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PREFACE

System Software Architecture

The Amiga kernel consists of a number of system modules, some of which reside per-
manently in the protected kickstart memory and others that are loaded as needed from
the system disk. Figure P-1 illustrates how the various modules interact with one
another. At the top of the hierarchy are Workbench and the Command Line Interface
(CLI), the user-visible portions of the system. Workbench uses Intuition to produce its
displays and AmigaDOS to interact with the filing system. Intuition, in turn, uses the

input device to retrieve its input and the graphics and layers library routines to produce
its output.

AmigaDOS controls processes and maintains the filing system and is in turn built on

Exec, which manages tasks, task switching, interrupt scheduling, message-passing, 1/0,
and many other functions.

At the lowest level of the hierarchy is the Amiga hardware itself. Just above the
hardware are the modules that control the hardware directly. Exec controls the 68000,
scheduling its time among tasks and maintaining its interrupt vectors, among other
things. The trackdisk device is the lowest-level interface to the disk hardware, perform-
ing disk-head movement and raw disk I/O. The keyboard and gameport devices handle
the keyboard and gameport hardware, queuing up input events for the input device to
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process. The audio device, serial device, and parallel device handle their respective
hardware. Finally, the routines in the graphics library handle the interface to the graph-
ics hardware.

Programming

The functions of the kernel were designed to be accessed from any language that follows
the Amiga’s standard interface conventions. These conventions define the proper nam-

ing of symbols, the correct usage of processor registers, and the format of public data
structures.

REGISTER CONVENTIONS

All system functions follow a simple set of register conventions. The conventions apply

when any system function is called; programmers are encouraged to use the same con-
ventions in their own code.

The registers DO, D1, AO, and Al are always scratch; they are free to be modified at any
time. A function may use these registers without first saving their previous contents.
The values of all other data and address registers must first be preserved. If any of

these registers are used by a function, their contents must be saved and restored
appropriately.

If assembly code is used, function parameters may be passed in registers. The conven-
tions in the preceding paragraphs apply to this use of registers as well. Parameters
passed in DO, D1, AO, or A1 may be destroyed. All other registers must be preserved.

If a function returns a result, it is passed back to the caller in DO. If a function returns

more than one result, the primary result is returned in DO and all other results are
returned by accessing reference parameters.

The A6 register has a special use within the system, and it may not be used as a param-
eter to system functions. It is normally used as a pointer to the base of a function vec-

tor table. All kernel functions are accessed by jumping to an address relative to this
base.
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DATA STRUCTURES

The naming, format, and initial values of public data structures must also be consistent.
The conventions are quite simple and are summarized below.

1. All non-byte fields must be word-aligned. This may require that certain fields be
padded with an extra byte.

2. All address pointers should be 32 bits (not 24 bits) in size. The upper byte must
never be used for data.

3. Fields that are not defined to contain particular initial values must be initialized to
zero. This includes pointer fields.

4. All reserved fields must be initialized to zero (for future compatibility).

5. Data structures to be accessed by custom hardware must not be allocated on a pro-
gram stack.

6. Public data structures (such as a task control structure) must not be allocated on a
program stack.

7. When data structures are dynamically allocated, conventions 3 and 4 above can be
satisfied by specifying that the structure is to be cleared upon allocation.

OTHER PRACTICES

A few other general programming practices should be noted.

1.

Never use absolute addresses. All hardware registers and special addresses have
symbolic names (see the include files and amiga.lib).

Because this is a multitasking system, programs must never directly modify the pro-
cessor exception vectors (including traps) or the processor priority level.

Do not assume that programs can access hardware resources directly. Most
hardware is controlled by system software that will not respond well to interference.
Shared hardware requires programs to use the proper sharing protocols.

Do not access shared data structures directly without the proper mutual exclusion.

Remember, it is a multitasking system and other tasks may also be accessing the
same structures.
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5. Most system functions require a particular execution environment. For example,
DOS functions can be executed only from within a process; execution from within a
task is not sufficient. As another example, most kernel functions can be executed
from within tasks, but cannot be executed from within interrupts.

6. The system does not monitor the size of a program stack. Take care that your pro-
grams do not cause it to overflow.

7. Tasks always execute in the 68000 processor user mode. Supervisor mode is reserved
for interrupts, traps, and task dispatching. Take extreme care if your code executes
in supervisor mode. Exceptions while in supervisor mode are deadly.

8. Do not disable interrupts or multitasking for long periods of time.

9. Assembly code functions that return a result do not necessarily affect the processor
condition codes. By convention, the caller must test the returned value before act-
ing on a condition code. This is usually done with a TST or MOVE instruction.
Do not trust the condition codes returned by system functions.

68010 AND 68020 COMPATIBILITY

If you wish your code to be upwardly compatible with the 68010/68020 processors, you
must avoid certain instructions and you must not make assumptions about the format of
the supervisor stack frame. In particular, the MOVE SR,<ea> instruction is a
privileged instruction on the 68010 and 68020. If you want your code to work correctly
on all 680x0 processors, you should use the GetCC() function instead (see the Exec
library function descriptions in the “Library Summaries’”’ appendix of this book.

Contents of This Manual

This manual describes the graphics support routines (including text and animation), the
I/O devices, the Workbench (an environment for running programs), and the floating

point mathematics library. For information about the multitasking executive, see Amiga
ROM Kernel Reference Manual: FEzec.

The discussion of the data structures and routines in this manual is reinforced through
numerous C-language examples. The examples are kept as simple as possible. Whenever

possible, each example demonstrates a single function. Where appropriate, there are
complete sample programs.
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Boldface type is used for the names of functions, data structures, macros, and variables.
System header files and other system file names are shown in italics.

For more information about system software, see Amiga Intuition Reference Manual,

AmigaDOS User’s Manual, AmigaDOS Developer’s Manual, and AmigaDOS Technical
Reference Manual.
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Chapter 1

Graphics Primitives

This chapter describes the basic graphics tools. It covers the graphics support structures,
display routines, and drawing routines. Many of the operations described in this section are also

performed by the Intuition software. See the book called Intuition: The Amiga User Interface
for more information.
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Introduction

The Amiga has two basic types of graphics support routines: display routines and drawing rou-
tines. These routines are very versatile and allow you to define any combination of drawing and
display area you may wish to use.

The first section of this chapter defines the display routines. These routines show you how to
form and manipulate a display, including the following aspects of display use:

o How to identify the memory area that you wish to have displayed

o How to position the display area window to show only a certain portion of a larger
drawing area

o How to split the screen into as many vertically stacked slices as you wish
o  Whether to use high-resolution (640 pixels across) or low-resolution (320 pixels across)
display mode for a particular screen segment, and whether to use interlaced (400 lines

top to bottom) or non-interlaced (200 lines) mode

o How to specify how many color choices per pixel are to be available in a specific section
of the display

The next section of the chapter explains all of the available modes of drawing supported by the
system software, including how to do the following:

o Reserve memory space for use by the drawing routines
o Define the colors that can be drawn into a drawing area

o Define the colors of the drawing pens (foreground pen, background pen for patterns,
and outline pen for area-fill outlines)

o Define the pen position in the drawing area

o Draw lines, define vertex points for area-filling, and specify the area-fill color and
pattern

o Define a pattern for patterned line drawing

o Change drawing modes
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o Read or write individual pixels in a drawing area
o Copy rectangular blocks of drawing area data from one drawing area to another

o Use a template (predefined shape) to draw an object into a drawing area

COMPONENTS OF A DISPLAY

In producing a display, you are concerned with two primary components: sprites and the
playfield. Sprites are the easily movable parts of the display. The playfield is the static part of
the display and forms a backdrop against which the sprites can move and with which the
sprites can interact.

This chapter covers the creation of the background. Sprites are described in chapter 3,
“Animation.”

INTRODUCTION TO RASTER DISPLAYS

The Amiga produces its video displays on standard television or video monitors by using raster
display techniques. The picture you see on the video display screen is made up of a series of
horizontal video lines stacked one on top of another, as illustrated in figure 1-1. Each line
represents one sweep of an electronic video beam, which “paints’ the picture as it moves along.
The beam sweeps from left to right, producing the full screen one line at a time. After produc-
ing the full screen, the beam returns to the top of the display screen.

Figure 1-1: How the Video Display Picture Is Produced
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The diagonal lines in the figure show how the video beam returns to the start of each horizontal
line.

Effect of Display Overscan on the Viewing Area

To assure that the picture entirely fills the viewable region of the screen, the manufacturer of
the video display usually creates a deliberate overscan. That is, the video beam is swept across
a larger section than the front face of the screen can actually display. The video beam actually
covers 262 vertical lines. The user, however, sees only the portion of the picture that is within
the center region of the display, which is about 200 rows, as illustrated in figure 1-2 below. The
graphics system software lets you specify more than 200 rows.

Overscan also restricts the amount of video data that can appear on each display line. The sys-
tem software allows you to specify a display width of up to 352 pixels (or 704 in high-resolution

mode) per horizontal line. Generally, however, you should use the standard values of 320 (or 640
in high-resolution mode) for most applications.

Overscan region. You cannot

r see it on the video screen.
Vertical y Viewable region. Contains
Blanki ] ) approximately 200 video lines
anking Video Display and 320 pixels across.
Interval ”
-

Figure 1-2: Display Overscan Restricts Usable Picture Area

The time during which the video beam is in the region below the bottom line of the viewable
area and above the top line of the next display field is called the vertical blanking interval.

Color Information for the Video Lines

The hardware reads the system display memory to obtain the color information for each line.

As the video display beam sweeps across the screen producing the display line, it changes color,
producing the images you have defined.
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INTERLACED AND NON-INTERLACED MODES

In producing the complete display (262 video lines), the video display device produces the top
line, then the next lower line, then the next, until it reaches the bottom of the screen. When it
reaches the bottom, it returns to the top to start a new scan of the screen. Each complete set
of 262 lines is called a display field. It takes about 1/60th of a second to produce a complete
display field.

The Amiga has two vertical display modes: nterlaced and non-interlaced. In non-interlaced
mode, the video display produces the same picture for each successive display field. A non-
interlaced display normally has about 200 lines in the viewable area (for a full-screen size
display).

To make the display more precise in the vertical direction, you use interlaced mode, which
displays twice as much data in the same vertical area as non-interlaced mode. Within the same
amount of viewable area, you can display 400 video lines instead of 200.

For interlaced mode, the video beam scans the screen at the same rate (1/60th of a second per
complete video display field); however, it takes two display fields to form a complete video
display picture. During the first of each pair of display fields, the system hardware shows the
odd-numbered lines of an interlaced display (1, 3, 5, and so on). During the second display field,
it shows the even-numbered lines (2, 4, 6 and so on). These sets of lines are taken from data
defining 400 lines. During the display, the hardware moves the second display field’s lines
downward slightly from the position of the first, so that the lines in the second field are ‘“‘inter-
laced” with those of the first field, giving the higher vertical resolution of this mode. For an
interlaced display, the data in memory defines twice as many lines as for a non-interlaced
display, as shown in figure 1-3.

DATA AS DATA
DISPLAYED IN MEMORY
Odd field — Line 1 Line 1
Even field — Line 1 Line 2
Odd field — Line 2 Line 3
Even field — Line 2 Line 4
Odd field — Lastline Line 399
Even field — Last line Line 400

Figure 1-3: Interlaced Mode — Display Fields and Data in Memory
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Figure 1-4 shows a display formed as display lines 1, 2, 3, 4, ... 400. The 400-line interlaced
display uses the same physical display area as a 200-line non-interlaced display.

Line 1

.n
Q
=

Line 1

Line 2
/ Video Display
Line 1 (400 lines)

-n
‘E
Q
N

Figure 1-4: Interlaced Mode Doubles Vertical Resolution

During an interlaced display, it appears that both display fields are present on the screen at the
same time and form one complete picture. This phenomenon is called video persistence.

HIGH- AND LOW-RESOLUTION MODES

The Amiga also has two horizontal display modes: high-resolution and low-resolution. High-
resolution mode provides (nominally) 640 distinct pixels (picture elements) across a horizontal
line. Low-resolution provides (nominally) 320 pixels across each line. Low-resolution mode

allows up to 32 colors at one time, and high-resolution mode allows 16 colors (out of 4,096
choices) at one time.

One other display mode affects the number of colors you can display at one time: hold-and-
modify. Hold-and-modify mode allows you to display all 4,096 colors on the screen at once.

FORMING AN IMAGE

To create an image, you write data (that is, you “draw”) into a memory area in the computer.
From this memory area, the system can retrieve the image for display. You tell the system
exactly how the memory area is organized, so that the display is correctly produced. You use a
block of memory words at sequentially increasing addresses to represent a rectangular region of
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data bits. Figure 1-5 shows the contents of three example memory words: 0 bits are shown as
blank rectangles, and 1 bits as filled-in rectangles.

Contents of three memory words, all adjacent to each other. Note that N is expressed as a byte-address.

Mem. Location N Mem. Loc. N+2 Mem. Loc. N+4

Figure 1-5: Sample Memory Words

The system software lets you define linear memory as rectangular regions, called bit-planes. Fig-
ure 1-6 shows how the system views the same three words as a bit-plane, wherein the data bits
form an x-y plane.

Three memory words, organized as a bit-plane.

Mem. Location N
Mem. L_ocation N+2
Mem. Location N+4

Figure 1-6: A Rectangular “Look” at the Sample Memory Words

Figure 1-7 shows how 4,000 words (8,000 bytes) of memory can be organized to provide enough
bits to define a single bit-plane of a full-screen, low-resolution video display (320 x 200).
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Mem. Location N Mem. Location N+38

Mem. Location N+40 | Mem. Location N+78

v

Mem. Location N+7960 Mem. Location N+7998

Figure 1-7: Bit-Plane for a Full-screen, Low-resolution Display

Each memory data word contains 16 data bits. The color of each pixel on a video display line is
directly related to the value of one or more data bits in memory, as follows:

o If you create a display in which each pixel is related to only one data bit, you can only
select from only two possible colors, because each bit can have a value of only 0 or 1.

o If you use two bits per pixel, there is a choice of four different colors because there are
four possible combinations of the values of 0 and 1 from each of the two bits.

o If you specify three, four, or five bits per pixel, you will have eight, sixteen, or thirty-
two possible choices of a color for each pixel.

To create multicolored images, you must tell the system how many bits are to be used per pixel.
The number of bits per pixel is the same as the number of bit-planes used to define the image.

As the video beam sweeps across the screen, the system retrieves one data bit from each bit-
plane. Each of the data bits is taken from a different bit-plane, and one or more bit-planes are
used to fully define the video display screen. For each pixel, data-bits in the same x,y position
in each bit-plane are combined by the system hardware to create a binary value. This value
determines the color that appears on the video display for that pixel. (See figure 1-8.)
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Figure 1-8: Bits from Each Bit-Plane Select Pixel Color

You will find more information showing how the data bits actually select the color of the
displayed pixel in the section called ‘“ViewPort Color Selection.”

ROLE OF THE COPPER (COPROCESSOR)

The Amiga has a special-purpose coprocessor, called the Copper, that can control nearly the
entire graphics system. The Copper can control register updates, reposition sprites, change the
color palette, and update the blitter. The graphics and animation routines use the Copper to
set up lists of instructions for handling displays, and advanced users can write their own “user

Copper lists.”

Display Routines and Structures

Caution: This section describes the lowest-level graphics interface to the system
hardware. If you use any of the routines and the data structures described in these
sections, your program will essentially take over the entire display. It will not, there-
fore, be compatible with the multiwindow operating environment, known as Intuition,

which is used by AmigaDOS.
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The descriptions of the display routines, as well as those of the drawing routines, occasionally
use the same terminology as that in Intuition: The Amiga User Interface. These routines and
data structures are the same ones that Intuition software uses to produce its displays.

The computer produces a display from a set of instructions you define. You organize the
instructions as a set of parameters known as the View structure. Figure 1-9 shows how the
system interprets the contents of a View structure. This drawing shows a complete display
composed of two different component parts, which could, for example, be a low-resolution, mul-
ticolored part and a high-resolution, two-colored part.

A complete display consists of one or more ViewPorts, whose display sections are separated
from each other by at least one blank line. The viewable area defined by each ViewPort is a
rectangular cut from the same size (or larger) raster. You are essentially defining a display con-

sisting of a number of vertically stacked display areas in which separate sections of graphics ras-
ters can be shown.

A complete display is composed of Video Display
one (or more) ““ViewPorts’’

Background color shows here

ViewPort #1
- ViewPorts
must be
separated
ViewPort #2 by at least

one blank line
(may need more
than one blank line)

Figure 1-9: The Display Is Composed of ViewPorts
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LIMITATIONS ON THE USE OF VIEWPORTS

The system software for defining ViewPorts allows only vertically stacked fields to be defined.
Figure 1-10 shows acceptable and unacceptable display configurations. If you want to create

overlapping windows, define a single ViewPort and manage the windows yourself within that
ViewPort.

| |
L]

A bi Incorrect
cceptable (Does not use at least one
blank line between
ViewPorts)
e— —j
Incorrect for ViewPorts Incorrect for ViewPorts
(Overlapping vertical (Cannot create multiple
windows) horizontal windows)

Figure 1-10: Correct and Incorrect Uses of ViewPorts

A ViewPort is related to the custom screen option of Intuition. In a custom screen, you can
split the screen into slices as shown in the “correct” illustration of figure 1-10. Each custom
screen can have its own set of colors, use its own resolution, and show its own display area.
Within a ViewPort—actually within its associated RastPort (drawing area definition)—it is
possible to split the display into separate drawing areas called windows. The ViewPort is sim-
ply an indivisible window into a possibly larger complex drawing area.
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CHARACTERISTICS OF A VIEWPORT

To describe a ViewPort fully, you need to set the following parameters: height, width, and
display mode.

In addition to these parameters, you must also tell the system the location in memory from
which the data for the ViewPort display should be retrieved, and how to position the final
ViewPort display on the screen.

VIEWPORT SIZE SPECIFICATIONS

Figure 1-11 illustrates that the variables DHeight, and DWidth specify the size of a
ViewPort.

Display Bit-Planes

DHeight = how
many lines tall

A
)

DWidth = how many pixels wide

Figure 1-11: Size Definition for a ViewPort

ViewPort Height

The variable DHeight determines how many video lines will be reserved to show the height of
this display segment. The size of the actual segment depends on whether you define a non-
interlaced or an interlaced display. An interlaced display is half as tall as a non-interlaced
display of the same number of lines.

For example, a View consisting of two ViewPorts might be defined as follows:

o ViewPort #1 is 150 lines, high-resolution mode (uses the top three-quarters of the
display).
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o ViewPort #2 is 49 lines of low-resolution mode (uses the bottom quarter of the display
and allows the space for the required blank line between ViewPorts).

The user interface software (Intuition) assumes a standard configuration of 200 rows (400 in
interlaced mode).

ViewPort Width

The DWidth variable determines how wide, in current pixels, the display segment will be. If
you are using low-resolution mode, you should specify a width of 320 pixels per horizontal line.
If you are using high-resolution mode, you should specify a width of 640 pixels. You may
specify a smaller value of pixels per line to produce a narrower display segment.

Although the system software allows you define low-resolution displays as wide as 352 pixels
and high-resolution displays as wide as 704 pixels, you should not exceed the normal values of
320 or 640, respectively. Because of display overscan, many video displays will not be able to
show all of a wider display, and sprite display may be affected. If you are using hardware
sprites or VSprites with your display, and you specify ViewPort widths exceeding 320 or 640
pixels (for low- or high-resolution, respectively), it is likely that hardware sprites 5, 6, and 7 will
not be rendered on the screen. These sprites may not be rendered because playfield DMA

(direct memory access) takes precedence over sprite DMA when an extra-wide display is
produced.

VIEWPORT COLOR SELECTION

The maximum number of colors that a ViewPort can display is determined by the depth of
the BitMap that the ViewPort displays. The depth is specified when the BitMap is initial-
ized. See the section below called “Preparing the BitMap Structure.”

Depth determines the number of bit-planes used to define the colors of the rectangular image
you are trying to build (the raster image) and the number of different colors that can be

displayed at the same time within a ViewPort. For any single pixel, the system can display
any one of 4,096 possible colors.

Table 1-1 shows depth values and the corresponding number of possible colors for each value.
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Table 1-1: Depth Values and Number of Colors in the ViewPort

Colors Depth Value

2 1
4 2
8 3
16 4 (Note 1)
32 5 (Notes 1,2)
4,096 6 (Notes 1,2,3)
32 6 (Notes 1,2)

Notes:
1. Single-playfield mode only — ViewPort mode not DUALPF
2. Low-resolution mode only — ViewPort mode not HIRES
3. Hold-and-modify mode only —ViewPort mode = HAM

The color palette used by a ViewPort is specified in a ColorMap. See the section called
“Preparing the ColorMap’’ for more information.

Depending on whether single- or dual-playfield mode is used, the system will use different color
register groupings for interpreting the on-screen colors. Table 1-2 below details how the depth
and the Modes variable in the ViewPort structure affect the registers the system uses.

Table 1-2: Single-playfield Mode (Modes variable not equal to DUALPF)

Color
Depth Registers Used

0,1
0-3
0-7
0-15
0-31
0-16 (if modes = HAM)

S U W N -
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Table 1-3 shows the five possible combinations when the Modes variable is set to DUALPF.

Table 1-3: Dual-playfield Mode (Modes variable = DUALPF)

Color Color
Depth (PF-1) Registers Depth (PF-2) Registers

1 0,1 1 8,9
2 0-3 1 8,9
2 0-3 2 8-11
3 0-7 2 8-11
3 0-7 3 8-15

The system has seven different display modes that you can specify for each ViewPort. The
seven bits that control the modes are DUALPF, PFBA, HIRES, LACE, HAM, SPRITES, and
VP_HIDE. A mode becomes active if you set the corresponding bit to 1 in the Modes variable
of the ViewPort structure. After you initialize the ViewPort, you can set the bit(s) for the
modes you want. (See the section called “Preparing the ViewPort Structure’ for more informa-
tion about initializing a ViewPort.)

Modes DUALPF and PFBA are related. DUALPF tells the system to treat the raster specified
by this ViewPort as the first of two independent and separately controllable playfields. It also
modifies the manner in which the pixel colors are selected for this raster.

When PFBA is a 1, it specifies that a second playfield has video priority over the first one.
Playfield relative priorities can be controlled when the playfield is split into two overlapping
regions. Single-playfield and dual-playfield modes are discussed in ‘“Advanced Topics’ below.

HIRES tells the system that the raster specified by this ViewPort is to be displayed with 640
horizontal pixels rather than 320 horizontal pixels.

LACE tells the system that the raster specified by this ViewPort is to be displayed in inter-
laced mode. If the ViewPort is non-interlaced and the View is interlaced, the ViewPort will
be displayed at its specified height and will look only slightly different than it would look when
displayed in a non-interlaced View. See “Interlaced Mode versus Non-interlaced Mode’ below
for more information.

HAM tells the system to use ‘“hold-and-modify” mode, a special mode that lets you display up
to 4,096 colors on screen at the same time. It is described in the ‘““Advanced Topics” section.
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SPRITES tells the system that you are using sprites in this display (either VSprites or Simple
Sprites). This bit, when a 1, tells the software to load color registers for sprites. See chapter 3,
“Animation,” for more information about sprites.

VP_HIDE tells the system that this ViewPort is obscured by other ViewPorts. When a
View is constructed, no display instructions are generated for this ViewPort.

EXTRA_HALFBRITE is reserved for future use.

Single-playfield Mode versus Dual-playfield Mode

When you specify single-playfield mode (see figure 1-12), you are asking that the system treat all
bit-planes as part of the definition of a single playfield image. Each of the bit-planes defined as

part of this ViewPort contributes data bits that determine the color of the pixels in a single
playfield.

Display Screen

Everything on the
display is part of
the same playfield.

Scene (Playfield 1)

Background color shows here

Figure 1-12: A Single-playfield Display

If you use dual-playfield mode (ViewPort.Modes = DUALPF), you can define two indepen-
dent, separately controllable playfield areas (see figure 1-13).
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Display Screen

Scene (Playfield 1) Two independently

controllable displays.
One has video priority
over the other.

_ Control Panel (Playfield 2)

Background color shows here

Figure 1-13: A Dual-playfield Display

In figure 1-13, the display mode bit PFBA is set to 1. If PFBA = 0, the relative priorities will
be reversed; playfield 2 will appear to be behind playfield 1.

Low-resolution Mode versus High-resolution Mode

In low-resolution mode, horizontal lines of 320 pixels fill most of the ordinary viewing area. The
system software lets you define a screen segment width up to 352 pixels in this mode, or you
can define a screen segment as narrow as you desire. In high-resolution mode (also called “nor-
mal” resolution), 640 pixels fill a horizontal line. In this mode you can specify any width from 0
to 704 pixels. Overscan normally limits you to showing only O to 320 pixels per line in low-
resolution mode or 0 to 640 pixels per line in high-resolution mode. Intuition assumes the nomi-
nal 320-pixel or 640-pixel width (see figure 1-14).
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320 Pixels Across
(width of 352 is possible)

ViewPort.Modes = 0

640 Pixels Across
(width of 704 is possible)

ViewPort.Modes = HIRES

Figure 1-14: How HIRES Affects Width of Pixels

Interlaced Mode versus Non-interlaced Mode

In interlaced mode, there are twice as many lines available as in non-interlaced mode, providing
better vertical resolution in the same display area (see figure 1-15).

200 lines define

View.Modes = 0
a full screen

400 lines define

View.Modes = LACE
a full screen

Figure 1-15: How LACE Affects Vertical Resolution

If the View structure does not specify LACE, and the ViewPort specifies LACE, you may see
only every other line of the ViewPort data. If the View structure specifies LACE and the
ViewPort is non-interlaced, the same ViewPort data will be repeated in both fields. The
height of the ViewPort display is the height specified in the ViewPort structure. If both the
View and the ViewPort are interlaced, the ViewPort will be built with double the normal
vertical resolution. That means it will need twice as much data space in memory as a non-
interlaced picture for this display.
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VIEWPORT DISPLAY MEMORY

The picture you create in memory can be larger than the screen image that can be displayed
within your ViewPort. This big picture (called a raster and represented by the BitMap struc-
ture) can have a maximum size of 1,024 by 1,024 pixels. Because a picture this large cannot fit

fully on the display, you specify which piece of it to display. Once you have selected the piece
to be shown, you can specify where it is to appear on the screen.

The example in figure 1-16 introduces terms that tell the system how to find the display data

and how to display it in the ViewPort. These terms are RHeight, RWidth, RyOffset,
RxOffset, DHeight, DWidth, DyOffset and DxOffset.

(0,0)\ RxOffset Large picture 1024 by 800 (called a ““Raster”’)
-
RyOffset
—— RHeight = 800
Display this
part of the
big picture
320
DxOffset ——RWidth = 1024
(0.0) Video Display Screen

DyOffset
DHeight = 200

DWidth = 320

Background Color

Figure 1-16: ViewPort Data Area Parameters
The terms RHeight and RWidth do not appear in actual system data structures. They refer

to the dimensions of the raster and are used here to relate the size of the raster to the size of
the display area. RHeight is the number of rows in the raster, and RWidth is the number of
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bytes per row times 8. The raster shown in the figure is too big to fit entirely in the display
area, so you tell the system which pixel of the raster should appear in the upper left corner of

the display segment specified by your ViewPort. The variables that control that placement
are RyOffset and RxOffset.

To compute RyOffset and RxOffset, you need RHeight, RWidth, DHeight, and DWidth.
The DHeight and DWidth variables define the height and width in pixels of the portion of the
display that you want to appear in the ViewPort. The example shows a full-screen, low-
resolution mode (320-pixel), non-interlaced (200-line) display formed from the larger overall
picture.

Normal values for RyOffset and RxOffset are defined by the formulas:

0 < = RyOffset < = (RHeight - DHeight)
0 < = RxOffset < = (RWidth - DWidth)

Once you have defined the size of the raster and the section of that raster that you wish to
display, you need only specify where to put this ViewPort on the screen. This is controlled by
the variables DyOffset and DxOffset. A value of O for each of these offsets places a normal-
sized picture in a centered position at the top, bottom, left and right on the display screen.
Possible values for DyOffset range from -16 to +200 (-32 to +400 if View.Modes includes
LACE). Possible values for DxOffset range from -16 to +352 (-32 to +704 if
ViewPort.Modes includes HIRES).

The parameters shown in the figure above are distributed in the following data structures:

o RaslInfo (information about the raster) contains the variables RxOffset and RyOffset.
It also contains a pointer to the BitMap structure.

o View (information about the whole display) includes the variables that you use to posi-
tion the whole display on the screen. The View structure contains a Modes variable
used to determine if the whole display is to be interlaced or non-interlaced. It also con-
tains pointers to its list of ViewPorts and pointers to the Copper instructions pro-
duced by the system to create the display you have defined.

o ViewPort (information about this piece of the display) includes the values DxOffset
and DyOffset that are used to position this slice relative to the overall View. The
ViewPort also contains the variables DHeight and DWidth, which define the size of
this slice; a Modes variable; and a pointer to the local ColorMap. Each ViewPort
also contains a pointer to the next ViewPort. You create a linked list of ViewPorts
to define the complete display.

o BitMap (information about memory usage) tells the system where to find the display
and drawing area memory and shows how this memory space is organized.
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You must allocate enough memory for the display you define. The memory you use for the
display may be shared with the area control structures used for drawing. This allows you to
draw into the same areas that you are currently displaying on the screen.

As an alternative, you can define two BitMaps. One of them can be the active structure (that
being displayed) and the other can be the inactive structure. If you draw into one BitMap
while displaying another, the user cannot see the drawing taking place. This is called double-
buffering of the display. See ‘“Advanced Topics” below for an explanation of the steps required
for double-buffering. Double-buffering takes twice as much memory as single-buffering because
two full displays are produced.

To determine the amount of required memory for each ViewPort for single-buffering, you can
use the following formula.

bytes_per_ViewPort — Depth * RASSIZE (Width, Height);

RASSIZE is a system macro attuned to the current design of the system memory allocation for
display rasters. See graphics/gfzrmacros.h for the formula with which RASSIZE is calculated.

For example, a 32-color ViewPort (depth = 5), 320 pixels wide by 200 lines high uses 40,000
bytes (as of this writing). A 16-color ViewPort (depth = 4), 640 pixels wide by 400 lines high
uses 128,000 bytes (as of this writing).

FORMING A BASIC DISPLAY

This section offers an example that shows how to create a single ViewPort with a size of 200
lines, in which the area displayed is the same size as the big picture (raster) stored in memory.
The example also shows how this ViewPort becomes the single display segment of a View
structure. Following the description of the individual operations, the “Graphics Example Pro-
gram’ section pulls all of the pieces into a complete executable program. Instead of linking
these routines to drawing routines, the example allocates memory specifically and only for the
display (instead of sharing the memory with the drawing routines) and writes data directly to
this memory. This keeps the display and the drawing routines separate for purposes of
discussion.

Here are the data structures that you need to define to create a basic display:

struct View v; /* The name used here for a View is v,
struct ViewPort vp; * for a ViewPort is vp,

struct BitMap b; * for a BitMap is b,

struct RaslInfo ri; * and for a RasInfo is ri. */
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Opening the Graphics Library

Most of the system routines used here are located in the graphics library. When you compile
your program, you must provide a way to tell the compiler to link your calling sequences into
the routine library in which they are located. You accomplish this by declaring the variable
called GfxBase. Then, by opening the graphics library, you provide the value (address of the
library) that the system needs for linking with your program. See the “Libraries” chapter in
the Amiga ROM Kernel Reference Manual: FEzec for more information.

Here is a typical sequence:

struct GfxBase * GfxBase; /* declare the name *GfxBase as a

* pointer to the corresponding library */

Preparing the View Structure

The following code section prepares the View structure for further use:

InitView( &v ); /* initialize the View structure */
v.ViewPort = &vp;/* tell the View structure where to find the
* first ViewPort in a possible list of Viewports */

Preparing the ViewPort Structure

The following code section prepares the ViewPort structure for further use:

InitVPort( &vp ); /* initialize the structure (set up default values) */

vp.DWidth = WIDTH; /* how wide is the display */

vp.DHeight = HEIGHT; /* how tall is the display for this ViewPort */
vp.RasInfo = &ri; /* pointer to a RasInfo structure */
vp.ColorMap = GetColorMap(32); /* using a 32-color map */

The InitVPort() routine presets certain default values. The defaults include:

o

Modes variable set to zero— this means you select a low-resolution display.

Next variable set to zero—no other ViewPort is linked to this one. If you want to
have multiple ViewPorts in a single View, you must create the link yourself. The last
ViewPort in the chain must have a Next value of 0.
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If you have defined two ViewPorts, such as

struct ViewPort vpA;
struct ViewPort vpB;

and you want them to both be part of the same display, you must create a link between them,
and a NULL link at the end of the chain of ViewPorts:

vpA.Next = &vpB; /* tell first one the address of the second */
vpB.Next = NULL; /* after this one, there are no others */

Preparing the BitMap Structure

The BitMap structure tells the system where to find the display and drawing memory and how
this memory space is organized. The following code section prepares a BitMap structure,
including allocation of memory for the bit-map. For this example, this memory is used only for

the display and is not shared with any drawing routines. The example writes directly to the
display area.

/* initialize the BitMap structure */
InitBitMap( &b, DEPTH, WIDTH, HEIGHT );

/* now allocate some memory that can be

* be linked into the BitMap for display purposes */
for( i=0; i<DEPTH, i++)
{

}

b.Planes[i] = (PLANEPTR)AllocRaster(WIDTH, HEIGHT);

This code allocates enough memory to handle the display area for as many bit-planes as the
depth you have defined. This code segment does not include the error-checking that is present
in the full example later on.

Preparing the RasInfo Structure

The RasInfo structure provides information to the system about the location of the BitMap as
well as the positioning of the display area as a window against a larger drawing area. Use the
following steps to prepare the RasInfo structure:
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ri.BitMap = &b; /* specify address of the BitMap structure */
ri.RxOffset = 0;
ri.RyOffset = 0; /* match the upper lefthand corner of the
* display area with the upper left corner of
* the drawing area - see figure 1-16 */
ri.next = NULL; /* for a single playfield display, there
* is only one RasInfo structure present */

Preparing the ColorMap Structure

Interrupts should be used to display this ViewPort. When the View 1is created, Copper
instructions are generated to change the current contents of each color register just before the
topmost line of a ViewPort so that this ViewPort’s color registers will be used for interpret-
ing its display.

Here are the steps normally used for initializing a ColorMap:

/* define some colors in an array of words */
UWORD colortable [ = { 0, 0xf00, 0x0f0, 0x00f }

/* allocate space and get a pointer to it */

/* 4 colors in this table (4 registers for Copper

* to reload before this ViewPort is displayed */
vp.ColorMap = GetColorMap (4);
LoadRGB4( vp, ColorTable, 4 )

Note: The “4” in the name LoadRGB4() refers to the fact that each of the red, green, and
blue values in a color table entry consists of four bits. It has nothing to do with the fact that
this particular color table contains four entries, which is a result of the choice of DEPTH = 2
for this example.

From the section called ‘“ViewPort Color Selection,” notice that you might need to specify more
colors in the color map than you think. If you use a dual-playfield display (covered later in this
chapter) with a depth of 1 for each of the two playfields, this means a total of four colors (two
for each playfield). However, because playfield 2 uses color registers starting from number 8 on
up when in dual-playfield mode, the color map must be initialized to contain at least 10 entries.
That is, it must contain entries for colors 0 and 1 (for playfield 1) and color numbers 8 and 9
(for playfield 2). Space for sprite colors must be allocated as well.
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Creating the Display Instructions

Now that you have initialized the system data structures, you can request that the system
prepare a set of display instructions for the Copper using these structures as input data. Dur-
ing the one or more blank vertical lines that precede each ViewPort, the Copper is busy chang-
ing the characteristics of the display hardware to match the characteristics you expect for this
ViewPort. This may include a change in display resolution, a change in the colors to be used,
or other user-defined modifications to system registers.

Here is the code that creates the display instructions:

MakeVPort( &v, &vp );

In this line of code, &v is the address of the View structure and &vp is the address of the first
ViewPort structure. Using these structures, the system has enough information to build the
instruction stream that defines your display.

MakeVPort() creates a special set of instructions that controls the appearance of the display.
If you are using animation, the graphics animation routines create a special set of instructions to
control the hardware sprites and the system color registers. In addition, the advanced user can
create special instructions (called user Copper instructions) to change system operations based
on the position of the video beam on the screen.

All of these special instructions must be merged together before the system can use them to pro-
duce the display you have designed. This is done by the system routine MrgCop() (which
stands for “Merge Coprocessor Instructions”). Here is a typical call:

MrgCop (&v); /* merge this View’s Copper instructions
* into a single instruction list */

LOADING AND DISPLAYING THE VIEW

To display the View, you need to load it using LoadView() and turn on the direct memory
access (DMA). A typical call is shown below.

LoadView( &v );
where &v is the address of the View structure defined in the example above.
Two macros control display DMA: ON_DISPLAY and OFF_DISPLAY. They simply turn

the display DMA control bit in the DMA control register on or off. After you have loaded a
new View, you use ON_DISPLAY to allow the system DMA to display it on the screen.

Graphics Primitives 25



If you are drawing to the display area and do not want the user to see intermediate steps in the
drawing, you can turn off the display. Because OFF_DISPLAY shuts down the display DMA
and possibly speeds up other system operations, it can be used to provide additional memory
cycles to the blitter or the 68000. The distribution of system DMA, however, allows four-
channel sound, disk read/write, and a sixteen-color, low-resolution display (or four-color, high-
resolution display) to operate at the same time with no slowdown (7.1 megahertz effective rate)
in the operation of the 68000.

GRAPHICS EXAMPLE PROGRAM

The program below creates and displays a single-playfield display that is 320 pixels wide, 200
lines high, and two bit-planes deep.

#include ”exec/types.h”
#include "graphics/gfx.h”
#include "hardware/dmabits.h”
#include "hardware/custom.h”
#include ”"hardware/blit.h”
#include ”graphics/gfxmacros.h”
#include ”graphics/copper.h”
#include ”graphics/view.h”
#include ”graphics/gels.h”
#include ”graphics/regions.h”
#include ”graphics/clip.h”
#include ”exec/exec.h”
#include ”graphics/text.h”
#include ”graphics/gfxbase.h”

#define DEPTH 2 - -

#define WIDTH 320

#define HEIGHT 200

#define NOT_ENOUGH_MEMORY -1000
/* construct a simple display */

struct View v;

struct ViewPort vp;

struct ColorMap *cm,; /* pointer to ColorMap structure, dynamic alloc */
struct RaslInfo ri;

struct BitMap b;

struct RastPort rp;

LONG i;
SHORT j,k n;
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extern struct ColorMap *GetColorMap();
struct GfxBase *GfxBase;

struct View *oldview; /* save pointer to old View so can restore */

/* black, red, green, blue */
USHORT colortable[] = { 0x000, 0xf00, 0x0f0, 0x00f }; /* my own colors */
SHORT boxoffsets|] = { 802, 2010, 3218 }; /* where to draw boxes */

UBYTE *displaymem;
UWORD *colorpalette;

main()
{
GfxBase = (struct GfxBase *)OpenLibrary(” graphics.library”,0);
if (GfxBase == NULL) exit(1);
oldview = GfxBase- > ActiView; /* save current View to restore later */
/* example steals screen from Intuition if Intuition is around */

InitView(&v); /* initialize View */
InitVPort(&vp); /* init ViewPort */
v.ViewPort = &vp; /* link View into ViewPort */

/* init bit map (for RasInfo and RastPort) */
InitBitMap(&b,DEPTH, WIDTH,HEIGHT);

/* (init Raslnfo) */
ri..BitMap = &b;
ri.RxOffset = 0;
ri.RyOffset = 0;
ri.Next = NULL;

/* now specify critical characteristics */
vp.DWidth = WIDTH,;

vp.DHeight = HEIGHT;

vp.RasInfo = &ri;

/* (init color table) */
cm = GetColorMap(4); /* 4 entries, since only 2 planes deep */
colorpalette = (UWORD *)cm->ColorTable;
for(i=0; i<4; i++) {
*colorpalette++ = colortableli];
}

/* copy my colors into this data structure */
vp.ColorMap = cm; /* link it with the ViewPort */
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/* allocate space for bitmap */
for(i=0; i<DEPTH; i++)
{
b.Planes(i] = (PLANEPTR)AllocRaster( WIDTH HEIGHT);
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);
}

MakeVPort( &v, &vp ); /* construct Copper instruction (prelim) list */
MrgCop( &v ); /* merge preliminary lists together into a real
* Copper list in the view structure. */

for(i=0; 1<2; i++)

{
displaymem = (UBYTE #)b.Planesi];
BltClear(displaymem,RASSIZE(WIDTH,HEIGHT),0)
}

}

LoadView(&v);
/* now fill some boxes so that user can see something */
/* always draw into both planes to assure true colors */
for(n=1; n<4; n++) /* three boxes */
{
for(k=0; k<2; k++)
{
/* boxes will be in red, green and blue */
displaymem = b.Planes[k] + boxoffsets|n-1]J;
DrawFilledBox(n,k);

}

Delay(50%10); /* wait for 10 seconds */
LoadView(oldview); /* put back the old View */
FreeMemory(); /* exit gracefully */
CloseLibrary(GfxBase); /* since program opened library, close it */

} /* end of main() */

/* return user- and system-allocated memory to sys manager */
FreeMemory()

{

/* free drawing area */
for(i=0; i<DEPTH; i++)
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{
}

/* free the color map created by GetColorMap() */
FreeColorMap(cm);

/* free dynamically created structures */
FreeVPortCopLists(&vp);
FreeCprList(v.LOFCprList);

return(0);

FreeRaster(b.Planes[i|, WIDTH,HEIGHT);

}

DrawFilledBox(fillcolor,plane)
SHORT fillcolor,plane;

{
UBYTE value;

for(j=0; j<100; j++)
{

if((fillcolor & (1 << plane)) = 0)
{

}

else

value = Oxff;

{
value = 0;

}

for(i=0; 1<<20; i++)

{
}

displaymem += (b.BytesPerRow - 20);

*displaymem-++ = value;

}

return(0);

Exiting Gracefully

The sample program above provides a way of exiting gracefully, returning to the memory
manager all dynamically-allocated memory chunks. Notice the calls to FreeRaster() and
FreeColorMap(). These calls correspond directly to the allocation calls AllocRaster() and
GetColorMap() located in the body of the program. Now look at the calls within
FreeMemory() to FreeVPortCopLists() and FreeCprList(). When you call MakeVPort(),
the graphics system dynamically allocates some space to hold intermediate instructions from
which a final Copper instruction list is created. When you call MrgCop(), these intermediate
Copper lists are merged together into the final Copper list, which is then given to the hardware
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for interpretation. It is this list that provides the stable display on the screen, split into
separate ViewPorts with their own colors and resolutions and so on.

When your program completes, you must see that it returns all of the memory resources that it
used so that those memory areas are again available to the system for reassignment to other
projects. Therefore, if you use the routines MakeVPort() or MrgCop(), you must also
arrange to use FreeCprList() (pointing to each of those lists in the View structure) and
FreeVPortCopLists() (pointing to the ViewPort that is about to be deallocated). If your
view is interlaced, you will also have to call FreeCprList(&v.SHF CprList) because an inter-
laced view has a separate Copper list for each of the two fields displayed.

As a final caveat, notice that when you do free everything, the memory manager or other pro-
grams may immediately change the contents of the freed memory. Therefore, if the Copper is
still executing an instruction stream (as a result of a previous LoadView()) when you free that

memory, the display will go “south.” You will probably want to turn off the display or provide
an alternate Copper list when this one is to be deallocated.

Advanced Topics

CREATING A DUAL-PLAYFIELD DISPLAY

In dual-playfield mode, you have two separately controllable playfields. In this mode, you
always define two RasInfo data structures. Each of these structures defines one of the
playfields. There are seven different ways you can configure a dual-playfield display, because
there are five different distributions of the bit-planes which the system hardware allows. Table
1-4 shows these distributions.
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Table 1-4: Bit-Plane Assignment in Dual-playfield Mode

Number of Playfield 1 Playfield 2
Bit-planes Depth Depth

UL A WD - O
W W NN == O
W NN == OO

Recall that if you set PFBA in the ViewPort Modes variable to 1, you can swap playfield
priority and display playfield 2 in front of playfield 1. In this way, you can get more bit-planes
in the background playfield than you have in the foreground playfield. If you create a display
with multiple ViewPorts, only for this ViewPort will the playfield priority be changed.

Playfield 1 is defined by the first of the two RasInfo structures. Playfield 2 is defined by the
second of the two RasInfo structures.

When you call MakeVPort(), you use parameters as follows:

MakeVPort( &view, &viewport );

The ViewPort Modes variable must include the DUALPF bit. This tells the graphics system
that there are two RasInfo structures to be used.

In summary, to create a dual-playfield display you must do the following things:
o Allocate one View structure
o Allocate two BitMap structures
o Allocate two RasInfo structures (linked together), each pointing to different BitMaps
o Allocate one ViewPort structure

o Set up a pointer in the ViewPort structure to the playfield 1 RasInfo
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o Initialize each BitMap structure to describe one playfield, using one of the permissible
bit-plane distributions shown in table 1-4 and allocate memory for the bit-planes them-
selves. Note that BitMap 1 and BitMap 2 need not be the same width and height.

o Initialize the ViewPort structure

o Set the DUALPF (and possibly the PFBA) bit in the ViewPort Modes variable

o Call MakeVPort()

o Call MrgCop()

For display purposes, each of the two BitMaps is assigned to a separate playfield display.
To draw separately into the BitMaps, you must also assign these BitMaps to two separate

RastPorts. The section called “Initializing the RastPort” shows you how to use a RastPort
data structure to control your drawing routines.

CREATING A DOUBLE-BUFFERED DISPLAY

To produce smooth animation or other such effects, it is occasionally necessary to double-buffer
your display. To prevent the user from seeing your graphics rendering while it is in progress,
you will want to draw into one memory area while actually displaying a different area.

Double-buffering consists of creating two separate display areas and two sets of pointers to those
areas for a single View.

To create a double-buffered display, you must perform these actions:
o Allocate two BitMap structures
o Allocate one RasInfo structure
o Allocate one ViewPort structure
o Allocate one View structure

o Initialize each BitMap structure to describe one drawing area and allocate memory for
the bit-planes themselves

o Create a pointer for each BitMap
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o Create a pointer for the View long-frame Copper list (LOFCprList) and short-frame

Copper list (SHF CprList) for each of two alternate display fields. The SHFCprList
1s for interlaced displays.

o Initialize the RasInfo structure, setting the BitMap pointer to point to one of the two
BitMaps you have created

o Call MakeVPort()
o Call MrgCop()
o Call LoadView()

When you call MrgCop(), the system uses all of the information you have provided in the vari-
ous data structures to create a list of instructions for the Copper to execute. This list tells the
Copper how to split the display and how to specify colors for the various portions of the
display. When the steps shown above have been completed, the system will have allocated
memory for a long-frame (LOF) Copper list and a short-frame (SHF) Copper list and will have
set pointers called LOFCprList and SOFCprList in the View structure. The long-frame
Copper list 1s normally used for all non-interlaced displays, and the short-frame Copper list is

used only when interlaced mode is turned on. The pointers point to the two sets of Copper
instructions.

The LOFCprList and SHFCprList pointers are initialized when MrgCop() is called. The
instruction stream referenced by these pointers includes references to the first BitMap.

You must now do the following:

o Save the current values in back-up pointers and set the values of LOFCprList and
SHFCprlist in the View structure to zero. When you next perform MrgCop(), the
system automatically allocates another memory area to hold a new list of instructions
for the Copper.

o Install the pointer to the other BitMap structure in the RasInfo structure before your
call to MakeVPort(), and then call MakeVPort and MrgCop.

Now you have created two sets of instruction streams for the Copper, one of which you have
saved in a pair of pointer variables. The other has been newly created and is in the View
structure. You can save this new set of pointers as well, swapping in the set that you want to
use for display, while drawing into the BitMap that is not on the display. Remember that you
will have to call FreeCprList() on both sets of Copper lists when you have finished.
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HOLD-AND-MODIFY MODE

In hold-and-modify mode you can create a single-playfield display in which 4,096 different colors
can be displayed simultaneously. This requires that your ViewPort be defined using six bit-
planes and that you set the HAM bit in the ViewPort Modes variable.

When you draw into the BitMap associated with this ViewPort, you can choose one of four
different ways of drawing into the BitMap. (Drawing into a BitMap is shown in the next sec-
tion, “Drawing Routines.”) If you draw using color numbers 0-15, the pixel you draw will
appear in the color specified in that particular system color register. If you draw with any other
color value from 16-31, the color displayed depends on the color of the pixel that is to the
immediate left of this pixel on the screen. For example, hold constant the contents of the red
and the green parts of the previously produced color, and take the rest of the bits of this new
pixel’s color register number as the new contents for the blue part of the color. Hold-and-
modify means hold part and modify part of the preceding defined pixel’s color.

Note that a particular hold-and-modify pixel can only change one of the three color values at a
time. Thus, the effect has a limited control.

In hold-and-modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify the way
bits from planes 1 - 4 are treated, as follows:

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color
selection procedure is followed. Thus, the bit combinations from planes 4 - 1, in that
order of significance, are used to choose one of 16 color registers (registers 0-15).

If only five bit-planes are used, the data from the sixth plane is automatically supplied
with the value as 0.

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used

to replace the four “blue’ bits in the pixel color without changing the value in any color
register.

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this
pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used
to replace the four “red” bits.

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this

pixel is duplicated and then modified. The bit combinations from planes 4 - 1 are used
to replace the four “green” bits.

o At the leftmost edge of each line, hold-and-modify begins with the background color.
The color choice does not carry over from the preceding line.
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Drawing Routines

Most of the graphics drawing routines require information about how the drawing is to take
place. For this reason, the graphics support routines provide a data structure called a
RastPort, which contains information essential to the graphics drawing functions. In using
most of the drawing functions, you must pass them a pointer to your RastPort structure. As-
sociated with the RastPort is another data structure called a BitMap, which contains a
description of the organization of the data in the drawing area.

INITIALIZING A BITMAP STRUCTURE

The RastPort contains information for controlling the drawing. In order to use the graphics,
you also need to tell the system the memory area location where the drawing will occur. You
do this by initializing a BitMap structure, defining the characteristics of the drawing area, as
shown in the following example. This was already shown in the section called “Forming a Basic
Display,” but it is repeated here because it relates to drawing as well as to display routines.
You need not necessarily use the same BitMap for both the drawing and the display.

struct BitMap myBitMap;
SHORT depth = 3;/* max of eight colors ... going to need three

* bit-planes to represent this number of colors */
SHORT width = 320;

SHORT height = 200;

InitBitMap( &myBitMap, depth, width, height);

INITIALIZING A RASTPORT STRUCTURE

Before you can use a RastPort for drawing, you must initialize it. Here is a sample initializa-
tion sequence:

struct RastPort myRastPort;
InitRastPort(&myRastPort);

/* now link together the BitMap and the RastPort */
myRastPort.BitMap = &myBitMap;

Note that you cannot perform the link until after the RastPort has been initialized.
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The RastPort data structure can be found in the include files rastport.h and rastport.:. It con-
tains the following information:

o Drawing pens

o Drawing modes

o Patterns

o Text attributes and font information

o Area-filling information

o Graphics elements information for animation
o Current pen position

o A write mask

o Some graphics private data

o A pointer for user extensions

The following sections explain each of the items in the RastPort structure.

Drawing Pens

The Amiga has three different drawing “pens’ associated with the graphics drawing routines.
These are:

o FgPen—the foreground or primary drawing pen. For historical reasons, it is also
called the A-Pen.

o BgPen—the background or secondary drawing pen. For historical reasons, it is also
called the B-Pen.

o AOIPen—the area outline pen. For historical reasons, it is also called the O-Pen.

A drawing pen variable in the RastPort contains the current value (range 0-255) for a particu-
lar color choice. This value represents a color register number whose contents are to be used in
rendering a particular type of image. In essence, the bits of a “pen’’ determine which bit-planes
are affected when a color is written into a pixel (as determined by the drawing mode and
modified by the pattern variables and the write mask as described below). The drawing rou-
tines support BitMaps up to eight planes deep, allowing for future expansion in the hardware.
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Note: The Amiga 1000 contains only 32 color registers. Any range beyond that repeats the
colors in 0-31. For example, pen numbers 32-63 refer to the colors in registers 0-31.

The color in FgPen is used as the primary drawing color for rendering lines and areas. This
pen is used when the drawing mode is JAM1 (see the next section for drawing modes). JAMI
specifies that only one color is to be “jammed” into the drawing area.

You establish the color for FgPen using the statement:

SetAPen( &myRastPort, newcolor );

The color in BgPen is used as the secondary drawing color for rendering lines and areas. If you
specify that the drawing mode is JAM2 (jamming two colors) and a pattern is being drawn, the
primary drawing color (FgPen) is used where there are 1s in the pattern. The secondary draw-
ing color (BgPen) is used where there are Os in the pattern.

You establish the drawing color for BgPen using the statement:

SetBPen( &myRastPort, newcolor );

The area outline pen AOIPen is used in two applications: area fill and flood fill. (See “Area
Fill Operations’ below.) In area fill, you can specify that an area, once filled, can be outlined in
this AOIPen color. In flood fill (in one of its operating modes) you can fill until the flood-filler
hits a pixel of the color specified in this pen variable.

You establish the drawing color for AOIPen using the statement:

SetOPen( &myRastPort, newcolor );

Drawing Modes

Four drawing modes may be specified:

JAM1 Whenever you execute a graphics drawing command, one color is jammed into
the target drawing area. You use only the primary drawing pen color, and for
each pixel drawn, you replace the color at that location with the FgPen color.

JAM2 Whenever you execute a graphics drawing command, two colors are jammed into
the target drawing area. This mode tells the system that the pattern variables
(both line pattern and area pattern—see the next section) are to be used for the
drawing. Wherever there is a 1 bit in the pattern variable, the FgPen color re-
places the color of the pixel at the drawing position. Wherever there is a 0 bit in
the pattern variable, the BgPen color is used.
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COMPLEMENT
For each 1 bit in the the pattern, the corresponding bit in the target area is
complemented —that is, its state is reversed. As with all other drawing modes,
the write mask can be used to protect specific bit-planes from being modified.
Complement mode is often used for drawing and then erasing lines.

INVERSEVID
This is the drawing mode used primarily for text. If the drawing mode is
(JAM1 | INVERSEVID), the text appears as a transparent letter surrounded by
the FgPen color. If the drawing mode is (JAM2 |INVERSEVID), the text ap-
pears as in (JAM1|INVERSEVID) except that the BgPen color is used to draw

the text character itself. In this mode, the roles of FgPen and BgPen are
effectively reversed.

You set the drawing modes using the statement:

SetDrMd( &myRastPort, newmode );

Patterns

The RastPort data structure provides two different pattern variables that it uses during the
various drawing functions: a line pattern and an area pattern. The line pattern is 16 bits wide
and is applied to all lines. When you initialize a RastPort, this line pattern value is set to all
Is (hex FFFF), so that solid lines are drawn. You can also set this pattern to other values to

draw dotted lines if you wish. For example, you can establish a dotted line pattern with the
statement:

SetDrPt( &myRastPort, Oxcccc );

where “‘ccce” is a bit-pattern, 1100110011001100, to be applied to all lines drawn. If you draw
multiple, connected lines, the pattern cleanly connects all the points.

The area pattern is 16 bits wide and its height is some power of two. This means that you can

define patterns in heights of 1, 2, 4, 8, 16, and so on. To tell the system how large a pattern
you are providing, include this statement:

SetAfPt( &myRastPort, &myAreaPattern, power_of_two );

where &myAreaPattern is the address of the first word of the area pattern and
power_of_two specifies how many words are in the pattern. For example:
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USHORT myAreaPattern[] = {
0x ff00,
0x {00,
0x00ff,
0x00ff,
0xf0f0,
0xfofo,
0x0f0f,
0x0fof

b5
SetAfPt( &myRastPort, &myAreaPattern, 3 );

This example produces a pattern that is a large checkerboard above a small checkerboard.
Because power_of_two is set to 3, the pattern is 2 to the 3rd, or 8, rows high.

Pattern Positioning

The pattern is always positioned with respect to the upper left corner of the RastPort drawing

area (the 0,0 coordinate). If you draw two rectangles whose edges are adjacent, the pattern will
be continuous across the rectangle boundaries.

Multicolored Patterns

The last example above produces a two-color pattern with one color where there are 1s and the
other color where there are Os in the pattern. A special mode allows you to develop a pattern

having up to 256 colors. To create this effect, specify power_of_two as a negative value
instead of a positive value.

The following initialization establishes an 8-color checkerboard pattern where each square in the
checkerboard has a different color. The checkerboard is 2 squares wide by 4 squares high.

USHORT myAreaPattern[3][8] = {
{

0x0000, /* plane O pattern */
0x0000,

Ox fIff,

OxfIff,

0x0000,

0x0000,

Ox fIff,

Ox fiff,

}
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0x0000, /* plane 1 pattern */
0x0000,

0x0000,

0x0000,

Ox fIff,

OxfIff,

Ox fff,

OxfIff,

0xff00, /* plane 2 pattern */
0x 100,
0x1f00,
0x1f00,
0xff00,
0xff00,
0xff00,
0xff00

b5
SetAfPt( &myRastPort, &myAreaPattern, -3 );

/* when doing this, it is best to set three other parameters as follows: */
SetAPen( &myRastPort, 255);

SetBPen( &myRastPort, 0);

SetDrMd( &myRastPort, JAM2);

If you use this multicolored pattern mode, you must provide as many planes of pattern data as
there are planes in your BitMap.

Text Attributes

Text attributes and font information are set by calls to the font routines. These are covered
separately in chapter 4, “Text.”
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Area-fill Information

Two structures in the RastPort— Arealnfo and TmpRas—define certain information for
area filling operations. The Arealnfo pointer is initialized by a call to the routine InitArea().

InitArea (&myRastPort, &areabuffer, count);

To use area fill, you must first provide a work space in memory for the system to store the list
of points that define your area. You must allow a storage space of 5 bytes per vertex. To
create the areas in the work space, you use the functions AreaMove(), AreaDraw(), and

AreaEnd().

Typically, you prepare the RastPort for area-filling using a sequence like the following:

UWORD areabuffer [250];

/* allow up to 100 vertices in the definition of an area */
InitArea (&myRastPort, &areabuffer[0], 100);

The area buffer must start on a word boundary. That is why the sample declaration shows
areabuffer as composed of unsigned words (250), rather than unsigned bytes (500). It still
reserves the same amount of space, but aligns the data space correctly.

In addition to the Arealnfo structure in the RastPort, you must also provide the system with
some work space to build the object whose vertices you are going to define. This requires that
you initialize a TmpRas structure, then point to that structure for your RastPort to use.

Here is sample code that builds and initializes a TmpRas. Note that the area to which
TmpRas.RasPtr points must be at least as large as the area (width times height) of the larg-
est rectangular region you plan to fill. Typically, you allocate a space as large as a single bit-

plane (usually 320 by 200 bits for low-resolution mode, 640 by 200 bits for high-resolution
mode).

PLANEPTR myplane;

myplane = AllocRaster(320,200); /* get some space */

if (myplane == 0) exit(1); /* stop if no space */

myRastPort. TmpRas= InitTmpRas(&myTmpRas,
myplane,RASSIZE(320,200));

When you use functions that dynamically allocate memory from the system, you must
remember to return these memory blocks to the system before your program exits. See the
description of FreeRaster() in the ‘“Library Summaries” appendix.
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Graphics Element Pointer

The graphics element pointer in the RastPort structure is called GelsInfo. If you are doing
graphics animation using the GELS system, this pointer must refer to a properly initialized
GelslInfo structure. See chapter 3, “Animation,” for more information.

Current Pen Position

The graphics drawing routines keep the current position of the drawing pen in the variables
cp_x and cp_y, for the horizontal and vertical positions, respectively. The coordinate location
0,0 is in the upper left corner of the drawing area. The x value increases proceeding to the
right; the y value increases proceeding toward the bottom of the drawing area.

‘Write Mask

The write mask is a RastPort variable that determines which of the bit-planes are currently
writable. For most applications, this variable contains all 1s (hex ff). This means that all bit-
planes defined in the BitMap are affected by a graphics writing operation. You can selectively

disable one or more bit-planes by simply specifying a O bit in that specific position in the control
byte. For example:

myRastPort.Mask = OxFB;  /* disable bit-plane 2 */

USING THE GRAPHICS DRAWING ROUTINES

This section shows you how to use the Amiga drawing routines. All of these routines work
either on their own or with the windowing system and layer library. See chapter 2, ‘“Layers,”
or Intuition: The Amiga User Interface for details about using the layer library and windows.

As you read this section, keep in mind that to use the drawing routines, you need to pass them
a pointer to a RastPort. You can define the RastPort directly, as shown in the sample pro-

gram segments in preceding sections, or you can get a RastPort from your Window structure
using code like the following:

struct Window *w;
struct RastPort *usableRastPort;

/* and then, after your Window is initialized... */
usableRastPort = w->RastPort;
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You can also get the RastPort from the layer structure, if you are not using Intuition.

Drawing Individual Pixels

You can set a specific pixel to a desired color by using a statement like this:

int result;
result = WritePixel( &myRastPort, x, y);

WritePixel() uses the primary drawing pen and changes the pixel at that x,y position to the
desired color if the x,y coordinate falls within the boundaries of the RastPort. A value of 0 is

returned if the write was successful; a value of -1 is returned if x,y was outside the range of the
RastPort.

Reading Individual Pixels

You can determine the color of a specific pixel with a statement like this:

int result;
result = ReadPixel( &myRastPort, x, y);

ReadPixel() returns the value of the pixel color selector (from 0 to 255) at the specified x,y

location. If you specify an x,y outside the range of your RastPort, this function returns a
value of -1.

Drawing Lines

Two functions are associated with line drawing: Move() and Draw(). Move() simply moves
the cursor to a new position. It is like picking up a drawing pen and placing it at a new loca-
tion. This function is executed by the statement:

Move( &myRastPort, x, y);

Draw() draws a line from the current x,y position to a new x,y position specified in the state-
ment itself. The drawing pen is left at the new position. This is done by the statement:

Draw( &myRastPort, x, y);
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Draw() uses the pen color specified for FgPen. Here is a sample sequence that draws a red
line from location (0,0) to (100,50). Assume that the value in color register 2 represents red.

SetAPen( &myRastPort, 2); /* make primary pen red */
Move( &myRastPort, 0, 0); /* move to new location */
Draw( &myRastPort, 100,50); /* draw to a new location */

Caution: If you attempt to draw a line outside the bounds of the BitMap, using
the basic initialized RastPort, you may crash the system. You must either do your
own software clipping to assure that the line is in range, or use the layer library.
Software clipping means that you need to determine if the line will fall outside your
BitMap before you draw it.

Drawing Patterned Lines

To turn the example above into a patterned line draw, simply add the following statement:

SetDrPt( &myRastPort, Oxaaaa);

Now all lines drawn appear as dotted lines. To resume drawing solid lines, execute the
statement:

SetDrPt( &myRastPort, -1);

Drawing Multiple Lines with a Single Command

You can use multiple Draw() statements to draw connected line figures. If the shapes are all
definable as interconnected, continuous lines, you can use a simpler function, called

PolyDraw(). PolyDraw() takes a set of line endpoints and draws a shape using these points.
You call PolyDraw() with the statement:

PolyDraw( &myRastPort, count, arraypointer);

PolyDraw() reads an array of points and draws a line from the current pen position to the
first, then a connecting line to each succeeding position in the array until count points have
been drawn. This function uses the current drawing mode, pens, line pattern, and write mask
specified in the target RastPort; for example:
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SHORT linearray[ ] = {
3,3,
15,3,
15,15,
3,15,
3,3
b3

PolyDraw( &myRastPort, 5, &linearray|[0]);

draws a rectangle, using the five defined pairs of x,y coordinates.

Area-fill Operations

Assuming that you have properly initialized your RastPort structure to include a properly ini-
tialized Arealnfo, you can perform area fill by using the functions described in this section.

AreaMove() tells the system to begin a new polygon, closing off any other polygon that may

already be in process by connecting the end-point of the previous polygon to its starting point.
AreaMove() is executed with the statement:

AreaMove( &myRastPort, x, y);

AreaDraw() tells the system to add a new vertex to a list that it is building. No drawing
takes place when AreaDraw() is executed. It is executed with the statement:

AreaDraw( &myRastPort, x, y);

AreaEnd() tells the system to draw all of the defined shapes and fill them. When this function
is executed, it obeys the drawing mode and uses the line pattern and area pattern specified in
your RastPort to render the objects you have defined. Note that to fill an area, you do not
have to AreaDraw() back to the first point before calling AreaEnd(). AreaEnd() automati-
cally closes the polygon. AreaEnd() is executed with the following statement:

AreaEnd( &myRastPort);

Here is a sample program segment that includes the Arealnfo initialization. It draws a pair of

disconnected triangles, using the currently defined FgPen, BgPen, AOIPen, DrawMode,
LinePtrn, and AreaPtrn:

WORD areabuffer[250];
struct RastPort *rp;
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struct TmpRas tmpras;
struct Arealnfo myArealnfo;

InitArea(&myArealnfo, areabuffer, 100);
rp->Arealnfo = &myArealnfo;
rp->TmpRas = InitTmpRas( &tmpras, AllocRaster(320,200), RASSIZE(320,200);

/* Area routines need a temporary raster buffer at least as large as the

* largest object to be drawn. If a single task uses multiple RastPorts,

* it is sometimes possible to share the same TmpRas structure among

* multiple RastPorts. Multiple tasks, however, cannot share a TmpRas,
* as each task won’t know when another task has a drawing partially

* completed.

*/

AreaMove( rp, 0,0 );
AreaDraw( rp, 0,100);
AreaDraw( rp, 100,100);

AreaMove( rp, 50,10);
AreaDraw( rp, 50,50);
AreaDraw( rp, 100,50);
AreaEnd ( rp );
If you had executed the statement “‘SetOPen( &myRastPort, 3)”’ in the area-fill example, then

the areas that you had defined would have been outlined in pen color 3. To turn off the outline
function, you have to set the RastPort Flags variable back to 0 by:

#include "graphics/gfxmacros.h”
BNDRYOFF(&myRastPort);

Otherwise, every subsequent area-fill or rectangle-fill operation will use the outline pen.

Caution: If you attempt to fill an area outside the bounds of the BitMap, using the
basic initialized RastPort, it may crash the system. You must either do your own
software clipping to assure that the area is in range, or use the layer library.
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Flood-fill Operations

Flood fill is a technique for filling an arbitrary shape with a color. The Amiga flood-fill routines

can use a plain color or do the fill using a combination of the drawing mode, FgPen, BgPen,
and the area pattern.

There are two different modes for flood fill:

o In outline mode you specify an x,y coordinate, and from that point the system searches
outward in all directions for a pixel whose color is the same as that specified in the area
outline pen. All horizontally or vertically adjacent pixels not of that color are filled
with a colored pattern or plain color. The fill stops at the outline color. Outline mode
is selected when the mode variable is a 0.

o In color mode you specify an x,y coordinate, and whatever pixel color is found at that
position defines the area to be filled. The system searches for all horizontally or verti-
cally adjacent pixels whose color is the same as this one and replaces them with the
colored pattern or plain color. Color mode is selected when the mode variable is a 1.

You use the Flood() routine for flood fill. The syntax for this routine follows.

Flood( rp, mode, x, y);

where
rp is a pointer to the RastPort
X,y is the starting coordinate in the BitMap

mode tells how to do the fill

The following sample program fragment creates and then flood-fills a triangular region. The
overall effect is exactly the same as shown in the preceding area-fill example above, except that
flood-fill is slightly slower than area-fill. Mode O (fill to a pixel that has the color of the outline
pen) is used in the example.

Graphics Primitives 47



oldAPen = myRastPort.FgPen;

SetAPen( &myRastPort, myRastPort.AOlPen);
/* using mode 0 */

/* triangular shape */

Move( &myRastPort, 0, 0);

Draw( &myRastPort, 0, 100);

Draw( &myRastPort, 100, 100);

Draw( &myRastPort, 0,0); /* close it */

SetAPen( &myRastPort, oldAPen);
Flood(&myRastPort, 0, 10, 50);

This example saves the current FgPen value and draws the shape in the same color as

AOIPen. Then FgPen is restored to its original color so that FgPen, BgPen, DrawMode,
and AreaPtrn can be used to define the fill within the outline.

Rectangle-fill Operations

The final fill function, RectFill(), is for filling rectangular areas. The form of this function
follows:

RectFill( rp, xmin, ymin, xmax, ymax);
where

xmin and ymin
represent the upper left corner of the rectangle

xmax and ymax
represent the lower right corner of the rectangle

rp points to the RastPort that receives the filled rectangle

Rectangle-fill uses FgPen, BgPen, AOlPen, DrawMode and AreaPtrn to fill the area you
specify. Remember that the fill can be multicolored as well as single- or two-colored.

The following three sets of statements perform exactly the same function:
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/* area-fill a rectangular area */
SetAPen(rp,1);

SetOPen(rp,3);
AreaMove(rp,0,0);
AreaDraw(rp,0,100);
AreaDraw(rp,100,100);
AreaDraw(rp,100,0);
AreaEnd(rp);

/* flood-fill a rectangular area */
SetAPen(rp,3);

SetOPen(rp,3);

Move(rp,0,0);

Draw(rp,0,100);
Draw(rp,100,100);
Draw(rp,100,0);

Draw(rp,0,0);

SetAPen(rp,1);
Flood(rp,0,50,50);

/* rectangle-fill a rectangular area */
SetAPen(rp,l1);

SetOPen(rp,3);
Rectfill(rp,0,0,100,100);

Not only is the RectFill() routine the shortest, it is also the fastest to execute.

Data Move Operations

The graphics support functions include several routines for simplifying the handling of the rec-
tangularly organized data that you would encounter when doing raster-based graphics. These
routines do the following:
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o Clear an entire segment of memory

o Set a raster to a specific color

o Scroll a subrectangle of a raster

o Draw a pattern “through a stencil”

o Extract a pattern from a bit-packed array and draw it into a raster
o Copy rectangular regions from one bit-map to another

o Control and utilize the hardware-based data mover, the blitter

The following sections cover these routines in detail.

Clearing a Memory Area

For memory that is accessible to the blitter (that is, internal CHIP memory), the most efficient
way to clear a range of memory is to use the blitter. You use the blitter to clear a block of
memory with the statement:

BltClear( memblock, bytecount, flags);

where memblock is a pointer to the location of the first byte to be cleared, and bytecount is
the number of bytes to set to zero.

This command accepts the starting location and count and clears that block to zeros. For the
meanings of settings of the flags variable, see the summary page for this routine in the “Library
Summaries” appendix.

Setting a Whole Raster to a Color

You can preset a whole raster to a single color by using the function SetRast(). A call to this
function takes the following form:

SetRast( RastPort, pen);

where
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RastPort
1s a pointer to the RastPort you wish to use

pen

1s the pen value that you wish to fill that RastPort

Scrolling a Sub-rectangle of a Raster

You can scroll a sub-rectangle of a raster in any direction —up, down, left, right, or diagonally.
To perform a scroll, you use the ScrollRaster() routine and specify a dx and dy (delta-x,
delta-y) by which the rectangle image should be moved towards the (0,0) location.

As a result of this operation, the data within the rectangle will become physically smaller by the
size of delta-x and delta-y, and the area vacated by the data when it has been cropped and

moved is filled with the background color (color in BgPen).

Here is the syntax of the SerollRaster() function:

ScrollRaster( rp, dx, dy, xmin, ymin, xmas, ymax );
where
rp is a pointer to a RastPort

dx, dy
are the distances (positive, 0, or negative) to move the rectangle

xmin, xmax, ymin, ymax
specify the outer bounds of the sub-rectangle

Here are some examples that scroll a sub-rectangle:

/* scroll down 2 */
ScrollRaster(&myRastPort,0,2,10,10,50,50);

/* scroll right 1 */
ScrollRaster(&myRastPort,1,0,10,10,50,50);
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Drawing through a Stencil

The routine BltPattern() allows you to change only a very selective portion of a drawing area.
Basically, this routine lets you define the rectangular region to be affected by this drawing
operation and a mask of the same size that defines how that area will be affected.

Figure 1-17 shows an example of what you can do with BltPattern(). The O bits are
represented by blank rectangles; the 1 bits by filled-in rectangles.

Mask contains: Result of BitPattern(): Drawing area contains:

Figure 1-17: Example of Drawing Through a Stencil
In the “Result’’ drawing, the lighter squares show where the target drawing area has been
affected. Exactly what goes into the drawing area where the mask has 1’s is determined by your
FgPen, BgPen, DrawMode, and AreaPtrn.
The variables that control this function are:
rastport a pointer to the drawing area

mask a pointer to the mask (mask layout explained below)

xl, maxx upper left corner x, and lower right corner x

52 Graphics Primitives



yl, maxy upper left corner y, and lower right corner y

bytecnt number of bytes per row for the mask (must be an even number of bytes)

You call BltPattern() with:

BltPattern( rastport, mask, xl, yl, maxx, maxy, bytecnt)

The mask parameter is a rectangularly organized, contiguously stored pattern. This means

that the pattern is stored in linearly increasing memory locations stored as (maxy - yl) rows of
bytecnt bytes per row.

Note: These patterns must obey the same rules as BitMaps. This means that they must con-
sist of an even number of bytes per row. For example, a mask such as:

0100001000000000
0010010000000000
0001100000000000
0010010000000000

is stored in memory beginning at a legal word address.

Extracting from a Bit-packed Array

You use the routine BltTemplate() to extract a rectangular area from a source area and place
it into a destination area. Figure 1-18 shows an example.
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Array start:
line end+1

Line end (first line)

.....................................

Character starts n-bits in from starting point
on the left edge of the array.

Figure 1-18: Example of Extracting from a Bit-Packed Array

If the rectangular bit array is to be represented as a rectangle within a larger, rectangularly
organized bit array, the system must know how the larger array is organized. This allows the
system to extract each line of the object properly. For this extraction to occur properly, you
need to tell the system the modulo for the array. The modulo is the value that must be added
to the address pointer so that it points to the correct word in the next line in this rectangularly

organized array.

Figure 1-19 represents a single bit-plane and the smaller rectangle to be extracted. The modulo
in this instance is 4, because at the end of each line, you must add 4 to the address pointer to

make it point to the first word in the smaller rectangle.

20
27
34
41
48
55

21
28
35
42
49
56

-<«———— Larger source
bit-plane image

2 23 24 25 26
29 30 31 32 33
3 37 38|39 40
43 44 45| 46 47
50 51 52| 53 54
57 58 59 60 61

Smaller rectangle
to be extracted.
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Note that the modulo value must be an even number of bytes.

BltTemplate() takes the following arguments:

source the source pointer for the array
srcX source X (bit position) in the array at which the rectangle begins
srcMod source modulo so it can find the next part of the source rectangle

destRastPort the destination RastPort
destX, destY destination x and y, showing where to put the rectangle

sizeX, sizeY  size x and y, indicating how much data to move

You call BltTemplate() with:

BltTemplate( source, srcX, srcMod, destRastPort, destX, destY, sizeX, sizeY );

BltTemplate() uses FgPen, BgPen, DrawMode and Mask to place the template into the
destination area. This routine differs from BltPattern() in that only a solid color is deposited
in the destination drawing area, with or without a second solid color as the background (as in
the case of text). Also, the template can be arbitrarily bit-aligned and sized in x.

Copying Rectangular Areas

Two routines copy rectangular areas from one section of chip memory to
another: BltBitMap() and ClipBlit(). BltBitMap() is the basic routine, taking BitMaps as
part of its arguments. It allows you to define a rectangle in a source region and copy it to a

destination area of the same size elsewhere in memory. This routine is often used in graphics
rendering.

ClipBlit() takes most of the same arguments, but it works with the RastPorts and layers.
Before ClipBlit() moves data, it looks at the area from which and to which the data is being
copied (RastPorts, not BitMaps) and determines if there are overlapping areas involved. It

then splits up the overall operation into a number of bit maps to move the data in the way you
request.

Here is a sample call to ClipBlit(). This call is used in an image editor to transfer a rectangu-
lar block of data from the screen to a back-up area.
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ClipBlit( &rastport, /* on-screen area */
X,Y, /* upper left corner of rectangle */
&undorastport, /* screen editor can undo things, has
* a RastPort specifically for undo */

0,0, /* upper left corner of destination */
SIZEx,SIZEy /* how big is the rectangle */
minterm);

The minterm variable is an unsigned byte value whose leftmost 4 bits represent the action to
be performed during the move. This routine uses the blitter device to move the data and can
therefore logically combine or change the data as the move is made. The most common opera-
tion is a direct copy from source area to destination, which is the hex value CO.

You can determine how to set the minterm variable by using the logic equations shown in
table 1-5.

Table 1-5: Minterm Logic Equations

Logic Term Logic Term Included
in Leftmost 4 Bits in Final Output
8 BC
4 BC
2 BO
1 BC

Source B contains the data from the source rectangle, and source C contains the data from the
destination area. If you choose bits 8 and 4 from the logic terms (CO), in the final destination

area you will have data that occurs in source B only. Thus, CO means a direct copy. The logic
equation for this is:

BC + BC=B(C + C) =B

Logic equations may be used to decide on a number of different ways of moving the data. For
your convenience, a few of the most common ones are listed in table 1-6.
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Table 1-6: Some Common Logic Equations for Copying

Hex
Value Mode
30 Replace destination area with inverted source B.
50 Replace destination area with inverted version

of original of destination.
60 Put B where C is not, put C where B is not (cookie cut).

80 Only put bits into destination where there is
a bit in the same position for both source
and destination (sieve operation).

Refer to the listing for BltBitMap() in the “Library Summaries” index.

Accessing the Blitter in a Multitasking Environment

To use the blitter, you must first be familiar with how its registers control its operation. This
topic is covered thoroughly in the Amiga Hardware Reference Manual and is not repeated here.

Four routines may be used to gain access to the blitter:

o OwnBlitter() allows your task to obtain exclusive use of the blitter. Note, however,
that the system uses the blitter extensively for disk and display operation. While your
task is using the blitter, many other system processes will be locked out. Therefore, use
it only for brief periods and relinquish it as quickly as possible, using DisownBlitter().

o DisownBlitter() returns the device to shared operation.

o QBIlit() and QBSBIit() let your task queue up requests for the use of the blitter on a
non-exclusive basis. You share the blitter with system tasks.

You provide a data structure called a bltnode (blitter node). The system can use this structure
to link blitter usage requests into a first-in, first-out (FIFO) queue. When your turn comes,

your own blitter routine can be repeatedly called until your routine says it is finished using the
blitter.

Two separate queues are formed. One queue is for the QBIit() routine. You use QBIlit() when
you simply want something done and you do not necessarily care when it happens. This may
be the case when you are moving data in a memory area that is not currently being displayed.
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The second queue is maintained for QBSBIit(). QBS stands for “queue-beam-synchronized”
blitter operations. QBSBIit() forms a beam-synchronized FIFO. When the video beam gets to
a predetermined position, your routine is called. Beam synchronization takes precedence over
the simple FIFO. This means that if the beam sync matches, the beam-synchronous blit will be
done before the non-synchronous blit in the first position in the queue. You might use
QBSBIit() to draw into an area of memory that is currently being displayed to modify memory

that has already been ‘‘passed-over” by the video beam. This avoids display flicker as an area
is being updated.

The input to each routine is a pointer to a bltnode data structure. The required items of the
data structure are:

o A pointer to a bltnode
o A pointer to a function to perform
o A beamsync value (used if this is a beamsynec blit)

o A status flag indicating whether the blitter control should perform a “clean-up” routine
when the last blit is finished

o The address of the clean-up routine if the status flag states that it should be used

The bltnode data structure is contained in the include file hardware/blit.h. Here is a copy of
that data structure, followed by details about the items you must initialize:

struct bltnode

{

struct bltnode *n;
int (*function)( );
char stat;

short blitsize;

short beamsync;

int (*cleanup)( );

b5
The contents of bltnode are as follows:

struct bltnode *n;

This is a pointer to the next bltnode, which, for most applications will be zero. You
should not link bltnodes together. This is to be performed by the system by way of a
separate call to QBIit() or QBSBIit().
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int (*function)( );

This position is occupied by the address of a function that the blitter queuer will call
when your turn comes up. Your routine must be formed as a subroutine, with an RTS
at the end. Using the C-language convention, the returned value will be in DO (C
returns its value by the return(value) statement).

If you return a nonzero value, the system will call your routine the next time the blitter
is done until you finally return 0. This is to allow you to maintain control over the
blitter; for example, it allows you to handle all five bit-planes if you are blitting an
object that spans that number of planes. For display purposes, if you are blitting mul-
tiple objects and then saving and restoring the background, you must be sure that all
planes of the object are positioned before another object is overlaid. This is the reason
for the lockup in the blitter queue; it allows all work per object to be completed before
going on to the next one.

Actually, the system tests the status codes for a condition of EQUAL or NOTEQUAL.
When the C language returns the value of 0, it sets the status codes to EQUAL. When
it returns a value of -1, it sets the status codes to NOTEQUAL, so they would be com-
patible. Functions (*function)()) that are written for QBIlit() and QBSBIit() are not
normally written in C. They are usually written in assembly language, as they then can
take advantage of the ability of the queue routines to pass them parameters in the sys-
tem registers. The register passing conventions for these routines are as follows:

o Register AO receives a pointer to the system hardware registers so that all hardware
registers can be referenced as an offset from that address.

o Register Al contains a pointer to the current bltnode. You may have queued up
multiple blits, each of which perhaps uses the same blitter routine. You can access
the data for this particular operation as an offset from the value in Al. A typical
user of these routines will precalculate the hardware register values that are stuffed
into the registers and, during the routine, simply stuff them. For example, you can
create a new structure such as the following:
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struct myblit {

struct bltnode; /* make this new structure

* compatible with the bltnode

* by making it the first element */
short bltconl; /* contents to be stuffed into

* blitter control register 1 */
short fwmask,lwmask;

/* first and last word masks */
short bltmdc, bltmdb, bltmda;

/* modulos for sources a, b,and ¢ */
char *bltpta, *bltptb, *bltptc;

/* pointer to source data for sources */

b5

Other forms of data structures are certainly possible, but this should give you the gen-
eral idea.

char stat;

Tells the system whether or not to execute the clean-up routine at the end. This byte

should be set to CLEANUP (0x40) if cleanup is to be performed. If not, then the
bltnode cleanup variable can be zero.

short beamsync;

The value that should be in the VBEAM counter for use during a beam-synchronous
blit before the function() is called.

The system cooperates with you in planning when to start a blit in the routine
QBSBIit() by not calling your routine until, for example, the video beam has already
passed by the area on the screen into which you are writing. This is especially useful
during single buffering of your displays. There may be time enough to write the object
between scans of the video display. You will not be visibly writing while the beam is

trying to scan the object. This avoids flicker (part of an old view of an object along
with part of a new view of the object).

int (*cleanup)();

The address of a routine that is to be called after your last return from the QBIit()
routine. When you finally return a zero, the queuer will call this subroutine (ends in
RTS or return()) as the clean-up. Your first entry to the function may have dynami-
cally allocated some memory or may have done something that must be undone to
make for a clean exit. This routine must be specified.
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User Copper Lists

The Copper coprocessor allows you to produce mid-screen changes in certain hardware registers
in addition to changes that the system software already provides. For example, it is the Copper

that allows the Amiga to split the viewing area into multiple draggable screens, each with its
own independent set of colors.

To create your own mid-screen (or mid-Intuition-Screen) effects on the system hardware regis-
ters, you provide ‘“user Copper lists” that can be merged into the system Copper lists.

In the ViewPort data structure there is a pointer named UCoplIns. If this pointer value is
non-NULL, it points to a user Copper list that you have dynamically allocated and initialized to

contain your own special hardware-stuffing instructions. You allocate a user Copper list by an
instruction sequence such as the following:

struct UCopList *cl;
cl = (struct UCopList *)
AllocMem(sizeof(struct UCopList), MEMF_PUBLIC |
MEMF_CHIP | MEMF_CLEAR);

Once this pointer to a user Copper list is available, you can use it with system macros
(graphics/gfzrmacros.h) to instruct the system what to add to its own list of things for the
Copper to do within a specific ViewPort.

The file graphics/gfrmacros.h provides the following three macro functions that implement user
Copper instructions.

CWAIT waits for the video beam to reach a particular horizontal and vertical position. Its
format follows:

CWAIT(uc, v, h)
where
uc is the pointer to the Copper list

v is the vertical position for which to wait, specified relative to the top of the ViewPort.
The legal range of values is from 0 to 261.

h is the horizontal position for which to wait. The legal range of values is from 0 to 223
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CMOVE installs a particular value into a specified system register. Its format follows:

CMOVE(uc, reg, value)

where
uc is the pointer to the Copper list
reg is the register to be affected, specified in this form form: “custom.register’” (see

hardware/ custom.h)

CEND terminates the user Copper list. Its format follows:

CEND(uc)
where uc is the pointer to the user Copper list.

Executing any of the user Copper list macros causes the system to dynamically allocate special
data structures called intermediate Copper lists that are linked into your user Copper list (the
list to which ¢l points) describing the operation. When you call the function
MakeVPort(&view, &viewport) as shown in the section called “Forming A Basic Display,”
the system uses all of its intermediate Copper lists to sort and merge together the real Copper
lists for the system (LOFCprList and SHF CprList).

When your program exits, you must return to the system all of the memory that you allocated
or caused to be allocated. This means that you must return the intermediate Copper lists, as

well as the user Copper list data structure. Here are two different methods for returning this
memory to the system.

/* Returning memory to the system if you have NOT
* obtained the viewport from Intuition. */

FreeVPortCopLists(&viewport);

/* Returning memory to the system if you HAVE
* obtained the viewport from Intuition. */

CloseScreen(screen); /* Intuition only */
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The example program below shows the use of user Copper lists under Intuition.

/* User-Copper-Lists Demo Program ... changes the background color
* in mid-screen.

*/

#define WINDOWGADGETS (WINDOWSIZING|WINDOWDRAG|
WINDOWDEPTH|WINDOWCLOSE)

#define WWIDTH 120

#define WHEIGHT 90

#define MAXINT OxFFFFFFFF

#include ”exec/types.h”

#include ”exec/memory.h”
#include <graphics/gfxmacros.h>
#include <graphics/copper.h>
#include ”intuition/intuition.h”
#include <hardware/custom.h>

extern struct Window *OpenWindow();
extern struct Screen *OpenScreen();

long IntuitionBase=0;
long GfxBase=0;

/* use the 40/80 column font for this test */

struct TextAttr TestFont = {
”topaz.font”, 8, 0, 0

b

struct NewScreen ns = {

0,0, /* start position */
320, 200, 4,  /* width, height, depth */
0,1, /* detail pen, block pen */
0 /* viewing mode */

CUSTOMSCREEN, /#* screen type */
&TestFont, /* font to use */

”?Test Screen”, /* default title for screen */
NULL /* pointer to additional gadgets */

b

extern struct Custom custom;
/* provides a way to get to the base of the custom chips */
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main()

{

struct Window *w; /* pointer to a Window */
struct RastPort *rp; /* pointer to a RastPort */
struct ViewPort *vp; /* pointer to a ViewPort */
struct UCopList *cl; /* user Copper list and a pointer to it. */

struct Screen *screen;

GfxBase = OpenLibrary(”graphics.library”, 0);
if (GfxBase —= NULL)

{

}

IntuitionBase = OpenLibrary(”intuition.library”, 0);
if (IntuitionBase == NULL)

{

exit(1000);

CloseLibrary(GfxBase);
exit(2000);

}

screen = OpenScreen(&ns);
if(!screen)

{
}

else

{

goto cleanup;

vp = &screen->ViewPort;
rp = &screen- >RastPort;

}

/* v1.1 initialization, just use CINIT for v1.2 */

/* In this case, although WE allocated the memory for the user Copper list,
* the SYSTEM (Intuition) deallocates it when the custom screen is closed.
* Therefore there is no corresponding FreeMem() in this sample program.
*/

¢l = AllocMem(sizeof(struct UCopList), MEMF_PUBLICIMEMF_CLEAR);

CWAIT(cl,100,0); /* wait till middle of screen */
CMOVE(cl,custom.color[0],0xFFF); /* change background color */
CEND(cl);

/* Programmer can affect ANY of the system registers that the Copper has access to
* (see the Amiga Hardware Reference Manual) in this way. Simply note that the

* system may already be using these registers in some manner and that most of

* the system registers are either read-only or write-only, so you’ll have to be
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* careful about what you are trying to affect.
*/

vp->UCoplns = cl;

Delay(50);  /* wait one second before changing anything */
/* Now force a remake of the Copper list for all screens. */
RethinkDisplay();

Delay(100);
CloseScreen(screen);
cleanup:
CloseLibrary(IntuitionBase);
CloseLibrary(GfxBase);

}

/* end of main() */

Advanced Graphics Examples

DUAL-PLAYFIELDS EXAMPLE

This example is almost identical to the single-playfield demonstration program earlier in this
chapter. It has been adapted to show a dual-playfield display with objects drawn in both
playfields. The single playfield wrote directly into the screen’s memory. This example adds a
RastPort so that rectangle-fill routines can be used.

#include <exec/types.h>
#include <graphics/gfx.h>
#include <graphics/gfxbase.h>
#include <hardware/dmabits.h>
#include <hardware/custom.h>
#include <graphics/gfxmacros.h>
#include <graphics/rastport.h>
#include <graphics/view.h>
#include <exec/exec.h>

#define DEPTH 2

#define WIDTH 320

#define HEIGHT 200

#define NOT_ENOUGH_MEMORY -1000
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struct View v;

struct ViewPort vp;

struct ColorMap *cm; /* pointer to ColorMap structure, dynamic alloc */
struct RaslInfo ri;

struct BitMap b;

/* added a second Raslnfo for dual.playfield */
struct RasInfo ri2;

/* added a second BitMap for dual.playfield */
struct BitMap b2;

short 1,j,k,n;
struct ColorMap *GetColorMap();
struct GfxBase *GfxBase;

/* black, red, green, blue,
* ignored, ignored, ignored, ignored,
* (transparent), purple, lime green, mauve */

USHORT colortable[] = {

0x000, 0xf00, 0x0f0, 0x00f,

0,0,0,0,

0, 0x495, 0x62a, 0xf9c
|5
/* Nobody will see center set of 4 colors in this case because only two planes
* and dual-playfield mode. (In dualpf mode, colors 0-7 are dedicated to
* playfield 1, and 8-15 to playfield number 2. So since only 2 planes in each
* playfield, colors 4-7 and 12-15 won’t even get used in this example)

*/
UWORD *colorpalette;
/* added RastPorts for both bitmaps */

struct RastPort rp, rp2;
struct View *oldview; /* save and restore old View */

main()

{

GfxBase = (struct GfxBase *)OpenLibrary(”graphics.library”,0);
if (GfxBase == NULL) exit(1);

InitView(&v); /* initialize View */

v.ViewPort = &vp; /* link View into ViewPort */
InitVPort(&vp); /* init ViewPort */

66 Graphics Primitives



/* now specify critical characteristics */
vp.DWidth = WIDTH;
vp.DHeight = HEIGHT;
vp.RasInfo = &iri;
vp.Modes = DUALPF | PFBA ; /* dual-playfield mode */

/* init bit map (for RasInfo and RastPort) */

InitBitMap(&b,DEPTH,WIDTH, HEIGHT);
/* (init RaslInfo) */

ri.BitMap = &b;

/* align upper left corners of display

* with upper left corner of drawing area */

ri.RxOffset = 0;

ri..RyOffset = 0;

/* >k 3k ok ok ok 3k 3k sk 5k ok ok ok ok 3k 3k sk ok sk ok sk sk 3k 3k Sk sk sk ok sk sk ok sk sk ok sk sk ok Sk ke sk ok sk sk ok sk sk sk sk sk sk sk ke ok ok sk ok ok ok ke %k sk ok ke sk k kok */
/* changed here for dual playfields */

InitBitMap(&b2,DEPTH,WIDTH HEIGHT);

ri.Next = &ri2;

ri2.BitMap = &b2;

ri2. RxOffset = 0;

ri2. RyOffset = 0;

ri2.Next = 0;

/* >k >k >k >k 3k >k 3k sk 3 2k 5k sk ok ke ke k k 2k ok ok ke >k e ok 2k ok sk 3k sk 3k ok ok ok ok sk ok ok >k 2k >k ok ok ok 3 3k k ok sk ok ok ok ok ok ke sk 3k sk sk ok ok ok ke sk ok ok ok sk ok */

/* (init color table) */
cm = GetColorMap(12);  /* 12 entries, since dual playfields */
colorpalette = cm->ColorTable;
for(i=0; 1< 12; i++)

{

}
/* copy my colors into this data structure */
vp.ColorMap = cm; /* link it with the ViewPort */

*colorpalette++ = colortableli];

/* allocate space for BitMap */
for(i=0; i<DEPTH; i++)
{
b.Planes|i] = (PLANEPTR)AllocRaster( WIDTH,HEIGHT);

if(b.Planesi] == NULL) exit(NOT_ENOUGH_MEMORY);
b2.Planes|i] = (PLANEPTR)AllocRaster( WIDTH,HEIGHT);
if(b2.Planes|ij == NULL) exit(NOT_ENOUGH_MEMORY);

}

/* Initialize the RastPorts and link them to the bitmaps */
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InitRastPort(&rp);
InitRastPort(&rp2);
rp.BitMap = &b;
rp2.BitMap = &b?2;

MakeVPort( &v, &vp ); /* construct Copper instr (prelim) list */

MrgCop( &v ); /* merge prelim lists together into a real

* Copper list in the View structure. */
SetRast(&rp,0); /* simpler form of setting drawing area to 0 */
SetRast(&rp2,0);

oldview = GfxBase->ActiView; /* save current view to restore later */
/* example steals screen from Intuition if started from WBench */

LoadView(&v);

/* Now fill some boxes so that user can see something */
/* first playfield */
SetAPen(&rp,1);
RectFill(&rp,20,20,200,100);
SetAPen(&rp,2);
RectFill(&rp,40,40,220,120);
SetAPen(&rp,3);
RectFill(&rp,60,60,240,140);
/* second playfield */
SetAPen(&rp2,1);
RectFill(&rp2,50,90,245,180);
SetAPen(&rp2,2);
RectFill(&rp2,70,70,265,160);
SetAPen(&rp2,3);
RectFill(&rp2,90,10,285,148);

/* Now tear some holes in the playfield so user can see that foreground
* area of playfield 2 (called PFB also) is transparent in any area
* where it has a color value of 0

*/

SetAPen(&rp2,0);
RectFill(&rp2,110,15,130,175);
RectFill(&rp2,175,15,200,175);

Delay(300); /* uses AmigaDOS function... delay 5 seconds */
LoadView(oldview);  /* Put Intuition’s View back again */
WaitTOF(); /* wait for Intuition View to return */
FreeMemory(); /* and exit gracefully */

CloseLibrary(GfxBase);
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} /* end of main() */

FreeMemory()
{ /* return user and system-allocated memory to sys manager */

for(i=0; i<DEPTH; i++) /* free the drawing area */
{
FreeRaster(b.Planes[i|, WIDTH,HEIGHT);
FreeRaster(b2.Planes[i|, WIDTH,HEIGHT);
}
FreeColorMap(cm); /* free the color map */
/* free dynamically created structures */
FreeVPortCopLists(&vp);
FreeCprList(v.LOFCprList);
return(0);

HOLD-AND-MODIFY MODE EXAMPLE

This example demonstrates the Amiga’s hold-and-modify mode, showing at all times a different
subset of 256 of the 4,096 colors available on the Amiga. At any moment, no two squares are
the same color.

/**********************************************************************/
* Rob Peck  -- November 5, 1985

* Bob Pariseau -- November 10, 1985 (Rework for tutorial)
**********************************************************************/

#include <exec/types.h>
#include <intuition/intuition.h>
#include <intuition/intuitionbase.h>

#define XSIZE 11 /* Color box sizes */
#define YSIZE 6

struct GfxBase *GfxBase; /* Export the library pointers */
struct IntuitionBase *IntuitionBase;

struct RastPort *rp; /* Graphics structures */
struct ViewPort *Vp;

struct TextAttr TestFont =

{

”topaz.font”, /* Standard system font */
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b
struct  Window *w; /* Intuition structures */
struct Screen *screen;

struct IntuiMessage *message;

struct NewScreen ns = {
0, 0, /* start position */
320, 200, 6,  /* width, height, depth */
0,1, /* detail pen, block pen */
HAM, /* Hold and Modify ViewMode */
CUSTOMSCREEN, /* screen type */
&TestFont, /* font to use */

” 256 different out of 4096”,  /* default title for screen */
NULL /* pointer to additional gadgets */
b
struct NewWindow nw = {
0, 11, /* start position */
320, 186, /* width, height */
-1, -1, /* detail pen, block pen */

MOUSEBUTTONS|CLOSEWINDOW, /* IDCMP flags */
ACTIVATE|WINDOWCLOSE, /* window flags */

NULL, /* pointer to first user gadget */
NULL, /* pointer to user checkmark */
"colors at any given moment”, /* window title */
NULL, /* pointer to screen (set below) */
NULL, /* pointer to superbitmap */

0, 0, 320, 186, /* ignored since not sizeable */
CUSTOMSCREEN  /* type of screen desired */

};

LONG squarecolor[16 * 16|, freecolors(4096-(16%16));
SHORT squares[16 * 16];
SHORT xpos|16], ypos[16];

char *number[] = {
’70”’ ”1”’ ))2”, ”37” ”4”’ 775”] ”6”’ ”7”1 ”8”, ”97’,
”A”’ ”B”’ ”C”, 77D”’ ”E”’ 77F”

b

SHORT sStop, cStop, sequence;
BOOL textneeded;
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main()

{
ULONG class;
USHORT code, 1;
BOOL wheelmode;

for(i=0; 1<16; i++) /* establish color square positions */
{

xpos|i] = (XSIZE + 4) * i + 20;

ypos|i| = (YSIZE + 3) * i + 21;

}

GfxBase = (struct GfxBase *)OpenLibrary(”graphics.library”, 0);
if (GfxBase == NULL) exit(100);

IntuitionBase = (struct IntuitionBase *)OpenLibrary(”intuition.library”, 0);
if (IntuitionBase == NULL)
{
CloseLibrary(GfxBase);
exit(200);
}

screen = (struct Screen *)OpenScreen(&ns);
if (screen == NULL)
{

CloseLibrary(IntuitionBase);

CloseLibrary(GfxBase);
exit(300);
}
nw.Screen = screen; /* open window in our new screen */

w = (struct Window *)OpenWindow(&nw);
if (w == NULL)
{
CloseScreen(screen);
CloseLibrary(IntuitionBase);
CloseLibrary(GfxBase);
exit(400);

}

vp = &screen- > ViewPort; /* Set colors in screen’s VP x/
rp = w->RPort; /* Render into the window’s RP */

/* Set the color registers: Black, Red, Green, Blue, White */
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SetRGB4(vp, 0, 00, 00, 00);
SetRGB4(vp, 1, 15, 00, 00);
SetRGB4(vp, 2, 00, 15, 00);
SetRGB4(vp, 3, 00, 00, 15)
SetRGB4(vp, 4, 15, 15, 15)

)

’

SetBPen(rp, 0); /* Insure clean text */
textneeded = TRUE;

wheelmode = TRUE;  /* Start with Color Wheel display */

for (i) {
{ /* Process any and all messages in the queue, then update the display
* colors once, then come back here to look at the queue again. If you
* see a left-mouse-button-down event, then switch display modes. If you
* see a Close-Window-gadget event, then clean up and exit the program.
* NOTE: This is a BUSY LOOP so the colors will cycle as quickly as possible.
*
/

while((message = (struct IntuiMessage *)GetMsg(w->UserPort)) != NULL)

{

class = message- > Class;
code = message- >Code;
ReplyMsg(message); /* Can’t reply until done using it! */

if(class == CLOSEWINDOW) /* Exit the program */

CloseWindow(w);
CloseScreen(screen);
CloseLibrary(IntuitionBase);
CloseLibrary(GfxBase);
exit(0);

}

if(class == MOUSEBUTTONS && code == SELECTDOWN) /* swap modes */
{

wheelmode = NOT wheelmode;

SetAPen(rp, 0);  /* Clear the drawing area */
SetDrMd(rp, JAM1),
RectFill(rp, 3, 12, 318, 183);
textneeded = TRUE,;
}
}
if(wheelmode) colorWheel(); else colorFull();
}
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colorFull() /* Display a randomized set of colors */
{

SHORT sChoice, cChoice, usesquare;

LONG usecolor;

if(textneeded) /* First call since mode change? */
{
prompt();
sStop = 255;  /* Top of list of squares yet to change */
cStop = 4095 - 256; /* Top of list of colors still needing use */

for(usecolor=0; usecolor <256; usecolor++) /#* Initialize colors */

{

usesquare — usecolor;

squares|usesquare| = usesquare;

squarecolor[usesquare| = usecolor;

hamBox(usecolor, xpos|usesquare % 16], ypos|usesquare / 16));

}

for(usecolor=256; usecolor <4095; usecolor+-+) /* Ones not yet used */

{

freecolors[usecolor - 256] = usecolor;

}
}

/***************************************************************************
* Randomly choose next square to change such that all squares change color

* at least once before any square changes twice. squares[0] through squares

* [sStop] are the square numbers that have not yet changed in this pass.

* RangeRand(r) is an integer function provided in ”amiga.lib” that produces

* a random result in the range O to (r-1) given an integer r in the range 1 to 65535.
kbR ok kR kR R KRR R R KRR KR KRR R Rk R R Rk R R R Rk [

sChoice = RangeRand(sStop + 1); /* Pick a remaining square */
usesquare = squares[sChoice]; /* Extract square number */
squares|[sChoice] = squares[sStop]; /* Swap it with sStop slot */
squares[sStop| = usesquare;

if(NOT sStop--) sStop = 255; /* Only one change per pass */

/***************************************************************************
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* Randomly choose new color for selected square such that all colors are

* used once before any color is used again, and such that no two squares

* simultaneously have the same color. freecolors[0] through freecolors|cStop|

* are the colors that have not yet been chosen in this pass. Note that

* the 256 colors in use at the end of the previous pass are not available

* for choice in this pass.
***************************************************************************/

cChoice = RangeRand(cStop + 1);

usecolor = freecolors|cChoice];

freecolors[cChoice] = freecolors[cStop];
freecolors(cStop| = squarecolor|usesquare];
squarecolor|usesquare] = usecolor;

if(NOT cStop--) cStop = 4095 - 256;

hamBox(usecolor, xpos|usesquare % 16|, ypos|usesquare / 16]);

}

colorWheel() /* Display an ordered set of colors */

{
SHORT i, j;

if(textneeded)

{

prompt();

SetAPen(rp, 2); /* Green pen for green color numbers */
Move(rp, 260, ypos[15]+17);
Text(rp, ”Green”, 5);
for(i=0; i<16; i++)
{
Move(rp, xpos[i]+3, ypos[15]+17);
Text(rp, numberli], 1);

}

SetAPen(rp, 3); /* Blue pen for blue color numbers */
Move(rp, 4, 18);
Text(rp, ”Blue”, 4);
for(i=0; 1< 16; i++)
{
Move(rp, 7, ypos|i]+6);
Text(rp, number|i], 1);

}
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SetAPen(rp, 1); /* Red pen for red color numbers */
Move(rp, 271, 100);
Text(rp, "Red”, 3);

sequence = 0;

}

SetAPen(rp, 1);  /* Identify the red color in use */
SetDrMd(rp, JAM2);

Move(rp, 280, 115);

Text(rp, number[sequence], 1);

for(j=0; j<16; j++) /* Update all of the squares */
for(i=0; 1< 16; i++)
hamBox((sequence << <8 | i< <4 | j), xposli], ypos|j]);

if(+-+sequence == 16) sequence=0;

}

prompt() /* Display mode changing prompt */
{
SetDrMd(rp, JAM2);
SetAPen(rp, 4);
Move(rp, 23, 183);
Text(rp, ” [left mouse button = new mode|”, 30);
textneeded = FALSE;

}

/**********************************************************************
* hamBox() -- routine to draw a colored box in Hold and Modify mode. Draws a
*  box of size XSIZE by YSIZE with an upper left corner at (x,y). The

desired color is achieved in 3 steps on each horizontal line of the box.

First we set the red component, then the green, then the blue. We

achieve this by drawing a vertical line of Modify-Red, followed by a

vertical line of Modify-Green, followed by a rectangle of Modify-Blue.

Note that the resulting color for the first two vertical lines depends

upon the color(s) of the pixels immediately to the left of that

line. By the time we reach the rectangle we are assured of getting

(and maintaining) the desired color because we have set all 3

components (R, G, and B) straight from the bit map.
***********************************************************************/
hamBox(color, x, y)

LONG color, x, y;

{

T R I R
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SHORT c;
SetDrMd(rp, JAM1); /* Establish Drawing Mode in RastPort */

c=((color & 0xf00)> >>8);/* Extract desired Red color component. */
SetAPen(rp, ¢ + 0x20); /* Hold G, B from previous pixel. Set R=n. */
Move(rp, X, y);

Draw(rp, x, y+YSIZE);

X+

c=((color & 0x{0)> >4); /* Extract desired Green color component. */
SetAPen(rp, ¢ + 0x30); /* Hold R, B from previous pixel. Set G=n. */
Move(rp, x, ¥);

Draw(rp, x, y+YSIZE);

X+

c=(color & 0xf); /* Extract desired Blue color component.*/
SetAPen(rp, ¢ + 0x10); /* Hold R, G from previous pixel. Set B=n. */
RectFill(rp, x, y, x+XSIZE-2, y+YSIZE);
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Chapter 2

Layers

The layers library enables you to create displays containing overlapping display elements. This
chapter describes the layers library routines and how you use them in creating graphics.

Introduction

The layers library contains routines that do the following:
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o Multiplex a BitMap among various tasks by creating “layers” in the BitMap

o Create separate writable BitMap areas, some portions of which may be in the common
(perhaps on-screen) BitMap, and some portions in an obscured area. In two modes,
called smart-refresh and superbitmap, graphics are rendered into both the obscured and
the non-obscured areas.

o Move, size or depth-arrange the layers, bringing obscured segments into a non-obscured
area

Tasks can create layers in a common BitMap and then output graphics to those layers without
any knowledge that there are other tasks currently using this BitMap.

To see what the layers library provides, you need only look at the Intuition user interface, as
used by numerous applications on the Amiga. The windows that Intuition creates are based, in
part, on the underlying strata of the layers library. You can find more details about Intuition
in the book titled Intuition: The Amiga User Interface.

If you wish, you can use the layers library directly to create your own windowing system. The
layers library takes care of the difficult things, that is, the bookkeeping jobs that are needed to
keep track of where to put which bits. Once a layer is created, it may be moved, sized, depth-
arranged or deleted using the routines provided in this library. In performing their rendering

operations, the graphics routines know how to use the layers and only draw into the correct
drawing areas.

DEFINITION OF LAYERS

The internal definition of the layers resembles a set of clipping rectangles in that a drawing area
is split into a set of rectangles. A clipping rectangle is a rectangular area into which the graph-
ics routines will draw. Some of the rectangles are visible; some are invisible. If a rectangle is
visible, the graphics can draw directly into it. If a rectangle is obscured by an overlapping
layer, the graphics routine may possibly draw into some other memory area. This memory area
must be at least large enough to hold the obscured rectangle so the graphics routines can, on
command, expose the obscured area.

The layers library manages interactions between the various layers by using a data structure

called Layer_Info. Each major drawing area, called a BitMap (which all windows share),
requires one Layer_Info data structure.

You may choose to split the viewing area into multiple parts by providing multiple independent
ViewPorts. If you use the layers library to subdivide each of these parts into layers (effectively
providing windows within these subdivisions), you must provide one Layer_Info structure for
each of these parts.
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TYPES OF LAYERS SUPPORTED

The layers library supports four types of layers:

(¢]

Simple Refresh

No back-up area is provided. Instead, when an obscured section of the layer-is exposed
to view, the routine using this layer is told that a ‘“refresh” of that area is in order.
This means that the program using this layer must redraw those portions of its display
that are contained in the previously obscured section of the layer. All graphics render-
ing routines are “clipped” so that they will only draw into exposed sections of the layer.

Smart Refresh
The system provides one or more back-up areas into which the graphics routines can
draw whenever a part of this layer is obscured.

Superbitmap

There is a single back-up area, which is permanently provided to store what is not in
the layer. The back-up area may be larger than the area that is actually shown in the
on-screen BitMap.

Backdrop

A backdrop layer always appears behind all other layers that you create. The current
implementation of backdrop layers prevents them from being moved, sized, or depth-
arranged.

Layers Library Routines

The layers library contains the routines shown below:
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Purpose Routine

Allocating a Layer_Info NewLayerInfo()
structure

Deallocating a Layer_Info DisposeLayerInfo()

structure

Intertask operations

Creating and deleting layers

Moving layers

Sizing layers
Changing a viewpoint
Reordering layers

Determining layer position

Sub-layer rectangle operations

LockLayer(), UnLockLayer(),
LockLayers(), UnlockLayers(),
LockLayerInfo(), UnlockLayerInfo()
CreateUpfrontLayer(),
CreateBehindLayer(),

DeleteLayer()

MoveLayer()

SizeLayer()

ScrollLayer()

BehindLayer, UpfrontLayer()

WhichLayer()

SwapBitsRastPortClipRect()

INITIALIZING AND DEALLOCATING LAYERS

The function NewLayerInfo() allocates and initializes a Layer_Info data structure and allo-
cates some extra needed memory for the 1.1 release. After the call to NewLayerInfo(), you

can use the layer operations described in the following paragraphs.

The function DisposeLayerInfo() deallocates a Layer_Info structure that was allocated with

a call to NewLayerInfo() and frees the extra memory that was allocated.

Note: Prior to the current 1.1 release, Layer_Info structures were initialized with the
InitLayers() function. For backwards compatibility, you can still use this function with newer
software. For optimal performance, however, you should call FattenLayerInfo() to allocate
the needed extra memory and ThinLayerInfo() to return the memory to the system free-list.

Failure to deallocate memory will result in loss of that available memory.
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INTERTASK OPERATIONS

This section shows the use of the routines LockLayerInfo(), UnlockLayerInfo(),
LockLayer(), UnlockLayer(), LockLayers(), and UnlockLayers().

LockLayerInfo() and UnlockLayerInfo()

You create layers by using the routines CreateUpFrontLayer() and CreateBehindLayer().
If multiple tasks are all trying to create layers on the same screen or ViewPort, each task will
be trying to affect the same data structures while creating its layers. The Layer_Info data
structure controls the layers. LockLayerInfo() ensures that the Layer_Info data structure
remains intact and tasks can obtain this exclusive access.

LockLayerInfo() grants exclusive access to the locking task. If some other task has the
Layer_Info locked, the call will block until the lock succeeds.

LockLayer() and Unlocklayer()

If a task is making some changes to a particular layer, such as resizing it or moving it, the task
must inhibit the graphics rendering into the layer. LockLayer() blocks graphics output once
the current graphics function has completed. The other task goes to sleep only if it attempts to
draw graphics. LockLayer() returns exclusive access to the layer once other tasks, including
graphics, are finished with this layer.

UnlockLayer() frees the locked layer for other operations.

If more than one layer must be locked, then these LockLayer() calls must be surrounded by
LockLayerInfo() and UnLockLayerInfo(). This is to prevent deadlock situations.

LockLayers() and UnlockLayers()

Sometimes it is necessary to lock all layers at the same time. For example, under Intuition, a
rubber-band box is drawn when a window is being moved or sized. To draw such a box, Intui-
tion must stop all graphics rendering to all windows (and associated layers) so that it can draw
a line using the graphics complement drawing mode. If other graphics draw over this line, it
would not be possible for Intuition to erase it again, using a subsequent complement operation
over the same line. Thus LockLayers() is used to lock all layers in a single command.
UnlockLayers() releases the layers.
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You can simulate LockLayers() by calling LockLayer() for each layer in the LayerList.
However, in that case, you must call LockLayerInfo() before and UnlockLayerInfo() after
each LockLayer() call.

CREATING AND DELETING LAYERS

CreateUpFrontLayer() creates a layer that is in front of all other layers. Intuition uses this
function to create certain types of new windows, as well as other Intuition components.

CreateBehindLayer() creates a layer that is behind all other layers. Intuition uses this func-
tion to create a new “Backdrop” window.

Each of the routines that create layers return a pointer to a layer data structure (shown in the
include file graphics/layers.h).

Note: When you create a layer, the system automatically creates a RastPort to go along with
it. Because a RastPort is specified by the drawing routines, if you use this layer’s RastPort,
you will draw into only the area that you have designated on the screen for this layer. See also
the topic called “The Layer’s RastPort” below.

DeleteLayer() is used to remove a layer from the layer list. It is one of the functions used by
Intuition to close a window.

For these functions, you need to perform LockLayerInfo() and UnlockLayerInfo(), because
you need to access the Layer_Info structure itself.

MOVING LAYERS

MoveLayer() moves a layer to a new location. When you move a layer, the move command

affects the list of layers that is being managed by the Layer_Info data structure. The system
locks the Layer_Info for you during this operation.

SIZING LAYERS

The SizeLayer() command changes the size of a layer by leaving the coordinates of the upper
left corner the same and modifying the coordinates of the lower right corner of the layer. The
system locks the Layer_Info for you during this operation.
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CHANGING A VIEWPOINT

ScrollLayer() is for superbitmap layers only. This command changes the portion of a super-
bitmap that is shown by a layer. An analogy is a window in a wall. If the homeowner does not
like the view he sees from a particular window, he might either change what he sees by planting
trees (that is, new graphics rendering) or he might decide to move the window to see another
part of the great outdoors (changing the portion of the superbitmap shown by a layer). You
must provide a superbitmap; the ScrollLayer() command repositions the smaller layer against
the larger superbitmap, thus showing a different part of it.

Because the layer size and on-screen position do not change while this operation is taking place,
it is not necessary to lock the Layer_Info data structure. However, it is necessary to prevent
graphics-rendering operations from drawing into this layer or its associated superbitmap while
ScrollLayer() is performing the repositioning. Thus, the system locks the layer for you while
this operation is taking place.

REORDERING LAYERS

BehindLayer() and UpfrontLayer() are used, respectively, to move a layer behind all other
layers or in front of all other layers. BehindLayer() also considers any backdrop layers, mov-
ing a current layer behind all others except backdrop layers. The system performs
LockLayers() for you during this operation.

DETERMINING LAYER POSITION

If the viewing area has been separated into several layers, you may wish to find out which layer
is topmost at a particular x,y coordinate. For example, Intuition does this while keeping track
of the mouse position. When you move the mouse into one of the windows and click the left
button, Intuition feeds the current x;y coordinate to WhichLayer(). In return,

WhichLayer() tells Intuition which layer has been selected, and thus it knows with which win-
dow you wish to work.

If you wish to be sure that no task changes the sequence of layers (by using UpfrontLayer(),
BehindLayer(), CreateUpFrontLayer(), DeleteLayer(), MoveLayer() or SizeLayer())
before your task can use this information, call LockLayerInfo() before calling WhichLayer().
Then, after receiving and using the information that WhichLayer() delivers, you can call
UnlockLayerInfo(). In this way, you will assure that you are acting on data that was true as
of the moment it was received.

Layers 83



SUB-LAYER RECTANGLE OPERATIONS

The SwapBitsClipRectRastPort() routine is for users who do not want to worry about clip-
ping rectangles. The need for this routine goes a bit deeper than that. It is a routine that actu-
ally enables the menu operations of Intuition to function much more quickly than they would if
this routine were not provided.

Consider the case where there are several windows open on an Intuition screen. If you wish to
produce a menu, there are two ways to do it:

o Create an up-front layer with CreateUpfrontLayer(), then render the menu in it.
This could use lots of memory and require a lot of (very temporary) ‘“slice-and-dice”
operations to create all of the clipping rectangles for the existing windows and so on.

o Use SwapBitsClipRectRastPort(), directly on the screen drawing area:

o Render the menu in a back-up area off the screen, then lock all of the on-screen

layers so that no task can use graphics routines to draw over your menu area on
the screen.

o Next, swap the on-screen bits with the off-screen bits, making the menu appear.
o When you finish with the menu, swap again and unlock the layers.

The second rendering method is faster and leaves the clipping rectangles and most of the rest of
the window data structures untouched.

Notice that all of the layers must be locked while the menu is visible. Any task that is using
any of the layers for graphics output will be halted while the menu operations are taking place.

If, on the other hand, the menu is rendered as a layer, no task need be halted while the menu is
up because the lower layers need not be locked. It is a tradeoff decision that you must make.

The Layer’s RastPort

When you create a layer, you automatically get a RastPort. The pointer to the RastPort is
contained in the layer data structure and can be retrieved typically by the statement:

rp = layer->rp; /* copy the pointer from the layer structure
* into a local pointer for further use */
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Using this RastPort, you can draw anywhere into the layer’s defined rectangle. Location (0,0)
is the coordinate location for the upper left corner of the rectangle, and location (xmax, ymax)
1s the lower right corner. If you try to draw to any location outside of this coordinate system,
the graphics routines will clip the drawing to the inside boundaries of this area.

The type of layer you specify by the Flags variable determines the other facilities the layer pro-
vides. The following paragraphs describe the types of layers —simple refresh, smart refresh,
superbitmap, and backdrop—and the flags you set for the type you want. Note that the three

layer-type Flags are mutually exclusive. That is, you cannot specify more than one layer-type
flag— LAYERSIMPLE, LAYERSMART, LAYERSUPER.

SIMPLE REFRESH LAYER

When you draw into the layer, any portion of the layer that is visible (not obscured) will have
its drawing rendered into the common BitMap of the viewing area.

If another layer operation is performed that causes part of a simple refresh layer to be obscured
and then exposed, you must restore the part of the drawing that your application rendered into
the obscured area.

Simple refresh has two basic advantages:

o It uses no back-up area to save drawing sections that cannot be seen anyway (and
therefore saves memory).

o When an application tries to restore the layer by performing a full-layer redraw,
(sandwiched between a BeginUpdate(), EndUpdate() pair), only those damaged

areas are redrawn, making the operation very time efficient.

Its disadvantage is that the application needs to watch to see if its layer needs refreshing. This
test can be performed, typically, by a statement set such as the following:

refreshstatus = layer- >Flags & LAYERREFRESH;
if (refreshstatus != 0) refresh(layer);

Note:  Applications using Intuition typically get their refresh notifications as event messages
passed through an Intuition Direct Communications Message Port (IDCMP).
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SMART REFRESH LAYER

If any portion of the layer is hidden by another layer, the bits for that obscured portion are ren-
dered into a back-up area. With smart refresh layers, the system handles all of the refresh

requirements except when the layer is made larger. Its disadvantage is the additional memory
needed to handle this automatic refresh.

SUPERBITMAP LAYER

A superbitmap layer is similar to a smart refresh layer. It too has a back-up area into which

drawings are rendered for currently obscured parts of the display. However, it differs from
smart refresh in that:

o The back-up BitMap is user-supplied, rather than being allocated dynamically by the
system.

o The back-up BitMap may be larger than the area of this BitMap that is currently
showing within the current size of this layer.

To see a larger portion of a superbitmap in the on-screen layer, you use SizeLayer(). To see a
different portion of the superbitmap in the layer, you use ScrollLayer().

When the graphics routines perform your drawing commands, part of the drawing appears in
the common BitMap (the on-screen portion). Any drawing outside the layer itself is rendered
into the superbitmap. When it is time to scroll or size the layer, the layer contents are copied

into the superbitmap, the scroll or size positioning is modified, and the appropriate portions are
then copied back into the layer.

BACKDROP LAYER

Any layer can be designated a backdrop layer. You can turn off the backdrop flag temporarily

and allow a layer to be depth-arranged. Then by restoring the backdrop flag, you can again
inhibit depth-arrangement operations.

You change the backdrop flag typically by the statements:

layer- >Flags &= LAYERBACKDROP; /* turn off the backdrop bit */
layer->Flags |= LAYERBACKDROP; /* turn on the backdrop bit */
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Using the Layers Library

The following is a step-by-step example showing how the layers library can be used in your pro-
grams. Note that the Intuition software, which is part of the system as well, manages many of

these items for you. The example below can be started up under Intuition, but it requires that
the Amiga be reset in order to exit the program.

The example program explains the individual parts separately, then merges the parts into a sin-
gle working example. This simple example produces three rectangles on the screen: one red,

one green, and one blue. Each rectangle is rendered as a rectangle-fill of one of three smart
layers created for the example.

OPENING THE LAYERS LIBRARY

Like all library routines, the layers library must be opened before it can be used. This is done
typically by the following code:

struct LayersBase *LayersBase;

LayersBase = (struct LayersBase *)OpenLibrary(”layers.library”,0);
if(LayersBase == NULL)

{
}

exit(NO_LAYERS_LIBRARY_FOUND);

OPENING THE GRAPHICS LIBRARY

Because the example uses various graphics library functions as well as the layers library, you
must also open the graphics library with the following code:

struct GfxBase * GfxBase;

GfxBase = (struct GfxBase *)OpenLibrary(”graphics.library”,0);
if(GfxBase === NULL)

{

}

exit(NO_GRAPHICS_LIBRARY_FOUND);
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CREATING A VIEWING WORKSPACE

You can create a viewing workspace by using the primitives InitVPort(), InitView(),
MakeVPort(), MrgCop(), and LoadView(). See the “Graphics Example” section in chapter
1, “Graphics Primitives.” You add the following statements:

struct Layer_Info *li;
li==NewLayerInfo();

This provides and initializes a Layer_Info data structure with which the system can keep track
of layers that you create.

CREATING THE LAYERS

You can create layers in this common bit map by calling CreateUpfrontLayer() (or
CreateBehindLayer() ), with a sequence such as the following. The Flags value in this exam-
ple is LAYERSMART (see graphics/clip.h in the “Include Files” appendix for all other flag
values). This sequence requests construction of a smart refresh layer.

#define FLAGS LAYERSMART

struct BitMap b;

struct Layer_Info i;

struct RastPort *rp[3]; /* allocate a RastPort pointer for each layer */
struct Layer *layer[3]; /* allocate a layer pointer for each layer */

/* Layer_Info, common BitMap, x1,y1,x2,y2,
* flags = O (smart refresh), null pointer to superbitmap */

layer[0] = CreateUpfrontLayer(&li,&b,20,20,100,80,FLAGS,NULL);

layer[1] = CreateUpfrontLayer(&li,&b,30,30,110,90, FLAGS,NULL);
layer[2] = CreateUpfrontLayer(&li,&b,40,40,120,100,FLAGS,NULL);

/* if not enough memory, can’t continue the example */
if(layer[0]==NULL || layer[1]==NULL || layer[2]==NULL) exit(3);
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GETTING THE POINTERS TO THE RASTPORTS

Each layer pointer data structure contains a pointer to the RastPort that it uses. Here is the
assignment from the layer structure to a set of local pointers:

for(i=0; i<3; i++)

{
}

rp[i] = layer[i]- >rp;

USING THE RASTPORTS FOR DISPLAY

Here are the rectangle-fill operations that create the display:

for(i=0; i<3; i++)

SetAPen(rpli],i+1);
SetDrMd(rp[i],JAM1);
RectFill(rp[i},0,0,80,50);

}

If you perform an UpfrontLayer() or BehindLayer() command prior to the Delay() shown
in the complete example below, all of the data contained in each layer is retained and correctly
rendered automatically by the layers library. This is because these are all smart-refresh layers.
If you change the example to use a Flags value of LAYERSIMPLE, and then perform
UpfrontLayer() or BehindLayer(), the obscured portions of the layers, now exposed, contain
only the background color. This illustrates that simple-refresh layers may have to be redrawn
after layer operations are performed.

LAYERS EXAMPLE

Here is the complete example, which is a compilation of the complete example in chapter 1 and
the pieces given above. Sections of the example that differ from those shown in the chapter 1

example are indicated through comments to show the additions adding the layers library
demonstration.
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/******************************************************************************
* This example shows how to use the layers.library. Certain functions are not
* available in the system software prior to the release of version 1.1. Therefore,

* this example can be compiled only if your C-disk supports version 1.1 or beyond.
2k 2k 3 3k ok ok 3k ok 3k k ke 3k 3k sk sk sk ok ok Sk sk ok ok ok ok ok ok ok ok ok sk ok ok Sk sk 2k sk 3k ok 3k sk 3k ok ok ok ke 3k ok 3k sk 3k ok ok K 3k 3k 3k ok ok ok ok ok ok 3k 3k ok ok sk ok ok ok ok ok ok ok sk ok %k k */

#include ”exec/types.h”

#include ”graphics/gfx.h”

#include ”hardware/dmabits.h”

#include ”hardware/custom.h”

#include "hardware/blit.h”

#include ”graphics/gfxmacros.h”

#include ”graphics/copper.h”

#include ”graphics/view.h”

#include ”graphics/gels.h”

#include ”graphics/regions.h”

#include ”graphics/clip.h”

#include ”exec/exec.h”

#include ”graphics/text.h”

#include ”graphics/gfxbase.h”

/* wxkkkkkkkkkk added for layers Support xxkskkskskkikkkkkkkkkkrkk x /
#include ”graphics/layers.h”

#include ”graphics/clip.h”

/* wkkkkkkkkkkk added for layers SuppOrt #kskskscksokskokskkkkkokokkkkkk */

#define DEPTH 2

#define WIDTH 320

#define HEIGHT 200

#define NOT_ENOUGH_MEMORY -1000

/* construct a simple display */

#define FLAGS LAYERSMART

/* dynamically created RastPorts from the calls to CreateUpfrontLayer */
struct RastPort *rp[3]; /* RastPort for each layer */

struct ColorMap *GetColorMap();
struct GfxBase *GfxBase;

SHORT boxoffsets|] = { 802, 2010, 3218 };

/* black, red, green, blue */
USHORT colortable[] = { 0x000, 0xf00, 0x0f0, 0x00f };
long LayersBase;
extern struct Layer *CreateUpfrontLayer();
extern struct Layer_Info *NewLayerInfo();
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main()

{

struct View *oldview; /* save pointer to old View so can go back to sys */
struct View v;

struct ViewPort vp;

struct ColorMap *cm; /* pointer to ColorMap structure, dynamic alloc */
struct RasInfo ri;

struct BitMap b;

short 1,j,k,n;

struct Layer_Info *li;

struct Layer *layer|[3];

GfxBase = (struct GfxBase *)OpenLibrary(”graphics.library”,0);
if (GfxBase == NULL) exit(1);

LayersBase = OpenLibrary(”layers.library”,0);
if(LayersBase === NULL) exit(2);

oldview = GfxBase- >ActiView; /* save current View, go back later */
/* example steals screen from Intuition */

li = NewLayerInfo(); /* get a Layer_Info structure */
if(li == NULL) exit(100);

/* not needed if gotten by NewLayerInfo InitLayers(li);
FattenLayerInfo(li); */

InitView(&v); /* initialize View */
v.ViewPort = &vp; /* link View into ViewPort */
InitVPort(&vp); /* init ViewPort */

/* now specify critical characteristics */
vp.DWidth = WIDTH,;
vp.DHeight = HEIGHT;
vp.RasInfo = &ri;
/* init BitMap (for RasInfo and RastPort) */
InitBitMap(&b,DEPTH,WIDTH, HEIGHT);
ri.BitMap = &b; /* (init Raslnfo) */
ri.RxOffset = 0; /* align upper left corners of display
* with upper left corner of drawing area */
ri.RyOffset = 0;
ri.Next = NULL;
/* (init color table) */
vp.ColorMap = GetColorMap(4); /* four entries, since only two planes deep */
colorpalette = (UBYTE #*)cm->ColorTable;
/* copy my colors into this data structure */
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LoadRGB4(vp,colortable,4);

/* allocate space for BitMap */
for(i=0; i<DEPTH; i++)

{
b.Planes[i| = (PLANEPTR)AllocRaster( WIDTH,HEIGHT);
if(b.Planes|i] == NULL) exit(NOT_ENOUGH_MEMORY);
BltClear(b.Planesli|, RASSIZE(width, height),0);
}
MakeVPort( &v, &vp ); /* construct Copper instr (prelim) list */
MrgCop( &v ); /* merge prelim lists together into a real
* Copper list in the View structure. */
LoadView(&v);

/* now fill some boxes so that user can see something */

/* Layer_Info, common BitMap, x,y,x2,y2,

* flags = O (simple refresh), null pointer to superbitmap */
layer[0] = CreateUpfrontLayer(li,&b,5,5,85,65,FLAGS,NULL);
if(layer[0] == NULL) goto cleanupl;

layer[l] = CreateUpfrontLayer(li,&b,20,20,100,80,FLAGS,NULL);
if(layer[1] == NULL) goto cleanup2;

layer(2] = CreateUpfrontLayer(li,&b,45,45,125,105,FLAGS,NULL);
if(layer[2] == NULL) goto cleanup3;

for(i=0; i<3; i++)  /* layers are created, now draw to them */
{
rp[i] = layer[i]- >rp;
SetAPen(rp[i],i+1);
SetDrMd(rpli},JAM1);
RectFill(rpli],0,0,79,59);
}
SetAPen(rp[0],0);
Move(rp[0],5,30);
Text(rp[0],”Layer 0”,7);

SetAPen(rp[1],0);
Move(rp[1],5,30);
Text(rp[l],” Layer 1”,7);

SetAPen(rp(2],0);
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Move(rp[2],5,30);
Text(rp[2],”Layer 2”,7);

Delay(100); /* two seconds before first change */
BehindLayer(li,layer|2]);

Delay(100); /* another change two seconds later */
UpfrontLayer(li,layer[0});

for(i=0; 1<30; i++)
{
MoveLayer(li,layer[1],1,3);
Delay(10); /* wait .2 seconds (uses DOS function) */

}

cleanup3:
LoadView(oldview); /* put back the old View */
DeleteLayer(li,layer[2]);
cleanup?2:
DeleteLayer(li,layer(1]);
cleanupl:
DeleteLayer(li,layer[0]);

DisposeLayerInfo(li);

/* return user and system-allocated memory to sys manager */
for(i=0; i<DEPTH; i++) /* free the drawing area */
FreeRaster(b.Planes[i|, WIDTH, HEIGHT);
FreeColorMap(cm); /* free the color map */
/* free dynamically created structures */

FreeVPortCopLists(&vp);
FreeCprList(v.LOFCprList);
return(0);
CloseLibrary(GfxBase);

/* end of main() */
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Clipping Rectangle List

When you perform the various graphics drawing routines, you will notice that the routines draw
into Intuition windows, even though the windows might be partially or totally obscured on the
screen. This is because the layer library functions split the drawing area to provide lists of
drawing areas that the graphics drawing can use for its operations.

In particular, the layer library functions split the windows into rectangles. You need only con-
cern yourself with a single overall RastPort that contains the description of the complete area
that you are managing. When either you or Intuition use the layer library, the graphics rou-
tines will be able to tell how the drawing area is split and where rendering can occur.

The set of rectangles comprising the layer is known as a clipping rectangle list (ClipRect struc-
ture). A clipping rectangle is a rectangular area into which the graphics routines will draw. All
drawing that would fall outside of that rectangular area is clipped (not rendered).

DAMAGE LIST

For a smart-refresh window, the system automatically generates off-screen buffer spaces, essen-
tially linked into the clipping rectangle list. Thus, parts of the display that are on the screen
are rendered into the on-screen drawing area, and parts of the display that are obscured are
drawn into a back-up area. When segments are exposed, the back-up area information is
brought to view automatically during the routines UpfrontLayer() and BehindLayer(), as
well as during MoveLayer().

For a simple-refresh window however, any section of a drawing area that is not covered in the
clipping rectangle list is not drawn into by the graphics routines. When obscured areas are
exposed, they will not contain any graphics rendering at all. As the system creates and moves
layers in front of such simple-refresh windows, the layers library keeps track of the rectangular
segments that have not been drawn and are therefore not part of any automatically saved
back-up areas. This list of non-drawn areas is called a DamageList.

REPAIRING THE DAMAGE

When you receive a REFRESH event from Intuition for a simple refresh window, you are being
told that Intuition, through the layers library, has done something to change the portions of
your window that are exposed to view. In other words, there is likely to be a blank space where
there is supposed to be some graphics.
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To update only those areas that need updating, you call BeginUpdate(). BeginUpdate()
saves the pointer to the current clipping rectangles. It also installs in the layer structure a
pointer to the set of ClipRects generated from the DamageList. In other words, the graphics
rendering routines see only those rectangular spaces that need to be updated and refuse to draw
into any other spaces within this layer. If, for example, there are only one or two tiny rectan-
gles that need to be fixed, the graphics routines can ignore all but these spaces and repair them
very quickly and efficiently. To repair the layer, you ask the graphics routines to redraw the

whole layer, but the routines use the new clipping rectangle list (that is, the damage list) to
speed the process.

To complete the update process call EndUpdate(), to restore the original ClipRect list.

Regions

Regions are rectangles that, when combined, can become part of a DamageList. The library

graphics.library contains several support routines for regions. Among these are routines for the
following operations:

Operation Routine

Creating and deleting regions NewRegion(), DisposeRegion()

Changing a region AndRectRegion(), OrRectRegion,
XorRectRegion()
Clearing a region ClearRegion()

Basically, the region commands let you construct a custom DamageList, which you can use
with your graphics rendering routines. With this list, you can selectively update a custom-sized,

custom-shaped part of your display area without disturbing any of the other layers that might
be present.

CREATING AND DELETING REGIONS

NewRegion() allocates and initializes a new data structure that may be thought of as a blank
painter’s easel.

If this new region is to be used as the basis for a DamageList, and you asked the graphics rou-
tines to draw something through this DamageList, nothing would be drawn as there is nothing
in the region. The region that you produce can be thought of as patches of canvas. A new
region has no canvas.
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Because a region is dynamically created by using NewRegion(), the procedure
DisposeRegion() is provided to return the memory to the system when you have finished with

it. Note that not only the region structure is deallocated; so are any rectangles that have been
linked into it.

CHANGING A REGION

OrRectRegion() modifies a region structure by or’ing a clipping rectangle into the region.
This has an effect similar to adding a rectangle of canvas to the easel. If you now exercise the
drawing routines, the rendering will occur in the areas where the region has been or’ed (canvas
rectangle has been added) and will be inhibited elsewhere.

AndRectRegion() modifies a region structure by and’ing a clipping rectangle into the region.
This has an effect similar to using the rectangle as an outline for a position on the easel. Any
area of canvas that falls outside this outline is clipped and discarded.

XorRectRegion() applies the rectangle to the region in an exclusive-or mode. That is, wher-
ever there is no canvas, canvas is applied to the easel. Wherever there is canvas present within

the rectangle, a hole is created. Thus it is a combination of OrRectRegion() and
AndRectRegion() in a single application.

CLEARING A REGION

While you are performing various types of selective drawing area updates, you may wish to do
some of your graphics rendering with one form of region, and some with a different form of
region. You can perform ClearRegion() to go from one form back to a fresh, empty region.

Then you can begin again to compose yet another modified region for the next drawing func-
tion.

USING REGIONS

The region routines typically are used in a sequence like the following:
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struct Region *r;
struct Rectangle *rectl, *rect2, rect3;

r = NewRegion();

OrRectRegion(rectl, r); /* add a rectangle */
AndRectRegion(rect3, r); /* patch a rectangle */
XorRectRegion(rect2, r); /* weird patch */

/* in this section of code:
* 1. Save current pointer to DamageList for the layer you wish to affect.

* 2. Equate the region address (r) to the DamageList pointer in the
*  layer structure.

* 3. Perform whatever drawing functions you wish into this layer.
* 4, Restore the original DamageList pointer.

*/

DisposeRegion(r);

The drawing will only occur in those areas of the drawing area that you have specified should

be updated. Graphics rendering is often made faster this way, because not all of the area need
be updated.

A typical sequence using ClearRegion() might be:

struct Region *r;
struct Rectangle *rectl, *rect2, rect3;
struct Layer_Info *li;

r = NewRegion();
OrRectRegion(rectl, r);
OrRectRegion(rect2, r);

(swap in as a damage list)
BeginUpdate(li);

(draw, draw, draw something)
EndUpdate(li);

(restore original damage list)

ClearRegion(r);
AndRectRegion(rect3, r);

(swap, draw, restore)

DisposeRegion(r);
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SAMPLE APPLICATION FOR REGIONS

For example, assume that you are producing a display that requires a view through a fence.
You can create this “slats” effect by using regions, as follows:

1. Create a new region.

2. Create several rectangles representing the open areas of the slats in the fence.
3. Or these into the region.

4. Save the DamageList pointer in the affected layer so it can be restored later.
5. Copy the region address into DamageList pointer.

6. Draw the scene into the entire layer using the graphics.

7. Restore the original DamageList pointer.

8. Dispose of the region.

Here is a sample application. It is based on the sample layers library program shown above.
For brevity, the comments have been stripped out except where new material, pertinent to
regions, has been inserted.

/* SIMPLE REGIONS EXAMPLE.... DRAW BEHIND A FENCE */
/* Certain layers.library routines are used herein that are not
* available until Amiga C compiler version 1.1 and beyond. */

#include <exec/types.h>
#include <graphics/gfx.h>
#include <hardware/dmabits.h>
#include <hardware/custom.h>
#include <graphics/gfxmacros.h >
#include <graphics/regions.h>
#include <graphics/clip.h>
#include <graphics/text.h>
#include <hardware/blit.h>
#include <graphics/gfxbase.h>
#include <graphics/copper.h>
#include <graphics/gels.h>
#include <graphics/rastport.h>
#include <graphics/view.h>
#include <exec/exec.h>
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#include <graphics/layers.h>

#define FLAGS LAYERSIMPLE
extern struct Layer *CreateUpfrontLayer();

struct GfxBase *GfxBase;

long LayersBase;

#define DEPTH 2

#define WIDTH 320

#define HEIGHT 200

#define NOT_ENOUGH_MEMORY -1000

struct ColorMap *GetColorMap();

USHORT colortable[] = { 0x000, 0xf00, 0x0f0, Ox00f };
/* black, red, green, blue */

extern struct Layer_Info *NewLayerInfo();

main()

{
struct View *oldview;
struct View v,
struct ViewPort vp;
struct ColorMap *cm;
struct Raslnfo ri;
struct BitMap b;
struct RastPort *rp; /* one RastPort for one layer */
short 1,j,k,n;
UBYTE =*displaymem,;
UWORD #colorpalette;

struct Layer_Info *li;
struct Layer *layer; /* one layer pointer */

extern struct Region *NewRegion();

struct Region *rgn; /* one region pointer */

struct Rectangle rect[14]; /* some rectangle structures */
struct Region *oldDamageList;

SHORT x,y;

GfxBase = (struct GfxBase *)OpenLibrary(”graphics.library”,0);
if (GfxBase == NULL) exit(1);
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LayersBase = OpenLibrary(”layers.library”,0);
if(LayersBase == NULL) exit(2);

oldview = GfxBase- > ActiView;

li = NewLayerInfo(); /* v1.1 code only */
InitView(&v);

v.ViewPort = &vp;

InitVPort(&vp);

vp.DWidth = WIDTH;

vp.DHeight = HEIGHT;

vp.RasInfo = &ri;
InitBitMap(&b,DEPTH,WIDTH,HEIGHT);
ri.BitMap = &b;

ri. RxOffset = 0;

ri. RyOffset = 0;

ri.Next = NULL;

cm = GetColorMap(4);

colorpalette = (UWORD *)cm->ColorTable;
for(i=0; i<4; i++)

{
}

vp.ColorMap = cm;
for(i=0; i<DEPTH; i++)

*colorpalette++ = colortableli];

b.Planes[i] = (PLANEPTR)AllocRaster( WIDTH HEIGHT);
if(b.Planes[i] == NULL) exit(NOT_ENOUGH_MEMORY);
BltClear(b.Planes|i], RASSIZE(WIDTH HEIGHT,0);

}

MakeVPort( &v, &vp );
MrgCop( &v );

LoadView(&v);

layer = CreateUpfrontLayer(li,&b,0,0,200,140, FLAGS NULL);
if(layer==NULL) exit(3);

rp = layer->rp;

SetAPen(rp,3);
RectFill(rp,0,0,199,139); /* show the layer itself */

j=10; /* initialize the rectangles */
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for(i==0; i< 10; i++)

{
rect[i]. MinX = j;
rect[i].MaxX = j + 8§;
rect[i].MinY = 20;
rect[i].MaxY = 120;
j += 16;
}
rgn = NewRegion(); /* get a new region to use */

if(rgn == NULL) exit(4);

for(i=0; i<14; i++)
OrRectRegion(rgn,&rect|i));

oldDamageList = layer->DamageList;
layer- >DamageList = rgn,;

BeginUpdate(layer);

/* here insert the drawing routines to draw something behind the slats */

x =4; y = 10;
SetAPen(rp,0);
SetDrMd(rp,JAM1);
RectFill(rp,0,0,199,139);
SetAPen(rp,1);
SetBPen(rp,0);
SetDrMd(rp,JAM2);
for(i=0; i< 14; i++)
{
Move(rp, x, ¥);
Text(rp,”Behind A Fence”,14);
x+=4;, y+=9;
}
EndUpdate(layer);
layer->DamageList = oldDamageList;
DisposeRegion(rgn);

Delay(300);

DeleteLayer(li, layer);
DisposeLayerInfo(li);

LoadView(oldview);
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/* return user and system-allocated memory to sys manager */
for(i=0; i<DEPTH; i++)/* free the drawing area */
FreeRaster(b.Planes|i|, WIDTH,HEIGHT);
FreeColorMap(cm); /* free the color map */

/* free dynamically created structures */
FreeVPortCopLists(&vp);

FreeCprList(v.LOFCprList);
return(0);
CloseLibrary(GfxBase);

}  /* end of main() */
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Chapter 3

Animation

Introduction

The graphics animation routines let you define images by specifying various characteristics of
graphic objects, such as the following:
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o Height

o Width
o Colors
o Shape

o Position in the drawing area

o How to draw the object

o How to move the object

o How the object interacts with other elements
The objects you define are called GELS (for “graphic elements”). You can draw GELS into or
onto a background display of some type. The graphics animation routines operate on a list of

GELS to produce a list of instructions that cause the system to draw the GELS in the manner
you have specified.

PREPARING TO USE GRAPHICS ANIMATION

Because the animation routines have been designed to interact with a background display, you
must first make sure that such a display is already defined.

To define a display with which the GELS can interact, you define View, ViewPort, and
RastPort structures. For details on the construction of these structures, see chapter 1,
“Graphics Primitives,” and chapter 2, “Layers.”

The graphics animation routines described in this chapter create additional material that is
linked into the View structure. This material consists of additional instructions for color

changes and dynamic reassignment of the hardware resources that create the display animation
effects you specify. '

TYPES OF ANIMATION

Using the Amiga system tools, you can perform two different kinds of image animation: sprite
animation and playfield animation.
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Sprite Animation

Sprites are hardware objects that you create and move independently of the playfield display.
Sprites are always 16 low-resolution pixels wide and are as high as you specify. To move
sprites, you must define where they are on the screen. The built-in priority circuitry determines
how the sprite appears on the screen relative to the playfield elements or to other sprites.

You can manipulate sprites directly through a simple sprite set of routines or by using the
graphics kernel VSprite routines.

Playfield Animation

Sprites are normally moved against a background. This background area is called the playfield.
You may treat the playfield area as a single background or separate it into two separately con-
trollable sections, using dual-playfield mode. See chapter 1, “Graphics Primitives,” for details
on how to create and control playfields.

In playfield animation, sections of the playfield are modified. You draw, erase, and redraw
objects into the playfield, creating an animation effect. To move the data quickly and
efficiently, the system uses one of the specialized built-in hardware devices, the blitter. The sys-
tem uses the blitter to move the playfield objects, while it saves and restores the background.
The objects controlled by the blitter are called Bobs, for “blitter objects.”

Playfield animation is somewhat more complicated than VSprite animation from the point of
view of system design, but not much more complicated for you as the user of the animation rou-
tines. The hardware displays the VSprites over the playfield automatically, and the priority
overlay circuitry assures that they will be displayed in the correct order. If you are animating
multiple Bobs, you control their video priority by defining the sequence in which the system
draws them. The last one drawn has the highest video priority in the sense that it appears to
be in front of all other Bobs.

A Bob is physically a part of the playfield. When the system displays a Bob, it must first
save a copy of the playfield area into which the Bob will be drawn. Then the system can
restore the playfield to its original condition when moving the Bob to a new location. Once the
playfield areas have been saved, the system can draw the Bob. To move the Bob, the system
must first restore the playfield area (thus erasing the object) before it saves the playfield at the
new location and draws the Bob there.

Bobs offer more flexibility and many more features than VSprites. Bob animation is less res-
trictive but slower than VSprite animation. VSprites are superior to Bobs in speed of
display, because VSprites are mostly hardware-driven and Bobs are part hardware and part
software. Bobs, on the other hand, are superior to VSprites in that they offer almost all of
the benefits of VSprites but suffer none of the limitations, such as size or number of colors.
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Both are very powerful and useful. The requirements of your particular application determine
the type of GEL to use.

THE GELS SYSTEM

The acronym GEL describes all of the graphic elements, or “objects,”” supplied by the Amiga
ROM kernel. Both VSprites and Bobs are GELS, as are the more advanced animation ele-
ments known as AnimComps and AnimObs.

Initializing the GEL System

To initialize the graphics element animation system, you provide the system with the addresses
of two data structures. The system uses these data structures to keep track of the GELS that

you will later define. To perform this initialization, you call the system routine InitGels(),
which takes the form:

InitGels( head, tail, Ginfo );
where

head
is a pointer to the VSprite structure to be used as the GEL list head

tail
is a pointer to the VSprite structure to be used as the GEL list tail

Ginfo
is a pointer to the GelsInfo structure to be initialized

The graphics animation system uses two ‘“‘dummy’ VSprites as place holders in the list of
GELS that you will construct. The dummy VSprites are used as the head and tail elements in
the system list of GELS. You add graphics elements to or delete them from this list.

The call to InitGels() forms a linked list of GELS that is empty except for these two dummy
elements. When the system initializes the list with the dummy VSprite, it automatically gives
the VSprite at the head the maximum possible negative y and x positions and the VSprite at
the tail the maximum possible positive y and x positions. This assures that the two dummy ele-
ments are always the outermost elements of the list.

The y,x values are coordinates that relate to the physical position of the GEL within the draw-

ing area. The system uses the y,x values as the basis for the placement (and later sorting) of
the GELS in the list.
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When you add a GEL to the list of graphics elements, the system links that GEL into the list
shown above. Then the system adds any new element to the list immediately ahead of the first
GEL whose y,x value is greater than or equal to that of the new GEL being added.

Types of GELS

Figure 3-1 shows how you can view the components of GELS as inter-related layers of graphics
elements.

AnimOb
AnimComp AnimComp AnimComp AnimComp
Bob Bob Bob Bob
VSprite VSprite VSprite VSprite

Figure 3-1: Shells of Gels
The types of GELS are listed below:
o Simple (hardware) sprites
o VSprites
o Bobs
o AnimComps

o AnimObs

VSprites and Bobs are the primary software-controlled animation objects. They are part of
an integrated animation system. The simple sprites, on the other hand, are separate from the

animation system. It is up to you to decide which type of sprite to use. The next sections
describe all of these animation components.
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Simple (Hardware) Sprites

The simple sprite is a special graphics element, related to the graphics animation system only in
that it vies with the VSprites for the use of the same underlying hardware elements, the real
hardware sprites.

The Amiga hardware has the ability to handle up to eight sprite objects. Each sprite is pro-
duced by one of the eight hardware sprite DMA channels. Each sprite is 16-bits wide and arbi-
trarily tall. The Amiga software provides a choice about how you can use these hardware ele-
ments. You can either allocate one or more hardware sprites for your exclusive use, or you can
allow all sprites to be managed by the system software and assigned as virtual sprites by the
system. Using virtual sprites, it can appear as though you have an unlimited set of sprites with
which to work. If you need only a few sprites, however, you may wish to use the less complex
routines shown in the section called “Using Simple Sprites.”

VSprites

The virtual sprite is the most elemental component. It contains a little more information than
is needed to define a hardware sprite. The system temporarily assigns each VSprite to a
hardware sprite, as needed. The information in the VSprite structure allows the system to
maintain the more general GEL functions, such as collision detection and double-buffering.
After a sprite DMA channel has displayed the last line of a sprite, the system can reuse the
channel to display a different image lower on the screen. The system software takes advantage
of this reusability to dynamically assign hardware sprites to carry VSprite images.

The VSprite is a data structure closely related to hardware sprites. The VSprite structure
contains the following information:

o Size

o Image display data
o Screen coordinates
o Collision descriptors

o A pointer to color information
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Bobs

The Bob is the next outermost level of the GEL system. It is like an expanded hardware sprite
done in software. It uses the same information defined in a VSprite, but adds other data that
further defines this type of object. Bobs and VSprites differ in that the system draws Bobs
into the playfield using the blitter, while it assigns VSprites to hardware sprites.
A Bob structure contains the following information:

o A pointer to a VSprite

o Priority descriptors

o Variables and pointers that define how and where to save the background

AnimComps

The AnimComp (for “animation component”) is a data structure that extends the definition of
a Bob. It allows the system to include the Bob as part of a total animation object. An
AnimComp expands on the Bob data. AnimComps include the following:

o A pointer to this AnimComp’s Bob

o Links that define the sequence of animation drawings

o Information that describes the screen coordinates of the AnimComp with respect to
the position of the AnimOb, described below

o Timing information for sequencing this AnimComp as part of the list of animation
drawings

o A pointer to a user routine to execute in conjunction with this AnimComp

AnimObs

The AnimODb (for “animation object”) is the primary animation object. It is a pseudo-object
whose primary purpose is to link one or more AnimComps into a single overall object. As the
AnimOb moves, so move its AnimComps. When the Bobs move with their AnimComps,

the system sets the screen coordinates in the VSprite accordingly. AnimObs include the fol-
lowing:
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A pointer to this AnimODb’s first AnimComp
Links to previous or succeeding AnimObs

Information that describes the position of this AnimOb on the screen, as well as its
velocity and acceleration

Information for double-buffering this AnimODb, if desired

A pointer to a user routine to execute in conjunction with this AnimOb

Using Simple (Hardware) Sprites

To use simple sprites, define their data structures and use the following routines:

(¢]

o}

ON_SPRITE — a system macro to turn on sprite DMA
OFF_SPRITE — a system macro to turn off sprite DMA

GetSprite() — attempts to allocate a sprite from the virtual sprite machine for your
exclusive use

ChangeSprite() — modifies the sprite’s appearance
MoveSprite() — changes the sprite’s position

FreeSprite() — returns the sprite to the virtual sprite machine

These routines are described in detail in the following sections.

To use these simple sprite routines or the VSprite routines, you must include the SPRITE flag
in the data structure for OpenScreen(). If you are not using Intuition, this flag must be
specified in the View and ViewPort data structures before MakeView() is called.

CONTROLLING SPRITE DMA

You can use the graphics macros ON_SPRITE and OFF_SPRITE to control sprite DMA.
OFF_SPRITE prevents the system from displaying any sprites, whether hardware or VSprite.
ON_SPRITE restores the sprite data access and display. Note that the Intuition cursor is a
sprite. Thus, if you use OFF_SPRITE, you make Intuition’s cursor invisible as well.
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ACCESSING A HARDWARE SPRITE

You use GetSprite() to gain access to a new hardware sprite. You use a call such as

status = GetSprite( sprite, number )

GetSprite() allocates a hardware sprite for your exclusive use. The virtual sprite allocator can
no longer assign this sprite. Note that if you steal one sprite, you are effectively stealing two.
The sprite pairs 0/1, 2/3, 4/5, and 6/7 share the same color registers. If you are stealing a
hardware sprite, you steal its color registers as well. So you might as well ask for the other
sprite in the pair. Table 3-1 shows the color registers assigned to each sprite pair.

Table 3-1: Sprite Color Registers

Color
Registers Sprite

16-19 Oorl
20-23 2o0r 3
24-27 4o0rd
28-31 6 or7

You are not granted ezclusive use of the color registers. If the ViewPort is 5 bit-planes deep,
all 32 of the system color registers will still be used by the playfield display hardware.

Note, however, that registers 16, 20, 24, and 28 always generate the ‘“transparent” color when
selected by a sprite, regardless of which color is actually in them. Their true color will be used

only if they are selected by a playfield. For further information, see the Amiga Hardware Refer-
ence Manual.

Also note that sprites and sprite colors are bound to the ViewPort in that you can reload the
colors between ViewPorts. In other words, if a user in a ViewPort located in the top part of
the screen allocates sprite O and a user in the a ViewPort at the bottom of the screen allocates
sprite 1, these two sprites will not necessarily have the same color set, as the two ViewPorts
can have totally independent sets of colors.

The inputs to the GetSprite() routine are:
sprite A pointer containing the address of a data structure called SimpleSprite

number The number (0-7) of the hardware sprite you wish to reserve. If number is -1,
the system gets any sprite.
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A value of 0-7 is returned in “status’ if your request was granted, specifying which sprite you
have allocated. A value of -1 means that this sprite is already allocated.

The structure for a simple sprite is shown below:

struct SimpleSprite {

/* pointer to definition data of the hardware sprite to be displayed */
UWORD =*posctldata;

UWORD height;  /* height of this simple sprite in rows */
UWORD x,y; /* current position */

/* number (0-7) of hardware sprite associated with this simple sprite */
UWORD num;

b5

This data structure is found in the graphics/sprite.h file in the appendixes to this manual.

CHANGING THE APPEARANCE OF A SIMPLE SPRITE

The ChangeSprite() routine changes the appearance of a reserved sprite. It is called by the
following sequence:

ChangeSprite( vp, s, newdata )

ChangeSprite() substitutes a new data content for that currently used to display a reserved
hardware sprite.

The inputs to this routine are:

vp A pointer to the ViewPort for this sprite or O if this sprite is relative only
to the current View

s A pointer to a SimpleSprite structure

newdata A pointer to a data structure containing the new data to be used

The structure for the new data is shown below:
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struct userspritedata

{

/* position and control information for this sprite */
UWORD posctl[2];

/* two words per line of sprite height, first of the two

* words contains msbit for color selection, second word

* contains Isbit (colors 0,1,2,3 from allowable color

* register selection set). Color ’0’ for any sprite

* pixel makes it transparent.

*/

UWORD sprdata[2][height]; /* actual sprite image */

/* initialize to 0, O for unattached simple spites */
UWORD reserved|[2];

b5
MOVING A SIMPLE SPRITE

MoveSprite() repositions a reserved hardware sprite. It is called as follows:

MoveSprite( vp, sprite, x, y )

After you call this routine, the reserved sprite is moved to a new position relative to the upper
left corner of the ViewPort.

The inputs to MoveSprite() are as follows:

vp A pointer to the ViewPort with which this sprite interacts or O if this
sprite’s position is relative only to the current View

sprite A pointer to a SimpleSprite structure

X,y Pixel position to which a sprite is to be moved. If the sprite is being
moved over a high-resolution display, the system can move the sprite only
in two-pixel increments. In low-resolution mode, single-pixel increments in
the x direction are acceptable. For an interlaced mode display, the y direc-
tion motions are in two line increments. The same image of the sprite is
placed into both even and odd fields of the interlaced display.

The upper left corner of the ViewPort area has coordinates (0,0). The motion of the sprite is
relative to this position.
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The following example demonstrates how you move a simple sprite.

/* This program creates and displays a 320-by-200 by 2-bit-plane
* single-playfield display and adds one simple sprite to it.

*/

#include "exec/types.h”
#include ”graphics/gfx.h”
#include "hardware/dmabits.h”
#include ”hardware/custom.h”
#include ”hardware/blit.h”
#include ”graphics/gfxmacros.h”
#include ”graphics/copper.h”
#include ”graphics/view.h”
#include ”graphics/gels.h”
#include ”graphics/regions.h”
#include ”graphics/clip.h”
#include ”exec/exec.h”
#include ”graphics/text.h”
#include ”graphics/gfxbase.h”
#include ”graphics/sprite.h”

#define DEPTH 2

#define WIDTH 320

#define HEIGHT 200

#define NOT_ENOUGH_MEMORY -1000

/* construct a simple display */

struct View view;
struct ViewPort viewport;

/* pointer to ColorMap structure, dynamically allocated */
struct ColorMap *cm;

struct RaslInfo rasinfo;
struct BitMap bitmap;

SHORT xmove, ymove;

extern struct ColorMap *GetColorMap();
struct GfxBase *GfxBase;

/* save pointer to old View so can restore */
struct View *oldview;

114 Animation



USHORT colortable[] = {
/* black, red, green, blue */
0x000, 0xf00, 0x0f0, 0x00f,
0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, /* sprites from here up */
0,0,0,0,0,0,0,0

};

/* where to draw boxes */
SHORT boxoffsets|] = {
802, 2010, 3218

b

UWORD *colorpalette;
struct SimpleSprite sprite;

/* Last entry is ”position control” for the next reuse of the hardware sprite.
* Simple sprite machine supports only one use of a hardware sprite per video
* frame. Any combination of binary bits from word 1 and word 2 per line
* establishes the color for a pixel on that line. Any nonzero pixels in lines
* 1-3 are color ”1” of the sprite, lines 4-6 are color ”2”, lines 7-9 are color ”3”.
*
/
UWORD sprite_data[ | = {
0,0, /* position control */
0x0fc3, 0x0000, /* image data line 1 */
0x3ff3, 0x0000, /* image data line 2 */
0x30c3, 0x0000, /* image data line 3 */
0x0000, 0x3c03, /* image data line 4 */
0x0000, 0x3fc3, /* image data line 5 */
0x0000, 0x03c3, /+* image data line 6 */
0xc033, 0xc033, /* image data line 7 %/
0xflc0, O0xflcO,  /* image data line 8 */
0x3f03, 0x3f03, /* image data line 9 */

/* NOTE this last line specifies unattached, simple sprites */
0,0 /* next sprite field */
b

/*******************************************************************
* FOLLOWING IS FOR INFORMATION ONLY.... the simple-sprite machine directly
* sets these bits; the user has no need to change any of them. Use the

* functions ChangeSprite() and MoveSprite() to have an effect on the sprite.
*
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position control:

first UWORD:
bits 15-8, start vertical value, lowest 8 bits of this value
contained here.
bits 7-0, start horizontal value, highest 8 bits of this value
contained here.

*
*
*
*
*
*
*
%
* second UWORD:

*  bits 15-8, end (stopping) vertical value, lowest 8 bits of this

* value contained here.

*  bit 7 = Attach-bit (used for attaching sprites to get additional
* colors (15 instead of 3, supported by the hardware but

* NOT supported by the simple sprite machine).

*  bits 6-4 (unused)

* bit 2 start vertical value; bit 8 of that value.

*  bit 2 end vertical value; bit 8 of that value.

* bit 2 start horizontal value; bit 0 of that value.

*

********************************************************************/

main()

{
LONG j;
SHORT j,k,n;

SHORT spgot;
UBYTE *displaymem,;

GfxBase = (struct GfxBase *)OpenLibrary( ”graphics.library” , 0 );
if( GfxBase == NULL ) exit(100);

/* save current view to restore later */
oldview = GfxBase- > ActiView;

/* example steals screen from Intuition if started from WBench */

InitView( &view ); /* initialize View */
InitVPort( &viewport ); /* init ViewPort */
view.ViewPort = &viewport; /* link View into ViewPort */

/* init bit map (for Raslnfo and RastPort) */
InitBitMap( &bitmap, DEPTH, WIDTH, HEIGHT );

/* init Raslnfo */
rasinfo.BitMap = &bitmap;
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rasinfo. RxOffset = 0;
rasinfo.RyOffset = 0;
rasinfo.Next = NULL;

/* now specify critical characteristics */
viewport.DWidth = WIDTH;
viewport.DHeight = HEIGHT;
viewport.RasInfo = &rasinfo;

/* initialize the color map. It has 32 entries. Sprites take up
*the top 16 and we want to specify some sprite colors */
cm = GetColorMap( 32 );

/* no memory for color map */
if(cm == NULL) {
FreeMemory();
exit( 100 );

}

colorpalette = (UWORD *)cm->ColorTable;
for(i=0; i<32; i++) {

*colorpalette4+ = colortableli;
}

/* copy my colors into this ViewPort structure */
viewport.ColorMap = cm;

/* addition for simple sprite: */
vp.Modes = SPRITES;

/* allocate space for bitmap */

for(i=0; i<DEPTH; i++) {
bitmap.Planes[i] = (PLANEPTR) AllocRaster( WIDTH, HEIGHT );
if( bitmap.Planesi] == NULL ) exit( NOT_ENOUGH_MEMORY );

/* clear the display area */
BltClear( bitmap.Planes|i], RASSIZE(WIDTH,HEIGHT), 1 );

}

/* construct Copper instr (prelim) list */
MakeVPort( &view, &viewport );

/* merge prelim lists into a real Copper list in the view structure. */

MrgCop( &view );
LoadView( &view );
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/* now fill some boxes so that user can see something */
/* always draw into both planes to assure true colors */
for(n=1; n<4; n++) /* three boxes */
{
for(k=0; k<2; k++)
{
/* boxes will be in red, green and blue */
displaymem = bitmap.Planes[k] + boxoffsets|n-1];
DrawFilledBox( n, k, displaymem );

}

/**********************************************

* now we are ready to play with the sprites!
ko kbR ok kR kR Rk KR KRRk Rk ok [

/* Get the next available sprite. We should do an error
* check, if returns -1, then no sprites are available
*/

spgot = GetSprite( &sprite, -1 );

sprite.x = 0; /* initialize position and size info */
sprite.y = 0; /* matches that shown in sprite_data */
sprite.height = 9; /* so that system knows layout of data later */

/* now put some colors into this sprite’s color registers

* to custom-control the colors this particular sprite will display.

* NOTE: sprite pairs share color registers; i.e., sprites 0 and 1,

* 2 and 3, 4 and 5, 6 and 7 as pairs share the same sets of color

* registers (see the Amiga Hardware Reference manual for details).
* The code following figures out which sprite the system gave us,
** and sets that sprite’s color registers to the correct value

*/

k = ((spgot & 0x06)*2) + 16;

/* convert sprite number into the base number for its color reg set */
/* value at k treated as transparent */

SetRGB4( &viewport, k+1, 12, 3, 8 );

SetRGB4( &viewport, k+2, 13, 13, 13 );

SetRGB4( &viewport, k+3, 4, 4, 15 );

/* top of sprite is red, middle is white, bottom is blueish */
ChangeSprite(&viewport,&sprite sprite_data);

MoveSprite(0,&sprite,30,0);
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xmove = 1; ymove = 1;
for(n =0;n < 4; n++ ) {
1=0;
while( i++ < 185 ) {
MoveSprite( 0, &sprite, sprite. x + xmove, sprite.y + ymove );

b

/* slow it down to one move per video frame */

WaitTOF();
¥
ymove = -ymove,
Xmove = -Xmove;

}

/* free this sprite so others can use it also */
FreeSprite( spgot );

/* restore the system to its original state */
LoadView( oldview );

FreeMemory();

CloseLibrary( GfxBase );

}  /* end of main() */

/* return user and system-allocated memory to sys manager */
FreeMemory()

{
LONG i;

/* free drawing area */
for( i=0; i<DEPTH; i++ ) {
if( bitmap.Planes[i] != NULL ) {
FreeRaster( bitmap.Planes|i], WIDTH, HEIGHT );
}
}

/* free the color map created by GetColorMap() */
if( cm !'== NULL ) FreeColorMap( c¢m );

/* free dynamically created structures */
FreeVPortCopLists( &viewport );
FreeCprList( view.LOFCprList );

return( 0 );

}

DrawFilledBox( fillcolor, plane, displaymem )
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SHORT fillcolor,plane;
UBYTE *displaymem;

{
UBYTE value;

LONG j;
for(j=0; j<100; j++) {

if((fillcolor & (1 << plane)) = 0) {
value = Oxff;
} else {

value = 0;
}

for(i=0; 1<20; i++) {
*displaymem-++ = value;
}

displaymem += (bitmap.BytesPerRow - 20);

}

return(0);

RELINQUISHING A SIMPLE SPRITE

The FreeSprite() routine returns an allocated sprite to the virtual sprite machine. The virtual
sprite machine can now reuse this sprite to allocate virtual sprites. The syntax of this routine is

FreeSprite( num )
where num is the number (0-7) of the sprite you want to return.

Note: You must free sprites after you have allocated them using GetSprite(). If you do not
free them and your task ends, the system will have no way of reallocating those sprites until the
system is rebooted.

Using VSprites

This section tells how to define a VSprite. It describes how to:

o Specify the size of the VSprite object
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o Select its colors
o Form its image
o Specify its position within the drawing area
o Add it to the list of GELS
o Control it after you add it to the list
The system software also provides a way to detect collisions between individual VSprites and

other on-screen objects. Collision detection applies to both VSprites and to Bobs. It appears
as a separate topic under “Topics Common to Both VSprites and Bobs.”

SPECIFYING THE SIZE OF A VSPRITE

The first step in defining a VSprite is telling its dimensions to the system. A VSprite is
always 16 pixels wide and may be any number of lines high. Each pixel is the same size as a
pixel in low-resolution mode (320 pixels across a horizontal line) of the graphics display. To

specify how many lines make up the VSprite image, you use the VSprite structure Height
variable.

If your VSprite is 12 lines high and the name of your VSprite structure is myVSprite, then
you can set the height value with.the following statement:

myVSprite.Height = 12;

Each line of a VSprite requires two data words to specify the color content of each pixel. This
means that the data area containing the VSprite image is 12 x 2, or 24, words long.

See the next section for details on how bits of these data words select the color of the VSprite
pixels.

SPECIFYING THE COLORS OF A VSPRITE

Because VSprites are so closely related to the hardware sprites, the choice of colors for
VSprites is limited in the same way. Specifically, each pixel of a VSprite can be any one of
three different colors or it may be transparent. However, the system software provides a great

deal of versatility in the choice of colors for the virtual sprites. Each virtual sprite may have its
own set of three unique colors.
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When the system assigns a hardware sprite to carry the VSprite’s image, it assigns that
VSprite’s color set to the hardware sprite that will produce that image. To define which set of
three colors to use for this VSprite, you initialize the VSprite structure pointer named
SprColors. SprColors points to the first data item of three sequentially-stored 16-bit values.
The system then jams these values into the selected hardware sprite’s color registers when it is
being used to display this VSprite.

Every time you direct the system to redraw the VSprites, the GEL system reevaluates the
current on-screen position of each VSprite and decides which hardware sprite will carry this
VSprite’s image for this rendering. It creates a customized Copper instruction sequence includ-
ing both the repositioning of hardware sprites and the reloading of sprite color registers for vari-
ous screen positions. Thus, during a move sequence, a VSprite may be represented by one or

many different real hardware sprites, depending on its current position relative to other
VSprites.

For example, if your set of colors is defined by the statement:

WORD spriteColors = { 0x00F, 0x0F0, 0xF00 };

and if your VSprite is named myVSprite, to set the VSprite colors you would use the follow-
ing statement:

myVSprite.SprColors = &spriteColors;

How you specify the VSprite colors may affect how many VSprites you can show on the
screen at any one time. For further information, see “How VSprites are Assigned.”

SPECIFYING THE SHAPE OF A VSPRITE

To define the appearance of a VSprite, initialize the VSprite structure pointer called
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