g

Cr o)

I

{

-

l

N
N
bt

‘/

M

~

|

Edited by Stephen Levy

COMPUTE! Publications,inc.@®

Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

Greensboro, North Carolina

The following articles were originally published in COMPUTE! magazine, copyright
1986:

“Getting Started with AmigaDOS,” originally titled “Introduction to AmigaDOS"
(January and February); “AmigaDOS Batch Files” (April).

“AmigaDOS Command Summary” was originally published as part of COMPUTE!'s
AmigaDOS Reference Guide, COMPUTE! Publications, Inc., copyright 1986.

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America
10987654321
ISBN 0-87455-028-9

The authors and publisher have made every effort in the preparation of this book to insure the ac-
curacy of the programs and information. However, the information and programs in this book are
sold without warranty, either express or implied. Neither the authors nor COMPUTE! Publica-
tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, in-
cidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the authors and are not necessarily those
of COMPUTE! Publications, Inc.

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing
Companies, and is not associated with any manufacturer of personal computers.
Amiga and AmigaDOS are trademarks of Commodore-Amiga, Inc. Lattice C is a
trademark of Lattice, Inc.

.

)

C C G

.

)

_

J

.

B I

-

)

N

_l

Contents

Foreword i iv
About the Authors il \4
1. Introducing the Amiga
Dan McNeill it 1
2. BACIC Programming
o CRegena ... 29
3. Getting Started with AmigaDOS
Charles Brannoncoiiiiiinneennnnnn 109
4. AmigaDOS Batch Files
Charles Brannonc.couvuiieinnnnnnn... 133
5. Graphics
Sheldon Leemonc.covuiiinnnnnuunnnn 145
6. Programming Amiga Sound
Philip I. Nelsonc.uiiiiniiinennnnnn 207
7. C Programming
Marc B. Sugiyama and Christopher D. Metcalf 263
8. Machine Language
Tim Victorttt 345
Appendices i 401
A. Amiga Character Codes 403
B. AmigaDOS Command Summary
Sheldon Leemon and Arlan R. Levitan 409
C. Frequency Values for Equal-Tempered Musical Scale 429
D. Lattice C Compiler Flags 433
E. Selected Intuition Routines 435
F. Selected Kernel EXEC Routines 443
G. Selected Kernel Graphics Routines 447
H. Selected DOS Library Routines 449
. Fast Floating Point Functions 453
Index ... i 454

Foreword

W hether you're programming your Amiga in BASIC,
C, or machine language, COMPUTE!’s Amiga Pro-
grammer’s Guide is the reference you'll need. The
nine experienced programmers and writers who have contrib-
uted to this volume, explain how to program and use the
power of the Amiga in the clear and concise style that has be-
come the hallmark of COMPUTE! Publications.

Amiga BASIC, perhaps the most advanced BASIC avail-
able for any personal computer, includes commands that let
a programmer access the powerful features of the Amiga.

C. Regena has put together a complete reference section of
Amiga BASIC commands, including sample programs that
clearly illustrate how to program the Amiga.

Chapters 3 and 4 are AmigaDOS tutorial. Author Charles
Brannon clearly shows you how to use the most popular
AmigaDOS commands. We’ve also included a complete
AmigaDOS command summary.

In chapter 5, Sheldon Leemon illustrates how to exploit
the powerful graphics capabilities of the Amiga. Using pro-
gram examples, you'll learn how to use “graphics.library” to
produce the graphics you want.

The Amiga can produce sound that simulates the human
voice. Philip Nelson, teaches you, in plain English, how to
write programs using Amiga sound. Among the programs in-
cluded in the sound chapter are a waveform editor, a pho-
neme builder, a speech experimenter, and a machine language
sound generator.

Maybe you’d like to program in C or 68000 machine lan-
guage. You'll find what you need to get started, including a
variety of C and machine language program examples and
appendices of selected Intuition, Kernel, fast floating point,
and DOS library routines.

With its thorough introduction to the Amiga, easy-to-use
reference charts, and clear, concise explanations of BASIC, C,
and machine language, COMPUTE!'s Amiga Programmer’s
Guide is the one book every Amiga programmer should own.

CC O U oC

]

]

1

B B

-

)

]

]]

)

About the Authors

Charles Brannon has been writing and programming for over
six years. As program editor for COMPUTE! Publications, he
has assisted in the development of COMPUTE!’s programming
department and introduced the unique program typing aids,
“The Automatic Proofreader’”” and “MLX,” to the readers of
COMPUTE! publications. Charles is also the creator of the
bestselling word processor SpeedScript and coauthor of COM-
PUTE!s Advanced Amiga BASIC.

Sheldon Leemon is a free-lance writer based in Michigan. He
has authored or coauthored four books, including COMPUTE!’s

- AmigaDOS Reference Guide (with Arlan Levitan) and Mapping

the Commodore 64. He is currently writing a fifth book, Inside
Amiga Graphics. His work has appeared in numerous magazines.

Arlan R. Levitan is a staff regional systems engineer for
Amdahl Corporation and telecomputing columnist for COM-
PUTE! magazine. He is the coauthor (with Sheldon Leemon)
of three books including COMPUTE!s AmigaDOS Reference
Guide.

Dan McNeill is a free-lance writer based in San Francisco and
Los Angeles. He is author of the book, COMPUTE!’s Beginner’s
Guide to the Amiga, and coauthor of The Apple Ilc: Your First
Computer. His work has appeared in numerous magazines.

Christopher D. Metcalf is a student at Yale University. He
has authored numerous articles and programs for COMPUTE!
Publications and has coauthored the book (with Marc Sugi-
yama) COMPUTE!’s Beginner’s Guide to Machine Language on
the IBM PC and PCijr.

Philip L. Nelson, assistant editor of COMPUTE! magazine, has
written a number of articles on programming sound. He is also
coauthor of the books COMPUTE!’s ST Programmer’s Guide and
COMPUTE!"s 128 Programmer’s Guide.

C. Regena has a monthly column in COMPUTE! magazine and
has written a number of books including Elementary Amiga
BASIC and the bestselling Programmer’s Reference Guide to the
TI-99/4A.

Marc B. Sugiyama is a student at Harvey Mudd College in
California. He wrote the very popular game ““Zuider Zee” for
the Commodore 64 and coauthored the book (with Chris Met-
calf) COMPUTE!s Beginner’s Guide to Machine Language on the
IBM PC and PCjr.

Tim Victor, editorial programmer for COMPUTE! Publica-
tions, has authored many sophisticated programs for various
microcomputers, including ““Apple Superfont.” He is also co-
author of the books COMPUTE!’s ST Programmer’s Guide and
COMPUTE!s 128 Programmer’s Guide.

-

[

C

-

.

(™

(-

(Z

h

C;

" Chapter 1

_ -In.ucmg the

]

B I

]

2

]

i

Introducing the Amiga

Dan McNeill

creates vibrant images and breathes life into them with

sound. Indeed, it is perhaps the first computer to ap-
proach the mesmerizing audiovisual power of television. You
can sit before it entranced by something as simple as a bounc-
ing ball.

Speed. The Amiga is one of the swiftest personal comput-
ers available.” Not only does its 68000 microprocessor work at
7.16 megahertz, but it has three extra chips which shoulder
many tasks independently and boost its velocity.

Graphics. The Amiga’s screen offers not just 640 X 400
resolution and 4096 colors, but a full graphics environment,
with sprites, playfields, multiple windows, and bitmapped
animation. These endowments are leading to extraordinary
games and graphics and brilliant video in general.

Audio. The Amiga has four independent audio channels,
with which it can synthesize almost any sound imaginable. It
can imitate musical instruments, create its own sounds, and
play along with you as an accompanist. The Amiga also has
built-in voice synthesis, and making it speak is easy.

Multitasking. The Amiga can run several programs at
once. Each program gets its own window on the screen and
acts as if it is the chief and sole glory of the computer. You
can compare two documents, write from notes, or keep dif-
ferent projects percolating at the same time. You can also con-
trol the computer, printer, and modem simultaneously, and
thus print out one document while transmitting another and
writing a third. The Amiga performs multitasking with ease.

- Emulation. A $99 Transformer program can emulate the
IBM PC; hence, the Amiga can run its vast library of business
programs. A

Expandability. The Amiga is fully expandable. Its mem-
ory expansion port accepts a simple memory upgrade which
doubles the Amiga’s RAM from 256K to 512K. It also has an
expansion bus, where add-on devices hook into the basic cir-
cuitry of the machine. Expandability is particularly significant
with the Amiga. Its graphics and audio strengths mean it will

The Amiga is the computer Merlin might have owned. It

3

Chapter 1

become the tool of specialists, who will devise novel hardware

for it. Such ingenuity has a trickle-down effect. Devices are in-
vented for the space race and wind up on your kitchen drain-
board. Hence, the Amiga may lead to new and fascinating
retail products.

A quick tour of this computer must begin somewhere, and
we might as well start with the first sight: the console’s exterior.
We'll then move on to the interface and after that to the basic
hardware. Finally, we’ll come full circle and look more closely
at the Amiga’s special powers in business, video, and audio.

The Facade

The Amiga may be the most deceptive-looking personal com-
puter on the market. It consists of a plain, off-white console
about the size of a stereo. Most of the external action takes
place on the four sides of the console, each a strip somewhat
narrower than a bumper sticker, and of these the front and
back panels are the busiest.

The front panel. The front panel is the part you become
most familiar with. A chromatic checkmark, the Amiga’s hall-
mark, floats in the upper left corner, and next to it, the legend
AMIGA itself. A pair of vertical lines trisects the panel, and a
long horizontal indentation parallels the bottom. The middle
third detaches to reveal the memory expansion bus. On the
right third is the disk drive, the scene of much ado. The drive
has a squarish recessed area to ease disk handling. Just below
it to the right is the rectilinear disk-eject button.

The left panel. The left panel is relatively empty. It con-
tains little but the on/off rocker switch, located near the front.
The right panel. The right panel boasts the two hand
controller ports for various input devices you move around by
hand. The mouse plugs in here, as do the paddle, joystick,
light pen, digitizer pad, and optical scanner. The expansion

bus is located here, too, beneath a removable plastic flap.

The rear panel. The rear panel has nine ports, where ca-
bles lodge like ships docked at a city (see Figure 1-1). They
are, from left to right:

Keyboard port. This connector resembles a phone jack and
accepts the keyboard cable with a brisk and easy click.

Parallel port. The D-type parallel port generally links up
with the printer or the color plotter.

4

C C C C

C

¢ C C .

[0 e B B

)

a0

-

Introducing the Amiga

External disk drive port. This port allows a second disk
drive to be added, which reduces the amount of disk
swapping.

Serial port. Some printers and most modems use serial
transmission rather than parallel, and this port handles them.

Figure 1-1. Rear Panel of the Amiga

Parallel Serial TV Port

Port Port Z

UE\ \é] ¢ db> & IDIJII
D p=—=s o peammwe © © @
GHT LT
4 S
Keyboard External Speaker RGB ;’;:lteo
Port Disk Drive Ports Monitor
Port Port

The serial port is female and the parallel port male to avoid
accidental mixups.

Speaker ports. These two jacks attach to the speaker in the
Amiga monitor or to hi-fi speakers and let you bask in the
computer’s sound capacities.

RGB monitor port. This port links the Amiga to the RGB
monitor. The icon shows a TV tube with three overlapping cir-
cles, emblematic of red, green, and blue.

TV port. This port sends signals to the TV set. You won't
confuse it with either the horizontal RGB port on its left or the
nozzlelike video jack on the right, for it is the only port that is
circular. It takes several pins around its circumference and one
at the middle.

Video port. This port connects to the leftover video mis-
cellany: the monochrome and color composite monitors.

Bottom. Underneath the front of the console is room for
the keyboard to slide in and out, a thoughtful touch that
yields instant desk space if, say, you want to jot down a hand-
written note or sign a letter. The genlock interface also fits be-
neath the console in the rear. The underside of the console

Chapter 1

has vents which allow air to enter the computer and cool it
while it works. As always, open vents are critical. Block them
while the computer is on, and it may overheat and fail.

Top. The monitor normally goes atop the console, which
can hold up to 40 pounds. This arrangement leaves slender
shoulders on either side, upon which you can stack such
peripherals as hard disk and modem, thus reducing the sys-
tem’s footprint.

Esthetically, the exterior very much resembles the IBM
PC: solid and unprepossessing, not ugly, but no swan either. It
scarcely matters. Once you turn the Amiga on, its appearance
has little importance.

Entering the Amiga

You progress into the Amiga in a series of steps, all very sim-
ple. First, you turn on the monitor, then the computer. The fan
begins to hum, and pale blue light floods the screen. Soon the
little startup tune sounds, and the screen displays a large hand
feeding Kickstart into the disk drive.

The Kickstart disk contains Intuition, the Amiga’s operat-
ing system. Commodore decided to place Intuition on disk
rather than ROM chips in order to make upgrades easily avail-
able, and indeed Kickstart 1.1 appeared within a few months
of launch. This arrangement also lets you write your own
operating system if you want to turn the Amiga into, say, a
special-purpose graphics machine.

The Amiga loads the 256K Kickstart into a special, write-
protected area of RAM. During this process, the red disk-use
light stays on, and pressing the disk-eject button at this time
can destroy the Kickstart disk. Unfortunately, the light some-
times turns off briefly in the midst of loading programs, so it’s
a good idea to wait for some other sign that the procedure is
complete. Here, the screen will display a hand inserting the
Workbench, and you can then press the disk-eject button and
pull Kickstart out of the drive.

The next step depends on the software. It may have the
Workbench or AmigaDOS already on it, in which case you ig-
nore the onscreen cue and simply slip it in. Otherwise, you in-
sert the Workbench disk and set the Amiga up for further tasks.

L

7

]

)

)

-

]

)

a0

Introducing the Amiga

The Interface: Portal of the Amiga

The Workbench reveals the Amiga’s interface, the arena where
you and it conduct basic interaction. A computer’s interface is
in many ways its style, its personality. The Amiga’s, like the
Macintosh’s, is a genial host, taking over the burden of
communications and constantly proffering its resources so that
you can select them at your pleasure.

The interface is also the gateway to the Amiga. It is an
elaborate portal, full of important entry information as well as
little aids which you can exploit or not at your pleasure.

Let’s look at its fundamental elements.

The crux of the interface is the pointer, which is rather
like a magic wand. You move it freely about the screen with
the mouse. When it’s over an item, you can click a mouse but-
ton and the item responds as if a magic wand had touched it.
There is instant action. Touched items open up, fold down, or
cause myriad changes, and you thereby gain mastery over the
machine.

There are three kinds of items that react to the pointer’s
touch: icons, windows, and menus.

Icons. Icons are small pictures that act as doorways into
various parts of the system. They come in four types: disks,
drawers, tools, and projects. Disk and drawer icons open up
onto further icons, while tool and project icons unveil actual
work areas. The first two are containers for the second two,
and the second two are the reason people buy the Amiga.

Disks. Disk icons are easily recognizable, as they resemble
microfloppy disks.

Drawers. Drawers are repositories for tools and projects,
and they usually look like desk drawers.

Tools. “Tools” is Amiga-ese for programs, like Graphicraft
or the Clock. Most tools let you create pictures or documents,
and their icons can look like anything a programmer can
imagine.

Projects. “’Projects” are files created by programs. For in-
stance, a painting done with Deluxe Video Construction Set is a
project. -

When the Workbench interface comes up, there is a single
disk icon in the upper right corner, labeled ““Workbench.”” This
icon is the first entranceway. Place the pointer over it, double-
click the left button of the mouse, and a window appears with
more icons inside it. You've moved into a foyer.

Chapter 1

The Workbench window reveals a number of new icons.
On the left are four drawers. Open a drawer—again, you
double-click it—and another window appears, with more
icons in it. You essentially move from the foyer to a smaller
anteroom. If you click the Utilities drawer, for instance, a win-
dow with the Notepad icon appears.

The Notepad is a tool, one of the ultimate destinations in
the system. Double-click the Notepad icon, and the Notepad
window opens up. Here, you can jot down random thoughts
and memos to yourself. You have reached the equivalent of a
room, and you have no more doors to enter.

The Workbench has three other icons. One is the Clock. If
you click it, a ticking clock appears onscreen, giving you the
time. Another is the Trashcan. To erase a project you have no
further use for, drag it over to the Trashcan. The Trashcan is a
kind of drawer, and also a kind of limbo. It holds onto the file
in case you want to recall it, since deleting a file is an act of
consequence. Once you select Empty Trash from the Disk
menu, however, there is no return.

The third icon is Preferences, which depicts a question
mark over the front panel of the Amiga. Double-click it, and
you enter the central command post of the Amiga. Here, you
can dictate clock time, date, text size, mouse speed, double-
click speed, Workbench colors, and numerous other matters.
Preferences is actually a series of three screens layered over
one another. Normally, you see only the first, the one most
often used. But click Change Printer and the second screen ap-
pears. It allows you to set printer variables, an important func-
tion you cannot ignore. The second screen is also your
entryway into the third. Click Graphic Select and you leaf
down to the final screen, which lets you alter graphics on their
way to the printer.

Icons do not exist solely to be opened. Instead of double-
clicking an icon, you can click it just once. It will darken. You
have selected it and can now perform a variety of operations
upon it.

For instance, you can relocate the icon on the screen.
Press the left button down and move the mouse around.
When you get it where you want it, release the button and the
icon will hop over. Moving icons can change their status, as it
does when you drag them to the Trashcan. You can also shift

C C C C C

C . C & &

0

[

0

1

-]

B I B I

Introducing the Amiga

them in and out of drawers by dragging them from one win-
dow to another.

As we'll see below, selecting also lets you choose which
icons the menu commands will act on. To deselect, click the
pointer again somewhere outside the icon.

Windows. Windows are simply opened icons. They per-
vade the interface. When you click the Workbench icon, for
instance, its contents appear in a window, and when you click
drawers, more windows fly open. Indeed, windows are a high-
light of the Amiga, and the computer can have at least 50 of
them onscreen at once. That many is chaotic, but the power is
there if you want it.

Often, with several windows open, you’ll have to choose
which of them is to be active. You do so by simply clicking
the left mouse button once on the window you want. It’s just
like selecting icons and means the same thing: The file is
ready to be acted on. You'll recognize inactive windows by
their ghostly contours.

The pointer lets you control windows in another way, by
clicking little symbols on them which trigger big changes.
These symbols come in two types. The tiny, boxlike ones are
gadgets, and the long, slender ones are bars.

Windows can have up to four different gadgets, as does
the Workbench window. They are the close gadget, the back
and front gadgets, and the sizing gadget (see Figure 1-2).

The close gadget. The close gadget is the square with the
dot inside in the upper left corner of the window. Click it, and
the window vanishes back into its icon. This operation is the
reverse of double-clicking the icon.

The back and front gadgets. In the upper right corner are
two gadgets which look very similar: the back and front gad-
gets. They shuttle windows behind or before each other on
the screen, and you’ll need them, because sometimes the
screen will look like a wild stack of pages. The back gadget
shows a white box behind a dark one, and the front gadget
shows it in front.

The sizing gadget. The sizing gadget sits in the lower right
corner of the window and shows a specklike box attached to a
larger, vertical rectangle. It's meant as a before-and-after shot,
since the sizing gadget lets you turn a small window into a
larger one or into any size window you want. You place the

Chapter 1

pointer on the gadget, hold down the left mouse button, and
pull the mouse. The window expands or contracts until its
new size pleases you, and then you release.

Windows can also have two different bars. One lets you
shift the entire window about the screen like a hockey puck,
while the other lets you move contents within the window:

The drag bar. The drag bar is the set of parallel lines at the
top of the window. Point to it, hold the left mouse button
down, and pull the mouse around. The window will follow.
The drag bar lets you position windows on the screen.

The scroll bars. Contents of a window are not limited to
window size. They can be much larger. In such cases, the win-
dow acts like a viewfinder looking down on a roll of microfilm.
And the scroll bars on the right and bottom let you move the
contents. Click on an arrow at either end of a scroll bar, and
you’ll shift half a window. You'll still have part of the old con-
tents to give you bearings, but you'll enter new territory as well.

Figure 1-2. Controlling a Window

Close gadget Drag bar Back gadget

(5]
F

Front gadget

/Scron bar
= -t

Menus. There is one final element to the Workbench
triad, and it’s crucial. It is the menu. All along, the screen has
displayed a title bar across the top, explaining that you are in
Workbench version whatever and have so many thousand
units of memory free. If you press the right button of the
mouse, the title bar changes at once into a menu bar with a
string of menu titles on it. Workbench has the menu titles
Workbench, Disk, and Special.

Sizing gadget

10

U S R S

C

L O C

1

}

a5

]

Introducing the Amiga

Icons and windows let you open, close, move, and delete
files, yet many more specialized tasks remain, and menus let
you perform them. They are simply lists of words and can
thus be very flexible. Normally, menus are hidden to give you
more screen space. Place the pointer over the menu title, and
the menu unrolls, revealing a series of menu items. You drag
the pointer down to the item of choice and release the right
button. The Amiga then executes the task upon whatever you
have selected.

Some menus have submenus appended to them. They
flash out on the right as you pull the pointer down the menu.
To select an item with a submenu, you shift the pointer over
to the submenu and release at the chosen subitem.

Menu commands in applications can do almost anything,
but most of those in the Workbench involve disk manage-
ment. If you move an icon to the Trashcan and select Empty
Trash, for instance, the disk drive whirs and the Amiga deletes
part of the disk. The Workbench is thus an interface to the
Amiga’s disk operating system, AmigaDOS. The Workbench
isn’t AmigaDOS per se, only one pipeline to it. In fact,
AmigaDOS also has a more direct connection: the Command
Line Interface, or CLI. The CLI resembles CP/M and MS-DOS
in that it requires explicit, typed commands, yet it gets you
right into AmigaDOS itself and offers much greater power.
You'll examine the CLI extensively in Chapter 3 and the
Appendices.

We've now seen the exterior of the console and the inter-
face, essentially the exterior of the operating system. Let’s turn
now to the hardware devices themselves—input, memory,
processors, output.

Input Devices

The Amiga can use all the input devices of other personal
computers, and its special capacities suit it for many new
kinds. The basic input devices are, of course, the mouse and
keyboard, but there are numerous special-purpose ones for
games, graphics, and audio.

The mouse. The mouse takes care of basic screen control.
The Amiga’s mouse is about the size of a cigarette pack,
though its beveled top—like the first facets of a stone in a
jeweler’s workshop—gives it a distinctive look. It also has two
gray bars on top, called buttons. The mouse carries out three

11

Chapter 1

main functions: pointer movement, menu operations, and
nonmenu operations. In general, they correspond to pressing
no buttons, pressing the right button, and pressing the left.

Pointer movement. The mouse makes pointer movement
fluid and natural. You move the mouse about on a clean, flat
surface, and a pointer (arrow, cursor, hand, paintbrush, cross-
hairs, whatever) reproduces its path on the display. While ar-
row keys can move the pointer only vertically or horizontally,
the mouse can take any course you want. It’s the difference
between driving through city streets and flying over them.

Menu operations. The mouse controls the menus with the
button on the right, the menu button. The menu button is the
more limited, less active of the two, dealing essentially with
the pull-down menus at the top of the screen (though you can
program it to take care of other tasks).

Nonmenu operations. For the remaining mouse operations,
you use the lefthand selection button. The selection button is a
generalist. Its functions are wide-ranging and diverse. Among
other things, it lets you select icons, open them, deselect them,
place the cursor, and drag.

Dragging is one of those operations that take a second to
learn and forever to describe. To drag, you place the pointer at
a particular spot, press the left button, pull the mouse, and re-
lease. Among other things, this act will transport items, select
areas, and draw lines. To move an icon across the screen, for
instance, you just drag it to the new locale and release. Drag-
ging also lets you select an area. In word processing, you can
select a whole sentence for deletion by simply dragging the
cursor over it. Finally, dragging lets you draw. In graphics pro-
grams, you drag a paintbrush across the screen to create a line.

By the way, the left button is not necessarily restricted to
nonmenu operations. Like its neighbor, it can control menus,
as it does in Electronic Arts’s One-on-One.

The keyboard. The Amiga keyboard is comfortable and
capacious. It has 89 keys, divided into two parts: an alpha-
numeric keyboard and a numeric keypad. The former has the
QWERTY layout of character keys within a rim of command
keys. Touch typists will notice that the F and] keys have tiny
pimples, for easy finger alignment, and the 5 on the numeric
keypad has one as well. In addition, the Amiga CAPS LOCK
has an ingratiating red light, which turns on while the key is
engaged. The keyboard has all the major command keys,

12

C & C C C

1

]

I I

-]

~.

1

Introducing the Amiga

including ten function keys across the top, a CTRL (Control)
key, two ALT (Alternate) keys, two A (Amiga) keys, four ar-
row keys, and a HELP key. We cannot go over all the key-
board’s features, but some of them are worth highlighting.

Reset. Reset is particularly useful on the Amiga because it
lets you start the computer over again without reinserting
Kickstart, and thus eliminates a great deal of dead time. To re-
set, you press CTRL and both of the A keys simultaneously.
The operation is deliberately ungainly to avoid accidental
vaporization of the program in RAM.

Extra character sets. The two ALT, or alternate, keys at
either end of the bottom row open up new realms of charac-
ters. Press ALT and 6, for instance, and you get the paragraph
symbol (@). Press ALT and other keys and you can generate
Greek letters, the angstrom sign (A), the pound sterling sym-
bol (£), and many more. If you press both ALT and SHIFT
along with the character keys, you get a fourth set of symbols.

Mouse tasks. The left and right Amiga keys—shown by
filled and hollow A’s respectively—are mouse surrogates and
carry out the three basic mouse functions:

1. Positioning. Press an Amiga key and an arrow key, and the
pointer will scuttle away in the direction of the arrow. To
move it faster, press Amiga-SHIFT-arrow.

2. Menu operations. Right Amiga-right ALT duplicates the ef-
fect of pressing the right button. You hold both keys down
and press the arrow keys until the pointer reaches the menu
item you want. When you release, the command executes.

3. Nonmenu operations. Left Amiga-left ALT duplicates the
effect of pushing the left button.

Shortcuts. The Amiga keys are awkward and lumbering at
many of these tasks—no competition for the agile mouse. But
there’s one way they can beat the mouse cleanly. They can be
shortcuts. For instance, to select a menu item without touching
the menu, you press right Amiga plus a predefined key, say,
Q. A menu operation like Quit then ensues. The left Amiga
plus a character key generates nonmenu commands. Shortcuts
can greatly streamline program use.

Fine cursor movement. The Amiga has arrow, BACK
SPACE, and DELete keys for moving the cursor a few letters
back and forth, a task the mouse does not excel at. The four
arrow keys normally move mouse-wise, above text rather than

13

Chapter 1

through it. Hence, the left arrow key does not delete. It lets
you easily backtrack a few letters, insert some characters, then
return to where you were. To delete, you use BACK SPACE
and DEL. BACK SPACE moves the cursor left through text,
wiping it out. The DEL key deletes to the right, moving prose
toward the cursor.

The keyboard and mouse are the main avenues of com-
munication into the Amiga, and in most cases you can use
whichever one you like. But most people use both. Each has
special virtues, and together their resonance heightens the im-
pact of the whole machine.

Other input devices. The Amiga, of course, works with
the many other input devices available, such as the trackball,
joystick, digitizer pad, image processor, optical scanner, micro-
phone, and “piano” keyboard. Some of these are particularly
interesting for the Amiga:

Image processors. Image processors translate analog visual
images from video cameras into digital ones for display on the
screen. Some image processors will also accept input from
VCRs. This capacity, called frame grabbing, lets you freeze a
frame of, say, Orson Welles in Touch of Evil, then feed it into
the computer. Once it’s there, you can alter it, add sound to it,
print it out, and even animate it. An early image processor for
the Amiga comes from A-Squared, of Oakland, California. It
plugs into the expansion bus and takes input from video cam-
eras, other computers, laser disc players, and VCRs. It stores
an image in eight shades of gray at the minimal Amiga resolu-
tion of 320 X 200, but the company is also talking about an
upgrade to 16 colors at 640 X 400. It was slated to cost be-
tween $250 and $300.

Audio input. First-rate audio is relatively new on personal
computers, and audio input devices like microphones and “pi-
ano” keyboards are becoming available for the Amiga. Cherry
Lane offers a 49-key keyboard for $99. You can also play mel-
odies on the alphanumeric keyboard, but it takes a little get-
ting used to.

Memory

The Amiga’s multitasking, video, and audio all thrive on
memory, and the Amiga has it. It comes with good-sized
RAM, which can be expanded easily and dramatically. It also

14

L C

[

C O L o .

B R R

]

,:J \J

1

Introducing the Amiga

takes 880K disks and up to four disk drives, and a hard disk is
already available for it.

RAM. Technically, the Amiga has 512K of RAM built in,
though, since half of it is set aside for Kickstart “ROM,” we
generally say it has 256K of RAM. That’s enough for some
programs. But the computer’s more impressive feats profit
greatly from more, and the Amiga’s open architecture makes
RAM expansion easy.

Commodore offers a 256K RAM add-on card. It looks
rather like a large, metallic harmonica and plugs into the
Amiga in the front. You detach the middle third of the front
case by squeezing gently on the top and bottom and slowly
pulling out. Then you follow the simple directions and plug
the extra RAM in. This act instantly doubles your available
RAM to 512K. The cartridge costs $195.99.

You can also buy an expansion module called the T-card
from Tecmar, of Solon, Ohio. This device snaps onto the
expansion bus on the right panel and comes in three sizes—
256K ($795), 512K ($895), and 1M ($995). It also offers a
clock/calendar with standby battery, a built-in power supply,
and ports for further expansion.

You aren’t limited to 1M, either. The Amiga’s expansion
bus will allow up to 8M of RAM, an enormous amount, and
though devices to attain this size were not immediately avail-
able, they could appear soon. That much RAM will really
make the machine bloom.

Disks. The Amiga’s internal disk drive accepts 3%2-inch
double-sided disks which hold 880K. The computer also lets
you attach up to three more external disk drives, piggy-back
style, each plugging into the drive immediately before it. To
run IBM PC software with The Transformer program, you may
need an external 5%-inch drive. Currently, the only such drive
that will work with the Amiga is made by Commodore and
sells for $395, though others may also come out.

Hard disks. Tecmar announced the first hard disk for the
Amiga, called the T-disk. The device holds 20M, equal to
about 23 Amiga disks, and costs $995. It can fit on the “shoul-
der” of the Amiga console, so it takes up no additional desk
space. Tecmar also offers T-tape, its 20M magnetic tape back-
up system, with lights that show track number and tape direc-
tion as well as read, write, door, and power status. T-tape can
be stacked atop T-disk to save further desk room.

15

Chapter 1

The Processor Chips

The Amiga’s internal design might be termed ““quasi-parallel
processing.”” It has a CPU—the Motorola 68000—but it also
has three extra chips which function on their own. These chips
are not CPUs, but rather special-purpose devices, devoted
mainly to graphics and sound. They are the Amiga’s resident
genies.

The Motorola 68000. The 68000 is a powerful CPU. It has
70,000 transistors, slightly more than its name implies. It also
has a few variations on the classic CPU layout. For instance, it
has three ALUs instead of one. Two manipulate address loca-
tions, and the third works on data. In addition, the 68000 has
quite a bit of ROM, which substitutes for gates and simplifies
manufacture.

The 68000 is a 16/32-bit chip, that is, partway between
16 and 32 bits, but closer to 16. Its registers can hold 32 bits,
as can the special register called the counter, and the 68000
can therefore operate on instructions as large as 32 bits. But it
can’t act on all 32 bits at once. Its ALUs are only 16 bits wide.
Thus, it must work on half a 32-bit instruction at a time, and
in practice, 32-bit instructions are not often issued. Moreover,
its data bus is also 16 bits wide, another major bottleneck. Its
address bus is betwixt and between at 24 bits.

The Motorola 68000 has a variety of boons. It offers 18
registers, so the chip can keep plenty of balls in the air at
once. It can also access 16M addresses—16,777,216—a vast
amount. By comparison, the Apple Ile’s 6502 chip can address
only 65,536 memory locations.

In addition, the 68000 recognizes 88 assembly language
instructions, a large and powerful set. Moreover, the instruc-
tions are flexible. The MOVE instruction, for instance, comes
in a number of different varieties, and a programmer can use
the one that is most convenient. Overall, 68000 instructions
are also simple, another virtue. ‘

The Amiga works at 7.16 megahertz (MHz). A speed of
7.16 MHz is pretty fast. By comparison, the 65C02 in the Ap-
ple Ilc executes at 1.02 MHz, the Intel 8088 in the IBM PC at
4.77 MHz, and the 80287 in the IBM PC AT at 6 MHz.

Output chips. The Amiga is distinguished by three cus-
tom chips devoted to graphics and sound, which operate in-
dependently from the CPU whenever possible. Designed by
Jay Miner, they greatly reduce the waiting line for the CPU

16

C

C £

- .

I T

1

j :l 4:] aj

-

1 1

N

Introducing the Amiga

and make the Amiga much faster than other 68000 machines
like the Macintosh. Moreover, they are highly specialized and
account for the Amiga’s remarkable video and audio.

During development, the chips bore the proper Victorian
names Agnes, Daphne, and Portia (as well as Agnus, Denise,
and Paula and, inevitably, Huey, Dewey, and Louie). Logi-
cally, they are a unit, but since their circuitry couldn’t fit onto
a single chip, they were divided into three:

» Agnes is the animation custom chip. It contains a mix of
things: the blitter, which quickly draws lines, fills spaces, and
manipulates shapes; the copper, which controls and co-
ordinates the other two chips like a CPU; and a traffic signal
regulating the direct access of memory.

* Daphne is the graphics custom chip. It manipulates the dis-
play on the screen, taking care of two independent screens at
once and coordinating movement of the little sprites.

« Portia not only regulates various ports, but also handles the
four sound channels in the Amiga. Officially, it bears the
five-footed name of “peripherals/sound custom chip.”

The combination of the 68000 and Agnes, Daphne, and
Portia is extremely potent and leads to output of ringing

quality.

Output Devices
Let’s take a brief look at output devices available for the
Amiga.

Video. The Amiga can use the four main kinds of video
display: television and monochrome, composite color, and
RGB monitors.

A television set will work with the Amiga, though, as on
other computers, it has certain limitations. A line of text on TV
can be only 60 characters wide, including margins, so word
processing documents are somewhat narrower. In addition, TV
allows 3616 different colors, rather less than the 4096 of the
color monitor, but still lavish. TV also restricts you to low
resolution, while a monitor lets you use high or low.

The Amiga works with monochrome, composite, and RGB
monitors. The first two plug into the Video port, the last into
the RGB port. The monochrome and RGB offer 80-column
text, and the RGB gives you excellent graphics as well. Com-
modore offers a fine RGB monitor at a reasonable price. Its

17

Chapter 1

screen is 13 inches across diagonally and fairly looms over the
console. You turn it on by pushing an inconspicuous squarish
button labeled “Power,” at which the thin horizontal light
above it goes on. Like the computer, it has a host of vents to
dissipate heat, and the monitor dies if you block them. A
panel along the bottom pulls down to reveal a string of control
knobs, which let you adjust brightness, contrast, and other
factors.

Speakers. The Amiga RGB monitor comes with a speaker
inside it, on the lefthand side. But you are not confined to the
speaker in the Amiga monitor. You can hook the two audio
ports up to stereo speakers and expand the sound. You can
also plug 1/8-inch headphones into the tiny, white-rimmed
opening near the speaker, so if people are trying to work,
study, or sleep nearby, you can still make music or play a rau-
cous game.

The Amiga has a voice synthesis capacity built into its
operating system, and languages like BASIC let you make the
computer speak easily. You can also vary the speed and pitch
of the voice and change it from male to female. The Amiga’s
voice can be made to sound remarkably authentic.

The printer. The Amiga comes with drivers for a number
of different printers and allows you to add other drivers as
they become available. These include daisywheels, dot-ma-
trixes, lasers, a thermal-transfer, and an ink-jet.

The computer runs five daisywheels: The Alphacom
Alphapro 101, the Brother HR-15XL, the Qume LetterPro 20,
the Diablo Advantage D25, and the Diablo 630. The first four
of these range in price from $400 to $795 and are all rather
similar. The last, the Diablo 630, ECS version, is clearly the
most substantial. It can print 200 different type styles at 40
characters per second (cps), and each element is capable of
192 different characters. The printer costs $1,995, and is some-
thing of a standard in the computer world.

Drivers for dot-matrix printers include one for the Com-
modore MPS 1000 (not yet available), one for the Epson JX-
80, and a generic Epson driver for that company’s FX and RX
series printers (and the many other printers compatible with
those models). The JX-80 is distinctive in that it offers color. It
has nine pins, prints seven colors (black, red, orange, yellow,
green, blue, and violet), and sells for about $599.

18

S I

L

C C C

)

i
L

]

)

1

-~
-

R

]

)

Introducing the Amiga

Okidata’s color Okimate 20 is the thermal-transfer that
works with the Amiga. It boasts a very low cost, around $268,
though to use it with the Amiga, you must also buy a special
cartridge. Its printhead has 24 tiny heat elements, so its quality
is outstanding. It gives you black and seven colors, and about
100 shades. It prints any kind of text or graphics, at either 80
cps or 40 cps. However, like other thermal-transfers, it eats up
ribbons very fast. A black-and-white ribbon used for text may
last for 75 pages, but a color ribbon used for graphics is use-
less after 8 to 15 pages.

The color Diablo C-150 is a very quiet, trim ink-jet printer
weighing about 24 pounds and costing about $1,250. It yields
brilliant quality, but it will probably mainly be used for graph-
ics. It prints text at a painful 20 cps, as slow as a daisywheel.
The printer also requires special paper, and setting it up can
be an intricate business, though documentation is very clear.

Laser printers supported include Hewlett-Packard’s
LaserJet and LaserJet Plus. Though the manual doesn’t men-
tion it, Apple’s LaserWriter will also run at once on the
Amiga, since it was designed to be fully compatible with the
Diablo 630 daisywheel. This famed machine prints eight pages
a minute, yields resolution of 300 dots per inch, and has 512K
of ROM and 1.5M of RAM, far more than most personal
computers. It costs $5,999.

Printer control. The Amiga not only comes with many dif-
ferent drivers, but also lets you specify how the printer will work.
It does so with the second and third screens of Preferences.

The second screen, the Printer Requester, takes care of the
basics. You use it to indicate which printer you are using and
the port it’s plugged into, as well as such properties of print-
out as page size, margin size, number of characters per inch
(pitch), and number of lines per inch (spacing). In addition,
you can set print quality (draft or letter) and paper type (fan-
fold or single).

Once past the Printer Requester, you can move onto the
third screen: the Printer Graphics Requester. Here you can
play with the image before it reaches the printer. Shade, for
instance, lets you choose among printing in color; in gray-
scale, which renders colors as shades of gray; and in black-
and-white, which prints colors as black or white according to
their brightness level. You set that line of demarcation with

19

Chapter 1

the Threshold scale across the top of the screen. In addition,
the Image option lets you reverse the picture like a photo-
graphic negative, and Aspect allows you to print sideways.

Emulation

Prior to the Amiga’s introduction, it was common knowledge
that it would emulate the IBM PC by hardware. The device
even had a name: the Trump Card. At the unveiling, however,
spectators at Lincoln Center saw it emulate with a software
program, The Transformer. There was general amazement.

To use the $99 Transformer, you insert the 3%2-inch disk
into the Amiga and soon see the MS-DOS screen, which
presents various menu offerings. You then insert either an-
other 3%-inch disk into the Amiga’s internal drive, or a 5%-
inch disk into an external drive. At this point, the Amiga
essentially loses its identity. It becomes an IBM PC. In ex-
change for running PC software, you forfeit the Amiga’s
graphics, audio, multitasking, and other bounties.

The Transformer does not yield a 100 percent complete
IBM PC, at least not yet. Its first version was incompatible
with programs requiring the IBM graphics upgrade card,
though its second version, due by early 1986, was to fix this
problem. In general, Commodore has not specified how
compatible The Transformer will be, beyond saying that it will
work with the 25 bestselling PC programs. That’s a lot, and
for most people compatibility should not be a serious concern.

Currently, The Transformer seems to run IBM software at
around 60 percent of speed. Its disk access is about the same
as the IBM’s, but certain other features like graphics are about
half as fast. The lag isn’t appreciable with word processing,
since this application doesn’t depend on high velocity. On the
other hand, large spreadsheets with a great deal of calculation
will cause the emulating Amiga to bog down a bit. To minimize
this problem, Commodore has announced a $100 hardware
accelerator. This slender device fits onto the expansion bus and
consists of extra RAM and a Program Assistance Logic (PAL)
chip, which together boost the performance of The Transformer.

Video Powers
The Amiga can display 4096 colors at up to 640 X 400 and
has powerful built-in animation features as well.

Colors. The Amiga achieves 4096 colors because it can di-

20

. C

-
~

C

,

(C

(

(-

C

1

Introducing the Amiga

)

]

]

rect the cathode in the CRT to shine its electron beam at 16
different intensities. Each intensity causes a phosphor pixel to
glow in a different shade. Since the beam strikes red, green,
and blue pixels, which fuse to make the onscreen colors we
see, the Amiga can render 162 colors, or 4096.

The computer stores code for these colors in 32 color reg-
isters which are 12 bits wide. At this size, each can hold 4096
numbers and hence denote any hue in the color pool. The
contents of each pixel’s address in RAM refer to one of these
registers, which in turn refers to the color. This approach is
called color indirection, and it saves a great deal of internal
memory.

There’s an obvious price for it. Color indirection limits the
Amiga to 32 colors onscreen at any one time. We can load any
color we want into a particular register and so pick and choose
among the 4096, but we cannot get more than 32 at once. Yet
32 is more than most computers allow and does not really
hinder enjoyment of the machine. Moreover, color indirection
is not just a space saver. It is also a performer.

For instance, if you change the hue in one register, you
instantly change it everywhere it appears on the screen. It can-
not be otherwise, since every pixel that refers to that register
must take on the new color. It’s a significant power and makes
for lightning color changes.

Color indirection also makes it easy to draw single lines in
multicolored segments. You arrange for the paintbrush to paint
in the color of one register for, say, half a second, then in an-
other for half a second, and so on, so that as you pull it across
the screen, it leaves a trail of many tints. In Graphicraft, this
technique is called Cycle Draw.

Moreover, you can make onscreen colors shiver with
iridescence. You arrange to move the contents of register 1
into register 2, and 2 into 3, and so on, like musical chairs,
and the colors on the screen will cycle rapidly. The effect can
be dazzling. You can alter the colors of concentric circles so
they seem to be expanding, or, if you have painted a line with
Cycle Draw, you can make the color segments appear to travel
rapidly down the line. And if you get the entire screen flash-
ing, it looks like a light show.

Resolution. The Amiga has two main levels of display,
low and high, which differ principally in resolution and number

21

Chapter 1

of onscreen colors. Each type has two subsets of resolution/
color capacity: normal and interlaced.

In low resolution, the normal mode is 320 pixels wide X
200 high. If you move up a notch to the interlaced mode, the
computer will spray the screen with twice as many lines and
give a picture 320 pixels wide X 400 high. Normal requires
40K of memory, interlaced 80K. In both modes, the palette can
hold 32 colors.

At high resolution, the Amiga grows resplendent. High
resolution also has two levels, normal and interlaced, and both
allow a palette of 16 colors. Normal is 640 pixels wide X 200
high, and interlaced, 640 X 400, the finest resolution the
Amiga has, and among the finest of any personal computer.
Normal requires 64K and interlaced, 128K.

The Amiga’s two interlaced modes work somewhat like
interlaced fingers. In the first 1/60 second, the CRT electron
gun covers a 320 X 200 or 640 X 200 screen, leaving empty
spaces between each line it strikes. In the second 1/60, it cov-
ers another 320 X 200 or 640 X 200, but it shifts slightly
down to fill in the empty lines. It’s an easy task for the
Amiga’s video chip. The phosphor glow from the first display
lingers on, and the mind knits the two images into one.

That’s the theory, anyway. In practice, the phosphors from
the first spraying have started to fade by the time the second
one arrives. Hence, the two images don’t quite merge. The re-
sult is quiver, slight but noticeable. There’s no way to avoid it
short of reconstructing the monitor so that it shows images
faster than 60 times a second. The Macintosh uses this ap-
proach, but of course it displays only in black and white.

There is actually a third type of resolution, called hold
and modify. Like low resolution, it comes in either 320 X 200
or 320 X 400. However, it lets you put the entire 4096 colors
in your palette at once. Hold and modify works on a com-
pletely different basis from color indirection. Basically, it is a
" relative rather than absolute system. It defines each pixel in
terms of the pixel just before it. Hence, it holds the previous
value long enough to modify it and get the new value. It
seems poorly suited for animation and other shifting images
and will thus probably be used mainly for static pictures.

Playfields. The Amiga’s screen is more than just the
product of its colors and resolution levels. Its graphics chips

22

 C

(-

I

L

(-

(-

e

1

]

)

]

)

1

-

]

]

Introducing the Amiga

give it special powers. They confer a structure on the screen
and grace it with brilliant prowess in animation.

The first and most obvious element of that structure is the
playfield. A playfield is essentially an independent screen, the
same width as the screen itself, but of variable height. Two
playfields are available on the CRT, and each can have eight
different colors.

Playfields have interesting properties. First, one playfield
can have priority over the other so that it lays over it. At the
same time, parts of the dominant playfield can be transparent,
so you can look through and see what’s happening on the
playfield below. This characteristic fits playfields well for
games. In Skyfox, for instance, one playfield, the cockpit, can
have transparent spaces through which you view the second
playfield, the hostile world around. Both work together to
heighten the effect of soaring over countryside.

Sprites. Sprites originated as a hardware solution to the
difficulties of animation. They are small objects that move
across the playfields. A sprite can be 16 pixels wide, that is,
1/20 of the screen in low resolution. It can also be as tall as
the screen. The Amiga offers you eight of them, and you can
get more by reusing some on the same screen. Each pixel of a
sprite can have one of four colors. It’s also possible to attach
two sprites to each other, making one sprite with the capac-
ities of two, and hence with a range of 16 different colors.

Sprites have several features in common with playfields.
First, you can give them a hierarchy so that one will always
appear atop another. Indeed, you can have up to seven layers
of priority. In addition, you can make one of their colors
transparency, so you can see through one sprite onto another.
In fact, in some ways you can think of the playfield as simply
a large sprite and vice versa. They have different hardware
backgrounds, but they can work in very similar ways.

Animation. The Amiga’s talent for animation really
brings it alive. A computer screen can glitter like a handful of
gems, but it’s still static. Motion gives it past, present, and fu-
ture, as well as verve and élan, and it can bewitch us.

The Amiga has two animation systems, one for playfields
and one for sprites.

The blitter—part of the Agnes chip—controls playfield
animation and confers noble capacities upon it. It works at

23

Chapter 1

high speed, always a blessing for animation, and transfers im-
ages from one place to another. Such an operation means
moving code about in the bitmap, and blitter is a telescoping
of “block image transferrer.”

Animation on the playfield works like this. A programmer
indicates an image on a background. The image and back-
ground are saved in memory. The programmer can then tell
the blitter to move the image around as a block. With play-
field animation, you can shift several dozen objects as well as
fill spaces quickly and draw lines at an eye-popping one mil-
lion pixels per second.

The second kind of animation is sprite animation. It works
faster than playfield animation and generally controls the dart-
ing about of sprites. Intriguingly, if you run out of sprites, you
can always use the blitter to set up other independent,
spritelike objects, of which there is no limit. Playfield anima-
tion is so good and can replicate sprite animation in so many
ways that the latter has lost some of its importance.

Both types have a built-in collision detection capacity. The
Amiga can tell when two sprites, a sprite and a playfield, or
two playfields have bumped into each other. It’s a useful fea-
ture. In games, objects strike each other all the time, and if the
hardware can sense the impact, the software can move on to
better things, making the game richer and faster. Collision
detection also lets you confine roving objects to a prescribed
territory.

Aegis Animator, from Aegis Development of Santa Monica,
California, was one of the first animation programs for the
Amiga, and it shows what such software can do. It rests on
the concept of the tween, an automatic, mobile transition from
one figure to its successor. For instance, if you move a polygon
from the left side of the screen to the right, the tween will
play back the shift from start to finish. It’s like a tiny movie.

Tweens on the Aegis Animator are not limited to simple
shifts. They can move objects on complex courses, rotate them
around three different axes, expand or shrink them, change
their shapes and colors, and move them in front of or behind
other objects. A single tween can do all these things, and you
can link tweens together to form a longer piece of animation.

The software has further capacities. It permits control over
global features, such as speed of playback. It also has a story-
book mode. Storybook divides the screen into nine equal

24

-

[

-

0

-

I S

[

[

]

]

B

-]

i

-~
'

B

]

Introducing the Amiga

compartments, where you can cut and paste objects from one
animation into another or splice whole animations together.

The genlock interface. The genlock interface is a means
‘of working with external video signals, like those from a VCR,
video camera, or even another computer. With a genlock inter-
face, you can read in a video frame, like, say, a picture of
Molokai, and use it as a background for graphics on your
Amiga. It's a powerful way to manipulate images.

Audio Powers

The Amiga also offers splendid audio, which can enhance al-
most everything the computer does. Not only does the Amiga
yield sound of very high quality, but it lets you manipulate it
in a remarkable number of ways.

The Amiga can act as a digital music synthesizer. That is,
it can form notes out of their basic constituents by synthesiz-
ing them. Sound is simply waves, and the computer can de-
scribe the waveform of any note by assigning numbers to it
over time. It’s like a connect-the-dots puzzle, where each
number specifies a dot’s position. Link them together and you
get a wave with a particular frequency (pitch), height (vol-
ume), and shape (timbre). You can then feed the signal into a
digital-to-analog converter. The converter turns it into elec-
trical waves, which flow to the speaker and emerge as sound.

The Amiga affords great control over sound. It lets you set
the volume envelope, that is, the loudness trajectory—attack,
decay, sustain, and release—of individual notes. It also gives
you 64 different levels of volume control, a very wide range.
You can also regulate timbre, the quality that distinguishes a
B-flat on an oboe from the same note on, say, a trumpet. In
addition, the Amiga imitates instruments like the vibes with a
realism that is truly startling. Such mimicry is not just a trick.
Retail prices for a set of vibes start at $2,500.

The computer has four independent channels of sound,
and their autonomy is significant. Since you can program each
channel separately, each is technically a synthesizer, and the
Amiga is really a quartet of the devices. You can also combine
channels in pairs to achieve bona fide stereo so that hooking
up two speakers to the audio ports yields more than just extra
volume. And the Amiga does not limit you to four different
sounds. Each channel itself can play multilevel tones, so the
computer can emit a panoply of sounds at once.

25

Chapter 1

You can also use any of these channels as a music se-
quencer. A sequencer is an electronic iristrument that gen-
erates a series of notes over and over again. It’s not much use
on its own, but it has an important role in creating musical
background, especially in rock, which thrives on a sense of
throb beneath the surface. Groups like Tangerine Dream and
Kraftwerk have made extensive use of sequencers.

Moreover, with the proper interface the Amiga can do
sound sampling. It's a marvelous attribute. An audio digitizer
allows you to attach a microphone to the Amiga and play in a
specific sound, for example, of a finger snapping. The Amiga
digitizes the waveform of that sound and stores it. Now it’s
simply one more instrument to the computer, just like the
vibes. You can play out melodies with it, alter its volume en-
velope, send it through filters, and manipulate it generally.
And, of course, you aren’t limited to finger snaps. You can
read in the sound of musical instruments, your own voice, a
cat’'s meow, a washing machine, the Amiga disk drive, any-
thing you want. With several such sounds, you can create a
polyphony of the parlor.

The Amiga also has a built-in faculty for voice synthesis,
male or female, in a range of eight to nine octaves. Its base-
level quality was outstanding for personal computers, though
few people would confuse it with human speech. It tended to
partition diphthongs like oi into oh and ee, and to articulate
those unstressed vowels—Ilike the second i in imitate—that we
in English reduce to a schwa. But programmers are working
with the Amiga on a phonemic level, and it is already
addressing us in very lifelike tones indeed.

Software. At press time, several interesting programs
were in the offing, and they give an idea of the Amiga’s audio
potential.

Musicraft, from Cherry Lane, is a basic synthesizer program.
It gives access to the four sound channels of the Amiga and lets
you control volume, timbre, and the other fundamental ele-
ments of sound. It lets you play on your Amiga keyboard, or,
if you want greater ease and comfort, on a piano-style keyboard.

Harmony, also from Cherry Lane, is an accompaniment
program. It offers a choice of songs, initially from the Beatles
and Lionel Richie. Each has five parts. You sing or play one
part of the tune, and the Amiga generates the four-part
accompaniment. If you speed up, the computer speeds up. If

26

C C C C C

-

(

(-

—

C

1

]

B N

a0

T D

Introducing the Amiga

you play softly, the computer plays softly. You don’t have to
hit each note exactly, since the software deduces your place if
you get close enough. The company planned to sell this prod-
uct for $79.

Texture, another Cherry Lane program, will let you modify
a prior digital recording. You can have eight different tracks
and manipulate any note on any track. For instance, you could
filter out pitches in a range you don’t want, shift the key of
what you’ve recorded, or alter the tempo. It uses graphics to
show you the recorded notes and aid modification. It was to
be priced at $199.

All of this Cherry Lane software is designed to work to-
gether. In addition, the company intended to release a sound
sampling program as well as educational music programs,
such as one to train the ear. It may even offer a voice-library
manager, a database for sounds created by sound sampling.

Cherry Lane will not be the only company selling Amiga
music software. Electronic Courseware Systems plans a line of
educational music software to teach, among other things,
blues, keyboard chords, intervals, jazz, and piano sight read-
ing. Passport Designs, of Half Moon Bay, California, will mar-
ket them as well as issue its own music synthesizer program,
The Music Shop.

The MIDI interface. Finally, the Amiga is compatible
with MIDI, the Musical Instrument Digital Interface. MIDI is a
recently standardized means of communication between syn-
thesizers. It allows you to hook up several of them to your
Amiga and control them all from there.

For instance, if you use MIDI to attach two digital or an-
alog synthesizers to the Amiga, you can play the computer,
and both “’slave” synthesizers will respond to your commands.
You will be playing three machines at once, and since each
may specialize in different timbres, you gain great range. You
can also, if you like, store prerecorded music in the adjunct de-
vices so that it accompanies you. You can thus achieve in live
performance the kind of layered sound you otherwise get only
in a recording studio with multiple tracks. In fact, you can at-
tach up to 16 other devices to the Amiga, including not just
synthesizers but digital drums, which will control the time-
keeping just as a drummer does in a live band.

27

Chapter 1

Moreover, you can create other, even more wide-ranging
effects. J. L. Cooper Electronics, of Marina del Rey, California,
sells a MIDI Lighting Controller, which lets you prerecord
lightning and special effects to synchronize with the music.
MIDI can even allow a good composer to dispense with the
orchestra and record an entire motion picture sound track at
home.

The MIDI interface is a hardware device and does not
come with the Amiga. You have to buy one, for about $60 to
$90. But for music professionals, it’s an open sesame.

The Amiga itself is an open sesame for programmers. It

unlocks an alluring new world, where software can glisten and
sing as never before.

28

C

.

C O

(=

(Z

C

-

C

. - L B g : . .
€D X¥°SA FYRENR R EDR r
8 B B ot S e O B O W BN a o . :
. & /NG i i i i s i i il
‘ T >)) 4

0. Begena,

-

I I R R

BASIC Programming

C.Regena

WP riting a program is a way to get the computer to do
what you want it to do. Amiga BASIC by Microsoft
¥ W is the version of BASIC that comes with the Amiga.
It is a powerful and versatile language that allows the BASIC
programmer to use most of the features built into the Amiga.

If you have programmed in BASIC before, you will find
that Amiga BASIC is very similar to other versions, with addi-
tional commands for some of the special Amiga features.
Graphics and sound have their own commands that add to the
capabilities of Amiga BASIC. .

A program is a set of instructions that tell the computer to
execute a procedure in a certain order. To use the program,
you will need to run it. There are three ways to tell your
Amiga to run a BASIC program which is in memory: Either
click in the Output window, then type RUN and press RE-
TURN; press the right Amiga key and the R key; or use the
mouse to go to the Run Menu and select Start.

To write your own program, you need to have the cursor
in the List window. If you type a statement in the Output win-
dow, it will be executed immediately. If you type a statement
in the List window, it becomes part of the program. If the List
window is not visible, you must either type LIST and press
RETURN, press the Amiga key and the L key, or use the
mouse to go to the Windows menu and select Show List. To
move the cursor from one window to the other, position the
mouse arrow in the desired window and click the left mouse
button once. On programs that require user interaction, the
cursor will need to be in the Output window (click the arrow
there even though you may not be able to see the cursor).

Unlike many other versions of BASIC, Amiga BASIC does
not require line numbers. If a line does need to be referenced,
it may have either a line number or a line label. To use a line
label, type a word and then a colon. To reference the line, do
not type the colon.

WHEEL:
When you need to reference the line, use
GOSUB WHEEL

31

Chapter 2

A line number must be an integer from 0 through 65529
and must start in the leftmost column of the line. A line label
must start with an alphabetic character, but it may contain any
combination of letters, numbers, and periods (other than re-
served words). It may be up to 40 characters long and must
end with a colon. A program can have both a line number and
a label.

With computers that use line numbers on every state- -
ment, it doesn’t matter what order you type lines in—the
computer will rearrange the lines in numeric order to list or
run the program. In Amiga BASIC, the program will stay ex-
actly as you type it in the List window. Spaces and blank lines
are not suppressed. Line numbers do not need to be in ascend-
ing order. If you need to add a line, you can move the cursor
up to the proper place, press RETURN to get an extra line,
then type the new line. The physical order of the lines is
important.

Variables

Amiga BASIC allows several types of variables. String variable
names end with the dollar sign (such as ADDRESS$) and may
include letters, numbers, and symbols. Strings may be up to
255 characters long.

Integer variable names end with the percentage sign (such
as SCORE%) and indicate a whole number.

Numeric variables may be either single-precision or double-
precision. The single-precision number may be seven or fewer
digits, be in exponential form denoted by E, or end with an
exclamation point (such as 123! or N!). The double-precision
number has eight or more significant digits, is designated by D
in exponential form, or ends with a pound sign (such as 123.45#
or X#). You may prefer to designate variable names at the
beginning of a program with DEFSTR, DEFINT, DEFSNG, and
DEFDBL.

Numeric functions are usually three-character abbrevi-
ations followed by a numeric expression in parentheses. The
expression may be a constant, a variable, an arithmetic ex-
pression, or another function. Although the examples given
here are functions used in simple PRINT statements, the func-
tions can be assigned to variables or can be combined in other
numeric expressions including other functions. All functions
involving angles use the radians rather than degrees.

32

L L

C & =

C & C £«

D I N

-}

[I R R

1

BASIC Programming

The remainder of this chapter is divided into three parts.
The first and largest is a dictionary of Amiga BASIC words
with explanations of how they are used and sample state-
ments or programs illustrating their use. Following the dic-
tionary of words are sections on file processing commands and
subprograms.

In all the function descriptions in this chapter n represents
a numeric expression and s represents a string expression.

Optional parameters are shown in brackets; x and y in-
dicate numeric expressions for coordinates in graphics. If a
program is given, it will start with REM and end with the
END statement.

ABS(n)

The ABS(n) function returns the absolute value of the numeric
expression 7. If the number is positive or zero, the value re-
turned is equal to that number. If the number is negative, the
value returned is equal to the positive value of the number.
PRINT ABS(28) ‘

PRINT ABS(0)

PRINT ABS(—5.2)

AND

AND is used in IF-THEN statements to combine relational ex-
pressions for a conditional branch. AND indicates that both
relations must be true for the condition listed after the word
THEN to be executed. AND may also be used to show a true
or false condition as numeric results: —1 is true; 0 is false.

IF SC=10 AND P$=“RED” THEN PRINT “RED WINS!”
C=(A=0) AND (B=0):PRINT C :

AREA and AREAFILL

AREA (x,y) or AREA STEP (x,y)

AREAFILL [m] where m is 0 or 1

AREA specifies points in graphics to be joined in a polygon,
then AREAFILL joins those points and fills in the polygon
with the default solid color or a specified pattern (see PAT-
TERN). AREA statements may use actual numbers or variables
specifying the coordinates or may use the STEP option which
gives relative distances. AREAFILL 0 is the default value and
fills the area with the area pattern. If pattern has not been

33

Chapter 2

specified with the PATTERN statement, the fill is solid.
AREAFILL 1 inverts the fill pattern.

REM AREA

AREA (10,20)

AREA (50,70)

AREA (25,90)

AREA (10,20)
AREAFILL
X=50:Y=20

AREA (X,Y)

AREA STEP (10,20)
AREA STEP (—10,20)
AREA STEP (—10,—20)
AREA STEP (10,—20)
AREAFILL 1

END

ASC(s)

ASC(s) returns the ASCII code for the first character of the
string s. ASCII is the American Standard Code for Information
Interchange. (See Appendix A.)

REM ASC
PRINT “KEY PRESSED”,“ASCII"”
PRINT
AGAIN:
K$=""
WHILE K$="":K$=INKEY$:WEND
PRINT K$,ASC(K$)
GOTO AGAIN
END

ATN (n)

ATN(n) returns the arctangent of the numeric expression .
Arctangent n means the angle whose tangent is n and will be
expressed in radians.

PI=4*ATN(1):PRINT PI
D=ATN(R)*(180/(4* ATN(1)))

BASE
See OPTION BASE.

BEEP
BEEP is a simple command that will make a short sound and
blink the screen.

34

I B

[

_,
—

.

(-

[

(-

—

]

BASIC Programming

REM BEEP

BEEP:INPUT “ENTER A NUMBER"”,N
BEEP: PRINT N

END

BREAK ON, BREAK OFF, BREAK STOP

BREAK ON will activate ON BREAK error trapping. BREAK
OFF ends ON BREAK error trapping. BREAK STOP suspends
ON BREAK error trapping until the next BREAK ON
instruction.

REM BREAK
BEGIN:
BREAK ON
ON BREAK GOSUB YOUSTOPPEDIT
UNTILSTOPPED:
PRINT “PRESS AMIGA AND PERIOD KEY”
GOTO UNTILSTOPPED
YOUSTOPPEDIT:
FOR A= 1to0 20
PRINT “THANKS”
NEXT
BREAK OFF
RETURN
END

See also ON BREAK.

CALL
CALL is described in a separate section entitled “Sub-
programs,” following the dictionary of Amiga words.

CDBL(n)

CDBL converts a number to double-precision so that it can be
used in calculations with other double-precision numbers.
Keep in mind that the accuracy will still be just to the place
the original number was.

REM CDBL

X=SQR(12)

PRINT X,CDBL(X)

END

CHAIN
CHAIN is described in a separate section entitled “File
Processing,” following the dictionary of Amiga words.

35

Chapter 2

CHRS$ (n)
CHR$(n) returns the string character corresponding to the
ASCII code number 7. (See Appendix A.)

REM CHRS$

FOR C=50 TO 70
PRINT C,CHR$(C)

NEXT C

END

CINT (n)

CINT(n) converts the number 7 to an integer by rounding. The
INT function does not round, but gives the closest whole
number smaller. The FIX function truncates the decimal por-
tion and returns the whole number portion.

PRINT CINT(3.6),CINT(3.2)
PRINT CINT(—3.6),CINT(—3.2)

CIRCLE
CIRCLE [STEP)x,y),1[,c][5.€][,a]

The CIRCLE command draws a circle with the center point at
the coordinates (x,y) and a radius r. You may also specify a
color number c. The next two parameters are a start and end
point for drawing arcs. The last parameter is the aspect, or the
height/width, ratio which will enable you to draw an ellipse;
¢, s, ¢, and a are optional.

To use the start and end options, imagine a round clock
face. A start of zero would be at three o’clock, and the angle
goes counterclockwise. The angle is expressed in radians. For
example, starting at zero and using = radians, or 3.14159, as
the ending point will draw a half circle.

If you include the STEP option, the x and y coordinates
will be relative to the most recent pen position. For instance, if
the pen position is (5,5), CIRCLE STEP(30,10) will place the
pen at (35,15). ‘
REM CIRCLE
CIRCLE (50,30),30
CIRCLE (50,60),20,3
CIRCLE (50,100),20,1,0,2
CIRCLE (90,60),25,1,,,3
CIRCLE (140,60),25,2,,,.2
END

36

-

[

I N

i [e R

)

BASIC Programming

CLEAR

CLEAR sets all numeric variables to zero and string variables
to null.

REM CLEAR

X=>5:PRINT X

CLEAR

PRINT X

END

CLEAR can also specify an amount of memory to be allo-
cated to the Amiga BASIC data area and to the system stack.
This is used to change default values, for example, when you
want to use less of the default space allocated for graphics and
more for numeric data.

CLEAR, BASICdata, stack

The BASICdata numeric expression must be 1024 bytes or
greater. The stack expression also must be 1024 bytes or
greater. If you leave out the data allocation, but use the stack,
the commas must indicate the places.

CLEAR, 25000 + 40960
CLEAR, 40000,2000
CLEAR, 6000

CLNG (n)

CLNG(n) converts a number 7 to a LONG integer by rounding.
Ordinarily when a number over a million is printed, it is -
printed in exponential form—a number times ten to a power,
which is in E format on this computer. If you prefer to keep

" all the significant figures and write the number as we are used

to seeing it in decimal form, you can use a LNG number. No-
tice, too, that if you have a fraction, this function rounds
rather than truncates the decimal portion.

REM CLNG
FOR T=1TO 6

READ X(T)

PRINT X(T),CLNG(X(T))
NEXT T
DATA 15032312,222.345,254445887.78
DATA —22777654.67,—3,—22997636.32
END

37

Chapter 2

CLOSE
CLOSE is described in a separate section entitled ‘‘File
Processing,” following the dictionary of Amiga words.

CLS

CLS CLearS the active Output window (erases everything)

and starts the cursor back at the top left corner of the Output
window. Although when you run a program in Amiga BASIC
the screen automatically clears at the beginning, you may
want to use CLS later in the program to start with a new clean
screen.

REM CLS
FOR X=1 TO 20
PRINT TAB(X);X
NEXT X
FOR D=1 TO 2000:NEXT D
CLS
END

COLLISION
COLLISION may be either a function or a part of another
statement.

COLLISION(—1) returns the number of the window
where collision identified by COLLISION(0) has occurred.

- COLLISION(0) returns the number of an object that col-
lides with another object.

COLLISION(), where i is the object ID number, returns
the number of an object that collided with object i. If the value
returned is negative, the collision was with a window border.
The top border is indicated by —1, the left border by —2, the
bottom border by —3, and the right border by —4.

ON COLLISION GOSUB L, where L is a line number or
label, goes to the subroutine when a collision occurs.

COLLISION ON turns on event trapping declared by the
ON COLLISION GOSUB statement.

COLLISION OFF ends event trapping.

COLLISION STOP prevents execution initiated by the
ON COLLISION-GOSUB statement until COLLISION ON is
executed again.

See OBJECT for a sample program using COLLISION.

38

. C L

[

C . O & &

B

-l

N

-]

]

]

]

BASIC Programming

COLOR

COLOR f,b defines a foreground color and background color
to be used in text printing, drawing, and filling areas. In the
default screen, you may use colors 0, 1, 2, and 3, where 0 is
blue, 1 is white, 2 is black, and 3 is orange. These colors will
be different if you changed them with Preferences. The SCREEN
statement lets you change the number of colors up to 32.

REM COLOR

PRINT “HELLO”

COLOR 2,1:PRINT “BLACK”

COLOR 3,1:PRINT “COLOR 3 ON 17
COLOR 2,3:PRINT “BLACK ON ORANGE"
COLOR 0,1:PRINT “I LIKE THIS”

COLOR 1,0

END

CONT

CONT continues a program after you have stopped it by
either pressing CTRL-C or the Amiga and period keys or used
the mouse to Stop the program from the Run menu. To try
this command, run this short program, then stop it. Put the
cursor in the Output window and type CONT and press RE-
TURN. You can also continue the program by using the
mouse and selecting Continue from the Run menu.

10 REM CONT

20 X=X+4:PRINT X
30 GOTO 20

40 END

COS (n)
COS(n) returns the cosine of an angle n where n is expressed
in radians.

REM COS

LINE (0,100)-(640,100)

FOR X=0 TO 32 STEP .1
Y=100—(40*COS(X))
LINE (X*20,Y)-(X*20,100)

NEXT X

END

39

Chapter 2

CSNG (n)

CSNG(n) is a numeric function that converts the numeric ex-
pression n to a s1ngle precision number for calculatlons with
other single-precision numbers.

N#=500000.3572
PRINT N#,CSNG(N#)

CSRLIN
CSRLIN is a function that returns the current row position of
the cursor, or the line the cursor is on.

REM CSRLIN
RANDOMIZE TIMER
FOR J=1 TO INT(10*RND)+1

PRINT TAB();“HI";
NEXT J
PRINT:PRINT “CURSOR IS ON ROW";CSRLIN
END

See also POS.
CV], CVL, CVS, CVD

These words are described in a separate section entitled “File
Processing,” following the dictionary of Amiga words.

DATA

DATA statements store data in a program. The data list may
be numbers or strings, and each item must be separated by
commas. If a string contains leading or trailing spaces, or
embedded commas, it must be in quotation marks.

A DATA statement may be placed anywhere in the pro-
gram. As the program is run, DATA statements are ignored
until a READ statement is executed, which assigns the data to
variables. The first READ statement starts to read items at the
beginning of the first DATA statement. There must be enough
DATA to satisfy the READ statement or you will get an error
message. The DATA type, either string or numeric, must
correspond to the variable names in the READ statement. Data
items are read in order by the READ statement unless a RE-
STORE statement is used.

The computer always reads the data in order, no matter
how the DATA statements are typed. The computer keeps
track of a pointer so it knows which is the next data item to be

40

C L

(-

. C

L

1

B R R

11

Bl

BASIC Programming

read. If the READ statement does not use all the DATA items,
the extra ones are ignored.

REM DATA
FOR T=1TO 10
READ AGE,N$
PRINT N$,AGE
NEXT T
DATA 16,CHERY,14,RICHARD,11,CINDY
DATA 9,BOB,5RANDY,.2,BRETT,11,ED
DATA 9,BILL,7,JOHN,3,JIMMY
END

See also READ and RESTORE.

DATES$

DATES$ returns the date in the computer in the format xx-yy-
zzzz (month-day-year). You may change the date by selecting
Preferences from the Workbench and changing the printed
date.

V$=DATE$
PRINT DATES$

DEF

DEF FN defines a function to use later in the program. It can
save typing if you have to use it several places in the program.
A function must be defined before it is used. A function can
call another function.

REM DEF

DEF FNR(N)=INT(N*RND)+1
PRINT FNR(8)

D=6:PRINT FNR(D)

END

DEFDBL

DEFDBL defines the specified variables to be double-precision
numeric variables, so you do not need the # sign at the end of
the variable name. You may specify either the complete vari-
able name or the first letter or a range of first letters. If you
specify only one letter (or range of letters), any variable name
starting with that letter will be defined.

DEFDBL N,LENGTH,WIDTH

41

Chapter 2

DEFINT

DEFINT defines the specified variables to be integers and will
round the integers. (The INT function does not round.) If you
do not define numeric variables, the default is single-precision
floating point (noninteger).

REM DEFINT

DEFINT I-M

1=2.45:]=3.2:KKK=3.75

PRINT LJ, KKK

END

DEFLNG

DEFLNG defines the specified variables to be LoNG integers
and will round the integers. Ordinarily, after seven digits, a
number is written in exponential format, or a number times En
indicating the number times 10 to the n power. DEFLNG will
keep the numbers in normal written form, but allows for more
digits.

DEFLNG X,Y,Z

See also CLNG.

DEFSNG ,

DEFSNG defines the specified variables to be single-precision
numeric variables, so you do not need to use the ! sign in vari-
able names.

DEFSNG AVERAGE,SCORE

DEFSTR

DEFSTR defines the specified variables to be string variables,
so you do not need to use the dollar sign in variable names.
You may specify either the actual variable name or the begin-
ning letter or range of letters.

DEFSTR B-D

DEFSTR PERSON,PHONE

DELETE

DELETE is used as you're programming or editing to delete or
erase program lines. You may specify either a line number or
a range of line numbers.

DELETE 60 Deletes line 60
DELETE 300-500 Deletes lines 300 through 500

42

C C

I

30

1

]

)

)

]

-

)

_]

]

BASIC Programming

DELETE -100 Deletes all lines through line 100
DELETE 700- Deletes lines from line 700 to end

DIM

DIMensions arrays of numbers. If you use a variable with a
subscript, the computer automatically reserves 11 elements
(numbers 0-10). If you want to conserve memory for fewer
elements or if you need to reserve memory for more elements,
you do so with the DIMension statement.

DIM D(6),A(30)

DIM N$(3,6,4)

ELSE

ELSE is used in an IF-THEN statement to give a command if
the condition is not true. ELSE may be followed by a line
number, label, command, or another IF statement. The IF-
THEN statement does not have to include ELSE.

10 REM ELSE

20 PRINT “PRESS A LETTER”

30 A$=INKEYS$:IF A$="" THEN 30

40 PRINT A$;” — ”;

50 A=ASC(A$%)

60 IF A<65 THEN PRINT “NO”:GOTO 30

70 IF A>123 THEN PRINT “NO”:GOTO 30

80 IF A>90 AND A<97 THEN PRINT “NO” ELSE PRINT “YES”
90 GOTO 30

100 END

See also IF-THEN.
END

END stops execution of the program. If the cursor is in the
Output window, the message “Ok” appears. If the cursor is in
the List window, the List window reappears. The END state-
ment is actually optional because the computer will stop
execution when there are no more statements to execute. You
may also wish to use END to prevent the computer from go-
ing to later lines such as subroutines. END differs from STOP.
The program can be continued after STOP, but not after END.

EOF
EOF is described in a separate section entitled “‘File Process-
ing,” following the dictionary of Amiga words.

43

Chapter 2

EQV

EQV (equivalence) is used as a logical operator in conditional
statements. A EQV B returns true if both A and B conditions
are true or if both A and B are false. If one condition is true
and one is false, EQV will return false.

REM EQV

A=14:B=7:C=2

IF A=B*C EQV A>0 THEN PRINT “1 TRUE”
IF A>B EQV C>B THEN PRINT “2 TRUE”

IF B>A EQV C>A THEN PRINT “3 TRUE”
END

See also IF-THEN.
ERASE

ERASE a where 4 is an array name allows you to erase arrays
within a program. One use of this statement is to conserve
memory as a program is running. After an array has been
used, ERASE can be used to erase the need for that memory.
ERASE may also be used if you want to redimension arrays.
ERASE NS$ indicates that you no longer need the N$ array.

REM ERASE

DIM A(15)

WIDTH 20

FOR C=1 TO 15
A(Q)=C:PRINT A(C);

NEXT C:PRINT

ERASE A:DIM A(18)

FOR C=1 TO 18
PRINT A(C);

NEXT C

END

ERL, ERR, and ERROR

ON ERROR GOTO [, where ! is a line number or label, is a
way to do your own error trapping. The line number is the
first line of the error-handling subroutine. Once an error oc-
curs, the subroutine is executed. You need to use RESUME to
exit from the error-handling routine.

ERROR 7 is a way to simulate the occurrence of a BASIC
error, or you can define your own error codes; 7 is an error
code number. If you define your own, you should use a code
that is not already assigned (check the appendix of your manual
for a list of the error codes). If you have a statement ERROR 17,

44

(-

(—

[~

[

(-

[~

(-

(-

-

]

]

]

N

)

]

.. .

]

BASIC Programming

the program will stop with the error message corresponding to
the code number n.

ERL contains the line number where the error occurred.
ERR contains the error code for the last error. The following
program illustrates these BASIC words. ON ERROR GOTO 50
says that if an error occurs go to line 50, which is the begin-
ning of the error-handling subroutine. Line 10 asks you to in-
put a number. We are setting up an error condition in line 15.
If the number entered is greater than 1000, then ERROR 220,
which says the error code is 220. Line 35 also tests for an er-
ror condition. Line 50 says that if the error code is 220, then
print the error message that we defined. The next line says if
the error occurred in line 35, then RESUME 30, which means
to go back to line 30 and continue the program. If the error
did not occur in line 35, RESUME 10 sends the computer back
to line 10.

REM ERROR

ON ERROR GOTO 50

10 INPUT “ENTER A NUMBER ”,N
15 IF N>1000 THEN ERROR 220

20 PRINT “OK”

30 INPUT “NOW YOUR NAME ”,N$
35 IF LEN(N$)>8 THEN ERROR 220
50 IF ERR=220 THEN PRINT “TOO LARGE"
IF ERL=35 THEN RESUME 30
RESUME 10

END

If you want to use an error message that regular BASIC
already has, you can use ERROR n, where 7 is a defined code
for an error message. For example, try different values for T in
this program (such as T=8 or T=15).

REM ERROR2
T=9

ERROR T
END

EXP (n)

EXP(n) calculates the exponential function, which is the
mathematical number e raised to the nth power, where e is
approximately 2.718281828.

PRINT EXP(2)
EE=EXP(A)

45

Chapter 2

FIELD
FIELD is described in a separate section entitled “File Process-
ing,” following the dictionary of Amiga words.

FILES

FILES prints a directory of files on a disk without affecting
your BASIC program. If you want to see a directory of a dif-
ferent disk, use FILES “DF0:”. If you want to see a
subdirectory of a different disk, use FILES “DFO:title”.

FILES
FILES “DF0:”
FILES “DF0:BasicDemos”

FIX (n)

FIX(n) truncates the fractional part of a number and returns the
whole number part without rounding. FIX(n) is similar to
INT(n), but INT(n) takes the next lower number, or the number
to the left on the number line, so for negative numbers the
number is the next lower number. FIX(n) simply truncates.
CINT(n) converts to an integer by rounding, and DEFINT also
rounds.

PRINT FIX(2.5),FIX(3.22),FIX(4.75)
PRINT FIX(—2.5),FIX(—3.22),FIX(—4.75)

FN
See DEF.

FOR and NEXT

FOR and NEXT form statements that include a loop of instruc-
tions to be performed a given number of times. These are
often called FOR-NEXT loops. Each FOR statement must have
a corresponding NEXT statement, and each NEXT statement
must have a preceding FOR statement. The form is

FOR ¢ = a TO b [STEP s

[loop statements]

NEXT [c]

where ¢ is an index or counter and 4 is the first number (or
numeric expression) assigned to the counter c. The computer
executes the statements after the FOR statement down to the
NEXT statement with c=a. At the NEXT statement, c is in-
cremented by one, and control goes back to the statement just

46

(B N .

[

(-

[~

(.

L [

]

]

7]

]

]

]

i T

7

1

BASIC Programming

after FOR. The loop is performed repeatedly until the limit b is
exceeded.

If you wish to increment by a number other than one, use
STEP. The increment may be positive or negative and may be
a fraction. The NEXT statement may leave off the index. FOR-
NEXT loops may be nested, but you do need to be careful that
the FOR statements are matched properly with the NEXT state-
ments. NEXT may combine the counters, such as NEXT c¢,d.

A FOR-NEXT loop with no statements between the FOR
statement and the NEXT statement will simply be counting,
which creates what seems like a pause in the program.

Several of the other sample programs in this chapter use
FOR-NEXT loops of various forms. The following program
illustrates several types of loops. The first loop uses T as a
counter to print three blank lines. The FOR-NEXT loop with A
as the counter uses a negative step size, so the numbers for
the counter will be counting backward. The FOR-NEXT loop
with B as a counter is nested in the A loop. This loop uses a
step size of a fraction. Notice that your limit does not have to
be the exact number for the counter; the loop stops when the
limit is exceeded.

REM FOR

FOR T=1TO 3
PRINT

NEXT T

FOR A=6 TO 2 STEP —2
FOR B=1 TO 3 STEP 4

PRINT A;"*’;B;"=";A*B

NEXT B

NEXT A

END

FRE (n)

FRE(—1) returns the number of bytes of free memory avail-
able in the entire system. FRE(—2) returns the amount of stack
space that has never been used. If is not —1 or —2, the
function returns the amount of free memory in BASIC’s data
segment. You may put either a constant or a variable in for
the expression n. With the cursor in the Output window, you
may type PRINT FRE(—1) to see how many bytes are left.
You may want to check the size of a program by printing
FRE(—1) before and after it is written or loaded.

PRINT FRE(X)

PRINT FRE(0)
47

Chapter 2

GET
See PUT.

GET#
GET# is described in a separate section entitled ““File Process-
ing,” following the dictionary of Amiga words.

GOSUB and RETURN

GOSUB I, where [is a line number or a label, tells the com-
puter to GO to a SUBroutine starting at line I, then RETURN

when it finds the command RETURN. When a RETURN is en-

countered, the program returns to the statement directly
following the GOSUB statement. GOSUB is used when a
procedure is required several places in a program. You can
have a GOSUB within another subroutine. You may enter a
subroutine at different points. To go back to the main pro-
gram, there must be a RETURN statement.

REM GOSUB
GOTO MAIN
110 PRINT
120 PRINT “PRESS THE SPACE BAR TO CONTINUE.”
130 WHILE INKEY$<>" ":WEND
CLS
RETURN

MAIN:

PRINT “HAVE INSTRUCTIONS HERE"”
GOSUB 110

PRINT “FIRST PROBLEM INTRODUCED"”
GOSUB 120

PRINT “ANSWER PRESENTED”

GOSUB 110

END

GOTO

GOTO I, where ! is a line number or label, transfers program
execution to the specified line rather than going to the very
next statement. You may go to a previous statement, a later
statement, or the same statement.

REM GOTO

GOTO FIRST

120 PRINT “THIS IS SECOND”
GOTO LAST

FIRST:

48

L C =

(-

[

(-

[

[

]

]

N

]

]

]

]

]

]

BASIC Programming

PRINT “THIS IS FIRST”
GOTO 120
LAST:
PRINT “THIS IS LAST”
PRINT
PRINT “PRESS CTRL-C TO STOP”
190 GOTO 190
END

HEXS$ (n)

HEX$(n) returns a string representing the hexadecimal (base
16) equivalent of the decimal (base 10) number or expression
n. When you work with machine language programs, you may
want to use hex numbers. The PATTERN command also uses
hex numbers. Hex numbers are preceded by &H and consist of
the numerals 0-9 and letters A-F, which represent the next

numerals. Hex constants must be in the range of 0 through
FFFF.

REM HEX$

BEGIN:

PRINT “ENTER A DECIMAL NUMBER”
INPUT “TO BE CONVERTED”;D

PRINT

PRINT “THE EQUIVALENT HEXADECIMAL"”
PRINT “VALUE IS ";HEX$(D)

PRINT:PRINT

GOTO BEGIN

END

See also OCT$ for an example program.

IF

IF starts a conditional branching command. There are several
forms:

IF test THEN line

IF test THEN action

IF test THEN linel ELSE line2

IF test THEN linel ELSE action2
IF test THEN actionl ELSE line2
IF test THEN actionl ELSE action2
IF test THEN actionl ELSE IF ...

where test is a relational or numeric expression; line, linel, and
line2 are line numbers; and action, actionl, and action2 are

49

Chapter 2

valid commands. The actions may be a series of commands
separated by colons. Instead of line numbers, you can use
GOTO line label.

For the IF-THEN statements, IF the test expression is true,
THEN the program branches to the line specified or performs
the specified action. If the test expression is not true, the pro-
gram goes immediately to the next statement following the IF
statement (next line).

For the IF-THEN-ELSE statements, IF the test expression
is true, THEN the program transfers to the linel specified or
performs actionl. IF the test expression is not true, the ELSE
command transfers the program to line2 or performs action2.

The test expression may contain arithmetic operators, rela-
tional operators, or logical operators. The logical operators are
NOT, AND, OR, XOR, IMP, and EQV. Given tests A and B,
which can be either true or false, NOT reverses the truth.

For example, NOT A where A is true would return false.

AND between two tests requires that both A and B be
true to return a true.

OR says that if either A or B or both are true, it will re-
turn a true.

XOR (exclusive OR) says either A may be true or B may
be true, but not both.

EQYV (equivalence) returns a true if both A and B are true
or if both A and B are false.

IMP is implication. A IMP B returns a true if both A and
B are true, if A is false and B is true, or if both A and B are
false (returns false if A is true and B is false).

10 REM IF

20 A=4B=8

30 IF B=2*A THEN 60

40 PRINT “B<>2*A"

50 GOTO 70

60 PRINT “B=2*A"

70 IF B>A THEN PRINT “B>A" ELSE PRINT “B<=A"
80 PRINT “TRY AGAIN? (Y/N)”

90 A$=INKEY$

100 IF A$="“N" OR A$="n" THEN END
110 IF A$<>"Y"” AND A$<>"y” THEN 90
120 PRINT

130 INPUT “A = ";A

140 INPUT “B = ;B

150 GOTO 30

160 END

50

—

(

C

[

[

-

(-

1

)

-]

]

-]

BASIC Programmihg

See also AND, EQV, IMP, NOT, OR, XOR.

IMP

IMP is a logical operator for implication; it is used to connect
two or more relations and return a true or false value to be
used in a decision such as an IF-THEN statement. A test op-
erand is true if it is not equal to zero and false if it is equal to
zero. Given two test conditions, A and B, the following is the
result of IMP.

A B A IMP B
T T T
T F F
F T T
F F T

A sample statement is
IF X>Y IMP X>Z THEN GOTO XYSUB
See also IF.

INKEY#$

INKEY$ detects whether a key has been pressed on the key-
board. This command is useful if you want your user to re-
spond with just a one-key answer, such as yes or no (Y/N), a
multiple-choice response, or a number or letter. The cursor
must be in the Output window. The INKEY$ method has less
chance of user error than INPUT because you can ignore un-
wanted keys. :

The key pressed is not printed on the screen. INKEY$
does not wait for a key to be pressed. If no key is pressed
when the INKEY$ is checked, then INKEY$ has the value of a
null string.

REM INKEY$
BEGIN:
PRINT
PRINT “CHOOSE:”
PRINT “ 1 FIRST OPTION”
PRINT “ 2 SECOND OPTION”
PRINT “ 3 THIRD OPTION”
PRINT “ 4 END PROGRAM”
PICK:
C$=INKEY$:IF C$=*" THEN PICK
IF C$<“1” OR C$>“4" THEN PICK
PRINT

51

Chapter 2

ON VAL(C$) GOTO ONE, TWO, THREE,FOUR
ONE:
PRINT “** FIRST OPTION CHOSEN"
GOTO BEGIN
TWO:
PRINT “** SECOND OPTION CHOSEN"
GOTO BEGIN
THREE:
PRINT “** THIRD OPTION CHOSEN"
GOTO BEGIN
FOUR:
CLS
END

INPUT

INPUT allows the user to enter something as the program is
being run. The computer will receive user input until the RE-
TURN key is pressed. The input must not contain a comma,
because a comma implies more than one value in the INPUT
statement. The LINE INPUT statement does allow commas
(see LINE INPUT). If the variable name for the input value is
numeric and the user enters nonnumeric characters, there will

be an error message and the computer will wait for more input.

INPUT A Receives number

INPUT B$ Receives string

INPUT “PROMPT”;N$ Prints prompt in quotation marks
INPUT “PROMPT”,N Suppresses question mark

REM INPUT

PRINT “WHAT IS YOUR NAME?”
INPUT N$

PRINT:PRINT “HELLO, ";N$
PRINT:INPUT “ENTER A NUMBER";N
PRINT “NUMBER TIMES 2 =";N*2
PRINT

END

INPUT#
INPUT# is described in a separate section entitled “File
Processing,” following the dictionary of Amiga words.

INSTR
INSTR is a function used to locate a certain letter or string
within another string. There are two forms:

52

- C [

[

—

(

L

[4

-

o e R R

)

BASIC Programming

INSTR(s1,52) returns the position of the first occurrence of
string s2 in string s1. The value returned is a number that tells
at which character position s2 starts. If s2 is not found in s1,
the value returned is zero. INSTR(n,s1,s2) starts with the nth
character to search for string s2 in s1.

In the following sample program, D$ is a string listing the
abbreviations for the months. You enter the name of a month,
M$. M$ is changed to the first three letters you enter, then
INSTR searches D$ for the first occurrence of the month name
and returns the month number. If you enter only two letters,
MA, the month could be MAR or MAY, but the first occur-
rence is MAR for the third month.

REM INSTR
D$="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC”
BEGIN:
PRINT
INPUT “ENTER A MONTH "”;M$
M$=LEFT$(MS$,3)
M=(INSTR(D$,M$)—1)/3+1
IF M>=1 THEN MONUMBR
PRINT “NOT IN LIST”
GOTO BEGIN
MONUMBR:
PRINT “MONTH NUMBER ="M
GOTO BEGIN
END

INT (n) A
INT(n) returns the integer value of the numeric expression #.
An integer function considers the integer to be the greatest
whole number less than the given value. If you think of a
number line, the integer value is the first whole number to the
left of the number n. If the number is positive, the value re-
turned is the whole number with the decimal portion trun-
cated. The number is not rounded. If the number is negative,
the value returned is the whole number less than the given 7.
PRINT INT(5.479),INT(5.688)

PRINT INT(0)

PRINT INT(—3.2),INT(—3.6)

See also CINT, CLNG, DEFINT, FIX.

53

Chapter 2

KILL
KILL filename gets rid of or erases the specified file on the
disk. “DFO0:" specifies any disk in the disk drive 0.

KILL “program”
KILL “DF0:TEST”

LBOUND, UBOUND

LBOUND and UBOUND are described in a separate section
entitled “Subprograms,” following the dictionary of Amiga
words.

LEFTS$

LEFT$(s,n) is a string function that returns the left n characters

of the string s, or the first n characters; n must be a number
zero or greater. If the number n is greater than the length of
the string s, only the string s is returned (no added blank
spaces). The example

LEFT$(“HI THERE,”2)
returns HI.

REM LEFT$

PRINT “ENTER A WORD”

INPUT W$

F$=LEFT$(W$,5)

PRINT “THE FIRST FIVE LETTERS ARE ";F$
END

See also the sample program for INSTR.

LEN (s)

LEN(s) is a function that returns the LENgth of a string s, or
the number of characters in s. For example, the LENgth of a
string “HELLO"” is 5.

REM LEN

PRINT “ENTER A WORD OR PHRASE.”
INPUT S$

PRINT “THE LENGTH OF YOUR INPUT IS”
PRINT LEN(S$);“CHARACTERS.”

PRINT

END

54

L

(-

C =

(-

(-

[

(

-

J

V—

BASIC Programming

LET /
LET is used to assign values of expressions to variables in a
program. The word LET is optional with this version of BASIC
and can be omitted.

LET A=6 assigns the value of 6 to the variable name A.
Another way to write the command is A=6.

LET B=54
LET X=X+Y

LIBRARY

LIBRARY is used to open a machine language subprogram

from BASIC. See Chapter 5 for examples of how to use LI- |
BRARY “graphics.library”.

LINE

The LINE command is the basic drawing command to draw a
line from one point to another, where the points are specified
in coordinates. The coordinates are the number of pixels from
the upper left corner of the screen. An (x,3) point of (10,20)
would be a point 10 pixels to the right and 20 pixels down.
The following example program shows several forms and op-
tions in the LINE command. The basic LINE command is to
draw from the first point to the second:

LINE (x1,y1)-(x2,y2)

In the program below, lines 2 and 3 illustrate this basic
form. Line 4 lists just the second point. The computer will
start drawing from the second point in line 3 to the point on
line 4.

Line 5 shows how you can specify a color after the points.
The statement on line 6 illustrates the B option, which draws a
box using the first point as the upper left corner of the box
and the second point as the lower right corner of the box. The
coordinates for any two opposite corners may be specified.

The BF option fills in the box with the specified opposite
corners. The default value is a solid box. The fill may be
changed with the PATTERN command (see also PATTERN). If
you do not use a color number, you still need to use the right
number of commas to indicate the B or BF option.

1 REM LINE
2 LINE (20,20)-(60,50)
3 LINE (30,60)-(70,85)
4 LINE -(80,70)
55

Chapter 2

5 LINE (90,90)-(140,80),2

6 LINE (20,110)-(40,130),3,B
7 LINE (50,120)-(75,150),2,BF
8 LINE (90,115)-(110,140),,BF
9 END

With just the LINE graphics command, you can create
beautiful designs. Draw the lines in certain patterns or in a
certain sequence. The following program draws lines using
three nested FOR-NEXT loops.

REM LINES
X1=320:Y1=0:X2=320:Y2=199
M=X1:N=X2
FOR J=1TO 5
FOR C=0 TO 3
FOR D=1 TO 8
LINE(X1,YD-(X2,Y2),C
LINE(M,Y1)-(N,Y2),C
X2=X2+5
N=N-5
NEXT D,C,J
END

Now try the program when you add M=M+5 to the line
with N=N—5. Try the program when you also add X1=X1—5
to the line with X2=X2+5. Try some graphics with the B and
BF options as well.

LINE INPUT
LINE INPUT allows any character (except RETURN) that is on
the keyboard to be input into a string. You may include a
prompt in quotation marks like the regular INPUT statement.
On a regular INPUT statement asking for one item, if you
enter a comma you will get the “Redo from start” message.
LINE INPUT accepts the comma as part of the string. LINE
INPUT allows only one string variable.
Leading blank spaces on INPUT are ignored, but with
LINE INPUT they are part of the string. INPUT prints a ques-
tion mark, but LINE INPUT does not.

REM LINE INPUT
INPUT W$
PRINT W$

LINE INPUT X$
PRINT X$

END

56

C C

—

[

(

—_—

(

A R R

c

-

1]

i

!

-}

BASIC Programming

LIST

LIST lists or reprints your program in the List window. It is
equivalent to the Show List option from the Windows menu.
There are several forms of the command that are acceptable if
you use line numbers or labels.

LIST lists the complete program. If you have a long pro-
gram, the List window will show the section of the program
where you were last working.

LIST line lists from line number or label. The line speci-
fied will appear at the top line of the List window.

LIST 100-200
LIST -200
LIST 200-
LIST BEGIN

LLIST
LLIST is just like LIST, but prints the listing on a printer.

LOAD
LOAD filename loads or reads into BASIC memory the speci-
fied file in quotation marks from disk into the computer. If
you are using a different disk, you need the DFO0: specification
or the title of the disk. When you put programs in subdirectories
or folders, you must enter the filename with the subdirectory
or folder name (LOAD subdirectory /filename).

If you add ,R the program will load and run. Here are
some examples of the LOAD command:
LOAD “STATES”
LOAD “DF0:TYPE1”
LOAD “REGENA:NOTES”
LOAD “BOOK:LOAN.BAS”
LOAD “DF0:BasicDemos/MUSIC”,R

LOC
LOC is described in a separate section entitled ‘“File Process-
ing,”” following the dictionary of Amiga words.

LOCATE

The LOCATE r,c command is used as an efficient way to print

at a certain place on the screen or to relocate the cursor rather

than printing blank lines and TABulating to a certain column.
The first parameter listed is the row number, 7, and ¢ is

57

Chapter 2

the column number to start printing; (1,1) is in the upper left
corner of the screen.

LOCATE 5,10:PRINT “MESSAGE”

would start printing MESSAGE in the fifth row from the top
and in column 10.

LOF
LOF is described in a separate section entitled ““File Process-
ing,” following the dictionary of Amiga words.

LOG (n)

LOG(n) returns the natural logarithm of 7, or log of n with the
base e. Remember that the argument or expression # must be
greater than zero or you will get an illegal function call error
message. The logarithm and exponential functions are inverses:

X=LOG(EXP(X)) and X=EXP(LOG(X))
Example statements are

PRINT LOG(2)
X=LOG(Y—2)
IF LOG(N)<0 THEN 700

LPOS (n)
LPOS(n) returns the position (column number) of the print-
head of the printer. The value of n does not matter.

IF LPOS(0)>60 THEN LPRINT CHR$(13)

LPRINT

LPRINT may be used just as the PRINT statement, but sends
the printing to a printer. You may use TAB and SPC,
constants, and variables. You may also use LPRINT USING
with the same format specifications as PRINT USING.

LPRINT “HELLO”
LPRINT TAB(10);"NAME";SPC(20);"PHONE"

LSET
LSET is described in a separate section entitled “File Process-
ing,” following the dictionary of Amiga words.

MENU, MENU ON, and MENU RESET
‘Push the right mouse button and move toward the top of the
screen. The top highlighted line will change and menu titles

58

[

P

{

-

-

(=

C

-

{=

-

1

BASIC Programming

]

I

2

]

]

.

1

—

.

will appear. As you touch a title, a menu will drop down with
several options. As you move the mouse downward, the sub-

titles will be highlighted. To make a selection, you release the
right mouse button.

When you work with Workbench or with Amiga BASIC,
these menus are set, but from BASIC you can put in your own
menus so that as you are running your own program the user
has menus for your program.

The form for creating a menu is

MENU menu-id,item-id,state [,title]

The menu-id is the position of the menu selection on the
menu bar and can be a number from 1 through 10. If you se-
lect 1, for example, your menu will replace the first (leftmost)
menu. In the following sample program, we’ll replace the sec-
ond menu with our own custom menu.

The item-id is the relative position of the selected item in
a menu and can be a value from 0 through 20. Item-id 0 refers
to the entire menu. The other numbers are for the choices un-
der the main topic.

The state is 0 to disable, 1 to activate, or 2 to activate and
place a checkmark. The title is a string for the title of the item
chosen. These titles will be what appears when the mouse
moves to the menu bar.

MENU ON enables event trapping or use of the ON
MENU GOSUB statement. You may choose to use the ON
MENU GOSUB method or the method shown below.

There are two functions involved with MENU. MENU(0)
is similar to INKEY$ and is reset to zero every time it exe-
cutes. It returns a number which corresponds to the number of
the last menu bar selection made or which main menu has
been chosen.

MENU(1) returns a number of the last menu item chosen.

MENU RESET restores the original Amiga BASIC menu
bar. In this case we are replacing the Edit menu, but when the
program ends, MENU RESET puts back the Edit menu.

The following program illustrates how these MENU state-
ments work. The second main menu will be replaced by our
custom menu. It will have the main title of FACTORS with
five subchoices. MENU ON activates the event trapping, so
we can detect when the menu has been chosen. MENU(0) re-
turns a number of the menu chosen. We will ignore the other
menus and act only if our new menu is chosen, Menu 2.

59

Chapter 2

MENU(1) returns which item was chosen in the list. When
you choose to end the program, MENU RESET restores the
original menu of Amiga BASIC.

REM MENUS

MENU 2,0,1,“FACTORS”
MENU 2,1,1,“All Factors”
MENU 2,2,1,“Prime Factors”
MENU 2,3,1,”Lowest CM”
MENU 2,4,1,“Greatest CF”’
MENU 2,5,1,”End Program”
MENU ON

ACTIVE:

M=MENU(0)

IF M<>2 THEN GOTO ACTIVE
CHOICE=MENU(1)

ON CHOICE GOSUB AL,PRIME, LCM GCF E
GOTO ACTIVE

AL: PRINT “ALL FACTORS"”
RETURN

PRIME: PRINT “PRIME FACTORS"”
RETURN

LCM: PRINT “LOWEST COMMON MULTIPLE”
RETURN

GCF: PRINT “GREATEST COMMON FACTOR”
RETURN

E: PRINT “END PROGRAM”
MENU RESET
END

See also ON MENU.

MERGE
MERGE is described in a separate section entitled “File
Processing,” following the dictionary of Amiga words.

MID$
MID$(s,n,m) is a string function that returns a segment of

string s starting with character number 7 and m letters long.

For example,
MID$(“THIS IS AN EXAMPLE",6,5)

would return IS AN. Here are some other example statements:

60

(

-

—

-

1

1

1 1

[

-}

.

2]

1

-

N

BASIC Programming

A$=MID$(X$,],3)
PRINT MID$(N$,2,6)
IF MID$(A$,X,Y)="CLUE” THEN GOSUB 500

MKI$, MLK$, MKS$, MKD$
These functions are described in a separate section entitled
“File Processing,”” following the dictionary of Amiga words.

MOD

a MOD b returns the remainder when the numeric expression
a is divided by b. For example, 11 MOD 4 returns the value 3.
Eleven divided by 4 equals 2 with a remainder of 3 so the
value returned is 3. Here are some example statements.

PRINT 11 MOD 4
IF X MOD Y <>0 THEN PRINT “NOT”

MOUSE

MOUSE statements are used when you are using the mouse
arrow to receive input rather than the keyboard. An arrow ap-
pears on the screen. As you move the mouse, the arrow
moves in that direction. There are several MOUSE commands
and functions in Amiga BASIC that relate to the mouse and
the position of the arrow. The MOUSE ON statement activates
event trapping of the pressing of the left mouse button. Re-
lated to this command is the ON MOUSE-GOSUB statement
which directs the program for events.

MOUSE OFF disables the ON MOUSE event trapping.

MOUSE STOP suspends mouse event trapping until the
next MOUSE ON statement is executed. With MOUSE STOP,
event trapping continues but the ON MOUSE-GOSUB state-
ment is not executed. Event trapping does slow program
execution; therefore, if the program no longer needs to read
the button, MOUSE OFF is preferred to MOUSE STOP.

The MOUSE(n) functions are listed in your Amiga BASIC
manual in detail. This function returns values that indicate
whether the left mouse button was pressed and information
about the position of the arrow. The function parameter n may
be a number from 0 through 6.

MOUSE(0) returns the status of the left mouse button.

0 indicates that the button is not currently down and has
not been pressed since the last MOUSE(0) function call.

61

Chapter 2

1 indicates the button is not currently down but has been
pressed once.

2 indicates the button has been pressed twice.

—1 indicates the button is being held down after clicking
once—which usually means the mouse is moving.

—2 indicates the button is being held down after clicking
twice.

MOUSE(1) is the x coordinate (horizontal) of the mouse
pointer the last time the MOUSE(0) function was executed.

MOUSE(2) is the y coordinate.

MOUSE(3) returns the x coordinate the last time the left
button was pressed before MOUSE(0) was called.

MOUSE(4) returns the y coordinate.

MOUSE(3) and MOUSE(4) are used together to locate the
starting point of a mouse movement.

MOUSE(5) returns the x coordinate of the mouse pointer
when MOUSE(0) was executed if the button was down when
MOUSE(0) was called. If the button was up the last time
MOUSE(0) was called, MOUSE(5) returns the coordinate of
the pointer when the button was released.

MOUSE(6) returns the y coordinate. These two values are
used to track the mouse as it is moved and to determine the
coordinates where movement stops.

The following example programs illustrate the use of
some of these MOUSE statements. The first short program
simply checks the position of the mouse when the button is
pressed. MOUSE(0) is used to check whether the button is
pressed. The program stays at this line until the value of the
function is not zero. When you press the left button, the value
is no longer zero and the program continues. MOUSE(5) and
MOUSE(6) are used to determine the ending x coordinate and
y coordinate, and these coordinates are printed. You may
move the mouse to various positions to see the coordinates
when you press the left mouse button.

1 REM MOUSE1

2 WHILE MOUSE(0)=0:WEND

3 PRINT MOUSE(5);”,”;MOUSE(6)
4 GOTO 2

5 END

Following is a short program that shows how you can
draw by pressing the left button and moving the mouse

62

C C

——

(

=

[

_

]

]

o

1

-]

]

)

1

BASIC Programming

around. Line 20 defines X and Y to be integers using DEFINT.
Line 30 waits until the left mouse button is pressed. When the
button is pressed, line 40 checks the current X coordinate with
MOUSE(1) and the current Y coordinate with MOUSE(2) and
returns the values X and Y. These coordinates are used in the
PSET command in line 50 to turn on a point—place a white
dot on the blue screen. Line 60 branches back to line 30 to
keep checking the mouse button.

10 REM MOUSE2

20 DEFINT X,Y

30 WHILE MOUSE(0)=0:WEND
40 X=MOUSE(1):Y=MOUSE(2)
50 PSET (X,Y)

60 GOTO 30

70 END

See also the sample program in PUT for moving an object
with the mouse.

NAME
NAME filenamel AS filename2 changes the name of a disk file
from filenamel to filename2.

NAME “TEST” AS “TRIAL"”
NAME “DF0:WORK"” AS “DF0:DRAWING”

NEW

NEW erases the BASIC program currently in memory and al-
lows you to start or load a new program. There will be no
more statements stored in the computer. All numeric variables
return to zero. If you have been working on a program and
made changes, when you type NEW, the computer will first
ask if you want to save the current program. You may use the
mouse to select yes or no before you start your next program.

NEXT

NEXT is the last statement in a FOR-NEXT loop. NEXT in-
crements the loop counter or index. If the index is greater than
the limit in the FOR statement, program control goes to the
statement following NEXT; otherwise, the loop is performed
again (control goes to the statement following FOR). The index
variable name on the NEXT statement is optional unless loops
are nested.

63

Chapter 2

NEXT
NEXT C
NEXT C,D

The following example program illustrates several forms of
the NEXT statement and some nested FOR-NEXT statements.

REM NEXT
FOR M=1 TO 5:PRINT M:NEXT M
PRINT
FOR J=1 TO 2000:NEXT
FOR M=1 TO 5
FOR J=1 TO 3
FOR K=10 TO 20 STEP 2
PRINT M*J*K
FOR L=1 TO 1500:NEXT
NEXT KJM
END

See also FOR, STEP.
NOT

NOT is one of the logical operators in Boolean algebra and is
often used in IF-THEN conditional statements.

NOT 0 -1
NOT -1 =0
NOT n —n—1 (for any number)

NOT reverses the state of a test in an IF-THEN statement.

REM NOT

A=1:PRINT A,NOT A

A=0:PRINT A,NOT A

A=—1:PRINT ANOT A

A=-56:PRINT ANOT A

A=34:PRINT A,NOT A

X=5:Y=6

IF NOT (X<Y AND X*Y=30) THEN PRINT “NOT”
IF NOT X>Y THEN PRINT “SECOND”

END

OBJECT

There are a number of OBJECT words which are described in
detail in your Amiga BASIC manual. They each have to do
with operations and functions of objects. In the statements, id
refers to the object identification number and corresponds with
the ID in an OBJECT.SHAPE statement.

64

L

—

-

(

-

e

[

-

[~

L

[

B N

.

]

J

A

l

]

1

{
i

]

BASIC Programming

OBJECT.SHAPE id,d defines the shape, colors, and loca-
tion of an object with the given ID number. The definition d is
a string which describes the size, shape, and color. The defi-
nition is defined by using the Object Editor utility program
which is on the same disk as Amiga BASIC. In using the Ob-
ject Editor you will save the shape on disk. When you use the
shape in a program, you can define the object with
OPEN “filename” FOR INPUT AS 1

OBJECT.SHAPE 1,INPUTS$(LOF(1),1)
CLOSE 1

OBJECT.X id,n and OBJECT.Y id,n position the object in
the Output window with the specified pixel coordinates. The
functions of OBJECT.X(id) and OBJECT.Y(id) return the current
x and y coordinates of the upper left corner of the object.

OBJECT.VX id,n and OBJECT.VY id,n define the speed of
the specified object in the x and y directions. The speed 1 is

- expressed in the number of pixels per second. The functions

OBJECT.VX(id) and OBJECT.VY(id) return the speed in the x or
y direction, also in pixels per second.

OBJECT.AX id,n and OBJECT.AY id,n define the accelera-
tion of an object in the x and y directions. Here, n is the value
of the acceleration rate in numbers of pixels per second per
second. Acceleration is the change in velocity per time.

OBJECT.CLIP (x1,y1)-(x2,y2) defines a rectangle with op-
posite corners at coordinates (x1,y1) and (x2,y2). Objects cannot
be drawn outside this rectangle. The default value is the cur-
rent Output window.

OBJECT CLOSE [id][,id][...] is used when you no longer
need an object. It frees the memory used by that object. If you
do not specify an id number, all objects in the current Output
window are released.

OBJECT.HIT id [,Me][,Hit] determines collision objects for
the specified object. If you do not specify Me and Hit, all ob-
jects collide with each other and the border. However, you can
use this statement to allow objects not to record certain col-
lisions. Me is a bit mask that identifies the object. Each object
is assigned a different bit in Me. The border corresponds to bit
0. Hit is a bit mask that describes what other objects this ob-
ject can collide with. Both masks are 16 bits. An object collides

65

Chapter 2

with another object if the result of its Hit value ANDed with
the other object’s Me value is not zero. In the following ex-
ample, object 1 can collide only with the border because its
Hit value is 1. Object 2 can collide with objects 1 and 3 be-
cause its Hit value is the sum of the Me values of objects 1
and 3 (10=2+38). Object 3 can collide with the border and ob-
jects 1 and 2 (7=1+2+4).

OBJECT.HIT 1,2,1
OBJECT.HIT 2,4,10
OBJECT.HIT 3,8,7

OBJECT.ON ([id][,id][...] makes the specified object visible.
If an id is not specified, the current Output window will dis-
play all the objects. If the object has already been started with
an OBJECT.START statement, it will begin to move again.

OBJECT.OFF [id][,id][...] makes the specified object in-
visible. The default if no id is listed is that all objects are in-
visible. If an object is started with OBJECT.START, this
statement stops the object and prevents collisions.

OBJECT.PLANES id [,plane-pick][,plane-on-off] sets the
blitter object’s (bob) plane-pick and place-on-off masks, which
can be integers from 0 through 255. The default values are
established by the Object Editor program.

OBJECT.PRIORITY id,n sets priority of an object with
relation to other objects. The priority number 7 is an integer.
Higher priority numbered objects will be displayed in front of
lower priority numbered objects.

OBJECT.SHAPE id1,id2 is the format used to copy the
shape of id2 to idl creating a new object. This method is used
in the sample program following.

OBJECT.START [id][,id][...] sets the object in motion. If id
is not specified, all objects start moving.

OBJECT.STOP [id][,id][...] stops or freezes the motion of
the object. If id is not specified, all objects stop.

To use these OBJECT statements, you need to just sit and
experiment with them. Following is a sample program to get
you started. First load the Object Editor utility program which
is on the Amiga BASIC disk and run it. By the way, you may
want to copy this program onto another disk that you use
specifically for programming your own objects. When you run
the program, you are able to design your own object. When
you get the object the way you want, save it.

66 ,

N B

N

-

-

-

—

I I

[

3

B

]

]

]

—

-]

1

BASIC Programming

To try this sample program, use the Object Editor to de-
sign an object and save it as “DF0:BLOB”. The DF0 indicates
we are saving the object on a different disk from the original
Amiga BASIC disk that we started the session with. Now exit
the program and type in this program, or load it and run it. It
uses the information you saved with the Object Editor to de-
fine the BLOB. You will need to use the disk on which you
saved “BLOB”.

REM OBJECT
OPEN “DF0:BLOB” FOR INPUT AS 1
OBJECT.SHAPE 1,INPUTS$(LOF(1),1)
CLOSE 1

OBJECT.X 1,20
OBJECT.Y 1,50
SX=60:SY=50
OBJECT.VX 1,5X
OBJECT.VY 1,SY
OBJECT.ON

START: OBJECT.START

COLL: K=COLLISION(1)

IF K=0 THEN COLL

IF K=—1 OR K=—3 THEN SY=0BJECT.VY(1):0BJECT.VY
1,—SY:GOTO START

SX=OBJECT.VX(1)

OBJECT.VX 1,—SX

GOTO START

END

I used an OPEN statement to OPEN the file to get the
information about the object you designed using the Object
Editor program. The next line reads the information as a string
with INPUT$(LOF(1),1). OBJECT.SHAPE 1 says to define
shape number 1 with that previously saved file. CLOSE 1
closes this file that we will no longer need.

OBJECT.X and OBJECT.Y define where the object will
start on the screen. SX and SY are the speed numbers which
are used in OBJECT.VX and OBJECT.VY. OBJECT.ON makes
our object visible, and OBJECT.START starts the object in mo-
tion. The routine at the beginning of COLL uses COL-
LISION(1) to see whether the object collided with the border.
If K is zero, there is no collision and the object can keep mov-
ing. If Kis —1 or —3, then the top or bottom border was hit

67

Chapter 2

and the Y velocity needs to be changed; otherwise, the side
borders were hit and the X velocity needs to be changed.
GOTO START continues the program until you choose Stop
from the Run menu or press CTRL-C. After you stop the pro-
gram, you can get rid of the object by typing OBJECT.OFF.

OCTS$ (n)
The OCT$(n) function returns the octal (base 8) value equiva-
lent to the decimal number 7 (integer).

REM OCTS$

INPUT “ENTER A DECIMAL NUMBER"”;N

PRINT

PRINT “THE OCTAL NUMBER IS “;OCT$(N)

PRINT “THE HEXADECIMAL NUMBER IS "“;HEX$(N)
END

ON BREAK

Used to tell a BASIC program where to jump to when a break
is encountered. You can break a program by selecting Stop
from the Run menu, or by pressing either the Amiga and pe-
riod keys, or the CTRL and C keys. ON BREAK requires a
BREAK ON command.

REM ON BREAK
ON BREAK GOSUB STP
BREAK ON

WRTE:

PRINT “I'll KEEP PRINTING THIS UNTIL YOU”
PRINT “STOP ME”

PRINT

GOTO WRTE

STP:

BREAK OFF

FOR I=1to 5

PRINT “NEXT TIME I'LL STOP FOR GOOD”
PRINT

NEXT

RETURN

END

See also BREAK.

ON COLLISION
See COLLISION.

68

i

[

[

[

[

L

,—.

.

11

I I R

1

]

1

BASIC Programming

ON ERROR
See ERL.

ON-GOSUB

ON n GOSUB linel line2,line3,..., tells the computer to eval-
uate the numeric expression n, then branch to a subroutine
starting with linel, line2, line3, and so on, depending on the
value of n. The lines specified may be line numbers or line la-
bels. If n is 1, the program will go to the subroutine starting at
linel. If n is 2, the program will go to the subroutine starting
at line2; if n is 3, GOSUB line3,.... Program control will exe-
cute the subroutine, then return to the line following the ON-
GOSUB statement. See the MENU example program for an
illustration of GOSUB using line labels. You may also use ON
COLLISION GOSUB. ‘

REM ON-GOSUB

BEGIN: PRINT

PRINT “CHOOSE:"”

PRINT “1 GAME ONE”
PRINT “ 2 GAME TWO”
PRINT “ 3 GAME THREE”
PRINT “ 4 END PROGRAM”
PRINT

KEYPRESS:

C$=INKEY$:IF C$="" THEN KEYPRESS

IF C$<“1” OR C$>“4" THEN 4

ON VAL(C$) GOSUB ONE, TWO, THREE, FOUR
GOTO BEGIN

ONE: PRINT “YOU CHOSE GAME ONE”: RETURN
TWO: PRINT “YOU CHOSE GAME TWO"”: RETURN
THREE: PRINT “YOU CHOSE GAME THREE”:RETURN
FOUR: PRINT “END PROGRAM":END

ON-GOTO

ON n GOTO linel line2,line3,..., evaluates the numeric ex-
pression n, then branches according to the value of n. If n is 1
the program goes to linel; if n is 2 the program goes to line2;
if n is 3 the program goes to line3,.... You may specify either
line numbers or line labels or both.

REM ON-GOTO
BEGIN:
PRINT:PRINT “CHOOSE A NUMBER"”

PRINT “123 45"
69

Chapter 2

KEYPRESS:

A$=INKEY$:IF A$="" THEN KEYPRESS

IF A$<“1” OR A$>"5" THEN KEYPRESS

ON VAL(A$) GOTO ONE, TWO,THREE,FOUR, FIVE

ONE: PRINT “ONE”
TWO: PRINT “TWO”
THREE: PRINT “THREE"”
FOUR: PRINT “FOUR”
GOTO BEGIN

FIVE: PRINT “END”
END

ON MENU

ON MENU jumps to a specific subroutine when MENU(0) is a
nonzero value. MENU ON must have been executed for ON
MENU to be active.

REM ON MENU

MENU 3,0,1,For Fun”
MENU 3,1,1,”Quit”

ON MENU GOSUB QUIT
MENU ON

KEEPRINTING:

PRINT “Select Quit from the For Fun Menu to stop.”
GOTO KEEPRINTING

QUIT:

MENU RESET

END

See also MENU.

ON MOUSE
See MOUSE.

ON TIMER

ON TIMER tells BASIC to jump to a subroutine every n sec-
onds. For example, in the following program the subroutine
PRINTIT will be executed every ten seconds. Note that TIMER
ON must be executed to activate event trapping.

-REM ON TIMER

ON TIMER(10) GOSUB PRINTIT
TIMER ON

W=0

WHILE W<200

PRINT W, “WE STOP AT 200"

70

I N N

L

L ¢ C

)

)

)

]

-

)

)

]

-
—

)

_J

)

BASIC Programming

PRINT “AND TAKE A BREAK EVERY TEN SECONDS”
W=W+1

WEND

STOP

PRINTIT:

PRINT:PRINT

PRINT “Another 10 seconds have gone by”
PRINT:PRINT

RETURN

END

OPEN
OPEN is described in a separate section entitled “File Process-
ing,” following the dictionary of Amiga words.

OPTION BASE

OPTION BASE n sets the base for arrays; n may be either 0 or
1, and the default value (not specifying an OPTION BASE) is
0. This means that subscripts start at 0, for example, A(0),
A(1), A(2),.... If you specify OPTION BASE 1, the subscripts
start at 1 and memory is saved if you don’t need the zero ele-
ments. The OPTION BASE statement needs to be executed
before the DIMension statement that defines the arrays.

OPTION BASE 1
DIM A(16),B(16),A%$(16,3),B$(16)

OR

Logical OR is used in IF-THEN statements to combine con-

ditions. One condition OR the other OR both must be true for

the THEN action to take place. More than one OR may be used.
OR differs from XOR in logical operators because XOR

(exclusive OR) says one or the other condition, but not both,

must be true for the THEN action to take place.

REM OR

1 PRINT

INPUT “ENTER A NUMBER ;X

INPUT “ENTER ANOTHER NUMBER ";Y
IF X<Y OR X<Y*2 THEN 6

PRINT “X>=Y OR X>=Y*2":GOTO 7

6 PRINT “X<Y OR X<Y*2"”

7 PRINT

PRINT “TRY AGAIN? (Y/N)”

INPUT A$

IF A$="Y" OR A$="y” OR A$="YES” THEN 1

71

Chapter 2

IF A$=“N" OR A$="“n" OR A$=“NO” THEN 8
PRINT “SORRY, DON’T UNDERSTAND”
GOTO 7

8 END

PAINT ,

PAINT (x,y),h[,b] fills in an area with “paint,”” or a hue, h,
starting from the point designated by coordinates (x,y) and go-
ing to the border color b.

The following short program illustrates the PAINT com-
mand. The WINDOW command defines a WINDOW with the
type of 24 (so you can close it after you have run the pro-
gram). The window’s label is PAINT, and the size of the win-
dow is designated by coordinates. The next line draws a circle,
then a line is drawn. Both of these are drawn with the color 3.
The first PAINT command specifies coordinates in the top part
of the circle and says to paint with color 3. The second PAINT
command uses color 2, which is black, and paints to the or-
ange border, color 3.

REM PAINT

WINDOW 2,“PAINT”,(20,10)-(150,100),24
CIRCLE (65,55),40,3

LINE (20,10)-(150,100),3

PAINT (70,40),3

PAINT (40,50),2,3

END

PALETTE

PALETTE n,f1,f2,f3 is used to define new colors. If you don't
like the standard colors, you may change the colors using
Preferences on the Workbench, or in BASIC you can use the
PALETTE command. Think of the PALETTE command as
using an artist’s palette and mixing colors. For each of the four
possible colors, or paint buckets, you can mix a combination of
red, green, and blue. The first parameter, 7, is a bucket num-
ber. The f1, f2, and f3 numbers may be fractions from 0
through 1. Black is 0,0,0, or no colors, and white is 1,1,1, or a
mixture of all colors. In order, the numbers are for the amount
of red, green, and blue in your bucket.

The following program illustrates the PALETTE command
by drawing four boxes of the four colors. PALETTE 0, or the
background color, is changed to 0,0,0, which is black. PAL-
ETTE 1, which is the default drawing and printing color, is a

72

~ L

,.

c

(.

(-

(-

(2

(- [

[

1

]

)

)

]

S I B

]

BASIC Programming

mixture of 0,0,1. PALETTE 2 is 0,1,0. PALETTE 3 is 1,0,0.

REM PALETTE
PALETTE 0,0,0,0
PALETTE 1,0,0,1
PALETTE 2,0,1,0
PALETTE 3,1,0,0
FOR C=0TO 3
LINE (C*20,80)-(C*20+20,120),C,BF
NEXT C
END

Now try some different fractional mixtures in the palettes.

PALETTE 0,.1,.8,.8
PALETTE 1,.3,.2,.4
PALETTE 2,4,.1,.6
PALETTE 3,.8,.5,0

PATTERN

PATTERN is used to change the pattern of a line or an area
that is filled with AREAFILL or the BF option in the LINE
statement. The default patterns are solid. However, you may
designate any pattern you like. You may use graph paper to
draw out a pattern of filled-in squares and then convert each
row to its hex equivalent. The pattern numbers start with &H,
then continue with the hex pattern numbers.

The PATTERN command may specify a hex number for a
line or an array for an area. The following short program illus-
trates how PATTERN can change from the solid pattern to a
defined pattern. The array needs to be dimensioned before it
is used. The PATTERN statement defines a line pattern, then
the area array. Note that the line pattern also affects the cursor
pattern. If you happen to use zeros in the hex pattern, the
cursor may disappear. The LINE commands illustrate the pat-
tern in a line and in a filled box. When you use NEW for an-
other program, these patterns are no longer in effect.

REM PATTERN
DIM P%(3)
P%(0)=&HF0F0
P%(1)=&HA6A6
P%(2)=&H5555
P%(3)=&H3333
PATTERN &H5533,P%
LINE (0,90)-(100,90)
LINE (10,100)-(100,150),,BF
END

73

Chapter 2

PEEK, PEEKL, PEEKW
Each of these functions returns a value store at the indicated
memory location in the range 0-16777215.

PEEK returns an integer from 0 through 255.
PEEKL returns a 32-bit value (long-integer word).
PEEKW returns a 16-bit value (short-integer word).
REM PEEK

A$="COMPUTE!"

FOR I= 0 TO LEN(A$)—1

A=PEEK(SADD(A$)+1)

PRINT A,CHR$(A)

NEXT

END

REM ADDRESS OF EXEC LIBRARY
PEEKL(4)
END

REM PEEKW

A%=25

PRINT PEEKW(VARPTR(A %))
END

"POINT

POINT (x,y) is a function that returns the color number of a
point designated by the coordinates (x,y) in the current Output
window. A value of —1 is returned if the point is not in the
window. In the following example program, a rectangle of or-
ange is drawn. The first point in question is within the rectan-
gle and so returns a color number 3. The second point is not
in the rectangle and returns the background color 0. This func-
tion may be used in calculations or in IF-THEN conditions.

REM POINT

LINE (20,20)-(10,150),3,BF
PRINT POINT(30,50)
PRINT POINT (10,180)
END

POKE, POKEL, POKEW

Each of these commands writes a value at the indicated mem-
ory location. The format is POKE a,n (POKEL a,n; POKEW a,n)
where g is a memory address in the range of 0 through
16777215, and n is a value. These commands should be used
with care; changing memory can cause your system to crash.

74

C C

.

[

(-

-

[

(-

B I

]

)

]

BASIC Programming

POKE writes an integer from 0 through 255.
POKEL writes a 32-bit value (long-integer word).
POKEW writes a 16-bit value (short-integer word).

POS (n)

POS(n) is a function that returns the current cursor column po-
sition; n is a dummy variable and may be anything. The first
column is 1. The range of the returned numbers depends on
the WIDTH command for the columns available. CSRLIN re-
turns the row position. You may want to check the POS(n) and
use the information in IF-THEN statements or later PRINT
statements. In this sample program, the computer does some
printing, then checks the position of the cursor.

REM POS

FOR J=1 TO 20

PRINT TAB(J);STRING$(],42);

NEXT J

P=POS(N):C=CSRLIN

PRINT:PRINT “CURSOR ENDED AT”;P;C
END

PRESET

PRESET should be thought of as Point-RESET. PRESET (x,)
resets the point designated by the x and y coordinates to the
background color or erases a point that was previously set or
drawn. Sometimes graphics can be drawn more quickly by fill-
ing in a solid area or drawing lines and circles, then resetting
certain points—rather than setting many points.

The following program fills in a rectangle with the BF op-
tion of LINE and then resets several points to the background
color. Only a few points are reset, so you will have to look
carefully to see them.

REM PRESET

LINE (10,10)-(100,100),,BF
PRESET (30,40)

PRESET (80,40)

PRESET (55,55)

PRESET (54,65):PRESET (55,65)
PRESET (56,65):PRESET (55,66)
END

75

Chapter 2

PRINT and PRINT USING

PRINT is the command to display something on the screen in
text. The computer can do many operations, but you can’t ac-
tually see them until something is output to the screen with a
command such as PRINT. There are many forms that may be
used in printing, and constants or variables may be printed.

* LPRINT will print to the printer, and PRINT USING for-
mats printing.

PRINT separators are the comma and the semicolon. The
sample program illustrates the use of both of these.

To print a string, enclose it in double quotation marks.
The sample program illustrates printing of variables with sepa-
rators, plus the TAB and SPC functions. PRINT statements are
used in many of the other sample programs.

REM PRINT

A=3B=-5
A$="GRANT”:B$="CHRISTINE"”
PRINT A

PRINT AS$;” ”’;B$

PRINT A$,B$

PRINT “12345678901234567890"
PRINT TAB(5);FIVE”;TAB(12);B
PRINT TAB(2)A$SPC(6)B$

END

See also SPC and TAB.

PRINT USING “f”list prints an item or list according to a
specified format “f.” Different formats are available for num-
bers and strings. In numeric output, the # sign indicates place-
ment of a digit. Numbers are right-justified and rounded
rather than truncated. Combinations of these formats may be
used, and you may add other characters to be printed within
the quotes.

####.# Prints numbers rounding to one decimal place.
$$## ## Prints a dollar sign; two decimal places.

#HH#HH Prints an integer.
e 22 Prints leading asterisks to fill the field.
###— Prints trailing minus sign on negative numbers.

+### Prints leading plus or minus sign.
#####, # Inserts commas every third place.

REM PRINT USING
A=123.432:B=-3.5:C=2:D=25.78
PRINT USING “###";A

76

L L

[[

,
~

L

-

(-

(-

[

C

]

)

]

-~

)

_

BASIC Programming

PRINT USING “###";B

PRINT USING “###";C

PRINT USING “###";D

PRINT USING “ $$###.##";A,B,C
PRINT USING “###—";A,B,C,D
PRINT USING “**####.#";A
PRINT USING “**####.#";B
PRINT USING “**####.#";,C
PRINT USING “**####.#";D
END

PRINT USING can help make formatting printed strings
much easier. Strings are left-justified. An exclamation point (!)
indicates to use the first character of the string. The am-
persand (&) indicates to print the complete string (no matter
what length). To indicate characters for other lengths, use two
back slashes (\ \). For 2 characters, use two back slashes, but
for more characters, use spaces between the back slashes. The
total length is two for the back slashes plus the number of
spaces between. The sample program first uses 3 characters
with “\ \”, then 11 characters in the format.

REM PRINT3
N$(1)="KELLY":N$(2)="“JENNIE"
N$(3)="ANGIE":N$(4)="“BRIAN"
N$(5)="LAURIE"”

FOR N=1TO 5

PRINT USING “1"”;N$(N)

NEXT N

FOR N=1TO 5

PRINT USING “\ \";N$(N)

NEXT N

FORN=1TO 5 :

PRINT USING “\ \";N$(N)
NEXT N

PRINT USING “THE INITIAL IS !”;N$(2)
END

PRINT#
PRINT# is described in a separate section entitled ““File
Processing,” following the dictionary of Amiga words.

PSET

PSET (x,y),c sets (turns on) a point with coordinates (x,y) and
color ¢. PSET can be used for drawing detailed graphics using
specified points. If no color is specified, the default is color 1,

77

Chapter 2

which is white. Keep in mind that LINE and CIRCLE are a
quicker way to set points in a certain pattern.

REM PSET

FOR J=10 TO 100 STEP 10
FOR K=10 TO 30 STEP 10
PSET (J,K)

NEXT K

NEXT]

PSET (50,40),2

PSET (50,50),3

END

PTAB

PTAB(n) moves the print cursor to pixel n. Similar to TAB ex-
cept that PTAB uses pixel positions, n can be any number
from 0 through 32767.

PUT
PUT is used with GET to PUT a rectangle of graphics in a dif-
ferent place on the screen. This is handy to move an object.
GET gets a rectangle of information or a picture from a speci-
fied area, then PUT places that rectangle back on the screen in
a different place (the original stays there unless erased).

You need to use a DIMension statement to reserve an ar-
ray large enough to keep track of the information in the
rectangle you will be moving. GET is of the form

GET (x1,y1)-(x2,y2),A

where (x1,y1) are the coordinates of the upper left corner of the
desired rectangle and (x2,y2) are the coordinates of the lower
right corner. A is the array name given to this rectangle. The
rectangle needs to be large enough to enclose the drawing you
want to move.

PUT specifies the coordinates of the upper left corner
where you want to put the array A. The form is

PUT (x,y),A

The following program illustrates the use of GET and
PUT. The second line DIMensions the array D which will be
used to contain the rectangle of information. The next line

draws an ellipse, and the LINE command draws a filled box.
Of course, you can use a more complex drawing. GET gets a

78

I N B O

-

- b

.

L.

[

C

1

]

R

]

]

BASIC Programming

rectangle array D, then PUT copies that rectangle to an area
with the upper left corner at (120,80).

REM PUT

DIM D(100)

CIRCLE (20,20),12,3,,1.2
LINE (15,15)-(25,25),,BF
GET (10,5)-(30,35),D
PUT (120,80),D

END

To move an object on the screen (such as an icon in your
own program), you can use a combination of the MOUSE
functions and the GET and PUT commands. The following
short program illustrates one way this can be done. A simple
picture is drawn on the screen in the upper left corner. GET
stores the information in the array D. The line labeled M:
checks to see whether the left mouse button has been pressed.
If not, the program stays at that line. When the button is
pressed, the current x and y position is checked with
MOUSE(1) and MOUSE(2). If it is different from the previous
position by two pixels, PUT redraws the picture with PUT,
and X and Y are reinitialized.

REM PUT2

DEFINT D,X,Y

DIM D(1000)

LINE (0,0)-(50,50),,BF

CIRCLE (25,25),20,3,,1.5

CIRCLE (25,25),20,2,,,.3

GET (0,0)-(50,50),D

REM CHECK MOUSE

M:

IF MOUSE(0)=0 THEN M

IF ABS(X—MOUSE(1))>2 THEN P
IF ABS(Y —MOUSE(2))<3 THEN M
P:

PUT(X,Y),D
X=MOUSE(1):Y=MOUSE(2)
PUT(X,Y),D

GOTO M

END

RANDOMIZE
RANDOMIZE will vary the “seed” used to choose random
numbers. RND is the function used for random numbers, but

79

Chapter 2

if you use RND in a program and repeatedly run it, you will
notice that the numbers are the same each time. To get a true
mix of random numbers, use RANDOMIZE. The RANDOMIZE
command needs to come before the statement using RND.

If you use just the command RANDOMIZE by itself, the
computer will stop and ask the user to input a number. If the
number input is the same each time, the sequence will be the
same; if the number input is different, the sequence is
different.

RANDOMIZE n with a number specified uses the number
n as a seed. Again, if n changes, the random numbers will
change. To get random numbers each time the program is run
without having to input a number or to change the 7 in the
RANDOMIZE n statement, you can use RANDOMIZE TIMER
because TIMER is a different number each time (depending on
the time elapsed on the computer).

REM RANDOMIZE
RANDOMIZE TIMER
FORD=1TO 5

PRINT INT(6*RND)+1
NEXT D

END

See also RND.
READ

READ is used in combination with DATA statements to assign
constants to variables, either string or numeric. READ v1 will
read the first available data item and assign that value to the
variable v1. The assignments start with the first item in the
first DATA statement. The computer keeps track of a pointer
that indicates which data item will be the next one when an-
other READ is encountered. You may specify any number of
variables in the READ statement. The variables in one state-
ment may include strings, numbers, or a combination, but the
data items must match.

READ will read through the data list item by item in the
order they appear in the program unless a RESTORE state-
ment is encountered, in which case data is restored and can be
used over again, or data may start with a specified line.

For every READ item there must be a corresponding
DATA item. Extra data items will be ignored. Although data
items have been read and assigned, you will not notice any-

80

A U I O

[

(-

(-

(-

L

1

BASIC Programming

]

}

—

]

B N T B

thing unless something is output to the screen using those
variables. Here are some example statements:
READ X,Y,Z

READ T

READ N())

READ AS$,A,B$

Sample program:

REM READ

FOR J=1TO 8

READ N()

PRINT N(J)*2

NEXT]

DATA 5,8,—2,0,1,3,25,13

END

See also DATA and RESTORE.
REM

A REMark statement is a comment that is ignored by the com-
puter. REM statements may be used to document your pro-
gram or to provide explanations to someone who might look
at your listing. While a program is running, you will not notice
the execution of a REM statement. The first lines of all the
sample programs in this chapter are REM statements indicat-
ing the title or the BASIC word illustrated. An apostrophe ()
can also be used in place of REM.

REM TITLE
"THIS WILL BE IGNORED
REM Other characters are allowed &**%

RESTORE

RESTORE is used in conjunction with READ and DATA state-
ments, which assign constants to variables. Ordinarily, the
READ statements read the data items in exact order, starting
from the beginning of the program. The computer keeps track
of which data item has been read and sets a pointer. The next
READ statement uses the next data item, no matter where the
DATA statements are placed in the program. RESTORE re-
stores the pointer to the first data item in the first DATA state-
ment for the very next READ statement, even if the data items
had not been read. RESTORE line restores the data starting
with the specified line (use either a line number or a line la-
bel). RESTORE or RESTORE line always restores for the very

81

Chapter 2

next READ statement even though there may be in-between
statements. Valid statements are

RESTORE
RESTORE 450
RESTORE IDAHO

In this sample program RESTORE 4 starts the data over
with line 4 for the next READ statement. RESTORE starts the
data over from the beginning for the next READ statement.

REM RESTORE

FOR J=1TO 5

READ N():PRINT N()
NEXT]

READ A,B,C:PRINT A,B,C
RESTORE 4

PRINT

FOR J=1TO 6

READ X():PRINT X()
NEXT]
RESTORE:PRINT

FOR J=1TO 8

READ X():PRINT X()
NEXT]

DATA 3,8,7,9,0,6

4 DATA 7,8,2,9,1

DATA 51,2,4,7,9,7

END

RESUME
RESUME line is used to return to a specified line after an ON
ERROR GOSUB or ON ERROR GOTO statement has sent
control to the error-handling routine. It indicates to resume er-
ror checking and normal program execution. You need to
make sure the computer does not go to the RESUME state-
ment before first registering an error.

See ERROR for a sample program.

RETURN

RETURN is used to transfer program control back to the main
program flow from a subroutine. RETURN leaves the sub-
routine and returns to the program to the statement just after
the related GOSUB or ON-GOSUB statement. You need to be
careful that the computer does not encounter a RETURN state-
ment without first executing a GOSUB statement or you will

82

N D

(

(-

(-

[

[

]

]

o)

)

BASIC Programming

get an error message. A subroutine may contain more than
one RETURN statement if there are different exit points. A
RETURN statement may end subroutines entered at different
lines.

See also GOSUB and ON-GOSUB for sample programs.

REM RETURN

GOSUB SAMPLE
PRINT “DONE”

GOTO 9

SAMPLE:

PRINT “SUBROUTINE”
RETURN

9 END

RIGHTS

RIGHT$(s,n) is a string function that returns the last (or right)
n characters in string s; n must be a number zero or greater. If
the number 7 is greater than the length of the string s, only
the original string is returned (no added spaces).

REM RIGHTS$

A$="SAMPLE OF RIGHT$"”
PRINT A$:PRINT

PRINT “RIGHT$(AS,)”,”STRING”
PRINT

PRINT TAB(9);4,RIGHT$(A$,4)
PRINT TAB(9);12,RIGHT$(A$,12)
PRINT TAB(9);0,RIGHT$(A$,0)
PRINT TAB(9);20,RIGHT$(A$,20)
X=8

PRINT TAB(10)“X"”,RIGHT$(A$,X)
END

RND
RND returns a random number which is a decimal fraction
from 0 through 1. RND(n), where 7 is any positive number,
will give a random sequence of different numbers.

RND(n) where n is zero or negative will return the same
number as the last random number chosen.

RND used without a number is the same as using a pos-
itive number.

Since RND returns a fraction and most uses are for whole
numbers, you can use INT to get a random integer. The frac-
tion first needs to be multiplied by a factor to get a number

83

Chapter 2

greater than 1. For example, for random numbers less than 10,
use INT(10*RND). Notice that this will yield numbers from 0
through 9. If you prefer numbers from 1 through 10, use
INT(10*RND)+1. In general, for a range of random numbers
between A and B, use INT(B—A+1)*RND)+A.

In the following sample program, the first eight numbers
are the same each time the program is run. RND is used alone
to show the fractions chosen. RND(0) repeats the last chosen
random number. RANDOMIZE TIMER will change the seed
each time, so a different sequence of random numbers is used
each time the program is run. The next loop of random num-
bers chosen are integers from 0 through 9. The last loop
chooses random numbers from 1 through 6.

REM RND
FOR J=1 TO 8

PRINT RND

NEXT J

PRINT RND(0)
RANDOMIZE TIMER
PRINT

FOR J=1TO 8

PRINT INT(10*RND)
NEXT J

PRINT

FOR J=1TO 5

PRINT INT(6*RND)+1;
NEXT J

END

RSET
RSET is described in a separate section entitled ““File Process-
ing,” following the dictionary of Amiga words.

RUN

RUN is the command to start running a program or executing
a program from the beginning. RUN line will start execution at
the specified line number. A line label is not allowed in the
RUN statement. RUN filename will load a program from the
disk and start running it.

RUN

RUN 450

RUN “DF0:ALGEBRA”

84

L C

[

-

(

(=

(-

L

[

]

BASIC Programming

]

)

]

o

]

3

1

-

N

)

]

SADD
SADD(s), where s is a string, will return the address of the first
byte of that string. ‘

REM SADD
A$="This is a string”
B=SADD(AS%)

PRINT B

PRINT CHRS$(PEEK(B))
END

See PEEK for another sample program.

SAVE

SAVE is the command to save a program currently in memory
onto a disk. If you type SAVE without a program name, the
computer will show a dialog box and ask you to name the
program. That name then appears on the window and later
SAVE commands will not need the title. To save to a different
disk, you will need the “DFO0:"” label.

SAVE “DICE”

SAVE
SAVE “DF0:COUNTING”

SAY

SAY s[,a] is used to say a string. You may specify an array a
that sets the attributes of the speech. SAY may also be used
with the TRANSLATE$ option. The Workbench disk and a lot
of memory are required to use speech. Once the conditions of
speech are defined, you can type something for the computer
to say. With SAY TRANSLATE$ you may use a string in
quotation marks within parentheses, or you may use a string
variable. Another way to get the computer to speak is to use
the SAY command using phonemes. A description of pho-
nemes is given in the Amiga BASIC manual. Several of the
vowel sounds use different spellings, so you will need to keep
the chart handy. The phonemes must be available as shown
on the chart or there will be an error message.

To set up the speech conditions array, you can read in
parameters from a DATA statement or define each element.
The parameters in order are as follows:

pitch—expressed in hertz, is a number between 65 and
320. The default is 110, which is a male speaking voice.

85

Chapter 2

inflection—O0 for using inflections and emphasizing sylla-
bles, or 1 for a robotlike monotone. The default is 0.

rate—a number between 40 and 400 words per minute.
The default is 150.

voice—0 for male; 1 for female. Default is 0.

tuning number—the sampling frequency in hertz, which
may range from a low of 5000 to a high of 28000. The default
is 22200.

volume—a number from 0 for no sound through 64 as
the loudest.

channel—combination of left and right channels and is a
value from 0 through 11.

mode—O0 for synchronous speech output or 1 for
asynchronous.

control—used when the mode is 1; it may be 0 for saying
one statement, then the next, 1 for canceling the previous
statement, and 2 for immediately interrupting the first state-
ment and executing the second one.

A sample program segment to define the speech array
(which must be integer) is to use data:

FORT=0TO 8

READ S%(T)

NEXT T

DATA 110,0,150,0,22200,64,1,0,0

Using the above lines to set up the array, add these lines
for one method of speech:
SAY TRANSLATES$(“HELLO"),S%

M$="THIS IS A TEST.”
SAY TRANSLATES$(M$),S%

Or you might use the same definition lines above and use
the following for the method using phonemes. You may rec-
ognize this speech as counting in French.

TEXT$=“AHN DUH TWAA KAETR SEYNK
SIYS SEHT WIYT NAHF DIYS”

SAY TEXT$,S%

END

SCREEN

SCREEN id,w,h,d,m defines a new screen with the specified id
number. The width and height and depth are specified as the
next three parameters, and m is the mode. The depth deter-
mines the number of colors it can hold, and the mode is the

86

I I N O

(-

T

[

N

-

]

1

0y

]

—

~

1

——

P~
H

1

f\

)

)

BASIC Programming

screen resolution. SCREEN CLOSE id closes the specified
screen.

The depth is a number from 1 through 5. Two to the
“depth”” power will be the number of colors available. A depth
of 1 has two colors, 2 has 4 colors, 3 has 8 colors, 4 has 16
colors, and 5 has 32 colors. The screen width and height are
expressed in pixels. The mode number determines low or high
resolution, which is the width in pixels of 320 for low or 640
for high. It also determines whether the screen is interlaced or
not, which is the number of horizontal lines appearing on the
screen. The modes are

Low resolution, noninterlaced
High resolution, noninterlaced
Low resolution, interlaced
High resolution, interlaced

B WN =

The screen id number is the same id number used as the
last parameter in a WINDOW definition.

SCREEN 2,320,200,3,1
WINDOW 2,“Fun”,(10,10)-(100,50),15,2

SCROLL

Scrolls a specified area of the Output window. SCROLL
(x,y)-(xx,yy),n1,n2, where (x,y)-(xx,yy) define a rectangle, and nl
indicates the number of pixels right, and n2 the number of
pixels down, to scroll the defined area.

REM SCROLL

CLS

PRINT “SCROLL THIS”

FOR DELAY=1 TO 700:NEXT
SCROLL(0,0)-(190,190),50,50
END

SGN (n)

SGN(n) is a function that returns the sign of the numeric ex-
pression n. The expression is first evaluated. If the number
evaluated is positive, SGN(n) will be 1. If the number is neg-
ative, SGN(n) will be —1. If the number is zero, SGN(n) will
be 0. This function is handy in determining relative positions,
for example, in a game, or in determining direction from one
position to another.

PRINT SGN(—3)
PRINT SGN(0)
PRINT SGN(55.67)

87

Chapter 2

SHARED ‘
SHARED is described in a separate section entitled ““Sub-
programs,” following the dictionary of Amiga words.

SIN (n)
SIN(n) is a function that returns the sine of the angle of n radi-
ans. The following program graphs the sine function.

REM SIN

LINE (0,100)-(640,100)
FOR X=0 TO 32 STEP .1
Y=100-(40*SIN(X))
LINE (X*20,Y)-(X*20,100)
NEXT X

END

SLEEP
The SLEEP command causes BASIC to wait for an event such
as a keypress, button press, collision, or menu selection.

REM SLEEP

ON MOUSE GOSUB CHECKBUTTON
MOUSE ON

DONE=1

WHILE DONE=1

PRINT “SLEEPING”

SLEEP :

WEND

PRINT “THANKS”

STOP

CHECKBUTTON:

IF MOUSE(0)<>0 THEN DONE=0
RETURN

END

SOUND
SOUND f,d[,v][,c] is the basic command to produce a musical
tone; f is a frequency (pitch), d is duration, v is volume, and ¢
is the audio channel from 0 through 3. The frequency is a
number for the standard cycles per second (hertz) for a tone,
such as 440 for A. The duration is a number for the length of
time you want a tone to play. The volume may be a number
from 0 through 255, where 255 is the loudest. The default
value is 127.

I generally like to use a variable for the duration, then set

88

L

[

-

. & [

(-

1

]

1

l

1

]

]

n

BASIC Programming

up notes in terms of that variable. For example, if T is a quar-
ter note, T/2 is an eighth note and 2*T is a half note. Here is
a sample program first playing notes without the volume
parameter, then different volumes.

REM SOUND
T=10
SOUND 262,T
SOUND 330,T/2
SOUND 392,T/2
SOUND 523,2*T
SOUND 262,T,80
SOUND 330,T,240
SOUND 392,T,100
SOUND 330,T,180
SOUND 262,2*T,120
END
To hear more than one voice, you need to specify the
channel number. Also, since it can take quite a bit of typing to
list each SOUND command, try putting the frequencies in
DATA statements. First, a duration is read that is a factor mul-
tiplied by the time variable. S is the channel number. Here’s
just the beginning of a tune.

REM SOUND2

T=4

AGAIN:

READ D:IF D=0 THEN GOTO FINISHED
FOR $=0TO 3

READ F

SOUND E,D*T,150—5*20,S
NEXT S

GOTO AGAIN

DATA 2,466,392,311,156
DATA 2,622,392,311,233
DATA 2,622,466,392,196
DATA 2,784,466,392,196
DATA 0

FINISHED:END

SPACE$

SPACES$(n) is a string function that yields n number of spaces
for use in combination with other strings. For example,
SPACE$(3) is “ .

PRINT “HELLO” +SPACE$(5)+N$

89

Chapter 2

SPC(n)
SPC(n) is used in a PRINT statement to print n number of
spaces between items.

REM SPC

PRINT “12345678901234567890"
PRINT “ONE"”;SPC(5);TWO"”
PRINT “THREE"”SPC(8)“FOUR"
END

SQR (n)

SQR(n) is a numeric function which returns the square root of
a numeric expression #, where 7 is zero or positive. The
square root means that a number multiplied by itself will re-
sult in the number n.

PRINT SQR(144)
IF SQR(X)>Y THEN 20
PRINT SQR(X*X+Y*Y)

STEP

STEP is an optional word in FOR-NEXT loops. STEP s in-
dicates the increment size for the loop index; s may be pos-
itive, negative, or a fraction. The default value for the step size
is +1. In the statement

FOR C=L1 TO L2 STEP S

the index, or counter, C will start at L1 to perform the loop.
When the word NEXT is executed, C is incremented by S (or
decremented if S is negative). If the new C is greater than L2
(less than L2 if S is negative), program control goes to the
statement immediately after NEXT; otherwise, the loop is per-
formed again, starting at the statement after FOR (see also
FOR). Several of the sample programs use FOR-NEXT loops
with STEP specified. Valid statements are

FOR C=1 TO 10 STEP 3
FOR J=2 TO 12 STEP 2
FOR K=25 TO 21 STEP —1
FOR L=10 TO 20 STEP .5
FOR C=A TO B STEP S

STICK and STRIG

STICK(n) returns a value of 1 if the joystick is pushed down or
to the right, —1 if pushed up or to the left, and 0 at all other
times. The value of n indicates which joystick and direction:

90

C - C C

{

-

=t

[

]

BASIC Programming

]

| —
!

J

~—

1

_}

—

]

!

1

]

]

STICK(0) Reports joystick A horizontal movement.
STICK(1) Reports joystick A vertical movement.
STICK(2) Reports joystick B horizontal movement.
STICK(3) Reports joystick B vertical movement.

To check the status of the button use STRIG(n):

STRIG(0) Reads status of button on joystick A. Returns 1 if button
has been pressed since last execution of STRIG(0); other-
wise returns 0.

STRIG(1) Reads status of button on joystick A. Returns 1 if button
is being pressed while STRIG(1) is being executed; other-
wise returns 0.

STRIG(2) Reads status of button on joystick B. Returns 1 if button
has been pressed since last execution of STRIG(2); other-
wise returns 0.

STRIG(3) Reads status of button on joystick B. Returns 1 if button
is being pressed while STRIG(3) is being executed; other-
wise returns 0.

REM JOYSTICK
FOR I=0 to 10

READ V$(I)

NEXT

WHILE STRIG(2)=0
A=STICK(2):B=STICK(3)
PRINT V$(A*2+B*3+5)
WEND

DATA NW, N,W,NE,SW,E,S,,SE
END

STOP

STOP is a command that will stop the program from executing
any more statements. This command is equivalent to pressing
CTRL-C or choosing Stop from the Run menu. A program that
is STOPped can usually be CONTinued. A program stopped
with END cannot be CONTinued.

STRS$

STR$(n) is a string function that converts a numeric expression
n from a number to a string for use in combinations with
other strings or to use with other string functions.

PRINT STR$(23.5)

PRINT RIGHT$(STR$(N),2)

N$=STRS$(N)

91

Chapter 2

STRING$ '

STRINGS$(,¢) returns a string of n number of characters with
the ASCII code ¢ or specified as a single character in quotation
marks. If you need to print a long string of characters, this
method is easier to type.

REM STRINGS$

PRINT STRINGS$(25,“R")

PRINT STRING$(15,49)

FOR S=1 TO 10

PRINT STRINGS$(S,42)

NEXT S

END

SUB
SUB is described in a separate section entitled “Subprograms,”
following the dictionary of Amiga words.

SWAP

SWAP v1,v2 will exchange the values of two variables, v1 and
v2. Any type variable may be changed—integer, single-precision,
double-precision, string—but both variables must be the same
type. Example statements are

SWAP A$,B$
IF A(N)<A(N+1) THEN SWAP A(N),A(N+1)

SYSTEM

The command SYSTEM will cause the computer to exit BASIC
and return to the Workbench screen with the window showing
the contents of the disk you used to load BASIC. To get back
into BASIC, you would have to load BASIC again.

TAB

TAB(n) is a function that is similar to the tabulator key on a
typewriter. TAB(n) is used in a PRINT statement to move to a
specified column n before printing begins. The columns are
numbered starting with 1. Keep in mind that numbers allow
one space for the sign, so positive numbers will actually be
printed in the next column. The semicolon after the right
parenthesis is optional. You may specify more than one TAB in
a PRINT statement.

REM TAB
PRINT *“12345678901234567890"

92

C o

-

N N U B

n

]

—

)

|

i

)

J

i I

}

BASIC Programming

PRINT TAB(5);“FIVE”
N$=“BRETT":X=7:Y=—4
PRINT TAB(15);X

PRINT TAB(15);Y

PRINT TAB(8)N$

END

TAN (n)

TAN(n) is a numeric function that returns the tangent of the
angle n, where 7 is expressed in radians. Keep in mind that
TAN can be undefined at certain points or can return very
large or very small numbers.

PRINT TANC(.78)
X=TAN(THETA)

THEN

THEN is a word in the IF-THEN conditional branching state-
ment. It can be followed by an action or a line number or line
label. IF the test condition is true, the action following THEN
will be executed. If a line number is listed, program control
will go to that line. The IF statement can also contain the
word ELSE after THEN. Several of the sample programs use
IF-THEN conditional statements.

IF A THEN B=0

IF X*Y>100 THEN PRINT “LARGE”

IF X=Y THEN 30

IF SC=10 THEN GOTO WIN

See also IF.

TIMES$

TIMES$ returns the current time in a string in the form
hh:mm:ss.

PRINT TIME$
TIMER

TIMER is a number representing time elapsed since the com-
puter was turned on. The difference between two TIMER val-
ues can be used in a program to designate time. The time is in
seconds. Following is a short program that illustrates the use
of TIMER. The program will time how long it takes you to
type in a message. Line 50 will BEEP to signal the start of the
timing. Line 60 sets the variable T1 to TIMER. Line 70 is IN-

93

Chapter 2

PUT to receive your typing. When you press RETURN, line 80
sets the variable T2 to the new value of TIMER. Line 100
prints the length of time, which is the difference between T2
and T1.

10 REM TIMER

20 PRINT “TYPE IN A MESSAGE THEN PRESS RETURN.”
30 PRINT “START AT THE TONE.”

40 FOR DELAY=1 TO 2000:NEXT DELAY

50 BEEP

60 T1=TIMER

70 INPUT MSG$

80 T2=TIMER

90 PRINT:PRINT

100 PRINT “THE TIME WAS”;T2—T1;SECONDS.”
110 END

See ON TIMER.

TO
TO is a word used in the FOR statement. FOR c¢=a TO b,
where ¢ is a counter and 4 and b are limits, is the first state-
ment of a FOR-NEXT loop.

See also FOR.

TRANSLATES$
See SAY.

TRON and TROFF

TRON will trace each statement of a program as it is executed.

TROFF turns off the trace. This is an excellent debugging tool.

UBOUND
UBOUND is described in a separate section entitled “File
Processing,” following the dictionary of Amiga words.

UCASES$

UCASES$(s) is a string function used to convert a string to
uppercase. It is handy in programs where you can convert in-
put strings to uppercase for testing correct answers. The input
string can be in either uppercase or lowercase and UCASE$
will convert it to all uppercase.

REM UCASES$
INPUT “ENTER A WORD ”,W$
W$=UCASES$(W$)

94

L CCC

(-

9

BASIC Programming

)

1

]

1

"

1]

,]

PRINT W$
END

VAL

VAL return a value of a string. This is the inverse of STR$.
REM VAL

V1$=”1"

V2$=Ilzll

PRINT V1$,V2$

V1=VAL(V1$):V2=VAL(V2$)

PRINT V1,V2

PRINT V1+V2

END

See also STR$.

VARPTR
VARTR reports the address of the first byte of a variable.

REM VARPTR
A%=100
B=VARPTR(A%)
PRINT B,PEEKW(B)
END

See also PEEK and SADD.
WAVE |

WAVE c,a is a command that defines a sound wave pattern for
channel ¢ with an array 4. The default value is the sine wave,
or WAVE 0,SIN, which indicates a pure tone. To make the
tone sound different and perhaps get “noises” instead or
sounds of different instruments, you can change the wave. The
channel number ¢ may be from 0 through 3. The array is an
integer array of 256 numbers (elements 0-255). You will need
a DIMension statement near the beginning of the program to
reserve space. For example, if we call our array W, we can use

DEFINT W
DIM W(255)

Now you can put different numbers into the W array. For
example,

FOR C=0 TO 255:W(C)=INT(80*RND):NEXT C

or you may make calculations (perhaps a trigonometric func-
tion) for each value of W(C), or you may read values from

95

Chapter 2

DATA. Now use the WAVE command to set the waveform for
a particular channel:

WAVE 0,W
WAVE 1,W

You may want to set each channel to a different array.
Next, use the SOUND command to hear how your wave
values affected the sound.

SOUND 440,20,128,0

REM WAVE

DEFINT W

DIM W(255)

WAVE 0,SIN

SOUND 440,20,128,0

RANDOMIZE TIMER

FOR C=0 TO 255
W(C)=INT(80*RND)

NEXT C

WAVE 0,W

SOUND 440,20,128,0

END

WHILE and WEND
WHILE and WEND form a loop that executes WHILE a certain
condition is true. WEND is the last statement of the loop.

REM WHILE
X=0:Y=0:X2=0:Y2=199
WHILE Y<199
LINE (X,Y)-(X2,Y2)
Y=Y+3:X2=X2+10
WEND
X=0:Y=0:X2=600:Y2=0
WHILE Y2<199
LINE (X,Y)-(X2,Y2)
X=X+10:Y2=Y2+3
WEND
END

WIDTH -
WIDTH #n designates how many columns may be printed on
the Output screen. You can use WIDTH to format printing or
to keep printing within certain columns to remain visible.
WIDTH does not change the size of the printing. You can add
spaces to avoid splitting words inappropriately.

96

[

[

L

L

[

1

BASIC Programming

-)

2

]

—
1

]

A B

]

REM WIDTH

WIDTH 15

PRINT “TRY PRINTING THIS SENTENCE WITH 15
COLUMNS.”

WIDTH 25

PRINT “NOW TRY THIS SENTENCE TO SEE HOW IT DOES.”
END

WINDOW

WINDOW is the command to allow you to define your own
windows. The basic command is WINDOW id, where id is the
identification number. The Output window that appears while
you are in BASIC is window 1, so for your own windows you
should specify a number greater than 1.

You may add more information about the window. In or-
der, the window may have a title expressed in quotation
marks, size with (x1,y1) and (x2,y2) coordinates, a type which
sets up how much the user can do with the window, and a
screen ID which can be a value from 1 through 4. When you
use the WINDOW statement, a new Output window is created
and displayed and brought to the front of the screen. NEW
gets rid of the windows you created.

The title will appear in the top bar of the window and is a
string expression. The type is a number from 0 through 31:

1 Sizing gadget appears in the lower right side of the window to
permit changing the window size.

2 Title bar can be used to move the window.

4 The window can be moved in relation to other windows, front
and back, and that gadget appears in the upper right corner.

8 Close gadget allows the closing of the window.

16 Allows you to cover the window with another window without

losing the contents.

To specify the type, add together two or more of these
values.

WINDOW CLOSE id is the command to make a window
invisible.

WINDOW OUTPUT id names the window for current
output without moving the window to the front—direct output
can go to a window that is behind another.

The following program illustrates some of the options
available in the WINDOW command. It sets up three win-
dows, then puts something in each window. Notice that the
types are different, so different gadgets are in the corners.

97

Chapter 2

REM WINDOWS

WINDOW 2,“Printing”,(10,10)-(250,50),14
WINDOW 3,“Lines”,(265,15)-(500,65),7
WINDOW 4,“Circles”(15,65)-(300,180),6
WINDOW 2

COLOR 3,2:LOCATE 3,5

PRINT “This is Window 2"

WINDOW 3

X2=10

AGAIN:

LINE(0,0)-(X2,100)

X2=X2+10

IF X2<400 THEN GOTO AGAIN
WINDOW 4

X=15:Y=10

FORI=1TO9

CIRCLE (X,Y),20

X=X+20:Y=Y+10

NEXT I

END

WRITE :

C

[[

(-

WRITE outputs data to the screen. WRITE alone leaves a
blank line. WRITE is similar to PRINT (see PRINT), but
WRITE separates items in a list by a comma. Also, WRITE
puts quotation marks around strings. A positive number is not
printed with a space before it.

REM WRITE
WRITE “HELLO”
X=5Y=—7
WRITE X,Y
N$="REGENA"
WRITE N$

END

XOR
XOR is a logical operator name for exclusive OR. If there are
two conditions A and B, A XOR B will return a true if only
one of the conditions is true. OR returns a true if one con-
dition is true or the other condition is true or both conditions
are true.

See also OR and IF.

IF A=B XOR B=C THEN PRINT “OK"
IF N$=“BOB” XOR SCORE=10 THEN GOTO WIN

98

I A

1

]

1

+

-]

-

1

]

]

BASIC Programming

Subprograms

Amiga BASIC has the capability of using subprograms. Sub-
programs are similar to subroutines contained within pro-
grams, but use variables that are separate (local) from those in
the main program. Subprograms may be appended to a regu-
lar program and often may be routines that you want to add
or merge with others without rewriting for compatibility each
time.

To use a subprogram, you CALL it from the main pro-
gram and pass variables in the argument. Here is a very simple
example of a subprogram to illustrate the commands involved.
The subprogram starts with the word SUB and has a title with
the passed variables listed in parentheses. It ends with END
SUB.

REM SUB

A=5:B=6

CALL MULTIPLY (A,B)
PRINT “BACK TO MAIN”
END

SUB MULTIPLY (X,Y) STATIC
Z=X*Y

PRINT Z

END SUB

The subprogram is called MULTIPLY and uses the vari-
ables X and Y. It prints the product, then has END SUB to re-
turn it to the main program. STATIC indicates that values of
the variables will remain the same—they cannot be changed
by actions outside the subroutine.

The main program assigns values to variables called A
and B; it then calls the subroutine using the names for the
variables in order A and B which will correspond to X and Y.
When the subprogram has been executed and returns to the
main program, the message BACK TO MAIN is printed and
the program ends.

In a statement in the subprogram you may also specify
SHARED with a list of variables specifically declared to be
SHARED—altered by parts of the program outside the sub-
program. If you use a SHARED statement, the variables do
not need to be listed in the subprogram name:

SUB MULTIPLY STATIC
SHARED A,B

99

Chapter 2

Arrays may be used in the arguments for subprograms.
They are indicated with parentheses, such as R(). You may in-
clude a number within the parentheses which would indicate
the number of dimensions in the array, such as D(3) for a
three-dimensional array. It does not indicate the number of
elements in the array.

You may need the EXIT SUB command to leave the sub-
program, but not at the last statement of the subprogram
which is END SUB. For example, an IF-THEN condition could
exit the subprogram with EXIT SUB.

LBOUND and UBOUND are functions that are especially
useful in subprograms. They return the lower bound (0 or 1)
and upper bound of a specified dimension of an array. For a
one-dimensional array, you may specify the array name. For
an array with more dimensions, you also need to specify the
dimension you need. A general subprogram can be written,
then LBOUND and UBOUND used as the specific limits for a
particular program. For example, suppose you have arrays A
and B, where A has one dimension and B has three, and you
need to call a subprogram.

CALL SPECIAL (A(),B())

SUB SPECIAL (X(),Y()) STATIC
FOR J=LBOUND(X) TO UBOUND(X)
FOR K=LBOUND(Y,2) TO UBOUND(Y,2)

The last loop varies K from the lower bound of the second
dimension of the array Y to the upper bound.

File Processing
File processing concerns using other devices within the pro-
gram. Often such input and output is abbreviated 1/0O. For
examples in this chapter, we’ll use the disk drive for input and
output. Other devices, however, are available for other pur-
poses—SCRN: is the screen (current Output window) for out-
put, KYBD: is the keyboard for input, LPT1: is the line printer
for output, and COM1: is the communications (serial) port for
input or output.

In the syntax for the following commands, f is a file num-
ber, which may be from 1 through 255; fname is a filename or
specification which may be up to 255 alphanumeric characters,

100

—

I N

I

f

1

1

1

.

BASIC Programming

but not a BASIC reserved word. The filename may be a vari-
able string. The filename may include the path or the volume
name, such as “DF0:BasicDemos/music’” or “BOOK:NOTES".
vlist is the list of expressions or variables that will be input or
output.

In working with program files (or simply programs), the
most common commands are SAVE and LOAD. The general
format for SAVE is

SAVE fname

but you may also include ,A for saving in ASCII format
and/or P for saving in protected format (you won’t be able to
list or copy the program). For example,

SAVE “DF0:ALGEBRA”,P
SAVE “UTILITIES:SORT1”,A

If you're working on a program and save every so often,
you may use just the command SAVE. The dialog box will ask
if you want to save the program with the same name, and you
may choose to do so (or rename the program as something else).

To bring a new program into memory, use the command
LOAD with a filename in quotation marks. You may also keep
the current program and merge it with a previously saved pro-
gram with the MERGE frname command. A program loaded in
with MERGE must have previously been saved with the ASCII
format.

Within a program you can chain programs with the
commands

CHAIN fname
CHAIN MERGE fname
CHAIN MERGE fname,line, ALL

ALL indicates that all variables will retain their values
from one program to the next. If you do not use ALL, the first
program may use COMMON vlist to indicate which variables
may be passed to the next program. The CHAIN MERGE
command may also include DELETE line-line to delete lines
after the programs are merged.

FILES is used to see the names of the files you have on
your disk. You may also use FILES pathname, where pathname
indicates the path or volume name or subcategory name.

FILES
FILES “DF0:”

101

Chapter 2

You may define a pathname or change it with CHDIR
(change directory) so that you can use a different disk. For ex-
ample, to change to the current disk in the disk drive and not
have to type “DFO0:” each time, use

CHDIR “DF0:”

Sequential Files

There are two types of data files that can be used with the
Amiga—sequential and random access. The sequential files are
easier to understand and to work with, but the random access
method uses less room on a disk and can be more efficient.
With both methods you OPEN a file for input or output to ac-
cess the device, and when you're finished you CLOSE the de-
vice. With CLOSE, just specify the file number, such as

CLOSE #2
The OPEN statement has two syntax forms:

OPEN mode,[#]f fname [file-buffer-size]
OPEN fname [FOR mode] AS [#]f [LEN=file-buffer-size]

The following example opens device #1 for output, “O”,
and calls the file TEST. We'll store four numbers in that file
using WRITE #f,vlist and then close the file.

REM OPEN
A=5B=—4:.C=23:D=—6.4
OPEN “O”,#1,“TEST”
WRITE #1,A,B,C,D

CLOSE #1

END

To read the data in, we open the device as input, “I"”. IN-
PUT #f,vlist reads in the information, and PRINT prints the
numbers on the screen.

REM READIN
OPEN “1”,#1,"TEST”
INPUT #1,WX,Y,Z
PRINT W;X;Y;Z
CLOSE #1

END

Using the other type of format for the OPEN statement
and string variables for examples,

REM OPEN2
OPEN “TEST2” FOR OUTPUT AS #1

102

— C C

-

N IR

[

BASIC Programming

N$=“BRETT LYNN"
S$$="RICHARD LANE”
WRITE #1,S$,N$
CLOSE #1

END

REM READIN2

OPEN “TEST2” FOR INPUT AS #5
INPUT #5,A%,B$

PRINT A$

PRINT B$

CLOSE #5

END

You may also use PRINT #f,vlist to output information.
With PRINT #f,vlist you do need to be careful that delimiters
are between your items—such as a carriage return or a
comma. You need to physically put in the commas between
items, for example,

PRINT #3,A%,”,”,B$
PRINT#1, USING “###,”;N1,N2,N3,N4

In the above examples we knew exactly how many items
were in each file. This may not always be the case. You can
put the statements in loops. EOF(f) tests for the end-of-file
condition and returns —1 if there are no items left to read.
LOC(f) returns an increment, or the number of bytes written to
or read from the sequential file divided by the default size of
128 or the record size specified in the OPEN statement length.

In random disk files, LOC(f) returns the record number of
the last record read or written. LOF(f) returns the length of the
file in bytes.

The following sample program lets the user choose a file-
name to store the data and calls it L$. Then the user enters
words or names by typing the name, pressing RETURN after
each one. At the end RETURN is pressed without anything
being entered. Up to 30 items may be entered. The program to
get the names asks the user to enter the filename L$. This
time a certain number of items are not known, so the infor-
mation is read in a WHILE-WEND loop as long as the EOF is
not —1.

REM SAMPLE I/O

T=0

PRINT “ENTER A FILENAME"”
INPUT L$

103

Chapter 2

PRINT “ENTER SEVERAL NAMES”

PRINT “PRESS RETURN AFTER EACH NAME"
PRINT “THEN TWICE WHEN YOU ARE FINISHED”
OPEN “O”,#2,L$

ENTER:

INPUT N$

IF N$="" THEN FINISHED

PRINT #2,N$

T=T+1:IF T<30 THEN ENTER

FINISHED:

CLOSE #2

PRINT “FINISHED"”

END

REM GETTING NAMES
DIM N$(30)

PRINT “ENTER FILENAME"”
INPUT L$

PRINT:T=0

OPEN “1”,#3,L$

WHILE NOT EOF(3)
INPUT #3,N$(T)

PRINT N$(T):T=T+1
WEND

CLOSE #3

END

To add to a sequential file, use “A” or APPEND for the
mode. In the particular file the items will not replace the file,
but will add at the end.

OPEN “A”,#3,“TEST”

Random Files
To create a random access data file, use the mode “R”.

OPEN “R”,#4,“TESTDATA"”

The random access files are stored in a packed binary for-
mat and thus take up less space on the disk. Also, to retrieve
the information, you don’t need to read sequentially through
all the information. The information is stored in numbered
records. The FIELD statement is used with random access files
which allocate space for variables in a random file buffer. The
format is

FIELD [#]f fieldwidth AS string
where f is the file number and fieldwidth is the number of

104

L R I

[

C o O C .

_

N

)

]

|

)

]

2]

]

]

BASIC Programming

characters to be allocated to the string variable. The FIELD
command may consist of several fieldwidth AS string items.

FIELD #3,4 AS P$,16 AS F$

GET# reads a record from a random disk file into a ran-
dom buffer and PUT# writes a record from a random buffer to
the random access file. The formats are

GET [#]f[,record number]
PUT [#]f[,record number]

Examples are

FOR J=1 TO 30
PUT #3,]
NEXT J

and
GET #2,X

When you save things in a random file, numeric values
must be converted to strings. The procedure is to use MKI$(e),
MKL$(e), MKS$(e), or MKD$(e) to make a string out of the ex-
pression e, where I is integer, L is long integer, S is single-
precision, and D is double-precision. Then use LSET or RSET
to move the data from memory to a random file buffer. LSET
left justifies the string in the field, and RSET right justifies the
string. Since the string must be a certain length, spaces are
used to pad the extra characters. Finally, write the buffer to
the file using PUT#{.

To retrieve the information, keep in mind that numbers
are in strings. CVI(s), CVL(s), CVS(s), and CVD(s) are used with
FIELD and GET statements to convert the strings back to nu-
meric values. CVI converts a two-byte string to an integer.

'CVL converts a four-byte string to a long integer. CVS con-

verts a four-byte string to a single-precision number. CVD
converts an eight-byte string to a double-precision number.
Some examples are

INPUT ITEM$
LSET T$=ITEMS$
INPUT N

LSET N$=MKI$(N)
PUT #3,C

GET #8,X
AB=CVI(G$)
PRINT USING “$§###.##";CVS(P$)

105

Chapter 2

J 50 ED R R

Xd'0dd‘aavy gnsood 8¥-($J)OSVY NO
ADIOHD NIAHL ,£.<S8¥ ¥0 ,T.> $¥ 4JI
$3¢,IDIOHD YNOX, INANI
Z1'91T IIYD01
X BXﬂZuAvaE~N INIJ4:2T'X+% FALYDOTI:E€ OL T=X ¥od
wexsxrrrrrrrxl N T Wesxxxsxxxxxxr o INIAdLT'E TILVOOT3STOIN=X
€4 JSOTO
N‘€# ILNANI
€# SY ILNdANI 304 ,S7T¥d, NIJO
YYITHD OLOD ¥O¥¥d NO
SIDIOHD
aNTM:? WNWMZH“WMn " .."WM— dTIIHM: ..“WM.
SAIMILID
W NIDF"E OL XAM ANV SSHYd, INI¥d:GT‘9T IALYODOT
o« *YIANNIA ¥Ood, INIYd:ST’H#T ILVOOT
wSTONTITITId ,STVd 1ST9 YNOX FATIWIFAY ANV TAJOLS, INIYA:ST‘ZT ILVOOT
wxxxy TTII LANDIL TYVAW xxxxw LNIVNd20Z’'@T FIILVOOT:STO:M9 HIAIM
S04ANI
NIFYOS dTLIL WA

4D SV @Z’$S9 SY @Z’'SY SY @Z‘T# aTd1d
#9’,STVAW, ‘Z# .9, NIJO

WEO0dd LIXT'SAWYN TIVOHIN ‘IWYN ddV YIvVd
I LX3AN
(I)$W avay

€ 0L T=I ¥od

YIVd aVvay WIy

SSIADOV WOANVI WIY

oydwrexq o1 wopusy ‘[-g weisoxg

106

BASIC Programming

C C C

(-

$0¢, - +-osea1d 03 sAx9g, INI¥d

W'ttt tHAOV, INTIYd SV, 000, fd !¢ TYd,, INI¥d:STD

qg’'z# 199

IWYNANO NAHI N<¥ JTI

¥!,INO HOTHM, JINdNI

W dTId NO SHWYN , ¢N¢, TIV TUAHL, INI¥A:STD
: AINYNANO

MIOYLSD OLOD

SAWYNTTY NAHL ,B,=$¥ ¥0 ,V,.=$¥ 41

IWYNINO OLOD NIHL ,0,=$d¥ ¥O ,0,=89 JI

aONEM: $XIINI=$¥¢,,,=$9 ITIHM:,,=3$Y
:AMOYLSO

WCSAWYN TI(V) ¥O IWYN AN(0), INIVd:STO
Eelcr

NINLTS

€# FSOTO

N‘€# TLTIM

€4 SV Indino ¥yod ,S7Tv¥d, NIJO

X=N

aa¥y olLoo NIHL ,K,=3%$¥9 ¥0 ,X,=$9 4TI

$9¢,<N/X> ¥AHLONY ddV¥, INANI:T‘@T HLVDOT

X'z# Ind

$0d=$D 1IS1

$9¥=$9 1dST

$UN=8V 1IST

404 INANT:!,IVA OL AMIT , ¢4$¥N!, STOd IVHM, INIdd

$O¥ INANI: {4¥N?¢, SI QTO MOH, INI¥d

$YN! ,IWYN S,TYd ¥NOX, INANI:STO

T+X=X
taavy

IDIOHD OLOD

(. [

107

C

)

Chapter 2

_J

]

n

]

3 3)]

IOIOHD AWNSTAY :TATIIMIN 9NSOO
Xd NIFHL (€G<>¥¥A) 4T
SYYIHD
NNLIY
€4 ISOTD
N‘€# TLTUM
€4 SY IndLno ¥od ,ST¥d, NIJO
=N
SHTIIMAN
aNa
ST
Z# JASOTO
X"
NINLIT
099 aNg
Z ILXIN
ANAM: $XMINTI=84¢,,,, =88 ATIHM?, ,=$d
SUALIVM
wdNNIINOD OL X3M ANV SSHId,, INIJd: ILNIdd: ININd
§D¢,******oseaTd 03 °AI3S, INI¥A
Sg IOV, INTIASYe, ", 2!, # TVd, INIYA
Z'T# 1LAD
ST1O
N O&L T=Z ¥0od
S SAWYNTIVY
2HIANE OLOD
AWYNINO OLOD NAHL ,4L,=$9 9O ,X.=$¥ JI
$¥ ¢, <N/X> AWYN ¥YIAHLONY, INdANI

108

| . thar’liés'Brannon - S

N N

]

i

]

Getting Started with
AmigaDOS

Charles Brannon

binder packed with information on this advanced com-

puter. Even if you've never used a graphics-oriented
operating system before, you can plug in the mouse and be up
and running on the Amiga Workbench in very little time.

But there’s something missing from the standard manuals:
instructions for using AmigaDOS, a powerful alternative to the
Workbench. Although the Workbench is a versatile tool for
both beginners and expert users, there are also advantages to a
command-driven operating system. With AmigaDOS, you can
gain finer control over the computer and its many functions—
at the expense of having to memorize dozens of commands
and their proper syntax. These tradeoffs have been a subject of
hot debate ever since the Macintosh made its debut three
years ago. Fortunately, the Amiga gives you both options. And
thanks to its multitasking capabilities, you can even flip back
and forth between both systems at will.

All this is made possible by the Amiga’s multilevel
operating system. The core is Intuition, a package of efficient
subroutines designed to ease the software designer’s task. It’s
filled with routines needed by almost every program, saving
programmers the trouble of reinventing the wheel. Intuition
includes powerful graphics utilities so programmers needn’t
program the computer at the hardware level.

The Commodore Amiga comes with a large looseleaf

Pay No Attention to the Little Man

Attached to the Intuition core is AmigaDOS, which itself has
two levels. First, AmigaDOS provides all the disk operating
system functions for the computer, such as managing, open-
ing, accessing, updating, and closing files; buffering direct
memory access (DMA) for the disk drives; supporting named
devices; and allocating memory.

Second, AmigaDOS as a tool provides one or more Com-
mand Line Interfaces (CLIs). A CLI is a traditional command-
oriented operating system interface, much like CP/M, MS-
DOS, and PC-DOS—but even more powerful. At a screen

111

Chapter 3

prompt, you can type in commands to load and run programs;
list disk directories; copy, rename, and delete files; and even
write simple programs called batch files.

When you start the Workbench, AmigaDOS comes with
it. In fact, you’ve undoubtedly seen the AmigaDOS screen
briefly appear when you first boot up the Workbench disk.
AmigaDOS comes up first, loads the Workbench, then shuts
down its CLI, transferring control to the Workbench.

AmigaDOS is like the Wizard of Oz. It pulls the strings of
the marionette that is the Workbench. Meanwhile, hidden from
sight, AmigaDOS is doing much of the work. When you step
behind the curtain, you see how things are really done. Once
the object-oriented illusion of the Workbench is stripped away,
you find yourself working with files, streams, subdirectories,
and pathnames.

Starting a CLI

To start an AmigaDOS CLI, first run the Preferences tool by
opening up the Workbench disk and double-clicking on the
Preferences icon. The Preferences screen (see photograph) has
an option box labeled CLI [ON] [OFF]. Click the box ON, then
click on SAVE. The Workbench file on the disk will be up-
dated, and now the CLI option will be available whenever you
start the Workbench in the future.

18/31/85
1686

Baud Rafe

To allow access to AmigaDOS from the Workbench, click the mouse button with
the pointer positioned upon the CLI [ON] box within the Preferences screen.

112

I

(

-

E

(-

(-

8

-

D R

)

Getting Started with AmigaDOS

With CLI enabled, open the Workbench’s System folder.
In addition to the usual icons for Disk Copy, Icon Editor, and
Initialize, you'll see a cube-shaped icon marked with 1> and
labeled CLI. Double-click on this icon to open a CLI window.

The first thing you’ll notice in the window is the 1>
prompt. Unlike DOS prompts on most other computers, this
doesn’t represent the current disk drive. Instead, it represents
the task number assigned to the window. AmigaDOS is one of
the few microcomputer operating systems that can multitask
itself.

To see how this works, enter NEWCLI at the 1> prompt.
When you press RETURN, a second CLI window pops up
with the prompt 2>. This CLI is a complete, full-powered CLI,
independent from the first CLI. In effect, you now have two
command-driven operating systems running on the computer.
Each window can execute a different DOS task. While one CLI
is busy printing a file, you can go to another CLI window to
list a directory.

Clicking on the CLI icon from the Workbench opens up this AmigaDOS
screen window.

Although several CLI windows can display output simul-
taneously, only one CLI window at a time can accept input.
To select-which CLI is active, point to its window and click the
mouse button. You can distinguish active from inactive win-

113

Chapter 3

dows by glancing at the title bars—the bar of an inactive win-
dow is dimmed.

If you type NEWCLI at the 1> or 2> prompt, a third CLI
window opens with a 3> prompt. How many CLI windows
-can be opened at once? On a 512K Amiga, we’ve opened as
many as 20 CLIs before encountering an out-of-memory
message. ‘

When you're done with a CLI, close it by entering
ENDCLI. When you close the primary CLI, control reverts to
the Workbench.

AmigaDOS Devices

For any DOS commands to work, the startup (Workbench)
disk must be in the current drive. Unlike other operating sys-
tems, AmigaDOS contains no memory-resident commands. All
commands are extrinsic—they’re loaded from disk only when
called. AmigaDOS always looks for commands first from the
current directory, then the C subdirectory on the SYS:
(startup) disk. We'll elaborate on this in a moment.

You can type AmigaDOS commands and filenames in
either upper- or lowercase (for clarity, all our examples are
shown in uppercase). If you make any typing mistakes, you
can press BACK SPACE or cursor left to retype. Type CTRL-X
to erase the whole line. You can get a complete list of all com-
mands by typing DIR SYS:C. This shows the contents of the C
subdirectory on the startup disk, the directory where all
AmigaDOS commands are stored.

The DIR command displays the current directory. By de-
fault, the current directory is listed from the internal drive,
which is referred to as DFO:. If you have a multiple-drive sys-
tem, you can get a directory of the first external drive by typ-
ing DIR DF1:. Up to three external drives can be daisychained,
numbered from DF1: through DEF3:. The colon following the
drive name is important—it tells AmigaDOS that it is a device
name rather than the name of a file.

A special device, SYS:, refers to the system (startup) disk.
Although the startup disk is usually in drive DF0:, SYS: is not
necessarily synonymous with DF0:. SYS: refers to the startup
disk, not a drive.

114

—

(-

(-

[

C

]

]

-]

)

)

—_—

Getting Started with AmigaDOS

Disk Names

Instead of referring to a physical drive, you can access a disk
by name. When you use Workbench to copy or format a new
disk, the disk is assigned a unique name, which is displayed
beneath the disk icon on the Workbench screen. When spec-
ifying a disk name in a command, you must end it with a co-
lon, as you do with device names. If the disk is not in a drive
when you refer to it in a command, AmigaDOS prompts you
to insert it.)

The ability to specify disk names is vital with single-drive
Amigas. When you type DIR, the DIR program is loaded from
the Workbench disk and displays the directory of that disk. If
you insert another disk and type DIR, you have to reinsert the
Workbench disk so that AmigaDOS can read the DIR file. Un-
fortunately, AmigaDOS doesn’t ask you to put the other disk
back in—so you still get the directory of the Workbench disk.

The solution? Follow the DIR command with the proper
disk name. For example, DIR “BASIC Demos:” (remember the
colon) calls a directory of the disk named BASIC Demos.
AmigaDOS still loads the DIR command file from the Work-
bench disk, but now asks you to insert “BASIC Demos’ before
displaying the directory. Specifying the disk name (also
known as a volume name) forces AmigaDOS to refer to a disk
instead of a drive.

Other device names are PAR: for the parallel printer port,
SER: for the serial/modem port, PRT: for whatever printer
port you've specified via the Preferences tool, and RAM: for
the RAM disk. Another device, NIL:, is a null handler. It ac-
cepts output instantly, but does nothing with it. The NIL: de-
vice is useful for testing a program without wasting paper or
time—just redirect the output to NIL:.

The RAM disk behaves just like a very fast disk drive ex-
cept that its contents are lost when the computer is rebooted
or turned off. Be sure to copy anything important from the
RAM disk to a real disk before shutting down, or even more
frequently if power failures and brownouts are common in
your area. The RAM disk is dynamic: Unlike some RAM disks,
it has no fixed size. It starts out empty, then grows or shrinks
as you add or remove files. Therefore, it’s always 100 percent
full, using only as much memory as it needs to hold the files
you've stored there.

115

Chapter 3

Whenever you want to refer to the RAM disk in an
AmigaDOS command, just precede a filename with the prefix
RAM.:. At present, the RAM disk isn’t accessible from the
Workbench.

Another special device name, * (the asterisk), refers to the
current keyboard/screen device. Input from * is from the key-

board; output to * appears in the current window. Notice that

this is different from the use of * as a wildcard character in
some other operating systems.

Understanding Pathnames

A file is the basic data storage object in AmigaDOS. A file is
addressed by a filename, a string of up to 30 characters. Each
file must have a unique filename. Filenames can include al-
most any character, including characters such as space, =, +,
and ”, special AmigaDOS delimiters that you should avoid. (If
a file contains special characters, you can enclose them in
quotation marks to make sure the special characters aren’t
acted upon by AmigaDOS.) However, two characters are
forbidden in filenames by AmigaDOS—the colon (:) and the
slash (/).

Each drive has its own directory, a list of all filenames and
subdirectory names. A subdirectory is a directory within a
directory. Subdirectories are like drawers on the Workbench.
You can even nest subdirectories within subdirectories within
subdirectories, which can get confusing.

You separate a subdirectory name from a filename with the
slash (/). Notice that this slash leans in the opposite direction

from the backslash (\) used in IBM PC-DOS for subdirectories.

A complete filename can be as simple as PROCEDURES,
equivalent to DFO:PROCEDURES, since DF0: is the default
drive. Filenames can also be a lot more complicated, for ex-
ample, DF1:BASIC PROGRAMS /GIDGET, which refers to the
program GIDGET in the subdirectory BASIC PROGRAMS on
the external drive, or, another example, RAM:LOGO/DEMOS/
SPINNER, which refers to the file SPINNER in the DEMOS
subdirectory which is in the LOGO subdirectory in the RAM
disk.

Fortunately, there are shortcuts. Instead of entering the
current pathname, such as DF0:DEMOS /DOTS.INFO, it’s suf-
ficient to use DOTS.INFO if the current directory is
DF0:DEMOS. We'll show below how to change the current
directory.

116

L [

-

[_

-

.

(-

(-

(-

(

]

Getting Started with AmigaDOS

]

-1

)

o~

)

)

]

]

]

|~
—

)

More About Multitasking

You can do nearly everything with AmigaDOS that you can
with the Workbench. There are commands to copy files, delete
files, rename files, format disks, send listings to printers, set
date and time, and more. You can also run any application
program from AmigaDOS.

All Workbench programs have two files: one file that
contains the program and another file with an extension of
INFO that contains icon information for the program. For
instance, the icon for the Preferences tool is drawn from
PREFERENCES.INFO. To run the Preferences tool from
AmigaDOS, enter PREFERENCES at a CLI prompt. Similarly,
enter CLOCK to start the clock tool.

Be careful not to let the program you're running override
the CLI If you’'d like to keep the CLI going while running an-
other program, preface the AmigaDOS command with another
command, RUN. This starts a new, simultaneous program.
RUN CLOCK starts the clock while permitting the CLI to con-
tinue running. The clock becomes a new CLI task. We've used
this feature on a 512K Amiga to run MetaComCo ABasiC
simultaneously with AmigaDOS, the Workbench, and a full-
screen editor.

A Custom DOS Disk

It’s fairly simple to create an AmigaDOS-only disk. This disk
can be used whenever the system asks for a Workbench disk.
You probably won’t want to modify your original Workbench
disk, however. It’s better to modify a copy of it and set aside
the original for safekeeping. You can make several copies of
your AmigaDOS disk for future use, if you want. Just follow
these steps:

1. Open the System drawer on the Workbench disk. If you
don’t see the CLI icon—a small cube labeled with a 1>
symbol—run Preferences (otherwise, continue to step 2).
One of the settings on the first Preferences screen is labeled
CLI [ON] [OFF]. Click it ON, then click on the Save box to
save the change to disk. Return to the Workbench and re-
open the System folder. You should now see the CLI icon.

2. Double-click on the CLI icon. A window titled “New CLI
Window” appears. Click inside the window to make the
CLI active.

117

Chapter 3

3. At the 1> prompt, type ED S/Startup-Sequence and press
RETURN. This loads a program called ED, a full-screen edi-
tor, and loads the file Startup-Sequence from the S
subdirectory. Startup-Sequence is the batch file that makes
AmigaDOS automatically start the Workbench when you
boot the Workbench disk. After ED starts, you should see
something like this on the screen:

ECHO “WorkBench Disk. Release 1.1”
ECHO "n

ECHO “Use Preferences tool to set date”
ECHO “"n

LoadWb

endcli > nil:

These are the batch file commands that AmigaDOS
executes each time you boot up the Workbench disk. The
ECHO commands are similar to PRINT statements in
BASIC; they merely display messages on the screen. The
last two commands in this file are the ones we're interested
in changing.

4. Using the cursor keys, move the cursor to the line with the
LoadWb command and press CTRL-B twice to erase the last
two lines. The batch file should now consist of the four
ECHO commands only. If you wish, you can change the
text in the ECHO commands to give your boot disk that
““personal touch.”

5. Press the ESC key. An asterisk prompt (*) appears at the
bottom of the screen. Type X at this prompt and press RE-
TURN. This exits the ED program and saves the new
Startup-Sequence file to disk. If you’ve made a mistake and
would like to start over, press ESC-Q to quit the editor
without changing the file.

6. After the disk busy light goes off, simultaneously press
CTRL and both Amiga keys on each side of the space bar to
reboot the system. This time, and from now on whenever
you boot with this disk, AmigaDOS ends up in memory in-
stead of the Workbench.

The Workbench Option

To conserve space on your new AmigaDOS disk, you may
want to erase some files used by the Workbench, such as the
LOADWB command in the C subdirectory, the Notepad, the
clock, and all .INFO files. However, it’s convenient to have the

118

(- L

L

(

(-

.

(-

L

(-

(-

]

)

1

)

)

)

—_—

]

_J

-}

Getting Started with AmigaDOS

Workbench available when you need it. You could use the edi-
tor to create another batch file that includes LOADWB and
ENDCLI > NIL:. You would then type EXECUTE WB at a CLI
prompt to bring up the Workbench (assuming you named the
batch file WB by typing ED WB to create the batch file). ED is
useful for creating all kinds of simple batch files, in fact.

AmigaDOS Commands
Following is a list of the most useful AmigaDOS commands
with brief descriptions and examples. Some commands shown
here may not be available on your copy of AmigaDOS/
Workbench, while there may be other commands available to
you that have not been documented. This chapter was pre-
pared with AmigaDOS version 1.0 and 1.1. Type DIR SYS:C
at a CLI prompt to see a complete list of available commands.
When you're experimenting with AmigaDOS commands, we
strongly recommend that you use a scratch disk to avoid wip-
ing out an important file or even a whole disk. (A complete
list all AmigaDOS commands for versions 1.0 and 1.1 appears
in Appendix B.)

< and > (Input/output redirection). These symbols redirect
the normal input/output flow of a command. For example, a
program that normally accepts input from the keyboard and
prints its output on the screen could be coerced into accepting
input from a file or to send its output to the printer. The <
and > symbols are used to point in the direction that I/O
should flow; the less-than sign (<) redirects input, and the
greater-than sign (>) redirects output. When using < to re-
direct input, you may need to use a question mark for the
parameter that the redirection file is replacing.

Examples:
DIR > DIRFILE

This redirection of the DIR command sends the disk
directory to the file DIRFILE instead of to the screen. To con-
firm this, you can enter TYPE DIRFILE to display the contents
of DIRFILE.

STACK < BASIC.STACK ?

The stack command normally accepts a command line
parameter. Here, a file (BASIC.STACK) containing the number
8000 can be substituted. In order for the file to replace the

119

Chapter 3

command line parameter, you must use a question mark to
hold that parameter’s position.

CD (Change Directory). Follow CD with the pathname of
the directory you’d like to work with. Entering CD by itself
displays the current search path. When you type a command,
AmigaDOS first searches for the extrinsic command file in
your current directory, then in the COMDIR directory. Amiga-
DOS also looks for all filenames in the current directory unless
you override the current directory with another pathname.

Example:
CD DF1:BASIC

This switches the current directory to the first external
drive and the subdirectory BASIC.

COPY. This copies a file or group of files to any legal
destination. The keyword TO specifies the destination path.
You can use the optional keyword FROM to specify a direc-
tory other than the current directory. If you are copying entire
subdirectories, append the keyword ALL so that COPY creates
a subdirectory in the destination directory. COPY normally
displays the name of each file as it’s copied. Append the key-
word QUIET if you'd like to suppress this.

Examples:
COPY MATRIX.SORT TO DF1:MATRIX.BKP
This copies the file MATRIX.SORT in the current direc-

tory, creating a file called MATRIX.BKP in the main directory
of the first external drive.

COPY FROM DF1:GOBBLE TO DFO0:

This copies the file GOBBLE from the external drive to
the internal drive.
COPY DF0: TO DF1: ALL

This backs up the entire contents of the internal drive
onto the external drive, including the contents of all
subdirectories. COPY doesn’t format the destination disk, so
DISKCOPY is a more convenient way of backing up an entire
disk.
COPY SYS:C TO RAM: QUIET

This copies the command directory to the RAM disk with-
out listing all the filenames.
COPY * TO PRT:

120

L C

L

(

——

—
—

(

I

C

-

]

Getting Started with AmigaDOS

}

1

}

]

-]

i

]

—

-

—

]

)

This accepts lines from the keyboard and prints them on
the printer until CTRL- \ is pressed.

DATE. This command sets the current date and time.
When you create or update a file, AmigaDOS stamps the date
and time on the directory. Since there’s no battery-backup for
the clock, however, the Amiga doesn’t know this information
until you tell it. By default, AmigaDOS assumes the date
stamped on the most recent file. Entering DATE by itself dis-
plays the current date.)

To set the date from AmigaDOS without running the
Preferences tool, follow the DATE command with a date in
the form DD-MMM-YY (for example, 25-DEC-85). To set the
time, follow this with the form HH:MM (using 24-hour time,
such as 13:00 for 1:00 p.m.). You can type DATE TOMOR-
ROW to advance the date ahead one day, or DATE YES-
TERDAY to back up one day. Another shortcut is simply to
enter DATE dayname, as in DATE TUESDAY. If you use your
Amiga frequently, this may be all you need to keep things up-
to-date.

An interesting application of the DATE command is to
determine which day of the week a certain date falls on. For
example, DATE 25-DEC-86 sets the date to Christmas Day,
1986. If you then enter DATE by itself, AmigaDOS displays
THURSDAY 25-DEC-86, letting you know that Christmas falls
on a Thursday in 1986.

Examples:
DATE 04-JUL-76
This sets the current date to July 4, 1976. (The Amiga as-

sumes you know which century you're living in, so there’s no
way to specify 1776 versus 1976 or 2076.)

DATE 08:30 FRIDAY

This sets the time to 8:30 a.m. and advances the date to
Friday. DATE FRIDAY 08:30 would also work.

DELETE. This command deletes a file or group of files.
Follow DELETE with the pathname specifying a file. You can-
not delete a subdirectory if it contains any files. You can delete
several files by separating each one with a comma, up to a
maximum of ten. DELETE doesn’t ask ARE YOU SURE?, so be
careful. ’

121

Chapter 3

Examples:
DELETE MASTER.BKP

This deletes the file MASTER.BKP from the current
directory.

DELETE DF1:PROGS/ALPHA, OMEGA

This deletes the file ALPHA on the PROGS subdirectory
on the external drive, and also deletes the file OMEGA from
the current directory.

DIR (Directory). DIR and LIST are similar commands. DIR
lists just file and directory names, while LIST gives additional
information (see LIST). Follow DIR by a legal directory path.
Don’t include the name of a file in the path. The OPT com-
mand permits special directory options. DIR OPT A lists the
contents of any subdirectories along with the main directory.
DIR OPT D lists only subdirectory names.

There is a special interactive directory mode which you
enter with DIR OPT 1. While in directory mode, the entries are
displayed one at a time. Press RETURN to go on to the next
entry. If the entry is a subdirectory name, you can press E to
enter that subdirectory, listing its files. To exit a subdirectory,
enter B. If the current entry is a file, you can enter T to type
its contents (CTRL-C aborts the display). You can enter the
command DEL to delete the current entry (again, you can’t de-
lete a directory unless it’s empty). Type Q to quit the inter-
active mode.

Examples:
DIR

This displays the current directory.
DIR DF1:DEMOS

This displays the contents of subdirectory DEMOS on the
external drive.
DIR DF1: OPT A

This displays the directory and the directory of next-level
subdirectories on the external drive.

DISKCOPY. To copy one disk to another with two
drives, enter DISKCOPY DFO0: TO DF1:. Formatting is auto- .
matic, and the copy has the same name as the original unless

you use the NAME option, as in DISKCOPY DF0: TO DF1:
NAME “KICKSTART BACKUP”. To copy a disk with one

122

(-

\N

(=

-

[~

-

]

}

| I B

]

-~

)

!
)

.

-]

)

Getting Started with AmigaDOS

)

drive, type DISKCOPY DFO0: TO DFO:. You'll be prompted to
insert the original and destination disks alternately.

Examples:
DISKCOPY DF1: TO DFO0:

This backs up the disk in the external drive to the disk in
the internal drive. Although both disks will have the same
name, AmigaDOS can distinguish between them by the dates
they were created.

DISKCOPY DF0: TO DF0: NAME “WORKBENCH BACKUP”

This creates a named backup of the disk in the internal
drive. Several disk swaps are required.

ENDCLI. This cancels the current CLI window. Use this
command only to terminate a secondary CLI or to return to
the Workbench. If there is no Workbench and you close the
primary CLI, everything ends, leaving you nothing to work
with. Your only recourse would be to reboot the system.

FILENOTE. This command attaches a comment to a file.
Although AmigaDOS'’s 30-character filenames let you be quite
descriptive, an optional FILENOTE lets you attach an addi-
tional 80-character comment to a file. This comment is dis-
played beneath the filename when you use the LIST (not DIR)
command. Follow FILENOTE with the name of the file you're
describing, then the comment. You must enclose the comment
in quotation marks if it includes spaces. The FILENOTE com-
mand also lets you include two optional keywords, FILE and
COMMENT, presumably for the sake of readability.

Files have no comment by default. The comment is re-
tained if the file is changed or overwritten. However, if you
copy a file, its filenote does not get copied with it.

Examples:
FILENOTE waver.bas “Program lets you create sound waves.”

After you attach this comment to the file waver.bas, LIST
waver.bas yields this result:

waver.bas 2272 rwed 11-Oct-85 10:09:53
: Program lets you create sound waves

Second example:

FILENOTE FILE waver.bas COMMENT “Program lets you create
sound waves.”

123

Chapter 3

This is identical to the first example, except for the op-
tional keywords FILE and COMMENT.

FORMAT. This lets you format a new disk. Follow FOR-
MAT with the keyword DRIVE (required), a drive device, the
keyword NAME, and a unique 30-character disk name (en-
closed in quotation marks if it contains any spaces). FORMAT
customizes a blank disk for use with the Amiga drives. Don’t
forget that FORMAT irreversibly erases everything on the disk.

Example:
FORMAT DRIVE DF0: NAME “FINAL PROTOTYPE"

INFO. This command shows a disk report. INFO displays
the size of each mounted drive (normally 880K, except for the
RAM disk), the number of sectors used, number of sectors
free, percentage of capacity used, number of disk errors that
have occurred, the read/write status, and the disk’s name.
INFO also separately displays the names of the currently in-
serted disks. INFO has no additional parameters. Use LIST to
display information about a particular file or directory.

INSTALL. This command makes a disk bootable. In other
words, an INSTALLed disk can be inserted at the Workbench
prompt to bring up the system. Just follow INSTALL with the
optional keyword DRIVE and the drive number. If you want
to be able to execute AmigaDOS commands after booting, you
must copy the C subdirectory from your master disk onto the
copy. (All AmigaDOS commands are extrinsic and contained
in the C subdirectory.)

Example:
INSTALL DRIVE DF1:

This makes the disk currently mounted in the external
drive bootable.

JOIN. This command combines two or more files. Follow
JOIN with up to ten filenames separated by spaces. The
destination file, holding the conglomerate, is specified with the
keyword AS. The original files are unchanged.

Example:

JOIN Checks/Oct Checks/Nov Checks/Dec AS “Checks/4th
Quarter”

This combines the files Oct, Nov, and Dec from the
subdirectory Checks into a single file called “4th Quarter” to

124

L

[~

-

-

—
~

{

I

(-

C

]

~

1)

)

)

]

|

-~

]

Getting Started with AmigaDOS

be created in the Checks subdirectory. The destination file-
name is enclosed in quotation marks because it contains a
space character.

LIST. This command gets you more information about a
disk, directory, or file. LIST by itself displays the current direc-
tory. LIST can also be followed by a directory path and/or a
filename. LIST followed by a filename gives information only
for that file. For each file, LIST displays the filename, size in
bytes, file access (Readable/Writeable /Executable /Deletable),
the date stamp, and the comment, if one was specified with
the FILENOTE command (FILENOTE uses the form FILENOTE
filename “comment”’).

LIST can also be used with the keyword TO, which can
redirect the listing to another device, such as the printer. With
DATES, LIST displays dates as DD-MMM-YY, which is the de-
fault unless you use NODATES. You can use SINCE followed
by a date to show only those files written on or after the
specified date, or UPTO to list only those files created before
or on the specified date. (The date follows the same format
used by the DATE command.)

Example:
LIST DF1: SINCE YESTERDAY

This displays the main directory of the external drive,
including only those files which were created yesterday or
today.

MAKEDIR (Make directory). Follow MAKEDIR with a new

directory path. The last directory name in the path is the name
of the new directory.

Examples:
MAKEDIR “AIR MAIL"”
This creates a new subdirectory called “AIR MAIL”

(quotation marks used because name contains spaces) on the
current directory.

MAKEDIR DF1:DEMOS/GRAPHICS

This creates a new subdirectory called GRAPHICS within
the existing subdirectory DEMOS on the disk in the external
drive.

NEWCLI. By itself, NEWCLI just opens up a new CLI
window and transfers keyboard control to it. The original CLI

125

Chapter 3

is retained. You can use the mouse to move and resize the
window as usual. This new CLI can use settings different from
other CLIs, such as a unique current directory. A CLI can
work in the background while you switch to another process.
You can customize a CLI by following it with “CON:
x/y/width/height /title”, which lets you specify the starting
position, size, and name of the new CLI window.

Although not documented, it’s possible to control a CLI
with another device. NEWCLI SER:, for example, starts a CLI
controlled by an RS-232 device, such as a modem or terminal.
This could let a remote user control his or her own indepen-
dent DOS console.

Use ENDCLI to cancel a CLI and revert to a former one.

Example:
NEWCLI “CON:320/100/160/50/ EXTERNAL DRIVE"

This creates a 160 X 50-pixel window at position
(320,100) with the name “EXTERNAL DRIVE”. This new win-
dow is a complete CLI. With the CD command, you can set
up this window to access one drive and a different window to
access another. The parameters of the CON: device, shown
here, can be used as the output of other commands as well.

PROMPT. Defines a new CLI prompt. Follow PROMPT
with a message, enclosing it in quotation marks if the message
contains any spaces. The message is a replacement for the nor-
mal 1> or 2> prompt of AmigaDOS. You can embed the char-
acters %N to display the current task number.

Examples:
PROMPT “%N> "

Displays the default prompt.
PROMPT “Ready, Master:"”

Displays Ready, Master: as the new AmigaDOS prompt.

PROTECT. This command sets a file’s protection status.
Follow PROTECT by the filename, the optional keyword STA-
TUS, and the protection desired: r to allow a file to be read, w
to allow a file to be written to, d to make a file deletable, and
e to make the file executable. To protect a file against a certain
type of access, omit the corresponding letter. Only actual ma-
chine-runnable object code programs should be made execut-
able. In versions 1.0 and 1.1, only the delete status is in effect;

126

CCCCC

(.

—

(N

.

\—

|

)

}

i
W

]

(W

)

-

J

)

-

v}

-

Getting Started with AmigaDOS

files cannot be protected from being written to, read, or
executed.

Examples:
PROTECT YUPPIES

This makes the file YUPPIES practically nonexistent. It
shows up on the directory, but it cannot be read, written to,
deleted, or executed. You can use PROTECT again to override
this, of course.

PROTECT “DON’'T READ ME” STATUS WD

This allows the file “DON’T READ ME” to be written to
and deleted, but not read or executed. PROTECT provides a
simple form of protection since it can always be used to
change the file’s status back. It mainly protects you against
your own mistakes. :

RENAME. Follow RENAME with the optional keyword
FROM, the existing name of the file, the optional keyword TO
or AS, and the name you’d like to change it to. The new name
must not conflict with any existing name. The position occu-
pied by that file on the directory may change after the re-
name, especially if you use a different subdirectory name for
the new name.

Examples:

RENAME FROM “Templates/Amortization” TO
“Templates/32yr Amortz”

This changes the name of file Amortization to “32yr
Amortz” within the subdirectory Templates.

RENAME Dog AS Cat
This changes file Dog to Cat within the current directory.
RENAME FROM Progs/Slither TO Pascal/Slither

By changing Slither’s subdirectory name, we have, in ef-
fect, moved Slither from the Progs directory to the Pascal
directory. (This is similar to the usage of mv in the Unix
operating system.)

RUN. This lets you run any executable file “in the back-
ground,” that is, while another task is running. RUN is the
AmigaDOS multitasking command. If you start an object mod-
ule or command by just typing its name, it takes over control
from AmigaDOS. Some commands don’t return to AmigaDOS

127

Chapter 3

when they end, locking you out of the CLI. RUN lets you run
any command or program as an independent, simultaneous
process, just as NEWCLI creates a simultaneous CLI. You can
run multiple commands and programs by ending each line
with a plus sign (+) to specify a continuation to the next line.

Example:
RUN ED Simple

This starts the full-screen editor with the file Simple.
Meanwhile, the CLI is still running. To get to it, use the
mouse to select the current screen’s back gadget to display
AmigaDOS, then click in the AmigaDOS window to activate
the CLI. You can type in the AmigaDOS window, executing
commands, then switch to ED to continue editing. Without
RUN, ED takes over until you exit.

SAY. SAY is used to invoke the Amiga’s built-in speech
synthesis capabilities. The user can control the quality and
speed of speech. SAY has two modes: interactive and direct.

In direct mode the text to be spoken or an AmigaDOS file
containing the text to be spoken is specified on the command
line with SAY.

Interactive mode is entered by typing SAY by itself. Two
windows will appear on the system screen.

The “phoneme” window displays the option codes that
may be used to control the quality and speed of the syn-
thesized voice. . '

The “Input” window is where text that you wish spoken
is displayed as it is typed on the system keyboard. The text is
passed to SAY when the RETURN key is pressed. Interactive
is exited by typing a line consisting only of a RETURN
keystroke.

The SAY command was added to AmigaDOS in version 1.1.

SAY [options] [text]..........

[options] Control the quality, pitch, speed, and source of the text to
be spoken. SAY identifies options by a leading dash (-).

Valid options for SAY are

~f Use female voice.

-m Use male voice.

-n Use natural voice.

-r Use robot voice (monotone).

-p### Set pitch of voice to ### (valid values are 65-320).
-s### Set speech rate to ### (valid values are 40-400).

128

e
—_—

]

N

)

]

[J—

i

-1

N |

.’f

]

Getting Started with AmigaDOS

-x <file> Say contents of <file>. The —x option may not be invoked
in the interactive mode of SAY; <file> must be an
AmigaDOS file in the current directory and may not con-
tain any spaces or be enclosed in parentheses.

Multiple options may be specified at one time.
Example:
SAY -f -p250 -s130 The Amiga can talk like a female

SEARCH. Finds text within files. This command searches
for the target string through any directories you specify. Fol-
low SEARCH with the optional keyword FROM, the path-
name of the directories to be searched, the optional keyword
SEARCH followed by the search string, and the optional key-
word ALL, which forces SEARCH to look through all
subdirectories contained in the specified directory. When
SEARCH finds the target string, it displays the line containing
the string as well as the line number of the line containing the
string. If you're searching through a directory, SEARCH also
displays the filename of each file it’s searching through.

SEARCH is not case-sensitive; it matches regardless of up-
per- or lowercase. You can cancel the command with CTRL-C.
To force SEARCH to abandon the current file and begin
searching the next, press CTRL-D. During a search, you may
see the message “‘Line xx truncated.” This isn’t anything to
worry about; it just indicates that the line was too long to be
searched, so if your search string was contained somewhere
near the end of a too-long line, the search program could not
find it.

Examples:
SEARCH FROM DF0: SEARCH LoadWb ALL

This looks for the phrase LoadWb. The entire contents of
the internal drive are searched, including all subdirectories, so
this command takes a long time to finish.

SEARCH Progs/Tempfile LIBRARY

This looks for the word LIBRARY in the file Tempfile
within the subdirectory Progs.

SORT. This command alphabetically sorts a file you spec-
ify. Each record in the file to be sorted must end with a car-
riage return. Use SORT followed by the optional keyword
FROM, the file to be sorted, the optional keyword TO, and the -
name of the file where the sorted output should be stored.

129

Chapter 3

SORT collates based on the entire line unless you include the
keyword COLSTART and a column number. The sort compari-
son then starts by comparing two lines from that column to
the end of the line. If that partial comparison succeeds, the
first portion of the line is compared. This lets you specify two
levels of sorting (see example).

Unless the file to be sorted is less than about 200 lines,
increase the stack size with STACK to prevent a crash (see be-
low). It’s better to use too much stack space than too little.

Example:

If you have a list of first and last names, with the first
name and initial in columns 1-19, and the last name always
starting in column 20, you could use

SORT FROM Route TO Sorted.Route COLSTART 20

The files are sorted by last name, and each group of
identical last names is subsorted by first name.

STACK. Sets the stack size. Follow STACK with the new
stack size in bytes. The normal stack size is 4000, sufficient for
most commands. When using SORT, MetaComCo ABasiC,
programs with lots of nested subroutines, or programs using
flood-fill, you may need to increase the stack size to prevent a
crash. A value from 8000 to 10,000 is usually generous
enough for these cases.

TYPE. This command prints out a file on the screen. It's
generally used with text files. Displaying other types of files
usually produces nonsensical streams of strange characters.
Follow TYPE with the filename. To redirect TYPE to another
device, include the TO option, as in TYPE README.DOC TO
PRT:.

TYPE allows two options. TYPE OPT N creates sequential
line numbers for each line of text. You could use TYPE SAM-
PLE TO “NUMBERED SAMPLE” OPT N to create a line-
numbered version of SAMPLE as “NUMBERED SAMPLE”.
TYPE OPT H displays the characters in a file as hexadecimal
numbers. This is more useful when displaying machine lan-
guage code or data files.

Examples:
TYPE “DF1:BASIC PROGRAMS /PINPOINT”

This displays the BASIC program PINPOINT located in
the subdirectory BASIC PROGRAMS in the external drive. In

130

CCC

C C

.\(-

-

)

)

~

N

!

!

[
<

-}

2}

._, ;

]

I

)

Getting Started with AmigaDOS

this case, quo'tation marks are required to prevent the embed-
ded space in BASIC PROGRAMS from terminating the TYPE
command.

TYPE SYS:C/DIR OPT H

This displays the contents of the DIR command (which is
stored as a file in SYS:C) in hexadecimal. (Unless you can
mentally disassemble the hex dump into 68000 mnemonics,
this file will make no sense.)

WAIT. This makes AmigaDOS pause and do nothing for
a span of time. Although this might seem a dumb command,
WAIT has certain advantages over walking away from the
computer or simply turning the machine off. Only the current
CLI is frozen; multitasked processes continue. WAIT by itself
pauses for one second; you can follow WAIT with a number
of seconds, followed by either SEC or SECS, and a number of
minutes, followed by either MIN or MINS. You can optionally
include the keyword UNTIL followed by a time of day, speci-
fied as HH:MM (as measured by the Amiga’s internal clock, so
make sure it’s set correctly). WAIT is useful within batch files
to allow time for a message to be read or as a background task
to wait until a particular time before executing another
command.

Examples:
WAIT 10 MINS 20 SECS

Waits for 10 minutes, 20 seconds.
WAIT UNTIL 17:00

Waits until the current time is 5:00 p.m.

RUN WAIT 10 SECS +
DIR +
ECHO “All done.”

Waits for 10 seconds, calls a directory as a second CLI
task, then prints the message ““All done.”

WHY. This interesting command calls up an additional
explanation of what caused the most recent error. When an
AmigaDOS command fails, you'll usually get a terse error
message. If you want a more detailed, technical description,
ask WHY. However, many times WHY isn’t any more help-
ful—it just explains in more detail why a command failed.

131

Chapter 3

Example:
WAIT 10 SECONDS

AmigaDOS responds with the error message “Bad Args”
because the correct notation is WAIT 10 SECS, not WAIT 10
SECONDS. If you type WHY, you get this answer:

Last command failed because argument line invalid or too long.

Although more descriptive, it still doesn’t explain that
SECONDS should be SECS—but it does point you in the right
direction.

132

N

.

]
o~

(-

{

-

-

Lo

latch Flles

Charles Brannon

N

1

_3

D

-]

AmigaDOS Batch Fliles

Charles Brannon

migaDOS is more than a console-driven disk operating
system. By executing a sequence of AmigaDOS com-

mands stored in a file, AmigaDOS takes on some of
the characteristics of a programming language. Whether you
want to simplify repetitive disk commands or create personal-
ized custom commands, batch files further extend the range
and flexibility of AmigaDOS.

No matter how easy it is to use a program, the most
popular programs are those that give users more power. And
although a program may have scads of powerful commands,
the most powerful programs are those which let users put the
commands together in new ways—in effect, to write programs.

Instead of forcing you to always issue commands one at a
time, a programmable application lets you create a script of
commands to customize the behavior of the program. Whether
we're talking about word processing macros, spreadsheet tem-
plates, relational database languages, or advanced machine
language, programmability is the real key to software power.
If you feel limited by a certain range of commands, you can
combine the commands in new ways to create personalized
features, just as we combine the vocabulary of English words
to create a wealth of literature. Why just read when you can
write?

Scripts, Sequences, and Batches

AmigaDOS is more than just a disk operating system—it’s a
programmable system that can process lists of its own com-
mands as well as individual commands. In effect, AmigaDOS
is a simple disk-oriented programming language.

A list of AmigaDOS commands can be stored in a disk
file variously known as a script, a sequence, or a batch file.
The term batch file is most commonly used by those who work
with PC-DOS, MS-DOS, and CP/M, which are also pro-
grammable disk operating systems. To keep things straight,
we'll use batch files synonymously with scripts and sequences.

Even if you don’t program in BASIC or any other lan-
guage, you may be interested in learning about AmigaDOS
batch files. The batch file “language” is simply made up of the

135

Chapter 4

same AmigaDOS commands you’'ve probably been using all
along (see Chapter 3 and Appendix B). There are also a few
AmigaDOS commands designed especially for batch files.

Creating and running batch files is easy. Using a text edi-
tor, you just type in a list of AmigaDOS commands. Then you
save the list on disk under a filename. To run the batch file,
you type EXECUTE filename at an AmigaDOS prompt.
AmigaDOS reads the batch file and executes the list of com-
mands, just as if you had typed them one by one yourself.

We won'’t cover some of the more advanced features of
batch files, useful only to advanced C and machine language
programmers. Instead, we’ll concentrate on the everyday util-
ity of batch file programming.

A Quick Example

In a moment, we’ll show how to create batch files with ED,
the AmigaDOS full-screen text editor, but, first, there’s a sim-
pler way to create a short batch file. Enter this line at an
AmigaDOS prompt:

copy * to Hello

(Note that AmigaDOS commands can be entered in uppercase
or lowercase.) ‘

Although nothing seems to happen, AmigaDOS is waiting
for you to enter some lines. We'll use the ECHO command to
display a friendly message. ECHO displays any text that fol-
lows it within quotation marks, just like the PRINT statement
in BASIC. One difference is that if you want to ECHO only a
single word, the quotation marks aren’t necessary.

At an AmigaDOS prompt, enter the following text, press-
ing RETURN after each line:

echo “Hello!”
echo “I am your friend, the Amiga”
echo “personal computer.”

After the last line, press CTRL- \ (back slash). This key is
the one to the left of the BACK SPACE key. CTRL- \ tells
AmigaDOS that you're finished, and that it should finish writ-
ing and close the file. This key represents EOF, for End Of
File. :
To confirm that you’ve typed the file correctly, enter

TYPE Hello

136

(- [

[

(

-

- (T

L

I .

]

V

]

AmigaDOS Batch Files

You should see the same lines you typed. Now you can start
this simple program: '

EXECUTE Hello

This should print on the screen:

Hello!
I am your friend, the Amiga
personal computer.

Using ED

It would be nice to have the Amiga actually speak this greet-
ing. Rather than typing in a whole new file, we’ll use ED, the
screen editor, to make the simple changes we're interested in.
Enter

ED Hello

This runs ED and also loads the batch file named Hello.
When you start ED, you can give it the name of any file to
edit. If the filename doesn’t exist, it will be created; otherwise,
the file is automatically displayed on the editor screen. (In-
cidentally, AmigaDOS has another text editor called EDIT, but
it’s not as easy to use as ED.)

We'll make the Amiga speak the ECHO messages aloud
by taking advantage of the system’s built-in speech synthesis
via the AmigaDOS SAY command (added to AmigaDOS ver-
sion 1.1). To learn more about SAY, just enter SAY by itself to
enter an interactive mode with onscreen instructions.

After you start ED by typing ED Hello, the batch file we
previously entered should be on the screen with the cursor at
the beginning of the first line. ED is a full-screen text editor,
so you can move the cursor anywhere within the file (but not
past the last line). To insert some text, just start typing. The
DEL and BACK SPACE keys can be used to delete characters.

Move the cursor to the second ECHO line and press RE-
TURN. This inserts a blank line. Cursor up to the blank line
and enter

SAY HELLO!

You don’t need to press RETURN at the end of the line since
you already did this to open up a line for typing.
Now cursor to the end of the file and type

SAY I am your friend, the Amiga personal computer.

137

Chapter 4

(Notice that SAY is the only AmigaDOS command that
doesn’t require you to enclose text containing spaces with
quotation marks.) This is how your screen should look:
echo “Hello!”

say Hello!

echo “I am your friend, the Amiga”

echo “personal computer.”

say I am your friend, the Amiga personal computer.

With the cursor at the end of the file, press the ESC key.
An asterisk (*) should appear. Press the X key, then RETURN.
This exits ED and saves your changes back to disk.

il Finally, type EXECUTE Hello to try out your talking batch
ile.

Although these techniques are sufficient for simple
editing, ED has dozens of editing commands. For example,
CTRL-B (press CTRL and B at the same time) blanks out and
deletes the line the cursor is on. ESC-J-RETURN joins two
lines together. Space doesn’t permit a discussion of all these
commands, but if you like to experiment, refer to the abbre-
viated ED reference chart accompanying this article.

Startup-Sequence

A special AmigaDOS batch file, called the startup-sequence, is

executed automatically when you boot up an AmigaDOS or

Workbench disk by inserting it at the Workbench prompt.

Startup-sequence normally just displays a message, then

launches the Workbench, and ends the command line interface.
To edit this batch file, enter

ed s/startup-sequence

This runs ED and calls up the file “startup-sequence”
from the S subdirectory. This subdirectory, which can also be
accessed as the S: device, is a convenient place for batch files.
Just as AmigaDOS by default searches for AmigaDOS com-
mands in the C subdirectory, the EXECUTE command first
looks for a batch file in the S subdirectory. If AmigaDOS can't
find the batch file in this subdirectory, it looks for it in the
current directory. So, no matter what your current directory is,
you can always use your batch file if you place it in the S
directory on your startup disk.

When you first load startup-sequence into ED, you'll see
something like this:

138

L L

— [

[~

[~

.

]

]

b

]

1 1]

]

]

AmigaDOS Batch Files

echo “Workbench disk. Release 1.1”
echo “n

echo “Use Preferences tool to set date”
echo “” n

LoadWb

endcli > nil:

Since this message appears every time you start up your
disk, you may want to change the ECHO statements for a
personalized message. Likewise, if you’'d rather use
AmigaDOS instead of the Workbench, delete the last two
lines. The “> nil:”” sequence makes AmigaDOS throw away
the output of a command; here, the message “CLI task 1

- ending.”

Startup-sequence is a good place to put personalized com-
mands. For example, if you like to keep your command direc-
tory in RAM for speed and convenience, you could insert
these lines above the LoadWb line:
makedir ram:c
copy c to ram:c all quiet
cd ram:c

This copies all of the AmigaDOS commands from the C
subdirectory on the floppy disk into a C subdirectory on the
RAM disk. It also changes the current directory to the C
subdirectory in RAM:, so any AmigaDOS commands you type
from then on will be loaded from RAM: instead of from the
floppy. In effect, this turns AmigaDOS into a memory-resident
DOS, with all commands intrinsic instead of extrinsic.
AmigaDOS responds much faster this way. However, this also
uses up quite a bit of memory, so you may want to copy only
the commands you use frequently.

Another useful startup action is to set the date and time.
You can always do this with the Preferences tool or by open-
ing a CLI and using the DATE command. However, it can be
more convenient to enter the date when you first turn on your
Amiga, allowing all files subsequently saved to be stamped
with the current date and time. Just insert this line into
startup-sequence:

date ?

The ? operator can be used in place of the parameter of a
command. Instead of specifying the date, ? prompts the user
to enter the date. It also displays the template for the date

139

Chapter 4

command (TIME,DATE,TO=VER/K:). If you like, use ECHO
to display your own prompt, and > nil: to discard the template:
echo “Please enter the date and time.”

echo “DD-MMM-YY HH:MM:SS”

date > nil: ?

From then on, whenever you boot up from this disk, you'll re-
spond to the prompt by typing something like this:

27-jan-86 15:12
which automatically sets the system clock.

Variable Parameters

You can also send special options to your batch file. You enter
these options on the command line along with the EXECUTE
command. Just as with variables in BASIC, you can manipu-
late these parameters symbolically.

Let’s say you'd like a batch file that gives you complete
information on a file. It uses LIST to display the information
about the file and TYPE to display the file. You would use a
command like EXECUTE SHOW RODEO to display the file
RODEO. Use ED SHOW or COPY * TO SHOW to create this
batch file:

KEY name

LIST <name>
TYPE <name>

KEY (don’t forget the leading period) sets up a name for
substitution text. Whatever you typed on the same line with
EXECUTE is substituted wherever you use <name>. You must
use the angular brackets, or LIST and TYPE would look lit-
erally for the file “name”. '

After creating this batch file, type this at an AmigaDOS
prompt:

EXECUTE SHOW S/STARTUP-SEQUENCE

The result is the same as if you had typed LIST S/STARTUP-

SEQUENCE followed by TYPE S/STARTUP-SEQUENCE.
Other AmigaDOS commands let you check to see

whether the user has entered a specific string and whether a

file exists. To prevent an error message, we can check to see if

the file exists before we use LIST and TYPE:

KEY name

IF EXISTS <name>
LIST <name>

140

[

= .

oy

B

1

B

AmigaDOS Batch Files

TYPE <name>

ELSE

ECHO “<name> does not exist!”
ENDIF

Notice the use of IF, ELSE, and ENDIFE. Looks like Amiga
BASIC, doesn't it? In fact, the AmigaDOS IF-ELSE-ENDIF
commands function very much like BASIC’s. When the IF con-
dition is true, AmigaDOS executes the following statements;
otherwise, the following statements are ignored. ELSE exe-
cutes the statements following it only if the preceding IF was
false. ENDIF cancels conditional processing and returns to
executing all commands.

Any Parameters Missing?

Here’s how to use the IF EQ option to test for the existence of
a command-line parameter. If there is no parameter, <name>
is null, so “<name>z" is simply “z”’. We use NOT to reverse
the test. If the parameter “<name>z" is NOT equal to “z”,
then we must have a command line parameter. (We can’t just
test IF <name> NOT EQ “ ", since EQ wants two parameters,

and the null string “ ”” is not a parameter, but the lack of one.)

KEY name

IF <name>z NOT EQ z

LIST <name>

TYPE <name>

ELSE

ECHO “You didn’t give me anything to SHOW.”
ENDIF

Although you can’t use leading spaces in the actual batch
file, it’s easier to follow the IF-ENDIF structures when you use
indentation. Just don’t type in the leading spaces. This version
of the batch file SHOW checks both for the existence of the
filename and for the presence of the filename parameter:

KEY name
IF <name>z NOT EQ z
IF EXISTS <name>
LIST <name>
TYPE <name>
ELSE
ECHO “<name> does not exist!”

ECHO “You didn’t give me anything to SHOW.”
ENDIF
141

Chapter 4

You can use more than one parameter in the .KEY state-
ment, just as many commands, such as DATE, accept two
inputs.

If the user doesn’t enter anything for the parameter, you
can assign a default value using either .DEF or $. If you use
.DEF, the default phrase is used throughout the batch file. In
this example, SHOW displays itself if you don’t give it a
filename.

KEY name
.DEF s/show
LIST <name>
TYPE <name>

You can use $ to substitute a default value only for the
current substitution. Several batch commands may use the
value in different ways, so each command may have its own
default value. In the following example, LIST displays the
whole directory if <name> is null, but TYPE types the file
“TEMP” if <name> is null:

KEY name

LIST <name>
TYPE <name$temp>

Labels and Branching _

You can jump forward to a label with the SKIP command.
You'd typically use SKIP along with an IF condition if you
want to skip over a block of statements that shouldn’t be exe-
cuted if the IF was true. You declare the label with LAB. SKIP
can’t skip backward, only forward to a LAB statement. You
can usually use IF and ELSE to accomplish the same thing,
though.

KEY name

IF exists <name>

TYPE <name>

SKIP ToMyLou

ENDIF

ECHO “<name> doesn’t exist.”

LAB ToMyLou

echo “Finished.”

An EXECUTE command can execute another batch file, or
even itself. This permits backward looping to some degree.
Nested batch files can be quite handy. You can test and debug

142

I T

[

3 2

1

1

]

I I

AmigaDOS Batch Files

individual batch programs, then execute them together from a
master execute script:

EXECUTE Greeting
EXECUTE GetDate
EXECUTE Assignments

The individual files could themselves contain other EXE-
CUTE references.

ASSIGNing Shortcuts

If you're using EXECUTE a lot, you may grow weary of typing
it. You can always rename EXECUTE to something short like
x, but other batch programs may contain EXECUTE state-
ments, requiring you to rename it back. Instead, you can use
the ASSIGN command to assig<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>