11brarJ venloa 1011 require. •1 
#debe LmRARY_ VERSION LIBRARY_ VERSION II abaalde 1111llldllde file 
#debe LIBRARY _MINIMVM33,. Lowest venloaaapported bJ Coauaodare-Amlp •1 

lendif I* EXEC_TYPES_H *I 

Exec Version 2.0 7 



c 
exec.llbrarr 

P
age1 

exec .• lib
rary

/A
b

o
rtiO

 
ex

ec.lib
rary

/A
b

o
rtiO

 

NAM
E A

bortiO
 -

attem
p

t to
 ab

o
rt an in

-p
ro

9
resa I/0

 req
u

est 

SY
N

O
PSIS 
A

bortiO
(iO

R
equest) 

A
l 

V
O

ID
 A

b
o

rtiO
(stru

ct 
IO

R
equest 

*
)I 

FU
N

CTIO
N

 

NOTE A
sk a d

ev
ice to

 ab
o

rt a 
p

rev
io

u
sly

 sta
rte

d
 IO

R
equeat. 

T
h

is is
 done 

by c
a
llin

q
 th

e
 d

e
v

ic
e
's A

BO
RTIO

 v
e
c
to

r, 
w

ith
 your q

iv
en

 IO
R

equest. 

A
bortiO

 is a 
com

m
and th

e
 d

ev
ice th

a
t m

ay o
r m

ay 
n

o
t q

ra
n

t. 
If 

su
ccessfu

l, 
th

e
 d

ev
ice w

ill ato
p

 p
ro

cesain
q

 th
e
 IO

R
equeat, 

and 
rep

ly
 to

 it e
a
rlie

r th
an

 it w
ould o

th
erw

ise have d
o

n
e. 

A
bortiO

() 
does NOT rem

ove th
e
 IO

R
equeat 

from
 y

o
u

r R
ep

ly
P

o
rt, 

OR 
w

ait 
fo

r it to
 co

m
p

lete. 
A

fter an A
bortiO

() 
you m

ust w
ait n

o
rm

ally
 

fo
r th

e rep
ly

 m
essa9e b

efo
re a

c
tu

a
lly

 reu
ain

9
 th

e
 req

u
est. 

If a 
req

u
est has alread

y
 com

pleted w
hen 

A
bortiO

() 
is c

a
lle

d
, 

no 
actio

n
 is tak

en
. 

EX
A

M
PLE 

IN
PU

TS 

A
b

o
rtiO

(tim
er req

u
est)J 

N
aitiO

 
(tim

er-req
u

est)J 
/*

 M
essaqe is-fre

e
 to

 b
e reu

sed
 *

/ 

iO
R

equest -
p

o
in

te
r to

 an
 I/O

 req
u

est b
lo

ck
 

(m
ust have been u

sed
 

a
t le

a
st o

n
ce. 

M
ay b

e a
c
tiv

e
 o

r fin
ish

e
d

). 

RESU
LTS 
e
rro

r -
D

ependinq on th
e
 d

ev
ice and th

e
 sta

te
 o

f th
e
 req

u
est, 

it 
m

ay 
n

o
t b

e p
o

ssib
le to

 ab
o

rt a 
9

iv
en

 I/O
 re

q
u

e
st. 

If fo
r 

som
e reaso

n
 th

e
 d

ev
ice can

n
o

t ab
o

rt th
e
 req

u
est, 

it sh
o

u
ld

 
retu

rn
 an

 e
rro

r code in
 D

O
. 

N
ot a

ll d
ev

ices su
p

p
o

rt th
is 

e
rro

r re
tu

rn
. 

SEB A
LSO

 
N

aitiO
, 

D
olO

, 
S

endiO
, 

C
heckiO

 

c 
( 

exec.llbrarr 
P

age2 

ex
ec.lib

rary
/A

llo
cV

ec 
ex

ec.lib
rary

/A
llo

cV
ec 

N
A

M
E A

llo
cv

ec --
a
llo

c
a
te

 m
em

ory and keep tra
c
k

 o
f th

e siz
e
 

(V
36) 

SY
N

O
PSIS 
m

em
oryB

lock • 
A

llo
cV

ec(b
y

teS
ize, 

a
ttrib

u
te

s) 
DO 

DO 
D

l 

v
o

id
 *A

llocV
ec(U

L
O

N
G

, 
U

LO
N

G
)J 

FU
N

CTIO
N

 
T

h
is fu

n
ctio

n
 w

orks 
id

e
n

tic
a
lly

 to
 A

llocM
em

(), 
b

u
t tra

c
k

s th
e
 siz

e
 

o
f th

e
 a

llo
c
a
tio

n
. 

S
ee th

e
 A

llocM
em

() 
docum

entation fo
r d

e
ta

ils. 

W
ARNING 

T
he re

su
lt o

f any m
em

ory a
llo

c
a
tio

n
 M

UST 
b

e
 checked, 

and a 
v

ia
b

le
 

e
rro

r h
an

d
lin

q
 p

ath
 tak

en
. 

ANY a
llo

c
a
tio

n
 m

ay 
fa

il 
if

 m
em

ory 
baa 

been fille
d

. 

SBB A
LSO

 
F

reev
ec, 

A
llocM

em
 

co 



exec.llbrary 
P

ag
e3 

ex
ec.lib

rary
/C

ach
eC

learE
 

ex
ec.lib

rary
/C

ach
eC

learE
 

N
A

M
E C

acbeC
learE

 -
In

stru
c
tio

n
 ' 

d
ata cach

e flu
sh

in
q

 from
 ex

cep
tio

n
s 

(V
36) 

SY
N

O
PSIS 
C

ach
eC

learU
(co

n
tro

l) 
dO

 

v
o

id
 C

acheC
learU

(U
L

O
N

G
)I 

FU
N

CTIO
N

 
C

lear th
e
 in

stru
c
tio

n
 an

d
/o

r d
ata cach

es 
from

 an ex
cep

tio
n

 o
r 

in
te

rru
p

t. 

IN
PU

TS A
 m

ask o
f v

alu
es. 

U
se: 

-1
 

-C
A

C
R

F C
leari 

-C
A

cR
F

:clearD
 

SEE A
LSO

 

c
le

a
r a

ll cach
es 

d
isa

b
le

 c
le

a
rin

q
 in

stru
c
tio

n
 cach

e 
d

isa
b

le
 c

le
a
rin

q
 d

ata cach
e 

C
acheC

learE
, 

C
acheC

learU
, 

C
ach

eco
n

tro
l 

) 

exec.llbrary 
P

ag
e4 

ex
ec.lib

rary
/C

ach
eC

learU
 

ex
ec.lib

rary
/C

ach
eC

learU
 

) 

N
A

M
E C

acheC
learU

 -
In

stru
c
tio

n
 ' 

d
ata cach

e flu
sh

in
q

 from
 u

ser m
ode 

(V
36) 

SY
N

O
PSIS 
C

ach
eC

learU
(co

n
tro

l) 
dO

 

v
o

id
 C

acheC
learU

(U
L

O
N

G
)I 

FU
N

CTIO
N

 
C

lear th
e
 in

stru
c
tio

n
 an

d
/o

r d
a
ta

 cach
es 

from
 a ta

sk
 o

r p
ro

cess. 

IN
PU

TS A
 m

ask 
o

f v
alu

es. 
U

se: 
-1

 
-C

A
C

R
F C

le
a
ri 

-C
A

cR
F

:clearD
 

SEE A
LSO

 

c
le

a
r a

ll cach
es 

d
isa

b
le

 c
le

a
rin

q
 in

stru
c
tio

n
 cach

e 
d

isa
b

le
 c

le
a
rin

q
 d

ata cach
e 

· 
C

acheC
learE

, 
C

acheC
learU

, 
C

ach
eco

n
tro

l 

) 

C
J) 



( 

exec.llbrary 
P

ageS
 

ex
ec.lib

rary
/C

ach
eC

o
n

tro
l 

ex
ec.lib

rary
/C

ach
eC

o
n

tro
l 

N
A

M
E C

acheC
ontrol -

In
stru

c
tio

n
 5 d

a
ta

 cach
e c

o
n

tro
l 

(from
 u

se
r m

ode) 
(V

36) 

SY
N

O
PSIS 
o

ld
B

its 
D

 
C

ach
eC

o
n

tro
l(cach

B
lts,cach

eM
ask

J 
0

0
 

0
0

 
M

 

ULONG C
B

cheC
ontrol(U

L
O

N
G

,U
L

O
N

G
Jr 

FU
N

CTIO
N

 
T

h
is fu

n
ctio

n
 p

ro
v

id
es g

lo
b

al c
o

n
tro

l o
f any in

stru
c
tio

n
 o

r d
a
ta

 
cach

es th
a
t m

ay 
b

e co
n

n
ected

 to
 th

e
 sy

stem
. 

A
ll se

ttin
g

s a
re

 
g

lo
b

al --
p

e
r ta

sk
 c

o
n

tro
l !a

 n
o

t p
ro

v
id

ed
. 

T
he lis

t o
f su

p
p

o
rted

 
se

ttin
g

s is
 p

ro
v

id
ed

 in
 th

e
 ex

ec/ex
ecb

aae.i in
clu

d
e file

. 
N

h
ile 

th
e
 b

its
 c

u
rre

n
tly

 d
efin

ed
 m

ap d
ire

c
tly

 to
 th

e
 M

o
to

ro
la p

ro
cesso

r 
CACR 

re
g

iste
r, 

th
is m

ay 
n

o
t b

e tru
e
 fo

re
v

e
r. 

A
lte

rn
a
tiv

e
 cach

e 
so

lu
tio

n
s m

ay 
p

atch
 in

to
 th

e
 E

xec cach
e fu

n
c
tio

n
s. 

T
y

p
ically

 program
m

ers can
 ig

n
o

re th
e
 ex

iat•:n
ce o

f cach
es. 

cach
es 

w
ill be a 

co
n

cern
 if

 you p
refo

rm
 any •d

irty
• o

p
eratio

n
s 

lik
e
 D

H
A

, 
self-m

o
d

ify
in

g
 co

d
e, 

o
r b

u
ild

in
9

 a 
jum

p ta
b

le
. 

T
h

is 
fu

n
ctio

n
 m

ust o
n

ly
 b

e c
a
lle

d
 from

 th
e
 ta

sk
 le

v
e
l in

 u
ser m

odel 

IN
PU

TS cach
eB

its -
new

 v
alu

es fo
r th

e
 b

its
 sp

e
c
ifie

d
 in

 cach
eH

ask
. 

cacheH
ask -

a m
ask w

ith
 o

n
es 

fo
r a

ll b
its

 to
 b

e
 ch

an
v

ed
. 

eS
U

L
T

 
o

ld
B

its 
-

th
e
 co

m
p

lete p
rio

r v
alu

es fo
r a

ll se
ttln

v
s. 

EXAM
PLE 

N
O

TES 

SEE A
LSO

 
cach

eC
learE

, 
cach

eC
learu

, 
ex

ec/ex
ecb

ase.i 

c 
c 

exec.llbrarr 
Page s 

ex
ec.lib

rary
/C

o
ld

R
eb

o
o

t 
ex

ec.lib
rary

/C
o

ld
R

eb
o

o
t 

~
 C

oldR
eboot -

reb
o

o
t th

e
 A

m
i9a 

(V
36J 

SY
N

O
PSIS 

C
oldR

eboot(J 

v
o

id
 C

o
ld

R
eb

o
o

t(v
o

id
Jr 

FU
N

CTIO
N

 
R

eboot th
e
 m

ach
in

e. 
A

ll e
x

te
rn

a
l m

em
ory and p

e
rip

h
e
ra

ls w
ill b

e
 

e
sE

T
, 

an
d

 th
e
 m

achine w
ill s

ta
rt ita

 pow
er up d

ia
;n

o
a
tic

s. 

T
h

is fu
n

ctio
n

 n
ev

er re
tu

rn
s. 

IN
PU

T A
 c

h
a
o

tic
 p

ile
 o

f d
iso

rie
n

te
d

 b
its

. 

esU
L

T
S

 
A

n a
lto

;e
th

e
r to

ta
lly

 in
te

;ra
te

d
 liv

in
; sy

stem
. 

0 .-



exec.llbrary 
P

age 7 

ex
ec.llb

rary
/createiO

R
eq

u
est 

ex
ec.llb

rary
/C

reateiO
R

eq
u

est 

N
A

M
E createiO

R
eq

u
est() 

--c
re

a
te

 an
 IO

R
equest stru

c
tu

re
 

(V
36) 

SY
N

O
PSIS 
loR

eq 
~
 createiO

R
eq

u
est( lo

R
ep

ly
P

o
rt, 

siz
e
 ); 

AO 
DO 

stru
c
t IO

R
equest *

C
reateiO

R
eq

u
est(stru

ct M
sgP

ort 
*

, 
U

LO
N

G
); 

FU
N

CTIO
N

 
A

llo
cates m

em
ory 

fo
r and in

itia
liz

e
s
 a 

new
 

IO
 

req
u

est b
lo

ck
 

o
f a 

u
se

r-sp
e
c
ifie

d
 num

ber o
f b

y
te

s. 
T

he num
ber o

f b
y

tes 
m

ust be a
t le

a
st as 

la
rg

e
 as a 

•stru
c
t M

essage•. 

IN
PU

TS lo
R

ep
ly

P
o

rt -
P

o
in

ter to
 a 

p
o

rt fo
r re

p
lie

s 
(an in

itia
liz

e
d

 m
essage 

p
o

rt, 
as c

re
a
te

d
 by C

reateM
agP

ort() 
). 

If N
U

LL, 
th

is 
fu

n
ctio

n
 fa

ils
. 

siz
e
 -

th
e
 siz

e
 o

f th
e
 IO

 req
u

est to
 b

e c
re

a
te

d
. 

eS
U

L
T

 ioR
eq -

A
 p

o
in

te
r to

 th
e
 new

 
IO

R
equest b

lo
ck

, 
o

r N
U

LL. 

SEE A
LSO

 
D

eleteiO
R

eq
u

est, 
C

reateM
ag

P
o

rt(), 
~
g
a
.
l
i
b
/
C
r
e
a
t
e
E
x
t
i
O
(
)
 

ex
ec.lib

rary
/createM

sg
P

o
rt 

ex
ec.lib

rary
/C

reateM
sg

P
o

rt 

N
.A

K
B createM

ag
P

o
rt -

A
llo

cate an
d

 in
itia

liz
e
 a 

new
 m

essage p
o

rt 
(V

36) 

SY
N

O
PSIS 
C

re
a
t-g

P
o

rt () 

stru
c
t M

sgP
ort * C

reateM
ag

P
o

rt(v
o

id
); 

FU
N

CTIO
N

 
A

llo
cates and in

itia
liz

e
s a 

new
 m

essage p
o

rt. 
T

he m
essage lis

t 
o

f th
e
 new

 p
o

rt w
ill b

e
 p

rep
ared

 fo
r u

se 
(v

ia N
ew

L
ist). 

A
 sig

n
a
l 

b
it w

ill b
e
 a

llo
c
a
te

d
, 

an
d

 th
e
 p

o
rt w

ill b
e

 se
t to

 sig
n

a
l y

o
u

r 
ta

sk
 w

hen 
a 

m
essage a

rriv
e
s 

(PA
_SIG

N
A

L
). 

Y
ou 

*m
ust• u

se D
eleteM

sg
P

o
rt() 

to
 d

e
le

te
 p

o
rta c

re
a
te

d
 w

ith
 

C
reateM

sg
P

o
rt()l 

esU
L

T
 

M
agP

ort -
A

 new
 M

agP
ort stru

c
tu

re
 read

y
 fo

r u
se, 

o
r H

U
LL if

 o
u

t o
f 

m
em

ory o
r sig

n
a
ls. 

If you w
ish to

 add th
is p

o
rt to

 th
e
 p

u
b

lic 
p

o
rt lis

t, 
f
ill in

 th
e
 ln

 N
am

e 
and ln

 P
ri fie

ld
s, 

th
en

 c
a
ll 

A
ddP

ort () • 
D

o
n

't fo
rg

e
t lem

P
o

rt () I 
-

SEE A
LSO

 
D

eleteM
ag

P
o

rt(), 
ex

ec/A
d

d
P

o
rt(), 

e
x

e
c
/p

o
rts.h

, 
am

ig
a.lib

/C
reateP

o
rt() 

) 

exec.llbrary 
P

age a 

ex
ec.lib

rary
/D

eleteiO
R

eq
u

est 
ex

ec.lib
rary

/D
eleteiO

R
eq

u
est 

NAM
E D

eleteiO
R

eq
u

est() 
-

F
ree a 

req
u

est m
ade by C

reateiO
R

eq
u

eat() 
(V

36) 

SY
N

O
PSIS 
D

eleteiO
R

eq
u

est( ioR
eq ); 

aO
 

v
o

id
 D

eleteiO
R

eq
u

est(stru
ct IO

R
equest *

); 

FU
N

CTIO
N

 
F

rees up an IO
 req

u
est as a

llo
c
a
te

d
 by C

reateiO
R

eq
u

eat(). 

IN
PU

TS ioR
eq -

A
 p

o
in

te
r to

 th
e
 IO

R
equest b

lo
ck

 to
 b

e
 freed

, 
o

r N
U

LL. 
T

h
is 

fu
n

ctio
n

 
u

ses th
e
 m

n 
L

ength 
fie

ld
 to

 d
eterm

in
e how

 
m

uch m
em

ory 
to

 fre
e
. 

-

SEE A
LSO

 
C

reateiO
R

eq
u

eat(), 
am

ig
a.llb

/D
eleteE

x
tiO

() 

ex
ec.lib

rary
/D

eleteM
sg

P
o

rt 
ex

ec.lib
rary

/D
eleteM

ag
P

o
rt 

\) 

N
.AKB D

eleteM
sgP

ort -
F

ree a 
m

esea;e p
o

rt c
re

a
te

d
 by C

reateM
agP

ort 
(V

36) 

SY
N

O
PSIS 
D

eleteM
a9P

ort(m
agP

ort) 
' 

aO
 

v
o

id
 D

eleteM
ag

P
o

rt(stru
ct M

agP
ort 

*
); 

FU
N

CTIO
N

 
F

rees a m
essage p

o
rt c

re
a
te

d
 by C

reateM
ag

P
o

rt(). 
A

ll m
essages th

a
t 

m
ay 

have been attach
ed

 to
 th

is p
o

rt m
ust have alread

y
 been 

re
p

lie
d

 to
. 

IN
PU

TS m
agP

ort -
A

 m
essage p

o
rt. 

N
U

LL fo
r no a

c
tio

n
. 

SEE A
LSO

 
C

reateM
ag

P
o

rt(), 
am

i9
a.lib

/D
eleteP

o
rt() 

) 

.,.. 
.,.. 



c 
exec.llbrary 

P
age9 

ex
ec.lib

rary
/F

reeV
ec 

ex
ec.lib

rary
/F

reeV
ec 

NAM
E F

reeV
ec --

retu
rn

 A
llocV

ec() 
m

em
ory to

 th
e
 system

 
(V

36) 

SY
N

O
PSIS 
F

reeV
ec(m

em
oryB

lock) 
A

1 

v
o

id
 F

reeV
ec(void *

)I 

FU
N

CTIO
N

 

N
~
E
 F

ree an a
llo

c
a
tio

n
 m

ade by th
e
 A

llocV
ec() 

c
a
ll. 

T
he m

em
ory w

ill 
b

e retu
rn

ed
 to

 th
e
 sy

stem
 p

o
o

l from
 w

hich it cam
e. 

If a 
b

lo
ck

 o
f m

em
ory 

ia
 freed

 tw
ice, 

th
e
 system

 w
ill G

uru. 
T

he 
A

lert is AN F
reeT

v
ice 

($01000009). 
If you p

ass th
e vron9 p

o
in

te
r, 

you w
ill prO

bably see A
N

_H
em

C
orrupt 

$01000005. 
F

u
tu

re v
ersio

n
s m

ay 
add m

ore san
ity

 ch
eck

s to
 th

e
 m

em
ory 

lis
ts

. 

IN
PU

TS m
em

oryB
lock -

p
o

in
te

r to
 th

e
 m

em
ory b

lo
ck

 to
 fre

e
 

SEE 
A

L
S

O
 

A
llocV

ec 

c 
c 

exec.llbrary 
Page 10 

e
x
e
c
.
l
i
b
r
a
r
y
/
O
b
t
a
i
n
S
e
m
a
p
h
o
r
e
S
~
a
r
e
d
 

ex
ec.lib

rary
/O

b
tain

S
em

ap
h

o
reS

h
ared

 

~
 O

btainS
em

aphoreS
hared --

9
ain

 sh
ared

 access to
 a 

sem
aphore 

(V
36) 

SY
N

O
PSIS 

O
btainS

em
apboreS

hared(si9nalS
em

aphore) 
aO

 

FU
N

CTIO
N

 
A

 lo
ck

 on a 
ai9

n
al sem

aphore m
ay e

ith
e
r b

e ex
clu

siv
e, 

o
r sh

ared
. 

E
x

clu
siv

e lo
ck

a a
re

 9
ran

ted
 by th

e
 O

btainS
em

aphore() 
and 

A
ttem

ptS
em

aphore() 
fu

n
ctio

n
s. 

S
hared lo

ck
a a

re
 9

ran
ted

 by 
O

b
tain

sem
ap

h
o

reS
h

ared
(). 

c
a
lls m

ay b
e

 n
ested

. 

A
ny 

num
ber o

f task
s m

ay 
sim

u
ltan

eo
u

sly
 h

o
ld

 a 
sh

ared
 lo

ck
 on a 

sem
aphore. 

O
nly one ta

sk
 m

ay 
b

o
ld

 an ex
clu

siv
e lo

ck
. 

A
 ty

p
ic

a
l 

ap
p

licatio
n

 is
 a 

lis
t th

a
t is

 o
ften

 read
, 

b
u

t o
n

ly
 o

ccasio
n

ally
 

w
ritte

n
 to

. 

Ani ex
clu

siv
e lo

ck
er w

ill b
e

 h
eld

 o
ff u

n
til a

ll sh
ared

 lo
ck

ers 
re

 ease th
e
 sem

aphore. 
L

ik
ew

ise, 
if

 an
 ezlu

siv
e lo

ck
 is

 h
eld

, 
a
ll p

o
te

n
tia

l sh
ared

 lo
ck

ers w
ill b

lo
ck

 u
n

til th
e
 ex

clu
siv

e lo
ck

 
is

 re
le

a
se

d
. 

A
ll sh

ared
 lo

ck
ers a

re
 re

sta
rte

d
 a

t th
e
 sam

e tim
e. 

EXAM
PLE 

NOTE 

O
btainS

em
aphoreS

hared(ss)J 
I* read

 d
ata *

/ 
R

eleaseS
em

aohore(sS
)I 

O
b

tain
S

em
ap

h
o

re(ss)l 
I* m

odify d
ata *

/ 
R

eleaseS
em

ao
h

o
re(ss)l 

W
hile th

is
 fu

n
cito

n
 v

as added fo
r V

36, 
th

e
 fe

a
tu

re
 m

av
ically

 w
orks 

w
ith

 a
ll o

ld
e
r sem

aphore stru
c
tu

re
s. 

IN
PU

T si9nalS
em

aphore --
an ln

itla
lla

e
d

 slv
n

al sem
aphore •tru

c
tu

re
 

R
ESU

LT 

SEE A
LSO

 
I
n
i
t
~
p
h
o
r
e
(
)
,
 

R
eleaseS

em
aphore() 

C\1 
~
 



exec. lib
ra

ry 
P

age 11 

exec.library/R
aw

D
oF

m
t 

exec.library/R
aw

D
oF

m
t 

N
A

M
E

 Raw
D

oFm
t 

--
form

at d
ata in

to
 a 

ch
aracter stream

. 

SY
N

O
PSIS 
R

aw
O

O
Fm

t(Form
atStrinq, 

D
ataS

tream
, 

P
utC

hP
roc, 

P
utC

hD
ata); 

aO
 

a
l 

a2 
a3 

v
o

id
(ch

ar •,A
P

T
R

,void 
(*

) (),A
P

T
R

); 

FU
N

CTIO
N

 
perform

 •c•-lan
v

u
ag

e-lik
e fo

rm
attin

v
 o

f a 
d

ata stream
, 

o
u

tp
u

ttin
q

 
th

e re
su

lt a ch
aracter a

t a 
tim

e. 
H

here t 
fo

rm
attln

v
 com

m
ands 

a
re

 
found in

 th
e
 F

o
rm

atS
trin

q
, 

th
ey

 w
ill b

e rep
laced

 w
ith

 th
e
 

co
rresp

o
n

d
in

g
 elem

ent in
 th

e
 D

atastream
. 

'' m
ust 

be used in
 th

e
 

strin
g

 if a 
t 

is
 d

esired
 in

 th
e
 o

u
tp

u
t. 

IN
PU

TS F
orm

atS
trinq -

a 
•c•-lan

q
u

ag
e-lik

e N
U

LL term
in

ated
 form

at 
strin

q
, 

w
ith

 th
e
 fo

llo
w

in
g

 su
p

p
o

rted
 t 

o
p

tio
n

s: 

t(fla
q

s)(w
id

th
.lim

it)(le
n

q
tb

)ty
p

e
 

flaq
s 

w
idth 

ll~t 

len
g

th
 

ty
p

e 

-
o

n
lr one allo

w
ed

. 
,_

, 
sp

e
c
ifie

s le
ft 

ju
stific

a
tio

n
. 

-
f
ie

 d w
id

th
. 

If th
e
 firs

t ch
aracter ls

 a 
'0

', 
th

e
 

fie
ld

 w
ill b

e padded w
ith

 lead
ln

v
 o

•s. 
-

m
ust 

fo
llo

w
 th

e
 fie

ld
 w

id
th

, 
if

 sp
e
c
ifie

d
 

-
m

axim
w

n num
ber o

f c
h

a
ra

c
te

rs to
 o

u
tp

u
t from

 a 
strin

g
. 

(only v
a
lid

 f
o

r
ts

)
. 

-
siz

e
 o

f in
p

u
t d

ata d
e
fa

u
lts to

 NORD fo
r ty

p
es d

, 
x

, 
and c

, '1
' 

chanvea th
is

 to
 lo

n
v

 
(3

2
-b

lt). 
-

su
p

p
o

rted
 ty

p
es area 

b -
B

STR
, 

d
a
ta

 la
 3

2
-b

it BPTR to
 b

y
te co

u
n

t fo
llo

w
ed

 
by a 

b
y

te
 strin

g
, 

o
r NULL term

in
ated

 b
y

te strin
g

. 
A

 
N

U
LL B

PTR
 is

 tre
a
te

d
 aa an em

pty a
trln

q
. 

(A
dded in

 V
36 exec) 

d -
d

ecim
al 

x -
h

ex
ad

ecim
al 

a -
strin

g
, 

a 
3

2
-b

lt p
o

in
te

r to
 a 

N
U

LL term
in

ated
 

b
y

te strin
g

. 
In

 V
36, 

a 
H

U
LL p

o
in

te
r h 

tre
a
te

d
 

as an
 em

pty strin
g

 
c 

-
c
h

a
ra

c
te

r 

D
ataS

tream
 -

a 
stream

 o
f d

a
ta

 th
a
t is

 in
te

rp
re

te
d

 acco
rd

in
g

 to
 

th
e
 form

at 
strin

g
. 

O
ften

 th
is is a 

p
o

in
te

r in
to

 
th

e
 ta

sk
's sta

c
k

. 
P

utC
hP

roc 
-

th
e
 p

ro
ced

u
re to

 c
a
ll w

ith
 each ch

aracter to
 b

e 
o

u
tp

u
t, c

a
lle

d
 a

a
:\a

lO
\fP

 

) 
) 

e
xe

c.llb
ra

rv 
P

age 12 

P
utC

hP
roc(C

har, 
P

utC
hD

ata); 
D

0-0:8 A
3 

th
e
 p

ro
ced

u
re is

 c
a
lle

d
 w

ith
 a NULL C

har a
t th

e
 end o

f 
th

e
 form

at strin
g

. 

P
utC

hD
ata -

a 
v

alu
e th

a
t la

 p
assed

 tb
ro

u
v

h
 to

 th
e
 P

utC
bP

roc 
p

ro
ced

u
re. 

T
hia 

1
a
 untouched by R

aw
D

of'lllt, 
and m

ay 
b

e
 

m
o

d
ified

 by th
e
 P

utC
hP

roc. 
EXAM

PLE 
1 S

im
ple v

ersio
n

 o
f th

e
 C

 •a
p

rin
tf• fu

n
ctio

n
. 

A
ssum

es c
-a

ty
le

 
1 

stack
-b

aaed
 fu

n
ctio

n
 co

n
v

en
tio

n
s. 

I I , , , 
lo

n
v

 ey
eco

u
n

t; 
eyecountoo2; 
sp

rin
tf(a

trln
g

,•ts have tld
 ey

ea.•,•F
ish

•,ey
eco

u
n

t); 

1 w
ould p

ro
d

u
ce •F

lab
 have 2 e

y
e
s.• in

 th
e
 a

trln
q

 b
u

ffer. 
I 

X
D

EF 
sp

rln
tf 

X
REF -A

bsE
xecB

aae 
X

REF -LV
O

R
aw

D
oFm

t 
a
p

rin
tfa

 
-

1 
( 

o
strln

q
, 

fo
rm

at, 
(v

alu
es) 

) 
-

m
ovem

.l a2
/a3

/a6
,-(ap

) 

m
o

v
e.l 

m
o

v
e.l 

le
a
.l 

le
a
.l 

m
o

v
e.l 

ja
r
 

4
*

4
(ap

),a3
 

5
*

4
(sp

),a0
 

6
*

4
(ap

),al 
atu

ffC
h

ar(p
c),a2

 
A

ba£xecB
aae,a6 

:
L
v
o
R
a
w
D
o
~
(
a
6
)
 

m
ovem

.l 
(ap

)+
,a2

/a3
/a6

 
rta

 

rG
et th

e
 o

u
tp

u
t a

trln
v

 p
o

in
te

r 
IG

et th
e
 F

o
rm

atS
trin

g
 p

o
in

ter 
rG

et th
e
 p

o
in

te
r to

 th
e
 D

ataS
tream

 

;
-
-
-

P
utC

hP
roc fu

n
ctio

n
 u

sed
 by R

aw
D

oFm
t -

-
-
-
-

stu
ffc

h
a
ra

 
. 

m
ove.b 

d
O

,(a3
)+

 
;P

u
t d

ata to
 o

u
tp

u
t a

trln
g

 
rts

 
N

A
RN

IH
G

 
T

h
ia A

m
iga 

ROM
 fu

n
ctio

n
 form

ate w
ord v

alu
ea in

 th
e
 d

ata atream
. 

If 
y

o
u

r co
m

p
iler d

e
fa

u
lta

 to
 lo

n
q

a, 
you m

uat add an
 •1

• to
 your 

t 
a
p

e
c
lfic

a
tlo

n
a
. 

T
hia can

 v
et atran

v
e fo

r ch
aractera, w

hich m
ight 

lo
o

k
 lik

e
 •tlc

•. 

S
E

E
 A

LSO
 

D
ocum

entation on th
e
 C

 lanvuave •p
rin

tf• c
a
ll in

 any c 
lanquave 

referen
ce book. 

) 

(') 
... 



c 
exec.llbrarv 

Page 13 

ex
ec.lib

rary
/S

u
p

erv
iso

r 
ex

ec.lib
rary

/S
u

p
erv

iso
r 

~
 S

u
p

erv
iso

r --
tra

p
 to

 a sh
o

rt su
p

erv
iso

r m
ode 

fu
n

ctio
n

 

SY
N

O
PSIS 
re

su
lt 

a 
S

u
p

erv
iso

r(u
serF

u
n

c) 
b 

M
 

ULONG S
u

p
erv

iso
r(v

o
id

 *
)I 

FU
N

CTIO
N

 
E

xecute a 
sh

o
rt assem

bly language fu
n

ctio
n

 
in

 th
e
 su

p
erv

iso
r m

ode 
o

f th
e
 p

ro
cesso

r. 
S

u
p

erv
iso

r() 
does n

o
t 
~
i
f
y
 o

r sav
e re

g
iste

rs' 
th

e
 u

ser fu
n

ctio
n

 b
as fu

ll access to
 th

e
 re

g
iste

r s
e
t. 

T
he u

ser 
fu

n
ctio

n
 m

ust end w
ith

 an RTE 
in

stru
c
tio

n
. 

EX
A

M
PLE 

IN
PU

TS 

O
btain th

e
 E

x
cep

tio
n

 V
ecto

r b
ase. 

68010 o
r 9

re
a
te

r o
n

ly
l 

M
O

V
EC

trapz 
m

ovec.l V
B

R
,dO

 
l$4e7a,$0801 

rte
 

userF
unc -

A
 p

o
in

te
r to

 a 
sh

o
rt assem

bly language fu
n

ctio
n

 en
d

ln
9

 
in

 R
TE. 

T
he fu

n
ctio

n
 b

as fu
ll access to

 th
e
 re

g
iste

r s
e
t. 

RESU
LTS 
re

su
lt 

-
W

hatever v
alu

es th
e
 userF

unc le
ft in

 th
e
 re

g
iste

rs. 

SEE ALSO 
S

u
p

erS
tate/U

serS
tate 

c 
c 

• ... 











A2410, High Resolution Color Graphics Card 
Hardware / Software Overview 

Richard Miner Linda Wilkens 
Alex Niedzwiecki 

Richard Lu 

Center for Productivity Enhancement 
University of Lowell 

Abstract 

A high resolution color graphics card, the A2410 has been developed for the Com
modore Amiga computer. This graphics card is based on a Texas Instruments graphics 
systems processor, the TMS34010. The card couples the graphics system processor 
with frame buffer and program/ data memory, a palette chip and DMA circuit for high 
speed data transfer between the graphics card and the Amiga. 

Introduction 

The A2410 high resolution graphics card is a separate graphics device that sits in one of 
the standard Amiga 100-pin expansion slots. The graphics card couples the TI Graphics 
System Processor (GSP) to its own local program memory, frame buffer memory, palette 
chip and DMA circuit. Presented here is an overview of the main functional components 
of the graphics card and a description of a low level application programmer's interface for 
accessing these capabilities. 

I High Resolution Color Graphics Card 

This description of the hardware is provided to give an understanding of the graphics card 
architecture. Most programmers will . not need this information because the device level 

DMA 
Circuit 

deo RAM--

.. ,.,. R 

G 

.. ,,,,. B 

Figure 1: Block Diagram of the A2410 High Resolution Color Graphics Card 

High Resolution Graphics Card 1 



software interface to the graphics card provides a higher level abstract interface to the A2410 
functionality. 

The six main functional blocks of the board are depicted in Figure 1 and include: 

1. Graphics System Processor (TI TMS34010) 

2. Frame buffer memory 

3. Program and data memory 

4. Brooktree Palette chip 

5. Special Register 

6. DMA circuit 

The Graphics System Processor 

The A2410 is driven by a Texas Instruments TMS34010 graphics system processor ( GSP). 
The 34010 is a general purpose CPU with an instruction set tailored for graphics applications. 
The GSP is responsible for communicating ~ith the host, executing graphics instructions, 
refreshing memory, and updating the display. The TMS34010 is a powerful CPU which com
bines the features of a general-purpose processor and a graphics controller. The TMS34010 
instruction set includes a full complement of general purpose instructions, as well as graph-
ics functions, from which one can construct efficient high-level functions. The instructions n 
support arithmetic and boolean operations, data moves, conditional jumps, subroutine calls 
and returns. 

A2410 Memory and Register Configuration 

There are two megabytes of video RAM on the A2410 split into a number of functional 
blocks. There is frame buffer memory for image display that supports 1024 by 1024 eight-bit 
pixels and additional memory for two overlay bit-planes. In addition to this image frame 
buffer memory there is a memory block for storing program code and data. The memory 
configuration for the A241 0 is shown in figure 2. 

In addition to the on-board me~ory shown in figure 2, the TMS34010 has 1/0 registers 
which are mapped to GSP addresses .COOOOOOO through C00001FO, 15 general purpose ;reg
isters called the A-file registers, 15 special purpose .registers called the B-file registers, the 
Stack Pointer, and the Status Register. The 1/0 registers are used to control host interface 
communications, local memory interface, interrupts, video timing and screen refresh. See 
the TMS34010 User's Guide for a more detailed explanation. The A-file registers AO-A14 
are truly general purpose, while A15 is an alias for the Stack Pointer. The B-file registers 
BO-B14 are used as implied operands for the 34010 graphics operations, while B15 is another 
alias for the Stack Pointer. 

High Resolution Graphics Card 2 



FEOO 0000 +------------------+ 
frame 
buffer 
memory 

FE7F FFFF +------------------+ 
FE90 0000 special reg 
FF80 0000 +------------------+ 

overlay 0 
FF90 0000 +------------------+ 

overlay 1 
FF9F 0000 +------------------+ 

prog:z:am 
and 

data memory 

FFFF EOOO +------------------+ 
traps 

FFFF FFFO +------------------+ 

Figure 2: A2410 Hardware Memory Map 

8 bits per pixel 

Figure 3: Frame Buffer Memory Configuration 

High Resolution Graphics Card 3 



Frame Buffer Memory 

In graphics systems today, there are several major methods of representing frame buffer data 
and latching it through the digital to analog converters that drive displays. One method is 
known as bit-plane organization, and has separate planes of memory for each bit of every 
pixel in the video memory. This method is used in the nat ive amiga graphics environment. 

2 
s 
6 

3 
BT458 

Figure 4: Color assignment through the BT458 palette chip 

R 

B 

On the A2410 the chunky mode method is used. The pixel data is arranged contiguously 
in memory as consecutive eight-bit values . Additionally, there are two bit-planes of data 
that are used as overlay planes. The arrangement of the frame buffer and overlay planes can 
be seen in Figure 3. 

Each eight-bit pixel in the image frame buffer is used as a pointer into a 256-element 
look-up table. In the look-up table the pixel value is assigned a 24-bit RGB color value. A 
Brooktree palette chip (BT458) provides this look-up table on the A2410. The BT458 also 
supports a separate look-up table that is used by the overlay bitplanes. The arrangement is 
show in Figure 4. 

Special Register 

The A2410 Graphics Card has a number of features that utilize a special programmable 
register to allow the software to configure and check the status of the A2410. The A2410 
Special Register , which is at GSP bit address FE90 0000, is an 8-bit register in which bits 
0-3 are Read/ Write, while bits 4-7 are ReadOnly. This registers bit usage is described in 
table 1. 

TIGA 

The Texas Instruments Graphics Architecture (T IGA) is a standard software interface for 
communications between host machines and graphics boards based on Texas Instruments 
T MS340 family of graphics processors. T IGA consists of two main pieces: the Graphics 
Manager (GM) which runs on a graphics board processor (GSP), and the Communications 
Driver (CD) which runs on the host. 

High Resolu t ion Graphics Card 4 



u 

a e : ~peel egts er 1 e m tons T bl 1 S . al R . t B. t D fi . t. 
Special Register Bit Name Description 

Read/Write 
bit 0 MOD Display oscillator control: 

MOD=O: oscillator 1 
MOD=1: oscillator 2 

bit 1 SYNC Composite or separate SYNC 
SYNC=O: separate SYNC 
SYNC=1: composite SYNC on Green 

bit 2 SWIZZ Byte Swap for DMA transfers 
SWIZZ=O: Byte swap enable 
SWIZZ=1: Byte swap disable 

bit 3 ABR Bus request by GSP 
ABR=O: no GSP bus request 

u 
ABR=1: GSP bus request 

Read Only 
bit 4 BLANK Display Blank signal 

BLANK=O: blank time 
BLANK= 1: diaplay time 

bit 5 AGBG Bus request by Amiga 
A GBG=O: Amiga bus request 
AGBG=1: No Amiga bus request 

bit 6 AID AmigaiD 
AID=O: A2000 
AID=l: A3000 

bit 7 ABG Amiga Bus granted to GSP 
ABG=O: bus is granted to GSP 
ABG=1: bus is NOT granted to GSP 

u High Resolution Graphics Card 5 



Device Driver 
under UNIX 

Figure 5: Texas Instruments Graphics Architecture (TIGA) Block Diagram 

The CD receives requests from an application program to send a command to the graph
ics board and perhaps to also receive some data back from the board. The CD can be 
implemented in many different ways: it can be a link library, a run- time li brary, a device, 
or in an MSDOS enviroment, it a Terminate- and-Stay-Resident program. The GM is the 
only process running on the graphics processor, and hence it takes over the board com
pletely. It stays in a main loop which waits for a command to be available and then executes 
it. The commands are stored in a circular buffer of command structures, with appropri
ate fields within the command structure being used for host to (GSP), and (GSP) to host 
communication. 

The Graphics Manager consists of the Command: Executive which is a set of routines for 
communication with the host, and up to 32 modules each of which consists of routines to 
perform graphics operations or to manipulate/ query the current enviroment of the gsp. The 
motivation for partitioning the graphics routines up into seperate modules is that different 
application programs may require different combinations of these modules, and the modules 
can be loaded individually. In reality, there are only 3 modules supplied with this release 
although the TIGA interface allows for customized modules to be used to supplement and/ or 
replace two of these. Additional modules could include these with specific commands for 
windowing systems, image processing, advanced ·graphics, etc. 

The supplied modules are TIGA core primitives, TIGA exteneded primitives, and Amiga 
board specific primitives. The core primitives are needed at all times. The extended prim-

High Resolution Graphics Card 6 



u 

u 

u 

a e : T bl 2 C t · ·r r r ore pnm1 1ves orgrap. 1cs sys em 1n1 1a 1za Ion 
Function Description 
functionJm plemented{) Return if a function is implemented 
get-config() Return board configuration 
get..modeinfo() Return board mode information 
get_ videomode() Return current mode 
gsp-execute() Begin execution.of program on the A2410 
instalLprimitives() Install extended primitives 
instaJl_usererror() Install user error handler 
loadcoff() Load a program onto the graphics board 
set-config() Set graphics configuration 
set_timeout() Set timeout timing value 
set_ videomode() Set video display mode 
synchronize() Host waits for A2410 to execute commands 
clear .screen() Clears the visible portion of the screen 

itives are needed to access the graphics output primitives supplied by TIGA. The Amiga 
board specific primitives are needed to access the special functionality resulting from the 
fact that the Amiga board has DMA capabilities and two overlay bitplanes. 

Core primitives include functions to: initalize the graphics board, clear the screen, control 
graphics attributes, access the palette, access the workspace, display text, manipulate the 
cursor, send and receive data, implement pointer-based memory management on the graphics 
board, download used-defined modules, and to do some miscellaneous utility functions. Each 
of these categories of primitives require some additional explanation, and will be discussed in 
more detail. Extended primitives include functions to control a few of the graphics attributes, 
(except basic text display which is a core primitive), to do font selection and installation 
and the get_pixel function (since it is the inverse of the set-pixel function which naturally 
falls into the category of a. graphics output primitive). The Amiga board specific primitives 
include DMA versions of routines to transfer data, routines to select which overlay plane to 
draw in, and routines to select which planes are visible. 

The graphics attributes manipulated by the core primitives are foreground and back
ground color, plane mask, pixel processing operation, transparency, and windowing. These 
attributes correpond to registers, or fields of a register on the graphics board which are im
plied operands for many of the 34010 machine level graphics instructions. The foreground 
col~r is the primary drawing color, and is usually an index into the current palette. Similarly, 
the background color is the secondary drawing color. The plane mask is a bit vector which 
designates which bits within a pixel are protected against writes; the 1 'sin the mask specify 
protected bits, and the O's specify bits that can be altered. The pixel processing operation 
{ppop) determines the manner in which pixels are combined during drawing operations; for 
example, if ppop= 10, this implies that the destination pixel will be replaced with (source 
XOR destination). Transparency can be either on or off, transparency on means that if the 

High Resolution Graphics Card 7 



a e : ore nm1 1ves or grap. cs a r1 u e con ro T bl 3 c P · ·r £ hi ttt .b t t 1 
Function Description 
cpw() Compare point to window 
get-colors () Return foreground and background colors 
get_env() Return current environment structure 
get-pmask() Return plane mask 
get_ppop() Return current pixel processing operation 
get_transp() Return transparency mode 
get-windowing() Return windowing mode 
set_bcolor() Set background color 
set-clip...rect() Set clipping rectangle 
set_colors() Set foreground and background colors 
set..fcolor() Set foreground color 
set_pmask() Set plane mask 
set_ppop() Set pixel processing operation 
set-windowing() Set windowing mode 
transp_off() Disable pixel transparency 
transp_on() Enable pixel transparency 

a e : T bl 4 C ore · ·r t pnrm 1ves o access th al tt e p, e e 
Function Description 
get-nearest-color(.) Return nearest color in the palette 
get_palet() Return the entire palette 
get_palet..en try() Return·a palette.entry 
init-palet() Initialize the default palette 
set_palet() Set a span of palette entries 
set_palet..en try() Set an individual entry in the palette 

High Resolution Graphics Card 8 



u 

u 

u 

pixel value resulting from the current ppop is 0 the destination pixel is NOT altered, while · 
transpar~ncy off means that the destination· pixel is altered unconditionally. Windowing 
may be set at 0 for no windowing, 1 for interrupt request on write in window, 2 for interrupt 
request on write outside window, or 3 for clip to window. The extended drawing primitives 
assume windowing option 3 is set. The window to clip to is set with set-clip..rect(). 

a e : T bl 5 C ore pnm1 1ves o man1p1 a e t . ul t th k e wor space 
Function Description 
get_wksp() Return offscreen workspace 
set_wksp() Set the offscreen workspace 

The polygon fill functions filLpolygon(), and patnfilLpolygon() use an implied workspace 
which is the same size as the drawing area of the screen, but is only 1 bit deep. This 
workspace is initialized within the A2410 data memory. 

T bl 6 C a e : · ·r £ t t ore pr1m1 1ves or ex 
Function Description 
get ..fontinfo() Return font physical information 
ini t _text () Initialize text drawing environment 
text ..out() Render an ASCII string 

The Graphics Manager sets up a default system font, which is available for displaying 
text. Other fonts can be installed and used only if the extended primitives have been installed 

T bl 7 C a e : t 1 t th ore pr1m1 1ves o mampu a e e cursor 
Function Description 
get_curs...state() Return current cursor state (OFF or ON) 
get_curs..xy() Return cursor _position 
set_curs...shape() Set cursor shape 
set_curs...state() Set the cursor state 
set_curs..xy() Set current cursor position 

Memory on the board is either. frame buffer, or program data memory. The program 
memory includes program space, stack space, heap space, and the 1-bit deep workspace 
discussed above. Depending on the videomode currently chosen, some of the frame buffer for 
double bufferd graphics, animation objects, etc. Thus free space available to the application 
is either an offscreen area, or the heap. TIGA provides dynamic heap management functions 
to manage the heap. The offscreeen areas, if available, must be managed by the application 
itself. 

Amiga-Board-Specific primitives The A2410 has 2 "one-bit planes" for overlays, and 
has DMA capabitities. The Amiga-Board-Specific (ABS) primitives are designed to access 
these features. 

High Resolution Graphics Card 9 



a e : T bl 8 C rrt f r ore pnmi IVes u I I ~Y unc Ions 
Function Description 
lmo() Return left-most-one bit number 
peek_breg() Read from a B-file register 
poke_breg() Write to a B-file register 
rmo() Return right-most-one bit number 
wait .scan() Wait for a designated scan-line 

a e : T bl 9 C 0 'f £ ore pr1m1 1ves or memory managemen t 
Function Description 
get_offscreen-memory() Return offscreen memory blocks 
gsp_calloc() Allocate and clear heap memory 
gsp_free() Deallocate heap memory 
gsp-malloc() Allocate memory from the heap 
gsp..maxheap() Return largest free block in the heap 
gsp..minit() Reini tialize heap 
gsp..realloc() Resize allocated block of heap memory 

T bl 10 C a e : . 't' £ . f ore pr1m1 1ves or commun1ca Ion 
Function Description 
field-extract() Get data from gsp memroy 
fieldJnsert() Set data into gsp memory 
get_ vector() Get address at a 34010 trap vecotr 
gsp2gsp() Copy from gsp memory to gsp memory 
gsp2host() Copy from gsp memory to host memory 
gsp2hostxy() Copy rectangular area from gsp to host 
host2gsp() Copy from host memory to gsp memory 
host2gspxy() Copy rectangular area from host to gsp 
set_vector() Set contents of gsp trap vector 

High Resolution Graphics Card 10 



u 

u 

u 

Function 
create..alm() 
create_esym() 
flush-esym() 
flush-extended() 
getJsr-priorities() 
install..alm() 
install_primiti ves() 
install..rlm() 
set-interrupt() 

Table 11: Core primitives for extensibility 
Description 
Create absolute load module 
Create external symbol table file 
Flush external symbol table file 
Flush all modules except core primitives 
Return interrupt service routine priorities 
Install absolute load module 
Install extended primitives 
Install relocatable load module 
Set an interrupt handler 

a e : xten e pnnu1ves or~ap. Icsa ri u e con ro T bl 12 E d d · ·r £ h. tt .b t t 1 
Function Description 
set_draw ..origin() Set drawing origin 
set-patn() Set current pattern description 
set_pensize() Set current pensize 

The normal drawing area for graphics primitives is an section of VRAM which is treated 
as an x by y chuncky-mode pixel array, with 8 bits per pixel. This pixel array is called plane 
0. In addition, there are two overlay planes, each of which is anx byypixel array with 1 bit 
per pixel. These are called plane· 1 and plane 2. The ABS primitives module includes a 
function to select which of these 3 planes is the destination for drawing primitives, and a 
function to select which subset of these 3 planes are to be visible. Notice that the dimensions 
of the planes are controlled by the selected display mode. 

There are two ways for the host and GSP to communicate. The host processor can 
indirectly access TMS34010 local memory by reading from or writing to the HSTDATA 
register, thereby accessing the word in local memory whose address is in the HSTADRL and 
HSTADRH registers. The CD uses this method while sending commands to the GSP and 
while retreiving return values from commands. The GSP can directly access Amiga memory 
via the A2410's DMA hardware. The TIGA command host2gsp(), gsp2host(), host2gspxy() 
and gsp2hostxy() hide from the user which of these transfer methods is being used. 

AMIX ·Interface 

The AMIX interface to TIGA is a link library which executes within an Amiga disk drive, all 
of the TIGA functions described above are available to the application program. In addition 
to the link library, there is a separate mechanism to load the GM before an application is 
executed, so that each application need not load the GM via a call to the TIGA function 
loadcoff(). The default GM contains the TIGA core primitives, the TIGA extended primi
tives and the Amiga-board specific primitives. An example application program to draw a 

High Resolution Graphics Card 11 



a e : T bl 13 E xten e pnrmt1ves or ~ap. cs output dd £ hi 
Function Description 
draw line() Draw a line one pixel thick 
draw _oval() Draw an oval 
draw _ovalarc() Draw ellipse arc 
draw _piearc() Draw pie slice 
draw _point() Draw single pixel 
draw _polyline() Draw list of lines 
draw _rect() Draw rectangle outline 
fill_convex() Draw solid convex polygon 
fill_oval() Draw solid ellipse 
filLpiearc() Draw solid ellipse pie slice 
filLpolygon() Draw solid polygon 
fill_rect () Draw solid rectangle 
frame_oval() Draw oval border 
frame..rect() Draw rectangular border 
patnfilLconvex() Draw patterned convex polygon 
patnfilLoval() Draw patterned ellipse 
patnfilLpiearc() Draw patterned pieslice 
patnfilLpolygon() Draw pat.terned polygon 
patnfill..rect () Draw patterned rectangle 
patnframe_oval() Draw patterned oval border 
patnframe..rect() Draw patterned rectangular border 
patnpen..line() Draw line with pattern and pen 
patnpen-ovalarc() Draw oval arc with pattern and pen 
patnpen-piearc() Draw pie slice with pattern and pen 
patnpen-point() Draw pixel with pattern and pen 
patnpen-polyline() Draw lines with pattern and pen 
penline() Draw line with pen 
pen_ovalarc() Draw oval arc with pen 
pen-piearc() Draw pie slice with pen 
pen-point() Draw point with pen 
pen-poly line() Draw lines with pen 
seed..fill() . Fill region with foreground color 
seed_patnfill() Fill region with pattern 
styledJine() Draw styled line 

High Resolution Graphics Card 12 



u 
a e : xten e T bl 14 E dd pr1rmt1ves or p1xe array unc 1ons ~ . 1 f f 

Function Description 
bitblt() Bitblt source array to desitnation 
set-dstbm() Set destination bitmap 
set·..srcbm() Set source bitmap 
swap_bm() Swap source and destination bitmaps 
zoom-rect() Zoom source rectangle 

a e : x en e pr1m1 1ves or ex T bl 15 E t d d . 'f ~ t t 
Function Description 
delete_font() Remove a font from the font table 
get_textattr() Return text rendering attributes 
install_! on t() Install font into font table 
select _font() Select an installed font for use 
set_textattr() Set text rendering attributes 

u text_ width() Return the width of an ASCII string 

T bl 16 E d d T f a e : xten e pnrmt1ves ut1 1ty unctions 
Function Description 
get-pixel() Read contents of a pixel 

a e : ver ay pr1m1 1ves T bl 17 0 1 ABS . 't' 
Function Description 
select_plane() Select drawing plane 
display -Planes() Choose which planes are visible 

u High Resolution Graphics Card 13 



#include <tiga/typedefs.h> 
#include <tiga/devtiga.h> 
#include <tiga/tiga.h> 
#include <tiga/extend.h> 
#define SOURCE_PLUS_DESTINATION 16 
CONFIG config; 

main() 
{ 

} 

short xs,ys,xe,ye,disp_hres_minus6,disp_vres_minus6; 

if (!set_videomode(TIGA,INIT I CLR_SCREEN)) exit(O); 
if (install_primitives() < 0) exit(O); 

get_config(tconfig); 
xs = config.mode.disp_hres>>1; 
ys = config.mode.disp_vres>>1; 

disp_hres_minus6 = config.mode.disp_hres - 6; 
disp_vres_minus6 = config.mode.disp_vres - 6; 

set_fcolor(RED); 

I* set up an add pixel processing option which will affect 
** the overlapping lines in the center of the screen *I 
set_ppop(SOURCE_PLUS_DESTINATION); 

ye = 5; I* draw lines at different orientations *I 
for (xe = 5; xe <= disp_hres_minus6; xe += 17) draw_line(xs,ys,xe,ye); 
ye = disp_vres_minus6; 
for (xe = 5; xe <= disp_hres_minus6; xe += 17) draw_line(xs,ys,xe,ye); 
xe = 5; 
for (ye = 10; ye <= disp_vres_minus6; ye += 17) draw_line(xs ,ys ,.xe,ye)·; 
xe = disp_hres_minus6; 
for (ye = 10; ye <= disp_vres_minus6; ye += 17) draw_line(xs,ys,xe,ye); 

set_videomode(PREVIOUS,INIT); 

Figure 6: TIGA AMIX library interface example 

High Resolution Graphics Card 14 



u 

u 

u 

struct TigaiOReq { 
struct Message 
struct Device 
struct Unit 

io_Message; 
*io_Device; I* device private•/ 
*io_Uni t·; I• device pri vate•/ 

}; 

UWORD Nouse; 
UBYTE io_Flags; 
BYTE io_Error; 
ULONG io_Actual; 
ULONG io_Length; 
APTR io_Data; 
ULONG io_Offset; 

I* not used *I 

ULONG 
LONG 

io_Command; I* 32-bit field for tiga.device command •I 
io_Return; I* tiga.device return value •/ 

\caption{TIGA Deice IO request block} 

pattern of lines radiating from the center of the screen is shown in figure 6. This example 
assumes the GM is already loaded and executing on the graphics board. 

AmigaDos Interface 

The interface to the graphics board is implemented as an Amiga Device under AmigaDos, 
called "tiga.device". This means that the format for I/0 requests, and the rules for 
interaction with the device task, are the same as for other Amiga devices such as the narrator 
device, or the serial device. Since a device unit is an instari.ce of a device, multiple graphics 
boards can be supported by having only one tiga.device, but multiple tiga.device units. 
Advantages of implemementing. the interface as. a device are reduced code size, language 
independence, and multitasking support. 

Every Amiga device has an associated data structure called an "IORequest". This struc
ture is used to direct I/0 requests to the device, and if appropriate, to receive return values 
from the device. The tiga.device data structure includes the standard form of the standard 
IORequest structure, along with two additional fields. However, since this form uses a 16-
bit command field while tiga~device requires a 32-bit command field, the command being 
sent to tiga.device is passed in one. of its additional fields, rather than in the usual field of 
IOStdReq. Thus the tiga.device I/0 request block is defined in figure 7. 

As for any device, io..Message is a message header used by the device to queue I/0 
requests and to return I/ 0 requests upon completion. The application program must set 
this up properly for I/0 to work correctly. The ioJ)evice and io_Unit fields are private to 
the device, and are not touched by the application. The next field is 'Nouse', or not used. 
The io-Flags field is divided into the lower nibble which is used by AmigaDos Exec, and the 

High Resolution Graphics Card 15 



1- #include <tigaltypedefs.h> I• standard TIGA include file •I 
2- #include <tigaldevtiga.h> I• definition of tiga.device commands •I 
3- LONG tiga_data[TIGA_DATA_SIZE]; I* the data buffer *I 
4- struct TigaiOReq tiga; I• TIGA io request block •I 

5- main() 
6- { 

7- I• initialize TIGA interface *I 
8- tiga.io_Message.mn_ReplyPort = CreatePort(NULL,O); 
9- if (tiga.io_Message.mn_ReplyPort ==NULL){ 

10- printf("Can't create the reply port\n"); 
11- exit(O); 
12- } 
13- tiga.io_Data = (APTR) tiga_data; 

14-
15-
16-
17-

if ((OpenDevice("tiga.device",O,&tiga,O)) !=NULL) { 
printf("can't open tiga device\n"); 
DeletePort(tiga.io_Message.mn_ReplyPort); 
exit(O); 

18- } 

19- I• initialize the graphics board •I 
20- tiga.io_Command = TIGA_SET_VIDEOMODE; 
21- tiga_data[O] = (LONG)(TIGA); 
22- tiga_data[1] = (LONG)(INIT I CLR_SCREEN); 
23- DoiO(ttiga); 
24- retval = tiga.io_Return; 
25- printf("Return value from set_videomode = Y.lx\n",retval); 

26- I• close tiga.device •I 
27- CloseDevice(&tiga); 
28~ DeletePort(tiga.io_Message.mn_ReplyPort); 
29- } 

Figure 7: TIGA AmigaDOS device interface example 

High Resolution Graphics Card 16 



u 

U· 

upper nibble which is not currently used by tiga.device, but which is reserved for future use. 
The io..Error field is used by the device to return an error or a warning value upon request 
completion. Neither the io..Actual nor the io.Length fields are currently used by tiga.device, 
but may be used in the future. The ioJ)ata field is a pointer to the data buffer, the space 
for which must be provided by the application. The actual data buffer is treated as an array 
of LONG's. The io_Offset field is not used by tiga.device. The io_Com.mand field must be 
set to a valid tiga.device command before the device is called. The commands recognized by 
tiga.device are derived from the TIGA functions, and are defined in the header file devtiga.h. 
The last field io..Return is used by tiga.device to return a value to the application. 

The following is a description of the example code presented in figure 8. Line number 
1 includes the header file which defines TIGA data types that may be referred to in an 
application. Line number 2 includes the header file that defines the tiga.device commands. 
In line numbers 3 and 4 we see the definitions of the data buffer and the IORequest structure. 
Notice that in line 13 these are coupled by assigning the data buffer to the appropriate field 
in the IORequest structure. Lines 7 - 18 properly prepare the IORequest structure, and 
open tiga.device. Lines number 20 through 24 send a request to the device to initialize the 
grpahics board, and to clear the screen. DolO will wait until the device has performed the 
requested command. The return value is then available in tiga.io..Retum. Lines 27 and 28 
close the device, and delete the reply port that was created in line 8. 

In the above example, the assignments in lines 20-23 are could be replaced by an equiv
alent macro which is provided in the header file dev ..macros.h. This macro interface can be 
used to handle all of the assignments associated with a tiga.device request, but the applica
tion must explicitly retrieve the return value if there is one from tiga.io..Return. Thus, an 
alternative form of the above program would include the line: 
#include (tiga/ dev -111acros.h) 
and replace lines 20-23 with the following line: 
set_videomode(TIGA, !NIT - CLR-SCREEN); 
Since the TIGA function set_videomode has a return value, if the application program wishes 
to examine this return value, it must retreive it from tiga.io..Return, as in the non-macro 
version of the same example program. 

Notice that the macro definitions all use the synchronous DolO interface function, rather 
than an asynchronous function. It is possible to use an asynchronous interface if the ap-. 
plication ensures that an IORequest is not reused until the tiga.device has completed the 
previous device command requested. 

For more information on programming the A2410, refer to the A2410 Programmers Ref
erenc·e Manual, and the Tl3401 0 Users Guide and TIGA Reference Manaua! distributed by 
Texas Instruments. 

High Resolution Graphics Card 17 













u 

u 

u 

A3000 System 
Architecture 

The Amiga 3000 represents the next logical step in the progression of hardware platforms for 
the Amiga computer family. The A3000 integrates as standard equipment all of the advanced 
features which previously had to be added to the the A3000's predecessor- the Amiga 2000. 
By incorporating all of these features into the base platform via five new custom gate arrays, 
system performance has been maximized and the cost to the consumer minimized The result 
is a compact, yet extemely powerful new platform which represents the new Amiga standard 
from which newer and even more advanced peripherals will proliferate. 

The following is a list of some of the key new features of the A3000: 

• 68030 CPU (16 or 25 Mhz). 
• 68881/2 Math Coprocessor. 
• 1 Megabyte of 32 bit CHIP RAM standard (internally expandable to 2 megs ). 
• 1 Megabyte of 32 bit FAST RAM standard (internally upgradable to 16 megs). 
• 1/2 meg of 32 bit ROM. 
• De-interlac~d ROB video. 
• 32 bit SCSI DMA hard disk controller (with 40 Mbyte disk). 
• 4 ZORRO m expansions slots. 

A block diagram of the A3000 is shown on the next page. 

A memory map of the A3000 is shown on the second page following. 

SYSTEM CONFIGURATIONS 

At the time of this writing, three different configurations of the A3000 are available. They 
differ in math coprocesors, system clock speed and hard disk capacity. 

The first configuration has a system clock speed of 16 Mhz, a 68881 math coprocessor and a 
40 megabyte hard disk. The second has a system clock speed of 25 Mhz, a 68882 math chip 

A301JD SYSTEM 
ARCHITECTURE 

1 DevCon90 



CJ
 

(I
) 0 0 :::J
 

({
) a ~
 

:tao
 

~:
ta

o 

28
 

-
o

 
w(

/) 
""

i~
 

~~
 

A
30

00
 B

L
O

C
K

 D
IA

G
R

A
M

 



u 

-u 

u 

$80000000 

$10000000 

$08000000 

$01000000 
$00000000 

A30DD SYSTEM 
ARCHITECTURE 

Zonom 
&passion 

Space 

32·Bit Memoty 
&pansioa 

Space 

A3000 
Mocbaboud 

Space I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I . 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I McxhaboatdROM 
:znno II 110 

A2000 
Mo&bcrboud 

Rcgist.er Space 

:zononvo 
Expansion Space 

:zonon 
Memory 

. &pansioa Space 

AmipCbip 
Memcny 

A3000 MEMORY MAP 

3 

$01000000 

SOOFOOOOO 
$00880000 

$00880000 

SOOAOOOOO 

$00200000 

DevCon90 



and a 40 megabyte hard disk. The third configuration is the same as the second, except for a 
larger disk capacity (105 megabytes). 

Although the only difference between a 16 Mhz system and a 25 Mhz system is the 68030, 
68881 and a crystal, it would be exttemely difficult to upgrade the speed of the former. The 
68030 and the 68881 are both soldered directly to the motherboard Suffice it to say that 
there are very good reasons why this was done, so they may not be obvious. Upgrading a 
16 Mhz machine to a 25 Mhz version can most easily be done by adding a daughter card in 
the local bus expansion slot which need only contain a 68030, 68881/2 and an oscillator. 

FAST MEMORY & RAMSEY 

Sockets are provided on the motherboard of the A3000 so that the user may easily increase 
the memory in his machine up to a total of 16 megabytes of FAST 32 bit memory. The 
motherboard is socketed to accept up to 32 DRAM IC's in a ZIP package style. There are 
also 8 DIP sockets which can be used. The DIP sockets are electrically equivalent to the first 
bank of ZIP DRAMs. Consequently, the DIP sockets and first 8 ZIP sockets cannot be 
populated concurrently. The A3000 is shipped with 1 megabyte of FAST memory installed 
The RAM chips used are 80 nanosec (or less) 256k by 4 IC's, and are installed in the DIP 
sockets. 

The DRAM controller (RAMSEY) is designed to work with either 256k x 4 DRAMs or 1M x 
4 DRAMs. ZIP sockets were used on the motherboard because 1M x 4 DRAMs are not 
currently available iit .3 inch DIP packaging. The DIP sockets were included so that 
Commodore could use DIP DRAMs when producing the machine, since they are more 
readily available in quantity (they're a tad cheaper currently as well ... ). If all 32 locations are 
filled with 256k x 4 parts, then the total FAST RAM is 4 megabytes. Using 1M x 4 parts, the 
total would be 16 megabytes. 1M x 4 and 256k x 4 parts cannot be intermixed on the same 
motherboard in the FAST RAM! 

The use of static column mode DRAMs allows for increased system performance (allows 
'burst mode' and 'static column mode' to be used). This type of memory is therefore 
recommended. ALL of the RAM must. be the static column type for this to take affect (the 
operating system checks at bootup if all of the RAM is the static column type). 

RAMSEY Modes of Operation : 

The FAST memory subsystem of the A3000 is controlled by the RAMSEY gate may. The 
Control logic in RAMSEY was designed to support different modes of operation so that 

DevCon90 4 A3DDO SYSTEM 
ARCHITECTURE 

::c····· ......., 



u 

u 

u 

maximum system performance could be achieved. In addition to standard synchronous 
68030 bus cycle RAM accesses, RAMSEY supports 68030 burst read mode. RAMSEY also 
has a special mode of operation refened to as 'static column' mode. Static column mode is 
designed to reduce the average number of clock cycles required when the 68030 does 
synchronous bus cycle accesses to the FAST RAM. Burst and Static Column Modes require 
that the FAST memory uses static column mode DRAMs only! 

Standard Synchronous Bus Cycles: 
In this type of operation both Static Column and Burst modes are disabled. This mode 
requires page mode type DRAMs only. Access to the FAST RAM always takes 5 clocks at 
25 Mhz, and 4 clocks at 16 Mhz. · 

Static Column Mode: 
This mode requires static column mode DRAMs. When RAM is first accessed, RAS is held 
low after the cycle completes. This leaves the current RAM page 'open', and the chip will 
act like a static RAM on this page. Any data in this page can be accessed by simply 
changing the column addresses only. Since the column address access time (tAA) is much 
less than the RAS access time (tRAC), subsequent accesses to this page of data can be done 
faster. As long as RAS is held low (10 usecs max) RAMSEY will allow the CPU to access 
RAM on this page in only 3 clocks (16 and 25 Mhz). 

Comparators inside RAMSEY monitor the ROW address of RAM accesses. If a page is 
currently 'open', and the ROW address matches (page hit), the RAM can be read in 3 clocks. 
If the comparators detect that the data being requested is on a different page (page miss), then 
RAS must be cycled high and low again (tRP), opening up a new page of RAM. Since RAS 
must be cycled when a. page miss occurs, RAM accesses take longer (7 clocks at 25 Mhz, 5 
clocks at 16). 

There is some difference in how page mode is done at 16 Mhz versus 25 Mhz. At 25 Mhz the 
page comparator only detects page misses when *AS (68030 address strobe signal) is low, 
and the RAM is being addressed. Therefore, when a page is opened (RAS held low), it will 
remain open until the next refresh occurs, or a page miss is detected. At 16 Mhz, however, 
the page comparator will detect a page miss while *AS is high. Therefore, at 16 Mhz a page 
will stay open as long as consecutive bus cycles access RAM in this page (or a refresh 
occurs). At 25 Mhz the page will remain open even if bus cycles in between accesses to the 
currently opened page occur (such as CHIP memory, CIA's, etc.). This was done so that 
page misses at 16 Mhz will only take 5 cycles- addresses are valid one-half cycle before *AS 
goes low (30 nanosecs). If it waited until *AS was valid before detecting a page miss, the 
RAS precharge requirement (tRP) could not be met in 5 clocks. 

A3DOD SYSTEM 
ARCHITECTURE 

5 DevCon90 



! 

Burst Mode: 
In this mode, RAMSEY will respond to the *CBREQ (cache burst request) input from the 
68030 and allow burst accesses to FAST RAM. Each burst burst cycle takes 2 clocks each 
(up to three). 

RAMSEY allows for additional control over burst cycles via the WRAP option. The 68030 
will always request 4longword values during a burst sequence. However, if the initial 
longword is not aligned on a quad longword boundary (A3,A2 not equal to 0,0), the 68030 
will read in data which is behind the first data it asked for. Since it is less likely that this data 
will actually be needed, RAMSEY can stop the burst sequence after the data with A3,A2= 1,1 
is accessed. 

Burst mode requires the use of static column mode DRAMs. Diagrams 4 and 5 show timing 
for burst accesses of FAST RAM. 

RAMSEY Control Register: 

There is a single 8 bit register internal to RAMSEY which can be used to change its mode of 
operation. This register is readable and writable. It is located at $00DE0003 of the 
supervisor data space. Data written into the register does not take effect until the next refresh 
occurs. Consequently, if you write a value to the register you will have to wait out the 
refresh interval before it can be read back. Each of these bits has a default value that it is set 
to when the system is reset (actually, a software induced reset will not currently affect these 
bits in the A3000). 

bit 0 ST. COL MODE When high, Static Column mode is enabled (def.=O). 
bit 1 BURST MODE . When hfgh, RAMSEY will respond to the *CBREQ 

input and do burst cycles (def.=O). 
bit 2 WRAP If hfgh, all 4 longwords of a burst will be 

allowed to take place. If WRAP Is low, then 
the burst will only continue while A3 ,A2 are 
increasing - burst will not be allowed to 
WRAP to A3,A2=00 (def.=O). 

bit 3 RAMSIZE If low, then RAM is 1 megabit (256k x 4 or 
1M x 1 ). H high, then RAM is 4 megabit 
(1M x 4). The default size Is determined by 
the input signal on the RSIZE pin (connected 
to J852 on the A3000). (1M x 1 not supported 
in the A3000) 

bit 4 RAMWIDTH If low, RAM is 1 bit wide (1M x 1). If high 
RAM Is 4 bits wide (256k x 4 or 1M x 4). 
(def.=1) 

bit 5,6 REFRESH RATE The refresh counter uses the CPUCLK to count 
out refresh times. The number of clocks 

DevCon90 6 A3DOD SYSTEM 
ARCHITECTURE 



( 
c 

c 

_
_

 ....,
rx=

==
AO

U" 
XJ 

co
 ..

..
..

 "
 

1 
x 

x 
ROU

 H•
• 

x _
_

_
_

_
 _ 

~
-
A
-
_
;
 

C
O

L 
H

tl
 

l __
_ :

 
(
2

)
 
t 

cu
 

·. 
\ 

r·· 
27-

=~ 
~--

-3
8

 

<X
 X

 X
 x-

x X
 x-

x 
X

 X
 X

 X
-X

 X
 ~
 

~ 
--

) 

--
-<

(X
 X

 X
 

-
u 

-
~
-

-
}

.
.
.
.
_

_
-
-+

-)
 -
-

\ 
I 

·
~
 

I 
-

1
6

 t
tH

Z
 

2 
-

2
5

 t
tH

Z
 

3 
-

C
P

U
 

R
E

A
D

S
 

D
A

fA
 

ST
AN

DA
RD

 
RA

M
 

A
CC

ES
S 

<P
og

e 
M

od
e 

O
ff

) 

..
._

!.
A

 



5i' ~
 g ~
 -

~
~
 

~~
 ~~ iii
 

) 

~
l
c
3
t
 

C
PU

C
L

IC
' 

eA
S 

C
U

<
98

 

M
e

-9
 

C
O

l. 
H

 
C

O
l. 

H
 .
.
 

C
O

l. 
H

ti
 

e
R

A
S

 

••
••

••
••

••
••

••
••

 
TS

C
 
-···

··--
··--

-· --
----

·-·-
--.-

.-.-
---

J 
. 

I I r---
----

--· 
TA

S
C

 
••

••
••

••
 

eC
A

S
 

eC
A

S
 C

U
 

&
ST

E
R

tt 

eW
E 

R
£A

O
 

D
A

T
A

 

W
R

IT
E 

D
A

TA
 

-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
~
-
-
-
-
-
-
J
 

, _
__

__
 T

&
IP

 _
__

_ 
.J 

I 
I 

~
 

~~
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

: ...
....

 T
M 

...
...

.. t 
... z>

.::~
 , .

.. 3
0

f
 ...
...

...
...

 t 
......

......
 ,.._ .

.....
.....

.....
. 1

 
. 

-
-
~
~
 

f 
) 

I 
L

 ... T
O

H
 
..

. 
.J 
~
 

) 
) 

1'-
TO

S
 
~ 

I 

• 
H

Q
il

l 
l 

-
T

H
IS

 e
C

A
S

 S
H

O
U

S 
T

Jn
iH

O
 F

O
R

 
B

Y
T

E
S 

H
O

T 
TO

 
B

E
 

W
R

I T
TE

H
 

3 
-

C
P

U
 R

£A
O

S
 D

A
T

A
 

..
 -

1
6

 1
1H

Z 
6 

-
2

5
 1

1H
Z 

<
~
 

r~
~>
--
--
--
--
--
--
--
--
--
--
--
--

RA
M

 A
CC

ES
S 

<P
AG

E 
H

IT
, 

M
IX

ED
 

RE
A

D
/W

RI
TE

> 

) 
,)

 



c ~
~
 

~-~ ~~
 

i.:
' 

..,.
 

I 

(0
 

0 Q
) <::
 ~
 

:::J
 

co
 

0 

C
P

U
C

U
C

 

cu
cs

e 

aR
A

S
 

a
A

S
 

a C
AS

 

aC
11

R
EQ

 

a
S

 T
E

R
ti 

aC
B

A
C

IC
 

tt
A

e
-9

 

R
E

A
D

 
D

A
T

A
 

C
U

H
L.

A
TC

H
E

D
) 

c 
c cu

 

cs
a 

,,
.,

 

··
~ 

D
 

, 
/1

 
\ 

I 
\ 

I 
C

5
) 

C
4

) 
C

S
) 

C
4

) 

X
 

R
O

U
 H

 
X

 
C

O
L 

H
 

)Cj
 X

 
C

O
L 

H
+1

 
X

 X
 

C
O

L 
H

+2
 

X
 X

 
C

O
L 

H
+

J 

--
{

 
X

 
L

W
R

O
 

• 
X

 
LU

O
R

D
 

1 
X

 
L

W
R

O
 

2 
X

 
L

W
R

D
 

3 

·
~
 

I 
-

G
O

E
S 

H
IG

H
 O

H
LY

 
IF

 
PA

G
£ 

no
D

E
 

IS
 

O
IS

A
O

I..
E

D
 

3 
-

C
P

U
 

R
E

A
D

S
 

D
A

T
A

 
..

 
-

1
6

 I
'IH

Z
 

5 
-

2
5

 I
'IH

Z
 

BU
RS

T 
RE

AD
 

-
NO

 
PA

GE
 

O
PE

N
 



bit #of 

between refreshes is determined by the 
following table: 

interval (usecs) 
65 clacls& l6Mb~ 25Mb~ 
00 154 
01 238 
10 380 
11 00 

bit7 TEST 

9.24 6.16 
14.28 9.52 
22.8 15.2 

(refresh off) 

Since 512 refreshes must be done in a msecs, the 
interval between refreshes must be less than 15.625 usecs. 
During st. col. mode, RAS can only be low for 10 usecs at a 
time, so the refresh rate should be set to less than 1 0 usecs 
when st. col. mode is enabled. The default values are 
determined by the CPU SPEED jumper (J851 ). If low, 
def. for 6,5=0,0. If high 6,5=0,1. 
Leave this bit alone! 

Detecting Static Column DRAMs: 

When the A3000 i~ first booted, RAMSEY has burst and static column modes disabled. 
Burst or static column mode must NOT be enabled unless all of the FAST RAM is the static 
column type. At boot up, the Operating System examines RAM and determines if it has 
static column DRAMs only. Each bank of RAM (1 meg with 256k x 4, or4 meg with 1M x 
4) must be checked individually. The proper method for checking for static column DRAMs 
is the following: 

1) Disable all inteiTUpts. 
2) Turn page mode on by setting the bit in the RAMSEY control register (read it back 

until the bit takes affect). 
3) Write $5AC35AC3, $AC35AC35, $C35AC35A, $35AC35AC to 4 consecutive 

longwords in the same page (All-A31 must be the same for all4longwords). 
4) Tum page mode off by resetting the bit in RAMSEY (read it back until it takes 

affect). 
5) Compare the 4 longwords values with what they were written with. If they are 

correct, then this bank of RAM has all static column DRAMs. 
6) Repeat steps 2 thru 5 for each bank of FAST memory. 
7) Re-enable intenupts. 

The code that executes this test must not be in FAST RAM. Any access to FAST RAM with 
static column mode turned on could cause coiTUption if any of the RAMs are not static 
column type. Also, since a refresh cycle will close any open page, writes to the 4longwords 

DevCon90 10 A3DOD SYSTEM 
ARCHITECTURE 



u 

u 

of RAM must be less than 10 usecs apart. 

Since the operating system checks this for you, there should be no reason to do this yourself. 
If you want to tum on a special mode it should be done through the O.S. 

RAM Wait States: 

When discussing the performance of a particular computer, sooner or later the question "How 
many wait states does it have?" will come up. There is no straightforward answer to this 
question since there are so many factors involved Furthermore, wait state comparison is 
only valid when comparing machines using the same CPU running at the same speed. 

In order to understand where the wait states come from in the A3000, one must first 
understand the operation of the 68030's bus interface. The 68030 has the ability to access 
external memory in three basic ways - synchronous, asynchronous and burst. Synchronous 
bus cycles talk to 32 bit wide ports only, and have the potential to be completed in as little as 
2 clocks. Asynchronous bus cycles talk to 8, 16 or 32 bit pons, and have the potenti~ to 
complete in 3 clocks. Burst accesses consist of up to four synchronous bus cycles, the first of 
which can take as little as 2 clocks, and the remaining three in 1 clock each. 

Standard synchronous bus cycles to FAST RAM in an A3000 take 5 clocks on a 25 Mhz 
machine, and 4 clocks on a 1 Mhz machine. Since synchronous bus cycles have the 
capability to complete in two clocks, the 25 Mhz machine has 3 wait states, and the 16 Mhz 
machine 2 wait states. Even though the 16 Mhz machine only has 2 wait states, it is still 
slower than the 25 Mhz machine with 3 wait states. 5 clocks at 25 Mhz equals 200 nanosecs, 
whereas 4 clocks at 1 ~ Mhz is 240 nanosecs. This illustrates why wait state comparisons are 
only meaningful on machines operating at the same speed 

When Ramsey is in Static Column Mode, a page hit results in a bus cycle taking 3 clocks (for 
both 25 and 16 Mhz). This results in 1 wait state. Page misses take 7 clocks (25 Mhz) and 5 
clocks (16 Mhz}, for a total of 5 and 3 wait states. If a page was not already open, then the 
rules governing a standard synchronous cycle apply. 

The first bus cycle of a burst sequence is a standard synchronous bus cycle, so the number of 
wait states depends on whether or not static column mode is enabled, and whether a page is 
hit, missed or not opened. The subsequent cycles (up to 3) take 2 cycles each, resulting in 1 
wait state each. 

A3000 SYSTEM 
ARCHITECTURE 

11 DevCon90 



DevGon 90 

CPU to CHIP RAM 

CHIP RAM 
BVEN WORDS 

To-. 
Do.iooAA.-

Video to CHIP RAM (even word) 

CHIP RAM 
BVEN WORDS 

Video to CHIP RAM (odd word) 

12 A3000 SYSTEM 
ARCHITECTURE 



u 

u· 

u 

CHIP MEMORY 

The A3000 can access up to 2 megabytes of chip RAM. Although all current 8372 FAT 
A GNUS chips used in the A500 and A2000 are designed internally to support 2 megabytes of 
CHIP memory, there· are separate.! meg and 2 meg versions. These two versions differ in 
pinout only. The 2 meg version is· designed to be used with 1 meg x 1 DRAMs, and 
therefore requires an additional multiplexed address bit out (DRA9) and a single *RAS out. 
Also, in order to access the second meg of memory, another address bit from the CPU (A20) 
must be fed into the chip. The following table shows which pins have changed. 

pin 1 meK 2 meK 
35 XCLKIN A20 
56 *RAS 1 DRA9 
57 *RASO *RAS 

Since the the external clock input pin (XCLKIN) was sacrificed, the clock switch mechanism 
must be done externally (it's done in FAT GARY). 

With a single *RAS and *CAS (*CASL, *CASH), using 1 meg x 1 DRAMs allows for 2 
megs of CHIP memory configured as a single bank of 1 meg x 16. This configuration is not 
desirable for two reasons. First of all, since the 2 megs are contained in a single bank, the 
machine would~ to ship with 2 megs of memory since this is the minimum (as well as 
maximum) configuration. Obviously we all would like to have 2 megs of CHIP RAM, but 
this would significantly affect the selling price. The second problem with 1 meg x 1 DRAMs 
is the width of the 68030 interface to it. Although the custom chips can only access CHIP 
RAM 16 bits at a time, the 68030 wants to talk to CHIP memory 32 bits at a time. If we 
limit the CPU interface to 16 bits, throughput will be significantly reduced. So now we need 
CHIP memory that is 32 bits wide. Using 1 meg x 1 DRAMs, we would need 32 chips, 
which results in 4 megabytes of CHIP RAM. Since the custom chips can only access 2 megs, 
this obviously won't work. 

256k x 4 DRAMs were used to solve these two problems. Eight 256k x 4 DRAMs yields 1 
megabyte of memory that is 32 bits wide to the 68030, and 16 bits wide to the custom chips. 
An additional bank of 8 chips can then be added to double the amount of CHIP RAM. 

Since AGNUS only supplies two *CAS signals (*CASH,*CASL), external logic is needed to 
generate the 8 separate CAS'es that are needed. In order to do this, however, we need to 
know which bank is being asked for. It's easy to tell what the CPU is asking for since A 19 
and A20 are available, but the addresses that the custom chips want is internal to the AGNUS 
chip itself. The proper bank must be determined by 'extracting' A19 and A20 from the 

A3000 SYSTEM 
ARCHITECTURE 

13 DevCon90 



multiplexed address coming out of AGNUS. A19 is extracted by latching the value ofDRA9 
at *RAS time. DRA9 contains the value of A20 at *CAS time. 

Figure 6 shows the different possible data paths for CHIP RAM data. 

SYSTEM ROM 

The A3000 has 512k bytes of ROM configured as 128k x 32. Rom timing is adjustable 
via J152 and J151. The proper timing for best perfom1ance is set when the machine is 
manufactured and should not be changed unless ROMs of different speed are used. 

1152 1151 
0 0 
0 1 
1 0 
1 1 

Clocks 
5 
6 
7 
8 

The miirlmum output enable (Toe) and access (Tacc) times for the ROMs is determined by 
the following: 

where 

Toe = ((#cpu cycles) - 2) * Tcyc - Tgary 
Tacc =((#cpu cycles)- 1) * Tcyc 

Tcyc = period of a single 68030 clock 
Tgary =max delay thru GARY (30 nsecs) 

DISPLAY ENHANCER 

The A3000 has an additional video output port which contains 'enhanced' video information. 
The Display Enhancer circuitry improves the quality of the video display by removing flicker 
and visible scan lines from interlaced, noninterlaced and ECS graphics modes. The display 
enhancer is 100% transparent to system software and is compatable with all video output 
modes (in superhires mode the bypass should be enabled via the switch). 

32 BIT SCSI DMA 

A SCSI is built into the A3000 as standard equipment. The custom DMA controller 
(DMAC) connects the 8-bit SCSI world to the 32 bit bus of the A3000. Data is buffered 

DevCon90 14 A3DDD SYSTEM 
ARCHITECTURE 



u 

u 

u 

between the two buses with a FIFO internal to the DMAC IC. The DMAC requests the 
A3000 system bus only when its FIFO is full, and transfers the 32 bit data at full system bus 
bandwidth. This method minimizes the amount of time that the DMAC occupies ~e bus, and 
allows other concurrent operations to continue at their maximum efficiency. 

Because of pin limitations, the DMA address counters are contained in RAMSEY. 

ZORRO ill EXPANSION 

Four ZORRO ill expansion are provided in the A3000 for add in cards (there are 2 IBM 
compatable slots as well). The ZORRO m bus definition is a superset of the ZORRO II bus 
of the A2000. It is designed to be compatable with existing ZORRO ll peripheral cards, as 
well as new cards which can be designed to take advantage of higher speed, address ranges 
and data widths. Translation of 68030 local bus signals into waveforms compatable with 
ZORRO ll cards (and vice versa) is the responsibility of the BUSTER gate array. 

VIDEO EXPANSION 

A video expanion slot that is compatable with that of the A2000 is provided in the A3000. 
The form factor for this card is slightly different since it is in-line with one of the ZORRO m 
expanion slots. An adapter plate is provided to allow A2000 size video expansion cards to be 
used in the A3000. 

BUS MONITORING· 

The FAT GARY gate array contains logic that monitors the local bus for a lengthy bus cycle. 
If a bus cycle lasts longer than a predefined interval, then FAT GARY will terminate the 
cycle. This helps to infonn the system of accesses to areas of memory that are undefined, 
and discourages the design of peripherals that are inefficiently designed to operate in a 
multitasking environment. The A2000 had automatic bus termination built in as well, but its 
purpose was vastly different The A2000 would cause a normal termination of a no-wait 
state bus cycle, unless it was told to wait. The A3000 provides no such default bus cycle 
termination. In general, if the FAT GARY has to be called on to terminate the bus cycle, 
then something is wrong! 

After the assertion of *AS, a counter in GARY starts running, and is reset by the de-assertion 
of* AS. If the counter counts down before *AS is de-asserted, GARY steps in to terminate 
the cycle. There are two different timer values available, each of which terminates the cycle 

A3000 SYSTEM 
ARCHITECTURE 

15 DevCon90 



differently. 

There is an 8 bit register in GARY at $00DEOOOO of the supervisor data space. When written 
to, bit 7 selects the timeout mode to be used. Writing a 0 to this bit enables DSACK timeout, 
and a 1 enables BERR timeout (after a RaSET, DSACK timeout is enabled). DSACK 
timeout counts for 32 C! pulses (approximately 9 usecs), and then assens both DSACKs to 
tenninate the cycle. BERR timeout takes much longer, counting for approximately 250 
msecs. before asserting the *BERR signal. Whenever a bus timeout occurs in either mode, bit 
0 of the register at $00DEOOOO is set, and is not reset until the register is read 

The DSACK timeout mode was made much shoner, and terminates the cycle more discreetly 
using DSACKs. This mode was made the default because of compatability issues. The 1.3 
ROMs purposely snoop through a large range of assresses during boot-up which are 
nonnally not there. Taking 250 msecs for each one would take forever (not to mention the 
*BERR causing GURUs ... ). The idea is to get everything up and running, and then change 
over to BERR mode. 

Since the blitter has the capability of keeping the CPU off of the CHIP bus for a long time, 
bus timeout detection is disabled whenever CHIP RAM or CHIP registers are being selected. 

Automatic bus timeout can be disabled altogether by writing a 1 to bit 0 of the 8 bit register 
at $00DE0001. After a RESET, this bit is automatically set to 0 (timeout enabled). 

POWER UP (COLD START) DETECTION 

There is a bit in GARY which detects whenever the power supply dips below 4.5 volts. 
Hopefully, this should only happen as the machine is powering up. Bit 0 of the 8 bit register 
at $00DE0002 will go high whenever this happens. The bit can only be reset by writing a 0 
back to it 

DevCon90 16 A3DDD SYSTEM 
ARCHITECTURE 











u 

u 

u 

Font Independent User 
Interfaces 
by Micheal Sinz and James Barkley 

For software to be font independent, it must not rely on a specific font style or size in its user 
interface presentation. This lets the user select the font for the display at run-time, either due 
to having set the system's default font via preferences or as an option in the program. 

With AmigaOS 2.0, one of the Amiga' s basic features, its user customizable environment 
(via the Preferences program) has become even more user configurable. One of the 
customizations now possible is the ability to set the default screen and system fonts. With 
the addition of these features, the burden is now on the application developer to correctly 
operate with the user's preferences. 

User selectability of font size was added not only to lengthen to the list of customizations 
available to the user; it is also there to help suppon the various new screen resolutions 
available with new software and hardware. It's not likely most people will be able to read an 
8-pixel high font on a screen that has 1008 x 800 resolution on a 14-inch monitor, like the 
A2024 monitor. Also, With display modes that have very narrow or shon pixels, the use of a 
8x8 font would produce strange and sometimes unreadable results. 

The purpose of this paper is to give insight into why and how to develop font independent 
user interfaces. It is understood that building interfaces that are font independent can be 
more work than building font dependent interfaces. The intent here is to show some of the 
technical aspects of font independence; but more iinponantly, to help bring to light some of 
the issues that need to be thought of while designing the interface to help facilitate font 
independence. The work that is put into an application to make it font independent will pay 
off as display resolutions change and users start to demand that the applications use the font 
of their choosing. 

First there should be some technical details as to what is going on in the system as far as 
fonts are concerned. There are various ways used in different parts of the Amiga to specify 
the font that text is to be rendered in. The naming convention can also be rather confusing. 

Font Independent Uur 
Interfaces 

1 DevCon90 



Several data structures must be understood in the subsequent discussion. They are: 

TextFont 
A structure that identifies a font in memory and that is ready for use. A pointer to this 
structure is return by OpenFontO and OpenDiskFontQ. 

TextAttr 
A short description that specifies a requested font. This structure is what is used to 
OpenFont() and OpenDiskFont() a TextFont. This structure is most frequently used by 
Intuition in the context of IntuiT ext structures and thus may cause some confusion. 

IntuiT ext 
A "package" (structure) of information which Intuition uses for most of its text rendering. 
This structure contains a TextAttr font specification in a field named ITextFont. Note 
that this is not a TextFont but a TextAttr. If the TextAttr is NULL or unopenable, 
some default will be used. 

RastPort 
A "Graphics Handle" that is to rendering on pan of display much like a ''File Handle" is 
to 1/0 on a file. The RastPort must have a valid TextFont structure associated with it. 

BitMap 
The lowest level graphics structure. (The "Raw" graphics data) This is much like the 
disk drive is, when you take the analogy of RastPorts being like file handles. They have 
no idea what a font is. 

To understand what happens·when a character string is rendered, the text and font specific 
calls should be understood. These are documented in the Amiga ROM Kernel Manual: 
Libraries and Devices. Also, a short, basic description of each can be found in the Amiga 
ROM Kernel Manual: Includes and AutoDocs. The new 2.0 font calls are in the AutoDocs 
on the AmigaOS 2.0 developer disks. Below are quick descriptions of a few of the calls that 
will be needed in this talk. 

void Move(struct RastPort *rp,SHORT x,y) 
This moves the current pen position for the RastPort to the coordinates [x,y] in that 
RastPort. 

void SetFont(struct RastPort *rp,struct TextFont *font) 
This function sets the font for a RastPort. It updates all of the information in the 
RastPort structure so that text rendering will be possible. A valid TextFont must be 
used. 

DsvCon90 Font Independent U881' 
Interfaces 



u 
void Text(struct RastPort *rp,UBYTE *str,SHORT length) 

This is the base text rendering routine. It renders the first length characters at *str into 
the RastPort rp. The text is rendered with the RastPort' s TextFont with the base line 
of the text at the current RastPort pen position. Note that the base line of a font is 
defined in the font itself and should be the line below which the descenders are. It is not 
the upper most or lower most part of the font. 

void PrintlText(struct RastPort *rp,struct IntuiT ext *itext,SHORT x,y) 
This is the Intuition text rendering call. It uses the IntuiT ext structure to define the text 
to be rendered. The [x,y] position is the offset within the RastPort that the IntuiText 
structure will be rendered at. The RastPort' s pen position does not affect this call. Note 
that the IntuiText structure has another offset that is added to the [x,y] position of the 
PrintlText call. Note also that the text position is based on the top-most part of the 
character and not the baseline like the TextO call is. This call eventually calls Text() 
after it has done all work needed 

struct TextFont *OpenFont(struct TextAttr *) 
This call returns a TextFont that was specified by the TextAttr. This call only will 
return TextFont structures that are currently in memory. (Either ROM fonts or currently 
loaded Disk fonts). 

struct TextFont *OpenDiskFont(struct TextAttr *) 
.This call returns a TextFont that was specified by the TextAttr. This call will also 
search for the "best-fit" font on disk and load it and then call OpenFontO on it. You 
must be a process to call this function. (In fact, since this is in diskfont.library, a disk 
based library, you must be a process to even have access to it). 

void CloseFont(struct *TextFont) 
This function closes a previously opened font. It closes fonts that were opened via 
OpenFontQ and OpenDiskFontQ. You should take care to correctly match your 
opening and closing of fonts. Closing a font too many times can cause a crash while not 
closing it enough times could cause a waste of RAM (and other problems). 

void InitRastPort(struct RastPort *rp) 
This call initializes a RastPort structure, clearing all the fields to zero or their defaults. 
In particular, it sets the font to the system's default font: GfxBase->DefaultFont. 

Note that when displaying text via an IntuiText structure or when a TextAttr is used to 
specify the font to be used, the system will only call OpenFontQ and not OpenDiskFont() 
(This applies mainly to Intuition). 

Font Independent USM 
Interfaces 

3 DevCon90 



When a window is opened, the window's RastPort is initialized via InitRastPort and this 
gets the GfxBase·>PefaultFont. Thus, any rendering into the RastPort via the TextO call 
will render in this font unless you do a SetFontQ. 

Intuition does its rendering with the screen's font, which can be found in three different 
locations: 

Q Screen->Font 
Q Screen->RastPort.Font 
Q Screen->BarLayer->rp->Font 

These should describe the same font 

When a screen is opened, these are initialized by the TextAttr in the NewScreen structure. 
If this is NULL or can not be opened via OpenFontQ, the font used will be 
GfxBase->DefaultFont. 

Jim Mackraz's paper on fonts from the 1988 DevCon contained a list of text rendering done 
by Intuition using the triumvirate of screen font pointers listed above. Here is an updated 
version of that list (with some notes): 

Notes: 

Situation: 
Gadget text 
Gadget bigblight text 
String gadgets 
Menu titles 
Menu items ad sub-items 
Menu equivalent keycodes 
Menu size calculations 
Window titles 
Screen titles3 
Requester text 
Requester gadgets 
Alerts . 

~ 
1 
1 
2 
3 
1 
4 
1 
3 
3 
1 
1 
s 

1. Since rendering bappens with lntuiText, the TextAttr in the Intw"Text structure will be used if it is 
not NULL and Intuition was able to open that font via OpenFontO 

2. The text in the string gadget dispJay where the editing takes place is not controlled via IntuiT ext. The 
normal gadget text is. 

3. Not IDtuiText controlled. 
4. Menu shortcuts (command keys) are displayed in the font of the menu item they are connected to. 
S. Alerts are forced to be displayed in Topaz-8. (TOPAZ80) 

DevCon90 4 Font Independent User 
Interfaces 



u 

As the above list implies, any time that your interface needs to have a certain font, it should 
specify it when possible. Thus, IntuiText structures should always be filled in with the font 
you wish to use. This is much safer than to rely on the cmrent intrinsic operation of 
Intuition. 

The screen font plays a big pan in the Intuition text rendering. On the Workbench 2.0 
screen, the user can select the font that is to be used as the screen font. For this reason, the 
Workbench screen's font should be considered the font of choice by the user. This font can 
be almost any font the user wishes to set it to. Some applications require a mono-spaced 

· font For this reason, there is a special user selected font that is defined to be mono-spaced. 
This font is GfxBase->DefaultFont. (Before 2.0, this font was only changed via some 
"hacks" that stuffed values directly into it). Note that this is the font that RastPorts are 
initialized to by default There is no correspondence between GfxBase->DefaultFont and 
the Screen font descriptors other than that when a screen is opened without a specific font, it 
gets GfxBase->DefaultFont. 

If your application is to correctly adjust itself to a font, you will need to select which 
"default" font to use. S_ome general guidelines: 

1. If you execute on the Workbench screen and can use proportional fonts, use the 
Workbench screen's font 

2. If you execute on the Workbench screen and need to have a mono-spaced font, use 
GfxBase->DefaultFont. 

3. If you execute on your own screen, use the fonts described above or give the user a 
method for selecting the font 

4. Have some fall-back font (usually Topaz-8) that you can revert to in case the selected 
font won't fit into·your interface. 

In order to find out what the default fonts are, you will need to access the correct data 
structures. On a private screen, this is not a problem, however on public structures, it could 
be. Under 2.0 you should use LockPubScreenO to make sure that the screen is locked in an 
open state. Since there is no legal way for a program to change the font on a screen that is 
open without closing it first, this will protect you. Under 1.3, there is no real protection other 
·than ForbidQ/PermitO while snooping in the screen's structure (However, under 1.3 there are 
no public screens other than Workbench). 

Pan of the process of building a font independent user interface is the planning of the 
interface layout While font independence is possible with most any layout, proper planning 
will reduce the difficulty. It helps to observe the relative positions of items on the screen and 
how they relate to each other. Good visual interface design typically dictates an interface 
that makes for easy adjustment to different font sizes. 

Font Independent User 
Interfaces 

5 DevCon90 



Two example interface-only programs are on the DevCon disks. They show some methods 
possible to accomplish the task of font independence. These two examples are by no means 
all encompassing. 

An easy method to make the display adjustable is to design it in columns. That is, have all of 
the display elements (which are referred to here as display areas) laid out in columns and 
rows. The first example shows an interface of gadgets and text boxes that is broken into 
three columns of display areas. In this case, one needs only to find the sizes of the various 
columns (and rows) and then adjust the starting position and the size of each of the display 
elements accordingly. 

The second example shows how the column display area method can be used to divide a 
single display area into a smaller set of rows and columns. This illustrates that much of the 
effort required for the layout is spent either figuring out the minimum size of a column based 
on the sizes need for the display areas or figuring out how to fit the display area into the size 
given for the column. 

The first example was done with pre-allocated gadget structures. This example shows how 
the structures are then manipulated such that the display is built up cOITeCtly for the font of 
the screen. Most of the work done in the program is just "grunt-work" in that it does not 
involve tricks or complex fonnulae. 

The second example dynamically allocates all of its structures. Again, the work is just 
"grunt-work" needed to fill in the structures as they are allocated. The example also shows a 
way to do a "fall-back" for when the screen's font is too large. 

NOTE: In 2.0, much of the gadget creation code is eliminated via the use of GadTools. This 
considerably reduces the amount of code you need to write. (The example does not use 
GadTools in order to show more precisely what is going on). In addition to supplying 
gadgets with a standard look-and-feel, GadTools is also highly recommended because it 
makes programming easier. 

One of the "chores" involved in making a user interface font independent is figuring out the 
sizes of all of the display areas. A good to deal with this is tobreak up the interface into 
rectangles that contain a gadget, box, graphic, or text. The display areas containing 
default-font text need to be adjusted to the size of the text it contains. Because proportional 
fonts make it impossible to just blindly look at the string size and multiply by some number, 
it is necessary to use TextLengthQ or IntuiTextLengthQ to obtain the horizontal size of the 
text (This is in pixels). Usually, a maximum column width needs to be determined so that all 
the display areas will be of a uniform column width. This also makes it easy to ~place text 
without changing the interface. If you change a word to a larger word, the code can adjust 

DevCon 90 6 Font lntlllpsndsnt User 
Interfaces 



\ 7.·· 
~ 

for its larger size. If you look at the second example, you will notice that all of the strings for 
the example are in one source file and they are referenced via a function call. By adding this 
minor overhead, text substitution for multiple language support has been maderather simple. 
It could even do this at runtime by reading a file containing the text strings that will be used. 
(It is rather fun to see what happens in this example when you change some of the text for the 
gadgets. Note that if the text gets so large that the layout of the window would make it wider 
than the screen, it will not open). 

The work needed to layout a user interface with respect to the user's default font is not very 
difficult After the interface has been designed, and the display area relationships 
established, the rest is just "grunt-work" that take a small amount of time to do. This . 
investment in making your user interface font sensitive will pay off now and in the future as 
more users utilize the wider variety of display modes and select different default fonts for 
those modes. In the long run, your software will look much more professional to the users, 
making them happy and (this is the real reason) produce better sales. Mter all, wouldn't you 
prefer to buy the product that worked well with the system? 

• 

Font Independent User 
Interfaces 

7 DevCon90 



... 





0 

0 



0 









• 

• 

1 Introduction 

BAP - Basic Amiga Programming 
By Kevin-Neil Klop 

• 

The Amiga is one of the most complex microcomputers to program currently in existence. Yet, for all this 
complexity, it is based on a few simple concepts. Once these basic concepts are mastered, then programming 
the Amiga becomes immeasurably easier. 

This class, these notes, and example code, is designed to familiarize you with these basic concepts. Note that 
you will not come out of t his class as a full fledged Star Programmer, but you will have both feet planted 
upon the road to that elusive goal - a working Amiga program. 

2 Thanks 

I'd like to thank Darren Greenwald and Brian Jackson for their help in preparing much of the example code 
presented in this presentation. 

3 Basic Terminology 

In order for two people to converse, there has to be a vocabulary that both agree upon; a set of words whose 
meanings are understood by both parties. In order to insure t hat both you and I are spealking the same 
language, and that none of t he words used are foreign to you, the following vocabulary list was compiled: 

(1) Include File An include file contains text that is to be included within another file. For instance, if the file 
"FOO.H" contained: 

I really like the A3000, and will 
buy one a s soon as I can. 

and the file "BAR.C" contained: 

Unfortunatel y they cost more 
than I have in the bank. 

then the preprocessor will convert this to something akin to: 

I really like the A3000 , and will 
buy one as soon as I can . 
Unfortunately they cost more 

BAP - Basic Amiga Programming Page 1 





than I have in the bank. 

Include files traditionally have an extension of ".i" for assembly language include files , and ".h" for C indclude 
files. Thus, if you are working on something that will be assembled, then you would include "exec.i", but if 
you were working on something that will be compiled with a C compiler, then you would include "exec.h". 
Modula-2 has its own equivalent of include files called ".DEF" files .. DEF files contain all the information of 
the C or assembly include files, but in a way that is consistent with the syntax and philosophy of Modula-2. 

Most of the time, include files are to define data structures and/or constants that are shared across several 
modules. For example, rather than declaring the constant, "MYWINDOWSIZE" in each of several dozen 
modules, it's generally considered better to declare it in ONE file, and then include that file in all the 
modules that require that constant. 

(2) defines A define is a C-language construct that is fenerally used to define constants or symbolic names 
for things. For instance, when declaring a screen to be a customs screen (as opposed to a workbench-type 
of screen), one can either type the number OxOOOl, or the word WBENCHSCREEN. The latter is generally 
considered more informative than the number. 

The way a define is generated depends on the language. However, since there are so many examples in C, 
the syntax for C is shown: 

#define THECONSTANT THEVALUE 

(3) square brackets Sare used throughout many textbooks and notes to mean, "This is optional." Deviations 
from this rule will be clearly marked. 

( 4) cbip memory is memory that is shared among the custom chips. It is mainly used for buffers and display 
memory. Basically, any data that will be referenced by the custom chips must be in chip memory. 

(5) fast memory is memory that is accessable only by the 68000 (or 68020, or 68030). As a result, access to 
is it many times faster than to chip memory since you don't have to share it with other chips. 

(6) public memory is a somewhat nebulous type of memory that may ewither be fast os chip memory. Its 
basic claim to fame is that it is guaranteed to always be in core at the moment, although there may not be 
enough for whatever you have in mind. 

4 Implicit Assumptions 

There are certain assumptions that I made when writing the course materials for this class. The first 
assumption that I made was that you are interested in learning to program the Amiga computer. If you 
have these notes, or are attending the accompanying lecture, then this seems a safe assumption. 

The second assumption that is being made is that you are familiar with your chosen language, i.e. C, 
assembly, Modula-2, FORTH, BASIC, Cobol (oops!), or whatever language you are going to use. Trying 
to learn a language AND the Amiga at the same time will be a pretty tough job. Not impossible, but still 
pretty tough. 

AB a result of this second assumption, little or no attempt will be made to teach you a language as we go 

BAP - Basic Amiga Programming Page 2 

• 





unless something non-standard appears in an example. Note that most of the example code available for the 
Amiga centers around the C language. Indeed, most of the examples in this class will be for C. 

Also, the Rom Kernel Manuals are the basic handbook that you need to program the Amiga. The latest 
ones contain a lot more explanatory information than the previous one. These "RKMs" provide descriptions 
of all the system calls, data structures, and behaviours that you will likely need in programming the Amiga. 

5 Some Basic Types of Things 

There are many types of things that are dealt with on the Amiga. From the usual C types of ints, 
longs, chars, structs, and pointers, are derived the system wide standard types of UBYTE, ULONG, 
UWORD, APTR, and BPTR. 

These types are defined in the include file exec/types. h or exec / types. i depending on whether you 
are using Cor assembly. For Modula-2 people it's in there somewhere, although where it is varies depending 
on which Modula-2 compiler you use. 

The basic meanings of these types are: 

(1) UBYTE - an unsigned integer values of one byte (8 bits) in length. In C it is defined as an unsigned char. 

(2) ULONG - an undigned long integer of 4 bytes (32 bits) in lengths. In C it is defined as an unsigned long. 

(3) UWORD - an unsigned integer 2 bytes (16 bits) in length. In C it is defined as an unsigned int. 

( 4) APTR- a generic pointer to almost anything except a function. It is generally defined as a "void *" in C. 

(5) BPTR - a BCPL pointer. These are a little harder to explain than APTRs. They are essent ially pointers 
to thgings, but use a format that is specific to BCPL (the language that DOS was originally implemented 
in). A BPTR is equivalent to an APTR shifted right by two bits. Thus, to convert a BPTR to an APTR, 
merely BPTR < < 2. On the other hand, taking a random APTR and shifting it right two bits will, three 
out of four times, result in a bad BPTR. This is because obj ects pointed to by a BPTR MUST be long 
word aligned (i.e. the address must be evenly divisible by four) whereas an APTR can be any value at all. 

With those basic building blocks, as well as the normal C types, almost everything can be understood. 

6 Exec And Its Place In The World 

Exec is basically the center of the universe for the Amiga operating system. Almost all interactions with 
the other parts of the Amiga operating system require interaction with some part of Exec. Thus, an under
standing of how Exec deals with things gives you an entry into understanding how to deal with the rest of 
the system. 

The following sections will outline for you some of the major areas of Exec that you may need to deal with, 
and some of the concepts necessary for intelligent use of the Exec functions. 

BAP - BMic Amiga Programming Page 3 



.· .. ,"_.; ·. -· 
• \ '•': ·~ ' J 

........ . : 



u 

u 

u 

7 Lists 

One of the major responsibilities of Exec is the management of many of the system lists. Some of these lists 
are: 

(1) List of programs that are waiting to use the CPU 
(2) List of memory regions that are currently unallocated 
(3) List of libraries that are currently in memory 
(4) List of devices that are currently in memory 

Lists also control many of the other functions that your program will be interested in. 

What, then, does a list look like? 

A list consists of two arts. The list header, and the nodes on the list. The list header contains information 
about the list such as the type of things that may be added to the lists and pointers to the first and last 
nodes on the list. If all that information isn't needed, then there is a smaller structure that consists only of 
pointers to the first and last nodes onthe list. In addition, the list header serves as a kind of "handle" with 
which to refer to the list as a whole. 

A full list header is structured like this: 

struct List { 

} 

struct Node •lh-Head; 
struct Node •lh-Tail; 
struct Node •lh_TailPred; 
UBYTE lh_Type; 
UBYTE lh-Pad; 

Or, if you don't need all that information, then the structure becomes a minimal list header and is structured 
like this: 

struct MinList { 

} 

struct MinNode ~h-Head; 
struct MinNode ~h-Tail; 
struct MinNode ~h-TailPred; 

Nodes can, themselves, be broken down into two parts. One part is common to all nodes, no matter what 
type they are; whether they are nodes created by the user of whether they are nodes that belong to the 
system. This part is invariant and usaed to link nodes together. The second part varies from one node type 
to the next, and possibly varies even within a single node type. 

A full node header is structured like this: 

struct Node { 
struct Node •ln..Succ; 
struct Node •ln-Pred; 
UBYTE ln-Type i 

BAP - Basic Amiga Programming Page4 





u 

u 

u 

} 

BYTE ln-Pri; 
char •ln.Name; 

and if you don't need all that information, then the structure becomes a minimal node and is structured 
like: 

struct MinNode { 

} 

struct MinNode *.mln.Succ; 
struct MinNode *.mln..Pred; 

As with all things used by a program, the list header and nodes must be initialized before they are meaningful. 
It would appear to be pretty much straightforward, but the list header and minimal list header have a liltle 
bit of a twist in their initialization. 

The first two fields of the list header look somewhat like the first two fields of a node - two pointers to Node 
structures. Also, the second two fields of the List structure resemble the first two fields of a Node structure 
as well. It turns out that the first two fields of the List structure together form the first node on the list, 
and the second two fields of the List structure form the last node on the list. 

This is accomplished through initializing them in the vollowing manner (assume that MyList is a structure 
of struct List): . 

MyList.ln-Head = (struct Node •)&MyList.ln3ail; 
MyList.ln_Tail = NULL; 
MyList.ln_TailPred = (struct Node •)&MyList.ln~ead; 

In order to better understand what is going on, let's compare the first two fields of a List structure with the 
first two fields of a Node structure: 

List 
struct Node •lh-Head 
struct Node •lh_Tail 

Node 
struct Node •ln..Succ 
struct Node •ln-Pred 

Figure 1. Comparison of first two List fields with first two Node fields 

In this case, the lh..Head acts like the ln..Succ field of a node, and the lh_Tail acts like the ln_pred field of a 
node. However, there is no node "before" the head node on a list, so the }n_pred field of the first node would 
be set to NULL. Similarly there is no node after the last node on a list. Thus, the ln..Succ field of the last 
node would be set to NULL as well. If the first two fields of the list header are taken as the first node on 
the list, then we have to set the lh_Tail field {which correspondes to the ln-Pred field of a node) to NULL. 
Similarly, if we take the second two fields of the list header as the last node on the list, then we have to set 
lh_Tail {which corresponds to the ln..Succ field of the last node) to NULL as well. 

Then we set the lh_TailPred field {which corresponds to the ln_pred field of the last node in the list) to point 
to the previous node in the list, i.e. the head node. Similarly, we set the lh..Head field of the list header 
{which corresponds to the hLSucc field of the first node on the list) to point to the next node in the list 
{which in an "empty" list is the tail node in the list). 

BAP - Basic Amiga Programming Page& 



_() 
..... . 

n 

~ 
I 

~ .. __ ,., . 



u 

u 

This means that a so-called "empty" list still has two fields in it - the list header node and the list tail node, 
formed by the first couple of fields in the list header itself. Any nodes that might be added to the list are 
inserted between these two "pseudo-nodes". After another node is inserted into the list, then the lh_Head 
and lh.TailPred will both point to that node. That node's ln_pred will point to lh_Head, and the node's 
ln.Succ will point to lh.Tail. 

So, how do you know if you're at the end of the list? 

Well, there are two sub-cases of this. The first is the empty list. In this case, lh.Head will point to lh.Tail 
(i.e. MyList .lh.Head ~::= &MyList .lh.Tail). The other case is the non-empty list in which case the 
last true node in the list will point to a node whose ln.Succ field will be NULL. Thus, the test: 

if (Node2BeTested->ln..Succ->ln..Succ a~: NULL) 
{ 

I• We are on the last node of the list. •I 
} 

Similarly, to test if something is the first node in the list, you would use a test something like: 

if (Node2BeTested->ln.Pred->ln.Pred c:zm NULL) 
{ 

I• We are on the first node in the list. •I 
} 

8 How to use Lists 

What if you're like me and can't remember how to initialize the list headers? Well, you could refer to the 
RKMs and initialize it yourself each time, or you can use the built in routine New List(). Earlier you saw 
the way to manually initialize a list. It's much easier to initialize a list in the following manner: 

NewList(&MyList); 

which will initialize the list "My List". Note that the argument to New List() is a struct List * and 
not a struct List. 

Now, let's use some of the list handling routines. Refer to listing 1 for this discussion. 

*** 
Listing 1 

A List Handling Example 

'*************************************************************** * * 
*June, 1990 Developer's Conference Source Code, * 
* Copyright 1990, Comodore-Amdga * 

* * 
BAP - Basic Amiga Programming Page6 



n 
. _,. 



u 

u 

u 

***************************************************************** 
• • 
* Program: LIST.C * 
• Compiler: Lattice 5.04 • 
*Synopsis: example of using Exec's list routines* 
• Author: Kevin-Neil Klop • 

* * 
***************************************************************I 
I• Amiga routines include files. •I 
#include <execltypes.h> I• ALWAYS include this •I 
finclude <execlnodes.h> I• included for completeness •I 
finclude <execllists.h> I• included for obvious reasons •I 
tinclude <execlmemory.h> I• Included for memory •I 
I• allocation routines •I 
tinclude <protolexec.h> 
#include <protolall.h> I• Include the prototypes for •I 
I• everything. •I 
I• Lattice routines include files •I 
iinclude <stdlib.h> I• For RNG routines •I 
tinclude <stdio.h> I• Let's keep IIO simple for •I 
I• the moment. •I 
I• Define my node structure, and the parameters for ForgetList •I 
struct aNode 
{ 

} ; 

struct Node aN~ode; 
UWORD aN.Data; 

void ForgetList(struct List •aList, UWORD TheNodeSize); 
I• Define the nodesize constant. •I 
const UWORD NodeSize = sizeof(struct aNode); 

I••····························································· • Code starts here. * 
***************************************************************I 
main() 
{ 

UWORD i; I• A counter •I 
struct aNode •MyNode;l• A pointer to a node in the •I 
struct aNode •Node2; I• list. •I 
struct aNode •NextNode; 
struct List MyList;l• Allocate a list structure •I 
I• Note that it's a 11MinList" •I 
I• Meaning "Minimum List". •I 
I• None of that extra stuff for •I 
I• that's in a full list is •I 
I• needed for this example. •I 
srand(S); I• Seed the RNG •I 
I• Initialize the list itself. We'll do this with one •I 
I• of the routines that's in amiga.lib •I 
NewList((struct List •)&MyList); 
I••********************************************************* 
* Allocate a bunch of nodes containing random numbers * 
***********************************************************I 
for(i=l; i<40; i++) 

BAP - Basic Amiga Programming PageT 



() 



u 

u 

u 

} 

{ 

} 

MyNode a (struct aNode •)AllocMem(sizeof(struct aNode), 
MEMF .FAST I MEMF ..CLEAR) ; 

if ( !MyNode) 
{ 

} 

MyNode a (struct aNode *)AllocMem(sizeof(struct aNode),l 
MEMF _CHIP I MEMF _CLEAR) ; 

if ( !MyNode) 
{ 

} 

print£ ("Could not allocate room for node tForgetList ( (strl 
List •)&MyList, NodeSize); 
exit(lO); 

MyNode->aNJData a rand(); 
AddHead((struct List •)&MyList, (struct Node •)MyNode); 

'*********************************************************** 
• Now sort the list • 
***********************************************************' 
NextNode = (struct aNode •)MyList.lh-Head; 
while (NextNode->aN .Node. ln..Succ-> ln..Succ ! a NULL) 
{ 

} 

MyNode m NextNode; 
NextNode l:lt (struct aNode •> NextNode->aN.Node .ln..Succ; 
Remove((struct Node •)MyNode); 
for (Node2 = (struct aNode •)MyList.lh-Head; 

(Node2->aN.Node .ln..Succ->ln..Succ ! ;::: NULL) && 
(MyNode->aNJData < Node2->aNJData); 

Node2 g (struct aNode •> Node2->aN..Node .ln..Succ) ; 
Insert (&MyList, (struct Node •)MyNode, Node2->aN.Node.ln..Pred) ;I 

'*********************************************************** 
• And for fun, print it out .•• * 
***********************************************************' 
for(MyNode = (struct aNode •> (MyList.lh-Head), i = 1; 

MyNode->aN..Node .ln..Succ->ln..Succ; 
MyNode a (struct aNode •)MyNode->aN..Node.ln..Succ, i++) 
print£ ("Node f 

I• Now deallocate everything. •I 
ForgetList((struct List •)&MyList, NodeSize); 
exit(O); 

'*************************************************************** * * 
• Release all the entries in the list back to the * 
* System (As mommy always told me, Clean up after myself! * 
* * 
***************************************************************' 
void 
ForgetList(struct List •aList, UWORD TheNodeSize) 
{ 

struct Node •TheNode, •NextNode; 
for(TheNode = aList->lh-Head, 

BAP - Basic Amiga Programming PageS 





u 
} 

NextNode = TheNode->ln~ucc; 
TheNode->ln~ucc->ln~ucc; 

TheNode a NextNode, NextNode = NextNode->ln~ucc) 
FreeMem(TheNode, TheNodeSize); 

NewList((struct List •)aList); 

Skipping all the include files, we get to the point where a struct aNode is declared. An aNode consists 
of a Node and some data. Further down, inside the main() procedure, a list called MyList is declared. 
NewList() is called to initialize the list. Next nodes are allocated from Amiga memory using the Amiga 
AllocMem() call 1 • If, for some reason a node can not be allocated, then the program cleans up after itself 
by calling its own ForgetList() function 2 , and then exits. Otherwise the node's data field is filled in with 
a random value and then added to the list. 

Once the list has been created, representing some list of data, the list is sorted. NextNode is pointed at the 
head node of the list (the first node that is NOT part of the list header) and then the sort loop is entered. 
The sort loop will end when NextNode is pointing to the last node in the list. 

The node that is being sorted into the list is first removed from the list through the Remove() call. 
Remove() simply removes a node from a list. 

Next the list is searched from the start for the first node whose data~ to the data that is being sorted into 
the list. When the proper place for the node is found, it is Insert()ed back into the list. This process is 
repeated until all the nodes are in the proper locations in the list. 

U After the list is sorted, and all thge nodes are printed, then the list is deallocated in the ForgetList() 
routine. This is an important thing to remember: 

u 

Always clean up after yourself! 

The Amiga operating system does no "resource tracking" for you. It's all up to you. If you allocate something 
and never deallcate it, that resource be it memory, a device, or a file, is devoted to your program /sl even if 
your program is no longer loaded and executing! Well, actually, a reboot will generally free up a resource, 
but you should not be counting on someone rebooting their computer after your program is done. 

The ForgetList() call merely starts at the trop of the list and goes through all the nodes in that list, 
deallocating them as it goes. When it's done, it re-initializes the list header, and then returns to the caller. 

9 Ports 

One of the main lists that you wil have to deal with goes under the name of a "message port". 

In the Amiga, programs communicate with each other and with the operating system mainly through the 
use of inter-process communications. That's a fancy name for being able to send messages back and forth 
to each other. In order for your program to take part in this comunications, it has to have a message port 

1 To be explained later 

2 Note that this is defined in the program..:. it's not a system call 

BAP - Basic Amiga Programming Page9 



n 

_... . 
'•, • I • 



u 

u 

u 

in which to receive messages. 

A message port is much like a postal mailbox. Other people send mail (messages) to your mailbox (message 
port). Once in a while you go out and collect your message, read them, throw out the bills, etc. On the 
Amiga, other programs and portions of the operating system will be communicating with you through your 
mail message port in much the same manner. There's nothing all that mysterious about it, really. Mostly, 
the message port contains a list header on which all your "delivered, but not yet gathered" are kept. 

In some ways your message port is like a telephone. It can be listed or unlisted, although we callthem 
"public" and "private". A public message port can be found by anyone - you can get messages from people 
that you've never heard of through a public message port (sounds somewhat like junk mail, does it not?). 
On the other hand, if you use a private message port, then you will only get messages from those programs 
that you've told about it. 

Enough about theories, analogies, and junk mail. How does one go about creating a message port? 

Well, one of the ways one could go about it is to find out the data structure for a message port, allocate 
such a structure, fill it in, and then announce it to the world. 

Or you can make one function call that will do that all for you. 

To create a message port, one calls the CreatePort function. CreatePort takes two arguments. The first 
argument is the name of the port. If you put a NULL as the first argument, then the port will have no 
name, and will be made a private port. If you put a pointer to some character string as the first argument, 
then the port will be named and will also be made a public port. 

The second argument specifies the priority of the message port. Only under specialized circumstances should 
you use a priority that is not zero. Also, note that the priority field is a long value. Thus, if you are specifying 
a constant, there must be an "1" appended to it. 

The inverse of creating a poret is deleting it, and the call to delete a port is DeletePort(). Note that you 
ought to remove all messages from the port before you delete the port. Otherwise there will be messages 
hanging about in limbo with no message port to use in rejoining the rest of the system. 

Once you have a message port, and that someone else knows about the port (either because it's public, or 
because you told someone about it 3 We'll even assume that someone has already sent you a message. How 
do you get it? 

Well, you could start at the top of the list that represents your unreceived mail messages, move down the 
list to the first message, dequeue it yourself, and then do something with it. Or you can call GetMsg(). 
GetMsg() takes one parameter - a pointer to your message port. If there's a message waiting in the port, 
then a pointer to a struct Message is returned to you. In most instances, you will have to cast this 
return to be a pointer to whatever type of message it is that you're expecting to receive. If there isn't any 
message waiting for you at that port, then GetMsg() returns a NULL value. 

Each message that you receive that was originated by someone else should be ReplyMsg()ed in order to 
notify the sender that you've seen and acted upon his message- it's now safe for him to reuse or deallocate 
that message. Note that even though a message is in your mailbox and that you have GetMsg()ed it, you 
do not own that message. The originator of the message continues to own a message. 

3 There's many ways to tell someone about your port. We'll get into thM later when we talk about Intuition and devices. 

BAP - Basic Amiga Programming Page to 



n 

n 

n 



u 

u 

u 

Thus, a typical loop to get all your messages is: 

struct Message •aMessage; 
while(! (aMessage = GetMsg(MyPort))); 
I• Process the Message in here. •I 
I• Now assume that the processing of the message is done.•/ 
ReplyMsg(aMessage); 

That will allow you to handle all the messages. When all the messages are processed, the loop exits. The 
problem becomes, what do you do when there are no more messages available to you? In most cases, you 
want to sit around and wait for some new message to come in. On non-multitasking machines, the accepted 
solution would be something like this (Note: This is NOT the way to program for the Amiga!!!): 

while(l) 
{ 

while(aMessage = GetMsg(MyPort)) { 
I• Process the Message in here. •I 
I• Now assume that the processing of the message is done. •II 
ReplyMsg(aMessage); 

} 
} 

This is what's known as "busy-waiting", and is severely frowned upon in the Amiga world. What you 
basically want to do is say, "I have no more messages to process. Operating System, please give CPU time 
to other people that need it while I wait for another message." The last code fragment did not do that. 
Instead, it wasted CPU time constantly checking to see if another message had appeared in its message port. 

A better way to do this is with something called "signals" on the Amiga. 

10 Signals 

The basic idea to peaceful co-existence on the the Amiga is that if you're not using something, let someone 
else use it. This goes for memory, devices, and the CPU itself. H you have to wait for someone else to do 
something, you should give up the CPU until you're ready to execute again. 

But how is this to be accomplished? 

The most common thing to be waiting for are message ports. Each message port has something called 
a "signal bit" associated with it that is set when a message comes into your port. There are also a few 
system functions that tell the Amiga operating system to stop devoting CPU time to your program until 
the specified signal bit(s) are set. 

You can use these features to either wait for a specific port through the WaitPort() call, or use the general 
purpose Wait() function. Let's examine listing 2 for a moment. 

*** 
BAP - Basic Amiga Programmiug 

Pagell 



n ....... 



u 

u 

Listing 2 
Message Receiver 

, ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * * 
*June, 1990 Developer's Conference Source Code, • 
* Copyright 1990, Comodore-Amiga • 

* * ***************************************************************** 
* * * Program: MESSAGER.C * 
* Compiler: Lattice 5.04 * 
*Synopsis: example of using Exec's list routines • 
* Author: Kevin-Neil Klop * 
* * ***************************************************************' 
finclude <exec/types.h> 
#include <exec/ports.h> 
#include <exec/memory.h> 
tinclude <stdio.h> 
tinclude <proto/all.h> 
#define MessagePortName "MESSAGEE" 
main(argc,argv) 
int argc; 
char •argv[]; 
{ 

} 

struct MsgPort •MyPort; 
struct Message •aMessage; 
MyPort = CreatePort(MessagePortName,OL); 
if ( !MyPort) 
{ 

} ; 

puts("Could not open my own messageport."); 
exit(10); 

while(! (aMessage = GetMsg(MyPort))) 
Wait (1L << MyPort->mp..SigBit); 

do 
{ 

} 

puts ("MESSAGEE: I got a message!"); 
ReplyMsg(aMessage); 

while(aMessage = GetMsg(MyPort)); 
DeletePort(MyPort); 

Listing 2 is nothing more than a program that sits around in memory waiting for a message to appear in its 
message port. Thus, the first thing that it does is allocate a public message port via the CreatePortcall. 
If the port couldn't be created, then the program exits with a simple message. After that, it calls Wait() 
in order to allow other programs the use of the CPU while it has nothing to do. Yes, other programs would 
get time anyway, but this way Program 2 doesn't use up ANY time while it has nothing to do. 

When the program is woken up, most people assume that there's a message in the message port. This is not 

BAP - Basic Amiga Programming Page 12 



-~ ; . 
._ ........ · 



u 

u 

u 

necessarily a good assumption. It is better to check and make sure that there's a message waiting. Thus 
this program is caugh in a loop that checks if there's a message, and if there isn't it goes back to waiting. 
Eventually a message will appear and the loop will be broken. 

Now a second loop is entered wherein all messages in the message port are replied to before the message 
port is closed. Closing the message port first is generally a bad idea. Note that even this strategy may not 
work as a new message may come in between the time you reply to the last message and the time you delete 
the port. 

Later on we'll learn how to avoid even this possibility. 

Now that we've briefly looed at the receiving end of a message handler, let's look at the sending half of the 
program. Listing 3 contains a program that will send a message to the program in listing 2. 

*** 

Listing 3 
Message Sender 

'*************************************************************** * * 
*June, 1990 Developer's Conference Source Code, * 
* Copyright 1990, Comodore-Amiga * 

* * 
***************************************************************** 
* * * Program: MESSAGER.C * 
* Compiler: Lattice 5.04 * 
*Synopsis: example of using Exec's list routines* 
* Author: Kevin-Neil Klop * 

* * 
***************************************************************' 
#include <exec/types.h> 
#include <exec/ports.h> 
finclude <exec/memory.h> 
finclude <stdio.h> 
#include <proto/all.h> 
#define MessagePortName 11MESSAGEE 11 

main(argc,argv) 
int argc; 
char •argv [] ; 
{ 

struct MsgPort •ThePort; 
struct MsgPort •MyPort; 
struct Message •aMessage; #_UL ... 
MyPort g CreatePort~agePe&~Name,OL); 
if ( !MyPort) 
{ 

} ; 

puts("Could not open my own messageport."); 
exit(10); 

BAP - Basic Amiga Programming Page13 



(} 
. I 

n 

n 



u 

u 
} 

(of 5rD 
ThePort a FindPort(MessagePortName); 
if (! ThePort) '""~- , , , 

puts("CouldJnot find MESSAGEE's port."); 
else 
{ 

} 

_. aMessage = (struct Message •)AllocMem(sizeof(struct Message),l 
MEMF ..PUBLIC I 
MEMF -CLEAR) ; 
if (!aMes sage) 

else 
{ 

} 

puts("Could not allocate a message to send to MESSAGEE.");I 

aMessage-~mnjReplyPort = MyPort; 
PutMsg(ThePort, aMessage); 
puts("MESSAGER:I sent a message, and am waiting for thel 
reply ... "); 
Wait (lL << MyPort->mp-SigBit); 
while(aMessage = GetMsg(MyPort)) 
{ 

} 

puts("MESSAGER: I received a reply!"); 
FreeMem(aMessage, sizeof(struct Message)); 

DeletePort(MyPort); 

Much like listing 2, this program allocates a message port through CreatePort. the difference being that this 
port is a private port and is NOT placed onto the public message port list buy the CreatePort call. 

After the message port is created, this prgram goues out looking for the message port created by listing 2. It 
does this through the use of the FindPort() call. The FindPort() call taes a name and attempts to find a 
message port with the same name. Through the use of this mechanism programs can rendezvous with each 
other {they go looking for each other's port). Alternately, you can tell if someone has already loaded your 
program by doing a FindPort() on your own message port BEFORE you open it. If you find it, then your 
program is already in memory and executing. 

If Program 3 could not find Program 2's message port, then it outputs a simple message, deletes the port, 
and exits. 

On the other hand, if the port IS found, then a message is allocated, the Reply Port field of the message 
initialized to point to Listing 3's port, and then it is sent off to Listing 2's message port. This should 
{theoretically, at least) wake up Listing 2, which will ReplyMsg() to the message, thus causing it to 
reappear in Listing 3's "MyPort". It is to receive this reply that Listing 3 needs to create its own message 
port. If it knew that the message was never to reappear, then it wouldn't need a message port at all. 

We have one more inportant concept to understand before we go on to discussing Intuition. 

U 11 Shared Libraries 

BAP - Basic Amiga Programming Page 14 





u 

u 

u 

Intuition is the name of the part of the Amiga operating system that handles most of the "standard" 
graphical user interface. It provides calls to open screens, windows, place gadgets in them, and provide 
events corresponding to user actions. It's something that almost all programs have to deal with if they want 
to interact with the user. 

Intuition is implemented as a shared library in the Amiga operating system. A shared library is a little 
different than the normal libraries that you might be used to. You do not link to a shared library during 
compilation/linking. Instead, you open the library during run time. Exec provides a call to do this for you 
called OpenLibrary(). 

OpenLibrary() returns to you a pointer to the library that is in memory. In this way, many people can use 
the same library (which is why it's called a ~shared library"). Since Intuition is almost 98K in OS 2.0, there 
would not be enough RAM to run more than 5 programs that use Intuition at the same time in a standard 
1-Megabyte machine ( 419K for the operating system, leaving 580K+ ). 

Using C, you can pretty much treat a shared library as if it had been linked to your program in the same 
way as other libraries, except that you have to open the library at the beginning of ytour program and close 
it at the end of your program. 

Note that it is not a good idea to close the library until you are done with. Although such a scheme will 
work with some libraries, you are running. the risk that the library will be purged from memory while you 
still need it. Libraries that are currently opened by someone (their "in-use count" > 0) are ineligible for 
purging. By the same token, if you don't need a library, don't open it, as that will sometimes just waste 
memory. 

Inorder to open a library, you need to declare a global value that will be the "base" pointer for that library. 
In almost all cases, the name of that variable should be the name of the library suffixed by "Base". Case of 
the spelling IS significant in C. 

Thus, the base pointer for the intuition library would be IntuitionBase, the base pointer for exec would be 
ExecBase, the base pointer for graphics would be GfxBase (well, it's CLOSE to "graphics"). The type of 
that variable is a pointer to a structure with the same name. Thus, the complete declaration of IntuitionBase 
would be: 

struct IntuitionBase •IntuitionBase; 
struct GfxBase •GfxBase; 
etc. 

Remember, these pointers MUST be globals! 

In order to open the intuition library, call OpenLibrary() thusly: 

IntuitionBase = (struct IntuitionBase •> 
OpenLibrary("intuition.library", OL); 

You should check the value of the returned base pointer. If it's NULL, then the specified library could not 
be opened. 

The little number on the end of the call (OLin the example) specifies the revision of the library that you 
require. The OpenLibrary() call will only succeed if it can find a copy of the library with a revision number 
greater than or equal to the revision label you specify. Setting that parameter toOL means that you will 

BAP - Basic Amiga Programming Pagel& 



r 



accept any copy of the library that can be found. In general, you should be using the smallest number here 
that you possibly can. 

For example, if you're using t he BOO PSI 4 features of, then you will need to specify 36L to make sure that 
you have a copy of intuition that can handle BOO PSI calls. 

To close the library, you use the CloseLibrary(} call with the library base pointer as the first argument. 
Thus: 

CloseLibrary((struct Library *)IntuitionBase); 

Notice that the base pointer is cast to the generic type of "Library *" 

12 Intuition 

Intuition is responsible for handling almost all of the user interface. It is through Intuition that you create 
screens, windows, menus, gadgets for your windows, etc. It is implemented as a shared library, and thus you 
will need to open it via the Exec Ope nDevice () call . 

Central to the concept of dealing Intuition is the Intuition Direct Communications Ports . That's a daunting 
name for nothing more than a message port, which we discussed earlier. 

Intuition notifies you of events tha t occur by sending messages to the IDCMP. Thus, to wait on something 
that the user does, you simply wait on the IDCMP for a message to appear . 

IDCMPs are associated with windows. Not screens, but windows, and they are created for you when the 
window is created. This implies that in order to interact with the user, you MUST have a window somewhere. 
If you have a screen and want to avoid the apearrance of having a window, that's possible. Nevertheless, 
Under normal conditions you MUST have a window in order to deal with the user. 

To create a window, you must allocate and initialize something called a NewWindow structure, then call 
Open Window() to display the window on the screen. The Open Window() call will return to you a 
pointer to a Window structure, and it is through the window structure that you will control your new 
window. 

Following is an example of allocating a NewWindow structure, filling it out, opening a window, deallocating 
the NewWindow structure, and then closing the window. 

*** 

Listing 4 
Creating and D estroying a Window 

4 See the BOO PSI talk by Jim Maclcraz for more information on this 

5 This are nornuilly known as an IDCMP 

BAP - Basic Amiga Programming Page 16 



n 

n 
'-.. 



u 

u 

u 

#include <exec/types.h> 
#include <intuition/intuition.h> 
struct IntuitionBase •IntuitionBase; 
main() 
{ 

struct NewWindow •MyNewWindow; 
struct Window •MyWindow; 
if(IntuitionBase = OpenLibrary("intuition.library",34L)) 
{ 

if(MyNewWindow = (struct NewWindow •> 
AllocMem(sizeof (struct Newwindow) ,MEMF.PUBLIC I MEMF-CLEAR 

{ 

} ; 

MyNewWindow->LeftEdge = MyNewWindow->TopEdge = 0; 
MyNewWindow->Width = 200; 
MyNewWindow->Height = 200; 
MyNewwindow->DetailPen = 0; 
MyNewWindow->BlockPen = 1; 
MyNewwindow->Title = "This Is My Window"; 
MyNewWindow->MinWidth = MyNewwindow->Maxwidth = 200; 
MyNewWindow->MinHeight = MyNewwindow->MaxHeight = 200;1 
MyNewWindow->Type = WBENCHSCREEN; 
MyWindow = OpenWindow(MyNewWindow); 
CloseWindow(MyWindow); 

CloseLibrary((struct Library •)IntuitionBase); 
} 

} 

This will open a window on the workbench screen, then close it. The operation will happen probably a little 
bit faster than you really want to, but it at Jeast demonstrates the simplest form of opening and cl~ing the 
window. 

Such a window will not be able to handle user operations because none of the IDCMPFlags have been set, 
and thus Intuition will not be sending you any messages notifying you of user actions. To do that, you need 
to set the various IDCMPFlags that corresponds to the events that you will be interested in. These flags 
are explained in the RKMs and in the intuition.h file . 

••• 
Listing 5 

Example of IDCMP Handling 

I•• ------------------------------------------------------------------- •II 
I• window.c - A demo of how to open a window on the workbench screen •I 
I• and then handle a CLOSEWINDOW gadget via the Window's •I 
I• IDCMP. •I 
I• ------------------------------------------------------------------- •II 
finclude <intuition/intuition.h> 
finclude <exec/types.h> 

BAP - Basic Amiga Programming Pap17 



n 



u 

u 

u 

VOID Getout( char •infor.m, SHORT errorval ) ; 
struct NewWindow nw • { 

} ; 

0,0, 
640,200, 
1,2, 
CLOSEWINDOW, 
WINDOWSIZING I WINDOWDRAG I WINDOWDEPTH I WINDOWCLOSE, 
NULL, 
NULL, 
(UBYTE *) "MY WINDOW EXAMPLE II I 
NULL, 
NULL, 
-1,-1,-1,-1, 
WBENCHSCREEN 

struct Window •MyWindow = NULL ; 
struct IntuitionBase •IntuitionBase NULL ; 
struct GfxBase •GfxBase = NULL ; 
int main( VOID ) 
{ 

ULONG class 
BOOL keepgoing = TRUE ; 
struct IntuiMessage •imsg ; 
IntuitionBase = (struct IntuitionBase •> 

OpenLibrary("intuition.library", OL ) ; 
if(IntuitionBase ==NULL) 

Getout("Intuition library open failed", 10) ; 
GfxBase = (struct GfxBase •)OpenLibrary("graphics.library", OL ) 
if( GfxBase ==NULL ) 

} 

Getout("Graphics library open failed", 20 ) ; 
MyWindow = (struct Window •>OpenWindow( &nw ) ; 
if( MyWindow ==NULL ) 

Getout( "Window open failed", 30) 
while( keepgoing == TRUE ) 
{ 

Wait ( 1L << MyWindow->UserJ?ort->mp.SigBit ) ; 

} 

imsg = (struct IntuiMessage •>GetMsg( MyWindow->UserJ?ort ; 
if( imsg !=NULL ) 
{ 

} 

class = imsg->Class ; 
ReplyMsg((struct Message •)imsg 
if( class == CLOSEWINDOW ) 

keepgoing = FALSE ; 

. , 

Getout(NULL, 0) ; 

I• ------------------------------------------------------------------- •II 
I• Getout function cleans up everything, prints any messages and exits •II 
I• ------------------------------------------------------------------- •II 
VOID Getout( char ~essage, SHORT errorval ) 
{ 

if( message !=NULL ) 

BAP -Basic Amiga Programming PagelS 



n 

(). 

n 



u 

u 

u 

} 

print£(" 
if( MyWindow !g NULL ) 

CloseWindow ( MyWindow 
if( GfxBase != NULL ) 

CloseLibrary( GfxBase . 
I 

if( IntuitionBase != NULL ) 
CloseLibrary( IntuitionBase 

exit( errorval ) ; 
. 
I 

Sometimes one wishes to create their own screen for the programs. In order to do that, you must allocate 
and initialize a NewScreen structure, then call the OpenScreen() function. For example: 

*** 
Listing 6 

Opening A Custom Screen 

#include <exec/types.h> 
finclude <intuition.h> 
main() 
{ 

struct Window •MyWindow; 
struct Screen •MyScreen; 
struct NewWindow •MyNewWindow; 
struct NewScreen •MyNewScreen; 
if(IntuitionBase = OpenLibrary("intuition.library",34L)) 
{ 

if(MyNewScreen g (struct NewScreen •> 

{ 
AllocMem(sizeof (struct NewScreen) ,MEMF..PUBLIC I MEMF..CLEAR 

if(MyNewWindow = (struct NewWindow •> 
AllocMem(sizeof(struct NewWindow),MEMF..PUBLICI 
I MEMF -CLEAR) ) 

{ 
MyNewScreen->LeftEdge = 0; 
MyNewScreen->TopEdge = 0; 
MyNewScreen->Width = 640; 
MyNewScreen->Height = 200; 
MyNewScreen->Depth = 2; 
MyNewScreen->DetailPen = 1; 
MyNewScreen->BlockPen = 0; 
MyNewScreen->ViewModes • HIRES; 
MyNewScreen->Type = CUSTOMSCREEN; 
MyNewScreen->Font = NULL; 
MyNewScreen->DefaultTitle = (UBYTE •)"My Screen Ti-l 
tle"; 
MyNewScreen->Gadget = NULL; 
MyNewScreen->CustomBitMap • NULL; 

BAP -Basic Amiga Programming Pap19 



n 

n 

n 

I 

I 

I 



u 

u 

u 

} 

} 
} 

} 

if(MyScreen a OpenScreen(&MyNewScreen)) 
{ 

} 

MyNewWindow->LeftEdge • MyNewWindow->TopEdgel 
= 0; 
MyNewWindow->Width • 200; 
MyNewWindow->Height • 200; 
MyNewWindow->DetailPen = 0; 
MyNewWindow->BlockPen = 1; 
MyNewWindow->Title = (UBYTE *)"This Is My Win-1 
dow"; 
MyNewWindow->Screen = MyScreen; 
MyNewWindow->MinWidth = MyNewWindow->MaxWidthl 
- 200; 
MyNewWindow->MinHeight = MyNewWindow->MaxHeightl 
m 200; 
MyNewWindow->Type = CUSTOMSCREEN; 
if(MyWindow = OpenWindow(MyNewWindow)) 

CloseWindow(MyWindow); 
CloseScreen(MyScreen); 

CloseLibrary((struct Library •)IntuitionBase); 

Again, the opening and closing of the screen and window will most likely happen faster than you really want 
it to. 

13 Intuition and Text 

. There's a structure that is basic to dealing with text in Intuition. This structure is called IntuiText. 

An lntuiText structure defines the pen colors for the block pen and the detail pen, the drawing mode to be 
used in rendering the text, the relative starting location for the text in the horizontal and vertical directions, 
the text attributes (font), a pointer to the string to be rendered, and a link to the next IntuiText structure. 

The layout of the structure is: 

struct IntuiText 
{ 

} ; 

UBYTE FrontPen, BackPen; 
UBYTE DrawMode; 
SHORT LeftEdge, TopEdge; 
struct TextAttr •ITextFont; 
UBYTE •IText; 
struct IntuiText •NextText; 

BAP - Basic Amiga Programming Page 20 



n 
..... , . 

n 



u 

u 

u 

We'll show more about IntuiText initialization in the next section when we talk about menus. 

14 Intuition Menus 

Intuition menus, or as they are more properly known "pull down menus" are implemented through three basic 
structures - IntuiText to represent the textual contents of menus, Menuitem structures that link together the 
items contained within a single menu, and Menu structures that link together several menus. For example, 
let us assume that there is a menu bar for the Amiga that looks like: 

Project Edit Control Timing 
Save Cut Start Motor Delay until 
Save as Copy Stop Motor Synchronize 
Recall Paste Obtain Sense Data Reset Timer 

Delete 

All the text in the above example are kept in IntuiText structures, as outlined in the previous section. The 
four menu headers ("Project", "Edit", "Control", and "Timing") are kept in 4 Menu structures that in turn 
point to Menultem structures that contain the other elements. 

Normally these groups of things are kept in arrays of structures to make life easier in dealing with them, but 
this need not be the case. 

Once all the structures are created and initialized, then they are attached to a window via the Intuition 
function SetMenuStrip(). SetMenuStrip() uses the following format: 

SetMenuStrip(window, Inenu) 

where window is a pointer to the window to which the menu is to be attached, and the Inenu is a pointer 
to a menu structure that is to be attached. 

Once the menu has been attached to a window, and assuming that you have specified that you want to 
receive MENUPICK messages from Intuition, you will begin to receive messages in the window's message 
port every time the user selects a menu. Note that the user may select more than one menu choice per 
message, so the processing of a MENUPICK message involves a loop. 

The first thing that you need to do after determining that the message is a menu pick message is check 
whether the code field if the IntuiMessage contains a MENUNULL code. If it does, then there is not really 
a menu item that was selected - Intuition is basically telling you that the user started to pick something 
from the menus, but then changed his mind and didn't pick anything after all. 

If the code is not MENUNULL, then you can get a pointer to the Menultem structure that defines the menu 
choice the user selected through the use of the ItemAddress() call. ItemAddress(} takes as its arguments 
a pointer to the menu structure and the code field from the IntuiMessage you received. It returns a pointer 
to the Menultem assocated with the user's selection. 

For example, if I had something akin to: 

struct MyMenuitem Projectitem[] = 

BAP - Basic Amiga Programming Pap21 



r 



u 

u 

u 

{ 

} ; 

{ I• first menu item (10) •I 
(struct Menuitem •)&Projectitem[1], I• ptr to next item •I 
0, I• left edge •I 
0, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&ProjectText[O], I• ItemFill •I 

NULL, I• select fill •I 
'1', I• COMMSEQ key • '1' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
}, 
{ 
(struct Menuitem •)&Projectitem[2], I• next item •I 
0, I• left edge •I 
13, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&ProjectText[1], I• ItemFill •I 
NULL, I• select fill •I 
'2', I• COMMSEQ key g '2' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
}, 
{ 
NULL, I• ptr to next item •I 
0, I• left edge •I 
26, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&ProjectText[2], I• ItemFill •I 

NULL, I• select fill •I 
'3', I• COMMSEQ = '3' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
} 

And the user selected the second menu item in the Project menu, then ItemAddress(MyMenu,thelntuiMessage-1 
>code) would return a pointer to Projectltem[1]. 

Other useful things that you can do with the code field is run them through the three macros ME
NUNUM(), ITEMNUM(), and SUBNUM(). MENUNUM() returns the menu number the selection 
is in. The farthest left menu is number 0, the next one is 1, etc. ITEMNUM()returns the item number in 
the menu. The top item in a menu is item number 0, the second one is item number 1, the third item down 
is item number 2, etc. SUBNUM() is used if there is a sub menu (i.e. one sticking out to the right) of the 

BAP - Basic Amiga Programming Page 22 



n 



u 

u 

u 

menu. In this case, SUBNUM() does the same thing as ITEMNUM() only for the sub menu. 

Using these numbers, it is possible to construct a jump table for use in processing menu picks, as the following 
source code shows: 

••• 
Listing 7 

Menupick Example Code 

• menu selection code example - demonstrates how to take incoming menu 
• message from Intuition and process them in an application program. 
• Handles Multiple Menu Selections (NextSelect). 

•I 
struct IntuiText ProjectText[] = 
{ 

} ; 

{ 1 I 0 I JAM2 I 0 I 1 I NULL I ( UBYTE • ) II MENU ITEM ONE II I NULL} I 

{ 1,0,JAM2,0,1,NULL, (UBYTE *)"MENU ITEM TWO", NULL} 1 

{ 1, 0, JAM2, 0, 1, NULL, (UBYTE •> II MENU ITEM THREE II I NULL} 

struct MyMenuitem Projectitem[] 
{ 

{ I• first menu item (tO) •I 
(struct Menuitem •)&Projectitem[1], I• ptr to next item •I 
0, I• left edge •I 
0, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&ProjectText[O], I• ItemFill •I 

NULL, I• select fill •I 
'1', I• COMMSEQ key g '1' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
}, 
{ 
(struct Menuitem •)&Projectitem[2], I• next item •I 
0, I• left edge •I 
13, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&ProjectText[1], I• ItemFill •I 

NULL, I• select fill •I 
'2', I• COMMSEQ key= '2' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 

BAP - Basic Amiga Programming Page 23 





u 

u 

} ; 

NULL, I• ptr to next item •I 
0, I• left edge •I 
26, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&EditText[2], I• ItemFill •I 
NULL, I• select fill •I 
1 6 1

, I• COMMSEQ = 1 61 •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
} 

I• The MENU struct· •I 
struct Menu menu[] = 
{ 

} ; 

{ 
(struct Menu •>&menu[1], I• next menu •I 
0,0, I• left, top •I 
88,11, I• wide, high •I 
MENUENABLED, I• flags •I 
(BYTE •>" PROJECT", I• name •I 
(struct Menuitem •)&Projectitem[O], I• first item •I 
}, 
{ 
NULL, I• next menu •I 
88,11, I• left, top •I 
48,11, I• wide, high •I 
MENUENABLED, I• flags •I 
(BYTE*)" EDIT", I• name •I 
(struct Menuitem •)Edititem[O], I• first item •I 

I• ============== MAIN ============== •I 
int main() 
{ 

struct IntuiMessage •imsg = NULL ; 
ULONG class ; 
USHORT code ; 
if(!SetMenuStrip(MyWindow, menu)) 
{ 

} 

puts("Could not create the menu strip. exiting ••• "); 
CleanExit(20); 

while ( imsg = (struct IntuiMessage •> GetMsg ( UserPort ) ) 
{ 

if( imsg !=NULL ) 
{ 

class = imsg->Class ; 
code = imsg->Code ; 
ReplyMsg( imsg ) ; u if ( class == MENUPICK && code ! =- MENUNULL ) 

BAP - Basic Amiga Programming Page 2& 



n 

n 



u 

u 

u 

} ; 

}, 
{ 
NULL, I• ptr to next item •I 
0, I• left edge •I 
26, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIITEMENABLEDIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&ProjectText[2], I• ItemFill •I 

NULL, I• select fill •I 
'3', I• COMMSEQ = '3' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
} 

ruct IntuiText EditText[] = 
{ 

} ; 

{ 1,0,JAM2,0,1,NULL, (UBYTE *)"MENU ITEM FOUR", NULL} 1 

{ 1,0,JAM2,0,1,NULL, (UBYTE *)"MENU ITEM FIVE", NULL}, 
{ 1,0,JAM2,0,1,NULL, (UBYTE *)"MENU ITEM SIX", NULL} 

struct Menuitem Edititem[) 
{ 

{ I• first menu item (#0) •I 
(struct Menuitem •)&Edititem[1), I• ptr to next item •I 
0, I• left edge •I 
0, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&EditText[O), I• ItemFill •I 

NULL, I• select fill •I 
'4', I• COMMSEQ key~ '4' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
}, 
{ 
(struct Menuitem •)&Edititem[2], I• next item •I 
0, I• left edge •I 
13, I• top edge •I 
120, I• width •I 
11, I• height •I 
ITEMTEXTICOMMSEQIHIGHCOMP, I• flags •I 
OL, I• Mutual Exclude •I 
(APTR)&EditText[l], I• ItemFill •I 
NULL, I• select fill •I 
'5', I• COMMSEQ key= '5' •I 
NULL, I• Subitem •I 
0, I• NextSelect •I 
}, 
{ 

BAP - Basic Amiga Programming Page 24 



n 

n 

n 



u 

u 

} 
} 

} 

{ 

} 
HandleMenuPick( code ) ; 

I• ammamm=========================================•========================l 
* HANDLEMENUPICK 
• 
• This function takes an intuition 'Code' value (an Intuition MENUNUM), 
• extracts the menu, item and subitem numbers which allow you to 
• process any of your menu items. 
• ======================================c=================================• 
•I 
VOID HandleMenuPick( USHORT code ) 
{ 

} 

15 Graphics 

struct Menuitem •item = NULL ; 
USHORT menunum ; 
USHORT itemnum ; 
USHORT subnum ; 
while ( code ! = MENUNULL 
{ 

} 

item= (struct Menuitem •>ItemAddress( &menu, (LONG)code) ; 
if( item) 
{ 

} 

menunum = MENUNUM( code) 
itemnum = ITEMNUM ( code) ; 
subnum = SUBNUM( code) ; 
I• Now you know exactly which menuitem was selected andl 
you •I 
I• can use values •here• to process the selected menu item(s)l 
•I 

code item->.NextSelect ; 

return (OL) ; 

There are basically a few things that the Amiga is truly known for. Foremost among these are the graphics 
capabilities. While many programs are written without ever having to get more into the graphics than 
dealing with Intuition, some people want to render pretty pictures and do animations. For these people, one 
has to deal with the graphics and layers libraries. 

The basic concepts that one needs to deal with Graphics are as follows: 

U 1. A Bit Plane is a rectangular section of memory that corresponds to part of an image. If you stacked all 

BAP - Basic Amiga Programming Page 26 



() 
....... 



u 

u 

u 

the bit planes together that form a single image, and then drove a spike through one of the bits from the 
top of the pile to the bottom, the bits skewered on that spike together would make a binary number. This 
number is used to select the color register that will decide the color for the pixel represented by the spike. 

2. A Color Register is a piece of hardware that holds the Red, Green, and Blue color values to be sent on 
the screen. Almost all of the color that you see on the screen is through selecting the proper color register 
to paint it's color into the selected pixel. 

3. A ViewPort is basically part of an image. It can be thought of as peering through a hole in the fence to 
view the construction work going on. You can't see the whole construction scene through the hole in the 
fence, but if you could slide the scene around behind the hole, you could see different parts of it. A ViewPort 
is like that hole, and the Image can be slid around behind the View Port so as to display different parts of 
the image. 

ViewPorts can only be stacked vertically. They can not be placed side by side, and there must be at least 
one blank line of pixels between them. Thus, you can not have overlapping View Ports. 

4. A View is a set of instructions to the Amiga video hardware. Normally, views are set up for you through 
using the various graphics calls, although you can construct your own lists and dynamically link them into 
the system lists, creating various video effects. 

5. A Raster is a representation of a picture. This picture may be larger than your viewport (as the construction 
scene can be larger than the part of it you can view through the hole). This Raster is kept in a structure 
known as a BitMap, which has the maximum size of 1024 by 1024 pixels. 

Because the raster can be larger than the viewport, The viewport needs to know what part of the raster 
to dsplay. This is done through a Raslnfo structure. The Raslnfo contains a pointer to the bit map of the 
raster, as well as the variable RyOffset and RxOffset. These two variable speciy what pixel should be 
placed in the top left corner of the ViewPort. If you specify an RyOffset and RxOffset of 0, then the top 
left corner of the Raster will be displayed in the top left corner of the View Port. 

Here, in one table, are the relevant structures: 

struct View 
struct ViewPort 
struct BitMap 
struct Rasinfo 

To initialize a View, you call the InitView()routine: 

struct View MyView; 
InitView(&MyView); 

You would then generally initialize the ViewPort structure like so: 

struct ViewPort MyViewPort; 
InitVPort(&MyViewPort); 
MyViewPort.Rasinfo a &MyRasinfo; 
MyViewPort.DWidth a 40; 
MyViewPort.DHeight a 25; 
MyViewPort.ColorMap a GetColorMap(4L); 

BAP - Basic Amiga Programming Page 27 



n 



u 

u 

u 

if(MyViewPort.ColorMap •= NULL) 
CleanExit(20); 

In that example, a viewport 40 pixels wide by 25 pixels high, and 2 bit planes deep has been created. In 
addition, a Color Map of four entries (2 bit planes deep can specify 4 colors: 00, 01, 10, and 11) is created 
for the viewport. 

After initializing the View Port, one needs to initialize the BitMap structure: 

struct BitMap MyBitMap; 
InitBitMap(&MyBitMap, 2, 200, 100); 
for(depth m 0; depth < 2; depth++) 
{ 

} 

MyBitMap.Planes[depth] - (PLANEPTR)AllocRaster(200,100); 
if(MyBitMap.Planes[depth] ~= NULL) 

CleanExit(20); 

This will allocate a bit map that is 2 bit planes deep, 200 pixels across, by 100 pixels down. 

Lastly, the Rasinfo structure needs to be initialized: 

struct Rasinfo MyRasinfo; 
MyRasinfo.BitMap = &MyBitMap; 
MyRasinfo.RxOffset = 0; 
MyRasinfo.RyOffset = 0; 
MyRasinfo.Next = NULL; 

There is one thing left to do, and that is to define the colors that we wish to use in this View that we're 
generating: 

UWORD colortable[] = {OxOOO, Ox£00, OxOfO, OxOOf}; 
LoadRGB4(&MyViewPort, colortable, 4); 

This will load the color table for my fiew port with 4 colors, using the array colortable to initialize the color 
map values. 

We now have all the structures necessary allocated and initialized. Note, though, that we do not yet 
have a View, we only have the definitions of a ViewPort. To actually create a View, we need to call the 
MakeVPort() call: 

MakeVPort(&MyView, &MyViewPort); 

This has created the list of instructions necessary to display the view port. It has not yet, however, connected 
them with any paritcualr view. This is accomplished through the use of the MrgCop() graphics call: 

MrgCop (&MyView); 

We now have a complete instruction list to display. One last call to tell the system to start running this list 
of instructions and we'll actually have something on the screen: 

BAP - Basic Amiga Programming Page28 



n 

n 



u 

u 

u 

LoadView(&MyView); 

And poof we now have a visible viewport on the screen. 

the following program creates and displays a 320 by 200, two bit plane display: 

*** 
Listing 8 

Opening and displaying a ViewPort 

#include <exec/types.h> 
iinclude <graphics/gfx.h> 
iinclude <graphics/gfxbase.h> 
iinclude <graphics/gfxmacros.h> 
finclude <graphics/copper.h> 
#include <graphics/view.h> 
#include <libraries/dos.h> 
finclude <proto/all.h> 
#include <stdlib.h> 
#define DEPTH 2 
#define WIDTH 320 
tdefine HEIGHT 200 
struct GfxBase •GfxBase; 
struct View MyView; 
struct ViewPort MyViewPort; 
struct BitMap MyBitMap; 
UBYTE •displaymem g NULL; 
struct View •OldView g NULL; 
#define BLACK OxOOO 
idefine RED OxFOO 
#define GREEN OxOFO 
#define BLUE OxOOF 
VOID 
DrawFilledBox(WORD FillColor, WORD Plane) 
{ 

} 

UBY~E Value; 
WORD BoxHeight, BoxWidth, width; 
BoxWidth g WIDTH / 16; 
BoxHeight = HEIGHT / 2; 
value = ( (FillColor & (1 << Plane)) != 0) ? Oxff 
for(; BoxHeight; BoxHeight-- ) 
{ 

} 

for (width g 0; width < BoxWidth; width++) 
•displaymem++ g value; 

displaymem += (BitMap.BytesPerRow- BoxWidth); 

void freeMemory(VOID) 
{ 

BAP - Basic Amiga Programming 

OxOO; 

Page 29 



n 



u 

u 

u 

} 
VOID 

WORD depth; 
for (depth - 0; depth < DEPTH; depth++) 
{ 

} 

if (MyBitMap.Planes[depth]) 
FreeRaster(MyBitMap.Planes[depth], WIDTH, HEIGHT); 

if(MyViewPort.ColorMap) 
FreeColorMap(MyViewPort.ColorMap); 

FreeVPortCopLists(&MyViewPort); 
if (MyView.LOFCprList) 

FreeCprList(MyView.LOFCprList); 

CleanExit(int Value) 
{ 

} 

if(OldView) 
{ 

} 

LoadView(OldView); 
WaitTOF (); 

FreeMem(); 
if(GfxBase) 

CloseLibrary((struct Library •)GfxBase); 
exit (Value) ; 

void 
main(VOID) 
{ 

WORD depth, box; 
SHORT BoxOffsets[] = { 
802, 2010, 3218 } ; 
UWORD ColorTable[] c { 

BLACK, RED, GREEN, BLUE } ; 
struct Rasinfo MyRasinfo; 
if((GfxBase = (struct GfxBase •> 

OpenLibrary ("graphics .library", 33L) ) a= NULL) 
CleanExit(20); 

OldView = GfxBase->ActiveView; 
InitView(&MyView); 
InitVPort(&MyViewPort); 
MyView.ViewPort = &MyViewPort; 
InitBitMap(&MyBitMap, DEPTH, WIDTH, HEIGHT); 
for(depth=O; depth < DEPTH; depth++) 

MyBitMap.Planes[depth] = NULL; 
MyRasinfo.BitMap = &MyBitMap; 
MyRasinfo.RxOffset = 0; 
MyRasinfo.RyOffset = 0; 
MyRasinfo.Next = NULL; 
MyViewPort.Rasinfo = &MyRasinfo; 
MyViewPort.DWidth = WIDTH; 
MyViewPort.DHeight = HEIGHT; 
MyViewPort.ColorMap = GetColorMap(4L); 
if(MyViewPort.ColorMap ==NULL) 

BAP - Basic Amiga Programming Page30 



n 

n 



u 

u 

u 

} 

CleanExit(20); 
LoadRGB4(&MyViewPort, ColorTable, 4); 
for(depth g 0; depth <DEPTH; depth++) 
{ 

} 

MyBitMap.Planes[depth] a 

(PLANEPTR)AllocRaster(WIDTH, HEIGHT); 
if(MyBitMap.Planes[depth] == NULL) 

CleanExit(20); 

MakeVPort(&MyViewPort); 
MrgCop(&MyView); 
for(depth = 0; depth < DEPTH; depth++) 
{ 

} 

displaymem = (UBYTE •)MyBitMap.Planes[depth]; 
BltClear(displaymem, RASSIZE(WIDTH, HEIGHT), 0); 

LoadView(&MyView); 
for(box = 1; box <= 3; box++) 
{ 

} 

for(depth • 0; depth < DEPTH; depth++) 
{ 

} 

displayrnem = MyBitMap.Planes[depth]; 
DrawFilledBox(box, depth); 

Delay (lOL * TICKS-PER..SECOND); 
CleanExit(O); 

6. A RastPort is much like a Raslnfo, except that it contains even more information than the Raslnfo. 
Basically, though, it contains a pointer to a bit map, and extraneous information. If you need to get a rast 
port, you can open a window, and then get the RastPort pointer from it. 

16 Device Handling 

Lastly comes devices. One uses devices to control many of the Amiga's hardware devices such as the serial 
port, the parallel port, input ports, and audio output. 

Device handling is done through a specialized message passing system based on two main functions: DolO(), 
SendiO(), as well as the ability to stop an 10 request with AbortiO(), and to check the status of an 10 
request through the use of CheckiO(). 

What is this request business, though? 

On the Amiga, you very rarely command a device directly. Instead, you ask, or request, that a part of the 
OS do something for you with the device specified. This is done through sending a special message to the 
process or task that is handling that piece of hardware. This request message is known as an IOStdRequest, 
although some devices have extensions to an IOStdRequest to handle their particular requirements (for 

BAP - Basic Amiga Programming Page31 



n . ,•. 



u 

u 

u 

example, the Serial device uses an IOExtSer (10 EXTended SERial request) for its work. 

The basic order of operations for dealing with a device is to: 

1. Create a messge port for dealing with the device. 

2. Allocate and initialize the 10 Request. 

3. Open the device. 

4. Control the device through the use of DolO(), SendiO(), CheckiO(), and AbortiO(). 

5. Allow all 10 Requests to finish, or abort the outstanding ones. 

6. Close the device. 

7. Free the 10 Request. 

8. Close the message port. 

From earlier sections, you already should know how to create a message port, so we'll skip over that. 

The allocation and initialization of the 10 request is often device specific, but in generic terms, one used 
either the CreateExtiO()to create extended 10 Requests (including serial device IOExtSer requests) or 
statically creates them in their program. 

Examine the following listing: 

••• 
Listing 9 

Example of Device Handling Code 

#include <exec/types.h> 
#include <intuition/intuition.h> 
#include <graphics/text.h> 
iinclude <devices/timer.h> 
#include <devices/narrator.h> 
iinclude <libraries/translator.h> 
iinclude <proto/exec.h> 
#include <proto/graphics.h> 
#include <proto/intuition.h> 
#include <proto/timer.h> 

• Predefined structures, and global variables follow 
•=================================================================•/ 
struct IntuitionBase •IntuitionBase = NULL; 
struct GfxBase •GfxBase = NULL; 
struct Library •TranslatorBase = NULL; 

BAP - Basic Amiga Programming Page 32 



-n 

-n ,, / . 

_() -, 



u 

u 

u 

struct NewWindow new_window = { 

} ; 

0,12, I• left & top edge of window •I 
300,100, I• width & height of window •I 
0,1, I• detail, and block pen •I 
CLOSEWINDOW, /• IDCMP messages to watch for 
- just ONE in this case. •I 
WINDOWCLOSEIWINDOWDRAGJSMART~FRESHINOCAREREFRESHIACTIVATE, 

I• Window flags - system gadgets to add, 
activation, and refresh modes. •I 
NULL, I• Custom gadget list •I 
NULL, I• Custom imagery for window check mark •I 
(UBYTE •>"<- Click on me to end demo", 
I• Initial string displayed in windows 
title bar. •I 
NULL, I• Custom screen pointer •I 
NULL, I• Custom bitmap pointer •I 
300,100, I• Minimum width/height •I 
300,100, I• Maximum width/height •I 
I• Note that since this window is 
not resizeable, these values are 
not really important in this 
example. 
•I 
WBENCHSCREEN, /• Screen type flag! 
We open this window on the 
Workbench screen. 
•I 

struct Window •window = NULL; I• a pointer to a Window structure •I 
struct RastPort •rp; 
struct timerequest tr; 
struct MsgPort •tport = NULL; 
struct Message *ffisg = NULL; 
void Set Timer(); 
void SaySomething(); , .................................................................. . 
• This is where it all begins ................................................................... , 
main(argc,argv) 
USHORT argo; 
char ••argv; 
{ 

LONG error; 
ULONG masks; 
int loop, waiting; 
error=lO; 
if(IntuitionBase=(struct IntuitionBase •> 
OpenLibrary("intuition.library",OL)) 
{ 

error++; 
if(GfxBase=(struct GfxBase •> 
OpenLibrary ("graphics .library", OL) ) 
{ 

BAP - Basic Amiga Programming Page33 



n 



v 

u 
BAP - Basic Amiga Progr81111Ding 

error++; 
if(window=OpenWindow(&new~indow)) 

{ 
rp=window->RPort; 
Move(rp,8L,30L); 
SetAPen (rp, 3L); 
SetBPen(rp,2L); 
SetDrMd(rp,JAM2); 
error++; 
if (OpenTimer ()) 
{ 

masks=lL << window->UserPort->mp~igBit I lLI 
<< tport->mp~igBit; 
loop=TRUE; 
while(loop) 
{ 

SetTimer(); 
waiting=TRUE; 
Wait(masks); 
I• We only have one message to wait for,l 
so we don't have to worry 
about checking for multiple messages inl 
this case, nor do we 
have to reply to a timer.device messagel 
because this 
is just a reply to our original message.l 
•I 
if(msg=GetMsg(tport)) 
{ 

} 

SaySomething(); 
waiting=FALSE; 

I• if its not a timer.device reply, thenl 
it must be an 
Intuition message. Chances are therel 
will only be 
one message waiting for us. If therel 
is more 
in this case its no problem as Intuitionl 
will any extra messages when closing thel 
window. All we are waiting for is a 
CLOSEWINDOW message, so we don't evenl 
check message 
type here, but we do have to ReplyMsg()l 
so 
Intuition knows we are done with the mes-1 
sage. If 
we get a CLOSEWINDOW message, and therel 
is an 
outstanding timer.device request, we abortl 
it. 
•I 
else 

Page 34 



n 



{ 
if(msggGetMsg(window->UserPort>>l 
{ 

ReplyMsg(msg); 
loop=FALSE; 
if(waiting) 
{ 

AbortiO((struct IORe-1 
quest •>&tr); 
WaitiO((struct IORe-1 
quest •>&tr); 

} 
} 

} 
} 
DeletePort(tport); 
CloseDevice((struct IORequest •)&tr); 

} 
CloseWindow(window); 

} 
CloseLibrary(GfxBase); 

} 
CloseLibrary(IntuitionBase); 

} 
} , .................................... . 
• Function to open the timer.device ..................................... , 
Open Timer () 
{ 

LONG open-error; 
open-error=OpenDevice(TIMERNAME,UNITJMICROHZ, (struct IORequest •)&tr,OL);I 
if (open-error == OL) 

} 

{ 

} 

if(tport = CreatePort(OL,OL)) 
{ 

} 

tr.tr_node.iojMessage.mn~ode.ln-Type = NTjMESSAGE; 
tr.tr_node.iojMessage.mn~ode.ln..Pri = OL; 
tr. tr_node. iojMessage. mn~ode .ln~ame = NULL; 
return (TRUE); 

CloseDevice((struct IORequest •)&tr); 

return(FALSE); 

, .................................... . 
• Start timer.device (3 sees) ..................................... , 
void Set Timer () 
{ 

tr.tr_node.iojMessage.mnJReplyPort a tport; 
tr.tr_node.io-Command = T~DREQUEST; 
tr.tr-time.tv..secs = 3; 

BAP - Basic Amiga Programming Page 35 



·--.---1 

·.) ... 

~ .... :- .. .. 

.. ~~· :~ ... ~ ·:; : 

:.. . 

~- - :. .. ;' .. . . .. 

,.· ... ' 

I •t :•_ ':.: ;.; "• • '":,. 

._ .... -.. -· .· .... :. ........ .,. · ... .:.-

, ..... .:. ~ 
; .: ·'· ._; ... .:·::~: 

:• ·. 

\ 

·.'": :J ~"-f.qr:./! v• 



} 

tr. tr-time. tv ..micro • 0; 
SendiO((struct IORequest •>&tr); 

I••*********************************** 
• Say something via Narrator.device 

···································••I void SaySomething(rp) 
struct RastPort •rp; 
{ 

struct MsgPort •write-port; 
struct narrator_rb voice..io; 
I• This is the string of text we will say. You can play with this1l 
but 
may have to modify size of PhoneBuf to translate it. 
•I 
char Englstr[] ::::"Hi, I am the Amiga!"; 
UBYTE PhonBuf[160]; 
BYTE audio-chan[] = { 
315,10,12 } ; 
LONG error; 
char •err-text; 
err_text="Can 1 t open Translator"; 
if(Trans1atorBase :::: (struct Library •> 
OpenLibrary("translator.library",OL)) 
{ 

err_text::::"Can' t open Narrator "; 
error=OpenDevice ("narrator. device", OL1 (struct IORequest •> &voice..iol OL 
if(error::::::::O) 
{ 

err-text="Can 1 t open write port"; 
if (wri te.port = CreatePort ( OL, OL) ) 
{ 

I• initialize io request message •I 
voice..io. message. io.Conunand =- CMD.JolRITE; 
voice..io.message.ioJJffset = OL; 
voice..io. message. io..Message. mn.Node .ln-Type m NT ..MESSAGE; I 
voice..io. message. io..Message. mn.Length = si zeof (voice..io) ; I 
voice..io.message.io..Message.mnJReplyPort = write_port;l 
I• initialize extended info •I 
voice..io. ch..masks = audio-chan; 
voice..io.nnumasks a sizeof(audio.chan); 
voice..io.mouths a 1; 
I• default speech •I 
voice..io.rate = DEFRATE; 
voice..io.pitch = DEFPITCH; 
voice..io.mode = DEFMODE; 
voice..io.sex = DEFSEX; 
voice..io.volume m DEFVOL; 
voice..io.sampfreq = DEFFREQ; 
I• Use Translator to create phonetic string •I 
err-text::::"Can1 t Translate text "; 
erroraTranslate((UBYTE •)Englstr, 
(LONG)strlen(Englstr), 

BAP - Basic Amiga Programming Page36 



.· .. ' 
.. , 

.. 
I I! 

,, : " 

... ) ;, ·' 

,, 



} 

} 

} 

} 

(APTR)&PhonBuf[O], 
160L); 
if (error .... 0) 
{ 

} 

voice..io.message.io.Data • (APTR) &PhonBuf[O] ;I 
vo i ce..io. message. io..Length .. strlen ( &PhonBuf [ 0] ) ; I 
DoiO ( (struct IORequest •) &voice..io); 
err_text=OxO; 

DeletePort (write.port); 

CloseDevice ( (struct IORequest •) &voice..io); 

CloseLibrary(TranslatorBase); 

if (•err_text) Text (rp, err_text, (LONG) strlen (err-text)); 

First, the various libraries are opened- Intuition and graphics. Next a window is opened to display messages 
and text. The A and B pens are set so that things rendered via graphics calls are rendered with color 3 on 
a color 2 background , using the JAMl drawing method. 

Next a fun ction is called to open the timer device. The timer uses a standard IORequest that was statically 
created a.s a. global up near the top. If the device is opened successfully, then the message port is created to 
receive replies to the messages sent to the timer device, and the timer request is init ialized. If the timer is 
successfully opened, then a mask is set up consisting of the signal bits associated with the IDCMP and the 
message port used to process timer requests. 

A loop is entered that will cause the timer device to reply to the message (i.e. send it back to the port 
pointed to by "tport") in t hree seconds. Next, the program executes a Wait() in order to wait forthe first 
message that comes back. The message will either be a CloseWin·dow messge through IDCMP, or a, reply 
to the timer request. If there is a message in tport, then we try and output a little message, send another 
timer request in, and wait once again. This continues until the user clicks on the close gadget in the window 
to stop the demo. 

17 Closing Comments. and Bibliography 

While this has been far from a complete course in programming for the Amiga., it is hoped that you have 
absorbed enough ideas to get you started. There are many good books to help you in your programming 
endeavours. Some of these are listed below: 

1. Amiga Rom Kernel Reference Manual: Includes and Autodocs from Addison Wesley. This contail18 a 
complete list of the 1.3.2 include files, system calls, and auto docs. One of the "Must Have"s to do any sort 
of serious programming· for the Amiga. 

2. Amiga Rom Kernel Reference Manual: Libra11ies. and Devices from Addison Wesley. This contains discus
sions, and in-depth information about dealing with the various pieces of the operating system. While the 
RKM:Includes and Autodocs is a dry list of functions and data structures, the RKM:Libraries and Devices 

BAP - Basic Amiga Progr~g Page 37 



r- ..., 



contains more explanatory information about the how to deal with things. 

3. The Guru Meditations Guide, Volume I, Sassenrath Research. A technical discussion about Exec and the 
philosophy that went into writing it by the man most responsible for Exe~, Carl Sassenrath. 

There are many more useful books to the Amiga programmer. Check your library and with other Amiga 
programmers for more book listings. 

In addition, there are many people willing to help eacli othe~ out. Try lookin on BiX {the Byte Information 
Exchange), GEnie (General Electric Network for Information Exchange), CompuServ, and your local BBS's 
for source code examples. 

Another good source of code examples is the Fied Fish Freely Redistributable Library. This contains hun
dreds of di:ks containing games, utilities, and other programs, many with source. 

Lastly, experiment, experiment, experiment. Play by the rules in the RKMs if you want to insure compati
bility, or at least minimize incompatibility, with future rei~~ 9f the operating system, but other than that, 
try writing small example code for yourself about things that you're not clear on. 

BAP - Basic Amiga Programming Page38 





This PDF has been kindly provided for scan by Bo Zimmerman 
(http://www.zimmers.net/cbmpics). The book clearly has some 
missing parts, therefore this PDF is not 100% complete.
An extra effort has been made to reproduce the exact book structure.

Hardware/Software used to digitize this tome:
- Fujitsu ScanSnap S1300i
- Adobe Acrobat XI Pro
- GIMP

For any suggestions, contact: jman@storiepvtride.it

-- jman
20140920


	Table of contents
	A3000 Expansion Slot
	The A3000 Local Bus Expansion Connector
	Slave Mode Features
	Master Mode Features
	Clock Generation
	Local Bus Design Criteria
	Local Bus Connector Signal Descriptions
	References


	A3000 Expansion Bus
	The Zorro III Bus Specification
	Acknowledgements
	Table of contents
	Tables and figures
	Chapter 1: Introduction
	1.1 Intended Audience
	1.2 Bug Reports
	1.3 Amiga Bus History
	1.4 The Zorro Ill Rationale
	1.5 Document Revision History
	1.5.1 Changes for Rev 0.90
	1.5.2 Changes for Rev 0.91
	1.5.3 Changes for Rev 1.00


	Chapter 2: Zorro II compatibility
	2.1 Changes From The A2000 Bus
	2.1.1 6800 Bus Interface
	2.1.2 Bus Memory Mapping and Cache Support
	2.1.3 Bus Synchronization Delays
	2.1.4 Zorro II Master Access to Local Slaves
	2.1.5 Bus Arbitration and Fairness
	2.1.6 Intelligent Cycle Spacing
	2.1.7 Bus Drive and Termination
	2.1.8 DMA Latency and Overlap
	2.1.9 Power Supply Differences

	2.2 Bus Architecture
	2.3 Signal Description
	2.3.1 Power Connections
	2.3.2 Clock Signals
	2.3.3 System Control Signals
	2.3.4 Slot Control Signals
	2.3.5 DMA Control Signals
	2.3.6 Addressing and Control Signals


	Chapter 3: Bus architecture
	3.1 Basic Zorro Ill Bus Cycles
	3.1.1 Design Goals
	3.1.2 Simple Bus Cycle Operation

	3.2 Advanced Mode Support Logic
	3.2.1 Bus Locking
	3.2.2 Cache Support

	3.3 Multiple Transfer Cycles
	3.4 Quick Bus Arbitration
	3.5 Quick Interrupts
	3.6 Compatibility with Zorro II Devices

	Chapter 4: Signal description
	4.1 Power Connections
	4.2 Clock Signals
	4.3 System Control Signals
	4.4 Slot Control Signals
	4.5 DMA Control Signals
	4.6 Address and Related Control Signals
	4. 7 Data and Related Control Signals

	Chapter 5: Timing
	5.1 Standard Read Cycle Timing
	5.2 Standard Write Cycle Timing
	5.3 Multiple Transfer Cycle Timing
	5.4 Quick Interrupt Cycle Timing

	Chapter 6: Electrical Specifications
	6.1 Expansion Bus Loading
	6.1.1 Standard Signals
	6.1.2 Clock Signals
	6.1.3 Open Collector Signals
	6.1.4 Non-bussed Signals

	6.2 Slot Power Availability
	6.3 Temperature Range

	Chapter 7: Mechanical specifications
	7.1 Basic Zorro III PIC
	7.2 PIC with ISA Option
	7.3 PIC with Video Option

	Chapter 8: AUTOCONFIG™
	8.1 The AUTOCONFIG™ Mechanism
	8.2 Register Bit Assignments

	Appendices
	A.1 Physical and Logical Signal Names
	A.2 A Glossary of Terms
	A.3 Zorro III Implementations

	A3000 Video Board Form Factor


	Designing a Zorro III Plug-in Card
	BIGRAM 8/32
	Table of contents
	Tables and figures
	Chapter 1: Introduction
	1.1 Intended Audience
	1.2 A Few Words About AUTOCONFIG
	1.3 Design Example Goals

	Chapter 2: AUTOCONFIG™ Login Design
	2.1 Bus Buffers
	2.2 The AUTOCONFIG ROM
	2.3 The AUTOCONFIG Registers
	2.4 The SLAVE Logic

	Chapter 3: Memory System Design
	3.1 DRAM Refresh
	3.1.1 Refresh Arbitration
	3.1.2 Refresh Counter
	3.1.3 Refresh Cycle

	3.2 DRAM Access
	3.2.1 Memory Cycle
	3.2.2 Bank Selection
	3.2.3 Address Multiplexing


	Chapter 4: Going Further
	4.1 Designed-In Enhancements
	4.1.1 The Experimenter's Board?
	4.1.2 Multiple Cycle Transfer Support

	4.2 Modification Ideas
	4.2.1 Tighter RAM Cycles
	4.2.2 Read/Write Optimizations
	4.2.3 Standard DRAM Tricks


	Chapter 5: Additional ZORRO III Advice
	5.1 Watch Those Synchronizations
	5.2 Design for Speed
	5.3 Follow the Specifications

	Appendices
	A.1 PAL Equations
	A.1.1 Autoconfiguration Control PAL

	A.1.2 Board Control PAL
	A.1.3 Memory Timing PAL
	A.1.4 CAS Control PAL
	A.1.5 Refresh Counter PAL
	A.2 Schematics
	A.3 Zorro III Configuration



	Commodore Ethernet/Arcnet Cards
	ARCNET
	Introduction
	Interfaces
	Star type
	Bus type
	Twisted pair
	Fiber optic
	Combination of Bus and Star

	Network Protocol
	Line Protocol
	Invitation to transmit
	Free buffer enquiries
	Data packet
	Acknowledgement
	Negative acknowledgement

	Network Recontiguration
	Commodore Implementation


	Standard Amiga Network Architecture
	SANA: Standard Amiga Network Architecture
	Existing Layering Models
	Definition of lnteroperability
	The Protocol Layer
	Network Interface Library
	Suggested Reading
	Table of contents: ipc.device
	Table of contents: ipcmem.device
	Outline of Producer/Consumer Programs


	AmigaVision
	Amiga Vision - The Amiga's Multimedia Construction Set
	Purpose of Amiga Vision
	Software Solution
	Functionality of Amiga Vision
	Design Decisions
	Structure of the Product
	Amiga Vision Menus

	The Promise
	References


	CDTV
	Commodore Dynamic Total Vision: General Specifications
	System Overview
	Target Market
	Major Functions
	Technical Specifications


	CDTV Roundtable
	Commodore Dynamic Total Vision: User Interface Design
	Characteristics
	TV-Specific Issues
	Input/Output Issues
	Screen Issues
	Operation of the Machine
	Welcome Disc
	Application-Specific Issues
	New Ideas - and Sources for Ideas
	Starting Point for New GUI Paradigms and Metaphors
	Information System-Specific Issues


	Publishing and Selling CD-ROM Software
	The Characteristics of CD-ROM
	Software Applications
	CD-ROM Product Concepts
	CD-ROM Product Design
	Future Trends for Distribution and Selling
	Conclusion

	Preferences
	V2.0 Preferences
	OVERVIEW
	Environment and Preferences
	Preferences Data Files
	Editors (Preferences Writers)
	Customers (Preferences Readers) and Notification
	IPrefs

	COMPATIBILITY AND SYSTEM INITIALIZATION
	System Initiafization

	PREFERENCES DATA FILES
	Data Format
	Data in Use
	Archived Data Files
	Preference Presest

	PREFERENCES EDITORS
	System Editors
	Editor Design Guidelines
	Editor Standard Gadgets
	Editor CLI Usage
	Preferences Presets
	Utilities

	PREFERENCES CUSTOMERS
	Notification Options
	Requesting and Removing Notification
	Notification Example

	IPREFS


	IFF and IFFParse
	Using IFFParse in Applications
	1. What's IFF Really?
	2. Handle Management
	3. Stream Management
	3.1. Initialization
	3.2. Termination
	3.3. Internals

	4. Parsing
	4.1. Controlling Parsing
	4.1.1. StopChunkO
	4.1.2. PropChunk() / FindProp()

	4.2. Putting It Together
	4.3. Other Features

	5. Reading Chunk Data
	6. Writing IFF Files
	6.1. Creating Chunks In A File
	6.1.1. PushChunk()
	6.1.2. PopChunk()

	6.2. Writing Chunk Data
	6.3. Example

	7. A Note On Seekabillty
	8. Context Utilities
	8.1. CurrentChunk()
	8.2. ParentChunk()
	8.3. The Default Context
	10. Error Handling

	9. Context-Specific Data
	9.1. A Very Brief Overview of LCIs

	11. Conclusion


	Debugging Amiga software
	Debugging Tools - Choosing the Right Tool for the Job
	Debugging Amiga Software
	Preventing Bugs
	Finding and Fixing Bugs
	Removing Bugs
	Debugging Tools
	1. NEW MMU Watchdog Tools: Enforcer, CPU/Cputrap, and Complainer
	2. Symbolic and source lePel debuggers
	3. Printf() and kprintf() / dprintf() debugging
	4. Other ways to debug low -level code
	5. Specialized debugging tools

	How to Use MMU Watchdogs and Other Remote Debugging Tools
	Remote Serial Debugging
	Setup for Local Serial Debugging
	Setup for Parallel Debugging



	International Marketing
	Ten Steps To Better Translations
	1. Evaluate your translation needs.
	2. Select a translation service.
	3. Plan the project.
	4. Structure the process for efficiency.
	5. Confirm schedules.
	6. Confirm staffing.
	7. Finalize costs.
	8. Identify support resources within your company.
	9. Build quality assurance into the process.
	10. Incorporate internationalization into future releases.


	Commodore's OEM/VAR Programs
	VADs, VARs, DVARs and OEMs PROGRAM SUMMARY
	VAD'S AND VAA'S
	VERTICAL SPECIALTY DEALER (VAD)
	VERTICAL AUTHORIZED RESELLER (VAR)
	PROGRAM REQUIREMENTS
	Value Added Reseller LEVEL 1
	Value Added Reseller LEVEL 2
	Value Added Reseller LEVEL 3

	DEALER VALUE ADDED RESELLER (DVAR)
	AGGREGATOR (AGAR)
	ORIGINAL EQUIPMENT MANUFACTURER (OEM)
	PROGRAM REQUIREMENTS
	Professional VAR Application
	SECTION 1: APPLICANT PROFILE
	SECTION 2: LOCATION BUSINESS / MARKETING PROFILE
	SECTION 3: FINANCIAL AND OTHER INFORMATION
	AUTHORIZED RESELLER AGREEMENT




	Scalable Fonts: A Decade of Change
	The Amiga Challenge
	Scalable Fonts on the Amiga

	Compatibility
	New Features and Configurations
	Larger Address Space
	Hardware Compatibility
	V2.0 Compatibility Checklist
	I. General changes and issues
	II. Changes to exec.library
	III. Changes to layers.library
	IV. Changes to graphics.library
	V. Changes to intuition.library
	VI. Changes to diskfont.library
	VII. Changes to dos.library
	VIII. Changes to ramlib
	IX. Changes to timer.device
	X. Changes to the hardware in the A3000 and Zorro III bus


	Amiga Standards
	Purpose
	What are standards?
	Standards promote consistency
	Standards promote faster progress
	Standards and you
	Background
	Amiga vs the competition
	Amiga standards and tools
	IFF
	Clipboard
	AmigaDOS 2.0
	User interface style
	Amiga Vision
	What's next?
	Look and feel guide
	Application user interface
	AppShell
	AppBuilder
	Multimedia
	Hard disk installation
	Networking
	Where do you begin?
	Summary

	The CDTV Development Environment
	CTrac™ Emulation System for CDTV
	Getting The Best Image For Your CDTV Application
	1 Overview
	2 General Issues
	2.1 Choice Of Video Mode
	2.2 Mixing Video Modes
	2.3 CHIP Ram Contention
	2.4 Memory Requirements
	2.5 Aspect Ratio
	2.6 International Video Formats

	3 CDTV Specific Issues
	3.1 TV's Not Monitors
	3.2 Distance
	3.3 Phosphor Burnout

	4 Getting The Best Image
	4.1 Image Sources
	4.2 Dithering
	4.3 Aspect Correction
	4.4 Interlace
	4.4.1 Making An Interlaced Image
	4.4.2 When To Interlace
	4.4.3 Overcoming Interlace Flicker

	4.5 Increasing Visual Punch
	4.5.1 Contrast
	4.5.2 Gamma Correction

	4.6 Who's Afraid Of Gray Scale
	4.7 Flips And Mirrors
	4.8 Genlock Considerations
	4.9 Mixing Computer Chosen And Manually Chosen Colors
	4.10 Merging Palettes

	5 Summary


	The Amiga 3000
	New Commodore Products
	A3000 Architecture
	The New System Software
	Networking and the Amiga


	TCP/IP
	Commodore TCP/IP
	Brief Overview of TCP/IP
	Physical Layer
	Data Link Layer
	Network Layer
	Transport Layer
	Application Layer
	UNIX Remote Services
	Sun Extensions
	Commodore TCP/IP Software Features
	Network FileSystem (NFS)
	Usage Examples
	SANA
	Future Improvements
	Security
	Sample Script for Remote Printing


	Novell Network
	Discussion of Amiga Client NetWare for Novell NetWare
	Table of Contents
	Overview
	NetWare Advantages
	Amiga Client NetWare Requirements
	Novell NetWare Market Data

	Record-Locking Using Amiga Client NetWare With WorkBench 1.3
	Novell NetWare Routines in Amiga Client NetWare Summary List
	Internet Packet Exchange Protocol Peer-to-Peer Communications for the Amiga NetWare Network
	IPX Device
	IPX Packet Structure
	Event Control Block (ECB)
	Event Service Routine (ESR)
	Summary of IPX Services

	Overview of Netware Core Protocol Library
	NetWare Core Protocol (NCP) Library
	Explanation of Services
	NCP Ubrary Function Calls, by category

	GLOSSARY


	AmigaVision Workshop
	AmigaVision: Authoring Hints
	Keyboard and Mouse Interrupts
	Variables as Filenames
	Brushes as Hit Boxes
	General Use


	Amiga OS 2.0
	Features Outline for V2.0

	Workbench 2.0
	Workbench V2.0 Documentation Update
	The New Menus
	Mouse Buttons
	Windows
	Icon Text
	Startup Drawer
	Asynchronicity
	Other Workbench Changes


	Commodities Exchange
	CONTENTS
	1. Commodities User Manual
	1.1 INTRODUCTION
	1.2 INSTALLATION
	1.3 CONFIGURATION
	1.4 EXAMPLES
	1.5 THE EXCHANGE CONTROLLER

	2. Commodities Reference Manual
	2.1 Preface
	2.2 Introduction
	2.3 Example Commodities
	2.4 COMMODITIES COMPONENTS
	2.5 COMMODITIES OVERVIEW
	2.6 Examples: Object Structure and Implementation
	2.7 Examples: More Details


	Internationalization
	Internationalization of Software: the locale.library
	Introduction
	Objective
	Categories
	Message catalogues
	Preferences
	Collation Information
	Argument Ordering
	Detailed Description of Structures
	Time and Date Formats
	Character Type Information
	locale.library Autodocs
	dos.library Autodocs


	ARexx
	Implementing ARexx In Your Programs
	1 Basic Design Considerations
	2 Initiating ARexx commands from your program
	3 Other ARexx interactions


	Amiga Standards Workshop
	The Standard Amiga User Interface and the Amiga Appshell
	Benefits of a Standard User Interface
	Overview of the AppShell
	Elements of the Standard Amiga User Interface
	Standard User Accessible Functions
	Graphical User Interface
	Gadget Action
	Command Interface
	Workbench Interface
	Preferences
	Miscellaneous

	Implementation of the Amiga AppShell
	Overview of the AppShell Components
	User Interface Description
	Function Table
	Names
	Preferences
	Technical Breakdown of AppShell Components
	Application Variables
	Activation
	Library Handling
	Startup Processing
	Function Table Entries
	Error and Text Handling
	Message Handler Initialization
	Standard Message Handlers
	Appshell
	ARexx Message Handler



	AppShell Autodocs

	Intuition
	Intuition V2.0 Documentation Update
	General Information
	Changes to Windows
	Changes to Screens
	Gadgets
	Requesters and System Requesters
	IDCMP and Event Communication
	Public Screens
	Intuition Classes, "boopsi"
	The New Look
	Menus
	Miscellaneous Items
	New User Controls


	GadTools
	Gadget Toolkit
	I. Introduction
	II. Ingredients of GadTools
	III. Introduction to Tags and Tag-based Functions
	IV. GadTools Gadgets
	A. Manlpulating GadTools Gadgets
	B. The NewGadget Structure
	C. The Kinds of GadTools Gadgets
	D. Functions for GadTools Gadgets
	E. Restrictions on GadTools Gadgets
	F. Documented Side-Effects

	V. GadTools Menus
	A. The NewMenu Structure
	B. Functions for GadTools Menus
	C. Restrictions on GadTools Menus
	D. Language-Sensitive Menus

	VI. Future Directions
	Vll. Conclusion

	New DOS calls
	Using New DOS calls: Why and How
	1. Introduction
	2. Quick Overview
	3. Compatibility
	4. Notification
	5. Cooperative Record Locking
	6. Standardized Command-Line Processing
	7. Standardized Pattern-Matching
	8. Simple Buffered Input/Output Routines
	9. More Flexible Handling of Locks and FileHandles
	10. Atomic Directory Scanning
	11. Easy "Thread Process" Creation
	12. Support for 3rd·party Shells, System Call
	13. Many Support Functions for Applications, Shells or Commands
	14. Summary


	boopsi
	Basic Object Oriented Programming System for Intuition
	Introduction
	Level 1
	Level 2
	Level 3
	Goals

	Chapter 1: Using Boopsi
	Black Box Objects
	Transparent Base Classes
	Attribute Lists
	Attribute Access Modes
	Varargs (Variable Number of Arguments) Interface
	Functions
	Interconnections
	Interconnection Class and Simple Models
	Advanced Models
	IDCMP and Other Notification Methods
	Gadget Groups
	Class Documentation Standards
	Boopsi Images

	Chapter 2: Custom Gadget Implementation
	Custom Gadget Hooks

	Chapter 3: OOP Overview and Terminology
	Objects, Methods, Messages, Classes
	Inheritance and Transparent Base Classes
	Private vs. Public Classes

	Chapter 4: Writing Boopsi Classes
	Chap.ter 5: Advanced Tagitem List Use
	Chapter 6: Boopsi Future


	Programming for SCSI Devices
	Programming for SCSI Devices: RDB and Autoboot
	SCSI Direct Command
	Checking Up on SCSI Devices
	The SCSICmd Structure
	RigidDiskBlock - Fields and Implementation
	How the Driver Uses the RDB and Partition List
	Alien File Systems
	Amiga BootStrap
	Changes from V1.3


	Exec
	Exec Version 2.0
	Long Word Alignment
	Exec Ubraries (libs:)
	Exec Semaphores
	Exec Devices (devs:)
	Caches and Other Secret Hidind Places
	What the Heck Is a Write Allocate Bit?
	How to Avoid Falling Into a Cache
	exec.library Autodocs


	A2410 Hi-Res Graphics Card
	Introduction
	High Resolution Color Graphics Card
	The Graphics System Processor
	A2410 Memory and Register Configuration
	Frame Buffer Memory
	Special Register
	TIGA
	AMIX Interface
	AmigaDos Interface

	A3000 System Architecture
	SYSTEM CONFIGURATIONS
	FAST MEMORY & RAMSEY
	CHIP MEMORY
	SYSTEM ROM
	DISPLAY ENHANCER
	32 BIT SCSI DMA
	ZORRO III EXPANSION
	VIDEO EXPANSION
	BUS MONITORING
	POWER UP (COLD START) DETECTION

	Run-Time accomodation of Fonts
	Font Independent UserInterfaces

	BAP - Basic Amiga Programming
	1 Introduction
	2 Thanks
	3 Basic Terminology
	4 Implicit Assumptions
	5 Some Basic Types of Things
	6 Exec And Its Place In The World
	7 Lists
	8 How to use Lists
	9 Ports
	10 Signals
	11 Shared Libraries
	12 Intuition
	13 Intuition and Text
	14 Intuition Menus
	15 Graphics
	16 Device Handling
	17 Closing Comments and Bibliography




