
•
Errata for the

Amiga Hardware Manual

The attached documents contain various updates to the Amiga Hardware Manual. The documents

are:

Changes and Additions
Read this first; it contains miscellaneous corrections and is a guide to all of the updates.

Examples
Contains example assembly code sequences for the Copper, play fields, and sprites.

Addendum to Chapter 5: Audio Hardware
Describes the audio state machine.

Addendum to Chapter 6: Blitter Hardware
Describes blitter DMA and how the operation of the blitter affects the performance of the
rest of the system.

Appendix F
This replaces the presen t Appendix F.

Appendix G
This replaces the presen t Appendix G.

October 17, 1985 1

Changes and Additions to the
Amiga Hardware Manual

Changes and additions have been made to the following chapters and appendixes of the Amiga

Hardware Manual.

Chapter 2: Coprocessor Hardware

Add the examples in the attached document called "Examples for the Amiga Hardware Manual".

Chapter 3: Playfield Hardware

Add the examples in the attached document called "Examples for the Amiga Hardware Manual".

Chapter 4: Sprite Hardware

Add the examples in the attached document called "Examples for the Amiga Hardware Manual".

On page 4-14, under section 4.3, "Displaying a Sprite", add the following:

CAUTION

Should sprite DMA be turned off while a sprite is being displayed (that is, after VSTART
but before VSTOP), the system will continue to display the line of sprite data that was
most recently fetched. This causes a vertical bar to appear on the screen. It is recom­
mended that sprite DMA only be turned off during vertical blanking or during some por­
tion of the screen where you are sure that no sprite is being displayed.

October 17, 1985 1

Chapter 5: Audio Hardware

Add the attached document called "Addendum to Chapter 5: Audio Hardware".

Chapter 6: Blitter Hardware

Add the attached document called "Addendum to Chapter 6: Blitter Hardware".

On page 6-14, under section 6.11, "Line. Drawing", add the following line to the table:

Register
Name

BLTCONI

Bit Bit
Number Name State Purpose

~~~---------------

5 o Reserved for ftabloden mode 

On page 6-8, add the following to section 6.6, "Ascending and Descending Addressing": 

If the source and destination data areas overlap in a blitter operation, there is a possibility of 
writing to a particular location as the destination before it was read as the source. 

To prevent this kind of data destruction, you must take care to correctly choose ascending or 
descending mode, and possibly you should offset the source or destination. 

Some types of overlapped blitter moves will always result in damaged data; therefore, the 
desired move must be done in two steps: 

1. Move to a safe place. 

2. Move to desired destination. 

Using the blitter Memory Bus Activity Table l , you can observe the order of operations and 
determine the required offset or mode. Pay careful attention to the notes. It helps to draw pic­
tures. 

1 This table is located in the separate "Addendum to the Blitter Hardware 
Chapter" attached to this document. 

2 October 17, 1985 



Chapter 8: Interrace Hardware 

On page 8-4, under "Counter Limitations", the la8t line should read: 

** 45-200 = -155. Because the absolute value exceeds 127, the true count must be 

Appendix A 

On page 4, in the table called "LINE MODE (line draw)", change the following bits for BL TCONl: 

BIT# BLTCONO 

15 START3 
14 START2 
13 START 1 
13 STARTO 

05 LF5 

BLTCONI 

TEXTURE3 
TEXTURE2 
TEXTURE 1 
TEXTUREO 

o (Reserved for 
new mode) 

On page 5, in the table called "LINE MODE (line draw)", change the line beginning "OVF ... " to: 

o Reserved for new mode 

At the end of the same table, add: 

The "B" source is used for texturing the drawn lines. 

Appendix B 

On page 2, after "BLTCDAT", "BLTBDAT", and "BLTADAT", change "&" to "%". 

October 17, 1985 3 



Appendix F 

Remove Appendix F and insert the attached new Appendix F. Appendix F contains a new front 
section, called "Brief address map for 8520's". 

Appendix G 

Remove Appendix G and insert the attached new Appendix G. Appendix G has some mlllor 

changes. 

Since this appendix is subject to change, anyone who is actually designing a device to interface to 
the Amiga should contact Amiga Third-Party Support. 

Appendix I 

This is a new appendix. It describes the interface to the 68000 bus connector. 

4 October 17. 1985 



Appendix F 

Remove Appendix F and insert the attached new Appendix F. Appendix F contains a new front 
section, called "Brief address map for 8520's". 

Appendix G 

Remove Appendix G and insert the attached new Appendix G. Appendix G has some mInor 
changes. 

Since this appendix is subject to change, anyone who is actually designing a device to interface to 
the Amiga should contact Amiga Third-Party Support. 

Appendix I 

This is a new appendix. It describes the interface to the 68000 bus connector. 

4 October 17, 1985 



Examples for the 

Amiga Hardware Manual 

Chapter 2: Coprocessor Hardware 

Add the following example to page 2-4, under section 2.3, "The MOVE Instruction" . 

Th~ following MOVE instructions point bit-plane pointer 1 at $21000 and bitplane pointer 2 at 
$25000. 

DC.W 
DC.W 
DC.W 
DC.W 

$OOEO,$0002 
$OOE2,$I000 
$OOE4,$0002 
$OOE6,$5000 

;MOVE $0002 TO ADDRESS $OEO (BPLlPTH) 
;MOVE $1000 TO ADDRESS $OE2 (BPLIPTL) 
;MOVE $0002 TO ADDRESS $OE4 (BPL2PTH) 
;MOVE $5000 TO ADDRESS $OE6 (BPL2PTL) 

Add the following exam pIes to page 2-5, under section 2.4, "The Wait Instruction". 

This first WAIT instruction waits for scan line 150 (96 hex) with the horizontal position masked 
off. 

DC.W $9601,$FFOO ;WAlT FOR LINE 150, IGNORE HORIZONTAL COUNTERS 

This second WAIT instruction waits for scan line 255 and horizontal position 254. This will 
never occur, so the copper stops until the next vertical blanking interval begins. 

DC.W $FFFF,$FFFE ;WAIT FOR LINE 255, H = 254 (ENDS COPPER LIST). 

Add the following example to page 2-10, under section 2.6, "Putting Together a Copper Instruction 
List" . 

This is an example of a complete Copper list. It is a Copper list for two bit-planes, one at 
$21000, one at $25000. At the top of the screen, the color registers are set as follows: 

October 16, 1985 1 



COLOROO = WHITE 
COLOROI = RED 
COLOR02 = GREEN 
COLOR03 = BLUE 

At line 150, the color registers are reloaded as follows: 

.cOLOROO = BLACK 
COLOR01 = YELLOW 
COLOR02 = CYAN 
COLOR03 = MAGENTA 

COPPERLIST: 
DC.W $OOEO,$0002 
DC.W $OOE2,$1000 
DC.W $OOE4,$0002 
DC.W $OOE6,$5000 

; Load color registers 

DC.W $0180,$OFFF 
DC.W· $OI82,$OFOO 
DC.W $0184,$OOFO 
DC.W $0186,$OOOF 

; Wait for line 150 

DC.W $9601 ,$FFOO 

; Reload color registers 

DC.W 
DC.W 
DC.W 
DC.W 

$0180,$0000 
$0182,$OFFO 
$0184,$OOFF 
$0186,$OFOF 

;MOVE $0002 INTO ADDRESS $OEO (BPL1PTH) 
;MOVE $1000 INTO ADDRESS $OE2 (BPL1PTL) 
;MOVE $0002 INTO ADDRESS $OE4 (BPL2PTH) 
;MOVE $5000 INTO ADDRESS $OE6 (BPL2PTL) 

;MOVE WHITE INTO ADDRESS $180 (COLOROO) 
;MOVE RED INTO ADDRESS $182 (COLOR01) 
;MOVE GREEN INTO ADDRESS $184 (COLOR02) 
;MOVE BLUE INTO ADDRESS $186 (COLOR03) 

;WAIT FOR LINE 150, IGNORE HORIZ. POSITION 

;MOVE BLACK INTO ADDRESS $0180 (COLOROO) 
;MOVE YELLOW INTO ADDRESS $0182 (COLOROI) 
;MOVE CYAN INTO ADDRESS $0184 (COLOR02) 
;MOVE MAGENTA INTO ADDRESS $0186 (COLOR03) 

; End copper list by waiting for the impossible 

DC.W $FFFF,$FFFE ;WAIT FOR LINE 25.5, H = 254 (NEVER HAPPENS) 

Add the following to page 2-13, under section 2.8.1, "The SKIP Instruction". 

2 October 16. 198.5 



The following SKIP instr~lction will skip the instruction following it if VP >= 100 ($64). 

DC.W 
DC.W 

$6401,$FFOl ;IF VP >= lOO,SKIP NEXT INSTR (IGNORE HP). 
.... this is the instruction that will be skipped .... 

Replace the example on page 2-14, under section 2.8.2, "Copper Loops and Branches and Com­
parison Enable", with the following: 

; Copper list to interrupt 58000 once every 16 scan lines, 
: in the range VP = 80 through VP= 160. 

DC.W 
DC.W 

$5001,$FFFE 
$OFOl,$OFOO 

;WAIT FOR VP = $SO, HP =~ ° 
;WAIT FOR VP = xxxxllil 

; The following instruction writes to address $OOC, the 
: interrupt request register. Writing $8010 sets the copper 
; interrupt bit in the register, which will interrupt the 68000. 

DC.W 
DC.W 

$009C,$801O 
$AOOl,$FFOI 

;MOVE $8010 TO $09C (INTERRUPT 68000) 
:SKIP NEXT INSTRUCTION IF VP >= 160 

; The next MOVE instruction doesn't actually do a move. It forces 
; the copper to jump to the address in COP2LC. This must have been 
; previously set by either the copper or the 68000. If VP > = 160, 
; then this instruction will be skipped. 

DC.W 
DC.W 

$008A,$0000 ;MOVE 0 TO COPJMP2 (COP2LC PREVIOUSLY SET) 
... other copper instructions 

Chapter 3: Playfield Hardware 

Add this example to page 3-10, under "Selecting Number of Bit-Planes". 

This example shows how to write to the BPLCONO register to tell the system to use .J bit­
planes. 

October 15, 1985 3 



, 
; Writing $2200 to BPLCONO sets the following conditions: 

, 

Low Resolution 
Use two bitplanes 
Hold-and-modify mode = OFF 
Single playfield mode 
Composite video color enabled 
Genlock audio disabled 
Light pen disabled 
Interlace disabled 
External resync disabled 

BPLCONO EQU $DFF100 
MOVE.W #$2200,BPLCONO 

;BPLCONO ADDRESS 
;WRITE TO IT 

Add the following example to page 3-10, under section 3.2.3, "Selecting Horizontal and Vertical 
Resole. tion". 

This example shows how to set the HIRES and LACE bits. 

; Writing $A204 to BPLCONO sets the following conditions: 

High resolu tion 
Use two bitplanes 
Hold-and-modify mode = OFF 
Single playfield mode 
Composite video color enabled 
Genlock audio disabled 
Light pen disabled 
Interlace enabled 
External resync disabled 

BPLCONO EQU $DFF100 
MOVE.W #$A204,BPLCONO 

;BPLCONO ADDRESS 
;WRITE TO IT 

Add the following example to page 3-12, under section 3.2.4, "Allocating Memory for Bit-Planes" 

This example shows how to set pointers for memory allocation for bit-planes. 

4 October 16, 1985 



, 
; Assuming two bitpla.nes, one a.t $21000 and the other at $25000, the processor 
; sets BPLIPT to $21000 and BPL2PT to $25000. Normally, this is the copper's 
; task. 

BPLIPTH EQU $DFFOEO 
BPLIPTL EQU $DFFOE2 
BPL2PTH EQU $DFFOE4 
BPL2PTL EQU $DFFOE6 

;HIGH THREE BITS OF BITPLANE 1 POINTER REGISTR 
;LOW FIFTEEN BITS 
;HIGH THREE BITS OF BITPLANE 2 POINTER REGISTR 
;LOW FIFTEEN BITS 

, 
; Two word writes are needed to write to a bitplane pointer, but we can use 
; a single longword move. The 68000 writes the high order word to the lower-
; numbered address (BPLxPTH) and the low order word to the higher-numbered 
; address (BPLxPTL). 

MOVE.L #$21000,BPLIPTH 
MOVE.L #$25000,BPL2PTH 

;WRITE BITPLANE 1 POINTER 
; WRITE BITPLANE 2 POINTER 

Add the following examples to page 3-15, under "A One- or Two-Color Playfield" 

This example shows how to define a I-color bit-plane. 

; This code fills a low resolution bit-plane with the background color (COLOROO) 
; by writing all O's into its memory area. The bitplane starts at $21000 and 
; is 8000 bytes long. 

LEA $21000,AO 
MOVE. W #2000,DO 

LOOP: MOVE.L #O,(AO)+ 
SUBQ.W #1,DO 
BNE LOOP 

;POINT AT BITPLANE 
;WRITE 2000 LONGWORDS = 8000 BYTES 
;WRITE OUT A ZERO 
;DECREMENT COUNTER 
;LOOP UNTIL BITPLANE IS FILLED WITH O'S 

This example shows how to define a 2-color bit-plane. 

October 16, 1985 5 



, 
; This code is identical to the last example, except the bitplane is filled 
; with $FFOOFFOO instead of all O's. This will produce two colors. 

LEA $21000,AO ;POINT AT BITPLANE 
MOVE.W #2000,DO ;WRITE 2000 LONGWORDS = 8000 BYTES 

LOOP: MOVE.L #$FFOOFFOO,(AO)+ ;WRITE OUT $FFOOFFOO 
SUBQ.W #l,DO ;DECREMENT COUNTER 
BNE LOOP ;LOOP UNTIL BITPLANE IS FULL 

Add this example to page 3-18, under "Setting the Display Window Starting Position". 

Setting DIWSTRT for the basic playfield: 

; This code sets DIWSTRT for a basic playfield. We write $2C for the vertical 
; position and $81 for the horizontal position. 
, 
DIWSTRTEQU $DFF08E ;DISPLAY WINDOW START REGISTER ADDRESS 

MOVE.W #$2C81,DIWSTRT ;WRITE IT OUT 

Add this example to page 3-19, under "Setting the Display Window Stopping Position". 

Setting DIWSTOP for the basic playfield: 

; This code sets DIWSTOP for a basic playfield. We write $F4 for 
; the vertical position and $C1 for the horizontal position. 

DIWSTOP EQU $DFF090 ;DISPLAY WINDOW STOP REGISTER ADDRESS 

MOVE.W #$F4C1,DIWSTOP ;WRITE IT OUT 

Add the following examples to page 3-19, under Section 3.2.7, "Telling the System How to Fetch 
and Display Data". 

Setting data fetch for the basic playfield: 

6 October 16, 1985 



, 
. This code sets the data fetch start and stop values for a basic , 
; playfield. We write $0038 to DDFSTRT and $OODO into DDFSTOP. 

, 
DDFSTRT EQU $DFF092 
DDFSTOP EQU $DFF094 

MOVE.W #$0038,DDFSTRT 
MOVE.W #$OODO,DDFSTOP 

Setting modulo for the basic playfield: 

, 

;WRITE TO DDFSTRT 
;WRITE TO DDFSTOP 

; This code sets the modulo to 0 for a low resolution playfield with one 
; bitplane. For this example, the bitplane is one of the odd-numbered 
; ones. We would write to BPL2MOD for even-numbered bitplanes. 

, 
BPLIMOD EQU $DFFI08 ;MODULO FOR ODD BITPLANES 

MOVE.W #O,BPLIMOD ;SET MODULO TO 0 

Add the following examples to page 3-26, under a new section, 3.2.11, "Complete Example 

Playfields" . 

; This first example sets up a 320 x 200 pixel playfield with 
; one bitplane. 
; The bitplane lives at $21000. 
; We also set up a copper list at $20000. 

CUSTOM EQU $DFFOOO 
BPLCONO EQU $100 
BPLCONI EQU $102 
BPLCON2 EQU $104 
BPLIMOD EQU $108 
DDFSTRTEQU $092 
DDFSTOP EQU $094 
DIWSTRT EQU $08E 
DIWSTOP EQU $090 
VPOSR EQU $004 
COLOROO EQU $180 
COLOROI EQU $182 

October 16, 1985 7 



COLOR02 EQU $184 
COLOR03 EQU $186 
DMACON EQU $096 
COP1LCH EQU $080 ;COPPER LOCATION REGISTER 1 (HIGH 3 BITS) 

LEA CUSTOM,AO ;AO POINTS AT CUSTOM CHIPS 
MOVE.W #$1200,BPLCONO(AO) ;ONE BITPLANE, ENABLE COMPOSITE COLOR 
MOVE.W #0,BPLCON1(AO) ;SET HORIZONTAL SCROLL VALUE TO 0 
MOVE.W #0,BPL1MOD(AO) ;SET MODULO TO 0 FOR ALL ODD BITPLANES 
MOVE.W #$OO38,DDFSTRT(AO) ;SET DATA FETCH START TO $38 
MOVE.W #$OODO,DDFSTOP(AO) ;SET DATA FETCH STOP STOP TO $00 
MOVE.W #$2C81,DIWSTRT(AO) ;SET DIWSTRT TO $2C81 
MOVE.W #$F4C1,DIWSTOP(AO) ;SET DISPLAY WINDOW STOP TO $F4Cl 
MOVE.W #$OFOO,COLOROO(AO) ;SET BACKGROUND COLOR TO RED 
MOVE.W #$OFFO,COLOROl(AO) ;SET COLOR REGISTER 1 TO YELLOW 

, 
. FILL BITPLANE WITH $FFOOFFOO TO PRODUCE STRIPES , 

8 

MOVE.L #$21000,A1 
MOVE.L #$FFOOFFOO,DO 
MOVE.W #2000,D1 

LOOP: MOVE.L DO,(Al)+ 
SUBQ.W #1,D1 
BNE LOOP 

, 
; Set up copper list at $20000 

MOVE.L #$20000,A1 
LEA COPPERL,A2 

CLOOP: MOVE.L (A2),(A1)+ 

;POINT AT BEGINNING OF BITPLANE 
;WE WILL WRITE $FFOOFFOO LONG WORDS 
;2000 LONG WORDS = 8000 BYTES 
;WRITE A LONG WORD 
;DECREMENT COUNTER 
;LOOP UNTIL BITPLANE IS FILLED 

;POINT AT COPPER LIST DESTINATION 
;POINT A2 AT COPPER LIST OAT A 
;MOVEA WORD 

CMPI.L #$FFFFFFFE,(A2)+ ;CHECK FOR LAST LONGWORD OF COPPER LIST 
;LOOP UNTIL ENTIRE COPPER LIST IS MOv"ED BNE CLOOP 

, 
; Point copper at copper list 

MOVE.L #$20000,COP1LCH(AO) ;WRITE TO COPPER LOCATION REGISTER 
MOVE.W COP JMPl(AO),DO ;FORCE COPPER TO $20000 

; Start DMA 

MOVE.W #$8380,DMACON(AO) ;ENABLE BITPLANE A~1) COPPER DMA 

BRA .... ;GO DO NEXT TASK 

October 16, 1985 



. This is the data for the copper list. , 
, 
COPPERL: 

, 

DC.w 
DC.W 
DC.W 

$OOEO,$0002 
$OOE2,$I000 
$FFFF ,$FFFE 

;MOVE $0002 TO ADDRESS $OEO (BPLIPTH) 
;MOVE $1000 TO ADDRESS $OE2 (BPLIPTL) 
;END OF COPPER LIST 

. This second example of a basic playfield sets up a hi resolution, interlaced , 
; display with one bitplane. 

, 
; The equates are the same as the previous example so they aren't repeated here. 

LEA CUSTOM,AO ;ADDRESS OF CUSTOM CHIPS 
MOVE.W #$9204,BPLCONO(AO) ;HIRES, 1 BITPLANE, INTERLACE 
MOVE.W #0,BPLCON1(AO) ;HORIZONTAL SCROLL VALUE = 0 
MOVE.W #80,BPLIMOD(AO) ;MODULO = 80 FOR ODD BITPLANES 
MOVE.W #80,BPL2MOD(AO) ;01110 FOR EVEN BITPLANES 
MOVE.W #$OO3C,DDFSTRT(AO) ;SET DATA FETCH START FOR HI RES 
MOVE.W #$OOD4,DDFSTOP(AO) ;SET DATA FETCH STOP 
MOVE.W #$2C81,DIWSTRT(AO) ;SET DISPLAY WINDOW START 
MOVE.W #$F4Cl,DIWSTOP(AO) ;SET DISPLAY WINDOW STOP 

, 
; Set up color registers 

MOVE.W #$OOOF,COLOROO(AO) 
MOVE.W #$OFFF,COLOR01(AO) 

;BACKGROUND COLOR = BLUE 
;FOREGROUND COLOR = WHITE 

, 
; Set up bitplane at $20000. 

Ll: 

LEA $20000,Al 
LEA CHARLIST ,A2 
MOVE.W #400,01 
MOVE.W #20,00 

MOVE.L (A2),(Al)+ 
SUBQ.W #1,00 
BNE Ll 

MOVE.W #20,00 
ADDQ.L #4,A2 
CMPI.L #$FFFFFFFF,(A2) 

October 16, 1985 

;POINT Al AT BITPLANE 
;A2 POINTS AT CHARACTER DATA 
;WRITE 400 LINES OF DATA 
;WRITE 20 LONG WORDS PER LINE 

;WRITE A LONG WORD 
;DECREMENT COUNTER 
;LOOP UNTIL LINE IS FULL 

;RESET LONG WORD COUNTER 
;POINT AT NEXT WORD IN CHAR LIST 
;END OF CHAR LIST? 

9 



BNE L2 
LEA CHARLIST ,A2 ;YES, RESET A2 TO BEGINNING OF LIST 

L2: 

, 

SUBQ.W #1,Dl 
BNE Ll 

; Start DMA 

;DECREMENT LINE COUNTER 
;LOOP UNTIL ALL LINES ARE FULL 

MOVE.W #$S300,DMACON(AO) ;ENABLE BITPLANE DMA ONLY, NO COPPER 
, 
; Since this example has no copper list, we sit in a loop waiting for vertical 
; blank. When it comes, we check the LOF (long frame) bit in VPOSR. If it 
; is a 0, then this is a short frame so we point the bitplane pointers to 
; $200050; if LOF = 1, then this is a long frame so we point to $20000. This 
; keeps the long and short frames in the righ t relationship to each other. 
, 
VLOOP: 

MOVE.W INTREQR(AO),DO ;READ INTERRUPT REQUESTS 
AND.W #$0020,DO 
BEQ VLOOP 
MOVE.W #$0020,INTREQ(AO) 
MOVE.W VPOSR(AO),DO 

;MASK OFF ALL BUT VERTICAL BLANK 
;LOOP UNTIL VERTICAL BLANK COMES 
;RESET VERTICAL INTERRUPT 

VLl: 

BPL VLl 
MOVE.L #$20000, BPLl PTH(AO) 
BRA VLOOP 

MOVE.L #$2005O,BPLIPTH(AO) 
BRA VLOOP 

;READ LOF BIT INTO DO BIT 15 
;IF LOF = 0, JUMP 
;LOF = 1, POINT TO $20000 
;BACK TO TOP 

;LOF = 0, POINT TO $20050 
;BACK TO TOP 

; Character list 

DC.L $ISFC3DFO,$3C6666D8,$3C66COCC,$667CCOCC 
DC.L $7E66COCC,$C36666D8,$C3FC3DFO,$OOOOOOOO 
DC.L $FFFFFFFF 

Add the following example to page 3-50, under "Specifying the Amount of Delay". 

Setting the delay for horizontal scrolling: 

10 October 16, 1985 



, 
; This code sets the horizontal scroll delay to 7 for both playfields. 

, 
BPLCONI EQU $DFFI02 ;HORIZONTAL SCROLL REGISTER 

MOVE.W #$77,BPLCONI 

Add the following example to page 3-52, under section 3.6.2, "Hold and Modify Mode". 

Hold and modify example: 

, 
; This code generates a six bit-plane display with hold-and-modify mode 
; turned on. We load all 32 color registers with black to prove that 
; the colors are being generated by hold-and-modify. 
, 
; The equates are the usual, so we won't repeat them here. 

, 
; First we set up the control registers. 

LEA CUSTOM,AO ;POINT AO AT CUSTOM CHIPS 
MOVE.W #$6AOO,BPLCONO(AO) ;SIX BITPLANES, HOLD AND MODIFY MODE 
MOVE.W #O,BPLCONI(AO) ;HORIZONTAL SCROLL = 0 
MOVE.W #O,BPLIMOD(AO) ;MODULO FOR ODD BITPLANES = 0 
MOVE.W #O,BPL2MOD(AO) ;DITTO FOR EVEN BITPLANES 
MOVE.W #$OO38,DDFSTRT(AO) ;SET DATA FETCH START 
MOVE.W #$OODO,DDFSTOP(AO) ;SET DATA FETCH STOP 
MOVE.W #$2C81,DIWSTRT(AO) ;SET DISPLAY 'WINDOW START 
MOVE.W #$F4CI,DIWSTOP(AO) ;SET DISPLAY 'WINDOW STOP 

, 
; Set all color registers = black to prove hold and modify mode is working. 

MOVE.W #32,DO 
LEA CUSTOM+COLOROO,AI 

CREGLOOP: 

, 

MOVE.W #$OOOO,(Al)+ 
SUBQ.W #1,DO 
BNE CREGLOOP 

;INITIALIZE COUNTER 
;POINT Al AT FIRST COLOR REGISTER 

;WRITE BLACK TO A COLOR REGISTER 
;DECREMENT COUNTER 
;LOOP UNTIL ALL COLOR REGISTERS SET. 

; Fill six bitplanes with an easily recognizable pattern. 

MOVE.W #2000,DO 
MOVE.L #$2 IOOO,AI 

October 16, 1985 

;2000 LONGWORDS PER BITPLANE 
;POINT Al AT BIT PLANE 1 

11 



MOVE.L #$23000,A2 
MOVE.L #$25000,A3 
MOVE.L #$27000,A4 
MOVE.L #$29000,A5 
MOVE.L #$2BOOO,A6 

FPLLOOP: 
MOVE.L #$55555555,(Al)+ 
MOVE.L #$33333333,(A2)+ 
MOVE.L #$OFOFOFOF,(A3)+ 
MOVE.L #$OOFFOOFF ,(A4)+ 
MOVE.L #$FFFFFFFF,(A5)+ 
MOVE.L #$OOOOOOOO,(A6)+ 
SUBQ.W #1,DO 

;POINT A2 AT BIT PLANE 2 
;POINT A3 AT BIT PLANE 3 
;POINT A4 AT BIT PLANE 4 
;POINT A5 AT BIT PLANE 5 
;POINT A6 AT BIT PLANE 6 

;FILL BIT PLANE 1 WITH $55555555 
;FILL BIT PLANE 2 WITH $33333333 
;FILL BIT PLANE 3 WITH $OFOFOFOF 
;FILL BIT PLANE 4 WITH $OOFFOOFF 
;FILL BIT PLANE 5 WITH $FFFFFFFF 
;FILL BIT PLANE 6 WITH $00000000 
;DECREMENT COUNTER 

BNE FPLLOOP ;LOOP UNTIL ALL BIT PLANES ARE FULL. 
, 
; Set up a copper list at $20000. 

MOVE.L #$20000,Al ;POINT Al AT COPPER LIST DESTINATION 
LEA COPPERL,A2 ;POINT A2 AT COPPER LIST IMAGE 

CLOOP: MOVE.L (A2),(Al)+ ;MOVE A LONG WORD 
CMPI.L #$FFFFFFFE,(A2)+ ;CHECK FOR END OF COPPER LIST 
BNE CLOOP ;LOOP UNTIL ENTIRE COPPER LIST MOVED. 

, 
; Point copper at copper list 

MOVE.L #$20000,COPILCH(AO) 
MOVE.W COPJMPl(AO),DO 

;LOAD COPPER JUMP REGISTER 
;FORCE LOAD INTO COPPER P.C. 

; Start DMA 

MOVE.W #$8380,DMACON(AO) 
BRA ..... next stuff to do ..... 

;ENABLE BITPLANE AND COPPER DMA 

, 
; Copper list for six bit planes. Bit plane 1 is at $21000, 2 is at $23000, 
; 3 is at $25000, 4 is at $27000, 5 is at $29000, 6 is at $2Booo. 
, 
COPPERL: 

12 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$OOEO,$OOO2 
$OOE2,$ 1 000 
$OOE4,$OOO2 
$OOE6,$3ooo 
$OOE8,$OOO2 
$OOEA,$5000 
$OOEC,$OOO2 

;BIT PLANE 1 POINTER = $21000 

;BIT PLANE 2 POINTER = $23000 

;BIT PLANE 3 POINTER = $25000 

;BIT PLANE 4 POINTER = $27000 

October 16, 1985 



DC,W 
DC.W 
DC.W 
DC.W 
DC.W 
OC,W 

$OOEE,$7000 
$OOF ° ,$0002 
$OOF2,$9000 
$OOF 4,$0002 
$OOF6,$BOOO 
$FFFF,$FFFE 

;BIT PLANE 5 POINTER = $29000 

;BIT PLANE 6 POINTER = $2BOOO 

;WAIT FOR THE IMPOSSIBLE, I.E., QUIT 

Chapter 4: Sprite Hardware" 

Add the following example of a sprite data structure to page 4-9, under "Building the Data Struc­
ture". 

; The following data is the data structure for the spa.ceship sprite. It 
; will be located at Y = 65 and H = 128 on the screen. 

SPRITE: 
DC.W 
OC.W 
DC.W 
DC.W 
DC,W 
DC.W 
DC,W 

$6060,$7200 
$0990,$07EO 
$13C8,$OFFO 
$23C4,$lFF8 
$13C8,$OFFO 
$0990,$07EO 
$0000,$0000 

;YSTART, HSTART, YSTOP 
;FIRST PAIR OF DESCRIPTOR WORDS 

;END OF SPRITE DATA 

Add the following example to page 4-14, under section 4.3.1, "Selecting the Sprite DMA Channel 
and Setting the Pointers". 

Initializing sprite data pointers: 

; In this example the processor initializes the data pointers for sprite 0, 
; Normally, this is done by the copper, The sprite is at address $20000, 

SPROPTH EQU $DFF120 
SPROPTL EQU $DFF122 

MOYE,L #$20000,SPROPTH 

October 16, 1985 

;SPRITE 0 POINTER HIGH ORDER WORD 
;LOW ORDER WORD 

;WRITE $20000 TO SPRITE 0 POINTER 

13 



Add the following example to page 4-14 under Section 4.3, "Displaying a Sprite". 

How to display a sprite: 

, 
; This example displays the spaceship sprite at location V=65, H=128. 
, 
; The equates are the usual, so they're not repeated here. 
, 
; First, we set up a single bit plane. 

LEA CUSTOM,AO ;POINT AO AT CUSTOM CHIPS 
MOVE.W #$1200,BPLCONO(AO) ;1 BIT PLANE, COLOR IS ON 
MOVE.W #$OOOO,BPLIMOD(AO) ;MODULO = 0 
MOVE.W #$OOOO,BPLCONl(AO) ;HORIZONTAL SCROLL VALUE = 0 
MOVE.W #$OO24,BPLCON2(AO) ;SPRITES HAVE PRIORITY OVER PLA YFIELDS 
MOVE.W #$OO38,DDFSTRT(AO) ;SET DATA FETCH START 
MOVE.W #$OODO,DDFSTOP(AO) ;SET DATA FETCH STOP 
MOVE.W #$2C81,DIWSTRT(AO) ;SET DISPLAY WINDOW START 
MOVE.W #$F4Cl,DIWSTOP(AO) ;SET DISPLAY WINDOW STOP 

, 
; Set up color registers 

MOVE.W #$0008,COLOROO(AO) 
MOVE.W #$OOOO,COLOROl(AO) 
MOVE.W #$OFFO,COLORI7(AO) 
MOVE.W #$OOFF ,COLORI8(AO) 
MOVE.W #$OFOF,COLORI9(AO) 

;BACKGROUND COLOR = DARK BLUE 
;FOREGROUND COLOR = BLACK 
;COLOR 17 = YELLOW 
;COLOR 18 = CYAN 
;COLOR 19 = MAGENTA 

, 
; Move copper list to $20000 

MOVE.L #$20000,Al 
LEA COPPERL,A2 

CLOOP: MOVE.L (A2),(A1)+ 
CMP.L #$FFFFFFFE,(A2)+ 
BNE CLOOP 

, 
; Move sprite to $25000 

MOVE.L #$25000,Al 
LEA SPRITE,A2 

SPRLOOP: 
MOVE.L (A2),(Al)+ 
CMP. L #$()()()()()()()(, (A2)+ 

14 

;POINT Al AT COPPER LIST DESTINATION 
;POINT A2 AT COPPER LIST SOURCE 
;MOVE A LONG WORD 
;CHECK FOR END OF LIST 
;LOOP UNTIL ENTIRE LIST IS MOVED 

;POINT Al AT SPRITE DESTINATION 
;POINT A2 AT SPRITE SOURCE 

;MOVE A LONG WORD 
;CHECK FOR END OF SPRITE 

October 16, 1985 



BNE SPRLOOP ;LOOP UNTIL ENTIRE SPRITE IS MOVED 

, 
; Now we write a dummy sprite to $30000, since all eight sprites are activated 
; at the same time and we're only going to use one. The remaining sprites 
; will point to this dummy sprite data. 

MOVE.L #$00000000,$30000 ;WRITE IT 

; Point copper at copper list 

MOVE.L #$20000,CUSTOM+COPILC 
, 
; Fill bitplane with $FFFFFFFF 

MOVE.L #$21000,Al 
MOVE.W #2000,DO 

FLOOP: MOVE.L #$FFFFFFFF,(Al)+ 
SUBQ.W #1,DO 
BNE FLOOP 

; Start DMA 

;POINT Al AT BIT PLANE 
;2000 LONG WORDS = 8000 BYTES 
;MOVE A LONG WORD OF $FFFFFFFF 
;DECREMENT COUNTER 
;LOOP UNTIL BITPLANE IS FULL 

MOVE.W CUSTOM+COPJMPl,DO ;FORCE LOAD INTO COPPER 
; PROGRAM COUNTER 

MOVE.W #$83AO,(CUSTOM+DMACON) ;BITPLANE, COPPER, AND SPRITE DMA 
BRA .... next stuff to do ... 

; This is a copper list for one bit plane, and 8 sprites. The bit plane lives 
; at $21000. Sprite 0 lives at $25000; all others live at $30000 (the dummy 
; sprite). 

COPPERL: 
DC.W $OOEO,$0002 ;BIT PLANE 1 POINTER = $21000 
DC.W $OOE2,$I000 
DC.W $0120, $0002 ;SPRITE 0 POINTER = $25000 
DC.W $0122,$5000 
DC.W $0124,$0003 ;SPRITE 1 POINTER = $30000 
DC.W $0126,$0000 
DC.W $0128, $0003 ;SPRITE 2 POINTER = $30000 
DC.W $0 12A,$OOOO 
DC.W $012C,$0003 ;SPRITE 3 POINTER = $30000 
DC.W $012E,$0000 
DC.W $0130,$0003 ;SPRITE 4 POINTER = $30000 

October 16, 1985 15 



, 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$0132,$0000 
$0134,$0003 
$0136,$0000 
$0138,$0003 
$013A,$0000 
$013C,$OOO3 
$013E,$0000 
$FFFF,$FFFE 

;SPRITE 5 POINTER = $30000 

;SPRITE 6 POINTER = $30000 

;SPRITE 7 POINTER = $30000 

;END OF COPPER LIST 

; Sprite data for spaceship sprite. It appears on the screen at V =65 and 
; H=128. 

SPRITE: 
;VSTART, HSTART, VSTOP DC.W 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

$6060,$7200 
$0990,$07EO 
$13C8,$OFFO 
$23C4,$1FF8 
$13C8,$OFFO 
$0990,$07EO 
$0000,$0000 

;FIRST PAIR OF DESCRIPTOR WORDS 

;END OF SPRITE DATA 

Add the following example to page 4-15 under Section 4.4, "Moving a Sprite". 

16 October 16, 1985 



, 
; This is an example of moving a sprite. We bounce the spaceship around 
; on the screen, making it change direction whenever it reaches an edge. 
, 
; The sprite position data, containing VSTART and HSTART, lives in memory 
; at $25000. VSTOP is located at $25002. We write to these locations to 
; move the sprite. 
, 
; Once each frame, we increment (or decrement) VSTART by 1 and HSTART by 2. 
; Then we calculate VSTOP which will be the new VST ART + 6. 

MOVE.B 
MOVE.B 
MOVE.B 
MOVE.B 

#151,DO 
#194,D1 
#64,D2 
#44,D3 

;INITIALIZE HORIZONTAL COUNT 
;INITIALIZE VERTICAL COUNT 
;INITIALIZE HORIZONTAL POSITION 
;INITIALIZE VERTICAL POSITION 

MOVE.B #1,D4 
MOVE.B #1,D5 

;INITIALIZE HORIZONTAL INCREMENT VALUE 
;INITIALIZE VERTICAL INCREMENT VALUE 

, 
; Here we wait for the vertical blanking bit in INTREQR to turn on. This 
; ensures a glitch free display. 
, 
VLOOP: MOVE.W CUSTOM+INTREQR,D6 ;READ INTERRUPT REQUEST WORD 

AND.W #$0020,D6 ;MASK OFF ALL BUT VERTICAL BLANK BIT 
BEQ VLOOP ;LOOP UNTIL BIT IS A 1 
MOVE.W #$0020,CUSTOM+INTREQ ;VERTICAL BIT IS ON, SO RESET IT. 

ADD.B D4,D2 ;INCREMENT HORIZONTAL VALUE 
SUBQ.B #,DO ;DECREMENT HORIZONTAL COUNTER 
BNE L1 
MOVE.B #151,DO ;COUNT EXHAUSTED, RESET TO 151 
EOR.B #$FE,D4 ;NEGATE THE INCREMENT VALUE 

L1: MOVE.B D2,$25001 ;WRITE NEW HSTART VALUE TO SPRITE 
ADD.B D5,D3 ;INCREMENT VERTICAL VALUE 
SUBQ.B #1,Dl ;DECREMENT VERTICAL COUNTER 
BNE L2 
MOVE.B #194,D1 ;COUNT EXHAUSTED, RESET TO 194 
EOR.B #$FE,D5 ;l\EGATE THE INCREMENT VALUE 

L2: MOVE.B D3,$25000 ;WRITE NEW VSTART VALUE TO SPRITE 
MOVE.B D3,D6 ;MUST NOW CALCULATE NEW VSTOP 
ADD.B #6,D6 ; VSTOP AL WAYS VST ART +6 FOR SPACESHIP 
MOVE.B D6,$25002 ;WRITE NEW VSTOP TO SPRITE 
BRA VLOOP ;LOOP FOREVER. 

October 16, 1985 17 



Add the following example to page 4-18 under Section 4.6, "Reusing Sprite DMA Channels". 

, 
; This example displays the spaceship sprite and then redisplays it as a 
; different object. I'm not going to tell you what it is, that's a secret. 
, 
; Only the sprite data list is affected by this, so that's all we'll show 
; here. However, it looks best with the color registers set as follows: 

, 

LEA CUSTOM,AO 
MOVE.W #$OFOO,COLORI7(AO) 
MOVE.W #$OFFO,COLORI8(AO) 
MOVE.W #$OFFF,COLORI9(AO) 

; And now for the sprite data. 
, 
SPRITE: 

DC.W $6D60,$7200 
DC.W $0990,$07EO 
DC.W $13C8,$OFFO 
DC.W $23C4,$IFF8 
DC.W $13C8,$OFFO 
DC.W $0990,$07EO 

;COLOR 17 = RED 
;COLOR 18 = YELLOW 
;COLOR 19 = WHITE 

DC.W $8080,$8DOO ;VSTART, HSTART, VSTOP FOR NEW SPRITE 
DC.W $1818,$0000 
DC.W $7E7E,$OOOO 
DC.W $7FFE,$OOOO 
DC.W $FFFF,$2000 
DC.W $FFFF ,$2000 
DC.W $FFFF,$3000 
DC.W $FFFF ,$3000 
DC.W $7FFE,$1800 
DC.W $7FFE,$OCOO 
DC.W $3FFC,$OOOO 
DC.W $OFFO,$OOOO 
DC.W $03CO,$0000 
DC.W $0180, $0000 
DC.W $0000,$0000 ;END OF SPRITE DATA 

Add the following example to page 4-23 under section 4.8, "Attached Sprites". 

18 October 16, 1985 



, 
; The following data structure is for the six color spaceship made with two 
; attached sprites. 

SPRITEO: 

, 

DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

SPRITE1: 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 

October 16, 1985 

$6060,$7200 
$OC30,$OOOO 
$1818,$0420 
$342C,$OE70 
$1818,$0420 
$OC30,$OOOO 
$0000,$0000 

$6D60,$7280 
$07EO,$0000 
$OFFO,$OOOO 
$1FF8,$OOOO 
$OFFO,$OOOO 
$07EO,$OOOO 
$0000,$0000 

;VSTART = 65, HSTART = 128 
;FIRST COLOR DESCRIPTOR WORD 

;END OF SPRITE 0 

;SAVE AS SPRITE 0 EXCEPT AITACH BIT ON. 
;FIRST DESCRIPTOR WORD FOR SPRITE 1 

;END OF SPRITE 1 

19 



Addendum to Chapter 5: Audio Hardware 

Audio State Machine 

There is one audio state machine for each channel. See the attached state diagram. The machine 
has eight states and is clocked at the system clock frequency of 3.58 MHz. Three of the states are 
basically unused and just transfer back to the idle (000) state. One of the paths out of the idle 
state is designed for interrupt-driven operation (processor provides data), and the other path is' 
designed for DMA-driven operation (Agnus provides data). 

In interrupt-driven operation, transfer to the main loop (010,011 states) is immediate upon data 
written by the processor. In the 010 state the upper byte is output, and in the 011 state the lower 
byte is output. Transitions 010-011-010 ... occur whenever the period counter coun ts down to 
one. The period counter is reloaded at these transitions. As long as the in terrupt is cleared by the 
processor in time, the machine remains in the main loop. Otherwise, it enters the idle state. Inter­
rupts are generated on every word (011-010) transition. 

In DMA-driven operation, transit to the 001 state occurs and DMA requests are sent to Agnus as 
soon as DMA is turned on. Because of pipelining in Agnus, the first data word must be thrown 
away. State 101 is entered as soon as this word arrives. A request for the next data word has 
already gone out. When the data arrives, state 010 is entered and the main loop continues until the 
DMA is turned off. The length counter counts down once with each word that comes in. \Vhen it 
finishes, a DMA restart request goes to Agnus along with the regular DMA request. This tells 
Agnus to reset the pointer to the beginning of the table of data. Also, the length counter is 
reloaded and an interrupt request goes out soon after the length counter finishes (counts to one). 
The request goes out just as the last word of the waveform starts its output. 

DMA requests and restart requests are transferred to Agnus once each horizontal line, and the data 
comes back about 14 clock cycles (of 280ns) later. 

In attach mode, things run a little differently. Attach volume has requests the same as normal 
operation (on the 011---+010) transition). In attach period, a set of requests occurs on the 010-011 
transit\on. With both attach period and attach volume high, requests occur on both transitions. 

One of the consequences of the way this machine works is that if the sampling rate is set much 
higher than the normal max sampling rate C 29 kHz), the two samples in the buffer register will be 
repeated. If the filter on the Amiga is bypassed and the volume is set to max (40 hex), this feature 
can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in the memory 
map, with plus values in the even bytes, and minus values in the odd bytes. 

October 17, 1985 Audio 1 



The following list shows the symbols used in t.he state diagram. Capitals are external signals; small 
letters are local signals. 

AUDxON 

AUDxIP 

AUDxIR 

intreq1 

intreq2 

AUDxDAT 

AUDxDR 

AUDxDSR 

dmasen 

percntrld 

percount 

perfin 

lencntrld 

lencount 

lenfin 

volcntrld 

pbufld1 

pbufld2 

AUDxAV 

Audio 2 

DMA on "x" indicates channel number (signal from DMACON). 

Audio interrupt pending (input to channel from interrupt circuitry) 

Audio interrupt request (output from channel to interrupt circuitry) 

Interrupt request that combines with intreq2 to form AUDxIR 

Prepare for interrupt request. Request comes out after the next 011-010 
transition in normal operation. 

Audio data load signal. Loads 16 bits of data to audio channel. 

Audio DMA request to Agnus for one word of data. 

Audio DMA request to Agnus to reset pointer to start of block 

Restart request enable. 

Reload period counter from backup latch typically written by processor with 
AUDxPER (can also be written by attach mode). 

Count period counter down one latch. 

Period counter finished (value = 1). 

Reload length counter from backup latch. 

Count length counter down one notch. 

Length counter finished (value = 1). 

Reload volume counter from backup latch. 

Load output buffer from holding latch written to by AUDxDAT. 

Like pbufldl, but only during 010-011 with attach period. 

Attach volume. Send data to volume latch of next channel instead of to D-A 
converter. 

October 17, 1985 



AUDxAP 

penhi 

napnav 

sq2,1,O 

October 17,1985 

Attach period. Send data to period latch of next channel instead of to the 
D-A converter. 

Enable the high 8 bits of data to go to the D-A converter. 

/ AUDxA V * / AUDxAP + AUDxAV - no attach stuff or else attach volume. 
Condition for normal DMA and interrupt requests. 

The name of the state flip-flops, MSB to LSB. 

Audio 3 



S()2 S(,)l SQO 

• ("OTE' 
I 
I 

, , 
\ 

(AUDxON) \ 

-----~ [lencntrld.AUDxDR.dmasen] 
[percntrldJ 

indicates action on condition 

indicates cause of state transition 

~6v 
r.; c:t.l 

except for this case, drnasen} 
is true only when LENFIN=l. 
also, AUDxDSR=AUDxDR-drnasen 

-i~+.t~ 

~ 
~Ol=t<~ -" [percount] 

~ UOxDR 1! percntrld 'I 52 napnav • pbutldl.) 

.~ 
#. f "" ~,o [penhi] 

, ",< if ~ 
It 6' I .... 

~t!! l" ~~. h 
.1",,' 'P.... ....., fi '2' 

~ It l' / &7;':' il f <~... <:' u '§' ~ ,.. ~ 
<:,'" ~ It v ' -S 

",'" '" <,P,§)? Itlt A-"~~ ",0" I ~~ b} 0 "'-~~¢<.; 'It "'of' ..,. I ~ 
't '$"":; ... ~<:,Itlt I ~"tl ~".~....,<:, y, .... . ~ ~ ... ~ ~ ~ ....,... ",'" 

./ !J ~I' ~ I 
~,~. j~;>"'" A? 

, I .. p'/ :lo ~" 
... <tP;.;J 

o"",b) ... <:,<i~ .r ....... ~ ..... ~ ... 
,:y ..... ~ 

~ 

(AUDXON • AUDxDAT) (AUDxON • AUDxDAT) 

[AUDxDRJ 

(AUDxON) 

[percountJ 



Addendum to Chapter 6: Blitter Hardware 

Blitter Operations and System DMA 

This section explains how the operation of the blitter affects the performance of the rest of the sys­
tem. The section covers the following topics: 

o Blitter direct memory access (DMA) priority 

o DMA time slot allocation 

o Bus sharing between the 68000 and the bit-plane operations of the blitter and Copper. 

o Effects of different playfield display sizes on sprite display 

o Effects of blitter operation on the 68000's access to memory 

1. Blitter DMA Priority 

The blitter performs its various data fetch, modify, and store operations through a DMA sequence. 
It shares memory access with other devices in the system. In a system like the Amiga that uses a 
lot of DMA there must be some control over the priority of the accessing devices. A device's prior­
ity indicates its importance relative to other devices. The list below shows the order of priority for 
DMA operations, from highest priority to lowest. 

o Disk D~1A-handles communications with the disk 

o Audio DMA-produces the sound 

oBit-plane DMA--produces the static display 

o Sprite DMA-produces the dynamic display 

o Copper-display-synchronized coprocessor 

o Blitter-data copying and line drawing device 

October 17, 1985 Bhtter 1 



o 68000 microprocessor-central processor 

The first four devices in the list all have the same pnonty. If a disk DMA cycle is missed, some 
disk data is lost. If a.n audio cycle is missed, noise is added to the audio output. In displays (bit­
plane or sprite), there may be flashes or other in terruptions on-screen. None of these situations are 
desirable and are avoided by making all of these devices priority 1. Under certain circumstances , 
however, the bit-plane DMA will take priority over sprite DMA. 

Each of the first four devices in the list is specifically allocated a group of time slots during each 
horizontal scan of the video beam. If the device does not specifically request to use one of its allo­
cated time slots, the slot is open for other uses. 

The Copper has the next priority because it is designed as a display-synchronized coprocessor. It 
has to perform its operations at the same time during each display frame to remain synchronized 
with the display beam sweeping across the screen. 

At the bottom of the list come the blitter and the 68000, in that order. The blitter is optimized for 
data copying, modifying, and line drawing operations. It performs these kinds of operations much 
faster than the 68000 could perform them. It is, therefore, given a higher priority than the proces­
sor so that it can do its job in the most efficient manner. 

2. DMA Time Slot Allocation 

During a horizontal scan line (about 63 microseconds), there are 227.5 "color-clocks". A color clock 
is the basic timing interval for memory access within this system and amounts to approximately 
280 ns. 

This interval of 227.5 color clocks includes both display time and non-display time on a horizontal 
line. Of this total time, there are 226 possible memory access cycles at 280 ns each to be allocated 
to the various devices that need memory access. 

Each of the first four time slots in the list below is assigned at one of the odd-numbered slots avail­
able. This assignment was made to allow maximum bus utilization by the 68000 (as shown in the 
section titled "Bit-Plane/Processor Bus Sharing"). The even-numbered slots can be used by the 
Copper, blitter, or 68000. 

Here is the time-slot allocation per horizon tal line: 

o 4 cycles for memory refresh 

Blitter 2 October 17, 1985 



o 3 cycles for disk DMA 

o 4 cycles for audio DMA (2 bytes per channel) 

o 16 cycles for sprite DMA (2 words per channel) 

o 80 cycles for bit-plane DMA (even and/or odd according to the display size used) 

The figures on the following pages show one complete horizontal scan line and how the clock cycles 
are allocated. 

October 17, 1985 Blitter 3 



-
DMA Time Slot Allocation I Horizontal line 

D Slots available for BUtter" ~r" am 68000 t 
$8 

t These operatlcrtS tilly take slots if the associatBd cperatlm is being performed 

t«Ite: ower Data f"'tNe lnst.rt£t1ms fe(J.Ilre 4 slots. 
~ wait Irlstn.ctlms req..l1re 6 slots. 

# lhls cycle 0 ~ to exclooe ale of the rrarory refresh Cycles. 
This Is rot the case. 

.Actual system I'lardWare c:e I a ids certain specIf1c values fOr data fetch 
start Sld display start. lllerefOre ttlls tlmlrg chart has been -ad)Jsted" 
to match ttose ~ts.. 

$ Indicates a hex number. 

Blitter 4 

(CD1tlrues 
belOW) 

October 17, 1985 



DMA Time Slot Allocation I Horizontal line (cont1d) 

I 

~ 
Spritel:MA , 

(2 wordsIda .Iel) 

stq:J installed here. Datafetch ca nrt begin Sly 
k'nn1l'Vn' ttBl cyclef18. ThIs allows tre user to Wipe rut 

........ --iL t of the sprites If desired (by def1nlrg m extra-w1oo 
la rut leaves too ado CIld ctlSS< a'1A lI'ltru::hed.. 

(cartirues 
belO'W) 

-2 

, These ~Ums CI1ly take slots If the 
associated ~rat1oo Is befry;J perfomm 

..sPRITE bMA TIME. 

-1 

t:t±:::tt±::lt:::ttt:~ (cootlr1.Es 

al tte 

~~.tmmmm& ••• ; next paJe) 

-2 

Sane sprites are Lnassmle If the display starts early 
rue to en extra wonJ:s) associated wltn a wi(le display 
cnl/or ~r1zootal scrol11nJ. 11 tills case, tile D1t~cre 
Ct1A steals tile cycles nonnally allocated to tne 
sprites, as lllustrated abOVe. 

320 moos Blt-Plale Ct-1A. by plene t 
64D rrnde Blt-Plale CMA, by pl~ , 

October 17, 1985 
Blitter 5 



DtAA Time Slot Allocation I Horizontal line (coot'd) 
Data fetch start Cal mly be specified 
at even rrult1p1es Of 8 Clocks. Thls Is 
the clock posttloo wtddl stoJId be 
speclned for the nonnal width display_ 
(20 word fetdl for 320 pIxel 40 word 
fetch for 640 xel width 

1 

~ [IF Ff , , , 
4 ~6~ t-2- r-3 -'5-

ti 4'$ 2 t'3 

~ ............... 
fit 

-1 I 1 

r-
l-

1 

1 

Decimal numbers above 

~~a 
-

Five clocks must occur before the data fetched for a 
particular position can appear on-screen. For example, 
if data fetch start is $38, data will not be available for 
display until clock number $45. It is available at $45 
because display processing does not begin un til .aJ.l. of 

. '. 

2 

EEE FF: 
r-4- 6 2 

~2 3 1 ~4il 

~ tit 
2 

EE 
3 5 

2 3 

~ 

3 

r-r-
r-r-

0- 1-

.. 1 

(cmt1nJes 
bela..) 

the illustrations represent low-
resolution cycles. DeCimal numbers below th II e . lustrat"ons 

EE 
4 

;4il 2 

~ 

Blitter 6 

represent high-resolution cycles. Negative numbers indi­
cate the start of data fetch for displays that are larger 
than normal. 

Decimal numbers inside the illustrations represent the bit­
plane for which the data is being fetched. 

3 4 

~ EEE Tf ~ IT 
~6-r- 2- 3- r-5- 1 r- 4- 6 ~2- 3 t-5-r-

3 1 [4; 2 3' 1 ~4~ 2 3 1_, f4il 2 3 

tttt 1m ~ 

4 5 6 7 

58 

rGmal Res.. ... -.a. 

CYa....ES 
5-19 sane 

1-
8S cycle 4 

1 

~ HC1l Res.. ..... - p 

CYa..ES 
8-"31 are 
as cycle 1 I 

October 17, 1985 



DMA Time Slot Allocation I Horizontal line (cont-d) 

foo 
20 

Ff~ FF Fff f T 

-4- 6 2 3 5 

~4~ 2 3 1 ~'4t 2 P-3 

t;ttt m$ ~ 

38 I 39 

October 17, 1985 

A hardware data-fetch stqJ has been lnstalled 
at c:a.ntf'08 S? ~ to prevent the bit-plme I data-fetch fnm ove~ tte time aBated + for the meroory retresh or disK CMA. 

I- I-

~~ f- f-

Ff 
-1- 4 """6- 2 
v1 1f4~ ;12 3 1 

~ tm tm 
40 

21 

Eff 
I I 

f-3-

~4a 2 

mi 

41 

-$ EO 

H-
l'"'+-

5 1 

3 1 

m 

Em of 

t-tlrizootal 

Une oata 
fetch Cycle 

Blitter 7 



3. Bit-Plane/Processor Bus Sharing 

The memory access cycles are interleaved to allow the 68000 processor to operate at close to its 
maximum speed. The 68000 spends about half of a complete processor instruction time doing inter­
nal operations and the other half accessing memory. Therefore, if the 68000 is given each alternate 
280 ns memory cycle, it will appear to the 68000 that it has the memory all of the time and it will 
run at full speed. 

Not all of the 68000 instructions allow this even-cycle allocation to mate perfectly all of the time. If 
it doesn't, the processor will have to wait until its next memory slot is available before continuing. 
Most 68000 instructions do not cause cycles to be missed, so it will run at full speed most of the 
time if there is no blitter DMA interference. 

The following figure illustrates the normal cycle of the 68000. 

< ------------ average 68000 cycle ------------- > 

< ----- in ternal----- > 
operation 

portion 

odd cycle 
number, assigned 
to other devices 

< ------memory------ > 
access 

portion 

even cycle, 
possibly used 
by 68000 if it 
requested it 

If there are 4 or less low-resolution bit-planes, then the 68000 can be granted each alternate 
memory cycle (if it is ready to ask for the cycle and is the highest priority item at the time). How­
ever, if there are more than 4 bit-planes, the bit-plane DMA will begin to steal cycles from the 
68000 during the display time. 

The following figure illustrates the time slots (each 280 ns) that will be taken by bit-plane DMA 
during the display time (160 slots out of 227 for each horizontal line for a 32~pixel, low-resolution 
display) for a 6-bit-plane display. As you will see from the figure, the bit-plane steals 50% of the 
open slots that the processor might have used if there were only 4 bit-planes displayed. 

Blitter 8 October 17, 1985 



T - timing cycle - T+7 

+ * + * 
6 2 3 5 1 

+ an open memory slot that the 68000 might use 

* a slot that cannot be used by the 68000 due to added bit-plane DMA 

If you specify 4 high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all of the available 
memory time slots during the display time just to grab the 40 data words for each line of the 4 bit­
planes (40 X 4 = 160 time slots). This effectively locks out the 68000 (as well as the blitter or 
Copper) from any memory access during the actual period of the display. 

The following figure shows how the time slots are allocated for high-resolution bit-planes. 

T - timing cycle - T+7 

4 2 3 1 4 2 3 1 

4. Effects of Different Display Sizes 

The normal, full-sized screen consists of 320 pixels for low-resolution mode or 640 pixels for high­
resolution mode. This means that either 20 or 40 words will be fetched during the horizontal line 
display time. 

When you want to scroll either or both playfields, one extra data word per line must be fetched 
from the memory. This extra word provides the pixels that will show on-screen as scrolling occurs. 

Screen size is adjustable (see the descriptions of DIWSTRT, DIWSTOP, and DDFSTRT in Chapter 
3, "Play field Hardware". Bit-plane DMA takes precedence over sprite DMA. Therefore, larger 
screens may block out one or more of the highest-numbered sprites, especially with scrolling. 

October 17, 1985 Blitter 9 



5. Effects of Blitter Operation 

As mentioned above, the blitter normally has a higher priority than the processor for DMA cycles. 
There are certain cases, however, where the blitter and the 68000 will share memory cycles. The 
blitter uses every cycle. If given the chance, it would steal every available memory cycle. Display, 
disk, and audio DMA take precedence, so the blitter cannot block them from bus access. Depend­
ing on the state of the setting of the blitter DMA mode bit, commonly referred to as the "blitter­
nasty" bit, the processor may not be so lucky. This bit is called BLTPRI (for "blitter has priority 
over processor") and is in register DMACONW. 

If BLTPRI is a 1, the blitter will hang on to the bus for every available memory cycle. In the non­
display time (horizontal blanking interval), this could potentially be every single cycle. Even in 
blitter-nasty mode, there may be cases when you can grant a few cycles to the 68000. Even though 
the blitter would seem to be acting as a bus-hog, there are data windows that occur during certain 
blitter operations when the blitter is doing something internally rather than on the bus. These 
cycles are part of the basic operating sequence of the blitter itself. 

If BLTPRI is a 0, the DMA manager will monitor the 68000 cycle requests. If the 68000 IS 

unsatisfied for three consecutive memory cycles, the blitter will release the bus for 1 cycle. 

The DMA manager knows when these cycles of the blitter are about to occur and will release them 
to the 68000 if it is waiting for memory access. Blitter-nasty mode doesn't prevent the 68000 from 
executing instructions, but it surely slows it down. 

Table 1 shows all of the possible operating modes of the blitter along with the distribution of the 
memory access windows within its operation. The table shows three words of a blit (the first, any 
middle, and the last) and how the bus activity occurs for this sequence. The following conventions 
are used: 

o A, B, and C stand for the sources. 

o D stands for the destination. 

o AO is the first memory word fetch; Al is any middle memory word fetch; A2 is the last 
memory word fetch. 

o An asterisk (*) following a source name indicates an internal cycle used for that source; the 
cycle does no data fetch. For these functions, the cycle fetch columns have blank spaces 
that indicate open memory cycles where some other device can access the bus. Thus func­
tions such as item 3, ABC*- > D can be read as AB- > D. 

Blitter 10 October 17, 1985 



0 Z stands for a no-data.-stored case (no destination). 

0 (C)stand.s for fill and (n) stands Cor no-fill, iC the use of fill makes a difference. 

Table 1: Blitter Memory Bus Activity 

Operation Type Memory Cycle Oata Fetch or Oata Store Usage 

l. ABC ---0 AO BO CO Al Bl Cl 00 A2 B2 C2 01 02 
2. ABC ---Z AO BO CO Al Bl Cl A2 B2 C2 
3. A B C*---O(f) AO BO Al Bl 00 A2 B2 01 02 
4. A B C*---O(n) AO BO Al Bl DO A2 B2 01 02 
5. A B C*--Z AO BO Al B1 A2 B2 
6. A C ---0 AO CO Al C1 00 A2 C2 01 02 
7. AC--Z AO CO Al Cl A2 C2 
8. A C* ---O(f) AO Al DO A2 01 02 
9. A C* ---O(n) AO Al DO A2 01 02 
10. A C* ---Z AO Al A2 
11. A* B C ---0 BO CO Bl Cl 00 B2 C2 01 02 
12. A* B C ---Z BO CO Bl C1 B2 C2 
13. A* B C* ---:O(f) BO Bl 00 B2 01 02 
14. A* B C* ---O(n) BO Bl 00 B2 01 02 
15. A* B C* ---Z BO B1 B2 
16 .. A* C ---0 CO C1 00 C2 01 02 
17. A* C ---Z CO C1 C2 
18. A* C* ---O(f) DO 01 02 
19. A* C* ---O(n) 00 01 02 
20. A* C* ---Z 
2l. LINE ORA WING 

MOOE CO * 00 C1 * 01 C2 * 02 

Notes for Table 1: 

a. Function 9 is a block move only when both shift values are o. Use function 14 if either 
shift value is nonzero. 

b. Function 10 is a zero test; function 19 is a constant fill. 

c. Function 21 is for line drawing. The cycles marked with * are not used by the blitter but 
are not released to the system. Sorry. 

October 17, 1985 Blitter 11 



d. Functions 11, 13, 14, and 16 have special restraints when source and data overlap. During 
some priority overrides, the order or data fetch and store will be reversed. When using 
these functions with overlapping source and data, the overlap must be greater than two 
words. Otherwise, you risk overwriting your source data. 

Blitter 12 October 17, 1985 



Oct 15 17: 15 1985 AppendixJ Page 1 

APPENDIX F Amiga Hardware Manual 

This appen~x contains information about the 8520 peripheral interface 
adapters . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
QUI CK REFERENCE 

BRIEF ADDRESS MAP FOR 8520'S 

The system hardware selects the 8520's (aka CIA's) when the upper 
three address bits are 101. 

Furthermore, CIM is selected when Al2 is low, Al3 high; CIAB is 
selected when Al2 is high, Al3 low. 

You can use either byte or word addresses to access the 8520's. 
For byte access (seems to be the usual case), AO must be 0 for CIM, 
1 for CIAB. For word access, CIAB communicates on data bits 15-8; 
CIM communicates on data bits 7-0. (AO is always 0 for word access, 
naturally) . 

Address bits All, AlO, A9, and A8 are used to specify which of the 16 
internal registers you want to access. This is indicated by "r" in 
the address. 

All other bits are don't cares. So, CIM is selected by the following 
binary address: 101x xxxx xx01 rrrr xxxx xxxO. 
eIAB address: 101x xxxx xx10 rrrr xxxx xxxl 

With future expansion in mind, we have decided on the following 
addresses: CIM = BFErOl; CIAB = BFDrOO. 

eIAB Address Map 

Byte 
Address 

Brnooo 
Brnl00 
Brn200 
BFD300 
BFD400 
BFD500 
BFD600 
BFD700 
BFD800 
BFD900 
BFDAOO 
BrnBOO 
BFDCOO 
BFDDOO 
BFDEOO 
BFDFOO 

Register 
Name 

Data bits 
7 6 5 4 3 2 

/DTR /RTS JCD jC'I'S /DSR SEL 
/MI'R jSEL3 jSEL2 jSELl jSELO JSIDE 
ddr for port A (BFOOOO); 1 = output 
ddr for port B (BFD100); 1 = output 
CIAB Timer A low byte 
CIAB Timer A high byte 
CIAB Timer B low byte 

1 o 

POlIT' BUSY 
DIR jSTEP 
(set to OxCO) 
(set to OxFF) 

CIAB Timer B high byte 
Horizontal sync event counter 
Horizontal sync event counter 
Horizontal sync event counter 
not used 

bits 7-0 
bits 15-8 
bits 23-16 

CIAB Serial data register 
CIAB Interrupt control register 
CIAB Control register A 
CIAB Control register B 



Oct 15 17: 15 1985 AppendiX-F Page 2 

Note: CIAB can generate INT6. 

CIM Address Map 

Byte 
Address 

Register 
Name 7 6 5 

Data bits 
4 3 2 1 o 

------------------------------------------------------------------------
BEE001 
BEE101 
BEE201 
BFE301 
BFE401 
BFE501 
BFE601 
BFE701 
BFE801 
BEE901 
BFEA01 
BFEB01 
BFEC01 
BEED01 
BFEE01 
BFEF01 

/FIR1 /FIRO /RDY fIXO jWPRO /CHNG /LED OVL 
Parallel port 
ddr for port A (BEE001); 1 = output (Set to Ox03) 
ddr for port B (BEE101); 1 = output (Can be in or out) 
CIM Timer A low byte 
CIM Timer A high byte 
CIM Timer B low byte 
CIM Timer B high byte 
60 HZ event counter bits 7-0 
60 HZ event counter bits 15-8 
60 HZ event counter bits 23-16 
not used 
CIM Serial data register (keyboard) 
CIM Interrupt control register 
CIM Control register A 
ClM Control register B 

Note: CIM can generate INI'2. 

************************************************************************ 

INTERFACE SIGNALS 

Clock Input 

The 02 clock is a TI'L compatible input used for internal 
device operation and as a timing reference for communicating 
wi th the system data bus. 

CS - Chip Select Input 

The CS input controls the activity of the 8520. A low level on 
CS while 02 is high causes the device to respond to signals on 
the R/W and address (RS) lines. A high on CS prevents these lines 
from controlling the 8520. The CS line is normally activated 
(low) at 02 by the appropriate address combination. 

R/W - Read/Write Input 

The R/W signal is normally supplied by the microprocessor and controls 
the direction of data transfers of the 8520. A high on R/W indicates 
a read (data transfer out of the 8520), while a low indicates a 
write (data transfer into the 8520) . 



Oct 15 17: 15 1985 AppendixJ" Page 3 

RS3-RSO - Address Inputs 

The address inputs select the internal registers as described by 
the Register Map. 

DB7-DBO - Data Bus Inputs/Outputs 
---------------------------------

The eight data bus output pins transfer information between the 8520 
and the system data bus. These pins are high 1Dpedance inputs unless 
CS is low and R/W and 02 are high, to read the device. During this 
read, the data bus output buffers are enabled, driving the data from 
the selected register onto the system data bus. 

IRQ - Interrupt Request Output 
------------------------------
IRQ is an open drain output normally connected to the processor 
interrupt input. An external pull-up resistor holds the signal 
high, allowing multiple IRQ outputs to be connected together. The 
IRQ output is normally off (high impedance) and is activated low 
as indicated in the functional description. 

RES - Reset Input 

A low on the RES pin resets all internal registers. The port pins 
are set as inputs and port registers to zero (although a read of 
the ports will return all highs because of passive pull-ups) . 
the timer control registers are set to zero and the timer latches 
to all ones. All other registers are reset to zero. 

REGISTER MAP 

Each 8520 has 16 registers which you may read or write. Here is the 
list 0 f registers and the access address 0 f each wi thin the memory 
space dedicated to the 8520: 

RS3 
o 
o 
o 
o 
o 
o 
o 
o 
1 
1 
1 
1 

RS2 
o 
o 
o 
o 
1 
1 
1 
1 
o 
o 
o 
o 

RS1 
o 
o 
1 
1 
o 
o 
1 
1 
o 
o 
1 
1 

RSO 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 
o 
1 

Register 
# (hex) 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 

NAME 
PRA 
PRB 
DDRA 
DDRB 
TALO 
TAlII 
TBLO 
TBHI 

MEANING 
Peripheral Data Register A 
Peripheral Data Register B 
Data Direction Register A 
Direction Register B 
Timer A Low register 
Timer A ~gh register 
Timer B Low register 
Timer B ~gh register 
Event LSB 
Event 8-15 
Event MSB 
No Connect 



Oct 15 17: 15 1985 Appendix......F Page 4 

1 
1 
1 
1 

1 
1 
1 
1 

o 
o 
1 
1 

o 
1 
o 
i 

C 
D 
E 
E' 

SDR 
ICR 
CRA 
CRB 

Serial Data Register 
Interrupt Control Register 
Control Register A 
Control Register B 

------------------------------------------------------------------
SOFTWARE NOTE: 

The operating system kernel has already allocated the 
use of all 4 of the timers TA and TB in the 8520' s. 
If you are running under control of the system exec, 
be aware of the following allocation of system resources: 

8520A, timer A -- Commodore serial communications 
(if no serial comm happening, timer 

becomes available) . 
8520A, timer B -~ Video beam follower 

(used when synchronizing the blitter 
device to the video beam, see the 
description ot QBSBli t in the system 
software manual). I f no beam-sync' ed 
blits are in process, this timer 
will be available. 

8520B, timer A Keyboard (used continuously, whenever 
system EXEC is in control) . 

8520B, timer B Virtual timer device (used continuously, 
whenever system EXEC is in control, 
used for task switching/interrupts) . 

------------------------------------------------------------------

REG! STER NAMES 

The names of the registers within the 8520's are as follows. The address 
at which each is to be accessed is given here in this list. 

Address for: 

8520-A 8520-B I NAME I EXPLANATION 

BFEOOI 
BEE101 
BEE201 
BEE301 
BEE401 
BEE501 
BFE601 
BE'E701 
BEE801 
BEE901 

BFDOOO 
BFD100 
BFD200 
BFD300 
BFD400 
BFD500 
BE'D600 
BE'D700 
BFD800 
BFD900 

PRA 
PRB 
DDRB 
DDRA 
TALO 
TAHI 
TBLO 
TBHI 

(write)/(read mode) 

Peripheral Data Register A 
Peripheral Data Register B 
Data Direction Register "A" 
Data Direction Register "B" 
TIMER A Low Register 
TIMER A ~gh Register 
TIMER B Low Register 
TIMER B ~gh Register 
Event LSB 
Event 8 - 15 



Oct 15 17: 15 1985 Appendix....F Page 5 

BFEA01 
BFEB01 
BFEC01 
BFED01 
BFEE01 
BFEF01 

BFDAOO 
BFDBOO 
BFDCOO 
BFDDOO-
BFDEOO 
BFDFOO 

SDR 
ICR. 
CRA 
CRB 

Event MSB 
No connect 
Serial Data Register 
Interrupt Control Register 
Control Register A 
Control Register B 

REGISTER FUNCTIONAL DESCRIPTION: 
---------.----------------------
I/O PORTS (PRA, PRB, DDRA, DDRB) 

Ports A and B each consist of an 8-bit Peripheral Data Register (PR) 
and an 8-bit data direction register (nOR). I f a bit in the ODR is 
set to a 1, the corresponding bit position in the PR becomes an 
output. I f a ODR bit is set to a 0, the corresponding PR bit is 
defined as an input. 

When you READ a PR register, you read the actual current state of 
the I/O pins (PAO-PA7, PBO-PB7, regardless of whether you have set 
them to be inputs or outputs. 

Ports A and B have passive pull-up devices as well as active 
pull-ups, providing both CMOS and TTL compatibility. Both ports 
have two TTL load drive capability. 

In addition to their normal I/O operations, ports PB6 and PB7 also 
provide timer output functions. 

HANDSHAKING 

Handshaking occurs on data transfers using the PC output pin and 
the FLAG input pin. PC will go Iowan the third cycle after a 
Port B access. This signal can be used to indicate "data ready" 
at PORT B or "data accepted" from PORT B. Handshaking on 
l6-bit data transfers (using both ports A and B) is possible by 
always reading or writing PORT A first. FLAG is a negative edge 
sensi ti ve input which can be used for receiving the PC output from 
another 8520, or as a general purpose interrupt input. Any negative 
transition on FLAG will set the FLAG interrupt bit. 

REG NAME D7 D6 05 D4 D3 D2 D1 DO 

INTERVAL 

0 PRA PA7 PA6 PAS PA4 PA3 PA2 PAl PAO 
1 PRB PB7 PB6 PBS PB4 PB3 PB2 PB1 PBO 
2 DORA DPA7 OPA6 DPAS DPA4 DPA3 DPA2 OPAl DPAO 
3 OORB OPB7 DPB6 DPB5 OPB4 DPB3 DPB2 DPBl OPBO 

TIMERS (TIMER A, TIMER B) 

Each interval timer consists of a 16-bit read-only Timer Counter 
and a 16-bit write-only Timer Latch. Data written to the timer 
is latched into the Timer Latch, while data read from the timer 



Oct 15 17: 15 1985 AppendixJ' Page 6 

is the present contents of the Timer Counter. 

The latch is also called a presca1ar in that it represents the 
countdown value which must be counted before the t~er reaches 
an underflow (no more counts) condition. This latch (prescalar) 
value is a divider of the input clocking frequency. 

The timers can be used independently, or linked for extended. 
operations. Various t~er operating modes allow generation of 
long time delays, variable width pulses, pulse trains, and 
variable frequency waveforms. Utilizing the CNT input, the 
timers can count external pulses or measure frequency, pulse 
width, and delay times of external signals. 

Each timer has an associated.control register, providing independent 
control over each of the following functions: 

START/STOP 

A control bit allows the timer to be started or stopped 
by the microprocessor at any t~e. 

PB On/Off 

A control bit allows the timer output to appear on a PORT B 
output line (PB6 for timer A and PB7 for timer B). This 
function over-rides the DDRB control bit and forces the 
appropriate PB line to become an output. 

TogglejPulse 

A control bit selects the output applied to PORT B while 
the PB On/Off bit is ON. On every timer underflow, the output 
can either toggle or generate a single positive pulse of one 
cycle duration. The Toggle output is set high whenever the 
timer is started, and set low by RES. 

One-Shot/Continuous 

A control bit selects either timer mode. In one-shot mode, 
the timer will count down from the latched value to zero, 
generate an interrupt, reload the latched value, then stop. 
In continuous mode, the timer will count down from the latched 
value to zero, generate an interrupt, reload the latched. value, 
and repeat the procedure continuously. 

In one-shot mode, a write to Timer Hlgh (register 5 for 
Timer A, register 7 for Timer B) will transfer the timer 
latch to the counter and initiate counting regardless of 
the start bit. 

Force Load 



Oct 15 17: 15 1985 AppendixJ' Page 7 

A strobe bit allows the timer latch to be loaded into the 
timer counter at any time, whether the timer is rurming 
or not. 

INPUT MODES 

Control bits allow selection of the clock used to decrement the 
timer. TIMER A can count 02 clock pulses or external pulses 
applied to the CNT pin. TIMER B can count 02 pulses, external 
CNT pulses, TIMER A underflow pulses, or TIMER A underflow pulses 
while the CNT pin is held high. 

The timer latch is loaded into the timer on any timer under flow, 
on a force load, or following a write to the high byte of the pre­
scalar ~tle the timer is stopped. If the timer is rurming, a 
write to the high byte will load the timer latch, but not reload 
the counter. 

BIT NAMES on READ-register 

REG NAME D7 06 05 D4 03 02 01 00 

4 TALO TAL 7 TAL6 TAL5 TAL4 TAL3 TAL2 TALl TAL 0 
5 TAm TAl17 TAH6 TAHS TAH4 TAH3 TAH2 TAm. TAHO 
6 TBLO TBL 7 TBL6 TBL5 TBL4 TBL3 TBL2 TBLI TBLO 
7 TBHI TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBHl TBHO 

BIT NAMES on WRITE-register 

REG NAME 07 06 05 D4 03 02 01 00 

4 TALO PAL7 PAL 6 PALSPAL4PAL3 PAL 2 PALl PALO 
5 TAHI PAH7 P.AH6 P.AH5 P.AH4 P.AH3 P.AH2 PAID. PARO 
6 TBLO PBL7 PBL6 PBL5 PBL4 PBL3 PBL2 PBLI PBLO 
7 TBHI PBH7 PBH6 PBHS PBH4 PBH3 PBH2 PBHl PBHO 

TIME OF OAY CLOCK 

TOO cons1sts of a 24-bit binary counter. Positive edge transitions on 
this pin cause the binary counter to increment. The TOD pin has a 
passive pull-up on it. 

A programmable ALARM is provided for generating an interrupt at a 
desired time. The ALARM registers are located at the same addresses 
as the corresponding TOD registers. Access to the ALARM is governed 
by a Control Register bit. The ALARM is write-only: any read of a 
TOO address will read time regardless of the state of the ALARM access bit. 



Oct 15 17: 15 1985 Appendix.J" Page 8 

A specific sequence of events must be followed for proper setting and 
reading of TOO. _ TOO is automatically stopped whenever a write to the 
register occurs. The clock will not start again until after a 
write to the LSB Event Register. This assures that TOD will always 
start at the desired time. 

Since a carry from one stage to the next can occur at any time 
with respect to a read operation, a latching function is included 
to keep all Time Of Day information constant during a read sequence. 
All TOD registers latch on a read of MSB Event and remain latched 
until after a read of LSB Event. The TOD clock continues to count 
when the output registers are latched. If only one register is to be 
read, there is no carry problem. and the register can be read Iton the fly" 
provided that any read of MSB Event is followed by a read of LSB Event 
to disable the latching. 

BIT NAMES for WRITE TIME/ALARM or READ TIME 

REG NAME 

8 
9 
A 

LSB Event 
Event 8-15 
MSB Event 

WRITE 
GRB7 = 0 
dB7 = 1 ALARM 

SERIAL PORT (SDR) 

E7 
E15 
E23 

E6 
E14 
E22 

E5 
E13 
E21 

E4 
E12 
E20 

E3 
Ell 
E19 

E2 
E10 
E18 

E1 
E9 
E17 

EO 
E8 
E16 

The serial port is a buffered, 8-bit synchronous shift register. 
A control bit selects input or output mode. 

INPUI' MODE 

In input mode, data on the SF pin is shifted into the shift register 
on the rising edge of the signal applied to the CNT pin. After 8 CNT 
pulses, the data in the shift register is dumped into the Serial 
Data Register and an interrupt is generated. 

OUTPUT MODE 

In the output mode, TIMER A is used as the baud rate generator. Data 
is shifted out on the SF pin at 1/2 the underflow rate of TIMER A. The 
maximum baud rate possible is 02 divided by 4, but the maximum 
usable baud rate will be determined by line loading and the speed at 



Oct 15 17: 15 1985 AppendixJ' Page 9 

which the receiver responds to input data. 

To begin transmission, you must first set up TIMER A in continuous mode, 
and start the timer. Transmission will start following a write to the 
Serial Data Register. The clock signal derived from TIMER A appears as 
an output on the CNT pin. The data in the Serial Data Register will be 
loaded into the shift register, then shifted. out to the SP pin when a 
CNT pulse occurs. Data shifted out becomes valid on the next falling 
edge of CNT and remains valid until the next falling edge. 

After 8 CNT pulses, an interrupt is generated. to indicate that more 
data can be sent. If the Serial Data Register was reloaded with new 
information prior to this interrupt, the new data will automatically 
be loaded into the shift register and transmission will continue. 

If no further data is to be transmitted after the 8th CNT pulse, CNT 
will return high and SP will remain at the level of the last data 
bi t transmitted. . 

SDR data is shifted out MSB first. Serial input data should appear 
in this same format. 

BIDlREcrIONAL FEATURE 

The bidirectional capability of the Serial Port and CNT clock allows 
many 8520's to be connected to a common serial communications bus on 
which one 8520 acts as a master, sourcing data and shift clock, while 
all other 8520 chips act as slaves. Both CNT and SP outputs are open 
drain to allow such a common bus. Protocol for master/slave selection 
can be transmitted over the serial bus or via dedicated handshake lines. 

REG NAME D7 D6 D5 D4 D3 D2 D1 DO 

C SDR S7 S6 S5 S4 S3 S2 Sl SO 

INTERRUPT CON'IROL REGISTER. (ICR) 

There are 5 sources of interrupts on the 8520: 

-underflow from TIMER A (timer counts down past 0) 
-underflow from TIMER B 
-TOD ALARM 
-Serial Port Full/Empty 
-FLAG 

A single register provides masking and interrupt information. The 
Interrupt Control Register consists of a write-only MASK register 
and a read-only DATA register. Any interrupt will set the corresponding 
bit in the DATA register. Any interrupt that is enabled by a 1-bit in 
that position in the MASK will set the IR bit (MSB) of the DATA register, 



Oct 15 17: 15 1985 Appendix....F Page 10 

and bring the IRQ pin low. In a multi-chip system, the IR bit can be 
polled to detect which chip has generated an interrupt request. 

When you read the DATA register, its contents are cleared (set to 0) and 
the IRQ line returns to a high state. Since it is cleared on a read, 
you must assure that your interrupt polling or interrupt service code 
can preserve and respond to all bits which may have been set in the 
DATA register at the time it was read. Wi th proper preservation and 
response, it is easily possible to intermix polled and direct interrupt 
service methods. 

You can set or clear one or more bits of the MASK register without affecting 
the current state of any of the other bits in the register. This is done 
by setting the appropriate state of the MSBit, which is called the SET/CLEAR 
bit. In bits 6-0, you yourself form a mask which specifies which of the 
bits you wish to affect. Then, using bit 7, you specify HOW the bits 
in corresponding positiOns in the mask are to be affected. 

If bit 7 is a 1, then any bit 6-0 in your own mask word 
which is set to a 1 SETS the corresponding bit in the 
MASK register. Any bit which you have set to a 0 causes 
the MASK register bit to remain in its current state. 

If bit 7 is a 0, then any bit 6-0 in your own mask word 
which is set to a 1 CLEARS the corresponding bit in the 
MASK register. Again, any 0 bit in your own mask word 
causes no change in the contents 0 f the corresponding 
MASK register bit. 

If an interrupt is to occur based on a particular condition, then that 
corresponding MASK bit must be a 1. 

Example: Suppose you want to SET the TIMER A interrupt bit 
(enable the TIMER A interrupt), but want to be 
sure that all other interrupts are CLEARED. Here 
is the sequence you can use: 

movi.b 01111110B,AO 
mov.b AO,ICR ;MSB is 0, means clear 

;any bit whose value is 
; 1 in the rest 0 f the byte 

movi.b 10000001B,AO 
mov.b AO,ICR ;MSB is 1, means set 

;any bit whose value is 
; 1 in the rest 0 f the byte 
; (do not change any values 

wherein the written value 
; bit is a zero) 

Read Interrupt Control Register: 

REG NAME D7 D6 D5 D4 D3 D2 D1 DO 



Oct 15 17: 15 1985 Appendix.....E Page 11 

D ICR IR o o FLG SP ALRM TB TA 

Write Interrupt Control MASK: 

REG NAME D7 D6 D5 D4 D3 D2 D1 DO 

D ICR SIC x x FLG SP ALRM TB TA 

CON'IROL REGISTERS 

There are two control registers in the 8520, CRA and CRB. CRA is associated 
with TIMEa A and CRB is associated with TIMER B. The format of the registers 
is as follows: 

CON'IROL REGISTER A: 

BIT NAME FUNCI'ION 

o START 1 = start TIMER A, 0 = stop TIMER A. 
This bit is automatically reset (= 0) when underflow 
occurs during one-shot mode. 

1 PBON 1 = TIMER A output on PB6, 0 = PB6 is normal operation. 

2 OUTMODE 1 = TOGGLE, 0 = PULSE. 

3 RUNMODE 1 = one-shot mode, 0 = continuous mode. 

4 LOAD 

5 INMODE 

1 = FORCE LOAD (this is a S'IROBE input, there is no 
data storage; bit 4 will always read back a zero 
and writing a 0 has no effect.) 

1 = TIMER A counts positive CNT transitions, 
o = TIMER A counts 02 pulses. 

6 SPMODE 1 = SERIAL PORT=output (CNT is the source of the shift clock) 
o = SERIAL PORT=input (external shift clock is required) 

BIT MAP OF REGISTER CRA: 

REG # NAME TOD 
IN 

E CRA 0=60Hz 
1=50Hz 

SPMODE INMODE 

O=input 0=02 
l=output 1=CNT 

LOAD 

l=FORCE 
LOAD 

RUNMODE 

O=cont. 
l=one-

OtrlMODE PBON 

O=pulse 0=PB60FF 
l=toggle 1=PB60N 

START 

O=stop 
l=start 



Oct 15 17: 15 1985 AppendixJ' Page 12 

(STROBE) shot 

1<-------- TIMER A Variables -------------------->1 

All unused register bits are unaffected by a write and forced to 0 on a read. 

CONTROL REGISTER B: 

BIT NAME 

o 

1 
2 
3 
4 

START 

PBON 
OtlIMOOE 
RtJNK)OE 
LOAD 

6,5 INMODE 

7 ALARM 

FUNCI'ION 

1 = start TIMER B, 0 = stop TIMER B. 
This bit is automatically reset (= 0) when underflow 
occurs during one-shot mode. 
1 = TIMER B output on PB7, 0 = PB7 is normal operation. 
1 = TOGGLE, 0 = PULSE. 
1 = one-shot mode, 0 = continuous mode. 
1 = FORCE LOAD (this is a STROBE input, there is no 
data storage; bit 4 will always read baCk a zero 
and writing a 0 has no effect.) 

Bits CRB6 and CRB5 select one of four possible input 
modes for TIMER B, as follows: 

CRB6 CRB5 Mode Selected 

0 
0 
1 
1 

1 
0 

o TIMER B counts 02 pulses 
1 TIMER B counts positive CNT transitions 
o TIMER B counts TIMER A underflow pulses 
1 TIMER B counts TIMER A underflow pulses 

while CNT pin is held high. 

= writing to TOD registers sets ALARM, 
= writing to TOD registers sets TOO clock. 
Reading TOD registers always reads TOD clock, 
regardless of the state of the ALARM bit. 

BIT MAP OF REGISTER CRB: 

REG # NAME ALARM 

F CRB O=TOO 
l=ALARM 

INMOOE 

00=02 
01=CNT 
10=TIMER A 
11=CNT+TIMER A 

LOAD 

l=FORCE 
LOAD 

(STROBE) 

RUNMODE OUTMODE PBON 

O=cont. 
l=one­

shot 

O=pulse O=PB70FF 
l=toggle 1=PB70N 

START 

O=stop 
l=start 

I<----------------TIMER B Variables--------------------->I 

All unused register bits are unaffected by a write and forced to 0 on a read. 

-- ------- -----------------------------------------



· .. 

Oct 15 17: 15 1985 Appendix.J' Page 13 

PORT SIGNAL ASSIGNMENTS 

This part specifies how various signals relate to the available ports 
of the 8520. This information enables the programmer to relate the 
port addresses to the outside-world items (or internal control signals) 
which are to be affected. This part is primarily for the use of the 
systems programmer and should generally not be utilized by applications 
programmers. Systems software normally is configured to handle the 
setting of particular signals, no matter how the physical connections 
may change. In other words, if you have a version of the system software 
that matches the rev. level of the machine (normally a true condition), 
when you ask that a particular bit be set, you don't care which port 
that bit is connected to. Thus applications programmers should rely 
on system documentation rather than going directly to the ports. 
Note also that in this, a multi-tasking operating system, many different 
tasks may be competing for the use of the system resources. Applications 
programmers Should follow the establiShed rules for resource access in 
order to assure compatibility of their software with the system. 

Address BFERFF data bits 7-0 (Al2*) (int2) 

PA7 .. game port 
PA6 .. game port 
PAS .. ROY* 
PA4 .. TKO* 
PA3 .. WPRO* 
PA2 .. CHNG* 
PAl .. LED* 
PAO .. OVL 

SP .•. KDAT 
CNT •. KCLK 

PB7 .. P7 
PB6 .. P6 
PBS .. P5 
PM .. P4 
PB3 .. P3 
PB2 .. P2 
PBl .. Pl 
PBO .. PO 

PC ... drdy* 
F .... ack* 

1, pin 6 (fire button*) 
0, pin 6 (fire button*) 
disk ready* 
disk track 00* 
wri te protect * 
disk change* 
led light (O=bright) 
memory overlay bit 

keyboard data 

data 7 
data 6 
data 5 
data 4 
data 3 
data 2 
data 1 
data 0 

Centronics parallel interface 
data 

centronics control 

Address BFDRFE data bits 15-8 (Al3*) (int6) 

PA7 .. com line DTR*, driven output 



. .. , 

Oct 15 17: 15 1985 Appendix......F Page 14 

PA6 .. com 
PAS .. com 
PA4 .. com 
PA3 .. com 
PAl . . SEL 
PAl .. pour 
PAO .. BUSY 

line RTS*, driven output 
line carrier detect* 
line CTS* 
line DSR* 

SP ••• BUSY 
CNI' .. pour 

PB7 .. MI'R* 
PB6 .. SEL3* 
PBS .. SEL2* 
PM .. SELl* 
PB3 .. SELO* 
PB2 .. SIDE* 
PB1 .. DIR 
PBO .. STEP * 

pc ... not used 
F .... INDEX* 
. fi 

centronics control 
paper out ---+ 
busy ---+ I 

I I 
commodore -+ I 
commodore ---+ 

motor 
select external 3rd drive 
select external 2nd drive 
select external 1st drive 
select internal drive 
side select* 
direction 
step * 

disk index* 



Nov 07 15:52 1985 Appendix_G Page 1 

AMIGA AUTO-CONFIGURATION ARCHITECTURE 

This document is is process. please contact Commodore-Amiga for 
the latest available information on this topic. 


