

Amiga

ROM Kernel Reference Manual

Libraries and Devices

Commodore Business Machines, Inc.

Amiga Technical Reference Series

A
~."

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Sydney Singapore Tokyo

Mexico City Bogota Santiago San Juan

Written by Rob Peck

Contributing editors:
Dave Berezowski, Bob Burns, Susan Deyl, Sam Dicker, Andy Finkel, Larry Hildenbrand, Neil
Katin, Dale Luck, and R. J. Mical

Program examples by Rob Peck, Sam Dicker, Tom Pohorsky, Larry Hildenbrand, and Neil Katin

The following people have contributed significantly to the contents of this manual:

Bruce Barrett, Dave Lucas, Jim Mackraz, Bob Pariseau, Tom Pohorsky, Stan Shepard, and
Barry Whitebook

This book is dedicated to all those "busy guys" who made Amiga and who are Amiga.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book and Addison-Wesley was aware of a trademark claim, the designations have
been printed in initial caps.

COPYRIGHT © 1986 by Commodore Electronics, Ltd.

Library of Congress Cataloging-in.Publication Data

Amiga ROM kernel reference manual.

(Amiga technical reference series)
Includes index.
1. Amiga (Computer)-Programming.

storage. I. Commodore Business Machines.
QA76.8.Al77A6554 1986 005.4'46
ISBN 0·201·11078-4

CDEFGHU-AL-89876

Third Printing, Septem ber 1986

2. Read·on1y
II. Series.
86·10878

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission
of the publisher. Printed in the United States of America. Published simultaneously in Canada.

DISCLAIMER

COMMODORE-AMIGA, INC., ("COMMODORE") MAKES NO WARRANTIES, EITHER EXPRESSED OR IMPLIED,
WITH RESPECT TO THE PROGRAMS DESCRIBED HEREIN, THEIR QUALITY, PERFORMANCE, MERCHANTA·
BILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. THESE PROGRAMS ARE SOLD "AS IS." THE
ENTIRE RISK AS TO THEIR QUALITY AND PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS
PROVE DEFECTIVE FOLLOWING PURCHASE, THE BUYER (AND NOT THE CREATOR OF THE PROGRAMS,
COMMODORE, THEIR DISTRIBUTORS OR THEIR RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECES
SARY DAMAGES. IN NO EVENT WILL COMMODORE BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE PROGRAMS EVEN IF IT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
SO THE ABOVE LIMIT A TION OR EXCLUSION MAY NOT APPLY.

Amiga is a trademark of Commodore-Amiga, Inc.

Printed from camera·ready mechanicals supplied by the authors.

PREFACE

System Software Architecture

The Amiga kernel consists of a number of system modules, some of which reside per
manently in the protected k£ckstart memory and others that are loaded as needed from
the system disk. Figure P-l illustrates how the various modules interact with one
another. At the top of the hierarchy are Workbench and the Command Line Interface
(CLI), the user-visible portions of the system. Workbench uses Intuition to produce its
displays and AmigaDOS to interact with the filing system. Intuition, in turn, uses the
input device to retrieve its input and the graphics and layers library routines to produce
its output.

AmigaDOS controls processes and maintains the filing system and is in turn built on
Exec, which manages tasks, task switching, interrupt scheduling, message-passing, I/O,
and many other functions.

At the lowest level of the hierarchy is the Amiga hardware itself. Just above the
hardware are the modules that control the hardware directly. Exec controls the 680001

scheduling its time among tasks and maintaining its interrupt vectors, among other
things. The trackdisk device is the lowest-level interface to the disk hardware, perform
ing disk-head movement and raw disk I/O. The keyboard and game port devices handle
the keyboard and gameport hardware, queuing up input events for the input device to

iii

process. The audio device, serial device, and parallel device handle their respective
hardware. Finally, the routines in the graphics library handle the interface to the graph

ics hardware.

Programming

The functions of the kernel were designed to be accessed from any language that follows
the Amiga's standard interface conventions. These conventions define the proper nam
ing of symbols, the correct usage of processor registers, and the format of public data

structures.

REGISTER CONVENTIONS

All system functions follow a simple set of register conventions. The conventions apply
when any system function is called; programmers are encouraged to use the same con
ventions in their own code.

The registers DO, DI, AO, and Al are always scratch; they are free to be modified at any
time. A function may use these registers without first saving their previous contents.
The values of all other data and address registers must first be preserved. If any of
these registers are used by a function, their contents must be saved and restored
appropriately.

If assembly code is used, function parameters may be passed in registers. The conven
tions in the preceding paragraphs apply to this use of registers as well. Parameters
passed in DO, DI, AO, or Al may be destroyed. All other registers must be preserved.

If a function returns a result, it is passed back to the caller in DO. If a function returns
more than one result, the primary result is returned in DO and all other results are
returned by accessing reference parameters.

The A6 register has a special use within the system, and it may not be used as a param
eter to system functions. It is normally used as a pointer to the base of a function vec
tor table. All kernel functions are accessed by jumping to an address relative to this
base.

iv

Exec

AmigaDOS
Processes,
File System

Tasks, Messages
Interrupts, I/O

I
I

68000 Processor I
I

I
I

AmigaDOS eLi
and Utilities

. I

Track-
Disk

Device

•
I

Disk
,
I

Control I
I

I
I

Console
Device

Input
Device

I

Keyboard
and

Gameport
Devices .)

Keyboard
and

Mouse

I
I
I
I
I
I
I

Workbench
IconslDrawersl

Utilities

I

Intuition
Windows, Menus,
Gadgets, Events

I

Layers
Library

Graphics
Rendering, Text,

Gels

T
I

Graphics I

•
I

:
Amiga Hardware

Figure P-l: Amiga System Software Modules

v

Serial
Audia and

Device Parallel
Devices

I
I

Audio I 110 Ports
I
I

DATA STRUCTURES

The naming, format, and initial values of public data structures must also be consistent.
The conventions are 9uite simple and are summarized below.

1. All non-byte fields must be word-aligned. This may require that certain fields be
padded with an extra byte.

2. All address pointers should be 32 bits (not 24 bits) In SIze. The upper byte must
never be used for data.

3. Fields that are not defined to contain particular initial values must be initialized to
zero. This includes pointer fields.

4. All reserved fields must be initialized to zero (for future compatibility).

5. Data structures to be accessed by custom hardware must not be allocated on a pro
gram stack.

6. Public data structures (such as a task control structure) must not be allocated on a
program stack.

7. When data structures are dynamically allocated, conventions 3 and 4 above can be
satisfied by specifying that the structure is to be cleared upon allocation.

OTHER PRACTICES

A few other general programming practices should be noted.

1. Never use absolute addresses. All hardware registers and special addresses have
symbolic names (see the include files and amiga.lib).

2. Because this is a multitasking system, programs must never directly modify the pro
cessor exception vectors (including traps) or the processor priority level.

3. Do not assume that programs can access hardware resources directly. Most
hardware is controlled by system software that will not respond well to interference.
Shared hardware requires programs to use the proper sharing protocols.

4. Do not access shared data structures directly without the proper mutual exclusion.
Remember, it is a multitasking system and other tasks may also be accessing the
same structures.

vi

5. Most system functions require a particular execution environment. For example,
DOS functions can be executed only from within a process; execution from within a
task is not sufficient. As another example, most kernel functions can be executed
from within tasks, but cannot be executed from within interrupts.

6. The system does not mohitor the size of a program stack. Take care that your pro
grams do not cause it to overflow.

7. Tasks always execute in the 68000 processor user mode. Supervisor mode is reserved
for interrupts, traps, and task dispatching. Take extreme care if your code executes
in supervisor mode. Exceptions while in supervisor mode are deadly.

8. Do not disable interrupts or multitasking for long periods of time.

9. Assembly code functions that return a result do not necessarily affect the processor
condition codes. By convention, the caller must test the returned value before act
ing on a condition code. This is usually done with a TST or MOVE instruction.
Do not trust the condition codes returned by system functions.

68010 AND 68020 COMPATIBILITY

If you wish your code to be upwardly compatible with the 68010/68020 processors, you
must avoid certain instructions and you must not make assumptions about the format of
the supervisor stack frame. In particular, the MOVE SR,<ea> instruction is a
privileged instruction on the 68010 and 68020. If you want your code to work correctly
on all 680xO processors, you should use the GetCCO function instead (see the Exec
library function descriptions in the "Library Summaries" appendix of this book.

Contents of This Manual

This manual describes the graphics support routines (including text and animation), the
I/O devices, the Workbench (an environment for running programs), and the floating
point mathematics library. For information about the multitasking executive, see Amiga
ROM Kernel Reference Manual: Exec.

The discussion of the data structures and routines in this manual is reinforced through
numerous C-language examples. The examples are kept as simple as possible. Whenever
possible, each example demonstrates a single function. Where appropriate, there are
complete sample programs.

vii

Boldface type is used for the names of functions, data structures, macros, and variables.
System header files and other system file names are shown in italics.

For more information about system software, see Amiga Intuition Reference Manual,
AmigaDOS User's Manual, AmigaDOS Developer's Manual, and AmigaDOS Technical
Reference Manual.

Vlll

Contents

PART I

Chapter 1 Graphics Primitives ... 1
Introduction ... 2

COMPONENTS OF A DISPLAY ... 3
INTRODUCTION TO RASTER DISPLAYS ... 3
INTERLACED AND NON-INTERLACED MODES .. 5
HIGH- AND LOW-RESOLUTION MODES ... 6
FORMING AN IMAGE ... 6
ROLE OF THE COPPER (COPROCESSOR) .. 9

Display Routines and Structures .. 9
LIMITATIONS ON THE USE OF VIEWPORTS ... 11
CHARACTERISTICS OF A VIEWPORT .. 12
VIEWPORT SIZE SPECIFICATIONS ... 12
VIEWPORT COLOR SELECTION .. 13
VIEWPORT DISPLAY MEMORY ... 19
FORMING A BASIC DISPLAY ... 21
LOADING AND DISPLAYING THE VIEW .. 25
GRAPHICS EXAMPLE PROGRAM ... 26

Advanced Topics ... 30
CREATING A DUAL-PLAYFIELD DISPLAY ... 30
CREATING A DOUBLE-BUFFERED DISPLAY .. 32
HOLD-AND-MODIFY MODE .. 34

Drawing Routines ... 35
INITIALIZING A BITMAP STRUCTURE ... 35
INITIALIZING A RASTPORT STRUCTURE .. 35
USING THE GRAPHICS DRAWING ROUTINES ... 42

User Copper Lists ... 61
Advanced Graphics Examples ... 65

DUAL-PLAYFIELDS EXAMPLE ... 65
HOLD-AND-MODIFY MODE EXAMPLE .. 69

Chapter 2 Layers .. 77
Introduction ... 77

DEFINITION OF LAYERS ... 78
TYPES OF LAYERS SUPPORTED ... 79

Layers Library Routines .. 79
INITIALIZING AND DEALLOCATING LAYERS ... 80
INTER TASK OPERATIONS ... 81
CREATING AND DELETING LAYERS .. 82

ix

:MOVING LAYERS ... 82
SIZING LAYERS ... 82
CHANGING A VIEvVPOINT ... 83
REORDERING LAYERS ... 83
DETERMINING LAYER POSITION ... 83
SUB-LAYER RECTANGLE OPERATIONS ... 84

The Layer's RastPort .. 84
SIMPLE REFRESH LAYER ... 85
S"NIART REFRESH LAYER .. 86
SUPERBITMAP LA l:'ER 86
BACKDROP LAYER ... 86

Using the Layers Library .. 87
OPENING THE LA\'ERS LIBRARY ... 87
OPENING THE GRAPHICS LIBRARY .. 87
CREATING A VIEWING WORKSPACE .. 88
CREATING THE"LA\'ERS ... 88
GETTING THE POINTERS TO THE RASTPORTS 89
USING THE RASTPORTS FOR DISPLAY .. 89
LAYERS EXAMPLE .. 89

Clipping Rectangle List ... 94
DM'lAGE LIST .. 94
REPAIRING THE DM'JAGE .. 94

Regions .. 95
CREATING AND DELETING REGIONS ... 95
CHANGING A REGION .. 96
CLEARING A REGION ... 96
USING REGIONS ... :... 96
SMjPLE APPLICATION FOR REGIONS .. 98

Chapter 3 Animation ... 103
Introduction ... 103

PREPARING TO USE GRAPHICS ANIMATION ... 104
TYPES OF ANllv'lATION .. 104
THE GELS SYSTEM ... 106

Using Simple (Hardware) Sprites .. 110
CONTROLLING SPRITE DMA ... 110
ACCESSING A HARDWARE SPRITE .. 111
CHANGING THE APPEARANCE OF A SllvWLE SPRITE 112
MOVING A STh'lPLE SPRITE ... 113
RELINQUISHING A SIMPLE SPRITE ... 120

Using VSprites ... 120
SPECIFYING THE SIZE OF A VSPRITE ... 121
SPECIFYING THE COLORS OF A VSPRITE .. 121
SPECIFYING THE SHAPE OF A VSPRITE .. 122
SPECIFYING VSPRITE POSITION .. 124
USING VSPRITE FLAGS .. 124
ADDING A VSPRITE .. 125

x

REMOVING A VSPRITE .. 126
GETTING THE VSPRITE LIST IN ORDER ... 126
DISPLAYING THE VSPRITES ... 127
VSPRITE OPERATIONS SUM.MARY ... 129
VSPRITE ADVANCED TOPICS .. 131

Using Bobs .. 135
LINKING A BOB TO A VSPRITE STRUCTURE ... 135
SPECIFYING THE SIZE OF A BOB ... 136
SPECIFYING THE COLORS OF A BOB .. 136
SPECIFYING THE SHAPE OF A BOB .. 137
OTHER ITEMS INFLUENCING BOB COLORS .. 138
BOB PRIORITIES ... 141
SAVING THE PLAYFIELD DISPLAY .. 143
USING BOB FLAGS .. 144
ADDING A BOB .. 147
REMOVING A BOB ... 147
GETTING THE LIST OF BOBS IN ORDER ... 148
DISPLAYING BOBS .. 148
CHANGING BOBS ... 148
DOUBLE-BUFFERING ... 149
BOB OPERATIONS SlJMlvIARY ... 151
BOB ADVANCED TOPICS .. 152

Topics Common to Both VSprites and Bobs .. 153
DETECTING GEL COLLISIONS .. 153
BOBjVSPRITE COLLISION BOUNDARIES WITHIN A
RASTPORT ... 161
ADDING NEW FEATURES TO BOBjVSPRITE DATA
STRUCTURES ... 161

Animation Structures and Controls ... 163
CHARACTERISTICS OF THE ANIMATION SYSTEM 163
KEEPING TRACK OF GRAPHIC OBJECTS ... 164
CLASSES OF ANIMATION OBJECTS .. 164
POSITIONS OF ANIMATION OBJECTS ... 165
ANIMATION TYPES .. 166
INITIALIZING THE ANIMATION SYSTEM ... 169
SPECIFYING THE ANIMATION OBJECTS ... 169
SPECIFYING ANIMATION COMPONENTS ... 170
DRAWING PRECEDENCE .. 172
ANIMATION SEQUENCING .. 173
SPECIFYING TIME FOR EACH IMAGE .. 174
YOUR OWN ANIMATION ROUTINE CALLS ... 176
MOVING THE OBJECTS ... 177

Complete Example Program .. 177

xi

Chapter 4 Text ... 191
Introduction ... 191
Printing Text into a Drawing Area .. 192

CURSOR POSITION ... 192
BASELINE OF THE TEXT .. 193
SIZE OF THE FONT ... 194
PRINTING THE TEXT ... 194
SAMPLE PRINT ROUTINE .. 194

Selecting the Font .. 195
Selecting the Text Color ... 197
Selecting a Drawing Mode ... 197
Effects of Specifying Font Style .. 199
Adding a New Font to the System ... 200
Using a Disk Font ... 200
Finding Out Which Fonts Are Available ... 201
Contents of a Font Directory .. 201
The Disk Font ... 202
Defining a Font ... 203

THE TEXT NODE ... 203
FONT HEIGHT .. 203
FONT STYLE ... 203
FONT PREFERENCES ... 204
FO NT WIDTH .. 204
FONT ACCESSORS .. 205
CHARACTERS REPRESENTED BY THIS FONT ... 205
THE CHARACTER DATA ... 206
A COMPLETE SAMPLE FONT .. 207

Sample Program .. 211

PART II

Chapter 5 Audio Device .. 221
Introduction ... 221
Definitions ... 223
Audio Functions and Commands ... 224

AUDIO AS A DEVICE .. 224
SCOPE OF C01vIMANDS .. 224
ALLOCATION AND ARBITRATION ... 225
PERFORMING AUDIO COMMANDS ... 226
COM11AND TYPES 226
SYSTEM FUNCTIONS ... 227
ALLOCATION/ARBITRATION COMMANDS ... 228
HARDWARE CONTROL COM11ANDS ... 232

Example Programs ... 235
STEREO SOUND EXAMPLE .. 235
DOUBLE-BUFFERED SOUND SYNTHESIS EXAMPLE 240

xii

Chapter 6 Timer Device .. 247
Introduction ... 247
Timer Device Units ... 248
Specifying the Time Request ... 248
Opening a Timer Device ... 249
Adding a Time Request ... 250
Closing a Timer .. 250
Additional Timer Functions and Commands ... 251

SYSTEM TIME .. 251
USING THE TIME ARITHMETIC ROUTINES .. 253
WHY USE TIME ARITtIMETIC? .. 254

Sample Timer Program .. 254

Chapter 7 Trackdisk Device .. ~ 261
Introduction ... 261
The Amiga Floppy Disk .. 262
Trackdisk Driver Commands .. 263
Creating an I/O Request .. 264
Opening a Trackdisk Device .. 266
Sending a Command to the Device .. 267
Terminating Access to the Device ... 267
Device-specific Commands ... 267

ETD _READ AND CMD _READ .. 267
ETD_\VRITE AND CMD_WRITE ... 268
ETD_UPDATE AND CMD_UPDATE ... 268
ETD_CLEAR AND CMD_CLEAR ... 268
ETD_MOTOR AND TD_MOTOR .. 268
TD_FORMAT ... 269
TD_REMOVE ... 269

Status Commands .. 269
TD_CHANGENU11... 269
TD_CHANGESTATE .. 270
TD_PROTSTATUS .. 270

Commands for Diagnostics and Repair ... 270
Trackdisk Driver Errors .. 270
Example Program ... 271

Chapter 8 Console Device ... 275
Introduction ... 275
System Functions .. 276
Console I/O ... 276

GENERAL CONSOLE SCREEN OUTPUT .. 276
CONSOLE KEYBOARD INPUT .. 277

Creating an I/O Request .. 277

xiii

Opening a Console Device ... 278
SENDING A CHARACTER STREAM TO THE CONSOLE
DEVICE ... 279

Control Sequences for Screen Output ... 281
READING FROM THE CONSOLE .. 286
INFORMATION ABOUT THE READ-STREAM ... 287
CURSOR POSITION REPORT 1.. 288
WINDOW BOUNDS REPORT).. 289
SELECTING RAW INPUT EVENTS ... 1.. 289

Complex Input Event Reports .. 290
Keymapping .. 297

ABOUT QUALIFIERS ... 301
KEYTYPE TABLE ENTRIES ... 302
STRING-OUTPUT KEYS ... 303
CAPSABLE BIT TABLE .. 304
REPEATABLE BIT TABLE ,.. 305
DEFAULT LOW KEY :MAP ... 305
DEFAULT HIGH KEY MAP .. 306

Closing a Console Device .. 307
Example Program ... 308

Chapter 9 Input Device ... 321
Introduction ... 322
Input Device Commands ... 322

IND_ADDILA..NDLER C01vfMAND :.. 324
IND_REMHANDLER CO~ll-v1AND .. 326
IND_WRITEEVENT C011MAND ... 326
IND _SET THRESH COMMAND ... 327
IND_SETPERIOD COMMAND ; .. 327

Input Device and Intuition .. 327
Sample Program .. 328

Chapter 10 Keyboard Device ... 337
Introduction ... 337
Keyboard Device Commands ... 338

KBD_ADDRESETHANDLER .. 339
KBD_REMRESETHANDLER .. 340
KBD_RESETHANDLERDONE l .. 340
KBD_READ1vIATRIX ... 340
KBD_READEVENT ... 341

Example Keyboard Read-event Program ... 342

xiv

Chapter 11 Gameport Device .. 345
Introduction ... 345
Gameport Device Commands .. 346

GPD _SETCT'{PE 346
GPD_GETCTYPE .. 347
GPD_SETTRIGGER .. 348

Example Programs ... 349
MOUSE PROGRAM .. 349
JOYSTICK PROGRAM ... 355

Chapter 12 Narrator Device ... 361
Introduction ... 362
The Translator Library .. 362

USING THE TRANSLATE FUNCTION .. 362
ADDITIONAL NOTES ABOUT TRANSLATE ... 363

The Narrator Device .. 363
OPENING THE NARRATOR DEVICE .. 363
CONTENTS OF THE WRITE REQUEST BLOCK .. 364
CONTENTS OF THE READ REQUEST ... 365
SYNCHRONIZING NARRATOR READS ... 366
PERFORMING A WRITE AND A READ ... 366

Sample Program .. 367
How to Write Phonetically for Narrator .. 372

PHONETIC SPELLING ... 373
CHOOSING THE RIGHT VOWEL ... 373
CHOOSING THE RIGHT CONSONANT .. 374
CONTRACTIONS AND SPECIAL SYMBOLS .. 374
STRESS AND INTONATION ... 375
HOW AND WHERE TO PUT THE STRESS MARKS 375
WHAT STRESS VALUE DO I USE? .. 376
PUNCTUATION .. 377
HINTS FOR INTELLIGIBILITY .. 378
EXAMPLE OF ENGLISH AND PHONETIC TEXTS 378
CONCLUDING REMARKS .. 379

The More Technical Explanation ... 379
Table of Phonemes .. 380

Chapter 13 Serial Device .. 383
Introduction ... 383
Opening the Serial Device .. 384
Reading from the Serial Device ... 385

FIRST ALTERNATIVE MODE FOR READING ... 386
SECOND AL TERNATIVE MODE FOR READING .. 387
TERMINATION OF THE READ ... 388

vVriting to the Serial Device ... 388

xv

Setting Serial Parameters ... 390
SERIAL FLAGS ... 391
SETTING TI-IE PARAMETERS ... 393

Errors from the Serial Device .. 393
Closing the Serial Device .. 394
Example Program ... 395

Chapter 14 Parallel Device ... 401
Introduction ... 401
Opening the Parallel Device ... 402
Reading from the Parallel Device .. 403

AL TERNATIVE MODE FOR READING ... 404
TERMINATION OF THE READ ... 405

\,vriting to the Parallel Device ... 405
Setting Parallel Parameters .. 406

PARALLEL FLAGS 406
SETTING THE PARAlvlETERS ... 407

Errors from the Parallel Device ... 407
Closing the Parallel Device ... 408
Example Program ... 409

Chapter 15 Printer Device .. 413
Introduction .. 413

PRT:--THE AlvIIGADOS PRINTER DEVICE ... 414
SER:-THE MlIGADOS SERIAL DEVICE .. 414
PAR-THE M1IGADOS PARALLEL DEVICE ... 414
THE PRINTER DEVICE ... 415

Printer Device Output .. 415
Opening the AmigaDOS Printer Device ... 415
Data Structures Used During Printer I/O .. 416
Creating an I/O Request .. 417
Opening a Printer Device ... 418
VVriting to the Printer ... 418

PRINTER CONIMAND DEFINITIONS ... 419
Transmitting a Command to the Printer Device 422
Dumping a RastPort to the Printer ... 423

ADDITIONAL NOTES ABOUT GRAPHICS DUMPS 427
Creating a Printer Driver ... 428

SMrPLE CODE ... 431
WRITING A GRAPHICS PRINTER DRIVER ... 431
WRITING AN ALPHANillvlERIC PRINTER DRIVER 435

Chapter 16 Clipboard Device ... 439
Introd uction ... 439
Clipboard Commands .. 440

xvi

Clipboard Data ... 441
Clipboard Messages ... 442
Multiple Clips .. 442
Example Program ... 443
Support Functions Called from Example Program 447

PART III

Chapter 17 Math Functions .. 453
Introd uction ... 453
FFP Floating Point Data Format ... 454
FFP Basic Mathematics Library ... 455
FFP Transcendental Mathematics Library .. 461
FFP Mathematics Conversion Library .. 469
IEEE Double-precision Basic Math Library ... 472

Chapter 18 Workbench ... 479
Introduction ... 479
The Icon Library ... 480
The Info File ... 481

THE DISK OBJECT STRUCTURE .. 481
THE GADGET STRUCTURE ... 483
ICONS WITH NO POSITION ... 484

'vVorkbench Environment .. 484
START-UP MESSAGE ... 485
THE STANDARD START-UP CODE .. 486

The ToolTypes Array .. 487
Example Programs ... 488

FRIENDL YTOOL .. 488
START-UP PROGRAM ... 489
ECHO.C ... 497

Appendix A Library Summaries .. A-I

Appendix B Device Summaries .. B-1

Appendix C Resource Summaries ... C-l

Appendix D Include Files .. D-l
C Include Filcs-" .h" Files
Assem b ly-Ianguage Inc! ude Files-".i" Files

Appendix E Printer Device Source Code ... E-l

Appendix F Skeleton Devic~/Library Code ... F-l

Index Inclex-l

xvii

PART I

Chapter 1

Graphics Primitives

This chapter describes the basic graphics tools. It covers the graphics support structures,
display routines, and drawing routines. Many of the operations described in this section are also
performed by the Intuition software. See the book called Intuition: The Amiga User Interface
for more information.

Graphics Primitives 1

Introd uction

The Amiga has two basic types of graphics support routines: display routines and drawing rou
tines. These routines are very versatile and allow you to define any combination of drawing and
display area you may wish to use.

The first section of this chapter defines the display routines. These routines show you how to
form and manipulate a display, including the following aspects of display use:

o How to identify the memory area that you wish to have displayed

o How to position the display area window to show only a certain portion of a larger
drawing area

o How to split the screen into as many vertically stacked slices as you wish

o Whether to use high-resolution (640 pixels across) or low-resolution (320 pixels across)
display mode for a particular screen segment, and whether to use interlaced (400 lines
top to bottom) or non-interlaced (200 lines) mode

o How to specify how many color choices per pixel are to be available in a specific section
of the display

The next section of the chapter explains all of the available modes of drawing supported by the
system software, including how to do the following:

o Reserve memory space for use by the drawing routines

o Define the colors that can be drawn into a drawing area

o Define the colors of the drawing pens (foreground pen, background pen for patterns,
and ou tline pen for area-fill ou tlines)

o Define the pen position in the drawing a,rea

o Draw lines, define vertex points for area-filling, and specify the area-fill color and
pattern

o Define a pattern for patterned line drawing

o Change drawing modes

2 Graphics Primitives

o Read or write individual pixels in a drawing area

o Copy rectangular blocks of drawing area data from one drawing area to another

o Use a template (predefined shape) to draw an object into a drawing area

COMPONENTS OF A DISPLAY

In producing a display, you are concerned with two primary components: sprites and the
playfield. Sprites are the easily movable parts of the display. The playfield is the static part of
the display and forms a backdrop against which the sprites can move and with which the
sprites can interact.

This chapter covers the creation of the background. Sprites are described III chapter 3,
"Animation."

INTRODUCTION TO RASTER DISPLAYS

The Amiga produces its video displays on standard television or video monitors by using raster
display techniques. The picture you see on the video display screen is made up of a series of
horizontal video lines stacked one on top of another, as illustrated in figure 1-1. Each line
represents one sweep of an electronic video beam, which "paints" the picture as it moves along.
The beam sweeps from left to right, producing the full screen one line at a time. After produc
ing the full screen, the beam returns to the top of the display screen.

Figure 1-1: How the Video Display Picture Is Produced

Graphics Primitives 3

The diagonal lines in the figure show how the video beam returns to the start of each horizontal
line.

Effect of Display Overscan on the Viewing Area

To assure that the picture entirely fills the viewable region of the screen, the manufacturer of
the video display usually creates a deliberate overscan. That is, the video beam is swept across
a larger section than the front face of the screen can actually display. The video beam actually
covers 262 vertical lines. The user, however, sees only the portion of the picture that is within
the center region of the display, which is about 200 rows, as illustrated in figure 1-2 below. The
graphics system software lets you specify more than 200 rows.

Overscan also restricts the amount of video data that can appear on each display line. The sys
tem software allows you to specify a display width of up to 352 pixels (or 704 in high-resolution
mode) per horizontal line. Generally, however, you should use the standard values of 320 (or 640
in high-resolution mode) for most applications.

Vertical
Blanking
Interval -< Video Display ~ I"

~v

Overscan region. You cannot
see it on the video screen.

Viewable region. Contains
approximately 200 video lines
and 320 pixels across.

Figure 1-2: Display Overscan Restricts Usable Picture Area

The time during which the video beam is in the region below the bottom line of the viewable
area and above the top line of the next display field is called the vertical blanking interval.

Color Information for the Video Lines

The hardware reads the system display memory to obtain the color information for each line.
As the video display beam sweeps across the screen producing the display line, it changes color,
producing the images you have defined.

4 Graphics Primitives

INTERLACED AND NON-INTERLACED MODES

In producing the complete display (262 video lines), the video display device produces the top
line, then the next lower line, then the next, until it reaches the bottom of the screen. When it
reaches the bottom, it returns to the top to start a new scan of the screen. Each complete set
of 262 lines is called a d£splay field. It takes about 1/60th of a second to produce a complete
display field.

The Amiga has two vertical display modes: £nterlaced and non-interlaced. In non-interlaced
mode, the video display produces the same picture for each successive display field. A non
interlaced display normally has about 200 lines in the viewable area (for a full-screen size
display).

To make the display more preCIse III the vertical direction, you use interlaced mode, which
displays twice as much data in the same vertical area as non-interlaced mode. Within the same
amount of viewable area, you can display 400 video lines instead of 200.

For interlaced mode, the video beam scans the screen at the same rate (1/60th of a second per
complete video display field); however, it takes two display fields to form a complete video
display picture. During the first of each pair of display fields, the system hardware shows the
odd-numbered lines of an interlaced display (1, 3, 5, and so on). During the second display field,
it shows the even-numbered lines (2, 4, 6 and so on). These sets of lines are taken from data
defining 400 lines. During the display, the hardware moves the second display field's lines
downward slightly from the position of the first, so that the lines in the second field are "inter
laced" with those of the first field, giving the higher vertical resolution of this mode. For an
interlaced display, the data in memory defines twice as many lines as for a non-interlaced
display, as shown in figure 1-3.

DATA AS
DISPLAYED

Odd field Line 1
Even field Line 1
Odd field Line 2
Even field Line 2

Odd field Last line
Even field - Last line

DATA
IN MEMORY

Line 1
Line 2
Line 3
Line 4

Line 399
Line 400

Figure 1-3: Interlaced Mode - Display Fields and Data in Memory

Graphics Primitives 5

Figure 1-4 shows a display formed as display lines 1, 2, 3, 4, ... 400. The 400-line interlaced
display uses the same physical display area as a 200-line non-interlaced display.

Line 1

\~Linel
~~/

Field 1

Line 1
Field 2

Video Display
(400 lines)

Figure 1-4: Interlaced Mode Doubles Vertical Resolution

Line 2

During an interlaced display, it appears that both display fields are present on the screen at the
same time and form one complete picture. This phenomenon is called video persistence.

HIGH- AND LOW-RESOLUTION MODES

The Amiga also has two horizontal display modes: high-resolution and low-resolution. High
resolution mode provides (nominally) 640 distinct pixels (picture elements) across a horizontal
line. Low-resolution provides (nominally) 320 pixels across each line. Low-resolution mode
allows up to 32 colors at one time, and high-resolution mode allows 16 colors (out of 4,096
choices) at one time.

One other display mode affects the number of colors you can display at one time: hold-and
modify. Hold-and-modify tnode allows you to display all 4,096 colors on the screen at once.

FORMING AN IMAGE

To create an image, you write data (that is, you "draw") into a memory area in the computer.
From this memory area, the system can retrieve the image for display . You tell the system
exactly how the memory area is organized, so that the display is correctly prod uced. You use a
block of memory words at sequentially increasing addresses to represent a rectangular region of

6 Graphics Primitives

data bits. Figure 1-5 shows the contents of three example memory words: 0 bits are shown as
blank rectangles, and 1 bits as filled-in rectangles.

Contents of three memory words, all adjacent to each other. Note that N is expressed as a byte-address.

I I I I I I I bll I I I I I I I I I I I I 111111] I I I I I I II I I II III I I I I I I

Mem. Location N Mem. Loc. N+2 Mem. Loc. N+4

Figure 1-5: Sample Memory Words

The system software lets you define linear memory as rectangular regions, called bit-planes. Fig
ure 1-6 shows how the system views the same three words as a bit-plane, wherein the data bits
form an x-y plane.

Three memory words, organized as a bit-plane.

Mem. Location N

Mem. Location N+2

Mem. Location N+4

Figure 1-6: A Rectangular "Look" at the Sample Memory Words

Figure 1-7 shows how 4,000 words (8,000 bytes) of memory can be organized to provide enough
bits to define a single bit-plane of a full-screen, low-resolution video display (320 x 200).

Graphics Primitives 7

111111111--------.. .. 111111111
Mem. Location N Mem. Location N+38

IIIIIIIII .. 111111111
Mem. Location N+40 Mem. Location N+78

I

IIIIIIIII----'--~ .. IIIIIIIII
Mem Location N+7960 Mem. Location N+7998

Figure 1-7: Bit-Plane for a Full-screen, Low-resolution Display

Each memory data word contains 16 data bits. The color of each pixel on a video display line is
directly related to the value of one or more data bits in memory, as follows:

o If you create a display in which each pixel is related to only one data bit, you can only
select from only two possible colors, because each bit can have a value of only 0 or 1.

o If you use two bits per pixel, there is a choice of four different colors because there are
four possible combinations of the values of 0 and 1 from each of the two bits.

o If you specify three, four, or five bits per pixel, you will have eight, sixteen, or thirty
two possible choices of a color for each pixel.

To create multicolored images, you must tell the system how many bits are to be used per pixel.
The number of bits per pixel is the same as the number of bit-planes used to define the image.

As the video beam sweeps across the screen, the system retrieves one data bit from each bit
plane. Each of the data bits is taken from a different bit-plane, and one or more bit-planes are
used to fully define the video display screen. For each pixel, data-bits in the same x,y position
in each bit-plane are combined by the system hardware to create a binary value. This value
determines the color that appears on the video display for that pixel. (See figure 1-8.)

8 Graphics Primitives

Color
Selection

II 0 Circuitry

~ I 0
0,

~O",Ofth'
13 ..

Video display pixel positions
made from the

I-- combined bit-planes.
I--

..
Bit-Planes defining a low-res display

Figure 1-8: Bits from Each Bit-Plane Select Pixel Color

You will find more information showing how the data bits actually select the color of the
displayed pixel in the section called "ViewPort Color Selection."

ROLE OF THE COPPER (COPROCESSOR)

The Amiga has a special-purpose coprocessor, called the Copper, that can control nearly the
entire graphics system. The Copper can control register updates, reposition sprites, change the
color palette, and update the blitter. The graphics and animation routines use the Copper to
set up lists of instructions for handling displays, and advanced users can write their own "user
Copper lists."

Display Routines and Structures

Caution: This section describes the lowest-level graphics interface to the system
hardware. If you use any of the routines and the data structures described in these
sections, your program will essentially take over the entire display. It will not, there
fore, be compatible with the multiwindow operating environment, known as Intuition,
which is used by AmigaDOS.

Graphics Primitives 9

The descriptions of the display routines, as well as those of the drawing routines, occasionally
use the same terminology as that in Intuition: The Amiga User Interface. These routines and
data structures are the same ones that Intuition software uses to produce its displays.

The computer produces a display from a set of instructions you define. You organize the
instructions as a set of parameters known as the View structure. Figure 1-9 shows how the
system interprets the contents of a View structure. This drawing shows a complete display
composed of two different component parts, which could, for example, be a low-resolution, mul
ticolored part and a high-resolution, two-colored part.

A complete display consists of one or more ViewPorts, whose display sections are separated
from each other by at least one blank line. The viewable area defined by each ViewPort is a
rectangular cut from the same size (or larger) raster. You are essentially defining a display con
sisting of a number of vertically stacked display areas in which separate sections of graphics ras
ters can be shown.

A complete display is composed of
one (or more) "ViewPorts"

Background color shows here

ViewPort #1

Video Display

;::==================~~-----ViewPorts

ViewPort #2

must be
separated

by at least
one blank line

(may need more
than one blank line)

Figure 1-9: The Display Is Composed of ViewPorts

10 Graphics Primitives

LIMITATIONS ON THE USE OF VIEWPORTS

The system software for definirtg View Ports allows only vertically stacked fields to be defined.
Figure 1-10 shows acceptable and unacceptable display configurations. If you want to create
overlapping windows, define a single ViewPort and manage the windows yourself within that
ViewPort.

I I
I I
I I

Acceptable
Incorrect

(Does no"!; use at least one
blank line between

ViewPorts)

D D L J
I l
Incorrect for ViewPorts Incorrect for ViewPorts
(Overlapping vertical (Cannot create multiple

windows) horizontal windows)

Figure 1-10: Correct and Incorrect Uses of ViewPorts

A ViewPort is related to the custom screen option of Intuition. In a custom screen, you can
split the screen into slices as shown in the "correct" illustration of figure 1-10. Each custom
screen can have its own set of colors, use its own resolution, and show its own display area.
Within a ViewPort-actually within its associated RastPort (drawing area definition)-it is
possible to split the display into separate drawing areas called windows. The ViewPort is sim
ply an indivisible window into a possibly larger complex drawing area.

Graphics Primitives 11

CHARACTERISTICS OF A VIEWPORT

To describe a ViewPort fully, you need to set the following parameters: height, width, and
display mode.

In addition to these parameters, you must also tell the system the location in memory from
which the data for the ViewPort display should be retrieved, and how to position the final
ViewPort display on the screen.

VIEWPORT SIZE SPECIFICATIONS

Figure 1-11 illustrates that the variables DHeight, and DWidth specify the SIze of a
ViewPort.

...

ViewPort Height

Display Bit·Planes

DWidth = how many pixels wide

DHeight = how
many lines tall

Figure 1-11: Size Definition for a ViewPort

The variable DHeight determines how many video lines will be reserved to show the height of
this display segment. The size of the actual segment depends on whether you define a non
interlaced or an interlaced display. An interlaced display is half as tall as a non-interlaced
display of the same number of lines.

For example, a View ?onsisting of two ViewPorts might be defined as follows:

o ViewPort #1 is 150 lines, high-resolution mode (uses the top three-quarters of the
display).

12 Graphics Primitives

o ViewPort #2 is 49 lines of low-resolution mode (uses the bottom quarter of the display
and allows the space for the required blank line between View Ports).

The user interface software (Intuition) assumes a standard configuration of 200 rows (400 m
in terlaced mode).

ViewPort Width

The DWidth variable determines how wide, in current pixels, the display segment will be. If
you are using low-resolution mode, you should specify a width of 320 pixels per horizontal line.
If you are using high-resolution mode, you should specify a width of 640 pixels. You may
specify a smaller value of pixels per line to produce a narrower display segment.

Although the system software allows you define low-resolution displays as wide as 352 pixels
and high-resolution displays as wide as 704 pixels, you should not exceed the normal values of
320 or 640, respectively. Because of display overscan, many video displays will not be able to
show all of a wider display, and sprite display may be affected. If you are using hardware
sprites or VSprites with your display, and you specify ViewPort widths exceeding 320 or 640
pixels (for low- or high-resolution, respectively), it is likely that hardware sprites 5, 6, and 7 will
not be rendered on the screen. These sprites may not be rendered because playfield DMA
(direct memory access) takes precedence over sprite DMA when an extra-wide display is
produced.

VIEWPOR T COLOR SELECTION

The maXImum number of colors that a ViewPort can display is determined by the depth of
the BitMap that the ViewPort displays. The depth is specified when the BitMap is initial
ized. See the section below called "Preparing the BitMap Structure."

Depth determines the number of bit-planes used to define the colors of the rectangular image
you are trying to build (the raster image) and the n um ber of different colors that can be
displayed at the same time within a ViewPort. For any single pixel, the system can display
anyone of 4,096 possible colors.

Table 1-1 shows depth values and the corresponding number of possible colors for each value.

Graphics Primitives 13

Table 1-1: Depth Values and Number of Colors in the ViewPort

Colors Depth Value

2 1
4 2
8 3

16 4 (Note 1)
32 5 (Notes 1,2)

4,096 6 (Notes 1,2,3)
32 6 (Notes 1,2)

Notes:

1. Single-playfield mode only-ViewPort mode not DUALPF

2. Low-resolution mode only-ViewPort mode not HIRES

3. Hold-and-modify mode only-ViewPort mode = HAM

The color palette used by a ViewPort is specified in a ColorMap. See the section called
"Preparing the ColorMap" for more information.

Depending on whether single- or dual-playfield mode is used, the system will use different color
register groupings for interpreting the on-screen colors. Table 1-2 below details how the depth
and the Modes variable in the View Port structure affect the registers the system uses.

Table 1-2: Single-playfield Mode (Modes variable not equal to DUALPF)

Color
Depth Registers Used

1 0,1
2 0-3
3 0-7
4 0-15
5 0-31
6 0-16 (if modes = HAM)

14 Graphics Primitives

Table 1-3 shows the five possible combinations when the Modes variable is set to DUALPF.

Table 1-3: Dual-playfield Mode (Modes variable = DUALPF)

Color Color
Depth (PF -1) Registers Depth (PF-2) Registers

1 0,1 1 8,9
2 0-3 1 8,9
2 0-3 2 8-11
3 0-7 2 8-11
3 0-7 3 8-15

The system has seven different display modes that you can specify for each ViewPort. The
seven bits that control the modes are DUALPF, PFBA, HIRES, LACE, HAM, SPRITES, and
VP _HIDE. A mode becomes active if you set the corresponding bit to 1 in the Modes variable
of the ViewPort structure. After you initialize the ViewPort, you can set the bit(s) for the
modes you want. (See the section called "Preparing the ViewPort Structure" for more informa
tion about initializing a ViewPort.)

Modes DUALPF and PFBA are related. DUALPF tells the system to treat the raster specified
by this ViewPort as the first of two independent and separately controllable playfields. It also
modifies the manner in which the pixel colors are selected for this raster.

When PFBA is a 1, it specifies that a second playfield has video priority over the first one.
Playfield relative priorities can be controlled when the playfield is split into two overlapping
regions. Single-playfield and dual-playfield modes are discussed in "Advanced Topics" below.

HIRES tells the system that the raster specified by this ViewPort is to be displayed with 640
horizontal pixels rather than 320 horizontal pixels.

LACE tells the system that the raster specified by this ViewPort is to be displayed in inter
laced mode. If the ViewPort is non-interlaced and the View is interlaced, the ViewPort will
be displayed at its specified height and will look only slightly different than it would look when
displayed in a non-interlaced View. See "Interlaced Mode versus Non-interlaced Mode" below
for more information.

HAM tells the system to use "hold-and-modify" mode, a special mode that lets you display up
to 4,096 colors on screen at the same time. It is described in the "Advanced Topics" section.

Graphics Primitives 15

SPRITES tells the system that you are using sprites in this display (either VSprites or Simple
Sprites). This bit, when a 1, tells the software to load color registers for sprites. See chapter 3,
"Animation," for more information about sprites.

VP _HIDE tells the system that this ViewPort is obscured by other ViewPorts. When a
View is constructed, no display instructions are generated for this ViewPort.

EXTRA_HALF BRITE is reserved for future use.

Single-playfield Mode versus Dual-playfield Mode

When you specify single-playfield mode (see figure 1-12), you are asking that the system treat all
bit-planes as part of the definition of a single playfield image. Each of the bit-planes defined as
part of this ViewPort contributes data bits that determine the color of the pixels in a single
playfield.

Display Screen

Background color shows here

Figure 1-12: A Single-playfield Display

Everyth ing on the
display is part of
the same playfield.

If you use dual-playfield mode (ViewPort.Modes = DUALPF), you can define two indepen
dent, separately controllable playfield areas (see figure 1-13).

16 Graphics Primitives

Display Screen

Control Panel (Playfield 2)

Background color shows here

Two independently
controllable displays.
One has video priority
over the other.

Figure 1-13: A Dual-playfield Display

In figure 1-13, the display mode bit PFBA is set to 1. If PFBA = 0, the relative priorities will
be reversed; playfield 2 will appear to be behind playfield 1.

Low-resolution Mode versus High-resolution Mode

In low-resolution mode, horizontal lines of 320 pixels fill most of the ordinary viewing area. The
system software lets you define a screen segment width up to 352 pixels in this mode, or you
can define a screen segment as narrow as you desire. In high-resolution mode (also called "nor
mal" resolution), 640 pixels fill a horizon tal line. In this mode you can specify any wid th from 0
to 704 pixels. Overscan normally limits you to showing only 0 to 320 pixels per line in low
resolution mode or 0 to 640 pixels per line in high-resolution mode. Intuition assumes the nomi
nal 320-pixel or 640-pixel width (see figure 1-14).

Graphics Primitives 17

320 Pixels Across ViewPort. Modes = 0
(width of 352 is possible)

640 Pixels Across ViewPort. Modes = HIRES
(width of 704 is possible)

Figure 1-14: How HIRES Affects Width of Pixels

Interlaced Mode versus Non-interlaced Mode

In interlaced mode, there are twice as many lines available as in non-interlaced mode, providing
better vertical resolution in the same display area (see figure 1-15).

200 lines define View. Modes = 0
a fu II screen

400 lines define View. Modes = LACE
a full screen

Figure 1-15: How LACE Affects Vertical Resolution

If the View structure does not specify LACE, and the ViewPort specifies LACE, you may see
only every other line of the ViewPort data. If the View structure specifies LACE and the
ViewPort is non-interlaced, the same ViewPort data will be repeated in both fields. The
height of the ViewPort display is the height specified in the ViewPort structure. If both the
View and the ViewPort are interlaced, the ViewPort will be built with double the normal
vertical resolution. That means it will need twice as much data space in memory as a non
interlaced picture for this display.

18 Graphics Primitives

VIEWPORT DISPLAY MEMORY

The picture you create in memory can be larger than the screen image that can be displayed
within your ViewPort. This big picture (called a raster and represented by the BitMap struc
ture) can have a maximum size of 1,024 by 1,024 pixels. Because a picture this large cannot fit
fully on the display, you specify which piece of it to display. Once you have selected the piece
to be shown, you can specify where it is to appear on the screen.

The example in figure 1-16 introduces terms that tell the system how to find the display data
and how to display it in the ViewPort. These terms are RHeight, RWidth, RyOffset,
RxOffset, DHeight, DWidth, DyOffset and DxOffset.

(0,0) Large picture 1024 by 800 (called a "Raster")

RyOffset
::1*:4-- RHeight = 800

RWidth = 1024

(0,0)

Background Color

Figure 1-16: ViewPort Data Area Parameters

The terms RHeight and RWidth do not appear in actual system data structures. They refer
to the dimensions of the raster and are used here to relate the size of the raster to the size of
the display area. RHeight is the number of rows in the raster, and RWidth is the number of

Graphics Primitives 1 9

bytes per row times 8. The raster shown in the figure is too big to fit entirely in the display
area, so you tell the system which pixel of the raster should appear in the upper left corner of
the display segment specified by your ViewPort. The variables that control that placement
are RyOffset and RxOffset.

To compute RyOffset and RxOffset, you need RHeight, RWidth, DHeight, and DWidth.
The DHeight and DWidth variables define the height and width in pixels of the portion of the
display that you want to appear in the ViewPort. The example shows a full-screen, low
resolution mode (320-pixel), non-interlaced (200-line) display formed from the larger overall
picture.

Normal values for RyOffset and RxOffset are defined by the formulas:

o < = RyOffset < = (RHeight - DHeight)
o < = RxOffset < = (RWidth - DWidth)

Once you have defined the size of the raster and the section of that raster that you wish to
display, you need only specify where to put this ViewPort on the screen. This is controlled by
the variables DyOffset and DxOffset. A value of 0 for each of these offsets places a normal
sized picture in a centered position at the top, bottom, left and right on the display screen.
Possible values for DyOffset range from -16 to +200 (-32 to +400 if View.Modes includes
LACE). Possible values for DxOffset range from -16 to +352 (-32 to +704 if
ViewPort.Modes includes HIRES).

The parameters shown in the figure above are distributed in the following data structures:

o Raslnfo (information about the raster) contains the variables RxOffset and RyOffset.
It also contains a pointer to the BitMap structure.

o View (information about the whole display) includes the variables that you use to posi
tion the whole display on the screen. The View structure contains a Modes variable
used to determine if the whole display is to be interlaced or non-interlaced. It also con
tains pointers to its list of ViewPorts and pointers to the Copper instructions pro
duced by the system to create the display you have defined.

o ViewPort (information about this piece of the display) includes the values DxOffset
and DyOffset that are used. to position this slice relative to the overall View. The
ViewPort also contains the variables DHeight and DWidth, which define the size of
this slice; a Modes variable; and a pointer to the local ColorMap. Each ViewPort
also contains a pointer to the next ViewPort. You create a linked list of ViewPorts
to define the complete display.

o BitMap (information about memory usage) tells the system where to find the display
and drawing area memory and shows how this memory space is organized.

20 Graphics Primitives

You must allocate enough memory for the display you define. The memory you use for the
display may be shared with the area control structures used for drawing. This allows you to
draw into the same areas that you are currently displaying on the screen.

As an alternative, you can define two BitMaps. One of them can be the active structure (that
being displayed) and the other can be the inactive structure. If you draw into one BitMap
while displaying another, the user cannot see the drawing taking place. This is called double
buffering of the display. See "Advanced Topics" below for an explanation of the steps required
for double-buffering. Double-buffering takes twice as much memory as single-buffering because
two full displays are produced.

To determine the amount of required memory for each ViewPort for single-buffering, you can
use the following formula.

bytes_per_ViewPort = Depth * RASSIZE (Width, Height);

RASSIZE is a system macro attuned to the current design of the system memory allocation for
display rasters. See graphics/ gfxmacros.h for the formula with which RASSIZE is calculated.

For example, a 32-color ViewPort (depth = 5), 320 pixels wide by 200 lines high uses 40,000
bytes (as of this writing). A 16-color ViewPort (depth = 4), 640 pixels wide by 400 lines high
uses 128,000 bytes (as of this writing).

FORMING A BASIC DISPLAY

This section offers an example that shows how to create a single ViewPort with a size of 200
lines, in which the area displayed is the same size as the big picture (raster) stored in memory.
The example also shows how this ViewPort becomes the single display segment of a View
structure. Following the description of the individual operations, the "Graphics Example Pro
gram" section pulls all of the pieces into a complete executable program. Instead of linking
these routines to drawing routines, the example allocates memory specifically and only for the
display (instead of sharing the memory with the drawing routines) and writes data directly to
this memory. This keeps the display and the drawing routines separate for purposes of
discussion.

Here are the data structures that you need to define to create a basic display:

struct View V;
struct ViewPort vp;
struct BitMap b;
struct RasInfo ri;

/* The name used here for a View is V,

* for a ViewPort is vp,
* for a BitMap is b,
* and for a RasInfo is rio * /

Graphics Primitives 21

Opening the Graphics Library

Most of the system routines used here are located in the graphics library. When you compile
your program, you must provide a way to tell the compiler to link your calling sequences into
the routine library in which they are located. You accomplish this by declaring the variable
called GfxBase. Then, by opening the graphics library, you provide the value (address of the
library) that the system needs for linking with your program. See the "Libraries" chapter in
the Amiga ROM Kernel Reference Manual: Exec for more information.

Here is a typical sequence:

struct GfxBase * GfxBase; /* declare the name *GfxBase as a
* pointer to the corresponding library * /

Preparing the View Structure

The following code section prepares the View structure for further use:

InitView(&v); /* initialize the View structure */
v.ViewPort = &vp;/* tell the View structure where to find the

* first ViewPort in a possible list of Viewports * /

Preparing the View Port Structure

The following code section prepares the ViewPort structure for further use:

InitVPort(&vp); /* initialize the structure (set up default values) * /

vp.DWidth = WIDTH; /* how wide is the display */
vp.DHeight = HEIGHT; /* how tall is the display for this ViewPort * /
vp.RasInfo = &ri; / * pointer to a RasInfo structure * /
vp.ColorMap = GetColorMap(32); /* using a 32-color map */

The InitVPortO routine presets certain default values. The defaults include:

o Modes variable set to zero-this means you select a low-resolution display.

o Next variable set to zero-no other ViewPort is linked to this one. If you want to
have multiple ViewPorts in a single View, you must create the link yourself. The last
ViewPort in the chain must have a Next value of O.

22 Graphics Primitives

If you have defined two ViewPorts, such as

struct ViewPort vpA;
struct ViewPort vpB;

and you want them to both be part of the same display, you must create a link between them,
and a NULL link at the end of the chain of ViewPorts:

vpA.Next = &vpB;
vpB.Next = NULL;

/ * tell first one the address of the second * /
/ * after this one, there are no others * /

Preparing the BitMap Structure

The BitMap structure tells the system where to find the display and drawing memory and how
this memory space is organized. The following code section prepares a BitMap structure,
including allocation of memory for the bit-map. For this example, this memory is used only for
the display and is not shared with any drawing routines. The example writes directly to the
display area.

/ * initialize the BitMap structure * /
InitBitMap(&b, DEPTH, WIDTH, HEIGHT);

/ * now allocate some memory that can be
* be linked into the BitMap for display purposes * /

fore i=O; i<DEPTH, i++)
{

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH, HEIGHT);
}

This code allocates enough memory to handle the display area for as many bit-planes as the
depth you have defined. This code segment does not include the error-checking that is present
in the full example later on.

Preparing the RasInfo Structure

The RasInfo structure provides information to the system about the location of the BitMap as
well as the positioning of the display area as a window against a larger drawing area. Use the
following steps to prepare the RasInfo structure:

Graphics Primitives 23

ri.BitMap = &b;
ri.RxOffset = 0;
ri.RyOffset = 0;

ri.next = NULL;

/ * specify address of the BitMap structure * /

/* match the upper lefthand corner of the
* display area with the upper left corner of
* the drawing area - see figure 1-16 * /
/ * for a single playfield display, there
* is only one RasInfo structure present * /

Preparing the ColorMap Structure

Interrupts should be used to display this ViewPort. When the View is created, Copper
instructions are generated to change the current contents of each color register just before the
topmost line of a ViewPort so that this ViewPort's color registers will be used for interpret
ing its display.

Here are the steps normally used for initializing a ColorMap:

/ * define some colors in an array of words * /
UWORD colortable 0 = { 0, OxfOO, OxOfO, OxOOf }

/ * allocate space and get a pointer to it * /
/ * 4 colors in this table (4 registers for Copper
* to reload before this ViewPort is displayed * /

vp.ColorMap = GetColorMap (4);
LoadRGB4(vp,Co~rTab~,4)

Note: The "4" in the name LoadRGB40 refers to the fact that each of the red, green, and
blue values in a color table entry consists of four bits. It has nothing to do with the fact that
this particular color table contains four entries, which is a result of the choice of DEPTH = 2
for this example.

From the section called "ViewPort Color Selection," notice that you might need to specify more
colors in the color map than you think. If you use a dual-playfield display (covered later in this
chapter) with a depth of 1 for each of the two playfields, this means a total of four colors (two
for each playfield). However, because playfield 2 uses color registers starting from number 8 on
up when in dual-playfield mode, the color map must be initialized to contain at least 10 entries.
That is, it must contain entries for colors 0 and 1 (for playfield 1) and color numbers 8 and 9
(for playfield 2). Space for sprite colors must be allocated as well.

24 Graphics Primitives

Creating the Display Instructions

Now that you have initialized the system data structures, you can request that the system
prepare a set of display instructions for the Copper using these structures as input data. Dur
ing the one or more blank vertical lines that precede each ViewPort, the Copper is busy chang
ing the characteristics of the display hardware to match the characteristics you expect for this
ViewPort. This may include a change in display resolution, a change in the colors to be used,
or other user-defined modifications to system registers.

Here is the code that creates the display instructions:

MakeVPort(&v, &vp);

In this line of code, &v is the address of the View structure and &vp is the address of the first
ViewPort structure. Using these structures, the system has enough information to build the
instruction stream that defines your display.

MakeVPortO creates a special set of instructions that controls the appearance of the display.
If you are using animation, the graphics animation routines create a special set of instructions to
control the hardware sprites and the system color registers. In addition, the advanced user can
create special instructions (called user Copper instructions) to change system operations based
on the position of the video beam on the screen.

All of these special instructions must be merged together before the system can use them to pro
duce the display you have designed. This is done by the system routine MrgCopO (which
stands for "Merge Coprocessor Instructions"). Here is a typical call:

MrgCop (&v); /* merge this View's Copper instructions
* into a single instruction list * /

LOADING AND DISPLAYING THE VIEW

To display the View, you need to load it using LoadViewO and turn on the direct memory
access (DMA). A typical call is shown below.

LoadView(&v);

where &v is the address of the View structure defined in the example above.

Two macros control display DMA: ON_DISPLAY and OFF J)ISPLAY. They simply turn
the display DMA control bit in the DMA control register on or off. After you have loaded a
new View, you use ON_DISPLAY to allow the system DMA to display it on the screen.

Graphics Primitives 25

If you are drawing to the display area and do not want the user to see intermediate steps in the
drawing, you can turn off the display. Because OFF_DISPLAY shuts down the display DMA
and possibly speeds up other system operations, it can be used to provide additional memory
cycles to the blitter or the 68000. The distribution of system DMA, however, allows four
channel sound, disk read/write, and a sixteen-color, low-resolution display (or four-color, high
resolution display) to operate at the same time with no slowdown (7.1 megahertz effective rate)
in the operation of the 68000.

GRAPHICS EXAMPLE PROGRAM

The program below creates and displays a single-playfield display that is 320 pixels wide, 200
lines high, and two bit-planes deep.

#include "exec/types.h"
#include "graphics/gfx.h"
#include "hardware/dmabits.h"
#include "hardware/custom.h"
#include "hardware/blit.h"
#include "graphics/gfxmacros.h"
#include "graphics/copper.h"
#include "graphics/view.h"
#include "graphics/gels.h"
#include "graphics/regions.h"
#include "graphics/clip.h"
#include "exec/ exec.h"
#include "graphics/text.h"
#include "graphics/gfxbase.h"

#define DEPTH 2
#define WIDTH 320
#define HEIGHT 200
#define NOT_ENOUGH_MEMORY -1000
/* construct a simple display */

struct View v;
struct ViewPort vp;
struct ColorMap *cm;
struct RasInfo ri;
struct BitMap b;
struct RastPort rp;

LONG i;
SHORT j,k,n;

26 Graphics Primitives

/* pointer to ColorMap structure, dynamic alloc * /

extern struct ColorMap *GetColorMapO;
struct GfxBase *GfxBase;

struct View *oldview; /* save pointer to old View so can restore */

/* black, red, green, blue */
USHORT colortable[] = { OxOOO, OxfOO, OxOfO, OxOOf}; /* my own colors */
SHORT boxoffsets[] = { 802, 2010, 3218 }; /* where to draw boxes */

UBYTE *displaymem;
UWORD *colorpalette;

mainO
{

,

GfxBase = (struct GfxBase *)OpenLibrary(" graphics.library" ,0);
if (GfxBase == NULL) exit(I);
oldview = GfxBase->ActiView; /* save current View to restore later */
/* example steals screen from Intuition if Intuition is around */

InitView(&v);
InitVPort(&vp);
v.ViewPort = &vp;

/* initialize View */
/* init ViewPort */
/* link View into ViewPort */

/* init bit map (for RasInfo and RastPort) */
InitBitMap(&b ,D EPTH, WIDTH,HEIGliT);

/* (init RasInfo) */
ri.BitMap = &b;
ri.RxOffset = 0;
ri.RyOffset = 0;
ri.Next = NULL; ,

/* now specify critical characteristics * /
vp.DWidth = WIDTH;
vp.DHeight = HEIGHT;
vp.RasInfo = &ri;

/* (init color table) */
cm = GetColorMap(4); /* 4 entries, since only 2 planes deep */
colorpalette = (UWORD *)cm- > ColorTable;
for(i=O; i<4; i++) {

*colorpalette++ = colortable[iJ;
}
/* copy my colors into this data structure */
vp.ColorMap = cm; /* link it with the ViewPort * /

Graphics Primitives 27

/* allocate space for bitmap */
for(i=O; i<DEPTH; i++)
{

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT);
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);

}

MakeVPort(&v, &vp);
MrgCop(&v);

for(i=O; i<2; i++)
{

/* construct Copper instruction (prelim) list */
/ * merge preliminary lists together in to a real
* Copper list in the view structure. * /

displaymem = (UBYTE *)b.Planes[i];
BltClear(displaymem,RASSIZE(WIDTH,HEIGHT),O)
}

}

LoadView(&v);
/* now fill some boxes so that user can see something * /
/ * always draw in to both planes to assure true colors * /
for(n=l; n<4; n++) /* three boxes */
{

for(k=O; k<2; k++)
{

/* boxes will be in red, green and blue */
displaymem = b.Planes[k] + boxoffsets[n-l];
DrawFilledBox(n,k);

}
}

Delay(50*1O);

LoadView(oldview);

FreeMemoryO;
CloseLibrary(GfxBase);

/ * wait for 10 seconds * /

/* put back the old View */

/* exit gracefully */
/* since program opened library, close it */

} /* end of mainO * /

/* return user- and system-allocated memory to sys manager * /
FreeMemoryO
{

/* free drawing area */
for(i=O; i <DEPTH; i++)

28 Graphics Primitives

}

{
FreeRaster(b.Planes[i],WIDTH,HEIGHT);

}
/* free the color map created by GetColorMapO */
FreeColorMap(cm);
/* free dynamically created structures */
Free VPortCopLists(&vp);
FreeCprList(v .LOFCprList);
return(O);

DrawFilledBox(fillcolor,plane)
SHORT fillcolor,plane;
{

}

UBYTE value;
for(j=O; j < 100; j++)
{

if((fillcolor & (1 < < plane)) != 0)
{

value = Oxff;
}
else

{
value = 0;

}
for(i=O; i<20; i++)
{

*displaymem++ = value;
}
displaymem += (b.BytesPerRow - 20);

}
return(O);

Exiting Gracefully

The sample program above provides a way of exiting gracefully, returning to the memory
manager all dynamically-allocated memory chunks. Notice the calls to FreeRasterO and
FreeColorMapO. These calls correspond directly to the allocation calls AllocRasterO and
GetColorMapO located in the body of the program. Now look at the calls within
FreeMemoryO to FreeVPortCopListsO and FreeCprListO. When you call MakeVPortO,
the graphics system dynamically allocates some space to hold intermediate instructions from
which a final Copper instruction list is created. When you call MrgCopO, these intermediate
Copper lists are merged together into the final Copper list, which is then given to the hardware

Graphics Primitives 29

for interpretation. It is this list that provides the stable display on the screen, split into
separate View Ports with their own colors and resolutions and so on.

When your pr9gram completes, you must see that it returns all of the memory resources that it
used so that those memory areas are again available to the system for reassignment to other
projects. Therefore, if you use the routines MakeVPortO or MrgCopO, you must also
arrange to use FreeCprListO (pointing to each of those lists in the View structure) and
FreeVPortCopListsO (pointing to the ViewPort that is about to be deallocated). If your
view is interlaced, you will also have to call FreeCprList(&v.SHFCprList) because an inter~
laced view has a separate Copp~r list for each of the two fields displayed.

As a final caveat, notice that when you do free everything, the memory manager or other pro
grams may immediately change the contents of the freed memory. Therefore, if the Copper is
still executing an instruction stream (as a result of a previous LoadViewO) when you free that
memory, the display will go "south." You will probably want to turn off the display or provide
an alternate Copper list when this one is to be deallocated.

Advanced Topics

CREATING A DUAL-PLA YFIELD DISPLAY

In dual-playfield mode, you have two separately controllable playfields. In this mode, you
always define two RasInfo data structures. Each of these structures defines one of the
playfields. There are seven different ways 'you can configure a dual-playfield display, because
there are five different distributions of the bit-planes which the system hardware allows. Table
1-4 shows these distributions.

30 Graphics Primitives

Table 1-4: Bit-Plane Assignment in Dual-playfield Mode

Number of Playfield 1 Playfield 2
Bit-planes Depth Depth

0 0 0
1 1 0
2 1 1
3 2 1
4 2 2

5 3 2
6 3 3

Recall that if you set PFBA in the ViewPort Modes variable to 1, you can swap playfield
priority and display playfield 2 in front of playfield 1. In this way, you can get more bit-planes
in the background playfield than you have in the foreground playfield. If you create a display
with multiple View Ports, only for this ViewPort will the playfield priority be changed.

Playfield 1 is defined by the first of the two Raslnfo structures. Playfield 2 is defined by the
second of the two Raslnfo structures.

When you call MakeVPortO, you use parameters as follows:

Make VPort(&view, &viewport);

The ViewPort Modes variable must include the DUALPF bit. This tells the graphics system
that there are two Raslnfo structures to be used.

In summary, to create a dual-playfield display you must do the following things:

o Allocate one View structure

o Allocate two BitMap structures

o Allocate two Raslnfo structures (linked together), each pointing to different BitMaps

o Allocate one ViewPort structure

o Set up a pointer in the ViewPort structure to the playfield 1 Raslnfo

Graphics Primitives 31

o Initialize each BitMap structure to describe one playfield, using one of the permissible
bit-plane distributions shown in table 1-4 and allocate memory for the bit-planes them
selves. Note that BitMap 1 and BitMap 2 need not be the same width and height.

o Initialize the ViewPort structure

o Set the DUALPF (and possibly the PFBA) bit in the ViewPort Modes variable

o Call MakeVPortO

o Call MrgCopO

For display purposes, each of the two BitMaps is assigned to a separate playfield display.

To draw separately into the BitMaps, you must also assign these BitMaps to two separate
RastPorts. The section called "Initializing the RastPort" shows you how to use a RastPort
data structure to control your drawing routines.

CREATING A DOUBLE-BUFFERED DISPLAY

To produce smooth animation or other such effects, it is occasionally necessary to dou ble- buffer
your display. To prevent the user from seeing your graphics rendering while it is in progress,
you will want to draw into one memory area while actually displaying a different area.

Double-buffering consists of creating two separate display areas and two sets of pointers to those
areas for a single View.

To create a double-buffered display, you must perform these actions:

o Allocate two BitMap structures

o Allocate one RasInfo structure

o Allocate one ViewPort structure

o Allocate one View structure

o Initialize each BitMap structure to describe one drawing area and allocate memory for
the bit-planes themselves

o Create a pointer for each BitMap

32 Graphics Primitives

o Create a pointer for the View long-frame Copper list (LOFCprList) and short-frame
Copper list (SHFCprList) for each of two alternate display fields. The SHFCprList
is for interlaced displays.

o Initialize the RasInfo structure, setting the BitMap pointer to point to one of the two
BitMaps you have created

o Call MakeVPortO

o Call MrgCopO

o Call LoadViewO

When you call MrgCopO, the system uses all of the information you have provided in the vari
ous data structures to create a list of instructions for the Copper to execute. This list tells the
Copper how to split the display and how to specify colors for the various portions of the
display. When the steps shown above have been completed, the system will have allocated
memory for a long-frame (LOF) Copper list and a short-frame (SHF) Copper list and will have
set pointers called LOFCprList and SOFCprList in the View structure. The long-frame
Copper list is normally used for all non-interlaced displays, and the short-frame Copper list is
used only when interlaced mode is turned on. The pointers point to the two sets of Copper
instructions.

The LOFCprList and SHFCprList pointers are initialized when MrgCopO is called. The
instruction stream referenced by these pointers includes references to the first BitMap.

You must now do the following:

o Save the current values in back-up pointers and set the values of LOFCprList and
SHFCprlist in the View structure to zero. When you next perform MrgCopO, the
system automatically allocates another memory area to hold a new list of instructions
for the Copper.

o Install the pointer to the other BitMap structure in the RasInfo structure before your
call to MakeVPortO, and then call MakeVPort and MrgCop.

Now you have created two sets of instruction streams for the Copper, one of which you have
saved in a pair of pointer variables. The other has been newly created and is in the View
structure. You can save this new set of pointers as well, swapping in the set that you want to
use for display, while drawing into the BitMap that is not on the display. Remember that you
will have to call FreeCprListO on both sets of Copper lists when you have finished.

Graphics Primitives 33

HOLD-AND-MODIFY MODE

In hold-and-modify mode you can create a single-playfield display in which 4,096 different colors
can be displayed simultaneously. This requires that your ViewPort be defined using six bit
planes and that you set the HAM bit in the ViewPort Modes variable.

When you draw into the BitMap associated with this ViewPort, you can choose one of four
different ways of drawing into the BitMap. (Drawing into a BitMap is shown in the next sec
tion, "Drawing Routines.") If you draw using color numbers 0-15, the pixel you draw will
appear in the color specified in that particular system color register. If you draw with any other
color value from 16-31, the color displayed depends on the color of the pixel that is to the
immediate left of this pixel on the screen. For example, hold constant the contents of the red
and the green parts of the previously produced color, and take the rest of the bits of this new
pixel's color register number as the new contents for the blue part of the color. Hold-and
modify means hold part and modify part of the preceding defined pixel's color.

Note that a particular hold-and-modify pixel can only change one of the three color values at a
time. Thus, the effect has a limited control.

In hold-and-modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify the way
bits from planes 1 - 4 are treated, as follows:

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color
selection procedure is followed. Thus, the bit combinations from planes 4 - 1, in that
order of significance, are used to choose one of 16 color registers (registers 0-15).

If only five bit-planes are used, the data from the sixth plane is automatically supplied
with the value as 0.

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used
to replace the four "blue" bits in the pixel color without changing the value in any color
register.

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used
to replace the four "red" bits.

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used
to replace the four "green" bits.

o At the leftmost edge of each line, hold-and-modify begins with the background color.
The color choice does not carryover from the preceding line.

34 Graphics Primitives

Drawing Routines

Most of the graphics drawing routines require information about how the drawing is to take
place. For this reason, the graphics support routines provide a data structure called a
RastPort, which contains information essential to the graphics drawing functions. In using
most of the drawing functions, you must pass them a pointer to your RastPort structure. As
sociated with the RastPort is another data structure called a BitMap, which contains a
description of the organization of the data in the drawing area.

INITIALIZING A BITMAP STRUCTURE

The RastPort contains information for controlling the drawing. In order to use the graphics,
you also need to tell the system the memory area location where the drawing will occur. You
do this by initializing a BitMap structure, defining the characteristics of the drawing area, as
shown in the following example. This was already shown in the section called "Forming a Basic
Display," but it is repeated here because it relates to drawing as well as to display routines.
You need not necessarily use the same BitMap for both the drawing and the display.

struct BitMap myBitMap;
SHORT depth = 3;/* max of eight colors ... going to need three

* bit-planes to represent this number of colors * /
SHORT width = 320;
SHOR T height = 200;

InitBitMap(&myBitMap, depth, width, height);

INITIALIZING A RASTPORT STRUCTURE

Before you can use a RastPort for drawing, you must initialize it. Here is a sample initializa
tion sequence:

struct RastPort myRastPort;
InitRastPort(&my RastPort);

/ * now link together the BitMap and the RastPort * /
myRastPort.BitMap = &myBitMap;

Note that you cannot perform the link until after the RastPort has been initialized.

Graphics Primitives 35

The RastPort data structure can be found in the include files rastport.h and rastport.i. It con
tains the following information:

o Drawing pens

o Drawing modes

o Patterns

o Text attributes and font information

o Area-filling information

o Graphics elements information for animation

o Current pen position

o A write mask

o Some graphics private data

o A pointer for user extensions

The following sections explain each of the items in the RastPort structure.

Drawing Pens

The Amiga has three different drawing "pens" associated with the graphics drawing routines.
These are:

o FgPen-the foreground or pnmary drawing pen. For historical reasons, it IS also
called the A-Pen.

o BgPen-the background or secondary drawing pen. For historical reasons, it is also
called the B-Pen.

o AOIPen-the area outline pen. For historical reasons, it is also called the O-Pen.

A drawing pen variable in the RastPort contains the current value (range 0-255) for a particu
lar color choice. This value represents a color register number whose contents are to be used in
rendering a particular type of image. In essence, the bits of a "pen" determine which bit-planes
are affected when a color is written into a pixel (as determined by the drawing mode and
modified by the pattern variables and the write mask as described below). The drawing rou
tines support BitMaps up to eight planes deep, allowing for future expansion in the hardware.

36 Graphics Primitives

Note: The Amiga 1000 contains only 32 color registers. Any range beyond that repeats the
colors in 0-31. For example, pen numbers 32-63 refer to the colors in registers 0-31.

The color in FgPen is used as the primary drawing color for rendering lines and areas. This
pen is used when the drawing mode is JAMI (see the next section for drawing modes). JAM 1
specifies that only one color is to be "jammed" into the drawing area.

You establish the color for FgPen using the statement:

SetAPen(&myRastPort, newcolor);

The color in BgPen is used as the secondary drawing color for rendering lines and areas. If you
specify that the drawing mode is JAM2 (jamming two colors) and a pattern is being drawn, the
primary drawing color (FgPen) is used where there are Is in the pattern. The secondary draw
ing color (BgPen) is used where there are Os in the pattern.

You establish the drawing color for BgPen using the statement:

SetBPen(&myRastPort, newcolor);

The area outline pen AOIPEm is used in two applications: area fill and flood fill. (See "Area
Fill Operations" below.) In area fill, you can specify that an area, once filled, can be outlined in
this AOIPen color. In flood fill (in one of its operating modes) you can fill until the flood-filler
hits a pixel of the color specified in this pen variable.

You establish the drawing color for AOIPen using the statement:

SetOPen(&myRastPort, new color);

Drawing Modes

Four drawing modes may be specified:

JAM 1

JAM2

Whenever you execute a graphics drawing command, one color is jammed into
the target drawing area. You use only the primary drawing pen color, and for
each pixel drawn, you replace the color at that location with the FgPen color.

Whenever you execute a graphics drawing command, two colors are jammed into
the target drawing area. This mode tells the system that the pattern variables
(both line pattern and area pattern-see the next section) are to be used for the
drawing. Wherever there is a 1 bit in the pattern variable, the FgPen color re
places the color of the pixel at the drawing position. Wherever there is a 0 bit in
the pattern variable, the BgPen color is used.

Graphics Primitives 37

COMPLEMENT
For each 1 bit in the the pattern, the corresponding bit in the target area IS

complemented-that is, its state is reversed. As with all other drawing modes,
the write mask can be used to protect specific bit-planes from being modified.
Complement mode is often used for drawing and then erasing lines.

INVERSEVID
This is the drawing mode used primarily for text. If the drawing mode is
(JAMI I INVERSEVID), the text appears as a transparent letter surrounded by
the FgPen color. If the drawing mode is (JAM21 INVERSEVID), the text ap
pears as in (JAMll INVERSEVID) except that the BgPen color is used to draw
the text character itself. In this mode, the roles of FgPen and BgPen are
effectively reversed.

You set the drawing modes using the statement:

SetDrMd(&myRastPort, newmode);

Patterns

The RastP()rt data structure provides two different pattern variables that it uses during the
various drawing functions: a line pattern and an area pattern. The line pattern is 16 bits wide
and is applied to all lines. When you initialize a RastPort, this line pattern value is set to all
Is (hex FFFF), so that solid lines are drawn. You can also set this pattern to other values to
draw dotted lines if you wish. For example, you can establish a dotted line pattern with the
statement:

SetDrPt(&myRastPort, Oxcccc);

where "cccc" is a bit-pattern, 1100110011001100, to be applied to all lines drawn. If you draw
multiple, connected lines, the pattern cleanly connects all the points.

The area pattern is 16 bits wide and its height is some power of two. This means that you can
define patterns in heights of 1, 2, 4, 8, 16, and so on. To tell the system how large a pattern
you are providing, include this statemen t:

SetAfPt(&myRastPort, &myAreaPattern, power_oCtwo);

where &myAreaPattern is the address of the first word of the area pattern and
power _of_two specifies how many words are in the pattern. For example:

38 Graphics Primitives

USHORT myAreaPattern[] = {
OxffOO,
OxffOO,
OxOOff,
OxOOff,
OxfOfO,
OxfOfO,
OxOfOf,
OxOfOf

};

SetAfPt(&myRastPort, &myAreaPattern, 3);

This example produces a pattern that is a large checkerboard above a small checkerboard.
Because power_of_two is set to 3, the pattern is 2 to the 3rd, or 8, rows high.

Pattern Positioning

The pattern is always positioned with respect to the upper left corner of the RastPort drawing
area (the 0,0 coordinate). If you draw two rectangles whose edges are adjacent, the pattern will
be continuous across the rectangle boundaries.

Multicolored Patterns

The last example above produces a two-color pattern with one color where there are Is and the
other color where there are Os in the pattern. A special mode allows you to develop a pattern
having up to 256 colors. To create this effect, specify power _of_two as a negative value
instead of a positive value.

The following initialization establishes an 8-color checkerboard pattern where each square in the
checkerboard has a different color. The checkerboard is 2 squares wide by 4 squares high.

USHORT myAreaPattern[3][8] = {
{

},

OxOOOO,
OxOOOO,
Oxffff,
Oxffff,
OxOOOO,
OxOOOO,
Oxffff,
Oxffff,

/ * plane 0 pattern * /

Graphics Primitives 39

};

{

},
{

{

OxOOOO,
OxOOOO,
OxOOOO,
OxOOOO,
Oxffff,
Oxffff,
Oxffff,
Oxffff,

OxffOO,
OxffOO,
OxffOO,
OxffOO,
OxffOO,
OxifOO,
OxffOO,
OxifOO

/ * plane 1 pattern * /

/ * plane 2 pattern * /

SetAfPt(&myRastPort, &myAreaPattern, -3);

/ * when doing this, it is best to set three other parameters as follows: * /
SetAPen(&myRastPort, 255);
SetBPen(&myRastPort, 0);
SetDrMd(&myRastPort, JAM2);

If you use this multicolored pattern mode, you must provide as many planes of pattern data as
there are planes in your BitMap.

Text Attributes

Text attributes and font information are set by calls to the font routines. These are covered
separately in chapter 4, "Text."

40 Graphics Primitives

Area-fill Information

Two structures in the RastPort-AreaInfo and TmpRas-define certain information for
area filling operations. The AreaInfo pointer is initialized by a call to the routine InitAreaO.

InitArea (&myRastPort, &areabuffer, count);

To use area fill, you must first provide a work space in memory for the system to store the list
of points that define your area. You must allow a storage space of 5 bytes per vertex. To
create the areas in the work space, you use the functions AreaMoveO, AreaDrawO, and
AreaEndO·

Typically, you prepare the RastPort for area-filling using a sequence like the following:

UWORD areabuffer [250];
/* allow up to 100 vertices in the definition of an area * /

InitArea (&myRastPort, &areabuffer[O], 100);

The area buffer must start on a word boundary. That is why the sample declaration shows
areabuffer as composed of unsigned words (250), rather than unsigned bytes (500). It still
reserves the same amount of space, but aligns the data space correctly.

In addition to the AreaInfo structure in the RastPort, you must also provide the system with
some work space to build the object whose vertices you are going to define. This requires that
you initialize a TmpRas structure, then point to that structure for your RastPort to use.

Here is sample code that builds and initializes a TmpRas. Note that the area to which
TmpRas.RasPtr points must be at least as large as the area (width times height) of the larg
est rectangular region you plan to fill. Typically, you allocate a space as large as a single bit
plane (usually 320 by 200 bits for low-resolution mode, 640 by 200 bits for high-resolution
mode).

PLANEPTR myplane;
myplane = AllocRaster(320,200); / * get some space * /
if (myplane == 0) exit(l); /* stop if no space */
my RastPort. TmpRas= InitTmpRas(&myTmpRas,

myplane,RASSIZE(320,200»;

When you use functions that dynamically allocate memory from the system, you must
remember to return these memory blocks to the system before your program exits. See the
description of FreeRasterO in the "Library Summaries" appendix.

Graphics Primitives 41

Graphics Element Pointer

The graphics element pointer in the RastPort structure is called GelsInfo. If you are doing
graphics animation using the GELS system, this pointer must refer to a properly initialized
GelsInfo structure. See chapter 3, "Animation," for more information.

Current Pen Position

The graphics drawing routines keep the current position of the drawing pen in the variables
cp_x and cps, for the horizontal and vertical positions, respectively. The coordinate location
0,0 is in the upper left corner of the drawing area. The x value increases proceeding to the
right; the y value increases proceeding toward the bottom of the drawing area.

Write Mask

The write mask is a RastPort variable that determines which of the bit-planes are currently
writable. For most applications, this variable contains all Is (hex fr). This means that all bit
planes defined in the BitMap are affected by a graphics writing operation. You can selectively
disable one or more bit-planes by simply specifying a ° bit in that specific position in the control
byte. For example:

myRastPort.Mask = OxFB; / * disable bit-plane 2 * /

USING THE GRAPHICS DRAWING ROUTINES

This section shows you how to use the Amiga drawing routines. All of these routines work
either on their own or with the windowing system and layer library. See chapter 2, "Layers,"
or Intuition: The Amiga User Interface for details about using the layer library and windows.

As you read this section, keep in mind that to use the drawing routines, you need to pass them
a pointer to a RastPort. You can define the RastPort directly, as shown in the sample pro
gram segments in preceding sections, or you can get a RastPort from your Window structure
using code like the following:

struct Window *Wj
struct RastPort *usableRastPort;

/* and then, after your Window is initialized ... */
usableRastPort = w- > RastPort;

42 Graphics Primitives

You can also get the RastPort from the layer structure, if you are not using In tuition.

Drawing Individual Pixels

You can set a specific pixel to a desired color by using a statemen t like this:

int result;
result = WritePixel(&myRastPort, x, y);

WritePixelO uses the primary drawing pen and changes the pixel at that x,y position to the
desired color if the X,y coordinate falls within the boundaries of the RastPort. A value of 0 is
returned if the write was successful; a value of -1 is returned if X,Y was outside the range of the
RastPort.

Reading Individual Pixels

You can determine the color of a specific pixel with a statement like this:

int result;
result = ReadPixel(&myRastPort, x, y);

ReadPixelO returns the value of the pixel color selector (from 0 to 255) at the specified X,y
location. If you specify an X,y outside the range of your RastPort, this function returns a
value of -1.

Drawing Lines

Two functions are associated with line drawing: MoveO and DrawO. MoveO simply moves
the cursor to a new position. It is like picking up a drawing pen and placing it at a new loca
tion. This function is executed by the statement:

Move(&myRastPort, x, y);

DrawO draws a line from the current X,y position to a new X,y position specified in the state
ment itself. The drawing PM is left at the new position. This is done by the statement:

Draw(&myRastPort, x, y);

Graphics Primitives 43

DrawO uses the pen color specified for FgPen. Here is a sample sequence that draws a red
line from location (0,0) to (100,50). Assume that the value in color register 2 represents red.

SetAPen(&myRastPort, 2);
Move(&myRastPort, 0, 0);
Draw(&myRastPort, 100,50);

/ * make primary pen red * /
/ * move to new location * /
/* draw to a new location */

Caution: If you attempt to draw a line outside the bounds of the BitMap, using
the basic initialized RastPort, you may crash the system. You must either do your
own software clipping to assure that the line is in range, or use the layer library.
Software clipping means that you need to determine if the line will fall outside your
BitMap before you draw it.

Drawing Patterned Lines

To turn the example above into a patterned line draw, simply add the following statement:

SetDrPt(&myRastPort, Oxaaaa);

Now all lines drawn appear as dotted lines. To resume drawing solid lines, execute the
statement:

SetDrPt(&myRastPort, -1);

Drawing Multiple Lines with a Single Command

You can use multiple DrawO statements to draw connected line figures. If the shapes are all
definable as interconnected, continuous lines, you can use a simpler function, called
PolyDrawO. PolyDrawO takes a set of line endpoints and draws a shape using these points.
You call PolyDrawO with the statement:

PolyDraw(&myRastPort, count, arraypointer);

PolyDrawO reads an array of points and draws a line from the current pen position to the
first, then a connecting line to each succeeding position in the array until count points have
been drawn. This function uses the current drawing mode, pens, line pattern, and write mask
specified in the target RastPort; for example:

44 Graphics Primitives

SHORT linearray[] = {
3,3,
15,3,
15,15,
3,15,
3,3

};
PolyDraw(&myRastPort, 5, &linearray[O]);

draws a rectangle, using the five defined pairs of x,y coordinates.

Area-fill Operations

Assuming that you have properly initialized your RastPort structure to include a properly ini
tialized Arealnfo, you can perform area fill by using the functions described in this section.

AreaMoveO tells the system to begin a new polygon, closing off any other polygon that may
already be in process by connecting the end-point of the previous polygon to its starting point.
AreaMoveO is executed with the statement:

"

AreaMove(&myRastPort, x, y);

AreaDrawO tells the system to add a new vertex to a list that it is building. No drawing
takes place when AreaDrawO is executed. It is executed with the statement:

AreaDraw(&myRastPort, x, y);

AreaEndO tells the system to draw all of the defined shapes and fill them. When this function
is executed, it obeys the drawing mode and uses the line pattern and area pattern specified in
your RastPort to render the objects you have defined. Note that to fill an area, you do not
have to AreaDrawO back to the first point before calling AreaEndO. AreaEndO automati
cally closes the polygon. AreaEndO is executed with the following statement:

AreaEnd(&myRastPort);

Here is a sample program segment that includes the Arealnfo initialization. It draws a pair of
disconnected triangles, using the currently defined FgPen, BgPen, AOIPen, DrawMode,
LinePtrn, and AreaPtrn:

WORD areabuffer[250];
struct RastPort *rp;

Graphics Primitives 45

struct TmpRas tmpras;
struct Arealnfo myArealnfo;

InitArea(&myArealnfo, areabuffer, 100);
rp->Arealnfo = &myArealnfo;
rp->TmpRas = InitTmpRas(&tmpras, AllocRaster(320,200), RASSIZE(320,200);

/ * Area routines need a temporary raster buffer at least as large as the
* largest object to be drawn. If a single task uses multiple RastPorts,
* it is sometimes possible to share the same TmpRas structure among
* multiple RastPorts. Multiple tasks, however, cannot share a TmpRas,
* as each task won't know when another task has a drawing partially
* completed.

*/

AreaMove(rp, 0,0);
AreaDraw(rp, 0,100);
AreaDraw(rp, 100,100);

AreaMove(rp, 50,10);
AreaDraw(rp, 50,50);
AreaDraw(rp, 100,50);

AreaEnd (rp);

If you had executed the statement "SetOPen(&myRastPort, 3)" in the area-fill example, then
the areas that you had defined would have been outlined in pen color 3. To turn off the outline
function, you have to set the RastPort Flags variable back to 0 by:

#include "graphics/gfxmacros.h"

BNDRYOFF(&myRastPort);

Otherwise, every su bsequent area-fill or rectangle-fill operation will use the ou tline pen.

Caution: If you attempt to fill an area outside the bounds of the BitMap, using the
basic initialized RastPort, it may crash the system. You must either do your own
software clipping to assure that the area is in range, or use the layer library.

46 Graphics Primitives

Flood-fill Operations

Flood fill is a technique for filling an arbitrary shape with a color. The Amiga flood-fill routines
can use a plain color or do the fill using a combination of the drawing mode, FgPen, BgPen,
and the area pattern.

There are two different modes for flood fill:

o In outline mode you specify an x,y coordinate, and from that point the system searches
outward in all directions for a pixel whose color is the same as that specified in the area
outline pen. All horizontally or vertically adjacent pixels not of that color are filled
with a colored pattern or plain color. The fill stops at the outline color. Outline mode
is selected when the mode variable is a O.

o In color mode you specify an x,y coordinate, and whatever pixel color is found at that
position defines the area to be filled. The system searches for all horizontally or verti
cally adjacent pixels whose color is the same as this one and replaces them with the
colored pattern or plain color. Color mode is selected when the mode variable is a 1.

You use the FloodO routine for flood fill. The syntax for this routine follows.

Flood(rp, mode, x, y);

where

rp is a pointer to the RastPort

x,y is the starting coordinate in the BitMap

mode tells how to do the fill

The following sample program fragment creates and then flood-fills a triangular region. The
overall effect is exactly the same as shown in the preceding area-fill example above, except that
flood-fill is slightly slower than area-fill. Mode 0 (fill to a pixel that has the color of the outline
pen) is used in the example.

Graphics Primitives 47

oldAPen = myRastPort.FgPen;
SetAPen(&myRastPort, myRastPort.AOIPen);
/* using mode 0 */
/ * triangular shape * /
Move(&myRastPort, 0, 0);
Draw(&myRastPort, 0, 100);
Draw(&myRastPort, 100, 100);
Draw(&myRastPort, 0, 0); /* close it */

SetAPen(&myRastPort, oldAPen);
Flood(&myRastPort, 0, 10,50);

This example saves the current FgPen value and draws the shape in the same color as
AOIPen. Then FgPen is restored to its original color so that FgPen, BgPen, DrawMode,
and AreaPtrn can be used to define the fill within the outline.

Rectangle-fill Operations

The final fill function, RectFillO, is for filling rectangular areas. The form of this function
follows:

RectFill(rp, xmin, ymin, xmax, ymax);

where

xmin and ymin
represent the upper left corner of the rectangle

xmax and ymax
represent the lower right corner of the rectangle

rp points to the RastPort that receives the filled rectangle

Rectangle-fill uses FgPen, BgPen, AOIPen, DrawMode and AreaPtrn to fill the area you
specify. Remember that the fill can be multicolored as well as single- or two-colored.

The following three sets of statements perform exactly the same function:

48 Graphics Primitives

/* area-fill a rectangular area * /
SetAPen(rp,l);
SetOPen(rp,3);
AreaMove(rp,O,O);
AreaDraw(rp,O,lOO);
AreaDraw(rp,lOO,lOO);
AreaDraw(rp,lOO,O);
AreaEnd(rp);

/* flood-fill a rectangular area * /
SetAPen(rp,3);
SetOPen(rp,3);
Move(rp,O,O);
Draw(rp,O,lOO);
Draw(rp,lOO,lOO);
Draw(rp,lOO,O);
Draw(rp,O,O);
SetAPen(rp,l);
Flood(rp,0,50 ,50);

/ * rectangle-fill a rectangular area * /
SetAPen(rp,l);
SetOPen(rp,3);
Rectfill(rp,O,O, 1 00,100);

Not only is the RectFillO routine the shortest, it is also the fastest to execute.

Data Move Operations

The graphics support functions include several routines for simplifying the handling of the rec
tangularly organized data that you would encounter when doing raster-based graphics. These
routines do the following:

Graphics Primitives 49

o Clear an entire segment of memory

o Set a raster to a specific color

o Scroll a su brectangle of a raster

o Draw a pattern "through a stencil"

o Extract a pattern from a bit-packed array and draw it into a raster

o Copy rectangular regions from one bit-map to another

o Control and utilize the hardware-based data mover, the blitter

The following sections cover these routines in detail.

Clearing a Memory Area

For memory that is accessible to the blitter (that is, internal CHIP memory), the most efficient
way to clear a range of memory is to use the blitter. You use the blitter to clear a block of
memory with the statement:

BltClear(memblock, bytecount, flags);

where memblock is a pointer to the location of the first byte to be cleared, and bytecount is
the number of bytes to set to zero.

This command accepts the starting location and court and clears that block to zeros. For the
meanings of settings of the flags variable, see the summary page for this routine in the "Library
Summaries" appendix.

Setting a Whole Raster to a Color

You can preset a whole raster to a single color by using the function SetRastO. A call to this
function takes the following form:

SetRast(RastPort, pen);

where

50 Graphics Primitives

RastPort
is a pointer to the RastPort you wish to use

pen
is the pen value that you wish to fill that RastPort

Scrolling a Sub-rectangle of a Raster

You can scroll a su b- rectangle of a raster in any direction - up, down, left, right, or diagonally.
To perform a scroll, you use the ScrollRasterO routine and specify a dx and dy (delta-x,
delta-y) by which the rectangle image should be moved towards the (0,0) location.

As a result of this operation, the data within the rectangle will become physically smaller by the
size of delta-x and delta-y, and the area vacated by the data when it has been cropped and
moved is filled with the background color (color in BgPen).

Here is the syntax of the ScrollRasterO function:

ScrollRaster(rp, dx, dy, xmin, ymin, xmas, ymax);

where

rp is a pointer to a RastPort

dx, dy
are the distances (positive, 0, or negative) to move the rectangle

xmin, xmax, ymin, yIhax
specify the outer bounds of the sub-rectangle

Here are some examples that scroll a sub-rectangle:

/ * scroll down 2 * /
ScrollRaster(&myRastPort,O,2,lO,lO,50,50);

/* scroll right 1 */
ScrollRaster(&myRastPort,1,O,lO,lO,50,50);

Graphics Primitives 51

Drawing through a Stencil

The routine BltPatternO allows you to change only a very selective portion of a drawing area.
Basically, this rou tine lets you define the rectap.gular region to be affected by this drawing
operation and a mask of the same size that defines how that area will be affected.

Figure 1-17 shows an example of what you can do with BltPatternO. The 0 bits are
represented by blank rectangles; the 1 bits by filled-in rectangles.

Mask contains: Result of BitPattern(): Drawing area contains:

Figure 1-17: Example of Drawing Through a Stencil

In the "Result" drawing, the lighter squares show where the target drawing area has been
affected. 'Exactly what goes into the drawing area where the mask has 1 's is determined by your
FgPen, BgPen, DrawMode, and AreaPtrn.

The variables that control this function are:

rastport a pointer to the drawing area

mask a pointer to the mask (mask layout explained below)

xl, maxx upper left corner x, and lower right corner x

52 Graphics Primitives

yl, maxy upper left corner y, and lower right corner y

bytecnt number of bytes per row for the mask (must be an even number of bytes)

You call BltPatternO with:

BltPattern(rastport, mask, xl, yl, maxx, maxy, bytecnt)

The mask parameter is a rectangularly organized, contiguously stored pattern. This means
that the pattern is stored in linearly increasing memory locations stored as (maxy - yl) rows of
bytecnt bytes per row.

Note: These patterns must obey the same rules as BitMaps. This means that they must con
sist of an even number of bytes per row. For example, a mask such as:

0100001000000000
0010010000000000
0001100000000000
0010010000000000

is stored in memory beginning at a legal word address.

Extracting from a Bit-packed Array

You use the routine BltTemplateO to extract a rectangular area from a source area and place
it into a destination area. Figure 1-18 shows an example.

Graphics Primitives 53

Array start:
line end+1

Line end (first line)

..................................... ~

Character starts n-bits in from starting point
on the left edge of the array.

Figure 1-18: Example of Extracting from a Bit-Packed Array

If the rectangular bit array is to be represented as a rectangle within a larger, rectangularly
organized bit array, the system must know how the larger array is organized. This allows the
system to extract each line of the object properly. For this extraction to occur properly, you
need to tell the system the modulo for the array. The modulo is the value that must be added
to the address pointer sO that it points to the correct word in the next line in this rectangularly
organized array.

Figure 1-19 represents a single bit-plane and the smaller rectangle to be extracted. The modulo
in this instance is 4, because at the end of each line, you must add 4 to the address pointer to
make it point to the first word in the smaller rectangle.

20 21 22 23

27 28 29 30

34 35 36 37

41 42 43 44

48 49 50 51

55 56 57 58

54 Graphics Primitives

24 25 26 ..
31 32 33

38 39 40

45 46 47

52 53 54

59 60 61

Figure 1-19: Modulo

Larger source
bit-plane image

Smaller rectangle
to be extracted.

Note that the modulo value must be an even number of bytes.

BltTemplateO takes the following arguments:

source the source pointer for the array

srcX source X (bit position) in the array at which the rectangle begins

srcMod source modulo so it can find the next part of the source rectangle

destRastPort the destination RastPort

destX, destY destination x and y, showing where to put the rectangle

sizeX, size Y size x and y, indicating how much data to move

You call BltTemplateO with:

BltTemplate(source, srcX, srcMod, destRastPort, destX, destY, sizeX, sizeY);

BltTemplateO uses FgPen, BgPen, DrawMode and Mask to place the template into the
destination area. This routine differs from BltPatternO in that only a solid color is deposited
in the destination drawing area, with or without a second solid color as the background (as in
the case of text). Also, the template can be arbitrarily bit-aligned and sized in x.

Copying Rectangular Areas

Two rou tines copy rectangular areas from one section of chip memory to
another: BltBitMapO and ClipBlitO. BltBitMapO is the basic routine, taking BitMaps as
part of its arguments. It allows you to define a rectangle in a source region and copy it to a
destination area of the same size elsewhere in memory. This routine is often used in graphics
rendering.

ClipBlitO takes most of the same arguments, but it works with the RastPorts and layers.
Before ClipBlitO moves data, it looks at the area from which and to which the data is being
copied (RastPorts, not BitMaps) and determines if there are overlapping areas involved. It
then splits up the overall operation into a number of bit maps to move the data in the way you
request.

Here is a sample call to ClipBlitO. This call is used in an image editor to transfer a rectangu
lar block of data from the screen to a back-up area.

Graphics Primitives 55

ClipBlit(&rastport,
x,y,
&undorastport,

0,0,
SIZEx,SIZEy
minterm);

/ * on-screen area * /
/ * upper left corner of rectangle * /
/ * screen editor can undo things, has
* a RastPort specifically for undo * /
/ * upper left corner of destination * /
/ * how big is the rectangle * /

The minterm variable is an unsigned byte value whose leftmost 4 bits represent the action to
be performed during the move. This routine uses the blitter device to move the data and can
therefore logically combine or change the data as the move is made. The most common opera
tion is a direct copy from source area to destination, which is the hex value CO.

You can determine how to set the minterm variable by using the logic equations shown In

table 1-5.

Table 1-5: Minterm Logic Equations

Logic Term
in Leftmost 4 Bits

8

4

2

1

Logic Term Included
in Final Output

BC

BC

Source B contains the data from the source rectangle, and source C contains the data from the
destination area. If you choose bits 8 and 4 from the logic terms (CO), in the final destination
area you will have data that occurs in source B only. Thus, CO means a direct copy. The logic
equation for this is:

BC + BC = B (C + C) = B

Logic equations may be used to decide on a number of different ways of moving the data. For
your convenience, a few of the most common ones are listed in table 1-6.

56 Graphics Primitives

Table 1-6: Some Common Logic Equations for Copying

Hex
Value Mode

30 Replace destination area with inverted source B.

50 Replace destination area with inverted version
of original of destination.

60 Pu t B where C is not, put C where B is not (cookie cut).

80 Only put bits into destination where there is
a bit in the same position for both source
and destination (sieve operation).

Refer to the listing for BltBitMapO in the "Library Summaries" index.

Accessing the Blitter in a Multitasking Environment

To use the blitter, you must first be familiar with how its registers control its operation. This
topic is covered thoroughly in the Amiga Hardware Reference Manual and is not repeated here.

Four routines may be used to gain access to the blitter:

o OwnBlitterO allows your task to obtain exclusive use of the blitter. Note, however,
that the system uses the blitter extensively for disk and display operation. While your
task is using the blitter, many other system processes will be locked out. Therefore, use
it only for brief periods and relinquish it as quickly as possible, using DisownBlitterO.

o DisownBlitterO returns the device to shared operation.

o QBlitO and QBSBlitO let your task queue up requests for the use of the blitter on a
non-exclusive basis. You share the blitter with system tasks.

You provide a data structure called a bltnode (blitter node). The system can use this structure
to link blitter usage requests into a first-in, first-out (FIFO) queue. When your turn comes,
your own blitter routine can be repeatedly called until your routine says it is finished using the
blitter.

Two separate queues are formed. One queue is for the QBlitO routine. You use QBlitO when
you simply want something done and you do not necessarily care when it happens. This may
be the case when you are moving data in a memory area that is not currently being displayed.

Graphics Primitives 57

The second queue is maintained for QBSBlitO. QBS stands for "queue-beam-synchronized"
blitter operations. QBSBlitO forms a beam-synchronized FIFO. When the video beam gets to
a predetermined position, your routine is called. Beam synchronization takes precedence over
the simple FIFO. This means that if the beam sync matches, the beam-synchronous blit will be
done before the non-synchronous blit in the first position in the queue. You might use
QBSBlitO to draw into an area of memory that is currently being displayed to modify memory
that has already been "passed-over" by the video beam. This avoids display flicker as an area
is being updated.

The input to each routine is a pointer to a bltnode data structure. The required items of the
data structure are:

o A poin ter to a bltnode

o A pointer to a function to perform

o A beamsync value (used if this is a beamsync blit)

o A status flag indicating whether the blitter control should perform a "clean-up" routine
when the last blit is finished

o The address of the clean-up routine if the status flag states that it should be used

The bltnode data structure is contained in the include file hardware/blit.h. Here is a copy of
that data structure, followed by details about the items you must initialize:

struct bltnode
{

struct bltnode *n;
int (*funetion)();
char stat;
short blitsize;
short beamsync;
int (*cleanup)();

};

The contents of bltnode are as follows:

struct bltnode *n;

This is a pointer to the next bltnode, which, for most applications will be zero. You
should not link bltnodes together. This is to be performed by the system by way of a
separate call to QBlitO or QBSBlitO .

.58 Graphics Primitives

int (*function)();

This position is occupied by the address of a function that the blitter queuer will call
when your turn comes up. Your routine must be formed as a subroutine, with an RTS
at the end. Using the C-language convention, the returned value will be in DO (C
returns its value by the return(value) statement).

If you return a nonzero value, the system will call your routine the next time the blitter
is done until you finally return o. This is to allow you to maintain control over the
blitter; for example, it allows you to handle all five bit-planes if you are blitting an
object that spans that number of planes. For display purposes, if you are blitting mul
tiple objects and then saving and restoring the background, you must be sure that all
planes of the object are positioned before another object is overlaid. This is the reason
for the lockup in the blitter queue; it allows all work per object to be completed before
going on to the next one.

Actually, the system tests the status codes for a condition of EQUAL or NOTEQUAL.
When the C language returns the value of 0, it sets the status codes to EQUAL. When
it returns a value of -1, it sets the status codes to NOTEQUAL, so they would be com
patible. Functions (*function)()) that are written for QBlitO and QBSBlitO are not
normally written in C. They are usually written in assembly language, as they then can
take advantage of the ability of the queue routines to pass them parameters in the sys
tem registers. The register passing conventions for these routines are as follows:

o Register AO receives a pointer to the system hardware registers so that all hardware
registers can be referenced as an offset from that address.

o Register Al con tain~ a pointer to the current bltnode. You may have queued up
multiple blits, each of which perhaps uses the same blitter routine. You can access
the data for this particular operation as an offset from the value in AI. A typical
user of these routines will precalculate the hardware register values that are stuffed
into the registers and, during the routine, simply stuff them. For example, you can
create a new structure such as the following: '

Graphics Primitives 59

struct myblit {
struct bltnode; / * make this new structure

* compatible with the bltnode
* by making it the first element * /

short bltconl; /* contents to be stuffed into
* blitter control register 1 * /

short fwmask,lwmask;
/ * first and last word masks * /

short bltmdc, bltmdb, bltmda;
/ * mod ulos for sources a, b,and c * /

char * bltpta, * bltptb, * bltptc;
/ * pointer to source data for sources * /

};

Other forms of data structures are certainly possible, but this should give you the gen
eral idea.

char stat;

Tells the system whether or not to execute the clean-up routine at the end. This byte
should be set to CLEANUP (Ox40) if cleanup is to be performed. If not, then the
bltnode cleanup variable can be zero.

short beamsync;

The value that should be in the VBEAM counter for use during a beam-synchronous
blit before the functionO is called.

The system cooperates with you in planning when to start a blit in the routine
QBSBlitO by not calling your routine until, for example, the video beam has already
passed by the area on the screen into which you are writing. This is especially useful
during single buffering of your displays. There may be time enough to write the object
between scans of the video display . You will not be visibly writing while the beam is
trying to scan the object. This avoids flicker (part of an old view of an object along
with part of a new view of the object).

int (*cleanup)O;

The address of a routine that is to be called after your last return from the QBlitO
routine. When you finally return a zero, the queuer will call this subroutine (ends in
RTS or returnO) as the clean-up. Your first entry to the function may have dynami
cally allocated some memory or may have done something that must be undone to
make for a clean exit. This routine must be specified.

60 Graphics Primitives

User Copper Lists

The Copper coprocessor allows you to produce mid-screen changes in certain hardware registers
in addition to changes that the system software already provides. For example, it is the Copper
that allows the Amiga to split the viewing area into multiple draggable screens, each with its
own independent set of colors.

To create your own mid-screen (or mid-In tuition-Screen) effects on the system hard ware regis
ters, you provide "user Copper lists" that can be merged into the system Copper lists.

In the ViewPort data structure there is a pointer named UCopIns. If this pointer value is
non-NULL, it points to a user Copper list that you have dynamically allocated and initialized to
con tain your own special hard ware-stuffing instructions. You allocate a user Copper list by an
instruction sequence such as the following:

struet UCopList *cl;

cl = (struet UCopList *)
AlloeMem(sizeof(struet UCopList), MEMF _PUBLIC I

MEMF _CHIP I MEMF _CLEAR);

Once this pointer to a user Copper list is available, you can use it with system macros
(graphics/ gfxmacros.h) to instruct the system what to add to its own list of things for the
Copper to do within a specific ViewPort.

The file graphics/ gfxmacros.h provides the following three macro functions that implement user
Copper instructions.

CWAIT waits for the video beam to reach a particular horizontal and vertical position. Its
format follows:

CWAIT(ue, v, h)

where

ue is the pointer to the Copper list

v is the vertical position for which to wait, specified relative to the top of the ViewPort.
The legal range of values is from 0 to 261.

h is the horizontal position for which to wait. The legal range of values is from 0 to 223

Graphics Primitives 61

CMOVE installs a particular value into a specified system register. Its format follows:

CMOVE(uc, reg, value)

where

uc is the pointer to the Copper list

reg is the register to be affected, specified in this form form: "custom. register" (see
hardware/ custom. h)

CEND terminates the user Copper list. Its format follows:

CEND(uc)

where uc is the pointer to the user Copper list.

Executing any of the user Copper list macros causes the system to dynamically allocate special
data structures called intermediate Copper lists that are linked into your user Copper list (the
list to which cl points) describing the operation. When you call the function
MakeVPort(&view, &viewport) as shown in the section called "Forming A Basic Display,"
the system uses all of its intermediate Copper lists to sort and merge together the real Copper
lists for the system (LOFCprList and SHFCprList).

When your program exits, you must return to the system all of the memory that you allocated
or caused to be allocated. This means that you must retl!rn the intermediate Copper lists, as
well as the user Copper list data structure. Here are two different methods for returning this
memory to the system.

/ * Returning memory to the system if you have NOT
* obtained the viewport from Intuition. * /

Free VP ortCopLists(&viewport);

/ * Returning memory to the system if you HAVE
* obtained the viewport from Intuition. * /

CloseScreen(screen); /* Intuition only */

62 Graphics Primitives

The example program below shows the use of user Copper lists under Intuition.

/* User-Copper-Lists Demo Program ... changes the background color
* in mid-screen.

*/

#define WINDOWGADGETS (WINDOWSIZING!WINDOWDRAG!
WINDOWDEPTH!WINDOWCLOSE)

#define WWIDTH 120
#define WHEIGHT 90
#define MAXINT OxFFFFFFFF

#include "exec/types.h"
#include "exec/memory.h"
#include <graphics/gfxmacros.h>
#include <graphics/ copper.h >
#include "in tuition/intuition .h"
#include <hardware/custom.h>

extern struct Window *Open WindowO;
extern struct Screen *OpenScreenO;

long IntuitionBase=O;
long GfxBase=O;

/* use the 40/80 column font for this test */

struct TextAttr TestFont = {
"topaz.font", 8, 0, 0

};

struct NewScreen ns = {
0, 0, /* start position * /
320, 200, 4, /* width, height, depth * /
0, 1, /* detail pen, block pen */
0, /* viewing mode */
CUSTOMSCREEN, / * screen type * /
&TestFont, /* font to use */
"Test Screen",/* default title for screen */
NULL /* pointer to additional gadgets * /

};

extern struct Custom custom;
/* provides a way to get to the base of the custom chips */

Graphics Primitives 63

mainO
{

struct Window *w;
struct RastPort *rp;
struct ViewPort *vp;
struct UCopList *cl;

/* pointer to a Window */
/* pointer to a RastPort */
/* pointer to a ViewPort */
/* user Copper list and a pointer to it. */

struct Screen *screen;
GfxBase = OpenLibrary("graphics.library", 0);
if (GfxBase == NULL)
{

exit(lOOO);
}
IntuitionBase = OpenLibrary("intuition.library", 0);
if (IntuitionBase == NULL)
{

}

CloseLibrary(GfxBase);
exit(2000);

screen = OpenScreen(&ns);
if(!screen)
{

goto cleanup;
}
else
{

}

vp = &screen- > ViewPort;
rp = &screen- > RastPort;

/* vl.l initialization, just use CINIT for v1.2 */

/* In this case, although WE allocated the memory for the user Copper list,
* the SYSTEM (Intuition) deallocates it when the custom screen is closed.
* Therefore there is no corresponding FreeMemO in this sample program.

*/
cl = AllocMem(sizeof(struct UCopList),MEMF _PUBLIC!MEMF _CLEAR);

CWAIT(cl,lOO,O); /* wait till middle of screen */
CMOVE(cl,custom.color[O]'OxFFF); /* change background color * /
CEND(cl);

/* Programmer can affect ANY of the system registers that the Copper has access to
* (see the Amiga Hardware Reference Manual) in this way. Simply note that the
* system may already be using these registers in some manner and that most of
* the system registers are either read-only or write-only, so you'll have to be

64 Graphics Primitives

* careful about what you are trying to affect.

*/
vp- > UCopIns = cl;

Delay(50); /* wait one second before changing anything * /

/* Now force a remake of the Copper list for all screens. */

RethinkDisplayO;

Delay(lOO);
CloseScreen(screen);

cleanup:

}

CloseLibrary(IntuitionBase);
CloseLibrary(GfxBase);

/* end of mainO */

Advanced Graphics Examples

DUAL-PLAYFIELDS EXAMPLE

This example is almost identical to the single-playfield demonstration program earlier in this
chapter. It has been adapted to show a dual-playfield display with objects drawn in both
playfields. The single playfield wrote directly into the screen's memory. This example adds a
RastPort so that rectangle-fill routines can be used.

#include <exec/types.h>
#include <graphics/ gfx.h >
#include <graphics/ gfxbase.h >
#include <hardware/dmabits.h>
#include <hardware/custom.h>
#include < graphics/ gfxmacros.h >
#include <graphics/rastport.h>
#include <graphics/view.h>
#include <exec/exec.h>

#define DEPTH 2
#define WIDTH 320
#define HEIGHT 200
#define NOT_ENOUGH_MEMORY -1000

Graphics Primitives 65

struct View v;
struct ViewPort vp;
struct ColorMap *cm; /* pointer to ColorMap structure, dynamic alloc */
struct RasInfo ri;
struct BitMap b;

/* added a second RasInfo for dual.playfield * /
struct RasInfo ri2;
/* added a second BitMap for dual.playfield * /
struct BitMap b2;

short i,j,k,n;
struct ColorMap *GetColorMapO;
struct GfxBase *GfxBase;

/* black, red, green, blue,
* ignored, ignored, ignored, ignored,
* (transparent), purple, lime green, mauve */

USHORT colortable[] = {
OxOOO, OxfOO, OxOfO, OxOOf,
0,0,0,0,
0, Ox495, Ox62a, Oxf9c

};
/* Nobody will see center set of 4 colors in this case because only two planes
* and dual-playfield mode. (In dualpf mode, colors 0-7 are dedicated to
* playfield 1, and 8-15 to playfield number 2. So since only 2 planes in each
* playfield, colors 4-7 and 12-15 won't even get used in this example)

*/

UWORD *colorpalette;

/* added RastPorts for both bitmaps */

struct RastPort rp, rp2;
struct View *oldview; /* save and restore old View */

mainO
{

GfxBase = (struct GfxBase *)OpenLibrary(" graphics.library" ,0);
if (GfxBase == NULL) exit(I);

InitView(&v); /* initialize View */
v.ViewPort = &vp; /* link View into ViewPort */
InitVPort(&vp); /* in it ViewPort */

66 Graphics Primitives

/* now specify critical characteristics * /
vp.DWidth = WIDTH;
vp.DHeigh t = HEIGHT;
vp.RasInfo = &ri;
vp.Modes = DUALPF I PFBA; /* dual-playfield mode */

/* init bit map (for RasInfo and RastPort) */
InitBitMap(&b,DEPTH,WIDTH,HEIGHT);

/* (init RasInfo) */
ri.BitMap = &b;
/* align upper left corners of display
* with upper left corner of drawing area */
ri.RxOffset = 0;
ri.RyOffset = 0;

/* ** */
/* changed here for dual playfields */

InitBitMap(&b2,DEPTH,WIDTH,HEIGHT);
ri.Next = &ri2;
ri2.BitMap = &b2;
ri2.RxOffset = 0;
ri2.RyOffset = 0;
ri2.Next = 0;

/* *** */

/* (init color table) */
cm = GetColorMap(12); /* 12 entries, since dual playfields * /
colorpalette = cm- >ColorTable;
for(i=O; i<12; i++)
{

*colorpalette++ = colortable[i];
}

/* copy my colors into this data structure * /
vp.ColorMap = cm; /* link it with the ViewPort */

/* allocate space for BitMap */
for(i=O; i<DEPTH; i++)
{

}

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT);
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);
b2.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT);
if(b2.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);

/* Initialize the RastPorts and link them to the bitmaps */

Graphics Primitives 67

InitRastPort(&rp);
InitRastPort(&rp2);
rp.BitMap = &b;
rp2.BitMap = &b2;

MakeVPort(&v, &vp); /* construct Copper instr (prelim) list */
MrgCop(&v); /* merge prelim lists together into a real

* Copper list in the View structure. * /
SetRast(&rp,O); /* simpler form of setting drawing area to ° */
SetRast(&rp2,0);

oldview = GfxBase->ActiView; /* save current view to restore later */
/* example steals screen from Intuition if started from WBench * /

LoadView(&v);

/* Now fill some boxes so that user can see something */
/ * first playfield * /
SetAPen(&rp, 1);
RectFill(&rp,20,20,200,100);
SetAPen(&rp,2);
RectFill(&rp,40,40,220,120);
SetAPen(&rp,3);
RectFill(&rp,60,60,240,140);
/ * second playfield * /
SetAPen(&rp2, 1);
RectFill(&rp2,50,90,245,180);
SetAPen(&rp2,2);
RectFill(&rp2, 70, 70,265,160);
SetAPen(&rp2,3);
RectFill(&rp2, gO, 10,285, 148);

/* Now tear some holes in the playfield so user can see that foreground
* area of playfield 2 (called PFB also) is transparen t in any area
* where it has a color value of °
*/

SetAPen(&rp2,0);
RectFill(&rp2, 110, 15,130,175);
RectFill(&rp2, 175,15,200,175);
Delay(300); /* uses AmigaDOS function ... delay 5 seconds */
LoadView(oldview); /* Put Intuition's View back again */
WaitTOFO; /* wait for Intuition View to return */
FreeMemoryO; /* and exit gracefully */
CloseLibrary(GfxBase);

68 Graphics Primitives

} /* end of mainO * /

FreeMemoryO
{ /* return user and system-allocated memory to sys manager * /

}

for(i=O; i<DEPTH; i++)
{

/ * free the drawing area * /

FreeRaster(b.Planes[i] ,WIDTH, HEIGHT);
FreeRaster(b2.Planes[i] ,WIDTH, HEIGHT);

}
FreeColorMap(cm); /* free the color map */
/ * free dynamically created structures * /
Free VPortCopLists(&vp);
FreeCprList(v .LOFCprList);
return(O);

HOLD-AND-MODIFY MODE EXAMPLE

This example demonstrates the Amiga's hold-and-modify mode, showing at all times a different
subset of 256 of the 4,096 colors available on the Amiga. At any moment, no two squares are
the same color.

/**/
* Rob Peck -- November 5, 1985
* Bob Pariseau -- November 10, 1985 (Rework for tutorial)

**/

#include <exec/types.h>
#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>

#define XSIZE 11
#define YSIZE 6

/ * Color box sizes * /

struct GfxBase *GfxBase; / * Export the library pointers * /
struct IntuitionBase *IntuitionBase;

struct RastPort *rp; / * Graphics structures * /
struct ViewPort *vp;

struct TextAttr TestFont =
{

"topaz.font" , /* Standard system font */

Graphics Primitives 69

8, 0, °
};

struct Window *w; /* Intuition structures * /
struct Screen *screen;
struct IntuiMessage *message;

struct NewScreen ns = {
0, 0, /* start position * /
320,200, 6, /* width, height, depth */
0, 1, /* detail pen, block pen */
HAM, /* Hold and Modify ViewMode */
CUSTOMSCREEN, /* screen type */
&TestFont, /* font to use */
" 256 different out of 4096", /* default title for screen */
NULL /* pointer to additional gadgets * /

};

struct NewWindow nw = {

};

0, 11, /* start position */
320, 186, /* width, height */
-1, -1, /* detail pen, block pen */
MOUSEBUTTONSICLOSEWINDOW, /* rDCMP flags */
ACTIVATEIWINDOWCLOSE, /* window flags */
NULL, /* pointer to first user gadget */
NULL, / * pointer to user checkmark * /
"colors at any given moment", /* window title */
NULL, /* pointer to screen (set below) */
NULL, /* pointer to superbitmap */
0, 0, 320, 186, /* ignored since not sizeable */
CUSTOMSCREEN /* type of screen desired */

LONG squarecolor[I6 * 16], freecolors[4096-(16*I6)];
SHORT squares[I6 * 16];
SHORT xpos[I6], ypos[I6];

char *number[] = {

};

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"A", "B", "0", "D", "E", "F"

SHORT sStop, cStop, sequence;
BOOL textneeded;

70 Graphics Primitives

mainO
{

ULONG class;
USHORT code, i;
BOOL wheelmode;

for(i=O; i< 16; i++)
{

/ * establish color square positions * /

xpos[i] = (XSIZE + 4) * i + 20;
ypos[i] = (YSIZE + 3) * i + 21;

}

GfxBase = (struct GfxBase *)OpenLibrary(" graphics.library", 0);
if (GfxBase == NULL) exit(lOO);

IntuitionBase = (struct IntuitionBase *)OpenLibrary("intuition.library", 0);
if (IntuitionBase == NULL)
{

}

CloseLibrary(GfxBase);
exit(200);

screen = (struct Screen *)OpenScreen(&ns);
if (screen == NULL)
{

}

CloseLibrary(IntuitionBase);
CloseLibrary(GfxBase);
exit(300);

nw.Screen = screen; /* open window in our new screen */
w = (struct Window *)OpenWindow(&nw);
if (w == NULL)
{

}

CloseScreen(screen);
CloseLibrary(In tuitionBase);
CloseLibrary(GfxBase);
exit(400);

vp = &screen- > ViewPort; / * Set colors in screen's VP * /
rp = w->RPort; /* Render into the window's RP */

/* Set the color registers: Black, Red, Green, Blue, White */

Graphics Primitives 71

SetRGB4(vp, 0, 00, 00, 00);
SetRGB4(vp, 1, 15, 00, 00);
SetRGB4(vp, 2, 00, 15, 00);
SetRGB4(vp, 3,00, 00, 15);
SetRGB4(vp, 4, 15, 15, 15);

SetBPen(rp,O); /* Insure clean text */
textneeded = TRUE;
wheelmode = TRUE; /* Start with Color Wheel display */

for (i,j) {
{ /* Process any and all messages in the queue, then update the display

* colors once, then come back here to look at the queue again. If you

}

* see a left-mouse-button-down event, then switch display modes. If you
* see a Close-Window-gadget event, then clean up and exit the program.
* NOTE: This is a BUSY LOOP so the colors will cycle as quickly as possible.

*/

while((message = (struct IntuiMessage *)GetMsg(w->UserPort)) != NULL)
{

}

class = message- > Class;
code = message- >Code;
ReplyMsg(message); /* Can't reply until done using it! */

if(class == CLOSEWINDOW) /* Exit the program */
{

}

Close Window(w);
CloseScreen(screen);
CloseLib rary(In tui tionBase);
CloseLibrary(GfxBase);
exit(O);

if(class == MOUSEBUTTONS && code == SELECTDOWN) /* swap modes */
{

wheelmode = NOT wheelmode;

SetAPen(rp, 0); /* Clear the drawing area */
SetDrMd(rp, JAMl);
RectFill(rp, 3, 12, 318, 183);
textneeded = TRUE;

}

if(wheelmode) colorWheelO; else colorFullO;

72 Graphics Primitives

}

colorFullO / * Display a randomized set of colors * /
{

SHORT sChoice, cChoice, usesquare;
LONG usecolor;

if(textneeded) /* First call since mode change? */
{

promptO;
sStop = 255; /* Top of list of squares yet to change */
cStop = 4095 - 256; / * Top of list of colors still needing use * /

for(usecolor=O; usecolor<256; usecolor++) /* Initialize colors */
{

}

usesquare = usecolor;
squares[usesquare] = usesquare;
squarecolor[usesquare] = usecolor;
hamBox(usecolor, xpos[usesquare % 16], ypos[usesquare / 16]);

for(usecolor=256; usecolor < 4095; usecolor++) /* Ones not yet used */
{

freecolors[usecolor - 256] = usecolor;
}

}

/***
* Randomly choose next square to change such that all squares change color
* at least once before any square changes twice. squares[O] through squares
* [sStop] are the square numbers that have not yet changed in this pass.
* RangeRand(r) is an integer function provided in "amiga.lib" that produces
* a random result in the range 0 to (r-l) given an integer r in the range 1 to 65535.

**/

sChoice = RangeRand(sStop + 1); /* Pick a remaining square */

usesquare = squares[sChoice]; /* Extract square number */
squares[sChoice] = squares[sStop]; /* Swap it with sStop slot */
squares[sStop] = usesquare;

if(NOT sStop--) sStop = 255; /* Only one change per pass * /

/***

Graphics Primitives 73

}

* Randomly choose new color for selected square such that all colors are
* used once before any color is used again, and such that no two squares
* simultaneously have the same color. freecolors[O] through freecolors[cStop]
* are the colors that have not yet been chosen in this pass. Note that
* the 256 colors in use at the end of the previous pass are not available
* for choice in this pass.

***/

cChoice = RangeRand(cStop + 1);

usecolor = freecolors[cChoice];
freecolors[cChoice] = freecolors[cStop];
freecolors[cStop] = squarecolor[usesquare];
squarecolor[usesquare] = usecolor;

if(NOT cStop--) cStop = 4095 - 256;

hamBox(usecolor, xpos[usesquare % 16]' ypos[usesquare / 16]);

colorWheelO / * Display an ordered set of colors * /
{

SHORT i, j;

if(textneeded)
{

promptO;

SetAPen(rp, 2); /* Green pen for green color numbers * /
Move(rp, 260, ypos[15]+ 17);
Text(rp, "Green", 5);
for(i=O; i < 16; i++)
{

}

Move(rp, xpos[i]+3, ypos[15]+17);
Text(rp, number[i]' 1);

SetAPen(rp,3); /* Blue pen for blue color numbers */
Move(rp, 4, 18);
Text(rp, "Blue", 4);
for(i=O; i < 16; i++)
{

}

Move(rp, 7, ypos[i]+6);
Text(rp, number[i]' 1);

74 Graphics Primitives

}

}

SetAPen(rp, 1); 1* Red pen for red color numbers *1
Move(rp, 271, 100);
Text(rp, "Red", 3);

sequence = 0;

SetAPen(rp, 1); 1* Identify the red color in use *1
SetDrMd(rp, JAM2);
Move(rp, 280, 115);
Text(rp, number[sequence]' 1);

for(j=O; j<16; j++) 1* Update all of the squares *1
for(i=O; i < 16; i++)

hamBox((sequence< <8 I i< <4 I j), xpos[i], ypos[j]);

if(++sequence == 16) sequence=O;

promptO 1* Display mode changing prompt *1
{

}

SetDrMd(rp, JAM2);
SetAPen(rp, 4);,
Move(rp, 23, 183);
Text(rp, "[left mouse button = new mode]", 30);
textneeded = FALSE;

1**
* hamBoxO -- routine to draw a colored box in Hold and Modify mode. Draws a
* box of size XSIZE by YSIZE with an upper left corner at (x,y). The
* desired color is achieved in 3 steps on each horizontal line of the box.
* First we set the red component, then the green, then the blue. We
* achieve this by drawing a vertical line of Modify~Red, followed by a
* vertical line of Modify-Green, followed by a rectangle of Modify-Blue.
* Note that the resulting color for the first two vertical lines depends
* upon the color(s) of the pixels immediately to the left of that /
* line. By the time we reach the rectangle we are assured of getting
* (and maintaining) the desired color because we have set all 3
* components (R, G, and B) straight from the bit map.

***1
hamBox(color, x, y)
LONG color, x, y;
{

Graphics Primitives 75

}

SHORT c;

SetDrMd(rp, JAMl); /* Establish Drawing Mode in RastPort * /

c=((color & OxfOO) > >8);/* Extract desired Red color component. */
SetAPen(rp, c + Ox20); /* Hold G, B from previous pixel. Set R=n. */
Move(rp, x, y);
Draw(rp, x, y+ YSIZE);

x++;
c=((color & OxfO) > >4);
SetAPen(rp, c + Ox30);
Move(rp, x, y);
Draw(rp, x, y+ YSIZE);

x++;

/* Extract desired Green color component. */
/* Hold R, B from previous pixel. Set G=n. */

c=(color & Oxf); /* Extract desired Blue color component.*/
SetAPen(rp, c + OxlO); /* Hold R, G from previous pixel. Set B=n. */
RectFill(rp, x, y, x+XSIZE-2, y+YSIZE);

76 Graphics Primitives

Chapter 2

Layers

The layers library enables you to create displays containing overlapping display elements. This
chapter describes the layers library routines and how you use them in creating graphics.

Introduction

The layers library contains routines that do the following:

Layers 77

o Multiplex a BitMap among various tasks by creating "layers" in the BitMap

o Create separate writable BitMap areas, some portions of which may be in the common
(perhaps on-screen) BitMap, and some portions in an obscured area. In two modes,
called smart-refresh and superbitmap, graphics are rendered into both the obscured and
the non-obscured areas.

o Move, size or depth-arrange the layers, bringing obscured segments into a non-obscured
area

Tasks can create layers in a common BitMap and then output graphics to those layers without
any knowledge that there are other tasks currently using this BitMap.

To see what the layers library provides, you need only look at the Intuition user interface, as
used by numerous applications on the Amiga. The windows that Intuition creates are based, in
part, on the underlying strata of the layers library. You can find more details about Intuition
in the book titled Intuition: The A miga User Interface.

If you wish, you can use the layers library directly to create your own windowing system. The
layers library takes care of the difficult things, that is, the bookkeeping jobs that are needed to
keep track of where to put which bits. Once a layer is created, it may be moved, sized, depth
arranged or deleted using the routines provided in this library. In performing their rendering
operations, the graphics routines know how to use the layers and only draw into the correct
drawing areas.

DEFINITION OF LAYERS

The internal definition of the layers resembles a set of clipping rectangles in that a drawing area
is split into a set of rectangles. A clipping rectangle is a rectangular area into which the graph
ics routines will draw. Some of the rectangles are visible; some are invisible. If a rectangle is
visible, the graphics can draw directly into it. If a rectangle is obscured by an overlapping
layer, the graphics routine may possibly draw into some other memory area. This memory area
must be at least large enough to hold the obscured rectangle so the graphics routines can, on
command, expose the obscured area.

The layers library manages interactions between the various layers by using a data structure
called Layer_Info. Each major drawing area, called a BitMap (which all windows share),
requires one Layer_Info data structure.

You may choose to split the viewing area into multiple parts by providing multiple independent
ViewPorts. If you use the layers library to subdivide each of these parts into layers (effectively
providing windows within these subdivisions), you must provide one Layer_Info structure for
each of these parts.

78 Layers

TYPES OF LAYERS SUPPORTED

The layers library supports four types of layers:

o Simple Refresh

No back-up area is provided. Instead, when an obscured section of the layer is exposed
to view, the routine using this layer is told that a "refresh" of that area is in order.
This means that the program using this layer must redraw those portions of its display
that are contained in the previously obscured section of the layer. All graphics render
ing routines are "clipped" so that they will only draw into exposed sections of the layer.

o Smart Refresh

The system provides one or more back-up areas into which the graphics routines can
draw whenever a part of this layer is obscured.

o Superbitmap

There is a single back-up area, which is permanently provided to store what is not in
the layer. The back-up area may be larger than the area that is actually shown in the
on-screen BitMap.

o Backdrop

A backdrop layer always appears behind all other layers that you create. The current
implementation of backdrop layers prevents them from being moved, sized, or depth
arranged.

Layers Library Routines

The layers library contains the routines shown below:

Layers 79

Purpose

Allocating a Layer_Info
structure

Deallocating a Layer_Info
structure

Routine

NewLayerInfoO

DisposeLayer InfoO

Intertask operations LockLayerO, UnLockLayerO,
LockLayersO, U nlockLayersO,
LockLayerInfoO, UnlockLayerInfoO

Creating and deleting layers CreateUpfrontLayerO,
CreateBehindLayerO,
DeleteLayerO

Moving layers MoveLayerO

Sizing layers SizeLayerO

Changing a viewpoint ScrollLayerO

Reordering layers BehindLayer, UpfrontLayerO

Determining layer position WhichLayerO

Sub-layer rectangle operations SwapBitsRastPortClipRectO

INITIALIZING AND DEALLOCATING LAYERS

The function NewLayerInfoO allocates and initializes a Layer_Info data structure and allo
cates some extra needed memory for the 1.1 release. After the call to NewLayerInfoO, you
can use the layer operations described in the following paragraphs.

The function DisposeLayerInfoO deallocates a Layer_Info structure that was allocated with
a call to NewLayerInfoO and frees the extra memory that was allocated.

Note: Prior to the current 1.1 release, Layer_Info structures were initialized with the
InitLayersO function. For backwards compatibility, you can still use this function with newer
software. For optimal performance, however, you should call FattenLayerInfoO to allo~ate
the needed extra memory and ThinLayerInfoO to return the memory to the system free-list.
Failure to deallocate memory will result in loss of that available memory.

80 Layers

INTERTASK OPERATIONS

This section shows the use of the routines LockLayerInfoO, UnlockLayerInfoO,
LockLayerO, UnlockLayerO, LockLayersO, and UnlockLayersO.

LockLayerInfoO and UnlockLayerInfoO

You create layers by using the routines CreateUpFrontLayerO and CreateBehindLayerO.
If multiple tasks are all trying to create layers on the same screen or ViewPort, each task will
be trying to affect the same data structures while creating its layers. The Layer_Info data
structure controls the layers. LockLayerInfoO ensures that the Layer_Info data structure
remains intact and tasks can obtain this exclusive access.

LockLayerInfoO grants exclusive access to the locking task. If some other task has the
Layer_Info locked, the call will block until the lock succeeds.

LockLayerO and U nlocklayerO

If a task is making some changes to a particular layer, such as resizing it or moving it, the task
must inhibit the graphics rendering into the layer. LockLayerO blocks graphics output once
the current graphics function has completed. The other task goes to sleep only if it attempts to
draw graphics. LockLayerO returns exclusive access to the layer once other tasks, including
graphics, are finished with this layer.

UnlockLayerO frees the locked layer for other operations.

If more than one layer must be locked, then these LockLayerO calls must be surrounded by
LockLayerInfoO and UnLockLayerInfoO. This is to prevent deadlock situations.

LockLayersO and UnlockLayersO

Sometimes it is necessary to lock all layers at the same time. For example, under Intuition, a
rubber-band box is drawn when a window is being moved or sized. To draw such a box, Intui
tion must stop all graphics rendering to all windows (and associated layers) so that it can draw
a line using the graphics complement drawing mode. If other graphics draw over this line, it
would not be possible for Intuition to erase it again, using a subsequent complement operation
over the same line. Thus LockLayersO is used to lock all layers in a single command.
UnlockLayersO releases the layers.

Layers 81

You can simulate LockLayersO by calling LockLayerO for each layer in the LayerList.
However, in that case, you must call LockLayerInfoO before and UnlockLayerInfoO after
each LockLayerO call.

CREATING AND DELETING LAYERS

CreateUpFrontLayerO creates a layer that is in front of all other layers. Intuition uses this
function to create certain types of new windows, as well as other Intuition components.

CreateBehindLayerO creates a layer that is behind all other layers. Intuition uses this func
tion to create a new "Backdrop" window.

Each of the routines that create layers return a pointer to a layer data structure (shown in the
include file graphics/ layers. h).

Note: When you create a layer, the system automatically creates a RastPort to go along with
it. Because a RastPort is specified by the drawing routines, if you use this layer's RastPort,
you will draw into only the area that you have designated on the screen for this layer. See also
the topic called "The Layer's RastPort" below.

DeleteLayerO is used to remove a layer from the layer list. It is one of the functions used by
Intuition to close a window.

For these functions, you need to perform LockLayerInfoO and UnlockLayerInfoO, because
you need to access the Layer_Info structure itself.

MOVING LAYERS

MoveLayerO moves a layer to a new location. When you move a layer, the move command
affects the list of layers that is being managed by the Layer_Info data structure. The system
locks the Layer_Info for you during this operation.

SIZING LAYERS

The SizeLayerO command changes the size of a layer by leaving the coordinates of the upper
left corner the same and modifying the coordinates of the lower right corner of the layer. The
system locks the Layer_Info for you during this operation.

82 Layers

CHANGING A VIEWPOINT

ScrollLayerO is for superbitmap layers only. This command changes the portion of a super
bitmap that is shown by a layer. An analogy is a window in a wall. If the homeowner does not
like the view he sees from a particular window, he might either change what he sees by planting
trees (that is, new graphics rendering) or he might decide to move the window to see another
part of the great outdoors (changing the portion of the superbitmap shown by a layer). You
must provide a superbitmap; the ScrollLayerO command repositions the smaller layer against
the larger superbitmap, thus showing a different part of it.

Because the layer size and on-screen position do not change while this operation is taking place,
it is not necessary to lock the Layer_Info data structure. However, it is necessary to prevent
graphics-rendering operations from drawing into this layer or its associated superbitmap while
ScrollLayerO is performing the repositioning. Thus, the system locks the layer for you while
this operation is taking place.

REORDERING LAYERS

BehindLayerO and UpfrontLayerO are used, respectively, to move a layer behind all other
layers or in front of all other layers. BehindLayerO also considers any backdrop layers, mov
ing a current layer behind all others except backdrop layers. The system performs
LockLayersO for you during this operation.

DETERMINING LAYER POSITION

If the viewing area has been separated into several layers, you may wish to find out which layer
is topmost at a particular x,y coordinate. For example, Intuition does this while keeping track
of the mouse position. When you move the mouse into one of the windows and click the left
button, Intuition feeds the current X,y coordinate to WhichLayerO. In return,
WhichLayerO tells Intuition which layer has been selected, and thus it knows with which win
dow you wish to work.

If you wish to be sure that no task changes the sequence of layers (by using UpfrontLayerO,
BehindLayerO, CreateUpFrontLayerO, DeleteLayerO, MoveLayerO or SizeLayerO)
before your task can use this information, call LockLayerInfoO before calling WhichLayerO.
Then, after receiving and using the information that WhichLayerO delivers, you can call
UnlockLayerInfoO. In this way, you will assure that you are acting on data that was true as
of the moment it was received.

Layers 83

SUB-LAYER RECTANGLE OPERATIONS

The SwapBitsClipRectRastPortO routine is for users who do not want to worry about clip
ping rectangles. The need for this routine goes a bit deeper than that. It is a routine that actu
ally enables the menu operations of Intuition to function much more quickly than they would if
this rou tine were not provided.

Oonsider the case where there are several windows open on an Intuition screen. If you wish to
produce a menu, there are two ways to do it:

o Create an up-front layer with CreateUpfrontLayerO, then render the menu in it.
This could use lots of memory and require a lot of (very temporary) "slice-and-dice"
operations to create all of the clipping rectangles for the existing windows and so on.

o Use SwapBitsClipRectRastPortO, directly on the screen drawing area:

o Render the menu in a back-up area off the screen, then lock all of the on-screen
layers so that no task can use graphics routines to draw over your menu area on
the screen.

o Next, swap the on-screen bits with the off-screen bits, making the menu appear.

o When you finish with the menu, swap again and unlock the layers.

The second rendering method is faster and leaves the clipping rectangles and most of the rest of
the window data structures untouched.

Notice that all of the layers must be locked while the menu is visible. Any task that is using
any of the layers for graphics output will be halted while the menu operations are taking place.
If, on the other hand, the menu is rendered as a layer, no task need be halted while the menu is
up because the lower layers need not be locked. It is a tradeoff decision that you must make.

The Layer's RastPort

When you create a layer, you automatically get a RastPort. The pointer to the RastPort is
contained in the layer data structure and can be retrieved typically by the statement:

rp = layer- >rp;

84 Layers

/* copy the pointer from the layer structure
* into a local pointer for further use * /

Using this RastPort, you can draw anywhere into the layer's defined rectangle. Location (0,0)
is the coordinate location for the upper left corner of the rectangle, and location (xmax, ymax)
is the lower right corner. If you try to draw to any location outside of this coordinate system,
the graphics routines will clip the drawing to the inside boundaries of this area.

The type of layer you specify by the Flags variable determines the other facilities the layer pro
vides. The following paragraphs describe the types of layers -simple refresh, smart refresh,
superbitmap, and backdrop-and the flags you set for the type you want. Note that the three
layer-type Flags are mutually exclusive. That is, you cannot specify more than one layer-type
flag-LA YERSIMPLE, LAYERSMART, LA YERSUPER.

SIMPLE REFRESH LAYER

When you draw in to the layer, any portion of the layer that is visible (not obscured) will have
its drawing rendered into the common BitMap of the vieWing area.

If another layer operation is performed that causes part of a simple refresh layer to be obscured
and then exposed, you must restore the part of the drawing that your application rendered into
the obscured area.

Simple refresh has two basic advantages:

o It uses no back-up area to save drawing sections that cannot be seen anyway (and
therefore saves memory).

o When an application tries to restore the layer by performing a full-layer redraw,
(sandwiched between a BeginUpdateO, EndUpdateO pair), only those damaged
areas are redrawn, making the operation very time efficient.

Its disadvantage is that the application needs to watch to see if its layer needs refreshing. This
test can be performed, typically, by a statement set such as the following:

refreshstatus = layer->Flags & LAYERREFRESH;
if (refreshstatus != 0) refresh(layer);

Note: Applications using Intuition typically get their refresh notifications as event messages
passed through an Intuition Direct Communications Message Port (IDCMP).

Layers 85

SMART REFRESH LAYER

If any portion of the layer is hidden by another layer, the bits for that obscured portion are ren
dered into a back-up area. With smart refresh layers, the system handles all of the refresh
requirements except when the layer is made larger. Its disadvantage is the additional memory
needed to handle this automatic refresh.

SUPERBITMAP LAYER

A superbitmap layer is similar to a smart refresh layer. It too has a back-up area into which
drawings are rendered for currently obscured parts of the display. However, it differs from
smart refresh in that:

o The back-up BitMap is user-supplied, rather than being allocated dynamically by the
system.

o The back-up BitMap may be larger than the area of this BitMap that is currently
showing within the current size of this layer.

To see a larger portion of a superbitmap in the on-screen layer, you use SizeLayerO. To see a
different portion of the superbitmap in the layer, you use ScrollLayerO.

When the graphics routines perform your drawing commands, part of the drawing appears in
the common BitMap (the on-screen portion). Any drawing outside the layer itself is rendered
into the superbitmap. When it is time to scroll or size the layer, the layer contents are copied
into the superbitmap, the scroll or size positioning is modified, and the appropriate portions are
then copied back Into the layer.

BACKDROP LAYER

Any layer can be designated a backdrop layer. You can turn off the backdrop flag temporarily
and allow a layer to be depth-arranged. Then by restoring the backdrop flag, you can again
inhibit depth-arrangement operations.

You change the backdrop flag typically by the statemen ts:

layer->Flags &= LAYERBACKDROP;
layer->Flags 1= LAYERBACKDROP;

86 Layers

/ * turn off the backdrop bit * /
/ * turn on the backdrop bit * /

Using the Layers Library

The following is a step-by-step example showing how the layers library can be used in your pro
grams. Note that the Intuition software, which is part of the system as well, manages many of
these items for you. The example below can be started up under Intuition, but it requires that
the Amiga be reset in order to exit the program.

The example program explains the individual parts separately, then merges the parts into a sin
gle working example. This simple example produces three rectangles on the screen: one red,
one green, and one blue. Each rectangle is rendered as a rectangle-fill of one of three smart
layers created for the example.

OPENING THE LAYERS LIBRARY

Like all library routines, the layers library must be opened before it can be used. This is done
typically by the following code:

struct LayersBase *LayersBase;

LayersBase = (struct LayersBase *)OpenLibrary(" layers.library" ,0);
if(LayersBase == NULL)
{

exit(NO _LAYERS_LIBRARY_FOUND);
}

OPENING THE GRAPHICS LIBRARY

Because the exam pIe uses various graphics library functions as well as the layers library, you
must also open the graphics library with the following code:

struct GfxBase * GfxBase;

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library" ,0);
if(GfxBase == NULL)
{

}

Layers 87

CREATING A VIEWING WORKSPACE

You can create a viewing workspace by using the primitives InitVPortO, InitViewO,
MakeVPortO, MrgCopO, and LoadViewO. See the "Graphics Example" section in chapter
1, "Graphics Primitives. " You add the following statemen ts:

struct Layer_Info *li;
li=NewLayerInfoO;

This provides and initializes a Layer_Info data structure with which the system can keep track
of layers that you create.

CREATING THE LAYERS

You can create layers in this common bit map by calling CreateUpfrontLayerO (or
CreateBehindLayerO), with a sequence such as the following. The Flags value in this exam
ple is LAYERSMART (see graphics/ clip.h in the "Include Files" appendix for all other flag
values). Thi& sequence requests construction of a smart refresh layer.

#define FLAGS LA YERSMAR T
struct BitMap b;
struct Layer_Info i;
struct RastPort *rp[3];
struct Layer * layer [3];

/ * allocate a RastP ort pointer for each layer * /
/ * allocate a layer pointer for each layer * /

/* Layer_Info, common BitMap, xl,yl,x2,y2,
* flags = ° (smart refresh), null pointer to superbitmap * /

layer[O] = CreateUpfrontLayer(&li,&b,20,20,lOO,80,FLAGS,NULL);

layer[l] = CreateUpfrontLayer(&li,&b,30,30,110,90,FLAGS,NULL);
layer[2] = CreateUpfrontLayer(&li,&b,40,40,120,lOO,FLAGS,NULL);

/* if not enough memory, can't continue the example * /
if(layer[O]==NULL Illayer[l]==NULL II layer [2]==NULL) exit(3);

88 Layers

GETTING THE POINTERS TO THE RASTPORTS

Each layer pointer data structure contains a pointer to the RastPort that it uses. Here is the
assignment from the layer structure to a set of local pointers:

for(i=O; i<3; i++)
{

rp[i] = layer [i]- >rp;
}

USING THE RASTPORTS FOR DISPLAY

Here are the rectangle-fill operations that create the display:

for(i=O; i<3; i++)
{

}

SetAPen(rp [i],i+l);
SetDrMd(rp[i],JAMl);
RectFill(rp [i],O,O ,80 ,50);

If you perform an UpfrontLayerO or BehindLayerO command prior to the DelayO shown
in the complete example below, all of the data contained in each layer is retained and correctly
rendered automatically by the layers library. This is because these are all smart-refresh layers.
If you change the example to use a Flags value of LAYERSIMPLE, and then perform
UpfrontLayerO or BehindLayerO, the obscured portions of the layers, now exposed, contain
only the background color. This illustrates that simple-refresh layers may have to be redrawn
after layer operations are performed.

LAYERS EXAMPLE

Here is the complete example, which is a compilation of the complete example in chapter 1 and
the pieces given above. Sections of the example that differ from those shown in the chapter 1
example are indicated through comments to show the additions adding the layers library
demonstration.

Layers 89

/**
* This example shows how to use the layers.library. Certain functions are not
* available in the system software prior to the release of version 1.1. Therefore,
* this example can be compiled only if your C-disk supports version 1.1 or beyond.

** */

#include" exec/types.h"
#include "graphics/gfx.h"
#include "hardware/dmabits.h"
#include "hardware/ custom.h"
#include "hardware/blit.h"
#include "graphics/gfxmacros.h"
#include "graphics/copper.h"
#include "graphics/view .h"
#include "graphics/gels.h"
#include "graphics/regions.h"
#include "graphics/clip.h"
#include "exec/exec.h"
#include "graphics/text.h"
#include "graphics/gfxbase.h"
/* ************ added for layers support ************************ */
#include "graphics/layers.h"
#include "graphics/clip.h"
/* ************ added for layers support ************************ */

#define DEPTH 2
#define WIDTH 320
#define HEIGHT 200
#define NOT_ENOUGH_MEMORY -1000

/ * construct a simple display * /
#define FLAGS LA YERSMART
/* dynamically created RastPorts from the calls to CreateUpfrontLayer * /
struct RastPort *rp [3]; / * RastPort for each layer * /

struct ColorMap *GetColorMapO;
struct GfxBase *GfxBase;

SHORT boxoffsets[] = { 802, 2010, 3218 };
/* black, red, green, blue * /

USHORT colortable{] = { OxOOO, OxfOO, OxOfO, OxOOf };
long LayersBase;
extern struct Layer *CreateUpfrontLayerO;
extern struct Layer_Info *NewLayerInfoO;

90 Layers

mainO
{

struct View *oldview; /* save pointer to old View so can go back to sys */
struct View v;
struct ViewPort vp;
struct ColorMap *cm; /* pointer to ColorMap structure, dynamic alloc * /
struct Raslnfo ri;
struct BitMap b;
short i,j,k,n;
struct Layer_Info *li;
struct Layer *layer[3];

GfxBase = (struct GfxBase *)OpenLibrary(" graphics.library" ,0);
if (GfxBase == NULL) exit(I);

LayersBase = OpenLibrary(" layers.library" ,0);
if(LayersBase == NULL) exit(2);

oldview = GfxBase->ActiView; /* save current View, go back later */
/* example steals screen from Intuition */

Ii = NewLayerInfoO; /* get a Layer_Info structure */
if(li == NULL) exit(100);

/* not needed if gotten by NewLayerInfo InitLayers(Ii);
FattenLayerInfo(Ii); * /

InitView(&v); /* initialize View */
v.ViewPort = &vp; /* link View into ViewPort */
InitVPort(&vp); /* init ViewPort */
/* now specify critical characteristics * /
vp.DWidth = WIDTH;
vp.DHeight = HEIGHT;
vp.Raslnfo = &ri;

/* init BitMap (for Raslnfo and RastPort) */
InitBitMap(&b,DEPTH,WIDTH,HEIGHT);
ri.BitMap = &b; /* (init Raslnfo) */
ri.RxOffset = 0; /* align upper left corners of display

ri.RyOffset = 0;
ri.Next = NULL;

* with upper left corner of drawing area * /

/ * (init color table) * /
vp.ColorMap = GetColorMap(4); /* four entries, since only two planes deep * /
colorpalette = (UBYTE *)cm- > ColorTable;

/* copy my colors into this data structure */

Layers 91

LoadRGB4(vp,colortable,4);

/* allocate space for BitMap */
for(i=O; i<DEPTH; i++)
{

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT);
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);
BltClear(b.Planes[i] ,RASSIZE(wid th ,heigh t),0);

}

MakeVPort(&v, &vp);
MrgCop(&v);

LoadView(&v);

/ * construct Copper instr (prelim) list * /
/* merge prelim lists together into a real
* Copper list in the View structure. * /

/ * now fill some boxes so that user can see something * /

/* Layer_Info, common BitMap, x,y,x2,y2,
* flags = ° (simple refresh), null pointer to superbitmap */

layer[O] = CreateUpfrontLayer(li,&b,5,5,85,65,FLAGS,NULL);
if(layer[O] == NULL) go to cleanup1;

layer[1] = CreateUpfrontLayer(li,&b,20,20,100,80,FLAGS,NULL);
if(layer[1] == NULL) goto cleanup2;

layer[2] = CreateUpfrontLayer(li,&b,45,45,125,105,FLAGS,NULL);
if(layer[2] == NULL) goto cleanup3;

for(i=O; i<3; i++) /* layers are created, now draw to them */
{

}

rp[i] = layer[i]->rp;
SetAPen(rp [i]'i+ 1);
SetDrMd(rp[i],JAM1);
RectFill(rp til ,0,0,79 ,59);

SetAPen(rp[O],O);
Move(rp [0] ,5,30);
Text(rp[O],"Layer 0" ,7);

SetAPen(rp [1],0);
Move(rp [1]'5,30);
Text(rp[1],"Layer 1" ,7);

SetAPen(rp [2],0);

92 Layers

Move(rp[2],S,30);
Text(rp[2],"Layer 2" ,7);

Delay(lOO); /* two seconds before first change * /
BehindLayer(li,layer[2]);

Delay(lOO); /* another change two seconds later */

U pfron tLayer(li,layer [0]);

for(i=O; i<30; i++)
{

MoveLayer(li,layer[l]' 1 ,3);
Delay(lO); /* wait .2 seconds (uses DOS function) */

}

cleanup3:
LoadView(oldview);
DeleteLayer(li,layer[2]);

cleanup2:
DeleteLayer(li,layer[l]);

cleanupl:
DeleteLayer(li,layer[O]);

DisposeLayerlnfo(li);

/* put back the old View */

/* return user and system-allocated memory to sys manager * /
for(i=O; i<DEPTH; i++) /* free the drawing area */

FreeRaster(b.Planes[i],WIDTH,HEIGHT);
FreeColorMap(cm); / * free the color map * /

/ * free dynamically created structures * /
Free VPortCopLists(&vp);
FreeCprList(v .LOFCprList);
return(O);

CloseLibrary(GfxBase);

} /* end of mainO */

Layers 93

Clipping Rectangle List

When you perform the various graphics drawing routines, you will notice that the routines draw
into Intuition windows, even though the windows might be partially or totally obscured on the
screen. This is because the layer library functions split the drawing area to provide lists of
drawing areas that the graphics drawing can use for its operatiop.s.

In particular, the layer library functions split the windows into rectangles. You need only con
cern yourself with a single overall RastPort that contains the description of the complete area
that you are managing. When either you or Intuition use the layer library, the graphics rou
tines will be able to tell how the drawing area is split and where rendering can occur.

The set of rectangles comprising the layer is known as a clipping rectangle list (ClipRect struc
ture). A clipping rectangle is a rectangular area into which the graphics routines will draw. All
drawing that would fall outside of that rectangular area is clipped (not rendered).

DAMAGE LIST

For a smart-refresh window, the system automatically generates off-screen buffer spaces, essen
tially linked into the clipping rectangle list. Thus, parts of the display that are on the screen
are rendered into the on-screen drawing area, and parts of the display that are obscured are
drawn into a back-up area. When segments are exposed, the back-up area information is
brought to view automatically during the routines UpfrontLayerO and BehindLayerO, as
well as during MoveLayerO.

For a simple-refresh window however, any section of a drawing area that is not covered in the
clipping rectangle list is not drawn into by the graphics routines. When obscured areas are
exposed, they will not contain any graphics rendering at all. As the system creates and moves
layers in front of such simple-refresh windows, the layers library keeps track of the rectangular
segments that have not been drawn and are therefore not part of any automatically saved
back-up areas, This list of non-drawn areas is called a DamageList.

REPAIRING THE DAMAGE

When you receive a REFRESH event from Intuition for a simple refresh window, you are being
told that Intuition, through the layers library, has done something to change the portions of
your window that are exposed to view. In other words, there is likely to be a blank space where
there is supposed to be some graphics.

94 Layers

To update only those areas that need updating, you call BeginUpdateO. BeginUpdateO
saves the pointer to the current clipping rectangles. It also installs in the layer structure a
pointer to the set of ClipRects generated from the DamageList. In other words, the graphics
rendering routines see only those rectangular spaces that need to be updated and refuse to draw
into any other spaces within this layer. If, for example, there are only one or two tiny rectan
gles that need to be fixed, the graphics routines can ignore all but these spaces and repair them
very quickly and efficiently. To repair the layer, you ask the graphics routines to redraw the
whole layer, but the routines use the new clipping rectangle list (that is, the damage list) to
speed the process.

To complete the update process call EndUpdateO, to restore the original ClipRect list.

Regions

Regions are rectangles that, when combined, can become part of a DamageList. The library
graphics. library contains several support routines for regions. Among these are routines for the
following operations:

Operation Routine

Creating and deleting regions NewRegionO, DisposeRegionO

Changing a region AndRectRegionO, OrRectRegion,
Xor RectRegionO

Clearing a region Clear RegionO

Basically, the region commands let you construct a custom DamageList, which you can use
with your graphics rendering routines. With this list, you can selectively update a custom-sized,
custom-shaped part of your display area without disturbing any of the other layers that might
be present.

CREATING AND DELETING REGIONS

NewRegionO allocates and initializes a new data structure that may be thought of as a blank
painter's easel.

If this new region is to be used as the basis for a DamageList, and you asked the graphics rou
tines to draw something through this DamageList, nothing would be drawn as there is nothing
in the region. The region that you produce can be thought of as patches of canvas. A new
region has no canvas.

Layers 95

Because a region is dynamically created by using NewRegionO, the procedure
DisposeRegionO is provided to return the memory to the system when you have finished with
it. Note that not only the region structure is deallocated; so are any rectangles that have been
linked in to it.

CHANGING A REGION

Or RectRegionO modifies a region structure by or'ing a clipping rectangle in to the region.
This has an effect similar to adding a rectangle of canvas to the easel. If you now exercise the
drawing routines, the rendering will occur in the areas where the region has been or'ed (canvas
rectangle has been added) and will be inhibited elsewhere.

AndRectRegionO modifies a region structure by and'ing a clipping rectangle into the region.
This has an effect similar to using the rectangle as an outline for a position on the easel. Any
area of canvas that falls outside this outline is clipped and discarded.

XorRectRegionO applies the rectangle to the region in an exclusive-or mode. That is, wher
ever there is no canvas, canvas is applied to the easel. Wherever there is canvas present within
the rectangle, a hole is created. Thus it is a combination of OrRectRegionO and
AndRectRegionO in a single application.

CLEARING A REGION

While you are performing various types of selective drawing area updates, you may wish to do
some of your graphics rendering with one form of region, and some with a different form of
region. You can ·perform ClearRegionO to go from one form back to a fresh, empty region.
Then you can begin again to compose yet another modified region for the next drawing func
tion.

USING REGIONS

The region routines typically are used in a sequence like the following:

96 Layers

struct Region *r;
struct Rectangle *rect1, *rect2, rect3;

r = NewRegionO;
OrRectRegion(rect1, r);
AndRectRegion(rect3, r);
XorRectRegion(rect2, r);

/ * in this section of code:

/ * add a rectangle * /
/* patch a rectangle * /

/ * weird patch * /

* 1. Save current pointer to DamageList for the layer you wish to affect.
* 2. Equate the region address (r) to the DamageList pointer in the
* layer structure.
* 3. Perform whatever drawing functions you wish into this layer.
* 4. Restore the original DamageList pointer.

*/

DisposeRegion(r);

The drawing will only occur in those areas of the drawing area that you have specified should
be updated. Graphics rendering is often made faster this way, because not all of the area need
be updated.

A typical sequence using ClearRegionO might be:

struct Region *r;
struct Rectangle * rectl, * rect2, rect3;
struct Layer_Info * Ii;

r = NewRegionO;
OrRectRegion(rect1, r);
OrRectRegion(rect2, r);

(swap in as a damage list)
BeginUpdate(li);

(draw, draw, draw something)
EndUpdate(li);

(restore original damage list)

ClearRegion(r);
AndRectRegion(rect3, r);

(swap, draw, restore)

DisposeRegion(r);

Layers 97

SAMPLE APPLICATION FOR REGIONS

For example, assume that you are producing a display that reqUlres a VIew through a fence.
You can create this "slats" effect by using regions, as follows:

1. Create a new region.

2. Create several rectangles representing the open areas of the slats in the fence.

3. Or these into the region.

4. Save the DamageList pointer in the affected layer so it can be restored later.

5. Copy the region address into DamageList pointer.

6. Draw the scene in to the entire layer using the graphics.

7. Restore the original DamageList pointer.

8. Dispose of the region.

Here is a sample application. It is based on the sample layers library program shown above.
For brevity, the comments have been stripped out except where new material, pertinent to
regions, has been inserted.

/* SIMPLE REGIONS EXAMPLE DRAW BEHIND A FENCE */
/* Certain layers.library routines are used herein that are not
* available until Amiga C compiler version 1.1 and beyond. * /

#include <exec/types.h>
#include <graphics/gfx.h>
#include <hardware/dmabits.h>
#include <hardware/custom.h>
#include <graphics/gfxmacros.h>
#include <graphics/regions.h>
#include <graphics/clip.h>
#include <graphics/text.h>
#include <hardware/blit.h>
#include <graphics/gfxbase.h>
#include <graphics/ copper.h >
#include <graphics/gels.h>
#include <graphics/rastport.h>
#include <graphics/view.h>
#include <exec/exec.h>

98 Layers

#include <graphics/layers.h>

#define FLAGS LA YERSIMPLE
extern struct Layer *CreateU pfron tLayerO;

struct GfxBase *GfxBase;

long LayersBase;

#define DEPTH 2
#define WIDTH 320
#define HEIGHT 200
#define NOT_ENOUGH_MEMORY -1000

struct ColorMap *GetColorMapO;

USHORT colortable[] = { OxOOO, OxfOO, OxOfO, OxOOf };
/* black, red, green, blue * /

extern struct Layer_Info * NewLayerlnfoO;

mainO
{

struct View *oldview;
struct View v;
struct ViewPort vp;
struct ColorMap *cm;
struct RasInfo ri;
struct BitMap b;
struct RastPort *rp;
short i,j,k,n;
UBYTE *displaymem;
UWORD *colorpalette;

struct Layer_Info *li;
struct Layer *layer;

/ * one RastPort for one layer * /

/ * one layer pointer * /

extern struct Region *NewRegionO;
struct Region *rgn; / * one region pointer * /
struct Rectangle rect[14]; /* some rectangle structures */
struct Region *oldDamageList;
SHORT x,y;

GfxBase = (struct GfxBase *)OpenLibrary{"graphics.library" ,0);
if (GfxBase == NULL) exit{l);

Layers 99

LayersBase = OpenLibrary(" layers.library" ,0);
if(LayersBase == NULL) exit(2);

old view = GfxBase- > ActiView;

Ii = NewLayerInfo();
Init View(&v);
v.ViewPort = &vp;
Init VPort(&vp);
vp.DWidth = WIDTH;
vp.DHeight = HEIGHT;
vp.RasInfo = &ri;

/* v1.1 code only */

InitBitMap(&b,DEPTH,WIDTH,HEIGHT);
ri.BitMap = &b;
ri.RxOffset = 0;
ri.RyOffset = 0;
ri.Next = NULL;
cm = GetColorMap(4);
colorpalette = (UWORD *)cm- >ColorTable;
for(i=O; i<4; i++)
{

*colorpalette++ = colortable[i];
}
vp.ColorMap = cm;
for(i=O; i<DEPTH; i++)
{

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH,HEIGHT);
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);
BltClear(b.Planes[i],RASSIZE(WIDTH,HEIGHT,O);

}

MakeVPort(&v, &vp);
MrgCop(&v);

LoadView(&v);
layer = CreateUpfrontLayer(li,&b,0,0,200,140,FLAGS,NULL);
if(layer==NULL) exit(3);

rp = layer->rp;

SetAPen(rp,3);
RectFill(rp ,0,0, 1 99,139); / * show the layer itself * /

j=10; / * initialize the rectangles * /

100 Layers

for(i=O; i<lO; i++)
{

}

rect[i].MinX = j;
rect[i].MaxX = j + 8; .
rect[i].Min Y = 20;
rect[i].MaxY = 120;
j += 16;

rgn = NewRegionO;
if(rgn == NULL) exit(4);

for(i=O; i<14; i++)
OrRectRegion(rgn,&rect[i]);

/* get a new region to use */

oldDamageList = layer- > DamageList;
layer->DamageList = rgn;

Begin Update(layer);

/* here insert the drawing routines to draw something behind the slats */
x = 4; y = 10;
SetAPen(rp,O);
SetDrMd(rp,JAMl);
RectFill(rp ,0,0,1 99,139);
SetAPen(rp, 1);
SetBPen(rp,O);
SetDrMd(rp ,JAM2);
for(i=O; i<14; i++)
{

}

Move(rp, x, y);
Text(rp,"Behind A Fence" ,14);
x += 4; y += 9;

EndUpdate(layer);
layer- > DamageList = oldDamageList;
DisposeRegion(rgn);

Delay(300);

DeleteLayer(li, layer);
DisposeLayerInfo(li);

LoadView(oldview);

Layers 101

/* return user and system-allocated memory to sys manager * /
for(i=O; i<DEPTH; i++)/* free the drawing area */

FreeRaster(b.Planes[iJ,WIDTH,HEIGHT);
FreeColorMap(cm); /* free the color map */

!* free dynamically created structures * /
Free VPortCopLists(&vp);
FreeCprList(v .LOFCprList);
return(O);

CloseLibrary(GfxBase);

} /* end of mainO * /

102 Layers

Chapter 3

Animation

Introduction

The graphics animation routines let you define images by specifying various characteristics of
graphic objects, such as the following:

Animation 103

o Height

o Width

o Colors

o Shape

o Position in the drawing area

o How to draw the object

o How to move the object

o How the object interacts with other elements

The objects you define are called GELS (for "graphic elements"). You can draw GELS into or
onto a background display of some type. The graphics animation routines operate on a list of
GELS to produce a list of instructions that cause the system to draw the GELS in the manner
you have specified.

PREPARING TO USE GRAPHICS ANIMATION

Because the animation routines have been designed to interact with a background display, you
must first make sure that such a display is already defined.

To define a display with which the GELS can interact, you define View, ViewPort, and
RastPort structures. For details on the construction of these structures, see chapter 1,
"Graphics Primitives," and chapter 2, "Layers."

The graphics animation routines described in this chapter create additional material that is
linked into the View structure. This material consists of additional instructions for color
changes and dynamic reassignment of the hardware resources that create the display animation
effects you specify.

TYPES OF ANIMATION

Using the Amiga system tools, you can perform two different kinds of image animation: sprite
animation and playfield animation.

104 Animation

Sprite Animation

Sprites are hardware objects that you create and move independently of the playfield display.
Sprites are always 16 low-resolution pixels wide and are as high as you specify. To move
sprites, you must define where they are on the screen. The built-in priority circuitry determines
how the sprite appears on the screen relative to the playfield elements or to other sprites.

You can manipulate sprites directly through a simple sprite set of routines or by using the
graphics kernel VSprite rou tines.

Playfield Animation

Sprites are normally moved against a background. This background area is called the playfield.
You may treat the play field area as a single background or separate it in to two separately con
trollable sections, using dual-playfield mode. See chapter 1, "Graphics Primitives," for details
on how to create and control playfields.

In playfield animation, sections of the playfield are modified. You draw, erase, and redraw
objects into the playfield, creating an animation effect. To move the data quickly and
efficiently, the system uses one of the specialized built-in hardware devices, the blitter. The sys
tem uses the blitter to move the playfield objects, while it saves and restores the background.
The objects controlled by the blitter are called Bobs, for "blitter objects."

Playfield animation is somewhat more complicated than VSprite animation from the point of
view of system design, but not much more complicated for you as the user of the animation rou
tines. The hardware displays the VSprites over the playfield automatically, and the priority
overlay circuitry assures that they will be displayed in the correct order. If you are animating
multiple Bobs, you control their video prior£iy by defining the sequence in which the system
draws them. The last one drawn has the highest video priority in the sense that it appears to
be in front of all other Bobs.

A Bob is physically a part of the playfield. When the system displays a Bob, it must first
save a copy of the playfield area into which the Bob will be drawn. Then the system can
restore the playfield to its original condition when moving the Bob to a new location. Once the
playfield areas have been saved, the system can draw the Bob. To move the Bob, the system
must first restore the play field area (thus erasing the object) before it saves the playfield at the
new location and draws the Bob there.

Bobs offer more flexibility and many more features than VSprites. Bob animation is less res
trictive but slower than VSprite animation. VSprites are superidr to Bobs in speed of
display, because VSprites are mostly hardware-driven and Bobs are part hardware and part
software. Bobs, on the other hand, are superior to VSprites in that they offer almost all of
the benefits of VSprites but suffer none of the limitations, such as size or number of colors.

Animation 105

Both are very powerful and useful. The requirements of your particular application determine
the type of GEL to use.

THE GELS SYSTEM

The acronym GEL describes all of the graphic elements, or "objects," supplied by the Amiga
ROM kernel. Both VSprites and Bobs are GELS, as are the more advanced animation ele
ments known as AnimComps and AnimObs.

Initializing the GEL System

To initialize the graphics element animation system, you provide the system with the addresses
of two data structures. The system uses these data structures to keep track of the GELS that
you will later define. To perform this initialization, you call the system routine InitGelsO,
which takes the form:

InitGels(head, tail, Ginfo);

where

head
is a pointer to the VSprite structure to be used as the GEL list head

tail
is a pointer to the VSprite structure to be used as the GEL list tail

Ginfo
is a pointer to the GelsInfo structure to be initialized

The graphics animation system uses two "dummy" VSprites as place holders in the list of
GELS that you will construct. The dummy VSprites are used as the head and tail elements in
the system list of GELS. You add graphics elements to or delete them from this list.

The call to InitGelsO forms a linked list of GELS that is empty except for these two dummy
elements. When the system initializes the list with the dummy VSprite, it automatically gives
the VSprite at the head the maximum possible negative y and x positions and the VSprite at
the tail the maximum possible positive y and x positions. This assures that the two dummy ele
ments are always the outermost elements of the list.

The y,x values are coordinates that relate to the physical position of the GEL within the draw
ing area. The system uses the y,x values as the basis for the placement (and later sorting) of
the GELS in the list.

106 Animation

When you add a GEL to the list of graphics elements, the system links that GEL into the list
shown above. Then the system adds any new element to the list immediately ahead of the first
GEL whose y,x value is greater than or equal to that of the new GEL being added.

Types of GELS

Figure 3-1 shows how you can view the components of GELS as inter-related layers of graphics
elements.

AnimComp AnimComp AnimComp AnimComp

Bob Bob Bob Bob

VSprite VSprite VSprite VSprite

Figure 3-1: Shells of Gels

The types of GELS are listed below:

o Simple (hardware) sprites

o VSprites

o Bobs

o AnimComps

o AnimObs

VSprites and Bobs are the primary software-controlled animation objects. They are part of
an integrated animation system. The simple sprites, on the other hand, are separate from the
animation system. It is up to you to decide which type of sprite to use. The next sections
describe all of these animation components.

Animation 107

Simple (Hardware) Sprites

The simple sprite is a special graphics element, related to the graphics animation system only in
that it vies with the VSprites for the use of the same underlying hardware elements, the real
hardware sprites.

The Amiga hardware has the ability to handle up to eight sprite objects. Each sprite is pro
duced by one of the eight hardware sprite DMA channels. Each sprite is 16-bits wide and arbi
trarily tall. The Amiga software provides a choice about how you can use these hardware ele
men ts. You can either allocate one or more hardware sprites for your exclusive use, or you can
allow all sprites to be managed by the system software and assigned as virtual sprites by the
system. Using virtual sprites, it can appear as though you have an unlimited set of spYiteswith
which to work. If you need only a few sprites, however, you may wish to use the less complex
routines shown in the section called "Using Simple Sprites."

VSprites

The virtual sprite is the most elemental component. It contains a little more information than
is needed to define a hardware sprite. The system temporarily assigns each VSprite to a
hardware sprite, as needed. The information in the VSprite structure allows the system to
maintain the more general GEL functions, such as collision detection and double-buffering.
After a sprite DMA channel has displayed the last line of a sprite, the system can reuse the
channel to display a different image lower on the screen. The system software takes advantage
of this reusability to dynamically assign hardware sprites to carry VSprite images.

The VSprite is a data structure closely related to hardware sprites. The VSprite structure
contains the following information:

o Size

o Image display data

o Screen coordinates

o Collision descriptors

o A pointer to color information

108 Animation

Bobs

The Bob is the next outermost level of the GEL system. It is like an expanded hardware sprite
done in software. It uses the same information defined in a VSprite, but adds other data that
further defines this type of object. Bobs and VSprites differ in that the system draws Bobs
into the playfield using the blitter, while it assigns VSprites to hardware sprites.

A Bob structure contains the following information:

o A pointer to a VSprite

o Priority descriptors

o Variables and pointers that define how and where to save the background

AnimComps

The AnimComp (for "animation component") is a data structure that extends the definition of
a Bob. It allows the system to include the Bob as part of a total animation object. An
AnimComp expands on the Bob data. AnimComps include the following:

o A pointer to this AnimComp's Bob

o Links that define the sequence of animation drawings

o Information that describes the screen coordinates of the AnimComp with respect to
the position of the AnimOb, described below

o Timing information for sequencing this AnimComp as part of the list of animation
drawings

o A pointer to a user routine to execute in conjunction with this AnimComp

AnimObs

The AnimOb (for "animation object") is the primary animation object. It is a pseudo-object
whose primary purpose is to link one or more AnimComps into a single overall object. As the
AnimOb moves, so move its AnimComps. When the Bobs move with their AnimComps,
the system sets the screen coordinates in the VSprite accordingly. AnimObs include the fol
lowing:

Animation 109

o A pointer to this AnimOb's first AnimComp

o Links to previous or succeeding AnimObs

o Informatiori that describes the position of this AnimOb on the screen, as well as its
velocity and acceleration

o Information for double-buffering this AnimOb, if desired

o A pointer to a user routine to execute in conjunction with this AnimOb

Using Simple (Hardware) Sprites

To use simple sprites, define their data structures and use the following routines:

o ON_SPRITE - a system macro to turn on sprite DMA

o OFF_SPRITE - a system macro to turn off sprite DMA

o GetSp~iteO - attempts to allocate a sprite from the virtual sprite machine for your
exclusive use

o ChangeSpriteO - modifies the sprite's appearance

o MoveSpriteO - changes the sprite's position

o FreeSpriteO - returns the sprite to the virtual sprite machine

These routines are desctibed in detail in the following sections.

To use these simple sprite routines or the VSprite routines, you must include the SPRITE flag
in the data structure for OpenScreenO. If you are not using Intuition, this flag must be
specified in the View and ViewPort data structures before MakeViewO is called.

CONTROLLING SPRITE DMA

You can use the graphics macros ON_SPRITE and OFF_SPRITE to control sprite DMA.
OFF_SPRITE prevents the system from displaying any sprites, whether hardware or VSprite.
ON_SPRITE restores the sprite data access and display. Note that the Intuition cursor is a
sprite. Thus, if you use OFF_SPRITE, you make Intuition's cursor invisible as well.

110 Animation

ACCESSING A HARDWARE SPRITE

You use GetSpriteO to gain access to a new hardware sprite. You use a call such as

status = GetSprite(sprite, number)

GetSpriteO allocates a hardware sprite for your exclusive use. The virtual sprite allocator can
no longer assign this sprite. Note that if you steal one sprite, you are effectively stealing two.
The sprite pairs 0/1, 2/3, 4/5, and 6/7 share the same color registers. If you are stealing a
hardware sprite, you steal its color registers as well. So you might as well ask for the other
sprite in the pair. Table 3-1 shows the color registers assigned to each sprite pair.

Table 3-1: Sprite Color Registers

Color
Registers Sprite

16-19 0 or 1
20-23 2 or 3
24-27 4 or 5
28-31 6 or 7

You are not granted exclusive use of the color registers. If the View Port is 5 bit-planes deep,
all 32 of the system color registers will still be used by the playfield display hardware.

Note, however, that registers 16, 20, 24, and 28 always generate the "transparent" color when
selected by a sprite, regardless of which color is actually in them. Their true color will be used
only if they are selected by a playfield. For further information, see the Amiga Hardware Refer
ence Manual.

Also note that sprites and sprite colors are bound to the ViewPort in that you can reload the
colors between ViewPorts. In other words, if a user in a ViewPort located in the top part of
the screen allocates sprite 0 and a user in the a ViewPort at the bottom of the screen allocates
sprite 1, these two sprites will not necessarily have the same color set, as the two ViewPorts
can have totally independent sets of colors.

The inputs to the GetSpriteO routine are:

sprite A pointer containing the address of a data structure called SimpleSprite

number The number (0-7) of the hardware sprite you wish to reserve. If number is -1,
the system gets any sprite.

Animation 111

A value of 0-7 is returned in "status" if your request was granted, specifying which sprite you
have allocated. A value of -1 means that this sprite is already allocated.

The structure for a simple sprite is shown below:

struct SimpleSprite {

};

/ * pointer to definition data of the hardware sprite to be displayed * /
UWORD *posctldata;
UWORD height; /* height of this simple sprite in rows * /
UWORD x,y; /* current position */
/* number (0-7) of hardware sprite associated with this simple sprite */
UWORD num;

This data structure is found in the graphics/ sprite.h file in the appendixes to this manual.

CHANGING THE APPEARANCE OF A SIMPLE SPRITE

The ChangeSpriteO routine changes the appearance of a reserved sprite. It is called by the
following sequence:

ChangeSprite(vp, s, newdata)

ChangeSpriteO substitutes a new data content for that currently used to display a reserved
hardware sprite.

The inputs to this routine are:

vp

s

newdata

A pointer to the ViewPort for this sprite or 0 if this sprite is relative only
to the current View

A pointer to a SimpleSprite structure

A pointer to a data structure containing the new data to be used

The structure for the new data is shown below:

112 Animation

struct userspritedata
{

};

/ * position and control information for this sprite * /
UWORD posctl[2];
/ * two words per line of sprite height, first of the two
* words contains msbit for color selection, second word
* contains lsbit (colors 0,1,2,3 from allowable color
* register selection set). Color '0' for any sprite
* pixel makes it transparent.

*/
UWORD sprdata[2][height]; / * actual sprite image * /

/ * initialize to 0, 0 for unattached simple spites * /
UWORD reserved [2];

MOVING A SIMPLE SPRITE

MoveSpriteO repositions a reserved hardware sprite. It is called as follows:

MoveSprite(vp, sprite, x, y)

After you call this routine, the reserved sprite is moved to a new position relative to the upper
left corner of the ViewPort.

The inputs to MoveSpriteO are as follows:

vp

sprite

x, y

A pointer to the ViewPort with which this sprite interacts or ° if this
sprite's position is relative only to the current View

A pointer to a SimpleSprite structure

Pixel position to which a sprite is to be moved. If the sprite is being
moved over a high-resolution display, the system can move the sprite only
in two-pixel increments. In low-resolution mode, single-pixel increments in
the x direction are acceptable. For an interlaced mode display, the y direc
tion motions are in two line increments. The same image of the sprite is
placed into both even and odd fields of the interlaced display.

The upper left corner of the ViewPort area has coordinates (0,0). The motion of the sprite is
relative to this position.

Animation 113

The following example demonstrates how you move a simple sprite.

/* This program creates and displays a 320-by-200 by 2-bit-plane
* single-playfield display and adds one simple sprite to it.

*/

#include "exec/types.h"
#include "graphics/gfx.h"
#include "hardware/dmabits.h"
#include "hardware/custom.h"
#include "hardware/blit.h"
#include "graphics/gfxmacros.h"
#include "graphics/copper.h"
#include " graphics/view .h"
#include "graphics/gels.h"
#include "graphics/regions.h"
#include "graphics/clip.h"
#include " exec/ exec.h"
#include "graphics/text.h"
#include "graphics/gfxbase.h"
#include "graphics/sprite.h"

#define DEPTH 2
#define WIDTH 320
#define HEIGHT 200
#define NOT_ENOUGH_MEMORY -1000

/* construct a simple display */

struct View view;
struct ViewPort viewport;

/* pointer to ColorMap structure, dynamically allocated * /
struct ColorMap *cm;

struct RasInfo rasinfo;
struct BitMap bitmap;

SHORT xmove, ymove;

extern struct ColorMap *GetColorMapO;
struct GfxBase *GfxBase;

/* save pointer to old View so can restore */
struct View *oldview;

114 Animation

USHORT colortable[] = {

};

/* black, red, green, blue */
OxOOO, OxfOO, OxOfO, OxOOf,
0,0,0,0,
0;0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, /* sprites from here up * /
0,0,0,0,0,0,0,0

/* where to draw boxes */
SHORT boxoffsets[] = {

802, 2010, 3218
};

UWORD *colorpalette;

struct SimpleSprite sprite;

/* Last entry is " position control" for the next reuse of the hardware sprite.
* Simple sprite machine supports only one use of a hardware sprite per video
* frame. Any combination of binary bits from word 1 and word 2 per line
* establishes the color for a pixel on that line. Any nonzero pixels in lines
* 1-3 are color" 1" of the sprite, lines 4-6 are color" 2", lines 7-9 are color" 3" .

*/
UWORD sprite_datal] = {

};

0,0, /* position control */
OxOfc3,OxOOOO, /* image data line 1 */
Ox3ff3, qxoooo; /* image data line 2 * /
Ox30c3, OxOOOO, / * image data line 3 * /
OxOOOO, Ox3c03, / * image data line 4 * /
OxOOOO, 0~3fc3, /* image data line 5 */
OxOOOO, Ox03c3, / * image data line 6 * /
Oxc033, Oxc033, /* image data line 7 * /
OxffcO, OxffcO, /* image data line 8 */
Ox3f03, Ox3f03, /* image data line 9 */

/* NOTE this last line specifies unattached, simple sprites */

0, ° / * next sprite field * /

/***
* FOLLOWING IS FOR INFORMATION ONL Y. ... the simple-sprite machine directly
* sets these bits; the user has no need to change any of them. Use the
* functions ChangeSpriteO and MoveSpriteO to have ali effect on the sprite.

*

Animation 115

* position con trol:

*
* first UWORD:
* bits 15-8, start vertical value, lowest 8 bits of this value
* con tained here.
* bits 7-0, start horizontal value, highest 8 bits of this value
* contained here.

*
* second UWORD:
* bits 15-8, end (stopping) vertical value, lowest 8 bits of this
* value contained here.
* bit 7 = Attach-bit (used for attaching sprites to get additional
* colors (15 instead of 3, supported by the hardware but
* NOT supported by the simple sprite machine).
* bits 6-4 (unused)
* bit 2 start vertical value; bit 8 of that value.
* bit 2 end vertical value; bit 8 of that value.
* bit 2 start horizontal value; bit 0 of that value.

*
**/

main()
{

LONG i;
SHORT j,k,n;
SHORT spgot;
UBYTE *displaymem;

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library" , 0);
if(GfxBase == NULL) exit(100);

/ * save current view to restore later * /
old view = GfxBase- > ActiView;

/* example steals screen from Intuition if started from WBench */

InitView{ &view);
InitVPort(&viewport);
view.ViewPort = &viewport;

/* initialize View * /
/* init ViewPort */
/* link View into ViewPort */

/ * init bit m'ap (for RasInfo and RastPort) * /
InitBitMap{ &bitmap, DEPTH, WIDTH, HEIGHT);

/ '" init RasInfo * /
rasinfo.BitMap = &bitmap;

116 Animation

rasinfo.RxOffset = 0;
rasinfo.RyOffset = 0;
rasinfo.Next = NULL;

/ * now specify critic al ch aracteristics * /
viewport.DWidth = WIDTH;
viewport.DHeight = HEIGHT;
viewport.RasInfo = &rasinfo;

/* initialize the color map. It has 32 entries. Sprites take up
*the top 16 and we wan t to specify some sprite colors * /

cm = GetColorMap(32);

/* no memory for color map * /
if(cm == NULL) {

FreeMemoryO;
exit(100);

}

colorpalette = (UWORD *)cm- > ColorTable;
for(i=O; i<32; i++) {

*colorpalette++ = colortable[i];
}

/* copy my colors into this ViewPort structure * /
viewport.ColorMap = cm;

/ * addition for sim pIe sprite: * /
vp.Modes = SPRITES;

/ * allocate space for bitmap * /
for(i=O; i<DEPTH; i++) {

bitmap.Planes[i] = (PLANEPTR) AllocRaster(WIDTH, HEIGHT);
if(bitmap.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);

/* clear the display area */
BltClear(bitmap.Planes[i], RASSIZE(WIDTH,HEIGHT), 1);

}

/ * construct Copper instr (prelim) list * /
MakeVPort(&view, &viewport);

/* merge prelim lists into a real Copper list in the view structure. */
MrgCop(&view);
LoadView(&view);

Animation 117

/ * now fill some boxes so that user can see something * /
/ * always draw in to both planes to assure true colors * /
for(n=l; n<4; n++) /* three boxes */
{

}

for(k=O; k<2; k++)
{

}

/ * boxes will be in red, green and blue * /
displaymem = bitmap.Planes[k] + boxoffsets[n-l];
DrawFilledBox(n, k, displaymem);

/**
* now we are ready to play with the sprites!

**/

/* Get the next available sprite. We should do an error
* check, if returns -1, then no sprites are available

*/
spgot = GetSprite(&sprite, -1);

sprite.x = 0;
sprite.y = 0;
sprite.height = 9;

/* initialize position and size info */
/* matches that shown in sprite_data */
/* so that system knows layout of data later * /

/* now put some colors into this sprite's color registers
* to custom-control the colors this particular sprite will display.
* NOTE: sprite pairs share color registers; i.e., sprites 0 and 1,
* 2 and 3, 4 and 5, 6 and 7 as pairs share the same sets of color
* registers (see the Amiga Hardware Reference manual for details).
* The code following figures out which sprite the system gave us,

** and sets that sprite's color registers to the correct value

*/
k = ((spgot & Ox06)*2) + 16;

/* convert sprite number into the base number for its color reg set */
/* value at k treated as transparent */
SetRGB4(&viewport, k+l, 12, 3, 8);
SetRGB4(&viewport, k+2, 13, 13, 13);
SetRGB4(&viewport, k+3, 4, 4, 15);

/* top of sprite is red, middle is white, bottom is blueish */
ChangeSprite(&viewport,&sprite,sprite_data);

MoveSprite(0,&sprite,30,0);

118 Animation

xmove = 1; ymove = 1;
for(n = 0; n < 4; n++) {

i=O;
while(i++ < 185) {

MoveSprite(0, &sprite, sprite. x + xmove, sprite.y + ymove);

}

}

/* slow it down to one move per video frame * /
WaitTOFO;

ymove = -ymove;
xmove = -xmove;

/ * free this sprite so others can use it also * /
FreeSprite(spgot);

/* restore the system to its original state */
LoadView(old view);
FreeMemoryO;
CloseLibrary(GfxBase);

} /* end of mainO */

/* return user and system-allocated memory to sys manager * /
FreeMemoryO
{

}

LONG i;

/* free drawing area */
for(i=O; i<DEPTH; i++) {

if(bitmap.Planes[i] != NULL) {
FreeRaster(bitmap.Planes[i], WIDTH, HEIGHT);

}
}
/ * free the color map created by GetColorMapO *' /
if(cm != NULL) FreeColorMap(cm);

/* free dynamically created structures */
FreeVPortCopLists(&viewport);
FreeCprList(view.LOFCprList);
return(0);

DrawFilledBox(fillcolor, plane, displaymem)

Animation 11 9

SHORT fillcolor,plane;
UBYTE *displaymem;
{

}

UBYTE value;
LONG j;

for(j=O; j < 100; j++) {

}

if((fillcolor & (1 < < plane)) != 0) {
value = Oxff;

} else {
value = 0;

}
for(i=O; i<20; i++) {

*displaymem++ = value;
}
displaymem += (bitmap.BytesPerRow - 20);

return(O);

RELINQUISHING A SIMPLE SPRITE

The FreeSpriteO routine returns an allocated sprite to the virtual sprite machine. The virtual
sprite machine can now reuse this sprite to allocate virtual sprites. The syntax of this routine is

FreeSprite(n urn)

where nurn is the number (0-7) of the sprite you want to return.

Note: You must free sprites after you have allocated them using GetSpriteO. If you do not
free them and your task ends, the system will have no way of reallocating those sprites until the
system is rebooted.

Using VSprites

This section tells how to define a VSprite. It describes how to:

o Specify the size of the VSprite object

120 Animation

o Select its colors

o Form its image

o Specify its position within the drawing area

o Add it to the list of GELS

o Control it after you add it to the list

The system software also provides a way to detect collisions between individual VSprites and
other on-screen objects. Collision detection applies to both VSprites and to Bobs. It appears
as a separate topic under "Topics Common to Both VSprites and Bobs."

SPECIFYING THE SIZE OF A VSPRITE

The first step in defining a VSprite is telling its dimensions to the system. A VSprite is
always 16 pixels wide and may be any number of lines high. Each pixel is the same size as a
pixel in low-resolution mode (320 pixels across a horizontal line) of the graphics display. To
specify how many lines make up the VSprite image, you use the VSprite structure Height
variable.

If your VSprite is 12 lines high and the name of your VSprite structure is myVSprite, then
you can set the height value with the following statement:

myVSprite.Height = 12;

Each line of a VSprite requires two data words to specify the color content of each pixel. This
means that the data area containing the VSprite image is 12 x 2, or 24, words long.

See the next section for details on how bits of these data words select the color of the VSprite
pixels.

SPECIFYING THE COLORS OF A VSPRITE

Because VSprites are so closely related to the hardware sprites, the choice of colors for
VSprites is limited in the same way. Specifically, each pixel of a VSprite can be anyone of
three different colors or it may be transparent. However, the system software provides a great
deal of versatility in the choice of colors for the virtual sprites. Each virtual sprite may have its
own set of three unique colors.

Animation 121

When the ~ystem assigns a hardware sprite to carry the VSprite's image, it assigns that
VSprite's color set to the hardware sprite that will produce that image. To define which set of
three colors to use for this VSprite, you initialize the VSprite structure pointer named
SprColors. SprColors points to the first data item of three sequentially-stored 16-bit values.
The system then jams these values into the selected hardware sprite's color registers when it is
being used to display this VSprite.

Every time you direct the system to redraw the VSprites, the GEL system reevaluates the
current on-screen position of each VSprite and decides which hardware sprite will carry this
VSprite's image for this rendering. It creates a customized Copper instruction sequence includ
ing both the repositioning of hardware sprites and the reloading of sprite color registers for vari
ous screen positions. Thus, during a move sequence, a VSprite may be represented by one or
many different real hardware sprites, depending on its current position relative to other
VSprites.

For example, if your set of colors is defined by the statement:

WORn spriteColors = { OxOOF, OxOFO, OxFOO };

and if your VSprite is named myVSprite, to set the VSprite colors you would use the follow
ing statement:

myVSprite.SprColors = &spriteColors;

How you specify the VSprite colors may affect how many VSprites you can show on the
screen at anyone time. For further information, see "How VSprites are Assigned."

SPECIFYING THE SHAPE OF A VSPRITE

To define the appearance of a VSprite, initialize the VSprite structure pointer called
ImageData to point to the first word of the image data. A VSprite image is defined exactly
as the image of a real hardware sprite. It takes two sequential 16-bit data words to define each
line of a VSprite.

To select colors for the pixels of a VSprite, examine the combination of the data bits in
corresponding locations in each of the two data words that define each line. The first of each
pair of data words supplies the low-order bit of the color selector for that pixel; the second word
of the pair supplies the high-order bit.

For example:

122 Animation

mem 0101111111111111
mem + 1 0011111111111111

Reading from left to right, the combinations of these two sequential memory data words form
the binary values of 00, 01, 10, 11, and so on. These binary values select colors as follows.

00 - selects VSprite color of "transparent"
01 - selects the first of three VSprite colors you have defined
10 - selects the second VSprite color
11 - selects the third VSprite color

In those areas where the combination of bits yields a value of 00, the VSprite is transparent.
Any object whose priority is lower than that of the VSprite will show through in transparent
sections of the VSprite. Thus, you might form a full three-color image, with some transparent
areas, from a data set like the following sample:

VSprite Data

mem 1111111111111111 Defines top line -
mem + 1 1111111111111111 contains only color 3

mem +2 0011111111111100 Defines second line -
mem +3 0011000000001100 contains colors 1 and 3 and

some transparency

mem +4 0000110000110000 Defines third line -
mem +5 0000111111110000 contains colors 2 and 3

and some transparency

mem +6 0000001001000000 Defines fourth line -
mem +7 0000001111000000 contains colors 2 and 3

and some transparency

mem + 8 0000000110000000 Defines last line -
mem + 9 0000000110000000 contains color 3 and

some transparency

The VSprite Height for this sample image is 5.

SprColors must point to the set of three colors that are to be used to display this VSprite,
and ImageData must point to the location ("mem" in the example) that contains the first
word of the VSprite definition.

Animation 123

SPECIFYING VSPRITE POSITION

To control the position of a VSprite, you use the y and x variables within the VSprite struc
ture. You specify the position of the upper left corner of a VSprite relative to the upper left
corner of the drawing area where you wish the VSprite to appear. Assign a value of 0,0 for y,x
to make the VSprite appear with its upper left corner against the upper left corner of the
drawing area. You can use values of y and x to move the VSprite entirely off the screen, if you
wish.

You resolve the vertical positioning for VSprites in terms of the non-interlaced mode of the
display. When you position a VSprite so that its y value is within the visible area of the
screen, you can select anyone of 200 possible positions down the screen at which its topmost
edge can be placed.

You resolve the horizontal positioning for VSprites in terms of the low-resolution mode of the
screen display. When you position a VSprite so that its x value is within the visible area of
the screen, you can select anyone of 320 possible positions across the screen at which its left
most edge can be placed. Note that if you are using VSprites under Intuition and within a
screen, they will be positioned relative to the upper left-hand corner of the screen.

USING VSPRITE FLAGS

Now that you have defined the VSprite's size, colors, shape, and position, you may want to
know where to add information to the data structures or where to check about the progress of
the system routines. The following sections describe the functions of the VSprite flags, the
variables that let you do some of these activities.

The VSprite data structure contains a variable named Flags that has information about its
data and about the progress of the system routines. The following sections describe the uses of
the VSPRITE, VSOVERFLOW, and GELGONE flags. You can use these flags to perform these
tasks:

VSPRITE

VSOVERFLOW

GELGONE

124 Animation

Indicate whether the system should treat the structure as a VSprite or
part of a Bob.

Check on the VSprites the system cannot display. (This is a read-only
system variable.)

Find out if the system has moved a GEL outside the clipping region of
the drawing area. (This is a read-only system variable.)

VSPRITE Flag

To tell the GEL routines to treat this VSprite structure as a VSprite instead of a Bob, set the
VSPRITE flag to 1. This affects the interpretation of the data layout and the use of various
system variables. If you set the VSPRITE flag bit to zero, the GEL routines treat this VSprite
structure as though it defined a Bob instead of a VSprite.

Note: Under Intuition, VSprites work only in screens, not in windows. Bobs work in both
screens and in windows. Thus, if you wish to use VSprites and Bobs together, you can only
do so by writing directly to the RastPort of a screen.

VSOVERFLOW Flag

If you have currently defined more VSprites at the same horizontal line than the system can
possibly assign to the real hardware sprites, then the VSprites that the system cannot display
have their VSOVERFLOW flag set. This means that it is possible that one or more VSprites
will not appear on the display for this pass of producing the GELS.

GELGONE Flag

When the GELGONE flag is set to 1, you know that the system has moved a GEL (VSprite or
a Bob) entirely outside of the clipping region of the drawing area. You can assume that the
system will fully or at least partially draw' any objects within the clipping region. Because the
system will not draw this object that· is outside the clipping area, you may wish to use
Rem VSpriteO to delete the VSprite from the GEL list in order to speed up processing of the
rest of the list. Of course, VSprites that you remove from the list are no longer managed or
checked by the system.

ADDING A VSPRITE

To control VSprites, you first describe them using the VSprite structure variables mentioned
above. Next you tell the system (by adding the VSprites to the GEL list) which VSprites to
handle. This section tells you how to add a VSprite to the GEL list.

To add a VSprite to the system GEL list, call the system routine AddVSpriteO, and specify
the address of the VSprite structure that controls this VSprite as well as the RastPort with
which it is associated.

Animation 125

A typical system call for this purpose follows:

struct VSprite myVSprite;

AddVSprite(&myVSprite, &rastport);

REMOVING A VSPRITE

To remove a VSprite from the list of controlled objects, use the system routine
RemVSpriteO. This function takes the following form:

RemVSprite(VS);

where VS is a pointer to the VSprite structure to be removed from the GEL list

GETTING THE VSPRITE LIST IN ORDER

When the system has displayed the last line of a VSprite, it reassigns the hardware sprite to
another V~prite located at a lower position, farther left on the screen. The system allocates
hardware sprites in the order in which it encounters the VSprites in the list. Therefore, you
must sort the list of VSprites before the system can assign the use of the hardware sprites
correctly.

When you first enter VSprites into the list using AddVSp~ite(), the system uses the y,X coor
dinates to place the VSprites into the correct position in the list. If you change the y,x coordi
nates after they are in the list, you must reorder the list before the system can use it to produce
the display.

You use the routine SortGListO (for "sort the GEL list") to get them in the correct order
before asking the system to display them. This sorting step is essential! You call this function
as follows:

SortGList(RPort);

where RPort is a pointer to the RastPort structure containing the GelsInfo

Note that there may be a GEL list in more than one RastPort. You must sort all of them.

126 Animation

DISPLAYING THE VSPRITES

The next few sections explain how to display the VSprites. You use the following system
routines:

o ON_DISPLAY - to turn on the playfield display

o ON_SPRITE - to turn on the VSprites display

o DrawGListO - to draw the elements into the current RastPort

o MrgCopO - to install the VSprites into the display

o LoadViewO - to ask the system to display the new View

o WaitTOFO - to synchronize the routines with the display

Turning on the Display

Before you can view a display on the screen, you must enable the system direct memory access
for both the hardware sprites and the playfield display. To enable the display of both playfield
and VSprites, use the system macro calls:

ON_DISPLAY;
ON_SPRITE;

Drawing the Graphics Elements

The system routine called DrawGListO looks through the list of controlled GELS. It prepares
necessary instructions and memory areas to display the data according to your ·requirements.
You call this rou tine as follows:

DrawGList(RPort, VPort);

where

RPort
is a pointer to the RastPort

Animation 127

VPort
is a pointer to the View

Because the system links VSprites to a View, the use of a RastPort is not significant for
them. However, you can use DrawGListO for Bobs as well as VSprites, so it is required that
you pass the pointer to the RastPort to the routine. DrawGListO actually draws Bobs into
that RastPort when you execute the instructions.

Once DrawGListO has prepared the necessary instructions and memory areas to display the
data, you will need to install the VSprites into the display with MrgCopO.

Merging VSprite Instructions

Recall that the call to DrawGListO did not actually draw the VSprites. It simply provided a
new set of instructions that the system uses to assign the VSprite images to real hardware
sprites, based on their positions. The View structure already has a set of instructions that
specifies how to construct the display area. It includes pointers to the set of VSprite instruc
tions that was made by the call to DrawGListO. To install the current VSprites into the
display area, you call the routine MrgCopO to merge together all of the display-type instruc
tions in the View structure. You call this routine as follows:

MrgCop(View);

where View is a pointer to the View structure whose Copper instructions are to be merged

DrawGListO handles Bobs as wells as VSprites: Therefore, the call to DrawGListO,
although it did not really draw the VSprite images yet, does draw the Bobs into the selected
RastPort.

Loading the New View

Now that the display instructions include the definition of the VSprites, you can ask the sys
tem to prepare to display this newly configured View. You do this with the following system
routine:

LoadView(view);

where view is a pointer to the View that contains the pointer to the Copper instruction list

The Copper instruction lists are double-buffered, so this instruction does not actually take effect
until the next display field occurs. This avoids the possibility of some routine trying to update
the Copper instruction list while the Copper is trying to use it to create the display.

128 Animation

Synchronizing with the Display

To synchronize your routines with the display, you use a call to the system routine
WaitTOFO. Although your routines may possibly be capable of generating more than 60 com
plete display fields per second, the system itself is limited to 60 displays per second. Therefore,
after generating a complete display, you may wish to wait until that display is ready to be
shown on the screen before starting to generate the next one. WaitTOFO holds your task
until the vertical-blanking interval (blank area at the top of the screen) has begun. At that
time, the system has retrieved the current Copper instruction list and is ready to allow genera
tion of a new list.

The call to the vertical-blanking synchronization routine takes the following form:

WaitTOFO;

Now that you have learned how to add and display VSprites, you may want want to change
some of their characteristics, as shown in the following section.

Changing VSprites

Once the VSprite has been added to the GEL list and is in the display, you can change some of
its characteristics with the following operations:

o Pointing to a new VSprite image (change the ImageData pointer)

o Pointing to a new VSprite color set (change the SprColors pointer)

o Defining a new VSprite position (change the y,x values)

VSPRITE OPERATIONS SUMMARY

This section provides a summary of the VSprite operations in their proper sequence:

o Define a View structure that you can later merge with the VSprite instructions.

o Initialize the GEL system (call InitGelsO). This only needs to be done once.

o Define the VSprite:

Define height.

Animation 129

Define on-screen position.

Define where to find ImageData data.

Define where to find SprColors to use.

Define VSprite structure flags to show that this is a VSprite.

o Add the VSprite to the GEL list.

o Change the VSprite appearance by doing the following:

Changing the pointer to ImageData.

Changing its height.

o Change the VSprite colors by changing the pointer to SprColors.

o Move the VSprite by defining a new y,x position.

o Display the VSprite with this sequence of routines:

SortGListO

DrawGListO

MrgCopO

LoadViewO

Once you have mastered the basics of handling VSprites, you may want to study the next two
sections to find out how to reserve hardware sprites for use outside the VSprite system and
how to assign the VSprites.

130 Animation'

VSPRITE ADVANCED TOPICS

This section describes advanced topics pertaining to VSprites. It contains details about reserv
ing hardware sprites for use outside of the VSprite system, information about how VSprites
are assigned, and more information about VSprite colors.

Reserving Hardware Sprites

To prevent the VSprite system from using specific hardware sprites, you can write into the
variable named sprRsrvd in the GelsInfo structure. The pointer to the GelsInfo structure is
contained in the RastPort structure. If the contents of this 8-bit value is zero, then all of the
hardware sprites may be used by the VSprite system. If any of the bits is a 1, the sprite
corresponding to that bit will not be utilized by VSprites. Note that this increases the likeli
hood of a VSprite VSOVERFLOW. See the next section, "How VSprites are Assigned," for
further details on this topic.

Hardware sprites are reserved as shown below.

This sprite is reserved: 76543210

If this sprRsrvd bit is a 1: 76543210

You normally assign hardware sprites in pairs, as suggested by the following example. Suppose
you want to reserve sprites 0 and 1. Your program would typically include the following kinds
of statemen ts:

struct RastPort myRastPort; /* the View structure is defined */

myRastPort->GelsInfo->sprRsrvd = Ox03; /* reserve 0 and 1 */

If you reserve a hardware sprite for your own use, the system is unable to use that hardware
sprite when it makes a VSprite assignment. In addition, because pairs of hardware sprites
share color register sets, reserving one hardware sprite effectively eliminates two.

If you are using the simple sprite system to allocate sprites, you can look in the GfxBase struc
ture to see which sprites are already in use.

Note: If Intuition is running, sprite 0 is already reserved for use as the pointer.

Animation 131

The reserved sprite status is accessible as

currentreserved = GfxBase- > SpriteReserved

The next section presents a few trouble-shooting techniques for VSprite assignment.

How VSprites Are Assigned

Each VSprite can display three possible colors plus transparent. To define colors for
VSprites, you use the SprColors pointer. SprColors points to the first of three word quanti
ties, representing the three possible pixel colors for that virtual sprite.

Although the VSprites are handled by the automatic routines, the system may run out of
sprites. If you ask that the software display more than four VSprites on a single horizontal
scan line, it is possible that one or more sprites may disappear until the conflict is resolved.

Here is the reason that the VSprite routines might hav.e problems, and some suggestions on
how to avoid them. There are 8 real sprite DMA channels. Sprites 0 and 1 share color registers
17-19; sprites 2 and 3 share registers 21-23; sprites 4 and 5 share registers 25-27; and sprites 6
and 7 share registers 29-31.

When the VSprite routines use the sorted list of VSprite elements, they build a Copper
instruction list that decides when to reuse a sprite DMA channel. They also build a Copper
instruction stream that stuffs the color r~gister set for the sprite selected at that time on the
screen to represent this VSprite image.

This process consists of the following steps:

1. Use real sprite 0 to represent the first virtual sprite. Load that virtual sprite's colors
into the three color registers for sprite 0 (registers 17, 18, 19).

2. Now look at the rest of the virtual sprites the user wishes to display on this same hor
izontalline.

3. If the VSprite color pointers are all different from the pointer found in the sprite 0
pointer, it will not be possible to use the real sprite 1 DMA channel for display on this
line because it shares the real sprite 0 colors.

4. Conversely, if one of the other virtual sprites to appear on this line shares the same vir
tual color pointer, the VSprite routines can use sprite DMA channel 1 to represent
that second virtual sprite.

132 Animation

5. The VSprite routines con tin ue to map virtual sprites against the real sprites un til
either of the following events occurs:

o All virtual sprites are assigned.

o The system runs out of real sprites that it can use.

The system will run out of real sprites to use if you ask the virtual sprite system to display
more than four sprites having different pointers to their color table on the same horizontal line.
During the time that there is a conflict, one or more of your virtual sprites will disappear.

You can avoid these problems by taking the following precautions:

o Minimize the number of VSprites you wish to appear on a single horizontal line.

o If colors for some virtual sprites are the same, make sure that the pointer for each of
the VSprite structures for these virtual sprites points to the same memory location,
rather than to a duplicate set of colors elsewhere in memory.

If You Do Not Specify VSprite Colors

To pick the set of colors to use, you specify the pointer named SprColors. If you specify a 0
value for SprColors, that VSprite does not generate a color-change instruction stream for the
Copper when the system displays it. Instead, the VSprite appears drawn in the color set that
is currently written into the color registers for the hardware sprite currently selected to display
this VSprite.

Table 3-2 shows how the hardware sprites use the color registers to select their possible range of
colors:

Table 3-2: Hardware Sprite Color Registers

Hardware Sprite Color Registers

o and 1 17 - 19
2 and 3 21 - 23
4 and 5 25 - 27
6 and 7 29 - 31

During one screen display, the system may use hardware sprite number 1 to display a VSprite.
In this case, the VSprite selects its three available colors from color register numbers 17-19.
On another screen display, the system may select hardware sprite number 7 to display the same

Animation 133

VSprite. In this case, the hardware sprite uses color registers 29-31.

Therefore, if you make the SprColors pointer a 0, specifying that color does not matter, the
system may display your VSprite in anyone of a set of four different possible color groupings
as indicated in the table above.

How VSprite and Playfield Colors Interact

The VSprites use system color registers 16 through 31 to hold the VSprite color selections.
There are only 32 color registers in the system. The highest 16 color registers (16-31) are shared
with the playfield color selections. If you are working in 32-color low-resolution mode, the sys
tem makes the first 16 color selections for the playfield pixels from color registers 0-15 and then
makes the remaining color selections from color registers 16-31.

If you are using the VSprite system and specifying the colors (using SprColors) for each
VSprite, the contents of color registers 16-31 will change constantly as the video display beam
progresses down the screen. The Copper instructions change the registers to display the correct
set of colors for your VSprites depending on their positions. If you have any part of a 32-color
playfield display drawn in any of the colors shown in table 3-2, those colors will appear to flicker
and change as your VSprites move.

This problem also affects 32-color Bobs because Bobs are actually drawn as part of the
playfield display. Anything that affects the playfield affects the Bobs as well.

You can avoid this flickering and changing of colors by taking the following precau tions:

o Use no more than 16 colors in the playfield display whenever you use VSprites; or

o If you are using a 32-color playfield display, do not use any colors other than 0-15, 16,
20, 24, and 2.8. The remaining color numbers are used by the VSprite system; or

o Specify the VSprite SprColors pointer as a value of o. This avoids changing the con
tents of any of the hardware sprite color registers, but may cause the VSprites to
change colors depending on their positions relative to each other, as described in the
previous section.

The first two alternatives are the easiest to implement.

134 Animation

Using Bobs

Because Bobs and VSprites are both graphics objects handled by the GEL system, they share
many of the same data requirements. VSprites and Bobs differ primarily in that Bobs are
drawn into the playfield using the blitter, while VSprites are assigned to hardware sprites.

The following sections describe how to define a Bob, including how to specify its size, select its
colors, form its image, and specify its on-screen position.

Because a Bob is a more complex object than a VSprite, you must also define various other
items, such as the color depth of the Bob, how to handle the drawing of the Bob, and certain
other variables that the GEL system requires when Bobs are used.

LINKING A BOB TO A VSPRITE STRUCTURE

To fully define a Bob, you define two different structures: a VSprite structure and a Bob
structure. The graphics animation system has been designed as a set of interrelated elements,
each of which builds on the information provided by the underlying structure to create addi
tional versatility. The common elements-such as height, collision-handling information, posi
tion in the drawing area, and pointers to the data definition - are part of the VSprite struc
ture. The added features-such as drawing sequence, data about saving and restoring the
background, and other features not common to VSprites-are part of the Bob structure
instead.

The VSprite and Bob structures must point to one another, so that the system knows where
all of the appropriate variables are defined. For example, suppose your program defines two
structures that are to define a Bob named "my Bob" as follows:

struct Bob myBob;
struct VSprite myVSprite;

You must create a link between the two structures with a set of program statements such as:

myBob.BobVSprite = &myVSprite;
myVSprite.VSBob = &myBob;

Now the system can go back and forth between the two structures to obtain the various ele
ments as needed to define the Bob.

Animation 135

SPECIFYING THE SIZE OF A BOB

Whereas a VSprite was limited to 16 pixels of width, a Bob can be any size you wish to define.
To specify the size of a Bob, you use not only the Height but also the Width variable. You
specify these variables in a VSprite structure associated with the Bob. Specify the width as
the number of 16-bit words it takes to fully contain the object.

As an example, suppose the Bob is 24 pixels wide and 20 lines tall. You use statements such as
the following to specify the size:

myVSprite.Height = 20; /* 20 lines tall */
myVSprite.Width = 2; /* 2 words = 24 pixels wide, rounded

* up to the next multiple of 16 pixels. * /

Because Bobs are drawn into the playfield background, the pixels of the Bob are the same size
as the background pixels. With hardware sprites, the pixels are of a fixed size (low-resolution
pixels).

SPECIFYING THE COLORS OF A BOB

Because a Bob is drawn into the playfield area, it can have as many colors as the playfield area
itself. Typically a five-bit-plane, low-resolution mode display allows you to select playfield pix
els (and therefore, Bob pixels) from any of 32 active colors out of a system palette of 4,096
different color choices. The set of colors you select for the playfield area is the set of colors the
system uses to display the Bobs.

For Bobs, the system ignores the SprColors variable in the VSprite structure. You use the
Depth variable in the VSprite structure to define how much data is provided to define the
Bob. This variable also defines how many different colors you can choose for each of the pixels
of a Bob.

The Depth variable specifies how many bit-plane images the system must retrieve from the
Bob image data area to make up the Bob. These are called bit-plane images as the system will
write each image into a different bit-plane. The combination of bits in identical y,x positions in
each bit-plane determines the color of the pixel at that position.

For example, if you specify only one plane, then the bits of that image let you select only two
different colors: one color for each bit that is a 0, a second color for each bit that is a 1. Like
wise, if there are 5 images stored sequentially and you specify a depth of 5, each image contri
butes one bit for each position in the image to the color number selector, allowing up to 32
different choices of color for each Bob pixel.

136 Animation

You specify depth using a statement such as the following:

myVSprite.Depth = 5; /* allow 32 colors; requires that a
* 5-bit-plane image be present in data area. * /

SPECIFYING THE SHAPE OF A BOB

The organization of a Bob in memory is different from that of a VSprite because of the way
the system retrieves data to draw Bobs. To define a Bob, you must still initialize the
ImageData pointer to point to the first word of the image definition; however, the layout of
the data is different for Bobs than for VSprites.

The sample image below shows the same image defined as a VSprite in the "Using VSprites"
section above. The data, however, is stored in a way typical of a Bob.

If a shape is 2 bits "deep" and is a triangular shape, you would lay it out in memory as follows:

<first bit-plane data>

mem 1111111111111111
mem + 1 0011000000001100
mem + 2 0000111111110000
mem + 3 0000001111000000
mem + 4 0000000110000000

<second bit-plane data>

mem + 5 1111111111111111
mem + 6 0011111111111100
mem + 7 0000110000110000
mem + 8 0000001111000000
mem + 9 000000011 0000000

< <third bit-plane data>

< <fourth bit-plane data>

< <fifth bit-plane data>

To state the width of the Bob image, you use 16-bit words. The Width value is the number of
words that fully contain the image. For example, you store a 29-bit wide image in 32 bits (2
data words of 16 bits each) for each line of its data.

Animation 137

You still specify the number of lines with the Height variable in the VSprite data structure.
However, you treat Height somewhat differently for a Bob than for a VSprite. Specifically,
for a VSprite, two adjacent data words that always occur together define the colors of each
VSprite pixel. For a Bob, the Height variable defines how many adjacent data words it takes
to define one complete bit-plane image. That is, for a Bob the number of adjacent data words
in each bit-plane image definition is given by the following formula: Height x Width.

The Depth variable defines how many adjacent (end-to-end) images there are in the data area
to define the shape of the Bob. See the example at the end of the "PlaneOnOff" section below.

OTHER ITEMS INFLUENCING BOB COLORS

Three other variables in the VSprite structure affect the color of Bob pixels: PlanePick,
ImageShadow, and PlaneOnofl'.

PlanePick

Assume that you have defined a playfield composed of five bit-planes. The variable PlanePick
in the VSprite structure lets you specify which of the bit-planes are to be affected when the
system draws the Bob. PlanePick binary values affect the bit-planes according to the follow
ing pattern:

Draw Bob into this bit-plane:
If this PlanePick bit is a 1:

For example, if PlanePick has a binary value of:

00011

543210
543210

then the system draws the first bit-plane image of the Bob into bit-plane 0 and the second
image into bit-plane 1.

Suppose that you still want to define an image of only 2 bit-planes, but wish to draw the Bob
into bit-planes 1 and 4 instead of 0 and 1. Simply choose a PlanePick value of:

10010

This value means "write first image into plane 1, second image into plane 4."

138 Animation

ImageShadow

The variable named ImageShadow is a pointer to a memory area that you have reserved for
holding the shadow mask of a Bob. A shadow mask is the logical or combination of all 1-bits
of a Bob image. There is a variable in the VSprite structure called ColIMask (pointer to a
collision mask, covered under "Topics Common to Both VSprites and Bobs") for which you
reserve some memory space. The ImageShadow and ColIMask pointers usually, but not
necessarily, point to the same data.

Figure 3-2 shows an example of a shadow mask with only the 1 bits.

If this is the image in: Then its I mage Shadow is:

Plane 1 Plane 2

1111111111111 1111111111111
1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1
1 1 1 1

1 1

Figure 3-2: An Image and Its ImageShadow

The system uses the shadow mask along with the variable PlaneOnOff, discussed in the next
section. Because ImageShadow in the Bob structure is a pointer to a data area containing
the sprite shadow, you must provide space that the the system can use for this purpose. You
must then initialize the pointer to the first location within the data area that you have set
aside. You can calculate the minimum size of this area as follows:

shadow size = Height * Width

So, for example, an object 5 lines high by 32 bits wide (VSprite or Bob) requires a sprite sha
dow storage area of at least 5 x 2, or ten 16-bit locations. The example in the "PlaneOnOff"
section below shows how to reserve the memory for the sprite shadow and how to tell the sys
tem where to find it.

Animation 139

PlaneOnOff

The variable named PlaneOnOff tells the system what to do with the playfields that are not
"picked" (affected) by PlanePick. The binary bit positions for PlaneOnOff are the same as
those for PlanePick (lowest bit position specifies the lowest-numbered bit-plane). However,
their meaning differs. For every plane position not selected by PlanePick, parts of the non
selected plane are filled with the value shown in the corresponding position of PlaneOnOff.
The parts that are filled are the positions where there is a I-bit present in the sprite's image
shadow.

This provides a great deal of versatility . You can use a two-plane VSprite image as the source
for many Bob images. Yet, because of the color combinations each contains, it may seem that
there are several different images present.

For example, assume that the data shown in the Bob layout above defines a two-bit-plane Bob
image that selects its colors from color registers 0, 1, 4, and 5. To initialize the Bob and
VSprite structures, you need to provide the following types of statements:

/* data definition from example layout * /
WORD BobData[]= {

OxFFFF, Ox300C, OxOFFO, Ox03CO, Ox0180,
OxFFFF, Ox3FFC, OxOC30, Ox03CO, Ox0180

};

/* reserve space for the collision mask for this Bob * /
WORD BobCollision[10];

myVSprite.Width = 1;
myVSprite.Height = 5;
myVSprite.Depth = 2;

/* sample image is 16 pixels wide (1 word) * /
/ * takes 5 lines to define each image of the Bob * /
/* only two bit-plane images are defined in BobData */

/* show the system where it can find the data image of the Bob * /
myVSprite.lmageData = BobData;

/* binary = 00101, means draw into only bit-planes 0 and 2 */
myVSprite.PlanePick = Ox05;

/* binary = 00000, means for planes not picked, that is, 1,3, and 4,
*fi11 those planes with O's wherever there is a 1 in the sprite shadow mask

*/
myVSprite.PlaneOnOff = OxOO;

/* where to put collision mask * /
myVSprite.Co11Mask = BobCollision;

140 Animation

/* tell the system where it can assemble a sprite shadow */
/ * point to same area as ColIMask * /
myBob.ImageShadow = BobCollision;

/* create the sprite collision mask for this Bob's VSprite structure * /
InitMasks(&myVSprite);

Whenever the system draws this Bob, it fills any position where there is a 1 in the sprite sha
dow with a 0 for any plane not selected by PlanePick. Therefore, the only binary combina
tions the Bob pixels can form are as shown below. Because of PlanePick, 1s can appear only
at these two locations: 0 0 1 0 1. So the color choices are limited to the following:

Color Binary
Selected Combination

color 0 00000
color 1 00001
color 4 00100
color 5 00 1 0 1

These color choices fulfill the requirements specified for the example.

To select the position of a Bob, specify the y and x variables in the VSprite structure associ
ated with the Bob. For example:

myVSprite.Y = 100;
myVSprite.X = 100;

BOB PRIORITIES

This section describes the two choices you have for system priorities between Bobs. You can
ignore the priority issue and let the system decide which Bob has the highest priority, or you
can specify the drawing order yourself. When you specify the drawing order, you control which
Bob the system draws last, and therefore, which one appears in front of other Bobs.

Letting the System Decide Priorities

If you want the system to decide, you set the Before and After pointers in the Bob data
structure to zero. In this case, the system draws the Bobs in their y,x positional order on the
screen. In other words, the system draws whichever object is on the screen and is currently the
highest within the drawing area (lowest y coordinate value). If two objects have the same y
coordinate, the object that has the lowest x coordinate value is drawn first.

Animation 141

The Bob drawn first has the lowest priority. The Bob drawn last has the highest priority
because later objects overlap the objects drawn earlier.

As you use the animation system to move objects past each other on the screen, you will notice
that sometimes the objects switch priorities as they pass each other. For example, suppose you
want the system to establish the priorities of the Bobs, and there are two Bobs defined in the
system-myBob2 and myBob3. You set the Before and After pointers as follows:

myBob2.Before = 0;
myBob2.After = 0;
myBob3.Before = 0;
my Bo b3 .After = 0;

Specifying the Drawing Order

If you wish to specify the priorities, simply specify the pointers as follows. Before points to the
Bob that this Bob should be drawn before, and After points to the Bob that this Bob should
be drawn after. This guarantees that Bob objects retain their relative priorities.

For example, suppose you want to assure that myBob3 always appears in front of myBob2.
You must initialize the Before and After pointers so that the system will always draw my Bob3
last; that is, after myBob2.

myBob2.Before = &myBob3;
myBob2.After = 0;
myBob3.After = &myBob2;
myBob3.Before = 0;

/* draw Bob2 before drawing Bob3 * /
/* draw Bob2 after no other Bob * /
/* draw Bob3 after drawing Bob2 * /
/* draw Bob3 before no other Bob * /
/* draw nothing in particular after this Bob * /

If you decide to specify the Before and After pointers for anyone Bob in a group, then you
must also at least set the Before and After pointers to zero for all of the rest of the Bobs in
that group.

For example, if there are ten Bobs and you only care that the system draws numbers 4, 6, and
9 in that sequence, you must properly fill in the Before and After pointers for these three
Bobs. If you do not care in which order the system draws the other seven Bobs, you need only
initialize their Before and After pointers to a value of 0 to assure correct treatment by the
system.

You must properly point all Before and After pointers of a group to each other because the
Bob that is the upper-leftmost becomes the first the system considers for drawing. The system
follows the Before pointers until it finds one having a zero value, and draws that Bob first. It
then draws other Bobs in the sequence you have specified.

142 Animation

In the example code sequence above, the comment "draw nothing in particular after this Bob"
simply means that once the drawing sequence for this set of Bobs has been performed, the sys
tem still proceeds to find and draw all other Bobs currently linked into the GEL list. To con
tinue the drawing operation, the system simply goes on searching the list for the next Bob
whose Before pointer is O.

Specifying Priority between Bobs and VSprites

See "Topics Common to Both VSprites and Bobs" below for details.

SAVING THE PLA YFIELD DISPLAY

Once the system has drawn the Bobs, they become part of the playfield segment of the display.
The image of a Bob overlays part of the background area. To move a Bob from one place to
another, you must tell the system to save the background before it draws the Bob and to
restore the background to its original condition when it moves the Bob.

A variable called sprFlag in the VSprite structure contains a flag called SAVEBACK. To
cause the system to save and restore the background for that Bob, set the SAVEBACK flag to
1.

In addition to the sprFlag variable, you must also tell the system where it can put this saved
background area. For this, you use the SaveBuffer variable. For example, if the Bob is 48
pixels wide and 20 lines high, and the system is drawing it into a playfield of five bit-planes, you
must allocate space for storing the following:

(48 pixels/16 pixels per word) * (20 lines) * (5 bit-planes) = 300 words

To allocate this space, use the graphics function AllocRasterO. When you use AllocRasterO
for this purpose, you can specify the area size in bits, so it may well be the most convenient way
to reserve the space you need. For example:

myBob.SaveBuffer = AllocRaster(48,20 * 5);
/ * save space to store 48 bits times 20 words times 5 bit-planes * /

Note that the AllocRasterO function rounds the width value up to the next integer multiple of
16 bits.

Animation 143

USING BOB FLAGS

The following sections describe the Bob flags. Some of these are in the VSprite structure asso
ciated with the Bob; others are in the Bob structure itself. The description of each flag tells
the structure in which the flag is located.

VSPRITE Flag

If you are using the VSprite structure to describe a Bob, set VSPRITE to zero.

The VSPRITE flag is located in the VSprite structure.

SAVEBACK Flag

If you want the GEL routines to save the background before the Bob is drawn and to restore
the background after the Bob is removed, set the SAVEBACK (for "save the background") flag
in the VSprite structure to 1.

If you set this flag, you must have allocated the buffer named SaveBuffer.

OVERLAY Flag

If the system should use the sprite shadow mask when it draws the Bob into the background,
set the OVERLAY flag in the VSprite structure to 1. If this flag is set, it means that the
background original colors show through in any section where there are 0 bits in the sprite sha
dow mask. Essentially, then, those 0 bits define areas of the Bob that are "transparent."

If you set the OVERLAY bit to a value of 0, the system uses the entire rectangle of words that
define the Bob image and uses its contents to replace the playfield area at the specified y,x
coordinates.

If you set this flag, you must have allocated space for and initialized the ImageShadow sha
dow mask. See the section above called "Sprite Shadow Mask" for details on the shadow mask.

144 Animation

GELGONE Flag

The system sets this flag in the VSprite structure to indicate when the Bob has been moved to
y,x coordinates entirely outside of the "clipping region."

When an object crosses over certain specified boundaries in the drawing area, the system does
not draw all of the object into the background but "clips" (truncates) it to those limits. At the
time of this writing, the variables named topmost, bottommost, leftmost, and rightmost
define the minimum and maximum y,x coordinates of this clipping region.

When the system sets the GELGONE flag to a 1, you know that the object has passed entirely
beyond those limits and that the system will not draw any part of the object into the drawing
area. On the basis of that information, you may decide that the object need no longer be part
of the GEL list and may decide to remove it to speed up the consideration of other objects.

SA VEBOB Flag

To tell the system not to erase the old image of the Bob when the Bob is moved, set the
SAVEBOB flag in the Bob structure to 1. This lets you use the Bob like a paintbrush if you
wish. It has the opposite effect of SA VEBACK.

Note: It takes longer to preserve and restore the raster image than simply to draw a new Bob
image wherever required.

BOBISCOMP Flag

If this Bob is part of an AnimComp, set the BOBISCOMP flag in the Bob structure to 1. If
the flag is a 1, you must also initialize the pointer named BobComp. Otherwise, the system
ignores the pointer, and it may be left alone. See "Animation Structures and Controls" for a
discussion of AnimComps.

BWAITING Flag

When a Bob is waiting to be drawn, the system sets the BWAITING flag in the Bob structure
to 1. This occurs only if the system has found a Before pointer in this Bob's structure that
points to another Bob. Thus, the system flag BWAITING provides current draw-status to the
system. Currently, the system clears this flag on return from each call to DrawGListO.

Animation 145

BDRAWN Flag

The BDRA WN system status flag in the Bob structure tells the system that this Bob has
already been drawn. Therefore, in the process of examining the various Before and After
flags, the drawing routines may determine the drawing sequence. Currently, the system clears
this flag on return from each call to DrawGListO.

BOBSAWAY Flag

To initiate the removal of a Bob during the next call to DrawGListO, set BOBSA WA Y to 1.
Either you or the system may set this Bob structure system flag. The system restores the
background where it has last drawn the Bob. The system will unlink the Bob from the system
GEL list the next time DrawGListO is called unless you are using double-buffering. In that
case, the Bob will not be unlinked and completely removed until two calls to DrawGListO
have occurred and the Bob has been removed from both buffers.

BOBNIXFlag

When a Bob has been completely removed, the system sets the BOBNIX flag to 1 on return
from DrawGListO. In other words, when the background area has been fully restored and the
Bob has been removed from the GEL list, this flag in the removed Bob is set to a 1. BOBNIX
is significant when you use double-buffering, because once you ask that a Bob be removed, the
system must remove it from the active drawing buffer and from the display buffer. Once
BOBNIX has been set for a double-buffered Bob, it has been removed from both buffers and
you are free to reuse it or deallocate it.

This flag is in the Bob structure.

SA VEPRESERVE Flag

The SAVEPRESERVE flag is a double-buffer version of the SA VEBACK flag. If you are using
double-buffering and wish to save and restore the background, you set SAVEBACK to 1.
SAVEPRESERVE is used by the system to indicate whether the Bob in the "other" buffer has
been restored; it is for system use only.

146 Animation

ADDINGABOB

To add a Bob to the system GEL list (the same list you created for VSprites using
InitGelsO), you use the AddBobO routine. It is advisable that you initialize the different
variables you plan to use within the Bob structure before you ask that the system add this
Bob to the list.

For example:

struct Gelslnfo myGelslnfo;
struct VSprite dummySpriteA, dummySpriteB;
struct Bob myBob;

/* done ONCE, for this Gelslnfo */
InitGels(&dummySpriteA, &dummySpriteB, &myGelslnfo);

/* here initialize the Bob variables * /
AddBob(&myBob, &rastport);

REMOVING A BOB

Two methods may be used to remove a Bob. This section describes the system routine for each
method.

The first method uses the RemBobO routine. You call this routine as follows:

RemBob (&myBob, &rastport);

RemBobO causes the system to remove the Bob during the next call to DrawGListO (or two
calls to DrawGListO if the system is double-buffered). RemBobO asks the system to remove
the Bob "at its next convenience."

The second method uses the RemIBobO routine. For example:

RemIBob (&myBob, &rastport, &viewport);

RemIBobO tells the system "remove this Bob immediately!" It causes the system to erase the
Bob from the drawing area and causes the immediate erasure of any other Bob that had been
drawn subsequent to this one. The system then unlinks the Bob from the system GEL list. To
redraw the Bobs that were drawn on top of the one just removed, you must make another call
to DrawGListO.

Animation 147

GETTING THE LIST OF BOBS IN ORDER

Like the list of VSprites, the list of GELS must be in the proper y,x sorted order from top of
screen to bottom and from left to right. The system uses the position information to decide
drawing sequences if you have not specified otherwise by using the Before and After pointers.
You must therefore assure that the GEL list is sorted before you ask the system to display the
Bobs.

To sort the GEL list, you call SortGListO. For example:

SortGList(&rastport);

DISPLAYING BOBS

This section provides the typical sequence of operations for drawing the Bobs on the screen. It
is very similar to that shown for VSprites, as both Bobs and VSprites are GELS and are part
of the same list of con trolled objects.

Specifically, the system automatically synchronizes the drawing routines to the display beam
and may not require that the display be turned off during the update. If large Bobs or many
Bobs are created, you may be interested in double-buffering. See the section called "Double
Buffering" in this chapter for details.

When you call DrawGListO, the system actually draws any Bobs on this list into the area you
have specified. The system saves the backgrounds if you have provided for the save and then
performs the drawing sequence in the order you requested. To initiate this drawing, call
DrawGListO. For example:

struct RastPort *rp;
struct ViewPort *vp;

DrawGList(rp, vp);

CHANGING BOBS

/ * draw the elements * /

You can change the following characteristics of Bobs:

o To change their appearance, change the pointer to the ImageData in the associated
VSprite structure. Note that the change in the ImageData pointer also requires a
change in the ImageShadow or a recalculation of the object mask, using InitMasksO.

148 Animation

o To change their color choices, change their PlanePick and/or PlaneOnOff values;
also change the depth parameters if the sprite image has multiple planes defined.

o To change the location in the drawing area, change the y,x values in the associated
VSprite structure.

o To change the object pnontles, change the drawing sequence by altering the Before
and After flags in the Bob structures.

o To change the Bob into a paintbrush, set the SAVEBOB flag to aIm the Bob
structure.

Note: Neither these nor other changes actually happen until you call SortGListO and then
DrawGListO·

DOUBLE-BUFFERING

Double-buffering is the technique of supplying two different memory areas in which the drawing
routines may create images. The system displays one memory space while you are drawing into
the other area. This assures that you never see any display fields on the screen that consist
partly of old material and partly of new material.

The system animation routines use an extension that you establish to the Bob structure. Also,
if you do not care to use double-buffering, you need not tie up precious memory resources for
unneeded variable storage space.

To find whether a Bob is to be double-buffered, the system exammes the pointer named
DBuffer in the Bob structure. If this pointer has a value of 0, the system does not use
double-buffering for this Bob.

Note: If you do not wish to use double-buffering, you must initialize the DBuffer pointer to
zero. For example:

myBob.DBuffer = 0; /* do this if this Bob is NOT double-buffered * /

The next section discusses several other variables that you must describe if you want to use
double-buffering. Note: if any of the Bobs are double-buffered, then all of them must be
double-buffered.

Animation 149

Variables Used in Double-Buffering

To use double-buffering for a given Bob, you must provide a data packet for the system to
store some of the variables it needs to handle double-buffering. This data packet is a structure
named DBufPacket that consists of the following variables:

BufY,Buf.X
System variables that let the system keep track of where the object was located "last
screen" (as compared to the Bob structure variables called oldY and oldX that tell
where the object was two screens ago). BufY and Buf.X provide for correct restoration
of the background within the currently active drawing buffer.

BufPath
System variable related to the drawing order used to draw this Bob into the back
ground. BufPath assures that the system restores the backgrounds in the correct
sequence; it relates to the system variables DrawPath and ClearPath (found in this
Bob's VSprite structure).

BufBuffer
You must set this field to point to a buffer as big as this Bob's SaveBuffer to allocate
separate space for buffering the background on which you are drawing the Bob. This
buffer is used to store the background for later restoration when the system moves the
object.

The next section shows how to pull all these variables together to make a double-buffered Bob.

Creating a Double-Buffered Bob

To create a double-buffered Bob, you must initialize all of the normal Bob variables and
pointers and execute a code sequence similar to the following:

struct DBufPacket myDBufPacket;

/* allocate a DBufPacket for myBob */

/* same size as previous example in "Saving the Playfield Display" */
myD~ufPacket.BufBuffer = AllocRaster(48, 20 * 5);

/* tell Bob about its double buff status * /
myBob.DBuffer = myDBufPacket;

150 Animation

BOB OPERATIONS SUMMARY

The following steps are involved in defining, moving, and displaying a Bob:

o Define a RastPort structure for the drawing routine to use.

o Initialize the GEL system (call InitGelsO) for this RastPort. You only need to do
this once.

o Create and link a Bob and a VSprite structure.

o Define the following Bob parameters:

Height

Width

Depth

Position

Where to find ImageData data

Which planes to pick for writing this Bob

How to treat the planes not picked

VSprite structure flags to show that this is a Bob

Space for the sprite shadow

Pointer to a DBufPacket if you want to use double-buffering (otherwise, make
this pointer a NULL (0) value)

o Call InitMasksO to create the sprite shadow.

o Add the Bob to the GEL list.

o Change the Bob appearance by

Changing the pointer to ImageData

Changing its height, width or depth

Animation 151

o Change the Bob colors by

Changing the playfield color set

Changing PlanePick and PlaneOnOff

o Move the Bob by defining a new y,x position.

o Display the Bob by calling:

SortGListO;

DrawGListO;

Now that you've mastered the basics of handling VSprites and Bobs, you may want to find
out about some of the interactions between the two and how to cope with these interactions.
Or, you may want to skip these advanced topics and read about software collisions, clipping,
and adding new features in "VSprite and Bob Topics" below.

BOB ADVANCED TOPICS

How Bob Colors Are Controlled

Bobs do not use the SprColor pointer. To determine the color of a Bob, you use the existing
colors in the 32-en try color table. The lower 16 of the 32 possible color selections (registers 0-
15) are always dedicated to playfield color selections, providing 16 unique colors for the Bobs,
since they are playfield objects.

However, the playfields and the VSprites share the upper 16 of the 32 color entries (registers
16-31). If you are using five bit-planes to display the Bobs, any Bob with a pixel whose color
value exceeds 15 may change color if the virtual sprites are running at the same time.

Note: This also applies to any static part of the display area (the playfield), whether a Bob or
simply part of the background display, for which a five- or six-bit-plane image is used if the
color number for a specific pixel exceeds the value of 15.

To explain further, the virtual sprite routines, notably SortGListO and DrawGListO, work
together to decide which real sprite will be used at any point on the screen. DrawGListO
makes up a Copper instruction list to change the contents of the upper 16 color registers,
perhaps several times within a single display field. Therefore, depending on where a Bob image
is on the screen relative to a virtual sprite, and depending on its color content, a Bob may take
on different colors (perhaps even within only a part of its body).

152 Animation

To minimize color interactions between Bobs and virtual sprites, take the appropriate precau
tions:

o Limit the background to four or fewer bit-planes and thus limit the Bob color choices
to 16 or fewer.

o Use five bit-planes, but specify Bob colors or background colors from the colors °
through 15 or 16, 20, 24, or 28 only. Colors 16, 20, 24, and 28 are used neither by real
sprites nor by virtual sprites and are treated as transparent areas. Therefore, if you use
only these colors for Bobs, the simultaneous use of virtual sprites will not affect the
Bob or background colors.

o Use sprRsrvd to "fence-off" certain sprite paIrs, so you can also use their colors for
Bobs.

Topics Common to Both VSprites and Bobs

DETECTING GEL COLLISIONS

To detect collisions between graphics elements, you use the DoCollisionO routine. DoColli
sionO determines if there are any pixels of one graphics element currently touching those of
another graphics element or if any of the graphics elements have passed outside of specified
screen boundaries.

Whenever there is a collision, the system performs one of 16 possible collision routines. The
addresses of the collision routines are kept in a table called the collision handler table. DoCol
lisionO examines the HitMask and MeMask of each of the VSprite structures in the GEL
list and determines if there is a collision between any two GELS. It then calls the collision
handler routine at the table position corresponding to the bits in the HitMask and MeMask,
as outlined below.

Note: The current form of these routines does not use the built-in hardware collision detection.
You may, if you wish, reserve one or more sprites for your own use and move them using your
own routines. When specific sprites have been reserved for your own use, you may choose to
use the hardware collision detection to sense collisions between your own objects and other on
screen elements. See the Amiga Hardware Reference Manual for information about hardware
collision detection.

Animation 153

Default Kinds of Collisions

Two kinds of software collisions are handled by the collision routines: boundary hits and GEL
to-GEL hits.

You can set up routines to handle as many as 16 different kinds of collisions using the VSprite
structure MeMask and HitMask. When you call a collision routine, you give it certain kinds
of information about the colliding elements, as described in the next two sections.

Boundary Hits

During the operation of the DoCollisionO routines, if you have enabled boundary collisions for
a GEL and that GEL crosses a boundary, the system calls the boundary-hit routine you have
defined. Note that the system calls the routine once for each GEL that has gone outside of the
boundary.

The system will call your routine with the following two arguments:

o A pointer to the VSprite structure of the GEL that hit the boundary

o A flag word containing one to four bits set, representing top, bottom, left and right
boundaries, telling you which one or more boundaries it has hit or 'exceeded. To test
these, use the names TOPHIT, BOTTOMHIT, LEFTHIT, and RIGHTHIT.

GEL-to-GEL Collisions

If, instead of a GEL-to-boundary collision, DoCollisionO senses a GEL-to-GEL collision, the
system calls your collision routine with the following two parameters. They will be different
from those in the GEL-to-boundary collision.

o Address of the VSprite structure that defines the uppermost (or leftmost if y coordi
nates are iden tical) object of a colliding pair

o Address of the VSprite structure that defines the lowermost (or rightmost if y coordi
nates are identical) object of a colliding pair

154 Animation

Handling Multiple Collisions

When multiple elements collide within the same display field, the following set of sequential calls
to the collision routines occurs:

o The system issues each call in a sorted order for GELs starting at the upper left-hand
corner of the screen and proceeding to the right and down the screen.

o For any two colliding graphics elements, the system issues only one call to the collision
routine for this pair. The system bases the collision call on the object that is the
highest and leftmost of the pair on the screen.

Preparing for Collision Detection

Before you can use the system to detect collisions between GELS, you must initialize the table
of collision-detection routines. This table points to the actual routines that you will use for the
various collision types you have defined. Also, you must prepare certain variables and pointers
within the VSprite structure: BorderLine, CollMask, HitMask, and MeMask.

Building a Table of Collision Routines

To add to or change the table entries for the collision routines, call the SetCollisionO routine.
The syntax for this routine follows:

SetCollision(num, routine, Ginfo)

where

num
is the collision vector number

routine
is a pointer to the user collision routine

Glnfo
is a pointer to a Gelslnfo structure

When the View structure is first initialized, the system sets all of the values of the collision rou
tine pointers to zero. You must initialize those table entries so that they correspond to the
HitMask and MeMask bits that you have set. Only those table entries can cause the system
to call the collision routines.

Animation 155

You must also allocate a table, pointed to by GelsInfo, for vectors. The table needs to be only
as large as the number of bits for which you wish to provide collision processing. For example:

VOID myCollisionRoutine(GELM, GELN) / * sample collision routine * /
struct VSprite *GELM;
struct VSprite *GELN;
{

}
printf("GEL at %lx has hit GEL at %lx", (long)GELM, (long)GELN);

/ * sample initialization * /
ReadyGels(gelsinfo, rastport);/ * use exec_support function * /
SetCollision(15, myCollisionRoutine, &gelsinfo);

Collision Mask

The variable named ColIMask is a pointer to a memory area that you have reserved for hold
ing the collision mask of a GEL. A collision mask is usually the same as the shadow mask of
the GEL, formed from a logical-or combination of all 1 bits in all planes of the image. Figure
3-3 shows an example collision mask.

If this is the image in: Then its Coli Mask is:

Plane 1 Plane 2

1111111111111 1111111111111
1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1

1 1 1
1 1 1 1

1 1

Figure 3-3: A Collision Mask

You normally use this collision mask to control drawing of the object and to define essentially
the positions where there is an im.age bit present. After you have defined the collision mask
through the routine InitMasksO, you may specify that the system is to store both the shadow
mask and the collision mask in the same location.

For example, here are typical program statements to reserve an area for the sprite shadow, ini
tialize the pointer correctly, and then specify that the system uses the same mask for collisions
(this example assumes a two-word-wide, four-line-high image):

156 Animation

/ * reserve 8 16-bit locations for sprite
* shadow to be stored into by the system.

*/
WORD myShadowData[8];

/* and point to it * /
myVSprite.ImageShadow = myShadowData;

/ * collision mask is same as shadow * /
myVSprite.ColIMask = myShadowData;

As an alternative, for certain game-oriented applications, you may design certain objects with
sensitive regions and non-sensitive regions. Suppose you have an object, such as a spaceship,
with an outer layer that is to be non-sensitive and an inner core that is to register collisions for
the overall object. You would define your shadow mask with 1 bits in the appropriate positions
to define the desired sensitive area. An example using this type of image is shown in figure 3-4.

If the current CollMask is:

1111111111111
1 1

1 1 1 1
1 1

1 1
1 1

1

Perhaps you only want to
have a sensitive area which
has this shape:

1 1 1
1 1

1 1

Figure 3-4: Shadow Mask for a Sensitive Area

BorderLine Image

For fast collision detection, the system uses the pointer named BorderLine. BorderLine
specifies the location of the horizontal logical-or combination of all of the bits of the object. It
may be compared to taking the whole object and squashing it down into one single horizontal
line. Here is a sample of an object and its BorderLine image:

Animation 157

OBJECT

00 11 0000 11 00
000 11 00 11 000
0000 1111 0000
000 11 00 11 000
00 11 0000 11 00

BORDERLINE IMAGE

00 1111111100

The borderline image establishes a single set of words (represented by the collision mask) that
have 1 bits at the outermost edges of the object. Using this squashed image, the system can
quickly determine if the image is touching the left or rightmost boundary of the drawing area.

To establish the borderline data, you make a system call to InitMasksO. Before calling
InitMasksO, you provide the system with a place to store the image it creates. The size of the
data area you reserve must be at least as large as the image is wide.

In other words, if it takes three 16-bit words to hold the width of a GEL, then you must reserve
three words for the borderline image. For example:

/ * reserve some space for the border image to be stored for this Bo b * /
WORD myBorderLineData[3];

/* tell the system where to put the BorderLine image it will form */
myVSprite.BorderLine = myBorderLineData;

Note: Both Bobs and VSprites participate in the software collision detection.

The next section tells how to turn on the software collision detection independently for each
GEL.

Software Collision-Detect Control Variables

You can enable or disable software collision detection for each GEL independently. In addition,
any time the system senses a collision, you can specify which of 16 possible collision routines
you wish to have automatically executed. The HitMask and MeMask variables in the
VSprite structure let you specify the relationships between different GELS.

158 Animation

By specifying the bits in these masks, you can control how and when the system senses colli
sions between objects. The collision testing routine, in addition to sensing an overlap between
objects, also uses these masks to determine which routine(s) (if any) the system will call when a
collision occurs.

When the system determines a collision, it ands the HitMask of the upper-leftmost object in
the colliding pair with the MeMask of the lower-rightmost object of the pair. The bits that
are Is after the and operation choose which of the 16 possible collision routines to perform.

o If the collision is with the boundary, bit 0 is a 1 and the system calls the collision han
dling routine number o. You assign bit 0 to the condition called "boundary hit." The
system uses the flag called BORDERHIT to indicate that an object has landed on or
moved beyond the outermost bounds of the drawing area (the edge of the clipping
region).

o If you set anyone of the other bits (1 to 15), then the system calls the collision han
dling routine corresponding to the set bit.

If more than one bit is set in both masks, the system calls the vector corresponding to the right
most bit.

Using HitMask and MeMask

This section provides an example of the use of the HitMask and MeMask to define a new
form of collision detection.

Suppose there are two classes of objects that you wish to control on the screen: ENEMYTANK
and MYMISSILE. Objects of class ENEMYTANK should be able to pass across one another
without registering any collisions. Objects of class MYMISSILE should also be able to pass
across one another without collisions. However, when MYMISSILE collides with ENEMYTANK
or ENEMYTANK collides with MYMISSILE, the system should process a collision routine.

Choose a pair of collision detect bits not yet assigned within MeMask, one to represent
ENEMYTANK, the other to represent MYMISSILE. You will use the same two bits in the
corresponding HitMask.

Animation 159

Bit #

GEL #1

GEL #2

GEL #3

MeMask HitMask

2 1

o 1

o 1

1 0

2 1

1 0

1 0

o 1

ENEMYTANK

ENEMYTANK

MYMISSILE

In the example, bit 1 represents ENEMY TANK objects. In the MeMask, bit 1 is a 1 for GEL
#1 and says "I am an ENEMYTANK." Bit 2 is a zero says this object is not a MYMISSILE
object.

In bit 1 of the HitMask of GEL #1, the 0 bit there says, "I will not register collisions with
other ENEMYTANK objects." However, the 1 bit in bit 2 says, "I will register collisions with
MYMISSILE objects."

Thus when a call to DoCollisionO occurs, for any objects that appear to be colliding, the sys
tem ands the MeMask of one object with the HitMask of the other object. If there are non
zero bits presen t, the system will call one (or more) of your collision routines.

In this example, suppose that the system senses a, collision between ENEMYTANK #1 and
ENEMYTANK #2. Suppose also that ENEMYTANK #1 is the top/leftmost object of the
pair. Here is the way that the collision testing routine performs the test to see if the system will
call any collision-handling routines:

Bit # 2 1

ENEMYTANK #1 MeMask 0 1

ENEMYTANK #2 HitMask 1 0

Result of and 0 0

Therefore, the system does not call a collision routine.

Suppose that DoCollisionO finds an overlap between ENEMYTANK #1 and MYMISSILE,
and MYMISSILE is the top/leftmost of the pair:

160 Animation

Bit # 2 1

MYMISSILE #1 MeMask 1 0

ENEMYTANK #2 HitMask 1 0

Result of and 1 0

Therefore, the system calls the collision routine at position 2 in the table of collision-handling
routines.

BOB/VSPRITE COLLISION BOUNDARIES WITHIN A RASTPORT

To specify a region within the RastPort (drawing area) that the system will use to define the
outermost limits of the GEL boundaries, you use the following variables: topmost, bottom
most, leftmost, and rightmost. The DoCollisionO routine tests these boundaries when
determining collisions within this RastPort.

Here is a typical program segment that assigns the variables correctly. It assumes that you
already have a RastPort structure named myRastPort.

myRastPort->GelsInfo->topmost = 50;
myRastPort->GelsInfo->bottommost = 100;
myRastPort->GelsInfo->leftmost = 80;
myRastPort->GelsInfo->rightmost = 240;

The current release of the system software makes use of the clipping-rectangle feature of the
RastPorts to create clipping to the RastPort's limits. However, you may base the "boundary
collision" limits for this RastPort on the variables shown here.

ADDING NEW FEATURES TO BOB/VSPRITE DATA STRUCTURES

This section describes how to expand the size and scope of the VSprite or Bob data structures.
In the definition for the VSprite and the Bob structures, there is an item called UserExt at
the end of the structure. If you want to add something to these structures (specifically, a user
extension), you simply specify that the User Ext variable is composed of a specific type.

Why would you want to add things to the structure? When the DoCollisionO routine passes
control to your collision-processing function, you may wish to change some variable associated
with the GEL. The example below places speed and acceleration figures with each GEL. When

Animation 161

you perform the collision routine, it exchanges these values between the two colliding objects.
The system uses additional routines during the no-collision times to calculate the new positions
for the objects.

You could define a structure similar to the following:

struct mylnfo {
short xvelocity;
short yvelocity;
short xaccel;
short yaccel;

};

that you want to have associated with each of the GELS. These variables are, for example,
your user extensions.

You would also provide the following line:

For VSprites:
#define VUserStuff struct mylnfo

For Bobs:
#define BUserStuff struct myInfo

For AnimObs:
#define AUserStuff struct myInfo

When the system is compiling the graph£csj gels.h file with your program, the compiler substi
tutes "struct myInfo" everywhere that UserExt is used in the header. The structure is thereby
customized to include the items you wish to associate with it.

Note: The header files include the following UserStuff variables for VSprites, Bobs, and
AnimObs:

VSprites:
Bobs:
AnimObs:

162 Animation

VUserStuff
BUserStuff
AUserStuff

Animation Structures and Controls

This section outlines the system animation support for Bobs only. In the section called "Bob
Priorities" you learned how to control the priorities of Bobs with respect to one another by
specifying the drawing sequence. The following sections explain how to link objects and how to
specify an animation completely by linking different views of objects into a sequence.

To perform animation, an artist produces a series of drawings. Each drawing differs from the
preceding one so that when they are sequenced, the object appears to move naturally. An ani
mation in the Amiga consists of a linked list of the components of the animation object and
each com ponen t as a linked list of the different drawings in its sequence.

To perform the actual animation, you make a call to a system routine called AnimateO. When
you call AnimateO, the software follows all of your animation instructions and "moves" the
objects accordingly. When you next call DrawGListO, the system draws all objects in the
position caused by your calls to AnimateO. Essentially, AnimateO simply manipulates a set
of instructions in a set of object lists. Only when the system draws the objects are your instruc
tions displayed visually.

Remember, the system draws the currently sorted objects from its GELS list.

CHARACTERISTICS OF THE ANIMATION SYSTEM

The animation system lets you define a series of Bobs, which it then links into an overall
object. The combined object consists of one or more Bobs that comprise the overall object and
additional Bobs that comprise alternate appearances (animation sequences) for the various com
ponen t parts.

You specify the following:

o The initial appearance of an overall object by defining Bobs as its components

o Alternate views of various components by defining additional Bobs

o The drawing precedence for the initial appearance of the object among the Bobs that
comprise the initial appearance

The animation system does the following:

o Moves all linked objects simultaneously

Animation 163

o Maintains inter-object prioritization

o Sequences alternate views to provide animation through user-specified timing variables

KEEPING TRACK OF GRAPHIC OBJECTS

The section called "Getting the List of Bobs in Order" described how the system maintains a
list of Bobs to draw on the screen according to your instructions. The animation system selec
tively adds items to and removes items from this list of screen objects during the AnimateO
routine. The next time you call DrawGListO, the system will draw the current Bobs in the
list into the selected RastPort.

CLASSES OF ANIMATION OBJECTS

You have two classes of animation objects to consider: AnimObs and AnimComps. The
AnimOb is the primary animation object. It is this object whose position you are specifying
with respect to the coordinates of the drawing area. Actually, an AnimOb itself contains no
imagery. It is merely the top-level data structure that organizes the components that it
manages and that specifies a position relative to which everything else is drawn. The
AnimComp, on the other hand, is an animation component - for example, an arm, leg, or
head - of an animation object. The animation object consist of animation components that
you specify.

To define an AnimOb, you specify several characteristics of the pnmary animation object,
including the following:

o The initial position of this object

o Its velocity and acceleration in the X and Y directions

o How many calls to DrawGListO you have made while this object has been active

o A pointer to a special animation routine related to this object (if desired)

o A pointer to the first of its animation components

o Your own extensions to this structure, if desired

164 Animation

POSITIONS OF ANIMATION OBJECTS

The next two sections tell how to specify the initial position of an AnimOb and its
AnimComp.

Position of an AnimOb

To specify a registration point within the drawing area (the RastPort) for all components, you
use the variables AnX and AnY in the AnimOb structure. Figure 3-5 illustrates that each
component has its own offset from the object's registration point.

AnY

AnX
RastPort Drawing Area

Registration point
(reference) for all
parts of an AnimOb.

X increases from left to right

Y increases from
top to bottom of
drawing area

Figure 3-5: Specifying an AnimOb Position

Position of an AnimComp

To specify where the component is to be located relative to the position of the registration point,
you use variables in the AnimComp structure. When you move the animation object, all of
the component parts of this animation object move with it, as illustrated in figure 3-6.

Animation 165

XTrans

AnX
RastPort Dr awing Area

YTrans Object #2 I
XTrans

AnY -

Object
#1

YTrans
Object #3

Figure 3-6: Specifying an AnimComp Position

To specify the relative placement of a component with respect to the registration point of the
AnimOb, you assign the values of XTrans and YTrans in the AnimComp structure. These
values can be positive (as shown for object #3), negative (as shown for object #2), or zero (as
shown for component #1) in figure 3-6 above.

Now that the system knows the position of the objects and components you wish to animate,
you can tell the system how to animate them. The following sections describe the animation
choices provided for you by the system.

ANIMATION TYPES

The system software allows two forms of animation: sequenced drawing and motion control.

Sequenced Drawing

In sequenced drawing, an artist produces a sequence of views of an object, where each view is a
modification of a preceding view. To produce apparent motion of the object, the artist draws
each new view of an object at a position somewhat farther from a common reference point than
the preceding view.

166 Animation

If an animation is to be continuous, based on a repeating sequence, then the last drawing in the
series should allow the first drawing in the series to be the next in line, creating a continuity of
motion. Figure 3-7 shows four out of a sequence of drawings that could use this technique for
animation. (The other intermediate steps are not shown.)

As you will notice, each of the drawings, reading from righ t to left, is a little closer to its regis
tration point (the reference point). The upper level of the figure shows the figures individually.
The lower level shows the figures overlaid, demonstrating that smooth motion would be possi
ble. To the left of the overlaid figures is a second set, drawn in gray, representing the reinitiali
zation of the sequence of drawings, beginning with number one.

The figure moves
as each of the
sequenced
drawings is
produced in
place of the
previous one
in the sequence.

Animator's Registration Marks

Shows only 4 views from a full walk sequence

EB ____ ----,

Figure 3-7: A Sequenced Drawing

When the sequenced
drawing reaches the end
and restarts with drawing 1
again, the registration mark
is moved so that a smooth
transition is formed.

Sequenced animation often consists of a closed "ring" of drawings. When the last drawing of
the sequence has been completed, the first drawing in the sequence is repeated again, becoming
the first in the next part of the animation, offset by a specific position in space.

To specify sequenced drawing, use the variables called compFlags in the AnimComp struc
ture, and RingXTrans and RingYTrans in the AnimOb structure.

Animation 167

To move the registration mark to a new location, you set the RINGTRIGGER bit for a com
ponent in its eompFlags variable. The system software adds the values of RingXTrans and
RingYTrans found in the AnimOb structure to the values of AnX and AnY of the head
object (the registration mark), thereby moving the reference point to the new location. The
next time you execute DrawGListO, the drawing sequence starts over again at the new loca
tion, mating properly with the final drawing of the sequence at the old registration mark.

You usually set RINGTRIGGER in only one of the animation components in a sequence; how
ever, you can choose to use this flag and the translation variables in any way you wish.

Motion Control

In the second form of animation, you can specify objects that have independently controllable
velocities and accelerations in the X and Y directions. Components can still sequence. Further
more, you can use ring and velocity simultaneously if you wish.

The variables that control this motion are located in the AnimOb structure and are called:

o YVel, XVel-the velocities in the y and x directions

o Y Aeeel, XAeeel- the accelerations in the y and x directions

Velocities and accelerations can be either positive or negative.

The system treats the velocity numbers as though they are fixed-point binary fractions, with the
decimal point fixed at position 6 in the word. That is:

vvvvvvvvvv.ffffff

where v stands for actual values that you add to the x or y (AnX, AnY) positions of the object
for each call to AnimateO, and f stands for the fractional part. By using a fractional part, you
can specify the speed of an object in increments as precise as 1/64th of an interval.

In other words, if you set the value of XVel at OxOOO1, it will take 64 calls to the AnimateO
routine before the system will modify the object's x coordinate position by a step of one. The
system requires a value of Ox0040 to move the object one step per call to AnimateO.

Each call you make to AnimateO simply adds the value of XAeeel to the current value of
XV el, and Y Aeeel to the current value of YV el, modifying these values accordingly.

168 Animation

Using Sequenced Drawing and Motion Control

If you are using sequenced drawing, you will probably set the velocity and acceleration variables
to zero. This allows you to produce the animation exactly in the form in which the artist has
designed it in the first place.

Consider an example of a person walking. As each foot falls, with sequenced drawing, it is posi
tioned on the ground exactly as originally drawn. If you include a velocity value, then the
person's foot will not be stationary with respect to the ground, and the person appears to
"skate" rather than walk. If you set the velocity and acceleration variables at zero, you can
avoid this problem.

INITIALIZING THE ANIMATION SYSTEM

To initialize the system, you must define a pointer to an AnimOb. The system uses this
pointer to keep track of all of the real AnimObs that you create. The following typical code
sequence accomplishes this:

struct AnimOb *animKey;

animKey = NULL;

Note: Before you can use the animation system, you must call the routine InitGelsO. There
fore, you must initialize the GEL system as well as the animation system. See the "Initializing
the GEL System" section for details on InitGelsO, the Bob-control system that eventually
displays the objects that you manipulate.

SPECIFYING THE ANIMATION OBJECTS

To add animation objects to the controlled object list, you use the routine AddAnimObO.
Figure 3-8 shows how to build a list of controlled objects using this routine. The animKey
always points to the object most recently added to the list.

Animation 169

Most recently
added AnimOb

Next AnimOb

Previous AnimOb

Other
Variables

Next AnimOb

Previous AnimOb

Other
Variables

Next AnimOb

Previous AnimOb

Other
Variables

Null

Last
AnimOb
added to
a list

Typical
middle
AnimOb

Null

First
AnimOb
added to
a list

animKey - always points to the
last AnimOb added
to the list

This AnimOb list
is the complete
list of all of the
AnimObs being
handled by the
system.

Figure 3-8: Linking AnimObs into a List

Next, you tell the system about the components that make up the object.

SPECIFYING ANIMATION COMPONENTS

As previously stated, each animation object consists of one or more individual component parts.
The parts may be, for example, the body of an object, its arms, its legs, and so on. Not only
does the system animator move parts from place to place, but it also offers different views of
each of the parts. To specify the relationships between the individual parts and views of those
parts, you initialize various pointers within the AnimComp structure.

You use the pointers called PrevSeq and NextSeq to build a doubly-linked list of a set of ani
mation components used for sequenced drawing, as outlined above. In all cases, when you
specify AnimComps, you must initialize these pointers to build the sequence that you wish the

170 Animation

system to follow for drawing the various views of this component. The "Animation Sequenc
ing" section below shows how the system uses these pointers.

To link the components together into a whole object, use the pointers called PrevComp and
NextComp. When you build an animation object, you must initialize the PrevComp and
NextComp pointers for only the initial view of the animation object. Whenever the animation
system senses that one of the animation objects has "timed out" and switched to a new
sequence of that component, the system automatically adjusts the PrevComp and NextComp
poin ters so that it retains the complete animation object.

Figure 3-9 shows an animation object built of several components. The AnimOb points to the
head component. Notice that the "head" component may be anyone of the components of the
object. A pointer in the structure of the head component, in turn, points to the next one, and
so on (building the initial view of the object).

To point around the ring for each of the component sequenced views (although the objects do
not necessarily have to form a ring), you initialize the sequence pointers NextSeq and
PrevSeq. The animation system ignores the PrevComp and NextComp pointers for each of
the non-current components.

Animation 171

Next AnimOb

Previous AnimOb

Original (first view)
of an AnimOb,

designed by the user.

NON-CURRENT
additional views of
each component,

waiting to be used.

Next AnimComp

Previous AnimComp

T----·· ·

Next AnimComp

Previous AnimComp

+--_ ...

Next AnimComp

Previous AnimComp

~---+- Sequence Linkage +---. · ·

Figure 3-9: Linking AnimComps To Form an AnimOb

DRAvnNGPRECEDENCE

The sequence in which you link the components in a list to define the object itself is immaterial.
The system simply uses this list of components to define the overall object. To specify the
drawing precedence for the objects in an animation object, you use the Before and After
pointers in the Bob structure for the initial sequence of the animation object.

If you refer to the description of adding Bobs in the section called "Adding a Bob," you will see
that when you add Bobs to the system, the Before and After pointers control the drawing
sequence and thereby the precedence of the objects. Once you have added the Bobs to the sys
tem with AddBobO, you must assign a fixed set of pointers to establish the correct drawing
order.

172 Animation

Animation components may have several views, each of which points to a Bob structure. How
ever, only one of those views is actually "active" for that component at anyone time, making
up part of the overall animation object. The animation system adjusts the Before and After
pointers of the Bob structure for each of the current views to maintain the sequence of drawing
for each of the components the same as that you have defined for the initial view. Adjustments
take place in the sequencing any time anyone of the animation components "times out" and
shows a new sequence. Therefore, if you are defining Bobs as part of the animation system,
you need only initialize the Before and After pointers within the Bob structure for the initial
sequence of each of the components.

You may wish to define multiple animation objects. To assure that one complete obJect always
\

has priority over another object, you can use the initial sequence linkage to control this as well.
You use the Bob Before and After pointers to link together the last AnimComp's Bob of
one AnimOb to the first AnimComp's Bob of the next AnimOb. The system maintains the
drawing order during calls to AnimateO from that time onward.

You may modify the drawing order during part of the animation (such as to make one object
pass in front of another during one display sequence, then pass behind it on the next sequence).
You can perform this kind of activity, if you wish, during an AnimORoutine or AnimCRoutine.
See the section called "Your Own Animation Routine Calls" for details.

ANIMATION SEQUENCING

To perform sequenced drawing, you Ipust define the sequence in which you wish the drawings to
be made. For each of the animation components, there is a set of pointers that allows you to
define the exact sequence in which the drawings should appear.

After a period of time that you have specified, which is separately controllable for each com
ponent, the system software automatically switches from the current drawing in the sequence to
the next one. For this purpose, you provide three pieces of information in the AnimComp
structure: pointers to the previous and next drawings in the sequence that you have defined, a
user flag variable called Flags, and a TimeSet variable.

After the specified time interval for each of the sequenced drawings, the system software
switches to show the next drawing specified in the sequence. The next section shows how you
specify the time.

Figure 3-10 illustrates how the system uses the "next sequential image" pointer to step from one
image to the next at the specified time.

If you set the RINGTRIGGER bit in the Flags variable, the system adjusts the reference point
for the sequenced drawing. See the "Sequenced Drawing" section above for details.

Animation 173

Sample Animation Sequence

linkages An;~
AnimBob = Bob1

AnimBob = Bob2
(also called" Bob4")

~ AnimBob = Bob 3

Notice that, in the sample shown, it is only
necessary to store 3 images in order to
allow a four image animation to be performed.

~
AnimBob = Bob 2

/

Figure 3-10: Linking AnimComps for Sequenced Drawing

SPECIFYING TIME FOR EACH IMAGE

Bob1's
Image

Bob2's
and
Bob4's
Image

Bob3's
Image

When you have defined all of your animation objects and components, you call the AnimateO
routine. To manipulate the objects, you set the variable called Timer in the AnimComp
structure and you set a corresponding variable called TimeSet (also in the AnimComp struc
ture).

When the system selects the animation component, the system copies the value currently in
TimeSet into the variable named Timer. If Timer has a nonzero value when you call
AnimateO, then the current view of the animation component remains the active view for as
many calls to AnimateO as you specify with the value in Timer. When the Timer value
counts down to zero, the system makes the next sequential view active. If you set the value in
TimeSet to zero, Timer remains zero. Timer never triggers from a non-zero state and, there
fore, does not cause any change in the view.

174 Animation

When the system activates a new sequence component, it checks that component's compFlags
to see if the RINGTRIGGER flag bit is set. If so, the system performs ring processing, which
means that it adds the values RingYTrans and RingXTrans to AnY and AnX respectively.
See the section called "Animation Types" for details.

Now let's see how this process works in an actual animation. Let's say that you are animating
the figure of a man. As he walks across the screen, he swings his arm back and forth at a fixed
rate. Assume that you have three drawings of the arm: swung forward, at a center position,
and swung back. To animate the arm, you may follow these steps:

1. Define four Bobs: the first for the forward swing, the second for the center, the third
for the back swing, and the fourth centered again.

2. Define four AnimComps, one for each of these Bobs. To link them together ill a
sequence (forward, center, back, center), use the PrevSeq and NextSeq pointers.

3. Link one of the AnimComps in this sequence to the AnimComp that defines the
body of the man, using the AnimComp, PrevComp, and NextComp pointers.

4. Set the Timer variable for each sequenced AnimComp to a value appropriate for him
to hold that pose. For example, three calls to AnimateO for forward and back, and
two calls for each of the two centered positions of his arm might be appropriate values.

5. Set the value of XTrans and YTrans for each AnimComp to position the arm prop
erly with respect to the rest of the body for each sequence of the arm swing.

6. Continue the arm sequence by setting the RINGTRIGGER bit in the flags variable of
the last sequence, thereby triggering a return to the first view when the timer of the
last view times out.

Now, each time you call AnimateO, the animation system checks all of the Timer variables, as
well as calling your AnimCRoutines and AnimORoutines. When each of the Timer variables
becomes a zero, the next sequenced view of the AnimComp replaces the current sequence.
When an AnimComp becomes "current," the value in its TimeSet variable is copied into its
Timer variable.

This also means that you have told the system two things: first, to remove the Bob of the
current sequence from the system Bob list the next time you call DrawGListO; and second, to
use the Bob representing the new sequence in its place. The system automatically copies the
Bob Before and After pointers from the current sequence into the new sequence
AnimComp's Bob to assure that the object is still drawn in the same order, maintaining its
priority relative to other objects in the drawing area.

Animation 175

YOUR OWN ANIMATION ROUTINE CALLS

The AnimOb and AnimComp structures include pointers to your own routines that you want
the system to call. If you want a routine to be called, you must specify the address of the rou
tine in this variable. If no routine is to be called, you must set this variable to zero. No values
are passed to these routines, except a pointer to its AnimOb or AnimComp, respectively.
However, because you set each AnimORoutine (the AnimOb routine) and AnimCRoutine (the
AnimComp routine), you can use the extensions to the AnimOb or Bob or VSprite struc
tures to hold the variables you need for your own routines.

Suppose you are creating the following animation:

o A man is walking a dog down a street. There is a fireplug at one side of the screen.
Let's say you wish to change the appearance of the fireplug if the dog approaches too
closely. You would, therefore, design an AnimORoutine to do a proximity check on the
dog.

o To allow the fireplug to have different appearances, you might provide three individual
views. One is normal, one is an intermediate view (comparable to the center arm-swing
mentioned earlier), and the final view is a "strength pose," saying "back off dog!"

o You may set the TimeSet and Timer variables for the "normal" appearance for the
fireplug at zero. This means that it should never change from this appearance no
matter how many calls to AnimateO occur, as defined above. (If it is already zero, it
will not decrement; therefore, it can never go from non-zero to zero).

o You may set the TimeSet variable for the intermediate view to 1 (stay in the inter
mediate pose for only one call to AnimateO). In addition, you may set the TimeSet
variable for the strength pose to 10 (stay strong for ten calls to AnimateO).

o For each call to AnimateO, the AnimORoutine for the fireplug checks how close the
dog has approached. If it is within a certain range, the AnimORoutine changes the
Timer variable for the normal fireplug pose to a 1.

o The next call to AnimateO finds a value of 1 in the Timer variable and decrements it.
This makes a value of 0, forcing a change to the next sequence (the intermediate pose).
The system will remove the normal pose Bobs from the system Bob list it is to draw,
and the next call to DrawGListO will therefore draw the intermediate pose instead.

o The next call to AnimateO finds a value of 1 in the Timer variable for the intermedi
ate pose and decrements it, causing a change to the strength pose. The fireplug remains
in the strength pose for ten calls to AnimateO, returning through the intermediate
pose for one call, then to the normal pose again.

176 Animation

o Now that the Timer value has become zero again, the fireplug returns to the original
state, staying in its normal pose until the dog again approaches within range.

MOVING THE OBJECTS

When you have defined all of the structures and have established all of the links, you can call
the AnimateO routine to move the objects. AnimateO adjusts the positions of the objects as
described above, and calls the various subroutines (AnimCRoutines and AnimORoutines) that
you have specified.

After the system has completed the AnimateO routine, as the screen objects have been moved,
their order in the graphics objects list may possibly be incorrect. Therefore, as always, before
ordering the system to redraw the objects, you must sort them first.

If you perform DoCollisionO when the system has newly positioned the objects after your call
to AnimateO, your collision routines may also have an effect on the ultimate position of the
objects. Therefore, you should again call SortGListO to assure that the system correctly ord
ers the objects before you call DrawGListO, as illustrated in the following typical call
sequence:

/* ... setup of graphics elements and objects * /

Animate(key, rp);
SortGList(rp);
DoCollision(rp);
SortGList(rp);
DrawGList(vp, rp);

/* "move" objects per instructions */
/* put them in order * /
/* software collision detect/action * /
/ * put them back into right order * /
/* draw into current RastPort * /

Complete Example Program

The following program produces a single-buffered display with two Bobs and two Vsprites.

Animation 177

178 Animation

1* SAMPLE PROGRAM THAT USES GELTOOLS TO PRODUCE A DOUBLE BUFFERED DISPLAY
* SCREEN CONTAINING TWO BOBS AND TWO VSPRITES

* Author: David Lucas
*1

1* Leave this structure definition at the top. Look at gals.h. *1
struct vInfo {

short vx,vy; 1* This VSprites velocity. *1
short id;

};
id.fin. VUs.rStuff struct vInfo

1* Thin9s to notic.:

*1

Default value in sprit./plarfield priority re9istar has all
hardware sprit.s havin9 a h 9h.r priority than either of the
two playfi.lds. Ar.as containing color 0 of both the bob and
vsprita are shown as transparent (s .. hole in canter of each) .

You can specify bob drawin9 ord.r by usin9 the before and after
pOinters, thereby always maintainin9 an apparent precedence of
on. bob over anoth.r. R. Vsprit.s because they are assi~ed
sequentially from top of screen to bottom, in sprite numerical
order (0, 1, 2, 3 etc), and because the lowest numbered hardware
sprite has the hi9hest video precedence, the sprite that is
closest to the top of the screen always appear. in front of the
sprite beneath it.

Without double-bufferin9, there would be flicker on the part
of the bobs. Double bufferin9 consists of writln9 into an ar.a
that is not bein9 displayed. Some of the flicker could have been
alleviated by waitin9 for the video beam to r.ach top-of-frame
b.fore doin9 the drawin9, but when the bobs are near the top,
it makes it all the more difficult to draw without aITarent
flicker in that case. Also note that multitaskln9 wi 1
occasionally upset even this plan in that it can delay the
drawin9 operation until the beam is in the area that s bein9 drawn.

/***
* A sprite and a bob on a screen.
*1

iinclude "intuall.h"

ide fine SBMWIDTH 320
id.fine SBMHEIGHT 200
ide fine SBMDEPTH 4

ide fine RBMWIDTH 330
ide fine RBMHEIGHT 210

1* My screen .,ize constants. *1

1* My rastport size constants. *1
ide fine RBMDEPTH SBMDEPTH

idefine VSPRITEWIDTH 1 1* My VSprite constants. *1
ide fine VSPRITEHEIGHT 12
ide fine VSPRITEDEPTH 2
idefine NSPRITES 2

idefine BOBWIDTH 62
ide fine BOBHEIGHT 31
ide fine BOBDEPTH 4
ide fine NBOBS 2

1* My Bob constants. *1

struct IntuitionBase *IntuitionBase = NULL;
struct GfxBase *GfxBase = NULL;

struct IntuiMessaga *MyIntuiMessage = NULL;

struct TextAttr TestFont = 1 1* Needed for openin9 screen. *1
(STRPTR)"topaz.font , TOPAZ-EIGHTY, 0, 0

};

1* DBL BUF *1
struct BitMap *MyBitMapPtrs(2) = {NULL, NULL};
WORD T0991eFrama = 0;

struct GelsInfo GInfo; 1* For all Gels. *1
struct VSprite *VSprites[NSPRITES);
WORDBITS VSpriteImage[) = {
1* Plane 0, Plane 1 *1

};

OxFFFF, OxFFFF, 1* Line 1, first. *1
OxFFFF, OxC003,
OxFFFF, OxC003,
OxFOOF, OxCFF3,
OxFOOF, OxCFF3,
OxFOOF, Oxce33,
OxFOOF, Oxce33 ,
OxFO OF, OxCFF 3,
OxFO OF, OxCFF 3,
OxFFFF, OxC003,
OxFFFF, OxC003,
OxFFFF, OxFFFF, 1* Line 12, last. *1

USHORT *VSpritelmage_chip = 0;

/* These are the colors that vill be used for my VSprites. Nota I really do mean
* colors, not color register numbers. High to lov, starting at bit 12 and going
* down to LSB, there are four bits each of red, green and blue. Please read the
* sprite section of the hardware manual. The gels system vill put them into the
* proper eolor registers when they are displayed. Reminder: Sprites can only
* use color registers in sets of 3 ...
* 17,18,19 sprite 0 and 1,
* 21,22,23 = sprite 2 and 3,

25,26,27 = sprite 4 and 5,
29,30,31 = sprite 6 and 7.

* Please read the section on hov VSprites are assigned in the RKM.
*/

WORD MyVSpriteColors[l = {
OxOfOO, /* Full red. */
OxOOfO, /* Full green. */
OxOOOf /* Full blue. */

};

struct Bob *Bobs[NBOBS];
short Boblmage[] = {

OxFFFF, OxFFFF, OxFFFF, OxFFFC, /* Plane 0, line 1. */
OxCOOO, OxOOOO, OxOOOO, OxOOOC,
OxCFFF, OxFFFF, OxFFFF, OxFFCC,
OxCCOO, OxOOOO, OxOOOO, OxOOCC,
OxCCFF, OxFFFF, OxFFFF, OxFCCC,
OxCCCO, OxOOOO, Oioooo, OxOCCC,
OxCCCF, OxFFFF, OxFFFF, OxCCCC,
OxCCCC, OxOOOO, OxOOOO, OxCCCC,
OxCCCC, OxFFFF, OxFFFC, OxCCCC,
OxCCCC, OxCOOO, OxOOOC, OxCCCC,
OxCCCC, OxCFFF, OxFFCC, OxCCCC,
OxCCCC, OxCCOO, OxOOCC, OxCCCC,
OxCCCC, OxCCFF, OxFCCC, OxCCCC,
OxCCCC, OxCCCO, OxOCCC, OxCCCC,
OxCCCC, OxCCCF, OxCCCC, OxCCCC,
OxCCCC, OxCCCC, OxCCCC, OxCCCC,
OxCCCC, OxCCCF, OxCCCC, OxCCCC,
OxCCCC, OxCCCO, OxOCCC, OxCCCC,
OxCCCC, OxCCFF, OkFCCC, oxcccc,
oxcccc, oxccoo, oxOOCC, Oxcccc,
oxcccc, OxCFFF, OxFFCC, Oxcccc,
oxcccc, oxcooo, oxOOOC, oxcccc,
oxcccc, OxFFFF, OxFFFC, oxcccc,
oxcccc, oxOOOO, Oxoooo, OxCCCC,
OxCCCF, OxFFFF, OxFFFF, oxcccc,
oxccco, oxoooo, oxoooo, oxoccc,
OxCCFF, OxFFFF, OxFFFF, OxFCCC,
oxccod, oxoooo, Oxoooo, oxOOCC,
OxCFFF, OxFFFF, OxFFFF, OxFFCC,
oxcooo, Oxoooo, oxoooo, Oxoooc,
OxFFFF, OxFFFF, OxFFFF, OxFFFC, /* Plane 0, line 31. */

OxFFFF, OxFFFF, OxFFFF, OxFFFC, /* Plane 1, line 1. */
OxFFFF, OxFFFF, OxFFFF, OxFFFC,

OxFOOO, OxOOOO, OxOOOO, OxOO3C,
OxFOOO, OxOOOO, OxOOOO, OxOO3C,
OxFOFF, OxFFFF, OxFFFF, OxFC3C,
OxFOFF, OXFFFF, OxFFFF, OxFC3C,
OxFOFO, OxOOOO, QxOOOO, Ox3C3C,
OxFOFO, OxOOOO, OxOOOO, Ox3C3C,
OxFOFO, OxFFFF, OxFFFC, Ox3C3C,
OxFOFO, OxFFFF, OxFFFC, Ox3C3C,
OxFOFO, OxFOOO, Ox003C, Ox3C3C,
OxFOFO, OxFOOO, Ox003C, Ox3C3C,
OxFOFO, OxFOFF, OxFC3C, Ox3C3C,
OxFOFO, OxFOFF, OxFC3C, Ox3C3C,
OxFOFO, OxFOFO, Ox3C3.C, Ox3C3C,
OxFOFO, OxFOFO, Ox3C3C, Ox3C3C,
OxFOFO, OxFOFO, Ox3C3C, Ox3C3C,
OxFOFO, OxFOFF, OxFC3C, Ox3C3C,
OxFOFO, OxFOFF, OxFC3C, Ox3C3C,
OxFOFO, OxFOOO, OxOO3C, Ox3C3C,
OxFOFO, OxFOOO, OxOO3C, Ox3C3C,
OxFOFO, OxFFFF, OxFFFC, Ox3C3C,
OxFOFO, OxFFFF, OxFFFC, Ox3C3C,
OxFOFO, OxOOOO, OxOOOO, Ox3C3C,
OxFOFO, OxOOOO, OxOOOO, Ox3C3C,
OxFOFF, OxFFFF, OxFFFF, OxFC3C,
OxFOFF, OxFFFF, OxFFFF, OxFC3C,
OxFOOO, oxgooo, OxOOOO, OxOO3C,
OxFOOO, Ox 000, OxOOOO, Ox003C,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC, /* Plane 1, line 31. */
OxFFFF, OxFFFF, OxFFFF, OxFFFC, /* Plane 2, line 1. */ OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OXFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFOO, OxOOOO, OxOOOO, Ox03FC,
OxFFOO, OxOOOO, OxOOOO, Ox03FC,
OxFFOO, OxOOOO, ilxOOOO, Ox03FC,
OxFFOO, OxOOOO, OxOOOO, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFOO, Ox03FC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxFFFF, OxFFFC, Ox03FC,
OxFFOO, OxOOOO, OxOOOO, Ox03FC,
OxFFOO, OxOOOO, OxOOOO, Ox03FC,
OxFFOO, Oxoooo, Oxoooo, Ox03FC, Animation 179

180 Animation

OxFFOO, OxOOOO, OxOOOO, Ox03FC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC, /" Plane 2, line 31. "/
OxFFFF, OxFFFF, OxFFFF, OxFFFC, /" Plane 3, line 1. "/ OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, oxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxOOOO, OxOO03, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF, OxFFFF, OxFFFF, OxFFFC,
OxFFFF,

b~ORT
OxFFFF, OxFFFF, OxFFFC /" Plane 3, line 31. "/

"Boblmaqe_chip = 0;

/" These are for my custom screen. "/
atruct Screen *screan = NULL;
struct NewScreen ns = {

0, 0, /" Start position. "/
SBMWIDTH, SBMHEICHT, SBMDEPTH, /" Width, heiqht, dith. "/
0, 0, /" Default detail pen, block pen. "
NULL, /" Viewinq mode. "/
CUSTOMSCREEN CUSTOMBITMAP, /* Screen type. DBL BUF */
&TestFont, /" Font to use. "/
NULL, /" No default title. "/
NULL, /* No pointer to additional qadqets. "/
NULL /" No pOinter to CustomBitMap. i/

};

/" These are for my window. */
struct Window "window = NULL;

struct NewWindow nw = {
0, 0, /* Start position. "/
SBMWIDTH, SBMHEICHT, /" Width, heiqht. "/
0, 0, /" Detail pen, block pen. */
CLOSEWINDOW, /" lDOIP flaqs. "/
WINDOWCLOSE I BORDERLESS, /" naqs. "/
NULL, /" No pointer to FirstGadqet. *1
NULL, /" No pointer to first CheckMark. "/
NULL, /" No default Title. "/
NULL, /" No pointer to Screen. "/
NULL, /* No pOinter to BitMap. "/
0, 0, /" MinWidth, MinHeiqht !not used). "/
SBMWIDTH, SBMHEICHT, /" MaxWidth, MaxHeiqht not uSed). */
CUSTOMSCREEN /" Screen type. "/

};

/***~*** ************************** * This will be called if a sprite collision with the border ia detected.
"/

borderPatrol(s, b)
struct VSprite "s;
int b;
{

reqister struct vlnfo "info;

info = &a->VUserExt;
if tnf~_JTOP~: In~:;OMH~T»
if (b & (~FTHIJ I RI~IT»

/" Top/Bottom hit, chanqe direction. "/

info->vx = -(info->vx);
/* LeftjRiqht hit, chanqe direction. */

}

1*** * Fun Starts.
*/

main 0
{ SHORT i, j;

/* Open libraries that will be used directly. */
if «IntuitionBase = (struct IntuitiOnBas~

fifdef DE~nLibrary("intuition.library", LI Y_VERSION» 0) {

kprintf("Main: Can't open Intuition.\n");
fendif

}

MyCleanup 0 ;
Exit (-1);

if «GfxBase = (struct GfxBase ")
fifdef DE~~nLibrary(·qraphics.library", LIBRARY_VERSION»

kprintf("Main: Can't open Graphics.\n");

0) {

ilendif

}

MyCleanup 0 ;
Exit (-1);

1*** **************************
* DBL BUF
*/

for (j=0; j<2; j++) {
if «MyBitMapPtrs[j] = (struct BitMap *)

AllocMem(sizeof(struct BitMap), MEMF_CHIP» 0) {
ilifde f DEBUG

kprintf("Main: Can't allocate BitMap.\n");
ilendif

MyCleanup 0 ;
Exit (-1);

fnitBitMap (MyBitMapPtrs [j], RBMDEPTH, RBMWIDTH, RBMHEIGHT);
for(i=O; i<RBMDEPTH; i++) {

if «MyBitMapPtrs [j]->Planes [i] = (pLANEPTR)AllocRaster (RBMWIDTH,
aBMHEIGHT» == 0) {

ilifdef DEBUG
kprintf("Main: Can't allocate BitMaps' Planes.\n");

ilendif
MyCleanup 0 ;
Exit(-l);

~ltClear(MyBitMaPPtrS[j]->PlaneS[i],
} }
ns.CustomBitMap·= MyBitMaPPtrsrO]; /* II */
screen->RastPort.Flags = bBUFFER;

/* Open My Very Own Screen. * /

(RBMWIDTH / 8) * RBMHEIGHT, 1);

if «(screen = (struct Screen *)OpanScreen(&ns» 0) {
ilifde f DEBUG

kprintf("Main: Can't open Screen.\n");
ilendif

}

MyCleanup 0 ;
Exit (-1) ;

/* Now get that flashing title bar off the display. DBL BUF */
/*

screen->ViewPort.RasInfo->RxOffset 5;
screen->ViewPort.RasInfo->RyOffset = 5;

*/

/* Set screens' colors (Could've used LoadRGB4(». */
SetRGB4 &screen->ViewPort, 00, 00, 00, 00 ;
SetRGB4 &screen->ViewPort, 01, 15, 00, 00
SetRGB4 &screen->ViewPort, 02, 00, 15, 00
SetRGB4 &screen->ViewPort, 03, 00, 00, 15
SetRGB4 &screen->ViewPort, 04, 15, 15, 00
SetRGB4 &screen->ViewPort, 05, 15, 00, 15
SetRGB4 &screen->ViewPort, 06, 08, 15, 15

SetRGB4 &screen->ViewPort, 07, 15, 11, 00
SetRGB4 &screen->ViewPort, 08, OS, 13, 00
SetRGB4 &screen->ViewPort, 09, 14, 03, 00
SetRGB4 &screen->ViewPort, 10, 15, 02, 14
SetRGB4 &screen->ViewPort, 11, 15, 13, 11
SetRGB4 &screen->ViewPort, 12, 12, 09, 08
SetRGB4 &screen->ViewPort, 13, 11, 11, 11
SetRGB4 &screen->ViewPort, 14, 07, 13, 15
SetRGB4 &screen->ViewPort, 15, 15, 15, 15

nw.Screen = screen;

if «window = (struct Window *)OpanWindow(&nw» 0) {
ilifdef DEBUG

kprintf("Main: Can't open Window.\n");
ilendif

}

MyCleanup 0 ;
Exit(-l);

1*** ************************
* Now that the screen envirionment is set up, It's time to set up the
* gels system.
*/

/* ReadyGels is in GelTools(). */
if (ReadvGels(&GInfo, &screen->RaatPort) 1= 0) {

ilifdef DEBUG
kprintf("Main: ReadyGels failed.\n");

ilendif

}

MyCleanup 0 ;
Exit (-1);

SetCollision(O, borderPatrol, &GInfo);

/* Copy Images to chip memory. * /
if (!InitImages(» {

ilifdef DEBUG
kprintf("Main: InitImages() failed.\n");

ilendif

}

MyCleanup 0 ;
Exit (-1);

/***
* System is set up, now set up each Gel.
*/

/* First use the routines in gel tools to get the sprite. */
forti = 0; i < NSPRITES; i++) {

if «VSpritesfi] = (struct VSprite *)MakeVSjrite(VSPRITEHEIGHT,
VSprite mage_chip, &MyVSpriteColorsrO , i*6, (i*8)+10,
VSPRITEWIDTH, VSPRITEDEPTH, VSPRITE) == 0) {

ilifdef DEBUG A' t'
kprintf("Main: MakeVSprite failed.\n"); nlma Ion 181

182 Animation

#endif

}

}

MyCleanup 0 ;
Exit(-l);

vspritesfij->vuserExt.vx 1
VSprites i ->VUserExt.vy 1
VSprites i ->VUserExt.id i

AddVSprite(VSprites[i], &screen->RastPort);

/* First use the routines in geltools to get the bob. */
forti = 0; i < NBOBS; i++) {

if «Bobsri] = (struct Bob *)MakeBob(BOBWIDTH, BOBHEIGHT,
Bobfmage_chip, OxOF, OxOO, (i*6) , (i*B) +10,
SAVEBACK I OVERLAY» == 0) {

BOBDEPTH,

#ifdef DEBUG
kprintf("Main: MakeBob failed.\n");

#endif
MyCleanup () ;
Exit (-1);

}

BObS~il->BobVSprite->vuserExt.vx 1;
Bobs i ->BobVSprite->VUserExt.vy 1;
Bobs i ->BobVSprite->VUserExt.id i;

/* DBL BUF */
if «Bobsri]->DBuffer = (struct DBufPacket *)AllocMem (sizeof(struct

DBulPacket), MEMF_CHIP» == 0) {
#ifdef DEBUG

kprintf("Main: Can't allocate double buffers' packet for a bob.\n");
#endif

MyCleanup () ;
Exit(-l);

if «Bobsril->DBuffer->BufBuffer = (WORD *)AllocMem (sizeof(SHORT) *
«B6BWIDTH+1S)/16) * BOBHEIGHT * BOBDEPTH, MEMF_CHIP» == 0) {

#ifdef DEBUG
kprintf("Main: Can't allocate double buffer for a bob.\n");

#endif

}

MyCleanup () ;
Exit (-1);

ladBOb(BObS[i], &screen->RastPort);

/* The fOllowin~ relies on the fact that AddBob sets the before : ~~ ~!i~ral~n~~ers to 0; so the first before and last after.

* Earlier bob has higher priority, thus this bob'll be drawn
* AFTER that one, thus this bob will appear on top of all earlier
* on.s. One could set the bobs to be drawn in any order by rearranging
* these pointers.
*/

if (i > 0) {

BObS[ij->After = Bobs [i-11;
Bobs[i ->After->Before = 9obs[i];

}, ~* End of for. */

li** ************************
* Hey, wow, everything opened, and allocated, and initialized 1 Whew.
*/
for (;;) {

DrawGels () ;

}

while (MylntuiMessage = (struct IntuiMessage *)
GetMsg(window->UserPort»

switch (MvlntuiMessage->Class) {

}

case CLOSEWINDOW:
ReplyMsg(MylntuiMessage);
MyCleanup,O;
Exit (TRUE);
break;

default:
ReplyMsg(MylntuiMessage);
break;

1*** **************************
* DrawGels part of lOOp.
*/

DrawGels 0
{

}

register struct VSprite *pSprite;

/* Move everything in the sprite list. This includes Bobs. */
pSprite = Glnfo.gelHead->NextVStrite;
while (pSprite 1= Glnfo.gelTail {

pSprite->X += pSprite->VUser xt.vx;
pSprite->Y += pSprite->VUserExt.vy;
pSprite = pSprite->NextVSprite;

}

SortGList(&screen->RastPort); /* Put the list in order. */
DoCollision(&screen->RastPort); /* Collision routines may called now. */
DrawGList(&screen->RastPort,&screen->ViewPort); /* Draw em. */
screen->ViewPort.Raslnfoc>BitMap = MyBitMapPtrs[ToggleFrame); /* DBL BUF */
WaitTOF 0 ; /* When the beam hits the top. .. * /
MakeScreen(screen); /* Tell intuition to do it's stuff. */
RethinkDisplay(); /* Does a MrgCop & LoadView. */
ToggleFrame -=1; /* DBL BUF */
screen->RastPort.BitMap MyBitMapPtrs[ToggleFrame]; /* DBL BUF */

/***
* This will be called in case of error~ or when main is done.
*/

MyCleanup ()
{

}

ahort i, j;

for (1=0; 1 < NBOBS; 1++) {
it (Bobsr11 1= NULL) {

DeleteCel(Boba[1]->BobVSpr1te);
}

}

for (1=0; i < NSPRlTES; 1++) {
1t (VSpr1tear1] 1= NULL) {

DeleteGel(VSpr1tea[i]);
}

~rqeGela(&GlnfO);
Freelmaqea () ;
1f (w1ndow 1= NULL)

CloseW1ndow(w1ndow);
if (screen 1= NuLL)

CloaeScreen(acreen);

/* DBL BUF */
for (1=0; j<2; j++) {

}

if (MyBitMapPtrs[11 1= NULL) {
torJ1=0; 1<RBMD~PTH; 1++) {
1f MyB1tMapPtra rl]->Planes [1] 1= 0)

reeRaater(MyB tMapPtrs[j]->Planes[1], RBMWIDTH, RBMHEIGHT);
}

FreeMam(MyB1tMapPtrs[j], a1zeof(atruct B1tMap»;
}

1f (GfxBase 1= NULL)
CloseL1brary(GfxBase);

1f (Intu1t1onBase 1= ~utL)
CloseL1brary(Intu1t1onBase);

In1 tIDlBqes ()
{

extern USHORT
extern USHORT
1nt 1;

1f «VSpriteIDlBqe_ch1p = (USHORT *)
AllocMem(s1zeof(VSpr1telmaqe), MEMF_CHIP» == 0) {

t1fdef DEBUG
kprintf("In1tlmaqea: No Memory for VSpr1telmaqe.\n");

tend1f
return(FALSE);

}
1 f «Boblmaqe_ch1p = (USHORT *)

AllocMem(aizeof(Boblmaqe), MEMF_CHIP» 0) {
t1fdef DEBUG

tend1fkpr1ntf("In1tlmaqea: No Memory for Boblmaqe.\n");

return(FALSE);
}

}

for(1=0; 1<24; 1++)
VSpr1telmaqe_chip[1] = VSpr1telmaqe[1];

for (1=0; 1<496; 1++)
Boblmaqe_ch1p[1] = Boblmaqe[i];

return (TRUE) ;

Freelmaqes ()
{

}

extern USHORT *VSpritelmaqe_chip;
extern USHORT *BobIDlBqe_ch1p;

1f (VSpritelmaqe_ch1p 1= 0)
~reeMem(VSpr1telmaqe_ch1p, a1zeof(VSpr1telmaqe»;

1f (Boblmaqe_ch1p 1= 0)
FreeMem(Boblmaqe_chip, B1zeof(Boblmaqe»;

Animation 183

184 Animation

/*** ~tuall.h **
* intuall.h, gener.l includer for intuition

Confidenti.l Information: Commodore-Amig., Inc.
Copyright (c) Commodore-Amiga, Inc.

date author
Modification Hiatory
Commenta

*
*

1-30-85 -=RJ=- created thia file'

**/

*include <exec/type •. h>
*include <exec/noae •. h>
*include <exec/liats.h>
/* *include <exec/interrupta.h> */
*include <exec/memory.h>
*include <exec/portB.h>
*include <exec/taska.h>
*include <exec/librarie •. h>
*include <exec/deviceB.h>
*include <exec/io.h>
*include <exec/device •. h>

*include <devicea/console.h>
*include <devices/timer.h>
*include <devicea/keymap.h>
*include <device./inputevent.h>

faefine Mag IOStdReq /* temporary kluge for dosextena.h */

*include <librariea/dos.h>
*include <librarie./doaexten •. h>

*include <graphic./gfx.h>
*include <graphics/region •. h>
*include <hardvarejblit.h>

/* ALWAYS INCLUDE CFX.H before other includes */
/* new .a of 7/9/85 */

*define blitNode bltnode

*include <graphic./collide.h>
*include <gr.phicB/copper.h>
*includ. <graphica/display.h>
*include <hardvare/dmabita.h>
*include <graphics/gels.h>

/* tempor.ry kludge for gela.h */

*includ. <graphica/clip.h>
*includ. <graphic./r.stport.h>
*include <gr.phica/viev.h>
*include <gr.phic./gfxb •••. h>
*include <gr.phica/text.h>
/* *include <h.rdvare/intbita.h> */

*include
*includa
*include
*includa
*include

<h.rdvare/custom.h>
<gr.phica/gfxmacroa.h>
<graphica/layera.h>
<intuition/intuition.h>
<davicea/gam8port.h>

/* changed .0 I can get gadget .dar * /

1* ===
GELTooLS.C -

A FILE CONTAINING USEFUL SETUP TOOLS FOR THE ANIMATION SYSTEM

author: Rob Peck, incorporating valuable comments and changes from
Barry Whitebook and David Lucas.

=== *1
lIinclude
lIinclude
lIinclude
lIinclude
lIinclude
lIinclude
lIinclude
lIinclude

<exec/types .h>
<ex.ee/memory.h>
<graphics/gfx.h>
<graphics/gels.h>
<graphics/clip.h>
<graphics/rastport.h>
<graphics/view.h>
<graphics/gfxbase.h>

1* ALWAYS INCLUDE GFX.H before other includes *1

1*************************************·*************** **************************
* This file is a collection of tools which ara used with the vBprite and
" bob software. It contains the following:

" ReadyGels(*gelsinfo, *rastport);
PurgeGels("gelsinfo);

" struct VSprite "MakeVSprite(lineheight,"image,"colorset,x,y,
" wordwidth,imagedepth,flags);

DeleteVSprite(&VSprite);

" struct Bob "MakeBob (bitwidth, lineheight, imagedepth, "image,
" planePick,planeOnOff,x,y)
: DeleteBob(&Bob);

" ReadyGels sets up the defaults of the gel system by initializing the
" Gelslnfo structure you provide. First it allocates room for and
" links in lastcolor and nextline. It then uses information in your

RastPort structure to establish boundary collision defaults at
the outer edges 0 f the raster. It then links together the GelsInfo

" and the RastPort which you provide. Next it allocates space for two
" dummy virtual sprite structures, calls InitGels and SetCollision.
I You must already have run LoadView before ReadyGels is called.

" " PurgeGels deal locates all memory which ReadyGels and NewGelList have
"allocated. The system will crash if you have not used these

routines to allocate the space (you cant deallocate something
which you havent allocated in the first place) .

" MakeVSprite allocates enough space for and !nits a normal vsprite.
DeleteVSprite deal locates the memory it used.

" MakeBob initializes a standard bob and allocates as much memory as is needed
" for a normal bob and its vsprite structure, links them together.

To find the associated vsprite, look at the back-pOinter (see the
" routine doc itself).
" DeleteBob deal locates the memory it used.

" : Written by Rob Peck. with thanks to Barry Whitebrook and David Lucas.

**!

Animation 185

186 Animation

void border _dUllllllY ()
{

return;
}

/* Caller passes a pointer to his GelsInfo structure which he vants to init,
* along vith a pOinter to his IVPArgs. Default init places the topmost
* bottommost etc at the outermost boundaries ot callers rastport parameters.
* Caller can change all this stuff after this routine returns.
*/

extern struct RastPort *myRast;

struct VSprite *SpriteHead = NULL;
struct VSprite *SpriteTail = NULL;

1*** **************************
* This routine cannot be run until the first LoadViev(&View) has bean
* executed. InitGels vorks with an already active View, so LoadView
* must have bean run first.
*/

ReadyCels(g, r)
struct RastPort *r;
struct GelsInfo *g;
{

/* Allocate head and tail of list. */
if «SpriteHead = (struct VSprite *)AllocMam(sizeof

-(struct VSprite), MEMF""pUBLIC I MEMF_CLEAR» == 0) {
4I1fdef DEBUG

kprintf("ReadyCels: No memory for sprite head.\n");
4Iendif

}
return(-l);

if «SpriteTail = (struct VSprite *)AllocMam(sizeof
·(struct VSprite), MEMF""pUBLIC I MEMF_CLEAR» == 0) {

4I1fdef DEBUG
kprintf("ReadyCels: No memory for sprite tail.\n");

4Iendif

}
return (-1) ;

/* By setting all bits here, it means that there are NO
* reserved sprites. The system can freely use all of the
* hardware sprites for its own purposes. The caller vill
* trying to independently use any hardware sprites I
*/
g·>sprRsrvd = -1;

not be

/* The next1ine array is used to hold system information about
* "at which line number on the screen is this hardware sprite
* again going to become available to be given a new vsprite to
* display".
*/

if «g->nextLine = (WORD *lA110cMam(sizeof~) * 8,
MEMF""pUBLIC I MEMF_ctEAR» == NULL) {

4Iifdef DEBUG
kprintf("ReadyCels:- No memory for nextline.\n");

4Iendif
return (-1) ;

}

/* In the lastcolor pOinter array, the system vill store
* a pOinter to the color definitions most recently used
* by the system as a reminder, virtual sprites can
* be assigned to any of the real hardware sprites which
* may be available at the time. The vsprite colors vill
* be written into the hardware sprite re9ister set for
* the hardware sprite to vhich that vspr1te is assigned.
* This pointer array contains one pOinter to the last
* set of three colors (from the vsprite structure *sprColors)
* for each hardware sprite.

* As the system is scanning to determine which hardware
* sprite should next be used to represent a vsprite, it

checks the contents of this array. If a hardware sprite
* is available and already has bean assigned this set of
* colors, no color assignment is needed, and therefore
* no color change instructions vill be generated for the
* copper list.
* * If all vsprites use a different set of sprColors, (pOinters

to sprColors are different for all vsprites), then there
is a limit of 4 v~prites on a horizontal line. If, on
the other hand, you define, lets say 8 vsprites, vith
1 and 2 having the same sprCo10rs, 3 and 4 the same as

* each other, 5 and 6 the same as each other, and 7 and 8
* also having the same vsprite colors, then you will be
* able to have all 8 vsprites on the same horizontal line.

* In this case, you will be able to put all 8 vsprites on * the same horizontal line. The reason this helps is that
* the system hardware ahares the color registers between pairs
* 0 f hardware apri tea. The system. thus has enouqh resources
* to assign all vsprites to hardware sprites in that there
* are 4 color-sets for 8 vsprites, exactly matching the
* hardware maximum capabilities.
* * Note that lastcolor vill not be used for bobs. Just sprites.
*/
if «g->lastColor = ~RD~llOcMe~izeof(LONG) * 8,

4I1fdef DE:~....PUBLIC I MF_ » == L) {

#endifkprintf("ReadyCels: No memory for lastcolor.\n");

return (-1) ;
}

/* This is a table of pOinters to the routines which should
* be performed when DoCollision senses a collision. This

* declaration may not be necessary for a basic vsprite with
* no collision detection implemented, but then it makes for
* a complete example.
*/
if «g->co11Hand1er = (struct co11Tab1e *)A11ocMem(sizeof(struct

collTab1e), MEMFJ'UBLIC I MEMF_CLEAR» == NULL) {
*ifdef DEBUG

kprintf("ReadyGe1s: No memory for co11Hand1er.\n");
*endif

}

}
return(-l);

/* When any part of the object touches or passes across
* this boundary, it will cause the boundary collision
* routine to be called. This is at smash[O] in the
* collision handler table and is called only if
* DoCo11ision is called.
*/
g->leftmost = 0;
g->rightmost = r->BitMap->BytesPerRow * 8 - 1;
g->topmost = 0;
g->bottommost = r->BitMap->Rows - 1;

r->Ge1sInfo = g; /* Link together the two structures */

InitGe1s(SpriteHead, Spr 1teTai 1 , g);

/* Pointers initialized to the dummy sprites which will be
* used by the system to keep track of the animation system.
*/
SetCo11ision(0, border_dummy, g);
WaitTOF ();
return (0) ;

1*** **************************
* Use this to get rid of the gels stuff when it is not needed any more.
* You must have allocated the gels info stuff (use the ReadyGe1s routine).
*/

PurgeGe1s (g)
struct Ge1sinfo *g;
{

}

if (g->co11Hand1er 1= NULL)
EreeMam(g->co11Hand1er, sizeof(struct co11Tab1e»;

if (g->lastCo1or 1= NULL)
EreeMem(g->lastCo1or, sizeof(LONG) * 8);

if (g->nextLine 1= NULL)
EreeMem(g->~extLine, sizeof(WORD) * B);

if (g->ge1Head 1= NULL)
EreeMem(g->ge1Head, sizeof(struct VSprite»;

if (g->ge1Tai1 1= NULL)
EreeMam(g->ge1Tai1, sizeof(struct VSprite»;

1**

* Because MakeVSprite is called by MakeBob, MakeVSprite only creates the
* VSprite,it doesn't add it to the system list. The calling routine must
* do an AddVSprite after it is created.
*/

struct VSprite *MakeVSprite(lineheight, image, co1orset, x, r'
wordwidth, imagedepth, flags

SHORT 1ineheight; /* How tall is this vsprite? */
WORD *image; /* Where is the vsprite image data, should be

twice as many words as the value of 1ineheight */
/* Where is the set 0 f three words which describes

the colors that this vsprite can take on? */
WORD *colorset;

/* What is its initial onscrean position? */ SHORT x, y;
SHORT wordwidth, imagedepth, flags; 0

{
struct VSprite *v; /* Make a pointer to the vsprite structure which

this routine dynamically allocates */

if «v = (struct VSprite aAl1ocMem(sizeof(struct VSprite),
MEMEJ'UBLIC I MEMF_ EAR» == 0) {

Ufdef DEBUG
printf("MakeVSprite: Couldn't allocate VSprite.\n");

*endif

}
return (0) ;

v->F1ags = flags;

v->Y = y;
v->X = x;

/* Is this a vsprite, not a bob? */

/* Establish initial position relative to */
/* the Display coordinates. */

v->Height lineheight;
v->Width = wordwidth;

/* The Caller says how high it is. */
/* A vsprite is always 1 word (16 bits) wide. */

/* There are two kinds of depth ... the depth of the image itself, and the
* depth of the p1ayfie1d into which it will be drawn. The image depth

says how much data space will be needed to store an image if it's
* dynamically allocated. The play field depth establishes how much space
* will be needed to save and restore the background when a bob is drawn.
* A vsprite is always 2 planes deep, but if it's being used to make a
* bob, it may be deeper ...
*/

v->Depth = imagedepth;

/* Assume that the caller at least has a default boundary collision
* routine bit I of this mask is reserved for boundary collision
* detect during DoCol1ision(). The only collisions reported will be
* with the borders. The caller can change all this later.
*/

v->MeMask = 1;
v->HitMask = 1;

v->Imagebata = image; /* Caller says where to find the image. */

Animation 187

188 Animation

/* Show system where to find a mask which is a ·squished down version
* of the vsprite (allows for fast horizontal border collision detect) .
*/

if «v->BorderLine = (WORD *)AllocMem «sizeof (WORD) *wordwidth) ,
MEMFJ'UBLIC I MliMF_CI.EAR» == 0) {

#!fde f DEBUG
kprintf(HMakeVSprite: Couldn't allocate BorderLine.\n");

#endif

}
return(O);

/* Show system where to find the mask which contains a 1 bit for any
* position in the object in any plane where there is a 1 bit (all planes
* OR'ed together).
*/

if «v->CollMask = (WORD *)AllocMem(sizeof(WORD)*lineheight*wordwidth,
MEMF_CHIP I MliMF_CLEAR» == 0) {

#!fdef DEBUG
kprintf(HMakeVSprite: Couldn't allocate CollMask.\n");

#endif

}

}
return(O);

/* This isn't used for a Bob~ just a VSprite. It's where the
* Caller says where to find the VSprites colors.
*/
v->SprColors = colorset;

/* These aren't used for a,VSprite, and MakeBob'll do set up for Bob. */
v->PlanePick = OxOO;
v->PlaneOnOff OxOO;

InitMasks(v);
return(v);

/* Create the collMask and borderLine */

struct Bob *MakeBob(bitwidth,lineheight,imagedepth,image,
planePick,planeOnOff, x,y, flags)

SHORT bitwidth,lineheight,imagedepth,planePick,planeOnOff,x,y, flags;
WORD * image;
{

struct Bob *b;
struct VSprite *v;
SHORT wordwidth;

wordwidth = (bitwidth+15)/16;

/* Create a vsprite for this bob, it will need to be deallocated
* later (freed) when this bob gets deleted.
* Note: No color set for bobs.
*/
if «v = MakeVSprite(lineheight, image, NULL, x, y, wordwidth,

imagedepth, flags» == 0) {
#!fdef DEBUG

kprintf("MakeBob: MakeVSprite failed.\n");
#endif

}
return (0) ;

/* Caller selects which bit planes into which the image is drawn. */
v->PlanePick = planePick;

/* What happens to the bit planes into which the image is not drawn. */
v->PlaneOnOff = planeOnOff;

if «b = (struct Bob *)AllocMem(sizeof(struct Bob),
MEMFJ'UBLIC I MEMF_CLEAR» == 0) {

#!fdef DEBUG
kprintf(HMakeBob: Couldn't allocate bob.\n");

#endif

}
return(O);

v->VSBob = b; /* Link together the bob and its vsprite structures */

b->Flags = 0; /* Not part of an animation (BOBISCOMP) and don't keep the
image present after bob is removed (SAVEBOB) */

/* Tell where to save background. Must have enough space for as many
* bitplanes deep as the display into which everything is being drawn.
*/

if «b->SaveBuffer = (WORD *)AllocMem(sizeof(SHORT) * wordwidth
* lineheight * imagedepth, MEMF_CHIP I MEMF_CLEAR» == 0) {

#ifdef DEBUG
kprintf("MakeBob: Couldn't allocate save buffer.\nH);

#endif

}
return(O);

b->ImageShadow = v->CollMask;

1* Interbob priorities are set such that the earliest defined bobs have
* the lowest priority, last bob defined is on top.
*/

b->Before = NULL;
b->After = NULL;

b->BobVSprite = v;

/* Let the caller worry about priority later. */

1* InitMasks does not preset the imageShadow ... caller may elect to use
* the collMask or to create his own version of a shadow, although it
* is usually the same.
*/

b->BobComp
b->DBuffer

1* this is not part of an animation *1
/* this is not double buffered */

1* Return a pOinter to this newly created bob for additional caller

}

* interaction or for AddBob(b);
*/
return (b) ;

/* Deallocate memory which has been allocated by the routines Makexxx. */
/* Assumes images and imageshadow deallocated elsewhere. */
DeleteGel (v)
struct VSprlte *v;

{ if (v 1= NULL) {

}
}

if (v->VSBob 1= NULL) {
if (v->VSBob->SaveBuffer 1= NULL) {

FreaMem(v->VSBob->SaveBuffer, sizeof(SHORT) * v->Width
* v->Height * v->Depth);

If (v->VSBob->DBuffer 1= NULL) {
if (.V->VSBOb->DBuffer->BufBuffer 1= 0) {

FreaMem(v->VSBob->DBuffer->BufBuffer,
sizeof(SHORT) * v->Width * v->Height * v->Depth);

treaMem(v->VSBOb->DBuffer, sizeof(struct DBufPacket»;

treaMem(v->VSBob, sizeof(struct Bob»;

ff (v->CollMask 1= NULL) {
FreeMem(v->CollMask, sizeof~RD) * v->Height * v->Width);

ff (v->BorderLine 1= NULL) {
FreaMem(v->BorderLine, sizeof~)

}
FreeMem(v, sizeof(struct VSprite»;

* v->Width);

Animation 189

Chapter 4

Text

Introduction

Text on the Amiga is simply another graphics primitive. Because of this, you can easily inter
mix text and graphics on the same screen. Typically, a 320-by-200 graphics screen can contain
40-column, 25-line text using a text font defined in an 8-by-8 matrix. The same type of font
can be used to display 80-column text if the screen resolution is extended to 640 by 200. Win
dow borders and other graphics embellishments may reduce the actual available area.

Text 191

The text support routines use the RastPort structure to hold the variables that control the
text drawing process. Therefore, any changes you make to RastPort variables affect both the
drawing routines and the text routines.

In addition to the basic fonts provided in the ROMs, you can link your own font into the sys
tem, and ask that it be used along with the other system fonts.

This chapter shows you how to:

o Print text into a drawing area

o Specify the character color

o Specify which font to use

o Access disk-based fonts

o Link in a new font

o Define a new font

o Define a disk-based font

Printing Text into a Drawing Area

The placement of text in the drawing area depends on several variables. Among these are the
current position for drawing operations, the font width and height, and the placement of the
font baseline within that height.

CURSOR POSITION

Text position and drawing position use the same variables in the RastPort structure-cp_y
and cp_x, the current vertical and horizontal pen position. The text character begins at this
point. You use the graphics call Move(&rastPort, x, y) to establish the cp_y and cp_x
position.

192 Text

BASELINE OF THE TEXT

The cp_y position of the drawing pen specifies the position of the baseline of the text. In other
words, all text printed into a RastPort using a single "write string" command is positioned
relative to this cp-y as the text baseline. Figure 4-1 shows some sample text that includes a
character that has 1 dot below the baseline and a maximum of 7 dots above and including the
baseline.

For clarity, blank squares and shaded squares, rather than Os and Is, are used for the figure.

/-4---- Baseline for the
character set

Figure 4-1: Text Baseline

The figure shows that for this font, the baseline value is 6. The baseline value is the number of
lines from the top of the character to the baseline.

When the text routines output a character to a RastPort, the leftmost edge of the character
position is specified by the cp_x (current horizon tal position) variable.

After all characters have been written to the RastPort, the variable cp-y is unchanged. The
value of cp_x will be changed by the number of horizontal positions that were needed to write
all characters of the specified text. Both fixed-width and proportionally spaced character sets
are accommodated.

The default fonts in the system are all designed to be above and below the baseline, where the
baseline position is at line 6 of the character font. This means that you must specify a cp-y
value of at least 6 when you request that text be printed to a RastPort in order to assure that
you stay within the memory bounds of the RastPort itself. Location (0,0) specifies the upper
left-hand corner of the memory space that is dedicated to the RastPort. Because all text will
be written above and below the baseline, you must start at a proper position or the routines will
write into non-RastPort memory.

You should not request that the text routines write beyond the outer bounds of the RastPort
memory, either horizontally or vertically. Text written outside the RastPort bounds may be
clipped if the RastPort supports clipping (most do). Clipping means that the system will
display only that portion of the text that is written into the boundaries of the RastPort.

Text 193

SIZE OF THE FONT

Font design is covered later in this chapter. For now, simply note that the width and height of
the font affect how many characters you may print on a line. The position of the baseline
affects where you print a line.

PRINTING THE TEXT

You may print text into a RastPort by using the TextO routine. A typical call to this routine
IS:

Text(&rastPort, string, count)

where

&rastPort is a pointer that describes where the text is to be output

string is the address of the string output

count is the string length

SAMPLE PRINT ROUTINE

Here is an example showing a string to be written to a RastPort. This example assumes that
you have already prepared a RastPort into which the text can be rendered.

/ * sample routine to print a single line of text to the screen. * /
struct RastPort *rp;
teste)
{
SetAPen(rp, 1); /* use color number 1 to draw the text * /
Move(rp, 0, 40); /* start down a few lines from the top * /
Text(rp, "This is test text", 17);
returnO;
}

194 Text

Selecting the Font

Character fonts each have a name. Two default character fonts are provided in the ROMs.
One font produces either 40- or 80-column text (depending on the use of a 320 or 640 horizontal
resolution, respectively). The other font produces either 32- or 64-column text. The names and
specifications of these default fonts are are shown in table 4-1.

Table 4-1: Default Character Fonts

Font Type Height N arne

40/80 8 topaz.font

32/64 9 topaz.font

To specify which font the system should use, you call the system routine OpenFontO or
OpenDiskFontO, followed by SetFontO. A typical call to these routines follows.

where

font=OpenFont(textattr);
font=OpenDiskFont(textattr);
SetFont(font, rp)

font
is a pointer to a TextFont data structure, returned by either OpenFontO or
OpenDiskFontO·

textattr
is a structure located in the include file graphics/text.h. It contains a pointer to a null
terminated string that specifies the name of the font, font height, font style bits, and
font preference bits.

rp is the address of the RastPort that is to use that font until told to use a different one.

The call to OpenFontO or OpenDiskFontO says "give me a fon t with these characteristics."
The system attempts to fulfill your request by providing the font whose characteristics best
match your request. The table above shows that both of the system fonts have the name
"topaz.font." In the system font selections, the height of the characters distinguishes between
them. If OpenFontO cannot be satisfied, it returns a o.

Text 195

Note: In chapter 1, "Graphics Primitives," you saw that the routine InitRastPortO initializes
certain variables to default values. This routine automatically sets the default to topaz.font
with the correct width according to Preferences.

The example below shows how a new font is selected. This example prints two lines of text to
the screen, each line of text in a different font. It assumes that a RastPort is already set up
elsewhere.

#include " graphics / text.h"

teste)
{
struct TextAttr f;

/ * provide a font structure to build on for font change * /
struct TextFont *font;
f.ta_Name = "topaz.font";

/ * set font name into font descriptor struct * /
/* initial font default is "topaz.font" * /

f.ta_ YSize = 8;
/ * define font size * /

f.ta_Style = 0;
/ * define font sty Ie * /

f.ta_Flags = 0;
/ * define font preferences * /

font=OpenFont(&f);
if (font !=O) {

SetFont(rp, font);
/ * ask system to find & set one like this * /

Move(rp, 0, 40);
Text(rp, "topaz.font, 8 dots high" , 23);
CloseFont(font);
}

f.ta_Ysize=9;
font=OpenFont(&f);
if (font != 0) {

SetFont(rp,font);
Move(rp, 0, 48);

/ * start a few lines down from the top * /
Text(rp, "topaz.font, 9 dots high", 23);
CloseFont(font);
{

return(O);
}

196 Text

Selecting the Text Color

You can select which color to use for the text you print by using the graphics calls SetAPenO
and SetBPenO and by selecting the drawing mode in your RastPort structure. The combina
tion of those values determines exactly how the text will be printed.

Selecting a Drawing Mode

The DrawMode variable of a RastPort determines how the text will be combined with the
graphics in the destination area.

Note: The DrawMode selections are values, not bits. You can select from anyone of the fol
lowing drawing modes.

If DrawMode is JAMl, it means that the text will be drawn in the color of FgPen (the fore
ground, or primary, drawing pen). Wherever there is a I-bit in the text pattern, the FgPen
color will overwrite the data present at the text position in the RastPort. This is called over
strike mode.

If DrawMode is JAM2, it means that the FgPen color will be used for the text, and the
BgPen color (the background or secondary drawing color pen) will be used as the background
color for the text. The rectangle of data bits that defines the text-character completely overlays
the destination area in your RastPort. Where there is a 1 bit in the character pattern
definition, the FgPen color is used. Where there is a 0 bit in the pattern, the BgPen color is
used. This mode draws text with a colored background.

If DrawMode is COMPLEMENT, it means that wherever the text character is drawn, a posi
tion occupied by a 1 bit causes bits in the destination RastPort to be changed as follows (see
also figure 4-2):

o If a text-character 1 bit is to be written over a destination area 0 bit, it changes the
destination area to a 1 bit.

o If a text-character 1 bit is to be written over a destination area 1 bit, the result of com
bining the source and destination is a 0 bit. In other words, whatever the current state
of a destination area bit, a 1 bit in the source changes it to the opposite state.

o Zero bits in the text character definition have no effect on the destination area.

Text 197

•
'~?':~<;;}

::;:.-:::: :;:::::::
;:;::::;:;

::;::::;:;
:::.: ::: .

. :::: :::;

;:;: ~~~~ :~~~: :::: :;:: ;:;:: "::::

Text Character Memory Area Result of printing it in complement
mode with left edges al igned as shown.

Figure 4-2: Complement Mode

If you set the INVERSVID flag to a 1, it will change all 1 bits to 0 bits and vice versa in a text
or other RastPort writing operation before writing them into the destination area. If the
drawing mode at that time is JAM2, then the pattern colors will be reversed as well. If
DrawMode is INVERSVID, you can produce inverse video characters.

Here is an example showing each of the three modes of text that you can produce. Again it
assumes that your RastPort has been set up elsewhere.

/ * sample routine to print four lines of text to
* the screen, each line in a different mode * /

teste)
{
SetAPen(rp, 2); /* use color 2 as primary drawing color * /
SetBPen(rp, 3); /* use color 3 as secondary drawing color */
Move(rp, 0, 6); /* move the drawing position near upper left */
SetDrMd(rp, JAM1); /* Jam 1 color into target raster */
Text(rp, "This is JAM1 mode", 17);
Move(rp, 0, 46); /* move the drawing position for next line * /
SetDrMd(rp, JAM2); /* Jam 2 colors into target raster */
Text(rp, "This is JAM2 mode", 17);

Move(rp, 0, 86); /* move the drawing position for next line * /
/* use exclusive-or (COMPLEMENT) to write */

SetDrMd(rp, COMPLEMENT);
Text(rp, "This is COMPLEMENT mode", 23);
Move(rp, 0, 126);
SetDrMd(rp,JAM1+INVERSEVID);
Text(rp, "INVERSE", 7);
return;
}

198 Text

Effects of Specifying Font Sty Ie

When you call OpenFontO, specifying certain style characteristics, the system searches the
loaded fonts to find the closest match to the font you requested. If the remainder of the charac
teristics match what you have requested, but the style does not match, the text routines
AskSoftStyleO and SetSoftStyleO create a font styled as you have requested by modifying
the existing font (that is, modifying a normal font to italic or bold by modifying its characters.)
Because many fonts do not lend themselves to such modifications, it is always preferred that the
font of the specific style be loaded for u~e. The system always tries to find the exact specified
font before attempting to modify another to fit your request.

If there is a font present in the system that matches your OpenFontO request both in name
and size, but not in style, (as determined by looking at the font style field), you may use
SetSoftStyleO to generate the selected style algorithmically as follows:

NORMAL

The font is used exactly as defined.

UNDERLINED

An underline is generated one pixel below the baseline position.

ITALIC

The character is given a slant to the right, starting from the bottom line, and shifting
subsequent upward line positions to the right one bit position for every second count up
from the bottom of the character.

EXTENDED

This attribute cannot be set with SetSoftStyleO. See "Font Style" below.

If you use a font that has the various style characteristics built in, rather than generated, the
internal spacing and kerning tables tell the system how to leave the proper amount of space
between characters if you are simply printing them one at a time.

If you ask TextO to output the characters individually, TextO calculates character positioning
and width based on the normal width and inter-character spacing that it finds in the font
descriptor. After printing one or more characters, it automatically positions the drawing pen
(cp_x) at the position it believes to be correct for the next output character. This may cause
adjacent characters to overlap when printed individually.

There is a solution to this problem. If you are using generated style for a font, you must take
care to build your output strings of characters before calling TextO to output them. TextO
can handle character strings, correctly generating the desired style with correct inter-character
spacing.

Text 199

To increase inter-character spacing, you can set a field called rp_TxSpacing in the RastPort.
The spacing is specified in pixels.

Adding a New Font to the System

The ROM Exec code maintains a list of the text fonts that are currently linked into the system.
To add another font, you must open a disk font using the diskfont library or define the font.
You must also reserve some memory where the font can be loaded, move the font definition into
that memory area, and link the font name and location into the system font list.

Using a Disk Font

To use an existing disk font, you must open the diskfont library and open a disk font. Here are
the program fragments you need to open the library. This gives you access to whatever rou
tines the diskfont library contains:

struct Library *DiskfontBase;

DiskfontBase = (struct Library *)
OpenLibrary(" diskfont.library" ,0);

Before trying to use the diskfont routines, you should check that the OpenLibraryO call
returned a value other than NULL.

Here is the program fragment you need to actually load a disk-based font. It assumes that you
already know the name of the font you want to load.

struct TextFont *font;
struct TextAttr myTextAttr;

font = OpenDiskFont(&myTextAttr);

200 Text

Finding Out Which Fonts Are Available

The function AvailFontsO fills in a memory area designated by you to hold a list of all of the
fonts available in the entire system. AvailFontsO searches the AmigaDOS directory path
currently assigned to FONTS: and locates all available fonts. If you haven't issued a DOS
ASSIGN command to change the FONTS: directory path, the system will search the sys.jonts
directory.

The test program "whichfont.c" at the end of this chapter provides a list of the fonts you can
use and shows you how to find the appropriate items to put into the text attribute data struc
ture for the call to OpenDiskFontO.

Contents of a Font Directory

In a font directory, you will usually find two names for each font type. A typical pair of entries
in the fonts directory is as follows:

sapphire.fon t
sapphire(dir)

The file named sapphz"re./ont does not contain the actual font. It contains the description of the
contents of that font family. The contents are described by a FontContentsHeader and one
or more FontContents data structure entries. The FontContentsHeader structure is
defined in libraries/ diskfont.h as:

struct FontContentsHeader {
UWORD fch_FileID; /* FCH_ID */
UWORD fch_NumEntries; /* the number of FontContents elements */

/* FontContents (lor more) follow here */
};

where

fch_FileID
is simply a numeric identifier for this file type. The value is OxfOO.

fch_N umEntries
says how many entries of type FontContents follows this header.

Text 201

The FontContents structure is defined as follows:

struct FontContents {
char fc_FileName[MAXFONTPATH];
UWORD fc_YSize;
UBYTE fc_Style;
UBYTE fc_Flags;
};

where

fc_FileName
is the pathname that AmigaDOS must follow to find the actual diskfont descriptive
header, along with the TextFont data structure of which this font is composed. Once
AmigaDOS reaches the path named in FONTS:, it finds the filename by the path shown
in this entry in FontContents.

fc_YSize, fc_Style, and fc_Flags
correspond to their equivalents in the TextAttr data structure (ta_YSize, ta_Style,
and ta_Flags).

As an example, a typical entry in sapphireJont is:

"sapphire/14" ,

14,
00,
60 (hex)

a null-terminated string, padded out with
zeros for a length of MAXFONTPATH bytes,
the value for fc_YSize,
the value for fc_Style,
the value for fc_Flags.

This entry indicates that the actual DiskFonliHeader for the font to be loaded is in path
FONTS:sapphire/14. This means that the sapphire subdirectory in the fonts directory must
have a file named 14 in order to allow this font to be loaded.

The Disk Font

A disk font is constructed as a loadable, executable module. In this manner, AmigaDOS can be
used to perform LoadSegmentO and UnloadSegmentO on it. AmigaDOS can therefore allo
cate memory for the font, and return the memory when the font is unloaded. The contents of
the DiskFont are described in the include-file libraries/ diskfont.h. The most significant item in
this structure, the embedded TextFont structure, is described below in the topic "Defining a
Font."

202 Text

Defining a Font

To define a font, you must specify its characteristics using the TextFont structure. The
TextFont structure is specified in the include file named graphics/text.h. The following topics
show the meaning of the items in a TextFont structure. Following the structure description is
an example showing a four-character font, which is defined using this structure and can be
linked into the system using AddFontO.

THE TEXT NODE

The first item in the TextFont structure is a listNode by which the system can link this font
structure into the system TextFonts list. You specify the name of the font using the name
pointer field of the font listNode.

For example:

struct TextFont suitFont;
/ ... name chosen for sample font here'" /

suitFont.textNode.ln_name = "suits.font";

FONT HEIGHT

You specify the height iIi the ySize variable. All characters of the font must be defined using
this number of lines of data even if they do not require that many lines to contain all font data.
Variable-height fonts are not supported.

For example:

suitFont.ySize = 8; / ... all characters are 8 lines high ... /

FONT STYLE

You can specify the style of the font by specifying certain bits as Is in the TextFont Style
variable. The value of Style is determined by the sum of the style bits, defined as:

Text 203

NORMAL (value = 0),
UNDERLINED (value = 1),
BOLD (value = 2),
ITALIC (value = 4),
EXTENDED (value = 8),

The text font is used exactly as defined.
The font is underlined.
The font is bold.
The font is italic.
The font is stretched out (width).

In the font structure, these bits indicate style attributes as intrinsically a part of the font; that
is, the font already has them and you can never take them away.

FONT PREFERENCES

This variable provides additional information that tells the font routines how to create or access
the characters. The Preferences variable is composed of the sum of the preference bits, defined
as follows:

FPB_ROMFONT (value = 0)

The font is located in ROM. If you are making up your own font, this variable will not
be zero unless you are burning new system ROMs yourself.

FPB_REVPATH (value = 2)

The font is designed to be rendered from right to left (for example, Hebrew).

FPB_PROPORTIONAL (value = 32)

The characters in the font are not guaranteed to be xSize wide (see "Font Width"
below). Each character has its own width and positioning in the character space. The
bit-packing of the characters is of great importance, as described below. The variables
modulo, charloc, and charspace define how the characters are defined and bit
packed.

FONT WIDTH

The xSize variable specifies the nominal width of the font. For example:

suitFont.tCXSize = 14; / * specify 14 bits width * /

204 Text

FONT ACCESSORS

If you have added a font to the system list, it is possible that more than one task will be access
ing a character font. A variable in the font structure keeps track of how many accessors this
font currently has. Whenever you call OpenFontO or OpenDiskFontO, this variable is incre
mented for the font and decremented by CloseFontO. The font accessor value should never be
reduced below zero. This accessor count should be initialized to zero before you first link a new
font into the system, but it is managed by the system after the link is performed.

If you wish to remove a font from the system to free the memory that it is currently using, you
must ensure that the number of accessors is zero before ordering its removal.

CHARACTERS REPRESENTED BY THIS FONT

It is possible to create a font consisting of 0 to 255 characters. Some fonts can be exceedingly
large because of their design and the size of the characters. For this reason, the text system
allows the design and loading of fonts that may consist of only a few of the characters. The
variables tCloChar and tChiChar specify the numerical values for the characters represented
in this font. As an example, one font could contain only the capital letters. A second font could
contain the small letters, and a third could contain the punctuation marks and numerals.
Depending on the size of the font itself, you may arrange to subdivide the font even further.

In the example that is being built for this chapter, a font consisting of four playing card suits is
being constructed. This font might consist of only four items, one for each of the playing suits.
For example:

suitFont.tCLoChar = 160;
/ * value to use for first character chosen at whim */

suitFont;tCHiChar = 163;
/* 160 to 163 range says that there are 4 characters
* represented in this font * /

As part of the character data, in addition to defining the included character numbers, you must
also define a character representation to be used as the image of a character number requested
but not defined in this font. This character is placed at the end of the font definition.

For this example, any character number outside the range of 160-163 inclusive would print this
"not in this font" character.

Text 205

THE CHARACTER DATA

The font structure includes a pointer to the character set data along with descriptions of the
how the data is packed into an array. The variables used are defined in graphics/text.h; their
usage is as follows:

tCCharData

This is a pointer to the memory location at which the font data begins. This is the
bit-packed array of character information.

tCModulo

This is the row modulo for the font. The font is organized with the top line of the first
character bit adjacent to the top line of the second character and so on.

For example, if the bit-packed character set needs 10 words of 16 bits each to hold the
top line of all of the characters in the set, then the value of the modulo will be 20
(bytes). Twenty is the number which must be added to the pointer into the character
matrix to go from the first line to the second line of a specific character.

tCCharLoc

This is a pointer to an array of paired values. The values are the bit offset into the
bit-packed character array for this character, and the size of the character in bits.
Expressed in C language, this array of values can be expressed as:

struct charDef ={
WORD charOffset;
WORD charBitWidth;
}

In the program definition, the array to which charLoc points can be expressed as:

struct charDef suitDef[5];
/ * define an array of four sets of character and one" not a
* character" bit-packed placement and width information * /

For ali proportional fonts, there must be one set of descriptors for each character
defined in the character set.

tCCharSpace

This is a pointer to an array of words of proportional spacing information. This is the
width of each character rectangle, in other words, how many bits width are used to con
tain the edge-to-edge width of this character's bit definition.

For example, a narrow character may still be stored within a wide space (see figure 4-3).

206 Text

•
~::&.:::

:;.

::::
.:::.

:* .
.. :: ... : ':::'

..c ••••••• ~ (Value = 5 for this example) Kern = 2

Figure 4-3: CharS pace Figure

If this pointer is null, use the nominal width for each character (xSize).

tCCharKern
This is a pointer to an array of words of character kerning data. Kerning is the offset
from the character pointer to the start of the bit data (see figure 4-4). If this pointer is
null, kerning is zero .

• ::::::.:.: .' . . :.: .
. ,:.
:::.

:;: .. ::::

........ (Value = 2 for this example)

Figure 4-4: CharKern Figure

A COMPLETE SAMPLE FONT

The sample font below pulls together all of the pieces from the above sections. It defines a font
whose contents are the four suits from a set of playing cards: clubs, hearts, spades and
diamonds.

The suits are defined as proportionally spaced to provide a complete example, even though each
suit could as easily have been defined in a 14-wide-by-8-high matrix. There is an open-centered
square, which is used if you ask for a character not defined in this font.

Text 207

* A complete sample font. To test this font, the following must be done:

* * 1. In the AmigaDOS SYS:fonts directory, install a file named
* testJont, containing 264 bytes.

*
* The first two bytes must contain the value hex oroo, the identifier
* for a font header.

*
* The next word (2 bytes), should contain the value 0001, which is
* the number of FontContents elements. There will be only one
* font in the directory that this font description covers.

* * Follow this header material with the ASCII value for 'test/8';
* the next 250 bytes should be set to zero. This represents the
* pathname for AmigaDOS to follow from the directory SYS:fonts to
* reach this test font. 'test' is the directory it should go to and
* '8' is the font file itself, as assembled and linked below.

*
* The next two bytes (as one word) contain the font YSize; in this
* case, 0008.

* * The next byte contains the font Flags, in this case 00.

*
* The last byte contains the font characteristics, in this case hex 60.
* This says it is a disk-based font (bit 1 set) and the font has been
* removed (bit 7 set), saying that the font is not currently resident.

* * Summary (all in hex) of testJont file:

*
* oroo 0001 test/8 000800 60
* word word 256-bytes word byte byte

*
* 2. Create a directory named 'test' in SYS:fonts.

*
* Copy the file created by assembling and linking the test font
* below into a file named '8' in subdirectory SYS:fonts/test.

*
* Use the font under the Notepad program or any other. It defines ASCII
* characters 'a' 'b' 'c' and 'd' only. All other characters print an
* "unknown character," a rectangle.

*
*------ In cl u d ed Files ---

INCLUDE
INCLUDE

208 Text

" exec/types.i"
" exec/nodes.i"

INCLUDE "libraries/ diskfon t.i"

MOVEQ #O,DO ;provide an easy exit in case somebody
;tries to RUN this file instead of loading it.

RTS
DC.L 0 ; In_Succ
DC.L 0 ; In_Pred
DC.B NT_FONT ; In_Type
DC.B 0 ; In_Pri
DC.L fontName ; In_Name
DC.W DFH_ID ; FileID
DC.W 1 ; Revision
DC.L 0 ; Segment

fontName:
DS.B MAXFONTNAME ; Name

font:
DC.L 0 ; In_Succ
DC.L 0 ; In_Pred
DC.B NT_FONT ; In_Type
DC.B 0 ; In_Pri
DC.L fontName ; In_Name
DC.L 0 ; mn_ReplyPort
DC.W fon tEnd-fon t ; mn_Length
DC.W 8 ; tCYSize
DC.B 0 ; tCStyle
DC.B FPF _DESIGNED+FPF _PROPORTIONAL ; tCFlags
DC.W 14 ; tCXSize
DC.W 6 ; tCBaseline

* baseline must be no greater than YSize-1, otherwise algorithmically
* generated style (italic particularly) can corrupt system memory.

DC.W
DC.W
DC.B
DC.B
DC.L
DC.W

DC.L

DC.L
DC.L

1
0
97
100
fontData
8

fontLoc

fontSpace
fontKern

; tCBoldSmear
; tCAccessors
; tCLoChar
; tCHiChar
; tCCharData
; tCModulo, no of bytes to add to
; data pointer to go from one row of
; a character to the next row of it.
; tCCharLoc, bit position in the
; font data at which the character
; begins.
; tCCharSpace
; tCCharKern

Text 209

* These are the suits characters that this font data defines. ASCII lower-case
* a,b,c,d. The font descriptor says that there are 4 characters described here.
* The fifth character in the table is the character to be output when there is
* no character in this character set that matches the ASCII value requested.

*
*
* 97 98 99 100 256

*< >< >< >< >< >
* @OO @OO @

* @@@OO @@@OO @@@OO

@ @OO

@OO @@@OO

~

@@ @@

*~

* @OO@@OO

* @@@OO

@@ @ @@

~

@@ @ @@

@@

@@

@@

@@

@@

@@

*
*

@OO

@

~

~

@OO @ @OO

@

@@@OO

@@@OO

@OO@@OO

@@@OO

@OO

@

@

@@@OO

@@ @@

~

*

fontData:
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

$071 CO,$08040,$070FF ,$OFOOO
$OFBE3,$OEOEO,$OF8CO,$03000
$07FCF ,$OF9F3,$026CO,$03000
$03F9F ,$OFFFF ,$OFFCO,$03000
$0IFOE,$OB9F3,$026CO,$03000
$00EOO,$080EO,$020CO,$03000
$00403,$OE040,$OF8FF ,$OFOOO
$00000, $00000, $00000, $00000
$00000, $00000, $00000, $00000

* font data is bit-packed edge to edge to save space; that's what the
* fontLoc is all about.

fontLoc:
DC.L
DC.L

$OOooOOOOB ,$0000BOOOB,$000160007 ,$OOOlDOOOB
$00028000C

* Each pair of words specifies how the characters are bit-packed. For
* example, the first character starts at bit position 0000, and is OOOB
* (11) bits wide. The second character starts at bit position ooOB and
* is OOOB bits wide, and so on. Tells font handler how to unpack the
* bits from the array.

fontSpace:
DC.W 000012,000012,000008,000012,000013

210 Text

* fontSpace array: Use a space this wide to contain this character
* when it is printed.

fontKern:
DC. W 000001,000001,000001,000001,000001

fontEnd:
END

Sample Program

The following sample program asks AvailFontsO to make a list of the fonts that are available,
then opens a separate window and prints a description of the various attributes that can be ap
plied to the fonts, in the font itself. Notice that not all fonts accept all attributes (garnet9 for
example, will not underline). If you run this program, note also that not all fonts are as easily
readable in the various bold and italicized modes. This rendering is done in a fixed manner by
software and the fonts were not necessarily designed to accept it. It is always best to have a
font that has been designed with a bold or italic characteristic built in rather than trying to
italicize and embolden an existing plain font.

/* "whichfont.c" */

#define AFTABLESIZE 2000

#include "exec/types.h"
#include "exec/io.h"
#include " exec/memory .h"

#include "graphics/gfx.h"
#include "hardware/dmabits.h"
#include "hardware/custom.h"
#include "hardware/blit.h"
#include "graphics/gfxmacros.h"
#include "graphics/copper.h"
#include " graphics/view .h"
#include "graphics/gels.h"
#include "graphics/regions.h"
#include "graphics/clip.h"
#include "exec/exec.h"
#include "graphics/text.h"
#include "graphics/gfxbase.h"
#include "devices/keymap.h"
#include " libraries/ dos.h"
#include "graphics/text.h"

Text 211

#include " libraries/ diskfon t.h"
#include "intuition/intuition.h"

struct AvailFonts *af;
struct AvailFontsHeader *afh;
extern int AvailFontsO;

struct TextFont *tf;
struct TextAttr ta;

ULONG DosBase;
ULONG DiskfontBase;
ULONG IntuitionBase;
ULONG GfxBase;

struct NewWindow nw = {
10, 10, / * starting position (left, top) * /
620,40, /* width, height */
-1,-1, /* detailpen, blockpen */
0, /* flags for IDCMP */
WINDOWDEPTHIWINDOWSIZINGIWINDOWDRAGISIMPLE_REFRESHI

ACTIVATEIGIMMEZEROZERO, /* window gadget flags */
0, /* pointer to 1st user gadget */
NULL, / * poin ter to user check * /
"Text Font Test", /* title */
NULL, /* pointer to window screen */
NULL, /* pointer to super bitmap */
100,45, /* min width, height */
640,200, /* max width, height */
WBENCHSCREEN};

struct Window *w;
struct RastPort *rp;

SHORT text_styles[] = { FS_NORMAL, FSF _UNDERLINED, FSF _ITALIC, FSF _BOLD,
FSF_ITALIC I FSF_BOLD, FSF_BOLD I FSF_UNDERLINED,
FSF _ITALIC I FSF _BOLD I FSF _UNDERLINED };

char *text[] = { " Normal Text" " Underlined" " Italicized" " Bold" , , "
" Bold Italics", " Bold Underlined",
" Bold Italic Underlined" };

char text length [] = { 12, 11, 11, 5, 13, 16,23 };

char *pointsize[] = { " 0" " I" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9" , , , , , , , , , ,
"10" ," II" ," 12" ," 13" ," 14" ," 15" ," 16" ," 17" ," 18" ," 19",

212 Text

"20" ,"21" ,"22" ,"23" ,"24" ,"25" ,"26" ,"27" ,"28" ,"29",
"30" "31"}· , ,

char fontname[40];
char dummy[lOO];
char outst[lOO];

/ * provided for string length calculation * /
/* build something to give to Text, see note in the

* program body about algorithmically generated styles * /
mainO
{

UBYTE fonttypes;
int j,k,m;
SHORT afsize;
SHORT style;
SHORT sEnd; /* numerical position of end of string terminator,

* and coincidentally the length of the string. * /

if((DosBase = OpenLibrary("dos.library", 0)) == NULL) exit(-I);
if((DiskfontBase=OpenLibrary("diskfont.library" ,O))==NULL) exit(-4);
if((In tuitionBase=OpenLibrary(" intuition .library" ,O))==NULL) exit(-2);
if((GfxBase=OpenLibrary(" graphics.library" ,O))==NULL) exit(-3);

tfNULL; /* no font currently selected */
afsize = AFTABLESIZE; /* show how large a buffer is available */
fonttypes = Oxff; /* show us all font types */

afh = (struct AvailFontsHeader *) AllocMem(afsize, MEMF _CLEAR);
if(afh == NULL) exit(-5);

printf("\nSearching for Fonts\n");
AvaiIFonts(afh, afsize, fonttypes);

af = (struct AvailFonts *) &afh[I]; /* bypass header to get to the
* first of the availfonts */

for (j = 0; j < afh->afh_NumEntries; j++)
{
if((af->aCAttr.ta_Flags & FPF _REMOVED) II

(af->aCAttr.ta_Flags & FPF_REVPATH) II
((af- > aCType&AFF _MEMORY)&&

(af- > aCAttr. ta_Flags&FPF _DISKFONT)))
/* do nothing if font is removed, or if font
* designed to be rendered rt->left (simple
* example writes left to right) or if font
* both on disk and in ram, don't list it twice. */

Text 213

/* AvailFonts performs an AddFont to the system list; if run twice, you
* get two entries, one of "aCType I" saying that the font is memory-
* resident, and the other of "aCType 2" saying the font is disk-based.
* The third part of the if-statement lets you tell them apart if you
* are scanning the list for unique elements; it says "if it's in
* memory and it is from disk, then don't list it because you'll find
* another entry in the table that says it is not in memory, but is on
* disk." (Another task might have been using the font as well, creating
* the same effect.)

*/

else
{

}

printf("\nFont name found was: %ls" ,af- >aCAttr.ta_Name);
printf(" and its point size is: % Id" ,af- >aCAttr.ta_YSize);
/* Style parameter is in af- >aCAttr.ta_Style,
* Flags parameter is in af->aCAttr.ta_Flags.

*/

af++;
}
/* now that we've listed the fonts, let's look at them */

w = (struct Window *)OpenWindow(&nw);
rp = w- > RPort;

for(m=O; m<2; m++) /* do normal video, then inverse video */
{

af = (struct AvailFonts *)&afh[I]; /* reset value of af to original */
SetAPen(rp,I);

if(m == O)SetDrMd(rp,JAMI);
else SetDrMd(rp,JAMI+INVERSVID);

/* now print a line that says what font and what style it is */

for (j=O; j < afh- >afh_NumEntries; j++)
{
CStringAppend(&fontname [0], l:\.f- > aCAttr. ta_Name);

/* copy name into build-name area */
/* already has" .font" onto end of it */

ta.ta_Name = &fontname[O];
ta.ta_YSize = af->aCAttr.ta_YSize; /* ask for this size */

214 Text

ta.ta_Style = af->aCAttr.ta_Style; /* ask for designed style */
ta.ta_Flags = FPF _ROMFONTIFPF _DISKFONTI

FPF _PROPORTIONALIFPF _DESIGNED;
/* accept it from anywhere it exists */

style = ta.ta_Style;

if(!((af->aCAttr.ta_Flags & FPF _REMOVED) II
(af->aCAttr.ta_Flags & FPF _REVPATH) II
((af- > aCType&AFF _MEMORY)&&
(af- > aCAttr. ta_Flags&FPF _DISKFONT))))

/* this is an IF-NOT, the reverse of the earlier if-test on
* these same parameters

*/
{

tf = (struct TextFont *) OpenDiskFont(&ta);

if (tf != 0)
{
SetFont(w- >RPort, tf);
for(k=O; k<7; k++)

{
style = text_styles[k];
SetSoftStyle(w- >RPort,style,255);

SetRast(rp,O);/* erase any previous text */
Move(rp,1O,20); /* move down a bit from the top */
sEnd = CStringAppend(&outst[O]'af- >aCAttr.ta_Name);
sEnd = sEnd + CStringAppend(&outst[sEnd]''' ");
sEnd = sEnd + CStringAppend(&outst[sEnd],

pointsize[af- >aCAttr.ta_ YSize]);
sEnd = sEnd + CStringAppend(&outst[sEnd]''' Points, ");
CStringAppend(&ou tst [sEnd]' text [k]);
Text(rp,&outst[O],CStringAppend(&dummy[O],&outst[O]));

/* Have to build the string before sending it out to text IF
* ALGORITHMICALLY GENERATING THE STYLE since the kerning and
* spacing tables are based on the vanilla text, and not the
* algorithmically generated sty Ie. If you send characters out
* individually, it is possible that the enclosing rectangle of
* a later character will chop off the trailing edge of a
* preceding character.

*/

Text 215

/***
* This alternate method, when in INVERSVID, exhibits the problem described above.

* * Text(rp,af- >aCAttr.ta_Name,STRLEN(af- >aCAttr.ta_Name));
* Text(rp," ",2);
* Text(rp,pointsize[af- >aCAttr.ta_ YSize]'2);
* Text(rp," Points, ",9);

* * Text(rp,text[k]' textlength [k J);
**

}

Delay(40);

}

/* use the DOS time delay function
* specifies 60ths of a second * /

CloseFont(tf); /* close the old one */

/* NOTE: Even though you close a font, it doesn't get unloaded from
* memory unless a font with a different name is specified for loading.
* In this case, any font that has been closed (except the topaz set)
* can have its memory area freed, and that font will no longer be
* accessible. If you close a font to go to a different point size, it
* will NOT cause a disk access.

*/

} /* end of if-tf-ne-O */
} /* end of if-(in memory but from disk) */

af++;
} /* Do next font now */

} /* end of for-loop, controlled by m */

FreeMem(afh,AFTABLESIZE);
Close Window(w);
CloseLibrary(In tuitionBase);
CloseLibrary(DosBase);
CloseLibrary(DiskfontBase);
CloseLibrary(GfxBase);

/* copy a string and return the number of characters added to a string.
* Eff-ectively returns the length of the string if not adding anything * /

216 Text

in t CStringAppend(dest, source)
char *dest;
char *source;
{

}

int i=O;
char *s = source;
char *d = dest;
while ((i <79)&&(*d = *s)) { d++; s++; i++; }

/* if a NULL found in source, end the copy, but the NULL itself gets
* copied over to the destination. If no NULL, then 79 characters get
* copied, then a terminating NULL is added */

if(i < 79) return(i);
else {*d = 0; return(i); }

/* value returned is the position of the terminating NULL to
* allow other strings to be appended simply using the next
* append command in sequence * /

Text 217

PARTll

Chapter 5

Audio Device

Introduction

The Amiga has four hardware audio channels-two of the channels produce audio output from
the left audio connector and two from the right. These channels can be used in many ways.
You can combine a right and a left channel for stereo sound, use a single channel, or playa
different sound through each of the four channels.

Audio Device 221

The audio software is implemented as a standard Amiga input/output device with commands
that allocate audio channels and control the sound output.

Some of the audio device commands isolate the programmer from idiosyncrasies of the special
chip hardware. You can also produce sound on the Amiga by directly accessing the hardware
registers. For certain types of sound synthesis, this is more CPU-efficient. Some of the audio
commands make most sound synthesis easier. Other commands enable your program to co
reside with other programs using the multitasking environment to produce sound at the same
time. Programs can co-reside because the audio device handles allocation of audio channels and
arbitrates among programs competing for the same resources.

Most personal computers that produce sound have hardware designed for one speczjic synthesis
technique. The Amiga uses a very general method of digital sound synthesis that is quite simi
lar to the method used in digital hi-fi components and state-of-the-art keyboard and drum syn
thesizers, with one significant difference. The Amiga has a tightly-coupled 68000 microprocessor
capable of generating and modifying the digital data while the sound is playing. How much of
the CPU you can afford to use for sound synthesis depends on your application.

For programs that can afford the memory, playing sampled sounds gives you a simple and very
CPU-efficient method of sound synthesis. When a sound is sampled, the amplitude of the
waveform that represents a sound is measured (sampled) by an analog-to-digital converter at a
fixed interval (period) in time. This results in a table of numbers. When the sound is played
back by the Amiga, the table is fed by a DMA channel into one of the four digital-to-analog
converters in the custom chips. The digital-to-analog converter converts the samples into vol
tages that can be played through amplifiers and loudspeakers, reproducing the sound.

On the Amiga you can create sound data in many other ways. For instance, you can use tri
gonometric functions in your programs to create the more traditional sounds-sine waves,
square waves, or triangle waves- by using tables that describe their shapes. Then you can
combine these waves for richer sound effects by adding the tables together. Once the data is
entered, you can modify it with techniques described in the section called "Audio Functions and
Commands."

For information about the limitations of the audio hardware and suggestions for improving sys
tem efficiency and sound quality, refer to the Amiga Hardware Reference Manual.

The following works are recommended for information about computer sound generation III

general:

o Musical Applications of Microprocessors, by Hal Chamberlain (Hayden, 1980)

o Foundations of Computer Music, by Curtis Roads and John Strawn (Cambridge: MIT
Press, 1985)

222 Audio Device

o Digital Audio Signal Processing, by John Strawn (Los Altos, California: William Kauf
mann, Inc., 1985)

Definitions

Terms used in the following discussions may be unfamiliar. Some of the more important terms
are defined below.

Amplitude
The height of a waveform, which corresponds to the amount of voltage or current III

the electronic circuit.

Amplitude modulation
A means of producing special audio effects by using one channel to alter the amplitude
of another.

Buffer
An area of continuous memory, typically used for storing blocks of data.

Channel
One "unit" of the audio device.

Cycle
One repetition of a waveform.

Frequency
The number of times per second a waveform repeats.

Frequency modulation
A means of producing special audio effects by using one channel to affect the period of
the waveform produced by another channel.

Period
The time elapsed between the output of successive sound samples, III units of system
clock ticks.

Precedence
Priority of the user of a sound channel.

Sample
Byte of audio data, one of the fixed-interval points on the waveform.

Audio Device 223

Volume
The decibel level of sound coming from an audio channel.

Waveform
Graph that shows a model of how the amplitude of a sound varies over time-usually
over one cycle.

Audio Functions and Commands

The first part of this section gives some general information about audio functions and com
mands. Following the general information there is a brief description of each command. For
complete specifications, see the command and function reference section and the header files
devices/ audio.i and devices/ audio.h in the "Include Files" appendix.

AUDIO AS A DEVICE

The audio device has much in common with the other I/O devices, so general information about
device I/O is not repeated here. Before reading further, you should become familiar with the
general description of device I/O in the Amiga ROM Kernel Reference Manual: Exec.

Audio device commands use an extended IORequest block instead of the standard IORequest
block. When using an audio command, refer to the devices/ audio.i and devices/ audio.h files for
the extended fields.

SCOPE OF COMMANDS

All audio commands (except for CMD_WRITE, ADCMD_WAITCYCLE, and CMD_READ) can
operate on multiple channels. CMD_WRITE, ADCMD_WAITCYCLE, and CMD_READ
operate on only one channel. You tell the audio device driver which channels you want a com
mand to act upon by setting the least significant four bits of the io_unit field of the
IORequest block. You specify a 1 in the position of the channel you want to affect and a 0 in
all other positions. For instance, you specify 5 (0101) to use channels 0 and 2.

Certain of the audio device commands are actually higher-level functions in that they execute
more than one audio device command with a single call. For example, the OpenDeviceO func
tion, when used for the audio device, can perform an ADCMD_ALLOCATE command so that
you can start writing data immediately. The CloseDeviceO function can perform a
ADCMD_FREE command to relinquish the channel(s) so you can exit immediately after closing
the audio device.

224 Audio Device

ALLOCATION AND ARBITRATION

You request the use of one or more audio channels by performing the ADCMD_ALLOCATE
command. If possible, ADCMD_ALLOCATE obtains the channels for you. When you request
a channel, you specify a precedence number from -128 (the lowest precedence) to 127 (the
highest). If a channel you want is being used and you have specified a higher precedence than
the current user, ADCMD_ALLOCATE will "steal" the channel from the other user. Later on,
if your precedence is lower than that of another user who is performing an allocation, the chan
nel may be stolen from you. If, after allocating a channel with the appropriate precedence, you
raise the precedence to the maximum precedence with the ADCMD_SETPREC command, then
no other allocation call can steal a channel from you. When you have finished with a channel,
you must relinquish it with the ADCMD_FREE command to make it available for other users.

Table 5-1 shows suggested precedence values.

Predecence

127

90 - 100

80 - 90

75

50 - 70

-50 - 50

-70 - 0

-100 - -80

-128

Table 5-1: Suggested Precedences for Channel Allocation

Type of Sound

Unstoppable. Sounds first allocated at lower precedence, then set
to this highest level.

Emergencies. Alert, urgent situation that requires immediate
action.

Annunciators. Attention, bell (CTRL-G).

Speech. Synthesized or recorded speech (narrator.device).

Sonic cues. Sounds that provide information that is not provided
by graphics. Only the beginning of each sound (enough to recog
nize it) should be at this level; the rest should be set to sound
effects level.

Music program. Musical notes in music-oriented program. The
higher levels should be used for the attack portions of each note.
Notes should separately allocate channels at the start and free
them at the end.

Sound effects. Sounds used in conjunction with graphics. More
important sounds should use higher levels.

Background. Theme music and restartable background sounds.

Silence. Lowest level (freeing the channel completely is preferred).

Audio Device 225

When you first perform a channel allocation request, the audio device provides you with an
"allocation key" that is unique to the granting of your current allocation request. The alloca
tion key is also copied in the ioa_AllocKey field of your I/0 control block and is used by all
audio commands. Later, as you queue output requests to the audio device, the device can com
pare the allocation key in your request block to the key currently assigned for that channel (or
channels). If the channel is stolen from you by another channel user that has a higher pre
cedence, the copy of the key maintained by the audio channel is changed. If you attempt to
perform a command on a channel that has been stolen from you, an AUDIO_NOALLOCATION
error is returned and the bit in the io_unit field corresponding to the stolen channel is cleared
so you know which channel was stolen.

There is no specific separate "audio resource." Instead, the audio device, with its allocation key
management, arbitrates the use of the physical audio resources.

PERFORMING AUDIO COMMANDS

To perform an audio command, sometimes you must use the system function BeginIOO rather
than SendIOO or DoIOO. This is because the latter two functions clear the device-specific
bits in the io_Flags field of the IORequest (bits 4 thru 7). Some of the audio commands use
these bits to select options. If you use ScndIOO or DoIOO, the flags will be set to 0 (FALSE),
which may not be desirable.

COMMAND TYPES

Commands and functions for audio use can be divided into three categories: system functions,
allocation/arbitration commands, and hardware control commands. There are also three audio
device flags.

The system functions are

o OpenDeviceO

o CloseDeviceO

o BeginIOO

o AbortIOO

The allocation/arbitration commands are

226 Audio Device

o ADCMD_ALLOCATE

o ADCMD _FREE

o ADCMD _SETPREC

o ADCMD_LOCK

The hardware control commands are

0 CMD_WRITE

0 ADCMD _FINISH

0 AD CMD_PERVOL

0 CMD_FLUSH

0 CMD_RESET

0 ADCMD_ WAITCYCLE

0 CMD_STOP

0 CMD_START

0 CMD_READ

The following paragraphs describe each function and command.

SYSTEM FUNCTIONS

These are standard Amiga device functions. They are used for communication with the device.

OpenDeviceO

The audio device adds to the normal operation of this function. When you open the audio dev
ice with a nonzero ioa_Length field, OpenDeviceO will attempt to allocate channels based on
allocation mask just as if you had called the ADCMD_ALLOCATE command. This allocation
is done with the ADIOF _NOWAIT flag set, so ADCMD_ALLOCATE will return immediately if
it fails. If you are opening the device and are not ready to have a channel allocated to you just
then, set the ioa_Length field to zero.

Audio Device 227

CloseDeviceO

When used with the audio device, CloseDeviceO performs an ADCMD_FREE command on
any channels selected by the io_Unit field. If you have different allocation keys for the chan
nels you are using, you cannot use this function to close all of them at once. Instead, you will
have to issue one ADCMD_FREE command for each unique allocation that you are usmg.
After issuing the ADCMD_FREE command(s), you can call CloseDeviceO.

BeginIOO

Audio use of this function differs from normal use only m that it takes a pointer to an
IOAudio structure as its only argument.

AbortIOO

This function can be used to cancel requests for ADCMD_ALLOCATE, ADCMD_LOCK,
CMD_WRITE, or ADCMD_WAITCYCLE. When used with the audio device, AbortIOO
always succeeds.

ALLOCATION/ARBITRATION COMMANDS

These commands allow the audio channels to be shared among different tasks and programs.
None of these commands can be called from interrupt code.

ADCMD_ALLOCATE

This command gives access to channels. You perform this command with a pointer to a data
array that describes the channels you want to allocate. For example, if you want a pair of
stereo channels and you have no preference about which of the left and right channels the sys
tem will choose for the allocation, you can pass the command a pointer to an array containing
3, 5, 10, and 12. Channels 0 and 3 output sound on the left side, and channels 1 and 2 on the
right side. Table 5-2 shows how this array corresponds to all the possible combinations of a
right and a left channel.

228 Audio Device

Table 5-2: Possible Channel Combinations

Decimal
Channel 3 Channel 2 Channell Channel 0 Value of

left right right left Allocation Mask

0 0 1 1 3

0 1 0 1 5
1 0 1 0 10
1 1 0 0 12

How ADCMD_ALLOCATE Operates. The ADCMD_ALLOCATE command tries the first
combination, 3, to see if channels 0 and 1 are not being used. If they are available, the 3 is
copied into the io_unit field and you get an allocation key for these channels. You copy the
key into other I/O blocks for the other commands you may want to perform using these chan
nels. When finished with the channels, you perform the ADCMD_FREE command. If channels
o and 1 are being used, ADCMD_ALLOCATE tries the other combinations in turn. If all the
combinations are in use, ADCMD_ALLOCATE checks the precedence number of the users of
the channels and finds the combination that requires it to steal the channel or channels of the
lowest precedence. If all the combinations require stealing a channel or channels of equal or
higher precedence, the I/O request ADCMD_ALLOCATE fails. Precedence is in the In_Pri
field of the io_Message in the IORequest block you pass to ADCMD_ALLOCATE; it has a
value from -128 to 127.

The ADIOF _NOW AIT Flag. If you need to produce a sound right now and otherwise you
don't want to allocate, set the ADIOF _NOWAIT flag to 1. This will cause the command to
return an 10ERR_ALLOCF AILED error if it cannot allocate any of the channels. If you are
producing a non-urgent sound and you can wait, set the ADIOF _NOWAIT flag to o. Then, the
IORequest block returns only when you gets the allocation. If ADIOF _NOWAIT is set to 0,
the audio device will continue to retry the allocation request whenever channels are freed until
it is successful. If the program decides to cancel the request, AbortIOO Gan be used.

ADCMD_ALLOCATE Examples. The following are some more examples of how to tell
ADCMD_ALLOCATE your channel preferences. If you want any channel, but want to try to
get a left channel first, use an array containing 1, 8, 2, and 4:

0001
1000
0010
0100

Audio Device 229

If you want only a left channel, use 1 and 8 (channels 0 and 3):

0001
1000

For a right channel, use 2 and 4 (channels 1 and 2):

0010
0100

To produce special effects, such as hardware-controlled amplitude and frequency modulation,
you may need to allocate channels that can be "attached" to each other. The following alloca
tion map specifies the allowable combinations. (For further information about amplitude and
frequency modulation, see the Amiga Hardware Reference Manual.)

0011 3
0110 6
1100 12

If you want all the channels, use the following allocation map:

1111 15

If you want to allocate a channel and keep it for a sound that can be interrupted and restarted,
allocate it at a certain precedence. If it gets stolen, allocate it again with the ADIOF _NOW AIT
flag set to o. When the channel is relinquished, you will get it again.

The Allocation Key. If you want to perform multi-channel commands, all the channels must
have the same key since the IORequest block has only one allocation key field. The channels
must all have that same key even when they were not allocated simultaneously. If you want to
use a key you already have, you can pass in that key in the allocation key field and
ADCMD_ALLOCATE can allocate other channels with that eXIstmg key. The
ADCMD_ALLOCATE command returns a new and unique key only if you pass in a zero in the
allocation key field.

ADCMD_FREE

ADCMD_FREE is the opposite of ADCMD_ALLOCATE. When you perform ADCMD_FREE
on a channel, it does a CMD_RESET command on the hardware and "unlocks" the channel. It
also checks to see if there are other pending allocation requests. You do not need to perform
ADCMD_FREE on channels stolen from you.

230 Audio Device

ADCMD_SETPREC

This command changes the precedence of an allocated channel. As an example of the use of
ADCMD_SETPREC, assume that you are making sound of a chime that takes a long time to
decay. It is important that user hears the chime but not so important that he hears it decay all
the way. You could lower precedence after the initial attack portion of the sound to let another
program steal the channel. You can also set the precedence to maximum (127) if you cannot
have the channel(s) stolen from you.

The ADCMD_LOCK command performs the "steal verify" function. When a user is attempt
ing to steal a channel or channels, ADCMD_LOCK gives you a chance to clean up before the
channel is stolen. You perform a ADCMD_LOCK command right after the
ADCMD_ALLOCATE command. ADCMD_LOCK does not return until a higher-priority user
attempts to steal the channel(s) or you perform an ADCMD_FREE command. If someone is
attempting to steal, you must finish up and ADCMD_FREE the channel as quickly as possible.

ADCMD_LOCK is necessary only if you want to store directly to the hardware registers instead
of using the device commands. If your channel is stolen, you are not notified unless the
ADCMD_LOCK command is present, and this could cause problems for the user who has stolen
the channel and is now using it. ADCMD_LOCK sets a switch that is not cleared until you per
form an ADCMD_FREE command on the channel. Canceling an ADCMD_LOCK request with
AbortIOO will not free the channel.

The following outline describes how ADCMD_LOCK works when a channel is stolen and when
it is not stolen.

1. User A allocates a channel.

2. User A locks the channel.

If User B allocates the channel with a higher precedence:

3. User B's ADCMD_ALLOCATE command is suspended (regardless of the setting of the
ADIOF _NOWAIT flag).

4. User A's ADCMD_LOCK command IS replied to with an error
(ADIOERR_CHANNELSTOLEN).

5. User A does whatever is needed to finish up when a channel is stolen.

Audio Device 231

6. User A frees the channel with ADCMD_FREE.

7. User B's ADCMD_ALLOCATE command is replied to. Now user B has the channel.

If the channel is not allocated by another user:

3. User A finishes the sound.

4. User A performs the ADCMD_FREE command.

5. User A's ADCMD_LOCK command is replied.

Never make the freeing of a channel (if the channel is stolen) dependent on allocating another
channel. This may cause a deadlock. To keep a channel and never let it be stolen, set pre
cedence to maximum (127). Do not use a lock for this purpose.

HARDWARE CONTROL COMMANDS

The following commands change hardware registers and affect the actual sound output.

CMD_WRITE

This is a single-channel command and is the main command for making sounds. You pass the
following to CMD_WRITE:

o A pointer to the waveform to be played (must start on a word boundary and must be
in memory accessible by the custom chips, MEMF _CHIP)

o The length of the waveform in bytes (must be an even number)

o A count of how many times you want to play the waveform

If the count is 0, CMD_ WRITE will play the waveform from beginning to end, then repeat the
waveform continuously until something aborts it.

If you want period and volume to be set at the start of the sound, you set the WRITE
command's ADIOF _PERVOL flag. If you do not do this, the previous volume and period for

. that channel will be used. This is one of the flags that would be cleared by DolOO and
SendlOO. The ioa_ WriteMsg field in the IORequest block is an extra message field that
can be replied at the start of the CMD_WRITE. This second message is used only to tell you
when the CMD_ WRITE command starts processing, and it is used only when the
ADIOF _ WRITEMESSAGE flag is set to 1.

232 Audio Device

If a CMD_STOP has been performed, the CMD_WRITE requests are queued up.

The CMD_ WRITE command does not make its own copy of the waveform, so any modification
of the waveform before the CMD_WRITE command is finished may affect the sound. This is
sometimes desirable for special effects.

To splice together two waveforms without clicks or pops, you must send a separate, second
CMD_WRITE command while the first is still in progress. This technique is used in double
buffering, which is described below.

Double-buffering. By using two waveform buffers and two CMD_WRITE requests you can
compute a waveform continuously. This is called double-buffering. The following describes how
you use double-buffering.

1. Compute a waveform in memory buffer A.

2. Issue CMD_WRITE command A with io_Data pointing to buffer A.

3. Continue the waveform in memory buffer B.

4. Issue CMD_WRITE command B with io_Data pointing to Buffer B.

5. Wait for CMD_ WRITE command A to finish.

6. Continue the waveform in memory buffer A.

7. Issue CMD_WRITE command A with io_Data pointing to Buffer A.

8. Wait for CMD_ WRITE command B to finish.

9. Loop back to step 3 until the waveform is finished.

10. At the end, remember to wait until both CMD_WRITE command A and CMD_WRITE
command B are finished.

ADCMD_FINISH

The ADCMD_FINISH command aborts (calls AbortIOO) the current write request on a chan
nel or channels. This is useful if you have something playing, such as a long buffer or some
repetitions of a buffer, and you want to stop it.

ADCMD_FINISH has a flag you can set (ADIOF _SYNCCYCLE) that allows the waveform to
finish the current cycle before aborting it. This is useful for splicing together sounds at zero
crossings or some other place in the waveform where the amplitude at the end of one waveform

Audio Device 233

matches the amplitude at the beginning of the next. Zero crossings are positions within the
waveform at which the amplitude is zero. Splicing at zero crossings gives you fewer clicks and
pops when the audio channel is turned off or the volume is changed.

ADCMD_PERVOL

ADCMD_PERVOL lets you change the volume and period of a CMD_WRITE that is in pro
gress. The change can take place immediately or you can set the ADIOF _SYNC CYCLE flag to
have the change occur at the end of the cycle. This is useful to produce vibratos, glissandos,
tremolos, and volume envelopes in music or to change the volume of a sound.

CMD_FLUSH

CMD_FLUSH aborts (calls AbortIOO) all CMD_WRITEs and all ADCMD_WAITCYCLEs
that are queued up for the channel or channels. It does not abort ADCMD_LOCKs (only
ADCMD_FREE clears locks).

CMD_RESET

CMD_RESET restores all the audio hardware registers. It clears the attach bits, restores the
audio interrupt vectors if the programmer has changed them, and performs the CMD_FLUSH
command to cancel all requests to the channels. CMD_RESET also unstops channels that have
had a CMD_STOP performed on them. CMD_RESET does not unlock channels that have been
locked by ADCMD _LOCK.

ADCMD_WAITCYCLE

This is a single-channel command. ADCMD_WAITCYCLE is replied to when the current cycle
has completed, that is, after the current CMD_WRITE command has reached the end of the
curren t waveform it is playing. If there is no CMD _WRITE in progress, it returns immediately.

This command stops the current write cycle immediately. If there are no CMD_WRITEs in
progress, it sets a flag so any future CMD _WRITEs are queued up and do not begin processing
(playing).

234 Audio Device

CMD_START

CMD_START undoes the CMD_STOP command. Any cycles that were stopped by the
CMD_STOP command are actually lost because of the impossibility of determiI1ing exactly
where the DMA ceased. If the CMD_ WRITE command was playing two cycles and the first one
was playing when CMD_STOP was issued, the first one is lost and the second one will be
played.

This command is also useful when you are playing the same wave form with the same period
out of multiple channels. If the channels are stopped, when the CMD_ WRITE commands are
issued, CMD_START exactly synchronizes them, avoiding cancellation and distortion. When
channels are allocated, they are effectively started by the CMD_START command.

CMD_READ

CMD_READ is a single-channel command. Its only function is to return a pointer to the
current CMD_WRITE command. It enables you to determine which request is being processed.

Example Programs

STEREO SOUND EXAMPLE

This program demonstrates allocating a stereo pair of channels using the allocation/arbitration
commands. For simplicity, it uses no hardware control commands and writes directly to the
hardware registers. To prevent another task from stealing the channels before writing to the
registers, it locks the channels.

Audio Device 235

/***

*
* Stereo Sound Example

*
* Sam Dicker
* 3 December 1985
* (created: 17 October 1985)

*
***/

/* If you are using the Amiga C compiler, turn off stack-checking
* in phase 2, e.g., "lc2 -v filename.q."

*/

#include "exec/types.h"
#include "exec/memory.h"
#include "hardware/custom.h"
#include "hard ware/ dmabits.h"
#include " libraries/ dos.h"
#include "devices/audio.h"

/ * audio channel assignment * /
#define LEFTOB 0
#define RIGHTOB 1
#define RIGHTIB 2
#define LEFTIB 3
#define LEFTOF 1
#define RIGHTOF 2
#define RIGHTIF 4
#define LEFTIF 8

/* used by example sound * /
#define WAVELENGTH 2
#define CLOCK 3579545
#define LEFTFREQ 50.0
#define RIGHTFREQ 50.1
#define MAXVOLUME 64
#define SOUNDPREC -40

extern struct MsgPort *CreatePortO;
extern struct AudChannel aud[];
extern UWORD dmacon;

/ * four possible stereo pairs * /
UBYTE allocationMap [] = {

236 Audio Device

};

LEFTOF I RIGHTOF,
LEFTOF I RIGHTIF,
LEFTIF I RIGHTOF,
LEFTIF I RIGHTIF

struct IOAudio *allocIOB = 0; /* used by cleanUp to determine
* what needs to be 'cleaned up' * /

struct IOAudio *lockIOB = 0;
struct Device *device = 0;
struct MsgPort *port = 0;
BYTE *square WaveData = 0;

mainO
{

UBYTE channels;
struct AudChannel *leftRegs, *rightRegs;

/* allocate I/O blocks from chip public memory and initialize to zero */

if (((allocIOB = (struct IOAudio *)AllocMem(sizeof(struct IOAudio),
MEMF _PUBLIC I MEMF _CLEAR)) == 0) "
((lockIOB = (struct IOAudio *)AllocMem(sizeof(struct IOAudio),
MEMF _PUBLIC I MEMF _CLEAR)) == 0))

c1eanUp("Out of memory");

/ * open the audio device * /

if (OpenDevice(AUDIONAME, 0, allocIOB, 0) != 0)
cleanUp("Cannot open audio device");

device = allocIOB- > ioa_Request.io_Device;

/* initialize I/O block for channel allocation */

allocIOB- > ioa_Request.io_Message.mn_Node.ln_Pri = SOUNDPREC;
if ((port = CreatePort("sound example", 0)) == 0)

cleanUp("Cannot create message port");
allocIOB- >ioa_Request.io_Message.mn_ReplyPort = port;
allocIOB->ioa_Request.io_Command = ADCMD_ALLOCATE;

/* if no channel is available immediately, abandon allocation */
allocIOB->ioa_Request.io_Flags = ADIOF _NOWAIT;
allocIOB->ioa_Data = allocationMap;
allocIOB- > ioa_Length = sizeof(allocationMap);

Audio Device 237

/* allocate channels now. Alternatively, ADCMD_ALLOCATE could have been
* preformed when audio was first OpenDevice'd by setting up ioa_Data and
* ioa_Length before OpenDevice'ing * /

BeginlO(allocIOB);
if (WaitIO(allocIOB))

cleanUp("Channel allocation failed");

/* initialize I/O block for to lock channels */

locklOB- > ioa_Request.io_Message.mn_Reply Port = port;
locklOB- >ioa_Request.io_Device = device;

/* one lock command to lock both channels * /
locklOE- >ioa_Request.io_Unit = allocIOB- >ioa_Request.io_Unit;
lock lOB- >ioa_Request.io_Command = ADCMD_LOCK;
locklOB- >ioa_AllocKey = allocIOB- >ioa_AllocKey;

/ * lock the channels * /
SendIO(lockIOB);

/ *- if lock returned there is an error * /
if (CheckIO(lockIOB))

/* the channel must have been stolen * /
cleanUp("Channel stolen");

/* compute the hardware register addresses */

channels = (ULONG)(allocIOB- > ioa_Request.io_Unit);
leftRegs = (channels & LEFTOF) ? &aud[LEFTOB] : &aud[LEFT1B];
rightRegs = (channels & RIGHTOF) ? &aud[RIGHTOB] : &aud[RIGHT1B];

/* allocate waveform memory from chip-addressable ram. AllocMem always
* allocates memory on a word boundary which is necessary for audio
* waveform data * /

if ((squareWaveData = (BYTE *)AllocMem(WAVELENGTH, MEMF _CHIP)) == 0)
cleanUp("Out of memory");

/* a two cycle square wave (how complex!) * /

squareWaveData[O] = 127;
squareWaveData[l] = -127;

238 Audio Device

}

/* these registers are described in detail in the Amiga Hardware Manual */

/* write-only hardware registers must be loaded separately.
* <regl> = <reg2> = <data> may not work with some compilers */

leftRegs- >ac_ptr = (UWORD *)squareWaveData;
righ tRegs- > ac_ptr = (UWORD *)square WaveData;
leftRegs- > ac_Ien = WA VELENGTH / 2;
rightRegs->ac_Ien = WAVELENGTH / 2;

/* a slightly different frequency is used in each channel to make the
* sound a bit more interesting * /

leftRegs->ac_per = CLOCK / LEFTFREQ / WAVELENGTH;
rightRegs->ac_per = CLOCK / RIGHTFREQ / WAVELENGTH;

leftRegs- >ac_vol = MAXVOLUME;
rightRegs->ac_vol = MAXVOLUME;
dmacon = DMAF _SETCLR I channels < < DMAB_AUDO;

/* play sound until the user press CTRL-C or lock is replied*/

puts("Press CTRL-C to stop");
putchar(O);
while(Wait(SIGBREAKF _CTRL_C 11 < < port- >mp_SigBit) != SIGBREAKF _CTRL_C)

/* each time the port signals, check if lock is replied
* (a signal is not guaran teed to be valid) * /

if (CheckIO(1ockIOB)) {
puts("Channel stolen");
break;

}

/* free any allocated audio channels. In this instance explicitly
* performing the ADCMD_FREE command is unnecessary. CloseDevice'ing
* with allocIOB performs it and frees the channels automatically * /

allocIOB- >ioa_Request.io_Command = ADCMD_FREE;
DoIO(allocIOB);

/* free up resources and exit */
cleanUp("");

Audio Device 239

/ * print an error message and free allocated resources * /

clean Up(message)
TEXT *message;
{

}

puts(message);
if (squareWaveData != 0)

FreeMem(squareWaveData, WAVELENGTH);
if (port != 0)

DeletePort(port);
if (device != 0)

CloseDevice{ alloclOB);
if (IockIOB != 0)

FreeMem(lockIOB, sizeof{struct IOAudio));
if (allocIOB != 0)

FreeMem(allocIOB, sizeof(struct IOAudio));
exitO;

DOUBLE-BUFFERED SOUND SYNTHESIS EXAMPLE

This program demonstrates double-buffered writing to an audio channel using the hardware
control commands. This technique can be used to synthesize sound in "real-time." This pro
gram uses the mouse as a simple input device; to keep the example simple, the program directly
reads the mouse register.

Real-time synthesis code should always be written in the fastest assembly language possible
(unlike this example) and should try to precompute as much data as possible. In this example,
a sine wave look-up table is precomputed. Then, while the sound is being played, the table is
scanned at a rate dependent on a variable (frequency) and the scanned values are copied into
temporary buffers. This frequency variable is modified by mouse movement, effectively making
the mouse a pitch control. In a "real" program, because pitch is the only parameter being con
trolled, it would be much more efficient to modify the "period" and play one fixed sine-wave
waveform buffer (or one waveform for each octave).

Two temporary buffers are used. One must be computed and sent to the audio device before
the other one has finished playing. Otherwise, the audio device turns off the sound, making a
pop. This program runs in software interrupts to make sure that it gets adequate processor
time to avoid this problem.

240 Audio Device

/***

*
* Double-Buffered Sound Synthesis Example

*
* Sam Dicker
* 3 December 1985 (created: 8 October 1985)

*
***/

/* If you are using the Amiga C compiler, turn off stack-checking
* in phase 2, e.g., "lc2 -v filename.q."

*/
#include "exec/types.h"
#include "exec/memory .h"
#include "exec/in terru pts.h"
#include "exec/errors.h"
#include "hardware/custom.h"
#include "libraries/ dos.h"
#include "devices/audio.h"

#define BUFFERSIZE 250
#define SINETABLEPOWER2
#define SINETABLESIZE
#define SINETABLESTEP

/* mouse register addresses */

10
(1 « SINETABLEPOWER2)
(2 * 3.141593 / SINETABLESIZE)

#define XMOUSEREG (*((BYTE *)&joyOdat + 1))
#define YMOUSEREG (-(*(BYTE *)&joyOdat))

extern struct MsgPort *CreatePortO;
extern struct Library *OpenLibraryO;
extern struct Task *FindTaskO;
extern UWORD joyOdat;

/* channel allocation map * /
UBYTE allocationMap[] = { 1,8,2,4 };

struct Library *MathBase = 0; /* used by cleanUp to determine
* what needs to be 'cleaned up' */

struct MsgPort *allocPort = 0;
struct IOAudio *allocIOB = 0;
struct Device *device = 0;
struct Interrupt *interrupt = 0;
struct MsgPort *soundPort = 0;
BYTE *buffer[2] = { 0 };

Audio Device 241

struct 10Audio *soundIOB[2] = { 0 };

int newBufferO;
UBYTE sine Table [SINETABLESIZE];
ULONG angle = 0;
ULONG frequency = Ox2000000;
BYTE lastYMouse;

mainO
{

int i;
FLOAT sine = 0.0;
FLOAT cosine = 1.0;

/* open the math library */

if ((MathBase = OpenLibrary("mathffp.library", 0)) == 0)
cleanUp("Cannot open math library");

/* generate the sine lookup table */

for (i = 0; i < SINETABLESIZE; ++i) {

}

/* generate table values between -128 and 127 */
sineTable[i] = 127 * sine + 0.5;

/* compute the next point in the table. The table could have been
* computed by calling the 'sin' function for each point, but this
* method is a little faster where great accuracy is not required * /

sine += SINETABLESTEP * (cosine -= SINETABLESTEP * sine);

/* read the starting mouse count */
lastYMouse = YMOUSEREG;

/* initialize I/O block to allocate a channel when the audio device is OpenDevice'd * /

if ((allocPort = CreatePort("sound example", 0)) == 0)
cleanUp("Cannot create reply port");

if ((alloclOB = (struct IOAudio *)AllocMem(sizeof(struct IOAudio),
MEMF _PUBLIC I MEMF _CLEAR)) == 0)

cleanUp("Out of memory");

/* allocation precedence */
alloclOB- >ioa_Request.io_Message.mn_Node.ln_Pri = -40;

242 Audio Device

alloclOB- >ioa_Request.io_Message.mn_ReplyPort = allocPort;

/* allocate from any channel */
alloclOB->ioa_Data = allocationMap;.
alloclOB- > ioa_Length = sizeof(allocationMap);

/* open the audio device with channel allocation and check for errors */

switch (OpenDevice(AUDIONAME, 0, alloclOB, 0)) {
case 10ERR_OPENF AIL:

cleanUp("Cannot open audio device");
case ADIOERR_ALLOCF AILED:

cleanUp("Cannot allocate audio channel");
}
device = alloclOB- > ioa_Request.io_Device;

/* initialize the software interrupt structure * /

if ((interrupt = (struct Interrupt *)AllocMem(sizeof(struct Interrupt),
MEMF _CLEAR I MEMF _PUBLIC)) == 0)

cleanUp("Out bf memory");
interrupt->is_Code = (VOID (*)())newBuffer;

/* initialize the reply port for CMD_ WRITE's to generate software interrupts * /

if ((soundPort = (struct MsgPort *)AllocMem(sizeof(struct MsgPort),
MEMF_CLEAR I MEMF_PUBLIC)) == 0)

clean U p(" Ou t of memory");
souildPort->mp_Flags = PA_SOFTINT;
soundPort->mp_SigTask = (struct Task *)interrupt;
soundPort->mp_Node.ln...,.Type = NT_MSGPORT;
NewList(&soundPort- >mp_MsgList);

/* initialize both I/O blocks for the CMD_WRITES */

for (i = 0; i < 2; ++i) {

/* allocate waveform memory from chip addressable ram. AllocMem
* always allocates memory on a word boundary which is necessary
* for audio waveform data * /

if ((buffer[i] = (BYTE *)AllocMem(BUFFERSIZE, MEMF _CHIP))
==0)

cleanUp("Out of memory");

if ((soundIOB[i] = (struct 10Audio *)AllocMem(sizeof(struct IOAudio),

Audio Device 243

}

}

MEMF_PUBLIC I MEMF_CLEAR)) == 0)
cleanUp("Out of memory");

soundIOB[i]->ioa_Request.io_Message.mn_ReplyPort = soundPort;
soundIOB[i]- >ioa_Request.io_Device = device;
soundIOB[i]- >ioa_Request.io_Unit = allocIOB- >ioa_Request.io_Unit;
soundIOB[i]->ioa_Request.io_Command = CMD_WRITE;

/* load the volume and period registers */
soundIOB[i]->ioa_Request.io_Flags = ADIOF _PERVOL;

soun dI OB [i]- > ioa_AllocKey = allocIOB- > ioa_AllocKey;
soundIOB[i]- >ioa_Data = buffer[i];
soundIOB[i]- >ioa_Length = BUFFERSIZE;

/ * some arbitrary period and volume * /

soundIOB[i]- >ioa_Period = 200;
soundIOB[i]->ioa_Volume = 64;

/* play one cycle of each buffer, then reply */
soundIOB[i]->ioa_Cycles = 1;

/* this really "primes the pump" by causing the reply port
* to generate a software interrupt and write the first buffers */

ReplyMsg(soundIOB[i]);

/* wait for CTRL-C to stop the program * /

puts("Press CTRL-C to stop");
putchar(O);
Wait(SIGBREAKF _CTRL_C);

/* free up resources and exit */
cleanUp("");

/ * print an error message and free allocated resources * /

clean U p(message)
TEXT *message;
{

in t i;

pu ts(message);

244 Audio Device

}

if (device != 0)

/* CloseDevice'ing with 'alloclOB' preforms an ADCMD_FREE on any
* channel allocated with 'alloclOB's ioa_AllocKey. ADCMD_FREE
* performs a CMD_RESET, which performs a CMD_FLUSH, which AbortIO's
* any CMD_WRITES to those channels */

CloseDevice(alloclOB);

for (i = 0; i < 2; ++i) {
if (soundIOB[i])

}

FreeMem(soundIOB[i]' sizeof(struct 10Audio));
if (buffer[i])

FreeMem(buffer[i]' BUFFERSIZE);

if (soundPort)
FreeMem(soundPort, sizeof(struct MsgPort));

if (interrupt)
FreeMem(in terru pt, sizeof(struct In terru pt));

if (alloclOB)
FreeMem(alloclOB, sizeof(struct IOAudio));

if (allocPort)
DeletePort(allocPort, sizeof(struct MsgPort));

if (Math Base)
CloseLibrary(MathBase) ;

exitO;

/* software interrupt server code */

newBufferO
{

in t i;
struct IOAudio *ioa;
BYTE *buffer;
BYTE mouseChange, curYMouse;
ULONG newFreq;

/* get I/O block from reply port * /
ioa = (struct 10Audio *)GetMsg(soundPort);

/* check if there really was an I/O block on the port and if there are no
* errors. An error would indicate either the channel was aborted from
* being stolen (IOERR_ABORTED), it was stolen before the write was
* performed and had the wrong allocation key (ADIOF _NOALLOCATION), or it
* was aborted by being CloseDevice'd. In any case, if there is an error do

Audio Device 245

}

* not send the next write. The program will just wait around silently */

if (ioa && ioa- >ioa_Request.io_Error == 0) {

}

/* determine how far the mouse has moved */

curYMouse = YMOUSEREG;
mous~Change = cur YMouse - last YMouse;
last YMouse = cur YMouse;

/ * modify the frequency proportionally * /
newFreq = frequency + mouseChange * (frequency> > 6);

/* limit the frequency range * /
if (newFreq > Ox800000 && newFreq < Ox40000000)

frequency = newFreq;

/* scan the table and copy each new sample into the audio waveform buffer */

for (i = 0, buffer = ioa- >ioa_Data; i < BUFFERSIZE; ++i)
>t:buffer++ = sineTable[(angle += frequency) > >

(32 - SINETABLEPOWER2)];

/* send the write I/O block */
BeginIO(ioa);

246 Audio Device

Chapter 6

Timer Device

Introd uction

The Amiga timer device provides a general time-delay capability. It can signal you when at
least a certain amount of time has passed. Because the Amiga is a multitasking system, the
timer device cannot guarantee that exactly the specified amount of time has elapsed~

To use a timer device you open up a channel of communication to the device and send the dev
ice a message saying how much time should elapse. At the end of that time, the device returns
a message to you stating that the time has elapsed.

Timer Device 247

Timer Device Units

There are two units in the timer device. One uses the vertical blank interrupt for its "tick" and
is called UNIT _ VBLANK. The other uses a programmable timer in the 8520 CIA chip and is
called UNIT_MICROHZ. These are the names you use when calling OpenDeviceO. The
examples at the end of the chapter demonstrate how you call OpenDeviceO.

The VB LANK timer unit is very stable and has a precision comparable to the vertical blanking
time, that is, +/- 16.67 milliseconds. When you make a timing request, such as "signal me in 21
seconds," the reply will come in 21 +/- .017 seconds. This timer has very low overhead and
should be used for all long duration requests.

The MICROHZ timer unit uses the built-in precision hardware timers to create the timing inter
val you request. It accepts the same type of command - "signal me in so many seconds and
microseconds." The microhertz timer has the advantage of greater resolution than the vertical
blank timer, but it has less accuracy over comparable periods of time. The microhertz timer
also has much more system overhead. It is primarily useful for short burst timing for which
critical accuracy is not required.

Specifying the Time Request

Both timer units have identical external interfaces. Time is specified via a timeval structure.

struet timeval {
ULONG tv_sees;
ULONG tv_micro;

};

The time specified is measured from the time the request is posted. For example, you must post
a timer request for 30 minutes, rather than for a specific time such as 10:30 p.m. The micro
field is the number of microseconds in the request. Logically, seconds and microseconds are con
catenated by the driver. The number of microseconds must be "normalized;" it should be a
value less than one million.

The primary means of specifying a requested time is via a timeRequest structure. A time
request consists of an IORequest structure followed by a timeval structure, as shown below.

248 Timer Device

struct timeRequest {

};

struct IORequest tr_node;
struct timeval tr _time;

Note that the timer driver does not use a "standard extension" IORequest block. It only uses
the base IORequest structure. When the specified amount of time has elapsed, the driver will
send the IORequest back via ReplyMsgO (the same as all other drivers). This means that
you must fill in the ReplyPort pointer of the IORequest structure if you wish to be signaled.

When you submit a timer request, the driver destroys the values you have provided in the
timeval structure. This means that you must reinitialize the time specification before reposting
the IORequest.

Multiple requests may be posted to the timer driver. For example, you can make three time
requests in a row to the timer, specifying:

Signal me in 20 seconds (request 1)
Signal me in 30 seconds (request 2)
Signal me in 10 seconds (request 3)

As the timer queues these requests, it changes the time values and sorts the timer requests to
service each request at the requested interval, resulting effectively in the following order:

(request 3) in now+lO seconds
(request 1) 10 seconds after request 3 is satisfied
(request 2) 10 seconds after request 1 is satisfied

A sample timer program is given at the end of this chapter.

Opening a Timer Device

To gain access to a timer unit, you must first open that unit. This is done by using the system
command OpenDeviceO. A typical C-Ianguage call is shown below:

struct timereq timer _request_block
error = OpenDevice(TIMERNAME,unit_number,timer_request_block,O);

Timer Device 249

The parameters shown above are as follows:

TIMERNAME
This is a define for the null-terminated string, currently "timer.device."

unit_number
This indicates which timer unit you wish to use, either UNIT_ VBLANK or
UNIT_MICROHZ as defined in "Timer Device Units" above.

timer _request_block
This is the address of an IORequest data structure that will be used later to communi
cate with the device. The OpenDeviceO command will fill in the unit and device
fields of this data structure.

Adding a Time Request

You add a timer request to the device by passing a correctly initialized I/O request to the timer.
The code fragment below demonstrates a sample request:

set_timer (seconds,microseconds)
ULONG seconds, microseconds;
{

}

timermsg- >io_Command = TR_ADDREQUEST;
timermsg- >tr _time.tv _secs = seconds;
timermsg- >tr _time.tv _micro = microseconds;
DoIO(timermsg);

Note: Using DolOO here puts your task to sleep until the time request has been satisfied (see
the sample program at the end of the chapter).

If you wish to send out multiple time requests, you have to create multiple request blocks (refer
enced here as "timermsgs") and then use SendlOO to transmit each to the timer.

Closing a Timer

After you have finished using a timer device, you should close it:

250 Timer Device

CloseDevice(timermsg);

Additional Timer Functions and Commands

There are two additional timer commands (accessed as standard device commands, using an
IORequest block as shown above) and three additional functions (accessed as though they were
library functions).

The additional timer commands are as follows:

o TR_GETSYSTIME - get the system time

o TR_SETSYSTIME - set the system time

The additional timer library-like functions are:

o SubTime(Dest, Source) - subtract one time request from another

o AddTime(Dest, Source) - add one time request to another

o result = CmpTime(Dest, Source) - compare the time in two time requests

SYSTEM TIME

The "system timer" is unrelated to the system time as it appears in the DateStamp command
of AmigaDOS. It is provided simply for the convenience of the developer and is utilized by
Intuition.

The command TR_SETSYSTIME sets the system's idea of what time it is. The system starts
out at time "zero" so it is safe to set it forward to the "real" time. However, care should be
taken when setting the time backwards. System time is specified as being monotonically . .
mcreasmg.

The time is incremented by a special power supply signal that occurs at the external line fre
quency. This signal is very stable over time, but it can vary by several percent over short
periods of time. System time is stable to within a few seconds a day. In addition, system time
is changed every time someone asks what time it is using TR_GETSYSTIME. This way the re
turn value of the system time is unique and unrepeating. This allows system time to be used as
a unique identifier.

Timer Device 251

Note: The timer device sets system time to zero at boot time. AmigaDOS will set the system
time when it reads in the boot disk, if it has not already been set by someone else (more exactly,
if the time is less than 86,400 seconds [one day]). AmigaDOS sets the time to the last
modification time of the boot disk. The time device does not interpret system time to any phy
sical value. AmigaDOS treats system time relative to midnight, 1 January 1978.

Here is a program that can be used to inquire the system time. Instead of using the Exec sup
port function CreateStdIOO for the request block, the block is initialized "correctly" for use
as a timeval request block. The command is executed by the timer device and, on return, the
caller can find the data in his request block.

/* getsystime.c - get system time * /

#include "exec/types.h"
#include "exec/Iists.h"
#include "exec/nodes.h"
#include "exec/ports.h"
#include "exec/io.h"
#include " exec/ devices.h"
#include "devices/timer.h"

#define msgblock tr.tr_node.io_Message
struct timerequest tr;

mainO
{

}

int error;
error = OpenDevice(TIMERNAME,UNIT_MICROHZ,&tr,O);
msgblock.mn_Node.ln_Type = NT_MESSAGE;
msgblock.mn_Node.ln_Pri = 0;
msgblock.mn_Node.ln_Name = NULL;
msgblock.mn_ReplyPort = NULL;

tr.tr_node.io_Command = TR_GETSYSTIME;
DoIO(&tr);

printf("\nSystem Time is:\n");
printf (" Seconds Microseconds\n");
printf ("%lOld %lOld\n" ,tr.tr_time.tv_secs, tr.tr_time.tv_micro);
CloseDevice(&tr);

/* end of main * /

252 Timer Device

USING THE TIME ARITHMETIC ROUTINES

As indicated above, the time arithmetic rou tines are accessed in the timer device structure as
though it were a routine library. To use them, you create an IORequest block and open the
timer. In the IORequest block is a pointer to the device's base address. This address is need
ed to access each routine as an offset-for example, _LVOAddTime, _LVOSubTime,
_LVOCmpTime-from that base address. (See the "Device Summaries" appendix for these
commands.)

There are C-language interface routines in amiga.lib that perform this interface task for you.
They are accessed through a variable called TimerBase. You prepare this variable by the fol
lowing method (this is only a partial example):

struct timeval time1, time2, time3;
SHORT result;

struct Device *TimerBase; / * declare the interface variable * /

TimerBase = timermsg->Device;

/ * now that Timer Base is initialized, it is permissible to call
* the time-comparison or time-arithmetic routines * /

time1.tv_secs = 3; time Ltv_micro = 0;
time2.tv _secs = 2; time2.tv _micro = 500000;
time3.tv _secs = 1; time2.tv _micro = 900000;

/ * 3.0 seconds * /
/ * 2.5 seconds * /
/ * 1.9 seconds * /

/ * result of this example is + 1 ... first parameter has
* greater time value than second parameter

*/
result = CmpTime(&time1, &time2);

/ * add to time1 the values in time2 * /
AddTime(&time1, &time2);
/ * subtract values in time3 from the value currently in time1.
* Results in time1. * /

SubTime(&time1, &time3);

Timer Device 253

WHY USE TIME ARITHMETIC?

As mentioned earlier in this section, because of the multitasking capability of the Amiga, the ti
mer device can provide timings that are at least as long as the specified amount of time. If you
need more precision than this, using the system timer along with the time arithmetic routines
can at least, in the long run, let you synchronize your software with this precision timer after a
selected period of time.

Say, for example, that you select timer intervals so that you get 161 signals within each 3-
minute span. Therefore, the timeval you would have selected would be 180/161, which comes
out to 1 second and 118,012 microseconds per interval. Considering the time it takes to set up
a call to set_timer and delays due to task-switching (especially if the system is very busy) it is
possible that after 161 timing intervals, you may be somewhat beyond the 3-minute time. Here
is a method you can use to keep in sync with system time:

1. Begin.

2. Read system time; save it.

3. Perform your loop however many times in your selected interval.

4. Read system time again, and compare it to the old value you saved. (For this example,
it will be more or less than 3 minutes as a total time elapsed.)

5. Calculate a new value for the time interval (timeval); that is, one that (if precise)
would put you exactly in sync with system time the next time around. Timeval will
be a lower value if the loops took too long, and a higher value if the loops didn't take
long enough.

6. Repeat the cycle.

Over the long run, then, your average number of operations within a specified period of time
can become precisely what you have designed.

Sample Timer Program

Here is an example program showing how to use a timer device.

254 Timer Device

/* Simple Timer Example Program:

*
* Includes dynamic allocation of data structures needed to communicate
* with the timer device as well as the actual device I/0

*/

#include "exec/types.h"
#include "exec/nodes.h"
#include "exec/lists.h"
#include "exec/memory .h"
#include "exec/interrupts.h"
#include "exec/ports.h"
#include "exec/libraries.h"
#include "exec/tasks.h"
#include "exec/io.h"
#include "exec/ devices.h"
#include "devices/timer.h"

APTR TimerBase; /* to get at the time comparison functions */

/* manifest constants -- "never will change" */
#define SECSPERMIN (60)
#define SECSPERHOUR (60*60)
#define SECSPERDAY (60*60*24)

extern struct timerequest *CreateTimerO;

mainO
{

/* save what system thinks is the time we'll advance it temporarily * /
LONG seconds;
struct time request *tr;
struct timeval old timeval;
struct timeval mytimeval;
struct timeval currentval;

printf("Oimer testO);

/* sleep for two seconds */
currentval.tv _secs = 2;
currentval.tv _micro = 0;
TimeDelay(¤tval, UNIT_VBLANK);
printf(" After 2 seconds delayO);

Timer Device 255

/* sleep for four seconds */
currentval.tv_secs = 4;
curren tv al. tv _micro = 0;
TimeDelay(¤tval, UNIT_ VBLANK);
printf("After 4 seconds delayO);

/* sleep for 500,000 micro-seconds = 1/2 second */
currentval.tv _sees = 0;
curren tval. tv_micro = 500000;
TimeDelay(¤tval, UNIT_MICROHZ);
printf("After 1/2 second delayO);

printf("0);

(void) Execu te("date", 0, 0);

printf("0);

GetSysTime(&oldtimeval);
printf("Current system time is %ld current secondsO,

old timeval. tv _sees);

printf("Setting a new system timeO);

seconds = 1000 * SECSPERDAY + oldtimevaLtv_secs;

SetNewTime(seconds);
/* (if user executes the AmigaDOS DATE command now, he will
* see that the time has advanced something over 1000 days * /

printf("0);
(void) Execu te("date", 0, 0);

printf("0);

/* added the microseconds part to show that time keeps
* increasing even though you ask many times in a row * /

GetSysTime(&mytimeval);
printf("Original system time is %ld.%061dO,

mytimeval. tv_sees, mytimeval. tv_micro);

GetSysTime(&mytimeval);
printf("First system time is % Id.%06IdO,

mytimeval. tv_sees, mytimeval. tv_micro);

256 Timer Device

GetSysTime(&mytimeval);
printf("Second system time is %ld.%06IdO,

mytimeval.tv_secs, mytimeval.tv_micro);

printf("Resetting to former timeO);
SetN ewTime(old timeval. tv _secs);

GetSysTime(&mytimeval);
printf("Current system time is %ld.%06IdO,

mytimeval. tv _secs, mytimeval.tv _micro);

/* just shows how to set up for using the timer functions, does not
* demonstrate * the functions themselves. (TimerBase must have a
* legal value before AddTime, SubTime or CmpTime are performed. */

tr = CreateTimer(UNIT _MICROHZ);

}

TimerBase = (APTR)tr->tr_node.io_Device;

/* and how to clean up afterwards */
TimerBase = (APTR)(-l);
DeleteTimer(tr);

extern struct MsgPort *CreatePortO;
extern struct IORequest *CreateExtlOO;

struct timerequest *
CreateTimer(unit)
ULONG unit;
{

/* return a pointer to a time request. If any problem, return NULL * /

int error;

struct MsgPort *timerport;
struct time request *timermsg;

timerport = CreatePort(0, 0);
if(timerport == NULL)
{

return(NULL);
}

timermsg = (struct timerequest *)
CreateExtlO(timerport, sizeof(struct timerequest));

Timer Device 257

}

if(timermsg == NULL) {
return(NULL);

}

error = OpenDevice(TIMERNAME, unit, timermsg, 0);
if(error != 0)
{

}

DeleteTimer(timermsg);
return(NULL);

return(timermsg);

/* more precise timer than AmigaDOS DelayO */
TimeDelay(tv, unit)
struct timeval *tv;
int unit;
{

}

int

struct time request *tr;

/ * get a pointer to an initiaE7cd timer request block * /
tr = CreateTimer(unit);

/* any nonzero return says timedelay routine didn't work. */
if(tr == NULL) return(-1);

WaitForTimer(tr, tv);

/* deallocate temporary structures */
DeleteTimer(tr);
return(0);

WaitForTimer(tr, tv)
struct timerequest *tr;
struct timeval *tv;
{

tr->tr_node.io_Command = TR_ADDREQUEST; /* add a new timer request */

/ * structure assign men t * /
tr->tr_time = *tv;

/ * post request to the timer -- will go to sleep till done * /

258 Timer Device

DoIO(tr);
}

int
SetNewTime(secs)
LONG secs; /* seconds since 1 Jan 78 */
{

}

int

struct timerequest *tr;

tr = CreateTimer(UNIT_MICROHZ);

/* non zero return says error */
if(tr == 0) return(-1);

tr->tr_node.io_Command = TR_SETSYSTIME;
tr- > tr_time. tv _secs = secs;
tr- > tr_time. tv _micro = 0;
DoIO(tr);

DeleteTimer(tr);
return(O);

GetSysTime(tv)
struct timeval *tv;
{

}

struct timerequest *tr;

tr = CreateTimer(UNIT _MICROHZ);

/ * non zero return says error * /
if(tr == 0) return(-1);

tr- > tr_node.io_Command = TR_GETSYSTIME;
DoIO(tr);

/* structure assignment */
*tv = tr- > tr_time;

DeleteTimer(tr);
return(0);

Timer Device 259

int
DeleteTimer(tr)
struct timerequest *tr;
{

}

struct MsgPort *tp;

if(tr != 0)
{

}

tp = tr- >tcnode.io_Message.mn_ReplyPort;
if(tp != 0) {

DeletePort(tp);
}

CloseDevice(tr);
DeleteExtIO(tr, sizeof(struct timerequest));

260 Timer Device

Chapter 7

Trackdisk Device

Introduction

The Amiga trackdisk device directly drives the disk, controls the disk motors, reads raw data
from the tracks, and writes raw data to the tracks. Normally, you use the AmigaDOS functions
to write or read data from the disk. The trackdisk driver is the lowest-level software access to
the disk data and is used by AmigaDOS to get its job done. The trackdisk device supports the
usual commands such as CMD_ WRITE and CMD_READ. IIi addition, it supports an extended
form of these commands to allow additional control over the disk driver.

Trackdisk Device 261

The trackdisk device can queue up command sequences so that your task can do something else
while it is waiting for a particular disk activity to occur. If several sequenced write commands
are queued to a disk, a task assumes that all such writes are going to the same disk. The track
disk driver itself can stop a command sequence if it senses that the disk has been changed,
returning all subsequent IORequest blocks to the caller with an error ("disk changed").

When the trackdisk device is requested to provide status information for commands such as
TD_REMOVE or TD_CHANGENUM, the value is returned in the io_Actual field of the
IORequest.

The Amiga Floppy Disk

The Amiga floppy disk consists of NUMHEADS (2) heads, NUMCYLS (80) cylinders, and
NUMSECS (11) sectors per cylinder. Each sector has TD_SECTOR (512) usable data bytes
plus TD_LABELSIZE (16) of sector label area. This gives useful space of 880K bytes plus 28K
bytes of label area per floppy disk.

Although the disk is logically divided up into sectors, all I/O to the disk is implemented as an
entire track. This allows access to the drive with no interleaving and increases the useful
storage capacity by about 20 percent. Normally, a read of a sector will only have to copy the
data from the track buffer. If the track buffer contains another track's data, then the buffer
will first be written back to the disk (if it is "dirty") and the new track will be read in. All
track boundaries are transparent to the user. The driver ensures that the correct track is
brought into memory.

The performance of the disk is greatly enhanced if you make effective use of the track buffer.
The performance of sequential reads will be up to an order of magnitude greater than reads
scattered across the disk.

The disk driver uses the blitter to encode and decode the data to and from the track buffer.
Because the blitter can access only chip memory (memory that is accessible to the special
purpose chips and within the lowest 512K bytes of the system, known as MEMF _CHIP to the
memory allocator AllocMemO), all buffers submitted to the disk must be in chip memory. In
addition, only full-sector writes on sector boundaries are supported. Note also that the user's
buffer must be word-aligned.

The disk driver is based upon a standard driver structure. It has the following restrictions:

o All reads and writes must use an io_Length that is an integer multiple of
TD_SECTOR bytes (the sector size in bytes).

262 Trackdisk Device

o The offset field must be an integer multiple of TD_SECTOR.

o The data pointer must be word-aligned.

o The data pointer must be in MEMF _CHIP memory. This IS because the disk driver
uses the blitter to fill the data buffer.

o Only the 3 1/2-inch disk format is supported by the trackdisk driver. The 5 1/4-inch
format is supported by the IBM PC emulation software.

Trackdisk Driver COIIlIIlands

The trackdisk driver allows the following system interface functions and commands. In addition
to the usual device commands, the trackdisk driver has a set of extended commands.

The system interface functions are

OpenDeviceO
CloseDeviceO
ExpungeO
BeginIOO
AbortIOO

Obtain exclusive use of a particular disk unit
Release the unit to another task
Remove the device from the device list
Dispatch a device command; queue commands
Abort a device command

The device-specific commands are

Read one or more sectors
Write one or more sectors
Write out a track buffer
Mark a track buffer as invalid
Turn the motor on or off
Move the head to a specific track
Initialize one or more tracks

CMD_READ
CMD_WRITE
CMD_UPDATE
CMD_CLEAR
TD_MOTOR
TD_SEEK
TD_FORMAT
TD_REMOVE
TD_CHANGENUM
TD_CHANGESTATE
TD_PROTSTATUS

Establish a software interrupt procedure for disk removal
Discover the current disk-change number
See if there is a disk presen t in a drive
See if a disk is write-protected

In addition to the device-specific commands listed above, the trackdisk driver has a number of
extended commands. These commands are similar to their normal counterparts but have addi
tional features: they allow you to control whether a command will be executed if the disk has
been changed, and they allow you to read or write to the sector label portion of a sector.

Trackdisk Device 263

Extended commands take a slightly larger I/O request block, which contains information that is
needed only by the extended command and that is ignored by the standard form of that com
mand. The extra information takes the form of two extra longwords at the end of the data
structure. These commands are performed only if the change count is less than or equal to the
one in the iotd_Count field of the command's I/0 request block. The extended commands are
listed below:

ETD_READ
ETD_WRITE
ETD_MOTOR
ETD_UPDATE
ETD_CLEAR
ETD_SEEK

Read one or more sectors
Write one or more sectors
Turn the motor on or off
Write out a track buffer
Mark a track buffer as invalid
Move the head to a specific track

Creating an I/O Request

The trackdisk device, like other devices, requires that you create an I/0 request message that
you pass to the device for processing. The message contains the command and several other
items of control information.

Here is a program fragment that can be used to create the message block that you use for track
disk communications. In the fragment, the routine CreateStdIOO is called to return a pointer
to a message block. This is acceptable for the standard form of the commands. If you wish to
use the extended form of the command, you will need an extended form of the request block. In
place of CreateStdIOO, you can use the routine CreateExtIOO, a listing of which appears in
the appendixes of the Am£ga ROM Kernel Reference Manual: Exec.

struct IOStdReq *diskreq; /* I/O request block pointer
* for non-extended commands * /

struct IOExtTD *diskextreq; /* I/O request block pointer
* for extended commands * /

struct Port *diskreqPort; / * a port at which to receive replies * /

diskreqPort = CreatePort(" diskreq.port" ,0);
if(diskreqPort == 0) exit(lOO); / * error in CreatePortO * /
diskreq = CreateStdIO(diskreqPort);
if(diskreq == 0) { DeletePort(diskreqPort); exit(200); } /* error in CreateStdIOO
diskextreq = CreateExtIO(diskreqPort,sizeof(struct 10ExtTD));
if(diskextreq == 0) { DeletePort(diskreqPort); exit(300) };

264 Trackdisk Device

The routine CreatePortO is part of amiga.lib. It returns a pointer to a Port structure that
can be used to receive replies from the trackdisk driver.

The routine CreateStdIOO is also in amiga.lib. It returns a pointer to an IOStdReq block
that becomes the message you pass to the track disk driver to tell it the command to perform.

The data structure IOExtTD takes the form:

where

struct IOExtTD {

};

struct IOStdReq iotd_Req;
ULONG iotd_Count;
ULONG iotd_SecLabel;

IOStdReq
is a standard IORequest block that contains fields used to transmit the standard com
mands (explained below).

iotd_Count
helps keep old I/O requests from being performed when the diskette has been changed.
All extended commands treat as an error any case where the disk change counter is
greater than iotd_Count. Any I/O request found with an iotd_Count less than the
current change counter value will be returned with a characteristic error
(TDERR_DiskChange) in the io_Error field of the I/O request block. This allows stale
I/O requests to be returned to the user after a disk has been changed. The current
disk-change counter value can be obtained by TD_CHANGENUM.

If the user wants extended disk I/O but does not care about disk removal, then
iotd_Count may be set to the maximum unsigned long integer value (OxFFFFFFFF).

iotd_SecLabel
allows access to the sector identification section of the sector header.

Each sector has 16 bytes of descriptive data space available to it; the disk driver does
not interpret this data. If iotd_SecLabel is null, then this descriptive data is ignored.
If it is not null, then iotd_SecLabel should point to a series of 16-byte chunks (one for
each sector that is to be read or written). These chunks will be written out to the
sector's label region on a write or filled with the sector's label area on a read. If a
CMD_WRITE (the standard write call) is done, then the sector label area is left
unchanged.

Trackdisk Device 265

Opening a Trackdisk Device

To gain access to a disk unit, you must first open the unit by usmg the system command
OpenDeviceO. A typical C-Ianguage call is shown below:

error = OpenDevice(TD _NAME ,unit_number ,disk]equest_block,flags);

where:

TD_NAME
is a define for the null-terminated string, currently "trackdisk.device."

unit_number
is the disk unit you wish to use (defined below).

disk_request_block
is the address of an IORequest data structure that will later be used to communicate
with the device. The OpenDeviceO command will fill in the unit and device fields of
this data structure.

flags
tell how the I/O is to be accomplished. For an OpenDeviceO command, this field is
normally set to zero.

The unit_number can be any value from 0 to 3. Unit 0 is the built-in 3 1/2-inch disk. Units
1 through 3 represent additional 3 1/2-inch disks that may be daisy-chained from the external
disk unit connector on the back of the Amiga. The first unit (plugged directly into the Amiga)
is unit 1. The second unit (plugged into unit 1), is designated as unit 2. The end-unit, farthest
electrically from the Amiga, is unit 3.

The following are some common errors that may be returned from an OpenDeviceO call.

Device in use
Some other task has already been granted exclusive use of this device.

Bad unit number
Either you have specified a unit number outside the range of 0-3 or you do not have a
unit connected in the specified position.

Bad device type
You may be trying to use a 5 1/4-inch drive with the trackdisk driver. This IS not
supported.

266 Trackdisk Device

Sending a Command to the Device

You send a command to this device by initializing the appropriate fields of your IOStdReq or
IOExtTD and then using SendlOO, DoIOO, or BeginlOO to transmit the command to the
device. Here is an example:

MotorOnO
{

diskreq->io_Length = 1; /* 1 says turn it on */
diskreq->io_Command = TD_MOTOR;
DoIO(diskreq); /* task sleep till command done */
return(O);

}

Terminating Access to the Device

As with all exclusive-access devices, you must close the trackdisk device when you have finished
using it. Otherwise, the system will be unable to allocate the device to any other task until the
system is rebooted.

Device-specific Commands

The device-specific commands that are supported are explained below.

ETD_READ AND CMD_READ

ETD_READ obeys all of the trackdisk driver restrictions noted above. ETD_READ transfers
data from the track buffer to the user's buffer, if and only if the disk has not been changed. If
the desired sector is already in the track buffer, no disk activity is initiated. If the desired sec
tor is not in the buffer, the track containing that sector is automatically read in. If the data in
the current track buffer has been modified, it is written out to the disk before the new track is
read. CMD_READ does not check if the disk has been changed before executing this command.

Trackdisk Device 267

ETD_WRITE AND CMD_WRITE

ETD_ WRITE obeys all of the trackdisk driver restrictions noted above. ETD_ WRITE transfers
data from the user's buffer to track buffer if and only if the .disk has not been changed. If the
track that contains this sector is already in the track buffer, no disk activity is initiated. If the
desired sector is not in the buffer, the track containing that sector is automatically read in. If
the data in the current track buffer has been modified, it is written out to the disk before the
new track is read in for modification. CMD_ WRITE does not check for disk change before per
forming the command.

The Amiga track disk driver does not write data sectors unless it is necessary (you request that a
different track be used) or until the user requests that an update be performed. This improves
system speed by caching disk operations. The update commands ensure that any buffered data
is flushed out to the disk. If the track buffer has not been changed since the track was read in,
the update commands do nothing. In addition, ETD_UPDATE can make sure that the disk
was not changed before it writes the buffer. This prevents writing the buffered data onto a
different diskette.

ETD_CLEAR marks the track buffer as invalid, forcing a reread of the disk on the next opera
tion. ETD_UPDATE or CMD_UPDATE would be used to force data out to the disk before
turning the motor off. ETD_CLEAR or CMD_CLEAR is usually used after the disk has been
removed, to prevent caching of data to the new diskette. ETD_CLEAR or CMD_CLEAR will
not do an update, nor will an update command do a clear. CMD_CLEAR does not check for
disk change.

ETD_MOTOR AND TD_MOTOR

TD_MOTOR is called with a standard IORequest block. The io_Length field contains the
requested state of the motor. A 1 will turn the motor on; a 0 will turn it off. The old state of
the motor is returned in io_Actual. If io_Actual is zero, then the motor was off. Any other
value implies that the motor was on. If the motor is just being turned on, the driver will delay
the proper amount of time to allow the drive to come up to speed. Normally, turning the drive
on is not necessary-the driver does this automatically if it receives a request when the motor
is off. However, turning the motor off is the user's responsibility. In addition, the standard
instructions to the user are that it is safe to remove a diskette if and only if the motor is off
(th at is, if the disk light is off).

268 Trackdisk Device

TD_FORMAT is used to write data to a track that either has not yet been formated or has had
a hard error on a standard write command. TD_FORMAT completely ignores all data
currently on a track and does not check for disk change before performing the command.
TD_FORMAT is called with a standard IORequest. The io_Data field must point to at least
one track worth of data. The io_Offset field must be track aligned, and the io_Length field
must be in units of track length (that is, NUMSECS*TD_SECTOR). The driver will format
the requested tracks, filling each sector with the contents of the io_Data field. You should do a
read pass to verify the data. The command TD_FORMAT does not check whether the disk has
been changed before the command is performed.

If you have a hard write error during a normal write, you may find it necessary to use the
TD_FORMAT command to reformat the track as part of your error recovery process.

TD_REMOVE

TD_REMOVE is called with a standard IORequest. The APTR io_Data field points to a
software interrupt structure. The driver will post this software interrupt whenever a disk is
inserted or removed. To find out the current state of the disk, TD_CHANGENUM and
TD_CHANGESTATE should be used. If TD_REMOVE is called with a null io_Data argu
ment, then disk removal interrupts are suspended.

Status Commands

The commands that return status on the current disk ill the unit are TD_CHANGENUM,
TD_CHANGESTATE, and TD_PROTSTATUS.

TD_CHANGENUM

TD_CHANGENUM returns the current value of the disk-change counter (as used by the
extended commands-see below). The disk change counter is incremented each time the disk is
inserted or removed.

Trackdisk Device 269

TD_CHANGESTATE

TD_CHANGESTATE returns zero if a disk is currently in the drive, and nonzero if the drive
has no disk.

TD_PROTSTATUS

TD_PROTSTATUS returns nonzero if the current diskette is write-protected. All these rou
tines return their values in io_Actuai. These routines are safe to call from an interrupt routine
(such as the software interrupt specified in TD_REMOVE). However, care should be taken
when calling these routines from an interrupt. You should never WaitO for them to complete
while in interrupt processing-it is never legal to go to sleep on the interrupt stack.

Commands for Diagnostics and Repair

Currently only one command, TD_SEEK, IS provided for internal diagnostics and for disk
repair.

TD_SEEK is called with a standard IORequest. The io_Offset field should be set to the
(byte) offset to which the seek is to occur. TD_SEEK will not verify its position until the next
read. That is, TD_SEEK only moves the heads; it does not actually read any data and it does
not check to see if the disk has been changed.

Trackdisk Driver Errors

Table 7-1 is a list of error codes that can be returned by the track disk driver. When an error
occurs, these error numbers will be returned in the io_Error field of your IORequest block.

270 Trackdisk Device

Table 7-1: Trackdisk Driver Error Codes

Error
Error Name Number Meaning

TDERR_NotSpecified 20 Error could not be determined
TDERR_NoSecHdr 21 Could not find sector header
TDERR_BadSecPream ble 22 Error in sector preamble
TDERR_BadSecID 23 Error in sector identifier
TDERR_BadHdrSum 24 Header field has bad checksum
TDERR_BadSecSum 25 Sector data field has bad checksum
TDERR_TooFewSecs 26 Incorrect number of sectors on track
TDERR_BadSecHdr 27 Unable to read sector header
TDERR_ WriteProt 28 Disk is write-protected
TDERR_DiskChanged 29 Disk has been changed

or is not currently present
TDERR_SeekError 30 While verifying seek position,

found seek error
TDERR_NoMem 31 Not enough memory to do this operation
TDERR_BadUnitNum 32 Bad unit number

(unit # not attached)
TDERR_BadDriveType 33 Bad drive type

(not an Amiga 3 1/2 inch disk)
TDERR_DriveIn Use 34 Drive already in use

(only one task exclusive)
TDERR_PostReset 35 User hit reset; awaiting doom

Example Program

The following sample program exercises a few of the trackdisk driver commands.

#include "exec /types.h"
#include "exec / nodes.h"
#include "exec /lists.h"
#include "exec/memory.h"
#include "exec /interrupts.h"
#include "exec/ports.h"
#include "exec /libraries.h"
#include "exec/io.h"
#include "exec/tasks.h"
#include "exec/execbase.h"
#include "exec / devices.h"

Trackdisk Device 271

#include "devices/trackdisk.h"

#define TD_READ CMD_READ
#define BLOCKSIZE TD_SECTOR

SHORT error;
struct MsgPort *diskport;
struct IOExtTD *diskreq;
BYTE diskbuffer[BLOCKSIZE];
BYTE *diskdata;
SHORT testval;

extern struct MsgPort *CreatePortO;
extern struct IORequest *CreateExtIOO;

ULONG diskChangeCount;

ReadCyISec{cyl, sec, hd)
SHORT cyl, sec, hd;
{

}

LONG offset;

diskreq- >iotd_Req.io_Length = BLOCKSIZE;
diskrf!q- >iotd_Req.io_Data = {APTR)diskbuffer;

/* show where to put the data when read * /
diskreq->iotd_Req.io_Command = ETD_READ;

/* check that disk not changed before reading * /
diskreq- > iotd_Count = diskChangeCount;

/* convert from cylinder, head, sector to byte-offset value to get
* right one {as dos and everyone else sees it) ... * /

/* driver reads one CYLINDER at a time (head does not move for
* 22 sequential sector reads, or better put, head does not move for
* 2 sequential full track reads.)

*/

offset = TD_SECTOR * (sec + NUMSECS * hd + NUMSECS * NUMHEADS * cyl);
diskreq- >iotd_Req.io_Offset = offset;
DolO (diskreq);
return{O);

MotorOnO
{

/* TURN ON DISK MOTOR .. , old motor state is returned in io_Actual * /
diskreq- >iotd_Req.io_Length = 1;
/* this says motor is to be turned on * /
diskreq->iotd_Req.io_Command = TD_MOTOR;
/* do something with the motor * /
DoIO{diskreq);
printf{" \nOld motor state was: % ld" ,diskreq- >iotd_Req.io_Actual);

272 Trackdisk Device

}

printf(" \nio_Error value was: % ld" ,diskreq- > iotd_Req.io_Error);
return(O);

MotorOffO
{

}

printf(" \n \nNow turn it off");
diskreq- > iotd_Req.io_Length = 0;
/ * says that motor is to be turned on * /
diskreq->iotd_Req.io_Oommand = TD_MOTOR;
/* do something with the motor * /
DolO (diskreq);
printf("\nOld motor state was: %ld" ,diskreq->iotd_Req.io_Actual);
printf(" \nio_Error value was: % ld" ,diskreq-> iotd_Req.io_Error);
return(O);

SeekFullRange(howmany)
SHORT howmany;
{
int i;
for(i=O; i<howmany; i++)

}

{

}

diskreq- >iotd_Req.io_Offset =
((NUMOYLS -1)*NUMSEOS*NUMHEADS -1) * 512;

/* seek to cylinder 79, head 1 */
diskreq- >iotd_Req.io_Oommand = TD_SEEK;
DolO(diskreq);
if(diskreq->iotd Req.io_Error != 0)

printf("\nSeek Oycle Number %ld, Error = %ld",
i, diskreq- >iotd_Req.io_Error);

diskreq- >iotd_Req.io_Offset = 0;
/* seek to cylinder 0, head 0 * /

diskreq->iotd_Req.io_Oommand = TD_SEEK;
DolO(diskreq};
if(diskreq->iotd_Req.io_Error != O}

printf("\nSeek Oycle Number %ld, Error = %ld",
i, diskreq- >iotd_Req.io_Error);

printf("\nOompleted a seek"};

return(O};

mainO
{

SHORT cylinder,head,sector;

diskdata = &diskbuffer[O];
/* point to first location in disk buffer * /

diskport = OreatePort(O,O};
if(diskport == 0) exit(I00}; /* error in createport */
diskreq = (struct IOExtTD *)OreateExtIO(diskport, sizeof(struct IOExtTD));

Trackdisk Device 273

/ * make an io request block for communicating with the disk * /
if(diskreq == 0) { DeletePort(diskport); exit(200); }

error = OpenDevice(TD_NAME,O,diskreq,O);
/ * open the device for access, unit ° is builtin drive * /

printf("\nError value returned by OpenDevice was: %lx", error);

/* now get the disk change value * /
diskreq->iotd_Req.io_Command = TD_CHANGENUM;
DoIO(diskreq);
diskChangeCount = diskreq- > iotd_Req.io_Actual;
printf(" \nChange number for disk is currently % ld" ,diskChangeCount);

MotorOnO;
SeekFullRange(10);
for(cylinder=O; cylinder< 80; cylinder++)

{
for(head=O; head <2; head++)

for(sector=O; sector<ll; sector++)
{
ReadCylSec(cylinder, sector, head);
if(diskreq- >iotd_Req.io_Error != 0)

/* tracks to test * /

/* number of heads to test * /
/* sectors to test * /

printf("\nError At Cyl=%ld, Sc=%ld, Hd=%ld, Error=%ld",
cylinder,sector,head,
diskreq- >iotd_Req.io_Error);

}
printf(" \nCompleted reading Cylinder=% ld" ,cylinder);
}

MotorOfIO;
CloseDevice(diskreq);

DeleteExtIO(diskreq, sizeof(struct IOExtTD));
DeletePort(disk port);

} /* end of main */

274 Trackdisk Device

Chapter 8

Console Device

This chapter describes how you do console (keyboard and screen) input and output on the
Amiga. The console device acts like an enhanced ASCII terminal. It obeys many of the stan
dard ANSI sequences as well as additional special sequences unique to the Amiga.

Introduction

Console I/O is tied closely to the Amiga Intuition interface; a console must be tied to a window
that is already opened. From the Window data structure, the console device determines how
many characters it can display on a line and how many lines of text it can display in a window

Console Device 275

withou t clipping at any edge.

You can open the console device many times, if you wish. The result of each open call is a new
console unit. AmigaDOS and Intuition see to it that only one window is currently active and its
console, if any, is the only one (with a few exceptions) that receives notification of input events,
such as keystrokes. Later in this chapter you will see that other Intuition events can be sensed
by the console device as well.

Note: For this entire chapter the characters" <CSI>" represent the control sequence intro
ducer. For output you may use either the two-character sequence "<Esc> [" or the one-byte
value $9B (hex). For input you will receive $9B's.

System Functions

The various system functions-such as DolOO, SendlOO, AbortI00, ChecklOO, and so
on-operate normally. The only caveats are that CMD_WRITE may cause the caller to wait
internally, even with SendlOO, and a task waiting on response from a console is at the user's
whim. If a user never reselects that window, and the console response provides the only wake
up call, that task may well sleep indefinitely.

Console I/O

The console device may be thought of as a kind of terminal. You send character streams to the
console device; you also receive them from the console device. These streams may be characters
or special sequences.

GENERAL CONSOLE SCREEN OUTPUT

Console character screen output (as compared to console command sequence transmission) out
puts all standard printable characters (character values hex 20 thru 7E and AO thru FF) nor
mally. Many control characters such as BACKSPACE and RETURN are translated into their
exact ANSI equivalent actions. The line-feed character is a bit different, in that it can be
translated into a new-line character. The net effect is that the cursor moves to the first column
of the next line whenever a <LF> is displayed. This code is set via the mode control
sequences discussed under "Control Sequences for Screen Output."

276 Console Device

CONSOLE KEYBOARD INPUT

If you read from the console device, the keyboard inputs are preprocessed for you and you will
get ASCII characters, such as "B." Most normal text-gathering programs will read from the con
sole device in this manner. Special programs, such as word processors and music keyboard pro
grams, will use raw input. Keys are converted via the keymap associated with the unit.

The sections below deal with the following topics:

o Setting up for console I/0 (creating an I/O request structure)

o Writing to the console to control its behavior

o Reading from the console

o Closing down a console device

Creating an I/O Request

This section shows you how to set up for console I/0. Console I/0, like that used with other
devices, requires that you create an I/O request message that you pass to the console device for
processing. The message contains the command as well as a data area. In the data area, for a
write, there will be a pointer to the stream of information you wish to write to the console. For
a read, this data pointer shows where the console is to copy the data it has for you. There is
also a length field that says how many characters (maximum) are to be copied either from or to
the console device.

Here is a program fragment that can be used to create the message block that you use for con
sole communications.

For writing to the console:

struct IOStdReq *consoleWriteMsg;
struct Port *consoleWritePort;

/* I/O request block pointer * /
/ * a port at which to receive replies* /

consoleWritePort = CreatePort("mycon.write" ,0);
if(consoleWritePort == 0) exit(lOO); /* error in createport * /
consoleWriteMsg = CreateStdIO(consoleWritePort);
if(console WriteMsg == 0) exit(200); / * error in createstdio * /

Console Device 277

For reading from the console:

struct IOStdReq *consoleReadMsg;
struct Port *consoleReadPort;

/* I/O request block pointer */
/ * a port at which to receive replies * /

consoleReadPort = CreatePort("mycon.read" ,0);
if(consoleReadPort == 0) exit(300); /* error in createport */
consoleReadMsg = CreateStdIO(consoleReadPort);
if(consoleReadMsg == 0) exit(400); /* error in createstdio */

These fragments show two messages and ports being set up. You would use this set-up if you
want to have a read command continuously queued up while using a separate message with its
associated port to send control command sequences to the console. In addition, if you want to
queue up multiple commands to the console, you may wish to create multiple messages (but
probably just one port for receiving replied messages from the device).

Opening a Console Device

For other devices, you normally use OpenDeviceO to pass an uninitialized IORequest block
to the device. For a console device, a slightly different method is used. You must have initial
ized two fields in the request block; namely, the data pointer and the length field. Here is a
subroutine that can be used to open a console device (attach it to an existing window). It
assumes that intuition.library is already open, a window has also been opened, and this new
console is to be attached to the open window.

278 Console Device

/ * this function returns a value of 0 if the console
* device opened correctly and a nonzero value
* (the error returned from OpenDevice) if there was an error.

*/

Open Console(writerequest,readrequest, window)
struct IOStdReq *writerequest;
struct IOStdReq *readrequest;
struct Window *window;
{

int error;
writerequest->io_Data = (APTR) window;
writerequest->io_Length = sizeof(*window);
error = OpenDevice(" console.device" , 0, writerequest, 0);
readrequest->io_Device = writerequest->io_Device;
readrequest->io_Unit = writerequest->io_Unit;

}

/ * clone required parts of the request * /
return(error);

Notice that this routine opens the console using one I/O request (write), then copies the write
request values into the read request. This assures that both input and output go to the same
console device.

SENDING A CHARACTER STREAM TO THE CONSOLE DEVICE

To perform console I/O, you fill in fields of the console I/O standard request and pass this block
to the console device using one of the normal I/O functions. When the console device has com
pleted the action, the device returns the message block to the port you have designated within
the message itself. The function CreateStdIOO initializes the message to contain the address
of the ReplyPort.

The following subroutines use the IOStdReq created above. Note that the IOStdReq itself
contains a pointer to the unit with which it is communicating. Thus, a single function can be
used to communicate with multiple consoles.

Console Device 279

/ * output a single character to a specified console * /

ConPutChar(request,character)
struct IOStdReq *request;
char character;
{

request->io_Command = CMD_WRITE;
request->io_Data = &character;
request->io_Length = 1;
DoIO(request);
return;

}

/ * output a stream of known length to a console * /

Con Write(request,string,length)
struct IOStdReq *request;
char *string;
int length;
{

request->io_Command = CMD_WRITE;
request->io_Data = string;
request->io_Length = length;
DoIO(request);
return;

}

/* output a NULL-terminated string of characters to a console * /

ConPutStr(request,string)
struct IOStdReq * request;
char *string;
{
request->io_Command = CMD_WRITE;
request->io_Data = string;
request->io_Length = -1;

DolO (request);
return;

}

280 Console Device

/* tells console to end when it sees a
* terminating zero on the string. * /

Control Sequences for Screen Output

Table 8-1 lists the functions that the console device supports, along with the character stream
that you must send to the console to produce the effect. Where the function table indicates
multiple characters, it is more efficient to use the Con Write 0 function rather than
ConPutCharO because it avoids the overhead of transferring the message block multiple
times. The table below uses the second form of <CSI>, that is, the hex value 9B, to minimize
the number of characters to be transmitted to produce a function.

In table 8-1, if an item is enclosed in square brackets, it is optional and may be omitted. For
example, for INSERT [N] CHARACTERS the value for N or M is shown as optional. The con
sole device responds to such optional items by treating the value of N as if it is not specified.
The value of N or M is always a decimal number, having one or more ASCII digits to express its
value.

Table 8-1: Console Control Sequences

Command

BACKSPACE (move left one column)
LINE FEED (move down one text line as

specified by the mode function below)
VERTICAL TAB (move up one text line)
FORM FEED (clear the console's screen)
CARRIAGE RETURN (move to first column)
SHIFT IN (undo SHIFT OUT)
SHIFT OUT (set MSB of each character

before displaying)

ESC (escape; can be part of the control
sequence in trod ucer)

CSI (control sequence in trod ucer)
RESET TO INITIAL STATE

INSERT [N]CHARACTERS
(Inserts one or more spaces, shifting the
remainder of the line to the right.)

CURSOR UP [N] CHARACTER POSITIONS
(default = 1)

CURSOR DOWN [N] CHARACTER
POSITIONS
(default = 1)

Sequence of Characters
(in Hexadecimal Form)

08
OA

OB
OC
00
OE
OF

IB

IB 63

9B [N]40

9B [N]41

9B [N]42

Console Device 281

CURSOR FORWARD [N] CHARACTER
POSITIONS (default = 1)

CURSOR BACKWARD [N] CHARACTER
POSITIONS (default = 1)

CURSOR NEXT LINE [N] (to column 1)
CURSOR PRECEDING LINE [N]

(to column 1)
MOVE CURSOR TO ROW; COLUMN

where N is row, M is column, and
semicolon (hex 3B) must be present
as a separator, or if row is left
out, so the console device can tell
that the number after the semicolon
actually represents the column number.

ERASE TO END OF DISPLAY

ERASE TO END OF LINE

INSERT LINE (above the line containing
the cursor)

DELETE LINE (remove current line, move
all lines up one position to fill
gap, blank bottom line)

DELETE CHARACTER [N] (that cursor is
sitting on and to the right if
[N] is specified)

SCROLL UP [N] LINES (Remove line(s) from
top of screen, move all other lines
up, blanks [N] bottom lines)

SCROLL DOWN [N] LINES (Remove line(s)
from bottom of screen, move all
other lines down, blanks [N] top lines)

SET MODE (cause LINEFEED to respond as
RETURN-LINEFEED)

RESET MODE (cause LINEFEED to respond
only as LINEFEED)

DEVICE STATUS REPORT (cause console to
insert into your read-stream a CURSOR
POSITION REPORT; see "Reading from
the Console" for more information)

SELECT GRAPHIC RENDITION
<style>;<fg>;<bg>6D
(select text style foreground
color, background color)
(See the note below.)

282 Console Device

9B [N]43

9B [N] 44

9B [N]45
9B [N]46

9B [N] [3B N]48

9B 4A

9B 4B

9B 4C

9B 4D

9B [N] 50

9B [N]53

9B [N]54

9B 32 30 68

9B 32 30 6C

9B 36 6E

See note below.

Note: For SELECT GRAPHIC RENDITION, any number of parameters, In any order, are
valid. They are separated by semicolons. The parameters follow:

<style> =
o Plain text
1 Bold-face
3 Italic
4 Underscore
7 Inverse-video

<fg> =
30 - 37

<bg> =
40 - 47

Selecting system colors 0-7 for foreground.
Transmitted as two ASCII characters.

selecting system colors 0-7 for background.
Transmitted as two ASCII characters.

For example, to select bold face, with color 3 as foreground and color 0 as back
ground, send the sequence:

9B 31 3B 33 33 3B 34 30 6D

representing the ASCII sequence:

"<CSI> 1;33;40m"

where <CSI> is the control sequence introducer, here used as the single-character
value 9B hex.

The sequences in table 8-2 are not ANSI standard sequences; they are private Amiga
sequences.

In these command descriptions, length, width, and offset are comprised of one or more
ASCII digits, defining a decimal value.

Console Device 283

Table 8-2: Amiga Console-control Sequences

Command Sequence of Characters
(in Hexadecimal Form)

SET PAGE LENGTH (in character raster lines,
causes console to recalculate,
using current font, how many text 9B <length> 74
lines will fit on the page.

SET LINE LENGTH (in character positions,
using current font, how many characters
should be placed on each line). 9B <width> 75

SET LEFT OFFSET (in raster columns, how far
from the left of the window
should the text begin). 9B <offset> 78

SET TOP OFFSET (in raster lines, how far
from the top of the window's
RastPort should the topmost
line of the character begin). 9B <offset> 79

SET RAW EVENTS-see the separate
topic "Selecting Raw Input Events"
below for more details.

RESET RAW EVENTS-see
"Selecting Raw Input Events" below.

SET CURSOR RENDITION - make the
cursor visible or invisible:

Invisible:
Visible:

WINDOW STATUS REQUEST - ask the
console device to tell you the
current bounds of the window,
in upper and lower row and
column character positions.
(User may have resized or
repositioned it.) See
"Window Bounds Report" below.

9B 30 20 70
9B 20 70

9B 30 20 71

Note: The console device normally handles the SET PAGE LENGTH, SET LINE
LENGTH, SET LEFT OFFSET, and SET TOP OFFSET functions automatically.
To allow it to do so again after setting your own values, you can send the function
without a parameter.

284 CORsoie Device

Examples

Move cursor right by 1:

Character string equivalents: <CSI>C or <CSI>lC
Numeric (hex) equivalents: 9B 43 9B 31 43

Move cursor righ t by 20:

Character string equivalent: <CSI>20C
Numeric (hex) equivalent: 9B 32 30 43

Move cursor to upper left corner (home):

Character string equivalents:
<CSI>H or
<CSI>l;lH or
<CSI>;lH or
<CSI>l;H

Numeric (hex) equivalents:
9B 48
9B 31 3B 31 48
9B 3B 31 48
9B 31 3B 48

Move cursor to the fourth column of the first line of the window:

Character string equivalents:
<CSI>1;4H or
<CSI>;4H

Numeric (hex) equivalents:
9B 31 3B 34 48
9B 3B 34 48

Console Device 285

Clear the screen:

Character string equivalents:
<FF> or CTRL-L {clear screen character} or
<CSI>H<CSI>J {home and clear to end of screen} or

Numeric (hex) equivalents:
OC
9B 48 9B 4A

READING FROM THE CONSOLE

Reading input from the console device returns an ANSI 3.64 standard byte stream. This stream
may contain normal characters and/or RAW input event information. You may also request
other RAW input events using the SET RAW EVENTS and RESET RAW EVENTS control
sequences discussed below. See "Selection of Raw Input Events."

The following subroutines are useful for setting up for console reads. Only a single-character
at-a-time version is shown here.

Note: This example does not illustrate the fact that a request for more than one character can
be satisfied by only one, thus requiring you to look at io_Actual.

/* queue up a read request to a console, show where to put the character when ready
* to be returned. Most efficient if this is called right after console is opened */

QueueRead(request, whereto)
struct IOStdReq *request;
char *whereto;
{

}

request->io_Command = CMD_READ;
request- > io_Data = whereto;
request- > io_Length = 1;
SendIO(request);
return;

/* see if there is a character to read. If none, don't wait,
* come back with a value of -1 */

int
ConMayGetChar(consolePort,request, whereto)
struct Port *consolePort;

286 Console Device

struct IOStdReq *request;
char *whereto;
{

}

register temp;

if (GetMsg(consolePort) == NULL) return(-l);
temp = *whereto;
QueueRead(request,whereto);
return(tern p);

/* go and get a character; put the task to sleep if
* there isn't one present */

UBYTE
ConGetChar(consolePort,request, whereto)
struct IOStdReq *request;
struct Port *consolePort;
char *whereto;
{

register temp;
while((GetMsg(consolePort) == NULL)) WaitPort(consolePort);
temp = *whereto; /* get the character * /
QueueRead(request, w hereto);
return(temp);

}

INFORMATION ABOUT THE READ-STREAM

For the most part, keys whose keycaps are labeled with ANSI standard characters will ordi
narily be translated into their ASCII-equivalent character by the console device through the use
of its keymap. A separate section in this chapter has been dedicated to the method used to
establish a keymap and the internal organization of the keymap.

For keys other than those with normal ASCII equivalents, an escape sequence is generated and
inserted into your input stream. For example, in the default state (no raw input events
selected) the function and arrow keys will cause the sequences shown in table 8-3 to be inserted
in the input stream.

Console Device 287

Table 8-3: Special Key Report Sequences

Key U nshifted Sends Shifted Sends

Fl <CSI>O- <CSI>10-
F2 <CSI>I- <CSI>U-
F3 <CSI>2- <CSI>12-
F4 <CSI>3- <CSI>13-
F5 <CSI>4- <CSI>14-
F6 <CSI>5- <CSI>15-
F7 <CSI>6- <CSI>16-
F8 <CSI>7- <CSI>IT
F9 <CSI>8- <CSI>18-
FlO <CSI>9- <CSI>19-
HELP <CSI>?- <CSI>?- (same)

Arrow keys:

Up <CSI>A <CSI>T
Down <CSI>B <CSI>S
Left <CSI>D <CSI> A (notice the space
Right <CSI>C <CSI> @ after <CSI»

CURSOR POSITION REPORT

If you have sent the DEVICE STATUS REPORT command sequence, the console device
returns a cursor position report into your input stream. It takes the form:

<CSI> <row>;<column>R

For example, if the cursor is at column 40 and row 12, here are the ASCII values you receive in
a stream:

9B 34 30 3B 31 32 52

288 Console Device

WINDOW BOUNDS REPORT

A user may have either moved or resized the window to which your console is bound. By issu
ing a WINDOW STATUS REPORT to the console, you can read the current position and size
in the input stream. This window bounds report takes the following form:

<CSI>I;I;<bottom margin>;<right margin>r

Note that the top and left margins are always 11 for the Amiga. The bottom and right margins
give you the window row and column dimensions as well. For a window that holds 20 lines
with 60 characters per line, you will receive the following in the input stream:

9B 31 3B 31 3B 32 30 3B 36 30 20 72

SELECTING RAW INPUT EVENTS

If the keyboard information-including "cooked" keystrokes-does not give you enough infor
mation about input events, you can request additional information from the console driver.

The command to SET RAW EVENTS is formatted as:

"<CSI> [event-types-separated-by-semicolons]{"

If, for example, you need to know when each key is pressed and released you would request
"RAW keyboard input." This is done by writing "<CSI>I{" to the console. In a single SET
RAW EVENTS request, you can ask the console to set up for multiple event types at one time.
You must send multiple numeric parameters, separating them by semicolons (;). For example,
to ask for gadget pressed, gadget released, and close gadget events, write "<CSI>7;8;11{" (all
as ASCII characters, without the quotes).

You can reset, that is, delete from reporting, one or more of the raw input event types by using
the RESET RAW EVENTS command, in the same manner as the SET RAW EVENTS was
used to establish them in the first place. This command stream is formatted as:

< CSI > [even t-types-separated-by-semicolons]}

So, for example, you could reset all of the events set in the above example by transmitting the
command sequence: "<CSI>7;8;11}." Table 8-4 is a list of the valid raw input event types.

Console Device 289

Table 8-4: Raw Input Event Types

Request
Number Description

0 No-op Used internally
1 RAW keyboard input Intuition swallows all except

the select button
2 RAW mouse input
3 Event Sent whenever your

window is made active
4 Pointer position
5 (unused)
6 Timer
7 Gadget pressed
8 Gadget released
9 Requester activity
10 Menu numbers
11 Close Gadget
12 Window resizpd
13 Window refreshed
14 Preferences changed
15 Disk removed
16 Disk inserted

Complex Input Event Reports

If you select any of these events you will start to get information about the events in the follow
ing form:

where

<CSI> <class>;<subclass>;<keycode>;<qualifiers>;<x>;<y>;
<seconds>; <microseconds> I

<CSI>
is a one-byte field. It is the "control sequence introducer", 9B in hex.

<class>
is the RAW input event type, from the above table.

290 Console Device

<subclass>
is usually O. If the mouse is moved to the right controller, this would be 1.

<keycode>
indicates which key number was pressed (see figure 8-1 and table 8-6). This field can also
be used for mouse information.

< qualifiers>
indicates the state of the keyboard and system. The qualifiers are defined as shown in table
8-5.

Table 8-5: Input Event Qualifiers

Bit Mask Key

0 0001 Left shift
1 0002 Right shift
2 0004 Caps Lock Associated key code is

special; see below.
3 0008 Ctrl
4 0010 Left Alt
5 0020 Right Alt
6 0040 Left Amiga key pressed
7 0080 Right Amiga key pressed
8 0100 Numeric pad
9 0200 Repeat
10 0400 Interrupt Not currently used.
11 0800 Multi-broadcast This window (active one)

or all windows.
12 1000 Left mouse button
13 2000 Right mouse button
14 4000 Middle mouse button (Not available on standard mouse)
15 8000 Relative mouse Indicates mouse coordinates

are relative, not absolute.

The Caps Lock key is handled in a special manner. It generates a keycode only when it is
pressed, not when it is released. However, the up/down bit (80 hex) is still used and reported.
If pressing the Caps Lock key causes the LED to light, keycode 62 (Caps Lock pressed) is sent.
If pressing the Caps Lock key extinguishes the LED, keycode 190 (Caps Lock released) is sent.
In effect, the keyboard reports this key as held down until it is struck again.

The <x> and <y> fields are filled by some classes with an Intuition address: x < < 16+y.

Console Device 291

The <seconds> and <microseconds> fields contain the system time stamp taken at the time
the event occurred. These values are stored as long-words by the system.

With RAW keyboard input selected, keys will no longer return a simple one-character "A" to
"Z" but will instead return raw keycode reports of the form:

<CSI> 1;0; <keycode>; <qualifiers> ;0;0; <seconds> ;<microseconds> 1

For example, if the user pressed and released the "B" key with the left Shift and right Amiga
keys also pressed, you might receive the following data:

< CSI> 1·0·35·129·0·0·23987·991 " , '" ,
< CSI> 1·0·163·129·0·0·24003·181 " , '" ,

The <keycode> field is an ASCII decimal value representing the key pressed or released.
Adding 128 to the pressed key code will result in the released keycode. Figure 4-1 lets you con
vert quickly from a key to its keycode. The tables let you convert quickly from a keycode to a

key.

ESC F1

45 46
7 B 9

00 3D 3E 3F
TAB HELP 4 5 6

20 2E 2F
CTRL 1 2 3

63 10 1E 1 F
SHIFT 0

30 31 OF 3C
A .i1 ALT ENTER

64 66 40 67 4A 43

Figure 8-1: The Amiga Keyboard, Showing Keycodes in Hex

The default values given correspond to the values the console device will return when these keys
are pressed and the keycaps as shipped with the standard American keyboard.

292 Console Device

Table 8-6: System Default Console Key Mapping

Raw Un shifted Shifted
Key Keycap Default Default
Number Legend Value Value

00 ' - , (Accent grave) - (tilde)
01 1 ! 1
02 2@ 2 @
03 3# 3 #
04 4$ 4 $
05 5% 5 %
06 6 A 6
07 7& 7 &
08 8 * 8 *
09 9 (9
OA 0) 0
OB - (Hyphen) _ (Underscore)
OC =+ +
OD \1 \ 1
OE (undefined)
OF 0 0 o (Numeric pad)

10 Q q Q
11 W w W
12 E e E
13 R r R
14 T t T
15 Y y Y
16 U u U
17 I I
18 0 0 0
19 P p P
lA [{ [{
IB 1 } 1 }
lC (undefined)
ID 1 1 1 (Numeric pad)
IE 2 2 2 (Numeric pad)
IF 3 3 3 (Numeric pad)

20 A a A
21 S s S
22 D d D
23 F f F
24 G g G

Console Device 293

Raw Unshifted Shifted
Key Keycap Default Default
Number Legend Value Value

25 H h H
26 J J J
27 K k K
28 L I L
29 , .
2A ' " , (single quote) "
2B (RESERVED) (RESERVED)
2C (undefined)
2D 4 4 4 (Numeric pad)
2E 5 5 5 (Numeric pad)
2F 6 6 6 (Numeric pad)

30 (RESERVED) (RESERVED)
31 Z z Z
32 X x X
33 C c C
34 V v V
35 B b B
36 N n N
37 M m M
38 ,< , (comma) <
39 .> . (period) >
3A / ? / ?
3B (undefined)
3C . (Numeric pad)
3D 7 7 7 (Numeric pad)
3E 8 8 8 (Numeric pad)
3F 9 9 9 (Numeric pad)

40 (Space bar) 20 20
41 Back Space 08 08
42 Tab 09 09
43 Enter OD OD (Numeric pad)
44 Return OD OD
45 Esc 1B 1B
46 Del 7F 7F
47 (undefined)
48 (undefined)
49 (undefined)
4A - (Numeric Pad)
4B (undefined)

294 Console Device

Raw Unshifted Shifted
Key Keycap Default Default
Number Legend Value Value

4C Up arrow <CSI>A <CSI>T
4D Down arrow <CSI>B <CSI>S
4E Forward arrow <CSI>C <CSI> A

(note blank space
after < CSI >)

4F Backward arrow <CSI>D <CSI> @

(note blank space
after <CSI»

50 Fl <CSI>O- <CSI>lO-
51 F2 <csI>r <CSI>11-
52 F3 <CSI>2- <CSI>12-
53 F4 <CSI>3- <CSI>13-
54 F5 <CSI>4- <CSI>14-
55 F6 <CSI>5- <CSI>15-
56 F7 <CSI>6- <CSI>16-
57 F8 <CSI>7- <CSI>17-
58 F9 <CSI>8- <CSI>18-
59 FlO <CSI>9- <CSI>19-
5A (undefined)
5B (undefined)
5C (undefined)
5D (undefined)
5E (undefined)
5F HELP <CSI>1- <CSI>1-

Console Device 295

Raw
Key
Number

60

61

62

63

64
65

66
67

68

69

6A

6B
6C
6D
6E
6F

296 Console Device

Function or
Keycap
Legend

Shift (left of space bar)

Shift (right of space bar)

Caps Lock

Ctrl

(Left) Alt
(Right) Alt

Amiga (left of space bar)
Amiga (righ t of space bar)

Left mouse button
(not converted)

Right mouse button
(not converted)

Middle mouse button
(not converted)

(undefined)
(undefined)
(undefined)
(undefined)
(undefined)

Close Amiga
Open Amiga

Inputs are only for the
mouse connected to Intuition,
currently "gameport" one.

Raw Key Number

70-7F

80-F8

F9

FA

FB

FC

FD

FE

FF

FF

Notes about the preceding table:

Function

(undefined)

Up transition (release or unpress key of one
of the above keys) (80 for 00, F8 for 7F)

Last key code was bad
(was sent in order to resynchronize)

Keyboard buffer overflow

(undefined, reserved for
keyboard processor catastrophe)

Keyboard selftest failed

Power-up key stream start.
Keys pressed or stuck at power-up
will be sent between FD and FE.

Power-up key stream end

(undefined, reserved)

Mouse event, movement only,
no button change (not converted)

1) "(undefined)" indicates that the current key board design should not generate this
number. If you are using SetKeyMapO to change the key map, the entries for these
numbers must still be included.

2) "(not converted)" refers to mouse button events. You must use the sequence
"<CSI>2{" to inform the console driver that you wish to receive mouse events; other
wise these will not be transmitted.

3) "(RESERVED)" indicates that these keycodes have been reserved for non-US key
boards. The "2B" code key will be between the double-quote{") and Return keys. The
"30" code key will be between the Shift and "z" keys.

Keymapping

The Amiga has the capability of mapping the keyboard in any manner that you wish. In other
computers, this capability is normally provided through the use of "keyboard enhancers." In the
Amiga, however, the capability is already present and the vectors that control the remapping
are user-accessible ..

Console Device 297

The functions called AskKeyMapO and SetKeyMapO each deal with a set of eight longword
pointers, known as the KeyMap data structure. The Key Map data structure is shown below.

struct KeyMap {
UBYTE *km_LoKeyMapTypes;
ULONG *km_LoKeyMap;
UBYTE *km_LoCapsable;
UBYTE *km_LoRepeatable;
UBYTE *km_HiKeyMapTypes;
ULONG *km_HiKeyMap;
UBYTE *km_HiCapsable;
UBYTE *km_HiRepeatable;
};

The function AskKeyMapO shown below does not return a pointer to a table of pointers to
currently assigned key mapping. Instead, it copies the current set of pointers to a user
designated area of memory. AskKeyMapO returns a TRUE/FALSE value that says whether
or not the function succeeded.

The function SetKeyMapO, also shown below, copies the designated key map data structure
to the console device. Thus this routine is complementary to AskKeymapO in that it can
restore an original key mapping as well as establish a new one.

/ * this include file is needed as well as
* other normal console includes * /

#include "devices/keymap.h"

int AskKeyMap(request,keymap)
struct IOStdReq *request;
struct KeyMap *keymap;

{

}

int i;
request->io_Command = CD_ASKKEYMAP;
request->io_Length = sizeof(struct KeyMap);
request->io_Data = keymap;/* where to put it */
DoIO(request);
i = request- >io_Error;
if(i) return(F ALSE);
else return(TRUE);/* if no error, it worked. */

298 Console Device

int SetKeyMap(request,keymap)
struct IOStdReq *request;
struct KeyMap *keymap;

{

}

int i;
request->io_Command = CD_SETKEYMAP;
request->io_Length = sizeof(struct KeyMap);
request->io_Data = keymap; 1* where to get it *1
DoIO(request);
i = request->io_Error;
if(i) return(F ALSE);
else return(TRUE); 1* if no error, it worked. * I

As a prelude to the following material, note that the Amiga keyboard transmits raw key infor
mation to the computer in the form of a key position and a transition. Figure 8-1 shows a phy
sical layout of the keys and the hexadecimal number that is transmitted to the system when a
key is pressed. When the key is released, its value, plus hexadecimal 80, is transmitted to the
computer. The key mapping described herein refers to the translation from this raw key
transmission into console device output to the user.

The low key map provides translation of the key values from hex 00-3F; the high key map pro
vides translation of key values from hex 40-67. Raw output from the keyboard for the low key
map does not include the space bar, Tab, Alt, Ctrl, arrow keys, and several other keys (see
figure 8-2 and table 8-7).

00 01 02 03 04 05 06 07 08 09 OA OB OC OD 3D 3E 3F
10 11 12 13 14 15 16 17 18 19 lA IB 2D 2E 2F

20 21 22 23 24 25 26 27 28 29 2A ID IE IF
31 32 33 34 35 36 37 38 39 3A OF 3C

I! 2@ 3# 4$ 5% 6- 7& 8* 9(0) =+ \1 7 8 9
qQ wW eE rR tT yY uU iI 00 pP [{]} 4 5 6

aA s8 dD IT gG hH jJ kK lL ' " 1 2 3 , .
zZ xX cC vV bB nN roM ,< .> /7 0

Figure 8-2: Low Key Map Translation Table

Console Device 299

Table 8-7: High Key Map Hex Values

Function or
Key Number Keycap Legend

40 Space
41 Backspace
42 Tab
43 Enter
44 Return
45 Escape
46 Delete
4A Numeric Pad - character
4C Cursor Up
4D Cursor Down
4E Cursor Forward
4F Cursor Backward
50-59 Function keys FI-FIO
5F Help
60 Left Shift
61 Right Shift
62 Caps Lock
63 Control
64 Left Alt
65 Right Alt
66 Left Amiga
67 Right Amiga

The keymap table for the low and high keymaps consists of 4-byte entries, one per hex keycode.
These entries are interpreted in one of two possible ways:

o As four separate bytes, specifying how the key is to be interpreted when pressed alone,
with one qualifier, with another qualifier, or with both qualifiers (where a qualifier is one
of three possible keys: Ctrl, Alt, or Shift).

o As a longword containing the address of a string descriptor, where a string of hex digits
is to be output when this key is pressed. If a string is to be output, any combination of
qualifiers may affect the string that may be transmitted.

Note: The keymap table must be~in aligned on a word boundary. Each en try is four bytes
long, thereby maintaining word alignment throughout the table. This is necessary because some
of the entries may be longword addresses and must be aligned properly for the 68000.

300 Console Device

ABOUT QUALIFIERS

As you may have noticed, there are three possible qualifiers, but only a 4-byte space in the table
for each key. This does not allow space to describe what the computer should output for all
possible combinations of qualifiers. This problem is solved by only allowing all three qualifiers
to affect the output at the same time in string mode. Here is how that works.

For "vanilla" keys, such as the alphabetic keys, use the 4 bytes to represent the data output for
the key alone, Shifted key, Alt'ed key, and Shifted-and-Alt'ed key. Then for the Ctrl-key-plus
vanilla-key, use the code for the key alone with bits 6 and 5 set to o.

For other keys, such as the Return key or Esc key, the qualifiers specified in the key types table
(u p to two) are the qualifiers used to establish the response to the key. This is done as follows.
In the keytypes table, the values listed for the key types are those listed for the qualifiers in
dev£ces/ keymap.h and dev£ces/ keymap. £. Specifically, these qualifier equates are:

KC_NoqUAL OxOO
KCF_SHIFT OxOl
KCF_ALT Ox02
KCF _CONTROL Ox04
KC_VANILLA Ox07
KCF_DOWNUP Ox08
KCF_STRING Ox40

As shown above, the qualifiers for the various types of keys occupy specific bit positions in the
key types control byte.

In assembly code, a keymap table entry looks like this:

SOME_KEY:
DC.B VALUE_I, VALUE_2, VALUE_3, VALUE_4

Table 8-8 shows how to interpret the keymap for various combinations of the qualifier bits.

Console Device 301

o

o

Table 8-8: Keymap Qualifier Bits

If Keytype is:

KC_NOQUAL
KCF_SHIFT
KCF_ALT
KCF _CONTROL
KCF _ALT +KCF _SHIFT
KCF _CONTROL+KCF _ALT
KCF _CONTROL+KCF _SHIFT
KC_VANILLA

Then value in this position in the
key table is output when the key is
pressed along with:

alone
Shift alone
Alt alone
Ctrl alone

Shift+Alt Alt Shift alone
Ctrl+Alt Ctrl Alt alone
Ctrl+Shift Ctrl Shift alone
Shift+Alt Alt Shift alone*

* Special case-Ctrl key, when pressed with one of the alphabet keys and certain others,
is to output key-alone value with the bits 6 and 5 set to zero.

KEYTYPE TABLE ENTRIES

The vectors named km_LoKeyTypes and km_HiKeyTypes contain one byte per raw key code.
This byte defines the entry type that is made in the key table by a set of bit positions.

Possible key types are:

o Any of the qualifier groupings noted above

o KCF _STRING + any combination of KCF _SHIFT, KCF _ALT, KCF _CONTROL (or
KC_NOQUAL) if the result of pressing the key is to be a stream of bytes (and key
with-one-or-more-qualifiers is to be one or more alternate streams of bytes).

Any key can be made to output up to eight unique byte streams if KCF _STRING is set
in its keytype. The only limitation is that the total length of all of the strings assigned
to a key be within the "jump range" of a single byte increment. See the "String
Output Keys" section below for more information.

The low keytype table covers the raw keycodes from hex 00-3F and contains one byte per key
code. Therefore this table contains 64 (decimal) bytes. The high keytype table covers the raw
keycodes from hex 40-67 and contains 38 (decimal) bytes.

302 Console Device

STRING-OUTPUT KEYS

When a key is to output a string, the keymap table contains the address of a string descriptor
in place of a 4-byte mapping of a key as shown above. Here is a partial table for a new high
key map table that contains only three entries thus far. The first two are for the space bar and
the backspace key; the third is for the tab key, which is to output a string that says "[TAB]."
An alternate string, "[SHIFTED-TAB]," is also to be output when a shifted TAB key is pressed.

new HiMapTypes:

DC.B
DC.B

newHiMap:

DC.B
DC.B
DC.L

newkey42:

DC.B

DC.B

DC.B

DC.B

new42us:

DC.B

new42ue:

new42ss:

DC.B

new42se:

KCF _ALT,KC_NOQUAL,
KCF _STRING+KCF _SHIFT,

0,0,$AO,$20
0,0,0,$08
newkey42

new42ue - new42us

new42us - new key42

new42se - new42ss

new42ss - newkey42

'[TAB]'

'[SHIFTED-TAB]'

;(more)

;space bar, and Alt-space bar
;Back Space key only
;new definition for string to
;output for Tab key
;(more)

;length of the
;unshifted string

;number of bytes from start of
;string descriptor to start of
;this string

;length of the shifted string

;number of bytes from start of
;string descriptor to start of
;this string

The new high map table points to the string descriptor at address newkey42. The new high
map types table says that there is one qualifier, which means that there are two strings in the

Console Device 303

key string descriptor.

Each string in the descriptor takes two bytes in this part of the table: the first byte is the
length of the string, and the second byte is the distance from the start of the descriptor to the
start of the string. Therefore, a single string (KCF _STRING + KC_NOQUAL) takes 2 bytes of
string descriptor. If there is one qualifier, 4 bytes of descriptor are used. If there are two
qualifiers, 8 bytes of descriptor are used. If there are 3 qualifiers, 16 bytes of descriptor are
used. All strings start immediately following the string descriptor in that they are accessed as
single-byte offsets from the start of the descriptor itself. Therefore, the distance from the start
of the descriptor to the last string in the set (the one that uses the entire set of specified
qualifiers) must start within 255 bytes of the descriptor address.

Because the length of the string is contained in a single byte, the length of any single string
must be 255 bytes or less while also meeting the "reach" requirement. However, the console
input buffer size limits the string output from any individual key to 32 bytes maximum.

The length of a keymap containing string descriptors and strings is variable and depends on the
number and size of the strings that you provide.

CAPSABLE BIT TABLE

The vectors called km_LoCapsable and km_HiCapsable point to the first byte in an 8-byte table
that contains more information about the key table entries. Specifically, if the Caps Lock key
has been pressed (the Caps Lock LED is on) and if there is a bit on in that position in the caps
able map, then this key will be treated as though the Shift key is now currently pressed. For
example, in the default key mapping, the alphabetic keys are "capsable" but the punctuation
keys are not. This allows you to set the Caps Lock key, just as on a normal typewriter, and get
all capital letters. However, unlike a normal typewriter, you need not go out of Caps Lock to
correctly type the punctuation symbols or numeric keys.

In the table, the bits that control this feature are numbered from the lowest bit in the byte, and
from the lowest memory byte address to the highest. For example, the bit representing capsable
status for the key that transmits raw code 00 is bit 0 in byte 0; for the key that transmits raw
code 08 it is bit 0 in byte 1, and so on.

There are 64 bits (8-bytes) in each of the two capsable tables.

304 Console Device

REPEATABLE BIT TABLE

For both the low and high key maps there is an 8-byte table that provides one bit per possible
raw key code. This bit indicates whether or not the specified key should repeat at the rate set
by the Preferences program. The bit positions correspond to those specified in the capsable bit
table.

If there is a 1 in a specific position, the key can repeat. The vectors that point to these tables
are called km_LoRepeatable and km_HiRepeatable.

DEFAULT LOW KEY MAP

In the default low key map, all of the keys are treated in the same manner:

o When pressed alone, they transmit the ASCII equivalent of the unshifted key.

o When Shifted, they translate the ASCII equivalent of the shifted value when printed on
the keycap.

o When "Alt'ed" (pressed along with an Alt key), they transmit the alone-value with the
high bit of a byte set (value plus hex 80).

o When Shifted and Alt'ed, they transmit the shifted-value plus hex 80.

In this table, the bytes that describe the data to be transmitted are positioned as the example
for the "A" key shown here:

key_A DC.B
DC.B
DC.B
DC.B

('A')+$80
('a')+$80
('A')
('a')

;Shifted and Alt'ed
;Alt'ed only
;Shifted only
;not Shifted or Alt'ed

In addition to the response to the key alone, Shifted, Alt'ed, and Shifted-and-Alt'ed, the default
low keymap also responds to the key combination of "Ctrl + key" by stripping off bits 6 and 5
of the generated data byte. For example, Ctrl + A generates the translated keycode 01 (61 with
bits 6 and 5 set to 0).

All keys in the low key map are mapped to their ASCII equivalents, as noted in the low key
map key table shown above.

Because the low key table contains 4 bytes per key, and describes the keys (raw codes) from hex
00-3F, there are 64 times 4 or 256 bytes in this table.

Console Device 305

DEFAULT HIGH KEY MAP

Most of the keys in the high key map generate strings rather than single-character mapping.
The following keys map characters with no qualifier, along with their byte mapping:

Key

BACKSP
ENTER
DEL

Generates Value:

$08
$OD
$7F

The following keys map characters and use a single qualifier:

Key

SPACE
RETURN
ESC

numeric pad "-"

Generates Value:

$20
$OD
$lB

$2D

The following keys generate strings:

306 Console Device

If Used with Qualifier,
Generates Value:

$AO (qualifier = AL T)
$OA (qualifier = CONTROL)
$9B (qualifier = ALT)

$FF (qualifier = AL T)

Key Generates Value: If Used with <SHIFT>,
generates Value:

TAB $09 $9B, followed by 'z'

cursor:

UP $9B, followed by 'A' $9B, followed by 'T'
DOWN $9B, followed by 'B' $9B, followed by'S'
FWD $9B, followed by 'c' $9B, followed by , "

followed by '@'

BACKWD $9B, followed by 'D' $9B, followed by , "
followed by 'A'

function
keys:

Fl $9B, followed by '0- , $9B, followed by '10- ,
F2 $9B, followed by '1 - , $9B, followed by '11- ,
F3 $9B, followed by '2- , $9B, followed by '12- ,
F4 $9B, followed by '3- , $9B, followed by '13- ,
F5 $9B, followed by '4- , $9B, followed by '14- ,
F6 $9B, followed by '5- , $9B, followed by '15- ,
F7 $9B, followed by '6- , $9B, followed by '16- ,
F8 $9B, followed by 'T ' $9B, followed by 'IT'
F9 $9B, followed by '8- , $9B, followed by '18- ,
FlO $9B, followed by '9- , $9B, followed by '19- ,

HELP $9B, followed by '?- , (no qualifier used)

Closing a Console Device

When you have finished using a console, it must be closed so that the memory areas it utilized
may be returned to the system memory manager. Here is a sequence that you can use to close a
console device:

CloseDevice(requestBlock);

Note that you should also delete the messages and ports associated with this console after the
console has been closed:

Console Device 307

DeleteStdIO(console WriteMsg);
DeleteStdIO(consoleReadMsg);
DeletePort(console WritePort);
DeletePort(consoleReadPort);

If you have finished with the window used for the console device, you can now close it.

Example Program

The following is a console device demonstration program with supporting macro routines.

/* cons.c */

/* This program is supported by the Amiga C compiler, version 1.1 and beyond.
* (v1.0 compiler has difficulties if string variables do not have their initial
* character aligned on a longword boundary. Compiles acceptably but won't run
* correctly.)

*/

#include "exec/types.h"
#include "exec/io.h"
#include "exec/memory.h"

#include "graphics/gfx.h"
#include "hardware/dmabits.h"
#include "hardware/custom.h"
#include "hardware/blit.h"
#include "graphics/gfxmacros.h"
#include "grapliics/copper.h"
#include "graphics/view.h"
#include "graphics/gels.h"
#include "graphics/regions.h"
#include "graphics/clip.h"
#include "exec/exec.h"
#include "graphics/text.h"
#include "graphics/ gfxbase.h"

#include "devices/console.h"
#include "devices/keymap.h"

#include "libraries/dos.h"

308 Console Device

#include "graphics/text.h"
#include " libraries/ diskfon t.h"
#include "intuition/intuition.h"

UBYTE escdata[] = { Ox9b, '@',
Ox9b, 'A',
Ox9b, 'B',
Ox9b, 'C',
Ox9b, 'D',
Ox9b, 'E',
Ox9b, 'F',
Ox9b, 'J',
Ox9b, 'K',
Ox9b, 'L',
Ox9b, 'M',
Ox9b, 'P',
Ox9b, 'S',
Ox9b, 'T',
Oxlb, 'c',
Ox9b, 'q',
Ox9b, 'n',
Ox9b, ' " 'p',
Ox9b, '0', ' " 'p',
Ox9b, '2', '0', 'h',
Ox9b, '2', '0', '1',
};

/ * insert character * /
/* cursor up */
/* cursor down */
/ * cursor left * /
/ * cursor righ t * /
/ * cursor next line * /
/* cursor prev line */
/ * erase to end of display * /
/* erase to end of line */
/ * insert line * /
/ * delete line * /
/* delete character */
/* scroll up */
/* scroll down */
/* reset to initial state * /
/* window status request * /
/ * device status report * /
/* cursor on */
/* cursor off */
/* set mode * /
/* reset mode */

/* COVER A SELECTED SUBSET OF THE CONSOLE AVAILABLE FUNCTIONS */

#define INSERTCHARSTRING
#define CURSUPSTRING
#define CURSDOWNSTRING
#define CURSFWDSTRING
#define CURSBAKSTRING
#define CURSNEXTLINE
#define CURSPREVLINE
#define ERASEEODSTRING
#define ERASEEOLSTRING
#define INSERTLINESTRING
#define DELETELINESTRING
#define DELCHARSTRING
#define SCROLLUPSTRING
#define SCROLLDOWNSTRING
#define RESETINITSTRING
#define WINDOWSTATSTRING

&escdata[O]
&escdata[0+2]
&escdata[0+4]
&escdata[0+6]
&~scdata[0+8]

&escdata[O+ 10]
&escdata[O+ 12]
&escdata[O+ 14]
&escdata[O+ 16]
&escdata[O+ 18]
&escdata[0+20]
&escdata[0+22]
&escdata[0+24]
&escdata[0+26]
&escdata[0+28]
&escdata[0+30]

Console Device 309

#define DEVSTATSTRING
#define CURSONSTRING
#define CURSOFFSTRING
#define SETMODESTRING
#define RESETMODESTRING

#define BACKSPACE(r)
#define TAB(r)
#define LINEFEED(r)
#define VERTICALTAB(r)
#define FORMFEED(r)
#define CR(r)
#define SHIFTOUT(r)
#define SHIFTIN(r)
#define CLEARSCREEN(r)

#define RESET(r)
#define INSERT(r)
#define CURSUP(r)
#define CURSDOWN(r)
#define CURSFWD(r)
#define CURSBAK(r)
#define CURSNEXTLN(r)
#define CURSPREVLN(r)
#define ERASEEOD(r)
#define ERASEEOL(r)
#define INSERTLINE(r)
#define DELETELINE(r)
#define SCROLLUP(r)
#define SCROLLDOWN(r)
#define DEVICESTATUS(r)
#define WINDOWSTATUS(r)
#define DELCHAR(r)
#define CURSORON(r)
#define CURSOROFF(r)
#define SETMODE(r)
#define RESETMODE(r)

#d efi ne CloseConsole(r)

ULONG DosBase;
ULONG DiskfontBase;
ULONG IntuitionBase;
ULONG GfxBase;

310 Console Device

&escdata[O+32]
&escdata[O+34]
&escdata[O+37]
&escdata[O+41]
&escdata[O+45]

ConPutChar(r,Ox08)
ConPutChar(r,Ox09)
ConPutChar(r,OxOa)
ConPutChar(r,OxOb)
ConPu tChar(r ,OxOc)
ConPu tCh ar(r, OxOd)
ConPutChar(r,OxOe)
ConPutChar(r,OxOf)
ConPutChar(r,OxOc)

Con Write(r,RESETINITSTRING,2)
Con Write(r,INSERTCHARSTRING,2)
Con Write(r,CURSUPSTRING,2)
Con Write(r,CURSDOWNSTRING,2)
Con Write(r,CURSFWDSTRING,2)
Con Write(r,CURSBAKSTRING,2)
Con Write(r,CURSNEXTLINE,2)
Con Write(r,CURSPREVLINE,2)
Con Write(r,ERASEEODSTRING,2)
Con Write(r,ERASEEOLSTRING,2)
Con Write(r,INSERTLINESTRING,2)
Con Write(r,DELETELINESTRING,2)
Con Write(r,SCROLLUPSTRING,2)
Con Write(r,SCROLLDOWNSTRING,2)
ConWrite(r,DEVSTATSTRING,2)
ConWrite(r,WINDOWSTATSTRING,2)
Con Write(r,D ELCHARSTRING,2)
Con Write(r,CURSONSTRING,3)
Con Write(r,CURSOFFSTRING,4)
Con Write(r,SETMODESTRING,4)
Con Write(r,RESETMODESTRING,4)

CloseDev ice(r)

struct NewWindow nw = {
10, 10, / * starting position (left, top) * /
620,90, /* width, height */
-1,-1, /* detailpen, blockpen */
0, /* flags for idcmp */
WINDOWDEPTHIWINDOWSIZINGIWINDOWDRAGISIMPLE_REFRESH

IACTIVATEIGIMMEZEROZERO, /* window gadget flags */
0, / * pointer to 1st user gadget * /
NULL, /* pointer to user check */
"Console Test", / * title * /
NULL, / * pointer to window screen * /
NULL, /* pointer to super bitmap */
100,45, /* min width, height */
640,200, /* max width, height */
WBENCHSCREEN} ;

struct Window *w;
struct RastPort *rp;

struct IOStdReq *consoleWriteMsg;
struct MsgPort *consoleWritePort;
struct IOStdReq *consoleReadMsg;
struct MsgPort *consoleReadPort;

extern struct MsgPort *CreatePortO;
extern struct IOStdReq *CreateStdIOO;

/* I/0 request block pointer */
/ * a port at which to receive * /
/* I/O request block pointer */
/* a port at which to receive */

char readstring[200j; /* provides a buffer even though using only one char * /

mainO
{

SHORT i;
SHORT status;
SHORT problem;
SHORT error;
problem = 0;

if((DosBase = OpenLibrary("dos.library", 0)) == NULL)
{ problem = 1; goto cleanupl; }

if((Diskfon tBase=OpenLibrary(" diskfon t.library" ,O))==NULL)
{ problem = 2; goto cleanup2; }

if((IntuitionBase=OpenLibrary(" in tuition.library" ,O))==NULL)
{ problem = 3; goto cleanup3; }

if((GfxBase=OpenLibrary("graphics.library" ,O))==NULL)

Console Device 311

{ problem = 4; goto cleanup4; }

consoleWritePort = CreatePort("my.con.write" ,0);
if(consoleWritePort == 0)

{ problem = 5; goto cleanup5; }
console WriteMsg = CreateStdIO(console WritePort);
if(consoleWritePort == 0)

{ problem = 6; goto cleanup6; }

consoleReadPort = CreatePort("my .con.read" ,0);
if(consoleReadPort == 0)

{ problem = 7; goto cleanup7; }
consoleReadMsg = CreateStdIO(consoleReadPort);
if(consoleReadPort == 0)

{ problem = 8; goto cleanup8; }

w = (struct Window *)OpenWindow(&nw); /* create a window */
if(w == NULL)

{ problem = 9; goto cleanup9; }

rp = w->RPort; / * establish its rastport for later * /

/* ** */
/* NOW, Begin using the actual console macros defined above. */
/* ** */

error = Open Console(console WriteMsg,consoleReadMsg, w);
if(error != 0)

{ problem = 10; goto cleanuplO; }
/* attach a console to this window, initialize
* for both write and read * /

QueueRead(consoleReadMsg,&readstring[O]); /* tell console where to
* put a character that
* it wants to give me
* and queue up first read * /

ConWrite(consoleWriteMsg,"Hello, World\r\n" ,14);

ConPu tStr(console WriteMsg," testing BACKSPACE");
for(i=O; i < 10; i++)

{ BACKSP ACE(console WriteMsg); Delay(30); }

ConPutStr(consoleWriteMsg,"\r\n");

ConPutStr(consoleWriteMsg,"testing TAB\r");

312 Console Device

for(i=O; i<6; i++)
{ TAB(consoleWriteMsg); Delay(30); }

ConPutStr(consoleWriteMsg,"\r\n");

ConPu tStr(console WriteMsg," testing LINEFEED\r");
for(i=O; i<4; i++)

{ LINEFEED(consoleWriteMsg); Delay(30); }

ConPu tStr(console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing VERTICAL TAB\r");
for(i=O; i<4; i++)

{ VERTICALTAB(consoleWriteMsg); Delay(30); }

ConPutStr(consoleWriteMsg," \r\n");

ConPu tStr{ console WriteMsg," testing FORMFEED\r");
Delay(30);
for{i=O; i<2; i++)

{ FORMFEED{consoleWriteMsg); Delay(30); }

ConPutStr{ console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing CR");
Delay(30);
CR{ console WriteMsg);
Delay(60);
ConPutStr{ console WriteMsg,"\r\n");

ConPu tStr{ console WriteMsg," testing INSERT\r");
for{i=O; i<4; i++)

{ INSERT{consoleWriteMsg); Delay(30); }

ConPutStr{ consoleWriteMsg,"\r\n");

ConPutStr(consoleWriteMsg," testing DELCHAR\r");
CR{consoleWriteMsg);
for(i=O; i < 4; i++)

{ DELCHAR{consoleWriteMsg); Delay(30); }

ConPutStr{ console WriteMsg," \r\n");

ConPu tStr{ console WriteMsg," testing INSERTLINE\r");
CR(console WriteMsg);

Console Device 313

for(i=O; i<3; i++)
{ INSERTLINE(consoleWriteMsg); Delay(30); }

ConPutStr(console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing DELETELINE\r");
CR(console WriteMsg);
LINEFEED(console WriteMsg);
Delay(60);
for(i=O; i<4; i++)

{ DELETELlNE(consoleWriteMsg); Delay(30); }
ConPutStr(console WriteMsg," \r\n");

ConPutStr(consoleWriteMsg,"testing CURSUP\r");
for(i=O; i<4; i++)

{ CURSUP(consoleWriteMsg); Delay(30); }

ConPutStr(console WriteMsg," \r\n");

ConPutStr(console WriteMsg," testing CURSDOWN\r");
for(i=O; i<4; i++)

{ CURSDOWN(consoleWriteMsg); Delay(30); }

ConPu tStr(console WriteMsg," \r\n");

ConPutStr(consoleWriteMsg,"testing CURSFWD\r");
for(i=O; i<4; i++)

{ CURSFWD(consoleWriteMsg); Delay(30); }

ConPutStr(console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing CURSBAK");
for(i=O; i<4; i++)

{ CURSBAK(consoleWriteMsg); Delay(30); }

ConPu tStr(console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing CURSPREVLN");
for(i=O; i<4; i++)

{ CURSPREVLN(consoleWriteMsg); Delay(30); }

ConPutStr(console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing CURSNEXTLN");
for(i=O; i<4; i++)

{ CURSNEXTLN(consoleWriteMsg); Delay(30); }

314 Console Device

ConPutStr(console WriteMsg," \r\n");

ConPu tStr(console WriteMsg," testing ERASEEOD");
CURSPREVLN(console WriteMsg);
CURSPREVLN(console WriteMsg);
CURSPREVLN(console WriteMsg);
Delay(60);
for(i=O; i<4; i++)

{ ERASEEOD(consoleWriteMsg); Delay(30); }

ConPu tStr(console WriteMsg," \r\n");

ConPutStr(consoleWriteMsg," testing ERASEEOL.junk");
CURSBAK(console WriteMsg);
CURSBAK(console WriteMsg);
CURSBAK(console WriteMsg);
CURSBAK(console WriteMsg);
CURSBAK(console WriteMsg);
Delay(60);
ERASEEOL(consoleWriteMsg);
Delay(30);
ConPutStr(console WriteMsg," \r\n");

ConPutStr(consoleWriteMsg,"testing SCROLLUP");
for(i=O; i < 4; i++)

{ SCROLLUP(console WriteMsg); Delay(30); }

ConPutStr(console WriteMsg,"\r\n");
ConPutStr(consoleWriteMsg,"testing SCROLLDOWN");
ConPutStr(consoleWriteMsg,"\n \n \n");
for(i=O; i<4; i++)

{ SCROLLDOWN(consoleWriteMsg); Delay(30); }

ConPutStr(console WriteMsg," \r\n");

ConPutStr(consoleWriteMsg,"testing CURSOROFF");
CURSOROFF(console WriteMsg);
ConPutStr(console WriteMsg, "printed.with.cursor.off");
Delay(60);
ConPutStr(console WriteMsg," \r\n");

CURSORON(console WriteMsg); Delay(30);
ConPutStr(consoleWriteMsg,"testing CURSORON");

Console Device 315

/* ** */
Delay(120); /* wait 2 seconds (120/60 ticks) */

status = CheckIO(consoleReadMsg); /* see if console read
* anything, abort if not * /

if(status == FALSE) AbortIO(consoleReadMsg);
WaitPort(consoleReadPort); /* wait for abort to complete */
GetMsg(consoleReadPort); /* and strip message from port */

CloseConsole(console WriteMsg);
cleanuplO:
cleanup9:

Close Window(w);
cleanup8:

DeleteStdIO(consoleReadMsg);
cleanup7:

DeletePort(consoleReadPort);
cleanup6:

DeleteStdIO(console WriteMsg);
cleanup5:

DeletePort(console WritePort);
cleanup4:

CloseLibrary(GfxBase);
cleanup3:

CloseLibrary(In tuitionBase);
cleanup2:

CloseLibrary(DiskfontBase);
cleanup1:

CloseLibrary(DosBase);
if(problem > 0) exit(problem+1000);
else

return(O);

} /* end of mainO */

/ * Open a console device * /

/* this function returns a value of 0 if the console
* device opened correctly and a nonzero value (the error
* returned from OpenDevice) if there was an error.

*/

int
Open Console(writerequest,readrequest, window)

316 Console Device

struct IOStdReq *writerequest;
struct IOStdReq *readrequest;
struct Window *window;
{

}

int error;
writerequest- >io_Data = (APTR) window;
writerequest- > io_Length = sizeof(*window);
error = OpenDevice(" console.device", 0, writerequest, 0);
read request- > io_Device = writerequest- > io_Device;
readrequest- >io_Unit = writerequest- >io_Unit;

/* clone required parts of the request * /
return(error);

/* Output a single character to a specified console */

int
ConPutChar(request,character)

struct IOStdReq *request;
char character;
{

}

request->io_Command = CMD_WRITE;
request- >io_Data = (APTR)&character;
request- >io_Length = 1;
DoIO(request);
/* command works because DolO blocks until command is
* done (otherwise pointer to the character could become
* invalid in the meantime).

*/
return(O);

/* Output a stream of known length to a console */

int
Con Write(request,string,length)

struct IOStdReq *request;
char *string;
int length;
{

request->io_Command = CMD_WRITE;
request- >io_Data = (APTR)string;
request- > io_Length = length;
DoIO(request);
/* command works because DolO blocks until command is

Console Device 317

}

* done (otherwise pointer to string could become
* invalid in the meantime).

*/
return(O);

/* Output a NULL-terminated string of characters to a console */

int
ConPu tStr(request,string)

struct IOStdReq *request;
char *string;
{

request->io_Command = CMD_WRITE;
request- >io_Data = (APTR)string;
request->io_Length = -1; /* tells console to end when it sees

}

DoIO(request);
return(O);

* a terminating zero on the string. * /

/* queue up a read request to a console, show where to put the
* character when ready to be returned. Most efficient if this is
* called right after console is opened * /

int
QueueRead(request, whereto)

struct IOStdReq *request;
char *whereto;
{

}

request->io_Command = CMD_READ;
request- >io_Data = (APTR)whereto;
request- >io_Length = 1;
SendIO(request);
return(O);

/* see if there is a character to read. If none, don't wait,
* come back with a value of -1 * /

int
ConMayGetChar(request,requestPort, whereto)

struct IOStdReq *request;
char *whereto;
{

318 Console Device

}

register temp;

if (GetMsg(requestPort) == NULL) return(-I);
temp = *whereto;
QueueRead(request, whereto);
return(temp);

/* go and get a character; put the task to sleep if
* there isn't one present */

UBYTE
Con GetChar(consolePort,request, whereto)

struct IOStdReq *request;
struct MsgPort *consolePott;
char *whereto;
{

register UBYTE temp;
while((GetMsg(consolePort) == NULL)) WaitPort(consolePort);
temp = *whereto; /* get the character */
QueueRead(request, whereto);
return(temp);

}

Console Device 319

Chapter 9

Input Device

This chapter describes the Amiga input device, which is a combination of three other
devices: keyboard device, gameport device, and timer device. The input device merges separate
input event streams from the keyboard, mouse, and timer into a single stream. This single
stream can then be interpreted by the prioritized linked list of input handlers that are watching
the input stream.

Note that two additional messages can appear in the input stream: "disk inserted" and "disk
removed." These messages come from AmigaDOS and are sent to the input device for further
propagation.

Input Device 321

Introd uction

The input device is automatically opened by AmigaDOS by any call to open the console device.
When the input device is opened, a task, appropriately named "input.device", is started. The
input device task communicates directly with the keyboard device to obtain raw key inputs. It
also communicates with the gameport device to obtain mouse button and mouse movement
events and with the timer device to obtain time events. In addition to these event streams, you
can also directly input an event to the input device, to be fed to the handler chain. This topic
is also covered below.

The keyboard device is also accessible directly (see chapter 10). However, while the input device
task is operating, that task attempts to retrieve all incoming keyboard events and add them to
the input stream.

The gameport device has two units. As you view the Amiga, looking at the gameport connec
tors, connector "I" is assigned as the primary mouse input for Intuition and contributes
gameport input events to the input event stream. Connector "2" is handled by the other
gameport unit and is currently unassigned. Each unit of the gameport device is an exclusive
access object, in that you can specify what type of controller is attached. It is then assumed
that only one task is sending requests for input from that unit. While the input device task is
running, that task expects to read the input from connector 1. Direct use of the gameport dev
ice is covered in a separate chapter of this manual.

The timer device provides time events for the input device. It also provides time interval reports
for controlling key repeat rate and key repeat threshold. The timer device is a shared-access
device and is described in its own separate chapter.

Input Device Commands

The input device allows the following system functions:

Command

OpenDeviceO
CloseDeviceO
DoIOO
SendIOO
AbortIOO

322 Input Device

Operation

Obtain shared use of the input device
Relinquish use of the input device
Initiate a command, and wait for it to complete
Initiate a command, and return immediately
Abort a command already in the queue

Only the Start, Stop, Invalid, and Flush commands have been implemented for this device. All
other commands are no-operations.

The input device also supports the device-specific commands shown in table 9-1.

I/O Command

IND _ WRITEEVENT
IND _ADDHANDLER
IND _REMHANDLER
IND _SETTHRESH
IND_SETPERIOD
IND_SETMPORT
IND _SETMTRIG

IND _SETMTYPE

Table 9-1: Input Device Commands

Operation

Propagate an input event stream to all devices
Add an input-stream handler into the handler chain
Remove an input-stream handler from the handler chain
Set the repeating key hold-down time before repeat starts
Set the period at which a repeating key repeats.
Set the game port port to which the mouse is connected
Read conditions that must be met by a mouse before

a pending read request will be satisfied
Set the type of device at the mouse port

The device-specific commands outlined above are described in the following paragraphs. A
description of the contents of an input event is given first because the input device deals III

input events. An input event is a data structure that describes the following:

o The class of the event-often describes the device that generated the event

o The subclass of the event-space for more information if needed

o The code-keycode if keyboard, button information if mouse, others

o A qualifier such as "Alt key also down," "key repeat active"

o A position field that contains a data address or a mouse position count

o A time stamp, showing the sequence in which events have occurred

o A link-field by which input events are linked together

The various types of input events are listed in the include file devices/ inputevent.h. That infor
mation is not repeated here. You can find more information about input events in the chapters
titled "Gameport Device" and "Console Device."

There is a difference between simply receiving an input event from a device (gameport, key
board, or console) and actually becoming a handler of an input event stream. A handler is a
routine that is passed an input event, and it is up to the handler to decide if it can process the

Input Device 323

input event. If the handler does not recognize the event, it passes the address of the event as a
return value.

Because of the input event field called ie_NextEvent, it is possible for the input event to be a
pointer to the first event in a linked list of events to be handled. Thus, the handler should be
designed to handle multiple events if such a link is used. Note that handlers can themselves
generate new linked lists of events which can be passed down to lower priority handlers.

IND_ADDHANDLER COMMAND

You add a handler to the chain using the command IND_ADDHANDLER. Assuming that you
have a properly initialized an IOStdReq block ~ a result of a call to OpenDeviceO (for the
input device), here is a typical C-Ianguage call to the IND_ADDHANDLER function:

struct Interrupt handlerStuff;
handlerStuff.is_Data = &hsData;

/ * address of its data area * /
handlerStuff.is_Code = myhandler;

/ * address of entry point to handler * /
handlerStuff.is_Node.ln_Pri = 51;

/* set the priority one step higher than Intuition, so that our
* handler enters the chain ahead of Intuition.

*/
inputRequestBlock.io_Command = IND_ADDHANDLER;
inputRequestBlock.io_Data = &handlerStuff;

DolO (&in putRequestBlock);

Notice from the above that Intuition is one of the input device handlers and normally distri
butes all of the input events. Intuition inserts itself at priority position 50. You can choose the
position in the chain at which your handler will be inserted by setting the priority field in the
list-node part of the interrupt data structure you are feeding to this routine.

Note also that any processing time expended by a handler subtracts from the time available
before the next event happens. Therefore, handlers for the input stream must be fast.

Rules for Input Device Handlers

The following rules should be followed when you are designing an input handler:

324 Input Device

o If an input handler is capable of processing a specific kind of an input event and that
event has no links (ie_NextEvent = 0), the handler can end the handler chain by
returning a NULL (0) value.

o If there are multiple events linked together, the handler is free to delink an event from
the input event chain, thereby passing a shorter list of events to subsequent handlers.
The starting address of the modified list is the return value.

o If a handler wishes to add new events to the chain that it passes to a lower-priority
handler, it may initialize memory to contain the new event or event chain. The
handler, when it again gets control on the next round of event handling, should assume
nothing about the current contents of the memory blocks it attached to the event
chain. Lower priority handlers may have modified the memory as they handled their
part of the event. The handler that allocates the memory for this purpose should keep
track of the starting address and the size of this memory chunk so that the memory can
be returned to the free memory list when it is no longer needed.

Your routine should be structured so that it can be called as though from the following C
language statement:

newEventChain = yourHandlerCode(oldEventChain, yourHandlerData);

where

o yourHandlerCode is the entry point to your routine

o oldEventChain is the starting address for the current chain of input events

o newEventChain is the starting address of an event chain which you are passing to the
next handler, if any

A NULL (0) value terminates the handling.

Memory that you use to describe a new input event that you have added to the event chain is
available for reuse or deallocation when the handler is called again or after the
IND_REMHANDLER command for the handler is complete.

Because IND_ADDHANDLER installs a handler in any position in the handler chain, it can, for
example, ignore specific types of input events as well as act upon and modify existing streams of
input. It can even create new input events for Intuition or other programs to interpret.

Input Device 325

IND_REMHANDLER COMMAND

You remove a handler from the handler chain with the command IND_REMHANDLER.
Assuming that you have a properly initialized IOStdReq block as a result of a call to
OpenDeviceO (for the input device) and you have already added the handler using
IND_ADDHANDLER, here is a typical C-Ianguage call to the IND_REMHANDLER function:

inputRequestBlock.io_Command = IND_REMHANDLER;
inputRequestBlock.io_Data = &handlerStuff;

/ * tell it which one to remove * /
DoIO(&inputRequestBlock);

IND_WRITEEVENT COMMAND

As noted in the overview of this chapter, input events are normally generated by the timer dev
ice, keyboard device or gameport device. A user can also generate an input event and send it to
the input device. It will then be treated as any other event and passed through to the input
handler chain. You can create your own stream of events and then send them to the input dev
ice using the IND_WRITEEVENT command. Here is an example, assuming a correctly initial
ized input_request_hlock. The example sends in a single event, which is a phony mouse
movement:

struct InputEvent phony;

input_request_hlock.io_Command = IND_ WRITEEVENT;
input_request_hlock.io_Flags = 0;
input_request_hlock.io_Length = sizeof(struct InputEvent);
input_request_hlock.io_Data = &phony;

phony.ie_NextEvent = NULL; /* only one */
phony.ie_Class = IECLASS_RA WMOUSE;
phony .ie_TimeStamp.tv _secs = 0;
phony.ie_TimeStamp.tv_micro = 0;
phony.ie_Code = IECODE_NOBUTTON;
phony.ie_Qualifier = IEQUALIFIER_RELATIVEMOUSE;
phony.ie_X = 10;
phony .ie_ Y = 5;

/ * mouse didn't move, hut program made system think that it did. * /
DoIO(&input_request_hlock);

Note: This command adds the input event to the end of the current event stream. The system
links other events onto the end of this event, thus modifying the contents of the data structure
you constructed in the first place.

326 Input Device

IND_SETTHRESH COMMAND

This command sets the timing in seconds and microseconds for the input device to indicate how
long a user must hold down a key before it begins to repeat. This command is normally per
formed by the Preferences tool or by Intuition when it notices that the Preferences have been
changed. If you wish, you can call this function. The following typical sequence assumes that
you have already correctly initialized the request block by opening the input device. Only the
fields shown here need be initialized.

struct InputEvent thresh_event;

input_request_hlock.io_Command = IND_SETTHRESH;
input_request_hlock.io_Flags = 0;
input_request_hlock.io_Data = &thresh_event;

thresh_event.ie_NextEvent = 0;
thresh_event.ie_TimeStamp.tv _secs = 1; /* one second * /
thresh_event.ie_TimeStamp.tv _micro = 500000;

/* 500,000 microseconds = 1/2 second * /
DoIO(&input_request_hlock);

IND_SETPERIOD COMMAND

This command sets the time period between key repeat events once the initial period threshold
has elapsed. Again, it is a command normally issued by Intuition and preset by the Preferences
tool. A typical calling sequence is as shown above; change the command number and the timing
period values to suit your application.

Input Device and Intuition

There are several ways to receive information from the various devices that are part of the
input device. The first way is to communicate directly with the device. This way is, as
specified above, occasionally undesirable (while the input device task is running). The second
way is to become a handler for the stream of events which the input device produces. That
method is also shown above.

The third method of getting input from the input device is to retrieve the data from the console
device or from the IDCMP (Intuition Direct Communications Message Port).

Input Device 327

If you choose this third method, you should be aware of what happens to input events if your
task chooses not to respond to them. If there is no active window and no active console, then
input events (keystrokes or left-button mouse clicks usually) will simply be ignored. If, how
ever, there is an active window (yours), and you choose to simply let the messages pile up
without responding to them as quickly as possible, here is what happens:

o Another event occurs. If the system has no empty message that it can fill in to report
this new event, then memory is dynamically allocated to hold this new information and
the new message is transmitted to the message port for the task.

o When the task finally responds to the message, the allocated memory is not returned to
the system until the window is closed. Therefore, a task that chooses not to respond to
its incoming messages for a long period of time can potentially remove a great deal of
memory from the system free-memory list, making that memory space unavailable to
this or other tasks until this task is completed.

Thus it is always a good idea to respond to input messages as quickly as possible to maximize
the amount of free memory in the system while your task is running.

Sample Program

/* Sample program for adding an input handler to the input stream
* Note that compiling this program native on the Amiga requires
* a separate compile for this program, a separate assembly for the
* handler.interface.asm, and a separate alink phase. Alink will
* be used to tie together the object files produced by the separate
* language phases. If compiling under Amiga C, disable stack checking
* code in pass 2 of the compiler (e.g., lc2 -v filename.q).

*
* Linking information:
* inputdev.with:

*
* FROM lib:Lstartup.obj,inputdev.o, input.timerstuif.o, handler.interface.o
* TO inputdev
* LIBRARY lib:lc.lib, lib:amiga.lib

*/

#include <exec/types.h>
#include <exec/ports.h>
#include <exec/memory.h>
#include <exec/io.h>
#include <exec/tasks.h>

328 Input Device

#include < exec/in terru pts.h >
#include <devices/input.h>
#include < exec/ devices.h >
#include < devices/inpu tevent.h >

#define FIKEYUP OxDO
struct InputEvent copyevent; /* local copy of the event */

/* assumes never has a next.event attached */
struct MsgPort *inputDevPort;
struct IOStdReq *inputRequestBlock;
struct Interrupt handlerStuff;

struct InputEvent dummyEvent;

extern struct MsgPort *CreatePortO;
extern struct IOStdReq *CreateStdIOO;

struct MemEntry me[IO];

/* If we want the input handler itself to add anything to the
* input stream, we will have to keep track of any dynamically
* allocated memory so that we can later return it to the system.
* Other handlers can break any internal links the handler puts
* in before it passes the input events.

*/

struct InputEvent
*myhandler(ev, mydata)

{

struct InputEvent *ev;/* and a pointer to a list of events */
struct MemEntry *mydata[];
/* system will pass me a pointer to my own data space. */

/* Demo version of program simply reports input events as
* its sees them; passes them on unchanged. Also, if there
* is a linked chain of input events, reports only the lead
* one in the chain, for simplicity.

*/
if(ev- > ie_Class == IECLASS_TIMER)
{

return(ev);
}
/* don't try to print timer events!!! they come every 1/10th sec. */
else
{

ForbidO; / * don't allow a mix of even ts to be reported * /

Input Device 329

}

}

copyevent.ie_Class = ev- > ie_Class;
copyeven t.ie_Su bClass = ev- > ie_Su bClass;
copyevent.ie_Code = ev->ie_Code;
copyevent.ie_Qualifier = ev- > ie_Qualifier;
copyevent.ie_X = ev- > ie_X;
copyevent.ie_Y = ev->ie_Y;
copyevent.ie_TimeStamp.tv_secs = ev->ie_TimeStamp.tv_secs;
copyevent.ie_TimeStamp.tv _micro = ev- >ie_TimeStamp. tv_micro;
PermitO;

1* There will be lots of events coming through here;
* rather than make the system slow down because something
* is busy printing the previous event, let's just print what
* we find is current, and if we miss a few, so be it.

*
* Normally this loop would "handle" the event or perhaps
* add a new one to the stream. (At this level, the only
* events you should really be adding are mouse, raw key or timer,
* because you are ahead of the intuition interpreter.)
* No printing is done in this loop (lets mainO do it) because
* printf can't be done by anything less than a 'process'

*1
return(ev);
1* pass on the pointer to the event (most handlers would
* pass on a pointer to a changed or an unchanged stream)
* (we are simply reporting what is seen, not trying to
* modify it in any way) *1

1* NOTICE: THIS PROGRAM LINKS ITSELF INTO THE INPUT STREAM AHEAD OF
* INTUITION. THEREFORE THE ONLY INPUT EVENTS THAT IT WILL SEE AT
* ALL ARE TIMER, KEYBOARD AND GAMEPORT. AS NOTED IN THE PROGRAM,
* THE TIMER EVENTS ARE IGNORED DELIBERATELY *1

extern struct Task *FindTaskO;
struct Task *mytask;
LONG mysignal;
extern VOID HandlerInterfaceO;

struct timerequest *mytimerRequest;

extern struct timerequest *PrepareTimerO;
extern int WaitTimerO;
extern int DeleteTimerO;

330 Input Device

mainO
{

SHORT error;
ULONG oldseconds, old micro, oldclass;

/* init dummy event, this is what we will feed to other handlers
* while this handler is active * /

dummyEvent.ie_Class = IECLASS_NULL; /* no event happened */
dummyEvent.ie_NextEvent = NULL; /* only this one in the chain */

inputDevPort = CreatePort(O,O); /* for input device */
if(inputDevPort == NULL) exit(-1); /* error during createport */
inputRequestBlock = CreateStdIO(inputDevPort);
if(inputRequestBlock == 0) { DeletePort(inputDevPort); exit(-2); }

/ * error during createstdio * /

mytimerRequest = PrepareTimerO;
if(mytimerRequest == NULL) exit(-3);

handlerStuff.is_Data = (APTR)&me[O];
/* address of its data area * /

handlerStuff.is_Code = HandlerInterface;
/* address of entry point to handler */

handlerStuff.is_Node.ln_Pri = 51;
/* set the priority one step higher than
* Intuition, so that our handler enters
* the chain ahead of Intuition.

*/
error = OpenDevice("input.device" ,0,inputRequestBlock,0);
if(error == 0) printf("\nOpened the input device");

inputRequestBlock- >io_Command = IND_ADDHANDLER;
inputRequestBlock- >io_Data = (APTR)&handlerStuff;

DoIO(inputRequestBlock);
copyevent.ie_TimeStamp.tv_secs = 0;
copyevent.ie_TimeStamp.tv _micro = 0;
copyevent.ie_Class = 0;
oldseconds = 0;
oldmicro = 0;
old class =0;

for(;;)
{

/* FOREVER */

Input Device 331

WaitForTimer(mytimerRequest, 0, 100000);
/* TRUE = wait; time = l/lOth second */

/* note: while this task is asleep, it is very very likely that
* one or more events will indeed pass through the input handler.
* This task will only print a few of them, but won't intermix
* the pieces of the input event itself because of the ForbidO
* and PermitO (not allow task swapping when a data structure
* isn't internally consistent)

*/
if(copyevent.ie_Class == IECLASS_RAWKEY && copyevent.ie_Code == F1KEYUP)

else
{

}
}

break; /* exit from forever */

ForbidO;
if(copyevent.ie_TimeStamp.tv _sees != oldseconds II

copyevent.ie_TimeStamp.tv_micro != oldmicro II
copyevent.ie_Class != oldclass)

{

}

oldseconds = copyeven t.ie_TimeStam p. tv_sees;
oldmicro = copyevent.ie_TimeStamp.tv _micro;
old class = copyevent.ie_Class;
showEvents(©event);

PermitO;

/ * Although this task sleeps (main loop), the handler is independently
* called by the input device.

*/

/* For keystrokes that might be recognized by AmigaDOS, such as
* alphabetic or numeric keys, you will notice that after the
* first such keystroke, AmigaDOS appears to lock out your task
* and accepts all legal keystrokes until you finally hit return.
* This is absolutely true when both you and AmigaDOS try to
* write into the same window, as is true if you run this program
* from the CLI, the first keystroke recognized by AmigaDOS locks
* the layer into which it is writing. Any other task trying
* to write into this same layer is put to sleep. This allows
* AmigaDOS to edit the input line and prevents other output to
* that same window from upsetting the input line appearance.
* In the same manner, while your task is sending a line of output,
* AmigaDOS can be put to sleep it too must output at that time.

*

332 Input Device

* You can avoid this problem if you wish by opening up a separate
* window and a console device attached to that window, and output
* strings to that console. If you click the selection button on
* this new window, then AmigaDOS won't see the input and your
* task will get to see all of the keystrokes. The other alternative
* you can use, for demonstration sake, is to:

*
* 1. Make the AmigaDOS window slightly smaller in the
* vertical direction.
* 2. Then click in the Workbench screen area outside
* of any window.

*
* Now there is no console device (particularly not AmigaDOS's
* console) receiving the raw key stream and your task will report
* as many keystrokes as it can catch (while not sleeping, that is).

*/

/ * remove the handler from the chain * /
inputRequestBlock->io_Command = IND_REMHANDLER;
inputRequestBlock- >io_Data = (APTR)&handlerStuff;
DoIO(inputRequestBlock);

/* close the input device */
CloseDevice(in pu tRequestBlock);

/ * delete the 10 request * /
DeleteStdIO(inpu tRequestBlock);

/ * free other system stuff * /
DeletePort(inputDevPort);
DeleteTimer(mytimerRequest);

} /* end of main */

int
showEvents(e)
struct InputEvent *e;
{

printf("\n\nNew Input Event");
printf("\nie_Class = %lx" ,e- > ie_Class);
printf("\nie_SubClass = %lx" ,e- > ie_SubClass);
printf("\nie_Code = %lx", e- > ie_Code);
printf("\nie_Qualifier = %lx" ,e- > ie_Qualifier);
printf("\nie_X = %ld", e->ie_X);
printf("\nie_Y = %ld", e- >ie_Y);
printf("\nie_TimeStamp(seconds) = %lx", e->ie_TimeStamp.tv_secs);

Input Device 333

return(O);
}

/* input.timerstuff.c */

#include "exec/types.h"
#include "exec/nodes.h"
#include "exec /lists.h"
#include "exec/memory .h"
#include "exec/interrupts.h"
#include "exec/ports.h"
#include "exec/libraries.h"
#inclucle "exec/io.h"
#include "exec/tasks.h"
#include "exec/ execbase.h"
#include "exec/ devices.h"
#include "devices/timer.h"

extern struct MsgPort *CreatePortO;
extern struct lORe quest *CreateExtIOO;

struct timerequest
* PrepareTimer(precision)
SHORT precision;
{

/* return a pointer to a time request; If any problem, return NULL * /

int error;
SHORT whichunit;

struct MsgPort *timerport;
struct time request *timermsg;

timerport = CreatePort(O,O);
if (timerport == NULL)

return(NULL); / * error during CreatePort * /

timermsg = (struct timerequest *)
CreateExtIO(timerport,sizeof(struct timerequest));

if (timermsg == NULL)
{
DeletePort(timerport);
return(NULL); /* error during CreateExtIO */
}

334 Input Device

}

int

if(precision) / * if true, use precision timer (under 1 second) * /
whichunit = UNIT_MICROHZ;

else
whichunit = UNIT_VBLANK;

error = OpenDevice(TIMERNAME, whichunit, timermsg, 0);
if (error != 0)

{
DeleteExtlO(timermsg,sizeof(struct timerequest));
DeletePort(timerport);
return(NULL); /* Error during OpenDevice */
}

return(timermsg);

WaitForTimer(tr ,seconds, microseconds)
ULONG seconds, microseconds;
struct timerequest *tr;
{

tr->tr_node.io_Command = TR_ADDREQUEST; /* add a new timer request */

}

tr->tr_time.tv_secs = seconds; /* seconds */
tr->tr_time.tv_micro = microseconds; /* microseconds */
DoIO(tr); /* post request to the timer */

/ * goes to sleep till done * /
return(O);

int
DeleteTimer(tr)
struct timerequest *tr;
{

}

struct MsgPort *tp;

tp = tr- >tr_node.io_Message.mn_ReplyPort;
if(tr != 0)
{

CloseDevice(tr);
DeleteExtIO(tr,sizeof(struct timerequest));

}
if(tp != 0)

DeletePort(tp);
return(O);

Input Device 335

* handler.interface.asm

* HandlerInterfaceO

* * This code is needed to convert the calling sequence performed by
* the input. task for the input stream management into something
* that a C program can understand.

* * This routine expects a pointer to an InputEvent in AO, a pointer
* to a data area in AI. These values are transferred to the stack
* in the order that a C program would need to find them. Since the
* actual handler is written in C, this works out fine.

XREF _myhandler
XDEF _HandlerInterface

_Handler Interface:
MOVEM.L AOjAl,-(A7)
JSR _myhandler
ADDQ.L #8,A7
RTS

END

336 Input Device

; save registers
; go to the C language routine we provided

; restore the registers on the way out.

Chapter 10

Keyboard Device

Introduction

The keyboard device gives system access to the Amiga keyboard. When you send this device
the command to read one or more keystrokes from the keyboard, for each keystroke (whether
key-up or key-down) the keyboard device creates a data structure called an input event to
describe what happened. A keyboard input event includes the key code (including up or down
transition status), information about the current state of the left and right Shift keys, and
whether the key came from the numeric keypad area.

Keyboard Device 337

Thus, the keyboard device provides more information than simply the "raw" key input that
might be obtained by directly reading the hardware registers. In addition, the keyboard device
can buffer keystrokes for you. If your task takes more time to process prior keystrokes, the key
board device senses additional keystrokes and saves several keystrokes as a type-ahead feature.
If your task takes an exceptionally long time to read this information from the keyboard, any
keystrokes queued up beyond the number the system can handle will be ignored. Normally, the
input device task processes these keyboard events, turning them into input device events so that
no keystrokes are lost. You can find more information about key board event-queuing in the
chapter, "Input Device," in the topic titled "Input Device and Intuition."

Keyboard Device Commands

The keyboard device allows the following system functions. The system functions operate
normally.

Command Operation

OpenDeviceO
CloseDeviceO
DolOO
SendlOO
AbortIOO

Obtain shared use of the keyboard device
Relinquish use of the keyboard device
Initiate a command, and wait for it to complete
Initiate a command, and return immediately
Abort a command already in the queue

The keyboard device also responds to the following commands:

I/O Command

KBD_ADDRESETHANDLER
KBD_REMRESETHANDLER
KBD_RESETHANDLERDONE

KBD_READMA TRIX
KBD_READEVENT

338 Keyboard Device

Operation

Add a reset handler to the device
Remove a reset handler from the device
Indicate that a handler has completed
its job and reset could possibly occur now
Read the state of every key in the keyboard
Read one (or more) key event from the
keyboard device

KBD_ADDRESETHANDLER

This command adds a routine to a chain of reset-handlers. When a user presses the key
sequence Ctrl-Ieft Amiga-right Amiga (the reset sequence), the keyboard device senses this and
calls a prioritized chain of reset-handlers. These might be thought of as clean-up routines that
"must" be performed before reset is allowed to occur. For example, if a disk write is in pro
gress, the system should finish that before resetting the hardware so as not to corrupt the con
tents of the disk. There are probably a few reasons why a program may wish to add its own
reset handler as well. Note that if you add your own handler to this chain, you must ensure
that your handler allows the rest of reset processing to occur. Reset must continue to function.

You add a handler to the chain by the command KBD_ADDRESETHANDLER. Assuming that
you have a properly initialized IOStdReq block as a result of a call to OpenDeviceO (for the
input device), here is a typical C-Ianguage call to the KBD_ADDRESETHANDLER function:

struct Interrupt resetHandlerStuff;
resetHandlerStuff.is_Data = &resetHandler Data;

/ * address of its data area * /
resetHandlerStuff.is_Code = myResetHandler;

/ * address of entry point to handler * /
resetHandlerStuff.is_Node.ln_Pri = myPriority;
keyboardRequestBlock.io_Command = KBD_ADDRESETHANDLER;
keyboardRequestBlock.io_Data = &resetHandlerStuff;

DoIO(&keyboardRequestBlock);

The priority field in the list node structure establishes the sequence in which reset handlers are
processed by the system. Your routine should be structured so that it can be called as though
from the following C-Ianguage sequence:

my ResetHandler(resetHandler Data);

Any return value from this routine is ignored. All keyboard reset handlers are activated if time
permits.

The final command III your handler routine should be KBD_RESETHANDLERDONE, as
described below.

Note: Because of the time-critical nature of handlers, handlers are usually written in assembly
code. However, keyboard reset processing can take a little longer and is therefore less critical if
written in a language such as C.

Keyboard Device 339

KBD_REMRESETHANDLER

This command is used to remove a keyboard reset handler from the system. The only difference
from the calling sequence shown in KBD~DDRESETHANDLER above is a change in the com
mand number to KBD_REMRESETHANDLER, and there is no need to specify the priority of
the handler.

KBD_RESETHANDLERDONE

This command tells the system that this handler is finished with its essential activities. If this
is the last handler in the chain, it completes the reset sequence. If not, the next handler in the
chain gets its chance to function.

Here is a typical statement sequence used to end a keyboard reset handler, agam assummg a
properly initialized inputRequestBlock:

keyboardRequestBlock.io_Command = KBD_RESETHANDLERDONE;
keyboardRequestBlock.io_Data = &resetHandlerStuff;
SendIO(&keyboardRequestBlock);
return; /* return so that other handlers can also do their jobs */

Note that SendlOO is used instead of DoIOO. This routine is being executed within a
software interrupt, and it is illegal to allow a WaitO within such routines.

KBD_READMATRIX

This command lets you discover the current state (UP = 0, DOWN = 1) of every key in the
key matrix. You provide a data area that is at least large enough to hold one bit per key,
approximately 16 bytes. The keyboard layout is shown in figure 10-1 below, indicating the
numeric value each transmits (raw) when it is pressed. This value is the numeric position that
this key occupies in the key matrix read by this command.

340 Keyboard Device

ESC F1

45 46

00
TAB

CTRL

63
SHIFT

A
66

HELP

.AI ALT

40 67

Figure 10-1: Raw Key Matrix

7 B 9

30 3E 3F
4 5 6

20 2E 2F
1 2 3

.10 1E 1 F
0

OF 3C
ENTER

4A 43

Assuming that you have already initialized an lOStdReq block for communication with the
keyboard device, here is a typical calling sequence for sending the read-matrix command:

UBYTE keyMatrix[16];
keyboardRequestBlock.io_Command = KBD_READMATRIX;
keyboardRequestBlock.io_Data = &keyMatrix[O];

/* where to put the key matrix * /
DolO (&key boardRequestBlock);

To find the status of a particular key (for example, to find out if the F2 key is down), you find
the bit that specifies the current state by dividing the key matrix value (hex 51 = decimal 81)
by 8. This indicates that the bit is in byte number 10 of the matrix. Then take the same
number (decimal 81) modulo 8 to determine which bit position within that byte represents the
state of the key. This yields a value of 1. So, by reading bit position 1 of byte number 10, you
determine the status of the function key F2.

KBD_READEVENT

Reading keyboard events is normally not done through direct access to the keyboard device.
See chapter 9, "Input Device," for the intimate linkage between that device and the keyboard
device. This section is provided primarily to show you the component parts of a keyboard
input event.

The figure above shows the code value that each key places into the ie_Code field of the input
event for a key down event. For a key-up event, a value of hexadecimal 80 is or'ed with the
value shown above. Additionally, if either shift key is down, or if the key is one of those in the

Keyboard Device 341

numeric keypad, the qualifier field of the keyboard input event will be filled in accordingly.

Note: The keyboard device can queue up several keystrokes without a task requesting a report
of keyboard events. However, when the keyboard event buffer has been filled with no task
interaction, additional keystrokes will be discarded.

Example Keyboard Read-event Program

Note: This sample program will run properly only if AmigaDOS and the input device are not
active.

/* sample program to demonstrate direct communications with the keyboard,
* won't work unless input device is disabled, so that keyboard can
* be accessed individually. (It will compile and it will run, but
* this program will get some of the keyboard's inputs, and the input
* device will steal the rest ... no guarantee that FI Key can break it out.)

*
* To try the program, if run under the AmigaDOS CLI, strike any key, then
* hit return. (You won't see any responses until each return key ... DOS
* is sitting on the input stream with its input editor as well as the
* input device.) By rapidly hitting FI then Return several times,
* eventually you can generate a hex 50 that exits the program. This
* program is provided for those who are taking over the machine. It
* is not intended as a general purpose keyboard interface under DOS.

*/

#include <exec/types.h>
#include <exec/io.h>
#include <exec/devices.h>
#include < devices/key board.h >
#include <devices/inputevent.h>

#define FIKEY Ox50

extern struct MsgPort *CreatePortO;
extern struct IOStdReq *CreateStdIOO;

SHORT error;

struct IOStdReq *keyreq;
struct MsgPort *keyport;
struct InputEvent *keydata;

342 Key board Device

/* pointer into the returned data area
* where an input event has been sent */

BYTE keybuffer[sizeof(struct InputEvent)];

mainO
{

}

keyport = CreatePort(O,O);
if(keyport == 0) { printf(" \nError during CreatePort");

exit(-1);
}

keyreq = CreateStdIO(keyport);
/* make an io request block for
* communicating with the keyboard * /

if(keyreq == 0) { printf("\nError during CreateStdIO");
DeletePort(keyport);
exit(-2);

}
error = OpenDevice("keyboard.device" ,0,keyreq,0);

/* open the device for access * /

if (error != 0) { printf("\nCan't open keyboard!");
ReturnMemoryToSystem();
exit(-100);

}
keyreq->io_Length = sizeof(struct InputEvent);
/ * read one event each time we go back to the key board * /

keyreq- >io_Data = (APTR)keybuffer;
/* show where to put the data when read */

keydata = (struct InputEvent *)keybuffer;

keyreq->io_Command = KBD_READEVENT; /* get an event!! */

for(;;)
{

/* FOREVER * /

printf("\n Ready to retrieve another keyO);
DoIO(keyreq);
if(keydata- > ie_Code == F1KEY) break;
printf(" \n Raw key found this time was % Ix" ,keydata- > ie_Code);
}
printf("\nFINALLY found an F1 key!!! Exiting ... ");
ReturnMemoryToSystemO; /* can't get here because of FOREVER,

* but if user provides an exit * /

Keyboard Device 343

ReturnMemoryToSystem()
{

}

DeleteStdIO(keyreq);
DeletePort(keyport) ;
return{O);

344 Keyboard Device

Chapter 11

Gameport Device

Introd uction

The gameport device is the means of access to the Amiga gameports. There are two units in
the game port device. Unit 0 controls the front gameport connector (connector 1). Unit 1 con
trols the rear game port connector (connector 2).

You must tell the system the type of device connected to the gameport connector and how the
device is to respond. That is, should the device return status immediately each time you ask for
information or should it only return status once certain conditions have been met?

Gameport Device 345

When the input device is operating, the left gameport connector is usually dedicated to that
device. Therefore, this chapter's examples concentrate on the right connector, which is not
dedicated to the input device. Note that if the input device is not started, the left connector, as
game port unit 0, can perform the same functions as shown below for the right connector.

When a gameport unit finally reponds to a request for input, it formulates an input event. The
contents of the input event vary based on the type of device you have told the unit is connected
and the trigger conditions it must look for.

Gameport Device Commands

The game port device allows the following system functions.

Command

OpenDeviceO

CloseDeviceO
DolOO
SendlOO
AbortlOO

Operation

Obtain exclusive use of one unit of the gameport device.
Returns an error value of -1 if another task already has
control of the unit you have requested.
Relinquish use of the gameport device
Initiate a command and wait for it to complete
Initiate a command and return immediately
Abort a command already in the queue

The gameport device also responds to the following commands:

I/O Command

GPD_SETCTYPE
GPD_ASKCTYPE
GPD_SETTRIGGER
GPD_ASKTRIGGER
GPD_READEVENT

Operation

Set the type of the controller to be monitored
Ask the type of the controller being monitored
Preset the conditions that will trigger a gameport event
Inquire the conditions that have been preset for triggering
Read one or more gameport events from an initialized unit

This command establishes the type of controller that is to be connected to the specific gameport
device. You must have already successfully opened that specific unit before you will be able to
tell it what type of controller is connected. As of this writing, there are three different legal
controller types: mouse, absolute joystick, relative joystick, and "no controller."

346 Gameport Device

A mouse controller can report input events for one, two, or three buttons and for positive or
negative (x,y) movements. A trackball controller or driving controller for various games is gen
erally of the same type, and can be declared as a mouse controller.

An absolute joystick is one that reports one single event for each change in 'its current location.
If, for example, the joystick is centered and a user pushes the stick forward, a forward-switch
event will be generated. A relative joystick, on the other hand, is comparable to an absolute
joystick with "autorepeat" installed. As long as the user holds the stick in a position other
than centered, the gameport device continues to generate position reports.

As of this writing, there is no direct system software support for proportional joysticks or pro
portion al con trollers.

You specify the controller type by the following code or its equivalen t:

struct IOStdReq *gameIOMsg;

setControllerType(type)
UBYTE *type;
{

/ * set type of controller * /
gameIOMsg->io_Command = GPD_SETCTYPE;
gameIOMsg->io_Data = type; /* show where data can be found */

. DoIO(gameIOMsg);
return(O);
}

You use this command to find out what kind of controller has been specified for a particular
unit. This command puts the controller type into the data area that you specify with the com
mand. Here is a sample call:

SHORT getControllerType(type);
UBYTE *type;
{

/ * get type of controller * /
gameIOMsg->io_Command = GPD_GETCTYPE;
gameIOMsg->io_Data = type; /* show where data should be placed */
DoIO(gameIOMsg);
return (gamebuffer[O]);
}

Gameport Device 347

The value that is returned corresponds to one of the four controller types noted in
GPD_SETCTYPE above. Controller type definitions can be found in the include file named
devices/ gameport.h.

GPD_SETTRIGGER

You use this command to specify the conditions that can trigger a game port event. The device
won't reply to your read request until the trigger conditions have been satisfied.

For a mouse device, you can trigger on a certain minimum-sized move in either the x or y direc
tion, on up or down transitions of the mouse buttons, on a timed basis, or any combination of
these conditions. Here is an example that shows why you might want to use both time and
movement. Suppose you normally signal mouse events if the mouse moves at least 10 counts in
either the x or y directions. If you are moving the cursor to keep up with mouse movements
and the user moves the mouse less than 10 counts, after a period of time you will want to
update the position of the cursor to exactly match the mouse position. Thus the timed report
with current mouse counts will be desirable.

For a joystick device, you can select timed reports as well as button-up and button-down report
trigger conditions.

The information needed for gameport trigger setting IS placed into a GameTrigger data
structure:

struct GamePortTrigger {
UWORD gpt_Keys;
UWORD gpt_Timeout;
UWORD gpt_XDelta;
UWORD gpt_YDelta;
};

/ * key transition triggers * /
/ * time trigger (vertical blank units) * /
/ * X distance trigger * /
/ * Y distance trigger * /

The field gpt_Keys can be set to a value of GPTF _UPKEYS to report upward transitions or
GPTF _DOWNKEYS to report downward transitions.

The field gpt_Timeout is set to count how many vertical blank units should occur (1/60th of a
second each) between reports in the absence of another trigger condition. Thus, this specifies
the maximum report interval.

Note: If a task sets trigger conditions and does not ask for the position reports (by sending an
I/O request to be filled in with available reports), the game port device will queue up several
additional reports. If the trigger conditions again occur and as many events as the system can
handle are already queued, the additional triggers will be ignored until the buffer of one or more
of the existing triggers is read by a device read request.

348 Gameport Device

struct GamePortTrigger mousetrigger = {
GPTF _UP KEYS + GPTF _DOWNKEYS,
1800,
XMOVE,
YMOVE };
/ * trigger on all mouse key transitions, every 30 seconds,
* (1800 = 30 times 60 per sec) for any 10 in an x or y direction * /

You set the trigger by using the following code or the equivalent:

gameIOMsg->io_Command = GPD_SETTRIGGER;
/ * command to set the trigger conditions * /

gameIOMsg- >io_Data = &mousetrigger;
/ * show where to find the trigger condition info * /

DoIO(gameIOMsg) ;

Example Programs

MOUSE PROGRAM

Here is a complete sample program that lets you open the right gameport device unit and define
it as a mouse device. You are directed to unplug the mouse and plug it into the right connec
tor. Mouse moves and button clicks are reported to the console device that started the pro
gram. If you do not move the mouse for 30 seconds, a report is generated automatically. If you
do not move it for 2 minutes, the program exits.

/* **
* mouse test, for right game port on the Amiga

* * Notes: The right port is used for this test because the input. device task is
* busy continuously with the lefthand port, feeding input events to Intuition or
* console devices. If Intuition is not activated (applications that take over the
* whole machine may decide not to activate Intuition) and if no console device is
* activated, * the input device will never activate, allowing the application free
* rein to use either the left OR the right hand joystick/mouse port. If either
* Intuition or the console device is activated, the lefthand port will yield, at
* best, every alternate input event to an external application such as this test program.

*
* This will undoubtedly mess up either of the two applications and should,

Gameport Device 349

* therefore, be avoided. It was ok to use the right port in this case, because
* the system has no particular interest in monitoring it.

*
* Using a function called SetMPortO, you can reconfigure so that the
* mouse is expected in the other port, but that isn't demonstrated here.

*** */

#include <exec/types.h>
#include <exec/devices.h>
#include <graphics/gfx.h>
#include <devices/gameport.h>
#include <devices/inputevent.h>

LONG GfxBase=O;

#define XMOVE 10
#define YMOVE 10
#define MAX(m,n) (m > n ? m : n)

/* trigger on all mouse key transitions, and every
* 30 seconds, and for any 10 in an x or y direction * /

struct GamePortTrigger mouse trigger = {
GPTF _UPKEYS + GPTF _DOWNKEYS,
1800,
XMOVE,
YMOVE };

struct InputEvent *game_data; /* pointer into the returned data area
* where input event has been sent */

SHORT error;

struct IOStdReq *game_io_msg;

BYTE gamebuffer[sizeof(struct InputEvent)];
BYTE *gamedata;

SHORT testval;

struct MsgPort *game_msg_port;

SHORT movesize;
extern struct MsgPort *CreatePortO;
extern struct IOStdReq *CreateStdIOO;

350 Gameport Device

SHORT codeval, timeouts;

#define IF _NOT_IDLE_TWO_MINUTES while(timeouts < 4)

mainO
{

GfxBase = OpenLibrary("graphics.library", 0);
if (GfxBase == NULL)
{

}

printf("Unable to open graphics library\n");
exit(lOOO);

printf("Mouseport Demo\n");
printf("\nMove Mouse from Left Port to Right Port\n");
printf("\nThen move the mouse and click its buttons");

timeou ts = 0;

gamedata = &gamebuffer[O];
/* point to first location in game buffer */

game_msg-port = CreatePort(O,O);
/* provide a port for the 10 response */
if(game_msg_port == 0)
{

}

prin tf(" \nError While Performing CreatePort");
exit(-1);

game_io_msg = CreateStdl O(game_msg_port);
/* make an io request block for communicating with

the keyboard */

if(game_io_msg == 0)
{

}

prin tf(" \nError While Performing CreateStdIO");
DeletePort(game_msg_port);
exit(-2);

error = OpenDevice("gameport.device" ,1,game_io_msg,O);
/* open the device for access, unit 1 is right port */

if(error != 0)

Gameport Device 351

{

}

prin tf(" \nError while opening the device, exiting");
DeleteStdIO(game_io_msg);
DeletePort(game_msg_port);
exit(-3);

game_io_msg- > io_Length = sizeof(struct InputEven t);
/* read one event each time we go back to the gameport */

game_io_msg- >io_Data = (APTR)gamebuffer;
/* show where to put the data when read */

game_data = (struct InputEvent *)gamebuffer;

/ * test the mouse in this loop * /
set_con troller_type(GPCT _MOUSE);

/* specify the trigger conditions * /
game_io_msg->io_Command = GPD_SETTRIGGER;
/ * show where to find the trigger condition info * /
game_io_msg- >io_Data = (APTR)&mousetrigger;

/* this command doesn't wait ... returns immediately */
SendIO(game_io_msg);
WaitPort(game_msg_port);
GetMsg(game_msg_port);

printf("\nI will report:");
printf("\n Mouse X or Y moves if either is over 10 counts");
printf("\n Button presses (along with mouse moves if any)");
printf("\n Or every 30 seconds (along with mouse moves if any)");
printf("\n if neither move or click happens\n");
printf("\nIf no activity for 2 minutes, the program exits\n");

/* from now on, just read input events into the input buffer, one at a
*time. read-event waits for the preset conditions * /

game_io_msg- >io_Command = GPD_READEVENT;
game_io_msg- >io_Data = (APTR)gamebuffer;

IF _NOT _IDLE_TWO_MINUTES
{

game_io_msg- > io_Length = sizeof(struct Inpu tEven t);
/* read one event each time we go back to the gameport * /

352 Gameport Device

printf("\n Waiting For Mouse Report\n");

SendIO(game_io_msg);

WaitPort(game_msg_port);
/* this is NOT a busy wait ... it is a task-sleep */

GetMsg(game_ms~port);

codeval = game_data- > ie_Code;
switch(codeval)
{
case IECODE_LBUTTON:

printf("\nMouse Left Button Pressed");
maybe_mouse_movedO;
break;

case IECODE_RBUTTON:
printf("\nMouse Right Button Pressed");
maybe_mouse_movedO;
break;

case (IECODE_LBUTTON + IECODE_UP _PREFIX):
printf("\nMouse Left Button Released");
maybe_mouse_movedO;
break;

case (IECODE_RBUTTON + IECODE_UP _PREFIX):
printf("\nMouse Right Button Released");
maybe_mouse_movedO;
break;

case IECODE_NOBUTTON:
timeouts++; /* after 2 minutes, dump program if

* user loses in terest * /
movesize = maybe_mouse_movedO;
if(movesize == 0)
{

printf("\n30 seconds passed, no trigger events");
}
else if(movesize < XMOVE && movesize < YMOVE)
{

printf("\n(Even though less than trigger count,");
printf("\n reporting mouse move at the selected");
printf("\n timing interval for user info)");

Gameport Device 353

}

}

}
break;

default:
break;

}

set_con troller_type(GPCT _NOCONTROLLER);

CloseDevice(game_io_msg);
DeleteStdIO(game_io_msg);
DeletePort(game_msg_port);

printf("\nExiting program ... 2 minutes with no activity sensed\nl> ");
return(O);

/* if mouse didn't move far enough to trigger a report, then caller
* will also report that 30 seconds (1800 vblanks) has elapsed

*/

int maybe_mouse_movedO
{

}

int xmove, ymove;
xmove = game_data- > ie_X;
ymove = game_data->ie_Y;

if(xmove != 0 II ymove != 0)
{

}

printf("\nMouse Moved by X-value %ld, Y-value %ld",
xmove, ymove);
timeouts = 0;

if(xmove < 0) xmove = -xmove;
if(ymove < 0) ymove = -ymove;

return(MAX(xmove,ymove));

in t set30n troller_type(type)
SHORT type;
{

/ * set type of con troller to mouse * /
game_io_msg->io_Command = GPD_SETCTYPE;

354 Gameport Device

}

*gamedata = type;

/* set it up */
/* this command doesn't wait ... returns immediately */
SendIO(game_io_msg);

WaitPort(game_msg_port);
GetMsg(game_msg_port);
return(O);

JOYSTICK PROGRAM

/* *** */
* joystick test, for right game port on the Amiga.

* Notes: The right port is used for this test because the input.device task is
* busy continuously with the lefthand port, feeding input events to Intuition or
* console devices. If In tuition is not activated (applications that take over the
* whole machine may decide not to activate Intuition) and no console device is
* activated either, the input device will never activate, allowing the application
* free rein to use either the left OR the right hand joystick/mouse port. If
* either Intuition or the console device is activated, the lefthand port will
* yield, at best, every alternate input event to an external application such as
* this test program. This will undoubtedly mess up either of the two applications
* and should ther~fore be avoided. It was ok to use the right port in this case,
* because the system has no particular interest in monitoring it.

*** */

#include <exec/types.h>
#include <exec/devices.h>
#include <graphics/gfx.h>
#include < devices/ gameport.h >
#include <devices/inputevent.h>

LONG GfxBase=O;

#define XMOVE 10
#define YMOVE 10
#define MAX(m,n) (m > n ? m : n)
#define FOREVER for(;;)
struct InputEvent *game_data; /* pointer into the returned data area

* where input event has been sent */

Gameport Device 355

SHORT error;

struct 10StdReq *game_io_msg;

BYTE
BYTE

gamebuffer[sizeof(struct InputEvent)];
*gamebuff;

SHORT
SHORT

testval;
codevalue;

struct MsgPort *game_msg_port;

SHORT movesize;
extern struct MsgPort *CreatePortO;
extern struct IOStdReq *CreateStdIOO;

SHORT codeval, timeouts;

mainO
{

int events_reported;
even ts_reported = 0;
printf(" Joystick Demo\n");
printf("\nPlug a Joystick Into Right Port\n");
printf(" \nThen move the stick and click its buttons");

/* point to first location in game buffer */
gamebuff = &gamebuffer[O];

/* SYSTEM DEVICE COMMUNICATIONS SUPPORT SETUP ROUTINES ****** */

/* provide a port for the 10 response * /
game_msg_port = CreatePort(O,O);
if(game_msg_port == 0)
{

}

prin tf(" \nError While Performing CreatePort");
exit(-1);

/* make an io request block for communicating with the gameport * /
game_io_msg = CreateStdIO(game_msg_port);

if(game_io_msg == 0)
{

printf("\nError While Performing CreateStdIO");

356 Gameport Device

}

DeletePort(game_msg_port) ;
exit(-2);

/* *** */
/* OPEN THE DEVICE */

/* open the device for access, unit 1 is right port */
error = OpenDevice(" gameport.device" ,l,game_io_msg,O);

if(error != 0)
{

}

printf("\nError while opening the device, exiting");
DeleteStdIO(game_io_msg);
DeletePort(game_msg_port);
exit(-3);

/* ** */
/* SET THE DEVICE TYPE */

game_data = (struct InputEvent *)gamebuffer;

/* test the joystick in this loop */

if (set30ntroller_type(GPCT_ABSJOYSTICK) != 0)
{

}

printf("\nError while trying to set GPCT _ABSJOYSTICK");
DeleteStdIO(game_io_msg);
DeletePort(game_msg_port);
exit(-4);

/* ** */
/* SET THE DEVICE TRIGGER */
if (set_controller_triggerO != 0)
{

}

printf("\nError while trying to set controller trigger");
DeleteStdIO(game_io_msg);
DeletePort(game_msg_port);
exit(-4);

/* ** */
/* TELL USER WHAT YOU WILL BE DOING */

printf("\nI will report: \n");
printf("\n Stick X or Y moves");
printf("\n Button presses (along with stick moves if any)");

Gameport Device 357

/* *** */
/* SETUP THE 10 MESSAGE BLOCK FOR THE ACTUAL DATA READ */

/* from now on, Just read input events into the input buffer, one at a
* time; read-event waits for the preset conditions */

game_io_msg->io_Command = GPD_READEVENT;
game_io_msg- >io_Data = (APTR)gamebuffer;

/* read one event each time we go back to the gameport */
game_io_msg->io_Length = sizeof(struct InputEvent);

/ * don it use quick io * /
game_io_msg- >io_Flags = 0;

/* ** */
/* LOOP FOREVER */

FOREVER
{

}

/* read one event each time we go back to the gameport */
game...:.io_msg- > io_Length = sizeof(struct Inpu tEven t);

printf("\n Waiting For Joystick Report\n");
SendIO(game_io_msg);
WaitPort(game_msg-port);
/* this is NOT a busy wait... it is a task-sleep */
GetMsg(game_ms~port) ;

codevalue = game_data- > ie_Code;

if(codevalue == IECODE_LBUTTON)
printf(" \nFire Button pressed");

if(codevalue == (IECODE_LBUTTON + IECODE_UP _PREFIX))
printf("\nFire Button released");

which_directionO;
showbugsO;
if (even ts_reported ++ > 12) break;

set30ntroller_type(GPCT_NOCONTROLLER);

CloseDevice(game_io_msg);
DeleteStdIO(game_io_msg);

358 Gameport Device

}

DeletePort(game_msg_port);

printf("\nExiting program ... 12 events reported.\nl> ");
return(O);

int which_directionO
{

}

SHORT xmove, ymove;
xmove = game_data- > ie_X;
ymove = game_data- > ie_ Y;

switch(ymove)
{

case (-1):
printf("\nForward");
break;
case (1):
printf(" \nBack");
break;

default:
break;

}
switch(xmove)
{

case (-1):
printf("\nLeft");
break;
case (1):
prin tf(" \nRigh t");
break;

default:
break;

}
return(O);

in t set_con troller _type(type)
SHORT type;
{

game_io_msg->io_Command = GPD_SETCTYPE;
/ * set type of con troller to mouse * /
game_io_msg- > io_Length = 1;
game_io_msg- >io_Data = (APTR)gamebuff;
*gamebuff = type;

Gameport Device 359

}

SendIO(game_io_msg);
/* set it up */
/ * this command doesn't wait... returns immediately * /
WaitPort(game_msg_port);
GetMsg(game_msg_port);
return((int)game_io_msg- >io_Error);

in t set_con trollectriggerO
{

}

struct GamePortTrigger gpt;

game_io_msg->io_Command = GPD_SETTRIGGER;
game_io_msg- > io_Length = sizeof(gpt);
game_io_msg- >io_Data = (APTR)&gpt;
gpt.gpt_Keys = GPTF _UPKEYS+GPTF _DOWNKEYS;
gpt.gpt_Timeout = 0;
gpt.gpt_XDelta = 1;
gpt.gpt_YDelta = 1;

return(DoIO(game_io_msg));

showbugsO
{

}

struct InputEvent *e;

e = (struct InputEvent *)&gamebuffer[O];
/* where the input event gets placed */
printf())\nie_Class = % Ix)) ,e- > ie_Class);
printf())\nie_SubClass = % Ix)) ,e- > ie_SubClass);
printf())\nie_Code = % Ix)), e->ie_Code);
printf())\nie_Qualifier = % Ix)) ,e->ie_Qualifier);
printf())\nieJ = %ld)), e->ie_X);
printf())\nie_Y = %ld)), e->ie_Y);
printf())\nie_TimeStamp(seconds) = % Ix)), e- >ie_TimeStamp.tv _secs);
return(O);

360 Gameport Device

Chapter 12

Narrator Device

This chapter provides routines for accessing both the narrator device and the translator library
and shows how some of the parameters passed to the device can affect the output. In addition,
this chapter contains a nontechnical explanation of how to effectively utilize the speech device.
A more technical explanation is also provided for those who may be interested in how the
speech is actually produced.

Narrator Device 361

Introduction

Two different subsystems comprise the speech system on the Amiga. They are the narrator dev
ice, which communicates with the audio device to actually produce human-like speech, and the
translator library, which contains a routine that translates English text into phonemes suitable
for the narrator device.

The Translator Library

The translator library provides a singIe routine, named TranslateO, that converts an English
language string into a phonetic string. To use this function, you must first open the library.

Setting a global variable, TranslatorBase, to the value returned from the call to
OpenLibraryO enables the Amiga linker to correctly locate the translator library:

struct Library *TranslatorBase;

TranslatorBase = OpenLibrary("translator.library" ,REVISION);
if(TranslatorBase == NULL) exit (CANT_OPEN_TRANSLATOR);

Note that for the OpenLibraryO call to succeed, the directory currently assigned by Amiga
DOS as LIBS: must contain translator. library.

USING THE TRANSLATE FUNCTION

Once the library is open, you can call the translate function:

UBYTE *sampleinput;
UBYTE outputstring[500];
SHORT rtnCode;

/ * pointer to sample input string * /
/ * place to put the translation * /
/ * return code from function * /

sampleinput = "this is a test"; /* a test string of 14 characters */
rtnCode = Translate(sampleinput,14,outputstring,500);

The input string will be translated into its phoneme equivalent and can be used to feed the nar
rator device. If you receive a nonzero return code, you haven't provided enough output buffer
space to hold the entire translation. In this case, the TranslateO function breaks the transla
tion at the end of a word in the input stream and returns the position in the input stream at
which the translation ended. You can use the output buffer, then call the TranslateO function
again, starting at this original ending position, to continue the translation where you left off.

362 Narrator Device

Note, however, that the value returned is negative. Therefore, you must use -rtnCode as the starting point for a new translation.

ADDITIONAL NOTES ABOUT TRANSLATE

The English language has many words that do not sound the same as they are spelled. The translator library has an exception table that it consults as the translation progresses. Words that are not in the exception table are translated literally. Therefore, it is possible that certain words will not translate well. You can improve the quality of the translation by handling those words on your own, using the tutorial information included at the end of this chapter.
/

As with all other libraries of routines, if you have opened the translator library for use, be sure to close it before your program exits. If the system needs memory resources, it can then expel closed libraries to gain additional space.

The Narrator Device

The narrator device on the Amiga provides two basic functions:

I) You can write to the device and ask it to speak a phoneme-encoded string in a specific
manner- pitch, male/female, various speaking rates, and so on.

o You can read from the device. As it speaks, the device can generate mouth shapes for
you and you can use the shapes to perform a graphics rendering of a face and mouth.

OPENING THE NARRATOR DEVICE

To use the narrator device, you must first open the device. The narrator device is disk-resident. For the OpenDeviceO call to succeed, the narrator device must be present in the directory currently assigned by AmigaDOS to the DEVS: directory.

To communicate with the narrator device, like any other device, you must pass an iORequest block to OpenDeviceO. The block used by the narrator device for a write is a special format called a narrator_rho The block used for a read is also a special format, called a mouth_rho Both blocks are described in the sections that follow. A sample OpenDeviceO sequence for the narrator device follows. Notice that two request blocks are created, one for writing to the device and one for reading from it. For brevity, the error checking is left out of this short example. It is, however, utilized in the sample program later on.

Narrator Device 363

struct narrator_rb "'writeNarrator;
struct narrator_rb "'readNarrator;
writeport = CreatePort(O,O);
read port = CreatePort(O,O);
writeNarrator = (struct narrator_rb "')CreateExtIO(writeport,

sizeof(struct narrator _r b));
readNarrator = (struct mouth_rb "')CreateExtIO(readport,

sizeof(struct mouth_r b));

The routine CreateExtIOO is in the "Other Routines" appendix of the Amiga ROM Kernel
Reference Manual: Exec. CreatePortO is contained in amiga.lib and can be accessed by link
ing your program to amiga.lib.

CONTENTS OF THE WRITE REQUEST BLOCK

You can control several characteristics of the speech, as indicated in the narrator request block
structure shown below.

struct narrator_rb {

};

where

rate

struct IOStdReq message;
UWORD rate;
UWORD
UWORD
UWORD
UBYTE
UWORD
UWORD
UWORD
UBYTE
UBYTE
UBYTE
UBYTE

pitch;
mode;
sex;

"'ch_masks;
nm_masks;
volume;
sampfreq;

mouths;
chan mask;
numchan;
pad;

/ '" Standard IORB '" /
/'" Speaking rate (words/minute) '" /
/ '" Baseline pitch in Hertz '" /
/'" Pitch mode'" /
/'" Sex of voice'" /
/'" Pointer to audio alloc maps "'/
/'" Number of audio alloc maps'" /
/ '" Volume. ° (off) thru 64 '" /
/ '" Audio sampling freq '" /
/ '" If non-zero, generate mouths'" /
/'" Which ch mask used (internal)'" /
/ '" N urn ch masks used (internal) '" /
/ '" For alignment'" /

is the speed in words per minute that you wish it to speak.

pitch
is the baseline pitch. If you are using an expressive voice rather than a monotone, the
pitch will vary above and below this baseline pitch.

364 Narrator Device

mode
determines whether you have a monotone or expressive voice.

sex
determines if the voice is male or female.

ch_masks, nm_masks, volume, sampfreq
are described in the chapter called "Audio Device."

mouths
is set to nonzero before starting a write if you want to read mouths using the read com
mand while the system is speaking.

chanmask, numchan, pad
are for system use only.

The system default values are shown in the files devices/ narrator.h and devices/ narrator.£.
When you call OpenDeviceO, the system initializes the request block to the default values. If
you want other than the defaults, you must change them after the device is open.

CONTENTS OF THE READ REQUEST

The mouth_rb data structure follows. Notice that it is an extended form of the narrator_rb
structure.

struct mouth_rb {
struct narrator _rb voice;
UBYTE width;
UBYTE height;
UBYTE shape;
UBYTE pad;
};

1 * Speech IORB * 1
1* Width (returned value) * 1
1* Height (returned value) * 1
1 * Internal use, do not modify * 1
1 * For alignment * 1

The fields width and height will, on completion of a read-request, contain an integer value pro
portional to the mouth width and height that are appropriate to the phoneme currently being
spoken. When you send a read request, the system does not return a response until one of two
things happens. Either a different mouth size is available (this prevents you from drawing and
redrawing the same shape or having to check whether or not it is the same) or the speaking has
completed. You must check the error return field when the read request block is returned to
determine if the request block contains a new mouth shape or simply is returning status of
ND_NoWrite (no write in progress, all speech ended for this request).

Narrator Device 365

OPENING THE NARRATOR DEVICE

This section demonstrates opening the device as well as synchronizing a read request so that it
responds only to the write request for which the device is opened. You can read the mouth
shapes only if the write request contains the same unit number and a write is currently in pro
gress; the system returns an error if the numbers don't match or if the write has completed.
Note again that error checking is deferred to the example program at the end of the chapter.

SHORT openError;

openError = OpenDevice("narrator.device" ,O,writeNarrator,O);
/ * after error checking, synchronize the read and write requests * /

readN arrator- > narrator _rb.message.io_Device =
writeNarrator->message.io_Device; /* copy device info */

readNarrator- >narrator_rb.message.io_Unit =
writeNarrator- >message.io_Unit; /* copy unit info * /

At this point, it is acceptable to change the default values before issuing a write.

More details about what OpenDeviceO performs are contained in the narrator device summary
pages.

:PERFORMING A WRITE AND A READ

You normally perform a write command by using the functions BeginIOO or SendIOO to
transmit the request block to the narrator device. This allows the narrator's task to begin the
I/O, while your task is free to do something else. The something else may be issuing a series of
read commands to the device to determine mouth shapes and drawing them on-screen. The fol
lowing sample set of function calls implements both the write and read commands in a single
loop. Again, error checking is deferred to the sample program.

366 Narrator Device

SHOR T readError;

writeN arrator- > message.io_Length = str len (outputstring);
/* tell it how many characters the translate function returned * /

writeNarrator->message.io_Data = outputstring;
/ * tell it where to find the string to speak * /

SendIO(writeNarrator);
/ * return immediately, run tasks concurrently * /

readNarrator->voice.message.io_Error = 0;
while((readError = readNarrator->voice.message.io_Error) !=

ND_NoWrite)
{

}

DoIO(readNarrator);
/ * put task to sleep waiting for a different mouth shape or
* return of the message block with the error field showing
* no write in progress
*/

DrawMouth(readNarrator->width,readNarrator->height);
/* user's own unique routine, not provided here * /

GetMsg(writeport); /* remove the write message from the
* writeport so that it can be reused * /

The loop continues to send read requests to the narrator device until the speech output has
ended. DolOO automatically removes the read request block from the read port for reuse.
SendlOO is used to transmit the write request. When it completes, the write request will be
appended to the writeport, and must be removed before it can be reused.

Sample Program

The following sample program uses the system default values returned from the OpenDeviceO
call. It translates and speaks a single phrase.

Narrator Device 367

#include "exec/types.h"
#include "exec/exec.h"

#include "exec/nodes.h"
#include "exec /lists.h"
#include "exec/memory .h"
#include "exec/interrupts.h"
#include "exec/ports.h"
#include "exec /libraries.h"
#include "exec/io.h"
#include "exec/tasks.h"
#include "exec/execbase.h"

#include "devices/narrator.h"
#include "libraries/translator.h"

struct MsgPort *readport=O;
struct MsgPort *writeport=O;

extern struct MsgPort *CreatePortO;
extern struct lORe quest *CreateExtIOO;

struct narrator_rb *writeNarrator=O;
struct mouth_rb *readNarrator=O;
struct Library *TranslatorBase=O;
UBYTE *sampleinput; /* pointer to sample input string */
UBYTE outputstring[500]; 'j* place to put the translation */
SHORT rtnCode; /* return code from function */
SHORT readError;
SHORT writeError;
SHORT error;
BYTE audChanMasks[4] = { 3,5,1O,12}; /* which channels to use */

#define CANT_OPEN_TRANSLATOR -100
#define CANT_OPEN_NARRATOR -200
#define CREATE_PORT_PROBLEMS -300
#define CREATE_IO_PROBLEMS -400
#define CANT_PERFORM_WRITE -500
#define REVISION 1

extern struct Library *OpenLibraryO;

mainO
{

TranslatorBase = OpenLibrary{" translator .library" ,REVISION);

368 Narrator Device

if(TranslatorBase == NULL) exit (CANT_OPEN_TRANSLATOR);
sampleinput = "this is a test"; /* a test string of 14 characters */
rtnCode = Translate(sampleinput,14,outputstring,500);
error = rtnCode + 100;
if(rtnCode != 0) goto cleanupO;

writeport = CreatePort(O,O);
if(writeport == NULL) { error=CREATE_PORT_PROBLEMS; goto cleanup1; }
readport = CreatePort(O,O);
if(readport == NULL) { error=CREATE_PORT_PROBLEMS; goto cleanup2; }
write Narrator = (struct narrator_rb *)CreateExtIO(writeport,

sizeof(struct narrator_rb));
if(writeNarrator == NULL) { error=CREATE_IO_PROBLEMS; goto cleanup3; }
readNarrator = (struct mouth_rb *)CreateExtIO(readport,

sizeof(struct mouth_rb));

if(readNarrator == NULL) { error=CREATE_IO_PROBLEMS; goto cleanup4; }
/* SET UP PARAMETERS FOR WRITE-MESSAGE TO THE NARRATOR DEVICE */

/ * show where to find the channel masks * /
writeNarrator->ch_masks = (audChanMasks);

/* and tell it how many of them there are * /
writeN arrator- > nm_masks = sizeof(aud ChanMasks);

/ * tell it where to find the string to speak * /
writeNarrator->message.io_Data = (APTR)outputstring;

/* tell it how many characters the translate function returned * /
writeN arrator- > message.io_Length = strlen(ou tpu tstring);

/* if nonzero, asks that mouths be calculated during speech * /
writeN arrator- > mou ths = 1;

/ * tell it this is a write-command * /
writeNarrator->message.io_Command = CMD_WRITE;

/* Open the device */

error = OpenDevice("narrator.device", 0, writeNarrator, 0);
if(error != 0) goto cleanup4;

/* SET UP PARAMETERS FOR READ-MESSAGE TO THE NARRATOR DEVICE */

/* tell narrator for whose speech a mouth is to be generated * /

Narrator Device 369

readNarrator- >voice.message.io_Device =
writeNarrator- > message.io_Device;

readNarrator- >voice.message.io_Unit =
write Narrator- >message.io_Unit;

readNarrator- >width = 0;
readNarrator->height = 0; /* initial mouth parameters */

readNarrator- >voice.message.io_Command = CMD_READ;
/* initial error value * /

readNarrator- >voice.message.io_Error = 0;

/* Send an asynchronous write request to the device */

writeError = SendlO(writeNarrator);
if(writeError != NULL) { error=CANT_PERFORM_WRITE; goto cleanup5; }
/* return immediately, run tasks concurrently */

/* keep sending reads until it comes back saying "no write in progress" */

while((readError = read Narrator- >voice.message.io_Error) !=
ND_NoWrite)

{

}

Dol O(readN arrator);
/* put task to sleep waiting for a different mouth shape
* or return of the message block with the error field
* showing no write in progress

*/ '
DrawMouth(readNarrator- >width,readNarrator- > height);
/* user's own unique routine, not provided here */

Delay(30);

rtnCode = Translate("No it is not" ,13,outputstring,500);
writeNarrator- >sex = FEMALE;
writeNarrator->pitch = MAXPITCH; /* raise pitch from default value */
writeN arrator- > message.io_Data = (APTR)ou tputstring;
writeNarrator- > message.io_Length = strlen(ou tpu tstring);
DoIO(writeNarrator);

Delay(30);

rtnCode = Translate("Please! I am speaking now!" ,26,outputstring,500);
writeNarrator- >sex = MALE;

370 Narrator Device

writeNarrator- >pitch = DEFPITCH;
writeNarrator- >message.io_Data = (APTR)outputstring;
writeN arrator- > message.io_Length = strlen(ou tpu tstring);
Dol O(wri teN arrator);

Delay(30);

rtnCode = Translate(
"Well, you are not very interesting, so I am going home!",
55,ou tputstring,500);

writeNarrator->sex = FEMALE;
writeNarrator->pitch = MAXPITCH;
writeN arrator- > message.io_Data = (APTR)ou tpu tstring;
writeN arrator- > message.io_Length = strlen(ou tpu tstring);
DoIO(writeNarrator);

Delay(30);

rtnCode = Translate("Bye Bye" ,7,outputstring,500);
writeNarrator->sex = MALE;
writeNarrator->pitch = DEFPITCH;
writeNarrator->rate = 7; /* slow him down */
writeN arrator- > message.io_Data = (APTR)ou tputstring;
writeN arrator- > message.io_Length = strlen(ou tpu tstring);
DoIO(writeNarrator);

cleanup5:
if(writeNarrator != 0)

CloseDev ice(wri teN arrator);
/* terminate access to the device */

/* now return system memory to the memory allocator */

cleanup4:
if(readNarrator != 0)

DeleteExtIO(readNarrator,sizeof(struct mouth_rb));
cleanup3:

if(writeNarrator != 0)
DeleteExtlO(writeNarrator,sizeof(struct narrator_rb));

cleanup2:
if(readport != 0)

DeletePort(read port);
cleanup1:

if(writeport != 0)
DeletePort(writeport);

Narrator Device 371

cleanupO:
if(TranslatorBase != 0)

CloseLibrary(TranslatorBase);
/* terminate access to the library */

if(error != 0) exit(error);
} /* end of test */

DrawMouth(w,h)
SHORT w,h;
{ return(O);

in t strlen(string)
char *string;
{

int i,length;
length = -1;

/* dummy routine */ }

for(i=O; i<256; i++) /* 256 characters max length at this time */
{
if(*string++ == ' ') { length = i+1; break; };
}

return(length);
}

The loop continues to send read requests to the narrator device until the write request has com
pleted. Then the program cleans up and exits.

You can experiment with the narrator device by using values other than the default, changing
them before the write command is sent to the device.

How to Write Phonetically for Narrator

This section describes in detail the procedure used to specify phonetic strings to the Narrator
speech synthesizer. No previous experience with phonetics is required. The only thing you may
need is a good pronouncing dictionary for those times when you doubt your own ears. You do
not have to learn a foreign language or computer language. You are just going to learn how to
write down the English that comes out of your own mouth. In writing phonetically you do not
have to know how a word is spelled, just how it is said.

Narrator works on utterances at the sentence level. Even if you want to say only one word,
Narrator will treat it as a complete sentence. Therefore, Narrator wants one of two punctua
tion marks to appear at the end of every sentence-a period (.) or a question mark (7). If no

372 Narrator Device

punctuation appears at the end of a string, Narrator will append a period to it. The period is
used for almost all utterances and will cause a final fall in pitch to occur at the end of a sen
tence. The question mark is used at the end of yes/no questions only, and results in a final rise
in pitch. For example, the question, Do you enjoy using your Amiga? would take a question
mark at the end because the answer to the question is either yes or no. The question, What is
your favorite color? would not take a question mark and should be followed by a period. Narra
tor recognizes other punctuation marks as well, but these are left for later discussion.

PHONETIC SPELLING

Utterances are usually written phonetically usmg an alphabet of symbols known as I.P.A. (for
"International Phonetic Alphabet"). This alphabet is found at the front of most good dic
tionaries. The symbols can be hard to learn and are not available on computer keyboards, so
the Advanced Research Projects Agency (ARPA) came up with Arpabet, a way of representing
each symbol using one or two upper-case letters. Narrator uses an expanded version of Arpabet
to specify phonetic sounds.

A phonetic sound, or phoneme, is a basic speech sound, almost a speech atom. Working back
wards, sentences can be broken into words, words into syllables, and syllables into phonemes.
The word cat has three letters and (coincidentally) three phonemes. Looking at the table of
phonemes we find the three sounds that make up the word cat. They are K, AE, and T, writ
ten as KAET. The word cent translates as S, EH, Nand T, or SEHNT. Notice that both
words begin with a c but because the c says k in cat we use the phoneme K. In cent the c says
s so we use the phoneme S. You may also have noticed that there is no C phoneme.

The above example illustrates that a word rarely sounds like it looks in English spelling. These
examples introduce you to a very important concept: spell it like it sounds, not like it looks.

CHOOSING THE RIGHT VOWEL

Phonemes, like letters, are divided in to the two categories of vowels and consonants. Loosely
defined, a vowel is a continuous sound made with the vocal cords vibrating and air exiting the
mouth (as opposed to the nose). All vowels use a two-letter code. A consonant is any other
sound, such as those made by rushing air (like S or TH), or by interruptions in air flow by the
lips or tongue (like B or T). Consonants use a one- or two-letter code.

In English we write with only five vowels: a, e, i, 0 and u. It would be easy if we only said five
vowels. Unfortunately, we say more than 15 vowels. Narrator provides for most of them. You
choose the proper vowel by listening. Say the word out loud, perhaps extending the vowel
sound you want to hear. Compare the sound you are making to the sounds made by the vowels
in the example words to the right of the phoneme list. For example, the a in apple sounds the
same as the a in cat, not like the as in Amiga, talk, or made. Notice also that some of the

Narrator Device 373

example words in the list do not even use any of the same letters contained In the phoneme
code; for example, AA as in hot.

Vowels are divided into two groups: those that maintain the same sound throughout their
durations and those that change their sound. The ones that change are called diphthongs.
Some of us were taught the terms long and short to describe vowel sounds. Diphthongs fall into
the long category, but these two terms are inadequate to fully differentiate between vowels and
should be avoided. The diphthongs are the last six vowels listed in the table. Say the word
made out loud very slowly. Notice how the a starts out like the e in bet but ends up like the e
in beet. The a therefore is a diphthong in this word and we would use EY to represent it.
Some speech synthesis systems require you to specify the changing sounds in diphthongs as
separate elements, but Narrator takes care of the assembly of diphthongal sounds for you.

CHOOSING THE RIGHT CONSONANT

Consonants are divided into many categories by phoneticians, but we need not concern our
selves with most of them. Picking the correct consonant is very easy if you pay attention to
just two categories: voiced and unvoiced. A voiced consonant is made with the vocal cords
vibrating, and an unvoiced one is made when the vocal cords are silent. Sometimes English uses
the same letter combinations to represent both. Compare the th in thin and in then. Notice that
the first is made with air rushing between the tongue and upper teeth. In the second, the vocal
cords are vibrating also. The voiced th phoneme is DH, the unvoiced is TH. Therefore, thin is
spelled TH, IH, N or THIHN, and then is spelled DH, EH, N or DHEHN. A sound that is par
ticularly subject to mistakes is voiced and unvoiced s spelled Z or S. To put it clearly, bats
ends in S, suds ends in Z. What kind of s does closet have? How about close? Say all of these
words out loud to find out. Actually close changes its meaning when the s is voiced or unvoiced:
I love to be close to you. versus What time do you close?

Another sound that causes some confusion is the r sound. There are two different r-like
phonemes in the Narrator alphabet: R under the consonants and ER under the vowels. Which
one do you use? Use ER if the r sound is the vowel sound in the syllable. Words that take ER
are absurd, computer and flirt. Use R if the r sound precedes or follows another vowel sound in
that syllable, such as in car, write, or craft. Rooster uses both kinds of r. Can you tell which is
which?

CONTRACTIONS AND SPECIAL SYMBOLS

There are several phoneme combinations that appear very often in English words. Some of
these are caused by our laziness in pronunciation. Take the word connector for example. The 0

in the first syllable is almost swallowed out of existence. You would not use the AA phoneme;
you would use the AX instead. It is because of this relaxation of vowels that we find ourselves
using AX and IX very often. Since this relaxation frequently occurs before 1, m and n, Narrator

374 Narrator Device

has a shortcut for typing these combinations. Instead of personal being spelled PERSIXNAXL,
we can spell it PERSINUL, making it a little more readable. Anomaly goes from AXNAAMAX
LIY to UNAAMULIY, and KAAMBIXNEYSHIXN becomes KAAMBINEYSHIN for combina
tion. It may be hard to decide whether to use the AX or IX brand of relaxed vowel. The only
way to find out is to try both and see which sounds best.

Other special symbols are used internally by Narrator. Sometimes they are inserted in to or su b
stituted for part of your input sentence. You can type them in directly if you wish. The most
useful is probably the Q or glottal stop; an interruption of air flow in the glottis. The word
Atlantic has one between the t and the I. Narrator knows there should be a glottal stop there
and saves you the trouble of typing it. But Narrator is only close to perfect, so sometimes a
word or word pair might slip by that would have sounded better with a Q stuck in someplace.

STRESS AND INTONATION

It is not enough to tell Narrator what you want said. For the best results you must also tell
Narrator how you want it said. In this way you can alter a sentence's meaning, stress impor
tant words, and specify the proper accents in polysyllabic words. These things improve the
naturalness and thus the intelligibility of Narrator's spoken output.

Stress and intonation are specified by the single digits 1-9 following a vowel phoneme code.
Stress and intonation are two different things but are specified by a single number. Stress is,
among other things, the elongation of a syllable. Because a syllable is either stressed or not, the
presence of a number after the vowel in a syllable indicates stress on that syllable. The value of
the number indicates the intonation. From this point onward, these numbers will be referred to
as stress marks. Intonation here means the pitch pattern or contour of an utterance. The
higher the stress mark, the higher the potential for an accent in pitch (a rise and fall). A
sentence's basic contour is comprised of a quickly rising pitch gesture up to the first stressed
syllable in the sentence, followed by a slowly declining tone throughout the sentence, and finally
a quick fall to a low pitch on the last syllable. The presence of additional stressed syllables
causes the pitch to break its slow, declining pattern with rises and falls around each stressed.
syllable. Narrator uses a very sophisticated procedure to generate natural pitch contours based
on how you mark the stressed syllables.

HOW AND WHERE TO PUT THE STRESS MARKS

The stress marks go immediately to the right of vowel phoneme codes. The word cat has its
stress marked after the AE so we get KAE5T or KAE9T. You generally have no choice about
the location of a number; there is definitely a right and wrong location. Either a number should
go after a vowel or it should not. Narrator will not flag an error if you forget to put a stress
mark in or if you place one on the wrong vowel. It will only tell you if a stress mark is in the
wrong place, such as after a consonant.

Narrator Device 375

The rules for placing stress marks are as follows:

o Always place a stress mark in a content word. A content word is one that contains
some meaning. Nouns, verbs, and adjectives are all content words. Boat, huge, tonsils
and hypertensive are all content words; they tell the listener what you are talking
about. Words like but, the, if and is are not content words. They do not convey any
real-world meaning at all but are required to make the sentence function. Thus, they
are given the name function words.

o Always place a stress mark on the accented syllable(s) of polysyllabic words, whether
they are content or function words. A polysyllabic word is any word of more than one
syllable. Commodore has its stress (or accent as it is often called) on the first syllable
and would be spelled KAA5MAXDOHR. Computer is stressed on the second syllable,
producing KUMPYUW5TER.

If you are in doubt about which syllable gets the stress, look the word up in a diction
ary and you will find an accent mark over the stressed syllable. If more than one syll
able in a word receives stress, they usually are not of equal value. These are referred to
as primary and secondary stresses. The word understand has its first and last syllables
stressed, with stand getting primary stress and un secondary, which produces
AHINDERSTAE4ND. Syllables with secondary stress should be marked with a value
of only 1 or 2.

Compound words (words with more than one root) such as base/ball, soft/ware,
lunch/wagon, and house/boat can be written as one word but should be thought of as
separate words when marking stress. Thus, lunchwagon would be spelled
LAH5NCHWAE2GIN. Notice that lunch got a higher stress mark than wagon. This is
common in compound words; the first word usually receives the primary stress.

WHAT STRESS VALUE DO I USE?

If you get the spelling and stress mark positions correct, you are 95 percent of the way to a
good sounding sentence. The next thing to do is decide on the stress mark values. They can be
roughly related to parts of speech, and you can use table 12-1 as a guide to assigning values.

376 Narrator Device

Table 12-1: Recommended Stress Values

Part of Speech Stress Value

Nouns 5
Pronouns 3
Verbs 4
Adjectives 5
Adverbs 7
Quantifiers 7
Exclamations 9

Articles 0 (no stress)
Prepositions 0
Conjunctions 0
Secondary stress 1 (sometimes 2)

The above values merely suggest a range. If you want attention directed to a certain word,
raise its value. If you want to downplay a word, lower it. Sometimes even a function word can
be the focus of a sentence. It is quite conceivable that the word "to" in the sentence "Please
deliver this to Mr. Smith." could receive a stress mark of 9. This would add focus to the word
"to" indicating that the item should be delivered to Mr. Smith in person.

PUNCTUATION

In addition to the period or question mark that is required at the end of a sentence, Narrator
recognizes several other punctuation marks: dashes, commas, and parentheses. The comma goes
where you would normally put a comma in an English sentence. It causes Narrator to pause
with a slightly rising pitch, indicating that there is more to come. The use of additional
commas-that is, more than would be required for written English-is often helpful. They
serve to set clauses off from one another. There is a tendency for a listener to lose track of the
meaning of a sentence if the words run together. Read your sentence aloud while pretending to
be a newscaster. The locations for additional commas should leap out at you.

The dash serves almost the same purpose as the comma, except that the dash does not cause
the pitch to rise so severely. A rule of th urn b is: Use dashes to divide phrases, commas to
divide clauses. For a definition of these terms, consult a high school English book.

Parentheses provide additional information to Narrator's intonation routine. They should be
put around noun phrases of two or more content words. This means that the noun phrase, "a
giant yacht" should be surrounded with parentheses because it contains two content words,
giant and yacht. The phrase my friend should not have parentheses around it because it con
tains only one content word. Noun phrases can get pretty big, like "the silliest guy I ever saw"

Narrator Device 377

or "a big basket of fruit and nuts." The parentheses really are most effective around these large
phrases; the smaller ones can sometimes go without. The effect of parentheses is subtle, and in
some sentences you might not even notice their presence. In sentences of great length, however,
they help provide for a very natural contour.

HINTS FOR INTELLIGIBILITY

There are a few tricks you can use to improve the intelligibility of a sentence. Often, a polysyl
labic word is more recognizable than a monosyllabic word. For instance, instead of saying huge,
say enormous. The longer version contains information in every syllable, thus giving the
listener three times the chance to hear it correctly. This can be taken to extremes, so try not to
say things like "This program has a plethora of insects in it."

Another good practice is to keep sentences to an optimal length. Writing for reading and writ
ing for speaking are two different things. Try not to write a sentence that cannot be easily spo
ken in one breath. Such a sentence tends to give the impression that the speaker has an infinite
lung capacity. Try to keep sentences confined to one main idea. A run-on sentence tends to
lose its meaning after a while.

New terms should be highly stressed the first time they are heard. If you are doing a tutorial or
something similar, stress a new term at its first occurrence. All subsequent occurrences of that
term need not be stressed as highly because it is now "old news."

The above techniques are but a few ways to enhance the performance of Narrator. You will
probably find some of your own. Have fun.

EXAMPLE OF ENGLISH AND PHONETIC TEXTS

Cardiomyopathy. I had never heard of it before, but there it was listed as the form of heart
disease that felled not one or two but all three of the artificial heart recipients. A little research
produced some interesting results. According to an article in the Nov. 8, 1984, New England
Journal of Medicine, cigarette smoking causes this lethal disease that weakens the heart's pump
ing power. While the exact mechanism is not clear, Dr. Arthur J. Hartz speculated that nicotine
or carbon monoxide in the smoke somehow poisons the heart and leads to heart failure.

KAA1RDIYOWMAYAA5PAXTHIY. AY /HAED NEH1VER HER4D AXV IHT BIXFOH5R,
BAHT DHEH5R IHT W AHZ - LIH4STIXD AEZ (DHAX FOH5RM AXV /HAA5RT DIHZIY5Z)
DHAET FEH4LD (~AAT WAH5N OHR TUW5) - BAHT (A07L THRIY5 AXV DHAX
AA5RTAXFIHSHUL /HAA5RT RIXSIH5PIYINTS). (AH LIH5TUL RIXSER5CH)
PROHDUW5ST (SAHM IH5NTRIHSTIHNX RIXZAH5LTS). AHKOH5RDIHNX TUW (AEN
AA5RTIHKUL IHN DHAX NOWVEH5MBER EY2TH NA Y5NTIYNEYTIYFOH1R NUW
IY5NXGLIND JER5NUL AXV MEH5DIXSIN), (SIH5GEREHT SMOW5KIHNX) KA04ZIHZ

378 Narrator Device

(DHIHS LIY5THUL DIHZIY5Z) DHAET WIY 4KINZ (DHAX /HAA5RTS P AH4MPIHNX
PAW2ER). WAYL (DHIY IHGZAE5KT MEH5KINIXZUM) 1HZ NAAT KLIY5R, DAA5KTER
AA5RTHER JEY2 /HAA5RTS SPEH5KYULEYTIHD DHAET NIH5KAXTIYN OHR
KAA5RBIN MUNAA5KSA YD IHN DHAX SMOW5K - SAH5M/HAWl POY 4ZINZ DHAX
/HAA5RT - AEND LIY4DZ TUW (jHAA5RT FEY5LYER).

CONCLUDING REMARKS

This guide should get you off to a good start in phonetic writing for Narrator. The only way to
get really proficient is to practice. Many people become good at it in as little as one day. Oth
ers make continual mistakes because they find it hard to let go of the rules of English spelling,
so trust your ears.

The More Technical Explanation

The SoftVoice speech synthesis system is a computer model of the human speech production
process. It attempts to produce accurately spoken utterances of any English sentence, given
only a phonetic representation as input. Another program in the system, Translator, derives
the required phonetic spelling from English text. Timing and pitch contour are produced
automatically by the synthesizer software.

In humans, the physical act of producing speech sounds begins in the lungs. To create a voiced
sound, the lungs force air through the vocal folds (sometimes called the vocal cords), which are
held under tension and which periodically interrupt the flow of air, thus creating a buzz-like
sound. This buzz, which has a spectrum rich in harmonics, then passes through the vocal tract
and out the lips, which alters its spectrum drastically. This is because the vocal tract acts as a
frequency filter, selectively reinforcing some harmonics and suppressing others.

It is this filtering that gives a speech sound its identity. The amplitude versus frequency graph
of the filtering action is called the vocal tract transfer function. Changing the shape of the
throat, tongue, and mouth retunes the filter system to accent different frequencies.

The sound travels as a pressure wave through the air, and it causes the listener's eardrum to
vibrate. The ear and brain of the listener decodes the incoming frequency pattern. From this
the listener can subconsciously make a judgment about what physical actions were performed
by the speaker to make the sound. Thus the speech chain is completed, the speaker having
encoded his physical actions on a buzz via selective filtering and the listener having turned the
sound into guesses about physical actions by frequency decoding.

Narrator Device 379

Now that we know how we do it, how does a machine do it? It turns out that the vocal tract is
not random, but tends to accentuate energy in narrow regions called formants. The formant
positions move smoothly as we speak, and it is the formant frequencies to which our ears are
sensitive. So, luckily, we do not have to model throat, tongue, teeth and lips with our com
puter, we can imitate formant action.

A good representation of speech requires up to five formants, but only the lowest three are
required for intelligibility. We begin with an oscillator that produces a waveform similar to that
which is produced by the vocal folds, and we pass it through a series of resonators, each tuned
to a different formant frequency. By controlling the volume and pitch of the oscillator and the
frequencies of the resonators, we can produce highly intelligible and natural-sounding speech.
Of course the better the model, the better the speech; but more importantly, experience has
shown that the better the control of the model's parameters, the better the speech.

Oscillators, volume controls and resonators can all be simulated mathematically in software, and
it is by this method th at the Soft Voice system operates. The In pu t phonetic string is converted
into a series of target values for the various parameters illustrated. A system of rules then
operates on the string to determine things such as the duration of each phoneme and the pitch
contour. Transitions between target values are created and smoothed to produce natural con
tinuous changes from one sound to the next.

New values are computed for each parameter for every 8 milliseconds of speech, which produces
about 120 acoustic changes per second. These values drive a mathematical model of the speech
synthesizer. The accuracy of this simulation is quite good. Human speech has more formants
than the SoftVoice model, but they are low in energy content.

The human speech production mechanism is a complex and wonderful thing. The more we
learn about it, the better we can make our computer simulations. Meanwhile, we can use syn
thetic speech as yet another computer output device to enhance the man/machine dialogue.

Table of Phonemes

Table 12-2 lists all the available phonemes.

380 Narrator Device

Table 12-2: Phonemes

Vowels

Phoneme Example Phoneme Example

IY beet IH bit
EH bet AE bat
AA hot AH under
AO talk UH look
ER bird OH border

AX* about IX* solid

*AX and IX should never be used in stressed syllables.

Diphthongs

Phoneme Example Phoneme Example

EY made AY hide
OY boil AW power
OW low UW crew

Consonants

Phoneme ~xample Phoneme Example

R red L yellow
W away Y yellow
M men N men
NX smg SH rush
S sail TH thin
F fed ZH pleasure
Z has DH then
V very J judge
CH check /C loch

/H hole P put
B but T toy
D dog G guest
K Commodore

Narrator Device 381

Spedal Symbols

Phoneme Example

DX pity (tongue flap)

Q kitt_en (glottal stop)

QX pause (silent vowel)

RX car (postvocalic
LX call Rand L)

Contractions

(see text)

UL AXL
IL IXL
UM AXM
1M IXM
UN AXN
IN IXN

Digits and Punctuation

Digits 1-9 Syllabic stress, ranging from secondary through emphatic

Period -sentence final character
? Question mark-sentence final character

Dash - phrase delimiter
Comma-clause delimiter

() Parentheses-noun phrase delimiters (see text)

382 Narrator Device

Chapter 13

Serial Device

This chapter describes software access to the serial port. The serial device is accessed via the
standard system device-access routines and provides some additional functions specifically
appropriate to use of this device.

Introduction

The serial device can be opened in either exclusive access mode or shared mode. It can be set to
transmit and receive many different baud rates (send and receive baud rates are identical). It
can support a seven-wire handshaking as well as a three-wire interconnect to a serial hardware

Serial Device 383

device. Handshaking and access mode must be specified before the serial device is opened.
Other serial parameters can be specified using the SDCMD_SETP ARAMS command after
the device has been opened.

Opening the Serial Device

Typically, you open the serial device by using the following function calls: .

LONG error;
struct Port *mySerPort;
struct IOExtSer *mySerReq;

/* create a reply port to which serial device can return the request * /
mySerPort = CreatePort("mySerial" ,0);
if(mySerPort == NULL) exit(lOO); /* can't create port? * /

/ * create a request block appropriate to serial * /
mySerReq = (struct IOExtSer *)CreateExtIO(mySerPort,

sizeof(struct IOExtSer »;
if(mySerReq == NULL) goto cleanupl; /* error during CreateExtIO? * /

mySerReq->io_SerFlags = 0;
/* Accept the default, i.e., exclusive Access and XON/XOFF protocol
* is enabled. Remaining flags all zero, see devices/serial.h
* for bit-positions. Definitions included in this chapter. * /

error = OpenDevice("serial.device" ,0,mySerReq,0);
if(error != 0) goto cleanup2; /* device not available? * /

cleanup2:
DeleteExtIO(mySerReq,sizeof(struct IOExtSer»;

cleanupl:
DeletePort(mySerPort);

The routines CreatePortO and DeletePortO are part of amiga.lib. Information about the
routines CreateExtIOO and DeleteExtIOO can be found in the appendixes of the Amiga
ROM Kernel Reference Manual: Exec.

During the open, the only flags that the serial device pays any attention to are the
shared/exclusive-access flag and the seven-wire flag (the seven-wire flag enables RS-232-C
DTR/DSR,RTS/CTS handshaking protocol). All other bits in io_SerFlags are ignored. How
ever, for consistency, the other flag bits should be set to zero when the device is opened.

384 Serial Device

When the serial device is opened, it opens the timer device and then allocates an input buffer of
the size last used (default and minimum = 512 bytes). As with any of the other serial port
parameters, you can later change the value used for the read buffer size with the
SDCMD_SETP ARMS command. The OpenDeviceO routine will fill the latest parameter
settings into the io_Request block.

Once the serial device is opened, all characters received will be saved, even if there is no current
request for them. Note that a parameter change cannot be performed while an I/0 request is
actually being processed, because it would invalidate request-handling already in progress.
Therefore you must use SDCMD_SETP ARAMS only when you have no serial I/O requests
pending.

Reading from the Serial Device

You read from the serial device by sending your IORequest (IOExtSer) to the device with a
read command. You specify how many bytes are to be transferred and where the data is to be
placed. Depending on how you have set your parameters, the request may read the requested
number of characters or it may terminate early.

Here is a sample read command:

char myDataArea[100];
mySerReq->IOSer.io_Data = &myDataArea[O]; /* where to put the data */
mySerReq->IOSer.io_Length = 100; /*read 100 characters */
mySerReq->IOSer.io_Command = CMD_READ;/* say it is a read */
DoIO(mySerReq); /* synchronous request */

If you use this example, your task will be put to sleep waiting until the serial device reads 100
bytes (or terminates early) and copies them into your read-buffer. Early termination can be
caused by error conditions or by the serial device sensing an end of file condition.

Note that the io_Length value, if set to -1, tells the serial device that you want to read a null
terminated string. The device will read all incoming characters up to and including a byte
value of OxOO in the input stream and will then report to you an io_Actual value that is the
actual length of the string, excluding the 0 value. Be aware that you must encounter a 0 value
in the input stream before the system fills up the buffer you have specified. The io_Length is,
for all practical purposes, indefinite. Therefore, you could potentially overwrite system memory
if you never encountered the null termination (zero value byte) in the input stream.

Serial Device 385

FIRST ALTERNATIVE MODE FOR READING

As an alternative to DoIOO you can use SendIOO to transmit the command to the device. In
this case, your task can go on to do other things while the serial device is collecting the bytes
for you. You can occasionally do a CheckIO(mySerReq) to see if the I/O is completed.

struct Message *myIO;

/* same code as in above example, except: */
SendIO(mySerReq);

/ * do something * /
/* (user code) */

myIO = CheckIO(mySerReq);
if(my 10 != FALSE) goto ioDone; / * this 10 is done * /

/ * do something else * /
/ * (user code) * /

WaitIO(mySerReq);
myIO = mySerReq; /* if had to wait, need a value for myIO */
}
ioDone:

Remove(mySerPort->mp_MsgList,myIO);
/ * use the Remove function rather than the GetMsg function * /

/ * now check for errors, and so on. * /

The RemoveO function is used instead of the GetMsgO function to demonstrate that you
might have established only one port at which all of your I/O requests will be returned, and you
may be checking each request, in turn, with CheckIOO to see if it has completed (maybe a
disk request, a serial request and a parallel request, all simultaneously outstanding, all using
SendIOO to transmit their commands to the respective devices).

It is possible that while you are doing other things and checking for completion of I/O, one dev
ice may complete its operations and append its message block to your reply port while you are
about to check the status of a later-arriving block. If you find that this later one has completed
and you call GetMsgO, you will remove whichever message is at the head of the list. This
message may not necessarily be the one you expect to be removing from the port. CheckIOO
returns the address of the IORequest if the I/O is complete, and you can use this address for
the RemoveO function to remove the correct request block for processing and reuse.

386 Serial Device

SECOND ALTERNATIVE MODE FOR READING

Instead of transmitting the read command with either DolOO or SendlOO, you might elect to
use BeginlOO, (the lowest level interface to a device) with the "quick I/O" bit set in the
io_Flags field.

/ * same code as in read example, except: * /
mySerReq->IOSer.i~_Flags = 10F_QUICK;/* use QUICKIO */

BeginIO(mySerReq);

The serial device may support quick I/O for certain read requests. As documented in the
"Input/Output" chapter in Amiga ROM Kernel Reference Manual: Exec, this command may
be synchronous or asynchronous. Any write request always clears the quick I/O bit. Various
read commands mayor may not clear it, depending on whether or not quick I/0 occurs.

After executing the code shown above, your program needs to know if the I/0 happened syn
chronously, and it must also test to see if the I/O took place.

if((mySerReq->IOSer.io_Flags & IOF _QUICK) == 0)

else

{
/* QUICKIO couldn't happen for some reason, so it did it normally ...
* queued the request, cleared the QUICKIO bit, and used the equivalent
* of SendlO. Might want to have the task doing something else while
* awaiting the completion * of the I/O. After knowing it is done, must
* remove the message from the reply port for possible reuse.
*/

WaitlO(mySer Req);
/* assumes single-threaded I/O, as compared to
* the SendlOO example in the previous section * /

}

{
/* If flag is still set, 10 was synchronous, 10Request was NOT appended
* to the reply port and there is no need to remove the message fr~m
* the reply port; continue on with something else.
*/

}

The way you read from the device depends on your need for processing speed. Generally the
BeginlOO route provides the lowest system overhead when quick I/O is possible. However, if
quick I/O did not work, it still requires some overhead for handling of the 10Request block.

Serial Device 387

TERMINATION OF THE READ

Reading from the serial device can terminate early if an error occurs or if an end-of-file is
sensed. You can specify a set of possible end-of-file characters that the serial device is to look
for in the input stream. These are contained in an io_TermArray that you provide, using the
SDCMD_SETP ARAMS command. Note: io_TermArray is used only when EOF mode is
selected.

If EOF mode is selected, each input data character read into the user's data block is compared
against those in io_TermArray. If a match is found, the IORequest is terminated as com
plete, and the count of characters read (including the TermChar) is stored in io_Actual. To
keep this search overhead as efficient as possible, the serial device requires that the array of
characters be in descending order (an example is shown in the summary page in the "Device
Summaries" appendix for SDCMD_SETPARAMS). The array has eight bytes and all must
be valid (that is, do not pad with zeros unless zero is a valid EOF character).

Fill to the end of the array with the least value TermChar. When making an arbitrary choice
of EOF character(s), it is advisable to use the lowest value(s) available.

Writing to the Serial Device

You can write to the serial device as well as read from it. It may be wise to have a separate
block for reading and writing to allow simultaneous operation of both reading and writing. The
sample code below creates a separate reply port and request for writing to the serial device.
Note that it assumes that the OpenDeviceO function worked properly for the read. It copies
the initialized read request block to initialize the write request block. Error-checking has been
deliberately left out of this code fragment for brevity but should, of course, be provided in a
functional program.

/* code fragment to "clone" an existing serial I/O request block instead of
* opening the device once for read and once for write * /

/ * pointer to an existing serial read request block initialized by a
* call to OpenDevice(SERIALNAME,O,mySerReq,O) * /

struct IOExtSer *mySerReq;
LONG i;
BYTE *b,*c;

struct Port *mySerWritePort; /* pointer to a MsgPort at which to receive
* replies to write requests * /

struct IOExtSer *mySerWriteReq; /* pointer to a new request block for serial
* communications * /

388 Serial Device

mySerWritePort = CreatePort("mySeriaIWrite" ,0);

mySerWriteReq = (struct IOExtSer *)CreateExtIO(mySerWritePort,
sizeof(struct IOExtSer));

b = (BYTE *)mySerReq;
c = (BYTE *)mySerWriteReq;

/ * start of read request block * /
/ * start of write request block * /

for(i=O; i< sizeof(struct IOExtSer); i++)
*c++ = *b++;

mySerWriteReq->IOSer.io_Message.mn_ReplyPort = mySerWritePort;
/ * clones the request block on a byte by byte basis * /
/* Note: it might simply be easier here to have opened the serial device
* twice. This would reflect the fact that there are two "software entities"
* that are currently using the device. However, if you are using exclusive
* access mode, this is not possible and the request block must be copied anyway.

*/

Note that this code would require the following clean-up at the termination of the program:

cleanupWriteIO:
DeleteExtIO(mySerWriteReq);

cleanupWritePort:
DeletePort(mySerWritePort);

Now, to perform a write:

char dataToWrite[lOO];
mySerReq->IOSer.io_Data = &dataToWrite[O]; /* where to get the data */
mySerReq->IOSer.io_Length = n; /* write n characters */
mySerReq->IOSer.io_Command = CMD_WRITE; /* say it is a write */
DoIO(mySerReq); / * synchronous request * /

You can use the SendIOO or BeginIOO functions as well as DoIOO. The same warnmgs
apply as shown above in the discussions about alternative modes of reading.

Note that if io_Length is set to -1, the serial device will output your serial buffer until it
encounters a value of OxOO in the data. It transmits this 0 value in addition to the data to
match the technique used for serial read shown above. (You can also read data zero
terminated).

Serial Device 389

Setting Serial Parameters

You can control the following serial parameters. The parameter name within the serial data
structure is shown in table 13-1. All of the fields described in this section are filled in when you
call OpenDeviceO to reflect the current settings of the serial device. Thus, you need not
worry about any parameter that you do not need to change.

Table 13-1: Serial Parameters

Parameter Name Characteristic It Controls

io_CtlChar Control characters to use for xON, xOFF, INQ, ACK respec
tively. Positioned within an unsigned longword in the sequence
from low address to high as listed. INQ and ACK handshaking
is not currently supported.

io_RBufLen Size of the buffer that the serial device should allocate for
incoming data. Minimum size is 512 bytes. It will not accept a
smaller value. This buffer is dynamically allocated by the serial
device. If, as you do an SDCMD_SETPARAMS command,
it senses a difference between its current value and the value of
buffer size you request, it deallocates the old buffer and allo
cates a new one. Note that it discards all characters that may
already be in that old buffer and that you may not have yet
had a chance to read. Thus it is wise to make sure that you do
not attempt buffer size changes (or any change to the serial
device, for that matter) while any I/O is actually taking place.

390 Serial Device

Reserved for future use.

The real baud rate you wish to use. A long value from 110 to
292,000. When a value of 110 is requested, it defaults to 112
(the lowest value the hardware can support). Although baud
rates above 19,200 are supported by the hardware, software
overhead may limit your ability to "catch" every single charac
ter that should be received. Output data rate, however, is not
software-dependen t.

If you issue a break command, this variable specifies how long,
in microseconds, the break condition lasts. This value con troIs
the break time for all future break commands until modified by
another SDCMD_SETP ARAMS.

io_ReadLen

io_ WriteLen

io_StopBits

io_Ser Flags

SERIAL FLAGS

A byte-array of eight termination characters, must be in des
cending order. If EOFMODE is set in the serial flags, this
array specifies eight possible choices of character to use as an
end of file mark. See the section above titled "Termination of
the Read" and the SDCMD_SETP ARAMS summary page
in the "Device Summaries" appendix for more information.

How many bits per read character; typically a value of 7 or 8.

How many bits per write character; typically a value of 7 or 8.

How many stop bits are to be expected when reading a charac
ter and to be produced when writing a character; typically 1.
A value of 2 is allowed if io_WriteLen = 7.

Explained below; see "Serial Flags."

Bit Active Function

0 low Busy
1 low Paper out
2 low Select
3 low Data set ready
4 low Clear to send
5 low Carrier detect
6 low Ready to send
7 low Data terminal ready
8 high Read overrun
9 high Break sent

10 high Break received
11 high Transmit x-OFFed
12 high Receive x-OFFed

13-15 (not) (reserv~d)

Table 13-2 shows the flags that can be set to affect the operation of the serial device. Note that
the default state of all of these flags is zero.

Serial Device 391

Flag Name

SERB_XDISABLED

SERB_EOFMODE

SERB_RAD_BOOGIE

SERB_QUEUEDBRK

392 Serial Device

Effect on Device Operation

Disable XON-XOFF feature.

Set this bit if you want the serial device to check I/O
characters against io_TermArray and to terminate
the IORequest immediately if an end-of-file character
has been encountered. Note: This bit can be set and
reset directly in the user's IORequest (IOExtSer)
block without a call to SDCMD_SETP ARAMS.

Set this bit if you want to allow other tasks to simul
taneously access the serial port. The default is
exclusive-access. If someone already has the port,
whether for exclusive or shared access, and you ask for
exclusive-access, your OpenDeviceO call will fail
(should be modified only at OpenDeviceO).

If set, this bit activates high-speed mode. Certain peri
pheral devices (MIDI, for example) may require high
serial throughput. Setting this bit high causes the serial
device to skip certain of its internal checking code to
speed throughput. In particular, it:

- Disables parity checking
- Bypasses XON/XOFF handling
- Uses only 8-bit character length
- Will not test for a break signal
- Automatically sets SERB_XDISABLED bit

Note that the Amiga is a multitasking system and has
immediate processing of software interrupts. If there
are other tasks running, it is possible that the serial
driver may be unable to keep up with high data
transfer rates, even with this bit set.

If set, every break command that you transmit will be
enqueued. This means that the current serial output
commands will be executed in sequence. Then the
break command will be executed, all on a FIFO (first in,
first out) basis. If this bit is cleared (the default), a
break command takes immediate precedence over any
serial output already enqueued. When the break com
mand has finished, the interrupted request will continue
(if it is not aborted by the user).

SERB_PARTY_ODD

SERB_PARTY_ON

If set (should be established only at OpenDeviceO),
the serial device is to use a seven-wire handshaking for
RS-232-C communications. Default is three-wire (pins
2, 3, and 7).

If set, selects odd parity. If clear, selects even parity.

If set, parity usage and checking is enabled.

SETTING THE PARAMETERS

You set the serial parameters by setting the flags and parameters as you desire and then
transmitting the command SDCMD_SETPARAMS to the device. Here is an example:

mySerReq->IOSer.io_SerFlags &= - SERF_PARTY_ODD; 1* 'and' with inv;
mySerReq->IOSer.io_SerFlags 1= SERF_QUEUEDBRK 1 SERF_PARTY_ON;
mySerReq->io_BrkTime = 500000; 1* 500k microseconds = 1/2 second *1
mySerReq->IOSer.io_Command = SDCMD_SETPARAMS;
DoIO(mySerReq); 1* synchronous request * 1

The above command would set the bits for queued break and even parity while leaving the
other flags unchanged. Notice the difference between the flag names and the flags that you
actually set using C. "SERB ... " is the name applied to the bit position within the flag word.
"SERF ... " is the name of a 1 bit in a mask at that bit position.

Errors from the Serial Device

The possible error returns from the serial device are listed in table 13-3.

Serial Device 393

Table 13-3: Serial Device Errors

#define SerErr_DevBusy 1
#define SerErr_BaudMismatch 2
#define SerErr_InvBaud 3
#define SerErr_BufErr 4
#define SerErr_InvParam 5
#define SerErr_LineErr 6
#define SerErr_NotOpen 7
#define SerErr_PortReset 8
#define SerErr_ParityErr 9
#define SerErr_InitErr 10
#define SerErr_TimerErr 11
#define SerErr_BufOverflow 12
#define SerErr_NoDSR 13
#define SerErr_NoCTS 14
#define SerErr_DetectedBreak 15

Closing the Serial Device

When the (final, if shared access) CloseDeviceO is performed, the input buffer is deallocated,
the timer device is closed, and the latest parameter settings are saved for the next open.

Typically, you close the serial device with the following function call:

CloseDevice(mySer Req);

This assumes that the serial device has completed all activities you have requested and has
returned all I/0 requests to you.

When you have finished with the serial device, it is up to you to deallocate any memory and
dependencies you might have used for the serial device communications. If you have used the
techniques shown earlier in this chapter to establish the communications in the first place, your
clean-up typically will consist of the following code:

394 Serial Device

cleanup2:
DeleteExtIO(mySerReq,sizeof(struct IOExtSer));

cleanup1:
DeletePort(mySerPort);

cleanup WriteIO:
DeleteExtIO(mySer WriteReq);

cleanup WritePort:
DeletePort(mySerWritePort);

Example Program

Here is an example program that uses static rather than dynamic allocation of the IOExtSer
request block. It assumes that you have connected a serial terminal device to the Amiga serial
port, and it uses the baud rate you have established in Preferences. The program outputs the
following status lines to the eLI window:

Serial device opened and accepted parameters

Testing character exact-count output thru SendWaitWrite

Test string length of -1 (make system find end of string)

Type 16 characters to send to Amiga ...

If no external terminal is attached, waits forever!

and outputs the following lines to the external terminal:

Device opened ok

User counts characters in string to send, or if null-terminated string, says '-1'

Types 16 characters to send to Amiga

At this point, you must type 16 characters on your external terminal. This sample program
does not echo characters that you type, so you will not see anything more until all 16 have been
typed. Finally the program will respond (to the external terminal) with:

You typed these printable characters:
<here it lists the 16 characters>
End of test
54321.. ... exit

Serial Device 395

Then the program exits, printing "Test completed!" to the CLI window.

#include
#include
#include
#include
#include
#include
#include
#include

" exec/types.h"
" exec/nodes.h"
" exec/lists.h"
" exec/ports.h"
" exec/libraries.h"
" exec/devices.h"
" exec/io.h"
" devices/serial.h"

struct IOExtSer *IORser;
struct MsgPort *port;
char buffer[200];
extern struct MsgPort *CreatePortO;
extern struct IORequest *CreateExtIOO;

/* Note: to run this program, you must have an external terminal, set
* at 9600 baud, attached to the Amiga serial port. Additionally the
* serial.device file must be located in the directory currently
* assigned to DEVS: (to check this, in AmigaDOS, type: ASSIGN
* then check the directory (usually the boot CLI disk volume, devs directory.)

*/

mainO
{

int error;
int actual;
unsigned long rbl;
unsigned long brk;
unsigned long baud;
unsigned char rwl;
unsigned char wwl;
unsigned char sf;
unsigned long to;
unsigned long tl;

/* SET UP the message port in the I/O request * /
port = CreatePort (SERIALNAME,O);
if (port == NULL) {

}

printf("\nProblems during CreatePort");
exit(lOO);

/* Create the request block for passing info

396 Serial Device

open:

* to and from the serial device. * /

IORser = (struct IOExtSer *)CreateExtIO(port,sizeof(struct IOExtSer));
if (IORser == NULL)
{

}

printf("\nProblems during CreateExtIO");
goto cleanupl;

/* OPEN the serial.device */
if ((error = OpenDevice (SERIALNAME, 0, IORser, 0)) != 0) {

printf ("Serial device did not open, error = %ld" ,error);
goto cleanupl;

}

/ * SET P ARAMS for the serial.device * /
rbl = 4096;
rwl = Ox08;
wwl = Ox08;
brk = 750000;
baud= 9600;
sf = OxOO;
to = Ox51040303;
tl = Ox03030303;

if ((error = SetParams (IORser,rbl,rwl,wwl,brk,baud,sf,tO,tl)) != 0) {
printf ("Set parameters command returned an error: %ld" ,error);
goto cleanup2;

}

-

printf("\nSerial Device opened and accepted parameters");
WriteSer (IORser,"\n \015Device opened ok\n \015", -1);

printf("\nTesting character exact-count output thru SendWaitWrite");
SendWaitWrite (IORser,

"User counts characters in string to send\n\015", 42);

printf("\nTest string length of -1 (make system find end of string)");
SendWaitWrite (IORser,

"or if null terminated string, say' -1 '\n \015" , -1);

printf("\nType 16 characters to send to amiga ... ");
printf("\nlf no external terminal is attached, waits forever!!");
WriteSer (IORser,

Serial Device 397

"\n\015Type 16 characters to send to amiga\n\015", -1);
actual = ReadSer (IORser,buffer,16);
WriteSer (IORser,

"\n\015You typed these printable characters:\n\015", -1);
WriteSer (IORser,buffer, actual);
WriteSer (IORser,"\n\015End of test\n\015", -1);
WriteSer (IORser," 54321.. ... exit\n\015", 16);
printf("\nTest completed!\n");

I * CLOSE the serial.device * /
cleanup2:

CloseDevice (IORser);
cleanup1:

}

DeletePort (port);
exit (0);

/* SERIAL I/O functions */

SetParams(io,rbuClen,rlen,wlen,brk,baud,sf,taO,ta1)

struct IOExtSer *io;
unsigned long rbuClen;
unsigned char rlen;
unsigned char :wlen;
unsigned long brk;
unsigned long baud;
unsigned char sf;
unsigned long taO;
unsigned long tal;

{
int error;

io- >io_ReadLen
io- > io_BrkTime
io- >io_Baud

= rlen;
= brk;

= baud;
io->io_WriteLen = wlen;
io- >io_StopBits = Ox01;
io- >io_RBufLen = rbuClen;
io->io_SerFlags = sf;
io->IOSer.io_Command = SDCMD_SETPARAMS;
io- >io_TermArray.TermArrayO = taO;
io- >io_TermArray.TermArrayl = tal;

398 Serial Device

if ((error = DolO (io)) != 0) {
printf ("serial.device setparams error % ld \n", error);

}
return (error);

}

ULONG ReadSer(io,data,length)
struct IOExtSer *io;
char *data;
ULONG length;
{

}

int error;

io->IOSer.io_Data = (APTR)data;
io- > lOSer .io_Length = length;
io->IOSer.io_Command = CMD_READ;

if ((error = DolO (io)) != 0) {
prin tf (" serial.d evice read error % ld \n", error);

}
return (io- >IOSer.io_Actual);

WriteSer(io,data,length)
struct IOExtSer *io;
char *data;
int length;
{

}

int error;

io->IOSer.io_Data = (APTR)data;
io- > lOSer .io_Length . length;
io->IOSer.io_Command = CMD_WRITE;

if ((error = DolO (io)) != 0) {
printf ("serial.device write error % ld \n", error);

}
return (error);

ULONG SendWait Write(io,data,length)
struct IOExtSer *io;
char *data;
int length;

Serial Device 399

{

}

int error;

io- >IOSer.io_Data = (APTR)data;
io- > lOSer .io_Length = length;
io->IOSer.io_Command = CMD_WRITE;

SendlO (io);

if ((error = WaitlO (io)) != 0) {
prin tf (" serial.device waitio error % ld \n" , error);

}
return (io- > lOSer .io_Actual);

400 Serial Device

Chapter 14

Parallel Device

This chapter describes software access to the parallel port. The parallel device is accessed via
the standard system device access routines and provides some additional functions specifically
appropriate to use of this device.

Introduction

The parallel device can be opened either in exclusive-access or shared mode. Other parallel dev
ice parameters can be specified using the PDCMD_SETPARAMS command after the device has
been opened.

Parallel Device 401

Opening the Parallel Device

Typically, you open the parallel device by using the following function calls:

LONG error;
struct Port *myParPort;
struct IOExtPar *myParReq;

/* create a reply port to which parallel
* device can return the request * /

myParPort = CreatePort("myParallel" ,0);
if(myParPort == NULL) exit(lOO); /* can't create port? */

/ * create a request block appropriate to parallel * /
myParReq = (struct IOExtPar *)CreateExtIO(myParPort,

sizeof(struct IOExtPar));
if(myParReq == NULL) goto cleanupl; /* error during CreateExtIO? */

myParReq->io_ParFlags = 0;
/ * accept the default, i.e., exclusive access. Remaining flags all zero,
* see devices/parallel.h for bit-positions. Definitions included in this
* chapter. * /

error = OpenDevice("parallel.device" ,0,myParReq,0);
if(error!= 0) goto cleanup2; /* device not available? */

cleanup2:
DeleteExtIO (my Par Req,sizeof(struct 10 ExtP ar));

cleanupl:
DeletePort(myParPort);

The routines CreatePortO and DeletePortO are part of amiga.lib. Information about the
routines CreateExtIOO and DeleteExtIOO can be found in the appendixes of the Amiga
ROM Kernel Reference Manual: Exec.

The parallel device is disk-resident. If it has not yet been loaded from disk, it will be read from
DEVS:parallel.device on the boot AmigaDOS disk. Its parameters will be set up from default
values.

During the opening process, the only flag used by the parallel device is the shared/ exclusive
access flag. For consistency, however, the other flag bits should be set to zero when the device
is opened.

402 Parallel Device

When the parallel device is opened, it opens the timer device and fills the latest parameter set
tings into the io_Request block. The OpenDeviceO routine will fill the latest parameter set
tings into the io_Request block. Note that a parameter change cannot be performed while an
I/O request is being processed, because it would invalidate request handling already in progress.
Therefore, you must use PDCMD _SETP ARAMS only when you have no parallel I/O
requests pending.

Reading from the Parallel Device

You read from the parallel device by sending your IORequest (IOExtPar) to the device with
a read command. You specify how many bytes are to be transferred and where the data is to
be placed. Depending on how you have set your parameters, the request may read the
requested number of characters, or it may terminate early.

Here is a sample read command:

char myDataArea[iOO];
myParReq->IOPar.io_Data = &myDataArea[O]; /* where to put the data */
myParReq->IOPar.io_Length = 100; /* read 100 characters */
myParReq->IOPar.io_Command = CMD_READ; /* say it is a read */
D6IO(myParReq); /* synchronous request */

If you use this example, your task will be put to sleep waiting until the parallel device reads 100
bytes (or terminates early) and copies them in to your read-buffer. Early termination can be
caused by error conditions or by the parallel device sensing an end-of-file condition.

Note that the io_Length value, if set to -1, tells the parallel device that you want to read a
null-terminated string. The device will read all incoming characters up to and including a byte
value of dxoO in the input stream, then report to you an io_Actual value that is the actual
length of the string, excluding the 0 value. Be aware that you must encounter a 0 value in the
input stream before the system fills up the buffer you have specified. The io_Length is, for all
practical purposes, indefinite. Therefore, you could potentially overwrite system memory if you
never encountered the null termination (zero-value byte) in the input stream.

Parallel Device 403

ALTERNATIVE MODE FOR READING

As an alternative to DoIOO, you can use SendIOO to transmit the command to the device.
In this case, your task can go on to do other things while the parallel device is collecting the
bytes for you. You can occasionally do a CheckIO(myParReq) to see if the I/0 is completed.

struct Message *myIO;

/* same code as in above example, except: * /
SendIO(myParReq);

/ >Ie do something * /
/* (user code) */

myIO = CheckIO(myParReq);
if(myIO != FALSE) go to ioDone;

/* do something else * /
/* (user code) * /

WaitIO(myParReq);

/* this 10 is done * /

myIO = myParReq; /* if had to wait, need a value for myIO * /
}
ioDone:

Remove(my Par Port- > mp_MsgList,my 10);
/ * use the Remove function rather than the GetMsg function * /

/* now check for errors, and so on. * /

The RemoveO function is used instead of the GetMsgO function to demonstrate that you
might have established only one port at which all of your I/0 requests will be returned, and you
may be checking each request in turn with CheckIOO to see if it has completed. These
requests could be, for example, a disk request, a parallel request, and a serial request, all simul
taneously outstanding and all using SendIOO to transmit their commands to the respective
devices.

It is possible that while you are doing other things and checking for completion of I/0, one dev
ice may complete its operations and append its message block to your reply port when you are
about to check the status of a later-arriving block. If you find that this later one has completed
and you call GetMsgO, you will remove the message at the head of the list. This message may
not necessarily be the one you expect to remove from the port. CheckIOO returns the address
of the IORequest if the I/O is complete, and you can use this address for the RemoveO func
tion to remove the correct request block for processing and reuse.

404 Parallel Device

TERMINATION OF THE READ

Reading from the parallel device can terminate early if an error occurs or if end of file is sensed.
You can specify a set of possible end-of-file characters that the parallel device is to look for in
the input stream. These are contained in an io_TermArray that you provide, using the
PDCMD_SETP ARAMS command. Note: io_TermArray is used only when EOF mode is
selected.

If EOF mode is selected, each input data character that is read into the user's data block is
compared against those in io_TermArray. If a match is found, the IORequest is terminated
as complete, and the count of characters read (including the TermChar) is stored in
io_Actual. To keep this search overhead as efficient as possible, the parallel device requires
that the array of characters be in descending order (an example is shown in the
PDCMD_SETP ARAMS summary in the "Device Summaries" appendix. The array has
eight bytes and all must be valid (that is, do not pad with zeros unless zero is a valid EOF char
acter). Fill to the end of the array with the least-value TermChar. When making an arbi
trary choice of EOF character(s), it is advisable to use the lowest value(s) available.

Writing to the Parallel Device

You can write to the parallel device as well as read from it. It may be wise to have a separate
IORequest block for reading and writing to allow both operations to take place simultaneously.
If you wish to queue multiple commands to the parallel device (either read or write commands),
it is acceptable to clone (copy) the I/O request block you receive from the call to
OpenDeviceO. A sample of cloning code is shown in the "Serial Device" chapter.

To perform a write:

char dataToWrite[lOO];
myParReq->IOPar.io_Data = &dataToWrite[O]; /* where to get the data * /
myParReq->IOPar.io_Length = n; /* write n characters */
myParReq->IOPar.io_Command = CMD_WRITE; /* say it is a write */
DoIO(myParReq); /* synchronous request */

You can use the SendIOO or BeginIOO functions as well as DoIOO. The same warnmgs
apply as shown above in the discussions about alternative modes of reading.

Note that if io_Length is set to -1, the parallel device will output your parallel buffer until it
encounters a value of OxOO in the data. It transmits this 0 value in addition to the data to
match the technique used for parallel read shown above. (You can also read data zero
terminated.)

Parallel Device 405

Setting Parallel Parameters

You can control the parallel parameters shown in table 14-1. The parameter name within the
parallel data structure is shown below. All of the fields described in this section are filled in
when you call OpenDeviceO to reflect the current settings of the parallel device. Thus, you
need not worry about any parameter that you do not need to change.

Table 14-1: Parallel Parameters

Parameter Name Characteristic It Controls

io_PExtFlags Reserved for future use.

io_PTermArray A byte-array of eight termination characters, must be in
descending order. If EOFMODE is set in the parallel flags,
this array specifies eight possible choices of character to
use as an end-of-file mark. See the
PDCMD_SETP ARAMS summary page in the "Device
Summaries" appendix and the section above titled "Termi
nation of the Read" for more information.

io_ParFlags Explained below; see "Parallel Flags."

PARALLEL FLAGS

The flags shown in table 14-2 can be set to affect the operation of the parallel device. Note that
the default state of all of these flags is zero.

406 Parallel Device

Flag Name

Table 14-2: Parallel Flags

Effect on Device Operation

Set this bit if you want the parallel device to check I/O
characters against io_TermArray and terminate the
IORequest immediately if an end-of-file character has
been encountered. Note: This bit can be set and reset
directly in the user's IORequest (IOExtPar) block
without a call to PDCMD_SETP ARAMS.

Set this bit if you want to allow other tasks to sim ul
taneously access the parallel port. The default is ex
clusive access. If someone already has the port, whether
for exclusive or shared access, and you ask for exclusive
access, your OpenDeviceO call will fail (should be
modified only at OpenDeviceO).

SETTING THE PARAMETERS

You set the parallel parameters by setting the flags and parameters as you desire and then
transmitting the command PDCMD_SETP ARAMS to the device. Here is an example:

myParReq->IOPar.io_ParFlags &= - PARF_EOFMODE;
/ * "and" with inverse * /

myParReq- > IOPar.io_Command = PDCMD_SETP ARAMS;
DoIO(myParReq); /* synchronous request */

The above command would cancel EOFMODE (use of the io_TermArray), leaving the other
flags unchanged. Notice the difference between the flag names and the flags that you actually
set using C. "PARB ... " is the name applied to the bit position within the flag word.
"PARF ... " is the name of a 1 bit in a mask at that bit position.

Errors from the Parallel Device

The possible error returns from the parallel device are listed in table 14-3.

Parallel Device 407

Table 14-3: Parallel Device Errors

#define ParErr_DevBusy 1
#define ParErr_BuIToBig 2
#define ParErclnvParam 3
#define ParErr_LineErr 4
#define ParErr_NotOpen 5
#define ParErr_PortReset 6
#define ParErr_InitErr 7

Closing the Parallel Device

When the (final, if shared access) CloseDeviceO is performed, the timer device is closed, and
the latest parameter settings are saved for the next open.

Typically, you close the parallel device with the following function call:

CloseDevice(my Par Req);

This assumes that the parallel device has completed all activities you have requested and has
returned all I/O requests to you. When you have finished with the parallel device, it is up to
you to deallocate any memory and dependencies you might have used for the parallel device
communications. If you have used the techniques shown earlier in this chapter to establish the
communications in the first place, your clean-up typically will consist of the following code:

cleanup2:
DeleteExtIO(my Par Req,sizeof(struct IOExtP ar»;

cleanup!:
DeletePort(myParPort);

cleanupWriteIO:
DeleteExtIO(my Par WriteReq);

cleanupWritePort:
DeletePort(myParWritePort);

408 Parallel Device

Example Program

Here is an example program that uses static rather than dynamic allocation of the IOExtPar
request block. It assumes that you have connected a parallel I/O device to the Amiga parallel
port.

#include "exec/types.h"
#include "exec/nodes.h"
#include "exec/lists.h"
#include "exec/ports.h"
#include "exec/libraries.h"
#include "exec/ devices.h"
#include "exec/io.h"
#include "devices/parallel.h"

struct IOExtPar 10Rpar;
struct MsgPort *port;
char buffer [64000];
extern struct MsgPort *CreatePortO;

mainO
{

int error;
int actual;
unsigned char pfiags;
unsigned long ptO;
unsigned long ptl;

open:
/* OPEN the parallel.device */

if ((error = OpenDevice (PARALLELNAME, 0, &IORpar, 0)) != 0) {
printf ("bad news %ld on Open \n", error);
exit (error);

}

/* SET UP the message port in the I/O request * /
port = CreatePort (PARALLELNAME,O);
10Rpar.IOPar.io_Message.mn_ReplyPort = port;

/* SET PARAMS for the parallel.device */
pfiags = PARF _EOFMODE;
p to = Ox51 040303;
ptl = Ox03030303;

Parallel Device 409

if ((error = setparams (pfiags,ptO,ptl)) != 0) {
printf ("bad news %ld on setup \n", error);
DeletePortO;
exit (error);

}

actual = readPar (buffer,60000);

/* OLOSE the parallel.device */
OloseDevice (&IORpar);
DeletePort (port);
exit (0);

}

/* PARALLEL I/O functions */

setparams(pf, taO, tal)

{

}

unsigned char pf;
unsigned long taO;
unsigned long tal;

int error;

10Rp ar.io_ParF lags = pf;
IORpar.IOPar.io_Oommand = PDOMD_SETP ARAMS;
10Rpar.io_PTermArray.PTermArrayO = taO;
IORpar.io_PTermArray.PTermArrayl = tal;

if ((error = DolO (&IORpar)) != 0) {
prin tf (" parallel.device setparams error % ld \n", error);

}
return (error);

readPar(data,length)
char *data;
ULONG length;

{
int error;

10Rpar.IOPar.io_Data = data;
10Rpar.IOPar.io_Length = length;
IORpar.IOPar.io_Oommand = OMD_READ;

410 Parallel Device

if ((error = DolO (&IORpar)) != 0) {
printf (" parallel.device read error % ld \n", error);

}
return (IORpar.IOPar.io_Actual);

}

,wri teP ar(data, len gth)
char *data;

{

}

int length;

int error;

IORpar.IOPar.io_Data = data;
IORpar.IOPar.io_Length = length;
IORpar.IOPar.io_Command = CMD_WRITE;

if ((error = DolO (&IORpar)) != 0) {
printf ("parallel.device write error %ld \n", error);

}
return (error);

Parallel Device 411

Chapter 15

Printer Device

Introduction

There are four basic ways of doing output to a printer on the Amiga computer and three basic
kinds of output you can send. You can send your output to these devices:

o PRT:-the DOS printer device

Printer Device 413

o SER: - the DOS serial device

o P AR:-the DOS parallel device

o printer .device - to directly access the printer device itself

Your output can take the following form:

o A character stream, consisting of commands and data (if sent through DOS or directly
to the prin ter device)

o A command (if sent directly to the printer device)

o A graphics dump (also sent directly to the printer device)

The following section explains the various possible access pathways to the printer itself, along
with the advantages and disadvantages of each pathway.

PRT:-THE AMIGADOS PRINTER DEVICE

PRT: is the AmigaDOS printer device. By using the Workbench Preferences tool, you can
direct the output to either a serial or parallel printer, which is the generic printer configured on
the system. You may print (output) escape sequences to PRT: to specify the options you want.
The escape sequences you send are interpreted by the printer driver and (usually different)
escape sequences are forwarded to the printer. This is by far the easiest method for most appli
cations. PR T: may be opened just like any other AmigaDOS file.

SER:-THE AMIGADOS SERIAL DEVICE

SER: is the AmigaDOS serial device. If you "know" that the prin ter is connected to the serial
port (you should not) and you "know" what kind of printer it is (again, you should not) then
you could use AmigaDOS to open SER: and output characters to it, causing it to print. This
practice is strongly discouraged! Characters you send are not examined or converted.

PAR:-THE AMIGADOS PARALLEL DEVICE

PAR: is the AmigaDOS parallel device. The warnings given in the paragraph above apply here
as well.

414 Prin ter Device

THE PRINTER DEVICE

By opening the Exec printer device directly, you have full control over the printer. You can
either send escape sequences as shown in the command definitions table below for printer con
trol or call the RawWriteO routine to send raw characters directly to your printer with no
processing at all. Using this technique would be similar to sending raw characters to SER: or
PAR: from AmigaDOS (but you do not need to know which one is connected to the printer).
Also note that all "commands" to the printer transmitted through the DOS printer access path
must take the form of a character stream. Direct access to the printer device allows you to
transmit other commands, such as reset or flush or, for graphics dumps, DumpRPortO (dump
a raster to a graphics-capable printer).

Printer Device Output

The printer device can be thought of as kind of a filter, in that some printers respond in one
way to a command output and some respond in another. The printer device, as a standard
printer interface, recognizes command sequences. Depending on the printer-dependent
configuration that is currently loaded (by the Preferences tool), the printer device either ignores
the command sequences or perhaps translates them into an entirely different sequence that this
printer can actually understand and obey.

Opening the AmigaDOS Printer Device

You can open the DOS printer device just as though it were a normal DOS output file. Here is
an example program segment that accomplishes this:

struct File *file;

file = Open("PRT:", MODE_NEWFILE);
if (file == 0) exit(PRINTER_WONT_OPEN);

Then, to print use code like this:

actuaClength = Write(file, dataLocation, length);

where

file
is a file handle (see the AmigaDOS Developers Manua0.

Printer Device 415

dataLocation
is a pointer to the first character in the output stream you wish to write.

length
is the length of the output stream.

actuaLlength
is the actual length of the write. For the printer device, if there are no errors, this is
likely to always be the same as the length of write requested. The only exception is if
you specify a value of -1 for length. In this case, -1 for length means that a null (0) ter
minated stream is being written to the printer device. The device returns the count of
characters written prior to encountering the null. If it returns a value of -1 as
actuaLlength, there has been an error.

Note that the OpenO function could be called with SER: or PAR: if you do not want to have
any character translation performed during the printer I/O. When the printer I/O is complete,
and your program is ready to exit, you should close the device. Here is a sample function call
that you could use:

Close(file);

Note that printer I/O through the DOS versions of the printer device must be done by a pro
cess, not by a task. DOS utilizes information in the process control block and would become
confused if a simple task attempted to perform these activities. Printer I/O using the printer
device directly, however, can be performed by a task.

Data Structures Used During Printer I/O

This section shows you how to set up for Exec printer I/0. There are three distinct kinds of
data structures required by the printer I/O routines. Some of the printer commands, such as
start, stop, and flush, require only an IOStdReq. Others, such as write, require a larger data
structure called an IODRPReq (for "dump a RastPort") or IOPrtCmdReq (for "printer
command request"). For convenience, the printer device has defined a single data structure,
called printerIO, that can be used to represent any of the three different kinds of printer com
munications request blocks.

The data structure type printerIO used III the following examples IS a C-Ianguage UllIon
defined as:

416 Printer Device

union printerlO{
struct 10StdReq ios;
struct 10DRPReq iodrp;
struct 10PrtCmdReq iopc;
}

This means that one memory area can be used to represent three distinct forms of memory lay
out for the three different types of data structures that must be used to pass commands to the
printer device. Some of the commands are simple and can use an 10StdReq. Some of the
commands require many more parameters and extend the basic I/O request block accordingly.
If you use the function CreateExtIOO, you can automatically allocate enough memory to hold
the largest structure in the union statement.

Creating an I/O Request

Printer I/0, like the I/0 of other devices, requires that you create an I/O request message that
you pass to the printer device for processing. The message contains the command as well as a
data area. For a write, there will be a pointer in the data area to the stream of information you
wish to write to the printer.

The following program fragment can be used to create the message block that you use for
printer communications.

union printerlO *printerMsg; /* I/O request block pointer */
struct Port *printerPort; /* a port at which to receive * /

printerPort = CreatePort("my.print.port" ,0);
printerMsg = (union printerlO *)CreateExtIO(printerPort,

sizeof(union printerIO));

Error handling is not shown here. It is deferred to the example at the end of the chapter.

The routine CreatePortO, which is part of am£ga.l£b, and the routine CreateExtlOO may be
found in the appendixes of the Am£ga ROM Kernel Reference Manual: Exec.

Note that there are two additional kinds of I/O request blocks that, for some commands, must
be prepared for sending to the printer. They are called 10DRPReq and 10PrtCmdReq.
Both are outlined in the include file dev£ces/pr£nter.h. The function call to CreateExtlOO
returns a pointer to a memory block the size of the largest form of printer 10Request.

Printer Device 417

Opening a Printer Device

You open a path to the printer device using code like the following:

int
OpenPrinter(request)
union printerIO *request;
{

return(OpenDevice("printer.device" ,O,request,O»;
}

This routine returns a value of zero if the printer device was opened successfully and a value
other than zero if it did not open.

Writing to the Printer

There are three forms of writing to the printer. The first uses a character stream that you
create, possibly containing escape sequences to be processed by the printer driver ("Prin tString"
example) or containing just about anything else that is to be passed directly to the printer
("PrintRaw" example). The second form of write passes a command to the printer
("PrintCmd" example). The third form asks for a graphics dump of a drawing area ("Printer
Dump" example).

To write to the printer, you pass to the printer device the system standard command
CMD_ WRITE. Here are routines that can be used to send this command:

/ * Send a NULL-terminated string to the printer * /

/* Assumes printer device is open and printerMsg is correctly initialized.
* Watches for embedded "escape-sequences" and handles them as defined.

*/

int
P rintString(request,string)
union printerIO *request;
char *string;
{

request->ios.io_Command = CMD_WRITE;
request->ios.io_Data = string;
request->.ios.io_Length = -1;

/* if -1, the printer assumes it has been given

418 Printer Device

}

* a null-terminated string.
*/

return(DoIO(request»;

/ * Send RAW character stream to the printer directly,
* avoid" escape-sequence" parsing by the device.
*/

int
PrintRaw(request, buffer ,count)
union printerIO *request; /* a properly initialized request block */
char *buffer; /* where is the output stream of characters * /
int count; / * how many characters to output * /
{

}

/* queue a printer raw write */
request->ios.io_Command = PRD_RAWWRITE;
request->ios.io_Data = buffer;
request- > ios.io_Length = count;
return(DoIO(request»;

PRINTER COMMAND DEFINITIONS

The following table describes the supported printer functions. You can use the escape sequences
with PRT: and the printer device.

To transmit a command to the printer device, you can either formulate a character stream con
taining the material shown in the "Escape Sequence" column of table 15-1 below or send an
IORequest to the printer device specifying which of these commands you wish to have per
formed. A sample routine for transmitting commands is shown immediately following the com
mand table.

Again, recall that SER: and PAR: will ignore all of these and pass them directly on to the
attached device.

Printer Device 419

Table 15-1: Printer Device Command Functions

Cmd Escape Defined
Name No. Sequence Function by:

aRIS 0 ESCc Reset ISO
aRIN 1 ESC#1 Initialize +++
aIND 2 ESCD Lf ISO
aNEL 3 ESCE Return,lf ISO
aRI 4 ESCM Reverse If ISO

aSGRO 5 ESC[Om Normal char set ISO
aSGR3 6 ESC[3m Italics on ISO
aSGR23 7 ESC[23m Italics off ISO
aSGR4 8 ESC[4m Underline on ISO
aSGR24 9 ESC[24m Underline off ISO
aSGRI 10 ESC[lm Boldface on ISO
aSGR22 11 ESC[22m Boldface off ISO
aSFC 12 ESC[nm Set foreground color ISO

where n stands for a pair
of ASCII digits, 3 followed
by any number 0-9

aSBC 13 ESC[nm Set background color ISO
Where n stands for
a pair of ASCII digits, 4
followed by any number 0-9

aSHORPO 14 ESC[Ow Normal pitch DEC
aSHORP2 15 ESC[2w Elite on DEC
aSHORPI 16 ESC[lw Elite off DEC
aSHORP4 17 ESC[4w Condensed fine on DEC
aSHORP3 18 ESC[3w Condensed off DEC
aSHORP6 19 ESC[6w Enlarged on DEC
aSHORP5 20 ESC[5w Enlarged off DEC

aDEN6 21 ESC[6"z Shadow print on DEC (sort of)
aDEN5 22 ESC[5"z Shadow print off DEC
aDEN4 23 ESC[4"z Doublestrike on DEC
aDEN3 24 ESC[3"z Dou blestrike off DEC
aDEN2 25 ESC[2"z NLQ on DEC
aDENI 26 ESC[I"z NLQ off DEC

aSUS2 27 ESC[2v Superscript on +++
aSUSI 28 ESC[lv Superscript off +++
aSUS4 29 ESC[4v Subscript on +++
aSUS3 30 ESC[3v Subscript off +++
aSUSO 31 ESC[Ov Normalize the line +++
aPLU 32 ESCL Partial line up ISO

420 Printer Device

aPLD 33 ESCK Partial line down ISO

aFNTO 34 ESC(B US char set DEC
aFNTl 35 ESC(R French char set DEC
aFNT2 36 ESC(K German char set DEC
aFNT3 37 ESC(A UK char set DEC
aFNT4 38 ESC(E Danish I char set DEC
aFNT5 39 ESC(H Swedish char set DEC
aFNT6 40 ESC(Y Italian char set DEC
aFNT7 41 ESC(Z Spanish char set DEC
aFNT8 42 ESC(J Japanese char set +++
aFNT9 43 ESC(6 Norwegian char set DEC
aFNTlO 44 ESC(C Danish II char set +++
aPROP2 45 ESC[2p Proportional on +++
aPROPl 46 ESC[lp Proportional off +++
aPROPO 47 ESC[Op Proportional clear +++
aTSS 48 ESC[n E Set proportional offset ISO
aJFY5 49 ESC[5 F Auto left justify ISO
aJFY7 50 ESC[7 F Auto right justify ISO
aJFY6 51 ESC[6 F Auto full justify ISO
aJFYO 52 ESC[O F Auto justify off ISO
aJFY3 53 ESC[3 F Letter space (justify) ISO (special)
aJFYl 54 ESC[l F Word fill(au to center) ISO (special)

aVERPO 55 ESC[Oz 1/8" line spacing +++
aVERPl 56 ESC[lz 1/6" line spacing +++
aSLPP 57 ESC[nt Set form length n DEC
aPERF 58 ESC[nq -Perf skip n (n>O) +++
aPERFO 59 ESC[Oq Perf skip off +++
aLMS 60 ESC#9 Left margin set +++
aRMS 61 ESC#O Right margin set +++
aTMS 62 ESC#8 Top margin set +++
aBMS 63 ESC#2 Bottom margin set +++
aSTBM 64 ESC[n;nr T&B margins DEC
aSLRM 65 ESC[n;ns L&R margin DEC
aCAM 66 ESC#3 Clear margins +++
aHTS 67 ESCH Set horiz tab ISO
aVTS 68 ESCJ Set vertical tabs ISO
aTBCO 69 ESC[Og Clr horiz tab ISO
aTBC3 70 ESC[3g Clear all h tab ISO
aTBC1 71 ESC[lg Clr vertical tabs ISO
aTBC4 72 ESC[4g Clr all v tabs ISO
aTBCALL 73 ESC#4 Clr all h & v tabs +++
aTBSALL 74 ESC#5 Set default tabs +++
aEXTEND 75 ESC[n"x Extended commands +++

Printer Device 421

Legend:

ISO

DEC

indicates that the sequence has been defined by the International Standards
Organization. This is also very similar to ANSI x3.64.

indicates a control sequence defined by Digital Equipment Corporation.

+++ indicates a sequence unique, to Amiga.

n stands for a decimal number expressed as a set of ASCII digits, for example 12.

Transmitting a Command to the Printer Device

As noted above, to transmit a command to the printer device, you can either formulate an
escape sequence and send it via the CMD_ WRITE command, or you can utilize the command
names itnd pass parameters and the command to the device. Here is a sample routine that uses
the system command PRD_PRTCOMMAND to transmit a command to the device:

int
PrintCommand(request,command, pO, pI, p2, p3)
union printerIO *request;
int command, pO, pI, p2, p3; /* command and its parameters * /
{

}

/ * queue a printer command * /
request->iopc.io_Command = PRD_PRTCOMMAND;
request->iopc.io_PrtCommand = command;
reqnest->iopc.io_ParmO = pO;
request->iopc.io_Parml = pI;
request->iopc.io_Parm2 = p2;
request->iopc.io_Parm3 = p3;
return(DoIO(request»;

As an example, suppose you wanted to set the left and right margins on your printer to columns
1 and 79 respectively. Here is a sample call to the PrintCommandO function for this pur
pose:

PrintCommand(aSLRM, 1, 79, 0, 0);

422 Printer Device

Consult the function table. Wherever there is a value of "n" to be substituted, it will be util
ized from the next available parameter for this command. Most of the commands in the table
need 'no parameters; some need one and others need two. Few, if any, require more than two
parameters; however, this function provides room for expansion.

Dumping a RastPort to the Printer

You can dump a RastPort (drawing area) to the printer by sending the command
PRD_DUMPRPORT to the printer, along with several parameters that define how the dump
is to be accomplished. The parameters shown in the sample dump function below are complete
ly described in the summary for DumpRPortO in the "Device Summaries" appendix.

int
DumpRPort(request,rastPort, colorMap, modes, sX,sy, sw,sh, dc,dr, s)

union printerIO *request;
struct RastPort *rastPort;
struct ColorMap *colorMap;
ULONG modes;
UWORD sx, sy, sw, sh;
LONG dc, dr;
UWORD S;

{
request->iodrp.io_Command = PRD_DUMPRPORT;
request->iodrp.io_RastPort = rastPort;
request->iodrp.io_ColorMap = colorMap;
request- > iodrp.io_Modes = modes;
request->iodrp.io_SrcX = sx;
request->iodrp.io_SrcY = sy;
request->iodrp.io_SrcWidth = sw;
request->iodrp.io_SrcHeight = sh;
request->iodrp.io_DestCols = dc;
request->iodrp.io_DestRows = dr;
request- > iodrp.io_Special = S;
return(DoIO(request»;
}

As an example of this function, suppose you wanted to dump the current contents of the Work
bench screen to the printer. The typical program code shown below would accomplish it. Note
that during the dump no other tasks should be writing to the screen, nor should you use the
mouse to move windows or otherwise modify the screen appearance.

Printer Device 423

/*
* Author: Rob Peck, 12/1/85
* Modified: Carolyn Scheppner, 04/08/86

*
* This code may be freely utilized to develop programs for the Amiga.

*/

#include "exec/types.h"
#include "in tuition/intuition .h"
#include "devices/printer.h"
#define INTUITION_WONT_OPEN 1000

union printerIO {
struct IOStdReq ios;
struct IODRPReq iodrp;
struct IOPrtCmdReq iopc;
};

union printerIO *request; /* a pointer to a request block */

extern int DumpRPortO;
extern struct IORequest *CreateExtIOO;
extern struct MsgPort *CreatePortO;

struct IntuitionBase *IntuitionBase;

mainO
{

struct Screen *screen;
struct RastPort *rp;
struct ViewPort *vp;
struct ColorMap *cm;
struct MsgPort *printerPort;
int modes,width,height,error;

/* at which to receive reply */

IntuitionBase = (struct IntuitionBase *)OpenLibrary(
"intuition.library",O);

if (IntuitionBase == NULL) exit(INTUITION_WONT_OPEN);

screen = IntuitionBase->FirstScreen; /* ptr to front Screen */

vp = &screen-> ViewPort; /* get screen's ViewPort, from
* which the ColorMap will be gotten */

rp = &screen->RastPort; /* get screen's RastPort, which
* is what gets dumped to printer */

424 Prin ter Device

cm = vp->ColorMap;

modes = vp- >Modes;
width = screen- > Width;
height - screen- > Height;

/* retrieve pointer to colormap for
* the printer dump */
/* retrieve the modes variable */
/* retrieve width and */
/* height to print */

printerPort = CreatePort("my.print.port" ,0);
request = (union printerIO *)CreateExtIO(printerPort,

sizeof(union printerIO));

error = OpenPrinter(request);
if(error!= 0) goto cleanup2;

Delay(300); /* 300/60 = 6 seconds delay before it starts */
error = DumpRPort(

request, /* pointer to initialized request */
rp, /* RastPort pointer */
cm, /* color map pointer */
modes, /* low, high res, etc (display modes)*/
0, 0, /* x and y offsets into rastport */
width,height, /* source size */
0,0, / * dest size ° because of Special * /
SPECIAL_FULLCOLS I SPECIAL_ASPECT /* Special */

);
ClosePrin ter(request);

/* Special = print max width */
/ * with proportional height * /

cleanup2:
DeleteExtIO(request, sizeof(union prin terIO));
DeletePort(prin terPort);

cleanup1:
CloseLibrary(In tuitionBase);

} /* end of demo screen dump */

/**/
/* printersupport.c rtns
/**/

/* OPEN THE PRINTER */
int
OpenPrin ter(request)

Printer Device 425

union printerIO *request;
{
return(OpenDevice(" prin ter.device" ,O,request,O));
}

/ * CLOSE THE PRINTER * /
int
ClosePrin ter(request)

union printerIO *request;
{
CloseDevice(request);
return(O);
}

/* Send a null-terminated string to the printer. Assumes printer device
* is open and printerMsg is correctly initialized. Watches for embedded
* "escape-sequences" and handles them as defined.

*/

int
Prin tString(request,string)

union printerIO *request;
char *string;
{
request->ios.io_Command = CMD_WRITE;
request- > ios.io_Data = (APTR)string;
request- >ios.io_Length = -1;
/* if -1, the printer assumes it has been given a null terminated string. */
return(DoIO(request));
}

/* Send RAW character stream to the printer directly,
* avoid" escape-sequence" parsing by the device.

*/
int
Prin tRaw(request,buffer ,count)

union printerIO *request; /* a properly initialized request block */
char *buffer; /* where is the output stream of characters */
int count; /* how many characters to output */
{
/* queue a printer raw write */
request- > ios.io_ Command = PRD _RA WWRITE;
request- > ios.io_Data = (APTR)buffer;

426 Prin ter Device

request- > ios.io_Length = count;

return(DoIO(request));
}

/* Send Printer Command */
int
PrintCommand(request,command, pO, pI, p2, p3)

union printerIO *request;
int command, pO, pI, p2, p3; /* command and its parameters */

{
/* queue a printer command */
request->iopc.io_Command = PRD_PRTCOMMAND;
request- >iopc.io_PrtCommand = command;
request- > iopc.io_ParmO = pO;
request- >iopc.io_Parmi = pI;
request->iopc.io_Parm2 = p2;
request- >iopc.io_Parm3 = p3;
return(DoIO(request));
}

ADDITIONAL NOTES ABOUT GRAPHICS DUMPS

The print command accepts a "use the largest area you have" specification that looks at the
Preferences active print width and active print height to bound the size of the print. These
values are specified as a character count and a character size specification. Thus, the width of
the print is bounded by the number of inches specified by the following equation:
(RIGHT_MARGIN - LEFT_MARGIN + 1) / CHARACTERS_PER_INCH. The height is
specified by the equation: LENGTH / LINES_PER_INCH.

NumRows in the printer tag refers to the number of dots in the graphics print element, and
can be used by graphics render code to determine how much buffer space is needed to compose a
line of graphics output. It has not been used in practice; the number has instead been hard cod
ed into the render function specific to the printer.

If the printer for which you are developing can be set to unidirectional mode under software
con trol, we recommend that you put this in the initialization code for the printer (see case 0
Master Initialization, below). This produces better-looking printouts and under most conditions
(believe it or not) a faster printout.

Printer Device 427

Creating a Printer Driver

Creating a printer-dependent code fragment for the printer device involves writing the data
structures and code, compiling and assembling it, and linking it to produce an Amiga object
binary file. The first piece in that file is the PrinterSegment structure described in
devices/prtbase.h and devices/prtbase.i (which is pointed to by the BPTR returned by the
LoadSegO of the object file).

You specify the printer-dependent object file to load by specifying "custom printer" in Prefer
ences and filling in the custom printer name with the name of the object file (relative to the
directory DEVS:printers/).

The printer-dependent code Printer Segment contains the PrinterExtendedData (PED)
structure (also described in devices/ prtbase.h and devices/ prtbase. i at the beginning of the ob.:.
ject). The PED structure contains data describing the capabilities of the printer, as well as
pointers to code and other data. Here is the assembly code for a sample PrinterSegment,
which would be linked to the beginning of the sequence of files describing the printer-dependent
code fragment.

**
*
* printer device dependent code tag

*
**

; named sections are easier to exactly place in the linked file
SECTION custom

*------ In clu d ed Files ---

INCLUDE
INCLUDE

INCLUDE

INCLUDE

" exec/types.i"
" exec/nodes.i"

"revision.i"

" devices/prtbase.i"

; contains VERSION & REVISION

*------ 1m ported Names ---

428 Printer Device

XREF
XREF
XREF
XREF
XREF
XREF

_Init
_Expunge
_Open
_Close
_Command Table
_DoSpecial

XREF _Render

*------ Exported Names ---

XDEF _PEDData

**

_PEDData:

printerName:

; in case anyone tries to execute this
MOVEQ #O,DO
RTS

DC.W
DC.W

DC.L
DC.L
DC.L
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L

DC.B
DC.B
EVEN

VERSION
REVISION

printerName
_Init
_Expunge
_Open
_Close
PPC_BWGFX
PCC_BW
80
1
8
960
o
120
82
_CommandTable
_DoSpecial
_Render
30

'Custom Printer Name'
o

; PrinterClass
; ColorClass
; MaxColumns
; NumCharSets
; NumRows
; MaxXDots
; MaxYDots
; XDotsInch
; YDotsInch
; Command Strings
; Command Code
; Graphics Render
; Timeout

The printer name should be the brand name of the printer that is available for use by programs
wishing to be specific about the printer name in any diagnostic or instruction messages. The
four functions at the top of the structure are used to initialize this printer-dependent code:

(*(PED- >ped_Init))(PD);
This is called when the printer-dependent code is loaded and provides a pointer to the

Printer Device 429

printer device for use by the printer-dependent code. It can also be used to open up
any libraries or devices needed by the printer-dependent code.

(*(PED->ped_Expunge))O; .
This is called immediately before the printer-dependent code is unloaded, to allow it to
close any resources obtained at initialization time.

(*(PED->ped_Open»(ior);
This is called in the process of an OpenDeviceO call, after the Preferences are read
and the correct primitive I/O device (parallel or serial) is opened. It must return zero if
the open is successful, or nonzero to terminate the open and return an error to the user.

(* (PED- > ped_ Close))(ior);
This is called in the process of a CloseDeviceO call to allow the printer-dependent
code to close any resources obtained at open time.

The pd_ variable provided as a parameter to the initialization call is a pointer to the
PrinterData structure described in devices/prtbase.h and devices/prtbase.i. This is also the
same as the io_Device entry in printer I/O requests.

pd_SegmentData
This points back to the Printer Segment, which contains the PED.

pd_PrintBuf
This is available for use by the printer-dependent code-it is not otherwise used by the
printer device.

(*pd_PWrite)(data, length);
This is the interface routine to the primitive I/O device. This routine uses two I/O re
quests to the primitive device, so writes are double-buffered. The data parameter points
to the byte data to send, and the length is the number of bytes.

(*pd_PBothReady)O;
This waits for both primitive I/O requests to complete. This is useful if your code does
not want to use double buffering. If you want to use the same data buffer for successive
pd_PWrites, you must separate them with a call to this routine.

pd_Preferences
This is the copy of Preferences in use by the printer device, obtained when the printer
was opened.

The timeout field is the number of seconds that an I/O request from the printer device will
remain posted and unsatisfied to the primitive I/O device (parallel or serial) before the timeout
requester is presented to the user. This value should be large enough to avoid the requester
during normal printing.

430 Prin ter Device

SAMPLE CODE

To help you in developing custom printer drivers for the Amiga, four sets of source files have
been included as a part of this document. The files include init.asm, printertag.asm, data.c,
render.c, and dospecial.c.

Four sets of files for four different types of printers are provided:

diablo_c - an example of a ymcb color printer
epson - an example of a b/w printer
okimate20 - an example of a ymc_bw printer (has two render.c functions)
hpplus - an example of a single-sheet, multiple-density printer

The source files for the hpplus includes one additional C-Ianguage source, named density.c.

In addition, you will also need certain files that are common to all printer drivers. These are
called macros.i and are printer assembly code macros that init.asm uses. All of these files are in
the "Printer Device Source Code" appendix of this manual.

WRITING A GRAPHICS PRINTER DRIVER

Designing the graphics portion of a custom printer driver consists of two steps: writing a
printer-specific render.c function, and replacing the printer-specific values in printertag.asm.
Note that a printer that does not support graphics has a very simple form of RenderO; it re
turns an error. Here is sample code for RenderO for a non-graphics printer (typically, an al
phacom or diablo_630):

#inelude "exec/types.h"
#inelude "devices/printer .h"
int
RenderO
{

return(PDERR_NOTGRAPHICS);
}

The following section describes the contents of a typical driver for a printer that actually sup
ports graphics. The example code for the Epson printer, contained in the "Printer Device
Source Code" appendix, shows a typical RenderO function based on this description.

Printer Device 431

Render.c

This function is the main printer-specific code module and consists of six parts:

o Master initialization

o Pixel rendering

o Dumping a pixel buffer to the printer

o Clearing and initializing the pixel buffer

o Closing down

o Density selection

Master Initialization (case 0). When this call is made, you are passed the width (in pixels)
in x and the height (in pixels) in y of the picture as it should appear on the printer. Note that
the prin ter non-specific code (using the printer-specific values in prz"ntertag. asm (that will be dis
cussed later), has already verified that these values are within range for the printer. It is recom
mended that you use these values to allocate enough memory for a temporary buffer in which to
build a command buffer for the printer. The buffer size needed is dependent on the specific
printer, the width (usually), and the height (sometimes). In general, the buffer represents the
commands and data required for one pass of the print head and usually takes the following
form:

<start gfx cmd> <data> <end gfx cmd>

where:

<start
is the command required to define the graphic dump for each line.

<data>
is the binary data.

<end
is a terminator telling the printer to print the data (usually a carriage return).

For color printers, enough buffer space must usually be allocated for each different color ribbon,
ink, and so on that the printer offers (the okimate-20 and diablo_c-150 are provided as examples
of this). Please refer to the sample drivers.

432 Printer Device

The example render.c functions use double buffering to reduce the dump time, which is why the
AllocMemO call is for

(BUFSIZE times two)

where BUFSIZE represents the amount of memory for one entire print cycle (usually one pass of
the print head).

Printers that would do more than one pass of the print head on a dump call are those that have
to do a pass for each different main color that they want to lay down on the paper (like the
Okidata-20 with three colors and the Epson-ix-80 with four colors). A printer such as the
Diabl03-150 that can lay down all the colors in a single pass needs to do only one pass.

The number of passes the printer has to do is irrelevant to you. This topic was introduced
mainly to illustrate the true meaning of the term "one print cycle." You want to send the
printer an entire print cycle to allow the main non-printer-specific driver to continue onward,
computing the values for the next print cycle while the printer is printing the previous dots.
This is why you will find double buffering used in the example driver code.

Any other initialization that the printer requires should also be done at this time. It is advis
able that you also do a reset command so that you know what state the printer is in before you
try to send it any further commands.

In addition, after performing a reset command it is advisable to send no other commands for at
least one second to allow the printer to "calm down". Waiting after a reset is strongly recom
mended. The function PWait(seconds,microseconds) has been provided in the wait.asm file
(see the "Printer Device Source Code" appendix) for this purpose. The wait.asm file must be
assembled and linked into your custom printer device code.

Render Pixel (Case 1). When this call is made, your routine will be passed the x,y position of
a single pixel and its color type. Note that the X,y value is an absolute value and you will have
to do some modulus math (usually an AND) to compute the relative pixel position in your
buffer. The absolute values will range from 0 to width-l for x and 0 to height-l for y. The
color types are O-black, I-yellow, 2-magenta, and 3-cyan. Currently there is no provision for an
RGB (red-green-blue) prin ter.

Dump Buffer to Printer (Case 2). When this call is made, you must send the buffer to the
printer. As it now stands, there should be no need for you to change this routine. It should be
common to all printers. It simply sends the buffer that you have been filling (via case 1) to the
printer.

You would want to change this routine only if you need to do some post-processing on the
buffer before it is sent to the printer. For example, if your printer uses the hexadecimal number
$03 as a command and requires that you send $03 $03 to send $03 as data, you would probably
want to scan the buffer and expand $03's to $03 $03. Of course, you'll need to allocate space

Printer Device 433

somewhere in order to expand the buffer.

Because the printer driver does not send you the blank pixels, you must initialize the buffer to
values for blank pixels (usually 0). Clearing the buffer should be the same for all printers. Ini
tializing the buffer is printer-specific, and it includes placing the printer-specific control codes in
the buffer ahead of and behind where the data will go.

Closing Down (Case 3). When this call is made you must wait for the print buffers to clear
and then de-allocate the memory. This routine should be common to all printers. It simply
waits for both buffers to empty, and then de allocates the memory that they used. There should
be no need for you to change this routine. If you do change it, however, make sure that the
amount of memory allocated for case 0 is deallocated by this routine.

Pre-Master Initialization (Case 4). Currently this option is implemented only on the
HPLaserJet and HPLaserJet PLUS printers, although the call is made to each printer-specific
driver. Ignoring it causes no problems as the call is made simply to give you a chance to select
a different density from the default one. You should note that this call is made before the mas
ter initialization call (case 0) and gives you a chance to alter any variables that the master ini
tialization may use to program the printer. Refer to the HPLaserJet PLUS printer driver for an
example of density selection.

Printertag.asm

The printer-specific values that need to be filled in here are as follows:

MaxXDots
the maximum number of dots the printer can print across the page.

MaxYDots
the maximum number of dots the printer can print down the page. Generally, if the
printer supports roll or form feed paper, this value should be 0 indicating that there is
no limit. If the printer has a definite y dots maximum (as the HPLaserJet does), this
number should be entered here.

XDotsInch
the dot density in x (for example, 120 dpi).

YDotsInch
the dot density in y (for example, 144 dpi).

PrinterClass
the printer class the printer falls into. Current choices are:

434 Printer Device

PPC_BWALPHA - alphanumeric, no graphics.
PPC_BWGFX - black&white (only) graphics.
PPC_COLORGFX - color (and maybe b/w) graphics.

ColorClass
the color class the printer falls into. Current choices are:

PCC_BW - Black&White only (for example, EPSON).
PCC_YMC - Yellow Magenta Cyan only.
PCC_YMC_BW - Yellow or Black&White but not both

(for example, Okimate 20).
PCC_YMCB - YellowMagentaCyanBlack (for example, Diablo_c-150).

Nu:m:Rows
the number of pixel rows printed by one pass of the print head. This number is used by
the non-printer-specific code to determine when to make a case 2 (see above) call to
ybU. You have to keep this number in mind when determining hbw big a buffer you'll
need to store one print cycle's worth of data.

WRITING AN ALPHANUMERIC PRINTER DttIVER

This alphanumeric section is meant to be read with the alpha listing for the EpsonX80 and Dia
blo Adv 25 close at hand.

The alphanul11eric portion of the printer driver is designed to convert ANSI x3.64 style com
mands into the specific escape codes required by each individual printer. For example, the
ANSI code for italics on is ESC[3m. The EpsonFX80 printer would like a ESC%G to begin
italic output mode. By using the printer driver all printers may be handled in a similar manner.

There are two parts to the alphanumeric portion of the printer driver: the Command Table
data table and the DoSpecialO routine.

Command Table

The Command Table is used to convert all escape codes that can be handled by simple substi
tution. It has one entry per ANSI command supported by the printer driver. When you are
creating a custom ComtnandTable, you must maintain the order of the commands in the
same sequence as that shown in printer.h and printer.i. By placing the specific codes for your
printer in the proper position, the conversion takes place automatically.

Printer Device 435

Note: If the code for your printer requires a decimal 0 (an ASCII NULL character), you enter
this NULL into the Command Table as octal 376 (decimal 254).

Placing an octal value of 377 (255 decimal) in a position in the command table indicates to the
printer device that no simple conversion is available on this printer for this ANSI command.
For example, if a printer does not support one of the functions (for instance, if a daisy-wheel
printer does not have a foreign character set), 377 octal (255 decimal) is placed in that position.
However, 377 in a position can also mean that the ANSI function is to be handled by code lo
cated in the DoSpecialO function.

DoSpecialO Function

The DoSpecialO function is meant to implement all the ANSI functions that cannot be done
by simple substitution, but can be handled by a more complex sequence of control characters
sent to the printer. These are functions that need parameter conversion, read values from
Preferences, and so on.

The DoSpecialO function is set up as follows:

where

#include "exec / types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;

DoSpecial(command,outputBuffer ,vline,current VMI,crlfFlag,Parms)
char outputBufferD;
UWORD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE ParmsD;

{ / * code begins here ... * /

command
points to the command number. The devices/printer.h file contains the definitions for
the routines to use (aRIN is initialize, and so on).

vline
points to the value for the current line position.

436 Printer Device

currentVMI
points to the value for the current line spacing.

crlfFlag
points to the setting of the "add line feed after carriage return" flag.

Parms
contain whatever parameters were given with the ANSI command.

outputBuffer
points to the memory buffer into which the converted command is returned.

Almost every printer will require an aRIN (initialize) command in DoSpecialO. This command
reads the printer settings from Preferences and creates the proper control sequence for the
specific printer. Also, it returns the character set to normal (not italicized, not bold, and so on).
Other functions depend on the printer.

Certain functions are implemented both in the CommandTable and in the DoSpecialO rou
tine. These are functions such as superscript, subscript, PLU (partial line up), and PLD (partial
line down), which can often be handled by a simple conversion. However, certain of these func
tions must also adjust the printer device?s line-position variable.

Printer Device 437

Chapter 16

Clipboard Device

Introd uction

The clipboard device is implemented as an Exec-style device. It is responsible for caching data
that has been "cut" and providing data to "paste" in an application.

Clipboard 439

Clipboard Commands

The clipboard responds to the following system functions:

OpenDeviceO
CloseDeviceO
BeginIOO
SendIOO
DoIOO

Open the clipboard device
Close the clipboard device
Initiate clipboard I/O
Initiate a command and return immediately

The I/O commands and their implementations are as follows:

CMD _INVALID

CMD_READ

CMD_CLEAR

CMD_STOP

CMD_START

CMD_FLUSH

CBD_POST

Always an invalid command.

Read data from the clipboard for a paste. io_Offset and
io_ClipID must be set to zero for the first read of a paste
sequence. An io_Actual that is less than the io_Length
indicates that all the data has been read. After all the data
has been read, a subsequent read must be performed (one whose
io_Actual returns zero) to indicate to the clipboard device
that all the data has been read. This allows random access of
the clip while reading (provided only valid reads are performed).

Write data to the clipboard as a cut. io_Offset and
io_ClipID must be set to zero for the first write of a cut
sequence. An update command indicates that all the data has
been written.

Indicate that the data provided with a write command is
complete and available for subsequent read/pastes.

Clear any cut from this unit. Subsequent read/pastes will have
no data available.

Service no commands except invalid, start, flush.

Resume command servicing.

Abort all pending commands.

Post the availability of clip data. io_ClipID must be set to
zero, a subsequent write of this data does not have io_ClipID
set to zero as described above, but to the value in io_ClipID.

CMD_CLIPREADID Return the io_ClipID of the current clip to read.

CMD_CLIPWRITEID Return the io_ClipID of the latest clip written.

440 Clip board

Clipboard Data

Data on the clipboard resides in one of three places. When an application posts a cut, the data
resides in that application's private memory space. When an application writes to the clip
board, either of its own volition or in response to a message from the clipboard to satisfy a post,
the data is copied to the clipboard, either to memory or to a special disk file. When the clip
board is not open, the data resides in the special disk file.

Data on the clipboard is self-identifying. It must be a correct IFF (Interchange Format Files)
file; the rest of this this section refers to IFF concepts. See the appendixes of the Amz"ga ROM
Kernel Reference Manual: Exec for a complete description of IFF. If the top-level chunk is of
type CAT or LIST with an identifier of CLIP, that indicates that the contained chunks are
different representations of the same data, in decreasing order of preference on the part of the
producer of the clip. Any other data is as defined elsewhere (probably a single representation of
the cut data produced by an application).

The clipboard tool, which is the application that allows a Workbench user to view a clip, under
stands only the text (FTXT) and graphics (ILBM) form types. Applications using the clipboard
to export data should include at least one of these types in a CLIP CAT so that their data can
be represented on the clipboard in some form for user feedback.

The clipboard device nonstandard I/0 request is called an IOClipReq and looks like a stan
dard request except for the addition of the io_ClipID field, which is assigned by the device to
identify clips. It must be set to zero by the application for a post or an initial write or read,
but preserved for subsequent writes or reads. The same initialization must be performed for the
io_Offset field, but for different reasons.

struct IOClipReq {

}

struct Message io_Message;
struct Device *io_Device;
struct Unit *io_Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
SPTR io_Data;
ULONG io_Offset;
LONG io_ClipID;

/ * device node pointer * /
/ * unit (driver private) * /
/ * device command * /
/* including QUICK and SATISFY */
/ * error or warning num * /
/* number of bytes transferred * /
/* number of bytes requested * /
/ * either clip stream or post port * /
/ * offset in clip stream * /
/ * ordinal clip identifier * /

Clipboard 441

Clipboard Messages

When an application performs a post, it must specify a message port for the clipboard to send a
message to if it needs the application to satisfy the post with a write called the SatisfyMsg.

struct SatisfyMsg {

}

struct Message sm_Message;
UWORD sm_Unit;
LONG sm_ClipID;

/ ... the length will be 6 ... /
/ ... 0 for the primary clip unit ... /
/ ... the clip identifier of the post ... /

If the application wishes to determine if a post it has recently performed is still the current clip,
it should check the io_ClipID found -in the post request upon return with that returned by the
CLIPREADID command.

If an application has a pending post and wishes to determine if it should satisfy it (for example,
before it exits), it should check the io_ClipID of the post I/O request with that of the
CLIPWRITEID command. If the application receives a satisfy message from the clipboard
device (format described below), it must immediately perform the write with the io_ClipID of
the post. The satisfy message from the clipboard may be removed from the application message
port by the clipboard device at any time (because it is re-used by the clipboard device). It is
not dangerous to spuriously satisfy a post, however, because it is identified by the io_ClipID.

The cut data is provided to the clipboard device via either a write or a post of the cut data.
The write command accepts the data immediately and copies it onto the clipboard. The post
command allows an application to inform the clipboard of a cut, but defers the write until the
data is actually required for a paste. In the preceding discussion, references to the read and
write commands of the clipboard device actually refer to a sequence of read or write commands,
where the clip data is acquired and provided in pieces instead of all at once. The clipboard has
an end-of-clip concept that is somewhat analogous to end-of-file for both read and write. The
read end-of-file must be triggered by the user of the clipboard in order for the clipboard to move
on to service other users' requests, and consists of reading data past the end of file. The write
end-of-file is indicated by use of the update command, which indicates to the clipboard that the
previous write commands are completed See the description of the commands above for more
information.

Multiple Clips

The clipboard also supports multiple clips. This is not to be confused with the multiple IFF
CLIP chunks in a clip, which allow for different representation of the same data. Multiple clips
store different data. Applications performing cut and paste operations generally specify the pri
mary clip. The alternate clips are provided to aid applications in the maintenance of a set of

442 Clip board

clips (like a scrapbook). The multiple clips are implemented as different units in the clipboard
device, and are thus accessed at open time:

OpenDevice("clipboard.device", unit, &IOClipReq, 0);

The primary clip unit used by applications to share data is unit 0; use of alternate clip units is
by private convention.

Example Program

#include "exec/types.h"
#include "graphics/gfx.h"
#include "graphics/gfxbase.h"
#include "graphics/view.h"
#include "intuition/intuition.h"
#include " libraries/ dos.h"
#include " libraries/ dosextens.h"
#include "devices/clipboard.h"

extern int stdout;
struct GfxBase *GfxBase;

char buffer[80]' *b, c;
int rawConsole, oldStdout, postID;

readSO
{

}

b = buffer;
while (Read(rawConsole, &c, 1), ((c != '\34') && (c != '\r'))) {

*b++ = c;
prip.tf("%lc", c);

}
*b = '\0';

mainO
{

int i;
GfxBase = (struct GfxBase *) OpenLibrary(" graphics.library", 0);

printf("CBOpen returned %ld.\n", CBOpen(PRlMARY _CLIP));

Clipboard 443

printf(" CBOpen RAW: file is %lx.\n", rawConsole =
Open("RAW:25/25/615/150/clipboard.device test", MODE_OLDFILE));

oldStdout = stdout;
stdout = rawConsole;
printf(" \033 [20h");

c =0;
postID = 0;
while (c != '\34') {

}

while((postID) && (!WaitForChar(rawConsole, 1000000)))
if (CBCheckSatisfy(&postID)) {

}

if (postID) {

}

prin tf(" Satisfy post data \n");
readSO;
printf{"\nsatisfying \"%s\"\n", buffer);
CBSatisfy Post(buffer);
postID = 0;

Read(rawConsole, &c, 1);
switch (c) {

}

case 'w':
printf("Enter cut data\n");
readSO;
printf("\ncutting \"%s\"\n", buffer);
CBCu tS(buffer);
break;

case 'r':
CBPasteS(buffer);
printf("paste is \"%s\"\n");
break;

case 'p':
printf("Posting post ... \n");
postID = CBPostO;
break;

default:;

CBCloseO;
printf("CBClose returned.\n");

Close(rawConsole);
stdout = oldStdout;

444 Clipboard

printf("\nTest Done.\n");
}

strcpy(to, from)
register char *to, *from;
{

}

do {
*to++ = *from;

} while(*from++);

strcat(to, from)
register char *to, *from;
{

while(*to) to++;

strcpy(to, from);
}

strlen(s)
register char *s;
{

register i = 0;

while(*s++) i++;

return(i);
}

strcmp(a, b)
register char *a, *b;
{

}

while(*a++ == *b) {
if(! *b++) return(0);

}

if(*--a < *b) return(-1);
return(1);

char *
index(s, c)
char *s, c;
{

char sc;

Clipboard 445

while(sc = *s) {
if(sc == c) return(s);
s++;

}
return(0);

}

char *
rindex(origs, c)
char *origs, c;
{

}

char sc, *s;

s = &origs[strlen(origs) - 1];

while(s > = origs) {

}

if(*s == c) return(s);
s--· ,

returI1(0);

char *
TailPath(path)
char *path;
{

}

char *last;

/* looking for "volume:/name/bar/tail".
* The routine breaks if volume has a slash ...

*/

/* check for a slash */
if(! (last = rindex(path, '/'))) {

}

/* no slash. Check for a colon */
if(! (last = rindex(path, ':'))) {

}

/* no colon either. Return the original */
return(path);

return(last);

446 Clip board

Support Functions Called from Example Program

/**/
* Program name: cbio
* Purpose: Provide standard clipboard device interface routines
* such as Open, Post, Read, Write, etc.

/***/
#include "exec/types.h"
#include "exec/ports.h"
#include "exec/io.h"
#include "devices/clipboard.h"

struct 10ClipReq clipboardlO = 0;
struct MsgPort clipboardMsgPort = 0;
struct MsgPort satisfyMsgPort = 0;

in t CBOpen(unit)
int unit;
{

int error;

/* open the clipboard device */
if ((error = OpenDevice("clipboard.device", unit, &clipboardIO, 0)) != 0)

return(error);

}

/* Set up the message port in the I/O request */
clipboardMsgPort.mp_Node.ln_Type = NT_MSGPORT;
clipboardMsgPort.mp_Flags = 0;
clip boardMsgPort.mp_SigBit = AllocSignal(-I);
clipboardMsgPort.mp_SigTask = (struct Task *) FindTask((char *) NULL);
AddPort(&clipboardMsgPort);
clipboardIO.io_Message.mn_ReplyPort = &clipboardMsgPort;

satisfyMsgPort.mp_Node.ln_Type = NT_MSGPORT;
satisfyMsgPort.mp_Flags = 0;
satisfyMsgPort.mp_SigBit = AllocSignal(-I);
satisfyMsgPort.mp_SigTask = (struct Task *) FindTask((char *) NULL);
AddPort(&satisfyMsgPort);

return(O);

CBCloseO
{

RemPort(&satisfyMsgPort);
RemPort(&clip boardMsgPort);

Clipboard 447

CloseDevice(&clipboardIO);
}

CBCut(stream, length)
char *stream;
int length;
{

}

clipboardIO.io_Command = CMD_ WRITE;
clipboardIO.io_Data = stream;
clipboardIO.io_Length = length;
clipboardIO.io_Offset = 0;
clipboardIO.io_ClipID = 0;
DoIO(&clipboardIO);
clipboardIO.io_Command =·CMD_UPDATE;
DoIO(&clipboardIO);

writeLong(ldata)
LONG *ldata;
{

}

clipboardIO.io_Command = CMD_WRITE;
clipboardIO.io_Data = Idata;
clipboardIO.io_Length = 4;
DoIO(&clipboardIO);

CBSatisfyP ost(string)
char *string;
{

int length;
char *s;

length = 0;
s = string;
while(*s++) length++;

clipboardIO.io_Offset = 0;
writeLong(" FORM");
length += 12;
writeLong(&length);
writeLong(" TEST");
writeLong(" TEST");
length -= 12;
writeLong(&length);

/* "FORM" */

/* # */
/* "TEST" */
/* "TEST" */

/* # */
clipboardIO.io_Command = CMD_ WRITE;
clipboardIO.io_Data = string;

448 Clip board

clipboardIO.io_Length = length;
DoIO(&clipboardIO); /* text string */

clipboardIO.io_Command = CMD_UPDATE;
DoIO(&clipboardIO);

}

CBCu tS(string)
char *string;
{

}

clipboardIO.io_ClipID = 0;
CBSatisfy Post(string);

CBPasteS(string)
char *string;
{

}

int length;

clipboardIO.io_Command = CMD_READ;
clipboardIO.io_Data = 0;
clipboardIO.io_Length = 16;
clipboardIO.io_Offset = 0;
clipboardIO.io_ClipID = 0;
DoIO(&clipboardIO);

clipboardIO.io_Command = CMD_READ;
clipboardIO.io_Data = &length;
clipboardIO.io_Length = 4;
Dol O(&clip board I 0);

clipboardIO.io_Command = CMD_READ;
clipboardIO.io_Data = string;
clipboardIO.io_Length = length;
DoIO(&clipboardIO);

string[length] = '\0';

/* force end of file to terminate read * /
clipboardIO.io_Command = CMD_READ;
clipboardIO.io_Length = 1;
clipboardIO.io_Data = 0;
Dol O(&cli p boardI 0);

int
CBPostO
{

Clipboard 449

}

int

clipboardIO.io_Command = CBD_POST;
clipboardIO.io_Data = &satisfyMsgPort;
clipboardIO.io_ClipID = 0;
DoIO(&clipboardIO);
return(clipboardIO.io_ClipID);

CBCurren tReadIDO
{

}

int

clipboardIO.io_Command = CMD_CLIPREADID;
DoIO(&clipboardIO);
return(clip boardIO .io_ClipID);

CBCurren t WriteIDO
{

}

clipboardIO.io_Command = CMD_CLIPWRITEID;
DoIO(&clipboardIO);
return(clip boardIO .io_ClipID);

BOOL
CBCheckSatisfy(idVar)
int *idVar;
{

}

struct SatisfyMsg *sm;

if (*idVar == 0)
return(TRUE);

if (*idVar < CBCurrentWriteID()) {
*idVar = 0;
return(TRUE);

}
if (sm = (struct SatisfyMsg *) GetMsg(&satisfyMsgPort)) {

if (*idVar == sm->sm_ClipID)
return(TRUE);

}
return(F ALSE);

450 Clipboard

PART III

Chapter 17

Math Functions

This chapter describes the structure and calling sequences required to access the Motorola Fast
Floating Point and IEEE Double Precision math libraries via the Amiga-supplied interfaces.

Introd uction

In its present state, the FFP library consists of three separate entities: the basic math library,
the transcendental math library, and C and assembly-language interfaces to the basic math
library plus FFP conversion functions. The IEEE Double Precision library presently consists of
one entity: the basic math library.

Math Functions 453

FFP Floating Point Data Format

FFP floating-point variables are defined within C by the float or FLOAT directive. In assembly
language they are simply defined by a DC.L/DS.L statement. All FFP floating-point variables
are defined as 32-bit entities (longwords) with the following format:

I MMMMMMMM MMMMMMMM MMMMMMMM SEEEEEEE I
31 23 15 7

where

M = 24-bit mantissa

S = Sign of FFP number

E = Exponent in excess-54 notation

The mantissa is considered to be a binary fixed-point fraction; except for 0, it is always normal
ized (has a 1 bit in its highest position). Thus, it represents a value of less than 1 but greater
than or equal to 1/2.

The sign bit is reset (0) for a positive value and set (1) for a negative value.

The exponent is the power of two needed to correctly position the mantissa to reflect the
number's true arithmetic value. It is held in excess-54 notation, which means that the two's
complement values are adjusted upward by 54, thus changing $40 (-54) through $3F (+53) to
$00 through $7F. This facilitates comparisons among floating-point values.

The value of 0 is defined as all 32 bits being Os. The sign, exponent, and mantissa are entirely
cleared. Thus, Os are always treated as positive.

The range allowed by this format is as follows:

454 Math Functions

DECIMAL:

9.22337177 x 10**18 > +VALUE > 5.42101070 x 10**-20

-9.22337177 x 10**18 < -VALUE < -2.71050535 x 10** -20

BINARY (HEXADECIMAL):

.FFFFFF x 2**63 > + VALUE > .800000 x 2** -63

-.FFFFFF x 2**63 < -VALUE < -.800000 x 2**-64

Remember that you cannot perform any arithmetic on these variables without using the fast
floating-point libraries. The formats of the variables are £ncompatible with the arithmetic for
mat of C-generated code; hence, all floating-point operations are performed through function
calls.

FFP Basic Mathematics Library

The FFP basic math library resides in ROM and is opened by making a call to the
OpenLibraryO function with mathffp.library as the argument. In C, this might be imple
mented as shown below:

int MathBase;

mainO
{

}

char lib_nameD = "mathffp.library";

if ((MathBase = OpenLibrary(lib_name, 0)) < 1) {
printf("Can't open %s: vector = %08x\n", lib_name,

MathBase);
exitO; }

Math Functions 455

The global variable MathBase is used internally for all future library references.

This library contains entries for the basic mathematics functions such as add, subtract, and so
on. The C-called entry points are accessed via code generated by the C compiler when standard
numerical operators are given within the source code. Note that to use either the C or assembly
language interfaces to the basic math library all user code must be linked with the library
amiga.lib. The C entry points defined for the basic math functions are as follows:

ffixi Convert FFP variable to integer

Usage: il = (int) fl;

fflti Convert integer variable to FFP

Usage: fl = (FLOAT) il;

fcmpi Compare two FFP variables

Usage: if (fl < > f2) {};

ftsti Test an FFP variable against zero

Usage: if (!fl) {};

fabsi Take absolute value of FFP variable

Usage: fl = abs(f2);

fnegi Take two's complement of FFP variable

Usage: fl = -f2;

faddi Add two FFP variables

Usage: fl = f2 + f3;

fsubi Subtract two FFP variables

Usage: fl = f2 - f3;

fmuli Multiply two FFP variables

Usage: fl = f2 * f3;

fdivi Divide two FFP variables

Usage: fl = f2 / f3;

Be sure to include proper data type definitions as shown in the example below.

456 Math Functions

#include <libraries/mathffp.h>
int MathBase;

mainO
{

FLOAT fl, f2, f3;
int iI, i2, i3;
char lib_nameD = "mathffp.library";

if((MathBase = OpenLibrary(lib_name, 0» < 1) {
printf("Can't open %s: vector = %08x\n", lib_name,

MathBase);

}

exitO; }

il = (int) fl;
fi = (FLOAT) i1;

if (fl < f2) {};
if (If!) {};

fl = abs(f2);
fl = -f2;
fl = f2 + f3;
f! = f2 - f3;
fl = f2 * f3;
fl = f2 / f3;

/ * Call ft1xi entry * /
/ * Call ffiti entry * /

/ * Call fcmpi entry * /
/ * Call ftsti entry * /

/ * Call fabsi entry * /
/* Call fnegi entry * /
/ * Call faddi entry * /
/* Call fsubi entry */
/ * Call fmuli entry * /
/ * Call fdivi entry * /

The Amiga assembly language interface to the Motorola Fast Floating Point basic math rou
tines is shown below, including some details about how the system flags are affected by each
operation. This interface resides in am£ga.l£b and must be linked with the user code. Note that
the access mechanism from assembly language is as follows:

MOVEA.L _MathBase,A6
JSR _L VOSPFix,A6

Math Functions 457

_LVOSPFix -

_LVOSPFlt -

Convert FFP to integer

Inputs:
Outputs:
Condition codes:

Convert integer to FFP

Inputs:
Outputs:
Condition codes:

_LVOSPCmp - Compare

Inputs:

Outputs:

Condition codes:

458 Math Functions

DO = FFP argument
DO = Integer (two's complement) result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined

DO = Integer (two's complement) argument
DO == FFP result
N = 1 if result is negative
Z = 1 if result is zero
V=O
C = undefined
X = undefined

Dl = FFP argument 1
DO = FFP argument 2
DO = +1 if argl < arg2
DO = -1 if argl > arg2
DO = 0 if argl = arg2
N=O
Z = 1 if result is zero
V=O
C = undefined
X = undefined
GT = arg2 > argl
GE = arg2 >= argl
EQ = arg2 = argl
NE = arg2 < > argl
LT = arg2 < argl
LE = arg2 < = argl

_L VOSPTst - Test

_LVOSPAbs -

_LVOSPNeg -

Inputs:
Outputs:

Condition codes:

Dl = FFP argument
DO = +1 if arg > 0.0
DO = -1 if arg < 0.0
DO = 0 if arg = 0.0
N = 1 if result is negative
Z = 1 if result is zero
V=O
C = undefined
X = undefined
EQ = arg = 0.0
NE = arg <> 0.0
PL = arg >= 0.0
MI = arg < 0.0

Note: This routine trashes the
argument in Dl.

Absolute value

Inputs:
Outputs:
Condition codes:

Negate

Inputs:
Outputs:
Condition codes:

DO = FFP argument
DO = FFP absolute value result
N=O
Z = 1 if result is zero
V=O
C = undefined
X = undefined

DO = FFP argument
DO = FFP negated result
N = 1 if result is negative
Z = 1 if result is zero
V=O
C = undefined
X = undefined

Math Functions 459

_LVOSPAdd - Addition

Inputs:

Outputs:
Condition codes:

__ LVOSPSub - Subtraction

Inputs:

Outputs:
Condition codes:

_LVOSPMul- Multiply

Inputs:

Outputs:
Condition codes:

_LVOSPDiv - Divide

Inputs:

Outputs:
Condition codes:

460 Math Functions

Dl = FFP argument 1
DO = FFP argument 2
DO = FFP addition of argl +arg2 result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

Dl = FFP argument 1
DO = FFP argument 2
DO = FFP subtraCtion of arg2-argl result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

DO = FFP argument 1
D2 = FFP argument 2
DO = FFP multiplication of argl*arg2 result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

Dl = FFP argument 1
DO = FFP argument 2
DO = FFP division of arg2/argl result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

FFP Transcendental Mathematics Library

The FFP transcendental math library resides on disk and must be accessed in the satne way as
the basic math library after it is loaded ihto system RAM. The name to be included in the
OpenLibraryO call is mathtrans.lz"brary. In a, this might be implemented as follows:

int MathBase;
int MathTransBase;

mainO
{

}

char bmath_nameD = "mathffp.library";
char tniath_nameD = "mathtrans.library";

if((MathBase = OpEmLibrary(bmath_name, 0)) < 1) {
printf("Can't open %s: vector = %08x\n", bmath_name,

MathBase);
exitO; }

if((MathTransBase = OpenLibrary(tmath_name, 0)) < 1) {
printf("Can't open %s: vector = %08x\n", tmath_name,
Math TransBase);

exitO; }

The global variables MathBase and MathTransBase are used internally for all future library
references. Note that the transcendental math library is dependent upon the basic math library
and, therefore, is opened after the basic math library has been opened.

This library contains entries for the transcendental math functions sine, cosine, and so on. The
a-called entry points are acc~ssed via code generated by the a compiler when the actual func
tion names are given within the source code. The a entry points defined for the transcendental
math functions are as follows:

SPAsin Return arcsine of FFP variable.

Usage: f1 = SP Asin(f2);

SPAcos Return arccosine of FFP variable.

Usage: f1 = SP Acos(f2);

Math Functions 461

SPAt an

SPSin

SPCos

SPTan

Return arctangent of FFP variable.

Usage: f1 = SP Atan(f2);

Return sine of FFP variable. This function accepts an FFP radian argument
and returns the trigonometric sine value. For extremely large arguments where
little .or no precision would result, the computation is aborted and the "V" con
dition code is set. A direct return to the caller is made.

Usage: f1 = SPSin(f2);

Return cosine of FFP variable. This function accepts an FFP radian argument
and returns the trigonometric cosine value. For extremely large arguments
where little or rio precision would result, the computation is aborted and the
"V" condition code is set. A direct return to the caller is made.

Usage: f1 = SPCos(f2);

Return tangent of FFP variable. This function accepts an FFP radian argument
and returns the trigonometric tangent value. For extremely large arguments
where little or no precision would result, the computation is aborted and the
"V" condition code is set. A direct return to the caller is made.

Usage: fl = SPTan(f2);

SPSincos Return sine and cosine of FFP variable. This function accepts an FFP radian
argument and returns both the trigonometric sine and cosine values. 1f both the
sine and cosine are required for a single radian value of interest, this ftinction
will result in almost twice the execution speed of calling the sin and cos func
tions independently. For extremely large arguments where little or no precision
would result, the computation is aborted and the "V" condition code is set. A
direct return to the caller is made.

SPSinh

SPCosh

Usage: f1 = SPSincos(&f3, f2);

Return hyperbolic sine of FFP variable.

Usage: f1 = SPSinh(f2);

Return hyperbolic cosine of FFP variable.

Usage: f1 = SPCosh(f2);

SPTanh Return hyperbolic tangent of FFP variable.

SPExp

Usage: f1 = SPTanh(f2);

Return e to the FFP variable power. This function accepts an FFP argument
and returns the result representing the value of e (2.71828 ...) raised to that
power.

462 Math Functions

Usage: fl = SPExp(f2);

SPLog Return natural log (base e) of FFP variable.

Usage: fl = SPLog(f2);

SPLoglO Return naparian log (base 10) of FFP variable.

Usage: fl = SPLoglO(f2);

SPPow Return FFP arg2 to FFP argl.

Usage: fl = SPPow(f3, f2);

SPSqrt Return square root of FFP variable.

Usage: fl = SPSqrt(f2);

SPTieee Convert FFP variable to IEEE format

Usage: il = SPTieee(fl);

SPFieee Convert IEEE variable to FFP format.

Usage: fl = SPFieee(il);

Be sure to include proper data type definitions, as shown in the example below.

#include <mathffp.h>

int MathBase;
int MathTransBase;

mainO
{

FLOAT fl, f2, f3;
int ii, i2, i3;
char bmath_nameD = "mathffp.library";
char tmath_nameD = "mathtrans.library";

if{{MathBase = OpenLibrary{bmath_name, 0» < 1) {
printf{"Can't open %s: vector = %08x\n", bmath_name, MathBase);
exitO; }

if«MathTransBase = OpenLibrary{tmath_name, 0)) < 1) {
printf("Can't open %s: vector = %08x\n", tmath_name, MathTransBase);

exitO; }

fl = SP Asin{f2); / * Call SP Asin entry * /

Math Functions 463

f1 = SP Acos(f2);
fl = SP Atan(f2);

f1 = SPSin(f2);
f1 = SPCos(f2);
f1 = SPTan(f2);
f1 = SPSincos(&f3, f2);

f1 = SPSinh(f2);
fl = SPCosh(f2);
f1 = SPTanh(f2);

fl = SPExp(f2);
f1 = SPLog(f2);
fl = SPLoglO(f2);
fl = SPPow(f2);
f1 = SPSqrt(f2);

il = SPTieee(f2);
fl = SPFieee(il);
}

/ * Call SP Acos entry * /
/ * Call SP Atan entry * /

/* Call SPSin entry */
/ * Call SPCos entry * /
/ * Call SPTan entry * /
/* Call SPSincos entry * /

/ * Call SPSinh entry * /
/* Call SPCosh entry */
/ * Call SPTanh entry * /

/ * Call SPExp entry * /
/* Call SPLog entry * /
/* Call SPLoglO entry */
/ * Call SPPow entry * /
/* Call SPSqrt entry * /

/ * Call SPTieee entry * /
/ * Call SPFieee entry * /

The section below describes the Amiga assembly language interface to the Motorola Fast Float
ing Point transcendental math routines and includes some details about how the system flags
are affected by the operation. Again, this interface resides in the library file mathlink.lib and
must be linked with the user code. Note that the access mechanism from assembly language is
as shown below:

LEA _LVOSPAsin,A6
JSR _MathTransBase(A6)

_LVOSPAsin - Arcsine

Inputs:
Outputs:
Condition codes:

464 Math Functions

DO = FFP argument
DO = FFP arctangent radian result
N=O
Z = 1 if result is zero
V=O
C = undefined
X = undefined

_LVOSPAcos - Arccosine

Inputs:
Outputs:
Condition codes:

_LVOSPAtan - Arctangent

Inputs:
Outputs:
Condition codes:

_L VOSPSin - Sine

Inputs:
Outputs:
Condition codes:

_LVOSPCos - Cosine

Inputs:
Outputs:
Condition codes:

DO = FFP argument
DO = FFP arctangent radian result
N=O
Z = 1 if result is zero
V=O
C = undefined
X = undefined

DO = FFP argument
DO = FFP arctangent radian result
N=O
Z = 1 if result is zero
V=O
C = undefined
X = undefined

DO = FFP argument in radians
DO = FFP sine result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result is meaningless
(that is, input magnitude too large)
C = undefined
X = undefined

DO = FFP argument in radian
DO = FFP cosine result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result is meaningless
(that is, input magnitude too large)
C = undefined
X = undefined

Math Functions 465

_LVOSPTan - Tangent

Inputs:
Outputs:
Condition codes:

_L VOSPSincos - Sine and cosine

Inputs:

Outputs:

Condition codes:

_L VOSPSinh - Hyperbolic sine

Inputs:
Outputs:
Condition codes:

_L VOSPCosh - Hyperbolic cosine

Inputs:
Outputs:
Condition codes:

466 Math Functions

DO = FFP argument in radians
DO = FFP tangent result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result is meaningless
(that is, in pu t magnitude too large)
C = undefined
X = undefined

DO = FFP argument in radians
Dl = Address to store cosine result
DO = FFP sine result
(Dl) = FFP cosine result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result is meaningless
(that is, in pu t magnitude too large)
C = undefined
X = undefined

DO = FFP argument in radians
DO = FFP hyperbolic sine result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined

DO = FFP argument in radians
DO = FFP hyperbolic cosine result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined

_LVOSPTanh - Hyperbolic tangent

Inputs:
Outputs:
Condition codes:

_LVOSPExp - Exponential

Inputs:
Outputs:
Condition codes:

_LVOSPLog - Natural logarithm

Inputs:
Outputs:
Condition codes:

_L VOSPLoglO - Naparian (base 10) logarithm

Inputs:
Outputs:
Condition codes:

DO = FFP argument in radians
DO = FFP hyperbolic tangent result
N = 1 if result is negative
Z = 1 if resuit is zero
V = 1 if overflow occurred
C = undefined
X = undefined

DO = FFP argument
DO = FFP exponential result
N=O
Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
Z = undefined

DO = FFP argument
DO = FFP natural logarithm result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if argument negative or zero
C = undefined
Z = undefined

DO = FFP argument
DO = FFP natural logarithm result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if argument negative or zero
C = undefined
Z = undefined

Math Functions 467

_LVOSPPow - Power

Inputs:

Outputs:
Condition codes:

_L VOSPSqrt - Square root

Inputs:
Outputs:
Condition codes:

_LVOSPTieee - Convert to IEEE format

Inputs:
Outputs:
Condition codes:

_LVOSPFieee - Convert from IEEE format

Inputs:
Outputs:
Condition codes:

468 Math Functions

D1 = FFP argument value
DO = FFP exponent value
DO = FFP result of arg taken to exp power
N=O
Z = 1 if result is Zero
V = 1 if result overflowed or arg < 0
C = undefined
Z = undefined

DO = FFP argument
DO = FFP square root result
N=O
Z = 1 if reslilt is zero
V = 1 if argument was negative
C = undefined
Z = undefined

DO = FFP format argument
DO = IEEE floating-point format result
N = 1 if result is negative
Z = 1 if result is zero
V = undefined
C = undefined
Z = undefined

DO = IEEE floating-point format argument
DO = FFP format result
N = undefined
Z = 1 if result is zero
V = 1 if result overflowed FFP format
C = undefined
Z = undefined

FFP Mathematics Conversion Library

The FFP mathematics conversion library is accessed by linking code into the executable file
being created. The name of the file to include in the library description of the link command
line is mathlink_lib.lib. When this is included, direct calls are made to the conversion functions.
Only a C interface exists for the conversion functions; there is no assembly language interface.
The basic math library is required in order to access these functions and might be opened as
shown below.

int MathBase;

mainO
{

char bmath_nameD = "mathffp.library";

if ((MathBase = OpenLibrary(bmath_name, 0)) < 1) {
printf("Can't open %s: vector = %08x\n", bmath_name,

MathBase};
exitO; }

}

The global variable MathBase is used internally for all future basic math library references.

This library contains entries for the conversion functions associated with math library usage.
The C-called entry points are accessed via code generated by the C compiler when the actual
function names are given within the source code. The C entry points defined for the math
conversion functions are as follows:

afp Convert ASCII string into FFP equivalent.

Usage: fnum = afp(&string[O]);

fpa Convert FFP variable into ASCII equivalent.

Usage: exp = fpa(fnum, &string[O]);

arnd Round ASCII representation of FFP number.

Usage: arnd(place, exp, &string[O]);

Math Functions 469

dbf Convert FFP dual-binary number to FFP equivalent.

Usage: fnum = dbf(exp, mant);

fpbcd Convert FFP variable to BCD equivalent.

Usage: fpbcd(fnum, &string[O]);

Be sure to include proper data type definitions, as shown in the example below. Print state
ments have been included to help clarify the format of the math conversion function calls.

#include < mathffp.h >

char st1 [80] = "3.1415926535897";
char st2[80] = "2.718281828459045";
char st3[80], st4[80];

int MathBase;

mainO
{

FLOAT num1, num2, num3, num4, num5, num6, num7, num8, num9;
FLOAT n1, n2, n3, n4, n5, n6, n7, n8, n9;
in t ii, i2, i3, i4, i5, i6, i7, i8, i9;
lnt exp1, exp2, exp3, exp4, manti, mant2,

mant3, mant4, place1, place2;

if ((MathBase=OpenLibrary(" mathffp.library" ,0)) < 1) {
printf("Can:'t open mathffp.library:vector =%08x\n",

MathBase);
exitO;

}

n1 = afp(st1); /* Call afp entry */
n2 = afp(st2); /* Call afp entry */
printf("\n\nASCII %s converts to floating point %f",

st1, n1);
printf("\nASCII %s converts to floating point % f",

st2, n2);

num1 = 3.1415926535897;
num2 = 2.718281828459045;

exp1 = fpa(num1, st3); /* Call fpa entry */
exp2 = fpa(num2, st4); /* Call fpa entry */
printf("\n\nfloating point %f converts to ASCII %s", num1, st3);

470 Math Functions

}

printf("\nfloating point %f converts to ASCII %s",
num2, st4);

place1 = -2;
place2 = -1;
arnd(place1, exp1, st3); /* Call arnd entry */
arnd(place2, exp2, st4); /* Call arnd entry * /
printf("\nASCII round of %f to %d places yields %s",

num1, place1, st3);
printf("\nASCII round of %f to %d places yields %s",

num2, place2, st4);

exp1 = -3; exp2 = 3; exp3 = -3; exp4 = 3;
mantI = 12345; mant2 = -54321; mant3 = -12345;
t4 = 54321;
n1 = dbf(exp1, mantI); /* Call dbf entry */
n2 = dbf(exp2, mant2); /* Call dbf entry */
n3 = dbf(exp3, mant3); /* Call dbf entry */
n4 = dbf(exp4, mant4); /* Call dbf entry */
printf("\n\ndbf of exp = %d and mant = %d yields FFP number

of %f", exp1, mantI, n1);
printf{"\ndbf of exp = %d and mant = %d yields FFP number

of % f", exp2, mant2, n2);
printf{"\ndbf of exp = %d and mant = %d yields FFP number

of %f", exp3, mant3, n3);
printf{"\ndbf of exp = %d and mant = %d yields FFP number

of %f", exp4, mant4, n4);

num1 = -num1;
fpbcd(numl, st3); /* Call fpbcd entry */
st3[8] = '\0';
strcpy(&i2, &st3 [4]);
st3[4] = '\0';
strcpy(&i1, st3);
printf("\n\nfloating point %f converts to BCD %08x%08x", num1, iI, i2);
num2 = -num2;
fpbcd(num2, st4); /* Call fpbcd entry */
st4[8] = '\0';
strcpy(&i4, &st4 [4]);
st4[4] = '\0';
strcpy(&i3, st4);
printf{"\nfloating point %f converts to BCD

%08x%08x", num2, i3, i4);

Math Functions 471

IEEE Double-precision Basic Math Library

The IEEE double-precision basic math library resides on disk and is opened by making a call to
the OpenLibraryO function with mathieeedoubbas.library as the argument. In C, this
might be implemented as shown below.

int MathleeeDoubBasBase;

mainO
{

}

char lib_nameD = "mathieeedoubbas.library";

if ((MathleeeDoubBasBase = OpenLibrary(lib_name, 0» < 1) {
printf("Can't open %s: vector = %08x\n", lib_name,

MathleeeDou bBasBase);
exitO; }

The global variable MathleeeDoubBasBase is used internally for all future library references.

This library contains entries for the basic mathematics functions, such as add, subtract, and so
on. The C-called entry points are accessed via code generated by the C compiler when the
actual function names are given within the source code. The C entry points defined for the
IEEE double-precision basic math functions are listed below:

IEEEDPFix
Convert IEEE double-precision variable to integer

Usage: il = IEEEDPFix(fl);

IEEEDPFlt
Convert integer variable to IEEE double precision

Usage: fl = IEEEDPFlt(il);

IEEEDPCmp
Compare two IEEE double-precision variables

Usage: switch (IEEEDPCmp(fl, f2)) {};

IEEEDPTst
Test an IEEE double-precision variable against zero

472 Math Functions

Usage: switch (IEEEDPTst(fl)) {};

IEEEDPAbs
Take absolute value of IEEE double-precision variable

Usage: fl = IEEEDPAbs(f2);

IEEEDPNeg
Take two's complement of IEEE double-precision variable

Usage: fl = IEEEDPNeg(f2);

IEEEDPAdd
Add two IEEE double-precision variables

Usage: fl = IEEEDP Add(f2, f3);

IEEEDPSub
Subtract two IEEEDPSub variables

Usage: fl = IEEEDPSub(f2, f3);

IEEEDPMul
Multiply two IEEE double-precision variables

Usage: fl = IEEEDPMul(f2, f3);

IEEEDPDiv
Divide two IEEE double-precision variables

Usage: fl = IEEEDPDiv(f2, f3);

Be sure to include proper data type definitions, as shown in the example below.

int MathleeeDoubBasBase;

mainO
{

double fl, f2, f3;
int iI, i2, i3;
char lib_nameD = "mathieeedoubbas.library";

if((MathleeeDoubBasBase = OpenLibrary(lib_name, 0)) < I) {
printf("Can't open %s: vector = %08x\n", lib_name,

MathleeeDou bBasBase);
exitO; }

i1 = IEEEDPFix(fl);
fi = IEEEDPFlt(il);

/ * Call IEEEDPFix entry * /
/* Call IEEEDPFlt entry * /

Math Functions 473

switch (IEEEDPCmp(fl, f2)) {};
switch (IEEEDPTst(fl)) {};

/* Call IEEEDPCmp entry * /
/* Call IEEEDPTst entry * /
/ * Call IEEEDP Abs entry * /
/* Call IEEEDPNeg entry */
/* Call IEEEDPAdd entry */
/* Call IEEEDPSub entry */
/ * Call IEEEDPMul entry * /
/* Call IEEEDPDiv entry */

}

fl = IEEEDPAbs(f2);
fl = IEEEDPNeg(f2);
fl = IEEEDPAdd(f2, f3);
fl = IEEEDPSub(f2, f3);
fl = IEEEDPMul(f2, f3);
fl = IEEEDPDiv(f2, f3);

The Amiga assembly language interface to the IEEE double-precision floating-point basic math
routines is shown below, including some details about how the system flags are affected by each
operation. Note that the access mechanism from assembly language is as shown below:

LEA _L VOIEEEDPFix,A6
JSR _MathIeeeDoubBasBase(A6)

_L VOIEEEDPFix - Convert IEEE double-precision to integer

_L VOIEEEDPFlt -

474 Math Functions

Inputs:
Outputs:
Condition codes:

DOjDl = IEEE double-precision argument
DO = Integer (two's complement) result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if overflow occurred
C = undefined
X = undefined

Convert integer to IEEE double-precision

Inputs:
Outputs:
Condition codes:

DO = Integer (two's complement) argument
DOjDl = IEEE double-precision result
N = 1 if result is negative
Z = 1 if result is zero
V=O
C = undefined
X = undefined

_LVOIEEEDPCmp -

_L VOIEEEDPTst -

Compare two IEEE double-precision values

Inputs:

Outputs:

Condition codes:

DO/Dl = IEEE double-precision argument 1
D2/D3 = IEEE double-precision argument 2
DO = +1 if argl < arg2
DO = -1 if argl > arg2
DO = 0 if argl = arg2
N=O
Z = 1 if result is zero
v=o
C = undefined
X = undefined
GT = arg2 > argl
GE = arg2 >= argl
EQ = arg2 = argl
NE = arg2 < > argl
LT = arg2 < argl
LE = arg2 <= argl

Test an IEEE double-precision value against zero

Inputs:
Outputs:

Condition codes:

DO/Dl = IEEE double-precision argument
DO -:- +1 if arg > 0.0
DO = -1 if arg < 0.0
DO = 0 if arg = 0.0
N = 1 if result is negative
Z = 1 if result is zero
V=O
C = undefined
X = undefined
EQ = arg·. 0.0
NE = arg <> 0.0
PL = arg >= 0.0
MI = arg < O.~

Math Functions 475

_L VOIEEEOP Abs - Absolute value

Inputs:
Outputs:

Condition codes:

_L VOIEEEOPNeg - Negate

Inputs:
Outputs:
Condition codes:

_L VOIEEEOP Add - Addition

Inputs:

Outputs:

Condition codes:

476 Math Functions

00/01 = IEEE double-precision argument
00/01 = IEEE double-precision absolute

value result
N=O
Z = 1 if result is zero
V=O
C = undefined
X = undefined

00/01 = IEEE double-precision argument
00/01 = IEEE double-precision negated result
N = 1 if result is negative
Z = 1 if result is zero
V=O
C = undefined
X = undefined

00/01 = IEEE double-precision argument 1
02/03 = IEEE double-precision argument 2
00/01 = IEEE double-precision addition of

argl +arg2 result
N = 1 if result is negative
Z = 1 if result is zero
y = 1 if result overflowed
C = undefined
Z = undefined

_L VOIEEEDPSu b - Subtraction

Inputs:

Outputs:

Condition codes:

_L VOIEEEDPMul - Multiply

Inputs:

Outputs:

Condition codes:

_L VOIEEEDPDiv - Divide

Inputs:

Outputs:

Condition codes:

DO/Dl = IEEE double-precision argument 1
D2/D3 = IEEE double-precision argument 2
DO/Dl = IEEE double-precision subtraction

of argl-arg2 result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

DO/Dl = IEEE double-precision argument 1
D2/D3 = IEEE double-precision argument 2
DO/Dl = IEEE double-precision multiplication

of argl *arg2 result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

DO/Dl = IEEE double-precision argument 1
D2/D3 = IEEE double-precision argument 2
DO/Dl = IEEE double-precision division

of argl/arg2 result
N = 1 if result is negative
Z = 1 if result is zero
V = 1 if result overflowed
C = undefined
Z = undefined

Math Functions 477

Chapter 18

Workbench

This chapter shows how to use the Workbench facilities in your applications. For information
about IconEd, the icon editor for making Workbench icons, see the appendixes of the Introduc
tion to Amiga manual for revision 1.1 of the system software.

Introduction

Workbench is both an application program and a screen in which other applications can run.
Workbench allows users to interact with the Amiga file system by using icons, and it gives the
programmer access to a body of library functions for manipulating the application's objects and
Icons.

Workbench 479

Here are definitions of some terms that may be unfamiliar or used III unfamiliar ways in this
chapter.

Workbench object
A Workbench object contains all the information that Workbench needs to display and
use a project, tool, drawer, etc. The two kinds of Workbench objects are WBObject
(as Workbench uses objects) and DiskObject (as most other users will view objects in
memory or in a file on disk).

zcon
This is a shorthand name for a Workbench object. An ICon may be III memory or on
disk or both.

info file
The disk representation of an icon. The format of an icon on disk is slightly different
from an icon in memory, but one is obtainable from the other.

strings
A null-terminated sequence of bytes.

activating

tool

The act of starting a tool, opening a drawer, and so on. The term opening is reserved
for windows and files.

An application program or system utility.

project
Something produced by an executable program and associated with an executable pro
gram, for example, a text file or a drawing.

drawer
A disk-based directory.

The Icon Library

The icon library, icon.library, has memory-management routines, icon input and output rou
tines, and string manipulation routines. The "Library Summaries" appendix to this manual
contains the reference pages for this library.

480 Workbench

The Info File

The £nfo file is the center of interaction between applications and Workbench. This file stores
all the necessary information to display an icon and to start up an application. An info file can
contain several different types of icons, as shown in table 17-1.

•

Table 18-1: Contents of a Workbench Info File

Icon Name

WBDISK
WBDRAWER
WBTOOL
WBPROJECT
WBGARBAGE
WBKICK

Object

The root of a disk
A directory on the disk
A directly runnable program
A data file of some sort
The trash can directory
A non-DOS disk

The actual data present in the info file depends on the icon type. Note that any graphical
image can be used for any icon type in the info file. In fact, the graphical image need not be
unique for each type of icon. However, it is strongly recommended as a matter of programming
style that each type of icon have a unique graphical image associated with it. In fact, you may
want to have several unique images associated with an icon type. For example, you can have
several different images associated with the WBTOOL type of icon info file.

Most people will not access the info file directly. The icon manipulation library does all the
work needed to read and write info files. The GetDiskObjectO, PutDiskObjectO, and
FreeDiskObjectO routines are especially helpful. The calling sequence of each of these is
given in the icon library reference pages in the "Library Summaries" appendix.

THE DISKOBJECT STRUCTURE

The DiskObject structure is at the beginning of all info files, and is used in the routines
GetDiskObjectO, PutDiskObjectO, and FreeDiskObjectO. The structure is defined in
workbench/ workbench.h and contains the following elemen ts:

do_Magic
A magic number that the icon library looks for to make sure that the file it is reading
really contains an icon. It should be the manifest constant WB_DISKMAGIC.
PutDiskObjectO will put this value in the structure, and GetDiskObject will not
believe that a file is really an icon unless this value is correct.

Workbench 481

do_Version
This provides a way to enhance the info file in an upwardly-compatible way. It should
be WB_DISKVERSION. The icon library will set this value for you and will not
believe weird values.

do_Gadget
This contains all the imagery for the icon. See the "Gadget Structure" section for more
details.

do_Type
The type of the icon (WBTOOL, WBPROJECT, and so on).

do_Default Tool
Default tools are used for projects and disks. For projects the default tool is the pro
gram invoked when the project is activated. This tool may be absolute (DISK:file),
relative to the root of this disk (:file), or relative to the project (file). If the icon is of
type WBDISK, the default tool is the diskcopy program that will be used when this
disk is the source of a copy.

Note that if the tool is run via the default tool mechanism (for example, a project was
activated, not a tool), all the information in the project's info file is used, and the tool's
info file is ignored. This is especially important for variables like StackSize and
ToolWindow.

do_ToolTypes
ToolTypes is an array of free-format strings. Workbench does not enforce any rules
on these strings, but they are useful for passing environment information. See the
"TooITypes" section for more information.

do_CurrentX, do_CurrentY
Drawers have a virtual coordinate system. The user can scroll around in this system
using the scroll gadgets on the "drawers" window. Each icon in the drawer has a posi
tion in the coordinate system. CurrentX and CurrentY contain the icon's current
position in the drawer.

do_DrawerData
If the icon is capable of being opened as a drawer (WBDISK, WBDRA WER, WBGAR
BAGE), it needs a DrawerData structure to go with it. This structure contains an
Intuition NewWindow structure. (see Amiga Intuition Reference Manual for more
information about windows.) Workbench uses this to hold the current window position
and size of the window so it will reopen in the same place. The CurrentX and
CurrentYof the origin of the window is also stored.

do_ToolWindow
By default, Workbench will start a program without a window. If ToolWindow is set,

482 Workbench

this file will be opened and made the standard input and output of the program. This
window will also be put into the process's pr_WindowPtr variable and will be used
for all system requesters. Note that this work is actually done in the language
dependent start-up script; if you are coding in assembly language or an unsupported
language, you will have to do the work yourself. The only two files that it makes sense
to open are CON: or RA W:. See the AmigaDOS manuals for the full syntax accepted
by these devices.

do_StackSize
This is the size of the stack used for running the tool. If this is null, then Workbench
will use a reasonable default stack size (currently 4K bytes).

THE GADGET STRUCTURE

To hold the icon's image, Workbench uses an Intuition Gadget structure, defined in
£ntu£t£on/ £ntuit£on.h or £ntuition/ intu£tion. £ for the assembly language version. Work bench res
tricts some of the values of the gadget. Any unused field should be set to O. For clarity in
presentation, you can use the assembly language version of these structures,

Note: The C version has the leading "gg_" stripped off. (Workbench structure members have
the same name in all languages supported by Amiga). The Intuition gadget structure members
that Workbench pays attention to are listed below:

gg_Width
This is the width (in pixels) of the active icon's active region. Any mouse button press
within this range will be interpreted as having selected this icon.

gg_Height
The same as Width, only in the vertical direction.

gg_Flags
Currently the gadget must be of type GADGIMAGE. Three highlight modes are
supported: GADGHCOMP, GADGHIMAGE, and GADGBACKFILL. GADGHCOMP
complements the image specified (as opposed to Intuition, which complements the select
box). GADGHIMAGE uses an alternate selection image. GADGBACKFILL is similar
to GADGHCOMP, but ensures that there is no "orange ring" around the selected
image. It does this by first complementing the image, and then flooding all orange pix
els that are on the border of the image to blue. (In case you do not use the default
colors, orange is color 3 and blue is color 0.) All other flag bits should be O.

gg_Activation
The activation should have only RELVERIFY and GADGIMMEDIATE set.

Workbench 483

gg_Type
The gadget type should be BOOLGADGET.

gg_ GadgetRender
Set this to an appropriate Image structure.

gg_SelectRender
Set this if and only if the highlight mode is GADGHIMAGE.

The Image structure is typically the same size as the gadget, except that ig_Height is often
one pixel less than the gadget height. This allows a blank line between the icon image and the
icon name. The image depth must be 2; ig_PlanePick must be 3; and ig_PlaneOnOff should
be o. The ig_NextImage field should be null.

ICONS WITH NO POSITION

Picking a position for a newly created icon can be tricky. NO_ICON_POSITION is a magic
value for do_CurrentX and do_CurrentY that instructs Workbench to pick a reasonable
place for the icon. Workbench will place the icon in an unused region of the drawer. If there is
no space in the drawers window, the icon will be placed just to the right of the visible region.

Workbench Environment

When a user activates a tool or project, Workbench runs a program. This program is a
separate process and runs asynchronously to Workbench. This allows the user to take advan
tage of the multiprocessing features of the Amiga.

The environment for a tool under the Workbench is quite different from the environment when
a tool is run from the CLI. The CLI does not create a new process for a program; it jumps to
the program's code and the program shares the process with the CLI. This means that the pro
gram has access to all the eLI's environment, but the program must be very careful to restore
all the correct defaults before returning. Workbench starts a tool from scratch and explicitly
passes the environment to the tool.

One of the things that a Workbench program must set up is stdin and stdout. By default, a
Workbench program does not have a window to which its output will go. Therefore, stdin and
stdout do not point to legal file handles. If your program attempts to printfO, it will destroy
the system.

484 Workbench

START-UP MESSAGE

Right after the tool is started, Workbench sends the tool a message, which is posted to the mes
sage port in the tool's process. This message contains the environment and the arguments for
the tool.

Each icon that is selected in the Workbench is passed to the tool. The first argument is the tool
itself. If the tool was derived from a default tool, then this is passed in addition to the project.
All other arguments are passed in the order in which the user selected them; the first icon
selected will be first.

The tool may do what it wishes with the start-up message; however, it must deallocate the mes
sage sooner or later. If the message is replied to Workbench, then Workbench will take care of
all the clean-up. The tool should not do this until it finishes executing, because part of the
clean-up is freeing the tool's data space.

The start-up message, whose structure IS outlined III workbench/ startup.h, has the following
structure elements:

sm_Message
A standard Exec message. The reply port is set to the Workbench.

sm_Process
The process descriptor for the tool (as returned by CreateProcessO)

sm_Segment
The loaded code for the tool (returned by LoadSegO)

sm_NumArgs
The number of arguments in sm_ArgList

sm_ ToolWindow
This is the same string as the DiskObject's do_TooIWiIidow. It is passed here so
the tool's start-up code can open a window for the tool. If it is null, no default window
is opened.

sm_ArgList
This is the argument list itself.

Each argument has two parts. The wa_Name element is the name of the argument. If this is
not a default tool or a drawer-like object, this will be the same as the string displayed under the
icon. A default tool will have the text of the do_DefaultTool pointer; a drawer will have a
null name passed. The wa_Lock is always a lock on a directory, or is NULL (if that object
type does not support locks).

Workbench 485

The following code fragment will work for all arguments (assuming that open will work on them
at all).

LockArg(arg)
struct WBArg * arg;
int open mode;
{

}

LONG olddir;
LONG lock;

/ * see if this type can be locked * /
if(arg->wa_Lock == NULL) {

}

/ * cannot lock it -- it must be a device (for example, DFO:) * /
return(NULL);

/ * change directory to w here the argument is * /
olddir = CurrentDir(arg- >wa_Lock);

/ * open the argument up * /
lock = Lock(arg->wa_Name, SHARED_LOCK);
if(lock == NULL) {

}

/* who knows: maybe the user canceled a disk insertion
* request. The real reason can be gotten by IoErrO

*/
return(NULL);

/ * set the directory back * /
CurrentDir(olddir);

return(lock);

For more routines to manipulate Workbench arguments, see the function appendix.

THE STANDARD START-UP CODE

The standard start-up code handles the wor~t of the detail work of interfacing with the system.
The C start-up code (startup.obj) waits for the start-up message, opens the tool window (if
one has been requested), sets up SysBase and DOSBase, and passes the start-up message on
to mainO. When mainO returns (or exitO is called) it replies the message back to
Workbench.

486 Workbench

The mainO procedure is called with two parameters: argv and argc. If argc is not NULL,
you have been called from the CLI. If argc is NULL, you have been called from Workbench.
The global variable WBenchMsg points to the Workbench start-up message.

Note: A word of warning for those of you who do not use the standard start-up
sequence: you must turn off task switching (with ForbidO) before replying the message to
Workbench. This will prevent Workbench from unloading your code before you can tell the
DOS that you want to exit. See the C start-up code in the "Example Programs" section.

The ToolTypes Array

This section shows how the ToolTypes array should be formatted, and describes the standard
entries in the ToolTypes array. In brief, ToolTypes is an array of strings. These strings can
be used to encode information about the icon that will be available to all who wish to use it.
The formats are user-definable and user-extensible.

Workbench does not enforce much about the ToolTypes array, but some conventions are
strongly encouraged. A string may be up to 32K bytes large, but you should not make it over a
line long. The alphabet is 8-bit ANSI (for example, normal ASCII with foreign-language exten
sions). To see what it looks like, try typing with the Alt key held down. Avoid special or non
prin ting characters. The case of the characters is significant. The general format is

<name>=<value> [I<value> l*

where <name> is the field name and <value> is the text to associate with that name. If the
ID has multiple values, the values may separated by a vertical bar. Currently, the value should
be the name of the application that understands this file. For example, a basic program might
be

FILETYPE=ABasiC.programl text

This notifies the world that this file is acceptable to either a program that is expecting any arbi
trary type of text (for example, an editor) or to a program that only understands a basic
program.

Two routines are provided to help you deal with the Tooltype array. FindToolTypeO
returns the value of a Tooltype element. Using the above example, if you are looking for
FILETYPE, the string "ABasiC.programl text" will be returned.

Workbench 487

MatchToolValueO returns nonzero if the specified string is in the reference value string. This
routine knows how to parse vertical bars. For example, using the reference value string of
"ABasiC.programi text", MatchToolValueO will return TRUE for "text" and
"ABasiC.program" and FALSE for everything else.

Example Programs

Some example programs, including a start-up sequence, are provided in the following sections.

FRIENDL YTOOL

This program tells the application if it can understand a particular object.

/* INPUTS
* diskobj -- a workbench DiskObject (a returned by GetDiskObject)
* id -- the application identifier

*
* OUTPUTS
* nonzero if it understands this object's type

*/

#include "exec/types.h"
#include "workbench/workbench.h"
#include "workbench/icon.h"

LONG IconBase;

FriendlyTool(diskobj, id)
struct DiskObject *diskobj;
char *id;
{

char **toolarray;
char *value;

/* default return value is failure * /
int isfriendly = 0;

/* this assumes that you have not already opened the icon library
* elsewhere in your program. You undoubtedly have, because
* you managed to get a DiskObject structure.

*/

488 Workbench

}

IconBase = OpenLibrary(ICONNAME, 1);
if(IconBase == NULL) {

}

/ * couldn't find the library??? * /
return(0);

/ * extract the tool type value array * /
toolarray = diskobj- >do_TooIType;

/* find the FILETYPE entry */
value = FindToolType(toolarray, "FILETYPE");
if(value) {

/* info file did define the FILETYPE entry */

isfriendly = MatchToolValue(value, id);
}

Close(IconBase);

/* protect ourselves from inadvertent use */
IconBase = -1;

return(isfriendly);

START-UP PROGRAM

**
*
* C Program Startup/Exit (Combo Version: CLI and WorkBench)

*
**

******* Included Files ***

INCLUDE "exec/types.i"
INCLUDE "exec/alerts.i"
INCLUDE "exec/nodes.i"
INCLUDE" exec/lists.i"
INCLUDE "exec/ports.i"
INCLUDE" exec/libraries.i"
INCLUDE" exec/tasks.i"
INCLUDE "libraries/dos.i"

Workbench 489

INCLUDE" libraries/ dosextens.i"
INCLUDE "workbench/startup.i"

******* Imported ***

xlib macro
xref _LVOI
endm

xref ...AbsExecBase
xref _Input
xref _Output

xref - mam ; C code entry point

xlib Alert
xlib FindTask
xlib Forbid
xlib GetMsg
xlib OpenLibrary
xlib CloseLibrary
xlib ReplyMsg
xlib Wait
xlib WaitPort

xlib CurrentDir
xlib Open

******* Exported ***

xdef _SysBase
xdef _DOSBase

xdef _errno
xdef _stdin
xdef _stdout
xdef _stderr

xdef _exit
xdef _WBenchMsg

callsys macro
CALLLIB _L VOl
endm

490 Workbench

; standard C exit function

**
*
* Standard Program Entry Point

* . * main (argc, argv)
* int argc;
* char *argv[];

*
**

startup:
move.!
move.!
move.l
clr.l

; reference for Wack users
sp,initialSP ; initial task stack pointer
dO,dosCmdLen
aO,dosCmdBuf
_WBenchMsg

;------ get Exec's library base pointer:
move.l _AbsExecBase,a6
movEd a6,_SysBase

;------ get the address of our task
su ba.l al,al
callsys Fi~dTask
move.l dO,a4

;------ are we running as a son of Workbench?
tst.l pr_CLI(A4)
beq from Workbench

;============~=====~==============~==~====

;====== CLI Start-up Code ======================
;====================~===~================

fromCLI:
;------ attempt to open DOS library:

bsr open DOS

;------ find command name:
move.l pr_CLI(a4),aO
add.l aO,aO ; bcpl pointer conversion
add.!
move.l
add.l
add.!

aO,aO
cli_CommandName(aO),aO
aO,aO ; bcpl pointer conversion
aO,aO

;------ create buffer and array:

Workbench 491

*

*

link
movem.l
lea
lea
move.l
moveq.l

a6,#-(100+ 16*4+2*4)
d2/a2/a3,-(sp)
argvBuffer,a2
argvArray,a3
a3,16(sp) ; save
#1,d2 ; param counter

;------ fetch command name:
moveq.l #O,dO
move.b (aO)+,dO ; size of command name
move.l a2,(a3)+ ; ptr to command name
bra.s 1$

2$: move.b (aO)+,(a2)+
1$: dbf dO,2$

elr.b (a2)+

;------ collect parameters:
move.l dosCmdLen,dO
move.l dosCmdBuf,aO

;------ skip control characters and space:
3$: move.b (aO)+,d1

subq.l #1,dO
ble.s parmExit
cmp.b #' ',d1
ble.s 3$

;------ copy parameter:
addq.l #1,d2
move.l a2;(a3)+
bra.s 5$

4$: move.h (aO)+,d1
subq.l #1,dO
cmp.b #' ',d1
ble.s 6$

5$: move.b d1,(a2)+
bra.s 4$

6$:
elr.b (a2)+
bra.s 3$

parmExit: elr.b (a2)+
elr.l (a3)+

move.l d2,dO
movem.l (sp)+,d2/a2/a3

492 Workbench

pea
move.l

argvArray
dO,-(sp)

* The above code relies on the end of line containing a con trol
* character of any type, i.e. a valid character must not be the
* last. This fact is ensured by DOS.

;------ get standard input handle:
jsr _Input
move.l dO,_stdin

;------ get standard output handle:
Jsr _Output
move.l dO,_stdout
move.l dO,_stderr

;------ call C main entry point
Jsr _mam

;------ return success code:
moveq.l #O,DO
move.l initialSP,sp ; restore stack ptr
rts

0 ______ ---,
;====== Workbench Start-up Code ===============
0 ______ ---,
fromWorkbench:

;------ open the DOS library:
bsr openDOS

;------ we are now set up. wait for a message from our starter
bsr waitmsg

;------ save the message so we can return it later
move.l dO,_ WBenchMsg

;------ push the message on the stack for wbmain
move.l dO,-(SP)
elr.l -(SP) indicate: run from Workbench

;------ get the first argument
move.l dO,a2
move.l sm_ArgList(a2),dO

Workbench 493

beq.s docons

;------ and set the current directory to the same directory
move.l _DOSBase,a6
move.l dO,aO
move.l wa_Lock(aO),dl
callsys Curren tDir

docons:
;------ get the toolwindow argument

move.l sm_TooIWindow(A2),dl
beq.s domairi

;------ open up the file
move.l #MODE_OLDFILE,d2
callsys Open

;------ set the C input and output descriptors
move.l dO,_stdin
move.l dO,_stdout
move.l
beq.s

dO,_stderr
domain

;------ set the console task (so Open("*", mode) will work
waitmsg has left the task pointer in A4 for us
lsl.l #2,dO
move.l
move.l

dO,aO
fh_Type(aO),pr_ConsoleTask(A4)

domain:
Jsr
moveq.l
bra.s

_mam
#O,dO
exit2

Successful return code

**
*
* C Program Exit Function

* * Warning: this function really needs to do more than this.

*
**

move.l 4(SP),dO ; extract return code

494 Workbench

exit2:

1$:

move.l
move.l

initialSP,SP ; restore stack pointer
dO,-(SP) ; save return code

;------ close DOS library:
move.l _AbsExecBase,A6
move.l _DOSBase,dO
beq.s 1$
move.l
callsys

dO,a1
CloseLibrary

;------ if we ran from CLI, skip workbench cleanup:
tst.l _ WBenchMsg
beq.s exitToDOS

;------ return the startu p message to our parent
we forbid so workbench can't UnLoadSegO us
before we are done:
callsys Forbid
move.l
callsys

_ WBenchMsg,a1
ReplyMsg

;------ this rts sends us back to DOS:
exitToDOS:

move.l
rts

(SP)+,dO

,---
noDOS:

ALERT
moveq.l
bra.s

(AG_OpenLib!AO_DOSLib)
#100,dO
exit2

,---~-----------------------------

; This routine gets the message that workbench will send to us
; called with task id in A4

waitmsg:
lea
callsys
lea
callsys
rts

pr_MsgPort(A4),aO
WaitPort
pr_MsgPort(A4),aO
GetMsg

* our process base

* our process base

Workbench 495

;---
; Open the DOS library:

openDOS
elr.l
lea
move.l
eallsys
move.l
beq
rts

_DOSBase
DOSName,Al
#LIBRARY _ VERSION,dO
OpenLibrary
DO,_DOSBase
noDOS

**

DATA

**

VerRev de.w 1,0

_SysBase de.l 0
_DOSJhse de.l 0

_errno de.l 0
_stdin de.l -1
_stdout de.l -1
_stderr de.l -1

initialSP de.l 0
_WBenehMsg de.l 0

dosCmdLen de.l 0
dosCmdBuf de.l 0

argvArray ds.l 32
argvBuffer ds.b 256

DOSName DOS NAME

END

496 Workbench

ECHO.C

The following example program prints out arguments passed by the CLI or the WorkBench.

/* Note: If WB startup, uses window opened by LStartup.obj */

#include <exec/types.h>
#include <workbench/startup.h>
#include <lattice/stdio.h>
extern struct WBStartup *WBenchMsg;

main(argc,argv)
int argc;
char **argv;

{

}

BYTE c;
if(argc >0) {

printCliArgs(argc,argv);
}
else {
print WBArgs(WBenchMsg);
while ((c=getchar()) != '\n'};
}

prin tCliArgs(argc,argv)
int argc;
char **argv;

{
int i;
for(i=O; i<argc; i++} {

printf(" Arg %21d = %s\n" ,i,argv[i]);
}

}
p rin t WBArgs(msg)
struct WBStartup *msg;

{
struct WBArg *arg;
int i;
for(i=O, a~g=msg->sm_ArgList; i < msg->sm_NumArgs; i++,arg++) {
printf("WBArg%2Id:Lock=Ox%06Ix:Name=%s\n" ,

i,arg- > wa_Lock ,arg- > wa_Name);
}
printf("PRESS <RET> TO EXIT\n");

}

Workbench 497

Appendix A

Library Summaries

This appendix contains UNIX-like summarIes for the routines that are built into the Amiga
ROM (or kickstart) software, as well as summaries of routines in disk-Ioadable libraries. The
debug library documentation is included here as well.

These documentation files are organized alphabetically. Following this introQuction is a listing
of each routine in this appendix, followed by the name of the library in which the routine is
located. The tutorial sections of this manual show you how these routines relate to one another
and give you the prerequisites for calling them.

A-I

Most routines are listed as part of a library of routines. Before you can use a routine within
your program, you must make sure that the library is opened. Opening libraries is explained
fully in the "Libraries" chapter of Amiga ROM Kernel Reference Manual: Exec but it bears
repeating here. You open a library by using the OpenLibraryO function as follows:

struct LibBase *LibBase;
LibBase = OpenLibrary(" library .name" ,version);

where

library.name
is a string that describes the name of the library you wish to open.

version
is the version number of the library that you wish to have opened. A value of 0 says
give me any version. A value of 31, for example (which is the latest version as of this
writing) means specifically to open version 31 of this library or a later version if 31 is
not available.

If the library is disk-resident, it is loaded and initialized. The OpenLibraryO function returns
the address of the library base, which you must assign to a specific variable. In this way your
program links into the library-specific interface code that is contained in amiga.lib.

The names of the libraries that are currently part of the Amiga software and the corresponding
names of the library base pointers associated with them are as follows:

Library Name

exec.library
clist.library
graphics.library
layers.library
intuition.library
mathffp.library
math trans.library
mathieeedou b bas. library
dos.library
translator .library
icon.library
diskfon t.library
ramlib.library

For example:

Library Base Pointer Name

ExecBase
ClistBase
GfxBase
LayersBase
In tui tionBase
MathBase
MathTransBase
MathIeeeDou bBasBase
DosBase
Translator Base
IconBase
Diskf on tBase

A - 2

(not useful to C language)

#include "graphics/gfx.h"
struct GfxBase *GfxBase;
GfxBase = OpenLibrary(" graphics.library" ,0);
if(GfxBase == NULL) exit(NO_GRAPHICS_LIBRARY_FOUND);

Note: If your program is coming up through the normal start-up code (see the "Workbench"
chapter), exec. library and dos.library are already opened for you. Thus you need not open them
yourself.

The logic of this code is as follows:

1. When calling a routine, C takes the parameters for the routine and pushes them onto
the stack. For example:

x = Routine(parmA, parmB);

Then it calls a routine named "_Routine" (adds an underscore to the head of the rou
tine name).

2. The underlying ROM (or disk-based) code usually expects its parameters to be passed
in registers rather than on the stack. This is to make the code truly general-purpose
(that is, it does not impose a particular stack frame) and more efficient for assembly
language coding.

Therefore, the interface code at _Routine, in turn, saves the contents of registers the
routine will use, pulls parameters off the stack, jams them into registers, and finally
passes control directly to the actual starting location of the routine itself.

The linker needs the library base location because it is through a "jump-with-offset"
from a machine register that the _Routine entry point is found. The Amiga uses a
relocating loader in AmigaDOS, so you can never be sure exactly where a library of rou
tines is located. However, once the system has loaded a library, it knows how and
where to find it and gives you a way to use the library's routines.

The following shows typical interface code linked to your program from amiga.lib:

A - 3

_Routine:

xref _LibBase ;library base name is defined in
;user's file, this code gets linked
;to user's program; get the value
;from there when library is opened.

xdef _Routine

move.l
move.l
move.l

Jsr
move.l
rts

;make _Routine name external,
;visible to linker.

A6,-(sp)
8(sp),AOj Al
_LibBase,A6
_LVORoutine(A6)
(sp)+,A6

;sa~e register(s)
;copy params A and B to regs.
;load library base address
;go to real routine
;restore registers

where _LVORoutine is a value representing the offset, within the library, at which the "real"
routine (the routine that expects parameters in registers) is located.

When you have finished using a library, at the end of your program, you should close it, usmg
the CloseLibraryO function as follows:

CloseLibrary(LibBase);

If the system is running out of memory and needs to free up space, it can check the library
accessors field for various libraries. For those whose accessors value is zero, it can retrieve the
memory that the library had used.

A - 4

abs
AddAnimOb
AddBob
AddDevice
AddFont
AddFreeList
AddGadget
AddHead
AddlntServer
AddLibrary
AddPort
AddResource
AddTail
AddTask
AddVSprite
Allocate
AllocCList
AllocEntry
AllocMem
AllocRaster
AllocRemember
AllocSignal
AllocTrap
Al locWBObject
AndRectRegion
Animate
AreaDraw
AreaEnd
AreaMove
AskE'ont
AskSoftStyle
AutoRequest
AvailFonts
AvailMem
BeginRefresh
BeginUpdate
BehindLayer
BltBitMap
BltBitMapRastPort
BltClear
BltPattern
BI tTempl ate
BuildSysRequest
BumpRevision
Cause
CEND
ChangeSprite
CheckIO
CINIT
ClearDMRequest
ClearEOL
ClearMenuStrip
ClearPointer
ClearRegion
ClearScreen
ClipBlit
Close

Contents

A - 5

mathffp. library
graphics. library
graphics. library

exec. library
graphics. library

icon. library
intuition. library

exec. library
exec. library
exec. library
exec. library
exec. library
exec. library
exec. library

graphics. library
exec. library

clist.library
exec. library
exec. library

graphics.library
intuition. library

exec. library
exec. library
icon. library

graphics. library
graphics. library
graphics. library
graphics. library
graphics. library
graphics. library
graphics. library

intuition. library
diskfont.library

exec. library
intuition. library

layers. library
layers. library

graphics. library
graphics. library
graphics.library
graphics. library
graphics. library

intuition. library
icon. library
exec. library

graphics. library
graphics. library

exec. library
graphics. library

intuition. library
graphics. library

intuition. library
intuition. library
graphics. library
graphics. library
graphics. library

dos.library

CloseDevice
CloseFont
CloseLibrary
CloseScreen
CloseWindow
CloseWorkBench
CMOVE
ColdReset
ConcatCList
CopyCList
CopySBitMap
CreateBehindLayer
CreateDir
CreateExtlO
CreateProc
CreateStdlO
CreateUpfrontLayer
CurrentDir
CurrentTime
CWAlT
DateStamp
Deallocate
Delay
DeleteFile
DeleteLayer
DeletePort
DeleteStdlO
DeviceProc
Disable
DisownBlitter
DisplayAlert
DisplayBeep
DisposeLayerlnfo
DisposeRegion
DoCollision
DolO
DoubleClick
Draw
DrawBorder
DrawGList
Drawlmage
DupLock
Enable
EndRefresh
EndRequest
EndUpdate
Enqueue
Examine
Execute
Exit
ExNext
faddi
FattenLayerlnfo
fcmpi
fdivi
fflti
FindName
FindPort
FindTask
F indToo 1 Type

A - 6

exec. library
graphics. library

exec. library
intuition. library
intuition. library
intuition. library
graphics. library

exec. library
clist.library
clist.library

graphics. library
layers. library

dos.library
exec_support. library

dos.library
exec_support. library

layers. library
dos.library

intuition. library
graphics. library

dos.library
exec. library
dos.library
dos.library

layers. library
exec_support. library
exec_support. library

dos.library
exec. library

graphics. library
intuition. library
intuition. library

layers. library
graphics. library
graphics. library

exec. library
intuition. library
graphics. library

intuition. library
graphics. library

intuition. library
dos.library

exec. library
intuition. library
intuition. library

layers. library
exec. library
dos.library
dos.library
dos.library
dos.library

mathffp. library
layers. library

mathffp. library
mathffp. library
mathffp. library

exec. library
exec. library
exec. library
icon. library

Flood
Forbid
FlushCList
fmuli
fl)egi
FreeCList
FreeColorMap
FreeCopList
FreeCprList
FreeDiskObject
FreeEntry
FreeFreeList
FreeGBuffers
FreeMem
FreeRaster
FreeRemember
FreeSignal
FreeSprite
FreeSysRequest
FreeTrap
FreeVPortCopLists
FreeWBObject
fsubi
ftsti
GetCC
GetCLBuf
GetCLChar
GetCLWord
GetColorMap
GetDefPrefs
GetDiskObject
GetGBuffers
GetIcon
GetMsg
GetPrefs
GetRGB4
GetSprite
GetWBObject
IEEEDPAbs
IEEEDPAdd
IEEEDPCmp
IEEEDPDiv
I EEEDPFIt
IEEEDPMul
IEEEDPNeg
IEEEDPSub
IEEEDPTst
IncrCLMark
Info
InitArea
InitBitMap
InitCLPool
InitGels
InitGMasks
InitLayers
InitMasks
InitRastPort
InitRequester
InitStruct
InitTmpRas

A - 7

graphics. library
exec. library

clist.library
mathffp. library
mathffp. library

clist.library
graphics. library
graphics. library
graphics. library

icon. library
exec. library
icon. library

graphics. library
exec. library

graphics. library
intuition. library

exec. library
graphics. library

intuition. library
exec. library

graphics. library
icon. library

mathffp. library
mathffp. library

exec. library
clist.library
clist.library
clist.library

graphics. library
intuition. library

icon. library
graphics. library

icon. library
exec. library

intuition. library
graphics. library
graphics. library

icon. library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library
mathieeedoubbas.library

clist.library
dos.library

graphics. library
graphics.library

clist.library
graphics. library
graphics. library

layers. library
graphics. library
graphics. library

intuition. library
exec. library

graphics. library

InitView
InitVPort
Input
Insert
IntuiTextLength
IoErr
IsInteractive
ItemAddress
LoadRGB4
LoadSeg
LoadView
Lock
LockLayer
LockLayerInfo
LockLayerRom
LockLayers
MakeLibrary
MakeScreen
MakeVPort
MarkCList
MatchToolValue
ModifyIDCMP
ModifyProp
Move
MoveLayer
MoveLayerInFrontOf
MoveScreen
MoveSprite
MoveWindow
MrgCop
NewLayerInfo
NewRegion
Off Gadget
OffMenu
OnGadget
OnMenu
Open
OpenDevice
OpenDiskFont
OpenFont
OpenLibrary
OpenResource
OpenScreen
OpenWindow
OpenWorkBench
OrRectRegion
Output
OwnBlitter
ParentDir
PeekCLMark
Permit
PolyDraw
PrintIText
PutCLBuf
PutCLChar
PutCLWord
PutDiskObject
Put I con
PutMsg
PutWBObject

A - 8

graphics. library
graphics. library

dos.library
exec. library

intuition. library
dos.library
dos.library

intuition. library
graphics.library

dos.library
graphics. library

dos.library
layers. library
layers. library

graphics. library
layers. library

exec. library
intuition. library
graphics. library

clist.library
icon. library

intuition. library
intuition. library
graphics. library

layers. library
layers. library

intuition. library
graphics. library

intuition. library
graphics. library

layers. library
graphics. library

intuition. library
intuition. library
intuition. library
intuition. library

dos.library
exec. library

diskfont.library
graphics. library

exec. library
exec. library

intuition. library
intuition. library
intuition. library
graphics. library

dos.library
graphics. library

dos.library
clist.library

exec. library
graphics. library

intuition. library
clist.library
clist.library
clist.library

icon. library
icon. library
exec. library
icon. library

QBlit
QBSBlit
Read
ReadPixel
RectFill
RefreshGadgets
RemakeDisplay
RemDevice
RemFont
RemHead
RemIBob
RemlntServer
RemLibrary
Remove
RemoveGadget
RemPort
RemResource
RemTail
RemTask
RemVSprite
Rename
ReplyMsg
ReportMouse
Request
RethinkDisplay
ScreenToBack
ScreenToFront
ScrollLayer
ScrollRaster
ScrollVPort
Seek
SendIO
SetAPen
SetBPen
SetOPen
SetCollision
SetComment
SetDMRequest
SetDrMd
SetExcept
SetFont
SetFunction
'SetlntVector
SetMenuStrip
Setpointer
Setprotection
SetRast
SetRGB4
SetSignal
SetSoftStyle
SetSR
SetTaskPri
SetWiridowTitles
ShowTitle'
Signal
SizeCList
SizeL~yer
SizeWindow
SortGList
SPAbs

A- 9

graphics. library
graphics. library

dos.library
graphics. library
graphics~library

intuition. library
intuition. library

. exec. library
graphics. library

. exec. library
graphics. library

exec. library
exec. library
exec. library

intuition. library
exec. library
exec. library
exec. library
exec. library

graphics. library
dos.library

exec. library
intuition. library
intuition. library
intuition. library
intuition. library
intuition. library

layers. library
graphics. library
graphics. library

dos.library
exec. library

graphics. library
graphics. library
graphics. library
graphics. library

dos.library
intuition. library
graphics. library

exec. library
graphics. library

exec. library
exec. library

intuition. library
intuition. library

dos.library
graphics. library
graphiGs.library

exec. library
graphics. library

exec. library
exec. library

intuition. library
intuition. library

exec. library
clist.library

layers. library
intuition. library
graphics. library
mathffp. library

SPAcos
SPAdd
SPAs in
SPAt an
sPCmp
SPCos
SPCosh
SPDiv
SPExp
SPFieee
SPFlt
SplitCList
SPLog
SPLoglO
SPMul
SPNeg
SPPow
SPSin
SPSincos
SPSinh
SPSqrt
SPSub
SPTan
SPTanh
SPTieee
SPTst
SubCList
SumLibrary
SuperState
SwapBitsRastPortClipRect
SyncSBitMap
Text
TextLength
ThinLayerlnfo
UnGetCLChar
UnGetCLWord
UnLoadSeg
UnLock
UnlockLayer
UnlockLayerlnfo
UnlockLayerRom
UnlockLayers
UnPutCLChar
UnPutCLWord
UpfrontLayer
UserState
VBeamPos
ViewAddress
ViewPortAddress
Wait
WaitBlit
WaitBOVP
WaitForChar
WaitIO
WaitPort
WaitTOF
WBenchToBack
WBenchToFront
WhichLayer
WindowLimits

A-lO

mathtrans.library
mathffp. library

mathtrans.library
mathtrans.library

mathffp . library
mathtrans.library
mathtrans.library

mathffp . library
mathtrans.library
mathtrans.library

mathffp. library
clist.library

mathtrans.library
mathtrans.library

mathffp . library
mathffp. library

mathtrans.library
mathtrans.library
mathtrans.library
mathtrans.library
mathtrans.library

mathffp. library
mathtrans.library
mathtrans.library
mathtrans.library

mathffp. library
clist.library

exec. library
exec. library

layers. library
graphics. library
graphics. library
graphics. library

layers. library
clist.library
clist.library

dos.library
dos.library

layers. library
layers.library

graphics. library
layers. library
clist.library
clist.library

layers. library
exec. library

graphiCs. library
intuition. library
intuition. library

exec. library
graphics. library
graphics. library

dos.library
exec. library
exec. library

graphics. library
intuition. library
intuition. library

layers. library
intuition. library

WindowToBack
WindowToFront
Write
WritePixel
XorRectRegion

A-ll

intuition. library
intuition. library

dos.library
graphics. library
graphics. library

abs

NAME
abs -- obtain the absolute. value of the fast floating-point number

C USAGE

fnum2 abs (fnuml) ;
DO

FUNCTION

Accepts a floating-point number and returns the absolute value of
said number. -Note that this function is called by compiler-generated
code, not bya user~generated function call.

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point absolute value of fnuml

BUGS

None

SEE ALSO

SPAbs,

AddAniIrOb

NAME
AddAniIrOb

SYNOPSIS

add an AniIrOb to the linked list of AniIrObs

AddAniIrOb(anOb, anKey, RPort)
aO al a2

FUNCTION
Links this AniIrOb into the current list pointed to by animKey
Initializes all the Timers of the AniIrOb's components
Calls AddBob with each component's Bob
Note that the RPort must be correctly initialized before you call here,
including a valid GelsInfo

INPUTS
anOb = pointer to the AnimOb structure to be added to the list
anKey = address of a ptr to the first AniIrOb in the list (NULL if none)
·RPort = pointer to a valid RastPort

RESULT
Nothing

BUGS
None known

SEE ALSO
Nothing

AddBob

NAME
AddBob

SYNOPSIS

adds a Bob to current GEL list

AddBob (Bob, RPort)
aO al

FUNCTION
Sets up the system Bob flags, then links this GEL into the list
via AddVSprite

INPUTS
Bob pointer to the Bob structure to be added to the GEL list
RPort = pointer to a RastPort structure

RESULT
Nothing

BUGS
None known

> SEE ALSO
AddVSprite

AddDevice

NAME
AddDevice -- add a device to the system

SYNOPSIS
AddDevice(device)

Al

FUNCTION
This function adds a new device to the system, making it
available to everyone. The device should be ready to be
called at this time.

INPUTS
device - pointer to a properly initialized device node

SEE ALSO
RernDevice

AddFont

NAME
AddFont -- add a font to the system list

SYNOPSIS
AddFont(textFont), GraphicsLib

Al A6

FUNCTION
This function adds the text font to the system, making it
available for use by any application. The font added must be
in public memory and must remain until successfully removed.

INPUTS
textFont - a TextFont structure in public RAM.

AddFreeList

NAME
AddFreeList -- add memory to the free list

SYNOPSIS
status
DO

AddFreeList(free, mem, len
AO Al A2

FUNCTION
This routine adds the specified memory to the free list.

The free list will be extended (if required). If there
is not enough memory to complete the call, a null is returned.

Note that AddFreeList does NOT allocate the requested memory.
It only records the memory in the free list.

INPUTS
free -- a pointer to a FreeList structure
mem -- the base of the memory to be recorded
len -- the length of the memory to be recorded

RESULTS
status -- nonzero if the call succeeded.

EXCEPTIONS

SEE ALSO
AllocEntry, FreeEntry, FreeFreeList

BUGS

AddGadget

NAME
AddGadget add a gadget to the gadget list of the window or

screen

SYNOPSIS
AddGadget(Pointer, Gadget, Position)

AO Al DO

FUNCTION
Adds the specified gadget to the gadget list of the given
window, linked in at the position in the list specified by
the position argument (that is, if position == 0, the gadget
will be inserted at the head of the list, and if position ==
1, the gadget will be inserted after the first gadget and
before the second). If the position you specify is greater
than the number of gadgets in the list, your gadget will be
added to the end of the list. This procedure returns the
position at which your gadget was added.

Calling AddGadget() does not cause your gadget to be
displayed. The benefit of this is that you may add several
gadgets without having the gadget list redrawn every time.
The drawback is that you are obliged to call RefreshGadgets()
to have your added gadgets displayed.

NOTE: A relatively safe way to add the gadget to the end of
the list is to specify a position of -1. That way, only the
65,536th (and multiples of it) will be inserted at the wrong
position. The return value of the procedure will tell you
where it was actually inserted.

NOTE: The system window and screen gadgets are initially
added to the front of the gadget list. The reason for this
is: if you position your own gadgets in some way that
interferes with the graphical representation of the system
gadgets, the system's gadgets will be "hit" first by the
user. If you then start adding gadgets to the front of the
list, you will disturb this plan, so beware. On the other
hand, if you do not violate the design rule of never overlapping
your gadgets, there is no problem.

INPUTS
Pointer = pointer to the window to get your gadget.
Gadget = pointer to the new gadget.
position = integer position in the list for the new gadget

(starting from zero as the first position in the list).

RESULT
Returns the position where the gadget was actually added.

BUGS
None.

SEE ALSO
RemoveGadget () .

AddHead

NAME
AddHead -- insert node at the head of a list

SYNOPSIS
AddHead(list, node)

AO Al

FUNCTION
Add a node to the head of a doubly linked list.

INPUTS
list - a pointer to the target list header
node - the node to insert at head

AddIntServer

NAME
AddIntServer -- add an interrupt server to the system

SYNOPSIS
AddIntServer(intNum, interrupt)

DO-0:4 Al

FUNCTION
This function adds a new interrupt server to a given
server chain. The node is located on the chain in a
priority dependent position. Higher priority nodes
will be serviced first.

If this server is the first one, interrupt will be enabled
on this chain.

Servers are called with the following register conventions:

INPUTS

DO - scratch
Dl - scratch

AO - scratch
Al - server data segment pointer (scratch)

AS - jump vector register (scratch)
A6 - library base pointer (scratch)

all other registers - must be preserved

intNum - the Portia interrupt bit (0 .. 14)
interrupt - pointer to an interrupt server node

SEE ALSO
RemIntServer

AddLibrary

NAME
AddLibrary -- add a library to the system

SYNOPSIS
AddLibrary(library)

Al

FUNCTION
This function adds a new library to the system making it
available to everyone. The library should be ready to be
called at this time. It will be added to the system
library name list, and the checksum on the library entries
will be calculated.

INPUTS
library - pointer to a properly initialized library structure

SEE ALSO
RemLibrary

AddPort

NAME
AddPort -- add a message port to the system

SYNOPSIS
AddPort(port)

Al

FUNCTION
This function attaches a message port structure to the
system's message port list. The name and priority fields
of the port structure should be initialized prior to
calling this function. If the user does not require the
name and priority fields, they should be initialized to
zero. As with the name field in other system list items,
the name is useful when more than one task needs to
rendezvous on at port.

INPUTS
port - pointer to a message port

SEE ALSO
RemPort, FindName

AddResource

NAME
AddResource -- add a resource to the system

SYNOPSIS
AddResource(resource)

Al

FUNCTION
This function adds a new resource to the system and makes it
available to other users. The resource should be ready to
be called at this time.

INPUTS
resource - pointer to a properly initialized resource node

SEE ALSO
RemResource

......
00

AddTail

NAME
AddTail -- append ,node to tail of a list

SYNOPSIS
AddTail(list, node)

AD Al

FUNCTION
Add a node to the tail of a doubly linked list.

INPUTS
list - a pointer to the target list header
node - the node to insert at tail

AddTask

NAME
AddTask -- add a task to the system

SYNOPSIS
AddTask(task, initialPC, finalPC)

Al A2 A3
FUNCTION

Add a task to the system.

Certain fields of the task control block must be
initialized and a minimal stack should be allocated prior
to calling this function.

This function will temporarily use space from the new
task's stack for the task's initial set of registers. This
space is allocated starting at the SPREG location specified
in the task control block (not from SPUPPER). This means
that a task's stack may contain static data put there prior
to its execution. This is useful for providing initialized
global variables or some tasks may want to use this space
for passing the task its initial arguments.

A task's initial registers are set to zero (except the PC) .

INPUTS
task - pointer to the task control block
initialPC - the initial entry point
finalPC - the finalization code entry point. If

SEE ALSO
RemTask

zero, the system will use a general finalizer.
This pointer is placed on the stack as if it
were the outermost return address.

AddVSprite

NAME
AddVSprite add a VSprite to the current GEL list

SYNOPSIS
AddVSprite(VS, RPort)

aO al

FUNCTION

as called by C

Sets up the system VSprite flags
Links this VSprite into the current GEL list using its Y,X

INPUTS
VS ~ pointer to the VSprite structure to be added to the GEL list
RPort ~ pointer to a RastPort structure

RESULT
Nothing

BUGS
None known

> SEE ALSO
Nothing

Allocate

NAME
Allocate -- allocate a block of memory

SYNOPSIS
memoryBlock
DO

allocate(freeList, byteSize)
AO DO

FUNCTION
This function is used to allocate blocks of memory
from a given free memory pool. It will return the
first free block that is greater than or equal to
the requested size.

All blocks, whether free or allocated., will be block
aligned; hence, all allocation sizes are rounded
up to the next block even value (e.g. the minimum
allocation resolution is 8 bytes).

This function, when used in conjunction with a private
free list, can be used to manage an application's
internal data memory.

INPUTS
freeList - points to the memory list header
byteSize - the size of the desired block in bytes

RESULT
memoryBlock - a pointer to the just allocated free block.

EXCEPTIONS

If there are no free regions large enough to satisfy
the request, return zero. If the amount of requested
memory is invalid, return zero.

If the free list is corrupt, the system will panic.

SEE ALSO
Deallocate

AllocCList

NAME
AllocCList -- allocate and initialize a clist

SYNOPSIS
cList
DO

FUNCTION

AllocCList(cLPool)
Al

Get a descriptor that can be used to reference a clist. The
clist described is empty. Clists that are no longer in use
must be explicitly closed with FreeCList in order to free
all their memory: an empty clist still consumes clist pool
resources.

INPUTS
cLPool

RESULTS
cList

EXCEPTIONS

A clist pool that has already been initialized.

a longword descriptor for a clist that can be used
for clist functions.

if cList is negative, no space was available for a new clist.

NOTES
This function is implicitly performed by BufToCL.

AllocEntry

NAME
AllocEntry -- allocate many regions of memory

SYNOPSIS
memList
DO

AllocEntry(memList)
AO

FUNCTION
This routine takes a memList structure and allocates enough
memory to hold the required memory as well as a MemList
structure to keep track of it. These MemList structures
may be linked together in a task control block to keep
track of the total memory usage of this task.

INPUTS
memList -- A memList structure filled in with memEntry structures.

RESULTS
memList -- A different memList filled in with the actual memory

allocated, and their sizes.

EXAMPLES

If enough memory cannot be obtained, then the
requirements of the failed allocation are returned
and bit 31 is set.

The user wants five regions of 2, 4, 8, 16, and 32 bytes
in size with requirements of MEMF_CLEAR, MEMF_PUBLIC,
MEMF_CHIP.OR.MEMF_CLEAR, MEMF_FAST.OR.MEMF_CLEAR, and
MEMF_PUBLIC.OR.MEMF_CLEAR respectively. The following code
fragment would do that:

MemListDecl:
DS.B LN SIZE
DC.W 5 -

* reserve space for list node
* number of entries

DC.L MEMF_CLEAR
DC.L 2
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

start:

MEMF_PUBLIC
4
MEMF CHIP.OR.MEMF_CLEAR
8
MEMF_FAST.OR.MEMF_CLEAR
16
MEMF_PUBLIC.OR.MEMF_CLEAR
32

LEA MemListDecl,AO
CALLLIB _LVOAllocEntry,A5

BCLR. L #31,DO
BEQ. S success

* entry #0

* entry #l

* entry #2

* entry #3

* entry #4

Type of memory that we failed on is in DO

AllocMem

NAME
AllocMem -- allocate memory given certain requirements

SYNOPSIS
memoryBlock
DO

AllocMem(byteSize, requirements)
DO DI-O:31

FUNCTION
This is the memory allocator to be used by system code and
applications. It provides a means of specifying whether
the allocation should be made in a memory area accessible
to the chips, or accessible to shared system code.

The proper allocation of memory is necessary for system
code that needs to be compatible with memory mapped
systems.

Memory is allocated based on the "requirements" listed.
The rule is that (requirements & attributes) requirements
for any particular memory block.

AllocMem will try all memory spaces until one is found
with the requested attributes and room for the memory request.

INPUTS
byteSize - the size of the desired block in bytes

This number is rounded up to the next larger
block size for the actual allocation.

requirements - (still in flux)
(see IA_Structs for bit definitions)

memory must not be mapped, swapped,
or otherwise made non-addressable.
ALL MEMORY THAT IS REFERENCED VIA
INTERRUPTS AND/OR BY OTHER TASKS MUST
BE EITHER PUBLIC OR LOCKED INTO MEMORY!
This includes both code and data.

Only certain parts of memory are
reachable by the special chip sets'
DMA circuitry. Anything that will use
on-chip DMA must be in memory with
this attribute. DMA includes screen
memory, things that are blitted,
audio blocks, raw disc buffers, etc.

This is non-chip memory. It is possible
for the processor to get locked out of
chip memory under certain conditions.
If one cannot accept these delays, then
one should use FAST memory (by default
the system will allocate from FAST
memory first anyway).

The memory will be initialized to all
zeros.

RESULT
memoryBlock - a pointer to the allocated free block.

EXAMPLES

If there are no free regions large enough to satisfy
the request (or if the amount of requested memory
is invalid), return zero.

AllocMem(321,MEMB_CHIP) - private chip memory
AllocMem(25,MEMB_PUBLIC) - a "public" system structure that

does not require chip memory.

EXCEPTIONS
If the free list is corrupt, the system will panic.

SEE ALSO
AllocAbs, FreeMem

AllocRaster

NAME
AllocRaster -- allocate space for a Bit plane

SYNOPSIS
AllocRaster(width, height

dO dl

FUNCTION

INPUTS

This function calls the memory allocation routines
to allocate memory space for a bitplane width bits
wide and height bits high.

Returns a pointer to the first word if successful.
Returns 0 if unable to allocate that amount of space.

x,y are maximum dimensions of the array in bits.

SEE ALSO
FreeRaster

AllocRemember

NAME
AllocRemember -- call AllocMem() and create a link node

SYNOPSIS
AllocRemember(RememberKey, Size, Flags)

AD DO Dl

FUNCTION
This routine calls the, Exec AllocMem() function for you; it
also links the parameters of the allocation into a master
list, so that you can simply call the Intuition routine
FreeRemember() at a later time to deallocate all allocated
memory without being reguired to remember the details of the
memory you have allocated.

This routine has two primary uses:
o Say that you are doing a long series of allocations in a

procedure (such as the Intuition OpenWindow() procedure).
If anyone of the allocations fails for lack of memory,
you need to abort the procedure. Abandoning ship
correctly involves freeing up any memory you may have
already allocated. This procedure allows you to free up
that memory easily, without being required to keep track
of how many allocations you have already done, what the
sizes of the allocations were, or where the memory was
allocated.

o Also, in the more general case, you may do all of the
allocations in your entire program using this routine.
Then, when your program is exiting, you can free it all
up at once with a simple call to FreeRemember().

You create the "anchor" for the allocation master list by
creating a variable that is a pointer to the Remember structure
and initializing that pointer to NULL. This is called
the RememberKey. Whenever you call AllocRemember(), the
routine actually does two memory allocations, one for the
memory you want and the other for a copy of a Remember
structure. The Remember structure is filled in with data
describing your memory allocation, and it is linked into the
master list pointed to by your RememberKey. Then, to free
up any memory that has been allocated, all you have to do is
call FreeRemember() with your RememberKey.

Please read the FreeRemember() function description. As you
will see, you can choose to free just the link nodes and
keep all the allocated memory for yourself, or you can elect
to free both the nodes and your memory buffers.

See this appendix for a description of the AllocMem() call
and the values you should use for the Size and Flags variables.

INPUTS
RememberKey ~ the address of a pointer to a Remember structure.
Before the-first call to AllocRemember(),

initialize this pointer to NULL. For instance:

struct Remember *RememberKey;

RememberKey = NULL;
AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP)
FreeRemember(&RememberKey, TRUE)

Size = the size in bytes of the memory allocation. Please
refer to the Exec AllocMem() function in this appendix
for details.

Flags = the specifications for the memory allocation.
Please refer to the Exec AllocMem() function in the
this appendix for details.

RESULT

BUGS

If the memory allocation is successful, this routine returns
the byte address of your requested memory block. Also, the
node to your block will be linked into the list pointed to
by your RememberKey variable. If the allocation fails, this
routine returns NULL and the list pointed to by RememberKey,
if any, will be undisturbed.

None.

SEE ALSO
FreeRemember() .
The Exec AllocMem() function.

AllocSignal

NAME
AllocSignal -- allocate a signal bit

SYNOPSIS
signalNum = AllocSignal(signalNum)
DO DO

FUNCTION

WARNING

INPUTS

RESULTS

Allocate a signal bit from the current tasks pool. Either
a particular bit, or the next free bit may be allocated.
The signal associated with the newly allocated bit will be
properly initialized (cleared).

If the signal is already in use (or no free signals are
available) a -1 is returned.

This function can only be used by the currently running
task.

Signals may not be allocated or freed from exception
handling code.

signalNum - the desired signal number {of 0 .. 31} or-l
for no preference.

signalNum - the signal bit number allocated {O .. 31}.
If no signals are available, this function returns -1.

SEE ALSO
FreeSignal

AllocTrap

NAME
AllocTrap -- allocate a processor trap vector

SYNOPSIS
trapNum - AllocTrap(trapNum)
DO DO

FUNCTION
Allocate a trap number from the current task's pool. These
trap numbers are those associated with the 68000 TRAP type
instructions. Either a particular nnumber, or the next
free number may be allocated.

If the trap is already in use (or no free traps are
available) a -1 is returned.

This function can only be used by the currently running
task.

WARNING
Signals may not be allocated or freed from exception
handling code.

INPUTS
trapNum - the desired trap number {of O .. lS} or-l

for no preference.

AllocWBObject

NAME
AllocWBObject - allocate a Workbench object

SYNOPSIS
object
DO

FUNCTION

AllocWBObject ()

This routine allocates a Workbench object and initializes
its free list. A subsequent call to FreeWBObject will
free all of its memory.

If memory cannot be obtained, a NULL is returned.

This routine is intended only for internal users that can
track changes to the Workbench.

INPUTS

RESULTS
object - the WBObject (if memory is available)

EXCEPTIONS

SEE ALSO
Al locEntry , FreeEntry, FreeWBObject

RESULTS BUGS
trapNum - the trap number allocated {of O .. 1S}. If no traps are

SEE ALSO
FreeTrap

available, this function returns -1.

AndRectRegion

NAME

SYNOPSIS

Function

AndRectRegion -- Perform 2d AND operation of rectangle
with region, leaving result in region

AndRectRegion (region, rectangle)
aO al

Clip away any portion of the region that exists outside·
of the rectangle. Leave the result in region.

INPUTS

BUGS

region
rectangle

pointer to Region structure
pointer to Rectangleo structure

Animate

NAME
Animate

SYNOPSIS

processes every AnimOb in the current animation list

Animate(key, RPort)
aO al

FUNCTION
For every AnimOb in the list:

- updates its location and velocities
calls the AnimOb's special routine if one is supplied

- for each component of the AnimOb
- if this sequence times out, switches to the new one

calls this'component's special ° routine if one is supplied
sets the sequence' so sprite's y,x coor.dinates based on all this

INPUTS
key address of the variable that ° points to the head AnimOb
RPort = pointer to the RastPort structure

RESULT
Nothing

BUGS
None known

SEE ALSO
Nothing

AreaDraw

NAME
AreaDraw -- add a point to a list of end points for area-fill.

SYNOPSIS
error (int) AreaDraw(rp, x, y)

Al DO Dl

FUNCTION
Add point to the vector buffer.

INPUTS
x,y are coordinates of a point in the raster

rp points to a RastPort structure

RETURNS
o if no error
-1 if no space left in vector list

SEE ALSO
AreaMove, Ini tArea, AreaEnd

AreaEnd

NAME
AreaEnd -- process table of vectors and produce areafill

SYNOPSIS
error AreaEnd(rp)

Al

FUNCTION

INPUTS

RETURNS

Triggers the filling operat·ion.

Processes the vector buffer and generates required
fill into the raster planes. After the fill is
complete, reinitializes for.the next AreaMove. Uses
the raster set up by InitTmpRas when generating an
areafill mask.

rp points to a RastPort structure

o if no error
-1 if no space left in vector list

SEE ALSO
InitArea, AreaMove, AreaDraw

AreaMove

NAME
AreaMove -- define a new starting .point for a new

shape in the vector list

SYNOPSIS
error AreaMove(rp, x, y)

Al DO Dl

FUNCTION

INPUTS

Closes the last polygon and starts another polygon
at (X,y). Enters necessary points in vector buffer.

Closing a polygon may result in the generation of
another AreaDraw() to close previous polygon.

x,y are positions in the raster
rp points to a RastPort structure

>- RETURNS
o if no error

t-:> -1 if no space left in vector list
-l

SEE ALSO
InitArea, AreaDraw, AreaEnd

AskFont

NAME
AskFont -- get the text attributes of the current· font

SYNOPSIS
AskFont(rastPort, textAttr), graphicsLib

Al AO A6

FUNCTION

INPUTS

This function fills the text attributes structure with the
attributes of the current font in .the rastPort.

rastPort - the RastPort from which the text attributes are
extracted

textAttr - the TextAttr structure to be filled

AskSoftStyle

NAME
AskSoftStyle -- get the soft style bits of the current font

SYNOPSIS
enable

FUNCTION

AskSoftStyle(rastPort), graphicsLib
Al A6

This function returns those style bits of the current font
that are not intrinsic in the font itself but are
algorithmically generated. These are the bits that are
valid to set in the enable mask for SetSoftStyle

INPUTS
rastPort - the RastPort from which the font and style

are extracted

RESULTS
enable - those bits in the style algorithmically generated.

Style bits that are not defined are also set.

AutoRequest

NAME
AutoRequest automaticaily build and get response from

a requester

SYNOPSIS
AutoRequest(Window, BodyText, PositiveText, NegativeText,

AD Al A2 A3
PositiveFlags, NegativeFlags, Width, Height)
DO Dl D2 D3

FUNCTION
This procedure automatically builds a requester for you and
then waits for a response from the user or the system to
satisfy your request. If the response is positive, this
procedure'returns TRUE. If the response is negative, this
procedure returns FALSE.

This procedure first., preserves the state of the IDCMP values
of the' window argument. Then, it creates an IDCMPFlag
specification by merging your PositiveFlags, NegativeFlags,
and the IDCMP class GADGETUP. You may choose to specify no
flags for either the PositiveFlags or NegativeFlags
arguments.

The IntuiText arguments and ,the width and Height values are
passed directly to the BuildSysRequest() procedure, along
with your window pointer and the IDCMP flags. Please refer
to BuildSysRequest{) for a description of the IntuiText that
you are expected to supply when calling this routine. It is
an important but long-winded description that need not be
duplicated here.

If the BuildSysRequest() procedure does not return a pointer
to a window, it wil,l return TRUE or FALSE (not valid structure
pointers) instead, and these BOOL values,will be
returned. immediately.

On the other hand, if a valid window pointer is returned,
that window will have had its IDCMP ports and flags initialized
according to your specifications. AutoRequest() the8
waits for an IDCMP message, on' the UserPort; this message
will satisfy one of three requirements:

o If the message is of a class that matches one of your
PositiveFlags arguments (if you have supplied any), this
routine returns TRUE.

o If the message class matches one of your' NegativeFlags
arguments (if you have supplied any), this routine
returns FALSE.

o The only other possibility is that the IDCMP message is
of class GADGETUP, which means that one of the two gadgets,'
as specified by the positiveText and NegativeText
arguments, was selected by the user. If the TRUE gadget
was selected, TRUE is ,returned. If the FALSE gadget was
selected, FALSE is returned.

When the dust has settled, this routine calls FreeSysRequest(),
if necessary, to clean up the requester and any
other allocated memory.

INPUTS
Window = pointer to a Window structure.
BodyText = pointer to an IntuiText structure.
PositiveText = pointer to an IntuiText structure.
NegativeText = pointer to an IntuiText structure.
PositiveFlags flags for the IDCMP.
NegativeFlags = flags for the IDCMP.
Width, Height = the sizes required for the rendering of the

requester.

RESULT

BUGS

The return value is either TRUE or FALSE. See the text
above for a complete description of the chain of events that
might lead to either of these values being returned.

None.

SEE ALSO
~ BuildSysRequest().

AvailFonts

NAME
AvailFonts - build an array of all fonts in memory / on disk

SYNOPSIS
error = AvailFonts(buffer, bufBytes, types);

AO DO Dl

FUNCTION
AvailFonts fills a user supplied buffer with the structure,
described below, that contains information about all the
fonts available in memory and/or on disk. Those fonts
available on disk need to be loaded into memory and opened
via OpenDiskFont(); those already in memory are accessed via
OpenFont. The TextAttr structure required by the open calls
is part of the information AvailFonts() supplies.

INPUTS
buffer - memory to be filled with struct AvailFontsHeader

followed by an array of AvailFonts elements, which
contains entries for the available fonts and their
names.

bufBytes - the number of bytes in the buffer
types - AFF_MEMORY is set to search memory for fonts to fill

the structure, AFF DISK is set to search the disk for
fonts to fill the structure. Both can be specified.

RESULTS
buffer - filled with struct AvailFontsHeader followed by the

AvailFonts elements, There will be duplicate entries
for fonts found both in memory and on disk, differing
only by type. The existence of a disk font in the
buffer indicates that it exists as an entry in a font
contents file -- the underlying font file has not been
checked for validity, thus an OpenDiskFont() of it may
fail.

error - if non-zero, this indicates the number of bytes needed
for AvailFonts in addition to those supplied. Thus
structure elements were not returned because of
insufficient bufBytes.

:>

....

AvailMem

NAME
AvailMem -- memory available given certain requirements

SYNOPSIS
size
DO

FUNCTION

AvailMem(requirements)
Dl

This function returns the size of memory given certain
requirements.

INPUTS
requirements - a requirements mask as specified in AllocMem

RESULT
size - total free space remaining

BeginUpdate

NAME
BeginUpdate -- prepare to repair damaged layer

SYNOPSIS

INPUTS

BeginUpdate(1)
aO

1 pointer to a layer

FUNCTION

SEE ALSO

Converts damage list to ClipRect list and swaps in for
programmer to redraw through. This routine simulates
the ROM library environment. The layer is locked against
changes made by the layer library.

layers.h EndUpdate()

BeginRefresh BehindLayer

NAME
NAME BehindLayer -- put layer behind other layers.

BeginRefresh -- set up a window for optimized refreshing

SYNOPSIS
BeginRefresh(Window)

AO

FUNCTION
This routine sets up your window for optimized refreshing.
It sets Intuition internal states and then sets up the layer
underlying your window for a call to the layer library.
There, the "clip rectangles" of the layer are reorganized in
a fashion that causes any drawing performed in your window
(until you call EndRefresh(» to occur only in the regions
that need to be refreshed. The tenn "clip rectangles"
refers to the division of your window into visible and
concealed rectangles. For more infonnation about clipping
rectangles and the layer library, refer to the main chapters
of this manual.

For instance, if you have a SIMPLE_REFRESH window that is
partially concealed and the user brings it to the front,
your program will receive a message asking it to refresh its
display. If your program calls BeginRefresh() before doing
any of the drawing, the layer that underlies your window
will be arranged such that the only drawing that will actually
take place will be that which goes to the newly
revealed areas. This is very perfonnance-efficient.

After your program has performed its refresh of the display,
it should call EndRefresh() to reset the state of the layer
and the window. Then the program may proceed with drawing
to the window as usual.

Your program learns that the window needs refreshing by
receiving either a message of class REFRESHWINDOW through
the IDCMP or an input event of class IECLASS_REFRESHWINDOW
through the console device. Whenever the program is told
that the window needs refreshing, it should call BeginRefresh()
and EndRefresh() to clear the refresh-needed
state, even if no drawing will be done.

INPUTS
Window = pointer to the Window structure that needs refreshing.

RESULT
None.

BUGS
None.

SEE ALSO
EndRefresh() .

SYNOPSIS

INPUTS

BehindLayer(Ii, I)
aO al

Ii pointer to LayerInfo structure
I pointer to a layer

FUNCTION

RETURNS

BUGS

Moves this layer behind all others, swapping bits
in and out of the display with other layers.
If other layers are REFRESH, collects their damage lists and
sets bit in Flags of those layers that may be revealed.
If this layer is a a backdrop layer, puts it behind
all other backdrop layers.
If this layer is NOT a backdrop layer, puts it in front of the
top backdrop layer and behind all other layers.

TRUE
FALSE

if operation successful
if operation unsuccessful (probably out of memory)

SEE ALSO
layers.h

BltBitMap

NAME
BltBitMap -- move a rectangle in a raster

SYNOPSIS
planes = BltBitMap(SrcBitMap, SrcX, SrcY, DestBitMap,
DO AO DO Dl Al

DestX, DestY, SizeX, SizeY, Minterm, Mask, TempA);
D2 D3 D4 D5 D6 D7 A2

FUNCTION
Performs non-destructive blits to move a rectangle from one area in
a raster to another area, which can be on a different raster.

INPUTS
SrcBitMap, DestBitMap - the BitMap(s) containing the rectangles

- the planes copied from the source to the destination are
only those whose plane numbers are identical and less
than the minimum plane count and whose write mask is non-zero.

- SrcBitMap and DestBitMap can be identical
srcX, SrcY - the x and y coordinates of the upper left corner of the

source rectangle. Valid range is positive signed integer such
that the raster word's offset o .. (32767-Size)

DestX, DestY - the x and y coordinates of the upper left corner of
the destination for the rectangle. Valid range is as for Src.

sizeX, SizeY - the size of the rectangle to be moved. Valid range
is (X: 1 .. 976; Y: 1 .. 1023 such that final raster word's offset
is 0 .. 32767)

Minterm - the logic function to apply to the rectangle when A is
non-zero (i.e. within the rectangle). B is the source
rectangle and C, D is the destination for the rectangle.
- $OCO is a vanilla copy
- $030 inverts the source before the copy
- $050 ignores the source and inverts the destination
- see the Amiga Hardware Reference Manual for other combinations.

Mask - the write mask to apply to this operation. Bits set indicate
the corresponding planes (if not greater than the minimum plane
count) are to participate in the operation. Typically, this is set
to Oxff.

TempA - If the copy overlaps exactly to the left or right (i.e., the
scan line addresses overlap), and TempA is non-zero, it points to
enough chip-accessible memory to hold a line of A source for the blit.

RESULTS
planes

EXCEPTIONS

the number of planes actually involved in the blit.

This bIt is assumed to be friendly: no errors conditions (e.g.,
a rectangle outside the BitMap bounds) are tested or reported.
A plane count that is less than expected can be attributed to
a failure to allocate a TempA when it was needed.

BltBitMapRastPort

NAME

BltBitMapRastPort -- blit from source bitmap to destination rastport

SYNOPSIS

BltBitMapRastPort
* (srcbm,srcx,srcy,destrp,destX,destY, sizeX, sizeY,minterm)

*aO dO dl al d2 d3 d4 d5 d6

FUNCTION

Blits from source bitmap to position specified in destination rastport
using minterm.

INPUTS

srcbm -
srcx
srcy
destrp -
destX -
destY -
sizeX -
sizeY -
minterm -

RETURNS

TRUE -
FALSE -

BUGS

SEE ALSO

a pointer to the source bitmap
x offset into source bitmap
y offset into source bitmap
a pointer to the destination rastport
x offset into dest rastport
y offset into dest rastport
width of blit in pixels
height of blit in rows
minterm to use for this blit

if blit successfully completed
if blit failed

BltClear

NAME

Bltclear -- clear a block of memory words· to zero.

SYNOPSIS

BltClear(memBlock, bytecount, flags
al dO dl

FUNCTION'

INPUTS

RESULT

BUGS

For memory that is local andblitter accessible.
The most efficient way to clear a range of memory locations is
to use the system's most efficient data mover, the blitter.
This cOlllnand accepts the starting location and count and clears
that block to zeros.

memBlock

flags

bytecount

pointer to local memory to be cleared
memBlock must be even
set bit 0 to force function to wait until blit
is done.
set bit 1 to use row(bytesperrow .
if (flags & 2) == 0 then

even number of bytes to clear.
else

low 16 bits is taken as number of bytes
per row and upper 16 bits taken 0 as
number of rows.

This function is somewhat hardware-dependent. In the
rows(bytesperrow mode, rows must be (=1024 and
bytesperrow,must be (=128.
In standard bytecount mode multiple runs of the blitter
may be used to clear all the memory.

The block of memory is set to zeros.

None known.

SEE ALSO

BltPattern

NAME
BltPattern using standard drawing rules for areafill,

blit through a mask

SYNOPSIS
BltPattern(RastPort *,char *, xl, yl, maxx, maxy,. bytecnt)

aI, aO dO dl d2 d3 d4

FUNCTION

INPUTS

Blit using drawmode,areafill pattern,outline, mask pointed to by
aO, at position rectangle (xl,yl) (IDaXX,maxy). The image is not
shifted but must be word aligned.

al points to RastPort
aO points to 2 dimensional mask if needed
xl,yl upper left of rectan~lar region in RastPort
maxx,maxy points to lower right of rectangular region in RastPort
bytecnt number of BytesPerRow for char * aOo

RETURNS

SEE ALSO

BltTemplate

NAME
BltTemplate -- cookie cut a shape in a rectangle to the RastPort

SYNOPSIS
BltTemplate(source, srcX, srcMod, destRastPort,

FUNCTION

AO DO DI Al
destx,
D2

destY, sizeX, sizeY),
D3 D4 D5

graphicsLib

This function draws the image in the template into the
RastPort in the current color and drawing mode at the
specified position. The template is assumed not to overlap
the destination.

EXCEPTIONS
If the template falls outside the RastPort boundary, it is
truncated to that boundary.

BuildsysRequest

NAME
BuildSysRequest build and display a system requester

SYNOPSIS
BuildSysRequest(Window,

AO
BodyText,
Al

positiveText, NegativeText,
A2 A3

FUNCTION

IDCMPFlags,
DO

Width, Height)
DI D2

This procedure builds a requester based on the supplied
information. If all goes well and the requester is constructed,
this procedure returns a pointer to the window in
which the requester appears. That window will have the
IDCMP UserPort and WindowPort initialized to reflect the
flags found in the IDCMPFlags argument. The program may
then Wait() on those ports to detect the user's response to
your requester, which may include either selecting one of
the gadgets or causing some other event to be noticed by
Intuition (such as DISKINSERTED, for instance). After the
requester is satisfied, your program should call the
FreeSysRequest() procedure to remove the requester and free
any allocated memory.

If it is not possible to construct the requester, this
procedure will use the text arguments to construct a text
string for a call to the DisplayAlert() procedure and then
will return either TRUE or FALSE depending on whether
DisplayAlert() returned FALSE or TRUE, respectively.

If the Window argument you supply is equal to NULL, a new
window will be created for you in the Workbench screen. If
you want the requester created by this routine to be bound
to a particular window, you should not supply a Window
argument of NULL.

The text arguments are used to construct the display. They
are pointers to instances of the IntuiText structure.

The BodyText argument should be used to describe the nature
of the requester. As usual with IntuiText data, you may
link several lines of text together, and the text may be
placed in various locations in the requester. This IntuiText
pointer will be stored in the ReqText variable of the
new requester.

The PositiveText argument describes the text that you want
associated with the user choice of "Yes," "TRUE," "retry,"
or "good." If the requester is successfully opened, this
text will be rendered in a gadget in the lower left of the
requester; this gadget will have the GadgetID field set to
TRUE. If the requester cannot be opened and the DisplayAlert()
mechanism is used, this text will be rendered in the
lower left corner of the alert display with additional text
specifying that the left mouse button will select this
choice. This pointer can be set to NULL, which specifies

that there is no TRUE choice that can be made.

The NegativeText argument describes the text that you want
associated with the user choice of "No," "FALSE," "cancel,"
or "bad." If the requester is successfully opened, this text
will be rendered in a gadget in the lower right of the
requester; this gadget will have the GadgetID field set to
FALSE. If the requester cannot be opened and the DisplayAlert()
mechanism is used; this text will be rendered in the
lower right corner of the alert display with additional text
specifying that the right mouse button will select this
choice. This pointer cannot be set to NULL. There must
always be a way for the user to cancel this requester.

The positive and negative gadgets created by this routine
have the following features:
o BOOLGADGET
o RELVERIFY
o REQGADGET
o TOGGLESELECT

When defining the text for your gadgets, you may find it
convenient to use the special definitions used by Intuition
for the construction of the gadgets. These definitions
include AUTODRAWMODE, AUTOLEFTEDGE, AUTOTOPEDGE and
AUTOFRO~~PEN. You can find these in your local intuition.h
(or intuition.i) file.

The Width and Height values describe the size of the requester.
All of your BodyText must fit within the width and
Height of your requester. The gadgets will be created to
conform to your sizes.

IMPORTANT NOTE: For the preliminary release of this procedure,
a new window is opened in the same screen as the one
containing your window. However, with a forthcoming update
of Intuition this will change; the requester will be opened
in the window supplied as an argument to this routine, if
possible. The primary implication of this will be that the
IDCMP flags and ports will be disturbed by a call to this
routine. To assure upward compatibility, it is your
responsibility to make sure that the ports and IDCMPFlags of the
window passed to the routine are protected before the call
to this routine.

INPUTS
Window ~ pointer to a Window structure.
BodyText ~ pointer to an IntuiText structure.
PositiveText ~ pointer to an IntuiText structure.
NegativeText ~ pointer to an IntuiText structure.
IDCMPFlags ~ the IDCMP flags you want used for the

initialization of the IDCMP of the window containing
this requester.

Width, Height ~ the size required to draw your requester.

RESULT
If the requester was successfully drawn in a window, the
value returned by this procedure is a pointer to the window
in which the requester was drawn. If, however, the requester
cannot be drawn in the window, this routine will have

BUGS

called DisplayAlert() before returning and will pass back
TRUE if the user pressed the left mouse button and FALSE if
the user pressed the right mouse button.

This procedure currently opens a window and then opens the
requester within that window. Also, if DisplayAlert() is
called, the PositiveText and NegativeText are not rendered
in the lower corners of the alert.

SEE ALSO
FreeSysRequest(), DisplayAlert(), ModifyIDCMP(),
wait(), AutoRequest()

BumpRevision

NAME
BumpRevision -- reformat a name for a second copy

SYNOPSIS
result
DO

BumpRevision(newbuf, oldname
AD Al

FUNCTION
BumpRevision takes a name and turns it into a "copy of name."
It knows how to deal with copies of copies. The routine
will truncate the new name to the maximum DOS name size
(currently 30 characters).

INPUTS
newbuf - the new buffer that will receive the name (it must

be at least 31 characters long).
oldname - the original name

RESULTS
result - a pointer to newbuf

EXCEPTIONS

EXAMPLE
oldname

"foo"
"copy of foo"
"copy 2 of foo"
"copy 199 of foo"
"copy foo"
"copy 0 of foo"
"012345678901234567890123456789"

SEE ALSO

BUGS

newbuf

"copy of foo"
"copy 2 of foo"
"copy 3 of foo"
"copy 200 of foo"
"copy of copy foo"
"copy 1 of foo"
"copy of 0123456789012345678901"

Cause

NAME
Cause -- cause a software interrupt

SYNOPSIS
Cause(interrupt)

Al

FUNCTION
This function causes a software interrupt to occur. If it
is called from user mode (and processor level 0), the

-software interrupt will preempt the current task.

Currently only 5 software interrupt priorities are
implemented: -32, -16, 0, +16, and +32. Priorities in
between these values are truncated. Priorities outside the
-32/+32 range are not allowed.

INPUTS
interrupt - pointer to a properly initialized interrupt node

CEND

NAME
CEND -- terminate user Copper list.

SYNOPSIS
CEND(c)

FUNCTION

INPUTS

RESULTS

BUGS

Adds instruction to terminate user Copper list.

c ~ pointer to UCopList structure

This is actually a macro that calls cWait(c) to
wait for the end of the user Copper list and
then calls CBump(C) to bump the local pointer
to the next instruction.

None Known

SEE ALSO
CINIT()
CMOVE() > CWAIT()

ChangeSprite

NAME
ChangeSprite -- change the sprite image pointer.

SYNOPSIS
ChangeSprite(vp, s, newdata)

aO al a2

FUNCTION

INPUTS

RESULTS

BUGS

The sprite image is changed to use the data starting at newdata

vp

s
newdata

pointer to ViewPort structure that this sprite is
relative to.
or 0 if relative only top of View
pointer to SimpleSprite structure
pointer to data structure of the following form:

struct spriteimage
[

UIDRD

UIDRD
UIDRD

posctl[2]; /* used by simple sprite machine*/

data [height] [2]; /* actual sprite image */
reserved[2]; /* initialized to */

/* OxFFFF,OxFF7F */

Programmer must initialize reserved[2]. The spriteimage must be
in CHIP memory. The height subfield of the SimpleSprite structure
must be set to reflect the height of the new spriteimage BEFORE
calling ChangeSprite. The programmer may allocate two sprites to
handle a single attached sprite. After GetSprite, ChangeSprite,
the programmer can set the SPRITE_ATTACHED bit in posctl[l] of the
odd-numbered sprite.

SEE ALSO
sprite.h FreeSprite changeSprite MoveSprite

CheckIO

NAME
CheckIO -- get the 10 request status

SYNOPSIS
result
DO

CheckIO(iORequest)
Al

FUNCTION
This function determines the current state of an I/O
request and returns FALSE if the I/O has not yet completed.
This function effectively hides the internals of the I/O
completion mechanism.

If the I/O has completed, Check10 will not remove the
returned IORequest from the reply port. This should
be performed with Remove.

This function SHOULD NOT be used to busy loop, waiting
for an 10 to complete.

INPUTS
iORequest - pointer to an I/O request block

RESULTS
result - null if I/O is still in progress. Otherwise

DO points to the IORequest block.

CINIT

NAME
CINIT initialize user Copper list to accept intermediate

user Copper instructions

SYNOPSIS
struct CopperList *CINIT(c , n)

FUNCTION

INPUTS

RESULTS

BUGS

allocates/initializes Copper list data structures/buffers

c pointer to UCopList structure
n number of instructions buffer must hold

this is actually a macro that calls UCopperListInit(c,n)
If (c== 0) allocate copperList structure and a buffer
to hold n Copper instructions. If (c != 0) then
just reinitialize the list to accept Copper instructions
and ignore n.

ClearDMRequest

NAME
ClearDMRequest clear the DMRequest of the window

SYNOPSIS
ClearDMRequest(Window)

AD

FUNCTION
Attempts to clear the DMRequester from the specified window.
The DMRequester is the special requester that you attach to
the double-click of the menu button; the user can then bring
up that requester on demand. This routine will not clear
the DMRequester if it is active (in use by the user). If
you want to change the DMRequester after having called
SetDMRequest(), the correct way to start is by calling
ClearDMRequest() until it returns a value of TRUE; then you
can call setDMRequest () with the new DMRequester.

INPUTS
Window = pointer to the structure of a window from which the

DMRequest is to be cleared.

RESULT

BUGS

If the DMRequest was not currently in use, this function
zeroes out the DMRequest pointer in the window and returns
TRUE.

If the DMRequest was currently in use, this function does
not change the pointer and returns FALSE.

None.

SEE ALSO
SetDMRequest () .
Request() .

ClearEOL

NAME
ClearEOL -- clear from current position to end of line

SYNOPSIS
ClearEOL(rastPort), graphicsLib

Al A6

FUNCTION
Clears a rectangular swath from the current position to the
right edge of the rastport. The height of the swath is taken
from that of the current text font, and the vertical
positioning of the swath is adjusted by the text baseline,
such that text output at this position would lie wholly on
this newly cleared area.

Clearing consists of setting the color of the swath to zero,
or, if the DrawMode is 2, to the BgPen.

ClearMenuStrip

NAME
ClearMenuStrip clear the menu strip from the window

SYNOPSIS
ClearMenuStrip(Window)

AD

FUNCTION
Clears the menu strip from the window.

INPUTS
Window pointer to a Window structure.

RESULT
None.

BUGS
None.

SEE ALSO
SetMenuStrip() .

ClearPointer

NAME
ClearPointer clear the pointer definition from a window

SYNOPSIS
ClearPointer(Window)

AD

FUNCTION
Clears the window of its own definition of the Intuition
pointer. After ClearPointer() is called, every time this
window is active the default Intuition pointer will be the
pointer displayed to the user. If your window is active
when this routine is called, the change will take place
imnediately.

INPUTS
Window = pointer to the structure of the window to be

cleared of its pointer definition.

RESULT
None.

BUGS
None.

SEE ALSO
SetPointer() .

ClearRegion

NAME
ClearRegion -- set this region to size 0

SYNOPSIS
ClearRegion(region)

aO

Function
Clip away all rectangles in the region, leaving nothing.

INPUTS
region pointer to Region structure

BUGS

ClearScreen

NAME
ClearScreen -- clear from current position to end of RastPort

SYNOPSIS
ClearScreen(rastPort), graphicsLib

Al A6

FUNCTION
Clears a rectangular swath from the current position to the
right edge of the rastPort with ClearEOL, then clears the rest
of the screen from just beneath the swath to the bottom of
the rastPort.

Clearing consists of setting the color of the swath to zero,
or, if the DrawMode is 2, to the BgPen.

ClipBlit

NAME

ClipBlit Calls BltBitMap() after accounting for windows

SYNOPSIS

ClipBlit(Src, SrcX, SrcY, Dest, Destx, DestY, xSize, YSize, Minterm);
aO dO dl al d2 d3 d4 dS d6

FUNCTION
Performs the same function as BltBitMap(), except that it
takes into account the Layers and ClipRects of the layer library,
all of.which are (and should be) transparent to you. So, whereas
BltBitMap() requires pointers to BitMaps, ClipBlit requires pointers to
the RastPorts that contain the Bitmaps, Layers, et cetera.

If you are going to blit blocks of data around via the RastPort of your
Intuition Window, you must call this routine (rather than BltBitMap(».

Either the Src RastPort, the Dest RastPort, both, or neither, can have
Layers. This routine takes care of all cases.

See BltBitMap() for a thorough explanation.

INPUTS

Src = pointer to the RastPort of the source for your blit
SrcX, SrcY = the topleft offset into Src for your data
Dest = pointer to the RastPort to receive the blitted data
Destx, DestY = the topleft offset into the destination RastPort
XSize = the width of the blit
YSize = the height of the blit
Minterm the bcolean blitter function, where SRCB is associated with the

Src RastPortand SRCC goes to the Dest. RastPort

RESULT

None

BUGS

None

SEE ALSO

BltBitMap();

Close

NAME
Close -- close. a file for input or output

SYNOPSIS
Close(file

DI

FUNCTION
The file handle 'file' indicates the file that Close should close.
You obtain this file handle. as a ·result of a call to Open. You must
remember to close explicitly all the files you open in a program.
However, you should not close inherited file handles opened elsewhere.

INPUTS
file - BCPL pointer to a file handle

CloseDevice

NAME
CloseDevice -- conclude access to a device

SYNOPSIS
CloseDevice(iORequest)

Al

FUNCTION
This function informs the system that access to a
device/unit previously opened has been concluded .. The
device may perform certain house-cleaning operations. The
I/O request structure is now free to be recycled.

INPUTS
iORequest - pointer to an I/O request structure

SEE ALSO
OpenDevice

CloseFont

NAME
CloseFont -- release a pointer to a system font.

SYNOPSIS
CloseFont(font), GraphicsLib

Al A6

FUNCTION
This function indicates that the font specified is no longer
in use. It is used to close a font opened by OpenFont, so
that fonts that are no longer in use do not consume system
resources.

INPUTS
font -

A font, as returned by OpenFont.

CloseLibrary

NAME
CloseLibrary -- conclude access to a library

SYNOPSIS
CloseLibrary(library)

Al

FUNCTION
This function infonns the system that access to the given
library has been concluded. The user should not reference
'the library or any routine in the library after this close.

INPUTS
library- pointer to a library node

SEE ALSO
openLibrary

CloseScreen

NAME
Close Screen close an Intuition screen

SYNOPSIS
CloseScreen(Screen)

AO

FUNCTION
This function unlinks the screen, unlinks the ViewPort, and
deallocates-everything. It does not care whether or not
there are still any windows attached· to the screen and does
not try to close any attached windows; in fact, it ignores
them altogether. If this is the last screen, this function
attempts to reopen Workbench.

INPUTS
Screen -pointer to the Screen structure to be cleared and

deallocated.

RESULT
None.

BUGS
None.

SEE ALSO
open Screen () .

CloseWindow

NAME
CloseWindow close an Intuition window

SYNOPSIS
CloseWindow(Window)

AO

FUNCTION
This function closes an Intuition window. It unlinks it
from the system, unallocates its memory, and, if its screen
is a system one that would be empty without the window,
closes the system screen, too.

Caution: if you are ever rude enough to
CloseWindow() on a window that has an IDCMP without first
having Reply()'d to all of the messages to the IDCMP port,
Intuition in turn will be so rude as to reclaim and deallocate
its messages without waiting for your permission.

Caution: if you have added a menu strip to this
window (via a call to SetMenuStrip(» you must be sure to
remove that menu strip (via a call to ClearMenuStrip(» before
closing your window. CloseWindow() does not check
whether the menus of your window are currently being used
when the window is closed. If this happens to be the case,
as soon as the user releases the menu button the system will
crash.

INPUTS
Window a pointer to a Window structure.

RESULT
None.

BUGS
None.

SEE ALSO
OpenWindow(), CloseScreen()

CloseWorkBench

NAME
CloseworkBench close the Workbench screen

SYNOPSIS
BOOL CloseWorkBench()

FUNCTION
This routine attempts to close the Workbench. If the Workbench
is open, it tests whether or not any applications have
opened windows on the Workbench and returns FALSE if so.
Otherwise, it cleans up all special buffers, closes the
Workbench screen, makes the Workbench program mostly inactive
(it will still monitor disk activity), and returns TRUE.

If the Workbench screen isn't open when this routine is
called, TRUE is returned immediately.

INPUTS
None.

RESULT

BUGS

TRUE if the Workbench screen is closed.
FALSE if anything went wrong and the workbench screen is
still out there.

None.

SEE ALSO
None.

>

CMOVE

NAME
CMOVE -- append Copper move instruction to user Copper list.

SYNOPSIS
CMOVE(c , a , v)

FUNCTION

INPUTS

RESULTS

BUGS

Adds instruction to move value v to hardware register a.

c pointer to UCopList structure
a hardware register
v 16 bit value to be written

This is actually a macro that calls CMove(c,&a,v)
and then calls CBump(c) to bump the local pointer
to the next instruction.

ColdReset

NAME
ColdReset -- cause a system colds tart to occur

SYNOPSIS
ColdReset ()

FUNCTION
This function causes a colds tart system reset sequence
identical to that which occurs at power-on. All current
system activities will be stopped, and the entire software
system will be re-initialized. Nothing will be preserved.
This function will assert processor RESET to reset all
hardware devices.

EXCEPTION
This function operates in supervisor mode only. Any
attempt to perform this function from user mode will result
in a privilege violation trap.

ConcatCList

NAME
ConcatCList -- concatenate two character lists

SYNOPSIS
error

FUNCTION

ConcatCList(sourceCList, destCList)
AO Al

Exhaust the contents of the sourceCList onto the end of the
destCList. The resulting destCList is the concatenation of
the original destCList and sourceCList; the resulting
sourceCList is empty.

INPUTS
sourceCList -

The clist descriptor used to manage the source
character list.

destCList

RESULT
error

The clist descriptor used to manage the destination
character list.

An error code that, if non-zero, indicates the clist
pool associated with the destCList had an out-of-memory
condition during the concatenation process.

CopyCList

NAME
CopyCList -- copy a clist to a new clist

SYNOPSIS
cList
DO

FUNCTION

CopyCList(cList)
AD

Copy a cList non-destructively into a new clist, created by
this operation in the same cLPooI.

INPUTS
cList

RESULTS
cList

EXCEPTIONS

The clist descriptor used to manage the original
character list.

a longword descriptor for a clist that can be used
for clist functions, and contains the same contents
as the original clist.

if cList is negative, not enough space was available for the
new clist.

CopySBitMap

NAME
CopySBitMap synchronize Layer window with contents of

Super BitMap

SYNOPSIS
CopySBitMap(layer *)

aO

FUNCTION

INPUTS

This is the inverse of SyncSBitMap.
Copies all bits from SuperBitMap to Layer bounds.
This is used for those functions that do not
want to deal with the ClipRect structures but do want
to be able to work with a SuperBitMap Layer.

layer * is a pointer to a Layer that has a SuperBitMap
The Layer should already be locked by the caller.

SEE ALSO
~ SyncSBitMap

CreateBehindLayer

NAME
CreateBehindLayer create a new layer behind all existing

layers.

SYNOPSIS

INPUTS

CreateBehindLayer(li,bm,xO,yO,xl,yl,flags [,bm2J)
aO al dO dl d2 d3 d4 [a2 J

Ii = pointer to LayerInfo structure
bm = pointer to common BitMap used by all Layers
bm2 = pointer to optional Super BitMap
flags= various types of layers supported as bit sets.
xO,yO= upper left hand corner of layer
xl,yl= lower right hand corner of layer

FUNCTION
Creates a new Layer of position and size (xO,yO)->(xl,yl)
Makes this layer of type found in flags
If SuperBitMap, uses bm2 as pointer to real SuperBitMap.
and copies contents of Superbitmap into display layer.
If this layer is a backdrop layer, places it behind all
other layers, including other backdrop layers. If this is
not a backdrop layer, places it behind all nonbackdrop
layers.

SEE ALSO
layers.h

CreateDir

NAME
CreateDir -- create a new directory

SYNOPSIS
lock

DO

FUNCTION

CreateDir(name
DI

CreateDir creates a new directory with the name you specified, if possible. It returns an error if it fails. Remember that AmigaDOS can-only create directories on devices which support them, for example, disks.

A return of zero means that AmigaDOS has found an error (such as, disk write protected), you should then call IoErr(); otherwise, CreateDir returns a shared read lock on the new directory.

INPUTS
name - address of first character of a null-terminated string

RESULTS
lock - BCPL pointer to a lock

CreateExtIO

NAME
CreateExtIO create an I/O request

SYNOPSIS
ioReq ~ CreateExtIO(ioReplyPort, size);

FUNCTION

INPUTS

RESULT

EXAMPLE

Allocates memory for and initializes a new I/O request block of a user-specified number of bytes. The number of bytes MUST be greater than the length of an Exec_message, or some very nasty things will happen.

ioReplyPort - a pointer to an already initialized
message port to be used for this I/O request's reply port. size - the size of the I/O request to be created.

Returns a pointer to the new I/O Request block, or NULL if the request failed.

This example allocates space for IOExtTD (e.g., a trackdisk driver I/O Request block for extended I/O operations).

struct IORequest rnyBlock;
struct MsgPort port;

myBlock ~ CreateExtIO(port, sizeof(struct IOExtTD)); if(myBlock ~~ NULL) (
exit (NO_MEM_OR_SIGNALS);

SEE ALSO
DeleteExtIO

CreateProc

NAME
CreateProc -- create a new process

SYNOPSIS
process

DO

FUNCTION

CreateProc(name, pri, segment, stackSize
Dl D2 D3 D4

CreateProc creates a process with the name 'name'. It allocates
a process control structure from the free memory area and then
initializes it.

CreateProc takes a segment list as the argument 'segment'. (See also
LoadSeg and UnLoadSeg.) This segment list represents the section
of code that you intend to run as a new process. CreateProc enters
the code at the first segment in the segment list, which should contain
suitable initialization code or a jump to such.

'stacksize' represents the size of the root stack in bytes when
CreateProc activates the process. 'pri' specifies the required
priority of the new process. The result is the process identifier of
the new process or zero if the routine failed.

The argument 'name' specifies the process name.

A zero return code implies an error of some kind.

INPUTS
name - address of first character of a null~terminated string
pri - integer
segment - BCPL pointer to a segment
stackSize integer

RESULTS
process - process identifier

CreateStdIO

NAME
CreateStdIO -- create a standard I/O request

SYNOPSIS
ioStdReq CreateStdIO(ioReplyPort)

FUNCTION

INPUTS

RESULT

EXAMPLE

Allocates memory for and initializes a new I/O request block.

ioReplyPort - a pointer to an already initialized
message port to be used for this I/O request's
reply port.

Returns a pointer to the new io request block. A NULL
indicates that there was not enough memory for the I/O Request,
or that the reply port was not a valid port.

struct IOStdReq myBlock;
struct MsgPort port;

myBlock = createStdIO(port);
if(myBlock == NULL) [

printf ("Insufficient memory");

SEE ALSO
DeleteStdIO, CreateExtIO

CreateUpfrontLayer

NAME
CreateUpfrontLayer -- create a new layer on top of existing

layers.

SYNOPSIS

INPUTS

CreateUpfrontLayer(li,bm,xO,yO,xl,yl,flags [,bm2])
aO al dO dl d2 d3 d4 [a2]

Ii ~ pointer to LayerInfo structure
bm = pointer to common BitMap used by all Layers
bm2 ~ pointer to optional Super BitMap
flags= various types of layers supported as bit sets.
xO,yO= upper left hand corner of .layer
xl,yl= lower right hand corner of layer

FUNCTION
Creates a new Layer of position and size (xO,yO)->(xl,yl)
and places it on top of all other layers.
Makes this layer of type found in flags.
If SuperBitMap, uses·bm2 as pointer to real SuperBitMap
and copies contents of Superbitmap into display layer.

SEE ALSO
layers.h

CurrentDir

NAME
CurrentDir -- make a directory associated with a lock the current

working directory

SYNOPSIS
oldLock

DO

FUNCTION

currentDir(lock
DI

CurrentDir makes current a directory associated with a lock. (See
also LOCK). It returns the old current directory lock.

A value of zero is a valid result here and indicates that the current
directory is the root of the initial start-up disk.

INPUTS
lock - BCPL pointer to a lock

RESULTS
oldLock - BCPL pointer to a lock

CurrentTime

NAME
CurrentTime get the current time values

SYNOPSIS
ULONG Seconds, Micros;
CurrentTime(&Seconds, &Micros)

DO DI

FUNCTION
This function puts copies of the current time into the supplied
argument pointers. This time value is not extremely
accurate, nor is it of a very fine resolution. The time
will be updated no more than sixty times a second and will
typically be updated far fewer times a second.

INPUTS
Seconds ~ pointer to a ULONG variable to receive the current

seconds value.
Micros ~ pointer to a ULONG variable for the current

microseconds value.

RESULT

BUGS

Puts the time values into the memory locations specified by
the arguments.

None.

SEE ALSO
None.

CWAIT

NAME
CWAIT. -- append Copper wait instruction to user Copper list.

SYNOPSIS
CWAIT(c , v , h)

FUNCTION

INPUTS

RESULTS

BUGS

Adds instruction to wait for vertical beam position v and
horizontal position h

c
v
h

pointer to UCopList structure
vertical beam position (relative to top of ViewPort)
horizontal beam position

This is actually a macro that calls CWait(c,v,h)
and then calls CBump(c) to bump the local pointer
to the next instruction.

DateStamp

NAME
DateStamp -- obtain the date and time in internal forma

SYNOPSIS
DateStamp (v);

FUNCTION
DateStamp takes a vector of three longwords that is set to the current
time. The first element in the vector is a count of the number of
days. The second element is the number of minutes elapsed in the day.
The third is the number of ticks elapsed in the current minute. A
tick happens 50 times a second. DateStamp ensures that the day and
minute are consistent. All three elements are zero if the date is
unset. DateStamp currently only returns even multiples of 50 ticks.
Therefore the time you get is always an even number of ticks.

INPUTS
v - address of the first element in an array of three longwords

RESULTS

This array is filled as described under FUNCTION.

Deallocate

NAME
Deallocate -- deallocate a block of memory

SYNOPSIS
Deallocate(freeList, memoryBlock, byteSize)

AO Al DO

FUNCTION
This function deal locates memory by returning it to
the appropriate free memory pool. This function can
be used to free an entire block allocated with the
above function, or it can be used to free a sub-block
of a previously allocated block.

If memoryBlock is not on a block boundary (MEM_BLOCKSIZE)
then it will be rounded down. Note that this will work
correctly with all the memory allocation routines, but
may cause surprises if one is freeing only part of a region.
If byteSize is null, nothing happens.
Also, the size of the block will be rounded up, so the freed
block will fill an entire memory block.

INPUTS
freeList - points to the free list
memoryBlock - memory block to return
byteSize - the size of the desired block in bytes

SEE ALSO
Allocate

>

Delay

NAME
Delay -- delay a process for a specified time

SYNOPSIS
Delay (timeout

Dl

FUNCTION
The function Delay takes an argument 'timeout'. 'timeout' allows you
to specify how long the process should wait in ticks (50 per second).

INPUTS
timeout - integer

DeleteExtIO

NAME
DeleteExtlO -- return memory allocated for extended I/O request

SYNOPSIS
DeleteExtlO(ioReq);

FUNCTION

INPUTS

RESULTS

EXAMPLE

Frees up an 10 request as allocated by CreateExtIO().

ioReq - A pointer to the IORequest block to be freed.

No return value

struct IORequest ioReq;
DeleteExtIO(iOReq);

SEE ALSO
CreateExtIO

>

DeletcFile

NAME
DeleteFile -- delete a file or directory

SYNOPSIS
success

DO

FUNCTION

DeleteFile(name
DI

DeleteFile attempts to delete the file or directory 'name'. It returns
an error if the deletion fails. Note that you must delete all the
files within a directory before you can delete the directory itself.

INPUTS
name - address of first character of a null-terminated string

RESULTS
success - boolean

DeleteLayer

NAME
DeleteLayer -- delete layer from layer list.

SYNOPSIS

INPUTS

DeleteLayer(Ii, I)
aO al

Ii
I

pointer to LayerInfo structure
pointer to a layer

FUNCTION
Removes this layer from the list of layers and releases memory
associated with it. Restores other layers that may have been
obscured by it. Triggers refresh in those that may need it.
If this is a superbitmap, makes sure SuperBitMap is current.
The SuperBitMap is not removed from the system but is available
for program with0ut rest of layer stuff.

SEE ALSO
layers.h

;>

DeviceProc

NAME
DeviceProc -- return the process identifier of the process

handling that I/O

SYNOPSIS
process

DO

FUNCTION

Deviceproc(name
Dl

DeviceProc returns the process identifier of the process that handles
the device associated with the specified name. If DeviceProc cannot
find a process handler, the result is zero. If 'name' refers to a
file on a mounted device, then IoErr() returns a pointer to a directory
lock.

You can use this function to determine the process identification
of the handler process where the system should send its messages.

INPUTS
name - address of first character of a null-terminated string

RESULTS
process - BCPL pointer to a Process

Disable

NAME

Disable -- Disable interrupts in a non-preemptive fashion.

SYNOPSIS

Disable() ;

FUNCTION

Disabling is similar to forbidding, but it also prevents interrupts
from occurring during a critical section. Disabling is required
when a task accesses structures that are shared by interrupt code.
It eliminates the possibility of an interrupt accessing shared
structures by preventing interrupts from occurring.

To disable interrupts you can call the Disable() function. If
you are writing in assembly code, the DISABLE macro is more efficient
(but consumes more code space). To enable interrupts
again, use the Enable() function and ENABLE macros.

Like forbidden sections, disabled sections can be nested. Also
like forbidden sections, the Waite) function implies an Enable()
until the task again regains the processor.

It is important to realize that there is a danger in using disabled
sections. Because the software on the Arniga depends heavily on its
interrupts occurring in nearly real time, you cannot
disable for more than a very brief instant. A rule of thumb is
to disable for no more than 250 microseconds.

Masking interrupts by changing the 68000 processor interrupt
priority levels with the MOVESR instruction can also be dangerous
and is generally discouraged. The disable- and enable-related
functions and macros control interrupts through the 4703 custom
chip and not through the 68000 priority level. In addition, the
processor priority level can be altered only from supervisor mode
(Which means this process is much less efficient).

It is never necessary to both disable and forbid. Because disable
prevents interrupts, it also prevents preemptory task
scheduling. Many Exec lists can only be accessed while disabled.
Suppose you want to print the names of all waiting tasks. You
would need to access the task list from a disabled section. In
addition, you must avoid calling certain system functions that
require multitasking to function properly (printf() for example).
In this example, the names are gathered into a name array while
the code section is disabled. Then the code section is enabled
and the names are printed.

struct ExecBase *eb;
struct Task *tc;
char * names [ARRAYSIZE] ;
int count;

Disable();
for (tc = eb -) TaskWait.tc_Node.lh_Head;

>

tc -> tc Node.ln SUCCI
tc = tc => tC_NOde.ln_Succ) {

names {count++l = tc -> tc_Node.ln_Name;
}
Enable() ;
for (i = 0; i < count; i++) {

printf (" %s ", names{il);

Of course, the code in this example will have problems if a
waiting task is removed before its name is printed. If this were
to happen, the name-string pointer would no longer be valid. To
avoid such problems it is a good programming practice to copy the
entire name string into a temporary buffer.

DisownBlitter

NAME
DisownBlitter -- return blitter to free state.

SYNOPSIS
DisownBlitter()

FUNCTION'
Free blitter for use by other blitter users

INPUTS

RETURNS

SEE ALSO'
OwnBlitter

>

DisplayAlert

NAME
DisplayAlert create a display of an alert message

SYNOPSIS
DisplayAlert(AlertNumber, String, Height)

DO AO Dl

FUNCTION
Creates an alert display with the specified.message.

If the system can recover from this alert, it is,a
RECOVERY_ALERT: The routine waits until the user presses
one of the mouse buttons, after which the display is
restored to its original state and a BOOL value is returned
by this routine to specify whether or not the user pressed
the left mouse button.

If the system cannot recover from this alert, it is a
DEADEND ALERT, and this routine returns immediately upon
creating the alert display. The return value is FALSE.

The AlertNumber is a LONG value, related to the value sent
to the Alert() routine. The only bits that are pertinent to
this routine, however, are the ALERT TYPE bits. These bits
must be set to RECOVERY_ALERT for alerts from which the system
may safely recover or DEADEND_ALERT for fatal alerts.
These states are described in the paragraph above. A third
type of alert, the DAISY_ALERT, is used only by the Executive.

The String argument points to an AlertMessage string. The
AlertMessage string is composed of one or more substrings,
each of which contains the following components:
o First, a l6-bit x coordinate and an 8-bit y coordinate,

describing where on the alert display you want this
string to appear. The y coordinate describes the offset
to the baseline of the text.

o Then, the bytes of the string itself, which must be
null-terminated (end with a byte of zero).

o Lastly, the continuation byte, which specifies whether or
not another substring follows this one., If the continuation
byte is non-zero, there is another substring to be
processed in this AlertMessage. If the continuation byte
is zero, this is the last substring in the message.

The last argument, Height, describes how many video lines
tall you want the alert display to be.

INPUTS
AlertNumber = the number of this AlertMessage. The only

pertinent bits of this number are the ALERT_TYPE bits.
The rest of the number is ignored by this routine.

String = pointer to the alert message string, as described
above.

Height = minimum display lines required for your message.

RESULT

BUGS

A BOOL value of TRUE or FALSE. If this is a DEADEND ALERT,
FALSE is always the return value. If this is a -
RECOVERY_ALERT, the return value will be TRUE if the user
presses the left mouse button in response to your message
and FALSE if the user presses the right button.

If the system is in more trouble than you think, the level
of your alert may become DEADEND_ALERT without you ever
knowing about it.

SEE ALSO
None

>

DisplayBeep

NAME
DisplayBeep "beep" the video display

SYNOPSIS
DisplayBeep(Screen)

AO

FUNCTION
"Beeps" the video display by flashing the background color
of the specified screen. If the Screen argument is NULL,
every screen in the display will be beeped. Flashing all
screens is not a polite thing to do, so this should be
reserved for dire circumstances.

Such a routine is supported because the Amiga has no internal
bell or speaker. When the user needs to know of an
event that is not serious enough to require the use of a
requester, the DisplayBeep() function should be called.

INPUTS
Screen ~ pointer to a Screen structure. If NULL, every

Intuition screen will be flashed.

RESULT
None

BUGS
None

SEE ALSO
None

DisposeLayerInfo

NAME
DisposeLayerInfo -- retltrn all memory for LayerInfo to mem pool

SYNOPSIS
DisposeLayerInfo(li)

aO

INPUTS
li ~ pointer to LayerInfo structure

FUNCTION
Returns LayerInfo and any other memory attached to this LayerInfo
to memory allocator

SEE ALSO
layers.h

DisposeRegion

NAME
DisposeRegion return all space for this region to free

memory pool

SYNOPSIS
DisposeRegion(region)

aO

Function

INPUTS

BUGS

Frees all RegionRectangles for this Region and then
frees the Region itself

region = pointer to Region structure

DoCollision

NAME
DoCollision -- tests every GEL in GEL list for collisions

SYNOPSIS
DoCollision(RPort)

al

FUNCTION
Tests each GEL in GEL list for boundary and GEL-to-GEL collisions
On detecting one of these collisions, the appropriate collision-handling
routine is called. See the documentation for a thorough description of
which collision routine is called.

This routine expects to find the GEL list correctly sorted in Y,X order.
The system routine sortGList performs this function for the user

INPUTS
RPort = pointer to a.struct RastPort

RESULT
Nothing

BUGS
Does not handle GEL-to-GEL collisions completely correctly

SEE ALSO
sortGList

DolO

NAME
DolO -- perform an I/O command and wait for completion

SYNOPSIS
error
DO

DoIO (iORequest)
Al

FUNCTION
This function requests a device driver to perform the I/O
command specified in the I/O request. This function will
always block until the I/O request is completed.

INPUTS
iORequest - pointer to a properly initialized I/O request

RESULTS
error - see WaitIO

SEE ALSO
SendIO, WaitIO

DoubleClick

NAME
DoubleClick test two time values for double-click timing

SYNOPSIS
DoubleClick(StartSeconds, StartMicros, Current Seconds , CurrentMicros)

DO DI D2 D3

FUNCTION
Compares the difference in the time values with the double-click
timeout range that the user (using the Preferences
tool or some other source) has configured into the system.
If the difference between the specified time values is
within the current double-click time range, this function
returns TRUE; otherwise, it returns FALSE.

These time values can be found in InputEvents and IDCMP
messages. The time values are not perfect; however, they
are precise enough for nearly all applications.

INPUTS
StartSeconds, startMicros = the timestamp value describing

the start of the double-click time period you are
considering.

CurrentSeconds, CurrentMicros = the timestamp value describing
the end of the double-click time period you are
considering.

RESULT

BUGS

If the difference between the supplied timestamp values is
within the double-click time range in the current set of
Preferences, this function returns TRUE; otherwise, it
returns FALSE.

None

SEE ALSO
CurrentTime()

Draw

NAME
Draw -- draw a line between the current pen position

and the new x,y position

SYNOPSIS
Draw(rp, x, y)

Al DO DI

FUNCTION
Draws a line from the current pen position to (X,y).

INPUTS

rp pointer to a RastPort
x,y point in the RastPort to end the line.

DrawBorder

NAME
DrawBorder draw the specified border into the RastPort

SYNOPSIS
DrawBorder(RastPort, Border, LeftOffset, TopOffset)

AO Al DO DI

FUNCTION
First, this function sets up the drawing mode and pens in
the RastPort according to the arguments of the Border structure
Then, it draws the vectors of the Border argument
into the RastPort, offset by the Leftoffset and TopOffset.
This routine does Intuition window clipping as appropriate;
if you draw a line outside of your window, your imagery will
be clipped at the window's edge.

If the NextBorder field of the Border argument is non-zero,
the next Border is rendered as well (return to the top of
this FUNCTION section for details).

INPUTS
RastPort = pointer to the RastPort to receive the border

crossing.
Border = pointer to a Border structure.
LeftOffset = the offset that will be added to each vector's

x coordinate.
TopOffset = the offset that will be added to each vector's y

coordinate.

RESULT
None

BUGS
None

SEE ALSO
None

DrawGList

NAME
DrawGList -- process the GEL list, queueing VSprites, drawing Bobs

SYNOPSIS
DrawGList (RPort, VPort) as called by C

al aO

FUNCTION
Performs one pass of the current GEL list

- If nextLine and lastcolor are defined, these are initialized
for each GEL.

- If it's a VSprite, build it into the Copper list
- If it's a Bob, draw it into the current raster
- Copy the save values into the "old" variables, double-buffering
if required

INPUTS
al pointer to the RastPort where Bobs will be drawn
as = pointer to GfxBase

RESULT
Nothing

BUGS
MUSTDRAW is not implemented yet and probably will not be for this
release. we are sad.

SEE ALSO
Nothing

Drawlmage

NAME
Drawlmage draw the specified Image into the RastPort

SYNOPSIS
Drawlmage(RastPort, Image, LeftOffset, TopOffset)

AO Al DO DI

FUNCTION
First, this function sets up the drawing mode and pens in
the RastPort according to the arguments of the Image structure
Then, it moves the image data of the Image argument
into the RastPort, offset by the LeftOffset and TopOffset.
This routine does Intuition window clipping as appropriate;
if you draw an image outside of your window, your imagery
will be clipped at the window's edge.

If the Next Image field of the Image argument is non-zero,
the next Image is rendered as well (return to the top of
this section for details).

INPUTS
RastPort = pointer to the RastPort to receive the border

crossing.
Image = pointer to an Image structure.
LeftOffset = the offset that will be added to the Image's x

coordinate.
TopOffset = the offset that will be added to the Image's y

coordinate.

RESULT
None

BUGS
None

SEE ALSO
None

DupLock

NAME
DupLock -- duplicate a lock

SYNOPSIS
newLock

DO

FUNCTION

DupLock (lock
Dl

DupLock takes a shared filing system read lock and returns another
shared read lock to the same object. It is impossible to create a
copy of a write lock. (For more information on locks, see under LOCK.)

INPUTS
lock - BCPL pointer to a lock

RESULTS
newLock - BCPL pointer to a lock

Enable

NAME

Enable -- Enable interrupts following a Disable()

SYNOPSIS

Enable() ;

FUNCTION

Interrupts will not necessarily be enabled after this call since
the Disable() function nests (only an equal number of Enable's
following a set of Disable's finally re-enables interrupts).

SEE ALSO

Disable

EndRefresh

NAME
EndRefresh end the optimized refresh state of the window

SYNOPSIS
EndRefresh(Window, Complete)

AO DO

FUNCTION
This function gets you out of the special refresh state of
your window. It is called following a call to BeginRefresh(),
which begins the special refresh state.. While
your window is in the refresh state, the only drawing that
will be wrought in your window will be to those areas that
were recently revealed and that need to be refreshed.

After your program has done all the needed refreshing for
this window, this routine is called to restore the window to
its non-refreshing state. Then all rendering will go to the
entire window as usual.

The Complete argument is a Boolean TRUE or FALSE value used
to describe whether or not the refreshing that has been done
is all that needs to be done at this time. Most often, this
argument will be TRUE. However, if, for instance, you have
multiple tasks or multiple procedure calls that must run to
completely refresh the window, each can call its own
Begin/EndRefresh() pair with a Complete argument of FALSE,
and only the last calls with a Complete argument of TRUE •.

INPUTS
Window = pointer to the Window currently in optimized-refresh mode.
Complete = Boolean TRUE or FALSE describing whether or not

RESULT
None

BUGS
None

this window is completely refreshed.

SEE ALSO
BeginRefresh()

EndRequest

NAME
EndRequest end the request and reset the window

SYNOPSIS
EndRequest(Requester, Window)

AO Al

FUNCTION
This function ends the request by erasing the requester and
resetting the window. Note that this does not necessarily
clear all requesters from the window, only the specified
one. If the window labors under other requesters, they will
remain in the window.

INPUTS
Requester = pointer to the structure of the requester to be

removed.
Window = pointer to the Window structure with which this

requester is associated.

RESULT
None

BUGS
None

SEE ALSO
None

EndUpdate

NAME
EndUpdate remove damage list and restore state of

layer to nonnal.

SYNOPSIS

INPUTS

EndUpdate(I, flag
aO dO

1 = pointer to a layer
flag= TRUE if update was successful. The damage list is cleared.

FUNCTION

SEE ALSO

After the programmer has redrawn his picture, he calls this
routine to restore the ClipRects to point to his standard
layer tiling. Use flag=O if you are only making a partial
update. You may use the other region functions to clip adjust
the DamageList to reflect a partial update.

layers.h BeginUpdate()

Enqueue

NAME
Enqueue -- insert or append node to a system queue

SYNOPSIS
Enqueue(list, node)

AO Al

FUNCTION
Insert or append a node into a system queue. The insert is
perfonned based on the node priority -- it will keep the
list properly sorted. New nodes will be inserted in front
of the first node with a lower priority. Hence a FIFO
queue for nodes of equal priority

INPUTS
list - a pointer to the system queue header
node - the node to enqueue

Examine

NAME
Examine examine a directory or file associated with a lock

SYNOPSIS
success - Examine (lock, FilelnfoBlock

DO Dl D2

FUNCTION
Examine fills in information in the FilelnfoBlock concerning the file
or directory associated·with the lock. This information includes the
name, size, creation date, and whether it is a file or directory.

Note: FilelnfoBlock must be longword-aligned. You can ensure this
in C if yououse Allocmem .. (See the "Amiga ROM Kernel Reference
Manual: Exec" for further details on the exec call Allocmem.)

Examine gives a return code of zero if it fails.

INPUTS
lock - BCPL pointer to a lock
FilelnfoBlock - address of a file info block

RESULTS
success - boolean

Execute

NAME
Execute -- execute a CLI command

SYNOPSIS
Success

DO

FUNCTION

Execute (command String , input, output
Dl D2 D3

This function takes a string (commandString) that specifies a CLI
command and arguments, .and attempts to execute it. The CLI string
can contain any valid input that you could type directly at a CLI,
including input and output indirection.

The input file handle will normally be zero, and in this case the
EXECUTE command will perform whatever was requested in tile commandString
and then return. If the input file handle is nonzero, after the
(possibly null) commandString is performed, subsequent input is read
from the specified· input file handle until end-of-file is reached.

In most cases, the output file handle must be provided and will be
used by the CLI commands as their output stream unless redirection
was specified. If the output file handle is set to zero, the current
window, normally specified as *, is used. Note that programs running
under the Workbench do not normally have a current window.

The Execute function may also be used to create a new interactive
CLI process just like those created with the NEWCLI function.
To do this, you should call Execute with an empty commandString, and
pass a file handle relating to a new window as the input file handle.
The output file handle should be set to zero. The CLI will read commands
from the new window, and will use the same window for output. This
new CLI window can only be terminated by using the ENDCLI command.
For this command to work the program C:RUN must be present in C:.

INPUTS
commandstring - address of first character of a null-terminated string
input - BCPL pointer to a file handle
output - BCPL pointer to a file handle

RESULTS
Success - boolean

Cl
00

Exit

NAME
Exit -- exit from a program

SYNOPSIS
Exit (returnCode

Dl

FUNCTION
Exit acts differently depending on whether you are running a program
under a CLI or not. If you run a program that calls Exit as a command
under a CLI, the command finishes and control reverts to the CLI.
Exit then interprets the argument 'returnCode' as the return code
from the program.

If you run the program as a distinct process, Exit deletes the process
and releases the space associated with the stack, segment list, and
process structure.

INPUTS
returnCode - integer

ExNext

NAME
ExNext

SYNOPSIS

examine the next entry in a directory.

success = ExNext(lock, FilelnfoBlock
DO Dl D2

FUNCTION
This routine is passed a lock, usually associated with a directory,
and a FilelnfoBlock filled in by a previous call to Examine. The
FilelnfoBlock contains information concerning the first file or
directory stored in the directory associated with the lock. ExNext
also modifies the FilelnfoBlock so that subsequent calls return
information abOut each following entry in the directory.

ExNext gives a return code of zero if it fails for some reason. One
reason for failure is reaching the last entry in the directory. However,
IoErr() holds a code>that may give more information on the exact cause
of a failure. When ExNext finishes after the last entry, it returns
ERROR_NO_MORE_ENTRIES

Follow these steps to examine a directory:

1) Use Examine to get a FilelnfoBlock about the
directory you wish to examine.

2) Pass ExNext the lock related to the directory and the
FilelnfoBlock filled in by the previous call to Examine.

}) Keep calling ExNext until it fails with the error
code held in IoErr() equal to ERROR_NO_MORE_ENTRIES.

4) Note that if you don't know what you are examining,
inspect the type field of the FilelnfoBlock returned
from Examine to find out whether it is a file or a
directory which is worth calling ExNext for.

The type field in the FilelnfoBlock has two values: if it is negative,
then the file system object is a file; if it is positive, then it
is a directory.

INPUTS
lock - BCPL pointer to a lock
FileInfoBlock - pointer to a file info block

RESULTS
success - boolean

SPECIAL NOTE
The FileInfoBlock must be longword-aligned.

faddi

NAME

faddi -- add two floating-point numbers

C USAGE

fnurn3 fnuml + fnwn2;
Dl DO

FUNCTION

Accepts two floating-point numbers and returns the arithmetic
surn of said numbers. Note that this function is called by
compiler-generated code, not by a user-generated function call.

INPUTS

. fnuml - floating-point number
fnwn2 - floating-point number

RESULT

fnurn3 - floating-point number

BUGS

None

SEE ALSO

SPAdd,

FattenLayerInfo

NAME
FattenLayerInfo -- convert 1.0 LayerInfo to 1.1 LayerInfo

SYNOPSIS
FattenLayerInfo(li)

aO

INPUTS
Ii = pointer to LayerInfo structure

FUNCTION
From 1.1 software and on, need to have more info in the Layer_Info
structure. To do this in a 1.0-supportable manner requires
allocation and deallocation of the memory whenever most
layer library functions are called. To prevent unnecessary
allocation/deallocation, FattenLayerInfo will preallocate the
necessary data structures and fool the layer library into
thinking it has a LayerInfo gotten from NewLayerInfo .
NewLayerInfo is the approved method for getting this structure.
When a program needs to give up the LayerInfo structure, it
must call ThinLayerlnfo before freeing the memory. ThinLayerInfo
is not necessary if New/DisposeLayerlnfo are used, however.

SEE ALSO
NewLayerlnfo ThinLayerlnfo DisposeLayerlnfo layers.h

~
0

fempi

NAME

fempi -- compare two floating-point numbers and set
appropriate condition codes

C USAGE

if (fnuml (= fnum2) [... J
DI DO

FUNCTION

Accepts two floating-point numbers and returns the condition
codes set to indicate the result of said comparison.
Note that this function is called by compiler-generated code,
not by a user-generated function call.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

Condition codes set to reflect the following branches:

GT - fnum2 > fnuml
GE - fnum2 >= fnuml
EO - fnum2 fnuml
NE - fnum2 != fnuml
LT - fnum2 (fnuml
LE - fnum2 (= fnuml

BUGS

None

SEE ALSO

sPCmp,

fdivi

NAME

fdivi -- divide two floating-point numbers

C USAGE

fnum3 fnuml / fnum2 ;
Dl DO

FUNCTION

Accepts two floating-point numbers and returns the arithmetic
division of said numbers. Note that this function is called by
compiler-generated code, not by a user-generated function call.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

fnum3 - floating-point number

BUGS

None

SEE ALSO

SPDiv,

fflti

NAME

fflti -- convert integer number to fast floating point

C USAGE

fnurn (FLOAT) inurn;
DO

FUNCTION

Accepts an integer and returns the converted floating-point
result of said number. Note that this function is called by
compiler-generated code, not by a user-generated function call.

INPUTS

inurn - signed integer number

RESULT

fnurn - floating-point number

BUGS

None

SEE ALSO

SPFlt,

FindName

NAME
FindName -- find a system list node with a given name

SYNOPSIS
node
DO

FindName(start, name)
AO Al

FUNCTION
Traverse a system list until a node with the given name
is found. To find multiple occurences of a string, this
function may be called with a node starting point.

INPUTS
start - a list header or a list node to start the search

(if node, this one is skipped)
name - a pointer to a name string terminated with null

RESULTS
node - a pointer to the node with the same name else

zero to indicate that the string was not found.

FindPort

NAME
FindPort -- find a given system message port

SYNOPSIS
port
DO

FindPort (name)
Al

FUNCTION

INPUT

This function will search the system message port list for
a port with the given name. The first port matching this
name will be returned.

name - name of the port to find

RETURN
port - a pointer to the message port, or zero if

not found.

FindTask

NAME
FindTask -- find a task with the given name or find oneself

SYNOPSIS
task
DO

FindTask(name)
Al

FUNCTION
This function will check all task queues for a task with the
given name, and return a pointer to its task control block.
If a null name pointer is given a pointer to the current
task will be returned.

INPUT
name - pointer to a name string

RESULT
task - pointer to the task

FindTovlType

NAME
FindTooIType -- find the value of a TooIType variable

SYNOPSIS
value = FindTooIType(toolTypeArray, typeName
00 M hl

FUNCTION
This function searches a tool type array for a given entry
and returns a pointer to that entry. This is useful for
finding standard tool type variables. The returned
value is not a new copy of the string but is only
a pointer to the part of the string after typeName.

INPUTS
toolTypeArray - an array of strings
typeName - the name of the tooltype entry

RESULTS
value - a pointer to a string that is-the value bound to

typeName, or NULL if typeName is not in
the toolTypeArray.

EXCEPTIONS

EXAMPLE
Assume the tool type array has two strings in it:

"FILETYPE=text"
"TEMPDIR=:t"

FindToolType(toolTypeArray, "FILENAME") returns "text"
FindTool Type (tool TypeArray , "TEMPDIR") returns" : t "
FindTooIType(toolTypeArray, "MAXSIZE") returns NULL

SEE ALSO
MatchTooIValue

BUGS

Flood

NAME
Flood --'- flood rastport like areafill

SYNOPSIS
Flood (rp, mode, x, y)

al d2 dO dl

FUNCTION

INPUTS

SEE ALSO

BUGS

Searches the BitMap starting at (x,y). Fills all adjacent pixels
if they:
a: are not the same as AOLPen Mode 0
a: are the same as the one at (X,y) Mode I

When actually doing the fill, uses the modes that apply to
standard area-fill routines such as drawmodes and patterns.

rp
(x,y)
mode

pointer to RastPort
coordinate in BitMap
o fill all adjacent pixels searching for border
I fill all adjacent pixels that have same pen number

as (x,y)

None known

>

FlushCList

NAME
FlushCList -- clear a character list

SYNOPSIS
FlushCList(cList)

AD

FUNCTION
ensure that the cList is empty.

INPUTS
cList -

RESUL'rS

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

fmuli

NAME

fmuli -- multiply two floating-point numbers

C USAGE

fnum3 fnuml * fnum2;
Dl DO

FUNCTION

Accepts two floating-point numbers.and returns the arithmetic
multiplication of said numbers. Note that this function is
called by compiler-generated code, not by a user-generated
function call.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

fnum3 - floating-point nwnber

BUGS

None

SEE ALSO

SPMul,

>-
"'--l

fnegi

NAME

fnegi -- negate the supplied floating-point number

C USAGE

fnum2 = -fnuml;
DO

FUNCTION

Accepts a floating-point number and returns the value of said
number after having been subtracted· from 0.0. Note that this
function is called by compiler-generated code, not by a user-generated
function call.

INPUTS

fnuml - floating-point number

RESULT

fnum2 ~ floating-point negation of fnuml

BUGS

1;,11 None

SEE ALSO

SPNeg,

Forbid

NAME

Forbid --- prevent task rescheduling on a non-preemptive basis.

SYNTAX

Forbid() ;

FUNCTION

Forbidding is used when a task is accessing shared structures
that might also be accessed at the same time from another task.
It effectively eliminates the possibility of simultaneous access
by imposing nonpreemptive task scheduling. This has the net effect
of disabling multitasking for as long as your task remains
in its running state. While forbidden, your task will· continue
running until it perfo~~ a call to Waite) or exits from the forbidden
state. Interrupts will occur normally, but no new tasks
will be dispatched, regardless of their priorities.

. When a task running in the forbidden state calls the Waite) function,
it implies a temporary exit from its forbidden state.
While the task is waiting, the system will perform normally.
When the tasks receives one of the signals it is waiting for, it
will again reenter the forbidden state. To become forbidden, a
task calls the Forbid() function. To escape, the Permit() function
is used. The use of these functions may be nested with the
expected affects; you will not exit the forbidden mode until you
call the outermost Permit().

As an example, Exec memory region lists should be accessed only
when forbidden. To access these lists without forbidding jeopardizes
the integrity of the entire system.

struct ExecBase *eb;
struct MemHeader *mh;
APTR firsts[ARRAYSIZE];
int count;

Forbid ();
for (mh = (struct MemHeader *) eb -> MemList.lh_Head;

mh -> mh Node.ln SUCCI
mh = mh -> mh_NOde.ln_Succ)

firsts [count++] = mh -> mh_First;
]
Permit();

As this program traverses down the memory region list, it remains
forbidden to prevent the list from changing as it is being accessed.

FreeCList

NAME
FreeCList -- free a clist

SYNOPSIS
FreeCList(CList)

AD

FUNCTION
Release the cList descriptor and any resources it uses.
References to" the cList are no longer valid.

INPUTS
cList

NOTES

a descriptor for a clist that is no longer "to be used.

This function is implicitly performed by CLToBuf.

FreeColorMap

NAME
FreeColorMap free the ColdrMap structure and return memory

to" free memory pool

SYNOPSIS

INPUTS

RESULT

BUGS

FreeColorMap(colormap
aO

colonnap pointer to ColorMap allocated with GetColorMap

The space is made available for"others to use.

SEE ALSO
SetRGB4 GetColorMap

FreeCopList

NAME
FreeCopList -- deallocate intermediate Copper list

SYNOPSIS
FreeCopList(coplist)

FUNCTION
Deallocates all memory associated with this Copper list

INPUTS
coplist ~ pointer to structure CopList

RESULTS
memory returned to memory manager

BUGS
none known

SEE ALSO

FreeCprList

NAME
FreeCprList -- deallocate hardware Copper list

SYNOPSIS
FreeCprList(cprlist)

FUNCTION
Return cprlist to free memory pool

INPUTS
cprlist pointer to cprlist structure

RESULTS

BUGS
none known

SEE ALSO

FreeDiskObject

NAME
FreeDiskObject -- free all memory in a Workbench disk object

SYNOPSIS
FreeDiskObject(diskobj

AO

FUNCTION

INPUTS

RESULTS

This routine frees all memory in a Workbench disk object
and also frees and the object itself. It is implemented
via FreeFreeList().

GetDiskObject() takes care of all the initialization required
to set up the objects free list. This procedure may ONLY
be called on DiskObject allocated via GetDiskObject().

diskobj -- a pointer to a DiskObject structure

EXCEPTIONS

SEE ALSO
GetDiskObject, FreeFreeList

BUGS

FreeEntry

NAME
FreeEntry free many regions of memory

SYNOPSIS
FreeEntry(memList)

AO

FUNCTION
This routine takes a memList structure (as returned by
AllocEntry) and frees all the entries.

INPUTS
memList -- pointer to structure filled in with memEntry

structures

FreeFreeList

NAME
FreeFreeList -- free all memory in a free list

SYNOPSIS
FreeFreeList(free

AO

FUNCTION
This routine frees all memory in a free list, and the
free list itself. It is useful for easily getting
rid of all memory in a series of structures. There is
a free list in a Workbench object, and this contains
all the memory associated with that object.

A FreeList is a list of MemList structures. See the
MemList and MemEntry documentation for more information.

If the FreeList itself is in the free list, it must be
in the first MemList in the FreeList.

INPUTS
free -- a pointer to a FreeList structure

RESULTS

EXCEPTIONS

SEE ALSO
AllocEntry, FreeEntry, AddFreeList

BUGS

FreeGBuffers

NAME
FreeGBuffers deallocate memory gotten by GetGBuffers

SYNOPSIS
FreeGBuffers(anOb, RPort, db) as called by C

aO al dO

FUNCTION
For each sequence of each component of the AnimOb, deal locates memory for:

INPUTS
al
a2
dO

RESULT

BUGS

SaveBuffer
BorderLine
CollMask and ImageShadow (point to same buffer)
if db is set (user wants double-buffering) deallocate:

DBufPacket
BufBuffer

pointer to the AnimOb structure
pointer to the current RastPort
double-buffer indicator (set TRUE for double-buffering)

None known

SEE ALSO
Nothing

00 o

FreeMem

NAME
FreeMem -- deallocate with knowledge

SYNOPSIS
FreeMem(memoryBlock, byteSize)

Al DO

FUNCTION

INPUTS

Free a region of memory, returning it to the pool from
which it came.

memoryBlock - memory block to free
If the memoryBlock previously returned by an allocation
routine.

bytesize - the size of the block in bytes

SEE ALSO
AllocMem, AllocAbs

FreeRaster

NAME
FreeRaster -- release an allocated area to the system free memory pool.

SYNOPSIS

INPUTS

FreeRaster(p, width, height)
aO dO dl

p a pointer to a memory space returned
result of a call to AllocRaster

width = the width in bits of the bitplane

height = the height in bits of the bitplane

as a

the same values of width and height with which you
called AllocRaster in the first place, when the
pointer p returned. This defines the size of the
memory space which is to be returned to the free
memory pool.

FUNCTION
Returns to the free memory pool the memory space
that had been allocated by a call to AllocRast.

NOTE: Always use the same values that were used with AllocRaster

FreeRemember

NAME
FreeRemernber -- free the memory allocated by calls to

AllocRemernber()

SYNOPSIS
FreeRemernber(RemernberKey, ReallyForget)

AO DO

FUNCTION
This function frees up memory allocated by the
AllocRemember() function. It will free up just the Remember
structures, which supply the link nodes that tie your allocations
together, or it will deallocate both the link nodes
and your memory buffers.

If you want to deallocate just the Remember structure link
nodes, you should set the ReallyForget argument to FALSE.
However, if you want FreeRemember() to really forget about
all the memory, including both the Remember structure link
nodes and the buffers you requested via earlier calls to
AllocRemernber(), you should set the ReallyForget argument to
TRUE.
If you're not sure whether or not you want to Really Forget,
refer to figure 11-1.

~ INPUTS
RememberKey = the address of a pointer to a Remember structure

This pointer should either be NULL or be set to
some value (possibly NULL) by a call to
AllocRemember(). For example:

struct Remember *RememberKey;
RernemberKey - NULL;
AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP)
FreeRemember(&RememberKey, TRUE)

ReallyForget = a BOOL FALSE or TRUE describing, respectively,
whether you want to free up only the Remember
nodes or whether you want this procedure to really forget
about all of the memory, including both the nodes
and the memory buffers pointed to by the nodes.

RESULT
None

BUGS
None

SEE ALSO
AllocRemember ()

FreeSignal

NAME
FreeSignal -- free a signal bit

SYNOPSIS
FreeSignal(signalNurn)

DO

FUNCTION
This function frees a previously allocated signal bit for
reuse. This call must be performed while running in the
same task in which the signal was allocated.

WARNING
Signals may not be allocated or freed from exception
handling code.

INPUTS
signalNurn - -the signal number to free {O .. 31J

>-

FreeSprite

NAME
FreeSprite return sprite for use by others and virtual

sprite machine

SYNOPSIS
FreeSprite(pick

dO

FUNCTION
Marks sprite as available for others to use.

INPUTS
pick = 0-7

RESULTS

BUGS

Sprite made available for subsequent callers of Getsprite
as well as use· by Virtual Sprite Machine

These sprite routines are provided to ease sharing of sprite
hardware and to handle simple cases of sprite usage and
movement. It is assumed the programs that use these routines
do want to be good citizens in their hearts (i.e., that they will
not FreeSprite unless.they actually own the sprite).
virtual Sprite.machine may ignore simple sprite machine.

SEE ALSO
sprite.h, GetSprite, ChangeSprite, MoveSprite

FreeSysRequest

NAME
FreeSysRequest free up memory used by a call to

BuildSysRequest()

SYNOPSIS
FreeSysRequest(Window)

AO

FUNCTION
This routine frees up all memory allocated by a successful
call to.the BuildSysRequest()· procedure. If BuildSysRequest()
returned a pointer to a Window structure, then your
pregram can waite) for the message port of that window to
detect an event that satisfies the requester. When you want
to remove the requester, you call this procedure. It ends
the requester and deal locates any memory used in the creation
of the requester.

NOTE: If BuildSysRequest() did·not return a pointer to a
window, you should not call FreeSysRequest().

INPUTS
Window = a copy of the window pointer returned by a successful

. call to the BuHdSysRequest() procedure.

RESULT
None

BUGS
None

SEE ALSO
BuildsysRequest(), waite), AutoRequest()

FreeTrap

NAME
FreeTrap -- free a processor trap

SYNOPSIS
FreeTrap(trapNum)

DO

FUNCTION
This function frees a previously allocated trap number for
reuse. This call must be performed while· running in the
same task in which the trap was allocated.

WARNING
Traps may not be allocated or freed from exception
handling code.

INPUTS
trapNum - the trap number to free {of O .. IS}

FreeVPortCopLists

NAME
FreevportCopLists deallocate all intermediate Copper lists and
their headers from a viewport

SYNOPSIS
FreeVPortCopLists(viewport)

FUNCTION

INPUTS

RESULTS

BUGS

Recursively searches display, color, sprite, and user Copper
lists and calls FreeMem() to deallocate them from memory

viewport = pointer·· to . ViewPort structure

vp->DspIns == NULL; vp-)SprIns == NULL; vp-)ClrIns == NULL;
vp-)UCopIns == NULL;

none known

SEE ALSO

FreeWBObject

NAME
FreeWBObject -- free all memory in a WOrkbench object

SYNOPSIS'
FreeWBObject(obj

AD

FUNCTION

INPUTS

RESULTS

This routine frees all memory in a workbench object, and the
object itself. It is implemented via FreeFreeList().

AllocWBObject() takes care of all the initialization required
to set up the objects free list.

This routine is intended only for internal users that can
track changes to the WOrkbench.

free -- a pointer to a FreeList structure

EXCEPTIONS

SEE ALSO
AllocEntry, FreeEntry, AllocWBObject, FreeFreeList

BUGS

fsubi

NAME

fsubi -- subtract two floating-point numbers

C USAGE

fnurn3 s fnurn! - fnum2;
DI DO

FUNCTION

Accepts two floating-point numbers and returns the arithmetic
subtraction of said numbers. Note that this function is called
by compiler-generated code, not by a user-generated function call.

INPUTS

fnurn! - floating-point number
fnum2 - floating-point number

RESULT

fnurn3 - floating-point number

BUGS

None

SEE ALSO

SPSub,

ftsti

NAME

ftsti -- compares a fast floating-point number against the
value zero (0.0) and sets the appropriate
condition codes

C USAGE

if (! fnurn) { ... }
Dl

FUNCTION

Accepts a floating-point number and returns the condition
codes set to indicate the result of a comparison against
the value of zero (0.0). Note that this function

is called by compiler generated code, not by a user
generated function call.

INPUTS

fnurn - floating-point number

RESULT

Condition codes set to reflect the following branches:

EQ - fnurn = 0.0
NE - fnurn != 0.0
PL - fnurn >= 0.0
MI - fnurn < 0.0

BUGS

None

SEE ALSO

SPTst,

GetCC

NAME

SYNOPSIS

GetCC -- get condition codes in a 68010 compatible way.

conditions
DO

GetCC()

FUNCTION

INPUTS

RESULTS

This function provides a means of obtaining the CPU
condition codes in a manner that will make 68010 upgrades
transparent.

conditions - the 68000/68010 condition codes

GetCLBuf

NAME
GetCLBuf -- convert a character list to contiguous data

SYNOPSIS
length
DO

GetCLBuf(cList, buffer, maxLength)
AO Al Dl

FUNCTION

INPUTS

RESULTS

Move the cList data into the block of memory pointed to by
buffer. Exhaust the character list. If a non-destructive
peek at the character list is desired, use subCL. If the
cList will no longer be used, remember to FreeCList.

cList -

buffer

The clist descriptor used to manage this character
list, as returned by AllocCList.

A pointer for the byte data from the character list.
maxLength-

length

The maximum size of buffer.

the number of bytes copied into buffer. This is never
greater than maxLength.

EXCEPTIONS
if cList was bigger than maxLength, the cList is not empty.

GetCLChar

NAME
GetCLChar -- get a byte from the beginning of a character list

SYNOPSIS
byte
DO

FUNCTION

GetCLChar(cList)
AO

Get a byte from the beginning of the character list described
by the cList.

INPUTS
cList -

RESULTS
byte

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The byte from the beginning of the character list.
If no data is available, the upper three bytes are
set (longword is -1).

GetCLWord

NAME
GetCLWord -- get a word from the beginning of a character list

SYNOPSIS
word
DO

FUNCTION

GetCLWord(cList)
AD

Get a word from the beginning of the character list described
by the cList.

INPUTS
cList -

RESULTS
word

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The word from the beginning of the character list.
If no data is available, the upper two bytes are set
(longword is -1). Partial words (1 byte) are not
returned.

GetColorMap

NAME
GetColorMap -- allocate and initialize Colormap

SYNOPSIS

INPUTS

RESULT

BUGS

C\II GetColorMap (entries
dO dO

entries number of entries for this colormap

C\II = pointer to an initialized ColorMap structure.

Allocates and initializes the required structures to be attached
to the viewPort to save color values.
Returns 0 if cannot allocate memory for structures

SEE ALSO
SetRGB4 FreeColorMap

GetDefPrefs

NAME
GetDefPrefs get a copy of the Intuition default Preferences

SYNOPSIS
GetDefPrefs(PrefBuffer, Size)

AO DO

FUNCTION
This function gets a copy of the Intuition default Preferences
data. It writes the data into the buffer you specify.
The number of bytes you want copied is specified by the Size
argument.

The default Preferences are those that Intuition uses when
it is first opened. If no Preferences file is found, these
are the preferences that are used. These would also be the
start-up Preferences in an environment that does not use
AmigaDOS.

It is legal to take a partial copy of the Preferences structure.
The more pertinent Preferences variables have been
grouped near the top of the structure to facilitate the
memory conservation that can be had by taking a copy of only
some of the Preferences structure.

~ INPUTS
PrefBuffer = pointer to the memory buffer to receive your

copy of the Intuition Preferences.
Size = the number of bytes in your PrefBuffer-the number of

bytes you want copied from the system's internal
Preference settings.

RESULT
Returns your Preferences pointer.

BUGS
None.

SEE ALSO
GetPrefs()

GetDiskObject

NAME
GetDiskObject -- read in a Workbench disk object

SYNOPSIS
diskobj
DO

GetDiskObject(name
AO

FUNCTION

INPUTS

RESULTS

This routine reads in a Workbench disk object in from disk. The
name parameter will have a ".info" postpended to it, and the
info file of that name will be read. If the call fails,
it will return zero. The reason for the failure may be obtained
via IoErr().

This routine is very similar to GetIcon, but it shields
the programmer from the worst of the grunginess associated
with GetIcon. A FreeList structure is allocated just after
the DiskObject structure; FreeDiskObject makes use of this
to get rid of the memory that was allocated.

name -- name of the object

diskobj -- the Workbench disk object in question

EXCEPTIONS

SEE ALSO
GetIcon, FreeDiskObject

BUGS

>

GetGBuffers

NAME
GetGBuffers attempts to allocate ALL the buffers of an entire AnimOb

SYNOPSIS
GetGBuffers(anOb, RPort, db) as called by C

aO al dO

FUNCTION
For each sequence of each component of the AnimOb, allocates memory for:

INPUTS
al
a2 =
dO

RESULT

SaveBuffer
BorderLine
CollMask and Imageshadow (point to same buffer)
if db is set (user wants double-buffering) allocate:

DBufPacket
BufBuffer

pointer to the AnimOb structure
pointer to the current RastPort
double-buffer indicator (set TRUE for double-buffering)

TRUE if the memory allocations were all successful, else FALSE

BUGS
None known

SEE ALSO
Nothing

GetIcon

NAME
Get Icon -- read in a DiskObject structure from disk

SYNOPSIS
status = GetIcon(name, icon, free
DO AO Al A2

FUNCTION

INPUTS

RESULTS

This routine reads in a DiskObject structure and its
associated information. All memory will be automatically
allocated, and stored in the spec~fied FreeList. The file
name of the info file will be the name parameter with a
".info" postpended to it. If the call fails, a zero will
be returned. The reason for the failure· may be obtained
via IoErr().

Users are encouraged to use GetDiskObject instead of this
routine

name
icon
free

name of the object
a pointer to a DiskObject
a pointer to a FreeList

status -- non-zero if the call succeeded.

EXCEPTIONS

SEE ALSO

BUGS

>

GetMsg

NAME
GetMsg -- get next message from a message port

SYNOPSIS
message - GetMsg(port)
DO AO

FUNCTION

INPUT

RESULT.

This function receives a message from a given message port.
It provides a fast, non-copying message receiving mechanism.

The received message is removed from the message port.

This function will not wait. If a message is not present
this function will return zero. If a program must wait for
a message, it can Wait on the signal ' specified for the port
or use the WaitPort function. There can only be one task
waiting for any given port.

Getting the message does not imply that the message· is now
free to be reused. When the receiver is finished with the
message, it may ReplyMsg it.

port - a pointer to the receiver message port

message - a pointer to the first message available. If
there are no messages, return zero.

SEE ALSO
putMsg, ReplyMsg, WaitPort

GetPrefs

NAME
GetPrefs -- get the current setting of the Intuition Preferences

SYNOPSIS
GetPrefs(PrefBUffer, Size)

AO DO

FUNCTION
This function gets a copy of the current'Intuition Preferences
data and writes the data into the buffer you specify.
The number of bytes you want copied is specified by the Size
argument.

It is legal to take a partial copY'of the Preferences structure.
The more pertinent Preferences variables have been
grouped near the top of the structure to facilitate the
memory conservation that can be had by taking a copy of only
sorne of the Preferences structure.

INPUTS
PrefBuffer = pointer to the memory buffer to receive your

copy of the Intuition Preferences.
Size = the number of bytes in your PrefBuffer-the number of

bytes you want copied from the system's internal
Preference settings.

RESULT
Returns a copy of your Preferences pointer.

BUGS
None

SEE ALSO
GetDefPrefs()

GetRGB4

NAME
GetRGB4 -- inquire value of entry in colorMap

SYNOPSIS
value
DO

GetRGB4(colormap, entry
AO DO

INPUTS

RESULT

BUGS

colormap ~ pointer to ColorMap structure
entry ~ index into colormap

Returns -1 if no valid entry
Return UWORD RGB value· 4 bits per gun right justified

SEE ALSO
SetRGB4 LoadRGB4 GetColorMap FreeColorMap

GetSprite

NAME
GetSprite -- attempt to get a sprite for the simple sprite

manager.

SYNOPSIS
Sprite_Number

dO
GetSprite(sprite, pick

aO dO

FUNCTION

INPUTS

RESULTS

BUGS

SEE ALSO

Attempts to allocate one of the eight sprites for private use
with the simple sprite manager .. This must be done before using
further calls to ·simple sprite·machine.

sprite
pick

ptr to programmers SimpleSprite structure.
0-7
-1 if programmer just wants the next one.

If pick is 0-7, attempts to allocate the sprite. If the sprite
is already allocated, return -1. If pick is -1, allocate the
next sprite. If no sprites are available, return -1.

If the sprite is available for allocation, marks it allocated
and fill in the 'num' entry of the SimpleSprite structure.
If successful, returns the sprite number.

sprite.h FreeSprite ChangeSprite MoveSpriteGetSprite

>-

GetWBObject

NAME
GetWBObject -- read in a Workbench object

SYNOPSIS
object
DO

GetWBObject(name
AO

FUNCTION

INPUTS

RESULTS

This routine reads in a Workbench object from disk. The
name parameter will "have a ".info" postpended to it, and the
info file of that name will be read. If the call fails,
it will return'zero. The reason for the failure may be obtained
via IoErr().

This routine, is intended only for internal users that can
track changes to the Workbench.

name -- name of the object

object -- the Workbench object in question

EXCEPTIONS

SEE ALSO

BUGS

IEEEDPAbs

NAME

IEEEDPAbs -- obtain the absolute value of the IEEE double
precision floating-point number

C USAGE

fnuml
00/01

FUNCTION

IEEEDPAbs(fnum2»;
00/01

Accepts an IEEE D.P. floating-point number and returns
the absolute value "of said number.

INPUTS

fnum2 - IEEE double-precision floating-point number

RESULT

fnuml - IEEE double-precision floating-point number

BUGS

None

SEE ALSO

IEEEDPAdd

NAME

IEEEDPAdd -- add two IEEE double-precision floating-point numbers

C USAGE

fnuml
DO/Dl

FUNCTION

IEEEDPAdd(fnum2, fnurn3);
DO/Dl D2/D3

Accepts two IEEE D.P. floating-point numbers and returns
the arithmetic surn of said numbers.

INPUTS

fnum2 - IEEE double-precision floating-point number
fnurn3 - IEEE double-precision floating-point number

RESULT

fnuml - IEEE double-precision floating-point number

:> BUGS

None

SEE ALSO

IEEEDPQnp

NAME

IEEEDPQnp -- compare two IEEE D.P. floating-point numbers
and return a relative value indicator

C USAGE

if (IEEEDPQnp(fnuml, fnum2» { ... J
DO/Dl D2/D3

FUNCTION

Accepts two IEEE double-precision floating-point numbers
and returns the CCR and the integer functional result
as an indicator of the result of said comparison.

INPUTS

fnuml - IEEE double-precision floating-point number
fnum2 - IEEE double-precision floating-point number

RESULT

Condition codes set to reflect the following branches:

BUGS

None

SEE ALSO

LT - fnuml < fnum2
GT - fnuml > fnum2
ELSE - fnuml fnum2

(Functional Result
(Functional Result
(Functional Result

-1)
+1)

0)

IEEEDPDiv

NAME

IEEEDPDiv -- divide two IEEE double-precision floating-point numbers

C USAGE

fnuml
DO/Ol

IEEEDPMul(fnum2, fnum3);
DO/Ol D2/03

FUNCTION

Accepts two IEEE double-precision floating-point numbers and
returns the arithmetic division of said numbers.

INPUTS

fnum2 - IEEE double-precision floating-point number
fnum3 - IEEE double-precision floating-point number

RESULT

fnuml - IEEE double-precision floating-point number

> BUGS

None

SEE ALSO

IEEEDPFlt

NAME

IEEEDPFlt -- convert integer number to IEEE D.P. floating-point

C USAGE

fnum
DO/Ol

FUNCTION

IEEEDPFlt(inum);
DO

Accepts an integer and returns the converted IEEE double
precision floating-point result of said number.

INPUTS

inum - signed integer number

RESULT

fnum - IEEE double-precision floating-point number

BUGS

None

SEE ALSO

IEEEDPMul

NAME

IEEEDPMul -- multiply two IEEE double-precision floating-point numbers

C USAGE

fnuml
DO/Dl

IEEEDPMul(fnum2, fnum3);
DO/Dl D2/D3

FUNCTION

Accepts two IEEE D.P. floating-point numbers and returns
the arithmetic multiplication of said numbers.

INPUTS

fnum2 - IEEE double-precision floating-point number
fnum3 - IEEE double-precision floating-point number

RESULT

fnuml - IEEE double-precision floating-point number

BUGS

None

SEE ALSO

IEEEDPNeg

NAME

IEEEDPNeg -- negate the supplied IEEE double-precision
floating-point number

C USAGE

fnuml
DO/Dl

FUNCTION

IEEEDPNeg(fnum2);
DO/Dl

Accepts an IEEE D.P. floating-point number and returns the
value of said number after having been subtracted from 0.0

INPUTS

fnum2 - IEEE double-precision floating-point number

RESULT

fnuml - IEEE double-precision floating-point number

BUGS

None

SEE ALSO

:>

IEEEDPSub

NAME

IEEEDPSub -- subtract two IEEE double-precision floating-point
numbers

C USAGE

fnuml
DO/Dl

IEEEDPSub(fnum2, fnum3);
DO/Dl D2/D3

FUNCTION

Accepts two IEEE D.P. floating-point numbers and returns
the arithmetic subtraction of said numbers.

INPUTS

fnum2 - IEEE double-precision floating-point number
fnum3 - IEEE double-precision floating-point number

RESULT

fnuml - IEEE double-precision floating-point number

BUGS

None

SEE ALSO

IEEEDPTst

NAME

IEEEDPTst -- compare an IEEE D.P. floating-point number against
the value 0.0 and return a relative value indicator

C USAGE

if (IEEEDPTst(fnum» (... J
DO/Dl

FUNCTION

Accepts an IEEE double-precision floating-point number
and returns the CCR and the integer functional result as an
indicator of the result of comparison against the value 0.0.

NOTE: using number directly within parenthesis to generate in-line
code is much more efficient.

INPUTS

fnum - IEEE double-precision floating-point number

RESULT

Condition codes set to reflect the following branches:

BUGS

None

SEE ALSO

LT
GT
ELSE

fnum < 0.0
fnum > 0.0
fnum = 0.0

(Functional Result
(Functional Result
(Functional Result

-1)
+1)

0)

>

IncrCLMark

NAME
IncrCLMark -- increment a clist mark to the next position

SYNOPSIS
error = IncrCLMark(cList)
DO AO

FUNCTION
Increment a mark for clist operations to mark the next byte
in the cUst.

INPUTS
cList

RESULTS
error

EXCEPTIONS

a longword descriptor for a.clist that can be used
for clist functions.

non-zero if the next offset is not in the clist

if error is non-zero, the request asked to move the mark
beyond the end < of the clist, and the mark is invalid.

Info

NAME
Info -- Returns information about the disk.

SYNOPSIS
success ~ Info(. lock, InfoData

DO Dl D2

FUNCTION
Info finds out information about any disk in use: 'lock' refers to
the disk, or any file on the <disk. o Info returns the InfoDatastructure
with information about the size of the disk, number of free blocks
and any soft errors. Note that InfoData must be longword aligned.

INPUTS
lock - BCPLpointer to a lock
InfoData - address of an InfoData<structure

RESULTS
success - boolean .

SPECIAL NOTE:
Note that InfoData must be longword aligned.

InitArea

NAME

InitArea -- Initialize vector collection matrix

SYNOPSIS

InitArea(AreaInfo *,
aO

buffer *, max vectors
al dO

FUNCTION

This function provides initialization for the vector collection matrix
such that it has a size,of (max vectors). The size of the region
pointed to by buffer (short pointer) should be five times as large as
(max vectors). This size is in bytes. Areafills done by using AreaMove,
AreaDraw, and AreaEnd must have enough space allocated in this table to
store all the points of the largest fill. If not enough space, the
routines will return -1

INPUTS
Area Info = pointer to Area Info structure
buffer pointer to chunk of memory to collect vertices
max vectors = max number of vectors this buffer can hold

~ RESULT

NOTE

Pointers are set up to begin storage of vectors done by
AreaMove and AreaDraw.

The underlying graphics routines actually split the table
into two parts to save coordinates and flags

BUGS

None known.

SEE ALSO

graph. h AreaEnd AreaMove AreaDraw '

InitBitMap

NAME

InitBitMap -- initialize bit map structure with input values

SYNOPSIS

InitBitMap(bm, depth, width, height
aO dO dl d2

FUNCTION

Initializes various elements in the BitMap structure to
correctly reflect input depth, width, and height.
Must be used before use of BitMap in other graphics calls.
The Planes[8) are not initialized and need to 'be set up
by the caller. The Planes table was put at the end of the
structure so that it may be truncated if needed; as well as
extended.

INPUTS

BUGS

bm
depth
width
height

pointer to a BitMap structure (gfx.h)
number of bitplanes that this bitmap will have
number of bits (columns) wide for this BitMap
number of bits (rows) tall for this BitMap

None known.

SEE ALSO

gfx.h

InitCLPool

NAME
InitCLPool -- initialize a clist pool

SYNOPSIS
error
DO

FUNCTION

InitCLPool(cLPool, size)
AO DO

Initialize a block of memory for use as a pool for clist
nodes. This involves setting up a header structure and
building a free list of all the nodes.

INPUTS
cLPool

size

RESULTS
error

The data area that is to be used as the character list
pool for the clist operations.

The size of the pool, in bytes. bCList pools are
limited to 16M bytes.

If the clist pool provided is so small that not even
pool management memory will fit, this is set to
non-zero.

InitGels

NAME
InitGels

SYNOPSIS

initialize a GEL list; must be called before using GELs

InitGels(head, tail, GInfo)
aO al a2

FUNCTION
Assigns the VSprites as the head and tail of the GEL list in GfxBase
Links these two GELs together as the keystones of the list
If the collHandler'vector points to some memory' array, sets the
BORDERHIT vector to NULL

INPUTS
head = pointer to the VSprite structure to be used as the GEL list head
tail = pointer to the VSprite structure to be used as the GEL list tail
GInfo = pointer to ,the ,GelsInfo structure to be initialized

RESULT
Nothing

BUGS
None known

SEE ALSO
Nothing

>

InitGMasks

NAME
InitGMasks

SYNOPSIS
InitGMasks(anOb)

aO

FUNCTION

initialize all the masks of an AnimOb

as called by C

For every sequence of every component, calls JnitMasks

INPUTS
al = pointer to the AnimOb

RESULT
. Nothing

BUGS
None known

SEE ALSO
Nothing

InitLayers

NAME
InitLayers -- ·Initialize Layer_Info structure

SYNOPSIS
InitLayers(li)

aO

INPUTS
Ii = pointer to LayerInfo structure

FUNCTION
Initializes Layer_Info structure in preparation for
using other layer operations on this list of layers.
Makes the layers unlocked (open).

SEE ALSO
layers.h

InitMasks

NAME
InitMasks

SYNOPSIS
InitMasks(VS)

aO

FUNCTION

initialize the BorderLine and CollMask masks of a VSprite

as called by C

Creates the appropriate BorderLine and CollMask masks of the VSprite
Correctly detects if the VSprite is actually a Bob definition, handles
the image data accordingly.

INPUTS
VS = pointer to the VSprite structure

RESULT
Nothing

BUGS

SEE ALSO
Nothing

InitRastPort

NAME
InitRastPort -- Initialize raster port structure

SYNOPSIS

InitRastPort(rp
al

FUNCTION

INPUTS

RESULT

BUGS

Initializes a RastPort structure to standard values.

The struct Rastport describes a control structure for a
write-able raster. The RastPort structure describes how a
complete single playfield display will be written into.
A RastPort structure is referenced whenever any drawing or
filling operations are to be performed on a section of memory.

The section of memory that is being used in this way mayor
may not be presently a part of the current actual on-screen
display memory. The name of the actual memory section that
is linked to the RastPort is referred to here as a "raster" or
as a bitmap.

NOTE: Calling the routine InitRastPort only establishes
various defaults. It does NOT establish where, in memory,
the rasters are located. To do graphics with this RastPort,
the user must set up the BitMap pointer in the RastPort.

rp pointer to a RastPort structure.

All entries in RastPort get zeroed out. Exceptions:
The following get -1:

Mask,FgPen, AOLPen, LinePtrn
DrawMode = JAM2
The font is set to the standard system font.

None known.

SEE ALSO
rastport.h

InitRequester

NAME
InitRequester initialize a Requester structure

SYNOPSIS
InitRequester(Requester)

AD

FUNCTION
The original text for this function was:

This function initializes a requester for general
use. After calling InitRequester(), you need fill
in only those requester values that fit your
needs. The other values are set to states that
Intuition regards as NULL.

All this routine actually does is fill the specified Requester
structure with zeros. There is no requirement to call
this routine before using a Requester structure. For the
sake of backward compatibility, this function call remains,
but its sole effect is, and is guaranteed to always be, a
zero, a mystery, an enigma.

INPUTS
Requester a pointer to a Requester structure

RESULT
None

BUGS
None

SEE ALSO
None

Initstruct

NAME
Initstruct -- initialize memory from a table

SYNOPSIS
InitStruct(initTable, memory, size);

Al A2 DO-0:16

FUNCTION

INPUTS

Clear a memory area except those words whose data and offset
values are provided in the initialization table. This
initialization table has byte commands to

la I I byte I I given I I byte I I once I load count word into next rptr offset, repetitively.
long

Not all combinations are supported. The offset, when
specified, is relative to the memory pointer provided
(Memory), and is initially zero. The initialization data
(InitTable) contains byte commands whose 8 bits are
interpreted as follows:

ddssnnnn
dd the

00
01
10
11

ss the
00
01
10
11

nnnn the
count

repeat

destination type (and size):
next destination, nnnn is count
next destination, nnnn is repeat
destination offset is next byte, nnnn is count
destination offset is next rptr, nnnn is count
size and location of the source:
long, from the next two aligned words
word, from the next aligned word
byte, from the next byte
ERROR - will cause an ALERT (see below)
count or repeat:
the (number+l) of source items to copy
the source is copied (number+l) times.

initTable commands are always read from the next even byte.
Given destination offsets are always relative to memory (A2).

The command 00000000 ends the InitTable stream: use 00010001
if you really want to copy one longword.

24 bit APTR not supported for 68020 compatibility -- use long.

initTable - the beginning of the commands and data to init
Memory with. Must be on an even boundary unless only
byte initialization is done.

memory - the beginning of the memory to initialize. Must be
on an even boundary if size is specified.

size - the size of memory, which is used to clear it before
initializing it via the initTable. If Size is zero,
memory is not cleared before initializing. Size is
rounded down to the nearest even number before use.

IMPLEMENTATION
DO clear size, command, count and repeat
D1 destination offset, command type
AO current Memory pointer
Al current InitTable pointer

DO,DI,AO,AI destroyed

InitTmpRas

NAME
InitTmpRas -- Initialize area of local memory for usage by

areafill, floodfill, text

SYNOPSIS
InitTmpRas(tmpras *,buffer *, size)

dO aO al

FUNCTION

INPUTS

RESULT

BUGS

The area of memory pointed to by buffer is set up to be used
by RastPort routines that may need to get some memory for
intermediate operations in preparation to putting the graphics
into the final BitMap. tmpras is used to control the usage of
buffer.

tmpras

buffer
size

pointer to a TmpRas structure to be linked into
a RastPort
pointer to a contiguous piece of chip memory.
size in bytes of buffer

Makes buffer available for users of RastPort

None known. It Would be nice if RastPorts could share one TmpRas.

InitView

NAME
Initview -- initialize view structure

SYNOPSIS

Initview(view
al

FUNCTION

INPUTS

RESULT

BUGS

Initializes View structure to default values.

view pointer to a View structure

First, View structure set to alIOs.
Then values are put in DocOffset,nyoffset to properly position
default display about .5 inches from top and left on monitor.
Initview pays no attention to previous contents of view.

None known.

SEE ALSO

view.h

InitVPort

NAME

SYNOPSIS

FUNCTION

INPUTS

InitVPort -- Initialize Vi~Port structure

Ini tVPort (vp
aO

Initializes ViewPort structure to default values.

vp pointer to a ViewPort structure

RESULT

ViewPort structure set to all O's.

BUGS

None known.

SEE ALSO

view.h

Input

NAME
Input --' Identifies the program's initial input file handle.

SYNOPSIS
file

DO

RESULTS

Input()

file - BCPL pointer to a file handle

FUNCTION
To ,identify the program's initial input file,handle, you use Input.
(To identify the initial output, see Output.)

Insert

NAME
Insert -- insert a node, into a list

SYNOPSIS
Insert(list, node, listNode)

AD Al A2

FUNCTION
Insert a node into a, doubly linked list AFTER a given
node position. Insertion at the head of a list is performed
by passing a zero value for listNode.

INPUTS
list - a pointer to the target list,header
node - the node to insert
listNode - the node ,after which to insert

IntuiTextLength

NAME
IntuiTextLength return the length (pixel width) of an

IntuiText

SYNOPSIS
IntuiTextLength(IText)

AO

FUNCTION
'This routine'accepts a pointer to an instance of an IntuiText
structure and returns the length (the pixel width) of
the string that is represented by that instance of the
structure.

All of the usual IntuiText rules apply. Most notably, if
the Font pointer of the structure is set to NULL, you will
get the pixel width of your text in terms of the current
default font.

INPUTS
I Text pointer to an instance of an IntuiText structure

;> RESULT

,....
o
Ol

BUGS

Returns the pixel width of the text specified by the
IntuiText data.

None

SEE ALSO
None

IoErr

NAME
IoErr -- return extra information from the system

SYNOPSIS
error

DO

RESULTS

IoErr()

error - integer

FUNCTION
I/O routines return zero to indicate an error. When an error occurs,
call this routine to find out more information. Some routines use
IoErr(), for example, DeviceProc, to pass back a secondary result.

IsInteractive

NAME
IsInteractive -- discover whether a file is connected to a

virtual terminal

SYNOPSIS
bool

DO

FUNCTION

IsInteractive (file
Dl

The function IsInteractive gives a Boolean return. This indicates
whether or not the file associated with the file handle 'file' is
connected to a virtual terminal.

INPUTS
file - BCPL pointer to a file handle

RESULTS
bool - boolean

ItemAddress

NAME
ItemAddress return the address of the specified MenuItem

SYNOPSIS
ItemAddress(MenuStrip, MenuNumber)

AO DO

FUNCTION
.This routine feels through the specified MenuStrip and
returns the address of the item specified by the MenuNumber.
Typically, you will use this routine to get the address of a
MenuItem from a MenuNumber sent to you by Intuition after
the user has played with your menus.

This routine requires that the arguments be well defined.
MenuNumber may be equal to MENUNULL, in which case this routine
returns NULL. If MenuNumber does not equal MENUNULL,
it is presumed to be a valid item number. selector for your
MenuStrip,which includes a valid menu number and a valid
item·number. If the item specified by the above two components
has a subitem, the MenuNumber may have a subitem
component too.

Note that there must be both a menu number and an item
number. Because a subitem specifier is optional, the
address returned by this routine may point to either an item
or a subitem.

INPUTS
MenuStrip ~ a pointer to the first menu in your menu strip.
MenuNumber ~ the value that contains the packed data that

selects the menu and item (and subitem).

RESULT

BUGS

If MenuNumber ~~ MENUNULL, this routine returns NULL.
Otherwise, this routine returns the address of the MenuItem
specified by MenuNumber.

None

SEE ALSO
The "Menus" chapter in Amiga Intuition Reference Manual

I-'
o
00

LoadRGB4

NAME
LoadRGB4 -- load RGB color values from-table

SYNOPSIS
LoadRGB4(vp, colormap, count

aO al dO
FUNCTION

INPUTS

RESULTS

BUGS

SEE ALSO

Loads the count words of the colormapper from table

vp
colormap

count

pointer to ViewPort
-pointer to table of
of USHORTS

whose colors you want to change
RGB values set up like an array

background-
colorl

_color2

OxORGB
OxORGB
OxORGB

etc. UWORD per value.
The colors.are interpreted as 15 maximum intensity.

o = minimum intensity.
number of UWORDs in the table to load into the
colormap starting at color 0 (background) and-proceeding
to the next higher color number

Store the colors in the ViewPorts colormap. This is a
table gotten from GetColorMap(number of entries).
This colormap will be initialized from the Default colormap.

None known

view.h

LoadSeg

NAME
LoadSeg -- load a load module into memory

SYNOPSIS
segment

DO

FUNCTION

LoadSeg(name
Dl

The file 0 name 0 is a load module produced by the linker. LoadSeg takes
this .and scatter loads the code segments into memory, chaining the
segments together on their first words. It recognizes a zero as
indicating the end of the chain.

If an error occurs, -Loadseg unloads any loaded blocks and returns
a false (zero) result.

If all goes well (that is, LoadSeg has loaded the module correctly),
Loadseg returns a pointer to the beginning of the list of blocks.
Once you have finished with the loaded code, you can unload it with
a call to UnLoadSeg. (For using the loaded code, see CreateProc.)

INPUTS
name - address of first character of a null-terminated string

RESULTS
segment - BCPL pointer to a segment

......
o
<:0

LoadView

NAME
LoadView -- Use a (possibly freshly created) coprocessor instruction

list to create the current display.

SYNOPSIS
LoadView(View

Al

FUNCTION

INPUTS

RESULT

BUGS

See NAME field. Coprocessor instruction list has been created by
InitVPort, MakeView, and MrgCop.

View a pointer to the View structure, which contains the
pointer to the constructed coprocessor instructions list

The new View is displayed, according to your instructions.
The vertical blank routine will pick this pointer up and
direct Copper to start displaying this View.

SEE ALSO
Ini tVPort, MakeView, MrgCop
Intuition's RethinkDisplay()

Lock

NAME
Lock -- lock a directory or file

SYNOPSIS
lock

DO

FUNCTION

Lock (name, accessMode
Dl D2

Lock returns, if possible, a filing system lock on the file or directory
'name.' If the accessMode is ACCESS READ, the lock is a shared read
lock; if the accessMode is ACCESS WRITE, it is an exclusive write
lock. If LOCK fails (that is, if It cannot obtain a filing system
lock on the file or directory) it returns a zero.

Note that the overhead for doing a Lock is less than that for doing
an open. If you want to test to see if a file exists, you
should use Lock. of course, once you've found that it exists, you
have to use open to open it.

INPUTS
name - address of first character of a null-terminated string
accessMode - integer

RESULTS
lock - BCPL pointer to a lock

.....
o

LockLayer

NAME
LockLayer -- lock layer to make changes to ClipRects

SYNOPSIS

INPUTS

LockLayer(Ii, I)
aO al

li
I

pointer to LayerInfo structure
pointer to a layer

FUNCTION
Makes this layer unavailable for other tasks to use.
If another task is already using this layer, waits for
it to complete and then takes the layer.

SEE ALSO
layers.h

LockLayerInfo

NAME
LockLayerInfo -- lock the LayerInfo structure.

SYNOPSIS

INPUTS

LockLayerInfo(Ii
aO

Ii = pointer to LayerInfo structure

FUNCTION

SEE ALSO

After the operation that required a LockLayerInfo is complete,
unlocks the LayerInfo'structure so that other tasks may
affect the layers.

layers.h LockLayerInfo()

LockLayerRom

NAME
LockLayerRom -- lock layer structure by rom(gfx lib) code

SYNOPSIS
LockLayerRom(layer

a5

FUNCTION

INPUTS

NOTE

Returns when the layer is locked and no other caller may
alter the ClipRect structure in the Layer structure.

layer pointer to Layer structure

This call does not destroy any registers.
This call nests so that callers in this chain will not lock
themselves out.

Caveat: This lock does not prevent another task from
calling LockLayerRom() and not blocking.
This is potentially dangerous in the case of ScrollRaster
which will resort the list of ClipRects although it does
not add any new ClipRects or remove any ClipRects.

SEE ALSO
layers.h

LockLayers

NAME
LockLayers -- lock all layers from graphics output

SYNOPSIS

INPUTS

LockLayers (li
aO

li - pointer to LayerInfo structure

FUNCTION
First, calls LockLayerInfo.
Makes all layers in this layer list locked.

SEE ALSO
layers.h LockLayer() LockLayerInfo()

MakeLibrary

NAME
MakeLibrary -- construct a library

SYNOPSIS
library
DO

MakeLibrary(vectors, structure, init, datasize, segList)
AD Al A2 DO DI

FUNCTION
This function is used for constructing a library vector and
data area. space for the library is allocated from the
system's free memory pool. The size fields of the library
are filled. The data portion of the library is
initialized. A library specific entrypoint is called
(init) if present.

INPUTS
vectors - pointer to an array of function pointers or

function displacements. If the first word of the
array is -1, then the array contains relative word
displacements (based off of vectors); otherwise,
the array contains absolute function pointers.

structure - points to an "Initstruct" data region. If null,
then it will not be called.

init - an entry point that will be called before adding
the library to the system. If null, it will not be
called. When it is called, it will be called with
the libAddr in DO, and its result will be the result
of this function.

dSize - the size of the library data area, including the
standard library node data.

segList - pointer to a memory segment list (used by DOS)
This is passed to a library'S init code.

RESULT
library - the reference address of the library. This is

the address used in references to the library, not
the beginning of the memory area allocated.

EXCEPTION
If the library vector table require more system memory
than is available, this function will cause a system panic.

SEE ALSO
Initstruct

MakeScreen

NAME
MakeScreen do an Intuition-integrated MakeVPort() of

a custom screen

SYNOPSIS
MakeScreen(Screen)

AO

FUNCTION
This procedure allows you to do a MakeVPort () for the
ViewPort of your custom screen in an Intuition-integrated
way. This allows you to do your own screen manipulations
without worrying about interference with Intuition's usage
of the same ViewPort.

After calling this routine, you can call RethinkDisplay() to
incorporate the new ViewPort of your custom screen into the
Intuition display.

INPUTS
Screen address of the Screen structure.

RESULT
None

BUGS
None

SEE ALSO
RethinkDisplay(), RemakeDisplay(), Makevport()

MakeVPort

NAME
MakeVPort -- generate display Copper list

SYNOPSIS
MakeVPort(view, viewport

aO al

FUNCTION

INPUTS

RESULTS

BUGS

SEE ALSO

Using information in the View and ViewPort
constructs intermediate Copper list for this ViewPort.

view pointer to View structure
viewport= pointer to ViewPort structure

The viewport must have valid ptr to RasInfo

Constructs intermediate copper list and puts pointers in
viewport. DspIns
If the ColorMap ptr in ViewPort is nil, it uses colors
from the default color table.
If DUALPF in Modes, there must be a second RasInfo pointed
to by the first RasInfo

MrgCOp() view.h
Intuition's MakeScreen(), RemakeDisplay(), and RethinkDisplay()

MarkCList

NAME
MarkCList -- mark a position in a clist

SYNOPSIS
error = MarkCList(cList, offset)

AO DO

FUNCTION
Mark the clist for index operations by specifying a byte
offset into the clist. Note that only one mark is retained
by each clist. If the byte to which the mark refers is
subsequently manipulated, the mark will become invalid.

INPUTS
cList

offset

RESULTS
error

EXCEPTIONS

a longword descriptor for a clist that can be used
for clist functions.

a byte offset into the clist. The first byte in the
clist is at offset zero. This value should not be
greater than (SizeCList-l).

non-zero if the offset is not in the clist

if the offset is more than the length of the clist, the mark
is invalid.

MatchTCXlIValue

NAME
MatchTCXlIvalue -- check a tCXlI type variable for a particular value

SYNOPSIS
result
DO

MatchTCXlIValue(typeString, value
AO Al

FUNCTION
MatchTCXlIValue is useful for parsing a tCXlI type value for
a· known value. It knows how to parse the syntax for a tool
type value (in particular, it knows that 'I' separates
alternate values).

INPUTS
typeString ~ a TooIType value (as returned by FindTCXlIType)
value - you are interested if value appears in typeString

RESULTS
result - a one if tile value was in typeString

EXCEPTIONS

EXAMPLE
Assume there are two type strings:

typel "text"
type2 = "albic"

MatchTooIValue(typel, "text") returns I
MatchToolValue(typel, "data") returns 0
MatchTCXlIValue(type2, "a") returns I
MatchTCXlIValue(type2, "b") returns I
MatchTCXlIValue(type2, "d") returns 0
MatchTooIValue(type2, "alb") returns 0

SEE ALSO
FindToolType

BUGS

ModifyIDCMP

NAME
ModifyIDCMP modify the state of the window's IDCMP

SYNOPSIS
ModifyIDCMP(Window, IDCMPFlags)

AD DO

FUNCTION
This routine modifies the state of your window's IDCMP
(Intuition Direct Communication Message Port). The state is
modified to reflect your desires as described by the flag
bits in the value IDCMPFlags. If the IDCMPFlags argument
equals NULL, you are asking for the ports to be closed; if
they are open, they will be closed. If you set any of the
IDCMPFlags, this means that you want the message ports to be
open; if not currently open, the ports will be opened.

The four actions that might be taken are described below:
o If there is currently no IDCMP in the given window and

IDCMPFlags is NULL, nothing happens.
o If there is currently no IDCMP in the given window and

any of the IDCMPFlags are selected (set), the IDCMP of
the window is created, including allocating and
initializing the message ports and allocating a signal
bit for your port. See "Input and output Methods"
in the Aroiga Intuition Reference Manual for full details.

o If the IDCMP for the given window is opened and the
IDCMPFlags argument is NULL, Intuition will close the
ports, free the buffers, and free your signal bit. The
current task must be the same one that was active when
this signal bit was allocated.

o If the IDCMP for the given window is opened and the
IDCMPFlags argument is not NULL, this means that you want
to change which events will be broadcast to your program
through the IDCMP.

NOTE: You can set up the Window->UserPort to any port of
your own before you call ModifyIDCMP(). If IDCMPFlags is
non-null but your UserPort is already initialized, Intuition
will assume that it is a valid port with task and signal
data preset and will not disturb your set-up; Intuition will
just allocate the Intuition message port for your window.
The converse is true as well; if UserPort is NULL when you
call here with IDCMPFlags == NULL, only the Intuition port
will be deallocated. This allows you to use a port that you
already have allocated:

o openWindow() with IDCMPFlags equal to NULL (open no
ports) .

o Set the UserPort variable of your window to any valid
port of your own choosing.

o Call ModifyIDCMP() with IDCMPFlags set to what you want.
o Then, to clean up later, set UserPort equal to NULL

before calling CloseWindow() (leave IDCMPFlags alone).

A grim, foreboding note: If you are ever rude enough to

close an IDCMP without first having Reply() 'd to all of the
messages sent to the IDCMP port, Intuition will in turn be,
so rude as to reclaim and deallocate its messages without
waiting for your permission.

INPUTS
Window ~ pointer to the Window structure containing the

IDCMP ports
IDCMPFlags ~ the flag bits describing the new desired state

of the IDCMP

RESULT
None

BUGS
None

SEE ALSO
OpenWindow()

ModHyProp

NAME
ModHyProp modify the current parameters of a proportional

gadget

SYNOPSIS
ModifyProp(PropGadget, Pointer, Requester,

AO Al A2
Flags, HorizPot, VertPot, HorizBody, VertBody)
DO DI D2 D3 D4

FUNCTION
This routine modifies the parameters of the specified
proportional gadget. The gadget's internal state is ,then
recalculated and the imagery is redisplayed.

The Pointer argument can point to either a Window or a
Screen structure. 'Which one it actually points to is
decided by examining the SCRGADGET flag of the gadget. If
the flag is set, Pointer points to a Screen structure;
otherwise, it points to a Window structure.

The Requester variable can point to a Requester structure;
If the gadget has the REQGADGET flag set, the gadget is in a
requester and the Pointer must necessarily point to a window.
If this is not the gadget of a requester, the
Requester argument may 'be NULL.

INPUTS
PropGadget ~ pointer to the structure of a proportional

gadget.
Pointer ~ pointer to the structure 0f the "owning" display

element of the gadget, which is a window or a screen.
Requester ~ pointer to a Requester structure (this may be

NULL if this is not a requester gadget).
Flags ~ value to be stored in the Flags variable of the PropInfo.
HorizPot ~ value to be stored in the HorizPot variable of

the PropInfo.
vertPot ~ value to be stored in the VertPot variable of the

PropInfo.
HorizBody ~ value to be stored in the HorizBody variable of

the PropInfo.
VertBody ~ value to be stored in the VertBody variable of

the PropInfo.

RESULT
None

BUGS
None

SEE ALSO
None

Move

*
NAME

Move -- move graphics pen position'

SYNOPSIS
Move (rp, x, y)

al dO dl

FUNCTION

INPUTS

Moves graphics pen position to (X,y) relative to upper left (0,0)
of RastPort.

Note: Text uses the same position.

rp
X,y=

pointer to a RastPort'structure
point in the RastPort

MoveLayer

NAME
MoveLayer -- move nonbackdrop layer to new position in BitMap

SYNOPSIS

INPUTS

MoveLayer(Ii, 1, dx, dy
aO al dO dl

Ii
1
dx
dy

pointer to LayerInfo structure
pointer to a nonbackdrop layer
delta to add to current x position
delta to add to current y position

FUNCTION
Moves this layer to new position in shared BitMap:
If any refresh layers become revealed, collects damage and
sets REFRESH bit in layer Flags.

SEE ALSO
layers.h

--""'-l

MoveLayerInFrontOf

NAME
MoveLayerInFrontOf -- put layer in front of another layer

SYNOPSIS

INPUTS

BOOLEAN MoveLayerInFrontOf(layertomove, target
aO al

layertomove
target

layer to moved
move layertomove infront of target

FUNCTION

RETURNS

Moves this layer in front of target, swapping bits
in and out of the display with other layers.
If this is a refresh layer, collects damage list and
sets bit in Flags if redraw required.
By clearing the BACKDROP bit in the layers Flags, you may
bring a Backdrop layer up to the front of all other layers.

TRUE
FALSE

if operation successful
if operation unsuccessful (probably out of memory)

SEE ALSO
layers.h

MoveScreen

NAME
MoveScreen attempt to move the screen by the delta amounts

SYNOPSIS
MoveScreen(Screen, DeltaX, DeltaY)

AD DO Dl

FUNCTION
Attempts to move the specified screen. This movement must
follow one constraint (only for the current release of the
software): horizontal movements are ignored.

If the Deltax and DeltaY variables you specify would move
the screen in a way that violates the above restriction, the
screen will be moved as far as possible.

INPUTS
Screen
DeltaX
DeltaY

RESULT
None

BUGS
None

SEE ALSO
None

pointer to a Screen structure.
amount to move the screen on the x axis.
amount to move the screen on the y axis.

MoveSprite

NAME
MoveSprite -- move sprite to a point relative to top of viewport

SYNOPSIS
MoveSprite(vp, sprite, x, y

aO al dO dl

FUNCTION

INPUTS

RESULTS

BUGS

> SEE ALSO

Moves sprite image to new place on display.

vp

sprite
x,y

pointer to viewPort structure
0, if sprite positioned relative to View
pointer to simpleSprite structure
new position relative to top of viewport

sprite.h FreeSprite changeSprite Getsprite

MoveWindow

NAME
MoveWindow ask Intuition to move a window

SYNOPSIS
MoveWindow(Window, Deltax, DeltaY)

AD DO Dl

FUNCTION
This routine sends a request to Intuition asking to move the
window the specified distance. The delta arguments describe
how far to move the window along the respective axes. Note
that the window will not be moved immediately; it will be
moved the next time Intuition receives an input event, which
happens currently at a ffil.nlffium rate of ten times per second
and a maximum of sixty times a second.

This routine does no error-checking. If your delta values
specify some far corner of the universe, Intuition will
attempt to move your window to the far corners of the
universe. Because of the distortions in the space-time
continuum that can result from this, as predicted by special
relativity, the result is generally not a pretty sight.

INPUTS
Window ~ pointer to the structure of the window to be moved.
Deltax ~ signed value describing how far to move the window

on the x axis.
DeltaY ~ signed value describing how far to move the window

on the y axis.

RESULT
None

BUGS
None

SEE ALSO
SizeWindow(), WindowToFront(), WindowToBack()

--<:0

Mrgcop

NAME
MrgCop -- Merge together coprocessor instructions.

SYNOPSIS
MrgCop (View

Al
FUNCTION

INPUTS

RESULT

BUGS

Merge together the display, color, sprite and user coprocessor
instructions into a single coprocessor instruction stream. This
essentially creates a per-display-frame program for the coprocessor.
This function MrgCop is used, for example, by the graphics animation
routines which effectively add information into an essentially
static background display. This changes some of the user
or sprite instructions, but not those which have formed the
basic display in the first place. When all forms of coprocessor
instructions are merged together, you will have a complete per-frame
instruction list for the coprocessor.

Restrictions: Each of the coprocessor instruction lists MUST be
internally sorted in min to max Y-X order. The merge routines
depend on this! Each list must be terminated using CEND(Copper list)

View - a pointer to the view structure whose coprocessor
instructions are to be merged.

The View structure will now contain a complete, sorted/merged
list of instructions for the coprocessor, ready to be used by
the display processor. The display processor is told to use
this new instruction stream through the instruction LoadView().

SEE ALSO
InitVPort, MrgCop, LoadView
Intuition's RethinkDisplay()

NewLayerlnfo

NAME
NewLayerInfo -- allocate and Initialize full Layer_Info structure

SYNOPSIS
NewLayerInfo()

INPUTS
None

FUNCTION

RETURNS

SEE ALSO

Allocates memory required for full Layer_Info structure.
Initializes Layer_Info structure in preparation to use
other layer operations on this list of layers.
Makes the layers unlocked (open).

pointer to Layer_Info structure if successful
NULL if not enough memory

layers.h

NewRegion

NAME
NewRegion get a region of size 0

SYNOPSIS
rgn

dO

Function

(struct Region *)NewRegion()

create a Region structure, initialize it to empty and return
a pointer it.

INPUTS
none

BUGS

Off Gadget

NAME
Off Gadget disable the specified gadget

SYNOPSIS
Off Gadget (Gadget , Pointer, Requester)

AO Al A2

FUNCTION
This command disables the specified gadget. When a gadget
is disabled, these things happen:

o Its imagery is displayed ghosted.
o The GADGDISABLED flag is set.
o The gadget cannot be selected by the user.

The Pointer argument must point to a Window structure. The
Requester variable can point to a Requester structure. If
the gadget has the REQGADGET flag set, the gadget is in a
requester and Pointer must necessarily point to the window
containing that requester. If this is not the gadget of a
requester, the Requester argument may be NULL.

NOTE: It is never safe to tinker with the gadget list yourself.
Do not supply some gadget that Intuition has not
already processed in the usual way.

NOTE: If you have specified that this is a gadget of a
requester, that requester must be currently displayed.

INPUTS
Gadget = pointer to the structure of the gadget that you

want disabled.
Pointer = pointer to a Window structure.
Requester = pointer to a Requester structure (may be NULL if

this is not a requester gadget list).

RESULT
None

BUGS
None

SEE ALSO
OnGadget()

Off Menu

NAME
Off Menu -- disable the given menu or menu item

SYNOPSIS
Off Menu (Window, MenuNumber)

AO DO

FUNCTION

This conmand disables a subitem, an item, or a whole menu.
If the base of the menu number matches the menu currently
revealed, the menu strip is redisplayed.

INPUTS
Window ~ pointer to the Window structure.
MenuNumber ~ the menu piece to be enabled.

RESULT
None

BUGS
None

> SEE ALSO
I
~

OnMenu()

OnGadget

NAME
OnGadget enable the specified gadget

SYNOPSIS
OnGadget (Gadget , Pointer, Requester)

AO Al A2

FUNCTION
This conmand enables the specified gadget. When a gadget is
enabled, these things happen:

o Its imagery is displayed normally (not ghosted).
o The GADGDISABLED flag is cleared.
o The gadget can thereafter be selected by the user.

The Pointer argument must point to a Window structure. The
Requester variable ·can point to a Requester structure. If
the gadget has the REQGADGET flagset~ the gadget is in a
requester and Pointer must point to the· Window containing
the requester. If this is not the gadget of a requester,
the requester argument ·may be NULL·.

NOTE: It is never safe to tinker with the gadget list yourself.
Do not supply some gadget that Intuition has not
already processed in the usual way.

NOTE: If you have specified that this is a gadget of a
requester, that requester·must be currently displayed.

INPUTS
Gadget ~ pointer to the structure of the gadget that you

want enabled.
Pointer ~ pointer to a Window structure.
Requester ~ pointer to a Requester structure (may be NULL if

this is not a requester gadget list.).

RESULT
None

BUGS
None

SEE ALSO
off Gadget ()

OnMenu

NAME
OnMenu enable the given menu or menu item

SYNOPSIS
OnMenu (Window, MenuNumber)

AO DO

FUNCTION
This command enables a subitem, an item, or a whole menu.
If the base of the menu number matches the menu currently
revealed, the menu strip is redisplayed.

INPUTS
Window ~ pointer to the window.
MenuNumber = the menu piece to be enabled.

RESULT
None

BUGS
None

SEE ALSO
Off Menu ()

Open

NAME
Open -- open a file for input or output

SYNOPSIS
file

DO

FUNCTION

Open (name, accessMode
Dl D2

open opens 'name' and returns a file handle.' If 'the accessMode is
MODE~OLDFILE (=1005), OPEN opens an existing file for reading or writing.

However, Open creates a new file for writing if the ,value is
MODE NEWFILE (=1006). The 'name' can be a filename (optionally
prefaced by a device name), a simple device such as NIL:, a window
specification such as CON: or RAW: followed by window parameters,
or *, representing the current window.

For further details on the devices NIL:, CON:, and RAW:, see chapter 1
of the of the AmigaDOS User's Manual. If Open cannot open the file
'name' for some reason, it returns the value zero (0). In this case,
a call to the routine IoErr() supplies a secondary error code;

For testing to see if a file exists, see the entry under Lock.

INPUTS
name - address of first character of a null-terminated string
accessMode - integer

RESULTS
file - BCPL pointer to file handle

OpenDevice

NAME.
OpenDevice gain access to a device

SYNOPSIS
error
DO

OpenDevice(devName, unitNumber, iORequest, flags)
AO DO Al DI

FUNCTION

INPUTS

RESULTS

This function opens the named device/unit and initializes
the given I/O request block.

devName - requested device name

unitNumber - the unit number to open on that device. The
format of the unit number is device specific.

iORequest - the I/O request block to be returned with
appropriate fields initialized.

flags - additional driver specific information. This is
sometimes used to request opening a device with
exclusive access.

error - zero if successful, else an error is returned

SEE ALSO
CloseDevice

OpenDiskFont

NAME
OpenDiskFont.- load and get a pointer to a disk font

SYNOPSIS
font
DO

FUNCTION

OpenDiskFont(textAttr)
AO

This function finds the font with the specified textAttr on
disk, loads it into memory, and returns a pointer to the font
that can be used in subsequent SetFont() and CloseFont() calls.
It is important to match this call with a corresponding
CloseFont() call for effective management of font memory.

If the font is already in memory, the copy in memory is used.
The disk copy is not reloaded.

INPUTS
textAttr = a TextAttr structure that describes the text font

attributes desired.

EXCEPTIONS
DO is zero if the desired font cannot be found.

OpenFont

NAME
OpenFont -- get a pointer to a system font.

SYNOPSIS
font
DO

FUNCTION

OpenFont(textAttr), graphicsLib
AO A6

This function searches the system font space for the graphics
text font that best matches the attributes specified. The
pointer to the font returned can be used in subsequent
SetFont and CloseFont calls. It is important to match this
call with a corresponding CloseFont call for effective
management of RAM fonts.

INPUTS
textAttr - a TextAttr structure"that describes the text font

attributes desired

EXCEPTIONS
DO is zero if the desired font cannot be found. IL the named
font is found, but the size and style specified are not
available, a font with the nearest attributes is returned.

OpenLibrary

NAME
OpenLibrary gain access to a library

SYNOPSIS
library
DO

OpenLibrary(libName, version)
Al DO

FUNCTION

INPUTS

RESULTS

This function returns a pointer to a library that was
previously installed into the system. If the requested
library is exists, and if the library version is greater
than or equal to the requested versioni' then the open
will succeed.

libName - the name of the library to open
version - the version of the library required.

library - a library pointer for a successful open, else zero"

SEE ALSO
CloseLibrary

OpenResource

NAME
OpenResource gain access to a resource

SYNOPSIS
resource
DO

OpenResource(resName)
Al

FUNCTION
This function returns a pointer to a resource that was previously
installed into the system.

INPUTS
resName - the name of the resource requested.

RESULTS
resource - if successful, a resource pointer, else null

SEE ALSO
CloseResource

OpenScreen

NAME
OpenScreen open an Intuition screen

SYNOPSIS
OpenScreen(NewScreen)

AO
where the NewScreen structure is initialized with:
Left, Top, Width, Height, Depth, DetailPen, BlockPen,
ViewModes, Type, Font, DefaultTitle, Gadgets

FUNCTION
This command opens an Intuition screen according to the
specified parameters. It does all the allocations, sets up
the screen structure and all substructures completely, and
links this screen's ViewPort into Intuition's View of the
world.

Before you call OpenScreen(), you must initialize an
instance of a NewScreen structure. NewScreen is a structure
that contains all of the arguments needed to open a screen.
The NewScreen structure may be discarded immediately after
it is used to open the screen.

The TextAttr pointer that you supply as an argument will be
used as the default font for all Intuition-rnanaged text that
appears in the screen and its windows. This includes, but
is not limited to, the text on the title bars of both the
screen and windows.

The SHOWTITLE flag is set to TRUE by default when a screen
is opened. This causes the screen's title bar to be
displayed when the screen first opens. To hide the title
bar, you must call the routine ShowTitle().

INPUTS
NewScreen = pointer to an instance of a NewScreen structure,

which is initialized with the following information:

LeftEdge = initial x position of your screen (should be zero
for now).

TopEdge = initial y position of the opening screen.
width = the width for this screen's RastPort.
Height = the height for this screen's RastPort.
Depth = number of bit-planes.
DetailPen = pen number for details (such as gadgets or text

in the title bar).
BlockPen = pen number for block fills (such as the title

bar) .
Type = screen type (for any screen not created by Intuition,

this should be equal to CUSTOMSCREEN). Types currently
supported include only CUSTOMSCREEN, which is your own
screen.
You may also set the Type flag CUSTOMBITMAP and then
supply your own BitMap for Intuition to use, rather
than having Intuition allocate the display memory for

you.
ViewModes ~ the appropriate flags for the data type

ViewPort.Modes. These might include:
HIRES for this screen to be HIRES width.
INTERLACE for the display to switch to interlaced mode.
SPRITES for this screen to use sprites.
DUALPF for dual-playfield mode.

Font ~ pointer to the default TextAttr structure for this
screen and all windows that open in this screen.

DefaultTitle ~ pointer to a line of text that will be
displayed along the screen's title bar. The text will
be null-terminated. If this argument is set to NULL,
no text will be produced.

Gadgets ~ this should be set to NULL.
CustomBitMap ~ If you're not supplying a custom BitMap, this

value is ignored. However, if you have your own
display memory that you want used for this screen, the
CustomBitMap argument should point to the BitMap that
describes your display memory. See the "Screens"
chapter in the Arniga Intuition Reference Manual and
the "Graphics Primitives" chapter in this
manual for more information about BitMaps.

RESULT
~ If all is well, the routine returns the pointer to your new
I screen. If anything goes wrong, the routine returns NULL.

I-'

~ BUGS
None

SEE ALSO
OpenWindow(), ShowTitle()

OpenWindow

NAME
OpenWindow open an Intuition window

SYNOPSIS
OpenWindow(NewWindow)

AO
where the NewWindow structure is initialized with:
Left, Top, Width, Height, DetailPen, BlockPen, Flags, IDCMPFlags,
Gadgets, CheckMark, Text, Type, Screen, BitMap,
MinWidth, MinHeight, MaxWidth, MaxHeight

FUNCTION
This command opens an Intuition window of the given height,
width, and depth, including the specified system gadgets as
well as any of your own. It allocates everything you need
to get going.

Before you call OpenWindow(), you must initialize an
instance of a NewWindow structure, which contains all of the
arguments needed to open a window. The NewWindow structure
may be discarded immediately after it is used to open the
window.

If Type ~~ CUSTOMSCREEN, you must have opened your own
screen already via a call to OpenScreen(). Then Intuition
uses your Screen argument for the pertinent information
needed to get your window going. On the other hand, if Type
~~ one of Intuition's standard screens, your Screen argument
is ignored. Instead, Intuition will check to see whether or
not that screen already exists; if it does not, it will be
opened first before Intuition opens your window in the standard
screen. If the flag SUPER_BITMAP is set, the BitMap
variable must point to your own BitMap. The DetailPen and
the BlockPen are used for system drawing; for instance, the
title bar is first filled using the BlockPen, and then the
gadgets and text are drawn using DetailPen. You can supply
special pens for your window, or you can use the screen's
pens instead (by setting either of these arguments to -1).

INPUTS
NewWindow ~ pointer to an instance of a NewWindow structure,

which is initialized with the following data:

LeftEdge ~ the initial x position for your window.
TopEdge ~ the initial y position for your window.
Width ~ the initial width of this window.
Height ~ the initial height of this window.
DetailPen ~ pen number (or -1) for the drawing of window

details (such as gadgets or text in the title bar).
BlockPen ~ pen number (or -1) for window block fills (such

as the title bar)
Flags ~ specifiers for your requirements of this window, as

follows.
o system gadgets you want attached to your window:

o WINDOWDRAG allows this window to be dragged.

o WINDOWDEPTH lets the user depth-arrange this window.
o WINDOWCLOSE attaches the standard close gadget.
o WINDOWSIZING allows this window to be sized. If

you ask for the WINDOWSIZING gadget, you must
specify one or both of the flags SIZEBRIGHT and
SIZEBBOTTOM below; if you do not, the default is
SIZEBRIGHT. See the following SIZEBRIGHT and
SIZEBBOTTOM items for extra information.

o SIZEBRIGHT is a special system gadget flag that
you set to specify whether or not you want the
right border adjusted to account for the physical
size of the sizing gadget. The sizing gadget
must, after all, take up room in either the right
or the bottom border (or both, if you like) of
the window. Setting either this or the
SIZEBBOTTOM flag selects which edge will take up
the slack. This will be particularly useful to
applications that want to use the extra space for
other gadgets (such as a proportional gadget and
two Booleans done up to look like scroll bars)
or, for instance, applications that want every
possible horizontal bit and are willing to lose
lines vertically.
NOTE: If you select WINDOWSIZING, you must
select either SIZEBRIGHT or SIZEBBOTTOM or both.
If you select neither, the default is SIZEBRIGHT.

o SIZEBBOTTOM is a special system gadget flag that
you set to specify whether or not you want the
bottom border adjusted to account for the physical
size of the sizing gadget. For details,
refer to SIZEBRIGHT above. NOTE: If you select
WINDOWSIZING, you must select either SIZEBRIGHT
or SIZEBBOTTOM or both. If you select neither,
the default is SIZEBRIGHT.

o GIMMEZEROZERO produces easy but expensive output.
o Type of window raster you want:

o SIMPLE_REFRESH

o SUPER BITMAP
o BACKDROP-specifies whether or not you want this window

to be one of Intuition's special backdrop windows.
See BORDERLESS as well.

o REPORTMOUSE specifies whether or not you want the
program to "listen" to mouse movement events whenever
its window is active. If you want to change
whether or not your window is listening to the mouse
after you have opened your window, you can call
ReportMouse(). Whether or not your window is
listening to the mouse is also affected by gadgets,
because they can cause the program to get mouse
movement reports. The reports (either InputEvents
or messages on the IDCMP) that you get will have the
x,y coordinates of the current mouse position,
relative to the upper left corner of your window
(GIMMEZEROZERO notwithstanding). This flag can work
in conjunction with the IDCMP flag called MOUSEMOVE,
which allows your program to listen via the IDCMP.

o BORDERLESS should be set if you want a window with
no default border padding. Your window may have

border padding anyway, depending on the gadgetry you
have requested for the window, but you will not get
the standard border lines and spacing that come with
typical windows. This is a good way to take over
the entire screen, since you can have a window cover
the entire width of the screen using this flag.
This will work particularly well in conjunction with
the BACKDROP flag (see above), because it allows you
to open a window that fills the entire screen.
NOTE: This is not a flag that you want to set casually,
since it may cause visual confusion on the
screen. The window borders are the only dependable
visual division between various windows and the
background screen. Taking away the border takes
away that visual cue, so make sure that your design
does not need it before you proceed.

o ACTIVATE is the flag you set if you want this window
to automatically become the active window. The
active window is the one that receives input from
the keyboard and mouse. It is usually a good idea
to have the window you open when your application
first starts up be an ACTIVATED one, but all others
opened later should not be ACTIVATED. (If the user
is off doing something with another screen, for
instance, your new window will change where the
input is going, which would have the effect of yanking
the input rug from under the user.) Please use
this flag thoughtfully and carefully.

o RMBTRAP, when set, causes the right mouse button
events to be trapped and broadcast as events. Your
program can receive these events through either the
IDCMP or the console.

IDCMPFlags ~ IDCMP is the acronym for Intuition Direct
Communications Message Port. If any of the IDCMP flags
is selected, Intuition will create a pair of message ports
and use them for direct communications with the task that
is opening this window (as compared with broadcasting
information via the console device). See the "Input and
output Methods" chapter of "Amiga Intuition Reference
Manual" for complete details.

You request an IDCMP by setting any of these flags.
Except for the special "verify" flags, every other flag
you set tells Intuition that if a given event occurs
that your program wants to know about, Intuition should
broadcast the details of that event through the IDCMP
rather than via the console device. This allows a program
to interface with Intuition directly, rather than
going through the console device.

Remember, if you are going to open both an IDCMP and a
console, it will be far better to get most of the event
messages via the console. Reserve your usage of the
IDCMP for special performance cases; that is, when you
are not going to open a console for your window and yet
you do want to learn about a certain set of events (for
instance, CLOSEWINDOW); another example is SIZEVERIFY,
which is a function that you get only through the use

of the IDCMP (because the console does not give you any
way to talk to Intuition directly).
On the other hand, if the IDCMPFlags argument is equal
to zero, no IDCMP is created and the only way you can
learn about any window event for this window is via a
console opened for this window. For instance, you have
no way to SIZEVERIFY.

If you want to change the state of the IDCMP after you
have opened the window (including opening or closing
the IDCMP), you call the routine ModifyIDCMP () .
The flags you can set are explained below:
o REQVERIFY is a flag that, like SIZEVERIFY and

MENUVERIFY (see below), specifies that you want to make
sure that your graphical state is quiescent before
something extraordinary happens, such as the drawing
of a rectangle of graphical data in your window. If
you are drawing in that window, you probably will
wish to make sure that you have ceased drawing
before the user is allowed to bring up the DMRequest
you have set up. The same goes for when the system
has a requester for the user. Set this flag to ask
for that verification step.

o REQCLEAR is the flag you set to get notification
when the last requester is cleared from your window
and it is safe for you to start output again
(presuming that you are using REQVERIFY).

o REQSET is a flag that you set to receive a broadcast
when the first requester is opened in your window.
Compare this with REQCLEAR above. This function is
distinct from REQVERIFY. REQSET merely tells your
program that a requester has opened, whereas REQVERIFY
requires the program to respond before the
requester is opened.

o MENUVERIFY is the flag you set to have Intuition
stop and wait for your program to finish all graphical
output to the window before drawing the menus.
Menus are currently drawn in the most memory-efficient way,
which involves interrupting output to
all windows in the screen before the menus are
drawn. If you need to finish your graphical output
before this happens, you can set this flag to make
sure that you do.

o SIZEVERIFY is used when the program sends output to
the window that depends on a knowledge of the
current size of the window. If the user wants to
resize the window, you may want to make sure that
any queued output completes before the sizing takes
place (critical text, for instance). To do so, set
this flag. Then, when the user wants to size,
Intuition will send the program the SIZEVERIFY message
and Waitt) until the program replies that it is
all right to proceed with the sizing.
NOTE: Saying that Intuition will Waitt) until your
program replies is really saying that the user will
wait until the program replies, which suffers the
great negative potential of user-unfriendliness.
Remember to use this flag sparingly, and, as always
with any IDCMP message your program receives, reply
promptly! After the user has sized the window, your

program can find out about it by using NEWSIZE.
o NEWSIZE is the flag that tells Intuition to send an

IDCMP message after the user has resized your window.
At this point, you could examine the size
variables in your Window structure to discover the
new size of the window.

o REFRESHWINDOW, when set, will cause a message to be
sent whenever your window needs refreshing. This
flag makes sense only with SIMPLE_REFRESH and
SMART REFRESH windows.

o MOUSEBUTTONS will make sure your program receives
reports about mouse-button up/down events. NOTE:
only the events that mean nothing to Intuition are
reported. If the user clicks the select button over
a gadget, Intuition deals with it without sending
any message.

o MOUSEMOVE works only if you set the REPORTMOUSE flag
(see above) or if one of your gadgets has the flag
FOLLOWMOUSE set. Then all mouse movements will be
reported through the IDCMP.

o GADGETOOWN specifies that when the user "selects" a
gadget you have created with the GADGIMMEDIATE flag
set, the fact will be broadcast through the IDCMP.

o GADGETUP specifies that when the user "releases" a
gadget that you have created with the RELVERIFY flag
set, the fact will be broadcast through the IDCMP.

o MENUPICK specifies that MenuNumber data be sent to
your program.

o CLOSEWINDOW specifies that the CLOSEWINDOW event be
broadcasted through the IDCMP rather than the console device.

o RAWKEY specifies that all RAWKEY events be transmitted
via the IDCMP. Note that these are absolutely
raw keycodes, which you will have to massage before
using. Setting this and the MOUSE flags effectively
eliminates the need to open a console device to get
input from the keyboard and mouse. of course, in
exchange you lose all of the console features, most
notably the "cooking" of input data and the
systematic output of text to your window.

o VANILLAKEY is the raw keycode RAWKEY event
translated into the current default character keymap
of the console device. In the USA, the default keymap
is ASCII characters. When you set this flag,
you will get IntuiMessages where the Code field has
a character representing the key struck on the keyboard.

o INTUITICKS gives you simple timer events from Intuition
when your window is the active one; it may help
you avoid opening and managing the timer device.
with this flag set, you will get only one queued-up
INTUITICKS message at a time. If Intuition notices
that you've been sent an INTUITICKS message and
haven't replied to it, another message will not be
sent.
Intuition receives timer events ten times a second
(approximately).

o Set ACTIVEWINDOW and INACTlVEWINDOW to discover when
your window becomes activated or inactivated.

Gadgets ~ a pointer to the first of a linked list of your
own gadgets that you want attached to this window. Can

be NULL if you have no gadgets of. your own.
CheckMark = a pointer to an instance of the Image structure

that contains the imagery. you want used when any of
your MenuItems is to be checkmarked. If you do not
want to supply your own imagery and· prefer. to use
Intuition's owncheckmark, set this argument to NULL.

Text = a null-terminated line of· text that will appear on
the title bar of your window (may be NULL if you want
no text).

Type = the screen type for this window. I f this equals..
CUSTOMSCREEN, you must have already opened a custom screen
(see text above). Types available include.!
o WBENCHSCREEN
o CUSTOMSCREEN

Screen = if your type is one of Intuition's standard
screens, this argument is ignored. However, if type ==

CUSTOMSCREEN, this must point to the structure of your
own screen.·

BitMap = if you have specified SUPER_BITMAP as the type of
raster you want for this window, this value points to
a instance of the BitMap structure. However, if the
raster type is not SUPER_BITMAP, this. pointer .is
ignored.

MinWidth, MinHeight, MaxWidth, MaxHeight = the size limits·
for this window. These must be· reasonable values,
which is to say that the minimwns .. cannot be greater
than the current size, nor can the maximums be smaller
than the current size. If they are, they are ignored.
Anyone of these can be initialized to zero, which
means that that limit will be set to the current dimension
of that axis. The limits can be changed after the
window is opened by calling the WindowLimits() routine.
If you have not requested the. WINDOWSIZING option,
these variables are ignored and you do not have to
initialize them.

RESULT

BUGS

If all is well, this command returns a pointer to the structure
of your new window. If anything goes wrong, it returns NULL.

ACTIVATE is currently advisory only. The user is able to do
things that will prevent your window from becoming the
active one when it opens.

SEE ALSO
OpenScreen(); ModifyIDCMP(), SetWindowTitles(), WindowLimits()

openWorkBench

NAME
OpenWorkBench open the Workbench screen

SYNOPSIS
BOOL OpenWorkBench()

FUNCTION·
This routine attempts to reopen the Workbench. If the Workbench
screen reopens successfully, this routine returns
TRUE; if something goes wrong, it returns FALSE.

Even though this routine does return a BOOL value, you can
ignore the return value if you want.

INPUTS
None

RESULT

BUGS

TRUE if the Workbench screen opened successfully or was
already opened.
FALSE if anything went wrong ·and the Workbench screen is not·
open.

None

SEE ALSO
None

OrRectRegion

NAME
OrRectRegion -- perform second OR operation of rectangle

with region, leaving result in region

SYNOPSIS
OrRectRegion (region, rectangle)

aO al

Function

INPUTS

BUGS

If any portion of rectangle is not in the region, adds
that portion to the region

region
rectangle

pointer to Region structure
pointer to Rectangle structure

output

NAME
output -- Determine the programs initial output file handle.

SYNOPSIS
file = Output()

DO

FUNCTION
To identify the program's initial output file handle, you use Output.
(To identify the initial input, see Input.)

RESULTS
file - BCPL pointer to a file handle

OWnBlitter

NAME
OWnBlitter -- get the blitter for private usage

SYNOPSIS
OWnBlitter()

FUNCTION

INPUTS

RETURNS

Returns.when the blitter has been locked from others using it
and can now be used.by this task. Before actually using, the
new owner should call waitBlit, which waits until any previous
blit that the blitter may have been doing is actually done.

SEE ALSO
DisownBlitter

ParentDir

NAME
ParentDir obtain the parent of a directory or file

SYNOPSIS
Lock

DO

FUNCTION

ParentDir(lock
DI

This TUllction returns a lock associated with the parent directory
of a file or directory. That is, ParentDir takes a lock associated
with a file or directory and returns the lock_of its parent directory.

Note: The result of ParentDir may be zero (0) for the root of the
current filing system.

INPUTS
lock - BCPL pointer to a lock

RESULTS
lock - BCPL pointer to a lock

PeekCLMark

NAME
PeekCLMark -- peek at the byte in the clist at the mark

SYNOPSIS
byte
DO

FUNCTION

PeekCLMark(cList)
AO

Returns the byte value at the mark in the character list
associated with the mark.

INPUTS
cList

RESULTS
byte

a longword descriptor for a clist that can be used
for clist functions.

the byte at the mark in the clist.

Permit

NAME

Permit -- Permit multi-tasking following a Forbid()

SYNOPSIS

Permit ();

FUNCTION

Task switching will not.necessarily be permitted after this call since
the Forbid() function nests (only an equal number of Permit's
following a set of Forbid's finally allows task-switching).

SEE ALSO

Forbid

PolyDraw

NAME
PolyDraw -- draw lines from table of (X,y) values.

SYNOPSIS
PolyDraw(rp, count , array

al dO aO

FUNCTION
starting with the first pair, draws connected lines to
it and to every succeeding pair.

INPUTS

BUGS

rp
count
array

none known

SEE ALSO
Draw()

pointer to RastPort structure
number of points in array (x,y) pairs
pointer to first (X,y) pair

*

PrintIText

NAME
PrintIText print the text according to the IntuiText argument

SYNOPSIS
PrintIText(RastPort, IText, LeftEdge, TopEdge)

AO Al DO DI

FUNCTION
This routine prints the IntuiText into the specified RastPort.
It sets up the RastPort as specified by the IntuiText
values, then prints the text into the RastPort at the IntuiText
x,y coordinates offset by the left/top arguments.

This routine does Intuition window-clipping as appropriate.
If you print text outside of your window, your characters
will be clipped at the window's edge.

If the NextText field of the IntuiText argument is non-zero,
the next IntuiText fs drawn as well (return to the top of
this FUNCTION section for details).

INPUTS
RastPort ~ pointer to the RastPort destination of the text.
IText ~ pointer to an IntuiText structure.
LeftEdge ~ left offset of the IntuiText into the RastPort.
TopEdge ~ top offset of the IntuiText into the RastPort.

RESULT
None

BUGS
None

SEE ALSO
None

PutCLBuf

NAME
PutCLBuf -- convert contiguous data into a character list

SYNOPSIS
error PutCLBuf(cList, buffer, length)
DO AO Al Dl

FUNCTION
Appends the contents of the data buffer to a character list.
The buffer data remains intact.

INPUTS
cList -

The clist descriptor used to manage this character
list, as returned by AllocCList.

buffer -

length

RESULTS
error

A pointer to byte data used to initialize the character
list.

The number of bytes of data in the buffer.

non-zero indicates the number of bytes not added.

PutCLChar

NAME
PutCLChar -- add a byte to the end of a character list

SYNOPSIS
error
DO

FUNCTION

PutCLChar(cList, byte)
AO DO

Adds a byte to the end of the character list described by the
cList.

INPUTS
cList -

byte

RESULTS
error

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The byte to add to the end of the character list

non-zero indicates the byte could not be added

PutcLWord

NAME
PutCLWord -- add a word to the end of a character list

SYNOPSIS
error
DO

FUNCTION

PutCLWord(cList, word)
AO DO

Add a word to the end of the character list described by the
cList.

INPUTS
cList -

word

RESULTS
error

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The word to add to the end of the character list

non-zero indicates the number of bytes not added.
Partial words are not added, so error is always zero
or two.

PutDiskObject

NAME
PutDiskObject -- write out a DiskObject to disk

SYNOPSIS
status
DO

PutDiskObject(name,
AO

diskobj
Ai

FUNCTION
This routine writes out a DiskObject structure and its
associated information. The file name of the info
file will be the name parameter with a ". info" postpended
to it. If the call failS, a zero will be returned. The
reason for the failure may be obtained via IoErr().

PutDiskObject and PutIcon are functionally identical.
They are both provided so therE is a Put/Get/Free triple
for disk objects.

INPUTS
name name of the object
diskobj -- a pointer to a DiskObject

RESULTS
status -- non-zero if the call succeeded

EXCEPTIONS

SEE ALSO
GetDiskObject, FreeDiskObject, PutIcon

BUGS

>

PutIcon

NAME
PutIcon -- write out a DiskObject to disk

SYNOPSIS
status
DO

PutIcon(name, icon
AO Al

FUNCTION
This routine writes out a Diskobject structure and its
associated information. The file name of the info
file will be the name parameter with a ". info" postpended
to it. If the call fails, a zero will be returned. The
reason for the failure may be obtained via IoErr().

PutDiskObject and PutIcon are functionally identical.
They are both provided so there is a Put/Get/Free triple
for disk objects.

Users are encouraged to use putDiskObject instead of this
routine

INPUTS
name name of the Object
icon - a pointer to a DiskObject

RESULTS
status -- non-zero if the call succeeded

EXCEPTIONS

SEE ALSO

BUGS

PutMsg

NAME
PutMsg -- put a message to a message port

SYNOPSIS
PutMsg(port, message)

AO Al

FUNCTION
This function attaches a message to a given message port.
It provides a fast, non-copying message sending mechanism.

Messages can be attached to only one port at a time. The
message body can be of any size or form. Because messages
are not copied, cooperating tasks share the same message
memory. The sender task should not recycle the message
until it has been replied by the receiver. of course this
depends on the message handling conventions setup by the
involved tasks. If the ReplyPort field is non-zero, when
the message is replied by the receiver, it will be sent back
to that port.

Anyone of the following actions can be set to occur
when a message is put:

1. no special action
2. signal a given task
3. cause a software interrupt

3. cause a software interrupt

INPUT

The action is selected depending on the value set in
PB_ACTION of MP_FLAGS.

port - pointer to a message port
message - pointer to a message

SEE ALSO
GetMsg, ReplyMsg

PutWBObject

NAME
PutWBObject -- write out a Workbench object

SYNOPSIS
status
DO

putWBObject(name,
AO

object
Al

FUNCTION
This routine writes a Workbench object to disk. The
name parameter will have a ".info" postpended to it, and
that file name will have the disk-resident information
written into it. If the call fails, it will return a zero.

'The reason for the failure may be obtained via IoErr().

This routine is intended only for internal users that can
track changes to the Workbench.

INPUTS
name -- name of 'the object
object -- the Workbench object to be written out

RESULTS
status --non-zero if the call succeeded.

EXCEPTIONS

SEE ALSO

BUGS

QBlit

NAME
QBlit -- queue up a request' for blitter usage

SYNOPSIS

QBlit(bp
Al

FUNCTION

INPUTS

RESULT

NOTE

BUGS

Links a request for the use of the blitter to the end of the
current blitter queue. The pointer bp points to a blit structure
containing, among other things, the link information and the
address of your routine which is to be called when the blitter
queue finally gets around to this specific request. When your
routine is called, you are in control of the blitter ... it is
not busy with anyone else's requests. This means that you can
directly specify the register contents and start the blitter.
See the description of the blit'structure and the uses of QBlit
in the "Graphics Primitives" chapter in this manual.
The header of a blitter structure is shown in hardwarefblit.h

bp pointer to a blit structure

Your routine is called when the blitter is ready for you.

In general, requests for blitter usage through this channel are
put in front of those who use the blitter via OwnBlitter and
DisownBlitter. However, for small blits there is more overhead
using the queuer than Own/Disown Blitter.

None known

SEE ALSO

QBSBli t bli t . h

>
I

W
00

QBSBlit

NAME

QBSBlit -- synchronize the blitter request with the video beam.

SYNOPSIS

QBSBli t (bsp
al

FUNCTION

INPUTS

RESULT

BUGS

Calls a user routine for use of the blitter, enqueued separately from
the QBlit queue. Calls the user routine contained in the blit
structure when' the video beam is located at a specified position
onscreen. Useful when you are trying to'blit into a visible part
of the screen and wish to perform the data move while the beam is
not trying to display that same area (prevents showing part of
an old display and part of a new display simultaneously). Blitter
requests on the QBSBlit queue take precedence over those on the
regular blitter queue. The beam position is specified through
the bli tnode .

bsp pointer to a blit structure. See description in the
Graphics support section of the manual for more info.

User routine is called when the QBSBlit queue reaches this
request AND the video beam is in the specified position.

SEE ALSO

QBlit

Read

NAME
Read -- read bytes of data from a file

SYNOPSIS
actualLength

DO

FUNCTION

Read (file, buffer, length
Dl D2 D3

You can copy data with a combination of Read and write. Read reads
bytes of information from an opened file '(represented here by the
argument 'file') into the memory buffer indicated. Read attempts to
read as many bytes as fit into the buffer as indicated by the value
of length. You should always make sure that the value you'give as
the length really does represent the size of the buffer. Read may
return a result indicating that it read less bytes than you requested,
for example, when reading a line of data that you.typed at the terminal.

The value returned is the length of the information actually read.
That is to say, when 'actualLength' is greater than zero, the value
of 'actualLength' is the the number of characters read. A value of
zero means that end-of-file has been reached. Errors are indicated

'bya value of -1. Read from the console returns a value when a return
is found' or the buffer is full.

A call to Read also modifies or changes the value of IoErr(). IoErr()
gives more information about an error (for example, actualLength equals
-1) when it is called.

INPUTS
file - BCPL pointer to a file handle
buffer - address of the first location of a buffer
length - integer

RESULTS
actualLength - integer

ReadPixel

NAME
ReadPixel -- read the pen number value of the pixel at a

specified x,y location within a certain RastPort

SYNOPSIS
penno

DO
(int)ReadPixel(rp,

al
x, y)
DO Dl

FUNCTION

INPUTS

RESULT

BUGS

Combines the bits from each of the bit-planes used to describe
a particular RastPort into the pen number selector which that
bit combination normally forms for the system hardware selection
of pixel color.

x is the X coordinate within the range of the RastPort size.
y is the Y coordinate within' the. range of the RastPort size.
rp is a pointer to a RastPort structure
rp is a pointer to a RastPort structure

Pen (0 .. 255) number at that position is returned.
-1 is returned if cannot read that pixel

SEE ALSO
WritePixel

RectFill

NAME
RectFill -- fill a defined rectangular area with

the current drawing pen color, outline color,
secondary color, and pattern.

SYNOPSIS
RectFill(rp, xmin, yrnin, xmax, ymax)

Al DO Dl D2 D3

FUNCTION

INPUTS

Fills the rectangular region specified by the
parameters with the chosen pen colors, areafill
pattern, and drawing mode.

(xmin,yrnin) (xmax,yrnax) are the coordinates of the upper
left corner and the lower. right corner, respectively, of the
rectangle.
(xmax)= xmin) and (yrnax)= yrnin)

rp.points to the RastPort which receives the filled rectangle.

SEE ALSO

RefreshGadgets

NAME
RefreshGadgets refresh (redraws) the gadget display

SYNOPSIS
. RefreshGadgets (Gadgets, Pointer, Requester)

AD Al A2

FUNCTION
This routine refreshes (redraws) all of -the gadgets in the
gadget list, starting from the specified gadget.

The Pointer argument points to a Window structure.

The Requester variable can point to a Requester structure.
If the first gadget in the list has the REQGADGET flag set,
the gadget list.refers to gadgets in a requester and Pointer
must necessarily point to a window. If these are not the
gadgets of a requester, the Requester argument may be NULL.

There are two main reasons why you might want to use this routine.
First, you have modified the imagery. of the gadgets in your
display and you want the new imagery to be displayed. Second,
if you think that some graphic operation trashed the gadgetry of
your display, this routine will refresh the imagery.

The Gadgets argument can be a copy of the FirstGadget variable
in either the Screen or Window structure that you want refreshed;
the effect of this will be that all gadgets will be redrawn.
However, you can selectively refresh just some of the gadgets
by starting the refresh part way into the list-for instance,
redrawing your window non-GIMMEZEROZERO gadgets only, which you
have conveniently-grouped at the -end of your gadget list.

NOTE: It is never safe to tinker with the gadget list yourself.
Do not supply some gadget list that Intuition has not
already processed in the usual way.

NOTE: If you have specified that this is the gadget list of
a requester, that requester must be currently displayed.

INPUTS
Gadgets = pointer to the first structure in the list of

gadgets wanting refreshment.
Pointer = pointer to a Window structure.
Requester = pointer to a Requester structure (may be NULL if

this is not a requester gadget list).

RESULT
None

BUGS
None

SEE ALSO
None

RemakeDisplay

NAME
RemakeDisplay remake the entire Intuition display

SYNOPSIS
RemakeDisplay()

FUNCTION

This is the big one. This procedure remakes the entire
Intuition display. It calls MakeScreen() for every screen
in the system and then it calls RethinkDisplay(), which
-rethinks the relationships of the screens to one another and
then rethinks the display Copper lists_

WARNING: This routine can take several milliseconds to run,
so do not use it lightly. RethinkDisplay() (called by this
routine) does a_Forbid() on entry and a Permit() on exit,
which can seriously degrade the performance of the multitasking
Executive.

INPUTS
None

RESULT
None

BUGS
None

SEE ALSO
RethinkDisplay()

RemDevice

NAME
RemDevice -- remove a device from the system

SYNOPSIS
error
DO

FUNCTION

RemDevice(device)
Al

This function removes an existing device from the system.
This function deletes the device from the device name list,
so no new opens can occur.

INPUTS
device - pointer to a device node

RESULrs
error - zero if successful, else an error is returned

SEE ALSO
AddDevice

RemFont

NAME
RemFont -- remove a font from the system list

SYNOPSIS
error
DO

FUNCTION

RemFont(textFont), GraphicsLib
Al A6

This function removes a font from the system, ensuring that
access to it is restricted to those applications that
currently have an active pointer to it: i.e., no new GetFont
requests to this font are satisfied.

INPUTS
textFont - the TextFont structure to remove.

RemHead

NAME

SYNOPSIS

RemHead -- remove the head node from a list

node
DO

RemHead(list)
AO

FUNCTION
Get a pointer to the head node and remove it from the list.

INPUTS
list - a pointer to the target list header

RESULT
node - the node removed or zero when empty list

RemIBob

NAME
RemIBob

SYNOPSIS

immediately remove a Bob from the GEL list and the RastPort

RemIBob (Bob, RPort, VPort)
aO al a2

FUNCTION
Removes a Bob immediately by uncoupling it from the GEL list and erasing

it from the RastPort

INPUTS
Bob pointer to the Bob to be removed
RPort pointer to the RastPort if the Bob is to be erased
VPort ~ pointer to the ViewPort for beam-synchronizing

RESULT
Nothing

BUGS
None known

SEE ALSO
RemVSprite

RemIntServer

NAME
RemIntServer -- remove an interrupt server

SYNOPSIS
RemIntServer(intNum, interrupt)

DO-0:4 Al

FUNCTION
This function removes an interrupt server node from
the given server chain.

If this server was the last one one the chain interrupts
will be disabled for intNum.

INPUTS
intNum - the Paula interrupt bit (0 .. 14)
interrupt - pointer to an interrupt server node

SEE ALSO
AddIntServer

RemLibrary

NAME
RemLibrary -- remove a library from the system

SYNOPSIS
error
DO

FUNCTION

RemLibrary(library)
Al

This function removes an existing library from the system.
It will delete it from the system library name list, so no
new opens may be performed.

INPUTS
library - pointer to a library node structure

RESULTS
error - zero if successful, else an error number

SEE ALSO
AddLibrary

Remove

NAME
Remove -- remove a node from a list

SYNOPSIS
Remove(node)

Al

FUNCTION
Remove a node from a list.

INPUTS
node - the node to remove

RemoveGadget

NAME
RemoveGadget remove a gadget from a window

SYNOPSIS
USHORT RemoveGadget(Pointer, Gadget)

AD Al

FUNCTION
This routine removes the given gadget from the gadget list
of the specified window. It returns the ordinal position of
the removed gadget. If the gadget pointer points to a
gadget that is not in the appropriate list, -1 is returned.
If there are no gadgets in the list, -1 is returned. If you
remove the 65,535th gadget from the list, -1 is returned.

NOTE: The gadget's imagery is not erased by this routine.

INPUTS
Pointer = pointer to the window from which the gadget is to

be removed.
Gadget = pointer to the gadget to be removed. The gadget

itself describes whether this gadget should be removed
from the window.

RESULT

BUGS

Returns the ordinal position of the removed gadget. If the
gadget was not found in the appropriate list or if there are
no gadgets in the list, -1 is returned.

None

SEE ALSO
AddGadget ()

RemPort

NAME
RemPort -- remove a message port from the system

SYNOPSIS
RemPort(port)

Al

FUNCTION
This fUnction removes a message port structure from the
system's message port list. Subsequent attempts to
rendezvous by name with this port will fail.

INPUTS
port - pointer to a message port

SEE ALSO
AddPort, FindPort

RemR.esource

NAME
RemResource -- remove a resource from the system

SYNOPSIS
RemResource(resource)

Al

FUNCTION
This function. removes an existing resource from the system.

INPUTS
resource - pointer to a resource node

SEE ALSO
AddResource

RemTail

NAME
RemTail -- remove the tail node from a list

SYNOPSIS
node
DO

FUNCTION

RemTail (lis t)
AO

Get a pOinter to the tail node and remove it from the list.

INPUTS
list - a pointer to the target list header

RESULT
node - the node removed or zero when empty list

RernTask

NAME
RernTask -- remove a task from the system

SYNOPSIS
RernTask(task)

Al

FUNCTION
This function removes a- task from the system. Deallocation
of resources should-have been .. performed prior to calling
this function.

INPUTS
task - pointer to the task node representing the task

to be removed. A zero value indicates self
removal, and will cause the next ready task
to begin execution.

SEE ALSO
AddTask

RemVSprite

NAME
RemVSprite

SYNOPSIS
RemVSprite (VS)

aO

FUNCTION

remove a VSprite from the current GEL list

Unlinks the VSprite from the current GEL list

INPUTS
VS ~ pointer to the VSprite structure to be removed from the GEL list

RESULT
Nothing

BUGS
None known

SEE ALSO
Nothing

Rename

NAME
Rename -- rename a directory.or file

SYNOPSIS
success

DO

FUNCTION

Rename (oldName, newName
DI D2

Rename attempts to rename the file or directory specified as 'oldName'
with the name 'newName'. If the file or directory 'newName' exists,
Rename fails and Rename returns an error.

Both the 'oldName' and the 'newName' can be complex filenames containing
a directory specification. In.this case, the file will be moved from
one directory to another. However,' the destination directory must
exist before you do this,.

Note: It is impossible to rename a file from one volume to another.'

INPUTS
oldName - address of first character of a null-terminated string
newName - address of first character of a null-terminated string

RESULTS
success - boolean

ReplyMsg

NAME
ReplyMsg -- put a message to its reply port

SYNOPSIS
ReplyMsg(message)

Al

FUNCTION

INPUT

This function sends a message to its reply port. This is
usually done when the receiver of a message has finished
and wants to return it to the sender (so that it can·be
re-used or deallocated, whatever).

message - a pointer to the message

SEE ALSO
ReplyMsg

I -.... 00

ReportMouse

NAME
ReportMouse tell Intuition whether or not to report mouse

movement

SYNOPSIS
ReportMouse(Window, Boolean)

AO DO

FUNCTION
This routine tells Intuition whether or not to broadcast
mouse movement events to this window when it is active. The
Boolean value specifies whether to start or stop broadcasting
position information of mouse-movement. If the window
is active, mouse-movement reports start coming immediately
after this command. This routine will change the current
state of the FOLLOWMOUSE function of a currently-selected
gadget, too. Note that calling ReportMouse() when a gadget
is selected will only temporarily change whether or not
mouse movements are reported while the gadget is selected;
the next time the gadget is selected, its FOLLOWMOUSK flag
is examined anew. Note also that calling ReportMouse() when
no gadget is currently selected will change the state of the
window's REPORTMOUSE flag but will have" no effect on any
gadget that may be subsequently selected.

The ReportMouse() function is first performed when OpenWindow()
is first called. If the flag REPORTMOUSE is included
among the options, all mouse-movement events are reported
to the opening task and will continue to be reported until
ReportMouse() is called with a Boolean value of FALSE. If
REPORTMOUSE is not set, no mouse-movement reports will be
broadcast until ReportMouse() is called with a Boolean value
of TRUE.

INPUTS
Window = pointer to a Window structure associated with this

request.
Boolean = TRUE or FALSE value specifying whether to turn

this function on or off.

RESULT
None

BUGS
None

SEE ALSO
None

Request

NAME
Request activate a requester

SYNOPSIS
Request (Requester, Window)

AO Al

FUNCTION
This routine links in and displays a requester in the specified
window. This routine ignores the window's REQVERIFY flag.

INPUTS
Requester = pointer to the structure of the·requester to be

displayed.
Window = pointer to the structure of the window into which

this requester goes.

RESULT

BUGS

If the requester is successfully opened, TRUE is returned.
If the requester could not be opened, FALSE is returned.

None

SEE ALSO
None

RethinkDisplay

NAME
RethinkDisplay the grand manipulator of the entire

Intuition display

SYNOPSIS
RethinkDisplay()

FUNCTION
This function performs the Intuition global display
reconstruction. This includes massaging internal-state data,
rethinking all of the ViewPorts and their relationship to
one another, and, finally, reconstructing the entire display
based on the results of all this rethinking.

The reconstruction of the display includes calls to the
graphics library to perform MrgCop() and LoadView() for all
of Intuition's screens.

You may perform a MakeScreen() on your custom screen before
calling this routine. The results will be incorporated in
the new display.

WARNING: This routine can take several milliseconds to run,
so do not use it lightly. RethinkDisplay() does a Forbid()
on entry and a Permit() on exit, which can seriously degrade
the performance of the multitasking Executive.

INPUTS
None

RESULT
None

BUGS
None

SEE ALSO
MakeScreen(), RemakeDisplay(), MrgCop(), LoadView(),
Forbid(), Permit()

ScrollLayer

NAME
ScrollLayer -- scroll around in a superbitmap

SYNOPSIS

INPUTS

ScrollLayer(Ii, 1, dx, dy
aO al dO dl

li
1
dx
dy

pointer to LayerInfo structure
pointer to a nonbackdrop layer
delta to add to current x scroll value
delta to add to current y scroll value

FUNCTION
Copies bits between layer and superbitmap to reposition layer
over different portion of superbitmap.

SEE ALSO
layers.h

>
I
~ o

ScreenToBack

NAME
ScreenToBack send the specified screen to the back of

the display

SYNOPSIS
ScreenToBack(Screen)

AO

FUNCTION
This routine sends the specified screen to the back of the
display.

INPUTS
Screen

RESULT
None

BUGS
None

pointer to a Screen structure

SEE ALSO
ScreenToFront()

ScreenToFront

NAME
ScreenToFront bring the specified screen to the front

of the display

SYNOPSIS
ScreenToFront(Screen)

AO

FUNCTION
This routine brings the specified screen to the front of the
display.

INPUTS
Screen

RESULT
None

BUGS
None

SEE ALSO

a pointer to a Screen structure

Screen ToBack ()

ScrollRaster

NAME
ScrollRaster push bits in rectangle in raster around by

dx,dy towards 0,0 inside rectangle
SYNOPSIS

ScrollRaster(rp, dx, dy, xmin, ymin, xmax, yrnax)
al dO dl d2 d3 d4 dS

FUNCTION

INPUTS

EXAMPLE

BUGS

Moves the bits in the raster by (dx,dy) towards (0,0).
The space vacated is RectFilled with BGPen.
Limits the scroll operation to the rectangle defined
by (xmin,ymin)(xmax,yrnax). Bits outside will not be
affected.

rp must be a valid pointer to a RastPort
dx,dy are integers that may be positive, zero, or negative

ScroIIRaster(rp,O,I)
ScroIIRaster(rp,-I,-I)

/* shift raster up by one row */
/* shift raster down and to the right by I pixel

ScrollVPort

NAME
ScrollVPort push bits in rectangle in vport around by

dx,dy towards 0,0 inside rectangle
SYNOPSIS

ScrollVPort(vp
aO

FUNCTION

INPUTS

RESULTS

NOTE

BUGS

After the programmer has adjusted the Offset values in
the RasInfo structures of ViewPort, changes the
the Copper lists to reflect the the scroll positions.

vp must be a valid pointer to a ViewPort
that is currently on display

Modifies hardware and intermediate Copper lists to reflect
new RasInfo

Changing the BitMap ptr in RasInfo and not changing the
the Offsets will cause a double-buffering affect.

Pokes not fast enough to avoid some visible hashing of display

Seek

NAME
Seek -- move to a logical position in a file

SYNOPSIS
olqPosition

DO

FUNCTION

Seek (file, position, mode
Dl D2 D3

Seek sets the readfwrite cursor for the file 'file' to the position
'position'. Both Read and Write use this position as a place to start
reading or writing. If all goes well, the result is the previous position

in the file. If an error occurs, the result is -1. You can then use
IoErr() to find out more information about the error.

'mode' can be OFFSET_BEGINNING (=-1), OFFSET_CURRENT (=0) or OFFSET_END
(=1). You use it to specify the relative start position. For example,
20 from current is a position twenty bytes forward from current, -20
from end is 20 bytes before the end of the current file.

To find out the current file position without altering it, you call
to Seek specifying an offset of zero from the current position.

To move to the end of a file, Seek to end-of-file offset with zero
position. Note that you can append information to a file by moving
to the end of a file with Seek and then writing. You cannot Seek beyond
the end of a file.

INPUTS
file - BCPL pointer to a file handle
position - integer
mode - integer

RESULTS
oldPosition - integer

SendIO

NAME
SendIO -- initiate an I/O command

SYNOPSIS
SendIO(iORequest)

Al

FUNCTION
This function requests the device driver to initiate the
command specified in the given I/O request. The device
will return regardless of whether the I/O has completed.

INPUTS
iORequest - pointer to an I/O request

SEE ALSO
DolO, WaitIO

SetAPen

NAME
SetAPen -- Set primary pen

SYNOPSIS
SetAPen (rp, pen

al dO

FUNCTION

INPUTS

RESULT

BUGS

SEE ALSO

Sets the primary drawing pen for lines, fills, and text.

rp
pen

pointer to RastPort structure.
0-255

Changes the minterms in the RastPort to reflect new primary pen.
Set line drawer to restart pattern.

SetBPen

SetBPen

NAME
SetBPen -- Set secondary pen

SYNOPSIS
SetBPen(rp, pen

al dO

FUNCTION

INPUTS

RESULT

BUGS

SEE ALSO

Sets the secondary drawing pen for lines, fills, and text.

rp
pen

pointer to RastPort structure.
0-255

Changes the minterms in the RastPort to reflect new secondary pen.
Set line drawer to restart pattern.

SetAPen

setcollision

NAME
SetCollision

SYNOPSIS

sets a pointer toa user collision routine

SetCollision(num, routine, GInfo)
dO aO al

FUNCTION
Sets entry h in the user's collision vectors table equal to the pointerp

INPUTS
num = collision vector number
routine = pointer to the user's collision routine
GInfo = pointer to_a GelsInfo structure

RESULT
Nothing

BUGS
None known

SEE ALSO
Nothing

SetCoonnent

NAME
SetComment -~ set a comment

SYNOPSIS
Success

DO

FUNCTION

SetComment(name,
Dl

comment
D2

SetComment sets a comment on a file or directory. The comment is a
pointer to a null-terminated string of up to 80 characters.

INPUTS
name - address of first character of a null7terminated string
comment - address of first-character of.a null-terminated-string

RESULTS
success - boolean

SetDMRequest

NAME
SetDMRequest set the DMRequest of the window

SYNOPSIS
SetDMRequest(Window, DMRequester)

AO Ai

FUNCTION
This routine attempts to set the DMRequester in the specified
window. The DMRequester is the special requester that
you attach to the double-click of the menu button, allowing
the user to bring up this requester on demand. This routine
will not set the DMRequester if it is already set and is
currently active (in use by the user). To change the
DMRequester after having called SetDMRequest(), you start by
calling ClearDMRequest (.) until it returns a value of TRUE.
Then you can call SetDMRequest() with the new DMRequester.

INPUTS
Window ~ pointer to the structure of the window into which

the DMRequest is to be set.
DMRequester ~ a pointer to a Requester structure.

RESULT

BUGS

If the current DMRequest was not in use, the DMRequester
pointer is set in the window and this routine .returns TRUE.

If the DMRequest was currently in use, this routine does not
change the pointer and returns FALSE.

None

SEE ALSO
ClearDMRequest(), Request(.

SetDrMd

NAME
SetDrMd -- set drawing mode

SYNOPSIS
SetDrMd (rp, mode

al dO

FUNCTION

INPUTS

RESULT

BUGS

Sets the drawing mode for lines, fills and text.

rp
mode

pointer to RastPort structure.
0-255

#define JAMl 0
#define JAM2 1
#define COMPLEMENT 2
#define INVERSVID 4

/* jam 1 color into raster */
/* jam 2 colors into raster */
/* XOR bits into raster */
/* inverse video for drawing modes */

Some combinations may not make much sense.

The mode set is dependent on the bits selected.
Change rninterrns to reflect new drawing mode.
Set line drawerto restart pattern.

SEE ALSO
SetAPen

SetExcept

NAME
SetExcept -- define certain signals to cause exceptions

SYNOPSIS
oldSignals
DO

SetExcept(newSignals, signalMask)
DO DI

FUNCTION
This function defines which of the task's signals will
cause an exception. When any of the signals occurs the
task's exception handler will be dispatched. If the signal
occurred prior to calling SetExcept, the exception will
happen immediately.

INPUTS
newSignals ~ the new values for the signals specified in

signalMask.
signalMask - the set of signals to be effected

RESULTS
oldSignals- the prior exception signals

EXAMPLE
Get the current state of all exception signals:

SetExcept(O,O)
Change a few exception signals:

SetExcept($l374,$I074)

SEE} ALSO
Signal, SetSignal

SetFont

NAME
SetFont -- set the text font and attributes in a RastPort

SYNOPSIS
error SetFont(rastPort, font), graphicsLib
DO Al AD A6

FUNCTION
This function sets. the font in the RastPort to that described
by font and updates the text attributes to reflect that
change. If TextAttr is zero, this call leaves the RastPort
with no font. This function clears the effect of any previous
soft styles.

INPUTS
RastPort - the RastPort in which the text attributes are,

changed.
font - an open font.

SetFunction

NAME
SetFunction -- change a function vector in a library

SYNOPSIS
oldFunc = SetFunction(library, funcOffset, funcEntry)
DO Al AO.W DO

FUNCTION
SetFunction is a functional way of changing those parts of
a library that are checkswrmed. They are changed in such a
way that the summing process will never falsely declare a
library to be invalid.

INPUTS
library - a pointer to the library to be changed

funcOffset - the offset that FuncEntry should be put at.

funcEntry - pointer to new function

SetIntvector

NAME
SetIntVector -- set a system interrupt vector

SYNOPSIS
old Interrupt
DO

SetIntVector(intNumber, interrupt)
00-0:4 Al

FUNCTION
This function provides a mechanism for setting the system
interrupt vectors. Both the code and data pointers of the
vector are set to the new values. A pointer to the old
interrupt structure is returned. When the system calls the
specified interrupt code the registers are setup as
follows:

INPUTS

DO - scratch
01 - scratch (on entry: active portia interrupts)

AO - scratch (on entry: pointer to chipbase)
Al - scratch (on entry: interrupt's data segment)

AS - jump vector register (scratch on call)
A6 - library base pointer (scratch on call)

all other registers - must be preserved

intNum - the Paula interrupt bit number (0 .. 14)
interrupt - a pointer to a node structure containing

the handler's entry point and data segment pointer.
It is a good idea to give the node a name so that
other users may identify who currently has control
of the interrupt.

RESULT
A pointer to the prior interrupt node which had control
of this interrupt.

I
C.rt
00

SetMenuStrip

NAME
SetMenuStrip attach the menu strip to the window

SYNOPSIS
SetMenuStrip(Window, Menu)

AO Al

FUNCTION
This routine attaches the menu strip to the window. If the
user presses the menu button after this routine is called,
this specified menu strip will be displayed and accessible.

NOTE: You should always design your menu strip changes to
be two-way operations; every menu strip you add to your window
should be cleared sometime. Even in the simplest case,
when you will have just one menu strip for the lifetime of
your window, you should always clear the menu strip before
closing the window. If you already have a menu strip
attached to this window, the correct procedure for changing
to a new menu strip involves calling ClearMenuStrip() to
clear the old menu strip first. The sequence of events
should be:

1. OpenWindow().
2. Zero or more iterations of:

o SetMenuStrip().
o ClearMenuStrip().

3. CloseWindow().

INPUTS
Window ~ pointer to a Window structure.
Menu pointer to the first Menu structure in the menu

strip.

RESULT
None

BUGS
None

SEE ALSO
ClearMenuStrip()

SetOPen

NAME
SetOPen -- Set outline pen

SYNOPSIS
SetOPen(rp, pen

al dO

FUNCTION

INPUTS

RESULT

BUGS

SEE ALSO

Set the outline drawing pen for area outlines.

rp
pen

pointer to RastPort structure.
0-255

Changes the minterms in the RastPort to reflect new outline pen.

setPointer

NAME
SetPointer set a window with its own pointer

SYNOPSIS
SetPointer(Window, Pointer, Height, Width, XOffset, YOffset)

AO Al DO Dl D2 D3

FUNCTION
This routine sets up the window with the sprite definition
for the pointer. Then, whenever the window is active, the
pointer image will change to the sprite's version of the
pointer. If the window is active when this routine is
called, the change takes place immediately.

The XOffset and YOffset arguments are used to offset the top
left corner of the hardware sprite imagery from what Intuition
regards as the current position of the pointer.
Another way of describing it is as the offset from the "hot
spot" of the pointer to the top left corner of the sprite.
For instance, if you specify offsets of zero, zero, then the
top-left corner of your sprite image will be placed at the
pointer position. On the other hand, if you specify an
XOffset of -7 (remember, sprites are 16 pixels wide), your
sprite will be centered over the pointer position. If you
specify an XOffset of -15, the right edge of the sprite will
be over the pointer position.

INPUTS
Window = pointer to the structure of the window to receive

this pointer definition.
Pointer = pointer to the data definition of a sprite.
Height = the height of the pointer.
width = the width of the sprite (must be less than or equal

to 16).
XOffset the offset for your sprite from the pointer position.
YOffset = the offset for your sprite from the pointer position.

RESULT
None

BUGS
None

SEE ALSO
Clearpointer()

setProtection

NAME
setProtection -- set file or directory protection

SYNOPSIS
Success

DO
SetProtection(name, mask

Dl D2

INPUTS
name - address of first character of a null-terminated string
mask - the protection mask required

RESULTS
success - boolean

FUNCTION
SetProtection sets the protection attributes on a file or directory.
The lower four bits of the mask are as follows:

bit 3: if 1 then reads not allowed, else reads allowed.
bit 2: if 1 then writes not allowed, else writes allowed.
bit 1: if 1 then execution not allowed, else execution allowed.
bit 0: if 1 then deletion not allowed, else deletion allowed.

Bits 31-4 Reserved.

Only delete is checked for in the current release of AmigaDOS.
Rather than referring to bits by number you should use the
definitions in "include/libraries/dos.h."

I
o:r o

SetRast

NAME
SetRast -- set an entire drawing area to a specified color

SYNOPSIS
SetRast(RastPort, pen

Al DO

FUNCTION

INPUTS

RESULT

BUGS

Sets the entire contents of the specified RastPort to the
specified pen.

RastPort is a pointer to the rastPort you wish to use.
Pen is the pen value which you wish to fill into that port. (0-255)

The drawing area becomes the selected pen number.

SEE ALSO

SetRGB4

NAME
SetRGB4 -- set one color register for this viewport

SYNOPSIS
SetRGB4(vp, n, r, g, b)

aO DO DI D2 D3

INPUTS

RESULT

BUGS

vp= ViewPort to affect
n = the color number (range from 0 to 31)

r = red level
g green level
b blue level

If there is a ColorMap for this ViewPort, store the value in
in the structure ColorMap.
The selected color register is changed to match your specs.
If the color value is unused, nothing will happen.

If the color value is unused it may affect the color values in
the next ViewPorts.

SEE ALSO
LoadRGB4

SetSignal

NAME
SetSignal -- define the state of this task's signals

SYNOPSIS
oldSignals
DO

setSignal(newSignalsi signalMask)
DO Dl

FUNCTION

INPUTS

RESULTS

EXAMPLE

This function defines the states of the task's signals.

This function is considered dangerous.

newSignals - the new values for.the signals specified in
signalSet.

signalMask - the set of signals to -be effected

oldSignals - the prior 'values for all signals

Get the current state of all signals:
SetSitj'nal(O,O)

Clear alL signals "
SetSignal(O,FFFFFFFFH) ,

SEE ALSO
Signal, Wait

SetSoftStyH~

NAME
SetsoftStyle-- set the soft style of the current font

SYNOPSIS
newStyle

FUNCTION

SetSoftStyle(rastPort, style, enable), graphicsLib
Al DO Dl A6

This function alters the soft style of the current font. Only
those bits that are also set in enable are affected. ,The
resulting style is returned, since some-style request changes
will not be honored when. the implicit style of the font
precludes changing-them.

INPUTS
rastPort - the RastPort from whiuh the font and style

are extracted.
style - the new font style'to'set" subject to enable.
enable - those bits in style to be changed. Any set bits here

that would not be set as a result of AskSoftStyle will

RESULTS

be ignored, and the newStyle result will not be as
expected.

style - the resulting style, both as a result of previous
soft style selection, the effect of this function,
and the style inherent in the set font.

SetSR

NAME
SetSR -- get and/or set processor status register

SYNOPSIS
oldSR
DO

SetSR(newSR, mask)
DO DI

FUNCTION

INPUTS

RESULTS

This function provides a means of modifying the CPU status
register in a "safe" way (well, how safe can a function
like this be anyway?). This function will only effect the
status register bits specified in the mask parameter. The
prior content of the entire status register is returned.

neWSR - new values for bits specified in the mask.
All other bits are not effected.

mask - bits to be changed

oldSR - the entire status register before new bits

EXAMPLES
To get the current SR:

currentSR = SetSR(O,O);
To change the processor interrupt level to 3:

oldSR = SetSR($0300,$0700);
Set processor interrupts back to prior level:

SetSR(oldSR,$0700);

SetTaskPri

NAME
SetTaskPri get and set the priority of a task

SYNOPSIS
oldPriority
DO-O:8

SetTaskPri(task, priority)
Al DO-O:8

FUNCTION

INPUTS

RESULT

This function changes the priority of a task regardless of
its state. The old priority of the task is returned. A
reschedule is performed, .and a context switch may result.

task - task to be affected
priority - the new priority for the task

oldPriority - the tasks previous priority

setwindowTitles

NAME
SetWindowTitles set the window's titles for both the

window and the screen

SYNOPSIS
SetWindowTitles(Window, WindowTitle, ScreenTitle)

AO Al A2

FUNCTION
This routine allows you to set the text that appears in the
window and/or screen title bars. The window title appears
at all times in the window title bar. The window's screen
title appears at the screen title bar whenever this window
is active.

When this routine is called, your window title will be
changed immediately. If your window is active when this
routine is called, the screen title will be changed immediately.

You can specify a value of -1 for either of
the title pointers. This designates that you want Intuition
to leave the current setting of that particular title alone,
modifying only the other one. Of course, you could set both
to -1.

Furthermore, you can set a value of 0 for either of the
title pointers. Doing so specifies that you want no title
to appear (the title bar will be blank).

INPUTS
Window = pointer to your Window structure.
WindowTitle = pointer to a null-terminated text string; this

pointer can also be set to either -lor O.
ScreenTitle = pointer to a null-terminated text string; this

pointer can also be set to either -lor O.

RESULT
None

BUGS
None

SEE ALSO
OpenWindow(), ShowTitle()

ShowTitle

NAME
ShowTitle set the screen title bar display mode

SYNOPSIS
ShowTitle(Screen, ShowIt)

AO DO

FUNCTION
This routine sets the SHOWTITLE flag of the specified screen
and then coordinates the redisplay of the screen and its
windows.

The screen title bar can appear either in front of or behind
Backdrop windows. Non-Backdrop windows always appear in
front of the screen title bar. You specify whether you want
the screen title bar to be in front of or behind the
screen's Backdrop windows by calling this routine.

The ShowIt argument should be set to either TRUE or FALSE.
If TRUE, the screen's title bar will be shown in front of
Backdrop windows. If FALSE, the title bar will be located
behind all windows. When a screen is first opened, the
default setting of the SHOWTITLE flag is TRUE.

INPUTS
Screen = pointer to a Screen structure.
ShowIt = Boolean TRUE or FALSE describing whether to show or

hide the screen title bar.

RESULT
None

BUGS
None

SEE ALSO
SetWindowTitles()

Signal

NAME
signal -- signal a task

SYNOPSIS
Signal (task, signals)

,AI DO

FUNCTION

INPUT

SEE ALSO

This function signals a task with the given signals. 'If
.the task is currently' waiting for one or more of these
signals, it will be 'made ready and a reschedule will occur.
If the task is not waiting for any of these signals, the
signals will be posted to the task for possible later use.
A signal may be sent to a task regardless of whether it's
running, ready, or waiting.

This function is considered "low level". Its main purpose
is to support multiple higher level functions like PutMsg.
Generally a user need not perform Signals directly.

task - the task to be signalled
signals - the signals to be sent

Wait, Setsignal

SizeCList

NAME
SizeCList get the number of bytes in a character list

SYNOPSIS
bytes
DO

FUNCTION

SizeCList(cList)
AO

Inquires as to the number of characters in cList.

INPUTS
cList -

RESULTS
bytes

·The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

'the number of bytes in cList.

SizeLayer

NAME
SizeLayer -- change the size of this nonbackdrop layer.

SYNOPSIS

INPUTS

SizeLayer(Ii, 1, dx, dy
aO al dO dl

li
1
dx
dy

pointer to LayerInfo structure
pointer to a nonbackdrop layer
delta to add to current x size
delta to add to current y size

FUNCTION

NOTE

Changes the size of this layer by (dx,dy). The lower right hand
corner is extended to make room for the larger layer.
If there is SuperBitMap for this layer, copy pixels into
or out of the layer depending on whether the layer increases or
decreases in size.
Collect damage list for those layers that may need to be
refreshed if damage occurred.

The current implementation forces layer to front. This is not to
be depended upon and may change in future releases of layer. lib.

SEE ALSO
layers.h

SizeWindow

NAME
SizeWindow ask Intuition to size a window

SYNOPSIS
SizeWindow(Window, DeltaX, DeltaY)

AO DO Dl

FUNCTION
This routine sends a request to Intuition asking to size the
window by the specified amounts. The delta arguments
describe how much to size the window along the respective
axes.

Note that the window will not be sized immediately. It will
be sized the next time Intuition receives an input event,
which happens currently at a minimum rate of ten times per
second and a maximum of sixty times a second. You can discover
when your window has finally been sized by setting the
NEWSIZE flag of the IDCMP of your window. See the "Input
and Output Methods" chapter in "Amiga Intuition Reference Manual"
for a description of the IDCMP.

This routine does no error-checking. If your delta values
specify some far corner of the universe, Intuition will
attempt to size your window to that far corner.
Because of the distortions in the space-time
continuum that can result from this, as predicted by special
relativity, the result is generally not desirable.

INPUTS
Window = pointer to the structure of the window to be sized.
DeltaX = signed value describing how much to size the window

on the x axis.
DeltaY = signed value describing how much to size the window

on the y axis.

RESULT
None

BUGS
None

SEE ALSO
MoveWindow(), WindowToFront(), WindowToBack()

SortGList

NAME
SortGList sort the current GEL list according to the y,x coordinates

SYNOPSIS
SortGList(RPort)

al

FUNCTION

as called by C

Sorts the current GEL list according to the GEL's y,x coordinates
This sorting is essential before calls to DrawGList or DoCollision

INPUTS
RPort

RESULT
Nothing

BUGS

pointer to the RastPort structure containing the GelsInfo

None known

SEE ALSO
DoCollision
DrawGList

SPAbs

NAME

SPAbs -- obtain the absolute value of the fast floating-point number

C USAGE

fnum2

FUNCTION

spAbs (fnwnl) ;
DO

Accepts a floating-point number and returns the absolute value of
said number.

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point absolute value of fnwnl

BUGS

None

SEE ALSO

>

SPAcos

NAME

SPAcos -- obtain the arccosine of the floating-point number

SYNOPSIS

fnum2 SPAcos (fnuml) ;
DO

FUNCTION

Accepts a floating-point number representing the cosine
of an angle and returns the value of said angle in
radians

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point number

BUGS

I SEE ALSO
I-'
0)
"-l

SPAdd

NAME
SPAdd -- add two floating-point numbers

C USAGE
fnurn3

FUNCTION

SPADD(fnuml, fnum2);
Dl DO

Accepts two floating-point numbers and returns the arithmetic
surn of said numbers.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

fnurn3 - floating-point number

BUGS

None

SEE ALSO

SPAsin

NAME
SPAsin -- obtain the arcsine of the floating-point number

SYNOPSIS

fnum2 SPAsin(fnuml);
DO

FUNCTION

Accepts a floating-point number representing the sine
of an angle and returns the value of said angle in
radians

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

SPAtan

NAME

SPAtan -- obtain the arctangent of the floating-point number

SYNOPSIS

fnum2 SPAtan(fnuml);
DO

FUNCTION

Accepts a floating-point number representing the tangent
of an angle and returns the value of said angle in
radians

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

sPCmp

NAME

sPCmp -- compare two floating-point numbers and set
appropriate condition codes

C USAGE

if (SPCmp(fnuml, fnum2» [... J
Dl DO

FUNCTION

Accepts two floating-point numbers and returns the' condition
~odes set-to indicate the'result of said 'comparison. Additionally,
the integer functional result is returned to indicate the result
of said comparison.

INPUTS

fnuml - floating-point number
fnum2 - floating~point number

RESULT

BUGS

Condition codes set to reflect the following branches:

GT - fnum2) fmnnl
'GE - fnum2)- fnuml
EQ,- fnum2 fnuml
NE- fnum2 != fnuml
LT - fnum2 (fnuml
LE -;- fnum2 (= fnuml

Integer-functional result as:

None

+l =) fmnnl
-1 =) fnuml
o =) fnuml

fnum2
fnum2
fnum2

SEE ALSO

SPCos

NAME

SPCos -- obtain the cosine of the floating point number

SYNOPSIS

fnum2

FUNCTION

SPCos (fnuml) ;
DO

Accepts a floating point number representing an angle in
Tadians and returns the cosine of said angle

INPUTS

fnuml - floating point number

RESULT

fnum2 - floating point number

BUGS

None

SEE ALSO

SPCosh

NAME

SPCosh -- obtain the hyperbolic cosine of the floating point number

SYNOPSIS

fnum2

FUNCTION

SPCosh(fnuml);
DO

Accepts a floating point number representing an angle in
radians and returns the hyperbolic cosine of said angle

INPUTS

fnuml - floating point number

RESULT

fnum2 - floating point number

BUGS

None

SEE ALSO

SPDiv

NAME

SPDiv divide two floating-point numbers

C USAGE

fnurn3 SPDiv(fnuml, fnum2);
DI DO

FUNCTION

Accepts two floating-point numbers and returns the arithmetic
division of said numbers.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

fnurn3 - floating-point number

BUGS

None

SEE ALSO

SPExp

NAME

SPExp -- obtain the exponent (e**X) of the floating-point number

SYNOPSIS

. fnwn2

FUNCTION

SPExp(fmnnl);
DO

Accepts a floating-point number and returns e raised to the
input numbers power

INPUTS

fnuml - floating-point number

RESULT

fnwn2 - floating-point number

BUGS

None

SEE ALSO

SPFieee

NAME

SPFieee -- convert an IEEE standard number to FFP format

SYNOPSIS

fnurn ~ SPFieee(ieeenurn);
DO

FUNCTION

Accepts an IEEE standard format number and returns
the same number, only converted into Motorola fast
floating-point format

INPUTS

ieeenurn - floating-point number (IEEE STD format)

RESULT

.fnurn - floating-point number (Motorola FFP format)

BUGS

None

SEE ALSO

SPFlt

NAME

SPFlt -- convert integer number to fast floating-point

C USAGE

fnurn SPFlt(inurn);
DO

FUNCTION

Accepts an integer and returns the converted
floating-point result of said number.

INPUTS

inurn - signed integer nrumber

RESULT

fnurn - floating-point number

BUGS

None

SEE ALSO

SplitCList

NAME
SplitCList -- split a clist

SYNOPSIS
tailCList
DO

SplitCList(cList)
AO

FUNCTION
Splits a clist into two clists. The original clist will
contain the head of the clist up to but not including the
mark (obtained via the MarkCList command). A new clist will
be created and returned containing the bytes associated with
the mark thruthe end of the original clist.

INPUTS
cList

a longword descriptor for a clist that can be used
for clist functions.

RESUJJTS
tailCList-

EXCEPTIONS

a longword descriptor for a clist that contains the
tail end of the original clist.

If there is not ,enough memory to build .the new clist or the
mark is invalid, tailCList is negative.

SPLog

NAME

SPLog -- obtain the natural logarithm of the floating-point number

SYNOPSIS

fnum2

FUNCTION

SPLog(fnurnl);
DO

Accepts a floating-point number and returns the natural
logarithm (base e) of said number

INPUTS

fnurnl - floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

SPLogIO

NAME

SPLogIO -- obtain the naparian logarithm (base 10) of the
floating-point number

SYNOPSIS

fnum2

FUNCTION

SPLogIO(fnurnl);
DO

Accepts a floating-point number and returns the naparian
logarithm (base 10) of said number

INPUTS

fnurnl - floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

SPMul

NAME

SPMul -- multiply two floating-point numbers

C USAGE

fnurn3 SPMul(fnurnl, fnum2);
Dl DO

FUNCTION

Accepts two floating-point numbers and returns the arithmetic
multiplication of said numbers.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

fnurn3 - floating-point number

:> BUGS

None

SEE ALSO

SPNeg

NAME

SPNeg -- negate the supplied floating-point number

C USAGE

fnum2

FUNCTION

SPNeg(fnuml);
DO

Accepts a floating-point number and returns the value
of said number after having been subtracted from 0.0

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point negation of fnuml

BUGS

None

SEE ALSO

SPPow

NAME

SPPow -- obtain the exponentiation of two FFP nwnbers

SYNOPSIS

fnum3 SPPow(fnuml, fnurn2);
DI DO

FUNCTION

Accepts two (2) floating-point nwnbers and returns the
result of fnuml raised to the fnurn2 power

INPUTS

fnuml - floating-point nwnber
fnurn2 - floating-point nwnber

RESULT

fnum3 - floating-point nwnber

> BUGS

None

SEE ALSO

SPSin

NAME

SPSin -- obtain the sine of the floating-point nwnber

SYNOPSIS

fnurn2

FUNCTION

SPSin (fnuml) ;
DO

Accepts a floating-point nwnber representing an angle in
radians and returns the sine of said angle

INPUTS

fnuml floating-point nwnber

RESULT

fnurn2 - floating-point nwnber

BUGS

None

SEE ALSO

>

SPSincos

NAME

SPSincos -- obtain the sine & cosine of the FFP number

SYNOPSIS

fmun3 SPSincos(fnuml, &fnum2);
DI DO

FUNCTION

Accepts a floating-point number representing an angle in
radians and returns both the sine & cosine of said angle

INPUTS

fnuml - floating-point number
&fnum2 - address of cosine result

RESULT

BUGS

fnum2 - floating-point number (cosine)
fnum3 - floating-point number (sine)

None

SEE ALSO

Spsinh

NAME

SPsinh -- obtain the hyperbolic sine of the floating-point number

SYNOPSIS

fnum2

FUNCTION

SPSinh(fnuml);
DO

Accepts a floating-point number representing an angle in
radians and returns the hyperbolic sine of said angle

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

>

SPSqrt

NAME

SPSqrt -- obtain the square root of the floating-point number

SYNOPSIS

fnum2

FUNCTION

SPSqrt (fmuol) ;
DO

Accepts a floating-point number and returns the square
root of said number

INPUTS

fnuml -floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

SPSub

NAME

SPSub -- subtract two floating-point numbers

C USAGE

fnurn3 SPSub(fnuml, fnum2);
Dl DO

FUNCTION

Accepts two floating-point numbers and returns the arithmetic
subtraction of said numbers.

INPUTS

fnuml - floating-point number
fnum2 - floating-point number

RESULT

fnurn3 - floating-point number

BUGS

None

SEE ALSO

I
-..:r
00

SPTanh

NAME

SPTanh -- obtain the hyperbolic tangent of the floating-point number

SYNOPSIS

fnum2

FUNCTION

SPTanh(fnuml) ;
DO

Accepts a· floating-point number representing an angle in
radians and returns the hyperbolic tangent of said angle

INPUTS

fnuml - floating-point number

RESULT

fnum2 - floating-point number

BUGS

None

SEE ALSO

SPTieee

NAME

SPTieee -- convert an FFP number to IEEE standard format

SYNOPSIS

ieeenurn SPTieee(fnurn);

FUNCTION

Accepts a Motorola fast floating-point number and
returns the same number, only converted into IEEE
standard format

INPUTS

·fnurn - floating-point number (Motorola FFP format)

RESULT

ieeenurn - floating-point number (IEEE STD format)

BUGS

None

SEE ALSO

SPTst

NAME

SPTst -- compare a fast floating-point number against the
value zero (0.0) and set the appropriate condition codes

C USAGE

if (! (SPTst(fnum») (... }
Dl

FUNCTION

Accepts a floating-point number and returns the condition
codes set to indicate the result of a comparison against
the value of zero (0.0). Additionally, the integer functional
result is returned.

INPUTS

fnum - floating-point number

RESULT

BUGS

Condition codes set to reflect the fOllowing branches:

EQ - fnum 0.0
NE - fnum != 0.0
PL - fnum >~ 0.0
MI - fnum < 0.0

Integer functional result as:

None

+1 ~> fnum > 0.0
-1 ~> fnum < 0.0
o ~> fnum 0.0

SEE ALSO

SubCList

NAME
SubCList -- copy a substring from a clist

. SYNOPSIS
cList
DO

FUNCTION

SubCList(cList, index, length)
AO DO Dl

Copies a substring of the cList into a new cList created by this
operation. Starts at offset index into the character list
and copies for length bytes. The source clist is not altered.

INPUTS
cList

index

length

RESULTS
cList

EXCEPTIONS

The clist descriptor used to manage this character
list, as returned by NeWCList or StrToCL.

The offset in the character list to start copying
the substring from. An index of 0 is the first
character in theclist.

The number of bytes to copy.

a longword descriptor for a clist that can be used
for clist functions.

If cList is negative, not enough space was available for the
new clist.

If the substring does not exist for the index and length
specified, the resulting clist will be shorter than expected.

SumLibrary

NAME
SumLibrary -- compute and check the checksum on a library

SYNOPSIS
SumLibrary(library)

Al

FUNCTION
SumLibrary computes a new checksum on a library. It can
also be used to check an old checksum. If an old checksum
does not match and the library has not been marked as
changed then the system will alert the user.

INPUTS
library - a pointer to the library to be changed

EXCEPTIONS
An .alert will occur if the checksum fails.

superstate

NAME
superstate -- enter supervisor state with.user stack

SYNOPSIS
oldSysStack
DO

SuperState()

FUNCTION
Enter supervisor mode while running on the user's stack.
The user still has access to user stack variables. Be
careful though, the user stack must be large enough to
accommodate space for all interrupt data -- this includes
all possible nesting of interrupts. This function is a no
op when called from supervisor state.

RESULTS
oldSysStack - system stack pointer

SEE ALSO

Save this. It will corne in useful when you return
to user state. If the system is already in
supervisor mode, oldSysStack is zero.

UserS tate

I
......
00

SwapBitsRastPortClipRect

NAME
SwapBitsRastPortCLipRect swap bits between common bitmap

and obscured ClipRect

SYNOPSIS

INPUTS

SwapBitsRastPortClipRect(rp, cr
aO al

rp pointer to rastport
cr pointer to cliprect to swap bits with

FUNCTION

SEE ALSO

Support routine useful for those that need to do some
operations not done by the layer library. Allows programmer
to swap the contents of a small BitMap with a subsection of
the display. 'rhis is accomplished without using extra memory.
The bits in the display RastPort are exchanged with the
bits in the ClipRect's BitMap.

syncSBitMap

NAME
SyncSBitMap synchronize Super BitMap with whatever is

in the standard Layer bounds

SYNOPSIS
SyncSBitMap(layer *)

aO

FUNCTION

INPUTS

Copies all bits from ClipRects in Layer into Super BitMap
BitMap. This is used for those functions that do not
want to deal with the ClipRect structures but do want
to be able to work with a SuperBitMap Layer.

layer is a pointer to a Layer that has a SuperBitMap
The Layer should already be locked by the caller.

SEE ALSO
CopySBitMap

I
00
t-:)

Text

NAME
Text -- write text characters (no formatting)

SYNOPSIS
error
DO

FUNCTION

Text(RastPort, string, count), gfxLib
Al AO DO-O:16 A6

This graphics function writes printable text characters to the
specified RastPort at the current position. No control meaning
is applied to any of the characters, and only text on the
current line is output.

INPUTS
RastPort - a pointer to the RastPort which describes where the

text is to be output
count - the string length. If zero, there are no characters

to be output.
string - the address of string to output

EXCEPTIONS
BOUNDS -

If the characters displayed run past the RastPort boundary,
the current position is truncated to the boundary, and
thus does not represent the true position.

TextLength

NAME
TextLength -- determine raster length of text data

SYNOPSIS
length
DO

TextLength(rastPort, string, count)
Al AO DO-O:16

FUNCTION
This graphics function determines the length that text data
would occupy if output to the specified RastPort with the
current attributes. The length is specified as the number of
raster dots: to determine what the current position would be
after a write using this string, add the length to cp_x (cp-y
is unchanged by Write).

INPUTS
RastPort - a pointer to the RastPort, which describes where the

text attributes reside.
string - the address of string to determine the length of
count - the string length. If zero, there are no characters

in the string.

RESULTS

BUGS

length - the number of pixels in x this text would occupy, not
including any negative kerning that may take place at
the beginning of the text string, nor taking into
account the effects of any Clipping that may take
place.

A length that would overflow single-word arithmetic is not
calculated correctly.

ThinLayerInfo

NAME
ThinLayerInfo -- convert 1.1 LayerInfo to 1.0 LayerInfo

SYNOPSIS
ThinLayerlnfo(li)

aD

INPUTS
li pointer to LayerInfo structure

FUNCTION

SEE ALSO

Returns the extra memory needed that was allocated with
FattenLayerInfo. This must be done prior to freeing
the Layer_Info structure itself. Vl.l software should be
using DisposeLayerInfo.

layers.h
DisposeLayerInfo, FattenLayerInfo

Translate

NAME
Translate -- Converts an English string into phonetics

SYNOPSIS
rtnCode Translate(instring, inlen, outbuf, outlen)

FUNCTION

INPUTS

RESULTS

SEE ALSO

The translate function converts an English string into
a string of phonetic codes suitable as input to the
narrator device.

instring - pointer to English string
inlen - length of English string
outbuf a char array which will hold the phonetic codes
outlen - the length of the output array

Translate will return a zero if no error has occurred.
The only error that can occur is overflowing the output
buffer. If Translate determines that an overflow will
occur, it will stop the translation at a word boundary
before the overflow happens. If this occurs, Translate
will return a negative number whose absolute value
indicates where in the INPUT string Translate stopped.
The user can then use the offset -rtnCode from the
beginning of the buffer in a subsequent Translate call
to continue the translation where s/he left off.

:>
I ,....

00 ..,.

UnGetCLChar

NAME
UnGetCLChar -- add a byte to the beginning of a character list

SYNOPSIS
error
DO

FUNCTION

UnGetCLChar(cList, byte)
AO DO

Adds a byte to the beginning of the character list described
by the cList.

INPUTS
cList -

byte

RESULTS
error

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The byte to add to the beginning of the character list

non-zero indicates the byte could not be added

UnGetCLWord

NAME
UnGetCLWord -- add a word to the beginning of a character list

SYNOPSIS
error UnGetcLWord(cList, word)
DO AO DO

FUNCTION

INPUTS

RESULTS

Adds a word to the beginning of the character list described
by the cList.

cList -

word

error

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The word to add to the beginning of the character list

non-zero indicates the number of bytes not added.
Partial words are not added, so error is always zero
or two.

I
>-'
00
C11

UnLoadSeg

NAME
UnLoadSeg --" unload a segment previously loaded"by LoadSeg

SYNOPSIS
UnLoadSeg(segment

Dl

FUNCTION
UnLoadSeg unloads the degment identifier that was returned by Loadseg.
'segment' may be zero.

INPUTS
segment - BCPL pointer to a segment

UnLock

NAME
UnLock -- unlock a directory or file

SYNOPSIS
UnLock (lock

Dl

FUNCTION
UnLock removes a filing system lock obtained from Lock, DupLock, or
CreateDir.

INPUTS
lock - BCPL pointer to a lock

I ,.....
00
0")

UnlockLayer

NAME
UnlockLayer unlock layer and allow graphics routines

to use it.

SYNOPSIS

INPUTS

UnlockLayer(1)
aO

1 pointer to a layer

FUNCTION
When finished changing the ClipRects or whatever you were
doing with this layer ,. you must unlock it it to allow the
other task to proceed with its graphic output.

SEE ALSO
layers.h

UnlockLayerInfo

NAME
UnlockLayerInfo -- unlock the LayerInfo structure.

SYNOPSIS

INPUTS

UnlockLayerInfo(li
aO

li = pointer to Layerlnfo structure

FUNCTION
Before doing an operation that requires the Layerlnfo
structure, makes sure that no other task is also using the
LayerInfo structure. This procedure returns when the.
LayerInfo belongs to this task. There should be
an UnlockLayerlnfo for every LockLayerInfo.

All layer routines presently LockLayerInfo when they
start-up and UnlockLayerlnfo as they exit. Programmers
will need to use these Lock/Unlock routines if they wish
to do something with the layer structure that is not
supported by the layer library.

SEE ALSO
layers.h UnlockLayerInfo()

,
......
00

""

UnlockLayerRom

NAME
UnlockLayerRom -- unlock Layer structure by rom (gfx.lib) code

SYNOPSIS
UnlockLayerRom(layer

as
FUNCTION

INPUTS

NOTE

Decrements lock count and unlocks layer if the result is O.
Once the layer is really unlocked the, layerlib may then
modify this layer.

layer pointer to Layer structure

There should be an UnlockLayer for every LockLayer.
This call does destroy scratch registers.

SEE ALSO
layers.h, LockLayer()

UnlockLayers

NAME
UnlockLayers -- unlock all layers from graphics output

Restart graphics output to layers that
have been waiting

SYNOPSIS

INPUTS

UnlockLayers(li
aO

li pointer to LayerInfo structure

FUNCTION
Make all layers in this layer list unlocked.
Then call UnlockLayerInfo.

SEE ALSO
layers.h UnlockLayer()

I ,....
00
00

UnPutCLChar

NAME
UnPutCLChar -- get a byte from the end of a character list

SYNOPSIS
byte
DO

FUNCTION

UnPutCLChar(cList)
AD

Gets a byte from the end of the character list described by. the
cList.

INPUTS
cList -

RESULTS
byte

The clistheader used to manage this character list,
as returned by AllocCList or StrToCL.

The byte from the end of the character list. If no
data is available, the upper three bytes are set
(longword is -1).

UnPutCLWord

NAME
UnPutCLWord -- get a word from the end of a character list

SYNOPSIS
word
DO

FUNCTION

UnPutCLWord(cList)
AO

Gets a word from the end of the character list described by the
cList.

INPUTS
cList -

RESULTS
word

The clist header used to manage this character list,
as returned by AllocCList or StrToCL.

The word from the beginning of the character list.
If no data is available, the upper two bytes are set
(longword is -1). Partial words (1 byte) are not
returned.

I ,.....
00
CO

UpfrontLayer

NAME
UpfrontLayer -- put layer in front of all other layers

SYNOPSIS

INPUTS

BOOLEAN UpfrontLayer(Ii, I)
aO al

Ii
I

pointer to LayerInfo structure
pointer to a nonbackdrop layer

FUNCTION

RETURNS

Moves this layer in front of all others, swapping bits
in and out of the display with other layers.
If this is a refresh layer, collects damage list and
sets bit in Flags if redraw required.
By clearing the BACKDROP bit in the layers Flags, you may
bring a Backdrop layer up to the front of all other layers.

TRUE
FALSE

if operation successful
if operation unsuccessful (probably out of memory)

SEE ALSO
layers.h

UserState

NAME
UserState -- return to user state with user stack

SYNOPSIS
UserState(sysStack)

DO

FUNCTION
Return to user state with user stack, from supervisor state
with user stack. This function is normally used in
conjunction with the SuperState function above.

This function must not be called from the user state.

INPUT
sysStack - supervisor stack pointer

SEE ALSO
SuperState

I
<:0
o

VBeamPos

NAME
VBeamPos -- get vertical beam position at this instant

SYNOPSIS
pos

dO
VBeamPOS()

FUNCTION

INPUTS

RESULT

BUGS

NOTE

Gets the vertical beam position from the hardware.

None

Interrogates hardware for beam position and returns value.
valid results in the range of 0-255

Because of hardware constraints, if the vertical beam is
between 256 and 262, 0 through 6 may be returned.

Because of multitasking, the actual value returned may have
no use.

ViewAddress

NAME
ViewAddress return the address of the Intuition View

structure

SYNOPSIS
ViewAddress ()

FUNCTION
This routine returns the address of the Intuition View
structure. If you want to use any of the graphics, text, or
animation primitives in your window and that primitive
requires a pointer to a View, this routine will return the
address of the View for you,.

INPUTS
None.

RESULT
Returns the address of the Intuition View structure.

BUGS
It would be hard for this routine to have a bug.

SEE ALSO
All of the graphics, text, and animation primitive .

I
I-'
~
I-'

ViewPortAddress

NAME
ViewPortAddress return the address of a window's

viewPort structure

SYNOPSIS
ViewportAddress(Window)

AO

FUNCTION
This routine returns the address of the ViewPort structure
associated with the specified window. This is actually the
ViewPort of the screen within which the window is displayed.
If you want to use any of the graphics, text, or animation
primitives in your window and that primitive requlres a
pointer to a ViewPort structure, you can use this call.

INPUTS
Window pointer to the Window structure for which you want

the ViewPort address.

RESULT
Returns the address of the window's ViewPort structure.

BUGS
It would be hard for this routine to have a bug.

SEE ALSO
All of the graphics, text, and animation primitives.

wait

NAME
Wait -- wait for one or more signals

SYNOPSIS
signals
DO

Wait(signalSet)
DO

FUNCTION

INPUT

This function will cause the current task to suspend
waiting for one or more signals. When any of the specified
signals occurs, the task will return to the ready state.
If a signal occurred prior to calling Wait, the wait
condition will be immediately satisfied, and the task will
continue to run.

This function cannot be called while in supervisor mode!

signalSet - the set of signals for which to wait.
Each bit represents a particular signal.

RESULTS

waitBlit

NAME
WaitBlit -- waits for the blitter to be finished before proceeding

with anything else.

SYNOPSIS
WaitBlit()

FUNCTION

INPUTS

RESULT

BUGS

WaitBlit returns when the blitter is idle. This function should
normally be used only when dealing with the blitter in a
synchronous manner, such as when using OWnBlitter and DisownBlitter.
WaitBlit does not wait for all blits queued up using QBlit or
QBSBlit.

None

Your program waits until the blitter is finished.

Because of a bug in Agnus, this code may return too soon when
the blitter has in fact not started the blit yet, even though
Bltsize has been written. This most often occurs in a heavily
loaded system with extended memory, HIRES, and 4 bitplanes.

SEE ALSO
OWnBlitter, DisownBlitter

WaitBOVP

NAME

SYNOPSIS

WaitBOVP -- wait till vertical beam reaches bottom of
this viewPort.

Wai tBOVP (ViewPort
aO

FUNCTION
Returns when vertical beam reaches bottom of this viewport.

INPUTS
viewPort pointer to ViewPort structure

WaitForChar

NAME
WaitForChar -- determine whether characters arrive at a virtual

terminal within a time limit

SYNOPSIS
bool

DO

FUNCTION

WaitForChar(file, timeout
Dl D2

If a character is available to be read from the file associated with
the handle 'file' within a certain time" indicated by 'timeout,'
WaitForChar returns -1 (TRUE); otherwise, it returns 0, (FALSE). If
a character is available, you can use Read to read it. Note .that
WaitForChar is onry valid when the .I/O streams are connected to
a virtual terminal device. 'timeout' is specified· in microseconds ..

INPUTS
file - BCPL pointer to'a file handle
timeout·- integer

RESULTS
bool - boolean

WaitIO

NAME
WaitIO -- wait for completion of an I/O request

SYNOPSIS
error
DO

WaitIO(iORequest)
Al

FUNCTION
This function waits for the specified I/O request to
compl~te. If the I/O has already completed, this function
will return immediately.

This function should be used with care, as it does not
return until the IIO request completes.; if the I/O never
completes, this function, will never return, and your task
will hang. If this situation is a possibility, it is
safer to use the wait function, which will return when
any particular signal is received. This is how I/O timeouts.
can be properly handled:

INPUTS
iORequest - pointer to an I/O request block

RESULTS
error - zero if successful, else an error is returned

SEE ALSO
SendIO

waitPort

NAME
WaitPort -- wait for a given port to be non-empty

SYNOPSIS
message WaitPort(port)
DO AO

FUNCTION

INPUT

This function waits for the given port to become non-empty.
If necessary, the wait function will be called to wait for
the port signal. If a message is already present at the
port, this function will return immediately. The return
value is always a pointer to the first message queued (but
it is not removed from the queue.

port - a pointer to the message port

RETURN
message - a pointer to the first available message

SEE ALSO
GetMsg

WaitTOF

NAME
WaitTOF -- wait for the top of the next video frame

SYNOPSIS
WaitTOF()

FUNCTION

BUGS

INPUTS

waits for vertical blank to occur and all vertical blank
service routines to complete before returning to caller.

none

WBenchToBack

NAME
WBenchToBack

SYNOPSIS
WBenchToBack()

FUNCTION

send the Workbench screen in back of all
screens

This routine causes the Workbench screen, if it is currently
opened, to go to the background. This does not "move" the
screen up or down; it affects only the depth arrangement of
the screen.

If the Workbench screen was opened, this function returns
TRUE; otherwise, it returns FALSE.

INPUTS
None

RESULT

BUGS

If the Workbench screen was opened, this function returns
TRUE; otherwise, it returns FALSE.

Non.

SEE ALSO
WBenchToFront()

WBenchToFront

NAME
WBenchToFront

SYNOPSIS
WBenchToFront()

FUNCTION

bring the Workbench screen in front of
all screens

This routine causes the Workbench screen, if it is currently
opened, to corne to the foreground. This does not "move" the
screen up or down; it affects only the depth arrangement of
the screen.

If the Workbench screen was opened, this function returns
TRUE; otherwise, it returns FALSE.

INPUTS
None

RESULT

BUGS

If the Workbench screen was opened, this function returns
TRUE; otherwise, it returns FALSE.

None

SEE ALSO
WBenchToBack ()

I
CD
0:>

WhichLayer

NAME
WhichLayer -- in which Layer is this point located?

SYNOPSIS

INPUTS

layer (struct Layer *)WhichLayer(li, x, y
aO dO dl

li ~ pointer to LayerInfo structure
(x,y) ~ coordinate.in the BitMap

FUNCTION
starting at. the topmost layer, checks to see if this point (x,y)
occurs in this layer. If it does, returns the pointer to this
layer. Returns 0 if there is no layer·at this point.

SEE ALSO
layers.h

'WindowLimits

NAME
WindowLimits set the minimum and maximum limits of the window

SYNOPSIS
WindowLimits(Window,MinWidth,MinHeight,MaxWidth,MaxHeight)

AD DO Dl D2 D3

FUNCTION
This routine allows you to adjust the ITUnuuum and maximum
limits of the window's size. Until this routine is called,
the window's size limits are equal to the initial limits
specified by the call to OpenWindow().

If you do not want to change anyone of the dimensions, set
the limit argument for that dimension to zero. If any limit
argument is equal to zero, that argument is ignored and the
initial setting of that parameter remains undisturbed.

If any argument ·is.out of range (minimums greater than the
current size, maximums less than the current size), that
limit will be ignored, though the others will still take
effect if they are in range. If any argument is out of
range, the return value from this procedure will be FALSE.
If all arguments 'are valid, the return value will be. TRUE.

If the user is currently sizing this window, the new limits
will not take effect until after the sizing is completed.

INPUTS
Window ~ pointer to a Window structure.
Minwidth, MinHeight, Maxwidth, MaxHeight ~ the. new limits

for the size of this window. If a limit is set to
zero, it will be ignored and that setting will be
unchanged.

RESULT

BUGS

Returns TRUE if everything was in order. If a parameter was
out of range (minimums greater than current size, maximums
less than current size), FALSE is returned, and the errant
limit request is not fulfilled (though the valid ones will be).

None

SEE ALSO
OpenWindow()

WindowToBack

NAME
WindowToBack ask Intuition to send this window to the back

SYNOPSIS
WindowToBack(Window)

AO

FUNCTION
This routine sends a request to Intuition asking to send the
window in back of all other windows in the screen. Note
that the window will not be depth arranged immediately; it
will be arranged the next time Intuition receives an input
event, which happens currently at a minimum rate of ten
times per second and a maximum of sixty times a second.

Remember that Backdrop windows cannot be depth-arranged.

INPUTS
Window = pointer to the structure of the window to be sent

to the back.

RESULT
None

BUGS
None

SEE ALSO
MoveWindow(), SizeWindow(), WindowToFront(.

WindowToFront

NAME
WindowToFront ask Intuition to bring this window to the front

SYNOPSIS
WindowToFront(window)

AO

FUNCTION
This routine sends a request to Intuition asking to bring
the window in front of all other windows in the screen.

Note that the window will not be depth-arranged immediately.
It will be arranged the next time Intuition receives an
input event, which happens currently at a minimum rate of
ten times per second and a maximum of sixty times a second.

Remember that Backdrop windows cannot be depth arranged.

INPUTS
Window = pointer to the structure of the window to be

brought to front.

RESULT
None

BUGS
None

SEE ALSO
MoveWindow(), SizeWindow(), WindowToBack()

Write

NAME
write -- write bytes of data to a file.

SYNOPSIS
returned Length

DO

FUNCTION

Write (file, buffer, length)
Dl D2 D3

You can copy data with a combination of Read and Write. write writes
bytes of data to the opened file 'file.' 'length' refers to the actual
length of data to be transferred; 'buffer' refers to the buffer size.

write returns a value that indicates the length of information actually
written. That is to say, when 'length' is greater than zero, the value
of 'length' is the number of characters written. A value of -1 indicates
an error. The user of this call must always check for an error return
which may, for example, indicate that the disk is full.

INPUTS
file - BCPL pointer to a file handle
buffer - address of the first position in the buffer
length - integer

RESULTS
returnedLength - integer

writePixel

NAME
WritePixel -- change the pen number of one specific pixel in a

specified RasterPort.

SYNOPSIS
writePixel(rp, x, y)

al DO Dl

FUNCTION

INPUTS

RESULT

BUGS

Changes the pen number of the selected pixel in the specified
RastPort to that currently specified by PenA, the primary
drawing pen. Obeys DrawModes and minterms in RastPort.

x - the X coordinate within the RastPonc at which the selected
pixel is located.

y - the Y coordinate.
rp - a pointer to the RastPort to use.

The pixel is changed.

SEE ALSO
ReadPixel

I
<:0
<:0

XorRectRegion

NAME
XorRectRegion -- perform second XOR operation of rectangle

with region, leaving result in region

SYNOPSIS
XorRectRegion(region,rectangle)

aO al

Function

INPUTS

BUGS

Clips away any portion of the region that exists outside
of the rectangle. Leaves the result in region.

region
rectangle

pointer to Region structure
pointer to Rectangle structure

This one does not work yet.

Appendix B

Device Summaries

This appendix contains UNIX-like summaries for the commands that may be applied to ROM
resident (or Kickstart-resident) devices, as well as summaries of routines in disk-loadable dev
ices. These documentation files are organized by device. Following this introduction is a listing
of each command, followed by the library in which it is located. Note that there are no sum
maries for the trackdisk device; see the "Trackdisk Device" chapter for information about this
device.

The tutorial sections of this manual give you information about how these device commands
relate to each other and the prerequisites for calling them. To use any of the device commands,
you must first open the device. The correct calling sequence for opening each device is shown in
the device tutorial chapter itself. This introduction lists the names of the current set of devices

B-1

that are included with the system.

If the device is disk-resident, it is loaded and initialized. The OpenDeviceO call fills in the
io_Device and io_Unit fields of your I/O request block, thereby tying that request block to a
specific device. When you say DoIO(IORequest), the Do100 routine, among others, looks in
the IORequest to find out which device is to be used. This prevents your needing to have a
complete (duplicate) set of I/O transmit and control functions for each device.

The following is a list of the names of the devices that are currently a part of the Amiga
software. All of these are to be treated as null-terminated strings, which are given to the
OpenDeviceO function. For example:

error = OpenDevice("keyboard.device" ,O,IORequest,O);

See OpenDeviceO in the "Routine Summaries" appendix for the meaning of the various fields
of this command.

Device Names

audio.device
clipboard.device
console.device
gameport.device
input. device
keyboard.device
narrator.device
parallel.device
prin ter .device
serial.device
timer.device
trackdisk.device

When you have finished using a device, at the end of your program you should close it, usmg
the CloseDeviceO function as follows:

CloseDevice(IORequest);

You must also free whatever memory you may have dedicated to device communication before
your program ends. Note that you must make sure that the device has responded to all of your
I/O requests by returning your IORequest blocks before you attempt to close the device or
deallocate the memory.

B-2

If the system is running out of memory and needs to free up space, it can check the accessors
field for various devices. If you have closed the device, it decrements its accessors count. For
those devices whose accessors value is zero, the system can retrieve the memory that the device
was usmg.

Certain devices-the timer and console devices-have routines associated with them. These
devices can almost be treated as libraries. To access these routines, you must, as with a library,
provide a value to a specific base variable name:

Device

timer
console

Base Address N arne

TimerBase
ConsoleDevice

To get this base address, you must open the device, then copy the io_Device field from your
IORequest block as the base address for this "library" routine. Note that unlike when you are
using libraries, you need not issue a CloseLibraryO command after using the device routines.
The CloseDeviceO function call is sufficient.

An example showing how to obtain the base address for the timer device is shown in the "Timer
Device" chapter in this manual.

B-3

AbortIO
AbortlO
AbortIO
AbortIO
AddHandler
AddResetHandler
AddTime
ALLQCATE
AskCType
AskTrigger
background
BeginIO
BeginIO
BeginIO
BegiriIO
Break
CDAskKeyMap
CDA~kKeyMap
CDInputHandler
CDInputHandler
CDSetKeYMap
CDSetKeyMap
CLEAR
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Close
Close
Close
Close
CloseDevice
CmpTime
CurrentReadID
CurrentWriteID
DumpRPort
Expunge
Expunge
FINISfl
FLUSH
Flush
Flush
Flush
Flush
FREE
Invalid
LOCK
Open
Open
Open
Open
Open
Open
OpenDevice

Contents

B-4

audio. device
serial. device

narrator. device
parallel. device

input. device
keyboard. device

timer. device
audio. device

gameport.device
gameport.device

timer. device
audio. device

serial. device
parallel.device

clipboard. device
serial. device

console. device
console. device
console. device
console. device
console. device
console. device

audio. device
input. device

serial. device
console. device
console. device

gameport.device
keyboard. device
parallel. device

serial. device
narrator. device
parallel. device

clipboard. device
audio. device
timer. device

clipboard. device
clipboard. device

printer. device
audio. device

clipboard. device
audio. device
audio. device

serial. device
printer. device

narrator. device
parallel. device

audio. device
printer. device

audio. device
input. device

serial. device
gameport.device
narrator. device
parallel.device

clipboard. device
audio. device

OpenDevice
OpenDevice
PERVOL
Post
PrtCommand
Query
Query
RawKeyConvert
RawKeyConvert
RawWrite
READ
Read
Read
Read
Read
Read
Read
ReadEvent
ReadEvent
ReadMatrix
RemHandler
RemResetHandler
RESET
Reset
Reset
Reset
Reset
Reset
Reset
Reset
ResetHandlerDone
SetCType
SetMPort
SetMTrig
SetMType
SetParams
SetParams
SetPeriod
SETPREC
SetThresh
SetTrigger
START
Start
Start
Start
Start
Start
STOP
Stop
stop
Stop
SubTime
TR_ADDREQUEST
TR GETSYSTIME
TR SETSYSTIME
UPDATE
Update
WAITCYCLE
WRITE
Write

B - 5

console. device
console. device

audio. device
clipboard. device

printer. device
serial. device

parallel. device
console. device
console. device
printer. device

audio. device
serial. device

console. device
console. device

narrator. device
parallel. device

clipboard. device
gameport.device
keyboard. device
keyboard. device

input. device
keyboard. device

audio. device
input. device

serial. device
printer. device

keyboard. device
narrator. device
parallel. device

clipboard. device
keyboard. device
gameport.device

input. device
input. device
input. device

serial.device
parallel. device

input. device
audio. device
input. device

gameport.device
audio. device
input. device

serial. device
printer. device

narrator. device
parallel.device

audio. device
serial. device

printer. device
parallel. device

timer. device
timer. device
timer. device
timer. device
audio. device

clipboard. device
audio. device
audio. device

serial. device

write
Write
Write
write
write
Write
WriteEvent

B - 6

console. device
console. device
printer. device

narrator. device
parallel. device

clipboard. device
input. device

Contents

audio.device/AbortIO
audio.device/BeginIO
audio.device/BeginIO/ADCMD_ALLOCATE
audio.device/BeginIO/ADCMD_FINISH
audio.device/BeginIO/ADCMD_FREE
audio.device/BeginIO/ADCMD_LOCK
audio.device/Begin10/ADCMD_PERVOL
audio.device/BeginIO/ADCMD_SETPREC
audio.device/BeginIO/ADCMD_WAITCYCLE
audio.device/BeginIO/CMD_CLEAR
audio.device/BeginIO/CMD_FLUSH
audio.device/BeginIO/CMD_READ
audio.device/BeginIO/CMD_RESET
audio.device/BeginIO/CMD_START
audio.device/BeginIO/CMD_STOP
audio.device/BeginIO/CMD_UPDATE
audio.device/BeginIO/CMD_WRITE
audio.device/CloseDevice
audio.device/Expunge
audio.device/OpenDevice

audio.device/AbortIO

NAME
AbortIO - abort a device command

SYNOPSIS
AbortIO(iORequest);

Al

FUNCTION
AbortIO tries to abort a device command. It is allowed to be
unsuccessful. If the Abort is successful, the io Error field of the
iORequest contains an indication that 10 was aborted.

INPUTS
iORequest -- pointer to the I/O Request for the command to abort

00

audio.devicejBeginIO

NAME
BeginIO - dispatch a device command

SYNOPSIS
BeginIO(iOReguest);

Al

FUNCTION
BeginIO has the responsibility of dispatching all device commands.
Immediate commands are always called directly, and all other commands
are queued to make them single threaded.

INPUTS
iORequest -- pointer to the I/O Request for this command

audio.devicejBeginIO/ADCMD_ALLOCATE

NAME
ADCMD~LOCATE -- allocate a set of audio channels

FUNCTION
ADCMD_ALLOCATE is a command that allocates multiple audio channels.
ADCMD ALLOCATE takes an array of possible channel combinations
(ioa_Data) and an allocation precedence (In_Pri) and tries to allocate
one of the combinations of channels.

If the channel combination array is zero length (ioa_Length), the
allocation succeeds; otherwise, ADCMD ALLOCATE checks each
combination, one at a time, in the specified order, to find one
combination that does not require ADCMD ALLOCATE to steal allocated
channels. -

If it must steal allocated channels, it uses the channel combination
that steals the lowest precedence channels. ADCMD ALLOCATE cannot
steal a channel of equal or greater precedence than the allocation
precedence (In_Pri).

If it fails to allocate any channel combination and the no-wait flag
(ADIOF_NOWAIT) is set ADCMD_ALLOCATE returns a zero in the unit field
of the I/O request (io_Unit) and an error (IOERR_ALLOCFAILED). If the
no-wait flag is clear, it places the I/O request in a list that tries
to allocate again whenever ADCMD_FREE frees channels or ADCMD_SETPREC
lowers the channels' precedences.

If the allocation is successful, ADCMD ALLOCATE checks if any channels
are locked (ADCMD_LOCK) and if so, replies (ReplyMsg) the lock I/O
request with an error (ADIOERR_CHANNELSTOLEN). Then it places the
allocation I/O request in a list waiting for the locked channels to be
freed. When all the allocated channels are unlocked, ADCMD ALLOCATE:

resets (CMD_RESET) the allocated channels, -
generates a new allocation key (ioa_AllocKey), if it is zero,
copies the allocation key into each of the allocated channels
copies the allocation precedence into each of the allocated
channels, and
copies the channel bit map into the unit field of the I/O request.

If channels are allocated with a non-zero allocation key,
ADCMD_ALLOCATE allocates with that same key; otherwise, it generates a
new and unique key.

ADCMD_ALLOCATE is synchronous:
if the allocation succeeds and there are no locked channels to be
stolen, or
if the allocation fails and the no-wait flag is set.

In either case, ADCMD_ALLOCATE replies only (mn_ReplyPort) if the
quick flag (IOF_QUICK) is clear; otherwise, the allocation is
asynchronous, so it clears the quick flag and replies the I/O request
after the allocation is finished. If channels are stolen, all audio
device commands return an error (IOERR NOALLOCATION) when the former
user tries to use them again. Do not use ADCMD_ALLOCATE in interrupt
code.

If you decide to store directly to the audio hardware registers, you
must either lock the channels you've allocated or set the precedence

to maximum (ADALLOC_MAXPREC) to prevent the channels from being
stolen.

Under all circumstances, unless channels are stolen, you must free
(ADCMD_FREE) all allocated channels when you are finished using them.

INPUTS
In_Pri - allocation precedence (-128 thru 127)
mn_ReplyPort- pointer to message port that receives I/O request after

the allocation completes is asynchronous or quick flag
(ADIOF_QUICK) is set

io_Device - pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

io Command - command number .for ADCMD ALLOCATE
iO=Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
(SET) only reply I/O request only if

asynchronous (see above text)
ADIOF_NOWAIT- (CLEAR) if allocation fails, wait till is

succeeds
(SET) if allocation fails, return error

(ADIOERR ALLOCFAILED)
ioa_AllocKey- allocation key, zero to generate new key; otherwise,

it must be set by (or copied from I/O block set by)
OpenDevice function or previous ADCMD_ALLOCATE command

ioa_Data pointer to channel combination options (byte array, bits
o thru 3 correspond to channels 0 thru 3)

ioa_Length - length of the channel combination option array

io_Flags
iO_Error

(0 thru 16, 0 always succeeds)

- bit map of successfully allocated channels (bits 0 thru
3 correspond to channels 0 thru 3)

- IOF_QUICK flag cleared if asynchronous (see above text)
- error number:

o no error
ADIOERR_ALLOCFAILED - allocation failed

audio.device/BeginIO/ADCMD_FINISH

NAME
ADCMD_FINISH -- abort writes in progress to audio channels

FUNCTION
ADCMD_FINISH is a command for multiple audio channels. For each
selected channel (io_unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD_WRITE)in progress, ADCMD_FINISH
aborts the current write immediately or at the end of the current
cycle depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key is incorrect ADCMD_FINISH returns an error (ADIOERR_NOALLOCATION).
ADCMD_FINISH is synchronous and replies only (mn_ReplyPort) if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_FINISH in interrupt
code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to finish (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command - command number for ADCMD FINISH
iO=Flags flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ADIOF_SYNCCYCLE- (CLEAR) finish immediately

(SET) finish at the end of current
cycle

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels successfully
correspond to channels 0 thru 3)

- error number:
o - no error

finished (bits 0 thru 3

ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel

audio.device/BeginIO/ADCMD_FREE

NAME
ADCMD_FREE -- free audio channels for allocation

FUNCTION
ADCMD_FREE is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_FREE does the following:

restores the channel to a known state (CMD_RESET),
changes the channels allocation key, and
makes the channel available for reallocation.
If the channel is locked (ADCMD LOCK) ADCMD FREE unlocks it and
clears the bit for the channel (io_Unit) in-the lock I/O request.
If the lock. I/O request has no channel bits set ADCMD FREE replies
the lock I/O request, and -
checks if there are allocation requests (ADCMD_ALLOCATE) waiting
for the channel.

otherwise, ADCMD_FREE returns an error (ADIOERR_NOALLOCATION).
ADCMD_FREE is synchronous and replies only (mn_ReplyPort) if the quick
flag (IOF_QUICK) is clear. Do not use ADCMD~FREE in interrupt code.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to free (bits 0 thru 3 correspond to

channels 0 thru 3)
io Command - command number for ADCMD FREE
iO=Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels successfully freed (bits 0 thru 3
correspond to channels 0 thru 3)

- error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio.device/BeginIO/ADCMD_LOCK

NAME
ADCMD_LOCK -- prevent audio channels from being stolen

FUNCTION
ADCMD LOCK is a command for multiple aUdio channels. For each
selected channel (io_Unit) , if the allocation key (ioa_AllocKey) is
correct, ADCMD_LOCK locks the channel, preventing subsequent
allocations (ADCMD_ALLOCATE or OpenDevice) from stealing the channel.
Otherwise, ADCMD_LOCK returns an error (ADIOERR_NOALLOCATION) and will
not lock any channels.

Unlike setting the precedence (ADCMD_SETPREC, ADCMD_ALLOCATE or
OpenDevice) to maximum (ADALLOC_MAXPREC) which would cause all
subsequent allocations to fail, ADCMD_LOCK causes all higher
precedence allocations, even no-wait (ADIOF_NOWAIT) allocations, to
wait until the channels are unlocked.

Locked channels can be unlocked only by freeing them (ADCMD_FREE),
which clears the channel select bits (io_Unit). ADCMD_LOCK does not
reply the I/O request (mn_ReplyPort) until all the channels it locks
are freed, unless a higher precedence allocation attempts to steal one
the locked channels. If a steal· occurs, ADCMD_LOCK replies and returns
an error (ADIOERR_CHANNELSTOLEN). If the lock is replied
(mn_ReplyPort) with this error, the channels should be freed as soon
as possible. To avoid a possible deadlock, never make the freeing of
stolen channels dependent on another allocations completion.

ADCMD_LOCK is asynchronous only if the allocation key is correct, in
which case it clears the quick flag (IOF_QUICK); otherwise, it is
synchronous and replies only if the quick flag (IOF_QUICK) is clear.
Do not use ADCMD_LOCK in interrupt code.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device -·pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to lock (bits 0 thru 3 correspond to

channels 0 thru 3)
io Command - command number for ADCMD_LOCK
iO=Flags - flags, must be cleared
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

OUTPUTS
io_Unit - ·bit map of successfully locked channels (bits 0 thru 3

correspond to channels 0 thru 3) not freed (ADCMD_FREE)
- IOF_QUICK flag cleared if the allocation key is correct

(no ADIOERR_NOALJJOCATION error)
- error number:

o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel
ADIOERR~CHANNELSTOLEN- allocation attempting to steal

locked channel

audio.device/BeginIO/ADCMD_PERVOL

FUNCTION

change the period and volume for writes in progress to
audio channels

ADCMD_PERVOL is a command for multiple audio channels. For each
selected channel·(io_Unit), if the allocation key (ioa_AllocKey) is
correct and there is a write (CMD_WRITE) in progress, ADCMD_PERVOL
loads a new volume and period immediately or at the end of the current
cycle, depending on the sync flag (ADIOF_SYNCCYCLE). If the allocation
key is incorrect, ADCMD_PERVOL returns an error (ADIOERR_NOALLOCATION).
ADCMD_PERVOL is synchronous and replies (mn_ReplyPort) only if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_PERVOL in interrupt
code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port· that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to load period and volume (bits 0

thru 3 correspond to channels 0 thru 3)
io Command - command number for ADCMD PERVOL
io=Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ADIOF_SYNCCYCLE- (CLEAR) finish immediately

(SET) finish at the end of current
cycle

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

ioa_Period - new sample period in 279.365 ns increments (127 thru
65536, anti-aliasing filter works below 300 to 500
depending on waveform)

ioa_Volume new volume (0 thru 64, linear)

- bit map of channels that successfully loaded period and
volume (bits 0 thru 3 correspond to channels 0 thru 3)

- error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio.device/BeginIO/ADCMD_SETPREC

NAME
ADCMD_SETPREC -- set the allocation precedence for audio channels

FUNCTION
ADCMD SETPREC is a command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, ADCMD_SETPREC sets the allocation precedence to a new value
(In_Pri) and checks if there are higher-precedence allocation requests
(ADCMD_ALLOCATE) waiting" for the channel; otherwise, ADCMD_SETPREC
returns an error (ADIOERR_NOALLOCATION). ADCMD_SETPREC is synchronous
and replies (mn_ReplyPort) only if the quick flag (IOF_QUICK) is clear.
Do not use ADCMD_SETPREC in interrupt code.

INPUTS
In Pri - new allocation precedence (-128 thru 127)
mn=Replyport- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
io_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to set precedence (bits 0 thru 3

correspond to channels 0 thru 3)
io Command - command number for ADCMD SETPREC
iO=Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from.I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels that successfully set precedence
(bits 0 thru 3 correspond to channels 0 thru 3)

- error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio.device/BeginIO/ADCMD_WAITCYCLE

NAME

FUNCTION

wait for an audio channel to complete the current
cycle of a write

ADCMD_WAITCYCLE is a command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct and there is a write
(CMD_WRITE) in progress on selected channel, ADCMD_WAITCYCLE does not
reply (mn_ReplyPort) until the end of the current cycle. If there is
no write is progress, ADCMD~WAITCYCLE replies immediately. If the
allocation key is incorrect, ADCMD_WAITCYCLE returns an error
(ADIOERR_NOALLOCATION). ADCMD_WAITCYCLE returns an error
(IOERR_ABORTED) if it is canceled (AbortIO) or the channel is stolen
(ADCMD_ALLOCATE). ADCMD_WAITCYCLE is asynchronous only if it is
waiting for a cycle to complete, in which case it clears the quick
flag (IOF_QUICK); otherwise, it is synchronous and replies only if the
quick flag (IOF_QUICK) is clear. Do not use ADCMD_WAITCYCLE in
interrupt code at interrupt levelS or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request, if

the quick flag (IOF_QUICK) is clear, or if a write is in
progress on the selected channel and a cycle has

io Command
iO=Flags

completed
pointer to device node, must be set by (or copied from
I/O block set by) OpenDevice function

- bit map of channel to wait for cycle (bits 0 thru 3
correspond ko channels 0 thru 3). If more than one bit
is set, lowest bit number channel is used.
command number for CMD WAITCYCLE

- flags, must be cleared-if not used:
IOF QUICK - (CLEAR) reply I/O request

- (SET) reply I/O request only if a write is
in progress on the selected channel
and a cycle has completed

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channel that successfully waited for cycle
(bits 0 thru 3 correspond to channels 0 thru 3)

- IOF_QUICK flag cleared if a write is in progress on the
selected channel

- error number:
o
IOERR_ABORTED

- no error
- canceled (AbortIO) or channel

stolen
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio.device/BeginIO/CMD~CLEAR

NAME
CMD_CLEAR -- throwaway internal caches

FUNCTION
CMD CLEAR is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_CLEAR does nothing; otherwise, CMD_CLEAR returns an error
(ADIOERR_NOALLOCATION). CMD_CLEAR is synchronous and replies
(mn_ReplyPort) only if the quick flag (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
iO_Device pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to clear (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command - command number for CMD CLEAR
iO=Flags - flags, must be cleared-if not used.:

IOF QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels successfully cleared (bits 0 thru 3
correspond to channels 0 thru 3)
error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

,udio.device(BeginIO/CMD_FLUSH

NAME
CMD_FLUSH -- cancel all pending I/O

FUNCTION
CMD FLUSH is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD_FLUSH aborts all writes (CMD_WRITE) in progress or queued
and any I/O requests waiting to synchronize with the end of the cycle
(ADCMD_WAITCYCLE); otherwise, CMD_FLUSH returns an error
(ADIOERR NOALLOCATION). CMD FLUSH is synchronous and replies
(mn_Replyport) only if the quick flag (IOF_QUICK) is clear. Do not
use CMD_FLUSH in interrupt code at interrupt level 5 or higher.

INPUTS
mn_Replyport- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) openDevice function
io_Unit - bit map of channels to flush (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command - command number for CMD FLUSH
iO=Flags - flags, must be cleared-if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels successfully flushed (bits 0 thru 3
correspond to channels 0 thru 3)

- error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

aUdio.device/BeginIO/CMD_READ

normal I/O entry point

FUNCTION
CMD_READ is a standard command for a single audio channel (io_Unit).
If the allocation key (ioa_AllocKey) is correct, CMD_READ returns a
pointer (io_Data) to the I/O block currently writing (CMD_WRITE) on
the selected channel; otherwise, CMD READ returns an error
(ADIOERR_NOALLOCATION). If there is-no write in progress, CMD_READ
returns zero. CMD_READ is synchronous and replies (mn_ReplyPort)
only if the quick bit (IOF_QUICK) is clear.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channel to read (bit 0 thru 3 corresponds to

channel 0 thru 3). If more than one bit is set, lowest
bit number channel read.

io Command - command number for CMD_READ
iO=Flags - flags, must be cleared if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channel successfully read (bit 0 thru 3
corresponds to channel 0 thru 3)

- error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel
- pointer to I/O block for current write, zero if none is

progress

audio.device/BeginIO/CMD_RESET

NAME
CMD_RESET -- restore device to a known state

FUNCTION
CMD_RESET is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct, CMD RESET:

clears the hardware audio registers and attach bits,
sets the audio interrupt vector,
cancels all pending I/O (CMD_FLUSH), and
unstops the channel if it is stopped (CMD_STOP),

Otherwise, CMD_RESET returns an error (ADIOERR_NOALLOCATION).
CMD_RESET is synchronous and replies (mn_ReplyPort) only if the quick
flag (IOF_QUICK) is clear. Do not use CMD_RESET in interrupt code at
interrupt level 5 or higher.

INPUTS
mn_Replyport- pointer to message port that receives I/O request

if the quick flag (IOF_QUICK) is clear
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to reset (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command - command number for CMD RESET
io=Flags - flags, must be cleared-if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels to successfully reset (bits 0 thru 3
correspond to channels 0 thru 3)

- error number:
o - no error
ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)

does not match key for channel

audio.device(BeginIO/CMD_START

NAME
CMD_START -- start device processing (like -Q)

FUNCTION
CMD_START is a standard command for multiple audio channels. For each
selected channel (io_Unit), if the allocation key (ioa_AllocKey) is
correct and the channel was previously stopped (CMD_STOP), CMP_START
immediately starts all writes (CMD_WRITE) to the channel. If the
allocation key is incorrect, CMD START returns an error
(ADIOERR_NOALLOCATION). CMD_START starts multiple channels
simultaneously to minimize distortion if the channels are playing the
same waveform and their outputs are mixed. CMD_START is synchronous and
replies (mn_Replyport) only if the quick flag (IOF_QUICK) is clear.
Do not use CMD_START in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF_QUICK) is clear
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channels to start (bits 0 thru 3 correspond

to channels 0 thru 3)
io Command - command number for CMD START
iO=Flags - flags, must be cleared-if not used:

IOF_QUICK - (CLEAR) reply I/O request
ioa_AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD_ALLOCATE command

- bit map of channels successfully
correspond to channels 0 thru 3)

- error number:
o - no error

started (bits 0 thru 3

ADIOERR_NOALLOCATION - allocation key (ioa_AllocKey)
does not match key for channel

audio.device/BeginIO/CMD~STOP

NAME
CMD~STOP -- stop device processing (like ~S)

FUNCTION
CMD~STOP is a standard command for multiple audio channels. For each
selected channel (io~Unit), if the allocation key (ioa~AllocKey) is
correct, CMD~STOP immediately stops any writes (CMD~WRITE) in
progress; otherwise, CMD~STOP returns an error (ADIOERR~NOALLOCATION).
CMD~WRITE queues up writes to a stopped channel until CMD~START starts
the channel or CMD RESET resets the channel. CMD STOP is synchronous
and replies (mn~Replyport) only if the quick flag (IOF~QUICK) is
clear. Do not use CMD~STOP in interrupt code at interrupt level 5 or
higher.

INPUTS
mn~ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF~QUICK) is clear
- pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
- bit map of channels to stop (bits 0 thru 3 correspond to

channels 0 thru 3)
io Command - command number for CMD~STOP
iO=Flags - flags, must be cleared if not used:

IOF~QUICK - (CLEAR) reply I/O request
ioa~AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD~ALLOCATE command

- bit map of channels successfully stopped (bits 0 thru 3
correspond to channels 0 thru 3)

- error number:
o - no error
ADIOERR~NOALLOCATION - allocation key (ioa~AllocKey)

does not match key for channel

audio.devicejBeginIO/CMD~UPDATE

NAME
CMD~UPDATE -- force dirty buffers out

FUNCTION
CMD UPDATE is a standard command for multiple audio channels. For
each selected channel (io~Unit), if the allocation key (ioa~AllocKey)
is correct, CMD~UPDATE does nothing; otherwise, CMD UPDATE returns an
error (ADIOERR~NOALLOCATION). CMD~UPDATE is synchronous and
replies (mn~ReplyPort) only if the quick flag (IOF~QUICK) is clear.

INPUTS
mn~ReplyPort- pointer to message port that receives I/O request after

if the quick flag (IOF~QUICK) is clear
io~Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io~Unit bit map of channels to update (bits 0 thru 3 correspond

to channels 0 thru 3)
io Commend - command number for CMD UPDATE
iO=Flags - flags, must be cleared~if not used:

IOF~QUICK - (CLEAR) reply I/O request
ioa~AllocKey- allocation key, must be set by (or copied from I/O block

set by) OpenDevice function or ADCMD~ALLOCATE command

- bit map of channels successfully
correspond to channels 0 thru 3)

- error number:
o - no error

updated (bits 0 thru 3

ADIOERR~NOALLOCATION - allocation key (ioa~AllocKey)
does not match key for channel

audio.device/BeginIO/CMD_WRITE

NAME
CMD_WRlTE -- nonnal I/O entry point

FUNCTION
CMD_WRITE is a standard command for a single audio channel (io_unit).
If the allocation key (ioa_AllocKey) is correct, CMD_WRITE plays a
sound using the selected channel; otherwise, it returns an error
(ADIOERR_NOALLOCATION). CMD_WRITE queues up requests if there is
another write in progress or if the channel is stopped (CMD_STOP).
When the write actually starts; if the ADIOF_PERVOL flag is set,
CMD_WRITE loads volume (ioa_Volume) and period (ioa_Period), and if
the ADIOF_WRITEMESSAGE flag is set, CMD_WRITE replies the write
message (ioa_WriteMsg). CMD_WRITE returns an error (IOERR_ABORTED) if
it is canceled (AbortIO) or the channel is stolen (ADCMD_ALLOCATE).
CMD_WRITE is asynchronous only if there is no error, in which case it
clears the quick flag (IOF_QUICK) and replies the I/O request
(mn_ReplyPort) after it finishes writting; otherwise, it is synchronous
and replies only if the quick flag (IOF_QUICK) is clear. Do not use
CMD_WRITE in interrupt code at interrupt level 5 or higher.

INPUTS
mn_ReplyPort- pointer to message port that receives I/O request after

the write completes
iO_Device - pointer to device node, must be set by (or copied from

I/O block set by) OpenDevice function
io_Unit - bit map of channel to write (bit 0 thru 3 corresponds to

channel 0 thru 3). If more than one bit is set, lowest
bit number channel is written.

io Command - command number for CMD WRITE
iO=Flags - flags, must be cleared-if not used:

ADIOF_PERVOL - (SET) load volume and period
ADIOF_WRITEMESSAGE - (SET) reply message at write start

ioa_AllocKey- allocation key, must be set by (or copied from I/O block
set by) OpenDevice function or ADCMD_ALLOCATE command

ioa_Data - pointer to wavefonn array (signed bytes (-128 thru 127)
in custom chip addressable RAM and word-aligned)

ioa_Length length of the wave array in bytes (2 thru 131072, must
be even number)

ioa_Period - sample period in 279.365 ns increments (127 thru 65536,
anti-aliasing filter works below 300 to 500 depending on
wavefonn), if enabled by ADIOF PERVOL

ioa Volume - volume (0 thru 64, linear), if-enabled by ADIOF_PERVOL
ioa=cycles - number of times to repeat array (0 thru 65535, 0 for

infinite)
ioa_WriteMsg- message replied at start of write, if enabled by

ADIOF_WRITEMESSAGE

iO_Flags
io_Error

- bit map of channel successfully written (bit
corresponds to channel 0 U,rU 3)
IOF QUICK flag cleared if there is no error

- error number:
- no error

o thru 3

o
IOERR_ABORTED - canceled (AbortIO) or channel

stolen
ADIOERR_NOALLOCATION - allocation key (ioa AllocKey)

does not match key for channel

BUGS
If CMD_WRITE starts the write immediately after stopping a previous
write, you must set the ADIOF_PERVOL flag or the new data pointer
(ioa_Data) and length (ioa_Length) may not be loaded.

audio.device/CloseDevice

NAME
CloseDevice - terminate access to the audio device

SYNOPSIS
CloseDevice(iORequest);

Al

FUNCTION
The CloseDevice routine notifies the audio device that it will no
longer be used. It takes an I/O audio request block (IOAudio) and
clears the device pointer (io_Device). If there are any channels
allocated with the same allocation key (ioa_AllocKey), CloseDevice
frees (ADCMD_FREE) them. CloseDevice decrements the open count, and if
it falls to zero and an expunge (Expunge) is pending, the device is
expunged.

INPUTS
iORequest pointer to audio request block (struct IOAudio)

OUTPUTS

iO_Device pointer to device node, must be set by (or
copied from I/O block set by) open (OpenDevice)

io_Unit - bit map of channels to free (ADCMD_FREE) (bits 0
thru 3 correspond to channels 0 thru 3)

ioa_AllocKey- allocation key, used to free channels

iORequest - pointer to audio request block istruct IOAudio)
io Device - set to -1
io=unit - set to zero

audio.device/Expunge

NAME
EXPUNGE - indicate a desire to remove the Audio device

FUNCTION
The Expunge routine is called when a user issues a RernDevice call. By
the time it is called, the device has already been removed from the
device list, so no new opens will succeed. The existence of any other
users of the device, as determined by the device open count being
non-zero, will cause the Expunge to be deferred. When the device is
not in use, or no longer in use, the Expunge is actually performed.

audio.device/OpenDevice

NAME
OpenDevice - open the audio device

SYNOPSIS
error

FUNCTION

openDevice(Haudio.deviceH, unitNumber, iORequest, flags);

The OpenDevice routine grants access to the audio device. It takes an
I/O audio request block (iORequest), and if it can successfully open
the audio device, it loads the device pointer (io_Device) and the
allocation key (ioa_AllocKey); otherwise, it returns an, error
(IOERR_OPENFAIL). OpenDevice increments the open count keeping the
device from being expunged (Expunge). If the length (ioa_Length) is
non-zero, OpenDevice tries to allocate (ADCMD_ALLOCATE) audio channels
from a array of channel combination options (ioa_Data). If the
allocation succeeds, the allocated channel combination is loaded into
the unit field (ioa_Unit); otherwise, OpenDevice returns'an error
(ADIOERR_ALLOCE'AILED). OpenDevice does not wait for allocation to
succeed and closes (CloseDevice) the audio device if it fails. To
allocate channels, OpenDevice also requires a properly initialized
reply port (mn_ReplyPort) with an allocated signal bit.

INPUTS
unitNumber- not used
iORequest - pointer to audio request block (struct IOAudio)

flags

OUTPUTS

In_Pri - allocation precedence (-128 thru 127), only
necessary for allocation (non-zero length)

mn_ReplyPort- pointer to message port for allocation, only
necessary for allocation (non-zero length)

ioa_Data pointer to channel combination options (byte
array, bits .0 thru 3 correspond to channels .0
thru 3), only necessary for allocation (non-zero
length)

ioa_Length length of the channel combination option array
(.0 thru 16), zero for no allocation

- not used

iORequest - pointer to audio request block (struct IOAudio)
io_Device - pointer to device node if OpenDevice succeeds,

otherwise -1
io_Unit - bit map of successfully allocated channels (bits

.0 thru 3 correspond to channels .0 thru 3) if
allocation, otherwise .0

iO_Error - error number:
.0 - no error
IOERR_OPENFAIL - open failed
ADIOERR_ALLOCFAILED - allocation failed, no open

ioa AllocKey- unique allocation key, if OpenDevice succeeds
error - copy of iO_Error

Contents

clipboard.device/BeginIO
clipboard.device/CloseDevice
clipboard.device/CLIPREADID
clipboard.device/CLIPWRITEID
clipboard. device/EXPUNGE
clipboard.device/OpenDevice
clipboard. device/POST
clipboard. device/READ
clipboard. device/RESET
clipboard. device/UPDATE
clipboard.device/WRITE

clipboard.device(BeginIO

NAME
BeginIO - initiate clipboard device 10

SYNOPSIS
SendIO(iORequest)
DoIO(iORequest)

FUNCTION
BeginIO is the workhorse device function used to initiate
device commands. It can be called directly or via the Exec
library functions SendIO() and DoIO().

clipboard. device/Close

NAME
CloseDevice - terminate access to the clipboard device

SYNOPSIS
CloseDevice(iORequest)

FUNCTION
This routine notifies the clipboard device that the
iORequest will no longer be used.

clipboard.device/CLIPREADID

NAME
CLIPREADID - determine the current read identifier

FUNCTION
CLIPREADID fills the io_ClipID with a. clip identifier that
can be compared with that of a post coomand: if greater than
the post identifier, the post data held privately by an
application is not valid for its own pasting.

IO REQUEST
io_Message
io Device
io-Unit
iO::::Coomand

mn_ReplyPorbset up
preset by OpenDevice
preset by OpenDevice
CMD_CLIPREADID

the ClipID of the current write is set

clipboard.device/CLIPWRITEID

NAME
CLIPWRITEID - determine the current write identifier

FUNCTION
CLIPWRITEID fills the io_ClipID with a clip identifier that
can be compared with that of a post coomand: if greater than
the post identifier, the post is obsolete and need never
be satisfied.

IO REQUEST
iO_Message
io Device
io::::unit
io_Coomand

mn_ReplyPort set up
preset by OpenDevice
preset by OpenDevice
CMD_CLIPWRITEID

the ClipID of the current write is set

ttl

clipboard. device/EXPUNGE

NAME
Expunge - indicate a desire to remove the clipboard device

SYNOPSIS
<Expunge is not generally called by application programs>

FUNCTION
The Expunge
used by the
open units.
next needed

routine is called when the system needs the memory
clipboard device, and the clipboard device has no

The clipboard device is removed from memory until
(i. e., until the next OpenDevice("clipboard. device" , ...) .

clipboard.device/OpenDevice

NAME
OpenDevice - open the clipboard device

SYNOPSIS
OpenDevice("clipboard.device", unit, iORequest, 0)

FUNCTION
The open routine grants access to a device. There are two
fields in the iORequest block that will be filled in:
iO_Device and io_Unit.

A successful OpenDevice() call must be matched by a CloseDevice()
call when access to the device is no longer needed.

RESULTS
If the open was unsuccessful, returns a non-zero
result and the iORequest is not valid.

clipboard.device/pOST

N~E

POST - post clip to clipboard

FUNCTION
Indicate to the clipboard device that data is available for
use by accessors of the clipboard. This is intended to be
used when a cut is large, in a private data format, and/or
changing frequently, and it thus makes sense to avoid
converting it to an IFF form and writing it to the clipboard
unless another application wants it. The post provides a
message port to which the clipboard device will send a satisfy
message if the data is required.

If the satisfy message is received, the write associated with
the post must be performed. The act of writing the clip
indicates that the message has been received: it may then be
re-used by the clipboard device, and so must actually be
removed from the satisfy message port so that the port is not
corrupted.

If the application wishes to determine if a post it has
performed is still the current clip, it should check the
post's io_ClipID with that returned by the CLIPREADID
command. If CLIPREADID is greater, the clip is not still
current.

If an application has a pending post and wishes to determine
if it should satisfy it (e.g., before it exits), it should
check the post's io_ClipID with that returned by the
CLIPWRITEID command. If CLIPWRITEID is greater, there
is no need to satisfy the post.

10 REQUEST
iO_Message
io Device
io=unit
io_Command
io Data
io=ClipID

RESULTS
io Error
io=ClipID

mn_ReplyPort set up
preset by OpenDevice
preset by OpenDevice
CBD_POST
pointer to satisfy message port
zero

non-zero if an error occurred
the clip ID assigned to this post, to be used
in the write command if this is satisfied

clipboard.device/READ

N~E
READ - read clip from clipboard

FUNCTION
The read function serves two purposes.

When io_offset is within the clip, it acts as a normal read
request, and iO_Data is filled with data from the clipboard.
The first read request should have a zero io_ClipID, which
will be filled with the ID assigned for this read. Normal
sequential access from the beginning of the clip is achieved
by setting io_Offset to zero for the first read, then leaving
it untouched for subsequent reads. If iO_Data is null, then
io_Offset is incremented by iO_Actual as if iO_Length bytes
had been read. This is useful for skipping to the end-of-file
by using a huge iO_Length.

When io_offset is beyond the end of the clip, this acts as a
signal to the clipboard device that the application is
through reading this clip. Be aware that while an application
is in the middle of reading a clip, any attempts to write new
data to the clipboard are held off. This read past the end
of file indicates that those operations may now be initiated.

10 REQUEST
io_Message
io Device
io-unit
io-Command
iO=Length
iO_Data

io Offset
iO=ClipID

RESULTS
io Error
iO=Actual
io Data
io=offset

mn_ReplyPort set up
preset by OpenDevice
preset by OpenDevice
CMD_READ
number of bytes to put in data buffer
pointer to buffer of data to fill, or null to
skip over data
byte offset of data to read
zero if this is the initial read

non-zero if an error occurred
filled with the actual number of bytes read
(the buffer now has iO_Actual bytes of data)
updated to next read position, which is
beyond EOF if iO_Actual !~ iO_Length
the clip ID assigned to this read: do not
alter for subsequent reads

clipboard. device/RESET

NAME
RESET - reset the clipboard

FUNCTION
Resets the clipboard device without destroying handles
to the open device.

10 REQUEST
io_Message
io Device
io-command
iO=Flags

rnn_ReplyPort set up
preset by OpenDevice
CMD_RESET
lOB_QUICK set if quick I/O is possible

clipboard.devicejUPDATE

NAME
UPDATE - terminate the writing of a cut to the clipboard

FUNCTION
Indicate to the clipboard that the previous write commands are
complete and can be used for any pending pastes (reads). This
command cannot be issued while any of the write commands are
pending.

10 REQUEST
io_Message
io Device
io-Unit
io-Command
io=ClipID

RESULTS
io_Error

rnn_ReplyPort set up
preset by openDevice
preset by OpenDevice
CMD UPDATE
the -ClipID of the write

non-zero if an error occurred

clipboard.devicefWRITE

NAME
WRITE - write clip to clipboard

FUNCTION
This command writes data to the clipboard. This data can be
provided sequentially by clearing io_Offset for the initial
write, and using the incremented value unaltered for
subsequent writes. If io_Offset is ever beyond the current
clip size, the clip is padded with zeros.

If this write is in response to a SatisfyMsg for a pending
post, the io_ClipID returned by the Post command must
be used. Otherwise, a new ID is obtained by clearing the
io_ClipID for the first write. Subsequent writes must not
alter the io_ClipID.

10 REQUEST
io_Message
io Device
io-Unit
io-Command
iO:::Length
io Data
io-Offset
io:::ClipID

RESULTS
io Error
io-Actual
io-Offset
io:::ClipID

mn_ReplyPort set up
preset by OpenDevice
preset by OpenDevice
CMD WRITE
nlllllher of bytes from iO_Data to write
pointer to block of data to write
usually zero if this is the initial write
zero if this is the initial write, ClipID of
the Post if this is to satisfy a post

non-zero if an error occurred
filled with the actual number of bytes written
updated to next write position
the clip ID assigned to this write: do not
alter for subsequent writes

Contents

console.device/CDAskKeyMap
console.device/CDInputHandler
console.device/CDSetKeyMap
console. device/Clear
console.device/OpenDevice
console.device/RawKeyConvert
console. device/Read
console.device/Write

console.device/CDAskKeyMap

NAME
AskKeyMap - get the current key map structure for this console

FUNCTION
Fills the IO_DATA buffer with the current KeyMap structure in
use by this console unit.

10 REQUEST
io_Message
io Device
io-Unit
io-COIl1lIand
io:::Flags
io_Length
iO_Data

RESULTS.

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to openDevice
CD ASKKEYMAP
IOF_QUICK if quick I/O possible, else zero
sizeof (*keyMap)
struct KeyMap *keyMap
eight longwords to describe the raw keycode
to byte stream conversion.

This function sets the error field in the iORequest, and· fills
the structure at IO_DATA with the current key map.

console.device/CDlnputHandler

NAME
CplnputHandler - handle an input event for the console device

SYNOPSIS
CDlnputHandler(events, consoleDev)

AO Al

FUNCTION
Accepts input events from the producer, which is usually the
ROM input. task.

NOTES
This function is different from standard device cOll1llands in
that it is a function in the console device library vectors.
The "OpenLibrary" call for the console device is to
OpenDevice("·console.device", -1, iORequest, 0) and then grab
the io_Device field out of the iORequest.as the library
vector.

console.device/CDSetKeyMap

NAME
SetKeyMap - set the current key map structure for this console

FUNCTION
Sets the current KeyMap structure used by this console unit to
the structure pointed to by IO_DATA

10 REQUEST
iO_Message
io Device
iO-Unit
io-Coomand
iO=Flags
io_Length
io_Data

RESULTS

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CD SETKEYMAP
IOF QUICK if quick I/O possible, else zero
sizeof(*keyMap)
struct KeyMap *keyMap
eight longwords that describe the raw keycode
to byte stream conversion.

This function sets the error field in the iORequest and fills
the current key map from IO_DATA.

console. device/Clear

NAME
Clear - clear console input buffer

FUNCTION
Remove from the input buffer any reports waiting to satisfy
read requests.

10 REQUEST
io_Message
io Device
io-Unit
io-Conrnand
iO=Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CMD_CLEAR
rOB_QUICK set if quick I/O is possible

console.devicejOpenDevice

NAME
OpenDevice - a request to open a console device

SYNOPSIS
OpenDevice("console.device", unit, iORequest, 0)

FUNCTION
The open routine grants access to a device. There are two
fields in the iORequest block that may be filled in: the
IO~DEVICE field and possibly the IO_UNIT field.

This open command differs from most other device open commands
in that it requires some information to be supplied in the
IO_DATA field of the iORequest block. This initialization
information supplies the window that is used by the console
device for output.

The unit number that is a standard parameter for an open call
is used specially by this device. A.unit of -1 indicates that
no actual console is to be opened; this is used to get a
pointer to the device library vector. A unit of zero binds
the supplied window to a unique console. Sharing a console
must be done at a level higher than the device. There are no
other valid unit numbers.

IO REQUEST
iO_Data struct" Window *window

This is the window that will be used for this
console. It must be supplied if the unit in
the OpenDevice call is 0 (see above). The
RPort of this window is potentially in use by
the console whenever there is an outstanding
write command.

console.devicejRawKeyConvert

NAME
RawKeyConvert - decode raw input classes

SYNOPSIS
actual
DO

RawKeyConvert (event , buffer, length, keyMap), consoleDev
AO Al Dl A2 A6

FUNCTION
This console function converts input events of type
IECLASS_RAWKEY to ANSI bytes, based on the keyMap, and
places the result into the buffer.

INPUTS
event - an InputEvent structure pointer.
buffer - a byte buffer large enough to hold all anticipated

characters generated by this conversion.
length - maximum anticipation, i.e. the buffer size in bytes.
keyMap - a KeyMap structure pointer, or null if the default

console device key map is to be used.
consoleDev - the iO_Device of the console device.

RESULTS
actual - the number of characters in the buffer, or -1 if

a buffer overflow was about to occur.

ERRORS

NOTES

if actual is -1, a buffer overflow condition was detected.
Not all of the characters in the buffer are valid.

This function is different from standard device commands in
that it is a function in the console device library vectors.
The "OpenLibrary" call for the console device is to
OpenDevice("console.device", -1, iORequest, 0), and then grab
the io_Device field out of the iORequest as the library
vector.

console. device/Read

NAME
·Read - return the next input fram the keyboard

FUNCTION
Reads the next input, generally from the keyboard. The form of
this input is as an ANSI byte stream: i.e., either ASCII text
or control sequences. Raw input events received by the
console device can be selectively filtered via the SRE and RRE
control sequences (seethe write command). Keys are converted
via the keymap associated with the unit, which is.modified
with AskKeyMap and SetKeyMap

If, for example, raw keycodes had been enabled by writing
<CSI>ls to the console (where <CSI> is $9B or Esc[), keys
would return raw keycode reports with the information fram
the 'input event itself, in .the form:
<CSI>l;O;<keycode>;<qualifiers>;O;O;<seconds>;<microseconds>q

If there is no pending input ,this conmand ,will not be
satisfied; if there is some input, but not as much as can
fill IO_LENGTH, the' request will be satisfied with the input
currently available.

10 REQUEST
io_Message
io Device
iO-Unit
io-Corrmand
iO::::F1:ags
io_Length
iO_Data

RESULTS

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
:preset by the call to OpenDevice
CMD_READ
IOF_QUICK if quick I/O possible, else zero
sizeof (~buffer)
char buffer[]
The destination for the characters to read
from the keyboard.

This function sets the error field in the iORequest, and fills
the iORequest IO_DATA area with the next input, and IO_ACTUAL
with the number of bytes read.

console.device/Write

NAME
write - write text to the display

FUNCTION
'Write a text record to the display. Note that the RPort of
the console window is in use while this write command is
pending.

10 REQUEST
io_Message
io Device
io-Unit
io-Corrmand
iO::::Flags
iO_Length
iO_Data

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CMD WRITE
IOF::::QUICK if quick I/O possible, else zero
sizeof(*buffer)
char buffer[]
a buffer containing the ANSI text to write to
the console device.

ANSI CODES SUPPORTED

Independent Control Functions rno introducer) --
Code Name .Definition

00/ 8 BS
00/10 LF
00/11 VT
00/12 FF
00/13 CR
00/14 SO
00/15 SI
01/11 ESC

Code or Esc

BACKSPACE
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN
SHIFT OUT
SHIFT IN
ESCAPE

Name Definition

08/ 4 D IND INDEX: move the active position down one line
08/ 5 E NEL NEXT LINE:
08/13 M RI REVERSE INDEX:
09/11 [",CSI CONTROL SEQUENCE INTRODUCER: see next list

ISO-compatible Escape Sequences (introduced by Esc) -
Esc Name·Definition

a INT INTERRUPT (will not be supported later)
c RIS RESET TO INITIAL STATE

Control Sequences (introduced by CSI, i.e., $9B or Esc[) with
parameters: "1" is an optional numeric parameter. "2" is two
numeric parameters; e.g., '14;94'. "3" is any number of
numeric parameters. Numeric parameters are separated by semicolons.
Esc[Name Definition

l@ ICH INSERT CHARACTER
lA CUU CURSOR UP
lB CUD CURSOR DOWN
lC CUF CURSOR FORWARD
ID CUB CURSOR BACKWARD

IE
IF
2H
IJ
lK
lL
1M
Ip
2R
Is
IT
3h
31
3m
In
It
lu
Ix
ly

~f
3}
I-
I p
o q
4 r

CNL CURSOR NEXT LINE
CPL CURSOR PRECEEDING LINE
CUP CURSOR POSITION
ED ERASE IN DISPLAY (only to end of display)
EL ERASE IN LINE (only to end of line)
IL INSERT LINE
DL DELETE LINE
DCH DELETE CHARACTER
CPR CURSOR POSITION REPORT (in Read stream only)
SU SCROLL UP
SD SCROLL DOWN
SM SET MODE
RM RESET MODE
SGR SELECT GRAPHIC RENDITION
DSR DEVICE STATUS REPORT
aSLPP SET PAGE LENGTH (private Amiga sequence)
aSLL SET LINE LENGTH (private Amiga sequence)
aSLO SET LEFT OFFSET (private Amiga sequence)
aSTO SET TOP OFFSET (private Amiga sequence)
aSRE SET RAW EVENTS (private Amiga sequence)
aIER INPUT EVENT REPORT (private Amiga Read sequence)
aRRE RESET RAW EVENTS (private Amiga sequence)
aSKR SPECIAL KEY REPORT (private Amiga Read sequence)
aSCR SET CURSOR RENDITION (private Amiga sequence)
aWSR WINDOW STATUS REQUEST (private Amiga sequence)
aWBR WINDOW BOUNDS REPORT (private Amiga Read sequence)

Contents

gameport.device/AskCType
gameport.device/AskTrigger
gameport.device/Clear
gameport.device/open
gameport.devicejReadEvent
gameport.device/SetCType
gameport.device/SetTrigger

gameport.device/AskCType

NAME
AskCType - inquire the current gameport controller type

FUNCTION
This command identifies the type of controller at the game
port, so that the signals at the port may be properly
interpreted. The controller type has been set by a previous
SetCType.

This command always executes immediately.

10 REQUEST
io_Message
io Device
io-Unit
io-Command
io:::Flags
io Length
iO:::Data

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
GPD_ASKCTYPE
lOB_QUICK set if quick I/O is possible
at least I
the address of the byte variable for the
result

gameport.device/AskTrigger

NAME
AskTrigger - inquire the conditions for a gameport report

FUNCTION
This command inquires what conditions must be met by a game
port unit before a pending Read request will be satisfied.
These conditions, called triggers, are independent -- that
anyone occurs is sufficient to queue a gameport report to
the Read queue. These conditions are set by SetTrigger.

This command always executes immediately.

10 REQUEST
io Message
io-Device
io-unit
io-Command
io-Flags
io-Length
io:::Data

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by· the call to OpenDevice
GPD ASKTRIGGER
10B:::QUICK set if quick I/O is possible
sizeof(gameportTrigger)
a structure of type GameportTrigger, which
has the following elements

gpt_Keys -
GPTB DOWNKEYS set if button down transitions
trigger a report, and GPTB_UPKEYS set if button up
transitions trigger a report

gpt_Timeout -
a time which, if exceeded, triggers a report;
measured in vertical blank units (60/sec)

gpt_XDelta
a distance in x which, if exceeded, triggers a
report

gpt_YDelta
a distance in x which, if exceeded, triggers a
report

gameport.device/Clear

NAME
Clear - clear gameport input buffer

FUNCTION
Removes from the input buffer any gameport reports waiting to
satisfy read requests.

IO REQUEST
io Message
io-Device
io-Unit
io-Command
iO::::Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CMD_CLEAR
lOB_QUICK set if quick I/O is possible

gameport.device/Open

NAME
Open - a request to open the GamePort device

SYNOPSIS
OpenDevice("gameport.device", unit, iORequest, 0)

FUNCTION
The open routine grants access to a device. Two
fields in the iORequest block will be filled in: the
IO_DEVICE field and the IO_UNIT field.

The device open count will be incremented. The device cannot
be expunged unless this open is matched by a Close device.

INPUTS
unit

RESULTS

o unit associated with left gameport controller
1 unit associated with right gameport controller

If the open was unsuccessful, IO_ERROR will be set, 10_UNIT
and 10_DEVICE will not be valid.

gameport.devicejReadEvent

NAME
ReadEvent - return the next gameport event.

FUNCTION
Reads gameport events from the gameport and puts them in the
data area of the iORequest. If there are no pending gameport
events, this command will not be. satisfied, but if there are
some events, but not as many as can fill IO_LENGTH, the
request will be satisfied with those currently available.

10 REQUEST
iO_Message
io Device
io-unit
io-Command
iO=Flags
io_Length

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
GPD READEVENT
IOB=QUICK set if quick I/O is possible
the size of the io Data area in bytes: there
are sizeof(inputEvent) bytes per input event.
a buffer area to fill with input events. The
fields of the input event are:

ie NextEvent

RESULTS

- links the events returned

is IECLASS_RAWMOUSE

is 0 for the left, 1 for the right gameport

contains any gameport button reports. No
report is indicated by the value Oxff.

ie Qualifier
- only the relative and button bits are set

ie_TimeStamp

the x and y values for this report, in either
relative or absolute device dependent units.

the delta time since the last report, given
not as a standard timestamp, but as the frame
count in the TV_SECS field.

This function sets the error field in the iORequest and fills
the iORequest with the next gameport events (but not partial
events) .

SEE ALSO
gameport.device/SetCType, gameport.device/SetTrigger

gameport.device/SetCType

NAME
SetCType - set the current gameport controller type

FUNCTION
This command sets the type of device at the gameport, so that
the signals at the port may be properly interpreted. The port
can also be turned off, so that no reports are generated.

This command always executes immediately.

IO REQUEST
io_Message
io Device
io=Unit
io Command
io=Flags
iO_Length
iO_Data

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
GPD_SETCTYPE
lOB QUICK set if quick I/O is possible
1 -
the address of the byte variable describing
the controller type, as per the equates in
the gameport include file

gameport.device/SetTrigger

NAME
SetTrigger - set the conditions for a gameport report

FUNCTION
This .command sets·what conditions must be met by a game
port unit before.a pending. Read request. will be satisfied.

.These conditions, called triggers, are independent -- that
anyone occurs is sufficient to queue a gameport report to
the Read .queue·. -These 'conditions are inquired with
AskTrigger.

This command always executes immediately.

IO REQUEST
io..:.Message
io Device
io-Unit
io-Corrmand
iO::::Flags
iO_Length

oio_Data

'mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
GPD SETTRIGGER
IOB=QUICK set if quick I/O is possible
sizeof(gameportTrigger)
a structure of type GameportTrigger, which
has the following elements

gpt_Keys -
GPTB_DOWNKEYS set if button down transitions
trjgger a report, and GPTB_UPKEYS set if button up
transitions trigger a report

gpt Timeout -
- a-time which, if exceeded, triggers a report;

measured in vertical blank units (60/sec)
gpt_XDelta

a distance in x which, if exceeded, triggers a
report

gpt_YDelta
a distance in x which, if exceeded, triggers a
report

Contents

input.device/AddHandler
input. device/Clear
input.device/Open
input.device/RemHandler
input.device/Reset
input.device/SetMPort
input.device/SetMTrig
input;device/SetMType
input.device/SetPeriod
input.device/SetThresh
input. device/start

. input. device;IWri teEvent

input.device/AddHandler

NAME
AddHandler - add an input handler to the device

FUNCTION
Adds a function to the list of functions called to handle
input events generated by this device. The function is called
as

newlnputEvents
DO

Handler(inputEvents, handlerData);
AO Al

10 REQUEST
io_Message
io Device
io=Unit
io_Command
iO_Data

NOTES

is Data
is=Code

mn_ReplyPort set
preset by OpenDevice
preset by OpenDevice
IND_ADDHANDLER
a pointer to an interrupt structure.
the handlerData pointer described above
the Handler function address

The interrupt structure is kept by the input device until a
RemHandler·command is satisfied for it.

input. device/Clear

NAME
Clear - clear input buffer

FUNCTION
Removes from input buffers any input reports waiting to
satisfy read requests.

10 REQUEST
io_Message
iO_Device
io Unit
io-Command
io=Flags

mn_Replyport set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CMD_CLEAR
lOB_QUICK set if quick I/O is possible

input. device/open

NAME
Open - a -request to open the input device

SYNOPSIS
OpenDevice(Uinput.device", 0, iORequest, 0)

FUNCTION
The open routine grants access to a device. Two
fields in the iORequest block will be filled in: the
IO_DEVICE field and the 10_UNIT field.

The device open count will be incremented. The device cannot
be expunged unless this open is matched by a CloseDevice.

RESULTS
If the open was unsuccessful, 10 ERROR will be set, 10_UNIT
and 10_DEVICE will not be valid.-

input.device/RemHandler

NAME
RemHandler - remove an input handler from the device

FUNCTION
Removes a function previously added to the list of handler
functions.

10 REQUEST

NOTES

io Message
io-Device
io=unit
io Corrmand
iO=Data

mn_ReplyPort set
preset by OpenDevice
preset by OpenDevice
IND -REMHANDLER
a pointer to the interrupt structure.

This corrmand is not immediate

input.device(Reset

NAME
Reset - reset the input

FUNCTION
Reset resets the keyboard device without destroying handles
to the open device.

10 REQUEST
io_Message
io Device
io-Unit
io:::command
io~Flags

mn~Replyport set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CMD_RESET
lOB_QUICK set if quick I/O is possible

input.device/SetMPort

NAME
SetMPort - set the current mouse port

FUNCTION
This c~and sets the gameport port at which the mouse is
connected.

10 REQUEST
ioJ1essage
io Device
io-Unit
io - COllmand
iO-Flags
io-Length
iO:::Data

mn_ReplyPortset if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
IND_SElTMPORT
rOB_QUICK set if quick I/O is possible
1
a pointer to a byte that is either 0 or 1,
indicating that mouse input should be obtained
from either the left or right controller port,
respectively.

input.device/SetMTrig

NAME
SetMTrig - set the conditions for a mouse port report

FUNCTION
This command sets what conditions must be met by a mouse
before a pending Read request will be satisfied. The trigger
specification is that used by the gameport device.

10 REQUEST
io_Message
io Device
io-Unit
io-eommand
iO=Flags
iO_Length
iO_Data

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
IND SETTRIGGER
IOB=QUICK set if quick I/O is possible
sizeof(gameportTrigger)
a structure of type GameportTrigger, which
has the following elements

gpt_Keys -
GPTB DOWNKEYS set if button-down transitions
trigger a report, and GPTB_UPKEYS set if button up
transitions trigger a report

gpt_Timeout -
a time which, if exceeded, triggers a report;
measured in vertical blank units (60/sec)

gpt_XDelta
a distance in x which, if exceeded, triggers a
report

gpt_YDelta
a distance in x which, if exceeded, triggers a
report

input.device/SetMType

NAME
SetMType - set the current mouse port controller type

FUNCTION
This command sets the type of device at the mouse port, so
the signals at the port may be properly interpreted.

10 REQUEST
io Message
io-Device
io-Unit
io-Command
io=Flags
io_Length
iO_Data

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
IND_SETMTYPE
lOB_QUICK set if quick I/O is possible
I
the address of the byte variable describing
the controller type, as per the equates in
the gameport include file

C..:>
00

input.device/SetPeriod

NAME
setPeriod - set the key repeat period

FUNCTION
This command sets the period at which a repeating key repeats.
This command always executes immediately.

IO REQUEST - a timerequest
io_Message mn_ReplyPort set if quick I/O is not possible
iO_Device preset by the call to openDevice
io_Unit preset by the call to OpenDevice
io Command IND_SETPERIOD
io=Flags lOB QUICK set if quick I/O is possible
io tv Secs the repeat period seconds
io=tv=Micro the repeat period microseconds

input.device/SetThresh

NAME
SetThresh - set the key repeat threshold

FUNCTION
This command sets the time that a key must be held down before
it can repeat. The repeatability of a key may be restricted
(as, for example, are the shift keys).

This command always executes immediately.

IO REQUEST - a timerequest
io_Message mn_Reply-Port set if quick I/O is not possible
iO_Device preset by the call to openDevice
io_Unit preset by the call to openDevice
io Command IND SETTHRESH
iO=Flags IOB=QUICK set if quick I/O is possible
io tv Secs the threshold seconds
io=tv=Micro the threshold microseconds

input. device/Start

NAME
start - restart after stop

FUNCTION
start restarts the unit after a stop command.

10 REQUEST
io_Message
iO_Device
io Unit
io-Command
io::::Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
CMD_START
lOB_QUICK set if quick I/O is possible

input.device/WriteEvent

NAME
WriteEvent - propagate input event(s) to all handlers

FUNCTION

10 REQUEST
iO_Message
io Device
iO-Unit
iO-Command
iO::::Flags
iO_Length

ie NextEvent

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
preset by the call to OpenDevice
IND WRITEEVENT
IOB::::QUICK set if quick I/O is possible
the size of the io Data area in bytes: there
are sizeof(inputEvent) bytes per input event.
a buffer area with input events(s). The
fields of the input event are:

- links the events together, the last event
has a zero ie_NextEvent.

NOTES

ie Class
ie::::SubClass
ie Code
ie::::Qualifier
ie X, ie Y
ie::::Timestamp

as desired

The contents of the input event(s) are destroyed.

Contents

keyboard.device/AddResetHandler
keyboard. device/Clear
keyboard.device/ReadEvent
keyboard.device/ReadMatrix
keyboard.device/RemResetHandler
keyboard.device/Reset
keyboard.device/ResetHandlerDone

keyboard.device/AddResetHandler

NAME
AddResetHandler - add a reset handler to the device

FUNCTION
Adds a function to the list of functions called to clean up
before a hard reset:

Handler(handlerData);
Al

10 REQUEST
io_Message
io Device
io-unit
io-Command
io-Data

NOTES

- is Data
is:::Code

mn_ReplyPort set
preset by OpenDevice
preset by OpenDevice
KBD ADDRESETHANDLER
a pointer to an interrupt structure.
the handlerData pointer described above
the Handler function address

The interrupt structure is kept by the keyboard device until a
RemResetHandler command is satisfied for it.

'keyboard. device/Clear

NAME
Clear - clear keyboard input buffer

FUNCTION
Removes from the input buffer any keys transitions waiting to
satisfy read requests.

10 REQUEST
io_Message
io Device
io-Corrmand
iO:::Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
.CMD_CLEAR
lOB_QUICK set if quick I/O is possible

keyboard.device/ReadEvent

NAME
ReadEvent - return the next keyboard event.

FUNCTION
Read raw keyboard events from the keyboard. and ~t them in the

,data area of the iORequest. If there are no pending keyboard
events, this command will not be satisfied. If there are
some events, but not as many as can fill 10 LENGTH, the
request will be satisfied with those currently available.

10 REQUEST
io_Message
io Device
io-corrmand
io:::Flags
io_Length

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
KBD _READEVENT
lOB_QUICK set if quick I/O is possible
the size of the iO_Data area in bytes: there
are sizeof(inputEvent) bytes per input event.
a buffer area to fill with input events. The
fields of the input event are:

ie NextEvent

RESULTS

- links the events returned

is IECLASS_RAWKEY

contains the next key up/down reports
ie Qualifier

- only the shift and numeric pad bits are set
ie~SubClass, ie_x, ie_Y, ie_TimeStamp

are not used, and set to zero

This function sets the error field in the IORequest and fills
the IORequest with the next keyboard events (but not partial
events) .

keyboard.device/ReadMatrix

NAME
ReadMatrix - read the current keyboard key matrix

FUNCTION
This function reads the up/down state of every key in the
key matrix.

10 REQUEST
io_Message
io Device
io-Conrnand
iO=Flags
iO_Length

RESULTS

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
KBD READMATRIX
IOB=QUICK set if quick I/O is possible
the size of the iO_Data area in bytes: this
must be big enough to hold the key matrix.
a buffer area to fill with the key matrix:
an array of bytes.whose component bits reflect
each keys state: the state of the key for
keycode nis at bit. (n MOD 8) in byte
(n DIV 8) of this matrix.

This function sets the error field in the IORequest and sets
matrix to the current key matrix.

keyboard.device/RemResetHandler

NAME
RemResetHandler - remove a reset handler from the device

FUNCTION
Removes.a function previously added to the list of handler
functions.

10 REQUEST
io_Message
io Device
io-unit
io-Corrmand
iO=Data

mn_ReplyPort set
preset by openDevice
preset by OpenDevice
KBD_REMRESETHANDLER
a pointer to the handler interrupt structure.

keyboard.device/Reset

NAME
Reset - reset the keyboard

FUNCTION
Reset resets the keyboard device without destroying handles
to the open device.

10 REQUEST
io_Message
io_Device
io COI\Inand
iO=Flags

mn ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
CMD_RESET
lOB_QUICK set if quick I/O is possible

keyboard.device/ResetHandlerDone

NAME
ResetHandlerDone - indicate that reset can occur

FUNCTION
Indicates that reset clean-up associated with the handler has
completed.

IO REQUEST
io Message
io-Device
io-Unit
io-Corrinand
iO=Data

mn_ReplyPort set
preset by OpenDevice
preset by OpenDevice
KBD RESETHANDLERDONE·
a pOinter to the handler interrupt structure.

Contents

narrator.device/AbortIO
narrator.device/CloseDevice
narrator.device/Flush
narrator.device/OpenDevice
narrator.device/Read
narrator.device/Reset'
narrator. device/start/Stop
narrator.device/Write

narrator.device/AbortIO

NAME
AbortIO - abort an 10 request

SYNOPSIS
AbortIO(IORequest)

FUNCTION
Aborts a speech 10 request. The request may be in the queue

or currently active.

INPUTS
IORB of request to abort;

RESULTS
iO_Error field of IORB set to IOERR_ABORTED

SEE ALSO

narrator.device/CloseDevice

NAME
CloseDevice terminate access to the narrator device

SYNOPSIS
ClOSeDevice(IORequest)

FUNCTION
Close invalidates the 10 UNIT and 10 DEVICE fields in the
IORB, preventing subsequent 10 until-another OpenDevice.
CloseDevice also reduces the open count. If the count
goes to 0 and the expunge bit is set, the device is
expunged. If the open count goes to zero and the delayed
expunge bit is not set, CloseDevice sets the expunge bit.

INPUTS
IORequest block

RESULTS
IORequest block with unit and device pointers invalidated.

SEE ALSO

narrator.device/Flush

NAME
Flush - abort all in-progress and queued requests

SYNOPSIS
Standard device command. See DoIO()/SendIO().

FUNCTION
Aborts all in-progress and queued speech requests.

INPUTS
io_Command - CMD_FLUSH

RESULTS

SEE ALSO

narrator. device/Open

NAME
OpenDevice - open the narrator device

SYNOPSIS
error OpenDevie("narrator.device", 0, IORequest, 0);

FUNCTION
The OpenDevice routine grants access to the narrator device.
OpenDevice checks the unit number, and if non-zero, returns
an error (ND_UnitErr). If this is the first time the driver
has been opened, OpenDevice will attempt to open the audio
device and allocate the driver's static buffers. If either
of these operations fail, an error is returned (see the .h and .i
files for possible error return codes). Next, OpenDevice
(done for all opens, not just the first one) initializes the
user's IORequest block (IORB). Default values for sex, rate,
pitch, pitch mode, sampling frequency, and mouths are set in
the appropriate fields of the IORB. Note that if users wish
to use non-default values for these parms, the values must
be set after the open is done. OpenDevice then assigns a
pseudo-unit number to the IORB for use in synchronizing read
and write requests. See the read command for more details.
Finally, OpenDevice stores the device node pointer in the
IORB and clears the delayed expunge bit.

INPUTS
deviceName
unitNumber
IORequest
flags

- must be "narrator. device"
- must be 0
- the user's IORB (need not
- not used

RESULTS
lORB fields set:

rate - 150 words/minute
pitch - 110 Hz
mode - Natural
sex - Male
mouths - off
sampfreq - 22200
volume - 64 (max)

error - same as iO_Error field of IORB

SEE ALSO

be initialized)

narrator.device/Read

NAME
Read - return the next different mouth shape from an

associated write

SYNOPSIS
Standard device command. See DoIO/SendIO.

FUNCTION
The read command of the narrator device returns mouth
shapes to the user. The shape returned is guaranteed
to be different from the previously returned shape
(allowing updating to be done only when something has
changed). Each read request is associated with a
write request by the pseudo-unit number assigned by
the OpenDevice call. Since the first structure in
the read-mouth IORB is a narrator (write) IORB, this
association is easily made by copying the narrator
IORB into the narrate rb field fo the read IORB.
See the .hi files. If there is no write in progress
or in the device input queue with the same pseudo
unit number as the read request, the read will be
returned to the user with an error. This is also
how the user knows that the write request has
finished and that s/he should not issue any more
reads. Note that in this case the mouth shapes may
not be different from previously returned values.

INPUTS
IORB with the narrator_rb structure copied from the
associated write request execpt for:

RESULTS

io_Message - message port for read request
io_Command - CMD_READ
iO_Error - 0
width - 0
height - 0

IORB fields set:

SEE ALSO

width - mouth width in millimeters/3.67
(division done for scaling)

height - mouth height in millimeters
shape - compressed form of mouth shapes

(internal use only)

Write command.

narrator. device/Reset

NAME
Reset - reset the device to a known state

SYNOPSIS
Standard device command. See DoIO()/SendIO().

FUNCTION
Resets the device as though it has just be initialized.
Aborts all read/write requests whether they are active or enqueued.
Restarts device if it has been stopped.

RESULTS

SEE ALSO

narrator. device/Start/Stop

NAME
stop - stops the device
start - restarts the device after stop

SYNOPSIS
Standard device commands. See DoIO()/SendIO().

FUNCTION
stop halts the currently active speech (if any) and
prevents any queued requests from starting.

Start restarts the currently active speech (if any)
and allows queued request to start.

RESULTS

SEE ALSO

.....
00

narrator.device/Write

NAME
write - send speech request to the narrator device

SYNOPSIS
Standard device command. See DoIO()/SendIO().

FUNCTION
Performs the speech request. If there is an
associated read request on the device input queue,
write will remove it and return an initial mouth
shape to the user. Note that if you are going
to be doing reads, the mouths parameter must be
set to 1.

INPUTS
Narrator IORB

RESULTS

ch_masks - array of audio channel selection masks
(see audio device documentation for
description of this field)

DID_masks - number of audio channel selection masks
mouths - 0 if no mouths are desired

1 if mouths are to be read
rate
pitch
mode

sex

- speaking rate
- pitch
- pitch mode

o if natural mode
1 if robotic mode

- 0 if male
- 1 if female

io Message
io=corru:nand
io Data
iO=Length

- message port
- CMD WRITE

inp;:;:t string
- length of input string

The function sets the io Error field of the IORB. The
iO_Actual field is set to the length of the input string
that was actually processed. If the return code indicates
a phoneme error (ND_PhonErr), iO_Actual is the position in
the input string where the error occurred.

SEE ALSO
Read corru:nand.
Audio device documentation.

contents

parallel.device/AbortIO
parallel.devicefBeginIO
parallel.device/Clear
parallel.device/CloseDevice
parallel.device/Flush
parallel.device/OpenDevice
parallel. device/Query
parallel.device/Read
parallel.device/Reset
parallel.device/SetParams
parallel. device/Start
parallel. device/Stop
parallel.device/Write

parallel.device/AbortIO

NAME
AbortIO -- abort the specified I/O request

FUNCTION
This function aborts the specified read or write request. If the
request is active, it is stopped immediately. If the request is
queued, it is painlessly removed.

INPUTS
iORequest -- pointer to the IORqst Block that is to be aborted.

RESULTS
Error if the Abort succeeded, Error will be #IOERR ABORTED
(-2) and the request will be flagged as aborted (bit '5 of io_Flags
set). If the Abort failed, the Error will be zero.

parallel.device/BeginIO

NAME
BeginIO -- start up an I/O process

FUNCTION
This function initiates a I/O request made to the parallel
device. Other than read or write, the functions are performed'
synchronously and do not depend on any interrupt handling
logic (or its associated discontinuities). If so selected,
the function can be performed as IO_QUICK. Reads and writes are
merely initiated by BeginIO, and thus return to the caller as begun,
not completed. Completion is signaled via the standard ReplyMsg
routine. A valid read or write request is performed asynchronously,
never as IO_QUICK. Multiple requests are handled via FIFO'
queuing.

INPUTS
iORequest -- pointer to an I/O Request Block of size

io_ExtParSize (see parallel. i for size/definition),
containing a valid function'in io_Command to process,
as well as the function's other required parameters.

deviceNode -- pointer to the "parallel.device" node built at
init, and put into io_Device at Open.

RESULTS
Error -- if the BeginIO succeeded, Error will' be null.

If the BeginIO failed, the Error will be non-zero.
Most I/O errors won't be reported until the ReplyMsg.

parallel. device/Flush

NAME
Flush -- clear all queued I/O requests for the parallel port

FUNCTION
This function purges the read and write request queues for the
parallel device.

10 REQUEST
io_Message
io Device
io-Unit
io:::cormnand

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_FLUSH

Error -- if the Flush succeeded, Error will be null.
If the Flush failed, the Error will be non-zero.

parallel.device/Open

NAME
Open -- a request to open the parallel port

SYNOPSIS
OpenDevice(parname, unit, ioRequest, flags)

FUNCTION
This function allows the requester software access to the parallel
device. Unless the shared-access bit (bit 5 of io_ParFlags) is
set, exclusive use is granted and no other access is allowed
until the owner closes the device.

OpenDevice initializes the iO_Device and io_Unit fields to 0,
because there is only one parallel device/unit.

INPUTS
parname - pointer to literal string "parallel.device"
unit ignored
iORequest - pointer to an ioRequest block of size io_ExtParSize

(see parallel.i for size/definition) to be initialized
by the Open routine.
NOTE use of iO_ParFlags (see FUNCTION above)

IMPORTANT!!! ioRequest block MUST (!!) be of size io_ExtParSize !!!

flags - ignored

RESULTS
DO -- pointer to the device node
Error -- if the Open succeeded, Error will be null.

If-the Open failed, then the Error will be non-zero.

parallel. device/Query

NAME
Query -- query parallel port/line status

FUNCTION
This function return the status, of the parallel port lines and
registers.

10 REQUEST
io_Message
iO_Device
io Unit
io=corrnnand

RESULTS
io_Status

mn_ReplyPort initialized
set by openDevice
set by OpenDevice
PDCMD_QUERY (OA)

BIT ACTIVE FUNCTION"

o
1
2
3

4-7

low
low
low

printer selected
paper out
printer in busy toggle
read;=O,write~l

reserved

parallel.device/Read

NAME
Read -- read input from parallel port

FUNCTION
This function causes a stream of characters to be read from the
parallel I/O register. The number of characters"is specified'in
iO_Length, unless -1 is used, in which case input is read until
an EOF is read (currently OxOO). If no read request has been
made, pending input (i.e. handshake request) is not acknowledged.

10 REQUEST
iO_Message
io Device
iO-Unit
iO-Conmand
iO=Flags
iO_Length

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD READ
IOF=QUICK if quick I/O possible and desired
number 'of characters to receive, or if set
to -1 receive until EOF read in
pointer where to put the data.

Error -- if the Read succeeded, Error will be null.
If the Read failed, the Error will be non-zero.

SEE ALSO
parallel.device/BeginIO, parallel.device/SetParams

parallel.device/Reset

NAME
Reset -- reinitialize the parallel port

FUNCTION
This function resets the parallel port to its freshly
condition. It aborts all I/O requests both queued and
sets the port's flags and parameters to their boot-up
default values.

IO REQUEST
iO_Message
io Device
io-unit
io=Corrnnand

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_RESET

Error -- if the Reset succeeded, Error will be null.
If the Reset failed, the Error will be non-zero.

initialized
current and
time

parallel.device/SetParams

NAME
SetParams -- change parameters for the parallel port

FUNCTION
This function allows the caller to change parameters for the
parallel port. It will disallow changes if any reads or writes
are active or queued. The EofMode bit of io_SerFlags can be
set/reset without a call to Setparams. The Shared bit of
io_SerFlags pertains to OpenDevice calls only. ALL OTHER PARA
METERS CAN BE CHANGED ONLY BY THE SETPARAMS FUNCTION. (!!!!)

IO REQUEST
io_Message
io Device
io-Unit
io=command

NOTE:

io_PExtFlags
io_ParFlags

NOTE:

mn_Replyport initialized
set by OpenDevice
set by OpenDevice
PDCMD_SETPARAMS (09)

the following fields are filled by Open
to reflect the parallel device's current
configuration.

not used in VI.I (MUST be set to zero)
see definition in parallel.i or parallel.h

xOO yields exclusive access, termarray
inactive.

io_PTermArray ASCII descending-ordered 8-byte array of
termination characters. If less than 8 chars
used, fill out array w/lowest valid value.
Terminators are used only if EOFMODE bit of
io_Parflags is set. (e.g. x512F040303030303)
This field is filled on OpenDevice only if the
EOFMODE bit is set.

RESULTS
Error -- if the SetParams succeeded, Error will be null.

If the SetParams failed, the Error will be non-zero.

parallel. device/Start

NAME
start -- restart I/O that has paused on the parallel port

FUNCTION
This function restarts the current I/O activity on the parallel
port by reactivating the handshaking sequence.

IO REQUEST
io_Message
io Device
io-Unit
io=Command

RESULTS

rnn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_START

Error if the Start succeeded, Error will be null.
If the Start failed, the Error will be non-zero.

SEE ALSO
parallel. device/stop

parallel. device/Stop

NAME
stop -- pause current activity on the parallel port

FUNCTION
This function halts the current I/O activity on the parallel
device by discontinuing the handshaking sequence.

IO REQUEST
io_Message
io Device
io-unit
io=command

RESULTS

rnn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_STOP

Error -- if the stop succeeded, Error will be null.
If the Stop failed, the Error will be non-zero.

SEE ALSO
parallel. device/Start

parallel.device/Write

NAME
write -- send output to parallel port

FUNCTION
This function causes a stream of characters to be written to the
parallel output register. The number of characters is specified in
io_Length, unless -1 is used, in which case output is sent until
an EOF is encountered (currently OxOO).

IO REQUEST
io_Message
io Device
io-unit
io-Conrnand
io::::Flags
io_Length

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_WRITE
IOF_QUICK if quick I/O is possible and desired
number of characters to transmit, or if set
to -1 send until EOF encountered
pointer to block of data to transmit

Error -- if the write succeeded, Error will be null.
If the Write failed, the Error will be non-zero.

SEE ALSO
parallel.devicejBeginIO, parallel.device/SetParams

Contents

printer.device/DumpRPort
printer.device/Flush
printer. device/Invalid
printer.device/prtCommand
printer.device/RawWrite
printer.device/Reset
printer. device/Start
printer. device/Stop
printer.device/Write

printer.devicejDumpRPort

NAME
DumpRPort - dump the specified RastPort to a graphics printer

FUNCTION
Prints a rendition of the supplied RastPort, using the supplied
ColorMap, position and scaling information, as specified in
the printer Preferences

10 REQUEST
io_Message
io Connnand
io=Flags
io RastPort
io-ColorMap
iO=Modes

io_SrcX
io SrcY
io-SrcWidth
iO-SrcHeight
iO=Destcols
iO_DestROWS

mn_ReplyPort set if quick I/O is not possible
PRD DUMPRPORT
IOB=QUICK set if quick I/O is possible
ptr to a RastPort.
ptr to a ColorMap.
the 'modes' flag as from a ViewPort structure
the upper word is reserved and should be zero
the x offset into the RastPort
the y offset into the RastPort
the x size in the RastPort to be printed
the y size in the RastPort to be printed

these two parameters describe the size of the
area to print to on the printer, as described
below.

interpretation of Dest parameters:
If SPECIAL MIL is set, then the associated
parameter Is specified in thousandths of
an inch on the printer.
If SPECIAL_FULL is set, then the dimension
is set to the maximum possible (as
determined by the printer limits or the
configuration limits, whichever is less).
If SPECIAL_FRAC is set, the parameter is
taken to be a longword binary fraction
of the maximum for that dimension.
If ASPECT is set, one of the dimensions
may be reduced to preserve the aspect
ratio of the print.
If all bits for a dimension are clear, the
parameter is specified in printer pixels.
If SPECIAL_DENSITY(1-4) is set, the
printer-specific driver has the option of
selecting a different dots per inch density
(dpi) than the default one. As of this writing,
the printer-specific modules supporting this
feature are the HP_LASERJET and the
HP_LASERJET_PLUS. For these two printers, the
densities are 75, 100, 150 & 300 dpi,
respectively. The HP_LASERJET
always defaults to 75 dpi. The HP LASERJET PLUS
defaults to 100 dpi if the preferences is set to
DRAFT quality and 150 dpi with LETTER quality.
if SPECIAL_CENTER is set, then the picture will be
centered on the paper.

There exist rules for the interpretation of iO_DestRows and

io DestCols that may produce unexpected results when they are
not greater than zero and io_Special is zero. They have been
retained for compatability. The user will not trigger these
other rules with well formed usage of io_special.

The special rules for io DestRows and io DestCols
(WHICH TAKE EFFECT ONLY IF 10 SPECIAL IS-O) are:

a) DestCols>O & DestRows>O - use as absolute values.
i.e., DestCols=320 & DestRows=200 means that the picture
will appear on the printer as 320x200 dots.

b) DestCols=O & DestRows> 0 - use the printer's maximum number
of columns and print DestRows lines, i.e., if DestCols=O
and DestRows=200 than the picture will appear on the
printer as wide as it can be and 200 dots high.

c) DestCols=O & DestRows=O - same as above except the driver
determines the proper number of lines to print based on
the aspect ratio of the printer. This results in the
largest picture possible that is not distorted or inverted
Note: As of this writing, this is the call made by such
program as DeluxePaint, GraphicCraft, and AegisImages.

d) DestCols>O &DestRows=O - use the specified width and the
driver determines the proper number of lines to print based
on the aspect ratio of the printer, i.e., if you desire a
picture that is 500 pixels wide and aspect ratio correct,
use DestCols=500 and DestRows=O.

e) DestCols<O or DestRows>O - the final picture is either a
reduction or expansion based on the fraction
I DestColsI / DestRows in the proper aspect ratio.
Some examples:
1) if DestCols=-2 & DestRows=l then the printed picture

will be 2x the AMIGA picture and in the proper aspect
ratio. (2x is derived from 1-21 /1 which gives 2.0)

HINTS

2) if DestCols=-l & DestRows=2 then the printed picture
will be 1/2x the AMIGA picture in the proper aspect
ratio. (1/2x is derived from 1-11 / 2 which gives 0.5)

The printer selected in preferences must have graphics
capability to use this connnand.
Color printers may not be able to print black and white or
grey-scale pictures -- specifically, the Okimate 20 cannot
print these with a color ribbon: use a black one.
If the printer has an input buffer option, use it.
If the printer can be uni- or bidirectional, select
unidirectional; this produces a much cleaner picture and
in some cases a faster printout.
Please note that the width and height of the printable area on
the printer is in terms of pixels and bounded by the folllowing:

a) WIDTH = (RIGHT_MARGIN - LEFT_MARGIN + 1) / CHARACTERS_PER_INCH
b) HEIGHT = LENGTH / LINES_PER_INCH

For RGB printer support, the ¥MC values in the printer-specific
render.c functions equate to RGB respectively, i.e., yellow is red,
magenta is green, and cyan is blue.

printer.device/Flush

NAME
Flush - abort all I/O requests (immediate)

FUNCTION
Flush aborts all stopped I/O at the unit.

IO REQUEST
io_Message
io Device
io-Com:nand
iO=Flags

ron ReplyPort set if quick I/O is not possible
preset by the. call to OpenDevice
CMD FLUSH
IOB=QUICK set if quick I/O is possible .

printer. device/Invalid

NAME
Invalid - invalid command

FUNCTION
Invalid is always an invalid command and sets the device
error appropriately.

IO REQUEST
iO.J1essage
io Conmand
iO=Flags

ron_ReplyPort set if quick, I/O is not possible
CMD INVALID
IOB=QUICK set if quick"I/O is 'possible

<:i1
00

printer.devicejPrtCommand

NAME
PCPrtCommand -- send a 'command to the printer

FUNCTION
This function sends a command to either the parallel or serial
device. The printer device maps this command to the control
code set of the current printer. The commands supported can
be found with the printer.device/Write command. All printers
may not support all functions.

IO REQUEST IOPrtCmdReq
io_Message mn_ReplyPort set
iO_Device preset by OpenDevice·
io_Unit preset by OpenDevice
io Command PRD PRTCOMMAND
io-PrtCommand the-actual command number
io-ParmO parameter for the command
io-Parml parameter for the command
io-Parm2 parameter for the command
io=parm3 parameter for the command

RESULTS
Errors: if the .PCPrtCommand succeeded, Error will be zero.

Otherwise; the Error will be non-zero.

SEE ALSO
printer. device/Wri te printer. h, parallel. device, Preferences

printer.devicejRawWrite

NAME
RawWrite ~ transparent write command

FUNCTION
This is a .nonstandard write command that performs no
processing on the data passed to it.

IO REQUEST
iO_Message
io Command
iO=Flags
iO_Length
iO_Data

mn_Replyport set if quick I/O is not possible
PRD RAWWRITE
IOB=QUICK set if quick I/O is possible
the number of bytes in io Data
the raw bytes to write to-the printer

printer.devicejReset

NAME
Reset - reset the printer

FUNCTION
Reset resets the printer device without destroying handles
to the open device.

10 REQUEST
io_Message
io Device
io-Command
iO::::Flags

mn_ReplyPort set,. if quick I/O is not possible
preset by the call to OpenDevice
CMD_RESET
lOB_QUICK set if quick I/O is possible

printer. device/Start

NAME
start - restart after stop (immediate)

FUNCTION
start restarts the unit after a stop command.

10 REQUEST
iO_Message
io Device
iO-COIIIlIand
io::::Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
CMD_START
lOB_QUICK set if quick I/O. is possible

printer. device/stop

NAME
Stop - pause current and. queued I/O requests (immediate)

FUNCTTON
Stop pauses all queued requests for the unit and tries to
pause the current I/O request. The only cornnands that will
be allowed to be .performed subsequently are immediate I/O
requests, which include those to start, flush, and finish the
I/O after the stop cornnand.

TO, REQUEST
io_Message
io Device
io-Cornnand
iO:::Flags

mn_ReplyPort set if quick I/O is not possible
preset by the call to OpenDevice
CMD_S'IOP
lOB_QUICK set if quick I/O is possible

printer.device/Write

NAME
pcwrite -- send output to the printer

FUNCTION
This function causes tt buffer of characters to be written to the
either the parallel or serial device .. The ~umber of characters is
specified in io_Length, unless -1 is used, in which·case output is
send until a OXOO is encountered. The printer device, .like the

. console device, maps ANSI X3.64 style 7-bit printer control codes
to the control code set of the .current printer. The ANSI codes
supported can be found below. All printers may not support all
·functions.

TO REQUEST
iO_Message
io Device
io-unit
io -Cornnand
iO:::Length

RESULTS

mn_ReplyPort set
.preset by OpenDevice
preset by OpenDevice
CMD_WRITE
number of characters to process, or if
-I, process until EOF encountered
pointer to. block of data to process

Errors: if the pcwrite succeeded, Error will be zero.
Otherwise, the Error will be non-zero.

SEE ALSO
printer.h, parallel.device, serial.device, Preferences

ANSI X3.64 style COMMANDS

aRIS ESCc reset
aRIN ESC#! initialize
aIND ESCD If
aNEL ESCE return ,If
aRI ESCM reverse If

aSGRO 'ESC [Om nonnal char set
aSGR3 ESC [3m italics on
aSGR23 ESC [23m itaHcs off
aSGR4 ESC[4m underline on
aSGR24 ESC [24m underline off

. aSGRl ESC [1m boldface on
aSGR22 ESC [22m boldface off
aSFC SGR30-39 set foreground color
aSBC SGR40-49 set background color

aSHORPO ESC [Ow normal pitch
aSHORP2 ESC[2w elite on
aSHORPl ESC[lw elite off

,aSHORP4 ESC[4w condensed fine on
aSHORP3 ESC[3w condensed off
aSHORP6 ESC[6w enlarged on
aSHORPS ESC[Sw enlarged off

aTBSALL ESc#5 set default tabs

aDEN6 ESC[6"z shadow print on aEXTEND ESC [Pn"x extended commands

aDEN5 ESC[5"z shadow print off
aDEN4 ESC[4"z doubles trike on
aDEN3 ESC[3"z doubles trike off
aDEN2 ESC[2"z NLQ on
aDENI ESC[I"z NLQ off

aSUS2 ESC[2v superscript on
aSUSl ESC[lv superscript off
aSUS4 ESC[4v subscript on
aSUS3 ESC[3v subscript off
aSUSO ESC[Ov normalize the line
aPLU ESCL partial line up
aPLD ESCK partial line down

aFNTO ESC(B us char set
aFNTl ESC(R French char set
aFNT2 ESC(K German char set
aFNT3 ESC(A UK char set
aFNT4 ESC(E Danish I char set
aFNT5 ESC(H SWeden char set
aFNT6 ESC(Y Italian char set
aFNT7 ESC(Z Spanish char set
aFNT8 ESC(J Japanese char set
aFNT9 ESC(6 Norwegian char set

ttl
aFNTIO ESC(C Danish II char set

aPROP2 ESC[2p proportional on
0') aPROPl ESC[lp proportional off

aPROPO ESC[Op proportional clear
aTSS ESC[n E set proportional offset
aJFY5 ESC[5 F auto left justify
aJFY7 ESC[7 F auto right justify
aJFY6 ESC[6 F auto full justify
aJFYO ESC[O F auto justify off
aJFY3 ESC[3 F letter space (justify)
aJFYl ESC[l F word fill(auto center)

aVERPO ESC[Oz 1/8" line spacing
aVERPl ESC[lz 1/6" line spacing
aSLPP ESC[nt set form length n
aPERF ESC[nq perf skip n (n>O)
aPERFO ESC[Oq perf skip off

aLMS ESC#9 Left margin set
aRMS ESC#O Right margin set
aTMS ESC#8 Top margin set
aBMS ESC#2 Bottom marg set
aSTBM ESC [Pnl;Pn2r T&B margins
aSLRM ESC [Pnl;Pn2s L&R margin
aCAM ESC#3 Clear margins

aHTS ESCH Set horiz tab
aVTS ESCJ Set vertical tabs
aTBCO ESC[Og Clr horiz tab
aTBC3 ESC[3g Clear all h tab
aTBCl ESC[lg Clr vertical tabs
aTBC4 ESC[4g Clr all v tabs
aTBCALL ESC#4 Clr all h & v tabs

Contents

serial.device/AbortIO
serial.device/BeginIO
serial. device/Break
serial. device/Clear
serial. device/Close
serial.device/Flush
serial.device/Open
serial.device/Query
serial.device/Read
serial. device/Reset
serial.device/SetParams
serial.device/Start
serial.device/Stop
serial.device/Write

serial.device/AbortIO

NAME
AbortIO -- abort the specified I/O request

FUNCTION
This function aborts the specified read or write request. If the
request is active, it is stopped immediately. If the request is
queued, it is painlessly removed.

INPUTS
iORequest -- pointer to the IORqst Block that is to be aborted.

RESULTS
Error -- if the Abort succeeded, Error will be HOERR_ABORTED

(-2) and the request will be flagged as aborted (set bit 5 of
io_Flags). If the Abort failed, the Error will be zero.

serial.device/BeginIO

NAME
BeginIO -- start up an I/O process

FUNCTION
This function initiates a I/O request made to the serial
device. Other than read or write, the functions are performed
synchronously and do not depend on any interrupt-handling
logic (or its associated discontinuities). Hence, if so
selected, the functions can be performed as IO_QUICK.
With one exception, reads and writes are merely initiated by
BeginIO and thus return to the caller as begun, not completed.
Completion is signaled via the standard ReplyMsg routine.
Multiple requests are handled via FIFO queuing.
The only exception to this non-QUICK handling of reads and writes
is for READS when:

10 QUICK bit is set
There are no pending read requests
There is already enough data in the input buffer to satisfy
this I/O Request immediately.

In this case, the IO_QUICK flag is not cleared and the request
is completed by the time it returns to the caller. There is no
ReplyMsg or signal bit activity in this case.

INPUTS
iORequest -- pointer to an I/O Request Block of size

iO_ExtSerSize (see serial.i for size/definition),
containing a valid command in io_command to process,
as well as the command's other required parameters.

deviceNode -- pointer to the "serial.device" node built at
init, and put into iO_Device at Open.

RESULTS
Error -- if the BeginIO succeeded, Error will be null.

If the BeginIO failed, the Error will be non-zero.
Most I/O errors won't be reported until the ReplyMsg.

serial.device/Break

NAME
Break -- send a break signal over the serial line

FUNCTION
This function sends a break signal (serial line held low
for an extended period) out the serial port. This is accomplished
by setting the UARTBRK bit of reg ADKCON. After a
duration (user-specifiable via setparams, default 250000
microseconds), the bit is reset and the signal discontinued. If
If the QUEUEDBRK bit of io_SerFlags is set in the io_Request
block, the request is placed at the back of the write-request
queue and executed in turn. If the QUEUEDBRK bit is not set,
the break is started immediately, control returns to the
caller, and the timer discontinues the signal after the
duration is completed. It is up to the caller to coordinate
his/her intentions with the proper commands such as ABORT,
FLUSH, STOP, START, etc.

10 REQUEST
io_Message
io Device
io-Unit
io-Conmand
io=Flags

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
SDCMD_BREAK
set/reset IO_QUICK per above description

Error -- if the Break succeeded, Error will be null.
If the Break failed, the Error will be non-zero.

serial. device/Clear

NAME
Clear -- clear the serial port buffers

FUNCTION
This function resets the serial port's read buffer pointers.

IO REQUEST
io_Message
io Device
io::':unit
io_Connnand

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_CLEAR

Error -- if the Clear succeeded, Error will be null.
If the Clear failed, the Error will be non-zero.

serial. device/Close

NAME
Close -- close the serial port

SYNOPSIS
CloseDevice(deviceNode)

FUNCTION
This function closes software access to the serial device. Upon
closing, the device's input buffer is freed.

INPUTS
deviceNode - pointer the device node, set by Open

SEE ALSO
serial. device/Open

serial.device/Flush

NAME
Flush -- clear all queued I/O requests for the serial'port

FUNCTION
This function purges the read.and write request queues for the
seria1 device. Flush will.not affect active requests.

10 REQUEST
io_Message
io_Device
io.Unit
io:::command

RESULTS

mn_ReplyPort initialized
set, by OpenDevice
set by OpenDevice
CMD_FLUSH

Error -- if the Flush succeeded, Error will be null.
If the'Flush failed, the Error will be non-zero.

serial. device/Open

NAME
Open -- a request to open the serial port

SYNOPSIS
OpenDevice(sername, unit, ioRequest, flags)

FUNCTION
This function allows the requester software access to the serial
device. Unless the shaEed-access bit (bit 5 of io SerFlags) is
set, exclusive use is granted and no other access-is allowed
until the owner closes the device. All serial-specific fields
are initialized to their most· recent values (or default, if the
first time open). OpenDevice initializes·the io.Device and
io_Unitfields to 0, since there is only one serial device/unit.
If the user wants to support 7-wire handshaking (i.e. RS232-C
CTS/RTS protocol) , he should set the 7WIRE bit before opening.

INPUTS
sername - pointer to literal string "serial.device"
uni t - ignored
ioRequest - pointer to an ioRequest block of size iO_ExtSerSize

(see serial.i,h for size/definition) to be initialized
by the 0penDevice routine.
NOTE use of io_SerFlags (see FUNCTION above)

#@&%! IMPORTANT!!! ioRequest block MUST (!!), be of size iO_ExtSerSize !!!
flags - ignored

RESULTS
DO -- pointer to the device node
Error -- if the Open succeeded, Error will be null .

. If.the Open failed, the Error will be non-zero.

serial.device/Query

NAME
Query -- query serial port/line status

FUNCTION
This function returns the status of the serial port lines and
registers. The number of unread bytes in the serial device's
read buffer is shown in iO_Actual.

10 REQUEST
iO_Message
iO_Device
io_Unit
io_corrmand

RESULTS
io_Status

LSB

MSB

mn _ Repl yPort ini tiali zed
set by OpenDevice
set by OpenDevice
SDCMD_QUERY (OA)

BIT ACTIVE FUNCTION

0 low reserved
1 low reserved
2 low reserved
3 low Data Set Ready
4 low Clear To Send
5 low Carrier Detect
6 low Ready To Send
7 low Data Terminal Ready
8 high read buffer overflow
9 high break sent (most recent output)

10 high break received (as latest input)
11 high transmit x-DFFed
12 high receive x-DFFed

13-15 reserved

set to count of unread input characters

Error -- if the Query succeeded, Error will be null.
If the Flush failed, the Error will be non-zero.

serial.device/Read

NAME
Read -- read input from serial port

FUNCTION
This function causes a stream of characters to be read in the
serial port. The number of characters is specified in io_Length,
unless -1 is used, in which case input is read until an null(OxOO)
is received. Input for which there is no. request is stored in the
input buffer until it can be dispatched to a requester.

10 REQUEST
io Message
io-Device
io-Unit
io-Corrmand
io-Flags
io::::Length

io Data

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD READ
IOF::::QUICK if quick I/O possible and desired
number of chara'..oters to receive, or if set
to -1 receive until null(OxOO) read in
pointer to read buffer

Error -- if the Read succeeded, Error will be null.
If the Read failed, the Error will be non-zero.

serial.device(Reset

NAME
Reset -- reinitialize the serial port

FUNCTION
This function resets the serial port to its freshly initialized
condition. It aborts all I/O requests both queued and current,
relinquishes the current buffer, obtains a new default sized
buffer, and sets the port's flags and parameters to their
boot-up time default values. The functions places the reset
parameter values in the ioRequest block.

10 REQUEST
io_Message
io Device
io-unit
io::::Command

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_RESET

Error -- if the Reset succeeded, Error will be null.
If the Reset failed, the Error will be non-zero.

serial.device/SetParams

NAME
SetParams -- change parameters for the serial port

FUNCTION
This function allows the caller to change parameters for the
serial device. Except for xON-xOFF enable/disable, it will
reject a setparams call if any reads or writes are active
or pending.

Note specifically:

1. Valid input for io_Baud is between 112 and 292000 baud inclusive;
asynchronous I/O above 32KB (especially on a busy system) may
be ambitious.

2. The EOFMODE and QUEUEDBRK bits of io_SerFlags can be set/reset
in the iO_Rqst block without a call to SetParams. The SHARED
and 7WIRE bits of io_SerFlags are used in OpenDevice calls.
ALL OTHER PARAMETERS CAN BE CHANGED ONLY BY THE SetParams
COMMAND. (!!!!)

3. RBufLen must be at least 512.
4. io ExtFlags is not used in Vl.l and MUST be set to zero to

assure upward compatibility.
5. xON-xOFF is by default enabled. The XDISABLED bit is the only

parameter that can be changed via a SetParams call while the
device is active. Note that this will return the value
SerErr_DevBusy in the iO_Error field.

6. If you are trying to run MIDI, it is suggested to set the RAD BOOGIE
bit of io_SerFlags to bypass unneeded overhead. specifically,-this
skips checks for parity, x-oFF handling, character lengths other than
8 bits, and testing for a break signal. Setting RAD_BOOGIE will
also set the XDISABLED bit.
Note that writing data (that's already in MIDI format) at MIDI rates
is easily accomplished. Using this driver alone for MIDI reads may,
however, be inappropriate, because of MIDI time-stamping requirements
and the possibility of overruns in a busy multitasking and/or
display-intensive environment.

10 REQUEST
iO_Message mn ReplyPort initialized
io Device set by OpenDevice
io::::Unit set by OpenDevice
io_Cornrnand SDCMD SETPARAMS (OxOB)
NOTE: the following fields are filled in by Open

to reflect the serial device's current configuration.
io_ctlChar a longword containing byte values for the

xON,xOFF,INQ,ACK fields (respectively)
(INQ/ACK not used at this time)

iO_RBufLen length in bytes of input buffer
io_ExtFlags (not used)
NOTE: any change in buffer size causes the

current buffer to be deallocated and a new,
correctly sized one to be allocated. Thus,
the CONTENTS OF THE OLD BUFFER ARE LOST.

io_Baud
io BrkTime
io::::TerrnArray

baud rate for reads AND writes. (See 1 above)
duration of break signal in MICROseconds
ASCII descending-ordered 8-byte array of

io ReadLen
io-WriteLen
io=StopBits

RESULTS

termination characters. If less than 8 chars
used, fill out array w/lowest valid value.
Terminators are checked only if EOFMODE bit of
io_Serflags is set. (e.g., xS12F040303030303)
number of bits in read word (1-8.) not including parity
number of bits in write word (1-8) "
number of stop bits (1 normal, 2 can .be
specified for reads if ReadLen <- 7)
see serial. i,h for bit equates, NOTE that xOO
yields exclusive access, xON/OFF-enabled, no
.parity checking, 3-wire protocol and TermArray
inactive.

Error -- if the SetParams succeeded, Error will be null.
If the SetParamS failed, the Error will be non-zero.

serial. device/Start

NAME
start -- restart paused I/O over the .serial port

FUNCTION
This function restarts all current I/O on the serial port by
sending an xON to.the "other side," and submitting a "logical
xON" to "our side,"· if/when appropriate to current activity.

IO REQUEST
io_Message
io Device
iounit
io=Coomand

RESULTS

mn_ReplYPort initialized
set by OpenDevice
set by OpenDevice
CMD_START

·Error -- if the. Start succeeded, Error will be null.
If the Start failed, the Error will·be non-zero.

SEE ALSO
serial. device/Stop

serial.device/stop

NAME
Stop -- pause all current I/O over the serial port

FUNCTION
This function halts all current I/O on the serial port by
sending an xOFF to the "other side," and submitting a "logical
xOFF" to "our side," if/when appropriate to current activity.

IO REQUEST
io_Message
io Device
io-Unit
io=Command

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD_STOP

Error -- if the Stop succeeded, Error will be null.
If the stop failed, the Error will be non-zero.

SEE ALSO
serial. device/Start

serial.device;Write

NAME
write -- send output to serial port

FUNCTION
This function causes a stream of characters to be written out
the serial port. The number of characters is specified in
io_Length, unless -1 is used, in which case output is sent until
a null(OxOO) is encountered.

IO REQUEST
io_Message
io Device
io=unit
io Command
iO=Flags
io....Length

RESULTS

mn_ReplyPort initialized
set by OpenDevice
set by OpenDevice
CMD WRITE
IOF-QUICK set if quick I/O possible and desired
number of characters to transmit, or if set
to -1 transmit until null encountered in buffer
pointer to block of data to transmit

Error -- if the write succeeded, Error will be null.
If the write failed, the Error will be non-zero.

SEE ALSO
serial.device/BeginIO, serial.device/setParams

Contents

timer.device/AddTime
timer.device/background
timer.device/CmpTime
timer.device/SubTime
timer.device/TR ADDREQUEST
timer.device/TR-GETSYSTIME
timer.device/TR=SETSYSTIME

timer.device/AddTime

NAME
AddTime - add one time request to another

SYNOPSIS
AddTime(Dest, Source), timer.device

AD Al A6

FUNCTION
This routine adds one timeval structure to another. The
results are stored in the destination (Dest + Source -) Dest)

AD and Al will be left unchanged.

INPUTS
Dest, Source -- pointers to timeval structures.

EXCEPTIONS

SEE ALSO

BUGS

ttJ

timer.device/background

TIMER REQUEST
A time request is a nonstandard IO Request. It has an IORequest
followed by a timeval structure.

TIMEVAL
A timeval structure consists of two longwords. The first is
the number of seconds, the latter is the fractional number
of microseconds. The microseconds must always be "normalized;"
e.g., the longword must be between 0 and one million.

UNITS
The timer contains two units -- one that is precise but
inaccurate, the other that has little system overhead,
is very stable over time, but has only limited resolution.

UNIT MICROHZ
This unit uses a programmable timer in the 8520 to keep
track of its time. It has precision down to about 2
microseconds, but will drift as system load increases.
The timer is typically accurate to within five percent.

UNIT VBLANK
This unit is driven by the vertical blank interrupt. It
is very stable over time, but has a resolution of only
16667 microseconds (or 20000 microseconds in PAL land).
The timer is cheap to use, and should be used by
those who are waiting for long periods of time (typically
1/2 second or more) .

LIBRARY
In addition to the normal device calls, the timer also supports
three direct, library-like calls. They are for manipUlating
timeval structures. Addition, subtraction, and comparison
are supported.

timer.device/CmpTime

NAME
CmpTime - compare two timeval structures

SYNOPSIS
result

FUNCTION

CmpTime(Dest, Source), timer.device
AO Al A6

This routine compares two timeval structures.

AO and Al will be left unchanged.

INPUTS
Dest, Source -- pointers to timeval structures.

RESULTS
result
result
result

EXCEPTIONS

SEE ALSO

BUGS

o
-1
+l

if Dest has the same time as Source
if Dest has less time than Source
if Dest has more time than Source

timer.device/SubTime

NAME
SubTime - subtract one time request from another

SYNOPSIS
SubTime (Dest, Source), timer. device

AD Al A6

FUNCTION
This routine subtracts one timeval structure from another. The
results are stored in the destination (Dest - Source -) Dest)

AD and Al will be left unchanged.

INPUTS
Dest, Source -- pointers to timeval structures.

EXCEPTIONS

SEE ALSO

BUGS

timer.device/TR_ADDREQUEST

NAME
submit a request to time time

FUNCTION
Asks the timer to count off a specified amount of time.
The timer will chain this request with its other
requests and will reply the message back to the
user when the timer counts down to zero.

TIMER REQUEST
iO_Message
io Device
io-Unit
iO-Conmand
iO=Flags
tr_time

mn_ReplyPort initialized
preset by timer in OpenDevice
preset by timer in OpenDevice
TR_ADDREQUEST
IOF QUICK allcwable
a tImeval structure specify how long until

the driver will reply

will contain junk

timer.devi"ce/TR_GETSYSTlME

NAME
TR_GETSYSTlME

FUNCTION

get the system time

Asks the timer what time it is. The system time starts
at zero at power-on but maybe initialized via the
TR_SETSYSTlME call.

System time is monotonically increasing and guaranteed
to be unique (except if someone sets the time backwards).
The time is incremented every vertical blank by the
vertical blanking interval. In addition, it is changed
every time someone asks what time it is. In this way,
the return value of the system time is unique and unrepeating.

TIMER REQUEST
io_Message
io Device
io-Unit
io-Cormnand
io=Flags

rnn_ReplyPort initialized
preset by timer in OpenDevice
preset by timer in OpenDevice
TR_ADDREQUEST
IOF_QUICK allowable

the timeval structure will be filled in with
the current system time

timer.device/TR~SETSYSTlME

NAME
TR_SETSYSTlME -- set the system time

FUNCTION
Sets the system's idea of what time it is. The system
starts out-at time "zero" so it is safe to set-it
forward to the "real" time. However, care should betaken
when setting the time backwards. System time
is specified as being monotonically increasing.

TIMER REQUEST
io_Message
io Device
io-Unit
io-Corrrnand
io=Flags
tr_tirne

RESULTS
none

rnn_ReplyPort initialized
preset by timer in OpenDevice
preset by timer in openDevice
TR ADDREQUEST
IOF QUICK allowable
a tImeval structure with the current system

time

Appendix C

Resource Summaries

This appendix contains summaries for system resource routines. Resources are software entities
in the Amiga kernel software that enable cooperating tasks to gain exclusive access to certain
parts of the Amiga hardware. There are four resources in the Amiga system:

disk allows access to one of four possible disk units.

CIa allows you to access specific bits in each of the Complex Interface Adapters.

There are two cia resources: ciaa.resource and ciab.resource, corresponding to the
first and second 8520 in the system. See the software memory map in Amiga ROM
Kernel Reference Manual: Exec for the definition of the bits controlled by each
CIa.

C-l

potgo manages the bits of the POTGO register.

misc manages the serial and parallel port register bits.

Each routine for resource management is outlined in the summary sections that follow.

Note: Resources rieed be used only if you are attempting to use the associated hardware
directly. The system software routines use these resources internally when they perform
hardware operations. Tasks that also use these software resource controls will be compatible
wIth Exec and the system software.

To use the routines listed for the resources, you must first open the resource and assign the
value returned to a specific base poihter name. Here is a list of the resource names and their
associated base pointer names. Like names for libraries, their names are null-terminated strings:

Resource Name Base Pointer Name

potgo.resource PotgoBase

disk.resource None provided, for assembly-language
programmers only

mIsc.resource None provided, for assembly-language
programmers only

CIaa.resource < user-defined>

ciab.resource <user-defined>

Some examples follow.

struct Library *PotgoBase;
PotgoBase = (struct Library *)OpenResource("potgo.resource");
/* then use the routines provided */

/* <user-defined> example */
struct Library *myCiaPointerA;

myCiaPointerA = (struct Library *)OpenResource(" ciaa.resotirce");

/* then utilize myCiaPointerA as one of the explicit parameters
* for the C language calls to the resource routines. */

C - 2

o

AbleICR
AddICRVector
RemICRVector
SatICR

AllocUnit
FreeUnit
GetUnit
GetUnitID
GiveUnit

FreeMiscResource
GetMiscResource

AllocPotBits
FreePotBits
WritePotgo

Contents

cia.resource
cia. resource
cia. resource
cia. resource

disk. resource
disk.resource
disk. resource
disk. resource
disk. resource

misc. resource
misc. resource

potgo . resource
potgo.resource
potgo . resource

cia.resource/AbleICR

NAME
AbleICR -- enable/disable ICR interrupts

SYNOPSIS
oldMask = AbleICR(Resource, mask)
DO A6 DO

FUNCTION
This function provides a means of enabling and disabling
8520 CIA interrupt control registers.
In addition, it returns the previous enable mask.

INPUTS
mask - a bit mask indicating which interrupts to be

modified. I f bit 7 is clear the mask indicates
interrupts to be disabled. If bit 7 is set, the
mask indicates interrupts to be enabled.
Bit positions are identical to those in 8520 ICR.

resource - pointer to ciaa.resource or ciab.resource as
obtained from the call to OpenResource

RESULTS
oldMask - the previous enable mask before the requested

changes. To get the current mask without making
changes, call the function with a null parameter.

EXAMPLES
Get the current mask:

mask = AbleICR(O)
Enable both timer interrupts:

AbleICR (Ox83)
Disable serial port interrupt:

AbleICR (Ox08)

EXCEPTIONS
Enabling the mask for a pending interrupt will cause
an inmediate processor interrupt (that is, if everything
else is enabled). You may want to clear the pending
interrupts with SatICRx prior to enabling them.

SEE ALSO
SetICR

o

cia.resource/AddICRVector

NAME
AddICRVector -- attach an interrupt handler to a CIA bit

SYNOPSYS
interrupt = AddICRVector (resrouce, iCRBit, interrupt)
DO A6 DO Al

FUNCTION
Assign interrupt processing code to a particular interrupt
bit of the CIA ICR. If the interrupt bit has already been
assigned, this function will fail, and return a pointer
to the owner interrupt. If it succeeds, a null is returned.

This function will also enable the CIA interrupt for the given
ICR bit.

INPUTS
iCRBit - bit number to set (0 .. 4)
interrupt - pointer to interrupt structure
resource - pointer to ciaa.resource or ciab.resource as

obtained from the call to OpenResource
RESULT

interrupt - zero if successful, otherwise returns a pointer
to the current owner interrupt structure.

SEE ALSO
RemICRVector

cia.resourcefRemICRVector

NAME
RemICRVector -- detach an interrupt handler from a CIA bit

SYNOPSYS
RemICRVector(resource, iCRBit, interrupt)

A6 DO Al

FUNCTION
Disconnect interrupt processing code for a particular interrupt
bit of the CIA ICR.

This function will also disable the CIA interrupt for the given
ICR bit.

INPUTS
iCRBit - bit number to set (0 .. 4)
interrupt - pOinter to interrupt structure
resource - pointer to ciaa. resource or ciab. resource as

obtained from the call to OpenResource

RESULT

SEE ALSO
AddICRVector

o

cia.resource/SetICR

NAME
SeUCR

SYNOPSIS
oldMask
DO

FUNCTION

cause, clear, and sanple ICR interrupts

SeUCR (resource, mask)
A6 DO

This function provides a means of resetting, causing, and
sanpling 8520 CIA interrupt control registers.

INPUTS
mask - a bit mask indicating which interrupts to be

caused. If bit 7 is clear the mask indicates
interrupts to be reset. I f bit 7 is set, the
mask indicates interrupts to be caused.
Bit positions are identical to those in 8520 ICR.

resource - pOinter to ciaa.resource or ciab.resource as
obtained from the call to OpenResource

RESULTS
oldMask - the previous interrupt register status before

making the requested changes. To sanple current
status without making changes, call the function
with a null parameter.

EXAMPLES
Get the interrupt mask:

mask = SetICR(O)
Clear serial port interrupt:

SeUCR (Ox08)

EXCEPTIONS
Setting an interrupt bit for an enabled interrupt will cause

an immediate interrupt.

SEE ALSO
AbleICR

disk.resource/AllocUnit

NAME
AllocUnit - allocate a unit of the disk

SYNOPSIS
Success = AllocUnit (unitNum), DRResource

DO DO A6

FUNCTION
This routine allocates one of the units of the disk. It should
be called before trying to use the disk (via GetUnit) .

INPUTS
unitNum -- a legal unit number (zero through three)

RESULTS
Success -- nonzero if successful, zero on failure

EXCEPTIONS

SEE ALSO

BUGS

(')

disk.resourcejFreeUnit

NAME
FreeUnit - deallocate the disk

SYNOPSIS
FreeUnit (unitNum), DRResource

DO A6

FUNCTION
This routine deallocates one of the units of the disk. It should
be called when done with the disk. Do not call it if you did
no successfully allocate the disk (there is no protection -- you
will probably crash the disk system) .

INPUTS
unitNum -- a legal unit number (zero through three)

RESULTS

EXCEPTIONS

SEE ALSO

BUGS

disk.resource/GetUnit

NAME
GetUnit - allocate the disk for a driver

SYNOPSIS
lastDriver = GetUnit (unitPointer), DRResource
DO Al A6

FUNCTION
This routine allocates the disk to a driver. It is either
immediately available, or the request is saved until the disk
is available. When it is available, your unitPointer is
sent back to you (via ReplyMsg). You may then reattoopt the
GetUnit.

Allocating the disk allows you to use the disk's resources.
Remember however that there are four units to the disk; you are
only one of them. Please be polite to the other units (by never
selecting them, and by not leaving interrupts enabled, etc.).

When you are done, please leave the disk in the following state:
dmacon dma bit ON
dsklen dma bit OFF (write a #DSKDMAOFF to dsklen)
adkcon disk bits -- any way you want
entena:disk sync and disk block interrupts -- Both DISABLED
CIA resource index interrupt -- DISABLED
8520 outputs -- doesn't matter, because all bits will be

set to inactive by the resource.
8520 data direction regs -- restore to original state.

INPUTS
unitPtr - a pointer to your disk resource unit structure.

Note that the message filed of the structure MUST
be a valid message, ready to be replied to.

RESULTS
lastDriver - if the disk is not busy, then the last unit

to use the disk is returned. This may be used to
see if a driver needs to reset device registers.
(I f you were the last user, then no one has changed
any of the registers. If someone else has used it,
then any allowable changes may have been made). If the
disk is busy, then a null is returned.

EXCEPTIONS

SEE ALSO

BUGS

o

disk.resouroe/OetUnitID

NAME
GetUnitID - find out what type of disk is out,there

SYNOPSIS
idtype = OetUnitID (unitNum), DRResouroe

DO DO A6

FUNCTION

INPUTS

RESULTS
idtype -- the, type of the disk drive. Standard types are

defined in the resource include file. ,

EXCEPTIONS

SEE ALSO

BUGS

disk.resouroe/GiveUnit

NAME
GiveUnit - Free the disk

SYNOPSIS
Gi veUni t (), DRResouroe

A6

FUNCTION
This routine, frees the disk after a driver is done with it.
If others are waiting" it will notify them.

INPUTS

RESULTS

EXCEPTIONS

SEE ALSO

BUGS

o
00

misc.resourcejFreeMiscResource

NAME
FreeMiscResource - make a resource available for reallocation

SYNOPSIS
FreeMiscResource (unitNwn), DRResource

DO A6

FUNCTION
This routine frees one
by AllocMiscResource.
for reuse.

of the resources allocated
The resource is made available

This routine may not be called from an interrupt routine

INPUTS
unitNwn - the nwnber of the miscellaneous resource to be freed.

RESULTS

EXCEPTIONS

SEE ALSO

BUGS

misc.resource/GetMiscResource

NAME
GetMiscResource - allocate one of the misc resources

SYNOPSIS
CurrentUser
DO

GetMiscResource ~ unitNwn, name), DRResource
DO Al A6

FUNCTION
This routine allocates one of the miscellaneous resources.
If the resource is currently allocated, an error is returned.
If you do get it, your name is associated with the resource
(so a user can see who has it allocated) .

This routine may not be called from an interrupt routine

INPUTS
unitNwn - the nwnber of the resource you want to allocate
name - a mnenonic name that will help the user figure out

what piece of software is hogging a resource.
(havoc breaks out if a name of null is passed in ...)

RESULTS
CurrentUser - if the resource is busy, then the name of

the current user is returned. If the resource is
free, then null is returned.

EXCEPTIONS

SEE ALSO

BUGS

Q

potgo.resource/AllocPotBits

NAME
AllocPotBits - allocate hits in the potgo register

SYNOPSIS
allocated = AllocPotBits(bits) , potgoResource
DO DO A6

FUNCTION
The AllocPotBits routine allocates bits in the hardware potgo
register that the application wishes to manipulate via
WritePotgo. The request may be for more than one bit. A
user trying to allocate bits may find that they are
unavailable because they are already allocated, or because
the start bit itself (bit 0) has been allocated, or if
requesting the start bit, because input bits have been
allocated. A user can block itself from allocation: i.e.,
it should FreePotgoBits the bits it has and re-AllocPotBits if
it is trying to change an allocation involving the start bit.

INPUTS
bits - a description of the hardware bits that the application

wishes to manipulate, loosely based on the register
description itself:

RESULTS

START (bit 0) - set if you wish to use start (i.e., start
the proportional controller counters) with the
input ports you allocate (below). You must
allocate all the DATxx ports you want to apply
START to in this same call, with the OUTxx bit clear.

DATLX (bit 8) - set if you wish to use the port associated
with the left (0) controller, pin 5.

OUTLX (bit 9) - set if you promise to use the LX port in
output mode only. The port is not set to output
for you at this time -- this bit set indicates
that you don't mind if STARTs are initiated at any
time by others, since ports that are enabled for
output are unaffected by START.

DATLY (bit 10) - same as DATLX but for the left (0) controller,

OUTLY
DATRX
OUTRX
DA1RY
OU1RY

pin 9.
(bit 11)
(bit 12)
(bit 13)
(bit 14)
(bit 15)

- same as OUTLX but for LY.
- the right (1) controller, pin 5.
- OUT for RX.
- the right (1) controller, pin 9.
- OUT for RY.

allocated - the START and DATxx bits of those requested that
were granted. The OUTxx bits are don't cares.

potgo.resourcefFreePotBits

NAME
FreePotBits - free allocated hits in the potgo register

SYNOPSIS
FreePotBits(allocated) , potgoResource

DO A6

FUNCTION
The FreePotBits routine frees previously allocated bits in the
hardware pot go register that the application had allocated via
AllocPotBits and no longer wishes to use. It accepts the
return value from AllocPotBits as its argument.

o

potgo.resource/WritePotgo

NAME
WritePotgo - write to the hardware potgo register

SYNOPSIS
WritePotgo (word, mask), potgoResource

DO D1 A6

FUNCTION
The WritePotgo routine sets and clears bits in the hardware
potgo register. Only those bits specified by the mask are
affected -- it is improper to set'bits in the mask that you
have not successfully allocated. The bits in the high byte
are saved to be maintained when other users write to the
potgo register.· The START bit is not saved, it is written
only explicitly as the result of a'ca~l to this ,routine with
the START bit set: other users will not resta~t it.

INPUTS
word - the data.t~ write to the hardware potgoregister and

save for further. use, except the START bit, which is
not saved.

mask - those bits in word that are'to be written. Other
bits may have been provided by previous calls to
this routine, and default. to zero.

Appendix D

Include Files

This appendix has separate sections for the C and assembly-language include files. At the
beginning of each section of files there is a cross-reference showing all the defined constants,
data structures, and data structure terms in each file. These names are listed alphabetically,
followed by file and line-number references.

D - 1

C Include Files-".h" Files

The first portion of this appendix contains the C-Ianguage include files that define the system
data structures used by the ROM (or kickstart) routines and the disk-Ioadable libraries. These
include files are organized on a functional basis. For example, files pertinent to graphics are
listed under "graphics/graphicsitem.h."

This appendix is a hard copy of the "SYS:includes" directory on the Amiga C (Lattice C) disk.

Assembly-language Include Files-" .i" Files

The second portion of this appendix contains the assembly language include files that define the
system data structures used by the ROM (or kickstart) routines and the disk-Ioadable libraries.
These include files are organized on a functional basis. For example, files pertinent to graphics
are listed under "graphics/graphicsitem.i."

This appendix is a hard copy of the "SYS:includes" directory on the Amiga Macro Assembler
disk.

D - 2

Apr 29 10:21 1986 i.xref Page 1

File numbers for cross-reference listinq:

1 adkbits.i
5 cia.i
9 console.i

13 disk font . i
17 dos_lib. i
21 9fx.i
25 ~nputevent.i
29 keyboard.i
33 narrator.i
37 prtbase.i
41 sprite.i
45 trackdisk.i

2:audio.i
6:ciabase.i

10:copper.i
14:display.i
18:dosextens.i

~~;~~:~~::t
30:keymap.i
34:parallel.i
38:rastport.i
42:startup.i
46:translator.i

A,
ABC,

a8MS,
ABNC,

ABORT,
absoluted,

AC,
ac,.,AnimBob,

ac-AnimCRoutine,
ac_CompFlags,

ae_dat,
acJieadOb,

ac_len,
acJfextComp,
acJfextSeq,

ac-per ,
acJ'revComp,
acJ'revSeq,

a~~~~E:
ac_SIZEOF,

ae_Timer,
ac_TimeSet,

ae_vol,
acJTrans,
ae_YTrans,

aCAM,
ACCESSJEAD,

ACCESS_WRITE,
ACTION_COPY....DIR,

ACTION_CREATE....DIR,
ACTION_CURRENT_VOLUME,

ACTION....DELETE_OBJECT,
ACTION....DIE,

ACTION...,DIS~CHANGE,
ACTION....DIS~INFO,
ACTION....DIS~TYPE,

ACTIONJ;VENT ,
ACTION_EXAMINEJfEXT,

Apr 29 10:21 1986 i.xref Page 2

ACTION_EXAMINE_OBJECT,
ACTION_FREE-LOCK,
ACTION_GET_BLOCK,

ACTION_INFO,
ACTION_INHIBIT,

ACTION_LOCATE_OBJECT,
ACTIONJfIL,

ACTIONJ'ARENT,
ACTI ONJEAD,

ACTIONJENAME...,DISK,
ACTIONJENAME_OBJECT,

ACTION_SET_COMMENT,
ACTION_SET...,MAP,

ACTION_SETJ'ROTECT,
ACTION_TIMER,

ACTION_WAIT_CHAR,
ACTION_WRITE,

ACTIVATE,
ACTIVE,

ACTIVEWINDOW,

ADALLoc~iit:
ADALLOC.-MINPREC,

ADCMD",ALLOCATE ,
ADCMD_FINI SH,

ADCMD_FREE,
ADCMDJ,OCK,

ADCMDJ'ERVOL,
ADCMD_SETPREC,

ADCMD_WAITCY'CLE,
ADCMDBJfOUNIT,
ADCMDFJfOUNIT,

added,
address,

aDEN1,
aDEN2,
aDEN3,
aDEN4,
aDEN5,
aDEN6,

ADHARD_CHANNELS,
ADIOBJfOWAIT,
ADIOBJ'ERVOL,

ADIOB_SYNCCY'CLE,
ADIOB_WRITEMESSAGE,

ADIOERR",ALLOCFAILED,
ADIOERR_CHANNELSTOLEN,

ADI OERRJfOALLOCATI ON,
ADIOFJfOWAIT,
ADIOFJ'ERVOL,

ADIOF_SYNCCY'CLE,
ADIOF_WRITEMESSAGE,

ADKB_FAST,
ADKB.-MFMPREC,
ADKB.-MSBSYNC,

ADKBJ'RECOMPO,

3:blit.i
7:c1ip.i

11:custom.i
15:dmabits.i

~r~~~~~rt.i
27: intuition. i
31:layers.i
35:potgo.i
39:regions.i
43:text.i
47:view.i

4 bootblock.i
8 clipboard.i

12 disk.i
16 dos.i
20 gels.i
24 input.i
28 intuitionbase.i
32 misc.i
36 printer.i
40 serial.i
44 timer.i
48 workbench.!

16-113, 27-217, 27-549, 27-1235, 27-1443
3-38
36-113
3-39
34-75, 40-72
27-572, 27-574
20-137
20-157
20-153
20-139
11-100
20-156
11-97
20-148
20-151
11-98
20-149
20-152
11-96
20-158
11-101
20-143
20-146
11-99
20-155
20-154
36-116
16-42
16-44
18-127
18-130
18-118
18-124
18-116
18-141
18-133
18-140
18-117
18-132

18-131
18-123
18-114
18-134
18-139
18-119
18-113
18-137
18-122
18-120
18-125
18-136
18-115
18-129
18-138
18-128
18-121
27-1148
12-72, 34-76,
27-932
27-1488
2-19
2-18
2-29
2-23
2-21
2-25
2-24
2-22
2-26
2-27
2-28, 2-29
27-515
27-1237
36-71
36-70
36-69
36-68
36-67
36-66
2-16
2-35
2-31
2-33
2-37
2-n
2-42
2-40
2-36
2-32
2-34
2-38
1-22
1-18
1-21
1-17

40-73

D - 3

Apr 29 10:21 1986 i.xref Page 3

ADKB.."pRECOMPl,
ADKB_SETCLR,

ADKB_UARTBRK,
ADKB_USEOP1,
ADKB_USEOVl,
ADKB_USEIP2,
ADKB_USElV2,
ADKB_USE2P3,
ADKB_USE2V3,
ADKB_USE3PN,
ADKB_USE3VN,

ADKB_WORDSYNC,
adkcon~

adkconr,
ADKF_FAST,

ADKF....MFMPREC,
ADKFjlSBSYNC,

ADKF.."PREO 0 ONS ,
ADKF.."pRE140NS,
ADKF.."PRE280NS,
ADKF.."pRE560NS,
ADKF.."PRECOMPO,
ADKF.."PRECOMPl,

ADKF_SETCLR,
ADKF _UARTBRK,

ADKF_USEOPl,
ADKF_USEOVl,
ADKF_USElP2,
ADKF_USEIV2,
ADKF_USE2P3,
ADKF_USE2V3,
ADKF_USE3PN,
ADKF_USE3VN,

ADKF_WORDSYNC,
advance,
aEXTEND,

M,
a f...Attr ,

aCSIZEOF,
af_Type,

M'H,
afh...,AF,

a fh...,NumEntries ,
aFNTO,
aFNTl,

aFNT10,
aFNT2,
aFNT3,
aFNT4,
aFNT5,
aFNT6,
aFNT7,
aFNT8,
aFNT9,
AGNUS,

aHTS,

Apr 29 10:21 1986 i.xref Page 4

ai_Count,
aiJ'irstX,
ai_FirstY,

ai_FI agPtr,
aiJ'lagTbl,

ai-HaxCount,
ai_SI ZEOF ,

ai_VctrPtr,
ai_VctrTbI,

aIND,
aJFYO,
aJFY2,
aJFY3,
aJFY5,
aJFY6,
aJFY7,

ALERT_TYPE,
algorithmic,

all,
ALLOCO,
ALLOC1,
ALLOC2,
ALLOC3,

allocated,
ALLOWED,

aLMS,
ALPHAJ'_101,

ALTKEYMAP,
ANBC,

ANBNC,
aNEL,

ANFRACSIZE,
ANIMHALF,

~:
ao...AnimORoutine,

ao...AnOldX,
ao...AnOldY,

ao...AnX,
ao...AnY,

ao...AUserExt,
ao_Clock,

aO~~~~b:
ao.."prevOb,

ao...,RingXTrans,
ao...,RingYTrans,

ao_SIZEOF,
ao~cel,

ao_XVel,
ao_YAccel,

ao_Wel,
aPERF,

aPERFO,
aPLD,
aPLU,

1-16
1-15
1-19
1-26
1-30
1-25
1-29
1-24
1-28
1-23
1-27
1-20
11-87
11-28
1-39
1-35
1-38
1-49
1-50
1-51
1-52
1-34, 1-50, 1-52
1-33, 1-51, 1-52
1-32
1-36
1-43
1-47
1-42
1-46
1-41
1-45
1-40
1-44
1-37
27-559
36-126
13-60, 13-61, 13-63
13-65
13-66
13-64
13-68
13-70
13-69
36-81
36-82
36-91
36-83
36-84
36-85
36-86
36-87
36-88
36-89
36-90
21-12
36-118

38-98
38-100
38-101
38-97
38-96
38-99
38-102
38-95
38-94
36-44
36-100
36-101
36-102
36-97
36-99
36-98
27-1720
27-312
27-794
12-68
12-69
12-70
12-71
27-1655
27-470
36-110
27-1630
27-463
3-40
3-41
36-45
20-41
20-42
27-723
20-162
20-180
20-169
20-168
20-172
20-171
20-182
20-167
20-181
20-164
20-165
20-179
20-178
20-183
20-176
20-175
20-177
20-174
36-107
36-108
36-79
36-78

D - 4

~r ~~ ~u:~~ ~~Hb 1.xref Paqe 5

~~p~:
27-797
36-95

aPROP1, 36-94
aPROP2, 36-93

cl~~%:
27-873, 28-58
27-563

Arealnfo, 38-93
AREAOUTLlNE, 38-46

aran, 27-132, 27-229, 27-682, 27-1336
aRI, 36-46

aRIN, 36-43
aRIS, 36-42
aRMS, 36-111

as, 27-305, 27-305, 27-774, 28-28
ASJ!\P , 27-966
aSBC, 36-56
aSFC, 36-55

aSGRO, 36-48
aSGR1, 36-53

aSGR22, 36-54
aSGR23, 36-50
aSGR24, 36-52

aSGR3, 36-49
aSGR4, 36-51

ASHIFTSHIFT, 3-63
aSHORPO, 36-58
aSHORP1, 36-60
aSHORP2, 36-59
aSHORP3, 36-62
aSHORP4, 36-61
aSHORP5, 36-64
aSHORP6, 36-63

aSLPP, 36-106
aSLRM, 36-115

ASPECTJiORIZ, 27-1613
ASPECT_VERT, 27-1614

aSSOCiated, 27-1027
aSTBM, 36-114
aSUSO, 36-77
aSUS1, 36-74
aSUS2, 36-73
aSUS3, 36-76
aSUS4, 36-75
aTBCO, 36-120
aTBCl, 36-122
aTBC3, 36-121
aTBC4, 36-123

aTBGALL, 36-124
aTBSALL, 36-125

aTMS, 36-112
aTSS, 36-96
aud~ 11-89

audO, 11-90
aud1, 11-91
sud2, 11-92
aud3, 11-93

Apr 29 10:21 1986 Lxref Page 6

audio, 2-13
AUDIONAME, 2-12

AUL, 3-78
AUTOBACKPEN, 27-1735

AUTODRAWMODE, :17-1736
AUTOFRONTPEN, 27-1734

AUTOITEXTFONT, 27-1739
AUTOKNOB, 27-541, 27-582

AUTOLEFTEDGE, 27-1737
automatic~ 27-134, 27-231, 27-684, 27-1338

AUTONEXTTEXT, 27-1740
AUTOTOPEDGE, 27-1738

aVERPO, 36-104
aVERP1, 36-105

aVTS, 36-119
b_~i6;6t 20-55

27-1137

B~f~~~g: 48-131
20-19

J~~~f~: 27-1355
27-1578

BAUD~1200, 27-1580
BAUD_19200, 27-1584

~~~jgg: 27-1581 
27-1579 

BAUD_48 0 0 , 27-1582 
BAUD_96 0 0 , 27-1583 
BAUD..,MIDI, 27-1585 

BB, 4-29 
BB_CHKSUM, 4-31 

BBJ)OSBLOCK, 4-32 
BB_ENTRY, 4-33 

BB_ID, 4-30 
BB_SIZE, 4-34 

BBIDj)OS, 4-38 
BBIDJ(ICK, 4-42 

BBNAMEJ)OS, 4-47 
BBNAMEJ(ICK, 4-48 

BCOB.J)EST, 3-47 
BCOB_SRCA, 3-50 
BCOB_SRCB, 3-49 
BCOB_SRCC, 3-48 
BCOF-PEST, 3-51 
BCOF_SRCA, 3-54 
BCOF_SRCB, 3-53 
BCOF_SRCC, 3-52 
BC1F.J)ESC, 3e56 

bdJlackPen, 27-737 
IxLCount, 27-739 

bdJ)rawMode, 27-738 
IxLFrontpen, 27-736 
bc:LLeftEdge, 27-734 

bc:LNextBorder, 27-742 
IxLSIZEOF, 27c749 
IxLTo~~: 27-735 

27-740 

D- 5 



Apr 29 10:21 1986 1.xref Page 7 

BDRAWN, 
been, 

BEEPING, 
before .. 

below, 
between, 

BFJ!OBSAWAY, 
b1t, 

BITCLR, 
B1tMap, 

bits, 
BITSET, 

BITSPERBYTE, 
BITSPERLONG, 
BLITREVERSE, 

bltadat, 
bltafWD!, 
bltalvm, 
bltamod, 
bltapt, 

bltbdat, 
bltbmod, 
bltbpt, 

bltcdat, 
bltcmod, 
bltconO, 
bltconl .. 
bltcpt, 

bltddat, 
b1tdmod, 
bltdpt, 

bltnode, 
bltsize, 

bmJ!ytesPerRow, 
bm..J)epth, 
bmJ"lags, 

bDLl'ad, 
bDLl'lanes, 
b~ows, 

baLSIZEOF, 

~~:~~: 
bn....cl eanup , 

bn....dummy, 
bn....funct1on, 

bn....n, 
bn....SIZEOF, 

bn....stat, 
BOB, 

bob...After, 
bobJjefore, 

bob_BobComp, 
bob_BobFlags, 

bob_BobVSprite, 
bob_BUser Ext, 

bob....DBuffer, 

Apr 29 10:21 1986 1.xref Page 8 

bob_ImageShadow, 
bob_SaveBu f fer, 
bob_SavePlanes, 

bob_SIZEOF, 
BOBISCOMP, 

BOBNIX, 
BOBSAWAY, 

BOBUPDATE, 
BOLD, 
BOOL, 

BOOLGADGET, 
BOOTSECTS, 

Border, 
BORDERLESS, 

BOJ~~~: 
box, 

bpllmod, 
bpl2mod, 
bplconO, 
bplcon1, 
bplcon2, 
bpldat, 
bplpt, 

broadcast, 
BROTHER_15XL, 

BSHIFTSHIFT, 
BSTR, 

Buffer, 
BUSERFLAGS, 

BWAITING, 

BYTESPERLO~: 
C, 

call, 
called, 

CBD_CURRENTREADID, 
CSD_CURRENTWRITEID, 

CSDYOST, 
CS~OBSOLETEID, 

CB/oLMPS1000, 
CD...ASKKEYMAP , 
CD_SETKEYMAP, 

chang1ng, 
character, 

check, 
CHECKED, 
CHECKIT, 

OleckMark, 
checkmarked, 

CHECKWIDTH, 
c1J)estAddr, 
c1J)estData, 
c1JiWa1tPoB, 
c1....nxtlist, 

c1_OpCode, 

20-32 
27-1655 
27-1401 
27-224 
27-512 
27-253 
20-55 
27-329, 27-805, 27-809 
21-11 
21-15, 27-1021, 27-1244, 27-1404, 27-1443, 27-1447 
27-170, 27-325, 27-771 
21-10 
16-34 
16-36 
3-74 
11-70 
11-55 
11-56 
11-65 
11-59 
11-69 
11-64 
11-58 
11-68 
11-63 
11-53 
11-54 
11-57 
11-19 
11-66 
11-60 
3-14 
11-61 
21-16 
21-19 
21-18 
21-20 
21-21 
21-17 
21-22, 27-1354 
3-20 
3-19 
3-21 
3-18 
3-16 
3-15 
3-22 
3-17 
20-113 
20-125 
20-123 
20-128 
20-116 
20-127 
20-132 
20-130 

20-120 
20-118 
20-115 
20-133 
20-29 
20-34 
20-33 
20-20 
43-21 
27-1539 
27-492 
4-36 
27-305, 27-448, 27-732, 27-1146 
27-1145 
27-1029 
27-453 
27-173 
11-108 
11-109 
11-105 
11-106 
11-107 
11-111 
11-103 
27-280 
27-1631 
3-64 
16-84, 18-183, 18-186, 18-188, 18-191, 18-216 
27-627, 27-1475 
20-27 
20-31 
27-251, 27-349, 27-395, 27-940, 27-1029 
16-35 
4-48, 16-116, 27-19 
27-730, 28-32 
28-37 
8-29 
8-30 
8-28 
8-32 
27-1632 
9-26 
9-27 
27-1490 
27-621 
27-947 
27-179 
27-155, 27-1701 
27-1703 
27-1077, 27-1224 
27-1709 
10-19 
10-22 
10-21 
10-17 
10-16 

D - 6 



Apr 29 10:21 1986 i.xref Page 9 

ci_SIZEOF, 
ci_VWaitPos, 

ciaa, 
ClAANAMI!, 

ciab, 
CIABNAME, 

CIAR, 
c1_, 

cl_CopList, 
cl_Coplns, 

cl_CopLStart, 
cl_Copptr, 

Cl_~~~~~~~: 
cl....DyOffset, 
cl....MaxCount, 

cl.ftext, 
cl':"SIZEOF, 

CLEANME, 
CLEANMEn, 
cleared~ 

c 1 i_Backgrounc:l, 
cli_CommanclDir, 

cli_CommandFile, 
cli_CommandName, 

cli_Currentlnput, 
cli_CurrentOutput, 
cli-PefaultStack, 

cli_FailLevel, 
cli_Interactive, 

cli....Moc;lule, 
cli.:..prompt, 

cl i...,Resul t2, 
cli...,ReturnCode, 

cli_SetName, 
cli_SIZEOF, 

cli_Standardlnput, 
c11_StandardOutptit, 

clicks, 
clip, 

ClipboardUnitPartial, 
ClipRect, 

Close, 
CLOSEWINDOW, 

CLR, 
clxcon, 
clxdat, 

CJlLColorTable, 
CJlLCount, 

~~~g~: 
CJlLType,

CMD_CLU-R,
CMD...,READ,

CMD_UPDATE,
CMD_WRITE,

Apr 29 10:21 1986 i.xref Page 10

collTable,
color,

C~L~~~:
colors ..

CommandLinelnterface,
COMMSEQ,

COMMWID'l;H,
conjunction,

Container,
containing,

coordinates"
. copllc,
cop21c,
copcon,

copinit,
copinit_diagstrt,

copinit_SI ZEOF ,
copinit_sprstop,

copin1t_sprstrtup,
Coplns,

copjmp1,
copimp2,
CopList,

COPPERJ1OVE ,
COPPER_WAIT,

correct,
count,

count-vsize,
cp_collPtrs,

cp_SIZEOF,
CPR.....NT.:..LOF,
CPR.ftT_SHT,

cprlist,
CPRNXTBUF,

cr--p1,
cr--p2,

cr~itMap,
cr_Flags,

CRJlWADDR,
CR_IActive,
CR_IEnable,
CR_IntMask,
CR_INTNODE,

CR_IVALRM,
c::!LI VFLG,

c::!LIVSP,
CR_IVTA,
CR_IVTB,
cr.:..LObs,
cr....MaxX,
cr....MaxY,
cr....M1nl(,
cr....M1nY,
cr.-Next,
crJrev,

10-24
10-18
5-7
5-6
5-11
5-10
6-18
10-36
10-35
10-37
10-39
10-38
10-40
10-4l
10-43
10-42
10-34
10-44
3-26
3-25, 3-26
27-943
18-193
18-184
18-19"\.
18-186
18-190
18-194
18-195
18-187
18-192
18-197
18-188
18-182
18-185
18-183
18-198
18-189
18-196
:17-1515
27-29
8-35
7-50
17-19, 27-490
27-917
20-50
11-84
11-26
47-24
47-23
47-21
47-25
47-22
45-98
45-93
45-97
45-92

47-55
11-122, 37-110
47-20
14-21
27-786
18-181
27-163
27-1710
27-411
27-629
27-3i7
27-1089
11-74
11-75
11-43
10-53
10-54
10-57
10-56
10-55
10-15, 11-78
11-76
11-77
10-33
10-9
10-10
27-1021
17-10, 17-12, 17-13
17-13
47-56
47-57
10-12
10-13
10-27
10-11
7-59
7-60
7-54
7-62
6-19
6-22
6-21
6-20
6-23
6-26
6-28
6-27
6-24
6-25
7-53
7-57
7-58
7-55
7-56
7-51
7-52

D - 7

Apr 29 10:21 1986 1.xref Page 11

or_reserved;
CR_SIZE,

cr_SIZEOF,
CreateDlr,

CreateProc;
crlJlax,

crljlext,
crl_SIZEOF,
crl_start;

CTC....HCLRTAB,
CTC....HCLRTABSALL,

CTC....HSETTAB,
CTRk-C,
CTRLJ),
CTRL_E,
CTRLJ,

cujlode,
CURRENT,

D.trrentDir I
CUSTOM,

CUSTQMJlAME ,
CUSTOMBITMAP ,
CUSTOMSCREEN,

. D,
data,

Dateg~t;t
DBP,

dbp_Bu fBu f fer,
dbp BufPath,

dbpJlufPlanes,
dbp_BufX,
dbp_BufY,

dbp_SIZEOF,
DBUFFER,

dd.-Ollldren,
dd.-CmdBytes,

dd.-CmdVectors,
dd.-CurrentX,
dd.-CurrentY,
dd.-DownMove,

dd..J)rawerWin,
c:ld.....ExecBas8,

dd...,HorizImage,

~~~~~~~~~l: 
dd.-Le ftMove, 

dd.-Lock, 
c:ld....MaxX, 
d<l.MaxY, 
d<l.MinX, 
d<l.MinY, 

dd.-NewWindow, 
ddJlumCo~and. , 

dd.-Ob1ect, 
c:ld....RightMove, 

7-61 
6-29 
7-63 
17-33 
17-36 
10-30 
10-28 
10-31 
10-29 
9-86 
9-87 
9-85 
16-150 
16-151 
16-152 
16-153 
8-36 . 
37-63 
17-34 
27-1626 
27-1629 
27-1403, 27-1445 
27-1235, 27-1396 
4-47, 16-113, 16-114, 16-115 
27-778, 27-790, 27-819, 27-1379, 
16-47, 17-45 
14-22 
20-190 
20-197 
20-193 
20-199 
20-192 
20-191 
20-200 
38-44 
48-66 
37-51 
37-50 
48-48 
48-49 
48-57 
48-64 
37-49 
48-60 
48-62 
48-54 
4S-5!, 
48-67 
48-52 
48-53 
48-50 
48-51 
48-47 
37-52 
48-65 
48-59 

28-28 

Apr 29 10:21 1986 i.xref Page 12 

~;rz~i: 
dd.-UpMove, 

dd.-VertIiIlage, 
dd.-VertProp, 

dd.-VertScro11, 
ddfstop, 
ddfstrt, 

DEADEND-AIoERT, 
decide, 

DEFERREFRESH, 
DEFFREQ, 
define, 

DEFMODE, 
DEFPITCH, 

DEFRATE, 
DEFSEX, 
DEFVOL, 

D~~~t 
DeleteFile, 

DELTAMOVE, 
DENISE, 

g;s~~~: 
DEST, 

device; 
DeviceData, 
DeviceProc, 

devices; 
DEVINIT, 
DevList, 

DevList_SIZEOF, 
dfh,J)F, 

dfhJ'lleID, 
DFICID, 

dfh...Name, 
dfh...ll.evision, 

d.rac;rz~i: 
d~TF, 

DFTCHJIASK, 
diJ)evices, 
diJ)evInfo, 

di....HandlerB, 
diJ4cName, 

dijletHand, 
di_SIZEOF, 

DIAB_63 0 , 
DIAB.."ADVJ)25, 

DIAB_C_150, 
DISCRESOURCE, 

DISCRESOURCEUNIT, 
disk, 

DISKFONT, 
DiskFontHeader, 

37-48 
37-53, 37-80, 48-68 
48-56 
48-61 
48-63 
48-55 
11-82 
11-81 
27-1723 
27-545 
27-279 
33-17 
27-249 
33-23 
33-14 
33-15 
33-22 
33-16 
17-46 
16~74 
17-25 
27-936 
21-13 
27-3n, 27-1478 
43-31 
3-58 
2-13, 34-68, 40-60, 44-27, 45-70 
37-47 
17-42 
25-14, 27-57, 27-61, 37-31, 37-34, 37-37 
8-26, 9-24, 19c19, 24-17, 29-17, 36-35, 44-41, 
18-207 
18-217 
13-51 
13-52 
13-40 
13-55 
13-53 
13-54 
13-57 
13-56 
14-37 
18-173 
18-172 
18-174 
18-171 
18-175 
18-176 
27-1633 
27-1634 
27-1635 
12-55 
12-47 
12-101, 13-61 
43-26 
13-43 

D - 8 

45-76 



Apr 29 10:21 1986 1.xref Page 13 

DISKINSERTED, 
DISKNAME, 

D1skObject, 
DI SKREMClVED, 

d1splay, 
D1sp1ayAIert, 

d1splayed, 
DIWJiORI ZJ'OS, 
DIW_VRTCLJ'OS, 

DIW_VRTCLJ'OS_SHIFT, 
d1wstop, 
diwstrt, 

dl..,A2, 
dl....A5, 
dl..,A6, 

dlJ)1skType, 
dCCV, 

dl_l1b, 
dl_Lock, 

dlJ,ockL1st, 
dl....Name, 
d1....Next, 
dl..)toot, 

dl_SIZEOF, 
dl_Task, 
dl_Type, 

dl_unused, 
dl_VolumeDate, 

DLTJ)EVlCE, 
DLTJ)IRECTORY, 

DLT_VOLUME, 
DMAB...AUDO, 
DMAB..,AUD1, 
DMAB...AUD2, 
DMAB..,AUD3, 

DMAB.-BLITHOG, 
DMAB_BLITTER, 
DMAB.-BLTDONE , 

DMAB.-BLTNZERO, 
DMAB_COPPER, 

DMABJlISK, 
DMABJIASTER, 
DMABJtASTER, 
DMAB_SETCLR, 
DMAB_SPRlTE, 

dmacon~ 
dmaconr, 

DMAF..,ALL, 
DMAF..,AUDO, 
DMAF..,AUD1, 
DMAF..,AUD2, 
DMAF..,AUD3, 

DMAF...AUDIO, 
DMAF_BLITHOG, 
DMAF .-BLI TTER, 
DMAF.-BLTDONE, 

27-926 
12-100 
48-74 
27-928 
27-788, 
27-1716 
27-122 
14-32 
14-33 
14-34 
11-80 
11-79 
18-153 
18-154 
18-155 
18-214 
18-152 
18-1SO 
18-211 
18-213 
18-216 
18-208 
18-151 
18-156 
18-210 
18-209 
18-215 
18-212 
18-220 
18-221 
18-222 
15-39 
15-40 
15-41 
15-42 
15-49 
15-45 
15-SO 
15-51 
15-46 
15-43 
15-48 
15-47 
15-38 
15-44 
11-83 
11-20 
15-31 
15-20 
15-21 
15-22 
15-23 
15-19 
15-30 
15-26 
15-35 

27-805, 27-1352 

Apr 29 10:21 1986 1.xref Page 14 

DMAF.-BLTNZERO, 
DMAF_COPPER, 

DMAFJ)ISK, 
DMAFJlASTER, 
DMAFJtASTER, 
DMAF_SETCLR, 
DMAF_SPRITE, 
dO_CurrentX, 
do_CurrentY, 

doJ>efau1tTool, 
do.....DrawerData, 

do_Gadget, 
do....Magic, 

do_SIZEOF, 
do_StackS1ze, 
do_Tool Types , 

do_TooIW1ndow, 
do_Type, 

do_Verslon, 
does, 

doean, 
don, 

DONE, 
DOS, 

dosextens, 
DosInfo, 

DOs~~~: 
DosPacket, 

DOWNKEYS, 
dp...Act1on, 

dp..,Arg1, 
dp..,Arg2, 
dp..,Arg3, 
dp..,Arg4, 
dp..,Arg5, 
dp..,Arg6, 
dp..,Arg7, 

dp.-BufAddr, 
dp_Link, 
dpJ'ort, 
dp..)tesl, 
dpJes2, 

dp_SIZEOF, 
dp_Status, 

dp_Status2, 
dp_~: 

DR..,ALLOCUNIT, 
DR_CIARESOURCE, 

DR_CURRENT, 
DRJ)ISCBLOCK, 

DRJ)ISCSYNC, 
DR_FLAGS, 

DRJ"REEUNIT, 
DR_GETUNIT, 

15-36 
15-27 
15-24 
15-29 
15-28 
15-18 
15-25 
48-81 
48-82 
48-79 
48-83 
48-77 
48-75 
48-86 
48-85 
48-80 
48-84 
48-78 
48-76 
27-143, 27-240, 27-697, 27-727, 27-1347 
27-1246 
27-440, 27-653 
37-65 
4-39, 16-16, 18-25, 42-23 
37-40 
18-170 
18-149 
16-15 
18-76 
19-30 
18-90 
18-88, 18-93 
18-94 
18-95 
18-96 
18-97 
18-98 
18-99 
18-93 
18-77 
18-78 
18-82, 18-91 
18-86, 18-92 
18-100, 18-108 
18-91 
18-92 
18-80, 18-90 
12-68, 12-69, 12-70, 12-71, 12-72 
12-106 
12-60 
12-56 
12-63 
12-64 
12-57 
12-107 
12-108 

D - 9 



Apr 29 10:21 1986 i.xref Page 15 

DR_GETUNITID, 
DR_GIVEUNIT, 

DR_INDEX, 
DRJ.ASTCOMM, 

~~si'~~: 
DR_SYSLIB, 
DR_UNI TID , 

DR_WAITING, 
DRAfT, 

DrawBorder, 
DrawerData, 

DRAWERDATAFILESIZE, 
DrawerOpen, 

drawn, 
draws, 

DRT_37422D2S, 
DRT-AMIGA, 
DRT_EMPTY, 

DRUJ)ISCBLOCK, 
DRUJ)ISCSYNC, 

DRU_INDEX, 
DRU_SIZE, 

DS, 
dsJ)ays, 

dsjlinute, 
ds_SIZEOF, 

ds_Tick, 
dskbytr, 
dskdat, 

dskdatr, 
DSKDMAOFF, 

dsklen, 
dskpt, 

g~~~: 
DU, 

du_Flags, 
duplicate, 

DupLock, 
each, 

EIGHT_LPI, 
either, 

ELITE, 
EnableCLI, 
ENDGADGET, 

Eo~6~: 
EPSON, 

EPSON_JlL80, 
ERROR-ACTION_NOT_KNOWN, 

ERROR_COMMENT_TOO_BIG, 
ERRORJ)ELETE~ROTECTED, 

ERRORJ)EVICE~OTjlOUNTED, 
ERRORJ)IRECTORY~OT_EMPTY, 

ERRORJ)ISICFULL, 

Apr 29 10:21 1986 i.xref Page 16 

ERRORJ)ISICNOT_VALIDATED, 
ERRORJ)ISICWRITE~ROTECTED, 

ERROR_INVALID_COMPONENT~, 
ERROR_INVALID_LOCK, 

ERRO~OJ)ISK, 
ERROR~O_FREE_STORE, 

ERROR~OJ!ORE~NTRIES, 
ERROR~OT-AJ>OSJ)ISK, 
ERROR-OBJECT~XISTS, 
ERROR_OBJECT_IN_USE, 

ERROR_OBJECT~OT_FOUND, 
ERROR_OBJECT_WRONG_TYPE, 

ERROR~EAD~ROTECTED. 
ERROR~ENAME-ACROSSJ)EVICES, 

ERROR_SEEICERROR, 
ERROR_WRITE~ROTECTED, 

ETD_CLEAR, 
ETD_FORMAT, 

ETDjlOTOR, 
ETD~EAD, 
ETD_SEEK, 

ETD_UPDATE, 
ETD_WRITE, 

event, 
Examine, 

examined, 
except, 

EXCLUSIVE_LOCK, 
EXEC-LIBRARIES_I, 

EXECUTE, 
Exit, 

ExNext, 
EXPUNGED, 

EXTCOM, 
EXTENDED, 

FANFOLD, 
FC, 

fc_FileName, 

f~~Sn~6;: 
fc_Style, 
fc_YSize, 

Fa!, 
fch...FC, 

fch...F ileID , 
FOL.ID, 

fch....NwnEntries, 
FEMALE, 

fh...Arg1, 
fh...Arg2, 
fh...Args, 

fh...Buf, 
fh...End, 

fh...Func1, 
fh...Func2, 
fh...Func3, 

12-110 
12-109, 12-112 
12-65 
12-112 
12-58 
12-66 
12-59 
12-61 
12-62 
27-1601 
27-730 
48-46 
48-71 
48-129 
27-184 
27-224, 27-727 
12-122 
12-121 
12-123 
12-48 
12-49 
12-50 
12-51 
12-102, 35-10, 44-28, 45-71 
16-48 
16-49 
16-51, 16-64, 18-165, 18-212 
16-50 
11-33 
11-39 
11-23 
12-82 
11-38 
11-37 
11-72 
9-82 
37-68 
37-59 
27-136, 27-233, 27-686, 27-1261, 27-1340 
17-29 
27-805 
27-1606 
27-305, 27-1482 
27-1593 
27-1539 
27-421 
27-616 
34-73, 40-64 
27-1636 
27-1637 
16-123 
16-133 
16-135 
16-131 
16-130 
16-134 

16-127 
16-128 
16-124 
16-125 
16-139 
16-119 
16-140 
16-138 
16-121 
16-120 
16-122 
16-126 
16-137 
16-129 
16-132 
16-136 
45-98 
45-96 
45-94 
45-93 
45-95 
45-97 
45-92 
27-442 
17-30 
27-807 
27-849 
16-43 
12-36, 18-20, 22-12, 28-19, 32-9, 37-23 
16-73, 17-50 
17-37, 27-1657 
17-31 
37-78 
45-74 
43-19 
27-1588 
13-25 
13-26 
13-29 
13-30 
13-28 
13-27 
13-34 
13-37 
13-35 
13-32 
13-36 
33-21 
18-71 
18-72 
18-70, 18-71 
18-63 
18-65 
18-67 
18-68 
18-69 

D - 10 



Apr 29 10:21 1986 i.xref Page 17 

fiLFuncs, 
~Interactive, 

ftLLink, 
fiLPos, 

fh....SIZEOF, 
fh....Type, 

UB, 
fib_Comment, 

fib....DateStamp, 
fib-PirEntryType, 

fib....DiskKey , 
fib_EntryType , 

fib_FileName, 
fib...NumB1ocks, 

fib.J?rotection, 
fib_Size, 

fib_SIZEOF, 
FileHand1e, 

FileInfoB1ock, 
FileLock, 

FILENAME_SIZE, 
files, 

FILL_CARRYIN, 
FILL_OR, 
FIL~XOR, 

filled, 
final, 
FINE, 

fl...,Access, 

ff~rl::k: 
flJlemList, 
fl...NumFree, 

fl_SIZEOF, 
fl_Task, 

fl_Vo1ume, 
flag, 

FOLLO~~~~~: 
FontSize, 

four, 
FP, 

FREEHORIZ, 
FreeList, 

FreeList_SIZEOF, 
FREEVERT, 

from, 
FRST....DOT, 

FRST.J)OTn, 
FS, 

FS...NORMAL, 
function, 

functions, 
GADGBACKFILL, 
GADGDISABLED, 

18-66, 18-67 
18-61 
16-60 
18-64 
18-73 
18-62 
16-71, 16-72, 16-73, 16-74 
16-65 
16-64' 
16-57 
16-56 
16-61 
16-59 
16-63 
16-60 
16-62 
16-67 
18-59 
16-55 
18-226 
27-1472, 27-1543 
27-140, 27-237, 27-690, 27-1344 
3-70 
3-68 
3-69 
27-817 
27-614 
27-1594 
18-229 
18-228 
18-227 
48-93 
48-92 
18-232 
18-230 
18-231 
27-127 
27-849, 27-1044, 27-1217 
27-436, 27-443 
27-1486 
27-792 
:~=~i: :~=~~, 43-27, 43-28, 43-29, 43-30, 

27-583 
48-91 
48-95, 48-121 
27-588 
27-1722 
38-42, 38-107 
38-106 
43-19, 43-20, 43-21, 43-22 
43-18 
27-430 
27-866 
48-163 
27-399 

Apr 29 10:21 1986 i.xref Page 18 

Gadget, 

GADGET0002, 
GADGETDOWN, 

gad~ts, 
Gadget e, 

GADGE , 
GADGHBOX, 

GADGHCOMP, 
GADGHIGHBITS, 

GADGHIMAGE, 
GADGHNONE, 
GADGIMAGE, 

GADGIMMEDIATE, 
GamePortTrigger, 

gb...,ActiView, 
gb_BeamSync, 
gbJl1itLock, 
gb_BlitNest, 

gb_BlitOwner, 
gb....blitter, 

gb_Bli tWai to, 
gb....b1thii, 

gb....b1tsrv, 
gb....b1tt1, 

gb....bsb1thd, 
gbj)sb1 ttl, 

gb....bytarasarved, 
gb_cia, 

gb_copinit, 
gb....Debug, 

gb.J)afau1tFont, 
gb....Disp1ayFlags, 

gb_F1ags, 
gbJ.OFlist, 

gbJlodas, 
qb_reserved" 
gb_SHFlist, 

gb_SIZE, 
gb_SpriteReservad, 
gb_syste~p1conO, 

gb_TextFonts, 
qb_timsrv, 

gb_TOF_WaitQ, 
gb_VB1ank, 

gb_vbsrv, 
GELCONE, 

Ge1sInfo, 
GENLOCK... VIDEO, 

get, 
GetPacket, 

gfx, 
GfxBase, 

gg...,Activation, 
gg_Flags, 

27-289, 27-333, 27-368, 27-409, 27-416, 
27-506, 27-547, 27-565, 27-643, 27-646, 
27-651, 27-1253 
27-493 
27-911 
27-217, 27-814, 27-1728 
27-468, 27-473 
27-912 
27-358 
27-357 
27-356 
27-359 
27-360 
27-365 
27-413 
19-33 
22-20 
22-38 
22-44 
22-45 
22-47 
22-23 
22-46 
22-26 
22-32 
22-27 
22-28 
22-29 
22-41 
22-22 
22-21 
22-37 
22-34 
22-49 
22-43 
22-24 
22-35 
22-51 
22-25 
22-52 
22-40 
22-39 
22-33 
22-31 
22-48 
22-36 
22-30 
20-21 
38-22 
47-18 
27-871, 27-1730 
17-40 
7-9, 27-25, 37-109, 38-10, 39-10, 47-9 
22-19 
27-300 
27-298 



Apr 29 10:21 1986 i.xref Page 19 

gg_GadgetID, 
g9-GadgetRender, 

qq_GadqetText, 
q9-G .. dqetType, 

g9J1eight, 
ggJ.e ftEdge, 

gg~tuaIExclude, 
gg....NextG .. dget, 

qg_SelectRender, 
g9-SIZEOF, 

g9-SpecialInfo, 
gg_TopEdge, 

99_UserData; 
gg_Width, 

gij)ottommost, 
gi_collHandler, 

gi_firBtB1issObj, 
gi_Flags, 

gi_geIHead, 
gi_geITail, 

gi_IaBtBlissObj, 
gi_lastColor, 
gi_Ieftmost, 
gi....nextLine, 

gi_rightmoBt, 
gi_SIZEOF, 

gi_sprRsrvd, 
gi_topmost, 

GIDJ)OWNSCROLL, 
GIDJlORIZSCROLL, 

GID_LEFTSCROLL, 
GID....NAME, 

GID~IGHTSCROLL, 
GID_UPSCROLL, 

GID_VERTSCROLL, 
GID_WBOBJECT, 

GII+!EZEROZERO, 
GPCT-ABSJOYSTICK, 

GPCT....ALLOCATED, 
GPCTj!OUSE, 

GPCT....NOCONTROLLER, 
GPCT~ELJOYSTICK, 

GPDJ,SKCTYPE, 
GPDJ,SKTRIGGER, 
GPD~EADEVENT, 

GPD_SETCTYPE, 
GPD_SETTRIGGER, 

GPDERR_SETCTYPE, 
GPT, 

gpt_Keys, 
gpt_SIZEOF, 

gpt_Timeout, 
gpt_XDelta, 
gpt_YDelta, 

graphics, 

Apr 29 10:21 1986 i.xref Page 20 

GRELBOTTOM, 
GRELHEIGHT, 

GRELRIGHT, 
GRELWIDTH, 

Guide, 
GZZGADGET, 

have; 
here; 

HIGHBOX, 
HIGHCOMP, 

HIGHFLAGS, 
HI GHI MAGE , 

HI GHITEM, 

h~~~6~: 
HOLDNMODIFY, 

how; 
HP _LASERJET, 

HP_LASERJET~LUS, 
HSIZEBITS, 
HSIZEMASK, 

ib....ActiveScreen, 
ib....ActiveWindow, 
ib_FirstScreen, 

ib_LibNode, 
ib_ViewLord, 

icon; 

i~=: 
idLavtesPerBlock, 

lc:L...DiskState, 
ic:L...DiskType, 
ID..JX)s..J)iSK, 

icLInUse, 
ID_KICKSTART....DISK, 

ID....NO....DISK-PRESENT, 
ID....NOT~EALLY..JX)S, 

id....NumBlocks, 
id....NumBlocksUsed, 
id....NumSoftErrors, 

icLSIZEOF, 
icLUnitNumber, 

ID_UNREADABLE....DISK, 
ID_VALI DATED , 

ID_ VALIDATING, 
icLVolumeNode, 

ID_WRITE~ROTECTED, 
IDCMP, 

ie_Class, 
ie_Code, 

ie_EventAddress; 
ie....NextEvent, 
ie_Qualifier, 

ie_SIZEOF, 
ie_SubClass, 

27-347 
27-309 
27-316 
27-302 
27-296 
27-293 
27-339 
27-291 
27-314 
27-351, 48-54, 48-55, 48-56, 48-57, 48-58, 
48-59, 48-77, 48-120 
27-345 
27-294 
27-348 
27-295 
38-36 
38-32 
38-37 
38-25 
38-26 
38-27 
38-38 
38-31 
38-33 
38-29 
38-34 
38-39 
38-23 
38-35 
48-152 
48-147 
48-149 
48-153 
48-150 
48-151 
48-148 
48-146 
27-1023, 27-1143 
19-46 
19-41 
19-44 
19-42 
19-45 
19-22 
19-24 
19-21 
19-23 
19-25 
19-50 
19-30, 19-31 
19-34 
19-38 
19-35 
19-36 
19-37 
7-9, 13-20, 27-25, 27-29, 27-33, 27-37, 

27-41, 27-45, 28-24, 38-10, 39-10, 47-9 
27-377 
27-386 
27-379 
27-383 
27-902, 27-904, 27-927, 27-931, 27-933, 27-935 
27-476 
27-432, 27-790, 27-871, 27-1246, 27-1267 
27-947 
27-174 
27-172 
27-169 
27-171 
27-185 
27-120 
27-176 
14-23 
27-543, 27-545 
27-1641 
27-1642 
3-29 
3-31 
28-51 
28-50 
28-61 
28-48 
28-49 
23-31 
48-128 
23-30 
16-100 
16-97 
16-101 
16-115 
16-103 
16-116 
16-112 
16-114 
16-98 
16-99 
16-95 
16-104 
16-96 
16-113 
16-110 
16-109 
16-102 
16-108 
27-940 
25-135 
25-137 
25-139 
25-134 
25-138 
25-143 
25-136 

D - 12 



Apr 29 10:21 1986 i.xref Page 21 

ie_TimeSi~: 

ie_Y, 
I ECLASS....ACTIVEWINDOW, 

I ECLASS_CLOSEWINDOW, 
I ECLASS-PI SKI NSERTED , 

IECLASS-PISKREMOVED, 
I ECLASS_EVENT , 

I ECLASS_GADCETDOWN, 
I ECLASS_GADGETUP , 

I ECLASS_lNACTIVEWINDOW , 
IECLASSjIAX, 

IECLASS-MENULIST, 
IECLASS~WPREFS, 

IECLASS...NULL, 
IEcLAsS-pOINTERPOS, 

I ECLASS..;RAWKEY, 
I ECLASS..;RAWMOUSE, 

IECLASS~EFRESHWINDOW, 
IECLASS~EQUESTER, 

IECLASS_SIZEWINDOW, 
I ECLASS_TlMER , 

IEOODE-ASCII-PEL, 
IECODE-ASCII_FIRST, 

IECODE-ASCII_LAST, 
IECODE_COJIRST, 

I ECODE_CO_LAST, 
I ECODE_C1_FIRST , 
. i ECODE_C1_LAST, 

I ECODE_COMMLCODEJIRST , 
I ECODE_COMMLCODE_LAST, 
IECODE_KEY_CODE_FIRST, 

I ECODE_KEY_CODE_LAST , 
IECODE~LATIN1_FIRST, 

IECODE_LATIN1_LAST, 
I ECODE_LBUTTON , 
I ECODE....MBUTTON, 

IECODE~WACTlVE, 
I ECODE...NOBUTTON , 
IECODE~BUTTON, 
IECODE~EQCLEAR, 
IECODE~EQSET, 

I ECODE_UP-pREF I X, 
IECODEB_UP-pREFIX, 

IEQUALIFIER_CAPSLOCK, 
I EQUALIFI ER_CONTROL, 

IEQUALI FI ER_I NTERRUPT , 
IEQUALIFIER~T, 

IE8UALIFIER_LBUTTON, 
lEO ALIFIER LCOMMAND, 

fE8UALIFIER_LSHIFT, 
IEOUALIFIER....MBUTTON, 

I EQUALIFI ER-MULTI BROADCAST , 
IEQUALIFIER...NUMERICPAD, 

IEQUALIFIER~T, 
IEQUALIFIER~BUTTON, 

Apr 29 10:21 1986 i.xref Page 22 

IEQUALIFIER~OOMMAND, 
IEQUALIFIER~ELATlVEMOUSE, 

IEQUALIFI~EPEAT, 
IEQUALIFIER~SHIFT, 

IEQUALIFIERB_cAPSLOCK, 
I EQUALI FI ERB_CONTROL , 

IEQUALIFIERB_INTERRUPT, 
IEQUALIFIERB_LALT, 

IEQUALIFIERB~BUTTON, 
IEQUALIFIERB~COMMAND, 

IE8UALIFIERB_LSHIFT, 
IEOUALIFIERB....MBUTTQN, 

I EQUALI F IERB-MULTI BROADCAST , 
IEQUALIFIERB...NUMERICPAD, 

IEQUALIFIERB~T, 
IE8UALIFIERB~BUTTON, 

lEO ALIFIERB~COMMAND, 
IEQUALIFIERB~ELATlVEMOUSE' 

IEQUALIFIERB~EPEAT, 
IEQUALIFIERB~SHIFT, 

IFGT, 
ig-Pepth, 

igJieight, 
ig_ImageData, 
ig~ftEdge, 

ig...NextImage, 
ig-planeOnOff, 
ig-p1 ""ePick, 

ig_SIZEOF, 
ig_TopEdge, 

ig_Width, 
ignored, 

illLClasB, 
illLCode, 

illLExecMessage, 
illLIAddress, 

illLIDCMPWindow, 
imJ'!icros, 
imJ'!ouseX, 
imJ'!ouseY, 

illLQuali fier, 
illLSeconds, 

iIlLSIZEOF, 
illLSpecialLink, 

image, 
IMAGE~GATlVE, 
IMAGE-pOSITIVE, 

imagery, 
INACTlVEWINDOW, 
I ND..,ADDHANDLER , 
IND~EMHANDLER, 

IND_SETMPORT, 
IND_SETMTRIG, 
IND_SETMTYPE, 

IND_SETPERIOD, 
IND_SETTHR~SH, 

25-142 
25-140 
25-141 
25-53 
25-41 
25-51 
25-49 
25-27 
25-33 
25-35 
25:55 
25-58 
25-39 
25-47 
25-21 
25-29 
25-23 
25-25 
25-45 
25-37 
25-43 
25-31 
25-74 
25-72 
25-73 
25-70 
25-71 
25-75 
25-76 
25-66 
25-67 
25-64 
25-65 
25-77 
25-78 
25-81 
25-83 
25"87 
25-84 
25-82 
25-94 
25-92 
25-62 
25-63 
25-102 
25-104 
25-118 
25-106 
25-122 
25-110 
25-98 
25-126 
25-120 
25-114 
25-108 
25-124 

25-112 
25-128 
25-116 
25-100 
25-103 
25-105 
25-119 
25-107 
25-123 
25-111 
25-99 
25-127 
25-121 
25-115 
25-109 
25-125 
25-113 
25-129 
25-117 
25-101 
37-89 
27-769 
27-768 
27-770 
27-763 
27-830 
27-823 
27-822 
27-833, 48-60, 48-61 
27-765 
27-767 
27-349 
27-855 
27-859 
27-846 
27-868 
27-888 
27-883 
27-876 
27-877 
27-863 
27-882 
27-893 
27-891 
27-175, 27-253, 27-363, 27-761, 27-778, 27-828 
27-1610 
27-1609 
27-256, 27-272, 27-363, 27-782 
27-934 
24-19 
24-20 
24-24 
24-26 
24-25 
24-23 
24-22 

D - 13 



Apr 29 10:21 1986 i.xref Page 23 

IND_WRITEEVENT. 
Info. 

InfoData. 
InitAnimate. 
initialize. 

inner-Window; 
Input. 

InputEvent. 
INREQUEST. 
INTB....AUDO. 
INTB....AUD1. 
INTB....AUD2. 
INTB....AUD3. 
INTB_SLIT. 

INTB_COPER. 
INTBJ)SKBLK. 

INTBJ)SKSYNC. 
INTB_EXTER. 
INTB_INTEN. 
INTB....PORTS. 

INTBJBF. 
INTB_SETCLR. 

INTB_SOETINT. 
INTB_TBE. 

INTB_VERTB. 
integer. 

intenB, 
intenar, 

INTERLACE. 

i~~~~~~: 
INTF....AUD1. 
INTF....AUD2. 
INTF....AUD3, 
INTF_BLIT, 

INTF_COPER. 
INTF_DSKBLK, 

INTFJ)SKSYNC, 
INTF_EXTER, 
INTF_INTEN. 
I NTF....pORTS , 

INTFJBF. 
I NTF_SETCLR , 

INTF_SOETINT, 
INTF_TBE, 

INTF_VERTB. 
intreq. 

intreqr, 
IntuiM~~~~y~: 

IntuiText. 
INTUITICKS, 

IntuitionBas!B, 
io....Actual, 

1o_BAUD, 
IO_BRKTIME, 

24-21 
17-32 
16-94 
20-49 
27-1259 
27-1095 
17-22 
25-133, 27-61 
27-1154 
26-26 
26-25 
26-24 
26-23 
26-27 
26-29 
26-32 
26-21 
26-20 
26-19 
26-30 
26-22 
26-16 
26-31 
26-33 
26-28 
27-637 
11-85 
11-34 
14-24 
12-33, 22-16 
26-45 
26-44 
26-43 
26-42 
26-46 
26-48 
26-51 
26-40 
26-39 
26-38 
26-49 
26-41 
26-37 
26-50 
26-52 
26-47 
11-86 
11-35 
27-844 
27-349 
27-670 
27-938 
28-46. 28-53 
8-48 
40-117 
40-118 

Apr 29 10:21 1986 i.xref Page 24 

io_ClipID, 
io_Co 1 orMap , 

io_Command, 
IO_CTLCHAR, 

ioJ)ata. 
ioJ)estCo1s, 
ioJ)estRows, 

ioJ)evice, 
io_Error, 

IO_EXTFLAGS. 
io_F1ags. 

ioJ.ength, 
ioJlessage, 

ioJlodes. 
io_O,ffset. 

IO....PARFLAGS. 
io""parmO, 
io....Parml. 
io""parm2, 
io....Parm3. 

IO....pARSTATUS, 
IO....PEXTFLAGS. 

io""prtCommand, 
IO....PTERMARRAY, 

ioJastPort. 
IOJl.BUELEN, 
IOJEADLEN, 

IO_SERFLAqS, 
10_SIZE, 

iO_Special, 
io_Srcl!ei'1ht, 

io_SrcWidth. 
io_SrcX, 
io_SrcY, 

10_STATUS. 
IO_STOPBITS. 

IO_TERMARRAY, 
io_Unit. 

IO_WRITELEN, 
ioa....AllocKey, 

io,,-Cycles, 
ioaJ)ata, 

loa Length, 
ioaJeriod .. 
ioa_SIZEOF. 
ioa_Volume, 

io,,-WriteMsg, 
IOAudio. 

io~~~i~~~: 
iodrpr_SIZEOF, 

IODRPReq, 
IoErr, 

IOEXTPAR. 
IOEXTPar_SIZE. 

IOEXTPar_SIZE-IOEXTSER_SlZE. 

8-52 
36-139 
8-45 
40-114 
8-50 
36-145 
36-146 
8-43 
8-47 
40-116 
8-46 
8-49 
8-42 
36-140 
8-51 
34-121 
36-131 
36-132 
36-133 
36-134 
34-120 
34-119 
36-130 
34-122 
36-138 
40-115 
40-120 
40-123 
2-44. 36-129. 36-137, 44-36 
36-147 
36-144 
36-143 
36-141 
36-142 
40-124 
40-122 
40-119 
8-44 
40-121 
2-45 
2-50 
2-46 
2-47 
2-48 
2-52 
2-49 
2-51 
2-44 
8-41 
8-53 
36-148 
36-137 
17-35 
34-95 
34-123. 37-90. 37-91 
37-89, 37-94 

D - 14 



Apr 29 10:21 1986 i.xref Page 25 

IOEXTSER. 
IOEXTSER_SIZE. 

IOEXTTD. 
IOPAR. 

iopcr_SIZEOE". 
IOprtc..~;~: 

IORO. 
IOR1. 

lOSER. 
lOST. 

IOSTD_SIZE. 
IOTD_COUNT. 

IOTD_SECLABEL. 
IOTD_SIZE. 
IOTV_SIZE. 
IOTV_TlME. 

IS_SIZE; 

ISDRAWN. 
ISGRTRX. 
ISGRTRY. 

IsInteractive. 
ISLESSX. 
ISLESSY. 

it. 
itJlackPen. 

it..J)rawMode. 
it_E"rontPen. 

it_IText. 
it_ITextE"ont. 

it_K1udgeE"illOO. 
itJ,eftEdge. 
it....NextText. 

it_SIZEOE". 
it_T~~~y~: 

item. 
ITEMENABLED. 

items. 
ITEMTEXT. 

IText. 
its. 

IV_SIZE. 
joyOdat. 
joy1dat. 
joyteBt. 

K. 
KBD-ADDRESETHANDLER. 

KBD...READEVENT • 
KBD...READMATRI X. 

KBD...REMRESETHANDLER. 
KBD...RESETHANDLERDONE. 

KC....NOQUAL. 
KC_VANILLA. 

KCB_CONTROL. 

Apr 29 10:21 1986 i.xref Page 26 

KCB..J)OWNUP • 
KCB....NOP. 

KCB_STRING. 
KCE"....ALT. 

KeF_CONTROL. 
KCE"J)OWNUP. 

KeF....NOP. 
KeF_SHIFT. 

KeF_STRING. 
KeyMap. 

RICK. 
~iCapsable. 
~iKeyMap. 

~iKeyMapTypeB. 
~iRepeatable. 
~oCapsable. 
~oKeyMap. 

~LoKeyMapTypes. 
~oRepeatable. 

~SIZEOE". 
KNOBHIT. 

KNOBHMIN. 
KNOBVMIN. 

Layer. 
Layer_Info. 

Layerlnfo. 
Layerlnfo_extra~ 

layers .. 
leaves .. 

left. 
LEE"TBORDER. 

~~ii~: 
1i...broadcast. 

liJ;:Jytereserved .. 
li_check....lp. 

li-Layerlnfo_extra. 
li_Lock. 

Ii_Locker. 
li_1ocknest. 
li-LockPort. 

li_longreserved. 
li_obs. 
li...pad. 

li...RP ...tt~~~1~~ot 
1 i_top_layer • 

li_vordreserved. 
LIB_BASE. 
LIB_SIZE. 

LIBINIT. 

lieJ>U~~a: 
lie_env. 

lie_E"reeClipRects. 
lie-Jllem. 

40-91 
37-95. 37-95. 40-142 
45-105 
34-74. 34-75. 34-75 
35-135 
36-129 
34-77. 34-78. 34-79. 34-80 
37-76 
37-77 
40-71. 40-72. 40-73 
40-74. 40-75. 40-75. 40-77. 40-78 
33-58. 34-95. 40-91. 45-105 
45-106 
45-107 
45-108 
37-99. 44-38 
44-37 
6-23. 12-48. 12-49. 12-50. 12-63. 12-64. 
12-65. 22-30. 22-31. 22-32 
27-183 
7-68 
7-59 
17-49 
7-56 
7-67 
27-337. 27-389. 27-1724 
27-674 
27-676 
27-672 
27-706 
27-704 
27-696 
27-699 
27-708 
27-711 
27-701 
43-20 
27-115. 27-158. 27-155 
27-166 
27-120 
27-157 
27-1732 
27-1157 
6-24. 6-25. 6-26. 6-27. 6-28 
11-24 
il-25 
11-47 
4-48. 4-48. 15-115. 16-115 
29-21 
29-19 
29-20 
29-22 
29-23 
30-28 
30-29 
30-32 

30-34 
30-25 
30-37 
30-31 
30-33 
30-35 
30-26 
30-30 
30-38 
30-13 
4-43 
30-20 
30-19 
30-18 
30-21 
30-16 
30-15 
30-14 
30-17 
30-22 
27-590 
27-593 
27-594 
7-15 
31-32 
27-1357 
31-16 
27-41 
27-337 
27-380 
27-451 
27-741 
27-1502 
31-39 
31-43 
31-34 
31-46 
31-38 
31-42 
31-40 
31-37 
31-45 
31-35 
31-41 
31-36 
27-1356. 31-47 
31-33 
31-44 
12-105. 32-48 
6-18. 12-55. 18-150. 
12-105. 32-48 
16-15. 23-31 
31-20 
31-17 
31-19 
31-18 

22-19. 28-48. 32-44. 37-47 

D - 15 



Apr 29 10:21'1986 i.xref Page 27 

lie_SIZEOE', 
like, 

LINEMODE, 
list, 

listing, 

LMN~EGION, 
LNJ'RI, 

LoadSeg, 
location, 

Lock, 
LONELYMESSAGE, 

LONGINT, 
LOWCHECKWIDTH, 

LOWCOMMWIDTH, 
lr_cliprects, 

Ir-p1 , 
Ir_Back, 

lr _ClipRect, 
'iT_cr, 

lr_cr2, 
lr_ernew, 

IrJ)amageList, 
lr_E'lags; 
lr_E'ront, 

lr_l_LockMessage, 
lr_LayerInfo, 

I r_LayerLockCount , 
lr_LayerLocker, 

lr_Lock, 
1 r J,ockCount, 

lr_LockMel'sage, 
lrJ,ockPort, 

lrJlaxX, 
1 rJlaxY , 
lrJlinX, 
lrJlinY, 

lr~astPort, 
lr~eplyl?ort, 

ir_reserved, 
lr_reservedl~ 
lr _Scro11J, 
lr_Scro11_Y, 

lr_SIZEOE', 
lr_SuperBitMap, 

lr_SuperClipRect, 
lr_SuperSaverClipRects, 

I r_Window , 
MJ,SM, 
MJ.WM, 
ILLNM, 

31-21 
27-866 
3-67 
27-217 
27-53, 27-106, 27-159, 27-212, 27-265, 
27-318, 27-372, 27-425, 27-478, 27-531, 
27-584, 27-638, 27-691, 27-744, 27-798, 
27-851, 27-905, 27-959, 27cl012, 27-1065, 
27-1118, 27-1171, 27-1225, 27-1278, 27-1331, 
27-1384, 27-1437, 27-1491, 27-1544, 27-1597, 
27-1650, 27-1704, 28-53 
31-23 
37-59 
17-38 
27-666 
17-27 
27-950 
27-461 
27-1711 
27-1712 
7-40 
7-47 
7-17 
7-18 
7-44 
7-45 
7-46 
7-39 
7-29 
7-16 
7-38 
7-4i 
7-26 
7-42 
7-24 
7-25 
7-36 
7-35 
7-22 
7-23 
7-20 
7-21 
7-19 
7-37 
7-27 
7-28 
7-33 
7-34 
7-48 
7-30 
7-31 
7-43 
7-32 
9-95 
9-98 
9-94 

Apr 29 10:21 1986 i.xref Page 28 

MALE, 
MAXBODY, 

MAXBYTESPERROW, 
MAXCYLS, 

MAXE'ONTNAME , 
MAXE'ONTPATH, 

MAXE'REQ, 
MAXI NT , 

MAXPITOi, 
. MAXPOT, 

MAXRATE, 
MAXRlj:TRY, 

MAXVOL, 
me, 

,eans, 
m&m-..node, 

memnodeJlowJ>ig, 

me::~~~~~~~: 
memnode_succ, 

memnode_where, 
MEMORY, 

Menu, 
MENUCANCEL, 

MENUENABLED, 
MENUHOT, 

Menultem, 
MENUNULL; 
MENUPICK, 

Menus, 
MENUSTATE, 

MENUTOGGLE, 
MENUTOGGLED, 

MENUVERIE'Y, 
MENUWAITING, 

mi_Command, 
mi_E'laqs, 

mi~i!e:a~i: 
mi_Kl udqeE'i 11 0 0 , 

mi_LeftEdqe, 
mi-MutualExclude, 

mi..NextItem, 
mi..NextSelect, 
mi_SelectE'i11, 

mi_SIZEOF, 
mi_SubItem, 

miiiittI~&: 
Micros, 

MIDRAWN, 
MINE'REQ, 

MININT, 
MINPITOi, 

MINRATE, 
MI NVOL , 

33-20, 33-22 
27-595 
3-34 
45~33 

13-41, 13-55 
13-23, 13-26 
33-32 
16-37 
33-30 
27-596 
33-28 
45-37 
33-34 
27-949 
27-525 
31-25 
31-29 
31-27 
31-30 
31-26 
31-28 
13-60 
27-68 
27-963 
27-89 
27-957 
27-101 
27-1691 
27-915 
27-1157 
27-1156 
27-164 
27-186 
27-923 
27-965 
27-126 
27-112 
27-111 
27-117 
27-142 
27-104 
27-114 
27-103 
27-150 
27-123 
27-152 
27-145 
27-105 
27-110 
27-880 
27-92 
33-31 
16-38 
33-29 
33-27 
33-33 

D - 16 



Apr 29 10:21 1986 i.xref Page 29 

MinWidth, 
misc~ 

MI SCNAME , 
MiscResource, 

mode, 
MODE_640, 

MODEJlEWFILE, 
MODE_OLDFILE, 
MOUSEBUTTONS, 

MOUSEMOVE, 
MP_SIZE, 

MR.-ALLO~~~~~~~f: 
MR_FREEMISCRESOURCE, 

MR_PARALLELBITS, 
MR...,pARALLELPORT, 

MR_SERIALBITS, 
MR_SERIALPORT, 

mr_Sizeof, 
MRB, 

MRBJjEIGHT, 
MRB_PAD, 

MRB_SHAPE, 
MRB_SIZE, 

MRB_WIDTH, 
MTYPE_CLOSEDOWN, 

MTYPE-PISKCHANGE, 
MTYPE_IOPROC, 

MTYPE...,pSTD, 
MTYPE_TlMER, 

MTYPE_TOOLEXIT, 
mu_BeatX, 
mu_BeatY, 

mu_E'irstltem, 
mu_E'1ags, 

muJieight, 
m~.]azzX, 
m~JazzY, 

mu_LeftEdge, 
mu-.MenuName, 
mu~extMenu, 

mu_SIZEOE', 

mUm~~t~~f::: 
MUSTDRAW, 

N, 
N_TRACTOR, 

NABC, 
NABNC, 
NANBC, 

NANBNC, 
NATURALE' ° , 

NO_CantAlloc, 
NO_Expunged, 

NO_E'reqErr, 
NO...,MakeBad, 

Apr 29 10:21 1986 i.xref Page 30 

NO...,ModeErr, 
NO.-NoAudLib, 

NO.-NoMem, 
NO.-NotUsed, 
NO.-NoWrite, 
NO...,PhonErr, 

NO...,PitchErr, 
NO....RateErr, 

NO_SexErr, 
NO_Unimp1, 

NO_UnitErr, 
NO_Vo1Err, 

NOI, 
NOI_CHANMASK, 

NOI_CHMASKS, 
NOI...,MODE, 

NOI_MOUTHS, 
NOI_NUMCHAN, 

NOI,JruMMASKS, 
NOI_PAD, 

NOI...,pITCH, 
NOI..,.RATE, 

NDI_SAMPFREQ, 
NOI_SEX, 

NOI_SIZE, 
NOI_VOLUME, 

NEWLAYERlNE'O_CALLED, 
NEWPREE'S, 

NewScreen, 
NEWSIZE, 

NewWindow, 
next, 

no, 
NO_lCON...,pOSITION, 

NOCAREREFRESH, 
NOCROSSE'ILL, 

nodes, 
NOITEM, 
NOMENU, 

NOSUS, 
not, 

notwithstanding, 
ns_BlockPen, 

ns-Pefau1tTit1e, 

ns~~~~~:;: 
ns_Font, 

ns_Gadgets, 
nsJieight, 

ns_Le ftEdge, 
ns_SIZEOE', 

ns_TopEdge, 
ns_Type, 

ns_ViewModes, 
ns_Width, 

NULL, 

27-1263 
32-54 
32-53 
32-44 
27-456 
14-16 
16-24 
16-22 
27-903 
27-909 
7-35, 7-37, 18-35, 31-36, 31-37, 37-81, 37-100 
32-45 
32-49 
32-50 
32-40 
32-39 
32-38 
32-37 
32-46 
33-75 
33-77 
33-79 
33-78 
33-80 
33-76 
48-142 
48-140 
48-143 
48-138 
48-141 
48-139 
27-83 
27-84 
27-77 
27-75 
27-74 
27-81 
27-82 
27-71 
27-76 
27-70 
27-86 
27-72 
27-73 
20-17 
16-114 
27-1624 
3-42 
3-43 
3-44 
3-45 
33-18, 33-23 
33-43 
33-46 
33-52 
33-41 

33-51 
33-40 
33-39 
33-38 
33-45 
33-47 
33-49 
33-48 
33-50 
33-44 
33-42 
33-53 
33-58 
33-68 
33-63 
33-61 
33-67 
33-69 
33-64 
33-70 
33-60 
33-59 
33-66 
33-62 
33-71, 33-75 
33-65 
31-49 
27-924 
27-1415 
27-900 
27-1197 
27-148 
27-819 
48-168 
27-1162 
38-47 
8-14, 13-14, 36-20, 37-15, 48-19 
27-1689 
27-1688 
27-1690 
27-397 
27-875 
27-1425 
27-1434 
27-1421 
27-1423 
27-1432 
27-1436 
27-1420 
27-1417 
27-1454 
27-1418 
27-1430 
27-1428 
27-1419 
27-124, 27-307, 27-619 

D - 17 



Apr 29 10:21 1986 i.xref Paqe 31 

NUMCYLS, 
NUMHEADS, 

NUMMRTYPES, 
NUMSECS, 

NUMTRACKS, 
NUMUNITS, 

nw_BitMap, 
n'V_BlockPen, 

nw_Olecl<Mark, 
nwJ)etai lPen, 

nwJirstGadqet, 
nw_Flags, 

nwJleiqht, 
nw_IDOIPFlaqs, 

nw_LeftEdqe, 
nw....MaxHeiqht, 

nw....MaxWidth, 
nw....MinHeiqht, 

nw....MinWidth, 
nv_Screen, 

nw_SIZE, 
nv_Title, 

nw_TopEdqe, 
nw_Type, 

nw_Width, 
0, 

OCTANT1, 
OCTANT 2 , 
OCTANT3, 
OCTANT4, 
OCTANT5, 
OCTANT6, 
OCTANT7, 
OCTANT8, 

OFFSET_BEGINING, 
OFFSET_BEGINNING, 

OFFSET_CURRENT, 
OFFSETJ;ND, 

offsets, 
offwindow, 

OK, 
OKIMATE_20, 

on, 
one, 

ONEJ)OT, 
ONE....DOTn, 

ONEDOT, 
only, 
Open, 

operation, 
option, 

OR, 
order, 

OTHERJEFRESH, 

O~~~~~: 

Apr 29 10:21 1986 i.xref Paqe 32 

over, 
OVERLAY, 
OVERRUN, 

OYFLAG, 
OWNBLITTERn, 

P, 
P....PRIORITY, 

P_STKSIZE, 
PAPEROUT, 

PAR, 
ParJ)EYFINISH, 

parallel, 
PARALLEL~RINTER, 

PARALLELNAME, 
ParentDir, 

ParErr_BufTooBiq, 
ParErrJ)evBusy, 
ParErr_InitErr, 

ParErr_InvParam, 
ParErr_LineErr, 
ParErrJ/otOpen, 

ParErr-PortReset, 
PARTY_ODD, 

PARTY_ON, 
PBUSY, 

PCC_BW, 
PCC_YMC, 

PCC_YMC_BW, 
PCC_YMCB, 
!>d-Flaqs, 

!>d-IORO, 
!>d-IOR1, 

!>d-10RPort, 
pdJ)ad, 

p~BothR .. ady , 
pc:i.,..Preferences, 

~rintBuf, 
~rinterSegment, 

pcLPrinterType, 
~WaitEnabled, 

~Write, 
!>d-SegmentData, 

!>d-SIZEOF, 
pd....Stk, 

pd_TC, 
pd_TIOR, 
!>d-Unit, 

PDCMD_QUERY, 
PDCMD_SETPARAMS, 

PDERR_BADDIMENSION, 
PDERR_BUFFERMEMORY, 

PDERR-CANCEL, 
PDERR....DIMENSIONOYFLOW, 

PDERR_INTERNALMEMORY, 
PDERlLINVERTHAM, 

PDERR....NOTGRAPHICS, 

45-32, 45-33 
45-36 
32-42 
45-35 
45-38 
45-39 
27-1248 
27-1206 
27-1230 
27-1204 
27-1219 
27-1211 
27-1202 
27-1209 
27-1199 
27-1272 
27-1271 
27-1270 
27-1269 
27-1241 
27-1287, 48-47, 48-71 
27-1232 
27-1200 
27-1285 
27-1201 
4-47, 16-114, 16-115 
3-87 
3-86 
3-85 
3-84 
3-83 
3-82 
3-81 
3-80 
16-32 
16-28, 16-32 
16-29 
16-30 
27-208, 27-210 
27-276 
27-251 
27-1638 
27-1157 
27-1149, 27-1277, 27-1718 
38-43, 38-105 
38-104 
3-71 
27-80, 27-780 
17-18 
27-964 
27-1253 
20-55, 27-397, 27-418 
27-136, 27-233, 27-686, 27-1340 
27-1135 
17-23 
20-36 

27-404, 27-1031 
20-16 
40-78 
3-72 
22-55 
37-76, 37-77, 37-78 
37-72 
37-73, 37-102 
34-79 
34-71, 34-72, 34-73 
34-50 
34-68, 37-31 
27-1574 
34-67 
17-48 
34-35 
34-34 
34-40 
34-36 
34-37 
34-38 
34-39 
40-69 
40-70 
34-78 
37-116 
37-117 
37-118 
37-119 
37-103 
37-90, 37-95 
37-91, 37-96 
37-100 
37-104 
37-87 
37-105 
37-85 
37-82 
37-83 
37-106 
37-86 
37-84 
37-107 
37-102 
37-101 
37-99 
37-81 
34-48 
34-49 
36-166 
36-169 
36-163 
36-167 
36-168 
36-165 
36-164 

D - 18 



Apr ~~ ~u:~~ ~~~b 1.xret Fage JJ 

pecLClose, 
ped....ColorClass, 

pecLCommanda, 
ped....DoSpecial. 

pecLExpunge, 
ped....lnit, 

pecl)olaxColumns, 
pedJoIaxXDota, 
pecl)olaxYDota. 

peci....NumCharSets, 
ped....NumRows, 

pecLOpen, 
p~rinterClass. 

pe<iJ'rinterName, 
pe<iJender, 
pecLSIZEOF, 

ped....TimeoutSecs, 
pecLXDotslnch, 
ped....YDotslnch, 

perc~~;Zt 
pf_BaucIRate, 

pf_colorO, 
pCcolor1, 

pCcolor17, 
pCcolor18, 
pCcolor19, 
pCcolor2, 
pCcolor3, 

p f.J)oubleClick, 
PF_FlNE_SCROL~K. 

pCFontHeight, 
pCKeyRptOelay, 
p CKeyRptSpeed, 

pCpadding, 
p fJ'aperLength, 

pfJ'aperSlze, 
pfJ'aperType, 

pfJ'ointerMatrix, 
pfJ'ointerTicks, 
pfJ'rintAspect, 

pfJ'rinterFilename, 
pfJ'rinterPort, 
pfJ'rinterType, 
pfJ'rintImage, 

pfJ'rintLeftMargin, 
pfJ'rintPitch, 

pfJ'rintQuality, 
pfJ'rintRightMargin, 

pfJ'rintShade, 
pfJ'rintSpacing, 

pfJ'rintThreshold, 
pCSIZEOF, 

pCViewlnitX, 
pCViewlnitY. 

pCViewXOffset, 

37-126 
37-128 
37-136 
37-137 
37-124 
37-123 
37-129 
37-132 
37-133 
37-130 
37-131 
37-125 
37-127 
37-122 
37-138 
37-140 
37-139 
37-134 
37-135 
27-537 
14-20 
27-1509 
27-1528 
27-1529 
27-1522 
27-1523 
27-1524 
27-1530 
27-1531 
27-1514 
14-29 
27-1503 
27-1513 
27-1512 
27-1566 
27-1563 
27-1562 
27-1564 
27-1518 
27-1525 
27-1556 
27-1543 
27-1506 
27-1542 
27-1555 
27-1553 
27-1550 
27-1551 
27-1554 
:.!7-1557 
27-1552 
27-1558 
27-1568, 
27-1536 
27-1537 
27-1534 

37-105 

Apr 29 10:21 1986 i.xref Page 34 

pCViewYOffset, 
pCXOffset, 

PFA..-Ff~:~g~~i: 
PFB_FlNE_SCROLL_SHIFT, 

pi_CHeight, 
pi_CWidth, 
pi_Flags, 

piJiorizBody, 
piJiorizPot, 
piJiPotRes, 

piJ,eftBorder, 
pi_SIZEOF, 

pi_TopBorder, 
pi_VertBody, 
pi_VertPot, 
pi_VPotRea, 

PICA. 
plane, 

planes~ 
PLNCNTMSK, 

PLNCNTSHFT, 

POI~~~izE: 
POI NTREL , 
potOdat, 
pot1dat, 

potgo, 
POTGONAME, 

potinp, 
PPC, 

PPC_BWALPHA. 
PPC_BWGFX, 

PPC_COLORGFX, 
pr_CIS, 
pr_CLI, 

pr_ConsoleTask, 
pr_COS, 

pr _CurrentDir ~ 
pr-FileSystemTask, 

pr _GlobVec. 
pr j4sgPort, 

prJ'~w!it 
pr..;Result2, 

pr ..;ReturnAddr , 

prr~sf~~~i: 
pr_~tackBase~ 
pr_StackSize, 

pr_~~B~:: 
pr_WindowPtr, 

PRD.J)UMPRPORT, 
PRDJ'RTCOMMAND , 

PRDJtAWWRITE, 

27-1535 
27-1520 
27-1521 
14-27 
14-28 
27-573 
27-571 
27-511 
27-567 
27-527 
27-575 
27-577 
27-579, 48-62. 48-63 
27-578 
27-568 
27-529 
27-576 
27-1592 
27-788 
27-780, 27-819 
14-17 
14-19 
27-270, 27-1519 
27-1474 
27-269 
11-29 
11-30 
11-46, 35-8 
35-7 
11-31 
37-109. 37-110 
37-112 
37-113 
37-114 
18-44 
18-48 
18-46 
18-45 
18-43 
18-47 
18-39 
18-35 
18-36 
18-50 
18-42 
18-49 
18-37 
18-52 
18-41 
18-38 
18-34 
18-40 
18-51 
36-39 
36-38 
36-37 

D - 19 



Apr ~9 10:~1 1966 i.xref Page 35 

PREDRAWN, 
Preferences. 

PRIMARY_CLIP, 
PrinterData, 

PrlnterExtendedData, 
PrinterSe9lllent , 

Process, 
PROPBORDERLESS, 

PROPGADGET, 
PropInfo, 

Proportional, 
psJextSe9lllent , 

psJED, 
psJevision, 
ps_runAlert, 

ps_Version, 
PSEL, 

PTERMARRAY, 
PTERMARRAY_O, 
PTERMARRAY_1, 

PTERMARRAY_SIZE, 
QBOWNER, 

QBOWNERn, 
Qualifier, 

QUEUED, 
QUEiJEDBRK, 

QueuePacket, 
QUME_LP _20, 

R, 
rajlaxX, 
rajlaxY, 
rajlinX, 
rajlinY, 

ra_SIZEOF, 
RAD_BOOGIE, 

RasInfo, 

ra~~i: 
READ, 

READBREAK, 
receive, 

RECOVERY....ALERT, 
Rectangle, 
reflects, 

R~~~~H: 
REFRESHBITS, 

REFRESHWINDOW, 
Region, 

RegionRectangle, 
rel .. 

relative, 
RELVERIFY, 

RemBob, 
Remember, 

REMOVED, 

Apr 29 10:21 1986 i.xref Page 36 

Rename, 
render, 

REPORTMOUSE, 
REQACTIVE, 

REQCLEAR, 
REQGADGET, 

REQOFEWINDOW, 
REQSET, 

Requester, 
Requesters, 

REQVERIFY, 
reserve, 

reserved, 
resource, 
restored, 

RETURN_ERROR, 
RETURN_FAIL, 

RETURN_OK, 
RETURN_WARN, 

REVPATH, 
rgj)ounds, 

rgJegionRectangle, 
rg:..SIZEOF, 
ri_BitMap, 

riJext, 
riJxOffset, 
riJyOffset, 

ri_SIZEOF, 
RIGHTBORDER, 
RINGTRIGGER, 

rmj!emory, 
r~extRemember, 
rmJememberSize, 

rIlLSIZEOF, 
RMBTRAP, 

r~ConsoleSegment, 
r,,--Info, 

rnJestartSeg, 
r,,--SIZEOF, 

r,,--TaskArray, 
TILTime, 

ROBOTICFO, 
ROMFONT, 

RootNode, 
RP, 

rp....AlgoStyle, 
rp....AOU>en, 

rp-Arealnfo .. 
rp....AreaPtrn, 
rp....AreaPtSz, 

rp_BgPen, 

RP_~~~=: 
rp_cp....x, 
rp_cp_y, 

rp.J)rawMode, 

27-271 
27-1500 
8-57 
37-80 
37-121 
37-142 
18-33 
27-589 
27-494 
27-509 
27-343, 43-30 
37-143 
37-147 
37-146 
37-144 
37-145 
34-80 
34-85 
34-86 
34-87 
34-88, 34-122 
22-58 
22-56, 22-58 
27-862 
34-74, 37-62, 40-71 
40-67 
17-41 
27-1639 
18-122 
21-27 
21-28 
21-25 
21-26 
21-29, 39-14, 39-21 
34-72, 40-66 
47-60 
27-37, 38-58 
27-918 
16-71, 17-20 
40-76 
27-424 
27-1721 
21-24, 27-817, 27-821 
27-1484 
11-40 
27-1163 
27-1131 
27-901 
39-13 
39-18 
27-378 
27-873 
27-406 
20-54 
27-1659 
43-32 

17-26 
27-723 
27-1140 
27-277 
27-921 
27-477 
27-275 
27-914 
27-197, 27-200 
27-418, 27-1005 
27-920 
17-8 
27-244, 27-260 
5-7, 5-11, 12-101, 32-54, 35-8 
27-434 
16-146 
16-147 
16-144 
16-145 
43-27 
39-14 
39-15 
39-16 
47-62 
47-61 
47-63 
47-64 
47-65 
27-450 
20-43 
27-1663 
27-1661 
27-1662 
27-1665 
27-1160 
18-164 
18-167 
18-166 
18-168 
18-161 
18-165 
33-19 
43-25 
18-160 
~:=:f' 38-43, 38-44, 38-46, 38-47, 38-56 

38-68 
38-63 
38-61 
38-70 
38-67 
38-60 
38-52 
38-75 
38-76 
38-69 

D - 20 



Apr 29 10:21 1986 i.xref Page 37 

rpJ)ummy, 
rpJ"qPen, 
i"pJ"1ags, 

rp Font" 
rp_Gelslnfo, 

RP_INVERSVID, 
RP_JAM1, 
RP_JAM2, 

rpJ,ayer, 
rp_LinePtrn, 

rp_linpatcnt, 
rp_longreserved, 

rpjlask, 
rp....lllinterms, 

rpJ'enHeight, 
rpJ'enWidth, 
rp_reserved, 

rp....RP_User, 
rp_SIZEOF, 
rp TmpRas, 

rp_TxBaseiine, 
rp_TxFlags, 

rp_TxHeight, 
rp_TxSpacing, 

rp_TxWidth, 
rp_wordreserved, 

rq..JlackFill, 
rq...Flags, 

rqJieight, 
rq...KludgeFillOO, 

rq...LeftEdge, 
rq...OlderRequest, 

r~elLeft, 
r~elTop, 
r~eqBMap, 

r~eqBorder , 
r~eqGadget, 
r~eqLayer, 

rq..JI.eqPadl, 
r~eqPad2, 
r~eqT'!Xt, 
r~Window, 

rq...SIZEOF, 
rq...TopEdge, 

rq...Width, 
rr....bounds, 

rr.-Next, 
rrJrev, 

rr_SIZEOF, 
RWDIR, 

S, 
same, 

Satisf'{Msg, 
satistyMsg_SI~EOF, 

save, 
SAVEBACK, 

38-71 
38-66 
38-73 
38-80 
38-64 
38-53 
38-50 
27-1736, 38-51 
38-59 
38-74 
38-72 
38-89 
38-65 
38-77 
38-79 
38-78 
38-90 
38-87 
27-1353, 38-91 
38-62 
38-85 
38-82 
38:83 
38-86 
38-84 
3B-88 
27-223 
27-221 
27-205 
27-239 
27-202 
27-201 
27-207 
27-209 
27-255 
27-218 
27-216 
27-242 
27-243 
27-259 
27-219 
27-258 
27-262 
27-203 
27-204 
39-21 
39-19 
39-20 
39-22 
34-77 
4-47, 16-114, 
27-774 
8-59 
8-63 
27-1025 
20-15 

16-115, 27-307, 27-368 

Apr 29 10:21 1986 i.xref Page 38 

SAVEBOB, 
SAVEPRESERVE , 

sc_BarHBorder, 
sc_BarHeight, 

scJarVBorder, 
scJitMap; 

sc_BlockPen, 
BcJ><jfaultTitle, 

BCJ><jtallPen, 
scJ!xtData, 

sc_FirstGadget, 
scJ"irstWindow, 

scJ"lags, 
BcJ"ont, 

BcJ!eiqht, 
scJ(ludgeF1l10 0, 

sc~ayerlnfo, 
acJ,e ftEdge, 

Bc->!enuHBorder" 
scjlenuVBorder, 

sc....,MouseX, 
sc~ouseY, 

ac.-NextScreen, 
scJastPort, 

sc_SaveColorO, 
sc_SIZEOF, 
sC_Title, 

Bc_TopEdgB, 
sc_UserData, 
Be_ViewPort, 

Bc_WBorBottom, 
sc_WBorLeft, 

Bc_WBorRi¥ht, 

SCS~~~d~: 
screen, 

Screens, 
SCREENT'iPE, 

SCRGADGET, 
sct..ctl, 

sc:Ldataa, 
act..datab, 

sd......pos, 
SDCMD_BRIWc, 
SDCMO_QUERY, 

SDCMD_SETPARAMS, 
SDOWNBACK, 
SDRAGGING, 

Seek, 
selected, 

selectors, 
SER, 

SER_CTL, 
SERJ)BAUD, 

SERJ)EVFINI SH, 

27-385, 27-1298, 27-1318, 27-1390, 27-1449 

27-156, 27-391, 48-130 

20-28 
20-35 
27-1321 
27-1319 
27-1320 
27-1354 
27-1366 
27-1315 
27-1365 
27-1376 
27-1363 
27-1301 
27-1312 
27-1350 
27-1307 
27-1346 
27-1356 
27-1303 
27-1323 
27-1322 
27-1310 
27-1309 
27-1300 
27-1353 
27-1371 
27-1381 
27-1314 
27-1304 
27-1378 
27-1351 
27-1327 
27-1325 
27-1326 
27-1324 
27-1306 
27-382, 
28-58 
27-1392 
27-475 
11-118 
11-119 
11-120 
11-117 
40-43 
40-42 
40-44 
27-489 
27-485 
17-24 
27-148, 
27-784 
40-63, 
40-69, 
40-34 
40-35 
40-46 

:~=~~' 40-65, 40-66, 40-67, 40-68, 

D - 21 



Apr 29 10:21 1986 i.xref Page 39 

serdat, 
serdatr, 

SerErr_BaudMismatch, 
SerErr_BufErr, 

SerErr~ufOverflow, 
SerErr-PetectedBreak, 

SerErr.J)evBusy, 
SerErr_InitErr, 
SerErr_InvBaud, 

SerErr _InvParam, 
SerErrJ.ineErr, 

SerErr ....NoCTS, 
SerErr ....NoDSR, 

SerErr....NotOpen, 
SerErr~arityErr, 
SerErr~ortReset, 

SerErr_TimerErr, 
serial, 

SERIAL~RINTER, 
SERIALNAME, 

SER~~a~~: 
SetComment, 

SetProtection, 

s~=~~g~: 
SGR_BLACKBG, 

SGR_BLUE, 
SGR_BLUEBG, 

SGR_BOLO, 
SGR_CLRO, 

SGR_CLROBG, 
SGR_CLR1, 

SGR_CLR1BG, 
SGR_CLR2, 

SGR_CLR2BG, 
SGR_CLR3, 

SGR_CLR3BG, 
SGR_CLR4, 

SGR_CLR4BG, 
SGR_CLR5, 

SGR_CLR5BG, 
SGlLCLR6, 

SGR~CLR6BG, 
SGR_CLR7, 

SGR_CLR7BG, 
SGR_CYAN, 

SGR_CYANBG, 
SGRJlEFAULT, 

SGR-PEFAULTBG, 
SGR_GREEN, 

SGR_GREENBG, 
SGR_ITALIC, 

SGR....MAGENTA, 
SGR....MAGENTABG, 

SGR....NEGATIVE, 

11-44 
11-32 
40-153 
40-155 
40-163 
40-166 
40-152 
40-161 
40-154 
40-156 
40-157 
40-165 
40-164 
40-158 
40-160 
40-159 
40-162 
37-34, 40-60 
27-1575 
40-59 
11-45 
37-64 
17-43 
17-44 
27-517, 27-523 
9-39 
9-49 
9-43 
9-53 
9-33 
9-6i 
9-70 
9-62 
9-71 
9-63 
9-72 
9-64 
9-73 
9-65 
9-74 
9-66 
9-75 
9-67 
9-76 
9-68 
9-77 
9-45 
9-55 
9-47 
9-57 
9-41 
9-51 
9-34 
9-44 
9-54 
9-36 

Apr 29 10:21 1986 i.xref Page 40 

SGR~RlMARY , 
SGR....RED, 

SGR....REDBG, 
SGR_UNDERSCORE, 

SGR_WHITE, 
SGR_WHITEBG, 

SGR_YELLOW, 
SGR_YELLOWBG, 

SHADE_BW, 
SHADE_COLOR, 

SHADE_GREYSCALE, 
SHARED, 

SHARED_LOCK, 
SHOWTITLE, 

aiJ.ltKeyMap, 
si_Buffer, 

ai~u f ferPoa, 
ai_CLeft, 

ai_CTop, 
siJlispCount, 

si-PispPos, 
si_LayerPtr, 
si_Longlnt, 

si....MaxOlara, 
siJfumOtars, 

si_SIZEOF, 
si_UndoBu f fer, 

si_UndoPos, 
SIGBREAK, 
SIGNFLAG, 

SIMPLE....REFRESH, 
Simple~t~~~t 

SIlLLPI, 
SIZEBBOTTOM, 

SIZEBRIGHT, 
SIZEOF_VIEW, 

size., 
SIZEVERIFY, 

SIZING, 

s~it;~6: 
sm....Message, 

sm....Msg, 
sm....NumArgs, 
s~rocess, 

s~~fz~gi: 
allLToolWindow, 

SlILUnit, 
SMART....REFRESH, 

some, 
something, 

sp....Msg. 
sp~kt, 

sp_SIZEOF, 

9-32 
9-40 
9-50 
9-35 
9-46 
9-56 
9-42 
9-52 
27-1617 
27-1619 
27-1618 
34-71, 40-65 
16-41 
27-1398 
27-655 
27-613 
27-617 
27-630 
27-631 
27-628 
27-620 
27-632 
27-645 
27-618 
27-626 
27-657 
27-615 
27-625 
16-150, 16-151, 16-152, 16-153 
3-73 
27-1133 
41.-8 
27-1589 
27-1605 
27-1125 
27-1123 
28-49 
27-1257 
27-899 
27-483 
42-32 
8-62" 
42-27 
8-60 
42-30 
42-28 
42-29 
42-33 
42-31 
8-61 
27-1132 
27-130. 27-227, 27-680, 27-1330 
27-371 
18-107 
18-108 
18-109 

D - 22 



Apr 29 10:21 1986 i.xref Page 41 

SPECIALJ,SPECT, 
SPECIAL-PENSITY1, 
SPECIAL-PENSITY2, 
SPECIAL-PENSITY3, 
SPECIAL-PENSITY4, 

SPECIAL-PENSITYMASK, 
SPECIAL-<RACCOLS, 
SPECIAL_FRACROWS, 
SPECI~ULLCOLS, 
SPECIAL..,.FULLROWS , 

SPECIAL...,MILCOLS, 
SPECIAL...,MILROWS, 

SpecialInfo, 
specify, 

spr, 
sprite, 
sprpt, 

SRCA, 
SRCB, 
SRCC, 

ss,Jleight, 
SSJlum, 

ss...;posctldata, 
ss_SIZEOF, 

SS-X, 
ss_y, 

standard, 
StandardPacket, 

still, 
STOPPED, 

STR~~~: 
strhor, 

STRIN~~~: 
s~fi~~~: 

strings, 

s;~;~~Y: 
submitted, 

SUD, 
SUL, 

SUPER_BITMAP, 
SUPER_UNUSED, 

SUPFRONT, 

SUS~~~~: 
SYSGADGET, 

SYSREQUEST, 
ta_Flags, 
taJiame, 

ta_SIZEOF, 
ta Style, 
ta=YSize, 

TALLDOT, 

Apr 29 10:21 1986 i.xref Page 42 

tasks, 
TBCJiCLRTAB, 

TBCJiCLRTABSALL, 
TC_SIZE, 

TD, 
TD_CHANGENUM, 

TD_CHANGESTATE, 
TD_FORMAT, 

TDri5~!i:~~: 
TDjlOTOR, 

TD_NAME, 
TD""pROTSTATUS, 

TD,Jl.EMOVE, 
TD_SECSHIFT, 

TD_SECTOR, 
TD_SEEK, 

TDERR_BadDriveType, 
TDERR_BadHdrSw., 
TDERR_BadSecHdr, 

TDERlLBadSecID, 
TDERR_BadSecPreamble, 

TDERR_BadSecSum, 
TDERR_BadUnitNum, 

TDERR-PiskChanged, 
TDERR-PriveInUse, 

TDERRJioMem, 
TDERR...NoSecHdr, 

TDERR_NotSpecified, 
TDERR_SeekError, 

TDERR_TooFewSecs, 
TDERR_WriteProt, 

TDF_EXTCOM, 
TERMARRAY, 

TERMARRAY_O, 
TERMARRAY_1, 

TERMARRAY_SIZE, 
TextAttr, 
TextFont, 

tf-Accessors, 
tf_Baseline, 

tf_BoldSmear, 
tf_OlarData, 
tf_CharKern, 

tf_OlarLoc, 
tCCharSpace, 

tf_Flags, 
tfJiiChar, 
tCLoChar, 
tfjlodulo, 
tCSIZEOF, 
tCStyle, 
tCXSize, 
tCYSize, 

that, 
TICKS....pER_SECOND, 

36-156 
36-158 
36-159 
36-160 
36-161 
36-157 
36-154 
36-155 
36-152 
36-153 
36-150 
36-151 
27-508, 27-608 
27-1017 
11-115 
27-1519 
11-113 
3-61 
3-60 
3-59 
41-10 
41-13 
41-9 
41-14 
41-11 
41-12 
27-1042, 27-1215, 27-1361 
18-106 
27-404 
37-68 
11-48 
27-495 
11-50 
27-343, 27-614, 27-646, 34-68, 40-60 
27-458 
27-609 
27-459 
34-21, 40-21 
11-51 
11-49 
27-635 
3-76 
3-77 
27-1134 
27-1175 
27-487 
27-1369 
20-13 
27-474 
27-278 
43-40 
43-37 
13-65, 43-41 
43-39 
43-38 
43-28 

18-15, 37-27, 48-27 
9-90 
9-91 
18-34, 37-101 
45-74 
45-81 
45-82 
45-79, 45-96 
45-112 
45-85 
45-77, 45-94 
45-69 
45-83, 45-85 
45-80 
45-50 
45-49 
45-78, 45-95 
45"133 
45-124 
45-127 
45-123 
45-122 
45-125 
45-132 
45-129 
45-134 
45-131 
45-121 
45-120 
45-130 
45-126 
45-128 
45-92, 45-93, 45-94, 45-95, 45-96, 45-97, 45-98 
40-81 
40-82 
40-83 
40-84, 40-119 
43-36 
43-45 
43-54 
43-51 
43-52 
43-58 
43-64 
43-61 
43-63 
43-49 
43-57 
43-56 
43-60 
13-56, 43-65 
43-48 
43-50 
43-47 
f~=~~S' 27-340, 27-790, 27-794, 27-826, 27-1257 

D - 23 



Apr 29 10:21 1986 i.xref Page 43 

TIMEREQUEST, 
TIMERNAME, 

TIMEVAL, 
TmpRas~ 

TOGGLESELECT, 
too, 
top, 

TOPAZ_Ei~: 
TOPAZ_SIXTY, 

TOPBORDER, 
total, 

TlLADDREQUEST, 
TR_GETS'ISTIME, 

TR....MakeBad, 
TR"poMem, 

TR"potUsed, 
trJasPtr, 

TR_SETSYSTIME, 
tr_Size, 

tr_SIZEOF, 
trackdisk, 

TV....MI CRO , 
TV_SEeS, 
TV_SIZE, 

two, 
TXSCALE, 

types, 
typing, 

ucl_CopList, 
ucl-FirstCopList, 

ucl"pext, 
ucl_SIZEOF, 

~~t~~~: 
UNIT....MICROHZ, 

UNIT_VBLANK, 
UnLoadSeg, 

UnLock, 
up, 

UPKEYS, 
USJ,EGAL, 

USJ,ETTER, 
use, 

used, 
VJ)UALPF, 

vJ)xOffset, 
vJ>yOffset, 

VJjAM, 
VJlIRES, 

V_LACE, 
vJ,OFeprList, 

v~odes, 
V""pFBA, 

v_SHFCprList, 
v_SIZEOF, 

44-36 
44-26 
44-31 
38-15 
27-455 
27-743, 27-1424, 27-1426 
27-378 
27-1480 
27-1496 
27-1497 
27-452 
27-561 
44-42 
44-43 
46-12 
46-11 
46-10 
38-16 
44-44 
38-17 
38-18 
45-70 
44-33 
44-32 
25-142, 27-1512, 27-1513, 27-1514, 44-34, 44-37 
27-786 
38-56 
12-21, 18-12, 27-1390, 32-6, 42-15, 48-15 
27-472 
10-49 
10-48 
10-47 
10-50 
10-46 
43-22 
44-23 
44-24 
17-39 
17-28 
27-337 
19-31 
27-1623 
27-1622 
27-80, 27-521, 27-786 
27-355, 27-809, 27-1075, 27-1222 
47-13 
47-50 
47-49 
47-16 
47-14 
47-15 
47-47 
47-51 
47-12 
47-48 
47-52 

Apr 29 10:21 1986 i.xref Page 44 

V_SPRITES, 
v_ViewPort, 

value, 
values, 

VANILLAKEY, 
variable, 

version, 
vhposr, 
vhposw, 

view, 
ViewPort, 

vp_ClrIns, 
vp_ColorMap, 
vpJ)Height, 
vpJ)spfns, 
vpJ)Width, 

vpJ)xOffset, 
vpJ>yOffset, 

vp....Modes, 
vp"pext, 

vpJasInfo, 
vp_reserved, 

vp_SIZEOF, 
vp_SprIns, 

vp_UCoplns, 

VPO~~~~: 
vposw, 

VS, 

va_BorderLine, 
vs_ClearPath, 

vs_CollMask, 
vsJ)epth, 

vsJ)rawPath, 
vsJleight, 

vsJlitMask, 
vS_ImageData, 

vs....MeMask, 
vs"pextVSprite, 

vs_Oldx, 
vs Oldy, 

vB....PlaneOnOn, 
vs....planePick, 

vs....Pr~~~f~~5~: 
V!ii~k~~~;~~~: 

vB_VSBob, 
vB_VSFlags, 

VB_Width, 
va_X, 
vs_Y, 

vsize, 
VSIZEBITS, 

47-17 
47-46 
27-553 
27-1488 
27-937 
27-508, 27-608, 27-803, 27-1044, 27-1217, 
27-1239, 27-1486 
27-19 
11-22 
11-42 
27-33, 28-24, 47-45 
10-36, 47-28 
47-33 
47-30 
47-36 
47-31 
47-35 
47-37 
47-38 
47-39 
47-29 
47-41 
47-40 
27-1351, 47-42 
47-32 
47-34 
11-21 
14-40 
11-41 
20-14, 20-15, 20-16, 20-17, 20-19, 20-20, 
20-21, 20-22, 20-59 
20-88 
20-68 
20-89 
20-82 
20-67 
20-80 
20-84 
20-85 
20-83 
20-62 
20-72 
20-71 
20-106 
20-105 
20-63 
20-108 
20-91 
20-107 
20-92 
20-74 
20-81 
20-79 
20-78 
17-9 
3-30 

D - 24 



Apr 29 10:21 1986 i.xref Page 45 

VSIZEMASK, 
VSOVERFLOW, 

VSPRITE, 
W_TRACTOR, 

va_Lock, 
waJame, 

wa_SIZEOF, 
WaitE'orOlar, 

want, 
was, 

wasting, 
way, 

WB.J)ISKMAGIC, 
WB.J)I SKVERSION, 

WBD~t 
WBDISK, 

WBDRAWER, 
WBENCHCLOSE, 

WBENCHMESSAGE, 
WBENCHOPEN, 

WBENCHSCREEN, 
WBENCHWINDOW, 

WBGARBAGE, 
WBKICK, 

WBObject, 
WBPROJECT, 

WBS~~~t: 
wd.-BlockPen, 

wd.-BorderBottom, 
w~BorderLeft; 

wd.-BorderRight, 
wd.-BorderRPort, 

wd.-BorderTop, 
wd.-Checl<Mark, 

wc:LPescendant, 
wd.J)etailPen, 
wdJlMRequest, 

wd.-ExtData, 
wd.-FirstGadget, 

wd.-FirstRequest, 
wd.-Flags, 

wd.-GZZHeight, 
wd.-GZZMouseX, 
wd.-GZZMouseY, 

wd.-GZZWidth, 
wd.-Height, 

wd.-IDCMPFl ags, 
wd.-LeftEdge, 

wdJIaxHeight, 
wd...MaxWidth, 

wd...MenuStrip, 
wcLMessaqeKey, 

wd...MinHeight, 
wd...MinWidth, 

3-32 
20-22 
20-14 
27-1625 
42-36 
42-37 
42-38 
17-47 
27-1275, 27-1451 
27-276, 27-404 
27-794 
27-774 
48-88 
48-89 
42-35 
48-41 
48-36 
48-37 
27-970 
27-930 
27-969 
27-1395 
27-1167 
48-40 
48-42 
48-98 
48-39 
42-26 
48-38 
27-1072 
27-1036 
27-1033 
27-1035 
27-1037 
27-1034 
27-1079 
27-1050 
27-1071 
27-1006 
27-1100 
27-1046 
27-1004 
27-998 
27-1098 
27-1092 
27-1093 
27-1097 
27-988 
27-1062 
27-985 
27-996 
27-995 
27-1000 
27-1069 
27-994 
27-993 

Apr 29 10:21 1986 i.xref Page 46 

wcLMouseX, 
wcLMouseY, 

wcLNextWindow, 
wdJ'arent, 

wdJ'ointer, 
wdJ'trHeight, 
wdJ'trWidth, 
wdJ'teqCount, 

wdJU'ort, 
wd_ScreenTitle, 

wd.-Size, 
wd.-Title, 

wd.-TopEdge, 
wd.-UserData, 
wc::L.UserPort, 

wd...Width, 
wd.-WindowPort, 

vd.-WLayer, 
wd...WScreen, 
wd...XOffset, 
vd.-YOffset, 

WDOWNBACK, 
WDRAGGING, 

WI DEDOT , 
Windov, 

WINDOWACTIVE , 
WINDOWCLOSE, 
WINDOWDEPTH, 

WINDOWDRAG, 
WINDOWREFRESH, 

Windows, 
WI NDOWS I ZING, 
WINDOWTICKED, 

we, 
wo_CurrentX, 
wo_Currenty, 

vo.J)efaultTool, 
wo-I)rawerData, 

yo_Flags, 
woJreeList, 

yo_Gadget, 
wo_IconWin, 

yo_Lock, 
wo.-MasterNode, 

wo.Jlam.e, 
vo~ameXOffset, 
wo~ameYOffset, 

voJarent, 
vo_SelectNode, 

vov~:~g~g~: 
vo_StackSize, 
wo_ToolTypes, 

vo_ToolWindov, 
wo_Type, 

27-991 
27-990 
27-983 
27-1049 
27-1054 
27-1055 
27-1056 
27-1007 
27-1010 
27-1082 
27-1106 
27-1002 
27-986 
27-1103 
27-1063 
27-987 
27-1064 
27-1104 
27-1009 
27-1057 
27-1058 
27-488 
27-484 
43-29 
27-886, 27-981, 27-1008, 27-1040, 27-1138, 
27-1205, 27-1275 
27-1152 
27-1116 
27-1114 
27-1112 
27-1166 
27-1251, 27-1424 
27-1110 
27-1168 
48-128, 48-129, 48-130, 48-131 
48-117 
48-118 
48-114 
48-115 
48-106 
48-121 
48-120 
48-116 
48-124 
48-99 
48-110 
48-111 
48-112 
48-103 
48-101 
48-100 
48-125 
48-123 
48-119 
48-122 
48-108 

D - 25 



Apr 29 10:21 1986 i.xref Page 47 

wo_UseCount; 
wo_UtilityNode. 

WRITE. 
writing. 

WROTE BREAK. 
WUPERONT. 

XDISABLED. 
XOE"EREAD. 

XOE"E"WRITE. 
you i 

your i 

zero; 

48-109 
48-102 
16-72. 17-21 
27-1031 
40-77 
27-486 
40-63 
40-74 
40-75 
27-432. 27-440. 27-624. 27-649. 27-782. 
27-1017. 27-1025. 27-1730 
27-782. 27-1040. 27-1251. 27-1447 
27-788 

D - 26 



Contents 

devices/audio.i 
devices/bootblock.i 
devices/clipboard.i 
devices/console.i 
devices/gameport.i 
devices/input.i 
devices/inputevent.i 
devices/keyboard.i 
devices/keymap.i 
devices/narrator.i 
devices/parallel.i 
devices/printer.i 
devices/prtbase.i 
devices/serial.i 
devices/timer.i 
devices/trackdisk.i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

IFND DEVICES_AUDIO_I 
DEVICES_AUDIO_I SET 1 
******************************************************************** 

* 
* 

Commodore-Arniga, Inc. 
audio.i 

* 
* 

******************************************************************** 

IFND EXEC IO I 
INCLUDE ''-exec/io. i" 
ENDC 

AUDIONAME MACRO 
DC.B 'audio.device' ,0 
ENDM 

ADHARD_CHANNELS EQU 4 

ADALLOC_MINPREC EQU -128 
ADALLOC_MAXPREC EQU 127 

ADCMD_FREE EQU CMD NONSTD+O 
ADCMD_SETPREC EQU CMD - NONSTD+ 1 
ADCMD_FINISH EQU CMD-NONSTD+2 
ADCMD_PERVOL EQU CMD-NONSTD+3 
ADCMD_LOCK EQU am-NONSTD+4 
ADCMD_WAITCYCLE EQU CMD:::NONSTD+5 
ADCMDB NOUNIT EQU 5 
ADCMDF_NOUNIT EQU 1«5 
ADCMD_ALLOCATE EQU ADCMDF_NOUNIT+O 

ADIOB_PERVOL EQU 4 
ADIOF_PERVOL EQU 1«4 
ADIOB_SYNCCYCLE EQU 5 
ADIOF_SYNCCYCLE EQU 1«5 
ADIOB_NOWAIT EQU 6 
ADIOF_NOWAIT EQU 1«6 
ADIOB_WRITEMESSAGE EQU 7 
ADIOF_WRITEMESSAGE EQU 1«7 

ADIOERR_NOALLOCATION EQU -10 
ADIOERR_ALLOCFAILED EQU -11 
ADIOERR_CHANNELSTOLEN EQU -12 

STRUCTURE IOAudio,IO SIZE 
WORD ioa_AllocKey -
APTR ioa Data 
ULONG ioa:::Length 
UWORD ioa Period 
UWORD ioa -volume 
UWORD ioa:::Cycles 
STRUCT ioa_WriteMsg,MN_SIZE 
LABEL ioa_SIZEOF 

ENDC 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

******************************************************************** 

* 
* 

Commodore-Arniga, Inc. 
bootb1ock.i 

* 
* 

******************************************************************** 
*********************************************************~*************** 

* 
* Source Control 
* ------
* 
* $Header: bootb1ock.i,v 27.1 85/06/24 13:15:16 neil Exp $ 

* 
* $Locker: $ 
* * $Log: bootb1ock.i,v $ 
* Revision 27.1 85/06/24 13:15:16 neil 
* *** empty log message *** 
* * Revision 26.2 85/06/18 23:55:38 neil 
* Added BBNAME definitions 
* 
* Revision 26.1 85/06/17 20:08:25 neil 
* *** empty log message *** 
* 
* 
************************************************************************* 

******* BootBlock definition: 

STRUCTURE 
STRUCT 
LONG 
LONG 
LABEL 
LABEL 

BOOTSECTS 

BB,O 
BB_ID,4 
BB_CHKSUM 
BB_ooSBLOCK 
BB_ENTRY 
BB_SIZE 

equ 2 

BBID_ooS macro 
dc.b 'DOS' ,0 

endm 

macro 
dc.b 'KICK' 

endm 

* 4 character identifier 
* boot block checksum (balance) 
* reserved for OOS patch 
* bootstrap entry point 

* 1K bootstrap 

* something that is boot able 

* firmware image disk 

BBNAME_ooS EQU 
BBNAME_KICK EQU 

( ( 'D' «24) ! ( '0' «16) ! ( 's' «8) ) 
« 'K'«24)! ('I'«16)! ('C'«8)!( 'K'» 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND DEVICES CLIPBOARD I 
DEVICES_CLIPBOARD_I EQU 1 
******************************************************************** 
* Commodore-Amiga, Inc. * 
* clipboard. i * 
******************************************************************** 
******************************************************************** 

* * clipboard device command definitions 
* 
******************************************************************** 

IFND EXEC_NODES_I 
INCLUDE "exec/nodes.i" 
ENDC 
IFND EXEC_LISTS_I 
INCLUDE "exec/1ists.i" 
ENDC 
IFND EXEC_PORTS_I 
INCLUDE "exec/ports.i" 
ENDC 
IFND EXEC_IO_I 
INCLUDE lIexec/io. ill 
ENDC 

DEVINIT 

DEVCMD CBD_POST 
DEVCMD CBD_CURRENTREADID 
DEVCMD CBD_CURRENTWRITEID 

CBERR_OBSOLETEID EQU 1 

STRUCTURE C1ipboardUnitPartia1, 0 
STRUCT cu Node,LN SIZE; 
ULONG cU-UnitNum7 

list of units 

; the remaIning unit data 

STRUCTURE 
STRUCT 
APTR 
APTR 
UIDRD 
UBYTE 
BYTE 
ULONG 
ULONG 
APTR 
ULONG 
LONG 
LABEL 

IOClipReq, 0 
io_Message,MN_SIZE 
io Device 
io=unit 
io_Command 
io_Flags 
iO_Error 
io Actual 
iO=Length 
io Data 
io=offset 
io_ClipID 
iocr_SIZEOF 

EQU o 

STRUCTURE SatisfyMsg,O 

; unit number for this unit 
is private to the device 

device node pointer 
unit (driver private) 
device command 
including QUICK and SATISFY 
error or warning num 
number of bytes transferred 
number of bytes requested 
either clip stream or post port 
offset in clip stream 
ordinal clip identifier 

primary clip unit 



60 
61 
62 
63 
64 
65 

STRUCT 
UWORD 
LONG 
LABEL 

ENDC 

sm_Msg;MN_SIZE 
sm unit 
sm:::ClipID 
satisfyMsg_SIZEOF 

the length will be 6 
which clip unit this is 
the clip identifier of, the post 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND DEVICES_CONSOLE_I' 
DEVICES_CONSOLE_I SET 1 
'Ie 'Ie * 'Ie *-* 'Ie 'Ie ** 'Ie ** 'Ie 'Ie 'Ie 'Ie 'Ie'. 'Ie 'Ie 'Ie * 'Ie * 'Ie 'Ie 'Ie * 'Ie 'Ie * 'Ie * 'Ie * 'Ie 'Ie 'Ie * 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie * 'Ie 'Ie * 'Ie 'Ie 'Ie ** 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie * 'Ie 

* 
* 

Comrnodore-Amiga, Inc. 
console.i 

* 
* 

**********************************w********************************* 
******************************************************************** 

* 
* Console device command definitions 
* 

Source control * 
* 
* 
* 

$Header: console.i,v 1.4 85/11/13 15:13:21 kodiak Exp $ 

* $Locker: $ 
* 
'Ie 'Ie * 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie ** 'Ie * 'Ie 'Ie 'Ie * 'Ie 'Ie * * 'Ie 'Ie'* * * 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie * 'Ie 'Ie 'Ie 'Ie 'Ie * 'Ie 'Ie,* * 'Ie 'Ie 'Ie 'Ie 'Ie * 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie 'Ie ** 'Ie 'Ie 

IFND EXEC_IO_I 
INCLUDE "exec/io.i" 
ENDC 

******* -Console commands ******* 
DEVINIT 

DEVCMD 
DEVCMD 

CD_ASKKEYMAP 
CD_SETKEYMAP 

******* SGR parameters 

SGR_PRIMARY 
SGR_BOLD 
SGR_ITALIC 
SGR_UNDERSCORE 
SGR_NEGATlVE 

* these names 
SGR_BLACK 
SGR_RED 
SGR_GREEN 
SGR_YELLOW 
SGR_BLUE 
SGR_MAGENTA 
SGR_CYAN 
SGR_WHITE 
SGR_DEFAULT 

SGR_BLACKBG 
SGR_REDBG 
SGR_GREENBG 
SGR _ YELLOWBG 
SGR_BLUEBG 
SGR_MAGENTABG 
SGR_CYANBG 
SGR_WHITEBG 
SGR_DEFAULTBG 

EQU 
EQU 
EQU 
EQU 
EQU 

refer to 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

o 
1 
3 
4 
7 

the.ANSI 
30 
31 
32 
33 
34 
35 
36 
37 
39 

EQU 40 
EQU 41 
EQU 42 
EQU 43 
EQU 44 
EQU 45 
EQU 46 
EQU 47 
EQU 49 

standard, not the implementation 

* these names refer to the implementation, they are the preferred 



60 * names for use with the Arniga 
61 SGR CLRO EQU 30 
62 SGR::::CLRI EQU 31 
63 SGR_CLR2 EQU 32 
64 SGR_CLR3 EQU 33 
65 SGR CLR4 EQU 34 
66 SGR-CLR5 EQU 35 
67 SGR::::CLR6 EQU 36 
68 SGR_CLR7 EQU 37 
69 
70 SGR CLROBG EQU 40 
71 SGR::::CLRIBG EQU 41 
72 SGR_CLR2BG EQU 42 
73 SGR_CLR3BG EQU 43 
74 SGR CLR4BG EQU 44 
75 SGR-CLR5BG EQU 45 
76 SGR::::CLR6BG EQU 46 
77 SGR_CLR7BG EQU 47 
78 
79 
80 ****** DSR parameters 
81 
82 DSR_CPR EQU 6 
83 
84 ****** CTC parameters 

V 85 CTC_HSETTAB EQU 0 
86 CTC_HCLRTAB EQU 2 
87 CTC_HCLRTABSALL EQU 5 

~ 88 0 
89 ****** TBC parameters 
90 TBC_HCLRTAB EQU 0 
91 TBC_HCLRTABSALL EQU 3 
92 
93 ****** SM and RM parameters 
94 M_LNM EQU 20 
95 M_ASM MACRO 
96 DC.B '>1' 
97 ENDM 
98 M_AWM MACRO 
99 DC.B '?7' 

100 ENDM 
101 
102 ENDC 

console device. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

linefeed newline mode 34 
35 

auto scroll mode 36 
37 
38 

auto wrap mode 39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

IFND DEVICES_GAMEPORT_I 
DEVICES_GAMEPORT_I SET 1 
******************************************************************** 

* 
* 

Commodore-Arniga, Inc. 
gameport.i 

* 
* 

******************************************************************** 
******************************************************************** 

* * Game Port device command definitions 

* 
******************************************************************** 

IFND EXEC IO I 
INCLUDE ";;;xeC/io.i" 
ENDC 

******* GamePort commands ******* 
DEVINIT 

DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 

GPD_READEVENT 
GPD_ASKCTYFE 
GPD_SETCTYFE 
GPD_ASKTRIGGER 
GPD_SETTRIGGER 

******* GamePort structures ******* 

* gpt_Keys 
BITDEF 
BITDEF 

GPT ,DOWNKEYS , 0 
GPT,UPKEYS,l 

STRUCTURE GamePortTrigger,O 
UWJRD gpt_Keys 
UWJRD gpt_Timeout 
UWORD gpt_XDelta 
UWORD gpt_YDelta 
LABEL gpt_SIZEOF 

******* Controller Types ****** 

;key transition triggers 
;time trigger (vertical blank units) 
;X distance trigger 
;Y distance trigger 

GPCT_ALLOCATED EQU -1 allocated by another user 
GPCT_NOCONTROLLER EQU 0 

GPCT_MOUSE 
GPCT_RELJOYSTICK 
GPCT_ABSJOYSTICK 

EQU 
EQU 
EQU 

******* Errors ****** 
GPDERR_SETCTYPE EQU 

ENDC 

1 
2 
3 

1 this controller not valid at this time 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

IFND DEVICES_INPUT_I 
DEVICES_INPUT_I SET 1 
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
input.i 

* 
* 

******************************************************************** 
********************************************************************** 

* * input device command definitions 
* 
********************************************************************** 

IFND EXEC_IO_I 
INCLUDE "exec/io. ill 
ENDC 

DEVINIT 

DEVCMD IND_ADDHANDLER 
DEVCMD IND_REMHANDLER 
DEVCMD IND_WRITEEVENT 
DEVCMD IND_SETTHRESH 
DEVCMD IND_SETPERIOD 
DEVCMD IND_SETMPORT 
DEVCMD IND_SETMTYPE 
DEVCMD IND_SETMTRIG 

ENDC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND DEVICES INPUTEVENT I 
DEVICES_INPUTEVENT_I SET 1 
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
inputevent.i 

* 
* 

******************************************************************** 
******************************************************************** 

* * input event definitions 
* 
******************************************************************** 

IFND DEVICES_TIMER_I 
INCLUDE "devices/timer.i" 
ENDC 

*------ constants ----------------------------------------------------

* InputEvent.ie_Class 
* A NOP input event 
IECLASS_NULL EQU $00 
* A raw keycode from the keyboard device 
IECLASS_RAWKEY EQU $01 
* A raw mouse report from the 
IECLASS RAWMOUSE EQU 
* A private console event 
IECLASS EVENT EQU 
* A Pointer position report 
IECLASS_POINTERPOS EQU 
* A timer event 

game port device 
$02 

$03 

$04 

IECLASS_TIMER EQU $06 
* select button pressed down over a Gadget (address in ie_EventAddress) 
IECLASS_GADGETDOWN EQU $07 
* select button released oVer the same Gadget (address in ie_EventAddress) 
IECLASS GADGETUP EQU $08 
* some Requester activity has taken place. See Codes REQCLEAR and REQSET 
IECLASS REQUESTER EQU $09 
* this is a Menu Number transmission (Menu number is in ie_Code) 
IECLASS_MENULIST EQU $OA 
* User has selected the active Window's Close Gadget 
IECLASS_CLOSEWINDOW EQU $OB 
* this Window has a new size 
IECLASS SIZEWINDOW EQU $OC 
* the Window pointed to by ie_EventAddress needs to be refreshed 
IECLASS_REFRESHWINDOW EQU $OD 
* new preferences are available 
IECLASS_NEWPREFS EQU $OE 
* the disk has been removed 
IECLASS DISKREMOVED EQU $OF 
* the disk has been inserted 
IECLASS_DISKINSERTED EQU $10 
* the window is about to be been made active 
IECLASS_ACTIVEWINDOW EQU $11 
* the window is about to be made inactive 
IECLASS_INACTIVEWINDOW EQU $12 

* the last class 
IECLASS_MAX EQU $12 



60 * --- InputEvent.ie_Code ---
61 * IECLASS_RAWKEY 
62 IECODE_UP_PREFIX EQU $80 
63 IECODEB_UP_PREFIX EQU 7 
64 IECODE_KEY_CODE_FIRST EQU $00 
65 IECODE_KEY_CODE_LAST EQU $77 
66 I ECODE_COMM_CODE_FIRST EQU $78 
67 IECODE_COMM_CODE_LAST EQU $7F 
68 
69 * IECLASS_ANSI 
70 IECODE co FIRST EQU $00 
71 IECODE::::CO::::LAST EQU $lF 
72 IECODE_ASCII_FIRST EQU $20 
73 IECODE_ASCII_LAST EQU $7E 
74 IECODE_ASCII_DEL EQU $7F 
75 IECODE Cl FIRST EQU $80 
76 I ECODE::::Cl::::LAST EQU $9F 
77 IECODE_LATINl_FIRST EQU $AO 
78 IECODE_LATINl_LAST EQU $FF 
79 
80 * IECLASS_RAWMOUSE 
81 IECODE_LBUTTON EQU $68 
82 I ECODE_RBUTTON EQU $69 
83 I ECODE_MBUTTON EQU $6A 
84 IECODE_NOBUTTON EQU $FF 

t:I 85 
86 * IECLASS_EVENT 

v:> 87 IECODE_NEWACTIVE EQU $01 
t-:) 88 

89 * IECLASS REQUESTER Codes 
90 * REQSET is broadcast when the first 
91 * in the Window 
92 IECODE REQSET EQU $01 
93 * REQCLEAR is broadcast when the last 
94 I ECODE_REQCLEAR EQU $00 
95 
96 
97 * --- InputEvent.ie_Qualifier ---
98 IEQUALIFIER_LSHIFT EQU $0001 
99 IEQUALIFIERB_LSHIFT EQU 0 

100 IEQUALIFIER_RSHIFT EQU $0002 
101 IEQUALIFIERB_RSHIFT EQU 1 
102 IEQUALIFIER_CAPSLOCK EQU $0004 
103 IEQUALIFIERB_CAPSLOCK EQU 2 
104 IEQUALIFIER_CONTROL EQU $0008 
105 IEQUALIFIERB_CONTROL EQU 3 
106 IEQUALIFIER_LALT EQU $0010 
107 IEQUALIFIERB_LALT EQU 4 
108 IEQUALIFIER_RALT EQU $0020 
109 IEQUALIFIERB_RALT EQU 5 
110 IEQUALIFIER_LCOMMAND EQU $0040 
111 IEQUALIFIERB_LCOMMAND EQU 6 
112 IEQUALIFIER_RCOMMAND EQU $0080 
113 IEQUALIFIERB_RCOMMAND EQU 7 
114 IEQUALIFIER_NUMERICPAD EQU $0100 
115 IEQUALIFIERB_NUMERICPAD EQU 8 
116 IEQUALIFIER_REPEAT EQU $0200 
117 IEQUALIFIERB_REPEAT EQU 9 
llS IEQUALIFIER_INTERRUPT EQU $0400 
119 IEQUALIFIERB_INTERRUPT EQU 10 

120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 

also uses IECODE_UP_PREFIX 141 
142 
143 
144 
145 

active input window changed 

Requester (not subsequent ones) opens 

Requester clears out of the Window 

IEQUALIFIER_MULTIBROADCAST 
IEQUALIFIERB_MULTIBROADCAST 
IEQUALIFIER_LBUTTON EQU 
IEQUALIFIERB_LBUTTON EQU 
IEQUALIFIER_RBUTTON EQU 
IEQUALIFIERB_RBUTTON EQU 
IEQUALIFIER_MBUTTON EQU 
IEQUALIFIERB_MBUTTON EQU 
IEQUALIFIER_RELATIVEMOUSE 
IEQUALIFIERB_RELATIVEMOUSE 

EQU $0800 
EQU II 
$1000 
12 
$2000 
13 
$4000 
14 
EQU $8000 
EQU 15 

*------ InputEvent ---------------------------------------------------

STRUCTURE InputEvent, 0 
APTR ie~extEvent 
UBYTE 
UBYTE 
UIDRD 

ie Class 
ie-SubClass 
ie::::code 

UIDRD ie Qualifier 
LABEL ie EventAddress 
I'K>RD Ie_x 
I'K>RD ie Y ; 
STRUCT ie::::Timestamp,TV_SIZE 
LABEL ie_SIZEOF 

ENDC 

the chronologically next event 
the input event class 
optional subclass of the class 
the input event code 
qualifiers in effect for the event 
a pointer parameter for an event 
the pointer position for the event, 

usually in canvas relative coords 
; the system tick at the event 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

IFND DEVICES_KEYBOARD_I 
DEVICES_KEYBOARD_I SET 1 
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
keyboard.i 

* 
* 

******************************************************************** 
******************************************************************** 

* * Keyboard device command definitions 
* 
*~****************************************************************** 

IFND 
INCLUDE 
ENDC 

DEVINIT 

DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 

ENDC 

EXEC IO I 
"exec/io.i ll 

KBD_READEVENT 
KBD_READMATRIX 
KBD_ADDRESETHANDLER 
KBD_REMRESETHANDLER 
KBD_RESETHANDLERDONE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

IFND DEVICES KEYMAP I 
DEVICES_KEYMAP_I- SET -1 
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
keymap.i 

* 
* 

******************************************************************** 
********************************************************************** 

* 
* console. device key map definitions 
* 
********************************************************************** 

STRUCTURE KeyMap,O 
APTR km_LoKeyMapTypes 
APTR km_LoKeyMap 
APTR km_LoCapsable 
APTR km_LoRepeatable 
APTR km_HiKeyMapTypes 
APTR km_HiKeyMap 
APTR km_HiCapsable 
APTR km_HiRepeatable 
LABEL km_SIZEOF 

KCB_NOP EQU 7 
KCF_NOP EQU $80 

KC_NOQUAL EQU 0 
KC_VANILLA EQU 7 
KCF_SHIFT EQU $01 
KCF_ALT EQU $02 
KCB_CONTROL EQU 2 
KCF_CONTROL EQU $04 
KCB_DOWNUP EQU 3 
KCF_DOWNUP EQU $08 

KCB_STRING EQU 6 
KCF_STRING EQU $40 

ENDC 

note that SHIFT+ALT+CTRL is VANILLA 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND DEVICES_NARRATOR_I 
DEVICES_NARRATOR_I SET 1 
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
narrator.i 

* 
* 

******************************************************************** 

IFND EXEC_IO_I 
INCLUDE "exec/io.i" 
ENDC 

*-------- DEFAULT VALUES, USER PARMS, AND GENERAL CONSTANTS 

DEFPITCH EQU 110 ;DEFAULT PITCH 
DEFRATE EQU 150 ;DEFAULT RATE 
DEFVOL EQU 64 ;DEFAULT VOLUME (FULL) 
DEFFREQ EQU 22200 ;DEFAULT SAMPLING FREQUENCY 
NATURALFO EQU 0 ;NATURAL FO CONTOURS 
ROBOTICFO EQU 1 ;MONOTONE FO 
MALE EQU 0 ; MALE SPEAKER 
FEMALE EQU 1 ;FEMALE SPEAKER 
DEFSEX EQU MALE ;DEFAULT SEX 
DEFMODE EQU NATURALFO ;DEFAULT MODE 

* Parameter bounds 

MINRATE EQU 40 ;MINIMUM SPEAKING RATE 
MAXRATE EQU 400 ;MAXIMUM SPEAKING RATE 
MINPITCH EQU 65 ;MINIMUM PITCH 
MAXPITCH EQU 320 ;MAXIMUM PITCH 
MINFREQ EQU 5000 ;MINIMUM SAMPLING FREQUENCY 
MAXFREQ EQU 28000 ;MAXIMUM SAMPLING FREQUENCY 
MINVOL EQU 0 ;MINIMUM VOLUME 
MAXVOL EQU 64 ;MAXIMUM VOLUME 

* Driver error codes 

ND_NotUsed EQU -1 
ND_NoMem EQU -2 ;Can't allocate memory 
ND_NoAudLib EQU -3 ;Can't open audio device 
ND_MakeBad EQU -4 ;Error in MakeLibrary call 
ND_UnitErr EQU -5 ;Unit other than 0 
ND CantAlloc EQU 
ND=Unirnpl 

-6 ;Can't allocate the audio channel 
EQU -7 ;Unimplemented command 

ND_Nowrite EQU -8 ;Read for mouth shape without write 
ND_Expunged EQU -9 ;Can't open, deferred expunge bit set 
ND_PhonErr EQU -20 ;Phonerne code spelling error 
ND_RateErr EQU -21 ;Rate out of bounds 
ND_PitchErr EQU -22 ;Pitch out of bounds 
ND_SexErr EQU -23 ;Sex not valid 
ND_ModeErr EQU -24 ;Mode not valid 
ND_FreqErr EQU -25 ;Sarnpling freq out of bounds 
ND_VolErr EQU -26 ;Volume out of bounds 

* ;------ Write IORequest block 
STRUCTURE NDI,IOSTD_SIZE 

UIDRD NDI_RATE ;Speaking rate in words/minute 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 * 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

UIDRD NDI_PITCH 
UIDRD NDI_MODE 
UIDRD NDI_SEX 
APTR NDI_CHMASKS 
UIDRD NDI_NUMMASKS 
UIDRD NDI_VOLUME 
UIDRD NDI_SAMPFREQ 
UBYTE NDI_MOUTHS 
UBYTE NDI_CHANMASK 
UBYTE NDI_NUMCHAN 
UBYTE NDI_PAD 
LABEL NDI_SIZE 

, Mouth read 
STRUCTURE MRB,NDI_SIZE 

UBYTE MRB_WIDTH 
UBYTE MRB_HEIGHT 
UBYTE MRB_SHAPE 
UBYTE MRB_PAD 
LABEL MRB_SIZE 

ENDC 

IORB 

;Baseline pitch in Hertz 
;FO mode 
;Speaker sex 
;Pointer to audio channel masks 
;Size of channel masks array 
;Channel volume 
;Sarnpling frequency 
;Generate mouths? (Boolean value) 
;Actual channel mask used (internal use) 
;Nurnber of channels used (internal use) 
;For alignment 
;size of Narrator IORequest block 

;Mouth width 
;Mouth height 
;Compressed shape (height/width) 
; Alignment 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

***********************************************w******************** 
* Commodore-Amiga, Inc. * 
* parilllel . i * 
******************************************************************** 
******************************************************************** 

* 
* external declarations for Parallel Port Driver 
* 
* SOURCE CONTROL 
* ------ -------
* $Header: parallel.i,v 25.0 85/03/27 19:14:15 tomp Exp $ 
* 
* $Locker: $ 
* 
******************************************************************** 

IFND DEVICES_PARALLEL_I 
DEVICES_PARALLEL_I SET 1 

IFND EXEC STRINGS I 
include 'exec7strings~i' 

IFND 
include 'exec/io.i' 

*--------------------------------------------------------------------

* 
* Driver error definitions 
* 
*--------------------------------------------------------------------

ParErr_DevBusy EQU 1 
ParErr_BufTooBig EQU 2 
ParErr_InvParam EQU 3 
ParErr_LineErr EQU 4 
ParErr_NotOpen EQU 5 
ParErr PortReset EQU 6 
parErr=InitErr EQU 7 

*--------------------------------------------------------------------

* 
* Useful constants 
* 
*--------------------------------------------------------------------

* 
PDCMD_QUERY 
PDCMD_SETPARAMS 
Par_DEVFlNISH 
* 

EQU 
EQU 
EQU 

CMD_NONSTD 
CMD_NONSTD+l 
10 ; number of device comands 

*--~-----------------------------------------------------------------

* 
* Driver Specific Commands 
* 
*--------------------------------------------------------------------

*-- PARALLELNAME is a generic macro to get the name of the driver. This 
*-- way if the name is ever changed you will pick up the change 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 
119 

*-- automatically. 

*-- Normal usage would be: 

*-- internalName: PARALLELNAME 
*--

PARALLELNAME: MACRO 

* 

STRING 'parallel.device' 
ENDM 

BITDEF 
BITDEF 
BI'IDEF 
BITDEF 
BITDEF 
BITDEF 
BITDEF 
BITDEF 
BITDEF 
BITDEF 

PAR, SHARED, 5 
PAR,RAD_BOOGlE,3 
PAR, EOFMODE, 1 
IOPAR,QUEUED,6 
IOPAR,ABORT,5 
IOPAR,ACTlVE,4 
IOPT, RWDIR, 3 
IOPT,PBUSY,2 
IOPT,PAPEROUT,l 
IOPT,PSEL,O 

PARFLAGS non-exclusive access 
(not yet implemented) 
EOF mode enabled bit 

IO_FLAGS rqst-queued bit 
rqst-aborted bit 
rqst-qued-or-current bit 

IO_STATUS read=O,write=l 
printer in busy toggle 
paper out 
printer selected 

* 
************************************************************************ 

STRUCTURE PTERMARRAY,O 
ULONG PTERMARRAY_O 
ULONG PTERMARRAY_l 
LABEL PTERMARRAY_SIZE 

***************************************************************** 
* CAUTION!!! IF YOU ACCESS the parallel.device, you MUST (!!!!) use an 
* IOEXTPAR-sized structure or you may overlay innocent memory, okay?! 
***************************************************************** 

STRUCTURE IOEXTPAR,IOSTD_SIZE 

* STRUCT MsgNode 
* 0 APTR Succ 
* 4 APTR Pred 
* 8 UBYTE Type 
* 9 UBYTE Pri 
* A APTR Name 
* E APTR ReplyPort 
* 12 UWORD MNLength 
* STRUCT IOExt 
* 14 APTR IO_DEVICE 
* 18 APTR IO_UNIT 
* lC UWORD IO_COMMAND 
* IE UBYTE IO_FLAGS 
* IF UBYTE IO_ERROR 
* STRUCT IOStdExt 
* 20 ULONG IO_ACTUAL 
* 24 ULONG IO_LENGTH 
* 28 APTR lO_DATA 
* 2C ULONG IO_OFFSET 
* 
* 
* 30 

ULONG lO_PEXTFLAGS (not used) flag extension area 



120 UBYTE 
121 UBYTE 
122 STRUCT 
123 LABEL 
124 
125 
126 

IO_PARSTATUS ; device status (see bit defs above) 
IO_PARFLAGS ; see PARFLAGS bit definitions above 
IO_PTERMARRAY,PTERMARRAY_SIZE ; termination char array 
1OEXTPar_SIZE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND DEVICES_PRINTER I 
DEVICES_PRINTER_I EQU 1 
******************************************************************** 
* Conmodore-Amiga, Inc. * 
* printer. i * 
******************************************************************** 
******************************************************************** 

* * printer device command definitions 
* 
* Source Control 
* --------------
* $Header: printer.i,v 1.2 85/10/09 16:16:27 kodiak Exp $ 
* * $Locker: $ 
* 
******************************************************************** 

IFND EXEC NODES I 
INCLUDE "exec/nodes.i" 
ENDC 

IFND EXEC_LISTS_I 
INCLUDE "exec/lists.i" 
ENDC 

IFND EXEC PORTS I 
INCLUDE "exec/ports.i" 
ENDC 

IFND EXEC 10 I 
INCLUDE "exec/io.i" 
ENDC 

DEVINIT 

DEVCMD 
DEVCMD 
DEVCMD 

PRD_RAWWRITE 
PRD_PRTCOMMAND 
PRD_DUMPRPORT 

i****** printer definitions 
aRIS EQU 0 ESCc reset 
aRIN EQU 1 ESC#l initialize 
aIND EQU 2 ESCD 1£ 
aNEL EQU 3 ESCE return,lf 
aRI EQU 4 ESCM reverse 1£ 

aSGRO EQU 5 ESC[Om normal char 
aSGR3 EQU 6 ESC[3m italics on 
aSGR23 EQU 7 ESC[23m italics off 
aSGR4 EQU 8 ESC[4m underline on 

set 

aSGR24 EQU 9 ESC[24m underline off 
aSGRl EQU 10 ESC [1m boldface on 
aSGR22 EQU 11 ESC[22m boldface off 
aSFC EQU 12 SGR30-39 set foreground 
aSBC EQU 13 SGR40-49 set background 

aSHORPO EQU 14 ESC[Ow normal pitch 
aSHORP2 EQU 15 ESC[2w elite on 

ISO 
+++ 
ISO 
ISO 
ISO 

ISO 
ISO 
ISO 
ISO 
ISO 
ISO 
ISO 

color ISO 
color ISO 

DEC 
DEC 



60 aSHORPl EQU 16 ESC[lw elite off DEC 120 aTBCO EQU 69 ESC[Og Clr horiz tab ISO 
61 aSHORP4 EQU 17 ESC[4w condensed fine on DEC 121 aTBC3 EQU 70 ESC[3g Clear all h tab ISO 
62 aSHORP3 EQU 18 ESC [3w condensed off DEC 122 aTBCl EQU 71 ESC[lg Clr vertical tabs ISO 
63 aSHORP6 EQU 19 ESC[6w enlarged on DEC 123 aTBC4 EQU 72 ESC[4g Clr all v tabs ISO 
64 aSHORP5 EQU 20 ESC[5w enlarged off DEC 124 aTBCALL EQU 73 ESC#4 Clr all h & v tabs +++ 

65 125 aTBSALL EQU 74 ESc#5 Set default tabs +++ 

66 aDEN6 EQU 21 ESC[6"z shadow print on DEC (sort of) 126 aEXTEND EQU 75 ESC[Pn"x extended corrunands +++ 

67 aDEN5 EQU 22 ESC[5"z shadow print off DEC 127 
68 aDEN4 EQU 23 ESC[4"z doubles trike on DEC 128 
69 aDEN3 EQU 24 ESC[3"z doubles trike off DEC 129 STRUCTURE IOPrtCmdReq, IO_SIZE 
70 aDEN2 EQU 25 ESC[2"z NLQ on DEC 130 UIDRD io prtCorrunand ; printer command 
71 aDENl EQU 26 ESC[l"z NLQ off DEC 131 UBYTE io:::parmO first command parameter 
72 132 UBYTE io ParmI second command parameter 
73 aSUS2 EQU 27 ESC[2v superscript on +++ 133 UBYTE io-Pann2 third command parameter 
74 aSUSl EQU 28 ESC[lv superscript off +++ 134 UBYTE io-Parm3 fourth corrunand parameter 
75 aSUS4 EQU 29 ESC[4v subscript on +++ 135 LABEL iopcr_SIZEOF 
76 aSUS3 EQU 30 ESC[3v subscript off +++ 136 
77 aSUSO EQU 31 ESC[Ov normalize the line +++ 137 STRUCTURE IODRPReq, IO_SIZE 
78 aPLU EQU 32 ESCL partial line up ISO 138 APTR io RastPort raster port 
79 aPLD EQU 33 ESCK partial line down ISO 139 APTR io:::colorMap color map 
80 140 ULONG io_Modes graphics viewport modes 
81 aFNTO EQU 34 ESC(B US char set DEC 141 UIDRD io SrcX source x origin 
82 aFNTl EQU 35 ESC(R French char set DEC 142 UIDRD io-SrcY source y origin 
83 aFNT2 EQU 36 ESC(K German char set DEC 143 UIDRD io-SrcWidth source x width 
84 aFNT3 EQU 37 ESC(A UK char set DEC 144 UIDRD io:::srcHeight source x height 

0 85 aFNT4 EQU 38 ESC(E Danish I char set DEC 145 LONG iO_Destcols destination x width 
86 aFNT5 EQU 39 ESC(H Sweden char set DEC 146 LONG io DestRows destination y height 
87 aFNT6 EQU 40 ESC(Y Italian char set DEC 147 UIDRD io:::Special option flags 

C;:l 88 aFNT7 EQU 41 ESC(Z Spanish char set DEC 148 LABEL iodrpr_SIZEOF 
--l 

89 aFNT8 EQU 42 ESC(J Japanese char set +++ 149 
90 aFNT9 EQU 43 ESC(6 Norweign char set DEC 150 SPECIAL_MILCOLS EQU $01 Destcols specified in 1/1000" 
91 aFNTIO EQU 44 ESC(C Danish II char set +++ 151 SPECIAL_MILROWS EQU $02 DestRows specified in 1/1000" 
92 152 SPECIAL_FULLCOLS EQU $04 make DestCols maximum possible 
93 aPROP2 EQU 45 ESC[2p proportional on +++ 153 SPECIAL_FULLROWS EQU $08 make DestRows maximum possible 
94 aPROPl EQU 46 ESC[lp proportional off +++ 154 SPECIAL_FRACCOLS EQU $10 Destcols is fraction of FULLCOLS 
95 aPROPO EQU 47 ESC[Op proportional clear +++ 155 SPEC I AL_FRACROWS EQU $20 DestRows is fraction of FULLROWS 
96 aTSS EQU 48 ESC[n E set proportional offset ISO 156 SPECIAL_ASPECT EQU $80 ensure correct aspect ratio 
97 aJFY5 EQU 49 ESC[5 F auto left justify ISO 157 SPECIAL DENSITYMASK EQU $FOO masks out density bits 
98 aJFY7 EQU 50 ESC[7 F auto right justiy ISO 158 SPECIAL-DENSITYI EQU $100 lowest res 
99 aJFY6 EQU 51 ESC[6 F auto full justify ISO 159 SPECIAL-DENSITY2 EQU $200 next res 

100 aJFYO EQU 52 ESC[O F auto justify off ISO 160 SPECIAL-DENSITY3 EQU $300 next res 
101 aJFY2 EQU 53 ESC[2 F word space(auto center) ISO (special) 161 SPECIAL:::DENSITY4 EQU $400 highest res 
102 aJFY3 EQU 54 ESC[3 F letter space (justify) ISO (special) 162 
103 163 PDERR_CANCEL EQU 1 user canceled a printer timeout 
104 aVERPO EQll 55 ESC[Oz 1/8" line spacing +++ 164 PDERR_NOTGRAPHICS EQU 2 printer cannot output graphics 
105 aVERPl EQU 56 ESC[lz 1/6" line spacing +++ 165 PDERR_INVERTHAM EQU 3 cannot invert hold & modify print 
106 aSLPP EQU 57 ESC[nt set form length n DEC 166 PDERR_BADDIMENSION EQU 4 print dimensions illegal 
107 aPERF EQU 58 ESC[nq perf skip n (n>O) +++ 167 PDERR_DIMENSIONOVFLOW EQU 5 print dimensions too large 
108 aPERFO EQU 59 ESC[Oq perf skip off +++ 168 PDERR_INTERNALMEMORY EQU 6 no memory for internal variables 
109 169 PDERR_BUFFERMEMORY EQU 7 no memory for print buffer 
110 aLMS EQU 60 ESC#9 Left margin set +++ 170 
III aRMS EQU 61 ESC#O Right margin set +++ 171 ENDC 
112 aTMS EQU 62 Esc#8 Top margin set +++ 
113 aBMS EQU 63 ESC#2 Bottom marg set +++ 
114 aSTBM EQU 64 ESC[Pnl;Pn2r T&B margins DEC 
115 aSLRM EQU 65 ESC[Pnl;Pn2s L&R margin DEC 
116 aCAM EQU 66 ESC#) Clear margins +++ 
117 
118 aHTS EQU 67 ESCH Set horiz tab ISO 
119 aVTS EQU 68 ESCJ Set vertical ,tabs ISO 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
prtbase.i 

* 
* 

******************************************************************** ' 
******************************************************************** 

* * printer device data definition 
* 
******************************************************************** 

IFND DEVICES_PRTBASE_I 
DEVICES_PRTBASE_I EQU 1 

IFND EXEC_NODES_I 
INCLUDE "exec/nodes.i" 
ENDC 
IFND EXEC_LISTS_I 
INCLUDE "exec/lists.i" 
ENDC 
IFND EXEC_PORTS_I 
INCLUDE "exec/ports.i" 
ENDC 
IFND EXEC_LIBRARIES_I 
INCLUDE "exec/libraries.i" 
ENDC 
IFND EXEC_TASKS_I 
INCLUDE "exec/tasks.i" 
ENDC 

IFND DEVICES_PARALLEL_I 
INCLUDE "devices/parallel.i" 
ENDC 
IFND DEVICES_SERIAL_I 
INCLUDE "devices/serial.i" 
ENDC 
IFND DEVICES_TIMER_I 
INCLUDE "devices/timer.i" 
ENDC 
IFND LIBRARIES_DOSEXTENS_I 
INCLUDE "libraries/dosextens.i" 
ENDC 
IFND INIUITION_INIUITION_I 
INCLUDE "intuition/intuition.i" 
ENDC 

STRUCTURE DeviceData,LIB SIZE 
APTR dd_Segment -
APTR dd_ExecBase 
APTR dd_Cmdvectors 
APTR dd_CmdBytes 
UWORD dd_NumCommands 
LABEL dd_SIZEOF 

*------

AO when initialized 
A6 for exec 
command table for device commands 
bytes describing which command queue 
the number of commands supported 

*------ device driver private variables ------------------------------
*------

; various unit flags 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 

;------ IO_FLAGS 
BITDEF IO,QUEUED,4 
BITDEF IO,CURRENI,5 
BITDEF 10, SERVICING, 6 
BITDEF IO,DONE,7 

command is queued to be performed 
command is being performed 
command is being actively performed 
command is done 

;------ du_Flags 
BITDEF DU,STOPPED,O commands are not to be performed 

*------ Constants 
P_PRIORITY EQU 
P_STKSIZE EQU 

*------ pd_Flags 

o 
$800 

10RO is in use 
IORl is in use 

BITDEF P,IORO,O 
BITDEF P,IORl,l 
BITDEF P,EXPUNGED,7 device to be expunged when all closed 

STRUCTURE PrinterData,dd_SIZEOF 
STRUCT pd_Unit,MP_SIZE the one and only unit 
BPTR pd_PrinterSegment the printer specific segment 
UWORD pd_PrinterType the segment printer type 
APTR pd_SegmentData the segment data structure 
APTR pd_PrintBuf the raster print buffer 
APTR pd_PWrite the parallel write function 
APTR pd_PBothReady the parallel write function's done 

IFGT 10EXTPar SIZE-IOEXTSER_SIZE 
STRUCT pd_IORO,IOEXTPar_SIZE 
STRUCT pd_IORl,IOEXTPar_SIZE 
ENDC 

IFLE IOEXTPar_SIZE-IOEXTSER_SIZE 
STRUCT pd_IORO,IOEXTSER_SIZE 
STRUCT pd_IORl,IOEXTSER_SIZE 
ENDC 

STRUCT pd_TIOR,IOTV_SIZE 
STRUCT pd_IORPort,MP_SIZE 
STRUCT pd_TC, TC_SI ZE 
STRUCT pd_Stk,P_STKSIZE 
UBYTE pd_Flags 
UBYTE pdyad 

port I/O request 0 
and 1 for double buffering 

port I/O request 0 
and 1 for double buffering 

timer I/O request 
and message reply port 

write task 
and stack space 

device flags 

STRUCT pd_Preferences,pf_SIZEOF ; the latest preferences 
UBYTE pd_PWaitEnabled wait function switch 
LABEL pd_SIZEOF i warning! this may be odd 

BITDEF PPC,GFX,O 
BITDEF PPC,COWR,l 

PPC_BWALPHA EQU 0 
PPC_BWGFX EQU 1 
PPC_COWRGFX EQU 3 

PCC_BW EQU 1 
PCC_YMC EQU 2 
PCC_YMC BW EQU 3 
PCC_YMCB EQU 4 



120 
121 STRUCTURE PrinterExtendedData, 0 
122 APTR ped PrinterName printer name, null te:rminated 
123 APTR ped Init called after LoadSeg 
124 APTR ped_Expunge called before UnLoadSeg 
125 APTR ped_Open called at OpenDevice 
126 APTR ped Close called at CloseDevice 
127 UBYTE ped-printerClass printer class 
128 UBYTE ped_ColorClass color class 
129 UBYTE ped MaxColumns number of print columns available 
130 UBYTE ped_NumCharSets number of character sets 
131 UIDRD ped_NumRows number of raster rows in a raster dump 
132 ULONG ped_MaxXDots number of dots maximum in a raster dump 
133 ULONG ped_MaxYDots number of dots maximum in a raster dump 
134 UIDRD ped XDotsInch horizontal dot density 
135 UIDRD ped_YDotsInch vertical dot density 
136 APTR ped_Commands printer text command table 
137 APTR ped_DoSpecial special command handler 
138 APTR ped Render raster render function 
139 LONG ped_TimeoutSecs good write timeout 
140 LABEL ped_SIZEOF 
141 
142 STRUCTURE PrinterSegment, 0 
143 ULONG ps_NextSegment (actually a BPTR) 
144 ULONG ps runAlert MOVEQ #O,DO : RTS 

V 145 UIDRD ps_Version segment version 
146 UIDRD ps Revision segment revision 

<;..j 147 LABEL ps PED printer extended data 
(CJ 148 

149 ENDC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
serial.i 

* 
* 

*****************************.*************************************** 
******************************************************************** 

* * external declarations for Serial Port Driver 
* * SOURCE CONTROL 
* ------ -------
* $Header: serial.i,v 25.0 85/03/27 19:14:15 tomp Exp $ 
* 
* $Locker: $ 
* 
******************************************************************** 

IFND DEVICES SERIAL I 
DEVICES_SERIAL_I SET 1 -

IFND 
include 'exec/strings.i' 

IFND EXEC 10 I 
include 'exec7io~i' 

*--------------------------------------------------------------------

* * Useful constants 
* 
*--------------------------------------------------------------------

* 

* 

EQU 
EQU 

$11130000 
9600 

default char's for xON,Xoff,reserved,rsvd. 
default baud 

*--------------------------------------------------------------------

* 
* Driver Specific Commands 

SDCMD_QUERY EQU 
SDCMD_BREAK EQU 
SDCMD_SETPARAMS EQU 

EQU 

CMD NONSTD 
CMD::::NONSTD+l 
CMD_NONSTD+2 

CMD_NONSTD+2 ; number of device comands 

*--------------------------------------------------------------------

*-- SERIALNAME is a generic macro to get the name of the driver. This 
*-- way if the name is ever changed you will pick up the change 
*-- automatically. 

*-- Normal usage would be: 
*--
*-- internalName: SERIALNAME 
*--

SERIALNAME: MACRO 



60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 

V 85 
86 

.... 87 
o 88 

89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 
119 

STRING 'serial.device' 120 
ENDM 121 

122 
BITDEF SER,XDISABLED,7 SERFLAGS xOn-xOff feature disabled bit 123 
BITDEF SER,EOFMODE,6 EOF mode enabled bit 124 
BITDEF SER,SHARED,5 non-exclusive access 125 
BITDEF SER,RAD_BOOGIE,4 high-speed mode active 126 
BITDEF SER,QUEUEDBRK, 3 queue this Break ioRqst 127 
BITDEF SER,7WIRE,2 RS232 7-wire protocol 128 
BITDEF SER,PARTY_ODD,l parity feature enabled bit 129 
BITDEF SER,PARTY_ON,O parity-enabled bit 130 
BITDEF IOSER,QUEUED,6 1O_FLAGS rqst-queued bit 131 
BITDEF IOSER,ABORT,5 rqst-aborted bit 132 
BITDEF IOSER,ACTlVE,4 rqst-qued-or-current bit 133 
BITDEF IOST,XOFFREAD,4 lOST_HOB receive currently xOFF'ed 134 
BITDEF IOST,XOFFWRITE,3 " transmit currently xOFF'ed 135 
BITDEF IOST,READBREAK,2 break was latest input 136 
BITDEF IOST,WROTEBREAK,l break was latest output 137 
BITDEF IOST,OVERRUN,O status word RBF overrun 138 

* 139 
************************************************************************************140 
STRUCTURE TERMARRAY,O 141 

ULONG TERMARRAY_O 142 
ULONG TERMARRAY_l 143 
LABEL TERMARRAY_SIZE 144 

***************************************************************** 
* CAUTION!! IF YOU ACCESS the serial.device, you MUST (!! !!) use an 
* IOEXTSER-sized structure or you may overlay innocent memory, okay?! 
***************************************************************** 

STRUCTURE IOEXTSER,IOSTD_SIZE 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

o 
4 
8 
9 
A 
E 

12 

14 
18 
lC 
IE 
IF 

20 
24 
28 
2C 

STRUCT 
APTR 
APTR 
UBYTE 
UBYTE 
APTR 
APTR 
UIDRD 

STRUCT 
APTR 
APTR 
UIDRD 
UBYTE 
UBYTE 

STRUCT 
ULONG 
ULONG 
APTR 
ULONG 

MsgNode 
Succ 
Pred 
Type 
Pri 
Name 
ReplyPort 
MNLength 

IOExt 
IO_DEVICE 

IO_ERROR 
IOStdExt 

IO_ACTUAL 
lO_LENGTH 
IO_DATA 
IO_OFFSET 

* 30 
ULONG 
ULONG 
ULONG 
ULONG 
ULONG 
STRUCT 

lO_CTLCHAR control char's (order = XON,xOFF,rsvd,rsvd) 
IO_RBUFLEN length in bytes of serial port's read buffer 
IO_EXTFLAGS (not used) flag extension area 
10_BAUD baud rate requested (true baud) 
10 BRKTlME duration of break signal in MICROseconds 
IO=TERMARRAY,TERMARRAY_SIZE ; termination character array 

145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 

UBYTE 
UBYTE 
UBYTE 
UBYTE 
UIDRD 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

IO_READLEN 
lO_WRITELEN 
IO_STOPBITS 
IO_SERFLAGS 
lO_STATUS 

BIT 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

13-15 

bits per read char (bit count) 
bits per write char (bit count) 
stopbits for read (count) 
see SERFLAGS bit definitions above 
status of serial port, as follows: 

ACTIVE FUNCTION 
low busy 
low paper out 
low select 
low Data Set Ready 
low Clear To Send 
low Carrier Detect 
low Ready To Send 
low Data Terminal Ready 
high read overrun 
high break sent 
high break received 
high transmit x-oFFed 
high receive x-oFFed 
(not) reserved 

LABEL lOEXTSER_SIZE 

***************************************************************************** 

*--------------------------------------------------------------------

* 
* Driver error definitions 
* 
*--------------------------------------------------------------------

SerErr_DevBusy EQU 1 
SerErr_BauctMismatch EQU 2 
SerErr_InvBaud EQU 3 
SerErr_BufErr EQU 4 
SerErr lnvParam EQU 5 
SerErr=LineErr EQU 6 
SerErr_NotOpen EQU 7 
SerErr_PortReset EQU 8 
SerErr_ParityErr EQU 9 
SerErr_lnitErr EQU 10 
SerErr_TimerErr EQU 11 
SerErr_BufOverflow EQU 12 
SerErr_NoDSR EQU 13 
SerErr NoCTS EQU 14 
serErr=DetectedBreak EQU 15 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

******************************************************************** 
* Commodore-Amiga, Inc. * 
* U_r.i * 
******************************************************************** 
******************************************************************** 

* 
* SOURCE CONTROL 
* ------ -------
* $Header: timer.i,v 27.1 85/06/24 13:32:40 neil Exp $ 
* 
* $Locker: $ 
* 
******************************************************************** 

IFND DEVICES TIMER I 
DEVICES_TlMER_I - SET - 1 

IFND EXEC_IO_ 
INCLUDE "exec/io.i" 

* unit defintions 
UNIT_MICROHZ EQU 0 
UNIT_VBLANK EQU 1 

TlMERNAME MACRO 
DC.B 'timer. device , ,0 
DS.W 0 
ENDM 

STRUCTURE TIMEVAL,O 
ULONG TV_SECS 
ULONG TV_MICRO 
LABEL TV_SIZE 

STRUCTURE TIMEREQUEST,IO_SIZE 
STRUCT IOTV_TIME,TV_SIZE 
LABEL IOTV_SIZE 

* IO_COMMAND to use for adding a timer 
DEVINIT 
DEVCMD 
DEVCMD 
DEVCMD 

ENDC 

TR_ADDREQUEST 
TR_GETSYSTIME 
TR_SETSYSTIME 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
trackdisk.i 

******************************************************************** 
******************************************************************** 

* * trackdisk.i 
* 
* Source Control 
* 
* 
* $Header: trackdisk.i,v 27.2 85/07/12 23:16:27 neil Exp $ 
* 
* $Locker: $ 
* 
********************************************************************* 

IFND DEVICES_TRACKDISK_I 
DEVICES_TRACKDISK_I SET 1 

IFND EXEC_IO_I 
INCLUDE "exec/io.i" 

*--------------------------------------------------------------------

* 
* Physical drive constants 
* 
*--------------------------------------------------------------------

NUMCYLS EQU 80 normal # of cylinders 
MAXCYLS EQU NUMCYLS+20 max # of cyls to look for 
* during a calibrate 
NUMSECS EQU 11 
NUMHEADS EQU 2 
MAXRETRY EQU 10 
NUMTRACKS EQU NUMCYLS*NUMHEADS 
NUMUNITS EQU 4 

*--------------------------------------------------------------------

* 
* Useful constants 
* 
*---------------------------------------------------------------------

*-- sizes before mfm encoding 
TD_SECTOR EQU 512 
TD_SECSHIFT EQU 9 
* 

log TD SECTOR 
2 

*-----------------------------------------------------~--~-~--~------

* 
* Driver Specific Commands 
* 
*---~~-~~~~~--~-~-~~~~---~-------------------------------------------



60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 

TD_NAME is a generic macro to get the name of the driver. This 
way if the name is ever changed you will pick up the change 
automatically. 

Normal usage would be: 

*-- internalName: TD_NAME 
*--

TD_NAME: MACRO 
DC.B 'trackdisk. device , ,0 
DS.W 0 

* 
* 

ENDM 

B1TDEF 

DEV1N1T 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 
DEVCMD 

TD,EXTCOM,15 

TD_MOTOR 
TD_SEEK 
TD_FORMAT 
TD_REMOVE 
TD_CHANGENUM 
TD_CHANGESTATE 
TD_PROTSTATUS 

control the disk's motor 
explicit seek (for testing) 
format disk 
notify when disk changes 
number of disk changes 
is there a disk in the drive? 
is the disk write protected? 

* The disk driver has an "extended command" facility. These commands 
* take a superset of the normal 10 Request block. 
* 
ETD_WR1TE 
ETD_READ 
ETD_MOTOR 
ETD_SEEK 
ETD_FORMAT 
ETD_UPDATE 
ETD_CLEAR 

* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

(CMD_WR1TE!TDF_EXTCOM) 
(CMD_READ!TDF_EXTCOM) 
(TD_MOTOR!TDF_EXTCOM) 
(TD_SEEK!TDF_EXTCOM) 
(TD_FORMAT!TDF_EXTCOM) 
(CMD_UPDATE!TDF_EXTCOM) 
(CMD_CLEAR!TDF_EXTCOM) 

* extended 10 has a larger than normal io request block. 
* 

STRUCTURE 10EXTTD,10STD_S1ZE 
ULONG IOTD_COUNT 
ULONG 10TD_SECLABEL 
LABEL IOTD_S1ZE 

removal/insertion count 
sector label data region 

* labels are TD_LABELSIZE bytes per sector 

EQU 16 

*--------------------------------------------------------------------

* 
* Driver error defines 
* 
*--------------------------------------------------------------------

120 TDERR_NotSpecified EQU 20 
121 TDERR_NoSecHdr EQU 21 
122 TDERR_BadSecPreamble EQU 22 
123 TDERR_BadSec1D EQU 23 
124 TDERR_BadHdrSum EQU 24 
125 TDERR_BadSecSum EQU 25 
126 TDERR_TooFewSecs EQU 26 
127 TDERR_BadSecHdr EQU 27 
128 TDERR WriteProt EQU 28 
129 TDERR=Diskchanged EQU 29 
130 TDERR_SeekError EQU 30 
131 TDERR_NoMem EQU 31 
132 TDERR_BadUnitNum EQU 32 
133 TDERR_BadDriveType EQU 33 
134 TDERR_Drive1nUse EQU 34 
135 
136 



Contents 

graphics/clip.i 
graphics/copper.i 
graphics/display.i 
graphics/gels.i 
graphics/gfx.i 
graphics/gfxbase.i 
graphics/layers.i 
graphics/rastport.i 
graphics/regions.i 
graphics/sprite.i 
graphics/text.i 
graphics/view.i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND GRAPHICS CLIP I 
GRAPHICS_CLIP_I SET 1 -
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
clip.i 

* 
* 

******************************************************************** 

IFND 
include 
ENDC 
IFND 
include 
ENDC 

STRUCTURE 
LONG 
LONG 
LONG 
LONG 
IDRD 
IDRD 
IDRD 
IDRD 
BYTE 
BYTE 
BYTE 
BYTE 
IDRD 
IDRD 
LONG 
LONG 
LONG 
IDRD 
IDRD 
STRUCT 
STRUCT 
STRUCT 
STRUCT 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
LABEL 

STRUCTURE 
LONG 
LONG 
LONG 
LONG 
IDRD 
IDRD 
IDRD 
IDRD 
APTR 

GRAPHICS GFX I 
'graphics/gfx.i' 

EXEC_PORTS_I 
'exec/ports.i' 

Layer, 0 
lr Front 
lrBack 
lr=ClipRect 
lr RastPort 
lr-MinX 
lr-MinY 
lr=Maxx 
lr_MaxY 
lr_Lock 
lr_LockCount 
lr_LayerLockCount 
lr_reserved 
lr_reservedl 
lr_Flags 
lr_SuperBitMap 
lr_SuperClipRect 
lr_Window 
lr Scroll X 
lr - Scroll-Y 
lr-LockPoYt,MP SIZE 
lr=LockMessage~MN_sIZE 
lr_ReplyPort,MP_SIZE 
lr_l_LockMessage,MN_SIZE 
lr_DamageList 
lr_cliprects 
lr_LayerInfo 
lr~LayerLocker 

lr_SuperSaverClipRects 
lr_cr 

lr crnew 
lr~l 
lr_SIZEOF 

ClipRect,O 
cr_Next 
cr_Prev 
cr_LObs 
cr_BitMap 
cr MinX 
cr=MinY 
cr_Maxx 
cr_MaxY 
cr--'pl 



60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 

APTR 
LONG 
LONG 

LABEL 

cr----'p2 
cr_reserved 
cr_Flags 
cr_SIZEOF 

* defines for clipping 
ISLESSX equ 1 
ISLESSY equ 2 
ISGRTRX equ 4 
ISGRTRY equ 8 

ENDC 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND GRAPHICS COPPER I 
GRAPHICS_COPPER_I-SET I 
******************************************************************** 
* Cornnodore-Amiga, Inc. * 
* copper.i * 
******************************************************************** 

COPPER_MOVE equ ° /* pseude opcode for move #XXXX,dir */ 
COPPER_WAIT equ 1 /* pseudo opcode for wait y,x */ 
CPRNXTBUF equ 2 /* continue processing with next buffer */ 
CPR_NT_LOF equ $8000 /* copper instruction only for short frames 
CPR_NT_SHT equ $4000 /* copper instruction only for long frames 

STRUCTURE Coplns,O 
OORD ci_OpCode * ° ~ move, 1 
STRUCT ci nxtlist,O * UNION 
STRUCT ci=vwaitpos, ° 
STRUCT ci_DestAddr, 2 

., STRUCT 
STRUCT 

ci_HWaitpos, ° 
ci_DestData,2 

LABEL ci_SIZEOF 

wait */ 

*/ 
*/ 

* structure of cprlist that points to list that hardware actually executes */ 
STRUCTURE cprlist,O 

APTR crl_Next 
APTR crl_start 
OORD crl max 

LABEL crl_SIZEOF 

STRUCTURE CopList,O 
APTR cl_Next /* next block for this copper list */ 
APTR cl __ CopList /* system use */ 
APTR cl ViewPort * ViewPort /* system use */ 
APTR cl=Coplns /* start of this block */ 
APTR cl_CopPtr /* intermediate ptr */ 
APTR cl_CopLStart /* mrgcop fills this in for Long Frame*/ 
APTR cl_CopSStart /* mrgcop fills this in for Short Frame*/ 
OORD cl_Count /* intermediate counter */ 
OORD cl_MaxCount /* max # of copins for this block */ 
OORD cl_DyOffset /* offset this copper list vertical waits */ 

LABEL cl_SIZEOF 

STRUCTURE 
APTR 

UCopList, ° 
ucl_Next 

APTR ucl_FirstCopList /* head node of this copper list */ 
APTR ucl_CopList /* node in use */ 

LABEL ucl_SIZEOF 

* private graphics data structure 
STRUCTURE copinit,O 

STRUCT copinit_diagstrt, 8 
STRUCT copinit_sprstrtup,2*((2*8*2)+2+(2*2)+2) 
STRUCT copinit_sprstop, 4 

LABEL copinit_SIZEOF 

ENDC 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

IFND GRAPHICS DISPLAY I 
GRAPHICS DISPLAY I SET - 1 
****** dIsplay.i-***************************************************/ 
* V 
* Corrmodore-Amiga, Inc. */ 
* */ 
* Modification History */ 
* date author Conments * / 
* --------------------------------------- */ 
* 8-24-84 Dale added this header file */ 
* */ 
********************************************************************/ 

* include 
* bplconO 
MODE_640 
PLNCNTMSK 

define file for 
defines */ 

equ $8000 
equ $7 

PLNCNTSHFT equ 12 
PF2PRI equ $40 
COLORON equ .$0200 
DBLPF equ $400 
HOLDNMODIFY equ $800 
INTERLACE equ 4 

* bplconl defines */ 
PFA_FlNE_SCROLL 
PFB FINE SCROLL SHIFT 
PF_FlNE_SCROLL_MASK 

equ 
equ 
equ 

* display window start and 
DIW_HORIZ_POS 
DIW_VRTCL_POS 
DIW_VRTCL_POS_SHIFT 

equ 
equ 
equ 

display control registers */ 

$F 
4 
$F 

stop 
$7F 
$lFF 
7 

* how many bit planes? */ 
* 0 ~ none, 1-)6 ~ 1-)6, 7 ~ reserved */ 
* bits to shift for bplconO */ 
* bplcon2 bit */ 
* disable color burst */ 

* interlace mode for 400 */ 

defines */ 
* horizontal start/stop */ 
* vertical start/stop */ 

* Data fetch start/stop horizontal position */ 
DFTCH_MASK equ $FF 

* vposr bits */ 
VPOSRLOF 

ENDC 

equ $8000 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND GRAPHICS_GELS_I 
GRAPHICS_GELS_I SET 1 
********************************************************************* 
* Corn:nodore-Amiga, Inc. * 
* Graphics Library : Gels Definitions * 
* * 
********************************************************************* 

*------ VS_vSflags ---------------------------------------------------

* ;-- user-set vSprite flags --
SUSERFLAGS EQU $OOFF 

BITDEF VS,VSPRITE,O 
BITDEF VS,SAVEBACK,l 
BITDEF VS,OVERLAY,2 

mask of all user-settable vSprite-flags 
set if vSprite, clear if bob 
set if background is to be saved/restored 
set to mask image of bob onto background 

; set if vSprite absolutely must be drawn 

* flags --
BITDEF VS,MUSTDRAW,3 
;-- system-set vSprite 
BITDEF VS,BACKSAVED,8 
BITDEF .VS,BOBUPDATE,9 
BITDEF VS,GELGONE,lO 
BITDEF VS,VSOVERFLOW,ll 

this bob's background has been saved 
temporary flag, useless to outside world 
set if gel is completely clipped (ofiscreen) 
vsprite overflow (if MUSTDRAW set we draw!) 

*------ B_flags ------------------------------------------------------
* ; __ these are the user flag bits --
BUSERFLAGS EQU $OOFF ; mask of all user-settable bob-flags 

BITDEF B,SAVEBOB,O ; set to not erase bob 
BITDEF B,BOBISCOMP,l ; set to identify bob as animComp 

* ;-- these are the system flag bits --
BITDEF B,BWAITING,8 set while bob is waiting on 'after' 
BITDEF B,BDRAWN,9 set when bob is drawn this DrawG pass 
BITDEF B,BOBSAWAY,lO set to initiate removal of bob 
BITDEF B,BOBNIX,ll set when bob is completely removed 
BITDEF B,SAVEPRESERVE,12 for back-restore during double-buffer 
BITDEF B,OUTSTEP,13 for double-clearing if double-buffer 

*------ defines for the animation procedures -------------------------

ANFRACSIZE EQU 6 
ANIMHALF EQU $0020 
RINGTRIGGER EQU $0001 

*------ macros --------------------------------------------------------
* these are GEL functions that are currently simple enough to exist as a 
* definition. It should not be assumed that this will always be the case 

InitAnimate MACRO 
CLR.L \1 
ENDM 

* &animKey 

RemBob 
OR.W 
ENDM 

*------ VS 
STRUCTURE 

MACRO * &b 
#BF_BOBSAWAy,b_BobFlags+\l 

vSprite -------------------------------------------------
Vs,O ; vSprite 



60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 
119 

* 
* 

* 
* 
* 

* 
* 

* 

* 
* 
* 

* 
* 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

-- SYSTEM VARIABLES --
GEL linked list forward/backward pointers sorted by y,x value 
APTR vs_NextVSprite ; struct *vSprite 
APTR vs_PrevVSprite struct *vSprite 
GEL draw list constructed in the order the bobs are actually drawn, then 
list is copied to clear lis~ 
must be here in vSprite for system boundary detection 
APTR vS_DrawPath ; struct *vSprite: pointer of overlay drawing 
APTR vs ClearPath ; struct *vSprite: pointer for overlay clearing 
the vsprite positions are defined in (y,X) order to make sorting 
sorting easier, since (y,x) as a long integer 
WORD vs_Oldy previous position 
WORD vS_Oldx 
-- COMMON VARIABLES 
WORD vs_VSFlags vSprite flags 
-- USER VARIABLES --
the vSprite positions are defined in (y,X) order to make sorting 
easier, since (y,x) as a long integer 

WORD vs_Y ; screen position 
WORD vs X 
WORD vS=Height 
WORD vs_Width number of words per row of image data 
WORD VS_Depth number of planes of data 
WORD vS_MeMask which types can collide with this vSprite 
WORD vs_HitMask which types this vSprite can collide with 
APTR vs_ImageData ; *WORD pointer to vSprite image 
borderLine is the one-dimensional logical OR of all 
the vSprite bits, used for fast collision detection of edge 

APTR vS_BorderLine ; *WORD: logical OR of all vSprite bits 
APTR vs_CollMask ; *WORD: similar to above except this is a 
matrix pointer to this vSprite's color definitions (not used by bobs) 

APTR vs_SprColors ; *WORD 
APTR vs_VSBob ; struct *bob: points home if this vSprite is 

part of a bob 
planePick flag: set bit selects a plane from image, clear bit selects 

use of shadow mask for that plane 
OnOff flag: if using shadow mask to fill plane, this bit (corresponding 

to bit in planePick) describes whether to fill with O's or l's 
There are two uses for these flags: 

if this is the vSprite of a bob, these flags describe how 
the bob is to be drawn into memory 
if this is a simple vSprite and the user intends on setting 
the MUSTDRAW flag of the vSprite, these flags must be set 
too to describe which color registers the user wants for 
the image 

BYTE vs_PlanePick 
BYTE 
LABEL 
LABEL 

vs_PlaneOnOff 
vs_SUserExt 
vs_SIZEOF 

user definable 

*------ BOB : bob ------------------------------------------------------

STRUCTURE BOB, 0 ; bob: blitter object 
* -- COMMON VARIABLES --

APTR bob SavePlanes * *WORD for each plane in RastPort 
WORD bob=BobFlags general purpose flags (see definitions below) 

* -- USER VARIABLES --
APTR bob SaveBuffer ; *WORD pointer to the buffer for background 

* save used by bobs for "cookie-cutting" and multi-plane masking 

120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 

APTR bob_ImageShadow ; *WORD 
* pointer to BOBs for sequenced drawing of bobs 
* for correct overlaying of multiple component animations 

APTR bob Before struct *bob: draw this bob before bob pointed 
- to by before 

APTR bob~fter struct *bob: draw this bob after bob pointed 
to by after 

APTR bob_BobVSprite struct *vSprite: this bob's vSprite definitio 
APTR bob_BobComp struct *animComp: pointer to this bob's 

animComp def 
APTR bob_DBuffer struct dBufPacket: pointer to this bob's 

dBuf packet 
LABEL bob_BUserExt bob user extension 
LABEL bob_SIZEOF 

*------ AC : animComp 

STRUCTURE AC,O animComp 
* -- COMMON VARIABLES --

WORD ac_CompFlags ; animComp flags for system & user 
* timer defines how long to keep this component active: 
* if set non-zero, timer decrements to zero then switches to nextSeq 
* if set to zero, animComp never switches 

WORD aC_Timer 
* -- USER VARIABLES --
* initial value for timer when the animComp is activated by the system 

WORD ,ac TimeSet 
* pointer to next and previous components of animation object 

APTR ac_NextComp ; struct *animComp 
APTR aC_PrevComp ; struct *animComp 

* pointer to component component definition of next image in sequence 
APTR aC_NextSeq struct *animComp 
APTR aC_PrevSeq struct *animComp 
APTR aC_AnimCRoutine address of special animation procedure 
WORD aC_YTrans initial y translation (if this is a component 
WORD ac_XTrans initial x translation (if this is a component 
APTR ac HeadOb struct *animOb 
APTR aC=AnimBob struct 'bob 
LABEL ac_SIZE 

.------ AO : animOb --------------------------------------------------

STRUCTURE AO, 0 ; animOb 
* -- SYSTEM VARIABLES 

APTR aO_NextOb struct *animOb 
APTR ao_PreVOb struct 'animOb 

• number of calls to Animate this animOb has endured 
LONG ao Clock 
WORD aO=AnOldY old y,x coordinates 
WORD ao_AnOldX 

• -- COMMON VARIABLES 
WORD ao_AnY 
WORD ao~X 

• -- USER VARIABLES 
WORD ao_YVel 
WORD ao_XYel 
WORD ao_XAccel 
WORD ao YAccel 
WORD ao=RingYTrans 
WORD aO_RingXTrans 

y,x coordinates of the animOb 

velocities of this object 

accelerations of this object 
! !! backwards !!! 

ring translation values 



180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 

APTR 
APTR 
LABEL 
LABEL 

ao AnirrORoutine 
aO:::Headcomp 
ao_AUserExt 
ao_SIZEOF 

address of special animation procedure 
struct *animComp: pointer to first component 
animOb user extension 

*------ DBP : dBufPacket ---------------------------------------------
* dBufPacket defines the values needed to be saved across buffer to buffer 
* when in double-buffer mode 

STRUCTURE DBP,O dBufPacket 
WORD dbp_BufY save the other buffers screen coordinates 
WORD dbp_BufX 
APTR dbp_BufPath struct *vSprite: carry the draw path over 

; the gap 
* these pointers must be filled in by the user 
* pointer to other buffer's background save buffer 

APTR dbp_BufBuffer ; *WORD 
* pointer to other buffer's background plane pointers 

APTR dbp_BufPlanes ; **WORD 
LABEL dbp_SIZEOF 

ENDC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

******************************************************************** 

* 
* 
* 
* 

Commodore-Amiga, Inc. 
gfx.i 

* 
* 
* 
* 

******************************************************************** 
IFND GRAPHICS_GFX_I 

GRAPHICS_GFX_I SET 1 

BITSET 
BITCLR 
AGNUS 
DENISE 

equ $8000 
equ 0 
equ 1 
equ 1 

STRUCTURE BitMap, 0 
WORD bm_BytesPerRow 
WORD bm Rows 
BYTE bm-Flags 
BYTE bm:::Depth 
WORD bm Pad 
STRUCT bm:::Planes,8*4 
LABEL bm_SIZEOF 

STRUCTURE 
WORD 
WORD 
WORD 
WORD 

LABEL 

ENDC 

Rectangle, 0 
ra_MinX 
ra_MinY 
ra_MaxX 
ra_MaxY 
ra_SI ZEOF 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
51 
52 
53 
54 
55 
56 
58 
59 
60 

****** gfxbase.i *************************************************** 

* * 
* 
* 

Comrnodore-Amiga, Inc. * 
* 

******************************************************************** 
IFND GRAPHICS_GFXBASE_I 

GRAPHICS_GFXBASE_I SET 1 

IFND EXEC_LISTS_I 
include 'exec/lists.i' 
ENDC 
IFND EXEC LIBRARIES I 
include 'exec/libraries.i' 
ENDC 
IFND EXEC INTERRUPTS I 
include 'exec/interrupts.i' 
ENDC 

GfxBase,LIB SIZE 
gb_ActiVi~ 
gb_copinit 
gb_cia 
gbylitter 
gb_IDFlist 
gb_SHFlist 
gb_blthd 
gb_blttl 

struct *View 
struct *copinit ; ptr to copper start up list 
for 6526 resource use 
for blitter resource use 
current copper list being 
current copper list being 
struct *bltnade 

run 
run 

STRUCTURE 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
APTR 
STRUCT 
STRUCT 
STRUCT 
STRUCT 
APTR 
UWJRD 
BYTE 
BYTE 
UWJRD 
OORD 
BYTE 
BYTE 

gb_bsblthd 
gb_bsblttl 
gb_vbsrv,IS_SIZE 
gb_timsrv,IS_SIZE 
gb_bltsrv, IS_SIZE 
gb_TextFonts,LH_SIZE 
gb_DefaultFont 
gb~odes ; copy of bltconO 

OORD 
OORD 
OORD 
STRUCT 
APTR 
STRUCT 
OORD 
STRUCT 
LABEL 

gb_VBlank 
gb_Debug 
gb_BeamSync 
gb_system_bplconO 
gb_SpriteReserved 
gb_bytereserved 

gb_Flags 
gb_BlitLock 
gb_BlitNest 
gb_BlitWaitQ,LH_SIZE 
gb_BlitOWner 
gb_TDF_WaitQ,LH_SIZE 
gb_DisplayFlags 
gb_reserved,8 ; 8 bytes reserved for future use 
gb_SIZE 

* bits for dalestuff, which may go away when blitter becomes a resource 
OWNBLITTERn egu 0 * blitter owned bit 
QBOWNERn egu 1 * blitter owned by blit gueuer 
QBOWNER egu 1 < <QBOWNERn 

ENDC 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

* 
* 
* 

Comrnodore-Amiga, Inc. 
layers.i 

IFND GRAPHICS LAYERS I 
GRAPH I CS_LAYERS_I SET 1 -

IFND EXEC_PORTS_I 
include 'exec/ports.i' 

ENDC 

include 
ENDC 

'exec/lists.i' 

STRUCTURE 
STRUCT 
STRUCT, 
APTR 
APTR 
LABEL 

STRUCTURE 
APTR 
APTR 
APTR 
IDNG 
LABEL 

Layerlnfo_extra, 0 
lie_env,13*4 
lie_mem,LH_SIZE 
lie_FreeClipRects 
lie bli tbuff 
lie::::SIZEOF 

mem_node,O 
memnode_succ 
memnodeJ>red 
memnode where 
memnode::::how_big 
memnode_SIZEOF 

STRUCTURE 
APTR 

Layer Info,O 
li_top_layer 
li_check_lp APTR 

APTR 
STRUCT 
STRUCT 
BYTE 
BYTE 
BYTE 
BYTE 
APTR 
STRUCT 
STRUCT 
STRUCT 
APTR 
LABEL 

li obs 
li::::RP_ReplyPort,MP_SIZE 
Ii LockPort,MP SIZE 
li-Lock -
li::::broadcast 
Ii locknest 
li~ad 
li Locker 
li::::bytereserved,2 
Ii wordreserved,4 
li::::longreserved,4 
Ii Layerlnfo extra 
li::::SI ZEOF -

NEWLAYERINFO_CALLED egu 1 

ENDC 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

****** rastport.i ************************************************* 

* 
* 
* 

Commodore-Amiga, Inc. 

******************************************************************* 
IFND GRAPHICS RASTPORT I 

GRAPHICS_RASTPORT_I SET 1 

IFND GRAPHICS GFX I 
include 'graphics/gfx.i' 

ENDC 

*------ TR : TmpRas --------------------------------------------------

STRUCTURE 
APTR 
LONG 
LABEL 

TmpRas,O 
tr RasPtr 
tr-Size 
tr=SIZEOF 

*------ Gelslnfo 

STRUCTURE Gelslnfo,O 
BYTE gi_sprRsrvd 

*WJRD 

* flag of which sprites to reserve from 
* vsprite system 
* reserved for system use BYTE 

APTR 
APTR 

gi_Flags 
gi_gelHead 
gi_gelTail * dummy vSprites for list management 

* pointer 
APTR 

to array of 8 WORDS for sprite available lines 
gi_nextLine 

to array of 8 pointers for color-last-assigned to vSprites * pointer 
APTR 
APTR 
SHORT 
SHORT 
SHORT 
SHORT 
APTR 
APTR 
LABEL 

gi_lastColor 
gi_co11Handler 
gi_leftrnost 
gi_rightrnost 
gi topmost 
gi=bottorrmost 
gi_firstBlissObj 
gi_lastBlissObj 
gi_SIZEOF 

*------ RP_Flags -----
BITDEF RP,FRST DOT,O 
BITDEF RP,ONE DoT,l 
BITDEF RP,DBuFFER,2 

* 
BITDEF 
BITDEF 

RP,AREAOUTLlNE,3 
RP,NOCROSSFILL,5 

*------ RP DrawMode ------
RP JAMI 
RP=JAM2 
RP_COMPLEMENT 
RP _INVERSVID 

- EQU 0 
EQU 1 
EQU 2 
EQU 4 

*------ RP TxFlags -----
BITDEF -RP,TXSCALE,O 

STRUCTURE RastPort,O 
LONG rp_Layer 

* addresses of collision routines 

* system use only 

draw the first dot of this line ? 
use one dot mode for drawing lines 
flag set when RastPorts are double-buffered 

(only used for bobs) 
used by areafiller 
used by areafiller 

inverse video for drawing modes 

60 LONG rp_BitMap 
61 LONG rp_Areaptrn 
62 LONG rp_TmpRas 
63 LONG rp_Arealnfo 
64 LONG rp_Gelslnfo 
65 BYTE rp_Mask 
66 BYTE rp_FgPen 
67 BYTE rp_BgPen 
68 BYTE rp_AOLPen 
69 BYTE rp_DrawMode 
70 BYTE rp_AreaPtSz 
71 BYTE rp_Dumny 
72 BYTE rp_linpatcnt 
73 WORD rp_Flags 
74 WORD rp_Lineptrn 
75 WORD rp_cp_x 
76 WORD rp_cp--'y 
77 STRUCT rp_rninterrns,8 
78 WORD rp_PenWidth 
79 WORD rp_PenHeight 
80 LONG rp_Font 
81 BYTE rp_AlgoStyle 
82 BYTE rp_TxFlags 
83 WORD rp_TxHeight 
84 WORD rp_TxWidth 
85 WORD rp_TxBaseline 
86 WORD rp_Txspacing 
87 APTR rp_RP_User 
88 STRUCT rp_wordreserved,14 
89 STRUCT rp_longreserved,8 
90 STRUCT rp_reserved,8 
91 LABEL rp_SIZEOF 
92 
93 STRUCTURE Arealnfo,O 
94 LONG ai VctrTbl 
95 LONG ai-vctrPtr 
96 LONG ai=FlagTbl 
97 LONG ai Flagptr 
98 WORD ai=count 
99 WORD ai MaxCount 

100 WORD ai-FirstX 
101 WORD ai=FirstY 
102 LABEL ai_SIZEOF 
103 
104 ONE_DOTn equ 1 
105 ONE_DOT equ $2 * l«ONE_DOTn 
106 FRST_DOTn equ 0 
107 FRST_DOT equ 1 * l«FRST_DOTn 
108 
109 ENDC 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

IFND GRAPHICS_REG IONS_I 
GRAPHICS_REGIONS I SET 1 
******************************************************************** 
* Corrmodore-Amiga, Inc. * 
* regions. i * 
******************************************************************** 

IFND GRAPHICS_GFX_I 
include 'graphics/gfx.i' 
ENDC 

STRUCTURE 
STRUCT 
APTR 

LABEL 

Region, ° 
rg~ounds,ra_SIZEOF 

rg_RegionRectangle 
rg_SIZEOF 

STRUCTURE RegionRectangle,O 
APTR rr_.Next 
APTR rr Prey 
STRUCT rr_bounds,ra_SIZEOF 

LABEL rr_SIZEOF 

ENDC 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

IFND GRAPHICS SPRITE I 
GRAPHICS_SPRITE_I SET 1 -
******************************************************************** 

* 
* 

Corrmodore-Amiga, Inc. 
sprite.h 

* 
* 

******************************************************************** 

STRUCTURE 
APTR 
IDRD 
IDRD 
IDRD 
IDRD 
LABEL 

ENDC 

SimpleSprite, ° 
ss-POsctldata 
ss_height 
ss_x 
ss...3 
ss_mnn 
ss_SIZEOF 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND GRAPHICS TEXT I 
GRAPHICS_TEXT_I SET 1 
******************************************************************** 

* 
* 

Commodore-Amiga, Inc. 
text.i 

* 
* 

******************************************************************** 
******************************************************************** 

* 
* graphics library text structures 
* 
******************************************************************** 

IFND EXEC_PORTS_I 
INCLUDE "exec/ports.i" 
ENDC 

*------ Font Styles --------------------------------------------------
FS_NORMAL EQU 0 ;normal text (no style attributes set) 

BITDEF FS,EXTENDED,3 ;extended face (must be designed) 
BITDEF FS,ITALIC,2 ;italic (slanted 1:2 right) 
BITDEF FS,BOLD,l ;bold face text (ORed wi shifted right 1) 
BITDEF FS,UNDERLINED,O ;underlined (under baseline) 

*------ Font Flags -------,-------------------------------------------
BITDEF FP,ROMFONT,O ;font is in rom 
BITDEF FP,DISKFONT,l ;font is from diskfont.library 
BITDEF FP,REVPATH,2 ;designed path is reversed (e.g. left) 
BITDEF FP,TALLDOT,3 ;designed for hires non-interlaced 
BITDEF FP,WIDEDOT,4 ;designed for lores interlaced 
BITDEF FP,PROPORTIONAL,5 ;character sizes can vary from nominal 
BITDEF FP,DESIGNED,6 ;size is "designed", not constructed 
BITDEF FP , REMOVED, 7 ; the font has been removed 

******* TextAttr node ************************************************ 
STRUCTURE TextAttr,O 

APTR ta_Name 
UIDRD ta_YSize 
UBYTE ta_Style 
UBYTE ta_Flags 
LABEL ta_SIZEOF 

;name of the desired 
;size of the desired 
;desired font style 
;font preferences 

font 
font 

******* TextFont node ************************************************ 
STRUCTURE TextFont,MN_SIZE 

* 
UIDRD 
UBYTE 
UBYTE 
UIDRD 
UIDRD 
UIDRD 

UIDRD 

UBYTE 
UBYTE 
APTR 

tf YSize 
tf:::style 
tf_Flags 
tf XSize 
tf-Baseline 
tf:::Boldsmear 

tf LoChar 
tf-HiChar 
tCcharData 

;font name in LN 
;font height 
;font style 
;preference attributes 
;nominal font width 

\ used in this 

I 
order to best 
match a font 

I request. 

;di~tance from the top of char to baseline 
;smear to affect a bold enhancement 

;access count 

;the first character described here 
;the last character described here 
;the bit character data 

60 UIDRD tf_Modulo ; the row modulo for the strike font data 
61 APTR tf CharLoc ;ptr to location data for the strike font 
62 * -2 words: bit offset then size 
63 APTR tf_CharSpace ;ptr to words of proportional spacing data 
64 APTR tf CharKern ;ptr to words of kerning data 
65 LABEL tCSIZEOF 
66 
67 ENDC 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

IFND GRAPHICS VIEW I 
GRAPHICS_VIEW_I SET I -
******************************************************************** 

* 
Commodore-ArrUga, Inc. 
view.i 

* 
* 

******************************************************************** 

IFND GRAPHICS GFX I 
include 'graphics/gfx.i' 
ENDC 

V_PFBA EQU $40 
V_DUALPF EQU $400 
V_HIRES EQU $8000 
V_LACE EQU 4 
V_HAM EQU $800 
V_SPRITES EQU $4000 
GENLOCK_VIDEO EQU 2 

STRUCTURE ColorMap,O 
BYTE em_Flags 
BYTE em_Type 
I'KlRD em_Count 
APTR em_ColorTable 

LABEL em_SIZEOF 

STRUCTURE ViewPort,O 
LONG vp_Next 
LONG vp_ColorMap 
LONG vp_DspIns 
LONG vp_SprIns 
LONG vp_ClrIns 
LONG vp_UCopIns 
I'KlRD vp _ DWidth 
WORD vp_DHeight 
I'KlRD vp_DxOffset 
WORD vp_DyOffset 
WORD vp_Modes 
I'KlRD vp_reserved 
APTR vp_RasInfo 
LABEL vp_SIZEOF 

STRUCTURE View,O 
LONG v ViewPort 
LONG v=LOFCprList 
LONG v SHFCprList 
WORD v=DyOffset 
I'KlRD V_DxOffset 
I'KlRD v_Modes 
LABEL v_SIZEOF 

STRUCTURE collTable,O 
LONG cp_collPtrs,16 
LABEL cp_SIZEOF 

60 STRUCTURE RasInfo, 0 
61 APTR ri Next 
62 LONG ri-BitMap 
63 I'KlRD ri-RxO ff set 
64 I'KlRD r()yOffset 
65 LABEL ri_SIZEOF 
66 
67 ENDC 



Contents 

hardware/adkbits.i 
hardware/blit.i 
hardware/cia.i 
hardware/custom.i 
hardware/dmabits.i 
hardware/intbits.i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

******************************************************************** 
* adkbits.i -- bit definitions for adkcon register 

* * Commodore-Amiga, Inc. 
* * $Header: adkbits.i,v 27.1 85/06/24 14:42:37 neil Exp $ 

* * $Locker: $ 

* ********************************************************************* 

IFND HARDWARE_ADKBITS_I 
HARDWARE_ADKBITS_I SET 1 

ADKB SETCLR 
ADKB-PRECOMPI 
ADKB:::PRECOMPO 
ADKB_MFMPREC 
ADKB_UARTBRK 
ADKB_\\DRDSYNC 
ADKB_MSBSYNC 
ADKB_FAST 
ADKB USE3PN 
ADKB:::USE2P3 
ADKB USEIP2 
ADKB-USEOPI 
ADKB:::USE3VN 
ADKB USE2V3 
ADKB:::USEIV2 
ADKB_USEOVI 

ADKF SETCLR 
ADKF-PRECOMPI 
ADKF:::PRECOMPO 
ADKF_MFMPREC 
ADKF_UARTBRK 
ADKF_\\DRDSYNC 
ADKF_MSBSYNC 
ADKF_FAST 
ADKF_USE3PN 
ADKF_USE2P3 
ADKF USEIP2 
ADKF:::USEOPI 
ADKF USE3VN 
ADKF:::USE2V3 
ADKF_USEIV2 
ADKF_USEOVI 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

ADKF_PREOOONS EQU 
ADKF_PRE140NS EQU 
ADKF PRE280NS EQU 
ADKF:::PRE560NS EQU 

15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
o 

standard set/clear bit 
two bits of precompensation 

use mfm style precompensation 
force uart output to zero 
enable DSKSYNC register matching 
(Apple GCR Only) sync on MSB for reading 
1 -) 2 us/bit (mfm), 2 -) 4 us/bit (gcr) 
use aud chan 3 to modulate period of ?? 
use aud chan 2 to modulate period of 3 
use aud chan 1 to modulate period of 2 
use aud chan 0 to modulate period of 1 
use aud chan 3 to modulate volume of ?? 
use aud chan 2 to modulate volume of 3 
use aud chan 1 to modulate volume of 2 
use aud chan 0 to modulate volume of 1 

(1<<15) 
(1«14) 
(1«13) 
(1«12) 
(1«11) 
(1«10) 
(1«9) 
(1«8) 
(1«7) 
(1«6) 
(1«5) 
(1«4) 
(1«3) 
(1«2) 
(1«1) 
(1«0) 

o 000 ns of precomp 
(ADKF_PRECOMPO) 140 ns of precomp 
(ADKF_PRECOMPl) ; 280 ns of precomp 
(ADKF_PRECOMPOiADKF_PRECOMPl) ; 560 ns of precomp 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

V 26 
27 

<:;l 28 
.... 29 

, 30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

******************************************************************** 
* Commodore-Amiga, Inc. 
* blit.i 
* 
* $Header: blit.i,v 27.1 85/06/24 14:42:42 neil Exp $ 
* 
* $Locker: $ 
* 
*******************************************************************r.* 

IFND HARDWARE_BLIT_I 
HARDWARE_BLIT_I SET 1 

STRUCTURE bltnode,O 
LONG bn n 
LONG bn=function 
BYTE bn_stat 
BYTE bn_dwnmy 
WORD bn_blitsize 
WORD bn_beamsync 
LONG bn_cleanup 
LABEL bn_SIZEOF 

* bit defines used by blit queuer 
CLEANMEn equ 6 
CLEANME equ l«CLEANMEn 

* include file for blitter */ 
HSIZEBITS equ 6 
VSIZEBITS equ 16-HSIZEBITS 
HSIZEMASK equ $3f /* 
VSIZEMASK equ $3FF /* 

MAXBYTESPERROW EQU 128 

2~6 -- I */ 
2~10 - 1 */ 

* definitions for blitter control register 0 */ 

ABC equ $80 
ABNC equ $40 
ANBC equ $20 
ANBNC equ $10 
NABC equ $8 
NABNC equ $4 
NANBC equ $2 
NANBNC equ $1 

BCOB_DEST equ 8 
BCOB_SRCC equ 9 
BCOB_SRCB equ 10 
BCOB_SRCA equ 11 
BCOF_DEST equ $100 
BCOF_SRCC equ $200 
BCOF_SRCB equ $400 
BCOF_SRCA equ $800 

BC IF_DE SC equ 2 

DEST equ $100 
SRCC equ $200 

60 SRCB equ $400 
61 SRCA equ $800 
62 
63 ASHIFrSHIFr equ 12 /* bits to right align ashift value */ 
64 BSHIFrSHIFr equ 12 /* bits to right align bshift value */ 
65 
66 * definations for blitter control register 1 */ 
67 LINEMODE equ $1 
68 FILL_OR equ $8 
69 FILL_XOR equ $10 
70 FILL_CARRYIN equ $4 
71 ONEDOT equ $2 
72 OVFLAG equ $20 
73 SIGNFLAG equ $40 
74 BLITREVERSE equ $2 
75 
76 SUD equ $10 
77 SUL equ $8 
78 AUL equ $4 
79 
80 OCTANT8 equ 24 
81 OCTANT7 equ 4 
82 OCTANT6 equ 12 
83 OCTANT 5 equ 28 
84 OCTANT4 equ 20 
85 OCTANT 3 equ 8 
86 OCTANT2 equ 0 
87 OCTANTI equ 16 
88 
89 



1: 
2: 
3: 

4: 
6 : 
8: 
9: 

10: 
12: 
13: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
25: 
26: 
27: 
28: 
29: 
30: 

t;I 31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59 : 
60: 
61: 
62: 
63: 
64: 

******************************************************************** 
* Commodore-Amiga, Inc. 
* cia.i -- definitions for the registers and bits in the 

Complex Interface 
* Adapter (CIA) chip 
* $Header: cia.i,v 27.1 85/06/24 14:42:49 neil Exp $ 
* $Locker: $ 

* 
******************************************************************** 

IFND HARDWARE_CIA_I 
HARDWARE_CIA_I SET 1 

* 
* _ciaa is on an ODD address (e.g. the low byte) -- $bfeOOl 
* _ciab is on an EVEN address (e.g. the high byte) -- $bfdOOO 

* 
* do this to get the definitions: 
* XREF ciaa 
* XREF -ciab 

* 
* cia register offsets 
ciapra EQU $0000 
ciaprb EQU $0100 
ciaddra EQU $0200 
ciaddrb EQU $0300 
ciatalo EQU $0400 
ciatahi EQU $0500 
ciatblo EQU $0600 
ciatbhi EQU $0700 
ciatodlow EQU $0800 
ciatodmid EQU $0900 
ciatodhi EQU $OAOO 
ciasdr EQU $OCOO 
ciaicr EQU $ODOO 
ciacra EQU $OEOO 
ciacrb EQU $OFOO 

* interrupt control register bit numbers 
CIAICRB_TA EQU 0 
CIAICRB_TB EQU 1 
CIAICRB_ALRM EQU 2 
CIAICRB SP EQU 3 
CIAICRB_FLG EQU 4 
CIAICRB_IR EQU 7 
CIAICRB_SETCLR EQU 7 

* control register A bit numbers 
CIACRAB_START EQU 0 
CIACRAB PEON EQU 1 
CIACRAB_OUTMODE EQU 2 
CIACRAB_RUNMODE EQU 3 
CIACRAB_LOAD EQU 4 
CIACRAB_INMODE EQU 5 
CIACRAB_SPMODE EQU 6 
CIACRAB_TODIN EQU 7 

* control register B bit numbers 
CIACRBB START EQU 0 
CIACRBB=PBON EQU 1 
CIACRBB_OUTMODE EQU 2 

65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93 : 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101: 
102: 
103 : 
104: 
106: 
107: 
108: 

109: 
110: 
111: 
112: 

113: 

114 : 
115: 
116: 
117: 
118: 
119: 
120: 
121: 
122: 

CIACRBB RUNMODE EQU 3 
CIACRBB LOAD EQU 4 
CIACRBB=INMODEO EQU 5 
CIACRBB_INMODEl EQU 6 
CIACRBB ALARM EQU 7 

* interrupt control register bit masks 
CIAICRF_TA EQU (1 «0) 
CIAICRF TB EQU (1«1) 
CIAICRF_ALRM EQU (1«2) 
CIAICRF_SP EQU (1«3) 
CIAICRF FLG EQU (1«4) 
CIAICRF_IR EQU (1«7) 
CIAICRF SETCLR EQU (1«7) 

* control register A bit masks 
CIACRAF_START EQU (1«0) 
CIACRAF PEON EQU (1«1) 
CIACRAF_OUTMODE EQU (1«2) 
CIACRAF RUNMODE EQU (1«3) 
CIACRAF_LOAD EQU (1«4) 
CIACRAF_INMODE EQU (1«5) 
CIACRAF SPMODE EQU (1«6) 
CIACRAF _ TODIN EQU (1«7) 

* control register B bit masks 
CIACRBF START EQU (1«0) 
CIACRBF_PEON EQU (1«1) 
CIACRBF_OUTMODE EQU (1«2) 
CIACRBF RUNMODE EQU (1«3) 
CIACRBF LOAD EQU (1«4) 
CIACRBF-INMODEO EQU (1«5) 
CIACRBF=INMODEl EQU (1«6) 
CIACRBF ALARM EQU (1«7) 

* control register B INMODE masks 
CIACRBF_IN_PHI2 EQU o 
CIACRBF_IN_CNT EQU 
CIACRBF_IN_TA EQU 
CIACRBF_IN_CNT_TA EQU 

(CIACRBF_INMODEO) 
(CIACRBF_INMODE1) 
(CIACRBF_INMODEO!CIACRBF_INMODE1) 

* 
* Port definitions what each bit in a cia peripheral 

register is tied to 

* 
* ciaa port A (Oxbfe001) 
CIAB_GAMEPORTl EQU (7) * gameport 1, pin 6 (fire 

button*) 
CIAB_GAMEPORTO EQU ( 6) * gameport 0, pin 6 (fire 

button*) 
CIAB_DSKRDY EQU (5) * disk ready* 
CIAB_DSKTRACKO EQU (4) * disk on track 00* 
CIAB_DSKPROT EQU ( 3) * disk write protect* 
CIAB_DSKCHANGE EQU (2) * disk change* 
CIAB_LED EQU (1) * led light control (O~~>bright) 
CIAB_OVERLAY EQU (0) * memory overlay bit 

* ciaa port B (OxbfelOl) -- parallel port 



123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 
141: 
142: 
143: 
144: 
145: 
146: 
147 : 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 
158: 
159: 
160: 
161: 
162: 
163: 
164: 
165: 
166: 
167: 
168: 
169: 
170: 
171: 
172: 
173: 
174: 
175: 

* ciab port A 
CIAB_COMDTR 
CIAB_COMRTS 
CIAB_COMCD 
CIAB_COMCTS 
CIAB_COMDSR 
CIAB_PRTRSEL 
CIAB_PRTRPOUT 
CIAB_PRTRBUSY 

(OxbfdOOO) -
EQU (7) 
EQU (6) 
EQU (5) 
EQU (4) 
EQU (3) 
EQU (2) 
EQU (1) 
EQU (0) 

serial and printer"control 
* serial Data Terminal'Ready* 
* serial Request to Send* 
* serial carrier Detect* 
* serial Clear to Send* 
* serial Data Set Ready* 
* printer SELECT 
* printer paper.out 
* printer busy 

* ciab port B 
CIAB DSKMOTOR 
CIAB::::DSKSEL3 
CIAB DSKSEL2 
CIAB-DSKSELI 
CIAB::::DSKSELO 
CIAB_DSKSIDE 
CIAB_DSKDIREC 
CIAB_DSKSTEP 

(Oxbfdl00) -
EQU (7) 
EQU (6) 
EQU (5) 
EQU (4) 
EQU (3) 
EQU (2) 
EQU (1) 
EQU (0) 

disk control 

* ciaa port A (OxbfeOOl) 
CIAF_GAMEPORTI EQU (1«7) 
CIAF GAMEPORTO EQU (1«6) 
CIAF - DSKRDY EQU (1« 5) 
CIAF-DSKTRACKO EQU (1«4) 
CIAF - DSKPROT EQU (1 < (3) 
CIAF-DSKCHANGE EQU (1«2) 
CIAF-LED EQU (1«1) 
CIAF::::OVERLAY EQU (1«0) 

* disk motorr* 
* disk select unit 3* 
* disk select unit 2* 
* disk select unit 1* 
* disk select unit 0* 
* disk side select* 
* disk direction of seek* 
* disk step heads* 

* ciaa port B (Oxbfel0l) -- parallel port 

* ciab port A (OxbfdOOO) -- serial and printer control 
CIAF_COMDTR EQU (1«7) 
CIAF_COMRTS EQU (1«6) 
CIAF_COMCD EQU (1«5) 
CIAF_COMCTS EQU (1«4) 
CIAF_COMDSR EQU (1«3) 
CIAF_PRTRSEL EQU (1«2) 
CIAF_PRTRPOUT EQU (1«1) 
CIAF_PRTRBUSY EQU (1«0) 

* ciab port B 
CIAF DSKMOTOR 
CIAF::::DSKSEL3 
CIAF DSKSEL2 
CIAF-DSKSELI 
CIAF::::DSKSELO 
CIAFYSKSIDE 
CIAF_DSKDIREC 
CIAF_DSKSTEP 

(Oxbfdl00) -- disk control 
EQU (1«7) 
EQU (1«6) 
EQU (1«5) 
EQU (1«4) 
EQU (1«3) 
EQU (1«2) 
EQU (1«1) 
EQU (1«0) 

1 
2 
3 
5 
7 
8 
9 

11 
12 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

******************************************************************** 
* Commodore-Amiga, Inc. 
* custom.i 
* $Header: custom.i,v 27.1 85/06/24 14:42:56 neil Exp $ 
* $Locker: $ 

* 
********************************************************************* 

IFND HARDWARE CUSTOM I 
HARDWARE_CUSTOM_I-SET I 
* * do this to get base of custom registers: 
* XREF _custom; 

* 
bltddat 
dmaconr 
vposr 
vhposr 
dskdatr 
joyOdat 
joyldat 
clxdat 

adkconr 
potOdat 
potldat 
potinp 
serdatr 
dskhytr 
intenar 
intreqr 

dskpt 
dsklen 
dskdat 
refptr 
vposw 
vhposw 
copcon 
serdat 
serper 
potgo 
joy test 
strequ 
strvbl 
strhor 
strlong 

bltconO 
bltconl 
bltafwm 
bltalwm 
bltcpt 
bltbpt 
bltapt 
bltdpt 
bltsize 

bltcmod 

EQU $000 
EQU $002 
EQU $004 
EQU $006 
EQU $008 
EQU $OOA 
EQU $OOC 
EQU $OOE 

EQU $010 
EQU $012 
EQU $014 
EQU $016 
EQU $018 
EQU $OlA 
EQU $OlC 
EQU $OlE 

EQU $020 
EQU $024 
EQU $026 
EQU $028 
EQU $02A 
EQU $02C 
EQU $02E 
EQU $030 
EQU $032 
EQU $034 
EQU $036 
EQU $038 
EQU $03A 
EQU $03C 
EQU $03E 

EQU $040 
EQU $042 
EQU $044 
EQU $046 
EQU $048 
EQU $04C 
EQU $050 
EQU $054 
EQU $058 

EQU $060 



64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

bltbmod 
bltarnod 
bltdmod 

bltcdat 
bltbdat 
bltadat 

dsksync 

cop11c 
cop2lc 
copjmpl 
copjmp2 
copins 
diwstrt 
diwstop 
ddfstrt 
ddfstop 
drnacon 
clxcon 
intena 
intreq 
adkcon 

aud 
audO 
audl 
aud2 
aud3 

* STRUCTURE 
ac-ptr 
ac_len 
aCJ>er 
ac_vol 
ac_dat 
ac_SIZEOF 

bplpt 

bplconO 
bpI conI 
bplcon2 
bp11mod 
bp12rnod 

bpldat 

sprpt 

spr 
* STRUCTURE 
sdJ>Os 
sd_ctl 
sd_dataa 
sd_datab 

color 

EQU $062 
EQU $064 
EQU $066 

EQU $070 
EQU $072 
EQU $074 

EQU $07E 

EQU $080 
EQU $084 
EQU $088 
EQU $08A 
EQU $08C 
EQU $08E 
EQU $090 
EQU $092 
EQU $094 
EQU $096 
EQU $098 
EQU $09A 
EQU $09C 
EQU $09E 

EQU $OAG 
EQU $OAG 
EQU $OBO 
EQU $OCO 
EQU $ODO 

AudChannel,O 
EQU $00 
EQU $04 
EQU $06 
EQU $08 
EQU $OA 
EQU $10 

EQU $OEO 

EQU $100 
EQU $102 
EQU $104 
EQU $108 
EQU $lOA 

EQU $110 

EQU $120 

EQU $140 
SpriteDef 
EQU $00 
EQU $02 
EQU $04 
EQU $08 

EQU $180 

ptr to start of waveform data 
length of waveform in words 
sample period 
volume 
sample pair 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

******************************************************************** 
* Cornmodore-Arniga, Inc. 
* drnabits. i 
* * $Header: drnabits.i,v 27.1 85/06/24 14:43:02 neil Exp $ 

* 
* $Locker: $ 

* 
********************************************************************* 

IFND HARDWARE DMABITS I 
HARDWARE_DMABITS_I SET 1-

* include file for defining drna control stuff */ 

* write definitions 
DMAF_SETCLR EQU 
DMAF_AUDIO EQU 
DMAF_AUDO EQU 
DMAF_AUDI EQU 
DMAF_AUD2 EQU 
DMAF_AUD3 EQU 
DMAF_DISK EQU 
DMAF_SPRITE EQU 
DMAF_BLITTER EQU 
DMAF_COPPER EQU 
DMAF_RASTER EQU 
DMAF_MASTER EQU 
DMAF_BLITHOG EQU 
DMAF_ALL EQU 

for drnaconw */ 
$8000 
$OOOF /* 4 bit mask */ 
$0001 
$0002 
$0004 
$0008 
$0010 
$0020 
$0040 
$0080 
$0100 
$0200 
$0400 
$OlFF /* all drna channels */ 

* read definitions for drnaconr */ 
* bits 0-8 correspnd to drnaconw definitions */ 
DMAF_BLTDONE EQU $4000 
DMAF_BLTNZERO EQU $2000 

DMAB_SETCLR EQU 15 
DMAB_AUDO EQU 0 
DMAB_AUDI EQU 1 
DMAB_AUD2 EQU 2 
DMAB_AUD3 EQU 3 
DMAB_DISK EQU 4 
DMAB_SPRITE EQU 5 
DMAB_BLITTER EQU 6 
DMAB_COPPER EQU 7 
DMAB_RASTER EQU 8 
DMAB_MASTER EQU 9 
DMAB_BLITHOG EQU 10 
DMAB_BLTDONE EQU 14 
DMAB_BLTNZERO EQU 13 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

ti 26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

******************************************************************** 
* Commodore-Amiga, Inc. 
* intenabits.i -- definitions for the bits in the interrupt enable 
* (and interrupt request) register 
* * $Header: intbits.i,v 27.1 85/06/24 14:43:07 neil Exp $ 
* 
* $Locker: $ 
* 
********************************************************************/ 

IFND HARDWARE_INTBITS_I 
HARDWARE_INTBITS_I SET 1 

INTB_INTEN 
INTB_EXTER 
INTB_DSKSYNC 
INTB_RBF 
INTB_AUD3 
INTB_AUD2 
INTB_AUDI 
INTB_AUDO 
INTB_BLIT 
INTB_VERTB 
INTB_COPER 
INTB_PORTS 
INTB_SOFTINT 
INTB_DSKBLK 
INTB_TBE 

INTF_SETCLR 
INTF_INTEN 
INTF_EXTER 
INTF_DSKSYNC 
INTF_RBF 
INTF_AUD3 
INTF_AUD2 
INTF_AUDI 
INTF_AUDO 
INTF_BLIT 
INTF_VERTB 
INTF_COPER 
INTF_PORTS 
INTF_SOFTINT 
INTF_DSKBLK 
INTF_TBE 

EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

(15) 

(14) 
(13) 
(12) 
(11) 
(10) 
(9) 
(8) 
(7) 
(6) 
(5) 
(4) 
(3) 
(2) 
(1) 
(0) 

;Set/Clear control bit. Determines if bits 
;written with a 1 get set or cleared. Bits 
;written with a zero are allways unchanged. 
;Master interrupt (enable only ) 
;External interrupt 
;Disk re-SYNchronized 
;serial port Receive Buffer Full 
;Audio channel 3 block finished 
;Audio channel 2 block finished 
;Audio channell block finished 
;Audio channel 0 block finished 
;Blitter finished 
;start of vertical Blank 
; Coprocessor 
;1/0 Ports and timers 
;software interrupt request 
;Disk Block done 
;serial port Transmit Buffer Empty 

(1«15) 
(1«14) 
(1«13) 
(1«12) 
(1«11) 
(1«10) 
(1«9) 
(1«8) 
(1«7) 
(1«6) 
(1«5) 
(1«4) 
(1«3) 
(1«2) 
(1«1) 
(1«0) 

contents 

/intuition/intuition.i 
/intuition/intuitionbase.i 



1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

9: 
10: 
11: 
12: 
13: 
14: 

15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 

t::J 24: 
25: 
26: 

CJ1 27: CO 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 

IFND INTUITION_INTUITION_I 
INTUITION_INTUITION_I SET 1 

j** intuition.i ************************************************************* 
;* Commodore-Arniga, Inc. 
;* 
;* intuition.i main include file for assembly-language 

programmers 
;* 
;* Modification History 
;* date author Comments 
i* -------------------------------------

;* 1-30-85 -~RJ~- created this file! 
;* 6-12-85 Dale and Carl translated this from the 

c version 
;* 6-13-85 ~VoodooDrRj~ added back the comments 
;* 
i***************************************************** ***********************/ 

IFND GRAPHICS GFX I 
include 'graphics/gfx.i' 
ENDC 

IFND GRAPHICS_CLIP_I 
include 'graphics/clip.i' 
ENDC 

IFND GRAPHICS VIEW I 
include 'graphics/view.i' 
ENDC 

IFND GRAPHICS RASTPORT I 
include 'graphics/rastport.i' 
ENDC 

IFND GRAPHICS_LAYERS_I 
include 'graphics/layers.i' 
ENDC 

IFND GRAPHICS_TEXT_I 
include 'graphics/text.i' 
ENDC 

IFND EXEC_PORTS I 
include 'exec/ports.i' 
ENDC 

IFND DEVICES_TIMER_I 
include 'devices/timer.i' 
ENDC 

IFND DEVICES_INPUTEVENT_I 
include 'devices/inputevent.i' 
ENDC 

===========================-============================================j 
=== Menu ===============================================================j 

58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93 : 
94: 
95: 
96: 
97: 
98: 
99: 

100: 

101: 
102: 
103: 
104 : 

105: 

106: 

107: 
108: 

109: 
110: 

========================================================================j 

STRUCTURE Menu,O 

APTR mu NextMenu ; menu pointer, same level 
WORD mU_LeftEdge ; dimensions of the select box; 
WORD mu_TopEdge ; dimensions of the select box; 
WORD mu width ; dimensions of the select box; 
WORD mu~eight ; dimensions of the select box; 
WORD mu_Flags ; see flag definitions below; 
APTR mu MenuName ; text for this Menu header 
APTR mU_Firstltem ; pointer to first in chain; 

; these mysteriously-named variables are for internal 
use only 

WORD mu_JazzX 
WORD mu_JazzY 
WORD mu_BeatX 
WORD mU_BeatY 

LABEL mu_SIZEOF 

; FLAGS SET BY BOTH THE APPLIPROG AND INTUITION 
MENUENABLED equ $0001 whether or not this menu is enabled; 

; FLAGS SET BY INTUITIO'-l; 
MIDRAWN equ $0100 ; this menu's items are currently drawn; 

========================================================================i 

~~~ Menultem ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~; 
==i

STRUCTURE Menultem,O

pointer to next in chained list
dimensions of the select box

; dimensions of the select box
dimensions of the select box

APTR mi_Nextltem
WORD mi LeftEdge
WORD mCTopEdge
WORD mi Width ;
WORD mi:::Height
WORD mi_Flags ;

; dimensions of the select box
see the defines below

LONG mi MutualExclude
that item-

set bits mean this item excludes

APTR mi_ItemFill ; points to Image, IntuiText, or NULL

; when this item is pointed to by the cursor and the
items highlight

; mode HIGHlMAGE is selected, this alternate image will
be displayed

APTR mi_SelectFill ; points to Image, IntuiText, or
NULL

BYTE mi_Command
flag

only if appliprog sets the COMMSEQ

; The following variable is strictly from Kludge-City,
where some people

t?

Ol
0

111:

112:

113:

114:

115:

116:
117:

118:
119:
120:
121:

122:
123:
124:
125:
126:
127:
128:

129:

130:
131:

132:
133:
134:
135:

136:
137:

138:

139:
140:
141:
142:
143:
144:
145:
146:

147:
148:

149:
150:
151:
152:
153 :
154 :
155:

; still live. It is included solely because our types.i
macros aren't

; smart enough to do the right thing, which would be
the automatic

; word-alignment to these references as it SHOULD be
in order to duplicate

; the way alignments are adjusted in the c-language.
And instead of

; correcting the problem, I am obliged to kludge up
my include.i files.

; So here it is!
BYTE mi_KludgeFillOO defined as a BYTE because this

does

APTR mi_SubItem ; if non-zero, DrawMenu shows "-)"

; The NextSelect field represents the menu number of
next selected

; item (when user has drag-selected several items)
WORD mi_NextSelect

LABEL mi_SIZEOF

--- FLAGS SET BY THE APPLIPROG --
CHECKIT equ $0001 ; whether to check this item if

selected
ITEMTEXT equ $0002

item
COMMSEQ equ $0004
MENUTOGGLE equ $0008

item
ITEMENABLED equ $0010

set if textual, clear if graphical

set if there's an command sequence
set to toggle the check of a menu

set if this item is enabled

; these are the SPECIAL HIGHLIGHT FLAG state meanings
HIGHFLAGS equ $OOCO see definitions below for these

bits
HIGHIMAGE equ $0000
HIGHCOMP equ $0040

box
HIGHBOX equ $0080

the image
HIGHNONE equ $OOCO

; use the user's "select image"
highlight by complementing the select

; highlight by drawing a box around

don't highlight

; --- FLAGS SET BY BOTH APPLIPROG AND INTUITION -----------------------------
CHECKED equ $0100 ; if CHECKIT, then set this when selected

; --- FLAGS SET BY INTUITION --
ISDRAWN equ $1000 ; this item's subs are currently

drawn
HIGHITEM equ $2000
MENUTOGGLED equ $4000

this item is currently highlighted
; this item was already toggled

156:
157:
158:
159:
160:

161:
162:
163:
164:
165:
166:
167:

168:

169:
170:

171:
172:
173:
174:
175:
176:

177:
178:

179:

180:

181:

182:

183:

184:
185:

186:
187:
188:

189:
190:

191:

192:

193:

194:
195:

196:
197:

; ~~~ Requester ~~
i ==

STRUCTURE Requester,O

; the ClipRect and BitMap and used for rendering the
requester

APTR r~OlderRequest

WORD r~LeftEdge
WORD r~TopEdge

dimensions
; dimensions

dimensions of
dimensions

WORD r~Width
WORD r~Height

of the entire box
of the entire box
the entire box
of the entire box

WORD r~RelLeft
offsets

WORD r~RelTop
offsets

APTR
a list

APTR
APTR

r~ReqGadget
of gadgets
r~ReqBorder
r~ReqText

USHORT r~Flags

UBYTE r~BackFill
before draws

get POINTREL Pointer relativity

get POINTREL Pointer relativity

; pointer to the first of

; the box's border
the box's text

see definitions below

pen number for back-plane fill

; The following variable is strictly from Kludge-City,
where some people

; still live. It is included solely because our types.i
macros aren't

; smart enough to do the right thing, which would be
the automatic

; word-alignment to these references as it SHOULD be
in order to duplicate

; the way alignments are adjusted in the c-language.
And instead of

; correcting the problem, I am obliged to kludge up
my include.i files.

; So here it is!
BYTE r~KludgeFillOO defined as a B~rE because this

does

APTR r~ReqLayer
STRUCT r~ReqPadl,32

(reserved)

layer in which requester rendered
; for backwards compatibility

If the BitMap plane pointers are non-zero, this tells
the system

; that the image comes pre-drawn (if the appliprog wants
to define

; it's own box, in any shape or size it wants!); this
is OK by

; Intuition as long as there's a good correspondence
between the image

; and the specified Gadgets
APTR r~ReqBMap points to the BitMap of PREDRAWN

imagery

APTR r~RWindow points back to requester's window

198:

199:
200:
201:
202:
203:

204 :

205:
206:
207:

208:
209:
210:

211:
212:
213:
214:
215:
216:
217:

V
218:
219:
220:

~ 221:
"""' 222:

223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:

235:

236:
237:
238:
239:

240:
241:
242:
243:
244:
245:

246:

247:

STRUCT r~ReqPad2,36
(reserved)

LABEL r~SIZEOF

for backwards compatibility

FLAGS SET BY THE APPLIPROG
POINTREL equ $0001 if POINTREL set, TopLeft is relative

to pointer
PREDRAWN equ $0002 if ReqBMap points to predrawn Requester

imagery

FLAGS SET BY INTUITION;
REQOFFWINDOW equ $1000

was offwindow
REQACTIVE equ $2000
SYSREQUEST equ $4000
DEFERREFRESH equ $8000

broadcast

STRUCTURE Gadget,O

APTR gg_NextGadget

; part of one of the Gadgets

this requester is active
this requester caused by system

; this Requester stops a Refresh

; next gadget in the list

WORD gg_LeftEdge
WORD gg_TopEdge
WORD gg width
IDRD gg:::Height

"hit box" of gadget
; "hit box" of gadget

"hit box" of gadget
"hit box" of gadget

see below for list of defines

WORD gg_Activation see below for list of defines

WORD gg_GadgetType see below for defines

; appliprog can specify that the Gadget be rendered
as either as Border

; or an Image. This variable points to which (or equals
NULL if there's

; nothing to be rendered about this Gadget)
APTR gg_GadgetRender

; appliprog can specify "highlighted" imagery rather
than algorithmic

; this can point to either Border or Image data
APTR gg_SelectRender

APTR gg_GadgetText ; text for this gadget;

; by using the MutualExclude word, the appliprog can
describe

; which gadgets mutually-exclude which other ones.
The bits in

; MutualExclude correspond to the gadgets in object

248:

249:

250:

251:

252:

253:
254:

255:
256:

257:
258:
259:
260:
261:

262:
263:
264:
265:
266:

267:
268:
269:
270:
271:
272:
273:

274:
275:
276:
277:

278:
279:

280:
281:

282:

283:

284 :
285:

286:
287:
288:

289:

containing
; the gadget list. If this gadget is selected and a

bit is set
in this gadget's MutualExclude and the gadget corresponding

to
; that bit is currently selected (e.g. bit 2 set and

gadget 2
; is currently selected) that gadget must be unselected.

Intuition
; does the visual unselecting (with checkmarks) and

leaves it up
; to'the program to unselect internally
LONG gg_MutualExclude ; set bits mean this gadget excludes

that

; pointer to a structure of special data required by
Proportional, String

; and Integer Gadgets
APTR gg_SpecialInfo

WORD gg_GadgetID ; user-definable ID field
APTR gg_UserData ; ptr to general purpose User data

(ignored by Intuit)

LABEL gg_SIZEOF

--- FLAGS SET BY THE APPLIPROG ---.
combinations in these bits describe the highlight technique
to be used

GADGHIGHBITS equ $0003
GADGHCOMP equ $0000 ; Complement the select box
GADGHBOX equ $0001 Draw a box around the image
GADGHIMAGE equ $0002 ; Blast in this alternate image
GADGHNONE equ $0003 ; don't highlight

set this flag if the GadgetRender and SelectRender point
to Image imagery,
clear if it's a Border

GADGIMAGE equ $0004

combinations in these next two bits specify to which corner
the gadget's
Left & Top coordinates are relative. If relative to Top(Left,
these are "normal" coordinates (everything is relative
to something in
this universe)

GRELBOTTOM equ $0008 set if reI to bottom, clear if
reI top

GRELRIGHT
to left

equ $0010 set if reI to right, clear if

; set the RELWIDTH bit to spec that width is relative to
width of screen

GRELWIDTH equ $0020
; set the RELHEIGHT bit to spec that Height is reI to height

of screen
GRELHEIGHT equ $0040

the SELECTED flag is initialized by you and set by Intuition.
It

specifies whether or not this Gadget is currently selected/highlighted

290:
291:
292:
293:

294:

295:
296:
297:
298:
299:
300:

301:
302:
303:
304:

305:

306:
307:
308:
309:

V 310:

0') 311:
t:-:)

312:
313:
314:

315:

316:

317:

318:

319:

320:

321:

322:
323 :
324:

325:

326:
327:
328:
329:
330:
331:

SELECTED equ $0080

the GADGDISABLED flag is initialized by you and later
set by Intuition
according to your calls to On/OffGadget(). It specifies
whether or not
this Gadget is currently disabled from being selected

GADGDISABLED equ $0100

--- These are the Activation flag bits ---------------------------------
RELVERIFY is set if you want to verify that the pointer
was still over
the gadget when the select button was released

RELVERIFY equ $0001

the flag GADGIMMEDIATE, when set, informs the caller that
the gadget
was activated when it was activated. this flag works
in conjunction with
the RELVERIFY flag

GADGIMMEDIATE equ $OOO~

the flag ENDGADGET, when set, tells the system that this
gadget, when
selected, causes the Requester or AbsMessage to be ended.
Requesters or

AbsMessages that are ended are erased and unlinked from
the system

ENDGADGET equ $0004

the FOLLOWMOUSE flag, when set, specifies that you want
to receive
reports on mouse movements (ie, you want the REPORTMOUSE
function for
your Window). When the Gadget is deselected (immediately
if you have
no RELVERIFY) the previous state of the REPORTMOUSE flag
is restored
You probably want to set the GADGIMMEDIATE flag when using
FOLLOWMOUSE,
since that's the only reasonable way you have of learning
why Intuition
is suddenly sending you a stream of mouse movement events.
If you don't

set RELVERIFY, you'll get at least one Mouse position
event.

FOLLOWMOUSE equ $0008

if any of the BORDER flags are set in a Gadget that's
included in the
Gadget list when a Window is opened, the corresponding
Border will
be adjusted to make room for the Gadget

RIGHTBORDER equ $0010
LEFTBORDER equ $0020
TOPBORDER equ $0040
BOTTOMBORDER equ $0080

332: TOGGLESELECT
mode

equ $0100 this bit for toggle-select

333:
334:
335:
336:
337:
338:
339 :
340:
341:
342:
343:

344 :

345:

346:
347:
348:
349 :
350:
351:
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:
372:
373:
374:

375:

376:
377:
378:

379:
380:

381:

382:

STRINGCENTER equ $0200
STRINGRIGHT equ $0400

LONGINT

ALTKEYMAP

equ $0800

equ $1000

; center the String
right-justify the String

This String Gadget is a Long Integer

This String has an alternate keymapping

--- GADGET TYPES --
These are the Gaget Type definitions for the variable
GadgetType.
Gadget number type MUST start from one. NO TYPES OF ZERO
ALLOWED.
first comes the mask for Gadget flags reserved for Gadget
typing

GADGETTYPE equ $FCOO
SYSGADGET equ $8000
SCRGADGET equ $4000
GZZGADGET equ $2000
REQGADGET equ $1000
; system gadgets
SIZING equ $0010
WDRAGGING equ $0020
SDRAGGING equ $0030
WUPFRONT equ $0040
SUPFRONT equ $0050
WDOWNBACK equ $0060
SDOWNBACK equ $0070
CLOSE equ $0080
; application gadgets
BOOLGADGET equ $0001
GADGET0002 equ $0002
PROPGADGET equ $0003
STRGADGET equ $0004

all
1
1
1
1

Gadget Global Type flags (padded)
SysGadget, 0 ~ AppliGadget
ScreenGadget, 0 ~ WindowGadget
Gadget for GIMMEZEROZERO borders
this is a Requester Gadget

this is the special data required by the proportional
Gadget
typically, this data will be pointed to by the Gadget
variable Special Info

STRUCTURE PropInfo,O

WORD pi_Flags ; general purpose flag bits (see defines
below)

; You initialize the Pot variables before the Gadget
is added to

; the system. Then you can look here for the current
settings

; any time, even while User is playing with this Gadget.

383:

384:

385:

386:
387:

388:

389:
390:

391:

392:

393:

394:

395:

396:
CI

397 :
0)

~ 398:

399:

400:

401:

402:

403:

404 :

405:
406:
407:
408:
409:
410:

411:

412:
413:
414:
415:
416:
417:
418:
419:

To
adjust these after the Gadget is added to the system,

use
; ModifyProp(); The Pots are the actual proportional

settings,
; where a value of zero means zero and a value of MAXPOT

means
; that the Gadget is set to its maximum setting.
WORD pi_HorizPot 16-bit FixedPoint horizontal quantity

percentage;
WORD pi_VertPot 16-bit FixedPoint vertical quantity

percentage;

; the 16-bit FixedPoint Body variables describe what
percentage

of the entire body of stuff referred to by this Gadget
is

actually shown at one time. This is used with the
AUTOKNOB

; routines, to adjust the size of the AUTOKNOB according
to how

; much of the data can be seen. This is also used to
decide how

; far to advance the Pots when User hits the container
of the Gadget.

; For instance, if you were controlling the display
of a 5-line

; Window of text with this Gadget, and there was a total
of 15

; lines that could be displayed, you would set the VertBody
value to

; (MAXBODY / (TotalLines / DisplayLines» ~ MAXBODY
/ 3.

; Therefore, the AUTOKNOB would fill 1/3 of the container,
and if

; User hits the cotainer outside of the knob, the pot
would advance

; 1/3 (plus or minus) If there's no body to show, or
the total

; amount of displayable info is less than the display
area, set the

; Body variables to the MAX. To adjust these after
the Gadget is

; added to the System, use ModifyProp().
WORD pi_HorizBody ; horizontal Body
WORD pi_VertBody ; vertical Body

; these are the variables that Intuition sets and maintains
WORD pi_CWidth Container width (with any relativity

absoluted)
WORD pi_CHeight

absoluted)
WORD pi_HPotRes
WORD pi_VPotRes ;
WORD pi_LeftBorder
WORD pi_TopBorder
LABEL pi_SIZEOF

container height (with any relativity

pot increments
pot increments

; container borders
; container borders

; --- FLAG BITS ---
AUTOKNOB equ $0001 ; this flag sez: gimrne that old auto-knob

420:
421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436 :
437:
438:
439:
440:

441:
442:
443:

444:

445:

446:
447:

448:

449:
450:

451:
452:

453:

454:
455:
456:
457:
458:

459:

460:

461:
462:

463:
464:

465:

FREEHORIZ equ $0002 ;
FREEVERT equ $0004 ; if
PROPBORDERLESS equ $0008

if set, the knob can move horizontally
set, the knob can move vertically

; if set, no border will be rendered
set when this Knob is hit KNOBHIT equ $0100

KNOBHMIN equ 6
KNOBVMIN equ 4

; minimum horizontal size of the knob
minimum vertical size of the knob

; maximum body value MAXBODY equ $FFFF
MAXPOT equ $FFFF ; maximum pot value

~~~ stringlnfo ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= 

this is the special data required by the string Gadget 
typically, this data will be pointed to by the Gadget 
variable Special Info 

STRUCTURE Stringlnfo,O 

; you initialize these variables, and then Intuition 
maintains them 

APTR si Buffer ; the buffer containing the start and 
final string 

APTR si_UndoBuffer optional buffer for undoing current 
entry 

WORD si BufferPos 
WORD si=MaxChars 

NULL) 
WORD si_DispPos 

character 

; character position in Buffer 
max number of chars in Buffer (including 

Buffer position of first displayed 

; Intuition initializes and maintains these variables 
for you 

WORD si UndoPos 
WORD si=Numchars 

Buffer 

character position in the undo buffer 
number of characters currently in 

WORD si_DispCount ; number of whole characters visible 
in container 

WORD si_CLeft ; topleft offset of the container 
WORD si_CTop ; topleft offset of the container 
APTR si_Layerptr ; the RastPort containing this Gadget 

; you can initialize this variable before the gadget 
is submitted to 

; Intuition, and then examine it later to discover what 
integer 

; the user has entered (if the user never plays with 
the gadget, 

; the value will be unchanged from your initial setting) 
LONG si_Longlnt the LONG return value of a LONGINT 

string Gadget 

If you want this Gadget to use your own Console keymapping, 
you 

set the ALTKEYMAP bit in the Activation flags of the 



466: 

467: 
468: 
469: 
470: 
471: 
472: 
473: 
474: 
475: 
476: 
477: 
478: 

479: 

480: 
481: 
482: 
483: 

484: 
485: 

V 486: 

487: 
Ol 488: .... 

489: 

490: 

491: 

492: 

493: 

494: 
495: 

496: 
497: 

498: 

499: 
500: 
501: 
502: 
503: 
504: 

505: 
506: 
507: 
508: 
509: 

Gadget, and then 
; set this variable to point to your keymap·. If you 

don't set the 
; ALTKEYMAP, you'll get the standard ASCII keymapping. 
APTR si_AltKeyMap 

LABEL si_SIZEOF 

======================================================================== 

======================================================================== 

IntuiText is a series of strings that start with a screen 
location 
(always relative to the upper-left corner of something) 
and then the 
text of the string. The text is null-terminated. 

STRUCTURE IntuiText,O 

UBYTE it_FrontPen ; the pens for rendering the 
text 

UBYTE it_BackPen the pens for rendering the text 

UBYTE it_DrawMode the mode for rendering the 
text 

; The following variable is strictly from Kludge-City, 
where some people 

; still live. It is included solely because our types.i 
macros aren't 

; smart enough to do the right thing, which would be 
the automatic 

; word-alignment to these references as it SHOULD be 
in order to duplicate 

; the way alignments are adjusted in the c-language. 
And instead of 

; correcting the problem, I am obliged to kludge up 
my include.i files. 

; So here it is! 
BYTE it_KludgeFillOO defined as a BYTE because this 

does 

IDRD it_LeftEdge relative start location for the 
text 

IDRD it_TopEdge relative start location for the 
text 

APTR it_ITextFont ; if NULL, you accept the defaults 

APTR it_IText pointer to null-terminated text 

APTR it_NextText 
text 

LABEL it_SIZEOF 

; continuation to Txwrite another 

510: 
511: 
512: 
513: 
514: 
515: 

516: 

517: 
518: 
519: 

520: 
521: 

522: 
523: 
524: 
525: 
526: 
527: 
528: 
529: 
530: 
531: 

532: 

533: 
534: 
535: 
536: 
537: 

538: 

539: 

540: 

541: 
542: 
543: 
544: 

545: 

546: 
547: 
548: 
549: 

550: 
551: 

552: 

~~~ Border ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Data type Border, used for drawing a series of lines which
is intended for
use as a border drawing, but which may, in fact, be used
to render any
arbitrary vector shape.
The routine DrawBorder sets up the RastPort with the appropriate
variables, then does a Move to the first coordinate, then
does Draws
to the subsequent coordinates.
After all the Draws are done, if NextBorder is non-zero
we call DrawBorder
recursively

STRUCTURE Border,O

IDRD bd_LeftEdge
IDRD bd_TOpEdge
UBYTE bd FrontPen
UBYTE bd=BackPen
UBYTE bd_DrawMode
BYTE bd Count
APTR bd-XY

LeftTop -
APTR bd_NextBorder

too

initial offsets from the origin
initial offsets from the origin

; pen number for rendering
pen number for rendering

; mode for rendering
number of XY pairs
vector coordinate pairs reI to

; pointer to any other Border

This is a brief image structure for very simple transfers
of
image data to a RastPort

STRUCTURE Image,O

WORD ig_LeftEdge

WORD ig_ TopEdge

IDRD ig width
IDRD ig=Height
WORD ig Depth
APTR ig=ImageData

bits

starting offset relative to something

starting offset relative to something

pixel size (though data is word-aligned)
; pixel size

pixel size
; pointer to the actual image

; the PlanePick and PlaneOnOff variables work much the
same way as the

equivalent GELS Bob variables. It's a space-saving

553: ; mechanism for image data. Rather than defining the
image data

554:

555:

556:

557:

558:

559:

560:

561:

562:
563:

564:

565:

566:

567:
U

568:
0:> 569:
Cll 570:

571:

572:
573:

574:

575:

576:
577:
578:
579:

580:

581:
582:
583.:
584:
585:
586:
587:
588:
589 :
590:

591:

592 :

; for every plane of the RastPort, you need define data
only for planes

; that are not entirely zero or one. As you define
your Imagery, you will

; often find that most of the planes ARE just as color
selectors. For

instance, if you're designing a two-color Gadget to
use colors two and

; three, and the Gadget will reside in a five-plane
display, plane zero

; of your imagery would be all ones, bit plane one would
have data that

; describes the imagery, and bit planes two through
four would be

; all zeroes. Using these flags allows you to avoid
wasting all that

; memory in this way:
; first, you specify which planes you want your data

to appear
; in using the PlanePick variable. For each bit set

in the variable, the
; next "plane" of your image data is blitted to the

display. For each bit
; clear in this variable, the corresponding bit in PlaneOnOff

is examined.
; If that bit is clear, a "plane" of zeroes will be

used. If the bit is
set, ones will go out instead. So, for our example:

Gadget.Planepick ~ Ox02;
Gadget.PlaneOnOff ~ OxOl;

Note that this also allows for generic Gadgets, like
the System Gadgets,

; which will work in any number of bit planes
; Note also that if you want an Image that is only a

filled rectangle,
; yo~ can get this by setting PlanePick to zero (pick

no planes of data)
; and set PlaneOnOff to describe the pen color of the

rectangle.
BYTE ig_PlanePick
BYTE ig_PlaneOnOff

; if the NextImage variable is not NULL, Intuition presumes
that

; it points to another Image structure with another
Image to be

; rendered
APTR ig_NextImage

LABEL ig_SIZEOF

593:
594:
595:
596:
597:

598:
599:
600:
601:

602:
603:
604:

605:
606:
607:

608:
609:
610:
611:

612:

613:

614:
615:
616:
617:

618:
619:
620:
621:
622:

623:
624:
625:
626:
627:
628:
629:
630:
631:
632:
633:

634:
635:
636:

637:

638:

STRUCTURE IntuiMessage,O

STRUCT im_ExecMessage,MN_SIZE

; the Class bits correspond directly with the IDCMP
Flags, except for the

; special bit LONELYMESSAGE (defined below)
ULONG im_Class

; the Code field is for special values like MENU number

; the Qualifier field is a copy of the current InputEvent's
Qualifier

WORD im_Qualifier

; IAddress contains particular addresses for Intuition
functions, like

; the pointer to the Gadget or the Screen
APTR im_IAddress

when getting mouse movement reports, any event you
get will have the

the mouse coordinates in these variables. the coordinates
are relative

; to the upper-left corner of your Window (GIMMEZEROZERO
notwithstanding)

WORD im_MouseX
WORD im_MouseY

; the time values are copies of the current system clock
time. Micros

; are in units of microseconds, Seconds in seconds.
LONG im_Seconds
LONG im_Micros

; the IDCMPWindow variable will always have the address
of the Window of

; this IDCMP
APTR im_IDCMPWindow

; system-use variable
APTR im_SpecialLink

LABEL im_SIZEOF

; --- IDCMP Classes --

SIZEVERIFY equ $00000001 See the Programmer's Guide
NEWSIZE equ $00000002 See the Programmer's Guide
REFRESHWlNOOW equ $00000004 See the Programmer's

Guide
MOUSEBUTTONS equ $00000008 See the Programmer's

Guide
MOUSEMOVE equ $00000010 See the Programmer's Guide

V

Ol
Ol

639:
640:

641:
642:

643:
644:

645:
646:

647:
648:

649:

650:

651:

652:

653:

654:
655:
656:
657:

658:
659:

660:

661:

662:

663:
664:
665:
666:
667:

668:
669:

670:

671:

672:
673:
674:
675:
676:
677:
678:
679:

GADGETDOWN equ $00000020
GADGETUP equ $00000040

REQSET equ $00000080
MENUPICK equ $00000100

CLOSEWINOOW equ
RAWKEY equ

$00000200
$00000400

REQVERIFY equ $00000800
REQCLEAR equ $00001000

MENUVERIFY equ $00002000
NEWPREFS equ $00004000

; See the Programmer's Guide
See the Programmer's Guide

; See the Programmer's Guide
See the Programmer's Guide

See the Programmer's Guide
See the Programmer's Guide

; See the Programmer's Guide
See the Programmer's Guide

; See the Programmer's Guide
See the Programmer's Guide

DISKINSERTED equ $00008000 ; See the Programmer's
Guide

DISKREMOVED equ $00010000 See the Programmer's Guide

WBENCHMESSAGE equ
Guide

ACTIVEWINOOW equ
Guide

INACTIVEWINOOW equ
Guide

DELTAMOVE equ
VANILLAKEY equ
INTUITICKS equ

NOTEZ-BIEN:
by IDCMP

$00020000

$00040000

$00080000

See the Programmer's

See the Programmer's

See the Programmer's

$00100000
$00200000
$00400000
$80000000

See the Programmer's Guide
See the Programmer's Guide

; See the Programmer's Guide
is reserved for internal use

the IDCMP Flags do not use this special bit, which is
cleared when
Intuition sends its special message to the Task, and set
when Intuition
gets its Message back from the Task. Therefore, I can
check here to
find out fast whether or not this Message is available
for me to send

LONELYMESSAGE equ $80000000

--- IDCMP Codes --

This group of codes is for the MENUVERIFY function
MENUHOT equ $0001 Intuiwants verification or MENUCANCEL

MENUCANCEL equ
operation

MENUWAITING equ
ASAP

$0002

$0003

HOT Reply of this cancels Menu

Intuition simply wants a ReplyMsg()

This group of codes is for the WBENCHMESSAGE messages
WBENCHOPEN equ $0001
WBENCHCLOSE equ $0002

680:

681:'

682:

683:
684:
685:
686:
687:
688:
689:
690:
691:
692:
693:
694:
695:
696:
697:
698:
699:
700:
701:
702:
703:
704:
705:
706:

707:
708:

709:
710:
711:
712:

713:

714:

715:

716:

717:

718:

719:

720:
721:
722:
723:
724:
725:
726:

=== Window ===

STRUCTURE Window,O

APTR wd_NextWindow ; for the linked list of a Screen

WORD wd_LeftEdge
WORD wd_TopEdge
WORD wd Width
WORD wd::':Height

screen dimensions
; screen dimensions

screen dimensions
screen dimensions

WORD wd_MouseY
WORD wd_MouseX

WORD wd MinWidth
WORD wd::':MinHeight
WORD wd Maxwidth
WORD wd::':MaxHeight

relative top top-left corner
relative top top-left corner

minimum sizes
i minimum sizes

maximum sizes
; maximum sizes

see below for definitions

APTR wd_Menustrip first in a list of menu headers

title text for the Window

APTR wd_FirstRequest
Requesters

APTR wd_DMRequest
WORD wd ReqCount

this Window

first in linked list of active

; the double-menu Requester
number of Requesters blocking

; this Window's Screen APTR wd_WScreen
APTR wd_RPort this Window's very own RastPort

; the border variables describe the window border.
If you specify

; GIMMEZEROZERO when you open the window, then the upper-left
of the

; ClipRect for this window will be upper-left of the
BitMap (with correct

; offsets when in SuperBitMap mode; you MUST select
GIMMEZEROZERO when

; using SuperBitMap). If you don't specify Zero Zero ,
then you save

; memory (no allocation of RastPort, Layer, ClipRect
and associated

; Bitmaps), but you also must offset all your writes
by BorderTop,

; BorderLeft and do your own mini-clipping to prevent
writing over the

; system gadgets
BYTE wd BorderLeft
BYTE wd::':BorderTOp
BYTE wd_BorderRight
BYTE wd BorderBottom
APTR wd::':BorderRPort

727:

728:

729:

730:
731:
732:
733:
734:
735:
736:
737:
738:
739:
740:
741:
742:
743:
744:
745:

746:
747:
748:
749:

c:; 750:
751:

0:>
752:

'I 753:
754:

755:

756:
757:
758:
759:
760:
761:
762:

763:

764:

765:
766:
767:
768:
769:

770:
771:
772:
773:
774:
775:
776:

; You supply a linked-list of gadget that you want for
your Window.

; This list DOES NOT include system Gadgets. You get
the standard

; window system Gadgets by setting flag-bits in the
variable Flags (see

; the bit definitions below)
APTR wd_FirstGadget

; these are for opening/closing the windows
APTR wd_Parent
APTR wd_Descendant

; sprite data information for your own Pointer
; set these AFTER you Open the Window by calling SetPointer()
APTR wd Pointer
BYTE wd=ptrHeight
BYTE wd_ptrWidth
BYTE wd XOffset
BYTE wd=YOffset

; the IDCMP Flags and User's and Intuition's Message
Ports

ULONG wd_IDCMPFlags
APTR wd UserPort
APTR wd=WindowPort
APTR wd~essageKey

BYTE wd_DetailPen
BYTE wd_BlockPen

; the CheckMark is a pointer to the imagery that will
be used when

; rendering MenuItems of this Window that want to be
checkmarked

; if this is equal to NULL, you'll get the default imagery
APTR wd_CheckMark

; if non-null, Screen title when Window is active
APTR wd_ScreenTitle

; These variables have the mouse coordinates relative
to the

; inner-Window of GIMMEZEROZERO Windows. This is compared
with the

; MouseX and MouseY variables, which contain the mouse
coordinates

; relative to the upper-left corner of the Window, GIMMEZEROZERO
; notwithstanding
SHORT wd_GZZMouseX
SHORT wd GZZMouseY
; these variables contain the width and height of the

inner-Window of
; GIMMEZEROZERO Windows
SHORT wd GZzwidth
SHORT wd=GZZHeight

; general-purpose pointer to User data extension

777:
778:
779:
780:
781:
782:

783:

784:

785:

786:

787:
788:

789:

790:
791:
792:

793:
794:
795:
796:
797:
798:
799:

800:
801:

802:
803:
804:
805:

806:
807:

808:
809:
810:

811:

812:

813:
814:
815:

816:

817:
818:
819:

APTR wd_UserData
APTR wd_WLayer stash of Window.RPort-)Layer

--- FLAGS REQUESTED (NOT DIRECTLY SET THOUGH) BY THE APPLIPROG

WINDOWSIZING equ $0001 include sizing system-gadget?

WINDOWDRAG equ $0002 include dragging system-gadget?

WINDOWDEPTH equ $0004 include depth arrangement gadget?

WINDOWCLOSE equ $0008 include close-box system-gadget?

SIZEBRIGHT equ $0010 size gadget uses right border

SIZEBBOTTOM equ $0020 size gadget uses bottom border

--- refresh modes --
combinations of the REFRESHBITS select the refresh type

REFRESHBITS equ $OOCO
SMART_REFRESH equ $0000
SIMPLE_REFRESH equ $0040
SUPER_BITMAP equ $0080
OTHER_REFRESH equ $OOCO

BACKDROP equ $0100 ; this is an ever-popular BACKDROP
window

REPORTMOUSE equ $0200 set this to hear about every mouse
move

GIMMEZEROZERO equ $0400

BORDERLESS equ $0800
border

; make extra border stuff

set this to get a Window sans

ACTIVATE equ $1000
one

when Window opens, it's the Active

FLAGS SET BY INTUITION
WINDOWACTIVE equ $2000 this window is the active one

INREQUEST equ $4000 this window is in request mode

MENUSTATE equ $8000 this Window is active with
its Menus on

Other User Flags --
RMBTRAP equ $00010000 Catch RMB events for your own

NOCAREREFRESH equ $00020000 ; not to be bothered with
REFRESH

WINDOWREFRESH equ $01000000 Window is currently refreshing

CI

0:>
00

820:
821:

822:
823:
824:
825:
826:
827:
828:

829:
830:
831:
832:
833:
834:
835:
836:
837:
838:

839:

840:

841:
842:
843:
844:
845:
846:
847:
848:

849:

850:
851:
852:
853:
854:
855:
856:

857:

858:
859:
860:
861:

862:

863:
864:
865:
866:
867:
868:

WBENCHWINJX)W
WINJX)WTI CKED

time

equ $02000000
equ $04000000

WorkBench Window
only one timer tick at a

equ $FCFCOOOO ;bits of Flag unused yet

--- see struct IntuiMessage for the IDCMP Flag definitions

STRUCTURE NewWindow,O

WORD nw_LeftEdge
WORD nw TopEdge
WORD nw -Width
WORD nw:}ieight

BYTE nW_DetailPen
of the Window

BYTE nW_BlockPen

ULONG nW_IDCMPFlags

; initial Window dimensions
; initial Window dimensions

initial Window dimensions
initial Window dimensions

; for rendering the detail bits

for rendering the block-fill bits

; initial IDCMP state

; see the Flag definition under Window

You supply a linked-list of Gadgets for your Window.
This list DOES NOT include system Gadgets. You get

the standard
system Window Gadgets by setting flag-bits in the

variable Flags (see
; the bit definitions under the Window structure definition)
APTR nw_FirstGadget

; the checkMark is a pointer to the imagery that will
be used when

; rendering MenuItems of this Window that want to be
checkmarked

; if this is equal to NULL, you'll get the default imagery
APTR nw_CheckMark

title text for the Window

; the Screen pointer is used only if you've defined

869:

870:

871:
872:
873:
874:

875:

876:
877:
878:
879:

880:

881:

882:

883:

884:

885:

886:
887:
888:

889:
890:
891:
892:
893:
894:
895:

896:

897:

898:
899:
900:
901:
902:
903:
904 :
905:
906:

907:

908:

909:

a CUSTOMSCREEN and
; want this Window to open in it. If so, you pass the

address of the
; Custom Screen structure in this variable. Otherwise,

this variable
; is ignored and doesn't have to be initialized.
APTR nw_Screen

; SUPER_BITMAP Window? If so, put the address of your
BitMap structure

in this variable. If not, this variable is ignored
and doesn't have

; to be initialized
APTR nw_BitMap

; the values describe the minimum and maximum sizes
of your Windows.

; these matter only if you've chosen the WINJX)WSIZING
Gadget option,

; which means that you want to let the User to change
the size of

; this Window. You describe the minimum and maximum
sizes that the

; Window can grow by setting these variables. You can
initialize

; anyone these to zero, which will mean that you want
to duplicate

; the setting for that dimension (if MinWidth ~~ 0,
MinWidth will be

set to the opening width of the Window).
; You can change these settings later using SetWindowLimits().
; If you haven't asked for a SIZING Gadget, you don't

have to
; initialize any of these variables.
WORD nw MinWidth
WORD nW=MinHeight
WORD nw MaxWidth
WORD nW=MaxHeight

; the type variable describes the Screen in which you
want this Window to

open. The type value can either be CUSTOMSCREEN or
one of the

; system standard Screen Types such as WBENCHSCREEN.
See the

; type definitions under the Screen structure
WORD nw_Type

STRUCTURE Screen,O

910:
911:
912:
913:
914:
915:
916:
917:
918:
919:
920:
921:
922:
923:
924:
925:
926:
927:
928:

929:
930:
931:
932:
933:

t:' 934:
935:
936:

0:> 937: <:0
938:
939:

940:

941:

942:

943:

944:

945:
946:

947:
948:
949:
950:

951:
952 :

953 :

954 :
955:
956 :

957 :

APTR sc NextScreen
APTR sC=FirstWindow

WORD sc_LeftEdge
WORD sc_TopEdge

linked list of screens
linked list Screen's Windows

parameters of the screen
parameters of the screen

WORD sc Width
WORD sC=Height

null-terminated Title text
for Windows without ScreenTitle

WORD sc_MouseY
WORD sC_MouseX

position relative to upper-left
position relative to upper-left

see definitions below

APTR sc Title
APTR sC=DefaultTitle

i Bar sizes for this Screen and all Window's in this
Screen

BYTE sc_BarHeight
BYTE sc BarVBorder
BYTE sc-BarHBorder
BYTE sc-MenuVBorder
BYTE sC=MenuHBorder
BYTE sc _ WBorTop
BYTE sc WBorLeft
BYTE sC=WBorRight
BYTE sc_WBorBottom

i The following variable is strictly from Kludge-City,
where some people

i. still live. It is included solely because our types.i
macros aren't

i smart enough to do the right thing, which would be
the automatic

i word-alignment to these references as it SHOULD be
in order to duplicate

i the way alignments are adjusted in the c-language.
And instead of

i correcting the problem, I am obliged to kludge up
my include.i files.

i So here it is!
BYTE sc_KludgeFillOO defined as a BYTE because this

does

i the display data structures for this Screen
APTR sc Font i this screen's default font
STRUCT sc_ViewPort,vp_SIZEOF describing the Screen's

display
STRUCT sc RastPort,rp SIZEOF
STRUCT sC=BitMap,bm_SIZEOF

baggage
STRUCT sc_LayerInfo,li_SIZEOF

LayerInfo

describing Screen rendering
auxiliary graphexcess

each screen gets a

You supply a linked-list of Gadgets for your Screen.
This list DOES NOT include system Gadgets. You get

the standard
system Screen Gadgets by default

958:
959:
960:
961:
962:
963:

964:
965:
966:
967:
968:
969:
970:
971:
972:

973:
974:
975:
976:
977:
978:

979:
980:

981:
982:
983:
984:
985:

986:
987:
988:
989:

990:
991:
992:
993:
994:

995:

996:

997:
998:
999:

1000:
1001:
1002:
1003:
1004:
1005:

1006:

APTR sc_FirstGadget

BYTE sC_DetailPen
BYTE SC_BlockPen

i for barfborder/gadget rendering
for barfborder/gadget rendering

i the following variable(s) are maintained by Intuition
to support the

i DisplayBeep() color flashing technique
WORD sc_SaveColorO

i This layer is for the Screen and Menu bars
APTR sc_BarLayer

APTR sc_UserData
data

general-purpose pointer to User

--- FLAGS SET BY INTUITION --
The SCREENTYPE bits are reserved for describing various
Screen types
available under Intuition.

SCREENTYPE equ $OOOF i all the screens types available

i --- the definitions for the Screen Type ---------------------------------
WBENCHSCREEN equ $0001 i Ta Da! The Workbench
CUSTOMSCREEN equ $OOOF i for that special look

SHOWTITLE equ $0010 i this gets set by a call to ShowTitle()

BEEPING equ $0020 i set when Screen is beeping

CUSTOMBITMAP equ $0040 i if you are supplying your own
BitMap

==

STRUCTURE NewScreen,O

WORD nS_LeftEdge
WORD ns_TopEdge
WORD ns Width
WORD nS=Height
WORD ns_Depth

BYTE ns DetailPen
Windows toO)

BYTE nS_BlockPen
toO)

i initial Screen dimensions
i initial Screen dimensions

initial Screen dimensions
i initial Screen dimensions

initial Screen dimensions

i default rendering pens (for

default rendering pens (for Windows

1007:
1008:
1009:
1010:
1011:
1012:
1013:
1014:
1015:
1016:
1017:
1018:

1019:

1020:

1021:

1022:

1023 :
1024:
1025:
1026:

t:I 1027:
1028:
1029:

-l 1030:
0 1031:

1032:
1033:
1034:

1035:

1036:

1037:
1038:

1039:
1040:
1041:

1042:
1043:

1044:

1045:

1046:

1047:

1048:

1049:

I'DRD ns_ViewModes ; display "modes" for this Screen

I'DRD nS_Type Intuition Screen Type specifier

APTR nS_Font default font for Screen and Windows

APTR nS_DefaultTitle ; Title when Window doesn't care

APTR nS_Gadgets Your own initial Screen Gadgets

; if you are opening a CUSTOMSCREEN and already have
a BitMap

; that you want used for your Screen, you set the flags
CUSTOMBITMAP in

; the Types variable and you set this variable to point
to your BitMap

; structure. The structure will be copied into your
Screen structure,

; after which you may discard your own BitMap if you
want

APTR nS_CustomBitMap;

LABEL

; these are the definitions for the printer configurations

FILENAME_SIZE equ 30

POINTERSIZE
buffer

equ

; Filename size

(1+16+1)*2 ; Size of Pointer data

These defines are for the default font size. These actually
describe the
height of the defaults fonts. The default font type is
the topaz
font, which is a fixed width font that can be used in
either
eighty-column or sixty-column mode. The Preferences structure
reflects
which is currently selected by the value found in the
variable FontSize,
which may have either of the values defined below. These
values actually
are used to select the height of the default font. By
changing the

1050:
1051:
1052:
1053:
1054 :
1055:
1056:
1057:
1058:
1059:
1060:
1061:
1062:
1063:
1064:
1065:
1066:
1067:
1068:
1069:

1070:
1071:
1072:

1073:
1074:
1075:
1076:
1077:
1078:
1079:
1080:
1081:
1082:
1083:
1084:
1085:
1086:
1087:
1088:
1089 :
1090:
1091:
1092:
1093:
1094:
1095:
1096:
1097:
1098:
1099:
1100:
1101:
1102:
1103 :
1104:
1105:
1106:
1107:

; height, the resolution of the font changes as well.
TOPAZ_EIGHTY equ 8
TOPAZ_SIXTY equ 9

. --,
STRUCTURE Preferences,O

; the default font height
BYTE pf_FontHeight ; height for system default font

; constant describing what's hooked up to the port
UBYTE pf_PrinterPort ; printer port connection

; the baud rate of the port
USHORT pf_BaudRate ; baud rate for the serial port

; various timing rates
STRUCT pf_KeyRptSpeed,TV_SIZE
STRUCT pf_KeyRptDelay,TV_SIZE
STRUCT pf_DoubleClick,TV_SIZE

repeat speed for keyboard
Delay before keys repeat
Interval allowed between

clicks

; Intuition Pointer data
STRUCT pf_PointerMatrix,POINTERSIZE*2 ; Definition of

pointer sprite
BYTE pf_XOffset
BYTE pf_YOffset
I'DRD pf_colorl7
I'DRD pf_color18

; X-offset for active 'bit'
; Y-offset for active 'bit'
i********************************
; Colours for sprite pointer

WORD pf color19 i********************************
I'DRD pf=pointerTicks

; Workbench Screen
I'DRD pf_colorO
I'DRD pf_colorl
I'DRD pf_color2
I'DRD pCcolor3

; Sensitivity of the pointer

colors
i********************************

Standard default colours
Used in the Workbench

i********************************

; positioning data for
BYTE pf_ViewXOffset
BYTE pf_ViewYOffset
I'DRD pf_ViewlnitX

the Intuition View
Offset for top lefthand corner
X and Y dimensions
View initial offsets at startup
View initial offsets at startup I'DRD pf_ViewlnitY

BOOL EnableCLI CLI availability switch

; printer configurations
I'DRD pf_PrinterType printer type
STRUCT pf_PrinterFilename,FILENAME_SIZE file for printer

; print format and quality configurations
SHORT pf_PrintPitch ; print pitch
I'DRD pf_PrintQuality print quality
I'DRD pf_PrintSpacing ; number of lines per inch
Ul'DRD pf_PrintLeftMargin ; left margin in characters
Ul'DRD pf_PrintRightMargin ; right margin in characters
I'DRD pf_Printlmage positive or negative
I'DRD pf_PrintAspect horizontal or vertical
I'DRD pf_PrintShade b&w, half-tone, or color
I'DRD pf_PrintThreshold darkness ctrl for b/w dumps

1l0B:
1l09:
11l0:
llll:
11l2:
11l3:
1114:
IllS:
11l6:
1117:
111B:
11l9:
1120:
ll21:
ll22:
ll23:
ll24:
ll2S:
ll26:
ll27:
ll2B:
ll29:
ll30:
ll31:
ll32:
ll33:
ll34:
ll3S:
ll36:
ll37:
ll3B:
ll39:
ll40:
ll41:
ll42 :
ll43:
ll44:
ll4S:
ll46:
ll47 :
ll4B:
ll49 :
llSO:
llSl:
llS2:
llS3:
llS4:
llSS:
llS6:
llS7:
llSB:
llS9:
ll60:
ll61:
ll62 :
ll63:
ll64 :
ll6S:
ll66:
ll67 :

; print paper description
WORD pf_PaperSize paper size
UWORD pf_PaperLength paper length in lines
WORD pf_PaperType continuous or single sheet

STRUCT pf-padding,SO

LABEL pf_SIZEOF

PrinterPort
PARALLEL_PRINTER equ $00
SERIAL_PRINTER equ $01

; BaudRate
BAUD_110 equ $00
BAUD_300 equ $01
BAUD_1200 equ
BAUD_2400 equ
BAUD_4BOO equ
BAUD_9600 equ
BAUD_19200 equ
BAUD_MIDI equ

; PaperType
FANFOLD equ $00

$02
$03
$04
$05
$06
$07

SINGLE equ $BO

; PrintPitch
PICA equ $000
ELITE equ $400
FINE equ $BOO

; PrintQuality
DRAFT equ $000
LETTER equ $100

; PrintSpacing
SIX_LPI equ $000
EIGHT_LPI equ $200

; Print Image
IMAGE_POSITIVE equ 0
IMAGE_NEGATIVE equ 1

; PrintAspect
ASPECT HORIZ equ 0
ASPECT_VERT equ 1

; PrintShade
SHADE_BW equ $00
SHADE_GREYSCALE equ $01
SHADE_COLOR equ $02

; PaperSize
US_LETTER equ $00

For further system expansion

ll6B:
ll69:
ll70:
ll7l:
ll72:
ll73:
ll74:
ll7S:
ll76:
ll77:
ll7B:
ll79:
llBO:
llBl:
llB2:
llB3:
llB4:
llBS:
llB6:
llB7:
llBB:
llB9:
ll90:
ll91:
ll92:
ll93:
ll94:
ll9S:

ll96:

ll97:
ll9B:
ll99:
1200:
1201:
1202:
1203:
1204:
1205:
1206:
1207:
120B:

1209 :

1210:

12ll:
1212:

1213:
1214:
1215:
1216:
1217:
121B:
1219:
1220:
1221:

US_LEGAL equ $10
N_TRACTOR equ $20
W_TRACTOR equ $30
CUSTOM equ $40

; PrinterType
CUSTOM_NAME equ $00
ALPHA_P_IOI equ $01
BROTHER_lSXL equ $02
CBM_MPSIOOO equ $03
DIAB_630 equ $04
DIAB_ADV_D2S equ $05
DIAB_C_lS0 equ $06
EPSON equ $07
EPSON_JX_BO equ $OB
OKlMATE_20 equ $09
QUME_LP_20 equ $OA
; new printer entries, 3 October 19B5
HP_LASERJET equ $OB
HP_LASERJET_PLUS equ $OC

this structure is used for remembering what memory has
been allocated to
date by a given routine, so that a premature abort or
systematic exit
can deallocate memory cleanly, easily, and completely

STRUCTURE Remember,O

APTR rm_NextRemember
ULONG rm_RememberSize
APTR rm _Memory

LABEL

;#define MENUNUM(n) (n & OxlF)
;#define ITEMNUM(n) ((n » 5) & Ox003F)
;#define SUBNUM(n) ((n » 11) & OxOOlF)
;
;#define SHIFTMENU(n) (n & OxlF)
;#define SHIFTITEM(n) ((n & Ox3F) « 5)
;#define SHIFTSUB(n) ((n & OxlF) « 11)

t::;I

-.:t
t-;>

1222:
1223:
1224:
1225:
1226:
1227:
1228:

1229:
1230:
1231:
1232:
1233:

1234:

1235:
1236:
1237:
1238:
1239:
1240:
1241:
1242:

1243:

1244:
1245:
1246:

1247:

1248:
1249:
1250:

1251:

1252:

1253:
1254 :
1255:
1256:
1257:
1258:
1259:
1260:
1261:
1262:
1263:
1264:

NOMENU equ $OOlF
NOITEM equ $003F
NOSUB equ $OOlF
MENUNULL equ $FFFF

; ~ ~RJ~'s peculiarities ~~~

;#define FOREVER for(;;)
;#define SIGN(X) («x) > 0) - «x) < 0))

these defines are for the COMMSEQ and CHECKIT menu stuff.
If CHECKIT,

I'll use a generic width (for all resolutions) for the
checkMark.
If COMMSEQ, likewise I'll use this generic stuff

CHECKWIDTH equ 19
COMMWIDTH equ 27
LOWCHECKWIDTH equ 13
LOWCOMMWIDTH equ 16

these are the A1ertNumber defines. if you are calling
Disp1ayA1ert()
the A1ertNumber you supply must have the ALERT_TYPE bits
set to one
of these patterns

ALERT_TYPE equ $80000000
RECOVERY_ALERT equ $00000000 the system can recover

from this
DEADEND_ALERT equ

this is it
$80000000 no recovery possible,

When you're defining IntuiText for the Positive and Negative
Gadgets
created by a call to AutoRequest(), these defines will
get you
reasonable-looking text. The only field without a define
is the IText
field; you decide what text goes with the Gadget

AUTOFRONTPEN equ 0
AUTOBACKPEN equ 1
AUTODRAWMODE equ RP_JAM2
AUTOLEFTEDGE equ 6
AUTOTOPEDGE equ 3
AUTOITEXTFONT equ 0
AUTONEXTTEXT equ 0

ENDC

1:
2:
3:
4 :
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:

28:
29:
30:
31:

32:
33:
34:

35:

36:

37:
38:
39:
40:
41:
42:
43:
44:

45:
46:
47:
48:
49:
50:
51:
52:

IFND INTUITION INTUITIONBASE I
INTUITION_INTUITIONBASE_I SET 1-

*** intuitionbase.i ***
* Comrnodore-Amiga, Inc.
* * the IntuitionBase structure and supporting structures

* * Modification History
* date author Comments

*
*
*

3-1-85 -jirrm

**/

IFND EXEC LIBRARIES I
INCLUDE "exec/libraries.i"
ENDC

IFND GRAPHICS VIEW I
INCLUDE "graphics/view.i"
ENDC

* Be sure to protect yourself against someone modifying
these data as

* you look at them. This is done by calling:

* * lock ~ LockIBase(O), which returns a ULONG. When done
call

* DO DO
* Un1ockIBase(lock) where lock is what LockIBase() returned.
* AO
* NOTE: these library functions are simply stubs now, but

should be called
* to be compatible with future releases.

* ==

* * ~~~ IntuitionBase ~~

* * ==

*
STRUCTURE IntuitionBase,O

STRUCT ib LibNode,LIB SIZE
STRUCT ib-ViewLord,SIZEOF VIEW
APTR ib ActiveWindow -
APTR ib=Activescreen

* the Firstscreen variable points to the frontmost Screen.
Screens are

* then maintained in a front to back order using Screen.NextScreen

APTR ib_FirstScreen

* there is not size here because ...
*
*

ENDC

Contents

libraries/diskfont.i
libraries/dos.i
libraries/dos lib.i
libraries/dosextens.i
libraries/translator.i

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

IFND LIBRARIES_DISKFONT_I
LIBRARIES_DISKFONT_I SET 1
**

*
*

Commodore-Amiga, Inc.
diskfont.i

*
*

**
**

*
* disk font library definitions

*
**

IFND EXEC_NODES_I
INCLUDE "exec/nodes.i"
ENDC
IFND EXEC_LISTS_I
INCLUDE "exec/lists.i"
ENDC
IFND GRAPHICS_TEXT_I
INCLUDE "graphics/text.i"
ENDC

MAXFONTPATH EQU 256 including null terminator

STRUCTURE FC,O
STRUCT fc FileName,MAXFONTPATH
UIDRD fc_ysIze
UBYTE fC_Style
UBYTE fC_Flags
LABEL fC_SIZEOF

EQU $OfOO

STRUCTURE FCH,O
UIDRD fch FileID ; FCH ID
UIDRD fch=NumEntries ; the number of FontContents elements
LABEL fch_FC ; the FontContents elements

DFH_ID EQU
MAXFONTNAME EQU

$Of80
32 ; font name including ".font\O"

STRUCTURE DiskFontHeader,O
the following 8 bytes are not actually considered a part of the
DiskFontHeader, but immediately preceed it. The NextSegment is supplie
by the linker/loader, and the ReturnCode is the code at the beginning
of the font in case someone runs it ...
ULONG dfh_NextSegment actually a BPTR
ULONG dfh ReturnCode MOVEQ #O,DO : RTS
here then-is the official start of the DiskFontHeader ...

STRUCT dfh DF,LN SIZE node to link disk fonts
UIDRD dfh FileID - DFH ID
UIDRD dfh-Revision the-font revision in this version
LONG dfh=segment the segment address when loaded
STRUCT dfh Name,MAXFONTNAME ; the font name (null terminated)
STRUCT dfh-TF,tf SIZEOF ; loaded TextFont structure
LABEL dfh_SIZEOF -

60
61
62
63
64
65
66
67
68
69
70
71
72

BITDEF AF,MEMORY,0
BITDEF AF,DISK,l

STRUCTURE AF,O
uw)RD af_Type ; MEMORY or DISK
STRUCT af_Attr,ta_SIZEOF; text attributes for font
LABEL aCSIZEOF

STRUCTURE APH,O
uw)RD afh_NumEntries
LABEL afh_AF

ENDC

; number of AvailFonts elements
the AvailFonts elements

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

IFND LIBRARIES_DOS_I
LIBRARIES_DOS_I SET 1

**

*
*

Commodore-Amiga, Inc.
dos.i

*
*

**
* Standard assembler header for Amiga DOS on the MC68000

* IFND EXEC TYPES I
* INCLUDE "exec/tyPes. i "
* ENDC

DOSNAME MACRO
DC.B 'dos.library' ,0
ENDM

* Predefined Amiga DOS global constants

* Mode parameter to Open()
MODE_OLDFILE EQU
*

EQU

1005

1006

* Open existing file readjwrite
* positioned at beginning of file.
* Open freshly created file (delete
* old file) read/write

* Relative position
OFFSET_BEGINNING
OFFSET_CURRENT
OFFSET_END

to Seek ()
EQU -1 * relative to Beginning of File
EQU 0 * relative to Current file position

* relative to End of File EQU 1

OFFSET_BEGINING EQU OFFSET_BEGINNING * Ancient compatibility

BITSPERBYTE
BYTESPERLONG
BITSPERLONG
MAXINT
MININT

* Passed as type to
SHARED_LOCK
ACCESS_READ
EXCLUSIVE_LOCK
ACCESS_WRITE

EQU
EQU
EQU
EQU
EQU

Lock()
EQU
EQU
EQU
EQU

STRUCTURE DateStamp,O
LONG dS_Days
LONG ds Minute
LONG dS:=Tick
LABEL dS_SIZEOF

TICKS_PER_SECOND EQU 50

* Returned by Examine() and
STRUCTURE FileInfoBlock,O

LONG fib_DiskKey
LONG fib_DirEntryType

STRUCT fib_FileName,108

8
4
32
$7FFFFFFF
$80000000

-2
-2
-1
-1

File is readable by others
Synonym
No other access allowed
Synonym

Number of days since Jan. 1, 1978
Number of minutes past midnight
Number of ticks past minute
DateStamp
Number of ticks in one second

ExInfo()

Type of Directory. If (0, then a plain fil
If > 0 then a directory
Null terminated. Max 30 chars used for now

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
ll2
ll3
ll4
ll5
ll6
ll7
ll8
ll9

LONG
LONG
LONG
LONG
STRUCT
STRUCT

fib Protection
fib=EntryType

bit mask of protection, rwxd are 3-0.

fib Size Number of bytes in file
fib-NumBlocks ; Number of blocks in file
fib=Datestamp,ds_SIZEOF ; Date file last changed.
fib Comment,l16 Null terminated.

- Comment associated with
LABEL fib_SIZEOF FilelnfoBlock

• FIB stands for FilelnfoBlock
• FIBB are bit definitions, FIBF are field definitions

BITDEF FIB,READ,3
BITDEF FIB,WRITE,2
BITDEF FIB,EXECUTE,l
BITDEF FIB,DELETE,O

file

• All BCPL data must be long word aligned. BCPL pointers are the long word
• address (i.e byte address divided by 4 (»2»

• Macro to indicate BCPL pointers
BPTR MACRO * Long word pointer

LONG \1
ENDM

BSTR MACRO * Long word pointer to BCPL string.
LONG \1
ENDM

* #define BADDR(bptr) (bptr « 2) * Convert BPTR to byte addressed pointer

* BCPL strings have a length in the first byte and then the characters.
* For example: s[O]=3 s[l]=S s[2]=Y s[3]=S

* returned by Info()
STRUCTURE InfoData,O

LONG id NumSoftErrors
LONG id-UnitNumber
LONG id-DiskState
LONG id-NumBlocks
LONG id-NumBlocksUsed
LONG id=BytesPerBlock
LONG id DiskType
BPTR id-VolumeNode
LONG id - InUse
LABEL i(~'-SIZEOF

* ID stands for InfoData
* Disk states
ID_WRITE_PROTECTED EQU
ID_VALIDATING EQU
ID_VALIDATED EQU
* Disk types
ID NO DISK PRESENT EQU-l

* number of soft errors on disk
* Which unit disk is (was) mounted on
* See defines below
* Number of blocks on disk
* Number of block in use

* Disk Type code
* BCPL pointer to volume node
* Flag, zero if not in use
* InfoData

80 * Disk is write protected
81 * Disk is currently being validated
82 * Disk is consistent and writeable

ID-UNREADABLE DISK EQU ('B'«24)!('A'«16)
ID-NOT REALLY-DOS EQU ('N'«24)!('D'«16)

('D' «8)
('0'«8)!('S')
('S' «8)
('C'«8)!('K')

ID=DOS=DISK - EQU ('D'«24)!('0'«16)
ID_KICKSTART_DISK EQU ('K'«24)!('I'«16)

* Errors from IoErr(), etc.
ERROR_NO_FREE_STORE EQU 103

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

ERROR_OBJECT_IN_USE
ERROR_OBJECT_EXISTS
ERROR_OBJECT_NOT_FOUND
ERROR_ACTION_NOT_KNOWN
ERROR_INVALID_COMPONENT_NAME
ERROR_INVALID_LOCK
ERROR_OBJECT_WRONG_TYPE
ERROR_DISK_NOT_VALIDATED
ERROR_DISK_WRITE_PROTECTED
ERROR_RENAME_ACROSS_DEVICES
ERROR_DIRECTORY_NOT_EMPTY
ERROR_DEVICE_NOT_MOUNTED
ERROR_SEEK_ERROR
ERROR_COMMENT_TOO_BIG
ERROR_DISK_FULL
ERROR_DELETE_PROTECTED
ERROR_WRITE_PROTECTED
ERROR_READ_PROTECTED
ERROR_NOT_A_DOS_DISK
ERROR_NO_DISK
ERROR_NO_MORE_ENTRIES

EQU 202
EQU 203
EQU 205
EQU 209
EQU 210
EQU 2ll
EQU 212
EQU 213
EQU 214
EQU 215
EQU 216
EQU 218
EQU 219
EQU 220
EQU 221
EQU 222
EQU 223
EQU 224
EQU 225
EQU 226
EQU 232

* These are the return. codes used by convention by AmigaDOS commands
* See FAILAT and IF for reI vance to EXECUTE files
RETURN_OK EQU 0 * No problems, success
RETURN_WARN EQU 5 * A warning only
RETURN_ERROR EQU 10 * Something wrong
RETURN_FAIL EQU 20 * Complete or severe failure

* Bit numbers that signal you that a user has issued a break
BITDEF SIGBREAK, CTRL_C, 12
BITDEF SIGBREAK,CTRL_D,13
BITDEF SIGBREAK,CTRL_E,14
BITDEF SIGBREAK,CTRL_F,15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

**

*
*

Commodore-Amiga, Inc.
dos_lib.i

*
*

**

*
* Library interface offsets for DOS library
*
reserve EQU
vsize EQU
count SET
LIBENT MACRO
_LVO\l EQU
count SET

4
6
-vsize*(reserve+l)

count
count-vsize

*
*
*

ENDM

LIBENT Open
LIBENT Close
LIBENT Read
LIBENT Write
LIBENT Input
LIBENT Output
LIBENT Seek
LIBENT DeleteFile
LIBENT Rename
LIBENT Lock
LIBENT UnLock
LIBENT DupLock
LIBENT Examine
LIBENT ExNext
LIBENT Info
LIBENT CreateDir
LIBENT CurrentDir
LIBENT IoErr
LIBENT CreateProc
LIBENT Exit
LIBENT LoadSeg
LIBENT UnLoadSeg
LIBENT GetPacket
LIBENT QueuePacket
LIBENT DeviceProc
LIBENT SetCorrment
LIBENT SetProtection
LIBENT DateStamp
LIBENT Delay
LIBENT WaitForChar
LIBENT ParentDir
LIBENT IsInteractive
LIBENT Execute

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

SET 1
**

*
*

Commodore-Amiga, Inc.
dosextens.i

*
*

**
* DOS structures not needed for the casual DOS user

IFND EXEC_TYPES_I
INCLUDE "exec/types.i"
ENDC
IFND EXEC_TASKS_I
INCLUDE "exec/tasks.i"
ENDC
IFND EXEC_PORTS_I
INCLUDE "exec/ports.i"
ENDC
IFND EXEC_LIBRARIES_I
INCLUDE "exec/libraries.i"
ENDC

IFND LIBRARIES_DOS_I
INCLUDE "libraries/dos.i"
ENDC

* All DOS processes have this STRUCTure
* Create and DeviceProc returns pointer to the MsgPort in this STRUCTure
* Process_addr = DeviceProc(..) - TC_SIZE

STRUCTURE Process,O
STRUCT pr_Task,TC_SIZE
STRUCT pr_MsgPort,MP_SIZE
WJRD pr_Pad
BPTR pr_SegList
LONG pr_StackSize
APTR pr_GlobVec
LONG pr_TaskNum
BPTR pr_StackBase
LONG pr_Result2
BPTR pr_CurrentDir
BPTR pr_CIS
BPTR pr_COS
APTR pr_ConsoleTask
APTR pr_FileSystemTask
BPTR pr_CLI
APTR pr_ReturnAddr
APTR pr_PktWait
APTR pr_WindowPtr
LABEL pr_SIZEOF

* This is BPTR address from DOS functions
* Remaining variables on 4 byte boundaries
* Array of seg lists used by this process
* Size of process stack in bytes
* Global vector for this process (BCPL)
* CLI task number of zero if not a CLI
* Ptr to high memory end of process stack
* Value of secondary result from last call
* Lock associated with current directory
* Current CLI Input Stream
* Current CLI Output Stream
* Console handler process for current window
* File handler process for current drive
* pointer to ConsoleLinelnterpreter
* pointer to previous stack frame
* Function to be called when awaiting msg
* Window pointer for errors
* Process

* The long word address (BPTR) of this STRUCTure is returned by
* Open() and other routines that return a file. You need only worry
* about this STRUCT to do async io's via PutMsg() instead of
* standard file system calls

STRUCTURE FileHandle,O

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

APTR fh Link
APTR fh=Interactive
APTR fh _ Type
LONG fh_Buf
LONG fh_Pos
LONG fh_End
LONG fh_Funcs

fh_Funcl EQU fh Funcs
LONG fh FullC2
LONG fh=Func3
LONG fh_Args

fh_Argl EQU fh_Args
LONG fh_Arg2

* pointer to EXEC message
* Boolean; TRUE if interactive handle
* Port to do PutMsg() to

LABEL fh_SIZEOF * FileHandle

* This is the extension
STRUCTURE DosPacket,O

APTR dp_Link
APTR dp_Port

*
LONG dp_Type

*
LONG dp_Resl

*
*
*

LONG dp_Res2
*

LONG dp_Argl

to EXEC Messages used by DOS

* pointer to EXEC message
* pointer to Reply port for the packet
* Must be filled in each send.
* See ACTION ... below and
* 'R' means Read, 'W' means write to the file
* For file system calls this is the result
* that would have been returned by the
* function, e.g. write ('W') returns actual
* length written
* For file system calls this is what would
* have been returned by IoErr()

* Device packets common equivalents
dp_Action EQU dp_Type
dp_Status EQU dp_Resl
dp_Status2 EQU dp_Res2
dp_BufAddr EQU dp_Argl

LONG dp_Arg2
LONG dp_Arg3
LONG dp_Arg4
LONG dp_Arg5
LONG dp_Arg6
LONG dp_Arg7
LABEL dp_SIZEOF * DosPacket

* A Packet does not require the Message to before it in memory, but
* for convenience it is useful to associate the two.
* Also see the function init_std~kt for initializing this STRUCTure

StandardPacket, 0
sp_Msg,MN_SIZE
sp_Pkt,dp_SIZEOF

STRUCTURE
STRUCT
STRUCT
LABEL sp_SIZEOF * StandardPacket

* Packet types
ACTION_NIL
ACTION_GET_BLOCK
ACTION_SET_MAP
ACTION_DIE
ACTION_EVENT
ACTION_CURRENT_VOLUME
ACTION_LOCATE_OBJECT

EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
2
4
5
6
7
8

system

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

ACTION~ENAME_DISK EQU 9
ACTION_WRITE EQU 'w'
ACTION_READ EQU 'R'
ACT ION_FREE_LOCK EQU 15
ACTION_DELETE_OBJECT EQU 16
ACTION_RENAME_OBJECT EQU 17

ACTION_COPY_DIR EQU 19
ACTION_WAlT_CHAR EQU 20
ACTION_SET_PROTECT EQU 21
ACTION_CREATE_DIR EQU 22
ACTION_EXAMlNE_OBJECT EQU 23
ACTION_EXAMINE_NEXT EQU 24
ACTION_DISK_INFO EQU 25
ACTION_INFO EQU 26

ACTION_SET_COMMENT EQU 28
ACTION_PARENT EQU 29
ACTION_TIMER EQU 30
ACTION_INHIBIT EQU 31
ACTION_DISK_TYPE EQU 32
ACT ION_DI SK_CHANGE EQU 33

* DOS library node structure.
* This is the data at positive offsets from the library node.
* Negative offsets from the node is the jump table to DOS functions
* node ~ (STRUCT DosLibrary *) OpenLibrary("dos.library" ..)

*

*
*

STRUCTURE DosLibrary,O
STRUCT dl lib,LIB SIZE
APTR dl=Root - * Pointer to RootNode, described below
APTR dl_GV * Pointer to BCPL global vector
LONG dl A2 * Private register dump of DOS
LONG dl-A5
LONG dl=A6
LABEL dl_SIZEOF * Dos Library

STRUCTURE RootNode,O
BPTR rn_TaskArray

BPTR rn_ConsoleSegment
STRUCT rn_Time,ds_SIZEOF
LONG rn_RestartSeg
BPTR rn_Info
LABEL rn_SIZEOF

STRUCTURE Doslnfo,O
BPTR di McName
BPTR di-Devlnfo
BPTR di=Devices
BPTR di_Handlers
APTR di NetHand
LABEL di=SIZEOF

* [0] is max number of CLI's
* [1] is APTR to process id of CLI 1
* [n] is APTR to process id of CLI n
* SegList for the CLI
* Current time
* SegList for the disk validator process
* Pointer ot the Info structure
* RootNode

* Network name of this machine currently °
* Device List
* Currently zero
* Currently zero
* Network handler processid currently zero
* Dos Info

* DOS Processes started from the CLI via RUN or NEWCLI have this additional
* set to data associated with them

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

*

STRUCTURE
LONG
BSTR
BPTR
LONG
BSTR
LONG
BSTR
BPTR
BPTR
BSTR
LONG
LONG
BPTR
LONG
BPTR
BPTR
LABEL

CommandLinelnterface, 0
cli Result2 * Value of IoErr from last command
cli - SetName * Name of current directory
cli-CommandDir * Lock associated with command directory
cli-ReturnCode * Return code from last command
cli-CommandName * Name of current command
cli-FailLevel * Fail level (set by FAILAT)
cli=prompt * Current prompt (set by PROMPT)
cli_Standardlnput * Default (te:rminal) CLI input
cli_Currentlnput * Current CLI input
cli CommandFile * Name of EXECUTE command file
cli-Interactive * Boolean True if prompts required
cli=Background * Boolean True if CLI created by RUN
cli_CurrentOutput * Current CLI output
cli DefaultStack * Stack size to be obtained in long words
cli=standardoutput * Default (te:rminal) CLI output
cli Module * SegList of currently loaded command
cli=SIZEOF * CommandLinelnterface

* this structure needs some work. It should really be a union, because
* it can take on different valued depending on whether it is a device,
* an assigned directory, or a volume.
* For now, it reflects a volume.
*

STRUCTURE DevList,O
BPTR dl Next
LONG dl=Type
APTR dl_Task
BPTR dl Lock
STRUCT -dl VolumeDate,ds SIZEOF
BPTR dl LockList -
LONG dl=DiskType
LONG dl unused
BSTR dl-Name
LABEL -DeVList_SIZEOF

* definitions
DLT_DEVICE
DLT_DIRECTORY
DLT_VOLUME

for dl_Type
EQU 0
EQU 1
EQU 2

bptr to next device list
see DLT below
ptr to handler task
not for volumes
creation date
outstanding locks
100S I, etc

bptr to bcpl name

* a lock structure, as returned by Lock() or DupLock()
STRUCTURE FileLock,O

BPTR fl_Link
LONG fl_Key
LONG fl Access
APTR fl-Task
BPTR fl=volume
LABEL fl_SIZEOF

bcpl pointer to next lock
disk block number
exclusive or shared
handler task's port
bptr to a DeviceList

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

IFND LIBRARIES_TRANSLATOR I
LIBRARIES_TRANSLATOR_I SET 1
**

*
*

Commodore-Amiga, Inc.
translator.i

*
*

**

*
TRJlotUsed
TR_NoMem
TR_MakeBad

ENDC

Translator error codes
EQU -1 ;This is an often used system rc
EQU -2 ;Can't allocate memory
EQU -4 ;Error in MakeLibrary call

Contents

resources/ciabase.i
resources/disk.i
resources/misc.i
resources/potgo.i

1:
2:

3:

4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

**

* Commodore-Amiga, Inc.
*

* ciabase.i

*
**

*--

* * CIA Resource Data Definition
*
*--

STRUCTURE
APTR
UIDRD
UBYTE
UBYTE
STRUCT
STRUCT
STRUCT
STRUCT
STRUCT
STRUCT
LABEL

CIAR,LIB_SIZE
CR_HWADDR
CR_IntMask
CR_IEnable
CR_IActive
CR_INTNODE,IS_SIZE
CR_IVTA, IV_SIZE
CR_IVTB, IV_SIZE
CR_IVALRM,IV_SIZE
CR_IVSP,IV_SIZE
CR_IVFLG,IV_SIZE
CR_SIZE

00
o

1
2
3
4
5
6
8

10
11
12
13
14
16
18
19
20
21
23
24
25
27
28
29
30
31
32
33
34
35
36
37
38
39
41
43
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

IFND RESOURCES_DISK_I
RESOURCES_DISK_I SET 1
**************************************~*******************~*********

*
*

Commodore-Amiga, Inc.
disk.i

*
*

**

* external declarations for disk resources

*
* SOURCE CONTROL
* ------ -------
* $Header: disk.i,v 27.3 85/07/12 23:17:43 neil Exp $
* $Locker: $

IFND EXEC TYPES I
INCLUDE "exec/types. i"

IFND EXEC LISTS I
INCLUDE "exec/1Ists.i"

IFND EXEC PORTS I
INCLUDE "exec/ports.i"

IFND EXEC INTERRUPTS I
INCLUDE "exec/interrupts.i"

IFND EXEC_LIBRARIES_I
INCLUDE "exec/libraries.i"

* Resource structures

STRUCTURE DISCRESOURCEUNIT,MN_SIZE
STRUCT DRU_DISCBLOCK,IS_SIZE
STRUCT DRU_DISCSYNC,IS_SIZE
STRUCT DRU_INDEX,IS_SIZE
LABEL DRU_SIZE

STRUCTURE DISCRESOURCE,LIB_SIZE
APTR DR_CURRENT ; pointer to current unit structure
UBYTE
UBYTE
APTR
APTR

DR_FLAGS
DRJlad
DR_SYSLIB
DR_CIARESOURCE

STRUCT DR_UNITID,4*4
STRUCT DR_WAITING, LH_SI ZE
STRUCT DR_DISCBLOCK,IS_SIZE
STRUCT DR_DISCSYNC,IS_SIZE
STRUCT DR_INDEX, IS_SIZE
LABEL DR_SIZE

BITDEF DR,ALLOCO,O unit zero is allocated

69
70
71
72
73
74
75
77
79
80
81
82
83
84
85
87
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
117
119
120
121
122
123

BITDEF
BITDEF
BITDEF
BITDEF

DR,ALLOC1,1
DR, ALLOC2 , 2
DR,ALLOC3,3
DR, ACTIVE, 7

unit one is allocated
unit two is allocated
unit three is allocated
is the disk currently busy?

* Hardware Magic

DSKDMAOFF EQU $4000 idle command for dsklen register

* * ***** * ** * * * ** **** * *** * ***'*** ***** ** ******** *** ** * *** * *** * * * * * ** * * **
* Resource specific commands

*-- DR_NAME is a generic macro to get the name of the resource. This
*-- way if the name is ever changed you will pick up the change
*-- automatically.

*-- Normal usage would be:

*-- internalName: DISKNAME
*--

DISKNAME:
DC.B
DS.W
ENDM

LIBINIT
LIBDEF
LIBDEF
LIBDEF
LIBDEF
LIBDEF

MACRO
'disk. resource , ,0
o

LIB_BASE
DR_ALLOCUNIT
DR_FREEUNIT
DR_GETUNIT
DR_GIVEUNIT
DR GETUNITID

DR_LASTCOMM EQU

* drive types

DRT_AMIGA
DRT_37422D2S
DRT_EMPTY

EQU
EQU
EQU

$00000000
$55555555
$FFFFFFFF

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

IFND RESOURCES MISC I
RESOURCES_MISC_I SET -1

IFND EXEC TYPES I
INCLUDE "eXec/types. i "

IFND EXEC LIBRARIES I
INCLUDE "eXec/librarIes.i"

**
*
*

Commodore-Amiga, Inc.
misc.i

*
*

**

*
* external declarations for misc system resources
* * SOURCE CONTROL
* ------ -------
* $Header: misc.i,v 27.3 85/07/12 16:29:36 neil Exp $
* * $Locker: $
*

*
* Resource structures
*

MR_SERIALPORT EQU 0
MR_SERIALBITS EQU 1
MR_PARALLELPORT EQU 2
MR_PARALLELBITS EQU 3

NUMMRTYPES EQU 4

STRUCTURE MiscResource,LIB_SIZE
STRUCT mr_AllocArray,4*NUMMRTYPES
LABEL mr_Sizeof

LIBINIT LIB_BASE
LIBDEF MR_ALLOCMISCRESOURCE
LIBDEF MR_FREEMISCRESOURCE

MISCNAME MACRO
DC.B 'mise.resource' ,0
ENDM

1
2
3
4
5
6
7
8
9

10
11
12

IFND RESOURCES POTGO I
RESOURCES_POTGO_I EQU- 1
**

*
*

Commodore-Amiga, Inc.
potgo.i

*
*

**
POTGONAME

DC.B
DC.B
DS.W
ENDM

ENDC

MACRO
'potgo.resource'
o
o

Contents

workbench/icon.i
workbench/startup.i
workbench/workbench.i

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

IFND WORKBENCH_I CON_I
WORKBENCH_I CON_I SET 1

**

*
*

Commodore~Amiga, Inc.
icon.i

*
*

**

* * icon.i ~~ external declarations for workbench support library
* * SOURCE CONTROL
*
* $Header: icon.i,v 29.1 85/08/07 22:27:14 neil Exp $
* * $Locker: $
*

*
* Library structures
*
*****************************~***************************************

ICONNAME MACRO
DC.B 'icon. library' ,0
ENDM

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

*** startup.i **

*
*
*

Workbench startup definitions

* Comrnodore-Amiga, Inc.
*
* $Header: startup.i,v 29.1 85/08/15 06:58:52 neil Exp $
*
* $Locker: $
*
**

IFND EXEC_TYFES_I
INCLUDE "exec/types.i"

IFND EXEC_PORTS_I
INCLUDE "exec/ports.i"

IFND LIBRARIES_DDS_I
INCLUDE "libraries/dos. i"

STRUCTURE WBstartup, 0
STRUCT sm_Message,MN_SIZE
APTR sm_Process
BPTR sm_Segment
LONG sm_NumArgs
APTR sm TooIWindow
APTR sm::)rgList
LABEL sm_SIZEOF

STRUCTURE WBArg,O
BPTR wa_Lock
APTR wa_Name
LABEL wa_SIZEOF

a standard message structure
the process descriptor for you
a descriptor for your code
the number of elements in ArgList
description of window
the arguments themselves

a lock descriptor
a string relative to that lock

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

*
* workbench.h
*
* Comrnodore-Amiga, Inc.
*
* $Header: workbench.i,v 31.2 85/09/02 21:32:18 neil Exp $
*
* $Locker: $
*

IFND EXEC TYPES I
INCLUDE "exec/types.i"

IFND EXEC_NODES_I
INCLUDE "exec/nodes.i"

IFND EXEC_LISTS_I
INCLUDE "exec/lists.i"

IFND EXEC_TASKS_I
INCLUDE "exec/tasks.i"

IFND INTUITION INTUITION I
INCLUDE "intuition/intuition.i"

; the Workbench object types
WBDISK
WBDRAWER
WBTOOL
WBPROJECT
WBGARBAGE
WBDEVICE
WBKICK

; the main
STRUCTURE

STRUCT
LONG
LONG
LONG
LONG
LONG
LONG
STRUCT
STRUCT
STRUCT
STRUCT
STRUCT
STRUCT

EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7

workbench object structure
DrawerData,O

dd_NewWindow,nw_SIZE ; args to open window
dd_CurrentX current x coordinate of origin
dd CurrentY current y coordinate of origin
dd-Minx smallest x coordinate in window
dd=MinY smallest y coordinate in window
dd_MaxX largest x coordinate in window
dd_MaxY ; largest y coordinate in window
dd_HorizScroll,gg_sIZEOF
dd_VertScroll,gg_SIZEOF
dd_UpMove,gg_SIZEOF
dd_DownMove,gg_SIZEOF
dd_LeftMove,gg_SIzEoF
dd_RightMove,gg_SIZEOF

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119

STRUCT
STRUCT
STRUCT
STRUCT
APTR
APTR
STRUCT
LONG
LABEL

dd_HorizImage,ig_SIZEOF
dd_VertImage,ig_SIZEOF
dd_HorizProp,pi_SIZEOF
dd_VertProp I pi_SIZEOF
dd_DrawerWin ; pointer to drawers window
dd_Object ; back pointer to drawer object
dd_Children,LN_SIZE ; where our children hang out
dd Lock
dd::::SIZEOF

the amount of DrawerData actually written to disk
DRAWERDATAFILESIZE EQU (nw_SIZE+2*(4»

DiskObject, 0 STRUCTURE
UIDRD
UIDRD
STRUCT
UIDRD
APTR
APTR
LONG
LONG
APTR
APTR
LONG
LABEL

do_Magic a magic num at the start of the file
do_Version ; a version number, so we can change it
do_Gadget , gg_SIZEOF ; a copy of in core gadget
do_Type
do DefaultTool
dO::::ToolTypes
do Currentx
do::::currenty
do DrawerData
do-ToolWindow
do-StackSize
dO::::SIZEOF

only applies to tools
only applies to tools

WB_DISKMAGIC EQU
WB_DISKVERSION EQU

$e310 ; a magic number, not easily impersonated
1 ; our current version number

STRUCTURE FreeList,O
WJRD fl NumFree
STRUCT fl-MemList,LH SIZE
; weird name to avoid-conflicts
LABEL FreeList_SIZEOF

with FileLocks

STRUCTURE WBObject,O
STRUCT wo MasterNode,LN SIZE
STRUCT wo::::Siblings,LN_SIZE
STRUCT wo SelectNode,LN SIZE
STRUCT wo::::UtilityNode,LN_SIZE
APTR wO_Parent

all objects are on this list
list of drawer members
list of all selected objects
function specific linkages

; object flags see below for definitions
UBYTE wO_Flags

UBYTE wO_Type
USHORT wo_UseCount
APTR wO_Name
SHORT wO_NameXOffset
SHORT wo_NameYOffset

APTR wo_DefaultTool
APTR wO_DrawerData
APTR wO_IconWin
LONG wo_CurrentX
LONG wo_Currenty
APTR wo_ToolTypes

what flavor object is this?
number of references to this obj
this object's textual name
where to put the name

if this is a drawer or disk
each object's icon lives here
virtual x in drawer
virtual Y in drawer
the types for this tool

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

STRUCT
STRUCT
APTR
LONG
LONG
LABEL

wo_Gadget,gg_SIZEOF ; NOT a ptr, but an instance of it
wo_FreeList,FreeList_SIZEOF ; this objects free list
wo_ToolWindow character string for tool's window
wo_StackSize how much stack to give to this
wO_Lock if this tool is in the backdrop
wo_SIZEOF

; workbench object flags
BITDEF WJ,IconDisp,7
BITDEF WJ,DrawerOpen, 6
BITDEF WJ,Selected,5
BITDEF WJ,Background,4

icon is currently in a window
we're a drawer, and it is open
our icon is selected
set if icon is in background

* each message that comes into the WorkBenchPort must have a type field
* in the preceeding short. These are the defines for this type
*
MTYPE_PSTD EQU 1 a "standard Potion" message
MTYPE_TOOLEXIT EQU 2 exit message from our tools
MTYPE_DISKCHANGE EQU 3 dos telling us of a disk change
MTYPE_TIMER EQU 4 we got a timer tick
MTYPE_CLOSEDOWN EQU 5 <unimplemented>
MTYPE_IOPROC EQU 6 <unimplemented>

; we use the gadget id field to encode some special information
GID_WBOBJECT EQU 0 a normal workbench object
GID_HORIZSCROLL EQU 1 the horizontal scroll gadget for a drawer
GID_VERTSCROLL EQU 2 the vertical scroll gadget for a drawer
GID_LEFTSCROLL EQU 3 move one window left
GID_RIGHTSCROLL EQU 4 move one window right
GID_UPSCROLL EQU 5 move one window up
GID_DOWNSCROLL EQU 6 move one window down
GID_NAME EQU 7 the name field for an object

* workbench does different complement modes for its gadgets.
* It supports separate images, complement mode, and backfill mode.
* The first two are identical to intuitions GADGIMAGE and GADGHCOMP.
* backfill is similar to GADGHCOMP, but the region outside of the
* image (which normally would be color three when complemented)
* is flood-filled to color zero.
*
GADGBACKFILL EQU $0001

* if an icon does not really live anywhere, set its current position
* to here
*

($80000000)

Apr 29 10:15 1986 h.xref Page 1

File numbers for

1 adkbits.h
5 cia.h
9 console.h

13 custom.h
17 display.h
21 error.h
25 gfx.h
29 icon,h
33 intuinternal.h
37 keyboard.h
41 macros.h
45 narrator.h
49 prtbase.h
53 sprite.h
57 timer.h
61 workbench.h

cross-reference listing:

2
6

10
14
18
22
26
30
34
38
42
46
50
54
58

audio.h 3:blit.h
clip.h 7:clipboard.h
conunit.h 11:copper.h
dec.h 15:disk.h
dmabits.h 19:dos.h
fcntl.h 23: gameport. h
9fxbase.h 27:!'fxmacros.h
l.nput.h 31: nputevent.h
intuition.h 35:intuitionbase.h

~~~h·h 39: layers.h 
43 :mathffp.h 

paralle1.h 47:pot~o.h 
rastport.h 51:reg ons.h 
startup.h 55:stdio.h 
trackdisk.h 59:trans1ator.h 

A.....OR.-B, 3-34 
A.....O~C, 3-35 
A.....TOJ) , 3-37 

A.....XO~C, 3-36 
ABC, 3-24, 3-34, 3-35, 3-37 

aBMS, 48-108 

4 bootblock.h 
8 collide.h 

12 ctype.h 
16 diskfont.h 
20 dosextens.h 
24 gels.h 
28 graphint.h 
32 inthits.h 
36 iosl.h 
40 limits.h 
44 misc.h 
48 printer.h 
52 serial.h 
56 text.h 
60 view.h 

ABNC, 3-25, 3-34, 3-35, 3-36, 3-37 
ABS, 41-6, 43-31, 55-65 

ac_dat, 13-91 
ac_1en, 13-88 
ac-pad, 13-92 
ac-per, 13-89 
ac-ptr, 13-87 
ac_vo1, 13-90 

aCAM, 48-111 
ACCESS-READ, 19-57 

ACCESS_WRITE, 19-60 
acos, 42-8, 42-94 

ACTION_COPYJ)IR, 20-128 
ACTION_CREATEJ)IR, 20-131 

ACTION_CURRENT_VOLUME, 20-119 
ACTIONJ)ELETE_OBJECT, 20-125 

ACTIONJ)IE, 20-117 
ACTION_DISK-CHANGE, 20-142 

ACTIONJ)ISK-INFO, 20-134 
ACTIONJ)ISK-TYPE, 20-141 

ACTION-EVENT, 20-118 
ACTION_EXAMINE~XT, 20-133 

ACTION_EXAMINE_OBJECT, 20-132 
ACTION_FREE_LOCK, 20-124 
ACTION_GET_BLOCK, 20-115 

ACTION_INFO, 20-135 
ACTION_INHIBIT, 20-140 

ACTION~TE_OBJECT, 20-120 
ACTION~IL, 20-114 

ACTION-PARENT, 20-138 

Apr 29 10:15 1986 h.xref Page 2 

ACTION-READ, 20-123 
ACTION-RENAMEJ)ISK, 20-121 

ACTION-RENAME_OBJECT, 20-126 
ACTION_SET_COMMENT, 20-137 

ACTION_SET~, 20-116 
ACTION_SET-pROTECT, 20-130 

ACTION_TIMER, 20-139 
ACTION_WAlT_CHAR, 20-129 

ACTION_WRITE, 20-122 
ACTIVATE, 34-1287 

Activation, 34-299 
ActiveGadget, 33-123 

ActiveImage, 33-125 
ActivePInfo, 33-124 

ActiveScreen, 33-79, 35-45 
ActiveWindow, 33-78, 34-1005, 35-44 

Acti View, 26 - 27 
ADALLOC...,MAXPREC, 2 -17 
ADALLOC...,MINPREC, 2-16 

ADCMD-ALLOCATE, 2-27 
ADCMD_FINISH, 2-21 

ADCMD_FREE, 2-19 
ADCMD_LOCK, 2-23 

ADCMD-PERVOL, 2-22 
ADCMD_SETPREC, 2-20 

ADCMD_WAlTCYCLE, 2-24 
ADCMDB~OUNIT, 2-25 
ADCMDF~OUNIT, 2-26, 2-27 

AddFreeList, 29-40 
aDEN1, 48-66 
aDEN2, 48-65 
aDEN3, 48-64 
aDEN4, 48-63 
aDEN5, 48-62 
aDEN6, 48-61 

ADHARD_CHANNELS, 2-14 
ADIOB~OWAIT, 2-33 
ADIOB-pERVOL, 2-29 

ADIOB_SYNCCYCLE, 2-31 
ADIOB_WRITEMESSAGE, 2-35 

ADIOERR-ALLOCFAILED, 2-39 
ADIOERR_CHANNELSTOLEN, 2-40 

ADIOERR_NOALLOCATION, 2-38 
ADIOF~OWAIT, 2-34 
ADIOF-pERVOL, 2-30 

ADIOF_SYNCCYCLE, 2-32 
ADIOF_WRITEMESSAGE, 2-36 

ADKB_FAST, 1-21 
ADKB...,MFMPREC, 1-17 
ADKB...,MSBSYNC, 1-20 

ADKB-PRECOMPO, 1-16 
ADKB-PRECOMP1, 1-15 

ADKB_SETCLR, 1-14 
ADKB_UARTBRK, 1-18 

ADKB_USEOP1, 1-25 
ADKB_USEOV1, 1-29 

D - 85 



Apr 29 10:15 1986 h.xref Page 3 

ADKB_USE1P2. 1-24 
ADKB_USE1V2. 1-28 
ADKB_USE2P3. 1-23 
ADKB_USE2V3. 1-27 
ADKB_USE3PN. 1-22 
ADKB_USE3VN. 1-26 

ADKB_WORDSYNC. 1-19 
adkcon. 13-85 

adkconr. 13-29 
ADKF_EAST. 1-38 

ADKF .-MFMPREC. 1- 34 
ADKFjlSBSYNC. 1-37 
ADKF~REOOONS. 1-48 
ADKF~RE140NS. 1-49 
ADKF~RE280NS. 1-50 
ADKF~RE560NS, 1-51 
ADKF~RECOMPO, 1-33, 1-49, 1-51 
ADKF~RECOMP1, 1-32, 1-50. 1-51 

ADKF_SETCLR. 1-31 
ADKF_UARTBRK, 1-35 

ADKF_USEOP1, 1-42 
ADKF_USEOV1. 1-46 
ADKF_USE1P2, 1-41 
ADKF_USE1V2, 1-45 
ADKF_USE2P3. 1-40 
ADKF_USE2V3, 1-44 
ADKF_USE3PN, 1-39 
ADKF_USE3VN, 1-43 

ADKF_WORDSYNC, 1-36 
aEXTEND, 48-121 
a f....Attr , 16-67 
aCTy):>EI, 16-66 

AFBJlISK, 16-62 
AFB_MEMORY, 16-60 

AFEJlISK. 16-63 
AFEjlEMORY, 16-61 

afh~umEntries, 16-71 
aENTO, 48-76 
aENT1, 48-77 

aENT10, 48-86 
aENT2, 48-78 
aENT3. 48-79 
aENT4, 48-80 
aENT5. 48-81 
aENT6, 48-82 
aENT7, 48-83 
aENT8, 48-84 
aENT9. 48-85 

afp, 43-44 
After, 24-160 

AG_OpenLib, 33-386. 33-387 
AGNUS, 25-18, 25-19 

aRTS. 48-113 
aIND, 48-39 

aJEYO, 48-95 
aJEY1, 48-97 

Apr 29 10:15 1986 h.xref Page 4 

aJEY3, 
aJEY5, 
aJEY6. 
aJEY7, 

ALERT_COUNTDOWN , 
ALERT_TYPE. 

ALERTLAYERSNOMEM, 
AlgoStyle, 

All ocWBObject. 
aLMS, 

ALPHAJ'_101, 
ALTKEYMAP, 

ALTLEET, 
ALTRIGHT, 

~i~~~: 
AMlGALEET. 

48-96 
48-92 
48-94 
48-93 
33-382 
34-1889 
39-43 
50-75 
29-38 
48-105 
34-1791 
34-493, 34-716 
34-1923 
34-1924 
33-144 
34-1927 
34-1925. 34-1927 
34-1926. 34-1927 
33-386, 33-387 

AMlGARIGHT, 
AN_Intuition, 

ANBC, 
ANBNC. 

aNEL, 
ANFRACSIZE, 

AnimBob, 
AnimComp, 

3-26. 3-34. 3-35. 3-37 

AnimCRoutine, 
ANIMHALE, 

animKey. 
AnimOb. 

AnimORoutine. 
AnOldX, 
AnOldY, 

AnX, 
AnY, 

AO_GraphicsLib, 
AO_LayersLib, 

AOlPen, 
apattern, 

APen, 
aPERE, 

aPEREO, 
aPLD, 
aPLU, 

APointer. 
aPROPO. 
aPROP1, 
aPROP2. 

APtrHeight. 
APtrWidth. 

Arealnfo, 
AREAOUTLlNE, 

AreaPtrn, 
AreaPtSz, 

arg1. 
arg2, 

3-27. 3-34. 3-35. 3-36. 3-37 
48-40 
24-47 
24-203 
24-164. 24-171. 24-189. 24-190, 24-193. 
24-194. 24-228 
24-196 
24-48 
24-253. 24-253 
24-201, 24-206, 24-209 
24-225 
24-214 
24-214 
24-217 
24-217 
33-386 
33··387 
27-28, 50-63 
33-146 
33-236 
48-102 
48-103 
48-74 
48-73 
33-99 
48-90 
48-89 
48-88 
33-101 
33-102 
50-18. 50-58. 50-58 
27-28, 27-33. 50-101 
27-31, 50-56 
27-31, 50-65 
42-38 
42-38 

D - 86 



Apr 29 10:15 1986 h.xref Page 5 

aRI, 48-41 
aRIN, 48-38 
aRIS, 48-37 
aRMS, 48-106 
aSBC, 48-51 
aSFC, 48-50 

aSGRO, 48-43 
aSGR1, 48-48 

aSGR22, 48-49 
aSGR23, 48-45 
aSGR24, 48-47 

aSGR3, 48-44 
aSGR4, 48-46 

ASHIFTSHIFT, 3-55 
aSHORPO, 48-53 
aSHORP1, 48-55 
aSHORP2, 48-54 
aSHORP3, 48-57 
aSHORP4, 48-56 
aSHORP5, 48-59 
aSHORP6, 48-58 

asin, 42-9, 42-94 
aSLPP, 48-101 
aSLRM, 48-110 

ASPECT~ORIZ, 34-1774 
ASPECT_VERT, 34-1775 

aSTBM, 48-109 
aSUSO, 48-72 
aSUS1, 48-69 
aSUS2, 48-68 
aSUS3, 48-71 
aSUS4, 48-70 

AT-PeadEnd, 33-386, 33-387 
atan, 42-10, 42-95 

atan2, 42-95 
aTBCO, 48-115 
aTBC1, 48-117 
aTBC3, 48-116 
aTBC4, 48-118 

aTBCALL, 48-119 
aTBSALL, 48-120 

aTMS, 48-107 
atof, 42-92 
atoi, 42-90 
atol, 42-91 
aTSS, 48-91 

aud, 13-93 
AudChannel, 13-86 

audio, 2-12 
AUDIONAME, 2-12 

AUL, 3-70 
AUserExt, 24-230 

AUserStuff, 24-66, 24-67, 24-230 
AUTOBACKPEN, 34-1905 

AUTODRAWMODE, 34-1906 
AUTOFRONTPEN, 34-1904 

Apr 29 10:15 1985 h.xref Page 6 

AUTOITEXTFONT, 34-1909 
AUTOKNOB, 34-629 

AUTOLEFTEDGE, 34-1907 
AUTONEXTTEXT, 34-1910 

AUTOTOPEDGE, 34-1908 
AvailFonts, 16-65 

AvailFontsHeader, 16-70 
aVERPO, 48-99 
aVERP1, 48-100 

avrS, 48-114 
AXOffset, 33-104 
AYOffset, 33-104 
B2BOBBER, 24-261 

B2NORM, 24-259 
B2SWAP, 24-260 

back, 6-27 
BACKDROP, 34-1271 
BackFill, 34-229 

BackPen, 34-738, 34-787 
BACKSAVED, 24-28 

BADDR, 19-119 
BADGADGET, 33-389 

BADMESSAGE, 33-391 
BADSTATE, 33-390 

BarHBorder, 33-162, 34-1468 
BarHeight, 34-1468 

BarLayer, 34-1506 
BarVBorder, 33-161, 34-1468 

BAUD_II 0 , 34-1739 
BAUD_1200, 34-1741 

BAUD_19200, 34-1745 
BAUD_2400, 34-1742 

BAUD_300, 34-1740 
BAUD_48 0 0 , 34-1743 
BAUD_96 0 0 , 34-1744 
BAUDJIIDI, 34-1746 
BaudRate, 34-1643 

bb_chksum, 4- 21 
bb_dosblock, 4-22 

bb_id, 4-20 
BBIDJ)OS, 4-27 

BBID_KICK, 4-28 
BBNAMEJ)OS, 4-30 

BBNAME_KICK, 4-31 
BCOBJ)EST, 3-39 
BCOB_SRCA, 3-42 
BCOB_SRCB, 3-41 
BCOB_SRCC, 3-40 
BCOEJ)EST, 3-43 
BCOF_SRCA, 3-46 
BCOF_SRCB, 3-45 
BCOF_SRCC, 3-44 
BC1F_DESC, 3-48 

BDRAWN, 24-40 

be~~i: ~4~:7 26-41 

D - 87 



Apr 29 10:15 1986 h.xref Page 7 

BeatY, 
BEEPING, 

Before, 
BgPen, 

BITCLR, 
BitMap, 

BITSET, 
BITSPERBYTE, 
BITSPERLONG, 

BlitLock, 
BLITMSG_E"AULT, 

B1itNest, 
BlitOwner, 

BLITREVERSE, 
blitsize, 
blitter, 

BlitWaitQ, 
b1ockpen, 
b1tadat, 
b1tafwm, 
b1ta1wm, 
b1tamod, 
b1tapt, 

b1tbdat, 
b1tbmod, 
b1tbpt, 

b1tcdat, 
b1tcmod, 
b1tconO, 
b1tcon1, 
b1tcpt, 

b1tddat, 
b1tdmod, 
b1tdpt, 

b1thd, 
b1tnode, 
bltsize, 
bltsrv, 
b1tt1, 

BNDRYOE"E", 
Bob, 

BO~~~~: 
BOBNIX, 

BOBSAWAY, 
BOBUPDATE, 

BobVSprite, 
BOOLGADGET, 

BootB1ock, 
BOOTSECTS, 

Border, 
BorderBottom, 

BORDERHIT, 
BorderLeft, 

Apr 29 10:15 1986 h.xref Page 8 

BORDERLESS, 
BorderLine, 

BorderRight, 
BorderRPort, 

BOJ~~~~: 
BOTTOMHIT, 

bottommost, 
bounds, 

bpattern, 
BPen, 

bpllmod, 
bp12mod, 
bplconO, 
bp1con1, 
bp1con2, 
bp1dat, 
bp1pt, 

broadcast, 
BROTHER_15XL, 

bsb1thd, 
bsb1tt1, 

BSHIE"TSHIE"T, 
BufBuffer, 

Buffer, 
BufferPos, 

BufPath, 
BUE"SIZ, 

BufX, 
BufY, 

BUserExt, 
BUSERE"LAGS, 
BUserStuff, 

BWAITING, 
bytereserved, 
BYTESPERLONG, 

BytesPerRow, 

CBD_CURRENTR~~g: 
CBD_CURRENTWRITEID, 

CBD...,pOST, 
CBERR_OBSOLETEID, 

CBMJlPS1000, 
CBump, 
ccode, 

CD...ASKKEYMAP , 
CD_SETKEYMAP, 

ceil, 
CEND, 

ch-.masks, 
chanmask, 

c~~g: 
Che~~~y~: 

O1eckMark, 

34-87 
34-1534 
24-159 
50-62 
25-16, 27-21, 27-23, 27-26 
6-39, 6-64, 6-64, 25-33, 33-114, 33-115, 
34-245, 34-1392, 34-1392, 34-1480, 34-1480, 
34-1587, 50-55, 50-55, 60-70, 60-70 
25-15, 27-20, 27-22, 27-25 
19-44 
19-46 
26-48 
26-63 
26-49 
26-52 
3-66 
3-87 
26-30 
26-51 
33-139, 34-1193, 34-1342, 34-1496, 34-1558 
13-69 
13-54 
13-55 
13-64 
13-58 
13-68 
13-63 
13-57 
13-67 
13-62 
13-52 
13-53 
13-56 
13-21 
13-65 
13-59 
26-33 
3-82, 3-84, 26-33, 26-34 
13-60 
26-35 
26-33 
27-33 
24-122, 24-142, 24-159, 24-160, 24-203 
24-164 
24-37 
24-42 
24-41, 24-254 
24-29 
24-162 
34-526 
4-19 
4-25 
34-222, 34-783, 34-796 
34-1154 
8-24 
34-1154 

34-1284 
24-116 
34-1154 
34-1155 
34-1154 
34-476 
8-34 
50-48 
6-30, 6-65, 51-15, 51-20 
33-146 
33-236 
13-100 
13-101 
13-96 
13-97 
13-98 
13-103 
13-94 
39-30 
34-1792 
26-34 
26-34 
3-56 
24-243 
34-670 
34-674 
24-239 
55-8 
24-238 
24-238 
24-168 
24-35 
24-62, 24-63, 24-168 
24-39 
26-45, 39-35 
19-45 
25-35 
28-19 
7-24 
7-25 
7-23 
7-27 
34-1793 
27-36, 27-37 
28-18 
9-24 
9-25 
42-93 
27-38 
45-68 
45-73 
39-25 
34-183 
33-144 
34-155 
34-1203, 34-1367 

D - 88 



Apr 29 10:15 1986 h.xref Page 9 

CHECKWIDTH, 
CHeight, 

cia, 
ciaa, 

ClAANAME, 
ciab, 

CIABNAME, 
CINIT, 
Class, 

CLEANME, 
cleanup, 

clearerr, 
ClearPath, 

cleft, 
cli_Background, 
cli_CommandDir, 

cli_CommandFile, 
cli_CommandName, 

cli_Currentlnput, 
cli_CurrentOutput, 
cli_DefaultStack, 

cli_FailLevel, 
eli_Interactive, 

cli-.Module, 
cli....prompt, 

cliJesul t2, 
cliJeturnCode, 

cli_SetName, 
cli_StandardInput, 

cli_StandardOutput, 
clip, 

ClipboardUnitPartial, 
ClipRect, 

Clock, 
CLOSE, 

CLOSEGADGET, 
CLOSEWINDOW, 

elrerr, 
ClrIns, 
clxcon, 
clxdat, 

CMD_CLEAR, 
CMDJEAD, 

CMD_UPDATE, 
CMD_WRITE, 

CMOVE, 
code, 

collHandler, 
CollMask, 
collPtrs, 

collTable, 
color, 

colorO, 
colorl. 

color17, 

34-1877 
34-619 
26-29 
5-11 
5-11 
5-12 
5-12 
27-35 
34-921 
3-94 
3-89, 3-93, 3-94 
55-58 
24-87 
33-140, 34-689 
20-193 
20-184 
20-191 
20-186 
20-190 
20-194 
20-195 
20-187 
20-192 
20-197 
20-188 
20-182 
20-185 
20-183 
20-189 
20-196 
34-29 
7-30 
6-28, 6-28, 6-40, 6-51, 6-54, 6-55, 6-59, 
6-61, 6-62, 6-66, 33-112, 33-113 
24-212 
34-524 
33-61 
34-987 
55-58 
60-36 
13-82 
13-28 
58-101 
58-96 
58-100 
58-95 
27-36, 27-36 
28-17, 34-925 
50-47 
24-117 
24-268 
24-266, 50-47 
13-112 
33-166, 33-265, 34-1673 
33-167, 33-266, 34-1674 
33-170, 33-259, 34-1665 

Apr 29 10:15 1986 h.xref Page 10 

colorl8, 
color19, 
color2, 
color3, 

C~~~~~~: 
ColorTable, 

COM_MENU, 
~SELECT, 

Command, 
CommandLinelnterface, 

COMMSEQ, 
COMMWIDTH, 

COMPLEMENT, 
console, 
ConUnit, 
copllc, 
cop2lc, 
copcon, 

copinit, 
CopIns, 

copjmp1, 
copjmp2, 
CopList, 

CopLStart, 
COPPElLMOVE, 
COPPER_WAIT, 

CopPtr, 
CopS Start, 

cos, 
cosh, 
cot, 

Count. 
cp-", 

CPJLNT~toI: 
CPRJIT_SHT, 

cprlist, 
CPRNXTBUF, 

cr, 
cr2, 

CR~EEDS_NO_CONCEALED....RASTERS, 
crnew, 

CTC_HCLRTAB, 
CTCJjCLRTABSALL, 

CTCJjSETTAB, 
ctl, 

ctop, 
cu..,AlgoStyle, 

cu--AOLPen, 
cu-AreaPtrn, 
cu..,AreaPtSz, 

c\LBgPen, 
cu.-DrawMode, 

cu_FgPen, 

33-171, 33-260, 34-1666 
33-172, 33-261, 34-1668 
33-168, 33-267, 34-1676 
33-169, 33-268, 34-1678 
48-145, 60-20, 60-32, 60-32 
17-19 
60-25 
33-314 
33-313 
34-140 
20-181 
34-163 
34-1878 
50-90 
10-16 
10-32 
13-72 
13-73 
13-43 
11-78, 26-28, 26-28 
11-20, 11-62, 11-62, 11-63, 13-76 
13-74 
13-75 
11-25, 11-57, 11-59, 11-60, 11-74, 11-75, 
11-75, 60-34, 60-35, 60-36 
11-64 
11-15 
11-16 
11-63 
11-65 
42-11, 42-94 
42-12, 42-94 
42-13, 42-94 
11-66, 34-791, 50-24, 60-24 
50-70 
50-70 
11-18 
11-19 
11-50, 11-52, 60-48, 60-49 
11-17 
6-55 
6-55 
6-74 
6-55 
9-84 
9-85 
9-83 
13-108 
33-140, 34-689 
10-67 
10-61 
10-64 
10-63 
10-60 
10-62 
10-59 

D - 89 



Apr 29 10:15 1986 h.xref Page 11 

cu_Font~ 
eu_KeyMapStruet, 

euJolask, 
euJolinterms, 

euJoIodes, 
euJolP, 

cu....,Node, 
cuJawEvents, 

eu_TabStops, 
cu_TxBaseline, 

cu_TxFlags, 
cu_TxHei9'ht, 

cu_TxSpacl.ng, 
cu_TxWidth, 
cu_UnitNum, 

cu_Window, 
C\LXCCP, 

eu_XCP, 
cu_XMax, 

cu_XMinShrink, 
cu_XRExtant, 

cu~~~~~: 
cu_YCCP, 

C\LYCP, 
cu_YMax, 

C\LYMinShr ink, 
c\LYRExtant, 

euCu~~~~~~: 
CURSORDOWN , 

CursorDX, 
CursorDY, 

CURSORLEFT, 
CURSORRIGHT, 

CURSORUP, 
Custom, 

CUST<>M....NAME , 
CUSTOMBITMAP , 
CUSTOMSCREEN, 

cvfd, 
cvfdx, 
CWAIT, 

CWidth, 
D, 

D005, 
D05, 

D5, 
D-AUX, 
D_CON, 
DJ)IG, 

DJ)ISK, 
Dj!AX, 

D....NULL, 
DJ'RN, 

Apr 29 10:15 1986 h.xref Page 12 

DamageList, 
dataa, 
datab, 

DateStamp, 
dbf, 

DBLPF, 
DBu ffer , 

DBufPacket, 
d~Children, 
d~CmdBytes, 

d~CmdVeetors , 
d~CurrentX, 
d~CurrentY , 

ddJ)evice, 
ddJ)ownMove, 

ddJ)rawerWin, 
d~ExeeBase, 

ddJiorizlmage, 

~~~~~~~~~t 
~LaftMove,

~Lock,
ddJoIaxX,
ddJoIaxY,
ddJoIinX,
ddJoIinY,

d~ewWindow,
~umCommands,

d~Obiect,
ddJUghtMove,
d~Segment,
d~UpMove,

~Vertlmage,

d~~~~S~~~l:
ddfstop,
ddfstrt,

DEADEND-oALERT,
Debug,

DefaultFont,
DefaultTitle,

DEFERRED,
DEFERREFRESH,

DEFFREQ,
DEFMODE,

DEFPITCH,
DEFRATE,

DEFSEX,
DEFVOL,

DELTAMOVE,
Depth,

Descendant,
DEST,

DestAddr,
DestData,

detailpen,

10-66
10-53
10-58
10-65
10-75
10-33
7-31
10-76
10-55
10-71
10-68
10-69
10-72
10-70
7-32
10-35
10-48
10-36
10-38
10-46
10-44
10-42
10-40
10-49
10-37
10-39
10-47
10-45
10-43
10-41
34-1932
33-185
33-185
34-1930
34-1931
34-1929
13-20, 27-20, 27-21, 27-22, 27-23, 27-25,
27-26, 34-1787
34-1790
34-1537, 34-1587
34-1527
14-34
14-34
27-37, 27-37, 27-38
34-617
4-27, 4-30, 19-156, 19-157, 19-158
14-20
14-20
14-20
36-35
36-33
14-16, 14-17
36-32
14-17
36-36
36-34

6-49
13-109
13-110
19-62, 19-89, 20-165, 20-211
43-44'
17-20
24-166, 50-96
24-166, 24-236
61-62
49-53
49-52
61-44
61-45
49-49
61-53
61-60
49-51
61-56
61-58
61-50
61-54
61-63
61-48
61-49
61-46
61-47
61-43
49-54
61-61
61-55
49-50
61-52
61-57
61-59
61-51
13-80
13-79
34-1892
26-40
26-37
34-1463, 34-1570
33-312
34-272
45-37
45-43
45-34
45-35
45-42
45-36
34-1009
24-106, 25-38, 34-827, 34-1555
34-1168
3-50
11-31, 11-44, 11-44
11-36, 11-46, 11-46
33-139, 34-1193, 34-1342, 34-1496, 34-1558

D - 90

Apr 29 10:15 1986 h.xref Page 13

device, 2-12, 7-39, 46-85, 48-125, 48-139, 52-147,
57-26, 58-73
49-48, 49-61
20-206

DeviceData,
DeviceList,

devices, 10-16, 10-20, 10-24, 31-14, 34-57, 34-61,
49-32, 49-35, 49-38
2-1, 2-2
7-1, 7-2
9-1, 9-2, 10-15
23-1, 23-2
30-1, 30-2

DEVICES-AUDIOJi,
DEVICES_CLIPBOARDJi,

DEVICES_CONSOLEJi,
DEVICES_GAMEPORTJi,

DEVICES_INPUTJi,
DEVICES_INPUTEVENTJi,

DEVICES_KEYBOARDJi,
DEVICES_KEYMAPJi,

DEVICES~TORJi,
DEVICES-PARALLELJi,

DEVICES-PRINTERJi,
DEVICES-PRTBASEJi,

DEVlCES_SERIALJi,

10-23, 31-1, 31-2, 34-60
37-1, 37-2
10-19, 38-1, 38-2
45-1, 45-2, 45-92
46-18, 46-19, 46-98, 49-31
48-1, 48-2
49-11, 49-12

DEVICES_TlMERJi,
DEVICES_TRACKDIS~,

dfhJ)F,
dfhJ'ileID,

DF~ID,
dfh....Name,

dfhJevision,
dfh...Segment,

dfh...TF,
DFTc:H:....MASK,

DHeight,
di..J)evices,
di....Devlnfo,

diJiandlers,
dijlcName,

diJ/etHand,
DIAB_630,

DIAB-ADV....D25,
DIAB_C_150,

diagstrt,
DiscResource,

DiscResourceUnit,
disk,

DiskFontHeader,
DI SKINSERTED,

DISKNAME,
DiskObject,

DISKREMOVED,
DispCount,

DisPlarFlags,
D spPos,

DISTANTACTlVE,
DistantEcho,

DISTANTMOVEWINDOW,
DI STANTNEWPREFS,

DISTANTPATROL,
DISTANTREQCLEAR,

49-34, 52-16, 52-17, 52-149
31-13, 34-52, 4<;1-37, 57-15, 57-16, 57-43
58-19, 58-20, 58-143
16-51
16-52
16-40
16-55
16-53
16-54
16-56
17-35
60-38
20-173
20-172
20-174
20-171
20-175
34-1794
34-1795
34-1796
11-80
15-56
15-49, 15-58
15-107
16-43
34-999
15-107
61-70
34-1001
34-687
26-54
34-678
33-217
33-181, 33-206, 33-208
33-221
33-220
33-218
33-226

Apr 29 10:15 1986 h.xref Page 14

DISTANTREQSET, 33-225
DistantScreen, 33-210

DISTANTSCREENBAR, 33-219
DISTANTSIZEWINDOW, 33-222

DistantWindow, 33-209
DISTANTWINDOWBACK, 33-224

DISTANTWINDOWFRONT, 33-223
DIWJiORIZ_POS, 17-30
DIW_VRTCL-pOS, 17-31

DIW_VRTCL-POS_SHIFT, 17-32
diwstop, 13-78
diwstrt, 13-77

dl-A2, 20-153
dl-A5, 20-154
dl-A6, 20-155

dl..J)iskType, 20-213
dl_GV, 20-152

d1_lib, 20 -150
d1J,ock, 20-210

d1J,ockList, 20-212
d1J/ame, 20-215
d1J/ext, 20-207
d1~oot, 20-151
d1_Task, 20-209
dl_Type, 20-208

d1_unused, 20-214
dl_VolumeDate, 20-211

DLT....DEVICE, 20-219
DLT..J)IRECTORY, 20-220

DLT_VOLUME, 20-221
DMAB-AUDO, 18-38
DMAB-AUD1, 18-39
DMAB-AUD2, 18-40
DMAB-AUD3, 18-41

DMAB_BLITHOG, 18-48
DMAB_BLITTER, 18-44
DMAB_BLTDONE, 18-49

DMAB_BLTNZERO, 18-50
DMAB_COPPER, 18-45

DMAB..J)ISK, 18-42
DMABjlASTER, 18-47
DMAB~TER, 18-46
DMAB_SETCLR, 18-37
DMAB_SPRITE, 18-43

dmacon, 13-81, 27-20, 27-21, 27-22, 27-23
dmaconr, 13-22

DMAF-ALL, 18-30
DMAF-AUDO, 18-19
DMAF-AUD1, 18-20
DMAF-AUD2, 18-21
DMAF-AUD3, 18- 22

DMAF-AUDIO, 18-18
DMAF_BLITHOG, 18-29
DMAF_BLITTER, 18-25
DMAF_BLTDONE, 18-34
DMAF~LTNZERO, 18-35

D - 91

Apr 29 10:15 1986 h.xref Page 15

dosextens l

DosInfo,

DOS5ti~~:
DosPacket,

DoubleClick,
DoubleMicros,

DoubleSeconds,
DOWNBACKGADGET,

dp...,Action,
dpJ.rgl,
dpJ.rg2,
dpJ.rg3,
dpJ.rg4,
dpJ.rg5,
dpJ.rg6,
dpJ.rg7,

dpJlu fAddr ,
dpJ.ink,
dpJ'ort,
dp....Res1,
dp....Res2,

dp_lItatus,
dp_Status2,

dp-~:
DRj.LLOCUNIT,

dr_CiaResource,
dr_Current,

drJ)iscBlock,
dr J)iscSync,

DRJRrl~¥;:

18-26
18-23
18-28
18-27, 27-20, 27-21
18-17
18-24, 27-22, 27-23
33-46, 33-156, 33-157, 33-158, 33-159,
33-161, 33-162, 33-163, 33-164
34-1125
61-77
61-78
61-75
61-79
61-73
61-71
61-81
61-76
61-80
61-74
61-72
42-47
19-19, 19-53, 19-106, 19-160, 19-213, 20-24,
:U-8, 54-18
49-41
20-170
20-149
19-19
20-77, 20-110
34-1651
33-154
33-154
33-59
20-91
20-94, 20-95
20-96
20-97
20-98
20-99
20-100
20-101
20-94
20-78
20-79
20-84, 20-92
20~88, 20-93
20-92
20-93
20-81, 20-91
14-24
15-110
15-62
15-58
15-65
15-66
15-59
15-111

Apr 29 10:15 1986 h.xref Page 16

DR_GETUNIT ,
DR_GETUNITID,

DlLGlVEUNIT,
dr_Index,

DlLLASTCOMM,
dr_Library,

dr-pad,
dr_BysLib,
dr_UnitID,
dr_wa~¥:

DRAGGADGET,
DRAGSELECT,

drand48 ,
DrawerData,

DRAWERDATAFlLESIZE,
DrawMode,
DrawPath,

DRB...ACTlVE,
DRBj.LLOCO,
DRBj.LLOC1,
DRBj.LLOC2,
DRBj.LLOC3,
DRF...ACTlVE,
DRFj.LLOCO,
DRF.J,LLOC1,
DRFj.LLOC2,
DRF.J,LLOC3,

DRT_37422D2S,
DRT...AMlGA,
DRT_EMPTY,

dru....DiscBlock,
druJ)iscSync,

dru_InCiex,
druJ!essage,

ds....Days,
dsJ4inute,

ds_Tick,
dskbytr,
dskdat,

dskdatr,
DSKDMAOFF,

dsklen,
dSkPt ,

dsksync,
DspIns,

DSR_CPR,
DUALPF,

dummy,
DWidth,

DxOffset,
DyOffset,

E,
Echo,

Echoes,
eert,

15-112
15-114
15-113, 15-117
15-67
15-117
15-57
15-60
15-61
15-63
15-64
33-282, 34-1758
33-62
33-309
42-96
61-42, 61-79, 61-119
61-67
34-740, 34-789, 50-64
24-86
15-75
15-71
15-72
15-73
15-74
15-81
15-77
15-78
15-79
15-80
15-126
15-125
15-127
15-51
15-52
15-53
15-50
19-63
19-65
19-67
13-34
13-39
13-25
15-92
13-38
13-37
13-71
60-34
9-80
60-57
50-67
60-38
60-39, 60-50
11-68, 60-39, 60-50
14-22, 43-15
33-208
33-181
42-88

D - 92

Apr 29 10:15 1986 h.xref Page 17

EIGHT_LPI, 34-1767
ELITE, 34-1754
else, 25-21, 55-38. 61-106

ENABLECLI, 33-275, 34-1688
ENDGADGET. 34-446

EOF, 55-43
EPSON, 33-278, 34-1797

EPSON_JX-80, 34-1798
erand48 , 42-96

errno, 42-86
ERROR-ACTION-NOT_KNOWN, 19-176

ERROR_BAD_STREAMJIAME, 19-174
ERROR-COMMENT_TOO_BIG, 19-187
ERROR-PELETE~OTECTED, 19-189

ERROR-PEVICE-NOT-MQUNTED, 19-185
ERROR-PIR-NOTjOUND, 19-112

ERROR-PIRECTORY-NOT_EMPTY, 19-183
ERROR-PIS~FULL, 19-188

ERROR-PIS~OT_VALIDATED, 19-180
ERROR-PIS~WRITE-PROTECTED, 19-181

ERROR_INVALID_COMPONENT~, 19-177
ERROR_INVALID_LOCK, 19-178

ERROR-NO-PEFAULT-PIR. 19-169
ERROR-NO-PISK, 19-193

ERROR-NO_FREE_STORE, 19-168
ERROR-NO-MORE_ENTRIES, 19-194
ERROR-NOT~S-PISK, 19-192

ERROR-OBJECT_EXISTS, 19-171
ERROR_OBJECT_IN_USE. 19-170

ERROR-OBJECT-NOTjOUND, 19-173
ERROR_OBJECT_TOO~GE. 19-175

ERROR_OBJECT_WRONG_TYPE, 19-179
ERROR~EAD-PROTECTED, 19-191

ERROR~ENAME-ACROSS-PEVICES, 19-182
ERROR-SEE~ERROR, 19-186

ERROR-TOO~_LEVELS, 19-184
ERROR_WRITE~OTECTED, 19-190

ErrorX, 33-191
ErrorY, 33-191

ETD_CLEAR, 58-101
ETD_FORMAT, 58-99

ETD-MQTOR, 58-97
ETD~EAD, 58-96
ETD_SEEK, 58-98

ETD_UPDATE, 58-100
ETD_WRITE, 58-95

EventCount, 33-120
EVENTMAX, 33-50, 33-121

except, 42-95
exception. 42-34

EXCLUSIVE_LOCK. 19-58
ExecMessage, 34-915

exp, 42-14, 42-92
ExtData, 34-1231, 34-1508

EX~FBRITE. 60-65
F-PUPFD, 22-23

Apr 29 10:15 1986 h.xref Page 18

F_GETFD,
F_GETFL,
F_SETFD.
F_SETFL,

fabs,
FALSE,

FANFOLD,
fatten..,count,

fc_FileName.

~~:~~y::
fc_YSlze,

fch....FileID,
FOi....ID.

fch...)lumEntries,
FDDECP.
FDEDIT.
FDMONY,
FDTYPE,
FEMALE,

feof,
ferror,

fetchIBase,
fflush,
fgets.

.. FgPen,
fh-Arg1,
fh-Arg2,
fh-Args,
fhJluf,
fh...End.

fh...Func1,
fhJ'unc2,
fhJ'unc3,
fh...Funcs,

fh...Link,
fh-Port,

fh-POB,
fh...Type.

fib_Comment,
fib-Pate,

fib-PirEntryType,
fib-Piskkioy ,

fib_EntryTypEi,
fib_FileName.

fib-NumB1ocks,
fib-Protection,

fib_Size.
FIBB-PELETE,

FIBB_EXECUTE,
FIBB....READ,

FIBB_WRITE.
FIBF-PELETE,

FIBFJ;XECUTE,
FIBF~EAD,

FIBF_WRITE,

22-24
22-26
22-25
22-27
42-15. 42-93
33-275
33-295, 34-1749
39-34
16-26
16-29
16-28
16-27
16-35
16-32
16-36
14-31
14-29
14-32
14-30
45-39
55-53
55-54
33-411
55-57
55-63
50-61
20-71
20-12
20-70. 20-71
20-63
20-65
20-67
20-68
20-69
20-66, 20-67
20-59
20-60
20-64
20-61
19-90
19-89
19-77
19-76
19-84
19-80
19-87
19-82
19-85
19-101. 19-105
19-100. 19-104
19-98. 19-102
19-99. 19-103
19-105
19-104
19-102
19-103

D - 93

Apr 29 10:15 1986 h.xref Page 19

FileHandle.
FileInfoBlock.

FileLock.
FILENAME_SIZE.

fileno.
FILL_CARRYIN.

FILL_OR.
FILL_XOR.

FINE.
firstBlissObj.
FirstCopList.
FirstGadget.

FirstItem.
FirstRequest.
FirstScreen ..
F1rstW1ndow.

firstx ..
firsty.

fl....Access.
fl_Key.

fl_Link.
fl....MemList.
fl....NumFree.

fl_Task.
fl_Volume.

FlagPtr.
Flags.

£lagTbl.
floor ..

fmod.
FOLLOWMOUSE.

font.
FontContents.

FontContentsHeader ..
FontHeight.

fopen.
for,

FOREVER.

FPBJ)ESI~g:
FPBJ)ISKFONT.

FPB~ROPORTIONAL.
FPBJ1.EMOVED.
FPBJ1.EVPATH.
FPBJ1.OM£ONT •
FPB_TALLDOT.
FPB_WIDEDOT.

FPENAN.
FPEOVE".
FPEUND.
FPEZDV.

FPFJ)ESIGNED.

20-58
19-75
20-225
34-1606. 34-1694
55-55
3-62
3-60
3-61
34-1755
50-49
11-74
34-1165. 34-1358. 34-1490
34-82
34-1118
33-84. 35-50
34-1447
33-137. 50-26
33-137. 50-26
20-228
20-227
20-226
61-90
61-89
20-229
20-230
50-23
6-38. 6-69. 24-95. 24-148. 24-176. 24-254.
25-37. 26-47. 27-28. 27-29. 27-33. 33-86.
33-211. 34-78. 34-122. 34-225. 34-296.
34-553. 34-1109. 34-1348. 34-1458. 39-32,
50-41. 50-68. 60-22
50-22
42-93
42-93
34-465
33-422. 34-1472. 34-1567. 50-74
16-25
16-34
34-1634
55-60
34-1863
34-1863
55-56. 55-56. 55-57. 55-57. 55-58. 55-58
56-40
56-30
56-38
56-42
56-32
56-28
56-34
56-36
42-62
42-60
42-59
42-61
56-41

Apr 29 10:15 1986 h,xref Page 20

FPFJ)ISKFONT.
FPF~ROPORTIONAL.

FPFJ1.EMOVED.
FPFJ1.EVPATH.
FPFJ1.OM£ONT.
FPF_TALLDOT.
FPF_WIDEDOT.

FPHALF.
FPONE.
FPTEN.

FPZERO.
FreeFreeList ..

FREEHORIZ.
FreeList.
FREEVERT.

FreeWBObj ect.
freopeh.

frexp.
front.

FrontPen ..
FRST...POT.

FS....NORMAL.
FSB_BOLD.

FSB_EXTENDED.
FSB_ITALIC.

FSB_UNDERLINED.
fseek.

FSF_BOLD.
FSF_EXTENDED.

FSF_ITALIC.
FSF_UNDERLINED.

ftell.
function ..

GADGBACKFILL.
GADGDISABLED.

Gadget.

GADGET0002.
GADGETCOUNT.

GADGETDOWN •

~~i6~:
GadgetRender.
GadgetReturn,

Gadgets.
GadgetText.
GadgetType.

GADGEttlP •
GADGHBOX.

GADGHCOMP.
GADGHIGHBITS.

GADGHIMAGE.
GADGHNONE.
GADGlMAGE.

56-31
56-39
56-43
56-33
56-29
56-35
56-37
43-20
43-19
43-18
43-21
29-40
34-631
61-88. 61-126
34-633
29-40
55-61
42-93
6-27
34-738. 34-787
27-29. 50-94
56-17
56-22
56-18
56-20
56-24
55-56
56-23
56-19
56-21
56-25
55-62
3-85
61-167
34-417
33-123. 3~-143. 34-220. 34-286. 34-288.
34-1165. 34-1358. 34-1490. 34-1573. 61-50.
61-51. 61-52. 61-53. 61-54. 61-55. 61-73.
61-124
34-527
33-57. 33-143
34-979
34-354
33-310
34-311
33-133
34-1573
34-323
34-302. 34-506
34-981
34-369
34-367
34-366
34-371
34-377
34-383

D - 94

Apr 29 10:15 1986 h.xref Page 21

GADGIMMEDIATE,
Gam~ort6Wl6~:

gelHead,
Gelslnfo,

gel Tail ,
GENLOC,

GENLOCICAUDI 0,
GENLOC\CVIDEO,

getc,

e:~¥~~~:
GetWBObject,

GfxBase,
GIDJ)OWNSCROLL,

GIDJiORIZSCROLr:,
GID_LEFTSCROLL,

GID_NAME,
GIDJUGHTSCROLL,

GID_UPSCROLL,
GID_VERTSCROLL,

GID_WBOBJECT,
GIMMEZEROZERO,
GOODITEMDRAWN ,

GOODSUBDRAWN ,
GPCT-ABSJOYSTICK,

GPCT..J\LLOCATED,
GPCT~OUSE,

GPCTJOCONTROLLER,
GPCT~ELJOYSTICK,

GPDj.SKCTYPE,
GPDj.SKTRIGGER,

GPD...READEVENT ,
GPD_SETCTYPE,

GPD_SETTRIGGER,
GPDERR_SETCTYPE,

gpt_Keys,
gpt_Timeout,

gpt_XDelta,

GPTl&~~;:
GPTB_UPKEYS,

GPTFJ)OWNKEYS,
GPTF_UPKEYS,

graphics,

GRAPHICS_CLIPJi,
GRAPHICS_COLLIDEJi,

GRAPHICS_COPPERJi,
GRAPHICS_GELSJi,

GRAPHICS_GFJLH,
GRAPHICS_GFXBASEJi,

GRAPHICS_GFXMACROSJi,
GRAPHICS_GRAPHINTJi,

GRAPHICS_LAYERSJi,
GRAPHICS~TPORTJi,

Apr 29 10:15 1986 h.xref Page 22

GRAPHICS~EGIONSJi,
GRAPHICS_SPRITEJi,

GRAPHICS_TEXTJi,
GRAPHICS_VI EWJi,

GRELBOTTOM,
GRELHEIGHT,

GRELRIGHT,
GRELWIDTH,

GRET~EQSELECT,
GRET~EQUEST ,

GRET...RJM,
GRET~JMSELECT ,

GZZGADGET,
GZZHeight,
GZZMouseX,
GZZMou,seY,

GZZWidth,
HAM,

HARDWARE....ADKBITSJi,
HARDWARE_BLITJi,

HARDWARE_CUSTOMJi,
HARDWAREJ)MABITSJi,
HARDWARE_I NTBI TSJi ,

He~~;~~~:
-Height,

HIGHBOX,
HIGHCOMP,

HI GHFLAGS ,
HIGHlMAGE,

HIGHITEM,
HIGHNONE,

HIRES,
HIRESGADGET,

HIRESPICK,
HitMask,

HitScreen,
HoldMinYMouse,

HOLDNMODIFY,
HorizBociy,
HorizPot,

HP _LASERJET,
HP_LASERJET~LUS,

HPotRes,
HSIZEBITS,
HSIZEMASK,

hthick,
HUGE,

HUGE_VAL,
HWaitpos,

IO,
Il,
12,

34-438
23-28
24-30
50-42
50-37, 50-59, 50-59
50-42
26-60
60-63
60-64
55-49, 55-50
55-50
29-39
29-38
26-24, 33-97, 33-97
61-156
61-151
61-153
61-157
61-154
61-155
61-152
61-150
34-1277
33-321
33-322
23-41
23-36
23-39
23-37
23-40
23-15
23-17
23-14
23-16
23-18
23-45
23-29
23-30
23-31
23-32
23-23
23-25
23-24
23-26
6-5, 16-20, 27-17, 34-25, 34-29, 34-33,
34-37, 34-41, 34-45, 35-21, 50-5, 51-5, 60-5
6-1, 6-2, 34-28
8-1, 8-2
11-1, 11-2
24-1, 24-2
6-4, 25-1, 25-2, 34-24, 50-4, 51-4, 60-4
26-1, 26-2
27-1, 27-2
28-1. 28-2
34-40, 39-5, 39-6
27-16, 34-36, 50-1, 50-2

51-1, 51-2
53-1, 53-2
16-19, 34-44, 56-1, 56-2
34-32, 35-20, 60-1, 60-2
34-393
34-402
34-395
34-399
33-337
33-336
33-335
33-338
34-512
34-1225
34-1218
34-1219
34-1224
60-60
1-11, 1-12, 1-53
3-11, 3-12, 3-96
13-11, 13-12, 13-114
18-11, 18-12, 18-53
32-12, 32-13, 32-53
24-228
24-201
24-104, 33-136, 34-76, 34-120, 34-211,
34-293, 34-827, 34-1100, 34-1339, 34-1452,
34-1555, 45-85, 53-13
34-178
34-176
34-172
34-174
34-189
34-180
60-58
33-54
33-47
24-109
33-199
33-195
17-21
34-612
34-570
34-1802
34-1803
34-621
3-15
3-17
33-138
42-75
40-1
11-35, 11-45, 11-45
14-19
14-19
14-19

I~I, 42-72

D - 95

Apr 29 10:15 1986 h.xref Page 23

IJ'ID2,
IAddress,

IBase- ~

I BitMap ,
icon"

ICONNAME,
idLB¥tesPerBlock,

ldJ)iBkState,
idJ)iskType,
ID..J)OS....DlsK,

icLInUse,
ID_KICKSTART....DISK,

ID~O....DISKJ'RESENT,
ID~OT~EALLY..J)OS,

i~umBlockB,
i~umBlocksUsed,
i~umSoftErrors,

icLUnitNumber,
ID_UNREADABLE....DISK,

ID_VALIDATED,
ID_ VALIDATING,
icLVolumeNode,

ID_WRITEJ'ROTECTEO,
IDCMPFlags,

IDCMPWindow,
ie_addr,

ie_Class,
ie_Code,

ie_EventAddress ..
ie~extEvent,
ie...:position,

ie_Qualifier,
ie_SubClass,

ie_TimeStamp',
ie....x,

ie....xy,
ie_y,

I ECLASS...,ACTIVEWINDOW,
IECLASS_CLOSEWINDOW,

IECLASS_DISKINSERTED,
IECLASS....DISKREMOVED,

IECLASS_EVENT,
I ECLASS_GADGETDOWN ,

I ECLASS_GADGETUP,
IECLASS_INACTIVEWINDOW,

IECLASSjIAX,
IECLASS-HENULIST,
IECLASS~WPREES,

IECLASS~L,
IECLASSJ'OINTERPOS,

IECLASS~WKEY,
IECLASS~WMOUSE,

IECLASS~EERESHWINDOW,
IECLASS~EQUESTER,

42-73
34-935
33-355, 33-356, 33-357, 33-358, 33-359,
33-360, 33-362, 33-363, 33-364, 33-365,
33-366, 33-367
33-114
29-30
29-30
19-137
19-132
19-138
19-157
19-141
19-164
19-155
19-158
19-133
19-135
19-128
19-130
19-156
19-151
19-149
19-139
19-147
34-1188, 34-1345
34-956
31-131, 31-138
31-122
31-124
31-138
31-121
31-132, 31-136, 31-137, 31-138
31-125
31-123
31-133
31-128, 31-136, 31-136
31-130, 31-136, 31-137
31-129, 31-137, 31-137
31-53
31-41
31-51
31-49
31-27
31-33
31-35
31-55
10-76, 31-59
31-39
31-47
31-21
31-29
31-23
31-25
31-45
31-37

Apr 29 10:15 1986 h.xref Page 24

IECLASS_SIZEWINDOW,
I ECLASS_TIMER ,

IECODE....ASCII....DEL,
IECODE....ASCII_EIRST,

IECODE....ASCII-LAST,
IECODE_COJIRST,

I ECODE_CO-LAST ,
IECODE_C1JIRST,

IECODE_C1-LAST,
I ECODE_COMMLCODE_EIRST ,

I ECODE_COMMLCODE-LAST ,
IECODE~Y_CODEJIRST,

I ECODE_KEY_CODE-LAST ,
I ECODE_LATIN1_EIRST,

IECODE_LATIN1-LAST,
I ECODEJ.BUTTON,
IECODEjmUTTON,

IECODE~WACTIVE,
IECODE~OBUTTON,
IECODE~BUTTON,

IECODE~EQCLEAR,
IECODE~EQSET,

I ECODE_UPJ'REEI X,
IEQUALIEIER_CAPSLOCK,

I EQUALI EI ER_CONTROL ,
I EQUALI EI ER_INTERRUPT ,

I EQUALI EIER_LALT ,
IEQUALIEIER_LBUTTON,

IEQUALIEIER_LCOMMAND,
I EQUALIEI ER_LSHIET,

IEQUALIEIERjmUTTON,
IEQUALIEIER....MULTIBROADCAST,

IEQUALIEIER~ICPAD,
IEQUALIEIER~T,

IEQUALIEIER~BUTTON,
IEQUALIEIER~COMMAND ,

IEQUALIFIER~ELATIVEMOUSE,
IEQUALIEIER~EPEAT,
IEQUALIEIER~SHIET,

if,
Image,

IMAGE~GATIVE ,
IMAGEJ'OSITIVE,

ImageBMap,
ImageData,

ImageShadow,
INACTIVEWINDOW,
IND....ADDHANDLER,
IND~EMHANDLER,

I ND_SETMPORT ,
IND_SETMTRIG,
IND_SETMTYPE,

IND_SETPERIOD,
IND_SETTHRESH,

IND_WRITEEVENT,

31-43
31-31
31-76
31-74
31-75
31-72
31-73
31-77
31-78
31-68
31-69
31-66
31-67
31-79
31-80
31-83, 34-1915, 34-1916
31-85
31-89
31-86
31-84, 34-1917, 34-1918
31-97
31-95
31-65, 34-1915, 34-1917
31-103, 33-327
31-104
31-111
31-105, 34-1923
31-113
31-107, 34-1925
31-101, 33-327
31-115
31-112
31-109
31-106, 34-1924
31-114
31-108, 34-1926
3i-116
31-110
31-102, 33-327
36-31, 55-36
33-125, 33-144, 34-819, 34-895, 34-1203,
34-1367, 61-56, 61-57
34-1771
34-1770
34-245
24-111, 34-828
24-154
34-1007
30-16
30-17
30-21
30-23
30-22
30-20
30-19
30-18

D - 96

Apr 29 10:15 1986 h.xref Page 25

InfoData,
INGADGETSTATE,

InitAnimate,
INMENUSTATE,
innerHeight,
innerWidth,
inputevent,

Inputlnterrupt,
InputRequest,

INREQUEST,
INTBj.UDO,
INTBj.UD1,
INTBj.UD2,
INTBj.UD3,
INTB_BLIT,

INTB_COPER,
INTBJ)SKBLK,

INTBJ)SKSYNC,
INTB_EXTER,
INTB_INTEN,
INTBJ'ORTS,

INTB....RBF,
INTB_SETCLR,

INTB_SOFTINT,
INTB_TBE,

INTB_VERTB,
intena,

intenar,
INTERLACE,
Interrupt,

INTFj.UDO,
INTFj.UD1,
INTFj.UD2,
INTFj.UD3,
INTF_BLIT,

INTF_COPER,
INTFJ)SKBLK,

INTFJ)SKSYNC,
INTFJ!XTER,
INTF_INTEN,
INTFJ'ORTS,

INTF....RBF,
INTF_SETCLR,

INTF_SOFTINT,
INTF_TBE,

INTF_VERTB,
intreq,

intreqr,
IntuEvents,

IntuiMessage,
IntuiText,

INTUITICKS,
INTUITION_INTUINTERNAL-H,

INTUITION_INTUITION-H,
INTUITION_INTUITIONBASE-H,

19-127
33-317
24-253
33-318
33-140
33-140
10-24, 31-120, 31-121, 33-121, 34-61
33-118
33-117
34-1293
32-25
32-24
32-23
32-22
32-26
32-28
32-31
32-20
32-19
32-18
32-29
32-21
32-15
32-30
32-32
32-27
13-83, 27-25, 27-26
13-35
17-22
15-51, 15-52, 15-53, 15-65, 15-66, 15-67,
26-35, 33-118
32-44
32-43
32-42
32-41
32-45
32-47
32-50
32-39
32-38
32-37
32-48
32-40
32-36
32-49
32-51
27-25, 27-26, 32-46
13-84
13-36
33-121
33-198, 34-913, 34-959, 34-1191
34-224, 34-323, 34-736, 34-754
34-1012
33-2, 33-3
34-4, 34-5, 49-43, 61-30, 61-32
33-18, 34-20, 35-1, 35-2

Apr 29 10:15 1986 h.xref Page 26

IntuitionBase, 33-67, 34-21, 35-38
INVERSVID, 50-91
io...,Actua1, 7-44

io_Baud, 52-65
io_BrkTime, 52-66
io ClikID, 7-48

iO_Color ap, 48-145
io_Command, 7-41, 48-127, 48-141
io_CtlChar, 52-62

ioJ)ata, 7-46
io..J)estCols, 48-151
ioJ)estRows, 48-152

ioJ)evice, 7-39, 48-125, 48-139
ioJrror, 7-43, 48-129, 48-143

io_ExtFlags, 52-64
iO_Flags, 7-42, 48-128, 48-142

ioJ.ength, 7-45
io..Message, 7-38, 48-124, 48-138

ioj!odes, 48-146
io_Offset, 7-47

ioJ'arFlags, 46-60
ioJ'armO, 48-131
ioJ'arm1, 48-132
ioJ'arm2, 48-133
ioJ'arm3, 48-134

ioJ'ExtFlags, 46-58
ioJ'rtCommand, 48-130
ioJ'TermArray, 46-61

io....RastPort, 48-144
io....RBufLen, 52-63
io....ReadLen, 52-68

io_SerFlags, 52-71
io ~ecial, 48-153

io_Sr eight, 48-150
io_SrcWidth, 48-149

io_SrcX, 48-147
io_SrcY, 48-148

io_Status, 46-59, 52-72
iO_St~its, 52-70

io_Tar ray, 52-67
io_Unit, 7-40, 48-126, 48-140

io_WriteLen, 52-69
ioaj.llocKey, 2-44

ioa_Cycles, 2-49
ioaJ)ata, 2-45

iOa_Len~, 2-46
ioaJ'er od, 2-47

ioa....Request, 2-43
ioa_Volume, 2-48

ioa_WriteMsg, 2-50
IOAudio, 2-42

IOC~eq, 7-37
10 Req, 48-137
IOExcess, 33-193
IOExtPar, 46-35, 49-70, 49-76
IOExtSer, 49-71, 49-77, 52-35

D- 97

Apr 29 10:15 1986 h.xref Page 27

IOExtTD,
IOPar,

I OPARBjJlORT ,
IOPARBj.CTlVE,
IOPARB_QUEUED,

I OPARE"jJlORT ,
IOPARE"j.CTlVE,
I OPARE"_QUEUED ,

IOPArray,

Iopi~~1>~~~:
IOPTBJ'BUSY,

IOPTBJ'SEL,
I OPTBJl.WOIR ,

IOPTE"J'APEROUT,
I OPTE" J'BUSY ,

IOPTE"J'SEL,
I OPTE"Jl.WOIR ,

I ORequest ,
IOSERBj.BORT,

I OSERBj.CTlVE ,
IOSERB_BUE"RREAD,

I OSERB_QUEUED,
I OSERE"j.BORT ,

IOSERE"j.CTlVE,
IOSERE"_BUE"RREAD,

IOSERE"_QUEUED,
IOSTB_OVERRUN,

IOSTB....READBREAK,
IOSTB_WROTEBREAK,

IOSTB_XOE"E"READ ,
I OSTB_XOE"E"WRITE ,

IOSTE":.g=~:
IOSTE"Jl.EADBREAK,

IOSTE"_WROTEBREAK,
I OSTE"_XOE"E"READ ,

I OSTE"_XOE"E"WRITE ,
IOTArray,

iotd....Count,
iotd....Req,

iotd....SecLabe1,
IPointer,

IPOINTHEIGHT ,
IPOINTHOTX,
IPOINTHOTY,

Iptr,
IPtrHeight,

IPtrWidth,
iqd....E"NKUHDPort,

isji"ode,
isa1num,
isa1pha,
isascii,
iscntrl,

iscsym,

Apr 29 10:15 1986 h.xref Page 28

iscsymf,

~~:1~:
~SeR~~:
ISGRTRY,
ISLESSX,
ISLESSY,
islower,
isprint,
ispunct,
I srvstr ,
isspace,
isupper,

isxdigit,
I temGRect ,
ITEMDRAWN,

ITEMENABLED,
I temE"i 11 ,

ITEMNUM,
I TEMTEXT ,

I Text,
ITextE"ont,

itof,
IXOffset,
IYOffset,

JAM1,
JAM2,

JazzX,
.JazzY,

joyOdat,
joy1dat,
joytest,
jrand48,

K,
KARIA.

KBD-ADDRESETHANDLER,
KBDJl.EADEVENT,

KBDJl.EADMATRIX,
KBD....REMRESETHANDLER,

KBDJl.ESETHANDLERDONE,
KCji"OQUAL,

KC_VANILLA,
KCB_CONTROL,

KCBJ)OWNUP ,
KCBji"OP,

KCB_STRING,
KCE"j.LT,

KCE"_CONTROL,
KCE"J)OWNUP,

KCE"ji"OP,
KCE"_SHIE"T,

KCE"_STRING,
KEYCODEj!,
KEYCODEji",
KEYCODE_Q,

58-109
46-36
46-72
46-74
46-70
46-73
46-75
46-71
46-25, 46-61
48-123
46-80
46-78
46-82
46-76
46-81
46-79
46-83
46-77
2-43, 57-34
52-116
52-118
52-112
52-114
52-117
52-119
52-113
52-115
52-128
52-124
52-126
52-120
52-122
33-117, 45-63, 46-36, 52-36, 58-110
52-129
52-125
52-127
52-121
52-123
52-26, 52-67
58-111
58-110
58-112
33-149
33-416
33-417
33-418
28-16
33-150
33-151
33-197
28-15
12-42, 12-47
12-35, 12-48
12-46
12-45
12-47

12-48
12-38
34-187
12-44
6-79
6-80
6-77
6-78
12-37, 12-50
12-43
12-41
28-13, 28-16
12-40
12-36, 12-51
12-39
33-112
33-315
34-167
34-129
34-1846
34-157
34-752
34-750
43-25
33-152
33-152
50-88
34-1906, 50-89
34-87
34-87
13-26
13-27
13-47
42-91
4-28, 4-28, 4-31, 4-31, 19-164, 19-165
33-422
37-19
37-17
37-18
37-20
37-21
38-27
38-28
38-31
38-33
38-24
38-36
38-30
38-32
38-34
38-25
38-29
38-37
34-1936
34-1935
34-1933

D - 98

Apr 29 10:15 1986 h.xref Page 29

KEYCODE_X,
KEYDELMIC,
KEYDELSEC,

i<eymap,
KEYRE~MIC,
KEYREPSEC,

KeyRptDelay,
KeyRptSpeed,

km....HiCapsable,
km....HiKeyMap,

km....HiKeyMapTypes,
km....HiRepeatable,

km....LoCapsable,
km....LoKeyMap,

km....LoKeyMapTypes,
km....LoRepeatable,

KNOBHIT,
KNOBHMIN,
KNOBVMIN,

IJ.OckMeS~t::
lastBlissObj,

lastColor,
Layer,

LAJ:~~~gp:
Layerlnfo,

Layerlnfo_8Xtra,
Layerlnfo_extra_size~

LayerLockCount,
LayerLocker,

LA~!~~~~:
LAYER~~~~:

LAYERSMART,
LAYERSUPER,

Idexp,
left,

LEFTBORDER,
LeftEdge,

LEFTHIT,
leftmost,

LETTER,
LIB_VECSIZE,

LIB_VECTSIZE,
LibNode,

LIBRARIES-PISKFONT-H,
LIBRARIES-POS-H,

LIBRARIES-PQSEXTENS-H,
LIBRARIES_lCON-H,

LIBRARIES-MATHFFP-H,

34-1934
33-252
33-251
10-20, 10-53, 33-187, 33-187, 34-716, 38-13
33-250
33-249
34-1649
34-1647
38-20
38-19
38-18
38-21
38-16
38-15
38-14
38-17
34-637
34-644
34-646
6-48
60-59
50-49
50-46
6-25, 6-27, 6-63, 33-135, 33-237, 33-237,
34-231, 34-691, 34-1241, 34-1506, 39-24,
39-25, 39-26, 50-54, 50-54
6-52, 34-1482, 39-22
39-19
6-52, 34-1482
39-39, 39-39
39-37
6-35
6-53
34-691
39-20
34-41
39-16
39-17
39-18
42-16, 42-93
33-136
34-474, 34-622
34-74, 34-118, 34-209, 34-291, 34-742,
34-785, 34-821, 34-1098, 34-1337, 34-1450,
34-1555
8-35
50-48
34-1763
44-48
15-110, 15-111, 15-112, 15-113, 15-114
26-26, 33-72, 35-40
16-1, 16-2
19-4, 19-5, 19-229, 20-23, 54-17, 54-19
20-2, 20-3, 20-233
29-2, 29-3, 29-44
43-1, 43-2, 43-46

Apr 29 10:15 1986 h.xref Page 30

LI BRARI ES_TRANSLATOR-H,
LlNEMODE,
LinePtrn,

1 inpatcnt ,
List,
lobs,
Lock,

LockCount,
Locker,

Loci<Message,
LockNast,
LockPort,

LOFCprList,
LOFlist,

10Z'
L~~E:
LOGTINY,

LONELYMESSAGE,
LONGINT,

lonqreserved.,
LOWOiECKWIDTH,

LOWCOMMWIDTH,
LOWRESGADGET,

LOWRESPICK,
lrand48,

M,
M....ASM,
M...AWM,
IoLLNM,

MALE,
MAlloc,

Mask,
MatchToolValue,

matherr,
max,

MAXBODY,
MAXBYTESPERROW,

MaxChars,
MaxCount,

MAXCYLS,
MAXDI SPLAYCOLUMNS,

MAXDISPLAYHEIGHT,
MAXDISPLAYROWS,

MAXDISPLAYWIDTH,
MAXFONTNAME ,
MAXFONTPATH,

MAXFREQ,

MaxH~y~:
MAXPITCH,

MAXPOT,
MAXRATE,

MAXRETRY,
MAXTABS,

MAXVOL,

59-1, 59-2, 59-15
3-59
27-29, 50-69
50-66
15-64, 26-36, 26-51, 26-53, 61-62, 61-90
6-63
6-31, 39-29
6-33
39-33
6-46
39-31
6-45, 39-28
60-48
26-31
42-17, 42-92
42-18, 42-92, 43-16
42-77
42-78
34-1063
34-490, 34-706
39-38, 50-83
34-1879
34-1880
33-55
33-48
42-91
14-23, 27-30, 27-30
9-93
9-94
9-92, 10-27
45-38, 45-42
61-134
27-30, 33-236, 50-60
29-39
42-90
11-54, 41-4, 55-66
34-648
3-20
34-676
11-67, 50-25
58-35
33-406
33-403, 33-404
33-404
33-405, 33-406
16-41, 16-55
16-23, 16-26
45-54
34-1107, 34-1415
19-47
45-52
34-649
45-50
58-38
10-29, 10-55
45-56

D - 99

Apr 29 10:15 1986 h.xref Page 31

MaxWidth,
MaxX,

MaxXMouse~
MaxY,

MaxYMouse,
MeMask,
Memory,

Menu~
MENUCANCEL,

MENUDOWN,
MenuDrawn,

MENUENABLED,
MenuHBorder,

MENUHOT,
MenuItem,
MenuName,
MENUNULL,

MENUNUM,
MENUPICK,

MenuRPort,
MenuSelected,

MENUSTATE,

~~~t~: 
MENUTOGGLED, 

MENUUP, 
MenuVBorder; 

MENUVERIFY, 
MENUWAITING, 

Message, 

Mess a'JeKey , 
Ml.cros, 

MIDRAWN, 
MIN, 

MINFREQ, 

Min:~~f~: 
MINPITCH, 

MINRATE, 
minterms, 

MINVOL, 
M1nW1dth, MinX, 

M1nXMouse, 
MinY, 

MinYMouse, 
misc, 

MI SCNAME , 
MiscResource, 

Mode, 
MODE_640, 

MODEJ<EWFILE, 

Apr 29 10:15 1986 h.xref Page 32 

MODE_OLDFILE, 
Modes, 

modE, 
MOUSE BUTTONS , 

MOUSEDBLMIC, 
MOUSEDBLSEC, 

MOUSEMOVE, 
MouseX, 
MouseY, 

MouseYMinimum., 
moutlLrb, 

mouths, 

MRj.LLO~rt~~~~~~: 
MR_FREEMISCRESOURCE, 

mr_Library, 
MRJ'ARALLELBITS, 
MR_PARALLELPORT, 

MR_SERIALBITS, 
MR_SERIALPORT, 

mrand48, 
MSDOS1, 

MsgPort, 

MTYPE_CLOSEDOWN , 
MTYPE-PISKCHANGE, 

MTYPE_IOPROC, 
MTYPEJ'STD, 

MTYPE_TI MER , 
MTYPE_TOOLEXIT, 

MUSTDRAW, 
MutualExclude, 

N_TRACTOR, 
NABC, 

NABNC, 
NANBC, 

NANBNC, 
narratoT_rb, 

NATURALFO, 
ND_CantAlloc, 

ND_Expunged, 
ND_FreqErr, 
ND~akeBad, 
ND~odeErr, 

ND....NoAudLib, 
ND_NoMem, 

ND....NoWrite, 
NDJ'honErr, 

ND_PitchErr, 
ND....RateErr, 

ND_SexErr, 
ND_Unimpl, 

ND_Un1tErr, 
ND_VolErr, 

NEWCLIPRECTS_1_1, 

34-1107, 34-1415 
25-28 
33-92 
25-28 
33-93 
24-108 
34-1829 
34-71, 34-73, 34-1112 
34-1075 
34-1918 
33-94, 33-355, 33-356, 33-357, 33-358, 
33-359, 33-360 
34-92 
33-164, 34-1469 
34-1073 
34-82, 34-114, 34-116, 34-143 
34-80 
34-1858 
34-1845 
34-985 
33-111 
33-95, 33-362, 33-363, 33-364, 33-365, 
33-366, 33-367 
34-1295 
34-1112 
34-165 
34-191 
34-1917 
33-163, 34-1468 
34-995 
34-1077 
2-50, 6-46, 6-48, 7-38, 7-54, 15-50, 20-59, 
20-78, 20-109, 34-915, 45-63, 48-124, 48-138, 
54-22, 56-56 
34-1191 
33-90, 34-950 
34-96 
41-5, 55-67 
45-53 
34-1106, 34-1414 
19-48 
45-51 
45-49 
50-71 
45-55 
34-1106, 34-1414 
25-27 
33-92 
25-27 
33-93 
44-51 
44-51 
44-42 
33-236, 45-66 
17-14 
19-28 

19-24 
26-38, 60-40, 60-52 
42-19, 42-93 
34-975 
33-254 
33-253 
34-977 
33-87, 34-944, 34-1103, 34-1455 
33-87, 34-944, 34-1103, 34-1455 
33-189 
45-82 
45-72 
44-44 
44-47 
44-48 
44-43 
44-38 
44-37 
44-36 
44-35 
42-91 
36-31 
6-45, 6-47, 10-33, 20-33, 20-60, 20-61, 
20-79, 20-209, 20-229, 33-197, 34-1190, 
39-27, 39-28, 49-62, 49-82, 54-23 
61-146 
61-144 
61-147 
61-142 
61-145 
61-143 
24-26 
34-125, 34-344 
33-292, 34-1785 
3-28, 3-34, 3-35, 3-36 
3-29, 3-34 
3-30, 3-35, 3-36 
3-31 
45-62, 45-83 
45-40, 45-43 
45-18 
45-21 
45-27 
45-16 
45-26 
45-15 
45-14 
45-20 
45-22 
45-24 
45-23 
45-25 
45-19 
45-17 
45-28 
6-68 

D - 100 



Apr 29 10:15 1986 h.xref Page 33 

NEWLAYERINFg~ClLrED: 
NEWPREFS, 

NewScreen~ 
NEWSIZE, 

NewWindov, 
Next, 

NextBorder" 
NextComp, 

NextGadget, 
Nextlmage" 

Nextltem" 
nextLine, 
NextMenu, 

NextOb, 
NextRemember, 

NextScreen, 
NextSeleet, 

NextSeq, 
NextText, 

NextVSprite, 
NextWindov, 

ImLDlasks, 
NO_ICON~OSITION, 

NOCAREREERESH, 
NOCONSOLE, 

NOCROSSEILL, 
Node, 

nodes, 
NOGRAPHICS, 

NOITEM, 
NOLAYERS, 

NOMEN\], 
NONDP, 
NOSUB, 

NOT, 
nrand48, 

NTSC, 
NUEBS, 

NULL, 
num, 

numchan, 
NumOlars, 

NUMCYLS, 
NUMHEADS, 

NUMMRTYPES, 
NUMSECS, 

NUMTRACKS, 
NUMUNITS, 
nxtlist, 

0, 
O--APPEND, 

O_GREAT, 
O_EXCL, 

O....NDELAY, 
OJlAW, 

33-135 
39-42 
34-997 
34-1553 
34-971 
34-1331, 61-43, 61-67 
6-61, 11-52, 11-59, 11-73, 51-14, 60-31, 60-69 
34-796 
24-189 
34-288 
34-895 
34-116 
50-44 
34-73 
24-209 
34-1827 
34-1445 
34-150 
24-193 
34-754 
24-79 
34-1Q95 
45-69 
61-172 
34-1302 
33-393 
50-102 
7-31, 16-51, 28-15, 61-94, 61-95, 61-96, 61-97 
7-14, 16-14, 28-9, 48-20, 49-16, 61-19 
33-386 
34-1856 
33-387 
34-1855 
42-7 
34-1857 
34-1865 
42-91 
26-59 
36-12 
24-253, 34-1909, 34-1910, 55-35, 55-37, 55-39 
53-15 
45-74 
34-685 
58-34, 58-35, 58-39 
58-37, 58-39 
44-40, 44-44 
58-36 
58-39 
58-40 
11-25, 11-42, 11-42 
4-27, 4-30, 19-157, 19-158 
22-11 
22-12 
22-14 
22-10 
22-16 

Apr 29 10:15 1986 h.xref Page 34 

OJUlONLY, 
OJIDWR, 

O_TRUNC, 
O_WRONLY, 

OAlloe, 
obj, 

ObjAlloe, 
obs, 

OCTANT1, 
OCTANT 2 , 
OCTANT 3 , 
OCTANT4, 
OCTANT5, 
OCTANT6, 
OCTANT7, 
OCTANT8, 

OFFJlISPLAY, 
OFF_SPRITE, 
OFF_VBLANK, 

OFFSETJlEGINING, 
OFFSET_BEGINNING, 

OFFSET_CURRENT, 
OFFSET_END, 
OKIMATE_20, 

OlderRequest, 
OldX, 
OldY, 

ON..J)ISPLAY, 
ON_SPRITE, 
ON_VBLANK, 

ONEJ)OT, 
ONEDOT, 
OpCode, 

OptionList, 
OTHERJEERESH, 

OUTSTEP, 
OVERFLOW, 

OVERLAY, 
OVFLAG, 

P_STKSIZE, 
pad, 

pad2d, 
pad34, 
pad3b, 
pad7e, 
pad83, 
pad86, 
pad8e, 

padd~~: 
PAPERLENGTH, 

PAPERSIZE, 
PAPERTYPE, 

PAPERWIDTH, 
parallel, 

PARALLEL~RINTER, 

22-6 
22-8 
22-13 
22-7 
61-135 
61-135, 61-135 
61-135 
39-26 
3-79 
3-78 
3-77 
3-76 
3-75 
3-74 
3-73 
3-72 
27-21 
27-23 
27-26 
19-41 
19-34, 19-41 
19-36 
19-38 
34-1799 
34-208 
24-92, 33-137 
24-92, 33-137 
27-20 
27-22 
27-25 
50-95 
3-63 
11-22 
33-131 
34-1269 
24-44 
42-49 
24-25 
3-64 
49-58, 49-84 
25-39, 45-75, 45-87 
13-61 
13-66 
13-70 
13-95 
13-99 
13-102 
13-104 
34-1729 
26-61 
33-294, 34-1724 
33-292, 34-1722 
33-295, 34-1726 
33-293 
46-85, 49-32 
34-1735 

D - 101 



Apr 29 10:15 1986 h.xref Page 35 

PARALLELNAME, 
PARBJ;OFMODE, 

PARB....RADJ!()OGIE, 
PARB_SHARED, 

Parent, 
ParErr _Bu fTooBig, 

ParErrJ)evBusy, 
ParErr_InitErr, 

ParErr_InvParam .. 
ParErrJ.ineErr, 
ParErr....NotOpen, 

ParErr-PortReset, 
PARFJ;OFMODE, 

PARF....RAD_BOOGIE, 
PARF_SHARED, 

PCC_BW, 
PCC3MC, 

PCC_'iMC_BW, 
PCC_YMCB, 

pcLDevice, 
peLFlags, 

peLiorO, 
P<i-ior1, 

peLiORPort, 
pd....p0, 
pd....p1, 

P<i-pad, 
pct..:PBothReady, 

pct..:PI OR b , 
pct..:PI OR1, 

?d-Preferences, 
pct..:PrintBu f, 

pct..:PrinterSegment, 
pdJ'rinterType, 

pct..:PWaitEnabl8d, 
pct..:PWrite, 

peLs 0 , 
peLs1, 

peLSegmentData, 
peLSIORO, 
peLSIOR1, 

peLStk, 
peLTC, 

peLTIOR, 
P<i-Unit, 

PDCMD_QUERY, 
PDOID_SETPARAMS, 

PDERR_BADDlMENSION. 
PDERR-BUFFERMEMORY, 

PDERR_CANCEL, 
PDERR-PlMENSIONOVFLOW, 

PDERR_INTERNALMEMORY, 
PDERR_INVERTHAM, 

PDERR....NOTGRAPHICS, 
FBd-Close, 

FBd-ColorClass, 

46-85 
46-68 
46-66 
46-64 
34-1168 
46-91 
46-90 
46-96 
46-92 
46-93 
46-94 
46-95 
46-69 
46-67 
46-65 
49-100 
49-101 
49-102 
49-103 
49-61 
49-85 
49-72, 49-73, 49-74 
49-78, 49-79, 49-80 
49-82 
49-70, 49-73 
49-76, 49-79 
49-86 
49-68 
49-73 
49-79 
49-87 
49-66 
49-63 
49-64 
49-88 
49-67 
49-71, 49-74 
49-77, 49-80 
49-65 
49-74 
49-80 
49-84 
49-83 
49-81 
49-62 
46-87 
46-88 
48-172 
48-175 
48-169 
48-173 
48-174 
48-171 
48-170 
49-110 
49-112 

Apr 29 10:15 1986 h.xref Page 36 

ped....Commands, 
ped-PoSpecial, 

pecLExpunge, 
ped_Init, 

ped....MaxColumns, 
ped....MaxXDots, 
ped....MaxYDots, 

ped....NumCharSets, 
ped....NumRows, 

FBd-Open, 
pect..:PrinterClass, 

pect..:PrinterName, 
ped....Render, 

FBd-TimeoutSecs, 
ped....XDotslnch, 
FBd-YDotslnch, 

PenHeight, 
PenWidth, 

PF2PRI, 
PFJlNE~SCROLL~K, 

PFA-FlNE_SCROLL, 
PFBJlNE_SCROL~SHIFT, 

PFBA, 
PI, 

PI2, 
PI4, 

PICA, 
PID2, 
PID4, 
PIM2, 

pitch, 
PlaneOnOff, 
PlanePick, 

PLANEPTR, 
Planes, 

PLNCNTMSK, 
PLNCNTSHFT, 

PLOSS, 
PMBj.SM, 
PMB....AWM, 
Pointer, 

PointerMatrix, 
POINTERMATRIXMINREQ, 

POINTERSIZi';' 
POINTERTICKS, 

POINTERX, 
POINTERY, 
POI NTREL , 

pos, 
posctldata, 

potOdat, 
pot1dat, 

potgo, 
POTGONAME, 

potinp, 
pow. 

49-120 
49-121 
49-108 
49-107 
49-113 
49-116 
49-117 
49-114 
49-115 
49-109 
49-111 
49-106 
49-122 
49-123 
49-118 
49-119 
50-73 
50-72 
17-18 
17-27 
17-25 
17-26 
60-56 
14-21, 42-69, 43-11, 43-12, 43-13, 43-14 
43-13 
43-14 
33-281, 34-1753 
14-21, 42-70 
42-71 
14-21 
45-65 
24-137, 34-887 
24-136, 34-887 
25-31, 25-40 
25-40 
17-15 
17-17 
42-52 
10-27, 10-28 
10-28, 10-75 
34-1177 
34-1659 
33-36 
34-1608, 34-1659 
33-262, 34-1669 
33-257 
33-258 
34-254 
13-107 
53-12 
13-30 
13-31 
13-46, 47-7 
47-7 
13-32 
42-20, 42-92 

D - 102 



Apr 29 10:15 1986 h.xref Page 37 

PPC_B~~: 
PPC_BWGtx, 

PPC_COLORGFX. 
PPCB_COLOR. 

PPCB_GFX, 
PPCLCOLOR. 

PPCF_GFX. 
pr_CIS. 
pr CLI. 

pr _Console'fask, 
pr_COS. 

pr _CurrentDir ~ 
pr~ileSystemTask. 

pr_GlobVec. 
pr J4sgPort. 

prJ>ad. 
prJ>ktWait. 
prJesult2. 

pr JeturnAddr • 
pr _SegList. 

pr_StackBase. 
pr_StackSize. 

pr_Task .. 
pr _TaskNum. 

pr_WindowPtr, 
PRDJ)UMPRPORT. 

PRDJ>RTCOMMAND, 
PRD...,RAWWRITE. 

PREDRAWN. 
PREF_FILE. 

Preferences. 
prefs. 

prev, 
PrevComp, 
Prevltem. 

PrevOb. 
PrevSeq. 

PrevVSprite, 
PRIMARY_CLIP. 

PRINTASPECT. 
PrinterData. 

PrinterExtendedData, 
PrinterFilename. 

PrinterPort. 

Pri~~~~~~~: 
PRiM¥=§~: 

PRINTLEFTMARGIN. 
PRINTPITCH. 

PRINTQUALITY. 
PRINTRIGHTMARGIN. 

PRINTSHADE. 
PRINTSPACING. 

PRINTTHRESHOLD, 

Apr 29 10:15 1986 h.xref Page 38 

Process, 
PROPBORDERLESS. 

PROPGADGET. 
PropInfo. 

ps....NextSegment. 
psJ>ED. 

psJevision. 
ps_runAlert. 

pS_Version .. 
PTermArrayO. 

PT~~~~~h~: 
PtrWidth. 

putc. 

~~~~~~: 
PutWBObject.

Qualifier.
QtlME_LP_20.

R.
Raslnfo;
RasPtr.

RASSIZE,
RastPort ..

rate,
RAWKEY,

RECOVERYj.LERT.
Rectangle,

refptr,
REFRESHBITS,

REFRESHWINDOW,
Region,

RegiOnR~~~~~~:
RelLeft,

REL~i~t
RemBob,

Remember.
RememberSize,

RE~~k~~~~~:
REQACTlVE,
ReqBorder,

REQCLEAR,
ReqCount,

ReqGadget,

REQO~~~~~:
ReqPad1,

R:t~~t
Re:.2ext ,

REQUEStDEST,
Requester.

42-21
49-96
49-97
49-98
49-93
49-91
49-94
49-92
20-42
20-47
20-44
20-43
20-41
20-46
20-37
20-33
20-34
20-49
20-40
20-48
20-35
20-39
20-36
20-32
20-38
20-50
48-33
48-32
48-31
34-256
33-298
33-179, 33-179, 34-1631, 49-87
33-298
6-62. 51-14
24-190
33-129
24-209
24-194
24-80
7-51
33-287, 34-1714
49-60
49-105, 49-131
34-1694
34-1639
49-65, 49-126
33-278. 34-1692
34-1712
33-286
33-284, 34-1704
33-281, 34-1698
33-282, 34-1700
33-285, 34-1710
33-288, 34-1716
33-283, 34-1702
33-289, 34-1718

20-31
34-635
34-528
33-124, 34-551, 61-58, 61-59
49-127
49-131
49-130
49-128
49-129
46-26
46-27
34-1178
34-1181
55-51, 55-52
55-52
29-39
29-39
34-929
34-1800
20-123
60-42, 60-42, 60-67. 60-69
50-31
25-43
6-29, 27-17, 33-111, 33-134, 34-37, 34-1133,
34-1155, 34-1478, 34-1478, 48-144, 50-52
45-64
34-989
34-1890
6-30, 6-65, 25-25, 51-15, 51-20
13-40
34-1265
34-973
6-49, 51-18
51-12. 51-14. 51-21, 51-21
33-319
34-217
34-217
34-430
24-254
34-1825, 34-1827
34-1828
6-47
34-1274
34-264
34-222
34-993
34-1128
34-220, 34-514
34-231
34-262
34-233
34-249
34-983
34-224
33-375
34-204. 34-208, 34-1118, 34-1125

D - 103

Apr 29 10:15 1986 h.xref Page 39

RI!QVERIFY.
RESCOUNT.
reserved,

reservedl,
resource,

RI!SOURCI!S-PIS~.
RI!SOURCI!S-MISC-H.
RI!SOURCI!S-MISC_I.

RI!SOURCI!S-POTGO-H.
RESTORING.

RETURN_ERROR.
RETURN_FAIL.

RETURN_OK.
RETURN_WARN •

retva1.
rewind.

RIGHTBORDER.
RIGHTHIT.

RI~~~~~:
RinqXTrans.
Rin~~:

r~ConsoleSeq.ment,
rn...Info.

rn....RestartSeg.
r~TaskArray,

rn...Time.
ROBOTICFO.

RootNode.
round.
Rows,

rp.

RP...R~:~~~;:
RPD.

RPort.
RWindow.

RxOffset.
RyOffset.
aampfreq.

SatisfyMsq.
SAVEBACK.

SAVEBOB.
SaveBu f fer.
SaveCo1orO.

SA~~~~~~W:
SAVl!RMOUSE.

SaveRPort.
SAVING.

SBitMap.
Screen,

SCREENDEST.

34-991
33-53. 33-143. 33-144. 33-144
6-36. 6-67. 26-56. 50-84. 60-41
6-37
5-11. 5-12. 15-107. 44-51. 47-7
15-2. 15-3. 15-129
44-53
44-1. 44-2
47-1. 47-2
33-240
19-204
19-206
19-200
19-202
42-39
55-56
34-473
8-36
50-48
24-49
24-223
24-223
34-1300
20-164
20-167
20-166
20-161
20-165
45-41
20-160
43-24
25-36
6-29. 33-134
39-27
50-81
14-24
34-1133
34-247
60-71
60-71
45-71
7-53
24-24
24-36
24-151
34-1503
33-135
24-43
33-311
33-234
33-239
33-115
33-79. 33-84. 33-132. 33-199. 33-210.
34-1131. 34-1380. 34-1380. 34-1443. 34-1445.
35-45. 35-50
33-373

Apr 29 10:15 1986 h.xref Page 40

ScreenTit1e.
SCREENTYPE.

SCRGADGET.
Scroll_X.
Scroll_Yo

SDCMD_BREAK.
SDCMD_QUERY.

SDCMD_SETPARAMS.
SDOWNBACK.

SDOWNBACKGADGET.
SDRAGGADGET.

SDRAGGING.
Seconds,
seed48,

SI!LECTDOWN.
Selected.

Se1ectFill.
Se1ectRender.

SELECTUP.
SERB_7WIRE.

SERB_EOFMODE.
SERB-PARTY_ODD.

SERB-PARTY_ON.
SERB_QUEUEDBRK.

SERB...RAD_BOOGIE.
SERB_SHARED.

SERB_XDISABLED.
serdat,

serdatr,
SerErr_BaudMismatch.

Serl!rrJJufErr.
Serl!rr_BufOverf1ow.

SerErr-PetectedBreak.
SerErr-PevBusy.
SerEr-r _InitErr,

s!r~;~~I~~~:~~:
SerErr_LineErr,

SerErr....NoCTS.
SerErrNoDSR.

Serl!rr....NotOpen.
SerErr-Paritytrr.
SerErr~ortReset.

SerErr_TimerErr,
SERF_7WIRE.

SERFJOFMODE.
SERF-PARTY_ODD.

SERF-PARTY_ON.
SERF_QUEUEDBRK.

SERF...RAD_BOOGIE.
SERF_SHARED.

SERF.-XDISABLED.
serial,

SERIAL-PRINTER.
SERIALNAME.

serper,

34-1205
34-1521
34-510
6-44
6-44
52-93
52-92
52-94
34-523
33-64
33-65
34-519
33-89. 34-950
42-89
34-1916
33-128. 34-408
34-137
34-317
34-1915
52-106
52-98
52-108
52-110
52-104
52-102
52-100
52-96
13-44
13-33
52-132
52-134
52-142
52-145
52-131
52-140
52-133
52-135
52-136
52-144
52-143
52-137
52-139
52-138
52-141
52-107
52-99
52-109
52-111
52-105
52-103
52-101
52-97
49-35. 52-147
34-1736
52-147
13-45

D - 104

pr 29 10:15 1986 h.xref Page 41

SetAfPt,
SETDITEM,
SETDMENU,
SetDrPt,
SETDSUB,
SetOPen,

SETSITEM,
SETSMENU,

SETSSUB,
setWExcept,

SetWrMsk,
sex,

SGRJ!LACK,
SGR_BLACKBG,

SGR_BLUE,
SGR_BLUEBG,

SGILBOLD,
SGR_CLRO,

SGR_CLROBC,
SGR_CLR1,

SGR_CLR1BC,
SGR_CLR2,

SGR_CLR2BC,
SGR_CLR3,

SGR_CLR3BC,
SGR_CLR4,

SGR_CLR4BG,
SGR_CLR5,

SGR_CLR5BC,
SGlLCLR6,

SGlLCLR6BC,
SGR_CLR7,

SGR_CLR7BG,
SGR_CYAN,

SGR_CYANBC,
SGR....DEEAULT,

SGR..J)EEAULTBC,
SGR_GREEN,

SGR_GREENBG,
SGR_ITALIC,

SGILMACENTA,
SGR....MACENTABG,

SGR....NECATlVE,
SGRJ'RlMARY,

SGR...,RED,
SGR...,REDBC,

SGILUNDERSCORE,
SGR_WHITE,

SGR_WHITEBC,
SGR_YELLOW,

SGR_YELLOWBC,
SHADEJ!W,

SHADE_COLOR,
SHADE_GREYSCALE,

SHARED~~:

27-31
33-357
33-355
27-29
33-359
27-28
33-364
33-362
33-366
33-133
27-30
45-67
9-37
9-47
9-41
9-51
9-31
9-59
9-68
9-60
9-69
9-61
9-70
9-62
9-71
9-63
9-72
9-64
9-73
9-65
9-74
9-66
9-75
9-43
9-53
9-45
9-55
9-39
9-49
9-32
9-42
9-52
9-34
9-30
9-38
9-48
9-33
9-44
9-54
9-40
9-50
34-1778
34-1780
34-1779
45-86
19-51

Apr 29 10:15 1986 h.xref Page 42

SHECprList,
SliElist,

SHIETITEM,
SHIETMENU,

SHIETSUB,
SHIETY,

SHOWTITLE,
SIGBREAKB_CTRL-C,
SIGBREAKB_CTRL....D,
SIGBREAKB_CTRU,
SIGBREAKB_CTRL_E,
SIGBREAKE_CTRL_C,
SIGBREAKE_CTRL....D,
SIGBREAKE_CTRL_E,
SIGBREAKE_CTRL-E,

SIGN,
SICNELAC,

SILENCE,
SIMPLE...,REERESH,

SimpleSprite,
sin~

SING,
SINGLE,

sinh,
SIlLLPI,

Size,
SIZEBBOTTOM,

SIZEBRICHT,
SIZECADCET,

sizeof,
SIZEVERIEY,

SIZING,
SKIP_WAIT,

sm...,ArgList,
sDLClipID,

smjlessage,
sm....Msg,

sDLNumArgs,
smJrocess,
sDLSegment,

s~ToolWindow,
sm_Unit,

SMART...,REERESH,
SMARTCOMPILER,

sp~sg,
spJ'kt,

SPADs,
SPAces,

SPAdd,
SPAsin,
SPAtan,

sPCmp,
SPCes,

SPCesh,
SPDiv,

SPECIAL...,ASPECT,

60-49
26-32
34-1850
34-1849
34-1851
33-327
34-1530
19-211, 19-224
19-212, 19-225
19-217, 19-226
19-218, 19-227
19-224
19-225
19-226
19-227
34-1864
3-65
33-216
34-1267
53-10
42-22, 42-94
42-48
34-1750
42-23, 42-94
33-283, 34-1766
50-32, 61-134, 61-134,
34-1258
34-1256
33-60
61-67, 61-67
34-969
34-517
33-308
54-27
7-56
54-22
7-54
54-25
54-23
54-24
54-26
7-55
34-1266
61-101
20-109
20-110
43-31
43-38
43-33
43-38
43-38
43-29
43-39
.43-40
43-36
48-162

61-135, 61-135

D - 105

Apr 29 10:15 1986 h.xref Page 43

SPECI~ENSITY1,
SPECIAL-PENSITY2,
SPECIAL-PENSITY3,
SPECIAL-PENSITY4,

SPECIAL-PENSITYMASK,
SPECI~FRACCOLS,
SPECIAL_FRACROWS,
SPECI~FULLCOLS,
SPECIAL_FULLROWS,

SPECIAL...,MILCOLS,
SPECIAL...,MILROWS,

SpecialInfo,
SpecialLink,

SPExp,
SPFieee,

SPFix,
SPFlt,
SPLog,

SPLog10,
SPMul,
SPNeg,
SPPow,

apr,
SprColors,

SprIns,
SPRITE..ATTACHED,

SpriteDef,
SpriteReserved,

SPRITES,
sprpt,

sprRsrvd,
sprstop,

sprstrtup,
SPSin,

SPSincos,
SPSinh,
SPSqrt,

SPSub,
SPTan,

SPTanh,
SPTR,

SPTst,
sqrt,
SR10,
SRCA,
SRCB,
SRCC,

SRET_CANCELMENU,
SRET_GPROP,

SRET_GRELEASE,
SRET_GSDRAG,

SRET_GSIZING,
SRET_GWDRAG,

SRET...,MENU,
SRET...;REQ,
SRET...;RJM,

48-164
48-165
48-166
48-167
48-163
48-160
48-161
48-158
48-159
48-156
48-157
34-352
34-959
43-41
43-42
43-27
43-28
43-41
43-41
43-35
43-32
43-41
13-111
24-120
60-35
53-8
13-106
26-44
60-61
13-105
50-39
11-82
11-81
43-39
43-39
43-40
43-42
43-34
43-39
43-40
55-36
43-30
42-24,
14-25
3-53
3-52
3-51
33-352
33-349
33-347
33-350
33-345
33-346
33-344
33-348
33-342

42-92

Apr 29 10:15 1986 h.xref Page 44

SRET_SMENU ,
SRET_STRING,

StandardPacket,
start,

StartMicros,
StartSecs,

stat ..
StateReturn,

stderr,
stdin,

stdout,
strcmp,

STREQ,

sTRllicti:
strhor,

STRINGCENTER,

s:~i~i~:
B~~~:
strtol,
strvbl,

SubCRect,
SUBDRAWN,

SubItem,
SUBNUM,

SUD,
SUL,

SUPER_BITMAP,
SUPER_UNUSED,

SuperBitMap,
sup .. rC~i ect,

SuperSaveCli ects,
S FRONT,

SUPFRONTGADGET,
SUSERFLAGS,

SwapBits,
SwapBitsRastPortClipRect,

SWE...,NOACTIVE ,
SWE...;REQUEST,

SysFont,
SYSGADGET,

SysGadgets,
SYSREQUEST,
SysScreen,

systemj)plconO,
ta_Flags,

ta...,Name,
ta....Style,
ta_YSize,

tan,
tanh,
Task,

TBC....HCLRTAB,
TBC....HCLRTABSALL,

33-343
33-351
20-108
11-53
33-130
33-130
3-86
33-133
55-47
55-45, 55-50
55-46, 55-52
61-136
61-136
13-48
34-529
13-50
34-485
34-666
34-487
13-51
7-46, 56-47
42-91
13-49
33-113
33-316
34-143
34-1847
3-68
3-69
34-1268
34-1315
6-39
6-40
6-54
34-521
33-63
24-22
33-398
33-398
33-332
33-331
33-174
34-508
33-143
34-270
33-132
26-42
56-50
56-47
56-49
56-48
42-25, 42-94
42-26, 42-94
6-53, 20-32,
9-88
9-89

26-52, 39-33, 49-83

D - 106

Apr 29 10:15 1986 h.xref Page 45

TD_CHANGENUM,
TD_CHANGESTATE.

TD_fORMAT,
TD_LABELSIZE,

TD_LASTCOMM,
TD....MOTOR,

TDjIAME,
TDJ>ROTSTATUS,

TD.-.REMOVE,
TD_SECSHIfT,

TD_SECTOR,
TD_SEEK,

TDERR_BadDriveType,
TDERRJjadHdrSum,
TDERR_BadSecHdr,

TDERR_BadSeeID,
TDERR_BadSecPreamble,

TDERRJjadSecSum,
TDERR_BadUnitNum,

TDERRJ)iskOlanged,
TDERRJ)riveInUse,

TDERR_NoMem,
TDERlLNoSecHdr,

TDERR~otSpecified,
TDERR_SeekError,

TDERR_ToofewSees,
TDERR_Wri teProt,

TDf_EXTCOM,

TermArrayO,
TermArray1,

text,
TextAttr,
Textfont,

Textfonts,
t f....,Accessors,
tCBaseline,

tfJjoldSmear,
tCCharData,
tCCharKern,

tCCharLoc,
tCCharSpace,

tCflags,
tfJiiChar,
tf_LoChar,

t~-t~~~~~~:
tCS~le,
tCXS1Ze,
tCYSize,

TICKSJ>ER_SECOND,
Timer,

timerequest,
TIMERNAME,

TimeSet,
timeval,

58-82
58-83
58-80, 58-99
58-117
58-86
58-78, 58-97
58-73
58-84, 58-86
58-81
58-52
58-51
58-79, 58-98
58-140
58-131
58-134
58-130
58-129
58-132
58-139
58-136
58-141
58-138
58-128
58-127
58-137
58-133
58-135
58-75, 58-95, 58-96, 58-97, 58-98, 58-99,
58-100, 58-101
52-27
52-28
16-20, 34-45
16-67, 33-174, 34-750, 34-1472, 34-1567, 56-46
10-66, 16-56, 26-37, 50-74, 56-55
26-36
56-65
56-62
56-63
56-69
56-75
56-72
56-74
56-60
56-68
56-67
56-56
56-71
56-59
56-61
56-58
19-70
24-182, 31-14, 34-57, 49-38, 57-26
33-193, 49-81, 57-33
57-26
24-186
31-133, 34-1647, 34-1649, 34-1651, 57-28, 57-35

Apr 29 10:15 1986 h.xref Page 46

timsrv,
TINY,

Title,
TLOSS,

TMAlloe,
TmpRas,

toascii,
TOBB,

TOf_WaitQ,
TOGGLESELECT,

tolower,
Too ITypeArray ,

top,
top_layer,

TOPAZ_E¥~:
TOPAZ_SIXTY,

TOPBORDER,
TopEdge,

TOPHIT,
topmost,

TRJ.DDi~Q~~~:
~GETSYSTIME,

TR....MakeBad,
tr_node,
TR~oMem,

TR~otUsed,
~SETSYSTIME,

tr_t1me,
trackd1sk,

TRUE,
trunc,

tV.JD.icro,
tv_sees,

TWOJ>I,
TxBaseline,

Txflags,
TxHei9ht,

TxSpac~ng,
TxWidth,

Type,

u1,
u2,
u3,
u4,

UCopIns,
UCopList,

UCopperListIni t,
UfB,

UfB...,AP,
UfB~C,
UfB~,

26-35
42-76
34-1115, 34-1369, 34-1461
42-51
61-134
50-29, 50-57, 50-57
12-52
25-20, 25-22
26-53
34-478
12-51
29-41
33-136
39-24
33-422
34-1627
34-1628
34-475, 34-623
34-74, 34-118, 34-209, 34-291, 34-744,
34-785, 34-823, 34-1098, 34-1337, 34-1450,
34-1555
8-33
50-48
12-50
57-39
57-40
59-13
57-34
59-12
59-11
57-41
57-35
58-73
33-3, 33-18, 34-5
43-23
57-30
57-29
43-12
50-79
50-76
50-77
50-80
50-78
34-1425, 34-1564, 42-36, 60-23, 61-134,
61-134, 61-135, 61-135
11-32, 11-43, 11-44
11-37, 11-45, 11-46
11-39, 11-42, 11-43, 11-44, 11-45, 11-46
11-38, 11-43, 11-44, 11-45, 11-46
60-37
11-71, 11-73, 60-37
27-35
36-6
36-23
36-24
36-22

D - 107

Apr 29 10:15 1986 h.xref Page 47

UFB_OP.
UFBJA.
UFB_WA.
ufbfh.

ufbf1g.
ufbtyp.

UNDERFLOW.
UndoBuffer.

UndoPos.
union,
Unit.

UNITjlICROHZ.
UNIT_VBLANK.

UPFRONTGADGET.
US_LEGAL.

USJ.ETTER.
UserData.
UserPort,

VANILLAKEY.
VBlank.

vbsrv,
vefd.

vefdde.
vefde.
vefdi.

VetrPtr.
VetrTbl.

VERSIONNUMBER.
VertBody.
VertPot.

vhposr,

VhV~=;
ViewInitX.
ViewInitY.

VIEWINITYMINREO.
ViewLord.

ViewModes.
ViewPort.

VIEWX.
ViewXOffset.

VIEWY.
ViewYOffset.

VIRCINDI SPLAY.
voice,

volume,
VP..J!IDE.

VPO~~~~:
vposw,

VPotRes,
VSBob.

VSIZEBITS.
VSIZEMASK.

VSOVERFLOW.

36-19
36-20
36-21
36-10
36-8
36-9
42-50
34-672
34-683
11-23. 11-28. 11-33. 31-126. 49-69. 49-75
7-40. 48-126. 48-140
57-23
57-24
33-58
34-1784
34-1783
34-356. 34-1233. 34-1510
34-1190
34-1011
26-39
26-35
14-34
14-34
14-34
14-34
50-21
50-20
33-26
34-613
34-572
13-24
13-42
26-27. 33-76. 34-33. 35-21. 35-42. 60-45
33-183. 34-1685
33-183. 34-1685
33-31
33-76. 35-42
34-1561
11-61. 34-1476. 34-1476. 60-29. 60-31.
60-47. 60-47
33-271
34-1681
33-272
34-1683
33-320
45-83
45-70
60-62
13-23
17-38
13-41
34-621
24-122
3-16
3-18
24-31

Apr 29 10:15 1986 h.xref Page 48

VSPRITE.

vthick.
WserExt,

WserStuff.
VWaitPos.

W_TRACTOR.
wa_Lock.
wa.-Name,

WBJ)ISKMACIC.
WB....DISKVERSION.

WBD~t
WBDISK.

WBDRAWER.
WBENOiCLOSE.

WBENCHMESSACE.
WBENOiOPEN.

WBENOiSCREEN.
WBENQiWINDOW.

WBGARBACE.
WBKICK.

WBMessage.
WBObject.

WBorBottom,
WBorLeft.

WBorRight.
WBorTop.
wbottom,

WBPort.
WBPROJECT.
WBStartup.

WBTOOL.
WDOWNBACK.
WDRACCINC.
WEIRDECHO.

wheight.
Width.

Window.

WINDOWACTIVE.
WINDOWCLOSE.
WINDOWDEPTH.

WINDOWDEST.
WINDOWDRAC.
WindowPort.

WINDOWREFRESH.
WINDOWSIZINC.
WI NDOWTI CKED.

WLayer.
wO_Background.

wO_CurrentX.
wO_CurrentY,

24-23. 24-75. 24-79. 24-80. 24-86. 24-87.
24-162. 24-239. 50-42
33-138
24-139
24-58. 24-59. 24-139
11-30. 11-43. 11-43
34-1786
54-31
54-32
61-85
61-86
54-27. 54-30
61-39
61-34
61-35
34-1083
34-1003
34-1082
34-1525
34-1310
61-38
61-40
33-198
29-38. 33-128. 61-61. 61-93. 61-98
33-159. 34-1470
33-156. 34-1470
33-158. 34-1470
33-157. 34-1470
33-141
33-197
61-37
54-21
61-36
34-522
34-518
33-392
33-141
24-105. 33-136. 34-76. 34-120. 34-211.
34-293. 34-825. 34-1100. 34-1339. 34-1452.
34-1555. 45-84
6-43. 10-35. 33-78. 33-209. 34-247. 34-956.
34-1093. 34-1095. 34-1168. 34-1447. 35-44.
61-60. 61-120
34-1291
34-1253
34-1251
33-374
34-1249
34-1190
34-1308
34-1247
34-1312
34-1241
61-105
61-121
61-122

D - 108

Apr 29 10:15 1986 h.xref Page 49

Apr 29

wo-Pefau1tToo1, 61-118
vo-praverData, 61-119
wo-PrawerOpen, 61-103

wo_Flags, 61-108
wo_FreeList, 61-126

wo_Gadget, 61-124
wo_lconDisp, 61-102

wo_lconWin, 61-120
wo_Lock, 61-130

woJMasterNode~ 61-94
wo_Name, 61-114

wo~ameXOffset, 61-115
wo~ameYOffset, 61-116

wo~arent, 61-98
wo_Selected, 61-104

wo_SelectNode, 61-96
wo_Siblings, 61-95

wo_StackSize, 61-129
wo_ToolTypes, 61-123

wo_ToolWindow, 61-127
wO_Type, 61-111

wo_UseCount, 61-112
wo_UtilityNode, 61-97

wordreserved, 39-36, 50-82
wright, 33-141

WScreen, 34-1131
WUPFRONT, 34-520

wwidth, 33-141
X, 14-26, 24-102, 34-1864, 34-1864, 34-1864,

41-6, 41-6, 41-6, 41-6, 43-23, 43-23, 43-24,
43-24, 53-14, 55-65, 55-65, 55-65, 55-65

10:15 1986

Xl, 14-27
XAccel, 24-221

xoffset, 33-137, 34-1184, 34-1661
XTrans, 24-199

XVel, 24-220
xy, 34-793

Y, 14-26, 24-102, 53-14
Yl, 14-27

YAcce1, 24-221
yoffset, 33-137, 34-1184, 34-1663

YTrans, 24-198
YVel, 24-220

Z, 14-26
Zl, 14-27

_acos.. 42:-8
_as in, 42-9
_atan, 42-10

_B, 12-30, 12-43
-pase, 55-16

_BUFSlZ, 55-7
. _C, 12-29, 12-45

_cbuff, 55-20
_cliprects, 6-51

_CopList, 11-60
_cos, 42-11

h.xref Page 50

_cosh .. 42-12
_cot .. 42-13

_ctype, 12-33, 12-35,
12-40, 12-41,

-exp, 42-14
_fabs, 42-15

_filb!, 55-49
_file, 55-1B, 55-55
_flag, 55-17, 55-53,

_flsbf, 55-51, 55-57
_fperr, 42-85

_iob, 55-24, 55-45,
_iobuf, 55-11, 55-24,
_IOEOF, 55-30, 55-53
_I OERR , 55-31, 55-54

_lOMYBUF, 55-29
_I ONBF , 55-28

_I OREAD , 55-26
_lORW, 55-33

_lOSTRG, 55-32
_I OWRT , 55-27

J" 12-25, 12-35,
_ldexp, 42-16

1°6' 42-17
_logl , 42-18

....modf, 42-19
~, 12-26, 12-38,

~lLE, 55-9, 55-24
J, 12-28, 12-41,

-p1 , 6-56, 6-66
-p2, 6-66

-pad, 55-21
-pow, 42-20

-pow2, 42-21
-ptr , 55-13, 55-49,

_rent, 55-14, 55-49
_S, lJ-27, 12-40

_sin .. 42-22
_sinh, 42-23
_size, 55-19
_sqrt, 42-24
_tan, 42-25

_tanh, 42-26
_U, 12-24, 12-35,

_ViewPort, 11-61
_went .. 55-15, 55-51

_X, 12-31, 12-39

12-36, 12-37,
12-42, 12-43,

55-54

55-46, 55-47
55-42

12-37, 12-42,

12-42, 12-43,

12-43, 12-44

55-51

12-36, 12-42,

D - 109

12-38, 12-39,
12-44, 12-45

12-43, 12-44

12-44

12-43, 12-44

Listing of clib/macros.h:

1 /* ColllllOdore-Amiga, Inc. * /
2 /* shortcuts used by c code * /
3
4
5
6

#define MAX(a,b)
#define MIN(a,b)
#define ABS (x)

((a»(b)?(a): (b))
((a)«b)?(a): (b))
((x<O)?(-(x)): (x))

Contents

devices/audio.h
devicesjbootblock.h
devices/clipboard.h
devices/console.h
devices/conunit.h
devices/gameport.h
devices/input.h
devices/inputevent.h
devices/keyboard.h
devices/keymap.h
devices/narrator.h
devices/parallel.h
devices/printer.h
devices/prtbase.h
devices/seria1.h
devices/timer.h
devices/trackdisk.h

1 #ifndef DEVICES_AUDIO..Jf
2 #define DEVICES_AUDIO_H
3 /**/
4 /* Cormnodore-Amiga, Inc. */
5 /* audio.h */
6 /**/
7
8 #ifndef EXEC IO H
9 #include "exec/io.h"

10 #endif
11
12 #define AUDIONAME "audio.device"
13
14 #define ADHARD_CHANNELS 4
15
16 #define ADALLOC_MINPREC -128
17 #define ADALLOC_MAXPREC 127
18
19 #define ADCMD_FREE (CMD,:",NONSTDtO)
20 #define ADCMD_SETPREC (CMD_NONSTDt 1)
21 #define ADCMD_FINISH (CMD_NONSTDt2)
22 #define ADCMD_PERVOL (CMD_NONSTDt3)
23 #define ADCMD_LOCK (CMD_NONSTDt4)
24 #define ADCMD_WAITCYCLE (CMD_NONSTDt5)
25 #define ADCMDB_NOUNIT 5

V 26 #define ADCMDF_NOUNIT (1«5)
27 #define ADCMD_ALLOCATE (ADCMDF_NOUNIT+O)
28 29 #define ADIOB_PERVOL 4

...... 30 #define ADIOF_PERVOL (1«4)
31 #define ADIOB_SYNCCYCLE 5
32 #define ADIOF_SYNCCYCLE (1«5)
33 #define ADIOB_NOWAIT 6
34 #define ADIOF_NOWAIT (1«6)
35 #define ADIOB_WRITEMESSAGE 7
36 #define ADIOF_WRITEMESSAGE (1«7)
37
38 #define ADIOERR_NOALLOCATION -10
39 #define ADIOERR_ALLOCFAILED -11
40 #define ADIOERR_CHANNELSTOLEN -12
41
42 struct IOAudio [
43 struct IORequest ioa_Request;
44 WORD ioa_A11ocKey;
45 UBYTE *ioa_Data;
46 ULONG ioa_Length;
47 UWORD ioa Period;
48 UWORD ioa-Volume;
49 UWORD ioa:::cycles;
50 struct Message ioa_WriteMsg;
51);
52
53 #endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/*** ***************1
/* Commodore-Amiga, Inc. */
/* bootblock . h * /
/**/

/**

*
* Source control
* ------
*
* $Header: bootblock.h,v 27.2 85/07/10 01:55:47 neil Exp $

*
* $Locker: $
*
**/

/******* BootBlock definition: */

struct BootBlock [
UBYTE bb id[4];
LONG bb - chksum;
LONG bb:::dosblock;

);

#define BOOTSECTS 2

/* 4 character identifier */
/* boot block checksum (balance) */
/* reserved for DOS patch */

/* lK bootstrap */

#define BBID_DOS
#define BBID_KICK

'D', '0' I IS', 1\0' }
'K' I III I Ie', 'K' }

#define BBNAME_DOS
#define BBNAME_KICK

« 'D' «24) I ('0' «16) I ('S' «8)1
«'K'«24) ('1'«16) ('C'«8) ('K'»

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

V 26
27

,.... 28 ,.... 29
t-=I 30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef
#define

DEVICES_CLIPBOARD_H
DEVICES_CLIPBOARD_H

/**/
/* Commodore-Amiga, Inc. */
/* clipboard. h * /
/**/
/***

*
* clipboard device command definitions
*
**/

#ifndef EXEC_NODES_H
#include "exec/nodes.h"
#endif
#ifndef EXEC_LISTS_H
#include "exec/lists.h"
#endif
#ifndef EXEC_PORTS_H
#include "exec/ports.h"
#endif

#define CBD_POST (CMD _NONSTD+O)
#define CBD_CURRENTREADID (CMD_NONSTD+ 1)
#define CBD_CURRENTWRITEID (CMD_NONSTD+2)

#define CBERR _ OBSOI,ETE ID 1

/* list of units */
struct ClipboardUnitPartial

struct Node cu Node;
ULONG cu Unit"Num; /* unit number for this unit */

data is private to the device */ /* the remaining unit

struct IOClipReq {
struct Message io_Message;
struct Device *io_Device; /* device node pointer */
struct unit *io_Unit; /* unit (driver private)*/
UWORD io_Command; /* device command */
UBYTE io_Flags; /* including QUICK and SATISFY */
BYTE io_Error; /* error or warning num */
ULONG iO_Actual; /* number of bytes transferred */
ULONG io_Length; /* number of bytes requested */
STRPTR io_Data; /* either clip stream or post port */
ULONG io_Offset; /* offset in clip stream */
LONG io_ClipID; /* ordinal clip identifier */

);

#define PRIMARY_CLIP o /* primary clip unit */

struct SatisfyMsg {

);

struct Message sm_Msg;
UWORD sm_Unit;
LONG sm_ClipID;

#endif

/* the length will be 6 */
/* which clip unit this is */
/* the clip identifier of the pest */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef DEVICES_CONSOLE_H
#define DEVICES CONSOLE H
1**/
/* Commodore-Amiga, Inc. */
/* console.h */
/**/
/***

* * Console device command definitions

*
Source Control *

*
*
*

$Header: console.h,v 1.4 85/11/13 15:13:14 kodiak Exp $

* $Locker: $

*
***/

#ifndef EXEC_IO_H
#include "exec/io.h"
#endif

/****** console commands ******/
#define CD_ASKKEYMAP (CMD_NONSTD+O)
#define CD_SETKEYMAP (CMD_NONSTD+l)

/****** SGR parameters ******/

#define SGR_PRIMARY
#define SGR_BOLD
#define SGR_ITALIC
#define SGR_VNDERSCORE
#define SGR_NEGATIVE

/* these names refer to
#define SGR_BLACK
#define SGR_RED
#define SGR_GREEN
#define SGR_YELLOW
#define SGR_BLUE
#define SGR_MAGENTA
#define SGR_CYAN
#define SGR_WHITE
#define SGR_DEFAULT

0
1
3
4
7

the ANSI
30
31
32
33
34
35
36
37
39

#define SGR_BLACKBG 40
#define SGR_REDBG 41
#define SGR_GREENBG 42
#define SGR_YELLOWBG 43
#define SGR_BLUEBG 44
#define SGR_MAGENTABG 45
#define SGR_CYANBG 46
#define SGR_WHITEBG 47
#define SGR_DEFAULTBG 49

standard, not the implementation */

/* these names refer to the implementation, they are the preferred */
/* names for use with the Amiga console device. */
#define SGR_CLRO 30

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

#define SGR_CLRI 31
#define SGR_CLR2 32
#define SGR_CLR3 33
#define SGR CLR4 34
#define SGR=CLR5 35
#define SGRJLR6 36
#define SGR_CLR7 37

#define SGR_CLROBG 40
#define SGR_CLRIBG 41
#define SGR_CLR2BG 42
#define SGR_CLR3BG 43
#define SGR_CLR4BG 44
#define SGR_CLR5BG 45
#define SGR_CLR6BG 46
#define SGR_CLR7BG 47

/****** DSR parameters ******/

#define DSR_CPR 6

/****** CTC parameters ******/
#define CTC_HSETTAB 0
#define CTC_HCLRTAB 2
#define CTC_HCLRTABSALL 5

/****** TBC parameters ******/
#define TBC_HCLRTAB 0
#define TBC_HCLRTABSALL 3

/****** SM and RM parameters ******1
#define M_LNM 20 /* linefeed newline mode */
#define M_ASM 11)1" /* auto scroll mode */
#define M_AWM 1I?7 11 /* auto wrap mode */

#endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

V 26
27
28

::: 29
..... 30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/**/
/* Cormnodore-Amiga, Inc. * /
/* conunit.h */
/**/
/***

*
* Console device unit definitions

*
***************************~************************** ***************/

#ifndef EXEC_PORTS_H
#include "exec/ports.h"
#endif

#ifndef DEVICES_CONSOLE~
#include "devices/console.h"
#endif

#ifndef DEVICES_KEYMAP_H
#include "devices/keymap.h"
#endif

#ifndef DEVICES_INPUTEVENT_H
#include "devices/inputevent.h"
#endif

#define PMB_ASM
#define PMB_AWM
#define MAXTABS

struct Conunit {

(M_LNM+l) /* internal storage bit for AS flag */
(PMB_ASM+l) /* internal storage bit for AW flag */
80

struct MsgPort cU_MP;
/* ---- read only variables */

struct Window *cu Window; /* intuition window bound to this unit */
WORD cU_XCP; - /* character position */
WORD cu_YCP;
WORD c~XMax; /* max character position */
WORD CU_YMax;
WORD CU_XRSize; /* character raster size */
WORD cU_YRSize;
WORD cU_XROrigin; /* raster origin */
WORD cU_YROrigin;
WORD CU_XRExtant; /* raster maxima */
WORD CU_YRExtant;
WORD cU_XMinShrink; /* smallest area intact from resize process */
WORD CU_YMinShrink;
WORD cu_XCCP; /* cursor position */
WORD cu_YCCP;

/* ---- read/write variables (writes must must be protected) */
/* ---- storage for AskKeyMap and SetKeyMap */
struct KeyMap cu_KeyMapStruct;
/* ---- tab stops */
UWORD cu_TabStops[MAXTABS]; /* 0 at start, Oxffff at end of list */

/* ---- console rastport attributes */
BYTE cu_Mask;
BYTE cU_FgPen;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

BYTE
BYTE
BYTE
BYTE
APTR
UBYTE
struct
UBYTE
UBYTE
UWORD
UWORD
UWORD
UWORD

cU_BgPen;
cu_AOLPen;
cu_DrawMode;
cU_AreaptSz;
cu AreaPtrn;
cU::::Minterms[8] ;
TextFont *cu_Font;
cu_AlgoStyle;
cU_TxFlags;
cu_TxHeight;
cu_TxWidth;
cU_TxBaseline;
cu_TxSpacing;

/* cursor area pattern */
/* console minterms */

/* ---- console MODES and RAW EVENTS switches */
UBYTE cU_Modes[(PMB_AWM+7)/8]; /* one bit per mode */
UBYTE cu_RawEvents[(IECLASS_MAX+7)/B];

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#ifndef DEVICES_GAMEPORT_H
#define DEVICES GAME PORT H
/**/
/* Connnodore-Amiga, Inc. * /
/* gameport . h * /
/**/
/***

*
*
*

GamePort public definitions

***/

/******
#define
#define
#define
#define
#define

GamePort connnands
GPD_READEVENT
GPD_ASKCTYPE
GPD_SETCTYPE
GPD_ASKTRIGGER
GPD_SETTRIGGER

******/
(CMD_NONSTD+O)
(CMD_NONSTD+ 1)
(CMD_NONSTD+2)
(CMD _ NONSTD+ 3)
(CMD_NONSTD+4)

/****** GamePort structures ******/

#define
#define
#define
#define

GPTB_OOWNKEYS
GPTF_OOWNKEYS
GPTB_UPKEYS
GPTF_UPKEYS

struct GamePortTrigger
DW:)RD gpt_Keys;
DW:)RD gpt_Timeout;
DW:)RD gpt_XDelta;
DW:)RD gpt_YDelta;

o
(1«0)
1
(1«1)

/* key transition triggers */
/* time trigger (vertical blank units) */
/* X distance trigger */
/* Y distance trigger */

/****** Controller Types ******/
#define GPCT_ALLOCATED -1 /* allocated by another user */
#define GPCT_NOCONTROLLER 0

#define
#define
#define

GPCT_MOUSE
GPCT_RELJOYSTICK
GPCT_ABSJOYSTICK

/****** Errors ******/
#define GPDERR_SETCTYPE

#endif

1
2
3

1 /* this controller not valid at this time */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#ifndef DEVICES_INPUT_H
#define DEVICES_INPUT_H
/**/
/* Connnodore-Amiga, Inc. */
/* input.h */
/**/
/***

* * input device command definitions
*
***/
#ifndef EXEC_IO_H
#include "exec/io.h"
#endif

#define
#define
#define
#define
#define
#define
#define
#define

#endif

IND_ADDHANDLER
IND_REMHANDLER
IND_WRI TEEVENT
IND_SETTHRESH
I ND_SETPERIOD
IND_SETMPORT
IND_SETMTYPE
IND_SETMTRIG

(CMD_NONSTD+O)
(CMD_NONSTD+l)
(CMD_NONSTD+2)
(CMD_NONSTD+3)
(CMD_NONSTD+4)
(CMD_NONSTD+5)
(CMD_NONSTD+6)
(CMD_NONSTD+7)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef DEVICES_INPUTEVENT_H
#define DEVICES INPUTEVENT H
1*** ***************/
/* Commodore-Amiga, Inc. */
/* inputevent . h * /
/**/
/**

* * input event definitions
*
**/

#ifndef DEVICES TIMER H
#include "devices/tImer.h"
#endif

/*------ constants ---*/

/* InputEvent.ie_Class --- */
/* a NOP input event */
#define IECLASS_NULL OxOO
/* a raw keycode from the keyboard device */
#define IECLASS RAWKEY OxOl
/* the raw mouse-report from the game port device */
#define IECLASS_RAWMOUSE Ox02
/* a private console event */
#define IECLASS EVENT Ox03
/* a pointer posItion report */
#define IECLASS POINTERPOS Ox04
/* a timer event-*/
#define IECLASS TIMER Ox06
/* select button-pressed down over a gadget (address in ie_EventAddress) */
#define IECLASS GADGETDOWN Ox07
/* select button-released over the same gadget (address in ie_EventAddress) */
#define IECLASS GADGETUP Ox08
/* some requester activity has taken place. See codes REQCLEAR and REQSET */
#define IECLASS_REQUESTER Ox09
/* tilis is a menu number transmission (menu number is in ie_Code) */
#define IECLASS_MENULIST OxOA
/* user has selected the active window's close gadget */
#define IECLASS CLOSEWINDOW OxOB
/* this window has a new size */
#define IECLASS SIZEWINDOW OxOC
/* the window poInted to by ie_EventAddress needs to be refreshed */
#define IECLASS_REFRESHWINDOW OxOD
/* new preferences are available */
#define IECLASS NEWPREFS OxOE
/* the disk has been removed */
#define IECLASS DISKREMOVED OxOF
/* the disk has been inserted */
#define IECLASS DISKINSERTED OxlO
/* the window is-about to be been made active */
#define IECLASS ACTlVEWINDOW Oxll
/* the window is about to be made inactive */
#define IECLASS_INACTlVEWINDOW Ox12

/* the last class */
#define IECLASS_MAX Ox12

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

/* --- InputEvent.ie_Code */
/* IECLASS_RAWKEY */
#define IECODE_UP_PREFIX Ox80
#define IECODE_KEY_CODE_FIRST OxOO
#define I ECODE_KEY_CODE_LAST Ox77
#define I ECODE_COMM_CODE_FIRST Ox78
#define I ECODE_COMM_CODE_LAST Ox7F

/* IECLASS_ANSI */
#define
#define
#define
#define
#define
#define
#define
#define
#define

IECODE CO FIRST
I ECODE::':CO::':LAST
IECODE_ASCII_FIRST
IECODE_ASCII_LAST
IECODE ASCII DEL
IECODE-Cl FIRST
I ECODE::':Cl::':LAST
IECODE_LATIN1_FIRST
IECODE_LATIN1_LAST

OxOO
OxlF
Ox20
Ox7E
Ox7F
oxeo
Ox9F
OxAO
OxFF

/* IECLASS_RAWMOUSE */
Ox68 /* also uses IECODE_UP_PREFIX */
Ox69

#define
#define
#define
#define

I ECODE_LBUTTON
I ECODE_RBUTTON
I ECODEflUTTON
I ECODE_NOBUTTON

Ox6A
OxFF

/* IECLASS_EVENT */
#define IECODE_NEWACTlVE OxOl /* active input window changed */

/* IECLASS REQUESTER Codes */
/* REQSET is broadcast when the first Requester (not subsequent ones) opens

* in the Window
*/

#define IECODE REQSET OxOl
/* REQCLEAR is broadcast when the last Requester clears out of the Window */
#define IECODE_REQCLEAR OxOO

/*
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

InputEvent.ie_Qualifier --- */
IEQUALIFIER_LSHIFT OxOOOl
IEQUALIFIER_RSHIFT Ox0002
IEQUALIFIER_CAPSLOCK Ox0004
IEQUALIFIER_CONTROL Ox0008
IEQUALIFIER_LALT Ox0010
IEQUALIFIER_RALT Ox0020
IEQUALIFIER_LCOMMAND Ox0040
IEQUALIFIER_RCOMMAND Ox0080
IEQUALIFIER_NUMERICPAD Ox0100
IEQUALIFIER REPEAT Ox0200
IEQUALIFIER-INTERRUPT Ox0400
IEQUALIFIER-MULTIBROADCAST Ox0800
IEQUALIFIER::':LBUTTON OxlOOO
IEQUALIFIER_RBUTTON Ox2000
IEQUALIFIER_MBUTTON Ox4000
IEQUALIFIER_RELATlVEMOUSE Ox8000

/*------ InputEvent ----------------------------------- --------------*/

----l

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

struct InputEvent {
InputEvent *ie_NextEvent; /* chronologically next event */
ie Class; /* input event class */
ie-SubClass; /* optional subclass of the class */
ie-Code; /* input event code */

struct
UBYTE
UBYTE
UIDRD
UIDRD
union

ie:::Qualifier; /* qualifiers in effect for event*/

};

struct
mRD
mRD

} ie_xy;
APTR ie addr;

} ie---'position;
struct timeval ie_TimeStamp;

/* pointer position for event*/

/* system tick at event */

#define
#define
#define

ie_X ie---'position.ie_xy.ie_x
ie_Y ie~osition.ie_xy.ie~
ie_EventAddress ie~osition.ie_addr

#endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#ifndef
#define

DEVICES_KEYBOARD_H
DEVICES_KEYBOARD_H

/**/
/* Corrmodore-Amiga, Inc. ., * /
/* keyboard. h * /
1*** ***************/
/**

*
* Keyboard device command definitions

*
***/

#ifndef EXEC 10 H
#include "exec/io.h"
#endif

#define
#define
#define
#define
#define

#endif

KBD_READEVENT
KBD_READMATRIX
KBD_ADDRESETHANDLER
KBD_REMRESETHANDLER
KBD_RESETHANDLERDONE

(CMD_NONSTDtO)
(CMD_NONSTDtl)
(CMD_NONSTDt2)
(CMD_NONSTDt3)
(CMD_NONSTDt4)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#ifndef
#define

DEVICES_KEYMAP_H
DEVICES_KEYMAP_H

1*** ***************/
/* Commodore-Amiga, Inc. */
/* keymap.h */
/**/
1*** ****************

* * console. device key map definitions
*
***/

struct
APTR
APTR
APTR
APTR
APTR
APTR
APTR
APTR

};

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#endif

KeyMap [
km_LoKeyMapTypes;
km_LoKeyMap;
km_LoCapsable;
km_LoRepeatable;
km_HiKeyMapTypes;
km_HiKeyMap;
km_Hicapsable;
km_HiRepeatable;

KCB_NOP 7
KCF_NOP Ox80

KC_NOQUAL 0
KC_VANILLA 7
KCF_SHIFT OxOl
KCF_ALT Ox02
KCB_CONTROL 2
KCF_CONTROL Ox04
KCB_DOWNUP 3
KCF_DOWNUP Ox08

KCB_STRING 6
KCF_STRING Ox40

/* note that SHIFT+ALT+CTRL is VANILLA */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef DEVICES_NARRATOR H
#define DEVICES NARRATOR H
!**************~********~**********************A****** ***************/
/* Commodore-Amiga, Inc. * /
/* narrator. h * /
1*** ***************/

#ifndef EXEC_IO_H
#include "exec/io.h"
#endif

/* Error Codes

#define ND_NoMem -2 /*
#define ND NoAudLib -3 /*
#define ND:::MakeBad -4 /*
#define ND_UnitErr -5 /*
#define ND CantAlloc -6 /*
#define ND:::Unimpl -7 /*
#define ND Nowrite -8 /*
#define ND:::Expunged -9 /*
#define ND_PhonErr -20 /*
#define ND_RateErr -21 /*
#define ND_PitchErr -22 /*
#define ND_SexErr -23 /*
#define ND_ModeErr -24 /*
#define ND_FreqErr -25 /*
#define ND_VolErr -26 /*

*/

Can't allocate memory
Can't open audio device
Error in MakeLibrary call
Unit other than 0
Can't allocate audio channel(s)
Unimplemented command
Read for mouth without write first
Can't open, deferred expunge bit set
Phoneme code spelling error
Rate out of bounds
pitch out of bounds
Sex not valid
Mode not valid
Sampling frequency out of bounds
Volume out of bounds

/* Input parameters and defaults */

#define DEFPITCH 110 /* Default pitch */
#define DEFRATE 150 /* Default speaking rate (wpm) */
#define DEFVOL 64 /* Default volume (full) */
#define DEFFREQ 22200 /* Default sampling frequency (Hz) */
#define MALE 0 /* Male vocal tract */
#define FEMALE 1 /* Female vocal tract */
#define NATURALFO 0 /* Natural pitch contours */
#define ROBOTICFO 1 /* Monotone */
#define DEFSEX MALE /* Default sex */
#define DEFMODE NATURALFO /* Default mode */

/* Parameter bounds */

#define MINRATE 40 /* Minimum speaking rate */
#define MAXRATE 400 /* Maximum speaking rate */
#define MINPITCH 65 /* Minimum pitch */
#define MAXPITCH 320 /* Maximum pitch */
#define MINFREQ 5000 /* Minimum sampling frequency */
#define MAXFREQ 28000 /* Maximum sampling frequency */
#define MINVOL 0 /* Minimum volume */
#defj ne MAXVOL 64 /* Maximum volume */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

/* standard write request */

struct narrator_rb
struct IOstdReq
lJW)RD rate;
lJW)RD pitch;
lJW)RD mode;
lJW)RD sex;

message; /* Standard IORB */

UBYTE *ch_masks;
lJW)RD nm_masks;
lJW)RD volume;
lJW)RD sampfreq;
UBYTE mouths;
UBYTE chanmask;
UBYTE numchan;
UBYTE pad;

};

/* Speaking rate (words/minute) */
/* Baseline pitch in Hertz */
/* pitch mode */
/* Sex of voice */
/* Pointer to audio alloc maps */
/* Number of audio alloc maps */
/* Volume. 0 (off) thru 64 */
/* Audio sampling freq */
/* If non-zero, generate mouths */
/* Which ch mask used (internal)*/
/* Num ch masks used (internal) */
/* For alignment */

/* standard Read request */

struct mouth_rb [
struct narrator_rb
UBYTE width;
UBYTE height;
UBYTE shape;
UBYTE pad;
};

voice; /* Speech IORB */
/* width (returned value) */
/* Height (returned value) */
/* Internal use, do not modify */
/* For alignment */

#endif DEVICES NARRATOR_H

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/*** ***************1
/* Commodore-Amiga, Inc. */
/* parallel.h */
/**/

/***

* * external declarations for Parallel Port Driver
*
* SOURCE CONTROL
* ------ -------
* $Header: parallel.h,v 25.0 85/03/27 19:14:15 tomp Exp $
*
* $Locker: $
*
***/

#ifndef DEVICES_PARALLEL_H
#define DEVICES_PARALLEL_H

#ifndef EXEC_IO_H
#include "exec/io.h"
#endif !EXEC_IO_H

struct IOPArray {

};

ULONG PTermArrayO;
ULONG PTermArrayl;

/**/
/* CAUTION!! IF YOU ACCESS the parallel.device, you MUST (!!!!) use

an IOExtPar-sized structure or you may overlay innocent memory !! */
/*** *************1

struct IOExtPar [
struct IOStdReq IOPar;

/* STRUCT MsgNode
* 0 APTR Succ
* 4 APTR Pred

8 UBYTE Type
* 9 UBYTE Pri
* A APTR Name
* E APTR ReplyPort

12 UWORD MNLength
* STRUCT IOExt
* 14 APTR iO_Device
* 18 APTR io Unit

lC UWORD io-Command
* 1E UBYTE io:::Flags
* IF UBYTE io_Error

STRUCT IOStdExt
20 ULONG io Actual

* 24 ULONG iO:::Length
28 APTR io Data
2C ULONG io:::Offset

* 30 */
ULONG iO_PExtFlags; /. (not used) flag extension area */
UBYTE io_Status; /* status of parallel port and registers */

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

UBYTE io_ParFlags; /* see PARFLAGS bit definitions below */
struct IOPArray io_PTermArray; /* termination character array */

};

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

PARB_SHARED 5
PARF_SHARED (1«5)
PARB RAD BOOGIE 3
PARF=RAD=BOOGIE (1«3)
PARB_EOFMODE 1
PARF_EOFMODE (1«1)
IOPARB QUEUED 6
IOPARF=QUEUED (1«6)
IOPARB ABORT 5
IOPARF=ABORT (1«5)
IOPARB ACTIVE 4
IOPARF=ACTlVE (1«4)
IOPTB RWDIR 3
IOPTF-RWDIR (1«3)
IOPTB-PBUSY 2
IOPTF-PBUSY (1«2)
IOPTB-PAPEROUT 1
IOPTF-PAPEROUT (1«1)
IOPTB-PSEL 0
IOPTF=PSEL (1«0)

/* ParFlags non-exclusive access bit */
/* non-exclusive access mask */
/* (not yet implemented) */
/* (not yet implemented) */
!* EOF mode enabled bit * /
/* EOF mode enabled mask */
/* IO_FLAGS rqst-queued bit */
/* rqst-queued mask */
/* rqst-aborted bit */
/* rqst-aborted mask */
/* rqst-qued-or-current bit */
/* rqst-qued-or-current mask */
/* IO STATUS read~O,write~l bit */
/* -" read~O,write~l mask */
/* printer in busy toggle bit * /
/* printer in busy toggle mask */
/* paper out bit */
/* paper out mask */
/* printer selected bit */
/* printer selected mask */

#define PARALLELNAME "parallel.device"

#define PDCMD_QUERY (CMD_NONSTD)
#define PDCMD_SETPARAMS (CMD_NONSTD+l)

#define ParErr_DevBusy 1
#define ParErr_BufTooBig 2
#define ParErr_InvParam 3
#define ParErr_LineErr 4
#define ParErr_NotOpen 5
#define ParErr PortReset 6
#define parErr=InitErr 7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef DEVICES_PRINTER_H
#define DEVICES PRINTER H
1**1
/* Coornodore-Amiga, Inc. */
/* printer. h * /
/**/
1***

* * printer device command definitions

*
Source Control *

*
*
*

$Header: printer.h,v 1.2 85/10/09 16:16:10 kodiak Exp $

* $Locker: $
*
**/

#ifndef EXEC_NODES_H
#include "exec/nodes.h"
#endif

#ifndef EXEC LISTS H
include "exec/lists.h"
#endif

#ifndef EXEC_PORTS_H
#include "exec/ports.h"
#endif

#define PRD_RAWWRITE (CMD_NONSTD+O)
#define PRD_PRTCOMMAND (CMD_NONSTD+l)
#define PRD_DUMPRPORT (CMD_NONSTD+2)

/* printer command definitions */

#define aRIS 0 /* ESCc reset ISO */
#define aRIN 1 /* ESCU initialize +++ */
#define aIND 2 /* ESCD 1£ ISO */
#define aNEL 3 /* ESCE return, If ISO */
#define aRI 4 /* ESCM reverse 1£ ISO */

#define aSGRO 5 /* ESC[Om normal char set ISO */
#define aSGR3 6 /* ESC[3m italics on ISO */
#define aSGR23 7 /* ESC[23m italics off ISO */
#define aSGR4 8 /* ESC[4m underline on ISO */
#define aSGR24 9 /* ESC[24m underline off ISO */
#define aSGRl 10 /* ESC [1m boldface on ISO */
#define aSGR22 11 /* ESC [22m boldface off ISO */
#define aSFC 12 /* SGR30-39 set foreground color ISO */
#define aSBC 13 /* SGR40-49 set background color ISO */

#define aSHORPO 14 /* ESC [Ow normal pitch DEC */
#define aSHORP2 15 /* ESC[2w elite on DEC */
#define aSHORPl 16 /* ESC[lw elite off DEC */
#define aSHORP4 17 /* ESC[4w condensed fine on DEC */
#define aSHORP3 18 /* ESC[3w condensed off DEC */
#define aSHORP6 19 /* ESC[6w enlarged on DEC */
#define aSHORP5 20 /* ESC[5w enlarged off DEC */

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119

#define aDEN6 21
#define aDEN5 22
#define aDEN4 23
#define aDEN3 24
#define aDEN2 25
#define aDENl 26

#define aSUS2 27
#define aSUSl 28
#define aSUS4 29
#define aSUS3 30
#define aSUSO 31
#define aPLU 32
#define aPLD 33

#define aFNTO 34
#define aFNTl 35
#define aFNT2 36
#define aFNT3 37
#define aFNT4 38
#define aFNT5 39
#define aFNT6 40
#define aFNT7 41
#define aFNT8 42
#define aFNT9 43
#define aFNTIO 44

#define aPROP2 45
#define aPROPl 46
#define aPROPO 47
#define aTSS 48
#define aJFY5 49
#define aJFY7 50
#define aJFY6 51
#define aJFYO 52
#define aJFY3 53
#define aJFYl 54

#define aVERPO 55
#define aVERPl 56
#define aSLPP 57
#define aPERF 58
#define aPERFO 59

#define aLMS 60
#define aRMS 61
#define aTMS 62
#define aBMS 63
#define aSTBM 64
#define aSLRM 65
#define aCAM 66

#define aHTS 67
#define aVTS 68
#define aTBCO 69
#define aTBC3 70
#define aTBCl 71
#define aTBC4 72
#define aTBCALL 73

/* ESC[6"z
/* ESC[5"z
/* ESC[4"z
/* ESC[3"z
/* ESC[2"z
/* ESC[l"z

shadow print
shadow print
doublestrike
doubles trike

NLQ on
NLQ off

on
off
on
off

/* ESC[2v superscript on
/* ESC[lv superscript off
/* ESC[4v subscript on
/* ESC[3v subscript off
/* ESC[Ov normalize the line
/* ESCL partial line up
/* ESCK partial line down

/* ESC(B US char set
/* ESC(R French char set
/* ESC(K German char set
/* ESC(A UK char set
/* ESC(E Danish I char set
/* ESC(H Sweden char set
/* ESC(Y Italian char set
/* ESC(Z Spanish char set
/* ESC(J Japanese char set
/* ESC(6 Norweign char set
/* ESC(C Danish II char set

DEC
DEC
DEC
DEC
DEC
DEC

(sort
*/
*/
*/
*/
*/

+++ */
+++ */
+++ */
+++ */
+++ */
ISO */
ISO */

DEC */
DEC */
DEC */
DEC */
DEC */
DEC */
DEC */
DEC */
+++ */
DEC */
+++ */

/* ESC[2p proportional on +++ */
/* ESC[lp proportional off +++ */
/* ESC[Op proportional clear +++ */
/* ESC[n E set proportional offset ISO */
/* ESC[5 F auto left justify ISO */
/* ESC[7 F auto right justify ISO */
/* ESC[6 F auto full justify ISO */
/* ESC[O F auto justify off ISO */

of) */

/* ESC[3 F letter space (justify) ISO (special) */
/* ESC[l F word fill(auto center) ISO (special) */

/* ESC[Oz
/* ESC[lz
/* ESC[nt
/* ESC[nq
/* ESC[Oq

1/8" line spacing
1/6" line spacing
set form length n
perf skip n (n>O)
perf skip off

/* ESC#9 Left margin set
/* ESC#O Right margin set
/* ESC#8 Top margin set
/* ESC#2 Bottom marg set
/* ESC[Pnl;Pn2r T&B margins
/* ESC[Pnl;Pn2s L&R margin
/* EsC#3 Clear margins

/* ESCH
/* ESCJ
/* ESC[Og
/* ESC[3g
/* ESC[lg
/* ESC[4g
/* ESC#4

Set horiz tab
Set vertical tabs
Clr horiz tab
Clear all h tab
Clr vertical tabs
Clr all v tabs
Clr all h & v tabs

+++ */
+++ */
DEC */
+++ */
+++ */

+++ */
+++ */
+++ */
+++ */
DEC */
DEC */
+++ */

ISO */
ISO */
ISO */
ISO */
ISO */
ISO */
+++ */

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

#define aTBSALL 74
#define aEXTEND 75

/* ESc#5 Set default tabs
/* ESC[Pn"x extended commands

+++ */
+++ */

struct IOPrtCmdReq [
struct Message io_Message;
struct Device *iO_Device;
struct unit *io_Unit;
UIDRD io Command;
UBYTE iO=Flags;
BYTE io Error;
UIDRD io-PrtCommand;
UBYTE io-ParmO;
UBYTE io-parml;
UBYTE io-parm2;
UBYTE io=parm3;

struct IODRPReq [
struct Message io_Message;
struct Device *iO_Device;
struct Unit *io_Unit;
UIDRD io Command;
UBYTE iO=Flags;
BYTE iO_Error;
struct RastPort *io RastPort;
struct ColorMap *io=colorMap;
ULONG io Modes;
UIDRD io=srcX;
UIDRD io SrcY;
UIDRD io-SrcWidth;
UIDRD io=srcHeight;
LONG io DestCols;
LONG io-DestRows;
UIDRD io=Special;

/* device node pointer */
/* unit (driver private)*/
/* device command */

/* error or warning num */
/* printer command */
/* first command parameter */
/* second command parameter */
/* third command parameter */
/* fourth command parameter */

/* device node pointer */
/* unit (driver private)*/
/* device command */

/* error or warning num */
/* raster port */
/* color map */
/* graphics viewport modes */
/* source x origin */
/* source y origin */
/* source x width */
/* source x height */
/* destination x width */
/* destination y height */
/* option flags */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SPECIAL_MILCOLS OxOOl /* DestCols specified in 1/1000" */

#define
#define
#define
#define
#define
#define
#define
#endif

SPEC I AL_MILROWS Ox002 /* DestRows specified in 1/1000" */
SPEC I AL_FULLCOLS Ox004 /* make DestCols maximum possible */
SPECIAL_FULLROWS Ox008 /* make Des tRows maximum possible */
SPECIAL_FRACCOLS OxOlO /* Destcols is fraction of FULLCOLS */
SPECIAL_FRACROWS Ox020 /* DestRows is fraction of FULLROWS */
SPECIAL_ASPECT Ox080 /* ensure correct aspect ratio */
SPECIAL_DENSITYMASK OxfOO /* masks out density bits */
SPECIAL_DENSITYI OxlOO /* lowest res */
SPECIAL_DENSITY2 Ox200 /* next res */
SPEC IAL_DENS ITY3 Ox300 /* next res */
SPECIAL_DENSITY4 Ox400 /* highest res */

PDERR_CANCEL 1
PDERR_NOTGRAPHICS 2
PDERR_INVERTHAM 3
PDERR_BADDIMENSION 4
PDERR_DIMENSIONOVFLOW
PDERR_INTERNALMEMORY 6
PDERR_BUFFERMEMORY 7

5

/* user canceled a printer timeout */
/* printer cannot output graphics */
/* cannot invert hold & modify print */
/* print dimensions illegal */
/* print dimensions too large */
/* no memory for internal variables */
/* no memory for print buffer */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/**1
/* Commodore-Amiga, Inc. */
/* prtbase. h * /
1**/
1***

*
* printer device data definition
*
**/

lIifndef DEVICES_PRTBASE_H
IIdefine DEVICES_PRTBASE_H

lIifndef EXEC_NODES_H
II include "exec/nodes.h"
lIendif
#ifndef EXEC LISTS H
#include "exec";Usts.h"
#endif
#ifndef EXEC_PORTS_H
#include "exec/ports.h"
#endif
#ifndef EXEC_LIBRARIES_H
#include "exec/libraries.h"
#endif
#ifndef EXEC_TASKS_H
#include "exec/tasks.h"
#endif

#ifndef DEVICES PARALLEL H
#include "devices/para11el.h"
#endif
#ifndef DEVICES_SERIAL_H
#include "devices/serial.h"
lIendif
#ifndef DEVICES_TIMER_H
#include "devices/timer.h"
#endif
#ifndef LIBRARIES_DOSEXTENS - I
#include "libraries/dosextens.h"
#endif
#ifndef INTUITION INTUITION H
#include "intuitio~/intuitio~.h"
#endif

struct DeviceData {
struct Library dd_Device; /* standard library node */
APTR dd_Segment; /* AO when initialized */
APTR dd_ExecBase; /* A6 for exec */
APTR dd_CmdVectors; /* command table for device commands */
APTR dd_CmdBytes; /* bytes describing which command queue */
UWORD dd_NumCommands; /* the number of commands supported */

};

#define P_STKSIZE Ox800

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

struct PrinterData {
struct DeviceData pd_Device;
struct MsgPort pd_Unit; /* the one and only unit */
BPTR pd-PrinterSegment; /* the printer specific segment */
IJW)RD pd_printerType; /* the segment printer type */
struct PrinterSegment *pd_SegmentData; /* the segment data structure */
UBYTE *pd_PrintBuf; /* the raster print buffer */
VOID (*pd_PWrite)(); /* the write function */
VOID (*pd_PBothReady)(); /* write function's done */
union { /* port I/O request 0 * /
struct IOExtPar pd-pO;
struct IOExtSer pd_sO;

} pd_iorO;
#define pd_PIORO
#define pd SIORO

union {

pd_iorO.pd-pO
pd_iorO.pd_sO

/*
struct IOExtPar pd-pl;
struct IOExtSer pd_sl;

} pd_iorl;
#define pd_PIORl pd_iorl.pd-pl
#define pd_SIORl pd_iorl.pd_sl

struct timerequest pd_TIOR;
struct MsgPort pd_IORPort;
struct Task pd_TC;
UBYTE pd_Stk[P_STKSIZE];
UBYTE pd_Flags;
UBYTE pd-pad;

and 1 for double buffering */

/* timer I/O request */
/* and message reply port */
/* write task * /
/* and stack space */
/* device flags */

struct Preferences pd_Preferences; /* the latest preferences */
UBYTE pd_PWaitEnabled; /* wait function switch */

};

#define
#define
#define
#define

PPCB GFX 0
PPCF::::GFX OxOl
PPCB_COLOR 1
PPCF_COLOR Ox02

IIdefine PPC_BWALPHA 0
#define PPC_BWGFX 1
#define PPC_COLORGFX 3

#define PCC_BW 1
#define PCC_YMC 2
#define PCC YMC BW 3
#define PCC::::YMCB 4

struct PrinterExtendedData
char *ped_PrinterName;
VOID (*ped_Init)();
VOID (*ped_Expunge)();
VOID (*ped_Open)();
VOID (*ped_Close)();
UBYTE ped_PrinterClass;
UBYTE ped_ColorClass;
UBYTE ped_MaxColumns;
UBYTE ped_NumCharSets;
IJW)RD ped_NumRows;
ULONG ped_MaxXDots;
ULONG ped_MaxYDots;
IJW)RD ped_XDotslnch;
IJW)RD ped_YDotslnch;

/* printer name, null terminated */
/* called after LoadSeg */
/* called before UnLoadSeg */
/* called at OpenDevice */
/* called at CloseDevice */
/* printer class */
/* color class */
/* number of print columns available */
/* number of character sets */
/* number of raster rows in a raster dump */
/* number of dots maximum in a raster dump *
/* number of dots maximum in a raster dump *
/* horizontal dot density */
/* vertical dot density */

120
121
122
123
124
125
126
127
128
129
130
131
132
133

};

char
VOID
VOID
LONG

***ped_Commands;
(*ped_DoSpecial)();
(*ped_Render)();
ped_TimeoutSecs;

struct Printer Segment (
ULONG ps_NextSegment;
ULONG ps_runAlert;
UWORD ps_Version;
UWORD ps_Revision;
struct PrinterExtendedData

);
#endif

/* printer text command table */
/* special command handler */
/* raster render function */
/* good write timeout */

/* (actually a BPTR) */
/* MOVEQ #O,DO : RTS */
/* segment version */
/* segment revision */

pS_PED; /* printer extended data */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1**/
/* Corrrnodore-Amiga, Inc. */
/* serial.h */
/**/
/***

* * external declarations for Serial Port Driver
*
* SOURCE CONTROL
* ------ -------
* $Header: serial.h,v 25.0 85/03/27 19:14:15 tomp Exp $
*
* $Locker: $
*
***/
#ifndef DEVICES SERIAL H
#define DEVICES=SERIAL=H

#ifndef EXEC 10 H
#include "exec/io~h"
#endif !EXEC_IO_H

/* array of termination char's */
/* to '., c,e ,see serial. doc setparams * /

struct IOTArray

};

ULONG TermArrayO;
ULONG TermArrayl;

/**/
/* CAUTION!! IF YOU ACCESS the serial.device, you MUST (!!!!) use */
/* an IOExtSer-sized structure or you may overlay innocent memory! !*/
/**1
struct IOExtSer (

struct IOStdReq lOSer;

/* STRUCT MsgNode

* 0 APTR Succ
* 4 APTR Pred
* 8 UBYTE Type
* 9 UBYTE Pri
* A APTR Name
* E APTR Replyport
* 12 UWORD MNLength
* STRUCT IOExt
* 14 APTR io Device
* 18 APTR iO-Unit

* IC UWORD iO-Command
* IE UBYTE iO=Flags
* IF UBYTE iO_Error
* STRUCT IOStdExt
* 20 ULONG io Actual
* 24 ULONG iO=Length
* 28 APTR io Data
* 2C ULONG iO=Offset
*

* IMPORTANT !! DON'T CHANGE the long-word alignment of ANY of these fields !!

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

* You can add to the end if you must do something.
* 30 */

ULONG
ULONG

io CtlChar; /* control char's (order = xON,xOFF,INQ,ACK) */
io=RBufLen; /* length in bytes of serial port's read buffer */

ULONG
ULONG

io ExtFlags; /* (not used) flag extension area */
iO=Baud; /* baud rate requested (true baud) */

ULONG io_BrkTime; /* duration of break signal in MICROseconds */
struct IOTArray io_TermArray; /* termination character array */
UBYTE io_ReadLen; /* bits per read character (bit count) */
UBYTE io_writeLen /* bits per write character (bit count) */
UBYTE
UBYTE
UIDRD

io_stopBits /* stopbits for read (count) */
io SerFlags /* see SerFlags bit definitions below */
io=status;

};
/* status of serial port, as follows:

* BIT ACTIVE FUNCTION
* 0 low busy
* 1 low paper out
* 2 low select
* 3 low Data Set Ready
* 4 low Clear To Send
* 5 low Carrier Detect
* 6 low Ready To Send
* 7 low Data Terminal Ready
* 8 high read overrun
* 9 high break sent
* 10 high break received
* 11 high transmit x-QFFed
* 12 high receive x-QFFed
* 13-15 (not) reserved
*/

#define SDCMD_QUERY CMD_NONSTD
#define SDCMD_BREAK (CMD_NONSTD+ 1)
#define SDCMD_SETPARAMS (CMD_NONSTD+2)

#define SERB_XDISABLED 7 /* SerFlags xOn-xOff feature disabled bit */
#define SERF_XDISABLED (1«7) /* xOn-xOff feature disabled mask */
#define SERB_EOFMODE 6 /* EOF mode enabled bit */
#define SERF_EOFMODE (1«6) /* EOF mode enabled mask */
#define SERB_SHARED 5 /* non-exclusive access bit */
#define SERF_SHARED (1«5) /* non-exclusive access mask */
#define SERB_RAD_BOOGIE 4 /* high-speed mode active bit */
#define SERF_RAD_BOOGIE (1«4) /* high-speed mode active mask */
#define SERB_QUEUEDBRK 3 /* queue this Break iORqst */
#define SERF_QUEUEDBRK (1«3) /* queue this Break iORqst */
#define SERB 7WIRE 2 /* RS232 7-wire protocol */
#define SERF=7WIRE (1«2) /* RS232 7-wire protocol */
#define SERB_PARTY_ODD 1 /* parity feature enabled bit */
#define SERF_PARTY_ODD (1«1) /* parity feature enabled mask */
#define SERB_PARTY_ON 0 /* parity-enabled bit */
#define SERF PARTY ON (1«0) /* parity-enabled mask */
#define IOSERB_BUFRREAD 7 /* io_Flags from read buffer bit */
#define IOSERF_BUFRREAD (1«7) /* from read buffer mask */
#define IOSERB_QUEUED 6 /* rqst-queued bit */
#define IOSERF_QUEUED (1«6) /* rqst-queued mask */
#define IOSERB_ABORT 5 /* rqst-aborted bit */
#define IOSERF_ABORT (1«5) /* rqst-aborted mask */
#define IOSERB_ACTlVE 4 /* rqst-qued-or-current bit */
#define IOSERF_ACTlVE (1«4) /* rqst-qued-or-current mask */

120 #define
121 #define
122 #define
123 #define
124 #define
125 #define
126 #define
127 #define
128 #define
129 #define
130
131 #define
132 #define
133 #define
134 #define
135 #define
136 #define
137 #define
138 #define
139 #define
140 #define
141 #define
142 #define
143 #define
144 #define
145 #define
146
147 #define
148
149 #endif

IOSTB XOFFREAD 4 /* iost_hob
IOSTF=XOFFREAD (1«4) /*
IOSTB XOFFWRITE 3 /*
IOSTF=XOFFWRITE (1«3) /*
IOSTB READBREAK 2 /*
IOSTF=READBREAK (1«2) /*
IOSTB WROTEBREAK 1 /*
IOSTF=WROTEBREAK (1«1) /*
IOSTB_OVERRUN 0 /*
IOSTF_OVERRUN (1«0) /*

SerErr_DevBusy 1
SerErr BaudMismatch 2
SerErr-InvBaud 3
SerErr=BufErr 4
SerErr InvParam 5
SerErr=LineErr 6
SerErr_Notopen 7
SerErr PortReset 8
SerErr=parityErr 9
SerErr InitErr 10
SerErr - TimerErr 11
SerErr=Bufoverflow 12
SerErr_NoDSR 13
SerErr_NoCTS 14
SerErr _.DetectedBreak 15

SERIALNAME "serial.device'!

!DEVICES SERIAL_H

receive currently xOFF'ed bit */
receive currently xOFF'ed mask */
transmit currently xOFF'ed bit */
transmit currently xOFF'ed mask *
break was latest input bit */
break was latest input mask */
break was latest output bit */
break was latest output mask */
status word RBF overrun bit */
status word RBF overrun mask */

1 1* *.* I
2 /* commodore-Amiga, Inc. */
3 /* timer.h */
4 1**/
5 /**
6 *
7 * SOURCE CONTROL
8 * ------ -------
9 * $Header: timer.h,v 27.1 85/06/24 13:32:37 neil Exp $

10 *
11 * $Locker: $
12 *
13 ***/
14
15 #ifndef DEVICES_TIMER_H
16 #define DEVICES_TIMER_H
17
18 #ifndef EXEC 10 H
19 #include "exec/Io.h"
20 #endif EXEC_IO_H
21
22 /* unit defintions */
23 #define UNIT_MICROHZ 0
24 #define UNIT_VBLANK 1
25
26 #define TIMERNAME "timer.device"
27
28 struct timeval (
29 ULONG tv_secs;
30 ULONG tv~micro;
31 };
32
33 struct timerequest (
34 struct IORequest tr node;
35 struct timeval tr_time;
36 };
37
38 /* IO_COMMAND to use for adding a timer */
39 #define TR ADDREQUEST CMD NONSTD
40 #define TR-GETSYSTIME (CMD NONSTO+l)
41 #define TR=SETSYSTIME (CMD=NONSTO+2)
42
43 #endif DEVICES_TIMER_H

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/**/
/* Commodore-Amiga, Inc. */
/* trackdisk.h */
/**/
/**

*
* trackdisk.h

*
* Source Control
* ------
*
* $Header: trackdisk.h,v 27.3 85/07/12 23:16:05 neil Exp $
*
* $Locker: $
*
***/

#ifndef DEVICES_TRACKDISK_H
#define DEVICES_TRACKDISK_H

#ifndef EXEC~IO_H
#include "exec/io.h"
#endif !EXEC_IO_H

/*
*--

*
* Physical drive constants

*
*--

*/

NUMCYLS
MAXCYLS
NUMSECS
NUMHEADS
MAXRETRY

80
(NUMCYLS+20)
11
2
10

/* normal # of cylinders */
/* max # cyls to look for during cal */

#define
#define
#define
#define
#define
#define
#define

NUMTRACKS (NUMCYLS*NUMHEADS)
NUMUNITS 4

/*
*--

*
* Useful constants

*
*--

*/

/*-- sizes before mfm encoding */
#define TD_SECTOR 512
#define TD_SECSHIFT 9 /* log TD_SECTOR */

/*
*--

*
* Driver Specific Commands
*
*--

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
ll2
ll3
ll4
ll5
ll6
ll7
ll8
ll9

*/

/*
*-- TD NAME is a generic macro to get the name of the driver. This
*-- way if the name is ever changed you will pick up the change
*-- automatically.

*-- Normal usage would be:

*-- char internalName[] ~ TD_NAME;

*/

#define TD_NAME "trackdisk.device"

#define TDF_EXTCOM (1«15)

#define
#define
#define
#define
#define
#define
#define

TD_MOTOR
TD_SEEK
TD_FORMAT
TD_REMOVE
TD_CHANGENUM
TD_CHANGESTATE
TD_PROTSTATUS

(CMD_NONSTDtO)
(CMD_NONSTDtl)
(CMD_NONSTDt2)
(CMD _ NONSTDt 3)
(CMD_NONSTDt4)
(CMD_NONSTDt5)
(CMD _ NONSTDt6)

#define TD_LASTCOMM TD_PROTSTATUS

/*
*

/* for internal use only! */

/* control the disk's motor */
/* explicit seek (for testing) */
/* format disk */
/* notify when disk changes */
/* number of disk changes */
/* is there a disk in the drive? */
/* is the disk write protected? */

* The disk driver has an "extended command" facility. These commands
* take a superset of the normal 10 Request block.

*
*/

#define
#define
#define
#define
#define
#define
#define

/*
*

ETD_WR1TE
ETD_READ
ETD_MOTOR
ETD_SEEK
ETD_FORMAT
ETD_UPDATE
ETD_CLEAR

(CMD_WR1TEITDF_EXTCOM)
(CMD_READITDF_EXTCOM)
(TD_MOTOR TDF_EXTCOM)
(TD_SEEKITDF_EXTCOM)
(TD_FORMATITDF_EXTCOM)
(CMD_UPDATEITDF_EXTCOM)
(CMD_CLEARITDF_EXTCOM)

* extended 10 has a larger than normal io request block.

*
*/

struct 10ExtTD [
struct 10StdReq iotd_Req;
UWNG iotd Count;
UWNG iotd=secLabel;

/* labels are TD_LABELS1ZE bytes per sector */

#define TD_LABELSIZE 16

/*

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

*--

* * Driver error defines
*
*--

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TDERR_NotSpecified 20
TDERR_NosecHdr 21
TDERR_BadSecPreamble 22
TDERR_BadSec1D 23
TDERR_BadHdrSum 24
TDERR_BadSecSum 25
TDERR_TooFewSecs
TDERR_BadSecHdr
TDERR writeProt
TDERR=Diskchanged
TDERR_SeekError
TDERR_NoMem
TDERR_BadUnitNum
TDERR_BadDriveType
TDERR_Drive1nUse

26
27
28
29
30
31
32
33
34

Contents

graphics/clip.h
graphics/collide.h
graphics/copper.h
graphics/display.h
graphics/gels.h
graphics/gfx.h
graphics/gfxbase.h
graphics/gfxmacros.h
graphics/graphint.h
graphics/layers.h
graphics/rastport.h
graphics/regions.h
graphics/sprite.h
graphics/text.h
graphics/view.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS_CLIP_H
#define GRAPHICS_CLIP_H

#ifndef GRAPHICS GFX H
#include <graphics/gfx.h>
#endif
#ifndef EXEC PORTS H
#include <exec/ports.h>
#endif

/**/
/* Commodore-Amiga, Inc. */
/* clip.h */
/**/
/*
*
*
*
*

Modification History
date author Corrments

02-04-85 Dale created file from graph.h
**/

/* structures used by and constructed by windowlib.a */
/* understood by rom software */

struct Layer
(

Layer *front,*back; /* ignored by roms */ struct
struct
struct
struct
UBYTE

ClipRect *ClipRect;
RastPort *rp;

/* read by roms to find first cliprect */
/* ignored by roms, I hope */

UBYTE

Rectangle bounds;
Lock;

LockCount; "

/* ignored by roms */
/* roms, obey locking/unlocking

convention * /
/* roms can nest their own locks and

still work * /
UBYTE
UBYTE
UWJRD
UWJRD
struct
struct

LayerLockCount;
reserved;
reservedl;
Flags;

/* lock counter used by layer software */

BitMap *SuperBitMap;
ClipRect *SuperClipRect;

/* obscured ?, Virtual BitMap? */

/* super bitmap cliprects if
VBitMap != 0*/

APTR
SHORT
struct
struct
struct
struct

Window;
Scroll_X,Scroll_Y;
MsgPort LockPort;
Message LockMessage;
MsgPort ReplyPort;
Message l_LockMessage;
Region *DamageList;

/* else damage cliprect list for refresh */
/* reserved for user interface use */

struct /* list of rectangles to refresh
through */

struct ClipRect *_cliprects; /* system use during refresh */
struct Layer_Info *Layerlnfo; /* points to head of the list */
struct Task *LayerLocker; /* points to task that has layerlock
struct ClipRect *SuperSaveClipRects; /* preallocated cr's */
struct ClipRect *cr,*cr2,*crnew; /* used by dedice */
APTR -pI; /* system use, reserved */

struct ClipRect

*/

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

struct ClipRect *Next;
struct ClipRect *prev;
struct Layer *lobs;
struct BitMap *BitMap;
struct Rectangle bounds;
struct ClipRect *~1,*~2;
LONG reserved;

#ifdef NEWCLIPRECTS 1 1
LONG Flags; - -

#endif
};

/* internal cliprect flags */

/* roms used to find next ClipRect */
/* ignored by roms, used by windowlib */
/* ignored by roms, used by windowlib */

/* set up by windowlib, used by" roms */
/* system reserved */
/* system use */

/* only exists in layer allocation */

#define CR_NEEDS_NO_CONCEALED_RASTERS 1

/* defines for code values for getcode */
#define ISLESSX 1
#define ISLESSY 2
#define ISGRTRX 4
#define ISGRTRY 8
#endif

1 #ifndef GRAPHICS COLLIDE H
2 #define GRAPHICS=COLLIDE=H
3 /****'****** * ******* ********** * ****** ** * ********** ************ ******** /
4 ~ V
5 /* Commodore-Amiga, Inc. */
6 /* */
7 /* Modification History */
8 /* date author Comments * /
9 /* --- */

10 /* 8-24-84 Dale added this header file */
11 /* */
12 /**/
13
14 /* include file for collision detection and control */
15
16 /* These bit descriptors are used by the GEL collide routines.
17 * These bits are set in the hitMask and meMask variables of
18 * a GEL to describe whether or not these types of collisions
19 * can affect the GEL. BNDRY HIT is described further below;
20 * this bit is permanently assigned as the boundary-hit flag.
21 * The other bit GEL HIT is meant only as a default to cover
22 * any GEL hitting any other; the user may redefine this bit.
23 */
24 #define BORDERHIT 0
25
26 /* These bit descriptors are used by the GEL boundry hit routines.
27 * When the user's boundry-hit routine is called (via the argument
28 * set by a call to SetCollision) the first argument passed to
29 * the user's routine is the address of the GEL involved in the
30 * boundry-hit, and the second argument.has the appropriate bites)
31 * set to describe which boundry was surpassed
32 */
33 #define TOPHIT 1
34 #define BOTTOMHIT 2
35 #define LEFTHIT 4
36 #define RIGHTHIT 8
37
38 #endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS_COPPER_H
#define GRAPHICS_COPPER_H
/****** copper.h **/
/* */
/* Commodore-Amiga, Inc. */
/* */
/* Modification History */
/* date author Cornnents * /
/* --------------------------------------- */
/* 8-24-84 Dale added this header file */
/* 9-11-84 Dale redefined with unions * /
/* 2-09-85 Dale made #defines for union ignorance */
/**/

#define COPPER_MOVE
#define COPPER_WAIT
#define CPRNXTBUF
#define CPR NT LOF
#define CPR=NT=SHT
struct Cop Ins

o
1
2
Ox8000
Ox4000

/* pseude opcode for move #XXXX,dir */
/* pseudo opcode for wait y,x */
/* continue processing with next buffer */
/* copper instruction only for short frames */
/* copper instruction only for long frames */

(
short OpCode; /* 0 = move, 1 = wait */
union

struct CopList *nxtlist;
struct

};

(
union
(
SHORT
SHORT
) ul;
union
(
SHORT
SHORT
) u2;

} u4;
} u3;

vwaitpos;
DestAddr;

HWaitPos;
DestData;

/* vertical beam wait * /
/* destination address of copper move */

/* horizontal beam wait position */
/* destination immediate data to send */

/* shorthand for
#define NXTLIST
#define VWAITPOS
#define DESTADDR
#define HWAITPOS
#define DESTDATA

above */
u3.nxtlist
u3.u4.ul.vwaitPos
u3.u4.ul.DestAddr
u3.u4.u2.HWaitPos
u3.u4.u2.DestData

/* structure of cprlist that points to list that hardware actually executes */
struct cprlist
(

);

struct cprlist *Next;
lJ'(¥)RD *start;
SHOR'r max;

struct CopList
(

/* start of copper list */
/* number of long instructions */

struct CopList *Next; /* next block for this copper list */

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

struct
struct
struct
struct
UIDRD
UIDRD
SHORT
SHORT
SHORT

CopList *_CopList; /* system use */
ViewPort * _ViewPort; /* system use */
Coplns *Coplns; /* start of this block */
Coplns *CopPtr; /* intermediate ptr */
CopLStart; / mrgcop fills this in for Long Frame*/
CopSStart; / mrgcop fills this in for Short Frame*/
Count; /* intermediate counter */
MaxCount; /* max # of copins for this block */
DyOffset; /* offset this copper list vertical waits */

struct UCopList
(

struct UCopList *Next;
struct CopList *FirstCopList; /* head node of this copper list */
struct CopList *CopList; /* node in use */

) ;

struct copinit
(

lJ'(¥)RD diagstrt(4); /* copper list for first bitplane */
UIDRD sprstrtup(2*8*2)+2+(2*2)+21;
lJ'(¥)RD sprstop(2};

} ;

#endif

I
~ o

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/****** display.h ***1

~ ~
/* Commodore-Amiga, Inc. */
~ ~
/* Modification History */
/* date author Comments */
/* --------------------------------------- */
/* 8-24-84 Dale added this header file */
~ ~
/**/

/* include define file for
/* bplconO defines */

display control registers */

#define MODE 640 Ox8000
#define PLNCNTMSK Ox7

#define PLNCNTSHFT 12
#define PF2PRI Ox40
#define COLORON Ox0200
#define DBLPF Ox400
#define HOLDNMODIFY Ox800
#define INTERLACE 4

/* bpI conI defines */

/* how many bit planes? */
/* 0 ~ none, 1-)6 ~ 1-)6, 7 ~ reserved */
/* bits to shift for bplconO */
/* bplcon2 bit */
/* disable color burst */

/* interlace mode for 400 */

#define PFA FINE SCROLL OxF
#define PFB-FINE-SCROLL SHIFT 4
#define PF_FlNE_SCROLL_MASK OxF

/* display window start and stop
#define DIW HORIZ POS Ox7F
#define DIW-VRTCL-POS OxlFF
#define DIW-VRTCL-POS_SHIFT 7

defines */
/* horizontal start/stop */
/* vertical start/stop */

/* Data fetch start/stop horizontal position */
#define DFTCH_MASK OxFF

/* vposr bits */
#define VPOSRLOF Ox8000

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS_GELS_H
#define GRAPHICS_GELS_H

/***

*
* include file for AMIGA GELS (Graphics Elements)
*
* Commodore-Amiga, Inc.
*
* Modification History
* date author Comments
*
* 8-24-84
* 9-28-84
*
*

Dale
-~RJ~-

added this header file
for GELS16 added Bob.h to this file
made name and declaration changes

~****************I

/* VSprite flags */
/* user-set VSprite flags: */
#define SUSERFLAGS OxOOFF /* mask of all user-settable VSprite-flags */
#define VSPRITE OxOOOl /* set if VSprite, clear if Bob */
#define SAVE BACK Ox0002 /* set if background is to be saved/restored */
#define OVERLAY Ox0004 /* set to mask image of Bob onto background */
#define MUSTDRAW Ox0008 /* set if VSprite absolutely must be drawn */
/* system-set VSprite flags: */
#define BACKSAVED OxOlOO /* this Bob's background has been saved */
#define BOBUPDATE Ox0200 /* temporary flag, useless to outside world */
#define GELGONE Ox0400 /* set if gel is completely clipped (offscreen)
#define VSOVERFLOW Ox0800 /* VSprite overflow (if MUSTDRAW set we draw!)

/* Bob flags * /
/* these are the user flag bits */
#define BUSERFLAGS OxOOFF /* mask of all user-settable Bob-flags */
#define SAVE BOB OxOOOl /* set to not erase Bob */
#define BOBISCOMP Ox0002 /* set to identify Bob as AnimComp */
/* these are the system flag bits */
#define BWAITING OxOlOO /* set while Bob is waiting on 'after' */
#define BDRAWN Ox0200 /* set when Bob is drawn this DrawG pass*/
#define BOBSAWAY Ox0400 /* set to initiate removal of Bob */
#define BOBNIX Ox0800 /* set when Bob is completely removed */
#define SAVEPRESERVE OxlOOO /* for back-restore during double-buffer*/
#define OUTSTEP Ox2000 /* for double-clearing if double-buffer */

/* defines for the animation procedures */
#define ANFRACSIZE , 6
#define ANIMHALF 'Ox0020
#define RINGTRIGGER OxOOOl

/* UserStuff definitions
* the user can de:fine these to be a single variable or a sub-structure
* if undefined by the user, the system turns these into innocuous variables
* see the manual for a thorough definition of the UserStuff definitions
*
*/

#ifndef VUserstuff
#define VUserStuff SHORT

/* VSprite user stuff */

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

#endif

#ifndef BUserStuff
#define BUserstuff SHORT
#endif

#ifndef AUserStuff
#define AUserStuff SHORT
#endif

/* Bob user stuff */

/* AnirnOb user stuff */

/*********************** GEL STRUCTURES ***********************************/

struct VSprite
[
/* --------------------- SYSTEM VARIABLES ------------------------------- */
/* GEL linked list forward/backward pointers sorted by y,x value */

struct VSprite *NextVSprite;
struct VSprite *PrevVSprite;

/* GEL draw list constructed in the order the Bobs are actually drawn, then
* list is copied to clear list
* must be here in VSprite for system boundary detection
*/

struct VSprite
struct VSprite

*DrawPath;
*ClearPath;

/* pointer of overlay drawing */
/* pointer for overlay clearing */

/* the VSprite positions are defined in (y,x) order to make sorting
* sorting easier, since (y,X) as a long integer
*/

WORD OldY, OldX; /* previous position */

/* --------------------- COMMON VARIABLES --------------------------------- */
WORD Flags; /* VSprite flags */

/* --------------------- USER VARIABLES ----------------------------------- */
/* the VSprite positions are defined in (y,x) order to make sorting

* sorting easier, since (y,x) as a long integer
*/

WORD Y, X;

WORD Height;
WORD Width;
WORD Depth;

WORD MeMask;
WORD HitMask;

WORD *ImageData;

/* screen position */

/* number of words per row of image data */
/* number of planes of data */

/* which types can collide with this VSprite* /
/* which types this vsprite can collide with*/

/* pointer to vSprite image */

/* borderLine is the one-dimensional logical OR of all
* the VSprite bits, used for fast collision detection of edge
*/

WORD *BorderLine;
WORD *CollMask;

/* logical OR of all VSprite bits */
/* similar to above except this is a matrix */

/* pointer to this VSprite's color definitions (not used by Bobs) */

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

WORD *SprColors;

struct Bob *VSBob; /* points home if this VSprite is part of
a Bob */

/* planePick flag: set bit selects a plane from image, clear bit selects
* use of shadow mask for that plane
* OnOff flag: if using shadow mask to fill plane, this bit (corresponding
* to bit in planePick) describes whether to fill with O's or l's
* There are two uses for these flags:
* - if this is the VSprite of a Bob, these flags describe how the Bob
* is to be drawn into memory
* - if this is a simple VSprite and the user intends on setting the
* MUSTDRAW flag of the VSprite, these flags must be set too to descri
* which color registers the user wants for the image
*/

);

BYTE PlanePick;
BYTE PlaneOnOff;

VUserstuff VUserExt;

struct Bob
/* blitter-objects */
[

/* user definable: see note above */

/* --------------------- SYSTEM VARIABLES --------------------------------- *

/* --------------------- COMMON VARIABLES --------------------------------- *
WORD Flags; /* general purpose flags (see definitions below) */

/* --------------------- USER VARIABLES ----------------------------------- *
WORD *SaveBuffer; /* pointer to the buffer for background save */

/* used by Bobs for "cookie-cutting" and multi-plane masking */
WORD * ImageShadow;

/* pointer to BOBs for sequenced drawing of Bobs
* for correct overlaying of multiple component animations
*/

struct Bob *Before; /* draw this Bob before Bob pointed to by before */
struct Bob *After; /* draw this Bob after Bob pointed to by after */

struct VSprite *BobVSprite;

struct AnimComp *BobComp;

struct DBufPacket *DBuffer;

BUserStuff BUserExt;
);

struct Animcomp
[

/*

/*

/*

/*

this Bob's VSprite definition */

pointer to this Bob's AnimComp def */

pointer to this Bob's dBuf packet */

Bob user extension */

/* --------------------- SYSTEM VARIABLES --------------------------------- *

/* --------------------- COMMON VARIABLES --------------------------------- *
WORD Flags; /* AnimComp flags for system & user */

/* timer defines how long to keep this component active:
* if set non-zero, timer decrements to zero then switches to nextseq

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

* if set to zero, AnimComp never switches
*/

ID'ID Timer;

/* --------------------- USER VARIABLES ----------------------------------- */
/* initial value for timer when the AnimComp is activated by the system */

IDRD TimeSet;

/* pointer to next and previous components of animation object */
struct AnimComp *NextComp;
struct AnimComp *PrevComp;

/* pointer to component component definition of next image in sequence */
struct AnimComp *NextSeq;
struct AnimComp *PrevSeq;

IDRD (*AnimCRoutine)(); /* address of special animation procedure */

IDRD YTrans;
IDRD XTrans;

struct AnimOb

struct Bob

/* initial y translation (if this is a component) */
/* initial x translation (if this is a component) */

*HeadOb;

*AnimBob;

struct AnimOb
{
/* --------------------- SYSTEM VARIABLES --------------------------------- */

struct AnimOb * NextOb, *PrevOb;

/* number of calls to Animate this AnimOb has endured */
LONG Clock;

IDRD AnOldY, AnOldX;

/* ---------------------
IDRD AnY, AnX;

/* ---------------------
IDRD YVel, XVel;
IDRD YAccel, XAccel;

/* old y,x coordinates */

COMMON VARIABLES --------------------------------- */
/* y,x coordinates of the AnimOb */

USER VARIABLES ----------------------------------- */
/* velocities of this object */
/* accelerations of this object */

IDRD RingYTrans, RingXTrans; /* ring translation values */

IDRD (*AnimORoutine)();

struct AnimComp *HeadComp;

AUserStuff AUserExt;
};

/* address of special animation
procedure */

/* pointer to first component */

/* AnimOb user extension */

/* dBufPacket defines the values needed to be saved across buffer to buffer
* when in double-buffer mode
*/

struct DBufPacket
{

IDRD BufY, BufX;
struct VSprite *BufPath;

/* save the other buffers screen coordinates */
/* carry the draw path over the gap */

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

/* these pointers must be filled in by the user */
/* pointer to other buffer's background save buffer */

IDRD *BufBuffer;

/* ** *

/* these are GEL functions that are currently simple enough to exist as a
* definition. It should not be assumed that this will always be the case
*/

#define InitAnimate(animKey) {*(animKey) ~ NULL;}
#define RemBob(b) {(b)-)Flags I~ BOBSAWAY;)

/* ** *

#define B2NORM 0
#define B2SWAP 1
#define B2BOBBER 2

1* ** *

/* a structure to contain the 16 collision procedure addresses */
struct colI Table
{

int (*collPtrs[16])();

#endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#ifndef GRAPHICS_GFX_H
#define GRAPHICS GFX H
/****** g£x.h •• ;***;*** •• * ••• **.* ••• ******.* •••••• ** •• *** ••• *.*/
/* */
/* Commodore-Amiga, Inc. */
/* */
/* Modification History */
/* date : author : Comments */
/*---*/
/* 8-24-84 Dale added this header file */
/* Feb 85 Dale added Rectangle , BitMap structures */
/***/

/* general include file for application programs */
#define BITSET Ox8000
#define BITCLR 0

#define AGNUS
#ifdef AGNUS
#define TOBB(a)
#else

«long)(a»

#define TOBB(a)
#endif

«long)(a»>l) /* convert Chip adr to Bread Board Adr */

struct Rectangle
(

);

SHORT MinX,MinY;
SHORT MaxX,MaxY;

typedef UBYTE *PLANEPTR;

struct BitMap
(

];

UIDRD BytesPerRow;
UIDRD Rows;
UBYTE Flags;
UBYTE Depth;
UIDRD pad;
PLANEPTR Planes{8];

#define RASSIZE(w,h)

#endif

«h)*((w+l5»)3&OxFFFE»

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS GFXBASE H
#define GRAPHICS=GFXBASE=H

#ifndef EXEC LISTS H
#include <exec/lists.h>
#endif
#ifndef EXEC LIBRARIES H
#include <exec/libraries.h>
#endif
#ifndef EXEC INTERRUPTS H
#include <exec/interrupts.h>
#endif

/****** gfxbase.h ***/
/* */
/* Corrmodore-Amiga, Inc. * /
/* */
/* Modification History * /
/* date author Comments * /
/* --------------------------------------- */
/* 10-20-84 Kodiak added this header file & TextFonts */
~ ~
/**/
struct GfxBase
{

};

struct Library
struct View
struct copinit
long *cia;
long *blitter;
UWORD *LOFlist;
UWORD *SHFlist;

LibNode;
*ActiView;
copinit; / ptr to copper start up list */

/* for 8520 resource use */
/* for future blitter resource use */

struct bltnode *blthd,*blttl;
struct bltnode *bsblthd,*bsblttl;
struct Interrupt vbsrv,timsrv,bltsrv;
struct List TextFonts;
struct TextFont *DefaultFont;
UWORD Modes; /* copy of current first bplconO */
BYTE VBlank;
BYTE Debug ,:
SHORT BeamSync;
SHORT system_bplconO; /* this is initialized to 0 */

/* it is ored into each bplconO for display */
UBYTE SpriteReserved;
UBYTE bytereserved;
/* candidates for removal */
USHORT Flags;
SHORT BlitLock;
short BlitNest;

struct List BlitWaitQ;
struct Task *BlitOwner;
struct List TOF_WaitQ;
UWORD DisplayFlags; /* NTSC PAL GENLOC etc*/

/* Display flags are determined at power on */
ULONG reserved{2]; /* for future use */

#define NTSC 1

I -W

60
61
62
63
64

#define GENLOC
#define PAL

#define BLITMSG_FAULT
#endif

2
4

4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

#ifndef GRAPHICS_GFXMACROS_H
#define GRAPHICS_GFXMACROS_H
/******
/*

gfxmacros.h ***/

/* Commodore-Amiga, Inc.
/*
/* Modification History

author Comments

*/
*/
*/
*/
/ / date

/* --------------------------------------- */
/*
/*
/*
/*

8-24-84
9-06-84
9-07-84

Dale
Dale
Dale

added this header file
fixed macros using w-) to use (W)-)
fixed macros to use new RastPort

*/
*/
*/
*/

/**/

#ifndef GRAPHICS RASTPORT H
#include <graphics/rastport.h)
#endif

#define ON_DISPLAY
#define OFF_DISPLAY
#define ON_SPRITE
#define OFF_SPRITE

#define ON_VBLANK
#define OFF_VBLANK

#define SetOPen(w,c)
#define SetDrPt(w,p)
#define SetWrMsk(w,m)
#define SetAfPt(w,p,n)

#define BNDRYOFF

#define CINIT(c,n)
#define CMOVE(c,a,b)
#define CWAIT(c,a,b)
#define CEND(c)

#endif

custom.dmacon
custom.dmacon
custom.dmacon
custom.dmacon

custom. intena
custom. intena

BITSET DMAF_RASTER;
BITCLR DMAF_RASTER;
BITSET DMAF_SPRITE;
BITCLR DMAF_SPRITE;

BITSETIINTF_VERTB
BITCLR INTF_VERTB

{(w)-)AOIPen = c;(w)-)Flags 1= AREAOUTLINE;)
{(w)-)LinePtrn = p;(w)-)Flags 1= FRST_DOT;)
{(w)-)Mask = m;)
[(w)-)AreaPtrn = p;(w)-)AreaPtsz = n;)

(w) [-)Flags &= -AREAOUTLINE}

UCopperListInit(c,n); }
CMove(c,&a,b);CBump(c); }
CWait(c,a,b);CBump(c); }
CWAIT(c,10000,255); }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

#ifndef GRAPHICS_GRAPHINT_H
#define GRAPHICS_GRAPHINT_H
/**/
/* Corrmodore-Amiga, Inc. */
/* graphint. h * /
/**/

#ifndef EXEC NODES H
#include <exec/nodes.h)
#endif

/* structure used by AddTOFTask */
struct Isrvstr
{

struct Node is_Node;
struct Isrvstr *Iptr;
int (*code)();
int (*ccode) ();
int Carg;

#endif

/* passed to srvr by os */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

1*** ***************/
/* Corrmodore-Amiga, Inc. * /
/**/

#ifndef GRAPHICS_LAYERS_H
#define GRAPHICS_LAYERS_H

#ifndef EXEC PORTS H
#include <exec/ports.h)
#endif

#ifndef EXEC LISTS H
#include <exec/lists.h>
#endif

#define LAYERSIMPLE
#define LAYERSMART
#define LAYERSUPER
#define LAYERBACKDROP
#define LAYERREFRESH

struct Layer_Info
{

1
2
4
Ox40
Ox80

struct Layer *top_layer;
struct Layer *check_lp;
struct Layer *obs;
struct MsgPort RP_ReplyPort;
struct MsgPort LockPort;
UBYTE Lock;
UBYTE broadcast;
UBYTE LockNest;
UBYTE Flags;
struct Task *Locker;
BYTE fatten count;
UBYTE bytereserved;

/*
/*
/*
/*

system use */
system use */
for rastport locking */
for screen locking */

/* bunch of messages sent */

UWORD wordreserved; /* used to be a node in here someplace */
UWORD Layerlnfo_extra_size;
ULONG longreserved;
struct Layerlnfo_extra *Layerlnfo_extra;

#define NEWLAYERINFO CALLED 1
#define ALERTLAYERSNOMEM Ox830l0000

#endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS_RASTPORT_H
#define GRAPHICS_RASTPORT_H

#ifndef GRAPHICS GFX H
#include <graphics/gfx.h)
#endif

/** ** '* '* rastport. h":' * ****** **** ***** ****** '* * ** ** '* **** ******* **** *****
*
*
*
*
*
*
*

Commodore-Amiga, Inc.

Modification History
date author Cormnents

02-04-85 Dale created from graph.h
**/

struct Arealnfo
{

} ;

SHORT
SHORT
BYTE
BYTE
SHORT
SHORT
SHORT

*VctrTbl;
*Vctrptr;
*FlagTbl;
*Flagptr;
Count;
MaxCount;
FirstX,FirstY;

. struct TmpRas
{

BYTE *Rasptr;
LONG Size;

/* ptr to start of vector table * /
/* ptr to current vertex */
/* ptr to start of vector flag table */
/* ptrs to areafill flags */
/* number of vertices in list */
/* AreaMove/Draw will not allow Count)MaxCount*/
/* first point for this polygon */

/* other misc junk for freelist etc. */
};

/* unoptimized for 32bit alignment of pointers */
struct Gelslnfo
{

};

BYTE sprRsrvd;

UBYTE Flags;
struct VSprite *gelHead,
/* pointer to array of 8
WORD *nextLine;

/* flag of which sprites to reserve from
vsprite system */

/* system use */
gelTail; / dummy vSprites for list management*/
WORDS for sprite available lines */

/* pointer to array of 8 pointers for color-last-assigned to vSprites */
WORD **lastColor;
struct collTable *collHandler; /* addresses of collision routines */
short leftmost, rightmost, topmost, bottommost;

APTR firstBlissObj,lastBlissObj; /* system use only */

struct RastPort
{

struct Layer *Layer;
struct BitMap *BitMap;
USHORT *AreaPtrn; /* ptr to areafill pattern */
struct TmpRas *TmpRas;
struct Arealnfo *Arealnfo;
struct Gelslnfo *Gelslnfo;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

UBYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
USHORT
USHORT
SHORT
UBYTE
SHORT
SHORT
struct
UBYTE
UBYTE
UWORD
UWORD
UWORD
WORD
APTR
UWORD
ULONG
UBYTE

Mask;
FgPen;
BgPen;
AOIPen;
DrawMode;
AreaPtSz;
linpatcnt;
dummy;
Flags;
LinePtrn;
cp_x, cPJ;
minterms [8];
PenWidth;
PenHeight;
TextFont *Font;
AlgoStyle;
TxFlags;
TxHeight;
TxWidth;
TxBaseline;
TxSpacing;
*RP_User;

·wordreserved[7];
longreserved[2];
reserved[8];

/* drawing modes */
#define JAMI 0
#define JAM2 1
#define COMPLEMENT 2
#define INVERSVID 4

/* write mask for this raster */
/* foreground pen for this raster */
/* background pen */
/* areafill outline pen */
/* drawing mode for fill, lines, and text */
/* 2-n words for areafill pattern */
/* current line drawing pattern preshift */

/* miscellaneous control bits */
/* 16 bits for textured lines */
/* current pen position */

/* current font address */
/* the algorithmically generated style */
/* text specific flags */
/* text height */
/* text nominal width */
/* text baseline */
/* text spacing (per character) */

/* used to be a node * /

/* for future use */

/* jam 1 color into raster */
/* Jam 2 colors into raster */
/* XOR bits into raster */
/* inverse video for drawing modes */

/* these are the
#define FRST DOT
#define ONEjUT
#define DBUFFER

flag bits
OxOl
Ox02
Ox04

for RastPort flags */
/* draw the first dot of this line? */
/* use one dot mode for drawing lines */
/* flag set when RastPorts

are double-buffered */

/* only used for bobs */

#define AREAOUTLINE Ox08
#define NOCROSSFILL Ox20

/* used by areafiller */
/* areafills have no crossovers */

/* there is only one style of clipping: raster clipping */
/* this preserves the continuity of jaggies regardless of clip window */
/* When drawing into a RastPort, if the ptr to ClipRect is nil then there */
/* is no clipping done, this is dangerous but useful for speed */

#endif

1 #ifndef GRAPHICS_REGIONS_H
2 #define GRAPHICS_REGIONS_H
3
4 #ifndef GRAPHICS GFX H
5 #inc1ude <graphics/gfx.h>
6 #endif
7 1*** ***************/
8 /* Commodore-Amiga, Inc. */
9 /* regions.h */

10 /**/
11
12 struct RegionRectang1e
13 {
14 struct RegionRectang1e *Next,*Prev;
15 struct Rectangle bounds;
16 };
17
18 struct Region
19 (
20 struct Rectangle bounds;
21 struct RegionRectang1e *RegionRectang1e;
22);
23
24 #endif

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

#ifndef GRAPHICS SPRITE H
#define GRAPHICS-SPRITE-H
/**/
/* Corrnnodore-Amiga, Inc. * /
/* sprite.h */
/**/

#define SPRITE_ATTACHED Ox80

struct Simp1eSprite
(

UWORD *posct1data;
UWORD height;
UWORD
UWORD

);
#endif

X,Yi
nlliTli

/* current position */

I
Co:l
00

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS_TEXT_H
#define GRAPHICS TEXT H
/**~***********************/
/* Corrmodore-Amiga, Inc. */
/* file.h */
/**/
1**
* graphics library text structures
*
***/

#ifndef
#include "exec/ports.h"
#endif

/*------ Font Styles --*/
#define FS NORMAL 0 /* normal text (no style bits set) */
#define FSB EXTENDED 3 /* extended face (wider than normal) */
#define FSF-EXTENDED (1«3)
#define FSB-ITALIC 2 /* italic (slanted 1:2 right) */
#define FSF-ITALIC (1«2)
#define FSB-BOLD 1 /* bold face text (ORed w/ shifted) */
#define FSF=BOLD (1«1)
#define FSB UNDERLINED 0 /* underlined (under baseline) */
#define FSF=UNDERLINED (1«0)

/*------ Font Flags ---*/
#define FPB_ROMFONT 0 /* font is in rom */
#define FPF_ROMFONT (1«0)
#define FPB_DISKFONT 1 /* font is from diskfont.library */
#define FPF_DISKFONT (1«1)
#define FPB_REVPATH 2 /* designed path is reversed (e.g. left) */
#define FPF_REVPATH (1«2)
#define FPB_TALLDOT 3 /* designed for hires non-interlaced */
#define FPF_TALLDOT (1«3)
#define FPB_WIDEOOT 4 /* designed for lares interlaced */
#define FPF_WIDEOOT (1«4)
#define FPB_2ROPORTIONAL 5 /* character sizes can vary from nominal */
#define FPF PROPORTIONAL (1«5)

FPB-DESIGNED 6 #define /* size is "designed ll
, not constructed */

#define FPF=DESIGNED (1«6)
#define FPB_REMOVED 7 /* the font has been removed */
#define FPF_REMOVED (1«7)

/****** TextAttr node,
struct TextAttr {

STRPTR ta_Name;

matches text attributes in RastPort **********/

UWORD ta_YSize;
UBYTE ta_Style;
UBYTE ta_Flags;

/* name of the font */
/* height of the font */
/* intrinsic font style */
/* font preferences and flags */

/****** TextFonts node **/
struct TextFont {

struct Message tf_Message;

UWORD
UBYTE

tf_YSize;
tf_Style;

/* reply message
/* font name in LN
/* font height
/* font style

for font removal */
\ used in this * /

I
order to best */
match a font */

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

};

UBYTE
UIDRD
UIDRD
UIDRD

UIDRD

UBYTE
UBYTE
APTR

UIDRD
APTR

APTR
APTR

#endif

tf_Flags;
tf_XSize;
tf_Baseline;
tf_BoldSmear;

tf_LoChar;
tf_HiChar;
tf_CharData;

tf_Modulo;
tf_CharLoc;
/* 2 words:

tf_CharSpace;
tf_CharKern;

/* preferences and flags / request. */
/* nominal font width */
/* distance from the top of char to baseline *,
/* smear to affect a bold enhancement */

/* access count */

/* the first character described here */
/* the last character described here */
/* the bit character data */

/* the row modulo for the strike font data */
/* ptr to location data for the strike font */

bit offset then size */
/* ptr to words of proportional spacing data *1

/* ptr to words of kerning data */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef GRAPHICS_VIEW_H
#define GRAPHICS_VIEW_H

#ifndef GRAPHICS GFX H
#include <graphics/gfx.h>
#endif

/**/
/* Connnodore-Amiga, Inc. */
/* view.h */
/**/
/***
* Modification History
* date author Comments
*
*
*

2-4-85
2·-8-85

Dale
Dale

created from graph.h
conversion to 24 View->ViewPort

**/

struct ColorMap
[

};

UBYTE Flags;
UBYTE Type;
UIDRD Count;
APTR ColorTable;

/* if Type ~~ 0 then ColorTable is a table of UIDRDS xRGB */

struct viewPort
[

ViewPort *Next; struct
struct ColorMap *ColorMap; /* table of colors for this viewport */

/* if this is nil, MakeVPort assumes default values */
struct CopList *DspIns; /* user by MakeView() */
struct CopList *SprIns; /* used by sprite stuff */
struct CopList *ClrIns; /* used by sprite stuff */
struct UCopList *UCopIns; /* User copper list */
SHORT DWidth,DHeight;
SHORT DxOffset,DyOffset;
UIDRD Modes;
UIDRD reserved;
struct RasInfo *RasInfo;

};

struct view
[

];

struct viewPort *ViewPort;
struct cprlist *LOFCprList;
struct cprlist *SHFCprList;
short DyOffset,DxOffset; /*

/*
UIDRD Modes; /*

/* used for interlaced and noninterlaced */
/* only used during interlace */
for complete View positioning */
offsets are +- adjustments to standard #s */
such as INTERLACE, GENLOC */

/* defines used
#define PFBA
#define DUALPF
#define HIRES
#define LACE

for Modes in IVPargs
Ox40

*/

Ox400
Ox8000
4

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

#define HAM Ox800
#define SPRITES Ox4000 /* reuse one of plane ctr bits
#define VP_HIDE Ox2000 /* reuse another plane crt bit
#define GENLOCK_AUDIO OxlOO
#define GENLOCK_VIDEO 2
#define EXTRA_HALFBRITE Ox80

struct RasInfo /* used by callers to and InitDspC() */
[

/* used for dualpf */

*/
*/

struct
struct
SHORT

RasInfo *Next;
BitMap *BitMap;
RxOffset,RyOffset; /* scroll offsets in this BitMap */

#endif

Contents

hardware/adkbits.h
hardware/blit .h
hardware/cia.h
hardware/custom.h
hardware/dmabits.h
hardware/intbits.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

/**** •• "."., •••• *,.*', •• ,""'.""'*'*"*"*".*'***t***'*'*"
* Commodore-Amiga, Inc.
* adkbits.h -- bit definitions for adkcon register

* * $Header: adkbits.h,v 27.1 85/06/24 14:42:34 neil Exp $

* * $Locker: $
* '***'*"'*"',.,.*.,""'*"""*"*'*"""*"""'*'.*tt,t""'/

#ifndef HARDWARE....ADKBITSJ[
#define HARDWARE....ADKBITSJ[

#define ADKB_SETCLR
#define ADKB~RECOMP1

#define ADKB~RECOMPO

#define ADKB-MFMPREC
#define ADKB_UARTBRK
#define ADKB_WORDSYNC
#define ADKB-MSBSYNC
#define ADKB~AST
#define ADKB_USE3PN
#define ADKB_USE2P3
#define ADKB_USE1P2
#define ADKB_USEOP1
#define ADKB_USE3VN
#define ADKB_USE2V3
#define ADKB_USE1V2
#define ADKB_USEOV1

#define ADKF_SETCLR
#define ADKF~RECOMP1
#define ADKF~RECOMPO
#define ADKF-MFMPREC
#define ADKF_UARTBRK
#define ADKF_WORDSYNC
#define ADKF-MSBSYNC
#define ADKF~AST
#define ADKF_USE3PN
#define ADKF_USE2P3
#define ADKF_USE1P2
#define ADKF_USEOP1
#define ADKF_USE3VN
#define ADKF_USE2V3
#define ADKF_USE1V2
#define ADKF_USEOV1

#define ADKF~REOOONS
#define ADKF~RE140NS
#define ADKF~RE280NS
#define ADKF~RE560NS

15 1* standard set/clear bit *1
14 1* two bits of precompensation *1
13
12 1* use mfm style precompensation *1
11 1* force uart output to zero *1
10 1* enable DSKSYNC register matching *1
9 1* (Apple OCR Only) sync on MSB for reading *1
8 1* 1 -> 2 us/bit (mfm) , 2 -> 4 us/bit (gcr) *1
7 1* use aud chan 3 to modulate period of ?? *1
6 1* use aud chan 2 to modulate period of 3 *1
5 1* use aud chan 1 to modulate period of 2 *1
4 1* use aud chan 0 to modulate period of 1 *1
3 1* use aud chan 3 to modulate volume of ?? *1
2 1* use aud chan 2 to modulate volume of 3 *1
1 1* use aud chan 1 to modulate volume of 2 *1
o 1* use aud chan 0 to modulate volume of 1 *1

(1«15)
(1«14)
(1«13)
(1«12)
(1«11)
(1«10)
(1«9)
(1«8)
(1«7)
(1«6)
(1«5)
(1«4)
(1«3)
(1«2)
(1«1)
(1«0)

o 1* 000 ns of precomp *1
(ADKF~RECOMPO) 1* 140 ns of precomp *1
(ADKF~RECOMP1) 1* 280 ns of precomp *1
(ADKF~RECOMPO IADKF~RECOMP1) 1* 560 ns of precomp

#endif !HARDWARE....ADKBITSJ[

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1***
* blit.h
* Commodore-Amiga, Inc.
*
* $Header: blit.h,v 27.1 85/06/24 14:42:40 neil Exp $

*
* $Locker: $
*
**/

#ifndef HARDWARE_BLIT_H
#define HARDWARE_BLIT_H

/* include file for blitter */
#define HSIZEBITS 6
#define VSIZEBITS 16-HSIZEBITS
#define HSIZEMASK Ox3f /* 2~6 -- 1 */
#define VSIZEMASK Ox3FF /* 2~10 - 1 */

#define MAXBYTESPERROW 128

/* definitions for blitter control register 0 */

#define ABC Ox80
#define ABNC Ox40
#define ANBC Ox20
#define ANBNC OxlO
#define NABC Ox8
#define NABNC Ox4
#define NANBC Ox2
#define NANBNC Oxl

/* some commonly
#define A_OR_B
#define A_OR_C
#define A_XOR_C
#define A_TO_D

used operations */
ABCIANBCINABC I ABNCIANBNCINABNC
ABC NABC ABNC ANBC NANBC ANBNC
NABCI ABNC I NANBCIANBNC
ABCIANBCIABNCIANBNC

#define BCOB_DEST 8
#define BCOB_SRCC 9
#define BCOB SRCB 10
#define BCOB=SRCA 11
#define BCOF_DEST OxlOO
#define BCOF_SRCC Ox200
#define BCOF_SRCB Ox400
#define BCOF_SRCA Ox800

#define BCIF_DESC 2

#define DEST OxlOO
#define SRCC Ox200
#define SRCB Ox400
#define SRCA Ox800

#define ASH 1FT SHIFT 12
#define BSHIFTSHIFT 12

/* blitter descend direction */

/* bits to right align ashift value */
/*bits to right align bshift value */

/* definations for blitter control register 1 */
#define LLNEMODE Oxl

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

#define FILL_OR Ox8
#define FILL_XOR OxlO
#define FILL CARRYIN Ox4
#define ONEnOT Ox2 /* one dot per horizontal line */
#define OVFLAG Ox20
#define SIGNFLAG Ox40
#define BLITREVERSE Ox2

#define SUD OxlO
#define SUL Ox8
#define AUL Ox4

#define OCTANT8 24
#define OCTANT7 4
#define OCTANT6 12
#define OCTANT5 28
#define OCTANT4 20
#define OCTANT3 8
#define OCTANT2 0
#define OCTANTI 16

/* stuff for b1it qeuer */
struct b1tnode
{

);

struct
int
char
short
short
int

b1tnode *n;
(*function) ();
stat;
blitsize;
beamsync;
(*c1eanup)();

/* defined bits for b1tstat */
#define CLEANUP Ox40
#define CLEANME CLEANUP

1
2
3
4
5
6
7
8

/**/
/* Commodore-Amiga, Inc. */
/* cia.h */
/**/

#define
#define

CIAANAME "ciaa.resource"
CIABNAME "ciab.resource"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/***
* commodore-Amiga, Inc.
* custom.h
* * $Header: custom.h,v 27.1 85/06/24 14:42:53 neil Exp $

*
* $Locker: $
*
**/

#ifndef
#define

HARDWARE_CUSTOM_H
HARDWARE_CUSTOM_H

/*
* do this to get base of custom registers:
* extern struct Custom custom;
*/

struct Custom [
UIDRD bltddat;
UIDRD dmaconr;
UIDRD vposr;
UIDRD vhposr;
UIDRD dskdatr;
UIDRD joyOdat;
UIDRD joyldat;
UIDRD clxdat;
UIDRD adkconr;
UIDRD potOdat;
UIDRD potldat;
UIDRD potinp;
UIDRD serdatr;
UIDRD dskbytr;
UIDRD intenar;
UIDRD intreqr;
APTR dskpt;
UIDRD dsklen;
UIDRD dskdat;
UIDRD refptr;
UIDRD vposw;
UIDRD vhposw;
UIDRD copcon;
UIDRD serdat;
UIDRD serper;
UIDRD potgo;
UIDRD joytest;
UIDRD strequ;
UIDRD strvbl;
UIDRD strhor;
UIDRD strlong;
UIDRD bltconO;
UIDRD bltconl;
UIDRD bltafwm;
UIDRD bltalwm;
APTR bltcpt;
APTR bltbpt;
APTR bltapt;
APTR bltdpt;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

];

UWORD bltsize;
UWORD pad2d[3];
UWORD bl tcrnod;
UWORD bltbmod;
UWORD bltamod;
UWORD bltdmod;
UWORD pad34[4];
UWORD bltcdat;
UWORD bltbdat;
UWORD bltadat;
UWORD pad3b[4];
UWORD dsksync;
ULONG cop11c;
ULONG cop21c;
UWORD copjmpl;
UWORD copjmp2;
UWORD copins;
UWORD diwstrt;
UWORD diwstop;
UWORD ddfstrt;
UWORD ddfstop;
UWORD dmacon;
UWORD clxcon;
UWORD intena;
UWORD intreq;
UWORD adkcon;
struct AudChannel [

UWORD *ac~tr; /* ptr to start of waveform data */
UWORD ac_len; /* length of waveform in words */
UWORD ac~er; /* sample period */
UWORD ac_vol; /* volume */
UWORD ac_dat; /* sample pair */
UWORD ac~ad[2]; /* unused */
aud[4] ;

APTR bplpt [6] ;
UWORD pad7c[4];
UWORD bplconO;
UWORD bplconl;
UWORD bplcon2;
UWORD pad83;
UWORD bpllmod;
UWORD bp12mod;
UWORD pad86 [2] ;
UWORD bpldat[6] ;
UWORD pad8e[2];
APTR sprpt[8];
struct SpriteDef

UWORD pos;
UWORD ctl;
UWORD dataa;
UWORD datab;
spr[8] ;

UWORD color[32] ;

#endif !HARDWARE_CUSTOM_H

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

/***
* Commodore-Amiga, Inc.
* dmabits.h
*
* $Header: dmabits.h,v 27.1 85/06/24 14:42:59 neil Exp $

*
* $Locker: $

*
**/

#ifndef
#define

HARDWARE_DMABITS_H
HARDWARE_DMABITS_H

/* include file for defining dma control stuff */

/* write definitions
#define DMAP_SETCLR
#define DMAP AUDIO
#define DMAP-AUDO
#define DMAP-AUDI
#define DMAP-AUD2
#define DMAP-AUD3
#define DMAP-DISK
#define DMAP-SPRITE
#define DMAP=BLITTER
#define DMAF_COPPER
#define DMAF RASTER
#define DMAF-MASTER
#define DMAP-BLITHOG
#define DMAF=ALL

for dmaconw */
Ox8000
OxOOOF /* 4 bit mask */
OxOOOl
Ox0002
Ox0004
Ox0008
OxOOlO
Ox0020
Ox0040
Ox0080
OxOlOO
Ox0200
Ox0400
OxOlFF /* all dma channels */

/* read definitions for dmaconr */
/* bits 0-8 correspnd to dmaconw definitions */
#define DMAP BLTDONE Ox4000
#define DMAF=BLTNZERO Ox2000

#define DMAB_SETCLR 15
#define DMAB AUDO 0
#define DMAB-AUDI 1
#define DMAB-AUD2 2
#define DMAB-AUD3 3
#define DMAB-DISK 4
#define DMAB-SPRITE 5
#define DMAB-BLITTER 6
#define DMAB-COPPER 7
#define DMAB-RASTER 8
#define DMAB=MASTER 9
#define DMAB_BLITHOG 10
#define DMAB_BLTDONE 14
#define DMAB_BLTNZERO 13

#endif !HARDWARE_DMABITS_H

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

1***
* Commodore-Amiga, Inc.
* intenabits.h -- definitions for the bits in the interrupt enable
* (and interrupt request) regis~r

* * $Header: intbits.h,v 27.1 85/06/24 14:43:04 neil Exp $

*
* $Locker: $
*
* *' * * * * * * * *'* 1

#ifndef HARDWARE INTBITS H
#define HARDWARE=INTBITS=H

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define·
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

INTB SETCLR
j; written
/* written

I NTB_INTEN
INTB_EXTER
INTB_DSKSYNC
INTB_RBF
INTB_AUD3
INTB_AUD2
INTB AUDI
INTB=AUDO
INTB_BLIT
INTB_VERTB
INTB_COPER
INTB_PORTS
INTB_SOFTINT
INTB_DSKBLK
INTB_TBE

INTF_SETCLR
INTF_INTEN
INTF_EXTER
INTF_DSKSYNC
INTF_RBF
INTF_AUD3
INTF_AUD2
INTF_AUDI
INTF_AUDO
INTF_BLIT
INTF_VERTB
INTF_COPER
INTF_PORTS
INTF_SOFTINT
INTF_DSKBLK
INTF_TBE

(15)
with a
with a

(14)
(13)
(12)
(11)
(10)
(9)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
(1)
(0)

/* Set/Clear control bit. Determines if bits */
1 get set or cleared. Bits */
zero are allways unchanged */
/* Master interrupt (enable only) */
/* External interrupt */
/* Disk re-SYNChronized */
/* serial port Receive Buffer Full */
/* Audio channel 3 block finished */
/* Audio channel 2 block finished */
/* Audio channel 1 block finished */
/* Audio channel 0 block finished */
/* Blitter finished */
/* start of Vertical Blank */
/* Coprocessor */
/* I/O Ports and timers */
/* software interrupt request */
/* Disk Block done */
/* serial port Transmit Buffer Empty */

(1«15)
(1«14)
(1«13)
(1 «12)
(1«11)
(1«10)
(1«9)
(1«8)
(1«7)
(1«6)
(1«5)
(1«4)
(1«3)
(1«2)
(1«1)
(1«0)

Contents

intuition/intuinternal.h
intuition/intuition.h
intuition/intuitionbase.h

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:

#ifndef INTUITION_INTUITION_H
#define INTUITION_INTUITION_H TRUE

1*** intuition.h ***
* Commodore-Amiga, Inc.
*
* intuition.h main include for c programmers
*
* Modification History
* date author Comments
* -------------------------------------
*
*
*

1-30-85
10-03-85

created this file!
Support for HP printers

**/

#ifndef INTUITION INTUITIONBASE H
#include "intui tion/intui tionbase. h"
#endif

#ifndef GRAPHICS GFX H
#include "graphics/gfx.h"
#endif

#ifndef GRAPHICS CLIP H
#include "graphics/clip.h"
#endif

#ifndef GRAPHICS VIEW H
#include "graphics/view.h"
#endif

#ifndef GRAPHICS RASTPORT H
#include "graphics/rastport.h"
#endif

#ifndef GRAPHICS LAYERS H
#include "graphics/layers.h"
#endif

#ifndef GRAPHICS TEXT H
#include "graphics/text.h"
#endif

#ifndef EXEC PORTS H
#include "exec/ports.h"
#endif

#ifndef DEVICES TIMER H
#include "devices/timer.h"
#endif

#ifndef DEVICES INPUTEVENT H
#include "devices/inputevent.h"
#endif

57:
58:

59:

60:

61:
62:
63:
64:

65:

66:

67:

68:

69:
70:

71:
72:
73:
74:
75:
76:

77:
78:
79:

80:
81:
82:
83:
84:
85:
86:

87:

88:

89:
90:
91:

92:

93:

94:

95:
96:

97:

/* ~~=~~~=
*/

/* ~~~ Menu ~~~===~=~~~~~~~~=~~~~~~~=
*/

/* =~=~~~~==~~=~==~~~~==~~==~~==~~~~=~~~==~~~=~~~~~~~~==~~==~~~~~~~==~~~=~~
*/

struct Menu
(

struct Menu *NextMenu;
SHORT LeftEdge, TopEdge;

box */
SHORT Width, Height;

select box */
USHORT Flags;

below */
BYTE *MenuName;

Header */
struct Menultem *FirstItem;

in chain */

/* same level */
/* position of the select

/* dimensions of the

/* see flag definitions

/* text for this Menu

/* pointer to first

/* these mysteriously-named variables are for internal
use only */

SHORT JazzX, JazzY, BeatX, Beaty;
} ;

/* FLAGS SET BY BOTH THE APPLIPROG AND INTUITION * /
#define MENUENABLED OxOOOl /* whether or not this

menu is enabled * /

/* FLAGS SET BY INTUITION */
#define MIDRAWN Ox0100 /* this menu's items are

currently drawn */

/* ~~~~==~~~~~~~~~==~~~~~=~~~=~~~=~~~~~~~~~=~~~~=~~~=~==~~~~~==~~~~~~~==~~~
*/

/* ~~~ MenuItem ~~~~=~=~~=~~~=~~~=~~~~~~~~~~=~~~==~~~~~~~=~~~~=~~~~=~~~~~~~
*/

/* ~~=~=~~~~=~~~~~===~~~=~~~~~~~~=~~~=~~~~~=~~~~~~~=~~~=~~~~=~~~=~~~~~~=~=
*/

struct MenuItem
(

struct
chained

SHORT
box */

MenuItem *NextItem;
list */

LeftEdge, TopEdge;

SHORT Width,
select box */

USHORT Flags;
*/

Height;

LONG
item

MutualExclude;

/* pointer to next in

/* position of the select

/* dimensions of the

/* see the defines below

/* set bits mean this

excludes that */

98:

99:
100:

101:

102:
103:

104:
105:

106:
107:

108:
109:

110:
Ill:
112:
113:
114:
115:

V 116:
117:

I ,.....
~
0)

118:

119:

120:

121:

122:
123:

124:

125:

126:

127:

128:
129:
130:
131:

132:
133:
134:

135:

136:

APTR ItemFill; /* points to Image,
IntuiText, or NULL */

/* when this item is pointed to by the cursor and the
items highlight

* mode HIGHIMAGE is selected, this alternate image
will be displayed

*/
APTR SelectFill; /* points to Image, IntuiText,

or NULL */

BYTE Command; /* only if appliprog sets
the COMMSEQ flag */

struct MenuItem *SubItem;
shows "-)" */

/* if non-zero, DrawMenu

/* The Nextselect field represents the menu number of
next selected

* item (when user has drag-selected several items)
*/

USHORT NextSelect;

/* FLAGS SET BY THE APPLIPROG */
#define CHECKIT OxOOOl /* whether to check this item
if selected * /

#define ITEMTEXT OxOOO2 /* set if textual, clear if
graphical item */

#define COMMSEQ OxOO04 /* set if there's an command
sequence */

#define MENUTOGGLE OxOOO8 /* set to toggle the check
of a menu item */

#define ITEMENABLED OxOOlO /* set if this item is enabled
*/

/* these are the SPECIAL HIGHLIGHT FLAG state meanings */

#define HIGHFLAGS OxOOCO /* see definitions below for
these bits */

#define HIGHIMAGE OxOOOO /* use the user's "select
image II */

#define HIGHCOMP Ox0040 /* highlight by complementing
the selectbox */

#define HIGHBOX Ox0080 /* highlight by I'boxing" the
selectbox */

#define HIGHNONE OxOOCO /* don't highlight */

/* FLAGS SET BY BOTH APPLIPROG AND INTUITION * /
#define CHECKED OxOlOO /* if CHECKIT, then set this

when selected */

/* FLAGS SET BY INTUITION */
#define ISDRAWN OxlOOO /* this item's subs are currently

drawn */
#define HIGHITEM Ox2000 /* this item is currently

highlighted */
#define MENUTOGGLED Ox4000 /* this item was already toggled

137:
138:
139:
140:
141:
142:

143:

144:

145:
146:
147:

148:
149:

150:

151:

152:
153:

154:

155:
156:

157:
158:
159:
160:
161:
162:
163:
164:
165:

166:

167:

168:

169:
170:
171:

172:

173:
174:
175:
176:
177:
178:

*/

/* ~~
*/

/* ~~~ Requester ~~
*/

/* ~~
*/

struct Requester
{

/* the ClipRect and BitMap and used for rendering the
requester */
struct Requester *OlderRequest;
SHORT LeftEdge, TopEdge; /* dimensions of the

entire box */
SHORT Width, Height; /* dimensions of the

entire box * /
SHORT RelLeft, ReI Top; /* for Pointer relativity

offsets */

struct Gadget *ReqGadget; /* pointer to a list
of Gadgets */
struct Border * ReqBorder; /* the box's border

*/
struct IntuiText *ReqText; /* the box's text */
USHORT Flags; /* see definitions below

*/

/* pen number for back-plane fill before draws */
UBYTE BackFill;
/* Layer in place of clip rect */

struct Layer *ReqLayer;

UBYTE ReqPadl[32] ;

/* If the BitMap plane pointers are non-zero, this tells
the system

* that the image comes pre-drawn (if the appliprog
wants to define

* it's own box, in any shape or size it wants!); this
is OK by

* Intuition as long as there's a good correspondence
between

* the image and the specified Gadgets
*/

struct BitMap *ImageBMap; /* points to the BitMap of
PREDRAWN imagery * /
struct Window *RWindow;

Window */
UBYTE ReqPad2[36]

/* added. points back to

/* FLAGS SET BY THE APPLIPROG */
#define POINTREL OxOOOl /* if POINTREL set,TopLeft is

relative to pointer*/

179:

180:
181:
182:
183:
184:

185:

186:

187:

188:
189:
190:
191:
192:
193:
194:

195:

196:
V
I 197: 198:

--l 199:

200:
201:

202:

203:
204 :

205:
206:

207:
208:

209:
210:

211:

212:
213:
214:
215:
216:

217:
218:
219:
220:
221:

#define PREDRAWN
Requester

Ox0002 /* if ReqBMap points to predrawn

imagery */
/* FLAGS SET BY BOTH THE APPLIPROG AND INTUITION * /

/* FLAGS SET BY INTUITION */
#define REQOFFWINDOW OxlOOO /* part of one of the Gadgets

was offwindow */
#define REQACTIVE Ox2000 /* this requester is active

*/
#define SYSREQUEST Ox4000 /* this requester caused by

system */
#define DEFERREFRESH Ox8000 /* this Requester stops a

Refresh broadcast */

/* ==
*/

/* === Gadget ===
*/

/* ==
*/

struct Gadget
[

struct Gadget *NextGadget;
*/

SHORT LeftEdge, TopEdge;
*/

SHORT Width, Height;
*/

USHORT Flags;
defines */

USHORT Activation;
defines */

USHORT GadgetType;
*/

/* next gadget in the list

/* "hit box II of gadget

/* "hit box l
' of gadget

/* see below for list of

/* see below for list of

/* see below for defines

/* appliprog can specify that the Gadget be rendered
as either as Border

* or an Image. This variable points to which (or equals
NULL if there's

* nothing to be rendered about this Gadget)
*/

APTR GadgetRender;

/* appliprog can specify "highlighted" imagery rather
than algorithmic

* this can point to either Border or Image data
*/

APTR SelectRender;

struct IntuiText *GadgetText; /* text for this gadget

222:
223:

224:

*/

/* by using the MutualExclude word, the appliprog can
describe

* which gadgets mutually-exclude which other ones.
The bits

225: * in MutualExclude correspond to the gadgets in object
containing

226: * the gadget list. If this gadget is selected and
a bit is set

227: * in this gadget's MutualExclude and the gadget corresponding
to

228: * that bit is currently selected (e.g. bit 2 set and
gadget 2

229: * is currently selected) that gadget must be unselected.

230: * Intuition does the visual unselecting (with checkmarks)

231:
232:
233:

234:
235:
236:

237:
238:
239:
240:
241:

242:

243:
244:
245:
246:
247:

248:

249:
250:

251:

252:

253:
254 :
255:

256:
257:
258:
259:
260:

261:

and
* leaves it up to the program to unselect internally
*/

LONG MutualExclude; /* set bits mean this gadget
excludes

that gadget * /

/* pointer to a structure of special data required by
Proportional,

* String and Integer Gadgets
*/

};

APTR SpecialInfo;

USHORT GadgetID;
*/

APTR UserData;
User data

/* user-definable ID field

/* ptr to general purpose

(ignored by In) */

/* --- FLAGS SET BY THE APPLIPROG --
*/

/* combinations in these bits describe the highlight technique
to be used */

#define GADGHIGHBITS
#define GADGHCOMP

box */
#define GADGHBOX

image */
#define GADGHIMAGE

image */
#define GADGHNONE

Ox0003
OxOOOO

OxOOOl

Ox0002

Ox0003

/* Complement the select

/* Draw a box around the

/* Blast in this alternate

/* don't highlight */

/* set this flag if the GadgetRender and SelectRender point
to Image imagery,

* clear if it's a Border
*/

#define GADGIMAGE Ox0004

/* combinations in these next two bits specify to which
corner the gadget's

* Left & Top coordinates are relative. If relative to

262:

263:
264:
265:

266:

267:

268:
269:

270:
271:
272:

273:
274:
275:
276:
277:
278:

t;:;
279:

I 280:
~ 281:
00 282:

283 :
284:
285:

286:

287:
288:
289:
290:
291:

292:

293:
294:
295:
296:
297:

298:

299:

300:
301:
302:

303:

Top/Left,
* these are "nonnal" coordinates (everything is relative
to something in

* this universe)
*/

#define GRELBOTTOM Ox0008 /* set if reI to bottom,
clear if reI top */

#define GRELRIGHT OxOOlO /* set if reI to right,
clear if to left */

/* set the RELWIDTH bit to spec that Width is relative to
width of screen * /

#define GRELWIDTH Ox0020
/* set the RELHEIGHT bit to spec that Height is reI to height

of screen */
#define GRELHEIGHT Ox0040

/* the SELECTED flag is initialized by you and set by Intuition.
It

* specifies whether or not this Gadget is currently selected/highlighted
*/

#define SELECTED Ox0080

/* the GADGDISABLED flag is initialized by you and later
set by Intuition

* according to your calls to On/OffGadget(). It specifies
whether or not

* this Gadget is currently disabled from being selected
*/

#define GADGDISABLED OxOlOO

/* --- These are the Activation flag bits --------------------------------
*/

/* RELVERIFY is set if you want to verify that the pointer
was still over

* the gadget when the select button was released
*/

#define RELVERIFY OxOOOl

/* the flag GADGIMMEDIATE, when set, informs the caller
that the gadget

* was activated when it was activated. this flag works
in conjunction with

* the RELVERIFY flag
*/

#define GADGIMMEDIATE Ox0002

/* the flag ENDGADGET, when set, tells the system that this
gadget, when

* selected, causes the Requester or AbsMessage to be ended.
Requesters or

* AbsMessages that are ended are erased and unlinked from
the system */

#define ENDGADGET Ox0004

/* the FOLLOWMOUSE flag, when set, specifies that you want
to receive

* reports on mouse movements (ie, you want the REPORTMOUSE
function for

304:

305:

306:

307:

308:

309:

310:
311:
312:
313:

314:

315:
316:
317:
318:
319:
320:
321:
322:

323:
324 :

325:

326:
327:

328:
329:

330:
331:
332:

333:

334:

335:

336:
337:

338:

339:

340:

341:

* your Window). When the Gadget is deselected (immediately
if you have

* no RELVERIFY) the previous state of the REPORTMOUSE flag
is restored

* You probably want to set the GADGIMMEDIATE flag when
using FOLLOWMOUSE,

* since that's the only reasonable way you have of learning
why Intuition

* is suddenly sending you a stream of mouse movement events.
If you don't

* set RELVERIFY, you'll get at least one Mouse position
event.

*/
#define FOLLOWMOUSE Ox0008

/* if any of the BORDER flags are set in a Gadget that's
included in the

* Gadget list when a Window is opened, the corresponding
Border will

* be adjusted to make room for the Gadget
*/

#define RIGHTBORDER
#define LEFTBORDER
#define TOPBORDER
#define BOTTOMBORDER

#define TOGGLESELECT
mode */

#define STRINGCENTER
flag, but it's OK*/

#define STRINGRIGHT
flag, but it's OK*/

OxOOlO
Ox0020
Ox0040
Ox0080

OxOlOO

Ox0200

Ox0400

#define LONGINT Ox0800
actually LONG Int */

#define ALTKEYMAP OxlOOO
keymap */

/* this bit for toggle-select

/* should be a Stringlnfo

/* should be a Stringlnfo

/* this string Gadget is

/* this String has an alternate

/* --- GADGET TYPES --
*/

/* These are the Gadget Type definitions for the variable
GadgetType

* gadget number type MUST start from one. NO TYPES OF
ZERO ALLOWED.

* first comes the mask for Gadget flags reserved for Gadget
typing

*/
#define GADGETTYPE OxFCOO /* all Gadget Global Type

flags (padded) */
#define SYSGADGET Ox8000 /* 1 SysGadget, o ~ AppliGadget

*/
#define SCRGADGET Ox4000 /* 1 ScreenGadget, 0

~ WindowGadget */
#define GZZGADGET Ox2000 /* 1 Gadget for GIMMEZEROZERO

borders */
#define REQGADGET OxlOOO /* 1 this is a Requester

Gadget */

342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352 :
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:

363:

364:

V 365:
I 366:
~

367:
368:
369:
370:

371 :
372:

373:

374:

375:

376:

377:

378:
379:
380:

381:

382:
383:

384 :

385:

/* system gadgets */
#define SIZING
#define WDRAGGING
#define SDRAGGING
#define WUPFRONT
#define SUP FRONT
#define WDOWNBACK
#define SDOWNBACK
#define CLOSE

OxOOlO
Ox0020
Ox0030
Ox0040
Ox0050
Ox0060
Ox0070
Ox0080

/* application gadgets
#define BOOLGADGET
#define GADGET0002
#define PROPGADGET
#define STRGADGET

*/
OxOOOl
Ox0002
Ox0003
Ox0004

/* ~~
*/

/* ~~~ PropInfo ~~~
*/

/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~==============~~~~~~~~=====~~=~~~~===
*/

/* this is the special data required by the proportional
Gadget

* typically, this data will be pointed to by the Gadget
variable Special Info

*/
struct PropInfo
[

USHORT Flags;
defines below) */

/* general purpose flag bits (see

/* You initialize the Pot variables before the Gadget
is added to

* the system. Then you can look here for the current
settings

* any time, even while User is playing with this Gadget.
To

* adjust these after the Gadget is added to the System,
use

* ModifyProp(); The Pots are the actual proportional
settings,

* where a value of zero means zero and a value of MAXPOT
means

* that the Gadget is set to its maximum setting.
*/

USHORT HorizPot;
quantity percentage

USHORT vertPot;
·percentage */

/* 16-bit FixedPoint horizontal
*/

/* 16-bit FixedPoint vertical quantity

/* the 16-bit FixedPoint Body variables describe what
percentage of

* the entire body of stuff referred to by this Gadget
is actually

* shown at one time. This is used with the AUTOKNOB

386:

387:

388:

389:

390:

391:

392:

routines,
* to adjust the size of the AUTOKNOB according to how

much of
* the data can be seen. This is also used to decide

how far
* to advance the Pots when User hits the container

of the Gadget.
* For instance, if you were controlling the display

of a 5-line
* Window of text with this Gadget, and there was a

total of 15
* lines that could be displayed, you would set the

VertBody value to
* (MAXBODY / (TotalLines / DisplayLines)) ~ MAXBODY

/ 3.
393: * Therefore, the AUTOKNOB would fill 1/3 of the container,

and
394: * if User hits the Cotainer outside of the knob, the

pot would
395: * advance 1/3 (plus or minus) If there's no body to

396:

397:

398:

399:
400:
401:
402:
403:

404:

405:

406:
407:
408:
409:
410:
411:
412:

413:

414:

415:

416:

417:

418:
419:

420:

show, or
* the total amount of displayable info is less than

the display area,
* set the Body variables to the MAX. To adjust these

after the
* Gadget is added to the System, use ModifyProp();

*/
USHORT
USHORT

HorizBody;
VertBody;

/* horizontal Body */
/* vertical Body */

/* these are the variables that Intuition sets and maintains
*/

USHORT CWidth; /* Container width (with any relativity
absoluted) */

USHORT CHeight; /* Container height (with any relativity
absoluted) */

USHORT HPotRes, VPotRes; /* pot increments */
USHORT LeftBorder; /* Container borders */
USHORT TopBorder; /* container borders */

/* --- FLAG BITS ---
*/

#define AUTOKNOB
that old auto-knob*/

#define FREEHORIZ
move horizontally */

#define FREEVERT
move vertically */

#define PROPBORDERLESS
be rendered */

#define KNOBHIT
hit */

#define KNOBHMIN 6
of the Knob */

#define KNoBVMIN 4
of the Knob */

OxOOOl /*

OxOO02 /*

OxOO04 /*

OxOO08 /*

OxOlOO /*

/*

/*

this flag sez: gimme

if set, the knob can

if set, the knob can

if set, no border will

set when this Knob is

minimum horizontal size

minimum vertical size

/

421:
422:
423:
424:
425:
426:
427:
428:
429:

430:

431:

432:
433:

434:
435:
436:
437:

438:

439:
V
I 440:

""'" CTI 441: 0

442:

443:
444:

445:

446:

447:

448:

449:

450:
451:

452:

453:

454:
455:
456:
457:
458:

459:

#define MAXBODY
#define MAXPOT

OxFFFF
OxFFFF

/" maximum body value * /
/* maximum pot value */

/* ==
*/

/* === stringInfo ===
*/

/* ==
*/

/* this is the special data required by the string Gadget
* typically, this data will be pointed to by the Gadget
variable Special Info

*/
struct StringInfo
(

/* you initialize these variables, and then Intuition
maintains them * /

UBYTE *Buffer; /* the buffer containing the start
and final string */

UBYTE *UndoBuffer; /* optional buffer for undoing
current entry * /

SHORT BufferPos; /* character position in Buffer
*/

SHORT MaxChars; /* max number of chars in Buffer
(including NULL) */
SHORT DispPos; /* Buffer position of first displayed

character */

/* Intuition initializes and maintains these variables
for you */

SHORT UndoPos; /* character position in the undo
buffer */

SHORT NumChars; /* number of characters currently
in Buffer */

SHORT DispCount; /* number of whole characters visible
in container */

SHORT CLeft, CTop; /* topleft offset of the container
*/
struct Layer *Layerptr; /* the RastPort containing

this Gadget */

/* you can initialize this variable before the gadget
is submitted to

* Intuition, and then examine it later to discover
what integer

* the user has entered (if the user never plays with
the gadget,

* the value will be unchanged from your initial setting)
*/

LONG LongInt;

/* If you want this Gadget to use your own Console keymapping,
you

* set the ALTKEYMAP bit in the Activation flags of
the Gadget, and then

460:

461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:

472:

473:

474:

475:

476:
477:
478:
479:
480:

481:

482:

483:

484 :

485:

486:

487:
488:
489:
490:
491:
492:
493:
494:

495:

496:

497:

498:

499:
500:

* set this variable to point to your keymap. If you
don't set the

* ALTKEYMAP, you'll get the standard ASCII keymapping.
*/

struct KeyMap *AltKeyMap;
};

/* ==
*/

/* === IntuiText ==
*/

/* ==
*/

/* IntuiText is a series of strings that start with a screen
location

* (always relative to the upper-left corner of something)
and then the

* text of the string. The text is null-terminated.
*/

struct
(

IntuiText

UBYTE FrontPen,
the rendering */

UBYTE DrawMode;
the text */

SHORT LeftEdge;
for the text */

SHORT TopEdge;
for the text */
struct TextAttr

the default */
UBYTE *IText;

text */
struct IntuiText

another text */
);

BackPen; /* the pen numbers for

/* the mode for rendering

/* relative start location

/* relative start location

ITextFont; / if NULL, you accept

/* pointer to nUll-terminated

NextText; / continuation to TxWrite

/* ==
*/

/* === Border ===
*/

/* ==
*/

/* Data type Border, used for drawing a series of lines
which is intended for

* use as a border drawing, but which may, in fact, be
used to render any

* arbitrary vector shape.
* The routine DrawBorder sets up the RastPort with the
appropriate

501:

502 :
503:

504:
505:
506:
507:
508:

509:

510:

511:

512:

513:
514:

515:
516:
517:

V 518:
519: ,
520: ,....

'" 521:
'""' 522:

523:

524:

525:

526:
527:
528:
529:
530:

531:

532:

533:
534:

535:
536:

537:

538:

539:

540:

* variables, then does a Move to the first coordinate,
then does Draws

* to the subsequent coordinates.
* After all the Draws are done, if NextBorder is non-zero
we call DrawBorder

* recursively
*/

struct Border
[

SHORT LeftEdge, TopEdge;
the origin */

UBYTE FrontPen, BackPen;
rendering */

UBYTE DrawMode;
*/

BYTE Count;
*/

SHORT *XY;
pairs relitive

struct Border *NextBorder;
Border too * /

/* initial offsets from

/* pens numbers for

/* mode for rendering

/* number of XY pairs

/* vector coordinate

to LeftTop * /
/* pointer to any other

);

/* ~~
*/

/* ~~~ Image ~~
*/

/* ~~
*/

/* This is a brief image structure for very simple transfers
of

* image data to a RastPort
*/

struct Image
[

SHORT LeftEdge; /* starting offset relative
to some origin */

SHORT TopEdge; /* starting offsets relative
to some origin*/

SHORT width; /* pixel size (though data
is word-aligned)*/

SHORT Height, Depth; /* pixel sizes */
USHORT * ImageData; /* pointer to the actual

word-aligned bits */

/* the PlanePick and PlaneOnOff variables work much
the same way as the

* equivalent GELS Bob variables. It's a space-saving

* mechanism for image data. Rather than defining the
image data

* for every plane of the RastPort, you need define
data only

* for the planes that are not entirely zero or one.

541:

542:

543:

544:

545:

546:

547:

548:

549:

550:

551:

552:

553:

554:

555:
556:
557:

558:

559:

560:

561:

562:
563:
564:
565:
566:

567:

568:
569:
570:
571:
572:
573:
574:
575:
576:
577:
578:

As you
* define your Imagery, you will often find that most

of the planes
* ARE just as color selectors. For instance, if you're

designing
* a two-color Gadget to use colors two and three, and

the Gadget
* will reside in a five-plane display, bit plane zero

of your
* imagery would be all ones, bit plane one would have

data that
* describes the imagery, and bit planes two through

four would be
* all zeroes. Using these flags allows you to avoid

wasting all
* that memory in this way: first, you specify which

planes you
* want your data to appear in using the PlanePick variable.

For
* each bit set in the variable, the next "plane" of

your image
* data is blitted to the display. For each bit clear

in this
* variable, the corresponding bit in PlaneOnOff is

examined.
* If that bit is clear, a "plane" of zeroes will be

used.
* If the bit is set, ones will go out instead. So,

for our example:

the

* Gadget.PlanePick ~ Ox02;
* Gadget.PlaneOnOff ~ OxOl;
* Note that this also allows for generic Gadgets, like

* System Gadgets, which will work in any number of
bit planes.

* Note also that if you want an Image that is only
a filled

* rectangle, you can get this by setting PlanePick
to zero

* (pick no planes of data) and set PlaneOnOff·to describe
the pen

* color of the rectangle.
*/

UBYTE PlanePick, PlaneOnOff;

/* if the NextImage variable is not NULL, Intuition
presumes that

* it points to another Image structure with another
Image to be

* rendered
*/

struct Image *NextImage;

579:

580:

581:
582 :
583:
584:
585:

586:
587:
588:
589:
590:

591:
592 :
593:

594:
595:
596:

597:

V 598:
599:

I 600: """ <:n 601:
t.;>

602:

603:

604:
605:
606:
607:

608:
609:
610:
611:
612:

613:
614:
615:
616:
617:
618:
619:
620:
621:
622:

623:

624:

*/
/* ~~~ IntuiMessage ~~~

*/
/* ~~

*/
struct IntuiMessage
(

};

struct Message ExecMessage;

/* the Class bits correspond directly with the IDCMP
Flags, except for the

* special bit LONELYMESSAGE (defined below)
*/

ULONG Class;

/* the Code field is for special values like MENU number
*/

USHORT Code;

/* the Qualifier field is a copy of the current InputEvent's
Qualifier */

USHORT Qualifier;

/* IAddress contains particular addresses for Intuition
functions, like

* the pointer to the Gadget or the Screen
*/

APTR IAddress;

/* when getting mouse movement reports, any event you
get will have the

* the mouse coordinates in these variables. the coordinates
are relative

* to the upper-left corner of your Window (GIMMEZEROZERO
notwithstanding)

*/
SHORT MouseX, MouseY;

/* the time values are copies of the current system
clock time. Micros

* are in units of microseconds, Seconds in seconds.
*/

ULONG Seconds, Micros;

/* the IDCMPWindow variable will always have the address
of the Window of

* this IDCMP
*/

struct Window *IDCMPWindow;

/* system-use variable */
struct IntuiMessage *SpecialLink;

/* --- IDCMP Classes
*/

OxOOOOOOOl /* See the Programmer's #define SIZEVERIFY
Guide */

#define NEWSIZE Ox00000002 /* See the Programmer's

625:

626:

627:

628:

629:

630:

631:

632:

633:

634:

635:

636:

637:

638:

639:

640:

641:

642:

643:

644:
645:
646:

647:
648,
649:
650:

651:

Guide */
#define REFRESHWINDOW

Guide */
#define MOUSEBUTTONS

Guide */
#define MOUSEMOVE

Guide */
#define GADGETDOWN

Guide */
#define GADGETUP

Guide */
#define REQSET

Guide */
#define MENUPICK

Guide */
#define CLOSEWINDOW

Guide */
#define RAWKEY

Guide */
#define REQVERIFY

Guide */
#define REQCLEAR

Guide */
#define MENUVERIFY

Guide */
#define NEWPREFS

Guide */
#define DISKINSERTED

Guide */
#define DISKREMOVED

Guide */
#define WBENCHMESSAGE

Guide */
#define ACTIVEWINDOW

Guide */
#define INACTIVEWINDOW

Guide */
#define DELTAMOVE

Guide */
#define VANILLAKEY
#define INTUITICKS
/* NOTEZ-BIEN:

use */

/*
VANILLAKEY

Ox00000004 /* See the Programmer's

Ox00000008 /* See the Programmer's

OxOOOOOOlO /* See the Programmer's

Ox00000020 /* See the Programmer's

Ox00000040 /* See the Programmer's

Ox00000080 /* See the Programmer's

OxOOOOOlOO /* See the Programmer's

Ox00000200 /* See the Programmer's

Ox00000400 /* See the Programmer's

Ox00000800 /* See the Programmer's

OxOOOOlOOO /* See the Programmer's

Ox00002000 /* See the Programmer's

Ox00004000 /* See the Programmer's

Ox00008000 /* See the Programmer's

OxOOOlOOOO /* See the Programmer's

Ox00020000 /* See the programmer's

Ox00040000 /* See the Programmer's

Ox00080000 /* See the Programmer's

OxOOlOOOOO /* See the Programmer's

Ox00200000 /* See below */
Ox00400000 /* See below */
Ox80000000 is reserved for internal

This is the raw keycode RAWKEY event translated into the
current

default character keymap of the Console Device. In the
USA, the

652: default keymap is ASCII character. When you set this flag,
you

653: will get IntuiMessages where the Code field has a character

654:

655:
656:
657:
658:

representing the key struck on the keyboard. This character
is

from the default character KeyMap of the Console Device.
*/

/*

V
I -Cl1
~

659;
660;

661;

INTUITICKS
You can get simple timer events from Intuition when your

window is
the active one, which may help you avoid opening and managing

the
662; timer device. Intuition receives timer events 10 times

a
663;

664;

665;

666;

667;
668;
669;
670;

671;

672;

673;

674;
675;
676;
677;
678;

679;
680;

681;

682;

683;
684;

685;
686;
687;
688;
689;
690;

691;

692;

693;
694;
695;

696;
697;

second (approximately). You can receive these events too,
by setting

the INTUITICKS flag. You will only get one queued-up INTUITICKS

message at a, time; if Intuition notices that you've been
sent an

INTUITICKS message but you haven't replied to it yet, another
message

will NOT be sent.
*/

/* the IDCMP Flags do not use this special bit, which is
cleared when

* Intuition sends its special message to the Task, and
set when Intuition

* gets its Message back from the Task. Therefore, I can
check here to

* find out fast whether or not this Message is available
for me to send.

*/
#define LONELYMESSAGE Ox80000000

/* --- IDCMP Codes --
*/

/* This group of codes is for the MENUVERIFY function * /
#define MENUHOT OxOOOl /* Intuiwants verification

or MENUCANCEL * /
#define MENUCANCEL Ox0002 /* HOT Reply of this cancels

Menu operation */
#define MENUWAITING Ox0003 /* Intuition simply wants

a ReplyMsg() ASAP */

/* This group of codes is for the WBENCHMESSAGE messages
*/

#define WBENCHOPEN OxOOOl
#define WBENCHCLOSE Ox0002

/* ~~
*/

/* ~~~ Window ~~~
*/

/* ~~
*/

struct Window
{

struct Window *NextWindow;
in a screen */

SHORT LeftEdge, TopEdge;
of window */

/* for the linked list

/* screen dimensions

698;

699;
700;

701;
702;
703;
704;
705;

706;
707;

708;
709;

710;
711;

712;
713;

714;
715;

716;
717;

718;

719;
720;

721;

722;

723;

724;

725;

726;

727;

728;
729;
730;
731;
732;
733;
734;
735;

736;

737;

SHORT Width, Height;
of window */

SHORT MouseY, MouseX;
of window */

SHORT
SHORT

ULONG
*/

MinWidth, MinHeight;
MaxWidth, MaxHeight;

Flags;

struct Menu *MenuStrip;
headers */

UBYTE *Title;
this window * /

/* screen dimensions

/* relative to upper-left

/* minimum sizes */
/* maximum sizes * /

/* see below for defines

/* the strip of Menu

/* the title text for

struct
*/

Requester *FirstRequest; /* all active Requesters

struct
*/

SHORT
Window */

Requester *DMRequest;

ReqCount;

struct Screen *WScreen;
*/
struct RastPort *RPort;

own RastPort * /

/* double-click Requester

/* count of reqs blocking

/* this Window's Screen

/* this Window's very

/* the border variables describe the window border.
If you specify

* GIMMEZEROZERO when you open the window, then the
upper-left of the

* ClipRect for this window will be upper-left of the
BitMap (with correct

* offsets when in SuperBitMap mode; you MUST select
GIMMEZEROZERO when

* using SuperBitMap). If you don't specify ZeroZero,
then you save

* memory (no allocation of RastPort, Layer, ClipRect
and associated

* Bitmaps), but you also must offset all your writes
by BorderTOp,

* BorderLeft and do your own mini-clipping to prevent
writing over the

* system gadgets
*/

BYTE
struct

BorderLeft, BorderTop, BorderRight, BorderBottom;
RastPort *BorderRPort;

/* You supply a linked-list of Gadgets for your Window.
* This list DOES NOT include system gadgets. You get

the standard
* window system gadgets by setting flag-bits in the

variable Flags (see
* the bit definitions below)

738:
739:
740:
741:
742:
743:
744:
745:
746:
747:
748:

749:
750:

751:
752 :
753:
754:

755:

756 :
757 :
758:

V 759:

I
760:

'" 761:
762:

763:

764:
765:
766:
767:

768:
769:

770:

771:

772:

773:
774:
775:
776:
777:

778:
779:
780:
781:
782:
783:

*/
struct Gadget *FirstGadget;

/* these are for opening/closing the windows */
struct Window *Parent, *Descendant;

/* sprite data information for your own Pointer
* set these AFTER you Open the Window by calling setPointer()
*/

USHORT *Pointer;
BYTE PtrHeight;

including

BYTE PtrWidth;
be less than or

BYTE XOffset, YOffset;

/* sprite data */
/* sprite height (not

sprite padding) */
/* sprite width (must

equal to 16) */
/* sprite offsets */

/* the
Ports */

ULONG
*/
struct
struct

IDCMP Flags and User's and Intuition's Message

IDCMPFlags; /* User-selected flags

MsgPort *UserPort, *WindowPort;
IntuiMessage *MessageKey;

UBYTE DetailPen, BlockPen; /* for barjborder/gadget
rendering */

/* the CheckMark is a pointer to the imagery that will
be used when

* rendering MenuItems of this Window that want to be
checkmarked

* if this is equal to NULL, you'll get the default
imagery

*/
struct Image *CheckMark;

UBYTE *ScreenTitle; /* if non-null, Screen title when
Window is active*/

/* These variables have the mouse coordinates relative
to the

* inner-Window of GIMMEZEROZERO Windows. This is compared
with the

* MouseX and MouseY variables, which contain the mouse
coordinates

* relative to the upper-lett corner of the Window,
GIMMEZEROZERO

* notwithstanding
*/

SHORT GZZMouseX;
SHORT GZZMouseY;
/* these variables contain the width and height of the

inner-Window of
* GIMMEZEROZERO Windows
*/

SHORT
SHORT

UBYTE

GZZWidth;
GZZHeight;

*ExtData;

784:
785:

786:
787:

788:

789:
790:
791:
792:
793:
794:

795:

796:

797:

798:

799:
800:

801:

802:
803:

804:

805:
806:
807:
808:
809:
810:
811:

812:
813:

814:
815:

816:
817:

818:
819:

820:
821:
822:

823:

824:

BYTE *UserData; /* general-purpose pointer to User
data extension */

/** jimm: NEW: 11/18/85: this pointer keeps a duplicate
of what

* Window.RPort-)Layer is _supposed_ to be pointing

};

at
*/

struct Layer *WLayer;

/* --- FLAGS REQUESTED (NOT DIRECTLY SET THOUGH) BY THE
APPLIPROG --------- */

#define WINDOWSIZING OxOOOl /* include sizing system-gadget?
*/

#define WINDOWDRAG Ox0002 /* include dragging
system-gadget? */

#define WINDOWDEPTH Ox0004 /* include depth arrangement
gadget? */

#define WINDOWCLOSE Ox0008 /* include close-box
system-gadget? */

#define SIZEBRIGHT
right border */

#define SIZEBBOTTOM
bottom border * /

Ox0010 /* size gadget uses

Ox0020 /* size gadget uses

/* --- refresh modes ---
*/

/* combinations of the REFRESHBITS select the refresh type
*/

#define
#define
#define
#define
#define

REFRESHBITS
SMART_REFRESH
SIMPLE_REFRESH
SUPER_BITMAP
OTHER_REFRESH

#define BACKDROP
BACKDROP window */

#define REPORTMOUSE
every mouse move * /

#define GIMMEZEROZERO
*/

#define BORDERLESS
sans border */

#define ACTIVATE
the Active one */

OxOOCO
OxOOOO
Ox0040
Ox0080
OxOOCO

OxOlOO

Ox0200

Ox0400

Ox0800

OxlOOO

/* FLAGS SET BY INTUITION */
#define WINDOWACTIVE Ox2000

one */
#define INREQUEST Ox4000

mode */
#define MENUSTATE Ox8000

/* this is an ever-popular

/* set this to hear about

/* make extra border stuff

/* set this to get a Window

/* when Window opens, it's

/* this window is the active

/* this window is in request

/* this Window is active

to
I -Ql

Ql

825:
826:

827:

828:

829:
830:
831:

832:

833:

834:

835:
836:

837:
838:
839:

840:
841:
842:
843:
844 :

845:

846:

847 :
848:
849:

850:

851:
852:

853:
854:

855:
856:

857:
858:
859:

860:

861:
862:
863:
864:

with its Menus on */

/* --- Other User Flags --
*/

#define RMBTRAP OxOOOlOOOO /* catch RMB events
for your own * /

#define NOCAREREFRESH Ox00020000 /* not to be bothered
with REFRESH */

/* --- Other Intuition Flags ---
*/

#define WINDOWREFRESH OxOlOOOOOO /* Window is currently
refreshing */

#define WBENCHWINDOW Ox02000000 /* WorkBench tool ONLY
Window */

#define WINDOWTICKED Ox04000000 /* only one timer tick
at a time */

#define SUPER UNUSED
yet */ -

OxFCFCOOOO /* bits of Flag unused

/* --- see struct IntuiMessage for the IDCMP Flag definitions
------------ */

1* ==
*/

1* === NewWindow ==
*/

1* ==
*/

struct NewWindow
[

SHORT LeftEdge, TopEdge;
of window */

SHORT Width, Height;
of window */

UBYTE DetailPen, BlockPen;
rendering */

ULONG IDCMPFlags;
flags */

ULONG Flags;
for defines * /

/* screen dimensions

/* screen dimensions

/* for bar/border/gadget

/* User-selected IDCMP

/* see Window struct

/* You supply a linked-list of Gadgets for your Window.
* This list DOES NOT include systPJffi Gadgets. You

get the standard
* system Window Gadgets by setting flag-bits in the

variable Flags (see
* the bit definitions under the Window structure definition)
*/

struct Gadget *FirstGadget;

865:

866:

867:

868:
869:
870:
871:

872:
873:

874:

875:

876:
877:
878:
879:
880:

881:

882:
883:
884:
885:
886:

887:

888:

889:

890:

891:

892:

893:
894:
895:

896:
897:
898:
899:
900:
901:

902:

903:

904:

/* the CheckMark is a pointer to the imagery that will
be used when

* rendering MenuItems of this Window that want to be
checkmarked

* if this is equal to NULL, you'll get the default
imagery

*/
struct Image *CheckMark;

UBYTE *Title; /* the title text for
this window */

/* the Screen pointer is used only if you've defined
a CUSTOMSCREEN and

* want this Window to open in it. If so, you pass
the address of the

* Custom Screen structure in this variable. Otherwise,
this variable

* is ignored and doesn't have to be initialized.
*/

struct Screen *Screen;

/* SUPER_BITMAP Window? If so, put the address of your
BitMap structure

* in this variable. If not, this variable is ignored
and doesn't have

* to be initialized
*/

struct BitMap *BitMap;

/* the values describe the minimum and maximum sizes
of your Windows.

* these matter only if you've chosen the WINDOWSIZING
Gadget option,

* which means that you want to let the User to change
the size of

* this Window. You describe the minimum and maximum
sizes that the

* Window can grow by setting these variables. You
can initialize

* anyone these to zero, which will mean that you want
to duplicate

* the setting for that dimension (if MinWidth == 0,
Minwidth will be

* set to the opening Width of the Window).
* You can change these settings later using SetwindowLimits().
* If you haven't asked for a SIZING Gadget, you don't

have to
* initialize any of these variables.
*/

SHORT
SHORT

MinWidth, MinHeight;
MaxWidth, MaxHeight;

/* minimums */
/* maximums * /

/* the type variable describes the Screen in which you
want this Window to

* open. The type value can either be CUSTOMSCREEN
or one of the

* system standard Screen Types such as WBENCHSCREEN.
See the

* type definitions under the Screen structure

905:
906:
907:
908:
909:
910:
911:
912:
913:
914:

915:

916:

917:
918:
919:

920:

921:
922:

923:

I::::j 924:
I 925:

"" 0) 926:
927:

928:
929:

930:

931:
932:

933:

934:
935:
936:

937:
938:
939:

940:

941:

942:

943:
944:
945:

*/
USHORT Type;

} ;

/* ~~~~~~~~~~~~~~~~~~~~=~~=~~~=~~~~~~==~~=~~=~======~=~~~~~====~~==~~==~~=~
*/

/* === Screen =====~~~=~~~===~~~~~~=====~=~~=====~=~~~~~~~=======~~=~~~~~==
*/

/* ~~=~~=~~=~=====~=~~~~=~=~=~~~~~~~==~~~~~===~~~~~~~=~~~~~=~==~~~~~=~~===~
*/

struct Screen
[

struct
*/
struct

Windows

SHORT
screen

SHORT
screen

Screen *NextScreen;

Window *Firstwindow;
*/

LeftEdge, TopEdge;
*/

Width, Height;
*/

SHORT MouseY, MouseX;
to upper-left */

USHORT
*/

Flags;

UBYTE *Title;
text */

UBYTE *DefaultTitle;
ScreenTitle * /

/* linked list of screens

/* linked list Screen's

/* parameters of the

/* parameters of the

/* position relative

/* see definitions below

/* null-terminated Title

/* for Windows without

/* Bar sizes for this Screen and all Window's in this
Screen */

BYTE BarHeight, BarVBorder, BarHBorder, MenuVBorder,
MenuHBorder;

BYTE WBorTop, WBorLeft, WBorRight, WBorBottom;

struct
font */

TextAttr *Font;

/* the display data structures
struct ViewPort ViewPort;

display */
struct RastPort RastPort;

rendering */
struct BitMap BitMap;

baggage */
struct Layer_Info LayerInfo;

a LayerInfo * /

/* this screen's default

for this Screen */
/* describing the Screen's

/* describing Screen

/* auxiliary graphexcess

/* each screen gets

1* You supply a linked-list of Gadgets for your Screen.
* This list DOES NOT include system Gadgets. You

get the standard

946:
947:
948:
949:
950:

951:
952:

953:
954:
955:
956:
957:
958:
959:
960:
961:
962:

963:
964:
965:
966:

967:

968:
969:
970:

971:

972:

973:

974:
975:

976:
977:
978:

979:
980:

981:
982:
983 :
984:
985:

986:

987:

988:
989:
990:

* system Screen Gadgets by default
*/

struct Gadget *FirstGadget;

UBYTE DetailPen, BlockPen; /* for barjborder/gadget
rendering */

/* the following variable(s) are maintained by Intuition
to support the

* DisplayBeep() color flashing technique
*/

USHORT SaveColorO;

/* This layer is for the Screen and Menu bars */
struct Layer *BarLayer;

UBYTE *ExtData;

UBYTE *UserData; /* general-purpose pointer to User
data extension */

} ;

/* --- FLAGS SET BY INTUITION --
*/

/* The SCREENTYPE bits are reserved for describing various
Screen types

* available under Intuition.
*/

#define SCREENTYPE OxOOOF /* all the screens types
available */

/* --- the definitions for the Screen Type ------------------------------
*/

#define WBENCHSCREEN OxOOOl
*/

#define CUSTOMSCREEN OxOOOF
look */

#define SHOWTITLE
a call to

#define BEEPING
beeping */

OxOOlO

Ox0020

#define CUSTOMBITMAP Ox0040
your own BitMap * /

/* Ta Da! The Workbench

/* for that special

/* this gets set by

ShowTi tle () * /

/* set when Screen is

/* if you are supplying

/* ~~~~~~==~~=~=~~~~~~===~~~~~~=================~==========================
*/

/* === NewScreen ======================~===================================
*/

/* ==~======~===~====
*/

struct NewScreen
[

SHORT LeftEdge, TopEdge, Width, Height, Depth; /*

991:
992:

993:
994:

995:
996:

997:
998:

999:
1000:

1001:
1002:

1003:
1004:

1005:

1006:
V
I 1007: ,....

c:.n 1008: --:t

1009:
1010:
1011:
1012:
1013:
1014:
1015:
1016:

1017:

1018:

1019:
1020:

1021:
1022:
1023 :

1024:
1025:

1026:

1027:

1028:

1029:

screen dimensions */

UBYTE DetailPen, BlockPen;
rendering */

USHORT ViewModes;
ViewPort (and View)*/

USHORT Type;
defines above) */

struct TextAttr *Font;
text attributes*/

UBYTE *DefaultTitle;
for this Screen */

struct Gadget *Gadgets;
for this Screen */

/* for barfborder/gadget

/* the Modes for the

/* the Screen type (see

/* this Screen's default

/* the default title

/* your own Gadgets

/* if you are opening a CUSTOMSCREEN and already have
a BitMap

* that you want used for your Screen, you set the flags
CUSTOMBITMAP in

* the Types variable and you set this variable to point
to your BitMap

* structure. The structure will be copied into your
Screen structure,

* after which you may discard your own BitMap if you
want

*/
struct BitMap *CustomBitMap;

/* ==
*/

/* === Preferences ==
*/

/* ==
*/

/* these are the definitions for the printer configurations
*/

#define FILENAME_SIZE 30 /* Filename size */

#define POINTERSIZE (1 + 16 + 1) * 2 /* Size of Pointer
data buffer */

/* These defines are for the default font size. These actually
describe the

* height of the defaults fonts. The default font type
is the topaz

* font, which is a fixed width font that can be used in
either

* eighty-column or sixty-column mode. The Preferences
structure reflects

* which is currently selected by the value found in the

1030:

1031:

1032:
1033:
1034:
1035:
1036:
1037:
1038:
1039:
1040:
1041:

1042:
1043:

1044:

1045:
1046:
1047:

1048:
1049:
1050:

1051:

1052:

1053:
1054:
1055:

1056:

1057:

1058:
1059:

1060:
1061:

1062:
1063:
1064:
1065:

1066:

1067:
1068:
1069:
1070:

1071:

variable FontSize,
* which may have either of the values defined below. These
values actually

* are used to select the height of the default font. By
changing the

* height, the resolution of the font changes as well.
*/

#define TOPAZ EIGHTY 8
#define TOPAZ=SIXTY 9

struct
(

Preferences

/* the default font height */
BYTE FontHeight;

default font */
/* height for system

/* constant describing what's hooked up to the port
*/

UBYTE PrinterPort; /* printer port connection
*/

/* the baud rate of the port */
USHORT BaudRate; /* baud rate for the serial

port */

/* various timing rates */
struct timeval KeyRptSpeed; /* repeat speed for

keyboard */
struct timeval KeyRptDelay; /* Delay before keys

repeat */
struct timeval DoubleClick; /* Interval allowed

between clicks */

/* Intuition Pointer data */
USHORT PointerMatrix(POINTERSIZE); /* Definition of

pointer sprite */
BYTE XOffset;

'bit' */
BYTE YOffset;

'bit' */
USHORT color17;
USHORT color18;

pointer */
USHORT color19;
USHORT PointerTicks;

pointer */

/* WOrkbench Screen
USHORT colorO;
USHORT colorl;

colours */
USHORT color2;

*/
USHORT color3;

colors */

/* X-offset for active

/* Y-offset for active

/*******************************~***I
/* Colours for sprite

I****************************~******/
/* Sensitivity of the

/***********************************1
/* Standard default

/* Used in the Workbench

1***********************************/

/* positioning data for the Intuition View */
BYTE ViewXOffset; /* Offset for top lefthand

corner */
BYTE ViewYOffset; /* X and Y dimensions

1072:

1073:
1074:

1075:
1076:
1077:

1078:

1079:
1080:
1081:

1082:

1083:

1084:

1085:

1086:

1087:

1088:

1089:

1090:
1091:
1092:

1093:

1094 :

1095:
1096 :

1097:
1098:
1099:
1100:
1101:
1102:
1103:
1104:
1105:
1106:
1107:
1108:
1109:
1110:
1111:
1112:
1113:

*/
WORD ViewlnitX, ViewlnitY;

values */

l300L EnableCLI;
switch */

/* printer configurations */

/* View initial offset

/* CLI availability

USHORT PrinterType; /* printer type
*/

UBYTE PrinterFilename[FILENAME_SIZE); /* file for
printer */

/* print format and quality configurations */
USHORT PrintPitch; /* print pitch

*/
USHORT PrintQuality;

*/
USHORT

inch
UWORD

*/

Printspacing;
*/

PrintLeftMargin;

UWORD PrintRightMargin;
*/

USHORT Printlmage;
*/

USHORT PrintAspect;
*/

USHORT PrintShade;
color */

WORD PrintThreshold;
b/w dumps */

/* print quality

/* number of lines per

/* left margin in characters

/* right margin in characters

/* positive or negative

/* horizontal or vertical

/* b&w, half-tone, or

/* darkness ctrl for

/* print paper descriptors */
USHORT PaperSize; /* paper size

*/
UWORD PaperLength; /* paper length in number

of lines */
USHORT PaperType; /* continuous or single

sheet */

BYTE padding[50);
expansion * /

);

/* PrinterPort */
#define PARALLEL PRINTER OxOO
#define SERIAL_PRINTER OxOl

/* BaudRate */
#define BAUD_110 OxOO
#define BAUD_300 OxOl
#define BAUD_1200 Ox02
#define BAUD_2400 Ox03
#define BAUD_4800 Ox04
#define BAUD_9600 Ox05
#define BAUD_19200 Ox06
#define BAUD_MIDI Ox07

/* For further system

1114:
1115:
1116:
1117:
1118:
1119:
1120:
1121:
1122:
1123:
1124:
1125:
1126:
1127:
1128:
1129:
1130:
1131:
1132:
1133:
1134:
1135:
1136:
1137 :
1138:
1139:
1140:
1141:
1142:
1143:
1144:
1145:
1146:
1147:
1148:
1149:
1150:
1151:
1152:
1153:
1154:
1155:
1156:
1157:
1158:
1159:
1160:
1161:
1162:
1163:
1164:
1165:
1166:
1167:
1168:
1169:
1170:
117L

1172:

/* PaperType * /
#define FANFOLD
#define SINGLE

/* Printpitch */
#define PICA
#define ELITE
#define FINE

/* PrintQuality */
#define DRAFT
#define LETTER

/* PrintSpacing */
#define SIX LPI
#define EIGHT_LPI

/* Print Image */

OxOO
Ox80

OxOOO
Ox400
Ox800

OxOOO
OxlOO

OxOOO
Ox200

#define IMAGE POSITIVE OxOO
#define IMAGE=NEGATlVE OxOl

/* PrintAspect */
#define ASPECT HORIZ OxOO
#define ASPECT=VERT OxOl

/* PrintShade */
#define SHADE BW OxOO
#define SHADE-GREYSCALE OxOl
#define SHADE=COLOR Ox02

/* PaperSize */
#define US LETTER OxOO
#define US-LEGAL OxlO
#define N TRACTOR Ox20
#define W-TRACTOR Ox30
#define CUSTOM Ox40

/* PrinterType */
#define CUSTOM NAME OxOO
#define ALPHA-P 101 OxOl
#define BROTHER 15XL Ox02
#define CBM MPSIOOO Ox03
#define DIAB 630 Ox04
#define DIAB-ADV D25 Ox05
#define DIAB-C 150 Ox06
#define EPSON -- Ox07
#define EPSON JX 80 Ox08
#define OKIMATE 20 Ox09
#define QUME LP-20 OxOA
/* new printer entries, 3 October 1985 */
#define HP LASERJET OxOB
#define HP=LASERJET_PLUS OxOC

/* ~~~~~~~~~~~~~~~~~=~==~~~~==~~~~==~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=~~~~~~~
*/

/* ~~~ Remember ~~~~~~~~~~~~~~~~=~~~~~~~~~~~~~~~~~~~~~=~~~==~~~~====~===~~~

1173:

1174:

1175:

1176:
1177:
1178:
1179:
1180:
1181:
1182:
1183:
1184:
1185:
1186:
1187:
1188:
1189:

1190:

1191:

V 1192 :
I 1193: ,....
'" <.0 1194:

1195:
1196:
1197:
1198:
1199:
1200:
1201:
1202:

1203:
1204:
1205:
1206:
1207:
1208:
1209:

1210:
1211:
1212:
1213:
1214:

1215:

1216:
1217:
1218:
1219:
1220:

*/
/* ~~=~~==~~~~~~~~~~~~~~~~~~~~~=~=~~~

*/
/* this structure is used for remembering what memory has

been allocated to
* date by a given routine, so that a premature abort or
systematic exit

* can deallocate memory cleanly, easily, and completely
*/

struct Remember
(

struct
ULONG
UBYTE

Remember * NextRemember ;
RememberSize;
*Memory;

);

/* ~~~===~~~~~=~~~==~~~~~~~~~~~~~~~~~~==~~~=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/

/* ~== Miscellaneous ~==~~~~~~~~~~~~~~~~~=~======~=~=~~~~~~~~~~~~~~~==~~~~~
*/

/* ~~~~==~~~~~~~~===~~=~~~~~~~~~~~~~~~~====~=~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/

/* = MACROS ~~~~~~~~====~~~~~~~~~~~~~~~~~~==~==~=~~=~~~~~~~~~~~~~~~~=~=~~~
*/

#define MENUNUM(n)
#define ITEMNUM(n)
#define SUBNUM(n)

(n & OxlF)
«n » 5) & Ox003F)
«n » 11) & OxOOlF)

#define SHIFTMENU(n) (n & OxlF)
#define SHIFTITEM(n) «n & Ox3F) « 5)
#define SHIFTSUB(n) «n & OxlF) « 11)

/* ~ MENU STUPF
*/

#define NOMENU
#define NOITEM
#define NOSUB
#define MENUNULL

OxOOlF
Ox003F
OxOOlF
OxFFFF

/* ~ =RJ='s peculiarities ~~~~~~~~~~=~=~~~~~~~~~~~~~~=~~====~~~=~==~~=~~~~=
*/

#define FOREVER fort;;)
#define SIGN(x) («x) > 0) - «x) < 0))
#define NOT !

/* these defines are for the COMMSEQ and CHECKIT menu stuff.
If CHECKIT,

* I'll use a generic width (for all resolutions) for the
CheckMark.

* If COMMSEQ, likewise I'll use this generic stuff
*/

#define CHECKWIDTH 19
#define COMMWIDTH 27
#define LOWCHECKWIDTH 13

1221:
1222:
1223:
1224:

1225:

1226:
1227:
1228:
1229:

1230:

1231:
1232:
1233:

1234:

1235:

1236:
1237:
1238:
1239:
1240:
1241:
1242:
1243:
1244:
1245:
1246:
1247:

1248:
1249:
1250:
1251:
1252:
1253:
1254:
1255:
1256 :
1257 :
1258:
1259 :
1260:
1261:
1262:
1263:
1264:
1265:
1266:
1267:
1268:
1269:
1270:

#define LOWCOMMWIDTH 16

/* these are the AlertNumber defines. if you are calling
DisplayAlert()

* the AlertNumber you supply must have the ALERT_TYPE bits
set to one

* of these patterns
*/

#define ALERT TYPE
#define RECovERY ALERT

from this */ -
#define DEADEND ALERT

this is it */-

Ox80000000
OxOOOOOOOO /* the system can recover

Ox80000000 /* no recovery possible,

/* When you're defining IntuiText for the positive and Negative
Gadgets

* created by a call to AutoRequest(), these defines will
get you

* reasonable-looking text. The only field without a define
is the IText

* field; you decide what text goes with the Gadget
*/

#define AUTOFRONTPEN
#define AUTOBACKPEN
#define AUTODRAWMODE
#define AUTOLEFTEDGE
#define AUTOTOPEDGE

o
1
JAM2
6
3

#define AUTOITEXTFONT NULL
#define AUTONEXTTEXT

/* --- RAWMOUSE Codes

#define SELECTUP
#define SELECTDOWN
#define MENUUP
#define MENUDOWN
#define ALTLEFT
#define ALTRIGHT
#define AMIGALEFT
#define AMIGARIGHT
#define AMIGAKEYS

#define CURSORUP
#define CURSORLEFT
#define CURSORRIGHT
#define CURSORDOWN
#define KEYCODE Q
#define KEYCODE-X
#define KEYCODE-N
#define KEYCODE=M

#endif

NULL

and Qualifiers (Console OR IDCMP)
*/

(IECODE_LBUTTON I IECODE_UP_PREFIX)
(IECODE_LBUTTON)
(IECODE_RBUTTON I IECODE_UP_PREFIX)
(IECODE_RBUTTON)
(IEQUALIFIER_LALT)
(IEQUALIFIER_RALT)
(IEQUALIFIER_LCOMMAND)
(IEQUALIFIER_RCOMMAND)
(AMIGALEFT I AMIGARIGHT)

Ox4C
Ox4F
Ox4E
Ox4D
Oxl0
Ox32
Ox36
Ox37

I ,....
Ol o

1
2
3
4
5
6
7.
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

#ifndef INTUITION_INTUITIONBASE_H
#define INTUITION~INTUITIONBASE_H 1

/*** intuitionbase.h ***.**
* Commodore-Amiga, Inc.
*
* the IntuitionBase structure and supporting structures
*
*
*
*
*
*

Modification History
date author Comments

3-1-85 -~RJ~- created this file!

* ** * * *.* * *.* *.* /

#ifndef EXEC LIBRARIES H
#include "exec/libraries.h"
#endif

#ifndef GRAPHICS_VIEW_H
#include "graphics/view.h"
#endif

/*
* Be sure to protect yourself against someone modifying these data as
* you look at them; This is done by calling:
*
* lock ~ LockIBase(O), which returns a ULONG. When done call
* UnlockIBase(lock) where lock is what LockIBase() returned.
*
* NOTE: these library functions are simply stubs now, but should be called
* to be compatible with future releases.
*/

/* ~~ */
/* ~~~ IntuitionBase ~~ */
/* ~~ */
struct IntuitionBase
(

struct Library LibNode;

struct View ViewLord;

struct Window *ActiveWindow;
struct Screen *ActiveScreen;

/* the Firstscreen variable points to the frontmost Screen. Screens ara
* then maintained in a front to back order using Screen.NextScreen
*/

struct Screen *FirstScreen; /* for linked list of all screens */
);

#endif

Contents

lattice/ctype.h.
lattice/dec.h
lattice/dos.h
lattice/error.h
lattice/fcntl.h
lattice/iosl.h
lattice/limits .h
lattice/math.h
lattice/stdio.h

Listing of ctype.h
1 IH
3 * This header file defines various ASCII
4 * as follows:

character manipulation macros,

5 *
6 *
7 *
8 *
9 *

10

isalpha(c)
isupper(c)
islower (c)
isdigit(c)
isxdigit(c)

non-zero if c is alpha
non-zero if c is upper case
non-zero if c is lower case
non-zero if c is a digit (0 to 9)
non-zero if c is a hexadecimal digit (0 to 9, A to F,

11 *
12 *
13 *
14 *
15 *
16 *
17 *
18 *
19 *
20

a to f)
isspace(c)
ispunct(c)
isalnum(c)
isprint (c)
isgraph(c)
iscntrl(c)
isascii(c)
iscsym(c)
iscsymf(c)

21 *
22 HI
23
24
25
26
27
28
29
30
31
32

#define _U 1
#define J. 2
#define Ji 4
#define _S 8
#define...J' 16
#define _C 32
#define _B 64
#define J 128

33 extern char _ctype[];
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

#define isalpha(c)
#define isupper(c)
#define islower(c)
#define isdigit(c)
#define isxdigit(c)
#define isspace(c)
#define ispunct(c)
#define isalnum(c)
#define isprint(c)
#define isgraph(c)
#define iscntrl(c)
#define isascii(c)
#define iscsym(c)
#define iscsymf (c)

#define toupper(c)
#define tolower(c)
#define toascii(c)

non-zero if c is white space
non-zero if c is punctuation
non-zero if c is alpha or digit
non-zero
non-zero
non-zero
non-zero
non-zero
non-zero

if c is printable (including blank)
if c is graphic (excluding blank)
if c is control character
if c is ASCII
if valid character for C symbols
if valid first character for C symbols

1* upper case flag *1
1* lower case flag *1
1* number flag *1
1* space flag *1
1* punctuation flag *1
1* control character flag *1
1* blank flag *1
1* hexadecimal flag *1

1* character type table *1

(_ctype[(c)+l]&(_UIJ.))
(_ctype [(c) +l]<x-U)
(_ctype [(c) +1] U)
(_ctype[(c) +l]U)
(_ctype[(c) +1]&J)
(_ctype [(c) +l]<x-S)
(_ctype [(c) +1]&...J')
(_ctype [(c) +1] & (_U IJ.I_N))
(_ctype[(c)+l]&(...J'I_UIJ.IJiI_B))
(_ctype[(c)+l]&(...J'I_UIJ.IJi))
(_ctype [(c) +1]<x-C)
«unsigned) (c) <=127)
(isalnum(c) II «(c)&127)=Ox5f))
(isalpha(c) II «(c)&127)=Ox5f))

(islower(c)?«c)-('a'-'A')): (c))
(isupper(c)?«c)+('a'-'A')): (c))

((c) &127)

Listing of dec.h
1 IH
3 * This file contains information used by the decimal arithmetic package.
4 *
5 * A floating decimal number is a byte array consisting of a two-byte
6 * header followed by a byte for each two digits. The header has the
7 * following format:
8 *
9 *

10 *
11

Byte 0, bit 7:
Byte 0, bits 0 to 6:
Byte 1

12
13 HI
14
15
16 #define D-DIG 8
17 #define D-MAX (D-DIG+2)
18
19
20
21
22
23
24-
25
26
27
28
29
30
31
32
33

extern char IO[],I1[],I2[];
extern char D5[],D05[],D005[];
extern char PI[],PID2[],PIM2[];
extern char E [] ;
extern char M[];
extern char DPR [] ,RPD [] ;
extern char SR10[];
extern char X[],Y[],Z[];
extern char X1[],Y1[],Zl[];

extern char FDEDIT;
extern char FDTYPE;
extern char FDDECP;
extern char FDMONY;

Set if negative number
Number of digit bytes (array length - 2)
Decimal exponent (-128 to +127)

1* Maximum number of digit bytes *1
1* Maximum number of bytes *1

1* Integer constants 0, 1, 2 *1
1* Decimal constants 0.5, 0.05, 0.005 *1
1* Constants PI, PI/2, PI*2 *1
1* Constant E (base of natural logs) *1
1* Constant log10(E) *1
1* Degrees per radian, radians per degree *1
1* Square root of 10 *1
1* Work areas *1
1* Work areas *1

1* Set to include leading dollar sign *1
1* Set if last cvfd input was exponential *1
1* decimal point character *1
1* money symbol *1

34 extern char *cvfd() ,*cvfdx() ,*vcfd() ,*vcfdi() ,*vcfde() ,*vcfddc();
35

I
......
Ol
~

Listing of "lattice/dos.h"

/H
, This header file supplies information needed to interface with the
, particular operating system and C conpiler being used.
H/

/H
, The following definitions specify the particular C conpiler being used. ,
, ,
, ,
'/

LATTICE
BDS
BTL
MANX

#define LATTICE 1

/H

Lattice C conpiler
BDS C conpiler
Bell Labs C conpiler or equivalent
MANX Aztec C conpiler

, The following type definitions take care of the particularly nasty
, machine dependency caused by the unspecified handling of sign extension
, in the C language. When converting "char" to "int" some conpilers
, will extend the sign, while others will not. Both are correct, and
, the unsuspecting progranmer is the loser. For situations where it
, matters, the new type "byte" is equivalent to "unsigned char". ,
*/
#if LATTICE
typedef char byte;
#endif

#if BDS
#define byte char
#endif

#if BTL
typedef unsigned char byte;
#endif

#if MANX
#define byte char
#endif

/** ,
, Miscellaneous definitions
*
*/
#define SECSIZ 128

/**
*

/* disk sector size */

, The following structure is a File Control Block. Operating systems
* with CPM-like characteristics use the FCB to store information about
* a file while it is open.

*/
struct FCB

{
char fcbdrv;
char fcbnam[8];
char fcbert [3];
char fcbexn;
char fcbs1;
char fcbs2;
char fcbrc;
char fcbsys[16];
char fcbcr;
short fcbrec;
char fcbovf;
};

/' drive code '/
/' file name '/
/' file name extension ,/
/' extent number ,/
/' reserved '/
/' reserved ,/
/' record count '/
/' reserved ,/
/, current record number '/
I' random record number '/ i' random record overflow ,/

#define FCBSIZ sizeof(struct FCB)

/ .. ,
, The following symbols define the sizes of file names and node names. ,
'/
#define FNSIZE 30
#define FMSIZE 30

/ .. ,

/' maximum file node name size '/
/' maximum file name size '/

, The following codes are used to open files in various modes. ,
'/
#if LATTICE
#define OPENR Ox8000
#define OPENW Ox8001
#define OPENU Ox8002
#define OPENC Ox8001
#else
#define OPENR 0
#define OPENW 1
#de fine OPENU 2
#endif

/" ,

/' open for reading '/
/' open for writing '/
/' open for read/write '/
/' create and open for writing '/

, The following structure appears at the beginning (low address) of
* each free memory block. ,
'/
struct MELT

{
struct MELT lfwd;

#if SPTR
unsigned size;

#else
long size;

#endif
};

/* points to next free block '/

/* number of MELTs in this block * /

/' number of MELTs in this block * /

#define MELTSIZE sizeof(struct MELT)

Listing of error.h
1 1**
3 * The file "Iinclude/libraries/dos.h" contains all the error messages.
4 * Do not use this file.
5
6 *1
7
8 #include "include/libraries/dos.h"

Listing of fcntl.h
1 1**
2 *
3 * The following symbols are used for the "open" and "creat" functions.
4 *
5 **1
6 #define O-RDQNLY 0
7 #define O_WRONLY 1
8 #define O-RDWR 2
9

10
11
12
13
14
15

#define O~ELAY 4
#define O-APPEND 8
#define O_GREAT OxOl00
#define O_TRUNC Ox200
#define O-EXCL Ox400

16 #define O-RAW Ox8000
17
18 1**
19 *

1* Read-only value (right byte of mode word) *1
1* write-only value *1
1* Read-write value *1

1* Non-blocking 1/0 flag *1
1* Append mode flag *1
1* File creation flag *1
1* File truncation flag *1
1* Exclusive access flag *1

1* Raw 1/0 flag (Lattice feature) *1

20 * The following symbols are used for the "fcntl" function.
21 *
22 *1
23 #define F.J)UPFD 0
24 #define F_GETE'D 1
25 #define F~ETFD 2
26 #define F_GETFL 3
27 #define F_SETFL 4

1* Duplicate file descriptor *1
1* Get file descriptor flags *1
1* Set file descriptor flags *1
1* Get file flags *1
1* Set file flags *1

I

Listing of ios1.h
1 1**
2 *
3 * The following structure is a UNIX file block that retains
4 * a file being accessed via the level 1 110 functions.
5 *1
6 struct UFB
7 {
8 char ufbflg;
9 char ufbtyp;

10 int ufbfh;
11 };
12 #define NUFBS 20
13
14 I'
15 *

1* flags *1

1* file handle *1

1* number of UFBs defined * I

16 * UFB.ufbflg definitions
17 *

*1
1* file is open *1
1* reading is allowed *1
1* writing is allowed *1

information about

18
19
20
21
22
23
24
25

#define UFB_OP Ox80
#define UFB-RA Ox40
#define UFB_WA Ox20
#define UFB~T Ox10
#define UFB-AP 8
#define UFB~C 4

1* access file with no translation *1
1* append mode flag *1

26 1*
27 *
28 * UFB.ufbtyp definitions
29 *
30 *1
31
32
33
34
35
36
37

#if MSDOS1
#define D-PISK 0
#define D_CON 1
#define DJ'RN 2
#define D-AUX 3
#define D~L 4
#endif

1* no-close flag *1

Listing of limits.h
1 #define HUGE_VAL 1.797693E+308

Listing of math.h
1 IH
2 *
3 * Redefine secondary simulation function names to become primary names

* for systems without a Numeric Data Processor. 4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

*
*1
#ifdef NONDP
#define _acos acos
#define _asin asin
#define _atan atan
#define _cos cos
#define _cosh cosh
#define _cot cot
#define _exp exp
#define _fabs fabs
#define _ldexp Idexp
#define _log log
#define _10g10 10g10
#define JIlOdf modf
#define -pow pow
#define -pow2 pow2
#define _sin sin
#define _sinh sinh
#define _sqrt sqrt
#define ~tan tan
#define _tanh tanh
#endif

29 IH
30 *
31 * Structure to hold information about math exceptions

* 32
33 *1
34 struct exception
35
36
37
38
39
40
41
42 1*
43 *

{
int type;
char *name;
double arg1, arg2;
double retval;
};

1* error type *1
1* math function name *1
1* function arguments *1
1* proposed return value *1

44 * Exception type codes, found in exception. type
45 *
46 *1
47 #define DOMAIN 1
48 #define SING 2
49 #define OVERFLOW 3
50 #define UNDERFLOW 4
51 #define TLOSS 5
52 #define PLOSS 6
53
54 1**
55 *

1* domain error *1
1* singularity *1
1* overflow *1
1* underflow *1
1* total loss of significance *1
1* partial loss of significance *1

~~ : Error codes generated by basic arithmetic operations (+ - * I)

58 *1

59
60
61
62
63

#define FPEUND 1
#define FPEOVF 2
#define FPEZDV 3
#define FPENAN 4

64 Itt
65 *
66 * Constants
67 *
68 *1

1* underflow *1
1* overflow *1
1* zero divisor
1* not a number

69 #define PI 3.14159265358979323846
70 #define PID2 1.57079632679489661923
71 #define PID4 0.78539816339744830962
72 #define I-PI 0.31830988618379067154
73 #define I-PID2 0.63661977236758134308
74
75
76
77
78
79

#define HUGE 1.7976939308
#define TINY 2.2e-308
#define LWiUGE 709" 778
#define LOOl'INY -708.396

80 Itt
81 *
82 * External declarations
83 *
84 *1

*1
(invalid operation) *1

1* PI divided by 2 *1
1* PI divided by 4 *1
1* Inverse of PI *1
1* Inverse of PID2 *1

1* huge value *1-
1* tiny value *1
1* natural,log of huge value *1
1* natural log of tiny value *1

85 extern int _fperr;
86 extern int errno;

1* floating point arithmetic error *1
1* UNIX error code *1

87
88
89
90
91
92
93
94
95
96

extern char *ecvt 0 ;
extern short *seed480;
extern int atoi() ,matherr();
extern long atol() ,strtol() ,lrand48() ,nrand48() ,mrand48() ,jrand48();
extern double atof() ,exp() ,log() ,10g10() ,pow() ,sqrt();
extern double floor() ,ceil() ,fmod() ,fabs() ,frexp() ,ldexp(),modf();
extern double sinh() ,cosh() ,tanh() ,sine) ,cos(l ,tan() ,cot() ,asin(),acos();
extern double atan 0·, atan2 0 ,except 0 ;
extern double drand48(),erand48();

I
Ol
Ol

Listing of stdio.h
1 1**
2 *
3 * This header file defines the information used by the standard 1/0
4 * package.
5 *
6 **1
7 #define _BUFSIZ 512
8 #define BUFSIZ 512
9 #define ~ILE 20

1* standard buffer size *1
1* standard buffer size *1
1* maximum number of files *1

10
11
12
13
14
15
16
17
18
19
20
21
22
23

struct _iobuf
{
unsigned char
int _rent;
int _went;
unsigned char
char _flag;
char _file;
int _size;

*...ptr;

*:base;

unsigned char _cbuff;
char ...pad;
};

1* current buffer pointer *1
1* current byte count for reading *1
1* current byte count for writing *1

1* base address of 1/0 buffer *1
1* control flags *1
1* file number *1
1* size of buffer *1

1* single char buffer *1
1* (pad to even number of bytes) *1

24 extern struct _iobuf _iob[_NFILE];
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

#define _IOREAD 1
#define _IOWRT 2
#define -IONBF 4
#define _IOMYBUF 8
#define _IOEOF 16
#define _IOERR 32
#define _IOSTRG 64
#define _IORW 128

#ifndef NULL
#if SPTR
#define NULL
#else
#define NULL OL
#endif
#endif
#define FILE struct _iobuf
#define EOF (-1)

#define stdin (~iob[O])
#define stdout (~iob[1])
#define stderr (~iob[2])

1* read flag *1
1* write flag *1
1* non-buffered flag *1
1* private buffer flag *1
1* end-of-file flag *1
1* error flag *1

1* read-write (update) flag *1

1* null pointer value *1

1* shorthand *1
1* ~~d-of-file code *1

1* standard input file pointer *1
1* standard output file pointer *1
1* standard error file pointer *1

#define getc(p) (--(p)->]cnt>=O? * (p)->...ptr++:_filbf(P))
#define getchar() getc(stdin)
#define putc (c,p) (-- (P) ->_wcnt>=07 ((int) (* (P) ->...ptr++= (c))) :_flsbf((c) ,p))
#define put char (c) putc(c,stdout)
#define feof (P) (((P) ->_flag~IOEOF) !=O)
#define ferror (P) (((P) ->_fla~IOERR) !=O)
#define fileno (P) (P) -> _file
#define rewind(fp) fseek(fp,OL,O)
#define fflush(fp) _flsbf(-1, fp)
#define clearerr (fp) clrerr (fp)

59
60 FILE *fopen();
61 FILE * freopen 0 ;
62 long ftell();
63 char *fgets();
64
65 #define abs (x) ((x) <07- (x) : (x))
66 #define max(a,b) ((a) > (b) 7(a) : (b))
67 #define min(a,b) ((a) <=(b) 7(a) : (b))
68

Contents

libraries/diskfont.h
libraries/dos.h
libraries/dosextens.h
libraries/intuition.h
libraries/mathffp.h
libraries/translator.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef LIBRARIES_DISKFONT_H
#define LIBRARIES DISKFONT H
/**/
/* Commodore-Amiga, Inc. */
/* diskfont.h */
/**/
/***

*
* diskfont library definitions
*
**/

#ifndef EXEC_NODES_H
#include "exec/nodes.h"
#endif
#ifndef EXEC_LISTS_H
#include "exec/lists.h"
#endif
#ifndef GRAPHICS_TEXT_H
#include "graphics/text.h"
#endif

#define MAXFONTPATH 256 /* including null tenminator */

struct FontContents (

];

char fc FileName[MAXFONTPATH];
UWORD fc=YSize;
UBYTE fc_Style;
UBYTE fc_Flags;

#define OxOfOO

struct FontContentsHeader (

];

UWORD fch_FileID; /* FCH_ID */
UWORD fch_NumEntries; /* the number of FontContents elements */
/* struct FontContents fch_FC[]; */

#define
#define

DFH_ID OxOf80
MAXFONTNAME 32 /* font name including". font\O" */

struct DiskFontHeader (

);

/* the following 8 bytes are not actually considered a part of the
/* DiskFontHeader, but immediately preceed it. The NextSegment is
/* supplied by the linker/loader, and the ReturnCode is the code
/* at the beginning of the font in case someone runs it ...
/* ULONG dfh_Nextsegment;/* actually a BPTR */
/* ULONG dfh_ReturnCode; /* MOVEQ #O,DO : RTS */
/* here then is the official start of the DiskFontHeader... */

struct Node dfh_DF; /* node to link disk fonts */
UWORD dfh_FileID; /* DFH_ID */
UWORD dfh_Revision; /* the font revision */
LONG dfh_Segment; /* the segment address when loaded */
char dfh_Name[MAXFONTNAME]; /* the font name (null terminated) */
struct TextFont dfh_TF;/* loaded TextFont structure */

*/
*/
*/
*/

I
0:>
00

60
61
62
63
64
65
66
67
68
69
70
71

·72
73
74
75

lIdefine
lIdefine
lIdefine
lIdefine

APB_MEMORY 0
APF MEMORY 1
APB-DISK 1
AFF:::DISK 2

struct AvailFonts {
UWORD af_Type; /* MEMORY or DISK */
struct TextAttr af_Attr; /* text attributes for font */

} ;

struct AvailFontsHeader {
UWORD afh NumEntries; /* number of AvailFonts elements */
/* struct AvailFonts afh_AP[]; */

};

#endif

lIifndef LIBRARIES DOS H 1:
2:
3:
4:

lIdefine LIBRARIES-DOS-H
1**/
/* Cornmodore-Amiga, Inc.

*/
5: /* dos.h

*/
6: /* Standard C header for AmigaDOS on the MC68000

*/
7:
8:
9:

/**/

lIifndef EXEC TYPES H
#include "exec/types.h"
#endif

10:
11:
12:
13:
14:
15:
16:
17:
18:

lIdefine DOSNAME "dos . library"

/* Predefined Amiga DOS global constants */

/* Mode parameter to Open() */
#define MODE OLDFILE 1005 /* Open existing file

readjwrite-
19:

of file. */
20: lIdefine MODE NEWFILE

file (delete
21:

*/

* positioned at beginning

1006 /* Open freshly created

* old file) readjwrite

22:
23:
24:

/* Relative position to Seek() */
#define OFFSET_BEGINNING

Of File */
25: lIdefine OFFSET CURRENT

file position */
26: #define OFFSET_END

File */
27:
28: lIdefine OFFSET BEGINING

compatibility */
29:
30: #define BITSPERBYTE
31: #define BYTESPERLONG
32: lIdefine BITSPERLONG
33: lIdefine MAXINT
34: .#define MININT
35:
36: /* Passed as type to Lock ()
37: #define SHARED LOCK

by others */-
38: #define ACCESS.READ
39: #define EXCLUSIVE_LOCK

*/
40: #define ACCESS_WRITE
41:
42: struct DateStamp {
43: LONG dS_Days;

1, 1978 */
44: LONG ds Minute;

midnight *1

-1 /* relative to Begining

0 /* relative to Current

1 /* relative to End Of

OFFSET~EGINNING /* ancient

8
4
32
Ox7FFFFFFF
Ox80000000

*/
-2 /* File is readable

-2 /* Synonym */
-1 /* No other access

-1 /* Synonym */

allowed

/* Number of days since Jan.

/* Number of minutes past

45:

46:
47:

48:
49:

50:
51:
52:

53:
54:

55:

56:
57:

58:

59:
60:

V
61:

I 62:
63: 0)

(0 64:
65:

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:

77:
78:

79:

80:

81:

82:

83:
84 :
85:
86:

87:

LONG ds Tick;
*/ -

1; /* DateStamp */
#define TICKS~ER_SECOND

one second */

/* Number of ticks past minute

50 /* Number of ticks in

/* Returned by Examine() and ExInfo(), must be on a 4 byte
boundary */

struct FileInfoBlock {
LONG fib_DiskKey;
LONG fib_DirEntryType; /* Type of Directory. If <

0, then a plain file.

char fib FileName[l08];
chars used for now */

LONG fib Protection;
rwxd are 3-0. * /

LONG fib_EntryType;
LONG fib_Size;

* If > 0 a directory */
/* Null terminated. Max 30

/* bit mask of protection,

/* Number of bytes in file

/* Number of blocks in file
*/

LONG
*/
struct
char

DateStamp fib_pate;/* Date file last changed */
fib_Comment[l16]; /* Null terminated.

* Comment associated with
file */

}; /* FileInfoBlock */

/* FIB stands for FileInfoBlock */
/* FIBB are bit definitions, FIBF are field definitions

*/
#define FIBB_READ
#define
#define
#define
#define
#define

FIBB_WRITE
FIBB_EXECUTE
FIBB_DELETE
FIBF_READ
FIBF_WRITE

#define FIBF_EXECUTE
#define FIBF_DELETE

3
2
1
o
(l«FIBB_READ)
(l«FIBB_WRITE)
(l«FIBB_EXECUTE)
(1 «FIBB_DELETE)

/* All BCPL data must be long word aligned. BCPL pointers
are the long word

* address (i.e byte address divided by 4 (»2» */
typedef long BPTR; /* Long word pointer

*/
typedef long BSTR; /* Long word pointer

to BCPL string */
#define BADDR(bptr) (bptr «2) /* Convert BPTR to typical

C pointer */
/* BCPL strings have a length in the first byte and then

the characters.
* For example: s[O]~3 s[l]~S s[21~Y s[3]~S

*/

/* returned by Info(), must be on a 4 byte boundary */
struct InfoData {

LONG id NumSoftErrors; /* number of soft errors on
disk */ -

LONG id_UnitNumber; /* Which unit disk is (was)

88:
89:

90:

91:
92:
93 :

94:

95:
96:
97:
98:
99:

100:

101:

102:
103:
104:
105:
106:
107:

108:

109 :
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123 :
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:

mounted on */
LONG id_DiskState; /* See defines below */
LONG id_NumBlocks; /* Number of blocks on disk

*/
LONG id_NumBlocksUsed; /* Number of block in use

*/
LONG id_BytesperBlock;
LONG id_DiskType; /* Disk Type code */
BPTR id_VolumeNode; /* BCPL pointer to volume

node */
LONG id_InUse; /* Flag, zero if not in use

*/
}; /* InfoData */

/* ID stands for InfoData */
/* Disk states */

#define ID WRITE PROTECTED 80
*/ - -

/* Disk is write protected

#define ID VALIDATING 81
validated * /

/* Disk is currently being

#define ID VALIDATED 82
writeable * /

/* Disk is consistent and

/* Disk types */
#define ID_NO_DISK_PRESENT
#define ID_UNREADABLE_DISK
#define ID DOS DISK
#define ID-NQT-REALLY DOS

I ('S» - - -
#define ID KICKSTART DISK

I ('K'»- -

(-1)
« 'B' «24)
« 'D' «24)
«'N'«24)

« 'K' «24)

/* Errors from IoErr(), etc. */

(' A' «16)
('0' «16)
('D'«16)

('I' «16)

#define ERROR NO FREE STORE 103
#define ERROR-NO-DEFAULT DIR 201
#define ERROR-OBJECT IN USE 202
#define ERROR-OBJECT-EXISTS 203
#define ERROR-DIR NOT FOUND 204
#define ERROR-OBJECT NOT FOUND 205
#define ERROR-BAD STREAM-NAME 206
#define ERROR-OBJECT TOO-LARGE 207
#define ERROR=ACTION=NOT=KNOWN 209
#define ERROR_INVALID_COMPONENT_NAME 210
#define ERROR_INVALID_LOCK 211
#define ERROR OBJECT WRONG TYPE 212
#define ERROR=DISK_NOT_VALIDATED 213
#define ERROR DISK WRITE PROTECTED 214
#define ERROR=RENAME_ACROSS_DEVICES 215
#define ERROR_DIRECTORY_NOT_EMPTY 216
#define ERROR_TOO_MANY_LEVELS 217
#define ERROR_DEVICE_NOT_MOUNTED 218
#define ERROR_SEEK_ERROR 219
#define ERROR_COMMENT_TOO_BIG 220
#define ERROR_DISK_FULL 221
#define ERROR_DELETE_PROTECTED 222
#define ERROR_WRITE_PROTECTED 223
#define ERROR_READ_PROTECTED 224
#define ERROR_NOT_A_DOS_DISK 225
#define ERROR_NO_DISK 226
#define ERROR_NO_MORE_ENTRIES 232

('D' «8»
('S'«8»
('0' «8)

('C' «8)

138:
139:

140:

141:

142:

143:

144:

145:
146:

147:
148:
149:
150:
151:
152:

153:

V 154:

I
155:

I-' 156:
'-l 157: 0 158:

159:
160:

/* These are the return codes used by convention by AmigaDOS
commands */

/* See FAILAT and IF for reI vance to EXECUTE files
*/

#define RETURN_OK 0 /* No problems,
success */

#define RETURN WARN
only */ -

#define RETURN_ERROR
wrong */

#define RETURN_FAIL
or severe failure*/

5 /* A warning

10 /* something

20 /* Complete

/* Bit numbers that signal you that a user has issued a
break */

#define SIGBREAKB CTRL C 12
#define SIGBREAKB-CTRL-D 13
#define SIGBREAKB-CTRL-E 14
#define SIGBREAKB=CTRL=F 15

/* Bit
*/

/* for
*/

#define
#define
#define
#define

fields that signal you that a user has issued a break

SIGBREAKF_CTRL_C
SIGBREAKF_CTRL_D
SIGBREAKF_CTRL_E
SIGBREAKF_CTRL_F

(1< <SIGBREAKB_CTRL_C)
(l«SIGBREAKB_CTRL_D)
(l«SIGBREAKB_CTRL_E)
(l«SIGBREAKB_CTRL_F)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#ifndef LIBRARIES DOSEXTENS H
#define LIBRARIES=DOSEXTENS=H 1
/**/
/* Commodore-Amiga, Inc. */
/* dosextens . h * /
/**/
/* DOS structures not needed for the casual DOS user */

#ifndef EXEC TYPES H
#include "exec/types .h"
#endif
#ifndef EXEC_TASKS_H
#include "exec/tasks.h"
#endif
#ifndef EXEC PORTS H
#include "exec/ports.h"
#endif
#ifndef EXEC LIBRARIES H
#include "exec/libraries.h"
#endif

#ifndef LIBRARIES_DOS_H
#include "libraries/dos.h"
#endif

/* All DOS processes have this structure */
/* Create and Device Proc returns pointer to the MsgPort in this structure */
/* dev~roc ~ (struct Process *) (DeviceProc(..) - sizeof(struct Task»; */

struct Process [
struct Task pr_Task;
struct MsgPort pr_MsgPort;
IDRD pr_Pad;
BPTR pr_SegList;
LONG pr_StackSize;
APTR pr_GlobVec;
LONG pr_TaskNum;
BPTR pr_StackBase;
LONG pr_Result2;
BPTR pr_CurrentDir;
BPTR pr_CIS;
BPTR pr_COS;
APTR pr_ConsoleTask;

APTR pr_FileSystemTask;
BPTR pr _ CLI ;
APTR pr_ReturnAddr;
APTR pr_PktWait;
APTR pr_WindowPtr;

}; /* Process */

/* This is BPTR address from DOS functions *
/* Remaining variables on 4 byte boundaries *
/* Array of seg lists used by this process *
/* Size of process stack in bytes *
/* Global vector for this process (BCPL) *
/* CLI task number of zero if not a CLI *
/* Ptr to high memory end of process stack *
/* Value of secondary result from last call *
/* Lock associated with current directory *
/* Current CLI Input Stream *
/* Current CLI Output Stream *
/* Console handler process for the

* current window*/
/* File handler process for current drive *
/* pointer to ConsoleLinelnterpreter *
/* pointer to previous stack frame *
/* Function to be called when awaiting msg *
/* Window for error printing */

/* The long word address (BPTR) of this structure is returned by
* Open() and other routines that return a file. You need only worry
* about this struct to do async io's via PutMsg() instead of
* standard file system calls */

struct FileHandle [
struct Message *fh_Link; /* EXEC message */

I
"'-l

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
ll2
ll3
ll4
ll5
ll6
ll7
ll8
ll9

struct MsgPort *fh_Port;
struct MsgPort *fh_Type;

LONG fh Buf;
LONG fh-Pos;
LONG fh-End;
LONG fh=Furtcs;

#define fh Funcl fh Funcs
LONG fh=Func2; -
LONG fh_Func3;
LONG fh_Args;

#define fh_Argl fh_Args
LONG fh_Arg2;

}; /* FileHandle */

/* Reply port for the packet */
/* Port to do PutMsg() to
* Address is negative if a plain file */

/* This is the extension to EXEC Messages used by DOS */

struct DosPacket {
struct Message *dp_Link;
struct MsgPort *dp_Port;

/* EXEC message */
/* Reply port for the packet */
/* Must be filled in each send. */
/* See ACTION_ ... below and

* 'R' means Read, 'w' means write to the
* file system */

LONG dp_Resl; /* For file system calls this is the result
* that would have been-returned by the
* function, e.g. write ('W') returns actual
* length written */

LONG dp_Res2; /* For file system calls this is what would
* have been returned by IoErr() */

/* Device packets common equivalents */
#define dp_Action dp_Type
#define dp_Status dp_Resl
#define dp_Status2 dp_Res2
#define dp_BufAddr dp_Argl

LONG dp_Argl;
LONG dp_Arg2;
LONG dp_Arg3;
LONG dp_Arg4;
LONG dp_Arg5;
LONG dp_Arg6;
LONG dp_Arg7;

}; /* DosPacket */

/* A Packet does not require the Message to be before it in memory, but
* for convenience it is useful to associate the two.
* Also see the function init_std~kt for initializing this structure */

struct StandardPacket {
struct Message sp_Msg;
struct DosPacket sp_Pkt;

}; /* StandardPacket */

/* Packet types */
#define ACTION_NIL 0
#define ACTION_GET_BLOCK 2
#define ACTION_SET_MAP 4
#define ACTION_DIE 5
#define ACTION_EVENT 6
#define ACTION_CURRENT_VOLUME 7

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
14'7
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

#define ACTION_LOCATE_OBJECT 8
#define ACTION_RENAME_DISK 9
#define ACTION_WRITE 'w'
#define ACTION_READ 'R'
#define ACTION_FREE_LOCK 15
#define ACTION DELETE OBJECT 16
#define ACT ION=RENAME=OBJECT 17

#define ACTION_COPY_DIR 19
#define ACTION_WAlT_CHAR 20
#define ACTION_SET_PROTECT 21
#define ACTION_CREATE_DIR 22
#define ACTION_EXAMlNE_OBJECT 23
#define ACTION_EXAMlNE_NEXT 24
#define ACTION_DISK_INFO 25
#define ACTION_INFO 26

#define ACTION_SET_COMMENT 28
#define ACTION_PARENT 29
#define ACTION_TIMER 30
#define ACTION_INHIBIT 31
#define ACTION DISK TYPE 32
#define ACTION-DISK-CHANGE 33

f\.--:~' ')'c [J,.J '..l<.tt '(i""
:,1'.

/* DOS library node structure.
* This is the data at positive offsets from the library node.
* Negative offsets from the node is the jump table to DOS functions
* node ~ (struct Dos Library *) OpenLibrary("dos.library" ..) */

struct DosLibrary {
struct Library dl lib;
APTR dl_Root; /* Pointer to RootNode, described below */
APTR dl_GV; /* Pointer to BCPL global vector */
LONG dl A2;
LONG dl-A5;
LONG dl-A6;

}; /* DosLibrary */

/* Private register dump of DOS */

/* */

struct RootNode {
BPTR rn_TaskArray; /* [0] is max number of CLI' s

* [1] is APTR to process id of CLI 1
* [n] is APTR to process id of CLI n */

BPTR rn_ConsoleSegment; /* SegList for the CLI */
struct DateStamp rn_Time; /* Current time */
LONG rn _ RestartSeg; /* SegList for the disk validator process */
BPTR rn_Info; /* Pointer ot the Info structure */

}; /* RootNode */

struct Doslnfo {
BPTR di McName;
BPTR di-Devlnfo;
BPTR di-Devices;
BPTR di-Handlers;
APTR di=NetHand;

/* Network name of this machine; currently 0 *
/* Device List *
/* Currently zero *
/* Currently zero *
/* Network handler processid; currently zero *

}; /* Dos Info */

/* DOS Processes started from the CLI via RUN or NEWCLI have this additional
* set to data associated with them */

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

struct CommandLinelnterface
LONG cli_Result2; /* Value of IoErr from last command
BSTR cli_SetName; /* Name of current directory
BPTR cli CommandDir; /* Lock associated with command directory
LONG cli=ReturnCode; /* Return code from last command
BSTR cli_CommandName; /* Name of current command
LONG cli_ FailLevel; /* Fail level (set by FAILAT)
BSTR cli_Prompt; /* Current prompt (set by PROMPT)
BPTR cli_standardlnput; /* Default (terminal) CLI input
BPTR cli_Currentlnput; /* Current CLI input
BSTR cli_CommandFile; /* Name of EXECUTE command file
LONG cli_Interactive; /* Boolean; True if prompts required
LONG cli_Background; /* Boolean; True if CLI created by RUN
BPTR cli_Currentoutput; /* Current CLI output
LONG cli_Defaultstack; /* Stack size to be obtained in long words
BPTR cli_StandardOutput; /* Default (terminal) CLI output
BPTR cli_Module; /* SegList of currently loaded command

}; /* CommandLinelnterface */

/*
* this structure needs some work. It should really be a union, because
* it can take on different valued depending on whether it is a device,
* an assigned directory, or a volume.
* For now, it reflects a volume.
*/

struct DeviceList [
BPTR dl Next; /* bptr to next device list */
LONG dl=Type; /* see DLT below */
struct MsgPort * dl_Task; /* ptr to handler task */
BPTR dl Lock; /* not for volumes */
struct DateStamp dl_VolumeDate; /* creation date */
BPTR dl LockList; /* outstanding locks */
LONG dl-DiskType; /* 'DOS', etc */
LONG dl-unused;
BSTR * dl=Name; /* bptr to bcpl name */

/* definitions for dl_Type */
#define DLT DEVICE 0
#define DLT=DIRECTORY 1
#define DLT_VOLUME 2

/* a lock structure, as returned by Lock() or DupLock() */
struct FileLock (

BPTR fl_Link;
LONG fl_Key;
LONG fl_Access;
struct MsgPort * fl_Task;
BPTR fl_Volume;

/*
/*
/*
/*
/*

bcpl pointer to next lock */
disk block number */
exclusive or shared */
handler task's port */
bptr to a DeviceList */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#ifndef LIBRARIES_MATHFFP_H
#define LIBRARIES MATHFFP H
/**/
/* Commodore-Amiga, Inc. */
/* mathffp.h */
/**/

/*
* general floating point declarations
*/

#define
#define
#define
#define
#define E
#define LOG10

PI
'IW) PI
PI2-
PI4

#define FPTEN
#define FPONE
#define FPHALF
#define FPZERO

#define trunc(x)
#define round(x)
#define itof(i)

int
FLOAT
int
int
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT
FLOAT

FLOAT
FLOAT
FLOAT
FLOAT
FLOAT

FLOAT

#endif

SPFix() ;
SPFlt() ;
sPCmp() ;
SPTst();
SPAbS(),
SPNeg() ;
SPAdd() ;
SPSub() ;
SPMul();
SPDiv() ;

SPAsin(),
SPSin(),
SPSinh(),
SPExp() ,
spsqrt() ,

afp(),

«FLOAT) 3.1415192653857)
« (FLOAT) 2) * PI)
(PI/ «FLOAT) 2»
(PI/ «FLOAT) 4»
«FLOAT) 2.7182818284590453)
«FLOAT) 2.3025850929940456)

«FLOAT) 10.0)
«FLOAT) 1.0)
«FLOAT) 0.5)
«FLOAT) 0.0)

«int) (x»
«int) «x) + 0.5»
«FLOAT) (i»

abS();

SPAcos(),
SPCos(),
SPCosh() ,
SPLog() ,
SPFieee();

dbf ();

SPAtan() ;
SPTan(),
SPTanh() ;
SPLoglO(),

/* Basic math functions */

/* Transcendental math functions */
SPSincos();

SPPow() ;

/* Math conversion functions */

1
2
3
4
5
6
7
8
9

10
.11
12
13
14
15

#ifndef LIBRARIES_TRANSLATOR_H
#define LIBRARIES_T~ANSLATOR_H
/**/

/* Cormnodore-Amiga, Inc. */

/* translator.h */

/**/

/* Translator error return codes */

#define
#define
#define

TR_Notused
TR_NoMem
TR_MakeBad

-1
-2
-4

#endif LIBRARIES~TRANSLATOR_H

/* This is an oft used_system rc */
/* Can't-allocate memory */
/* Error in MakeLibrary call */

Contents

resources/cia.h
resources/disk.h
resources/misc.h
resources/potgo.h

1:
2:

3 :

4:
5:
6 :
7:
8:
9:

/**/
/* COIIiIlOdore-Amiga, Inc.

*/
/* cia.h

*/
1**/

#define
#define

CIAANAME "ciaa.resource"
CIABNAME "ciab.resource"

1
2 #ifndef RESOURCES_DISK_H
3 #define RESOURCES DISK H
4 /**/
5 /* COIlIlIOdore-Amiga, Inc. */
6 /* disk.h */
7 /**/
8
9 1**

10 *
11 * external declarations for disk resources
12 *
13 * SOURCE CONTROL
14 * ------ -------
15 * $Header: disk.h,v 27.2 85/07/12 23:12:44 neil Exp $
16 *
17 * $Locker: $
18 *
19 **1
20
21 #ifndef EXEC_TYPES_H
22 #include "exec/types.h"
23 #endif !EXEC_TYPES_H
24
25 #ifndef EXEC_LISTS_H
26 #include "exec/lists.h"
27 #endif !EXEC_LISTS_H
28
29 #ifndef EXEC_PORTS_H
30 #include "exec/ports.h"
31 #endif !EXEC_PORTS_H
32
33 #ifndef EXEC_INTERRUPTS_H
34 #include "exec/interrupts.h"
35 #endif !EXEC_INTERRUPTS_H
36
37 #ifndef EXEC_LIBRARIES_H
38 #include "exec/libraries.h"
39 #endif !EXEC_LIBRARIES_H
40
41
42 /**
43 *
44 * Resource structures
45 *
46 **/
47
48
49 struct DiscResourceunit {
50 struct Message dru_Message;
51 struct Interrupt dru DiscBlock;
52 struct Interrupt dru-DiscSync;
53 struct Interrupt dru=Index;
54);
55
56 struct DiscResource {
57 struct Library dr_Library;
58 struct DiscResourceUnit *dr Current;
59 UBYTE dr_Flags;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119

UBYTE
struct Library
struct Library
ULONG
struct List
struct Interrupt
struct Interrupt
struct Interrupt

/* dr_Flags entries
#define DRB ALLOCO
#define DRB-ALLOCI
#define DRB-ALLOC2
#define DRB=ALLOC3
#define DRB_ACTIVE

#define DRF_ALLOCO
#define DRF_ALLOCI
#define DRF_ALLOC2
#define DRF ALLOC3
#define DRF=ACTIVE

*/
o
1
2
3
7

dryad;
*dr_SysLib;
*dr CiaResource;
dr UnitID[4];
dr=waiting;
dr DiscBlock;
dr=DiscSync;
dr_Index;

/* unit
/* unit
/* unit

zero is allocated */
one is allocated */
two is allocated */

/* unit three is allocated */
/* is the disk currently busy?

(1«0)
(1«1)
(1«2)
(1(0)
(1«7)

/*
/*
/*
/*
/*

unit zero is allocated */
unit one is allocated */
unit two is allocated */
unit three is allocated */
is the disk currently busy?

*/

*/

/**

*
* Hardware Magic
*
**/

#define DSKDMAOFF Ox4000 /* idle command for dsklen register */

/**

*
* Resource specific commands
*
**/

/*
* DISKNAME is a generic macro to get the name of the resource.
* This way if the name is ever changed you will pick up the
* change automatically.
*/

#define DISKNAME "disk. resource"

#define
#define
#define
#define
#define

#define

DR_ALLOCUNIT
DR_FREEUNIT
DR_GETUNIT
DR_GIVEUNIT
DR_GETUNITID

(LIB BASE - O*LIB_VECTSIZE)
(LIB_BASE - l*LIB_VECTSIZE)
(LIB_BASE - 2*LIB_VECTSIZE)
(LIB BASE - 3*LIB_VECTSIZE)
(LIB_BASE - 4*LIB_VECTSIZE)

/**

120
121
122
123
124
125
126
127
128
129

*
* drive types
*
**/

#define DRT_AMIGA
#define DRT_37422D2S
#define DRT_EMPTY

(OxOOOOOOOO)
(Ox55555555)
(OxFFFFFFFF)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

#ifndef RESOURCES MISC I
#define RESOURCES-MISC-I
/********~** **************/
/* Commodore-Amiga, Inc. */
/* misc.h */
/**/

/****************~**

*
* external declarations for misc system resources
*
* SOURCE CONTROL
* ------ -------
* $Header: misc.h,v 27.3 85/07/12 16:28:29 neil Exp $
*
* $Locker: $
*
********** ******** *** *** * * * *** * ** * * ** * ****** * ***'********** * *""*** /

#ifndef EXEC TYPES H
#include "exec/types.h"
#endif iEXEC_TYPES_H

#ifndef EXEC LIBRARIES H
#include "exec/libraries.h"
#endif iEXEC_LIBRARIES_H

/**
*
* Resource structures
*
**/

#define MR':"SERIALPORT 0
#define MR-,-SERIALBITS 1
#define MR_PARALLELPORT 2
#define MR_PARALLELBITS 3

#define NUMMRTYPES 4

struct MiscResource {
struct Library rnr_Library;
ULONG rnr_AllocArray[NUMMRTYPES];

};

#define MR ALLOCMISCRESOURCE
#define MR=FREEMISCRESOURCE

(LIB_BASE)
(LIB BASE + LIB_VECSIZE)

#define MISCNAME "misc.resource"

#endif

1
2
3
4
5
6
7
8

#ifndef RESOURCES POTGO H
#define RESOURCES-POTGO-H
I***~******************/
/* Commodore-Amiga, Inc. */
/* potgo.h */
/**/
#define POTGONAME "potgo.resource"
#endif

contents

workbench/icon.h
workbench/startup.h
workbench/Workbench.h

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#ifndef LIBRARIES_ICON_H
#define LIBRARIES_ICON_H

/**/
/* Ccmnodore-Amiga, Inc. */
/* icon.h */
/**/

/***-**
*
* icon.h -- external declarations for workbench support library

*
* SOURCE CONTROL
* ------ -------
* $Header: icon.h,v 31.1 85/08/31 09:10:56 neil Exp $
*
* $Locker: $
*
**/

/**

*
* library structures
*
**/

#define lCONNAME "icon.library"

/**

*
* function types
*
**/

struct
LONG
VOID
char

WBObject *GetWBObject(), *AllocWBObject();
PutWBObject(), Putlcon(), GetIcon(), MatchTooIValue();
FreeFreeList(), FreeWBObject(), AddFreeList();
*ToolTypeArray();

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/**/
/* CC>IIIl\Odore-Amiga, Inc. * /
/* startup. h * /
/**/

/* NOTE: This file is NOT used to generate lib/Astartup.obj or */
/* lib/Lstartup.obj. */

#ifndef EXEC TYPES H
#include "exec/types.h"
#endif iEXEC_TYPES_H

#ifndef EXEC_PORTS_H
#include "exec/ports.h"
#endif iEXEC_PORTS_H

#ifndef LIBRARIES DDS H
#include "libraries/dos.h"
#endif iLIBRARIES_DDS_H

struct WBStartup [
struct Message
struct MsgPort
BPTR
LONG
char *
struct WBArg *

} ;

struct WBArg
BPTR
BYTE *

};

sm_Message;
* sm_Process;

sm_Segment;
sm_NumArgs;
sm TooIWindow;
sm::::ArgList;

/* a standard message structure */
/* the process descriptor for you */
/* a descriptor for your code */
/* the number of elements in ArgList */
/* description of window */
/* the arguments themselves */

/* a lock descriptor */
/* a string relative to that lock */

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/***

* * workbench.h
* * Commodore-Amiga, Inc.

* * $Header: woikbench.h,v 31.4 85/10/27 13:50:28 neil Exp $

* * $Locker: $
*
***/

#ifndef EXEC TYPES H
#include "exec/types.h"
#endif iEXEC_TYPES_H

#ifndef EXEC_NODES_H
#include "exec/nodes.h"
#endif iEXEC_NODES_H

#ifndef EXEC_LISTS_H
#include "exec/lists.h"
#endif iEXEC_LISTS_H

#ifndef EXEC_TASKS_H
#include "exec/tasks.h"
#endif iEXEC_TASKS_H

#ifndef INTUITION INTUITION H
#include "intuition/intuition.h"
#endif iINTUITION_INTUITION_H

#define
#define
#define
#define
#define
#define
#define

WBDISK
WBDRAWER
WBTOOL
WBPROJECT
WBGARBAGE
WBDEVICE
WBKICK

struct DrawerData [
struct NewWindow
LONG
LONG
LONG
LONG
LONG
LONG
struct Gadget
struct Gadget
struct Gadget
struct Gadget
struct Gadget
struct Gadget
struct Image
struct Image
struct Prop Info
struct Prop Info

1
2
3
4
5
6
7

dd_NewWindow; /*
dd CurrentX; /*
dd-CurrentY; /*
dd-MinX; /*
dd::::MinY; /*
dd MaxX; /*
dd::::MaXY; /*
dd Horizscro11;
dd-Vertscro11;
dd::::UpMove;
dd_DownMove;
dd LeftMove;
dd::::RightMove;
dd_Horizlmage;
dd_Vertlmage;
dd_HorizProp;
d~vertProp;

args to open window */
current x coordinate of or~g~n */
current y coordinate of orlgln */
smallest x coordinate in window */
smallest y coordinate in window */
largest x coordinate in window */
largest y coordinate in window */

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119

} ;

struct Window *
struct WBObject *
struct List
LONG

dd DrawerWin;
dd=Object;
dd Children;
dd=LoCk;

/* pointer to drawers window */
/* back pointer to drawer object */
/* where our children hang out */

/* the amount of DrawerData actually written to disk */
#define DRAWERDATAFILESIZE (sizeof(struct NewWindow) + 2*sizeof(LONG»

struct DiskObject
UIDRD

} ;

UIDRD
struct Gadget
UBYTE
char *
char **
LONG
LONG
struct DrawerData *
char *
LONG

do_Magic; /* a magic number at the start of the file*/
do Version; /* a version number, so we can change it*/
dO=Gadget; /* a copy of in core gadget */
do_Type;
do DefaultTool;
dO=ToolTypes;
do_Currentx;
do_currentY;
do DrawerData;
do-ToolWindow;
do=StackSize;

/* only applies to tools */
/* only applies to tools */

#define W8 DISKMAGIC Oxe310
#define W8=DISKVERSION 1

/* a magic number, not easily impersonated */
/* our current version number */

struct FreeList
IDRD
struct List

} ;

struct WBObject
struct Node
struct Node
struct Node
struct Node
struct WBObject *

/* object flags */
#ifdef SMARTCOMPILER

UBYTE
UBYTE
UBYTE
UBYTE

#else

fl NumFree;
n=MemList;

wo MasterNode; /*
wo -Siblings; /*
wo-SelectNode; /*
wo=UtilityNode;
wO_Parent;

wO_IconDisp:l;
wO_DrawerOpen:l;
wo Selected:l;
wO=Background:l;

all objects are on this list */
list of drawer members */
list of all selected objects */
/* function specific linkages */

/* icon is currently in a window */
/* we're a drawer, and it is open */
/* our icon is selected */
/* set if icon is in background */

/* lattice
UBYTE

is not full system V compatible (yet) ... */
wo_Flags;

#endif

UBYTE
USHORT

char *
SHORT
SHORT

wo_Type;
wo_UseCount;

wo Namei
wo-NameXOffset;
wO=NameYOffset;

char * wo_DefaultTool;
struct DrawerData * wo_DrawerData;

/* what flavor object is this? */
/* number of references to this

object */
/* this object's textual name */
/* where to put the name * /

/* if this is a drawer or disk */

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

struct Window * wO_IconWin; /* each object's icon lives here */
LONG wo_CurrentX; /* virtual X in drawer */
LONG wo_CurrentY; /* virtual Y in drawer */
char ** wo_ToolTypes; /* the types for this tool * /
struct Gadget wO_Gadget; /* NOT a pointer, but an instance

of a gadget structure */
struct FreeList wO_FreeList; /* this objects free list */
char * wo_ToolWindow; /* character string for tool's

window */
LONG wo_StackSize; /* how much stack to give to this *
LONG wO_Lock; /* if this tool is in the backdrop*

};

#define TMAlloc(size, type) «type)MAlloc(size »
#define ObjAlloc(obj, size, type) «type)OAlloc(obj, size »
#define STREQ(a, b) (!strcmp(a, b »

/* each message that comes into the WorkBenchPort must have a type field
* in the preceeding short. These are the defines for this type
*/

1 /* a "standard Potion" message */
2 /* exit message from our tools */

#define MTYPE PSTD
#define MTYPE-TOOLEXIT
#define MTYPE-DISKCHANGE
#define MTYPE-TlMER
#define MTYPE-CLOSEDOWN
#define MTYPE=IOPROC

3 /* dos telling us of a disk change */
4 /* we got a timer tick */
5 /* <unimplemented> */
6 /* <unimplemented> */

/* we use the gadget id field to encode some special information */
#define GID_WBOBJECT 0 /* a normal workbench object */
#define GID_HORIZSCROLL 1 /* the horizontal scroll gadget for a drawer */
#define GID_VERTSCROLL 2 /* the vertical scroll gadget for a drawer */
#define GID_LEFTSCROLL 3 /* move one window left */
#define GID_RIGHTSCROLL 4 /* move one window right */
#define GID_UPSCROLL 5 /* move one window up */
#define GID_DOWNSCROLL 6 /* move one window down */
#define GID_NAME 7 /* the name field for an object */

/* workbench does different complement modes for its gadgets.
* It supports separate images, complement mode, and backfill mode.
* The first two are identical to intuitions GADGIMAGE and GADGHCOMP.
* backfill is similar to GADGHCOMP, but the region outside of the
* image (which normally would be color three when complemented)
* is flood-filled to color zero.
*/

#define GADGBACKFILL OxOOOl

/* if an icon does not really live anywhere, set its current position
* to here
*/

#define NO_ICON_POSITION (Ox80000000)

Appendix E

Printer Device Source Code

This appendix contains the printer-dependent source code for the following printers:

hpplus - Hewlett Packard LaserJet Plus

okimate20 - Okidata

epson - Epson X-80 series

diablo3 - Diablo C-150

E-l

In addition, this appendix includes the following:

o macros.i, which is required in order to assemble any of the" .asm" files

o prtbase.h, which contains printer data structure definitions

o a document called Amiga Printer Support Information, which contains additional infor
mation about supported printers and supported features, standard cables for printers,
and standard switch settings for printers.

The files in this appendix are intended to aid developers in creating their own custom printer
drivers that can be added to the DEVS: directory on an AmigaDOS disk. The documentation
that explains the contents of these files is in the "Printer Device" chapter of this manual.

The sequence of linking the various files together is critical. Here is a sample command to
ALINK that specifies the files in the correct sequence. Note that the drive specifiers given in
this sample link command simply reflect the disks on which the various files were placed and do
not necessarily reflect your development environment.

ALINK DFl:lib/ Astartup.obj+DFO:printertag.obj+DFO:init.obj+
DFO:data.o+DFO:dospecial.o+DFO:render.o+DFO:wait.obj
library DFl:lib/amiga.lib+DFl:lib/lc.lib TO
D FO: p rin ter .ld

E-2

tI:l

~

SECTION printer

*------ Included Files

INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE

"exec/types.i"
"exec/ports.i"
"exec/devices.i"
lIexec/io.i ll

"devices/timer.i"

* (INCLUDE I 'macros . ill)

**
* printer device macro definitions
**

*------ external definition macros -----------------------------------

XREF_EXE MACRO
XREF _LVO\1

ENDM

XREF_DOS MACRO
XREF _LVO\1

ENDM

XREF_GFX MACRO
XREF _LVO\1

ENDM

XREF_ITU MACRO
XREF _LVO\1

ENDM

*------ library dispatch macros

CALLEXE

LINKEXE

LINKDOS

LINKGFX

LINKITU

INCLUDE

MACRO
CALLLIB _LVO\1
ENDM

MACRO
LINKLIB _LVO\I,_SysBase
ENDM

MACRO
LINKLIB _LVO\I,_DOSBase
ENDM

MACRO
LINKLIB _LVO\I,_GfxBase
ENDM

MACRO
LINKLIB _LVO\I,_IntuitionBase
ENDM

"devices/prtbase.i"

*------ Imported Functions ---

XREF_EXE
XREF_EXE
XREF_EXE
XREF

XREF

Forbid
Permit
WaitIO
_SysBase

*------ Exported Functions ---

XDEF

*------ printer.device/pWait ---
*
*
*
*

NAME
pwait - wait for a time

* SYNOPSIS
* PWait(seconds, microseconds);
*
* FUNCTION
* pwait uses the timer device to wait after writes are complete
*
*---
_Pwait:

error:

MOVEM.L A4/A6,-(A7)
MOVE.L _PD,A4
MOVE.L pd_PBothReady(A4),AO
JSR (AO)
TST.L DO
BNE.S error

LEA
MOVE.W
MOVE.L
MOVE.L
CLR.B
MOVE.L
JSR
LINKEXE
LEA
LINKEXE
LINKEXE
MOVEQ
TST.L

pd_TIOR(M) ,AI
#TR_ADDREQUEST,IO_COMMAND(AI)
12(A7),IOTV_TIME+TV_SECS(AI)
16(A7),IOTV TIME+TV MICRO(AI)
IO_FLAGS(AI) -
IO_DEVICE(AI) ,A6
DEV_BEGINIO(A6)
Forbid
pd_TIOR(M) ,AI
WaitIO
Permit
#O,DO
DO

MOVEM.L (A7)+,A4/A6'
RTS
END

tr:l

.....

/**/
/* CO!lIlIOdore:-Amiga, Inc. */
/* prtbase . h * /
/**/
/***

*
* printer device data definition
*
**/

#ifndef DEVICES_PRTBASE_H
#define DEVICES_PRTBASE_H

#ifndef EXEC_NODES_H
include "exec/nodes.h"
#endif
#ifndef EXEC LISTS H
#include "exec/lists.h"
#endif
#ifndef EXEC_PORTS_H
#include "exec/ports.h"
#endif
#ifndef EXEC LIBRARIES H
#include "exec/libraries.h"
#endif
#ifndef EXEC_TASKS_H
#include "exec/tasks.h"
#endif

#ifndef DEVICES_PARALLEL_H
#include "devices/parallel.h"
#endif
#ifndef DEVICES SERIAL H
#include "devices/serial.h"
#endif
#ifndef DEVICES TIMER H
#include "devices/timer.h"
#endif
#ifndef LIBRARIES_DOSEXTENS_ I
#include "libraries/dosextens.h"
#endif
#ifndef INTUITION INTUITION H
include "intuition/intuition.h"
#endif

struct DeviceData {
struct Library dd_Device; /* standard library node */
APTR dd_Segment; /* AO when initialized */
APTR dd_ExecBase; /* A6 for exec */
APTR dd CmdVectors; /* command table for device commands */
APTR dd=CmdBytes; /* bytes describing which command queue */
UWJRD dd_NumCommands; /* the number of commands supported */

} ;

#define P_STKSIZE Ox800

struct PrinterData {
struct DeviceData pd_Device;
struct MsgPort pd_Unit; /* the one and only unit */
BPTR pd_PrinterSegment; /* the printer specific segment */
UWORD pd_PrinterType; /* the segment printer type */
struct PrinterSegment *pd_SegmentData; /* the segment data structure */
UBYTE *pd_PrintBuf; /* the raster print buffer */
int (*pd_PWrite)(); /* the write function */
int (*pd_PBothReady)(); /* write function's done */
union /* port I/O request 0 */
struct IOExtPar pdJlO;
struct IOExtSer pd_sO;

} pd_iorO;
#define pd_PIORO pd_iorO.pdJlO
#define pd_SIORO pd_iorO.pd_sO

union { /*
struct IOExtPar pdJlI;
struct IOExtSer pd_sl;

} pd_iorl;
#define pd_PIORI pd_iorl.pdJlI
#define pd_SIORI pd_iorl.pd_sl

struct timerequest pd_TIOR;
struct MsgPort pd_IORPort;
struct Task pd_TC;
UBYTE pd_Stk[P_STKSIZE];
UBYTE pd_Flags;
UBYTE pdJlad;

and I for double buffering */

/* timer I/O request */
/* and message reply port */
/* write task */
/* and stack space */
/* device flags */

struct Preferences pd_Preferences; /* the latest preferences */
UBYTE pd_PWaitEnabled; /* wait function switch */

} ;

#define
#define
#define
#define

#define
#define
#define

#define
#define

PPCB_GFX 0
PPCF_GFX OxOI
PPCB_COLOR I
PPCF_COLOR Ox02

PPC_BWALPHA 0 /* black&white alphanumerics */
PPC_BWGFX I /* black&white graphics */
PPC_COLORGFX 3 /* color graphics */

PCC_BW I /* only black&white */
PCC_YMC 2 /* only yellow/magenta/cyan */

#define PCC_YMC_BW 3 /* yellow/magenta/cyan or black&white
#define PCC_YMCB 4 /* yellow/magenta/cyan/black */

#define PCC_4COLOR Ox4 /* a flag for YMCB and BGRW */
#define PCC_ADDITIVE Ox8 /* not yellow/magenta/cyan/black, */

/* but blue/green/red/white */
#define PCC_WB Ox9 /* only black&white, o ~~ BLACK */
#define PCC_BGR Oxa /* blue/green/red */
#define PCC_BGR_WB Oxb /* blue/green/red or black&white */
#define PCC_BGRW Oxc /* blue/green/red/white */

struct PrinterExtendedData {
char *ped_PrinterName; /* printer·name, null terminated */
VOID (*ped_Init)(); /* called after LoadSeg */
VOID (*ped_Expunge)(); /* called before UnLoadSeg */
VOID (*ped_Open) (); /* called at OpenDevice */
VOID (*ped_Close)(); /* called at CloseDevice */
UBYTE ped_PrinterClass; /* printer class */

*/

);

UBYTE
UBYTE
UBYTE
UWJRD
ULONG
ULONG
UWJRD
UWJRD
char
VOID
VOID
LONG
/* the
char

ped_ColorClass;
ped_MaxColwnns;
ped_NumCharSets;
ped NumRows;
ped_MaxxDots;
ped_MaxYDots;
ped XDotsInch;
ped_YDotsInch;
***ped_Commands;
(*ped_DoSpecial)();
(*ped_Render)();
ped_TimeoutSecs;

following only exists
**ped_8BitChars;

struct printersegment {
ULONG ps_NextSegment;
ULONG ps_runAlert;
UWJRD ps_Version;
UWJRD pS_Revision;
struct PrinterExtendedData

);
#endif

/* color class */
/* number of print colwnns available */
/* number of character sets */
/* number of raster rows in a raster dump */
/* number of dots maximum in a raster dump * /
/* number of dots maximum in a raster dump */
/* horizontal dot density */
/* vertical dot density */
/* printer text command table */
/* special command handler */
/* raster render function */
/* good write timeout */
if the segment version is 33 or greater */
/* conversion strings for the extended font */

/* (actually a BPTR) */
/* MOVEQ #O,DO : RTS */
/* segment version */
/* segment revision */

pS_PED; /* printer extended data */

Listing of dIablo_c/data.c

/* diablo c-150 command table */

/****** printer.device/printers/Diablo_C-150_functions *****************

*
* NAME
* Diablo C-150 functions implemented:

*
* aRIS, aIND, aNEL,
* aSLPP, aLMS, aRMS,
* aHTS, aTBCO, aTBC3, aTBCALL, aTBSALL

*
* special functions implemented:
* aRIN, aSLRM, aSFC, aSBC

*
**/

char *CommandTable[l~{
"\375\033\015P\375", /*reset
"\377", /*initialize*/
"\012", /* lf
"\015\012", /* return,lf
"\377", /* reverse lf

/*normal char set
/*italics on
/*italics off
/*underline on
/*underline off
/*boldface on
/*boldface off

IND
NEL
RI

SGR 0
SGR 3
SGR 23
SGR 4
SGR 24
SGR 1
SGR 22

RIS ESCc */

ESCD */
ESCE */
ESCM */

ESC[Om */
ESC[3m */
ESC[23m */
ESC[4m */
ESC[24m */
ESC[lm */
ESC[22m */

"\377",
"\377",
"\377" ,
"\377",
"\377",
"\377",
"\377" ,
"\377",
"\377",

/* set foreground
/* set background

color */
color */

"\377",
"\377",
"\377" ,
"\377",
"\377",
"\377",
"\377",

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

/*normal space
/*elite on
/*elite off
/* fine on */
/* fine off */
/*enlarged on
/*enlarged off

/*shadow print on*/
/*shadow print off*/
/*doublestrike on*/
/*doublestrike off*/
/* NLQ on*/
/* NLQ off*/

/*superscript on
/*superscript off
/*subscript on
/*subscript off
/* normalize */
/* partial line up
/* partial line down

DECSHORP ESC[Ow */
DECSHORP ESC[2w */
DECSHORP ESC[lw */

GSM (special) */
GSM (special) */

PLU ESCL */
PLD (special) */
PLD ESCK */
PLU (special) */

PLU ESCL */
PLD ESCK */

];

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377" ,
"\377",
"\377",

"\377",
"\377",
"\033\014" ,
"\377",
"\377",

"\0339" ,
" \0330",
"\377",
"\377",
"\377",
"\377",

/*US char set
/*French char set
/*German char set
/*UK char set
/*Danish I char set
/*SWeden char set
/*Italian char set FNT
/*Spanish char set FNT
/*Japanese char set FNT
/*Norweigen char set
/*Danish II char set*/

/*proportional on */
/*proportional off*/
/*proportional clear*/

6 */
7 */
8 */
FNT 9

/*set prop offset TSS */

ESC(B */
ESC(R */
ESC(K */
ESC(A */
ESC E */
ESC(H */

*/

/*auto left justify JFY 5 */
/*auto right justify JFY 7 */
/*auto full justify JFY 3,6 */
/*auto justify off JFY 0 */
/*place holder */
/*auto center on JFY 2,6 */

/* 1/8" line space
/* 1/6" line spacing
/* set form length
/* perf skip n */
/* perf skip off */

/* Left margin set
/* Right margin set

/* Top margin set

DECVERP
DECVERP
DECSLPP

DECSLRM
*/
DECSTBM

/* Bottom marg set */
/* T&B margin set STBM
/* L&R margin set SLRM
/* Clear margins */

ESC[Oz */
ESC[lz */
ESC[Pnt */

ESC[Pnl;Pn2s

ESC[Pnl;Pn2r

ESC [Pnl;Pn2r
ESC[Pnl;Pn2s

"\03315\015\033r90\015" ,

"\0331" , /* Set horiz tab HTS ESCH */
"\377", /* Set vertical tab VTS ESCJ */
"\0338", /* clr horiz tab TBC 0 ESCOg */
"\0332" , /* Clear all h tabs TBC 3 ESC3g */
"\377", /* Clr vertical tab TBC 1 ESClg */
"\377", /* Clr all v tabs TBC 4 ESC4g */
"\0332" , /* Clr all h & v tabs */

/* set default tabs */
'i\033i9,17 ,25,33,41,49,57 ,65, 73,81,89,97 ,105,113,121,129",
"\377" /* extended commands */

*/

*/

*/
*/

Listing of diablo_c/dospecial.c

/* diablo C-150 special printer functions */

/****** printer.device/printers/Diablo_C-150_special_functions

*
* NAME
* Diablo C-150, special functions implemented:

*

**/

include "exec/types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;

DoSpecial(command,outputBuffer,vline,currentVMI,crlfFlag,parms)
char outputBuffer[] ;
lJW)RD *command;

BYTE *vline;
UBYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Parms[];

/* used for color on this printer */

int x=O;
int y=0;
static BYTE ISOcolorTable[lO]= {49,51,53,52,55,50,54,48,49,49};
static unsigned char initMarg[]="\033100\015\033rOO\01S";

if(*command==aRIN) [
currentVMI=Ox70; / white background, black text */
outputBuffer[x++]='\OlS' ;

}

outputBuffer[x++]='\012' ;

Parms[O]=(PD->pd_Preferences.PrintLeftMargin);
parms[l]=(PD->pd_Preferences.PrintRightMargin);
*command=aSLRM;

if (*command==aSLRM) [
Parms[0]=Parms[0]+4;
if (Parms [0] <S)Parms[O]=5;

Parms[l]=Parms[l]+S;
if (Parms [1] >90)Parms[1] =90;

initMarg[2]=(char)«Parms[0]/10)+'O');
initMarg[3]=(char)«Parms[0]-(UBYTE)(Parms[0]/10)*lO)+'0');
initMarg[7]=(char)«Parms[1]/10)+'0');
initMarg[8}=(char)«parms[1]-(UBYTE)(Parms[1]/10)*lO)+'O');
while(y<lO)outputBuffer[x++]=initMarg[y++];
return (x) ;

}
if(*command==aSFC)

{
if(Parms[O]==39)parms[0]=30; /* set defaults */
if(parms[0]==49)Parms[0]=47;

tr:l

'-l

if(Parms[O)<40) *currentVMI~«*currentVMI)&240)+(Parms[O)-30);
else *currentVMI~«*currentVMI)&15)+«Parms[O)-40)*16);

outputBuffer[x++)~'\033' ;
outputBuffer[x++)~'@' ;
outputBuffer[x++)~ISOcolorTable[(*currentVMI)&15);

outputBuffer[x++)~ISOcolorTable[«(*currentVMI)&240)/16»);
return(x);
}

return(O);
}

Listing of diablo_c/init.asm

TTL '$Header: init.asm,v 1.1 85/10/09 19:27:06 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

..
** printer device functions Source Control
* --------------

* $Header: init.asm,v 1.1 85/10/09 19:27:06 kodiak Exp $
* $Locker: $
* $Log: init.asm,v $
* Revision 1.1 85/10/09 19:27:06 kodiak
* remove _stdout variable
* Revision 1.0 85/10/09 19:23:00 kodiak
* added to rcs for updating in version 1
* Revision 1.0 85/09/25 18:31:27 kodiak
* added to rcs for updating in version 1
* Revision 25.0 85/06/16 01:01:22 kodiak
* added to rcs
*
**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE

"exec/types.i"
"exec/nodes.i"
"exec/lists.i"
"exec/memory.i"
"exec/ports.i"
"exec/libraries.i"

"macros.ill

*------ Imported Functions ---

XREF_EXE
XREF_EXE
XREF

XREF

*------ Exported Globals

CloseLibrary
OpenLibrary
_AbsExecBase

00

XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF
XDEF

_Init
_Expunge
_Open
_Close
_PD
_PED
_SysBase

OOSBase
-GfxBase
::::IntuitionBase

**

_PD
_PED
_SysBase
_OOSBase

SECTION

GfxBase
::::IntuitionBase

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

printer, DATA
o
o
o
o
o
o

**
SECTION printer, CODE

*

*

*

pdiRts:

initPAErr:

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

4(A7),_PD
_PEDData(PC),AO
AO, PED
A6,=(A7)
_AbsExecBase,A6
A6,_SysBase

;------ open the dos library
LEA DLName(PC),AI
MOVEQ !lO,DO
CALLEXE OpenLibrary
MOVE. L DO, DOSBase
BEQ initDLErr

;------ open the graphics library
LEA GLName(PC),AI
MOVEQ !lO,DO
CALLEXE Open Library
MOVE.L DO,_GfxBase
BEQ initGLErr

open the intuition library
ILName(PC) ,AI LEA

MOVEQ
CALLEXE

!lO,DO
OpenLibrary

MOVE.L DO,_IntuitionBase
BEQ initILErr

MOVEQ !lO,DO

MOVE.L (A7)+,A6
RTS

MOVE.L _IntuitionBase,AI
LINKEXE CloseLibrary

initILErr:
MOVE.L _GfxBase,AI
LINKEXE CloseLibrary

initGLErr:
MOVE.L _OOSBase,AI
LINKEXE CloseLibrary

initDLErr:
MOVEQ !I-I,DO
BRA.S pdiRts

ILName:
DC.B 'intuition.library'
DC.B 0

DLName:
DC.B 'dos.library'
DC.B 0

GLName:
DC.B 'graphics. library ,
DC.B 0
DS.W 0

*---
_Expunge:

MOVE.L IntuitionBase,AI
LINKEXE CloseLibrary

MOVE.L GfxBase,AI
LINKEXE CloseLibrary

MOVE.L DOSBase,AI
LINKEXE CloseLibrary

*---

MOVEQ
RTS

!lO,DO

*---

MOVEQ
RTS

END

!lO,DO

tr:l

co

Listing of diablo_c/printertag.asm

TTL '$Header: printertag.asm,v 32.1 86/02/10 14:32:33 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

printer device dependent code tag

Source Control

$Header: printertag.asm,v 32.1 86/02/1Q 14:32:33 kodiak Exp $

$Locker: $

$Log: printertag .asm, v $
Revision 32.1 86/02/10 14:32:33 kodiak.
add null 8BitChars field

Revision 32.0 86/02/10 14:22:17 kodiak
added to rcs for updating

Revision 1.2 85/10/09 23:57:10 kodiak
replace reference to,pdata w/ prtbase

Revision 1.1 85/09/25 18:45:12 kodiak
double timeout: alpha is too slow to print 400 chars in 30 sec.

Revision 1.0 85/09/25 18:32:57 kodiak
added to rcs for updating in version 1

Revision 25.1 85/06/16 01:02:15 kodiak
*** empty log message ***

Revision 25.0 85/06/15 06:40:00 kodiak
added to rcs

Revision 25.0 85/06/13 18:53:36 kodiak
added to rcs

**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE

"exec/types.i"
lIexec/nodes.ill

*------

INCLUDE

INCLUDE

Imported Names

XREF
XREF
XREF
XREF
XREF
XREF
XREF
XREF

*------ Exported Names

XDEF

"exec/strings.i"

"devices/prtbase.i"

_Init
_Expunge
_Open
_Close

CommandTable
=printersegmentData
_DoSpecial
_Render

**

MOVEQ #O,DO ; show error 'for OpenLibrary()
RTS
DC.W VERSION
DC.W REVISION

DC.L printerName
DC.L Init
DC.L _Expunge
DC.L _Open
DC.L _Close
DC.B PPC_COLORGFX PrinterClass
DC.B PCC_YMCB ColorClass
DC.B 80 MaxColumns
DC.B 1 NumCharSets
DC.W 4 NumRows
DC.L 1024 MaxXDots
DC.L 0 MaxYDots
DC.W 120 XDotsInch
DC.W 120 YDotsInch
DC.L CommandTable Commands
DC.L =DoSpecial
DC.L _Render
DC.L 60 twice normal: slow alpha
DC.L 0 8BitChars

printerName:
STRING <'Diablo C-150'>

END

Listing of diablo_c/render.c

/***/
#include <exec/types.h>
#include <exec/nodes.h>
#include <exec/lists.h>
#include <exec/memory.h>
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

/* passed a color type */
/* for the DIABLO C-lSO */
int Render(ct, x, y, status)

UBYTE ct; /* the color type to use (0, 1, 2 or 3) */
/* the x & y co-ordinates */ UWlRD x, y;
/* or the pc & pr print values, or special */

UBYTE status; /* print status (O-init, I-enter pixel, 2-dump) */

static UWlRD ROWSIZE, ROWSIZES[4];
static UWlRD COLORSIZE;
static UWlRD BUFSIZE;
static UWlRD colors [4] ; /* color ptrs */
static BYTE huns,tens,ones, center; /* used to program buffer size */
static UWlRD bufptr; /* for double buffering; points to buffer 1 or 2 */
static UBYTE *ptr, bit_table[] ~ (128, 64, 32, 16, 8, 4, 2, 1];
UWlRD i; /* mics. var */
BYTE err; /* the error # */

switch(status)
{
case 0 /* alloc memory for printer buffer (uses double buffering) */

i ~ (center) ? ((PED->ped~axXDots - x) / 2) : 0;
/* get # of centering pixels */

ROWSIZE~(x+i+7)/8; /* pc/8 pixels per row on the DIABLO C-lSO */
huns~ROWSIZE/IOO;

tens~(ROWSIZE-huns*lOO)/lO;

ones~(ROWSIZE-huns*lOO-tens*lO);
ROWSIZE +~ 7; /* plus 7 cmd bytes */
COLORSIZE~(ROWSIZE*4); /*the size of each color buffer */
BUFSIZE~(COLORSIZE*4+3);

/* buffer size required for DIABLO c-lSO */
i ~ (i+7) / 8; /* convert to byte offset */
colors [0] 7 + i; /* black */
colors [1] COLORSIZE*2+7 + i; /* yellow */
colors [2] COLORSIZE+7 + i; /* magenta */
colors [3] COLORSIZE*3+7 + i; /* cyan */
for (i~O; i<4; i++) ROWSIZES[i] ~ i * ROWSIZE;

/* compute ROWSIZES */
PD->pd_PrintBuf ~ (UBYTE *)

AllocMem(BUFSIZE*2,MEMF_PUBLIC); /* alloc public mem */
if (err~(PD->pd_PrintBuf~~O» return(err);
if (err~(* (PD->pd_PWrite» ("\033\rP", 3» return (err) ;

/* reset printer to power-up */
if (er~pWait(l,O» return(err);
if (err~(*(PD->pd_PWrite» ("\03315\r" ,4» return (err) ;

/* set 1 margin to .5 inch. */
if (err~(*(PD->pd_PWrite»("\033r90\r",5» return(err);

/*

/* set r margin to 9 inch. */
bufptr~O; /* init to first buffer */
return(O); /* flag all ok */
break;

case 1 /* put pixel in buffer (called a max of 16384
* times/print cycle) */

i ~ bufptr+x/8+(y&3)*ROWSIZE+colors[ct];
/* calc which byte to use */

PD->pd_PrintBuf[i] ~ PD->pd_PrintBuf[i] I (1 « (7-(x&7»);
/* fill print buffer */

PD->pd_PrintBuf[bufptr+(x»3)+ROWSIZES[y&3]+colors[ct]]
I~ bit_table[x&7]; /* fill print buffer */

return(O); /* flag all ok */
break;

case 2 /* dump buffer to printer */
if (err~(*(pD->pd_PWrite»(&(PD->pd_PrintBuf[bufptr]),

BUFSIZE» return(err);
bufpt~BUFSIZE-bufptr; /* switch to other buffer */
return(O); /* flag all ok */
break;

case 3 /* clear and init buffer */
for (i~bufptr; i<BUFSIZE+bufptr; i++)

PD->pd_PrintBuf[i] ~ 0; /* clear buffer */
ptr ~ &PD->pd_PrintBuf[bufptr];
i ~ BUFSIZE;
while(i--) *ptr++ ~ 0; /* clear buffer */
for (i~O; i<16; i++) (

]

PD->pd_PrintBuf[bufptr+i*ROWSIZE] ~ 27;
PD->pd_PrintBuf{bufptr+i*ROWSIZE+l] 'g' ;
PD->pd_PrintBuf[bufptr+i*ROWSIZE+2] i+'O';
PD->pd_PrintBuf[bufptr+i*ROWSIZE+3] huns + '0';
PD->pd_PrintBuf[bufptr+i*ROWSIZE+4] tens + '0';
PD->pd_PrintBuf[bufptr+i*ROWSIZE+S] ones + '0';
PD->pd_PrintBuf[bufptr+i*ROWSIZE+6] " ';

/* select # of bytes for each line */

PD->pd_PrintBuf[bufptr+BUFSIZE-3] 27;
PD->pd_PrintBuf[bufptr+BUFSIZE-2] 'k';
PD->pd_PrintBuf[bufptr+BUFSIZE-l] '1';
return(O); /* flag all ok */
break;

case 4 /* free the print buffer memory */
er~(*(PD->pd_PBothReady»();

/* wait for both buffers to be clear */
FreeMem(PD->pd_PrintBuf,BUFSIZE*2);

/* free the print buffers memory */
return(err); /* return status */
break;

case 5 /* io_special flags call */
center x & SPECIAL_CENTER; /* set center flag */
return(O); /* flag all ok */
break;

default: return(O);
}

/* flag all ok */

Listing of epson/data.c

/* epson XSo series */

/****** printer.device/printers/Epson_functions **************************

*
* Epson x-SO functions implemented:
* aRIS, aINO, aNEL, aSGRO, aSGR3, aSGR23, aSGR4, aSGR24, aSGRl, aSGR22,
* aSHORPO, aSHORPl, aSHORP2, aSHORP3, aSHORP4, aSHORP5, aSHORP6,
* aDENl, aDEN2, aDEN3, aDEN4,
* aSUSO, aSUSl, aSUS2, aSUS3, aSUS4,
* aFNTO, aFNTl, aFNT2, aFNT3, aFNT4, aFNT5, aFNT6, aFNT7, aFNT8
* aFNT9, aFNTlO,
* aPROPl, aPROP2, aJFY5, aJFY7, aJFY6, aJFYO, aJFY3, aJFY2,
* aVERPO, aVERPl, aSLPP, aPERF, aPERFO,
* aTBC3, aTBC4, aTBCALL, aTBSALL
* special functions implemented:
* aRIN, aSUSO, aSUSl, aSUS2, aSUS3, aSUS4,
* aPLU, aPLD, aVERPO, aVERPl, aSLRM, aINO, aCAM

*
**/

char *CommandTable[] ~(
"\375\033@\375", /*reset
"\377", /*initialize*/
"\012", /* If
"\015\012", /* return,lf
"\377", /* reverse If

/*normal char set
"\0335\033-\376\033F",
"\0334", /*italics on
"\0335", /*italics off
"\033-\001", /*underline on
"\033-\376", /*underline off
"\033E", /*boldface on
"\033F", /*boldface off
"\377", /* set foreground
"\377", /* set background

/* normal char set
"\033P\022\033W\376" ,
"\033M" , /*elite on
"\033P" , /*elite off
"\017", /*condensed(fine)
"\022" , /*condensed off
"\033W\001" , /*enlarged on
"\033W\376" , /*enlarged off

"\377", /*shadow print on
"\377", /*shadow print off
"\033G" , /*doublestrike on
"\033H" , /*doublestrike off
"\033x\001" , /* NLQ on
"\033x\376 " , /* NLQ off

"\033S\376", /*superscript on
"\033T" , /*superscript off

RIS

INO
NEL
RI

SGR 0

SGR 3
SGR 23
SGR 4
SGR 24
SGR 1
SGR 22

color */
color */

SHORP

SHORP
SHORP

on SHORP
SHORP
SHORP
SHORP

DEN6
DEN5
DEN4
DEN3
DEN2
DENI

ESCc */

ESCD */
ESCE */
ESCM */

ESC[Om */

ESC[3m */
ESC[23m */
ESC [4m */
ESC[24m */
ESC[lm */
ESC[22m */

ESC [Ow */

ESC[2w */
ESC[lw */
ESC[4w */
ESC[3w */
ESC[6w */
ESC[5w */

ESC[6"z */
ESC[5"z */
ESC[4"z */
ESC[3"z */
ESC[2"z */
ESC[l"z */

ESC[2u */
ESC[lu */

} ;

"\033S\001",
"\033T" ,
"\033T" ,
"\377",
"\377",

"\033R\376" ,
"\033R\001" ,
"\033R\002" ,
"\033R\003",
"\033R\004",
"\033R\005",
"\033R\006",
"\033R\007",
"\033R\010",
"\033R\011",
"\033R\012",

/*subscript on
/*subscript off
/*nonnalize
/* partial line up PLU
/* partial line down PLD

/*US char set
/*French char set
/*Gennan char set
/*UK char set
/*Danish I char set
/*Sweden char set
/*Italian char set
/*Spanish char set
/*Japanese char set
/*Norweign char set
/*Danish II char set

FNTO
FNTI
FNT2
FNT3
FNT4
FNT5
FNT6
FNT7
FNT8
FNT9
FNTIO

"\033pl", /*proportionalon PROP
"\033pO", /*proportionaloff PROP
"\377", /*proportional clear PROP
"\377", /*set prop offset TSS */

ESC[4u */
ESC[3u */
ESC[Ou */
ESCL */
ESCK */

ESC(B */
ESC(R */
ESC(K */
ESC(A */
ESC E */
ESC(H */
ESC(Y */
ESC(Z */
ESC(J */
ESC(6 */
ESC(C */

ESC[2p */
ESC[lp */

ESC[Op */

"\033x\001 \033a\376" , /*auto left justify JFY5
"\033x\001 \033a\002" , /*auto right justify JFY7
"\033x\001\033a\003" , /*auto full justify JFY6
"\033a\376", /*auto justify/center off ESC[O F */

ESC[5 F */
ESC[7 F */
ESC[6 F */

"\377", /*place holder JFY3 ESC[3 F */
"\033x\001\033a\001", /*auto center on JFY2 ESC[2 F */

"\0330" ,
"\0332" ,
"\033C" ,
"\033N" ,
"\0330" ,

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

/* 1/8" line space VERP
/* 1/6" line spacing VERP
/* set fonn length SLPP
/* perf skip n
/* perf skip off

/* Left margin set
/* Right margin set
/* top margin set
/* Bottom marg set
/* T&B margin set STBM
/* L&R margin set SLRM
/* Clear margins

ESC[OZ */
ESC[lz */
ESC[Pnt */
ESC[nq */
ESC[Oq */

ESC[2x */
ESC[3x */
ESC[4x */
ESC[5x */
ESC[Pnl;Pn2r */
ESC[Pnl;Pn2s */
ESC[Ox */

"\377", /* Set horiz tab HTS ESCH */
"\377", /* Set vertical tab VTS ESCJ */
"\377", /* Clr horiz tab TBC 0 ESC[Og */
"\033D\376", /* Clear all h tabs TBC 3 ESC[3g */
"\377", /* Clr vertical tab TBC 1 ESC[lg */
"\377", /* Clr all v tabs TBC 4 ESC[4g */
"\033D\376" , /* Clr all h & v tabs ESC#4 */
"\33D\010\020\030\040\050\060\070\100\llO\120\130\376 " ,

l/*set default tabs */
"\377" /* extended command */

Listing of epson/dospecial.c

/* epson X80 special commands */

/****** printer.device/printersjEpson_special_functions ******************

*
* NAME
* Epson X80 special functions

*
**1

#include "exec/types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;

DoSpecial(command,outputBuffer,vline,currentVMI,crlfFlag,Parms)
char outputBuffer[];
UWORD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Parms [] ;

int x=O;
int y=O;
static char initMarg[] ="\375\0331L\033Qq\375";

static char
initThisPrinter[]="\033x\001\0332\022\0335\033P\033-\376\033F\n\033W";

if (*command==aRIN) [
while(x<18) [outputBuffer[x]=initThisPrinter[x] ;x++;}
outputBuffer[x++]='\OOO' ;
outputBuffer[12]='\000' ;

if«PD->pd_Preferences.PrintQuality)==DRAFT)outputBuffer[2]='\000';

currentVMI=36; / assume 1/6 line spacing */
if«PD->pd_Preferences.PrintSpacing)==EIGHT_LPI) [/* wrong again */

outputBuffer[4]='0' ;
*currentVMI=27;

}
if «PD->pd_Preferences.PrintPitch) != PICA)outputBuffer[x++] ='\033 , ;
if«PD->pd_Preferences.PrintPitch)==ELITE)outputBuffer[x++]='M';

else if«PD->pd_Preferences.PrintPitch)==FINE)
outputBuffer[x++]='\017' ;

Parms[O]=(PD->pd_Preferences.PrintLeftMargin);
parms[l]=(PD->pd_Preferences.PrintRightMargin);
*command=aSLRM;

if(*command==aSLRM) [
PD->pd_PWaitEnabled=253; /* wait after this character */

if(Parms[01~~0)initMarg[31~0;
else initMarg[31~Parms[01-1;
initMarg[61~Parms[11;
while(y<8)outputBuffer[x++l~initMarg[y++l;
return(x);

if(*command~~aCAM) [
PD->pd_PWaitEnabled~253;
initMarg[31~0;

if(PD->pd_Preferences.PrintPitch ~~ FlNE)initMarg[61~96;
else if(PD->pd_Preferences.PrintPitch ~~ ELITE)initMarg[61~137;
else initMarg[61~80;

while(y<8)outputBuffer[x++l~initMarg[y++l;
return(x);

if(*command~~aPLU) (
if((*vline)~~O)((*vline)~l; *cornmand~aSUS2; return(O);}
if((*vline)<O)((*vline)~O; *cornmand~aSUS3; return(O);}
return(-l);

if(*command~~aPLD) (
if((*vline)~~O)((*vline)~(-l); *command~aSUS4; return(O);}
if((*vline»O)((*vline)~O; *command~aSUS1; return(O);}
return (-1) ;

if(*command~~aSUSO) *vline~O;
if(*command~~aSUS1) *vline~O;
if(*command~~aSUS2) *vline~l;

if(*command~~aSUS3) *vline~O;
it(*command~~aSUS4) *vline~(-l);

if(*command~~aVERPO) *currentVMI~27;

if(*command~~aVERP1) *currentVMI~36;

if(*command~~aIND) (
outputBuffer[x++l~'\033' ;
outputBuffer[x++l~'J' ;
outputBuffer[x++l~ *currentVMI;
return(x);

if(*command~~aRIS) PD->pd_PWaitEnabled~253;

return(O);

Listing of epson/init.asm

TTL '$Header: init.asm,v 1.1 85/10/09 19:27:14 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval syst6n, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
*
*
*

printer device functions

Source control

* $Header: init.asm,v 1.1 85/10/09 19:27:14 kodiak EXp $
* $Locker: $
* $Log: init.asm,v $
* Revision 1.1 85/10/09 19:27:14 kodiak
* remove stdout variable
* Revision 1.0 85/10/09 19:23:12 kodiak
* added to rcs for updating in version 1
* Revision 25.0 85/06/16 01:01:22 kodiak
* added to rcs
*
**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE

"exec/types.i"
"exec/nodes. ill
"exec/lists.i"
"exec/memory.ill
"exec/ports.i"
"exec/libraries.i"

"macros.ill

*------ Imported Functions ---

XREF_EXE
XREF_EXE
XREF

XREF

CloseLibrary
OpenLibrary
_AbsExecBase

*------ Exported Globals

XDEF
XDEF

Init
_Expunge

XDEF _Open
XDEF _Close
XDEF _PD
XDEF _PED
XDEF _SysBase
XDEF DOSBase
XDEF :::GfxBase
XDEF IntuitionBase -

**

_SysBase
_DOS Base

SECTION
DC.L
DC.L
DC.L
DC.L

GfxBase DC.L
-IntuitionBase DC.L

printer ,DATA
o
o
o
o
o
o

**
SECTION printer, CODE

*

*

*

pdiRts:

initPAErr:

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

4(A7) ,_PD
PEDData(PC) ,AO

AO,_PED
A6,-(A7)

AbsExecBase,A6
A6,_sysBase

;------ open the dos library
LEA DLName(PC) ,Ai
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO,_DOSBase
BEQ initDLErr

;------ open the graphics library
LEA GLName(PC) ,Ai
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, GfxBase
BEQ initGLErr

open the intuition library
ILName(PC) ,Ai LEA

MOVEQ
CALLEXE
MOVE.L
BEQ

MOVEQ

#O,DO
OpenLibrary
DO, IntuitionBase
initILErr

#O,DO

MOVE.L (A7)+,A6
RTS

MOVE.L IntuitionBase, Ai
LINKEXE CloseLibrary

initILErr:
MOVE.L _GfxBase,Al
LINKEXE CloseLibrary

initGLErr:
MOVE.L _DOSBase, Ai
LINKEXE CloseLibrary

initDLErr:
MOVEQ #-l,DO
BRA.S pdiRts

ILName:
DC.B 'intuition. library'
DC.B 0

DLName:
DC.B 'dos.library'
DC.B 0

GLName:
DC.B 'graphics. library'
DC.B 0
DS.W 0

*---
_Expunge:

MOVE.L IntuitionBase, Ai
LINKEXE CloseLibrary

MOVE.L GfxBase, Ai
LINKEXE CloseLiprary

MOVE.L DOSBase, Ai
LINKEXE CloseLibrary

*---

MOVEQ
RTS

#O,DO

*---

_Close:
MOVEQ
RTS

END

#O,DO

M

....
<:.n

Listing of epson/printertag.asm

TTL '$Header: printertag.asm,v 32.2 86/02/12 18:15:55 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

printer device dependent code tag

Source Control

$Header: printertag.asm,v 32.2 86/02/12 18:15:55 kodiak Exp $

$Locker: $
$Log: printertag.asm,v $
Revision 32.2 86/02/12 18:15:55 kodiak
YDotsInch -) 72
Revision 32.1 86/02/10 14:32:42 kodiak
add null 8BitChars field
Revision 32.0 86/02/10 14:22:38 kodiak
added to rcs for updating
Revision 1.1 85/10/09 23:57:27 kodiak
replace reference to pdata w/ prtbase
Revision 1.0 85/10/09 23:57:21 kodiak
added to rcs for updating in version 1
Revision 29.1 85/08/19 08:32:10 kodiak
flag a graphics printer, not BWALPHA
Revision 29.0 85/08/19 08:31:06 kodiak
added to rcs for updating in version 29
Revision 25.1 85/06/16 01:02:15 kodiak
*** empty log message ***

Revision 25.0 85/06/15 06:40:00 kodiak
added to rcs

Revision 25.0 85/06/13 18:53:36 kodiak
added to rcs

**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE

"exec/types.i"
"exec/nodes.ill
"exec/strings.i"

*----~-

INCLUDE

Imported Names

XREF
XREF
XREF
XREF
XREF
XREF
XREF
XREF

*------ Exported Names

XDEF

"devices/prtbase.i"

_Init
_Expunge
_Open
_Close

CommandTable
=printersegmentData
_DoSpecial
_Render

**

MOVEQ
RTS
DC.W
DC.W

DC.L
DC.L
DC.L
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L

printerName:
STRING

END

#O,DO

VERSION
REVISION

printerName
Init

_Expunge
_Open
_Close
PPC_BWGFX
PCC_BW
80
10
8
960
0
120
72
_CommandTable
_DoSpecial
_Render
30
0

<'Epson')

; show error for OpenLibrary()

PrinterClass
colorClass
MaxColumns
NumCharSets
NumRows
MaxXDots
MaxYDots
XDotsInch
YDotsInch
Commands

8BitChars

epson/render.c

/***/
#include <exec/types.h>
#include <exec/nodes.h>
#include <exec/lists.h>
#include <exec/memory.h>
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

/* for the EPSON */
int Render(ct, x, y, status)
UBYTE ct; /* null for b/w printers */
UWORD x, y; /* the x & y co-ordinates */

/* or the pc & pr print values, or special */
UBYTE status; /* print status (O-init, I-enter pixel, 2-dump) */
{

static UWORD ROWSIZE;
static UWORD BUFSIZE;
static UWORD bufptr, offset;

static BYTE center, spacing;
static UBYTE *ptr, bit_table[] ~ [128, 64, 32, 16, 8, 4, 2, I};

UWORD i; /* mics. var */
BYTE err; /* the error # * /

switch(status)
{
case 0: /* alloc memory for printer buffer */

i ~ (center) ? «PED->ped_MaxXDots - x) / 2) : 0;
offset ~ i + 4;
ROWSIZE~x+i; /* row size required for EPSON */
BUFSIZE~(6+ROWSIZE); /* buffer size required for EPSON */
PD->pd_PrintBuf ~ (UBYTE *)

AllocMem(BUFSIZE*2,MEMF_PUBLIC); /* alloc public mem */
if (err~(PD->pd_PrintBuf ~~ 0» return(err);
/* reset printer to power-up state */
if (err~(* (PD->pd_pWrite)) ("\033@" ,2» return (err) ;
if (er~PWait(l,O» return(err);

/* special epson spacing code */
if (spacing~~7) [

else

if (er~(*(PD->pd_pWrite» ("\0331" ,2» return (err) ;
/* select 7/72 inch spacing */

if (err~(* (PD->pd_PWrite» ("\0333\030",3» return (err) ;
/* select 24/216 (8/72) inch spacing */

/* end of special epson spacing code */
if (err~(*(pD->pd_PWrite»("\033Ul",3» return(err);

/* set unidirec mode */
bufptr~O;

return(O) ;
break;

case 1 :

/* flag all ok */

/* put pixel in buffer */

i ~ bufptr+x+4; /* calc which byte to use */
PD->pd_PrintBuf[i] ~ PD->pd_PrintBuf[i] I (1 « (7-(y&7»);

/* fill print buffer */
PD->pd_PrintBuf[bufptr+x+offset] r~ bit_table[y&7];
return(O); /* flag all ok */
break;

case 2 /* dump buffer to printer */
if (err~(*(PD->pd_PWrite»(&(PD->pd_PrintBuf[bufptr]),

BUFSIZE» return(err);
bufptr~BUFSIZE-bufptr;

return(O); /* flag all ok */
break;

case 3 : /* clear and init buffer */
for (i~bufptr; i<bufptr+BUFSIZE; i++)

PD->pd_PrintBuf[i] ~ 0; /* clear buffer */
ptr ~ &PD->pd_PrintBuf[bufptr];
1 ~ BUFSIZE;
while (i--) *ptr++ ~ 0;
PD->pd_PrintBuf[bufptr] 27;
PD->pd_PrintBuf[bufptr+l] 'L';
PD->pd_PrintBuf[bufptr+2] ~ ROWSIZE
PD->pd_PrintBuf[bufptr+3] ~ ROWSIZE
PD->pd_PrintBuf[bufptr+BUFSIZE-2]
PD->pd_PrintBuf[bufptr+BUFSIZE-l]
return(O); /* flag all ok */
break;

& Oxff;
» 8;
10;
13;

case 4: /* free the print buffer memory */
er~(*(PD->pd_PWrite» ("\033@" ,2);

/* reset printer to power-up state */
if (!err) er~(*(PD->pd_PBothReady»();

/* wait for both buffers to empty */
FreeMem(pD->pd_PrintBuf,BUFSIZE*2); /* free print buffer's memory */
return(err); /* return status */
break;

case 5 : /* io_special flag call */
center ~ x & SPECIAL_CENTER; /* set center flag */

/* special code for epson spacing */
if (PD->pd_Preferences.PaperSize~~CUSTOM) [

PED->ped_YDotsInch ~ (UWORD) 82;

else

/* for 7/72 spacing */
/* (72/7*8 gives 82.3)/ there are 82 dpi in y */
spacing ~ 7; /* 7/72 inch spacing */

/* else use default of 8/72 spacing */
PED->ped_YDotsInch ~ (UWORD) 72;
/* (72/8*8 gives 72); there are 72 dpi in y */
spacing ~ 8; /* 8/72 inch spacing */

return(O) ;
break;

/* flag all ok */

default: return(O);
]

Listing for hpplus/data.c

/* HP command table */

/****** printer.device/HP_LaserJet_Plus_functions ************************

*
* NAME
* HP LaserJet 2686A functions implemented:
*

aRIS, aIND, aNEL, *
*
*
*
*
*
*
*

aSGRO, aSGR3, aSGR23, aSGR4, aSGR24, aSGRl, aSGR22,
aSHORPO, aSHORPl, aSHORP2, aSHORP3, aSHORP4
aDEN3, aDEN4, aPLU, aPLD,
aFNTO, aFNT3, aFNT8,
aPROPO, aPROPl, aPROP2,
aVERPO, aVERPl, aPERF, aPERFO, aCAM

**/

char *CommandTable[l~[
"\375\033E\375", /*reset*/
"\377", /*initialize*/
"\012", /* If IND

NEL "\015\012", /* return,lf
"\033&a-lR" ,

/* reverse If RI

/*normal char set
/*italics on*/

/*italics off*/
/*underline on*/
/*underline off */
/*boldface on*/

/*boldface off*/

"\033&d@\033(sbS",
"\033(slS",
"\033(sS",
"\033&dD",
"\033&d@",
"\033(s5B",
"\033(sB",
"\377", /* set foreground color */

/* set background color */ "\377",

"\033(slOhlT",
"\033(s12h2T",
"\033(slOhlT",
"\033(s15H" ,/*
"\033(slOH",/*
"\377",
"\377",

"\033 (s7B" ,
"\033(sB",
"\033(s3B" ,
"\033(sB",
"\377",
"\377",

"\377",
"\377",
"\377",
"\377",
"\377",

/* normal pitch */
/* elite on*/
/* elite off*/

condensed on*/
condensed off*/
/* enlarged on*/
/* enlarged off*/

/*shadow print on*/
/*shadow print off*/
/*doublestrike on*/'
/*doublestrike off*/
/* NLQ on*/
/* NLQ off*/

/*superscript on*/
/*superscript off*/
/*subscript on*/
/*subscript off*/
/* normalize */

ESCD */
ESCE */

ESCM */

SGR 0 */

} ;

"\033&a-.5R",
"\033~" ,

"\033(U",
"\033(F",
"\033(G",
"\033(lE" ,
"\033(D",
"\033(S",
"\033(I",
"\033(lS" ,
"\033(8K",
"\033(D",
"\033(D" ,

"\033(slP",
"\033(sP",
"\033(sP",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

"\033&18D",
"\033&16D",
"\377",
"\033&11L",
"\033&lL",

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\0339",

"\377",
"\377",
"\377",
"\377" ,
"\377",
"\377",
"\377",
"\377",
"\377"

/* partial line up PLU
/* partial line down PLD

/*US char set */
/*French char set*/
/*German char set*/
/*UK char set*/
/*Danish I char set*/
/*SWeden char set*/
/*Italian char set*/
/*Spanish char set*/
/*Japanese char set*/
/*Norweigen char set*/
/*Danish II char set*/

/*proportional on*/
/*proportional off*/
/*proportional clear*/
/*set prop offset*/
/*auto left justify on*/
/*auto right justify on*/
/*auto full justify on*/
/*auto justify/center off*/
/*place holder */
/*auto center on*/

/* 1/8" line space*/
/* 1/6" line spacing*/
/* set form length n */
/* perf skip n */

/* Perf skip off */

/* Left margin set */
/* Right margin set */
/* Top margin set */
/* Bottom marg set */
/* T&B margin set STBM
/* L&R margin set SLRM
/* Clear margins */

/* Set horiz tab */
/* Set vertical tab */
/* Clr horiz tab */
/* Clear all h tabs */
/* Clear vertical tab */
/* Clr all v tabs TBC
/* Clr all h & v tabs */
/* set default tabs */
/* extended commands */

4 */

ESCL */
ESCK */

ESC[Pnl;Pn2r */
ESC[Pnl;Pn2s */

Listing for hpplus/density.c

/* ***** density.c ***** */
#include <exec/types.h>
#include "devices/prtbase.h"
#include "devices/printer.h"

extern struct PrinterExtendedData *PED;
extern char density[];

SetDensity(level)
UIDRD level;
{

switch (level) {
case SPECIAL_DENSITY1:

PED-)ped_MaxXDots ~ 600;
PED->ped_MaxYDots ~ 795;
PED-)ped_XDotsInch ~ PED->ped_YDotsInch
density[3] '0' ;
density[4] '7';
density [5] '5';
break;

case SPECIAL_DENSITY2:
PED->ped_MaxXDots ~ 800;
PED->ped_MaxYDots ~ 1060;
PED-)ped_XDotsInch ~ PED-)ped_YDotsInch
density [3] '1' ;
densi ty [4] , 0 ' ;
densi ty [5] , 0' ;
break;

case SPECIAL_DENSITY3:
PED->ped_MaxXDots ~ 1200;
PED-)ped_MaxYDots '= 1590;
PED->ped_XDotsInch ~ PED->ped_YDotsInch
density [3] '1';
densi ty [4] , 5 ' ;
density[5] '0';
break;

case SPECIAL_DENSITY4:
PED->ped_MaxXDots ~ 2400;
PED->ped_MaxYDots ~ 3180;
PED->ped_XDotsInch ~ PED->ped_YDotsInch
densi ty [3] , 3 ' ;
densi ty [4] , 0 ' ;
densi ty [5] , 0 ' ;
break;

default: break;
}

75;

100;

150;

300;

Listing for hpplus/dospecial.c

/* hp special printer functions */

/****** printer.device/printers/HP_LaserJet_Plus_special_functions
*
* NAME

*
*
*
*
*
*
*

HP LaserJet 2686A special functions implemented:

aRIN,
aSUSO, aSUS1, aSUS2, aSUS3, aSUS4
aPLU, aPLD, aVERPO, aVERP1,
aSLPP, aSLRM, aSTBM

**/

#include "exec/types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;
UIDRD textlength,topmargin;

DoSpecial(command,outputBuffer,vline,currentVMI,crlfFlag,Parms)
char outputBuffer[];
UIDRD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Parms [] ;

int x~O;
int y~O;
int j~O;
static char initThisPrinter[]~"\033&d@\033&16D\033(sblOhpsltul2V";
static char ini tMarg [] ~"\033&a0001000M" ;
static char initTMarg[] ~"\033&1000eOOOF";
static char initFonn[] ~"\033&1002eOOOF";

if(*cornmand~~aRIN) {
while(x<24){outputBuffer[x]~initThisPrinter[x];x++;}
if«PD->pd_Preferences.PrintSpacing)~~EIGHT_LPI) (/* wrong again */

outputBuffer[7]~'8' ;

if«pD-)pd_Preferences.PrintPitch)~~ELITE)

outputBuffer[14]~'2' ;
outputBuffer[18]~'2' ;

}
if«pD-)pd_Preferences.PrintPitch)~~FINE)

outputBuffer[14]~'5' ;
}
j~x; /* set the fonnlength~textlength, top margin of 2 */
textlength~PD->pd_Preferences.PaperLength;

topmargin~2;

while(y<ll)outputBuffer[x++]~initFonn[y++];

nurnberString(textlength,j+7,outputBuffer);
y=O;

Parms[O)=(po->pd_Preferences.PrintLeftMargin);
Parms[l)=(po->pd_Preferences.PrintRightMargin);
*corrmand=aSLRM;

if(*command==aSLRM)
j=x;
while(y<ll)outputBuffer[x++)=initMarg[y++);
numberString(Parms[0)-1,j+3,outputBuffer);
numberString(Parms[1)-1,j+7,outputBuffer);
return (x) ;

if((*command==aSUS2)&&(*vline==0» {*command=aPLU; *vline=l; return(O);]
if((*command==aSUS2)&&(*vline<0» {*command=aRI; *vline=l; return(O);]
if((*command==aSUSl)&&(*vline)O» {*command=aPLD; *vline=O; return(O);]

if((*command==aSUS4)&&(*vline==0» {*command=aPLD; *vline=(-l); return(O);]
if((*command==aSUS4)&&(*vline)0» {*command=aIND; *vline=(-l); return(O);]
if((*command==aSUS3)&&(*vline<0» {*command=aPLU; *vline=O; return(O);]

if(*command==aSUSO)
{
if(*vline)O) *command=aPLD;
if(*vline(O) *command=aPLU;
*vline=O;
return(O);
]

if(*command==aPLU){(*vline)++; return(O);]

if(*command==aPLD){(*vline)--; return(O);]

if (*command==aSTBM) {

if(Parms[O)== O)Parms[O)=topmargin;
else topmargin = --Parms[O);

if(Parms[l)== O)Parms[l)=textlength;
else textlength=Parms[l);

while(x<ll){outputBuffer[x]=initTMarg[x); x++;]
numberString(Parms[O) ,3,outputBuffer);
numberstring(Parms[1)-Parms[0],7,outputBuffer);
return(x);
]

if(*command==aSLPP) {
while(x(ll){outputBuffer[x)=initForm[x); x++;}
numberString(topmargin,3,outputBuffer); /*restore textlength,margin*/
numberString(textlength,7,outputBuffer);
return(x);
]

if(*command==aRIS) Po->pd_PWaitEnabled=253;

return(O);

VOID
numberString(Param, x, outputBuffer)

BYTE Param;
int x;
char outputBuffer[);

if (Param>199) {outputBuffer[x++)='2 , ; Param-=200;]
else if (Param>99) {outputBuffer[x++]='l' ; Param-=lOO;]
else outputBuffer[x++]=' 0' ; /* always return 3 digits */

if(Param)9)outputBuffer[x++)=(BYTE) (Param/lO)+'O' ;
else outputBuffer[x++]='O';

outputBuffer[x++]=Param%lO+'O' ;
]

Close()
{
/*(*(Po-)pd_PWrite» ("\033E" ,2) ;*/
(*(Po-)pd_PWrite» ("\014" ,1);
(*(PO-)pd_pBothReady»();
return(O);
]

t.!J

t-:)
0

Listing for hpplus/init.asm

TTL '$Header: init.asm,v 1.1 85/10/09 19:27:38 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, ch~cal,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

printer device functions

Source Control

$Header: init.asm,v 1.1 85/10/09 19:27:38 kodiak Exp $
$Locker: $
$Log: init.asm,v $
Revision 1.1 85/10/09 19:27:38 kodiak
remove stdout variable
Revision 1.0 85/10/09 19:23:53 kodiak
added to rcs for Updating in version 1
Revision 29.1 85/08/02 16:58:43 kodiak
remove dummy _Close routine -- it's used to finish print of last page.
Revision 29.0 85/08/02 16:58:17 kodiak
added to rcs for updating in version 29
Revision 25.0 85/06/16 01:01:22 kodiak
ll.dded to rcs

**

SECTION printer

*------ Included Files ---

*----_.-

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE

"exec/types.i"
"exec/nodes.i"
"exec/lists.i"
"exec/lllEUtory.i"
"exec/ports.i"
"exec/libraries.i"

"macros.ill

Imported Functions ---

XREF_EXE
XREF_EXE
XREF

XREF

CloseLibrary
OpenLibrary
_AbsExecBase

*------ Exported Globals

XDEF Init
XDEF _Expunge
XDEF _Open
XDEF _PD
XDEF _PED
XDEF _SysBase
XDEF _DOSBase
XDEF _GfxBase
XDEF IntuitionBase

********************.**
SECTION printer, DATA

_PD DC.L 0
_PED DC.L 0
_SysBase DC.L 0
_DOS Base DC.L 0
_GfxBase DC.L 0

IntuitionBase DC.L 0 -

**

*

*

*

pdiRts:

SECTION

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

printer, CODE

4(A7),_PD
_PEDData(PC),AO
AO, PED
A6,=(A7)
_AbsExecBase,A6
A6,_SysBase

;------ opeQthe dos library
LEA DLName(PC) ,AI
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, DOSBase
BEQ initDLErr

;------ open the graphics library
LEA GLName(PC) ,AI
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, GfxBase
BEQ initGLErr

open the intuition library
ILName(PC) ,AI LEA

MOVEQ
CALLEXE
MOVE.L
BEQ

MOVEQ

#O,DO
OpenLibrary
DO,_IntuitionBase
initILErr

#O,DO

MOVE.L (A7)+,A6

trj

t-.? ,....

RTS

initPAErr:
MOVE.L _IntuitionBase,Al
LINKEXE CloseLibrary

initILErr:
MOVE.L _GfxBase,Al
LINKEXE CloseLibrary

initGLErr:
MOVE.L _OOSBase,Al
LINKEXE CloseLibrary

initDLErr:
MOVEQ !I-l,DO
BRA.S pdiRts

ILName:
DC.B 'intuition.library'
DC.B 0

DLName:
DC.B 'dos.library'
DC.B 0

GLName:
DC.B 'graphics. library'
DC.B 0
DS.W 0

*---

_Expunge:
MOVE.L IntuitionBase,Al
LINKEXE CloseLibrary

MOVE.L GfxBase,Al
LINKEXE CloseLibrary

MOVE.L _OOSBase,Al
LINKEXE CloseLibrary

*---

MOVEQ
RTS

END

!lO,DO

Listing for hpplus/printertag.asm

TTL '$Header: printertag.asm,v 32.1 86/02/10 14:33:17 kodiak EXp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building !lD,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
* printer device dependent code tag
*
*
*
*
*

Source Control

$Header: printertag.asm,v 32.1 86/02/10 14:33:17 kodiak Exp $

* $Locker: $
*
* $Log: printertag.asm,v $
* Revision 32.1 86/02/10 14:33:17 kodiak
* add null 8BitChars field
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Revision 32.0 86/02/10 14:23:56 kodiak
added to rcs for updating

Revision 1.2 85/10/09 23:58:23 kodiak
replace reference to pdata w/ prtbase

Revision 1.1 85/10/09 16:11:31 kodiak
daveb density changes

Revision 25.1 85/06/16 01:02:15 kodiak
*** empty log message ***

Revision 25.0 85/06/15 06:40:00 kodiak
added to rcs

Revision 25.0 85/06/13 18:53:36 kodiak
added to rcs

*
**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE

"exec/types.i"
lIexec/nodes.ill
"exec/strings.i lt

tr:1

~
~

*------

*------

INCLUDE

Imported Names

XREF
XREF
XREF
XREF
XREF
XREF
XREF
XREF

Exported Names

XDEF

"devices/prtbase.i"

_Init
_Expunge
_open

Close
-CommandTable
=printersegmentData
_DoSpecial
_Render

**

MOVEQ #O,DO ; show error for OpenLibrary()
RTS
DC.W VERSION
DC.W REVISION

_PEDData:
DC.L printerName
DC.L Init
DC.L _Expunge
DC.L _open
DC.L _Close
DC.B PPC_BWGFX PrinterClass
DC.B PCC_BW ColorClass
DC.B 0 Maxcolumns
DC.B 0 NumCharSets
DC.W 1 NumRows
DC.L 800 MaxXDots
DC.L 1020 MaxYDots
DC.W 100 XDotsInch
DC.W 100 YDotsInch
DC.L CommandTable ; Commands
DC.L =Dospecial
DC.L _Render
DC.L 30
DC.L 0 8Bitchars

printerName:
STRING <'HP LaserJet Plus'>

END

Listing for hpplus/render.c

1***/
#include <exec/types.h>
#include <exec/nodes.h>
#include <exec/lists.h>
#include <execjmemory.h>
#include "devices/prtbase.h"
#include "devices/printer.h"

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;
extern SetDensity();
char density[8] ~ "\033*tlOOR";

/* for the HP+ 2686A
int Render(ct, x, y,

UBYTE ct;
UIDRD x, y;

*/
status)

/* null for b/w printers */
/* the x & y co-ordinates */

UBYTE status;
/* or the pc & pr print values, or special */
/* print status (O-init, I-enter pixel,

* 2-dump, 3-close, 4-end) */

static UIDRD ROWSIZE;
static
static
static

UIDRD BUFSIZE, offset;
BYTE center , huns , tens ,ones; /* used to program buffer size */
UIDRD bufptr; /* used for double buffering;

* points to buffer 1 or 2 */
static UBYTE *ptr, bit_table[] = (128, 64, 32, 16, 8, 4, 2, I};
UIDRD i;
BYTE err;

/* mics. var */
/* the error # */

#ifdef DEBUG
kprintf("hp render(%ld, %ld, %ld, %ld, %ld);\n", ct, x, y, status);
#endif

switch (stat us)
{
case 0: /* alloc memory for printer buffer (uses double buffering) */

i ~ (center) ? ((PED->ped_MaxXDots - x) / 2) : 0;
offset ~ (i+7)/8 + 7; /* calc centering offset */

ROWSIZE~(x+7+i)/8; /* row size required for HP */
huns~ROWSIZE/IOO;
tens~(ROWSIZE-huns*lOO)/lO;

ones~(ROWSIZE-huns*lOO-tens*lO);
BUFSIZE~(ROWSIZE+7); /* buffer size required for HP */
PD-)pd_PrintBuf ~ (UBYTE *)

AllocMem(BUFSIZE*2,MEMF_PUBLIC); /* alloc public mem */
if (err~(PD-)pd PrintBuf ~~ 0» return(err);
if (err~(* (PD-)pd_pWrite» ("\033E" ,2» return (err) ;

/* reset printer */
if (err~PWait(l,O» return(err);
if (err~(*(PD-)pd_PWrite»(density,7» return(err);

/* set resolution */
if (err~(* (PD->pd_PWrite» ("\033*rOA", 5» return(err);

bufpt=O;
return (0);
break;

/* start raster gfx */
/* init to first buffer */
/* flag all ok */

/*
/*

case 1 /* put pixel in buffer */
i ~ bufptr+x/8+7; /* calc which byte to use */
PD->pd_PrintBuf[i] ~ PD->pd_PrintBuf[i] I (1 « (7-(x&7»);

/* fill print buffer */
PD->pd~rintBuf[bufptr+(x»3)+offset] I~ bit_table[x&7];
return(O); /* flag all ok */
break;

case 2 /* dump buffer to printer */
if (er~(*(PD->pd_pWrite»(&(PD->pd_printBuf[bufptr]),

BUFSIZE» return(err);
bufptr~BUFSIZE-bufptr; /* switch to other buffer */
return(O); /* flag all ok */
break;

case 3 /* clear and init buffer */
for (i~bufptr; i<BUFSIZE+bufptr; i++)

PD->pd_printBuf[i] ~ 0; /* clear buffer */
ptr ~ &PD->pd PrintBuf[bufptr];
i ~ BUFSIZE; -
while (i--) *ptr++ ~ 0;

PD->pd_PrintBuf[bufptr] 27;
PD->pd_PrintBuf[bufptr+l] '*';
pD->pd_PrintBuf[bufptr+2] 'b';
PD->pd_PrintBuf[bufptr+3] huns + '0';
PD->pd_PrintBuf[bufptr+4] tens + '0';
PD->pd_PrintBuf[bufptr+5] ~ ones + '0';
PD->pd_PrintBuf[bufptr+6] ~ 'W';
return(O); /* flag all ok */
break;

case 4 : /* free the print buffer memory */
/* end raster graphics, unload paper, and reset printer */
er~(* (PD->pd_PWrite» ("\033*rB\014\033E", 7);

case 5:

default

if (!err) er~(*(PD->pd_PBothReady»();
/* wait for both buffers to be clear */

FreeMem(PD->pd_PrintBuf,BUFSIZE*2);
/* free the print buffers memory */

return(err); /* return status */
break;

center ~ x & SPECIAL CENTER; /* set center flag */
if «x & SPECIAL_DENSITYMASK) ~~ 0) (/* if use prefs */

if (PD->pd_Preferences.PrintQuality ~~ DRAFT)
SetDensity(SPECIAL_DENSITY2); /* 100 dpi */

else SetDensity(SPECIAL_DENSITY3); /* 150 dpi */

else SetDensity(x & SPECIAL_DENSITYMASK);
/* else use SPECIAL */

return(O);
break;

return(O);
break;

Listing for okimate20/data.c

/* okimate 20 commands */

/****** printer.device/printers/Okimate_20_functions ********************
*
* Okimate 20 functions implemented:
*
*
*
*
*
*
*
*

aRIS, aIND, aNEL, aSGRO, aSGR3, aSGR23, aSGR4, aSGR24
aSHORPO, aSHORPl, aSHORP2, aSHORP3, aSHORP4, aSHORP5, aSHORP6
aDENl, aDEN2, aSUSO, aSUSl, aSUS2, aSUS3, aSUS4,
aVERPO, aVERPl, aSLPP, aPERF, aPERFO

special functions implemented:
aRIN, ,aRI, aSUSO, aSUSl, aSUS2, aSUS3, aSUS4, aPLU, aPLD

**/

char *CommandTable[]~ (
"\033W\376\022\033A\014\0332\033I\001\033%H\033-\376\033T\033C\376\01l",

/*reset
"\377", /*initialize
"\012", /* If
"\015\012" , /* return,lf
"\377", /* reverse If

"\033%H\033-\376",
/*normal char set

"\033%G" , /*italics on
"\033%H", /*italics off
"\033-\001", /*underline on
"\033-\376", /*underline off
"\377", /*boldface on
"\377", /*boldface off
"\377", /* set foreground
"\377", /* set background

/*normal spacing
"\022\033W\376",
"\033:", /*elite on
"\022", /*elite off
"\017", /* fine on
"\022", /* fine off
"\033W\001", /*enlarged on
"\033W\376", /*enlarged off

aRIS ESCc */
aRIN */
IND ESCD */
NEL ESCE */
RI ESCM */

SGR 0 ESC[Om */
SGR 3 ESC[3m */
SGR 23 ESC[23m */
SGR 4 ESC[4m */
SGR 24 ESC[24m */
SGR 1 ESC[lm */
SGR 22 ESC[22m */

color */
color */

DECSHORP ESC[Ow */

DECSHORP ESC[2w */
DECSHORP ESC[lw */
GSM (special) */
GSM (special) */
GSM (special) * /
GSM (special) */

"\377",
"\377",
"\377",
"\377",
"\0331\002" ,
"\0331\001" ,

/*shadow print on*/
/*shadow print off*/
/*doublestrike on*/
/*doublestrlke off*/
/* NLQ on*/

"\033S\376",
"\033T" ,
"\033S\001",
"\033T" ,
"\033T" ,

/* NLQ off*/

/*superscript on
/*superscript off
/*subscript on
/*subscript off
/* normalize */

PLU ESCL */
PLD (special) */
PLD ESCK */
PLU (special) */

"\377",
"\377",

/* partial line up PLU
/* partial line down PLD

ESCL */
ESCK */

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377" ,
"\377" ,
"\377" ,
"\377",
"\377",

/*US char set
/*French char set
/*Gennan char set
/*UK char set
/*Danish I char set
/*SWeden char set
/*Italian char set
/*Spanish char set
/*Japanese char set
/*Norweigen char set
/*Danish II char set*/

ESC(B */
ESC(R */
ESC(K */
ESC(A */
ESC E */
ESC(H */

"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",
"\377",

FNT 6 */
FNT 7 */
FNT 8 */

/*proportional on */
/*proportional off*/
/*proportional clear*/

FNT 9 */

/*set prop offset TSS */
/*auto left justify JFY 5 */
/*auto right justify JFY 7 */
/*auto full justify JFY 3,6 */
/*auto justify off JFY 0 */
/*place holder */
/*auto center on JFY 2,6 */

"\0330", /* 1/8" line space DECVERP
"\033A\014\0332" ,

/* 1/6" line spacing DECVERP
"\033C" , /* set fonn length DECSLPP
"\033N\001" , /* perf skip n */
"\0330", /* perf skip off */

"\377", /* Left margin set DECSLRM
"\377", /* Right margin set */
"\377", /* Top margin set DECSTBM
"\377", /* Bottom marg set */
"\377", /* T&B margin set STBM
"\377", /* L&R margin set SLRM
"\377", /* Clear margins */

"\377", /* Set horiz tab HTS
"\377", /* Set vertical tab VTS
"\377", /* Clr horiz tab TBC 0
"\033D\376", /* Clear all h tabs TBC 3
"\377", /* Clr vertical tab TBC 1
"\033D\376", /* Clr all v tabs TBC
"\377", /* Clr all h & v tabs */

ESC[Oz */

ESC[lz */
ESC[Pnt */

ESC[Pnl;Pn2s

ESC [Pnl;Pn2r

ESC [Pnl;pn2r
ESC [Pnl;Pn2s

ESCH */
ESCJ */
ESCOg */
ESC3g */
ESClg */
4 ESC4g */

"\033D\010\020\030\040\050\060\070\100\llO\120\376 " ,

"\377"
/* set default tabs */

/* extended command */

*/

*/

*/
*/

Listing for okimate20/dospecial.c

/* okimate 20 special commands */

/****** printer.device/printers/Okimate_20_special_functions ***********

*
* NAME
* Okimate 20 special functions
*
**/

#include "exec/types.h"
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

DoSpecial(command,outputBuffer,vline,currentVMI,crlfFlag,Parms)
char outputBuffer[];
Uw:>RD *command;
BYTE *vline;
BYTE *currentVMI;
BYTE *crlfFlag;
UBYTE Parms [] ;

int x~O;
static char initThisPrinter[]~"\033I\001\022\0330\033%H\033-\376\r\033W";

if(*command~~aRIN)

{
while(x<15){outputBuffer[x]~initThisprinter[x];x++;}
outputBuffer[ll]~'\OOO' ;

outputBuffer[x++]~'\OOO' ;

if«PD->pd_Preferences.PrintQuality)~~LETTER)outputBuffer[21~'\002';

if«pD->pd_Preferences.PrintPitch)~~ELITE)

outputBuffer[x++]~'\033' ;
outputBuffer[x++]~' : ' ;

else if«PD->pd_Preferences.PrintPitch)~~FINE)outputBuffer[x++]~'\017';

currentVMI~27; / assume 1/8 line spacing */
if«pD->pd_Preferences.PrintSpacing)~~SIX_LPI) { /* wrong again */

outputBuffer[x++]~'\033' ;
outputBuffer[x++]~'A' ;
outputBuffer[x++]~'\014' ;
outputBuffer[x++]~'\033' ;
outputBuffer[x++l~'2' ;
*currentVMI~36;

return (x) ;
}

if(*command~~aPLU) {
if«*vline)~~O)[(*vline)~l; *command~asuS2; return(O);}

if((*vline)<O)((*vline)~O; *cornmand~aSUS3; return(O);)
return(-l);

if(*command~~aPLD) (
if((*vline)~~O)((*vline)~(-l); *command~aSUS4; return(O);)
if((*vline»O)((*vline)~O; *command~aSUS1; return(O);)
return(-l);

if(*command~~aSUSO) *vline~O;
if(*command~~aSUS1) *vline~O;
if(*command~~aSUS2) *vline~l;
if(*command~~aSUS3) *vline~O;
if(*command~~aSUS4) *vline~(-l);

if(*command~~aVERPO) *currentVMI~27;

if(*command~~aVERP1) *currentVMI~36;

return(O) ;
)

Listing for okimate20/init.asm

TTL '$Header: init.asm,v 1.2 85/10/09 23:58:49 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 university Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

* ** *.* * * * * * * * * * *
*
* printer device functions
*
* Source Control
* --------------
* $Header: init.asm,v 1.2 85/10/09 23:58:49 kodiak Exp $
*
*
*
*
*
*
*

$Locker: $

$Log: init.asm,v $
Revision 1.2 85/10/09 23:58:49 kodiak
replace reference to pdata w/ prtbase

* Revision 1.1 85/10/09 19:27:50 kodiak
* remove _stdout variable
*
* Revision 1.0 85/10/09 19:24:13 kodiak
* added to rcs for updating in version 1
*
* Revision 29.0 85/08/07 22:25:32 kodiak
* added to rcs for updating in version 29
*
* Revision 25.0 85/06/16 01:01:22 kodiak
* added to rcs
*
*
**

SECTION printer

*------ Included Files --

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE
INCLUDE

"exec/types.i"
lIexec/nodes.ill
"exec/lists.i"
I'exec/memory. i 1\

"exec/ports.i"
"exec/libraries.i"

IImacros.ill
"devices/prtbase.i"

*------ Imported Functions ---

XREF_EXE
XREF_EXE
XREF

XREF
XREF
XREF

CloseLibrary
OpenLibrary
_AbsExecBase

_PEDData
_RenderBW
_RenderColor

*------ Exported Globals ---

XDEF Init -
XDEF _Expunge
XDEF _Open
XDEF _Close
XDEF _PD
XDEF __ PED
XDEF _SysBase
XDEF _DOSBase
XDEF _GfxBase
XDEF IntuitionBase -

**

_PD
_PED
_SysBase
~SBase

SECTION

GfxBase
:::IntuitionBase

DC.L
DC.L
DC.L
DC.L
DC.L
DC.L

printer, DATA
o
o
o
o
o
o

.*.*** •• ** ••

Init:

*

*

SECTION

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

printer, CODE

4(A7) ,_PD
_PEDData(PC) ,AO
AO,_PED
A6,-(A7)
_AbsExecBase,A6
A6,_SysBase

;------ open the dos library
LEA DLName(PC),AI
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO,_DOSBase
BEQ initDLErr

;------ open the graphics library
LEA GLName (PC) , Al
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, GfxBase
BEQ initGLErr

*

pdiRts:

initPAErr:

initILErr:

initGLErr:

initDLErr:

ILName:

DLName:

GLName:

;------ open the intuition library
LEA ILName(PC),Al
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, IntuitionBase
BEQ initILErr

MOVEQ #O,DO

MOVE.L (A7)+,A6
RTS

MOVE.L _IntuitionBase,Al
LINKEXE CloseLibrary

MOVE.L _GfxBase,Al
LINKEXE CloseLibrary

MOVE.L _DOSBase,Al
LINKEXE CloseLibrary

MOVEQ #-l,DO
BRA.S pdiRts

DC.B 'intuition. library'
DC.B 0

DC.B 'dos.library'
DC.B 0

DC.B 'graphics. library'
DC.B 0
DS.W 0

*---

_Expunge:
MOVE.L IntuitionBase,AI
LINKEXE CloseLibrary

MOVE.L GfxBase,AI
LINKEXE CloseLibrary

MOVE.L DOSBase,AI
LINKEXE CloseLibrary

*---

MOVE.L
CMPI.W
BEQ.S
LEA
MOVE.L

PD,AO
#SHADE_COLOR,pd_Preferences+pf_Printshade(AO)
colorRender

RenderBW,AO
AO,_PEDData+ped_Render

t.lj

t-.:>
-.:J

colorRender:

openEnd:

BRA.S

LEA
MOVE.L

MOVEQ
RTS

openEnd

RenderColor,AO
AO,_PEDData+ped_Render

#O,DO

*---

_Close:
MOVEQ
RTS

END

#O,DO

okimate20/init.asm

TTL '$Header: init.asm,v 1.2 85/10/09 23:58:49 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

printer device functions

Source Control

$Header: init.asm,v 1.2 85/10/09 23:58:49 kodiak Exp $

$Locker: $

$Log: init.asm,v $
Revision 1.2 85/10/09 23:58:49 kodiak
replace reference to pdata w/ prtbase

Revision 1.1 85/10/09 19:27:50 kodiak
remove stdout variable

Revision 1.0 85/10/09 19:24:13 kodiak
added to rcs for updating in version 1

Revision 29.0 85/08/07 22:25:32 kodiak
added to rcs for updating in version 29

Revision 25.0 85/06/16 01:01:22 kodiak
added to rcs

**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

INCLUDE
INCLUDE

"exec/types.i"
"exec/nodes.ill
"exec/1ists.i"
tlexec/memory.ill
"exec/ports. ill
"exec/libraries.i"

IImacros.i"
"devices/prtbase.i"

t-:)
00

*------ Imported Functions ---

XREF_EXE
XREF_EXE
XREF

XREF
XREF
XREF

CloseLibrary
Open Library
_AbsExecBase

_PEDData
_RenderBW
_RenderColor

*------ Exported Globals

XDEF Init
XDEF _Expunge
XDEF _open
XDEF _Close
XDEF _PD
XDEF _PED
XDEF _SysBase
XDEF _DOS Base
XDEF _GfxBase
XDEF IntuitionBase

**
SECTION printer, DATA

_PD DC.L ° _PED DC.L 0
_SysBase DC.L ° _DOSBase DC.L ° _GfxBase DC.L 0

IntuitionBase DC.L °
**

*

*

SECTION

MOVE.L
LEA
MOVE.L
MOVE.L
MOVE.L
MOVE.L

printer, CODE

4(A7) ,_PD
_PEDData(PC),AO
AO,_PED
A6,-(A7)
_AbsExecBase,A6
A6,_SysBase

;------ open the dos library
LEA DLName(PC),Al
MOVEQ #O,DO
CALLEXE openLibrary
MOVE.L DO, DOS Base
BEQ initDLErr

;------ open the graphics library
LEA GLName(PC),Al
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO, GfxBase
BEQ initGLErr

* ;------ open the intuition library
LEA ILName(PC),Al
MOVEQ #O,DO
CALLEXE OpenLibrary
MOVE.L DO,_ IntuitionBase
BEQ initILErr

MOVEQ #O,DO
pdiRts:

MOVE.L (A7)+,A6
RTS

initPAErr:
MOVE.L _IntuitionBase,Al
LINKEXE CloseLibrary

initILErr:
MOVE.L _GfxBase,Al
LINKEXE CloseLibrary

initGLErr:
MOVE.L _DOSBase,Al
LINKEXE CloseLibrary

initDLErr:
MOVEQ #-l,DO
BRA.S pdiRts

ILName:
DC.B 'intuition. library'
DC.B 0

DLName:
DC.B 'dos.library'
DC.B 0

GLName:
DC.B 'graphics. library'
DC.B ° DS.W 0

*---

_Expunge:
MOVE.L IntuitionBase,Al
LINKEXE CloseLibrary

MOVE.L _GfxBase,Al
LINKEXE CloseLibrary

MOVE.L _DOSBase,Al
LINKEXE CloseLibrary

*---

MOVE.L
CMPI.W
BEQ.S
LEA
MOVE.L

_PD,AO
#SHADE_COLOR,pd_preferences+pf_PrintShade(AO)
colorRender
_RenderBW,AO
AO,_PEDData+ped_Render

trl

t-:>
eCl

colorRender:

openEnd:

BRA.S

LEA
MOVE.L

MOVEQ
RTS

openEnd

RenderColor,AO
AO,_PEDData+ped_Render

#O,DO

*---

MOVEQ
RTS

END

#O,DO

Listing for okimate20/printertag.asm

TTL '$Header: printertag.asm,v 32.1 86/02/10 14:33:25 kodiak Exp $'
**

*
*
*
*
*
*
*
*
*
*

Copyright 1985, Commodore-Amiga Inc. All rights reserved.
No part of this program may be reproduced, transmitted,
transcribed, stored in retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Commodore-Amiga Incorporated, 983 University Ave. Building #D,
Los Gatos, California, 95030

*
*
*
*
*
*
*
*
*
*

**

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
"
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

printer device dependent code tag

Source Control

$Header:
$Locker:
$Log:
Revision
add null

printertag.asm,v 32.1 86/02/10 14:33:25 kodiak Exp $
$

printertag.asm,v $
32.1 86/02/10 14:33:25 kodiak
8BitChars field

Revision 32.0 86/02/10 14:24:28 kodiak
added to rcs for updating

Revision 1.1 85/10/09 23:59:05 kodiak
replace reference to pdata w/ prtbase

Revision 1.0 85/10/09 23:58:58 kodiak
added to rcs for updating in version 1

Revision 29.1 85/07/31 18:27:25 kodiak
change XDotsInch from 144 to 120

Revision 29.0 85/07/31 18:26:50 kodiak
added to rcs for updating in version 29

Revision 25.1 85/06/16 01:02:15 kodiak
*** empty log message ***

Revision 25.0 85/06/15 06:40:00 kodiak
added to rcs

Revision 25.0 85/06/13 18:53:36 kodiak
* added to rcs
**

SECTION printer

*------ Included Files ---

INCLUDE
INCLUDE

"exec/types.i"
"exec/nodes.ill

w
o

*------

INCLUDE

INCLUDE

Imported Names

XREF
XREF
XREF
XREF
XREF
XREF
XREF

Exported Names

XDEF

"exec/strings.i"

"devices/prtbase.i"

Init
_Expunge
_open
_Close

CommandTable
=printersegmentData
_DoSpecial

**

MOVEQ
RTS
DC.W
DC.W

_PEDData:
DC.L
DC.L
DC.L
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.W
DC.L
DC.L
DC.W
DC.W
DC.L
DC.L
DC.L
DC.L
DC.L

printerName:
STRING

END

#O,DO

VERSION
REVISION

printerName
Init

_Expunge
_Open
_Close
PPC_COLORGFX
PCC_YMC_BW
80
1
24
960
0
120
144
_CommandTable
_DoSpecial
0
30
0

< 'OKIMATE 20' >

; show error for OpenLibrary()

PrinterClass
ColorClass
MaxColumns
NumCharSets
NumRows
MaxXDots
MaxYDots
XDotsInch
YDotsInch
Commands

Render

8BitChars

Listing for okimate20/render.c

/***/
#include <exec/types.h>
#include <exec/nodes.h>
#include <exec/lists.h>
#include <execjmemory.h>
#include "devices/printer.h"
#include "devices/prtbase.h"

extern struct PrinterData *PD;
extern struct PrinterExtendedData *PED;

static UWORD rowsize;
static UWORD bufsize;
static UWORD bufptr;
static UWORD colors[4]; /* color ptrs */
static BYTE center; /* center picture flag */
static UBYTE bit_table[8] = [128, 64, 32, 16, 8, 4, 2, 1);
UBYTE *ptr;

/* for the OKIMATE 20 (Color) */
int RenderColor(ct, x, y, status) /* passed a color type */
UBYTE ct; /* the color type to use (0, 1, or 2) */
UWORD x, y; /* the x & y co-ordinates */

/* or the pc & pr print values, or special */
UBYTE status; /* print status (O-init, I-enter pixel, 2-dump, 3-end) */
{

UWORD i;
BYTE err;
switch(status)
{

/* mics. var */
/* the error # */

case 0: /*alloc memory for printer buffer */
i = (center) ? «PED->ped_MaxXDots - x) / 2 * 3) : 0;

/* need this many more pixels */
rowsize=(x*3+i); /* pc pixels per row x 3 colors on the OKIMATE 20 */
bufsize=(rowsize*3+31); /* buffer size required for OKIMATE 20 */
colors [0] 0 + i;
colors [1] 7 + i;
colors [2] 9+rowsize+7 + i;
colors [3] (9+rowsize)*2+7 + i;
PD->pd_PrintBuf = (UBYTE *)

AlloCMem(bufsize*2,MEMF_PUBLIC); /* alloc public mem */
if (err=(PD->pd_PrintBuf == 0» return(err);
bufptr=O;
/* set line spacing to 24 printer lines (24/144 -> 36/216 inch) */
return«*(PD->pd_PWrite»("\0333\044", 3»; /* thats Esc3<36> */
break;

case 1: /* put pixel in buffer (called 69,120 times/print cycle) */
i = bufptr+(y % 24)/8 + x*3 + colors [ct] ;

/* calc which byte to use */
PD->pd_PrintBuf[i1 = PD->pd_PrintBuf[i] (1« (7-(y&7»);

/* set pixel */
PD->pd_PrintBuf[bufptr + «y%24»>3) + (x«l) + x + colors[ct1]

1= bit_table[y & 71; /* calc byte posn and set pixel */
return(O); /* flag all ok */
break;

case 2 : /* dump buffer to printer */
if (err~(*(PD-)pd_PWrite»(&(PD-)pd_PrintBuf[bufptr]),

bufsize» return(err);
bufptr ~ bufsize - bufptr;
return(O); /* flag all ok */
break;

case 3 : /* clear and init buffer (called once/print cycle) */
ptr ~ &PD-)pd_PrintBuf[bufptr];
ptr++ ~ 27; / (bufptr) */
ptr++ ~ 25; / align ribbon (bufptr+l)*/
i ~ bufsize - 2; /* less the previous cmds */
while (i--) *ptr++ ~ 0; /* clear buffer (executed 8,571 - 2 times) */
for (ct~O; ct<3; ct++) [/* for all color types */

PD-)pd_PrintBuf[2+bufptr+ct*(rowsize+9)] 27;
PD-)pd_PrintBuf[3+bufptr+ct*(rowsize+9)] '%';
PD-)pd_PrintBuf[4+bufptr+ct*(rowsize+9)] '0';

/* enter 24-dot mode */
PD-)pd_PrintBuf[5+bufptr+ct*(rowsize+9)]
PD-)pd_PrintBuf[6+bufptr+ct*(rowsize+9)]

(rowsize/3) & Oxff;
(rowsize/3) » 8;

/* set # of dots */
PD-)pd_PrintBuf[1+bufptr+(ct+l)*(rowsize+9)] ~ 13;

/* advance color */
)
PD-)pd_PrintBuf[bufptr+bufsize-2]
PD-)pd_printBuf[bufptr+bufsize-l]
return(O); /* flag all ok */
break;

10;
13;

/* 1£ */
/* cr */

case 4 : /* free the print buffer memory */
err~(*(pD-)pd_PBothReady»(); /* wait for both buffers to empty */
FreeMem(PD-)pd_PrintBuf,bufsize*2); /* free printers memory */
return(err); /* return status */
break;

case 5 : /* io_special flag call */
center ~ x & SPECIAL_CENTER; /* set center flag */
return(O); /* flag all ok */
break;

default: return(O); /* flag all ok */
]

/***/

/* for the OKIMATE 20 (b/w) */
int RenderBW(ct, x, y, status) /* passed a color type */

UBYTE ct;
UWORD x, y;

UBYTE status

/* not used with b/w printers */
/* the x & y co-ordinates */
/* or the pc & pr print values, or special */
/* print status (O-init, l-enter pixel,

* 2-dump, 3-end) */

UWORD i; /* mics. var */
BYTE err; /* the error # */

static UWORD offset;

switch(status)
[
case 0 : /*alloc memory for printer buffer */

i ~ (center) ? «PED-)ped_MaxXDots - X) / 2 * 3) 0;
/* need this many more pixels */

offset ~ 5 + i;
rowsize~(x*3+i); /* pc pixels per row x 3 blocks on the OKIMATE 20 bw */
bufsize~(rowsize+7); /* buffer size required for OKIMATE 20 bw */
PD-)pd_PrintBuf ~ (UBYTE *)

AllocMem(bufsize*2,MEMF_PUBLIC); /* alloc public mem */
if (er~(PD-)pd_PrintBuf ~~ 0» return(err);
bufptr ~ 0; /* init to first buffer */
/* set line spacing to 24 printer lines (24/144 -) 36/216 inch) */
return«*(PD-)pd_PWrite»("\0333\044", 3»; /* thats Esc3(36) */
break;

case 1: /* put pixel in buffer */
i ~ bufptr + (y % 24)/8 + x*3 + 5; /* calc which byte to use */
PD-)pd_PrintBuf[i] ~ PD-)pd_PrintBuf[i] I (1 « (7-(y&7»);

/* fill print buffer */
PD-)pd_PrintBuf[bufptr + «y% 24»)3) + (x«l) + x + offset]

I~ bit_table [y&7] ;
return(O); /* flag all ok */
break;

case 2 /* dump buffer to printer */
if (err~(*(PD-)pd_PWrite»(&(PD-)pd_PrintBuf[bufptr]),

bufsize» return(err);
bufptr ~ bufsize - bufptr; /* switch to other buffer */
return(O); /* flag all ok */
break;

case 3 : /* clear and init buffer */
for (i~bufptr; i<bufptr+bufsize; i++)

PD-)pd_PrintBuf[i] ~ 0; /* clear buffer */
ptr ~ &PD-)pd_PrintBuf[bufptr);
i ~ bufsize;
while (i--) *ptr++ ~ 0; /* clear buffer */
PD-)pd_PrintBuf[bufptr] ~ 27;
PD-)pd_PrintBuf[bufptr+l] '%';
PD-)pd~rintBuf[bufptr+2] '0'; /* enter 24-dot mode */
PD-)pd_PrintBuf[bufptr+3] (rowsize/3) & Oxff;
PD-)pd_PrintBuf[bufptr+4) (rowsize/3») 8;

/* there is rowsize dots */
PD-)pd_PrintBuf[bufptr+bufsize-2] 13;
PD-)pd_PrintBuf[bufptr+bufsize-l] 10;
return(O); /* flag all ok */
break;

/* cr */
/* 1£ */

case 4 : /* free the print buffer memory */
err~(*(PD-)pd_PBothReady»(); /* wait for both buffers to empty */
FreeMem(PD-)pd_PrintBuf,bufsize*2); /* free the print buffer mem */
return(err);
break;

case 5 : /* io_special flag call */
center ~ x & SPECIAL CENTER; /* set center flag */
return(O); /* flag all ok */
break;

default: return(O);
)

Amiga

Printer Support

Information

E - 32

General Information

The Amiga printer drivers are among the most complete in the industry. We have made every effort to
provide support for a wide variety of printers and an extensive list of features. The Preferences tool on
your Workbench disk lists the available printers that are supported. (The default printer settings in
Preferences are for the Epson printers.) See Introduction to Amiga for instructions on changing the
Preferences settings.

This document provides the following information:

How to use the Preferences printer settings with the printer device

How to use the parallel and serial devices

How to use the printer .library routines for direct printer I/O

How to set the standard cables and switch settings for printers

For an unsupported printer, use the "Custom/Generic" Preferences setting. See the Amiga ROM Kernal
Manual for instructions on constructing a custom printer driver for an unsupported printer.

AmigaDos provides three "handlers," or interface routines, for printer I/O:

PAR: parallel device

SER: serial device

PRT: printer device

Each of these handlers translates the device-independent file system calls, such as Write 0 and OpenO,
into the appropriate message traffic to the printer devices that are implemented in Exec. Exec is the
multi-tasking kernel of the Amiga.

The "PAR:" handler uses the "parallel. device" , which is the Exec code that manages the parallel port
connector on the back of your Amiga. Similarly, the "SER:" handler uses the device "serial.device" to
manage the serial port connector. Note that, aside from the baud rate setting for the serial port, the
Preferences printer settings have no effect on the function of the PAR: and SER: handlers. The
characters sent to the printer using these devices are not examined or converted.

In other words, when you send output to PAR: or SER:, your application is talking straight through to the
hardware with no intervening levels of interpretation. If you have a printer connected to your parallel
port, escape sequences sent to PAR: will reach it directly and will have whatever effect they are defined to
have by the printer manufacturer.

On the other hand, the PRT: handler uses the Exec device, "printer.device." The printer device uses the
information it finds in the current Preferences settings to understand which kind of printer you have
connected and how you want it to be used. The printer device can talk to either the parallel or the serial
device, depending on the current Preferences setting.

E - 33

The following figures illustrate the difference between sending a particular escape sequence to a printer
using the PRT: handler instead of the PAR: or SER: handlers.

Figure 1: Printer I/O Through SER: or PAR: Handlers

~ " [2v =
~ ~

[2u

Figure 2: Printer I/O Through PRT: Handler Via Preferences Tool

The escape sequence for turning on superscripts is defined for the Epson JX-SO to be the escape
character (ASCII code 27) plus the string, .. [2u". However, the Amiga printer-independent escape
sequence for a superscript is .. [2v". Therefore, the printer driver for this particular printer must convert
the latter string into the former in order for the printer to effect superscript mode. The PAR: and SER:
handlers perform no such conversion.

Deciding which printer handler to use depends on the nature of your application. If you use the printer
device (PRT:), you can write code that is largely independent of the type of printer your customers have
attached to their Amigas. This is the recommended method.

Printing to PAR: or SER: is fairly straightforward. Keep in mind that a standard AmigaDOS text file uses
LF (line feed) as a line separator--not CR or CR-LF) and that a file mayor may not have an LF at the
end. You may wish to add a carriage return character to the ends of your lines of text. Or, if your printer
offers the option, you can flip the switch that automatically gives a CR when the printer receives an LF.

The CLI commands expect you to use the handler names as file parameters. For example, you can send
a file to the printer with the command,

copy my file to prt:

E - 34

If you want to send output to the printer using the AmigaDOS file system routines directly, you must
OpenO one of the handlers and do WriteO calls to it.

Similarly, you should use the handler names with I/O to the printer from languages such as ABasiC. Note
that--for compatability--Microsoft's Amiga Basic defines LPTl: to be the same as PRT:.

YO,u can circumvent the handlers entirely and perform a direct OpenDevice 0 on the Exec device of
interest to you. You then pass I/O request blocks to the device using the I/O calls provided by Exec (such
as DoIOO). Doing so provides greater flexibility, such as allowing asynchronous I/O and setting device
parameters (serial baud rate, for example). By using the printer.library, you have full control over the
printer.

Note that you must open the printer.library directly in order to use the command names instead of the
defined escape sequences. See Table 3 for a list of the printer features and their command names. See
the Amiga ROM Kernal Manual for more information on calling system library and device routines.

Note the following information regarding sending I/O between the Amiga and various printers:

Printer Device (PRT:)

The printer device understands only its own, printer-independent, escape sequences. It converts these
escape sequences into the printer-specific escape sequences appropriate for the printer currently selected
in Preferences. In addition, the Initialize function (which is invoked when you open the printer device or
when you send it the Initialize escape sequence) causes the appropriate escapes to be sent to your printer
to configure it according to the options you have selected in Preferences. This, for example. is how your
margin settings are sent to the printer.

Note that, when you use the printer device, you should turn off any option on your printer that provides
an autiomatic CR, LF, or CR-LF whenever the printer receives an LF. The printer device provides end
of line CR-LFs as needed.

Also keep in mind that--in addition to the alphanumeric printing described here--the printer device
provides for black and white, grey-scale, and full color raster-graphics printing. This function is only
available when your application talks directly to the printer device and not through the AmigaDOS PRT:
handler. See the Amiga ROM Kernal Manual for an example.

Serial and Parallel Handlers (SER:, PAR:)

The Preferences tool printer settings have no effect on the function of the PAR: and SER: handlers (other
than setting the baud rate used by SER:, as noted above). Any special function you want your printer to
perform is up to you. You must choose the correct escape sequences to send, including even initialization
functions such as the setting of margins. Clearly, you must know which printer is connected to your
Amiga and whether it is connected to the serial or the parallel port. This is not the reco~ended method
of controlling printers.

Specific serial device features (for SER:) that you cannot set in Preferences include:

E - 35

Hardware (7-wire) or software (3-wire) handshaking
(XON XOFF always used)

Number of bits (8 bits always used)

Parity (none)

See the ROM Kernel Manual for details on setting these features.

PRINTER. LIBRARY

With the printer. library, you not only can send escape sequences to the printer, you can also call the
printer-unique entry point, "PRT". This entry point allows you to control the printer directly--the
necessary escape sequences will be generated for you.

In addition, there is a printer-unique function, "RAW_WRITE" that sends characters without converting
them. This functions the same as SER: and PAR:, except that you don't need to know which port is
connected to the printer.

Types of Supported Printers

The available printers that are supported for the Amiga include both whole character (daisy wheel) and
dot matrix (wire, ink jet, and laser) types. As with printer capabilities, printer prices range widely, from
just over $200 to over $3500. In general, the dot matrix printers are capable of graphics output, while
"whole character" printers are not.

Every attempt has been made to support a given feature on each printer that, itself, supports that feature.
For example, the daisy wheel printers lack the capability to produce characters such as enlarged or italic
print. Similarly, the dot matrix printers often lack such features as proportional spacing.

None of the supported printers currently supports all of the available features. (The Epson JX-80 and the
HP LaserJet come closest.) Whenever the system requests an unsupported feature, the PRT: handler
simply ignores that request. (The "generic" printer driver currently ignores all feature requests.)

If two or more features are each available for a particular printer, they should be usable in combination.
For example, Bold-Italic-Underscore is a possible style for many printers.

If your printer is not among those supported for the Amiga, you have two options. If your printer shares a
number of common features with one of the supported printers, you can select that printer in Preferences.

Keep in mind, however, that one or more of the chosen printer's features might not produce a similar
effect on your printer.

E - 36

Your second option is to select "Custom" from the list of supported printers in Preferences and "Generic"
as the custom printer name. You can then construct a custom printer driver following the directions in the
Amiga ROM Kernel Manual.

The following table lists the printers that are currently supported for the Amiga, grouped according to
print technology.

Table 1: Printers Supported on the Amiga

Dot Matrix (Wire), Parallel

Manufacturer

Commodore
Epson
Epson
Okimate

Daisy Wheel. Parallel

Manufacturer

Alphacom
Brother
Diablo
Diablo
Qume

Ink Jet. Parallel

Manufacturer

Diablo

Laser. Serial

Manufacturer

Hewlett Packard
Hewlett Packard

Other (Custom)

Model

CBM MPS 1000
Epson JX-80
Epson MX-80, FX-80.
Okimate 20

Model

Alphapro 101
HR-15XL
630 (Some models are serial)
Advantage D25
LetterPro 20

Model

C-150

Model

Laser Jet
Laser Jet Plus

Limited support is offered for a "generic" printer.

E - 37

Table 2: Printer Features Supported on the Amiga

Legend:

ISO indicates that the sequence has been defined by the International Standards Organization. This is
also very similar to ANSII x3.64.

DEC indicates a control sequence defined by Digital Equipment Corperation.

•
••
•••
t

Code·

c
#1
D
E
M

[Om
[3m
[23m
[4m
[24m
[1m
[22m
[nm

[nm

[Ow
[2w
[1w
[4w
[3w
[6w
[5w

[6"z
[5"z
[4"z
[3"z
[2"z
[1 "z

Entire escape sequence consists of ESC (ASCII 27) plus indicated code .
Near Letter Quality
Sequence unique to Amiga
Paper perforation skip, n lines

..J
X 0
It) 0 .,.... 0 It)

I 'I 0 N a c:: a:l 0 0

E""" J: CI) I a:l Q)
0 a.. x I CI

a e lo-
C"l ~

, X III
00.. Q) co at: III III .r:: a s::: s:::

:0 ~ a a -III .r::.r:: '0 CD Ul .0>
0.0. lo-

III !II 0. 0. .!!!-o
Description Defined « !II i5 0 w w 0«

Reset ISO x x x x x x x
Initialize *** x x x x x x x
Line feed ISO x x x x x x x
Line feed, CR ISO x x x x x x x
Reverse line feed ISO x x x x x

Normal char. set ISO x x x x x x x
Italics on ISO x x
Italics off ISO x x
Underline on ISO x x x x x x x
Underline off ISO x x x x x x x
Boldface on ISO x x x x x x x
Boldface off ISO x x x x x x x
Set foreground color
(n = {30-39}) ISO x x x x x
Set background color
(n = {40-49}) ISO

Normal pitch DEC x x x x x x x
Elite on DEC x x x x x x x
Elite off DEC x x x x x x x
Condensed fine on DEC x x x x x x x
Condensed off DEC x x x x x x x
Enlarged on DEC x x x
Enlarged off DEC x x x

Shadow print on DEC x x x x
Shadow print off DEC x x x x
Doublestrike on DEC x x x x x x x
Doublestrike off DEC x x x x x x x
NLQ on ** DEC x x x
NLQ off * * DEC x x x

E - 38

0

CD
N

:l a
0:: lo-a..

0 l0-
It) 0 Q) Q) ~ .,....

N , ,
Q) I lo- l0-

0 Q) Q) Q) ..J Ul Ul
a III III III Q)

:0 E ..J ..J E III 32 a.. a.. :l
i5 0 J: J: 0

x x x x x
x x x x x
x x x x
x x x x x

x x x

x x x x
x x x
x x x
x x x x
x x x x

x x x
x x x

x

x

x x x x
x x x x
x x x x
x x x x
x x x x
x
x

x x x
x x x
x x x
x x x

x
x

0
...J N
X 0 II>

0 ~ LO 0 a: 0 LO 0..
I 0 N 0 ...

~
... cr: I CO 0 0 LO 0 CD .e 0 J: (I) I CO CD

N -, -,
~ Eo 0 0.. X I 01 I

o M ::E -, X «I 0 CD CD CD ...J
00.. CD <0 II> II>

0 c: c: oC: 0 I'll «I I'll CD «I «I .s:: :c ::E 0 0 -- «I :c E ...J ...J E .s::.s:: '0 II> '" .0>
0.0. III £D 0. 0. .!!!-o «I 32 0.. 0.. ~ ... is Code Description Defined «« £D is 0 w w 0< 0 J: J: 0

[2v Superscript on *** x x x x x x x x x x x
[1 v Superscript off *** x x x x x x x x x x x
[4v Subscript on *** x x x x x x x x x x x
[3v Subscript off *** x x x x x x x x x x x
[Ov Normalize the line *** x x x x x x x x x x x -
L Partial line up ISO x x x x x x x x x x x
K Partial line down ISO x x x x x x x x x x x

(8 U.S. char. set DEC x x x x
(R French .. " DEC x x x x
(K German .. " DEC x x x x
(A UK .. " DEC x x x x
(E Danish I H " DEC x x x x
(H Swedish .. H DEC x x x x
(Y Italian .. " DEC x x x x
(Z Spanish .. H DEC x x x x
(J Japanese .. " *** x x x x
(6 Norwegian" " DEC x x x x
(C Danish II .. " *** x x x x

[2p Proportional on *** x x x x x x x x x
[1 p Proportional off *** x x x x x x x x x
fOp Proportional clear *** x x x x x x
[n E Set prop. offset (n) ISO
[5 F Auto left justify ISO x x
[7 F Auto right justify ISO x
[6 F Auto full justify ISO x
[0 F Justify off ISO x x x
[3 F Letter space Uustify) ISO x
[1 F Word fill (auto center) ISO x x

[Oz 1 /8" line spacing *** x x x x x x x x x x x
[1 z 1/6 H line spacing *** x x x x x x x x x x x
[nt Set form length (n) DEC x x x x x x x x x x x x
[nq Perf skip (n>O) t *** x x x x x x
[Oq Perf skip off *** x x x x x x

E - 39

-I
0
C\I

X 0 '" OJ) 0 ::J 0
~ 0 OJ) 0:: '-

I ~ 0 C\I 0
a..

~ a: 0 '-
0 I CO 0 OJ)

0 II) II) II)

::z: CI) I CO II) ~ ...
E~ 0 a.. x I 01 I C\I

., .,
Gl ... '-o e ... C') :E ., X tU U II) II) II) -I

00.. II) <0 ot: 1ii '" '" tU tU ~ 0 c: c: 0 tU tU II)
:0 :E 0 0 -tU :0 E ~~ '0 '" '" .0> -I -I E 0.0. '-
tU m 0. 0. ~"'C tU 32 a.. a.. ::J

Code Description Defined « m is u w w 0« is 0 ::z: ::z: a

#9 Left margin set *** x x x x x x
#0 Right margin set *** x x x x x x
#8 Top margin set *** x x x x
#2 Bottom margin set *** x x x x
[n1 ;n2r Top; Bottom margins DEC x x
[n1 ;n2s Left;Right margins DEC x x x x x x x x x x x
#3 Clear margins *** x x x x x x x x x x x

H Set horiz. tab ISO x x x x
J Set vert. tab ISO x x x
109 Clear horiz. tab ISO x x x x
[3g Clear all hor. tabs ISO x x x x x x x x
[1 g Clear vert. tab ISO x
[4g Clear all vert. tabs ISO x x x x
#4 Clear all h & v tabs *** x x x x x x x
#5 Set default tabs *** x x x x x x x x
[n"x (Extended commands) ***

E - 40

Table 3: Printer Command Definitions

The following table describes the supported printer functions. You can use the escape sequences with
PRT: and the printer. library. To use the command names, open the printer.library directly.

Again, recall that SER: and PAR: will ignore all of these and pass them directly on to the attached device.

Cmd Escape Defined
Name Sequence Function by:*

aRIS ESCc reset ISO
aRIN ESC#l initialize •••
aIND ESCD If ISO
aNEL ESCE return,1f ISO
aRI ESCM reverse If ISO

aSGRO ESC[Om normal char set ISO
aSGR3 ESC[3m italics on ISO
aSGR23 ESC[23m italics off ISO
aSGR4 ESC[4m underline on ISO
aSGR24 ESC[24m underline off ISO
aSGRl ESC[lm boldface on ISO
aSGR22 ESC[22m boldface off ISO
aSFC ESC[nm (n= {30-39})

set foreground color ISO
aSBC ESC[nm (n= {40-49})

set background color ISO
aSHORPO ESC[Ow normal pitch DEC
aSHORP2 ESC[2w elite on DEC
aSHORPl ESC[lw elite off DEC
aSHORP4 ESC[4w condensed fine on DEC
aSHORP3 ESC[3w condensed off DEC
aSHORP6 ESC[6w enlarged on DEC
aSHORP5 ESC[Sw enlarged off DEC
aDEN6 ESC[6"z shadow print on DEC (sort of)
aDEN5 ESC[5"z shadow print off DEC
aDEN4 ESC[4"z doublestrike on DEC
aDEN3 ESC[3"z doublestrike off DEC
aDEN2 ESC[2"z NLQ on DEC
aDENl ESC[l"z NLQ off DEC

aSUS2 ESC[2v superscript on •••
aSUSl ESC[lv superscript off •••
aSUS4 ESC[4v subscript on •••
aSUS3 ESC[3v subscript off •••
aSUSO ESC[Ov normalize the line •••
aPLU ESCL partial line up ISO
aPLD ESCK partial line down ISO
aFNTO ESC(B US char set DEC
aFNTl ESC(R French char set DEC
aFNT2 ESC(K German char set DEC

E - 41

aFNT3 ESC(A UK char set DEC
aFNT4 ESC(E Danish I char set DEC
aFNT5 ESC(H Swedish char set DEC
aFNT6 ESC(Y Italian char set DEC
aFNT7 ESC(Z Spanish char set DEC
aFNT8 ESC(J Japanese char set ***

aFNT9 ESC(6 Norweign char set DEC
aFNTIO ESC(C Danish II char set ***

aPROP2 ESC[2p proportional on ***

aPROPl ESC[lp proportional off **.

aPROPO ESC[Op proportional clear ***

aTSS ESC[n E set proportional offset ISO
aJFY5 ESC[5 F auto left justify ISO
aJFY7 ESC[7 F auto right justify ISO
aJFY6 ESC[6 F auto full justify ISO
aJFYO ESC[O F auto justify off ISO
aJFY3 ESC[3 F letter space (justify) ISO (special)
aJFYl ESC[l F word fill (auto center) ISO (special)
aVERPO ESqOz 1/8" line spacing ***

aVERP1 ESC[lz 116" line spacing ***

aSLPP ESC[nt set form length n DEC
aPERF ESC[nq perf skip n (n>O) ***

aPERFO ESC[Oq perf skip off ***

aLMS ESC#9 Left margin set .**

aRMS ESC#O Right margin set ***

aTMS ESC#8 Top margin set ***

aBMS ESC#2 Bottom marg set ***

aSTBM ESC[nl ;n2r T&B margins DEC
aSLRM ESC[nl ;n2s L&R margin DEC
aCAM ESC#3 Clear margins ***

aHTS ESCH Set horiz tab ISO
aVTS ESCJ Set vertical tabs ISO
aTBCO ESC[Og Clr horiz tab ISO
aTBC3 ESC[3g Clear all h tab ISO
aTBCl ESC[lg Clr vertical tabs ISO
aTBC4 ESC[4g Clr all v tabs ISO
aTBCALL ESC#4 Clr all h & v tabs ***

aTBSALL ESC#5 Set default tabs ***

aEXTEND ESC[n"x extended commands ***

* See legend for Table 2.

E - 42

Standard Cable Connections for Printers

If you want to connect a printer to the Amiga parallel port (25 pin female) and you have an IBM PC
parallel to Centronics (36 pin) cable, make the following 25 pin female to female cable:

Amiga Side

1-13
14-16 (cut)
17-22
23 (cut)
24
26 connect over to

IBM Cable Side

1-13

17-22

24
16

Now arrange as follows:

o
Lf:I!'!!I'~'\ ~' " • Ii ' r\~i 1

New Cable
'. '. '. '. '. @
::

------ :: :.
D3M Cable rn

Note: Don't connect pin 14 (parallel); it causes extra line feeds on Epson printers.

Amiga to Centronics Adapter

Amiga Side

1-13 (straight)
14-16 (cut)
17-22 (straight)
23 (cut)
24
25 connect over to

Centronics Side

1-13

17-22

24
16
25 (cut)

E - 43

Table 4: Standard Switch Settings for Printers

The standard switch settings for the Amiga supported printers are as follows:

Alphacom AlphaPro 101

Off On

D
Mode A

10 12 15
Pitch

Brother HR-1SXL

x x x x x x x xl
1 234 5 678

SWI

CBM MPS-1000

I
x xl . xxxxxx .
1 2 3 4 5 678

SWl

Off On

Mode B

~~F L.1_x_x_x_x_x_x __ x_x~1

ON
OFF

1 2 345 678
SW2

SW2

E - 44

Diablo Advantage D2S

x x x x x

1 2 345 678
SWl

Diablo 630

x x x x x x

1 2 345 678
SWl

Diablo C-lSO

x x x
x x

1 2 345 678
SWl

Epson LX-SO

x x x x

1 2 3 4 5 678
SWl

Epson JX-SO

x
x x x x

1234567 8
SWl

~~F LI_X_X_X __ X_X_X_X __ X..-li

1234567 8
SW2

~~F[I.._X_X_X __ X_X_X_X __ X..-II

ON
OFF

1 2 345 678
SW2

x
x x x

1 234
SW2

~~F I..I_x __ x_x __ x~
123 4

SW2

E - 45

Okimate 20

(No switches available)

Qume Letterpro 20P

I x

x ON x x
x x x x x x OFF x x x

1 2 3 4 5 6 7 8 1 234 5
SWl SW2

HP Laser Jet and Laser Jet Plus

(Switches should be set to default settings: See the Owner's Manual.)

E - 46

Appendix F

Skeleton Device/Library Code

This appendix contains source code for a skeleton device and a skeleton library . You can use
this code to create your own custom devices and libraries to add to the Amiga.

F - 1

'"lj

t-:>

"'tttt'***'***'t'*"*******'**'********'**"***********'*****'**********

* * Copyright (C) 1985, Conmodore Amiga Inc. All rights reserved. *
* '*******"**'***"'*""*"**'*****'**'***'*******'*******'**************

****************'*"'*"***"****'*"*'**"""'****'********************

* asmsupp.i -- random low level assembly support routines
*
* Source Control

*
• $Header: asmsupp.i,v 31.1 85/10/13 23:12:33 neil Exp $
•
• $Locker: $

'.*****************.***********""*'*"****"'**'*''*'**'**'**'*'**"*

CLEAR MACRO ; quick way to clear a D register on 68000
MOVEQ #0,\1
ENDM

BHS MACRO
BCC.\O \1
ENDM

BLO MACRO
BCS.\O \1
ENDM

EVEN MACRO
DS.W 0
ENDM

LINKSYS MACRO
LINKLIB -LVO\1,\2
ENDM

CALLSYS MACRO

XLIB

CALLLIB -LVO\l
ENDM

MACRO
XREF
ENDM

-LVO\l

word align code stream

link to a library without having to see a -LVO

call a library without having to see -LVO

define a library reference without the -LVO

'**"*****'*************'*************,.**'***"'*""""**

* * Copyright (C) 1985, Commodore Amiga Inc. All rights reserved. *
* *
*"***'***"*'*************'**'*******'***'*'*'*'***'**'t'**'*****

''****"*'*****'**********'*****"*'* •• ********.*'*.*.*******

* * mydev.i -- external declarations for skeleton device

* SOURCE CONTROL

• $Header: ramlib.i,v 31.1 85/10/13 23:12:51 neil Exp $

* $Locker: neil $
•
****""**'**"**"'**'******'**"'***'**'**'*"*"***'***'*"***

; device conmand definitions

DEVINIT
DEVCMD MYDEV_FOO
DEVCMD MYDEV_BAR
DEVCMD MYDEVJ:ND

; device data structures

; place marker -- first illegal conmand #

; maximum nwnber of units in this device
MDJruMUNITS EQU 4

STRUCTURE MyDev,LIB_SIZE
ULONG ~SysLib

ULONG md-DosLib
ULONG ~SegList
UBYTE ~Flags

UBYTE md...pad
STRUCT ~Units,MDJruMUNITS'4
LABEL MyDev_Sizeof

STRUCTURE MyDevMsg,MN_SIZE
APTR mdm....Device
APTR mdm....Unit
LABEL MyDevMsg...Sizeof

STRUCTURE MyDevUnit,UNIT_SIZE
UBYTE mdu-UnitNum
UBYTE mdll-Pad
STRUCT mdU-Msg,MyDevMsg...Sizeof
APTR mdu-process

'":l:j

W

LABEL

._-----,
BITDEE

state bit for unit stopped
MDU, STOPPED, 2

; stack size and priority for the process we will create
MYPROCSTACKSlZE EQU $200
MYPROCPRI EQU 0

MYDEVNAME MACRO
OC.B
ENDM

'mydev.device' ,0

.t*ttt,"""""""""""""""""""""""*"*"""""'*""
* * * Copyright (C) 1985, COlllllOdore Amiga Inc. All rights reserved. *
* * "*""""""""""""""""""""""""'""*""""""'.,/

.t*t***I""""""""*"'*""*"""""'*"""*'"*""""""""
* * mydev.asm -- skeleton device code
* * Source Control
*
* * $Header: amain.asm,v 31.3 85/10/18 19:04:04 neil Exp $
* * $Locker: neil $
* * $L09: amain.asm,v $
* tt*ttt""""""""""""""""""""""""t'*ttt""""*"'/

SECTION section

NOLIST
include "exec/types.i"
include "exec/nodes.i"
include "exec/lists;i"
include "exec/libraries.i"
include "exec/devices. i"
include "exec/io.i"
include "exec/alerts.i"
include "exec/initializers.i"
include "exec/memory. i "
include "exec/resident.i"
include "exec/ables.i"
include "exec/errors.i"
include "libraries/dos.i"
include "libraries/dosextens.i"

include "asmsupp.i"

include "mydev.i"

LIST

0 _____ - These don't have to be external, but it helps some
debuggers to have them globally visible

XDEE Init
XDEE Open
XDEE Close
XDEE Expunge
XDEE Null
XDEE myName
XDEE BeginIO
XDEE AbortIO

XREE -AbsExecBase

XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB
XLIB

OpenLibrary
CloseLibrary
Alert
FreeMem
Remove
FindTask
AllocMem
CreateProc
PutMsg
RemTask
ReplyMsg
Signal
GetMsg
Wait
WaitPort
AllocSignal
SetTaskPri

INTJUlLES

The first executable location. This should return an error
in case someone tried to run you as a program (instead of
loading you as a library).

FirstAddress:
CLEAR dO
rts

A romtag structure. Both "exec" and "ramlib" look for
; this structure to discover magic constants' about you
; (such as where to start running you from ...).

; Most people will not need a priority and should leave it at zero.
; the RTJ>RI field is used for configuring the roms. Use "mods" from
; wack to look at the other romtags in the system

MYPRI EQU 0

initDDescrip:

OC.W
OC.L
OC.L
OC.B
OC.B
OC.B
OC.B
OC.L
OC.L
OC.L

RTCJ1ATCHW:JRD
initDDescrip
EndCode
RTF-AUTOINIT
VERSION
NTJ)EVICE
MYPRI
myName
idString
Init

; STRUCTURE RT, 0
UWJRD RTJ1ATOlWJRD
APTR RTJ1ATCHTAG
APTR RTJ;NDSKIP
UBYTE RTJLAGS
UBYTE RT_VERSION
UBYTE RT_TYPE
BYTE RTYRI
APTR RT~
APTR RT_IDSTRING
APTR RT_INIT
LABEL RT_SIZE

; this is the name that the device will have
subSysName:
myName: MYDEVNAME

a major version number.
VERSION: EQU 1

A particular revision. This should uniquely identify the bits in ti"e
device. I use a script that advances the revision number each time
I recorrpile. That way there is never a question of which device
that really is.

REVISION: EQU 17

this is an identifier tag to help in supporting the device
format is 'name version.revision (dd MON yyyy)' ,<cr>, <If>,"<null>

idString: dc.b 'mydev 1.0 (3lOct 1985) ',13,10,0

dosName: DOSNAME

Init:

force word allignment
ds.w 0

The romtag specified that we were "RTF-AUTOINIT". This means
that the RT_INIT structure member points to one of these
tables below. If the AUTOINIT bit was not set then RT_INIT
would point to a routine to run.

OC.L
OC.L
OC.L
OC.L

MyDev_Sizeof
funcTable
dataTable
initRoutine

data space size
pOinter to function initializers
pOinter to data initializers
routine to run

funcTable:

standard system routines
dc.l Open
dc.l Close
dc.l Expunge
dc.l Null

my device definitions
dc.l BeginIO
dc.l AbortIO

function table end marker
dc.l -1

The data table initializes static data structures.
The format is specified in exec/InitStruct routine's
manual pages. The INITBYTE/INIlWORD/INITLONG routines
are in the file "exec/initializers.i". The first argument
is the offset from the device base for this byte/word/long.
The second argument is the value to put in that cell.
The table is null terminated

dataTable:
INITBYTE
INITLONG
INITBYTE
INIlWRD
INIlWRD
INITLONG
OC.L 0

~TYPE,NTJ)EVICE
LN~,myName
LIBJLAGS,LIBF_SUMUSED!LIBF_CHANGED
LIB_VERSION, VERSION
LIB-REVISION, REVISION
LIB_IDSTRING,idString

This routine gets called after the device has been allocated.
The device pointer is in DO. The segment list is in aO.
If it returns non-zero then the device will be linked into
the device list.

initRoutine:

get the device pointer into a convenient A register
move. 1 as,-(sp)
move. 1 dO,aS

move. 1

move. 1

save a pointer to exec
a6,~SysLib(aS)

save a pointer to our loaded code
aO,~List(aS)

open the dos library
lea dosName (pc) ,aI
CLEAR dO
CALLSYS OpenLibrary

move. 1 dO,mdLPosLib(aS)
bne.s init-PosOK

can't open the dos! what gives
ALERT AG_OpenLib!AO-POSLib

init-PosOK:
now build the static data that we need

put your initialization here ...

move.l
move. 1
rts

as,dO
(sp)+,aS

;--

here begins the system interface commands. When the user calls
OpenLibrary/CloseLibraryjRemoveLibrary, this eventually gets translated
into a call to the following routines (Open/ClosejExpunge). Exec
has already put our device pointer in a6 for us. Exec has turned
off task switching while in these routines (via ForbidfPermit), so
we should not take too long in them.

;--

Open:

Open sets the IO.J;RROR field on an error. If it was success full ,
we should set up the IO_UNIT field.

; (device:a6, iob:al, unitnum:dO, flags:dl)
movem.l d2/a2/a3/a4,-(sp)

move. 1 aI,a2 ; save the iob

moveq
CIIF .1
bcc.s

move. 1
Isl.l
lea.l
move. 1
bne.s

,
bsr

move. 1
beq.s

Open....UnitOK:

see if the unit number is in range
#MDJruMUNI TS, d2
d2,dO
OpenJ:rror ; unit number out of range

see if the unit is already initialized
dO,d2 ; save unit number
#2,dO
~Units(a6,dO.l),a4
(a4) ,dO

Open....UnitOK

try and conjure up a unit
InitUnit

see if it initialized OK
(a4) ,dO
Open.J;rror

move. 1 dO,a3 unit pointer in a3

move. 1 dO , IO_UNIT(a2)

, mark us as having another opener
addq.w #1,LIB_OPENCNT(a6)
addq.w #1,UNIT_OPENCNT(a3)

prevent delayed expunges
bclr #LIBB-PELEXP,mdLElags(a6)

Open..-End:

movem.l (sp)+,d2/a2/a3/a4
rts

Open..-Error:
move.b
bra.s

#IOERR-OPENFAIL, IO.J;RROR(a2)
Open..-End

There are two different things that might be returned from
the Close routine. I f the device is no longer open and
there is a delayed expunge then Close should return the
segment list (as given to Init). Otherwise close should
return NULL.

Close: ; (device:a6, iob:al)
movem.l a2/a3,-(sp)

move. 1 aI,a2

move. 1 IO_UNIT(a2) ,a3

moveq.l
move. 1
move. 1

make sure the iob
#-l,dO
dO, IO_UNIT (a2)
dO, IO-PEVlCE (a2)

is not used again

see if the unit is still in use
subq.w #1,UNIT_OPENCNT(a3)

bne.s Close-Pevice

bsr ExpungeUnit

Close-Pevice:
mark us as having one fewer openers

subq.w #1,LIB_OPENCNT(a6)

see if there is anyone left with us open
bne.s Close-End

,
btst
beq.s

,
bsr

see if we have a delayed expunge pending
#LIBB-PELEXP,~lags(a6)
Close-End

do the expunge
Expunge

Close-End:
movem.l (sp)+,a2/a3
rts

There are two different things that might be returned from
the Expunge routine. If the device is no longer open
then Expunge should return the segment list (as given to
Init). Otherwise Expunge should set the delayed expunge
flag and return NULL.

One other ilrportant note: because Expunge is called from
the memory allocator, it may NEVER Wait 0 or otherwise
take long time to conplete.

Expunge: ; (device: a6

1$:

movem.l d2/aS/a6,-(sp)
move. 1 a6, as
move. 1 ~SysLib(aS),a6

tst.w
beq

,
bset
CLEAR
bra.s

move. 1

see if anyone has us open
LIB_OPENCNT(aS)
1$

it is still open. set the
#LIBB-PELEXP,mdlElags(aS)
dO
Expunge-End

go ahead and get rid of us.
~SegList(aS),d2

unlink from device list
move. I as,a1
CALLSYS Remove

device specific closings here ...

delayed expunge flag

Store our seglist in d2

;------ close the dos library
move. 1 mdLPosLib(aS) ,a1
CALLSYS CloseLibrary

free our memory
CLEAR dO
move. 1 as,a1
move.w LIB-NEGSIZE(aS),dO

sub.w dO,a1
add.w LIB~SIZE(aS),dO

CALLSYS FreeMem

,
move. 1

set up our return value
d2,dO

Expunge-End:

Null:

movem.l (sp)+,d2/aS/a6
rts

CLEAR dO
rts

InitUnit: ; (d2:unit number, a3:scratch, a6:devptr)
movem.l d2/d3/d4,-(sp)

allocate unit memory
move. 1 #MyDevUnit_Sizeof,dO
move. 1 #MEMF~UBLICrMEMF_CLEAR,d1
LINKSYS AllocMem,~ysLib(a6)

tst.l
beq

dO
InitUnit-End

move. 1 dO , a3
move.b d2,mdu-UnitNum(a3) ; initialize unit number

start up the unit process. We do a trick here
we set his message port to PA.....IGNORE until the
new process has a change to set it up.
We cannot go to sleep here: it would be very nasty
if someone else tried to open the unit
(exec's OpenDevice has done a Forbid() for us

, we depend on this to become single threaded) .
move. 1 #MYPROCS~CKSIZE,d4 stack size
move. 1 #rnyproc_seglist,d3 segment list
Isr.l #2,d3 change to bcpl pointer
moveq #MYPROCPRI, d2 pick out its priority
move. I #myName,d1 name is the device's
LINKSYS CreateProc,mdLPosLib(a6)

tst.l
beq

dO
InitUnit-FreeUnit

set up the unit structures for the new process
move. I dO,mduJ'rocess(a3)

move. 1 dO,aO
lea -pr-HsgPort(aO) ,aO
move. 1 aO ,MP_SIGTASK (a3)
move.b #PA-IGNORE,MP-FLAGS(a3)

send a startup message to the new process
lea mdu-Hsg(a3),a1
move. 1 a3,mdmLUnit(a1)
move. 1 a6,mdntJ)evice (a1)
move. 1 dO,aO message port is new process port
LINKSYS PutMsg,~SysLib(a6)

mark us as ready to go
move. 1 d2,dO unit number
Is1.1 #2,dO
move. 1 a3,~Units(a6,dO.l) set unit table

InitUnit_End:
movem.l (sp)+,d2/d3/d4
rts

got an error. free the unit structure that we allocated.
InitUnit-FreeUnit:

bsr FreeUnit
bra.s InitUnit-End

FreeUnit: ; (a3:unitptr, a6:deviceptr
move. 1 a3,a1
move. 1 #MyDevUnit_Sizeof,dO
LINKSYS FreeMem,~SysLib(a6)
rts

ExpungeUni t :
move. 1

; (a3:unitptr, a6:deviceptr)
d2,-(sp)

get rid of the unit's task. We know this'is safe
because the unit has an open count of zero, so it
is 'guaranteed' not in use.

move. 1 mdU-Process(a3) ,a1
lea - (pr -HsgPort) (a1) ,a1
LINKSYS RemTask,~SysLib(a6)

;------ save the unit number
CLEAR d2
move.b md~UnitNum(a3),d2

bsr

Isl.l
clr.l

move.l

rts

free the unit structure.
FreeUnit

clear out the unit vector in the device
#2,d2
~Units(a6,d2.1)

(sp)+,d2

here begins the device specific functions

; cmdtable is used to look up the
; inplernent the device COIm!laIld.
cmdtable:

OC.L
OC.L
OC.L
OC.L
OC.L
OC.L
OC.L
OC.L
OC.L
OC.L
OC.L

cmdtable_end:

Invalid
MyReset
Read
Write
Update
Clear
MyStop
Start
Flush
Foo
Bar

address of a routine that will

$00000001
$00000002
$00000004
$00000008
$00000010
$00000020
$00000040
$00000080
$00000100
$00000200
$00000400

; this define is used to tell which comnands should not be queued
; comnand zero is bit zero.
; The immediate COIm!laIlds are Invalid, Reset, Stop, Start, Flush
IMMEDIATES EQU $000001c3

BeginIO starts all incoming io. The IO is either queued up for the
unit task or processed immediately.

BeginIO: ; (iob: a1, device:a6)
move. 1 a3,-(sp)

bookkeeping
move. 1 IO_UNIT(a1) ,a3

see if the io COIm!laIld is within range
move.w IO_COMMAND(a1) ,dO
crnp.w #MYDEV-END,dO
bee.s BeginIO~oCmd

DISABLE aO

;------ process all immediate comnands no matter what
move.w #IMMEDIATES,d1
btst dO,d1
bne.s BeginIO_Immediate

btst
bne.s

bset
beq.s

see if the unit is STOPPED. If so, queue the msg.
#MDUB_STOPPED,UNIT-FLAGS(a3)
BeginIO_QueueMsg

this is not an immediate comnand. see if the device is
busy.
#UNITB-ACTlVE,UNIT-FLAGS(a3)
BeginIO_Immediate

we need to queue the device. mark us as needing
task attention. Clear the quick flag

00

BeginIO_QueueMsg:
BSET #UNITB_INTASK, UNITJ'LAGS (a3)
bclr #IOB_QUICK, IOJ'LAGS(al)

ENABLE aO

move. 1 a3,aO
LINKSYS PutMsg,~SysLib(a6)
bra.s BeginIO-End

BeginIO_Immediate:
ENABLE aO

bsr PerformIO

BeginIO-End:
move. 1 (sp)+,a3
rts

BeginIO~oQnd :
move.b #IOE~OCMD,IO-ERROR(al)
bra.s BeginIO-End

PerformIO actually dispatches an io request. It expects a3 to already
have the unit pointer in it. a6 has the device pointer (as always).
al has the io request. Bounds checking has already been done on
the io request.

PerformIO:
move. 1
move. 1

move.w
lea
move. 1

jsr

move. 1
rts

; (iob:al, unitptr:a3, devptr:a6)
a2,-(sp)
al,a2

IO_COMMAND(a2) ,dO
cmdtable (pc) ,aO
O(aO,dO.w) ,aO

(aO)

(sp)+,a2

TermIO sends the 10 request back to the user. It knows not to mark
the device as inactive if this was an immediate request or if the
request was started from the server task.

TermIO: ; (iob:al, unitptr:a3, devptr:a6)
move.w IO_COMMAND(al) ,dO
move.w #IMMEDIATES,dl
btst dO,dl
bne.s TermIO_Immediate

btst
bne.s

we may need to turn the active bit off.
#UNITB_INTASK,UNITJ'LAGS(a3)
TermIO_Immediate

bclr
the task does not have more work to do
#UNITB-ACTIVE,UNITJ'LAGS(a3)

TermIO_Immediate:
if the quick bit is still set then we don't need to reply

.---~-- msg -- just return to the user.
btst #IOB_QUICK,IOJ'LAGS(al)
bne.s TermIO-End

LINKSYS ReplyMsg,~ysLib(a6)

TermIO-End:
rts

AbortIO: ; (iob: al, device:a6)

here begins the functions that inplement the device comnands
all functions are called with:

al a pointer to the io request block
a2 another pointer to the iob
a3 a pointer to the unit
a6 a pointer to the device

Comnands that conflict with 68000 instructions have a "My" prepended
to them.

Invalid:
move.b #IOE~OCMD,IO-ERROR(al)
bsr TermIO
rts

MyReset:

!I! fill me in I!I
!II fill me in ! II
!I! fill me in !I!
!I! fill me in !II

the Read command acts as an infinite source of nulls. It clears
the user's buffer and marks that many bytes as having been read.

Read:
move. 1 IO-PATA(al) ,aO
move. 1 IO-LENGTH(al) ,dO
move. 1 dO, IO-ACTUAL (al)

deal with a zero length read
beq. s ReaUnd

CLEAR
now copy the data
dl

Read-Loop:

move.b
subq.l
bne.s

React..End:
bsr
rts

dl, (aO) +
#l,dO
Read.J,oop

TermIO

the Write command acts as bit bucket. It clears acknowledges all
the bytes the user has tr ied to write to it.

Write:
move. I IOJ.ENGTH(a1) ,IO...,ACTUAL(a1)

bsr TermIO

move. I MP_SIGBIT(a3),d1
bset d1,dO
LINKSYS Signal,~SysLib(a3)

rts

Flush pulls all io requests off the queue and sends them back.
We must be careful not to destroy work in progress, and also
that we do not let some io requests slip by.

Some funny magic goes on with the STOPPED bit in here. Stop is
defined as not being reentrant. We therefore save the old state
of the bit and then restore it later. This keeps us from
needing to DISABLE in flush. It also fails miserably if someone
does a start in the middle of a flush.

rts Flush:

Update and Clear are internal buffering cornmands. Update forces all
io out to its final resting spot, and does not return until this is
done. Clear invalidates all internal buffers. Since this device
has no internal buffers, these cornmands do not apply.

Update:
Clear:

bra Invalid

the Stop cornmand stop all future io requests from being
processed until a Start cornmand is received. The Stop
comnand is NOT stackable: e.g. no matter how many stops
have been issued, it only takes one Start to restart
processing.

MyStop:

Start:

bset

bsr
rts

#MDUB_STOPPED,UNIT~LAGS(a3)

TermIO

bsr InternalStart

move. I
bsr

rts

a2,a1
TermIO

movem.l d2/a6,-(sp)

move. I ~SysLib(a6) ,a6

bset #MDUB_STOPPED,UNIT~LAGS(a3)
sne d2

Flush.....Loop:
move. I a3,aO
CALLSYS GetMsg

tst.l
beq.s

dO
Flush...End

move. I dO,a1
move.b #IOERR-ABQRTED,IO-ERROR(a1)
CALLSYS ReplyMsg

bra.s Flush.....Loop

Flush-End:

1$:

move. I d2,dO
movem.l (sp)+,d2/a6

tst.b
beq.s

dO
1$

bsr InternalStart

move. I a2, a1
bsr TermIO

InternalStart: rts
turn processing back on

bclr #MDUB_STOPPED,UNIT~LAGS(a3)

kick the task to start it moving
move.l a3,a1
CLEAR dO

Foo and Bar are two device specific commands that are provided just
to show you how to add your own comnands. The currently return that
no work was done.

Foo:
Bar:

CLEAR dO
move.l dO,IO-ACTUAL(a1)

bsr TennIO
rts

;--

here begins the process related routines

A Process is provided so that queued requests may be processed at
a later time.

Register Usage

a3
a6
as
a4
d7

unit pointer
syslib pointer
device pointer
task (NOT process) pointer
wait mask

;--

some dos magic. A process is started at the first executable address
after a segment list. We hand craft a segment list here. See the
the DOS technical reference if you really need to know more about this.

cnop
OC.L

myproc_seglist:

0.4
16

OC.L 0

long word allign
segment length -- any number will do

pointer to next segment

; the next instruction after the segment list is the first executable address

move.l -AbsExecBase,a6

wait for our first packet
SUB.L a1,a1
CALLSYS FindTask
move.l dO,aO
move.l dO, a4
lea pr-MsgPort(aO),aO
CALLSYS WaitPort

take msg off the port
move.l dO, a1
move. I dO, a2
CALLSYS Remove

<my task> = FindTask(O)

save task in a4
get msg port for my processes

save the message

get our parameters out of it
move. I mdmLDevice(a2) ,as as is now our device
move. I mrlmLUnit(a2),a3

Allocate the right signal

moveq #-1,dO
CALLSYS AllocSignal

-1 is any signal at all

move.b
move.b

CLEAR
bset

bra.s

Proc....MainLoop:

dO,MP_SIGBIT(a3)
#PA-SIGNAL,MP-ELAGS(a3)

change the bit number into a mask, and save in d7
d7
dO,d7

OK, kids, we are done with initialization. We now
can start the main loop of the driver. It goes
like this. Because we had the port marked PA-IGNORE
for a while (in InitUnit) we junp to the getmsg
code on entry.

wait for a message
lock the device
get a message. if no message unlock device and loop
dispatch the message
loop back to get a message

main loop: wait for a new message

move. I d7,dO
CALLSYS Wait

Proc_CheckStatus:

btst
bne.s

bset
bne.s

see if we are stopped
#MDUB_STOPPED,UNIT-ELAGS(a3)
Proc....MainLoop ; device is stopped

lock the device
#UNITB-ACTIVE,UNIT-ELAGS(a3)
Proc....MainLoop ; device in use

get the next request
Proc~extMessage:

move. I a3,aO
CALLSYS GetMsg
tst.l dO
beq.s Proc_Unlock no message?

move. I
exg
bsr
exg

bra.s

Proc_Unlock:
and.b
bra

do this request
dO,a1
as,a6
PerfonnIO
as,a6

Proc~extMessage

put device ptr in right place

get syslib back in a6

no more messages. back ourselves out.

#$ff&(UNITB-ACTIVEIUNITB_INTASK),UNIT-ELAGS(a3)
Procj1ainLoop

ProcJail:
;------ we come here on initialization failures
bsr FreeUnit
rts

EndCode is a marker that show the end of your code.
Make sure it does not span sections nor is before the
rom tag in memory! It is ok to put it right after
the rom tag -- that way you are always safe. I put
it here because it happens to be the "right" thing
to do, and I know that it is safe in this case.

;--
EndCode:

END

t**tt.,., •• "."""",.,.""""""""""""""t**tt""""""'t
* *
*
*

Copyright (C) 1985, COllIl\Odore Amiga Inc. All rights reserved. *

t'tk"t'l"""""""""""""""""""""'".**t".""""",/
t**ttl""""""""""""""""""""""""t**ttl" •• "."".,
* * testdev. asm - - test the mylib. asm code
* * Source Control
*
* * $Header: amain.asm,v 31.3 85/10/18 19:04:04 neil Exp $
* $Locker: neil $
* $Log: amain.asm,v $
* .**t*."""*""""",*"*""""""""""",,,,t**t'l""""""/

JDain:

INCLUDE 'exec/types. i '
INCLUDE 'exec/libraries.i'
INCLUDE 'exec/devices.i'
INCLUDE 'exec/io.i'

INCLUDE 'asmsupp.i'
INCLUDE 'mydev. i'

XDEF

XREF
XREF
XREF
XREF
XREF
XREF

XLIB
XLIB

move.l

pea
pea
jsr
addq.l

move.l
beq.s

move.l
jsr
addq.l

move.l
beq

JDain

-printf
../IbsExecBase
_CreatePort
_DeletePort
_CreateStdIO
J)eleteStdIO

OpenDevice
CloseDevice

../IbsExecBase,a6

make a reply port
o
myName
_CreatePort
#8,sp

dO ,Port
main....end

get an io request
dO,-(sp)
_CreateStdIO
#4,sp

dO, lob
main....DeletePort

move.l dO,al
move.l #myName,LN_NAME(a1)

,
lea
CLEAR
CLEAR
CALLSYS

tst.l
beq.s

open the test device:
myDevName (pc) ,aO
dO
d1
OpenDevice

dO
1$

this will bring it in from disk

pea
move.l
move.b
pea
pea
jsr
addq.l

couldn't find the library
o

bra

1$:

dO,aO
IO-ERROR(aO) ,3(sp)
myDevName (pc)
nodevmsg (pc)
-printf
#8,sp

main...Deletelob

close the device
move.l Iob,a1
CALLSYS CloseDevice

main...Deletelob:
move.l
jsr
addq.l

maiQ..DeletePort
move.l
jsr
addq.l

maiQ..end:
rts

myDevName:
myName:
nodevmsg:
testmsg:

Port:
lob:

dc.l
dc.l

END

Iob,-(sp)
_DeleteStdIO
#4,sp

Port,-(sp)
J)eletePort
#4,sp

MYDEVNAME
dc.b 'testdev' ,0
dc.b 'can not open device "%s": error %ld' ,10,0
dc.b 'function MYFUNC%ld returned %ld',10,0

o
o

tt*t,tt •• , •• , •• , •• ,., ••••••• *."." •• ".",**."",.*,'**"**"'"
* * * Copyright (C) 1985, Commodore Amiga Inc. All rights reserved. *
• •
.*tttt**"""",*"*""""""""""""""",,,'**"""'"

t**'t'l""""""""""""""""""""**"'*'***""""
*
• mylib.i -- external declarations for skeleton library

• SOURCE CONTROL

• $Header: ramlib.i,v 31.1 85/10/13 23:12:51 neil Exp $
•
• $Locker: neil $

tt*'ttl""""""""*"""""""""""""""'**""""

; library function definitions

LIBINIT
LIBDEE'
LIBDEE'

MLE'UNCO
MLE'UNC1

; library data structures

STRUCTURE MyLib,LIB_SIZE
ULONG ml_SysLib
ULONG ml-PosLib
ULONG ml_SegList
UBYTE mlJlags
UBYTE ml-pad
LABEL MyLib_Sizeof

MYLIBNAME MACRO
DC.B
ENDM

'mylib.library' ,0

'">j

......
~

••••• t ••••••••••••• "".,."."., ••••• "",.,., •• ".,.tttt ••• tt"",.""
* *
* Copyright (C) 1985, Conmodore Amiga Inc. All rights reserved. *

* tttt*t***.,.".", ••••• ,., •• "." •• , •• " •••• ,., •• ",.,tt**tt""""""/

tt*tttl."""""""""""""""""""""""'t**""""""*"
mylib.asm -- skeleton library code

* Source Control

* $Header: amain.asm,v 31.3 85/10/18 19:04:04 neil Exp $
* $Locker: neil $
* $Log: amain.asm,v $

*.******************~***** •• **************************'ttttttl"""""/
SECTION section

NOLIST
include "exec/types. i"
include "exec/nodes.i"
include "exec/lists.i"
include "exec/libraries.i"
include "exec/alerts.i"
include "exec/initializers.i"
include "exec/resident. itt
include "libraries/dos.i"

include "asmsupp.i"

include "mylib.i"

LIST

These don't have to be external, but it helps some
, debuggers to have them globally visible
XDEF Init
XDEF Open
XDEF Close
XDEF Expunge
XDEF Null
XDEF myName
XDEF MyFuncO
XDEF MyFunc1

XREF ...AbsExecBase

XLIB OpenLibrary
XLIB CloseLibrary
XLIB Alert
XLIB FreeMem
XLIB Remove

The first executable location. This should return an error
in case someone tried to run you as a program (instead of
loading you as a library) .

Start:
CLEAR
rts

dO

A romtag structure. Both "exec" and "ramlib" look for
; this structure to discover magic constants about you
; (such as where to start running you from ...) .

MYPRI

Most people will not need a priority and should leave it at zero.
the RT..J'RI field is used for configuring the roms. Use "mods" from
wack to look at the other romtags in the system

EQU 0

initDDescrip:

DC.W
DC.L
DC.L
DC.B
DC.B
DC.B
DC.B
DC.L
DC.L
DC.L

RTCjfATOlWORD
initDDescrip
EndCode
RTF..AUTOINIT
VERSION
NTJ,IBRARY
MYPRI
myName
idString
Init

; STRUCTURE RT, 0
UWJRD RTjfATOlWORD
APTR RTjfATCHTAG
APTR RTJ;NDSKIP
UBYTE RTJLAGS
UBYTE RT_VERSION
UBYTE RT_TYPE
BYTE RT..J'RI
APTR RTJAME
APTR RT_IDSTRING
APTR RT_INIT
LABEL RT_SIZE

this is the name that the library will have
myName: MYLIBNAME

a major version number.
VERSION: EQU 1

A particular revision. This should uniquely identify the bits in the
library. I use a script that advances the revision number each time
I reconpile. That way there is never a question of which library
that really is.

REVISION: EQU 17

this is an identifier tag to help in supporting the library
fonnat is 'name version. revision (dd MON yyyy) , , <cr> , <If> , <null>

idString: dc.b 'mylib 1.0 (31 Oct 1985) ',13,10,0

dosName: OOSNAME

Init:

force word allignment
ds.w 0

The romtag specified that we were "RTF..AUTOINIT". This means
that the RT_INIT structure member points to one of these
tables below. If the AUTOINIT bit was not set then RT_INIT
would point to a routine to run.

DC.L
DC.L

MyLib_Sizeof
funcTable

data space size
pointer to function initializers

OC.L
OC.L

funcTable:

dc.l
dc.l
dc.l
dc.l

dc.l
dc.l

dataTable
initRoutine

standard system routines
Open
Close
Expunge
Null

my libraries definitions
MyFuncO
MyFunc1

function table end marker
dc.l -1

pointer to data initializers
routine to run

The data table initializes static data structures.
The format is specified in exec/InitStruct routine's
manual pages. The INITBYTE/INITWORD/INITLONG routines
are in the file "exec/initializers.i". The first argument
is the offset from the library base for this byte/word/long.
The second argument is the value to put in that cell.
The table is null terminated

dataTable:
INITBYTE
INITLONG
INITBYTE
INITWORD
INITWORD
INITLONG
OC.L 0

ULTYPE , NTJ,IBRARY
LNJ;AME,myName
LIB-FLAGS,LIBF_SUMUSED!LIBF_CHANGED
LIB_VERSION,VERSION
LIB-REVISION,REVISION
LIB_IDSTRING,idString

This routine gets called after the library has been allocated.
The library pointer is in DO. The segment list is in AO.
If it returns non-zero then the library will be linked into
the library list.

initRoutine:

get the library pointer into a convenient A register
move. 1 as,-(sp)
move. 1 dO,aS

save a pointer to exec
move. 1 a6,ml_SysLib(aS)

save a pointer to our loaded code
move. 1 aO,ml_SegList(aS)

open the dos library
lea dosName(pc) ,a1
CLEAR dO
CALLSYS OpenLibrary

move. 1 dO,ml-PosLib(aS)
bne.s 1$

1$:

can't open the dos! what gives
ALERT AG_OpenLib !AOJX)SLib

now build the static data that we need

put your initialization here ...

move. 1 as,dO
move. 1 (sp)+,aS
rts

here begins the system interface commands. When the user calls
OpenLibrary/CloseLibraryjRemoveLibrary, this eventually gets translated
into a call to the following routines (Open/Close/Expunge). Exec
has already put our library pointer in A6 for us. Exec has turned
off task switching while in these routines (via ForbidjPermit), so
we should not take too long in them.

Open:

Close:

Open returns the library pointer in dO if the open
was· successful. I f the open failed then null is returned.
It might fail if we allocated memory on each open, or
if only open application could have the library open
at a time ...

; (libptr:a6, version:dO

mark us as having another opener
addq.w #1,LIB_OPENCNT(a6)

prevent delayed expunges
bclr #LIBB-PELEXP,ml_Flags(a6)

move. 1 a6,dO
rts

There are two different things that might be returned from
the Close routine. If the library is no longer open and
there is a delayed expunge then Close should return the
segment list (as given to Init). Otherwise close should
return NULL.

CLEAR

; (libptr: a6

set the return value
dO

mark us as having one fewer openers
subq.w #1,LIB_OPENCNT(a6)

bne.s
see if there is anyone left with us open
1$

1$:

btst
beq.s

bsr

rts

see if we have a delayed expunge pending
#LIBB-PELExp,ml-Flags(a6)
1$

do the expunge
Expunge

There are two different things that might be returned from
the Expunge routine. If the library is no longer open
then Expunge should return the segment list (as given to
Init). Otherwise Expunge should set the delayed expunge
flag and return NULL.

One other inportant note: because Expunge is called from
the memory allocator, it may NEVER Wait 0 or otherwise
take long time to complete.

Expunge: ; (libptr: a6

movem.l d2/aS/a6,-(sp)
move. 1 a6,aS
move. 1 ml-SysLib(aS) ,a6

tst.w
beq

bset
CLEAR
bra.s

see if anyone has us open
LIB_OPENCNT(aS)
1$

it is still open. set the delayed expunge
#LIBB-PELExp,ml-Flags(aS)
dO
ExpungeJ:nd

flag

set up our return value
move. 1 d2,dO

ExpungeJ:nd:

Null:

,

movem.l (sp)+,d2/aS/a6
rts

CLEAR dO
rts

; here begins the library specific commands
0 ___ _

,

MyFuncO:

MyFunc1:

EndCode:

CLEAR dO
rts

moveq #1,dO
rts

EndCode is a marker that show the end of your code.
Make sure it does not span sections nor is before the
rom tag in nemory! It is ok to put it right after
the rom tag -- that way you are always safe. I put
it here because it happens to be the "right" thing
to do, and I know that it is safe in this case.

1$: END
;------ go ahead and get rid of us. Store our seglist in d2
move. 1 ml-SegList(aS) ,d2

;------ unlink from library list
move. 1 as,a1
CALLSYS Remove

device specific closings here ...

close the dos library
move. 1 ml-PosLib(aS) ,a1
CALLSYS CloseLibrary

free our memory
CLEAR dO
move. 1 as,al
move.w LIB~GSIZE(aS) ,dO

sub.l dO,a1
add.w LIB-POSSIZE(aS) ,dO

CALLSYS FreeMem

INCLUDE ' exec/types. i '
INCLUDE 'exec/libraries.i'

INCLUDE 'asmsupp. i '
INCLUDE 'mylib.i'

•• ,.t,.t •••• ,., •• , ••••• ", •• ,." •• ".",.*".,*"",,*tt*ttttt.""*,*,,,
• • • Copyr ight (C) 1985, CODlllOdore Amiga Inc. All rights reserved.

•
"""*'*",.,"*""'*""'*"',.,*"'*""""'*""ttttttttt""""'/

tt,t'ttttl""""'""""""""""""""**",,,"'*""""',.,"*
*
• testlib.asm -- test the mylib.asm code
•
• Source Control
•
•
• $Header: amain.asm,v 31.3 85/10/18 19:04:04 neil Exp $
•
• $Locker: neil $
•
* $Log: amain.asm,v $
•
""""""""""""""""""""""""*"',.*"""*"',.""'/

XDEFmain

XREF -printf
XREF ..AbsExecBase

XLIB OpenLibrary
XLIB CloseLibrary

....main:
move.l ..AbsExecBase,a6

, open the test library: this will bring it in from disk
lea myName(pc) ,a1
CLEAR dO
CALLSYS OpenLibrary

tst.l dO
bne.s 1$

couldn't find the library
pea myName(pc)
pea nolibmsg(pc)
jsr -printf
addq.l #8,sp

bra mailLend

1$:
move.l dO,a2

call the first test function
LINKLIB MLFUNCO,a2
move.l dO,-(sp)
pea °
pea testmsg (pc)
jsr -printf
lea 12(sp),sp

call the second test function
LINKLIB MLFUNC1,a2
move. I dO,-(sp)
pea 1
pea testmsg (pc)
jsr -printf
lea 12 (sp) ,sp

, close the library
move.l a2,a1
CALLSYS CloseLibrary

mailLend:
rts

myName:
nolibmsg:
testmsg:

END

MYLIBNAME
dc.b 'can not open library "%s" , ,10,0
dc.b 'function MYFUNC%ld returned %ld',10,0

AbortIOO, 276
AddAnimObO, 169
AddBobO, 147
AddTimeO, 251
AddVSpriteO, 125
After pointer

changing Bob priority, 149
in animation precedence, 172
in Bob priority, 141-142
in linking AnimComps, 175

AllocMemO, 143
AllocRasterO

allocating memory, 29
in saving background, 143

Alt key, 305,323
Amiga keys, 292
AndRectRegionO,96
AnimateO, 163, 174, 177
animation

acceleration, 168
AnimCRoutine, 173
AnimORoutine, 173
motion control, 168-169
sequenced drawing, 166, 169
types, 104, 105
velocity, 168

AnimComp
BobComp, 145
BOBISCOMP flag, 145
definition, 164
Flags variable, 173
position, 165
TimeSet variable, 173

AnimCRoutine
in creating animation, 176
with AnimateO, 177

AnimOb
definition, 164
position, 165

AnimORoutine
in creating animation, 176
with AnimateO, 177

AnX variable
in ring processing, 175
in velocity and acceleration, 168

Index

moving registration point, 168
specifying registration point, 165

AnY variable
in ring processing, 175
in velocity and acceleration, 168
moving registration point, 168
specifying registration point, 165

AOIPen variable
in filling, 37
in RastPort, 36

A-Pen, see FgPen
area buffer, 41
area pattern, 38
AreaDrawO

adding a vertex, 45
in area fill, 41

AreaEndO
drawing and filling shapes, 45
in area fill, 41

AreaInfo pointer, 41
AreaMoveO

beginning a polygon, 45
in area fill, 41

AskKeyMaPO,298
AskSoftStyieO, 199
audio channels

allocation, 225, 228
allocation key, 226, 230
changing the precedence, 231
freeing, 230-231

audio device
AbortIOO, 228
allocation/ arbitration commands, 228
BeginIOO,228
CloseDeviceO, 228
double-buffering, 233
hardware control commands, 232
lORe quest block, 224
OpenDeviceO,227
playing the sound, 232
precedence of users, 225
scope of commands, 224
starting the sound, 235
stopping the sound, 233-234
use of BeginIOO function, 226

Index - 1

AvailFontsO,201
background pen, 36
background playfield, 31
BDRAWN flag, 146
beam synchronization, 58
Before pointer

changing Bob priority, 149
in animation precedence, 172
in Bob priority, 141-142
in linking AnimComps, 175

BeginUpdateO, 95
BehindLayerO, 83
BgPen, 197
BitMap

address, 23
in double-buffering, 33
in superbitmap layers, 86
software clipping, 46
with write mask, 42

BitMap structure
in dual-playfield display, 32
preparing, 23

bit-planes
extracting a rectangle from, 54
in dual-playfield display, 30

blitter
in Bob animation, 109
in copying data, 57
in disk driver, 262
VBEA1vf counter, 60

BltBitMapO, 55
BltClearO, 50
bltnode structure

creating, 59
linking blitter requests, 57

BltPatternO, 52
BltTemplateO, 53
BNDRYOFF macro, 46
BobComp pointer, 145
BOBISCOMP flag, 145
BOBNIX flag, 146
BOBSAWAY flag, 146
Bobs

adding new features, 161
as a paintbrush, 145
as part of AnimComp, 145
Before, After pointers, 172
bit-planes, 138, 140
changing, 148
clipping, 145
colors, 136, 138, 140, 152
defining, 135
definition, 109
displaying, 148

Index - 2

double-buffering, 146, 149
drawing order, 141
list, 142
priorities, 141
removing, 146
saving the background, 143
shadow mask, 139, 144
shape, 137
size, 136
sorting the list, 148
structure, 135
transparency, 144
troubleshooting, 153

BORDERHIT flag, 159
BorderLine pointer, 157
BOTTOMHIT flag, 154
bottommost variable

in Bobs clipping region, 145
in BobjVSprite collision, 161

B-Pen, see BgPen
Buf'Path variable, 150
BufY, BufX variables, 150
BufBufl'er variable, 150
BWAITING flag, 145
bytecnt variable, 53
bytecount pointer, 50
Caps Lock key, 291, 304
ChangeSpriteO, 112
CheckIOO, 276, 386, 404
cleanup variable, 60
Clear RegionO, 96
ClipBlitO, 55
clipping

in area fill, 46
in line drawing, 44
text, 193

clipping rectangles
in BobjVSprite collision, 161
in layer operations, 84
in layers, 78, 94
modifying regions, 96

clipping region
in Bobs, 145
in boundary collisions, 159
in VSprites with GELGONE, 125

ClipRect structure, 94
CloseDeviceO, 307
CloseO,416
CMD_CLEAR command, 268
CMD_UPDATE command, 268
CMD_WRITE command, 268
CmpTimeO, 251
collisions

between GEL objects, 153

boundary, 159
boundary hits, 154
collision mask, 156
detection in hardware, 153
fast detection, 157
GEL-to-GEL, 154
in animation, 153
multiple, 155
sensitive areas, 157
user routines, 159

CollMask variable
in Bobs, 139
with collision mask, 156

color
affect of display mode on, 6
Bobs, 136, 152
ColorMap structure, 24
flickering, 134
in dual playfield mode, 15
in flood fill, 47
in hold-and-modify mode, 34
int~raction between VSprites and Bobs, 152
mode in flood fill, 47
of individual pixel, 43
playfield and VSprites, 134
relationship to bit-planes, 8
relationship to depth of BitMap, 13
simple sprites, 111
single-color raster, 50
sprites, 16
transparency, 123
VSprite, 121, 133

ColorMap structure, 24
CommandTable, 436
compFlags variable, 168
COMPLEMENT, 197
complement mode, 38
ConMayGetCharO, 286
ConPutCharO, 281
console

alternate key maps, 303
capsable keys, 304
character output, 276
closing, 307
control sequence introducer, 290
control sequences, 281
high key map, 299, 306
input event qualifiers, 291
input stream, 287
keyboard input, 277
keymapping, 292, 297
keymapping qualifiers, 300-301
keytypes, 302
low key map, 299, 305

mouse button events, 297
raw events, 289
raw input types, 289
reads, 286
repeatable keys, 305
string output keys, 303
window bounds, 289

Con WriteO, 281
cookie cut, 57
Copper

changing colors, 24
display instructions, 25
in drawing VSprites, 122
in interlaced displays, 33
long-frame list, 33
Make VPortO, 29
MrgCopO, 25, 33
short-frame list, 33
user Copper lists, 61

copymg
data, 57
rectangles, 55

count variable, 44
cp_x variable

in drawing, 42
in text, 192

cp-y variable
in drawing, 42
in text, 192

crashing
with drawing routines, 44
with fill routines, 46

CreateBehindLayerO, 81-82
CreateExtI00, 264, 384, 402, 417
CreatePortO, 265, 384, 402, 417
CreateStdIOO, 264, 279
CreateUpFrontLayerO,81-82
Ctrl key, 305
DamageList structure

in layers, 94
in regions, 95

DBuffer pointer, 149
DBufPacket structure, 150
deallocation

Copper list, 30
memory, 30, 41

DeleteExtIOO, 384, 402
DeleteLayerO, 82
DeletePortO, 384,402
DeleteStdIOO, 307
depth, 13
Depth variable, 136, 138
destRastPort variable, 55
destX variable, 55

Index - 3

dest Y variable, 55
DHeight variable

in ViewPort, 20
in ViewPort display memory, 19

diskfont library, 200
disk/ont.h,201-202
DisownBlitterO,57
display fields, 5
display modes, 15
display width

affect of overscan on, 4
effect of resolution on, 17

DisposeRegionO, 96
DMA

displaying the View, 25
playfield, 13

DoCollision{)
purpose, 153
with collision masks, 160

Do100,276
DoSpecialO, 435-437
dotted lines, 38
double-buffering

allocations for, 32
Copper in, 33
Copper lists, 128
with Bobs, 149

DrawerData structure, 482
DrawO

in line drawing, 43
multiple line drawing, 44

DrawGListO
and BDRAWN flag, 146
and BOBNIX flag, 146
and BOBSAWAY flag, 146
and BWAITING flag, 145
animation, 163
changing Bobs, 149
displaying Bobs, 148
linking AnimComps, 175
moving registration point, 168
preparing the GELS list, 127
removing Bobs, 147
with DoCollisionO, 177

drawing
changing part of drawing area, 52
clearing memory, 50
colors, 37
complement mode, 38
lines, 43
memory for, 35
modes, 37-38
moving source to destination, 53
pens, 36-37

Index - 4

pixels, 43
shapes, 47
turning off outline, 46

drawing pens
color, 37
current position, 42

Draw Mode variable
in area drawing and filling, 45
in flood fill, 48
in stencil drawing, 52
with BltTemplate, 55
in text, 197

dual playfields
bit-planes, 31
color map, 24
colors, 15
priority, 31

DUALPF flag
in dual playfield display, 31
in ViewPort, 15

DumpRPortO, 415, 423
DWidth variable

in ViewPort, 12-13, 20
in ViewPort display memory, 19

DxOffset variable
effect on display window, 20
in ViewPort display memory, 19

DyOffset variable
effect on display window, 20
in ViewPort display memory, 19

EndUpdateO,95
EQUAL status code, 59
ETD_CLEAR command, 268
ETD_MOTOR command, 268
ETD_READ command, 267
ETD_UPDATE command, 268
ETD_WRITE command, 268
EXTRA_HALF BRITE flag, 15-16
fast floating-point library, 453
FattenLayerlnfoO,80
FgPen variable

in area drawing and filling, 45
in complement mode, 38
in flood fill, 47-48
in JAMI mode, 37
in line drawing, 44
in RastPort, 36
in rectangle fill, 48
in text, 197
with BltTemplate, 55

FindToolTypeO, 487
Flags variable

in AnimComps, 173
in layers, 85

in VSprites, 124
with BNDRYOFF macro, 46

flicker, 58, 60
FloodO,47
floppy disk, 262
FontContents structure, 201
FontContentsHeader structure, 201
fonts, 192
ForbidO, 487
foreground pen, 36
FOREVER loop, 29
FreeColorMapO, 29
FreeCprListO, 29
FreeDiskObjectO, 481
FreeRasterO,29
FreeSpriteO, 120
FreeVPortCopListsO,29
Gadget structure, 483
gameport connectors, 322
game port device

connectors, 345
system functions, 346
triggering events, 348
units, 322, 345

gameport.h, 348
GameTrigger structure, 348
GELGONE flag

in Bobs, 145
with VSprites, 125

GELS
initializing, 106
list, 106
types, 107

GelsInfo pointer, 42
GelsInfo structure, 131
GetColorMaPO,29
GetDiskObjectO, 481
GetMsgO, 386,404
GetSpriteO, 111
GfxBase variable, 22
GPD_GETCTYPE command, 347
GPD_SETCTYPE command, 346
GPD_SETTRIGGER command, 348
graphics library, 22
HAM flag, 15, 34
hardware sprites

allocation, 111
in animation, 25
reserving, 131

Height.variable
in Bobs, 136, 138
in ViewPort, 12
in VSprites, 121

HIRES flag, 15

HitMask variable, 159
hold-and-modify mode, 34
icon library, 480
IDCMP, 327
ImageData pointer

changing Bobs, 148
changing VSprites, 129
in Bobs, 137
in VSprites, 122-123

Image structure, 484
ImageShadow variable

in Bobs, 139
with OVERLAY flag, 144

IND_ADDHANDLER command, 324
IND_REMHANDLER command, 326
IND_SETPERIOD command, 327
IND_SETTHRESH command, 327
IND_WRITEEVENT command, 326
info file, 481
InitAreaO,41
InitGelsO, 106
InitLayersO, 80
InitMasksO

changing Bob image shadow, 148
defining collision mask, 156
with Borderline, 158

InitRastPortO, 196
input device

adding a handler, 324
and console device, 323
commands, 323
designing an input handler, 324
generating input events, 326
IOStdReq block, 324
key repeat events, 327
memory deallocation, 325
opening, 322
removing a handler, 326
setting key repeat interval, 327
setting key repeat timing, 327

input event chain, 325
input event structure, 323
input events

generators of, 326
Intuition handling of, 324
mouse button, 328

inputevent.h, 323
inputJequest_block, 326
Intuition

as input device handler, 324
mouse input, 322
with sprites, 110

INVERSEVID mode
in drawing, 38

Index - 5

in text, 198
IODRPReq structure, 416
IOExtPar structure, 403
IOExtSer structure, 385, 396
IOExtTD structure, 265
IOPrtCmdReq structure, 416
IOStdReq structure, 279
io_TermArray, 388, 405
JAM1 mode

in drawing, 37
in text, 197
with INVERSEVID, 38

JAM2 mode
in drawing, 37
in text, 197

joystick controller, 347
KBD_ADDRESETHANDLER command, 339
KBD_READEVENT command, 341
KBD_READMATRIX command, 340
KBD_REMRESETHANDLER command, 340
KBD_RESETHANDLERDONE command, 340
keyboard device

keyboard events, 337
system functions, 338

keyboard layout, 292
KeyMap structure, 298
keymap.h, 301
keymap. i, 301
LACE flag

in View and ViewPort, 18
in ViewPort, 15

layer refresh
simple refresh, 85
smart refresh, 86
superbitmap, 86

LA YERBACKDROP flag, 86
Layer_Info structure, 80, 88
layers

accessing, 81
backdrop, 86
blocking output, 81
clipping rectangle list, 94
creating, 81-82, 88
creating the workspace, 88
deleting, 82
moving, 82
order, 83
redrawing, 95
scrolling, 83
simple refresh, 94
sizing, 82
sub-layer operations, 84
updating, 95

layers library

Index - 6

contents, 77
opening, 87

LA YERSIMPLE flag, 85
LAYERSMART flag, 85
LA YERSUPER flag, 85
LEFTHIT flag, 154
leftmost variable

in Bobs clipping region, 145
in Bob/VSprite collision, 161

line drawing, 43
line pattern, 38
LinePtrn variable, 45
lines

multiple, 44
patterned, 44

LoadRGB40, 24
LoadViewO

effect of freeing memory, 30
in display View Ports, 25

LocklayerO, 81
LockLayerlnfoO,81
LockLayersO, 81
LOFCprList variable, 33
logic equations, 56
long-frame Copper list, 33
MakeViewO

with simple sprites, 110
MakeVPortO

allocating memory, 29
in double-buffering, 33
in dual playfield display, 31

Mask variable, 42, 55
MatchToolValueO,488
math library, 453
mathffp.library, 455
mathieeedoubbas_h"b.lib, 474
mathieeedoubbas.library, 472
mathlink.lib, 457, 464
mathtrans.library, 461
maxx variable, 52
maxy variable, 53
MeMask variable, 159
memblock pointer, 50
memory

allocation for BitMap, 23
clearing, 50
deallocation of, 41
for area fill, 41
freeing, 29

MICROHZ timer unit, 248
minterm variable, 56
Modes variable

in View structure, 20
in ViewPort, 14-15

modulo, 54
mouse button, 323
mouse button events, 297, 322
mouse controller, 347
mouse movement events, 322
mouth structure, 365
MoveO, 43, 192
MoveLayerO,82
MoveSpriteO, 113
MrgCopO

in graphics display, 25
installing VSprites, 128
merging Copper lists, 30

mylnfo structure, 162
narrator device

Arpabet, 373
consonants, 374
content words, 376
contractions, 374
controlling speech characteristics, 364
function words, 376
improving intelligibility, 378
mouth shape, 365
opening, 363
opening the device, 366
output buffer, 362
phonemes, 373
phonetic spelling, 373
punctuating phonetic strings, 372
punctuation, 377
reading and writing, 366
recommended stress values, 376
special symbols, 375
speech synthesis system, 379
stress and intonation, 375
stress marks, 375
translator library, 362
vowels, 373

narrator. h, 365
narrator. £, 365
narrator_rb structure, 364
NewLayerlnfoO,80
NewRegionO,95
NewWindow structure, 482
NextComp pointer

in linking AnimComps, 175
in sequenced drawing, 171

Next variable, 22
NextSeq pointer

in linking AnimComps, 175
in sequenced drawing, 170

NOTEQUAL status code, 59
ON_DISPLAY macro, 127
ON_SPRITE macro, 127

O-Pen, see AOIPen
OpenConsoleO, 278
OpenDiskFontO, 195, 205
OpenFontO, 195, 205
OpenO,416
OpenScreenO, 110
OrRectRegionO, 96
outline mode, 47
outline pen, 36
OVERLAY flag, 144
OwnBlitterO, 57
PAR:, 414
parallel device

closing, 408
EOF mode, 405-406
errors, 407
flags, 406
IOExtPar block, 403
io_TermArray, 405-406
loading from disk, 402
opening, 402
opening timer device, 403
PDCMD_SETPARAMS, 403
reading, 403, 404
setting parameters, 403, 406-407
shared access, 406
terminating the read, 405
termination characters, 406
writing, 405

PDCMD_SETP ARAMS, 403
PED structure, 428
PFBA flag

in dual playfield mode, 17
in ViewPort, 15

pixel width, 17
PlaneOnOff variable

changing Bob color, 149
in Bobs, 140

PlanePick variable
changing Bob color, 149
in Bobs, 138, 140-141

PLANEPTR, 23
PolyDrawO,44
polygons, 45
power_of_two variable, 38
PRD_DUMPRPORT,423
PRD_PRTCOMMAND, 422
Preferences, 415, 428
PrevComp pointer

in linking AnimComps, 175
in sequenced drawing, 171

PrevSeq pointer
in linking AnimComps, 175
in sequenced drawing, 170

Index - 7

PrintCOInInandO,422
printer device

alphanumeric drivers, 435
buffer deallocation, 434
buffer space, 432
closing DOS printer device, 416
command buffer, 432
command functions, 419
CommandTable, 435
creating an I/O request, 417
creating drivers, 428
data structures, 416
density, 434
direct use, 415
DOS parallel device, 414
DOS printer device, 414
DOS serial device, 414
double buffering, 433
dumping a RastPort, 423
dumping buffer, 433
Exec printer I/O, 416
graphics printer drivers, 431
opening, 418
opening DOS printer device, 415
output forms, 414
output methods, 413
PAR:, 414
Preferences, 415, 428, 430, 437
printer types, 431
processes and tasks, 416
PRT:, 414, 419
reset command, 433
SER:, 414
timeout, 430
transmitting commands, 422
writing, 418

Printer Data structure, 430
PrinterExtendedData structure, 428
printerIO structure, 416
PRT:, 414
PutDiskObjectO, 481
PWaitO,433
QBlitO

linking bltnodes, 58
waiting for the blitter, 57

QBSBlitO
avoiding flicker, 58
linking bltnodes, 58
waiting for the blitter, 57

QueueReadO, 286
RasInfo structure, 20
RASSIZE macro, 21
raster

depth, 13

Index - 8

dimensions, 19
in dual-playfield mode, 15
memory allocation, 21
one color, 50
Raslnfo structure, 20
scrolling, 51

RastPort
in area fill, 41
in layers, 84
pointer to, 42

RastPort structure, 192
rastport variable, 52
rastport.h, 36
rastport. i, 36
RawWriteO,415
ReadPixelO,43
rectangle fill, 48
rectangle scrolling, 51
RectFillO, 48
regIOns

changing, 96
clearing, 96
creating, 95
removing, 96

registration point, 168
RemBobO, 147
RemIBobO, 147
RemoveO, 386, 404
RemVSpriteO,125-126
RenderO,431
Reply Port, 279
ReplyPort pointer, 249
RHeight, 19
RIGHTHIT flag, 154
rightmost variable

in Bobs clipping region, 145
in Bob/VSprite collision, 161

RINGTRIGGER flag
in AnimComps, 173
in linking AnimComps, 175
moving registration point, 168

RingXTrans variable
in ring processing, 175
moving registration point, 168

RingYTrans variable
in ring processing, 175
moving registration point, 168

RWidth,19
RxOffset variable

effect on display, 20
in Raslnfo structure, 20
in ViewPort display memory, 19

RyOffset variable
effect on display, 20

in RasInfo structure, 20
in ViewPort display memory, 19

SA VEBACK flag
in Bobs, 144
saving the background, 143

SAVEBOB flag
changing Bobs, 149
in Bobs, 145

SaveBuffer variable
in saving background, 143
with SAVEBACK, 144

SA VEPRESERVE flag, 146
scrolling, 51
ScrollLayerO, 83, 86
ScrollRasterO, 51
SDCMD_SETPARAMS, 385
SendIOO, 276
SER:,414
serial device

alternative reading modes, 386-387
baud rate, 390
bits per read, 391
bits per write, 391
break commands, 393
break conditions, 391
buffer size, 390
buffers, 385
closing, 394
end-of-file, 391
EOF mode, 388, 391
errors, 394
exclusive access, 384
flags, 384
high-speed mode, 391
I/O request structures, 385
IOExtSer block, 396
io_TermArray,388
modes, 383
opening timer device, 385
parameter changes, 385
parity, 393
quick I/O, 387
reading, 385
SDCMD_SETPARAMS, 385
serial flags, 391
seven-wire access, 393
seven-wire flag, 384
shared access, 384, 391
stop bits, 391
terminating the read, 388
writing, 388
xON, xOFF, 390-391

SetAPenO, 197
SetBPenO, 197

SetCollisionO, 155
SetDr PtO, 44
SetFontO, 195
SetKeyMapO, 298
SetRastO,50
SetSoftStyleO, 199
SHFCprlist variable, 33
short-frame Copper list, 33
simple refresh, 94
simple sprites

definition, 108
GfxBase, 131
in Intuition, 110
position, 113
routines, 110

SimpleSprite structure, 112
single-buffering, 21
SizeLayerO, 82, 86
software clipping

in filling, 46
in line drawing, 44

SortGListO
changing Bobs, 149
ordering GEL list, 126
sorting Bobs, 148
with DoCollisionO, 177

sound synthesis, 222
source variable, 55
speech, see narrator device
SprColors pointer

changing VSprites, 129
in VSprite troubleshooting, 132
in VSprites, 122-123
when a 0, 133

sprFlag variable, 143
sprite DMA, 132
SPRITE flag, 110
sprites

color, 16, 111
display, 13
hardware, 108
pairs, 111
reserving, 131
reusability, 108
simple, 108
virtual, 108

sprRsrvd variable
effect on Bob color, 153
in reserving sprites, 131

srcMod variable, 55
srcX variable, 55
stencil drawing, 52
SubTimeO, 251
SwapBitsClipRectRastPortO, 84

Index - 9

system time, 251
TD_CHANGENUM command, 269
TD_CHANGESTATE command, 270
TD_FORMAT command, 269
TD_MOTOR command, 268
TD_PROTSTATUS command, 270
TD_REMOVE command, 269
TD_SEEK command, 270
text

adding fonts, 200
baseline, 193
changing font style, 199
character data, 206
color, 197
default fonts, 195
defining fonts, 203
disk fonts, 202
font accessors, 205
inter-character spacing, 200
printing, 194
selecting a font, 195

TextAttr structure, 195
TextFont structure, 203
TextO, 194, 199
text.h, 195
ThinLayerlnfoO, 80
time events, 322
timer device

arithmetic routines, 253
OpenDeviceO,249
units, 248
with parallel device, 403
with serial device, 385

TimerBase variable, 253
timeRequest structure, 248
Timer variable, 174
TimeSet variable

with AnimateO, 174
timeval structure, 248
ToolTypes array, 487
TOPHIT flag, 154
topmost variable

in Bobs clipping region, 145
in BobjVSprite collision, 161

track disk device
diagnostic commands, 270
error codes, 270
OpenDeviceO,266
status commands, 269

TranslateO, 362
translator library

exception table, 363
TR_GETSYSTIME, 251
TR_GETSYSTIME command, 251

Index - 10

TR_SETSYSTIME command, 251
UnlocklayerO,81
UnlockLayersO, 81
UpfrontLayerO,83
user copper lists, 61
User Ext variable, 161
UserStuff variables, 162
VBEAM counter, 60
VBLANK timer unit, 248
video priority

Bobs, 105
in dual-playfield mode, 15

View structure
Copper lists in, 33
function, 10
preparing, 22

ViewPort
colors, 13, 24
display instructions, 25
display memory, 19
displaying, 11
function, 10
height, 12
in screens, 11
interlaced, 18
low-resolution, 22
modes, 14-15
multiple, 22
parameters, 12
width, 13
width of and sprite display, 13
windows, 11

View Port structure, 22
VP _HIDE flag, 16
VSOVERFLOW flag

reserving sprites, 131
with VSprites, 125

VSPRITE flag
in Bobs, 144
in VSprites, 125

VSprites
adding new features, 161
building the Copper list, 127
changing, 129
color, 121
colors, 133
definition, 108
dummy, 106
hardware sprite assignment, 126, 132
in Intuition, 124
merging instructions, 128
playfield colors, 134
position, 124
shape, 122

size, 121
sorting the GEL list, 126
troubleshooting, 132
turning on the display, 127

WaitTOFO, 129
WhichLayerO, 83
Width variable, 136
Window structure, 275
\Vorkbench

info file, 481
sample startup program, 489
start-up code, 486
start-up message, 485-486
ToolTypes, 487

Workbench object, 480
WritePixelO, 43
XAccel variable, 168
xl variable, 52
XIllax variable, 48
xIllin variable, 48
XorRectRegionO, 96
XTrans, 166
XVel variable, 168
Y Accel variable, 168
yl variable, 53
YIllax variable, 48
YIllin variable, 48
YTrans, 166
YVel variable, 168

Index - 11

> $34.95 FPT USA

The Amiga Computer is an exciting new high-performance microcomputer with
superb graphics, sound, and multitasking capabilities. Its technologically advanced
hardware, designed around the Motorola 68000 microprocessor, includes three
sophisticated custom chips that control graphics, audio, and peripherals . The
Amiga's unique system software is contained in 192K of read-only memory (ROM),
providing programmers with unparalleled power, flexibility, and convenience in
designing and creating programs.

The AMIGA ROM KERNEL REFERENCE MANUAL: Libraries and Devices, written
by the technical staff at Commodore-Amiga, Inc., is a detailed introduction to and
description of the hundreds of graphics, animation, text, math, and audio routines
that make up the Amiga's ROM. This book includes:

• an introduction to how libraries and devices are designed and used
• hundreds of examples to illustrate the uses of the ROM routines
• an in-depth tutorial on graphics and animation
• a complete listing of the libraries and devices in Amiga's ROM

For the serious programmer working in assembly language, C, or Pascal who wants
to take full advantage of the Amiga's impressive capabilities, the AMIGA ROM KER
NEL REFERENCE MANUAL: Libraries and Devices is an essential reference .

Written by the technical staff at Commodore-Arruga, Inc., who designed the Amiga's
hardware and system software, the AMIGA ROM KERNEL REFERENCE MAN
UAL: Libraries and Devices is the definitive source of information on the libraries and
devices built into this revolutionary microcomputer.

The other books in the Amiga Technical Reference Series are:

Amiga Hardware Reference Manual
Amiga Intuition Reference Manual
Amiga ROM Kernel Reference Manual: Exec

Caver design by Marshall Henrichs
Caver photograph by Jack Haeger

Addison-Wesley Publishing Company, Inc. ISBN 0-201-11078-4

