

VOlUMl1i

AMIGA PRO G RAM MER'S HANDBOOK

-.

Programmers Handbook
VOLUME 1/ / SECOND EDITION

EUGENE P. MORTIMORE

e·
San Francisco • Paris • Diisseldorf • London

Book design by Amparo Del Rio, Graphic Design

Illustrations by Jeffrey James Giese
Cover art by Thomas Ingalls + Associates

Amiga and AmigaDOS are trademarks of Commodore-Amiga, Inc.
SYBEX is a registered trademark of SYBEX, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate
information. However, SYBEX assumes no responsibility for
its use, nor for any infringements of patents or other rights of
third parties which would result.

Copyright©1987 SYBEX Inc., 2021 Challenger Drive #100,
Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or
reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the
prior agreement and written permission of the publisher.

Library of Congress Card Number: 86-62805
ISBN 0-895888-384-8
Manufactured in the United States of America
10 9 8 7 6 5 4

Second edition Copyright © 1987 by SYBEX, Inc.

I daiicate this book to a

wonderful lady named

Mary Alice.

ACKNOWLEDGMENTS

I would like to thank Neil Katin, developer of the

Amiga Timer and TrackDisk devices, for his help

in resolving technical questions. Robert Peck,

author of the SYBEX Programmer's Guide to the

Amiga, also provided useful device information.

At Commodore Busines Machines, Inc.,

Amiga Technical Support, I would like to thank

Lisa A. Siracusa and Philip Lindsey for their

help in obtaining up-to-date Amiga information

and resolving technical questions.

I would also like to thank Rudolph Langer

and Karl Ray for their helpful suggestions and

guidance in the organization of this project.

I want to especially thank Valerie Robbins,

SYBEX Developmental Editor, for her guidance

in organizing, preparing, and editing the manu

script. It is always a pleasure to work with you,

Valerie!

Also, Kay Luthin deserves special thanks
for her attentive and patient editing and her help
in organizing the book. Thanks Kay, you were a

big help!

Special thanks also to Olivia Shinomoto for

her expert word processing in preparing the man

uscript. Thank you Olivia!

Finally, thanks to Gladys Varon, typesetter,

and Jeff Green, proofreader.

T A B l E

INTRODUCTION
XXI Summary of Chapters

xxiii What the Amiga Can Do

XXIV The Device System
Programming

0

Procedures xxiv
Task-Device Sharing XXVll

xxvii The Amiga Programming
Environment

The Kickstart Disk xxviii
The Internal Disk xxix

The External Disk xxx

1 DEVICE 110
1 Introduction

1 Task-Device Interactions

3 Device I/O Request Classes
Queued 110 3
QuicklO 4

5 Interactions with Multiple
Ports and Units

Multiple Reply Ports 5
Multiple Units 6

6 Queue Behavior
Task Reply-Port Queue
Behavior 6
Device Message-Port
Queue Behavior 8

F

8 Shared Access Versus
Exclusive Access

10 Multitasking and 1/0 Request
ProceSSing

12 Amiga Devices

14 Standard Device Commands

16 Device Functions

16 Structure Linkages for Tasks
and Devices

18 General 110 Structures in the
Amiga System

The 10Request
Structure 18
The IOStdReq Structure 20

The Unit Structure 21
The MsgPort Structure 21
The Message Structure 22

23 Device-Related Structures and
INCLUDE Files

2 DEVICE MANAGEMENT
27 Introduction

27 General Programming
Procedures

Asynchronous 110 Request
Processing 30
Synchronous 110 Request
Processing 32

,. • • • •
• .. • •

••
•• • • • •

I x " I .MIGA PRO G RAM MER'S HANDBDD'

Multiple Tasks, Reply
Ports, and Device
Interaction 33

Immediate-Mode Request
Processing 34

35 General 110 Request-Structure
Procedures

Classes of I/O
Requests 37

Creating Multiple I/O
Requests 37

Processing Multiple I/O
Requests 38

40 Device Library Functions
The AbortiO Function
The 8egini0 Function

42 The RemDevice and
Add Device Functions

44 Use of Exec-Support Library
Functions

CreateExtlO 44

Create Port 45

CreateStdlO 46

CreateTask 47

DeleteExtiO 48

DeletePort 49

DeleteStdlO 50

DeleteTask 50

New List 51

3 THE AUDIO DEVICE
55 Introduction

55 Audio System Hardware

57 The Channel Combination
Array

41

41

59 Channel Allocation
Precedence

Channel Locking and
Stealing 59

Informing a Task of a
Sound 60

60 The Allocation Key

61 Audio Device Commands
Sending Commands to
the Audio Device 62

63 Structures for the Audio
Device

The 10Audio
Structure 63

The AudChannel
Structure 66

66 Audio Device Error Codes

67 Use of Functions
CloseDevice 67

Open Device 68

70 Standard Device Commands
CMD_CLEAR 70

CMD FLUSH 71

CMD_READ 72
CMD_RESET 73

CMD_START 74

CMD_STOP 75

CMD_UPDATE 76

CMD_WRITE 77

79 Device-Specific Commands
ADCMD_ALLOCATE 79

ADCMD_FINISH 81

ADCMD_FREE 82

ADCMD_LOCK 83

ADCMD_PERVOL 85

ADCMD_SETPREC 86

ADCMD _ WAITCYCLE 87

------------------1'"'
4 THE NARRAlUR DEVICE 119 Structures for the Parallel

Device
91 Introduction The IOPArray

91 English-String Processing Structu re 119
The IOExtPar

92 Narrator Device Commands Structure 120
Sending Commands to Parallel-Port Flag
the Narrator Device 92 Parameters 120

94 Structures for the Narrator 121 Use of Functions
Device Close Device 121

The Narrator_rb Open Device 122
Structure 94
The Mouth_rb 124 Standard Device Commands
Structure 96 CMD_FLUSH 124

97 Narrator Device Error Codes
CMD_READ 125
CMD_RESET 127

98 Use of Functions CMD_START 128
Close Device 98 CMD_STOP 129
CloseLibrary 99 CMD_WRITE 130
Open Device 99

131 Device-Specific Commands
OpenLibrary 102

PDCMD_QUERY 131
Translate 103

PDCMD_SETPARAMS 133
104 Standard Device Commands

CMD_FLUSH 104
CMD_READ 105 G THE SERIAL DEVICE CMD_RESET 107
CMD_START 107
CMD_STOP 108 137 Introduction
CMD_WRITE 109

137 Read-Write Operations for
the Serial Device

5 THE PARAllEL DEVICE

139 Serial Device Commands
Sending Commands to
the Serial Device 139

115 Introduction 140 Structures for the Serial

115 Read-Write Operations for
Device

the Parallel Device The lOT Array
Structure 140

116 Parallel Device Commands The IOExtSer

Sending Commands to Structure 142
the Parallel Device 116 Serial-Port Flag

Parameters 143

! x I v I AMIGA PRO G RAM MER . S HANDBOOK

146 Use of Functions
CloseDevice 146

OpenDevice 147

149 Standard Device Commands

CMD_CLEAR 149

CMD_FLUSH 149

CMD_READ 150

CMD_RESET 153
CMD_START 154

CMD_STOP 155

CMD_WRITE 156

158 Device-Specific Commands

SDCMD_BREAK 158
SDCMD_QUERY 160

SDCMD_SETPARAMS 161

1 THE INPUT DEVICE
167 Introduction

168 Operation of the Input Device

168 Using Input-Handler Functions

171 Input Device Commands
Sending Commands to
the Input Device 171

172 Structures for the Input
Device

The InputEvent
Structure 173

175 Use of Functions
Close Device 175
Open Device 176

178 Standard Device Commands

CMD_FLUSH 178
CMD_RESET 178

CMD_START 179

CMD_STOP 180

181 Device-Specific Commands
IND_ADDHANDLER 181

IND_REMHANDLER 182

IND_SETMPORT 183
IND_SETMTRIG 184
IND_SETMTYPE 184

IND_SETPERIOD 186

IND_SETIHRESH 187
IND_WRITEEVENT 188

8THE CONSOLE DEVICE
193 Introduction

193 Operation of the Console
Device

Read-Write Operations
for the Console
Device 193

197 Console Device Commands
Sending Commands to
the Console Device 197

198 Structures for the Console
Device

The ConUnit
Structure 199
The KeyMap
Structure 202
The KeyMapNode
Structure 203

The KeyMapResource
Structure 204

204 Use of Functions
CDlnputHandler 204

Close Device 205

Open Device 206
RawKeyConvert 208

------------1"
210 Standard Device Commands

CMD_CLEAR 210
CMD_READ 211
CMD_WRITE 212

214 Device-Specific Commands
CD _ASKDEFAULTKEYMAP 214
CD_ASKKEYMAP 215
CD _SETDEFAULTKEYMAP 216
CD_SETKEYMAP 217

9 THE KEYBOARD DEVICE
221 Introduction

221 Operation of the Keyboard
Device

Keyboard Input Event
Processing 222

224 Keyboard Device Commands
Sending Commands to
the Keyboard
Device 224

225 Structures for the Keyboard
Device

225 Use of Functions
CloseDevice 225
Open Device 226

228 Standard Device Commands
CMD_CLEAR 228
CMD _RESET 229

230 Device-Specific Commands
KBD_ADDRESETHANDLER 230
KBD_READEVENT 231
KBD_READMATRIX 233
KBD_REMRESETHANDLER 235
KBD_RESETHANDLERDONE 236

1 0 THE GAMEPDRT DEVICE
239 Introduction

240 Operation of the Gameport
Device

Gameport Input Event
Processing 242

243 Gameport Device Commands
Sending Commands to
the Gameport
Device 243

244 Structures for the Gameport
Device

The GamePortTrigger
Structure 244

245 Use of Functions
CloseDevice 245
Open Device 246

248 Standard Device Commands
CMD_CLEAR 248

249 Device-Specific Commands
GPD_ASKCTYPE 249
GPD_ASKTRIGGER 250
GPD_READEVENT 251
GPD_SETCTYPE 253
GPD_SETIRIGGER 255

11 THE PRINTER DEVICE
259 Introduction

259 Operation of the Printer
Device

Sending Control Codes
to a Printer 261

263 Printer Device Commands
Sending Commands to
the Printer Device 263

IV i I AMIGA PRO G RAM MER'S HANDBOOK

265 The PrinterlO Union

265 Structures for the Printer
Device

The IOPrtCmdReq
Structure 266
The IODRPReq
Structure 267

268 Use of Functions
CloseDevice 268
Open Device 269

271 Standard Device Commands
CMD_FLUSH 271
CMD_RESET 272
CMD_START 272
CMD_STOP 273
CMD_WRITE 274

275 Device-Specific Commands
PRD_DUMPRPORT 275
PRD_PRTCOMMAND 278
PRD_RAWWRITE 279

12 THE CLIPBOARD DEVICE
283 Introduction

283 Operation of the Clipboard
Device

Ordinal Clip
Identifiers 284
Sequential Read-Write
Operations for a
Clipboard File 284

286 Clipboard Device Commands
Sending Commands to
the Clipboard
Device 286

287 Structures for the Clipboard
Device

The ClipboardUnitPartial
Structure 288
The IOClipReq
Structure 288
The SatisfyMsg
Structure 290

290 Use of Functions
CloseDevice 290
Open Device 291

293 Standard Device Commands
CMD_READ 293
CMD_RESET 295
CMD_UPDATE 295
CMD_WRITE 296

298 Device-Specific Commands
CBD_CLlPREADID 298
CBD_CLlPWRITEID 299
CBD_POST 300

13 THE TIMER DEVICE
305 Introduction

305 Operation of the Timer
Device

306 Timer Units and Timer
Arithmetic

Time-Interval Corrections
in a Busy System 307

309 Timer Device Commands
Sending Commands to
the Timer Device 309

310 Structures for the Timer
Device

The TimeVal
Structure 310
The TimeRequest
Structure 311

311 Use of Functions
AddTime 311
CloseDevice 312
CmpTime 313
Open Device 314
SubTime 316

317 Device-Specific Commands
TR_ADDREQUEST 317
TR_GETSYSTIME 318
TR_SETSYSTIME 319

14 THE TRACKDlSK DEVICE
323 Introduction

323 Operation of the TrackDisk
Device

TrackDisk Device/Floppy
Disk Interactions 325

326 TrackDisk Device Commands
Sending Commands to
the TrackDisk
Device 326

327 Structures for the TrackDisk
Device

The IOExtTD
Structure 328
The TDUPublicUnit
Structure 329
The BootBlock
Structure 330

330 TrackDisk Device Error Codes

332 Use of Functions
Close Device 332
OpenDevice 332

333 Device-Specific Commands
ETD_CLEAR 333
ETD_RAWREAD 334
ETD_RAWWRITE 335

CHAPTER TITLE I x vii

ETD_UPDATE 336
TD _ADDCHANGEINT 337
TD_CHANGENUM 338
TD_CHANGESTATE 338
TD _FORMAT 339
TD_GETDRIVETYPE 340
TD_GETNUMTRACKS ~O
TD_MOTOR 341
TD _PROTSTATUS 342
TD_RAWREAD 342
TD_RAWWRITE 344
TD_REMCHANGEINT 345
TD_REMOVE 345
TD_SEEK ~6

APPENDIX
C Language Definitions of
the Exec-Support library
Functions

351 CreateExtlO

352 CreatePort

352 CreateStdlO

353 CreateTask

354 DeleteExtlO

354 DeletePort

355 DeleteStdlO

355 DeleteTask

Index

Introduction

-----------1'"
I Introduction

This book is Volume II of a two-volume series. Volume I presented the graphics-related
Amiga library functions. Volume II presents the 12 built-in Amiga devices. The two vol
umes provide a complete reference guide for a programmer who wants to use the Amiga
graphics and device management features. For this reason, it is recommended that the
reader also secure a copy of Volume I.

The material presented here is applicable to all three currently available Amiga
machines: the original Amiga 1000, the new Amiga 500, and the new, highly expandable,
IBM-compatible Amiga 2000. These machines are entirely software compatible, because
they all use Release 1.2 software. Any Release 1.2 function or command documented in
either volume operates identically for these three machines; properly written programs
designed for one machine will always run on the other two machines as welL The three
machines differ only in how some of the software libraries are loaded. Whereas the Amiga
1000 machine uses the Kickstart disk to load most built-in libraries, devices, and other
supporting software, the 500 and 2000 machines have the fully debugged Release 1.2 soft
ware built directly into ROM.

Amiga devices are preprogrammed in a highly efficient manner not common to other
microcomputers. The internal routines of each device are fully debugged and predefined;
in turn, they define the functions and commands specific to each device. However,
because these internal routines are predefined and therefore fixed, a programmer must be
familiar with how they work in order to interface a program with them. Understanding
task-device interactions is of critical importance for programming.

The C and assembly language INCLUDE files contain the information required for
proper program interfacing. The greatest difficulty in device programming, therefore, is
learning the rules and implementing them in your programs. In order to do this, you
must understand the concepts of Amiga device programming. A set of figures presented in
the first two chapters of this book illustrates the most important concepts of device pro
gramming. You will not find these diagrams in any other documentation; they provide the
conceptual framework by which you can both understand and program Amiga devices.

Once you understand device-programming procedures, you must learn the meaning of
all of the predefined structures, structure parameters, device-related parameters and flag
parameter bits. You can then produce your own device programs in the most creative and
efficient manner, using the predefined device routines and functions to maximum advantage.

Summary of Chapters
Like Volume I, this book is written in reference format. The first two chapters present
general device-programming concepts that you must understand in order to work with the
devices successfully. The next 12 chapters discuss each of the 12 built-in devices individu
ally. Each chapter begins with an overview of the device's requirements and behavior,
illustrated by a comprehensive set of diagrams. The structures, functions, and commands
used with the device are then examined in detail.

! IX i i I AMIGA PRO G RAM MER'S HANDBOOK

Chapter 1 discusses device 110, including QuickIO and queued 110, asynchronous
and synchronous I/O requests, signals from devices to tasks and from tasks to devices,
multiple tasks and units, the management of queues, and shared and exclusive access
modes. The chapter also summarizes the structures, INCLUDE files, functions, and
Amiga device libraries. Here we present the task-device message-port model that most
devices follow. This model shows how a Unit structure is used to manage each open
device unit.

Chapter 2 discusses device management, including general programming and 110
request-structure procedures. The use of the AbortIO and BeginIO functions and auto
matic immediate-mode commands is presented here, as well as the Exec-support library
functions. These nine functions make the management of tasks, message ports, I/O
request structures, and device-related queue lists much easier. (The programming state
ments for these functions are presented in the appendix.)

Chapter 3 discusses the Audio device, which allows a task to produce sound from
stereo speakers. Because of the Amiga's multitasking capabilities and the presence of mul
tiple audio channels, this device is the most complicated in the Amiga device system
both to understand and to program.

Chapter 4 discusses the Narrator device, which allows a task to make the Amiga
"talk" by using synthetic speech algorithms. Synthesized speech requires the use of the
Translator library Translate function as well as the Audio device; the chapter discusses this
interaction.

Chapter 5 discusses the Parallel device, which allows a task to control the informa
tion passing back and forth between a set of task-defined buffers and external hardware
attached to the parallel port. Chapter 6 provides the same kind of information for the
Serial device.

Chapter 7 discusses the Input device, which allows a task to control the Amiga input
event system. The Input device acts as a merging mechanism for input events coming
from the keyboard, the gameports, the Timer device, and the disk system. A task can also
add its own input events to this input event stream.

Chapter 8 discusses the Console device, which is responsible for processing input
events coming from the keyboard through the Keyboard device internal routines and for
sending formatted text information to Intuition windows. This device interacts with the
Console, Input, TrackDisk, Keyboard, Timer, and Gameport devices. It does not precisely
follow the task-device message-port model presented in Chapter 1; instead, it uses the
ConUnit structure.

Chapter 9 discusses the Keyboard device, which allows a task to control the keyboard
hardware system. The Keyboard device is responsible for creating input events for user
generated keyboard signals and for adding keyboard reset functions to the system.

Chapter 10 discusses the Gameport device, which allows a task to control the game
port hardware system. The Gameport device is responsible for creating input events from
gameport signals generated by a mouse or another type of controller.

Chapter 11 discusses the Printer device, which allows a task to control the printer
hardware. The Printer device is responsible for sending text and graphics to a printer con
nected to either the serial or parallel port.

Chapter 12 discusses the Clipboard device, which allows a task to control cut-and
paste operations. The Clipboard device manages the transfer of text characters between

__ ~II·XXiii

concurrent tasks and between clipboard buffers in the same task. This device follows the
task-device message-port model presented in Chapter I but sometimes uses an additional
message port.

Chapter 13 discusses the Timer device, which allows a task to control timing opera
tions. The Timer device manages timing events and the signals that initiate specific task
activities. Chapter 14 discusses the TrackDisk device, which allows a task to control disk
operations. The TrackDisk device manages all aspects of the Amiga disk system.

The appendix presents programming statements that define the Exec-support library
functions presented in Chapter 2. You can use these examples to develop your own C
language functions. The index provides a useful guide to the information presented in this
volume. In addition, you can refer to the Table of Contents to find device structures,
functions, and commands.

Although this book is not specifically addressed to the subject of custom-built devices,
you will find that the figures in this volume help you understand the form and concept of
a device, and therefore help you formulate your own devices to add to the Amiga system.

A detailed glossary and a set of useful script files, as well as detailed explanations of
other features of the Amiga C language device-programming system, have been added to
the disk referenced at the end of Volume I. To obtain this disk, complete the order form
in the back of Volume I and return it with your check or money order.

What the Amiga Can Do
The capabilities of the Amiga computer can best be understood by considering an
example of an Amiga at work. Imagine that a new store in a shopping complex wanted to
use a computer to present passersby with an eye-catching, entertaining presentation in
order to entice them into their store. With an Amiga, the presentation could accomplish
the following:

• Offer an attractive, five-minute video presentation with a voice-over narration and
background music.

• Allow selection of another video sequence, voice-over narration, or music selection
by presenting an easily understood range of keyboard choices.

• Allow alternative selections with a mouse to point to objects on the screen.

• Ask for responses (for example, as part of a survey).

• Provide a laser color printout as a memento of the experience.

• Allow the store owners to monitor responses through a modem in order to deter
mine the customer's interests.

• Provide the store owners with a permanent record of customer-Amiga interactions.

" i v I AMIGA PRO G RAM MER . S HANDBOOK

This type of interaction is entirely within the reach of the Arniga computer. The Amiga
can simultaneously produce stereo music from predigitalized audio tracks and a human
quality voice from predigitalized soundtracks, respond to input, print out information, and
send information through the serial port to an attached modem.

To make all this simultaneous activity possible, the Amiga offers the following features:

• A large memory to accommodate the video and audio information, which can be
preproduced and stored on disk in compressed form. The memory requirements of
a typical five-minute audio-video presentation may require a sizable hard-disk drive.

• The ability to move information quickly from high RAM locations into lower
RAM locations, where the hardware control chips can access that information and
present it to the user.

• A user-friendly interface, with quick, quiet operation.

• A multitasking operating system, which allows many tasks to pass information
among them and to signal each other of the information's arrival.

• The ability to accept input from a number of external sources (the keyboard, the
mouse, gameport hardware, disk drives, and so on) simultaneously; to merge that
data into the total input stream; and to act on those signals as requested, without
interfering with a presentation.

• A responsive and fast system, which can work with many different categories of
data at the same time.

• The ability to continuously and unobtrusively adapt to a real-time environment,
where the sequence of events is not predetermined but can change as quickly as the
user responds.

Amiga devices provide the means to program a complicated presentation such as this.
They allow you to take full advantage of the Amiga's impressive capabilities.

T he Device System
Seven devices-the Audio, Input, Console, Timer, Keyboard, Gameport, and TrackDisk
devices-are ROM-resident. For the Amiga 1000, their internal routines, structures, and
data are loaded into ROM when the system is first booted from the Kickstart disk. For
the Amiga 500 and 2000, this information is already in ROM. Five devices-the Narrator,
Serial, Parallel, Printer, and Clipboard devices-are disk-resident for all three machines,
simply because the Write Control Store ROM (256K) was fully consumed by the other
seven devices.

Programming Procedures
The programming procedures for accessing the device internal routines of all 12 Amiga devices
are basically the same: a task opens a device unit with an Exec library OpenDevice

---------1'"
call and closes it with an Exec library CloseDevice call. The first time a device unit is
opened, the system automatically allocates and initializes a Device structure to manage the
device and a Unit structure to represent the device-unit message port. With shared access
mode devices, the same Device and Unit structures are shared by any tasks that have the
device's unit open. The Device structure lib_OpenCnt parameter and the Unit structure
unit_OpenCnt parameter are initialized to I when the device unit is opened. These
parameters are incremented or decremented by 1 each time a task opens or closes the
unit, respectively.

A task describes its data needs by using an I/O request structure, which is an extended
Exec Message structure containing information on what data the task needs, how fast it
needs the data, where to place the data in memory, and how the task can interpret error
conditions. Generally speaking, when dispatched, the request automatically goes around a
loop. From the task's memory space, it goes into the device-unit request queue, into the
memory space of the device internal routines, back to the task reply-port queue, and finally
returns to the task's memory space. A task is not allowed to access the I/O request structure
or its data until this sequence is complete.

However, the system provides command-dispatching mechanisms that can avoid queu
ing at one or both ends of the transaction; if these mechanisms are used, the task receives
the data sooner than it would with queuing at both ends of the transaction.

A task interacts with a device's internal routines by sending commands to those rou
tines. Commands specifY the type of operation required by the task. They are dispatched
with the Exec library DoIO and SendIO functions and the individual device library BeginIO
functions; these are described in Chapter 2. In the most general sense, a task is either read
ing data from a device or writing data to a device; almost all other device operations lead up
to these operations. Figure 1.1 illustrates general read-write operations.

If a task uses a buffer in its own memory space to defme data and then transmits the
data to a device, the system is said to be executing a write operation. Here, the data origi
nates in the task-defined buffer in the task's memory space, passes through the device's
memory space, and then is sent out to external hardware, where it is permanently stored.
Individual devices that have a write capability (the Audio, Serial, Parallel, Narrator,
Printer, Clipboard, and TrackDisk devices) have at least one write command, which is
indicated by the word "WRITE" somewhere in the command name.

If a task requests data from external hardware and uses a task-defined buffer to
receive the data, the system is said to be executing a read operation. The data usually
passes through the device's memory space, passes into the task's memory space, and is
placed in a task-defmed buffer for further access by the task. Individual devices that have
a read capability (the Serial, Parallel, Narrator, Keyboard, Gameport, Clipboard, and
TrackDisk devices) have at least one read command, which is indicated by the word
"READ" somewhere in the command name.

Devices that allow read operations often have a device internal buffer in RAM that is
allocated and managed automatically by the device internal routines. The device is said to
"own" that RAM space, even though its internal routines may be in ROM. Devices that
allow write operations have a device internal buffer that is allocated and managed automat
ically by the device internal routines. This buffer also is situated in RAM, even though
the device internal routines are sometimes entirely in ROM. The programmer deals only

x xv i I AMIGA PRO G RAM MER'S HANDBOOK

Figure 1.1:
General

Read-Write
Operations

External Hardware

Audio (write only)
Keyboard (read only)

Gameport Connectors (read only)
Disk Drives (read and write)
Serial Port (read and write)

Parallel Port (read and write)
Printer Ports (write only)

Read. t Write

Device Internal Routines
Read

~ Task-Defined Buffer 1l Write Device Internal Buffers

• Temporary holding • • Read location for data;

I Task-Defined Buffer N I not all devices have
Write in ternal bu ffers

with task-defined buffers. Except for task-defined clearing and updating operations, the
device internal buffers are managed by the device internal routines.

Most devices return error values when something goes wrong during I/O request pro
cessing. Errors are returned in two ways. The OpenDevice, DolO, and WaitIO Exec
library functions return an error value as part of their function call syntax (see Volume I).
In addition, detailed, device-specific error values are returned in replied I/O request struc
tures. Generally speaking, a task need only test for a returned nonzero value in the func
tion call to determine if the function executed successfully. If the value is not 0, an error
condition occurred during I/O processing, and the task should deallocate all memory and
notify the user or take some other appropriate action.

A more detailed level of error checking is also available. Any device processing errors
will cause the return of a nonzero value in the I/O request structure io_Error parameter.
For example, if an OpenDevice call fails, its I/O request structure io_Error parameter is
set to IOERR_OPENFAIL to indicate that the device could not be opened. In most
cases, the io_Error value provides the task with all the information it needs in order to
determine what went wrong. The task can compare the io_Error value to the preset
values in the INCLUDE files and thereby determine the reason the I/O request was

__ ~II .. XXVii

unsuccessful. However, since the programmer must define the detailed comparison and
take proper corrective action, in most cases this step is not necessary.

Task-Device Sharing
Because the Amiga is a multitasking system, tasks can often share device units. The fol
lowing guidelines were built into the system and should be observed for any devices you
may want to add:

• If a device sends data to or receives data from external hardware, the system gener
ally provides the device with a mechanism that allows tasks to open it in exclusive
access mode. The Serial and Parallel devices both work with hardware, so the sys
tem provides each with an explicit flag parameter bit that the task can set before
that device is opened; another task cannot open it until the first task closes it.
Because the Printer device opens the Serial and Parallel devices indirectly and
sends data to a printer connected to the serial or parallel port, it too operates in
exclusive access mode, as does each Gameport device unit. (Devices often have
more than one unit.) The TrackDisk device is also an exclusive access mode device
by default.

• If a device never interacts directly with external hardware except to read data, its
units can always be shared among tasks. The Input, Console, Keyboard, Timer,
and Clipboard devices operate in this way. The Narrator device sends its data to
the Audio device, so it too operates in shared access mode. Although the Audio
device sends data directly to external hardware, it provides a complex set of rules
that allow multiple tasks to share it also.

The Amiga Programming Environment
Figure 1.2 illustrates the Amiga Release 1.2 programming environment. It shows three
disks: the Amiga 1000 Kickstart disk and two C language disks that allow program devel
opment. The arrangement of the last two disks applies equally well to all three Amiga
machines. This discussion is presented in terms of the Lattice C language compiler, but it
is valid for other C language compilers as well-only the names of the compile-and-link
programs will vary.

Certain files and information are required to support C language programming, and
they must be placed on disk at directory locations that the programming system will rec
ognize. You should start with the Workbench disk in the internal drive and the C lan
guage compiler disk in the external drive. Tailor the contents of these disks whenever
possible to save disk space; the following sections present useful advice on what is essen
tial and what can be trimmed.

In addition, if you have enough extra memory to create a RAM disk that is large
enough to hold most of the files needed for C language programming, you should create a
startup-sequence script file to create the RAM disk and the appropriate directories on it,
as well as transferring all required programming files to it.

xx vii i I AMIGA PRO G RAM MER'S HANDBOOK

Figure 1.2:
Amiga

Programming
Environment

r
~
Q

'" <
'"

l

Write Control Store

Seven device librarie.
Four other libraries
ROMwad< debugger

Amiga RAM

Fir.t 256K Bytes

Second 256K Byte.

Extended Mem Dry

Up to 8 Megabytes

Kickstart Disk

Cold boot information
Seven de~ce libraries
Four other libraries
R0t.4wack debugger

Internal Disk

External Disk

Directories:
root
LIB:

FD.FILES:
INCLUDE:

c:

Total Amiga RAM consists of at least SI2K of internal RAM and up to 8 megabytes
of external RAM. The first SI2K of internal RAM can be used as chip memory (MEMF
_CHIp, see Volume I), and the external RAM can be fast RAM (MEMF_FAST). An
efficient programming system should include at least SI2K of internal RAM;2S6K is not
enough. Any additional RAM will also be useful.

The Kickstart Disk
The Amiga 1000 is always cold-booted from the Kickstart disk, which contains several
boot sectors and other information required to initialize the memory system and hardware
properly. The Kickstart disk also contains most of the Amiga device and library internal
routines that you will use in your C language programs and the ROMwac debugger. All

---1"1'

of this information is loaded into a 256K portion of ROM; this is a protected area of
memory referred to as WCS (Write Control Store) memory.

On the 500 and 2000 machines, the original Kickstart disk information was placed
permanently into ROM. Therefore, for these machines, the Kickstart operating system can
only be enhanced by using a ROM chip replacement. With the 1000 machine, once the
Kickstart disk has loaded its operating-system information automatically, it is removed
from the internal disk drive and the first C language programming disk is then inserted.

The Internal Disk
The C language programming disk contained in the internal disk drive is similar to the
Commodore-supplied Workbench disk, but it has been stripped of files not needed for C
language programming. However, it must have these directories:

• The root directory. This directory contains any source files for which there is
enough memory; you can also leave source files in the root directory on the exter
nal disk.

• The DEVS: directory. This directory contains five device libraries not found on the
Kickstart disk. It also contains the mountlist file, the system-configuration file, and
a printer directory for a group of printer drivers. You should eliminate any printer
drivers not needed for your programming. The mountlist file should reflect any
disk you want mounted into the system.

• The L: directory. This directory contains three programs necessary for correct oper
ation of the Amiga: the Disk-Validator program, which checks disks as they are
inserted and removed from a disk drive; the Ram-Handler program, which manages
the RAM disk in which your programming-related files are placed; and the Port
Handler program, which manages the serial and parallel ports.

• The LIES: directory. This directory contains several library files used in programs
that call certain built-in functions. The version.library me manages the library sys
tem and keeps track of different programming versions of various libraries.

• The L: directory. This directory contains two libraries, icon.library and info.library,
which are not required unless you are using the Workbench functions (see Volume I)
to manage icons on the Workbench screen.

• The S: directory. This directory should contain all the AmigaDOS script files you
need for your programming. In particular, it must contain the startup-sequence
script file, which defines all of the predefined startup operations that must take
place when the Amiga is first booted. This file can create the C language program
ming RAM disk and copy programming-related mes onto it. The startup-sequence
script file is always executed when the stripped Workbench disk is first inserted and
after a keyboard reset sequence. Note that some third-party RAM expansion kits
automatically retain the contents of the RAM disk after a reset; with one of these
kits, the time-consuming reloading of the RAM disk will not occur each time you
encounter a crash and need to reset the machine.

xx x I AMIGA PRO G RAM MER'S HANDBOOK

• The C: directory. This directory contains all AmigaDOS operating-system commands,
represented as compiled, executable files. These include the DIR command, the Disk
Copy command, the new AddBuffers command, the Execute command, the Run
command, and many other commands necessary to manage files in the AmigaDOS
programming environment. You should eliminate any files you will not need dur
ing programming; in addition, you can rename most of these command files to save
typing time. For example, rename Dir to D, Execute to E, Run to R, and so on.

You should also place your text-editor program file in the C: directory and copy
it to the RAM disk C: directory for greater editing speed. You can then call and
execute the editor program no matter what your current directory happens to be.
(While you are doing this, rename your editor so that it is fast to type.)

• The T: directory. This directory contains any temporary files created by the system
or other executing programs. Most editor programs place backup text files here
automatically. A programmer does not generally access the files in this directory,
but takes comfort from knowing that certain files-for example, the last version of
an edited source file-are always there as backups.

• The FONTS: directory. This directory contains files that support specific fonts.
Topaz is always available directly from the system without appearing in the
FONTS: directory, so if you only require Topaz, you can erase all files in this
directory to free additional disk space.

The External Disk
The external disk contains the following directories:

• The root directory. This directory can contain any source files that you choose to
place on the external disk drive. Source files can be on the internal disk, the exter
nal disk, or the RAM disk. The only requirement is that the compile-and-link
script files refer to them where they are actually located. If your RAM disk is large
enough, you can copy source files to it, together with all other C language-related
programming files. If this is done, the C language compile-and-link sequence will
be greatly accelerated.

• The C: directory. This directory contains the C language compiler and linking pro
grams. For the Lattice compiler, these are called LCI, LC2, and Alink. LCI is the
first phase of the Lattice C language compiler; it uses your source file as input and
produces a quad file as output. The quad file is then used as input to LC2, which
produces an object file as output. Alink takes the object file and produces an execut
able file as output, together with an error file if any compiler errors occurred during
the compile-and-link sequence. The files used in this process and the resulting execut
able program file will be placed automatically into the disk directory containing the
source file; therefore, the programming disk that contains your source files must
always have space for these files.

• The LIB: directory. This directory must contain object files and the information
needed to support a compiler's first- and second-pass programs (LCI and LC2).

----------------------I"'i
This includes the Astartup.obj and Lstartup.obj compile-and-link files; the amiga.lib
file; the debug.1ib file (required only for debugging); and the lc.1ib file, which con
tains compiler-specific functions provided by Lattice. These files are referenced by
the compile-and-link script file. The amiga.lib file contains the Exec-support library
functions discussed in Chapter 2. In contrast to the other libraries, it is a linked
library-a direct reference to it appears in the compile-and-link script file. There
fore, when you define a C language program that references any functions in
amiga.lib, you must declare those functions as external (EXTERN) library func
tions; no Open Library or OpenDevice calls are then needed .

• The FD.FILES: directory. This directory contains descriptor files needed by the
compile-and-link programs (LCI, LC2, and Alink) to properly determine function
vector offsets .

• The INCLUDE: directory. This directory contains all the built-in INCLUDE files you
will need for C language programming. The INCLUDE files contain structure defini
tions, flag parameter bit names, other bit definitions, and all other interfacing constants
that the C language compiler needs in order to compile and link your program.

The details of the compile-and-link process are described more fully on the disk offered in
the back of Volume I.

• • • • • •• • •• -. • • • . .-• • ••• • •• • .- .. .-..

Device 110

DEVICE liD I'
Introduction

This chapter discusses the general aspects of device I/O and task-device interactions. It
presents important concepts about tasks and devices. All the functions and standard device
commands for the 12 Amiga devices are presented in this chapter also, as well as the
appropriate structures and the information in the device-related INCLUDE files. Many of
the ideas presented here are extensions of similar ideas in Chapter 1 of Volume I.

When you understand the concepts in this chapter, you will be well on your way to
understanding the operation and programming of Amiga devices. You will be able to use the
predefined devices efficiently and to add and use your own devices in the Amiga system.

TaSk-Device Interactions
Figure 1.1 depicts the main interactions between a task and a device. There are several
keys to understanding this figure. The first key is understanding how every function
works. The functions are discussed in great detail in Volume I. The second key is under
standing how each command works. Commands are discussed in detail throughout this
volume. The third key is understanding the difference between queued I/O and quick
I/O. Figure 1.1 makes this difference obvious. The fourth key is understanding the differ
ence between synchronous I/O and asynchronous I/O, which is described in Volume I and
in this volume.

Note that you should study Figure 1.1 beside Figure 1.2 of Volume I. You will then
see that task-device interaction is nothing more than a specific instance of task-task inter
action, where the routines of the second task are predefined in the system software and
arranged into a device library.

The usage and behavior of the MsgPort and Message structures and task signals dis
cussed in Volume I apply equally well here. The most notable exceptions are as follows:

• Device-routine signaling is handled internally and automatically by the device inter
nal routines.

• I/O request replies are handled internally by the device internal routines using the
ReplyMsg function.

• The decision to process an I/O request as a quick I/O request is made by the
device internal routines. You may request quick I/O, but if the device is not able to
process the request as such, it will be treated as a queued I/O request.

If you study Figure 1.1 along with the definitions of the IORequest, IOStdReq,
MsgPort, Message, and Unit structures, you will see how each task in the system can
communicate with a single device unit.

Describing Figure 1.1 in terms of the IORequest and IOStdReq structures simplifies
the discussion. Some devices use these structures directly; however, some use them as sub
structures in a device-specific I/O request structure. For example, the Serial device uses

21 AMIGA PRO G RAM MER'S HANDBOOK

Figure 1.1:
Task-Device

Interaction

Using liD
Request

Structures

8eginiOu

TASK STATEMENTS 0010'"

(define tosk buffers)

AbortIO- ..

Wait
i

I

I

I
I Slqnol
I losk

I ~~~~ete

L __

ChecklO ..
BeginIO ... ",

WaitlO .. 0010'"

WoitPort SendlO ..

GetMsg Remove

1 I Task Reply I
Port

1st Request

~~
1

Lost RE'quest I
i

I/O
I/O

or Asynchronous I/O

QuicklO (CheckIO)

QuicklO (possible)

'NO Sigl'lCl

r--

0

" . • .5

DEVICE INTERNAL
ROUTII~ES

(define device internat buffers)

- Device replies
uSing ReplyMsg

Device gets
request block
using GetMsg

1
i

I
I, De"ce tl Message Port I

l I Signal
1st Request I ~/e~i~~qU
2nd Re uest

esl
ed I has arriv

! I

~~ I

" Flush
Reset
AbortiO
all affect
device

;::::~ j

the IOExtSer structure, and the Parallel device uses the IOExtPar structure, both of
which have an IOStdReq substructure as their first entry.

Figure 1.1 shows one task, represented by the large rectangle on the left, and one device
unit, represented by the large rectangle on the right. These rectangles represent Amiga C lan
guage (or assembly language) programming statements. They do not represent Task structures,
even though some of the task statements may include parameter initialization.

The large task rectangle represents all the task statements that define the task, includ
ing those dealing specifically with the task-device interaction and the specifying, sending,
and processing of I/O requests. In particular, these include the OpenDevice, CloseDevice,
BeginIO, DolO, SendIO, AbortIO, CheckIO, WaitIO, Wait, Remove, WaitPort, and
GetMsg function call statements. These statements also include all the structure parameter
definitions of the IORequest or IOStdReq structure required to define each I/O request.
One of the most important parameters in these structures is the io_Data parameter, which
specifies the task-defined buffers used to pass data from the task to the device and from
the device to the task. Chapters 3-14 will discuss how each task defines and manages
these buffers.

The device-unit rectangle represents the internal routines of one device unit. Each device
unit uses the same set of internal device routines, shared by all tasks that calion all units of
the device. The Device structure is used to manage the library of device internal routines. In
addition, the Unit structure is used to manage each unit of the device; it provides a definition
of the device I/O request port for that device unit.

DEVICE lID 13

Each unit of each device also has a set of internal device buffers used to process the
I/O requests coming from each task in the system. These buffers are defined and con
trolled by the device internal routines; they are not under your programming control.
They represent intermediate locations for the data passing back and forth between a task
and other areas in the system (in particular, external hardware).

You can think of device internal routines as a set of predefined task routines con
tained in a predefined library. Recall that a device library is managed by a Device struc
ture, which is equivalent to a Library structure in the Exec software system. These device
routines may either be in ROM (ROM· resident device) or brought into RAM from disk
(disk-resident device) when the device is opened with the OpenDevice call in the task dur
ing the compilation process. Volume I explains how Library and Device structures are
defined and managed.

The device-unit 110 request port and the task reply port are represented in Figure
1.1 by smaller rectangles below the two large rectangles. These rectangles represent the
list of 110 requests in each message port. A series of queued 110 requests is represented
by still smaller rectangles.

The lines in the figure depict the flow of information between a programmer-defined
task and the device-unit internal routines. First, consider the line that proceeds from the task
rectangle to the bottom of the device request queue. The BeginlO, DolO, and SendlO func
tions in the task rectangle send 110 requests from the task to the device-unit request queue.

The line that proceeds from the device rectangle to the bottom of the task reply-port
queue indicates 110 requests replied internally by the built-in ReplyMsg function. These
were queued 110 requests, and they are being replied to by the device internal routines
using the ReplyMsg function internally. The next line represents 110 requests that had
the IOF _QUICK flag set. These requests were intended to operate as quick 110, but the
device could not handle them in this way. Instead, the system made these queued 110
requests, and they were also replied to by the ReplyMsg function executing inside the
device internal routines.

Device 110 Request Classes
Device I/O requests divide into two classes: queued 110 and quick I/O (most often
referred to here and in the Amiga documentation as QuickIO). A third class, for which
immediate-mode commands are used, operates automatically. It will be discussed in
Chapter 2.

Queued I/O
In queued 110, each task sends a request to a specific device unit and that request is
queued in the device request queue for that device unit. 110 requests are then processed
when they reach the top of the device request queue.

The list management is done internally and automatically by the device internal rou
tines when they call the Exec GetMsg function. The routines begin processing the 110
request at the top of the unit queue when the internal GetMsg function returns. Only

'I AMIGA PRO G RAM MER'S HANDBOOK

when the ReplyMsg function executes in the internal device routines will the requesting
task receive data back from the device.

Once the device replies to the I/O request, it is placed in the task reply-port queue.
The task can then execute a GetMsg (or Remove) function call to access the replied 110
request.

Queued I/O requests divide further into synchronous I/O requests (sent with the
DolO or BeginIO function) and asynchronous 110 requests (sent with the SendIO or
BeginIO function). Note that all types of queued I/O can cause signals to be sent to the
requesting task when the device I/O is completed. The signal-passing mechanism is man
aged by the task-defined MsgPort structure, which is a substructure inside the IORequest
or IOStdReq structure.

The task only needs to call the GetMsg function if it sends an asynchronous 110
reque~t with the SendIO or BeginIO function. It must call GetMsg after it has verified
that the device has completed the 110 request and the replied 10 request has arrived at
the task reply port. The task can use the CheckIO function for this purpose.

In addition, if the task sends an asynchronous I/O request with the BeginIO or
SendIO function and calls the WaitIO function to wait for the reply message in the task
reply port, WaitIO will also remove the replied 10 request from the task reply-port queue.
On the other hand, if the task sends a synchronous I/O request with either the BeginIO
or DolO functions, these two functions will also perform the job of pulling the replied
110 request from the task reply-port queue.

The Exec Wait function allows any task to wait for I/O request completion signals.
In addition, the Wait Port function allows each task to wait for the reply of an I/O
request. See Volume I for the distinctions between these two methods.

OuicklO
The second major class of I/O is quick I/O, which will be referred to throughout this
volume as QuickIO. With successful QuickIO, no device queuing is done for the I/O
request. Instead, the IOF _QUICK flag parameter (io_Flags) of the IORequest structure
tells the device that the requesting task wants the I/O to be done quickly. The device will
perform the 110 immediately if possible and send the result back to the requesting task.

If the I/O request is successful, it is not placed in the task reply-port queue, nor is
the task signaled of the completion of I/O; after all, the required data comes back immedi
ately and the task does not need a signal. If, on the other hand, the device cannot perform
the I/O as QuickIO, the request will be queued in the device-unit I/O request queue and
will be treated like any other queued request. Each device decides whether QuickIO is
possible based on current conditions in the system. If the device is not currently busy,
QuickIO usually can occur as requested.

Both the task and the device generally have only one I/O request queue, although the
task can have any number of reply-port queues. The parameters in the IORequest,
IOStdReq, MsgPort, Message, and Unit structures determine where each I/O request is
sent and then replied.

The device-unit request queue includes all I/O requests coming from this partic
ular task and from any other task in the system that sends requests to that device unit.
Each task reply-port queue contains all I/O requests replied by this device and any other

DEVICE I/O 15

devices in the system that reply to this port. The reply port is always specified by the
mn_ReplyPort parameter of the Message substructure in the IORequest or IOStdReq
structure.

The device-unit queue maintains a list of all I/O requests coming from this task and
any other tasks in the system that communicate with this particular unit of the device.
Each time an I/O request arrives in the device-unit queue, the device internal routines are
automatically signaled of its arrival. The device-routine signaling mechanism is handled
internally and automatically by the device internal routines.

The device-unit queue is managed by a set of two standard device commands
(CMD_FLUSH and CMD_RESET) and one Exec function (AbortIO). Each device chap
ter discusses these commands and functions.

I nteractions with Multiple Ports and Units
This section explains, with the aid of two diagrams, how multiple reply ports and multi
ple device units are handled in the Amiga system.

Multiple Reply Ports

Figure 1.2:
Task-Device

Interaction with

Three Reply

Ports

Figure 1.2 shows a task working with one unit of a device but using a number of reply
ports to handle different types of data coming back from the device. This could be a use
ful configuration if, for example, you were working with the Serial device and wanted to
place data in different categories.

Wait

I

L

8eginiO

TASK STATEMENTS ~o

AbortlO
ChecklO
WoitiO

WoitPort

BeginlO
DolO

SendlO

QUicklO I ossible

DFVICE I~ITERNAL
ROUTINES

'NO Signol
--+-T- Device replies

u<;:ng Repl)Msg

010 0
--::':::.-:-::-
" " b

~ :> :>
o ,-' 0

------------~-~-------~

ISignol
I Device

61 AMIGA PRO G RAM MER'S HANDBOOK

Again the two large rectangles represent the task routines and the device internal rou
tines. Below the task rectangle, however, are three task reply ports, each with its own set
of replied I/O requests. Each of these reply ports will receive a different category of
replied I/O requests when the device is finished processing the I/O requests in that partic
ular category.

You have complete control over which reply goes to which reply port. Each task can
define this situation by properly specifying the mn_ReplyPort parameter in the Message
substructure of the IORequest or IOStdReq structure when that task initializes these
structures before sending a command to the device. Each task can also set up three differ
ent task-defined buffers by using the io_Data pointer parameter in the IORequest or
IOStdReq structure.

Note that other than the difference involving the mn_ReplyPort parameter, the task
device interaction defined by Figure 1.2 follows the same logic as that in Figure 1.1.

Multiple Units
Figure 1.3 shows one task working with multiple units of a single device. Each device
unit could be replying to one or more task reply ports. This is a useful configuration if,
for example, you are working with all four units of the TrackDisk device and you want to
place data from each disk drive in different task reply ports and associated data buffers.

Queue Behavior
This section explains, with the use of two diagrams, how task reply-port queues and
device lIO request queues are used in the Amiga system.

Task Reply-Port Queue Behavior

Figure 1_3:
Task-Device

Interaction with
Multiple Units

and Reply Ports

Figure 1.4 illustrates how a task reply port behaves as one or more devices send their
request replies (IORequest and IOStdReq structures) to it.

AbortlO
C';eckIO
Wo·IO

Wcitt=,)r\

~ -~

I

) I

DEVICE DEVICE DEVICe DEVICe

jlJ11 ,$;; C ~ ~
I '-- ;'===-~_ ~_J I

Figure 1.4:
Behavior of a

Task's lID
Reply-Port

Queue

DEVICE 110 17

The task's reply port shows the reply-port queue at one particular point in time. Ini
tially, it contains five IrO requests. Each of these could have come from any of the devices
in the system whose IORequest or IOStdReq structure (or other device-specific IrO-related
structure) had an mn_ReplyPort parameter that specified a pointer to this task reply port.

The state of the reply-port queue after the GetMsg function finishes execution and
returns is shown next. If the original IrO request was an asynchronous 1/0 request sent
with either the SendIO or BeginIO function, then the GetMsg function can be used to
remove it from the task reply port. If it was an asynchronous IrO request sent with the
SendIO function and the sending task called the WaitIO function, then the WaitIO func
tion will wait for its return and also remove it from the task reply-port queue. If the origi
nal IrO request was a synchronous IrO request sent with the DolO function, then the
DolO function will automatically remove it from the task reply port when a reply is sent
by the device.

The next diagram in Figure 1.4 shows the condition of the task reply-port queue after the
Remove function has removed IORequest4 from the task reply-port queue. You normally only
use this function if your task has one reply port. First the task would call the CheckIO func
tion to see if the I/O request was present in the task reply-port queue. Once the task verifies
that the reply message is present in the queue and it gets a pointer to the IORequest structure,
the task can call the Remove function to remove it from the queue. The CheckIO-Remove
combination is equivalent to the operation of the GetMsg function.

The last diagram in the figure shows the state of the task reply-port queue after the
device completes and replies another I/O request. IORequest6 has been added at the bot
tom of the task reply-port queue. It could have come from any of the devices in the sys
tem that processed an I/O request whose reply was addressed to this task reply port.

Afler Device COlllplptes
Original Queue After GetMsg After Remove Another Request

IJccequestb

81 AMIGA PRO G RAM MER S HANDBOOK

Device Message-Port Queue Behavior
Figure 1.5 illustrates how a device unit's message port behaves as one or more tasks send
their I/O requests to it.

First you see the device's message port showing the ItO request queue at one partic
ular point in time. Initially, there are five I/O requests queued; each could have come
from any of the tasks in the system whose IORequest or IOStdReq structures (or device
specific I/O-related structures) were sent to that device.

Next you see the state of the queue after the device processes the first request. IORe
quest 1 has been removed from the queue-the device internally uses the equivalent of the
GetMsg function to remove it-and the device is in the process of satisfying the request.

The next diagram shows the condition of the queue after the BeginIO, DolO, or
SendIO function has queued another I/O request (IORequest6) in the device request
queue. This request could have come from any task in the system that was communicat
ing with the device unit.

The next diagram shows the state of the queue after a task calls the AbonIO func
tion to remove a pending I/O request that is no longer needed. In this case, IORequest3
was removed. The last diagram shows the state of the queue after the CMD _FLUSH or
CMD _RESET command has finished executing. The device request queue has been emp
tied of all pending I/O requests, and they must be explicitly sent again for the device to
process them.

Shared Access versus Exclusive Access

Figure 1.5:
Behavior of a

Device's liD

Message-Port

Queue

Figure 1.6 illustrates the distinction between shared and exclusive device access when
more than one task tries to access a specific unit of a device. Here you see three tasks
trying to access the internal routines of a device.

Any device that can be accessed in both shared and exclusive modes has a flag
parameter bit that specifies the type of task access requested for that device. For instance,
the Serial device has the SERF_SHARED flag parameter bit, which tells the Serial device

,6.;te' Device PI-()'~f'sses

Origino ·Jut:'ue First Rec;'~est After FI,_,'~~ or Reset

I,ORe<mc' \1
I

!IORequlOs' 61

Figure 1.6:
Difference

between Shared

and Exclusive

Access

DEVICE lID 19

internal routines that you want to open the device in shared access mode. Note that the
default for all devices is not always exclusive access.

The top of Figure 1.6 shows how these three tasks interact with the device internal
routines when all three tasks open the device unit with the flag parameter bit for shared
access mode specified. Here each of the these tasks sends I/O requests to the device inter
nal routines (using BeginlO, DolO, or SendlO) after they have opened the device with
the OpenDevice function.

Task switching is not prevented while these three tasks send I/O requests and receive
replies for the device-generated data. After the first task calls OpenDevice for that unit of
the device, another task can also call OpenDevice and request data from that unit. There
is no need for Task! to close the device unit before Task2 and Task3 can open the device
and send I/O requests to the same unit.

Exclusive access operates in a different way, as the three diagrams at the bottom of
Figure 1.6 show. Here Task! must finish using the device before Task2 and Task3 can
gain access to it. All of the BeginlO, DolO, and SendlO functions in Task! must be sur
rounded by a pair of OpenDevice and CloseDevice function calls before task switching
allows another task to access that unit of the device.

This does not mean that task switching is prevented; it only means that if a task switch
occurs before Task! has closed the device unit, any attempt by Task2 or Task3 to open that
same device unit will result in a failure to open. The task will return IOERR_ OPENFAIL
at least until the first task regains the CPU and closes the device unit. In Figure 1.6, Task2
will not be able to open the device until Task! regains the CPU, executes a CloseDevice

I

I Task2 I
t •

Device
Task1 I::' Unit

-::I

Shared Mode Access

Task1 J:= Device
Un it

I Task2 I
I •

Device
Unit

Task3 I

Device ::::J Task 3 I
Un it

Exclusive Mode Access

1 0 I AMIGA PRO G RAM MER . S HANDBOOK

call, and closes that unit of the device. Once Taskl closes the device, the OpenDevice call in
Task2 will succeed when Task2 once again regains the CPU.

These ideas are important in developing your programming logic. You must decide
on a task-device unit opening and closing sequence for all your tasks. First you must
decide the access mode for each device unit you intend to open in each task; then you
must decide when you want to open and close each device unit.

Both the Device and the Unit structures have a structure parameter that keeps track
of the number of tasks that have opened a device unit and subsequently closed it. In the
Device structure this parameter is called Jib_OpenCnt, and in the Unit structure, it is
called unit_OpenCnt. The system works with these parameters, together with the type of
access you specify in your programs, to determine what action to take when a task tries to
open a device unit.

One way to simplify such decisions is to use all available units of a device to avoid
task collisions for the same device unit. For example, for the TrackDisk device, if you
have two or more disk drives you can establish a strategy for using those drives in the
most efficient manner. The Audio device discussed in Chapter 3 provides a good illustra
tion of using four units simultaneously to produce complex stereo sounds.

MUltitasking and I/O Request Processing
Figure 1.7 illustrates the details of multitasking when a series of tasks sends a series of
I/O requests to a specific device unit. This figure shows the difference between device
processing for asynchronous and synchronous 1/0 requests.

Three tasks (Taskl, Task2, and Task3) are communicating with the same device unit.
A typical example would be three tasks communicating with the Serial device, each trying
to get its own category of data from the Amiga serial port. Taskl needs to send three I/O
requests to the device unit: IORequestll, IORequestl2, and 10Request13, shorthand
notations for the complete 10Request or 10StdReq (or, for the Serial device, 10ExtSer)
structure used to define the I/O request. Task2 needs to send IORequest21, IORequest22,
and IORequest23 to the device unit. Task3 needs to send IORequest31, IORequest32, and
IORequest33.

In this example, Taskl has the highest task priority (in_Pri = 60), Task2 the
next-highest (in_Pri = 55), and Task3 the lowest (In_Pri = 50). Each of these tasks has
opened the device unit with an OpenDevice function call, and each task opened the device
unit in shared access mode. These arrangements allow for task switching and device shar
ing. Finally, the device request queue is presently occupied by a number of queued I/O
requests previously placed there by other tasks in the system.

The three tasks go through the following series of steps:

1. Taskl issues a DolO call to send IORequestll. Recall that DolO initiates a syn
chronous I/O request. Because the device-unit request queue is not empty in this
example, the device unit will not be able to immediately service this request; it will
be queued behind other already present I/O requests. Because 10Requestii cannot
be processed immediately and DolO cannot return in Taskl, Taskl will be blocked.
The next-higher priority task will take over; by assumption, this is Task2.

Figure 1.7:
Multitasking and

liD Request
Processing

Task1 (In_Pri=60)
DoIO(I,,)(tosk blocked)-

SendlO (1,,)---
go on to execute

other Taskl statements
(I" finished) -----

Task2 (In_Pri=55)
- DoIO(I,,)(tosk blockecJ1

---- SendlO (In)
go on to execu te

other Task2 statements
(I" finished)-----

Tosk3 (In_Pri=50)
-DoIO(I,,)(tosk blocked)

--(I" finished)

----SendIO (I,,)
go on to execute

other Task3 statements
DaIO(I,,)(tosk blocked)- --- --DoIO(I,~(task blacked)- --- --DaIO(I,,)(tosk blocked)

~~
Task I/O Task I/O

Reply Buffers
Queue

121 Request

IJI Request

I I;> Request

122 Request

IJ2 Request

IJ.J Request

123 Request

III Request

Device
I/O Request
Queue

2. Task2 gets control of the machine and sends the IORequest21 synchronous 110 re
quest to the same device unit using a DolO function call in Task2. IORequest21 is
queued behind 10Request 11 and other requests already in the queue. Task2 will
now be blocked.

3. Task3 gets control of the machine and sends the IORequest31 synchronous request
to the device unit, using a DolO call. This request will now be queued behind
10Requestll, IORequest21, and other 110 requests already in the queue. Task3
will now be blocked.

Now assume that the device internal routines just finished with IORequestl1. (This
is an assumption about the sequence and timing of events in the system, not something
you can directly control. Note that the previously queued requests must also be processed

1 21 AMIGA PRO G RAM MER'S HANDBOOK

before IORequestll is processed.) The previously blocked Taskl can then get control of
the CPU; Taskl has been waiting on IORequestll, and the device internal routines have
signaled that IORequestll is completed. Taskl receives the IORequestll request in its
task reply-port queue and acts on the arrival signal. This gives CPU control to Taskl,
indicated by the dotted line between the Taskl and Task3 rectangles. The device internal
routines will signal Taskl (using the equivalent of the PutMsg function's signal mecha
nism) and Taskl can now go on to execute other task statements.

Now assume that the next task statement in Taskl is a SendIO function call. This
call sends IORequest12 (asynchronous) to the queue, behind IORequest21, IORequest31,
and other previously queued I/O requests. (Note that IORequestll is no longer in the
device-unit request queue).

Because SendIO sends an asynchronous I/O request, Taskl can now go on to execute
other task statements. Here, however, the device unit has just finished processing IORe
quest21. (This is again an assumption about the specific sequence and timing of events
over which you have no direct control.)

Now that IORequest2l is completed, Task2, the next-highest priority task, can once
again gain control of the CPU, as shown by the dotted line between the Taskl and Task2
rectangles. Assume that the next executable task statement in Task2 is a Send 10 function
call; the process continues from here in the same way.

If you study this diagram along with the discussions of DolO, Send 10, and other I/O
functions in Volume I, you can see how both asynchronous I/O requests and synchronous
I/O requests are handled in the Amiga system. These considerations have a bearing on the
design of your programs and the design of all of the tasks that make up those programs.

A miga Devices
Figure 1.8 shows the relationship between a task and the 12 predefined Amiga devices in
the Amiga system. Keep in mind that the task depicted by the large rectangle represents
any task in the system, either a programmer-defined task or a system task.

The large rectangle represents all the task statements within that task, including those
that communicate directly with the devices. These device statements include all Open
Device, CloseDevice, BeginlO, DolO, SendIO, AbortIO, WaitIO, CheckIO, WaitPort,
GetMsg, Remove, and Wait function calls that are directed at a device-unit I/O request
queue or a task I/O request reply-port queue.

Twelve smaller rectangles in the figure represent specific units of a device. Remember
that each device could be shown as many rectangles, each representing a different unit of
the device, with as many rectangles as that device has allowable units. For example, the
rectangle for the TrackDisk device could be expanded to four rectangles, one for each
of its four possible units. In addition, the Translator library, which is not a device, is
also shown as a rectangle; it is included because it works directly with the Audio and
Narrator devices.

The most important things to note about Figure 1.8 are as follows:

• With enough memory, each task can open up to 12 predefined devices for simulta
neous access as those tasks each switch in and out of execution. A task may be able

Figure 1.8:
Task-Device

Relationships

for All Amiga

Devices

DEVICE 110 11 3

to open more than one unit of each of the 12 devices; in fact, it may be able to
open all units of all devices. The main limitation is memory. If all units of all
devices are open and the system is very active, there will be a lot of queued I/O
requests, which use a lot of RAM. The number of units allowed for each device is
indicated in the small rectangle representing that device.

• The double-sided arrows from the large task rectangle to the small device-unit rec
tangles represent task-device interactions-the transfer of all commands and data
between the task and the device internal routines brought about by the functions
executing within the task. In particular, these arrows represent the OpenDevice,
CloseDevice, BeginIO, DolO, and SendIO function calls.

• The arrows labeled Open and Send Data depict the internal operations and effects
of one device on another. For example, the Console device shows an Open arrow
running to the Input device. This means that the Console device will automatically
open the Input device when any task issues an OpenDevice call to open the Con
sole device. The arrows labeled Send Data each have a similar meaning; when the
Console device indirectly opens the Input device, the Input device can send data to
the Console device. This device-to-device data transfer is handled automatically by
the device internal routines.

Study all the relationships depicted in Figure 1.8. These interactions will be dis
cussed in later chapters.

"I AMIGA PRO G RAM MER'S HANDBOOK

Standard Device Commands
Table 1.1 summarizes the standard commands for each device in the system. The Amiga
provides a maximum of eight standard commands for each device. Note that the number
of standard commands actually implemented varies from device to device.

These commands were briefly discussed in Volume I. The main characteristics of
each are again presented here:

• CMD _CLEAR clears all internal device buffers. Recall that each device has a set
of internal buffers that it uses to manage data once control is inside the device
internal routines. The CMD_CLEAR command tells the system to zero all bytes
in each of the device-unit internal buffers. CMD _CLEAR has no effect on the
task-defined buffers.

• CMD_FLUSH tells the system to abort all pending 110 requests in the device-unit
request queue. Once these requests are flushed, a task will have to initialize the 110
request structures if it needs to send those requests again.

• CMD _READ tells the system to read a number of data bytes from the device
internal buffers into one or more of the task-defined buffers. The number of bytes
to read is usually specified by the IOStdReq structure io_Length parameter; the
system usually places the number of bytes actually read into the IOStdReq struc
ture io_Actual parameter. There are exceptions to these rules; the details of using
this command vary from device to device.

• CMD _RESET tells the system to reset the device unit. It completely reinitializes
the device internal routines, returning them to their default configuration.
CMD_RESET also aborts all queued and currently active I/O requests, cleans up
any data structures used by the device internal routines, and resets any related
hardware registers in the system.

• CMD_START tells the system to restart execution of a device command that was
previously stopped with the CMD _STOP command. The restarted command then
resumes where it stopped. In some cases, however, a command cannot restart at the
precise data byte at which it was stopped; the system then chooses another point at
which to restart the command.

• CMD_STOP tells the system to immediately stop the data processing currently
being done by the device unit. It will stop the processing at the first opportunity.
All I/O requests continue to queue, but the device unit stops processing them. The
device request queue can grow quickly if a lot of task and system activity occurs
while the device is stopped; if this happens, a great deal of memory may be used
by the queued 110 request structures. The command is useful for devices that
require Amiga user intervention (printers, plotters, and data networks, for example).

C
C

N
N

o
fH

)

D
ev

ic
e

C
L

E
A

R

F
L

U
S

H

R
E

A
D

R

E
S

E
T

A
ud

io

.'

.'

.'

.'

C
li

pb
oa

rd

-
-

v
v

C
on

so
le

v

-
v

-

G
am

ep
or

t
v

-
-

-

In
pu

t
-

v
-

v

K
ey

bo
ar

d
v

-
-

v

N
ar

ra
to

r
-

v
v

v

Pa
ra

lle
l

-
v

v
v

P
ri

nt
er

-

.'

-
v

Se
ri

al

v
v

v
v

T
im

er

-
-

-
-

T
ra

ck
D

is
k

-
-

v
-

-
-

Ta
bl

e
1.

1:
 S

ta
nd

ar
d

C
om

m
an

ds
 f

or
 E

ac
h

A
m

ig
a

D
ev

ic
e

S
T

A
R

T

S
T

O
P

.'

.'

-
-

-
-

-
-

v
-

-
-

v
v

v
v

v
.'

v
.'

-
-

-
-

-
-
-

-

U
P

D
A

T
E

.'
 v - - - - - - - - - -

"-
--

-
-
-

W
R

IT
E

v v v - - - v v v v - -
c ~

c:;

m
 o U
I

1 61 AMIGA PRO G RAM MER'S HANDBOOK

• CMD_UPDATE tells the system to write all device internal buffers out to the
physical device unit. The information in these buffers usually originates in the task
defined buffers; the device internal buffers represent a holding location for the task
information. The device performs this operation automatically as part of its normal
operations; however, this command can also be used to cause an explicit update
under the control of a programmer task. It is useful for devices that maintain inter
nal data buffers (caches) such as the floppy-disk and hard-disk drives.

• CMD _WRITE tells the system to write a number of data bytes from a task
defined buffer into one or more of the device internal buffers and then perhaps
onto external hardware (for example, a disk). The number of bytes is usually speci
fied by the IOStdReq structure io_Length parameter; the system places the num
ber of bytes actually written into the IOStdReq structure io_Actual parameter.
Once again, the details of this command vary from device to device.

Of the 12 Amiga devices, four are disk-resident (the Narrator, Parallel, Printer, and
Serial devices), and eight are ROM-resident. In addition to the standard device commands
shown in Table 1.1, most devices are programmed with a number of device-specific com
ands.

Device Functions
The Amiga provides eight standard Exec functions for use with each device. Some devices
use several other Exec functions.

All of the devices have an explicit OpenDevice function call. In addition, the Key
board device is always opened automatically by the Input device, which, in turn, may be
opened automatically by the Console device, which is opened automatically by the system
upon machine startup or reset. Note that the Console device can only be opened if
AmigaDOS is active.

The system automatically creates a ROM-based input task when it is started. This
task is used by both the Console device and Intuition. Intuition traps some of the input
events, including mouse movements and keyboard events, needed for window input
processing.

All of the devices have an explicit CloseDevice function call. However, the Console
device is closed by the system upon reset or power down; it also takes the other devices
down with it. Automatic closing is necessary to recover system resources-in particular,
memory.

Once you understand the relationships between the standard functions and the
device-specific functions, you can use them to program the Amiga devices. More particu
lars about each device function are presented in Chapters 3-14.

Structure Linkages for Tasks and Devices
Figure 1.9 depicts the structure linkages for all structures that are directly related to task
device unit management in the Amiga system. Some devices also have device-specific
structures that are used to manage that device.

Figure 1.9:
Structure

Linkages for
General Task

Device 110

Processing

Data
coming bock
from device

IOStdReq Structure
I,ORequest Structurel

IORequest Structure

I Message Structure I
(io_Message)

I

io Unit
-I

Unit Structure

MsgPort Str-ucture

INode Structure I I List Structure I
(mp_Node) I (mp_MsgLlst)

I
mn_ReplyPort

I

Message Structure

I Node StructUl-e I
(mn_Node)

Message Data Appended to
Message Structure (optlonol)

DEVICE 110 I' J

~io~D~e~v~ic~e1[~~~~~~~ r Device Structure I

rnp __ .Sig Task
Task Structure I

The IOStdReq structure contains the IORequest structure as a substructure. If the
task needs a task-defined data buffer, it must use the IOStdReq structure, which includes
the io_Data buffer pointer. For a read operation, the io_Data parameter specifies the task
RAM buffer in which the device internal routines will place their data. For a write opera
tion, this parameter defines the task buffer RAM location in which the task should place
the data it will send to the device.

The IORequest structure contains the io_Device pointer, which points to a Device
structure. A Device structure is identical to a Library structure and is used to help man
age the operation of all open device units. This parameter is specified by the system when
the Open Device function call returns.

The IORequest structure also contains the io_Unit pointer, which points to the Unit
structure used to manage the operation of one device unit. Just like the io_Device parameter,
the io_Unit parameter is specified by the system when the OpenDevice function call returns.

1 81 AMIGA PRO G RAM MER'S HANDBOOM

In addition, the 10Request structure contains a Message substructure named io_Mes
sage, which is used to define the parameters of the 110 request message. It contains a
pointer (mn_ReplyPort) to the task reply (message) port that will receive the I/O request
when the device unit sends it back to a task.

It is important to note that there are two MsgPort structures in the I/O system. The
first is used for the device 110 request queue, and the second is used for the task reply-port
queue. Each MsgPort structure contains a Node substructure (mp_Node) and a List sub
structure (mp_MsgList). They manage the message list for the two 110 request queues.

The MsgPort structure contains a pointer to a Task structure. For the task-related
MsgPort structure, this indicates which task will be signaled when the device internal rou
tines reply one of the I/O requests in the device-unit request queue; they will use the
ReplyMsg function to reply and to signal the task of its completion.

The Message structure contains a Node substructure named mn_Node. It is used to
place 110 requests on the message list of the device unit's message-port queue or the task
reply-port queue.

Any Exec Message structure can always be extended by the addition of optional mes
sage data; this data can supplement the normal task-defined buffer data that passes back
and forth between the task and the device. You can see that the 10Request and 10StdReq
structures (or any device-specific 110 request structures) are nothing more than customized
Message structures with appended data.

General I/O Structures in the Amiga System
Dealing with devices in the Arniga system requires the programmer to work with the system's
five key structures: 10Request, IOStdReq, MsgPort, Message, and Unit. Each structure has a
number of parameters that control the processing of device 110 requests. The required opera
tions include initializing parameters, reading parameters, and writing parameters.

A programmer-defined task must work together with the system routines and the device
internal routines to supply and gather the information going to and coming back from devices.
For these reasons, the most important features of these structures are now presented.

Refer to Volume I and the appropriate chapters in this volume for more details about
these structures and their parameters.

The IORequest Structure
The IORequest structure is defined as follows:

struct IORequest {

} ;

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;

DEVICE 110 1'9

These are the parameters in the IORequest structure:

• io_Message. This parameter is a Message substructure containing message informa
tion associated with the IORequest structure. The Message structure is used by the
device to return your 110 request upon completion. It is also used by devices inter
nally for 110 request queuing in each unit of the device. The Message structure (in
particular, the mn_ReplyPort parameter) must be properly initialized for 110 to
work correctly.

• io_Device. This parameter is a pointer to a Device structure for the device associ
ated with this IORequest structure. It is automatically set by the Exec system rou
tines when the device is opened with the OpenDevice function. Remember that a
Device structure is formally identical to a Library structure, discussed in detail in
Volume I. Of particular importance here, however, is the lib_OpenCnt parameter,
which the system automatically maintains as the number of tasks that are currently
using the Device structure. This is a device-private parameter; once set by Open
Device, it should not be changed by the calling task.

• io_Unit. This parameter is a pointer to a Unit structure that represents a particu
lar device unit. It is automatically set by the Exec system routines when the device
is opened with the OpenDevice function. Of particular importance is the unit_
OpenCnt parameter, which the system automatically maintains as the number of
tasks that are currently using this Unit structure. This is a device-private parame
ter; once set by OpenDevice, it should not be changed by the calling task.

• io_ Command. This parameter contains the device command to execute. It may be
either a standard device command or a device-specific command.

• io_Flags. This is a set of flag parameters for the IORequest structure. The flag
parameters are divided into two fields of four bits each. The lower four bits (bits 0
to 3) are used by the Exec system routines; the upper four bits (bits 4 to 7) are
available to each device for its own uses. See below for the definition of io_Flags
bit o.

• io_Error. This parameter is an error number returned to the calling task upon I/O
request completion or failure. 110 errors fall into two categories: standard device
errors and device-specific errors.

The io_Flags flag parameters in the IORequest and IOStdReq structures are as follows:

• IOF _QUICK. Set this if you want to use QuickIO. Then the device will process
the 110 request immediately if possible. If the device cannot handle the request as
a QuickIO request, it will be queued just as if it had been sent as a queued 110
request. This is io_Flags parameter bit o. See the specific chapters for other
device-specific values of io_Flags.

2 0 I AMIG. PRO G RAM MER'S HANDBOOK

The IOStdReq Structure
The 10StdReq structure is defined as follows:

struct IOStdReq {

} ;

struct Message io_Message;
struct Device * io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG iO_Actual;
ULONG io_Length;
APTR iO_Data;
ULONG io_Offset;
ULONG io_Reserved1;
ULONG io_Reserved2;

The first six parameters in the 10StdReq structure-io_Message, io_Device, io_Unit,
io_Command, io_Flags, and io_Error-are the same as for the 10Request structure. The
other parameters are as follows:

• io_Actual. This parameter usually represents the actual number of bytes transferred
during the requested 110 operation. It is only valid upon I/O completion. Not all
devices return this value.

• io_Length. This parameter usually contains the requested number of bytes to trans
fer; each task must set it prior to sending the 110 request. A value of - 1 can be
used to indicate variable-length data transfers terminated by some EOF (end of file)
condition. EOF characters, where appropriate, are defined separately for each
device. Not all devices require this value.

• io_Data. This parameter is a pointer to the task-defined data buffer for task-device
data transfers. This is the data buffer over which your task has complete contra!'

• io_Offset. This parameter is a byte-offset specification for byte-off set-structured
devices, such as the floppy disk controlled by the TrackDisk device. This number
must be a multiple of the device block size (for example, 512 bytes for a floppy
disk device).

• io_Reservedl and io_Reserved2. These parameters each contain four bytes reserved
for future structure expansion.

The Unit Structure
The V nit structure is defined as follows:

struct Unit {

} ;

struct MsgPort * uniCMsgPort;
UBYTE unit_Flags;
UBYTE unit_Pad;
UWORD unit_OpenCnt;

These are the parameters in the V nit structure:

• unit_MsgPort. This parameter is a pointer to a MsgPort structure that is used to
queue all I/O requests coming from all tasks into this device unit. The message
port will be shared by more than one task if those tasks open the unit in shared
access mode.

• unit_Flags. This parameter contains a set of flag parameters for the device unit.
See below for the definition of the unit_Flags parameter.

• unit_Pad. This parameter is a one-byte padding that is used to word-align the
parameters in the V nit structure.

• unit_OpenCnt. This parameter contains a count of the number of tasks that
opened a unit of the device. It is incremented or decremented each time a task
opens or closes the unit. The parameter allows the same device unit to be shared
by a number of tasks.

The unit_Flags flag parameters in the Vnit structure have the following meanings:

• VNITF _ACTIVE. The device unit associated with this Unit structure is currently
active accessing its internal routines to process an I/O request.

• UNITF _INTASK. The device unit associated with this Unit structure is currently
associated with a particular task. Therefore, if the unit is opened in exclusive access
mode, another task will not be able to open it until the other task closes it.

Both of these flag parameter bits are controlled by the system.

The MsgPort Structure
The MsgPort structure is defined as follows:

struct MsgPort {

} ;

struct Node mp_Node;
UBYTE mp_Flags;
UBYTE mp_SigBit;
struct Task * mp_SigTask;
struct List mp_MsgList;

2 21 AMIGA PRO G RAM MER' S HANDBOOK

These are the parameters in the MsgPort structure:

• mp_Node. This parameter is a Node substructure that is used to place this mes
sage port on the message-port list of all MsgPort structures in the system. The sys
tem automatically maintains a list of message ports. The Node structure contains
the In_Name parameter, which can be set with a simple structure-parameter assign
ment statement. Once the In_Name parameter is defined, this MsgPort structure
can be referenced by name by a series of cooperating tasks, each of which can then
add or remove I/O requests from that message port.

• mp_Flags. This parameter contains a set of flag parameters for the MsgPort struc
ture.

• mp_SigBit. This parameter is the signal bit number used to signal a task when a
message arrives in the message port. Each message port can have only one signal
bit number.

• mp_SigTask. This parameter is a pointer to a Task structure that represents the
task to be signaled when a message (I/O request) arrives in the message port. This
is usually the task that "owns" the message port.

• mp_MsgList. This parameter is a List substructure that maintains a list of all mes
sages arriving in the message port represented by this MsgPort structure. The Mes
sage structure Node substructure is used to place nodes on this list.

The Message Structure
The Message structure is defined as follows:

struct Message {

} ;

struct Node mn_Node;
struct MsgPort *mn_ReplyPort;
UWORD mn_Length;

These are the parameters in the Message structure:

• mn_Node. This parameter is a Node substructure that allows all messages arriving
at a message port to be placed in a message list.

• mn_ReplyPort. This parameter is a pointer to a MsgPort structure that represents
the message port to which the message should be sent once the receiving task has
accessed or used its data. For task-device interaction, each task must always initial
ize this parameter before dispatching a command.

• mn_Length. This parameter contains the number of data bytes in the message. It
is usually not used for task-device I/O. The message data itself is always appended
to the Message structure.

DeVice-Related Structures and INCLUDE Files
Table 1.2 presents a summary of the device-related structures and the INCLUDE files
defining these structures.

Not all of the Amiga devices have a device-specific I/O request-type structure explic
itly assigned to them. In particular, four of the Amiga devices-the Console, Gameport,
Input, and Keyboard devices-show no such structure in their INCLUDE files. This does
not mean that you cannot send commands directly to them; instead, the command-sending
mechanism relies on the IOStdReq structure itself.

The other eight Amiga devices have one or more I/O request structures assigned to
them. The Printer device has two I/O request structures assigned to it. IOPrtCmdReq is
used for sending most I/O requests to the Printer device; IODRPReq is used for sending
dump-raster bitmap-to-printer I/O requests.

The Audio and Timer devices both use the IORequest structure as a substructure in
their I/O request structures to send commands and data to their respective device rou
tines. On the other hand, the Clipboard, Narrator, Parallel, Serial, Printer, and TrackDisk
devices use the IOStdReq structure.

In addition to the I/O request structure, most devices use other structures to help
manage the device. The Audio, Parallel, Serial, Timer, and TrackDisk devices have one
additional structure each. The Clipboard device has two, the Keyboard device has three,
and the Printer device has four additional structures.

Nine devices have one INCLUDE file each that defines their structures and other
data required for a task to interface with the device internal routines. However, the Con
sole, Input, Keyboard, and Printer devices have two INCLUDE files each.

If you study the data in Table 1.2, you will know the names of all device-related
structures and where to find structure definitions and other data needed to deal with each
Amiga device.

I
~c
e

I

A
ud

io

C
li

pb
oa

rd

C
on

so
le

G
am

ep
on

In
pu

t

N
am

e
of

R

eq
ue

st

St
N

C
tu

re

IO
A

ud
io

IO
C

li
pR

eq

IO
S

td
R

eq

IO
S

td
R

eq

IO
S

td
R

eq

N
am

e
of

 1
,0

R

eq
ue

st

S
ub

st
rv

ct
ur

e

IO
R

eq
ue

st

IO
S

td
R

eq

Fi
rs

t
A

ux
ili

ar
y

St
ru

ct
ur

e

A
ud

C
ha

nn
el

C
li

pb
oa

rd
_

U
ni

tP
an

ia
l

C
on

U
ni

t

In
pu

tE
ve

nt

Se
co

nd
 A

ux
ili

ar
y
I T

hi
rd

 A
ux

ili
ar

y
St

N
C

tu
re

St

ru
ct

ur
e

S
at

is
fy

M
sg

I I

F
o

u
n

h
 A

ux
ili

ar
y

I
IN

C
l.U

D
E

F

ile
s

St
ru

ct
ur

e

A
ud

io
.h

C
li

pb
oa

rd
.h

C
on

so
le

.h

I
C

on
so

le
un

it
.h

 J
G

am
ep

on
.h

In
pu

t.
h

In
pu

te
ve

nt
.h

r
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
r
-
-
-
-
-
-
-
+
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
T
-
-
-
-
-
-
-
~
-
-
-
-
-
-
~

I I

K
ey

bo
ar

d

N
ar

ra
to

r

P
ar

al
le

l

IO
S

td
R

eq

N
ar

ra
to

r
rb

M

ou
th

.=
rb

IO
E

xt
P

ar

K
ey

M
ap

N
od

e

IO
S

td
R

eq

IO
S

td
R

eq

IO
PA

rr
ay

K
ey

M
ap

K

ey
M

ap
·

R
es

ou
rc

e

P
ri

nt
er

D
at

a
P

ri
nt

er
S

eg
m

en
t

P
ri

nt
er

IO

P
nC

m
dR

eq

IO
S

td
R

eq

P
ri

nt
er

D
at

a
I

P
ri

nt
er

S
eg

m
en

t
I

P
ri

nt
er

 E
x·

IO

D
R

P
R

eq

te
nd

ed
D

at
a

Se
ri

al

IO
E

xt
S

er

IO
S

td
R

eq

IO
T

A
rr

ay

T
im

er

T
im

eR
eq

ue
st

T
ra

ck
D

is
k

IO
E

xt
T

D

IO
R

eq
ue

st

IO
S

td
R

eq

T
im

eV
al

T
D

V

Pu
bl

ic

U
ni

t

D
ev

ic
eD

at
a

K
ey

bo
ar

d.
h

K
ey

m
ap

.h

N
ar

ra
to

r.
h

P
ar

al
le

l.h

P
nb

as
e.

h
P

ri
nt

er
.h

S
er

ia
l.h

T
im

er
.h

T
ra

ck
di

sk
.h

L
_

_
_

_
_

_
 ..
.l

-_
_

_
_

_
 .l
.-

. _
_

_
_

_
 L
-
_

_
_

_
 --
--

1.
 _

_
_

_
_

 --
--

1.
 _

_
_

_
_

 -
'-
_

_
_

_
_

 --
--

1.
 _

_
_

_
_

 .-
J

Ta
bl

e
1.

2:
 D

ev
ic

e
S

tr
uc

tu
re

s
a

n
d

 I
N

C
LU

D
E

 F
ile

s

N
 "'" :>

:1
:

C
i

:>

IJ

::r
J o GJ

::r
J » ~

~

m

::r
J

(f
J

:%
:

:>

z c g
;J

o o ::0

::

•
•• •

•
• ••

• . .. •• •• • •• • •• . .-.

Device Management

DEVICE MANAGEMENT 12 7

I Introduction

This chapter discusses general topics of vital importance to Amiga device management and
programming. Programming procedures for Amiga devices differ from input/output proce
dures for most other computers. These Amiga procedures were designed so that a pro
grammer could take maximum advantage of the built-in Amiga device internal routines.

The chapter first presents the C language programming procedures you will use for
Amiga device management. The most common types of device management tasks, the
usual sequences of their execution, and the most important steps in their programming
procedures are identified. Following sections focus on the AbortIO, BeginIO, Rem Device,
and AddDevice functions, since their uses are similar for all 12 Amiga devices. Altogether,
these topics establish a programming framework upon which you can build Amiga device
management tasks and programs.

The chapter concludes with discussions of the nine Exec-support library functions.
All of these functions are contained on disk in the file named amiga.lib on the C language
programming disk in the LIB: directory. Each function is a set of prepackaged program
statements that is usually repeated again and again in device management programs. These
functions were put together in a library for easy programmer access; they allow your pro
grams to be much shorter than they would be if you programmed using the Exec task and
message-port management functions. These functions further streamline your use of the
preprogrammed device management features, thus saving programming effort. (The appen
dix presents a precise definition of each of the Exec-support library functions.)

General Programming Procedures
Figure 2.1 depicts the general sequence of programming steps you should follow when
programming Amiga devices. This sequence consists of opening the device unit with
OpenDevice; sending commands to the device unit with BeginlO, DolO, or SendIO; and
closing the device unit with CloseDevice. The following discussion is presented in terms
of a single task, device unit, task reply port, and I/O request structure. The same pro
gramming pattern holds for multiple instances of these, as you will see later on.

The programming steps are as follows:

1. Create a task that will handle the device management. You can do this with the
CreateTask function. Note that CreateTask is called in another task, not in the task
that will manage the device. (All the devices that the system deals with are man
aged by a set of device management tasks created by other tasks in the system; the
original boot task is the master task in the system.) Once the device management
task is created, you can name it (specify a Task structure Node substructure
In_Name parameter) and add it to the system task list using the Exec library Add
Task function. All other tasks and programs in the system can then obtain a pointer
to its Task structure using the Exec library FindTask function.

2 81 AMIGA PRO G RAM MER . S HAND800K

Figure 2.1:
Programming

Steps for Task

Device 110

Processing

2. Create a task reply port using the CreatePort function. This is the task message
port where I/O request messages will be queued when the device finishes process
ing each lIO request. This function call is made within the device management
task itself. (Note that the device unit also has a message port for lIO requests that
are sent to it. This port is controlled by the Unit structure MsgPort substructure
created by the OpenDevice function call; a task is not required to create it with a
CreatePort function call inside that device management task.) A task should create a
message port for each distinct category of lIO requests, which usually means a sep
arate port for each device and device unit.

Create task .using CreateTask

t
Create task's reply port using Create Port

t
Create standard I/o request using CreateStdlO

or
Create extended I/O request using CreateExtlO

I
Set SHARED flag in 10StdReq (IOExtReq) using

structure parameter assignment statements

t
Call Open Device for this IOStdReq or

IOExtReq structure; Open Device fill s in other
parameters in IOStdReq (IOExtReq)

t
Use 0 series of 8e9in10, DolO, and

SendlO function calls to send a series of
commands to device

t
Call CloseDevice
after this task

is finished with device

t
Delete standard (extended) I/O request using

I DeleteStdlO (DeleteExtIO)

t
Delete task's reply port using DeletePort I

I
Delete Tosk using Delete Task

DEVICE MANAGEMENT 12 9

3. Create an I/O request structure for the device unit using the CreateStdIO or
CreateExtiO function. Use CreateStdIO only if the device requires an IOStdReq
structure to define its commands. If the device requires a device-specific I/O
request structure, call CreateExtiO to allocate and initialize that structure. A task
will usually also have to specify additional structure parameters to fully initialize
the device-specific I/O request structure. (See the appropriate chapter to determine
what kind of I/O request-structure parameters a device requires.) The I/O request
structure is now in the task's memory space, is not queued, and is said to belong to
the task.

4. Set the appropriate flag parameter bits in the IORequest, IOStdReq, or device
specific I/O request structure before calling OpenDevice. In particular, decide
whether you want to open the device in shared or exclusive access mode. You also
may want to set other device-specific I/O request parameters; read the appropriate
chapters in this volume to determine what those parameters are.

5. Call the OpenDevice function to open the device unit. OpenDevice will automati
cally increment the Device structure lib_OpenCnt parameter, indicating that one
more task has the device open. It will also automatically increment the Unit struc
ture unit_OpenCnt parameter, indicating that one more task is using the unit.
OpenDevice will fill in additional parameters in the I/O request structure; it will
set the I/O request structure io_Device and io_Unit parameters to point to appro
priate Device and Unit structures.

6. Use a series of BeginIO, DolO, and SendIO function calls to send a series of com
mands to the device unit. First map out the task's data needs and decide the order in
which the task needs the data. Then decide if the task must have the data before pro
ceeding (synchronous) or can request data and go on to other things (asynchronous).
Then send the commands.

7. Close the device unit when you are sure that this task will no longer need it. Gener
ally speaking, call CloseDevice using the same I/O request structure you used when
you called OpenDevice. This step will decrement the Device structure lib_OpenCnt
parameter, indicating that one less task has the device unit open; it will also decre
ment the Unit structure unicOpenCnt parameter, indicating that one less task is
using the device unit.

8. Delete the I/O request structure using the DeleteStdIO or De1eteExtIO function.
Use DeleteStdIO if you originally used CreateStdIO; use DeleteExtIO if you used
CreateExtiO. These function calls free the memory occupied by the I/O request
structures.

9. Delete the task reply-port MsgPort structure using the DeletePort function. This
frees the memory occupied by the task message-port management structures. How·
ever, if you want to use the task message port for other messages in the system,
don't delete it at this time.

3 0 I AMIGA PRO G RAM MER'S HANDBOOK

10. Arrange to return to the task that originally created the device management task,
and call the DeleteTask function to delete the Task structure used to manage the
device management task. (This is an optional step.)

Asynchronous I/O Request Processing

Figure 2.2:
Progress of an
Asynchronous

liD Request

Figure 2.2 shows how the system behaves while processing asynchronous I/O requests.
You use asynchronous I/O requests when you want to send multiple I/O requests one
after the other and you do not need the data before you can continue with your task.
Recall that five functions-three Exec library and two device library functions-control the
detailed operation of asynchronous I/O request processing: BeginIO, SendIO, AbortIO,
CheckIO, and WaitIO. In addition, the Exec library GetMsg and Remove functions also
play a part in the sequence of actions for asynchronous I/O request processing.

Six rectangles in the figure represent a sequence of actions that are in part directly
under programmer-task control, but for the most part are determined and controlled by
the coordinated action of the system and device internal routines. For this illustration,
QuickIO was not requested.

f\eturn ~o

task (except
for WaitlO)

T sk Stoten-:ents C.xec u tin
AbortlO (aptional l

- ChecklO (optional) GetMsg

Woit'O (optionol~
f-.(emo\/i'-:'

8eg;nl0 or SendlO

l

-t ,/O reqce"t IS qceued
in device I/O I'equest list

I
I/O request works Its way to top of device

I/O request list

I
Device remOves I/O request from deviCe

I/O request list and vocesses rem.est

j

Device repl ies to task, Request IS added at
bottom of tJsk I'eply pOlt I isl. f ask is

signaled of '/0 cOT1pietion

j

Repl ied reql~. est works its WGY to top of
task re~ly port list

Ii
f-- I

f--'-

-

~

-'Task rl-;I~,oves

frst (top)
request in
task reply
port list

-Task rerr':oves
reque'~;t oefore
it reaches
top of tOSK
reply port
'ist

DEVICE MANAGEMENT 13 1

The action proceeds as follows:

1. The task has sent an asynchronous I/O request using either the BeginIO or SendIO
function. (Figure 2.1 showed the sequence of steps that led up to this point in the
task; note that a particular device unit was previously opened with OpenDevice.)

2. The I/O request is placed in the device·unit request queue using the Device, Unit,
MsgPort, and Message structures associated with the queue's message port and the
I/O request. The device-unit request queue is a first-in, first-out (FIFO) queue, so
this particular I/O request was placed at the bottom of the queue. The I/O request
structur~ is now on the device-unit request queue and is said to belong to the
device internal routines. If the task does not execute a WaitIO function call for
the I/O request, it can continue executing other task statements. If the task does
execute WaitIO at any time after it executes BeginIO or SendIO, and the device
has not processed and sent the I/O request back to the task reply-port queue, that
task will block further execution and lose the CPU until a task signal indicates the
device has returned the I/O request. The mechanism to detect and handle the task
reply-port signal must be established before the I/O request is sent.

3. The queued I/O request has now worked its way to the top of the queue and can
be processed by the device internal routines. Just how long the I/O request takes to
get from the bottom of the list to the top depends on the current length of the list
and on all other activities in the system. How busy the system is determines how
much time the CPU can give to the device internal routines of this particular
device and how fast it can remove I/O requests from its device request queue.

4. The device internal routines remove the pending I/O request from the top of the
device-unit request queue. The device uses the GetMsg function internally to get
the I/O request. It then uses the parameters in the 110 request structure to deter
mine what the requesting task wants back from the device.

5. The device replies to the task and adds the reply to the bottom of the task reply
port queue. The I/O request structure is now in the task reply-port queue and is
said to belong to the task. If an error occurred during processing, the replied I/O
request structure will contain information about the error in the io_Error parame
ter. The I/O request structure Message substructure mn_ReplyPort parameter tells
the system where to put the reply; the device uses the ReplyMsg function inter
nally to send the reply to the task reply port. In addition, if a signaling mechanism
has been specified between the task reply port and the task that owns it, the task
will be signaled of the arrival of the reply.

6. The task, once signaled, can remove the 1/0 request from the task reply-port queue
immediately using the Remove function, as depicted in the figure by the line from
the fifth small rectangle to the first one. Remove is usually used only in conjunc
tion with the CheckIO function, which checks for the presence of a specific reply
in the queue. CheckIO returns a pointer to the queued 1/0 request structure, and
the task can then call the Remove function to remove it. Note that this can also be

321 AMIGA PRO G RAM MER . S HANDBODM

done while the replied I/O request is working its way to the top of the task reply
port queue.

7. If the reply message is not removed from the task reply-port queue using the
Remove function, the task will continue processing queued replies on a first-in,
first-out basis when it becomes active. The replied I/O request originally sent by
BeginlO or SendIO will work its way to the top of the queue, and the task can
remove it. To do so, the task must explicitly call the GetMsg function, shown in
the figure by the line from the sixth small rectangle to the first.

This completes the travels of the asynchronous I/O request through the system, from
the sending task back to the sending task. First sent to a specific device unit by the BeginIO
or SendIO function, the request proceeds through the various queues and fmally returns to
the originating task, where it can be accessed, the returned data processed, and the I/O
request reused if necessary.

Remember that the system is generally switching between this task, other
programmer-defined tasks, and system-defined tasks. Also, when a device is active, the
CPU will spend its time executing the device internal routines. All of these actions take
place under the control and supervision of the Exec routines and the combined system
and device internal routines. The queues help arbitrate the sequence of events.

Synchronous I/O Request Processing
Figure 2.3 shows how the system behaves while processing synchronous I/O requests. You
usually use synchronous I/O requests when you want to send one request at a time and
wait on the device to send the data back to your task. Note that the Exec GetMsg func
tion does not play a part in removing replied synchronous I/O requests from the task
reply-port queue. Again, QuicklO was not requested in this example.

There are a few important differences between synchronous and asynchronous pro
cessing, as a comparison of the two figures shows. These are the points to remember
about synchronous I/O:

• The CheckIO, SendIO, and WaitIO functions are not used. Just like GetMsg, these
three functions are only used for asynchronous I/O requests.

• Once the BeginlO or DolO function executes, the requesting task will be blocked
until the ItO request is completed and the requesting task is notified of its arrival
in the task reply-port queue. The task will stop execution until the device returns
the reply and the task accesses the returned data. In the meantime, while the
requesting task is blocked, other tasks may take over the CPU. This is the princi
pal reason why synchronous I/O requests are used.

• BeginIO or DolO automatically call Remove to remove the I/O request from the
bottom of the task reply-port queue as soon as the task is signaled.

Always remember that no I/O request structure in the system is ever copied as it
moves from queue to queue during I/O request processing. Instead, only one copy of
these structures is present in RAM for each ItO request sent to a device unit. The system
manages an I/O request structure by placing it on a set of queues in a well-controlled

Figure 2.3:
Progress of a
Synchronous
110 Request

Task Sta tem en ts Executing
AbortlO (optronal)

Remove
BeginlO or DolO

I
I/O request is queued

in device I/O request list

I
I/O request works its way to top of devrce

I/O request list ,
Device removes I/O request frorr clevlce
I/O request list and Dr-ocesses request ,

Device repl ies to task Pequest is added at
bottom of task repl Y Dart I:st Task is

signoled of I/O completion

-.
I

I

IJ

DEVICE MANAGEMENT 133

BegrnlO or DolO
automatically calls
Remov·~' :0 remove request
from bottl:r'r of task replv
port lis· soon as
t(lsk is srgnalec

sequence. In this way RAM requirements are minimized and each I/O request structure is
reusable once it completes a round trip.

Multiple Tasks, Reply Ports, and Device Interaction

Figure 2.4 shows three tasks, each containing some of the Exec-support library function calls
as part of its task statements. The figure does not depict the exact order of function call
execution; rather, it depicts the general packaging of Exec-support library functions to work
with Amiga devices.

Task2 was created by a Create Task call in Taskl. Task3, in turn, was created by a
CreateTask call in Task2. Thus, Task3 also was created indirectly by TaskL

As an example of how this works, think of Devicel as the Serial device connected to
a modem. Device2 is the Audio device connected to a set of speakers, and Device3 is the
Printer device connected to a printer through the Amiga parallel port. Under this arrange
ment, you would want a Serial device management task, an Audio device management
task, and a Printer device management task. Creating three distinct tasks in this way
would help you keep things straight in your program.

Depending on your particular program design, the situation could be even more compli
cated: Taskl needs data from Devicel in two different categories, Task2 needs data from
Device2 in two different categories, and Task3 needs data from Device3 in two different cate
gories. In order to make data management easier in this situation, it is necessary to create two
types of I/O request structures and two types of I/O request reply ports for each task.

341 AMIGA PRO G RAM MER'S HANDBOOK

Figure 2.4:
Using the Exec·
Support Library

Functions for
Tasks and

Reply Ports

Taskl
CreotePort (lor ReplyPortl)
C'fntePort (for ReplyPort2)

CreateStdlO (for first I/O request)

CreoteStdlO i,for last I/O request)

CreoteTosk Tosk2)
Oe1eteTosk Tosk2)

lJeleteStdlO (for first I/O request)

OeldeStdlO (for lost i/O request)

Jp,elePort (for RepiyPl)rtl)
DeletePort (for Repl)'Port2)

I
ReplyPort 1 ReplyPort 2

!

Devicel
(Un ItO)

,
Lkv,c;e1 I/n POf t

I
Beginl!) /D 010 /SendlO

-- ----------

Task2
CreotePort (for ReplyPortl)
CreolePort {for ReplyPort2)

CreoteStdlO (for first I/O request)

CreateStdlO (for lost I/O request)

Create Task {for
DeleteTosk (for

OeleteStdlO (for first I/O request)

OeleteSldlO (for lost I/O request)

OeletePort (for ReplyP~,rtl)

OeletePort (for ReplyPor(2)

ReplyPort 1 ReplyPort 2

Oevice2
(UnitO)

Oevlce2 I/O Port

BeginlO /0010 /Sen dlO

Task3
CreotePort (for Repl)portl)
Crteatt>Port (for Replf'ort2)

CreoteStdlO (for first request)

CreoteStdlO (for lost I/O request)

Task.3 could creole
one or more tasks

USLng Create Task

DeleteStdlO (for first I/O request)

OeleteStdlO (for lost I/O re-quest)

OeldePort (for ReplyPortl)
DeletePort (for ReplyPor(2)

l
Repl~ort 1 RcplyPort 2 ,

Oevice3
(Un ita)

De.ice) I/O Port

I
BeginlO /DoIO/SendIO

I

Task! contains two Create Port statements to create two task reply ports for I/O
requests coming back from Device!. In addition, Task! contains a number of CreateStdIO
function calls to create IOStdReq structures that send commands to Devicel, one Create
StdIO function call to create an IOStdReq structure to use when calling OpenDevice, one
CreateStdIO function call for each command to be passed, and a corresponding number of
task-cleanup DeleteStdIO function calls to delete the IOStdReq structures. Finally, Task!
contains a CreateTask function call to create Task2 and a task·deanup DeleteTask function
call to delete Task2. The same pattern of function-call packaging holds for Task2 and Task3.

Immediate-Mode Request Processing
This section discusses the concept of immediate-mode request processing. Because
immediate-mode commands operate in a unique way, they play an important role in
Amiga device management.

CMD_CLEAR, CMD_FLUSH, CMD_START, CMD_STOp, and CMD_RESET
can be dispatched as immediate· mode commands. Moreover, these commands are not always
dispatched as immediate-mode commands; they often operate in other modes, depending on
the predefined characteristics of the device internal routines.

Consider the various ways that a device command can progress through the Amiga
device software system. Taking into account that both the device request queue and the
task reply-pon queue are possible holding locations for I/O requests, there are four possible

DEVICE MANAGEMENT 135

paths an I/O request can follow:

1. A command can be dispatched to a spec;ific device unit and queued in its I/O
request queue; the device can then process the command and reply it to the task
reply-port queue. This path involves queuing on both ends of the transaction.

2. A command can be sent to a device unit with the I/O request structure io_Flags
IOF _QUICK bit set. QuickIO will be successful if the current system conditions
allow it. The device internal routines will process the command immediately and
send it back to the task without queuing on either end of the transaction. The
IOF _QUICK bit will still be set in the replied I/O request.

3. A command with IOF _QUICK set can be sent to a device unit, but the device
internal routines may not be able to process the command as a QuickIO command.
They will then automatically queue the command I/O request in the device-unit
request queue. It will be processed when it reaches the top of the queue and will
be subsequently replied to the task reply-port queue by the device internal routines.
This arrangement also involves queuing on both ends of the transaction. The IOF
_QUICK bit will be reset in the replied I/O request.

4. A command can be sent to the device unit in immediate mode. The device internal
routines always process it immediately, no matter what else is going on in the sys
tem at that time. These commands have high priority; they mayor may not be
replied to the task reply-port queue, depending on the IOF _QUICK bit setting.

As an example, assume that a task has sent an immediate-mode CMD _RESET com
mand to reset a device's internal routines to their default startup state. The task is asking
that the device internal routines be reset immediately, regardless of what circumstances
currently exist in the system. It is easy to see that such a command should not be queued
in the device request queue.

Moreover, the task usually wants the device internal routines to execute the command
immediately, even if it involves interrupting a currently executing nonimmediate command.
This is best illustrated by the example of a CMD_STOP command interrupting a
CMD_READ or CMD_WRITE command. In many cases, the CMD_READ or
CMD _WRITE command will be interrupted in the middle of its progress, thereby leaving
some bytes not yet transferred. The device internal routines will not allow the data transfer
to complete before CMD_STOP stops the device from sending data back and forth between
the device and task-defined buffers.

The precise operational details of the immediate-mode commands vary from device to
device. They can sometimes be dispatched as QuickIO and can sometimes be replied to
the task reply-port queue. The appropriate command discussions in the following chapters
detail the specific behavior of individual commands.

General 110 Request-Structure Procedures
This section discusses procedures for initializing and dealing with I/O request structures.
You can apply these procedures to programming any of the 12 Amiga devices.

361 AMIGA PRO G RAM MER'S HANDBOOK

Because the IORequest structure is the minimum structure required to dispatch I/O
requests to device units, specialized device-specific I/O request structures always include it
as the first substructure entry. Therefore, any parameters in the IORequest structure are
also in device-specific structures.

The IORequest structure consists of a Message substructure containing an
mn_ReplyPort parameter; the io_Device and io_Unit pointer parameters; and the
io_ Command, io_Flags, and io_Error parameters. Here are the procedures for initializing
these parameters regardless of the device you are programming:

• mn_ReplyPort. This parameter must usually be initialized to point to the MsgPort
structure representing the task reply port of the task sending the I/O request.
When a device has finished processing a command, its internal routines will send
the reply to this port. Those routines will place a pointer to the I/O request struc
ture on a list that represents all queued 11,0 request structures that have come back
from the device unit. Note that the reply mechanism is handled automatically by
the device internal routines. The mn_ReplyPort parameter can also point to any
MsgPort structure belonging to any task in the system.

Specifying mn_ReplyPort to point to a MsgPort structure owned by a task other
than the one that originated the I/O request provides a mechanism for the originat·
ing task to send device data to another task. This is another mechanism for indirect
data transfer between tasks using the device internal routines to generate that data.
If you think of the device internal routines as a third task in this process, you have
one task sending data to another task using a third task to generate that data.

If you specifY a null value for mn_ReplyPon, the device internal routines will
not reply the I/O request to any task reply-port queue. In most cases, the originat
ing task will not be able to get an I/O request structure pointer and will therefore
not be able to retrieve the device-generated data.

If a task uses the CreateStdIO or CreateExtIO functions, the mn_ReplyPort
argument is the only argument in the CreateStdIO function call and the first of
two arguments in the CreateExtiO function call. In addition, CreateStdIO and
CreateExtIO initialize the I/O request structure Message substructure In_Type and
In_Pri parameters; therefore, if a task uses these functions to create its I/O request
structures, it will not have to initialize these two parameters.

• io_Device. This is a pointer to a Device structure used to manage the device inter
nal routines of a specific device. It is initialized by the Open Device call for the first
I/O request structure used by a task to communicate with a specific device unit.
Additional I/O request structures that the task needs in order to send commands to
the device can then be initialized by copying this parameter into their io_Device
parameters. The same Device structure is used for all open units of a specific
device.

• io_Unit. This is a pointer to a Unit structure used to establish a specific device
unit I/O request-queue message port and to manage a particular device unit. It is
also initialized by the OpenDevice call for the first I/O request structure used by a
task to communicate with a specific device unit. Additional I/O request structures

DEVICE MAHAGEMENT 137

that the task needs to send to the device unit can then be initialized by copying
this parameter into their io _Unit parameters.

• io_Command. This is a literal constant representing the name of one of the device
commands. The INCLUDE files assign a specific value to it for every device com
mand that a particular device honors. You always initialize this I/O request-structure
parameter using a simple C language structure-parameter assignment statement.

• io_Flags. This represents a set of flag parameter bits representing the specific
requirements of the I/O request a task sends to a device unit. In some cases a task
initializes this parameter before it opens a device unit with OpenDevice. For
example, if a task needs to open a device unit in shared access mode, it should
initialize the io_Flags parameter shared access bit in the first I/O request structure
before calling OpenDevice. Some devices are opened in exclusive access mode
unless a task specifies otherwise in the io_Flags parameter. Other flag parameter
bits should also be set in other device-specific OpenDevice calls; in the following
chapters, you will discover the flag parameter bits that are provided for each spe
cific device.

Once you have defined the first I/O request structure to open the device, you
may want to set the io_Flags parameter to other values for other I/O requests. For
example, if a device supports QuickIO, a task can initialize io_Flags to IOF
_QUICK for some (or all) commands sent to that device.

• io_Error. The value of this parameter is usually set by the device internal routines
before the I/O request is replied.

Classes of 110 Requests
All 110 requests fall into two general classes:

1. Those defined by an IOStdReq structure. The IOStdReq structure consists of an
IORequest substructure with four parameters (io_Actual, io_Length, io_Data, and
io_Offset) appended to it. The io_Data parameter enables a task to point to a
RAM data area (a task-defined buffer) that can be used as a source and a destina
tion for information coming from and going to the device internal routines. (The
IORequest substructure itself has a total of six parameters but does not include any
parameters to represent a RAM data-area pointer; by itself, it does not allow a task
and device to relate through task-defined buffers.)

2. Those defined by a device-specific extended 110 request structure. An example is
the TrackDisk device, which uses the IOExtTD structure to manage data going
back and forth between a task and a specific device unit. All of the device-specific
extended I/O request structures are summarized in Table 1.3 in Chapter 1.

Creating Multiple I/O Requests
Each 1/0 request sent to a device requires a distinct I/O request structure to represent it.
A specific 1/0 request structure must not currently be on any list in the system if you

381 AMIGA PRO G A A M MER'S HANDBOOK

want to use it; it cannot be in a device request queue or a task reply-port queue. This
section presents the rules you should follow when creating multiple 110 request structures
to define the data needs of your tasks.

A task can get its required I/O request structures in three ways: it can create them
anew with a call to OpenDevice; it can reuse already defined ones by redefining their param
eters once they have completed a round trip from task to device and back to the task; or it
can create new ones by cloning (copying) some parameters and initializing others in an
already existing I/O request structure. The procedure a task should use depends on the spe
cific point in that task, what I/O request structures are already defined at that point, and
what the task is trying to accomplish.

If an I/O request structure is created anew by an OpenDevice call, OpenDevice first
initializes the io_Device and io_Unit parameters to point to a Device and a Unit structure.
OpenDevice defines these two parameters for the first usage of the I/O request structure,
which represents the first data request actually made to the device unit using BeginIO,
DolO, or SendIO. Once these two parameters are initialized, a task can copy them into any
number of other properly allocated 110 request structures. Each of these copy operations,
together with other structure-specific parameters, will result in a unique instance of the I/O
request structure in RAM.

In addition, the specific I/O request structure initialized by OpenDevice can be used
again and again for BeginIO, DolO, and SendIO function calls, provided it has completed
a round trip (from the initializing task to the device-unit request queue, to the task reply
port queue, and back to the task). Once back in the task it will not be on any lists in the
system. Only then can the device data represented by the structure be accessed by the task
and the I/O request structure be reinitialized and dispatched again. When the task once
again owns that particular I/O request structure, its parameters (io_Flags, io_Data,
io_Length, and so on) can be redefined and it be can used to send a new I/O request.

Processing Multiple 110 Requests
Figure 2.5 shows a device management task in action. This figure represents the task
device interaction of any of the 12 Amiga devices. For example, the large rectangle could
represent the program statements of a disk-data management task handling I/O between a
specific TrackDisk device unit and a set of task-defined buffers. The figure will first be
discussed in terms of asynchronous I/O requests.

Each of the small rectangles inside the larger one represents a specific instance of an
I/O request structure and the task operations required to define it. Each of these I/O
request structures could be created by the Exec-support library functions CreateStdIO and
CreateExtIO. Then only the I/O request structure Message substructure parameters would
be initialized; a task would still have to initialize some parameters (io_Data, io_Length,
io_Actual, io_Offset, and so on). These I/O request structures could be created the hard
way, using individual Exec library functions and assignment statements, but using Exec
support library functions is more efficient. In either case, the 110 request structure is allo
cated in RAM at a location determined by the I/O request structure allocation process.
(The figure is not intended to portray the RAM location of these structures.)

The initialization of IORequestO is completed with a call to the OpenDevice function,
which initializes its io _Device and io _Unit parameters. Other required IORequestO parameters

Figure 2.5:
Sending

Multiple I/O
Requests to a

Device

DEVICE MAHAGEMENT 13 9

Device Management Task Statements

I /ORequ esto
Created by
Open Device

(io_Device and

I
io Unit initialized)

I I

copy io_Device copy io_Device copy io_Device
copy ii_unit copy ii_unit copy ii_unit

I/ORequest1 I/ORequest2 I/ORequest3
define other define other define other
Parameters Parameters Parameters
specific to specific to specific to

this request this request this request

BeginlO~SendlO BeginlO ~sendlO BeginlO~SendlO
t I Task Reply I

Port Queue

t
Task Reply Port Queue

Device Internal Routines
GetMsg

t
IORequesto

IORequest1

IORequest2

IORequest3

I t

can be initialized using simple structure-parameter assignment statements. When all of these
parameters are initialized, IORequestO is dispatched by a BeginIO or SendIO function call,
denoted by the arrow on the right side of the topmost small rectangle.

If the device unit currently has no queued I/O requests, the dispatched request will be
queued at the top of the device-unit request queue. On the other hand, if the device unit
already has queued I/O requests, IORequestO will be placed below them. The device inter
nal routines will process IORequestO when it gets to the top of the queue. However, if the
system is busy with other tasks, devices, or interrupts, IORequestO may have to wait in the
queue until the system passes control to the device internal routines.

Once the task has dispatched IORequestO as an asynchronous request, it can go on to

other things. It may want to dispatch other I/O requests to the same unit of the same

401 AMIGA PRO G RAM MER'S HANDBOOK

device. However, it cannot use IORequestO to do so, because the device itself now owns
IORequestO as it sits in the device-unit request queue.

The task must therefore create a series of other I/O requests to satisfy its other data
needs. These are created by allocating additional I/O request structures and initializing
them properly according to the task's data needs. In the figure, IORequestl, IORequest2,
and IORequest3 represent both the I/O request structures and the operations required to
define them. The structures are created in the usual C language way-with CreateStdIO,
CreateExtIO, and structure-parameter assignment statements. However, two of their struc
ture parameters (io_Device and io_Unit) are copied from IORequestO, as shown by the
lines between the small rectangles. Copying ensures that the additional I/O request struc
tures will be managed by the Device and Unit structures created by OpenDevice for
IORequestO.

Since these are asynchronous I/O requests, the task does not have to sleep after
BeginIO or SendIO executes. Moreover, BeginlO and SendIO can work with CheckIO
and WaidO to allow the task to handle replied asynchronous 1/0 requests. For example, if
the task wanted to load four different disk-resident files into RAM from the same physical
disk unit, four different I/O request structures could be created and dispatched to the
TrackDisk device internal routines. A task could use the TrackDisk device IOExtTD struc
ture to defme the details of these requests. Once the TrackDisk device was opened by
OpenDevice, a task could create the I/O request structures one after the other, using an
io_Device and io_Unit parameter copying operation and initializing other parameters as
appropriate in each I/O request structure. Each fully defined 1/0 request structure could
then be dispatched with BeginIO or SendIO.

The task could then go on to other computations and activities not requiring the data
in these files. At any point in the sequence of task statements where the task needed the
file data, it could check or wait (using CheckIO or WaitIO) for the return of these
requests to one of its task reply-port queues. Once they arrived and were removed or
moved to the top of that queue, the task could get the file data and continue with its
operations.

On the other hand, if the task required the data from a disk file and could not go on
to do anything else until it had the file data in one of its task-defined buffers, it would
use the DolO function to dispatch the I/O request to the device unit. Once again, the
specific I/O request structure could be copied from another already replied or newly cre
ated I/O request structure; but the task would go to sleep until the device sent the file
data reply to the task.

Note that this discussion has focused on one task and one device unit. It can easily
be extended to multiple tasks, multiple reply ports, multiple devices, and multiple device
units. With due attention to using the proper io_ Unit parameter, the procedures for creat
ing and copying I/O request structures and their parameters in a more complex multiunit
situation are virtually the same.

DeVice Library Functions
Five functions are used to control most device I/O operations: AbortIO, BeginlO,
ChecklO, DolO, and SendIO. Although these functions all end with "10," they fall into

DEVICE MANAGEMENT 141

two distinct categories: ChecklO, DolO, and SendlO are Exec library functions; AbortlO
and BeginlO, however, are device library functions-they are defined separately in each
device library. Although they are part of the device-specific internal routines, they are
accessed directly as functions with arguments, just like ChecklO, DolO, and SendlO.

Since AbortlO and BeginlO occur in each device-specific library and their internal
definitions are similar from device to device, this section presents a discussion of the com
mon features and uses of the two functions. Any device-specific differences from this gen
eral discussion will be noted in the following chapters.

The AbortlO Function
AbortlO aborts a specified device 110 request after it has been sent to a specific unit of
any of the 12 Amiga devices. AbortlO is capable of aborting both active requests and cur
rently queued requests. If the 110 request is queued, it is removed from the device-unit
110 request queue. The I/O request structure representing the device command is then
replied to the requesting task's reply-port queue. If the 110 request is currently active,
execution of its device command is stopped at the earliest possible moment. The 110
request structure for that command is then replied to the task reply-port queue.

In both cases, the 110 request io_Error parameter is set to 10ERR_ABORTED.
The task that originally dispatched these requests can then look at the replied 110 request
structure and take further action based on the io_Error parameter. In particular, the send
ing task can modify the 110 request structure as needed and dispatch it again.

In contrast to the CMD_FLUSH command, the AbortlO function provides a mecha
nism to abort a single 110 request that a task previously placed in the device-unit I/O
request queue.

The BeginlO Function
BeginlO enables a task to send a command to the device internal routines of any of the
12 Amiga devices. The device internal routines then look at global conditions in the sys
tem to determine how the device command will be processed. BeginlO recognizes other
current I/O demands on the device and will process 110 requests according to specific pre
assigned priority rules.

The operation of the BeginlO function differs from DolO and SendlO in that it
allows a task to send a device command either synchronously or asynchronously. BeginlO
is often used in lieu of DolO for synchronous 110 request commands or SendlO for asyn
chronous I/O request commands. All 12 Amiga devices allow the use of BeginlO.

Generally speaking, commands dispatched with BeginlO are treated asynchronously
or synchronously depending on these considerations:

• The particular device to which the command was dispatched.

• The particular command dispatched to that device.

• Systemwide hardware and software conditions at the time the task dispatches the
command.

421 AMIGA PRO G RAM MER' S HANDBOOK

Once the system selects synchronous or asynchronous command execution, other things
happen in a specific order that is uniform for all devices.

If the system executes the command synchronously, it effectively calls the DolO com
mand to dispatch the command just as if the task used DolO explicitly. Recall that DolO
puts the sending task to sleep, waiting for the data to come back from the device.

The system also examines the device I/O request structure io_Flags parameter
IOF _QUICK bit to see if it was set by the dispatching task. If IOF _QUICK was set, the
device internal routines will try to complete the I/O request and send the results to the
task using the usual procedures for QuickIO. If QuickIO is successful, the reply will not
be sent to the task reply-port queue; instead, the requesting task will get the device data
back immediately.

If the task did not set IOF _QUICK, the system will queue the request in the device
unit request queue, and it will be processed when it reaches the top of the queue. It will
then be replied to the task reply-port queue. The reply will work its way to the top of
that queue; the task will then get the device data, and the loop will be complete.

The sending task can always check to see if QuickIO was successful by looking at the
io_Flags parameter. If the IOF _QUICK bit is still set when the I/O is completed, it
means that QuickIO was successful. The sending task should use CheckIO to check for
the return of the QuickIO request.

If the system decides to execute the command asynchronously, the command will be
dispatched just as if SendIO was called directly. The sending task will not be put to sleep;
it can go on to do other things. In the meantime, the device internal routines first check
to see if the task set the I/O request-structure io_Flags IOF _QUICK bit. If it did so, the
bit is first cleared and the I/O request is placed in the device-unit request queue. Note
that this bit was not necessarily cleared when the system decided to execute the command
synchronously.

When the I/O request works its way to the top of the device-unit request queue, the
device internal routines process that request. Then they send the reply to the task reply
port queue. Once the I/O request works its way to the top of that queue, the task can get
the device data and the loop will be complete.

Remember that for any device command that has a built-in QuickIO capability, the
programmer can always set the I/O request structure io_Flags IOF _QUICK bit. How
ever, that command may not be executed as QuickIO-for example, if the system was
busy with lots of device activity. The system software and device internal routines can
decide that the command must be executed asynchronously.

BeginIO is used most often to dispatch Audio device commands. The Audio device is the
most complicated Amiga device because of multitasking, allocation, and arbitration complexities;
with multiple tasks all trying to use the same four audio channels, BeginIO provides a valuable
predefined internal decision-making mechanism to guide the flow of events.

The RemDevice and AddDevice Functions
This section extends the discussion of the Exec library RemDevice and AddDevice func
tions presented in Volume I. These functions interact with the Exec library OpenDevice
and CloseDevice functions and the individual device library Expunge routines, to manage

DEVICE MANAGEMENT 143

the memory resources assigned to devices. The Expunge routine is built into the device
internal routines for all 12 Amiga devices. A C language task does not call Expunge
directly but indirectly through the RemDevice function.

A task calls the AddDevice function to add a device to the system device list. Once
added, any task in the system can refer to that device by name. The system automatically
adds at least the Input, Console, Timer, and TrackDisk devices to the system device list
upon startup. In addition, a task can add any of the other Amiga devices to the system
device list with explicit calls to AddDevice. A device then remains on the list until it is
removed explicitly by RemDevice or until it is removed indirectly by a CloseDevice func
tion call following a RemDevice call.

A direct call to RemDevice attempts to both remove the device from the system
device list and expunge the specified device from the system, thereby freeing memory
resources for other tasks and uses. In particular, RemDevice attempts to free the RAM
assigned to the Device and Unit structures and other memory assigned to the device. To
accomplish this, it calls the specific device library Expunge routine.

The exact results achieved by a RemDevice call depend on the prior history of device
management when RemDevice is called. However, one rule is certain: RemDevice will
not be immediately successful unless all device units, once opened with OpenDevice calls,
have subsequently been closed with CloseDevice calls. Remember that each OpenDevice and
CloseDevice call opens and closes one device unit. In an OpenDevice call, the specified unit
is indicated as one of the function call arguments. In the Close Device call, the specified
unit is indicated by the specified I/O request structure io_Unit parameter. Therefore,
although a device is always open when any of its units are open, it is not fully closed until
all of its units are closed.

If a task calls RemDevice for a specific device when any of its device units are still
open, the system will not expunge the device immediately but will instead set a device
structure parameter for a deferred expunge. The bookkeeping required for this scheme is
maintained by the system using two parameters in the Device and Unit structures
assigned to each device unit. The system automatically increases the Device structure
lib_OpenCnt and the Unit structure unit_OpenCnt parameters by 1 each time Open
Device is called for any device unit. It automatically reduces the Device structure lib
_OpenCnt parameter and the Unit structure unit_OpenCnt parameter by 1 each time
CloseDevice is called for any device unit.

With this arrangement, if the Device structure lib_OpenCnt and Unit structure
unit_ OpenCnt parameters are not both 0 when RemDevice is called, the RemDevice
expunge operation will be deferred until all tasks that currently own a device unit close
those device units with CloseDevice. If a task calls RemDevice while any device unit is
still open, the system automatically sets the Device structure lib_Flags parameter to
LIBF _DELEXP, thus indicating a pending deferred expunge. The deferred expunge will
actually take place when the last task currently having a device unit open closes that
device unit.

Once all units of a device have been closed and the device has been removed from
the current system device list by a successful RemDevice call (perhaps due to a deferred
expunge), no new OpenDevice calls for any device unit will succeed; any task that wants
to open a device unit must first call the Exec library AddDevice function to add that
device to the system device list.

441 AMIGA PRO G RAM MER'S HANDBOOK

The interactions of the AddDevice, RemDevice, Open Device, and Close Device func
tions get more complicated if multiple device units are opened in shared access mode
among a set of tasks sharing units of a device. These considerations are discussed in the
OpenDevice and CloseDevice function discussions in following chapters.

USE OF EXEC-SUPPORT LIBRARY FUNCTIONS

CreateExtlO

Syntax of Function Call
iORequest = CreateExtlO (iOReplyPort, size)

purpose of Function
This function allocates and initializes an IOExtReq structure and sets the Message sub
structure reply-port pointer parameter, mn_ReplyPort, to the value specified by the iO
ReplyPort argument. An IOExtReq structure is an extended device-specific structure
whose size varies from device to device.

CreateExtIO returns a pointer to an IORequest structure for the 110 request a task
will use to send a command to a device. That IORequest structure is always a substruc
ture in an extended 110 request structure that is used for a specific type of device.

I nputs to Function
iOReplyPort

size

DiSCUSSion

A pointer to a MsgPort structure representing the reply
port where I/O request replies should be sent when the
device internal routines have finished processing them

The size of the extended I/O request structure in bytes

Two functions in the Exec-support library deal with extended 110 request structures:
CreateExtIO and DeleteExtIO. You can use the CreateExtIO function to allocate and ini
tialize device-specific extended 110 request structures in your tasks. The Serial and Paral
lel devices are examples of devices that use extended 110 request structures.

CreatePort

DEVICE MANAGEMENT 14 5

Because the IORequest structure is the first entry in the extended I/O request struc
ture, a pointer to it is also a pointer to the extended I/O request structure. Each device that
does not use the IOStdReq structure has its own extended I/O request structure; its size
depends on the data needs of that device. All of these device-specific I/O request structures
are defined in the Amiga INCLUDE files (see Table l.3). A task can use the C language
sizeof operator to determine the number of bytes required for any extended I/O request
structure. To pass a new command to a device requiring an extended I/O request structure,
a task should first create a new extended I/O request structure for that command.

Syntax of Function Call
msgPort = CreatePort (msgPortName, msgport_priority)

purpose of Function
This function declares and initializes a MsgPort structure with a specified name and priority.
It allocates a signal bit number for a signal to be assigned to this message port. CreatePort
also adds the message port to the system message-port list using the msgportJriority argu
ment to fix the requested position in that list.

The msgPortName argument provides a way for other tasks to rendezvous with (obtain
a pointer to) this message port; any task can use the FindPort or FindName function to get
a pointer to the MsgPort structure for this message port by using its name as the input
argument. CreatePort returns a pointer to a MsgPort structure for the newly created mes
sage port. This MsgPort structure is used to define and control the message port while it is
active in the system.

I nputs to Function
msgPortName A pointer to a null-terminated string representing the

name of the message port you want to create; the
MsgPort structure Node substructure In_Name parameter
is then set to this value

The list-position priority (- 128 to 127) that you want to
assign to this message port in the system message-port
list; the MsgPort structure Node substructure In_Pri
parameter is set to this value

4 &1 AMIGA PRO G RAM MER'S HANDBOOK

DiScussion
Two functions in the Exec-support library deal with message ports: CreatePort and Delete
Port. You use CreatePort to create, allocate, and initialize message ports for your tasks.
These message ports can be used to queue any messages in the system, no matter where
they originate. Moreover, if you are programming devices, these ports can act as task reply
ports for the I/O requests sent back to your task by any device unit in the system.

Note that the MsgPort structure required by the device-unit internal routines is defined
and managed by the Unit structure (discussed in Chapter 1). Every task in the system that
exchanges information with that device unit automatically queues its I/O requests in
that unit's I/O request list. The CreatePort function is used to create the task reply-port I/O
request-queue message port, not the device-unit I/O request-queue message port. Always
keep this distinction in mind.

You can create any number of task reply ports (limited, of course, by available RAM).
In addition, the use of CreatePort and DeletePort is not restricted to device management
tasks; you can use them to create and delete any message ports (and reply ports) in your
programs, no matter what type of messages you are passing between any two tasks in the
system.

I CreateStdlO

Syntax of Function Call
iOStdReq = CreateStdlO (iOReplyPort)

purpose of Function
This function declares and initializes an IOStdReq structure and sets the reply-port pointer
parameter (mn_ReplyPort) in its Message substructure to the value specified by the ioReply
Port argument. CreateStdIO also sets the IOStdReq structure Node substructure In_Pri
parameter to 0, indicating that the I/O request should be placed at the bottom of the task
reply-port queue when it is replied by the device internal routines.

CreateStdIO returns a pointer to an IOStdReq structure. A task can use this structure
to send any command to any device unit for which the IOStdReq structure is the required
II 0 request structure.

I nputs to Function
iOReplyPort A pointer to a MsgPort structure that represents a task reply

port

DEVICE MANAGEMENT 147

DiScussion

I Create Task

Two functions in the Amiga system deal with IOStdReq structures: CreateStdIO and Delete
StdIO. You can use the CreateStdIO function to allocate and initialize IOStdReq structures
in your tasks. Each time a task needs to pass a new command to a device, that task should
create a new IOStdReq structure (or reuse a previously replied I/O request structure) for
that command.

Syntax of Function Call
taskCB = CreateTask (taskName, task_priority, taskEntryPoint,

task_stack_size)

purpose of Function
This function declares and initializes a Task structure and sets the task priority to the speci
fied task_priority argument using the Task structure Node substructure In_Pri parameter.
Create Task also establishes the RAM entry point for initial task execution, initializes the
Task structure stack control parameters (tc_SPReg, tc_SPUpper, and tc_SPLower), and
adds the task to the system task list using the task-priority argument to determine the posi
tion in that list.

Once all of this is done, CreateTask returns a pointer to the Task structure for the newly
created task. This Task structure is used to control the task while it is active in the system.

I nputs to Function
taskName A pointer to a null-terminated string representing the name

of the task; the Task structure Node substructure In_Name
parameter is set to this value

task_priority The task priority (a value from -128 to 127) of the newly
added task

taskEntryPoint A pointer to the task RAM entry point; it is used as the
inltPC parameter in the AddTask function call inside the
CreateTask function definition

481 AMIGA PRO G RAM MER'S HANDBOOK

task_stack_size The size of the RAM stack assigned to this task; it is used
by the CreateTask function to establish the stack control
parameters

DiScussion

DeleteExtlO

Two functions in the Exec-support library are used to manage tasks-CreateTask and Delete
Task. They control the allocation and deallocation of RAM and signals, and other bookkeep
ing operations required to keep track of the resources used by a task.

Use of the CreateTask and DeleteTask functions is not restricted to device manage
ment tasks; you can use these two functions to create and delete any tasks in the system,
regardless of how those tasks will be used. They do other things as well; see the appen
dix, which presents the actual C language definition of these functions.

Syntax of Function Call
DeleteExtlO (iOExtReq, size)

purpose of Function
This function deallocates the memory for an extended I/O request structure originally allo
cated by CreateExtIO. DeleteStdIO sets the extended I/O request-structure Node substruc
ture In_Type parameter to a hexadecimal FF value and decrements the IOStdReq structure
io_Device and io_Unit parameters by 1.

I nputs to Function
iOExtReq

size

A pointer to a device-specific extended I/O request struc
ture; usually the pointer originally returned by the Create
ExtlO function

The size of the extended I/O request structure as defined
in CreateExtlO

DEVICE MANAGEMENT 14 9

DiScussion

I DeletePort

Two functions in the Exec-support library deal with extended I/O request structures:
CreateExtIO and DeleteExtIO. DeleteExtIO deallocates all memory assigned to an extended
I/O request structure. You can use DeleteExtIO to delete any extended I/O request structure
from the system; it does not have to originate with CreateExtIO.

Syntax of Function Call
DeletePort (msgPort)

purpose of Function
This function deletes the specified MsgPort structure from the system message-port list and
deallocates the memory originally allocated by the CreatePort function for that MsgPort
structure.

DeletePort also sets the MsgPort structure Node substructure In_Type parameter to a
hexadecimal FF value and reduces the mp_MsgList List structure Ih_Head parameter by I,
indicating one less message port on the system message-port list. Finally, DeletePort calls the
Exec FreeSignal function to free the signal bit number assigned to the message port by the
CreatePort function.

I nputs to Function
msgPort

DiSCUSSion

A pointer to a MsgPort structure; usually the pointer origi
nally returned by the CreatePort function

Use the DeletePort function to deallocate the RAM originally allocated by the CreatePort
function for the MsgPort structure. Note that any task can call the DeletePort function to
delete any message ports from the system; that message port does not have to originate with
the CreatePort function. All a task needs is a pointer to a MsgPort structure, no matter how
that MsgPort structure was created in the first place.

5 0 I AMIGA PRO G RAM MER'S HANDBOOK

I DeleteStdlO

Syntax of Function Call
DeleteStdlO (iOStdReq)

purpose of Function
This function deallocates the memory originally allocated for an IOStdReq structure by the
CreateStdIO function. It also decrements the IOStdReq structure io_Device and io_ Unit
parameters by 1 and sets the IOStdReq structure Node substructure In_Type parameter to
hexadecimal FE

I nputs to Function
iOStdReq A pointer to an IOStdReq structure; usually the pointer

returned by CreateStdlO when the IOStdReq structure was
originally allocated and initialized

DiSCUSSion

Delete Task

You can use the DeleteStdIO function to deallocate the memory originally allocated to an
IOStdReq structure by the CreateStdIO function. CreateStdIO and DeleteStdIO do other
things as well; see the appendix.

Note that any task can use DeleteStdIO to delete any IOStdReq structure from the
system; the structure does not have to originate with the CreateStdIO function.

Syntax of Function Call
DeleteTask (taskCB)

DEVICE MANAGEMENT 151

purpose of Function
This function deallocates the memory originally assigned to the Task structure by the
CreateTask function. It frees the Task structure RAM (places it on a memory-free list) so
that another task can use that memory for its needs. DeleteTask also removes the task from
the system task list using the Exec library RemTask function.

I nputs to Function
taskCB A pointer to a Task structure used to control the task while it

is active in the system; usually the pointer originally returned
by CreateTask

DiSCUSSion

I NewList

CreateTask and DeleteTask should be used as a pair; doing so provides a great deal of con
venience to the programmer. Just as you allocate and initialize the Task structure with the
CreateTask function, you use the DeleteTask function to deallocate the Task structure from
the system.

Syntax of Function Call
NewList (list)

purpose of Function
This function initializes a new list III the system by calling the assembly language
NEWLIST macro.

I nputs to Function
list A pointer to a List structure that will control a new list in the

system

521 AMIGA PRO G RAM MER'S HANDBOOK

DiScussion
The New List function calls the assembly language NEWLIST macro. Once the List
structure is created, nodes can be added to or deleted from the list by defming appropriate
Node structures.

For an example, look at the definition of the CreatePort function in the appendix.
The NewList function is used to create a new list for messages in a message port if the
msgPortName pointer argument in the CreatePort function is 0, indicating that the new
message port is unnamed.

• • • • • • • • · •• •
• • • • • •

•

The Audio Device

THE AUDIO DEVICE 15 5

I Introduction

This chapter discusses the Audio device, the most complicated device in the Amiga system.
It is complex because multiple audio channels must be shared among multiple tasks, requir
ing an arbitration mechanism both to allocate channels and to allow channels to be stolen,
while at the same time notifYing other tasks of the current state of all four of the Audio
device channels. Due to the Amiga's multitasking capabilities, the Audio device also allows
for a double-buffered mode of operation, which further adds to its programming complexity.

Six functions can be used in programming the Audio device: AbortIO, BeginIO,
OpenDevice, CloseDevice, AddDevice, and RemDevice. The DolO and SendIO functions
are not usually used in an Audio device management program. Instead, the BeginIO com
mand is usually used to dispatch all Audio device commands, both asynchronous and syn
chronous I/O requests. DolO and SendIO usually clear bits 4-7 of the IOAudio structure
io_Flags parameter; BeginIO does not alter these bit values.

AUdiO System Hardware
The Audio device hardware configuration is illustrated in Figure 3.1. Each audio channel
has an 8-bit digital-to-analog converter driven by a DMA (direct memory access) channel.
Each DMA channel can retrieve two data samples during each horizontal video-scanning
line. The DMA can automatically play simple, steady tones, or a task can define and per
form complex sound effects, including stereo effects and amplitude and frequency modula
tion effects produced by attaching audio channels to one another.

Sound data is always organized as 8-bit data items. Each item is a sample from a
waveform stored in RAM. To conserve MEMF _CHIP RAM, a task normally defines
only one cycle of the waveform in RAM. For an unchanging sound, the values at the
waveform's beginning and end should be closely related to provide a smooth transition.
This arrangement ensures that the repetition of the waveform sounds like a continuous
stream of sound without pops and other audible discontinuities. The first byte of the
audio channel data must always be on a word boundary in RAM, because the Audio
device always retrieves one word (two bytes) at a time when playing the data.

The volume of sound produced by an audio channel ranges from 0 to 64, an arbi
trary volume scale. These volume values correspond to decibel levels. For a typical vol
ume output at level 64, with maximum data values ranging from - 128 to 127, the
maximum voltage output range available to an external audio amplifier lies between +0.4
and - 0.4 volts.

The pitch of the sound produced by a waveform depends on its frequency, specified
by the sampling period. The sampling period is the number of system clock ticks (timing
intervals) that should elapse between each byte of audio data (each sample) fed to the con
verter for a specified audio channel. It is defined by the IOAudio structure ioa_Period
parameter in an Audio device I/O request.

5 &1 AMIGA PRO G RAM MER'S HANDBOOK

Figure 3.1:
Hardware Con
figuration Used

by the Audio
Device

127ft; Channel 0

o ---

-128

127~ Channel 3

o ---

-128

127~ Channel 1

o ---

-128

127P6 Channel 2

o ---

-128

Digital-to-
Analog Converter

Digital-to-
Analog Converter

w
->=
0.
E

<C

0

~
Vi

l'
~
w

Left
Speaker

Right
Speaker

Each audio channel also has a period register, the current value of which is used as a
countdown value; each time the period register counts down to 0, another sample is
retrieved from the waveform data set. The value in the period register represents clock ticks
per sample. The maximum period value a task can use is 65,535 ticks per sample, and the
minimum is 124. A low value corresponds to high-frequency sound; a high value corres
ponds to low-frequency sound. If the period value is below 124, by the time the cycle count
has reached 0, the audio DMA will not have had enough time to retrieve the next data
sample and the previous sample will automatically be reused.

Because the Amiga system is a multitasking system, many tasks can be competing for
the four available channels. Therefore, at any given time, a task may ask for one or more
audio channels currently in use by another task. The Audio device system must decide
which task gets each of the four audio channels at any particular time.

The Audio device channels are either allocated or free at a given point in time.
Therefore, if a task wants one or more channels, the system can decide which channels
should be allocated to the requesting task based on the current system state. For this rea
son, the actual assignment of channels to tasks can be left to the system; it is not the
direct responsibility of the task. However, it is up to the task to characterize the relative
importance of its channel needs with respect to other tasks. A task does this using two
mechanisms: the channel combination array and channel allocation precedence.

THE AUDIO DEVICE IS 7

The Channel Combination Array
The channel combination array is the task's statement to the system about what audio chan
nels it wants. The numbers in this array are used with the information provided in channel
allocation precedence; together, these parameters allow the system to decide how to satisty
the task's audio channel request.

Table 3.1 illustrates the audio channel capabilities. Because there are four channels,
there are 16 possible channel combinations, including all single- and multiple-channel alloca
tions. These combinations are represented as 4-digit numbers, with the numeral 1 in any
position where a channel is allocated and 0 in any position where a channel is not allocated.
The number 0000 indicates that no channel is allocated, whereas 1111 indicates that all
channels are allocated. Unit 0 is represented by the rightmost position in this number, and
unit 3 is represented by the leftmost position. The system assigns unit 0 and unit 3 to the
left speaker and unit 1 and unit 2 to the right speaker, as you saw in Figure 3.1.

The channel combination array's input to the ADCMD_ALLOCATE command or
the OpenDevice function is determined by these associations. For example, if you want to
play sound from the left speaker, you pass to the ADCMD _ALLOCATE command or
OpenDevice function a channel combination array consisting of at least one of the 12
numbers that are valid for left-speaker assignments. The more decimal values a task speci
fies in the channel combination array, the greater are the chances that the audio channel
(in this case, the left speaker) will be allocated to that task.

If your task needed to restrict its allocation choices further, it would specify fewer
values in the channel combination array. For example, if you needed to play sounds from
the left speaker only, using either channel 0 or channel 3 but not both, you would specity
a channel combination array consisting of two entries: 1 and 8. Neither of these two com
binations would produce any sound in the right speaker. You would specify 2 for the
IOAudio structure ioa_Length parameter and then point ioa_Data to the array of four
numbers representing the desired channel allocation sequence. This would be passed to
the ADCMD _ALLOCATE command or OpenDevice function. The Audio device internal
routines would work with this request, automatically comparing it to the current state of
channel allocations.

On the other hand, if your task needed to play sounds from the left and right speak
ers at the same time to create a stereo effect and you did not care how it was accom
plished by the system, you would set the channel combination array to nine ioa_Length
values, as follows: 3, 5, 7, 10, 11, 12, 13, 14, and 15. The system would automatically
compare this statement to the current state of all channels in the system, look at the
requested allocation priority (In_Pri parameter), and then allocate channels accordingly.

Your task could also attach channels in order to accomplish frequency or amplitude
modulation. To do so, you would specify a channel combination array having three entries
at most: 3, 6, or 12.

Keep in mind that the channel combination array is used in the following fashion to
satisty the task's requested allocation:

• The first entry in the channel combination array is used to see if the channels it
specifies can be allocated. If they can, the system allocates them to the task and

Con
co • :110
3:
c;
:110

"""0

):,. :IJ

Q ~.;t 0
-gC)~2: G)
g~):,.CD

:IJ
~5&~
)Jl ~ o· ~ »

~

~
m

Channel 3 Channel 2 Channel 1 Channel 0 Channel Left Right Stereo Amplitude :IJ

Combination Speaker Speaker Sound or en
Number Frequency :z:

Modulation :110
z:

0 0 0 0 0 a
ICII:I

0 0 0 1 1 eI v- el

0 0 0 2
~

v-
0 0 1 1 3 v- v- v- 0,1 attached
0 0 0 4 v-
0 0 1 5 v- v- v-
0 0 6 v- 1 ,2 attached
0 1 1 1 7 v- v- v-

0 0 0 8 v-
0 0 1 9 v-
0 0 10 v- v- v-
0 1 1 11 v- v- v-

0 0 12 v- v- v- 2,3 attached
0 1 13 v- v- v-
1 0 14 v- v- v-
0 15 v- v- v-

tHE AUDIO DEVICE 15 9

copies the first entry of that array into the IOAudio structure io_Unit parameter;
io_Unit then represents the Audio device units currently assigned to the task.

• If the first value for the channel combination array is not successful at allocating
channels, the system looks at each of the other values in turn until it is either suc
cessful or unsuccessful. If it finds a value that produces a successful allocation, it
sets the io_Unit parameter.

• If the system exhausts all values for the channel combination array and cannot allo
cate the requested channels, it tries to steal channels. It takes the In_Pri parameter
specified in the IOAudio structure and compares it to the known channel prece
dences of channels already allocated to other tasks. It then finds the channel combi
nation array that requires it to steal the lowest-precedence channels from other tasks
in the system.

Channel Allocation Precedence
Channel allocation precedence is the priority you assign to an audio channel. It is always
specified as the IOAudio structure In_Pri parameter (a number between - 128 and 127)
you initialize before you call the ADCMD_ALLOCATE command or the OpenDevice
function to allocate channels.

An In_Pri value of - 128 means that the task's request for a channel or channels is
low priority; a value of 127 means that the task wants the channels allocated immediately.
For example, if you wanted to play an urgent sound (an alert to the user, for example)
from the left speaker, you would set In_Pri at 127 and set the channel combination array
for the left speaker. If you wanted to play a sound that did not need to be heard immedi
ately from the right speaker, you would set In_Pri at a much lower value and set the
channel combination array for the right speaker.

If the allocation fails after all channel combination array values are tried with multi
ple channel requests, you could try to split the request into several single-channel
requests, each with its own In_Pri channel precedence parameter. When the task resub
mits the request as several requests instead of one, the allocation may succeed.

In addition to using the In_Pri parameter, you can tell the system that you want a
channel or channels immediately by using the ADIOF _NOWAIT flag parameter, one of
several possible values for the IOAudio structure io_Flags parameter that you initialize
before dispatching an Audio device command. It tells the system to give the task the
channel or channels it requests immediately-even if it has to steal them from another
task. ADIOF _NOWAIT is described in later sections of this chapter.

Channel Locking and Stealing
The ADCMD_LOCK command allows a task to lock an audio channel, which is neces
sary only if the task needs to work directly with the audio hardware registers.
ADCMD _LOCK has two purposes: to notify a task that one or more of its channels has
been stolen by a higher-precedence allocation in another task; and to prevent another task

60 I AMIGA PRO G RAM MER'S HANDBOOK

from stealing channels if the channel precedence assigned by another task is lower than
that of the present task.

A task needs to know that its channels are about to be stolen so that it can clean up
before letting the system give those channels to another task, and so that it does not try to
use that channel until it is again available. Therefore, if you want to work directly with
the audio channel registers and to prevent tasks in the system from experiencing allocation
conflicts, always execute ADCMD _LOCK immediately after you allocate one or more
channels; copy ioa_AllocKey into a new IOAudio structure that defines the upcoming
ADCMD_LOCK command, and then dispatch the ADCMD_LOCK I/O request.

When a task tries to allocate channels that are also allocated by the present task, the
second task's ADCMD _ALLOCATE command will be temporarily suspended until the
ADCMD_LOCK command is replied (with io_Error equal to ADIOERR_CHANNEL
STOLEN) to the first task. The first task will then know that one or more of its allocated
channels is about to be stolen; it can clean up before those channels are actually stolen.
Once the cleanup is complete, the system executes an ADCMD_FREE command auto
matically in the first task. The second task can then proceed with its allocation of the
channel it just stole.

Never make the freeing of a stolen channel dependent on the allocation of another
channel-that sequence may cause a system deadlock. To keep a channel from being
stolen, set the channel precedence In_Pri parameter to its maximum value (127). Never
use an ADCMD_LOCK command to effectively impose the highest channel precedence;
use the ADCMD_SETPREC command for that purpose.

Informing a Task of a Sound

You may want the system to inform a task when an audio channel begins to play a sound.
Once notified, the task can branch to other activities (for example, graphics) that should
occur simultaneously with sound production. The Audio device system provides the
IOAudio structure ioa_ WriteMsg Message substructure for this purpose. Set the IOAudio
structure io_Flags parameter to ADIOF _ WRITEMESSAGE if you want the task to
know when the Audio device internal routines start playing the waveform defined by a
CMD _WRITE command. The system signals the task when this message arrives in the
task reply-port queue.

Note that this Message substructure is distinct from the other IOAudio structure
Message substructure. One Message structure is part of the IORequest substructure and is
used to send the I/O request to the task reply-port queue when the CMD_ WRITE com
mand is completed. The second one, ioa_ WriteMsg, is at the end of the IOAudio struc
ture. It is used to signal the task when the Audio device internal routines start to execute
a CMD _WRITE command. The task can take appropriate additional action consistent
with that knowledge. Always remember that the io_Flags ADIOF _ WRITEMESSAGE bit
is used only for the CMD _ WRITE command.

The Allocation Key
Recall that for some Amiga devices, device-unit sharing among tasks is requested by set
ting the I/O request structure io_Flags parameter SHARED bit when the device is

THE AUDIO DEVICE 161

opened. In particular, the Serial and Parallel devices work this way. If this flag parameter
bit is not specified, the device will usually be opened in exclusive access mode, the default
for opening most Amiga devices with OpenDevice.

The Audio device does not use this arrangement. Instead, it uses a number called the
allocation key, a two-byte parameter in the IOAudio structure. The specific value of the allo
cation key (ioa_AllocKey) is detertnined by a direct call to the ADCMD_ALLOCATE
command or by an OpenDevice function call if the ioa_Length parameter specified in that
call is not O.

It is important to remember that the ioa_AllocKey parameter is not the channel combi
nation array and it is not a 4-digit binary number representing allocated channels. Instead, it
is an internally defmed value that the Audio device software system defines and recognizes
in various contexts. It summarizes, for system use only, the known state of a task's allocated
channels for one task in the system.

Each task that deals with the Audio device has its own ioa_AllocKey parameter,
which can change each time that task executes an ADCMD _ALLOCATE command or an
OpenDevice function call. Each additional command that a task sends to the Audio device
routines must specify the current ioa_AllocKey parameter.

When working with the Audio device, you must copy the ioa_AllocKey parameter
from one IOAudio structure into another IOAudio structure. The first IOAudio structure
represents the request replied by an ADCMD _ALLOCATE command or OpenDevice
function call; the second represents another command about to be dispatched. This is sim
ilar to copying io_Device and io_Unit parameters between I/O request structures for
other Amiga devices (see Chapter 2).

The ioa_AllocKey parameter represents the channels that were actually allocated to
satisfy a task's allocation request. The system has done its best to allocate channels with
out stealing (if possible) or by stealing only the lowest-priority channels currently owned
by other tasks. Once the system provides the ioa_A1locKey parameter, the task knows
which channels the system decided to allocate and can work with those channels to send
other Audio device commands.

For example, to play some sounds out of a speaker, you initialize an IOAudio struc
ture to represent a CMD _WRITE command request. As part of the structure initializa
tion, you initialize the ioa_AllocKey parameter. To get the correct value for ioa_AllocKey,
you copy the ioa_AllocKey value from the IOAudio structure replied by the original
ADCMD_ALLOCATE or OpenDevice function call, using simple C language structure
parameter assignment statements to do so.

A udio Device Commands
To program the Audio device, you can use any of eight standard commands and seven
device-specific commands. Here are some important points about the commands:

• All Audio device commands use the IOAudio structure to send a request to the
Audio device internal routines. The IOAudio structure is an IORequest structure
with an appended set of device-specific parameters.

6 21 AMIGA PRO G RAM MER'S HANDBOOK

• Most of the Audio device commands are either synchronous commands or asyn
chronous commands; however, there are four Audio device commands that can oper
ate in both modes: CMD_WRITE, ADCMD_ALLOCATE, ADCMD_LOCK, and
ADCMD_ WAITCYCLE.

• QuickIO is possible for all of the Audio device commands, regardless of whether
the command is synchronous or asynchronous. You should generally dispatch both
asynchronous and synchronous 110 requests with the BeginIO function. For asyn
chronous requests, you can use the CheckIO, WaidO, GetMsg, and Remove func
tions in the usual manner.

• I/O requests may be queued, processed as QuickIO, or processed automatically in
immediate mode. All of the Audio device commands (except for CMD _WRITE)
occur immediately when dispatched by a task. Obvious exceptions to this are
ADCMD_FINISH and ADCMD_PERVOL when the SYNCCYCLE flag is set,
and ADCMD _ WAITCYCLE when there is a CMD _ WRITE in progress.

• Some Audio device commands can be used in interrupt code. However, they can
only be used below interrupt level 5.

• Most Audio device commands and functions return error values in the IOAudio
structure io_Error parameter.

• Some Audio device commands and functions change specific IOAudio structure
parameters when they return.

Sending Commands to the Audio Device

Figure 3.2:
Audio Device

Command and

Function
Processing

Figure 3.2 shows how commands are sent to Audio device internal routines. The lines
with arrows represent the parameters you should initialize and those returned by the
Audio device internal routines.

General
device

IOReques!
structure

porl)melers
olld flog

volues

"
struclJre

-m"-_R-~~--------------'
In_Pri AL.dio Device Internal Routines

io Command
ioJla 5

ioJ)e ... ,ce
io_lJrHt

r ,0(] AlI<xKe
100. Dato

IOAudio L ioa_L~r, Ih
structure 100 Period

parameters . ioo v.olume
ioo_C les

100 Wnte/lls

8eginiO sends

routine serVicing

ioJrror
ioJC'uQ.!......
r,~
o_~

IOERICOPENFo\iL \~ Gffit'fol
IO£RR_AB~TE_D__ device
IO(RR_NOCMD lORe-quest
IO[RR-BADLENGTH structure

AD .. 'IlE. RR_NOAU "'ION.. parameters
, D!OCRR OCFAIUD Gno Hag
A'il,,)[RR lSTOI."<

.'

THE AUDIO DEVICE 163

As Figure 3.2 shows, the Audio device programming process consists of three phases:

1. IOAudio structure preparation. Here, you initialize parameters in the IOAudio
structure in preparation for sending a command to the Audio device internal rou
tines. These parameters include the general device-request parameters and all
device-specific IOAudio structure parameters. These parameters provide an informa
tion path to the data needed by the Audio device internal routines to process the
command.

2. Device processing. The only part you play in this phase is to send the command to

the Audio device using the BeginIO function; control passes to the device and sys
tem internal routines.

3. Command output processing. In this phase, the system and device internal routines
have complete control over the values found in the parameters. The results of com
mand processing have been returned to the task that originally issued the command.
Note that the Audio device does not return any values for the io_Actual, io_Length,
or io_Device parameter. The parameters returned provide an information path to the
data needed by the requesting task.

Figure 3.2 also depicts the parameters that playa part in function setup and processing
for the Audio device. The OpenDevice and CloseDevice functions affect the Device struc
ture lib_OpenCnt parameter and Unit structure Unit_OpenCnt parameter; OpenDevice also
affects the IOAudio structure ioa_AllocKey parameter.

Structures for the Audio Device
The Audio device works with two structures: IOAudio and AudChannel, as shown in Figure
3.3. You do not usually deal with the AudChannel structure directly; instead, you let the
system define it for you when you specifY parameters in the IOAudio structure. Therefore,
most function and command operations deal with the IOAudio structure and its IORequest
substructure parameters. For more detailed control of the Audio device routines, you can
also initialize AudChannel structure parameters directly. Note that the AudChannel structure
is a substructure inside the Custom structure (see the Hardware/Custom.h INCLUDE file).

The IOAudio Structure
The IOAudio structure looks like this:

struct IOAudio {
struct IORequest ioa_Request;
WORD ioa_AllocKey;
UBYTE * ioa_Data;
ULONG ioa_Length;
UWORD ioa_Period;

641 AMIGA PRO G RAM MER'S HANDBOOK

Figure 3.3:
Audio Device

Structures

};

IOAudio Structure

IIORequest Structure I
ioa_Request

I Message Structure I
ioa_WriteMsg

ac ptrl AudChannel Structure

UWORD 108_ Volume;
UWORD i08_Cycles;
struct Message i08_WriteMsg;

The parameters in the IOAudio structure have the following meanings:

• ioa_Request. This parameter is the name of an IORequest substructure whose six
parameters help represent a command sent to the Audio device. The IORequest
structure contains a Message substructure, which contains the mn_ReplyPort parame
ter, which points to the task reply-port queue MsgPort structure.

• ioa_AllocKey. This parameter is the allocation key. It is generated by the ADCMD
_ALLOCATE command and the OpenDevice function call. It is then used by most
of the other Audio device commands and functions. To perform multiple-channel
commands, all channels must have the same allocation key, even when they are not
allocated simultaneously. To use a key you already have, copy its value into this
parameter for the current IOAudio structure. ADCMD _ALLOCATE only returns a
new and unique allocation-key value if you initialize this parameter to ° before the
ADCMD_ALLOCATE command is dispatched.

• ioa_Data. This parameter is a pointer to the data for the Audio device request. It
takes on different interpretations depending on the specific function or command. For
example, for the CMD_ WRITE command, io_Data is a pointer to a waveform array
consisting of signed bytes in chip-addressable memory.

• ioa_Length. This parameter represents the data length of some item related to a par
ticular Audio device I/O request. It takes on different interpretations depending on
the specific function or command. For example, for the CMD _WRITE command,
ioa_Length is the number of bytes in the waveform array (an even number from 2
to 131,072).

THE AUDID DEVICE 1& 5

• ioa_Period. This parameter is always the period of the Audio device 110 request,
measured in system clock ticks; it ranges from 127 to 6,553. The anti-aliasing filter
(which eliminates unwanted harmonics) works below 300 or 500, depending on the
waveform. This parameter is used as input to the ADCMD_PERVOL and
CMD_ WRITE commands only.

• ioa_ Volume. This parameter is always the volume of sound you want to produce
with the Audio device 110 request; it ranges from 0 to 64 and is used as input to the
ADCMD_PERVOL and CMD_WRITE commands only. The system will use the
default value (64) if you do not specity otherwise.

• ioa_ Cycles. This parameter is the number of cycles in the Audio device request. It
tells the Audio device routines the number of times to play the audio waveform array
data. This parameter is used as input to the CMD _ WRITE command only. If
ioa_ Cycles is set to 0, the system default value, the waveform will repeat indefInitely.

• ioa_ WriteMsg. This parameter is the name of a Message substructure, the last struc
ture entry in the IOAudio structure, which represents an extra message-passing capa
bility used by the CMD _ WRITE command only. This parameter is used only when
the IOAudio structure io_Flags ADIOF _ WRITEMESSAGE parameter is set; if so
set, the Audio device internal routines will notify the dispatching task that
CMD _WRITE execution has begun. Do not confuse this Message substructure with
the other Message substructure in IORequest, which serves as the reply mechanism
for all Audio device commands.

The IOAudio structure IORequest substructure io_Flags parameter bit values are as follows:

• ADIOF _PERVOL. Set this flag if you want to set the period and volume at the stan
of CMD _WRITE execution. If it is not set, the previous (or default) period and vol
ume will be used.

• ADIOF_SYNCCYCLE. Set this flag if you want the current waveform to fmish
playing the current cycle before the task takes additional action (for example, before
aboning that waveform I/O request with the AbonIO function). The change can take
place immediately or at the end of the current cycle; it can be used to produce vibra
tos, glissandos, tremolos, and volume envelopes in music, as well as to change the
volume of the sound.

• ADIOF _NOWAIT. Set this flag if you want to produce a sound immediately and
you cannot wait to free an Audio device channel for allocation. It will cause the
ADCMD_ALLOCATE command to return an ADIOERR_ALLOCFAILED error
if the system cannot allocate any of the channels without waiting for one to become
free. The Audio device will continue to try the allocation request whenever one of
the four channels is freed until it is successful. To cancel the request, use AbonIO.

• ADIOF _ WRITEMESSAGE. Set this flag if you want the system to tell your task
when a sound stans playing.

6 61 AMIGA PRO G RAM MER'S HANDBOOK

The AudChannel Structure
The AudChannel structure works together with the CMD _ WRITE command. It contains
a set of parameters to represent the waveform data necessary to play sound through an
audio channel. Under most circumstances, the system internally defines the AudChannel
parameters. However, for more direct control of the audio channels, a task can work with
the AudChannel directly.

The AudChannel structure looks like this:

struct AudChannel {
UWORD ac_Ptr;
UWORD ac_Len;
UWORD aC_Per;
UWORD ac_Vol;
UWORD aC_Dat;
UWORD ac_Pad[2];

} ;

The parameters in the AudChannel structure are as follows:

• ac_Ptr. This is a pointer to the audio channel waveform data.

• ac_Len. This is the length of the audio channel waveform data in words (two bytes
per word).

• ac_Per. This is the sampling period to be assigned to the waveform data.

• ac_ Vol. This is the volume to be assigned to the waveform data.

• ac_Dat. This is a pair of waveform data samples. The resolution of each sample is
1 part in 256; each sample ranges from - 128 to 127.

• ac_Pad[2]. This is two bytes of data to word-align the AudChannel structure.

AUdiO Device Error Codes
The error messages returned by the Audio device are as follows:

• ADIOERR_NOALLOCATION. An audio channel could not be allocated to satisfY
an allocation request. If a task attempts to perform an allocation on an already
stolen channel, this bit is set and the bit in the IORequest structure io_Unit
parameter corresponding to the stolen channel is cleared so that the task knows
which channel has been stolen.

• ADIOERR_ALLOCFAILED. The attempted allocation of the channel failed. If the
ADIOF _NOWAIT flag bit is set, the system will return this error if none of the audio
channels could be allocated.

• ADIOERR_CHANNELSTOLEN. The audio channel was stolen by another task.

THE AUDIO DEVICE 167

The Amiga device system provides four errors that are common to all devices:

• IOERROR_OPENFAIL. An OpenDevice function call failed because the system
could not open the device for some reason. A common reason for both disk- and
ROM-resident devices is that there is not enough memory available to open the
device library; the solution is usually to free some memory and call OpenDevice
again. In addition, for disk-resident devices the cause may be that the appropriate
device library file was not on the disk in the DEVICES: directory.

• IOERR_ABORTED. The task intentionally aborted the request using either the
AbortIO function or the CMD_FLUSH command. Once task conditions are prop
erly set up, the task can reset the io_Error parameter to 0 and dispatch the I/O
request again.

• IOERR_NOCMD. The dispatching task specified an 110 request io_Command
parameter value that the device internal routines did not understand. The task
should redefine that parameter and dispatch that command again.

• IOERR_BADLENGTH. The dispatching task specified an 110 request io_Length
parameter value that the device internal routines did not understand. The task
should redefine that parameter and dispatch that command again.

The precise definition of these errors appears in the Exec/Errors.h INCLUDE file.
The error names shown there represent individual values (- I to - 4) that the system might
assign to a replied IORequest structure io_Error parameter. Most individual devices have a
set of io_Error values that start at numerical value o. See the individual device INCLUDE
files (Audio.h, etc.) for the names and numerical definitions of these device-specific errors.

USE OF FUNCTIONS

CloseDevice

Syntax of Function Call
CloseDevice (iOAudio)

A1

purpose of Function
This function closes access to the Audio device internal routines for one or more Audio
device units. When it returns, the IOAudio structure io_Device pointer will be set to - 1.

6 BI AMIGA PRO G RAM MER'S HANDBOOK

In addition, if there are channels allocated with the same allocation key, Close Device
will free them. CloseDevice sets the io_Unit parameter unit bit of any free channels to 0;
if all channels are closed, all four low-order bits of the io _Unit parameter will be 0 when
CloseDevice returns.

CloseDevice decrements the Unit structure unit_OpenCnt parameter for that unit. If
unit_OpenCnt is reduced to 0 for all open units and a deferred expunge sent by this or
another task is pending, the Audio device structures are expunged from RAM as soon as
all open units are closed.

I nputs to Function
iOAudio A pointer to an IOAudio structure; also a pointer to an

IORequest structure

preparation of the IOAudio Structure
The IOAudio structure is defmed by a previous OpenDevice function call.

DiSCUSSion
CloseDevice terminates access to a set of device routines for a particular Audio device
unit. The io_Unit parameter of the IORequest substructure specifies the units affected.

If your task has different allocation keys for the channels, you cannot use Close
Device to close all of them at once. Instead, you must issue one ADCMD_FREE com
mand for each unique allocation key your task is using. Then your task can call
CloseDevice to close all units.

If a number of tasks have opened an Audio device unit in shared access mode, the
Unit structure unit_OpenCnt parameter will reflect the number of tasks that have opened
but not closed that unit. Once all units are closed, the Audio device routines can be
expunged from the system.

O~enDev;ce

Syntax of Function Call
error = OpenDevice ("audio.device" unitNumber, iOAudio, 0)
DO AO DO A1 01

THE AUDIO DEVICE 16 g

purpose of Function
This function opens access to the Audio device routines for one or more units. If success
ful, it sets the IORequest structure io_Device pointer to point to a Device structure that
the system uses to manage the Audio device units. In addition, if the IOAudio structure
ioa_Length parameter is other than 0, OpenDevice will execute the ADCMD_ALLO
CATE command indirectly to allocate audio channels, thereby setting io_ Unit to point to
the set of Unit structures that manages the device request message ports for each allocated
unit. OpenDevice also increments the Device (Library) structure lib_OpenCnt parameter,
thereby preventing a deferred expunge.

Open Device requires a properly initialized task reply port with a task signal bit num
ber allocated. If unsuccessful, OpenDevice returns an error value in the IOAudio (10-
Request) structure io_Error parameter. It does not wait for the allocation to succeed, and
it closes the Audio device.

Here are the values returned by OpenDevice:

• io_Device. This is a pointer to a Device structure, which manages the successfully
opened units of the Audio device. The Device structure contains the information
necessary to reach all the data and routines in the Audio device library.

• io_Unit. This is a bitmap of the successfully allocated channels; bits 0-3 corres
pond to channels 0-3. This value allows a task to determine which units were actu
ally allocated by the Open Device call. It will always be 0 if the ioa_Length
parameter was O.

• io_Error. This value indicates the state of attempted opens and allocations. A 0
here indicates that the requested channel allocations succeeded.

I nputs to Function
"audio.device" A pointer to a null-terminated string representing the name

of the Audio device

unitNumber The Audio device unit number (0-3) for the unit or units to
open; the IOAudio structure io_Unit parameter specifies the
units affected. Specify this argument only if you want to
both open the Audio device and allocate units at the same
time; specify 0 to open the Audio device without allocating
any units.

iOAudio A pointer to an IOAudio structure

o Indicates that the flags argument is not used for the Audio
device

701 AMIGA PRO G RAM MER'S HANDBOOK

preparation of the IOAudio Structure
Initialize the following parameters:

• In_Pri. Set this only if you want to both open the Audio device and allocate a unit
(channel), and only if the ioa_Length parameter is not O.

• mn_ReplyPort. Set this to point to a MsgPort structure for the task reply port that
will receive the reply from the Audio device internal routines when it has finished
processing OpenDevice. This parameter is only necessary if you want to allocate as
well as open an Audio device unit. The requesting task will ascertain from the I/O
request reply which units have or have not been allocated. You will set this parame
ter only if the ioa_Length parameter is not O.

• ioa_Data. Set this to point to a channel combination array (only if the ioa_Length
parameter is not 0).

• ioa_Length. Set this to the length of the channel combination array, a value from 0
to 15. Use a 0 here if you do not want to allocate any units.

DiScussion
OpenDevice is used to open the Audio device routines for access by a task. When Open
Device returns, the IOAudio structure io_Device parameter will point to a Device struc
ture used to manage one or more Audio device units; each open unit will have a unique
U nit structure.

STANDARD DEVICE COMMANDS

I CMD CLEAR

purpose of Command
CMD _CLEAR is a multiple-channel command. It clears all Audio device internal buffers
for each channel specified by a set bit in io_Unit, if the ioa_AllocKey parameter is cor
rect. If the allocation key (ioa_AllocKey) is not correct, CMD_CLEAR returns an error
value (ADIOERR_NOALLOCATION).

The CMD _CLEAR command is always treated as a synchronous I/O request and
only replies to the task reply-port queue if the io_Flags !OF_QUICK bit is cleared. The
results of command execution are as follows:

• io_ Unit. This is a 4-bit bitmap of the channels successfully cleared; bits 0-3 cor
respond to channels 0-3.

THE AUDIO DEVICE 17 1

• io_Error. A 0 here indicates that the command was successful. ADIOERR_NO
ALLOCATION indicates that the IOAudio structure ioa_AllocKey parameter does
not match the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_CLEAR. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO, which
always succeeds for this command.

DiScussion
Two standard device commands directly affect the internal device buffers of the Audio
device: CMD_UPDATE and CMD_CLEAR. CMD_CLEAR restores the device internal
routines to a known state without resetting the entire Audio device system with
CMD_RESET

I CMD FLUSH

purpose of Command
CMD_FLUSH is a multiple-channel command. It flushes all pending 110 requests from
a device request queue for a specified set of device units. It aborts any executing
CMD _WRITE commands and any pending CMD _ WRITE commands that are queued
in any of the specified device units. For each channel specified by a set bit in io_Unit, if
the ioa_AllocKey parameter is correct, CMD_FLUSH aborts all in-progress or queued
writes and any ADCMD_WAITCYCLE 110 requests waiting to synchronize with the end
of the cycle.

CMD_FLUSH is always treated as a synchronous I/O request and only replies to
the task reply-port queue if the IOF _QUICK flag parameter is cleared. Do not use
CMD_FLUSH in interrupt code at interrupt level 5 or higher.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels successfully flushed. Bits 0-3 cor
respond to channels 0-3.

721 AMIGA PRO G RAM MER' S HANDBOOK

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not match
the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_FLUSH. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO, which
always succeeds for this command.

DiSCUSSion

CMD READ

Two Audio device commands directly affect the device request queues of a set of audio
channels: CMD_RESET and CMD_FLUSH. CMD_RESET calls CMD_FLUSH indi
rectly. The AbortIO function can also remove a specified I/O request structure from an
Audio device-unit request queue.

Because CMD _FLUSH is a very destructive command, you normally use it only if
you want to restore the system to some known state-for example, to remove all pending
and active 110 requests from a set of one or more device-unit I/O request queues.

purpose of Command
CMD_READ is a single-channel command. For each channel specified by a bit set in
io_Unit, if the ioa_AllocKey parameter is correct, CMD_READ returns a pointer to the
IOAudio structure for the CMD _ WRITE command currently writing on the selected chan
nel. If there is no CMD _WRITE command in progress on the specified unit,
CMD_READ returns a 0 value.

CMD_READ is always treated as a synchronous I/O request and only replies if the
io_Flags IOF _QUICK bit is cleared. The results of command execution are as follows:

• io _Unit. This is a 4-bit bitmap of the channels successfully read; bits 0-3 corres
pond to channels 0-3.

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not match
the current allocation key for the channel.

THE AUDIO DEVICE 17 3

• ioa_Data. This points to an IOAudio structure representing the currently executing
CMD _WRITE command on the specified unit. It is 0 if no write is currently in
progress on the specified unit.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_READ. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO, which
always succeeds for this command.

DiSCUSSion
Five commands directly affect or relate to a currently executing Audio device
CMD_WRITE command: ADCMD_PERVOL, ADCMD_WAITCYCLE, CMD_STOp,
ADCMD_FINISH, and CMD_READ. Most of the Audio device commands have either
a constructive or a destructive effect on the state of the Audio device system.
CMD_READ, however, does nothing more than return a pointer to an IOAudio structure
representing the currently active CMD_ WRITE command.

If a task needs to know whether an audio channel is being used before it attempts to
write to it, that task can dispatch CMD _READ for the channel. Then, if any task in the
system is currently using the channel to playa sound, the CMD_READ request structure
replied to the calling task will contain a pointer to the IOAudio structure representing the
CMD_ WRITE command. The calling task can then look at the ioa_Data parameter in
the replied CMD_READ command IOAudio structure to obtain a pointer to the
CMD _WRITE IOAudio structure.

I CMD RESET

purpose of Command
CMD_RESET is a multiple-channel command. For each channel specified by a bit set in
io_Unit, if the ioa_AllocKey parameter is correct, CMD_RESET clears the audio hard
ware registers and channel-to-channel attach bits set for frequency or amplitude modula
tion. It also sets the audio interrupt vector, cancels all pending I/O requests for all of the
specified audio channels, and restarts the channels if they are currently stopped by the
CMD_STOP command.

741 AMIGA PRO G RAM MER'S HANDBOOK

CMD_RESET is always treated as a synchronous I/O request and only replies if the
io_Flags IOF _QUICK bit is cleared. Do not use CMD_RESET in interrupt code at
interrupt level 5 or higher.

The results of command execution are as follows:

• io _Unit. This is a 4-bit bitmap of the channels successfully reset; bits 0-3 corres
pond to channels 0-3.

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not
match the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_RESET. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF_QUICK for QuickIO, which
always succeeds for this command.

DiSCUSSion
Two Audio device commands directly affect the device request queue for a set of audio
channels: CMD_RESET and CMD_FLUSH. CMD_FLUSH flushes all pending I/O
requests from a set of one or more device-unit I/O request queues.

The CMD _RESET command is very destructive-among other things, it calls
CMD_FLUSH indirectly to flush the queued I/O requests. CMD_RESET also calls
CMD_START to start any channels stopped previously with CMD_STOP; when a task
once again starts to send requests to the specified Audio device units, there is no need to
restart the channels with an explicit CMD_START command.

I CMD START

purpose of Command
CMD_START is a multiple-channel command. For each channel specified by a bit set in
io_Unit, if the ioa_AllocKey parameter is correct and the channel was previously stopped
by CMD_STOp, CMD_START starts all pending CMD_WRITE commands to the
channel.

THE AUDIO DEVICE 17 5

CMD_START starts multiple channels simultaneously to minimize distortion if the
channels are playing the same waveform and their outputs are mixed. It is always treated
as a synchronous I/O request and only replies if the io_Flags IOF _QUICK bit is cleared.
Do not use CMD_START in interrupt code at interrupt level 5 or higher.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels successfully started; bits 0-3 corres
pond to channels 0-3 .

• io_Error. A 0 here indicates that the command was successful. ADIOERR NO
ALLOCATION indicates that the IOAudio structure ioa_AllocKey parameter does
not match the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_START. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO, which
always succeeds for this command.

DiSCUSSion

I CMD STOP

Two commands start and stop the production of sound in Audio device units: CMD
_START and CMD_STOP. CMD_STOP stops the sound produced by executing a
CMD _WRITE command for any of a set of specified audio channels.

CMD_START is similar to the Ctrl-Q command used to restart screen output on
most computers-it restarts execution of a CMD _WRITE command stopped previously
by CMD_STOp, just as Ctrl-Q restarts screen output stopped previously with Ctrl-S. If a
set of channels was previously stopped by a single CMD _STOP command, CMD
_START will restart all of them simultaneously, provided the CMD_START IOAudio
structure io_Unit parameter is the same as the CMD_STOP command IOAudio structure
io _Unit parameter.

purpose of Command
CMD_STOP is a multiple-channel command. For each channel specified by a bit set in
io_Unit, if the ioa_AllocKey parameter is correct, CMD_STOP immediately stops any

7 61 AMIGA PRO G RAM MER'S HANDBOOK

executing CMD _WRITE commands in progress on the channel. Once a channel is
stopped, the system automatically queues writes to that channel until the CMD_START
command restarts that channel or CMD _RESET resets it.

CMD_STOP is always treated as a synchronous I/O request and only replies if the
io_Flags IOF _QUICK bit is cleared. Do not use CMD_STOP in interrupt code at level
5 or higher.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels successfully stopped; bits 0-3 cor
respond to channels 0-3 .

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not match
the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_STOP. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO, which
always succeeds for this command.

DiSCUSSion
Two commands start and stop the production of sound in Audio device units: CMD
_START and CMD_STOP. CMD_START restarts the sound produced by an executing
CMD _WRITE in any of a set of specified audio channels previously stopped with CMD
_STOP. The CMD_STOP command is similar to the Ctrl-S command used for screen
output on most computers-it stops specified currently executing CMD _WRITE com
mands at the earliest possible opportunity.

Note that CMD_STOP does not provide for an IOAudio structure io_Flags ADIOF
_SYNCCYCLE flag parameter bit. Therefore, if a task needs to stop playing a sound at the
end of the current cycle for a set of Audio device channels, it should dispatch the
ADCMD_ WAITCYCLE command just before it dispatches CMD_STOP for those channels.

I CMD UPDATE

purpose of Command
CMD _UPDATE is a multiple-channel command. It forces all Audio device internal
device buffers out to the Audio device hardware. For each channel specified by a bit set

THE AUDID DEVICE 177

in io_Unit, if the ioa_AllocKey parameter is incorrect, CMD_UPDATE returns an error
value (ADIOERR_NOALLOCATION).

CMD _UPDATE is always treated as a synchronous I/O request and only replies to
the task reply-port queue if the io_Flags IOF _QUICK bit is cleared.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels successfully updated; bits 0-3 cor
respond to channels 0-3 .

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not match
the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to CMD_UPDATE. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF_QUICK for QuickIO, which
always succeeds for this command.

DiSCUSSion
There are two standard device commands that directly affect the internal device buffers of
the Audio device: CMD _UPDATE and CMD _CLEAR. CMD _CLEAR clears the inter
nal device buffers for a set of one or more Audio device channels. CMD_UPDATE
writes the current contents out from all Audio device internal device buffers, thereby writ
ing (playing) the information bytes currently present in those buffers. This is similar to
the operation of the TrackDisk device, which forces the floppy- or hard-disk track buffers
out to the physical disk unit during a power failure.

CMD WRITE

purpose of Command
CMD_ WRITE is a single-channel command. For the channel specified by io_Unit, if the
ioa_AllocKey parameter is correct, CMD_ WRITE plays a sound for the channel and
queues I/O requests if there is another write in progress or if the channel has been
stopped by CMD_STOP.

7 81 AMIGA PRO G RAM MER . S HANDBOOK

CMD _ WRITE is always treated as an asynchronous I/O request if there is no error;
it clears IOF _QUICK and replies the I/O request after it has finished writing. If there is
an error, CMD _WRITE is treated as synchronous and only replies if the io_Flags IOF
QUICK bit is cleared. CMD WRITE replies after it completes execution. Do not use
CMD _WRITE in interrupt code at interrupt level 5 or higher.

The results of command execution are as follows:

• io_ Unit. This is a 4-bit bitmap of the channels successfully written; bits 0-3 cor
respond to channels 0-3.

• io_Error. ° indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not match
the current allocation key for the channel. ADIOERR_ABORTED indicates that the
Audio device I/O request has been aborted. ADIOERR_CHANNELSTOLEN indi
cates that the channel has been stolen.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed unit of the Audio device. Set io_Command to
CMD_WRITE.

Also initialize the following command-specific parameters:

• io_Flags. Set this to ° if not used. Otherwise, initialize it to ADIOF _PERVOL to
load a new period and volume value for the channel. Initialize io_Flags
to ADIOF _ WRITEMESSAGE to reply the CMD _ WRITE request at the start of
the write operation using the ioa_ WriteMsg Message structure to pass the message to
the sending task reply port.

• ioa_Data. Set this to a point to a waveform data array, which consists of signed
integer bytes that range from - 128 to 127. Each waveform data point must be in
chip-addressable RAM and word-aligned.

• ioa_Length. Set this to the length (in bytes) of the waveform data array. This must
be an even number between 2 and 131,072.

• ioa_Period. Set this to a new value for the sampling period. The sampling period
is measured in 279.365 nanoseconds intervals; the sampling rate can be from 127
to 65,536. The anti-aliasing (harmonic elimination) filter works below 300 or 500
cycles per second depending on the waveform used. Specify this parameter if
ADIOF _PERVOL is set.

• ioa_ Volume. Set this to a new value for the volume of the sound. Volume ranges
from ° to 64 in a linear fashion. Specify this parameter only if ADIOF _PERVOL
is set.

• ioa_ Cycles. Set this to the number of times to repeat the waveform array; this can
be from 0 to 65,535. Use 0 if you want to repeat the waveform an infinite number
of times.

THE AUDIO DEVICE 17 9

• ioa_ WriteMsg. Initialize this to the name of the Message structure containing the
message to send to the task reply port at the start of CMD _WRITE execution.
This message is only replied if the io_Flags ADIOF _ WRITEMESSAGE bit is set.

DiScussion
CMD _ WRITE is the only Audio device command that directly plays information out to
the Amiga external hardware. Any task can dispatch a continuous stream of CMD _WRITE
commands to each Audio device unit allocated to it. Each of these CMD_ WRITE com
mands will be queued in the device-unit request queue for those units; there is no QuickIO
mechanism for the CMD _ WRITE command. The information in the task-defined buffers
specified by CMD _ WRITE commands will always be played in the order in which the
CMD _WRITE command 110 requests were queued.

However, this does not mean that once the CMD _WRITE requests are queued, the
operation of the system cannot be altered-CMD_FLUSH, AbortIO, and CMD_RESET
alter the specific 110 requests queued to each unit. Also, the CMD_START and CMD
_STOP commands can start and stop the playing of buffer information through each
device unit. Finally, the ADCMD_PERVOL command can always change the period and
volume of the queued request when CMD _WRITE actually starts playing information
through each of the specified channels.

DEVICE-SPECIFIC COMMANDS

I ADCMD ALLOCATE

purpose of Command
ADCMD _ALLOCATE tries to allocate a group of audio channels. If the length of the
channel combination array is specified as 0 in the ioa_Length parameter, the allocation
will succeed. Otherwise, the ADCMD_ALLOCATE command checks each combination
specified by the channel combination array, one at a time and in the specified order, and
tries to allocate one of the channel combinations.

If ADCMD_ALLOCATE must steal channels, it uses the channel combination that
steals the lowest-precedence channel; it cannot steal a channel of equal or greater prece
dence.

The ADCMD_ALLOCATE command replies only if the io_Flags IOF_QUICK bit
is cleared; otherwise, the allocation is treated as an asynchronous I/O request, thereby clear
ing IOF _QUICK and replying the request after the allocation is completed. A task should
not use the ADCMD_ALLOCATE command in interrupt code at any interrupt level.

80 I AMIGA PRO G RAM MER'S HANDBOOK

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the successfully allocated channels; bits 0-3 cor
respond to channels 0-3.

• io_Flags. The IOF _QUICK flag parameter is cleared if the Audio device treats the
ADCMD _ALLOCATE command as an asynchronous request.

• io_Error. 0 indicates that the command was successful; ADIOERR_ALLOC
FAILED indicates that the requested allocation failed. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not
match the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize In_Pri, the required channel's allocation precedence, to a value from - 128 to
127. Initialize mn_ReplyPort to point to the MsgPort structure representing the desired
task reply port. Initialize io_Device and io_Unit to point to the Device and Unit struc
tures that manage each addressed Audio device unit. Initialize io_Command to ADCMD
_ALLOCATE.

Also initialize the following command-specific parameters:

• io_Flags. Set this to 0, or set it to IOF _QUICK for QuicklO. If QuicklO fails, the
Audio device routines will treat ADCMD_ALLOCATE as an asynchronous I/O
request; the system will reply the I/O request and clear the IOF _QUICK flag bit.
Initialize io_Flags to ADIOF _NOWAIT if you want ADCMD_ALLOCATE to
return ADIOERR_ALLOCFAILED if the allocation fails on the first try.

• ioa_AllocKey. Set this to 0 if you want processing of ADCMD_ALLOCATE to
generate a new value for the allocation key. Otherwise, ioa_AllocKey must be cop
ied from the IOAudio structure replied by OpenDevice or the most recent ADCMD
_ALLOCATE command processed.

• ioa_Data. Set this to point to a channel combination array; bits 0-3 correspond to
channels 0-3.

• ioa_Length. Set this to the length of the channel combination array; it can have a
value from 0 to 15. A value of 0 always succeeds.

DiSCUSSion
There are two ways to allocate audio channels. The first is to use the Open Device func
tion, which calls the ADCMD_ALLOCATE command indirectly. The second way is to
use the ADCMD _ALLOCATE command directly.

ADCMD_ALLOCATE can allocate one or more audio channels to the calling task.
It will try not to steal audio channels; however, if it must, it will always steal the lowest
precedence channels. In addition, ADCMD_ALLOCATE cannot steal an audio channel

THE AUDIO DEVICE 18 1

whose current precedence is greater than or equal to the IOAudio structure In_Pri param
eter representing the ADCMD_ALLOCATE command.

If the allocation is successful, ADCMD_ALLOCATE checks to see if any of the chan
nels have been locked by ADCMD _LOCK. If one or more have been locked, ADCMD
_ALLOCATE replies the original IOAudio structure representing ADCMD_LOCK to the
task reply port with the io_Error parameter set to ADIOERR_CHANNELSTOLEN. It
then places the I/O request in a list waiting for the locked channels.

When all channels required to satisfY it have been unlocked, ADCMD_ALLOCATE
calls CMD_RESET. It then generates a new ioa_AllocKey value for the newly allocated
channels if the previous ioa_AllocKey parameter was 0; otherwise, it allocates the same
value. It goes on to copy ioa_AllocKey and In_Pri into the IOAudio structure for each of
the allocated channels and copies the 4-bit channel bitmap into the io _Unit parameter of the
IOAudio structure for each of them.

ADCMD_ALLOCATE can operate either synchronously or asynchronously, depend
ing on conditions in the system when it is dispatched. It operates synchronously if the
allocation succeeds and did not require any locked channels to be stolen, or if the alloca
tion fails and the ADIOF_NOWAIT flag parameter bit is set. ADCMD_ALLOCATE
only replies the I/O request if the IOF _QUICK flag parameter bit is cleared. Otherwise,
it operates asynchronously, clearing the IOF _QUICK flag parameter bit and replying the
I/O request when the allocation is finished.

If ADCMD_ALLOCATE must steal audio channels to satisfy the allocation request,
all device commands issued in other tasks from which these channels were stolen will
return ADIOERR_CHANNELSTOLEN when those tasks try to dispatch their com
mands. Unless channels are stolen, a task must always free (ADCMD_FREE) all allocated
channels when it is finished using them before another task can use them.

If you decide to work directly with the audio hardware registers in assembly lan
guage, you must either immediately lock (ADCMD _LOCK) the channels that ADCMD
_ALLOCATE allocates, or set the channel precedence to a maximum value (127) to pre
vent the channels from being stolen by another task.

I ADCMD FINISH

purpose of Command
ADCMD _FINISH aborts the currently executing CMD _WRITE command for a set of
specified channels; it is a multiple-channel command. For each selected channel as speci
fied by io_Unit, if the allocation key is correct and there is a CMD_ WRITE in progress,
ADCMD _FINISH aborts the current write immediately or at the end of the current cycle
if ADIOF _SYNCCYCLE is set.

The ADCMD_FINISH command is a synchronous I/O request and only replies if
the IOF _QUICK flag parameter is cleared. Do not use ADCMD_FINISH in interrupt
code at interrupt level 5 or higher.

8 21 AMIGA PRO G RAM MER'S HANDBOOk

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the successfully finished channels; bits 0-3 corres
pond to channels 0-3 .

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that IOAudio structure ioa_AllocKey parameter does not match
the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage each addressed Audio device unit. Initialize io_Command to ADCMD_FINISH.

Set io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO;
if QuickIO fails, the Audio device internal routines will treat ADCMD _FINISH as an
asynchronous I/O request. The system will reply the I/O request and the IOF _QUICK
flag bit will be cleared. Initialize io_Flags to ADIOF _SYNCCYCLE if you want
ADCMD_FINISH to finish at the end of the current cycle for all units specified.

DiSCUSSion
Five conunands directly affect a currently executing CMD _ WRITE command: ADCMD
PERVOL, ADCMD WAITCYCLE, CMD_READ, CMD_STOp, and ADCMD_FIN
ISH. ADCMD _FINISH allows a task to finish writing data to (playing sound on) one or
more audio channels. If the specified channels are not currently writing, ADCMD _FINISH
has no effect on the system. The write can be aborted inunediately or at the end of the cur
rent cycle of the waveform data; this choice is controlled by the ADIOF _SYNCCYCLE
io_Flags bit. If ADIOF _SYNCCYCLE is set, the sound can finish smoothly, thus providing a
clean transition for the human ear.

The AbortIO function can also abort an ongoing CMD_ WRITE command. How
ever, because it is designed to abort all types of requests, AbortIO is not tied specifically
to aborting CMD _ WRITE commands and cannot synchronize the abort operation with
the end of a write cycle_

ADCMD FREE

purpose of Command
ADCMD_FREE is a multiple-channel command. For each channel specified by io_Unit,
if the allocation key is correct, ADCMD _FREE restores the channel to a known state
using CMD _RESET and changes the channel's allocation key parameter. It then makes

THE AUDIO OEVICE 183

the channel available for reallocation by an ADCMD_ALLOCATE command or Open
Device function call.

ADCMD_FREE unlocks a channel if it is locked by the ADCMD_LOCK com
mand. It clears the channel bit for the channel designated in the IOAudio structure
io_Unit parameter that represents the original ADCMD_LOCK request. If the IOAudio
structure for the ADCMD_LOCK request has no channel bits set in its io_Unit parame
ter, ADCMD_FREE replies the original ADCMD_LOCK request. It then checks if
there are any allocation requests waiting for the channel.

ADCMD_FREE is always a synchronous I/O request and only replies if the IOF
_QUICK is cleared. Do not use ADCMD_FREE in interrupt code at any interrupt level.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the successfully freed channels; bits 0-3 corres
pond to channels 0-3 .

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not
match the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to ADCMD_FREE. Set
io_Flags to 0 if not used. Otherwise, initialize it to IOF_QUICK for QuickIO, which
always succeeds for this command.

DiScussion
The ADCMD _FREE command allows a task to free audio channels it once allocated
with the OpenDevice function or the ADCMD_ALLOCATE command. Once these chan
nels are freed by the task, it or another task can allocate those channels with OpenDevice
or ADCMD_ALLOCATE.

Note that ADCMD_FREE unlocks channels previously locked by the
ADCMD_LOCK command. In fact, ADCMD_FREE provides the only direct way
short of the destructive CMD_RESET command-to unlock previously locked channels.

I ADCMD LOCK

purpose of Command
ADCMD_LOCK is a multiple-channel command. It prevents audio channels from being
stolen from the task that issues it. For each channel specified by io_ Unit, if the ioa_AllocKey

841 AMIGA PRO G A A M MER'S HANDBOOK

parameter is correct, the ADCMD _LOCK command locks the channel, thereby preventing
subsequent allocations from stealing it.

The ADCMD_LOCK command is treated as an asynchronous I/O request if
ioa_AllocKey is correct, in which case it clears the IOF _QUICK bit and eventually
replies to the task reply-port queue. Otherwise, ADCMD_LOCK is treated as synchro
nous, and only replies if IOF _QUICK is cleared. Do not use ADCMD _LOCK in inter
rupt code at any interrupt level.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the successfully locked channels; bits 0-3 corres
pond to channels 0-3.

• io Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not
match the current allocation key for the channel. ADIOERR_CHANNEL
STOLEN indicates that a locking operation is attempting to lock a stolen channel.

• io_Flags. The IOF _QUICK bit is cleared if ioa_AllocKey is correct.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed Audio device unit. Set io_Command to ADCMD_LOCK.
Set io_Flags to o.

DiSCUSSion
ADCMD_LOCK allows a task to prevent other tasks from stealing the audio channels it
allocates with OpenDevice or ADCMD_ALLOCATE. Unlike setting the channel prece
dence to its maximum value with ADCMD_ALLOCATE, OpenDevice, or ADCMD
_SETPREC, which then causes all subsequent allocations by other tasks to fail, using
ADCMD_LOCK causes all higher-precedence allocations, even no-wait (ADIOF _NO
WAIT) allocations, to wait until the requested channels are unlocked. It does not prevent
other tasks from eventually getting those channels; it merely delays those allocations.

Locked channels can only be unlocked by executing ADCMD _FREE, which clears
the io_Unit parameter channel bits for each channel freed. ADCMD_LOCK does not
reply until all the channels it locks are freed, unless a higher precedence allocation
attempts to steal one of the locked channels.

If a channel is successfully stolen, ADCMD_LOCK replies and sets the IOAudio
structure io_Error parameter to ADIOERR_CHANNELSTOLEN. In this case, the
channels should be freed as soon as possible. To avoid deadlock, a task should never make
the freeing of channels dependent on the completion of another task's allocation.

THE AUDIO DEVICE 18 5

I ADCMD PERVOL

purpose of Command
ADCMD_PERVOL is a multiple-channel command. It changes the period and volume
for writes currently in progress on selected audio channels. For each channel specified by
io_Unit, if ioa_AllocKey is correct and there is CMD_ WRITE in progress, ADCMD
_PERVOL loads a new volume and period either immediately or at the end of the cur
rent cycle, depending on ADIOF _SYNC CYCLE.

The ADCMD_PERVOL command is always treated as a synchronous I/O request
and only replies to the task reply-port queue if IOF _QUICK is cleared. Do not use
ADCMD_PERVOL in interrupt code at interrupt level 5 or higher.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels that were successfully loaded with
new values for the period and volume; bits 0-3 correspond to channels 0-3.

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey does not match the cur
rent allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage each addressed unit of the Audio device. Set io_Command to ADCMD
_PERVOL.

Also initialize the following command-specific parameters:

• io_Flags. Set this to 0 if not used. Otherwise, initialize it to IOF _QUICK for
QuickIO, which always succeeds for ADCMD_PERVOL. Set io_Flags to ADIOF
_SYNCCYCLE if you want ADCMD_PERVOL to change the period and volume
at the end of the current write cycle; otherwise, it will change the period and vol
ume immediately.

• ioa_Period. This is a new value for the sampling period. The sampling period is
measured in 279.365-nanosecond intervals; the sampling rate can be from 127 to
65,536. The anti-aliasing (harmonic elimination) filter works below 300 or 500 Hz,
depending on the waveform used.

• ioa_ Volume. This is a new value for the volume of the sound. Volume ranges from
o to 64.

8 61 AMIGA PRO G RAM MER . S HANDBDDK

DiScussion
Five commands directly affect a currently executing CMD _WRITE command: ADCMD
FINISH, ADCMD WAITCYCLE, CMD_READ, CMD_STOp, and ADCMD_PER
VOL. ADCMD_PERVOL changes the period and volume for a currently executing
CMD _ WRITE. It allows a task to finish writing data to (playing sound on) one or more
audio channels before the period and volume are changed. If the specified channels are
not currently writing, ADCMD_PERVOL has no effect on the system.

The period and volume can be changed immediately or at the end of the current
CMD_WRITE. The choice is controlled by the io_Flags ADIOF_SYNCCYCLE bit in
the ADCMD_PERVOL command IOAudio structure; if this bit is set, the period and
volume will not be changed until the end of the current cycle, thus providing a clear tran
sition for the sound.

ADCMD SETPREC

purpose of Command
ADCMD_SETPREC changes the channel precedence for a set of Audio device channels.
It is a multiple-channel command. For each channel specified by io_Unit, if the allocation
key is correct, ADCMD_SETPREC changes the allocation precedence to a new value. It
also checks if there are any allocation requests waiting for the channel, which now has a
higher precedence.

The ADCMD _SETPREC command is always treated as a synchronous I/O request
and only replies if the IOF _QUICK bit is cleared. Do not use ADCMD_SETPREC in
interrupt code at any interrupt level.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels successfully set or changed; bits 0-3
correspond to channels 0-3 .

• io Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not
match the current allocation key for the channel.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures

THE AUDIO DEVICE 187

that manage each addressed Audio device unit. Set io_Command to ADCMD_SET
PREC. Set io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for
QuickIO, which always succeeds for this command.

DiScussion
At any given time, all allocated channels can have distinct channel allocation precedences
established by previous executions of OpenDevice, ADCMD_ALLOCATE, or ADCMD
_SETPREC. You can use the ADCMD_SETPREC command to fine-tune the current
channel allocation precedences in a task. By doing so, you can control the channel arbitra
tion process among the various tasks in the system as precisely as you wish.

I ADCMD WAITCYCLE

purpose of Command
The ADCMD _ WAITCYCLE command causes the dispatching task to wait for the Audio
device hardware to complete the current waveform cycle of a CMD _ WRITE command,
which allows the current note to finish playing. It is a single-channel command. For the
channel specified by io_ Unit, if the ioa_AllocKey parameter is correct and there is a
CMD _ WRITE command in progress for the channel, ADCMD _ WAITCYCLE does not
reply until the end of the current cycle. If there is no CMD _WRITE currently in pro
gress, CMD _ WRITE replies immediately.

ADCMD _ WAITCYCLE is treated as an asynchronous request only if it is waiting
for a cycle to complete; otherwise, it is treated as a synchronous request and replies only
if IOF _QUICK is cleared. Do not use ADCMD_ WAITCYCLE in interrupt code at
interrupt level 5 or higher.

The results of command execution are as follows:

• io_Unit. This is a 4-bit bitmap of the channels that successfully waited for a cycle
to complete; bits 0-3 correspond to channels 0-3.

• io_Flags. The IOF _QUICK bit is cleared if a write is in progress on the selected
channel.

• io_Error. 0 indicates that the command was successful. ADIOERR_NOALLOCA
TION indicates that the IOAudio structure ioa_AllocKey parameter does not
match the current allocation key for the channel. ADIOERR_ABORTED is
returned if the I/O request has been aborted or ADIOERR_CHANNELSTOLEN
if the channel has been stolen by another task.

8 81 AMIGA PRO G RAM MER'S HANDBOOK

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures that
manage each addressed Audio device unit. Set io_Command to ADCMD_ WAITCYCLE.

Set io_Flags to 0 if not used. Otherwise, initialize it to IOF _QUICK for QuickIO.
If QuickIO fails, ADCMD _ALLOCATE will be treated as an asynchronous I/O request;
the system will reply the I/O request and clear the IOF _QUICK bit.

DiSCUSSion
Five commands directly affect a currently executing CMD _ WRITE command: ADCMD
_PERVOL, CMD_READ, CMD_STOp, ADCMD_FINISH, and ADCMD_WAIT
CYCLE. ADCMD _ WAITCYCLE allows a task to cooperate with other tasks and to
synchronize its activities with other events in the Audio device system. Because
ADCMD_ WAITCYCLE is a single-channel command, it is dispatched for one audio
channel at a time, allowing any next step in a task sequence to be coordinated with the
end of a write cycle for a specific channel. This allows you to fine-tune the timing and
sequence of Audio device tasks and programs.

Note that the ADCMD _ WAITCYCLE request is only replied if there is a write in
progress for the specified channel and if the cycle of that write has completed.

•
. .-.

• • ••••
•

• • • • •
• • • • •

The Narrator Device

THE NARRAlUR DEVICE I 9 1

Introduction

This chapter discusses the Narrator device's functions and commands and the Translator
library's Translate function. Here you learn what is required to make the Arniga work with
text files composed of English text strings and how to convert them to phoneme strings, pro
ducing spoken words that can be heard out of any speakers connected to the Arniga. The Nar
rator device is programmed by a few Exec functions and six commands, all of which are
standard device commands designed specifically for the Narrator device. Also of importance
here is the relationship between the Narrator device and the Audio device.

EngliSh-string Processing

Figure 4.1:
Processing an

English String

Figure 4.1 shows an English string being processed by the Translator library, Narrator device
internal routines, and Audio device internal routines. This diagram is a guideline for such tasks
as designing a talking word-processing program.

A task places the English string into a task-defined text buffer. The Translator library
translates the English string into a phoneme string equivalent on a word-for-word basis using
the Translator library built-in Voice Synthesis library. To do so, the Translator library must con
sult a word-exception table built into its routines. Words not in that table are translated liter
ally. You could also design your program to handle the exceptions by specifYing your own
word-exception table and producing corresponding phoneme strings directly. The result is a
series of phonemes in a phoneme-string buffer.

The Narrator device can then do two things. It can instruct the Audio device internal
routines to speak the phoneme string aloud using data in the Narrator_rb structure. This is
defined as a CMD _ WRITE operation. Additionally, it can instruct the Graphics library rou
tines to display changing mouth shapes using data in the Mouth_rb structure. This is defined
as a CMD_READ operation.

Translate
(convert English string to

phoneme string)

Write
(speak phoneme string uSing dala

in Narrator ~rb structure)

(display mouth shapes defined
by Mouth_rb structure)

921 AMIGA PRO G RAM MER'S HANDBOOK

Narrator Device Commands
Table 4.1 presents a summary of the Narrator device commands. The Narrator device uses no
device-specific commands, only standard device commands. Two of the Narrator device com
mands change parameters in the Narrator device-related structures, as shown in the table.
These effects are detailed under the individual command and function discussions later in this
chapter. Five of the Narrator device commands affect the io_Error parameter of the Narra
tor_rb structure IOStdReq substructure. None of the Narrator device commands support
QuickIO.

Sending Commands to the Narrator Device

Table 4_1:
Narrator Device

Commands

Figure 4.2(a) depicts the general scheme used to send commands to the Narrator device inter
nal routines. The lines with arrows do not represent pointer parameters; they represent the
parameters you should initialize. In Figure 4.2(b), the arrows represent the parameters returned
by the device internal routines.

The first phase is the structure preparation phase over which the programmer has com
plete control. The choice of parameters to initialize depends on the specific command you plan
to send to the Narrator device. Always remember that if you do not explicitly initialize the
Narrator_rb or Mouth_rb structure parameters before you dispatch a CMD_ WRITE or
CMD_READ command, their values will either be fixed by the most

I Command

I

Quick 1/0 Queued 1/0 Values
Possible? Possible? Affected io_Error

CMD_FLUSH No No -

S"tOO'O'1 CMD_READ No Yes width Set to error
height value
shape

CMD_RESET No No - Set to 0

CMD_START No No - Set to 0

CMD_STOP No No -
i

Set to 0

I CMD_WRITE No Yes I io_Actual Set to error

I value

Figure 4.2(a):
Narrator Device

Command and

Function

Processing

(Specifications)

THE NARRAmR DEVICE 193

previous value assigned or by the default value, depending on the specific programming
sequence.

The second phase is the Narrator device internal routine processing phase. Here you send
the command to the internal device routines using a BeginlO, DolO, or SendlO device
command-dispatching function. Control then passes to a mixture of the Narrator device, Audio
device, and Exec system internal routines. The command 110 request will always get queued
in the Narrator device request queue; the Narrator device internal routines do not suppon
QuickIO.

The third phase is command or function output parameter processing. The system, Nar
rator, and Audio device internal routines have complete control over the values found in these
structure parameters. The results of Narrator device command processing have been returned
to the task that originally issued the command.

The outputs from device-command processing can be found in the parameters as shown
in the figure. Notice that the io_Error value can take on one or more of the set of 19 values.
Figures 4.2(a) and (b) also depict the parameters that playa pan in Narrator device function
setup and processing. Note that the Narrator_rb and Mouth_rb structure parameters shown in
Figure 4.2(b) have been initialized to their default values by OpenDevice.

General
device

IORequest
structure

parameters

Narrator _rb
structure

parameters

Mouth_rb
structure

parameters ~

Preparation of
Narrator _rb or

Mouth_rb
structure

mn ReplvPort
io Command

io Error
io Data

io_Length
io Flaqs

(not used)
rate

pitch
mode

sex
ch masks

nm masks
volume

sampfreq
mouths

width
heiqht

Narrator Device Internal Routines

BeginlO, 0010, or SendlO
sends command,

or functions initiate
Narrator device
internal routine

servicing

941 AMIGA PRO G RAM MER'S HANDBOOK

Figure 4.2(b):
Narrator Device
Command and

Function
Processing

(Outputs)

Narrator Device
Internal Raulin es

k -\;ViCC ~
iO_iJnit---== l>. aevlct:
ioJrror (IORequest
io_Actuoi structure
rate ~ parameters

itch -,- ~
rn01.~e

sex

\,""Iurnt I ..
lITph~

n :.Juths __________ ,_'

wicth _'\ Mouth_rb
hei ht structure
sha 8) parameters

IOERR Of'ENFAIL
II)ERR=~3'':;:;O'''RT'''Ec;cO-
IOf,,_NOCMO
0[RI, BADLENGTH -----

I NO_NoMerr, ',- --
NO_NoAu,; I
~8;d

NO_UnltErr
i Ij8~C"'on"'tKC"lc-loL-' ----
- NO_Unwnpl

NO Ji 0V"'-'-'t8---,-__ _
~ ND bpunged
! N:) PhonErr
I NO_RateE'1

NOjitchEI'
NO _SexEr;
NO jAodeC;:;- - --
ND Freqtc"-" ___ _
IIO~ V'"-EII' ____ _

lib OpenCn,!.
dn~ C\)enCnt De:,icc strudwe pucnleler
~ Unit ~<Jrar:leter

Structures for the Narrator Device
Figure 4.3 shows that the Narrator device deals with two structures: Narrator_rb and
Mouth_rb. The Narrator_rb structure defines the audio output component of the narration
either indirectly from the English string through the Translator library or directly from pho
neme strings defined by a task. The Mouth_rb structure communicates display information to
the Arniga display screen; it does not communicate audio data to the Audio device internal
routines. The Narrator_rb and Mouth_rb structures are not directly linked. The Translator
library has no programmer-accessible structures.

The Narrator_rb Structure
The Narrator_rb structure contains an IOStdReq substructure named Message. It is used to
define I/O requests passed back and forth between a task and the Narrator device internal rou
tines. In particular, this substructure contains the mn_ReplyPort pointer parameter that points
to a MsgPort structure representing the task reply-port queue of a task that dispatches a Narra
tor device command. The Narrator_rb structure also contains a pointer to a channel
combination array (ch_rnasks) that is used to define the desired set of audio channels.

The Narrator_rb structure is defined as follows:

struct narrator_rb {
struct IOStdReq message;

Figure 4.3:
Narrator Device

Structures

} ;

Narrator rb Structure
ch masks

UWORD rate;
UWORD pitch;
UWORD mode;
UWORD sex;
UBYTE *ch_masks;
UWORD nm_masks;
UWORD volume;
UWORD sampfreq;
UBYTE mouths;
UBYTE chanmask;
UBYTE numchan;
UBYTE pad;

I IOStdReq Structure I
(message)

Mouth rb Structure
I Narrator _rb Structure I
l (voice)

THE NARRATOR DEVICE I 9 5

The parameters in the Narrator_rb structure have the following meanings:

• Message is the name of an IOStdReq substructure inside the Narrator_rb structure.
The =_ReplyPort parameter should be initialized to point to the MsgPort structure
that represents the task reply-port queue for I/O requests.

• The rate parameter represents the speaking rate of the voice. It varies between 40 and
400 words per minute. The default is ISO words per minute.

• The pitch parameter represents the pitch of the voice. It is a baseline pitch, above and
below which the actual speaking occurs. The baseline pitch can vary between 65 and
320; the default is 110.

• The mode parameter determines monotone (robotic) or natural expressive voice. The
default mode is a natural expressive voice.

• The sex parameter determines the sex of the voice. The default is MALE.

• The ch_masks parameter is a pointer to a channel-combination array to be used in
selecting Audio device channels for the voice.

961 AMIG. PRO G RAM MER'S HANDBOOK

• The nm_masks parameter contains the number of entries in the channekombination
array used by the Audio device internal routines to satisfY the 110 request.

• The volume parameter controls the volume of the voice. The volume can vary between
o and 64. The default is 64, maximum volume.

• The sampfreq parameter is the sampling frequency used to sample the audio data asso
ciated with the 110 request. The sampling frequency can vary between 5,000 and
28,000; the default is 22,200 cycles per second.

• The mouths parameter should be set to I if the task needs to read and display mouth
shapes using the Narrator device CMD_READ command while the system is execut
ing a CMD _WRITE command. Otherwise, this parameter should be set to O.

• The chanmask parameter is the Audio device's channel mask for the I/O request. It is
for system internal use only.

• The numchan parameter represents the number of Audio device channels used. It is for
system internal use only.

• The pad parameter is a one-byte padding used to word-align the structure data.

The Mouth_rb Structure
The Mouth_rb structure contains a Narrator_rb substructure named Voice, which provides
the detailed information required by Mouth_rb to define the shape of the mouth for
each syllable of each word. It is usually a direct copy of the Narrator_rb structure for a
previous CMD _WRITE command. In this way, the Mouth_rb structure is used for
a series of CMD_READ commands corresponding to changing mouth shapes for a single
CMD_ WRITE command.

The Mouth _ rb structure is defined as follows:

struct mouth_rb {

};

struct narrator_rb voice;
UBYTE width;
UBYTE height;
UBYTE shape;
UBYTE pad;

The parameters in the Mouth_rb structure have the following meanings:

• The voice parameter is the name of a Narrator_rb substructure associated with the
Mouth_rb structure. The Narrator_rb structure for each CMD_ WRITE command
should be copied into this substructure position.

• The width parameter represents the width of the mouth (in pixels) as returned by the
Narrator device internal routines. It changes as CMD_READ commands return differ
ent values for the changing mouth shape.

THE NARRAlUR DEVICE 197

• The height parameter represents the height of the mouth (in pixels) as returned by the
Narrator device internal routines. It also changes as CMD_READ commands return
different values.

• The shape parameter is the internal definition of the shape of the mouth as returned by
the Narrator device internal routines. It also changes as CMD_READ commands
return different values.

• The pad parameter is a one-byte padding to word-align the structure data.

Narrator Device Error Codes
The error codes returned by the Narrator device have the following meanings:

• ND_NoMem. There is not enough memory to allocate the data and structures for the
Narrator device internal routines and supponing structures.

• ND_NoAudLib. The system cannot find the Audio device library. The Audio device
should be in WCS (Write Control Store) ROM after the KickStan disk is loaded.

• ND_MakeBad. There was an error in a MakeLibrary call resulting in a bad Narrator
or Audio device library.

• ND_UnitErr. The task tried to allocate a Narrator device unit other than unit O.

• ND _ CantAlloc. The Audio device internal routines cannot allocate the number of
audio channels specified in the Narrator_rb structure.

• ND_Unirnpl. The task requested a currently unimplemented command.

• ND_NoWt·ite. The task tried to dispatch a CMD_READ without first dispatching a
CMD _ WRITE; or a CMD _ WRITE finished execution, so there are no more mouth
shapes for CMD _READ to read.

• ND_Expunged. The system cannot open the Narrator or Audio device libraries because
one or both have their Library structure lib_Rags parameters currently set to LIDF
_DELEXP.

• ND_PhonErr. A phoneme-code spelling error has occurred while a CMD_ WRITE
command is being executed. The Narrator device internal routines cannot understand
the phoneme string.

• ND _Rate Err. The requested speaking rate is out of bounds.

• ND_PitchErr. The requested speaking pitch is out of bounds.

• ND_SexErr. The Narrator_rb structure sex parameter is not set to either MALE or
FEMALE.

9 SI AMIGA PRO G RAM MER'S HANDSDDM

• ND _ ModeErr. The requested speaking mode is not allowed.

• ND_FreqErr. The requested sampling frequency is out of bounds.

• ND _ VolErr. The requested speaking volume is out of bounds.

USE OF FUNCTIONS

I CloseDevice

Syntax of Function Call
CloseDevice (narrator_rb)

A1

purpose of Function
This function closes access to Narrator device unit O. When CloseDevice returns, the
io_Device pointer in the Narrator_rb (IOStdReq substructure) will be reset (to -1) to indicate
that no task currently has the Narrator device open.

CloseDevice also decrements the Device structure lib_OpenCnt parameter and the Unit
structure unie OpenCnt parameter, thus reducing these to - 1 and 0, respectively. Then, if a
deferred expunge for the Narrator device sent by this or another task is pending, the Narrator
device routines are expunged from RAM as soon as unit 0 is closed.

When CloseDevice returns, the current task cannot use the Narrator device until it exe
cutes another OpenDevice function call.

I nputs to Function
narrator _ rb

DiSCUSSion

A pointer to a properly initialized Narrator_rb structure

CloseDevice provides a way to terminate access to a set of Narrator device unit 0 internal
device routines. Because unit ° is the only valid unit, CloseDevice always closes access to the
Narrator device as a whole. Because the Narrator device is a shared access mode device, each
task that uses it need not call the OpenDevice and CloseDevice functions in pairs.

THE NARRATOR DEVICE 19 9

C/oseLibraz

Syntax of Function Call
CloseLibrary (library)

A1

purpose of Function
This standard Exec library function closes access to the Translator library for one task in the
Amiga system. When CloseLibrary returns, the Library structure lib _ OpenCnt parameter will
be reduced by I to indicate that one less task has the Translator library open.

If the lib_OpenCnt parameter is reduced to 0, and a deferred expunge called by this or
another task is pending, the Translator library internal routines are expunged from RAM as
soon as CloseLibrary returns in the current task.

When CloseLibrary returns, the current task cannot use the Translator library again until
it executes another OpenLibrary function call.

I nputs to Function
library

DiSCUSSion

A pOinter to a properly Initialized Library structure that man·
ages the Translator library routines; the pointer variable
returned by a call to the Open Library function

The Translator library CloseLibrary function provides a way for a task to terminate access to
the internal routines of the Translator library. Each task that uses the Translator library must
eventually call the CloseLibrary function; OpenLibrary and CloseLibrary function calls always
occur in pairs.

I OpenDevice

Syntax of Function Call
error = Open Device ("narrator. device", 0, narrator_rb, 0)
DO AO DO A1 01

1 00 I AMIGA PRO G RAM MER'S HANDBOOK

purpose of Function
This function opens access to Narrator device unit 0 and passes a set of CMD _ WRITE com
mand parameters to its internal routines. These parameters specifY a phoneme string for the
Narrator device. The Narrator device is always opened in shared access mode.

A 0 value returned in io_Error indicates that the requested opens and Audio device chan
nel allocations succeeded. If OpenDevice is successful, it initializes the Narrator_rb structure
IOStdReq substructure io_Device pointer. It also assigns a pseudo unit number to the io_Unit
pointer parameter. This Unit structure and its MsgPort substructure will be used in synchro
nized read and write operations.

If unsuccessful, OpenDevice returns an io_Error value as follows:

• IOERR_OPENFAIL. The Narrator device could not be opened.

• ND_NoAudLib. The Audio device could not be opened because the Audio device
library was not available.

• ND_NoMem. The system could not allocate enough memory to open both the Narra
tor and Audio devices simultaneously.

• ND _ UnitErr. The unitNumber argument specified a unit other than O.

• ND _ CantA1loc. The system could not allocate the Audio device channels specified by
the channel-combination array in the Narrator_rb structure ch_masks parameter.

If this is the first time the task has tried to open the Narrator device, OpenDevice will
also attempt to open the Audio device. This action allocates the internal device buffers for the
Audio device as defined by the Audio device's channel-combination array (see Chapter 3). The
Narrator_rb structure must specifY the number of entries in the channel combination array
(nm_masks) and its RAM location (ch_rnasks) for the Audio device.

Once OpenDevice has successfully opened the Narrator and Audio devices, it initial
izes parameters in the Narrator_rb structure. If the calling task wants to use values other
than the defaults for these parameters, it should initialize them after the OpenDevice func
tion call returns successfully.

Open Device also increments the Device (Library) structure lib_OpenCnt parameter
and the Unit structure unit_OpenCnt parameter, thereby keeping the Narrator device
internal routines from being expunged from the system by a deferred expunge.

OpenDevice requires a properly initialized task reply-port MsgPort structure with a
task signal bit allocated to that message port. The task can then be signaled when the
CMD_ WRITE command is executed and sent back to the task reply-port queue.

I nputs to Function
"narrator.device" A pointer to a null-terminated string representing the

name of the Narrator device

o The Narrator device unit number

o

THE NARRATOR DEVICE l' 0 1

A pointer to a Narrator_rb structure that represents a
CMD_WRITE command

Indicates that the flags parameter is not used for the
Narrator device

preparation of the Narrator_rb Structure
Initialize the following Narrator_rb parameters:

• mn_ReplyPort. Set this to point to a MsgPort structure representing the task reply
port. This message port will receive the CMD _WRITE I/O request reply from the
Narrator device internal routines when the OpenDevice function call is processed.

• io_Command. Set this to CMD_ WRITE.

• io_Data. Set this to point to a phoneme-string buffer whose contents the Narrator
device internal routines will attempt to narrate.

• io_Length. Set this to the number of characters in the phoneme-string buffer that
you want the Narrator device to speak.

• ch_masks. Set this to point to a channel combination array to be used by the
Audio device internal routines.

• nm_masks. Set this to the number of entries in the Audio device channel combina
tion array.

• mouth. Set this to 1 to tell the Narrator device to compute mouth shapes to be
processed by a sequence of CMD _READ commands.

DiSCUSSion
The OpenDevice function opens the Narrator device routines for access by a task. The
Narrator device can only be opened in shared access mode. It is usually opened with a set
of Narrator_rb structure parameters required to define a unit 0 CMD_ WRITE com
mand. Once this command is initiated, a series of CMD_READ commands can be dis
patched to display mouth shapes consistent with the spoken syllables coming back from
the Audio device internal routines.

When OpenDevice returns, the Narrator_rb structure io_Device pointer parameter will
point to a Device structure that will be used to manage Narrator device unit 0; unit 0 will
also have a Unit structure that defmes a message-port list for all I/O requests sent to it.

The Narrator_rb structure ch_masks and nm_masks parameters must be initialized
for the Audio device before OpenDevice is called. In addition, OpenDevice is always
opened with several parameters initialized in the Narrator_rb structure IOStdReq
substructure.

1 021 AMIGA PRO G RAM MER'S HANDBOOK

The mouth parameter of the Narrator_rb structure should also be initialized to 1 to
tell the Narrator device to compute a continuous series of mouth shapes. These can then
be used as input to a continuous loop of CMD_READ commands.

I OpenLibrary

Syntax of Function Call
translatorBase =
DO

purpose of Function

OpenLibrary ("translator. library", 0)
A1 DO

This standard Exec function opens access to the Translator library for one task in the
Amiga system. When OpenLibrary returns, the lib_OpenCnt pointer in the Library struc
ture that manages the Translator library will be increased by 1 to indicate that one more
task has the Translator library open.

OpenLibrary returns a pointer to a TranslatorBase structure in the pointer variable
translator Base, which is a global variable; all tasks in the system that want to open the
Translator library must use it to open the Translator library in those tasks. The translator
Base variable must be declared as a LONG EXTERN (external) variable.

The TranslatorBase structure contains a Library structure as its first substructure.
Therefore, the translatorBase pointer variable also points to a Library structure. Each task
uses the same Library structure to manage the Translator library in that task.

I nputs to Function
"translator. library" The name of the Translator library

o

DiSCUSSion

Tells the system that the task will accept any version of
the Translator library currently on disk

Each task that wants to use the Translate function must open the Translator library with
an OpenLibrary call. Then that task can use the Translate function to translate English
strings to phoneme strings, which can then be passed on to the Narrator device internal
routines and eventually to the Audio device internal routines.

I Translate

THE NARRATOR DEVICE I' 0 3

The Translator library provides only one function that is directly available by a C
language function call. In contrast, the Narrator and Audio device libraries also contain
device commands that can be packaged into 110 request structures and dispatched by the
BeginlO, DolO, and SendlO functions.

The Translator library can be open in any number of tasks simultaneously. Each of
these tasks will use the same TranslatorBase structure to manage the Translator library
while it is open in that task. Only when all tasks that have opened the Translator
library have also closed it can it be expunged from the system.

Note that the Translator library is a disk-resident library. Therefore, for the OpenLibrary
function call to succeed, the AmigaDOS LIBS: directory must contain the translator.library file.

Syntax of Function Call
= Translate (englishString, english_string_length,

AO DO
phonemeString,phoneme_string_length)
A1 01

purpose of Function
This function converts an English string into an equivalent phoneme string. The Trans
late function will return a 0 value in the return_code variable if no error occurs during
English-to-phoneme string translation processing.

The only error that can occur is an overflow in the phoneme-string buffer; if this is
about to occur, Translate stops the ongoing translation at a word boundary before the
overflow takes place. The Translate function then returns a negative return_code value.
Its absolute value represents the character location in the English string where the transla
tion ceased. The calling task can then use the absolute value as an offset from the begin
ning of the English-string buffer when it calls the Translate function to continue with the
translation where it left off. This procedure fills the phoneme-string buffer with a new set
of characters that can then be passed on to the Narrator device internal routines.

I nputs to Function
englishString A pointer to an English-string buffer

1 0 'I AMIGA PRO G RAM MER' S HANDBOOK

DiScussion

english_string_Iength The number of characters in the English-string
buffer, including spaces, punctuation marks, and
other ASCII characters

phonemeString A pointer to the phoneme-string buffer that the
Translate function fills with phoneme characters
equivalent to the ASCII characters in the English
string buffer

phoneme_string_Iength The maximum expected number of characters that
the Translate function will place in the phoneme
string buffer

The Translate function is the only function currently in the Translator library. Its purpose
is to take a task-specified English string and convert it into an equivalent phoneme string
according to the rules of the Amiga's built-in Voice Synthesis library.

Normally, you use the Translate function to pass phoneme-string characters to the
Narrator device and subsequently to the Audio device. The precise source of English
string characters is not important; the only requirement is that they are placed into the
English-string buffer according to certain rules that allow the Translate function to work
properly. These rules are beyond the scope of this volume.

The phoneme-string buffer should usually be larger than the English-string buffer;
the conversion from ASCII characters to phoneme characters usually results in more pho
neme characters. Therefore, to be safe, always specify the english_strinLlength parameter
to be less than the phoneme_string_length value.

STANDARD DEVICE COMMANDS

I CMD FLUSH

purpose of Command
This command aborts all active and queued I/O requests. CMD_FLUSH always clears
the Narrator_rb structure io_Error parameter.

preparation of the Narrator_rb Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the desired Device and Unit

THE NARRATOR DEVICE 11 05

structures that manage Narrator device unit O. These two parameters can always be copied
from the Narrator_rb structure initialized by the OpenDevice function call.

In addition, initialize io_Command to CMD_FLUSH, and initialize all other param
eters to O.

DiSCUSSion

I CMD READ

The CMD_FLUSH command flushes all currently pending and active I/O requests from
the unit 0 device request queue. CMD _FL USH will abort all CMD _WRITE and
CMD _READ commands now executing and any that are queued. Because
CMD_FLUSH is a very destructive command, you normally use it only if you want to
restore the system to some known empty device queue state.

purpose of Command
This command returns the next mouth shape supplied by the Narrator device internal
routines as a result of the execution of a CMD_ WRITE command. The Narrator device
internal routines guarantee that the mouth shape returned is different from the immedi
ately preceding mouth shape, in accordance with the narration of the phoneme string.

Each CMD_READ command I/O request is associated with a CMD_ WRITE
command I/O request. Because the first entry inside Mouth_rb is a Narrator_rb substruc
ture, each task must copy the CMD _WRITE command Narrator_rb structure into
the CMD _READ command Mouth_rb structure for a series of reads before the
CMD _READ command is dispatched.

If no CMD _WRITE command is in progress when the task dispatches
CMD_READ, or if no CMD_WRITE command is queued in the Narrator device
request queue, the CMD_READ command I/O request structure will be returned to the
calling task reply-port queue with the Mouth_rb structure io_Error parameter set to
ND_NoWrite. The mouth shape will not then be different from the most recently
returned shape.

The task that dispatches a CMD _READ command can always look at the replied
Mouth_rb structure io_Error parameter to see if the ND_NoWrite bit is set. If it is, the
calling task should not dispatch any more CMD_READ commands until it first dis
patches another CMD _ WRITE command.

The results of command execution are as follows:

• width. This is the current width of the mouth shape measured in millimeters/3.67.
Division by 3.67 is required for horizontal pixel scaling.

1 0 61 AMIGA PRO G RAM MER . S HANDBOOk

• height. This is the current height of the mouth shape in millimeters. There is no
vertical scaling.

• shape. This represents a compressed form of the mouth shape. It is for system
internal use only.

• io_Error. This is the error number returned from BeginlO, DolO, or SendlO indi
cating conditions during command processing; 0 indicates the command was suc
cessful. ND_NoWrite means that CMD_READ could not execute because the
Narrator device was not currently executing a CMD _WRITE command.

Preparation of the Mouth_rb Structure
First copy the CMD_WRITE Narrator_rb structure into the CMD_READ Mouth_rb
structure. Then, initialize mn_ReplyPort to point to the MsgPort structure representing
the desired task reply port. Initialize the io_Device and io_Unit parameters to point to
the Device and Unit structures that manage Narrator device unit O. These two parameters
can always be copied from the Narrator_rb structure initialized by the OpenDevice func
tion call.

Also initialize io_Command to CMD_READ, and initialize io_Error, width, and
height to O.

DiScussion
The CMD_READ command handles the visual display of mouth shapes on the Amiga
screen. It displays different mouth shapes consistent with the phoneme-string syllables
supplied to the Narrator device. The correlation of these syllables and specific mouth
shapes and parameters is predefined in the Narrator device internal routines by a built-in
algorithm.

F or each dispatched CMD _WRITE command, a task must dispatch a series of
CMD_READ commands to produce the changing mouth shapes. The dispatching
of CMD_READ commands usually takes the form of a C language loop that continues
until the writing process has completed. The dispatching task looks at the replied
CMD_READ Mouth_rb structure io_Error ND_NoWrite parameter bit; when it is set,
the CMD _WRITE command will have completed and there is no need for additional
CMD_READ commands. Therefore, in your programs, you can use the io_Error
ND_NoWrite parameter bit to determine when to exit the C language CMD_READ dis
patching loop.

THE NARRATOR DEVICE 110 T

I CMD RESET

purpose of Command
CMD _RESET resets unit 0, returning it to its default configuration, aborting all pending
I/O requests and restarting unit ° if it was previously stopped by CMD_STOP.

CMD_RESET always clears the Narrator_rb structure io_Error parameter.

preparation of the Narrator_rb Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the desired Device and Unit
structures that manage Narrator device unit 0. These two parameters can always be copied
from the Narrator_rb structure initialized by the OpenDevice function call.

Also initialize io_Command to CMD_RESET, and initialize all other parameters to 0.

DiSCUSSion
CMD_RESET is a destructive command. It calls CMD_FLUSH indirectly, thereby
flushing all of the queued I/O requests in the unit 0 device request queue. CMD
-_RESET also calls CMD_START to start unit 0 if it was previously stopped with
CMD_STOP.

I CMD START

purpose of Command
If unit 0 was previously stopped by the CMD_STOP command, CMD_START starts
Narrator device unit 0, including any CMD_ WRITE command that was stopped in the
middle of its activity or the first CMD _WRITE command at the top of the unit 0 device
request queue when the CMD_STOP command was originally dispatched.

CMD_START always clears the Narrator_rb structure io_Error parameter.

1 081 AMIGA PRO G RAM MER'S HANDBOOK

preparation of the Narratocrb Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Narrator device unit O. These two parameters can always be copied from the
Narrator_rb structure initialized by the OpenDevice function call.

Also initialize io_Command to CMD_START, and initialize all other parameters to O.

DiScussion

I CMD STOP

The CMD_START command is similar to the Ctrl-Q command used to restart halted
screen output on most computers. It restarts execution of CMD _WRITE commands pre
viously stopped by the CMD_STOP command. CMD_START will also instruct the
Narrator device internal routines to process other queued If 0 requests.

purpose of Command
The CMD_STOP command immediately stops an executing CMD_ WRITE command
on Narrator device unit O. It also prevents the Narrator device internal routines from pro
cessing any currently queued write requests. Once unit 0 is stopped by the CMD_STOP
command, the system automatically queues unit 0 CMD_ WRITE requests until CMD-

START restarts or CMD_RESET resets unit O.
CMD_STOP always clears the Narrator_rb structure io_Error parameter.

preparation of the Narratocrb Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Narrator device unit O. These two parameters can always be copied from the
Narrator_rb structure initialized by the OpenDevice function call.

Also initialize io_Command to CMD_STOp, and initialize all other parameters to O.

DiSCUSSion
The CMD_STOP command is similar to the Ctrl-S command used for screen output on
most computers. CMD_STOP stops any currently executing unit 0 CMD_ WRITE

THE NARRATOR DEVICE I' 0 9

command at the earliest possible opportunity. It also prevents processing of any currently
queued Narrator device unit 0 CMD _WRITE or CMD _READ requests.

I CMD WRITE

purpose of Command
This command performs the speech narration request. It will narrate the specified pho
neme string, sending the result to the Audio device internal routines to be spoken through
specified Audio device channels.

The Narrator device internal routines automatically queue CMD _WRITE I/O
requests if there is already another CMD _WRITE command in progress or if the channel
has been stopped by CMD_STOP. Also, if there is an associatd CMD_READ 110
request in the device request queue, CMD _ WRITE will remove it and return an initial
mouth shape to the task that dispatched the CMD _WRITE command. If a task wants to
execute a series of CMD_READ commands to display mouth shapes resulting from a
specific CMD _ WRITE command, the mouth parameter in the Narrator_rb structure rep
resenting that CMD _ WRITE command must be initialized to 1.

The result of a CMD_WRITE is an io_Error value returned from BeginlO, DolO,
or SendIO indicating conditions during command processing. 0 indicates the command
was successful. Other error values are as follows:

• ND_PhonErr. This indicates that there was an error in phoneme-string input to
the CMD _ WRITE command.

• ND _PitchErr. This indicates that the specified speaking pitch is out of range.

• ND_RateErr. This means that the specified speaking rate is out of range.

• ND _SexErr. This indicates that the sex has not been set.

• ND_ModeErr. This indicates that the specified speaking mode is not valid.

• ND _ VolEIT. This means that the specified speaking volume is out of range.

• ND _FreqErr. This indicates that the specified sampling frequency is out of range.

• io_Actual. This is the number of characters in the phoneme string that were actu
ally processed by the current CMD _WRITE command. If the io_Error parameter
in the replied Narrator_rb structure indicates a phoneme error (ND_PhonErr),
io_Actual is the character position in the input phoneme string where that error
occurred. The phoneme string can be corrected there and the CMD _WRITE com
mand dispatched again starting at that character position.

11 0 I AMIGA PRO G RAM MER . S HANDBOOK

preparation of the Narratocrb Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Narrator device unit O. These two parameters can always be copied from the
Narrator_rb structure initialized by the OpenDevice function call.

In addition, initialize the following command-specific parameters:

• io_Command., Set this to CMD_ WRITE.

• io_Data. Set this point to the phoneme-string buffer that will be narrated and
passed on to the Audio device by the Narrator device. The string could have come
from the Translate function.

• io_Length. Set this to the number of characters in the phoneme string.

• ch_masks. Set this to point to a channel combination array defining the preferred
allocation order of Audio device channels for the Narrator device speech.

• nm_masks. Set this to the number of entries in the Audio device channel combina
tion array. It ranges from 1 to 16.

• mouth. Set this to 0 if no mouth shapes are to be read and to 1 if mouth shapes
are to be read.

• rate. Set this to the speaking rate of the narration, from 40 to 400 words per min
ute. The default rate is 110.

• pitch. Set this to the pitch of the narration. It can vary from 65 to 320; the default
is 110.

• mode. Set this to the speaking mode of the narration. It can be 0 for a natural
expressive voice or 1 for a robotic voice; the default is o.

• sex. This indicates the sex of the speaking voice: 0 for male or 1 for female. The
default is o.

DiSCUSSion
CMD_ WRITE is the only command in the Narrator device software system that directly
narrates a phoneme string to the Audio device and eventually to the external hardware of
the Amiga. Any task in the system can dispatch a continuous stream of CMD _ WRITE
commands to Narrator device unit o. CMD_ WRITE commands will always be queued in
the unit 0 device request queue; there is no QuickIO mechanism. This means that the
phoneme strings will always be written (spoken) in the order in which they were queued.
However, it does not mean that once the CMD _WRITE requests are queued, the opera
tion of the system cannot be altered. The destructive CMD_FLUSH and CMD_RESET

THE NARRATOR DEVICE 1111

commands (and the AbortIO function) can remove specific queued 110 requests. In addi
tion, CMD_START and CMD_STOP can start and stop the narration of phoneme-string
buffer data.

CMD _WRITE merely narrates the phoneme-string data and passes it on to the
Audio device. It does not produce any mouth shapes-the CMD_READ command does
that. For each CMD _WRITE command, you must use a series of CMD _READ com
mands. They will usually be placed in a C language loop, which will execute as long as
CMD _WRITE is writing to the Audio device channels.

Note that a task should set up a separate reply-port queue for its CMD_ WRITE and
CMD_READ commands. It can use CreatePort, an Exec library support function, to cre
ate these two message ports. Each of these message ports can have its own assigned
message-port signal bit number. In this way, each Narrator device task can monitor the
progress of its CMD _ WRITE and CMD _READ commands separately. There will often
be many CMD _READ commands for each CMD _ WRITE command; separate message
ports allow a task to detect continuing CMD _READ progress while a single
CMD _WRITE is executing.

•• - -• -. . • • -
• •• -. .

• ••

The Parallel Device

THE PARALLEL DEVICE I" 5

I Introduction

The Parallel device allows one or more tasks to communicate with external hardware
devices connected to the Amiga's parallel port. The Parallel device is disk-resident, and it
must be present in the DEVS: directory if the linker is to find it during the compilation
and linking process. Once the Parallel device has been loaded from disk with the first
OpenDevice call, other tasks will get its routines from RAM. The most common use of
the Parallel device is to drive a parallel printer connected to the Amiga's parallel port.

Parallel device commands allow any number of tasks to open and share the Parallel
device routines using the Amiga's multitasking features. Each task can request this by
specifying shared access mode when it first opens the Parallel device. The Parallel device
also allows each task to specify up to eight characters in a character termination array that
controls read and write operations between a task and an external hardware device con
nected to the parallel port. These characters cause read or write operations to stop when
one of them is encountered in the input or output stream. This arrangement allows a task
to deal with a block-oriented external hardware device, where the data blocks are separated
by known ASCII characters.

Read-write Operations for the Parallel Device

Figure 5.1:
Read-Write

Operations for
the Parallel

Device

Parallel device read-write operations are controlled by two commands: CMD_READ and
CMD _WRITE. Figure 5.1 shows how a read-write operation works.

The Parallel device deals with two task-defined buffers-one for read operations and
the other for write operations. The IOExtPar structure io_Data parameter serves as a
pointer to each of these buffers. As Figure 5.1 indicates, the transfer of data values in and
out of the buffers can always be stopped and restarted using CMD_STOP and CMD
_START. The Parallel device does not have any internal device buffers at this time, so
CMD _CLEAR is an inoperative command. The current internal operation of CMD
_CLEAR is very simple: it merely executes a return from subroutine (68000 RTS)
instruction. Data is transferred directly to and from the parallel-port data register without
being held in an intermediate internal buffer.

Read Buffer
Start- (pointed to by Read

io Data)

Stop-
Write

Write Buffer
Clear- (pointed to by

iLData)

Parallel Port
Data Register

Parallel Port
Status Register

t
Ouery

Read

Write

Amigo Parallel Port
2S-pin male

connector

Read • 'Write

External Hardware

1161 AMIGA PRO G RAM MER'S HANDBOOK

When the Parallel device is performing a read operation, all data passes through the
parallel-port data register. The data then passes one byte at a time through the parallel port on
the back of the Amiga and out to the external hardware connected to it. The Amiga parallel
port connector is a 25-pin connector on the right side of the back of the Amiga. Table 5.1
summarizes the pin connections. If you want to use the parallel port, you must buy a cable
that is compatible with this pin arrangement.

The Parallel device internal routines maintain an up-to-date value in the parallel-port
status register; this value is also the IOExtPar structure io_Status parameter. You can use
the PDCMD_QUERY command to determine the value of each bit in the register when
ever the Parallel device is active. Bit meanings are given in Table 5.2.

parallel Device Commands
The Parallel device has a total of nine commands-seven standard device commands and
two device-specific commands. The only standard command not supported by the Parallel
device is the CMD_UPDATE command-the Parallel device does not support any inter
nal device buffers.

PDCMD_QUERY is a status command that inquires about the state of the system; all
other commands are action commands, which change something in the system.
CMD_READ and CMD_WRITE support both queued I/O and QuickIO. Seven com
mands execute as immediate-mode commands if successful. The only two commands that do
not affect the IOExtPar structure io_Error parameter are CMD_CLEAR and
PDCMD_QUERY All other Parallel device commands return an io_Error value.

Sending Commands to the Parallel Device

Figure 5.2(a):
Parallel Device

Command and
Function

Processing
(Specifications)

Figures 5.2(a) and (b) depict the general scheme used to send commands to the Parallel
device internal routines. The lines with arrows represent the parameters you should ini
tialize and those returned by the device internal routines.

General {
device

IOStdReq
structure

parameters
IOF OUICK I

PARr SHARED I
ARF _RAO BOOGIE I

IOE>tPar t
structure

parameters p
and flog

values
PARr EOfMODE

Preparation of
IOL<tPar
structure

mn...Repl\f'ort
io Device

io_Unit
io Command

ioJ1oCls
io.JJato

io Len th

ioYE>t~Qas
.lnot ,
io ParFloQs

ioYTermArrov

Parallel Device Internal Routines

BeginlO, DolO, or SendlO
sends command,

or functions initiate
Parallel device
internal routine

servicing

Figure 5.2(b):
Parallel Device
Command and

Function
Processing

(Outputs)

Table 5.1: Pin
Connections for
the Parallel Port

THE PARALLEL DEVICE 111 7

The Parallel device programming process consists of three phases:

1. IOExtPar structure preparation. The programmer has complete control over this
phase. Here, you initialize parameters in the IOExtPar structure in preparation for

IOPARF QUEUED IOERR_OPENFAIL
IOPARF _ABORT IOERR ABORTED

I IOPARF ACTIVE IOERRJWCMD
IOERR...BADLENGTH
PorErr J)evBu~
ParErr BufToo8i

ioJ)evice :~
General ParErr -'n..,p.orom

Parallel Device io Unit device PorErr insErr

Internal Rou lines ioJla s IOStdReq ParErr ~otOpen

ioJ:rror structure PorErr Port Reset

porome ers PorErr JnitErr

IIOPTf RM)IR

io_Status '\ ~~~~~~;OUT
ioYExtFlaqs
io ParFia s r IOExtPor structure IOPTfYSEL

io PT ermArroy_ parometers

lib OpenCnt
Device structure parameter unit .OpenCnt
Unit structure parameter

Pin No. Data at Pin Description

1 DRDY Output data ready signal
2 DO 8-bit bidirectional data signal
3 Dl 8-bit bidirectional data signal
4 D2 8-bit bidirectional data signal
5 D3 8-bit bidirectional data signal
6 D4 8-bit bidirectional data signal
7 D5 8-bit bidirectional data signal
8 D6 8-bit bidirectional data signal
9 D7 8-bit bidirectional data signal

10 ACK Output data acknowledge signal
II BUSY Printer buffer full signal
12 POUT Printer paper out signal
13 SEL Select output signal
14-22 GND Ground pins
23 +5 VOLTS Voltage source (100ma max.)
24 NO CONNECTION
25 RESET Amiga system reset

I 11 81 AMIGA PRO G RAM MER'S HANDBOOK

Table 5.2:
Parallel-Port

Status Register

Bits

sending a command to the Parallel device routines. These parameters include the
normal set of parameters required by most devices, as well as parameters that are
specific to the IOExtPar structure; the choice of parameters depends on the specific
command you plan to dispatch. These parameters, taken together, provide an infor
mation path to the data needed by the Parallel device internal routines to process
the command or function.

2. Parallel device processing. The only part you play in this phase is to dispatch the
command to the device using the BeginlO, DolO, or SendlO function. Once one
of these functions begins executing, control passes to the device and system internal
routines. For CMD _READ and CMD _WRITE, the request can be either
QuicklO or queued I/O; the other commands operate in immediate mode only.

3. Command output parameter processing. The system and the Parallel device rou
tines have complete control over the values found in these parameters. Here, the
results of command processing have been returned to the task that originally dis
patched the command. If the I/O request was not QuickIO or immediate-mode exe
cution, it was processed when it moved to the top of the Parallel device request
queue and was then sent to the task reply-port queue. If the request was specified
as QuickIO and it was successful, or if it was an immediate-mode command
request, it was not queued in the device-unit request queue but went directly back to
the task reply-port queue after device processing. The parameters still direct you to
data appropriate for your task.

For most of the Parallel device commands, the outputs from device-command pro
cessing can be found in the io_Error and io_Status parameters. They only provide an
indication of a processing error or the status of the Parallel device request; they do not
provide an information path to the results needed by the requesting task. The
CMD_READ and CMD_ WRITE commands work with the io_Data parameter, which
points to the RAM data areas where the task can find the returned data.

Figures 5.2 (a) and (b) also depict the parameters that playa part in Parallel device func
tion setup and processing. The OpenDevice and CloseDevice functions both affect the Unit
structure unit_ OpenCnt parameter and the Device structure lib _ OpenCnt parameter. Open
Device also affects the io_Error parameter, and it can affect the values of io_PExtFlags,
io_ParFiags, and io_PTerrnArray.

Bit No.

o
1

2
3
4-7

Meaning of Bit

Printer selected (bit = 0)
Paper out (bit = 0)
Printer busy toggle (bit = 0)
Read (bit = 0); write (bit = 1)
Reserved

THE PARALLEL DEVICE 111 9

Structures for the Parallel Device
The Parallel device works with two structures, IOExtPar and lOP Array, as shown in Figure
5.3. Notice that the IOExtPar structure contains two substructures: an IOStdReq structure
named IOPar, and an IOPArray structure named io_PTerrnArray. The IOExtPar structure does
not contain pointers either to other structures or to data areas in RAM. The IOPArray struc
ture contains no substructures and no pointers.

The IOPArray Structure

Figure 5.3:
Parallel Device

Structures

The lOP Array structure is defined as follows:

struct IOPArray {
ULONG PTermarrayO;
ULONG PTermarray1;

} ;

The parameters in the lOP Array structure are as follows:

• PTermArrayO. This is a 4-byte parameter defining the first of a maximum of four
ASCII characters-any of 00 (Ctrl-A) through 26 (Ctrl-Z)-in the character termina
tion array. They are stored in descending ASCII order.

• PTermArray I. This is a 4-byte parameter defining the second of four ASCII char
acters in the character termination array. They are also defined and stored in
descending ASCII order. The system checks for termination characters in these two
arrays only if the io_ParFlags parameter PARF _EOFMODE bit is set.

Note that if less than eight characters are used, you should fill out the character ter
mination array with a repeated set of the lowest valid values. For example, an ASCII
array x0807060504030303 defines eight termination characters, the last three of which
have an ASCII value of 03 (Ctrl-C). The character termination array is used by Open
Device only if the io_ParFlags parameter PARF _EOFMODE bit is set. Each task can
define its own character termination array and change it as needed with the PDCMD
_SETPARAMS command.

IOExtPar Structure

I IOStdReq Structure I (IOPar)

I IOPArray Structure J (io_PTermArray)

IOPArray Structure

1 2 0 I AMIGA PRO G RAM MER . S HANDBOOK

The IOExtPar Structure
The IOExtPar structure is defined as follows:

struct IOExtPar {
struct IOStdReq IOPar;
ULONG io_PExtFlagsj
UBYTE io_Statusj
UBYTE io_ParFlagsj
struct IOPArray io_PTermArray;

} j

These are the parameters in the IOExtPar structure:

• IOPar. This is an IOStdReq structure containing an IORequest substructure, which
in turn contains a Message substructure. The Message structure mn_ReplyPort
parameter is used to define the task reply-port queue.

• io_PExtFlags. This is a set of additional flags. It is not used at this time and is
only present for compatibility with future software releases.

• io_Status. This is the current status of the parallel port.

• io_ParFlags. This is a set of parallel flag bits.

• io_PTermArray. This is the name of the character termination array IOPArray sub
structure that is to be associated with the IOExtPar structure.

Parallel-Port Flag Parameters
The IOExtPar structure flag parameters (values of io_ParFlags) are as follows:

• PARF _SHARED (bit 5). Set this bit if you want shared access mode for a set of
tasks.

• PARF _RAD_BOOGIE (bit 3). This bit will enable a high-speed data transfer
mode (not yet implemented).

• PARF _EOFMODE (bit 1). Set this bit if you want to enable data transfer using
the IOPArray structure end-of-file (EOF) character.

The IOStdReq structure flag parameters (values of io_Flags) are as follows:

• IOPARF _QUEUED (bit 6). The system sets this bit when the CMD _READ or
CMD _ WRITE I/O request is queued.

• IOPARF_ABORT (bit 5). The system sets this bit when the CMD_READ or
CMD_ WRITE I/O request has been aborted by AbortIO or CMD_FLUSH.

lIlE PARALLEL DEVICE 1.2.

• IOPARF _ACTIVE (bit 4). The system sets this bit when the CMD _READ or
CMD _WRITE I/O request is currently active (being processed by the Parallel
device internal routines).

The IOExtPar structure status flag parameters (values of io_Status) have the following
meanings:

• IOPTF_RWDIR (bit 3). The system sets this bit when the CMD_READ or
CMD _WRITE I/O request is currently being processed.

• IOPTF _PBUSY (bit 2). The system sets this bit when the printer is busy.

• IOPTF _PAPEROUT (bit 1). The system set this bit when the printer is out of
paper.

• IOPTF _PSEL (bit 0). The system sets this bit when the parallel printer connected
to the parallel port has been selected.

The io_Error values for the Parallel device have the following meanings:

• The IOERR_OPENFAIL, IOERR_ABORTED, IOERR_NOCMD, and IOERR
_BADLENGTH bits have the same meaning for all devices (see Chapter 3).

• ParErr_DevBusy. The Parallel device is busy.

• ParErr_BuITooBig. There is a buffer error during data transfer.

• ParErr_InvParam. There is an invalid parameter in an I/O request.

• ParErr_LineErr. There is an electrical line error during a data transfer.

• ParErr_NotOpen. The Parallel device was not open when a Parallel device com
mand request was made; the task should open the Parallel device and dispatch the
command again.

• Par Err_Port Reset. The system has been reset.

• ParErr_InitErr. An initialization error has occurred.

USE OF FUNCTIONS

I CloseDevice

Syntax of Function Call
CloseDevice (ioExtPar)

A1

1 2 21 'MIGA PRO G RAM MER . S HANDBOOK

purpose of Function
This function closes access to Parallel device unit 0, the only unit. The Timer device is
also closed automatically in the current task. Close Device also decrements the Device
structure lib_OpenCnt parameter and the Unit structure unit_OpenCnt parameter, reduc
ing each of these by 1. Once these parameters are reduced to ° and a deferred expunge
sent by this or another task is pending, the Parallel device routines are expunged from
RAM when CloseDevice returns.

When CloseDevice returns, the current task cannot use the Parallel device until it
executes another Open Device function call. However, the Parallel device current parameter
settings are saved for the next call to OpenDevice by this or any other task.

I nputs to Function
ioExtPar

DiScussion

A pointer to an IOExtPar structure; also a pointer to an
IOStdReq structure

CloseDevice terminates access to a set of device internal routines for the Parallel device.
Because the Parallel device can be used in either exclusive or shared access mode, several
possibilities can arise.

One task can open the Parallel device in exclusive access mode, or a series of tasks
can open it in shared access mode. A combination in which one task opens the Parallel
device in exclusive access mode and one or more tasks opens it in shared access mode is
not possible. Each task that opens the Parallel device in exclusive access mode must
always call CloseDevice before another task calls OpenDevice. Otherwise, the OpenDevice
function call will return an IOERR_OPENFAIL error.

A task should always verify that all of its I/O requests have been replied by the
Parallel device internal routines before it calls CloseDevice. It can do so by using the
GetMsg, Remove, CheckIO, and WaitIO functions to see what I/O requests are currently
in the task reply-port queue.

Close Device also closes the Timer device in the current task automatically. However,
since the Timer device uses shared access mode, it can remain open in other tasks that
have opened it either explicitly or indirectly through another device.

I OpenDevice

Syntax of Function Call
error = Open Device ("parallel.device",
DO AO

0, ioExtPar, 0)
DO A1 01

THE PARALLEL DEVICE 11 23

purpose of Function
This function opens access to the internal routines of Parallel device unit O. It also opens
the Timer device if it has not already been opened in the task. The Parallel device can be
opened in either exclusive or shared access mode.

Once it has successfully opened the Parallel device, OpenDevice initializes certain
IOExtPar structure parameters to their most recently specified values or their default
values. It also increments the Device (Library) structure lib_OpenCnt parameter and the
Unit structure unit_OpenCnt parameter, thereby preventing a deferred expunge.

OpenDevice requires a properly initialized reply port with a task signal bit allocated
to that port if the calling task needs to be signaled when the function call is replied. The
results of command execution are as follows:

• io_Device. This points to a Device structure that will manage Parallel device unit
o once it has been opened.

• io_Unit. This points to a Unit structure that will be used to define and manage a
MsgPort structure for Parallel device unit O. The MsgPort structure represents the
device request queue.

• io_Error. A 0 here indicates that the requested open succeeded. IOERR_OPEN
FAIL indicates that the Parallel device could not be opened. If you try to open
unit 0 in exclusive access mode but it has not been closed in another task, the
Open Device call in the present task will return this error; if you try to open unit 0
in the same task twice while in exclusive access mode without first dosing it, the
second OpenDevice call will return this error. Also, if the specified unit number is
not 0, OpenDevice returns the error value ND_UnitErr.

I nputs to Function
"parallel.device"

o

ioExtPar

o

A pointer to a null-terminated string representing the
name of the Parallel device

The only Parallel device unit number

A pointer to an IOExtPar structure

Indicates that the Flags argument is not used for the
Parallel device

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port. Initialize
all other IOStdReq substructure parameters to 0 or copy them from an IOExtPar struc
ture for a previous OpenDevice call.

1 241 AMIGA PRO G RAM MER'S HANDBOOK

Also initialize io_Command to 0, CMD_READ, or CMD_ WRITE if the task
should open the Parallel device and perform a read or write operation immediately. Initial
ize io_ParFlags to a combination of PARF _SHARED and PARF _EOFMODE if you
want to open the Parallel device in shared access mode and initialize the IOExtPar IOP
Array substructure; use a logical AND (bitwise OR) to set both of these bits.

If the CreateExtIO function is used to create the IOExtPar structure, it must typecast
its returned pointer value (a pointer to an IOStdReq structure) into a pointer to an IOExt
Par structure. The pointer would then also point to the IOStdReq structure, which is the
first entry in the IOExtPar structure.

DiScussion
The OpenDevice function is used to open the Parallel device routines for access by a task.
Once a task owns the Parallel device, it can dispatch a series of CMD _WRITE and
CMD _READ commands (with BeginIO, DolO, or SendIO) to send information back and
forth between a task and any external hardware connected to the Amiga. parallel port. When
fmished, the task should close the Parallel device.

The Parallel device can be opened in either exclusive or shared access mode; exclu
sive is the default. If a number of tasks open the Parallel device in shared access mode,
none of those tasks have to close it before another task opens it, but all such tasks must
close the Parallel device eventually.

Once the Parallel device is opened, other IOExtPar structure parameters can be initial
ized to defme I/O request structures for reads and writes. Any parameters that are not
explicitly initialized will return their previous values or the default values assigned by the
Parallel device internal routines. If the calling task wants to use values other than the default
values for these parameters, it should initialize them after OpenDevice returns.

Note that there is a close relationship between OpenDevice and the PDCMD_SET
PARAMS command. A task will often use these two together; they both affect Parallel
device parameters.

STANDARD DEVICE COMMANDS

I CMD FLUSH

purpose of Command
CMD_FLUSH aborts all active and queued CMD_READ and CMD_ WRITE I/O
requests. It is always executed as an immediate-mode command; all aborted I/O requests
are replied to the task reply port with the io_Error IOERR_ABORTED bit set.

THE PARALlEL DEVICE 11 2 5

The results of command execution are found in the io_Error parameter. 0 indicates
that the command was successful. ParErr_InvParam indicates that a task specified an
invalid IOExtPar structure parameter in the CMD_FLUSH command. ParErr_NotOpen
indicates that the Parallel device has not yet been opened in the task; the task should exe
cute OpenDevice and dispatch CMD_FLUSH again.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call. Also initialize io_Command to
CMD_FLUSH, and set io_Flags to O.

DiScussion

I CMD READ

The CMD_FLUSH command flushes all active and pending CMD_READ and
CMD_ WRITE I/O requests from the unit 0 device request queue. Because
CMD_FLUSH is destructive, you should use it only if you want to restore the system to

a known state with an empty Parallel device request queue. CMD_FLUSH does not
affect the state of any task reply-port queue where previously replied CMD_READ,
CMD _ WRITE, or other command requests may be queued.

purpose of Command
The CMD_READ command causes a stream of characters to be read into a task-defined
buffer from the Parallel device 110 register. The number of characters is specified by the
IOExtPar structure io_Length parameter. If - 1 is specified, the Parallel device will read
characters until an EOF (end-of-file) character is read. The system default EOF character
is O. In addition, if the io_ParFlags PARF _EOFMODE bit is set, CMD_READ will
continue to read characters until the first EOF character defined by the lOP Array struc
ture is read.

A CMD_READ command can be terminated early if a read error occurs or if an
end-of-file condition is encountered. The number of characters actually read is then stored
in the IOExtPar io_Actual parameter.

1 2 61 AMIGA PRO G RAM M E H ' S HANDBOOK

CMD_READ can be treated as a synchronous or an asynchronous I/O request. If the
mn_ReplyPort parameter is specified, the CMD_READ request structure is always replied
to the calling task reply-port queue. The results of command execution are as follows:

• io_Actual. This is the number of characters actually read. It is set if an error
occurred or if an EOF character was encountered during the reading process.

• io_Error. 0 indicates that the command was successful. ParErr_DevBusy indicates
that the Parallel device was busy and could not execute the CMD_READ com
mand when requested. ParErr_InvParam indicates that a task specified an invalid
parameter in the IOExtPar structure used to define CMD_READ. ParErr_Buf
TooBig indicates that the read buffer defined by the io_Length parameter is too
long. Par Err_Line Err indicates that a line error occurred during the read opera
tion; this usually means a bad electrical connection between the external device and
the Amiga parallel port. ParErr_NotOpen indicates that the Parallel device has not
yet been opened in the task, which should execute Open Device and dispatch
CMD_READ again.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call. Set io_Command to CMD_READ. Also
initialize the following parameters:

• io_Flags. Set this to IOF _QUICK for QuickIO; otherwise, set it to O.

• io_ParFlags. Set this to PARF_EOFMODE if you want CMD_READ to continue
reading characters until it reaches one of the eight possible characters in the IOP
Array structure.

• io_Length. Set this to the number of characters to be received from the Amiga
parallel port, or set it to - I to tell the task to receive characters until an EOF
character is read into the task-defined read buffer. Always specify io_Length as
larger than the number of characters expected under the most extreme circum
stances. If io_Length is too small, the task-defined read buffer will overflow and
any RAM contiguous with the end of the read buffer will be overwritten; the sys
tem may crash when it tries to access that RAM and finds information it cannot
use or understand.

• io_Data. Set this to point to the task's read buffer, where characters coming in
from the Amiga parallel port will be placed.

THE PARALlEL DEVICE I' 2 7

DiScussion
CMD _READ allows a task to place data into a task-defined read buffer as it comes from
the hardware connected to the Amiga's parallel port. Data is transferred from the external
hardware into the parallel-port data register and then into the task-defined buffer one char
acter at a time.

Data will continue to be read until the system detects a 0 character in the data or
until it detects one of a set of data-transfer termination characters defined in the IOPArray
structure. A maximum of eight characters can be defined. This arrangement allows a task
to tailor its read operations to each piece of external hardware. For example, if a physical
device connected to the parallel port is known to put Ctrl-Z characters into its output
stream to set off blocks of data, the task can define a character termination array consist
ing of eight Ctrl-Z characters, allowing the task to stop reading after each block of data
comes in from the external device.

I CMD RESET

purpose of Command
CMD_RESET resets unit 0 to the boot-up time state as if it had just been initialized. All
Parallel device parameters are set to their default values. All pending CMD _READ and
CMD_ WRITE 110 requests for Parallel device unit 0 are aborted and unit 0 is restarted
if it was previously stopped by CMD_STOP.

CMD_RESET is always executed as an immediate-mode command. All aborted I/O
requests are replied to the task reply port with the io_Error IOERR_ABORTED bit set.
The results of command execution are found in io_Error; 0 indicates that the command was
successful. ParErr_InvParam indicates that an invalid IOExtPar structure parameter was
specified. ParErr_NotOpen indicates that the Parallel device has not yet been opened in the
task, which should execute OpenDevice and dispatch CMD_RESET again.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call. Also initialize io_Command to
CMD_RESET, and set the io_Flags parameter to O.

12 alAMIGA PRO G RAM MER'S HANDBOOK

I

DiScussion
CMD_RESET is destructive-it calls CMD_FLUSH indirectly, thereby flushing all of
the queued CMD _READ and CMD _WRITE 110 requests in the device request queue.
In addition, CMD_RESET calls the CMD_START command to start unit 0 if it was
previously stopped with CMD_STOP. When a task once again starts to send Parallel
device 110 requests to unit 0, there will be no need to restart it. CMD_RESET also
resets Parallel device parameters to their default values.

I CMD START

purpose of Command
CMD_START restarts reads and writes to and from a channel if unit 0 was previously
stopped by CMD_STOP. This is done by reactivating the parallel-port handshaking
sequence. It includes any CMD_READ or CMD_WRITE command that was stopped in
the middle of its activity or the first CMD _READ or CMD _ WRITE request at the top
of the unit 0 device request queue when CMD _STOP was dispatched.

CMD_START is always executed as an immediate-mode command; it replies to the
task reply port if the mn_ReplyPort parameter is specified. The results of command exe
cution are found in the io_Error parameter; 0 indicates that the command was successful.
ParErr_InvParam indicates that a task specified an invalid IOExtPar structure parameter
in the CMD_START command. ParErr_NotOpen indicates that the Parallel device has
not yet been opened in the task; the task should execute OpenDevice and dispatch CMD
_START again.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call. Also initialize io_Command to CMD
_START, and set io_Flags to O.

DiSCUSSion
CMD_START starts the reading and writing of data into or out of the parallel-port data
register. It is similar to the Ctrl-Q command, which restarts screen output on most com
puters. CMD_START restarts CMD_READ or CMD_ WRITE commands previously

I CMD STOP

THE PARALLEL DEVICE I' 2 9

stopped by CMD_STOp, just as Ctrl-Q restarts screen output previously stopped with
Ctrl-S. CMD_START will also restart processing of queued I/O requests, just as Ctrl-Q
displays additional files on the screen if the user has typed file-display commands.

purpose of Command
The CMD_STOP command immediately stops a currently executing unit 0
CMD _WRITE or CMD _READ command. It also prevents the Parallel device routines
from starting execution of queued CMD_ WRITE I/O requests. CMD_STOP does its
job by discontinuing the handshaking sequence for the parallel port. Once unit 0 is
stopped by CMD _STOp, the system automatically queues CMD _READ and
CMD_ WRITE I/O requests dispatched to unit 0 until CMD_START restarts unit 0 or
CMD _RESET resets it.

CMD_STOP is always executed as an immediate-mode command; it replies to the
task reply port if the mn_ReplyPort parameter is specified. The results of command exe
cution are found in the io_Error parameter. 0 indicates that the command was successful.
ParErr_InvParam indicates that a task specified an invalid IOExtPar structure parameter
in the CMD_STOP command. ParErr_NotOpen indicates that the Parallel device has
not yet been opened in the task; the task should execute OpenDevice and dispatch CMD
_STOP ~gain.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call. Also initialize io_Command to CMD
_STOp, and set io_Flags to O.

DiSCUSSion
The CMD_STOP command stops the execution of a CMD_READ or CMD_WRITE
command. It is similar to the Ctrl-S command used for screen output on most computers;
it stops a currently executing unit 0 CMD _WRITE command at the earliest possible
opportunity. The Parallel device will then continue to queue any subsequent
CMD_READ or CMD_ WRITE requests.

1 3 0 I AMIGA PRO G RAM MER'S HANDBOOK

I CMD WRITE

purpose of Command
CMD _WRITE causes a stream of characters to be written from a task-defined buffer, one
at a time, into the Parallel device data register. The number of characters is specified in
the IOExtPar structure io_Length parameter; if - 1 is specified, the Parallel device will
write characters until an EOF (end-of-me) character is written. A CMD_ WRITE com
mand can be terminated early if a write error occurs or if an EOF condition is encoun
tered; in this case, the number of characters written is stored in the IOExtPar structure
io_Actual parameter.

CMD _ WRITE can be treated as a synchronous or an asynchronous I/O request. It
can be dispatched as QuickIO and always replies to the task reply-port queue if mn
_ReplyPort is specified.

The results of command execution are as follows:

• io_Actuai. This indicates the number of characters actually written. The Parallel
device internal routines will set this value if an error occurred or an EOF character
was encountered during the writing process.

• io_Error. 0 indicates that the command was successful. ParErr_DevBusy indicates
that the Parallel device was busy and could not execute the CMD_ WRITE com
mand when requested. ParErr_InvParam indicates that a task specified an invalid
IOExtPar structure parameter to define the CMD _WRITE command. ParErr_Buf
TooBig indicates that the write buffer defined by the io_Data and io_Length
parameters is too long. ParErr_LineErr indicates that a line error occurred during
the write operation; this usually means a bad electrical connection between the exter
nal device and the Amiga parallel port. ParErr_NotOpen indicates that the Parallel
device has not yet been opened in the task; the task should execute OpenDevice and
dispatch CMD ~ WRITE again.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call.

Also initialize the following parameters:

• io_ Command. Set this to CMD _ WRITE.

• io_Flags. Set this to IOF _QUICK for QuickIO; otherwise, set it to O.

THE PARAUEL DEVICE 11 31

• io_ParFlags. Set this to PARF_EOFMODE if you want CMD_WRITE to con
tinue writing characters until it reaches one of the eight possible EOF characters in
the lOP Array structure.

• io_Length. Set this to the number of characters to send to the parallel port, or set
it to - I to tell the task to write characters until an EOF character is written to
the parallel-port data register from the task-defined write buffer.

• io_Data. Set this to point to the task's write buffer, where characters going out to
the parallel-port data register originate.

DiScussion
CMD _WRITE allows a task to send data from task-defined buffers to the parallel-port
data register and eventually out to the hardware connected to the Amiga parallel port.
Data is transferred one character at a time. It will continue to be written until the system
detects a 0 character in the data or until it detects a write termination character defmed in
the IOPArray structure. A maximum of eight characters can be defined. If the
io_ParFlags PARF _EOFMODE bit is set, the system will continue writing characters
until anyone of these characters is detected in the output stream.

This arrangement allows a task to tailor its write operations to each piece of external
hardware. For example, if a printer connected to the parallel port requires blocks of data
separated by Ctrl-Z characters, the task can define a character termination array consisting
of eight Ctrl-Z characters. A large task-defined buffer can then be set up with Ctrl-Z char
acters between blocks of data in that buffer. Then, when CMD _ WRITE is executed, the
task will stop writing after each block of data is written to the external device. The task
can execute a number of CMD _WRITE commands, and each of these can send a new
block of data out to the external device. The Ctrl-Z characters will also be written, allow
ing the external device to properly format its data.

DEVICE-SPECIFIC COMMANDS

I PDCMD QUERY

purpose of Command
The PDCMD _QUERY command allows a task to determine the current status of the
Parallel device internal routines. A task can use PDCMD_QUERY to determine if the
routines are currently reading or writing to a hardware device connected to the Amiga's
parallel port-in particular, to a parallel printer. The io_Status parameter is kept up to
date as events in the system change the status of hardware and software.

1 321 AMIGA PRO G RAM MER'S HANDBOOK

PDCMD_QUERY is always executed as an immediate-mode command; it replies to
the task reply port if the rnn_ReplyPort parameter is specified. The results of command
execution are found in the io_Error parameter. 0 indicates that the command was success
ful. ParErr_InvParam indicates that a task specified an invalid IOExtPar structure param
eter in the PDCMD_QUERY command. ParErr_NotOpen indicates that the Parallel
device has not yet been opened in the task; the task should execute OpenDevice and dis
patch PDCMD_QUERY again.

In addition, each bit in the IOExtPar structure io_Status parameter returns the fol
lowing values:

• IOPTF _PSEL (bit 0). A 0 value indicates that a printer connected to the Amiga
parallel port has been selected by the device routines and is now on-line to receive
data specified by CMD _ WRITE.

• IOPTF _PAPEROUT (bit 1). A 0 value indicates that the printer connected to the
parallel port is out of paper; the task should tell the user to add paper. For
example, an Intuition task could display a Requester alert.

• IOPTF _PBUSY (bit 2). A 0 value indicates that the printer is currently busy. If a
task detects this when it attempts to dispatch a CMD _WRITE command to a
printer, it should keep testing until the bit value changes to 1; it should then resub
mit CMD _WRITE.

• IOPTF _RWDIR (bit 3). A 0 value indicates that the Parallel device routines are
executing a CMD_READ command; 1 indicates that they are executing a
CMD _WRITE command.

Bits 4-7 are reserved for future enhancements to the Parallel device.

preparation of the IOAudio Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call. Also initialize io_Command to
PDCMD_QUERY, and set the io_Flags parameter to O.

DiSCUSSion
The PDCMD_QUERY command is included in the Parallel device software system so
that a task can monitor the activity of the Parallel device and the external hardware con
nected to the parallel port. The task can then decide what to do next based on the current
activity.

PDCMD_QUERY is usually used to monitor a printer attached to the parallel port
and driven by CMD _ WRITE commands coming from a task. The task needs to know

lIIE PARALLEL DEVICE 11 3 3

about the printer's external conditions-if the printer is currently selected, if it is busy
printing, or if it is out of paper. The replied IOExtPar structure io_Status parameter
determines the current status of the printer. In addition, the task must know whether the
Parallel device is reading or writing to the external device. This information is provided
by the io_Status IOPTF _RWDIR parameter (bit 3).

PDCMD_SETPARAMS

purpose of Command
PDCMD_SETPARAMS allows a task to set the Parallel device parameters. It will only
be successful if there are no active or queued CMD_READ and CMD_ WRITE com
mand requests already dispatched. A task can use the PDCMD_SETPARAMS command
to set the IOExtPar structure parameters (io_PExtFlags, io_ParFlags, and io_PTerm
Array) before dispatching a CMD _READ or CMD _ WRITE request. These parameters
can be initialized or reinitialized with the command.

PDCMD_SETPARAMS executes as an immediate-mode command and replies to the
task reply port. The results of command execution are found in io_Error; 0 indicates that
the command was successful. ParErr_InvParam indicates that a task specified an invalid
IOExtPar structure parameter in the PDCMD_SETPARAMS command. ParErr_Not
Open indicates that the Parallel device has not yet been opened in the task, which should
execute OpenDevice and dispatch PDCMD_SETPARAMS again.

preparation of the IOExtPar Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Parallel device unit O. These can always be copied from the IOExtPar struc
ture initialized by the OpenDevice function call.

Also initialize the following command-specific parameters:

• io_Command. Set this to PDCMD_SETPARAMS.

• io_Flags. Set this to O.

• io_PExtFlags. Set this to 0; it is provided for future enhancements and is not used
with Release 1.2 software.

• io_ParFlags. Set this to PARF _SHARED to open the Parallel device in shared
access mode in a subsequent OpenDevice call; exclusive access mode is the default.

1 341 AMIGA PRO G RAM MER . S HANDBOOK

Set io_ParFlags to PARF _EOFMODE if you want to use a set of task-defined
EOF characters to control end-of-file conditions for subsequent CMD_READ and
CMD_ WRITE requests. PARF _RAD_BOOGIE accesses the Parallel device in
high-speed mode; it is not implemented at present. Note that the io_ParFlags
parameter is always initialized by the new OpenDevice function call to default
values or to the parameter settings made with previous PDCMD_SETPARAMS
commands .

• io_PTermArray. Set this to point to a descending ASCII order 8-byte array defining
a character termination array for the task. This parameter is initialized by a new
OpenDevice call to reflect the current state and configuration of the Parallel device
routines only if the io_ParFiags PARF _EOFMODE bit is set in the OpenDevice
IOExtPar structure.

DiScussion
The PDCMD_SETPARAMS command allows a task to change the Parallel device
parameters used by subsequent CMD _READ and CMD _ WRITE command requests. It
is usually used to set Parallel device parameters before an OpenDevice call, or to change
them after an OpenDevice call but before the next CMD_READ or CMD_ WRITE com
mand is dispatched. PDCMD _SETPARAMS and the OpenDevice function interact
throughout a task's execution.

PDCMD_SETPARAMS is particularly important in defining characters for terminat
ing a CMD _READ or CMD _ WRITE request. It allows a task to change the current
EOF character definition in order to terminate subsequent CMD_READ or
CMD _WRITE commands. If a task is dealing with a number of hardware devices with
different data characteristics (for example, different character-block termination characters),
it can change the current character termination array for the next CMD _READ or
CMD _WRITE command in order to relate to the next hardware device with which it
wants to communicate.

You can also define a separate task for each device attached to the Amiga's parallel
port. You would then specify separate character termination arrays so that the tasks could
operate with the device characteristics and block defmitions.

- .
•• • • •

• •• ~
• •• y

•
•• •

• •

The Serial Device

THE SERIAL DEVICE 1137

I Introduction

The Serial device allows tasks to communicate with external hardware devices-most com
monly a serial modem or a serial printer-connected to the Amiga's serial port. The Serial
device is disk-resident and it must be present in the DEVS: directory if the linker is to
find it during the compilation and linking process. Once the Serial device has been loaded
from disk with the first OpenDevice call, other tasks will get its routines from RAM.

The Serial device is similar to the Parallel device. However, there are some important
differences between them: in particular, the Serial device has an internal device buffer that it
uses for CMD _READ execution. This buffer is called the Serial device internal read buffer.

Serial device commands allow any number of tasks to open and share the Serial
device internal routines using the multitasking features of the Amiga. Each task can
request this by specifying shared access mode when it first opens the Serial device.

The Serial device allows each task to specify up to eight characters in a character
termination array, which controls read and write operations between a task and any hard
ware device connected to the serial port. These characters cause the read or write opera
tions to stop when one of them is encountered in the input or output stream. Among
other things, this arrangement allows a task to deal with a block-oriented external hard
ware device, where the data blocks are separated by known ASCII characters.

Read-write Operations for the Serial Device

Figure 6.1:
Read-Write

Operations for
the Serial

Device

Serial device read-write operations are controlled by two commands: CMD _READ and
CMD _WRITE. Figure 6.1 shows how read-write operations work.

The Serial device works with two task-defined buffers-one for read operations and
one for write operations. The IOExtSer structure io_Data pointer serves as a pointer to

each of these buffers. In addition, CMD_READ uses a Serial device internal read buffer
with a default size of 512 bytes. (The CMD_ WRITE command does not use an internal
device buffer.) The data values in the device internal read buffer can be altered using

Cleor-

Reset-

Read Buffer
(pointed 10 by

io Data)

Write Buffer
(pointed to by

io_Data)

ill
Read

Wrile

Serial Port
Data Register

Serial Port
Status Register

Read

'M"ite

Amigo Serial Port
25 pin female

connector

Reod • • Write

External Hardware

1 3 81 AMIGA PRO G RAM MER'S HANDBOOK

Table 6.1:
Pin Connections

for the Serial
Port

CMD_RESET or CMD_CLEAR; CMD_START and CMD_STOP can be used to
affect data being placed into the task-defined buffers.

When the Serial device is executing CMD_READ, all data passes through the serial
port data register on its way to the Serial device read buffer. The data comes from the
external hardware device attached to the Amiga serial port. When the Serial device is exe
cuting CMD _WRITE, all data once again passes through the Serial device data register
and then passes one byte at a time through the serial port on the back of the Amiga and
out to the external hardware connected to it.

The Amiga serial-port connector is a 25-pin female connector near the middle of the
back of the Amiga. Table 6.1 summarizes the pin connections. If you want to use the serial
port, you must buy a cable that is compatible with this pin arrangement.

The Serial device software maintains a status value in the serial-port status register;
this value is also placed in the IOExtSer structure io_Status register. You can use the
PDCMD_QUERY command to determine the value of each bit in the status register
whenever the Serial device is active. Bit meanings are summarized in Table 6.2.

Pin No. Data at Pin Descri plion

FGND Frame ground
2 TXD Transmit data
3 RXD Receive data
4 RTS Request to send
5 CTS Clear to send
6 DSR Data set ready
7 GND System ground
8 CD Carrier detect
9-13 Not used

14 -5 VOLTS Power (50ma maximum)
15 AUDO Audio output
16 AUD! Audio input
17 EB Buffer port clock (716KHz)
18 INT2 Interrupt Line: Amiga Level 2
19 Not used
20 DTR Data terminal ready
21 +5 VOLTS Power (100ma maximum)
22 Not used
23 +12 VOLTS Power (SOma maximum)
24 C2 3.58MHz clock
25 RESB Buffered system reset

THE SERIAL DEVICE 113!

Serial Device Commands
You can use ten commands to program the Serial device-seven are standard and three are
device-specific. SDCMD_QUERY determines the status of the system; all other com
mands are action commands; they change something in the system.

Sending Commands to the Serial Device

Table 6.2:
Serial-Port

Status Register
Bits

Figures 6.2(a) and (b) show the general scheme used to dispatch commands to the Serial
device routines and to call functions in the Serial device software system. The lines with
arrows represent the parameters you should initialize, as well as those returned by the
Serial device internal routines.

The Serial device programming process consists of three phases:

1. lOExtPar structure preparation. Here, you initialize parameters in the lOExtPar struc
ture in preparation for sending a command to the Serial device routines. These param
eters include the usua1 set of parameters required by most devices, as well as parameters
that are specific to the lOExtPar structure and used only with the SDCMD_SET
PARAMS command. Flag parameters are also indicated in the figure; a task's choice of
flag parameter bits depends on how it wants to use a specific command or function.
These parameters, taken together, provide an information path to the data needed by
the Serial device internal routines to process the command or function.

2. Serial device processing. The only part you play in this phase is to dispatch the
command to the device using the BeginlO, DolO, or SendlO function. Control
then passes to the device and system internal routines.

Bit No. Meaning of Bit

0-2 Reserved
3 Data set ready (bit = 0)
4 Clear to send (bit = 0)
5 Carrier detect (bit = 0)
6 Ready to send (bit = 0)
7 Data Terminal ready (bit = 0)
8 Read buffer overflow (bit = 1)
9 Break signal sent (bit = 1)

10 Break signal received (bit = 1)
11 Transmit XOFF (bit 1)
12 Received XOFF (bit = 1)
13-15 Reserved

14 0 I AMIGA PRO G RAM MER . S HANDBOOK

3. Command output parameter processing. The system and the Serial device internal
routines have complete control over this phase. Here, the results of command pro
cessing have been returned to the task that originally issued the function or com
mand. If the I/O request was not QuickIO, it was processed when it moved to the
top of the Serial device-unit request queue and was sent to the task reply-port
queue. If the request was specified as QuickIO and was successful, or if it was an
immediate-mode command request, it was not queued in the device-unit request
queue but went directly to the device internal routines; the replied IOExtSer struc
ture parameters still direct you to data appropriate for your task.

Outputs from device-command processing can usually be found in the io_Error,
io_Actual, and io_Status parameters. These parameters provide an indication of a process
ing error, the status of the Serial device request, and the number of bytes transferred; they
do not provide an information path to the results needed by the requesting task. The situ
ation is different for SDCMD_SETPARAMS; see the SDCMD_SETPARAMS discussion
in this chapter for details.

Figures 6.2(a) and (b) also depict the parameters that play a part in Serial device
function setup and processing. The OpenDevice and Close Device functions both affect the
Unit structure unit_OpenCnt and Device structure lib_OpenCnt parameters. OpenDevice
also affects the io_Error parameter and can affect other IOExtSer structure parameters.

Structures for the Serial Device
The Serial device works with two structures: the IOExtSer structure and the lOT Array struc
ture, as shown in Figure 6.3. Notice that the IOExtSer structure contains two substructures:
an IOStdReq structure named lOSer, and an IOTArray structure named io_ TermArray. The
IOExtSer structure does not contain any pointers either to other structures or to data areas in
RAM, but its IOStdReq substructure does contain pointer parameters-in particular, the
io_Data read or write buffer pointer. The lOT Array structure does not contain substructures
or pointers to RAM data areas.

The IOExtSer structure contains the Serial device parameters required to characterize
CMD_READ and CMD_ WRITE commands dispatched to the Serial device routines.
The IOTArray structure contains the set of eight characters for the character termination
array used to control read and write operations.

The IOTArray Structure
The lOT Array structure is defined as follows:

struct lOT Array {
ULONG TermArrayO;
ULONG TermArray1;

} ;

Figure 6.2(a):
Serial Device

Command and
Function

Processing
(Specifications)

Figure 6.2(b):
Serial Device

Command and
Function

Processing
(Outputs)

General
device

IOStdReq
structure

parameters IOF QUICK

/

SEXTF MSPON I
SEXTF MARK

IOExtSer

SERF PARTY ON structure

Preparation of
IOExtSer
structure

mn ReplyPort
io Device

io Unit
io Command

10 Flags
io Data

io length

io CtlChor
io RBu flen
io ExtFlaqs

10 Baud
10 BrkTime

THE SERIAL DEVICE I' 41

Serial Device Internal Routines

BeginlO, Cola, or

SendlO sends

command, or

functions Initiate

Serial device

internal routine

servicing

-< SERF PARTY ODD parameters io T ermArroy

I

SERF 7WIRE 10 Readlen

SERF QUEUEDBRK 10 Wntelen

SERF RAD BOOGIE io StopBits

SERF SHARED
io SerFlaqs

SERF EOFMODE
SERF XDISABlED I

IOERR OPENFAll
IOERR ABORTED
IOERR NOCMD
IOERR BADlENGTH
SerErr DevBusy

IOSERF BUFREAD SerErr BaudMismatch
IOSERF QuEuED SerErr InvSoud ,- IOSERF ABORT
IOSERF ACTIVE ~rr BufErr

SerErr InvPorom

Device :l General SerErr LineErr

Serial Device Unit device SerErr NotOpen

Internal Routines Floos IOStdReq ~Err PortReset

Error structure SerErr Paritl£rr

Actual parameters SerErr lnitErr
SerErr TimerErr

io CtlChar SerErr BufOverflow

io RBuflen
SerErr NoDSR

io E,tFIOGs
SerErr NoeTS

io Baud
SerErr DetectedBreak

io BrkTime IOExtSer
io TermArray structure
io Readlen parameters

io WriteLen
io StopS its
ioSerFloas
io Status

I IOSTF XOFFREAD lib OpenCnt
unit OpenCnt Device structure parameter IOSTF _XOFF~

Unit structure parameter ~IOSTF 3EADBREAK
IOSTF WR TEBREAK o
IOSTF OVERRUN

14 21 AMIGA PRO G RAM MER'S HANDBOOK

Figure 6.3:
Serial Device

Structures

IOExtSer Structure

I IOStdReq Structure J
(lOSer)

I IOTArray Structure I
(io_ TermArroy)

IOTArray Structure

The parameters in the lOT Array structure are as fallows:

• TermArrayO. This contains the first four of a total of eight hexadecimal characters
in the character termination array; this array is stored in descending ASCII order.

• TermArray 1. This contains the second four of the eight hexadecimal characters in
the character termination array; it too is stored in descending ASCII order. The
system checks for termination characters only if the lOExtSer structure io_SerFlags
SERF _EOFMODE bit is set.

The IOExtSer Structure

The lOExtSer structure is defined as follows:

struct IOExtSer {

} ;

struct IOStdReq lOSer;
ULONG io_CtIChar;
ULONG io_RBufLen;
ULONG io_ExtFlags;
ULONG io_Baud;
ULONG io_BrkTime;
struct IOTArray io_ TermArray;
UBYTE io_ReadLen;
UBYTE io_WriteLen;
UBYTE io_StopBits;
UBYTE io_SerFlags;
UWORD io_Status;

The parameters in the lOExtSer structure are as follows:

• lOSer. This lOStdReq substructure contains the usual I/O request parameters. The
mn_ReplyPort parameter specifies the task reply-port queue where the I/O request
should be replied when the device internal routines are finished processing it.

THE SERIAL DEVICE 1143

• io_CtlChar. This is a set of four control characters: XON, XOFF, INQ, and ACQ.
See the CMD_READ and CMD_ WRITE discussions in this chapter for informa
tion on this parameter.

• io_RBufLen. This is the length (in bytes) of the Serial device internal read buffer.
The default value is 512 bytes.

• io_ExtFlags. This is a set of additional flag parameter bits; it is not used in
Release 1.0 or 1.1. For Release 1.2, set the SEXTF _MSPON bit if you want the
Serial device to use mark-space parity instead of odd-even parity for read and write
operations. Set the SEXTF _MARK bit if you want the Serial device to use a mark
character when mark-space parity is selected with the SEXTF _MSPON bit.

• io_Baud. This is the requested baud rate, a number from 110 to 29,200.

• io_BrkTime. This is the duration of the break signal in microseconds; the default
value is 250,000 microseconds.

• io_ TermArray. This is the name of the character termination array for the IOExt
Ser structure.

• io_ReadLen. This is the number of bits m each character processed by the
CMD_READ command.

• io_ WriteLen. This is the number of bits m each character processed by the
CMD _ WRITE command.

• io_StopBits. This is the number of stop bits associated with every character that is
read by the CMD _READ command.

• io_SerFlags. This is a set of serial flag bits defined in the following section.

• io_Status. This is the current status of the serial port.

Serial-Port Flag Parameters
The values of the Serial device flag parameter bits (io_SerFiags) are as follows:

• SERF_XDISABLED (bit 7). Set this bit if you want the XON-XOFF protocol fea
ture to be disabled. This protocol uses the ASCII toggle-code characters DCl (device
control 1, Ctrl-Q) and DC3 (device control 3, Ctrl-S) to start and stop data transfer.

• SERF _EOFMODE (bit 6). Set this bit if you want to enable the EOF mode,
which allows a task to start and stop a data transfer using other characters in addi
tion to the Ctrl-Q-Ctrl-S combination.

• SERF_SHARED (bit 5). Set this bit if you want shared access for the Serial device
internal routines.

14 41 AMIGA PRO G RAM MER'S HANDBDDK

• SERF _RAD _BOOGIE (bit 4). Set this bit if you want to enable the high-speed
data transfer mode. This is most often used to send data at high speeds through an
MIDI (musical instrument digital interface).

• SERF _QUEUEDBRK (bit 3). Set this bit if you want to queue
SDCMD_BREAK commands.

• SERF _7WIRE (bit 2). Set this bit if you want to use the 7-WIRE RS-232 protocol
for CMD_READ and CMD_WRITE operations.

• SERF_PARTY_ODD (bit 1). Set this bit if you want to use odd parity to check
the data transfer during CMD _READ or CMD _WRITE execution.

• SERF _PARTY_ON (bit 0). Set this bit if you want to use a parity check on the
data transfer during CMD _READ or CMD _WRITE execution.

The values of the Serial device IOStdReq structure flag parameter bits (io_Flags) are as
follows:

• IOSERF _BUFREAD (bit 7). The system sets this bit when the Serial device is
reading from its internal read buffer.

• IOSERF _QUEUED (bit 6). The system sets this bit when the I/O request is
treated as queued I/O rather than QuickIO.

• IOSERF _ABORT (bit 5). The system sets this bit when the I/O request has been
aborted by AbortIO, CMD_RESET, or CMD_FLUSH.

• IOSERF _ACTIVE (bit 4). The system sets this bit when the I/O request is active
or queued.

The values of the Serial device IOExtSer structure flag parameters bits (io_Status) are as
follows:

• IOSTF _XOFFREAD (bit 4). The system sets this bit when the I/O request has
just read an XOFF character.

• IOSTF _XOFFWRITE (bit 3). The system sets this bit when the I/O request has
just transmitted an XOFF character.

• IOSTF _READ BREAK (bit 2). The system sets this bit when the current task is
receiving a break-signal input bit; a break signal is used to stop data transfer for a
specified time period.

• IOSTF _ WROTEBREAK (bit 1). The system sets this bit when the current task is
transmitting a break-signal output bit.

THE SERIAL DEVICE 11 4 5

• IOSTF _OVERRUN (bit 0). The system sets this bit when the I/O request has
caused a Serial device input-buffer overrun.

The values for the Serial device IOStdReq io_Error parameters have the following meanings:

• IOERR_OPENFAIL, IOERR_ABORTED, IOERR_NCMD, and IOERR_BAD
LENGTH have the same meanings for the Serial device as they do for other devices
(see Chapter 3).

• SerErr_DevBusy. The Serial device internal routines are busy.

• SerErr_BaudMismatch. There is a mismatch between the requested and actual
baud rates.

• SerErr_InvBaud. The I/O request asked for an invalid baud rate.

• SerErr_BufErr. There was a buffer error during data transfer.

• SerErr_InvParam. There is an invalid I/O request parameter.

• SerErr_LineErr. There was a line error during a data transfer; this is usually
caused by an electrical problem on the data transfer lines or connections.

• SerErr_NotOpen. The Serial device was not open when a request was made.

• SerErr_PortReset. The Serial device software system has been reset with the
CMD_RESET command.

• SerErr_ParityErr. A parity error has occurred during data transfer.

• SerErr_InitErr. An initialization error occurred when the Serial device software sys
tem was initialized following a CMD _RESET command.

• SerErr_ TimerErr. A timing error occurred during data transfer.

• SerErr_BufDverflow. A buffer overflow occurred during data transfer.

• SerErr_NoDSR. There was no DSR (data set ready) bit, which is required to
establish the proper protocol for the data transfer.

• SerErr_NoCTS. There was no CTS (clear to send) bit, which is required to estab
lish the proper protocol for the data transfer.

• SerErr_DetectedBreak. A break signal was detected during data transfer, thereby
halting it.

14 61 AMIGA PRO G RAM MER . S HANDBDDK

USE OF FUNCTIONS

I C/oseDevice

Syntax of Function Call
Close Device (ioExtSer)

A1

purpose of Function
This function closes access to unit 0, the only unit of the Serial device; the Timer device is
also closed automatically in the current task and the Serial device internal CMD _READ
buffer is freed. CloseDevice also decrements the Device structure lib_OpenCnt parameter
and the Unit structure unit_OpenCnt parameter by 1. Once these parameters are reduced to
0, a deferred expunge invoked by this or another task will remove the Serial device struc
tures from RAM when CloseDevice returns.

When CloseDevice returns, the current task cannot use the Serial device until it exe
cutes another OpenDevice function call. However, the Serial device internal parameter set
tings are saved for the next call to OpenDevice by this or any other task.

I nputs to Function
ioExtSer

DiSCUSSion

A pointer to an IOExtSer structure; also a pointer to an
IOStdReq structure

CloseDevice terminates access to a set of device internal routines for Serial device unit 0.
Because the Serial device can be used in either exclusive or shared access mode, several pos
sibilities can arise. One task can open the Serial device in exclusive access mode, or a series
of tasks can open it in shared access mode. (A situation in which one task opens the Serial
device in exclusive access mode and one or more tasks opens it in shared access mode is not
possible.) Each task that opens the Serial device in exclusive access mode must always call
CloseDevice before another task calls OpenDevice to open the Serial device. Otherwise,
the OpenDevice function call will return an io_Error IOERR_OPENFAIL value when the
second task tries to open the Serial device.

THE SERIAL DEVICE 114 7

A task should always verify that all of its I/O requests have been replied by the
Serial device internal routines before it calls Close Device to close the Serial device. It can
do so by using the GetMsg, Remove, CheckIO, and WaitIO functions to see what I/O
requests are in the task reply-port queue.

CloseDevice also closes the Timer device in the current task automatically and frees
the Serial device internal read buffer for other uses. Since the Timer device uses shared
access mode, it can remain open in other tasks that have opened it either explicitly or
indirectly through other devices.

I OpenDevice

Syntax of Function Call
error
DO

= Open Device ("serial.device", 0, ioExtSer, 0)
AO DO A1 D1

purpose of Function
This function opens access to the internal routines of Serial device unit O. It also opens
the Timer device if it has not already been opened in the task. The Serial device can be
opened in either exclusive or shared access mode.

Once it has successfully opened the Serial device, OpenDevice initializes certain IOExtSer
structure parameters to their most recently specified values or their default values. OpenDevice
also increments the Device (Library) structure lib_OpenCnt parameter and the Unit structure
unic OpenCnt parameter, thereby preventing a deferred expunge.

Open Device requires a properly initialized reply port with a task signal bit allocated
to that port if the calling task needs to be signaled when the OpenDevice function call is
replied. The results of function execution are as follows:

• io_Device. This points to a Device structure that manages Serial device unit 0
once it has been opened.

• io _Unit. This points to a Unit structure that will be used to define and manage a
MsgPort structure for Serial device unit o. The MsgPort structure represents the
unit 0 device request queue.

• io_Error. 0 indicates that the requested open succeeded. IOERR_OPENFAIL indi
cates that the Serial device could not be opened. If you try to open unit 0 in exclu
sive access mode but it has not been closed in another task, the OpenDevice call in
the current task will return this error; also, if you try to open unit 0 in the same
task twice using exclusive access mode without first closing it, the second Open
Device call will return this error.

14 81 AMIGA PRO G RAM MER'S HANDBOOK

I nputs to Function
"serial. device" A pointer to a null-terminated string representing the name

of the Serial device

o The only Serial device unit number

ioExtSer A pointer to an IOExtSer structure

o Indicates that the flags argument is ignored by Open
Device

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port_ Initialize
all other parameters in the IOStdReq substructure to ° or copy them from a previous
OpenDevice calL

Also initialize io_Command to 0, CMD_READ, or CMD_ WRITE if the task
should open the Serial device and then execute a read or write operation. Initialize
io_SerFlags to a bitwise combination of SERF_SHARED, SERF _EOFMODE, and 7-
WIRE (DTRIDSR, RTS/CTS). Do this if you want to open the Serial device in shared
access mode, initialize the IOExtSer lOT Array substructure, and use the 7-WIRE (DTRI
DSR, RTSICTS) handshaking mode (RS-232C CTS/RTS protocol). You can use a logical
AND (bitwise OR) to set one, two, or all three of these bits.

If the CreateExtIO function is used to create the IOExtSer structure, it must typecast
its returned pointer value into a pointer to an IOExtSer structure. Then the pointer will
also point to the IOStdReq structure, which is the first entry in the IOExtSer structure.
(See the AbortIO discussion in Chapter 2.)

DiScussion
The Open Device function is used to open the Serial device routines for access by a task.
Once the task owns the Serial device, it can dispatch a series of CMD _WRITE and
CMD_READ commands (with BeginIO, DolO, or SendIO) to send information back
and forth between the task and any external hardware connected to the Amiga serial port.
Once a task finishes all of its Serial device writing and reading, it should close the Serial
device.

The Serial device can be opened in either exclusive or shared access mode; exclusive
is the default. Every task that opens the Serial device in exclusive access mode must close
it before another task can open it. In shared access mode, all tasks that open the Serial
device must close it eventually.

All IOExtSer structure parameters that are not explicitly initialized when a task calls
OpenDevice will retain their previous task-defined values or use the default values assigned by
the Serial device internal routines. If the calling task wants to use other values for these param
eters, it should initialize them after OpenDevice returns and the Serial device is opened.

THE SERIAL DEVICE I' 4 9

There is a close relationship between OpenDevice and the SDCMD_SETPARAMS com
mand. A task will often use these two together; they both affect the Serial device parameters.

STANDARD DEVICE COMMANDS

CMD CLEAR

purpose of Command
CMD _CLEAR is designed to clear internal device buffers. The Serial device has only the
internal read buffer, which CMD _CLEAR clears.

CMD _CLEAR is always an immediate-mode command. The results of command execu
tion are found in io_Error. 0 indicates that the command was successful. SerErr_InvParam
indicates that a task specified an invalid parameter in the 10ExtSer structure used to define the
CMD _CLEAR command. Ser Err _ N otOpen indicates that the Serial device has not yet been
opened in the task, which should execute OpenDevice and CMD _ CLEAR again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Serial device unit O. These can always be copied from the 10ExtSer struc
ture initialized by the Open Device function call. Also initialize io_Command to CMD
_CLEAR, and set io_Flags to O.

DiScussion
CMD _CLEAR directly affects the Serial device internal read buffer. (The Serial device
does not use an internal write buffer.) It clears the buffer and resets the internal buffer
pointer to point to the first byte in that buffer.

CMD FLUSH

purpose of Command
CMD FLUSH aborts all queued I/O requests in the Serial device request queue.
Actively executing CMD_READ and CMD_ WRITE I/O requests are not affected.

1 5 0 I AMIGA PRO G RAM MER'S HANDBOOK

CMD_FLUSH is always executed as an immediate-mode command. All aborted I/O
requests are replied to the task reply-port queue with the io_Error IOERR_ABORTED
bit set.

The results of command execution are found in the io_Error parameter. 0 indicates
that the command was successful. SerErr_InvParam indicates that a task specified an
invalid parameter in the IOExtSer structure used to define the CMD_FLUSH command.
SerErr_NotOpen indicates that the Serial device has not yet been opened in the task,
which should execute OpenDevice and CMD_FLUSH again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Serial device unit O. These can always be copied from the IOExtSer structure
initialized by the OpenDevice function call. Also initialize io_Command to
CMD_FLUSH, and set io_Flags to O.

DiSCUSSion

I CMD READ

The CMD_FLUSH command flushes all queued I/O requests from the unit 0 device
request queue. It is always an immediate-mode command. Because CMD_FLUSH is
destructive, you should use it only if you want to restore the system to some known state
with an empty Serial device request queue. CMD_FLUSH does not affect the state of
any task reply-port queue where previously replied CMD_READ and CMD_ WRITE I/O
requests (and others) may be queued.

purpose of Command
The CMD_READ command causes a stream of characters to be read into the Serial
device internal read buffer. This data passes through the Serial device data register on its
way to an input buffer. When the task needs the data, it will be transferred from the
Serial device internal read buffer to a task-defined buffer.

The number of characters to read is specified in the IOExtSer structure io_Length
parameter. If - 1 is specified, the Serial device will read characters until an EOF character
is read. (The system default EOF character is 0.) In addition, if the io_SerFlags SERF
_EOFMODE bit is set, CMD_READ will continue to read characters until the first
EOF character defined by the lOT Array structure is read.

THE SERIAL DEVICE 11 51

A CMD_READ command can be terminated early if a read error occurs or if an
EOF character is encountered. The number of characters actually read is then stored in
the IOExtSer structure io_Actual parameter.

The results of command execution are found in io_Actual and io_Error. The io_Ac
tual parameter indicates the number of characters actually read. The Serial device internal
routines will set this value if an error or an EOF character specified by the IOTArray
structure was encountered during the reading process. This count does not include the
CMD_READ command termination character. A 0 value in io_Error indicates that
the command was successful; other io_Error values have the following meanings:

• SerErr_DevBusy. The Serial device internal routines were busy and could not exe
cute CMD _READ as requested.

• SerErr_InvParam. A task specified an invalid parameter in the IOExtSer structure
used to defme CMD_READ.

• SerErr_LineErr. There was a line error during the read operation; this is usually a bad
electrical connection between the external hardware device and the Amiga serial pon.

• SerErr_NotOpen. The Serial device has not yet been opened in the task; the task
should execute OpenDevice and CMD_READ again.

• SerErr_BufOverflow. The task-defined read butTer has overflowed; the task should
change the butTer specifications and dispatch CMD_READ again.

• SerErr_BaudMismatch. The current task-specified baud rate and the external
hardware-device baud rate do not match; the task should change the baud rate and
dispatch CMD_READ again.

• SerErr_InvBaud. The specified baud rate is invalid (usually out of range); the task
should change it and dispatch CMD_READ again.

• SerErr_BufErr. A Serial device internal read butTer error occurred during data
transfer; the task should determine what caused the error and dispatch
CMD _READ again.

• SerErr_ParityErr. A parity error occurred during data transfer; the task should dis
patch CMD_READ again.

• SerErr_ TimerErr. A timing error occurred during data transfer; the task should
dispatch CMD _READ again.

• SerErr_BufOverflow. A butTer overflowed during data transfer; the task should
change butTer specifications and dispatch CMD_READ again.

• SerErr_NoDSR. No DSR (data set ready) signal was sent during data transfer; the
task should determine why and dispatch CMD _READ again.

• SerErr_NoCTS. No CTS (clear to send) signal was sent during data transfer; the
task should determine why and dispatch CMD _READ again.

1 5 21 AMIGA PRO G RAM MER'S HANDBOOk

• SerErr_DetectedBreak. The system detected a queued or immediate break signal
during data transfer; the task should eliminate the break signal and dispatch
CMD_READ again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io _Device and io _Unit to point to the Device and Unit structures that
manage Serial device unit O. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Set io_Command to CMD_READ.

Also initialize the following parameters:

• io_Flags. Set this to IOF _QUICK for QuickIO; otherwise, set it to O.

• io_SerFlags. Set this to SERF_EOFMODE if you want CMD_READ to continue
reading characters until it reaches one of the eight possible characters in the
lOT Array structure.

• io_Length. Set this to the number of characters to be received from the Amiga
serial port, or set it to - I to tell the task to receive characters until an EOF char
acter is read. Always specify io_Length as larger than the number of characters
expected under the most extreme circumstances. If io_Length is too small, the
task-defined read buffer will overflow and any RAM contiguous with the end of
that buffer will be overwritten; the system may crash when it tries to access that
RAM and finds information it cannot use or understand.

• io_Data. Set this to point to the task's read buffer, where characters coming in
from the Amiga serial port will be placed. This is not the Serial device internal
read buffer.

DiSCUSSion
CMD_READ allows a task to place data into task-defined buffers coming from external
hardware connected to the Amiga's serial port. Data is transferred from the external hard
ware to the serial-port data register, then to the Serial device internal read buffer, and
eventually to the task-defined buffer. The Serial device internal read buffer acts as a tem
porary holding location for the data eventually destined for the task-defined buffer.

Data will continue to be read until the system detects a 0 or an lOT Array structure
read termination character; a maximum of eight characters can be defined. This allows a
task to tailor its read operations to each piece of external hardware. For example, if a device
is known to put Ctrl-Z characters into its output stream to set off blocks of data, the task
can define a character termination array consisting of eight Ctrl-Z characters (seven Ctrl-Z
characters to dummy fill the array), allowing the task to stop reading after each block of data
comes in from the external device.

THE SERIAL DEVICE 1'53

I CMD RESET

purpose of Command
CMD_RESET resets unit 0 to the boot-up time state as if it had just been initialized. All
Serial device parameters and flag parameter bits are set to their default values. All active
and queued CMD_READ, CMD_ WRITE, and other 110 requests for Serial device unit
o are aborted, and unit 0 is restarted if it was previously stopped by CMD_STOP. The
current Serial device internal read buffer is relinquished, and a new read buffer with
the default size (512 bytes) is allocated and initialized.

CMD_RESET is always executed as an immediate-mode command. All aborted 110
requests are replied to the task reply-port queue with the io_Error IOERR_ABORTED
bit set. The results of command execution are found in the io_Error parameter. 0 indi
cates that the command was successful. SerErr_InvParam indicates that a task specified an
invalid parameter in the IOExtSer structure used to define the CMD_RESET command.
SerErr_NotOpen indicates that the Serial device has not yet been opened in the task,
which should execute OpenDevice and CMD_RESET again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Serial device unit o. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Also initialize io_Command to CMD_RESET,
and set io_Flags to O.

DiSCUSSion
CMD_RESET is a destructive command. It calls CMD_FLUSH indirectly, thereby flushing
all of the queued CMD_READ, CMD_WRITE, and other 110 requests in the unit 0
request queue. It also stops all ongoing CMD _READ and CMD _ WRITE 110 requests dead
in their tracks; the dispatching task then loses the data that it originally requested from the
Serial device. CMD _RESET is always executed in immediate mode.

In addition, CMD_RESET indirectly calls CMD_START to start unit 0 if it was pre
viously stopped with CMD _STOP. When a task once again starts to send Serial device I/O
requests to unit 0, there will be no need to restart it. CMD_RESET also resets the
CMD_RESET IOExtSer structure parameters and all flag bits to their default values.
CMD_RESET does not affect any 110 requests currently queued in the task reply-port queue.

1541 AMIGA PRO G RAM MER'S HANDBOOK

I CMD START

purpose of Command
CMD_START restarts writes or reads if unit 0 was previously stopped by CMD_STOP.
This includes any CMD _READ or CMD _WRITE command that was stopped in the
middle of its activity, or the first CMD _READ or CMD _ WRITE request at the top of
the unit 0 device request queue when CMD_STOP was dispatched.

CMD_START performs these actions by reactivating the serial-port handshaking
sequence. An XON character is sent to the other side, and a logical XON character is
sent to the task's side of the transaction. For a CMD_ WRITE command, the other side
is the dispatching task; for a CMD_READ command, it is usually an external hardware
device connected to the Amiga serial port.

CMD_START always operates as an immediate-mode command. The results of com
mand execution are found in the io_Error parameter. 0 indicates that the command was
successful. SerErr_InvParam indicates that a task specified an invalid parameter in the
IOExtSer structure used to define the CMD_START command. SerErr_NotOpen indi
cates that the Serial device has not yet been opened in the task, which should execute
OpenDevice and CMD _RESET again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Serial device unit O. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Also initialize io_Command to CMD_START,
and set the io_Flags parameter to O.

DiSCUSSion
CMD_START starts the reading and writing of data into or out of the serial-port data
register. It is similar to the Ctrl-Q command used to restart screen output on most
computers-it restarts execution of CMD _READ or CMD _ WRITE commands previ
ously stopped by CMD_STOP. CMD_START will also restart processing of queued lIO
requests, just as Ctrl-Q will start to display additional files on the screen if the user has
typed file-display commands.

The CMD_START command sends an XON character to the hardware device con
nected to the Amiga serial port. It also sends a logical XON character to the task that origi
nally dispatched the CMD_READ or CMD_ WRITE command. Both CMD_STOP and
CMD_START will work only if the XON-XOFF protocol is enabled. This handshaking

I CMD STOP

THE SERIAL DEVICE I' 5 5

protocol is the default and can only be overridden by setting the IOExtSer structure
io_SerFlags parameter SERF _XDISABLED bit. Note that the XON-XOFF protocol is the
only handshaking protocol currently supported by the Serial device-it does not support
the INQ-ACQ handshaking protocol.

Do not confuse the use of CMD_START with the use of the character termination
array. CMD_START is designed to restart a CMD_READ or CMD_ WRITE command
previously stopped by CMD_STOP. The CMD_READ or CMD_ WRITE command could
have been dispatched originally with a character termination array designed into the data trans
fer definition.

purpose of Command
CMD_STOP immediately stops a currently executing CMD_ WRITE or CMD_READ
command on unit O. It also prevents the Serial device internal routines from starting exe
cution of queued CMD_ WRITE I/O requests. CMD_STOP is always an immediate
mode command.

CMD_STOP does its job by discontinuing the handshaking sequence for the serial
port. The handshaking sequence sends an XOFF character to the other side and a logical
XOFF character to the task's side of the transaction. For CMD_READ, the other side is
the dispatching task; for CMD _ WRITE, it is usually an external hardware device con
nected to the serial port. Once unit 0 is stopped by CMD_STOp, the system automati
cally queues CMD _READ, CMD _WRITE, and other I/O requests dispatched to unit 0
until CMD_START restarts unit 0 or CMD_RESET resets it.

The results of command execution are found in the io_Error parameter. 0 indicates
that the command was successful. SerErr_InvParam indicates that a task specified an
invalid parameter in the IOExtPar structure used to define the CMD_STOP command.
SerErr_NotOpen indicates that the Serial device has not yet been opened in the task; you
should execute OpenDevice and CMD_STOP again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Serial device unit O. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Also initialize io_Command to CMD_STOp, and
set io_Flags to O.

1561 AMIGA PRO G RAM MER'S HANDBOOK

DiScussion
The CMD_STOP command immediately stops execution of a CMD_READ or
CMD _WRITE command. It is similar to the Ctrl-S command used for screen output on
most computers-it stops a currently executing CMD _WRITE command at the earliest
possible opportunity.

The CMD_STOP command sends an XOFF character to the hardware device connected
to the serial port. It also sends a logical XOFF character to the current task that originally
dispatched the CMD_READ or CMD_ WRITE command. Both the CMD_STOP and
CMD_START commands will only work if the XON-XOFF protocol is enabled. This hand
shaking mode is the default and can only be overridden by setting the IOExtSer structure
io_SerFlags parameter SERF _XDISABLED bit. XON-XOFF protocol is the only handshak
ing protocol currently supported for the Serial device-it does not support the INQ-ACQ hand
shaking protocol.

Do not confuse the use of CMD_STOP with the use of the character termination
array. CMD_STOP is designed to allow a task to stop an ongoing CMD_READ or
CMD _ WRITE command at any time. These commands could have been dispatched orig
inally with a character termination array designed into the data transfer definition; EOF
characters would stop the data transfer at any predefined character location.

CMD WRITE

purpose of Command
CMD_ WRITE causes a stream of characters to be written from a task-defined buffer, one
at a time, into the Serial device data register and out to an external hardware device con
nected to the serial port. The number of characters is specified in the IOExtSer structure
io_Length parameter; if - 1 is specified, the Serial device will write characters until an
EOF character is written. The system default EOF character is O.

If the io_SerFlags parameter SERF _EOFMODE bit is set, CMD _WRITE will con
tinue to write characters until the first EOF character defined by the IOTArray structure
is encountered in the task-defined buffer data. A CMD_ WRITE command can be termi
nated early if a write error occurs or if an EOF condition is encountered; in this case, the
number of characters written is placed into the IOExtSer structure io_Actual parameter.

CMD_ WRITE can be treated as a synchronous or an asynchronous 110 request. If a
CMD _WRITE command is specified as QuickIO and is unsuccessful, the 110 request
will be replied to the calling task reply-port queue.

The results of command execution are found in the io_Actual and io_Error parame
ters. io_Actual indicates the number of characters actually written. The Serial device
internal routines set this value if an error or an EOF character was encountered during
the writing process. The count does not include the termination character, even though it
is written out to the external hardware device.

THE SERIAL DEVICE I' 57

A 0 value in the io_Error parameter indicates that the command was successful.
Other io_Error values have the following meanings:

• SerErr_DevBusy. The Serial device was busy and could not execute
CMD _ WRITE as requested.

• SerErr_InvParam. A task specified an invalid parameter in the IOExtSer structure
used to defme CMD _ WRITE.

• SerErr_LineErr. There was a line error during the read operation.

• SerErr_NotOpen. The Serial device has not yet been opened in the task, which
should execute OpenDevice and CMD _WRITE again.

• SerErr_InvBaud. The specified baud rate is invalid (usually out of range); change
the task-specified baud rate and dispatch CMD _WRITE again.

• SerErr_ParityErr. A parity error occurred during data transfer; the task should dis
patch CMD _WRITE again.

• SerErr _Timer Err. A timing error occurred during data transfer; the task should
dispatch CMD _WRITE again.

• SerErr_NoDSR. No DSR (data set ready) signal was sent during data transfer; the
task should determine why and dispatch CMD _WRITE again.

• SerErr_NoCTS. No CTS (clear to send) signal was sent during data transfer; the
task should determine why and dispatch CMD _WRITE again.

• SerErr_DetectedBreak. The system detected a queued or immediate break signal
during data transfer; the task should eliminate the break signal and dispatch
CMD _ WRITE again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Serial device unit O. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Also set the following parameters:

• io_Command. Set this to CMD_ WRITE.

• io_Flags. Set this to IOF _QUICK for QuickIO; otherwise, set it to O.

• io_SerFlags. Set this to SERF _EOFMODE if you want CMD _WRITE to con
tinue writing characters until it writes one of the eight possible IOTArray structure
EOF characters.

• io_Length. Set this to the number of characters to send to the serial port. Set it to
- 1 to tell the task to receive characters until an EOF character is read out to the
serial-port data register from the task-defined write buffer.

1 5 BI AMIGA PRO G RAM M l R ' S HANDBOOK

• io_Data. Set this to point to the task's write buffer, which contains the characters
that will be sent to the serial-port data register.

DiScussion
CMD_ WRITE allows a task to send data from a task-defined buffer out to the serial-port
data register and eventually out to external hardware devices connected to the Amiga serial
port. Data is transferred one character at a time. It will continue to be written until the
system detects a 0 character in the data or until it detects a write termination character
defined in the lOT Array structure. A maximum of eight characters can be defined. If the
io_SerFiags SERF _EOFMODE bit is set, the system will continue writing characters
until a termination character is detected in the output stream.

This arrangement allows a task to tailor its write operations to each piece of external
hardware. For example, if a physical device connected to the serial port requires blocks of
data separated by Ctrl-Z characters, the task can define a character termination array consist
ing of eight Ctrl-Z characters. A large task-defmed buffer can then be set up with Ctrl-Z
characters between blocks of data in that buffer. Then, when CMD _ WRITE is executed,
the task will stop writing after each block of data is written out to the external device. The
task can execute a number of CMD _ WRITE commands, and each of these can send a new
block of data out to the external device. The Ctrl-Z characters will also be written, allowing
the external device to properly fonnat its data.

A Serial device input buffer is used for CMD _READ execution, but not for
CMD_ WRITE command execution. For CMD_ WRITE, data passes directly from the task
defined buffer through the Serial device data register and out to the external hardware device.

DEVICE-SPECIFIC COMMANDS

[SDCMD BREAK

purpose of Command
The SDCMD_BREAK command sends a break signal to the serial port line, causing it
to be held electrically low for an extended time. This is accomplished by setting the
UARTBRK bit of the Serial device ADKCON register. A task specifies the time period
by setting the IOExtSer structure io_BrkTime parameter using SDCMD_SETPARAMS.
The default length of the break signal is 250,000 microseconds. After the stated time, the
UARTBRK bit is reset and the break signal is discontinued.

If the IOExtSer structure io_SerFlags SERF _QUEUEDBRK bit is set, the
SDCMD_BREAK request is placed at the bottom of the Serial device unit 0 request

THE SERIAL DEVICE 115 9

queue, and SDCMD_BREAK is executed when it works its way to the top of the queue.
If SERF _QUEUEDBRK is not set, the break signal is started immediately; control
returns to the dispatching task and the timer discontinues the break signal after the speci
fied duration has expired. If the IOExtSer structure io_Flags parameter IOF _QUICK bit
is cleared, the dispatching task will receive a reply when the break signal is completed.

The results of command execution are found in io_Error. A 0 value indicates that the
command was successful. SerErr_InvParam indicates that a task specified an invalid IOExtPar
structure parameter to define the SDCMD_BREAK command. SerErr_NotOpen indicates
that the Serial device has not yet been opened in the task, which should execute OpenDevice
and SDCMD_BREAK again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Serial device unit O. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Also initialize io_Command to
SDCMD_BREAK, and set io_Flags to O.

DiSCUSSion
SDCMD _BREAK allows a task to send a break signal out through the serial port line to
an external hardware device. It can be an immediate-mode command. The actual duration
of the break signal is defined by the IOExtSer structure io_BrkTime parameter, which
can be specified using either the SDCMD_SETPARAMS command or a simple structure
parameter assignment statement. Once the io_BrkTime parameter is initialized, it controls
the break signal duration for all SDCMD_BREAK commands dispatched from then on
or until another value is specified.

If the io_SerFlags SERF _QUEUEDBRK bit is set, SDCMD_BREAK commands
will be queued in the unit 0 request queue and will be executed in the order in which
they were queued. If SERF _QUEUEDBRK is cleared before the SDCMD_BREAK
command is dispatched, the command is executed immediately. In fact, it may interrupt a
currently active command request. When it has finished execution, the interrupted request
will continue where it left otT, provided the I/O request has not been aborted.

Two bits in the IOExtSer structure io_Status parameter report the status of break
signals. Bit 1 reports the break signal sent, and bit 2 reports the break signal received. A
task can always look at these two bits to determine current conditions for break signals in
the system. The dispatching task must properly coordinate its SDCMD_BREAK com
mands with other commands and functions in the Serial device system. You should be
aware that SDCMD_BREAK can interact with AbortIO, CMD_FLUSH, CMD_STOp,
and CMD_START.

1 6 0 I AMIGA PRO G RAM MER . S HANDBOOK

I SDCMD QUERY

purpose of Command
The SDCMD_QUERY command allows a task to determine the current status of the
Serial device internal routines and all hardware involved in the Serial device system. A
task can use SDCMD_QUERY to determine if the Serial device routines are currently
reading or writing to a hardware device-in particular, to a serial modem. The IOExtSer
structure io_Status parameter is kept up-to-date as events in the system change the status
of hardware and software.

SDCMD_QUERY is an immediate-mode command. The results of command execu
tion are found in the io_Error and io_Status parameters. The bits in the IOExtSer structure
io_Status parameter return the values shown previously in Table 6.2. A 0 value in io_Error
indicates that the command was successful. SerErr_InvParam indicates that a task specified
an invalid parameter in the IOExtSer structure used to defme the SDCMD _QUERY com
mand. SerErr_NotOpen indicates that the Serial device has not yet been opened in the task,
which should execute OpenDevice and SDCMD_QUERY again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Serial device unit O. These can always be copied from the IOExtSer structure
initialized by the OpenDevice function call. Also initialize io_Command to
SDCMD_QUERY, and set the io_Flags parameter to O.

DiSCUSSion
The SDCMD_QUERY command was included in the Serial device software system to
allow a task to monitor the internal activity of the Serial device and the external hardware
connected to the serial port. With this command, you can decide what to do next based
on the current status and activity of the Serial device.

SDCMD_QUERY is usually used to monitor the behavior of a modem attached to
the serial port and driven by CMD_READ and CMD_WRITE commands coming from
a task. The task needs to know about the modem's external conditions-if the modem is
currently working with the task, if it is busy sending or receiving data, or if it is experi
encing a data transfer error. The IOExtSer structure io_Status parameter determines the
current status of the modem-task data transfer. In addition, the task must know whether
the Serial device is reading or writing to the external hardware device. This information is
provided by the ten active bits of the io_Status parameter.

THE SERIAL DEVICE I' 6,

I SDCMD SETPARAMS

purpose of Command
SDCMD_SETPARAMS allows a task to set the Serial device parameters. It will only be
successful if there are no active or queued CMD_READ or CMD_ WRITE I/O requests
already dispatched. The only exception to this rule is a SDCMD_SETPARAMS com
mand that attempts to change the handshaking protocol by enabling or disabling the
XON-XOFF protocol using the io_SerFlags SERF _XDISABLED bit.

SDCMD_SETPARAMS is an immediate-mode command. It is usually used when a
task changes IOExtSer structure parameters (io_ExtFlags, io_SerFlags, and io_ TermArray)
before dispatching a CMD _READ or CMD _WRITE command. These parameters can be
initialized or reinitialized with the SDCMD _ SETPARAMS command.

The results of command execution are found in io_Error. 0 indicates that the com
mand was successful. SerErr_InvParam indicates that a task specified an invalid parameter
in the IOExtSer structure used to define SDCMD_SETPARAMS. SerErr_NotOpen indi
cates that the Serial device has not yet been opened in the task; it should execute Open
Device and dispatch SDCMD_SETPARAMS again.

preparation of the IOExtSer Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Serial device unit o. These can always be copied from the IOExtSer structure ini
tialized by the OpenDevice function call. Set io_Command to SDCMD_SETPARAMS.

Also initialize the following parameters:

• io_Flags. Set this to o.
• io_CtlChar. Initialize this to a longword (four bytes) containing byte values for the

XON and XOFF parameters. (INQ and ACK protocol parameters are not used as
of Release 1.2.)

• io_RBufLen. Initialize this to the size of the Serial device internal read buffer.
(This is not the size of the task-defined buffer-io_Data points to that.) The read
buffer must be at least 512 bytes long; otherwise, a buffer overflow error could
occur and the system might crash. Any change in the io_RBufLen parameter
causes the old Serial device internal read buffer to be deallocated and a new, cor
rectly sized buffer to be allocated. Therefore, the contents of the old buffer are lost.

• io_ExtFlags. Set this to 0; it is not used at present.

• io_Baud. Set this to the baud rate used for CMD_READ and CMD_ WRITE
commands. The allowed range is from 110 to 29,200 baud. Asynchronous I/O

1 621 AMIGA PRO G RAM MER'S HANDBOOK

above 32K baud may not be successful, especially on a busy system; the Serial
device may miss bits when task-switching occurs.

• io_BrkTime. Set this to the duration of the break signal in microseconds; the
default value is 250,000 microseconds.

• io_ TermArray. Set this to point to a descending ASCII order 8-byte array of termi
nation characters for the task. This parameter is initialized by a new OpenDevice
function call to reflect the current state and configuration of the Serial device rou
tines only if the SERF _EOFMODE io_SerFlags flag parameter bit is set in the
IOExtSer structure used for the OpenDevice function call.

• io_ReadLen. Set this to the number of bits (1-8) in each word read by the
CMD_READ command. This does not include the parity bit.

• io_ WriteLen. Set this to the number of bits (1-8) in each word written by the
CMD _ WRITE command. This does not include the parity bit.

• io_StopBits. Set this to the number of bits (0, 1, or 2) in each word read or written by
CMD_READ or CMD_ WRITE. The normal value is one stop bit. Two stop bits can
be used for a CMD_READ command if the io_ReadLen parameter is 7.

• io_SerFlags. Set this to SERF_SHARED if you want to open the Serial device in
shared access mode in a subsequent OpenDevice function call; set it to 0 for exclu
sive access mode, the default. Set io_SerFlags to SERF _RAD_BOOGIE to access
the Serial device in high-speed mode. Set io_SerFlags to SERF _EOFMODE if you
want to use a set of task·defined EOF characters to control end-of-file conditions for
CMD_READ and CMD_WRITE commands.

DiSCUSSion

The io_SerFlags parameter bits are always initialized by a new OpenDevice func·
tion call to reflect the current state and configuration of the Serial device internal
routines as determined by the default values or previous parameter settings. The
default values for the io_SerFlags parameter are XON-XOFF enabled, parity check·
ing invoked, 3·WIRE protocol active, and the lOT Array character termination array
inactive.

SDCMD_SETPARAMS allows a task to directly change the Serial device parameters
used by subsequent CMD_READ and CMD_ WRITE command I/O requests. It is usu
ally used to set Serial device parameters before an Open Device function call, or after an
OpenDevice function call but before the next CMD _READ or CMD _ WRITE command
is dispatched. SDCMD_SETPARAMS and the OpenDevice function interact throughout
a task's execution.

SDCMD_SETPARAMS is particularly important in defming characters for terminat
ing a CMD_READ or CMD_ WRITE command I/O request. It allows a task to change

THE SERIAL DEVICE I' 6 3

the current end-of-file character defmition for the next CMD_READ or CMD_ WRITE
command. If a task is dealing with a number of hardware devices with different data char
acteristics (for example, different character-block termination characters), it can change the
current character termination array so that the next CMD_READ or CMD_ WRITE can
relate to the next hardware device with which it wants to communicate.

You can also define a separate task for each Serial device attached to the Amiga's
serial port. Separate character termination arrays would then be specified for each task in
order for it to work with the specific device characteristics and block definitions.

XON-XOFF is the default protocol for data transfers. SERF _XDISABLED is the
only flag parameter bit that can be changed while the Serial device internal routines are
actively processing a CMD_READ or CMD_ WRITE command. If a task changes the
SERF _XDISABLED bit in this way, the CMD _READ or CMD _WRITE IOExtSer
structure will be replied with the io_Error parameter set to SerErr_DevBusy.

Keep in mind that the IOExtSer structure io_SerFlags SERF _EOFMODE and
SERF _QUEUEDBRK flag parameter bits can be set or reset directly without a
SDCMD_SETPARAMS command. The io_SerFlags SERF_SHARED and
SERF _7WIRE bits can also be reinitialized directly using simple structure-parameter
assignment statements before an OpenDevice function call. All other Serial device param
eters can only be changed by sending a SDCMD_SETPARAMS command.

If your task is trying to run an MIDI (musical instrument digital interface), it should
set the io_SerFlags SERF _RAD_BOOGIE bit, which automatically sets the SERF _XDI
SABLED bit to eliminate unneeded data transfer overhead, thereby allowing the fastest
possible data transfer. SERF _RAD_BOOGIE also checks for parity, XOFF parity
character-handling, and specified character lengths other than eight bits. It also tests for a
break signal.

Writing MIDI formatted data at MIDI rates is easily accomplished. However, using
the Serial device routines for MIDI alone may not be reliable because of MIDI time
stamping requirements and data overruns in a busy multitasking system or display envi
ronment, which can steal CPU time away from the Serial device routines and cause data
transfer characters to be missed.

Selecting mark or space parity will cause the SERF_PARTY_ON (parity-checking
enabled) bit to be set and the SERF_PARTY_ODD (odd parity) bit to be ignored.

•• • • •• • • • • ~ •• ~ • • •

THE INPUT DEVICE I' 6 7

[,ntroduction

The Input device automatically merges input events from many sources-from the Key
board, Gameport, Timer, and TrackDisk devices, and from task-defined input events. It
does not process input events; it only merges them into a properly linked input event
stream, which is then passed to a set of input-handler functions defined by the program
mer. The input-handler functions then process the input events.

The Input device is ROM-resident and is loaded when the WCS ROM code and
data are loaded from the Kickstart disk. It is opened automatically if a task executes a call
to open the Console device. When the Input device is opened, the system automatically
starts a task (referred to as the input task), which communicates directly with the appro
priate devices to obtain raw key events, mouse-button and mouse-movement events, timer
events, and disk insertion and removal events.

The input task also communicates directly with a programmer-defined task to merge
any task-defined input events into the total input event stream. When the input task is
operating, it attempts to intercept and coordinate Keyboard, TrackDisk, Timer, and Game
port device input events.

In general, there are three ways to deal with the separate categories of input events. The
first method is to use commands and functions to process distinct input events from each of
the separate sources. The second method is to use a set of prograrnmer-defined input-handler
functions to preprocess the input event stream, as you will see later in this chapter.

The third method is to pass the input event stream to the Console device-or to
Intuition, which can then use an IDCMP to deal with the stream. If you use this method,
you should be aware of what happens to input events if your task does not respond to
them. If there is no currently active window or console unit, the input events (keystrokes
or left mouse-button clicks) will be ignored by Intuition. If your task has opened an Intui
tion window and made it active, and if you choose to let the input events queue without
responding to them, the following will happen:

• Another input event will occur. If the system has no empty InputEvent structure that
it can use to represent the new input event, it will automatically allocate RAM for a
new InputEvent structure, which will be queued in the message port for the task .

• When the task finally responds to the input event, the memory allocated for the Input
Event structure will not be returned to the system free-memory pool until the active
window is closed. Therefore, a task that does not respond to its incoming input events
for a long period of time can remove a great deal of memory from the system. (Of
course, it is wise to program your tasks to respond to input events as quickly as pos
sible to maximize free memory at all times.)

1 681 AMIG. PRO G RAM MER'S HANDBOOK

Operation of the Input Device
Figure 7.1 illustrates the operation of the Input device. As the figure illustrates, the Input
device can merge input from five sources:

• The Keyboard device, which is always open and active, sends the Input device a
continuous stream of keyboard events. Each time a key is pressed, the Keyboard
device generates a new input event for the Input device to process.

• The TrackDisk device, which is always open and active, sends the Input device an
input event every time the user inserts or removes a disk from a disk drive.

• The Timer device, which is always open and active, sends the Input device a con
tinuous stream of input events; these are system times represented by individual
TimeVal structures.

• The Gameport device, if open and active, sends the Input device a continuous
stream of gameport events. Each time the mouse (or another controller) is moved, a
new input event is generated.

• Each task in the system can create a set of InputEvent structures for the Input
device to process; in this way a programmer can, for example, simulate the input
events generated by hardware devices.

The Input device merges input events from these five sources into one input event
stream. Each input event is represented by an InputEvent structure containing a TimeVal
structure characterizing when it was created (in other words, when the input event occurred).
Each new input event is added to the bottom of the input event list. The InputEvent structure
ie_NextEvent parameter links input events together to form the total stream. An input event is
entered into the stream according to the time at which it was generated.

The Input device internal routines link and organize all input events automatically
(except for some task-defined input events, as described in the next section). The merged
stream is then fed to a series of input-handler functions, which filter the stream into vari
ous categories that can be processed by other tasks and routines in the system.

USing Input·Handler Functions
Input-handler functions allow a task to define a set of functions that the Input device soft
ware system automatically uses to preprocess all input events coming into the system. A
task can design its input-processing operations to deal with input events in any way that
accomplishes its goals. For example, an input-handler function could be designed to filter
all keyboard input events and change them into other keyboard input events (to change
A's to B's or B's to A's, for example); note, however, that this specific type of keyboard
preprocessing is usually handled directly by the Keyboard device commands and functions
(see Chapter 9). A programmer could also design an input-handler function to preprocess

Figure 7.1:
Operation of the

Input Device

Disk Inser!iOll/
Removal

Inpu! Even!

nmer
Input
Even!s

Input Device

Combined
Stream of
Inpu! Even!s

Firs! Category of Events ----L_..!;;£!!.~~~:..2._J

Second Category of Events

_

.-~ln~_~P~ri2~-~~~~fu:~--'

Nih Category of Events
_

~~ln~_~p~ri(~N~)C=~~~~~~~~

THE INPUT DEVICE 11 6 9

Task-Defined
Inpu! Even!s

input events coming from a gameport to which equipment other than the standard Amiga
mouse (for example, a digitizer) was connected. Each input-handler function should be
designed to preprocess a specific subset of input events.

Input-handler tunctions are added to the system with the IND_ADDHANDLER
command. An input-handler function is designed within the Exec Interrupt structure
framework, which defines the executable code and the data needed by that code. Each
function is added to the input-handler function list; it will preprocess a prescribed subset
of input events until it is removed by the IND_REMHANDLER command. Because
IND_ADDHANDLER can install an input-handler function at any position in the func
tion list, that function can ignore certain types of input events and also act upon and

17 0 I AMIGA PRO G RAM MER'S HANDBOOK

modify other types of input events in the stream. It can even create new input events for
Intuition or other programs.

An input-handler function is assigned a priority (in the Interrupt structure Node sub
structure In_Pri parameter) when IND_ADDHANDLER adds it to the input-handler func
tion list. This priority determines where the function is positioned in the list. If the priority
parameter is initialized to - 128, the function will be placed at the bottom of the list and
will be the last to preprocess input events. If the priority parameter is initialized to 127, the
input-handler function will be placed at the top of the list and will be the first to preprocess
input events.

Note that the input-handler function for the Intuition software system is placed at
priority 50. Therefore, if you want your task to preprocess keyboard or mouse events (or
other events normally processed by Intuition), you should create an input-handler function
with a priority greater than 50.

At any given time, the current highest -priority input handler has access to the entire
list of input events; it will generally preprocess and therefore eliminate some of these. Input
events that are not preprocessed by the highest-priority input handler are passed on to the
input-handler function with the next-highest priority. This process continues until some or
all input events have been preprocessed and eliminated by the input-handler functions.

Preprocessing is continuous; input events come into the system from the input
sources, and at the same time, the input event stream is being fed to the linked list of
input-handler functions. In addition, tasks can be adding and removing input-handler
functions from the function list in order to preprocess input events properly and to satisfy
their needs. This dynamic and continuously changing process is mostly under the control
of the system and Input device internal routines.

You should always observe the following rules when you design an input
handler function:

• If you want a specific type of input event that has no link to other input events in
the stream (the InputEvent structure ie_NextEvent parameter is null), your input
handler function can end the function list by returning a null value. (Note that this
returned null value is the value returned by the input-handler function, not the
null ie_NextEvent parameter.) No other input event will be sent to lower-priority
input-handler functions in the function list.

• If the input event stream consists of multiple input events linked together, your
input-handler function can be designed to delink an input event from the input
event stream. This is done by passing a shorter list of input events to all lower
priority input-handler functions in the input-handler function list. In this case, the
function should be designed to return the address of the InputEvent structure
defining the first input event in the shorter input event stream. All lower-priority
input-handler functions will then work with the shortened list.

• If you want to add new input events to the stream that your function passes to
lower-priority functions, you can add new InputEvent structures to RAM to define
them. When your function gets control on the next round of input event handling,
it should assume nothing about the current contents of those InputEvent structures;

THE INPUT DEVICE I' 7 ,

higher-priority input-handler functions may have modified them. Your input-handler
function should also keep track of the starting address and the amount of RAM
used for the InputEvent structures. It should free the InputEvent structure memory
blocks so that memory can be returned to the system when it is no longer needed.

I nput Device Commands
You program the Input device with eight device-specific commands; only four standard device
commands are supponed. The command discussions in this chapter indicate which commands
support QuickIO, queued I/O, and immediate-mode operation. All Input device com
mands affect either the IOStdReq or the TimeRequest structure io_Error parameter.

Sending Commands to the Input Device
Figure 7.2 depicts the general scheme used to dispatch commands to the Input device
routines. The lines with arrows represent the parameters you should initialize and also
those returned by the device internal routines.

The Input device programming process consists of three phases:

1. Structure preparation. You have complete control over this phase-here, you initial
ize parameters in the IOStdReq, TimeRequest, and Interrupt structures in prepara
tion for dispatching a command to the Input device internal routines. These
parameters include the usual set of parameters required by most devices. In addi
tion, you must initialize the Interrupt structure is_Data and is_Code pointer
parameters referenced by the IND_ADDHANDLER and IND_REMHANDLER
commands and the tv_Secs and tv_Micros parameters for the IND_SETPERIOD
and IND_SETTHRESH commands. The choice of parameters to initialize
depends on the specific command you plan to send to the Input device. All of
these parameters taken together provide an information path to the data needed by
the Input device routines to process the command.

2. Input device processing. The only pan you play in this phase is to send a command
to the device using the BeginIO, DolO, or SendIO function. Once the function
begins executing, control passes to a mixture of device and system internal routines.

3. Command output parameter processing. The system and Input device routines have
complete control over the values found in these parameters. The results of Input
device command processing have been returned to the task that originally issued
the command. If the I/O request was not QuickIO or immediate-mode, it was pro
cessed when it moved to the top of the Input device request queue. The Input
device then replied and the I/O request was returned to the task reply-port queue
to await the task's processing. If the request was a successful QuickIO, it was not
queued in the task reply-pon queue but came back directly to the requesting task
with the io_Flags 10F_QUICK bit still set. These five parameters still direct you
to appropriate data for your task.

17 21 AMIGA PRO G RAM MER . S HANDBOOK

Figure 7.2:
Input Device

Command and
Function

Processing

General
device

IOStdReq
structure

parameters

siru

stru

Preparation of
10StdReq
Structure

Outputs of
Commond Of Function

Processing

~ ~

} ;::~eal

IOF ()JICK I

Interrupt {_
cture parameters

TimeRequest { dure parameters

mn Re;>I',Port io~evice

io Oe'lice Input Device Internal Routines io Unit
io Unit io Error

io Command
10Jlo s BeginlO, DolO, or SendlO
io Data sends command, or

io len th functions initiate
Input device internal

is_Cadet routine servicmg
is Dato' IiUlpenCnt

unit _UpenCnt
Iv Sees ..

tv~icros.'

• O1ly to(AddHondler and RemHandler commands
.. Only for SetPeriod ond Set Thresh commands

IOStdReq
structure
parameters

De'Jice structure parameter
Unit structure parameter

The device internal routines do not directly return any output structure parameters
for any of the Input device commands. You can contrast this to other device commands,
most of which do return values.

Figure 7.2 also depicts the parameters that playa part in Input device function setup
and processing. The OpenDevice and CloseDevice functions both affect the unit_ OpenCnt
parameter and lib_OpenCnt parameter in the Unit and Device structures; OpenDevice also
affects the io_Error parameter and returns an io_Error value.

Structures for the Input Device
Figure 7.3 illustrates the structures required to operate the Input device. The Input device
deals directly only with the InputEvent structure. However, the IOStdReq, TimeRequest,
and Interrupt structures are used to define information necessary for some Input device
uses, so they are included in the figure and in this discussion.

The InputEvent structure defines the characteristics of the input events. It contains
two substructures: ie_xy, which is actually defined in the InputEvent structure, and a
TimeVal structure named ie_TimeStamp, which is used to record the time at which the
input event occurred. To save memory, the InputEvent structure contains a union that
holds position or address information required to characterize the input event. (The Input
device system may queue a great number of input events before it can process them; any
savings in memory can prevent a memory overrun from occurring.) The InputEvent struc
ture also contains the ie_NextEvent pointer, which points to the next input event in a
linked list. For example, if mouse movements generate a large number of input events,
they will be maintained in a linked list using this pointer.

The Interrupt structure is usually used to defme a software interrupt in the Amiga
system. For the Input device, it is used by the IND_ADDHANDLER and
IND_REMHANDLER commands to describe a new input-handler function. The

Figure 7.3:
Input Device

Structures

is_Code

is_Data

InputEvent Structure

ie_Addrl
ie_Position UNION I ie xy Structure

I TimeVal Structure I (ie_ TimeStamp)

t ie_NextEvent

Interrupt Structure

I Node Structure I
TimeRequest Structure

I loRequest Structure I
(tr _Node)

I TimeVal Structure I
(tr_Time)

THE INPUT DEVICE I' 7 3

is_Code and is_Data parameters define the code and data used by an input-handler func
tion when it preprocesses input events before passing them on to other input-handler
functions. For standard Input device commands, the IOStdReq structure is used to define
I/O requests.

The TimeRequest structure consists of an 10Request substrucrure and a TimeVal
substructure. It is used as the I/O request structure for the IND _SETPERIOD and
IND _SETTHRESH commands to set the characteristics of the Amiga keyboard; see
Chapter 13 for a full discussion.

The InputEvent Structure
The InputEvent structure is defined as follows:

struct InputEvent {
struct InputEvent *ie_NextEvent;
UBYTE ie_Class;
UBYTE ie_SubClass;
UWORD ie_Code;
UWORD ie_Qualifier;
union {
struct {

1 741 AMIGA PRO G RAM M l R ' S HANDBOOK

} ;

WORD ie_x;
WORD ie_y;

} ie_xy;
APTR ie_addr;
} ie_position;
struct TimeVal ie_TimeStamp;

The InputEvent parameters have the following meanings:

• ie_NextEvent points to an InputEvent structure representing the next input event in
the linked list. This is the next event chronologically, no matter where it originated.

• ie_Class is the class of the input event.

• ie_SubClass is the subclass of the input event (optional).

• ie_Code is the input event code.

• ie_Qualifier represents all input event qualifiers currently in effect; they are dis
cussed below.

• ie_x is the X position of the mouse pointer in the window when the mouse input
event occurs.

• ieJ is the Y position of the mouse pointer in the window when the mouse input
event occurs.

• ie_xy is the name of the mouse position substructure in the ie-rosition union.

• ie_addr is the address of the input event.

• ie_position is the name of the InputEvent structure union.

• ie_TimeStamp is the name of a TimeVal substructure inside the InputEvent struc
ture; it stores the timestamp (time of occurrence) of the input event.

The input event qualifiers (found in the ie_Qualifier parameter) describe the following
input events:

• IEQUALIFIER_LSHIFT. The left Shift key was pressed.

• IEQUALIFIER_RSHIFT. The right Shift key was pressed.

• IEQUALIFIER_CAPSLOCK. The Caps Lock key was pressed.

• IEQUALIFIER_CONTROL. The Ctr! key was pressed.

• IEQUALIFIER_LALT. The left Alt key was pressed.

• IEQUALIFIER_RALT. The right Alt key was pressed.

• IEQUALIFIER_LCOMMAND. The left Amiga key was pressed.

THE INPUT DEVICE 1'75

• IEQUALIFIER_RCOMMAND. The right Amiga key was pressed.

• IEQUALIFIER_NUMERICPAD. A numeric pad key was pressed.

• IEQUALIFIER_REPEAT. The previous keyboard input event was repeated.

• IEQUALIFIER_INTERRUPT. A system interrupt occurred.

• IEQUALIFIER_MULTIBROADCAST. The event will be sent to all open Intui
tion windows, not just the currently active window.

• IEQUALIFIER_LBUTTON. The left mouse button was pressed.

• IEQUALIFIER_RBUTTON. The right mouse button was pressed.

• IEQUALIFIER_MBUTTON. The middle mouse button was pressed. (This is not
available on the standard Amiga mouse.)

• IECLASS_RELATIVEMOUSE. The mouse coordinates are relative positions, not
absolute positions.

For more information on input event classes, codes, and qualifiers, see the Inputevent.h
INCLUDE file.

USE OF FUNCTIONS

I CloseDevice

Syntax of Function Call
CloseDevice (iOStdReq)

A1

purpose of Function
This function closes access to Input Device unit o. If this is the last CloseDevice function
call for the Input device and the Console device is also closed, the Timer, Keyboard, and
Gameport devices will also be closed by it. CloseDevice also decrements the Device struc
ture lib_OpenCnt parameter and the Unit structure unicOpenCnt parameter, reducing each
by 1. If a deferred expunge for the Input device is pending, its routines are expunged from
ROM as soon as these parameters are reduced to 0 and CloseDevice returns.

When CloseDevice returns, the current task cannot use the Input device until it exe
cutes another OpenDevice function call or until the Console device is opened in the same
task. Current Input device parameters are saved for the next call to OpenDevice.

17 &1 AMIGA PRO G RAM MER'S HANDBOOK

I nputs to Function
iOStdReq A pointer to an IOStdReq structure

DiScussion
Close Device provides a way to terminate access to a set of device routines. Because unit 0
is the only valid unit of the Input device, the Close Device function always closes access to
the device as a whole in the current task.

The Input device is a shared access mode device; a number of tasks can access it at
one time. However, to conserve system memory, you may decide to have each task that
opens the Input device call CloseDevice before another task calls OpenDevice.

A task should verify that all of its I/O requests have been replied by the Input device
routines before it calls CloseDevice. It can do so by examining the task reply-port queue
to find all replied I/O requests and using the GetMsg, Remove, CheckIO, and WaitIO
functions to see what I/O requests are currently in the queue.

CloseDevice also closes the Timer, Keyboard, and Gameport devices in the current
task automatically. However, since they are all shared access mode devices, they can
remain open in other tasks that have either opened them explicitly with OpenDevice or
opened them indirectly through the Input or Console device.

The system input task opens the Input device as part of the machine startup
sequence. If the system closes the Input device, input events cannot be processed; the
machine will not respond to any keyboard or gameport events.

I O~enDevice

Syntax of Function Call
error = Open Device ("input. device", 0,
DO AO DO

purpose of Function

iOStdReq, 0)
A1 D1

This function opens access to the internal routines of Input device unit O. It also opens
the Timer, Gameport, and Keyboard devices if they have not already been opened in the
task. The Input device is always opened in shared access mode.

OpenDevice increments the Device structure lib_OpenCnt parameter and the Unit
structure unit_OpenCnt parameter, thereby preventing a deferred expunge of the Input

THE INPUT DEVICE I' 7 7

device. It requires a properly initialized mn_ReplyPort parameter with a task signal bit
allocated to that message reply port if the calling task wants to be signaled. The results of
function execution are as follows:

• io_Device. This points to a device structure that manages Input device unit ° once
it is opened.

• io_Unit. This points to a Unit structure used to define and manage a MsgPort
structure for Input device unit 0. The MsgPort structure represents the device
request queue.

• io_Error. A ° value indicates that the requested open succeeded. IOERR_OPEN
FAIL indicates that the Input device could not be opened; this is usually caused by
lack of memory.

I nputs to Function
"input.device" A pointer to a null-terminated string representing the name

of the Input device

o The Input device unit number

iOStdReq A pointer to an IOStdReq structure

o Indicates that the flags argument is not used

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port. Initialize
all other parameters to 0, or copy them from an IOStdReq structure from a previous
OpenDevice call. Set io_Command to 0, or set it to IND_ WRITE EVENT if the task
should open the Input device and dispatch an IND_ WRITE EVENT request immediately.

If the CreateStdIO function is used to create the IOStdReq structure, it will automatically
return a pointer to an IOStdReq structure; for the Input device, no typecasting is necessary.

DiSCUSSion
OpenDevice can be called with appropriate parameters to open the Input device and to
initialize parameters to define an IND _ WRITE EVENT command. Once a task owns the
Input device, it can dispatch a series of IND _ WRITEEVENT commands (with BeginIO,
DolO, or SendIO) to define its own input events to the Input device internal routines.

17 81 AMIGA PRO G RAM MER'S HANDBOOK

SlANDARD DEVICE COMMANDS

I CMD FLUSH

purpose of Command
The CMD_FLUSH command aborts all queued command requests currently in the
Input device request queue; active Input device command requests are not affected. All
aborted I/O requests are replied to the task reply-port queue with the io_Error IOERR
_ABORTED bit set.

CMD_FLUSH is always executed as an immediate-mode command. The results of
command execution are found in io_Error, where 0 indicates that the command was suc
cessful. IOERR_NOCMD indicates that the task specified the io_Command parameter
incorrectly; IOERR_ABORTED indicates that the specified command was aborted with
Abort_IO or CMD_FLUSH.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit O. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Also initialize io_ Command to
CMD_FLUSH and set io_Flags to o.

DiSCUSSion
The CMD_FLUSH command flushes all currently pending command requests from the
unit 0 device request queue. Because it is a destructive command, you should use it only
if you want to restore the system to some known state with an empty Input device
request queue. CMD _ FLUSH does not directly affect the state of task reply-port queue,
in which previously replied command requests may be queued.

I CMD RESET

purpose of Command
CMD _RESET resets unit 0, returning all Input device internal parameters and flag
parameter bits to their default values. CMD _RESET aborts all active and queued 110

THE INPUT DEVICE 11 7 g

requests for unit 0 and calls CMD_START to start the unit if it was stopped previously
with CMD_STOP. All aborted I/O requests are replied to the task reply-port queue with
the io_Error IOERR_ABORTED bit set.

CMD _RESET is always executed as an inunediate-mode command. The results of com
mand execution are found in io_Error, where 0 indicates that the command was successful.
IOERR_NOCMD indicates that the task specified the io_Command parameter incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit O. These can always be copied from the IOStdReq struc
ture initialized by the Open Device function call. Also initialize io_ Command to
CMD_RESET and set io_Flags to O.

DiSCUSSion
CMD_RESET is a destructive command. It calls CMD_FLUSH indirectly, thereby
flushing all of the queued command I/O requests in the unit 0 device request queue. It
also stops all current command I/O requests.

I CMD START

purpose of Command
If unit 0 was previously stopped by the CMD_STOP command, CMD_START restarts it,
including any command that was stopped in the middle of its activity and the first com
mand at the top of the unit 0 device request queue when CMD_STOP was dispatched.

CMD_START is always executed as an immediate-mode command. The results of
command execution are found in io_Error, where 0 indicates that the command was suc
cessful. IOERR_NOCMD indicates that the task specified the io_Command parameter
incorrectly. IOERR_ABORTED indicates that the specified command was aborted with
AbortIO or CMD_FLUSH.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures

18 0 I AMIGA PRO G RAM MER'S HANDBOOk

that manage Input device unit o. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Also initialize io _Command to CMD
_START and set io_Flags to o.

DiScussion

CMD STOP

CMD_START is similar to the Ctrl-Q command used to restart screen output on most
computers-it restarts execution of commands previously stopped by the CMD_STOP
command, just as Ctrl-Q restarts screen output previously stopped with Ctrl-S. Just as
Ctrl-Q starts to display additional files on the screen if the user has typed file-display com
mands, CMD_START starts the processing of queued 110 requests.

purpose of Command
The CMD_STOP command stops command execution immediately. It also prevents the
Input device routines from executing any queued command 110 requests. Once unit 0 is
stopped by CMD_STOp, the system automatically queues command 110 requests dis
patched to unit 0 until CMD_START restarts it.

CMD _STOP is always executed as an immediate-mode command. The results of
command execution are found in io_Error, where 0 indicates that the command was suc
cessful. IOERR_NOCMD indicates that the task specified the io_Command parameter
incorrectly. IOERR_ABORTED indicates that the specified command was aborted with
AbortIO or CMD_FLUSH.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit o. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Also initialize io _Command to CMD
_STOP and set io_Flags to O.

DiSCUSSion
The CMD_STOP command stops the execution of a command. It is similar to the Ctrl-S
command used for screen output on most computers; it stops an executing unit 0 I/O
request commands at the earliest possible opportunity.

THE INPUT DEVICE 11 81

DEVICE-SPECIFIC COMMANDS

liND ADDHANDLER

purpose of Command
The IND_ADDHANDLER command adds a new input-handler function to the list of
input-handler functions that preprocess input events before they are sent to task-specific
routines for further processing. The results of command execution are found in io_Error;
o indicates that the command was successful. IOERR_NOCMD indicates that the task
specified the io_Command parameter incorrectly. IOERR_ABORTED indicates that the
specified command was aborted with AbortIO or CMD _FLUSH.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit o. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Also set io_Command to IND_ADD
HANDLER and set io_Flags to O.

Initialize io_Data to point to an Interrupt structure representing the new input
handler function you want to add to the input-handler function list. Design the Interrupt
structure so that its is_Code parameter points to the preprocessing code for the new input
handler and its is_Data parameter points to the input event data used by the preprocess
ing code. The is_Data parameter is the same as the handlerData parameter in the
HandlerFunction function call.

DiSCUSSion
IND_ADDHANDLER adds a new input-handler function to the system input-handler
function list. Once added, the new function is called by a task in the following manner:

newlnputEvent = HandlerFunction (oldlnputEvent, handlerData)

HandlerFunction is the name of the new input-handler function and provides its entry point;
oldInputEvent points to an InputEvent structure representing the first input event to be pre
processed by the new function; and handler Data points to the data used by the new function
(note that this is the same as the Interrupt structure is_Data parameter). The newInput
Event pointer points to an InputEvent structure representing the first input event to be pre
processed by the next input-handler function in the list. The HandlerFunction function

1 B 21 AMIGA PRO G RAM MER'S HANDBOOK

should be designed so that the newInputEvent parameter is returned when it has finished
preprocessing all of its input events.

When a specific HandlerFunction function returns a null value, it indicates that all
input events in the input event chain have been preprocessed by it. Lower-priority input
handler functions can preprocess the remaining input events in the input event stream.

lIND REMHANDLER

purpose of Command
The IND_REMHANDLER command removes an input-handler function from the input
handler function list. The removed function was previously added to the function list with
IND_ADDHANDLER and was used to preprocess input events before they were passed to
other task routines; once removed, the function can no longer preprocess input events.

The results of command execution are found in io_Error, where 0 indicates that the
command was successful. IOERR_NOCMD indicates that the task specified the io_Com
mand parameter incorrectly. IOERR_ABORTED indicates that the specified command was
aborted with AbortIO or CMD_FLUSH.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit O. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Also initialize io_ Command to
IND_REMHANDLER and set io_Flags to O.

Initialize io_Data to point to an Interrupt structure representing the input handler
you want to remove from the system. This Interrupt structure was originally designed
with the is_Code parameter pointing to the interrupt code for the new function and the
is_Data parameter pointing to the data used by the input-handler function.

DiSCUSSion
IND_REMHANDLER removes an input-handler function from the input-handler function
list. Both IND_ADDHANDLER and IND_REMHANDLER work with the Interrupt
structure to represent the code and data required to defme the input-handler function. Once
removed, that particular function cannot be used to preprocess input events.

THE INPUT DEVICE 1183

lIND SETMPORT

purpose of Command
The IND_SETMPORT command allows a task to specify the gameport to which the
mouse is currently connected. The IOStdReq structure io_Data parameter is used to point
to a byte stored in RAM that tells the task which gameport has the mouse. If the byte is
0, the mouse is connected to the left gameport connector; if it is 1, the mouse is con
nected to the right gameport connector.

The results of command execution are found in io_Error, where 0 indicates that the
command was successful. IOERR_NOCMD indicates that the task specified the io_Com
mand parameter incorrectly, and IOERR_ABORTED indicates that the specified command
was aborted with AbortIO or CMD_FLUSH. IOERR_BADLENGTH indicates that the
task specified the io_Length parameter incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Input device unit O. These can always be copied from the IOStdReq structure ini
tialized by the OpenDevice function call. Also set io_Command to IND_SETMPORT.

Initialize io_Flags to IOF _QUICK for QuickIO; otherwise, set it to O. Initialize
io_Length to a value of 1. Initialize io_Data to point to a byte value stored in RAM-O
if mouse inputs are to be obtained from the left (front) connector or 1 if they are to be
obtained from the right (rear) gameport connector.

DiSCUSSion
IND_SETMPORT allows a task to specity which gameport connector the mouse is con
nected to. The mouse is usually connected to the left gameport connector, which is nearest
to the front of the Amiga. However, because of other hardware requirements in the system,
you may want to connect the mouse to the right gameport connector. If the mouse is physi
cally moved, any program depending on the mouse must look for mouse input from the
new location.

Your program could also instruct the user to plug the mouse into another connector
in order to accommodate other hardware requirements of the system-it can, for example,
display an Intuition requester that tells the user to plug the mouse into another gameport
connector. At the same time it can send the IND_SETMPORT command to the system
so that it will look for mouse input from the new location.

1 841 AMIGA PRO G RAM MER'S HANDBOOK

liND SETMTRIG

purpose of Command
The IND_SETMTRIG command establishes the mouse input trigger conditions that must
occur before a pending Gameport device ReadEvent command can be satisfied. The results
of command execution are found in io_Error, where 0 indicates that the command was suc
cessful. IOERR_NOCMD indicates that the task specified the io_Command parameter
incorrectly. IOERR_ABORTED indicates that the specified command was aborted with
AbortIO or CMD_FLUSH, and IOERR_BADLENGTH indicates that the task specified
the io_Length parameter incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit o. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Set io_Command to IND_SETMTRIG.

Set io_Flags to IOF _QUICK for QuickIO; otherwise, set it to o. Set io_Length to
the size of the GameportTrigger structure; a task can use the C language sizeof operator
to initialize this parameter. Set io_Data to point to a GameportTrigger structure.

DiSCUSSion
IND_SETMTRIG sets the trigger conditions to which the Gameport device ReadEvent com
mand refers in order to determine if mouse movement parameters have changed sufficiently to
cause a valid input event. Further details on the ReadEvent command and the Gameport
Trigger structure are presented in Chapter 10, which discusses the Gameport device.

liND SETMTYPE

purpose of Command
The IND_SETMTYPE command allows a task to establish the type of device at the mouse
connector so that gameport signals coming from that connector may be properly interpreted by

THE INPUT DEVICE 1185

the Amiga hardware and the mouse management task. The IOStdReq structure io_Data
parameter points to a byte stored in RAM, which tells the task the type of device currently
connected to the mouse connector.

The results of command execution are found in io_Error; 0 indicates that the com
mand was successful. IOERR_NOCMD indicates that the task specified the io_Command
parameter incorrectly. IOERR_ABORTED indicates that the specified command was
aborted with Abort_IO or CMD_FLUSH, and IOERR_BADLENGTH indicates that the
task specified the io_Length parameter incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage Input device unit o. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Also initialize io_Command to
IND_SETMTYPE.

Initialize io_Flags to IOF _QUICK if you want QuickIO; otherwise, set it to o. Ini
tialize io_Length to a value of 1. Set io_Data to point to a byte value stored in RAM.
The meanings of the byte values are as follows:

• If the byte is 0, the connected device is currently allocated to another task.

• If the byte is 1, the connected device is not a controller type that the Amiga under
stands.

• If the byte is 2, the connected device is a normal Amiga mouse device.

• If the byte is 3, the connected device is a relative joystick device.

• If the byte is 4, the connected device is an absolute joystick device.

DiSCUSSion
IND_SETMTYPE tells the task which type of device is currently connected to the
mouse connector, allowing a task and the user to interact when a device is changed at that
connector. A task can build an Intuition requester to ask the user to select the type of
device installed at the connector. The task can then take this user input and use
IND_SETMTYPE to set the device type. Then, later in the program, that task or
another can ask the user to select (or verify) the type of device connected. If the device
has changed, the current task can once again use IND_SETMTYPE to change the cur·
rent device type.

The types of devices are defined in the Gameport.h INCLUDE file. The values used
for these parameters are GPCT_ALLOCATED, GPCT_NOCONTROLLER, GPCT
_MOUSE, GPCT_RELJOYSTICK, and GPCT_ABSJOYSTICK; they correspond to
the byte values 0-4. See Chapter 10 for more on these values.

1 8 &1 .MIG. PRO G RAM MER'S HANDBOOK

liND SETPERIOD

purpose of Command
The IND_SETPERIOD command establishes the time interval at which a key repeats its
input. If a key is held down longer than the time period established by IND_SET
THRESH, a new keyboard input event is sent to the Input device internal routines. Addi
tional input events are sent at the time interval established by IND_SETPERIOD. This
time period applies to all keyboard keys and stays in effect until it is changed by another
IND_SETPERIOD command.

IND _SETPERIOD always operates as an immediate-mode command. The results of
command execution are found in io_Error, where 0 indicates that the command was suc
cessful. IOERR_NOCMD indicates that the task specified the io_Command parameter
incorrectly. IOERR_ABORTED indicates that the specified command was aborted with
AbortIO or CMD_FLUSH.

preparation of the TimeRequest Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit o. These can always be copied from the TimeRequest
structure initialized by the OpenDevice function call. Set io_Command to IND _SET
PERIOD and set io_Flags to O.

Also initialize the following command-specific parameters:

• tv_Sees. Initialize this to the first component of the key repeat period. This component
is measured in seconds; it can be modified from the Intuition Preferences screen.

• tv_Micros. Initialize this to the second component of the key repeat period. This
component is measured in microseconds; it too can be modified from the Intuition
Preferences screen.

DiSCUSSion
The IND_SETPERIOD command enables a task to specifY how much time will elapse
between key input events to the Input device internal routines. For example, if a task wants
to ignore keyboard input events temporarily, it can set tv_Secs and tv_Micros to values that
represent a very long interval. Then, no matter how long the user holds down a key, the
Input device internal routines will not receive another keyboard input event. If a task
wanted the keyboard keys to repeat very quickly, it could set tv_Secs to 0 and tv_Micros to
a very small value.

THE INPUT DEVICE 11 8 7

The IND_SETPERIOD and IND_SETTHRESH commands allow a task to specify
how it will deal with keyboard input events from the user. These commands are usually
dispatched by Intuition, and their default values are represented by TimeVal substructures
in the Intuition Preferences structure; they can be indirectly executed by making choices
from the Intuition Preferences screen. Both commands use the TimeRequest structure to
specify their I/O requests to the Input device internal routines.

liND SETTHRESH

purpose of Command
The IND_SETTHRESH command establishes the threshhold time period after which a
keyboard key will be considered to repeat its input for the first time. This value stays in
effect until changed by another IND_SETTHRESH command. The time period applies
to all keyboard keys. IND_SETTHRESH always operates as an immediate-mode com
mand, and the results of command execution are found in io_Error. A 0 value indicates
that the command was successful. IOERR_NOCMD indicates that the task specified the
io_Command parameter incorrectly, and IOERR_ABORTED indicates that the specified
command was aborted with AbortIO or CMD_FLUSH.

preparation of the IOStdReq Structure
Initialize rnn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage Input device unit o. These can always be copied from the TimeRequest structure
initialized by the OpenDevice function call. Set io_Command to IND_SETTHRESH, and
set io_Flags to o. Also, initialize the following command-specific parameters:

• tv_Secs. Initialize this to the key repeat period. This component is measured in
seconds; it can be modified from the Intuition Preferences screen .

• tv_Micros. Initialize this to the key repeat period. This component is measured in
microseconds; it too can be modified from the Intuition Preferences screen.

DiSCUSSion
IND_SETTHRESH allows a task to establish a time-period threshhold after which a key
that is continuously held down will be considered to repeat its input, thus producing
another keyboard input event. When the key is held down for longer than this threshhold,

1 8 81 AMIGA PRO G RAM MER'S HANDBOOK

the key repeat values established by the last IND _SETPERIOD command determine the
time period between subsequent keyboard input events.

IND_SETPERIOD and IND_SETTHRESH are usually issued by Intuition. Their
default values are represented as Time Val substructures in the Intuition Preferences struc
ture and can be indirectly executed from the Intuition Preferences screen. Both commands
use the TimeRequest structure to specifY their I/O requests to the Input device routines.

lIND WRITEEVENT

purpose of Command
The IND _ WRITE EVENT command allows a task to define its own input events and to
add them to the input event stream, which will then consist of a set of task-defined input
events interspersed with Keyboard, Gameport, and Timer device input events, as well as
disk insertion and removal events. IND _ WRITE EVENT uses the IOStdReq structure
io_Length and io_Data parameters to specify the RAM location of the InputEvent struc
tures representing a series of input events. The entire buffer is io_Length bytes in length;
its size is determined by the number of InputEvent structures.

IND _ WRITEEVENT is always treated as a synchronous I/O request and always
replies to the task reply-port queue if the IOF _QUICK bit is not set. The results of com
mand execution are found in io_Error, where 0 indicates that the command was success
ful. IOERR_NOCMD indicates that the task specified the io_Command parameter
incorrectly, and IOERR_ABORTED indicates that the specified command was aborted
with AbortIO or CMD_FLUSH. IOERR_BADLENGTH indicates that the task speci
fied the io_Length parameter incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Input device unit O. These can always be copied from the IOStdReq struc
ture initialized by the OpenDevice function call. Set io_Command to IND_ WRITE
EVENT; set io_Flags to 0 or to IOF _QUICK for QuickIO. Also, initialize the following
command-specific parameters:

• io _Length. Initialize this to the size of the input event buffer, which is the number
of InputEvent structures times the size of each InputEvent structure. A task can
used the C language sizeof operator to determine the number of bytes in the buffer.

THE INPUT DEVICE 11 8 9

• io_Data. Initialize this to point to a RAM butTer area that will contain a series of
InputEvent structures representing the new input events that will be passed to the
Input device for processing.

DiSCUSSion
The IND _ WRITEEVENT command allows a task to add its own input events to an
event stream. You may find this useful to simulate the keyboard, the timer, or a mouse
without dealing directly with their input events; you can also use this command to debug
a complicated program that deals with these devices. In other cases, you may find it use
ful to construct a set of input events for a number of uses in one or more tasks.

••
•• • • • • • •• • •• .. .

•• • •

The Console Device

THE CONSOLE DEVICE 11 93

I Introduction

The Console device is used to send data to an Intuition window or to receive input from
the Amiga keyboard, game port connectors, or disk drives. It also opens the Input device
automatically, which in turn opens the Keyboard, Gameport, and Timer devices automati
cally. Input events coming to the Console device usually originate with these other
devices. The Console device is one of the input handlers that process input events. It is
positioned at priority 0 in the input-handler function list described in Chapter 7.

Unlike other Amiga devices, the Console device does not work with the Unit structure;
instead, it works with the ConUnit structure, which enables a task to represent a connection
to the Console device internal routines through its MsgPort substructure and a connection to
an Intuition window and the Intuition internal routines through its cu_ Window parameter.

Operation of the Console Device
Figure 8.1 shows the general operation of the Console device. A task can read characters
from the Amiga keyboard while also writing ASCII characters and screen control charac
ters to an Intuition window. The figure shows how a task receives information from the
disk system, the Amiga keyboard, and the mouse, and where that information goes.

A Console device unit is automatically associated with an I~tuition window by the
OpenDevice call that opens it. OpenDevice initializes a ConUnit structure to tie together
the MsgPort structure and the Intuition Window structure. The device-unit request queue
is managed by the ConUnit structure MsgPort substructure, and each Intuition window is
managed by an Intuition Window structure. The Con Unit structure is the medium of
communication between the Console device internal routines and the Intuition internal
routines.

A task that needs to use the Console device internal routines to process mouse, key
board, or gameport input events should establish a separate task reply-port queue for
queuing replied CMD_READ commands. In order for the Console device to communi
cate with an Intuition window, it should also establish a separate task reply port for queu
ing replied CMD _ WRITE commands. In addition, if the task needs to dispatch any other
Console device commands, it should set up a third task reply port. The Exec-support
library CreatePort function should be used to create these ports.

Read-Write Operations for the Console Device
Figure 8.2 illustrates the general operation of the Console device for write operations.
Each CMD _ WRITE command dispatched to the Console device internal routines sends
either a set of ASCII characters or a set of screen control characters to a Console device
unit Intuition window.

Each open Console device unit is always tied to an Intuition window, which acts like
an enhanced ASCII terminal. It obeys many of the standard ANSI screen control-code
(escape-character) sequences, as well as additional sequences unique to the Amiga. The

1 941 AMIGA PRO G RAM MER' S HANDBOOK

Figure 8.1:
Operation of the
Console Device

User Moves and l Window I Resizes Window

E TrackDisk I Intuition Display
<V

]-r-- Device

-"
In ternal Window control info; I I Window

"' Routines Write characters status info. 0 - -.... - merged Console Device Internal Routines
~ Keyboard Input

input 0 Device Device -R-- Internal -- Internal Device Internal --<V

'" Routines Routines Read Buffer - -

.-r

0-
,-- I

Gameport

• Device
Internal
Routines Device Unit Request Queue

(all requests)

Reo~ f Write Othe~ t
Requests Requests Requests

Task Statements

Task-Defined Task-Defined
- -- Read Write - f-

Buffer Buffer

• • • Read I Write I Other
Commands

Reply Port Reply Port Reply Port

t I

open Console device unit can also send an ASCII character stream to its associated Intui
tion window, which becomes the text the user sees in the window. It is the responsibility
of each task to define the information in its task-defined write buffers before a
CMD _ WRITE command is dispatched.

The relationship between the Console device internal routines and the Intuition inter
nal routines is shown in the lower half of Figure 8.2. The set of arrows between the Con
Unit structure and the Intuition internal routines represents the information transfer path.

Each Console device unit Intuition window is positioned initially with its upper-left
corner at pixel coordinates (11,11). The Intuition software system internal routines keep
track of the continuously changing size and location of each window and automatically sup
ply and update that information in a set of 14 ConUnit structure parameters.

Figure 8.2:
Write

Operations

for the

Console

Device

Tasks Console Device
ASCII Character

. Unit Write
Buffer

Screen Control

Each task
Sequence

controls
Console device r-

unit write
buffers

ia_lengtht tio_Data

Console Device
cu Ke>MaDStruct

ConUnit
Internol Structure
Routines

cu Window

specify current communication
keymap. Intuition medium between

window, and Console device
Console device cu MP internal routines,
unit message and Intuition

part internal routines

current state
of window

THE CONSOLE DEVICE 11 9 5

Am iga Display Screen

'11,11)

I Console Window I I
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXX

~
current cursor position

cu XCP
cu yep
cu XMox
cu YMax
cu XRSize
cu YRSize
cu XROri in
cu YROri in
cu XRExtant
cu YRExtant
cu XMinShrink
cu YMinShrink
cu XCCP
cu YCCP

15 Rastporl
structure
parameters
(not shown)

current pointer position ,
f

Current BOrm Margin

Intuition
Internal

RouLnes

initialize and
continuousl y

update Con Unit
structure

parameters

I

c

~
"

-~-
]

This allows a task and the Console device internal routines to monitor the current
state of the window. These parameters are in addition to the 15 RastPort structure param
eters that the Intuition system initializes and updates. A task can read the 14 Con Unit
structure parameters but cannot write (change) them. The Console device internal routines
use these parameters to determine how to place text into the Intuition window. Window
manipulations by the user are often the cause of parameter changes.

The Console device routines receive information from the task through the message
port defined by the ConUnit structure cu_MP MsgPort substructure, which represents
the message port where a task can queue CMD_READ, CMD_ WRITE, and other 110
requests for processing by the Console device internal routines. The ConUnit cu_ Window
parameter is provided as input to the Open Device function call when the Console device
unit is first opened. The cu_KeyMapStruct parameter represents the name of the current
KeyMap structure used for key mapping during CMD_READ processing,

Figure 8,3 illustrates the general operation of the Console device for read operations.
Each CMD_READ command dispatched to the Console device routines reads one of the

1961 AMIGA PRO G RAM MER'S HANDBOOK

following into a task-defined read buffer from the Console device internal read buffer:

• A continuous byte stream of ANSI 3.64 characters coming from the Amiga key
board indirectly through the Keyboard device and Input device internal routines.
This stream may contain ASCII characters or raw input event information.

• A continuous mouse input stream coming from the Amiga mouse indirectly
through the Gameport and Input device internal routines because of a user's mouse
actions in an Intuition window.

• A disk insertion or removal input event coming from the TrackDisk device and Input
device internal routines indirectly when a user changes the disk in a disk drive.

The Console device can deal with two kinds of input events: raw and preprocessed.
A music program, for example, may want to deal with keyboard input events as raw
events, with no keymapping or raw code translation, whereas a text program may want to
deal with keyboard input events after they have been preprocessed into ASCII and escape
character sequences.

All three categories of input events can be either raw or preprocessed, depending on
the setting of the SRE (set raw events) and RRE (reset raw events) parameters. Each
input event was originally represented as an InputEvent structure; the input events were
merged by the Input device routines before reaching the Console device. See Chapter 7
for further details on this operation.

The event stream coming from the keyboard can be preprocessed by a key map
before its individual characters are sent to the Console device internal read buffer. The
key map changes (maps) each character into another character or string of characters; these
are then read into the task-defined buffer for further processing. The system provides a
default key map (standard United States), or a user can define one. The Keyboard device
system provides the KeyMap structure and the CD_ASKKEYMAP and CD_SETKEY
MAP functions to manage the key map.

Set Raw
Even ts

program)

Reset Row

A~JZI J 64-byte standard streurfl

f eybJord Input
preprocessed by
Keyboard device
and Input device

.cc, l'"IIi,cd
Read Bu ffE'

Figure 8.3: Events Mouse Input
Read it"t progrom)

Operations
for the

Console Device
preprocessed by
TrockDisk device
and Input device

THE CONSOLE DEVICE 11 97

The Amiga currently supports the following built-in key maps: German, Spanish,
French, British, Italian, Icelandic, Swedish/Finnish, Danish, Norwegian, French Canadian,
and standard United States. It also supports a Release 1.1-compatible standard United
States key map and a key map that changes the keyboard from a standard Qwerty to a
Dvorak keyboard. These key maps are in the Workbench disk's system directory. The user
selects the Setmap icon and makes an Info menu selection to choose a specific key map.

Once the character stream is preprocessed by the key map, it is divided into two- one
character stream consisting of standard ASCII characters (either singly or in a string), and
the other a set of characters defining an escape-character sequence, which is either a single
character or a string of characters preceded by the ASCII escape character. Both of these char
acter streams are placed into the Console device read buffer for processing by a task.
For example, the characters can be sent to an Intuition window by dispatching an appro
priate CMD _ WRITE command that uses the task-defined read buffer as a write buffer
for the characters.

Mouse input events are sent directly from the Gameport device internal routines to
the Console device routines for processing. These input events lead to a set of actions in
the Intuition window. Disk insertion and removal input events are sent directly from the
TrackDisk device routines to the Console device routines for processing. These events can
lead to a set of actions in the Intuition window (for example, a requestor that tells the
user to insert a specific disk).

ConSOle Device Commands
The Console device has four device-specific commands and three standard device com
mands. All commands support both QuickIO and queued I/O. No command supports
immediate-mode operation. All commands affect the IOStdReq structure io_Error parame
ter; CMD_READ also affects the io_Actual parameter and the contents of the Console
device internal read buffer.

Sending Commands to the Console Device
Figure 8.4 depicts the general scheme used to dispatch commands to the Console device
internal routines. The lines with arrows represent the parameters you initialize and those
returned by the Console device internal routines. The individual function and command
sections in this chapter indicate the appropriate parameters for your task.

The programming process consists of three phases:

1. IOStdReq structure preparation. The programmer has complete control over this
phase; here, you initialize parameters in the IOStdReq structure in preparation for
dispatching a command to the Console device internal routines. The parameters
include the usual ones required by most devices, as well as arguments for the
CDlnputHandler and RawKeyConvert functions; the choice of parameters depends
on the specific command or function you plan to dispatch. These parameters pro
vide an information path to the data needed by the Console device internal routines
to process the command or function.

1 981 AMIGA PRO G RAM MER . S HANDBOOK

Figure 8.4:
Console Device

Command and
Function

Processing

01

Gerlerol r Console Device Internal Routirles

Be(}nIO, L'oIC, or SendlO
sends cow,mand, or

func\icns initiate
device internal

Generol

2. Console device routine processing. The only part you play in this phase is to dis
patch the command to the device using BeginIO, DolO, or SendIO. When one of
these functions begins executing, control passes to the device and system internal
routines.

3. Command output parameter processing. The system and Console device internal rou
tines have complete control over this phase. The results of Console device command
processing have been returned to the task that originally dispatched the command. If
the I/O request was not successful as QuickIO, it was processed when it moved to
the top of the device-unit request queue; the Console device then replied and the
request is now in the task reply-port queue. If the request was a successful QuickIO,
it was not queued in the task reply-port queue but came directly back to the request
ing task; the four parameters still direct you to appropriate data for your task.

For most of the Console device commands, the system provides the io_Error output
parameter; for CMD_READ it also provides the io_Actual output parameter. In addition,
the CD_ASKKEYMAP and CD_SETKEYMAP commands read or write key map data
into the KeyMap structure.

Note that Figure 8.4 also shows the parameters that playa part in Console device
function setup and processing. The OpenDevice and Close Device functions both affect the
unit 0 Device structure lib_OpenCnt parameter; OpenDevice also affects the io_Error
parameter. Note that the ConUnit structure does not contain an open-count parameter
equivalent to the Unit structure unicOpenCnt parameter used with other devices.

Structures for the Console Device
Figure 8.5 illustrates the structures required to define operations for the Console device.
The Console device deals directly with only one structure-ConUnit. However, the Con
sole device also requires three other structures to work with the Amiga keyboard: Key
MapNode, KeyMap, and KeyMapResource.

Figure 8.5:
Console Device

Structures

cu AreoPtrn Con Unit Structure

I MsgPort Structure I
(,,_MP)

I KeyMop Structure I
(ell _1"/O'yMopSj'lv. t)

KeyMoD S:r'.Idure

THE CONSOLE DEVICE 11 99

~.oxtront ".,lructure

The Con Unit structure contains two substructures, a MsgPort structure named
cu_MP and a KeyMap substructure named cu_KeyMapStruct. The MsgPort structure is
discussed in Chapter 1 of Volume I; the KeyMap structure is discussed in Chapter 9 of
this volume.

ConUnit also contains three pointer parameters. The cu_AreaPtrn parameter points
to a Graphics library drawing·area pattern in RAM (see Volume I, Chapter 2); cu_ Win
dow points to an Intuition Window structure (see Volume I, Chapter 6); and cu_Font
points to a TextFont structure (see Volume I, Chapter 4). These parameters help manage
the Intuition window associated with the Console device unit.

The KeyMap structure contains no substructures, but it does contain a set of eight
pointer parameters. Each points to a different area of RAM in which information for a
specific key map is kept.

The KeyMapNode structure contains two substructures, a Node substructure named
kn_Node and a KeyMap structure named kn_KeyMap. The system uses the Node struc
ture to place each KeyMap structure on a system list of KeyMap structures.

The KeyMapResource structure contains two substructures, a Node structure named
kr_Node and a List structure named kr_List. The system uses them to maintain a list of
current keyboard resources in the system.

The ConUnit Structure
The ConUnit structure is defined as follows:

struct Con Unit {
struct MsgPort cu_MP;
struct Window *cu_Window;

2 0 0 I AMIGA PRO G RAM MER'S HANDBOOK

};

WORD cu_XCP;
WORD cu_ YCP;
WORD cu_XMax;
WORD cu_ YMax;
WORD cu_XRSize;
WORD cu_ YRSize;
WORD cu_XROrigin;
WORD cu_ YROrigin;
WORD cu_XRExtant;
WORD cu _ YRExtant;
WORD cu_XMinShrink;
WORD cu_ YMinShrink;
WORD cu_XCCP;
WORD cu_ YCCP;
struct KeyMap cu_KeyMapStruct;
UWORD cu_ TabStops[MAXTABS];
BYTE cu_Mask;
BYTE cU_FgPen;
BYTE cU_BgPen;
BYTE cu_AOLPen;
BYTE cu_DrawMode;
BYTE cu_AreaPtSz;
APTR cU_AreaPtrn;
UBYTE cu_MinTerms[S];
struct TextFont * cU_Font;
UBYTE cu_AlgoStyle;
UBYTE cu_ TxFlags;
UBYTE cu_ TxHeight;
UBYTE cu_ TxWidth;
UWORD cu_ TxBaseline;
UWORD cu_ TxSpacing;
UBYTE cu_Modes [(PMB_AWM + 7)/S];
UBYTE cu_RawEvents[(IECLASS_MAX + 7)/S];

The cu_MP parameter is the MsgPort substructure representing the Console device
unit request queue; cu_ Window points to an Intuition Window structure representing the
window associated with the unit. The next 14 parameters are task read-only parameters.
They are initialized when OpenDevice returns and are kept up-to-date automatically by
the Intuition software system internal routines to reflect changing conditions in the Intui
tion window:

• cu_XCP and cu_ YCP are the current X and Y positions of the last character
placed into the Intuition window.

• cu_XMax and cu_ YMAX are the current maximum allowed X and Y positions of
a character in the Intuition window.

THE CONSOLE DEVICE 12 a 1

• cu_XRSize and cu_ YRSize are the maximum number of characters that can be
placed into the window in the X and Y directions. These parameters are used for
automatic word wrap and for line formatting in the window.

• cu_XROrigin and cu_ YROrigin are the X- and Y-direction origins of the Intuition
window associated with the Console device unit.

• cu_XRExtant and cu_ YRExtant are the current maximum X- and Y-direction sizes
of the window raster associated with the Console device unit.

• cu_XMinShrink and cu_YMinShrink are the current minimum X- and Y-direction
sizes allowed for the Intuition window after the user (or a task) resizes the window.

• cu_XCCP and cu_YCCP are the current X and Y of the cursor in the window.
They change as the user moves the cursor.

The next two parameters in the ConUnit structure can be read and written to (changed)
by a task:

• cu_KeyMapStruct is the name of a KeyMap substructure used by the Console
device unit for mapping keystrokes. The KeyMap structure can be changed by the
AskKeyMap and SetKeyMap functions.

• cu_ TabStops[MAXTABS] is a set of longwords representing the current tab stops
in the Intuition window.

The next 15 parameters are the ConUnit structure values for the Graphics library
RastPort substructure used to control the drawing of graphics and text into the Intuition
window. Read Chapter 2 of Volume I to see how these parameters are defined and used.
Following is a brief summary:

• cu_Mask is the RastPort structure write mask parameter.

• cu_FgPen is the RastPort structure foreground pen parameter.

• cu_BgPen is the RastPort structure background pen parameter.

• cu_AOLPen is the RastPort structure area-outline pen parameter.

• cu_DrawMode is the RastPort structure drawing-mode parameter.

• cu_AreaPtSz is the RastPort structure area-pattern size parameter.

• cu_AreaPtrn is the RastPort structure area-pattern parameter.

• cu_MinTerms[8] is the RastPort structure minimum terms parameter.

• cu_Font is a pointer to a TextFont structure associated with the RastPort structure.

• cu_AlgoStyle is the RastPort structure algorithimic style parameter.

• cu_ TxFlags is the RastPort structure text flags parameter.

2021 AMIGA PRO G RAM MER'S HANDBOOK

• cu_ TxHeight is the RastPort structure text height parameter.

• cu_ TxWidth is the RastPort structure text width parameter.

• cu_ TxBase1ine is the RastPort structure text baseline parameter.

• cu_ TxSpacing is the RastPort structure text-spacing parameter.

The last two parameters to the ConUnit structure are for system use only:

• cu_Modes [(PMB_AWM +7)/8)] is a set of eight Console device unit modes. Each
bit in this byte parameter represents one mode. The parameter is used internally by
the Console device routines.

• cu_RawEvents[(IECLASS_MAX +7)/8] is a set of raw event switches. This num
ber is tied to the maximum number of raw event classes; it is used internally by
the Console device routines.

The KeyMap Structure
The KeyMap structure is defined as follows:

struct KeyMap {

} ;

UBYTE * km_LoKeyMapTypes;
ULONG *km_LoKeyMap;
UBYTE *km_LoCapsable;
UBYTE *km_LoRepeatable;
UBYTE *km_HiKeyMapTypes;
ULONG *km_HiKeyMap;
UBYTE *km_HiCapsable;
UBYTE *km_HiRepeatable;

The parameters in the KeyMap structure have the following meanings:

• km_LoKeyMapTypes points to the type of translation table to be used for key
mapping; in this case, the table that covers the raw key codes from hexadecimal 00
through 3F.

• km_LoKeyMap points to a translation table that defines a translation for raw key
code values between hexadecimal 00 and 3F. Each entry in this table is four bytes
long. The translation table can generate a single character or a string of characters for
each raw key code. Values for the space bar, the Tab, Alt, Ctrl, and arrow keys, and
several other keys are not included here; they are included in the high-key map table.

• km_LoCapsable points to an 8-byte table (64 bits) containing more information
about the raw key-code translation process; it tells the system how to treat the Shift
and Caps Lock key status. The table represents keys whose raw key codes are
between hexadecimal 00 and 3F. The bits that control it are numbered from bit 0

THE CONSOLE DEVICE 12 0 3

in byte 0 to bit 7 in byte 7 in linear fashion; for example, the bit representing the
capitalization status for the key transmitting raw key code 00 is in bit 0 in byte o.

• km_LoRepeatable points to an 8-byte table (64 bits) that tells the system if the
specified key should repeat when pressed. The table represents keys whose raw key
codes are between hexadecimal 00 and 3F. The bits that control this feature are
again numbered from bit 0 in byte 0 to bit 7 in byte 7 in linear fashion.

• km_HiKeyMapTypes points to the type of translation table to be used for key
mapping; in this case, the table that covers raw key codes from hexadecimal 40
through 67.

• km_HiKeyMap points to a translation table that defines a translation for raw key
code values between hexadecimal 40 and 67. Each entry in this table is four bytes
long. The table can generate a single character or a string of characters for each
raw key code. Values for the space bar, the Tab, Alt, Ctrl, and arrow keys, and
several other keys are included in this table.

• km_HiCapsable points to an 8-byte table (64 bits) contammg more information
about the raw key-code translation process; it tells the system how to treat the Shift
and Caps Lock key status. The table represents keys whose raw key codes are
between hexadecimal 40 and 67. The bits that control it are numbered from bit 0
in byte 0 to bit 7 in byte 7 in linear fashion; for example, the bit representing the
capitalization status for the key transmitting raw key-code 40 is in bit 0 in byte o.

• km_HiRepeatable points to an 8-byte table (64 bits) that tells the system if the
specified key should repeat when pressed. The table represents keys whose raw key
codes are between hexadecimal 40 and 67. The bits that control this feature are
again numbered from bit 0 in byte 0 to bit 7 in byte 7 in linear fashion.

The KeyMapNode Structure
The KeyMapNode structure is defined as follows:

struct KeyMapNode {
struct Node kn_Node;
struct KeyMap kn_Keymap;

};

The parameters in the KeyMapNode structure have the following meanings:

• kn_Node is the name of a Node substructure used to place a set of KeyMap struc
tures on a list .

• kn_Keymap is the name of the KeyMap structure to be placed on the KeyMap
structure list.

2 0 41 AMIGA PRO G RAM MER'S HANDBOOK

The KeyMapResource Structure
The KeyMapResource structure is defined as follows:

struct KeyMapResource {
struct Node kr_Node;
struct List kr_List;

} ;

The parameters in the KeyMapResource structure have the following meanings:

• kr_Node is the name of a Node substructure used to place a set of KeyMapNode
structures on a list .

• kr_List is the name of a List substructure used to hold the list of KeyMap structures.

USE OF FUNCTIONS

CDlnputHandler

Syntax of Function Call
newlnputEvent
DO

purpose of Function

= CDlnputHandler (oldlnputEvent, device)
AO A1

This function handles input events for the Console device. The ROM input task is usu
ally responsible for producing input events; the CDInputHandler function processes some
of them. Input events not processed by CD Input Handler are passed on to one of the
Input device's input-handler functions.

CD Input Handler returns a pointer to an InputEvent structure in the newInputEvent
variable, which points to the first of a group of one or more input events that were not
processed by the CDInputHandler function. Each of these input events is also linked with
the InputEvent structure ie_NextEvent parameter; the list of input events is then sent
to the Input device handler functions for further processing.

CDInputHandler is included in Release 1.2 to ensure compatibility with programs
that may have used it before Release 1.2 was available. A Release 1.2 program should not
use the CDInputHandler function; instead, it should use the input-handler functions asso
ciated with the Input device, as described in Chapter 7.

THE CONSOLE DEVICE 12 0 5

I nputs to Function
oldlnputEvent A pointer to an InputEvent structure representing the first

input event in a linked list

device A pointer to a Device structure

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and ConUnit struc
tures that manage unit - 1 of the Console device. These parameters can always be copied
from the IOStdReq structure initialized by an OpenDevice function call.

DiScussion
CDInputHandler is the only Console device function that directly processes input events.
It works with the linked list of InputEvent structures. The InputEvent structure ie_Next
Event parameter links the InputEvent structures together; all InputEvent structures in the
list are not necessarily in contiguous RAM, so the ie_Next Event pointer parameter allows
the task to link them properly. The entire list of input events is passed to the CDInput
Handler function for processing. Input events that are not processed by the CD
InputHandler are then sent to the Input device input-handler functions. The new Input
Event parameter returned by CDInputHandler points to the first InputEvent structure
in the shortened linked list.

I CloseDevice

Syntax of Function Call
CloseDevice (iOStdReq)

A1

purpose of Function
This function closes access to a specific Console device unit. If this is the last CloseDevice
function call for all Console device units in the task and the Input device has also been closed,
the Timer, Keyboard, and Gameport devices will also be closed. When CloseDevice returns,

20 &1 AMIGA PRO G RAM MER'S HANDBOOK

the task cannot use the specific Console device unit until it executes another OpenDevice func
tion call for that unit. CloseDevice sets the IOStdReq structure io_Device and io_Unit param
eters to - 1; a task cannot use that IOStdReq structure again until these parameters are
reinitialized by OpenDevice. It also reduces the Device structure lib_OpenCnt parameter by 1
to indicate that one less task is using the Console device unit.

I nputs to Function
iOStdReq

DiScussion

A pointer to an IOStdReq structure

CloseDevice terminates access to a set of device routines for a specific Console device unit
and its associated Intuition window. When a task is done with its Console device operations
for a specific Intuition window, it should close the unit associated with that window with a
call to CloseDevice. This frees memory that might be needed by the system for this or other
tasks. Then another task can open, use, and close the Console device for that window; the
sequence can be repeated in a C language program that uses Console device routines.

A task should always verify that all of its Intuition window I/O requests have been
replied by the Console device routines before it calls CloseDevice. It can do so by using
the GetMsg, Remove, CheckIO, and WaidO functions to see what requests are currently
in the task reply-port queue.

The last CloseDevice function call in a task automatically closes the Input, Timer,
Keyboard, and Gameport devices in that task. However, since the Timer and Keyboard
devices are shared access mode devices, they can remain open in other tasks that have
either opened them explicitly or opened them indirectly through the Input device or the
Console device.

I OpenDevice

Syntax of Function Call
error
DO

= Open Device ("console.device", unit, iOStdReq, 0)
AO DO A1 01

purpose of Function
This function opens access to the internal routines of the Console device. OpenDevice
also opens the Input device, which in turn opens the Timer, Gameport, and Keyboard
devices if they have not already been opened in the current task.

THE CONSOLE OEVICE 1207

If unit - 1 is specified, the Open Device call simply gets a pointer to a Device struc
ture that the CDlnputHandler and RawKeyConvert functions can use to reach the Con
sole device internal routines. If unit 0 is specified, a Console device unit will be associated
with an Intuition window. Unit 0 is used for all Intuition windows that the task wants to
associate with a Console device unit.

The OpenDevice function automatically initializes a Con Unit structure to manage the
newly opened Console device unit; it contains a MsgPort substructure representing the
device request queue for that unit, as well as a pointer to a Window structure representing
the associated Intuition window. OpenDevice also increments the Device structure lib
_OpenCnt parameter by 1, indicating that one more task has opened the Console device.

The Console device routines assume that the Intuition library and window are
already open before OpenDevice is called. As part of the Open Device function call prepa
ration, the IOStdReq structure io_Data parameter must be initialized to point to an Intui
tion Window structure that will represent the window. The RastPort structure associated
with the window (see Volume I, Chapter 6) may already be in use by other tasks when
the Console device unit becomes associated with the window.

A Console device unit can only be opened in exclusive access mode-it is associated
with only one Intuition window. However, the Console device internal routines are always
shared among all tasks and units.

The results of function execution are as follows:

• io_Device. This points to a Device structure that manages unit - 1 or 0 of the
Console device once it is opened.

• io_Unit. This points to a ConUnit structure used to define and manage a MsgPort
and Intuition Window structure for Console device unit o. The MsgPort structure
represents the unit 0 device request queue. OpenDevice will assign each newly
opened Console device unit a unique ConUnit structure.

• io_Error. A 0 value indicates that the requested open succeeded. IOERR_OPEN
FAIL indicates that the Console device could not be opened; this is usually caused
by a lack of memory.

I nputs to Function
"console.device" A pointer to a null-terminated string representing the

name of the Console device

unit The Console device unit number

iOStdReq A pointer to an IOStdReq structure

o Indicates that the flags argument is ignored

2081 AMIGA PRO G RAM MER' S HANDBOOK

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port. Initialize
all other parameters to 0, or copy them from an IOStdReq structure for a previous Open
Device call. Set io_Command to 0, or set it to CMD_WRITE or CMD_READ if the
task should open the Console device and dispatch a CMD _WRITE or CMD _READ I/O
request immediately.

If the CreateStdlO fimction is used to create the IOStdReq structure, it will automatically
return a pointer to an IOStdReq structure; for the Console device, no typecasting is necessary.

DiSCUSSion
The OpenDevice fimction can be called with appropriate parameters to open the Console
device and to initialize parameters to defme a CMD_READ or CMD_ WRITE command.
Once a task has opened the Console device, it can dispatch a series of these commands (with
BeginIO, DolO, or SendIO) to send information back and forth between the task, the Amiga
keyboard, and the screen display within an Intuition window. Once a task has finished all of
its Console device writing and reading, it can (but need not) close the Console device.

Most of the the IOStdReq structure parameters can be initialized after the Console
device is open to represent CMD _READ, CMD _ WRITE, and other Console device com
mands. Any parameters that are not explicitly initialized will retain their previous values or
be initialized to the default values assigned by the Console device internal routines.

RawKeyConvert

Syntax of Function Call
numChars =
DO

purpose of Function

RawKeyConvert (inputEvent, bufferPointer, bufferLength,
AO A1 01

keyMap)
A2

This fimction converts (decodes or maps) raw key codes into ANSI 3.64-byte values. The
conversion is based on the KeyMap structure specified as part of the input definition of the
RawKeyConvert fimction. RawKeyConvert is always called for Console device unit - 1.

THE CDNSDlf DEVICE 12 09

Recall that the Open Device function returns an IOStdReq structure io_Device
pointer if the unit-number argument is -1. RawKeyConvert needs this value to obtain
a pointer to the Device structure that manages the Console device internal routines. In
this way, the Console device internal routines can obtain a function vector offset to the
RawKeyConvert function. The CDInputHandler function works in the same way.

The results of RawKeyConvert execution are found in the io_Actual parameter, which
contains the actual number of ANSI byte characters placed into the buffer. If the IOStdReq
structure io_Length parameter is not given a high enough value, the io_Actual parameter
will be - 1, indicating a buffer overflow condition. In this case, not all of the ANSI byte
characters in the buffer will necessarily be valid; your task should increase the size of the
buffer and call RawKeyConvert again.

I nputs to Function
inputEvent

bufferPointer

bufferlength

keyMap

A pointer to a task-defined buffer containing a series of
InputEvent structures

A pointer to a task-defined buffer that will hold all ANSI
byte values created by the conversion

The number of bytes in the buffer

A pointer to a KeyMap structure that will convert raw key
codes to ANSI bytes; if this value is null, the default Key
Map structure will be used

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and ConUnit struc
tures that manage unit - 1 of the Console device. These parameters can always be copied
from the IOStdReq structure initialized by an OpenDevice function call.

DiSCUSSion
The RawKeyConvert function uses a KeyMap structure to convert raw key codes to
ANSI 3.64 bytes. The KeyMap structure can be either the KeyMap structure represent
ing the current default key map or a KeyMap structure that is specified as part of the
input definition of RawKeyConvert.

The ANSI bytes resulting from the conversion are placed into a task-defined buffer
for further use by the task. You should always try to anticipate the maximum number of
bytes for all conversions that your tasks will need to make. If the io_Length parameter
value is large enough, the ANSI byte buffer will never overflow and the task can find

21 0 I AMIGA PRO G RAM MER'S HANDBOOK

reliable bytes in it. Therefore, if RAM space is not at a premium, set io_Length large to
guarantee the success of the RawKeyConven function.

The RawKeyConvert and CDlnputHandler functions both represent a direct entry
into the Console device internal routines, which differs from the usual command
dispatching approach with BeginIO, DolO, or SendlO.

STANDARD DEVICE COMMANDS

I CMD CLEAR

purpose of Command
The CMD _CLEAR command clears the Console device read buffer, which is an internal
device buffer used only for the CMD _READ command. Once the read buffer is cleared, sub
sequent CMD_READ commands can proceed from a known empty-buffer starting condition.

CMD _CLEAR allows QuicklO and only replies to the task reply-port queue if
QuicklO is not successful. The results of command execution are found in io_Error,
where ° indicates that the command was successful. IOERR_NOCMD indicates that the
io_Command parameter was specified incorrectly. IOERR_ABORTED indicates that the I/O
request was aborted.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and ConUnit structures
that manage each addressed unit of the Console device. These can always be copied from
the IOStdReq structure initialized by the OpenDevice function call. Also initialize io_Com
mand to CMD_CLEAR. Set io_Flags to 0, or set it to IOF_QUICK for QuickIO, which
mayor may not succeed depending on conditions in the system at the time CMD_CLEAR
is dispatched.

DiSCUSSion
If a task is executing a series of CMD_READ commands and wants to ensure that the
Console device internal read buffer is empty before it proceeds with those commands, it
should first dispatch a CMD_CLEAR command to zero all bytes in the buffer and reset
the buffer pointer. Then any CMD_READ commands subsequently dispatched by the
task will not read extraneous characters left over from previous task operations.

I CMD READ

THE CONSOLE DEVICE 1211

CMD_CLEAR can be sent either as QuicklO or queued. If queued, it allows the task
to execute any CMD_READ commands that are already queued before clearing the internal
read buffer.

purpose of Command
The CMD_READ command causes one character or a stream of characters to be read
into a task-defined buffer from the Amiga keyboard. These characters are buffered through
the Console device unit internal read buffer. The input characters are in the form of an
ANSI 3.64-byte stream; that is, they are either ASCII characters or escape-characters. Raw
input events read by the Console device may be selectively filtered via the SRE (set raw
events) and RRE (reset raw events) control sequences. Raw key codes are converted via
the current Console device unit key map, which can be modified with the CD _ASKKEY
MAP and CD_SETKEYMAP commands.

CMD _READ allows QuickIO and only replies to the task reply-port queue if
QuickIO is unsuccessful. The results of command execution are found in the io_Actual
and io_Error parameters. The io_Actual parameter indicates the number of characters
actually read. This will usually be 1 if a task specified the io_Length parameter as 1. A 0
value in io_Error indicates that the command was successful. IOERR_ABORTED indi
cates that the I/O request was aborted. IOERR_NOCMD indicates that the io_Command
parameter was specified incorrectly, and IOERR_BADLENGTH indicates that the
io_Length parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the desired Device and ConUnit
structures that manage Console device unit O. These can always be copied from the
IOStdReq structure initialized by the OpenDevice function call. Set io_ Command to
CMD _READ. Also initialize the following command-specific parameters:

• io_Flags. Set this to 0 if not used; otherwise, set it to IOF _QUICK for QuickIO,
which mayor may not succeed depending on conditions in the system when
CMD _READ is dispatched.

• io_Length. Set this to the number of characters to read from the Amiga keyboard.
This is usually 1, indicating that the task is trying to read one character at a time. A
different CMD _READ command will be dispatched for each character to be read.

2 1 21 AMIGA PRO G RAM MER'S HAIlDBOOK

• io_Data. Set this to point to the task's read (input) buffer, where the characters
coming in from the keyboard through the Console device internal read buffer will
eventually be placed.

DiScussion
CMD_READ allows a task to place data into a task-defined buffer. The data usually
comes from the Amiga keyboard; however, other hardware input devices can also use
CMD_READ to place characters into a task-defined buffer for further processing. Each
character read is part of an ANSI 3.64-byte stream consisting of ASCII characters or
escape characters. A task can also request raw input events using the SRE (set raw events)
and RRE (reset raw events) commands.

Usually the CMD_READ command is dispatched in order to request keyboard input
one character at a time. However, if the IOStdReq structure io_Length parameter is spe
cified as a value other than I, CMD_READ will read multiple keyboard characters in
succession, and the io_Actual parameter value will reflect the number actually read. It is
therefore the responsibility of the task to look at the io_Actual parameter to verify how
many characters the CMD _READ command actually returned.

Keyboard keys whose uppercase labels are ANSI standard characters (A, B, and so
on) will usually be translated into their ASCII equivalent characters by the Console device
internal routines using the current key map as defined by CD _ASKKEYMAP and
CD_SETKEYMAP. For keys that do not have normal ASCII equivalents, an escape
sequence is generated and inserted into the task's input stream. For example, in the
default state, with no raw input events selected as RRE (reset raw events), the function
keys FI through FlO and the arrow keys will cause a set of escape sequences to be
inserted into the input stream.

If a CMD _READ command is dispatched and the keyboard is not supplying any
characters to satisfy it, the command is pending. In this case, it will be replied with the
io_Actual parameter set to 0, indicating that no characters were read. If the keyboard is
supplying fewer characters than the CMD_READ io_Length parameter specified,
CMD_READ will be satisfied, but the output io_Actual and input io_Length parameters
will not agree.

I CMD WRITE

purpose of Command
The CMD _ WRITE command causes a stream of characters to be written from a task
defined buffer one at a time into an Intuition window associated with a Console device

tHE CONSOLE DEVICE 121 3

unit. The number of characters written is specified in the IOStdReq structure io_Length
parameter. The characters can be displayed ASCII screen characters (hexadecimal 20
through 7E and AO through FF) and screen control characters. The Intuition Window
structure together with the Intuition internal routines determine and automatically control
how many lines and how many characters per line can be displayed in the window, thus
controlling word wrap in the window.

Most screen control characters (for example, Backspace and Return) are translated
into their exact ANSI actions. The linefeed character is translated into a newline charac
ter. See the ROM Kernel Manual for other screen control characters.

If CMD _ WRITE is specified as QuickIO but is unsuccessful, the request is treated as
a queued I/O request and is replied to the calling task reply-port queue. The results of com
mand execution are always found in the io_Error parameter, where 0 indicates that the
command was successful. IOERR_ABORTED indicates that the I/O request was aborted.
IOERR_NOCMD indicates that the io_Command parameter was specified incorrectly, and
IOERR_BADLENGTH indicates that the io_Length parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the desired Device and ConUnit
structures that manage Console device unit O. These can always be copied from the
IOStdReq structure initialized by the OpenDevice function call. Set io_Command to
CMD _ WRITE. Also initialize the following command-specific parameters:

• io_Flags. Set this to 0 if not used; otherwise, set it to IOF_QUICK for QuickIO,
which mayor may not succeed depending on conditions in the system when
CMD _ WRITE is dispatched.

• io_Length. Set this to the number of characters to be sent to the Console device
unit window; count all ASCII characters and screen-control characters in the task
defined buffer.

• io_Data. Set this to point to the task's write buffer, which contains all the charac
ters that will be sent to the Console device unit.

DiSCUSSion
CMD _WRITE allows a task to send data from a task-defined buffer to an Intuition win
dow associated with a Console device unit. This is how a task sends display characters to
an Intuition window and controls the formatting of characters in that window.

The association between an Intuition window and a Console device unit is made by the
OpenDevice function call. One CMD _ WRITE command can be dispatched to any number
of Console device units (Intuition windows) by changing the ConUnit cu_MP substructure
name in the OpenDevice function call as required; see "Read-Write Operations" in this

2141 AMIGA PRO G RAM MER'S HANDBOOK

chapter for more details. The RastPon structure associated with the Intuition Window struc
ture is considered to be in use while the CMD _ WRITE command is queued.

Screen control characters are used to format the ASCII display characters and to oth
erwise control the display of characters in the window. They divide into two broad
classes, as follows:

• Those that carry single hexadecimal values. These include the linefeed character,
the vertical tab character, and six others as defined in the ROM Kernel Manual .

• Those requiring the 9B CSI (control sequence introducer) lead-in character. These
include cursor control commands; line control commands (delete line, insen line,
and so on); page-setting commands (set page length, set line length, and so on); the
SRE (set raw events) and RRE (reset raw events) commands; and the window-status
request command, which tells the task about the current bounds (upper and lower
row and column positions) of text in the Intuition window associated with a spe
cific Console device unit.

Because the screen control characters are very detailed, it is best to study the
CMD_ WRITE command INCLUDE file presentation to determine their specific meanings.

DEVICE·SPECIFIC COMMANDS

I CD ASKDEFAULTKEYMAP

purpose of Command
CD_ASKDEFAULTKEYMAP fills a task-defined butTer with KeyMap structure parame
ters that define the default key map for a specified Console device unit. The KeyMap struc
ture initializes the key map used by all Console device units when the Console device is
opened; it is also the default unit key map used by RawKeyConven when a null KeyMap
pointer parameter is specified as input to that function. CD_ASKDEFAULTKEYMAP
allows QuickIO and only replies to the task reply-pon queue if QuickIO is unsuccessful.

The results of command execution are found in the io_Error parameter; a 0 value
indicates that the command was successful. IOERR_ABORTED indicates that the I/O
request was aboned. IOERR_NOCMD indicates that the io_Command parameter was
specified incorrectly, and IOERR_BADLENGTH indicates that the io_Length parameter
was specified incorrectly.

In addition, the RAM data butTer at RAM location io_Data will contain the param
eters of a KeyMap structure representing the default Console device unit key map.

THE CONSOLE DEVICE 12 1 5

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and ConUnit struc
tures that manage Console device unit O. These can always be copied from the IOStdReq
structure initialized by the OpenDevice function call. Set io_Command to CD_ASK
DEFAULTKEYMAP. Also initialize the following command-specific parameters:

• io_Flags. Set this to 0 if not used. Otherwise, set it to IOF _QUICK for QuickIO;
QuickIO mayor may not succeed, depending on conditions in the system when
CD_ASKDEFAULTKEYMAP is dispatched.

• io_Data. Initialize this to point to a task-defined RAM data buffer that will contain
the default key map when it is copied from the KeyMap structure.

• io_Length. Initialize this to the number of bytes in the KeyMap structure; a task
can use the C language sizeof operator for this purpose.

DiSCUSSion
The CD_ASKDEFAULTKEYMAP command copies the values in a KeyMap structure
representing the default Console device unit key map into a task-defined buffer. The
values in this buffer can then be used by the current task. In addition, if a null value is
used in the call to the RawKeyConvert function, the same KeyMap structure will be used
to translate raw key code to ANSI key code; see the discussion of RawKeyConvert for
more information.

I CD ASKKEYMAP

purpose of Command
CD_ASKKEYMAP fills a task-defined buffer with the KeyMap structure parameters that
define the current key map for a specified Console device unit. The KeyMap structure
initializes the key map used by all Console device units when the Console device unit is
opened. CD_ASKKEYMAP allows QuickIO and only replies to the task reply-port queue
if QuickIO is unsuccessful.

The results of command execution are found in the io_Error parameter. A 0 value
indicates that the command was successful. IOERR_ABORTED indicates that the I/O
request was aborted. IOERR_NOCMD indicates that the io_Command parameter was
incorrectly specified, and IOERR_BADLENGTH indicates that the io_Length parameter

2 1 &1 AMIGA PRO G RAM MER'S HANDBOOK

was incorrectly specified. In addition, the RAM data buffer at RAM location io_Data
contains the parameters of the KeyMap structure representing the current Console device
unit key map.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the desired Device and ConUnit
structures that manage Console device unit O. These can always be copied from the
IOStdReq structure initialized by the OpenDevice function call. Set io_Command to
CD_ASKKEYMAP. Also initialize the following command-specific parameters:

• io_Flags. Initialize this to IOF _QUICK for QuickIO; otherwise, set it to O.
QuickIO mayor may not succeed, depending on conditions in the system when
CD_ASKKEYMAP is dispatched.

• io_Data. Initialize this to point to a RAM data buffer that will contain the current
unit key map after it is copied from the KeyMap structure.

• io_Length. Initialize this to the number of bytes in the KeyMap structure; a task
can use the C language sizeof operator for this purpose.

DiScussion
The CD_ASKDEFAULTKEYMAP and CD_ASKKEYMAP commands are similar;
they allow a task to copy either the default or the current KeyMap structure parameters
into a task-defined buffer. CD_ASKKEYMAP copies the values in a KeyMap structure
representing the current-not necessarily the default-unit key map into a task-defined
buffer. The values in this buffer can be used by the current task for its own specific
needs. In contrast to the CD_ASKDEFAULTKEYMAP command, the CD_ASKKEY
MAP command does not supply a KeyMap structure for the RawKeyConvert function.

I CD SETDEFAULTKEYMAP

purpose of Command
This command fills a KeyMap structure with data in a task-defined buffer containing
KeyMap structure parameters. The KeyMap structure will then be used as the default
key map for converting raw key code to ANSI 3.64 bytes, which are used for all Console
device units and their associated Intuition windows. CD_SETDEFAULTKEYMAP
allows QuickIO and only replies to the task reply-port queue if QuickIO is not successful.

THE CONSOLE DEVICE 1217

The results of command execution are found in the io_Error parameter. A 0 indi
cates that the command was successful. IOERR_ABORTED indicates that the I/O
request was aborted. IOERR_NOCMD indicates that the io_Command parameter was
specified incorrectly, and IOERR_BADLENGTH indicates that the io_Length parameter
was specified incorrectly. In addition, the current KeyMap structure will contain the Key
Map structure parameters copied from the task-defined buffer.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and ConUnit struc
tures that manage Console device unit o. These can always be copied from the IOStdReq
structure initialized by the OpenDevice function call. Set io_Command to CD_SET
DEFAULTKEYMAP. Also initialize the following command-specific parameters:

• io_Flags. Set this to 0 if not used, or set it to IOF _QUICK for QuickIO, which
mayor may not succeed depending on current conditions in the system.

• io_Data. Initialize this to point to a RAM data buffer containing a KeyMap struc
ture. The KeyMap structure at this location will then become the current key map
used by the Console device for all Intuition windows attached to its units.

• io_Length. Initialize this to the number of bytes in the KeyMap structure; a task
can use the C language sizeof operator for this purpose.

DiSCUSSion
The CD_SETDEFAULTKEYMAP command copies the values found in a task-defined
buffer into the KeyMap structure representing the Console device unit default key map.
The values in the key map can then be used by the current task for converting raw key
codes to ANSI bytes.

I CD SETKEYMAP

purpose of Command
CD_SETKEYMAP fills a KeyMap structure with data in a task-defined buffer that con
tains KeyMap structure parameters. This KeyMap structure will then be used as the cur
rent key map for the conversion of raw key codes to ANSI 3.64 bytes, which are used for
all Console device units and their associated Intuition windows. CD_SETKEYMAP
allows QuickIO and only replies to the task reply-port queue if QuickIO is not successful.

2 181 AMIGA PRO G RAM MER'S HANDBOOK

The results of command execution are found in io_Error; 0 indicates that the com
mand was successful. IOERR_ABORTED indicates that the I/O request was aborted.
IOERR_NOCMD indicates that the io_Command parameter was specified incorrectly,
and IOERR_BADLENGTH indicates that the io_Length parameter was specified incor
rectly. In addition, the current KeyMap structure will contain the KeyMap structure
parameters copied from the task-defined buffer.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and ConUnit struc
tures that manage Console device unit o. These can always be copied from the IOStdReq
structure initialized by the OpenDevice function call. Set io_Command to CD_SETKEY
MAP. Also initialize the following command-specific parameters:

• io_Flags. Set this to 0 if not used; otherwise, set it to IOF _QUICK for QuickIO,
which mayor may not succeed depending on conditions in the system when
CD_SETKEYMAP is dispatched.

• io_Data. Initialize this to point to a RAM data buffer containing a KeyMap struc
ture. The KeyMap structure at this location will then become the current key map
used by the Console device for all Intuition windows attached to its units.

• io_Length. Initialize this to the number of bytes in the KeyMap structure; a task
can use the C language sizeof operator for this purpose.

DiSCUSSion
The CD_SETKEYMAP command copies the values found in a task-defined buffer into
the KeyMap structure representing the current (not necessarily the default) Console device
unit key map. The values in this key map can then be used by the current task to convert
raw key codes to ANSI bytes. CD _SETKEYMAP does not supply a KeyMap structure
for the RawKeyConvert function.

- . .. •
• • ~
• •• y

•• •
•

The Keyboard Device

THE KEYBOARD DEVICE 12 21

Introduction

The Keyboard device is responsible for collecting information as the user enters it from
the keyboard. It operates in shared access mode and has one unit, referred to as unit O.
The Keyboard device is ROM-resident; it is automatically loaded into WCS from the
Kickstart disk.

Information coming from the keyboard includes raw key codes, the current up or
down status of any key, the current status of the left and right Shift keys, and the status
of numeric keypad keys. The Keyboard device receives this raw information and converts
it into a set of input events. Just like other Amiga input events, these are represented as
InputEvent structures constructed by the device. (The InputEvent structure is discussed in
Chapter 7.)

The Keyboard device also buffers Amiga keystrokes by placing a series of keyboard
InputEvent structures into its internal read buffer, which provides a typeahead capability
for the keyboard. This buffer is managed by the Keyboard device internal routines auto
matically; do not confuse it with the task-defined buffer used by the KBD_READ
EVENT command.

Once keyboard input events are in the Keyboard device internal read buffer, they can
be processed in several different ways. AmigaDOS, if active, will process reset events, and
a task can process input events as the programmer desires. However, if AmigaDOS or a
task does not process the events, the Input device will receive them and they will be
merged with those coming from the Gameport and TrackDisk devices, as well as from any
other sources in the Amiga system.

The Keyboard device allows a task to determine the current status (up or down) of
each Amiga keyboard key with the KBD_READMATRIX command. It also provides the
KBD _ADDRESETHANDLER, KBD _REMRESETHANDLER, and KBD _RESET
HANDLERDONE commands so that a task can add reset-handler functions to the sys
tem. These functions are placed on a function list and are processed in a specific order,
which allows the programmer to design a series of priority-arranged cleanup routines that
can be called each time the user types the Ctrl/left-Amiga/right-Amiga reset combination.

Operation of the Keyboard Device
Figure 9.1 illustrates the general operation of the Keyboard device. Keyboard data origi
nates at the keyboard, is placed into an internal read buffer by the Keyboard device inter
nal routines, and is passed on to the Input device internal routines for further processing.

As the figure shows, a task can build a number of keyboard reset-handler functions
into the keyboard system. These are placed on a keyboard reset-handler list in the priority
established by each reset handler's In_Pri parameter. Then, when the user presses the
Amiga reset key combination, the reset-handler functions will implement the reset proce
dures built into the system. When all of the functions have executed, the Amiga will go
through its own reset sequence, which is defined in the system software.

2 221 AMIGA PRO G RAM MER'S HANDBOOK

Figure 9.1:
Operation of the

Keyboard

Device

I Task-Defined I
Keyboard Input

Processing

t KBD_READEVENT

Keyboard Row Key Codes Keyboard Device KBD_REAOMA TRIX .1 Key Malrix Buffer I
ijlllllllllllillill

Shifl Key Slatus Inlernal Roulines I 16 byles
Numeric Key Pad Status (1 bll per key) I Keyboard DeY"e I

+ Keyboard reset sequence
Internal

Read Buffer

I Resel Handler I (In_Pri I) I t normal processing poh

t
I Resel Handler 2 (In_Pri 2) I Input De'llce

i
Internal Rout:nes

InoL. t Device
Interno :lLYer

I Resel Handler (N-l) (In_Per (N-I)) I O<eytJocrd events
other , i~put events

I Resel Handler N (In_Per N)

.tldditionai ir~pllt event proC~'5Sina

Notice from Figure 9.1 that the Amiga keyboard provides N-key typeahead, which
allows the user to type at his or her own speed. No keys will be lost, even though the
system may be busy with other activities.

Keyboard Input Event Processing
All keyboard input events are processed by a predefined sequence of routines, as shown in
Figure 9.2. The events originate in the keyboard hardware as signals, which are passed to
the Keyboard device internal routines for processing.

The internal routines formulate events into InputEvent structures and place them into
the Keyboard device internal read buffer. Event processing then follows this sequence:

1. If AmigaDOS is active-that is, if the user is at the AmigaDOS command leve1-
the AmigaDOS internal routines will read the current contents of the Keyboard
device internal read buffer and filter out any keyboard input events that they have
been programmed to intercept. In particular, the AmigaDOS routines will always
intercept the Amiga reset sequence. (If a program has control of the machine, how
ever, the AmigaDOS routines will not intercept keyboard input events.)

2. Keyboard input events that are not intercepted by AmigaDOS routines are passed on
for further processing. At this point, a task can intercept the keyboard input events
and place them into its own read buffer using KBD _READEVENT. It can then
defme a set of task routines to process the events. This procedure processes keyboard

Figure 9.2:
Input Event

Processing for
the Keyboard

Device

THE KEYBOARD DEVICE 12 2 3

Amiga Keyboard

Generates raw keyboard
input event signals

• Keyboard signals

Keyboard Device Internal Routines

Formulate InputEvent structures
and place in Keyboard device

internal read buffer

• All keyboard input even ts

AmigaDOS Routines

• Remaining keyboard

Input Device Internal Routines

Merge keyboard input events
with other types
of input events

j Remaining keyboard

Task-Defined Routines

input e

AmigaDOS events
filtered ou t

vents

f----

Console device and
programmer - deli n ed
input-handler function
processing

input e vents
Some events filtered
out with GPD_READEVENT
commands and placed into
task-defined buffer

input events, but it allows the programmer to choose how to process them. For
example, a task could place the current key matrix into a task-defined buffer using
the KBD_READMATRIX command. This would allow it to read the current state
(up or down) of the keyboard keys. The key matrix represents the state of each key
board key by one bit in a l6-byte array; the task checks each bit in the key matrix to
determine its next action.

3. Keyboard input events that are not intercepted by either AmigaDOS or a task are
passed on to the Input device internal routines for further processing. Input device
routines merge the Keyboard device input events with Gameport and TrackDisk
device input events, as well as any task-defmed input events (see Chapter 7). The

2241 AMIGA PRO G RAM MER'S HANDBOOK

Input device internal routines then pass all events in this merged stream to the Con
sole device, which will intercept the Amiga reset sequence.

KeYbOard Device Commands
You can program the Keyboard device with five device-specific and two standard device
commands. Some of these commands support both QuickIO and queued I/O; none supports
immediate-mode operation. All commands affect the IOStdReq structure io_Error parameter;
CMD _CLEAR also affects the contents of the Keyboard device internal read buffer.

Sending Commands to the Keyboard Device
Figure 9.3 depicts the general scheme used to send commands to the Keyboard device
internal routines. The lines with arrows represent the parameters you should initialize and
the parameters returned by the device internal routines.

The Keyboard device programming process consists of three phases:

1. Structure preparation. The programmer has complete control over this phase. Here,
you initialize parameters in the IOStdReq structure in preparation for sending a com
mand to the Keyboard device internal routines. These parameters include the set of
parameters required by most devices; in addition, the KBD_ADDRESET
HANDLER command requires the is_Data and is_Code pointer parameters to
define an Interrupt structure representing a keyboard reset-handler function. The
choice of parameters to initialize depends on the specific command you plan to send
to the Keyboard device. These parameters provide an information path to the data
needed by the Keyboard device internal routines in order to process the command.

2. Keyboard device processing. The only part you play in this phase is to send the
command to the device using the BeginIO, DolO, or SendIO function. Control
then passes to the device and system internal routines.

3. Command output parameter processing. The system and Keyboard device internal
routines have complete control over the values found in these parameters. Here, the
results of Keyboard device command processing have been returned to the task that
originally dispatched the command. If the I/O request was not QuickIO, it was
processed when it moved to the top of the Keyboard device request queue; the
reply is now in the task reply-port queue. If the request was QuickIO, it was not
queued in the task reply-port queue but went directly to the requesting task. The
parameters still direct you to the appropriate data for your task.

All Keyboard device commands provide output parameters; in each case, the IOStdReq
structure io_Error parameter is the only parameter provided. In addition, the KBD_READ
EVENT command fills a task-defined buffer with InputEvent structures for the next set
of keyboard input events; KBD _READMATRIX fills a task-defined buffer with the current
key matrix.

THE KEYBOARD DEVICE 12 2 5

Figure 9.3 also depicts the parameters that playa part in Keyboard device function
setup and processing. The Open Device and CloseDevice functions affect the Unit struc
ture unit_OpenCnt parameter and the Device structure lib_OpenCnt parameter; Open
Device also affects the io_Error parameter.

Structures for the Keyboard Device

Figure 9.3:
Keyboard

Device
Command and

Function
Processing

The Keyboard device does not have any device-specific structures that are specifically tied
to its commands or functions. However, you should refer to Chapter 8 for a discussion of
the KeyMap, KeyMapNode, and KeyMapResource structures, which also have a bearing
on the operations of the Keyboard device.

Preporatioo of
IOOequest
Structure

Outputs of
Command or function

Processing
General ~ ~

{

mn...R,' "', r---:;:::;-;;::-;::-;::;;;::;::-J-~iO_D'~"" _ } d'O'S',i'd'R,q General ~~ojJ)§"",~' 'S. Keyboard Device Internol Routines ~. jU~'~=--f

~~~~~: __ ~~J0---iO __ --'~~:~j;~'i;'ln~~: j BeginlO. 0010. or SendlO '~-:'E:;'" ~~~~:::" 
IOF _QUICK values 

parameters io ata sends command, or ~ 
io-1.en Ih functions initiate ~~:~~~:t ~~I! ~D~EAD£~~ c7mondth 

Keyboard device internal I--"'","","-~·- 1~;utE:ent s~~~:U(:sr~~~~e~;tng 

Structure _~iL,*Code'7'-ooj 
Interrupt { routine servicing the next ice)boord events 

parameters is.J)oto ke a _Buffer The KBD_READYATRIX command 
fills a ke)mop buffer wIth 
a ke)fTlop maim: 

~~~o en~~~t Device structure pcrometet' L _________ r~=""- Unit structure parameter 

USE OF FUNCTIONS

C/oseDevice

Syntax of Function Call
CloseDevice (iOStdReq)

A1

purpose of Function
This function closes access to Keyboard device unit O. If this is the last CloseDevice func
tion call for unit 0 and the Console and Input devices have also been closed in the task,
the Keyboard device will be closed.

2 2 61 AMIlIA PRO G RAM MER'S HANDBOOK

CloseDevice sets the IOStdReq structure io_Device and io_Unit parameters to -1; a
task cannot use that structure again until these parameters are reinitialized by OpenDevice.
CloseDevice also reduces the Device structure lib_OpenCnt and Unit structure unicOpenCnt
parameters by 1 to indicate that one less task is using the Keyboard device.

I nputs to Function
iOStdReq

DiSCUSSion

A pointer to an IOStdReq structure

CloseDevice terminates access to a set of device routines for Keyboard device unit O.
When a task is done with its Keyboard device operations, it should close the device with
a call to CloseDevice; this frees memory that might be needed by the system. Another
task that wants to use the Keyboard device can then open, use, and close it. This
sequence can be repeated again and again in a C language program that uses the Key
board device routines.

A task should verify that all of its 110 requests have been replied by the Keyboard
device internal routines before it calls CloseDevice. It can do so by using the GetMsg,
Remove, CheckIO, and WaitIO functions to see what I/O requests are currently in each
task reply-port queue.

Always remember that the Keyboard device is opened indirectly when the Input or
Console device is opened; it is opened automatically by AmigaDOS as well. Therefore,
the particular procedure used to open the Keyboard device should determine how you
proceed with your Close Device calls.

[OpenDevice

Syntax of Function Call
error
DO

= Open Device ("keyboard.device", 0,
AO DO

purpose of Function

iOStdReq, 0)
A1 01

Open Device allows access to the internal routines of Keyboard device unit O. The Keyboard
device is a shared access mode device, and it is opened automatically by either AmigaDOS
or the Console and Input devices when they are opened.

THE KEYBOARD DEVICE 1221

Once OpenDevice has opened the Keyboard device, it then initializes Keyboard device
internal parameters to their most recently specified or default values. OpenDevice also incre
ments the Device structure lib_OpenCnt parameter and the Unit structure unit_OpenCnt
parameter by 1 to indicate that one more task is using the Keyboard device.

OpenDevice requires a properly initialized reply port with a task signal bit allocated
to that port if the calling task wants to be signaled when the Keyboard device internal
routines reply. The task can then be signaled when any of the Keyboard device commands
are replied. The results of function execution are as follows:

• io_Device. This points to a Device structure that will manage Keyboard device
unit ° once it is opened. The Device structure contains all the information neces
sary to manage the Keyboard device and to reach all the data and routines in it.

• io_Unit. This points to a Unit structure that defines and manages a MsgPort
structure for Keyboard device unit 0. The MsgPort structure represents the device
request queue. Because the Keyboard device operates in shared access mode, tasks
send their non-QuickIO requests to this message port.

• io_Error. A ° value indicates that the requested open succeeded. IOERR_OPEN
FAIL indicates that the Keyboard device could not be opened; this usually means
that the memory required to accommodate the Device and Unit structures was not
available. IOERR_NOCMD indicates that the io_Command parameter was speci
fied incorrectly.

I nputs to Function
"keyboard. device" A pointer to a null-terminated string representing the

name of the Keyboard device

o

iOStdReq

o

The only valid unit number

A pointer to an IOStdReq structure

I ndicates that the flags argument is not used by this
device

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port, which
will receive the I/O request reply from the Keyboard device when it has finished process
ing the Keyboard device command. Set all other parameters in the IOStdReq substructure
to 0, or copy them from an IOStdReq structure from a previous OpenDevice call. Initial
ize io_Command to 0, or set it to KBD_READEVENT if the task should open the Key
board device and then dispatch a KBD_READEVENT command.

2 281 AMIGA PRO G RAM MER'S HANDBOOk

If the CreateStdIO function is used to create the IOStdReq structure (see Chapter 2),
CreateStdIO will automatically return a pointer to an IOStdReq structure; for the Key
board device, no typecasting will be necessary.

DiScussion
The OpenDevice function allows a task to access the Keyboard device internal routines.
One of the things that makes the Keyboard device unique is that it is opened automati
cally by AmigaDOS or by the Console or Input device when an Open Device call for these
two devices is executed.

The Keyboard device internal parameters will be set to default values the first time
the Keyboard device is opened in a task. Once the Keyboard device has been opened,
other IOStdReq structure parameters can be initialized to define I/O requests for Key
board device reads and other commands. Any parameters that are not explicitly initialized
will retain their previous values. If a calling task wants to use values other than the
defaults for these parameters, it should initialize them after OpenDevice returns.

OpenDevice is usually called with appropriate parameters to open the Keyboard
device and to initialize parameters to define a KBD_READEVENT command. Once a
task has opened the Keyboard device, it can dispatch a series of KBD _READEVENT
and device-specific commands (with BeginIO, DolO, or SendIO) to gather information
from the Amiga keyboard and to send it to the task, the Input device, or the Console
device for further processing. Once a task has finished its Keyboard device processing, it
should close the Keyboard device.

STANDARD DEVICE COMMANDS

I CMD CLEAR

purpose of Command
CMD_CLEAR clears the Keyboard device internal read buffer, which is an internal
device buffer used only to save typeahead keystrokes (InputEvent structures) to be read
later by the KBD_READEVENT command. Once the read buffer is cleared, subsequent
KBD _READEVENT commands can proceed from a known buffer state.

The CMD_CLEAR command allows QuickIO and always replies to the task reply
port queue if QuickIO is not successful. The results of command execution are found in
io_Error; 0 indicates that the command was successful. IOERR_ABORTED indicates
that the command was aborted, and IOERR_NOCMD indicates that the io_Command
parameter was specified incorrectly.

THE KEYIIOoIRD DEVICE 122 9

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage unit ° of the Keyboard device. These can always be copied from the
IOStdReq structure initialized by the Open Device function call. Also initialize io_Com
mand to CMD_CLEAR. Initialize io_Flags to 0, or set it to IOF _QUICK for QuickIO,
which mayor may not succeed depending on conditions in the system.

DiScussion
The Keyboard device automatically maintains one internal device buffer for
KBD_READEVENT commands. The CMD_CLEAR command clears the current con
tents of this buffer. If a task wants to be sure that the Keyboard device internal read
buffer is in a known state before proceeding with a series of KBD _READEVENT com
mands, it should first dispatch a CMD _CLEAR command to zero all bytes in the buffer.
Then subsequent KBD_READEVENT commands will not encounter extraneous charac
ters left over from previously executed KBD _READEVENT commands. The Keyboard
device does not have a CMD _WRITE command and therefore uses no internal device
write buffers.

CMD _CLEAR can be either a QuickIO or a queued I/O command. If QuickIO is
successful, it acts similarly to an immediate-mode command, except that it is not replied
to the task reply-port queue. If queued, the task can execute CMD _CLEAR after a series
of already queued KBD_READEVENT commands, which allows it to clear the internal
read buffer at the proper time.

CMD RESET

purpose of Command
CMD_RESET resets the Keyboard device to the boot-up time state as if it were just
initialized-all Keyboard device internal parameters and flag parameter bits are set to their
default values. CMD _RESET allows QuickIO and always replies to the task reply-port
queue if the QuickIO was not successful. The results of command execution are found in
io_Error; ° indicates that the command was successful. IOERR_ABORTED indicates
that the command was aborted, and IOERR_NOCMD indicates that the io_Command
parameter was specified incorrectly.

2 30 I AMIGA PRO G RAM MER' S HANDBOOK

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage unit 0 of the Keyboard device. These can always be copied from the
IOStdReq structure initialized by the OpenDevice function call. Also initialize io_Com
mand to CMD_RESET. Initialize io_Flags to 0, or set it to IOF_QUICK for QuickIO,
which mayor may not succeed depending on conditions in the system.

DiScussion
The CMD_RESET command is destructive-it stops all ongoing KBD_READEVENT
I/O requests. The dispatching task then loses the keystrokes that it originally requested
from the keyboard through the Keyboard device. CMD_RESET also resets the Keyboard
device internal parameters and flag parameter bits to their default values.

DEVICE-SPECIFIC COMMANDS

I KBD ADDRESETHANDLER

purpose of Command
The KBD _ADDRESETHANDLER command adds a new keyboard reset handler func
tion to the list of keyboard reset-handler functions that can be called before the machine is
reset. The new function is added to the list at the position determined by the function's
In_Pri parameter; the IOStdReq structure io_Data parameter points to an Interrupt struc
ture representing the code and data required to define the new function.

The results of command execution are found in io_Error; 0 indicates that the com
mand was successful. IOERR_ABORTED indicates that the command was aborted, and
IOERR_NOCMD indicates that the io_Command parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Keyboard device unit O. These can always be copied from the IOStdReq
structure initialized by the Open Device function call. Set io _Command to KBD _ADD
RESETHANDLER and set io_Flags to O. Initialize io_Data to point to an Interrupt
structure representing the new function and the handler data you want to add to the list.

THE KEYBOARD DEVICE 1231

Design the Interrupt structure with its is_Code parameter pointing to the keyboard reset
code for the new handler and its is_Data parameter pointing to the data used by the new
keyboard reset code (the same data as that in the handler Data parameter in the Handler
Function function call)_

DiScussion
KBD_ADDRESETHANDLER adds a new keyboard reset-handler function to the sys
tem's keyboard reset-handler function list- The new function's position in the list is deter
mined by the task's specification of the Interrupt structure Node substructure In_Pri
parameter representing the new HandlerFunction function.

Once added to the system's keyboard reset-handler function list, the new handler
function is called by a task in the following way:

HandlerFunction (handlerData)
A1

HandlerFunction is the name of the new keyboard reset-handler function and its entry
point; handlerData is a pointer to the data used by the new function. It is the same as the
is_Data parameter in the associated Interrupt structure.

An added reset-handler function will be active when the user resets the system with
Ctrllleft-Amiga/right-Amiga. It will be active in the system until KBD_REMRESET
HANDLER removes it from the system's keyboard reset-handler function list.

All reset events can be intercepted by a set of custom-designed keyboard reset-handler
functions. User-induced reset events can call each of the functions in the function list in
the order of their priority; higher-priority handler functions process the reset events before
lower-priority handler functions do. With this arrangement, each reset-handler function
can perform a cleanup operation for a task. The cleanup will take place before the
machine is actually reset; that is, the reset-handler functions will execute before other
operations of the machine reset occur. For example, if the machine is reset while a disk
write operation is in progress, a reset-handler function can be designed to protect the con
tents of the disk by ensuring that the last track buffers are properly written before they
are cleared. Each reset-handler function gets its turn at cleaning up.

A task that adds a reset-handler function to the list must design it so that lower-priority
functions in the list will get their turn at processing before the machine is finally reset.

I KBD READEVENT

purpose of Command
The KBD_READEVENT command allows a task to read the next series of keyboard
input events from the Keyboard device internal read buffer. KBD _READEVENT uses

2 3 21 AMIGA PRO G RAM MER'S HANDBOOK

the IOStdReq structure io_Length and io_Data parameters to specify the task-defined
RAM location where the InputEvent structures will be placed when KBD_READ
EVENT executes. The required size of the task buffer is determined by the number of
InputEvent structures present in it. If there are no pending keyboard input events in the
Keyboard device read buffer, the KBD _READEVENT command will not be satisfied.
However, if there are some keyboard input events not yet read, but not as many as indi
cated by the IOStdReq structure io_Length parameter, KBD_READEVENT will be sat
isfied with only those that are currently available in the buffer.

KBD_READEVENT allows QuickIO and always replies to the task reply-port queue
if QuickIO is not successful. The results of command execution are found in io_Error; 0
indicates that the command was successful. IOERR_ABORTED indicates that the com
mand was aborted, IOERR_NOCMD indicates that the io_Command parameter was
specified incorrectly, and IOERR_BADLENGTH indicates that the io_Length parameter
was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Keyboard device unit O. These can always be copied from the IOStdReq
structure initialized by the Open Device function call. Set io_Command to
KBD_READEVENT. Initialize io_Flags to IOF _QUICK for QuickIO; otherwise, set it
to O. Initialize io_Length to the size (in bytes) of the desired task-defined keyboard read
buffer. To determine the size of the buffer, multiply the number of InputEvent structures
by the size of the InputEvent structure; a task can use the C language sizeof operator to
determine this value. Initialize io_Data to point to a RAM buffer area that will contain
the InputEvent structures.

DiSCUSSion
KBD_READEVENT is responsible for reading keyboard keystrokes into a task-defined
buffer from the Keyboard device read buffer. The keystrokes are defined by InputEvent
structures. Each InputEvent structure in the task-defined buffer will contain the following
parameters:

• ie_NextEvent. This points to the next InputEvent structure in the linked list; it
will be 0 if this is the last InputEvent structure in the linked list.

• ie_Class. This is the class of the keyboard event; it is IECLASS_RAWKEY for
raw keyboard input events.

• ie_SubClass. This parameter is not used for IECLASS_RAWKEY keyboard input
events; the Keyboard device routines set it to O.

THE KEYBOARD DEVICE 1233

• ie_Code. This contains the next key status report (up or down). Each of the Amiga
keyboard keys is assigned a hexadecimal value from 00 to 67. This parameter con
tains the value assigned for a key-up transition; the value assigned for a key-down
transition is a bitwise OR of this value with a hexadecimal value of 80.

• ie_Qualifier. This indicates whether the key was pressed with the left or right Shift
key also held down, and whether the key was a numeric keypad key.

• ie_X, ie_ Y, and ie_TimeStamp. These parameters are not used for keyboard
IECLASS_RAWKEY input events; the Keyboard device routines set them to o.

Keyboard event reading is not usually done by calling the Keyboard device
KBD_READEVENT command directly. Instead, keyboard input events are automatically
passed to the Input device. (See Chapter 7 for a discussion of the interaction of the Input
and the Keyboard devices.)

Keyboard device internal routines usually queue more than one input event into the
Keyboard device read buffer. These events will continue to queue in the buffer until a
task dispatches a KBD_READEVENT command or until the Input device automatically
reads them. If neither the task nor the input device reads them, the Keyboard device read
buffer will overflow; any additional keystrokes beyond those already stored in the buffer
will be lost.

I KBD READMATRIX

purpose of Command
The KBD_READMATRIX command is used to read the current key matrix into a task
defined buffer. The key matrix defines the current status (up or down) of every key on the
Amiga keyboard. It is automatically updated by the Keyboard device internal routines
each time the user presses a key. The IOStdReq structure io_Length and io_Data param
eters are used to describe the current key matrix; io_Length defines the number of bytes
in the key matrix, and io_Data points to the task-defined buffer that will contain it when
the KBD_READMATRIX command finishes execution.

KBD _READMATRIX allows QuickIO and always replies to the task reply-port
queue if QuickIO is not successful. The results of command execution are found in io_Error;
o indicates that the command was successful. IOERR_ABORTED indicates that the com
mand was aborted, and IOERR_NOCMD indicates that the io_Command parameter was
specified incorrectly. IOERR_BADLENGTH indicates that the io_Length parameter
was specified incorrectly.

23 41 AMIGA PRO G RAM MER'S HANDBOOK

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Keyboard device unit 0; these can always be copied from the IOStdReq
structure initialized by the OpenDevice function call. Set io_Command to KBD_READ
MATRIX. Initialize io_Flags to IOF _QUICK for QuickIO; otherwise, set it to O. Initial
ize io_Data to point to the buffer area to be filled with the values in the current key
matrix. Set io_Length to the maximum number of bytes in the key matrix. This parame
ter must be specified as large enough to hold the entire matrix; if it is not, adjacent RAM
will be overwritten.

DiScussion
KBD_READMATRIX is the only command that works with the keyboard key matrix. It
reads the current values in the key matrix into a task-defined buffer. The Keyboard device
internal routines automatically update the key matrix whenever a key is pressed.

The key matrix contains a series of bytes arranged in a predefined sequence. Each
byte consists of eight bits, and each bit represents the up or down status of one specific
keyboard key. The IOStdReq structure io_Length and io_Data parameters define the
number of bytes in the key matrix and its RAM location; they must be initialized before
the KBD_READMATRIX command is dispatched. Once a task places the key matrix
into a task-defined buffer with KBD_READMATRIX, it can look at each bit to deter
mine the status of keys.

Use the following procedure to design your tasks so they can find the status of a
keyboard key:

1. Use to the Amiga keyboard key layout shown in the ROM Kernel Manual to deter
mine the bit number corresponding to each keyboard key. For example, the manual
shows that the the F2 function key has bit number 51 assigned to it.

2. Find the key matrix bit. For example, for the F2 function key, this is done by first
dividing the key matrix bit-position value by 8 (hexadecimal 51 = decimal 81).
This indicates that the bit is in byte 10 of the key matrix.

3. Take the same bit position value modulo 8 to determine which bit position within
the byte represents the status (up or down) of the keyboard key. A bit value of 0
indicates the key is up; 1 indicates it is down.

THE KEYBOARD DEVICE 12 3 5

I KBD REMRESETHANDLER

purpose of Command
The KBD REMRESETHANDLER command removes a reset-handler function from the
keyboard reset-handler function list. The removed function was previously added to the
function list with KBD_ADDRESETHANDLER; it was used to process a Ctrilleft
Amigalright-Amiga key combination before a hard reset was activated. Once removed, the
reset-handler function cannot intercept the reset key combination.

KBD_REMRESETHANDLER is always treated as a queued 110 request and
always replies to the task reply-port queue. The results of command execution are found
in io_Error; 0 indicates that the command was successful. IOERR_ABORTED indicates
that the command was aborted, and IOERR_NOCMD indicates that the io_ Command
parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Keyboard device unit O. These can always be copied from the IOStdReq
structure initialized by the OpenDevice function call. Set io_Command to KBD
_REMRESTHANDLER and set io_Flags to O. Initialize io_Data to point to an Inter
rupt structure representing the keyboard reset-handler function you want to remove from
the system. The Interrupt structure was originally designed with the is_Code parameter
pointing to the interrupt code for the new function and the is_Data parameter pointing to
the data used by that function.

DiSCUSSion
The KBD_ADDRESETHANDLER and KBD REMRESETHANDLER functions are
complements of each other: KBD_ADDRESETHANDLER adds a new keyboard reset
handler function to the system, and KBD_REMRESETHANDLER removes it. Both of
these commands work with the Interrupt structure to represent the code and data required
to define the function.

23 &1 AMIGA PRO G RAM MER'S HANDBOOK

I KBD RESETHANDLERDONE

purpose of Command
KBD_RESETHANDLERDONE is used to indicate that a specific reset-handler function
has completed its processing. It is dispatched within the function and is usually the last
piece of executable code in it. KBD_RESETHANDLERDONE informs the system that
the next reset-handler function in the list can begin its processing before a hard reset is
finally started.

The IOStdReq structure io_Data parameter is used to point to an Interrupt structure rep
resenting the code and data required to define the keyboard reset-handler function that dis
patches the KBD_RESETHANDLERDONE command. The results of command execution
are found in io_Error; 0 indicates that the command was successful. IOERR_ABORTED
indicates that the command was aborted, and IOERR_NOCMD indicates that the io_Com
mand parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Keyboard device unit 0; these can always be copied from the IOStdReq
structure initialized by the OpenDevice function call. Set io_Command to KBD_RESET
HANDLERDONE and set io_Flags to O. Initialize io_Data to point to an Interrupt
structure representing the keyboard reset-handler function and its data.

DiSCUSSion
KBD_RESETHANDLERDONE terminates execution of a specific reset-handler func
tion. It tells the system that the function has finished performing its reset activities. If the
reset-handler function is the last on the reset-handler function list, it terminates the list
and the machine's hard-reset sequence will be initiated.

KBD _RESETHANDLERDONE should always be dispatched with the SendIO
asynchronous function. The reset-handler function is represented by a software interrupt,
and it is illegal to allow a wait operation (such as the one caused by the DolO function)
within a software interrupt.

• • ••
• · .. • • •• • • • • •

• • ••• • •• • • • • ••

The Gameport Device

THE GAMEPORT DEVICE 12 39

I Introduction

Table 10.1:
Pin Connections
and Signals for

Gameport
Connectors

The Gameport device is responsible for collecting the information an Amiga user inputs
from a controller attached to either of the gameport connectors. The Gameport device is
ROM-resident; it is loaded automatically into ROM when the WCS ROM is written from
the Kickstart disk at boot-up time.

Information coming from the gameport controller usually includes mouse movement
input events and events associated with any other type of controller connected to a game
port connector.

The game port connectors, numbered 1 and 2, are located on the right side of the
Amiga. Each is a 9-pin male connector. The front (left) gameport controller, unit 0, is usu
ally dedicated to the Amiga mouse. Mouse button 1, the mouse selection button, is con
nected to pin 6 of the gameport connector; mouse button 2, the mouse menu button, is
connected to pin 9. Table 10.1 shows the pin connections and signals for the gameport con
nectors. When studying the table, keep in mind that a trackball controller can be declared as
a mouse-type controller. The proportional controller is not currently supported by software.

The Gameport device internal routines receive raw gameport-connector signal infor
mation and convert it to a set of Gameport device input events. Like all other Amiga
input events, each Gameport device input event is represented as an InputEvent structure.
The Gameport device internal routines construct one InputEvent structure for each input

Pin Absolute Mouse Relative Proportional
No. Joystick Controller Joystick Controllers (2)

Forward Vertical pulse Unused Unused

2 Back Horizontal pulse Unused Unused

3 Left Vertical-quadrature Button 1 Left
pulse button

4 Right Horizontal-quadrature Button 2 Right
pulse button

5 Unused Button 3 Potentiometer X Right
(if used) potentiometer

6 Button I Button 1 Unused Unused

7 + 5 volts + 5 volts +5 volts +5 volts

8 Ground Ground Ground Ground

9 Button 2 Button 2 Potentiometer Y Left
(if used) potentiomet~

240 I AMIGA PRO G RAM MER'S HANDBOOK

event coming from either active gameport connector. (See Chapter 7 for a discussion of
the InputEvent structure.)

The Gameport device places the InputEvent structures into one of two device inter
nal read buffers. The device internal routines maintain a separate buffer for each of the
two Gameport device units, which allows input event accumulation. These two buffers are
automatically managed by the Gameport device internal routines; they should not be con
fused with the task-defined buffer used by the GPD_READEVENT command.

Once Gameport device input events are in the internal read buffer, they can be processed
in several ways. A task can use the GPD_READEVENT command to place the InputEvent
structures into a task-defined buffer, which allows it to process each event as the pro
grammer desires. If the task does not read the InputEvent structures into its own buffer, the
Input device receives the input events; they will then be merged with input events coming
from the Keyboard and TrackDisk devices and any other sources in the Amiga system.
These input events will then be passed on to all of the input-handler functions in order of
priority, including Intuition (at priority 50) and the Console device (at priority 0).

The GPD_ASKCTYPE and GPD SETCTYPE commands allow a task to deter
mine, specify, and change the type of hardware device connected to each gameport connec
tor. These two commands allow the Gameport device internal routines and your tasks to
recognize different hardware when it is connected to the gameport. In addition, the
GPD_ASKTRIGGER and GPD_SETTRIGGER commands allow each task to deter
mine and specify the trigger conditions necessary for the hardware to generate input event
signals. These commands allow the programmer to increase or decrease the threshhold
conditions for hardware signals.

The Gameport device has only one device-specific structure: GamePortTrigger. Because
it is a simple structure with no pointer parameters or substructures, a diagram of the Game
Port Trigger structure is not included in this chapter. However, you should read the discus
sion of it later in this chapter to see how its parameters are defined.

Operation of the Gameport Device
Figure 10.1 illustrates the general operation of the Gameport device. The gameport connec
tors are on the right side of the Amiga as you face it from the front. As you look at the
right side, gameport connector 1 is near the front and gameport connector 2 is near the rear.
Controller signals that come from the front gameport connector always go to Gameport
device unit 0; controller signals that come from the rear gameport connector always go to
Gameport device unit 1. These device units can only be opened in exclusive access mode;
shared access is not allowed for either unit.

Gameport device unit 0 is usually dedicated to the Input device. All Gameport
device events generated by Unit 0 are merged automatically into the entire input event
stream by the Input device internal routines; a task cannot use the GPD _READEVENT
command to process unit 0 input events. Of course, this mechanism only works if the
Input device has been opened previously with an Open Device function call somewhere in
the task that is using the Gameport device, or if the Gameport device was opened when the
Console or Input device was opened.

Figure 10.1: I
Operation of the

Gameport
Device I

GPD __ REAOEVENT

(usually
unit 1 events)

Unit 0

Front
Connector

Unit 1

Rear
Connector

gameprrt
sisnols

Gameport Device Internal Routines

,input events

Input Device nlernol Routines

I Input Device Internal Buffers I
Gamepert unit 0 input events

merged with other ;np'Jt events here

Additional unit 0 input event
processing by Intuition, the
Console device, and input-

handler func\ ons

THE GAMEPDRT DEVICE 1241

Input [vent
Triggered

~-
Controlie~ Types

MOlJse
input even:s

for mouse
and X,Y movements

Absolute eJOysl1Ck
------"'~t"',m"-ed"1 One input

events repcrted for each change
in current location

up / c.~-'w~,
~s;tlons

timed
events

Relative
Continuous streu"l of

Input events reported If
joystick is not centered

No Corelrol'rl

Gameport device input events generated by Gameport device unit 1 are not processed
by the Input device routines automatically. Instead, they are usually placed in a task-defined
buffer with the GPD_READEVENT command. The task can then process these events in
any way that the programmer desires; they do not automatically go to the Input device
internal routines for further processing.

The Gameport device allows you to use the following types of controllers:

• A mouse (type GPCT _MOUSE)_ This controller can report input events for one,
two, or three mouse buttons and for negative or positive X,Y movements. The
input events fall into three classes: X,Y movements represented by a changing set
of mouse coordinates; up and down transitions of mouse buttons; and timed input
events controlled by each of the mouse buttons_

• An absolute joystick (type GPCT _ABSJOYSTICK). This controller reports one input
event for each change in the current location of the joystick. The input events fall
into two classes: up and down transitions of the joystick button, and timed input
events controlled by each joystick button.

• A relative joystick (type GPCT _RELJOYSTICK). This controller reports a contin
uous stream of input events if the joystick controller stick is not centered. The
input events fall into two classes: up and down transitions of the joystick button,
and timed input events controlled by each joystick button.

24 21 AMIGA PRO G RAM MER'S HANDBOOK

In addition, the INCLUDE files provide a controller type called GPCT _NO
CONTROLLER. It tells the Gameport device internal routines that no controller is con
nected to a specific unit, or it tells them to ignore the gameport controller signals coming
from the unit.

Gameport Input Event Processing

Figure 10.2:
Input Event

Processing for I

the Gameport
Device

All gameport input events are processed by a predefined sequence of routines, as shown in
Figure 10.2. The events originate in the gameport hardware as signals, which are passed
to the Gameport device internal routines for processing. The general sequence of game
port input event processing is very similar to that of the Keyboard device (see Figure 9.2)
except that AmigaDOS does not remove any gameport input events.

Amiga Gameport Connectors

Generate gameport
input event signals

All gameport
connector signals

Gameport Device Internal Routines

Formulate InputEvent structures
and place into Gameport device

internal read buffer

All gameport
input events
for unit 0

Input Device Internal Routines

Gameport input events
merged with other types of

input events

Remaining gameport
input events

Task-Defined Routines

f----

Task uses GPD_READEVENT
command to place
Unit 1 events into
task-defined buffer

Intuition, Console device
internal routines, and
programmer- defined
input-handler functions
process gameport
input events

Remaining unit 0 events
filtered out with GPD_READEVENI
command and placed into
task-defined buffer

THE GAMEPDRT DEVICE 1243

Gameport Device Commands
You can program the Gameport device with five device-specific commands and one stan
dard device command. All six commands support both QuickIO and queued I/O; most
also support immediate-mode operation. All commands affect the IOStdReq structure
io_Error parameter, and CMD_CLEAR also affects the contents of the Gameport device
internal read buffer.

Sending Commands to the Gameport Device

Figure 10.3:
Gameport

Device

Command and
Function

Processing

Figure 10.3 depicts the general scheme used to send commands to the Gameport device
routines. The lines with arrows represent the parameters you should initialize and those
returned by the device internal routines.

The Gameport device programming process consists of three phases:

1. Structure preparation. You have complete control over this phase; here, you initial
ize parameters in the IOStdReq structure in preparation for sending a command to
the Gameport device internal routines. These parameters include the set of parame
ters required by most devices. The choice of parameters to initialize depends on the
specific command you plan to send to a Gameport device unit. Taken together,
these parameters provide an information path to the data needed by the Gameport
device routines to process the command.

2. Gameport device internal processing. The only part you play in this phase is to
send the command to the device using the BeginIO, DolO, or SendIO function.
Control then passes to the device and system internal routines.

3. Command output parameter processing. The system and Gameport device internal rou
tines have complete control over this phase. The results of Gameport device command
processing have been returned to the task that originally dispatched the command. If
the I/O request was unsuccessful as QuickIO, it was processed when it moved to the
top of the Gameport device-unit request queue; it is now in the task reply-port queue

Geo",' { device
IOStdReq
structure

parameters IOF QUICK

Preparation 01
IORequest
Structure

~
mn Repl)flort

io Device

io Co~;;~~i}_-
io Flags
io Dola

io Length

Outputs 01
Command or Function

Processing

~
io Device

I IOERR QPENFAIL Gameport Device Internal Routines io Unit
IOERR ABORTED } ~::;:~,' IOStdReq

structure
parameters
and flag
values

io Error

8eglnl0. DolO. or SendlO
sends command, or

functions initiate IORequest
Gameport device internal structure

routine servicing

lib OpenCnt
unit O~nCnt

IOERR NOCMD
IOERR BADLENGTH
GPDERR SETcrYP[

{ The GPD RE'DEVENT . fills the IORequest sl
InputEvent structures
the next gomeport e

Device structure porome!
Unit structure parameter

command
ructure with
representing

vents

2441 AMIGA PRO G RAM MER'S HANDBDDK

awaltlng the task's processing. If the request was successful as QuickIO, it was not
queued but came back directly to the requesting task. The parameters still direct you to
appropriate data for your task.

As the figure shows, several Gameport device commands provide output parameters; in
addition, the GPD_READEVENT command fills the IOStdReq structure io_Data buffer
with InputEvent structures for the next series of gameport input events.

Figure lO.3 also depicts the parameters that playa part in Gameport device function
setup and processing. The OpenDevice and CloseDevice functions both affect the Unit
structure unit_OpenCnt parameter and the Device structure lib_OpenCnt parameter;
OpenDevice also affects the io_Error parameter.

Structures for the Gameport Device
The Gameport device software system uses only one structure: GamePortTrigger. It allows
the GPD_ASKTRIGGER and GPD_SETTRIGGER commands to determine and initial
ize the trigger conditions that will cause gameport connector signals to generate input events.

The GamePortTrigger Structure
The GamePortTrigger structure is defined as follows:

struct GamePortTrigger {
UWORD gpt_Keys;
UWORD gpt_ Timeout;
UWORD gpt_XDelta;
UWORD gpt_ YDelta;

} ;

The parameters in the GamePortTrigger structure have the following meanings:

• gpt_Keys. Your task should initialize this parameter to GPTF _DOWNKEYS if
you want a controller's button-down transitions to trigger a Gameport device input
event. Initialize this to GPTF _UPKEYS in order for a controller's button-up tran
sitions to trigger a Gameport device input event.

• gpt_ Timeout. This parameter represents the time interval that will trigger a Game
port device input event if exceeded. The time interval is measured in vertical
blanking intervals; each interval is 1/60 of a second.

• gpt_XDeita. This parameter sets a controller's X-direction movement, measured in hori
zontal screen-resolution pixels. If exceeded, it triggers a Gameport device input event.

• gpt_ YDelta. This parameter sets a controller's Y-direction movement, measured in verti
cal screen-resolution pixels. If exceeded, it triggers a Gameport device input event.

USE OF FUNCTIONS

I C/oseDevice

Syntax of Function Call
CloseDevice (iOStdReq)

A1

purpose of Function

THE GAMEPORT DEVICE 12 4 5

This function closes access to unit 0 or 1 of the Gameport device. If this is the last Close
Device function call for the units in the task and the Console and Input devices have also
been closed in the task, the Gameport device will be closed.

CloseDevice sets the IOStdReq structure io_Device and io_Unit parameters to -1; a
task cannot use the structure again until these parameters are reinitialized by OpenDevice.
Close Device also reduces the Device structure lib_OpenCnt and Unit structure unit_OpenCnt
parameters by 1 to indicate that one less task is using the Gameport device unit.

I nputs to Function
iOStdReq

DiSCUSSion

A pointer to an IOStdReq structure

CloseDevice terminates access to a set of Gameport device routines for a specific unit of the
device. A task should always verify that all of its I/O requests have been replied by
the Gameport device internal routines before it calls CloseDevice. It can do so by using the
GetMsg, Remove, CheckIO, and WaitIO functions to see what I/O requests are currently in
the task reply-port queue.

When a task is done with its Gameport device operations, it should close the device
with a call to the CloseDevice function. This frees RAM that might be needed by the
system. Another task that wants to use the Gameport device can then open, use, and close
it, and the sequence can be repeated again and again.

Always remember that the Gameport device is opened indirectly when the Input or
Console device is opened; it is opened automatically by AmigaDOS as well. The proce
dure you use to open the Gameport device should determine how you proceed with your
Gameport device CloseDevice calls.

24 &1 AMIGA PRO G RAM MER'S HANDBOOK

I OpenDevice

Syntax of Function Call
error = Open Device (Ugameport.deviceu ,

DO AO

purpose of Function

unitNumber, iOStdReq, 0)
DO A1 01

The OpenDevice function opens access to the internal routines of Gameport device unit 0
or I. The Gameport device can also be opened automatically either by AmigaDOS or by
the Console and Input devices when they are opened directly or indirectly.

OpenDevice automatically initializes a Unit structure to manage Gameport device unit 0
or I. The Unit structure contains a MsgPort substructure representing the device-unit request
queue for all commands dispatched to that unit. Because each unit of the Gameport device
operates in exclusive access mode, tasks send their nonQuickIO requests to this message port;
the requests are all queued in the same queue.

Once Open Device has successfully opened the Gameport device, it initializes certain
Gameport device internal parameters to their most recently specified or default values.
OpenDevice also increments the Device structure lib_OpenCnt parameter and the Unit
structure unit_OpenCnt parameter. OpenDevice requires a properly initialized reply port
with a task signal bit allocated to that port if the calling task wants to be signaled when
the Gameport device routines reply to the task reply-port queue. The results of command
execution are found in the following parameters:

• io_Device. This points to a Device structure that will manage unit 0 or once it
has been opened. The Device structure contains all the information necessary to
manage the Gameport device unit and to reach the data and routines in the Game
port device library.

• io_Unit. This points to a Unit structure that will be used to define and manage a
MsgPort structure for Gameport device unit 0 or I. The MsgPort structure repre
sents the device-unit request queue.

• io_Error. 0 indicates that the requested open succeeded. IOERR_OPENFAIL indi
cates that the Gameport device could not be opened; this usually means that there
was not enough memory to accommodate the Device and Unit structures and the
Library routines. IOERR_NOCMD indicates that io_Command was specified
incorrectly.

THE GAMEPORT DEVICE 12 47

I nputs to Function
"gameport.device" A pOinter to a null~terminated string representing the

name of the Gameport device

unitNumber

iOStdReq

o

Either 0 for the front (unit 0) gameport controller or 1 for
the rear (unit 1) gameport controller

A pointer to an IOStdReq structure

I ndicates that the flags argument is not used by the
Gameport device

preparation of the IOStdReq Structure
Initialize mn_ReplyPon to point to a MsgPon structure representing the task reply pon that
will receive the I/O request reply from the Gamepon device when it has finished processing
any of the Gamepon device commands. Initialize all other IOStdReq substructure parameters
to 0, or copy them from the IOStdReq structure of a previous Open Device call. Initialize
io_Command to 0, or set it to GPD_READEVENT if the task should open the Gamepon
device and dispatch a GPD_READEVENT command immediately.

If the CreateStdIO function is used to create the IOStdReq structure (see Chapter 2),
it will automatically return a pointer to an IOStdReq structure. In this case, no typecast~
ing will be necessary for the Gameport device.

DiSCUSSion

The Open Device function opens the Gameport device internal routines for access by a
task. Gameport device units can only be opened in exclusive access mode, the default;
shared access is not allowed. Keep in mind that the Gameport device is opened automati~
cally by AmigaDOS or by the Console and Input device when a system~generated Open~
Device call for these two devices is executed.

The IOStdReq structure parameters are set to their default values the first time the
Gameport device is opened in a task. This means that most of them are initialized to 0.
However, the mn_ReplyPort parameter should always be initialized before OpenDevice is
called so that it points to a MsgPort structure representing the task reply~port queue.

Once the Gameport device is opened, other parameters in the IOStdReq structure
can be initialized to define I/O requests. Any parameters that are not explicitly initialized
will retain their previous values or be initialized to their default values. If a calling task
wants to use values other than the defaults for these parameters, it should initialize them
after the Open Device function call returns.

OpenDevice can be called to open the Gameport device and to dispatch a series of
GPD_READEVENT and other commands to the Gameport device routines. The com~
mands then gather information from the Amiga gameport controllers and send it to the

2 4 BI AMIGA PRO G RAM MER'S HANDBOOK

task, the Input device, or the Console device for further processing. Once a task has fin
ished its Gameport device processing, it can close the device using a call to CloseDevice.

STANDARD DEVICE COMMANDS

I~MD CLEAR

purpose of Command
CMD CLEAR clears the Gameport device internal read buffer for a specified unit. This
buffer is only used to store Gameport device input events (in the form of InputEvent struc
tures) generated by game port controller signals. Once the read buffer is cleared, subsequent
GPD_READEVENT commands can proceed from a known empty buffer condition. CMD
_CLEAR allows QuickIO and only replies if the request was queued or if QuickIO was not
successful. IOERR_NOCMD indicates that io_ Command was specified incorrectly.

preparation of the IOStdReq Structure

Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Gameport device unit 0 or unit I; these parameters can be copied from the
IOStdReq structure initialized by the OpenDevice function call. Also initialize io_ Com
mand to CMD_CLEAR. Set io_Flags to IOF_QUICK for QuickIO; otherwise, set it to
O. QuickIO may or may not succeed, depending on conditions in the system when the
command was dispatched.

DiSCUSSion
The Gameport device automatically maintains one internal device buffer, which it uses to
store Gameport device input events. The CMD _CLEAR command clears the current con
tents of this buffer. If a task is executing a series of GPD _READEVENT commands to
place input events into a task-defined buffer and wants to be sure the Gameport device
internal read buffer is in a known state before proceeding, it should first dispatch CMD
_CLEAR to zero all bytes in that buffer. Then subsequent GPD_READEVENT com
mands will not encounter characters left over from earlier input events. The Gameport
device does not have a CMD WRITE command and therefore uses no internal write
buffers.

THE GAME PORT DEVICE 124 9

DEVICE-SPECIFIC COMMANDS

GPO ASKCTYPE

purpose of Command
The GPD _ASKCTYPE command determines the controller type currently connected to
Gameport device unit 0 or unit 1. The Gameport device internal routines then provide
the address of this information to the task in the IOStdReq structure io_Data parameter.
The Gameport device internal routines and the task routines are then consistent, and the
task can properly interpret the gameport connector signals.

GPD_ASKCTYPE is always an immediate-mode command. It replies to the task
reply-port queue if a requested QuickIO was unsuccessful. The results of command execu
tion are found in io_Error, where 0 indicates that the task was successful. IOERR
_ABORTED indicates that the command was aborted, IOERR_NOCMD indicates that
the io_Command parameter was specified incorrectly, and IOERR_BADLENGTH indi
cates that the io_Length parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage Gameport device unit 0 or unit 1; these parameters can be copied from the
IOStdKeq structure initialized by the Open Device function call. Set io_Command to

GPD _ASKCTYPE. Also initialize the following command-specific parameters:

• io_Flags. Set this to IOF _QUICK for QuickIO; otherwise, set it to O. QuickIO
mayor may not succeed, depending on conditions in the system when the com
mand was dispatched.

• io_Length. Initialize this to I, indicating that the value returned in the location
addressed by the io_Data parameter is one byte in length.

• io_Data. Initialize this to point to a byte variable in which the single-byte result
returned by GPD_ASKCTYPE will be placed. When GPD_ASKCTYPE com
pletes execution, this byte variable will have one of five values, as discussed in the
next section.

DiSCUSSion
The GPD_ASKCTYPE and GPD_SETCTYPE commands allow a task to determine and to
change the controller rype connected to a Gameport device unit. GPD_ASKCTYPE tells the

2 5 0 I AMIGA PRO G RAM MER'S HANDBOOK

task what controller types are connected, and GPD_SETCTYPE changes those type specifica
tions when the specific hardware connected to a Garneport device unit has been changed. A
task and the Garneport device internal device routines must always agree on the controller type
in order for the garneport controller signals to be properly and consistently interpreted.

At present, the Amiga supports controller types GPCT _NOCONTROLLER,
GPCT _MOUSE, GPCT _RELJOYSTICK, and GPCT _ABSJOYSTICK. Each of these
types is identified by a specific constant (0, I, 2, and 3, respectively) in the Gameport.h
INCLUDE file. In addition, GPCT_ALLOCATED, with an assigned value of 1, indi
cates that a task has asked for a controller type that has already been allocated to another
task. It is required because the Gameport device units are used in exclusive access mode
only. See the earlier discussion in this chapter for more on these controller types.

GPD ASKTRIGGER

purpose of Command
The GPD_ASKTRIGGER command allows a task to determine the current trigger condi
tions that must be met by a Gameport device controller before a pending Gameport input
event will occur. GPD_ASKTRIGGER is an immediate-mode command and always replies
to the task reply-port queue if it was queued or if QuickIO was unsuccessful. The results of
command execution are found in io_Error, where 0 indicates that the task was successful.
IOERR_ABORTED indicates that the command was aborted, IOERR_NOCMD indicates
that the io_ Command parameter was specified incorrectly, and IOERR BADLENGTH
indicates that the io_Length parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort stmcture representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Gameport device unit ° or unit 1; these parameters can be copied from the
IOStdReq stmcture initialized by the OpenDevice function call. Set io_ Command to
GPD _ASK TRIGGER. Also initialize the following command-specific parameters:

• io_Flags. Initialize this to IOF _QUICK for QuickIO; otherwise, set io_Flags to 0.
QuickIO mayor may not succeed, depending on conditions in the system when the
command was dispatched .

• io_Length. Initialize this to the size (in bytes) of the GamePortTrigger structure. A
task can use the C language sizeof operator to initialize this parameter.

THE GAMEPDRT DEVICE 12 51

• io_Data. Initialize this to point to the GamePortTrigger structure representing the
current trigger conditions for the gameport controller unit. The task can read the struc
ture parameters to determine the trigger conditions.

DiSCUSSion
The GPD_ASKTRIGGER and GPD_SETTRIGGER commands allow a task to deter
mine and to change the current gameport trigger conditions for a hardware device connected
to a Gameport device unit. GPD _ASKTRIGGER determines the trigger conditions, and
the device internal routines use the information to determine if a new Gameport device
input event has occurred. If the trigger conditions are satisfied, the Gameport device internal
routines will formulate a new InputEvent structure to represent the event; it will then be
queued in the Gameport device internal read buffer. If the trigger conditions are not satis
fied, a new InputEvent structure will not be formulated.

The GPD_ASKTRIGGER command does not relate directly to the GPD_READ
EVENT command. However, if trigger conditions are such that the Gameport device
internal read buffer contains one or more input events because the current trigger condi
tions have been satisfied one or more times, a task can execute GPD READE VENT to
read them into its own task-defined buffer.

GPO REAOEVENT

purpose of Command
The GPD READEVENT command allows a task to read the next series of Gameport
device input events from the Gameport device internal read buffer into a task-defined
builer. The task can then process those events as the programmer desires. GPD_READ
EVENT uses the IOStdReq structure io_Length and io_Data parameters to specify the
task-defined buffer; its size is determined by the number of InputEvent structures to be
placed in it.

If no Gameport device input events are currently queued in the Gameport device
internal read buffer, GPD_READEVENT will not be satisfied and will not read any
input events into the task-defined buffer. In this case, the IOStdReq structure io_Error
parameter will indicate that an error has occurred. However, if there are some Gameport
device input events in the internal read buffer that have not yet been read, but not as
many as indicated by the io_Length parameter, GPD_READEVENT will be satisfied
with those currently available, and the io Error parameter will be 0 when the
GPD READEVENT request is replied.

2 5 21 AMIGA PRO G RAM MER'S HANDBOOK

GPD_READEVENT allows QuickIO and always replies to the task reply-port queue
if it was queued or if QuickIO was unsuccessful. The results of command execution are
found in io_Error, where IOERR_ABORTED indicates that the command was aborted,
IOERR_NOCMD indicates that the io_Command parameter was specified incorrectly, and
IOERR_BADLENGTH indicates that the io_Length parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage Gameport device unit 0 or unit 1; these parameters can be copied from the
IOStdReq structure initialized by the Open Device function call. Set io_Command to
GPD_READEVENT. Also initialize the following command-specific parameters:

• io_Flags. Initialize this to IOF _QUICK for QuickIO; otherwise, set it to O.
QuickIO mayor may not succeed, depending on conditions in the system when the
command was dispatched.

• io_Length. Initialize this to the size (in bytes) of the task-defined buffer. To deter
mine its size, multiply the number of InputEvent structures by the size of the
InputEvent structure. A task can use the C language size of operator to initialize
this parameter.

• io_Data. Initialize this to point to the task-defined buffer. When GPD _READ
EVENT returns, the buffer will contain a series of InputEvent structures represent
ing the new gameport input events that have been copied from the Gameport
device internal read buffer.

DiSCUSSion
GPD_READEVENT places InputEvent structures for one or more Gameport device
input events into a task-defined buffer. The task that dispatches the GPD_READEVENT
command can then process those input events as the programmer desires. Each Input
Event structure in the task-defined buffer will contain the following parameters:

• ie_Next Event. This points to the next InputEvent structure in the linked list; it
will be 0 if the InputEvent structure represents the last structure in the list.

• ie_Class. This is the class of the gameport event; it is IECLASS_RAWMOUSE
for raw mouse movement events.

• ie_SubClass. This is 0 if the Gameport device input event came from the front
(unit 0) game port controller; it is I if the input event came from the rear (unit I)
gameport controller.

THE GAMEPORT DEVICE 1253

• ie_Code. This contains the next controller-button up or down report. It is either
IECODE_LBUTTON, IECODE_RBUTTON, IECODE_MBUTTON, or IE
CODE_NBUTTON. See the Inputevent.h INCLUDE file for more information. A
hexadecimal OxFF value indicates no report.

• ie_Qualifier. This is the qualifier of the gameport input event. It is either
IEQUALIFIER_LBUTTON, IEQUALIFIER_RBUTTON, IEQUALIFIER_M
BUTTON, or IEQUALIFIER_RELATIVEMOUSE. Again, see the Inputevent.h
INCLUDE file for more information.

• ie_X. This is the current controller X position when the Gameport device input
event occurred. It is measured in the horizontal resolution of the display screen.

• ie_ Y. This is the current controller Y position when the Gameport device input
event occurred. It is measured in the vertical resolution of the display screen.

• ie_TimeStamp. This is the time since the last Gameport device input event occurred.
It is measured in the number of video frames since the last input event and is a
multiple of 1/60 of a second. The Gameport device internal routines place the num
ber of frames in the TimeVal structure tv_Sees parameter. Recall that the TimeVal
structure usually contains the tv_Sees (seconds) and tv_Micros (microseconds) values.
Here, however, the tv_Micros value has no meaning; instead, the Gameport device
initializes the tv_Sees parameter to the number of frames since the last Gameport
device input event.

Gameport input events are usually passed automatically to the Input device. How
ever, with the GPD_READEVENT command, your tasks can remove events from the
Gameport device internal read buffer, place them in their own buffers, and process them
as you wish.

Gameport device routines will normally queue more than one input event into the
Gameport device internal read buffer. These events will continue to queue in the buffer
until a task reads them with GPD_READEVENT or the Input device reads them auto
matically and passes them to Intuition and the Console device. If neither the task nor the
Input device reads the events, the Gameport device internal read buffer will overflow; any
Gameport device input events beyond those already stored in the buffer will be lost.

I GPO SETCTYPE

purpose of Command
The GPD_SETCTYPE command allows a task to change the controller type connected
to Gameport device unit 0 or l. This change makes the Gameport device internal soft
ware system consistent with the hardware system and allows a task to inform the Game
port device internal routines of the current hardware status. A task and the Gameport

2 541 AMIGA PRO G RAM MER'S HANDBOOK

device internal routines can then interpret signals properly when the controller has been
changed. The controller type that the task wants to change is placed into the IOStdReq
structure io_Data parameter before the GPD_SETCTYPE command is dispatched. After
the GPD_SETCTYPE command executes, the Gameport device internal routines are
informed immediately of the new controller type.

GPD_SETCTYPE is always an immediate-mode command and always replies to the
task reply-port queue if it was queued or if QuickIO was not successful. The results of
command execution are found in io_Error, where ° indicates that the task was successful.
IOERR_ABORTED indicates that the command was aborted, IOERR_NOCMD indi
cates that the io_Command parameter was specified incorrectly, and IOERR-

BAD LENGTH indicates that the io_Length parameter was specified incorrectly.
GPDERR_SETCTYPE indicates that the specified controller is not valid at this time.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage Gameport device unit 0 or unit I; these parameters can be copied from the
IOStdReq structure initialized by the Open Device function call. Set io_Command to
GPD_SETCTYPE. Also initialize the following command-specific parameters:

• io_Flags. Initialize this to IOF_Qt:ICK for QuickIO; otherwise, io_Flags should
be set to O. QuickIO mayor may not succeed, depending on conditions in the sys
tem when the command was dispatched.

• io_Length. Initialize this to I, indicating that the value placed into the IOStdReq
structure io_Data parameter is one byte in length.

• io_Data. Initialize this to point to the byte variable in which the specified new con
troller type is stored. The byte variable will have one of five values: - I, 0, I, 2, or 3.
See the GPD_ASKCTYPE command discussion for the meanings of these values.

DiSCUSSion
The type of controller hardware connected to unit 0 and unit I must be known by both the
Gameport device internal routines and the task routines, and they must always agree on
the controller type connected. This allows the game port controller signals to be properly and
consistently interpreted by both sets of routines. GPD _SETCTYPE allows a task to specify
the controller type connected to a specific Gameport device unit. GPD _ASKCTYPE tells
the task what controller type is connected to each unit, and GPD_SETCTYPE changes the
controller type in software when the hardware controller connected to the Gameport device
unit has changed.

THE GAMEPORT DEVICE 12 55

I GPO SETTRIGGER

purpose of Command
The GPD_SETTRIGGER command allows a task to change the current trigger condi
tions that must be met by a game port controller before a Gameport device input event
will occur. GPD_SETTRIGGER is an immediate-mode command and always replies to
the task reply-port queue if it was queued or if QuickIO was not successful. The results
of command execution are found in io_Error, where 0 indicates that the task was success
ful. IOERR_ABORTED indicates that the command was aborted, IOERR_NOCMD
indicates that the io_Command parameter was specified incorrectly, and IOERR
_BAD LENGTH indicates that the io_Length parameter was specified incorrectly.

preparation of the IOStdReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io _Device and io _Unit to point to the Device and Unit structures
that manage Gameport device unit 0 or unit I; these parameters can be copied from the
IOStdReq structure initialized by the OpenDevice function call. Set io_Command to
GPD_SETTRIGGER. Also initialize the following command-specific parameters:

• io_Flags. Initialize this to IOF _QUICK for QuickIO; otherwise, set it to o.
QuickIO mayor may not succeed, depending on conditions in the system when the
command was dispatched.

• io_Length. Initialize this to the size (in bytes) of the GamePortTrigger structure. A
task can use the C language sizeof operator to initialize this parameter.

• io_Data. Initialize this to point to the GamePortTrigger structure representing the
new trigger conditions for the game port controller unit.

DiSCUSSion
The GPD_ASKTRIGGER and GPD_SETTRIGGER commands allow a task to deter
mine and change (set) the current gameport trigger conditions for a hardware device con
nected to a Gameport device unit. GPD_SETTRIGGER changes the gameport-controller
trigger conditions; the Gameport device internal routines use this information to determine
if a new Gameport device input event has occurred.

If the new trigger conditions are satisfied, the Gameport device internal routines will
create a new InputEvent structure, which will be queued in the Gameport device internal
read buffer. If the new trigger conditions are not satisfied, a new InputEvent structure will
not be formulated.

• • ••
• . -... . - . •• • • • • •• • • •• .--

The Printer Device

THE PRINTER DEVICE 12 59

Introduction

The Printer device is responsible for sending printable characters and printer control
codes to a printer connected to the serial or parallel port. At the time of this writing, the
Amiga supports the following printers:

Alphacom Alphapro
Apple ImageWriter II
Canon PJ lOS0a
CBM MPSIOOO
Diablo 630
Diablo C 150
Diablo Advantage D25
Epson
Epson JX-SO

WI Epson RX-SO
HP LaserJet
HP LaserJet Plus
Juki 5510
Okidata 20
Okidata Microline 92
Okidata Microline 192
Okidata Microline 292
Qume Letter Pro 20

Amiga also supports a generic printer driver, which allows you to use many commer
cially available printers not shown on this list. Drivers are found in the Workbench disk
DEVS: directory; if the driver is not there, it is available from another source. The Apple
ImageWriter II, the Epson printers, the HP LaserJet Plus, and the Okidata printers are
dot-matrix printers. The Apple Image Writer II, Canon PJ lOS0a, Diablo C 150, Epson
JX-SO, Juki 5510, Okidata 20, and Okidata Microline 292 can produce color printouts; the
Okidata 20 can produce color text.

The Printer device is disk-resident; it must be loaded into RAM from disk. Its internal
routines can be accessed directly by a task, or in AmigaDOS through the SER: file (for a
printer connected to the serial port), the PAR: file (for a printer connected to the parallel
port), or the PRT: file (for a printer connected to either the serial or parallel port). Specific
printer selections and options are made from the Workbench Preferences screen, and the
three AmigaDOS files (SER:, PAR:, and PRT:) can be called from an AmigaDOS CLI.

Operation of the Printer Device
The Printer device has only one unit. It queues command requests for processing by the
Printer device internal routines. Figure 11.1 illustrates the general operation of this device.

There are four ways to access the Printer device internal routines. Three ways provide
an indirect route, and one provides a direct route. In each case, a continuous stream of
control-code commands and printable characters can be sent to the Printer device internal
routines. (Control-code commands consist of instructions to a specific printer -to reset the
printer hardware, initialize the printer with default settings, send a linefeed character, start
italic printing, and so on.) The first two of the following methods are not recommended:

1. Access the SER: file from an AmigaDOS CLI (command-line interface). With this
method you can also access the Printer device from the Workbench Preferences
screen. However, you must access the Printer device internal routines from within a

26 0 I AMIGA PRO G RAM MER'S HANDBOOK

Figure 11.1:
Operation of the

Printer Device

Process
Statements

AmigaOOS
SER

c

Process
Statements

AmigaOOS
PAR:

I

Process
Statements

AmigaOOS
PRT:

*
f---(·--haracter streams

printer commands
and data) ,

Printer Prin ter
Device Device

filters fil ters
character character

stream stream

Serial Parallel
Printer Prin ter

- Cannot include escape sequences
.. Can Include escape sequences

Printer
Device

filters and
translates
character

stream

Printer

Serial
or

Parallel

T ask Statements

(task-defined buffers)

I
Unit 0

Request Queue

• Prin ter Device

(shared or
exclusive access)

I
character stream-

(commands and data)

I ..
Graph les

dump , ,
Prin ter

Serial or Parallel

process; it is not possible to access them from within a task. A continuous character
stream will be sent from AmigaDOS to the Printer device internal routines, which
will filter the stream and eliminate certain characters. The character stream will not
be translated, and you will not be able to send a raster bitmap display to the printer.

2. Access the PAR: file from an AmigaDOS CLI. This method also allows you to
access the Printer device from the Workbench Preferences screen. However, you
must access the Printer device internal routines from within a process. The internal
routines will filter the character stream, eliminating certain characters, but they will
not translate the character stream. You will not be able to send a raster bitmap dis
play to the printer.

THE PRINTER DEVICE 12 61

3. Access the PRT: file from an AmigaDOS CLI. Once again, with this method you can
also access the Printer device from the Workbench Preferences screen, but you must
access its internal routines from within a process. The internal routines will filter the
character stream, eliminating certain characters. With this method, characters in the
stream will also be translated into another set of characters. However, you will not be
able to send a raster bitmap display to the printer.

4. Access the Printer device internal routines directly from a task. With this method,
a continuous stream of characters is sent to the Printer device internal routines
from a task-controlled buffer. The task is defined and controlled by a Task struc
ture; there is no need to deal with processes. If dispatched with the PRD _ PRT
COMMAND and CMD _ WRITE commands, the control-code characters will be
translated into specific control characters for the printer selected on the Workbench
Preferences screen. A task can also use the PRD RAWWRITE command to send
characters that are not translated by the Printer device internal routines.

With all four methods, the Printer device internal routines can only be used in exclusive
access mode. Since this device communicates with external hardware, multiple tasks must
not use the hardware simultaneously.

Sending Control Codes to a Printer
The Amiga can send any standard 7-bit ANSI 3.64 character to a connected printer.
When preceded by an escape character, each character or group of characters can repre
sent a printer control code, which is an escape sequence that a printer understands. The
Amiga can work with 75 different printer control codes. These include codes defined by
the International Standards Organization and the Digital Equipment Corporation, as well
as codes designed specifically for the Amiga, including the initialize, subscript-on, and
subscript-off codes described in the ROM Kernel Manual.

Every printer has its own set of control-code characters. Therefore, it is the responsi
bility of each printer driver in the DEVS: directory to translate nonstandard escape
sequences into control codes. The translation capability must be built into any printer
driver you use. Once a specific driver is created and placed in the DEVS: directory
printer file, it can be controlled from an AmigaDOS CLI, which requires a process, or
from within a task, which does not require a process.

There are two procedures for controlling the printer directly from an AmigaDOS
CLI. The first procedure is as follows:

1. Select the appropriate printer from the Workbench Preferences screen.

2. Redirect the keyboard input to the printer by typing

Copy * to PRT:

and pressing Return. This opens a keyboard-generated file that will contain the
characters you type. Then wait until the file is open and the disk access stops.

2 6 21 AMIGA PRO G RAM MER'S HANDBOOK

3. At the CLI prompt, type an escape-character sequence. For example, to turn on
italic printing, press the Escape key and type

[3m

This information will not be echoed to the screen but instead will be placed in the
keyboard-generated file.

4. Hold down the Ctrl key and press the Backslash key to terminate the keyboard
generated file. If your printer supports italic printing and the printer driver was
properly designed and programmed, any information you now send to the printer
will be printed in italic. If you want to print a file named MyFile with italic char
acters, for example, type

Copy Myfile to PRT:

and press the Return key.

The second procedure for controlling the printer from AmigaDOS is similar, except
that it allows you to automate the process. You create a number of small control-code files
(called printer command files) that you send to the printer when you need to reconfigure
it for new printing options. You can place these files on a disk and read them into a
RAM disk as part of the startup-sequence file. For example, you could design a number
of printer command files to do the following:

• Create a file named ION to turn italic printing on.

• Create a file named IOFF to turn italic printing off.

• Create a file named CON to turn condensed printing on.

• Create a file named COFF to turn condensed printing off.

Each of these files would have a set of control-code sequences. Then, when you wanted to
turn the features on or off, you would type the appropriate command, such as

Copy ram:ION to PRT:

to turn italic printing on, or

Copy ram:IOFF to PRT:

to turn italic printing off.
To control a printer from within a task, you select the printer from the Workbench

Preferences screen and send it printer control codes by using PRD _PRTCOMMAND
(for a single printer control code) or CMD_ WRITE (for a series of printer control codes).
Any control code you send will be translated by the correct printer driver. You could also
send printer control codes with the PRD RAWWRITE command if you did not want
them to be translated.

THE PRINTER DEVICE 12 63

printer Device Commands

Figure 11.2(a):
Printer Device

Command and
Function

Processing
(Specifications)

The Printer device has three device-specific and five standard device commands. All but
two of these commands support QuickIO; PRD_PRTCOMMAND and CMD_ WRITE
do not. Three commands (CMD_FLUSH, CMD_START, and CMD_STOP) also sup
port immediate-mode operation. All commands affect the PrinterIO union IOStdReq,
IODRPReq, or IOPrtCmdReq substructure io_Error parameter.

Sending Commands to the Printer Device
Figures 11.2(a) and (b) depict the general scheme used to dispatch commands to the
Printer device. In Figure 11.2(a), the lines with arrows represent the parameters you
should initialize; in Figure 11.2(b), they represent the parameters returned by the Printer
device internal routines.

General
device

IOStdReq
structure

parameters

HIRES
LACE
HAM

EXTRA HALFBRITE

SPECIAL MILCOLS
SPECIAL MILROWS

SPECIAL FULLCOLS
SPECIAL FULLROWS
SPECIAL FRACCOLS
SPECIAL FRACROWS

SPECIAL ASPECT
SPECIAL DENSITYMASK

SPECIAL DENSITYI
SPECIAL DENSITY2
SPECIAL DENSITY)
SPECIAL DENSITY4

SPECIAL CENTER

IOF QUICK

/"

I

Preparation of
IORequest
structure

mn ReplyPort
io Device

io Unit
io Command

io Flaqs
io Data

io_Length

io RostPort
io ColorMap_

io Modes
io SrcX
io SrcY

io SrcWidth
io SrcHeiqht
io OestCols

io OestRows
io Special

w{;' P,tC,mm"d
io ParmO

2 io Parmi
io Porm2
io Parm3

Printer Device Internal Routines

BeginlO, 0010, or

SendlO sends

command, or
functions initiate

Printer device
internal routine

servicing

CD IODRPReq structure parameters input for PRD_DUMPRPORT command
G) IOPrtCmdReq structure parameters input for PRD_PRTCOMMAND command

Z 6 41 AMIGA PRO G RAM MER'S HANDBOOK

Figure 11.2(b):
Printer Device

Command and
Function

Processing
(Outputs)

io Device
Printer 10 Unit

In:er'lol Routines

_uniLOpenCnt ..

\

l

I IOERR OPENFAIL
_(T_RR_. __ ~B_OR-,-,T'c'Ei)~ __

General ,,:t~r_NOCMD=~ __
device 1,)eFf; BADiINGTH
IOStdl\eq . PDEkR_CANCEL __ _
s.t. ruc;urc ~OTGR~PHICS
plometers--l PDE~R_'~VERT.--:H;c-cAccM:c=,-------_

PDERR BAI)DIME'IS'ON
I PDtRR_DIMEI\SIONOVFLOW

F'CJ[R': INTERNALME',I(1F
"'nE", BUFFERMEMiRI

Device structure parameter
Unit structure parameter

The Printer device programming process consists of three phases:

1. Structure preparation. The programmer has complete control over this phase. Here,
you initialize parameters in the lOStdReq, lOPrtCmdReq, or lODRPReq substruc
ture in preparation for dispatching a command. These parameters include those
required by most devices, as well as parameters for the lODRPReq and
IOPrtCmdReq substructures. The choice of parameters depends on the specific
command you plan to dispatch to the Printer device. These parameters provide an
information path to the data needed by the Printer device internal routines to pro
cess a command.

2. Printer device internal routine processing. The only part you play in this phase is
to dispatch the command to the device using the BeginlO, DolO, or SendIO func
tion. Once the function begins executing, control passes to the device and system
internal routines.

3. Command output parameter processing. The system and Printer device internal
routines have complete control over the values found in this phase. Here, the
results of command processing have been returned to the task that issued the com
mand. If the I/O request was not a QuickIO or immediate-mode request, it was
processed when it moved to the top of the device-unit request queue and is now in
the task reply-port queue awaiting the task's processing. If the request was a suc
cessful QuickIO request, it was not queued but came directly back to the request
ing task. The parameters still direct you to appropriate data for your task.

All commands provide output parameters. These are returned by the PrinterIO union
request substructure io_Error parameter.

Figures 11.2(a) and (b) also depict the parameters that playa part in Printer device
function setup and processing. OpenDevice and CloseDevice both affect the Unit structure

THE PRINTER DEVICE 12 6 5

unit_ OpenCnt parameter and the Device structure lib_ OpenCnt parameter; OpenDevice
also affects the io_Error parameter.

The procedures used to dispatch commands to the Printer device internal routines
are different from those for most Amiga devices. The Exec functions (BeginIO, DolO,
and SendlO) must work with a special C language union named PrinterIO. This union
has the particular construction that the Printer device internal routines were programmed
to expect when a command is dispatched.

The PrinterlO Union
When a task wants to dispatch a Printer device command, it must initialize a PrinterlO
union. This is usually done by using the Exec-support library CreateExtlO function
before OpenDevice is called. The same PrinterlO union can be used for any number of
Printer device commands; the procedure does not differ from the formulation procedures
for other structures.

Recall that a C language union is similar to a C language structure, except that each
of its component parts (in this case, substructures) are interpreted to occupy the same
RAM locations. The IOStdReq, IODRPReq, and IOPrtCmdReq substructures all occupy
the initial bytes of the same RAM area. This arrangement is understood by the C lan
guage compiler; it properly compiles and links when it sees this construction, which
allows the system to save RAM.

The PrinterlO union is defmed as follows:

union {
struet IOStdReq ios;
struet IODRPReq iodrp;
struet IOPrtCmdReq iope;

PrinterlO;

The IOStdReq substructure represents the I/O request structure for the standard
device commands and the PRD_RAWWRlTE command. The IODRPReq substructure
represents the PRD_DUMPRPORT command, and the IOPrtCmdReq substructure rep
resents the PRD _PRTCOMMAND command. A task must initialize the appropriate
parameters in these substructures to dispatch a command. See the command and function
discussions in this chapter for information on the appropriate parameters.

Structures for the Printer Device
The IOStdReq, IOPrtCmdReq, and IODRPReq structures are used to define Printer
device commands to be dispatched to the internal routines of the predefined Printer device
library. The IOStdReq structure is presented in Chapter 2. Figure 11.3 shows the
IOPrtCmdReq and IODRPReq structures.

2 6 61 AMIGA PRO G RAM MER'S HANDBOOK

Figure 11.3:
Printer Device

Structures

IOPrtCmdReq Structure

I Message Structure

J (io_Message)

IOORPReq Structure

I Message Structure

J (io_Message)

io Device J J
- Device Structure

L
10 Unit J J

- Unit Structure
I

10 Device J J
- Device Structure

L
10 Unit J I -

Unit Structure
I

io RastPort I I - RastPort Structure
I

io_ColorMap J ColorMap Structure J
I

The IOPrtCmdReq Structure

The IOPrtCmdReq structure is used only with PRD_PRTCOMMAND. It is defined
as follows:

struct IOPrtCmdReq

} ;

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
UWORD io_PrtCommand;
UBYTE io_ParmO;
UBYTE io_Parm1;
UBYTE io_Parm2;
UBYTE io_Parm3;

The parameters in the IOPrtCmdReq structure have these meanings:

• io_Message. This is the name of a Message substructure. It contains the mn_ReplyPort
parameter, which specifies the task reply port that will receive the PRD_PRTCOM
MAND reply when the Printer device internal routines have finished processing it.

TH E PRINTER DEVICE 12 67

• io_Device. This points to a Device structure that manages the Printer device inter
nal routines when the device has been opened with OpenDevice.

• io_Unit. This points to a Unit structure containing the MsgPort substructure that
represents the device-unit request queue.

• io_Command. This is the command you want the Printer device to execute
PRD_PRTCOMMAND.

• io_Flags. This is a set of flag parameters; the Printer device does not use them.

• io_Error. This contains the error messages returned by the Printer device.

• io_PrtCommand. This is the Printer-specific control-code command you want the
Printer device internal routines to execute. It always contains an escape character as
its first character.

• io_ParmO, io_Parml, io_Parm2, and io_Parm3. These are the first, second, third, and
fourth parameters in the control-code command used with PRD_PRTCOMMAND.

For more information on this structure, see the Printer.h INCLUDE file and the
PRD PRTCOMMAND discussion.

The IODRPReq Structure
The IODRPReq structure is used only with the PRD DUMPRPORT command. It is
defined as follows:

struct IODRPReq

} ;

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
struct RastPort *io_RastPort;
struct ColorMap *io_ColorMap;
ULONG io_Modes;
UWORD io_SrcX;
UWORD io_SrcY;
UWORD io_SrcWidth;
UWORD io_SrcHeight;
LONG io_DestCols;
LONG io_DestRows;
UWORD io_Special;

26 81 AMIGA PRO G RAM MER'S HANDBOOK

The io_Message, io_Device, io_Unit, io_Flags, and io_Error parameters have the same
meanings as they do for the IOPrtCmdReq structure. The other IODRPReq parameters
have the following meanings:

• io_Command. This is the command you want the Printer device to execute
PRD _DUMPRPORT.

• io_RastPort. This points to a Graphics library RastPort structure that represents
the bitmap containing information you want to send to the printer.

• io_ColorMap. This points to a Graphics library ColorMap structure that is used to
define the colors for printing the bitmap information.

• io_Modes. This is a set of graphics viewport modes used to print the bitmap infor
mation. It is the same as the Graphics library View Port structure Modes parameter.

• io_SrcX and io_SrcY These are the X and Y origins of the information in the
raster bitmap coordinate system.

• io_SrcWidth and io_SrcHeight. These are the width and height of the bitmap
information to be sent to the printer.

• io_DestCols. This is the width of the bit.nap information to be sent to the printer.

• io_DestRows. This is the height of the bitmap information to be sent to the
printer.

• io_Special. This is a set of special option flags that control the interpretation of the
io_DestCols and io_DestRows parameters.

See the discussion of PRD DL"MPRPORT and the Printer.h INCLL"DE fde for more
about this structure.

USE OF FUNCTIONS

I CloseDevice

Syntax of Function Call
CloseDevice (printerIO)

A1

THE PRINTER DEVICE 12 6 9

purpose of Function
This function closes access to Printer device unit O. If it is the last CloseDevice function call
in a task and the Serial and Parallel devices have also been closed by CloseDevice calls in the
task, the Serial and Parallel devices will also be closed. When CloseDevice returns, the current
task cannot use the Printer device until it executes another OpenDevice function call.

CloseDevice sets the PrinterIO union IOStdReq, IOPrtCmdReq, or IODRPReq sub
structure io_Device and io_ Unit parameters to - 1. The PrinterIO union cannot be used
again until these parameters are reinitialized by an Open Device call. CloseDevice also
decrements the Device structure lib_OpenCnt and the Unit structure unit_OpenCnt
parameters by 1.

I nputs to Function
printerlO A painter to a PrinterlO union

DiScussion
A task should always verify that all of its I/O requests have been replied by the Printer
device internal routines before it calls CloseDevice. It can do so by using the GetMsg,
Remove, CheckIO, and WaitIO functions to see what I/O requests are in the task reply
port queue.

When a task is done with its Printer device operations, it should close the device
with a call to CloseDevice. This frees RAM that might be needed by the system for other
tasks. Another task can then open, use, and close the Printer device; the sequence can be
repeated again and again in a C language program.

Keep in mind that the Printer device opens either the Serial or the Parallel device indi
rectly; therefore, a CloseDevice function call for the Printer device can affect these devices.

I OpenDevice

Syntax of Function CaU
error = Open Device ("printer.device",
DO AO

0, PrinterlO, 0)
DO A1 01

21 0 I AMIGA PRO G RAM MER'S HANDBOOK

purpose of Function
This function opens access to the internal routines of Printer device unit 0. An Open
Device call for the Printer device will automatically open the Serial or Parallel device,
depending on the type of printer currently selected on the Workbench Preferences screen.

Once Open Device has opened the Printer device, it initializes printer device internal
parameters. It also increments the Device structure lib_OpenCnt parameter and the Unit
structure unit_OpenCnt parameter. OpenDevice requires a properly initialized reply port
with a task signal bit allocated if the calling task wants to be signaled when the Printer device
routines reply. The results of function execution are found in the following parameters:

• io_Device. This points to a Device structure that manages the Printer device inter
nal routines for unit ° once it is opened.

• io_Unit. This points to a Unit structure that defines and manages a MsgPort
structure for Printer device unit 0. The MsgPort structure represents the device
request queue.

• io_Error. A ° value for io_Error indicates that the request was successful. IOERR
_OPENFAIL indicates that the Printer device could not be opened; this usually
means there is not enough available memory.

I nputs to Function
"printer.device" A pointer to a null-terminated string representing the name

of the Printer device

unitNumber Always 0

PrinterlO A pointer to a PrinterlO union

o Indicates that the flags argument is ignored

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Set all other IOStdReq substructure
parameters to 0, or copy them from the IOStdReq structure of a previous OpenDevice
call. Initialize io_Command to 0, or initialize it to PRD_DUMPRPORT, PRD_PRT
COMMAND, PRD_RAWWRITE, or CMD_ WRITE if you want to open the Printer
device and then dispatch a command.

If the CreateExtIO function is used to allocate and initialize the PrinterIO union (see
Chapter 2), it will return a pointer to an IOStdReq structure automatically. Therefore, for
the Printer device, the result returned by CreateExtIO must be typecast into a pointer to
a PrinterIO union.

THE PRINTER DEVICE 1271

DiScussion
OpenDevice can be called to open the Printer device and dispatch a PRD _DUMPR
PORT, PRD_PRTCOMMAND, PRD_RAWWRITE, or CMD_WRITE command to
the Printer device internal routines. Once a task has opened the Printer device, it can dis
patch a series of these and other Printer device commands to send information to the
printer. When a task has finished its Printer device processing, it should close the device
with CloseDevice.

Most IOPrtCmdReq and IODRPReq substructure parameters can be initialized to
represent commands after the Printer device has been opened. Parameters that are not
explicitly initialized in a PrinterIO substructure will retain their previous values or be ini
tialized to default values. If a task needs to use values other than the defaults for these
parameters, it should initialize them after Open Device returns.

STANDARD DEVICE COMMANDS

CMD FLUSH

purpose of Command
CMD _FLUSH aborts all active and queued I/O requests. It is an immediate-mode com
mand, allows QuickIO, and always replies to the task reply-port queue if the IOF
_QUICK bit is not set. The results of command execution are found in io_Error, where
o indicates that the command was successful. IOERR_NOCMD indicates that the task
specified io_ Command incorrectly.

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_Unit
parameters to point to the Device and Unit structures that manage Printer device unit 0;
these can always be copied from the IOStdReq substructure initialized by the OpenDevice
function call. Also initialize io_Command to CMD_FLUSH. Set io_Flags to IOF
_QUICK for QuickIO; otherwise, set it to O.

DiSCUSSion
CMD_FLUSH aborts all active and pending PRD_DCMPRPORT, PRD_PRTCOM
MAND, PRD_RAWWRITE, and CMD_ WRITE requests from the unit 0 device

27 21 AMIGA PRO G RAM MER'S HANDBOOK

request queue. Because CMD _FLUSH is destructive, you should use it only if you want
to restore the system to some known state with an empty Printer device request queue.
CMD _ FL USH does not affect the state of any task reply-port queue except for the addi
tion of the replied aborted I/O requests. Each aborted I/O request will have its io_Error
parameter set to IOERR_ABORTED.

@MD RESET

purpose of Command
CMD _RESET resets Printer device unit 0 to its boot-up state as if it were just initialized
by an Open Device call-all Printer device internal parameters are set to their default
values. GvlD_RESET allows QuickIO and always replies to the task reply-port queue if
the IOF _QUICK bit is not set. The results of command execution are found in io_Error,
where 0 indicates that the command was successful.

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_Unit
parameters to point to the Device and Unit structures that manage Printer device unit O.
These can always be copied from the IOStdReq substructure initialized by the Open
Device function call. Also set io_Command to CMD_RESET. Set io_Flags to IOF
_QUICK for QuickIO; otherwise, set it to O.

DiScussion
CMD_RESET does not destroy the IOStdReq substructure io_Device and io_Unit
parameters provided by Open Device when the Printer device was opened; a task can still
use copies of these in subsequent I/O requests.

[CMD START

purpose of Command
CMD _START immediately restarts commands to Printer device unit 0 if they were
stopped by CMD _STOp, including any command that was stopped in the middle of its

THE PRINTER DEVICE 12 7 3

activity and the first command at the top of the device request queue when CMD _STOP
is dispatched. CMD_START is an immediate-mode command, allows QuickIO, and
always replies to the task reply-port queue if the IOF _QUICK bit is not set. The results
of command execution are found in io_Error, where 0 indicates that the command was
successful. IOERR_NOCMD indicates that the task specified io_Command incorrectly.

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_ Unit
parameters to point to the Device and Unit structures that manage Printer device unit 0;
these can always be copied from the IOStdReq substructure initialized by the OpenDevice
function call. Also initialize io_Command to CMD START. Set io_Flags to IOF
_QUICK for QuickIO; otherwise, set it to O.

DiScussion

CMD STOP

CMD_START is similar to the Ctrl-Q command used to restart screen output on most
computers. It immediately restarts execution of a command previously stopped by CMD
_STOp, just as Ctrl-Q restarts screen output previously stopped with Ctrl-S. CMD
_START also starts the execution of other queued I/O requests, just as Ctrl-Q displays
additional files on the screen if the user has typed file-display commands.

purpose of Command
CMD_STOP stops command execution immediately. It also prevents the Printer device
internal routines from executing queued requests. Once unit 0 is stopped by CMD
_STOp, the system automatically queues requests dispatched to it until CMD_START
restarts it. Once CMD_STOP executes, only CMD_START and CMD_FLUSH
requests can be dispatched to the Printer device.

CMD_STOP is an immediate mode command, supports QuickIO, and always replies
to the task reply-port queue if the IOF _QUICK bit is not set. The results of command
execution are found in io_Error, where a 0 value indicates that the command was success
ful. IOERR_NOCMD indicates that the task specified io_Command incorrectly.

2 741 AMIGA PRO G RAM MER'S HANDBOOK

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_Unit
parameters to point to the Device and Unit structures that manage Printer device unit 0;
these can be copied from the IOStdReq substructure initialized by the Open Device func
tion call. Also set io_Command to CMD_STOP. Set io_Flags to IOF _QUICK for
QuickIO; otherwise, set it to o.

DiScussion
CMD_STOP stops the execution of a PRD_DUMPRPORT, PRD_PRTCOMMAND,
PRD_RAWWRITE, or CMD_ WRITE command immediately. It is similar to the Ctrl-S
command used for screen output on most computers-it stops an executing command at
the earliest possible opportunity. lIO requests in the Printer device request queue will not
be executed until a CMD_START command is dispatched to unit o.

I CMD WRITE

The CMD_ WRITE command causes a stream of standard ANSI 3.64 characters to be
written from a task-defined buffer to the printer. The Printer device uses the Parallel or
the Serial device indirectly to produce the printing. Each character in the character stream
can represent a printer control code, which can initialize or reset the printer, turn italic
type on and ofT, and so on.

The characters are written from a task-defined buffer that contains the number of
characters specified by the PrinterIO union IOStdReq substructure io_Length parameter.
If - I is specified for io_Length, however, the CMD_ WRITE command will write char
acters until an EOF character is written. A CMD_ WRITE command can be terminated
early if a write error occurs or if an EOF condition defined by a hexadecimal OxOO charac
ter is encountered.

Because CMD _WRITE does not support QuickIO, its I/O request structure is
always replied to the sending task's reply-port queue. The results of command execution
are found in io_Error, where a 0 value indicates that the command was successful.
PDERR_INTERNALMEMORY indicates that there was not enough RAM for the nec
essary Printer device internal routines when CMD _WRITE was dispatched. PDERR
_BUFFERMEMORY indicates that there was not enough RAM for the task-defined
buffer. IOERR_NOCMD indicates that the task specified io_Command incorrectly, and
IOERR_BADLENGTH indicates that the task specified io_Length incorrectly.

THE PRINTER DEVICE 1275

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_ Unit
parameters to point to the Device and Unit structures that manage Printer device unit 0;
these can always be copied from the IOStdReq substructure initialized by the OpenDevice
function call. Set io_Command to CMD_WRITE, and set io_Flags to O. Set io_Length
to the number of characters to be sent to the serial or parallel port, or set it to - 1 to tell
the task to write characters until the hexadecimal OxOO EOF character is written to the
printer port from the task-defined write buffer. Also set io_Data to point to the task's
write buffer.

DiSCUSSion
The Printer device, like the Console device, maps (translates) the standard 7-bit ANSI
3.64 control-code characters to those of a connected printer. The Printer device internal
routines perform the translation for the printer selected in the Workbench Preferences
screen. (Not all printers, however, support all the standard control-code characters.)

The CMD _ WRITE command provides a way to transmit a series of control-code
commands to a printer by dispatching one Printer device command. Note that you use
PRD_PRTCOMMAND to transmit one control-code command at a time.

DEVICE-SPECIFIC COMMANDS

I PRD -DUMPRPORT

purpose of Command
The PRD_DUMPRPORT command causes all or some of a raster bitmap to be printed.
Several of the Graphics library RastPort, ViewPort, ColorMap, and ViewPort structure
parameters are used to specify how the raster bitmap should be printed. In addition,
IODRPReq structure parameters are used to control the size and other characteristics of
the printed result.

PRD_DUMPRPORT supports QuickIO and always replies to the task reply-port
queue if the IOF _QUICK bit is not set. The results of command execution are found in
io_Error, where a 0 value indicates that the command was successful. Other error values
are as follows:

• PDERR_NOTGRAPHICS indicates that the specified printer is not a graphics
printer and cannot print a raster bitmap.

27 61 AMIGA PRO G RAM MER'S HANDBOOK

• PDERR_BADDIMENSION indicates that the dimensions specified in the
IODRPReq structure are not valid, are in conflict, or are inconsistent.

• PDERR_DIMENSIONOVFLOW indicates that the dimensions specified in the
IODRPReq structure caused a dimension overflow.

• IOERR_NOCMD indicates that the task specified io_Command incorrectly.

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_ Unit
parameters to point to the Device and Unit structures that manage Printer device unit 0;
these can always be copied from the IOStdReq substructure initialized by the OpenDevice
function call. Set io_Command to PRD_DUMPRPORT. Set io_Flags to IOF _QUICK
for QuickIO; otherwise, set it to O.

Also initialize the following parameters in the PrinterIO union IODRPReq substruc
ture. See Chapter 2 of Volume I for a detailed discussion of the RastPort and BitMap
structure parameters included here.

• io_RastPort. Initialize this parameter to point to a Graphics library RastPort struc
ture that will control the printing.

• io_ ColorMap. Initialize this parameter to point to a Graphics library Color Map
structure that will control the printing colors.

• io_Modes. Initialize this parameter to the Graphics library ViewPort structure
Modes parameter. This will control the drawing modes, which determine how the
raster bitmap bits are interpreted during the printing process.

• io_SrcX. Initialize this parameter to the X offset from the raster bitmap onglO
specified by the RastPort structure.

• io_SrcY. Initialize this parameter to the Y offset from the raster bitmap origin spec
ified by the RastPort structure.

• io_SrcWidth. Initialize this parameter to the number of X-direction pixels in the
portion of the raster bitmap that the task should print.

• io_SrcHeight. Initialize this parameter to the number of Y-direction pixels m the
portion of the raster bitmap that the task should print.

• io_DestCols. Set this parameter to the number of pixel columns to be printed
(see io_Special).

• io_DestRows. Set this parameter to the number of pixel rows to be printed
(see io_Special).

lIIE PRINTER DEVICE 1277

• io_Special. Initialize this parameter to one or a combination of 13 possible values.

DiSCUSSion

Set it to SPECIAL_MILCOLS and SPECIAL_MILROWS if you want the
io_DestCols and io_DestRows parameter values to represent multiples of one one
thousandth of an inch on the printed page. Set it to SPECIAL_FULLCOLS and
SPECIAL_FULLROWS if you want the io_DestCols and io_DestRows parame
ters to be ignored; the raster bitmap will then be printed within the maximum
printer-page dimensions determined by the printer's physical limits or the system
configuration. Set it to SPECIAL_FRACCOLS and SPECIAL_FRACROWS if
you want the io_DestCols and io_DestRows parameters to represent a fraction of
the maximum printer-page dimension for each printing direction; in this case, the
parameters are specified as longword (32-bit) binary fractions of the maximum
printer-page dimensions. Set the ASPECT bit if you want one of the specified
io_DestCols and io_DestRows parameters to be reduced to preserve the aspect
ratio of the printed result. This option also works with the six previous options.

Set SPECIAL_DENSITYMASK, which is a bit mask for DENSITY I through
DENSITY4, if you want to specify a printing density. Set one of DENSITY I
through DENSITY 4 to the specific density that your printer supports. Set the
CENTER bit if you want the printout centered on the page (if your printer sup
ports this).

If all of the io_Special bits are cleared, the io_DestRows and io_DestCols
parameters will be interpreted as the number of pixels in the current resolution of
the raster bitmap. Unexpected results can occur when these bits are specified as 0
or are initialized inconsistently.

PRD_DUMPRPORT allows a task to print all or part of a raster bitmap to the printer.
It can produce either a grey-scale printout or a color printout.

Recall from Volume I (Chapter 2) that a raster bitmap is specified by a combination
of the Graphics library RastPort, ViewPort, Color Map, and BitMap structures (among
others). Just as a task can use the parameters to these structures to define how a raster
bitmap will be displayed on the screen, it can use them to define the printing of some or
all of a raster bitmap on paper.

As an example, if you are making a document to illustrate one of your Intuition pro
grams, you may want to print a Workbench screen containing one of your program's win
dows. You can do this by opening the Intuition library (with an OpenLibrary function
call); initializing a NewWindow structure; opening the window (with an Open Window
function call); copying a pointer to the Workbench screen ViewPort structure; and copying
the Workbench Screen structure RastPort, ViewPort, ColorMap, and BitMap parameters.
You can use these parameters to define those in the IODRPReq structure used to define
the PRD_DUMPRPORT command. PRD_DUMPRPORT will then print the Work
bench screen that shows your Intuition window.

2781 AMIGA PRO G RAM MER'S HANDBOOK

PRD PRTCOMMAND

purpose of Command
The PRD_PRTCOMMAND command causes a stream of at most four characters defin
ing a printer control-code command to be written from a set of four PrinterIO union
IOPrtCmdReq substructure parameters to the printer. The printer control-code command
is an ANSI 3.64 command name together with as many as four characters to define it.
Once the ANSI 3.64 representation is translated by the Printer device internal routines, it
defines a printer-specific command. The Printer device uses either the Parallel or Serial
device indirectly to produce the printing. A PRD_PRTCOMMAND command can be
terminated early if a write error occurs.

Because PRD_PRTCOMMAND does not support QuickIO, its I/O request struc
ture always replies to the sending task's reply-port queue. The results of command execu
tion are found in io_Error, where a 0 value indicates that the command was successful.
PDERR_INTERNALMEMORY indicates that there was not enough RAM for the
Printer device internal routines when PRD_PRTCOMMAND was dispatched. IOERR
_NOCMD indicates that the task specified io_Command incorrectly.

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_ Unit
parameters to point to the Device and Unit structures that manage Printer device unit O.
These can always be copied from the IOStdReq substructure initialized by the Open
Device function call. Set io_Command to PRD_PRTCOMMAND. Set io_Flags to o.

The four-character control-code command is specified in io_ParmO, io_Parml,
io_Parm2, and io_Parm3. Some or all of these parameters may need to be initialized to
0; see the ROM Kernel Manual for a definition of each printer command and its associ
ated parameters. All other IOStdReq substructure parameters should be initialized to o.

DiSCUSSion
PRD_PRTCOMMAND allows a task to send a single control-code command to a printer
connected to the serial or parallel port. As many as four bytes of printer control code are
transferred; they are interpreted as a unit to define the command. The Printer device
internal routines map the standard 7-bit ANSI 3.64 control-code characters to those for
the connected printer. However, keep in mind that not all printers support the standard
control-code characters and the printer commands they define.

THE PRINTER DEVICE 12 7!

PRD_PRTCOMMAND sends a single control-code command to a printer. On the
other hand, the CMD _ WRITE command transmits a series of control-code commands to
the printer. Use whichever command best suits your purposes.

!pRD RAWWRITE

purpose of Command
The PRD _RAWWRITE command causes a stream of raw characters to be written from a
task-defined buffer to the printer. These characters usually consist of escape sequences.
With this command, the Printer device routines do not translate the raw characters; they
use the Parallel or Serial device indirectly to produce the printing.

Each character in the raw character stream can represent a printer control-code
command; the printer will interpret the control code correctly. The raw characters are
written from a task-defined buffer that contains the number of characters specified by the
PrinterIO union IOStdReq substructure io_Length parameter. In contrast to
the CMD_WRITE command, the PRD_RAWWRITE command does not allow
io_Length to be specified as - I; it does not work with EOF characters. A
PRD_RAWWRITE command can be terminated early if a write error occurs.

PRD _RAWWRITE allows QuickIO and always replies to the task reply-port queue if
the IOF _QUICK bit is not ·set. The results of command execution are found in io_Error,
where 0 indicates that the command was successful. PDERR_INTERNALMEMORY indi
cates that there was not enough RAM for the Printer device internal routines when
PRD_RAWWRITE was dispatched. IOERR_NOCMD indicates that the task specified
io_Command incorrectly, and IOERR_BADLENGTH indicates that the task spec
ified io_Length incorrectly.

preparation of the PrinterlO Union
Initialize the IOStdReq substructure mn_ReplyPort parameter to point to the MsgPort
structure representing the desired task reply port. Initialize its io_Device and io_Unit
parameters to point to the Device and Unit structures that manage Printer device unit 0;
these can always be copied from the IOStdReq substructure initialized by the OpenDevice
function call. Set io_Command to PRD_RAWWRITE.

Initialize io_Flags to IOF _QUICK for QuickIO; otherwise, set it to O. Set
io_Length to the number of characters to be sent to the serial or parallel port from the
task-defined write buffer, and set io_Data to point to the task-defined write buffer.

2 B 0 I AMIGA PRO G RAM MER . S HANDBOOK

DiScussion
The PRD_RAWWRITE command provides a way to transmit a series of control-code
commands to a printer by dispatching one Printer device command. The PRD_PRT
COMMAND command, on the other hand, can transmit only one control-code command
at a time. Use whichever of these commands best suits your purposes.

• • • • • •• • •• •• • • • • • • • • ••• • • • • • • ..

The Clipboard Device

THE CUPBOARD DEVICE 12 83

I Introduction

The Clipboard device manages a set of clipboard files, one for each open Clipboard device
unit. A task can read and write information into the clipboard files, which allows it to cut
and paste (read and write) information in a file as necessary. Clipboard files also allow the
exchange of data among a group of related tasks.

The Clipboard device is programmed with several Exec functions, as well as four
standard device and three device·specific commands. This device is disk·resident; it is
loaded into WCS memory from disk when OpenDevice executes.

Operation of the Clipboard Device

Figure 12.1:
Operation of the

Clipboard
Device

,
I

Figure 12.1 illustrates the general operation of the Clipboard device, which consists of one
or more units, each of which can queue commands for processing by the Clipboard device
internal routines. A new clipboard file is created by opening a new Clipboard device unit
with an OpenDevice function call. To simplify the discussion, only one Clipboard device
unit is shown in Figure 12.1; however, a task can manage any number of clipboard files.

The device request queue for a Clipboard device unit is managed by a Unit struc·
ture, and a pointer to it is specified by OpenDevice when it returns. A MsgPort structure
represents the device-unit request queue, which receives the queued commands coming
from the task to the unit's internal routines. Command requests are queued in FIFO (first
in, first out) order.

The task itself should create and establish signals for two message ports using two
calls to the Exec-support library Create Port function. The first message port is used as a

QuicklO requested

TASK STATEMENTS CliPBOARD DEVICE
QuicklO successful f\lTERNAL ROU TINES

'No Signal
ReplyMsg (for all commands ~

BeginlO
Including Post command)

0010 ~ ,--- ReplyMsg
SendlO (for Sot;sfy Message only)

GetMsq GetMsq

; Signal 1 1 task
0

-llJSk ,/O RequestJ L Soti:s:y " I Device Un't I
Peply Port Message Port

I

~ Request Queue

I I I

I

I

2 841 AMIGA PRO G RAM MER . S HANDBOOK

task reply-port queue. The Clipboard device internal routines use the Exec ReplyMsg
function to send replies to this queue.

The second port, called the satisfy message port, is used as a task reply-port queue
for the SatisfyMsg structure messages. The Clipboard device internal routines send satisfy
messages to this port automatically when they determine that a prior CBD _POST com
mand must be satisfied by a CMD _ WRITE command. Since the satisfy message port was
created with a signal to it established, the task is signaled of the message's arrival automat
ically. The task then dispatches a CMD _WRITE command to satisfy the earlier CBD
_POST request and uses the GetMsg or Remove function to remove the message from
the port so that it is empty when the next satisfy message arrives.

A satisfy message is automatically created and replied by the Clipboard device inter
nal routines-your task is not responsible for allocating and initializing it. The message
simply tells the task that the Clipboard device internal routines require that it dispatch a
CMD _WRITE command in order to add new data to the current clipboard file. In this
sense, the CBD_POST command acts as a deferred CMD_ WRITE command.

Ordinal Clip Identifiers
One of the most difficult aspects of working with Clipboard device functions and commands is
understanding how ordinal clip identifiers work. Ordinal clip identifier is another name for the
IOClipReq structure io_ClipID parameter. It identifies the order in which CMD_READ,
CMD_ WRITE, and CBD_POST commands have been dispatched by a task.

The Clipboard device maintains a read clip identifier and a write clip identifier. Both of
these consist of consecutive integers that start at o. Each task that works with the Clipboard
device must have its own read and write clip-identifier lists. The Clipboard device internal
routines work with the IOClipReq structure io_ClipID parameter to determine the sequence
of clips defined by CMD_READ, CMD_ WRITE, and CBD_POST commands.

A task should initialize the read or write clip identifier to 0 for the first
CMD_READ or CMD_ WRITE command. Thereafter, the Clipboard device internal
routines will update the io_ClipID parameter to reflect any new CMD_READ or
CMD _WRITE commands. The task can determine the clip identifier of the most
recently dispatched CMD_READ or CMD_WRITE command by using the CBD_CUR
RENTREADID or CBD_CURRENTWRITEID command. It uses this information to
determine if the CBD_POST data it holds should be written to the current clipboard file,
or if it is obsolete and need not be sent.

Sequential Read-Write Operations for a Clipboard File
Figure 12.2 shows how a task performs a set of sequential read and write operations for the
current clipboard file. The following discussion examines sequential CMD_READ com
mands; the same procedure, in reverse, applies to sequential CMD _ WRITE commands.

A sequential read is a series of consecutive CMD_READ commands that a task dis
patches in order to read different segments of the current clipboard file into a task-defined
buffer. The task could have placed the data bytes in the clipboard file using single or
sequential CMD _ WRITE commands. The figure shows how a task can read the contiguous

Figure 12.2:
Sequential

Read-Write
Operations for a

Clipboard File

THE CLIPBOARD DEVICE 12 85

11 12 13 14 15 15 Ii Ie' ,) 21 24

--- io_Length2 - .,~ .,--_._-

8 9 10 11 12 1J 14 1:) 16 17 18 19

\1 i 3~ Yl I),j I

segments of the clipboard file into a set of task-defined buffers; the segments are 8, 12, and
14 bytes long.

A task defines a series of sequential reads by using the io_Data, io_Length, and
io_Offset parameters. As an example, assume that you want your task to read the current
clipboard file in Figure 12.2 sequentially, starting at the beginning of the file. Here is the
procedure you would follow:

1. Define an IOClipReq structure to represent the first CMD _READ command. Ini
tialize its io _Data parameter to point to the first task -defined buffer (1). This
defines the RAM location to which the clipboard bytes should be sent. Initialize
io_Length to I, the number of bytes you want transferred to the task-defined
buffer. Initialize io_Offset to 0 to represent the first byte of the current clipboard
file. Dispatch this CMD_READ command with BeginlO, DolO, or SendIO. When
CMD _READ completes execution, the Clipboard device internal routines assign a
value to io_Offset to reflect that the clipboard-file byte pointer is positioned
io_Lengthl bytes into the file. This is the starting position for the next
CMD_READ command. The Clipboard device internal routines also assign a value
to the IOClipReq structure io_CliplD parameter. The second and third
CMD_READ commands will use the same IOClipReq structure and will not alter
the io_CliplD parameter; in this way, the internal routines can recognize and keep
track of a set of related CMD_READ commands for the same clipboard file.

2. Define an IOClipReq structure to represent the second CMD_READ command.
Initialize io_Data to 2, which indicates that it points to the second task-defined
buffer. You can use the same task-defmed buffer you used in step 1 if the task has
already processed the clipboard bytes read by the first CMD_READ command.
Initialize io_Length to 2, the number of bytes you want transferred to the task
defined buffer. Do not reinitialize io_Offset; it has been updated automatically by
the Clipboard device and is positioned io_Lengthl bytes into the current clipboard
file. Use BeginlO, DolO, or SendIO to dispatch the command. When
CMD_READ completes execution, the clipboard-file byte pointer io_Offset param
eter will be positioned (io_Lengthl + io_Length2) bytes into the clipboard file,
which is the starting position for the third CMD _READ command.

28 61 AMIGA PRO G RAM MER'S HANDBOOK

3. Define an IOClipReq structure to represent the third CMD_READ command. Ini
tialize io_Data to 3, the third task-defined buffer. You can use the same task
defined buffer if the task has processed the clipboard bytes read by the first and
second commands. Initialize io_Length to 3, the number of bytes you want trans
ferred to the buffer. Once again, do not initialize io_Offset; it is updated automati
cally to reflect the first and second CMD _READ commands. Dispatch the
command. When CMD_READ completes execution, the clipboard-file byte pointer
io_Offset parameter is positioned (io_Lengthl + io_Length 2 + io_Length3)
bytes into the current clipboard file.

Each CMD_READ command returns the actual number of bytes read in the IOClipReq
structure io_Actual parameter. The task can examine this parameter when the
CMD_READ command is replied, compare it to the input value of the io_Length
parameter, and thereby verify that CMD_READ executed properly.

This programming sequence also works for a set of sequential CMD _WRITE com
mands. However, for sequential CMD_ WRITE commands, you are transferring data
bytes from the task-defined buffers into contiguous areas of the clipboard file. Each new
area is adjacent to the previous area.

CliPboard Device Commands
The Clipboard device has three device-specific and four standard device commands. All of
these support queued I/O, but only CMD_RESET supports QuickIO. None of the com
mands support automatic immediate-mode operation. All seven commands affect the
IOClipReq structure io_Error parameter. Five commands also affect the IOClipReq struc
ture io_CiipID parameter, and two affect the io_Actual and io_Offset parameters.

Sending Commands to the Clipboard Device
Figure 12.3 illustrates how commands are dispatched to the Clipboard device. The lines
with arrows represent the parameters you initialize, as well as those returned by the Clip
board device internal routines.

The Clipboard device programming process consists of three phases:

1. Structure preparation. You have complete control over this phase; here, you initial
ize parameters in the IOStdReq and IOClipReq structures before dispatching a
command to the Clipboard device routines. These parameters include those
required by most devices, as well as the io_ClipID and io_Offset parameters for
some commands. The choice of parameters to initialize depends on the specific
command you plan to dispatch. Taken together, these parameters provide an infor
mation path to the data needed by the Clipboard device in order for it to process
the command.

2. Clipboard device processing. The only part you play in this phase is to dispatch the
command to the device using BeginlO, DolO, or SendlO. Once one of these func
tions begins executing, control passes to the device and system internal routines.

Figure 12.3:
Clipboard

Device
Command and

Function
Processing

Preporatioo of
IOStdReq
Structure

mn-.Repl)l'od
io-Device

io Unit
io Command

io Offset
io Flags
loot",,,)

ioJ)oto
io length

General {-------V-
device

IOStdReq
structure

parameters

IOClipReq
structure

parameter
~_J~

Clipboard Device Internal Routines

8eginlO, 0010, or SendlO
sends command, or

functions initiate
Clipboard device internal

routine servicing

THE CLIPBOARD DEVICE 12 8 J

Outputs of
Command or FunctlOO

Processing

-------v-
10 Device
10 Unit
io Error

100RR Cf'ENFAIL
IOCRR ABORITO
IOCRR NOC~O

IOCRR BADLENcm
CBERR 08SOlETEID

lib OpenCnt
unlt_OpenCnt

Device structure parameter
Unit structure parameter

General
IOStdReq
structure
parameters
and flag
\l!Jlues

3. Command output parameter processing. The system and Clipboard device internal
routines have complete control over the values found in this phase; the results of
Clipboard device command processing have been returned to the task that originally
dispatched the command. If the I/O request was not QuickIO, it was processed when
it moved to the top of the device-unit request queue and is now in the task reply-pon
queue. If it was a QuickIO request, it came back to the requesting task. The five
parameters still direct you to appropriate data for your task.

Several Clipboard device commands provide output parameters, as shown on the right
side of Figure 12.3. Both the CMD_READ and CMD_ WRITE commands return values
for the IOClipReq structure io_Error, io_Actual, io_Offset, and io_ClipID parameters.

Figure 12.3 also shows the parameters that playa part in Clipboard device function setup
and processing. OpenDevice and CloseDevice both affect the Unit structure uniC OpenCnt
parameter and the Device structure lib_OpenCnt parameter associated with open units; Open
Device also affects the io_Error parameter.

Structures for the Clipboard Device
The Clipboard device deals with three structures: ClipboardUnitPanial, IOClipReq, and
SatisfyMsg. The ClipboardUnitPartial structure is used to maintain a list of Clipboard
device units in the system. Each OpenDevice function call for a new Clipboard device
unit adds a member to this list. The IOClipReq structure is used to formulate and dis
patch all command requests to the Clipboard device internal routines. The SatislJMsg
structure is used by the Clipboard device internal routines to dispatch a satisfy message to
a task. When the task receives this message, it should immediately dispatch a

2 B B I AMIGA PRO G RAM MER'S HANDBOOK

CMD _WRITE command to satisfy the original CBD _POST command. These three
structures are shown in Figure 12.4.

The ClipboardUnitPartial Structure
The ClipboardU nit Partial structure is defined as follows:

struct ClipboardUnitPartial
struct Node cu_Node;
ULONG cu_UnitNum;

};

Its parameters have the following meanings:

• cu_Node. This is the name of a Node substructure that places a new Clipboard
device unit on the system clipboard list .

• cu_UnitNum. This is the unit number of the Clipboard device unit. A new unit is
assigned a unit number by the Clipboard device internal routines. The Unit struc
ture parameters (unit_MsgPort, unicFlags, and unit_ OpenCnt) are controlled by
the Clipboard device internal routines; they are said to be private to the Clipboard
device.

The IOClipReq Structure
The IOClipReq structure is defined as follows:

struct IOClipReq {

};

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
STRPTR io_Data;
ULONG io_Offset;
LONG io_ClipID;

Its parameters have these meanings:

• io_Message. This is the name of a Message substructure used to represent the I/O
request dispatched to the device-unit request queue by a task. The Message struc
ture mn_ReplyPort parameter points to the MsgPort structure representing the
task reply-port queue.

Figure 12.4:
Clipboard

Device
Structures

io Data

IOClipReq Structure

I Message Structure I
(io_Messoge)

ClipboardUnitPartial Structure

I Node Structure I
(cu_Node)

SotisfyMsg Structure

I Message Structure I
(sm_Msg)

THE CUPBOARD DEVICE 1289

io_Device J I
t--'~-----tl Device Structure

Unit Structure I

• io_Device. This points to a Device structure representing the Clipboard device
unit. It manages the Clipboard device internal routines.

• io_Unit. This points to a Unit structure for the Clipboard device unit. The
unit_MsgPon parameter in the Unit structure points to a MsgPon structure repre·
senting the device·unit request queue.

• io_Command. This is the command that you want the Clipboard device internal
routines to execute.

• io_Flags. This parameter includes the 10F_QUICK and 10F_SATISFY flag
parameter bits.

• io_Error. This parameter contains Clipboard device error codes; it is set by the system.

• io_Actual. This is the actual number of bytes transferred by the Clipboard device
internal routines during command execution. It usually specifies the number of
bytes transferred between a task-defined buffer and the current clipboard file.

• io _Length. This is the number of bytes to be transferred between the current clipboard
file and a task-defined buffer for a CMD_READ or CMD_ WRITE command.

• io_Data. This points to the first byte of the task-defined buffer used in a
CMD_READ or CMD_WRITE command. For a CBD_POST command,
io_Data points to a MsgPon structure representing the task's satisfy message pon.

• io_Offset. This is the byte-offset number for the current clipboard file or task
defined buffer. It is usually 0 for the first CMD _READ or CMD _WRITE

2 9 0 I AMIGA PRO G RAM MER'S HANDBOOK

command in a sequential set of commands; the Clipboard device internal routines
automatically update it for later commands.

• io_ClipID. This is the ordinal clip identifier for a CMD_READ or
CMD _WRITE command. The Clipboard device internal routines specify this
parameter for the first CMD_READ or CMD_ WRITE command and maintain it
for later sequential commands.

The SatisfyMsg Structure
The SatisfyMsg structure is defined as follows:

struct SatisfyMsg {

};

struct Message sm_Msg;
UWORD sm_Unit;
LONG sm_ClipID;

Its parameters have these meanings:

• sm_Msg. This is the name of a Message substructure used by the Clipboard
device internal routines to send a message to a task, asking it to satisfY a previously
dispatched CBD_POST command.

• sm_Unit. This is the number of the Clipboard device unit to which the CBD
_POST command was originally directed. This unit sends the satisfy message to a
task's satisfy message port. The primary unit number for the Clipboard device is O.

• sm_ClipID. This is the ordinal clip identifier assigned by the Clipboard device
internal routines to the original CBD _POST command. The assigned value of this
parameter maintains the association of the original CBD_POST command and the
satisfy message.

USE OF FUNCTIONS

I CloseDevice

Syntax of Function Call
CloseDevice (iOClipReq)

A1

THE CUPBOARD DEVICE 12 9 1

purpose of Function
Close Device closes access to a unit of the Clipboard device. The IOClipReq structure
io_Device and io_Unit parameters will be set to - I, indicating that the IOClipReq
structure cannot be used again until these parameters are reinitialized by OpenDevice.
CloseDevice also decrements the Device structure lib_OpenCnt parameter and the Unit
structure unit_OpenCnt parameter by I for the specifled unit. When these parameters are
reduced to 0 for all units, a deferred expunge for the Clipboard device can take place.

When CloseDevice returns, a task cannot use the Clipboard device until it executes
another OpenDevice function call. However, the current settings of the Clipboard device
internal parameters are saved for the next call to OpenDevice by this or another task.

I nputs to Function
iOClipReq A pointer to an IOClipReq structure; also a pointer to an

IOStdReq structure

DiScussion

I O~enDevice

CloseDevice terminates access to the device routines for a specified Clipboard device unit.
If a number of Clipboard device units are open at the same time, the device will not be
entirely closed until the last unit is closed.

A task should verify that all of its requests have been replied by the Clipboard device
routines before it calls CloseDevice. It can do so by using the GetMsg, Remove,
CheckIO, and WaidO functions to see what requests are in the task reply-port queue.

A task can close the Clipboard device with a call to CloseDevice when it has finished its
Clipboard device operations. Then another task that wants to use the device can open, write,
read, and close it; the sequence can be repeated again and again in a C language program that
uses Clipboard device routines. If multiple tasks want to pass data among themselves using the
same Clipboard device unit, they must all have the unit open simultaneously.

Syntax of Function Call
error = OpenOevice ("clipboard. device",
DO AO

unitNumber, iOClipReq, 0)
DO A1 01

2921 AMIGA PRO G A AM MER'S HANDBDDK

purpose of Function
This function opens access to a specified unit of the Clipboard device and initializes certain
parameters in the unit's IOClipReq structure to their most recently specified or default
values. It also increments the Device structure lib_OpenCnt parameter and the Unit struc
ture unit_OpenCnt parameter, thereby preventing a deferred expunge of the Clipboard
device. Clipboard device units are always opened in shared access mode, the default. This
allows multiple tasks to share data through the same clipboard file.

OpenDevice requires a properly initialized task reply port with a task signal bit allo
cated to it if the calling task wants to be signaled. The results of function execution are
found in the following parameters:

• io_Device. This points to the Device structure that manages the unit once it is
opened; it contains the information necessary to manage the unit.

• io_Unit. This points to the Unit structure that defines and manages a MsgPort
structure for the unit; the MsgPort structure represents the device-unit request
queue.

• io_Error. A ° value here indicates that the request was successful. IOERR_OPEN
FAIL indicates that the unit could not be opened, most often due to lack of memory.

I nputs to Function
"clipboard.device" A pOinter to a null-terminated string representing the

name of the Clipboard device

unitNumber

iOClipReq

o

The Clipboard device unit number; use 0 if available

A pointer to an IOClipReq structure

Indicates that the flags argument is not used

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to a MsgPort structure representing the task reply port.
Set io_Command to 0, or set it to CMD_READ or CMD_ WRITE if the task should
open the Clipboard device and then perform a read or write operation immediately. Set all
other IOStdReq substructure parameters to 0, or copy them from the IOClipReq structure
of a previous Open Device call.

If the CreateExtIO function is used to create the IOClipReq structure (see Chapter 2),
it must typecast its returned pointer value into a pointer to an IOClipReq structure. The
pointer will then also point to the IOStdReq structure, which is the first entry in
the IOClipReq structure.

THE CLIPBOARD DEVICE 12 9 3

DiScussion
OpenDevice is usually called to open the Clipboard device and to initialize parameters for
a CMD _READ or CMD _WRITE command. Any parameters that are not explicitly ini
tialized will retain their previous values or be set to the default values assigned by the
Clipboard device routines. If the calling task wants to use other values for these parame
ters, it should initialize them after OpenDevice returns. When a task finishes its Clipboard
device writing and reading, it should (but need not) close the device.

STANDARD DEVICE COMMANDS

I CMD READ

purpose of Command
CMD_READ causes a stream of characters to be read into a task-defined buffer from the
current clipboard file. The number of characters is specified by the IOClipReq structure
io_Length parameter, the clipboard-file offset location is specified by io_Offset, and the
task buffer location is specified by io_Data.

Because CMD _READ does not support QuickIO, it always replies to the task reply
port queue. The results of command execution are found in io_Actual, io_ClipID, and
io_Error. The number of characters actually read from the current clipboard file by
CMD_READ are returned in io_Actual. The value of the io_ClipID parameter is speci
fied by the Clipboard device internal routines; this value should be used for all subsequent
sequential CMD_READ commands. A 0 value in io_Error indicates that the command
was successful. IOERR_NOCMD indicates that the io_Command parameter was speci
fied incorrectly; IOERR_BADLENGTH indicates that the io_Length parameter was
speciued incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit ,structures
that manage a specified Clipboard device unit; these can be copied from the IOClipReq
structure initialized by the OpenDevice function call. Set io_Command to CMD_READ
and io_Flags to O. Also initialize the following parameters:

• io_Length. Set this to the number of characters to be read into the task-defined
buffer from the current clipboard file.

2941 AMIGA PRO G RAM MER'S HANDBDDK

• io _Data. Set this to point to the first byte in the task's read buffer. If you set this
to 0, the Clipboard device internal routines will increment the io_Offset parameter
by the value of io_Length, as if io_Length bytes had been read by CMD_READ.
This is how a task performs a set of sequential reads for the current clipboard file.

• io_Offset. For a single CMD_READ operation, initialize this to the byte number
within the current clipboard file. For sequential access of separate areas of the clip
board file from its beginning, initialize io_Offset to ° for the first CMD_READ
command dispatched by a task. Then do not change it for subsequent
CMD_READ commands; the Clipboard device internal routines will update the
io_Offset parameter so that the IOClipReq structure can be used for the next
CMD_READ command in the sequence. When io_Offset points to a byte number
beyond the end of the current clipboard file, CMD_READ signals the Clipboard
device internal routines that the task has finished reading the file.

• io_ClipID. Initialize this to ° for the first CMD_READ command dispatched by the
task. The Clipboard device internal routines will then initialize this value in the reply.

DiSCUSSion
As you saw in Figure 12.2, the current clipboard file can be read in sequential fashion. If
the specified io_Offset parameter represents a byte number small enough to be within the
current clipboard file, the task buffer is filled with data coming from the current clipboard
file. The task should initialize the IOClipReq structure io_ClipID parameter to ° for the
first CMD_READ command; the Clipboard device internal routines will then specify this
parameter internally, and it can be used for subsequent CMD_READ commands.

If a task initializes the IOClipReq structure io_Data parameter to 0, the Clipboard
device internal routines will increment the IOClipReq structure io_Offset parameter by
the value of io_Length. A task can also specify a large IOClipReq structure io_Length
parameter so that the Clipboard device internal routines will move the byte pointer to the
end of the current clipboard file.

Whenever a task is in the process of reading the current clipboard file, any attempts
to write data into that file will be postponed until all pending CMD_READ commands
have finished processing and have been replied to the task reply-port queue. Therefore, a
task can use an io_Offset parameter that points beyond the end of the current clipboard
file to signal the Clipboard device internal routines that all of that task's CMD_READ
commands are finished. The task can then, once again, start writing data from a task
defined buffer to the current clipboard file.

THE CUPBOARD DEVICE 129 5

I CMD RESET

purpose of Command
CMD_RESET resets the specified unit to the boot-up time state as if it were just initial
ized. All Clipboard device internal parameters are set to their default values, but the
io_Device and io_Unit parameters initialized by the original OpenDevice call remain valid.

CMD_RESET allows QuickIO and always replies to the task reply-port queue if the
IOF _QUICK bit is not set. The results of command execution are found in io_Error,
where 0 indicates that the command was successful. IOERR_NOCMD indicates that the
io _Command parameter was specified incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage unit 0 of the Clipboard device; these can be copied from the IOClipReq
structure initialized by the OpenDevice function call. Also set io_Command to
CMD_RESET, and set io_Flags to 0 or to IOF _QUICK if QuickIO is desired.

DiSCUSSion
The CMD _RESET command is quite simple in its actions: it merely reinitializes the
Clipboard device internal parameters to their default (boot-up) values.

I CMD UPDATE

purpose of Command
CMD_UPDATE informs a Clipboard device unit that all previously dispatched
CMD _WRITE commands, including a sequential series, have been executed and replied.
This lets the internal routines know that any pending CMD_READ requests can be dis
patched and will be successful. CMD _UPDATE cannot be dispatched while any

2961 AMIGA PRO G RAM MER'S HANDBOOk

CMD _WRITE commands are queued in the device-unit request queue or have not yet
replied to the task reply-port queue.

Because it does not support QuickIO, CMD _UPDATE is always replied to the task
reply-port queue. A 0 in io_Error indicates that the command was successful; IOERR
_NOCMD indicates that the io_Command parameter was specified incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage the specified Clipboard device unit; these can be copied from the IOClipReq
structure initialized by the Open Device function call. Also set io_Command to
CMD_UPDATE, and set io_Flags to O.

DiSCUSSion
A task dispatches CMD _UPDATE after it has dispatched one or more CMD _ WRITE
commands and has also verified that those requests have been replied to the dispatching
task's reply-port queue. You can use the GetMsg, Remove, CheckIO, and WaitIO functions
to determine that all of the CMD _WRITE commands have been processed and replied.

I CMD WRITE

purpose of Command
CMD _WRITE causes a stream of characters to be written from a task-defined buffer into
the current clipboard file. The number of characters is specified by the IOClipReq struc
ture io_Length parameter, and the current buffer offset is specified by the IOClipReq
structure io _Offset parameter. The first buffer byte is specified by io _Data.

A new io_ClipID parameter is obtained by clearing the io_ClipID parameter for the
first CMD _ WRITE command. Subsequent CMD _ WRITE commands must not the alter
this parameter. However, if a task dispatches a CMD _ WRITE command in response to a
signal from a replied SatisfYMsg structure for a pending CMD_POST command, the
CMD_POST I/O request structure io_ClipID parameter must be copied for
the CMD _WRITE command.

THE CLIPBOARD DEVICE 12 9 J

CMD _ WRITE does not support QuickIO and always replies to the task reply-port
queue. The results of command execution are found in the following parameters:

• io_Actual. This is the number of characters actually written from the task-defined
buffer into the current clipboard file.

• io_ ClipID. This value is specified automatically by the Clipboard device internal rou
tines; it should be used for all subsequent sequential CMD _ WRITE commands.

• io_Error. A 0 value here indicates that the command was successful. 10-
ERR_NOCMD indicates that the io_Command parameter was specified incor
rectly, and IOERR_BADLENGTH indicates that the io_Length parameter was
specified incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task reply
port. Initialize io_Device and io_Unit to point to the Device and Unit structures that manage
the Clipboard device unit; these can be copied from the IOClipReq structure initialized by the
OpenDevice function call. Set io_Command to CMD_ WRITE, and set io_Hags to O. Also
initialize the following parameters:

• io_Length. Set this to the number of characters to be written from the the task-defined
write buffer to the current clipboard file.

• io_Data. Set this to point to the first byte in the task's write buffer. For sequential
writes, the Clipboard device internal routines automatically increment this buffer pointer
by io_Actual after each write.

• io _Offset. Set this to 0 for a single write or the initial write of a set of sequential
writes. For subsequent writes, the Clipboard device internal routines automatically
update this parameter to the next byte position. When io_ Offset is specified as so large
that it points to a byte number beyond the end of the current task-defined buffer, the
clipboard file is automatically padded with zeros.

• io_ClipID. Initialize this to 0 for the first CMD_ WRITE dispatched in a sequential
series. The Clipboard device internal routines will then automatically initialize this value
in the replied IOClipReq structure, and the value can be copied and used for subse
quent CMD_ WRITE commands. Copy this parameter from the io_ClipID of the I/O
request structure representing a CMD _POST command if this write operation is being
done to satisfY the CMD _POST command.

DiSCUSSion
The CMD _ WRITE command can perform either single write operations or sequential write
operations. If the specified io _Offset parameter represents a byte number small enough to be

2 9 81 AMIGA PRO G RAM MER'S HANDBOOK

within the specified task-defined buffer, CMD _ WRITE acts as a single write operation; the
current clipboard file is filled with data coming from the task-defmed buffer.

For a set of sequential writes, the task should initialize the IOClipReq structure
io _ ClipID parameter to 0 for the first CMD _WRITE command; the Clipboard device
internal routines will then initialize the io_ClipID parameter internally, and that value
will be used for subsequent CMD _WRITE commands.

DEVICE-SPECIFIC COMMANDS

I CBD CLiPREADID

purpose of Command
The CBD_CLIPREADID command allows a task to determine the read clip identifier of
the current CMD_READ command. If the current read clip identifier is greater than a
CBD_POST command's ordinal clip identifier, the post data held privately by a task
should not be pasted into the current clipboard file with CMD _WRITE.

CBD_CLIPREADID does not support QuickIO and always replies to the task reply
port queue. When CBD_CLIPREADID executes, the Clipboard device internal routines
initialize its IOClipReq structure io_ClipID parameter to match that of the current
CMD _READ command. A 0 value in io_Error indicates the command was successful;
IOERR_NOCMD indicates that the io_Command parameter was specified incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task reply
port. Initialize io _Device and io _Unit to point to the Device and Unit structures that manage
a specified Clipboard device unit; these = be copied from the IOClipReq structure initialized
by the OpenDevice function call. Set io_Command to CBD_CLIPREADID, and initialize
io_Flags, io_Length, io_Data, io_Offset, and io_ClipID to O.

DiSCUSSion
The CBD_CLIPREADID command allows a task to determine the current CMD_READ
command's clip identifier. This identifier can be compared to that of a CBD _POST com
mand, and the task can then decide if the deferred CMD _ WRITE command associated
with the CBD_POST command should be dispatched. If the CMD_READ clip identifier
is greater than the CBD_POST clip identifier, the post data held by the task is too old to
be pasted into the current clipboard file, and the task should proceed with other activities. If

THE CLIPBOARD DEVICE 1299

the CMD_READ clip identifier is equal to or less than the CBD_POST clip identifier, the
post data is still current and the task should dispatch a CMD _WRITE command to write
the data into the current clipboard file.

caD CLIPWRITEID

purpose of Command
The CBD _ CLIPWRITEID command allows a task to determine the write clip identifier
of the current CBD _WRITE command. This identifier can be compared to the ordinal
clip identifier of a CBD _POST command. If the write clip identifier is greater than the
CBD _POST identifier, then the post data held privately by a task is obsolete; the CBD
_POST command no longer needs to be satisfied.

Because CBD _ CLIPWRITEID does not support QuickIO, it always replies to the
task reply-port queue. When CBD_CLIPWRITEID executes, the Clipboard device inter
nal routines will initialize its io_ClipID parameter to that of the current CMD_WRITE
command. A 0 value in io_Error indicates the command was successful; 10 ERR
_NOCMD indicates that the io_Command parameter was specified incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage a specified Clipboard device unit; these can be copied from the IOClipReq
structure initialized by the OpenDevice function call. Set io_ Command to CBD
_CLIPWRITEID, and initialize io_Flags, io_Length, io_Data, io_Offset, and io_ClipID
to o.

DiScussion
The CBD _ CLIPWRITEID command allows a task to determine the current CMD _ WRITE
io_ClipID parameter; this identifier can then be compared to the clip identifier of a CBD
_POST command. The comparison allows a task to decide if the deferred write should be
dispatched. If the CMD_ WRITE clip identifier is greater than the CBD_POST clip identi
fier, the post data held by the task is too old to be pasted into the current clipboard file, and
the task should proceed with other activities. If the CMD _ WRITE clip identifier is equal to
or less than the CBD_POST clip identifier, the post data is still current and the task should
dispatch the CMD _ WRITE command.

3 0 0 I AMIGA PRO G RAM MER'S HANDBOOK

I CaD POST

purpose of Command
The CBD_POST command allows a task to post a clip to the current clipboard file. It
tells the Clipboard device internal routines to postpone a CMD _ WRITE command until
they determine that a task needs the data contained in the command. In this way, CBD
POST acts as a deferred CMD WRITE command.

Because CBD_POST does not support QuickIO, it always replies to the task reply
port queue. When the command executes, the io_ClipID parameter contains the value
assigned to CBD_POST by the Clipboard device internal routines. A 0 in io_Error indi
cates that the task was successful; IOERR_NOCMD indicates that the io_Command
parameter was specified incorrectly.

preparation of the IOClipReq Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage a specified Clipboard device unit; these can be copied from the IOClipReq
structure initialized by the OpenDevice function call. Set io_Command to CMD_POST,
and initialize io_Flags, io_Length, io_Offset, and io_ClipID to O. Set io_Data to point
to a MsgPort structure representing a satisfy message port; use the CreatePort function to
create this port and to assign a signal bit number to it. This port can belong to a task
other than the one dispatching the CBD_POST command.

DiSCUSSion
CBD _POST allows a task to delay the dispatching of a CMD _WRITE command until
the data in the command is needed by a clipboard file that is managed by that task or
another task. In this way, one task can send clipboard data bytes to the current clipboard
file of another task, which means one task can defer a CMD _WRITE command for
another task. CBD_POST should only be used if a clipboard data clip is in a task-private
data format, is large, or is changing frequently. You should not convert it to an IFF (Inter
change File Format) form.

When the Clipboard device internal routines determine that a CBD_POST command
must be satisfied (in other words, a task needs the clipboard information), they send a
satisfy message and signal to the task, which must then dispatch a CMD _ WRITE com
mand immediately in order to satisfy the original needs of the CBD _POST command.
The SatisfyMsg structure representing the satisfy message should then be removed from
the task's satisfy message port so that it will be empty when the next message arrives.

THE CLIPBOARD DEVICE 13 0 1

If a task needs to determine if a CBD_POST command represents the most current
clipboard clip, it should compare the replied CBD_POST io_ClipID parameter with the
io_ClipID parameter returned by a newly dispatched CBD_CURRENTREADID com
mand. If the parameter returned by CBD _ CURRENTREADID is greater than that of
CBD_POST, the clip is no longer current. If a task has a pending CBD_POST command
and needs to determine if it should satisfY it (before the task exits, for example), it should
compare the CBD_POST and a newly dispatched CBD_CURRENTWRITEID io_ClipID
parameter. If the parameter returned by CBD _ CURRENTWRITEID is greater than that
of CBD_POST, the task does not need to satisfY the CBD_POST command.

• • • • ••
• • • • • • •

• • • • •

The Timer Device

THE nMER DEVICE 13 0 5

I Introduction

The Timer device provides a timing mechanism for your tasks. It is ROM-resident and is
loaded into WCS memory from the Kickstart disk when the Amiga is first booted. The
Timer device is opened automatically by AmigaDOS and the Parallel, Serial, Console, and
Input devices; it can be opened by an OpenDevice function call as well.

The Timer device signals a task when a specified amount of time has elapsed. How
ever, because the Amiga is a multitasking system, the Timer device cannot always guaran
tee that the exact amount of time has elapsed; the actual amount will always be greater
than or equal to the time specified in the request.

You can program the Timer device with OpenDevice, Close Device, and three device
specific functions: AddTime, CmpTime, and SubTime. These device-specific functions
allow a task to perform time arithmetic, which can increase the accuracy of the Timer
device as it processes time-interval requests. In addition, three device-specific commands
TR_ADDREQUEST, TR_SETSYSTIME, and TR_GETSYSTIME-allow a task to
establish time intervals and to ascertain or change the system time.

Operation of the Timer Device
Figure 13.1 illustrates the general operation of the Timer device, which has two units. Unit
0, referred to as UNIT _MICROHZ, is dedicated to high-resolution timing jobs. Unit 1,
referred to as UNIT _ VBLANK, is dedicated to low-resolution timing jobs. Both units can
be opened only in shared access mode.

Requests are dispatched to the Timer device internal routines with the DolO or SendIO
function; the BeginIO function is not usually used to access the Timer device. A task should
use DolO when it needs to dispatch a single request, which will be processed when it gets to
the top of the device-unit request queue. In the meantime, the requesting task will sleep while
it waits for a reply; it will be signaled of the reply's arrival in its reply port when the Timer
device has processed it.

A task should use SendlO when it needs to dispatch multiple I/O requests to the
Timer device. The requests will be queued in the device-unit request queue with requests
already there. The Timer device internal routines will reply to the task reply-port queue
when they have fmished with each request, and they will then signal the task. In the
meantime, the task could have retained execution and progressed to another point in its
task statement sequence.

A task can create as many reply ports as it needs. If your task had three high
resolution timing jobs, for example, it could create three reply-port queues by declaring
and initializing three TimeRequest structures for TR_ADDREQUEST commands and
specifying different mn_ReplyPort parameters in each. As usual, the task can use GetMsg
or Remove to remove reply messages from the queues when commands are dispatched
with SendIO.

3061 AMIGA PRO G RAM MER'S HANDBDDK

Figure 13.1:
Operation of the

Timer Device

is up

System Time Line

o ,
Set to zero ot

boot time

TASK STATEMENTS

Task sends I/O request
to Timer device and
receives reply when
time has elapsed

time

'-'-"-'-,,...:....c....:.J is u P

0010 ...
SendlO

0010·
SendlO ...

• Use DolO for one Timer device request
... 'SendlO for multiple Timer device requ~s\'S

-----l
86.400 seconds (1 day)

TIMER DEVIC[
UNIT 0

i~JTERNAL

ROUTINES
(UNIT _VSLANK)

ReplyMsg

q'Jeued I/O

TIMER ,-H:. C[
UNIT 1

!~JTERNAI_

ROU TINES
(UNIT _'AlCROHZ)

GetM-;(

The Timer device request queue operates differently from most device request
queues. TR_ADDREQUEST commands are sorted according to the time specified in
their TimeRequest structures. This ensures that the earliest TR_ADDREQUEST request
is placed at the top of the queue. Sorting is performed continuously by the Timer device
internal routines.

In addition to the timing signals in the TR_ADDREQUEST command, the Timer
device works with the system time through the TR_GETSYSTIME and TR_SETSYSTIME
commands. System time ranges from 0 to 86,400 seconds. The AddTime, CmpTime, and
SubTime functions allow the Timer device to add, subtract, and compare system times for a
task that needs this information.

Timer Units and Timer Arithmetic
As you saw in Figure 13.1, the Timer device has two units: UNIT_MICROHZ and
UNIT _ VBLANK. UNIT _MICROHZ uses a programmable timer in the 8250 CIA
(complex interface adapter) chip. This chip is really two distinct chips: 8250 CIA A and
B. The A chip registers are located in RAM at addresses BFE001-BFEF01; the B chip
registers are at addresses BFDOOO-BFDFOO. Four register addresses (BFE401-BFE701) in
the A chip are devoted to timing calculations, as are four register addresses in the B chip
(BFD400-BFD700). See the software memory map in the ROM Kernel Manual for more
about these chips and their registers.

THE TIMER DEVICE 13 01

UNIT_MICROHZ has a timing resolution of one microsecond, which means that it
increments its internal counters every microsecond. However, this unit tends to get behind
when the system is busy-it has a great deal of system overhead to deal with. For this
reason, it is not very accurate over long periods of time, especially if the machine is busy
with a number of tasks.

UNIT _ VBLANK uses a vertical-blanking interrupt as a signal to increment its inter
nal timing counter. On the American versions of the Amiga, the counter is incremented
60 times per second, which means that it is accurate to within ± 16.67 milliseconds. The
specified time interval and the actual time interval can differ by this amount regardless of
how busy the machine is with its other tasks.

The characteristics of the two Timer device units determine how a task should spec
ify a time interval. For example, if a task needed a 20-second time interval, it could dis
patch a TR_ADDREQUEST command to the UNIT_ VBLANK unit specifying the
tv_Secs parameter as 20 and tv_Micros as o. UNIT_ VBLANK would then determine
how many whole 1I60-of-a-second intervals were in the total 20 seconds and signal the
task when that number of intervals had elapsed; the task would actually be signaled at 20
seconds ± 16.67 milliseconds. If the task needed a 1.5-second interval, it could again use
the UNIT_ VBLANK unit, specifying a tv_Micros of 1.0 and a tv_Secs of 500,000. The
task would not be signaled at the precise 1.5-second interval, because 1.5 is not evenly
divisible by ± 16.67 milliseconds.

However, a task is not required to use UNIT _ VBLANK when the time interval exceeds
one second-it can use UNIT_MICROHZ. To do so, it must specify the tv_Micros pa
rameter as a value between 0 and 1,000,000. Therefore, if a task needs 1.5-second inter
vals, it can specify tv_Secs as 1.0 and tv_Micros as 500,000, and then dispatch the
TR_ADDREQUEST command to UNIT_MICROHZ. The resulting intervals could be
more accurate than those produced by UNIT _ VBLANK-unless the system was
extremely busy. As you can see, a task often needs to perform time arithmetic in order to
determine the best method for establishing time intervals.

Time-Interval Corrections in a Busy System
The AddTirne, CmpTirne, and SubTirne functions together with the TR_SETSYSTIME and
TR_GETSYSTIME commands allow a task to make a series of timing intervals more accu
rate. The task can recalibrate its calculations at intermediate points in the time-interval progres
sion. This is best illustrated with an example showing how TR_ADDREQUEST,
TR_ GETSYSTIME, and SubTime can achieve greater accuracy in time-interval calculations.

Suppose a task needed to be signaled every second for a one-minute period. It could
use UNIT_MICROHZ and send a series of TR_ADDREQUEST commands to that
unit. Each of these commands would set tv_Secs to 0 and tv_Micros to 1,000,000.

If the system was only dealing with that task, the UNIT_MICROHZ counter would
be devoted to counting down the specified time period. Each time the tv_Micros parame
ter reached 1,000,000, a TR_ADDREQUEST request would be replied to the task reply
port queue, and the task would be signaled. When the system is dedicated to one task, the
calculated time intervals are indeed accurate.

On the other hand, if the system was working with a number of system and pro
grammer tasks and trying to satisfy the timing needs of all of those tasks simultaneously,

3081 AMIGA PRO G RAM MER' S HANDBOOK

UNIT_MICROHZ would get behind in incrementing the tv_Micros parameter repre
senting the current TR_ADDREQUEST command. Although the first signal might
arrive precisely at one second, the second and subsequent signals would tend to arrive
later than the one-second interval. This timing error would increase as more timing sig
nals were sent to the task.

A task cannot preclude these types of timing errors-it must adjust for their presence.
It can do so in the following way:

1. The task should dispatch the first TR_ADDREQUEST command representing the
one-second signal. It should then dispatch a QuickIO TR_GETSYSTIME command
immediately and save the returned value in a task-local variable (tv_Sees = Timel) in
the replied TR_GETSYSTIME command TimeRequest structure.

2. The task should then program a loop to dispatch a series of 59 additional TR_ADD
REQUEST commands to UNIT_MICROHZ with DolO so that it sleeps until they
have all replied. Again, the task should dispatch a QuickIO TR_GETSYSTIME
command immediately and save the value returned in a second task-local variable
(tv _Secs = Time2).

3. The task should then use the SubTime function to subtract Timel from Time2 and
compare the difference to 60. If the system is extremely busy, the difference in sys
tem times will be greater than 60 seconds. The busier the system, the greater this
difference will be. As an example, call the difference (Time2 - Time I) DeltaT and
form a ratio: DeltaT/60. If the system is dedicated entirely to the task, DeltaT will
be ° (60 - 60) and the ratio will also be 0, meaning that calculated time intervals are
indeed accurate. If the system is so busy that DeltaT is 60 (120 - 60), the actual
elapsed time will be two minutes, when one minute was intended.

4. Assuming that the system will remain equally busy when the task dispatches these 60
TR_ADDREQUEST commands again, the task should specify the TimeRequest
structure TimeVal substructure tv_Micros parameter as 500,000 rather than as
1,000,000. Then the newly dispatched TR_ADDREQUEST commands will indeed
signal the task at one-second time intervals.

This type of recalibration can be carried further, with the task computing the ratio
corrector on a finer time scale. For this example, a second TR_GETSYSTIME command
could be dispatched after the fifth TR_ADDREQUEST command, and the elapsed sys
tem time indicated by the TR_GETSYSTIME could be compared to 5.0 seconds. A
time-interval ratio could again be calculated to correct the tv_Micros parameter for subse
quent TR_ADDREQUEST commands. The same thing could be done after the tenth
TR_ADDREQUEST command. In fact, a TR_GETSYSTIME command could be dis
patched after every TR_ADDREQUEST command. However, with many TR_GETSYS
TIME and TR_ADDREQUEST commands, the time used for function and command
execution plays an important role in the accuracy of these procedures; you must investi
gate the tradeoffs involved in the circumstances of each timing loop and plan a strategy
accordingly.

THE TIMER DEVICE 130 9

Timer Device Commands
The Timer device does not work with standard device commands. Instead, it has three
device-specific commands-TR_ADDREQUEST, TR_GETSYSTIME, and TR_SET
SYSTIME. All three commands support queued lIO as well as QuickIO. None of them
support automatic immediate-mode operation. All three commands affect the TimeRequest
structure io_Error parameter; TR_GETSYSTIME also affects the TimeVal values.

Sending Commands to the Timer Device

Figure 13.2:
Timer Device

Command and
Function

Processing

Figure 13.2 depicts the general scheme used to dispatch commands to the Timer device
internal routines. The lines with arrows represent the parameters you should initialize and
those returned by the Timer device internal routines.

The programming process for the Timer device consists of three phases:

1. TimeRequest structure preparation. You have complete control over this phase
here, you initialize parameters in the TimeRequest structure in preparation for dis
patching a command to the Timer device internal routines. The parameters include
the usual ones required by most devices, as well as the TimeVal structure tv_Sees
and tv_Micros parameters. In all cases, the choice of parameters to initialize
depends on the command you plan to dispatch. These parameters provide an infor
mation path to the data needed by the Timer device internal routines in order to
process the command.

2. Timer device processing. The only part you play in this phase is to dispatch the
command to the device using the DolO or SendIO function. Control then passes to
the device and system internal routines.

3. Command output parameter processing. The system and Timer device internal rou
tines have complete control over this phase. Here, the results of Timer device com
mand processing have been returned to the task that issued the command. If it was
not a successful QuickIO request, it was processed when it moved to the top of the
device-unit request queue; the I/O request is in the task reply-port queue awaiting

ee""t { device
IORequest
structure

porcmeters 11:* OOICK f-

Preparation of
TimeRequesl

Structure

Outputs of
Command or Function

Processing

-V- ~~ Coo",'
" R"''''~tr~:-;;::-;;-:;-~:;ljtJ-Di'''''=: device _m~ Timer Device Internal Routines 10. I I()[RR OP[NFAIL '\

io c~~~~~ J;~,_§["oc==-~:~I:I:~~I:icOR~"~~D~ >~ poromf'ter\
~ f:JeginIO, DolO, or SendlO 100RR BADlENGTH .../ :I~t'~aq

sends command. or
functions initiate

lJoluesin {

Tlffiel/ol =~~t'~S<e~"t:j structure tvjkros

Timer device internal
routine servIcing

tv Sees
hr f.licros

}
Values in
TlmeVal
s'.ructure

pointers to {
Timel/al

structures

deslTimeVal
srcTimeVal

~~-~~~~: Di:l:ice structure porametf'f L ________ l-"""-""""""""- lIrlit structure parometer

31°1 AMIGA PRO G RAM MER'S HANDBOOK

the task's processing. If the request was a successful QuickIO request, it came back
directly to the requesting task. The returned parameters direct you to data appro
priate for your task.

Two Timer device commands (TR_ADDREQUEST and TR_GETSYSTIME) provide
output parameters; however, the tv_Sees and tv_Micros values returned by TR_ADD
REQUEST are meaningless. All three Timer device commands provide the io_Error
parameter as output.

Figure 13.2 also depicts the parameters that play a part in Timer device function setup
and processing. The Timer device has three device-specific functions: AddTime, SubTime, and
CmpTime; all three work with pointers to the TimeVal structure. The OpenDevice and Close
Device functions affect the Unit structure unit_OpenCnt parameter and the Device structure
lib _ OpenCnt parameter; OpenDevice also affects the io _Error parameter.

Structures for the Timer Device
The Timer device works with two structures, TimeRequest and TimeVal, as shown in Fig
ure 13.3. The TimeRequest structure is used to formulate I/O requests to be dispatched to
the Timer device internal routines. The TimeVal structure represents a system time for the
TR_GETSYSTIME and TR_SETSYSTIME commands: it represents a time interval for
the TR_ADDREQUEST command and the AddTime, SubTime, and CmpTime functions.

The TimeVal Structure

Figure 13.3:
Timer Device

Structures

The TimeVal structure is defined as follows:

struct TimeVai {
ULONG tv_Sees;
ULONG tv_Micros;

};

TimeRequest Structure

l lORequest Structure I
(tr _Node)

I TimeVol Structure I
(tr_Time)

TimeVal Structure

THE TIMER DEVICE 1311

Its parameters have the following meanings:

• tv_Sees is the value in seconds of the time request.

• tv flicros is the value in microseconds of the time request. This value is between
o and 1,000,000.

The TimeRequest Structure
The TimeRequest structure is defined as follows:

struct TimeRequest {

} ;

struct IORequest tr_Node;
struct timeval tr_ Time;

Its parameters have the following meanings:

• tr_Node is name of an IORequest substructure used to represent Timer device I/O
requests for the TR_ADDREQUEST, TR_GETSYSTIME, and TR_SETSYS
TIME commands. Its io_Message, io_Device, io_Unit, io_Command, io_Flags,
and io_Error parameters are used in the usual way. For the AddTime, CmpTime,
and SubTime functions, the io_Device parameter is used with the TimerBase
parameter to gain entrance into the Timer device routine library and to locate the
vector offsets of routines representing these three functions .

• tr_Time is the name of the TimeVal substructure representing the requested time
interval for the TR_ADDREQUEST command and the system time for the
TR_SETSYSTIME and TR_GETSYSTIME commands.

USE OF FUNCTIONS

I AddTime

Syntax of Function Call
AddTime (destTimeVal, srcTimeVal)

AO A1

purpose of Function
This function adds the tv_Micros and tv_Sees parameters of one TimeVal structure to
another. The result is stored in the second TimeVal structure's tv_Micros and tv_Sees
parameters.

31 21 AMIGA PRO G RAM MER'S HANDBOOK

To access this function, a task must initialize a system-global variable named Timerbase to
point to the Device structure, which manages the Timer device unit. It does this by opening
the Timer device unit with OpenDevice and assigning Timerbase to the TimeRequest
io _Device parameter returned by OpenDevice, as shown here:

APTR TimerBase;
Timerbase = (APTR)TimeRequest- >In_Node.io_Device);

The Timer device internal routines will then be able to locate the vector offset for
the device library routines corresponding to the AddTime function. The AD and A I
pointer register values will be unchanged when AddTime returns.

I nputs to Function
srcTimeVal

destTimeVal

DiSCUSSion

A pointer to a TimeVal structure

A pointer to a second TimeVal structure

The AddTime function allows a task to add the time values represented by two TimeVal
structures and to perform time arithmetic in order to compensate for the limited resolu
tion of UNIT _ VBLANK, the limited accuracy of the UNIT _MICROHZ, and the inac
curacy of system time values returned by the TR_GETSYSTIME command when the
system is busy.

Being a function, AddTime makes direct entries into the Timer device routine library.
Therefore, a task does not need to prepare a TimeRequest structure to access it. However, the
task must open the Timer device with a call to OpenDevice if it is not already opened. It
must then initialize the Timerbase variable to point to the Device structure returned in the
TimeRequest structure io_Device parameter of the OpenDevice call. Because the Device struc
ture acts as an interface for the Timer device internal routines and commands, for these func
tions, it provides the path to the specific function vector offsets in the device library as well.

CloseDevice

Syntax of Function Call
CloseDevice (time Request)

A1

THE TIMER DEVICE 1313

purpose of Function
This function closes access to a Timer device unit. When CloseDevice returns, the cur
rent task cannot use the unit until it executes another OpenDevice function call. However,
the current settings of the Timer device internal parameters are saved for the next Open
Device function call by this or other tasks.

CloseDevice decrements the lib_OpenCnt parameter in the Device structure and the
unit_OpenCnt parameter in the Unit structure for the specified unit, reducing each of
these by I. Once these parameters are reduced to 0, a deferred expunge of the Timer
device can take place.

I nputs to Function
timeRequest A pointer to a TimeRequest structure; also a pointer to an

IORequest structure

DiScussion

CmpTime

A task should always verify that the Timer device internal routines have replied all of its
requests before it calls the CloseDevice function to close that unit. It can do so by using
the GetMsg, Remove, CheckIO, and WaitIO functions to see what requests are in the task
reply-port queue.

The Timer device operates in shared access mode; therefore, when a task is done
with its Timer device unit operations, it can (but need not) close the unit with a call to
CloseDevice.

Syntax of Function Call
result = CmpTime (firstTimeVal, secondTimeVal)

AD A1

purpose of Function
This function compares the tv_Micros and tv_Sees parameters of one TimeVal structure
to those in another. To use CmpTime, a task must initialize a system global variable

3141 AMIGA PRO G RAM MER' S HANDBOOK

named Timerbase to point to the Device structure that manages the specified Timer
device unit. See the AddTime function discussion to learn how this is done.

The results of function execution are expressed as integer values:

• A 0 value indicates that the tv_Micros and tv_Secs parameters of the first and sec
ond Time Val structures are equal.

• A +1 indicates that the tv_Micros and tv_Secs parameters of the first TimeVal
structure represent less time than those of the second Time Val structure.

• A-I indicates that the tv_Micros and tv_Secs parameters of the first TimeVal
structure represent more time than those of the second Time Val structure.

I nputs to Function
firstTimeVal A pointer to a TimeVal structure

secondTimeVal A pointer to a second TimeVal structure

DiSCUSSion
The CmpTime function allows a task to compare two times by comparing the TimeVal
structure tv_Sees and tv_Micros parameters that represent those times. The task can then
take appropriate action based on these comparisons. See the discussion of the AddTime
function to learn more about the time arithmetic involved.

I OpenDevice

Syntax of Function Call
error = OpenOevice ("timer.device", unitNumber, timeRequest, 0)
DO AO DO A1 01

purpose of Function
This function opens access to the internal routines of a specified unit of the Timer device.
Once OpenDevice has successfully opened a Timer device unit, it then initializes certain

THE TIMER DEVICE 1315

parameters in the TimeRequest structure. OpenDevice also increments the Device struc
ture lib_OpenCnt parameter and the Unit structure unit_OpenCnt parameter, thereby
preventing a deferred expunge of the Timer device.

OpenDevice requires a properly initialized task reply port with a task signal bit aHo
cated to it if the calling task needs to be signaled when commands are replied. The results
of function execution are as follows:

• io_Device. This points to a Device structure that manages the Timer device unit
once it has been opened. The Device structure contains aH the information neces
sary to manage the unit and to reach the data and routines in the Timer device
library for the unit.

• io_Unit. This points to a Unit structure that will be used to define and manage a
MsgPort structure for a Timer device unit; the MsgPort structure represents the
device-unit request queue.

• io_Error. A 0 value indicates that the requested open succeeded. IOERR_OPEN
FAIL indicates that the specified unit could not be opened. This could be caused
by a lack of memory or by an attempt to open the same unit in a task twice with
out first closing it.

I nputs to Function
"timer. device" A pOinter to a null-terminated string representing the name

of the Timer device

unitNumber The Timer device unit number; use either UNIT_VBLANK
or UNIT_MICROHZ for this argument

timeRequest A pOinter to a TimeRequest structure

o Indicates that the flags argument is not used

preparation of the TimeRequest Structure
Initialize mn_ReplyPort to point to a MsgPort structure for the task reply port that will
receive the request replies when the Timer device intemal routines have finished processing
OpenDevice and other Timer device commands. Initialize io_Command to 0 or to a Timer
device command if the task should open the device and dispatch a command immediately.

Because Timer device I/O requests automaticaHy destroy TimeVal structure parame
ters (tv_Secs and tv_Micros) before they are replied, these parameters must always be
reinitialized even if they have the same values as a previous TimeVal structure.

If the CreateExtIO function is used to allocate and initialize the TimeRequest structure
(see Chapter 2), it should typecast its returned pointer value (to an IORequest structure) into
a pointer to a TimeRequest structure. The pointer would then also point to the IORequest
structure that is the first entry in the TimeRequest structure.

31 61 AMIGA PRO G RAM MER'S HANDBOOK

DiScussion

! SubTime

Keep in mind that the Timer device is opened automatically by AmigaDOS and by the
Parallel, Serial, Console, and Input devices. If a task has already opened these devices or
is working in AmigaDOS, it will not have to open the Timer device explicitly. In fact,
such an OpenDevice call will probably result in a failed attempt to open an already
opened Timer device unit, thereby returning an IOERR_OPENFAIL error.

Once a task opens a Timer device unit, it can dispatch a series of commands to work
with the system time and to provide timing events. When a task has finished dispatching
its Timer device commands, it should close the unit with a call to CloseDevice.

Syntax of Function Call
SubTime (destTimeVal, srcTimeVal)

AD A1

purpose of Function
This function subtracts the tv_Micros and tv_Sees parameters of one TimeVal structure
from those of another. The result is stored in the tv_Micros and tv_Sees parameters of
the second TimeVal structure. Because this function is in the set of Timer device internal
routines, a task must initialize a system-global variable named Timerbase to point to the
Device structure that manages a specified Timer device unit. See the AddTime function
discussion to learn how this is done.

I nputs to Function
srcTimeVal

destTimeVal

DiSCUSSion

A pointer to a TimeVal structure

A pointer to a second TimeVal structure

The Sub Time function allows a task to subtract the time values represented by two
TimeVal structures. See the discussion of the AddTime function to learn more about the
time arithmetic involved.

THE TIMER DEVICE 13 11

DEVICE-SPECIFIC COMMANDS

I TR ADDREQUEST

purpose of Command
TR_ADDREQUEST allows a task to time its operations. It directs the Timer device inter
nal routines to count down the time interval specified in the command's TimeRequest struc
ture. The Timer device internal routines sort and incorporate the command's request with
other Timer device 110 requests in the system; they reply the request structure to the task
reply-port queue and signal the reply task when they count down the specified time interval
to zero.

TR_ADDREQUEST allows QuickIO and always replies to the task reply-port queue
if QuickIO is unsuccessful. A 0 value in io_Error indicates that the command was success
ful. IOERR_NOCMD indicates that the io_Command parameter was specified incorrectly.

The TimeRequest structure tv_Secs and tv_Micros parameters do not contain any
meaningful values once the command executes. Therefore, if you want to use the
TimeRequest structure for another TR_ADDREQUEST command, you must reinitialize
them before dispatching the new command. The task reply port should be defined with a
signal bit number so that the dispatching task will know when the TR_ADDREQUEST
structure is replied; it can then go on with the activities it should perform when this time
interval has elapsed.

preparation of the TimeRequest Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage the specified Timer device unit; these can be copied from the TimeRequest struc
ture initialized by the OpenDevice function call. Set io_Command to TR_ADDREQUEST
Initialize io_Flags to IOF _QUICK for QuickIO; otherwise, set it to O. Initialize tv_Sees to
the number of seconds contained in the desired time interval, and initialize tv_Micros to the
number of microseconds it contains.

DiSCUSSion
When a task uses the SendIO function to dispatch a series of TR_ADDREQUEST com
mands, the Timer device internal routines signal the task when the specified time interval
has elapsed. The task can then use the CheckIO, WaitIO, and GetMsg functions to deal
with the replies in its reply-port queue. As soon as the task detects a reply -when the

3 1 81 AMIGA PRO G RAM MER'S HANDBOOK

time interval represented by the TimeRequest structure has elapsed-it can take appropri
ate action. If a task uses the DolO function to dispatch a single TR_ADDREQUEST
request, it will sleep until the specified time interval has elapsed.

The order in which TR_ADDREQUEST commands are dispatched is not important;
the Timer device internal routines will sort the TimeRequest structures in the device-unit
request queue according to the specified time intervals represented in the structures and will
process them accordingly.

TR_ADDREQUEST can be dispatched as a QuickIO request. With QuickIO, the
Timer device internal routines will not signal the dispatching task. Therefore, the best use
for QuickIO is when the task needs a specific time delay but does not need to be signaled.
In this case it is best to dispatch TR_ADDREQUEST with the DolO function; the task
will be held back as needed and will then go on to the next program statement when the
time delay has elapsed. You can also use the Exec Delay function for this purpose (see
Volume I).

I TR GETSYSTIME

purpose of Command
This command allows a task to ascertain the current system time. System time is initialized
by the system as 0 seconds at boot-up time and runs to 86,400 seconds (the number of
seconds in one day), at which point the system reinitializes it to O. The system time value is
incremented by one time unit whenever a video vertical-blanking event occurs. System time
units are incremented in vertical-blanking intervals of 1160 of a second. System time is also
incremented automatically by one unit each time a task asks for the system time using the
TR_ GETSYSTIME command. Because of this internal procedure, the system time value
returned by TR_ GETSYSTIME is always unique and unrepeating.

TR_GETSYSTIME allows QuickIO and always replies to the task reply-port queue
if QuickIO is not unsuccessful. The results of command execution are found in tv _Secs,
which indicates the number of seconds for the current system time; and in tv_Micros,
which indicates the number of microseconds. The io_Error parameter returns a 0 value if
the command was successful; IOERR_NOCMD indicates that the io_Command parame
ter was specified incorrectly.

preparation of the TimeRequest Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage a specified Timer device unit; these can always be copied from the

THE TIMER DEVICE 13 1 9

TimeRequest structure initialized by the Open Device function call. Set io _Command to
TR_GETSYSTIME. Initialize io_Flags to IOF_QUICK for QuickIO, and set tv_Secs
and tv_Micros to o.

DiSCUSSion
The TR_GETSYSTIME and TR_SETSYSTIME commands should be dispatched as
QuickIO commands. Without QuickIO, the requests would be queued in the device-unit
request queue and replied to the task reply-port queue. Processing of the queue would
take time, which would make the system time returned by these two commands invalid.

I TR SETSYSTIME

purpose of Command
This command allows a task to set the current system time. System time is initialized
automatically to 0 seconds at boot-up and increases to 86,400 seconds (the number of sec·
onds in one day), at which point the system reinitializes it to O. If a task needs to reini
tialize the system time back to 0, it should use the TR_SETSYSTIME command to reset
the values in the TimeRequest structure TimeVal substructure tv_Micros and tv_Secs
parameters. The system time value is incremented one time unit whenever a video
vertical-blanking event occurs; the units are incremented by vertical-blanking intervals of
1160 of a second.

TR_SETSYSTIME allows QuickIO and always replies to the task reply-port queue
if QuickIO is unsuccessful. The results of command execution are found in io_Error,
where 0 indicates that the command was successful; IOERR_NOCMD indicates that the
io_Command parameter was specified incorrectly.

preparation of the TimeRequest Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage the specified Timer device unit; these can be copied from the TimeRequest
strucrure initialized by the OpenDevice function call. Set io_Command to TR_SETSYS
TIME. Initialize io_Flags to IOF _QUICK for QuickIO. Initialize tv_Secs to the number
of seconds you want for the system time (this must be between 0 and 86,400 seconds
one day), and set tv_Micros to the number of microseconds.

32°1 AMIGA PRO G RAM MER'S HANDBOOK

DiScussion
The TR_SETSYSTIME command allows a task to set the system time forward or back
ward as necessary to satisfy the current timing needs of the task. Like TR_GETSYS
TIME, it should always be dispatched as a QuickIO request.

- • -• ••
• . .. • • ••• .. .-• • • •• • • •• •

The TrackDisk Device

THE TRACKDISK DEVICE 1323

Introduction

The TrackDisk device controls the Amiga disk drives and motors. It also writes and reads
raw and encoded data to and from the disk tracks, provides disk-system status information
to a task, and allows you to add a series of disk-change interrupt routines to the system.
The TrackDisk device is the lowest-level software interface to the Amiga disk system, and
it is used by AmigaDOS. It is a ROM-resident device and is loaded automatically into
ROM when the WCS ROM is written from the Kickstart disk at boot-up time.

There are some standard device commands that the TrackDisk device does not sup
port, but device-specific equivalents are provided. This device is programmed with the
CloseDevice and OpenDevice functions and three structures: IOExtTD, TDU_Public
Unit, and BootBlock.

Operation of the TrackDisk Device

Figure 14.1:
Operation of the

TrackDisk
Device

Figure 14.1 illustrates the general operation of the TrackDisk device, which supports both
3.5-inch and 5.25-inch floppy disks. It also supports hard disks.

The TrackDisk device has four units, which can only be opened in exclusive access
mode. Unit 0 is dedicated to the Amiga internal disk drive; units 1, 2, and 3 are dedi
cated to the first, second, and third external disk drives. The external disk drives can be

•
•
•
•
•

o

Unit 0
Internal

Drive

Write

Unit 1
External

Drive

.g IntE:i"nul
1---+--1 Track

'0 Buffer 0

I ------I-':::=='----~ InterrHlI

Daisy
Chain

U:I" 7
Extern,J

Drive

Write

I~ ~ock
1p~, B_U_ff'_" _'_--<-'1 Intern (]I
'- TraCk

Iluffer 2

Trock[Jd. De'lice Internal R "hies

Disk Insertion/Rernuvol Events

Read

3241 AMIGA PRO G RAM MER'S HANDBOOK

Table 14.1:
Pin Connections

for External

Disk Drives

daisy-chained, as shown in the figure. The first connector is at the back of the Amiga.
Table 14.1 summarizes the pin connections.

The TrackDisk device is a block-oriented device; data is read in and out in full track
blocks. Because QuickIO is intended for single-character operations, it would not speed
system response and is therefore not provided for this device. Instead, I/O requests are
placed in a device-unit request queue.

Each unit also has an internal track buffer that contains data for all 11 sectors in a
track. Track buffers are managed by the TrackDisk device internal routines; a task has
only limited control over them. They act as intermediate data locations for raw or prepro
cessed data sent between the task-defined buffers and the disk media. All task-defined data
transfer buffers must be in the first 512K of memory.

Read operations (the TD_RAWREAD, ETD_READ, and ETD_RAWREAD com
mands) read one track of data from a disk into the track buffer and then send the data to
the task-defined buffer; for the ETD_READ command, the data is decoded into an inter
nally compatible form by the Blitter coprocessor during the transfer. Write operations (the
TD_RAWWRITE, ETD_RAWWRITE, and ETD_ WRITE commands) write one or
more sectors of data from a task-defined buffer to the track buffer and onto the disk; for

Pin No Data at Pin Data Direction Description

1 RDY Input/output Disk installed or identification mode
2 DKRD Input MFM (modified frequency modula-

tion) input data to Amiga
3-7 GND Ground pins
8 MTRXD Open collector Motor on data
9 SEL2B Open collector Select drive 2

10 DRESB Open collector Amiga system reset
II CHNG Input/output Toggle for disk installed/not installed
12 +5V 270ma maximum; 410ma surge
13 SIDEB Output Side I if active, side 0 if inactive
14 WPRO Input/output Write-protected disk
15 TKO Input/ output Read-write head over track 0
16 DKWDB Open collector Write gate (enable) to drive
17 DKWDB Open collector MFM output data from Amiga
18 STEPB Open collector Selected drive steps one drive in

DIRB direction
19 DIRB Open collector Head step direction
20 SEL3B Open collector Select drive 3
21 SELlB Open collector Select drive 1
22 INDEX Input/output Index pulse, once per revolution
23 +12V 160ma maximum; 540ma surge

THE TRACKDlSK DEVICE 13 2 5

the ETD _ WRITE command, data is encoded into an externally compatible form by the
Blitter coprocessor.

The TrackDisk device also sends disk insertion and removal events to the Input
device if it has been opened. A task can use the TD _REMOVE command to execute a
software interrupt routine when a disk is inserted or removed. See Chapter 7 for more
information on the the Input device and its interactions with the TrackDisk device.

TrackDisk Device/Floppy-Disk Interactions

Figure 14.2:
Interactions of a
Floppy Disk and

the TrackDisk
Device

Figure 14.2 illustrates TrackDisk device operations on a floppy disk. Each 3.5·inch floppy
disk has two sides, 80 tracks to a side, 11 sectors to a track, and 512 data bytes to a
sector. Track numbers increase from 0 for the outside track to 79 for the inside track. In
addition, each sector of a disk can contain 16 bytes of sector-identification information.
The 3.5-inch floppy disk can hold a total of 880K of information (440K to a side). Other
types of floppy disks have their own characteristics.

Several TrackDisk device operations affect information on the disk in the internal
track buffers or in the task-defined buffers-read operations, write operations, update oper
ations, and formatting operations:

• Each read or write operation can transfer one or more sectors between the floppy
disk and the task-defined buffer; the number of sectors is controlled by the task
statements that define the data transfer. If a task executes a command to read sector
data from a disk (unit) and that data is already in the unit's internal track buffer,
no immediate disk activity will occur. If the sector data is not in the internal track
buffer, however, a full track will be read into it automatically. If the internal track

Sector Usab le Jato Area
(512 byt es)

32 &1 AMIGA PRO G RAM MER'S HANDBOOK

buffer currently contains data that has not been written to the disk since that data
was last changed, the older data will be written to the disk first. In the same way,
no immediate disk activity will occur for a write operation unless that operation
would write over data already in the track buffer.

Reading from and writing to the disk occurs only if the current contents of the
internal track buffer would not be lost by the execution of the read or write opera
tion. The system always knows if sector data is currently in the track buffer but
not on the disk; it takes appropriate action to protect task-defined data at all times.
Because the device internal track buffer contains all 11 sectors of a track, this auto
matic bookkeeping operation minimizes disk activity .

• Update operations (ETD_CLEAR and ETD_UPDATE) allow you to write the
contents of all track buffers to the floppy or hard disk in an emergency situation,
such as a power failure .

• Formatting operations (TD_FORl\tAT and ETD_FORl\tAT) for a floppy disk are
done on a track-by-track basis, which speeds the formatting process considerably.

In addition, as the figure shows, the TrackDisk device TD_SEEK command causes the
floppy disk read-write head to move from track to track.

TrackDisk Device Commands
The TrackDisk device does not work directly with standard device commands. Instead, it
uses device-specific commands, which fall into two categories: "normal" commands and
extended commands. Extended commands (beginning with ETD) perform some of the
same operations as normal (TD) conupands, except that they also deal with disk-change or
sector-label information. The extended commands were added to prevent inadvertent read
or write operations when a disk is changed.

Sending Commands to the TrackDisk Device
Figures 14.3(a) and (b) depict the general scheme used to send commands to the Track
Disk device routines. The lines with arrows in Figure l4.3(a) represent the parameters
you should initialize, and those in Figure 14.3(b) represent the parameters returned by the
TrackDisk device internal routines.

The TrackDisk device programming process consists of three phases:

1. Structure preparation. You have complete control over this phase; here, you initial
ize parameters in the IOExtTD structure in preparation for sending a command or
function to the TrackDisk device internal routines. The parameters include those
required by most devices; in addition, the iotd_SecLabel and iotd_Count parame
ters are used for the extended commands. Taken together, these parameters provide
an information path to the data needed by the TrackDisk device in order to process
the command.

THE TRACKDISK DEVICE 13 21

2. TrackDisk device processing. The only part you play in this phase is to send the
command to the device using the BeginlO, DolO, or SendlO function. Control
then passes to the device and system internal routines.

3. Command output parameter processing. The system and TrackDisk device routines
have complete control over the values found in this phase; here, the results of command
processing have been returned to the task that originally issued the command. The I/O
request was processed when it moved to the top of the TrackDisk device request queue,
and it is now in the task reply·port queue awaiting the task's processing.

As Figure 14.3(b) shows, TD_GETDRIVETYPE and TD_GETNUMTRACKS
provide the io_Actual parameter as output, and all commands provide the io_Error
parameter.

Figures 14.3(a) and (b) also depict the parameters that play a part in TrackDisk
device function setup and processing. The OpenDevice and CloseDevice functions affect
the Unit structure unit_OpenCnt parameter and the Device structure lib_OpenCnt
parameter; OpenDevice also affects the io_Error parameter.

Structures for the TrackDisk Device

Figure 14.3(a):
7i"ackDisk Device

Command and

Function
Processing

(Specifications)

The TrackDisk device works with three device-specific structures: IOExtTD, TDU_Public
Unit, and BootBlock. All TrackDisk device commands are represented by the IOExtTD

General

device
IOStdReq
structure

parameters
and flog

values

IOF QUICK
IOTDF INDEXSYNC

TIlI._ALLOW_NON_3_.S

Preparation of
'OExtTD

structure

Trock[!I;k Device In' Routines

DnlO or

:;en dlO ""II
comlT'onn.

function); initiate
Troc:kDlsk device
internal r'outine

servicIIFj

• Only input for TD_RAWREAD (or ETD_RAWREAD) and TO _RAWWRITE (or E~D_RAWWR!TE) u.rnrnonds

3 2 81 'MIG. PRO G RAM MER'S H.NDBOO.

Figure 14.3(b):
TrackDisk Device

Command and
Function

Processing

(Outputs)

...

1 r'x,Disk Device
r, cernal Routines

Irb:-OpenCnt ..
Uri! OpenCn! ..

Vc:lue in
lOE,tTO
struc.twe

structure. The TDU_PublicUnit structure is used to manage a device-unit request queue
and to control timing and other aspects of disk operation. The BootBlock structure is used
to define the two-sector (IK) bootblock for each disk that the Amiga recognizes. These
structures are shown in Figure 14.4.

The IOExtTD Structure
The IOExtTD structure is defined as follows:

struct IOExtTD {

};

struct IOStdReq iotd_Req;
ULONG iotd_Count;
ULONG iotd_SecLabel;

Its parameters have the following meanings:

• iotd_Req. This is the name of an IOStdReq substructure that represents the message
passing, error-reporting, and task-defined buffer specifications for a command.

• iotd_ Count. This is the minimum value allowed for the disk-change counter vari
able, which keeps track of the number of disk insertions and removals. The current
value of the disk-change counter variable in an I/O request is returned by a
TD_CHANGENUM command. If the current value is less than this structure's
iotd_Count parameter, the internal device routines will fail to process the I/O
request and reply it with the IOExtTD structure io_Error parameter set to
TDERR_DiskChanged. The task should then request the user to insert the appro
priate disk. When the correct disk is inserted, the TrackDisk device internal rou
tines will recognize its label; another TD_CHANGENUM will return a

Figure 14.4:
TrackDisk

Device
Structures

TDU_PublicUnit Structure

I Unit Structure I
(tdu_Unit)

IOExtTD Structure

I IOStdReq Structure I
(iotd_Req)

BootBlock Stru cture

THE TRACKDlSK DEVICE 13 2 9

disk-change counter value that is consistent with the value of the IOExtTD struc
ture iotd_ Count parameter, and the I/O request can be sent again .

• iotd_SecLabel. This points to a series of contiguous l6-byte buffers containing
sector-label information for read and write operations. The system will read or
write this identification information to or from the disks.

The TDU_PublicUnit Structure
The TDU_PublicUnit structure is defined as follows:

struct TDU_PublicUnit {
struct Unit tdu_Unit;
UWORD tdu_Comp01Track;
UWORD tdu_Comp10Track;
UWORD tdu_ Comp11 Track;
ULONG tdu_StepDelay;
ULONG tdu_SettleDelay;
UBYTE tdu_RetryCnt;

} ;

Its parameters have the following meanings:

• tdu_Unit. This is the name of a Unit substructure used to manage a TrackDisk
device unit. It contains a MsgPort substructure to manage the device-unit message
port, and it also contains the unit_OpenCnt parameter, which keeps track of the
number of tasks using a unit. Because the TrackDisk device operates in exclusive
access mode, Unic OpenCnt will always have a value of either 0 or 1.

3301 AMIGA PRO G RAM MER'S HANDBOOK

A Unit structure's parameters are always system-private-only the system can write to
them. However, TDU_PublicUnit has been extended so that a task can examine and
modify the following public parameters:

• tdu_CompOlTrack, tdu_CompIOTrack, and tdu_CompIITrack. These are the
track numbers to use for the first, second, and third track precompensations.

• tdu_StepDelay. This is the time (in milliseconds) to wait after track-to-track step
ping the disk motor. As of Release 1.2, the step delay is 3.6 milliseconds. However,
this parameter is hardware-dependent; a value that works with a 68000 CPU may
not work with a 68010 or 68020 CPU, which have faster clock rates.

• tdu_SettleDelay. This is the time (in milliseconds) to wait after a track-to-track seek
operation. This parameter is also hardware-dependent.

• tdu_RetryCnt. This is the number of times the seek operation should be re
attempted. A forced seek can be accomplished using the TD_Seek or ETD_Seek
command; however, this should only be done for diagnostic purposes.

The BootBlack Structure
The BootBlock structure is defined as follows:

struct BootBlock {
UBYTE bb_id[4];
LONG bb_chksum;
LONG bb_dosblock;

} ;

Its parameters have the following meanings:

• bb_id[4]. This is a four-character identifier that defines the type of disk in the disk
drive. At the present time, it can be initialized to "DOSO," indicating a valid DOS
disk, or "KICK," indicating the Kickstart disk.

• bb_chksum. This is the current value of the checksum for the boot block. It IS

used to verify the integrity of the disk when booting.

• bb _ dosblock. This parameter is reserved for future DOS use.

TrackDiSk Device Error Codes
Error codes are returned by the TrackDisk device functions and commands in the IOExtTD
structure io_Error parameter. They have the following meanings:

• A 0 value always indicates that the command or function was successful.

THE TRACKDISK DEVICE 1331

• IOERR_OPENFAIL, IOERR_ABORTED, IOERR_NOCMD, and IOERR
_BADLENGTH have the same meanings for the TrackDisk device as they do for
other devices (see Chapter 3).

• TDERR_NotSpecified. This is a "catch-all" error code. It usually means that the
error is not one of the following errors.

• TDERR_NoSecHdr. The TrackDisk device could not find the sector header for a
sector.

• TDERR_BadSecPreamble. The TrackDisk device could not fmd the sector pre
amble for a sector.

• TDERR_BadSecID. A sector has bad sector-label information.

• TDERR_BadHdrSum. A sector has a bad sector-header checksum.

• TDERR_BadSecSum. A sector has a bad sector-data checksum.

• TDERR_TooFewSecs. The TrackDisk device cannot find enough sectors to satisfy
the requirements of the command.

• TDERR_BadSecHdr. A sector has bad sector-header data.

• TDERR_ WriteProt. A command tried to write to a protected disk.

• TDERR_DiskChanged. There is no disk in the drive, or the disk-change counter
value and the IOExtTD structure iotd_ Count parameter are not consistent.

• TDERR_SeekError. The seek operation could not find sector ° on a disk.

• TDERR_NoMem. The system ran out of memory trying to perform the function
or command.

• TDERR_BadUnitNum. A function or command asked for a unit number inconsis
tent with the number of units currently in the system (units 0, 1, 2, and 3). The
system also returns this error if a command or function addresses a unit that does
not have a disk driver connected to it.

• TDERR_BadDriveType. The drive type specified in a function or command is not
one the system understands.

• TDERR_DriveInUse. The drive is being used by another task. The currept task
must wait until the task now using the unit closes it.

• TDERR_PostReset. The user has posted a reset of the system by using the Ctrll
left-Amiga/right-Amiga key combination.

3 3 21AMIGA PRO G RAM MER'S HANDBOOK

USE OF FUNCTIONS

I C/oseDevice

Syntax of Function Call
CloseDevice (iOExtTD)

A1

purpose of Function
This function closes access to a specific unit of the TrackDisk device. When CloseDevice
returns, the IOExtTD structure io_Device and io_Unit parameters will be set to - 1, and
no task can use the IOExtTD structure until it is reinitialized by an Open Device call.
CloseDevice also decrements the Device structure lib_OpenCnt parameter and the Unit
structure unit_OpenCnt parameter to indicate that the task no longer has the unit open.
If unit_ OpenCnt is reduced to 0 for all open units of the TrackDisk device, a deferred
expunge can take place.

I nputs to Function
iOExtTD

DiSCUSSion

A pointer to an IOExtTD structure

Each time a task opens a TrackDisk device unit, it must execute a CloseDevice call for
the unit before another task can open it. When a task opens a unit, the Unit structure
unit_ OpenCnt parameter is incremented to indicate that the unit is presently owned by
the task; no other task can open it until unit_OpenCnt is once again reduced to O.

I O~enDevice

Syntax of Function Call
error = OpenDevice ("trackdisk.device", unitNumber, iOExtTD, flags)
DO AO DO A1 01

THE TRACKDISK DEVICE 1333

purpose of Function
This function opens access to a specific TrackDisk device unit. OpenDevice initializes the
IOExtTD structure io_Device and io_Unit parameters to point to Device and Unit struc
tures that the system uses to manage the unit. OpenDevice also increments the Device
structure lib_OpenCnt and the Unit structure unit_OpenCnt parameters, thereby prevent
ing a deferred expunge of the TrackDisk device.

I nputs to Function
"trackdisk_device" A pointer to a null-terminated string representing the

name of the TrackDisk device

unitNumber

iOExtTD

flags

The TrackDisk device unit number (0, 1, 2, or 3)

A pointer to an IOExtTD structure

Set this to 0 for 3.5-inch disks; set it to TDF _ALLOW
_NON_3_5 for 5.25-inch disks

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the task reply port.

DiScussion
If a unit is opened with OpenDevice, it must be closed with a call to CloseDevice before
another task can use it-the TrackDisk device uses exclusive access mode only. Assign a
message-port signal bit number if you want your task to be signaled when the Open
Device I/O request is replied.

DEVICE-SPECIFIC COMMANDS

I ETD CLEAR

purpose of Command
This command marks the specified track internal buffer as invalid, forcing a reread of the
disk on the next operation.

3341 AMIGA PRO G RAM MER'S HANDBOOK

preparation of the IOExtTD Structure
Initialize mn_ReplyPon to point to the MsgPon structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Set io_Command to ETD
_CLEAR, and set io_Flags to 0.

DiScussion
The ETD _CLEAR command allows a task to mark an internal track buffer as invalid.
This is useful if the task writes something into that buffer and later decides that the data
is invalid. ETD CLEAR does not affect the contents of task-defmed buffers.

I frD RAWRfAD

purpose of Command
This command reads raw data bits from a unit of the TrackDisk device. The system seeks
a specific track and then reads one or more data sectors into a task-defined buffer. The
system does not use the Blitter to decode the data. This command is identical to the
TD_RAWREAD command, except that it is used when the task needs to verify the disk
or work with sector-label information.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply pon. Initialize io_Device and io_ Unit to point to the Device and Unit structures that
manage the addressed unit of the TrackDisk device; these parameters can be copied from the
IOExtTD structure initialized by OpenDevice. Set io_Command to ETD_RAWREAD.
Also set the following command-specific parameters:

• io_Flags. Set this parameter to 0, or set it to IOTDF _INDEXSYNC if you want
the TrackDisk device to try to read the track data bits from the index mark on the
track. It mayor may not succeed; however, keep in mind that there will always be a
delay in the reading process-perhaps a very long delay if, for example, interrupts
have been disabled. See the TD _RAWREAD command for more information on
these delays.

THE TRACKDlSK DEVICE 13 3 5

• io_Length. Set this to the length of the task-defined buffer in bytes; the maximum
length is 32K.

• io_Data. Set this to point to the task-defined buffer to which the raw track data
will be sent. This buffer must be in chip memory (MEMF _CHIP).

• io_Offset. Set this to the number of the track to be read into the task-defined
buffer. For standard device commands (such as ETD_READ), io_Offset represents
the number of bytes from the beginning of the disk; however, for ETD _RAW
READ, it represents the track number.

• iotd_ Count. Set this to the maximum disk change-counter value.

• iotd_SecLabel. Set this parameter to 0, or set it to point to a series of contiguous
RAM 16-byte buffers-one buffer for each track sector to which sector-label infor
mation should be added during the read operation.

DiSCUSSion
ETD_RAWREAD is used for raw data disk read operations in which the task must work
with disk-change or sector-label information. No preprocessing of the track data will occur
during a data transfer with this command; the data bits placed in the task-defined buffer
will be exactly as they were on the disk. Because the data will be arranged in MFM
(modified frequency modulation) format, you should use this command only if you know
how MFM data is defined and used. In addition, if you use this command, your program
may not be compatible with future releases of Amiga software. Your tasks can use the
ETD_READ command to read data that has been decoded by the Blitter.

I ETD RAWWRITE

purpose of Command
This command writes raw data bits to a unit of the TrackDisk device. It transfers the bits
from a task-defined buffer to the disk without altering them through the action of the BIitter.

preparation of the IDExtTO Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied

3361 AMIGA PRO G RAM MER' S HANDBOOK

from the IOExtTD structure initialized by OpenDevice. Set io_Command to
ETD _RAWWRITE. Also set the following command-specific parameters:

• io_Flags. Set this to 0, or set it to IOTDF _INDEXSYNC if you want the Track
Disk device to try to write the track data from the index mark on the track. It may
or may not succeed; however, there will always be a delay-perhaps a very long
delay if, for example, interrupts have been disabled.

• io_Length. Set this to the length in bytes of the task-defined buffer. The maximum
length is 32K.

• io_Data. Set this to point to the task-defined buffer from which the raw track data
bits will be copied. This buffer must be in chip memory (MEMF _CHIP).

• io_Offset. Set this to the track number to which the data bits should be written.

• iotd_Count. Set this to the maximum change-counter value.

• iotd_SecLabel. Set this to 0, or set it to point to a series of contiguous-RAM 16-byte
buffers, one for each track sector to which you want to add sector-label information.

DiSCUSSion
ETD_RAWWRITE is used for raw data write operations that require disk-change or
sector-label information. No Blitter preprocessing of the data will occur during this data
transfer; the data bits will be written to the disk exactly as they were in the task-defined
buffer. Because they will be arranged in MFM format, you should use this command only
if you know how MFM data is defined and used. In addition, if you use ETD
_RAWWRITE, your program may not be compatible with future releases of Amiga soft
ware. Your tasks can use the ETD _WRITE command to write data that has been
encoded by the Blitter.

I ETD UPDATE

purpose of Command
This command allows a task to write the current contents of a device-unit internal track
buffer onto a disk connected to the unit. The contents of task-defined buffers are not
affected by this operation.

THE TRACKDISK DEVICE 1337

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io _Device and io _Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Also set io_Command to
ETD_UPDATE, and set io_Flags to O.

DiScussion
The ETD_UPDATE command allows a task to write the current contents of an internal track
buffer onto a disk. Although this is done automatically in the event of a power failure or if the
user initiates a machine reset, a task can clear the contents of the track buffer for other rea
sons. ETD _UPDATE writes out the internal track buffer only if that buffer has been changed
since it was last read in. It does not affect contents of task-defined buffers.

I TO AOOCHANGEINT

purpose of Command
This command adds a new disk-change interrupt mechanism to the TrackDisk device soft
ware system. It was implemented by the Amiga developers because the TD_REMOVE
command was not fast enough to handle added interrupts correctly.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Set io_Command to TD_ADD
CHANGEINT, and set io_Flags to O. Also initialize io_Data to point to the Interrupt
structure representing the disk-change interrupt you want to add to the system.

DiSCUSSion
The TD_ADDCHANGEINT command allows the TrackDisk device system to support an
extendable list of disk-change software interrupts, which allows disks to be inserted in or
removed from a disk drive. You can design your own disk-change interrupts as you desire.

3 3 81 AMIGA PRO G RAM MER'S HANDBDDK

I TD CHANGENUM

purpose of Command
This function returns the current value of the disk-change counter for a specified unit of the
TrackDisk device. The value is returned in the IOExtTD structure io_Actual parameter.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the desired Device and Unit
structures that manage the addressed unit of the TrackDisk device; these parameters can
be copied from the IOExtTD structure initialized by OpenDevice. Also set io_Command
to TD_CHANGENUM, and set io_Flags to o.

DiSCUSSion
The disk-change counter is important to the operation of the extended commands in the
TrackDisk device software system. Each time a disk is inserted or removed in a particular
unit, the disk-change counter for that unit is incremented. When the disk-change counter
is greater than the value in the IOExtTD structure iotd_Count parameter, an extended
command treats it as an error. This allows old I/O requests to be replied to the sending
task after a disk has been changed and prevents the use of the wrong disk after a series of
disk changes.

If a task needs to use extended commands but does not require disk removal informa
tion, the iotd_ Count parameter should be set to the maximum unsigned long integer
value, hexadecimal OxFFFFFFFF.

I TD CHANGESTATE

purpose of Command
This command determines if a disk is present in the drive of the specified unit. It returns
a nonzero value in the IOExtTD structure io_Actual parameter if there is no disk in
the drive.

THE TRACkDISK DEVICE 13 3 9

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Also set io_Command to
TD_CHANGESTATE, and set io_Flags to O.

DiScussion
TD _ CHANGESTATE allows a task to ascertain if a particular unit of the TrackDisk
device has a disk in the disk drive. The task must know this before it goes on to read
from or write to the disk.

I TD FORMAT

purpose of Command
This command formats a disk, writing over any data already on it. It fills all sectors with
the contents of the data specified in the IOExtTD structure. The IOExtTD structure
io_Data parameter points to a task-defined buffer that holds the data-byte definitions to be
used in the formatting process. It must point to at least one sector of formatting informa
tion. If the task-defined buffer contains more than 512 bytes of data, the first 512 bytes
are used and the extra bytes are ignored. TD_FORMAT performs no error-checking.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Also set io_Command to
TD_FORMAT, and set io_Flags to O. Set io_Data to point to at least one sector's worth
of formatting bytes (at least 512 bytes). Data beyond one sector's worth will be ignored.

DiSCUSSion
The TD_FORMAT command is used to format an entire disk with new formatting infor
mation. This is usually done to initialize a new disk, but it can also be done to reformat a

34 0 I AMIGA PRO G RAM MER'S HANDBOOK

damaged disk. The task should read each formatted track into a task-defined buffer to ver
ify that the formatting is correct. A task can also use the ETD _FORMAT command if it
wants to specify sector-label information and verify that the correct disk is in the drive.

I TO GETORIVETYPE

purpose of Command
This command returns the drive type to the calling task. Drive-type constants are small
integers; they are defined in the Trackdisk.h and Trackdisk.i INCLUDE files. The drive
type connected to the TrackDisk device unit is returned in the IORequest structure
io_Actual parameter, where 1 indicates DRIVE3_5 (a standard 3.5-inch disk) or 2 indi
cates DRIVE5_25 (a 5.25-inch, IBM-type disk).

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the device; these parameters can be copied from the
IOExtTD structure initialized by OpenDevice. Set io_Command to TD_GETDRIVE
TYPE, and set io_Flags to O.

DiSCUSSion
A task's OpenDevice call will fail if the device internal routines do not recognize a partic
ular drive associated with a TrackDisk device unit. See the Disk.h INCLUDE file for a
list of the raw drive identifiers recognized by the system.

I TO GETNUMTRACKS

purpose of Command
With this command, the number of tracks available on a TrackDisk device umt IS

returned in the IOExtTD structure io_Actual parameter. The number is computed by the
TrackDisk device internal routines based on the disk's physical characteristics.

THE TRACKDISK DEVICE 13 4 1

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Set io_Command to TD_GET
NUMTRACKS and set io_Flags to O.

DiScussion

I TD MOTOR

The TD_GETNUMTRACKS command removes some restnctIons that existed in
Release 1.1 and earlier releases. In particular, this command makes the NUMTRACKS
INCLUDE file constant found in Releases 1.0 and 1.1 obsolete.

purpose of Command
This command allows a task to turn the disk motor on and off. The disk motor is turned
on automatically during the processing of most TrackDisk device 110 requests. However,
it is not turned off automatically-you must use the TD_MOTOR or ETD_MOTOR
command. The requested state of the disk motor (on or oft) is specified by the IOExtTD
structure io_Length parameter; a value of 1 will turn the motor on, and 0 will turn it off.
The previous state of the motor is provided in the IOExtTD structure io_Actual parame
ter when TD_MOTOR is replied. A value of I means the motor was on, and 0 means it
was off. A task can also use the ETD_MOTOR command if it wants to verify that the
correct disk is in the drive before the motor is turned on or off.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Also set io_Command to
TD_MOTOR, and set io_Flags to O.

34 21 AMIGA PRO G RAM MER' S HANDBOOK

DiScussion
Under most circumstances, turning the motor on is not necessary; each command sent to
the TrackDisk device internal routines will do so. However, turning the motor off is the
task's responsibility. Keep in mind that it is only safe to remove a disk if the motor is off.

I TO PROTSTATUS

purpose of Command
This command allows a task to inquire about the current protection status of a disk. The
protection status is returned in the IOExtTD structure io_Actual parameter, where a zero
value indicates that the disk is unprotected and a nonzero value indicates that it is pro
tected. If there is no disk in the drive, the IOExtTD structure io_Error parameter is set
to TDERR_DiskChanged.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Also set io_Command to
TD_PROTSTATUS, and set io_Flags to O.

DiSCUSSion
TD_PROTSTATUS allows a task to determine if a particular unit of the TrackDisk
device has a write-protected disk in its disk drive. The task must know this before it goes
on to read from or write to the disk.

TO RAWREAO

purpose of Command
This command reads raw data bits from a unit of the TrackDisk device. It causes the
system to seek a specific track and then read the track's data into a task-defined buffer. It

THE TRACKDlSK DEVICE 1343

is used for reading a disk when there is no need to verify that the disk has been changed
or to work with sector-label information.

preparation of the IOExtTD Structure
Initialize rnn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures that
manage the addressed unit of the TrackDisk device; these parameters can be copied from the
IOExtTD structure initialized by OpenDevice. Set io_Command TD_RAWREAD. Also set
the following command-specific parameters:

• io_Flags. Set this to 0, or set it to IOTDF _INDEXSYNC if you want the Track
Disk device to try to read the track data bits from the index mark on the track. It
mayor may not succeed; however, there will always be a delay-perhaps a long
delay if, for example, interrupts have been disabled. See the next section for more
on IOTDF _INDEXSYNC.

• io_Length. Set this to the length (in bytes) of the task-defined buffer. The maxi
mum length is 32K.

• io_Data. Set this to point to the task-defined buffer to which the raw track data
will be sent. This buffer must be in chip memory (MEMF _CHIP).

• io_Offset. Set this to the track number to be read into the task-defined buffer. A
normal device command (such as ETD_READ) always treats io_Offset as the
number of bytes from the beginning of the disk. However, TD_RAWREAD treats
it as the track number.

DiSCUSSion
TD _RAWREAD is used for read operations in which no Blitter preprocessing of the
track data should occur during the data transfer-the data bits placed in the task-defined
buffer will be exactly as they were on the disk. Because the data will be arranged in
MFM format, you should use this command only if you know how MFM data is defined
and used. In addition, if you use TD_RAWREAD, your program may not be compatible
with future releases of Amiga software.

TD_RAWREAD commands with IOTDF _INDEXSYNC set always contain a delay
between the index pulse and the delivery of bits from the disk. This is caused by the time
it takes to get DMA started. The delay ranges from 135-200 microseconds; at 4 microsec
onds to a bit, there are from 4 to 7 bytes of delay. 55 microseconds are used for software
interrupt overhead, which is the time from t.he occurrence of the interrupt to the writing
of the disk system DSKLEN hardware register. 66 microseconds are used for a horizontal
scan-line delay, which synchronizes the disk I/O with the Agnus chip-display scan-line
fetches. An additional scan-line time of 0-65 microseconds can be required; the DSKLEN
register can be initialized anywhere along the scanning distance of one horizontal line.

3441 AMIGA PRO G RAM MER'S HANDBOOK

I TD RAWWRITE

purpose of Command
This command writes raw data bits to a unit of the TrackDisk device. TD_RAWWRITE
transfers data bits from a task-defmed buffer to the disk with no Blitter preprocessing. It
is used to write raw data to a disk where there is no need to work with disk-change or
sector-label information.

preparation of the IOExtTD Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Set io_Command to
TD_RAWWRITE. Also set the following command-specific parameters:

• io_Flags. Set this to 0, or set it to IOTDF _INDEXSYNC if you want the Track
Disk device to try to write the track data from the index mark on the track. It may
or may not be successful; however, keep in mind that there will always be a
delay-perhaps a very long delay if, for example, interrupts have been disabled.

• io_Length. Set this to the length of the task-defined buffer. The maximum length
is 32K.

• io_Data. Set this to point to the task-deflned buffer from which the raw data bits
will be copied. The buffer must be in chip memory (MEMF _CHIP).

• io_Offset. Set this to the number of the track to which the data bits should be
written.

DiSCUSSion
TD_RAWWRITE is used for write operations that do not use the last two parameters in
the IOExtTD structure. No preprocessing of the data will occur during data transfer; the
data bits written on disk will be exactly as they were in the task-deflned buffer. Because
the data will be arranged in MFM format, you should use this command only if you
know how MFM data is defined and used. In addition, if you use TD_RAWWRITE,
your program may not be compatible with future releases of Amiga software.

THE TRACKDlSK DEVICE 134 5

[TD REMCHANGEINT

purpose of Command
This command removes a disk-change software interrupt from the TrackDisk device software
system. It unlinks the Interrupt structure originally added by an TD_ADDCHANGEINT
command and sends a reply to the task reply-port queue.

preparation of the IDExtTO Structure
Initialize mn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_Unit to point to the Device and Unit structures
that manage the addressed unit of the TrackDisk device; these parameters can be copied
from the IOExtTD structure initialized by OpenDevice. Also set io_Command to
TD _REMCHANGEINT, and set io_Flags to O. Initialize io_Data to point to the Inter
rupt structure for the disk-change interrupt you want removed.

DiSCUSSion
The TD_REMCHANGEINT and TD_ADDCHANGEINT commands allow the Track
Disk device software system to support an extendable list of disk-change software inter
rupts. These two functions allow you to customize disk-change operations to suit your
own needs.

[TO REMOVE

purpose of Command
This command allows a task to execute a disk-change software interrupt. It allows a task
to take specific actions when a user inserts or removes a disk from a disk drive.

preparation of the IDExtTO Structure
Initialize rnn_ReplyPort to point to the MsgPort structure representing the desired task
reply port. Initialize io_Device and io_ Unit to point to the Device and Unit structures that

3461 AMIGA PRO G RAM MER'S HANDBOOK

manage the addressed unit of the TrackDisk device; these parameters can be copied from the
IOExtTD structure initialized by OpenDevice. Set io_Command to TD_REMOVE, and set
io_Flags to O. Initialize io_Data to point to the Interrupt structure that will manage the
interrupt; this structure can be added with the TD_ADDCHANGEINT command.

DiSCUSSion

TD SEEK

TD_REMOVE is responsible for calling a specific disk-<:hange interrupt routine whenever a
disk is insened or removed from a disk drive. By designing your own interrupt routines, you
can arrange for various actions when a disk is changed. Each Interrupt structure contains a
pointer to the data and code that will be used to respond to the disk interrupt, and the Track
Disk device internal routines will call the interrupt routine whenever a disk is insened or
removed. If io_Data is specified as null, disk-<:hange interrupts will be suspended.

purpose of Command
This command allows a task to move the disk-drive heads, thereby controlling their next
read or write position. The IOExtTD structure io_Offset parameter specifies the desired
seek location on the disk. TD _SEEK does not read any data, and it does not determine if
the disk has been changed.

preparation of the IOExtTD Structure
Initialize rnn_ReplyPon to point to the MsgPon structure representing the desired task
reply pon. Initialize io_Device and io_Unit to point to the Device and Unit structures that
manage the addressed unit of the TrackDisk device; these parameters can be copied from the
IOExtTD structure initialized by OpenDevice. Set io_Command to TD_SEEK, and set
io_Flags to O. Set io_Offset to the the desired byte-offset seek position on the disk.

DiSCUSSion
Disk-drive heads automatically move to appropriate locations during the execution of
TrackDisk device commands; no explicit TD_SEEK command is necessary. However,

THE TRACKDlSK DEVICE 1341

with TD_SEEK, a task can cause the disk-drive heads to move to a track and sector loca
tion for the next read or write operation. This "preseek" capability provides additional
speed in disk access for both read and write operations. TD _SEEK will not veritY its
position until the next read operation. Your tasks can also use the ETD _SEEK command
if they need to prevent a seek operation when a disk is changed.

Appendix

C Language Definitions of the Exec-Support Library Functions

C LANGUAGE DEFINITIONS OF THE EXEC-SUPPORT LIBRARY FUNCTIONS 351

This appendix presents the C language definitions of the Exec-support library func
tions, which were discussed in Chapter 2. Because the NewList function calls an assembly
language macro, it is not included here.

Most often, the Exec-support library functions are used for task-device management.
However, they also have general uses in any program that deals with tasks, message or reply
ports, standard or extended I/O request structures, and lists. If you study the C language
listings presented here, you can use them as templates for your own C language programs.

The Exec-support library functions must be located in the LIB: directory amiga.lib
file on the C language programming disk in the external disk drive, as discussed in the
introduction to this book. In contrast to other library files, these files are not called by
placing their arguments into 68000 CPU registers. Instead, you place their arguments
onto the task's stack and then call the function in the usual C language manner.

Structures associated with these functions (MsgPort, IOStdReq, and IOExtReq) are
allocated with the Exec library AllocMem function using the MEMF _PUBLIC and
MEMF _CLEAR memory attributes. MEMF _PUBLIC ensures that the structure is allo
cated in public RAM, and MEMF _CLEAR ensures that all structure parameters are ini
tialized to 0 when the memory is allocated.

I CreateExtlO

The listing that follows shows the program statements that are necessary to define the
CreateExtiO function. It shows you how to define the parameters in the IORequest struc
ture and how to allocate memory for it using the AllocMem function. It also illustrates
how you can error-check for available memory, typecast C language variables, and specifY
parameters in a structure that has nested substructures (the IORequest structure Message
substructure has a Node substructure).

struct IORequest *CreateExtlO (taskReplyPort, size_extreq)
struct MsgPort *taskReplyPort;

{
LONG size_extreq;

struct IORequest *myExtReq;
if (taskReplyPort = = 0)

return ({struct IORequest *) 0);
myExtReq = (struct IORequest *) AllocMem (size_extreq,

MEMF _CLEAR I MEMF _PUBLIC);
if (myExtReq = = 0)

return ({struct IORequest *) 0);
myExtReq- >io_Message.mn_Node.ln_ Type = NT_MESSAGE;
myExtReq->io_Message.mn_Node.ln_Pri = 0;
myExtReq->io_Message.mn_ReplyPort = taskReplyPort;
return (myExtReq);

35 Z I AMIGA PRO G RAM MER'S HANDBOOK

I CreatePort

The following listing shows the program statements that are necessary to define the
CreatePon function. It shows you how to define the parameters in the MsgPon structure
and how to allocate memory for it using the AllocMem function. It also shows you how
to error-check for available memory, typecast C language variables, allocate and free a sig
nal bit number for a message pon, and find the task that owns that pon. It also illustrates
how parameters are specified in a structure that has nested substructures (the MsgPon
structure has a Node substructure), how message pons are added to the system message
pon list, and how to create a new list.

struct MsgPort *CreatePort (msgPortName, msgport_priority)
char * msgPortNamej
BYTE msgport_priorltyj

UBYTE msgport_signalbitnumberj
struct MsgPort * myMsgPortj
if «msgport_signalbitnumber = AliocSignal (-1» = = -1)

return «struct MsgPort *) O)j
myMsgPort = AllocMem «ULONG) sizeof(* myMsgPort),

MEMF _CLEAR I MEMF _PUBLlC)j
if (myMsgPort = = 0) {

FreeSignal (msgporCsignalbitnumber)j
return «struct MsgPort *) (0»; }

myMsgPort->mp_Node.ln_Name = msgPortName;
myMsgPort- >mp_Node.ln_Pri = msgport_priorityj
myMsgPort- >mp_Node.ln_ Type = NT _MSGPORT;
myMsgPort->mp_Flags = PA_SIGNAL;
myMsgPort->mp_SlgBit = msgport_signalbitnumberj
myMsgPort->mp_SigTask = FindTask (O)j
if (msgPortName ,= 0)

AddPort (myMsgPort)j
else

NewList (&(myMsgPort- >mp_MsgList»j
return (myMsgPort);

I CreateStdlO

The following listing shows the program statements that are necessary to define the
CreateStdIO function. It shows you how to define the parameters in the IOStdReq struc
ture and allocate memory for it using the AllocMem function. It illustrates how you can

I Create Task

C LANGUAGE DEFINITIONS OF THE EXEC-SUPPORT LIBRARY FUNCTIONS 353

error-check for available memory, typecast C language variables, and specity parameters in
a structure that has nested substructures (the IOStdReq structure has a Message substruc
ture that has a Node substructure).

struct IOStdReq *CreateStdlO (taskReplyPort)
struct MsgPort *taskReplyPort;

struct IOStdReq *myStdReq;
if (taskReplyPort = = 0)

return «struct IOStdReq *) 0);
myStdReq = AllocMem (sizeof(*myStdReq), MEMF _CLEAR

I MEMF _PUBLIC);
if (myStdReq = = 0)

return ({struct IOStdReq *) 0);
myStdReq- >io_Message_mn_Node.ln_ Type = NT_MESSAGE;
myStdReq- >io_Message.mn_Node.ln_Pri = 0;
myStdReq->io_Message.mn_ReplyPort = taskReplyPort;
return (myStdReq);

The following listing shows the program statements that are necessary to define the
CreateTask function. It shows you how to define some of the Task structure parameters
and allocate memory using the AllocMem function. It also shows you how to error-check
for available memory, set a task's stack, typecast C language variables, and specity parame
ters in a structure that has substructures (the Task structure has a Node substructure).
Finally, it illustrates how you can add a task to the system task list with AddTask.

struct Task *CreateTask (myTaskName, myTaskPriority,
task_EntryPoint, task_ stacksize)

char *myTaskName;
UBYTE myTaskPriority;
APTR task_EntryPoint;
ULONG task_stacksize;

struct Task * myTask;
ULONG dataSize = (task_stacksize & OxFFFFFC) + 1;
myTask = AllocMem «ULONG) sizeof (*myTask) + dataSlze,

MEMF _CLEAR I MEMF _PUBLIC);
if « !(ULONG) myTask) {

return ({struct Task *) (0»; }

3541 AMIGA PRO G RAM MER'S HANDBOOK

DeleteExtlO

DeletePort

myTask->tc_SPLower = (APTR) «LONG)myTask + (LONG)
sizeof(* myTask»;

myTask->tc_SPUpper = (APTR) «ULONG) (myTask->
tc_SPLower + dataSize) & OxFFFFFE);

myTask- >tc_SPReg = (APTR) «LONG) (myTask- >tc_SPUpper»;
myTask- >tc_Node.ln_ Type = NT_TASK;
myTask- >tc_Node.ln_Pri = myTaskPriority;
myTask->tc_Node.ln_Name = myTaskName;
AddTask (myTask, task_EntryPoint, 0);
return (myTask);

The following listing shows the program statements that are necessary to define the Delete
ExtrO function. It shows you how to change parameters in a structure and deallocate the
memory assigned to the rORequest structure.

DeleteExtlO (myExtReq, size_extreq)
struct IORequest *myExtReq;
LONG size_extreq;

myExtReq->io_Message.mn_Node.ln_Type = OxFF;
myExtReq- >io_Device = (struct Device *) -1;
myExtReq- >io_Unit = (struct Unit *) -1;
FreeMem (myExtReq, size_extreq);

The following listing shows the program statements that are necessary to define the
DeletePort function. It shows you how to remove a message port from the system message
port list, free its signal bit number, and deallocate the memory it had been assigned.

DeletePort (myMsgPort)
struct MsgPort * myMsgPort;

C LANGUAGE DEFINITIONS OF THE EXEC·SUPPORT LIBRARY FUNCTIONS 355

if «myMsgPort- >mp_Node.ln_Name) ! = 0)
RemPort (myMsgPort);

myMsgPort->mp_Node.ln_Type = OxFF;
myMsgPort->mp_MsgLisUh_Head = (struct Node *) -1;
FreeSignal (myMsgPort- >mp_SigBit);
FreeMem (myMsgPort, (ULONG) sizeof(* myMsgPort»;

I DeleteStdlO

I Delete Task

The following listing shows the program statements that are necessary to define the Delete
StdIO function. It shows you how to change parameters in a structure and deallocate the
memory assigned to that structure.

DeleteStdlO (myStdReq)
struct IOStdReq * myStdReq;

myStdReq->io_Message.mn_Node.ln_Type = OxFF;
myStdReq- >io_Device = (struct Device *) -1;
myStdReq->io_Unit = (struct Unit *) -1;
FreeMem (myStdReq, sizeof (myStdReq»;

The following listing shows the program statements that are necessary to define the Delete
Task function. It shows you how to remove a task from the system task list and deallocate
the memory assigned to the Task structure.

DeleteTask (myTask)
struct Task * myTask;

RemTask (myTask);
FreeMem (myTask, 1 + (ULONG) (myTask->tc_SPUpper)
- (ULONG)myTask);

A AbortIO function, 40-41
Access mode, xxv

programming procedures and, 29
shared versus exclusive, 8-10

ADCMD_ALLOCATE command, 57, 60, 61,64,69,79-
81

ADCMD_FINISH command, 62, 81-82
ADCMD_FREE command, 60, 68, 82-83
ADCMD_LOCK command, 83-84
ADCMD _PERVOL command, 62, 65, 85-86
ADCMD _ SETPREC command, 60, 86-87
ADCMD _ WAITCYCLE command, 62, 87-88
AddDevice function, 42-44
AddTime function, 311-312
Alink program, xxx

Allocation key, 60-61
Amiga computers, xxi

capabilities of, xxiv
programming environment for, xxvii-xxxi
releases for, 204, 335, 343, 344

AmigaDOS, 246

Keyboard device processing and, 222, 223, 226
Amplitude modulation, 56, 57, 58
ANSI character conversion, 208-210
Anti-aliasing filter, 65
Arithmetic, time, 305
ASCII characters, 119, 193, 213

Intuition windows and, 194
Assembly language _ See C language
Asynchronous 110 requests

BeginIO and, 4, 41-42
processing of, 10-12, 30-32
SendIO and, 4

AudChannel structure, 63, 66
Audio device, 13, 55-88

access modes, 10
allocation key, 60-61
BeginIO and, 42
channels allocation, 56-60
error codes, 66-67
hardware configuration, 55-56
110 request structure, 23, 24

• •
• • •
• • • • • • ... •

•
• •• ..
• ... • • •

Index

3581 AMIGA PRO G RAM MER'S HANDBOOk

phoneme strings, 91
speech narration requests to, 109-111

Audio device commands, 15,61-63,70-79
aborting write command, 81-82
allocating channel groups, 79-81
changing channel precedence, 86-87
changing period and volume, 85-86
clearing internal buffers, 70-71
clearing/restarting channels, 73-74
completing waveform cycle, 87-88
device-specific, 79-88
flushing 110 requests, 71-72
freeing/reallocating channels, 82-83
locking channels, 83-84
playing information to hardware, 77-79
programming process with, 63
reading a channel pointer, 72-73
standard, 70-79
starting channels, 74-75
stopping channels,75-76
writing buffers to hardware, 76-77

Audio device functions, 67-70
Audio device structures, 63-66

BBeginIO function, xxv, 3,40,41-42,210. See also Internal
processlllg

Bits
Audio deVIce, 55
keyboard keys and, 234
parallel-port, 116, 118
serial-port status register, 138, 139
see also Flag parameter bits

Blitter coprocessor, 324, 335, 336
Blocks of data. See Data blocks
BootBlock structure, 330
Break signals, 158-159
Buffers, xxv-xxvi

commands for internal device, 14-16
double, 55
internal device, xxv, 3
Parallel device, 115, 116, 127
programmer-defmed, 13
Serial device, 137

Buffers, task-defined, xxv, 2, 127, 131
with multiple ports, 6
read-write operations for, 115

Bytes, 234

C C language,
Exec library function definitions in, 351-355
Lattice compiler for, XX'ln'z'

programming procedures for, 27-30
C: directory, xxx

Caches, 16
CBD_CLIPREADID command, 298-299
CBD _ CLIPWRITEID command, 299
CBD_CURRENTREADID command, 284, 301
CBD_CURRENTWRITEID command, 284, 301
CBD_POST command, 284, 296, 297, 298-299, 300-301
CDInputHandler function, 197

Console device, 204-205, 207, 209
CD_ASKDEFAULTKEYMAP command, 214-215, 216
CD_ASKKEYMAP command, 215-216
CD_SETDEFAULTKEYMAP command, 216-217
CD _SETKEYMAP command, 217-218
Channel allocation, 56-60
Channel allocation precedence, 59-60
Channel combination array, 57-59

number of entries in, 100
Character termination array, 115, 119, 127, 131

CMD_STARTversus, ISS
CMD_STOPversus, 156
definition of, 134
parameters for, 162-163
Serial device and, 137,
Serial device structure and, 141-142

Characters
ANSI actions and, 213
control-code, 259, 261-262
screen control, 213, 214

Chip, complex interface adapter (CIA), 306
Cleanup routines, 221
Clip identifiers, 384
Clipboard device, 13,283-301

110 request structure and, 23, 24
operation of, 283-286
sequential read-write operations, 284-286

Clipboard device commands, 15
determining read clip identifier, 298-299
determining write clip identifier, 299
device-specific, 298-301
posting clip, 300-301
programming process for, 286-287
reading characters into buffer, 293-294
resetting unit to boot-up, 295
standard, 293-298
updating internal routines, 295-296
writing characters from buffer, 296-298

Clipboard device functions, 290-293
Clipboard device structures, 287-290

preparing, 286
ClipboardUnitPartial structure, 287, 288
Close Device function, xxv, 16

Audio device, 67-68
Clipboard device, 290-291
Console device, 205-206
Gameport device, 245
Input device, 175-176
Keyboard device, 225-226

Narrator device, 98
Parallel device, 121-122
Printer device, 268-269
RemDevice, 43-44
Serial device, 146-147
Timer device, 312-313
TrackDisk device, 332

CloseLibrary function, 99
CMD_CLEAR command, 14,15

Audio device, 70-71
Console device, 210-211
Gameport device, 248
Keyboard device, 228-229
Parallel device, 115
Serial device, 149

CMD _ FLUSH command, 5, 14, 15
Audio device, 71-72
Input device, 178
Narrator device, 92,104-105
Parallel device, 124-125
Printer device, 263, 271-272
Serial device, 149-150

CMD_INVALID, 14, 15
CMD_POSTcommand. See CBD_POSTcommand
CMD _READ command, 14, 15

Audio device, 72-73
Clipboard device, 284-286, 293-294
Console device, 193-197,210,
Console device, 211-212
Narrator device, 92, 105-106
Parallel device, 115, 116, 125-127
Serial device, 150-152

CMD_RESET command, 5, 14, 15
Audio device, 73-74
Clipboard device, 295
Narrator device, 92, 107
Parallel device, 127-128
Printer device, 272
Serial device, 153

CMD_STARTcommand, 14, 15
Audio device, 74-75
Input device, 179-180
Narrator device, 92,107-108
Parallel device, 128-129
Printer device, 263, 272-273
Serial device, 154-155

CMD_STOP command, 14, 15
Audio device, 75-76
Input device, 180
Narrator device, 92, 108-109
Parallel device, 115, 129
Printer device, 263, 273-274
Serial device, 155-156

CMD_UPDATEcommand, 15, 16
Audio device, 76-77
Clipboard device, 295-296

CMD_WRITEcommand, 15, 16
Audio device, 77-79
Clipboard device, 284, 286, 296-298
Console device, 193-197,212-214
Narrator device, 92,109-110
Parallel device, 115, 116
Printer device, 263, 271, 274
Serial device, 156-158

CmpTime function, 313-314
Command-line interface (CLI), 259
Compile-and-link script file, xxx, xxxi
Complex interface adapter (CIA) chip, 306
Connectors. See Pin connections
Console device, 13, 167, 193-218

default key map and, 214-215
lIO request structure for, 23, 24
mapped data and, 216-218
opening Gameport device units and, 246
raw key conversion for unit of, 208-210
read-write operations and, 193-197
Timer device and, 305

Console device commands, 15, 197-198
clearing read buffer, 210-211
copying current key map parameters,215-216
copying data into current key map, 217-218
copying data into default key map, 216-217
copying default key map parameters, 214-215
device-specific, 214-218
programming process for, 197-198
reading characters into buffer, 211-212
standard,210-214
writing characters from buffer, 212-214

Console device functions, 204-210
closing unit access, 205-206
converting raw key codes, 208-210
handling input events, 204-205
opening routine access, 206-208

Console device structures, 198-204
preparing, 197

Control sequence introducer (CSI), 214
Control-code characters, 259, 261-262
Control-code files, 262
Control-Q command, 128, 129
Control-S command, 129
Controllers, 239

Gameport, 239, 241, 249-250, 253-254
proportional, 241

ConUnit structure, 193, 194
Console device and, 198-202
Console OpenDevice function and, 207
pointer parameters, 199

Copy operations, 38
CreateExtiO function, 44-45

Printer device and, 265, 270
programming statement for, 351

CreatePort function, 45-46

3601 AMIGA PRO G RAM MER'S HANDBOOK

o

Console device and, 193
programming statement for, 352

CreateStdIO function, 46-47
programming statement for, 352-353

CreateTask function, 47-48
programming statement for, 353-354

Custom structure, 63

Data blocks, 131, 134, 152
Serial device and, 137, 158

Data register, parallel-port, 115-116, 127
Data transfer

device-to-device, 13

parameters for, 143-144
from Serial device, 158

Debugging file, xxxi

Decibels, 55, 65
Default values

device access to, 9

Gameport device unit access mode, 247
key map, 214-215

Keyboard device and, 228
map, 196, 197
Narrator device and, 107

DeleteExtIO function, 48-49
programming statement for, 354

DeletePort function, 49
programming statement for, 354-355

DeleteStdIO function, 50
programming statement for, 355

DeleteTask function, 50-51
programming statement for, 355

Device(s)
Exec functions for, 16
internal buffer, 3
internal routines, 1, 3

multiple, 6
programming concepts for, xxi

request and reply-port queues, 4,
ROM/disk resident, xxiv
shared versus exclusive access, 8-10
task interactions with, XXI~ xxv, 1-3, 12-13
unit I/O request port and,

Device functions, 16

Device I/O requests, 1-24
MsgPort structure for, 18
see also Immediate-mode request processing; Queued I/O

requests; Quick I/O requests

Device internal routines, xxi

Console versus Intuition, 194-195
data transfer and, 13
immediate-mode commands and, 35
Parallel device, 116
programming procedures for, xxiv-xxvii

queued I/O and, 3

quick I/O and, 5
Device library, 1
Device library functions, 40-44
Device management, 27-52
Device message-port queues, 8
Device structure, xxv, 2, 3

Device unit(s)
allowed, 13
opening and closing of, 29

request queue processing with, 31
DEVS: directory, xxix
Direct memory access (DMA) channel, 55, 56
Directories, xxix-xxxi

DolO function, xxv, 3, 40-41
BeginIO versus, 41-42
see also Internal processing

Dvorak keyboard, 197

E End-of-file (EOF) characters, 125, 134
English strings, 103-104

processing of, 91, 94
Error codes, xxvi-xxvii

access operations and, 9

Audio device, 66-67
common device, 67

Narrator device, 97-98
Parallel device, 121
Serial device, 140, 145
TrackDisk device, 330-331

ETD_CLEAR command, 326, 333-334
ETD_FORMAT command, 326, 340
ETD_RAWREAD command, 324, 334-335
ETD_RAWWRITE command, 335-336
ETD_READ command, 324
ETD_UPDATE command, 326, 336-337
Exclusive mode access, 8-10
Exec library functions, 16,42-52

AddTask/FindTask, 27
fde containing, xxxi

programming statements for, 351-355
ExecWait function, 4
Expunge routines, 42-43, 122

Narrator device and, 100

F FD.FILES: directory, xxxi
First-in, first-out (FIFO), 31
Flag parameter bits, xxvi!; 8, 9

bit values in the 110 structure, 65
file containing, xxxi
general programming and, 29
I/O request structures and, 19, 37
MsgPort structure and, 22
parallel-port, 120-121
Serial device, 8-9,143-145

Unit structure, 21
Floppy disks

supported by Amiga, 323
TrackDisk device interactions with, 325-326

Floppy-disk drives, 16
FONTS: directory, xxx
Frequency modulation, 56, 57, 58
Functions. See Exec library functions; specific device

functions

G Gameport device, 13, 193, 239-255
buffers for, 240, 248, 253
hardware connected to, 240
as input event source, 168
110 request structure of, 23, 24
Input device and, 167
input event processing and, 240, 242
Keyboard device and, 221
operation of, 240-242
units of, 240-242
see also Console device

Gameport device commands, 15
changing controller type, 253-254
changing current trigger conditions,255
clearing internal read buffer, 248
determming current trigger conditions, 250-251
determining controller type, 249-250
device-specific, 249-255
programming process, 243-244
reading input events into buffer,251-253
standard device, 248

Gameport device functions, 245-248
Gameport device structures, 244

preparing, 243
GamePortTrigger structure, 240, 244
GetMsg function, 3, 4
GPD_ASKCTYPE command, 240, 249-250
GPD_ASKTRIGGER command, 240, 250-251
GPD_READEVENT command, 240, 247, 251-253
GPD_SETCTYPE command, 240, 249, 253-254
GPD_SETTRIGGER command, 240, 255
Graphics library

parameters in, 201-202
phoneme strings and, 91, 94

H Handshaking protocol, 128, 129, 154-155, 156, 163
Hard-dIsk drives, 16

I 110 requests, xxv, I

access modes and, 8-1 °
classes of, 37
device classes, 3-5

initializing and processing, 35-37
multiple ports and units and, 5-6
multiple, 37-40
multitasking and, 10-12
ports, 2

processing of, 10-12
queue behavior and, 6-8
structure linkages and, 16-18
task-device interactions in, 1-3

Immediate-mode operations, 34-35
Clipboard device, 286
Console device, 197
Gameport device, 243
Input device, 171
Keyboard device, 224
Parallel device, 116
Timer device, 309

INCLUDE files, xxi, xxxi, 23,24, 37, 242
IND _ADDHANDLER command, 181-182
IND_REMHANDLER command, 182
IND_SETMPORT command, 183
IND _SETMTRIG command, 184
IND_SETMTYPE command, 184-185
IND_SETPERIOD command, 186-187
IND_SETTHRESH command, 187-188
IND _ WRITE EVENT command, 188-189
Initialization of device-specific 110 request structures, 29
Input device, xxiv, 13,167-189

access mode of, I 76
Console device and, 193
event handling by, 167
Gameport device dedications and, 240
Gameport input events and, 253
110 request structure and, 23, 24
internal routines of, 168, 170
Keyboard device and, 221
opening Gameport device units and, 246
operation of, 168
software system and, 168
Timer device and, 305
TrackDisk device and, 325

Input device commands, 15
aborting queued requests, 178
adding input-handler functions, 181-182
defining input events by task, 188-189
device-specific, 181-189
establishing device type at mouse connector, 184-185
establishing threshhold time period, 187-188
establishing time interval for repeating key, 186-187
establishing mouse input trigger conditions, 184
programming process and, 171-172
removing input-handler functions, 182
resetting unit 0, 178-179
restarting unit 0,179-180
specifying gameport by task, 183
standard,178-180

3621 AMIGA PRO G RAM MER'S HANDBOOK

J

stopping command execution, 180
Input device functions, 175-177
Input device structures, 172-175

preparing, 171
Input event stream, 167, 168

Console device and, 193, 196
InputEventstructure, 167, 170-171, 172, 173-175

Keyboard device and, 221
Input-handler functions, 167, 168-171

design of, 170-171
priority parameters, 170

Input task, 167
INQ-ACQ handshaking protocol, 155
Internal routines. See Device internal routines

Interrupt structure, 172-173
Intuition software system, 170
Intuition windows, 13, 16

Console device and, 193-197,207
Input device and, 167
parameters for, 199
see a/so Console device

10 requests. See I/O requests
IOAudio structure, 63-65
IOClipReq structure, 284, 288-290
IODRPReq structure, 265, 267-268
10ExtPar structure, 2

Parallel device, 119, 120-121
10ExtSer structure, 2

Serial device, 141, 142-145
10ExtTD structure, 328-329
10F _QUICK, 3, 4
10Par structure, 119
10PArray structure, 119
IOPrtCmdReq structure, 265, 266-267
IORequest structure, 2

definition of, 18
parameters in, 19

lOSer structure, 141, 142-143
IOStdReq structure, 2,17-18,37

Console device and, 197
definition of, 20
parameters in, 19-20

IOTArray structure, Serial device, 141-142
io_Data parameter, 2

Joysticks
absolute, 241
relative, 241

K KBD_ADDRESETHANDLER command, 221, 224,
230-231,235

KBD_READEVENT command, 222, 228, 229, 230, 231-
233

KBD_READMATRIX command, 221, 223, 233-234

KBD_REMRESETHANDLER command, 221, 235
KBD_RESETHANDLERDONE command, 221, 236
Key map, 196, 197
Keyboard device, 13, 193,221-236

as input event source, 168
buffers of, 22 I
event stream to Console device and, 196
I/O request structure for, 23, 24
Input device and, 167
input event processing, 222-224
key definition and, 234
operation of, 221-222
preprocessing of events, 168
units of, 221

Keyboard device commands, 15
adding reset-handler function, 230-231
clearing internal read buffer, 228-229
device-specific, 230-236
programming process with, 224
reading current key matrix into buffer, 233-234
reading keystrokes into buffer, 231-233
removing reset-handler function, 235
resetting device to boot-up, 229-230
standard, 228-230
terminating execution of a reset·handler function, 236

Keyboard device functions, 225-228
Keyboard device structures, 225

for Console deVice, 198
Keyboard device structures, 224
Keyboards, Qwerty!Dvorak, 197
KeyMap structure, 198, 199,201,202-203,214-215
KeyMapNode structure, 199, 203
Key Map Resource structure, 199, 204
Kickstart disk, xxviii-xxix

LL: directory, xxix
Lattice C language compiler, xxvii
LIB: directory, xxx-xxxi

Library function. See Device library functions; Exec library
functions

Library structure, 2, 3

UBS: directory, xxix
lib _ OpenCnt parameter, xxv, 10
List management, 3

List substructure, 18
Locking channels, 59-60

M Maps, 196, 197
Memory, xxiv

automatic closing and, 16
Input events and, 167
RemDevice function and, 43
task-device relationships and, 12-13
see also RAM

N

Message ports, 3, 28
Console device and, 193, 195
see also Task reply pons

Message structures, 1, 17, 18

definition of, 22
parameters, 22

Modem, 137, 160
Modified frequency modulation (MFM) format, 335, 343,

344
Mouse, 241

Console device and, 193, 196
gameport controller and, 239
Gameport input events, 197
as input event source, 167, 168

Mouth shape, 91, 105-106
parameters for, 96
Voice substructure and, 96-97

Mouth_rb structure, 96-97
MsgPort structure, 1, 17, 18

definition of, 21
parameters in, 22
signals and, 4

Multitasking, 10-12
Exec library functions and, 33-34

Music programs, input events and, 196

Musical instrument digital interface (MIDI), 163

N-key typeahead, 222
Narrator device, 13,91-111

error codes, 97-98
110 request structure of, 23, 24

Narrator device commands, 15, 104-111
aborting 110 requests, 104-105
displaying mouth shapes, 105-106
narrating phoneme strings, 109-111
programming process, 92-93
resetting unit to default, 107
restarting unit, 107-108
standard, 104-111
stopping write commands, 108-109

Narrator device functions, 98-104
closing Translator library access, 99
closing unit access, 98
opening Translator library access, 102-103
opening unit access, 99-102
translating English strings, 103-104

Narrator device structures, 94-97

Narrator_rb structure, 94-96
NewList,51-52
Node substructure, 16

Oopenoevice function, xxiv-xxv, 3, 16,246-248
Audio device, 68-70
Clipboard device, 291-293

Console device, 193,206-208,209,213
Input device, 176-177
Keyboard device, 226-228
Narrator device, 99-102
Parallel device, 122-124
Printer device, 269-271
RemOevice, 43-44
Serial device, 147-149
Timer device, 314-316
TrackOisk device, 332-333

OpenLibrary function, 102-103
Ordinal clip identifiers, 284

P Parallel device, 13, 115-134
access modes in, 122, 124
data register, 130
error codes for, 121
110 request structures and, 2, 23, 24
Printer device and, 269, 270
read-wrife operations, 115-116
Timer device and, 305

Parallel device commands, 15, 116
aborting 110 requests, 124-125
device-specific, 131-134
programming process, 117-118
querying routine status, 131-133
reading data into butTer, 125-127
resetting/restarting unit, 127-128
restarting reads and writes, 128-129
setting parameters by task, 133-134
standard, 124-131
stopping read/write execution, 129
writing from butTer, 130-131

Parallel device functions, 121-124
Parallel device structures, 11 7-118, 119-121
Parallel-pon connector, 116
Parallel-port data register, 115-116, 127
Parallel-pon status register, 116, 118
Parameter processing

Console device commands, 198
Gameport device commands, 243-244
Input device commands, 171-172
Keyboard device commands, 224-225
Narrator device commands, 93

Parallel device commands, 118
Printer device commands, 264-265
Serial device commands, 139-141
Timer device commands, 309
TrackOisk device commands, 327

Parameters
allocation key and, 60-61
ConUnit, 194,195
message structure, 22
port determination and, 4
RastPon structure, 195

INDEX 1363

3641 AMIGA PRO G RAM MER'S HANDBOOK

reply port specification by, 6
SRE and RRE, 196
structure, 10
Unit structure, 21
see also discussions of commands

PDCMD_QUERY command, 116, 131-133
PDCMD _SETPARAMS command, 133-134

Period register, 56
Phoneme strings, 91,103-104
Pin connections

external disk drives, 324
Gameport, 239, 240-241
parallel-port, 116, 117
serial-port, 138

Pitch of sound, 55
Pointer parameter, 6
Ports_ See Reply ports; Task reply ports
Power failures, 77, 337

update operations and, 326
PRD_COMMAND command, 271, 274
PRD_DUMPRPORT command, 267, 271, 274, 275-:
PRD_PRTCOMMAND command, 262, 263, 266
PRD_RAWWRITE command, 262, 271, 274, 279-281
Printer command files, 262
Printer device, 13, 259-280

control codes and, 261-262
110 request structure for, 23, 24
operation of, 259-261
PrinteriO union and, 265, 270-271
programming process, 264-265

Printer device commands, 15

aborting 110 requests, 271-272
device-specific, 275-280
printing raster bitmap, 275-277
resetting unit 0, 272
restaning,272-273
standard,271-275
stopping execution, 273-274
transmitting series of control codes, 279-280
transmitting single control-code commands, 278-279'
transmitting control-code characters, 274-275

Printer device functions, 268-271
Printer device structures, 264, 265-268
PrinterIO union, 265, 270-271
Printers, supported by Amiga, 259

Priorities, in channel allocation, 56-61
Programming procedures, xxi, xxiv-xxvii
Programming. See C language

Q Quad file, xxx

Queued 110 requests, 3-4
Clipboard commands, 286
Console device commands, 197, 198
Gamepon device commands, 243
Input device commands, 171

Keyboard device commands, 224

Narrator device commands, 92
Parallel device commands, 116
restarting, 129
Timer device commands, 309
TrackDisk device commands, 324
see also Asynchronous 110 requests; Synchronous I/O

requests

Queues
reply-port, 4
request, 4
see also Queued 110 requests

Quick 110 (QuickIO) requests, 3, 4-5
Audio device commands, 62
Clipboard device commands, 286

Console device commands, 197, 198,210,211,214,216
Gamepon device commands, 243
Input device commands, 171
Keyboard device commands, 224
Narrator device commands, 92
Parallel device commands, 116
Printer device commands, 263
process decision, I
Timer device commands, 309
TrackDisk device commands, 324
see also discussions of specific commands

Qwerty keyboard, 197

R RAM, xxiv, xxvii
expansion kits for, xxix
InputEvent structures and, 167, 171, 172
internal/external, xxviii

raw key conversion and, 210
synchronous 110 request processing and, 32-33
unions and, 265

Raster bitmap, 275-277
RastPort structure, 214

parameters for, 201-202
Raw key codes, 221

conversion of, 208-210

RawKeyConvert function, 197,207,208-210,214,215
Read error, 151
Read operations, xxv
Read-write operations, xxv, 115-116

Console device and, 193-197
sequential, 284-286
Serial device and, 137-138

Register_ See Data register; Period register; Status register
RemDevice function, 42-44
Reply ports, 4-5

multiple, 5-6
ReplyMsg function, 1,3,4
Request pons, 4
Reset raw events (RRE), 196,211,214
Reset-handler functions, 221-222, 230-231

completion of, 236
removal of, 235

ROM-based input task, 16
Root directory

external disk, xxx

internal disk, xxix

S S: directory, xxix

Sampling period, 55
SatisfyMsg structure, 284, 287, 290
SDCMD _BREAK command, 158-159
SDCMD_QUERY command, 160
SDCMD _SETPARAMS command, 161-163
SendlO function, xxv, 3,210
Serial device, 13, 137-163

access modes of, 137
error parameter values for, 145
flag parameters and, 8-9
110 request structures and, 1-2,23,24
multiple ports and, 5
Parallel device versus, 137
parameter setting for, 146, 161-163
Printer device and, 269, 270
read-write operations, 137-138
Timer device and, 146, 147,305

Serial device commands, 15
aborting 110 requests, 149-150
clearing internal buffers, 149
device-specific, 158-163
programming process with, 139-140
querying status by task, 160
reading characters into buffer, 150-152
resetting unit to initialization state, 153
restarting writes or reads, 154-155
sending break signal, 158-159
setting parameters by task, 161-163
standard, 149-158
SlOpping current reads or writes, 155-156
writing characters from buffer, 156-158

Serial device functions, 146-149
Serial device internal read buffer, 137

clearing, 149
default size, 153
reading characters into, 150-152

Serial device structures, 141-145
preparing, 139

Serial-port connector, 138
Serial-port status register, 138
Set raw events (SRE), 196, 211, 214
Shared mode access, xxv, 8-10
Signals, 4

break, 158-159
Quick 110 and, 4

Software libraries, xxi
Sound,55

frequency of, 56
Speakers, channel allocation to, 57-61
Speech, 109-111

Narrator parameters for, 95-96
Voice substructure and mouth, 96-97

Startup~sequence script file, xxvii, xxix
Statements. See Tasks
Status queries

Parallel device, 131-133
Serial device, 139, 160
write protection and, 342

Status register
parallel-port, 116, 118, 130
serial-port, 138, 139

Stealing of channels, 59-60
Structure linkages, 16-18
Structures. See name of device
Substructures, I, 4
SubTime function, 316
Synchronous I/O requests

BeginIO and, 41-42
device processing for, 10-12
DolO and BeginlO functions, 4
processing of, 32-33

System input task, 176
System time, 306

T T: directory, xxx
Task priority, 10
Task reply ports, 3

creation of, 28
multiple, 5-6

Task reply-port queues, 6-7,18
queued 110 and, 4
quick I/O and, 4-5
requests and, 4-5

Task(s)
Console device and, 193
creation of, for device management, 27
device interactions with, xxi, XXV, xxvit~ 1-3, 12-13,27-

35
loop sequence of, xxv

statements defining, 2
switching, 9, 10

TDU _PublicUnit structure, 329-330
TD_ADDCHANGEINT command, 337,345
TD_CHANGENUM command, 338
TD _ CHANGESTATE command, 338-339
TD_FORMAT command, 326, 339-340
TD_GETDRIVETYPE command, 327, 340
TD_GETNUMTRACKS command, 327, 340-341
TD_MOTOR command, 341-342
TD_PROTSTATUS command, 342
TD_RAWREAD command, 324, 342-343
TD_RAWWRITE command, 344

3 661 AMIGA PRO G RAM MER'S HANDBOOK

TD_REMCHANGEINT command, 345
TD_REMOVE command, 325, 345-346
TD_SEEK command, 326, 346-347
Termination characters. See Character termination array
Text editor, xxx
Text, input events and, 196
Time, system, 306
Timer device, 13, 122, 123, 193,305-320

I/O request structure, 23, 24
Input device and, 167
as input event source, 168

intervals, 307-308
operation of, 305-306
resolution, 305, 307
timing error adjustments, 308
units of, 306-307
see also Console device

Timer device commands, IS
ascertaining current system time, 318-319
device·specific, 317-320
programming process for, 309-310
setting current system time, 319-320
timing operations, 317-318

Timer device functions, 305, 311-317
adding time values, 311-312
closing unit access, 312-313
comparing times, 313-314
opening a unit, 314-316
subtracting time values, 316

Timer device structures, 310-311
preparing, 309

TimeRequest structure, 173, 311
TimeVal structures, 168,310-311
TrackDisk device, 10, 12, 13, 37, 323-347

buffers, 324
Console device and, 196
error codes, 330-331
floppy disk interactions with, 325-326
I/O request structure, 23, 24
Input device and, 167
as input event source, 168
input events to Console device and, 197
Keyboard device and, 221
multiple devices and, 6
operation of, 323-325
power failures and, 77
units of, 323-324

TrackDisk device commands, IS
ascertaining disk presence, 338-339
determining write-protection status,342

device-specific, 333-347
executing disk-change interrupt, 345-346

formatting a disk, 339-340
handling disk-change interrupts, 337
incrementing disk-change counter, 338
marking specified track invalid, 333-334
moving disk-drive heads, 346-347
normal/extended, 326
programming process, 326-327
reading raw data bits from unit, 342-343
reading raw data bits, 334-335
removing disk-change interrupt, 345
returning number of available tracks, 340-341
returning drive type to calling task, 340
turning motor on/off, 341-342
writing current contents to disk, 336-337
writing raw data bits, 335-336, 344

TrackDisk device functions, 327
Trackdisk device structures, 327-330

preparing, 326
TrackDisk functions, 332-333
Translate function, 103-104
Translator library, 12, 13,91,94,99, 102, 103
TranslatorBase structure, 102
Trigger conditions, 250-251, 255
TR_ADDREQUEST command, 317-318
TR_ GETSYSTIME command, 318-319
TR_SETSYSTIME command, 319-320

U Unit structure, xxv, 2, 17
Console device and, 193
definition of, 21

v

parameters in, 21
Units, allowable, n
unit_OpenCnt parameter, xxv, 10

Voice substructure, 96-97
Voice synthesis library, 91, 104
Volume values of sound, 55, 65

W WaitIO function, 4
Wait Port function, 4
Waveform array, 55, 56, 64
Word boundary, 55
Word-exception table, 91
Word wrap, 213
Workbench disk, xxvi.; 197
Write control store (WCS) memory, xxiv, xxix
Write error, 156
Write operation, xxv

