

D

O

D

O

a

o

□

a

o

n

n

Programmer's

Guide

Edited by Stephen Levy

COMPUTE! Publicationsjncffl
Part of ABC Consumer Magazines, Inc. *"■
One of the ABC Publishing Companies

Greensboro, North Carolina

The following articles were originally published in COMPUTE! magazine, copyright
1986:

"Getting Started with AmigaDOS," originally titled "Introduction to AmigaDOS"

(January and February); "AmigaDOS Batch Files" (April).

"AmigaDOS Command Summary" was originally published as part of COMPUTERS

AmigaDOS Reference Guide, COMPUTE! Publications, Inc., copyright 1986.

Copyright 1986, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by

Sections 107 and 108 of the United States Copyright Act without the permission of

the copyright owner is unlawful.

Printed in the United States of America

10 987654321

ISBN 0-87455-028-9] f

The authors and publisher have made every effort in the preparation of this book to insure the ac

curacy of the programs and information. However, the information and programs in this book are 1 ~ T

sold without warranty, either express or implied. Neither the authors nor COMPUTE! Publica- 1 I
tions, Inc., will be liable for any damages caused or alleged to be caused directly, indirectly, in- ^—J
cidentally, or consequentially by the programs or information in this book.

The opinions expressed in this book are solely those of the authors and are not necessarily those] f

of COMPUTE! Publications, Inc. { J

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)

275-9809, is part of ABC Consumer Magazines, Inc., one of the ABC Publishing i *

Companies, and is not associated with any manufacturer of personal computers. { j
Amiga and AmigaDOS are trademarks of Commodore-Amiga, Inc. Lattice C is a

trademark of Lattice, Inc.

u

Foreword iv

About the Authors v

1. Introducing the Amiga

Dan McNeill 1

2. BACIC Programming

C. Regena 29

3. Getting Started with AmigaDOS

Charles Brannon 109

4. AmigaDOS Batch Files

Charles Brannon 133

5. Graphics

Sheldon Leemon 145

6. Programming Amiga Sound

Philip I. Nelson 207

7. C Programming

Marc B. Sugiyama and Christopher D. Metcalf 263

8. Machine Language

Tim Victor 345

Appendices 401

A. Amiga Character Codes 403

B. AmigaDOS Command Summary

Sheldon Leemon and Arlan R. Levitan 409

C. Frequency Values for Equal-Tempered Musical Scale 429

D. Lattice C Compiler Flags 433

E. Selected Intuition Routines 435

F. Selected Kernel EXEC Routines 443

G. Selected Kernel Graphics Routines 447

H. Selected DOS Library Routines 449

I. Fast Floating Point Functions 453

Index 454

Foreword

Whether you're programming your Amiga in BASIC,

C, or machine language, COMPUTERS Amiga Pro

grammer's Guide is the reference you'll need. The

nine experienced programmers and writers who have contrib

uted to this volume, explain how to program and use the

power of the Amiga in the clear and concise style that has be

come the hallmark of COMPUTE! Publications.

Amiga BASIC, perhaps the most advanced BASIC avail

able for any personal computer, includes commands that let

a programmer access the powerful features of the Amiga.

C. Regena has put together a complete reference section of

Amiga BASIC commands, including sample programs that

clearly illustrate how to program the Amiga.

Chapters 3 and 4 are AmigaDOS tutorial. Author Charles

Brannon clearly shows you how to use the most popular

AmigaDOS commands. We've also included a complete

AmigaDOS command summary.

In chapter 5, Sheldon Leemon illustrates how to exploit

the powerful graphics capabilities of the Amiga. Using pro

gram examples, you'll learn how to use "graphics.library" to

produce the graphics you want.

The Amiga can produce sound that simulates the human

voice. Philip Nelson, teaches you, in plain English, how to

write programs using Amiga sound. Among the programs in

cluded in the sound chapter are a waveform editor, a pho

neme builder, a speech experimenter, and a machine language

sound generator. K

Maybe you'd like to program in C or 68000 machine Ian- i^J
guage. You'll find what you need to get started, including a

variety of C and machine language program examples and , }

appendices of selected Intuition, Kernel, fast floating point, * \

and DOS library routines.

With its thorough introduction to the Amiga, easy-to-use t .

reference charts, and clear, concise explanations of BASIC, C, Lj

and machine language, COMPUTEI's Amiga Programmer's

Guide is the one book every Amiga programmer should own. ^ ,

u

n

n

n

About the Authors

Charles Brannon has been writing and programming for over

six years. As program editor for COMPUTE! Publications, he

has assisted in the development of COMPUTEI's programming

department and introduced the unique program typing aids,

"The Automatic Proofreader" and "MLX," to the readers of

COMPUTE! publications. Charles is also the creator of the

bestselling word processor SpeedScript and coauthor of COM

PUTEI's Advanced Amiga BASIC.

Sheldon Leemon is a free-lance writer based in Michigan. He

has authored or coauthored four books, including COMPUTEI's

AmigaDOS Reference Guide (with Arlan Levitan) and Mapping

the Commodore 64. He is currently writing a fifth book, Inside

Amiga Graphics. His work has appeared in numerous magazines.

Arlan R. Levitan is a staff regional systems engineer for

Amdahl Corporation and telecomputing columnist for COM

PUTE! magazine. He is the coauthor (with Sheldon Leemon)

of three books including COMPUTEI's AmigaDOS Reference

Guide.

Dan McNeill is a free-lance writer based in San Francisco and

Los Angeles. He is author of the book, COMPUTEI's Beginner's

Guide to the Amiga, and coauthor of The Apple lie: Your First

Computer. His work has appeared in numerous magazines.

Christopher D. Metcalf is a student at Yale University. He

has authored numerous articles and programs for COMPUTE!

Publications and has coauthored the book (with Marc Sugi-

yama) COMPUTEI's Beginner's Guide to Machine Language on

the IBM PC and PCjr.

Philip I. Nelson, assistant editor of COMPUTE! magazine, has

written a number of articles on programming sound. He is also

coauthor of the books COMPUTEI's ST Programmer's Guide and

COMPUTEI's 128 Programmer's Guide.

C. Regena has a monthly column in COMPUTE! magazine and

has written a number of books including Elementary Amiga

BASIC and the bestselling Programmer's Reference Guide to the
TI-99/4A.

U

U

Marc B. Sugiyama is a student at Harvey Mudd College in

California. He wrote the very popular game "Zuider Zee" for

the Commodore 64 and coauthored the book (with Chris Met-

calf) COMPUTEl's Beginner's Guide to Machine Language on the \\
IBM PC and PCjr.

Tim Victor, editorial programmer for COMPUTE! Publica- « - >

tions, has authored many sophisticated programs for various (J
microcomputers, including "Apple Superfont." He is also co

author of the books COMPUTEl's ST Programmer's Guide and

COMPUTEl's 128 Programmer's Guide.

u

■■?

Chapter 1

IntrDducing the

Amiga

D

O

D

O

a

o

□

a

o

n

_ Introducing the Amiga
Dan McNeill

n
The Amiga is the computer Merlin might have owned. It

creates vibrant images and breathes life into them with

sound. Indeed, it is perhaps the first computer to ap

proach the mesmerizing audiovisual power of television. You

can sit before it entranced by something as simple as a bounc

ing ball.

Speed. The Amiga is one of the swiftest personal comput

ers available." Not only does its 68000 microprocessor work at

7.16 megahertz, but it has three extra chips which shoulder

many tasks independently and boost its velocity.

Graphics. The Amiga's screen offers not just 640 X 400

resolution and 4096 colors, but a full graphics environment,

with sprites, playfields, multiple windows, and bitmapped

animation. These endowments are leading to extraordinary

games and graphics and brilliant video in general.

Audio. The Amiga has four independent audio channels,

with which it can synthesize almost any sound imaginable. It

can imitate musical instruments, create its own sounds, and

play along with you as an accompanist. The Amiga also has

built-in voice synthesis, and making it speak is easy.

Multitasking. The Amiga can run several programs at

once. Each program gets its own window on the screen and

acts as if it is the chief and sole glory of the computer. You

can compare two documents, write from notes, or keep dif

ferent projects percolating at the same time. You can also con

trol the computer, printer, and modem simultaneously, and

thus print out one document while transmitting another and

writing a third. The Amiga performs multitasking with ease.

Emulation. A $99 Transformer program can emulate the

IBM PC; hence, the Amiga can run its vast library of business

programs.

Expandability. The Amiga is fully expandable. Its mem

ory expansion port accepts a simple memory upgrade which

doubles the Amiga's RAM from 256K to 512K. It also has an

expansion bus, where add-on devices hook into the basic cir

cuitry of the machine. Expandability is particularly significant

with the Amiga. Its graphics and audio strengths mean it will

L)
Chapter 1

u

become the tool of specialists, who will devise novel hardware j j

for it. Such ingenuity has a trickle-down effect. Devices are in

vented for the space race and wind up on your kitchen drain-

board. Hence, the Amiga may lead to new and fascinating j j

retail products. —^

A quick tour of this computer must begin somewhere, and j j

we might as well start with the first sight: the console's exterior. "—■*
We'll then move on to the interface and after that to the basic

hardware. Finally, we'll come full circle and look more closely

at the Amiga's special powers in business, video, and audio.

The Facade

The Amiga may be the most deceptive-looking personal com

puter on the market. It consists of a plain, off-white console

about the size of a stereo. Most of the external action takes

place on the four sides of the console, each a strip somewhat

narrower than a bumper sticker, and of these the front and

back panels are the busiest.

The front panel. The front panel is the part you become

most familiar with. A chromatic checkmark, the Amiga's hall

mark, floats in the upper left corner, and next to it, the legend

AMIGA itself. A pair of vertical lines trisects the panel, and a

long horizontal indentation parallels the bottom. The middle

third detaches to reveal the memory expansion bus. On the

right third is the disk drive, the scene of much ado. The drive

has a squarish recessed area to ease disk handling. Just below

it to the right is the rectilinear disk-eject button.

The left panel. The left panel is relatively empty. It con

tains little but the on/off rocker switch, located near the front.

The right panel. The right panel boasts the two hand < j

controller ports for various input devices you move around by <—J
hand. The mouse plugs in here, as do the paddle, joystick,

light pen, digitizer pad, and optical scanner. The expansion \ j

bus is located here, too, beneath a removable plastic flap. t—J

The rear panel. The rear panel has nine ports, where ca

bles lodge like ships docked at a city (see Figure 1-1). They \ i

are, from left to right: <—S

Keyboard port. This connector resembles a phone jack and

accepts the keyboard cable with a brisk and easy click. j [

Parallel port The D-type parallel port generally links up

with the printer or the color plotter.

u

n

n

n

n

Introducing the Amiga

External disk drive port. This port allows a second disk

drive to be added, which reduces the amount of disk

swapping.

Serial port. Some printers and most modems use serial

transmission rather than parallel, and this port handles them.

Figure 1-1. Rear Panel of the Amiga

Parallel

Port

Serial

Port

TV Port

Keyboard

Port

External

Disk Drive

Port

Speaker

Ports

RGB

Monitor

Port

Video

Port

The serial port is female and the parallel port male to avoid

accidental mixups.

Speaker ports. These two jacks attach to the speaker in the

Amiga monitor or to hi-fi speakers and let you bask in the

computer's sound capacities.

RGB monitor port. This port links the Amiga to the RGB

monitor. The icon shows a TV tube with three overlapping cir

cles, emblematic of red, green, and blue.

TV port. This port sends signals to the TV set. You won't

confuse it with either the horizontal RGB port on its left or the

nozzlelike video jack on the right, for it is the only port that is

circular. It takes several pins around its circumference and one

at the middle.

Video port. This port connects to the leftover video mis

cellany: the monochrome and color composite monitors.

Bottom. Underneath the front of the console is room for

the keyboard to slide in and out, a thoughtful touch that

yields instant desk space if, say, you want to jot down a hand

written note or sign a letter. The genlock interface also fits be

neath the console in the rear. The underside of the console

LJ
Chapter 1

u

has vents which allow air to enter the computer and cool it J I

while it works. As always, open vents are critical. Block them '

while the computer is on, and it may overheat and fail.

Top. The monitor normally goes atop the console, which j J

can hold up to 40 pounds. This arrangement leaves slender

shoulders on either side, upon which you can stack such

peripherals as hard disk and modem, thus reducing the sys- j I

tern's footprint.

Esthetically, the exterior very much resembles the IBM

PC: solid and unprepossessing, not ugly, but no swan either. It

scarcely matters. Once you turn the Amiga on, its appearance

has little importance.

Entering the Amiga

You progress into the Amiga in a series of steps, all very sim

ple. First, you turn on the monitor, then the computer. The fan

begins to hum, and pale blue light floods the screen. Soon the

little startup tune sounds, and the screen displays a large hand

feeding Kickstart into the disk drive.

The Kickstart disk contains Intuition, the Amiga's operat

ing system. Commodore decided to place Intuition on disk

rather than ROM chips in order to make upgrades easily avail

able, and indeed Kickstart 1.1 appeared within a few months

of launch. This arrangement also lets you write your own

operating system if you want to turn the Amiga into, say, a

special-purpose graphics machine.

The Amiga loads the 256K Kickstart into a special, write-

protected area of RAM. During this process, the red disk-use

light stays on, and pressing the disk-eject button at this time

can destroy the Kickstart disk. Unfortunately, the light some

times turns off briefly in the midst of loading programs, so it's t /

a good idea to wait for some other sign that the procedure is LJ
complete. Here, the screen will display a hand inserting the

Workbench, and you can then press the disk-eject button and \ i

pull Kickstart out of the drive. <—J
The next step depends on the software. It may have the

Workbench or AmigaDOS already on it, in which case you ig- < j

nore the onscreen cue and simply slip it in. Otherwise, you in- LJ
sert the Workbench disk and set the Amiga up for further tasks.

u

u

n
Introducing the Amiga

n The Interface: Portal of the Amiga

The Workbench reveals the Amiga's interface, the arena where

you and it conduct basic interaction. A computer's interface is

in many ways its style, its personality. The Amiga's, like the

Macintosh's, is a genial host, taking over the burden of

communications and constantly proffering its resources so that

you can select them at your pleasure.

The interface is also the gateway to the Amiga. It is an

elaborate portal, full of important entry information as well as

little aids which you can exploit or not at your pleasure.

Let's look at its fundamental elements.

The crux of the interface is the pointer, which is rather

like a magic wand. You move it freely about the screen with

the mouse. When it's over an item, you can click a mouse but

ton and the item responds as if a magic wand had touched it.

There is instant action. Touched items open up, fold down, or

cause myriad changes, and you thereby gain mastery over the

machine.

There are three kinds of items that react to the pointer's

touch: icons, windows, and menus.

Icons. Icons are small pictures that act as doorways into

various parts of the system. They come in four types: disks,

drawers, tools, and projects. Disk and drawer icons open up

onto further icons, while tool and project icons unveil actual

work areas. The first two are containers for the second two,

and the second two are the reason people buy the Amiga.

Disks. Disk icons are easily recognizable, as they resemble

microfloppy disks.

Drawers. Drawers are repositories for tools and projects,

and they usually look like desk drawers.

Tools. "Tools" is Amiga-ese for programs, like Graphicraft

or the Clock. Most tools let you create pictures or documents,

and their icons can look like anything a programmer can

imagine.

Projects. "Projects" are files created by programs. For in

stance, a painting done with Deluxe Video Construction Set is a

project.

When the Workbench interface comes up, there is a single

disk icon in the upper right corner, labeled "Workbench." This

icon is the first entranceway. Place the pointer over it, double

click the left button of the mouse, and a window appears with

more icons inside it. You've moved into a foyer.

Chapter 1

U

The Workbench window reveals a number of new icons.] j

On the left are four drawers. Open a drawer—again, you —

double-click it—and another window appears, with more

icons in it. You essentially move from the foyer to a smaller 1 [

anteroom. If you click the Utilities drawer, for instance, a win- —'
dow with the Notepad icon appears.

The Notepad is a tool, one of the ultimate destinations in j j

the system. Double-click the Notepad icon, and the Notepad *—'
window opens up. Here, you can jot down random thoughts

and memos to yourself. You have reached the equivalent of a

room, and you have no more doors to enter.

The Workbench has three other icons. One is the Clock. If

you click it, a ticking clock appears onscreen, giving you the

time. Another is the Trashcan. To erase a project you have no

further use for, drag it over to the Trashcan. The Trashcan is a

kind of drawer, and also a kind of limbo. It holds onto the file

in case you want to recall it, since deleting a file is an act of

consequence. Once you select Empty Trash from the Disk

menu, however, there is no return.

The third icon is Preferences, which depicts a question

mark over the front panel of the Amiga. Double-click it, and

you enter the central command post of the Amiga. Here, you

can dictate clock time, date, text size, mouse speed, double

click speed, Workbench colors, and numerous other matters.

Preferences is actually a series of three screens layered over

one another. Normally, you see only the first, the one most

often used. But click Change Printer and the second screen ap

pears. It allows you to set printer variables, an important func

tion you cannot ignore. The second screen is also your

entryway into the third. Click Graphic Select and you leaf

down to the final screen, which lets you alter graphics on their \ j

way to the printer. (—l
Icons do not exist solely to be opened. Instead of double-

clicking an icon, you can click it just once. It will darken. You j I

have selected it and can now perform a variety of operations '—'

upon it.

For instance, you can relocate the icon on the screen. j j

Press the left button down and move the mouse around. '—'
When you get it where you want it, release the button and the

icon will hop over. Moving icons can change their status, as it j [

does when you drag them to the Trashcan. You can also shift '—'

u

H
Introducing the Amiga

them in and out of drawers by dragging them from one win

dow to another.

As we'll see below, selecting also lets you choose which

icons the menu commands will act on. To deselect, click the

pointer again somewhere outside the icon.

Windows. Windows are simply opened icons. They per-

vade the interface. When you click the Workbench icon, for

instance, its contents appear in a window, and when you click

drawers, more windows fly open. Indeed, windows are a high

light of the Amiga, and the computer can have at least 50 of

them onscreen at once. That many is chaotic, but the power is

there if you want it.

Often, with several windows open, you'll have to choose

which of them is to be active. You do so by simply clicking

the left mouse button once on the window you want. It's just

like selecting icons and means the same thing: The file is

ready to be acted on. You'll recognize inactive windows by

their ghostly contours.

The pointer lets you control windows in another way, by

clicking little symbols on them which trigger big changes.

These symbols come in two types. The tiny, boxlike ones are

gadgets, and the long, slender ones are bars.

Windows can have up to four different gadgets, as does

the Workbench window. They are the close gadget, the back

and front gadgets, and the sizing gadget (see Figure 1-2).

The close gadget. The close gadget is the square with the

dot inside in the upper left corner of the window. Click it, and

the window vanishes back into its icon. This operation is the

reverse of double-clicking the icon.

The back and front gadgets. In the upper right corner are

two gadgets which look very similar: the back and front gad

gets. They shuttle windows behind or before each other on

the screen, and you'll need them, because sometimes the

screen will look like a wild stack of pages. The back gadget

shows a white box behind a dark one, and the front gadget

shows it in front.

The sizing gadget. The sizing gadget sits in the lower right

corner of the window and shows a specklike box attached to a

larger, vertical rectangle. It's meant as a before-and-after shot,

since the sizing gadget lets you turn a small window into a

larger one or into any size window you want. You place the

Chapter 1

pointer on the gadget, hold down the left mouse button, and

pull the mouse. The window expands or contracts until its

new size pleases you, and then you release.

Windows can also have two different bars. One lets you

shift the entire window about the screen like a hockey puck,

while the other lets you move contents within the window:

The drag bar. The drag bar is the set of parallel lines at the

top of the window. Point to it, hold the left mouse button

down, and pull the mouse around. The window will follow.

The drag bar lets you position windows on the screen.

The scroll bars. Contents of a window are not limited to

window size. They can be much larger. In such cases, the win

dow acts like a viewfinder looking down on a roll of microfilm.

And the scroll bars on the right and bottom let you move the

contents. Click on an arrow at either end of a scroll bar, and

you'll shift half a window. You'll still have part of the old con

tents to give you bearings, but you'll enter new territory as well.

Figure 1-2. Controlling a Window

Close gadget Back gadget
Front gadget

Scroll bar

u

u

u

u

u

Sizing gadget

Menus. There is one final element to the Workbench

triad, and it's crucial. It is the menu. All along, the screen has

displayed a title bar across the top, explaining that you are in

Workbench version whatever and have so many thousand

units of memory free. If you press the right button of the

mouse, the title bar changes at once into a menu bar with a

string of menu titles on it. Workbench has the menu titles

Workbench, Disk, and Special.

10

n
Introducing the Amiga

j] Icons and windows let you open, close, move, and delete
files, yet many more specialized tasks remain, and menus let

you perform them. They are simply lists of words and can

P"j thus be very flexible. Normally, menus are hidden to give you
more screen space. Place the pointer over the menu title, and

the menu unrolls, revealing a series of menu items. You drag

j i the pointer down to the item of choice and release the right

button. The Amiga then executes the task upon whatever you

have selected.

Some menus have submenus appended to them. They

flash out on the right as you pull the pointer down the menu.

To select an item with a submenu, you shift the pointer over

to the submenu and release at the chosen subitem.

Menu commands in applications can do almost anything,

but most of those in the Workbench involve disk manage

ment. If you move an icon to the Trashcan and select Empty

Trash, for instance, the disk drive whirs and the Amiga deletes

part of the disk. The Workbench is thus an interface to the

Amiga's disk operating system, AmigaDOS. The Workbench

isn't AmigaDOS per se, only one pipeline to it. In fact,

AmigaDOS also has a more direct connection: the Command

Line Interface, or CLI. The CLI resembles CP/M and MS-DOS

in that it requires explicit, typed commands, yet it gets you

right into AmigaDOS itself and offers much greater power.

You'll examine the CLI extensively in Chapter 3 and the

Appendices.

We've now seen the exterior of the console and the inter

face, essentially the exterior of the operating system. Let's turn

now to the hardware devices themselves—input, memory,

processors, output.

Input Devices

The Amiga can use all the input devices of other personal

computers, and its special capacities suit it for many new

kinds. The basic input devices are, of course, the mouse and

keyboard, but there are numerous special-purpose ones for

games, graphics, and audio.

The mouse. The mouse takes care of basic screen control.

The Amiga's mouse is about the size of a cigarette pack,

though its beveled top—like the first facets of a stone in a

jeweler's workshop—gives it a distinctive look. It also has two

gray bars on top, called buttons. The mouse carries out three

11

Chapter 1

main functions: pointer movement, menu operations, and

nonmenu operations. In general, they correspond to pressing

no buttons, pressing the right button, and pressing the left.

Pointer movement. The mouse makes pointer movement

fluid and natural. You move the mouse about on a clean, flat

surface, and a pointer (arrow, cursor, hand, paintbrush, cross

hairs, whatever) reproduces its path on the display. While ar

row keys can move the pointer only vertically or horizontally,

the mouse can take any course you want. It's the difference

between driving through city streets and flying over them.

Menu operations. The mouse controls the menus with the

button on the right, the menu button. The menu button is the

more limited, less active of the two, dealing essentially with

the pull-down menus at the top of the screen (though you can

program it to take care of other tasks).

Nonmenu operations. For the remaining mouse operations,

you use the lefthand selection button. The selection button is a

generalist. Its functions are wide-ranging and diverse. Among

other things, it lets you select icons, open them, deselect them,

place the cursor, and drag.

Dragging is one of those operations that take a second to

learn and forever to describe. To drag, you place the pointer at

a particular spot, press the left button, pull the mouse, and re

lease. Among other things, this act will transport items, select

areas, and draw lines. To move an icon across the screen, for

instance, you just drag it to the new locale and release. Drag

ging also lets you select an area. In word processing, you can

select a whole sentence for deletion by simply dragging the

cursor over it. Finally, dragging lets you draw. In graphics pro

grams, you drag a paintbrush across the screen to create a line.

By the way, the left button is not necessarily restricted to < /

nonmenu operations. Like its neighbor, it can control menus, *-—'
as it does in Electronic Arts's One-on-One.

The keyboard. The Amiga keyboard is comfortable and \ i

capacious. It has 89 keys, divided into two parts: an alpha- w

numeric keyboard and a numeric keypad. The former has the

QWERTY layout of character keys within a rim of command j i

keys. Touch typists will notice that the F and J keys have tiny '—I
pimples, for easy finger alignment, and the 5 on the numeric

keypad has one as well. In addition, the Amiga CAPS LOCK j j

has an ingratiating red light, which turns on while the key is w

engaged. The keyboard has all the major command keys,

u

H
Introducing the Amiga

P"j including ten function keys across the top, a CTRL (Control)

key, two ALT (Alternate) keys, two A (Amiga) keys, four ar

row keys, and a HELP key. We cannot go over all the key-

board's features, but some of them are worth highlighting.

Reset. Reset is particularly useful on the Amiga because it

lets you start the computer over again without reinserting

Kickstart, and thus eliminates a great deal of dead time. To re

set, you press CTRL and both of the A keys simultaneously.

The operation is deliberately ungainly to avoid accidental

vaporization of the program in RAM.

Extra character sets. The two ALT, or alternate, keys at

either end of the bottom row open up new realms of charac

ters. Press ALT and 6, for instance, and you get the paragraph

symbol (<a). Press ALT and other keys and you can generate

Greek letters, the angstrom sign (A), the pound sterling sym
bol (£), and many more. If you press both ALT and SHIFT

along with the character keys, you get a fourth set of symbols.

Mouse tasks. The left and right Amiga keys—shown by

filled and hollow A's respectively—are mouse surrogates and

carry out the three basic mouse functions:

1. Positioning. Press an Amiga key and an arrow key, and the

pointer will scuttle away in the direction of the arrow. To

move it faster, press Amiga-SHIFT-arrow.

2. Menu operations. Right Amiga-right ALT duplicates the ef

fect of pressing the right button. You hold both keys down

and press the arrow keys until the pointer reaches the menu

item you want. When you release, the command executes.

3. Nonmenu operations. Left Amiga-left ALT duplicates the

effect of pushing the left button.

Shortcuts. The Amiga keys are awkward and lumbering at

many of these tasks—no competition for the agile mouse. But

there's one way they can beat the mouse cleanly. They can be

shortcuts. For instance, to select a menu item without touching

the menu, you press right Amiga plus a predefined key, say,

Q. A menu operation like Quit then ensues. The left Amiga

plus a character key generates nonmenu commands. Shortcuts

can greatly streamline program use.

Fine cursor movement. The Amiga has arrow, BACK

SPACE, and DELete keys for moving the cursor a few letters

back and forth, a task the mouse does not excel at. The four

arrow keys normally move mouse-wise, above text rather than

13

Chapter 1

through it. Hence, the left arrow key does not delete. It lets

you easily backtrack a few letters, insert some characters, then

return to where you were. To delete, you use BACK SPACE

and DEL. BACK SPACE moves the cursor left through text,

wiping it out. The DEL key deletes to the right, moving prose

toward the cursor.

The keyboard and mouse are the main avenues of com

munication into the Amiga, and in most cases you can use

whichever one you like. But most people use both. Each has

special virtues, and together their resonance heightens the im

pact of the whole machine.

Other input devices. The Amiga, of course, works with

the many other input devices available, such as the trackball,

joystick, digitizer pad, image processor, optical scanner, micro

phone, and "piano" keyboard. Some of these are particularly

interesting for the Amiga:

Image processors. Image processors translate analog visual

images from video cameras into digital ones for display on the

screen. Some image processors will also accept input from

VCRs. This capacity, called frame grabbing, lets you freeze a

frame of, say, Orson Welles in Touch of Evil, then feed it into

the computer. Once it's there, you can alter it, add sound to it,

print it out, and even animate it. An early image processor for

the Amiga comes from A-Squared, of Oakland, California. It

plugs into the expansion bus and takes input from video cam

eras, other computers, laser disc players, and VCRs. It stores

an image in eight shades of gray at the minimal Amiga resolu

tion of 320 X 200, but the company is also talking about an

upgrade to 16 colors at 640 X 400. It was slated to cost be

tween $250 and $300.

Audio input. First-rate audio is relatively new on personal

computers, and audio input devices like microphones and "pi

ano" keyboards are becoming available for the Amiga. Cherry

Lane offers a 49-key keyboard for $99. You can also play mel

odies on the alphanumeric keyboard, but it takes a little get

ting used to.

Memory

The Amiga's multitasking, video, and audio all thrive on

memory, and the Amiga has it. It comes with good-sized

RAM, which can be expanded easily and dramatically. It also

14

n
Introducing the Amiga

H

™j takes 880K disks and up to four disk drives, and a hard disk is

already available for it.

RAM. Technically, the Amiga has 512K of RAM built in,

!"™| though, since half of it is set aside for Kickstart "ROM," we
generally say it has 256K of RAM. That's enough for some

programs. But the computer's more impressive feats profit

P"] greatly from more, and the Amiga's open architecture makes

RAM expansion easy.

Commodore offers a 256K RAM add-on card. It looks

rather like a large, metallic harmonica and plugs into the

Amiga in the front. You detach the middle third of the front

case by squeezing gently on the top and bottom and slowly

pulling out. Then you follow the simple directions and plug

the extra RAM in. This act instantly doubles your available

RAM to 512K. The cartridge costs $195.99.

You can also buy an expansion module called the T-card

from Tecmar, of Solon, Ohio. This device snaps onto the

expansion bus on the right panel and comes in three sizes—

256K ($795), 512K ($895), and 1M ($995). It also offers a

clock/calendar with standby battery, a built-in power supply,

and ports for further expansion.

You aren't limited to 1M, either. The Amiga's expansion

bus will allow up to 8M of RAM, an enormous amount, and

though devices to attain this size were not immediately avail

able, they could appear soon. That much RAM will really

make the machine bloom.

Disks. The Amiga's internal disk drive accepts 3V2-inch

double-sided disks which hold 880K. The computer also lets

you attach up to three more external disk drives, piggy-back

style, each plugging into the drive immediately before it. To

run IBM PC software with The Transformer program, you may

need an external 5V4-inch drive. Currently, the only such drive

that will work with the Amiga is made by Commodore and

sells for $395, though others may also come out.

Hard disks. Tecmar announced the first hard disk for the

Amiga, called the T-disk. The device holds 20M, equal to

about 23 Amiga disks, and costs $995. It can fit on the "shoul

der" of the Amiga console, so it takes up no additional desk

space. Tecmar also offers T-tape, its 20M magnetic tape back

up system, with lights that show track number and tape direc

tion as well as read, write, door, and power status. T-tape can

be stacked atop T-disk to save further desk room.

15

Chapter 1

The Processor Chips

The Amiga's internal design might be termed "quasi-parallel

processing/' It has a CPU—the Motorola 68000—but it also

has three extra chips which function on their own. These chips

are not CPUs, but rather special-purpose devices, devoted

mainly to graphics and sound. They are the Amiga's resident
genies.

The Motorola 68000. The 68000 is a powerful CPU. It has

70,000 transistors, slightly more than its name implies. It also

has a few variations on the classic CPU layout. For instance, it

has three ALUs instead of one. Two manipulate address loca

tions, and the third works on data. In addition, the 68000 has

quite a bit of ROM, which substitutes for gates and simplifies

manufacture.

The 68000 is a 16/32-bit chip, that is, partway between

16 and 32 bits, but closer to 16. Its registers can hold 32 bits,

as can the special register called the counter, and the 68000

can therefore operate on instructions as large as 32 bits. But it

can't act on all 32 bits at once. Its ALUs are only 16 bits wide.

Thus, it must work on half a 32-bit instruction at a time, and

in practice, 32-bit instructions are not often issued. Moreover,

its data bus is also 16 bits wide, another major bottleneck. Its

address bus is betwixt and between at 24 bits.

The Motorola 68000 has a variety of boons. It offers 18

registers, so the chip can keep plenty of balls in the air at

once. It can also access 16M addresses—16,777,216—a vast

amount. By comparison, the Apple He's 6502 chip can address

only 65,536 memory locations.

In addition, the 68000 recognizes 88 assembly language

instructions, a large and powerful set. Moreover, the instruc

tions are flexible. The MOVE instruction, for instance, comes

in a number of different varieties, and a programmer can use

the one that is most convenient. Overall, 68000 instructions

are also simple, another virtue.

The Amiga works at 7.16 megahertz (MHz). A speed of

7.16 MHz is pretty fast. By comparison, the 65C02 in the Ap

ple Ik executes at 1.02 MHz, the Intel 8088 in the IBM PC at

4.77 MHz, and the 80287 in the IBM PC AT at 6 MHz.

Output chips. The Amiga is distinguished by three cus

tom chips devoted to graphics and sound, which operate in

dependently from the CPU whenever possible. Designed by

Jay Miner, they greatly reduce the waiting line for the CPU

16

Introducing the Amiga

and make the Amiga much faster than other 68000 machines

like the Macintosh. Moreover, they are highly specialized and

account for the Amiga's remarkable video and audio.

During development, the chips bore the proper Victorian

names Agnes, Daphne, and Portia (as well as Agnus, Denise,

and Paula and, inevitably, Huey, Dewey, and Louie). Logi

cally, they are a unit, but since their circuitry couldn't fit onto

a single chip, they were divided into three:

• Agnes is the animation custom chip. It contains a mix of

things: the blitter, which quickly draws lines, fills spaces, and

manipulates shapes; the copper, which controls and co

ordinates the other two chips like a CPU; and a traffic signal

regulating the direct access of memory.

• Daphne is the graphics custom chip. It manipulates the dis

play on the screen, taking care of two independent screens at

once and coordinating movement of the little sprites.

• Portia not only regulates various ports, but also handles the

four sound channels in the Amiga. Officially, it bears the

five-footed name of "peripherals/sound custom chip."

The combination of the 68000 and Agnes, Daphne, and

Portia is extremely potent and leads to output of ringing

quality.

Output Devices

Let's take a brief look at output devices available for the

Amiga.

Video. The Amiga can use the four main kinds of video

display: television and monochrome, composite color, and

RGB monitors.

A television set will work with the Amiga, though, as on

other computers, it has certain limitations. A line of text on TV

can be only 60 characters wide, including margins, so word

processing documents are somewhat narrower. In addition, TV

allows 3616 different colors, rather less than the 4096 of the

color monitor, but still lavish. TV also restricts you to low

resolution, while a monitor lets you use high or low.

The Amiga works with monochrome, composite, and RGB

monitors. The first two plug into the Video port, the last into

the RGB port. The monochrome and RGB offer 80-column

text, and the RGB gives you excellent graphics as well. Com

modore offers a fine RGB monitor at a reasonable price. Its

17

Chapter 1

screen is 13 inches across diagonally and fairly looms over the

console. You turn it on by pushing an inconspicuous squarish

button labeled "Power," at which the thin horizontal light

above it goes on. Like the computer, it has a host of vents to

dissipate heat, and the monitor dies if you block them. A

panel along the bottom pulls down to reveal a string of control

knobs, which let you adjust brightness, contrast, and other \ I

factors. '—'
Speakers. The Amiga RGB monitor comes with a speaker

inside it, on the lefthand side. But you are not confined to the

speaker in the Amiga monitor. You can hook the two audio

ports up to stereo speakers and expand the sound. You can

also plug 1/8-inch headphones into the tiny, white-rimmed

opening near the speaker, so if people are trying to work,

study, or sleep nearby, you can still make music or play a rau

cous game.

The Amiga has a voice synthesis capacity built into its

operating system, and languages like BASIC let you make the

computer speak easily. You can also vary the speed and pitch

of the voice and change it from male to female. The Amiga's

voice can be made to sound remarkably authentic.

The printer. The Amiga comes with drivers for a number

of different printers and allows you to add other drivers as

they become available. These include daisywheels, dot-ma

trixes, lasers, a thermal-transfer, and an ink-jet.

The computer runs five daisywheels: The Alphacom

Alphapro 101, the Brother HR-15XL, the Qume LetterPro 20,

the Diablo Advantage D25, and the Diablo 630. The first four

of these range in price from $400 to $795 and are all rather

similar. The last, the Diablo 630, ECS version, is clearly the

most substantial. It can print 200 different type styles at 40 | i

characters per second (cps), and each element is capable of '—'
192 different characters. The printer costs $1,995, and is some

thing of a standard in the computer world. j I

Drivers for dot-matrix printers include one for the Com- <—'
modore MPS 1000 (not yet available), one for the Epson JX-

80, and a generic Epson driver for that company's FX and RX j i

series printers (and the many other printers compatible with '—I
those models). The JX-80 is distinctive in that it offers color. It

has nine pins, prints seven colors (black, red, orange, yellow, i j

green, blue, and violet), and sells for about $599. <—I

u

H
Introducing the Amiga

; \ Okidata's color Okimate 20 is the thermal-transfer that

works with the Amiga. It boasts a very low cost, around $268,

though to use it with the Amiga, you must also buy a special

I { cartridge. Its printhead has 24 tiny heat elements, so its quality

is outstanding. It gives you black and seven colors, and about

100 shades. It prints any kind of text or graphics, at either 80

; \ cps or 40 cps. However, like other thermal-transfers, it eats up

ribbons very fast. A black-and-white ribbon used for text may

last for 75 pages, but a color ribbon used for graphics is use

less after 8 to 15 pages.

The color Diablo C-150 is a very quiet, trim ink-jet printer

weighing about 24 pounds and costing about $1,250. It yields

brilliant quality, but it will probably mainly be used for graph

ics. It prints text at a painful 20 cps, as slow as a daisywheel.

The printer also requires special paper, and setting it up can

be an intricate business, though documentation is very clear.

Laser printers supported include Hewlett-Packard's

LaserJet and LaserJet Plus. Though the manual doesn't men

tion it, Apple's LaserWriter will also run at once on the

Amiga, since it was designed to be fully compatible with the

Diablo 630 daisywheel. This famed machine prints eight pages

a minute, yields resolution of 300 dots per inch, and has 512K

of ROM and 1.5M of RAM, far more than most personal

computers. It costs $5,999.

Printer control. The Amiga not only comes with many dif

ferent drivers, but also lets you specify how the printer will work.

It does so with the second and third screens of Preferences.

The second screen, the Printer Requester, takes care of the

basics. You use it to indicate which printer you are using and

the port it's plugged into, as well as such properties of print-

jT"! out as page size, margin size, number of characters per inch
(pitch), and number of lines per inch (spacing). In addition,

you can set print quality (draft or letter) and paper type (fan-

P"! fold or single).
Once past the Printer Requester, you can move onto the

third screen: the Printer Graphics Requester. Here you can

PI play with the image before it reaches the printer. Shade, for
instance, lets you choose among printing in color; in gray

scale, which renders colors as shades of gray; and in black-

P"? and-white, which prints colors as black or white according to
their brightness level. You set that line of demarcation with

u
Chapter 1

u

the Threshold scale across the top of the screen. In addition, ^ !

the Image option lets you reverse the picture like a photo

graphic negative, and Aspect allows you to print sideways.

t I

Emulation '—'
Prior to the Amiga's introduction, it was common knowledge

that it would emulate the IBM PC by hardware. The device \ j

even had a name: the Trump Card. At the unveiling, however, ^
spectators at Lincoln Center saw it emulate with a software

program, The Transformer. There was general amazement.

To use the $99 Transformer, you insert the 3V2-inch disk

into the Amiga and soon see the MS-DOS screen, which

presents various menu offerings. You then insert either an

other 3y2-inch disk into the Amiga's internal drive, or a 5%-

inch disk into an external drive. At this point, the Amiga

essentially loses its identity. It becomes an IBM PC. In ex

change for running PC software, you forfeit the Amiga's

graphics, audio, multitasking, and other bounties.

The Transformer does not yield a 100 percent complete

IBM PC, at least not yet. Its first version was incompatible

with programs requiring the IBM graphics upgrade card,

though its second version, due by early 1986, was to fix this

problem. In general, Commodore has not specified how

compatible The Transformer will be, beyond saying that it will

work with the 25 bestselling PC programs. That's a lot, and

for most people compatibility should not be a serious concern.

Currently, The Transformer seems to run IBM software at

around 60 percent of speed. Its disk access is about the same

as the IBM's, but certain other features like graphics are about

half as fast. The lag isn't appreciable with word processing,

since this application doesn't depend on high velocity. On the \ j

other hand, large spreadsheets with a great deal of calculation {—J

will cause the emulating Amiga to bog down a bit. To minimize

this problem, Commodore has announced a $100 hardware \ i

accelerator. This slender device fits onto the expansion bus and <■—J

consists of extra RAM and a Program Assistance Logic (PAL)

chip, which together boost the performance of The Transformer. \ \

Video Powers

The Amiga can display 4096 colors at up to 640 X 400 and £ I
has powerful built-in animation features as well.

Colors. The Amiga achieves 4096 colors because it can di-

20 ^

n
Introducing the Amiga

j"""] rect the cathode in the CRT to shine its electron beam at 16
different intensities. Each intensity causes a phosphor pixel to

glow in a different shade. Since the beam strikes red, green,

I | and blue pixels, which fuse to make the onscreen colors we

see, the Amiga can render 163 colors, or 4096.

The computer stores code for these colors in 32 color reg-

(""""j isters which are 12 bits wide. At this size, each can hold 4096
numbers and hence denote any hue in the color pool. The

contents of each pixel's address in RAM refer to one of these

registers, which in turn refers to the color. This approach is

called color indirection, and it saves a great deal of internal

memory.

There's an obvious price for it. Color indirection limits the

Amiga to 32 colors onscreen at any one time. We can load any

color we want into a particular register and so pick and choose

among the 4096, but we cannot get more than 32 at once. Yet

32 is more than most computers allow and does not really

hinder enjoyment of the machine. Moreover, color indirection

is not just a space saver. It is also a performer.

For instance, if you change the hue in one register, you

instantly change it everywhere it appears on the screen. It can

not be otherwise, since every pixel that refers to that register

must take on the new color. It's a significant power and makes

for lightning color changes.

Color indirection also makes it easy to draw single lines in

multicolored segments. You arrange for the paintbrush to paint

in the color of one register for, say, half a second, then in an

other for half a second, and so on, so that as you pull it across

the screen, it leaves a trail of many tints. In Graphicraft, this

technique is called Cycle Draw.

f"""| Moreover, you can make onscreen colors shiver with

iridescence. You arrange to move the contents of register 1

into register 2, and 2 into 3, and so on, like musical chairs,

J—J and the colors on the screen will cycle rapidly. The effect can

be dazzling. You can alter the colors of concentric circles so

they seem to be expanding, or, if you have painted a line with

j—1 Cycle Draw, you can make the color segments appear to travel

rapidly down the line. And if you get the entire screen flash

ing, it looks like a light show.

PI Resolution. The Amiga has two main levels of display,

low and high, which differ principally in resolution and number

n
1] 21

LJ
Chapter 1

u

of onscreen colors. Each type has two subsets of resolution/] {

color capacity: normal and interlaced. ^^
In low resolution, the normal mode is 320 pixels wide X

200 high. If you move up a notch to the interlaced mode, the j j

computer will spray the screen with twice as many lines and '—

give a picture 320 pixels wide X 400 high. Normal requires

40K of memory, interlaced 80K. In both modes, the palette can } j

hold 32 colors. "—J
At high resolution, the Amiga grows resplendent. High

resolution also has two levels, normal and interlaced, and both

allow a palette of 16 colors. Normal is 640 pixels wide X 200

high, and interlaced, 640 X 400, the finest resolution the

Amiga has, and among the finest of any personal computer.

Normal requires 64K and interlaced, 128K.

The Amiga's two interlaced modes work somewhat like

interlaced fingers. In the first 1/60 second, the CRT electron

gun covers a 320 X 200 or 640 X 200 screen, leaving empty

spaces between each line it strikes. In the second 1/60, it cov

ers another 320 X 200 or 640 X 200, but it shifts slightly

down to fill in the empty lines. It's an easy task for the

Amiga's video chip. The phosphor glow from the first display

lingers on, and the mind knits the two images into one.

That's the theory, anyway. In practice, the phosphors from

the first spraying have started to fade by the time the second

one arrives. Hence, the two images don't quite merge. The re

sult is quiver, slight but noticeable. There's no way to avoid it

short of reconstructing the monitor so that it shows images

faster than 60 times a second. The Macintosh uses this ap

proach, but of course it displays only in black and white.

There is actually a third type of resolution, called hold

and modify. Like low resolution, it comes in either 320 X 200 (j

or 320 X 400. However, it lets you put the entire 4096 colors ^
in your palette at once. Hold and modify works on a com

pletely different basis from color indirection. Basically, it is a | j

relative rather than absolute system. It defines each pixel in *—)

terms of the pixel just before it. Hence, it holds the previous

value long enough to modify it and get the new value. It \ \

seems poorly suited for animation and other shifting images <—'

and will thus probably be used mainly for static pictures.

Playfields. The Amiga's screen is more than just the) i

product of its colors and resolution levels. Its graphics chips <—>

22

Introducing the Amiga

give it special powers. They confer a structure on the screen

and grace it with brilliant prowess in animation.

The first and most obvious element of that structure is the

J—1 playfield. A playfield is essentially an independent screen, the

-- same width as the screen itself, but of variable height. Two

playfields are available on the CRT, and each can have eight

p"| different colors.

• Playfields have interesting properties. First, one playfield

can have priority over the other so that it lays over it. At the

same time, parts of the dominant playfield can be transparent,

so you can look through and see what's happening on the

playfield below. This characteristic fits playfields well for

games. In Skyfox, for instance, one playfield, the cockpit, can

have transparent spaces through which you view the second

playfield, the hostile world around. Both work together to

heighten the effect of soaring over countryside.

Sprites. Sprites originated as a hardware solution to the

difficulties of animation. They are small objects that move

across the playfields. A sprite can be 16 pixels wide, that is,

1/20 of the screen in low resolution. It can also be as tall as

the screen. The Amiga offers you eight of them, and you can

get more by reusing some on the same screen. Each pixel of a

sprite can have one of four colors. It's also possible to attach

two sprites to each other, making one sprite with the capac

ities of two, and hence with a range of 16 different colors.

Sprites have several features in common with playfields.

First, you can give them a hierarchy so that one will always

appear atop another. Indeed, you can have up to seven layers

of priority. In addition, you can make one of their colors

transparency, so you can see through one sprite onto another.

nln fact, in some ways you can think of the playfield as simply

a large sprite and vice versa. They have different hardware

backgrounds, but they can work in very similar ways.

n Animation. The Amiga's talent for animation really

brings it alive. A computer screen can glitter like a handful of

gems, but it's still static. Motion gives it past, present, and fu

r—I ture, as well as verve and elan, and it can bewitch us.

-] The Amiga has two animation systems, one for playfields

and one for sprites.

The blitter—part of the Agnes chip—controls playfield

animation and confers noble capacities upon it. It works at

23

H

Chapter 1

high speed, always a blessing for animation, and transfers im- j |

ages from one place to another. Such an operation means (—}
moving code about in the bitmap, and blitter is a telescoping

of "block image transferred" } {

Animation on the playfield works like this. A programmer {—'
indicates an image on a background. The image and back

ground are saved in memory. The programmer can then tell \ j

the blitter to move the image around as a block. With play- i—*
field animation, you can shift several dozen objects as well as

fill spaces quickly and draw lines at an eye-popping one mil

lion pixels per second.

The second kind of animation is sprite animation. It works

faster than playfield animation and generally controls the dart

ing about of sprites. Intriguingly, if you run out of sprites, you

can always use the blitter to set up other independent,

spritelike objects, of which there is no limit. Playfield anima

tion is so good and can replicate sprite animation in so many

ways that the latter has lost some of its importance.

Both types have a built-in collision detection capacity. The

Amiga can tell when two sprites, a sprite and a playfield, or

two playfields have bumped into each other. It's a useful fea

ture. In games, objects strike each other all the time, and if the

hardware can sense the impact, the software can move on to

better things, making the game richer and faster. Collision

detection also lets you confine roving objects to a prescribed

territory.

Aegis Animator, from Aegis Development of Santa Monica,

California, was one of the first animation programs for the

Amiga, and it shows what such software can do. It rests on

the concept of the tween, an automatic, mobile transition from

one figure to its successor. For instance, if you move a polygon j /

from the left side of the screen to the right, the tween will {—>

play back the shift from start to finish. It's like a tiny movie.

Tweens on the Aegis Animator are not limited to simple j \

shifts. They can move objects on complex courses, rotate them 'L—>
around three different axes, expand or shrink them, change

their shapes and colors, and move them in front of or behind j \

other objects. A single tween can do all these things, and you *—}

can link tweens together to form a longer piece of animation.

The software has further capacities. It permits control over -j j

global features, such as speed of playback. It also has a story- <—>

book mode. Storybook divides the screen into nine equal

u

n
Introducing the Amiga

P*l compartments, where you can cut and paste objects from one

animation into another or splice whole animations together.

The genlock interface. The genlock interface is a means

p"j of working with external video signals, like those from a VCR,

video camera, or even another computer. With a genlock inter

face, you can read in a video frame, like, say, a picture of

I""-) Molokai, and use it as a background for graphics on your

Amiga. It's a powerful way to manipulate images.

Audio Powers

The Amiga also offers splendid audio, which can enhance al

most everything the computer does. Not only does the Amiga

yield sound of very high quality, but it lets you manipulate it

in a remarkable number of ways.

The Amiga can act as a digital music synthesizer. That is,

it can form notes out of their basic constituents by synthesiz

ing them. Sound is simply waves, and the computer can de

scribe the waveform of any note by assigning numbers to it

over time. It's like a connect-the-dots puzzle, where each

number specifies a dot's position. Link them together and you

get a wave with a particular frequency (pitch), height (vol

ume), and shape (timbre). You can then feed the signal into a

digital-to-analog converter. The converter turns it into elec

trical waves, which flow to the speaker and emerge as sound.

The Amiga affords great control over sound. It lets you set

the volume envelope, that is, the loudness trajectory—attack,

decay, sustain, and release—of individual notes. It also gives

you 64 different levels of volume control, a very wide range.

You can also regulate timbre, the quality that distinguishes a

B-flat on an oboe from the same note on, say, a trumpet. In

r-"f addition, the Amiga imitates instruments like the vibes with a

' \ realism that is truly startling. Such mimicry is not just a trick.

Retail prices for a set of vibes start at $2,500.

;—■j The computer has four independent channels of sound,

' - ' and their autonomy is significant. Since you can program each
channel separately, each is technically a synthesizer, and the

n Amiga is really a quartet of the devices. You can also combine

channels in pairs to achieve bona fide stereo so that hooking

up two speakers to the audio ports yields more than just extra

volume. And the Amiga does not limit you to four different

sounds. Each channel itself can play multilevel tones, so the

computer can emit a panoply of sounds at once.

n

25

Chapter 1

You can also use any of these channels as a music se

quencer. A sequencer is an electronic instrument that gen

erates a series of notes over and over again. It's not much use

on its own, but it has an important role in creating musical

background, especially in rock, which thrives on a sense of

throb beneath the surface. Groups like Tangerine Dream and

Kraftwerk have made extensive use of sequencers.

Moreover, with the proper interface the Amiga can do

sound sampling. It's a marvelous attribute. An audio digitizer

allows you to attach a microphone to the Amiga and play in a

specific sound, for example, of a finger snapping. The Amiga

digitizes the waveform of that sound and stores it. Now it's

simply one more instrument to the computer, just like the

vibes. You can play out melodies with it, alter its volume en

velope, send it through filters, and manipulate it generally.

And, of course, you aren't limited to finger snaps. You can

read in the sound of musical instruments, your own voice, a

cat's meow, a washing machine, the Amiga disk drive, any

thing you want. With several such sounds, you can create a

polyphony of the parlor.

The Amiga also has a built-in faculty for voice synthesis,

male or female, in a range of eight to nine octaves. Its base-

level quality was outstanding for personal computers, though

few people would confuse it with human speech. It tended to

partition diphthongs like oi into oh and ee, and to articulate

those unstressed vowels—like the second i in imitate—that we

in English reduce to a schwa. But programmers are working

with the Amiga on a phonemic level, and it is already

addressing us in very lifelike tones indeed.

Software. At press time, several interesting programs

were in the offing, and they give an idea of the Amiga's audio k .

potential.] !
Musicraft, from Cherry Lane, is a basic synthesizer program.

It gives access to the four sound channels of the Amiga and lets < ,

you control volume, timbre, and the other fundamental ele- <)

ments of sound. It lets you play on your Amiga keyboard, or,

if you want greater ease and comfort, on a piano-style keyboard. , .

Harmony, also from Cherry Lane, is an accompaniment I {
program. It offers a choice of songs, initially from the Beatles

and Lionel Richie. Each has five parts. You sing or play one

part of the tune, and the Amiga generates the four-part } (
accompaniment. If you speed up, the computer speeds up. If

26 jj

n

n

n

n

n

n

Introducing the Amiga

you play softly, the computer plays softly. You don't have to

hit each note exactly, since the software deduces your place if

you get close enough. The company planned to sell this prod

uct for $79.

Texture, another Cherry Lane program, will let you modify

a prior digital recording. You can have eight different tracks

r—| and manipulate any note on any track. For instance, you could

'_ * filter out pitches in a range you don't want, shift the key of
what you've recorded, or alter the tempo. It uses graphics to

show you the recorded notes and aid modification. It was to

be priced at $199.

All of this Cherry Lane software is designed to work to

gether. In addition, the company intended to release a sound

sampling program as well as educational music programs,

such as one to train the ear. It may even offer a voice-library

manager, a database for sounds created by sound sampling.

Cherry Lane will not be the only company selling Amiga

music software. Electronic Courseware Systems plans a line of

educational music software to teach, among other things,

blues, keyboard chords, intervals, jazz, and piano sight read

ing. Passport Designs, of Half Moon Bay, California, will mar

ket them as well as issue its own music synthesizer program,

The Music Shop.

The MIDI interface. Finally, the Amiga is compatible

with MIDI, the Musical Instrument Digital Interface. MIDI is a

recently standardized means of communication between syn

thesizers. It allows you to hook up several of them to your

Amiga and control them all from there.

For instance, if you use MIDI to attach two digital or an

alog synthesizers to the Amiga, you can play the computer,

and both "slave" synthesizers will respond to your commands.

You will be playing three machines at once, and since each

may specialize in different timbres, you gain great range. You

ncan also, if you like, store prerecorded music in the adjunct de

vices so that it accompanies you. You can thus achieve in live

performance the kind of layered sound you otherwise get only

r-^ in a recording studio with multiple tracks. In fact, you can at

tach up to 16 other devices to the Amiga, including not just

synthesizers but digital drums, which will control the time

keeping just as a drummer does in a live band.

27

LJ
Chapter 1 *—'

u

Moreover, you can create other, even more wide-ranging (,

effects. J. L. Cooper Electronics, of Marina del Rey, California, I I
sells a MIDI Lighting Controller, which lets you prerecord

lightning and special effects to synchronize with the music. { ,

MIDI can even allow a good composer to dispense with the I 1
orchestra and record an entire motion picture sound track at

home.

The MIDI interface is a hardware device and does not

come with the Amiga. You have to buy one, for about $60 to

$90. But for music professionals, it's an open sesame.

The Amiga itself is an open sesame for programmers. It

unlocks an alluring new world, where software can glisten and

sing as never before.

LJ

U

u

28

BASIC

Programming
G.

D

O

D

O

a

o

□

a

o

BASIC Programming
C.Regena

Writing a program is a way to get the computer to do

what you want it to do. Amiga BASIC by Microsoft

is the version of BASIC that comes with the Amiga.

It is a powerful and versatile language that allows the BASIC

programmer to use most of the features built into the Amiga.

If you have programmed in BASIC before, you will find

that Amiga BASIC is very similar to other versions, with addi

tional commands for some of the special Amiga features.

Graphics and sound have their own commands that add to the

capabilities of Amiga BASIC.

A program is a set of instructions that tell the computer to

execute a procedure in a certain order. To use the program,

you will need to run it. There are three ways to tell your

Amiga to run a BASIC program which is in memory: Either

click in the Output window, then type RUN and press RE

TURN; press the right Amiga key and the R key; or use the

mouse to go to the Run Menu and select Start.

To write your own program, you need to have the cursor

in the List window. If you type a statement in the Output win

dow, it will be executed immediately. If you type a statement

in the List window, it becomes part of the program. If the List

window is not visible, you must either type LIST and press

RETURN, press the Amiga key and the L key, or use the

mouse to go to the Windows menu and select Show List. To

move the cursor from one window to the other, position the

mouse arrow in the desired window and click the left mouse

i \ button once. On programs that require user interaction, the
cursor will need to be in the Output window (click the arrow

there even though you may not be able to see the cursor).

Unlike many other versions of BASIC, Amiga BASIC does

not require line numbers. If a line does need to be referenced,

it may have either a line number or a line label. To use a line

label, type a word and then a colon. To reference the line, do

not type the colon.

WHEEL:

When you need to reference the line, use

GOSUB WHEEL

n 3i

Chapter 2

u

A line number must be an integer from 0 through 65529 \ [

and must start in the leftmost column of the line. A line label L—'
must start with an alphabetic character, but it may contain any

combination of letters, numbers, and periods (other than re-] I

served words). It may be up to 40 characters long and must <—'
end with a colon. A program can have both a line number and

a label. j I

With computers that use line numbers on every state- {—s
ment, it doesn't matter what order you type lines in—the

computer will rearrange the lines in numeric order to list or

run the program. In Amiga BASIC, the program will stay ex

actly as you type it in the List window. Spaces and blank lines

are not suppressed. Line numbers do not need to be in ascend

ing order. If you need to add a line, you can move the cursor

up to the proper place, press RETURN to get an extra line,

then type the new line. The physical order of the lines is

important.

Variables

Amiga BASIC allows several types of variables. String variable

names end with the dollar sign (such as ADDRESS$) and may

include letters, numbers, and symbols. Strings may be up to

255 characters long.

Integer variable names end with the percentage sign (such

as SCORE%) and indicate a whole number.

Numeric variables may be either single-precision or double-

precision. The single-precision number may be seven or fewer

digits, be in exponential form denoted by E, or end with an

exclamation point (such as 123! or N!). The double-precision

number has eight or more significant digits, is designated by D

in exponential form, or ends with a pound sign (such as 123.45# < j

or X#). You may prefer to designate variable names at the LJ
beginning of a program with DEFSTR, DEFINT, DEFSNG, and

DEFDBL. * (

Numeric functions are usually three-character abbrevi- 1 >
ations followed by a numeric expression in parentheses. The

expression may be a constant, a variable, an arithmetic ex- i ,

pression, or another function. Although the examples given I I
here are functions used in simple PRINT statements, the func

tions can be assigned to variables or can be combined in other < ,

numeric expressions including other functions. All functions I I
involving angles use the radians rather than degrees.

32 U

n
BASIC Programming

n

[""] The remainder of this chapter is divided into three parts.

The first and largest is a dictionary of Amiga BASIC words

with explanations of how they are used and sample state-

j"""| ments or programs illustrating their use. Following the dic

tionary of words are sections on file processing commands and

subprograms.

r*! In all the function descriptions in this chapter n represents

a numeric expression and s represents a string expression.

Optional parameters are shown in brackets; x and y in

dicate numeric expressions for coordinates in graphics. If a

program is given, it will start with REM and end with the

END statement.

ABS(n)
The ABS(n) function returns the absolute value of the numeric

expression n. If the number is positive or zero, the value re

turned is equal to that number. If the number is negative, the

value returned is equal to the positive value of the number.

PRINT ABS(28)

PRINT ABS(O)

PRINT ABS(-5.2)

AND

AND is used in IF-THEN statements to combine relational ex

pressions for a conditional branch. AND indicates that both

relations must be true for the condition listed after the word

THEN to be executed. AND may also be used to show a true

or false condition as numeric results: — 1 is true; 0 is false.

IF SC=10 AND P$="RED" THEN PRINT "RED WINS!"

C=(A=0) AND (B=0):PRINT C

AREA and AREAFILL

AREA (x,y) or AREA STEP (x,y)

AREAFILL [m] where m is 0 or 1

AREA specifies points in graphics to be joined in a polygon,

then AREAFILL joins those points and fills in the polygon

with the default solid color or a specified pattern (see PAT

TERN). AREA statements may use actual numbers or variables

specifying the coordinates or may use the STEP option which

gives relative distances. AREAFILL 0 is the default value and

fills the area with the area pattern. If pattern has not been

33

LJ
Chapter 2

LJ

specified with the PATTERN statement, the fill is solid. \ j

AREAFILL 1 inverts the fill pattern. <—'

REM AREA

AREA (10,20) \ |
AREA (50,70) 4—J
AREA (25,90)

AREA (10,20) s i

AREAFILL i->
X=50:Y=20

AREA (X,Y)

AREA STEP (10,20)

AREA STEP (-10,20)

AREA STEP (-10,-20)

AREA STEP (10,-20)

AREAFILL 1

END

ASC(s)
ASC(s) returns the ASCII code for the first character of the

string s. ASCII is the American Standard Code for Information

Interchange. (See Appendix A.)

REM ASC

PRINT "KEY PRESSED'V'ASCII"

PRINT

AGAIN:

K$=//"

WHILE K$=" ":K$=INKEY$:WEND

PRINT K$,ASC(K$)

GOTO AGAIN

END

ATN(n) returns the arctangent of the numeric expression n.

Arctangent n means the angle whose tangent is n and will be

expressed in radians.

PI=4*ATN(1):PRINT PI

D=ATN(R)*(180/(4*ATN(l)))

BASE LJ
See OPTION BASE.

BEEP M,
BEEP is a simple command that will make a short sound and

blink the screen.

34 i—I

n
BASIC Programming

n

PI REM BEEP
BEEP:INPUT "ENTER A NUMBER",N

BEEP: PRINT N

J—l END

BREAK ON, BREAK OFF, BREAK STOP

;—> BREAK ON will activate ON BREAK error trapping. BREAK

'--..* OFF ends ON BREAK error trapping. BREAK STOP suspends
ON BREAK error trapping until the next BREAK ON

instruction.

REM BREAK

BEGIN:

BREAK ON

ON BREAK GOSUB YOUSTOPPEDIT

UNTILSTOPPED:

PRINT 'TRESS AMIGA AND PERIOD KEY"

GOTO UNTILSTOPPED

YOUSTOPPEDIT:

FOR A= 1 to 20

PRINT "THANKS"

NEXT

BREAK OFF

RETURN

END

See also ON BREAK.

CALL.

CALL is described in a separate section entitled "Sub

programs," following the dictionary of Amiga words.

CDBLfaJ
CDBL converts a number to double-precision so that it can be

used in calculations with other double-precision numbers.

Keep in mind that the accuracy will still be just to the place

the original number was.

REM CDBL

X=SQR(12)

PRINT X,CDBL(X)

END

CHAIN
CHAIN is described in a separate section entitled "File

Processing," following the dictionary of Amiga words.

35

u
Chapter 2

LJ

CHR$ (n) M
CHR$(n) returns the string character corresponding to the

ASCII code number n. (See Appendix A.)

REM CHR$ [_J
FOR C=50 TO 70

PRINT C,CHR$(C)

NEXT C } I
END <^J

CTNT(n)
CINTM converts the number n to an integer by rounding. The

INT function does not round, but gives the closest whole

number smaller. The FIX function truncates the decimal por

tion and returns the whole number portion.

PRINT CINT(3.6),CINT(3.2)

PRINT CINT(-3.6),CINT(-3.2)

CIRCLE

CIRCLE [S7EPyx,y),r[,c][,s,e][,a]

The CIRCLE command draws a circle with the center point at

the coordinates (x,y) and a radius r. You may also specify a

color number c. The next two parameters are a start and end

point for drawing arcs. The last parameter is the aspect, or the

height/width, ratio which will enable you to draw an ellipse;

c, s, e, and a are optional.

To use the start and end options, imagine a round clock

face. A start of zero would be at three o'clock, and the angle

goes counterclockwise. The angle is expressed in radians. For

example, starting at zero and using n radians, or 3.14159, as

the ending point will draw a half circle. ,

If you include the STEP option, the x and y coordinates I [
will be relative to the most recent pen position. For instance, if

the pen position is (5,5), CIRCLE STEP(30,10) will place the . .

pen at (35,15). [_J

REM CIRCLE

CIRCLE (50,30),30 i ,

CIRCLE (50,60),20,3 LJ
CIRCLE (50,100),20,l,0,2

CIRCLE (90,60),25,l,,,3

CIRCLE (140,60),25,2,,,.2 I I
END L"J

36 U

n
BASIC Programming

n

PI CLEAR
CLEAR sets all numeric variables to zero and string variables

to null.

PI REM CLEAR
X=5:PRINT X

CLEAR

f~| PRINT X
END

CLEAR can also specify an amount of memory to be allo

cated to the Amiga BASIC data area and to the system stack.

This is used to change default values, for example, when you

want to use less of the default space allocated for graphics and

more for numeric data.

CLEAR, BASICdata, stack

The BASICdata numeric expression must be 1024 bytes or

greater. The stack expression also must be 1024 bytes or

greater. If you leave out the data allocation, but use the stack,

the commas must indicate the places.

CLEAR, 25000 + 40960

CLEAR, 40000,2000

CLEAR, 6000

CLNGfnJ
CLNGO?) converts a number n to a LoNG integer by rounding.

Ordinarily when a number over a million is printed, it is

printed in exponential form—a number times ten to a power,

which is in E format on this computer. If you prefer to keep

all the significant figures and write the number as we are used

to seeing it in decimal form, you can use a LNG number. No

tice, too, that if you have a fraction, this function rounds

rather than truncates the decimal portion.

REM CLNG

FOR T=l TO 6

READ X(T)

PRINT X(T),CLNG(X(T))

NEXT T

DATA 15032312,222.345,254445887.78

DATA -22777654.67,-3,-22997636.32

END

37

Chapter 2

u

CLOSE M

CLOSE is described in a separate section entitled "File

Processing/' following the dictionary of Amiga words.

CLS l—'
CLS CLearS the active Output window (erases everything)

and starts the cursor back at the top left corner of the Output) j

window. Although when you run a program in Amiga BASIC s—'

the screen automatically clears at the beginning, you may

want to use CLS later in the program to start with a new clean

screen.

REM CLS

FOR X=l TO 20

PRINT TAB(X);X

NEXT X

FOR D=l TO 2000:NEXT D

CLS

END

COLLISION

COLLISION may be either a function or a part of another

statement.

COLLISION(-l) returns the number of the window

where collision identified by COLLISION(O) has occurred.

COLLISION(O) returns the number of an object that col

lides with another object.

COLLISION^, where i is the object ID number, returns

the number of an object that collided with object i. If the value

returned is negative, the collision was with a window border.

The top border is indicated by —1, the left border by — 2, the

bottom border by —3, and the right border by —4. , ,

ON COLLISION GOSUB L, where L is a line number or U
label, goes to the subroutine when a collision occurs.

COLLISION ON turns on event trapping declared by the , (

ON COLLISION GOSUB statement. LJ
COLLISION OFF ends event trapping.

COLLISION STOP prevents execution initiated by the ,

ON COLLISION-GOSUB statement until COLLISION ON is LJ
executed again.

See OBJECT for a sample program using COLLISION. , .

38 u

n
BASIC Programming

H COLOR
COLOR f,b defines a foreground color and background color

to be used in text printing, drawing, and filling areas. In the

I | default screen, you may use colors 0, 1, 2, and 3, where 0 is
blue, 1 is white, 2 is black, and 3 is orange. These colors will

be different if you changed them with Preferences. The SCREEN

P~j statement lets you change the number of colors up to 32.

REM COLOR

PRINT "HELLO"

COLOR 2,1:PRINT "BLACK"

COLOR 3,1:PRINT "COLOR 3 ON 1"

COLOR 2,3:PRINT "BLACK ON ORANGE"

COLOR 0,l:PRINT "I LIKE THIS"

COLOR 1,0

END

CONT

CONT continues a program after you have stopped it by

either pressing CTRL-C or the Amiga and period keys or used

the mouse to Stop the program from the Run menu. To try

this command, run this short program, then stop it. Put the

cursor in the Output window and type CONT and press RE

TURN. You can also continue the program by using the

mouse and selecting Continue from the Run menu.

10 REM CONT

20 X=X+4:PRINT X

30 GOTO 20

40 END

COS(n)
COS(n) returns the cosine of an angle n where n is expressed

in radians.

REM COS
LINE (0,100)-(640,100)

FOR X=0 TO 32 STEP .1

Y=100-(40*COS(X))

LINE (X*20,Y)-(X*20,100)

NEXTX

END

39

■• • u
Chapter 2

LJ

CSNG(n) U
CSNGM is a numeric function that converts the numeric ex

pression n to a single-precision number for calculations with

other single-precision numbers. s j

N#=500000.3572

PRINT N#,CSNG(N#)

CSRLIN ^
CSRLIN is a function that returns the current row position of

the cursor, or the line the cursor is on.

REM CSRLIN

RANDOMIZE TIMER

FOR J=l TO INT(10*RND)+l

PRINT TAB(J);"HI";

NEXTJ

PRINT:PRINT "CURSOR IS ON ROW";CSRLIN

END

See also POS.

CVI, CVL, CVS, CVD

These words are described in a separate section entitled "File

Processing/' following the dictionary of Amiga words.

DATA

DATA statements store data in a program. The data list may

be numbers or strings, and each item must be separated by

commas. If a string contains leading or trailing spaces, or

embedded commas, it must be in quotation marks.

A DATA statement may be placed anywhere in the pro

gram. As the program is run, DATA statements are ignored

until a READ statement is executed, which assigns the data to j j

variables. The first READ statement starts to read items at the

beginning of the first DATA statement. There must be enough

DATA to satisfy the READ statement or you will get an error t J

message. The DATA type, either string or numeric, must ~

correspond to the variable names in the READ statement. Data

items are read in order by the READ statement unless a RE- \ |

STORE statement is used. *—1
The computer always reads the data in order, no matter

how the DATA statements are typed. The computer keeps \ I

track of a pointer so it knows which is the next data item to be —'

40 LJ

n
BASIC Programming

j~~j read. If the READ statement does not use all the DATA items,
the extra ones are ignored.

REM DATA

I I FOR T=l TO 10
READAGE,N$

PRINT N$,AGE

ft NEXT T

DATA ^CHERY^RICHARD^CINDY

DATA9,BOB,5,RANDY,.2,BRETT,11,ED

DATA 9,BILL,7JOHN,3,JIMMY

END

See also READ and RESTORE.

DATE$

DATE$ returns the date in the computer in the format xx-yy-

zzzz (month-day-year). You may change the date by selecting

Preferences from the Workbench and changing the printed

date.

V$=DATE$

PRINT DATE$

DEF

DEF FN defines a function to use later in the program. It can

save typing if you have to use it several places in the program.

A function must be defined before it is used. A function can

call another function.

REM DEF

DEF FNR(N)=INT(N*RND)+1

PRINT FNR(8)

D=6:PRINT FNR(D)

END

DEFDBL

DEFDBL defines the specified variables to be double-precision

numeric variables, so you do not need the # sign at the end of

the variable name. You may specify either the complete vari

able name or the first letter or a range of first letters. If you

specify only one letter (or range of letters), any variable name

starting with that letter will be defined.

DEFDBL N,LENGTH,WIDTH

41

u
Chapter 2

u

DEFINT J_j

DEFINT defines the specified variables to be integers and will

round the integers. (The INT function does not round.) If you _

do not define numeric variables, the default is single-precision] I

floating point (noninteger).

REM DEFINT

DEFINT I-M M
I=2.45:J=3.2:KKK=3.75

PRINT IJ,KKK

END

DEFLNG

DEFLNG defines the specified variables to be LoNG integers

and will round the integers. Ordinarily, after seven digits, a

number is written in exponential format, or a number times En

indicating the number times 10 to the n power. DEFLNG will

keep the numbers in normal written form, but allows for more

digits.

DEFLNG X,Y,Z

See also CLNG.

DEFSNG

DEFSNG defines the specified variables to be single-precision

numeric variables, so you do not need to use the ! sign in vari

able names.

DEFSNG AVERAGE,SCORE

DEFSTR

DEFSTR defines the specified variables to be string variables,

so you do not need to use the dollar sign in variable names.

You may specify either the actual variable name or the begin-] |
ning letter or range of letters.

DEFSTR B-D . ,

DEFSTR PERSON,PHONE LJ

DELETE ,

DELETE is used as you're programming or editing to delete or j |
erase program lines. You may specify either a line number or

a range of line numbers.

DELETE 60 Deletes line 60 I
DELETE 300-500 Deletes lines 300 through 500

42 u

BASIC Programming

n

DELETE -100 Deletes all lines through line 100

DELETE 700- Deletes lines from line 700 to end

dim

DIMensions arrays of numbers. If you use a variable with a

subscript, the computer automatically reserves 11 elements

(numbers 0-10). If you want to conserve memory for fewer

elements or if you need to reserve memory for more elements,

you do so with the DIMension statement.

DIM D(6),A(30)

DIM N$(3,6,4)

ELSE

ELSE is used in an IF-THEN statement to give a command if

the condition is not true. ELSE may be followed by a line

number, label, command, or another IF statement. The IF-

THEN statement does not have to include ELSE.

10 REM ELSE

20 PRINT 'TRESS A LETTER"

30 A$=INKEY$:IF A$=" " THEN 30

40 PRINT A$;" - ";

50 A=ASC(A$)

60 IF A<65 THEN PRINT "NO":GOTO 30

70 IF A>123 THEN PRINT "NO":GOTO 30

80 IF A>90 AND A<97 THEN PRINT "NO" ELSE PRINT "YES"

90 GOTO 30

100 END

See also IF-THEN.

END

END stops execution of the program. If the cursor is in the

Output window, the message "Ok" appears. If the cursor is in

the List window, the List window reappears. The END state-

ment is actually optional because the computer will stop

execution when there are no more statements to execute. You

may also wish to use END to prevent the computer from go-

ing to later lines such as subroutines. END differs from STOP.

The program can be continued after STOP, but not after END.

EOF
EOF is described in a separate section entitled "File Process

ing," following the dictionary of Amiga words.

43

Chapter 2
u

EQV jj
EQV (equivalence) is used as a logical operator in conditional

statements. A EQV B returns true if both A and B conditions

are true or if both A and B are false. If one condition is true)j
and one is false, EQV will return false.

REM EQV

A=14:B=7:C=2 M
IF A=B*C EQV A>0 THEN PRINT "1 TRUE"

IF A>B EQV C>B THEN PRINT "2 TRUE"

IF B>A EQV C>A THEN PRINT "3 TRUE"

END

See also IF-THEN.

ERASE

ERASE a where a is an array name allows you to erase arrays

within a program. One use of this statement is to conserve

memory as a program is running. After an array has been

used, ERASE can be used to erase the need for that memory.

ERASE may also be used if you want to redimension arrays.

ERASE N$ indicates that you no longer need the N$ array.

REM ERASE

DIM A(15)

WIDTH 20

FOR C=l TO 15

A(C)=C:PRINT A(C);

NEXT C:PRINT

ERASE A:DIM A(18)

FOR C=l TO 18

PRINT A(C);

NEXTC

END LJ

ERL, ERR, and ERROR

ON ERROR GOTO /, where / is a line number or label, is a ^ ,

way to do your own error trapping. The line number is the { j

first line of the error-handling subroutine. Once an error oc

curs, the subroutine is executed. You need to use RESUME to

exit from the error-handling routine. ^ j

ERROR n is a way to simulate the occurrence of a BASIC

error, or you can define your own error codes; n is an error

code number. If you define your own, you should use a code ^ J

that is not already assigned (check the appendix of your manual

for a list of the error codes). If you have a statement ERROR n,

44 ^

BASIC Programming

the program will stop with the error message corresponding to

the code number n.

ERL contains the line number where the error occurred.

ERR contains the error code for the last error. The following

program illustrates these BASIC words. ON ERROR GOTO 50

says that if an error occurs go to line 50, which is the begin-

ning of the error-handling subroutine. Line 10 asks you to in

put a number. We are setting up an error condition in line 15.

If the number entered is greater than 1000, then ERROR 220,

which says the error code is 220. Line 35 also tests for an er

ror condition. Line 50 says that if the error code is 220, then

print the error message that we defined. The next line says if

the error occurred in line 35, then RESUME 30, which means

to go back to line 30 and continue the program. If the error

did not occur in line 35, RESUME 10 sends the computer back

to line 10.

REM ERROR

ON ERROR GOTO 50

10 INPUT "ENTER A NUMBER ",N

15 IF N>1000 THEN ERROR 220

20 PRINT "OK"

30 INPUT "NOW YOUR NAME ",N$

35 IF LEN(N$)>8 THEN ERROR 220

50 IF ERR=220 THEN PRINT "TOO LARGE"

IF ERL=35 THEN RESUME 30

RESUME 10

END

If you want to use an error message that regular BASIC

already has, you can use ERROR n, where n is a defined code

for an error message. For example, try different values for T in

this program (such as T=8 or T=15).

REMERROR2

T=9

ERROR T

END

EXP(n) calculates the exponential function, which is the

mathematical number e raised to the nth power, where e is

approximately 2.718281828.

PRINT EXP(2)

EE=EXP(A)

Chapter 2

FIELD

FIELD is described in a separate section entitled "File Process

ing/' following the dictionary of Amiga words.

FILES ^
FILES prints a directory of files on a disk without affecting

your BASIC program. If you want to see a directory of a dif- £ j
ferent disk, use FILES "DFO:". If you want to see a

subdirectory of a different disk, use FILES "DF0:title".

FILES

FILES "DFO:"

FILES "DFO:BasicDemos"

FIX faJ
¥lX(n) truncates the fractional part of a number and returns the

whole number part without rounding. FlXfa) is similar to

INT(n), but INT(n) takes the next lower number, or the number

to the left on the number line, so for negative numbers the

number is the next lower number. FIX(n) simply truncates.

ClNT(n) converts to an integer by rounding, and DEFINT also

rounds.

PRINT FIX(2.5),FIX(3.22),FIX(4.75)

PRINT FIX(-2.5)/FIX(-3.22),FIX(-4.75)

FN

See DEF.

FOR and NEXT

FOR and NEXT form statements that include a loop of instruc

tions to be performed a given number of times. These are

often called FOR-NEXT loops. Each FOR statement must have \ I

a corresponding NEXT statement, and each NEXT statement ('
must have a preceding FOR statement. The form is

FOR c = a TO b [STEP s] J_J
[loop statements]

NEXT [c]

where c is an index or counter and a is the first number (or \ j
numeric expression) assigned to the counter c. The computer

executes the statements after the FOR statement down to the , }

NEXT statement with c=a. At the NEXT statement, c is in- [_)

cremented by one, and control goes back to the statement just

46 u

BASIC Programming

f| after FOR. The loop is performed repeatedly until the limit b is

' exceeded.
If you wish to increment by a number other than one, use

!"—j STEP. The increment may be positive or negative and may be

- a fraction. The NEXT statement may leave off the index. FOR-

NEXT loops may be nested, but you do need to be careful that

("*■> the FOR statements are matched properly with the NEXT state-

I ments. NEXT may combine the counters, such as NEXT c,d.

A FOR-NEXT loop with no statements between the FOR

statement and the NEXT statement will simply be counting,

which creates what seems like a pause in the program.

Several of the other sample programs in this chapter use

FOR-NEXT loops of various forms. The following program

illustrates several types of loops. The first loop uses T as a

counter to print three blank lines. The FOR-NEXT loop with A

as the counter uses a negative step size, so the numbers for

the counter will be counting backward. The FOR-NEXT loop

with B as a counter is nested in the A loop. This loop uses a

step size of a fraction. Notice that your limit does not have to

be the exact number for the counter; the loop stops when the

limit is exceeded.

REM FOR

FOR T=l TO 3

PRINT

NEXTT

FOR A=6 TO 2 STEP -2

FOR B=l TO 3 STEP .4

PRINT A;"*";B;"=";A*B

NEXTB

NEXT A

END

' l FBE(n)
FRE(—1) returns the number of bytes of free memory avail-

]"""} able in the entire system. FRE(—2) returns the amount of stack
space that has never been used. If n is not —1 or — 2, the

function returns the amount of free memory in BASIC'S data

P"j segment. You may put either a constant or a variable in for
the expression n. With the cursor in the Output window, you

may type PRINT FRE(—1) to see how many bytes are left.

[""! You may want to check the size of a program by printing
FRE(—1) before and after it is written or loaded.

_ PRINT FRE(X)

II PRINT FREW)
47

Chapter 2
u

U

GET jj
See PUT.

GET#

GET# is described in a separate section entitled "File Process

ing," following the dictionary of Amiga words.

GOSUB and RETURN

GOSUB /, where / is a line number or a label, tells the com

puter to GO to a SUBroutine starting at line /, then RETURN

when it finds the command RETURN. When a RETURN is en

countered, the program returns to the statement directly

following the GOSUB statement. GOSUB is used when a

procedure is required several places in a program. You can

have a GOSUB within another subroutine. You may enter a

subroutine at different points. To go back to the main pro

gram, there must be a RETURN statement.

REM GOSUB

GOTO MAIN

110 PRINT

120 PRINT 'TRESS THE SPACE BAR TO CONTINUE/'

130 WHILE INKEY$<>" "iWEND

CLS

RETURN

MAIN:

PRINT "HAVE INSTRUCTIONS HERE"

GOSUB 110

PRINT "FIRST PROBLEM INTRODUCED"

GOSUB 120

PRINT "ANSWER PRESENTED"

GOSUB 110

END

GOTO

GOTO /, where / is a line number or label, transfers program

execution to the specified line rather than going to the very

next statement. You may go to a previous statement, a later

statement, or the same statement.

REM GOTO

GOTO FIRST

120 PRINT "THIS IS SECOND"

GOTO LAST

FIRST:

48 •—'

BASIC Programming

n

H

PRINT "THIS IS FIRST"

GOTO 120

LAST:

PRINT "THIS IS LAST"

PRINT

PRINT 'TRESS CTRL-C TO STOP"

190 GOTO 190

END

HEX$ (n)
HEX$(n) returns a string representing the hexadecimal (base

16) equivalent of the decimal (base 10) number or expression

ft. When you work with machine language programs, you may

want to use hex numbers. The PATTERN command also uses

hex numbers. Hex numbers are preceded by &H and consist of

the numerals 0-9 and letters A-F, which represent the next

numerals. Hex constants must be in the range of 0 through

FFFF.

REM HEX$

BEGIN:

PRINT "ENTER A DECIMAL NUMBER"

INPUT "TO BE CONVERTED";D

PRINT

PRINT "THE EQUIVALENT HEXADECIMAL"

PRINT "VALUE IS ";HEX$(D)

PRINT:PRINT

GOTO BEGIN

END

See also OCT$ for an example program.

IF

IF starts a conditional branching command. There are several

forms:

IF test THEN line

IF test THEN action

IF test THEN linel ELSE line!

IF test THEN linel ELSE action!

IF test THEN actionl ELSE linel

IF test THEN actionl ELSE actionl

IF test THEN actionl ELSE IF ...

where test is a relational or numeric expression; line, linel, and

linel are line numbers; and action, actionl, and actionl are

49

Chapter 2

valid commands. The actions may be a series of commands j f

separated by colons. Instead of line numbers, you can use *—'

GOTO line label

For the IF-THEN statements, IF the test expression is true, j j

THEN the program branches to the line specified or performs

the specified action. If the test expression is not true, the pro

gram goes immediately to the next statement following the IF \ i

statement (next line). {—s
For the IF-THEN-ELSE statements, IF the test expression

is true, THEN the program transfers to the linel specified or

performs action!. IF the test expression is not true, the ELSE

command transfers the program to linel or performs action!.

The test expression may contain arithmetic operators, rela

tional operators, or logical operators. The logical operators are

NOT, AND, OR, XOR, IMP, and EQV. Given tests A and B,

which can be either true or false, NOT reverses the truth.

For example, NOT A where A is true would return false.

AND between two tests requires that both A and B be

true to return a true.

OR says that if either A or B or both are true, it will re

turn a true.

XOR (exclusive OR) says either A may be true or B may

be true, but not both.

EQV (equivalence) returns a true if both A and B are true

or if both A and B are false.

IMP is implication. A IMP B returns a true if both A and

B are true, if A is false and B is true, or if both A and B are

false (returns false if A is true and B is false).

10 REM IF

20 A=4:B=8

30 IF B=2*A THEN 60) f

40 PRINT "Bo2*A" "—>

50 GOTO 70

60 PRINT "B=2*A" < j

70 IF B>A THEN PRINT "B>A" ELSE PRINT "B<=A" Lj

80 PRINT 'TRY AGAIN? (Y/N)"

90 A$=INKEY$

100 IF A$="N" OR A$="n" THEN END J_J
110 IF A$o"Y" AND A$o"y" THEN 90

120 PRINT

130 INPUT "A = ";A ! (
140 INPUT "B = ";B l—*
150 GOTO 30

160 END j |

50 U

BASIC Programming

H See also AND, EQV, IMP, NOT, OR, XOR.

IMP

PI IMP is a logical operator for implication; it is used to connect
two or more relations and return a true or false value to be

used in a decision such as an IF-THEN statement. A test op-

P"? erand is true if it is not equal to zero and false if it is equal to
zero. Given two test conditions, A and B, the following is the

result of IMP.

A B AIMPB

T T T

T F F

FT T

F F T

A sample statement is

IF X>Y IMP X>Z THEN GOTO XYSUB

See also IF.

INKEY$

INKEY$ detects whether a key has been pressed on the key

board. This command is useful if you want your user to re

spond with just a one-key answer, such as yes or no (Y/N), a

multiple-choice response, or a number or letter. The cursor

must be in the Output window. The INKEY$ method has less

chance of user error than INPUT because you can ignore un

wanted keys.

The key pressed is not printed on the screen. INKEY$

does not wait for a key to be pressed. If no key is pressed

when the INKEY$ is checked, then INKEY$ has the value of a

m null string.

'- l REMINKEY$
BEGIN:

<—> PRINT

L ^ PRINT "CHOOSE:"
PRINT " 1 FIRST OPTION"

^ PRINT " 2 SECOND OPTION"

/ | PRINT " 3 THIRD OPTION"
PRINT " 4 END PROGRAM"

PICK:

M C$=INKEY$:IF C$=" " THEN PICK

IF C$<"1" OR C$>"4" THEN PICK

PRINT

n
51

u
Chapter 2

u

ON VAL(C$) GOTO ONE,TWO,THREE,FOUR

ONE:

PRINT "** FIRST OPTION CHOSEN"

GOTO BEGIN

TWO:

PRINT "** SECOND OPTION CHOSEN"

GOTO BEGIN ,

THREE: [_J
PRINT "** THIRD OPTION CHOSEN"

GOTO BEGIN

FOUR:

CLS

END

INPUT

INPUT allows the user to enter something as the program is

being run. The computer will receive user input until the RE

TURN key is pressed. The input must not contain a comma,

because a comma implies more than one value in the INPUT

statement. The LINE INPUT statement does allow commas

(see LINE INPUT). If the variable name for the input value is

numeric and the user enters nonnumeric characters, there will

be an error message and the computer will wait for more input.

INPUT A Receives number

INPUT B$ Receives string

INPUT "PROMPT";N$ Prints prompt in quotation marks

INPUT "PROMPT",N Suppresses question mark

REM INPUT

PRINT "WHAT IS YOUR NAME?"

INPUT N$

PRINT:PRINT "HELLO, ";N$

PRINT:INPUT "ENTER A NUMBER";N \ (

PRINT "NUMBER TIMES 2 =";N*2 L~->

PRINT

END j |

INPUT#

INPUT# is described in a separate section entitled "File , (

Processing," following the dictionary of Amiga words. I /

INSTR , ,

INSTR is a function used to locate a certain letter or string j ,

within another string. There are two forms:

LJ

BASIC Programming

n

n

INSTR(s2,s2J returns the position of the first occurrence of

string s2 in string si. The value returned is a number that tells

at which character position s2 starts. If s2 is not found in si,

the value returned is zero. lNSTR(n,sl,s2) starts with the nth

character to search for string s2 in si.

In the following sample program, D$ is a string listing the

abbreviations for the months. You enter the name of a month,

M$. M$ is changed to the first three letters you enter, then

INSTR searches D$ for the first occurrence of the month name

and returns the month number. If you enter only two letters,

MA, the month could be MAR or MAY, but the first occur

rence is MAR for the third month.

REM INSTR

D$="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"

BEGIN:

PRINT

INPUT "ENTER A MONTH ";M$

M$=LEFT$(M$,3)

M=(INSTR(D$,M$)-l)/3+l

IF M>-1 THEN MONUMBR

PRINT "NOT IN LIST'

GOTO BEGIN

MONUMBR:

PRINT "MONTH NUMBER =";M

GOTO BEGIN

END

INT 61J
INT(n) returns the integer value of the numeric expression n.

An integer function considers the integer to be the greatest

whole number less than the given value. If you think of a

number line, the integer value is the first whole number to the

left of the number n. If the number is positive, the value re

turned is the whole number with the decimal portion trun-

cated. The number is not rounded. If the number is negative,

the value returned is the whole number less than the given n.

PRINT INT(5.479),INT(5.688)

PRINT INT(O)

PRINT INT(-3.2),INT(-3.6)

See also CINT, CLNG, DEFINT, FIX.

53

Chapter 2

KILL

KILL filename gets rid of or erases the specified file on the

disk. "DFO:" specifies any disk in the disk drive 0.

KILL "program"

KILL "DF0:TEST"

LBOUND, UBOUND

LBOUND and UBOUND are described in a separate section

entitled "Subprograms," following the dictionary of Amiga

words.

LEFTS

LEFT$(s,n) is a string function that returns the left n characters

of the string s, or the first n characters; n must be a number

zero or greater. If the number n is greater than the length of

the string s, only the string s is returned (no added blank

spaces). The example

LEFT$("HI THERE,"2)

returns HI.

REM LEFTS

PRINT "ENTER A WORD"

INPUT W$

F$=LEFT$(W$,5)

PRINT 'THE FIRST FIVE LETTERS ARE ";F$

END

See also the sample program for INSTR.

LEN(s)
LEN(s) is a function that returns the LENgth of a string s, or

the number of characters in s. For example, the LENgth of a , ,

string "HELLO" is 5. U

REM LEN

PRINT "ENTER A WORD OR PHRASE." . ,

INPUT S$ LJ
PRINT "THE LENGTH OF YOUR INPUT IS"

PRINT LEN(S$);"CHARACTERS." , ,

PRINT M
END

54 U

BASIC Programming

H

n

LET
LET is used to assign values of expressions to variables in a

program. The word LET is optional with this version of BASIC

and can be omitted.

LET A=6 assigns the value of 6 to the variable name A.

Another way to write the command is A=6.

LET B=54

LET X=X+Y

LIBRARY

LIBRARY is used to open a machine language subprogram

from BASIC. See Chapter 5 for examples of how to use LI

BRARY "graphics.library".

LINE

The LINE command is the basic drawing command to draw a

line from one point to another, where the points are specified

in coordinates. The coordinates are the number of pixels from

the upper left corner of the screen. An (x,y) point of (10,20)

would be a point 10 pixels to the right and 20 pixels down.

The following example program shows several forms and op

tions in the LINE command. The basic LINE command is to

draw from the first point to the second:

LINE (xl,yl)-(x2,y2)

In the program below, lines 2 and 3 illustrate this basic

form. Line 4 lists just the second point. The computer will

start drawing from the second point in line 3 to the point on

line 4.

Line 5 shows how you can specify a color after the points.

The statement on line 6 illustrates the B option, which draws a

box using the first point as the upper left corner of the box

and the second point as the lower right corner of the box. The

coordinates for any two opposite corners may be specified.

The BF option fills in the box with the specified opposite

corners. The default value is a solid box. The fill may be

changed with the PATTERN command (see also PATTERN). If

you do not use a color number, you still need to use the right

number of commas to indicate the B or BF option.

1 REM LINE

2 LINE (20/20)-(60/50)

3 LINE (30,60)-(70,85)

j—1 4 LINE -(80,70)

55

Chapter 2

u

5 LINE (90,90)-(140,80),2 < |

6 LINE (20,110)-(40,130),3,B <_J
7 LINE (50,120)-(75,150),2,BF

8 LINE (90,115)-(110,140),,BF < .

9 END |_J

With just the LINE graphics command, you can create

beautiful designs. Draw the lines in certain patterns or in a i >

certain sequence. The following program draws lines using «—>

three nested FOR-NEXT loops.

REM LINES

XI=320:Yl=0:X2=320:Y2=199

M=X1:N=X2

FOR J=l TO 5

FOR C=0 TO 3

FOR D=l TO 8

LINE(X1,Y1)-(X2,Y2),C

LINE(M,Y1)-(N,Y2),C

X2=X2+5

N=N-5

NEXT D,CJ

END

Now try the program when you add M=M+5 to the line

with N=N—5. Try the program when you also add X1=X1—5

to the line with X2=X2+5. Try some graphics with the B and

BF options as well.

LINE INPUT

LINE INPUT allows any character (except RETURN) that is on

the keyboard to be input into a string. You may include a

prompt in quotation marks like the regular INPUT statement.

On a regular INPUT statement asking for one item, if you

enter a comma you will get the "Redo from start" message. j j
LINE INPUT accepts the comma as part of the string. LINE

INPUT allows only one string variable.

Leading blank spaces on INPUT are ignored, but with J j
LINE INPUT they are part of the string. INPUT prints a ques

tion mark, but LINE INPUT does not.

REM LINE INPUT j_J
INPUT W$

PRINT W$

LINE INPUT X$

PRINT X$

END
1 j

56 LJ

BASIC Programming

LIST

LIST lists or reprints your program in the List window. It is

equivalent to the Show List option from the Windows menu.

There are several forms of the command that are acceptable if

you use line numbers or labels.

LIST lists the complete program. If you have a long pro?

r**i gram, the List window will show the section of the program

' ^ where you were last working.
LIST line lists from line number or label. The line speci

fied will appear at the top line of the List window.

LIST 100-200

LIST -200

LIST 200-

LIST BEGIN

LLIST

LLIST is just like LIST, but prints the listing on a printer.

LOAD

LOAD filename loads or reads into BASIC memory the speci

fied file in quotation marks from disk into the computer. If

you are using a different disk, you need the DF0: specification

or the title of the disk. When you put programs in subdirectories

or folders, you must enter the filename with the subdirectory

or folder name (LOAD subdirectory/filename).

If you add ,R the program will load and run. Here are

some examples of the LOAD command:

LOAD "STATES''

LOAD "DF0:TYPEl"

LOAD "REGENA:NOTES"

, , LOAD "BOOKrLOAN.BAS"

J \ LOAD "DF0:BasicDemos/MUSIC",R

rs LOC
I [LOC is described in a separate section entitled "File Process

ing," following the dictionary of Amiga words.

H LOCATE
The LOCATE r,c command is used as an efficient way to print

at a certain place on the screen or to relocate the cursor rather

j~| than printing blank lines and TABulating to a certain column.
The first parameter listed is the row number, r, and c is

n 57

Chapter 2

the column number to start printing; (1,1) is in the upper left .

corner of the screen. ^_

LOCATE 5,10:PRINT "MESSAGE"

would start printing MESSAGE in the fifth row from the top j
and in column 10.

LOF) I

LOF is described in a separate section entitled "File Process- ^^
ing/' following the dictionary of Amiga words.

U)G(n)
LOG(n) returns the natural logarithm of n, or log of n with the

base e. Remember that the argument or expression n must be

greater than zero or you will get an illegal function call error

message. The logarithm and exponential functions are inverses:

X=LOG(EXP(X)) and X=EXP(LOG(X))

Example statements are

PRINT LOG(2)

X=LOG(Y-2)

IF LOG(N)<0 THEN 700

LPOSfaJ
LPOS(n) returns the position (column number) of the print-

head of the printer. The value of n does not matter.

IF LPOS(0)>60 THEN LPRINT CHR$(13)

LPRINT

LPRINT may be used just as the PRINT statement, but sends

the printing to a printer. You may use TAB and SPC,

constants, and variables. You may also use LPRINT USING ^ j

with the same format specifications as PRINT USING. <—/

LPRINT "HELLO"

LPRINT TAB(10);"NAME";SPC(20);"PHONE" \ j

LSET

LSET is described in a separate section entitled "File Process- \ (

ing," following the dictionary of Amiga words. i—J

MENU, MENU ON, and MENU RESET]

Push the right mouse button and move toward the top of the u^>

screen. The top highlighted line will change and menu titles

58 U

n
BASIC Programming

PH will appear. As you touch a title, a menu will drop down with

'- — several options. As you move the mouse downward, the sub
titles will be highlighted. To make a selection, you release the

pi right mouse button.

—l When you work with Workbench or with Amiga BASIC,
these menus are set, but from BASIC you can put in your own

r**> menus so that as you are running your own program the user

has menus for your program.

The form for creating a menu is

MENU tnenu-id,item-id,state [,title]

The menu-id is the position of the menu selection on the

menu bar and can be a number from 1 through 10. If you se

lect 1, for example, your menu will replace the first (leftmost)

menu. In the following sample program, we'll replace the sec

ond menu with our own custom menu.

The item-id is the relative position of the selected item in

a menu and can be a value from 0 through 20. Item-id 0 refers

to the entire menu. The other numbers are for the choices un

der the main topic.

The state is 0 to disable, 1 to activate, or 2 to activate and

place a checkmark. The title is a string for the title of the item

chosen. These titles will be what appears when the mouse

moves to the menu bar.

MENU ON enables event trapping or use of the ON

MENU GOSUB statement. You may choose to use the ON

MENU GOSUB method or the method shown below.

There are two functions involved with MENU. MENU(O)

is similar to INKEY$ and is reset to zero every time it exe

cutes. It returns a number which corresponds to the number of

fmn the last menu bar selection made or which main menu has

;_ \ been chosen.

MENU(l) returns a number of the last menu item chosen.

0mm^ MENU RESET restores the original Amiga BASIC menu

j j bar. In this case we are replacing the Edit menu, but when the

program ends, MENU RESET puts back the Edit menu.

The following program illustrates how these MENU state-

/ I ments work. The second main menu will be replaced by our
custom menu. It will have the main title of FACTORS with

five subchoices. MENU ON activates the event trapping, so

j j we can detect when the menu has been chosen. MENU(O) re
turns a number of the menu chosen. We will ignore the other

menus and act only if our new menu is chosen, Menu 2.

H 59

Chapter 2

u

MENU(l) returns which item was chosen in the list. When i i

you choose to end the program, MENU RESET restores the ;—>>

original menu of Amiga BASIC.

REM MENUS I |

MENU 2,0,1,'TACTORS"

MENU 2,1,1,"AU Factors"

MENU 2,2,l,"Prime Factors" s ,

MENU 2,3,l,"Lowest CM" i-J
MENU 2,4,l,"Greatest CF"

MENU 2,5,l,"End Program"

MENU ON

ACTIVE:

M=MENU(0)

IF M<>2 THEN GOTO ACTIVE

CHOICE=MENU(1)

ON CHOICE GOSUB AL,PRIME,LCM,GCF,E

GOTO ACTIVE

AL: PRINT "ALL FACTORS"

RETURN

PRIME: PRINT "PRIME FACTORS"

RETURN

LCM: PRINT "LOWEST COMMON MULTIPLE"

RETURN

GCF: PRINT "GREATEST COMMON FACTOR"

RETURN

E: PRINT "END PROGRAM"

MENU RESET

END

See also ON MENU.

MERGE

MERGE is described in a separate section entitled "File

Processing," following the dictionary of Amiga words. jI

MID$

MYD$(s,n,m) is a string function that returns a segment of j)
string s starting with character number n and m letters long.

For example,

MID$("THIS IS AN EXAMPLE",6,5)

would return IS AN. Here are some other example statements:

60

n

n

n

n

n

BASIC Programming

A$=MID$(X$J,3)

PRINT MID$(N$,2,6)

IF MID$(A$,X,Y)="CLUE" THEN GOSUB 500

H MKI$, MLK$, MKS$, MKD$
These functions are described in a separate section entitled

"File Processing," following the dictionary of Amiga words.

MOD

a MOD b returns the remainder when the numeric expression

a is divided by b. For example, 11 MOD 4 returns the value 3.

Eleven divided by 4 equals 2 with a remainder of 3 so the

value returned is 3. Here are some example statements.

PRINT 11 MOD 4

IF X MOD Y <>0 THEN PRINT "NOT"

MOUSE

MOUSE statements are used when you are using the mouse

arrow to receive input rather than the keyboard. An arrow ap

pears on the screen. As you move the mouse, the arrow

moves in that direction. There are several MOUSE commands

and functions in Amiga BASIC that relate to the mouse and

the position of the arrow. The MOUSE ON statement activates

event trapping of the pressing of the left mouse button. Re

lated to this command is the ON MOUSE-GOSUB statement

which directs the program for events.

MOUSE OFF disables the ON MOUSE event trapping.

MOUSE STOP suspends mouse event trapping until the

next MOUSE ON statement is executed. With MOUSE STOP,

event trapping continues but the ON MOUSE-GOSUB state

ment is not executed. Event trapping does slow program

execution; therefore, if the program no longer needs to read

the button, MOUSE OFF is preferred to MOUSE STOP.

—^ The MOUSEM functions are listed in your Amiga BASIC

)_ (manual in detail. This function returns values that indicate
whether the left mouse button was pressed and information

about the position of the arrow. The function parameter n may

be a number from 0 through 6.

MOUSE(O) returns the status of the left mouse button.

«f) 0 indicates that the button is not currently down and has

not been pressed since the last MOUSE(O) function call.

n

Chapter 2

LJ

1 indicates the button is not currently down but has been ^

pressed once. {—'

2 indicates the button has been pressed twice.

— 1 indicates the button is being held down after clicking < /

once—which usually means the mouse is moving. <—>

— 2 indicates the button is being held down after clicking

twice. v j

MOUSE(l) is the x coordinate (horizontal) of the mouse

pointer the last time the MOUSE(O) function was executed.

MOUSE(2) is the y coordinate.

MOUSE(3) returns the x coordinate the last time the left

button was pressed before MOUSE(O) was called.

MOUSE(4) returns the y coordinate.

MOUSE(3) and MOUSE(4) are used together to locate the

starting point of a mouse movement.

MOUSE(5) returns the x coordinate of the mouse pointer

when MOUSE(O) was executed if the button was down when

MOUSE(O) was called. If the button was up the last time

MOUSE(O) was called, MOUSE(5) returns the coordinate of

the pointer when the button was released.

MOUSE(6) returns the y coordinate. These two values are

used to track the mouse as it is moved and to determine the

coordinates where movement stops.

The following example programs illustrate the use of

some of these MOUSE statements. The first short program

simply checks the position of the mouse when the button is

pressed. MOUSE(O) is used to check whether the button is

pressed. The program stays at this line until the value of the

function is not zero. When you press the left button, the value

is no longer zero and the program continues. MOUSE(5) and . .

MOUSE(6) are used to determine the ending x coordinate and I 1
y coordinate, and these coordinates are printed. You may

move the mouse to various positions to see the coordinates . ,

when you press the left mouse button. u/

1 REM MOUSE1

2 WHILE MOUSE(0)=0:WEND j [

3 PRINT MOUSE(5);",";MOUSE(6) LJ
4 GOTO 2

5 END , ,
s I

Following is a short program that shows how you can L-J

draw by pressing the left button and moving the mouse

62 LJ

n
BASIC Programming

n '

j"""j around. Line 20 defines X and Y to be integers using DEFINT.
Line 30 waits until the left mouse button is pressed. When the

button is pressed, line 40 checks the current X coordinate with

j) MOUSE(l) and the current Y coordinate with MOUSE(2) and
returns the values X and Y. These coordinates are used in the

PSET command in line 50 to turn on a point—place a white

P"] dot on the blue screen. Line 60 branches back to line 30 to
keep checking the mouse button.

10 REM MOUSE2

20 DEFINT X,Y

30 WHILE MOUSE(0)=0:WEND

40 X=MOUSE(1):Y=MOUSE(2)

50 PSET (X,Y)

60 GOTO 30

70 END

See also the sample program in PUT for moving an object

with the mouse.

NAME

NAME filenamel AS filename! changes the name of a disk file

from filenamel to filenamel.

NAME "TEST" AS "TRIAL"

NAME "DF0:WORK" AS "DF0:DRAWING"

NEW

NEW erases the BASIC program currently in memory and al

lows you to start or load a new program. There will be no

more statements stored in the computer. All numeric variables

return to zero. If you have been working on a program and

made changes, when you type NEW, the computer will first

J""j ask if you want to save the current program. You may use the
~ mouse to select yes or no before you start your next program.

p NEXT

NEXT is the last statement in a FOR-NEXT loop. NEXT in

crements the loop counter or index. If the index is greater than

pi the limit in the FOR statement, program control goes to the

statement following NEXT; otherwise, the loop is performed

again (control goes to the statement following FOR). The index

ft variable name on the NEXT statement is optional unless loops

{- are nested.

Chapter 2

L)

NEXT i (

NEXT C '—>

NEXT C,D

The following example program illustrates several forms of j f

the NEXT statement and some nested FOR-NEXT statements. '—'

REM NEXT

FOR M=l TO 5:PRINT MrNEXT M ■ I
PRINT

FOR J=l TO 2000:NEXT

FOR M=l TO 5

FOR J=l TO 3

FOR K=10 TO 20 STEP 2

PRINT M*J*K

FOR L=l TO 1500:NEXT

NEXT KJ,M

END

See also FOR, STEP.

NOT

NOT is one of the logical operators in Boolean algebra and is

often used in IF-THEN conditional statements.

NOT0 = -1

NOT -1=0

NOT n = —n—1 (for any number)

NOT reverses the state of a test in an IF-THEN statement.

REM NOT

A=1:PRINT A,NOT A

A=0:PRINT A,NOT A

A 1:PRINT A,NOT A

A=-56:PRINT A,NOT A

A=34:PRINT A,NOT A \ \

X=5:Y=6 -—»

IF NOT (X<Y AND X*Y=30) THEN PRINT "NOT"

IF NOT X>Y THEN PRINT "SECOND" .

END LJ

OBJECT

There are a number of OBJECT words which are described in I |
detail in your Amiga BASIC manual. They each have to do

with operations and functions of objects. In the statements, id]

refers to the object identification number and corresponds with | \
the ID in an OBJECT.SHAPE statement.

64 U

n
BASIC Programming

G

]"""[OBJECT.SHAPE id,d defines the shape, colors, and loca
tion of an object with the given ID number. The definition d is

a string which describes the size, shape, and color. The defi-

j[nition is defined by using the Object Editor utility program
which is on the same disk as Amiga BASIC. In using the Ob

ject Editor you will save the shape on disk. When you use the

!"""] shape in a program, you can define the object with

OPEN "filename" FOR INPUT AS 1

OBJECT.SHAPE 1,INPUT$(LOF(1),1)

CLOSE 1

OBJECT.X id,n and OBJECT.Y id,n position the object in

the Output window with the specified pixel coordinates. The

functions of OBJECT.Xtfd) and OBJECT.Y(id) return the current

x and y coordinates of the upper left corner of the object.

OBJECT.VX id,n and OBJECT.VY id,n define the speed of

the specified object in the x and y directions. The speed n is

expressed in the number of pixels per second. The functions

OBJECT.VX(id) and OBJECT.VY(id) return the speed in the x or

y direction, also in pixels per second.

OBJECT.AX id,n and OBJECT.AY id,n define the accelera

tion of an object in the x and y directions. Here, n is the value

of the acceleration rate in numbers of pixels per second per

second. Acceleration is the change in velocity per time.

OBJECT.CLIP (xl/yl)-(x2/y2) defines a rectangle with op

posite corners at coordinates (xl,yl) and (x2,y2). Objects cannot

be drawn outside this rectangle. The default value is the cur

rent Output window.

OBJECT CLOSE [id][,id][...] is used when you no longer

need an object. It frees the memory used by that object. If you

_-^ do not specify an id number, all objects in the current Output

\J5 window are released.

OBJECT.HIT id [,Me][,Hit] determines collision objects for

|—l the specified object. If you do not specify Me and Hit, all ob-

'—s jects collide with each other and the border. However, you can

use this statement to allow objects not to record certain col-

j—j lisions. Me is a bit mask that identifies the object. Each object

' - J is assigned a different bit in Me. The border corresponds to bit
0. Hit is a bit mask that describes what other objects this ob-

r—j ject can collide with. Both masks are 16 bits. An object collides

n

Chapter 2
u

u

with another object if the result of its Hit value ANDed with j [

the other object's Me value is not zero. In the following ex

ample, object 1 can collide only with the border because its

Hit value is 1. Object 2 can collide with objects 1 and 3 be- jj

cause its Hit value is the sum of the Me values of objects 1

and 3 (10 = 2 + 8). Object 3 can collide with the border and ob

jects 1 and 2 (7=1 + 2 + 4). M

OBJECT.HIT 1,2,1 ^
OBJECT.HIT 2,4,10

OBJECT.HIT 3,8,7

OBJECT.ON [id][,id][...] makes the specified object visible.

If an id is not specified, the current Output window will dis

play all the objects. If the object has already been started with

an OBJECT.START statement, it will begin to move again.

OBJECT.OFF [id][,id][...] makes the specified object in

visible. The default if no id is listed is that all objects are in

visible. If an object is started with OBJECT.START, this

statement stops the object and prevents collisions.

OBJECT.PLANES id [,plane-pick][,plane-on-off] sets the

blitter object's (bob) plane-pick and place-on-off masks, which

can be integers from 0 through 255. The default values are

established by the Object Editor program.

OBJECT.PRIORITY id,n sets priority of an object with

relation to other objects. The priority number n is an integer.

Higher priority numbered objects will be displayed in front of

lower priority numbered objects.

OBJECT.SHAPE idl,id2 is the format used to copy the

shape of id! to idl creating a new object. This method is used

in the sample program following.

OBJECT.START [id][,id][...] sets the object in motion. If id

is not specified, all objects start moving. (_j
OBJECT.STOP [id][,id][...] stops or freezes the motion of

the object. If id is not specified, all objects stop.

To use these OBJECT statements, you need to just sit and \ j
experiment with them. Following is a sample program to get

you started. First load the Object Editor utility program which

is on the Amiga BASIC disk and run it. By the way, you may j [
want to copy this program onto another disk that you use

specifically for programming your own objects. When you run

the program, you are able to design your own object. When j j

you get the object the way you want, save it.

66 , LJ

n
BASIC Programming

H

I"—| To try this sample program, use the Object Editor to de

sign an object and save it as "DF0:BLOB". The DFO indicates

we are saving the object on a different disk from the original

"I Amiga BASIC disk that we started the session with. Now exit

the program and type in this program, or load it and run it. It

uses the information you saved with the Object Editor to de-

f—} fine the BLOB. You will need to use the disk on which you

* saved "BLOB".

REM OBJECT

OPEN "DF0:BLOB" FOR INPUT AS 1

OBJECT.SHAPE 1,INPUT$(LOF(1),1)

CLOSE 1

OBJECT.X 1,20

OBJECT.Y 1,50

SX=60:SY=50

OBJECT.VX 1,SX

OBJECT.VY 1,SY

OBJECT.ON

START: OBJECT.START

COLL: K=COLLISION(1)

IF K=0 THEN COLL

IF K=-l OR K=-3 THEN SY=OBJECT.VY(1):OBJECT.VY

1,-SY:GOTO START

SX=OBJECT.VX(1)

OBJECT.VX 1,-SX

GOTO START

END

I used an OPEN statement to OPEN the file to get the

information about the object you designed using the Object

p_ Editor program. The next line reads the information as a string

M with INPUT$(LOF(1),1). OBJECT.SHAPE 1 says to define

shape number 1 with that previously saved file. CLOSE 1

_ closes this file that we will no longer need.

\\ OBJECT.X and OBJECT.Y define where the object will

start on the screen. SX and SY are the speed numbers which

are used in OBJECT.VX and OBJECT.VY. OBJECT.ON makes

! 1 our object visible, and OBJECT.START starts the object in mo

tion. The routine at the beginning of COLL uses COL-

LISION(l) to see whether the object collided with the border.

\J If K is zero, there is no collision and the object can keep mov

ing. If K is —1 or —3, then the top or bottom border was hit

H

Chapter 2

J

arid the Y velocity needs to be changed; otherwise, the side j I

borders were hit and the X velocity needs to be changed. '—'
GOTO START continues the program until you choose Stop

from the Run menu or press CTRL-C. After you stop the pro- i |

gram, you can get rid of the object by typing OBJECT.OFF. <—'

OCT$ (n) j i
The OCT$(nJ function returns the octal (base 8) value equiva- '—'
lent to the decimal number n (integer).

REM OCT$

INPUT "ENTER A DECIMAL NUMBER";N

PRINT

PRINT "THE OCTAL NUMBER IS ";OCT$(N)

PRINT "THE HEXADECIMAL NUMBER IS ";HEX$(N)

END

ON BREAK

Used to tell a BASIC program where to jump to when a break

is encountered. You can break a program by selecting Stop

from the Run menu, or by pressing either the Amiga and pe

riod keys, or the CTRL and C keys. ON BREAK requires a

BREAK ON command.

REM ON BREAK

ON BREAK GOSUB STP

BREAK ON

WRTE:

PRINT "I'll KEEP PRINTING THIS UNTIL YOU"

PRINT "STOP ME"

PRINT

GOTO WRTE

STP: j I
BREAK OFF t—J
FOR 1=1 to 5

PRINT "NEXT TIME I'LL STOP FOR GOOD"

PRINT

NEXT

RETURN . .

END i_j

See also BREAK.

ON COLLISION LJ
See COLLISION.

U

68 u

n
BASIC Programming

n

n ON ERROR

See ERL.

ri on-gosub

ON n GOSUB HneUh^lineS,..., tells the computer to eval

uate the numeric expression n, then branch to a subroutine

r—| starting with linel, Iine2, Iine3, and so on, depending on the

— value of n. The lines specified may be line numbers or line la

bels. If n is 1, the program will go to the subroutine starting at

linel. If n is 2, the program will go to the subroutine starting

at Iine2; if n is 3, GOSUB Iine3,.... Program control will exe

cute the subroutine, then return to the line following the ON-

GOSUB statement. See the MENU example program for an

illustration of GOSUB using line labels. You may also use ON

COLLISION GOSUB.

REM ON-GOSUB

BEGIN: PRINT

PRINT "CHOOSE:"

PRINT " 1 GAME ONE"

PRINT " 2 GAME TWO"

PRINT " 3 GAME THREE"

PRINT " 4 END PROGRAM"

PRINT

KEYPRESS:

C$=INKEY$:IF C$=" " THEN KEYPRESS

IF C$<"1" OR C$>"4" THEN 4

ON VAL(C$) GOSUB ONE, TWO, THREE, FOUR

GOTO BEGIN

ONE: PRINT "YOU CHOSE GAME ONE": RETURN

TWO: PRINT "YOU CHOSE GAME TWO": RETURN

t—I THREE: PRINT "YOU CHOSE GAME THREE":RETURN

1 FOUR: PRINT "END PROGRAM":END

P| ON-GOTO

ON n GOTO linelJh^^ineS,..., evaluates the numeric ex

pression n, then branches according to the value of n. If n is 1

!™"| the program goes to linel; if n is 2 the program goes to Iine2;

if n is 3 the program goes to Iine3,.... You may specify either

line numbers or line labels or both.

P| REM ON-GOTO
BEGIN:

PRINT:PRINT "CHOOSE A NUMBER"

ri PRINT "12 3 4 5"
1 69

Chapter 2

u

KEYPRESS: I i

A$=INKEY$:IF A$=" " THEN KEYPRESS LJ
IF A$<"1" OR A$>"5" THEN KEYPRESS

ON VAL(A$) GOTO ONE,TWO,THREE,FOUR,FIVE

ONE: PRINT "ONE"

TWO: PRINT "TWO"

THREE: PRINT "THREE" ((

FOUR: PRINT "FOUR" I I
GOTO BEGIN

FIVE: PRINT "END"

END

ON MENU

ON MENU jumps to a specific subroutine when MENU(O) is a

nonzero value. MENU ON must have been executed for ON

MENU to be active.

REM ON MENU

MENU 3,0,l,"For Fun"

MENU 3,l,l/'Quit"

ON MENU GOSUB QUIT

MENU ON

KEEPRINTING:

PRINT "Select Quit from the For Fun Menu to stop."

GOTO KEEPRINTING

QUIT:

MENU RESET

END

See also MENU.

ON MOUSE

See MOUSE.

ON TIMER

ON TIMER tells BASIC to jump to a subroutine every n sec

onds. For example, in the following program the subroutine jj
PRINTIT will be executed every ten seconds. Note that TIMER

ON must be executed to activate event trapping.

REM ON TIMER LJ
ON TIMER(IO) GOSUB PRINTIT

TIMER ON

WHILE W<200

PRINT W, "WE STOP AT 200"

U"

n
BASIC Programming

n

P? PRINT "AND TAKE A BREAK EVERY TEN SECONDS"
1] W=W+1

WEND

r—i STOP

' I PRINTIT:
PRINT:PRINT

rm* PRINT "Another 10 seconds have gone by"

f \ PRINT:PRINT

RETURN

END

OPEN

OPEN is described in a separate section entitled "File Process

ing," following the dictionary of Amiga words.

OPTION BASE

OPTION BASE n sets the base for arrays; n may be either 0 or

1, and the default value (not specifying an OPTION BASE) is

0. This means that subscripts start at 0, for example, A(0),

A(l), A(2),.... If you specify OPTION BASE 1, the subscripts

start at 1 and memory is saved if you don't need the zero ele

ments. The OPTION BASE statement needs to be executed

before the DIMension statement that defines the arrays.

OPTION BASE 1

DIM A(16),B(16),A$d6,3),B$(16)

OR

Logical OR is used in IF-THEN statements to combine con

ditions. One condition OR the other OR both must be true for

the THEN action to take place. More than one OR may be used.

OR differs from XOR in logical operators because XOR

f—"> (exclusive OR) says one or the other condition, but not both,

must be true for the THEN action to take place.

REMOR

{{ 1 PRINT

INPUT "ENTER A NUMBER ";X

INPUT "ENTER ANOTHER NUMBER ";Y

IF X<Y OR X<Y*2 THEN 6

PRINT "X>=Y OR X>=Y*2":GOTO 7

6 PRINT "X<Y OR X<Y*2"

7 PRINT

PRINT "TRY AGAIN? (Y/N)"

INPUT A$

IF A$="Y" OR A$="y" OR A$="YES// THEN 1

71

Chapter 2

IF A$="N" OR A$="n" OR A$="NO" THEN 8

PRINT "SORRY, DON'T UNDERSTAND"

GOTO 7

8 END

PAINT

PAINT (x,y),h[,b] fills in an area with "paint," or a hue, h,

starting from the point designated by coordinates (x,y) and go-

ing to the border color b.

The following short program illustrates the PAINT com

mand. The WINDOW command defines a WINDOW with the

type of 24 (so you can close it after you have run the pro

gram). The window's label is PAINT, and the size of the win

dow is designated by coordinates. The next line draws a circle,

then a line is drawn. Both of these are drawn with the color 3.

The first PAINT command specifies coordinates in the top part

of the circle and says to paint with color 3. The second PAINT

command uses color 2, which is black, and paints to the or

ange border, color 3.

REM PAINT
WINDOW 2,"PAINT",(20/10)-(150/100)/24

CIRCLE (65,55),40,3

LINE (20,10M150,100),3

PAINT (70,40,3

PAINT (40,50,2,3

END

PALETTE

PALETTE n,/2,/2,/3 is used to define new colors. If you don't

like the standard colors, you may change the colors using

Preferences on the Workbench, or in BASIC you can use the

PALETTE command. Think of the PALETTE command as

using an artist's palette and mixing colors. For each of the four

possible colors, or paint buckets, you can mix a combination of

red, green, and blue. The first parameter, n, is a bucket num-

ber. The /I, /2, and /3 numbers may be fractions from 0

through 1. Black is 0,0,0, or no colors, and white is 1,1,1, or a

mixture of all colors. In order, the numbers are for the amount

of red, green, and blue in your bucket.

The following program illustrates the PALETTE command

by drawing four boxes of the four colors. PALETTE 0, or the

background color, is changed to 0,0,0, which is black. PAL

ETTE 1, which is the default drawing and printing color, is a

72

H
BASIC Programming

H

f-j mixture of 0,0,1. PALETTE 2 is 0,1,0. PALETTE 3 is 1,0,0.

REM PALETTE

PALETTE 0,0,0,0

PI PALETTE 1,0,0,1

' ' PALETTE 2,0,1,0
PALETTE 3,1,0,0

r-> FOR C=0 TO 3

' S LINE (C*20,80)-(C*20+20,120),C,BF

NEXTC

END

Now try some different fractional mixtures in the palettes.

PALETTE 0,.l,.8,.8

PALETTE 1,.3,.2,.4

PALETTE 2,.4,.1,.6

PALETTE 3,.8,.5,0

PATTERN

PATTERN is used to change the pattern of a line or an area

that is filled with AREAFILL or the BF option in the LINE

statement. The default patterns are solid. However, you may

designate any pattern you like. You may use graph paper to

draw out a pattern of filled-in squares and then convert each

row to its hex equivalent. The pattern numbers start with &H,

then continue with the hex pattern numbers.

The PATTERN command may specify a hex number for a

line or an array for an area. The following short program illus

trates how PATTERN can change from the solid pattern to a

defined pattern. The array needs to be dimensioned before it

is used. The PATTERN statement defines a line pattern, then

the area array. Note that the line pattern also affects the cursor

I—, pattern. If you happen to use zeros in the hex pattern, the

' i cursor may disappear. The LINE commands illustrate the pat

tern in a line and in a filled box. When you use NEW for an

other program, these patterns are no longer in effect.

REM PATTERN

DIM P%(3)

P%(0)=&HF0F0

P°/o(l)=&HA6A6

P%(2)=&H5555

P°/o(3)=&H3333

PATTERN &H5533,P%

LINE (0,90)-(100,90)

LINE (10,100)-(100,150),,BF

END

73

u
Chapter 2

u

PEEK, PEEKL, PEEKW jj

Each of these functions returns a value store at the indicated —'

memory location in the range 0-16777215.

PEEK returns an integer from 0 through 255. 1 \
PEEKL returns a 32-bit value (long-integer word).

PEEKW returns a 16-bit value (short-integer word).

REM PEEK LJ
A$="COMPUTE!"

FOR 1= 0 TO LEN(A$)-1

A=PEEK(SADD(A$)+1)

PRINT A,CHR$(A)

NEXT

END

REM ADDRESS OF EXEC LIBRARY

PEEKL(4)

END

REM PEEKW

A%=25

PRINT PEEKW(VARPTR(A»/o))

END

POINT

POINT (x,y) is a function that returns the color number of a

point designated by the coordinates (x,y) in the current Output

window. A value of — 1 is returned if the point is not in the

window. In the following example program, a rectangle of or

ange is drawn. The first point in question is within the rectan

gle and so returns a color number 3. The second point is not

in the rectangle and returns the background color 0. This func

tion may be used in calculations or in IF-THEN conditions.

REM POINT LJ
LINE (20,20)-(10,150),3,BF

PRINT POINT(30,50)

PRINT POINT (10,180)))
END

POKE, POKEL, POKEW jj

Each of these commands writes a value at the indicated mem

ory location. The format is POKE a,n (POKEL a,n; POKEW a,n)

where a is a memory address in the range of 0 through

16777215, and n is a value. These commands should be used

with care; changing memory can cause your system to crash.

74:

n
BASIC Programming

n

n

POKE writes an integer from 0 through 255.

POKEL writes a 32-bit value (long-integer word).

POKEW writes a 16-bit value (short-integer word).

POS(n)
POSCn) is a function that returns the current cursor column po

sition; n is a dummy variable and may be anything. The first

column is 1. The range of the returned numbers depends on

the WIDTH command for the columns available. CSRLIN re

turns the row position. You may want to check the POS(n) and

use the information in IF-THEN statements or later PRINT

statements. In this sample program, the computer does some

printing, then checks the position of the cursor.

REM POS

FOR J=l TO 20

PRINT TAB(J);STRING$(J,42);

NEXTJ

P=POS(N):C=CSRLIN

PRINT:PRINT "CURSOR ENDED AT";P;C

END

PRESET

PRESET should be thought of as Point-RESET. PRESET (x,y)

resets the point designated by the x and y coordinates to the

background color or erases a point that was previously set or

drawn. Sometimes graphics can be drawn more quickly by fill

ing in a solid area or drawing lines and circles, then resetting

certain points—rather than setting many points.

The following program fills in a rectangle with the BF op

tion of LINE and then resets several points to the background

color. Only a few points are reset, so you will have to look

carefully to see them.

REM PRESET

LINE (10,10M100,100),,BF

PRESET (30,40)

PRESET (80,40)

PRESET (55,55)

PRESET (54,65):PRESET (55,65)

PRESET (56,65):PRESET (55,66)

END

75

Chapter 2

u

PRINT and PRINT USING jj

PRINT is the command to display something on the screen in

text. The computer can do many operations, but you can't ac

tually see them until something is output to the screen with a t j

command such as PRINT. There are many forms that may be

used in printing, and constants or variables may be printed.

LPRINT will print to the printer, and PRINT USING for- |^J

mats printing.

PRINT separators are the comma and the semicolon. The

sample program illustrates the use of both of these.

To print a string, enclose it in double quotation marks.

The sample program illustrates printing of variables with sepa

rators, plus the TAB and SPC functions. PRINT statements are

used in many of the other sample programs.

REM PRINT

A=3:B=-5

A$=//GRANT//:B$=//CHRISTINE//

PRINT A

PRINT A$;" ";B$

PRINT A$,B$

PRINT "12345678901234567890"

PRINT TAB(5);"FIVE";TAB(12);B

PRINT TAB(2)A$SPC(6)B$

END

See also SPC and TAB.

PRINT USING "f";list prints an item or list according to a

specified format "/." Different formats are available for num

bers and strings. In numeric output, the # sign indicates place

ment of a digit. Numbers are right-justified and rounded

rather than truncated. Combinations of these formats may be \ i

used, and you may add other characters to be printed within <—'

the quotes.

####.# Prints numbers rounding to one decimal place. I I

$$##.## Prints a dollar sign; two decimal places. l—'
Prints an integer.

**### Prints leading asterisks to fill the field. « j

###— Prints trailing minus sign on negative numbers. 1 I

+### Prints leading plus or minus sign.

#####,.# Inserts commas every third place.

REM PRINT USING >—>
A=123.432:B=-3.5:C=2:D=25.78

PRINT USING "###";A , .

76 U

H
BASIC Programming

PRINT USING "###";B

PRINT USING "###";C

PRINT USING "###";D

PRINT USING " $$###.##";A,B,C

PRINT USING "###-";A,B,C,D

PRINT USING "**####.#";A

PRINT USING "**####.#";B

PRINT USING "**####.#";C

PRINT USING "**####.#";D

END

PRINT USING can help make formatting printed strings

much easier. Strings are left-justified. An exclamation point (!)

indicates to use the first character of the string. The am

persand (&) indicates to print the complete string (no matter

what length). To indicate characters for other lengths, use two

back slashes (\ \). For 2 characters, use two back slashes, but

for more characters, use spaces between the back slashes. The

total length is two for the back slashes plus the number of

spaces between. The sample program first uses 3 characters

with " \ \", then 11 characters in the format.

REM PRINT3

N$(1)="KELLY":N$(2)="JENNIE"

N$(3)="ANGIE":N$(4)="BRIAN"

N$(5)="LAURIE"

FOR N=l TO 5

PRINT USING "!";N$(N)

NEXTN

FOR N=l TO 5

PRINT USING " \ \";N$(N)

NEXTN

FOR N=l TO 5

PRINT USING " \ \";N$(N)

NEXTN

PRINT USING "THE INITIAL IS !";N$(2)

END

PRINT#

PRINT* is described in a separate section entitled "File

Processing," following the dictionary of Amiga words.

PSET

PSET (x,y),c sets (turns on) a point with coordinates (x,y) and

color c. PSET can be used for drawing detailed graphics using

specified points. If no color is specified, the default is color 1,

77

u
Chapter 2

u

which is white. Keep in mind that LINE and CIRCLE are a \ j

quicker way to set points in a certain pattern. (—'

REM PSET

FOR J=10 TO 100 STEP 10 j (
FOR K=10 TO 30 STEP 10 {—'
PSET (J/K)

NEXT K) >

NEXT J t_J
PSET (50,40),2

PSET (50,50),3

END

PTAB

PTAR(n) moves the print cursor to pixel n. Similar to TAB ex

cept that PTAB uses pixel positions, n can be any number

from 0 through 32767.

PUT

PUT is used with GET to PUT a rectangle of graphics in a dif

ferent place on the screen. This is handy to move an object.

GET gets a rectangle of information or a picture from a speci

fied area, then PUT places that rectangle back on the screen in

a different place (the original stays there unless erased).

You need to use a DIMension statement to reserve an ar

ray large enough to keep track of the information in the

rectangle you will be moving. GET is of the form

GET (xl,yl)-(x2,y2),A

where (xl,yl) are the coordinates of the upper left corner of the

desired rectangle and (x2,y2) are the coordinates of the lower

right corner. A is the array name given to this rectangle. The

rectangle needs to be large enough to enclose the drawing you }_J
want to move.

PUT specifies the coordinates of the upper left corner

where you want to put the array A. The form is j '

PUT (x,y),A

The following program illustrates the use of GET and j /

PUT. The second line DIMensions the array D which will be ^—1
used to contain the rectangle of information. The next line

draws an ellipse, and the LINE command draws a filled box. | (

Of course, you can use a more complex drawing. GET gets a '—r

78 LJ

H
BASIC Programming

n

p~] rectangle array D, then PUT copies that rectangle to an area

with the upper left corner at (120,80).

^ REM PUT

PI DIM D(100)
CIRCLE (20/20)/12/3///1.2

LINE (15,15)-(25,25),,BF

pi GET (10,5H30,35),D

1 > PUT (120,80,0
END

To move an object on the screen (such as an icon in your

own program), you can use a combination of the MOUSE

functions and the GET and PUT commands. The following

short program illustrates one way this can be done. A simple

picture is drawn on the screen in the upper left corner. GET

stores the information in the array D. The line labeled M:

checks to see whether the left mouse button has been pressed.

If not, the program stays at that line. When the button is

pressed, the current x and y position is checked with

MOUSE(l) and MOUSE(2). If it is different from the previous

position by two pixels, PUT redraws the picture with PUT,

and X and Y are reinitialized.

REM PUT2

DEFINT D,X,Y

DIM D(IOOO)

LINE (0,0)-(50,50),,BF

CIRCLE (25,25),20,3//,1.5

CIRCLE (25,25),20,2,,,.3

GET (0,0)-(50,50),D

REM CHECK MOUSE

M:

^ IF MOUSE(0)=0 THEN M

) i IF ABS(X-MOUSE(1))>2 THEN P

IF ABS(Y-MOUSE(2))<3 THEN M

P:

fl PUT(X,Y),D
X=MOUSE(l):Y=MOUSE(2)

PUT(X,Y),D

f—| GOTO M

'■ END

RANDOMIZE

RANDOMIZE will vary the "seed" used to choose random

numbers. RND is the function used for random numbers, but

Chapter 2

u

if you use RND in a program and repeatedly run it, you will j 1

notice that the numbers are the same each time. To get a true '—'
mix of random numbers, use RANDOMIZE. The RANDOMIZE

command needs to come before the statement using RND. j \

If you use just the command RANDOMIZE by itself, the <—l

computer will stop and ask the user to input a number. If the

number input is the same each time, the sequence will be the ^ ?

same; if the number input is different, the sequence is (—!

different.

RANDOMIZE n with a number specified uses the number

n as a seed. Again, if n changes, the random numbers will

change. To get random numbers each time the program is run

without having to input a number or to change the n in the

RANDOMIZE n statement, you can use RANDOMIZE TIMER

because TIMER is a different number each time (depending on

the time elapsed on the computer).

REM RANDOMIZE

RANDOMIZE TIMER

FOR D=l TO 5

PRINT INT(6*RND)+1

NEXTD

END

See also RND.

READ

READ is used in combination with DATA statements to assign

constants to variables, either string or numeric. READ vl will

read the first available data item and assign that value to the

variable vl. The assignments start with the first item in the

first DATA statement. The computer keeps track of a pointer

that indicates which data item will be the next one when an- \ (

other READ is encountered. You may specify any number of (—'
variables in the READ statement. The variables in one state

ment may include strings, numbers, or a combination, but the \ j

data items must match. l—'

READ will read through the data list item by item in the

order they appear in the program unless a RESTORE state- j \

ment is encountered, in which case data is restored and can be ^—)

used over again, or data may start with a specified line.

For every READ item there must be a corresponding j >

DATA item. Extra data items will be ignored. Although data '—'
items have been read and assigned, you will not notice any-

80 t-J

n
BASIC Programming

I i

?**! thing unless something is output to the screen using those

variables. Here are some example statements:

READ X,Y,Z

j! READ T
READ N(J)

READ A$,A,B$

I \ Sample program:

REM READ

FOR J=l TO 8

READ N(J)

PRINT N(P*2

NEXT J

DATA 5,8,-2,0,1,3,25,13

END

See also DATA and RESTORE.

REM

A REMark statement is a comment that is ignored by the com

puter. REM statements may be used to document your pro

gram or to provide explanations to someone who might look

at your listing. While a program is running, you will not notice

the execution of a REM statement. The first lines of all the

sample programs in this chapter are REM statements indicat

ing the title or the BASIC word illustrated. An apostrophe (')

can also be used in place of REM.

REM TITLE

'THIS WILL BE IGNORED

REM Other characters are allowed &*A%

RESTORE

P] RESTORE is used in conjunction with READ and DATA state
ments, which assign constants to variables. Ordinarily, the

READ statements read the data items in exact order, starting

j7"| from the beginning of the program. The computer keeps track
of which data item has been read and sets a pointer. The next

READ statement uses the next data item, no matter where the

[j DATA statements are placed in the program. RESTORE re
stores the pointer to the first data item in the first DATA state-

ment for the very next READ statement, even if the data items

jj had not been read. RESTORE line restores the data starting
with the specified line (use either a line number or a line la

bel). RESTORE or RESTORE line always restores for the very

n

Chapter 2

u

next READ statement even though there may be in-between j "I

statements. Valid statements are '—'

RESTORE

RESTORE 450 I I

RESTORE IDAHO L~i

In this sample program RESTORE 4 starts the data over

with line 4 for the next READ statement. RESTORE starts the |_J
data over from the beginning for the next READ statement.

REM RESTORE

FOR J=l TO 5

READ N(J):PRINT N(J)

NEXTJ

READ A,B,C:PRINT A,B,C

RESTORE 4

PRINT

FOR J=l TO 6

READ X(J):PRINT X(J)

NEXTJ

RESTORE:PRINT

FOR J=l TO 8

READ X(J):PRINT X(J)

NEXTJ

DATA 3,8,7,9,0,6

4 DATA 7,8,2,9,1

DATA 5,1,2,4,7,9,7

END

RESUME

RESUME line is used to return to a specified line after an ON

ERROR GOSUB or ON ERROR GOTO statement has sent

control to the error-handling routine. It indicates to resume er

ror checking and normal program execution. You need to \ j

make sure the computer does not go to the RESUME state- '—'

ment before first registering an error.

See ERROR for a sample program. 1 J

RETURN

RETURN is used to transfer program control back to the main

program flow from a subroutine. RETURN leaves the sub

routine and returns to the program to the statement just after

the related GOSUB or ON-GOSUB statement. You need to be

careful that the computer does not encounter a RETURN state

ment without first executing a GOSUB statement or you will

82

n
BASIC Programming

I \ get an error message. A subroutine may contain more than

one RETURN statement if there are different exit points. A

RETURN statement may end subroutines entered at different

P"! lines.
See also GOSUB and ON-GOSUB for sample programs.

r^ REM RETURN

1 \ GOSUB SAMPLE

PRINT "DONE"

GOTO 9

SAMPLE:

PRINT "SUBROUTINE"

RETURN

9 END

RIGHTS

RIGHT$(s,n) is a string function that returns the last (or right)

n characters in string s; n must be a number zero or greater. If

the number n is greater than the length of the string s, only

the original string is returned (no added spaces).

REM RIGHT$

A$="SAMPLE OF RIGHT$"

PRINT A$:PRINT

PRINT "RIGHT$(A$,)","STRING"

PRINT

PRINT TAB(9);4,RIGHT$(A$,4)
PRINT TAB(9);12/RIGHT$(A$,12)

PRINT TAB(9);0,RIGHT$(A$/0)

PRINT TAB(9);20,RIGHT$(A$,20)

X=8

PRINT TAB(10)"X",RIGHT$(A$,X)

END

** END
RND returns a random number which is a decimal fraction

r*1 from 0 through 1. RNDfn), where n is any positive number,

* will give a random sequence of different numbers.

RND(tt) where n is zero or negative will return the same

r-i number as the last random number chosen.

' RND used without a number is the same as using a pos
itive number.

7"*! Since RND returns a fraction and most uses are for whole

' ' numbers, you can use INT to get a random integer. The frac
tion first needs to be multiplied by a factor to get a number

n 83

u
Chapter 2

u

greater than 1. For example, for random numbers less than 10,) (

use INT(10*RND). Notice that this will yield numbers from 0 —'
through 9. If you prefer numbers from 1 through 10, use

INT(10*RND)+ l. In general, for a range of random numbers \ |

between A and B, use INT((B-A+1)*RND)+A. ^
In the following sample program, the first eight numbers

are the same each time the program is run. RND is used alone } I

to show the fractions chosen. RND(O) repeats the last chosen '—
random number. RANDOMIZE TIMER will change the seed

each time, so a different sequence of random numbers is used

each time the program is run. The next loop of random num

bers chosen are integers from 0 through 9. The last loop

chooses random numbers from 1 through 6.

REM RND

FOR J=l TO 8

PRINT RND

NEXTJ

PRINT RND(O)

RANDOMIZE TIMER

PRINT

FOR J=l TO 8

PRINT INT(10*RND)

NEXTJ

PRINT

FOR J=l TO 5

PRINT INT(6»RND)+1;

NEXTJ

END

RSET

RSET is described in a separate section entitled "File Process

ing," following the dictionary of Amiga words. \ i

RUN

RUN is the command to start running a program or executing j j

a program from the beginning. RUN line will start execution at <—'

the specified line number. A line label is not allowed in the

RUN statement. RUN filename will load a program from the ; \
disk and start running it. i I

RUN

RUN 450]

RUN "DF0:ALGEBRA" LJ

84 U

n
BASIC Programming

rl SADD
SADDfsj, where s is a string, will return the address of the first

^ byte of that string.

I t REM SADD
A$="This is a string"

B=SADD(A$)

\\ PRINT B

PRINT CHR$(PEEK(B))

END

See PEEK for another sample program.

SAVE

SAVE is the command to save a program currently in memory

onto a disk. If you type SAVE without a program name, the

computer will show a dialog box and ask you to name the

program. That name then appears on the window and later

SAVE commands will not need the title. To save to a different

disk, you will need the "DFO:" label.

SAVE "DICE"

SAVE

SAVE "DF0:COUNTING"

SAY

SAY s[,a] is used to say a string. You may specify an array a

that sets the attributes of the speech. SAY may also be used

with the TRANSLATES option. The Workbench disk and a lot

of memory are required to use speech. Once the conditions of

speech are defined, you can type something for the computer

to say. With SAY TRANSLATES you may use a string in

f6—) quotation marks within parentheses, or you may use a string

; ' variable. Another way to get the computer to speak is to use
the SAY command using phonemes. A description of pho-

p-j nemes is given in the Amiga BASIC manual. Several of the

(-J vowel sounds use different spellings, so you will need to keep
the chart handy. The phonemes must be available as shown

p-j on the chart or there will be an error message.

To set up the speech conditions array, you can read in

parameters from a DATA statement or define each element.

J—I The parameters in order are as follows:

-1 pitch—expressed in hertz, is a number between 65 and
320. The default is 110, which is a male speaking voice.

n
85

u
Chapter 2

u

inflection—0 for using inflections and emphasizing sylla- j {

bles, or 1 for a robotlike monotone. The default is 0.

rate—a number between 40 and 400 words per minute.

The default is 150. I |

voice—0 for male; 1 for female. Default is 0. ' i
tuning number—the sampling frequency in hertz, which

may range from a low of 5000 to a high of 28000. The default) I

is 22200. L-
volume—a number from 0 for no sound through 64 as

the loudest.

channel—combination of left and right channels and is a

value from 0 through 11.

mode—0 for synchronous speech output or 1 for

asynchronous.

control—used when the mode is 1; it may be 0 for saying

one statement, then the next, 1 for canceling the previous

statement, and 2 for immediately interrupting the first state

ment and executing the second one.

A sample program segment to define the speech array

(which must be integer) is to use data:

FOR T=0 TO 8

READ S%(T)

NEXTT

DATA 110,0,150,0,22200,64,1,0,0

Using the above lines to set up the array, add these lines

for one method of speech:

SAY TRANSLATE$("HELLO"),S%

M$="THIS IS A TEST/'

SAY TRANSLATE$(M$),S%

Or you might use the same definition lines above and use < >

the following for the method using phonemes. You may rec- L~>
ognize this speech as counting in French.

TEXT$="AHN DUH TWAA KAETR SEYNK j (

SIYS SEHT WIYT NAHF DIYS" t_J

SAY TEXT$,S%

END 1 I

SCREEN

SCREEN id,w,h,d,m defines a new screen with the specified id t ,

number. The width and height and depth are specified as the i—I
next three parameters, and m is the mode. The depth deter

mines the number of colors it can hold, and the mode is the * ,

J

n
BASIC Programming

n

r*-j screen resolution. SCREEN CLOSE id closes the specified

'-—* screen.

The depth is a number from 1 through 5. Two to the

<—»| "depth" power will be the number of colors available. A depth

'- ' of 1 has two colors, 2 has 4 colors, 3 has 8 colors, 4 has 16
colors, and 5 has 32 colors. The screen width and height are

<—| expressed in pixels. The mode number determines low or high

1 ' resolution, which is the width in pixels of 320 for low or 640
for high. It also determines whether the screen is interlaced or

not, which is the number of horizontal lines appearing on the

screen. The modes are

1 Low resolution, noninterlaced

2 High resolution, noninterlaced

3 Low resolution, interlaced

4 High resolution, interlaced

The screen id number is the same id number used as the

last parameter in a WINDOW definition.

SCREEN 2,320,200,3,1

WINDOW 2,"Fun",(10,10)-(100,50),15,2

SCROLL

Scrolls a specified area of the Output window. SCROLL

(x,y)-(xx,yy),nl,n2, where (xfy)-(xxfyy) define a rectangle, and nl

indicates the number of pixels right, and nl the number of

pixels down, to scroll the defined area.

REM SCROLL

CLS

PRINT "SCROLL THIS"

FOR DELAY=1 TO 700:NEXT

SCROLL(0,0)-(190,190),50,50

r~7 END
I _ I

SGN(n)
r-j SGN(n) is a function that returns the sign of the numeric ex-

LJ pression n. The expression is first evaluated. If the number
evaluated is positive, SGN(n) will be 1. If the number is neg-

r—i ative, SGNfrz) will be — 1. If the number is zero, SGNOt) will
L. i be 0. This function is handy in determining relative positions,

for example, in a game, or in determining direction from one

^—j position to another.

■--v PRINT SGN(-3)

PRINT SGN(0)

r—> PRINT SGN(55.67)

1 (87

u
Chapter 2

LJ

SHARED i ;

SHARED is described in a separate section entitled "Sub- '—'
programs," following the dictionary of Amiga words.

SINfn) is a function that returns the sine of the angle of n radi

ans. The following program graphs the sine function. j /

REM SIN ^
LINE (0,100)-(640,100)

FOR X=0 TO 32 STEP .1

Y=100-(40*SIN(X))

LINE (X*20,Y)-(X*20,100)

NEXTX

END

SLEEP

The SLEEP command causes BASIC to wait for an event such

as a keypress, button press, collision, or menu selection.

REM SLEEP

ON MOUSE GOSUB CHECKBUTTON

MOUSE ON

DONE=1

WHILE DONE=1

PRINT "SLEEPING"

SLEEP

WEND

PRINT "THANKS"

STOP

CHECKBUTTON:

IF MOUSE(0)<>0 THEN DONE=0

RETURN

END . ,

u
SOUND

SOUND f,d[,v][,c] is the basic command to produce a musical , ,

tone; / is a frequency (pitch), d is duration, v is volume, and c

is the audio channel from 0 through 3. The frequency is a

number for the standard cycles per second (hertz) for a tone,

such as 440 for A. The duration is a number for the length of

time you want a tone to play. The volume may be a number

from 0 through 255, where 255 is the loudest. The default K

value is 127. \ [
I generally like to use a variable for the duration, then set

1 i

88

BASIC Programming

up notes in terms of that variable. For example, if T is a quar

ter note, T/2 is an eighth note and 2*T is a half note. Here is

a sample program first playing notes without the volume

parameter, then different volumes.

REM SOUND

T=10

f~7 SOUND 262,T

' ^ SOUND 330,T/2
SOUND 392,T/2

SOUND 523,2*T

SOUND 262,T,80

SOUND 330,T,240

SOUND 392,T,100

SOUND 330,T,180

SOUND 262,2*T,120

END

To hear more than one voice, you need to specify the

channel number. Also, since it can take quite a bit of typing to

list each SOUND command, try putting the frequencies in

DATA statements. First, a duration is read that is a factor mul

tiplied by the time variable. S is the channel number. Here's

just the beginning of a tune.

REM SOUND2

T=4

AGAIN:

READ D:IF D=0 THEN GOTO FINISHED

FOR S=0 TO 3

READ F

SOUND F,D*T,150-S*20,S

NEXTS

GOTO AGAIN

,—, DATA 2,466,392,311,156

! ! DATA 2,622,392,311,233

DATA 2,622,466,392,196

DATA 2,784,466,392,196

J""! DATA 0
FINISHED:END

r-j SPACE$

SPACE$(n) is a string function that yields n number of spaces

for use in combination with other strings. For example,

f-j SPACE$(3) is " ".

PRINT "HELLO"+SPACE$(5)+N$

89

Chapter 2

LI

SPC(n) j j
SPC(n) is used in a PRINT statement to print n number of *—^

spaces between items.

REM SPC

PRINT "12345678901234567890"

PRINT "ONE";SPC(5);"TWO"

PRINT "THREE"SPC(8)"FOUR"

END

SQR(n)
SQR(n) is a numeric function which returns the square root of

a numeric expression n, where n is zero or positive. The

square root means that a number multiplied by itself will re

sult in the number n.

PRINT SQR(144)

IF SQR(X)>Y THEN 20

PRINT SQR(X*X+Y*Y)

STEP

STEP is an optional word in FOR-NEXT loops. STEP s in

dicates the increment size for the loop index; s may be pos

itive, negative, or a fraction. The default value for the step size

is +1. In the statement

FOR C=L1 TO L2 STEP S

the index, or counter, C will start at LI to perform the loop.

When the word NEXT is executed, C is incremented by S (or

decremented if S is negative). If the new C is greater than L2

(less than L2 if S is negative), program control goes to the

statement immediately after NEXT; otherwise, the loop is per

formed again, starting at the statement after FOR (see also

FOR). Several of the sample programs use FOR-NEXT loops j [

with STEP specified. Valid statements are

FOR C=l TO 10 STEP 3 {

FOR J=2 TO 12 STEP 2 M
FOR K=25 TO 21 STEP -1

FOR L=10 TO 20 STEP .5

FOR C=A TO B STEP S jj

STICK and STRIG

STICKfn) returns a value of 1 if the joystick is pushed down or

to the right, — 1 if pushed up or to the left, and 0 at all other

times. The value of n indicates which joystick and direction:

90

n
BASIC Programming

rn
i t

n

H

n

STICK(O) Reports joystick A horizontal movement.

STICK(l) Reports joystick A vertical movement.

STICK(2) Reports joystick B horizontal movement.

STICK(3) Reports joystick B vertical movement.

To check the status of the button use STRIGfa):

STRIG(O) Reads status of button

has been pressed since

wise returns 0.

STRIG(l) Reads status of button

is being pressed while

wise returns 0.

STRIG(2) Reads status of button

has been pressed since

wise returns 0.

STRIG(3) Reads status of button

is being pressed while

wise returns 0.

on joystick A. Returns 1 if button

last execution of STRIG(O); other-

on joystick A. Returns 1 if button

STRIG(l) is being executed; other-

on joystick B. .Returns 1 if button

last execution of STRIG(2); other-

on joystick B. Returns 1 if button

STRIG(3) is being executed; other-

REM JOYSTICK

FOR 1=0 to 10

READ V$(I)

NEXT

WHILE STRIG(2)=0

A=STICK(2):B=STICK(3)

PRINT V$(A*2+B*3+5)

WEND

DATA NW,,N,W,NE,,SW,E,S,,SE

END

STOP

STOP is a command that will stop the program from executing

any more statements. This command is equivalent to pressing

CTRL-C or choosing Stop from the Run menu. A program that

is STOPped can usually be CONTinued. A program stopped

with END cannot be CONTinued.

STR$

STR$(n) is a string function that converts a numeric expression

n from a number to a string for use in combinations with

other strings or to use with other string functions.

PRINT STR$(23.5)

PRINT RIGHT$(STR$(N),2)

N$=STR$(N)

n
91

Chapter 2

LJ

STRINGS f i

STRING$(n,c) returns a string of n number of characters with *—'
the ASCII code c or specified as a single character in quotation

marks. If you need to print a long string of characters, this i i

method is easier to type. {—'

REM STRINGS

PRINT STRING$(25/'R") '! >

PRINT STRING$(15,49) L-J
FOR S=l TO 10

PRINT STRING$(S/42)

NEXTS

END

SUB

SUB is described in a separate section entitled "Subprograms,"

following the dictionary of Amiga words.

SWAP

SWAP vl,v2 will exchange the values of two variables, vl and

v2. Any type variable may be changed—integer, single-precision,

double-precision, string—but both variables must be the same

type. Example statements are

SWAP A$,B$

IF A(N)<A(N+1) THEN SWAP A(N),A(N+1)

SYSTEM

The command SYSTEM will cause the computer to exit BASIC

and return to the Workbench screen with the window showing

the contents of the disk you used to load BASIC. To get back

into BASIC, you would have to load BASIC again.

TAB LJ
TAB(tt) is a function that is similar to the tabulator key on a

typewriter. TAB(n) is used in a PRINT statement to move to a « \

specified column n before printing begins. The columns are u_j
numbered starting with 1. Keep in mind that numbers allow

one space for the sign, so positive numbers will actually be | >

printed in the next column. The semicolon after the right Uii
parenthesis is optional. You may specify more than one TAB in

a PRINT statement. i j

REM TAB ^
PRINT "12345678901234567890"

u

H
BASIC Programming

/ i

PRINT TAB(5);"FIVE"

N$="BRETT":X=7:Y=-4

PRINT TAB(15);X

PRINT TAB(15);Y

PRINT TAB(8)N$

END

n

n

TAN (n)
TANOz) is a numeric function that returns the tangent of the

angle n, where n is expressed in radians. Keep in mind that

TAN can be undefined at certain points or can return very

large or very small numbers.

PRINT TANC78)

X=TAN(THETA)

THEN

THEN is a word in the IF-THEN conditional branching state

ment. It can be followed by an action or a line number or line

label. IF the test condition is true, the action following THEN

will be executed. If a line number is listed, program control

will go to that line. The IF statement can also contain the

word ELSE after THEN. Several of the sample programs use

IF-THEN conditional statements.

IF A THEN B=0

IF X*Y>100 THEN PRINT "LARGE"

IF X=Y THEN 30

IF SC=10 THEN GOTO WIN

See also IF.

TIMES

TIME$ returns the current time in a string in the form

hh:mm:ss.

PRINT TIME$

TIMER

TIMER is a number representing time elapsed since the com-

_* puter was turned on. The difference between two TIMER val-

! I ues can be used in a program to designate time. The time is in
seconds. Following is a short program that illustrates the use

nof TIMER. The program will time how long it takes you to

type in a message. Line 50 will BEEP to signal the start of the

timing. Line 60 sets the variable Tl to TIMER. Line 70 is IN-

f| \ 93

Chapter 2

u

PUT to receive your typing. When you press RETURN, line 80 i j

sets the variable T2 to the new value of TIMER. Line 100 <—>

prints the length of time, which is the difference between T2

and Tl.

10 REM TIMER

20 PRINT "TYPE IN A MESSAGE THEN PRESS RETURN/'

30 PRINT "START AT THE TONE/' \ j

40 FOR DELAY=1 TO 2000:NEXT DELAY <—!
50 BEEP

60 Tl=TIMER

70 INPUT MSG$

80 T2=TIMER

90 PRINT:PRINT

100 PRINT "THE TIME WAS";T2-T1;"SECONDS."

110 END

See ON TIMER.

TO

TO is a word used in the FOR statement. FOR c=a TO b,

where c is a counter and a and b are limits, is the first state

ment of a FOR-NEXT loop.

See also FOR.

TRANSLATES

See SAY.

TRON and TROFP

TRON will trace each statement of a program as it is executed.

TROFF turns off the trace. This is an excellent debugging tool.

UBOUND

UBOUND is described in a separate section entitled "File] j

Processing/' following the dictionary of Amiga words. '

UCASE$ J j

UCASE$fe) is a string function used to convert a string to ^
uppercase. It is handy in programs where you can convert in

put strings to uppercase for testing correct answers. The input \ j

string can be in either uppercase or lowercase and UCASE$ ^
will convert it to all uppercase.

REM UCASE$ j I
INPUT "ENTER A WORD ",W$ w<
W$=UCASE$(W$)

94

H
BASIC Programming

PRINT W$

END

VAL

VAL return a value of a string. This is the inverse of STR$.

REM VAL

Vl$="l"

V2$="2"

PRINT V1$,V2$

VI=VAL(V1$):V2=VAL(V2$)

PRINT VI,V2

PRINT V1+V2

END

See also STR$.

VARPTR

VARTR reports the address of the first byte of a variable.

REM VARPTR

A%=100

B=VARPTR(A%)

PRINT B,PEEKW(B)

END

See also PEEK and SADD.

WAVE

WAVE c,a is a command that defines a sound wave pattern for

channel c with an array a. The default value is the sine wave,

or WAVE 0,SIN, which indicates a pure tone. To make the

tone sound different and perhaps get "noises" instead or

sounds of different instruments, you can change the wave. The

channel number c may be from 0 through 3. The array is an

integer array of 256 numbers (elements 0-255). You will need

a DIMension statement near the beginning of the program to

reserve space. For example, if we call our array W, we can use

DEFINT W

DIM W(255)

Now you can put different numbers into the W array. For

example,

FOR C=0 TO 255:W(C)=INT(80*RND):NEXT C

or you may make calculations (perhaps a trigonometric func

tion) for each value of W(C), or you may read values from

95

u
Chapter 2

u

DATA. Now use the WAVE command to set the waveform for (|

a particular channel: ' '

WAVE 0,W

WAVE 1,W 1_J

You may want to set each channel to a different array.

Next, use the SOUND command to hear how your wave (

values affected the sound. ' \

SOUND 440,20,128,0

REM WAVE

DEFINT W

DIM W(255)

WAVE 0,SIN

SOUND 440,20,128,0

RANDOMIZE TIMER

FOR C=0 TO 255

W(C)=INT(80*RND)

NEXTC

WAVE 0,W

SOUND 440,20,128,0

END

WHILE and WEND

WHILE and WEND form a loop that executes WHILE a certain

condition is true. WEND is the last statement of the loop.

REM WHILE

X=0:Y=0:X2=0:Y2=199

WHILE Y<199

LINE (X,Y)-(X2,Y2)

Y=Y+3:X2=X2+10

WEND

X=0:Y=0:X2=600:Y2=0 , ,

WHILE Y2<199 LJ
LINE (X,Y)-(X2,Y2)

X=X+10:Y2=Y2+3

WEND M
END

WIDTH jj
WIDTH n designates how many columns may be printed on

the Output screen. You can use WIDTH to format printing or

to keep printing within certain columns to remain visible. I (
WIDTH does not change the size of the printing. You can add

spaces to avoid splitting words inappropriately.

96

n

n

BASIC Programming

I~l REM WIDTH

1 WIDTH 15
PRINT "TRY PRINTING THIS SENTENCE WITH 15

COLUMNS/'

WIDTH 25

PRINT "NOW TRY THIS SENTENCE TO SEE HOW IT DOES/'

END

WINDOW

WINDOW is the command to allow you to define your own

windows. The basic command is WINDOW id, where id is the

identification number. The Output window that appears while

you are in BASIC is window 1, so for your own windows you

should specify a number greater than 1.

You may add more information about the window. In or

der, the window may have a title expressed in quotation

marks, size with (xl,yl) and (x2,y2) coordinates, a type which

sets up how much the user can do with the window, and a

screen ID which can be a value from 1 through 4. When you

use the WINDOW statement, a new Output window is created

and displayed and brought to the front of the screen. NEW

gets rid of the windows you created.

The title will appear in the top bar of the window and is a

string expression. The type is a number from 0 through 31:

1 Sizing gadget appears in the lower right side of the window to

permit changing the window size.

2 Title bar can be used to move the window.

4 The window can be moved in relation to other windows, front

and back, and that gadget appears in the upper right corner.

8 Close gadget allows the closing of the window.

16 Allows you to cover the window with another window without

j~"l losing the contents.

To specify the type, add together two or more of these

values.

M, WINDOW CLOSE id is the command to make a window

invisible.

WINDOW OUTPUT id names the window for current

j[output without moving the window to the front—direct output
can go to a window that is behind another.

The following program illustrates some of the options

)] available in the WINDOW command. It sets up three win
dows, then puts something in each window. Notice that the

types are different, so different gadgets are in the corners.

H

u
Chapter 2

u

REM WINDOWS

WINDOW 2,"Printing",<10,10)-(250,50),14

WINDOW 3,"Lines",(265,15)-(500,65),7

WINDOW 4,"Circles",(15,65)-(300,180),6 , .

WINDOW 2 LJ
COLOR 3,2:LOCATE 3,5

PRINT "This is Window 2" { ,

WINDOW 3 M
X2=10

AGAIN:

LINE(0,0)-(X2,100)

X2=X2+10

IF X2<400 THEN GOTO AGAIN

WINDOW 4

X=15:Y=10

FOR 1=1 TO 9

CIRCLE (X,Y),20

X=X+20:Y=Y+10

NEXT I

END

WRITE

WRITE outputs data to the screen. WRITE alone leaves a

blank line. WRITE is similar to PRINT (see PRINT), but

WRITE separates items in a list by a comma. Also, WRITE

puts quotation marks around strings. A positive number is not

printed with a space before it.

REM WRITE

WRITE "HELLO"

X=5:Y=-7

WRITE X,Y

N$="REGENA"

WRITE N$ f I
END uJ

XOR i I

XOR is a logical operator name for exclusive OR. If there are W

two conditions A and B, A XOR B will return a true if only

one of the conditions is true. OR returns a true if one con- ([

dition is true or the other condition is true or both conditions *—'

are true.

See also OR and IF. s I

IF A=B XOR B=C THEN PRINT "OK" *-J
IF N$="BOB" XOR SCORE=10 THEN GOTO WIN

u

n
BASIC Programming

p] Subprograms
Amiga BASIC has the capability of using subprograms. Sub-

programs are similar to subroutines contained within pro-

j] grams, but use variables that are separate (local) from those in
the main program. Subprograms may be appended to a regu

lar program and often may be routines that you want to add

r"J or merge with others without rewriting for compatibility each
time.

To use a subprogram, you CALL it from the main pro

gram and pass variables in the argument. Here is a very simple

example of a subprogram to illustrate the commands involved.

The subprogram starts with the word SUB and has a title with

the passed variables listed in parentheses. It ends with END

SUB.

REM SUB

A=5:B=6

CALL MULTIPLY (A,B)

PRINT "BACK TO MAIN"

END

SUB MULTIPLY (X,Y) STATIC

PRINT Z

END SUB

The subprogram is called MULTIPLY and uses the vari

ables X and Y. It prints the product, then has END SUB to re

turn it to the main program. STATIC indicates that values of

the variables will remain the same—they cannot be changed

by actions outside the subroutine.

The main program assigns values to variables called A

_ and B; it then calls the subroutine using the names for the

; variables in order A and B which will correspond to X and Y.

When the subprogram has been executed and returns to the

_ main program, the message BACK TO MAIN is printed and

! I the program ends.
In a statement in the subprogram you may also specify

SHARED with a list of variables specifically declared to be

; \ SHARED—altered by parts of the program outside the sub

program. If you use a SHARED statement, the variables do

not need to be listed in the subprogram name:

SUB MULTIPLY STATIC

SHARED A,B

99

u
Chapter 2

u

Arrays may be used in the arguments for subprograms. j I

They are indicated with parentheses, such as R(). You may in

clude a number within the parentheses which would indicate

the number of dimensions in the array, such as D(3) for a j j

three-dimensional array. It does not indicate the number of *—

elements in the array.

You may need the EXIT SUB command to leave the sub- j /

program, but not at the last statement of the subprogram

which is END SUB. For example, an IF-THEN condition could

exit the subprogram with EXIT SUB.

LBOUND and UBOUND are functions that are especially

useful in subprograms. They return the lower bound (0 or 1)

and upper bound of a specified dimension of an array. For a

one-dimensional array, you may specify the array name. For

an array with more dimensions, you also need to specify the

dimension you need. A general subprogram can be written,

then LBOUND and UBOUND used as the specific limits for a

particular program. For example, suppose you have arrays A

and B, where A has one dimension and B has three, and you

need to call a subprogram.

CALL SPECIAL (A(),B())

SUB SPECIAL (X(),Y()) STATIC

FOR J=LBOUND(X) TO UBOUND(X)

FOR K=LBOUND(Y,2) TO UBOUND(Y,2)

The last loop varies K from the lower bound of the second

dimension of the array Y to the upper bound.

File Processing ,
File processing concerns using other devices within the pro- \ j
gram. Often such input and output is abbreviated I/O. For

examples in this chapter, we'll use the disk drive for input and

output. Other devices, however, are available for other pur- \^j
poses—SCRN: is the screen (current Output window) for out

put, KYBD: is the keyboard for input, LPT1: is the line printer

for output, and COM1: is the communications (serial) port for (J
input or output.

In the syntax for the following commands, / is a file num

ber, which may be from 1 through 255; fname is a filename or

specification which may be up to 255 alphanumeric characters,

100

n
BASIC Programming

n

""""I but not a BASIC reserved word. The filename may be a vari-

~~ able string. The filename may include the path or the volume

name, such as "DFO:BasicDemos/music" or "BOOK:NOTES".

P"| vlist is the list of expressions or variables that will be input or

- output.

In working with program files (or simply programs), the

j"~j most common commands are SAVE and LOAD. The general

format for SAVE is

SAVE fname

but you may also include ,A for saving in ASCII format

and/or ,P for saving in protected format (you won't be able to

list or copy the program). For example,

SAVE "DFO:ALGEBRA",P

SAVE "UTILITIES:SORT1",A

If you're working on a program and save every so often,

you may use just the command SAVE. The dialog box will ask

if you want to save the program with the same name, and you

may choose to do so (or rename the program as something else).

To bring a new program into memory, use the command

LOAD with a filename in quotation marks. You may also keep

the current program and merge it with a previously saved pro

gram with the MERGE fname command. A program loaded in

with MERGE must have previously been saved with the ASCII

format.

Within a program you can chain programs with the

commands

CHAIN fname

CHAIN MERGE fname

CHAIN MERGE fname,line,ALL

ALL indicates that all variables will retain their values

from one program to the next. If you do not use ALL, the first

program may use COMMON vlist to indicate which variables

may be passed to the next program. The CHAIN MERGE

command may also include DELETE line-line to delete lines

after the programs are merged.

FILES is used to see the names of the files you have on

your disk. You may also use FILES pathname, where pathname

indicates the path or volume name or subcategory name.

FILES

FILES "DFO:"

101

LJ
Chapter 2

u

You may define a pathname or change it with CHDIR j j

(change directory) so that you can use a different disk. For ex

ample, to change to the current disk in the disk drive and not

have to type "DFO:" each time, use \ |

CHDIR "DFO:"

Sequential Files LJ
There are two types of data files that can be used with the

Amiga—sequential and random access. The sequential files are

easier to understand and to work with, but the random access

method uses less room on a disk and can be more efficient.

With both methods you OPEN a file for input or output to ac

cess the device, and when you're finished you CLOSE the de

vice. With CLOSE, just specify the file number, such as

CLOSE #2

The OPEN statement has two syntax forms:

OPEN tnode,[#]f,fname [,file-buffer-size]

OPEN fname [FOR mode] AS [#]f [LEN=file-buffer-size]

The following example opens device #1 for output, "O",

and calls the file TEST. We'll store four numbers in that file

using WRITE #f,vlist and then close the file.

REM OPEN

A=5:B=-4:C=2.3:D= -6.4

OPEN "O",#1,"TEST"

WRITE #1,A,B,C,D

CLOSE #1

END

To read the data in, we open the device as input, "I". IN

PUT #f,vlist reads in the information, and PRINT prints the

numbers on the screen.

REM READIN

OPEN "I",#1,"TEST"

INPUT #1,W,X,Y,Z

PRINT W;X;Y;Z

CLOSE #1

END

Using the other type of format for the OPEN statement

and string variables for examples,

REM OPEN2

OPEN "TEST2" FOR OUTPUT AS #1

102

n
BASIC Programming

n

r~| N$="BRETT LYNN"
S$="RICHARD LANE"

WRITE #1,S$,N$

CLOSE #1

ENDn
REM READIN2

PI OPEN "TEST2" FOR INPUT AS #5
1 INPUT #5,A$,B$

PRINT A$

PRINT B$

CLOSE #5

END

You may also use PRINT #f,vlist to output information.

With PRINT #f,vlist you do need to be careful that delimiters

are between your items—such as a carriage return or a

comma. You need to physically put in the commas between

items, for example,

PRINT #3/A$,"/'/B$

PRINT#1, USING "###,";N1,N2,N3,N4

In the above examples we knew exactly how many items

were in each file. This may not always be the case. You can

put the statements in loops. EOF(f) tests for the end-of-file

condition and returns — 1 if there are no items left to read.

LOC(/) returns an increment, or the number of bytes written to

or read from the sequential file divided by the default size of

128 or the record size specified in the OPEN statement length.

In random disk files, LOC(fi returns the record number of

the last record read or written. LOFf/) returns the length of the

file in bytes.

The following sample program lets the user choose a file

name to store the data and calls it L$. Then the user enters

words or names by typing the name, pressing RETURN after

each one. At the end RETURN is pressed without anything

being entered. Up to 30 items may be entered. The program to

get the names asks the user to enter the filename L$. This

time a certain number of items are not known, so the infor

mation is read in a WHILE-WEND loop as long as the EOF is

not -1.

REM SAMPLE I/O

T=0

PRINT "ENTER A FILENAME"

INPUT L$

103

u
Chapter 2

LJ

PRINT "ENTER SEVERAL NAMES"

PRINT "PRESS RETURN AFTER EACH NAME" L~'
PRINT "THEN TWICE WHEN YOU ARE FINISHED"

OPEN "O",#2,L$,-

ENTER: LJ
INPUT N$

IF N$="" THEN FINISHED

PRINT #2,N$ i_J
T=T+1:IF TOO THEN ENTER

FINISHED:

CLOSE #2

PRINT "FINISHED"

END

REM GETTING NAMES

DIM N$(30)

PRINT "ENTER FILENAME"

INPUT L$

PRINT:T=0

OPEN "I",#3,L$

WHILE NOT EOF(3)

INPUT #3,N$(T)

PRINT N$(T):T=T+1

WEND

CLOSE #3

END

To add to a sequential file, use "A" or APPEND for the

mode. In the particular file the items will not replace the file,

but will add at the end.

OPEN "A",#3,"TEST"

Random Files

To create a random access data file, use the mode "R".

OPEN "R",#4/'TESTDATA"

The random access files are stored in a packed binary for

mat and thus take up less space on the disk. Also, to retrieve

the information, you don't need to read sequentially through

all the information. The information is stored in numbered

records. The FIELD statement is used with random access files

which allocate space for variables in a random file buffer. The

format is

FIELD [#\f,fieldwidth AS string

where / is the file number and fieldzvidth is the number of

104

n
BASIC Programming

characters to be allocated to the string variable. The FIELD

command may consist of several fieldwidth AS string items.

FIELD #3,4 AS P$,16 AS F$

GET# reads a record from a random disk file into a ran

dom buffer and PUT# writes a record from a random buffer to

the random access file. The formats are

GET [#\f[,record number]

PUT [#\f[,record number]

Examples are

FORJ=1 TO 30

PUT #3J

NEXT J

and

GET #2,X

When you save things in a random file, numeric values

must be converted to strings. The procedure is to use MKI$(e),

MKL$(e), MKS$fe), or MKD$(e) to make a string out of the ex

pression e, where I is integer, L is long integer, S is single-

precision, and D is double-precision. Then use LSET or RSET

to move the data from memory to a random file buffer. LSET

left justifies the string in the field, and RSET right justifies the

string. Since the string must be a certain length, spaces are

used to pad the extra characters. Finally, write the buffer to

the file using PUT#f.

To retrieve the information, keep in mind that numbers

are in strings. CVIfe), CVL(s), CVS(s), and CVD(s) are used with

FIELD and GET statements to convert the strings back to nu

meric values. CVI converts a two-byte string to an integer.

CVL converts a four-byte string to a long integer. CVS con

verts a four-byte string to a single-precision number. CVD

converts an eight-byte string to a double-precision number.

Some examples are

INPUT ITEM$

LSET T$=ITEM$

INPUT N

LSET N$=MKI$(N)

PUT #3,C

GET#8,X

AB=CVI(G$)

PRINT USING "$$###.##";CVS(P$)

105

o O
N

P
r
o
g
r
a
m

2
-
1
.
R
a
n
d
o
m

F
i
l
e
E
x
a
m
p
l
e

R
E
M

R
A
N
D
O
M

A
C
C
E
S
S

R
E
M

R
E
A
D

D
A
T
A

F
O
R

1
=
1

T
O

3

R
E
A
D

M
$
(
I
)

N
E
X
T

I

D
A
T
A
A
D
D

N
A
M
E
,
R
E
C
A
L
L

N
A
M
E
S
,
E
X
I
T

P
R
O
G
R
A
M

O
P
E
N

"
R
M
,
#
2
,
"
M
E
A
L
S
"
,
6
0

F
I
E
L
D

#
2
,
2
0

A
S

A
$
,
2
0

A
S

B
$
,
2
0

A
S

C
$

R
E
M

T
I
T
L
E

S
C
R
E
E
N

I
N
F
O
:

W
I
D
T
H

6
0
:
C
L
S
:
L
O
C
A
T
E

1
0
,
2
6
:
P
R
I
N
T

"
*
*
*
*

M
E
A
L

T
I
C
K
E
T

F
I
L
E

*
*
*
*
"

L
O
C
A
T
E

1
2
,
1
5
:
P
R
I
N
T

"
S
T
O
R
E

A
N
D

R
E
T
R
I
E
V
E

Y
O
U
R

B
E
S
T

P
A
L
S
1

P
R
E
F
E
R
E
N
C
E
S
1

L
O
C
A
T
E

1
4
,
1
5
:
P
R
I
N
T

"
F
O
R

D
I
N
N
E
R
.
"

L
O
C
A
T
E

1
6
,
1
5
:
P
R
I
N
T

"
P
R
E
S
S

A
N
Y

K
E
Y

T
O

B
E
G
I
N
.
"

G
E
T
K
E
Y
:

R
$
=
"
"
:
W
H
I
L
E

R
$
=
"
"
:
R
$
=
I
N
K
E
Y
$
:
W
E
N
D

C
H
O
I
C
E
:

O
N

E
R
R
O
R

G
O
T
O

C
H
E
R
R

O
P
E
N

"
P
A
L
S
"

F
O
R

I
N
P
U
T

A
S

#
3

I
N
P
U
T

#
3
,
N

C
L
O
S
E

#
3

X
=
N
:
C
L
S
:
L
O
C
A
T
E

3
,
1
7
:
P
R
I
N
T

"
*
*
*
*
*
*
*
*
*
*
*
*
m

E
N

u
*
*
*
*
*
*
*
*
*
*
*
*
"

F
O
R

Y
=
l

T
O

3
:
L
O
C
A
T
E

4
+
Y
,
1
2
:
P
R
I
N
T

Y
,
M
$
(
Y
)
:
N
E
X
T

Y

L
O
C
A
T
E

1
0
,
1
2

I
N
P
U
T

"
Y
O
U
R

C
H
O
I
C
E
"
;
R
$

I
F

R
$

<
"
1
"

O
R

R
$
>
"
3
"

T
H
E
N

C
H
O
I
C
E

O
N

A
S
C
(
R
$
)
-
4
8

G
O
S
U
B

A
D
D
,
R
E
C
,
E
X

I CD

c
c:

c:
c:

c:
c:

c:
c:

c
c

U
G

G
G

-
G

g
g

d

G
O
T
O

C
H
O
I
C
E

A
D
D
: X
=
X
+
1

C
L
S
:
I
N
P
U
T

"
Y
O
U
R

P
A
L
'
S

N
A
M
E
"
;
N
A
$

P
R
I
N
T

"
H
O
W

O
L
D

I
S

"
;
N
A
$
;
:
I
N
P
U
T

A
G
?

P
R
I
N
T

"
W
H
A
T

D
O
E
S

"
;
N
A
$
;
"

L
I
K
E

T
O

E
A
T
"
;
:
I
N
P
U
T

F
O
$

L
S
E
T

A
$
=
N
A
$

L
S
E
T

B
$
=
A
G
$

L
S
E
T

C
$
=
F
O
$

P
U
T

#
2
,
X

L
O
C
A
T
E

1
0
,
1
:
I
N
P
U
T

"
A
D
D
A
N
O
T
H
E
R

<
Y
/
N
>
"
;
R
$

I
F

R
$
=
"
Y
"

O
R

R
$
=
"
y
"

T
H
E
N

G
O
T
O

A
D
D

N
=
X

O
P
E
N

"
P
A
L
S
"

F
O
R

O
U
T
P
U
T

A
S

#
3

W
R
I
T
E

#
3
,
N

C
L
O
S
E

#
3

R
E
T
U
R
N

R
E
C
: C
L
S
:
P
R
I
N
T

"
(
O
)
N
E

N
A
M
E

O
R

(
A
)
L
L

N
A
M
E
S
?
"

G
S
T
R
O
K
E
:

R
$
=
"
"
:
W
H
I
L
E

R
$
=
"
"
:
R
$
=
I
N
K
E
Y
$
:
W
E
N
D

I
F

R
$
=
"
O
"

O
R

R
$
=
"
o
"

T
H
E
N

G
O
T
O

O
N
E
N
A
M
E

I
F

R
$
=
"
A
"

O
R

R
$
=
"
a
"

T
H
E
N

A
L
L
N
A
M
E
S

G
O
T
O

G
S
T
R
O
K
E

O
N
E
N
A
M
E
:

C
L
S
:
P
R
I
N
T

"
T
H
E
R
E

A
R
E

"
;
N
;
"

N
A
M
E
S

O
N

F
I
L
E
.
"

I
N
P
U
T

"
W
H
I
C
H
O
N
E
"
;
R

I
F

R
>
N

T
H
E
N

O
N
E
N
A
M
E

G
E
T

#
2
,
R

C
L
S
:
P
R
I
N
T

"
P
A
L

#
"
;
R
;
"

"
;
A
$

:
P
R
I
N
T
"
A
G
E

'"
;
B
$

P
R
I
N
T

"
S
e
r
v
e

t
o

p
l
e
a
s
e

"
;
C
$

i 1

o 0
0

I
N
P
U
T

"
A
N
O
T
H
E
R

N
A
M
E

<
Y
/
N
>
"
;
R
$

I
F

R
$
=
"
Y
"

O
R

R
$
=
"
y
"

T
H
E
N

G
O
T
O

O
N
E
N
A
M
E

G
O
T
O

E
N
D
R
E
C

A
L
L
N
A
M
E
S
:

F
O
R

Z
=
l

T
O

N

C
L
S

G
E
T

#
2
,
Z

P
R
I
N
T

"
P
A
L

#
"
;
Z
;
"

"
;
A
?

:
P
R
I
N
T
"
A
G
E

"
;

B
$

P
R
I
N
T

"
S
e
r
v
e

t
o

p
l
e
a
s
e

"
;
C
$

P
R
I
N
T

:
P
R
I
N
T

:
P
R
I
N
T

"
P
R
E
S
S

A
N
Y

K
E
Y

T
O

C
O
N
T
I
N
U
E
"

W
A
I
T
E
R
:

R
$
=
"
"
:
W
H
I
L
E

R
$
=
"
"
:
R
$
=
I
N
K
E
Y
$
:
W
E
N
D

N
E
X
T

Z

E
N
D
R
E
C
:

R
E
T
U
R
N

E
X
:

C
L
O
S
E

#
2

C
L
S

E
N
D

N
E
W
F
I
L
E
:

N
=
0

O
P
E
N

"
P
A
L
S
"

F
O
R

O
U
T
P
U
T

A
S

#
3

W
R
I
T
E

#
3
,
N

C
L
O
S
E

#
3

R
E
T
U
R
N

C
H
E
R
R
:

I
F

(
E
R
R
O
5
3
)

T
H
E
N

E
X

G
O
S
U
B

N
E
W
F
I
L
E
:
R
E
S
U
M
E

C
H
O
I
C
E

I (D S
O

c
c:

c
c:

c:
c:

t:
cr

.
c

Chapter 3

Getting Started

Charles Brarriion

D

O

D

O

a

o

□

a

o

n

n

Getting Started with

n AmigaDOS
j I Charles Brannon

The Commodore Amiga comes with a large looseleaf

binder packed with information on this advanced com

puter. Even if you've never used a graphics-oriented

operating system before, you can plug in the mouse and be up

and running on the Amiga Workbench in very little time.

But there's something missing from the standard manuals:

instructions for using AmigaDOS, a powerful alternative to the

Workbench. Although the Workbench is a versatile tool for

both beginners and expert users, there are also advantages to a

command-driven operating system. With AmigaDOS, you can

gain finer control over the computer and its many functions—

at the expense of having to memorize dozens of commands

and their proper syntax. These tradeoffs have been a subject of

hot debate ever since the Macintosh made its debut three

years ago. Fortunately, the Amiga gives you both options. And

thanks to its multitasking capabilities, you can even flip back

and forth between both systems at will.

All this is made possible by the Amiga's multilevel

operating system. The core is Intuition, a package of efficient

subroutines designed to ease the software designer's task. It's

filled with routines needed by almost every program, saving

programmers the trouble of reinventing the wheel. Intuition

includes powerful graphics utilities so programmers needn't

r-n program the computer at the hardware level.

Pay No Attention to the Little Man

n Attached to the Intuition core is AmigaDOS, which itself has

two levels. First, AmigaDOS provides all the disk operating

system functions for the computer, such as managing, open-

,—* ing, accessing, updating, and closing files; buffering direct

! _(memory access (DMA) for the disk drives; supporting named
devices; and allocating memory.

n Second, AmigaDOS as a tool provides one or more Com

mand Line Interfaces (CLIs). A CLI is a traditional command-

oriented operating system interface, much like CP/M, MS-

<—, DOS, and PC-DOS—but even more powerful. At a screen

1'

LJ
Chapter 3

u

prompt, you can type in commands to load and run programs; j j

list disk directories; copy, rename, and delete files; and even *—'
write simple programs called batch files.

When you start the Workbench, AmigaDOS comes with \ [

it. In fact, you've undoubtedly seen the AmigaDOS screen *—>

briefly appear when you first boot up the Workbench disk.

AmigaDOS comes up first, loads the Workbench, then shuts \ ;

down its CLI, transferring control to the Workbench. '—'

AmigaDOS is like the Wizard of Oz. It pulls the strings of

the marionette that is the Workbench. Meanwhile, hidden from

sight, AmigaDOS is doing much of the work. When you step

behind the curtain, you see how things are really done. Once

the object-oriented illusion of the Workbench is stripped away,

you find yourself working with files, streams, subdirectories,

and pathnames.

Starting a CLI

To start an AmigaDOS CLI, first run the Preferences tool by

opening up the Workbench disk and double-clicking on the

Preferences icon. The Preferences screen (see photograph) has

an option box labeled CLI [ON] [OFF]. Click the box ON, then

click on SAVE. The Workbench file on the disk will be up

dated, and now the CLI option will be available whenever you

start the Workbench in the future.

To allow access to AmigaDOS from the Workbench, click the mouse button with

the pointer positioned upon the CLI [ON] box within the Preferences screen.

112

u

u

n
Getting Started with AmigaDOS

J~j With CLI enabled, open the Workbench's System folder.
In addition to the usual icons for Disk Copy, Icon Editor, and

Initialize, you'll see a cube-shaped icon marked with 1> and

p"j labeled CLI. Double-click on this icon to open a CLI window.
The first thing you'll notice in the window is the 1>

prompt. Unlike DOS prompts on most other computers, this

|""| doesn't represent the current disk drive. Instead, it represents
the task number assigned to the window. AmigaDOS is one of

the few microcomputer operating systems that can multitask

itself.

To see how this works, enter NEWCLI at the 1> prompt.

When you press RETURN, a second CLI window pops up

with the prompt 2>. This CLI is a complete, full-powered CLI,

independent from the first CLI. In effect, you now have two

command-driven operating systems running on the computer.

Each window can execute a different DOS task. While one CLI

is busy printing a file, you can go to another CLI window to

list a directory.

H

n Clicking on the CLI icon from the Workbench opens up this AmigaDOS

screen window.

Although several CLI windows can display output simul-

]~] taneously, only one CLI window at a time can accept input.
To select which CLI is active, point to its window and click the

mouse button. You can distinguish active from inactive win-

1 113

u
Chapter 3

u

dows by glancing at the title bars—the bar of an inactive win- j {

dow is dimmed. '
If you type NEWCLI at the 1> or 2> prompt, a third CLI

window opens with a 3> prompt. How many CLI windows) [

can be opened at once? On a 512K Amiga, we've opened as l '

many as 20 CLIs before encountering an out-of-memory

message. \ J

When you're done with a CLI, close it by entering '—

ENDCLI. When you close the primary CLI, control reverts to

the Workbench.

AmigaDOS Devices

For any DOS commands to work, the startup (Workbench)

disk must be in the current drive. Unlike other operating sys

tems, AmigaDOS contains no memory-resident commands. All

commands are extrinsic—they're loaded from disk only when

called. AmigaDOS always looks for commands first from the

current directory, then the C subdirectory on the SYS:

(startup) disk. We'll elaborate on this in a moment.

You can type AmigaDOS commands and filenames in

either upper- or lowercase (for clarity, all our examples are

shown in uppercase). If you make any typing mistakes, you

can press BACK SPACE or cursor left to retype. Type CTRL-X

to erase the whole line. You can get a complete list of all com

mands by typing DIR SYS:C. This shows the contents of the C

subdirectory on the startup disk, the directory where all

AmigaDOS commands are storied.

The DIR command displays the current directory. By de

fault, the current directory is listed from the internal drive,

which is referred to as DFO:. If you have a multiple-drive sys

tem, you can get a directory of the first external drive by typ- \ /

ing DIR DF1:. Up to three external drives can be daisychained, <—}

numbered from DF1: through DF3:. The colon following the

drive name is important—it tells AmigaDOS that it is a device \ \

name rather than the name of a file. l—>
A special device, SYS:, refers to the system (startup) disk.

Although the startup disk is usually in drive DFO:, SYS: is not j /

necessarily synonymous with DFO:. SYS: refers to the startup <—s

disk, not a drive.

\ I

114

n
Getting Started with AmigaDOS

P*| Disk Names
Instead of referring to a physical drive, you can access a disk

by name. When you use Workbench to copy or format a new

P*f disk, the disk is assigned a unique name, which is displayed
beneath the disk icon on the Workbench screen. When spec

ifying a disk name in a command, you must end it with a co-

j"""| Ion, as you do with device names. If the disk is not in a drive
when you refer to it in a command, AmigaDOS prompts you

to insert it.

The ability to specify disk names is vital with single-drive

Amigas. When you type DIR, the DIR program is loaded from

the Workbench disk and displays the directory of that disk. If

you insert another disk and type DIR, you have to reinsert the

Workbench disk so that AmigaDOS can read the DIR file. Un

fortunately, AmigaDOS doesn't ask you to put the other disk

back in—so you still get the directory of the Workbench disk.

The solution? Follow the DIR command with the proper

disk name. For example, DIR "BASIC Demos:" (remember the

colon) calls a directory of the disk named BASIC Demos.

AmigaDOS still loads the DIR command file from the Work

bench disk, but now asks you to insert "BASIC Demos" before

displaying the directory. Specifying the disk name (also

known as a volume name) forces AmigaDOS to refer to a disk

instead of a drive.

Other device names are PAR: for the parallel printer port,

SER: for the serial/modem port, PRT: for whatever printer

port you've specified via the Preferences tool, and RAM: for

the RAM disk. Another device, NIL:, is a null handler. It ac

cepts output instantly, but does nothing with it. The NIL: de

vice is useful for testing a program without wasting paper or

p"7 time—just redirect the output to NIL:.

— The RAM disk behaves just like a very fast disk drive ex

cept that its contents are lost when the computer is rebooted

f? or turned off. Be sure to copy anything important from the

RAM disk to a real disk before shutting down, or even more

frequently if power failures and brownouts are common in

f—"| your area. The RAM disk is dynamic: Unlike some RAM disks,

it has no fixed size. It starts out empty, then grows or shrinks

as you add or remove files. Therefore, it's always 100 percent

f~? full, using only as much memory as it needs to hold the files

you've stored there.

Chapter 3

Whenever you want to refer to the RAM disk in an if

AmigaDOS command, just precede a filename with the prefix

RAM:. At present, the RAM disk isn't accessible from the

Workbench. M

Another special device name, * (the asterisk), refers to the * '
current keyboard/screen device. Input from * is from the key

board; output to * appears in the current window. Notice that \ I

this is different from the use of * as a wildcard character in

some other operating systems.

Understanding Pathnames

A file is the basic data storage object in AmigaDOS. A file is

addressed by a filename, a string of up to 30 characters. Each

file must have a unique filename. Filenames can include al

most any character, including characters such as space, =, +,

and ", special AmigaDOS delimiters that you should avoid. (If

a file contains special characters, you can enclose them in

quotation marks to make sure the special characters aren't

acted upon by AmigaDOS.) However, two characters are

forbidden in filenames by AmigaDOS—the colon (:) and the

slash (/).

Each drive has its own directory, a list of all filenames and

subdirectory names. A subdirectory is a directory within a

directory. Subdirectories are like drawers on the Workbench.

You can even nest subdirectories within subdirectories within

subdirectories, which can get confusing.

You separate a subdirectory name from a filename with the

slash (/). Notice that this slash leans in the opposite direction

from the backslash (\) used in IBM PC-DOS for subdirectories.

A complete filename can be as simple as PROCEDURES,

equivalent to DF0:PROCEDURES, since DFO: is the default \ \

drive. Filenames can also be a lot more complicated, for ex- {—J

ample, DF1:BASIC PROGRAMS/GIDGET, which refers to the

program GIDGET in the subdirectory BASIC PROGRAMS on) /

the external drive, or, another example, RAM:LOGO/DEMOS/ l—]
SPINNER, which refers to the file SPINNER in the DEMOS

subdirectory which is in the LOGO subdirectory in the RAM \ \

disk. (—j
Fortunately, there are shortcuts. Instead of entering the

current pathname, such as DF0:DEMOS/DOTS.INFO, it's suf- \ \

ficient to use DOTS.INFO if the current directory is l—'
DF0:DEMOS. We'll show below how to change the current

directory. j /

116 ^

Getting Started with AmigaDOS

P"] More About Multitasking
You can do nearly everything with AmigaDOS that you can

with the Workbench. There are commands to copy files, delete

) [files, rename files, format disks, send listings to printers, set

date and time, and more. You can also run any application

program from AmigaDOS.

J"""! All Workbench programs have two files: one file that
contains the program and another file with an extension of

.INFO that contains icon information for the program. For

instance, the icon for the Preferences tool is drawn from

PREFERENCES.INFO. To run the Preferences tool from

AmigaDOS, enter PREFERENCES at a CLI prompt. Similarly,

enter CLOCK to start the clock tool.

Be careful not to let the program you're running override

the CLI. If you'd like to keep the CLI going while running an

other program, preface the AmigaDOS command with another

command, RUN. This starts a new, simultaneous program.

RUN CLOCK starts the clock while permitting the CLI to con

tinue running. The clock becomes a new CLI task. We've used

this feature on a 512K Amiga to run MetaComCo ABasiC

simultaneously with AmigaDOS, the Workbench, and a full

screen editor.

A Custom DOS Disk

It's fairly simple to create an AmigaDOS-only disk. This disk

can be used whenever the system asks for a Workbench disk.

You probably won't want to modify your original Workbench

disk, however. It's better to modify a copy of it and set aside

the original for safekeeping. You can make several copies of

your AmigaDOS disk for future use, if you want. Just follow

f"? these steps:

1. Open the System drawer on the Workbench disk. If you

don't see the CLI icon—a small cube labeled with a 1>

/ \ symbol—run Preferences (otherwise, continue to step 2).

One of the settings on the first Preferences screen is labeled

CLI [ON] [OFF]. Click it ON, then click on the Save box to

j\ save the change to disk. Return to the Workbench and re

open the System folder. You should now see the CLI icon.

2. Double-click on the CLI icon. A window titled "New CLI

i \ Window" appears. Click inside the window to make the

CLI active.

n 117

u
Chapter 3

LJ

3. At the 1> prompt, type ED S/Startup-Sequence and press \ I

RETURN. This loads a program called ED, a full-screen edi- UJ
tor, and loads the file Startup-Sequence from the S

subdirectory. Startup-Sequence is the batch file that makes) j

AmigaDOS automatically start the Workbench when you '—'

boot the Workbench disk. After ED starts, you should see

something like this on the screen: \ /

ECHO "WorkBench Disk. Release 1.1"

ECHO " "

ECHO "Use Preferences tool to set date"

ECHO " "

LoadWb

endcli > nil:

These are the batch file commands that AmigaDOS

executes each time you boot up the Workbench disk. The

ECHO commands are similar to PRINT statements in

BASIC; they merely display messages on the screen. The

last two commands in this file are the ones we're interested

in changing.

4. Using the cursor keys, move the cursor to the line with the

LoadWb command and press CTRL-B twice to erase the last

two lines. The batch file should now consist of the four

ECHO commands only. If you wish, you can change the

text in the ECHO commands to give your boot disk that

"personal touch."

5. Press the ESC key. An asterisk prompt (*) appears at the

bottom of the screen. Type X at this prompt and press RE

TURN. This exits the ED program and saves the new

Startup-Sequence file to disk. If you've made a mistake and

would like to start over, press ESC-Q to quit the editor

without changing the file.) I

6. After the disk busy light goes off, simultaneously press '—
CTRL and both Amiga keys on each side of the space bar to

reboot the system. This time, and from now on whenever J I

you boot with this disk, AmigaDOS ends up in memory in

stead of the Workbench.

The Workbench Option *~]
To conserve space on your new AmigaDOS disk, you may

want to erase some files used by the Workbench, such as the) |

LOADWB command in the C subdirectory, the Notepad, the v—'

clock, and all .INFO files. However, it's convenient to have the

118 LJ

Getting Started with AmigaDOS

p"j Workbench available when you need it. You could use the edi-

'■ ■ ' tor to create another batch file that includes LOADWB and
ENDCLI > NIL:. You would then type EXECUTE WB at a CLI

r^ prompt to bring up the Workbench (assuming you named the

'- l batch file WB by typing ED WB to create the batch file). ED is
useful for creating all kinds of simple batch files, in fact.

<—I

: [AmigaDOS Commands
Following is a list of the most useful AmigaDOS commands

with brief descriptions and examples. Some commands shown

here may not be available on your copy of AmigaDOS/

Workbench, while there may be other commands available to

you that have not been documented. This chapter was pre

pared with AmigaDOS version 1.0 and 1.1. Type DIR SYS:C

at a CLI prompt to see a complete list of available commands.

When you're experimenting with AmigaDOS commands, we

strongly recommend that you use a scratch disk to avoid wip

ing out an important file or even a whole disk. (A complete

list all AmigaDOS commands for versions 1.0 and 1.1 appears

in Appendix B.)

< and > (Input/output redirection). These symbols redirect

the normal input/output flow of a command. For example, a

program that normally accepts input from the keyboard and

prints its output on the screen could be coerced into accepting

input from a file or to send its output to the printer. The <

and > symbols are used to point in the direction that I/O

should flow; the less-than sign (<) redirects input, and the

greater-than sign (>) redirects output. When using < to re

direct input, you may need to use a question mark for the

parameter that the redirection file is replacing.

^ Examples:

DIR>DIRFILE

r—^ This redirection of the DIR command sends the disk

L..)■ directory to the file DIRFILE instead of to the screen. To con

firm this, you can enter TYPE DIRFILE to display the contents

ri of DIRFILE.

' ^ STACK < BASIC.STACK ?
The stack command normally accepts a command line

J""T| parameter. Here, a file (BASIC.STACK) containing the number
8000 can be substituted. In order for the file to replace the

n 119

Chapter 3

u

command line parameter, you must use a question mark to j f

hold that parameter's position. '—>

CD (Change Directory). Follow CD with the pathname of

the directory you'd like to work with. Entering CD by itself j i

displays the current search path. When you type a command, {—>

AmigaDOS first searches for the extrinsic command file in

your current directory, then in the COMDIR directory. Amiga- ^ ,

DOS also looks for all filenames in the current directory unless !—>

you override the current directory with another pathname.

Example:

CD DF1:BASIC

This switches the current directory to the first external

drive and the subdirectory BASIC.

COPY. This copies a file or group of files to any legal

destination. The keyword TO specifies the destination path.

You can use the optional keyword FROM to specify a direc

tory other than the current directory. If you are copying entire

subdirectories, append the keyword ALL so that COPY creates

a subdirectory in the destination directory. COPY normally

displays the name of each file as it's copied. Append the key

word QUIET if you'd like to suppress this.

Examples:

COPY MATRIX.SORT TO DF1:MATRIX.BKP

This copies the file MATRIX.SORT in the current direc

tory, creating a file called MATRIX.BKP in the main directory

of the first external drive.

COPY FROM DF1:GOBBLE TO DFO:

This copies the file GOBBLE from the external drive to

the internal drive.) I

COPY DFO: TO DF1: ALL

This backs up the entire contents of the internal drive ^ ,

onto the external drive, including the contents of all i 1
subdirectories. COPY doesn't format the destination disk, so

DISKCOPY is a more convenient way of backing up an entire , ,

disk. (i

COPY SYS:C TO RAM: QUIET

This copies the command directory to the RAM disk with- } j
out listing all the filenames.

COPY * TO PRT:

120 Lj

Getting Started with AmigaDOS

f! This accepts lines from the keyboard and prints them on

'- l the printer until CTRL- \ is pressed.
DATE. This command sets the current date and time.

p*j When you create or update a file, AmigaDOS stamps the date

- ' and time on the directory. Since there's no battery-backup for

the clock, however, the Amiga doesn't know this information

■C-| until you tell it. By default, AmigaDOS assumes the date

' ■ stamped on the most recent file. Entering DATE by itself dis
plays the current date.

To set the date from AmigaDOS without running the

Preferences tool, follow the DATE command with a date in

the form DD-MMM-YY (for example, 25-DEC-85). To set the

time, follow this with the form HH:MM (using 24-hour time,

such as 13:00 for 1:00 p.m.). You can type DATE TOMOR

ROW to advance the date ahead one day, or DATE YES

TERDAY to back up one day. Another shortcut is simply to

enter DATE dayname, as in DATE TUESDAY. If you use your

Amiga frequently, this may be all you need to keep things up-

to-date.

An interesting application of the DATE command is to

determine which day of the week a certain date falls on. For

example, DATE 25-DEC-86 sets the date to Christmas Day,

1986. If you then enter DATE by itself, AmigaDOS displays

THURSDAY 25-DEC-86, letting you know that Christmas falls

on a Thursday in 1986.

Examples:

DATE 04-JUL-76

This sets the current date to July 4, 1976. (The Amiga as

sumes you know which century you're living in, so there's no

r—^ way to specify 1776 versus 1976 or 2076.)

' l DATE 08:30 FRIDAY

This sets the time to 8:30 a.m. and advances the date to

P(Friday. DATE FRIDAY 08:30 would also work.
DELETE. This command deletes a file or group of files.

Follow DELETE with the pathname specifying a file. You can-

f*] not delete a subdirectory if it contains any files. You can delete
several files by separating each one with a comma, up to a

maximum of ten. DELETE doesn't ask ARE YOU SURE?, so be

I""! careful.

121

Chapter 3

Examples:

DELETE MASTER.BKP

This deletes the file MASTER.BKP from the current

directory. j j

DELETE DF1:PROGS/ALPHA,OMEGA

This deletes the file ALPHA on the PROGS subdirectory ^ ,

on the external drive, and also deletes the file OMEGA from '—*
the current directory.

DIR (Directory). DIR and LIST are similar commands. DIR

lists just file and directory names, while LIST gives additional

information (see LIST). Follow DIR by a legal directory path.

Don't include the name of a file in the path. The OPT com

mand permits special directory options. DIR OPT A lists the

contents of any subdirectories along with the main directory.

DIR OPT D lists only subdirectory names.

There is a special interactive directory mode which you

enter with DIR OPT I. While in directory mode, the entries are

displayed one at a time. Press RETURN to go on to the next

entry. If the entry is a subdirectory name, you can press E to

enter that subdirectory, listing its files. To exit a subdirectory,

enter B. If the current entry is a file, you can enter T to type

its contents (CTRL-C aborts the display). You can enter the

command DEL to delete the current entry (again, you can't de

lete a directory unless it's empty). Type Q to quit the inter

active mode.

Examples:

DIR

This displays the current directory.

DIR DF1:DEMOS \ /

This displays the contents of subdirectory DEMOS on the

external drive.

DIR DF1: OPT A j_j
This displays the directory and the directory of next-level

subdirectories on the external drive. i i

DISKCOPY. To copy one disk to another with two Li
drives, enter DISKCOPY DFO: TO DF1:. Formatting is auto

matic, and the copy has the same name as the original unless \ j

you use the NAME option, as in DISKCOPY DFO: TO DF1: LJ

NAME "KICKSTART BACKUP". To copy a disk with one

122 Li

n
Getting Started with AmigaDOS

p\ drive, type DISKCOPY DFO: TO DFO:. You'll be prompted to

Lj insert the original and destination disks alternately.

Examples:

P| DISKCOPY DF1: TO DFO:

This backs up the disk in the external drive to the disk in

r—> the internal drive. Although both disks will have the same

' (name, AmigaDOS can distinguish between them by the dates
they were created.

DISKCOPY DFO: TO DFO: NAME "WORKBENCH BACKUP"

This creates a named backup of the disk in the internal

drive. Several disk swaps are required.

ENDCLI. This cancels the current CLI window. Use this

command only to terminate a secondary CLI or to return to

the Workbench. If there is no Workbench and you close the

primary CLI, everything ends, leaving you nothing to work

with. Your only recourse would be to reboot the system.

FILENOTE. This command attaches a comment to a file.

Although AmigaDOS's 30-character filenames let you be quite

descriptive, an optional FILENOTE lets you attach an addi

tional 80-character comment to a file. This comment is dis

played beneath the filename when you use the LIST (not DIR)

command. Follow FILENOTE with the name of the file you're

describing, then the comment. You must enclose the comment

in quotation marks if it includes spaces. The FILENOTE com

mand also lets you include two optional keywords, FILE and

COMMENT, presumably for the sake of readability.

Files have no comment by default. The comment is re

tained if the file is changed or overwritten. However, if you

copy a file, its filenote does not get copied with it.

) 1 Examples:

FILENOTE waver.bas "Program lets you create sound waves."

r~j After you attach this comment to the file waver.bas, LIST
waver.bas yields this result:

waver.bas 2272 rwed ll-Oct-85 10:09:53

jj : Program lets you create sound waves

Second example:

<■—> FILENOTE FILE waver.bas COMMENT "Program lets you create

1 ___) sound waves/'

n 123

(1
Chapter 3 —'

LJ

This is identical to the first example, except for the op- ^ f

tional keywords FILE and COMMENT. (_/

FORMAT. This lets you format a new disk. Follow FOR

MAT with the keyword DRIVE (required), a drive device, the j >

keyword NAME, and a unique 30-character disk name (en- j 1
closed in quotation marks if it contains any spaces). FORMAT

customizes a blank disk for use with the Amiga drives. Don't , i

forget that FORMAT irreversibly erases everything on the disk. I)

Example:

FORMAT DRIVE DFO: NAME "FINAL PROTOTYPE''

INFO. This command shows a disk report. INFO displays

the size of each mounted drive (normally 880K, except for the

RAM disk), the number of sectors used, number of sectors

free, percentage of capacity used, number of disk errors that

have occurred, the read/write status, and the disk's name.

INFO also separately displays the names of the currently in

serted disks. INFO has no additional parameters. Use LIST to

display information about a particular file or directory.

INSTALL. This command makes a disk bootable. In other

words, an INSTALLed disk can be inserted at the Workbench

prompt to bring up the system. Just follow INSTALL with the

optional keyword DRIVE and the drive number. If you want

to be able to execute AmigaDOS commands after booting, you

must copy the C subdirectory from your master disk onto the

copy. (All AmigaDOS commands are extrinsic and contained

in the C subdirectory.)

Example:

INSTALL DRIVE DF1:

This makes the disk currently mounted in the external

drive bootable. [^J>

JOIN. This command combines two or more files. Follow

JOIN with up to ten filenames separated by spaces. The

destination file, holding the conglomerate, is specified with the { -
keyword AS. The original files are unchanged.

Example: t ,

JOIN Checks/Oct Checks/Nov Checks/Dec AS "Checks/4th <—>
Quarter"

This combines the files Oct, Nov, and Dec from the) (

subdirectory Checks into a single file called "4th Quarter" to

124 u

H
Getting Started with AmigaDOS

p-j be created in the Checks subdirectory. The destination file-

— name is enclosed in quotation marks because it contains a

space character.

p"[LIST. This command gets you more information about a

'-■- disk, directory, or file. LIST by itself displays the current direc
tory. LIST can also be followed by a directory path and/or a

p*| filename. LIST followed by a filename gives information only

' - for that file. For each file, LIST displays the filename, size in
bytes, file access (Readable/Writeable/Executable/Deletable),

the date stamp, and the comment, if one was specified with

the FILENOTE command (FILENOTE uses the form FILENOTE

filename "comment").

LIST can also be used with the keyword TO, which can

redirect the listing to another device, such as the printer. With

DATES, LIST displays dates as DD-MMM-YY, which is the de

fault unless you use NODATES. You can use SINCE followed

by a date to show only those files written on or after the

specified date, or UPTO to list only those files created before

or on the specified date. (The date follows the same format

used by the DATE command.)

Example:

LIST DF1: SINCE YESTERDAY

This displays the main directory of the external drive,

including only those files which were created yesterday or

today.

MAKEDIR (Make directory). Follow MAKEDIR with a new

directory path. The last directory name in the path is the name

of the new directory.

Examples:

P] MAKEDIR "AIR MAIL"

This creates a new subdirectory called "AIR MAIL"

n (quotation marks used because name contains spaces) on the

current directory.

MAKEDIR DFlrDEMOS/GRAPHICS

pi This creates a new subdirectory called GRAPHICS within

the existing subdirectory DEMOS on the disk in the external

drive.

P5 NEWCLI. By itself, NEWCLI just opens up a new CLI
~~ window and transfers keyboard control to it. The original CLI

\ 125

Chapter 3

u

is retained. You can use the mouse to move and resize the ^ j

window as usual. This new CLI can use settings different from 4—>

other CLIs, such as a unique current directory. A CLI can

work in the background while you switch to another process. < >

You can customize a CLI by following it with "CON: <—1
x/y/width/height/title", which lets you specify the starting

position, size, and name of the new CLI window. ^ >

Although not documented, it's possible to control a CLI i—1
with another device. NEWCLI SER:, for example, starts a CLI

controlled by an RS-232 device, such as a modem or terminal.

This could let a remote user control his or her own indepen

dent DOS console.

Use ENDCLI to cancel a CLI and revert to a former one.

Example:

NEWCLI "CON:320/100/160/50/ EXTERNAL DRIVE"

This creates a 160 X 50-pixel window at position

(320,100) with the name "EXTERNAL DRIVE". This new win

dow is a complete CLI. With the CD command, you can set

up this window to access one drive and a different window to

access another. The parameters of the CON: device, shown

here, can be used as the output of other commands as well.

PROMPT. Defines a new CLI prompt. Follow PROMPT

with a message, enclosing it in quotation marks if the message

contains any spaces. The message is a replacement for the nor

mal 1> or 2> prompt of AmigaDOS. You can embed the char

acters %N to display the current task number.

Examples:

PROMPT "%N> "

Displays the default prompt.

PROMPT "Ready, Master:" LJ
Displays Ready, Master: as the new AmigaDOS prompt.

PROTECT. This command sets a file's protection status. i •

Follow PROTECT by the filename, the optional keyword STA- L-J
TUS, and the protection desired: r to allow a file to be read, w

to allow a file to be written to, d to make a file deletable, and) (

e to make the file executable. To protect a file against a certain {—

type of access, omit the corresponding letter. Only actual ma-

chine-runnable object code programs should be made execut- \ /

able. In versions 1.0 and 1.1, only the delete status is in effect; W

126 U

Getting Started with AmigaDOS

j7 files cannot be protected from being written to, read, or
t""% executed.

^^ Examples:

i _ i PROTECT YUPPIES
This makes the file YUPPIES practically nonexistent. It

f^r shows up on the directory, but it cannot be read, written to,
' - -' deleted, or executed. You can use PROTECT again to override

this, of course.

PROTECT "DON'T READ ME" STATUS WD

This allows the file "DON'T READ ME" to be written to

and deleted, but not read or executed. PROTECT provides a

simple form of protection since it can always be used to

change the file's status back. It mainly protects you against

your own mistakes.

RENAME. Follow RENAME with the optional keyword

FROM, the existing name of the file, the optional keyword TO

or AS, and the name you'd like to change it to. The new name

must not conflict with any existing name. The position occu

pied by that file on the directory may change after the re

name, especially if you use a different subdirectory name for

the new name.

Examples:

RENAME FROM "Templates/Amortization" TO

"Templates/32yr Amortz"

This changes the name of file Amortization to "32yr

Amortz" within the subdirectory Templates.

RENAME Dog AS Cat

<"—v This changes file Dog to Cat within the current directory.

RENAME FROM Progs/Slither TO Pascal/Slither

; By changing Slither's subdirectory name, we have, in ef-

) ^ feet, moved Slither from the Progs directory to the Pascal
directory. (This is similar to the usage of mv in the Unix

^^ operating system.)

/ J, RUN. This lets you run any executable file "in the back-

~" ground," that is, while another task is running. RUN is the
AmigaDOS multitasking command. If you start an object mod-

) ^v ule or command by just typing its name, it takes over control

^ from AmigaDOS. Some commands don't return to AmigaDOS

n 127

u
Chapter 3

u

when they end, locking you out of the CLI. RUN lets you run ^ j

any command or program as an independent, simultaneous *—

process, just as NEWCLI creates a simultaneous CLI. You can

run multiple commands and programs by ending each line) I

with a plus sign (+) to specify a continuation to the next line. *—*

Example:

RUN ED Simple U>
This starts the full-screen editor with the file Simple.

Meanwhile, the CLI is still running. To get to it, use the

mouse to select the current screen's back gadget to display

AmigaDOS, then click in the AmigaDOS window to activate

the CLI. You can type in the AmigaDOS window, executing

commands, then switch to ED to continue editing. Without

RUN, ED takes over until you exit.

SAY. SAY is used to invoke the Amiga's built-in speech

synthesis capabilities. The user can control the quality and

speed of speech. SAY has two modes: interactive and direct.

In direct mode the text to be spoken or an AmigaDOS file

containing the text to be spoken is specified on the command

line with SAY.

Interactive mode is entered by typing SAY by itself. Two

windows will appear on the system screen.

The "phoneme" window displays the option codes that

may be used to control the quality and speed of the syn

thesized voice.

The "Input" window is where text that you wish spoken

is displayed as it is typed on the system keyboard. The text is

passed to SAY when the RETURN key is pressed. Interactive

is exited by typing a line consisting only of a RETURN

keystroke. * >

The SAY command was added to AmigaDOS in version 1.1. < *

SAY [options] [text]

[options] Control the quality, pitch, speed, and source of the text to •) \
be spoken. SAY identifies options by a leading dash (-).

Valid options for SAY are

-f Use female voice. }^ j
-m Use male voice.

-n Use natural voice.

-r Use robot voice (monotone). S j

-p### Set pitch of voice to ### (valid values are 65-320). ^
-s### Set speech rate to ### (valid values are 40-400).

128 --tJ

n

n
Getting Started with AmigaDOS

-x <file> Say contents of <file>. The -x option may not be invoked

in the interactive mode of SAY; <file> must be an

AmigaDOS file in the current directory and may not con

tain any spaces or be enclosed in parentheses.

Multiple options may be specified at one time.

Example:

SAY -f -p250 -sl30 The Amiga can talk like a female

SEARCH. Finds text within files. This command searches

for the target string through any directories you specify. Fol

low SEARCH with the optional keyword FROM, the path

name of the directories to be searched, the optional keyword

SEARCH followed by the search string, and the optional key

word ALL, which forces SEARCH to look through all

subdirectories contained in the specified directory. When

SEARCH finds the target string, it displays the line containing

the string as well as the line number of the line containing the

string. If you're searching through a directory, SEARCH also

displays the filename of each file it's searching through.

SEARCH is not case-sensitive; it matches regardless of up

per- or lowercase. You can cancel the command with CTRL-C.

To force SEARCH to abandon the current file and begin

searching the next, press CTRL-D. During a search, you may

see the message "Line xx truncated." This isn't anything to

worry about; it just indicates that the line was too long to be

searched, so if your search string was contained somewhere

near the end of a too-long line, the search program could not

find it.

Examples:

SEARCH FROM DFO: SEARCH LoadWb ALL

This looks for the phrase LoadWb. The entire contents of

the internal drive are searched, including all subdirectories, so

this command takes a long time to finish.

SEARCH Progs/Tempfile LIBRARY

This looks for the word LIBRARY in the file Tempfile

fj within the subdirectory Progs.
" SORT. This command alphabetically sorts a file you spec-

ify. Each record in the file to be sorted must end with a car-

[j riage return. Use SORT followed by the optional keyword
FROM, the file to be sorted, the optional keyword TO, and the

name of the file where the sorted output should be stored.

n

n

129

Chapter 3
u

fcj

SORT collates based on the entire line unless you include the j /

keyword COLSTART and a column number. The sort compari

son then starts by comparing two lines from that column to

the end of the line. If that partial comparison succeeds, the \ [

first portion of the line is compared. This lets you specify two ^
levels of sorting (see example).

Unless the file to be sorted is less than about 200 lines,) j

increase the stack size with STACK to prevent a crash (see be- ^
low). It's better to use too much stack space than too little.

Example:

If you have a list of first and last names, with the first

name and initial in columns 1-19, and the last name always

starting in column 20, you could use

SORT FROM Route TO Sorted.Route COLSTART 20

The files are sorted by last name, and each group of

identical last names is subsorted by first name.

STACK. Sets the stack size. Follow STACK with the new

stack size in bytes. The normal stack size is 4000, sufficient for

most commands. When using SORT, MetaComCo ABasiC,

programs with lots of nested subroutines, or programs using

flood-fill, you may need to increase the stack size to prevent a

crash. A value from 8000 to 10,000 is usually generous

enough for these cases.

TYPE. This command prints out a file on the screen. It's

generally used with text files. Displaying other types of files

usually produces nonsensical streams of strange characters.

Follow TYPE with the filename. To redirect TYPE to another

device, include the TO option, as in TYPE README.DOC TO
PRT:.

TYPE allows two options. TYPE OPT N creates sequential) J

line numbers for each line of text. You could use TYPE SAM

PLE TO "NUMBERED SAMPLE" OPT N to create a line-

numbered version of SAMPLE as "NUMBERED SAMPLE". I)

TYPE OPT H displays the characters in a file as hexadecimal W
numbers. This is more useful when displaying machine lan
guage code or data files. j j

Examples:

TYPE "DF1:BASIC PROGRAMS/PINPOINT" ^ (

This displays the BASIC program PINPOINT located in M
the subdirectory BASIC PROGRAMS in the external drive. In

130 U

n
Getting Started with AmigaDOS

n

this case, quotation marks are required to prevent the embed

ded space in BASIC PROGRAMS from terminating the TYPE

command.

TYPE SYS:C/DIR OPT H

This displays the contents of the DIR command (which is

r0**) stored as a file in SYS:C) in hexadecimal. (Unless you can

(- v mentally disassemble the hex dump into 68000 mnemonics,
this file will make no sense.)

WAIT. This makes AmigaDOS pause and do nothing for

a span of time. Although this might seem a dumb command,

WAIT has certain advantages over walking away from the

computer or simply turning the machine off. Only the current

CLI is frozen; multitasked processes continue. WAIT by itself

pauses for one second; you can follow WAIT with a number

of seconds, followed by either SEC or SECS, and a number of

minutes, followed by either MIN or MINS. You can optionally

include the keyword UNTIL followed by a time of day, speci

fied as HHMM (as measured by the Amiga's internal clock, so

make sure it's set correctly). WAIT is useful within batch files

to allow time for a message to be read or as a background task

to wait until a particular time before executing another

command.

Examples:

WAIT 10 MINS 20 SECS

Waits for 10 minutes, 20 seconds.

WAIT UNTIL 17:00

Waits until the current time is 5:00 p.m.

^ RUN WAIT 10 SECS +

j \ DIR +

ECHO "All done/'

r—j Waits for 10 seconds, calls a directory as a second CLI

(_ \ task, then prints the message "All done."

WHY. This interesting command calls up an additional

<—I explanation of what caused the most recent error. When an

i \ AmigaDOS command fails, you'll usually get a terse error

message. If you want a more detailed, technical description,

^-. ask WHY. However, many times WHY isn't any more help-

i \ ful—it just explains in more detail why a command failed.

131

LJ
Chapter 3

LJ

Example:

WAIT 10 SECONDS

AmigaDOS responds with the error message "Bad Args"

because the correct notation is WAIT 10 SECS, not WAIT 10

SECONDS. If you type WHY, you get this answer:

Last command failed because argument line invalid or too long.

Although more descriptive, it still doesn't explain that

SECONDS should be SECS—but it does point you in the right

direction.

u

132

Chapter 4

AmigaDOS

Batch Files
Charles Brannon

D

O

D

O

a

o

□

a

o

n

it

AmigaDOS Batch Files

Charles Brannon

A
migaDOS is more than a console-driven disk operating

system. By executing a sequence of AmigaDOS com-

/ l A ^Lmands stored in a file, AmigaDOS takes on some of
the characteristics of a programming language. Whether you

want to simplify repetitive disk commands or create personal

ized custom commands, batch files further extend the range

and flexibility of AmigaDOS.

No matter how easy it is to use a program, the most

popular programs are those that give users more power. And

although a program may have scads of powerful commands,

the most powerful programs are those which let users put the

commands together in new ways—in effect, to write programs.

Instead of forcing you to always issue commands one at a

time, a programmable application lets you create a script of

commands to customize the behavior of the program. Whether

we're talking about word processing macros, spreadsheet tem

plates, relational database languages, or advanced machine

language, programmability is the real key to software power.

If you feel limited by a certain range of commands, you can

combine the commands in new ways to create personalized

features, just as we combine the vocabulary of English words

to create a wealth of literature. Why just read when you can

write?

Scripts, Sequences, and Batches

n AmigaDOS is more than just a disk operating system—it's a

programmable system that can process lists of its own com

mands as well as individual commands. In effect, AmigaDOS

Ris a simple disk-oriented programming language.

A list of AmigaDOS commands can be stored in a disk

file variously known as a script, a sequence, or a batch file.

—, The term batch file is most commonly used by those who work

' j with PC-DOS, MS-DOS, and CP/M, which are also pro
grammable disk operating systems. To keep things straight,

we'll use batch files synonymously with scripts and sequences.

Even if you don't program in BASIC or any other lan

guage, you may be interested in learning about AmigaDOS

batch files. The batch file "language" is simply made up of the

135

LJ
Chapter 4

u

same AmigaDOS commands you've probably been using all ^ I

along (see Chapter 3 and Appendix B). There are also a few

AmigaDOS commands designed especially for batch files.

Creating and running batch files is easy. Using a text edi- | [

tor, you just type in a list of AmigaDOS commands. Then you ^
save the list on disk under a filename. To run the batch file,

you type EXECUTE filename at an AmigaDOS prompt.) I

AmigaDOS reads the batch file and executes the list of com- s—'
mands, just as if you had typed them one by one yourself.

We won't cover some of the more advanced features of

batch files, useful only to advanced C and machine language

programmers. Instead, we'll concentrate on the everyday util

ity of batch file programming.

A Quick Example

In a moment, we'll show how to create batch files with ED,

the AmigaDOS full-screen text editor, but, first, there's a sim

pler way to create a short batch file. Enter this line at an

AmigaDOS prompt:

copy * to Hello

(Note that AmigaDOS commands can be entered in uppercase

or lowercase.)

Although nothing seems to happen, AmigaDOS is waiting

for you to enter some lines. We'll use the ECHO command to

display a friendly message. ECHO displays any text that fol

lows it within quotation marks, just like the PRINT statement

in BASIC. One difference is that if you want to ECHO only a

single word, the quotation marks aren't necessary.

At an AmigaDOS prompt, enter the following text, press

ing RETURN after each line: ,

echo "Hello!" ^—■»

echo "I am your friend, the Amiga"

echo "personal computer." . >

After the last line, press CTRL- \ (back slash). This key is '<J
the one to the left of the BACK SPACE key. CTRL- \ tells

AmigaDOS that you're finished, and that it should finish writ- | \

ing and close the file. This key represents EOF, for End Of k^

File.

To confirm that you've typed the file correctly, enter

TYPE Hello

136

n
AmigaDOS Batch Files

O

P""} You should see the same lines you typed. Now you can start
this simple program:

^ EXECUTE Hello

' - -' This should print on the screen:
Hello!

j™"J I am your friend, the Amiga

' personal computer.

Using ED

It would be nice to have the Amiga actually speak this greet

ing. Rather than typing in a whole new file, we'll use ED, the

screen editor, to make the simple changes we're interested in.

Enter

ED Hello

This runs ED and also loads the batch file named Hello.

When you start ED, you can give it the name of any file to

edit. If the filename doesn't exist, it will be created; otherwise,

the file is automatically displayed on the editor screen. (In

cidentally, AmigaDOS has another text editor called EDIT, but

it's not as easy to use as ED.)

We'll make the Amiga speak the ECHO messages aloud

by taking advantage of the system's built-in speech synthesis

via the AmigaDOS SAY command (added to AmigaDOS ver

sion 1.1). To learn more about SAY, just enter SAY by itself to

enter an interactive mode with onscreen instructions.

After you start ED by typing ED Hello, the batch file we

previously entered should be on the screen with the cursor at

the beginning of the first line. ED is a full-screen text editor,

so you can move the cursor anywhere within the file (but not

P"! past the last line). To insert some text, just start typing. The
DEL and BACK SPACE keys can be used to delete characters.

Move the cursor to the second ECHO line and press RE-

j\ TURN. This inserts a blank line. Cursor up to the blank line

and enter

_ SAY HELLO!

■■ You don't need to press RETURN at the end of the line since

you already did this to open up a line for typing.

[~) Now cursor to the end of the file and type

SAY I am your friend, the Amiga personal computer.

n
137

u
Chapter 4

LJ

(Notice that SAY is the only AmigaDOS command that j [
doesn't require you to enclose text containing spaces with

quotation marks.) This is how your screen should look:

echo "Hello!" M
say Hello!

echo "I am your friend, the Amiga"

echo "personal computer." ^ j

say I am your friend, the Amiga personal computer.

With the cursor at the end of the file, press the ESC key.

An asterisk (*) should appear. Press the X key, then RETURN.

This exits ED and saves your changes back to disk.

Finally, type EXECUTE Hello to try out your talking batch

file.

Although these techniques are sufficient for simple

editing, ED has dozens of editing commands. For example,

CTRL-B (press CTRL and B at the same time) blanks out and

deletes the line the cursor is on. ESC-J-RETURN joins two

lines together. Space doesn't permit a discussion of all these

commands, but if you like to experiment, refer to the abbre

viated ED reference chart accompanying this article.

Startup-Sequence

A special AmigaDOS batch file, called the startup-sequence, is

executed automatically when you boot up an AmigaDOS or

Workbench disk by inserting it at the Workbench prompt.

Startup-sequence normally just displays a message, then

launches the Workbench, and ends the command line interface.

To edit this batch file, enter

ed s/startup-sequence

This runs ED and calls up the file "startup-sequence" \ i

from the S subdirectory. This subdirectory, which can also be (—'

accessed as the S: device, is a convenient place for batch files.

Just as AmigaDOS by default searches for AmigaDOS com- | j

mands in the C subdirectory, the EXECUTE command first ^J

looks for a batch file in the S subdirectory. If AmigaDOS can't

find the batch file in this subdirectory, it looks for it in the j j

current directory. So, no matter what your current directory is, *—<

you can always use your batch file if you place it in the S

directory on your startup disk. i j

When you first load startup-sequence into ED, you'll see I—'
something like this:

LJ

AmigaDOS Batch Files

PI echo "Workbench disk. Release 1.1"
echo " "

echo "Use Preferences tool to set date"

r^ echo " "
LoadWb

endcli > nil:

P*J Since this message appears every time you start up your

disk, you may want to change the ECHO statements for a

personalized message. Likewise, if you'd rather use

AmigaDOS instead of the Workbench, delete the last two

lines. The "> nil:" sequence makes AmigaDOS throw away

the output of a command; here, the message "CLI task 1

ending."

Startup-sequence is a good place to put personalized com

mands. For example, if you like to keep your command direc

tory in RAM for speed and convenience, you could insert

these lines above the LoadWb line:

makedir ram:c

copy c to ram:c all quiet

cd ram:c

This copies all of the AmigaDOS commands from the C

subdirectory on the floppy disk into a C subdirectory on the

RAM disk. It also changes the current directory to the C

subdirectory in RAM:, so any AmigaDOS commands you type

from then on will be loaded from RAM: instead of from the

floppy. In effect, this turns AmigaDOS into a memory-resident

DOS, with all commands intrinsic instead of extrinsic.

AmigaDOS responds much faster this way. However, this also

uses up quite a bit of memory, so you may want to copy only

the commands you use frequently.

M Another useful startup action is to set the date and time.

You can always do this with the Preferences tool or by open-

ing a CLI and using the DATE command. However, it can be

jj more convenient to enter the date when you first turn on your

Amiga, allowing all files subsequently saved to be stamped

with the current date and time. Just insert this line into

f""| startup-sequence:
date ?

J~l The ? operator can be used in place of the parameter of a

'- - ! command. Instead of specifying the date, ? prompts the user

to enter the date. It also displays the template for the date

- ■' 139

Chapter 4
u

L)

command (TIME,DATE,TO=VER/K:). If you like, use ECHO j j

to display your own prompt, and > nil: to discard the template: *—'

echo "Please enter the date and time/7

echo "DD-MMM-YY HH:MM:SS" \ \

date > nil: ? ^

From then on, whenever you boot up from this disk, you'll re

spond to the prompt by typing something like this: \ \

27-jan-86 15:12

which automatically sets the system clock.

Variable Parameters

You can also send special options to your batch file. You enter

these options on the command line along with the EXECUTE

command. Just as with variables in BASIC, you can manipu

late these parameters symbolically.

Let's say you'd like a batch file that gives you complete

information on a file. It uses LIST to display the information

about the file and TYPE to display the file. You would use a

command like EXECUTE SHOW RODEO to display the file

RODEO. Use ED SHOW or COPY * TO SHOW to create this

batch file:

.KEY name

LIST <name>

TYPE <name>

.KEY (don't forget the leading period) sets up a name for

substitution text. Whatever you typed on the same line with

EXECUTE is substituted wherever you use <name>. You must

use the angular brackets, or LIST and TYPE would look lit

erally for the file "name".

After creating this batch file, type this at an AmigaDOS \ j

prompt: {—

EXECUTE SHOW S/STARTUP-SEQUENCE

The result is the same as if you had typed LIST S/STARTUP- Lj
SEQUENCE followed by TYPE S/STARTUP-SEQUENCE.

Other AmigaDOS commands let you check to see ^ (

whether the user has entered a specific string and whether a i 1
file exists. To prevent an error message, we can check to see if

the file exists before we use LIST and TYPE: , ,

.KEY name LJ
IF EXISTS <name>

LIST <name> , .

140 L-J

n
AmigaDOS Batch Files

(■"! TYPE <name>

! [ELSE
ECHO "<name> does not exist!"

|-*1 ENDIF

Notice the use of IF, ELSE, and ENDIF. Looks like Amiga

BASIC, doesn't it? In fact, the AmigaDOS IF-ELSE-ENDIF

p| commands function very much like BASIC'S. When the IF con

dition is true, AmigaDOS executes the following statements;

otherwise, the following statements are ignored. ELSE exe

cutes the statements following it only if the preceding IF was

false. ENDIF cancels conditional processing and returns to

executing all commands.

Any Parameters Missing?

Here's how to use the IF EQ option to test for the existence of

a command-line parameter. If there is no parameter, <name>

is null, so "<name>z" is simply "z". We use NOT to reverse

the test. If the parameter "<name>z" is NOT equal to "z",

then we must have a command line parameter. (We can't just

test IF <name> NOT EQ " ", since EQ wants two parameters,

and the null string " " is not a parameter, but the lack of one.)

.KEY name

IF <name>z NOT EQ z

LIST <name>

TYPE <name>

ELSE

ECHO "You didn't give me anything to SHOW/'

ENDIF

Although you can't use leading spaces in the actual batch

file, it's easier to follow the IF-ENDIF structures when you use

pi indentation. Just don't type in the leading spaces. This version

- of the batch file SHOW checks both for the existence of the

filename and for the presence of the filename parameter:

P| .KEY name
IF <name>z NOT EQ z

IF EXISTS <name>

r~[LIST <name>

1 1 TYPE <name>
ELSE

p—I ECHO "<name> does not exist!"

I I ENDIF
ELSE

_ ECHO "You didn't give me anything to SHOW."

I) ENDIF
141

u
Chapter 4

u

You can use more than one parameter in the .KEY state- j j

ment, just as many commands, such as DATE, accept two

inputs.

If the user doesn't enter anything for the parameter, you j j

can assign a default value using either .DEF or $. If you use

.DEF, the default phrase is used throughout the batch file. In __

this example, SHOW displays itself if you don't give it a \ I

filename.

.KEY name

.DEF s/show

LIST <name>

TYPE <name>

You can use $ to substitute a default value only for the

current substitution. Several batch commands may use the

value in different ways, so each command may have its own

default value. In the following example, LIST displays the

whole directory if <name> is null, but TYPE types the file

"TEMP" if <name> is null:

.KEY name

LIST <name>

TYPE <name$temp>

Labels and Branching

You can jump forward to a label with the SKIP command.

You'd typically use SKIP along with an IF condition if you

want to skip over a block of statements that shouldn't be exe

cuted if the IF was true. You declare the label with LAB. SKIP

can't skip backward, only forward to a LAB statement. You

can usually use IF and ELSE to accomplish the same thing,

though.

.KEY name LJ
IF exists <name>

TYPE <name> .

SKIPToMyLou } J
ENDIF

ECHO "<name> doesn't exist/'

LAB ToMyLou | }
echo "Finished." L—1

An EXECUTE command can execute another batch file, or

even itself. This permits backward looping to some degree. j j
Nested batch files can be quite handy. You can test and debug

n

n
AmigaDOS Batch Files

n

j| individual batch programs, then execute them together from a
master execute script:

— EXECUTE Greeting

I i EXECUTE GetDate
EXECUTE Assignments

The individual files could themselves contain other EXE

CUTE references.

ASSIGNing Shortcuts

If you're using EXECUTE a lot, you may grow weary of typing

it. You can always rename EXECUTE to something short like

x, but other batch programs may contain EXECUTE state

ments, requiring you to rename it back. Instead, you can use

the ASSIGN command to assign any filename to a device

name.

ASSIGN x: sys:c/EXECUTE

You can now use x: whenever you want to use the EXE

CUTE command. (The prefix sysx/ makes sure that EXECUTE

can be found no matter what directory you're in.)

The device name you create should not conflict with an

existing one. To get a list of the current assignments, just type

ASSIGN. You may want to ASSIGN d: c:list for a convenient

and quick shorthand for directories (c: is synonymous with the

C directory). You can then just type d: to get a LIST.

ASSIGN can be so handy for this kind of thing that you'll

probably want to include your own sequence of ASSIGN com

mands within startup-sequence. If you put your ASSIGN

statement within startup-sequence, you'll get these assign

ments for every session. Just remember that ASSIGN can be

used only to attach a device name to a particular filename.

ASSIGN d: "clist quick" doesn't seem to work. Although

LIST is a filename in the c directory, the "quick" parameter is

not part of the filename.

n

n

H

n
143

Chapter 4

u

Table 4-1. Common ED Commands I I

Immediate Commands (Hold Down CTRL and Press Key):

CTRL-A Insert line at cursor position (—

CTRL-B Delete current line j I
CTRL-D Scroll text downward

CTRL-E Move cursor to top or bottom of screen

CTRL-N Delete character at cursor jf

CTRL-O Delete word or series of spaces —f
CTRL-U Scroll text upward

CTRL-Y Delete to end of current line

Extended Commands (Precede by Pressing and Releasing ESC):

B Move cursor to bottom of file

E/stringl/string!/ Exchange stringl with string!

EQ/stringl/'string!/ Exchange, but query first

F/string/ Find string

J Join current line with next line

Q Quit without saving text

T Move cursor to top-of-file

X Exit, save text

144

u

u

u

u

u

D

O

D

O

a

o

□

a

o

n

< \

Graphics
Sheldon Leemon

H
There are three primary approaches to Amiga graphics.

The most fundamental level is via the system hard

ware, the custom display chips. The next level up is

the operating system Kernel graphics routines, which provide

the most primitive level of software support for the machine's

graphics capabilities. At the top level sits the user interface

known as Intuition.

Although Intuition takes care of many facets of the ma

chine's interaction with the user, one of its primary functions

is the maintenance of the windowing system that facilitates

the multitasking capabilities of the Amiga. While it is quite

possible to write programs that directly access the display

hardware or use the lowest-level operating system routines,

such programs "take over" the machine. They will not be able

to coexist with other applications, thus defeating the whole

purpose of the Amiga's multitasking operating system (OS).

This chapter will deal primarily with Amiga graphics at

the highest level, the graphics which are compatible with In

tuition. Most of the examples given will be written in Amiga

BASIC, which affords good access to almost all of the OS

graphics features supported under Intuition. Since Amiga

BASIC provides direct access to the OS Kernel routines, there

will also be some discussion of the most useful of those

routines as well.

_ Display Modes

) \ The Amiga graphics hardware offers several ways to adjust the
display format. Two levels of horizontal resolution are avail-

^ able, high resolution and low resolution. In high-resolution

f \ mode the display is made up of 640 dots of color horizontally.

In low-resolution mode the display is only 320 pixels across,

_ each dot being twice as wide as in high-resolution mode.

t I There is no special "text only" display mode on the
Amiga. Text is drawn on the graphics screen. Therefore, the

_ horizontal resolution has a dramatic effect on the size in

/ I which this text appears on the screen. In hi-res mode, a maxi

mum of 80 characters can fit into a single line of text when

__ using the system default Topaz 8 font, and 64 characters when

n

Chapter 5
u

using the Topaz 9 font. In lo-res mode, only half as many *i \

characters can fit on a line as in hi-res mode.

There are also two levels of vertical resolution. The stan

dard (noninterlaced) mode provides 200 lines vertically. Inter-) j

lace mode provides 400 lines of vertical resolution by means

of a hardware "trick." Normally, the display is formed by a

beam of light that starts at the top of the screen and scans one) {

line at a time from right to left until it gets to the bottom of s '
the screen. Sixty complete scans occur every second. In inter

lace mode, after every even first scan is finished, the beam of

light is moved down half a line so that the odd scans are

interlaced between the lines left by the even scans.

Although this interlacing doubles the vertical resolution, it

cuts the refresh rate (the number of complete scans per sec

ond) in half since it now takes two passes to update the entire

display. One result is that in interlace mode the display tends

to "flicker," or vibrate. The amount of vibration depends to a

large extent on the colors being displayed. An interlaced

screen showing black text on a white background is almost

unwatchable. The best results are generally obtained when

using colors that have as little contrast as possible in bright

ness levels.

Just as horizontal resolution has an effect on the amount

of text that may appear onscreen, so does vertical resolution.

Normally, in noninterlaced mode, a maximum of 25 lines of

text may appear on the screen when using the system default

Topaz 8 font, 22 when using the Topaz 9 font. In interlaced

mode, twice as many lines fit onto the screen as in non

interlaced mode.

The third factor to consider in setting up a new display

screen is color resolution: the number of colors that can be 1 j

displayed at any one time. This is determined by the number (—'
of bit planes allocated to the display. A bit plane is an area of

memory which holds the information concerning which color \ I

is to be shown at each dot position of the screen display. Since '—;
a bit (or binary digit) can hold either the number 0 or 1, each

bit plane increases the number of colors that can be displayed | J

by a factor of two. If one plane is used, each dot can be one of '—'
two colors. If two planes are used, up to four colors can ap

pear onscreen at any one time. ! /

The maximum number of colors available depends on the '—i
horizontal resolution of the screen. In hi-res mode, up to four

u

n
Graphics

j (bit planes may be used, for a total of 16 colors onscreen at

once. Normally, in lo-res mode up to five bit planes may be

used, for a maximum of 32 colors. There are certain special

/} graphics modes in which six planes may be used, but these
~ are esoteric and will not concern most users.

In determining how many bit planes to use, there are a

/ (number of tradeoffs to consider. Each bit plane consumes its

share of valuable RAM. In lo-res mode, each plane requires

8000 bytes of RAM. High resolution or interlacing doubles the

requirement to 16,000 bytes. Using both high resolution and

interlacing quadruples the number of bytes used to 32,000 per

plane. Therefore, a 640 X 400 display that has four bit planes

(allowing up to 16 colors) uses almost 128K of memory for the

display alone. In a 256K system, such a display would con

sume virtually all of free RAM.

Besides using a lot of memory, hi-res displays that use a

lot of bit planes can slow down the microprocessor as well. A

good example of this is when you use the built-in speech syn

thesis while a hi-res screen with four bit planes is being dis

played. The voice sounds very scratchy and rough indeed.

That's because the job of updating the display places a heavy

load on the processor.

Both of these concerns affect the capabilities of the Amiga

as a multitasking machine. Obviously, it is going to be much

more difficult to run other programs simultaneously if yours

leaves no free memory or burdens the processor unduly. This

is not to say that you should never use the more memory-

consumptive display modes. Rather, you should not use them

indiscriminately.

Because graphics displays use so much RAM, it is best to

("""! have a 256K RAM expander installed on your Amiga if you

— plan to program graphics. This is especially true when

programming graphics from BASIC. Therefore, some of the

r") more complex BASIC examples in this chapter require more

— than a 256K system.

J—j Screens

— ' The Amiga's display coprocessor, the copper, allows it to
change all of the characteristics of the display on a line-by-line

C"I basis. This means that segments of differing horizontal, verti-

r— cal, and color resolution may appear on the screen at once.
These segments of differing displays must be confined to hori-

H 149

Chapter 5

zontal stripes that extend across the complete width of the \ (

screen. While it is technically possible to change display ^^
modes in the middle of a horizontal line, such a display is

inherently unstable and therefore impractical. In effect, you \ /

may not have an area of high-resolution display and an area <—;
of low-resolution side by side.

The device that Intuition, the user interface, uses to define \ J

screen segments with differing display characterics is known {—
as a screen. A screen must be as wide as the display. Though

it can be any number of lines tall, if it is shorter than the dis

play, it must sit at the bottom of the display, not at the top or

middle. Since Amiga BASIC does not handle short screens

well, we will be dealing only with full-sized screens.

The default screen is known as the Workbench screen. It

is a high-resolution, noninterlaced display, which uses two bit

planes, for a maximum of four screen colors. This is the dis

play used by the Workbench and CLI (Command Line Inter

preter). The color combinations used for this screen are those

that have been set with the Preferences program. If none have

been set, the Workbench screen uses the system default colors

of blue, white, black, and orange.

When you start Amiga BASIC, the BASIC interpreter does

not open its own screen. Rather, the Output and List windows

are drawn on the Workbench screen. Unless you specify

otherwise, all of the output from your program will be dis

played in a window having the display characteristics of the

Workbench screen.

However, there are several advantages to using the Work

bench screen for your programs. It's convenient to use because

you don't have to do anything to set it up—it's already there.

Also, you don't have to allocate memory for a new screen in \ j

addition to the display memory used for the Workbench t—'

screen (which will be there in any case). Using the Workbench

screen allows easy access to the Workbench or CLI; you just (j

use the depth arrangement buttons in the corner of the win- ^—'

dow to send your window behind the Workbench. Finally, this

arrangement is a reasonably good tradeoff of system resources. j ;

It has high resolution for 80-column text and two bit planes '—1
for a touch of color, but not enough to hog all of the system's

memory. > ;

Still, there will be cases when you'll want to custom-tailor l—J

the display characteristics to suit your needs. This means set-

150 u

Graphics

n

n

ting up a custom screen. Amiga BASIC provides the SCREEN

command for this purpose. The syntax of this command is

SCREEN screen—number, width, height, depth, mode

The first value, screen—number, is a number from 1

through 4, which is used to identify the screen for the purpose

of opening windows (see the section on windows below). The

width and height values should be set to the full size of the

display. The width should be set to 320 for a lo-res screen and

640 for hi-res. The height should be 200 for noninterlace

mode and 400 for interlace mode. Other values will cause

strange and unexpected things to happen.

The depth value is a number from 1 through 5 that is

used to specify the number of bit planes to use. This in turn

determines the number of different colors available at any one

time. Each additional plane doubles the number of colors

available. The number of colors available for each depth value

is as follows:

Depth

1

2

3

4

5

Number

of Colors

2

4

8

16

32

Remember that in high-resolution mode, the maximum

number of bit planes that can be used is only four. Low-

resolution screens can use five bit planes.

The final value to be specified in the SCREEN command

is the mode. There are four different display modes available

from Amiga BASIC. The meaning of each of the allowable

mode values is as follows:

1 Low resolution, noninterlaced

2 High resolution, noninterlaced

3 Low resolution, interlaced

4 High resolution, interlaced

For example, to set up a low-resolution screen without

interlacing that can display up to eight colors simultaneously,

you could use the command

SCREEN 1,320,200,3,1

When you open a screen with the SCREEN command,

BASIC allocates display memory for it. When you are finished

151

Chapter 5

u

with the screen, you may free up that display memory with \ [

the SCREEN CLOSE command, which uses the syntax (—}

SCREEN CLOSE screen-number

In the example above, you could close the screen with the 1 '
statement

SCREEN CLOSE 1 \ >

Windows

A screen can be thought of as the backdrop which defines the

conditions for the display. While the screen determines what

kind of display is possible, graphics are not normally drawn

directly on a screen. Once a screen has been established, it is

possible to open up windows on top of that screen and to

draw in these windows. Amiga BASIC does not allow you to

use a screen until you have opened a window on it.

In Amiga BASIC, graphics output always goes to the win

dow that is currently active. The default is the BASIC Output

window, the one that appears on the left side of the screen

with the word BASIC in its title bar when you start up the

BASIC interpreter. But it is possible to open and close your

own graphics windows, either on the default Workbench

screen or on your own custom screen.

To open a new window, you use the WINDOW com

mand, whose syntax is

WINDOW windozv-num [, [title] [,[size] ^attributes]

[,screen—num]]]]

The first value, window—num, is an identification number by

which you may refer to that window later on. You use this

window number to close the window with the WINDOW

CLOSE command and to direct output to it via the WINDOW j |

OUTPUT command. "—)
You may use any number from 1 upward for your

window_num. Number 1, however, is reserved for the Output J I

window that BASIC uses. While you can CLOSE this window {—'
and reOPEN it like other windows, it still has a special signifi

cance since it is the only window in which the user can type i j

immediate-mode BASIC commands. Moreover, a program *—'
does not have absolute control over this window, since its

comings and goings are affected by the Show Output item on j /

the BASIC menu bar. If there is no Output window currently '—I
open, BASIC tends to be fussy about the syntax used to open

152 l—'

Graphics

\ J one. Since default values do not always apply to the Output

' window, you may have to specify values that are listed here

as optional.

p"| Be careful when using the default Output window for

' - your program's output. Remember that the default window

has a size gadget that lets the user change the size of the win-

<-~> dow at any time. Therefore, if it is important that your win-

' ■ dow be a certain minimum size (as it almost always is), either
open a second window or reopen window number 1 to the

requisite size.

A title is an optional string expression that will be dis

played in the window's title bar. If you omit this expression,

there will be no title (and there may not be a title bar, either,

depending on the value chosen for attributes). Window 1, the

Output window, is an exception. It displays the name of the

program, or the word BASIC in its title bar if you omit to spec

ify your own title.

Another optional value that you may specify is the size

and position of the window. If you omit this value, your new

window will cover the entire display screen, except when you

open window 1 on the Workbench screen. In that case, the

Output window defaults to its previous size.

You specify the size and position of the window by

describing the coordinates of the top left and bottom right cor

ners of the window. The format for this description is

(left,top)-(right,bottom)

Recall that the display is 640 pixels (dots) wide in high-

resolution mode and 320 pixels wide in low-resolution mode.

When describing the left and right coordinates for the screen,

horizontal position 0 is at the left edge of the screen, and 319

Pj or 639 is at the right edge, depending on whether low- or
high-resolution mode is used. The height of the display is 200

r—) lines noninterlaced or 400 lines interlaced. In describing the

; \ top and bottom coordinates, line 0 is at the top of the display,

line 199 or line 399 is at the bottom, depending on whether or

r not the display is interlaced.

J \ This would lead you to believe that the correct description

for a full-sized window would be (0,0)-(639,199) for a high-

^^ resolution, noninterlaced display. But you must also take into

/ \ account the space required for the border line that is drawn

around the window and for gadgets like the title bar and the

1 -1 153

Chapter 5

U

sizing gadget. Because of these requirements, the highest line < j

number that you can specify in your description of the bottom <—>

line of the window is 186 for a noninterlaced screen and 386

for an interlaced screen. The highest value that you can specify i j

for the right side of the window is 631 for a high-resolution <—>

screen and 311 for a low-resolution screen. If you attach a siz

ing gadget to your window as described below, this gadget is ^ ,

drawn in the right border of the window and further reduces (—I

the possible width of the window. A window that contains a

sizing gadget can have a maximum horizontal value of 617 if

on a high-resolution screen or 297 if on a low-resolution

screen.

To summarize, here are the proper descriptions for the

largest possible windows:

(0,0)-(631,186) Hi-res, noninterlaced window without sizing

gadget

(0,0)-(617,186) Hi-res, noninterlaced window with sizing gadget

(0,0)-(631,386) Hi-res, interlaced window without sizing gadget

(0,0)-(617,386) Hi-res, interlaced window with sizing gadget

(0,0)-(311,186) Lo-res, noninterlaced window without sizing

gadget

(0,0)-(297,186) Lo-res, noninterlaced window with sizing gadget

(0,0)-(311,386) Lo-res, interlaced window without sizing gadget

(0,0)-(297,386) Lo-res, interlaced window with sizing gadget

The attributes value is used to specify which of the stan

dard window gadgets will be attached to the window that you

are opening. These include the sizing gadget, the drag bar, the

depth arrangement boxes, and the close box. The sizing gadget

appears in the lower right corner of the window and allows

the user to change the size of the window. The drag bar ap

pears in the title bar at the top of the window; it allows the

user to move the window around on the screen if the window \ j
is smaller than the screen.

Note that if you don't attach this gadget to the window

and don't specify a title for the window, there may be no title \ \
bar at all at the top of the window. The depth arrangement

boxes appear in the upper right corner of the window, and can

be used to send the window to the back of the screen (the j j
dark box) or to bring it to the front of the screen (the light col

ored box). The close box is located in the upper left corner of

the window and allows the user to close the window entirely j \
by clicking on the box.

154 u

n

n

Graphics

i—> In addition to specifying which of these gadgets to attach

i I to the new window, the attribute value also lets you choose
whether or not you want the contents of the window to be re-

<—, drawn after the window has been covered by another window

' J or has been resized. This is very convenient, but may be costly
in terms of memory usage. If you specify that you wish the

r—) window to be refreshed, BASIC must reserve enough memory

II to save the entire image of the window in memory, regardless

of how much of the window is displayed.

Here is a list of the numbers that can be used for the

attribute values and their meanings:

Attribute

Value Attribute

1 Window contains a sizing gadget.

2 Window contains a drag bar gadget.

4 Window contains a depth arrangement gadget.

8 Window contains a close gadget.

16 Window contents are saved and redrawn when the

window is covered or resized.

Any or all of these values may be used. To attach more

than one gadget to your window, add their attribute values to

gether. For example, use an attribute value of 3 if you want a

window to have both a sizing gadget (1) and a drag bar (2).

Any number 0-31 is a valid attribute value. If you use 0 as the

attribute value, you will get a plain window with a border

around it (and a title bar, if you have given the window a ti

tle). If you do not specify a value here, the default value of 31

(which provides all of the gadgets and screen refresh) is used.

The last option value for the WINDOW command is

screen-.num, the number of the screen upon which you wish

nthe window to be drawn. If you do not specify a value here,

the default Workbench screen (whose screen—num is 1) will

be used. To place the window on a custom screen, use the

r—^ screen number that you specified as the first value of the

' 1 SCREEN command used to create that screen.
When you open a window with the WINDOW command,

nnot only is a new window created, but two other things hap

pen as well. First, this window is brought to the front of the

screen and becomes the active window (the window whose ti-

<—) tie bar is shown in solid lines). Then this window becomes the

/ \ current Output window. From now on, the output from any

155

Chapter 5 •—'

u

graphics or text commands will be directed to this window, , .

until the program redirects output to another window. 1 !
It is possible to make an existing window the current

Output window without bringing it to the front of the screen , .

by using the WINDOW OUTPUT command. The syntax of I I
this command is WINDOW OUTPUT window—num, where

window—num is the window number assigned as the first value ,

of the WINDOW command that created the window. It is also ' 1

possible to bring an existing window to the front of the dis

play and make it the current window with the WINDOW com

mand. The syntax for this form is WINDOW window—num, with

no other values specified. If the attribute value for that win

dow is 16 or higher, the contents of the window will be re

stored when the window is brought forward.

When dealing with multiple windows, the WINDOW

function can be used to check which window is active, which

is the current Output window, the size and depth of the cur

rent Output window, and location where the next text charac

ter will be drawn. See the dictionary of Amiga BASIC words

in Chapter 2 for further details on the WINDOW function.

To close a window, use the WINDOW CLOSE statement.

The syntax for it is WINDOW CLOSE window-num. When

you use this command to close the current Output window,

the visible window that was previously the current Output

window becomes current once more. Note that this differs

from what happens when the user of a program closes a win

dow by clicking on the close gadget. In that case, the closed

window remains the current window, and graphics output

goes nowhere at all. A program can check to see whether the

current Output window has been closed by using the WIN

DOW function. If WINDOW(7)=0, the current window has

been closed, and the program should make another window J j
current.

Color Selection |_j
Now that we have a canvas for our graphics displays, we have

only one more subject to discuss before we can start drawing:

How do we select the colors we'll want to use? j j
Remember that the number of colors possible on a given

screen depends on the number of bit planes of display mem

ory allocated for that screen. One bit plane allows two colors, [f
two bit planes four colors, three bit planes eight colors, and so

156 LJ

~~ Graphics

r—» on. In essence, this means that if there are three bit planes, the

1 I display memory for each dot position on the display screen
can hold a number from 0 through 7. This number does not

<—» refer directly to a color, using a code where 0 is black and 1 is

J I white. Instead, the number at the screen dot position refers to
a color register.

<—«) The color registers may be thought of as a set of 32 pens,

I I each of which may be filled with colored ink in any of the

4096 shades that can be displayed on the Amiga. Register 0

always holds what is normally thought of as the background

color; any dot position whose display memory holds the num

ber 0 will display this color. When you wish to use another

color to draw a line or a point, you specify the pen (color reg

ister) that is to be used in drawing it. Whatever color ink it

currently contains is the color that the pen will draw.

Unlike ink, however, the color of a dot drawn on screen

can change after you have drawn it. When the display mem

ory for a screen dot holds the number of a particular pen, that

dot is whatever color is in the pen at any given moment, not

the color that was in the pen at the time the dot was drawn.

So, if you use pen 1 to draw a line, and that pen contains the

color red, the line will be red. But if you change the color in

pen 1 to green after you've drawn the line, the line you drew

(and, not incidentally, everything else onscreen that was

drawn with pen 1) will instantly become green.

The two factors which determine what color will be

drawn on the screen, therefore, are the pen you are using for

the drawing and the color used by that pen. You assign a pen

number to the Amiga's drawing pens to choose a pen with

which to draw. There are two primary drawing pens, the fore-

p^ ground pen and the background pen. The foreground pen is

J i used when drawing single points or solid lines. When you are

drawing dotted lines or text, the background pen is used in

_ addition to the foreground pen. Also, the background pen is

t \ used to color the entire current Output window when the

command CLS is used to clear the screen.

The COLOR command is used to set the color register for

j (each of the drawing pens. The syntax for this command is

COLOR [foreground—pert—number] [, background—pen—number]

p"j where foreground—pen—number and background—pen—number

- are the numbers of the pens (color registers) used by the fore

ground and background pens, respectively. Before a COLOR

n 157

Chapter 5

u

statement is issued, the foreground pen defaults to pen 1 and

the background pen to pen 0. I 1
The other consideration involves determining the color

with which each pen will draw. Colors are chosen by mixing ,

various levels of the colors red, blue, and green. Each color j \
register holds one of 16 color levels for each of these colors.

This means that there are 4096 possible colors from which to

choose. 1 I
In Amiga BASIC, you set the color for each pen with the

PALETTE statement:

PALETTE pen—number, red—value, green—value, blue—value

The value pen—number specifies the color register whose

color you wish to change. The values red—value, green—value,

and blue—value are the levels of each of these three primary

colors you wish to use. These are expressed as fractions rang

ing from 0 (the lowest level, using none of that color) through

1 (the highest level of that color). Although, in theory, the 16

levels could be represented by dividing by 15, in practice,

Amiga BASIC does not convert the fractions to color levels

quite evenly. The following table shows the values that we

will be using with the PALETTE statement and the range of

values that can be used to produce the same color level.

Color Palette Range of

Level Value Acceptable Values

0.00 to 0.03

0.04 to 0.09

0.10 to 0.15

0.16 to 0.21

0.22 to 0.28

0.29 to 0.34

0.35 to 0.40

0.41 to 0.46 \j
0.47 to 0.53

0.54 to 0.59

0.60 to 0.65 \ \

0.66 to 0.71 ^
0.72 to 0.78

0.79 to 0.84 i |

0.85 to 0.90 UJ

0.91 to 1.00

Since there are 4096 possible combinations, it is impos-) f

sible to describe each available combination or explain exactly *—'

158 U

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.00

0.05

0.1

0.2

0.25

0.3

0.4

0.45

0.5

0.55

0.6

0.7

0.75

0.8

0.9

1.0

H
Graphics

how to find a particular shade. In general, however, you

should remember that the higher the color level, the brighter

the color, and the lower the level, the darker the color. Thus,

PALETTE 0,0,0,0 sets pen 0 to black, while PALETTE 0,1,1,1

sets it to white. You may lighten a color by raising the two

other colors in equal proportions. PALETTE 0,1,0,0 sets pen 0

to a bright red, while PALETTE 0,l,.3,.3 lightens it to a rose

color. To darken the original red color, you could try PAL

ETTE 0,.5,0,0.

When you are unsure of what colors to mix, it may help

to start with the nearest primary color mixture and experi

ment. These are the primary color mixtures:

PALETTE 0,0,0 'black

PALETTE 0,0,1 'blue

PALETTE 0,1,0 'green

PALETTE 0,1,1 'cyan

PALETTE 1,0,0 'red

PALETTE 1,0,1 'magenta

PALETTE 1,1,0 'yellow

PALETTE 1,1,1 'white

If you do not specify a color change for a particular color

register, the default color will be used. The default values for

each of the 32 pens are listed below:

v [

} \

Pen

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Red

0

1

0

1

0

1

0

1

0.4

0.9

0.55

0.9

0.3

0.55

0

0.75

0

0.8

0

Green

0.3

1

0

0.5

0

0

1

1

0.1

0.3

1

0.7

0.3

0.1

1

0.75

0

0.1

0

Blue

0.6

1

0.1

0

1

1

1

1

0

0

0.05

0

1

1

0.5

0.75

0

0.1

0

Color

Dark blue

White

Black

Orange

Blue

Magenta

Cyan

White

Dark brown

Red-orange

Lime green

Gold

Blue

Violet

Blue-green

Gray 12

Black

Red

Black

159

Chapter 5

Pen Red Green Blue Color

19

20

21

22

23

24

25

26

27

28

29

30

31

1

0.25

0.3

0.4

0.45

0.5

0.55

0.6

0.7

0.75

0.8

0.9

1

0.75

0.25

0.3

0.4

0.45

0.5

0.55

0.6

0.7

0.75

0.8

0.9

1

0.6

0.25

0.3

0.4

0.45

0.5

0.55

0.6

0.7

0.75

0.8

0.9

1

Tan

Gray 4 (dark)

Gray 5

Gray 6

Gray 7

Gray 8

Gray 9 (medium)

Gray 10

Gray 11

Gray 12

Gray 13

Gray 14 (light)

White

u

u

u

LJ

U

Keep in mind that the same color palettes are used by ev

ery window in a screen. When you change the pen colors with

the PALETTE statement, you affect the color of every window

that appears in the same screen as the current Output win

dow. The change is limited to that screen, however, and win

dows in other screens will not be affected.

Drawing Points

Now we're ready to draw something. The simplest drawing

commands, PSET and PRESET, color a single dot on the

screen. The two commands are identical except that PSET uses

the foreground pen by default, and PRESET uses the back

ground pen. The syntax for these commands is

PSET [STEP] (x,y) [,pen]

PRESET [STEP] (x,y) [,pen]

There are two ways to indicate where you want the dot

drawn. The first is to use absolute horizontal and vertical co- . >

ordinates. The horizontal coordinates range from 0 at the left 1—>
edge of the screen through a maximum of 631 or 311 at the

right edge of the screen, depending on whether your screen is i j

high resolution or low resolution. Remember that if you have <.—;

a sizing gadget in the right border of the window, the maxi

mum is cut to 617 or 297. The vertical coordinates range from > »

0 at the top of the screen through 186 or 386 at the bottom, 1 >
depending on whether the screen is noninterlaced or inter

laced. If there is no title bar, the coordinate at the bottom of , ,

the screen is 195 (noninterlaced) or 395 (interlaced). So, to put 1 1
a white dot (the default color of the default foreground pen)

LJ

H
Graphics

n

n

n

p"j midway down the left edge of the standard Output window
on the Workbench screen, you would use the command

PSET (0,98)

To erase that dot (by drawing over it with the background

pen), you could use the command

PRESET (0,98)

The other way to specify the point at which to draw the dot

is to indicate that you wish to use relative coordinates by includ

ing the keyword STEP. Relative coordinates specify a position

relative to the last dot drawn. If none have yet been drawn,

the position is relative to the middle of the Output window

(including the borders). For a full-sized, low-resolution,

noninterlaced window, for example, this position would be

(160,100). A positive horizontal coordinate indicates that the

dot will be to the right of the last one, while a negative co

ordinate positions the dot to the left. A positive vertical co

ordinate means that this dot will be lower than the last one,

and a negative vertical coordinate means it will be closer to

the top. For example, if the last dot drawn was at (100,50), the

command

PSET STEP (-10,20)

would draw the next dot at (90,70). If the last dot drawn was

at position (150,90), the command

PSET STEP (-40,-10)

would draw a dot at (110,80). Relative coordinates are ex

tremely useful when you want to draw the same image in a

number of different places, or if you aren't quite sure where

the image will be drawn.

P"} Let's say, for example, that you are drawing an image in a
window that has a sizing gadget. If the user leaves the win-

dow alone, the right edge may be at position 600. But if he or

f\ she shrinks the window, its right edge may be only at position
400. You can find the right edge with the WINDOW function

and set the first point accordingly. By using relative co-

P"| ordinates for the rest of the drawing statements, they will all
then be positioned properly, regardless of where the right

edge of the window is.

p""j The other advantage of using relative coordinates is that
they can make it easier to change your program. If you later

decide that you want to move an image a few pixels over from

] * 161

Chapter 5
u

u

its original location, it is much easier just to change the start- | f

ing point than it is to change the coordinate for every point. < '
Both the PSET and PRESET commands take an optional

pen value. That value, if specified, selects the pen to be used j I

in drawing the dot. If none is specified, the PSET command

uses the color register associated with the foreground pen, and

PRESET uses the color register associated with the background) [

pen. The foreground and background pen values default to

color registers 1 and 0, respectively. These assignments can be

changed at any time, however, by using the COLOR statement

(see above). Note that when you specify which pen to use,

PSET and PRESET can be used interchangeably since the only

difference between them is the default pen that each uses.

Sometimes it is useful for a program to be able to tell

which pen was used to color a particular location in a win

dow. Amiga BASIC provides the function POINT (x,y) which

is the same as the operating system routine called ReadPixel.

For the purposes of demonstrating how to use an operating

system graphics routine, well use ReadPixel.

From BASIC, you may access an operating system graph

ics routine by using the LIBRARY statement to let BASIC

know how to find the routine and how to interact with it. In

this case, the correct form of the statement is

LIBRARY "graphicsJibrary"

When this LIBRARY statement is used, BASIC gets infor

mation about the location of the system graphics routines from

a file called "Graphics.bmap". This file is included on the

Amiga BASIC disk, in the BasicDemos directory, and must be

present in the current disk directory when the program .

containing the LIBRARY statement is run. ,

Since ReadPixel is a function that returns the number of l^J
the pen used to color a particular dot, you must also use the

DECLARE FUNCTION statement to let BASIC know that it

must search the graphics library for this function. To declare])
the ReadPixel function, use the command

DECLARE FUNCTION ReadPixel&() LIBRARY j .

Note that we refer to the routine as ReadPixel&. The am- '—

persand following the name of the routine indicates that

ReadPixel is a long integer. This specification is necessary be- j j

cause BASIC places the address of the operating system rou- —*
tine in the variable ReadPixel&, and an address cannot be

162 LJ

H
Graphics

longer than a long integer. If you forget to make the name of

the routine a long integer, BASIC will return a "Type Mis

match" error.

Now we are ready to call the ReadPixel routine. The

proper syntax by which to call this routine is

Pen& = ReadPixel& (RastPort&/x&,y&)

The value RastPort& is the address of the window's

RastPort, a data structure that the operating system uses to

keep track of graphics in that window. The address of that

structure is returned by the function WINDOW(8). The x& and

y& values stand for the horizontal and vertical coordinates of

the point that we want to read. Just as it is important to in

dicate the variable type in the name of the routine, it is also

important that the values passed to the routine are of the cor

rect type. In general, these values should be integers.

The following short sample program puts all of the steps

together and shows how to read the pen value used at a

particular coordinate:

LIBRARY "graphics.library"

DECLARE FUNCTION ReadPixel&() LIBRARY

RP&=WINDOW(8) 'Find RastPort address

PSET (100,50,3 'Draw at 100,50 with Pen 3

Pen&=ReadPixel&(RP&,100,50) 'Read dot at 100,50 into Pen&

PRINT Pen& 'Should be 3, for Pen 3

This program draws a dot at (100,50) with pen 3, then reads

the pen value at (100,50) into the variable Pen&. The value of

Pen& is then printed to confirm that the pen number has been

correctly read.

Drawing Shapes

Drawing single points is the least of the Amiga's abilities.

Amiga BASIC and the operating system also have commands

that allow you to draw lines and entire geometric shapes such

as rectangles, squares, circles, ellipses, and polygons.

You use the LINE command to draw lines or rectangles.

The syntax of this command is

LINE [[STEP] (xl,yl)] - [STEP] (x2,y2), [pert-number] [,b [f]]

You must specify two pairs of coordinates for the LINE com-

mand, one for the starting point and one for the ending point.

These coordinates can be absolute coordinates, relative co-

163

u
Chapter 5

u

ordinates, or a combination of absolute and relative. For ex- ! (

ample, the statements ^

LINE (30,50) - STEP (40,40)

LINE STEP (0,0) - STEP (-40,40) |_|

first draw a line from (30,50) to (70,90), and then draw a line

from that point to (30,130).

The value pen—number can be used to indicate the pen to LJ
use in drawing the line. If no pen is specified, the foreground

pen is used as the primary drawing pen.

Besides drawing lines, the LINE command can be used to

draw rectangles. By adding the letter b after the pen number,

you can indicate that you want a box to be drawn. When this

option is invoked, the first pair of coordinates indicates the top

left corner of the box, while the second pair determines where

the lower right corner will be placed. For example, the

statement

LINE (100,50) - STEP (50,50),,b

draws a box from (100,50) to (150,50) to (150,100) to

(100,100) to (100,50), using the foreground pen color.

If you use the letters bf instead of just b, the box will be

filled in with the color selected. We'll discuss filled shapes

below.

To review what we've presented so far, here are a couple

of short example programs. The first uses the LINE and PSET

commands to draw three lines in different colors. It uses the

default Output window that sits on the 640 X 200 Workbench

screen.

LINE (50,50)-STEP (100,50) 'draw first with foreground pen (1)

LINE STEP (0,0)-STEP(-100,50),3 'second line drawn with pen 3

FOR y = 50 TO 150) \

PSET (50,y),2 'third line with pen 2 I 1
NEXT

END

The second program draws the same three lines, but this 1—/
time in a new window on a low-resolution screen which has

its own custom color palette. It also uses the ReadPixel routine i {

to read each dot in a rectangular area that contains parts of Lj
the three lines and then resets each point to a new color.

When the drawing is done, the program waits for the user to < {

click the mouse button and then closes the new window and uJ
screen.

LJ

n
Graphics

j[LIBRARY //graphics.library//
- [DECLARE FUNCTION ReadPixel&() LIBRARY

SCREEN 1,320,200,2,1 '320 X 200 lo-res, 4-color screen

ft WINDOW 2,,,0,l 'Full-screen window, no gadgets
- RP& = WINDOW(8) 'This window's RastPort address

PALETTE 0,1,1,1 'White background

P7 PALETTE 1,1,0,0 'red
1] PALETTE 2,0,1,0 'green

PALETTE 3,0,0,1 'blue

LINE (50,50) - STEP (100,50) 'draw first with foreground pen (1)

LINE STEP (0,0) - STEP (—100,50),3 'second line drawn with pen 3

FOR y = 50 TO 150

PSET (50,y),2 'third line with pen 2

NEXT

FOR y& = 50 TO 150

FOR x& = 49 TO 100

Pen& = ReadPixel&(RP&,x&,y&) 'read pen for each point

PSET (x&,y&), 3—Pen& 'and complement

NEXT x&

NEXT y&

WaitForClick: IF NOT MOUSE(O) THEN WaitForClick

WINDOW CLOSE 2 'close the window

SCREEN CLOSE 1 'and the screen

END

One of the graphics library routines, PolyDraw, can be

helpful in drawing shapes by connecting a number of lines. To

use this routine from BASIC, you must first open the graphics

library with the statement

LIBRARY "graphics.library"

as explained above. Once the library is open, you may call

pi PolyDraw with the BASIC statement

CALL PolyDraw& (RP&, coordinate—pairs, array—address)

j—, where RP& is the RastPort address of the window, WINDOW(8).

i \ The other values specify the points to be drawn. To use Poly
Draw, you must first set up an array of short integers. This

(_«, array must hold the coordinates of each point which is to be

) \ connected by a line. For example, if you wanted to use Poly-

Line to draw a line from the current pixel position to (100,100),

-_ then to (120,70), then to (90,50), you could set up an array

! I POINTS%() where POINTS%(0)= 100, POINTS%(1)= 100,
POINTS%(2) = 120, POINTS%(3)= 70, POINTS%(4)= 90, and

* » 165

u
Chapter 5

LJ

POINTS%(5)=50. You would then call PolyDraw with the J^j

statement

CALL PolyDraw& (RP&AVARPTR(POINTS%(0))

The number 3 indicates that there are three pairs of co- i—
ordinates. It is important to remember that the proper value

for the coordinate—pairs value is not the size of the array, but * »

the number of coordinate pairs (half the size of the array). The 1—I
second value to pass is the address of the array, which can be

found by using the VARPTR function.

PolyDraw uses the current location of the pixel cursor as

its starting point. This location depends on where the last

point was drawn; if none were drawn, it defaults to (0,0).

Rather than leaving things to chance, you will probably want

to move the pixel cursor to the correct starting location before

calling PolyDraw. This can be accomplished with a call to

Move, another operating system routine. Move merely sets the

pixel cursor without doing any drawing. Here's the proper

way to call this routine from BASIC (the graphics library must

be opened first):

CALL Move& (RP&, x&,y&)

RP& is the address of the window RastPort—WIN-

D0W(8)—and x& and y& are the horizontal and vertical co

ordinates at which the pixel cursor is set. Although Move

appears to have no effect on relative coordinates used with

LINE and PSET (BASIC appears to keep its own internal pixel

cursor), it has a definite effect on the positioning of BASIC

text. Preceding a PRINT statement with a call to Move allows

you to position text at precise coordinates rather than at a

particular character position.

The following short program shows how to draw an ^ j

eight-sided figure using PolyDraw. It uses a custom low-

resolution screen and shows how to use the COLOR com

mand with CLS to clear the window to a particular color. I i

LIBRARY "graphics.library"

SCREEN 1,320,200,4,1 '320 X 200 lo-res, 16-color screen (,

WINDOW 2,,,0,l 'Full-screen window, no gadgets M
Rp&=WINDOW(8) 'Window's RastPort address

COLOR 9,1 'foreground to red, back to white

CLS 'clear screen to white \ I

166 LJ

n
Graphics

DIM points%(16)

FOR p=0 TO 15

READ d

points%(p)=d 'put coordinate pairs in array

NEXT

DATA 180,50, 210,80,10,120, 180,150

DATA 100,150, 70,120, 70,80,100,50

CALL Move& (Rp&,100,50) 'move pixel cursor

CALL PolyDrawfc (Rp&,8,VARPTR(points%(0))) 'draw polygon

WaitForClick: IF NOT MOUSE(O) THEN WaitForClick

WINDOW CLOSE 2

SCREEN CLOSE 1

END

The BASIC command used to draw circles, ellipses, and

arcs is the CIRCLE command. The syntax of this command is

CIRCLE [STEP] (x,y),radius [,peti—number [,start-angle,end-angle

[,aspect—ratio]]]

The only values that are required are the coordinates of the

center point and the radius of the circle. The center co

ordinates may be expressed as an absolute, for example,

(50,50), or relative to the point where the last dot was drawn,

for example, STEP (50,50)—50 dots to the right and 50 dots

below the last position drawn. After the circle is drawn, the

pixel cursor remains at the center point of the circle, even

though no dot is drawn there. This means that you can draw

concentric circles by specifying a center point of STEP (0,0) for

each circle, as the following program demonstrates:

CIRCLE (100,100), 20

FOR R=27 TO 100 STEP 7

CIRCLE STEP (0,0), R

NEXT

The radius value is the radius of the circle, expressed in

pixels. Note that the vertical radius will not be the same as the

horizontal radius. Since there are 640 pixels across and only

200 lines vertically on the Workbench screen, a circle that was

100 pixels wide and 100 pixels high would be tall and skinny,

not round. Therefore, the CIRCLE command automatically

scales down the vertical radius to make the circle appear

round. You can change this scaling with the aspect—ratio

value, discussed below.

The pen_number value designates the pen that you want

167

u
Chapter 5

u

used to draw the circle. If you do not specify a pen number, | |
the foreground pen is used as a default.

The start_angle and end—angle values allow you to draw

only a portion of the circle or ellipse. The values designate the j [
starting and ending angles of the arc, expressed in radians.

Since there are 2n radians in a circle, the permissible values

range from 0 through 2tl The point described by a value of 0] j
is the rightmost point on the circle. As the value increases,

you move around the circle counterclockwise. The value for

the point at the top of the circle is n/2, that for the left of the

circle is n, and that for the bottom of the circle is 3n/2. To

convert degrees to radians, use the formula

radians = degrees/180 * n

The starting angle may be smaller than the ending angle,

but in either case, the arc will be drawn counterclockwise.

This means that the statement

CIRCLE (100,100), 70,, 0, 3.14*3/2

draws three-quarters of a circle (starting at the right and mov

ing counterclockwise to the bottom). If you reverse the starting

and ending points, however, the statement

CIRCLE (100,100), 70,, 3.14*3/2, 0

draws only a quarter circle (starting at the bottom and moving

counterclockwise to the right side).

If either the start_angle or end—angle value is negative,

the value will be treated as if it was positive, but that position

on the arc will be connected by a line to the center of the cir

cle. For example, the statement

CIRCLE (100,100), 70,, -3.14*7/4, -.01

produces a pie-shaped wedge with both ends of the arc con- LJ
nected to the center point. Reversing the starting and ending

points gives you a circle with a wedge cut out of it. , »

The aspect—ratio value describes the scaling used to make 1 i
the circle appear round or elliptical. Since the standard Work

bench screen is 640 pixels wide, but only 200 lines high, a cir- .

cle which is as many dots tall as it is wide will be tall and t^J
skinny, instead of round. So the width is multiplied by the

aspect—ratio value to determine the height. The default value , |

for a high-resolution, noninterlaced screen is 0.44, which uJ

means that the vertical radius will be 44 percent as large as

the horizontal radius. For a low-resolution, noninterlaced , .

168

n
Graphics

fi screen, the default is 0.88, twice as large, because the screen is
half as many dots wide. An aspect—ratio value of less than the

^ default creates an ellipse that is short and fat, while a value

J j that is greater than the default creates an ellipse that is tall

and skinny. If the aspect—ratio value is greater than 1, the

^ horizontal radius may be shortened to preserve the ratio of

l [height to width. This means that the ellipse created by the

statement

CIRCLE (100,100), 70,,,, 10

will be narrower than the circle drawn by the statement

CIRCLE (100,100), 70

Patterned Lines

So far, all our lines have been solid. The Amiga graphics hard

ware, however, is capable of drawing dotted lines as well. The

pattern for line drawing is set with the PATTERN command:

PATTERN [line—pattern] [,area—pattern]

The value which determines how lines are drawn is line—pattern.

The other value, area—pattern, is used for pattern fills and will

be discussed below in the section on filled shapes.

The line_pattern value is an integer expression that de

scribes a mask that is 16 dots wide. For example, the number

65,535 in base two (binary numbers) looks like this:

1111111111111111

If you imagine this as a pattern for line drawing, where

every one represents the position of a dot drawn with the

foreground pen and every zero represents the position of a dot

n drawn with the background pen, you can see that this pattern

will produce a solid line drawn with the foreground pen. The

number 43,690, on the other hand, looks like this:

j—] 1010101010101010

This pattern alternates one dot of foregound color with one

dot of background color.

i"7j Counting in binary does not come as second nature to
most of us. Hexadecimal is somewhat easier to use when

figuring out line patterns, since each digit corresponds to four

J""7 dots. The following table shows the correspondence between

~~ dot patterns and hexadecimal digits:

169

u
Chapter 5

u

LJ

U

LJ

Hex

Digit

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Dot

Pattern

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

By breaking the 16-dot-wide mask down into 4-dot

groups, we can figure out the patterns a little more easily. For

example, if we want a pattern where 3 dots of foreground

color alternate with 1 of background, we choose the pattern

that corresponds to E hexadecimal and repeat it four times.

The proper BASIC statement for such a pattern would there

fore be

PATTERN &HEEEE

Patterns apply to any BASIC or operating system com

mands that use the hardware line-drawing capabilities. This

includes the LINE statement and PolyLine graphics routine.

The line pattern also affects the lines that are used to connect

the starting and ending arcs to the center when negative val- ^ \

ues are used for start—angle and/or end—angle in the CIRCLE I I
command. The following short program shows the effect of

PATTERN on these commands: , ,

LIBRARY "graphics.library" I—\
WINDOW l,,(0,0)-(617,186),31,-l 'Make Output window full size

Rp&=WINDOW(8) 'Window's RastPort address j j

DIM points%(16) ^
FOR p=0 TO 15

READ d j I

points%(p)=d LJ
NEXT

DATA 180,50, 210,80, 210,120,180,150

170 LJ

n
Graphics

n

i t DATA 100,150, 70,120, 70,80, 100,50

PATTERN &HFF00 'even stripes

f--*i COLOR ,2 'white and black

I t CALL Move& (Rp&,100,50)
CALL PolyDraw& (Rp&,8,VARPTR(points%(0))) 'draw polygon

n PATTERN &HFFF0 'mostly foreground

LINE (250,10) - STEP (350,170),3,b 'draw orange and black

box

PATTERN &HAAAA 'dotted pattern

COLOR ,3 'white and orange

LINE (70,10)-(210,40) 'draw dotted line

PATTERN &HF0F0 'smaller stripes

COLOR ,0 'default colors

CIRCLE (425,95), 100,1, -4.71,-3.14 'circle with wedge

removed

END

When you want to switch back to drawing a solid line,

use the command PATTERN -1.

Drawing Modes

Until now we have been doing all of our drawing in BASIC'S

default drawing mode. This mode is known as the JAM2

mode, because it "jams" the color of the foreground pen and

the color of the background pen into display memory at the

same time. Since the default color for the background pen is

the same as that of the display background, it is sometimes

difficult to tell that two colors are being drawn at once. But if

you enter the command

COLOR ,3

p*j in immediate mode, it is quite easy to see that text is printed
in two colors (in this case, white on orange). JAM2 mode is

also evident in patterned line drawing. In JAM2 mode, all of

p"j the bits of the line pattern that are set to 1 are drawn with the

foreground pen, and all of the bits of the line pattern that are

set to 0 are drawn with the background pen. When drawing

|—} solid lines, the JAM2 mode does not quite live up to its name,

since only the foreground pen is used.

There is another major drawing mode on the Amiga that

!~! may be accessed from BASIC by using the operating system

■--■ graphics library. This mode is known as JAM1 mode. As you

might have guessed, in JAM1 mode only one pen, the fore-

t \

171

LJ
Chapter 5

U

ground pen, is used for drawing. This means that the area that | ;
would normally be drawn with the background pen in JAM2

mode is left undisturbed.

With JAM1 mode, it is possible to superimpose text on a | j
graphics image without blotting out a rectangle of that image.

Patterned lines will turn out differently in JAM1 mode from

those in JAM2 mode, since only the bits of the pattern that) (
contain ones will be colored. Solid lines are drawn the same

as in JAM2 mode, however, since only the foreground pen is

used in either case.

There are also two modes which modify the drawing

modes. The first is known as COMPLEMENT mode. In this

mode, neither the foreground nor background pen is used. In

stead, the color of each screen dot where a pen was supposed

to draw is complemented. Complementing the color of a pixel

inverts the bits of its pen number, changing all the ones to ze

ros and all the zeros to ones.

For those who do not think in binary, another way of

looking at the process is that you take the highest possible pen

number, subtract the pen number of the current color, and you

are then left with the pen number of the new color. For ex

ample, if the window that you're drawing on is attached to a

screen that has three bit planes, there are eight drawing pens.

These pens are numbered 0-7. If you want to find the com

plement of pen 2, subtract 2 from 7, which leaves 5. If you are

using four bit planes, the highest pen number is 15, so the

complement of pen 2 would be pen 13.

COMPLEMENT mode is really useful only with JAM1

mode. If you add COMPLEMENT mode to JAM2 mode, areas

that would be drawn with the background pen are com

plemented along with areas that are drawn with the back- s j
ground pen. The result is that the entire area is

complemented, and you end up with solid lines instead of pat

terned lines, and thick solid lines instead of text. j j

The other mode that can be used to modify JAM1 and

JAM2 is called INVERSVID. Used mostly for text, INVERSVID

reverses the roles of the foreground pen and background pen. j J
Text that is drawn in JAM1 mode with INVERSVID has the *"~
background area surrounding the letters colored in with the

foreground pen, while the area of the letters themselves is left \ I

untouched. If COMPLEMENT mode is added to JAM1, the ^
areas that normally would be colored with the background

n
Graphics

n

n

pen are the ones that are complemented. Used with JAM2

mode, INVERSVID merely reverses the colors of foreground

and background pens.

These drawing modes can be set with the operating sys

tem routine SetDrMd (Set Draw Mode). The sytnax for

SetDrMd is

CALL SetDrMd& (RP&,Mode&)

where RP& is the address of the window's RastPort—WIN-

DOW(8)—and Mode& is the value equal to the modes desired.

Use the following table to find the correct value for the modes

desired.

Mode

JAM1

JAM2

COMPLEMENT

INVERSVID

Value

0

1

2

4

You may add these values to form any combination. To

select a combination of JAM1, COMPLEMENT, and

INVERSVID modes, for example, you would use the number 6

(0 + 2+4).

The following program should help you visualize the ef

fects of the various drawing modes:

LIBRARY "graphics.library"

DEFLNG A-Z 'all long integers

SCREEN 1,320,200,3,1 '320 X 200 lo-res, 8-color screen

WINDOW 2,,,0,l 'Full-screen window, no gadgets

PALETTE 0,1,1,1 'White background

PALETTE 1,1,0,0 'red—used for foreground pen

PALETTE 2,0,1,0 'green—used for background pen

r—i PALETTE 3,0,0,1 'blue

i _J PALETTE 4,1,1,0 'yellow—complement of blue
PALETTE 7,0,0,0 'black—complement of white

nMode$(0)="JAMl mode"

Mode$(l)="INVERSVID JAM1"

Mode$(2)="JAM2 mode"

Mode$(3)='INVERSVID JAM2"

|—\ Mode$(4)="COMPLEMENT mode"

5 Mode$(5)="INVERSVID COMP"

LINE (92,17) - STEP (170,120),3,bf 'draw blue box for contrast
I—I PATTERN &HFF00 'striped pattern

' _s COLOR 1,2 'set colors to red and green

n
173

u
Chapter 5

LJ

FOR Row = 0 TO 5 Tor six lines

y=((Row \2)+l)*5+(Row MOD 2 = 0)

LOCATE y,4 'Position for PRINT

Mode = (Row \2) - 4*(Row MOD 2 = 1) t >

CALL SetDrMdfc (WINDOW(8),Mode) 'Set drawing mode I I
PRINT "This is ";Mode$(Row) 'Print text in this mode

LINE (219,y*8-4)- STEP (85,0) 'Draw line in this mode
NEXT y

WaitForClick: IF NOT MOUSE(O) THEN WaitForClick
WINDOW CLOSE 2

SCREEN CLOSE 1

END

Filled Shapes

Not only can the Amiga graphics routines draw lines and

shapes, but they can fill them with color as well. We have al

ready seen one example of filled shapes in the LINE com

mand. As you may remember, if you add the letters bf to the

end of this command, a filled box is drawn. For example, this

line draws a box that is 200 pixels by 100 pixels, using the

color of the foreground pen:

LINE (20,10) - STEP (200,100),,bf

Other Amiga BASIC commands assist you in drawing

filled shapes also. The AREA and AREAFILL commands are

used to draw filled polygons, much like the graphics routine

PolyDraw is used to draw open polygons. PolyDraw requires

you to put the coordinate pairs that define the shape in an ar

ray, but AREAFILL requires that you specify each point in

dividually with the AREA command. The syntax of this

command is

AREA [STEP] (x,y) j_J

The only value that you must specify is a coordinate for one

of the points of the filled polygon. This coordinate may be ex

pressed as an absolute position, such as (10,20), or relative to | J
the last point drawn, STEP (10,-20).

To draw a filled polygon with AREAFILL, issue an AREA

command for each point of the polygon in the order in which <_J

you want the points drawn. You do not have to specify the

starting point twice since the last point will automatically be

connected to the first point. A maximum of 20 points may be ^,
used to define the polygon. If more AREA statements are

used, all but the first 20 are ignored. When enough AREA

LJ
174

n
Graphics

n

f""^ commands have been given to cover all of the points in the
polygon, use the AREA command to connect the points and

fill the polygon.

p"{ The following program shows how to draw a filled ver-
sion of the eight-sided figure used in the PolyDraw example.

FORp=0TO7

I) READ x,y

DATA 180,50, 210,80, 210,120, 180,150

DATA 100,150, 70,120, 70,80, 100,50

AREA (x,y) 'AREA for each coordinate pair

NEXT

AREAFILL 'draw filled shape

The last of the shape filling commands is a general-

purpose floodfill command called PAINT. Unlike the two pre

vious commands that we've discussed, PAINT does not draw

the shape and then fill it in. PAINT colors in an existing en

closed area. The syntax for the PAINT command is

PAINT [STEP] (x,y) [,fill-pen [,border-pen]]

The only required value is the coordinates of the point at

which the filling begins. This coordinate pair may be ex

pressed as an absolute location or relative to the location of

the last dot that was drawn.

The two optional values that you may specify are fill—pen,

the number of the pen which is used to do the filling, and

border^pen, the number of the pen at which the filling stops.

The default value for the filLpen is that of the foreground

pen, while the border_pen defaults to the same value as is

currently in fill—pen.

-_ PAINT is used to fill a shape that is entirely enclosed by a

1 J border color. It starts drawing at the specified coordinates and
spreads out in all directions, filling every dot that is not drawn

,«_ in the border color. As a consequence, if the shape that you

) (choose to PAINT is not completely enclosed by the border
color, the fill color will escape through the gap and spread out

_ to cover the entire window. Likewise, if you have not speci-

i (fied a border__pen that matches the border color, the fill will
proceed right through the border.

_ There are some more serious concerns associated with

f_ \ using the PAINT command. The command will not work with
a window set for "smart" refreshing of the screen. If you try

H 175

Chapter 5
u

u

to use PAINT in a window which was opened with an "attri- j-J

bute" value greater than 15, you will crash the system. Since

the default Output window has an attribute value of 31, it is

not safe to use PAINT in that window, unless you reopen it) I

with a WINDOW command giving a lower attribute value. {

Another point to watch for is specifying coordinates for PAINT

that lie outside the window boundaries. This is particularly t J

easy to do when you are specifying relative coordinates. Such

a PAINT command "fills" areas of memory that do not belong

to the display, and this can also crash the system.

The following example draws a circle, PAINTs it white,

and PAINTs the rest of the window orange.

WINDOW l//(0,0)-(300,186),15 'Reopen Output window to type 15

CIRCLE (150,100)400 'draw the circle

PAINT STEP (0,0) 'fill it with foreground pen

PAINT (0,0),3,l 'fill rest of screen with pen 3

Patterned Fills

Just as the PATTERN command can be used to set a pattern

for line drawing, it can also be used to set a pattern for area

filling. The process of setting up the fill pattern is a little more

complex, since a two-dimensional area is involved. The pat

tern is still 16 bits wide, but it is several lines high as well.

You can choose the height of the pattern yourself, as long as

you stick to a power of 2 (2 lines, 4 lines, 8 lines, 16 lines, and

so on). Since you are working with a screen with a maximum

height of 200 lines, don't make the pattern more than 64 lines

high.

The area fill pattern should be stored in an array of 16

bits (short integers). First, DIMension the array to a power of

2. For example, the proper DIM statement for an eight-element <j i

array called Pattern% is *—'

DIM Pattern%(7)

since the array starts with element 0. J j
Next, you must determine the values with which to fill

the array. You go about this in the same way as in determin

ing the line pattern values. It may help to visualize the pattern | j
if you write it out in binary digits, using ones to stand for dots

filled with the foreground color and zeros to stand for dots

filled with the background color. For example, let's look at a jj
pattern that draws the letters HI.

176 LJ

n
Graphics

n

n

n

H

n

n

n

n

0000000000000000

0110011001111110

0110011000011000

0111111000011000

0110011000011000

0110011000011000

0110011001111110

0000000000000000

= &H0000

= &H667E

= &H6618

= &H71E8

= &H6618

= &H6618

= &H667E

= &H0000

Once we have determined the values for the pattern ele

ments, we assign these values to the array Pattern%. Then, we

set the area fill pattern to the values stored in this array with

the statement

PATTERN ,Pattern%()

When the pattern is set, BASIC makes its own internal

copy of the array. Pattern% is no longer needed, unless you

want to set the pattern to another array and change it back

later. You may ERASE the array after the PATTERN command

is given in order to free up memory.

This sample program fills a box with the "HI" pattern

that we designed above:

WINDOW l,,(0,0)-(250,186) 'size the Output window

DIM pat%(7)

FORp=lTO6

READ d

pat%(p)=d

NEXT

DATA &h667e, &h6618, &h7el8

DATA &h6618, &h6618, &h667e

'put the pattern in an array

PATTERN ,pat%

LINE (16,32)-STEP(192/96),,bf

FOR p=0 TO 7

pat%(p)=-l

NEXT

PATTERN -l,pat%

END

'use the pattern for fills

'draw a filled box

'return the pattern to solid

Notice that at the end of the program, we set the area fill

pattern back to a solid pattern. If we had not done so, the

cursor in our default Output window would have been ren

dered difficult to see. We do not have to change the pattern

back at the end of the next example because it opens its own

177

LJ
Chapter 5

u

window rather than using the default window. Each window j I

has its own private line pattern and area fill pattern.

The area fill pattern is used with all of the commands that

produce filled shapes. The following program demonstrates j I

the three different kinds of patterned fills: boxes, AREAFILLs,

and PAINTing.

SCREEN 1,320,200,4,1 '16-color, lo-res M
WINDOW 2,,,0,l 'full-sized window

PALETTE 0,0,0,0

DIM pat%(7)

COLOR 9,14

f=0:GOSUB Fillpat

CIRCLE (160,100),70

PAINT (160,100)

COLOR 5,6

f=&HA5A5:GOSUB Fillpat

LINE (10,10)-STEP(60,90),,b£

COLOR 11,9

f=&H5555:GOSUB Fillpat

AREA (280,100)

AREA STEP (0,80)

AREA STEP (-80,0)

AREAFILL

'black background

'pattern array has 8 elements

'set pattern

'flood fill

'set pattern

'rectfill

'set pattern

'area fill

WaitForClick: IF NOT MOUSE(O) THEN WaitForClick

WINDOW CLOSE 2

SCREEN CLOSE 1

WINDOW OUTPUT 1

END

Fillpat: 'create a repeating or random fill pattern j I
RANDOMIZE TIMER

FOR p=0 TO 7

IF f=0 THEN pat%(p)=RND*60000&-30000 ELSE pat%(p)=f j [

NEXT L—)
PATTERN ,pat«/o

RETURN j |

Text

As we have seen before, text is drawn on the graphics screen I f

like any other image. This means that graphics and text im- —'

ages may be mixed freely. The various drawing modes (see

178 L

n

n

Graphics

J"~| above) affect text output. And there are some other ramifica
tions of text being treated like any other graphics image as

well. For one thing, the programmer has some responsibility

I"""] for making sure that the text is printed within the confines of
the window in which he or she is working. Try typing the

following one-line BASIC program in the immediate mode:

H FOR x=0 TO 255:?x;:NEXT
You will see that the PRINTed output goes right off the

edge of the screen. To insure that this does not happen in

your program, you may use the WIDTH command to set the

maximum line width. When used for this purpose, the syntax

of the command is

WIDTH [linesize] [,print-tab]

where linesize is the maximum line length, and print—tab is an

optional value that specifies the width of the columns used

when a comma is added to the end of a PRINT statement. The

maximum line length depends both on the width of your win

dow and the size of the text font that you are using. If you

have set the 80-column font as the default using the Pref

erences program, then each character will be eight dots wide,

resulting in a maximum line width of 80 characters for a hi-res

window and 40 for a lo-res window. Actually, since some

room is taken up by the border drawn around the window,

and the sizing gadget (if present), this will be reduced to 75 or

76 characters in hi-res and half that number in lo-res. If you

have set the 60-column font as the default, then the width of

each character will be ten pixels, and the maximum number of

characters must be reduced accordingly.

A related problem is how to tell what size of text will be

|~"j used. The default character size is determined by the settings
of the Preferences program, so there is no clear way to tell

whether BASIC will start up in the 60-column (9 point) or 80-

|~"| column (8 point) font. Since each letter of the former font is
larger than the corresponding character of the latter, text that

has been carefully positioned for one mode might appear com-

r""j pletely out of line in the other.

One way around this problem is to have your program

open a new window and specify the font to be used in that

r™| window. To specify the font to be used in a window, you

must use the operating system routines OpenFont, SetFont,

and CloseFont. The first step is use OpenFont to get a pointer

1 179

u
Chapter 5

LJ

to a font descriptor. Since this call returns a value, you must I I

use the DECLARE FUNCTION statement as well as opening

the graphics library with the LIBRARY statement. The proper

syntax for this call is j I

FontPtr& = OpenFont&(VARPTR(textAttr&(0)))

The one value that must be supplied to the OpenFont c ,

command is the address of a long integer array that holds a I I
description of certain text attributes. The first element of the

array holds the address of a text string, ending with an ASCII

0, that names the font. In the case of the system fonts, the

name is "topaz.font". The other element of the array holds the

height of the font and some additional information about the

font, which for the system font equals zero. The form of the

text attribute array therefore is

textAttr&(0) = SADD("topaz.font"+CHR$(O))

textAttr&(l) = height*65536&

where height is either 8, for the 80-column font, or 9, for the

60-column font.

Once FontPtr& for a particular font has been found, it can

be used to set that font for use in a particular window with

the SetFont call. The syntax of that call is

CALL SetFont&(RP, FontPtr&)

where RP is the address of the window's RastPort structure—

found by the function WINDOW(8)—and FontPtr& is the

pointer found by the OpenFont call.

Finally, when you are through with a particular font, you

should close it with the CloseFont call:

CALL CloseFont&(FontPtr&)

Since text is "drawn" on the graphics screen, it is quite \ |

possible to mix fonts in one window. The following program

opens a window and writes one sentence in each of the two

system fonts: j j

'This program prints both system fonts

DEFLNG a-z 'all variables default to long integer j I
DECLARE FUNCTION OpenFont LIBRARY L—J

LIBRARY "graphics.library" . ,

WINDOW 2,"System Fonts"/(100,50)-(525/100),12 LJ
WIDTH 41

180

n

•

Graphics

FOR height=8 TO 9

textAttr(0)=SADD("topaz.font"+CHR$(0))

textAttr(l)=height*65536&

IF FontPtr THEN CloseFont FontPtr

FontPtr=OpenFont(VARPTR(textAttr(O)))

IF FontPtr THEN SetFont WINDOW(8),FontPtr

PRINT

PRINT " This shows the system font";height;"points high''

NEXT height

WINDOW OUTPUT 1

END

Besides setting a particular type size in a window, you can

assure accurate placement of text with the PTAB command.

The LOCATE command, which is normally used for text

placement, moves the text cursor to even character positions.

The absolute coordinates of these character positions may vary

according to the size of the text font. But PTAB moves the text

cursor to an absolute pixel location. Its syntax is

PTABfr)

where x is the horizontal coordinate for the text cursor. If you

wish to position the text at an absolute vertical coordinate as

well, you must use the operating system routine Move, which

was demonstrated above in the explanation of the PolyDraw

routine in the "Drawing Shapes" section.

SCROLLing

The SCROLL command allows you to "cut" a rectangle out of

a window and "paste" it elsewhere in the scene. The syntax

for this command is

SCROLL rectangle, x-offset, y-offset

The rectangle value specifies the coordinates of the upper left

corner of the area to be scrolled and the lower right corner of

that area. It is expressed in the form

(left,top)-(right,bottom)

where left and right are the horizontal coordinates, and top

and bottom, the vertical coordinates. These are always ex

pressed as absolute coordinates and cannot be expressed rel-

ative to the last position drawn, as can the drawing

commands.

The x_offset and y__offset values show how far to move

the designated area horizontally and vertically. The area to

181

u
Chapter 5

u

which you move the rectangle will be covered by it. The area S |

from which the rectangle is moved will be filled in back- <w"~'
ground color.

The following sample program roughly mimics the main \ |

action of the arcade game Space Invaders, by SCROLLing a *—'
group of shapes from side to side and steadily downward.

'Box Invaders) j
SCREEN 1,320,200,2,1 'lo-res, 4-color screen ^—'
WINDOW 2,,,0,l 'full-size window

PALETTE 0,0,0,0 'black background

PALETTE 2,1,.2,.2 'red

FOR Row = 0 TO 3 'draw 4 rows

FOR Column = 0 TO 7 'of 8 boxes

LINE (Column*30,Row*20)- STEP (20,12),2,bf

NEXT Column, Row

inc= — 1: Column= —1

FOR Row= 0 TO 11

Column = Column—SGN(Column)

inc SGN(inc)

'move boxes vertically

SCROLL (Column,Row*10)-(ColumnH-230,Row*10+82),0,10

FOR Column = 0-80*(inc = -1) TO 80+80*(inc=-l) STEP inc

'move them horizontally

SCROLL (Column,Row*10)-(Column+230,Row*10+82),inc,0

NEXT Column,Row

WaitForClick: IF NOT MOUSE(O) THEN WaitForClick

WINDOW CLOSE 2

SCREEN CLOSE 1

WINDOW OUTPUT 1

END

Saving and Restoring Images (GET and PUT) \ \
Among the most powerful features of the Amiga graphics

routines are those that let you manipulate an entire image at a

time rather than just lines or points. The first of these allows

you to "capture" the image in a rectangular area of the screen

in an array, then to redisplay that image elsewhere in the win

dow (or in another window entirely) instantly. j \

The first step is to draw an image on the screen and store '—'
it in an array by using the GET command. The syntax of that

command is j ;

GET (xl,yl)-(x2,y2), array [(subl[,sub2...])] ^

182 U

■ Graphics

n
The two values that must be specified are the rectangle whose

image is to be stored and the name of the array in which it

will be saved. The area of the rectangle is specified by the co-

<—, ordinate pairs (xl,yl) and (x2,y2). The first pair represents the

! .. I absolute position of the top left corner of the rectangular area,
and the second specifies the bottom right corner.

«—■*> Before we can use an array name to store an image, the

! I size of the array must be declared with the DIM command. Its
size must be large enough to hold all of the display data. In

determining the size to which the array must be DIMensioned,

let's take a look at the format in which the image is stored. If

an integer array is used, the first three words store the width,

height, and depth of the array. Let's take the case of an image

that is 40 dots wide, 20 lines high, and three bit planes deep:

a%(0) - 40

a%(l) = 20

a%(2) = 3

Since the image data is stored in 16-bit words, the width

of the image is rounded up to the next highest multiple of 16

to find the least number of words required to store one line of

the image. In this example, each line requires 3 words of data

(48 bits) to hold the 40 dots. Since there are 20 lines per bit

plane, each bit plane requires 60 words (3 words wide * 20

high) to hold the data. The correspondence of the bit patterns

of the data words and the dots that make up the display is the

same as that described in the section "Patterned Fills," above.

The data for plane 0 is assigned to array elements as follows:

a%(3)=line01eft a%(4)=line0middle a%(5)=line0right

a%(6)=linelleft a%(7)=linelmiddle a%(8)=linelright

H

n

a%(60)=Iinel91eft a%(61)=Iinel9middle a%(62)=Iinel9right

r™^ The same kind of assignment is made for each of the 3 bit

planes. Since there are 3 bit planes, a total of 183 words are

required (60 words/bit plane * 3 bit planes + 3 format words).

P™[For purposes of your programs, if you use short integer

{ arrays, you can use the following formula to find the size:

arraysize - 3 + INT ((16+x2-xl)/16) * (l+y2-yl) * depth

183

Chapter 5 *—'

u

Use this size to DIMension the array using the statement ;

DIM zPh(arraysize) LJ

The GET statement allows you to specify subscripts for

the array. This allows you to create multidimensional arrays, I j

with a picture stored in each subscript. For example, if you LfcJ
want to store five images that each require an integer array of

500 words, you may dimension one array for all five images j j

using the statement form

DIM a%(500,5)

When you fill the array, use the form

GET (xl,ylHx%y2),a%(0,0) 'first image

GET (x3,y3Hx4y4),a%(0,l) 'second image

GET (x5,y5Hx6,y6),a%(0,2) 'third image

Note that the first subscript always stays at zero, while the

second keeps track of the image number.

To redisplay the stored image, you use the PUT state

ment. The form of this statement is

PUT [STEP] (x,y), array [(subl[,sub2...])] [,combination—type]

Here, you need only specify the coordinates of the top left

corner of the image and the name of the array in which it is

stored. The coordinates may be specified either as absolute

points or as an offset relative to the last point drawn. As with

GET, multiple array dimensions may be specified.

What kind of image is drawn when you use the PUT

statement depends a lot on the value you choose for

combination—type. Five types of combinations may be made

from the image values stored in the array and the values that

are currently displayed on screen. Their names are PSET, PRE

SET, AND, OR, and XOR. The concepts behind these

combinations should not be so strange; PSET and PRESET are LJ

graphics commands which we have discussed, and the rest are

logical operators whose functioning is discussed in the dic

tionary of Amiga BASIC words (Chapter 2). (_J
If the PSET combination—type is selected, the entire

rectangular area of the image will appear, exactly as it was ,

saved. This includes the background color as well as any fore- J j
ground colors used. If the PRESET type is chosen, the entire

area of the image appears with each color, including the back- f

ground color, complemented. This means, for example, if the *] \
screen is two planes deep, parts of the image that were stored

184 ■ [J

' Graphics

n
as color 0 would appear in color 3, parts that were stored as

color 1 would appear in color 2, and vice versa. For more

information about complementing, see the section "Drawing

Modes/' above.

Using AND, OR, XOR

The three remaining combination types use the logical op

erators AND, OR, and XOR (exclusive OR) to combine the pen

values of the stored image with those displayed onscreen. In

the AND mode, the bits of the image are logically ANDed

with those of the display (see the Amiga BASIC dictionary in

Chapter 2 for information about the AND operator). The

following chart shows all of the possible combinations of one

pen color ANDed with another in a four-color display:

First Second Resulting

Pen Pen Display Pen

0

0

0

0

1

0

1

2

0

3

The OR combination mode logically ORs the bits of the

image with those of the display. For more information on the

OR operator, see the Amiga BASIC dictionary in Chapter 2.

The following chart shows all of the possible combinations of

one pen color ORed with another in a four-color display:

I"""] First Second Resulting
Pen Pen Display Pen

0 0 0

n o i i
' - ' 0 2 2

0 3 3

mil 1
J \ 12 3

1 3 3

2 2 2

j(2 3 3
3 3 3

R 185

0

0

0

0

1

1

1

2

2

3

0

1

2

3

1

2

3

2

3

3

Chapter 5 '—'

LJ

The XOR combination mode is the default mode used if /

no combination—type is specified. That may be because in the j |
XOR mode the image always appears (though its color may

vary), and the part of the stored image that was drawn in the ,

background pen never appears. Also, the XOR operator is use- J |
ful for some animation because it "undoes" its own effects. If

you PUT an image once using XOR mode, the image appears, s ;

but if you PUT the same image the second time using that j |

mode, the display is restored to its original state before the

PUT took place. See if you can figure out why from the

following chart, which shows all the possible combinations of

one pen color XORed with another in a four-color display:

First Second Resulting

Pen Pen Display Pen

0

1

2

3

0

3

2

0

1

0

The following program graphically demonstrates the vari

ous color combinations resulting from use of the different

combination—types. Another interesting feature of this pro

gram is that the array used by the PUT statement is not cre

ated by a corresponding GET statement. Rather than drawing

the image, we use the same technique as was demonstrated

above to create an area fill pattern. Rows of binary data were

laid out one on top of the other to form a picture. This data is j (

then read into the appropriate elements of the image array. '—'
DEFINT a-z

WINDOW l,,(0,0)-(500,180) j (

DIM man(40)

man(0)=16 'image is 16 bits wide

man(l)=18 'by 18 lines high j)

man(2)=2 'and 2 bit planes deep i—>

FOR x=3 TO 20

READ d 'read image data j ;

man(x)=d 'into the PUT array I—>
NEXT

186 LJ

0

0

0

0

1

1

1

2

2

3

0

1

2

3

1

2

3

2

3

3

n

n

n

n

Graphics

n

n

n

n

n

FOR row= 1 TO 3 '3 rows

FOR col=0 TO 4 'of 5 columns each

LINE (48+100*0)1,9+50*row)-STEP (20,10),row,bf 'draw a box

NEXT col

PUT (50,50*row), man,PSET

PUT (150,50*row), man,PRESET

PUT (250,50*row), man,AND

PUT (350,50*row), man,OR

PUT (450,50*row), man,XOR

NEXT row

WIDTH 60

LOCATE 5,1 'print heading

PRINT PTAB(40) "PSET" PTAB(130) "PRESET";

PRINT PTAB(240) "AND" PTAB(350) "OR";

PRINT PTAB(440) "XOR"

LOCATE 1,1

REM—18 words of image data

DATA &H07E0, &HOFFO, &H1998, &H1FF8

DATA &H1C38, &HOFFO, &H03C0, &HOFFO

DATA &HFFFF, &HFFFF, &HOFFO, &HOFFO

DATA &H1FF8, &H1FF8, &H1E78, &H1C38

DATA &H7C3E, &H7C3E

The next sample program uses the more traditional

method of drawing a picture and storing it into the array to be

used later by the PUT command. To keep the user from seeing

the picture when we first GET it, the PALETTE command is

used to change the foreground pen color to the same shade as

the background pen color, rendering the drawing "invisible."

Also, note that a single two-dimensional array is used to store

the image of all six dice. We can display the proper dice face

by just changing the second array subscript.

DEFINT A-Z

SCREEN 1,320,200,3,1 'lo-res, 8 colors

WINDOW 2,,,8,1 'full-screen window

PALETTE 0,0,0,0 'black background

PALETTE 2,1,0,0 'red foreground

PALETTE 4,0,1,0 'green foreground

PALETTE 5,1,1,1 'white dice spots

PALETTE 3,1,1,1 'white dice spots

GOSUB InitDice 'set up dice image arrays

WIDTH 37: LOCATE 19,6

PRINT "Strike any key to roll again"

RANDOMIZE TIMER 'initialize RND function

yl=80'top line of dice

187

LJ
Chapter 5

u

Rolldice: |

FOR Change=0 TO 5:FOR Die=l TO 2 'use two dice, roll each 6 times I—I
xl=64*Die+40 'set to left or right die

Roll(Die)=INT(RND*6) 'pick a random roll

LINE(xl,yl)-STEP (47,39),Die*2,BF 'blank die j
PUT (xl,yl),Spots(0,Roil(Die)) 'draw spots —
SOUND 10000,.001:SOUND 150,0 'make click

NEXT Die, Change s ,

WIDTH 40.LOCATE 9,1 '—'
'print numbers above dice

PRINT PTAB(117) Roll(l)+1; PTAB(180)Roll(2)+l

CheckForRoll:

'If user closed the window, end

F WINDOW(8)=0 THEN SCREEN CLOSE 1:WINDOW OUTPUT 1:END

IF INKEY$=" " THEN CheckForRoll ELSE Rolldice

InitDice:

REM This subroutine draws the spots of the dice

REM and then GETs the image data into array SPOTS

DIM Spots(500,7), Roll(2)

PALETTE 1,0,0,0

'make foreground=background,

'so spots are invisible

FOR Pair=0 TO 4 STEP 2 'for 3 pairs of dice shapes

FOR Spot=0 TO 3

READ x,y

CIRCLE(x,y),5

PAINT(x,y)

NEXT Spot 'draw two dice

GET(104,80)-(159,119),Spots(0,Pair)

GET(168,80)-(223,119),Spots(0,Pair+l) 'read their data

NEXT Pair

PALETTE 1,1,1,1

CLS 'clear screen and make spots white again

RETURN

DATA 178,86,206,112,127,99,127,99

DATA 206,86,178,112,112,86,142,112

DATA 178,99,206,99,142,86,112,112 j j

Animated OBJECTS (Vsprites and Bobs)
In addition to the more limited types of animation that you j [
can achieve with the PUT and SCROLL commands, Amiga

BASIC contains a number of commands that specifically deal (

with animated graphics objects. Before we discuss these com- J (
mands, a short overview of the fundamentals of these objects

is in order.

188

n
Graphics

p**! There are two general approaches to animation on micro
computers, and the Amiga supports both of them. The first in

volves drawing the objects on the normal bitmap screen. To

|™J create an animated object on the bitmap screen, you must first

save the background image bitmap, draw an object on the

screen bitmap, restore the background image, and draw the

p*| object elsewhere on the screen. On most systems, this method

requires a fair amount of tedious machine language program

ming. On the Amiga, much of the difficulty is alleviated by

the Amiga's hardware and operating system software support.

The Amiga hardware includes a sophisticated device known as

a blitter (or block image transferrer). This device is able to

move whole blocks of bit images at a time, as opposed to

using a program to move the image a single byte at a time.

Using this hardware device, the operating system supports

movable objects called blitter objects, or bobs for short. Be

cause of the operating system support, these objects may be

treated as separate entities, even though they are really part of

the normal bitmap display.

The other class of animation objects is known as sprites.

These are drawn using an entirely separate hardware system

from that of the normal bitmap display. The concept of sprites

should be familiar to users of the Commodore 64, TI-99/4A,

and Atari 400/800 line of computers, all of which support

variations of this concept. Moving sprites is much easier than

moving bitmap images. Their location at any given time is

determined by x and y coordinates stored in a hardware reg

ister. The Amiga hardware supports eight hardware sprites.

Sprites are always displayed in low-resolution mode, regard

less of the current screen resolution vand each is a maximum

i*-j of 16 pixels wide, though they can be any height. They can

1 - ' contain a maximum of three foreground colors and transparent
(background color) each, and each pair of sprites shares a set

f—1 of color registers (pens).

- Many of the hardware limitations of the Amiga's sprites

are overcome by the operating system software that controls

f~] them. The operating system supports the concept of virtual

- -' sprites. Since the display hardware is able to change the dis
play characteristics as each line is displayed, it is possible to

r-j change the position of a sprite after it has been displayed and

' ■ show it again elsewhere lower on the screen. This means that

although there are only eight hardware sprites, each of these

-' 189

u
Chapter 5

u

may be "reused" many times on a single display, making it II

possible to have many "virtual" sprites on screen at one time.

The only limitation on these virtual sprites is that there cannot

be more than four sprites having the same colors in a single] [

horizontal line.

All of the Amiga BASIC OBJECT commands described be

low work with either bobs or vsprites. There are slight vari- j j

ations on how these commands are carried out, however, due *—

to the inherent differences in the nature of these two kinds of

objects. Whether you choose to make an object a bob or a

vsprite will depend to some degree on the needs of your pro

gram. Some of the differences between the two object types

which you should consider are the following:

Size and resolution. Bobs have the same resolution of the

screen on which they appear, while vsprites always appear in

low resolution. Vsprites can be only 16 pixels wide, while

bobs can be virtually any size, so long as you have enough

memory to store their shape data.

Number of objects. You can display as many bobs

onscreen as you want, but only six vsprites of the same color

can appear on a single horizontal line, and only four of dif

ferent colors.

Speed of motion. Vsprites move quickly, but bobs can be

slower, particularly if you are using very large bobs or a lot of

them. Generally speaking, the more bobs, the slower they

move.

Number and selection of colors. Bobs can use the maxi

mum number of colors available on the screen on which they

appear. They are limited to the exact same color selection as

any other bitmap object that is drawn on that screen. Vsprites

can have only three foreground colors and one background j j

color. But these colors can be completely different from the I—J
ones selected for the rest of the screen. The only limitation is

that no more than four vsprites of different colors can appear \ j

next to each other on the display. Vsprites can therefore be '—'
used to add color to a display without using up more bit

planes worth of memory. The additional colors are made i j

available by changing the sprites' color registers as vsprites «—'

move up and down the screen. Since vsprites use the same

color registers as the upper 16 bitmap pen registers, bitmap \ |

objects drawn in these colors may change color as the vsprites '—>

190 u

n
Graphics

n

P"| move up and down. For this reason, it is not advisable to use
vsprites on 32-color screens.

Color priority. Bobs have a selectable priority; you can

J"~j determine which will be displayed in front of the others.

Vsprites always appear in front of bobs.

Hardware system used. Because bobs are part of the nor-

f"] mal bitmap display, they fit much better into the windowing

environment of Intuition. They move when their windows are

moved, they never move outside the borders of their windows

into other windows, and they disappear when their windows

are covered or closed. None of this can be said for vsprites.

Because they use a completely different hardware display sys

tem, they don't stay in their windows and will be displayed

even after the window is closed. They can also cause color

conflicts with the mouse pointer. Because the pointer is ac

tually a sprite, its color registers may be affected when the

operating system software changes the sprite color registers.

This means that the pointer color may be different in one

horizontal part of the screen than in another when you use

vsprites.

Creating and Displaying OBJECTS

The first step in creating a movable object is to define its

shape. This is done by using the Amiga BASIC program

ObjEdit, which is found in the BasicDemos drawer of the

Amiga Extras disk. This program allows you to draw a bob or

vsprite image by using the mouse and then save that image to

a disk file. The format of the disk file that the ObjEdit pro

gram saves is such that it can be read by your program and

used to form a movable object in that image.

p^ Instructions for using the ObjEdit program are found in

■ your Amiga BASIC manual. You should remember, however,

that if you edit a sprite using the program supplied, the image

j—> of the sprite in the editor will be only half as wide as the

1 - vsprite object that appears in your program, because the editor

uses the high-resolution mode (640 dots across), while vsprites

r—> always appear in low resolution (320 across). Also, unless you

alter the program as indicated in the REMarks at the start of

the listing, it will edit only four-color objects.

j—■[Once you have drawn the shape and saved its image to a

■ - file (which for purposes of this example we will name

"ImageFile"), the next step is to read that file into a string in

n
191

u
Chapter 5

u

your program. The command lines that your program may use j I

to accomplish this task are

OPEN "ImageFile" FOR INPUT as 1

Objectlmage$ = INPUT$(LOF(1),1)) {
CLOSE 1 ^

These statements read the entire image file into one long ^ }

string. Once the information resides in this string, it may be (__J

used by the OBJECT.SHAPE command to create an object

having that shape. The syntax for this command is

OBJECT.SHAPE object-nutn, shape-definition^string

where object—num is a number greater than zero that you as

sign to the object to identify it for future commands, and

shape—definition—string is the string into which you have read

the image file information (here, Objectlmage$). Once you as

sign the shape data in the string to the object, that string is no

longer needed, and you may free up the memory it required

by assigning its value to that of the null string (" ").

The OBJECT.SHAPE command also allows you to create a

new object which has exactly the same shape as an existing

object. The syntax for this form of the command is

OBJECT.SHAPE new—object-Jtutn, existing^object—ttum

where the value new—object—num is the identification number

of the new object that you are creating, and existing—object—num

is the identification number of the object whose shape you are

using. When you create a new object using this form of the

OBJECT.SHAPE command, both objects share that memory

area where the image data is shared, and this saves some

memory. In all other ways, however, the two objects are sepa

rate and may be treated as unique objects. As we will see be- ^ ,

low, they may even be of different colors. LJ
Once you have assigned a shape to an object or objects,

you need only to give the OBJECT.ON command in order to . ,

display them. The format for this command is \ '

OBJECT.ON [object-Jium [,object—num...]]

where the values marked object—num are an optional list of j |

the identification numbers of the objects that you wish dis

played. If you supply a list of one or more object numbers,

only those objects will be displayed. If you use the j j

OBJECT.ON command with no object_num values, all objects '

u

n
Graphics

n

P"| that have been defined using the OBJECT.SHAPE command
will be displayed.

To suspend the display of an object temporarily, you may

P| use an OBJECT.OFF statement of the form

OBJECT.OFF [object-num [,object-num...]]

j—| where the values marked object—num are an optional list of

' ' the identification numbers of the objects that you wish to dis

appear. As above, if you supply a list of one or more object

numbers, only those objects will vanish, but if you use the

command with no object_num values, all objects that have

been defined using the OBJECT.SHAPE command will be

turned off.

To disable an object permanently and release all of the

memory associated with maintaining its shape and other

attributes, you may use the OBJECT.CLOSE statement whose

syntax is

OBJECT.CLOSE [object-num [,object-num...]]

where the values marked object—num are an optional list of

the identification numbers of the objects that you wish to dis

able. As before, if you supply a list of one or more object

numbers, only those objects will be closed, but if you use the

command with no object_num values, all objects that have

been defined using the OBJECT.SHAPE command will be

closed.

Setting the OBJECT Color

As mentioned before, vsprites and bobs use different mecha

nisms for determining the colors in which the object will be

displayed. Vsprites use some of the upper 15 color registers

[""I and change the contents of those registers as they move. The
colors that a vsprite will display are determined by the last six

bytes of its ObjEdit file. These six bytes contain three byte

P"j pairs representing the three foreground pens. Each pair has
the red value in the first byte, and the green and blue packed

in the second byte. Each color value is represented by a num-

["""I ber from 0 through 15. The green-blue byte contains a number

that is the sum of 16 times the green value plus the blue

value. In other words,

I I grnblu = 16 * green + blue

The ObjEdit program always sets the colors of the three

n 193

u
Chapter 5

u

foreground pens to white, black, and orange. If you wish to | j
use other colors for your vsprites, you must alter the ObjEdit

program or the file that it produces, or change the color values

in the string after it has been read in from the file. Since the j j
last is the simplest approach, it is the one we will use. The

following program fragment demonstrates how to change the

string. It should appear in your program after the image file j j

has been read into the string and before the OBJECT.SHAPE

command that assigns the image in the string to an object. We

use the colors black (0,0,0), purple (15,0,15), and cyan

(0,15,15), but you can change the red and grnblu values to suit

your needs.

L=LEN(ObjectImage$)

redl = 0

grnblul = 0

red2 = 15

grnblu2 = 0*16 + 15

red 3 = 0

grnblu3 = 15 * 16 +15

Col$=CHR$(redl) + CHR$(grnblul)

Col$ = Col$+CHR$(red2) + CHR$(grnblu2)

Col$ = Col$+CHR$(red3) + CHR$(grnblu3)

MID$(ObjectImage$,L-5) = Col$

Bobs, on the other hand, take their colors from the same

pens as any other normal graphics image on the screen. Which

color pen is used to draw the bob is dependent on the bit im

age data that you create with the ObjEdit program. You can

change these colors with the PALETTE statement, but the rest

of the graphics images that were drawn with the same pen

will change also.

The OBJECT.PLANES command allows you to change the v j

pen used by your bob without changing the the composition '—J
of its bit planes. It is not really useful for vsprites, since their

color selection works differently, as explained above. The syn- j i

tax for this command is LJ

OBJECT.PLANES object-Mum [,PlanePick] [,PlaneOnOff]

PlanePick and PlaneOnOff can be thought of as masks that j j
can change the normal order in which the bit planes are dis

played. PlanePick is used to determine what bit planes are

used for the display. Let's say that you have a two-plane im- j (
age that uses pens 2 and 3, and you want to display it on a

three-plane screen. Normally, the two planes would be dis-

194 LJ

Graphics

n

r*1 played in planes 0 and 1. But you can set PlanePick to display

1 these as two entirely different planes. You chose these planes

by setting PlanePick to the sum of the bit values of the planes

HI in which you wish the object displayed. Each bit value corre

sponds to Tn, where n is the plane number. For example, the

bit value of plane 0 is 1 (2A0), the bit value of plane 1 is 2

J—| (2*1), and so forth. The PlanePick value that corresponds to

' the normal setting of planes 0 and 1 would be 3 (1 + 2). To

display the image in planes 1 and 2, you would set the

PlanePick value to 6 (2 + 4). The part of the image that was

created using pen 1 will now be displayed in the color of pen

2, and the part of the image that was created using pen 2 will

now be displayed in the color of pen 4. The part of the image

that was originally colored in pen 3 (both planes set) will now

be shown in the color of pen 6.

The PlaneOnOff value can be used to further enhance the

selection of colors. Let's say that in the above example, you

wanted to display your object in pen colors 3, 5, and 7 instead

of 2, 4, and 6. Using PlanePick alone, this would not be pos

sible, since each of these colors requires that two color planes

be set. PlaneOnOff lets you set the color planes that were not

chosen in PlaneOnOff. In our example, an image that orig

inally used planes 0 and 1 (pen colors 1, 2, and 3) was

changed to use planes 1 and 2 (pen colors 2, 4, and 6).

PlaneOnOff lets you set plane 0 as well. If you chose a

PlaneOnOff value of 1, which corresponds to plane 0, every

where that a pixel is set in plane 1 or 2 will also be set in

plane 0. This has the effect of adding 1 to the pen values

made possible by PlanePick. If PlanePick is set to 6 and

PlaneOnOff is set to 1, the parts of the object that were orig-

r-f inally drawn in pens 1, 2, and 3 will appear in pen colors 3, 5,

L I and 7 .
When two bobs overlap, there is a question as to which

i—| one is drawn "on top of" the other. Left to its own devices,

' I the operating system will make its own determination based
on the position of the objects. If you wish one object always to

nbe displayed "in front of" others, you may specify this with

the OBJECT.PRIORITY command:

OBJECT.PRIORITY object^nutn, priority

jj where object—num is the identification number of the object,
and the priority value is a number from —32768 to 32767.

'' 195

Chapter 5

u

Objects with a higher priority number are displayed on top of i j

objects with a lower priority number. Note that this command '—'
applies only to bobs; vsprites always appear in front of normal

graphics objects like bobs. \ i

Positioning and Moving OBJECTS

You position your movable objects with the OBJECT.X and i ,

OBJECT.Y commands. These commands use the syntax 1—I

OBJECT.X object—num, xposition

OBJECT.Y object-num, yposition

where object—num is the object ID, and the xposition and

yposition values are the coordinates of the top left corner of

the object. Although vsprites are always displayed in low

resolution (320 pixels across), their xposition values are rel

ative to the screen resolution. If vsprites appear on a hi-res

screen, their visible range of motion is from —15 to 639. This

range is not affected at all by the size of the current Output

window, unlike that of bobs, which can be seen only in the

visible part of their windows. Regardless of the visible range

of the object, the position commands will keep track of an ob

ject's position through the range of —32768 to 32767.

You may find that the position of the objects does not

change immediately when an OBJECT.X or OBJECT.Y is is

sued. If no objects are in motion, you may have to wait until a

motion command or other command that affects the display

occurs.

The position statements also may be used as functions to

determine the current x and y position of an object. The syn

tax for the functions is

xposition = OBJECT.X (object—num)

yposition = OBJECT.Y (object-num) j |

where xposition and yposition represent the current coordinates

for the object whose ID number is object—num. I .

Normally a bob will be displayed if positioned anywhere I—I
within its window. It is possible to further restrict the visible

range of a bob with the OBJECT.CLIP command. The format . ,

of this command is 1—I

OBJECT.CLIP (left,top)-(right, bottom)

where the first pair of coordinates represent the top left corner [j
of the visible area, and second pair specify the bottom right

corner. If you position the bob anywhere outside the specified

196 LJ

n
Graphics

n

H"| area, it will not be displayed. Although clipping does not ap-

' ply to vsprites, the OBJECT.CLIP command sets the bound
aries for the purpose of the collision detection (see below) for

[—"j both bobs and vsprites.

1 While it is possible to move your graphics objects by

changing their x and y positions, it may require a number of

[—| program statements to keep them in motion. Amiga BASIC

provides commands which let you move these objects at a

constant rate of speed with just a couple of statements. These

commands are OBJECT.VX and OBJECT.VY:

OBJECT.VX object-Mum, X—velocity

OBJECT.VY object-Jtutn, y_velocity

The x_velocity and y_velocity values represent the speed of

the object in pixels per second. A positive x value moves the

object to the right and a positive y value moves the object

down. A negative velocity value moves the object in the op

posite direction.

After you have set the velocity for an object, you must

use the OBJECT.START command to set it in motion:

OBJECT.START [object—num [,object—num...]]

If you specify a list of one or more object—num values, only

those objects will start moving. If no object_num value is

given, all previously defined objects will move.

To stop an object, you can use the OBJECT.STOP

command:

OBJECT.STOP [object-num [,object-num...]]

This command will also apply to specific objects only if a list

of object—num. values is furnished. Otherwise, all motion is

n stopped. An object's motion is also stopped when it is made

invisible with an OBJECT.OFF command.

Once an object is put into motion, it will keep going until

f_j it collides with a border or with another object. Such a col-

! i lision has the same effect on the object as an OBJECT.STOP
command. Therefore, if you want to keep the object in mo-

_ tion, you must periodically check for collisions. You can do

.1 I this either by using the OBJECT.X and OBJECT.Y functions to
check the position of the object, or by using the ON COL-

_ LISION command discussed below to change its direction

I I when it reaches the border of the screen. When you have de
tected a collision, you must start up the object again with an

, } OBJECT.START command.

I ! 197

Chapter 5

LJ

Like the positioning commands, the velocity commands j i

also can be used as functions to determine the current velocity '—'
of an object. The syntax of the functions is

x-velocity = OBJECT.VX (object-num) \

y—velocity = OBJECT.VY (object—nutn) (—'

where x_velocity and y—velocity are the current velocities of

object-num that are returned by the function. 1 j
The following example program brings together a number

of the elements discussed above. Since this book cannot trans

mit the equivalent of an image file created by the ObjEdit, we

use a subroutine' called Initlmage to create the string equiva

lent of such a file. The image described by the file is that of

a bob in the shape of a flying saucer. This image is assigned

to two bobs, and the color of one is changed by using the

OBJECT.PLANES command. Both bobs are then positioned

and set into motion.

WINDOW 1/TJnidentified Flying Bobs",(0,0)-(300,186),4

GOSUB Initlmage

'create ShipShape$ from data,

'instead of reading image file

OBJECT.SHAPE 1, ShipShape$ 'create first spaceship

OBJECT.Y 1,50 'position it vertically

OBJECT.VX 1,60 'give it horizontal motion

OBJECT.SHAPE 2,1 'create second ship

OBJECT.PLANES 2,2,1 ' make it white with orange windows

OBJECT.X 2,150 'position white ship horizontally

OBJECT.Y 2,180 'and vertically

OBJECT.VY 2,-45 'give it vertical velocity upward

OBJECT.ON 'display both ships (,

OBJECT.START 'start them moving |_|

FOR delay = 1 TO 2300 'kill time while they move

NEXT delay 1

OBJECT.CLOSE 'wipe out both objects I—

END

Initlmage:

'Create the string equivalent

'of an ObjEdit image file

FOR x=0 TO 89

READ d%

ShipShape$=ShipShape$+CHR$(d%)

198

n Graphics

>—i NEXT

' i RETURN

DATA 0, 0, 0, 0 ,0, 0, 0, 0

PI DATA 0, 0, 0, 2, 0, 0, 0, 32

1 DATA 0, 0, 0, 8, 0, 24, 0, 3
DATA 0, 0

t—i ' Bit Plane 0

' i DATA &H00, &H00, &H00, &H00
DATA &H00, &H00, &H00, &H00

DATA &H00, &H00, &H00, &H00

DATA &H03, &HC3, &HC3, &HC0

DATA &H03, &HC3, &HC3, &HC0

DATA &H00, &H00, &H00, &H00

DATA &H00, &H00, &H00, &H00

DATA &H00, &H00, &H00, &H00

'Bit Plane 1

DATA &H00, &H3F, &HFC, &H00

DATA &H03, &HFF, &HFF, &HC0

DATA &HFF, &HFF, &HFF, &HFF

DATA &HFF, &HFF, &HFF, &HFF

DATA &HFF, &HFF, &HFF, &HFF

DATA &HFF, &HFF, &HFF, &HFF

DATA &H03, &HFF, &HFF, &HC0

DATA &H00, &H3F, &HFC, &H00

Just as the velocity commands allow you to change the

position of an object automatically, Amiga BASIC includes

acceleration commands that allow you to change the velocity

automatically. The format of these commands is

OBJECT.AX object—num, x-MCceleratiott—rate

OBJECT.AY object—num, x-Mcceleration—rate

where X—acceleration—rate and y_acceleration—rate represent

i™"! the velocity to be added to an object's current velocity every

second. In other words, it specifies the velocity change in

pixels per second per second.

J""| The above caution to watch an object once it is set in mo

tion applies even more strongly when you use the acceleration

command. A high rate of acceleration may cause an object to

f~] hit a border very quickly. It may even develop "escape veloc-

' ity," where the object is redrawn at such large intervals that
collision checking no longer works. In such a case, it will not

'—' stop at the border, but keep right on going and disappear from

the display entirely.

n 199

Chapter 5 *—>

u

These commands may also be used as functions to deter- j ;

mine an object's current acceleration rate. The format of the <)

acceleration functions is

x-acceleration—rate = OBJECT.AX (object—num) \ j

y-acceleration—rate = OBJECT.AY (object—num) l—J

where the function returns the x or y acceleration rate of

object—.num. | \

Detecting Collisions

When a movable object collides with another object or with

one of the borders of the window, Amiga BASIC notes the

collision and saves the information about it on a stack. This

stack can hold information about only 16 collisions at a time.

After the stack is full, BASIC ignores any subsequent

collisions.

You can receive several kinds of information about col

lisions from the COLLISION function. The syntax for the vari

ous forms of this command is

object-num = COLLISION (0)

collision—window = COLLISION (—1)

collision-code = COLLISION (object-num)

The first form of the function , COLLISION (0), gives the

object—number of the object that was involved in the collision

whose information is the top item on the stack. It leaves the

collision information on the stack, where it can be retrieved by

a subsequent call of the third form COLLISION (object—num).

The second form, COLLISION (—1), identifies the win

dow in which the collision recorded on the top item of the

stack occurred. It also leaves the collision information on the

stack.

The third form, COLLISION (object-num) is the most J_j
common. It returns a number, collision—code, that identifies

what collided with the object in question during the collision

recorded by the top entry on the stack. In the process, it also ()

removes the item from the stack to make room for new en

tries. If you specify the object_num of an object that was not

involved in the collision recorded on the top of the stack, the { j
collision—code will be 0, indicating no collision, and you will

have lost the chance to find out what happened in that col

lision. Therefore, if you are unsure which object was involved \ \
in the collision recorded on the top of the stack, check it first

with COLLISION (0).

200 Lj

n
Graphics

r—> Besides zero, indicating no collision, other possible

' ' collision—codes include positive numbers, which correspond to
the object_num of another object with which the object col-

r—i lided, and negative numbers, which indicate a collision with

' ^ one of the window borders. The significance of these negative
values is

f""| —1 Object collided with top border
f] -2 Object collided with left border

—3 Object collided with bottom border

—4 Object collided with right border

There is another way to detect collision instead of having

your program check the COLLISION function every so often.

If you use the ON COLLISION command, BASIC will notify

your program every time it detects a collision, and it will cause

your program to execute a specified subroutine after the cur

rent statement finishes its execution. The format of this com

mand is

ON COLLISION GOSUB label

where label is the program label for the subroutine that is to

be executed. You can change the subroutine that is to be exe

cuted at any time by issuing the ON COLLISION GOSUB

command with another label, or disable collision trapping with

the statement

ON COLLISION GOSUB 0

Like other event trapping commands, the ON COL

LISION statement will not actually direct the program to your

subroutine when a collision happens until you give the

command

_ COLLISION ON

' ^ . It will however still place collision event information in its
stack, so when the COLLISION ON command comes, the pro-

r—j gram will be directed to the specified subroutine once for each

(^ collision event that has been stored. After you have given the
COLLISION ON command, you may suspend event trapping

p with the statement

1 COLLISION STOP
fmm^ which will stop it until the next COLLISION ON statement.
/ j To end collision trapping entirely, use the statement

COLLISION OFF

1 j 201

Chapter 5 L~j

u

Normally, Amiga BASIC records collisions between every ^ j

object, and between objects and the window borders. In some <—>

cases, however, you may not want to take any action if certain

objects collide with each other or with the border. You may i ;

not want BASIC to take any notice of these collisions at all. <—i
You can prevent the detection of certain collisions with the

OBJECT.HIT command, which takes the form I j

OBJECT.HIT object-num [MeMask] [,HitMask] ^
where MeMask and HitMask are values whose bit patterns

determine which type of object will collide. Think of MeMask

as a number that defines the collision type of this object, and

HitMask as a number that describes the collision type of the

object with which this object will collide. If you logically AND

the MeMask of one object with the HitMask of another, a col

lision will be detected only if the result is not a zero. In addi

tion, if the HitMask of an object is an odd number (has a one

as the least significant bit), it will collide with borders.

For example, let's take the following four objects:

Object-num MeMask HitMask Collides With

1

2

3

4

0010 (2)

0100 (4)

1000 (8)

0010 (2)

1101

1010

0110

0001

(13)

(10)

(6)

(1)

obj2, obj3, borders

objl, obj3

objl, obj2

Borders only

Object 1 has a HitMask that indicates it collides with all

object types except those that have the same MeMask as it

does. Its HitMask value is 13, which produces a nonzero result

when ANDed with either the MeMask of object 2 (4) or the

MeMask of object 3 (8). But 13 and the MeMask of object 4 (2)

equal 0. Therefore, object 1 collides with both objects 2 and 3,

but not object 4. Since its HitMask is odd, it also collides with

borders.

Objects 2 and 3 have HitMasks with each other's MeMask

bit set in addition to that of object 1. They collide with each

other and object 1, but not with the border, since both are

even numbers.

Object 4 has a HitMask with only the least significant bit

set. It has zeros in the bit places represented by the MeMasks

of all the other objects. Therefore, it collides only with the

borders.

In the above example, none of the objects had HitMasks

indicating that they could collide with another object, unless

202

n

Graphics

that other object also had a HitMask indicating that it collided

with the first. Since the position of the objects will determine

whether object 1 collides with object 2, or object 2 collides

with object 1, it's a good practice to make sure that the

HitMasks of each are set so that both collide with each other

or neither collides with each other. Otherwise, the collision of

the two objects will be reported on some occasions, but not

others.

The following sample program is adapted from the Demo

program which appears on the Extras disk. It demonstrates

many of the commands explained in this section. It creates the

shape of a flying-saucer vsprite from data and changes the

data so that a second vsprite is shown in different colors. It

moves and accelerates these vsprites, and uses collision trap

ping to "bounce" them off the borders. It uses collision mask

ing to make sure that only border collisions are detected, not

collisions between the ships. The demo stops after a certain

number of bounces to make sure that the ships do not reach

"escape velocity" and disappear off the screen.

DEFINT a-z

WINDOW l,"

GOSUB Initialize 'set up sprites

WHILE Running

SLEEP 'do something only when the sprites collide

WEND

OBJECT.CLOSE 'release all objects

PALETTE 0,0,.3,.6 'screen back to blue

END

Bounce:

T = T+1:IF T = 25 THEN Running - 0

s = COLLISION(O) 'which object collided?

IF s = 0 THEN Exeunt 'no more on stack—exit

c = COLLISIONS) 'what did it collide with?

vx = OBJECT.VX(s)

vy = OBJECT.VY(s)

IF (c= -1 AND vy < 0) OR (c= -3 AND vy > 0) THEN

P"j 'object hit top or bottom border
1 OBJECT.VY s,-vy

ELSEIF (c= -2 AND vx < 0) OR (c= -4 AND vx > 0) THEN

j—| 'object hit left or right border

' > OBJECT.VX s,-vx
END IF

r-1 GOTO Bounce 'check for more collisions on stack

203

Chapter 5

Exeunt:

OBJECT.START

RETURN

'make it go again

u

u

u

Initialize:

Running = 1

PALETTE 0,0,0,0

GOSUB Initlmage

'Create ShipShape$ from data

'rather than reading image file

OBJECT.SHAPE 1, ShipShape$

OBJECT.Y 1,20

OBJECT.VX 1,10

OBJECT.VY 1,7

OBJECT.AY 1,1

OBJECT.AX 1,2

L=LEN(ShipShape$)

redl=0

grnblul=0

red2=15

grnblu2 - 0*16+15

red3=0

grnblu3=15*16+3 ' 0,15,15 = aqua

Col$=CHR$(redl)+CHR$(grnblul)

Col$=Col$+CHR$(red2)+CHR$(grnblu2)

Col$=Col$+CHR$(red3)+CHR$(grnblu3)

MID$(ShipShape$,L-5)=Col$

OBJECT.SHAPE 2, ShipShape$ 'create a saucer with new

colors

OBJECT.Y 2,30

OBJECT.VX 2,2

OBJECT.VY 2,2

OBJECT.AY 2,2

OBJECT.AX 2,2

'change color data of vsprite

' 0,0,0 = black

' 15,0,15 = purple

U
'make them visible

'start them moving

OBJECT.ON

OBJECT.START

OBJECT.CLIP (0,0)-(275,184) 'set borders

OBJECT.HIT 1,2,1

OBJECT.HIT 2,2,1 'only collide with borders

ON COLLISION GOSUB Bounce 'set collision trapping

COLLISION ON 'turn it on

RETURN

I J

u

204 u

n

n

n

n

H

n

Graphics

Initlmage:

FOR x=0 TO 63

READ d%

ShipShape$=ShipShape$+CHR$(d%)

NEXT

RETURN

DATA 0, 0, 0, 0, 0, 0, 0, 0

DATA 0, 0, 0, 2, 0, 0, 0,16

DATA 0, 0, 0, 8, 0, 25, 0, 3

DATA 0, 0, 0, 0, 0, 0, 0, 0

DATA 25,152, 25, 152, 0, 0, 0, 0

DATA 0, 0

'Sprite Image Data

'2 bytes wide by

'8 lines high

DATA &H07, &HE0

DATA &H1F, &HF8

DATA &HFF, &HFF

DATA &HFF, &HFF

DATA &HFF, &HFF

DATA &HFF, &HFF

DATA &H1F, &HF8

DATA &H07, &HE0

'Sprite colors

'RGB values are held in two

'hex bytes—OR and GB

DATA &H00, &H00

DATA &H0F, &H00

DATA &H0F, &HF0

205

D

O

D

O

a

o

□

a

o

Chapter 6

Programming

Amiga Sound
Pfailip I. Nelson

D

O

D

O

a

o

□

a

o

H

n

Programming Amiga

Sound
Philip I. Nelson

n

n

n

The Amiga offers more sonic power and flexibility than

any other home computer. As you'll see in the course

of this chapter, you can make a great many different

sounds (including speech) on the Amiga without being a

programming wizard.

We'll begin with a discussion of how Amiga BASIC cre

ates speech, including simple text-to-English translation and

more sophisticated phoneme-based speech with which the

Amiga can speak in any language. Next, we'll look at the

SOUND and WAVE commands, demonstrating how to use

them for music and sound effects. The chapter concludes with

a discussion of advanced sound features and a short example

program written in machine language.

Before you begin to program sound and music on the

Amiga, you must understand how its sound channels are con

nected. As you may have heard, the Amiga has four sound

channels and two stereo outputs. Each channel can generate a

sound (or even multiple tones) independent of the others.

Here's how the four sound channels are connected to the two

stereo outputs:

Figure 6-1. Amiga Sound Connections

Stereo Outputs

Right

i

0 1

>5
2 3

Sound Channels

209

I)

Chapter 6

u

As you can see, the four channels are numbered 0-3. \ i

Channels 0 and 3 are connected to the left stereo output, and {—'
channels 1 and 2 connect to the right stereo output. It's im

portant to keep these relationships in mind since they are) /

wired into the computer and you therefore can't change them '—>

by programming. If your monitor has only one speaker, you'll

want to make sure that all the sounds you create come out t ;

that speaker. If you have two speakers connected to your '—'
Amiga, you can send sounds, music, and speech through one

speaker at a time or through both at once for complex stereo

effects. But now let's make the Amiga talk.

Speech

One of the most revolutionary features of the Amiga is its

ability to speak. To see how easy it is to create synthesized

speech, enter this statement in the BASIC Output window:

SAY TRANSLATE$("My Amiga can talk/0

If this is the first SAY statement you have executed during

this session, the Amiga must first load a program called the

narrator device from disk. When that's done, the computer pro

nounces the phrase clearly. This is the simplest method of

speech generation, and it works in both immediate mode and

program mode. The SAY command tells the computer that

you want it to speak, and the TRANSLATES function supplies

the word or phrase you want to say.

If you use the SAY command, but the narrator program

isn't available on the current disk, the Amiga displays a re

quester box that tells you to insert the appropriate disk. Un

fortunately, if this occurs after you have opened a custom

Output window, the requester box will appear in the original

Output window and may thus be invisible. So, in any program \ \
with speech, it's a good idea to place a SAY statement at the l '
beginning, before the program opens any custom windows, to

allow for this eventuality. I {

TRANSLATES requires that you enclose information (in * '
this case, a string constant or variable) in parentheses. The ex

ample shown above used the string constant "My Amiga can J (

talk." But string variables work just as well and are often more —'

useful than constants. For instance, enter these statements in
the Output window: ! (

210 LJ

n
Programming Amiga Sound

)[Talk$="My "+CHR$(65)+"miga can talk"+CHR$(46)
SAY TRANSLATE$(Talk$)

SAY TRANSLATE$(MID$(Talk$,10,4)+LEFT$(Talk$,9)+MID$(Talk$,13,5))

j~[The TRANSLATES function accepts nearly anything that
would be appropriate to an ordinary PRINT statement: It lets

you concatenate (combine) a string variable from several dif-

p"| ferent elements or manipulate the variable with string func
tions like LEFTS and MID$.

What exactly does TRANSLATES do? To find out, enter

these statements from the Output window:

Talk$="What does this function dor

PRINT TRANSLATE$(Talk$)

SAY TRANSLATE$(Talk$)

The Amiga prints these characters:

WHAHT DAH4Z DHIHS FAH4NXKSHUN DUW.

This combination of letters and numbers may look pe

culiar at first, but it all makes sense to the narrator device.

When you execute a SAY TRANSLATES statement, TRANS

LATES converts the string of English text into a string of pho

nemes—the basic building blocks of spoken English—which

the narrator device needs in order to pronounce the phrase.

We'll take a closer look at phonemes later in this chapter. For

now, note that the SAY command always requires phonemes.

The TRANSLATES function will translate English text into

phonemes. But you can also skip the translation and supply

the phonemes yourself. These statements do exactly the same
thing:

SAY TRANSLATE$("hi there/0

SAY "/HAY4 DHEH1R."

!_ 1 If you don't care to learn about phonemes, you can let the

Amiga perform the translation for you with TRANSLATES.

,—, No matter what sort of string you provide, the computer does

j t its best to convert it into clear, intelligible speech. Considering
the complexity of the task, the TRANSLATES function does an

pi excellent job. Program 6-1 lets you type in any string, hear it

I i spoken, see the resulting phoneme string, and experiment
with any voice parameter.

n

211

Chapter 6
u

u

Program 6-1. Speech Experimenter 1 '

1 Speech Experimenter•

•Set Preferences for 80 columns. , ,

GOSUB Setup

Getit: j /

LOCATE 1,1 <—i

PRINT CHR?(124) 'Phony cursor.

Check=MOUSE(0) 'Read left mouse button.

Key?=INKEY? 'Read keyboard.

'Nothing happening.

IF Key?="" AND Check=0 THEN Getit

•Repeat previous phrase if RETURN pressed.

IF Key?=CHR?(13) THEN GOSUB Sayit:GOTO Getit

•Mouse button was pressed.

IF Check<>0 THEN Change

'Key other than RETURN was pressed.

'Get remainder of input line.

LOCATE 1,12 PRINT Key?;

LINE INPUT Text?

Talk?=Key?+Text?

IF Talk$<>Mquit" AND Talk$<>"Quit" THEN

•Not done yet.

GOSUB Sayit

GOTO Getit

END IF

•Graceful exit.

Talk?="OK. Bye-bye."

GOSUB Sayit

'Close custom window

WINDOW CLOSE 2

END

Sayit:

'Display and pronounce current phrase J{
'with current voice parameters.

LOCATE 1,1

PRINT Talk$ I i

LOCATE 3,1

PRINT SPACE?(70)

LOCATE 3,1

PRINT TRANSLATE?(Talk?)

SAY TRANSLATE?(Talk?),Voice%

LOCATE 1,1

PRINT SPACE?(70)

RETURN

212

n

n

n

Programming Amiga Sound

> Change:

x=MOUSE(l) 'Mouse pointer horizontal coordinate.

y=MOUSE(2) 'Mouse pointer vertical coordinate.

1 Is mouse pointer outside selection zone?

IF y<32 OR y>103 OR x>108 THEN Getit

'Left mouse button was pressed in selection zone.

'Highlight current selection.

This=INT(y/8)-3
PUT (0,Vpos(This)),Box

'Input new value.

GOSUB Lokate

PRINT SPACE?(7)

GOSUB Lokate

PRINT CHR$(32);

INPUT Number

'Check for illegal input.

IF Number<Low(This) OR Number>High(This) THEN
Temp$=Talk$

Talk$="I can't use that number."

GOSUB Sayit

Talk$=Temp$

GOTO Nogood

END IF

'Input is legal, make it current.

Voice%(This-l)=Number

Now(This)=Number

'Branch here for illegal input.
Nogood:

GOSUB Lokate

PRINT SPACE?(8)

GOSUB Lokate

PRINT Now(This)

'Erase highlight box.

PUT (0#Vpos(This))#Box

'Prevent false mouse/keyboard readings.
Check=0

LOCATE 5fl

FOR j=l TO 9

Garbage=MOUSE(0)

(—•) 'Reprint prompts in case of Redo from start err
) \ or.

PRINT Prompt?(j)

x$=INKEY$

ri NEXT
^] GOTO Getit

r—*i Lokate:

(_ 1 LOCATE This+4#16
RETURN

213

u
Chapter 6

Setupt \ i
•Say something before opening custom window. *—'
SAY TRANSLATE? ("hi there.11)

PALETTE 0,.04,.03,.02 , .

PALETTE 1,.9#.93,.94 | [
PALETTE 2,.05,.6,.5

PALETTE 3,.85,.85,.02

WINDOW 2, "Speech Experimenter" } f

•Create highlight box. <~J
LINE (0,0)-(110,7),,bf

DIM Box(100)

GET (0,0)-(110,7),Box

PUT (0,0),Box

'Create highlight box.

LINE (0,0)-(110,7),,bf

DIM Box(100)

GET (0,0)-(110,7),Box

PUT (0,0),Box

•Draw screen and initialize arrays.

PRINT CHR?(124)

PRINT "TRANSLATE? Conversion:"

PRINT:PRINT

Vert=32

FOR j=l TO 9

READ Prompt?(j),Low(j),Now(j),High(j)

PRINT Prompt?(j);Now(j),Low(j);"-";High(j)

'Voice array must use elements 0-8

Voice*(j-l)=Now(j)

Vpos(j)=Vert

Vert=Vert+8

NEXT

LOCATE 15,17

PRINT CHR?(94);SPACE?(12);CHR?(94)

PRINT SPACE?(16);"Current";SPACE?(6);"Legal"

PRINT SPACE?(16);"Value";SPACE?(8);"Range"

LINE (220,28)-(340,140),,b

DATA "Pitch ",65,110,320

DATA "Inflection ",0,0,1

DATA "Rate ",40,150,400

DATA "Gender ",0,0,1 i t

DATA "Frequency ",5000,22200,28000 !)

DATA "Volume ",0,64,64

DATA "Channel ",0,10,11

DATA "Synch mode ",0,0,1 I !

DATA "Synch control ",0,0,2 1—'
'Welcoming message

Talk?="Please type what you want me to say." . ,
GOSUB Sayit I \

Talk?="Type quit when you want to stop."
GOSUB Sayit

RETURN

214

n
Programming Amiga Sound

Program 6-1 begins by speaking and printing some brief

instructions. Note that every sentence is displayed both in

English and in phoneme form. If you enter a new phrase, the

program pronounces it as soon as you press RETURN and dis

plays the phrase in phoneme form as well. You may capitalize

letters if you like, but TRANSLATES doesn't distinguish be

tween lowercase and uppercase. One of the easiest ways to

learn how to use phonemes is to enter words with this pro

gram and observe how TRANSLATES converts them into pho

neme strings. Later in this chapter, you'll find a program that

lets you construct words and phrases directly from phonemes.

Also on the screen, just below the phoneme display,

you'll see all of the current voice array settings, along with the

allowable range of values for each element. To change a voice

setting, press the left mouse button once on the element you

want to change, then enter a value within the range shown to

the right. After changing a voice array element, you can enter

a new phrase or repeat the last phrase (press RETURN with

out entering anything).

The TRANSLATES function has several built-in features

that may not be apparent at first. For example, run Program 6-

1 and enter these phrases:

oc

ok

The narrator device pronounces oc phonetically, but says ok as

okay, just as we do in normal speech. The phoneme string for

oc is AA4K, but for ok TRANSLATES automatically substitutes

the phonemes OWKEY3. Here are some other examples to try:

pi - 3.14159265

"Don't quote me."

#2

2+2=4

4&4=8

$43.21

@6

7%

5 is > 1.

2 is < 9.

.1

.e

e.

e.l

l.e

The narrator device pronounces numbers one at a time:

r—| For example, 51 is said as "five-one," not "fifty-one." The

'---' plus (+) and equal (=) signs are pronounced explicitly as
well. However, the minus sign (—) is treated as a hyphen: The

1 » 215

Chapter 6
u

i /

phrase 5-5 is pronounced as "five-five," not as "five minus

five." The period (.) is pronounced as "point" only when it

comes right before a number. In other cases a period is either

ignored or treated as an end-of-sentence marker that causes a

dropping inflection in the narrator's voice. Table 6-1 contains

all the special combinations pronounced by TRANSLATES.

u

Table 6-1. TRANSLATES Special Features

Symbol Pronounced As

Point (before a number)

< Less than

> Greater than

/ Slash

= Equals

Quote/unquote

Number

$ Dollar

% Percent

& And

Caret

Tilde

I Or

And so on

Several punctuation marks are not pronounced explicitly

by TRANSLATES. The hyphen, which normally connects two

related words or symbols, has the same effect as a blank space.

The period, colon, and semicolon are all treated as end-of-

phrase markers: They cause a pause and a dropping of pitch

in the narrator's voice. Let's try a few examples with Program

6-1 to see exactly what these symbols do. Enter this phrase:

hi there you all

If you don't include an end-of-phrase symbol at the end

of a string, the Amiga pronounces it without dropping the

pitch of its voice. Now add a period at the end.

hi there you all.

With most sentences, this will sound more natural.

TRANSLATES treats the exclamation point and question mark

exactly the same: No extra emphasis is added for an exclama

tion point, and the question mark does not cause the pitch to

rise.

216

u

u

u

u

H

n

n

n

Programming Amiga Sound

hi there you all.

hi there you all!

hi there you all?

If you want to say something in the form of a question

with TRANSLATES, try ending the sentence without an end-

of-phrase symbol. In many cases this sounds more "question-

ing" than a sentence that ends in the normal way. (As

explained below, the question mark and certain other charac

ters have a different effect when you create speech directly

from phonemes without using TRANSLATES.)

If you add a comma to the middle of this sentence, it

sounds even more natural:

hi there you all.

hi there, you all.

Note that the comma causes a shorter pause and a less drastic

lowering of pitch, appropriate for separating closely related

phrases within a sentence. The colon and semicolon have the

same effect as a period:

hi there, you all.

hi there; you all.

hi there: you all.

Changing speech qualities. It's quite easy to give your

Amiga's voice different personalities by changing its pitch,

speech rate, and other factors. This is done by adding an array

reference to the end of a SAY statement. This voice array must

be an integer array and must contain nine elements. Each ele

ment of the voice array controls a different aspect of the nar

rator's voice (Table 6-2).

Table 6-2. Voice Array Elements

Element What It Controls

1

2

3

4

5

6

7

8

9

Pitch

Inflection

Rate

Gender

Sampling frequency

Volume

Channel assignment

Synchronization mode

Synchronization contra

Range

65-320

0-1

40-400

0-1

5000-28000

0-64

0-11

0-1

1 0-2

217

Chapter 6

Program 6-1 lets you experiment with different voice ar- /

ray elements. To change the pitch of the narrator's voice, for ^—'
instance, simply move the mouse pointer onto the word Pitch

in the lower part of the display, then press the selection but- | j

ton once. Now you can enter a new pitch value. If you enter a {—'

value outside the range displayed to the right, the program

speaks and displays an error message and cancels the opera- j i

tion. After making the change, you can repeat the most recent O
phrase or enter a new one as usual.

A SAY TRANSLATES command can take two different

forms. If you are satisfied with the default voice settings, use

the simpler form shown here:

SAY TRANSLATE$(text string$)

It's necessary to create a voice array only when you want

to use custom voice settings. To include custom voice features,

you must use this syntax:

SAY TRANSLATE$(text string$),voice array%

Adding a voice array reference to the end of a SAY

TRANSLATES statement tells the Amiga to speak the phrase

defined by the text string in the way you have specified in the

voice array. Of course, you can use any legal Amiga BASIC

variable name for the array: Way%, DOG%, and v% are all

acceptable.

When a voice array is included, each element of the array

must be within the ranges in Table 6-2. Values outside those

limits cause an "Illegal Function Call" error in Amiga BASIC.

If this error occurs when using a voice array, check each value

to make sure it's within the allowable range. Let's look at each

voice array element in turn.

Pitch (element 1). The first element of the voice array sets j j

the pitch of the narrator's voice—whether it sounds high or *—l
low. The default pitch setting of 110 is considered to be av

erage for a male voice. Pitch values can range from 65 (very j j

low) to 320 (very high). ^
Inflection (element 2). This element of the voice array takes

a value of either 0 (inflected speech) or 1 (monotone). The de- i i

fault setting of 0 causes the narrator's voice to rise and fall ^
naturally as it speaks each word. If you set the inflection value

to 0, the narrator's voice becomes more robotlike. | j

Rate (element 3). The rate value controls how fast the nar- <—[

rator talks, a very important aspect of speech. The normal set-

218 Li

Programming Amiga Sound

<—, ting is 150, but you may specify other values from 40 (very

I __J slow) to 400 (fastest). The speech rate that you choose de
pends somewhat on the comprehensibility of what's being

nsaid and the type of person who's listening. If you're writing a

program for small children, for instance, you'll probably want

to slow it down. To avoid irritating delays in some situations,

^ you may want the narrator to speak fast: In a program written

I.) for sophisticated users, prompts and warning messages can be

spoken quickly. Much faster rates are acceptable when you

display a message as well as speak it since the user then has

two means of comprehending the information.

Gender (element 4). The default setting for this parameter is

0, which selects a "male" voice. Substitute a 1 to switch to a

"female" voice. While it's difficult to describe the difference

precisely, the effect of selecting a female voice is much like

routing the male voice through a highpass filter: The voice's

fuller, low-frequency tones are suppressed, making it sound

lighter -and somewhat more nasal. The female voice may or

may not sound truly female to your ears: To simulate a

particular voice more exactly, try increasing the pitch and/or

the sampling frequency in addition to this element.

Sampling frequency (element 5). This parameter controls the

quality of the voice and, indirectly, its pitch. Strictly speaking,

it determines how often (in terms of hertz, or cycles per sec

ond) the narrator device samples the basic voice waveform. In

practical terms, the higher the sampling frequency, the more

inflected the voice sounds. You may use values from 5000

(very low) to 28000, with the default being 22200, quite high

in the available range. Values in the lower part of the range

sound much the same—like giants in low-budget fantasy

^ films—while very high sampling values make the narrator

j 3 sound childish or munchkinlike. When defining a custom
voice of your own, you'll probably want to experiment with

different sampling frequencies as well as different pitches,

] \ since both parameters affect the overall pitch of the narrator's
voice and the overall contour of the sound.

Volume (element 6). This will almost always be 64, the

P] maximum and also the default setting. Lower values decrease
the volume, down to a setting of 0 which is inaudible. The

volume setting for speech relates directly to the volume cho-

Pl sen in SOUND statements (see below). A SAY volume setting
of 64 is just as loud as a SOUND setting of 64, but SOUND

H 219

Chapter 6 u

statements can range in volume all the way up to 255, which

can drown out the loudest speech. If you're mixing speech

with other sounds, you'll want to confine all SOUND state

ments to a volume near 64 to match the loudest speech that

SAY can produce.

Channel assignment (element 7). This value controls which

of the four available sound channels receives speech output.

Since the Amiga mixes its four sound channels into two stereo

outputs, this setting also determines whether speech comes

out the left or right stereo speaker, or both. The default chan

nel setting of 10 causes speech to issue from any available

left/right pair of channels. This helps insure that all speech is

audible with a monophonic hookup, no matter which speaker

is connected. In a stereo hookup it always produces stereo

speech unless fewer than two channels are free. Table 6-3 out

lines all of the voice channel assignments.

LJ

Table

Value

0

1

2

3

4

5

6

7

8

9

10

11

6-3. Voice Channel Assignments

Channel

0 (left speaker only)

1 (right speaker only)

2 (right speaker only)

3 (left speaker only)

0 and 1 (left and right speakers)

0 and 2 (left and right speakers)

1 and 3 (left and right speakers)

2 and 3 (left and right speakers)

Either 0 or 3 (left speaker)

Either 1 or 2 (right speaker)

Any free left/right combination (left and right)

0 or 1 or 2 or 3 (right or left speaker)

Most of these voice channel assignments are important

only when you need to produce speech at the same time that

other sound effects (including other speech) are in progress. In

other cases the default setting works just fine. Channel assign

ments 0-7 force speech output to the channel or channels that

you designate. You may choose a value 0-3 to send the

speech through any single channel, or select a value 4-7 to

route the voice output through a designated pair of channels.

The remaining channel assignments are less specific and

220

U

u

LJ

U

H
Programming Amiga Sound

H

r—» leave part of the decision making up to the Amiga. If you

' _ 'j choose a value of 8, the computer sends the speech through
either channel 0 or 3, to the left speaker. A channel assign-

Rment of 9 sends speech through either channel 1 or 2, to the

right speaker. (Note that assignments 8 and 9 both send out

put through only one channel.) The default setting of 10

*—*i chooses any free left/right channel combination. This is

I 1 convenient, but assumes that at least two channels are free. In
the busiest situations, a setting of 11 may be the safest choice,

since it selects any single channel that happens to be free at

the moment.

Keep in mind when assigning voice channels that not ev

ery Amiga owner will have a stereo hookup. If you are writing

programs for a large audience, you should do everything pos

sible to insure that everyone using your program will be able

to hear the sounds you have taken so much time to create.

This may mean sacrificing some stereo effects, limiting the

number of simultaneous sounds, or providing a stereo/mono

option to the user.

Synchronization mode (element 8). The normal setting here

is 0, which causes Amiga BASIC to wait until the current SAY

command is finished before processing any further Amiga

BASIC commands. This mode is called asynchronous, since the

second command waits for the completion of the first rather

than proceeding synchronously (at the same time). That's fine

if you want to freeze your program until the speech has fin

ished. For example, if an error occurs, you may want to dis

play a warning box that requires a yes or no response from

the user. In this case, asynchronous mode pauses program

execution until the message has been said and thereby

n emphasizes the warning.

_ In other cases you'll want to minimize the delay between

the onset of speech and the execution of subsequent program

r*m statements by selecting synchronous mode (use a setting of 1).

J ! In synchronous mode the narrator permits the execution of
subsequent Amiga BASIC statements as soon as it has digested

,*-. the SAY string rather than waiting until everything has been

l~[said. While the subsequent statements are in progress, the
speech continues "in the background." Synchronous speech is

_•. very useful when you want to minimize delays.

! (For reasons explained earlier, it's desirable to SAY a short
message at the very beginning of any program that includes

Chapter 6 •—'

u

speech. And, if this is done in synchronous mode, other setup s ,

tasks can be performed while the message is in progress. *LJ

You can easily observe the difference between syn

chronous and asynchronous speech with Program 6-1. Enter a i »

long phrase of six to eight words, then press RETURN twice to < 1
repeat the phrase twice in succession. In asynchronous mode

(0), the phrase is not displayed a second time until the first s ,

speech is finished. In synchronous mode (1), the redisplay is I I

completed before the first phrase ends.

Synchronization control (element 9). This parameter is im

portant primarily when you are dealing with synchronous

speech. It controls what happens when BASIC encounters a

second SAY statement before it completes a preceding SAY

statement. When you use the default setting of 0, the narrator

politely waits for the first SAY statement to finish before it

says anything more. Setting this parameter to 1 selects cancel

mode: The Amiga immediately cancels the preceding SAY

command. If you test this mode with Program 6-1, no speech

is heard, regardless of which synchronization mode you select.

A synchronization control setting of 2 activates interruption

mode: In this mode a second SAY statement will interrupt any

preceding SAY statement that's still in progress (if the preced

ing SAY command hasn't yet begun or has already finished,

no difference is noticeable). This mode might be useful in a

multiplayer game, where you would want to permit one

player to interrupt another's speech. Table 6-4 illustrates the

effect of different synchronization combinations.

u

LJ

Table

Sync

Mode

0

1

0

1

0

1

6-4. Voice

Sync

Control

0

0

1

1

2

2

Synchronization

Result

Asynchronous speech

Synchronous speech

Cancel mode

Cancel mode

Asynchronous speech

Interruption mode

Phoneme-based speech. The Amiga's narrator device *

program can produce speech only when supplied with pho- 1—>
nemes—the building blocks of human speech. In the preced-

222 LJ

Programming Amiga Sound

n

p~j ing section, we saw how Amiga BASIC'S TRANSLATES func

tion performs that conversion automatically. In many cases a

simple SAY TRANSLATES statement will be all you'll need to

fl create effective, comprehensible speech. But English is an ex-

-■-- tremely complex language, with many conflicting pronunci

ation rules and a number of words absorbed from other

7*"j languages.

' Since the Amiga's narrator device program must be small
enough to fit into the computer's memory (along with Amiga

BASIC and the current program text), it can't possibly account

for every peculiarity of spoken English. Thus, while the nar

rator does an extraordinary job of pronouncing most words

comprehensibly, there are also many exceptions. For instance,

run Program 6-1 and enter the following phrase, taken from

act 2, scene 2 of Shakespeare's Hamlet.

the satirical rogue says that old men have grey beards

TRANSLATES has no trouble pronouncing common

words like the and have. Because such words occur so often,

it's critical that they be pronounced correctly and the TRANS

LATES function is customized to handle a number of them as

special cases. For instance, the words cave and pave are pro

nounced with a long a vowel, so the word have must be

treated as an exception to a rule. Similarly, words like phe or

dhe, or any single-syllable word ending with e, are pro

nounced with a long e, demonstrating that the is also a special

case.

Certain parts of words are also singled out for special

handling. For example, if you enter the word conversion with

Program 6-1, the syllable sion is translated correctly into the

^^ phoneme string SHUN. But if you enter sion as a separate

]__ \ word, it's converted to a different phoneme string (SIH4UN).

Less common words and syllables must be translated let-

ter-by-letter, according to general rules that work well most of

Jj the time, but fail in a significant number of cases. Attempting
our phrase from Shakespeare, the narrator badly mis-

pronounces satirical and rogue. Satirical is translated into

j{ SAE4TIHRIHKUL, and rogue becomes RAA4G, neither of

which sounds correct.

rm^ In many cases the simplest solution is to deliberately mis-

j_j spell the word in a more phonetic form. For example, sohterikll

and wag will generate the phoneme strings SAATEH3RIHKL

1 ' 223

Chapter 6

and ROW4G, both of which sound much better. The emphasis • /

in satirical is shifted from the first to the second syllable, and '—»
the vowel sounds in both words are closer to the correct

pronunciation. In simple cases, where speech is not a major |

factor in the program or you just want to get a message across, <—

deliberate misspelling often does the trick. Program 6-1 makes

it easy to experiment by trial and error: When you find a \ j

spelling that sounds right, write it down and use it in your '—'
program.

Deliberate misspelling has two additional advantages over

using phoneme strings. First, a string you supply to TRANS

LATES will almost always be shorter than an equivalent pho

neme string. Most phonemes are two characters long, even

where the English equivalent is just one character. That may

not seem like a big difference, but it can be a major factor

when a lot of speech is involved. Second, it's often desirable

to use a single subroutine that handles all the speech in a

given program. Using phoneme strings in some cases and

English text in others means that you'll need two speech

routines—one for text and another for phonemes.

Nevertheless, phoneme-based speech does permit com

plete control over the narrator device, resulting in precision

pronunciations. If you find TRANSLATES unsatisfactory, pho

nemes will usually produce an acceptable result. In fact, you

can even make the narrator speak in other languages, limited

largely, however, to languages which, like English, derive

from Indo-European roots. There are many other languages—

particularly African and Asian tongues—which require sounds

that are difficult or impossible to produce with the Amiga nar

rator's phoneme set.

One difficulty when using phonemes is that the SAY ^ j

command is very fussy about them. Every phoneme must be ^J

in uppercase, and only certain character combinations are

permissible. If you accidentally include a lowercase character i |

or violate the narrator's internal rules, Amiga BASIC signals Lv
an "Illegal Function Call" error; so it's important to know

what phoneme combinations are allowed. . j

Appendix H of the Amiga BASIC manual contains a good L~>
deal of information about creating phonetic speech from

Amiga BASIC. But the best way to learn about phonemes is j <

simply to use them and observe the results. If you've never uJ

used phonemes before, Program 6-1 provides a good introduc-

224 u

n
Programming Amiga Sound

|~"j tion. By entering different phrases and seeing what phoneme

strings TRANSLATES provides, you can learn which pho

nemes the computer chooses to represent certain sounds. If

f"! you'd like to try constructing words directly from phonemes,

Program 6-2 simplifies the process.

r-j Program 6-2. Phoneme Builder

'Phoneme Builder

'Set Preferences for 80 column text.

GOSUB Setup

Readmouse:

x$=INKEY$

IF x$=CHR$(32) THEN GOSUB Gotaspace

IF MOUSE(0)<>1 THEN Readmouse

Newx=MOUSE(l)

Newy=M0USE(2)

'Scan all boxes.

FOR j=l TO 72

IF Newx=>Upx(j) AND Newx=<Downx(j) AND Newy=>Upy(

j) AND Newy=<Downy(j) THEN

Newx=Upx(j):Newy=Upy(j)

IF 01dx=Newx AND 01dy=Newy AND j<>71 THEN Skipo

ut

IF j>69 THEN Specials

IF Small=l THEN PUT (Oldx,Oldy),Box

Small=l

01dx=Newx:01dy=Newy

PUT (01dx,01dy),Box

MOUSE OFF

GOSUB Sayphoneme

MOUSE ON

END IF

f*1^ Skipout:
'-3 NEXT

GOTO Readmouse

Sayphoneme:

'Pronounce the current phoneme.

Current$=Phoneme$(j)

•SAYing either RX or LX by itself causes a crash.

IF Current?<>"RX11 AND Current?<>"LX" THEN SAY Curre

nt$,Voice%

Small=l

RETURN

225

u
Chapter 6

Specials: it

'Add phoneme to word, say word or clear it. 1 j
IF Small=l THEN Small=0:PUT (Oldx,Oldy),Box

01dx=Newx:01dy=Newy

PUT (01dx,Oldy),Bigbox I (
ON j-69 GOSUB Addit, Sayit, Newit s—l
PUT (01dx,01dy),Bigbox

GOTO Skipout < I

LJ
Gotaspace:

PUT (Upx(70),Upy(70)),Bigbox

Current$=CHR$(32)

PUT (Upx(70),Upy(70)),Bigbox

•Fall thru to Addit.

Addit:

Word$=Word$+Current$

LOCATE 16,7

PRINT Word$;CHR$(60)

•Fall thru to Sayit .

Sayit:

IF Word$<>"RX" AND Word$o"LX" THEN SAY Word$,Voice

RETURN

Newit:

Word$=""

LOCATE 16,7

PRINT CHR$(60);SPACES(60)

RETURN

Setup:

DIM Voice%(8)

FOR j=0 TO 8

READ Voice%(j)

NEXT) I

DATA 110,0,150,0,22200,64,10,1,0

Welcome$="WEH4LKAHM TUW DHAX FOH7NIYM BIH2LDER."

PRINT Welcomes

SAY Welcomes,Voice%

Makescreen:

CLS

PALETTE 0,.04,.03,.02

PALETTE 1,.9,.93,.94

PALETTE 2,.05,.6,.5

PALETTE 3,.85,.85,.02

LINE (0,0)-(23,12),3,bf

DIM Box(30)

GET (0,0)-(23,12),Box

226 u

H
Programming Amiga Sound

n

PUT (0,0),Box,XOR

LINE (340,101)-(394,113),3,bf

DIM Bigbox(100)

GET (340,101)-(394,113),Bigbox

PUT (340,101),Bigbox

DIM Phoneme?(69)

x=l

FOR k=2 TO 12 STEP 3

FOR j=2 TO 16

READ a?

LOCATE k,j*4

PRINT a?

Phoneme?(x)=a?

x=x+l

NEXT

NEXT

FOR j=61 TO 69

READ Phoneme?(j)

NEXT

x=l

FOR j=7 TO 39 STEP 4

LOCATE 14, j

PRINT x

x=x+l

NEXT

LOCATE 14,45:PRINT "Add";SPACE?(5);"Say";SPACE?(5);

"New"

DIM Upx(72),Upy(72)

DIM Downx(72),Downy(72)

x=l

FOR k=5 TO 78 STEP 24

FOR j=52 TO 500 STEP 32

LINE (j,k)-(j+23,k+12),,b
Upx(x)=j

Upy(x)=k

Downx(x)=j+23

Downy(x)=k+12

x=x+l

NEXT

NEXT

x=61

FOR j=52 TO 330 STEP 32

Upx(x)=j:Upy(x)=101

Downx(x)=j+23:Downy(x)=113
LINE (j,101)-(j+23,113),,b
x=x+l

NEXT

FOR j=340 TO 468 STEP 64

LINE (j,101)-(j+54,113),,b
Upx(x)=j:Upy(x)=101

227

u
Chapter 6

u

Downx(x)=j+54:Downy(x)=113 J I

x=x+l '—I
NEXT

LOCATE 16,7

PRINT CHR$(60)] f
RETURN

'Phonemes must all be uppercase* > j

DATA AA,AE,AH,AO,AW,AX,AY I—>
DATA B,CH,/C,D,DH,DX,EH,ER,EY
DATA F,G,/H

DATA IH,IL,IM,IN,IX,IY

DATA J,K,L,LX

DATA M,N,NX,OH,OW,OY,P

DATA Q,QX,R,RX

DATA S,SH,T,TH

DATA UH,UL,UM,UN,UW

DATA V,W,Y,Z,ZH

DATA ".","?»,"-",",",»(",")"

DATA "I","2","3","4","5","6","7","8","9"

When you run Program 6-2, it delivers a welcome, then

displays a screen containing all of the Amiga phonemes. To

hear what a phoneme sounds like, simply move the mouse

pointer into the desired box, then press the selection button.

Once you have selected a phoneme, you have two choices:

You can either move the pointer to the Add box and press the

selection button to add the phoneme to the current phrase, or

move to another phoneme box to hear how that one sounds.

To add a blank space between words, simply press the space

bar. Note that certain phonemes, such as punctuation symbols

or emphasis numbers, don't have any audible effect until

they're combined with other phonemes. .

r After you add a phoneme, the Amiga will pronounce the j_J
enfire current phrase. By clicking the selection button on the

Say or New box, you can either repeat the current phrase or

erase it to begin a new phrase. Table 6-5 shows all of the pho- [^j
nemes used by the narrator device.

AmigaDOS speech capabilities. AmigaDOS 1.1 includes (,

two different versions of the SAY command—an interactive j J
command for experimentation and a direct command that

works something like SAY TRANSLATES in Amiga BASIC. .

While voice synthesis might seem somewhat out of place in LJ
the spartan DOS environment, speech can be as useful here as

228 u

H
Programming Amiga Sound

n

i | anywhere else. Instead of simply ECHOing prompts or warn

ing messages to the screen, why not SAY them as well?

The AmigaDOS version of SAY differs from the Amiga

["""I BASIC command in three important respects. First, AmigaDOS
does not accept phonemes as input: The string that you supply

to SAY must be English text, which the narrator converts into

P"l phonemes (just as if you had used TRANSLATES in Amiga
BASIC). Second, only four of the nine voice parameters (gen

der, inflection, rate, and pitch) can be changed. However,

since AmigaDOS permits you to insert parameter-changing

codes anywhere in a text string, it's a bit easier to change the

narrator's voice "on the fly" than in Amiga BASIC. Finally,

custom voice settings do not persist from one AmigaDOS

command line to the next: If you omit voice codes from a SAY

command, AmigaDOS reverts to the default voice settings.

For a fun application, why not have your Amiga greet you

by name when it boots up? This can be done by adding a SAY

command to the Startup-Sequence file that executes when you

boot a system disk. Startup-Sequence is ordinarily found in

the S subdirectory and can be edited like any other ASCII text

file (use a word processor or the AmigaDOS ED command; be

sure to resave Startup-Sequence as ordinary ASCII text, with

out any formatting characters or special control codes). Hear

ing a friendly word or two helps liven the otherwise tedious

process of waiting for the disk to boot. Spoken messages can

also emphasize unusual features of a disk, as demonstrated by

this modified version of Startup-Sequence:

ECHO "Hi, Melissa"

SAY -f -pl75 hi, melissa. this is machine language disk #4.

ECHO "ML Work Disk #4."

pi SAY -f -pl75 relax while i set up the ramdisk for you.
ECHO "Copying command directory to RAMdisk..."

LoadWB

endcli > nil:

Since this example is just for demonstration, we've left out the

lines that would copy disk-resident commands into the

RAMdisk (see Chapter 4). Appendix B contains more infor

mation about the AmigaDOS version of SAY.

229

Chapter 6

Table 6-5.

Phoneme

AA

AE

AH

AO

AW

AX

AY

B

CH

/c
D

DH

DX

EH

ER

EY

IH

IX

IY

F

G

/H
IL

IM

IN

J
K

L

LX*

M

N

NX

OH

OY

OW

P

Q
QX

R

RX*

S

SH

Amiga Phonemes

Type

Vowel

Vowel

Vowel

Vowel

Dipthong

Vowel

Dipthong

Consonant

Consonant

Consonant

Consonant

Consonant

Special

Vowel

Vowel

Dipthong

Vowel

Vowel

Vowel

Consonant

Consonant

Consonant

Contraction

Contraction

Contraction

Consonant

Consonant

Consonant

Special

Consonant

Consonant

Consonant

Vowel

Dipthong

Dipthong

Consonant

Special

Special

Consonant

Special

Consonant

Consonant

Sounds Like

Pop

Fan

Fun

Walk

Flower

Abound

Ride

Bank

Chap

Loch

Dare

The

Kitty

Men

Word

Same

Sip

Rapid

Sleep

Fat

Goon

Hat

Same as IXL

Same as IXM

Same as IXN

Joke, genius

Cap

Parallel

Ball

Map

Nanny

Tang

Fort

Join

Tow

Pip

Mitten

(Silent pause)

Rap

Far

See

Fish

u

LJ

U

LJ

u

LJ

i i

230

n

n

n

n

n

Programming Amiga Sound

n

n

Phoneme

T

TH

UH

UW

UL

UM

UN

V

W

Y

Z

,

?

-

0
1-9

♦ Amiga BASIC 1

Type

Consonant

Consonant

Consonant

Dipthong

Contraction

Contraction

Contraction

Consonant

Consonant

Consonant

Consonant

Special

Special

Special

Special

Special

Special

Sounds Like

Top

Path

Book

Too

Same as AXL

Same as AXM

Same as AXN

Van

Trowel

You

Enclosure

End sentence

End question

Connector

End phrase

Enclose phrase

Emphasize syllable

.1 crashes the computer when you SAY the phonemes LX or

RX in isolation. To prevent this, Program 6-2 pronounces them only when

they're combined with at least one other phoneme.

SOUND and WAVE in Amiga BASIC

In addition to speech, Amiga BASIC makes it quite easy to

create music and a variety of sound effects. This is done with

SOUND, which takes the following general form:

SOUND frequency, duration, volume, channel

The simplest SOUND effects require only two numbers,

which set the sound's frequency and duration. For instance,

this statement plays an A-natural note for one second:

SOUND 440, 18.2

Let's look at each of the SOUND parameters.

Frequency. The first number in every SOUND statement

sets the frequency (pitch) of the sound; it can be any number

from 20 through 15000. This represents an actual frequency

value (measured in hertz, or cycles per second). For instance,

the example above generates a 440 hertz tone—the A above

middle C—exactly the same tuning pitch used by orchestras

around the world. Doubling the frequency produces an A one

octave higher, and halving it produces the next lower A. By

way of comparison, the topmost note on a piano (a C-natural)
has a frequency of about 4186 hertz.

231

Chapter 6

In the equal tempered scale—the most common scale for

music—each octave is divided into 12 half-steps, or semitones,

and the difference in frequency between one semitone and an

other is always the same. Thus, for conventional music you

can generate the required frequency values with straight

forward arithmetic. Each half-step is about 1.059463 (the

twelfth root of 2) times higher in frequency than the last. If A-

natural equals 440 hertz, the next higher semitone (A#) is

about 466.1637 (440 * 1.059463) hertz, and so on. Table 6-6

contains typical frequency values for an equal tempered musi

cal scale.

Table

Note

A

A

A

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A

A

A

6-6. Equal Tempered Scale

Octave

0

1

2

3 .

3

3

4

4

4

4

4

4

4

4

4

4

5

6

7

Frequency

27.500

55.000

110.000

220.000

233.068

246.928

261.624

277.200

293.656

311.124

329.648

349.228

370.040

392.040

415.316

440.000

880.000

1760.000

3520.000

Notice that the relationship between frequency and pitch

is roughly exponential. At the low end of the scale, your ears

perceive an octave's difference between frequencies of 110 and

220. As you move up the scale, much bigger changes in fre

quency are needed to produce the same effect. You can gen

erate a similar scale in Amiga BASIC with the following

routine, which includes frequencies for the 88 notes on a pi

ano (few musical pieces require notes outside this range).

232

u

u

u

u

LJ

u

n
Programming Amiga Sound

n

j""| Appendix C contains a table of the frequency numbers pro
duced by this routine.

_, DIM Frequency#(88)

I ! x#=LOG(27.5#)/LOG(2#)
FOR j=lTO88

Frequency(j)=2A(x#+j/12#)

j~| NEXT

Other formulas can be used to much the same effect. Of

course, you're not restricted to using this or any other rational

scale, and for certain types of music a slightly different for

mula may work better. For instance, you might follow the

same general scheme, but base the scale on C rather than A.

The overall results would be similar—each C would have a

frequency twice that of the next lower C—but the frequencies

of the semitones between octaves would be different. Of

course, since there aren't any conventions to govern ray guns

or screams, you can use much coarser methods for sound ef

fects. In fact, a bit of dissonance often heightens the impact of

an arcade-type sound.

Duration. Every SOUND statement must also specify a

duration value within the range 0-77. A duration value of

18.2 makes the sound last for one second. A duration of 36.4

lasts two seconds, and the maximum duration of 77 lasts

roughly 41/* seconds. The only way to make longer sounds is

to execute successive SOUND commands; if this is done with

out intervening delays, you won't notice any breaks. Very

small durations are useful, too. Try this:

FOR k=0 TO 3

FOR j=1000 TO 6000 STEP 300

SOUND j, .1

! f NEXT

NEXT

p—I Volume. To specify a certain volume with SOUND, supply

/ i a value from 0 (silence) through 255 (loudest) after the dura

tion, separating the two values with a comma. This parameter

is optional: If you don't specify a volume, SOUND automati

cally uses a value near the middle of the range. By altering the

volume, you can make a sound fade in and out:

FOR j=0 to 255 STEP 5

SOUND 440,l,j

NEXT

233

u
Chapter 6

LJ

FOR j=255 TOO STEP-5 I
SOUND 440,l,j

NEXT

It's difficult to overemphasize the importance of dynamic j j
volume changes in music. Few experiences are more boring

than listening to a song that has no volume dynamics whatso

ever. If you mix voice commands with SOUNDs, you'll soon j j
notice that the loudest speech is no louder than a SOUND

statement played at a volume of 64. To prevent the speech

from being overpowered, you may want to keep simultaneous

SOUND statements near the same volume level. Volume

settings also become important when you use more than one

custom waveform at once (see below), since certain waveforms

are much louder than others. One feature that's missing from

Amiga BASIC is an easy means for generating a sound en

velope: When you begin a SOUND statement, it goes immedi

ately from no sound to the specified volume. And every

SOUND terminates just as quickly. As we'll see later in this

chapter, this limitation can be overcome via machine

language.

Channel The final parameter in a SOUND statement, also

optional, selects one of the four available sound channels.

These values correspond directly to the channel assignments

illustrated in Figure 6-1. Channels 0 and 3 send output to the

left stereo speaker, and channels 1 and 2 are connected to the

right speaker. If you don't specify a channel, SOUND uses

only channel 0 (left speaker). The easiest way to make

multivoice music is to play notes through different channels at

the same time. For instance, this short program plays a four-

note chord in the key of C.

SOUND 523.25,20,255,0

SOUND 659.26,20,255,1

SOUND 783.99,20,255,2

SOUND 1046.5,20,255,3

In this example every note has the same duration (20) and

volume (255), but each has a different pitch and channel

assignment, so all four notes of the chord begin and end to

gether. Like the SAY command, SOUND has the ability to

play "in the background" while the computer goes on to per

form subsequent Amiga BASIC statements. To illustrate, add

these statements to the end of the last program and run it

again:

234

n
Programming Amiga Sound

n

!~| FORj=lTO10
PRINT "Done."

NEXT

I I As soon as the sounds begin, the computer proceeds to
print Done ten times, finishing while the sounds are still au-

_ dible. If the Amiga lacked this capability, the program would

I I freeze while SOUND statements were in progress, making it
much more difficult to integrate music and sound with other

program events.

The Amiga's four channels can play simultaneously, but

the same is not true of a single channel when SOUND is used.

To illustrate, change the 3 in the last SOUND statement to 0

and rerun the program. This time, the Amiga plays a three-

note chord followed by a single note. The computer can't start

a new note for any given channel while that channel is still

busy producing a previous note.

Synchronizing multiple SOUND commands. You may

wonder how the Amiga keeps track of which notes to play

when several SOUND statements are involved at once. It's

done by setting up a queue, which works like the waiting line

in a grocery store. The first SOUND statement in the program

is the first to be played: Each subsequent SOUND statement is

"lined up" behind the first and played immediately (if it uses

a free channel) or as soon as it's appropriate (if it uses a chan

nel that's already busy). In most cases this process is transpar

ent, since the computer sets up the queue very quickly.

However, if many SOUND statements are involved, the

processing takes more time. Run the following program and

notice the pause before the PRINT command executes.

P-, FORj=lTO20

! I FOR k=0 TO 3
SOUND 220*(k+l)/20/64,k

— NEXT
M NEXT

PRINT "Done/'

_ Before it can execute the PRINT statement, the computer

I I has to digest 80 SOUND statements, causing a noticeable de
lay. However, the earliest SOUND statements still begin im-

_ mediately and continue in the background while later ones are

I I being processed.
In other cases—when playing complex, multivoice music,

for instance—you may want all SOUNDs to wait until just the

235

u
Chapter 6

LJ

right moment. This can be done with a SOUND WAIT com- j j
mand. As soon as it encounters SOUND WAIT in a program,

the Amiga queues up subsequent SOUND commands, but ._

does not play them until it encounters a SOUND RESUME j |
command. At that point the floodgates open and the sound

queue is processed in the usual first-in, first-out manner. The

most obvious use for SOUND WAIT and SOUND RESUME is [J
to synchronize notes in multivoice music that has notes of as

sorted durations.

When the Amiga performs SOUND WAIT, it stores the

information it will later need in a special memory area called

the system heap. Each SOUND command performed during a

SOUND WAIT interval uses up a certain amount of heap

space. Trying to perform too many SOUND statements before

a SOUND RESUME occurs may cause a rather nasty error. To

illustrate, add this statement to the beginning of the last ex

ample program:

SOUND WAIT

In Amiga BASIC 1.1, all of the BASIC windows are

pushed down on the screen to make room for a red message

box which informs you that the heap is exhausted. (Press the

left mouse button to recover control. If you delete the SOUND

WAIT statement from the program and run it again, you'll see

that no harm was done.)

Unless you specify otherwise, the system heap is 1024

bytes long; this special zone is also used by WAVE, LIBRARY,

WINDOW, and SCREEN statements. If a program runs out of

heap space, you must either modify it to use less heap mem

ory or use CLEAR to allocate extra RAM.

Warning sounds. Apart from music and arcade-type ef- i i

fects, SOUND is handy for emphasizing an error condition. '—I
Amiga BASIC itself executes a BEEP command when un-

trapped errors occur. But this does not occur when you trap r i

errors with ON ERROR and an appropriate subroutine (the LJ
Handler routine in Program 6-3 shows how this can be done).

If you have a specific error-trapping routine, you can accen- i i

tuate the impact of an error message by including a BEEP or a I—I
more interesting SOUND of your own.

The WAVE command. Every sound consists of a particu- . ■ -»

lar pattern of vibrations, which repeats in time. This pattern, I—I
called a waveform, gives each sound its own distinctive

236 ^

n
Programming Amiga Sound

J (character. The simplest waveform is the sine wave, pictured in

Figure 6-2.

!"""! Figure 6-2. Sine Waveform

In order to produce any sounds at all, the Amiga must

have a waveform sample stored somewhere in memory. If you

don't specify a waveform of your own, the Amiga automati

cally uses a sine waveform, which gives every sound a soft,

full tone. The WAVE command lets you assign a waveform to

any of the four sound channels.

For the sake of simplicity, waveforms are usually por

trayed in the two-dimensional form in Figure 6-2. In reality, a

sound wave radiates through the air, much like the ripples

that appear when you drop a stone in a still pond. The shape

in Figure 6-2 actually represents a cross section of such a

wave.

The term sine is derived from the sine function in trigo-

f"! nometry. Conveniently, SIN is also an Amiga BASIC function:

-] You can assign a sine waveform to any channel with this
statement, replacing channel number with a value from 0

!~1 through 3 (although the SIN function usually requires paren-

f -1 theses, you should not include parentheses when using SIN
with WAVE).

p-| WAVE channel number, SIN

A pure sine wave is based on a mathematical ideal. The

,_, waveforms produced in nature (for instance, those made by

)) conventional musical instruments) are far more complex and

sound richer because they include many harmonic frequencies

. , in addition to the fundamental frequency produced by the

[!
237

u
Chapter 6

LJ

wave's basic shape. Nevertheless, because sine waves can be j J
created with simple formulas, they're used extensively in elec

tronic sound synthesis. More complex waveforms can be de- ^

rived by summing together the data for two or more different j \

sine waves.

Every waveform can be defined in terms of two char

acteristics: amplitude and frequency. Amplitude (the vertical j 5

dimension in Figure 6-2) is roughly equivalent to volume: The

greater the amplitude range, the louder the waveform sounds.

Frequency (the horizontal dimension in Figure 6-2) determines

how quickly the waveform repeats within a given time period

and thus determines its pitch. If you increase the frequency,

the waveform repeats more rapidly and sounds higher in

pitch. Figure 6-3 is another sine wave with a higher frequency

than the first.

Figure 6-3. Higher Frequency Sine Wave

Creating custom waveforms. To use a custom waveform LJ
in Amiga BASIC, you must supply the computer with a new

waveform sample in the form of a numeric integer array. The j ,

array must have at least 256 elements (larger arrays are 1 I
permitted, but Amiga BASIC ignores everything above the two

hundred fifty-sixth element). Once this is done, you can assign i ,

the waveform to a channel with a WAVE command. The 1 1
following code creates a simple sine wave and assigns it to

channel 0: , ,

238

n
Programming Amiga Sound

PI DIM Wav%(255)
p# = 2 * 3.14159265# / 256

FORj=0to255

H Wav%(j)=127 * SIN(j*p#)
NEXT

WAVE 0, Wav%

f-j SOUND 220,10,255,0

If you run this program, the note sounds unexceptional

since this waveform is very similar to the pure sine wave in

Figure 6-2 (which the Amiga uses by default). Substitute this

line for the fourth line and rerun the program:

Wav%(j)=63 * (SIN(j*p#)+SIN(j*2*p#))

An interesting change has taken place. Now the single

SOUND command seems to be producing two notes at once.

The lower note is the one we heard before; the second is an

octave higher and somewhat quieter. What you've done is

sum (combine) the information from two different waveforms.

The resulting single waveform generates two distinct fre

quencies (note that it was necessary to change the 127 to 63 to

keep the values within range). Figure 6-4 illustrates the wave

form created by this formula.

Figure 6-4. Summed Waveform

n Although the Amiga has only four sound channels, its

ability to use custom waveforms makes it possible to generate

more than one note for each channel. To take the process

r"j even further, change the 2 in the fourth line to a 5, and run
the program again. Figure 6-5 shows you this more complex

waveform.
r—i
i I

239

Chapter 6

u

u

Figure 6-5. Complex Summed Waveform

u

Now the two-note effect is even more pronounced, since

this formula creates a dissonant combination of frequencies.

Figure 6-6 illustrates a very different sort of waveform, the

rectangular wave, often called a square wave.

Figure 6-6. Rectangular Waveform

LJ

Rectangular waves produce a louder, somewhat harsher

sound than sine waves. To hear what they sound like, enter

and run this program:

DIM Wav%(255)

FORj=0TO255

Wav%(j)=127

IF j>127 then Wav%(j) = -Wav%(i)

NEXT

WAVE 0, Wav%

SOUND 220,10,255,0

240

LJ

<«)

u

Programming Amiga Sound

1..J

n

n

The rectangular waveform generated by this program is

much more powerful than the sine wave, particularly at low

frequencies. To reduce its amplitude, change the 127 in the

third line of the program to some lower value. Notice what a

simple formula we used to generate this wave. The first 127

array elements are set to 127, and the rest are set to —127,

proof that you can create a variety of different sounds without

being especially mathematical. The triangle and sawtooth

waveforms, pictured in Figures 6-7 and 6-8, are also used fre

quently in electronic sound synthesis.

Figure 6-7. Triangle Waveform

Figure 6-8. Sawtooth Waveform

n

n

n
241

Chapter 6
u

u

The triangle wave is soft in tone and also very rich in har

monic frequencies. A sawtooth wave is louder and can sound

harsh or buzzy.

Waveform Builder Program. If you're not familiar with

waveforms and trigonometric formulas, you may find it hard

to visualize what's happening when you create a waveform

sample. Program 6-3 simplifies the process, letting you draw a

waveform directly on the Amiga's hi-res screen and hear what

the waveform sounds like at different frequencies.

Program 6-3. Waveform Builder

'Waveform Builder

•Set Preferences to 80 columns

ON ERROR GOTO Handler

GOSUB Setup

Checkmouse:

x$=INKEY$

IF x$<>"" THEN Keys

Check=MOUSE(0)

IF Check=0 THEN Checkmouse

x=MOUSE(5):y=MOUSE(6)

IF x>255 OR y=0 OR y>128 THEN Checkmouse

•Redraw waveform

IF y<=64 THEN Nuw=128-2*y

IF y>64 THEN Nuw=-INT((y-64)*2)

PRESET (x,Vert(x))

PSET (x,y)

Vert(x)=y

Wav(x)=Nuw

GOTO Checkmouse

Keys:

IF x?=CHR$(13) THEN GOSUB Soundit

IF x$=CHR$(29) OR x$=CHR$(31) THEN GOSUB Lower

IF x$=CHR$(28) OR x$=CHR?(30) THEN GOSUB Higher

IF UCASE$(x$)="C" THEN GOSUB Clerit

THEN GOSUB Lodit

THEN GOSUB Wavit

u

u

IF UCASE$(x$)=MLM

IF UCASE$(x$)="O"

IF UCASE$(x$)="S" THEN GOSUB Savit

GOTO Checkmouse

Lower:

Freq=Freq-5*(ASC(x$) MOD 28)

IF Freq<0 THEN Freq=0

GOSUB Display

RETURN

242

u

u

u

Programming Amiga Sound

Higher:

Freq=Freq+5*(ASC(x?) MOD 27)

IF Freq>32767 THEN Freq=32767

Display:

LOCATE 13,57

PRINT Freq;SPACE?(4)

RETURN

Linit:

LINE (0,64)-(256,64)

RETURN

Clerit:

GOSUB Whatname

PRINT "Empty"

FOR j=0 TO 255

Wav(j)=0

PUT (j,0),Blank,AND

NEXT

Filename$=""

GOSUB Linit

RETURN

Whatname:

LOCATE 11,57

PRINT SPACE?(20)

LOCATE 11,57

RETURN

Soundit:

'If you don't hear any sound on a one-speaker sys

tern,

'Change the l's to 0's in the next two lines.

WAVE l,Wav

SOUND Freq,10,255,1

RETURN

Savit:

GOSUB Namit

IF LEN(Filename?)=0 THEN Skipit

INPUT "Filename";Filename?

OPEN Filename? FOR OUTPUT AS #1

FOR j=0 TO 255

PRINT #1, Wav(j)

NEXT

CLOSE 1

RETURN

'- ! 243

u
Chapter 6

u

Namit: \ [

GOSUB Spacit

INPUT "Filename";Filename?

GOSUB Spacit

RETURN

Lodit:

GOSUB Namit

IF LEN(Filename$)=0 THEN Skipit

OPEN Filename? FOR INPUT AS #1

FOR j=0 TO 255

INPUT #1, x

Wav(j)=x

NEXT

CLOSE 1

Flag=l-Flag

GOSUB Wavit

Flag=l-Flag

Skipit:

RETURN

Setup:

DEFINT a-z

PALETTE 0,.04,.03,.02

PALETTE 1,.9,.93,.94

PALETTE 2,.05,.6,.5

PALETTE 3,.85,.85,.02

DIM Blank(300),Wav(255),Savit(255),Vert(255)

GET (0,0)-(0,128),Blank

Freq=220

Flag=0

LOCATE 2,45

PRINT "C Clear waveform"

PRINT TAB(45) ;"L Load waveform"

PRINT TAB(45) ,• "0 Original waveform"

PRINT TAB(45);"S Save waveform"
PRINT TAB(45); "RETURN Hear sound"
PRINT TAB(45);"CRSR U/R....Higher frequency"

PRINT TAB(45);"CRSR D/L Lower frequency
PRINT

PRINT

PRINT TAB (45) 7 "Waveform Empty"
PRINT

PRINT TAB(45)7"Frequency..." 7 Freq
LINE (256,0)-(256,129)

LINE (0,129)-(256,129)
LOCATE 1,34) (
PRINT 127 *—J
LOCATE 9,34

244 LJ

Programming Amiga Sound

n

PRINT 0

LOCATE 17,34

PRINT -128

LOCATE 8,4

PRINT "Building a waveform..."

p# = 2 * 3.14159265* / 256

FOR j=0 TO 255

Savit(j)=31*(SIN(j*p#)+SIN(2*j*p#)+SIN(3*j*p#)+

SIN(4*j*p#))

NEXT j

Wavit:

GOSUB Whatname

IF Flag=0 THEN Filename$="Original"

GOSUB Whatname

PRINT Filename?

FOR j=0 TO 255

PUT (j,0),Blank,AND

IF Flag=0 THEN Wav(j)=Savit(j)

IF Wav(j)=>0 THEN Vertpos=64-Wav(j)/2

IF Wav(j)<0 THEN Vertpos=64+(-Wav(j)/2)

PSET (j,Vertpos)

Vert(j)=Vertpos

NEXT

GOSUB Linit

GOSUB Soundit

RETURN

Spacit:

LOCATE 15,45

PRINT SPACE?(30)

LOCATE 15,45

RETURN

Handler:

GOSUB Spacit

Er$=""

IF ERR=53 THEN Er$="File not found":GOTO Erout

IF ERR=70 THEN Er$="Disk write-protected":GOTO Er

out

PRINT "Error";ERR

CLOSE

RESUME Checkmouse

Erout:

GOSUB Spacit

PRINT Er$

M RESUME Checkmouse

n 245

Chapter 6

Program 6-3 begins with a short pause while it constructs 1 j

a complex, sine-based waveform. When this is done, it dis- ' '
plays the waveform on the screen and waits for your com

mands. If you press RETURN, the program plays a note at the J j

frequency displayed to the lower right. To increase or decrease

the frequency value by 5, press the cursor up or cursor down

key, respectively. Press cursor right or cursor left to raise or j (

lower the frequency by 15. '

To redraw the waveform, simply move the mouse pointer

into the waveform display box, press the selection button, and

begin dragging the mouse with the button held down. The old

waveform is replaced by the new one as you draw. Since the

Amiga lets you move the mouse pointer much faster than

Amiga BASIC can respond, slow drawing motions give the

best results. (The horizontal line in the center of the drawing

field is just there for reference; since the center line isn't part

of the waveform, it doesn't matter if you erase parts of it

when drawing.) You can play notes at any stage during the

drawing process. Simply release the mouse button and press

RETURN.

Once you create a waveform you like, press S. The Amiga

prompts you to enter a filename, then saves the waveform

data in a disk file of that name. If you want to start with a

clean slate, press C to erase the current waveform and begin a

new one. You can also restore the original waveform (press O)

or reload any waveform that you previously saved. If you

press L, the Amiga prompts you to enter a filename, then

loads the data from disk and displays the new waveform.

If you examine the Setup: portion of Program 6-3, you'll

see that it creates the default waveform with a formula like

the ones we used in the earlier discussion of different wave-) j

forms. You may find it interesting to substitute those formulas ^

in the program and see the waveforms appear on the screen.

Since the Amiga's hi-res screen is only 188 pixels high, a j \

vertical difference of one pixel equals an amplitude difference <—)
of 2; so the data from a waveform that you draw will be

somewhat less precise than if you had computed the wave- | |

form mathematically. Nevertheless, the program provides a l—'
basis for experimenting with waveforms and can also be fun

to use. If you create a waveform that sounds good, use it in j j

your own programs by loading the data from disk into an ar- <—'

ray or converting the values into DATA statements.

246 U

Programming Amiga Sound

n

n

n

A random waveform produces a rushing or hissing noise

and is essential for percussive effects like explosions, the

sound of footsteps, and so on. It's difficult, if not impossible,

to create "white noise" using SOUND and WAVE commands

in Amiga BASIC. Run Program 6-3 and use the mouse to

draw random dots all over the waveform display area. No

matter how randomly you place the dots, the result is usually

a clear, steady tone of one sort or another. This isn't a defect

in the computer, but simply a limitation of Amiga BASIC.

SOUND and WAVE are easy to use, but don't give you full

control over the Amiga's sound-generating machinery. As

we'll see in the next section, machine language programmers

have access to a much wider range of effects.

Advanced Sound Synthesis

Once you have become familiar with Amiga BASIC sound

techniques, you may want to explore more sophisticated, di

rect methods of sound generation. The Amiga, more than any

other home computer, gives you complete control over sounds

and can be the equivalent of a miniature electronic sound stu

dio. Unlike some other computers, which produce sounds with

simple electronic tone generators (thus providing only a lim

ited number of available waveforms), the Amiga leaves almost

every decision up to you. While it may take some time to mas

ter this system, the results can be spectacular.

In the remainder of this chapter we'll look more closely at

how the Amiga generates sounds and examine a simple ma

chine language sound program. It's worth noting that the type

of activity discussed in this section—direct manipulation of

hardware registers—is normally considered taboo on a multi-

tasking system like the Amiga. At a higher programming level,

the Amiga provides a number of system routines (20, in fact)

for opening and closing the audio device, allocating or freeing

channels, queuing multiple audio commands, and so forth.

The system routines permit you to write sound applications

that coexist with other tasks on a friendly basis and don't

monopolize system resources unnecessarily. For the most part,

however, these routines assume that you already know how to

create sound at the hardware level. So this is as good a place

to start as any. Chapters 7 and 8 contain more information

about using system routines.

247

Chapter 6

Hardware overview. Recall that the Amiga has four sepa- > i

rate sound channels, which are mixed down to two stereo out- <—I
puts. More precisely, each of the four channels is connected to

a digital-to-analog (D-to-A) converter circuit which translates i i

digital information (ones and zeros in computer memory) into <—i
the analog voltage levels required by conventional sound

equipment. The system also includes a low-pass "anti- I >

aliasing" filter which reduces distortion in cases where the I—1
sampling frequency (see below) is close to the output fre

quency for a given tone. Everything else is implemented by

software of one sort or another. This provides enormous

flexibility, but also complicates the programmer's task.

Waveform sampling. The basic means for sound produc

tion on the Amiga is waveform sampling. In simple terms, you

provide a certain number of bytes of data which represent a

waveform and tell the computer how frequently to sample

that data set. At each sampling interval, the Amiga extracts the

next byte value from the sample and sends it as output to the

D-to-A converter for the designated channel; when it reaches

the end of the sample, it starts over at the beginning. By

repeating this process over and over, a continuous tone is pro

duced. The sampling rate determines the frequency of the

tone, and the shape of the waveform data gives it a unique

character. The final result is a continuous stream of fluctuating

values, which can be pictured as a seamless repetition of the

waveform sample's shape (Figure 6-9).

Figure 6-9. Waveform Repetition

Waveform sample

LJ

U
Continuous sound

248 LJ

Programming Amiga Sound

As shown earlier, waveform data can take a variety of

forms, from the very simple sine wave to complex waves that

produce multiple tones through a single channel. From Amiga

BASIC, the waveform sample is created by making an integer

array and assigned to a given channel with WAVE. When you

execute a SOUND command for that channel, the Amiga auto-

/—) matically finds the waveform sample and begins sound

' .1 production.
Creating sound at the machine level involves the same

process, but you are responsible for more of the details. In

addition to storing a waveform sample somewhere in memory,

you must tell the computer the length of the sample and

where it is located. Once this is done, you must tell the com

puter how frequently to sample the waveform data, set the

volume, and then signal that the sound should begin. At this

point the sound starts immediately at the specified volume

and continues until you take some action to stop it. (This is

very different from sound production on certain other comput

ers; the Commodore 64, for instance, generates a characteristic

amplitude envelope that causes the tone to fade out after a

certain interval.) On the Amiga, when you want the sound to

stop, you must tell the computer to cut if off. It might seem

like a lot of work, but each step is actually quite easy. Here is

the basic procedure:

1. Create waveform sample.

2. Define location of sample.

3. Define length of sample.

4. Set volume.

5. Set sampling rate.

6. Start sound production.

pi 7. Stop sound production.

Note that steps 1-4 are preparatory: They must be per

formed before making the first sound, but need not be re-

}] peated for subsequent sounds unless you want to change the
volume, switch to a different waveform, and so forth. Since

the sampling rate (step 5) sets the pitch of the sound, it will

j"""J often be changed each time a new sound is produced. Steps
2-7 are performed by storing values in the Amiga's sound

control registers, which are illustrated in Table 6-7.

249

Chapter 6

Table 6-7. Sound Control Registers

Register Address Function

BASE = $DFF000 Chip base address

DMACONW = BASE + $96 DMA write control

ADKCONW = BASE + $9E Audio modulation write control

LJ

U

AUDOLCH = BASE + $A0

AUDOLCL BASE + $A2

AUDOLEN = BASE + $A4

AUDOPER = BASE + $A6

AUDOVOL

AUDODAT

AUD1LCH

AUD1LCL

AUD1LEN

AUD1PER

AUD1VOL

AUD1DAT

AUD2LCH

AUD2LCL

AUD2LEN

AUD2PER

AUD2VOL

AUD2DAT

AUD3LCH

AUD3LCL

AUD3LEN

AUD3PER

AUD3VOL

AUD3DAT

= BASE + $A8

= BASE + $AA

= BASE + $B0

= BASE + $B2

= BASE + $B4

= BASE + $B6

= BASE + $B8

= BASE + $BA

= BASE + $C0

= BASE + $C2

= BASE + $C4

= BASE + $C6

= BASE + $C8

= BASE + $CA

= BASE + $D0

= BASE + $D2

= BASE + $D4

= BASE + $D6

= BASE + $D8

= BASE + $DA

Channel 0 waveform address (high 3

bits)

Channel 0 waveform address (low

15 bits)

Channel 0 length of waveform

sample

Channel 0 sampling period

(124-65535)

Channel 0 volume (0-64)

Channel 0 output data buffer

Same as above for channel 1

U

u

Same as above for channel 2

Same as above for channel 3

In Table 6-7, the register addresses are expressed as an

offset from the base address $DFF000. Thus, the actual ad

dress of DMACONW is $DFF096; the address of AUD3VOL is

$DFF0D8, and so on. These are all fixed locations in the

Amiga's memory, which you can access with MOVE or similar

machine language instructions. The DMACONW register—the

main control register—is used each time you turn a sound on

250

u

LJ

U

LJ

U

Programming Amiga Sound

r—j or off. ADKCONW is used only for modulating one channel's

I _j output with the output from a second channel (see below).
We'll look at DMACONW and ADKCONW more closely

r*^ when we discuss the example program below. For now, notice

J. ! that the remaining registers are divided into four groups. Each
group of six registers controls one of the four sound channels.

f*i The two lower registers in each group (AUDOLCH + AUDOLCL,

L ' etc.) work as a pair and can contain an 18-bit number: This is

where you store the address of the waveform sample. The next

higher register in the group (AUDOLEN, AUD1LEN, etc.)

stores the length of the waveform data set. The value you put

here must be the length of the sample in 16-bit words, not 8-bit

bytes. For a 20-byte waveform sample, you would store the

value 10, and so on. The next higher register (AUDOPER,

AUD1PER, etc.) sets the sampling period; this controls the

speed at which the waveform is output and thus determines

the sound's frequency. After that comes the volume register

(AUD0VOL, AUD1VOL, etc.), which can accept values in the

range 0-64, with 64 being the maximum volume. The highest

register in each channel group (AUDODAT, AUD1DAT, etc.) is

the data buffer for that channel. In ordinary circumstances you

won't need to worry about this register; it's used by the Amiga

to output data automatically while a sound is in progress.

However, if you want to experiment with non-DMA sound

production, this register provides a pipeline to the D-to-A con

verter for an individual channel.

What is audio DMA? The DMA in names like

DMACONW stands for Direct Memory Access, the process by

which data from a waveform sample is continuously output to

a sound channel. The nitty-gritty details of DMA are of in-

ps-i terest only to advanced programmers. For ordinary sound

i _ \ production, you don't need to know exactly how the system

times the interrupts and does all the other jobs needed to

«**. make this DMA happen. If you put the right values in the

) i sound control registers, the Amiga will handle the rest. But

since DMA appears frequently in Amiga literature, you should

p. at least recognize the term; in this context, a phrase like enable

j I DMA means "enable sound production by direct memory ac
cess," and so on. From a programming viewpoint, DMA

, | means that once a sound begins, the processor is largely free

i I for other tasks—just as in Amiga BASIC, the sound continues

in the background while other program events occur.

H 251

Chapter 6

u

Machine Language Sound Program I /

Program 6-4 illustrates how to generate sounds in machine <—I
language, using two audio channels and a variety of fre

quencies. You'll need a 68000 machine language assembler to i

enter Program 6-4. If you don't have an assembler, but still L—
want to use the program, you can create the machine code in

Amiga BASIC with Program 6-5. i ;

Program 6-5 creates a machine language program on disk I—>
by READing DATA values and writing them to a disk file.

Like other machine language programs, Program 6-4 is

run by typing its name at the AmigaDOS CLI prompt. Type

the program's filename, then enter several letters or other

characters (any characters will do, including lowercase, upper

case, and punctuation), and press RETURN: The Amiga plays

two notes for each character you supply, changing the fre

quencies for different characters. The first note is played in

channel 0; the second is an octave higher than the first and is

sues from channel 1. Though its intrinsic value is slight, the

program does illustrate the basic mechanics of sound produc

tion and can serve as a template for more elaborate experi

ments. Let's take a closer look at how it works.

The source code begins by defining the addresses and

constants we'll need later on. Only two channels (0 and 1) are

used. The waveform sample, 32 bytes in length, is defined at

the end of the code. Just as in Amiga BASIC, this sample must

be a series of bytes in the range —127 to +128. However, the

length of the sample is up to you. For beginning experiments,

you'll probably find it easier to work with short blocks of data.

To minimize "pop" sounds when a sound starts and stops, it's

desirable to define the waveform sample so that it begins and

ends at zero amplitude. , ,

The program starts (at Main:) by computing the ending LJ
address of the command line string (the characters you typed

after the filename from the CLI prompt) and storing that infor- . ,

mation in register Al for later use. Whenever a program is 1 I
called from the CLI with additional arguments, register A0

contains the address of the argument string, and DO contains « »

its length. Adding DO to A0 tells you where the argument 1 1

string ends. This makes it very easy to pass information from

the AmigaDOS CLI environment to a machine language , .

program. LJ

252

Programming Amiga Sound

! J

—* At Setup: we handle preparatory jobs that need to be

-' done only once during this execution of the program. The LEA
(Locate Effective Address) instruction tells us where the wave-

pi form data is located. Since this code, like most 68000 pro-

' - * grams, is relocatable, LEA lets us determine where the
waveform data ends up, after the computer loads the program

<—^ from disk. Both channels will use the same waveform, so we

! ! store the resulting address in both location registers at once.
Note that the destination is the lower register of the location

pair (AUDOLCH, not AUDOLCL, etc.). To use two different

waveforms, you would need to provide a second waveform

sample and perform this process separately for each channel.

Next, we store the length of the waveform data set in the

AUDOLEN and AUD1LEN registers. Remember, the length

equals the number of words in the sample, not the number of

bytes (even though the data itself consists of byte values). The

last preliminary is to set the volume for both channels.

At Processline: the program retrieves one character from

the command line argument, checks to see that it's within a

certain range, and performs some simple arithmetic to convert

its ASCII value into a period number that will produce an au

dible note. If the character is out of range (a space, carriage re

turn, and so forth), we skip the sound-generating code and

proceed to the next character, until the entire argument has

been processed (see Nonote:). Though the results in this case

are fairly trivial, you can employ the same general string-

processing technique in any program that accepts arguments

from the CLI.

Once we have legal period values, we store them in the

period registers AUDOPER and AUDIPER to set the sampling

n period for the current note. When you enable audio DMA for

a channel, the Amiga uses the period number as a counter to

determine how many clock ticks (0.279365 microseconds)

nmust elapse during each sampling interval. Each time the

counter counts down to zero, the computer retrieves another

byte value from the waveform sample and sends it as output

PI to the D-to-A converter via that channel's data register

r ' (AUDODAT, and so on). When you select a small period num
ber, the counter counts down rapidly, and the waveform is re-

npeated frequently, generating a high frequency sound. Larger

period numbers cause the counter to count down more slowly:

Since the waveform is repeated less often, a lower frequency

M 253

Chapter 6

sound results. Because audio samples are retrieved as a back

ground process (during video scan intervals), there's a limit to

how rapidly the computer can retrieve data. The fastest prac

tical retrieval rate is 28,867 samples per second, which means

you should avoid using any period smaller than 124.

Sound output is enabled by writing to the DMACONW

register. In the example program, this is done separately for

each of the two channels. Each of the bits in DMACONW has

a different purpose; Table 6-8 explains the bits that control

sound production.

Table 6-8. DMACONW Register ($DFF096)

Bit

15

9

3

2

1

0

Label

SETCLR

DMAEN

AUD3EN

AUD2EN

AUD1EN

AUDOEN

Purpose

Set 1 bits

Must be set to

Enable/disable

Enable/disable

Enable/disable

Enable/disable

L for any

channel

channel

channel

channel

r DMA to take place

3

2

1

0

The four lowest bits of DMACONW determine which

channel is affected: To start audio DMA in channel 0, you

would write a 1 in bit 0. To stop the sound in channel 0, write

a 0 in bit 0, and so on. Bit 9 (DMAEN) must be set to 1 in or

der for sound DMA to occur, and you must also write a 1 to

SETCLR at the same time. In Program 6-4, the channels are

enabled at ChannelO: and Channell:. Once the sound has be

gun, it continues indefinitely. To disable audio DMA in a

given channel, write a 0 to its enable bit in DMACONW.

The remainder of the program is quite straightforward.

The Timeout: routine delays execution with a do-nothing loop,

long enough for the sound to become audible. The simple

method used here has a significant drawback: While it's busy

timing the delay, the processor can't do anything else. If you

want to perform other program tasks while a sound is in

progress, you'll need to time the delay with an interrupt or

some other scheme.

Modulation. The Amiga can also use the output from one

audio channel to modulate the sound from another channel. A

modulating channel makes no sound of its own; instead, it af-

u

u

u

LJ

u

254

n

n

n

n

n

H

n

n

Programming Amiga Sound

fects the sound coming out of the other channel. If you recall

how a sine wave looks, you can imagine modulation as one

channel having control of the "volume knob" of another

channel. Assume that channel 1 is set to modulate channel 2.

If channel 1 uses a sine wave, the loudness of channel 2 will

be turned up and down following the pattern of the sine

wave. This creates an effect called tremolo and mimics the

wavering sound achieved, for example, when a violinist causes

his fingers to tremble against the strings.

There are, in fact, two types of modulation. Amplitude

modulation (AM), which we've just discussed, affects the vol

ume of the modulated channel, which is useful for envelope

generation and tremolo effects. Frequency modulation (FM) af

fects the period of the modulated channel, which changes the

output frequency for vibrato and other frequency-based

effects.

Your choices for modulation are limited: Any given chan

nel can modulate only its next higher neighbor. Channel 0 can

modulate channel 1, but not any other channel. Channel 1 can

modulate only channel 2, and channel 2 can modulate only

channel 3. Since channel 3 has no higher neighbor, it can't

modulate anything; similarly, because channel 0 has no lower

neighbor, it cannot be modulated by any other channel. The

ADKCONW register controls modulation (Table 6-9).

Table 6-9. ADKCONW Register ($DFF09E)

Bit

0

1

2

3

4

5

6

7

15

Label

ATVOLO

ATVOL1

ATVOL2

ATVOL3

ATPERO

ATPER1

ATPER2

ATPER3

SETCLR

Purpose

Channel 0

Channel 1

Channel 2

Channel 3

Channel 0

Channel 1

Channel 2

Channel 3

Set 1 bits

modulates

modulates

modulates

modulates

modulates

modulates

modulates

modulates

volume of channel 1

volume of channel 2

volume of channel 3

nothing (output disabled)

period of channel 1

period of channel 2

period of channel 3

nothing (output disabled)

You can use the two types of channel modulation either

singly or in combination. If you write a 1 into bit 0 of

ADKCONW, channel O's output modulates the volume of

channel 1. If you write a 1 into bit 1, channel O's output

255

LJ
Chapter 6

u

modulates channel l's period (thus affecting its frequency). If j j

both bits 0 and 4 are set, channel O's output modulates chan- <—>

nel l's volume and period simultaneously. Just as with

DMACONW, you must write a 1 to SETCLR whenever you \

want to set any other bit in the register to 1. Because *—'

ADKCONW is a multipurpose control register (it also plays a

role in disk access), you should be careful not to disturb any \ /

of its other bits. '—'
When you cause one channel to modulate another, its

own output is diverted from sound production to this other

task—so it no longer produces sound of its own. Bits 3

(ATVOL3) and 7 (ATPER3) seem to have been included

chiefly for the sake of symmetry: Since channel 3 can't modu

late anything, the only effect of setting these bits is to disable

channel 3's output, which might just as well be done in the

usual way.

Using a channel as a modulator is very similar to using it

as a sound generator except that its output is rerouted and

used for a different purpose. Just as in the normal case, you

must set its period to determine how frequently to sample the

data, enable DMA to begin output, and so on. You must also

create a data set and tell the computer where to find it. But

the Amiga interprets the contents of the modulator's data sam

ple quite differently. As noted above, for sound production the

waveform sample data is treated as a series of 8-bit bytes.

When you use a channel as a volume modulator, its data set is

treated as a series of 16-bit words, but only the low 7 bits of

each data word are significant:

Bits Purpose

0-6 Volume data

7-15 Ignored \ '

When you use a channel as a period modulator, its data

sample is interpreted as a series of 16-bit words, every bit of

which is significant:

Bits Purpose

0-15 Period data

When a channel is used to modulate both volume and pe

riod, the interpretation flip-flops between alternate words: The

first word is read as seven bits of volume information, and the

second is interpreted as a word of period data; words 3, 5,

7,..., are treated as volume data, words 4, 6, 8,..., are treated as

256 u

n
Programming Amiga Sound

n

r~j period data, and so on. Don't confuse the modulator's data set

with the waveform data sample for the modulated channel:

The two are independent and each can be whatever length is

P"j needed.

While modulation is handy for many purposes, one of the

most obvious uses for it is envelope generation. Every sound

I"""} has a characteristic envelope or amplitude pattern which

' l determines how quickly it rises to its maximum volume, how
long it exists, and how quickly it fades back into silence. Some

computers (the Commodore 64, for instance) generate sound

envelopes automatically, but the Amiga does not. In theory,

envelope generation is a simple task: All you need to do is

change a channel's volume according to a specified pattern

while the channel is producing a sound. In practice, monitor

ing the progress of individual sounds and deciding when it's

time to make another volume change can absorb a lot of

processor time. By using a second channel to modulate the

amplitude of the first, you can make the computer do most of

the work for you. You might find it an interesting project to

modify the example program so that channel 0 modulates the

volume of channel 1 (creating an amplitude envelope) or

channel l's period (creating a vibrato), rather than producing

an independent sound of its own.

n

n

H

H

M 257

0
0

P
r
o
g
r
a
m

6
-
4
.
M
a
c
h
i
n
e
L
a
n
g
u
a
g
e
S
o
u
n
d

*
C
L
I
_
S
o
u
n
d
.
a
s
m

*
M
a
c
h
i
n
e

l
a
n
g
u
a
g
e

s
o
u
n
d

e
x
a
m
p
l
e

*
A
c
c
e
p
t

C
L
I

a
r
g
u
m
e
n
t
s
,

g
e
n
e
r
a
t
e

t
o
n
e
s

i
n

2
c
h
a
n
n
e
l
s

C
h
i
p
a
d
r

e
q
u

$
d
f
f
0
0
0

;
b
a
s
e

a
d
d
r
e
s
s

o
f

c
h
i
p

!
D
M
A
c
o
n
w

e
q
u

C
h
i
p
a
d
r
+
$
9
6

7
D
M
A

c
o
n
t
r
o
l

w
r
i
t
e

r
e
g
i
s
t
e
r

A
u
d
0
L
c

e
q
u

C
h
i
p
a
d
r
+
$
a
0

A
u
d
0
L
e
n

e
q
u

C
h
i
p
a
d
r
+
$
a
4

A
u
d
0
p
e
r

e
q
u

C
h
i
p
a
d
r
+
$
a
6

A
u
d
0
v
o
l

e
q
u

C
h
i
p
a
d
r
+
$
a
8

A
u
d
l
L
c

e
q
u

C
h
i
p
a
d
r
+
$
b
0

A
u
d
l
L
e
n

e
q
u

C
h
i
p
a
d
r
+
$
b
4

A
u
d
l
p
e
r

e
q
u

C
h
i
p
a
d
r
+
$
b
6

A
u
d
l
v
o
l

e
q
u

C
h
i
p
a
d
r
+
$
b
8

S
e
t
c
l
r

O
f
f
D
M
A

A
u
d
0
e
n

A
u
d
i
e
n

D
M
A
e
n

C
o
u
n
t

M
a
i
n
:

S
e
t
u
p
:

e
q
u

$
0
8
0
0
0

e
q
u

0

e
q
u

$
0
1

e
q
u

$
0
2

e
q
u

$
0
2
0
0

e
q
u

$
f
f
f
f

a
d
d
.
l

a
0
,
d
0

m
o
v
e
.
l

d
0
,
a
l

;
C
h
a
n
n
e
l

0
w
a
v
e
f
o
r
m

s
a
m
p
l
e

l
o
c
a
t
i
o
n

;
C
h
a
n
n
e
l

0
w
a
v
e
f
o
r
m

s
a
m
p
l
e

l
e
n
g
t
h

;
C
h
a
n
n
e
l

0
p
e
r
i
o
d

;
C
h
a
n
n
e
l

0
v
o
l
u
m
e

;
C
h
a
n
n
e
l

1
w
a
v
e
f
o
r
m

s
a
m
p
l
e

l
o
c
a
t
i
o
n

7
C
h
a
n
n
e
l

1
w
a
v
e
f
o
r
m

s
a
m
p
l
e

l
e
n
g
t
h

7
C
h
a
n
n
e
l

1
p
e
r
i
o
d

7
C
h
a
n
n
e
l

1
v
o
l
u
m
e

7
D
M
A

S
E
T
C
L
R

b
i
t

7
D
i
s
a
b
l
e

D
M
A

7
E
n
a
b
l
e
/
d
i
s
a
b
l
e

C
h
a
n
n
e
l

0

7
E
n
a
b
l
e
/
d
i
s
a
b
l
e

C
h
a
n
n
e
l

1

7
E
n
a
b
l
e

D
M
A

7
C
o
u
n
t
e
r

f
o
r

d
e
l
a
y

t
i
m
e
r

7
F
i
n
d

a
n
d

r
e
c
o
r
d

t
h
e

e
n
d
i
n
g

7
a
d
d
r
e
s
s

o
f

c
o
m
m
a
n
d

t
a
i
l
.

l
e
a

W
a
v
e
s
a
m
p
l
e
,
a
2

7
F
i
n
d

a
d
d
r
e
s
s

o
f

w
a
v
e
f
o
r
m

s
a
m
p
l
e

d
a
t
a
.

i
c
:
c

c:
c
-
c

c

3
3

3
a

3
3

3
3

G
3

r
a
o
v
e
.
l

a
2
,
A
u
d
0
L
c

m
o
v
e
.
1

a
2
,
A
u
d
l
L
c

;
S
e
t

w
a
v
e
f
o
r
m

l
o
c
a
t
i
o
n

C
h
a
n
n
e
l

0
.

;
S
e
t
w
a
v
e
f
o
r
m

l
o
c
a
t
i
o
n

C
h
a
n
n
e
l

1
.

;
L
e
n
g
t
h

=
n
u
m
b
e
r

o
f

W
O
R
D
S

(
n
o
t

b
y
t
e
s
)

i
n

w
a
v
e
f
o
r
m

s
a
m
p
l
e
,

m
o
v
e
.
w

#
1
6
,
A
u
d
0
L
e
n

;
S
e
t

s
a
m
p
l
e

l
e
n
g
t
h

C
h
a
n
n
e
l

0
.

m
o
v
e
.
w

#
1
6
,
A
u
d
l
L
e
n

;
S
e
t

s
a
m
p
l
e

l
e
n
g
t
h

C
h
a
n
n
e
l

1
.

;
V
o
l
u
m
e

c
a
n

r
a
n
g
e

f
r
o
m

0
-
6
4

m
o
v
e
.
w

#
6
4
,
A
u
d
0
v
o
l

;
S
e
t

C
h
a
n
n
e
l

0
v
o
l
u
m
e

a
t

m
a
x
i
m
u
m
.

m
o
v
e
.
w

#
6
4
,
A
u
d
l
v
o
l

;
S
e
t

C
h
a
n
n
e
l

1
v
o
l
u
m
e

a
t

m
a
x
i
m
u
m
.

P
r
o
c
e
s
s
l
i
n
e
:

m
o
v
e
.
w

#
0
,
d
0

m
o
v
e
•
b

(
a
0
)
,
d
0

c
m
p
i
.
b

#
'
I
'
,
d
0

b
i
t

N
o
n
o
t
e

c
m
p
i
.
b

#
'
}
'
,
d
0

b
g
t

N
o
n
o
t
e

m
u
l
u

#
4
,
d
0

m
o
v
e
.
w

d
0
,
A
u
d
0
p
e
r

m
u
l
u

#
2
,
d
0

m
o
v
e
.
w

d
0
,
A
u
d
l
p
e
r

;
G
e
t

n
e
w

c
h
a
r
a
c
t
e
r
,

a
n
d

;
c
h
e
c
k

i
f
w
i
t
h
i
n

d
e
s
i
r
e
d

r
a
n
g
e
.

;
R
e
j
e
c
t

A
S
C
I
I

v
a
l
u
e
s

u
n
d
e
r
T

;
C
h
e
c
k

t
o
p

o
f

r
a
n
g
e

;
R
e
j
e
c
t

i
f

a
b
o
v
e

*
}
•

;
D
e
r
i
v
e

p
e
r
i
o
d

v
a
l
u
e

b
a
s
e
d

o
n

7
A
S
C
I
I

v
a
l
u
e

o
f

c
u
r
r
e
n
t

c
h
a
r
a
c
t
e
r
,

7
P
e
r
i
o
d

c
a
n

r
a
n
g
e

f
r
o
m

1
2
4
-
6
5
5
3
5
.

7
S
e
t

c
h
a
n
n
e
l

0
p
e
r
i
o
d
.

7
S
e
t

c
h
a
n
n
e
l

1
p
e
r
i
o
d
.

3 B

7
E
v
e
r
y
t
h
i
n
g
'
s

r
e
a
d
y
—
l
e
t
'
s

m
a
k
e

s
o
m
e

s
o
u
n
d
s
.
.
.

P

C
h
a
n
n
e
L
0
:

m
o
v
e
.
w

#
(
S
e
t
c
i
r
+
D
M
A
e
n
+
A
u
d
0
e
n
)
,
D
M
A
c
o
n
w

?
E
n
a
b
l
e

c
h
a
n
n
e
l

0
.

b
s
r
.
T
i
m
e
o
u
t

7
D
e
l
a
y
.

m
o
v
e
.
w

#
(
O
f
f
D
M
A
+
A
u
d
0
e
n
)
,
D
M
A
c
o
n
w

;
D
i
s
a
b
l
e

c
h
a
n
n
e
l

0
.

K
>

C
h
a
n
n
e
L
l
:

N
o
n
o
t
e
:

m
o
v
e
.
w

#
(
S
e
t
c
l
r
+
D
M
A
e
n
+
A
u
d
l
e
n
)
,
D
M
A
c
o
n
w

;
E
n
a
b
l
e

c
h
a
n
n
e
l

1
.

b
s
r

T
i
m
e
o
u
t

;
D
e
l
a
y
.

m
o
v
e
.
w

#
(
O
f
f
D
M
A
+
A
u
d
i
e
n
)
,
D
M
A
c
o
n
w

;
D
i
s
a
b
l
e

c
h
a
n
n
e
l

1
.

a
d
d
q
.
l

#
l
,
a
0

;
P
r
o
c
e
s
s

e
v
e
r
y

c
h
a
r
a
c
t
e
r

o
f

a
r
g
u
m
e
n
t

s
t
r
i
n
g

c
m
p
a
.
l

a
0
,
a
l

b
n
e

P
r
o
c
e
s
s
l
i
n
e

r
t
s

i

T
i
m
e
o
u
t
:

M
o
o
n
:

L
o
o
n
:

m
o
v
e
.
w

#
2
,
d
0

m
o
v
e
.
l

d
l
,
-
(
a
7
)

s
u
b
q
.
w

#
l
,
d
0

m
o
v
e
.
w

#
C
o
u
n
t
,
d
l

d
b
r
a

d
l
,
L
o
o
n

d
b
r
a

d
0
,
M
o
o
n

m
o
v
e
.
l

(
a
7
)
+
,
d
l

r
t
s

W
a
v
e
s
a
m
p
l
e
:

d
c
.
b

0
,
3
2
,
6
4
,
9
6
,
1
2
0
,
1
2
0
,
1
2
0
,
1
2
0
,
1
2
0
,
1
2
0
,
1
2
0
,
1
2
0

d
c
.
b

1
2
0
,
1
2
0
,
1
2
0
,
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0

d
c
.
b

-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
1
2
0
,
-
9
6
,
-
6
4
,
-
3
2
,
0

E
N
D

c
a

tr
c

rz
d

c
c

n

n

n

Programming Amiga Sound

Program 6-5. Machine Language Filemaker

•Filemaker for machine language sound example

^ « FOR j=0 TO 255
READ Value

^_^^ MLcode$=MLcode$+CHR$(Value)

("""^ Checksum=Checksum+Value

! * NEXT

IF Checksumo22825 THEN

PRINT "Error in data statements."

END

END IF

INPUT "Filename for disk file";filename?

OPEN filename? FOR OUTPUT AS #1

PRINT #1, MLcode?

CLOSE 1

PRINT "To run ML program, enter SYSTEM to exit to D

OS."

PRINT "Then open a CLI window and enter the filenam

e"

PRINT "you used when creating the file, followed by

PRINT "a space and any other characters."

DATA 0,0,3, 243 ,0,0,0,0

DATA 0,0,0,1,0,0,0,0

DATA 0 , 0 , 0 , 0 , 0 , 0 , 0 , 50

DATA 0,0,3, 233 , 0 , 0 , 0 , 50

DATA 208 , 136 , 34 , 64 , 69 , 249 ,0,0

DATA 0 , 168 , 35 , 202 , 0 , 223 , 240 , 160

DATA 35 , 202 , 0 , 223 , 240 , 176 , 51 , 252

_ DATA 0 , 16 , 0 , 223 , 240 , 164 , 51 , 252

| \ DATA 0 , 16 , 0 , 223 , 240 , 180 , 51 , 252

DATA 0 , 64 , 0 , 223 , 240 , 168 , 51 , 252

DATA 0 , 64 , 0 , 223 , 240 , 184 , 48 , 60

nDATA 0 , 0 , 16 , 16 , 12 , 0 , 0 , 33

DATA 109 , 0 , 0 , 70 , 12 , 0 , 0 , 125

DATA 110 , 0 , 0 , 62 , 192 , 252 ,0,4

DATA 51 , 192 , 0 , 223 , 240 , 166 , 192 , 252

DATA 0 , 2 , 51 , 192 , 0 , 223 , 240 , 182

DATA 51 , 252 , 130 , 1 , 0 , 223 , 240 , 150

DATA 97 , 0 , 0 , 38 , 51 , 252 ,0,1

DATA 0 , 223 , 240 , 150 , 51 , 252 , 130 , 2

DATA 0 , 223 , 240 , 150 , 97 , 0 , 0 , 18

DATA 51 , 252 ,0,2,0, 223 , 240 , 150

DATA 82 , 136 , 179 , 200 , 102 , 168 , 78 , 117

H

Chapter 6

U

LJ

U

n

262

u

LJ

u

u

D

O

D

O

a

o

□

a

o

n

C Programming
Marc B. Sugiyama and Christopher D. Metcalf

The C programming language was developed in the early

1970s by Dennis Ritchie, then an employee of Bell

Laboratories. C evolved out of a language called B,

which was itself developed from a language called BCPL. It is

designed to be a programmer's language, not a learner's lan

guage like BASIC or Pascal. It is powerful and versatile enough

to implement everything from low-level operating systems

functions to utility programs to applications. Unix, MS-DOS,

and Digital's VMS operating systems were all developed in C

or C-like languages.

What Is C?

C is a compiled language. When you program in C, you run

your program through a compiler. The compiler converts the

program into a machine language equivalent which the com

puter can execute directly. Other languages, such as BASIC

and LISP, are interpreted; the computer executes the original

code on the fly. Compiled languages tend to be fast; inter

preted languages tend to be very easy to edit and debug.

Compiled programs are still slower than their assembly lan

guage equivalents; however, they are more easily written and

debugged than assembly language programs.

C is both a high-level and a low-level language. It has

many features you might expect in high-level languages, such

as strings, file handling, and floating-point math. It also has

^ many other instructions, such as bit operations (AND, OR, bit

I shifting), which are more likely to be found in low-level

assembly languages. However, unlike an assembly language,

n which is specific to one processor, C programs are easily

\ ported between many different computers. C compilers can be

found on computers ranging from large VAX and IBM main-

^ frames to Commodore 64s.

i C code is cryptic at best. In a sense this is good, as it al

lows very short programs to be very powerful. However, it is

„, just as easy to produce very structured, organized code as it is

1 to produce code which is completely unstructured and chaotic.

C can be all things to all people.

265

LJ
Chapter 7

u

These features of C are some of the reasons behind its im- I j

mense popularity. C's popularity is also due in part to the in- '—'
creased availability of good C compilers for personal computers

and the increased accessibility of large minicomputers." j \

C's Availability on the Amiga

The C compiler is available on the Amiga from two sources. j j

Commodore provides a native C compiler and a cross com- '—'
piler from the IBM PC to the Amiga in its developer's pack

age. The native compiler runs on the Amiga and produces

code which the Amiga can execute. The cross compiler, on the

other hand, runs on the IBM-PC, and the code it produces

must be transferred to the Amiga before it can be run and

tested. Both of the Commodore-supplied compilers were

developed by Lattice. The other C compiler is called AZTEC-C

and is available from Manx. They, too, offer both native and

cross compilers.

The Lattice C Compiler

The Lattice C compiler is actually two separate programs: LCI

and LC2. LCI is run on C source code to produce an inter

mediate quad file. LC2 is then run on this file in order to gen

erate an object module, which contains the executable code

represented by your C program. However, your program will

no doubt contain references to built-in C procedures (the printf

routine, for example). A linker program, called ALink on the

Amiga, is needed to link your object module with the library

modules containing the C standard functions (LC.LIB) and the

modules containing Amiga-specific functions (AMIGA.LIB).

So, the compilation process is really three-step.

To simplify this, a simple CLI script file called make is t >

provided that calls the compiler and linker programs with the '—*
appropriate parameters. All of the example programs presented

here were written using the Lattice C compiler, version 3.02, t |

as supplied with the Amiga developer's kit. For more infor- I—>
mation about the various compiler options see Appendix D.

Compiling a Lattice C Program I)

This section will explain the actual compilation process. On

the way, we'll show you how to set up a programming

environment similar to the one we are most comfortable using.

You are certainly free to build your own environment if you

don't approve of ours.

266

C Programming

j \ Our environment is based on the ability of AmigaDOS to

run script files—files which hold commands to be executed as

if they were being typed from the keyboard (like VMS .COM

| j files or PC-DOS .BAT files). When you boot the Amiga,

AmigaDOS runs a script file called Startup-Sequence in the s

directory of the boot disk. Our startup-sequence includes the

/ [following commands:

assign i: csysdnclude

assign lib: csysilib

assign lc: csys:c

stack 8000

makedir ram:t

date ?

We've named the compiler disk CSYS:. It has an include

directory for the include files and a lib directory for the librar

ies. The Startup-Sequence performs the following operations:

It assigns the logical device i: to the include directory on csys:,

so we can access csysdnclude with just i:. In a similar way, it

assigns the logical devices lib: and lc: to particular directories

of csys:. Lattice recommends a default stack larger than 4096,

so we use 8000. Finally, we build a directory for temporary

files on the RAM disk and ask for the date.

When you're working on a program, we recommend

putting source code in the RAM disk while you're compiling.

Just copy the program to the ram: device. This decreases the

compilation time dramatically.

Now that we have everything set up, we're up to compil

ing the program. There are several ways to invoke the Lattice

C compiler. We've built two script files which aid compilation.

^ The first is called "cc" (Program 7-2). It will compile a pro-

| \ gram from start to finish by invoking both passes of the com

piler and the linker. If you like, you can use cc on the sample

t program "Mandelbrot.c" at the end of this chapter.

| [But cc will work only if you are compiling a program

which doesn't have to be linked with other object modules.

The "hello" programs must be linked with the object module

j | "xopenscreen" to work properly. Before you can produce exe

cutable copies of the hello programs, you must first build the

xopenscreen object module. This is simpler than it sounds. All

("""] you have to do is run the compiler without linking. The .o file
produced by the second pass compiler is the object module.

The source code for xopenscreen is Program 7-1.

n

u
Chapter 7

u

We've written a script file called "ccnl" (cc with no link- It

ing), Program 7-3. You have to use it on both the hello source

you're compiling and the xopenscreen source. Now that

you've made two object modules, you have to run alink to put j j

them together into an executable file. You can use cc as a tem

plate for the correct format of the alink command.

Below is a sample session in which we compile the pro-) (

gram hello.c. The boldface text is the text which is to be typed

by you. Note that both compilations produce a number of

warnings. These can be ignored for this program. You can

eliminate these warnings by including additional header files.

l>cd ram:

l>copy work:xopenscreen.c ram:

l>execute ccnl xopenscreen

Lattice AMIGA 68000 C Compiler (Phase 1)

V3.02 Copyright (C) 1984 Lattice, Inc.

xopenscreen.c 39 Warning 85: function return value mismatch

xopenscreen.c 40 Warning 61: undefined structure tag "Region"

xopenscreen.c 40 Warning 61: undefined structure tag "CopList"

xopenscreen.c 40 Warning 61: undefined structure tag "UCopList"

xopenscreen.c 40 Warning 61: undefined structure tag "cprlist"

xopenscreen.c 40 Warning 61: undefined structure tag "VSprite"

xopenscreen.c 40 Warning 61: undefined structure tag "collTable"

xopenscreen.c 40 Warning 61: undefined structure tag "Device"

xopenscreen.c 40 Warning 61: undefined structure tag "Unit"

xopenscreen.c 40 Warning 61: undefined structure tag "KeyMap"

Lattice AMIGA 68000 C Compiler (Phase 2)

V3.02 Copyright (C) 1984 Lattice, Inc.

Module size P=00000086 D=00000000 U=00000000

l>copy work:hello.c ram:

l>execute ccnl hello

Lattice AMIGA 68000 C Compiler (Phase 1)

V3.02 Copyright (C) 1984 Lattice, Inc. j j
i:exec/types.h 52 Warning 84: redefinition of pre-processor symbol "NULL" —j
hello.c 65 Warning 61: undefined structure tag "Region"

hello.c 65 Warning 61: undefined structure tag "CopList" , j

hello.c 65 Warning 61: undefined structure tag "UCopList"

hello.c 65 Warning 61: undefined structure tag "cprlist"

hello.c 65 Warning 61: undefined structure tag "VSprite"

hello.c 65 Warning 61: undefined structure tag "collTable"

hello.c 65 Warning 61: undefined structure tag "Device"

hello.c 65 Warning 61: undefined structure tag "Unit"

hello.c 65 Warning 61: undefined structure tag "KeyMap"

hello.c 65 Warning 61: undefined structure tag "GfxBase" [_ \
hello.c 65 Warning 61: undefined structure tag "IntuitionBase"

268 u

n
C Programming

i t

Lattice AMIGA 68000 C Compiler (Phase 2)

V3.02 Copyright (C) 1984 Lattice, Inc.

Module size P=000001A0 D=0000010D U=00000010

l>alink lib:lstartup.obj+hello.o+xopenscreen.o library lib:lc.lib+lib:am

iga.lib to hello map nil:

Amiga Linker Version 3.18.

Copyright (C) 1985 by Tenchstar Ltd., T/A Metacomco.

All rights reserved.

Linking complete - maximum code size = 11632 ($00002D70) bytes

In the newer version of the Lattice compiler (version

3.03), the lstartup.obj file has been renamed c.o. Furthermore,

adding the -v flag to Ic2 improves the performance of the c

program by about 20 percent.

To reduce typing, we often give ram: source files short

names. For example, xopenscreen.c might have been called x.c

during development. Note that once you've made the object

file of xopenscreen.c, there's no need to recompile it (unless,

of course, you've changed the source code) to use with other

programs. From now on, you just use the object module

xopenscreen.o.

269

"
P
r
o
g
r
a
m

7
-
1
.
x
o
p
e
n
s
c
r
e
e
n
.
c

t
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
* *

X
O
p
e
n
S
c
r
e
e
n
(
)

*
T
h
i
s

f
u
n
c
t
i
o
n

i
s

i
n
t
e
n
d
e
d

t
o

b
e

c
o
m
p
i
l
e
d

a
n
d

l
i
n
k
e
d

t
o

o
t
h
e
r

*
f
u
n
c
t
i
o
n
s

w
h
i
c
h

n
e
e
d

t
o

o
p
e
n

s
i
m
p
l
e

s
c
r
e
e
n
s
.

T
h
e

i
n
t
e
n
t

i
s

t
o

s
i
m
p
l
i
f
y

*
t
h
e

O
p
e
n
S
c
r
e
e
n
(
)

p
r
o
c
e
d
u
r
e
.

*
A
s
s
u
m
p
t
i
o
n
s
:

* *
s
c
r
e
e
n

o
c
c
u
p
i
e
s

f
u
l
l

w
i
d
t
h

a
n
d

h
e
i
g
h
t

o
f

d
i
s
p
l
a
y

*
B
l
o
c
k
P
e
n

=
1
,

D
e
t
a
i
l
P
e
n

=
0

*
C
U
S
T
O
M
B
I
T
M
A
P

m
o
d
e

i
s

d
i
s
a
l
l
o
w
e
d

*
t
h
e

d
e
f
a
u
l
t

"
T
o
p
a
z
"

f
o
n
t

i
s

u
s
e
d

*
n
o

c
u
s
t
o
m

g
a
d
g
e
t
s

a
r
e

a
l
l
o
w
e
d

* *
/

s
t
r
u
c
t

S
c
r
e
e
n

*
X
O
p
e
n
S
c
r
e
e
n
(
T
i
t
l
e
,

V
i
e
w
M
o
d
e
s
,

D
e
p
t
h
)

U
B
Y
T
E

*
T
i
t
l
e
;

/
*

p
o
i
n
t
e
r

t
o

t
h
e

t
i
t
l
e

(
a

s
t
r
i
n
g
)
;

o
r

N
U
L
L

*
/

U
W
O
R
D

V
i
e
w
M
o
d
e
s
;
/
*

H
I
R
E
S
,

L
A
C
E
,

S
P
R
I
T
E
S
,

D
U
A
L
P
F
,

H
A
M

*
/

W
O
R
D

D
e
p
t
h
;
/
*

d
e
p
t
h

o
f

s
c
r
e
e
n

(
1
-
6
)

*
/

{ s
t
r
u
c
t

N
e
w
S
c
r
e
e
n

X
N
e
w
S
c
r
e
e
n
;

X
N
e
w
S
c
r
e
e
n
.
L
e
f
t
E
d
g
e

=
0
;

X
N
e
w
S
c
r
e
e
n
.
T
o
p
E
d
g
e

=
0
;

X
N
e
w
S
c
r
e
e
n
.
W
i
d
t
h

=
V
i
e
w
M
o
d
e
s

&
H
I
R
E
S

?
6
4
0

:
3
2
0
;

X
N
e
w
S
c
r
e
e
n
.
H
e
i
g
h
t

=
V
i
e
w
M
o
d
e
s

&
L
A
C
E

?
4
0
0

:
2
0
0
;

X
N
e
w
S
c
r
e
e
n
.
D
e
p
t
h

=
D
e
p
t
h
;

c
c:

c:
c

c
c

c
c

c
c

j
rj
a

a
z)

;i
:i

:i
a

X
N
e
w
S
c
r
e
e
n
.
D
e
t
a
i
l
P
e
n

=
0
;

X
N
e
w
S
c
r
e
e
n
.
B
l
o
c
k
P
e
n

=
1
;

X
N
e
w
S
c
r
e
e
n
.
V
i
e
w
M
o
d
e
s

=
V
i
e
w
M
o
d
e
s
;

X
N
e
w
S
c
r
e
e
n
.
T
y
p
e

=
C
U
S
T
O
M
S
C
R
E
E
N
;

X
N
e
w
S
c
r
e
e
n
.
F
o
n
t

=
N
U
L
L
;

X
N
e
w
S
c
r
e
e
n
.
D
e
f
a
u
l
t
T
i
t
l
e

=
T
i
t
l
e
;

X
N
e
w
S
c
r
e
e
n
.
G
a
d
g
e
t
s

=
N
U
L
L
;

X
N
e
w
S
c
r
e
e
n
.
C
u
s
t
o
m
B
i
t
M
a
p

=
N
U
L
L
;

r
e
t
u
r
n

(
O
p
e
n
S
c
r
e
e
n
(
&
X
N
e
w
S
c
r
e
e
n
)
)
;
/
*

o
p
e
n

s
c
r
e
e
n

*
/

} P
r
o
g
r
a
m

7
-
2
.
C
C

.
K
e
y

f
i
l
e
,
o
p
t
l
/
o
p
t
2
/
o
p
t
3
l
c
l
<
o
p
t
l
>
<
o
p
t
2
>
<
o
p
t
3
>

-i
i:

-
i
i
d
a
t
t
i
c
e
/
<
f
i
l
e
$
t
e
s
t
>

if
n
o
t

e
x
i
s
t
s
"
<
f
i
l
e
$
t
e
s
t
>
.
q
"

e
c
h
o
"
C
o
m
p
i
l
e

f
a
i
l
e
d
/
'

q
u
i
t
2
0

e
n
d
i
f

I
c
2
<
f
i
l
e
$
t
e
s
t
>

a
l
i
n
k
f
r
o
m
l
i
b
:
l
s
t
a
r
t
u
p
.
o
b
j
+
<
f
i
l
e
$
t
e
s
t
>
.
o

l
i
b
l
i
b
:
l
c
.
l
i
b
,
l
i
b
:
a
m
i
g
a
.
l
i
b
t
o
<
f
i
l
e
$
t
e
s
t
>
m
a
p

ni
l:

Q

P
r
o
g
r
a
m

7
-
3
.
C
C
N
L

.
K
e
y
f
i
l
e
,
o
p
t
l
/
o
p
t
2
,
o
p
t
3
l
c
l
<
o
p
t
l
>
<
o
p
t
2
>
<
o
p
t
3
>

-i
i:

-
i
i
d
a
t
t
i
c
e
/
<
f
i
l
e
$
t
l
>

if
n
o
t

e
x
i
s
t
s
/
/
<
f
i
l
e
$
t
l
>
.
q
/
/

e
c
h
o
"
C
o
m
p
i
l
e

f
a
i
l
e
d
.
"

q
u
i
t
2
0

e
n
d
i
f

I
c
2
<
f
i
l
e
$
t
l
>

LJ
Chapter 7

' u

C Programming on the Amiga |_j
From this point on, we're going to assume that you're familiar

with the C programming language. As with any computer lan

guage, it would take an entire book to teach you C. Thus, we j j
direct you to one of the multitude of introductory-level C

books from which you can learn this language. Please refer to

the end of the chapter for a list of references. What follows is j (
an overview of C programming on the Amiga.

C programming on the Amiga is very straightforward. If

you glance at the sample programs, you might at first be over

whelmed by the large and complex data structures. The routines

which deal with those huge data structures are surely more

complex than the data structures themselves, right? Wrong.

Most Amiga programming simply requires building data struc

tures and passing them to one of the Amiga's system routines.

Nothing is really all that hard to do. What's hard is deciding

what you want to do, not telling the Amiga how to do it.

Header files. All the data structures that the Intuition li

brary operates on are defined in the file intuition/intuition.h.

This file, which is a header file, must be included in your pro

gram with the #include statement. You must also include

exec/types.h since the intuition/intuition.h file uses symbols

defined in this file. See Programs 7-3, 7-4, 7-5, and 7-6 for

examples.

Libraries

Many of the Amiga's built-in functions are designed to handle

its hardware and data structures. These routines are main

tained in objects referred to as libraries. A library is simply a

set of routines which are tied together as a logical set. They

are designed to be used by many different programs simulta- \ (

neously. Thus, each task doesn't have to have its own identi- —'

cal set of library functions in memory at the same time. Don't

confuse these libraries with the ones which are linked to your) I

C object modules. The libraries we're referring to here are *—;
accessed during the execution of the program and are not part

of the program itself. \ f

The libraries are either loaded from disk or are already (—*
resident in memory (some, like the Intuition library, are even

stored in ROM). Once a library is loaded off disk, it is not 1 j

purged from memory unless the memory is required by the {—j
system and no program is still using the library. In other

272 LJ

n
C Programming

j \ words, the libraries remain resident in memory as long as pos

sible. This improves system performance by keeping disk

activity at a minimum.

j \ To access routines stored in a library, you must call the
routine OpenLibrary(). This returns a pointer to a Library

structure, which contains a table of addresses where the

/ \ routines in the library can be found. The OpenLibrary() func

tion will cause the library to be loaded into memory if it hasn't

already been loaded. It also tells the library manager that your

task requires access to the library. When you are finished with

the library, you must close it with the CloseLibrary() func

tion, which informs the library manager that your task no

longer requires access to that particular library. If you do not

close the library, the librarian will never realize that your task

no longer requires access and will not free memory allocated

to the library when so requested. Although it's not really nec

essary to close a ROM-based library (since it's always in mem

ory), it's generally good practice to do so should future

versions of the Amiga operating system use all RAM-based

libraries.

Graphics

There are two libraries which are commonly used to handle

graphics. This essentially divides graphics handling in the

Amiga into two different levels. At the top level are the

Intuition routines. These routines are contained in

intuition.library and are used by Intuition and the Workbench

to open and maintain the windowing environment. Below In

tuition are the routines contained in graphics.library. The

graphics library is technically part of the Kernel (to make it

J"~! distinct from Intuition). These routines draw the lines and fill
the blocks which constitute the windows. Both the Intuition li

brary and the graphics library are in "ROM"; that is, they are

P""j loaded off the Kickstart disk when the system is powered up.
When you open the graphics library and the Intuition li

brary, you must use the names GfxBase and IntuitionBase,

j"""""j respectively, for the library pointers. The compiler library

(Amiga.lib) assumes that these are the names being used to

reference routines in these libraries. The graphics library and

P7 Intuition library are used together to manipulate the four basic
units of Amiga display handling: screens, windows, gadgets,

and menus.

n
273

Chapter 7

U

Screens jj

Screens act as the surface for all of your work. They are the

background on which all of the windows appear. You're al

lowed to have more than one screen open at a time. They are I j
dragged up and down like blackboards and can be depth-

arranged like windows. When you open a new screen, there

are two key parameters that you need to select. j (

The first parameter is the resolution. The Amiga supports

two different horizontal resolutions (320 or 640) and two

vertical resolutions (200 or 400). Thus, you have four possible

screen modes: 320 X 200, 640 X 200, 320 X 400, and 640 X

400. Amiga documentation refers to the 640 horizontal mode

as high resolution (HIRES), and the 400 vertical mode as inter

laced (LACE). Interlaced screens can flicker on all but the most

expensive monitors and thus should be used only when nec

essary. Note that the lower the resolution, the smaller amount

of memory the screen requires and the faster the system will

perform.

The second parameter which can be changed is the

"depth." This is simply the number of bit planes which should

be allocated for the screen. Thus, if the depth of the screen is

3, you're allocating three bit planes, and you are allowed eight

colors. Don't confuse this kind of depth with depth as in

"depth arrangement." Depth arrangement is simply the stack

ing order of the windows or screens (which screen appears on

top of the others). Note that the greater the number of bit

planes, the more memory the system requires and the slower

the system will perform, but the more colors you will have

available at one time. The default Workbench screen is 640 X

200 by 2 bit planes. This provides four colors and good system

performance.) f

Now that you've decided on the resolution and depth of * '
your custom screen, you have to inform the Amiga operating

system. You begin by filling the appropriate data into the I I

NewScreen structure. This structure is required only when you —'
open the screen and can be discarded after the screen has

been created. I I
1 ;

struct NewScreen {

SHORT LeftEdge, TopEdge, Width, Height, Depth;

UBYTE DetailPen, BlockPen; j j
USHORT ViewModes, Type; L-i
struct TextAttr *Font;

UBYTE *De£aultTitle; j j

274 U

n
C Programming

I \

i J

r—i

I \

n

struct Gadget *Gadgets;

struct BitMap *CustomBitMap; }

The fields in this structure have the following meanings:

LeftEdge Position of the left edge of the screen. The current

version of the Amiga hardware doesn't support this

feature. It should be set to zero for upward

compatibility.

TopEdge Position of the top edge of the screen. Set this to

zero if you want the screen to start at the top of the

display.

Width Width of the screen. This should either be 320 or

640 (remember, 640 is the high-resolution mode).

Height Height of the screen. This should either be 200 or

400 (remember, 400 is the interlace mode).

Depth Number of bit planes to use (only the values 1-6 are

valid).

DetailPen Color register to use for details such as the gadgets

and the text in the title bar. Generally, this is set to

zero.

BlockPen Color register to use for block fills such as the title

bar area. Generally, this is set to one.

ViewModes These flags are used to select the proper display

mode. There are currently five flags which can be

set. The important ones to us right now are:

HIRES—Selects 640 horizontal resolution; 320 hori

zontal resolution is used if this flag is not specified.

INTERLACE—Selects 400 vertical resolution (inter

lace mode); 200 vertical resolution is used if this flag

is not specified.

Type For our purposes, the screen type is always

CUSTOMSCREEN.

Font This is a pointer to a TextAttr structure. To use the

default system font (generally, Topaz eight- or nine-

point font), set this pointer to NULL.

DefaultTitle Pointer to a string which represents the title of the

screen. Setting this pointer to NULL makes a screen

with no title.

Gadgets This is a pointer to the first in a linked list of custom

(application) screen gadgets. We won't discuss

screen gadgets in this chapter; however, window

gadgets are discussed below.

CustomBitMap This is a pointer to a BitMap structure. We won't

talk about custom bitmaps, so set this to NULL.

275

u
Chapter 7

u

For example, if you wanted to open a 640 X 200 screen j j

with eight colors, no screen gadgets, and the default font, you —'

would use the following declaration:

struct NewScreen *newscreen = {) (
0,0, /* left and top edge */

640,200, /* width and height */

3, /* depth*/ j (

0,1, /* DetailPen and BlockPen */ (—'
HIRES, /* ViewMode */

CUSTOMSCREEN, /* Type */

NULL, /* default font */

"First Screen", /* screen's title */

NULL, /* no screen gadgets */

NULL /* no custom bitmap */ };

Once you've built a structure like the one above, you pass

a pointer to it to the OpenScreen() function. Note that our ex

ample NewScreen structure will open a screen with the de

fault font (as set by Preferences). This function returns a

NULL if the screen could not be opened (for example, if the

Amiga is out of memory); otherwise, it returns a pointer to a

Screen structure. This pointer is used to identify the screen

when it is used by other routines. For example, to open a win

dow in this screen, we have to tell the OpenWindow() func

tion where to find the screen.

You can force the screen to open with the Topaz 60- or

80-column font by using the following TextAttr structure and

replacing the NULL in the NewScreen Font field with a

pointer to textattr (this is all we are going to say about fonts):

struct TextAttr textattr = {

"topaz.font", /* font name */

TOPAZ-EIGHTY, /* height of font */ t f

FS-NORMAL, /* printing style */ <Lj
FPF-ROMFONT /* preferences */ };

In order to simplify the process of opening a screen, we j \

have written a short C function called XOpenScreen() which K—)

performs most of the work for you. All you must specify are

the depth and the resolution of the screen, and the routine \ j

takes care of the rest. Note that it does make certain {—;

assumptions:

• The screen occupies the full width and height of display. j I

•BlockPen =1. ^
• DetailPen = 0.

276 lJ

C Programming

r"J • CUSTOMBITMAP mode is not allowed.

• The default Topaz font is used (60 or 80 columns as set by

the Preferences utility).

j~] • No custom screen gadgets are allowed.

XOpenScreen() returns a pointer to a Screen structure if

r^) the screen was opened successfully or a NULL, just like the

I | OpenScreen() function.

Once your program is done with the screen, you must

close it using the CloseScreen() function. Pass this function

the pointer to the Screen structure returned by the Open-

Screen() or XOpenScreen() command. If you don't close the

screen before exiting the program, there will be no way of

removing the screen from the system and, consequently,

releasing the memory allocated to the screen without

rebooting the system.

There are other C functions associated with screens, but

they are outside the scope of this discussion.

Windows

Windows are where most of the interaction with the computer

is performed. These are where output is generated and input is

acquired. Intuition has a variety of functions which handle the

resizing, depth arrangement, and movement of windows. Gen

erally, these are handled automatically; the program can be in

formed and confirm such actions, but it doesn't have to be told

that such action is taking place. In other words, window resiz

ing, depth arrangement, and dragging can be completely trans

parent to the program using the window for input and output.

The icons which you click on to perform this magic with

^—^ the windows are called gadgets. The "system" gadgets, those

L. (that allow you to drag, depth arrange, close, and resize win
dows, are only a small example of what gadgets can be used

,—i, for. In the section of this chapter called "Application Gad-

i 1 gets," we'll discuss how you can add your own gadgets to the

system gadgets already attached to the window. As with

fmm screens, let's begin with the basics.

I I Windows are somewhat harder to open than screens, only
because their initialization data structure is larger. For win-

f—. dows, you'll have to decide where they are going to go on the

[l screen, how large they are when they're first opened, how big
or small they can get (if you allow resizing), and so forth.

' I 277

Chapter 7

Once you figure all this out, you pass this information to In

tuition with the OpenWindow() function in a NewWindow

structure.

struct NewWindow {

SHORT LeftEdge, TopEdge, Width, Height;

UBYTE DetailPen, BlockPen;

ULONG IDCMPFlags, Flags;

struct Gadget *FirstGadget;

struct Image *CheckMark;

UBYTE Title;

struct Screen *Screen;

struct BitMap *BitMap;

SHORT MinWidth, MinHeight, MaxWidth, MaxHeight;

USHORT Type; }

where the fields have the following definitions:

LeftEdge, Where the left-top edge of the window should be

TopEdge placed on the screen when the window is opened.

The location (0,0) is the top left corner of the screen.

Width, Height The size of the window in pixels (screen dots) when

the window is first opened.

DetailPen, These are analogous to the NewScreen fields of the

BlockPen same name. If you use — 1 for either of these, the

default value specified when the screen was opened

will be used for the window.

IDCMPs (Intuition Direct Communication Message

Ports) are discussed below.

There are several flags which must be set to tell the

operating system something about the window. It is

easy to organize the flags into logical groups. Some

of the flags control which system gadgets are ren

dered with the window:

WINDOWSIZING—If you specify this flag, Intuition

will add a resizing gadget to the lower right corner

of the window and allow the user to resize the win

dow. You must specify NOCAREREFRESH if you

don't want Intuition to send you a message every

time the window is resized.

WINDOWDEPTH—This flag forces Intuition to add

depth arrangers to the title bar of the window and

allow the user to depth arrange this window with

the others on the screen.

WINDOWCLOSE— Specifying this flag makes In

tuition provide a window with a close box. When

IDCMPFlags

Flags

u

u

u

u

u

278 U

C Programming

n

the user clicks on the close box, Intuition will send

your program an IDCMP of class CLOSEWINDOW.

Note that you should also set the CLOSEWINDOW

flag in the IDCMP flags section (don't worry if this

isn't making sense yet. IDCMPs will be discussed

more fully later).

^ WINDOWDRAG—This tells Intuition that the user

/ \ is allowed to move the window around the screen.

Generally a Workbench window will have all four of

these system gadgets; however, the CLI window doesn't have

a close box.

The second set of flags relates to how Intuition should

handle refreshing the window when it is overlapped by an

other window.

SIMPLE__REFRESH—Tells Intuition not to save the

portion of the window which is covered by another

window. All of the windows share the same screen

memory. When a window is covered by another

window, the memory holding the image of the old

window has been altered to hold the image of the

new window. If this flag is set, Intuition will not

store the contents of the old window, and any im

age rendered in it will be lost.

SMART-REFRESH—The opposite of

SIMPLE-REFRESH. Specifically, this tells Intuition

to save the contents of the window if it is covered

by another window. Thus, if you overlap a window

with another and then uncover the window again,

the uncovered portion of the window will be re

drawn as it was before.

The last set of flags is more diverse:

! i ACTIVATE—Tells intuition that the window is to be

made the "active" window when it is opened.

(mamm> NOCAREREFRESH—Used to tell Intuition that you

i (do not want to receive an IDCMP when the window

is resized.

P FirstGadget Pointer to the first entry in a linked list of user-
defined gadgets (referred to as both application gad

gets and custom gadgets in Amiga documentation).

Set this field to NULL if there are no custom

gadgets.

279

Chapter 7

CheckMark Pointer to the image of the checkmark used to iden

tify selected items on the menus. Set this field to

NULL if you want to use the system default

checkmark.

Title Pointer to a string which represents the title of the

window.

Screen Pointer to the Screen structure belonging to the

screen you want to open the window in. This is ob

tained from the OpenScreen() function. If this field

is NULL, then the window is opened in the Work

bench screen.

BitMap Pointer to a "super bitmap." We will not be discuss

ing the use of super bitmaps. This is used only if a

special flag is set in the Flags field. Generally, how

ever, you'll want to set this to NULL.

MinWidth, The minimum and maximum size of the window al-

MinHeight, lowed by Intuition during resizing. If you use zero

MaxWidth, for any of these values, then the initial value is

MaxHeight taken as the value for that field. Thus, if the initial

width of the window is 100, and you specify

MinWidth to be 0, then MinWidth is taken as 100.

Type The current version of Intuition supports only two

different types of windows:

WBENCHSCREEN—Specify this type of window if

you want the window to be opened in the Work

bench screen.

CUSTOMSCREEN—This type of window is opened

in the custom screen pointed to by the Screen field.

Thus, you must open a CUSTOMSCREEN before

you can open a window in it.

Notice that you do not specify a resolution or a depth for

a window as you do for a screen. These parameters are screen

dependent, not window dependent. Thus, the resolution and

depth of the window are dependent on the resolution and

depth of the screen onto which it is opened. If you open a

CUSTOMSCREEN of resolution 320 X 400, with a depth of 3,

then the windows you open in that screen will have a maxi

mum size of 320 X 400 and can display up to eight colors.

Once you've filled in all of the data, you call

OpenWindow() with a pointer to the NewWindow structure.

If the OpenWindow() call was successful, it will return a

pointer to the Window structure associated with the new win

dow. The NewWindow structure is no longer needed and can

280

u

u

u

u

LJ

u

LJ

U

U

C Programming

Jj

be discarded or used to open another window. If the

OpenWindow() wasn't successful (suppose you don't have

enough memory), then it returns a NULL. Below is an ex-

ample of a "typical" window declaration. We aren't allowing

for custom gadgets (since we haven't discussed them yet), but

we do allow for window resizing, dragging, and depth

arrangement. We'll also make Intuition open the window in

the Workbench screen.

struct NewWindow newwindow = {

20,20, /* Left edge and top edge */

100,100, /* width and height */

0,1, /* detail and block pens */

NULL, /* IDCMP flags */

SMARTREFRESH I ACTIVATE I WINDOWSIZING I

WINDOWDRAG I WINDOWDEPTH,

/* flags */

NULL, /* no gadgets */

NULL, /* use default checkmark for menus */

"Simple Sample", /* window's title */

NULL, /* open in Workbench screen */

NULL, /* no custom bitmap */

50,50, /* min width and height */

200,200, /* max width and height */

CUSTOMSCREEN /* type */}

Using the Kernel Routines in the Window

Now that you have an open window, what can you do with

it? Most of the figure drawing is performed by the Kernel. The

Kernel is one level beneath Intuition. Its routines generally re

quire that you pass a pointer to a RastPort, a ViewPort, or a

View. These quantities are stored in the Window structure re-

turned by the OpenWindow() routine. The following might be

useful:

• To obtain a RastPort, use the following code: RPort =

Window->RPort, where RPort is a pointer to a RastPort

structure and Window is a pointer to a valid Window struc

ture (remember, OpenWindow() returns a pointer to a Win-

dow structure).

• The function ViewPortAddress(Window) will return the

ViewPort for the Window.

• ViewAddress() will return the address of the Intuition View

structure. This is the head of a linked list of the

ViewPortAddress() maintained for the Kernel routines.

281

Chapter 7

When dealing with the Kernel routines, it's important to

keep the following terminology in mind: The foreground, or

primary drawing pen, FgPen, is the same as APen; the back

ground, or secondary drawing pen, BgPen, is the same as , ,

BPen. These don't really correspond to the DetailPen and Lj
BlockPen used by Intuition. However, if you want some draw

ing to be done in the same pen as the DetailPen or the . .

BlockPen, then you can set the APen or BPen to the proper (>

color register before performing the draw. The sample pro

grams have numerous examples of how the Kernel routines

can be used to manipulate the windows. The "hello" pro

grams (for example) use Kernel routines to position the cursor

and write text to the window, and the Mandelbrot program

(the final example) uses Kernel routines to draw the

Mandelbrot set on the window.

A final note with windows: As with screens, it's very im

portant that a program close all of the windows it has opened.

In this way, all of the memory allocated to the windows is re

turned to the system's memory pool and can be used by other

programs.

Example Program: Hello World

HELLO.C is an example of how windows and screens can be

tied together into a simple program. Type in the program as it

appears in Program 7-4. Notice that when there's an error,

everything which has been opened up to that point must be

closed before exiting. To eliminate a lot of redundant code, we

check each item we might open against NULL. If it is NULL,

we assume that it either hasn't been opened or couldn't be

opened. If it is open, we close it. If it isn't open, we ignore it.

There are many ways to handle the problem of closing only

those things which you have opened. This is only one such]^J
solution.

HELLO.C will open a window and a screen and type

some message in the window. Notice that Intuition renders the j j
system gadgets for you. You can resize the window and move

it about the screen. Play with setting the different flags for the

window and adjusting its initial position and maximum/ j[
minimum size. You might try opening a second window on

the screen and play with the depth arrangement gadgets. No

tice how the program uses the Kernel Move() and Text() Ij
routines. The window will stay open for about ten seconds. If

282 jj

n
C Programming

O ~~

fH you need more time, change the maximum count for the time

'-- j delay.
In the following sections we will show you how you can

I"—) add a close gadget (the little box in the upper left corner) to

1— the window to allow you to close the window when you please.

/ i Getting Input from the User
In the sections which follow, we will discuss methods of get

ting information from the user. We'll begin by talking about

IntuiMessages, the message system used by Intuition to hand

user input to your program. Next, we will explain the simplest

of user inputs, a CLOSEWINDOW request. Finally, we'll cover

application gadgets and menus.

IDCMPs and CLOSEWINDOW Gadget

As you have already learned, the system uses gadgets to close,

resize, and depth-arrange the windows. However, up to this

point, resizing and depth arrangement have been transparent.

Obviously, the close gadget cannot be transparent to a pro

gram, since a program is responsible for closing all of the win

dows, screens, and libraries it has opened before exiting. If

close were transparent like the other system gadgets, then the

program would never be given an opportunity to shut every

thing down before it disappeared. How, then, does Intuition

communicate with the main program?

All of the user input for the Amiga is channeled through a

task called input.device. This task monitors the keyboard, the

mouse, and other input devices that might be supplied with

the computer (a light pen, joystick, and so forth) and waits for

p^ something to happen. When such an input event occurs, In-

1 \ tuition first checks to see whether it can use the event (if, for

instance, the user tries to depth-arrange the windows). If it

^ can't use the information, the event is passed along to the ac-

/ \ tive window, the only window which can be receiving input

from the outside world.

r^ To talk to our task, Intuition sends an IntuiMessage.

J j IntuiMessages are sent to a task's IDCMP (Intuition Direct
Communication Message Port) which is its hotline to Intuition.

Intuition automatically opens a set of IDCMPs for any window

/ j that needs to talk directly to Intuition. One of the ports is for

sending messages to Intuition; the other is to receive messages

from it.

H 283

Chapter 7

u

IntuiMessages are a special kind of interprocess commu- i j

nication message type, specifically designed for communicat- '—»
ing input events to the various tasks within the computer.

struct IntuiMessage { 1 (

struct Message ExecMessage; *■—'
ULONG Class;

USHORT Code, Qualifier; j ,

APTR IAddress; LJ
SHORT MouseX, MouseY;

ULONG Seconds, Micros;

struct Window *IDCMPWindow;

struct IntuiMessage *SpecialLink; }

These have the following meanings:

ExecMessage A Message structure maintained by the Exec Kernel

routines. It is used to link this message with others

in the system and at this message port.

Class The bits here correspond to the IDCMP flags speci

fied below.

Code Contains special information about the particular

class of the message. It may contain the raw key

code generated by the keyboard, or it may contain

information about which menu item was selected.

Qualifier As with the message's Code, the exact meaning of

this field depends on the context in which it was

received.

MouseX, These are the position of the mouse pointer relative

MouseY to the upper left corner of the window which re

ceived the IntuiMessage.

Seconds, The system time when the message was sent. You

Micros might want to use these values to see if the user has

double-clicked something.

IAddress Points to the object (gadget, screen, and so on)

which the message concerns. You will see later how J I
this is used to determine which gadget is providing

us with input.

IDCMPWindow Contains a pointer to the Window structure) /

representing the window to which the message per- v—}
tains. In this way, we know which window is gen

erating input and can take the appropriate action. j »

SpecialLink This field is intended to be used only by the system I 1
and generally points to another IntuiMessage.

There are a fixed number of IntuiMessage classes. These j j

correspond to the IDCMP flags you can set when you open a w1

window. You must set these flags in the IDCMP field for the

284 LJ

n
C Programming

n

p^| window if you want to receive a message of that kind. For in
stance, if you want to receive MOUSEBUTTONS messages,

then you must set the MOUSEBUTTONS flag in the

j~j IDCMPFlags field of the NewWindow structure when you

-— open the window. Alternatively, you can call the

ModifyIDCMP() function to modify which IntuiMessages your

p"| window will receive.

If you do not set the proper IDCMP flags for the window,

then Intuition will "intercept" those messages it believes you

don't want to see, and your task will never receive them. Also

note that only the active window can receive input from the

outside world. If your window is not currently active, then you

will receive no IntuiMessages (except for disk in/out messages,

should you request them). As with the window flags, the

IDCMP flags can be divided into groups. The first set of flags

relates to mouse input:

MOUSEBUTTONS—Setting this flag causes an

IntuiMessage to be sent if either of the mouse but

tons has been pressed or released. Intuition refers to

the left button as Select and the right button as

Menu. You will receive a message of this class only

if the key action doesn't mean anything to Intuition.

If Intuition can make use of the input event, then

the user's program will never see the event occur.

Should you receive an IntuiMessage of this kind, the

code field will tell you what has really happened.

There are four possibilities: SELECTDOWN,

SELECTUP, MENUDOWN, MENUUP.

MOUSEMOVE—This flag tells Intuition to send you

a message every time the mouse moves. This can re

sult in a large number of IntuiMessages; thus, it's

r~j generally a good idea to deal with them as quickly
- as possible. The position of the mouse is reported in

the MouseX and MouseY fields of the IntuiMessage

n structure. Note that MouseX and MouseY are rel

ative to the upper left corner of the window to

which this message pertains.

r-rj DELTAMOVE—This is similar to MOUSEMOVE

j (above except that mouse movements are reported as

delta (changes in) movement rather than absolute

coordinates. You must specify this flag along with

fi the MOUSEMOVE flag above.

285

Chapter 7
u

u

This next set of IDCMP flags relates to gadgets. These j j

might not make sense now, but they should once you've read

this entire section. Application gadgets are discussed below.

For now, the only important flag is CLOSEWINDOW. M

GADGETDOWN—Setting this flag causes Intuition

to send an IntuiMessage when your gadget is first

selected. This will happen only if the gadget was j f

created with the flag GADGIMMEDIATE set in (—;
Activation field of the Gadget structure.

GADGETUP—Causes Intuition to send an

IntuiMessage when your gadget is released. For this

to happen, you must have set the RELVERIFY flag

in the Activation field of the Gadget structure when

the gadget was created. This is usually the more im

portant message.

CLOSEWINDOW—Because this is so important, it

has been given a special IDCMP flag. When the

close box of the window is selected, a message of

CLOSEWINDOW class is sent to the window's

IDCMP. Note that this will happen only if the

CLOSEWINDOW flag has been set in the

IDCMPFlags field of the NewWindow structure and

the WINDOWCLOSE flag has been set in the Flags

field when the window is created.

This last set of flags is more or less miscellaneous:

MENUPICK—If this flag is set, you will receive an

IntuiMessage every time the menu button is clicked.

If a menu item was selected, then the menu item

number will be the Code field of the IntuiMessage

structure; otherwise, the Code field will hold the

value MENUNULL. We haven't talked about menus

yet, but they are discussed in a later section of this) j

chapter. '—'

NEWSIZE—If this flag is set, you will receive a mes

sage of this kind whenever the window is resized. j j

You can find out the new size of the window by t J

looking at the Width and Height fields in the Win

dow structure pointed to by the IAddress field in the (., .

IntuiMessage. LJ

RAWKEY—If you set this flag, you will receive a

message every time a key is pressed on the key

board. The keycode (not the ASCII equivalent) will SJ
be sent in the Code field.

286 u

C Programming

n

n

Remember that these are both the IntuiMessage's class

and the IDCMP flag relating to that IntuiMessage type.

Now that we know all of this, how do we look for a

CLOSEWINDOW? You can modify HELLO.C, as in Program

7-5, to make it end by pressing the close box. Notice that only

three things have to be changed. First, we add the declaration

of the IntuiMessage variable. Second, we include the IDCMP

flag CLOSEWINDOW in the NewWindow IDCMPFLags and

the WINDOWCLOSE flag in the Flags declaration. And, third,

we include the code to wait for a message and close the win

dow if the message is of the right class. Program 7-6 shows

how the new HELLO.C can be modified to print out the cur

rent mouse position as you move around the screen.

As the examples show, you need only three commands to

deal with IntuiMessages: Wait(), GetMsg(), and ReplyMsg().

Wait() waits for Intuition to signal that an input event has oc

curred; GetMsg() gives access to the IntuiMessage; ReplyMsg()

tells Intuition that we have received the IntuiMessage and are

ready to receive another. In a later section we will deal with

these commands more fully.

It's easy to modify HELLO.C to print other information

which is sent through IntuiMessages. You may have noticed

that when the HELLO.C window is no longer selected, the

IntuiMessages stop coming. Try running the program and de

selecting the window by pointing and selecting somewhere in

the screen not enclosed by the window. Then move the

pointer around the screen. Notice that the cursor position

numbers are no longer changing as the mouse is moved

around. Only the active window (the window with a solid, not

dithered, title bar) is allowed to receive input from the user.

287

£ <
»

P
r
o
g
r
a
m

7
-
4
.
O
p
e
n
a
W
i
n
d
o
w

P

#
i
n
c
l
u
d
e

<
l
a
t
t
i
c
e
/
s
t
d
i
o
.
h
>

^

#
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

CD

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

"
/
*

-
i

*
h
e
l
l
o
.
c

*
T
h
i
s

p
r
o
g
r
a
m

o
p
e
n
s

a
s
i
m
p
l
e

s
c
r
e
e
n

(
u
s
i
n
g

t
h
e

X
O
p
e
n
S
c
r
e
e
n

f
u
n
c
t
i
o
n
)
,

*
t
h
e
n

i
t

d
i
s
p
l
a
y
s

s
o
m
e

t
e
x
t

i
n

a
w
i
n
d
o
w

i
t

o
p
e
n
s
.

T
h
e

w
i
n
d
o
w

a
n
d

*
s
c
r
e
e
n

c
l
o
s
e

b
y

t
h
e
m
s
e
l
v
e
s

a
f
t
e
r

a
s
h
o
r
t

w
h
i
l
e
.

*
/

/
*

k
e
e
p

t
h
e

c
o
m
p
i
l
e
r

h
a
p
p
y

a
b
o
u
t

t
y
p
e

c
h
e
c
k
i
n
g

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
X
O
p
e
n
S
c
r
e
e
n
(
)
;

s
t
r
u
c
t

W
i
n
d
o
w

*
O
p
e
n
W
i
n
d
o
w
(
)
;

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

n
e
w
w
i
n
d
o
w

=
{

1
0
0
,

5
0
,

/
*

L
e
f
t
E
d
g
e
,

T
o
p
E
d
g
e

*
/

3
0
0
,

1
0
0
,

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

0
,

1
,

/
*

D
e
t
a
i
l
P
e
n
,

B
l
o
c
k
P
e
n

*
/

N
U
L
L
,

/
*

I
D
C
M
P
F
l
a
g
s

*
/

W
I
N
D
O
W
S
I
Z
I
N
G

I
S
I
Z
E
B
R
I
G
H
T

I
W
I
N
D
O
W
D
E
P
T
H

|
W
I
N
D
O
W
D
R
A
G

I
S
M
A
R
T
_
R
E
F
R
E
S
H

I
A
C
T
I
V
A
T
E

I
N
O
C
A
R
E
R
E
F
R
E
S
H
,

/
*

F
l
a
g
s

*
/

N
U
L
L
,

/
*

F
i
r
s
t
G
a
d
g
e
t

*
/

N
U
L
L
,

/
*

C
h
e
c
k
M
a
r
k

*
/

"
S
a
m
p
l
e

W
i
n
d
o
w
"
,

/
*

T
i
t
l
e

*
/

N
U
L
L
,

/
*

S
c
r
e
e
n

(
v
a
l
u
e

w
i
l
l

b
e

f
i
l
l
e
d

i
n
)

*
/

N
U
L
L
,

/
*

B
i
t
M
a
p

*
/

1
8
0
,

5
0
,

6
4
0
,

2
0
0
,

/
*

M
i
n
W
i
d
t
h
,

M
i
n
H
e
i
g
h
t
,

M
a
x
W
i
d
t
h
,

M
a
x
H
e
i
g
h
t

*
/

C
U
S
T
O
M
S
C
R
E
E
N

/
*

T
y
p
e

*
/

c
c

c
c

c
c:

c
e
c
u

3
3

3
G

C
J

3
3

3
3

3

}
>
s
t
r
u
c
t

W
i
n
d
o
w

*
w
i
n
d
o
w
;

s
t
r
u
c
t

S
c
r
e
e
n

*
s
c
r
e
e
n
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

n
o
t
e
:

t
h
e

n
a
m
e

M
U
S
T

b
e

"
G
f
x
B
a
s
e
"

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

/
*

a
s

a
b
o
v
e

*
/

m
a
i
n

(
)

I
i
n
t

i
;

i
f

(
(
I
n
t
u
i
t
i
o
n
B
a
s
e

=

(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)
O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,

1
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

i
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y
\
n
"
)
;

i
f

(
(
G
f
x
t
f
a
s
e

=

(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)
O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,

1
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

g
r
a
p
h
i
c
s

l
i
b
r
a
r
y
\
n
"
)
;

i
f

(
(
s
c
r
e
e
n

=
X
O
p
e
n
S
c
r
e
e
n
(
"
S
a
m
p
l
e

S
c
r
e
e
n
"
,

H
I
R
E
S
,

2
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

s
c
r
e
e
n
\
n
"
)
;

n
e
w
w
i
n
d
o
w
.
S
c
r
e
e
n

=
s
c
r
e
e
n
;

i
f

(
(
w
i
n
d
o
w

=
O
p
e
n
W
i
n
d
o
w
(
f
c
n
e
w
w
i
n
d
o
w
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

w
i
n
d
o
w
\
n
"
)
;

M
o
v
e
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

1
0
,

2
0
)
;

T
e
x
t
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

"
A
l
l

t
h
a
t
.
,

f
o
r

t
h
i
s
?
"
,

2
0
)
;

Q

f
o
r

(
i

=
1
0
0
0
0
0
0
;

i
;
i
—
)
;

C
l
e
a
n
u
p
(
N
U
L
L
)
;

C
l
e
a
n
u
p
(
E
x
i
t
T
e
x
t
)

c
h
a
r

*
E
x
i
t
T
e
x
t
;

{
i
f

(
w
i
n
d
o
w
)

C
l
o
s
e
W
i
n
d
o
w
(
w
i
n
d
o
w
)
;

i
f

(
s
c
r
e
e
n
)

C
l
o
s
e
S
c
r
e
e
n
(
s
c
r
e
e
n
)
;

g
i
f

(
G
f
x
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

3
i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

i
f

(
E
x
i
t
T
e
x
t
)

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

E
x
i
t
T
e
x
t
)
;

-

e
x
i
t

(
U
E
x
i
t
T
e
x
t
)
;

/
*

N
U
L
L

r
e
t
u
r
n
s

0
,

a
l
l

e
l
s
e

r
e
t
u
r
n
s

1
*
/

CD

}
**

P
r
o
g
r
a
m

7
-
5
.
O
p
e
n
a
W
i
n
d
o
w
a
n
d
A
l
l
o
w
U
s
e
r
t
o
C
l
o
s
e

I
t

t
i
n
c
l
u
d
e

<
l
a
t
t
i
c
e
/
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
* *

h
e
l
l
o
2
.
c

*
T
h
i
s

p
r
o
g
r
a
m

o
p
e
n
s

a
s
i
m
p
l
e

s
c
r
e
e
n

(
u
s
i
n
g

t
h
e

X
O
p
e
n
S
c
r
e
e
n

f
u
n
c
t
i
o
n
)
,

*
t
h
e
n

i
t

d
i
s
p
l
a
y
s

s
o
m
e

t
e
x
t

i
n

a
w
i
n
d
o
w

i
t

o
p
e
n
s
.

T
h
e

w
i
n
d
o
w

a
n
d

s
c
r
e
e
n

*
c
l
o
s
e

w
h
e
n

y
o
u

s
e
l
e
c
t

t
h
e

c
l
o
s
e

w
i
n
d
o
w

g
a
d
g
e
t
.

*
/

/
*

k
e
e
p

t
h
e

c
o
m
p
i
l
e
r

h
a
p
p
y

a
b
o
u
t

t
y
p
e
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
X
O
p
e
n
S
c
r
e
e
n
(
)
;

s
t
r
u
c
t

W
i
n
d
o
w

*
O
p
e
n
W
i
n
d
o
w
(
)
;

s
t
r
u
c
t

I
n
t
u
i
M
e
s
s
a
g
e

*
G
e
t
M
s
g
(
)
;

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

n
e
w
w
i
n
d
o
w

=
{

1
0
0
,

5
0
,

/
*

L
e
f
t
E
d
g
e
,

T
o
p
E
d
g
e

*
/

3
0
0
,

1
0
0
,

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

0
,

1
,

/
*

D
e
t
a
i
l
P
e
n
,

B
l
o
c
k
P
e
n

*
/

C
L
O
S
E
W
I
N
D
O
W
,

/
*

I
D
C
M
P
F
l
a
g
s

*
/

\Z
[I

C
C

€.
H

C
C

C
C

g
J

a
g

a
g

g
g

g
g

W
I
N
D
O
W
S
I
Z
I
N
G

I
S
I
Z
E
B
R
I
G
H
T

I
W
I
N
D
O
W
D
E
P
T
H

I
W
I
N
D
O
W
D
R
A
G

I
S
M
A
R
T
_
_
R
E
F
R
E
S
H

|
A
C
T
I
V
A
T
E

I
N
O
C
A
R
E
R
E
F
R
E
S
H

I
W
I
N
D
O
W
C
L
O
S
E
,

/
*

F
l
a
g
s

*
/

N
U
L
L
,

/
*

F
i
r
s
t
G
a
d
g
e
t

*
/

N
U
L
L
,

/
*

C
h
e
c
k
M
a
r
k

*
/

"
S
a
m
p
l
e

W
i
n
d
o
w
"
,

/
*

T
i
t
l
e

*
/

N
U
L
L
,

/
*

S
c
r
e
e
n

(
v
a
l
u
e

w
i
l
l

b
e

f
i
l
l
e
d

i
n
)

*
/

N
U
L
L
,

/
*

B
i
t
M
a
p

*
/

1
8
0
,

5
0
,

6
4
0
,

2
0
0
,

/
*

M
i
n
W
i
d
t
h
,

M
i
n
H
e
i
g
h
t
,

M
a
x
W
i
d
t
h
,

M
a
x
H
e
i
g
h
t

*
/

C
U
S
T
O
M
S
C
R
E
E
N

/
*

T
y
p
e

*
/

}
;

s
t
r
u
c
t

W
i
n
d
o
w

*
w
i
n
d
o
w
;

s
t
r
u
c
t

S
c
r
e
e
n

*
s
c
r
e
e
n
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

n
o
t
e
:

t
h
e

n
a
m
e

M
U
S
T

b
e

"
G
f
x
B
a
s
e
"

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

/
*

a
s

a
b
o
v
e

*
/

s
t
r
u
c
t

I
n
t
u
i
M
e
s
s
a
g
e

^
m
e
s
s
a
g
e

/
*

m
e
s
s
a
g
e

f
r
o
m

i
n
t
u
i
t
i
o
n

*
/

m
a
i
n

(
)

i
i
f

(
(
I
n
t
u
i
t
i
o
n
B
a
s
e

=

(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)
O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,

1
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

i
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y
\
n
"
)
;

i
f

(
(
G
f
x
B
a
s
e

=

(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)
O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,

1
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

g
r
a
p
h
i
c
s

l
i
b
r
a
r
y
\
n
"
)
;

i
f

(
(
s
c
r
e
e
n

=
X
O
p
e
n
S
c
r
e
e
n
(
"
S
a
m
p
l
e

S
c
r
e
e
n
"
,

H
I
R
E
S
,

2
)
)

=
=

N
U
L
L
)

J|
C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

s
c
r
e
e
n
\
n
"
)
;

JD

n
e
w
w
i
n
d
o
w
.
S
c
r
e
e
n

=
s
c
r
e
e
n
;

£3
i
f

(
(
w
i
n
d
o
w

=
O
p
e
n
W
i
n
d
o
w
(
f
c
n
e
w
w
i
n
d
o
w
)
)

=
=

N
U
L
L
)

3

.
C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

w
i
n
d
o
w
\
n
"
)
;

v
o

M
o
v
e
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

1
0
,

2
0
)
;

*"
*

T
e
x
t
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

"
A
l
l

t
h
a
t
.
,

f
o
r

t
h
i
s
?
"
,

2
0
)
;

*g
/
*

d
o

t
h
i
s

l
o
o
p

f
o
r
e
v
e
r

*
/

K
>

f
o
r

(
;
;
)

{

/
*

w
a
i
t

f
o
r

m
e
s
s
a
g
e

t
o

b
e

s
e
n
t

t
o

o
u
r

t
a
s
k

*
/

W
a
i
t
(
K
<
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)

;

w
h
i
l
e
(
m
e
s
s
a
g
e

=
G
e
t
M
s
g
(
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
)
)

{

/
*

c
h
e
c
k

f
o
r

C
L
O
S
E
W
I
N
D
O
W
m
e
s
s
a
g
e

c
l
a
s
s

*
/

i
f

(
m
e
s
s
a
g
e
-
>
C
l
a
s
s

=
=

C
L
O
S
E
W
I
N
D
O
W
)

{
R
e
p
l
y
M
s
g
(
m
e
s
s
a
g
e
)
;

C
l
e
a
n
u
p
(
N
U
L
L
)
;

}

C
l
e
a
n
u
p
(
E
x
i
t
T
e
x
t
)

c
h
a
r

*
E
x
i
t
T
e
x
t
;

i
f

(
w
i
n
d
o
w
)

C
l
o
s
e
W
i
n
d
o
w
(
w
i
n
d
o
w
)
;

i
f

(
s
c
r
e
e
n
)

C
l
o
s
e
S
c
r
e
e
n
(
s
c
r
e
e
n
)
;

i
f

(
G
f
x
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

i
f

(
E
x
i
t
T
e
x
t
)

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

E
x
i
t
T
e
x
t
)
;

e
x
i
t

(
U
E
x
i
t
T
e
x
t
)
;

/
*

N
U
L
L

r
e
t
u
r
n
s

0
,

a
l
l

e
l
s
e

r
e
t
u
r
n
s

1
*
/

«

C
C
C

d
D

C
C

C
IZ

3
3

3
I]

3
3

I
]

3
3

P
r
o
g
r
a
m

7
-
6
.
O
p
e
n
a
W
i
n
d
o
w
a
n
d
P
r
i
n
t
M
o
u
s
e

P
o
s
i
t
i
o
n

#
i
n
c
l
u
d
e

<
l
a
t
t
i
c
e
/
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

/
* *

h
e
l
l
o
3
.
c

* *
T
h
i
s

p
r
o
g
r
a
m

o
p
e
n
s

a
s
i
m
p
l
e

s
c
r
e
e
n

(
u
s
i
n
g

t
h
e

X
O
p
e
n
S
c
r
e
e
n

f
u
n
c
t
i
o
n
)
,

*
t
h
e
n

d
i
s
p
l
a
y
s

s
o
m
e

t
e
x
t

i
n

a
w
i
n
d
o
w

i
t

o
p
e
n
s
.

T
h
e

w
i
n
d
o
w

a
n
d

s
c
r
e
e
n

*
c
l
o
s
e

w
h
e
n

y
o
u

s
e
l
e
c
t

t
h
e

c
l
o
s
e
w
i
n
d
o
w

g
a
d
g
e
t
.

W
h
e
n

t
h
e

w
i
n
d
o
w

i
s

*
s
e
l
e
c
t
e
d
,

i
t

d
i
s
p
l
a
y
s

t
h
e

c
u
r
r
e
n
t

m
o
u
s
e

c
o
o
r
d
i
n
a
t
e
s

r
e
l
a
t
i
v
e

t
o

i
t
s

*
u
p
p
e
r

l
e
f
t

c
o
r
n
e
r
.

* *
/

/
*

k
e
e
p

t
h
e

c
o
m
p
i
l
e
r

h
a
p
p
y

a
b
o
u
t

t
y
p
e
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
X
O
p
e
n
S
c
r
e
e
n
(
)
;

s
t
r
u
c
t

W
i
n
d
o
w

*
O
p
e
n
W
i
n
d
o
w
(
)
;

s
t
r
u
c
t

I
n
t
u
i
M
e
s
s
a
g
e

*
G
e
t
M
s
g
(
)
;

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

n
e
w
w
i
n
d
o
w

=
{

1
0
0
,

5
0
,

3
0
0
,

1
0
0
,

0
,

1
,

C
L
O
S
E
W
I
N
D
O
W

I
W
I
N
D
O
W
S
I
Z
I
N
G

I

/
*

L
e
f
t
E
d
g
e
,

T
o
p
E
d
g
e

*
/

/
*

W
i
d
t
h
,

H
e
i
g
h
t

*
/

/
*

D
e
t
a
i
l
P
e
n
,

B
l
o
c
k
P
e
n

*
/

M
O
U
S
E
M
O
V
E
,

/
*

I
D
C
M
P
F
l
a
g
s

*
/

S
I
Z
E
B
R
I
G
H
T

I
W
I
N
D
O
W
D
E
P
T
H

I
W
I
N
D
O
W
D
R
A
G

V
O

C
O

S
M
A
R
T
_
R
E
F
R
E
S
H

I
A
C
T
I
V
A
T
E

I

I
W
I
N
D
O
W
C
L
O
S
E

I
R
E
P
O
R
T
M
O
U
S
E
,

N
U
L
L
,

/
*

F
i
r
s
t
G
a
d
g
e
t

*
/

N
U
L
L
,

/
*

C
h
e
c
k
M
a
r
k

*
/

"
S
a
m
p
l
e

W
i
n
d
o
w
"
,

/
*

T
i
t
l
e

*
/

N
O
C
A
R
E
R
E
F
R
E
S
H

/
*

F
l
a
g
s

*
/

Q I 5" en
?

N
U
L
l
i
,

/
*

S
c
r
e
e
n

(
v
a
l
u
e

w
i
l
l

b
e

f
i
l
l
e
d

i
n
)

*
/

N
U
L
L
,

/
*

B
i
t
M
a
p

*
/

1
8
0
,

5
0
,

6
4
0
,

2
0
0
,

/
*

M
i
n
W
i
d
t
h
,

M
i
n
H
e
i
g
h
t
,

M
a
x
W
i
d
t
h
,

M
a
x
H
e
i
g
h
t

*
/

C
U
S
T
O
M
S
C
R
E
E
N

/
*

T
y
p
e

*
/

}
;
s
t
r
u
c
t

W
i
n
d
o
w

*
w
i
n
d
o
w
;

s
t
r
u
c
t

S
c
r
e
e
n

*
s
c
r
e
e
n
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

/
*

n
o
t
e
:

t
h
e

n
a
m
e

M
U
S
T

b
e

"
G
f
x
B
a
s
e
"

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

/
*

a
s

a
b
o
v
e

*
/

s
t
r
u
c
t

I
n
t
u
i
M
e
s
s
a
g
e

*
m
e
s
s
a
g
e

/
*

m
e
s
s
a
g
e

f
r
o
m

i
n
t
u
i
t
i
o
n

*
/

m
a
i
n

(
)

{
c
h
a
r

*
O
u
t
T
e
x
t
[
3
0
]
;

i
f

(
(
I
n
t
u
i
t
i
o
n
B
a
s
e

=

(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
)
O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
,

1
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

i
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y
\
n
"
)
;

i
f

(
(
G
f
x
B
a
s
e

=

(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)
O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,

1
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

g
r
a
p
h
i
c
s

l
i
b
r
a
r
y
\
n
"
)
;

i
f

(
(
s
c
r
e
e
n

=
X
O
p
e
n
S
c
r
e
e
n
(
"
S
a
m
p
l
e

S
c
r
e
e
n
"
,

H
I
R
E
S
,

2
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

s
c
r
e
e
n
\
n
"
)
;

n
e
w
w
i
n
d
o
w
.
S
c
r
e
e
n

=
s
c
r
e
e
n
;

i
f

(
(
w
i
n
d
o
w

=
O
p
e
n
W
i
n
d
o
w
(
&
n
e
w
w
i
n
d
o
w
)
)

=
=

N
U
L
L
)

C
l
e
a
n
u
p
(
"
E
r
r
o
r
:

c
o
u
l
d
n
'
t

o
p
e
n

w
i
n
d
o
w
\
n
"
)
;

M
o
v
e
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

1
0
,

2
0
)
;

T
e
x
t
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

"
A
l
l

t
h
a
t
.
,

f
o
r

t
h
i
s
?
"
,

2
0
)
;

/
*

d
o

t
h
i
s

l
o
o
p

f
o
r
e
v
e
r

*
/

f
o
r

(
;
;
)

{

/
*

w
a
i
t

f
o
r

m
e
s
s
a
g
e

t
o

b
e

s
e
n
t

t
o

o
u
r

t
a
s
k

*
/

Q I CD

I
Z
C
C

L"
C

C
C

C
1
=

n
=
i
u

W
a
i
t
(
K
<
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)

;

w
h
i
l
e
(
m
e
s
s
a
g
e

=
G
e
t
M
s
g
(
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
)
)

{

/
*

c
h
e
c
k

f
o
r

C
L
O
S
E
W
I
N
D
O
W

m
e
s
s
a
g
e

c
l
a
s
s

*
/

i
f

(
r
n
e
s
s
a
g
e
-
>
C
l
a
s
s

=
=

C
L
O
S
E
W
I
N
D
O
W
)

I
R
e
p
l
y
M
s
g
(
m
e
s
s
a
g
e
)
;

C
l
e
a
n
u
p
(
N
U
L
L
)
;

i
f

(
m
e
s
s
a
g
e
-
>
C
l
a
s
s

=
=

M
O
U
S
E
M
O
V
E
)

I

M
o
v
e
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

1
0
,

2
8
)
;

s
p
r
i
n
t
f
(
O
u
t
T
e
x
t
,

"
%
d
,
%
d

"
,

m
e
s
s
a
g
e
-
>
M
o
u
s
e
X
,

m
e
s
s
a
g
e
-
>
M
o
u
s
e
Y
)
;

T
e
x
t
(
w
i
n
d
o
w
-
>
R
P
o
r
t
,

O
u
t
T
e
x
t
,

s
t
r
l
e
n
(
O
u
t
T
e
x
t
)
)
;

R
e
p
l
y
M
s
g
(
m
e
s
s
a
g
e
)
;

}

C
l
e
a
n
u
p
(
E
x
i
t
T
e
x
t
)

c
h
a
r

*
E
x
i
t
T
e
x
t
;

i
f

(
w
i
n
d
o
w
)

C
l
o
s
e
W
i
n
d
o
w
(
w
i
n
d
o
w
)
;

i
f

(
w
i
n
d
o
w
)

C
l
o
s
e
W
i
n
d
o
w
(
w
i
n
d
o
w
)
;

i
f

(
s
c
r
e
e
n
)

C
l
o
s
e
S
c
r
e
e
n
(
s
c
r
e
e
n
)
;

i
f

(
G
f
x
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

i
f

(
E
x
i
t
T
e
x
t
)

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

E
x
i
t
T
e
x
t
)
;

e
x
i
t

(
H
E
x
i
t
T
e
x
t
)
;

/
*

N
U
L
L

r
e
t
u
r
n
s

0
,

a
l
l

e
l
s
e

r
e
t
u
r
n
s

1
*
/

K
>

v
©

O

Chapter 7

Intuition Illustration Data Types

Before we can talk about application gadgets and menus, we

need to discuss the three different graphic rendering structures

used by Intuition. Amiga documentation refers to these struc

tures as "illustration data types." The first of these structures

is designed to render text on the screen. Its basic component is

a string, but it also includes fields for position, pen colors,

drawing mode, and type font. This IntuiText structure has the

following fields:

struct IntuiText {

UBYTE FrontPen, BackPen, DrawMode;

SHORT LeftEdge, TopEdge;

struct TextAttr *ITextFont;

UBYTE *IText;

struct IntuiText *NextText; }

where the fields have the following meanings:

FrontPen The pen to use for drawing the text.

BackPen This field is not currently being used by Intuition.

DrawMode There are three possible drawing modes:

JAM1—Makes Intuition use the FrontPen color reg

ister to draw the character. No change is made to

the background.

JAM2—Makes Intuition draw both the foreground

(character) colors and the background colors on the

screen. This would make the text blank out the

background rather than writing on top of it.

XOR—Causes the background beneath the text to be

made its binary complement.

LeftEdge, The starting position of the text. LeftEdge is the

TopEdge number of pixels from the left edge of the graphics

element in which the text is being rendered.

TopEdge is the number of pixels down from the top.

For example, if the text is being drawn in a window,

then LeftEdge and TopEdge are relative to the upper

left corner of the window.

A pointer to the Font structure you wish to use to

render the text, or NULL to use the default Topaz

font from Preferences.

A normal C string.

Points to any other IntuiText structures that should

be printed at the same time as this one. If this is the

last or only IntuiText structure in the list, then set

this field to NULL.

ITextFont

IText

NextText

296

u

u

LJ

u

u

LJ

U

LJ

U

LJ

n
Programming

•~] The second Intuition illustration data type is a Border
structure. It's generally used to construct a border around the

gadget (or anything else), but any line figure can be drawn

i"""? with this data structure.

struct Border {

SHORT LeftEdge, TopEdge;

, I UBYTE FrontPen, BackPen;

UBYTE DrawMode;

BYTE Count;

SHORT *XY;

struct Border *NextBorder; }

where the fields have the following meanings:

LeftEdge, The same as in IntuiText. Note, however, that JAM2

TopEdge, is not well-defined for Border structures and that

FrontPen, LeftEdge and TopEdge position the origin of the

BackPen, border rendering.

DrawMode

Count The number of vertices in the Border structure (the

number of coordinate pairs in the array pointed to

by XY).

XY Acts as a pointer to an array of coordinate pairs.

These coordinate pairs are offsets from the initial

LeftEdge and TopEdge fields. The first coordinate

pair describes the starting point of the line. Each

pair after that is the ending point of that line and

the starting point of the next. Both positive and neg

ative offsets from LeftEdge and TopEdge are

allowed.

NextBorder A pointer to the next Border structure in a linked

list. If this is the only or last Border structure in a

list, then this field should be set to NULL.

1 .1 Note that many Border structures can share the same XY

array. This is possible because the XY coordinate pair array is

r—i relative to LeftEdge and TopEdge, not the surface in which

; .i they are being drawn. Thus, if you were using a Border struc
ture to represent two gadgets that have the same shape, they

r-j can both use the same XY array. The Border structures can be

L ; chained so that you can change colors and drawing modes as

you are drawing the figure. Again, there is no limitation on

i—, the shape that you can draw. You are not limited to just hori-

! } zontal and vertical lines.

The third and last illustration data type is an Image struc-

,—, ture. This structure is used if you want to render a bitmap im-

I I 297

u
Chapter 7

age on the screen. At the lowest level, the Amiga handles j {

graphics through bitmapped screens. Each pixel is controlled '—'

by one or more bits. An eight-color display requires three bits

for every pixel. These bits are taken from separate, distinct \ \

areas of memory called planes, or rasters, and are combined to s—!

determine the color register of the pixel being displayed. Once

the color register is determined, the color in that register is j /

displayed on the screen for that pixel. '—'
The Image structure is the closest you can get to this kind

of graphics rendering from within Intuition. Like the IntuiText

and Border structures, you specify the LeftEdge and TopEdge

of the graphics element you are drawing. However, you must

also specify the Width and Height, which determine the size

in pixels of the rectangular region you are plotting, and the

"depth," or number of bit planes, that your image uses. The

image data itself is represented in memory as sequential

words. The Width is rounded up to the nearest 16 pixels; thus,

a 17-pixel-wide image would require two words per row. The

bit planes of the image should appear consecutively in mem

ory. Thus, an image 7 pixels wide, 9 high, and three planes

deep would require 27 consecutive words of memory.

In an effort to reduce memory overhead, Intuition sup

ports a special PlanePick feature. Using this option, it is pos

sible to determine which of the screen's bit planes an image's

bit fields will appear in. Suppose you construct a simple one-

plane image. You can tell Intuition to display your image in

bit field 0 (to be displayed as color 1), or in bit fields 1, 3, and

4 (or color 26). To do this, you set the appropriate bits in the

PlanePick field: 0X1 for the first example, OX la for the sec

ond. This reduces memory overhead by reducing the number

of identical images you need to store in memory. If you'd like t ,

the image to be displayed conventionally (each bit plane in LJ
the image corresponds to one bit plane for the screen), you set

PlanePick to OXff. { f

When an image is rendered, Intuition also examines the i >

PlaneOnOff field. This field allows you to specify what should

happen to the bit planes in which your image is not appearing. , >

In the second example above, if you used 0X20 for PlaneOnOff, I 1

you would set the fifth bit plane to on and the others which

are not loaded with our image to off. Note that this applies . }

only to those planes which are not receiving a copy of the bit ^J

image. Thus, the setting in PlaneOnOff has no bearing on

those bit planes specified in the PlanePick field. . i

298 ^

n
0 Programming

n

n

n

n

One interesting effect of this structure is that very simple

images can be created without any bitmap data at all. Set

PlanePick to zero, and put a color value in PlaneOnOff. The

bits in PlaneOnOff will direct the appropriate bit planes to be

filled when displayed, and you'll have a rectangle of whatever

color you like, without specifying an actual image.

An Image structure has the following form:

struct Image {

SHORT LeftEdge, TopEdge, Width, Height, Depth;

USHORT "ImageData;

UBYTE PlanePick, PlaneOnOff;

struct Image *NextImage; }

in which the fields have the following definitions:

LeftEdge, Specify the position of the top corner of the Image

TopEdge relative to the object it's being rendered in.

Width, Height The width and height of the rectangular region

which encloses the graphics image being repre

sented by this structure. These fields tell Intuition

how to interpret the array pointed to by ImageData.

Depth The number of bit planes needed to represent the

image. Again, this is simply to tell Intuition how to

interpret the data pointed by ImageData.

ImageData A pointer to the actual data representing the graph

ics image. The data should be an array of USHORT.

PlanePick Tells Intuition which planes you want the graphics

image displayed in. Please see text for a more com

plete explanation.

PlaneOnOff Indicates what should be done to the bit planes

which aren't being used to display the image. A

more complete explanation can be found in the

accompanying text.

Nextlmage A pointer to the next Image structure. If this is the

only or last Image structure in a linked list, it should

be set to NULL.

As with the Border structure, Image structures are allowed

to share ImageData. This helps reduce the amount of data

your program must make available to Intuition.

The three illustration data structures, IntuiText, Border,

and Image, are used by Intuition when creating and

manipulating gadgets, menus, requesters, and alerts.

299

u
Chapter 7

u

Application Gadgets ' j
The Amiga Intuition programmer's manual refers to gadgets as

the workhorse of Intuition. This is a good description. Almost

all user contact with the Workbench is through gadgets. In j j
this section we will show you how to install your own gad

gets. The current version of Intuition supports four kinds of

"custom" gadgets. These are as follows: j j

Boolean These gadgets are either on or off. You can use

them like little switches. The CANCEL and RETRY

boxes in system requesters are Boolean gadgets.

Proportional The slider-style gadgets. They can be either one- or

two-dimensional. One-dimensional proportional

gadgets are used throughout the Preferences pro

gram and are used to select keyboard repeat speed,

delay time, and the screen colors. The only two-

dimensional example we've seen is the gadget in the

center of the first Preferences screen which lets you

set the position of the corner of the screen within

the display.

String These gadgets are used to input filenames or text of

some kind. When you rename a file from Work

bench, the box that pops up with the filename in it

is a string gadget.

Integer Integer gadgets are essentially the same as string

gadgets and rely on the same data structures. How

ever, integer gadgets automatically convert the

string gadget to an INT value.

These four gadgets can be used in a variety of ways to

allow almost any input you might want. Building gadgets

might seem very complex, but really it's not. Adding gadgets

to your program is just a matter of building the appropriate

data structures to support them.

There is one new concept which you need to know about

to program gadgets: the select box. The select box is the region

of the window which represents the gadget to Intuition. In

tuition doesn't really care what the gadget looks like, but this

is the region in which the gadget is "alive." If the user clicks

anywhere in the select box, the gadget becomes selected. Note

that the gadget's image and the gadget's select box are two

different things. It's possible to program a gadget whose image

is nowhere near its select box.

300

n
C Programming

/ | To prepare a gadget, all you have to do is fill in the Gad

get structure detailed below. Note that, unlike the

t NewWindow and NewScreen structures, you can't reuse this

j (one. Each gadget must have its own Gadget structure as long

as it is being used.

<—» struct Gadget

) \ {
struct Gadget *NextGadget;

SHORT LeftEdge, TopEdge, Width, Height;

USHORT Flags, Activation, GadgetType;

APTR GadgetRender, SelectRender;

struct IntuiText *GadgetText;

LONG MutualExclude;

APTR Speciallnfo;

USHORT Gadgetld;

APTR UserData; }

The fields have the following meanings:

NextGadget A pointer to the next gadget to be rendered on the

window. The last pointer in the chain should be set

to NULL.

LeftEdge, Specify the size and location of the select box for

TopEdge, the gadget. The select box is the region in the win-

Width, Height dow where the gadget is active. If the user clicks in

side the select box, then the gadget is selected.

Flags There are several flags which can be selected with a

gadget. The first four are GADGHIGHBITS, which

determine what kind of highlighting Intuition uses

when your gadget is selected:

GADGHCOMP—Complements the region inside

the gadget's select box.

nGADGHBOX—Draws a box around the gadget's se

lect box.

GADGHIMAGE—Displays an alternate Image or

f—i Border.

; 1 GADGHNONE—Does no highlighting.

The next set of gadget flags tells Intuition what the select

f""[box's location and size are relative to. These flags allow gad
gets to be associated with certain parts of the window (a cer

tain edge for example). For example, you could make a gadget

pn stay near the bottom right edge of a window even if the win

dow is resized.

301

Chapter 7
u

LJ

Activation

GRELBOTTOM—Setting this flag makes TopEdge

field relative to the bottom of the window (screen,

requester, and so forth) it is being displayed in. If

GRELBOTTOM is not specified, TopEdge is relative

to the top edge of the window. Note that you'll

have to use a negative TopEdge if you use

GRELBOTTOM and you want the gadget to appear

in the window.

GRELRIGHT—As might be expected, setting this

flag makes LeftEdge relative to the right edge of the

window rather than the left edge. As with

GRELBOTTOM, if you use this flag, you'll have to

use a negative LeftEdge to get the gadget to appear

in the window.

GRELWIDTH—If you use this flag, the Width field

is taken as relative to the width of the window. For

example, if the width of the window is 140, and you

set Width to -20 (while using GRELWIDTH), then

the gadget will be 120 pixels wide.

GRELHEIGHT—The same as GRELWIDTH, except

it refers to the gadget's and window's height rather

than width.

GADGIMAGE—You must set this flag if you're

using Image structures to specify the gadget's graph

ics rendering.

SELECTED—Setting this flag tells Intuition that the

gadget should start out selected. If this flag is not

set, the gadget will start out unselected.

GADGDISABLED—Tells Intuition that the gadget is

not enabled. To change the state of the gadget after

it has been rendered on the screen, you have to use

the OnGadget() and OffGadget() functions.

These are additional flags which relate to gadgets.

The following flags may be used in this field:

TOGGLESELECT—Tells Intuition that the gadget is

to toggle on and off each time it is selected. You can

find the state of the gadget by examining the gadget

flag SELECTED.

GADGIMMEDIATE—Will force Intuition to send an

IntuiMessage as soon as the gadget is selected.

RELVERIFY—Tells Intuition that we are interested

in receiving IntuiMessages from the gadget only if

the user still had the pointer over the gadget when

the select button was released. This is a way for the

LJ

u

302 U

C Programming

n

user to verify that he or she really wants to select

the gadget. Thus, if the user selects the gadget and,

while holding the button, moves off the gadget and

releases the button, you will never hear about it.

STRINGCENTER—Setting this flag tells Intuition

that you want strings centered in the string gadgets

when they are rendered.

STRINGRIGHT—Causes strings to be right-justified

rather than centered. If neither STRINGCENTER

nor STRINGRIGHT is specified, the string will be

left-justified in the string gadget.

LONGINT—Makes the string gadget into an integer

gadget. You must specify an initial value in the gad

get's input buffer.

GadgetType This tells Intuition what kind of gadget is being dis

played. You must specify one of the following:

BOOLGADGET—A Boolean gadget.

STRGADGET—A string gadget.

PROPGADGET—A proportional gadget.

GadgetRender Points to either a Border or Image structure

representing the graphics of the gadget. If you don't

want any graphic rendering for the gadget, set this

field to NULL. If GADGIMAGE is set, Gadget-

Render is assumed to be pointing at an Image struc

ture; otherwise, it must point to a Border structure.

SelectRender Points to the same type as the GadgetRender field

and represents the graphic of the gadget when it is

selected.

GadgetText If the gadget has text related to it, this points to an

IntuiText structure which represents that text. The

position fields in the IntuiText structure are relative

to the top left corner of the gadget's select box. If

the gadget does not have any related text, then this

field should be set to NULL.

MutualExclude Should be considered unimplemented until docu

mentation confirms completion of this feature. For a

complete discussion of mutual exclude, please see

the section on menus.

Speciallnfo If the gadget is a proportional, string, or integer

type, this points to a special structure which holds

the data relevant to that type of gadget. If a Boolean

gadget is used, this field is ignored.

(\

303

Chapter 7

Gadgetld A special code to distinguish this gadget from all

others in the window. IAddress field of the

IntuiMessage points to the Gadget structure of the

gadget which sent the IntuiMessage. You use the

Gadgetld field to identify which gadget it was that

sent the IntuiMessage.

UserData A pointer you can use as you please to associate any

information with the gadget you find necessary.

When implementing gadgets in C, it's generally easiest to

define the last Gadget structure in the list first, and then chain

your way through the declarations and define the first gadget

in the list last. This way, none of the pointer references will be

undefined.

If you are using a proportional gadget, you must also fill

out a Proplnfo structure, and point the Gadget structure

Speciallnfo field at it.

struct Proplnfo {

USHORT Flags;

USHORT HorizPot, VertPot;

USHORT HorizBody, VertBody;

USHORT CWidth, CHeight;

USHORT HPotRes, VPotRes;

USHORT LeftBorder, TopBorder; }

where the fields have the following meanings:

Flags

HorizPot,

VertPot

HorizBody,

VertBody

304

These are general-purpose flags:

AUTOKNOB—Set this flag if you want to use the

autoknob. This gives you a default image for the

knob. You have to point GadgetRender at an empty

Image structure. Specifying autoknob will also give

you a default border.

FREEHORIZ—Allows the proportional gadget to

move horizontally.

FREEVERT—Permits the gadget to move vertically.

KNOBHIT—Set by Intuition whenever the knob is

selected by the user.

The horizontal and vertical percentages of the cur

rent gadget position relative to the full size of the

gadget. You should set these to initial values before

drawing the gadget for the first time. You look here

for the current values of the proportional gadget.

The horizontal and vertical sizes of the knob repre

sented as percentages of the full size of the gadget.

U

U

LJ

) i

LJ

n

I |

C Programming

This allows the knob to get proportionally larger

and smaller if the gadget is tied to the window size

and the window is resized.

CWidth, The container's (the border of the gadget's) real

CHeight width and height. These values are set and main

tained by Intuition.

HPotRes, The increments by which the gadget moves when

VPotRes clicked on the side.

LeftBorder, The container's true left and top edge.
TopBorder

Intuition maintains CWidth, CHeight, LeftBorder, and

TopBorder. You should put values in all of the other fields

before starting up the gadget.

If you're using a string or integer gadget, you have to fill

in a Stringlnfo structure and point Speciallnfo at it. The

Stringlnfo structure is defined as follows:

struct Stringlnfo {

UBYTE *Buffer, *UndoBuffer;

SHORT BufferPos, MaxChars, DispPos;

SHORT UndoPos, NumChars, DispCount;

SHORT CLeft, CTop;

struct Layer *LayerPtr;

LONG Longlnt;

struct KeyMap *AltKeyMap; }

You must initialize the following fields:

Buffer A pointer to the initial string. This also points to the

string input by the user after the gadget has been

used. Note that the buffer must be large enough to

hold the largest string you expect to be entered.

UndoBuffer An optional pointer to the "undo" string. This is the

string which will replace the original if Amiga-Q is

pressed. If you set this flag to NULL, the undo fea-

ture will not be supported.

BufferPos The initial position of the cursor within the string

pointed to by the buffer.

MaxChars The maximum number of characters to input. This

count also includes the NULL terminator on the

string. Thus, if you want to allow ten characters to

be entered, MaxChars should be set to 11.

DispPos Represents the position within the buffer of the first

character to be displayed.

305

u
Chapter 7

u

Intuition will initialize and maintain the following fields j j

for you:

UndoPos The character position within the undo buffer.

NumChars The number of characters being held in the buffer. | 1
DispCount The number of whole characters which are being

displayed in the container. .

CLeft, CTop The left and top positions of the container. I i
LayerPtr The layer containing this gadget. We're not going to

talk about layers in this chapter; however, the Ker

nel routines need this pointer to handle the gadget

properly. As an Intuition programmer, you don't

have to worry about this.

Longlnt The integer value of the string if this gadget is an

integer gadget.

AltKeyMap A pointer to an alternate keyboard mapping table. It

is beyond the scope of this chapter to discuss this

topic. We refer you to the Amiga documentation.

Boolean gadgets are by far the simplest. You don't need

any Speciallnfo structures. You can determine the state of a

Boolean gadget by looking at the SELECTED flag or by

maintaining your own internal variable.

Now that we've defined all of the gadgets and Intuition

has drawn them on the screen the way we want them, how

do we get the program to use them? Intuition sends us an

IntuiMessage through our IDCMP whenever a gadget has

been selected by the user. You can have Intuition send two

different kinds of IntuiMessages.

If you set the GADGIMMEDIATE flag in the Activation

field of the Gadget structure, then you will receive an

IntuiMessage of the class GADGETDOWN whenever the user

first selects that gadget. If no other activation flags are set, you 1 [
will not get any more messages about the gadget until it is se

lected again. . ,

The other possibility is that you can set the RELVERIFY {_}
(RELease VERIFY) flag in the Activation field of the Gadget

structure. This tells Intuition to send IntuiMessages only if the)

pointer was still over the gadget's select box when the select j •
button is released. This gives users a "second chance" if they

decide that they really don't want to select that gadget. If a

user really does select the gadget, then your program will re- j j
ceive an IntuiMessage of class GADGETUP. If you like, you

can set both GADGIMMEDIATE and RELVERIFY, and receive

306

C Programming

jj both GADGETDOWN and GADGETUP IntuiMessages.
Our program now knows that a gadget has been selected

(because it has received a GADGETDOWN or GADGETUP

j""""J IntuiMessage). How do we tell which of our gadgets it is? This
is purpose of the Gadgetld field in the Gadget structure. Each

gadget should be assigned a unique Gadgetld number. It's up

P~! to the programmer to make sure that this happens. The
IAddress field of the IntuiMessage will point to the Gadget

structure of the gadget which was selected. Then you must in

spect the value of Gadgetld to determine which gadget was

selected. Finally, you must take whatever action is necessary

to deal with the gadget selection.

A program which is handling gadgets might look some

thing like the code fragment below:

main()

{
struct Window *window;

struct Message '"message;

struct Gadget *gadget;

ULONG class;

USHORT idgadget;

... /* initialization code */

/* main loop of the program */

forO;) {

Wait(l<<window->UserPort->mp_SigBit);

/* wait for IntuiMessage */

/* run through all of the messages */

while (message =GetMsg(window->UserPort)) {

/* make local copies of the variables we need */

,—, class =message->Class;

I i gadget =message->IAddress;
/* give the message back to Intuition */

^ ReplyMsg(message);

; l switch class {

GADGETUP:

GADGETDOWN: idgadget =gadget->GadgetID;

f) handle_gadget(idgadget);

1 [break;
CLOSEWINDOW: cleanup();

r, ,-

307

Chapter 7
u

u

CLOSEWINDOW: cleanup*); |_j

Program 7-7, Mandelbrot, makes extensive use of gadgets. ' '
Please refer to it as another example of how gadgets can be

handled.

Appendix E lists a few of the Intuition functions which

you might find useful in dealing with gadgets. You don't

really have to use them if you just open windows with gad

gets and close them later. However, if you want to add or re

move gadgets after a window has been opened, turn a gadget

on or off, or modify the data stored in a proportional gadget,

these are the routines you'll need to use to do that.

Menus

Menus offer another way of getting input from the user. A

menu bar replaces the screen's title bar when the menu (right)

button is pressed. When the user points at a particular name

in the menu bar, that menu drops down and the user is al

lowed to select one of the items from that menu. If a particular

item has subitems associated with it, a submenu will appear

when the user points at that particular item. The user must

then select a subitem from the subitem menu. Intuition only

allows menus two levels deep. In other words, a subitem can't

have sub-subitems.

Menus are attached to windows, not screens. Each win

dow on a screen may be associated with a different Menu j {
structure. The menu which appears is the menu of the active

window.

As with all other Intuition functions, installing menus in) \
your program is no harder than setting up a data structure.

The Menu structure defines the menu which replaces the title

bar when the menu button is pressed. Each name in the menu i I
bar has its own Menu structure.

struct Menu {)

struct Menu *NextMenu; LJ

SHORT LeftEdge, TopEdge, Width, Height;

USHORT Flags;

) i
308 ^—'

n

C Programming

I i

n

BYTE *MenuName;

struct Menultem *FirstItem;

SHORT JazzX, JazzY, BeatX, BeatY; }

where:

NextMenu Points to the next Menu structure in the linked list.

The last Menu structure should have this field set to

NULL.

LeftEdge, Indicate where the select box of the menu header

TopEdge, should be placed (the title of the menu which the

Width, Height user points at to make the entire menu drop down).

Intuition ignores any values in TopEdge and Height.

It uses the top edge of the title bar and the height of

the title bar for these values. LeftEdge is relative to

the left edge of the screen, and Width is in pixels.

You must set these values such that the menu's se

lect boxes don't overlap.

Flags Used mostly by Intuition. The two flags which can

occupy this field are:

MENUENABLED—This flag tells you whether or

not the menu is enabled. You can set this flag before

you submit the menu to Intuition. Afterwards, you

must use the functions OnMenu() and OffMenu()

to change the state of this flag.

MIDRAWN—If this flag is set, the menu items are

currently being displayed to the user.

MenuName A pointer to a string which represents the name of

the menu. The menu's name is the short strip of text

which is printed in the screen's title bar when the

menu button is pressed. It is displayed with its left

edge at the position specified by the field LeftEdge.

Thus, the menu's name will always fall somewhere

within its select box.

Firstltem A pointer to the first Menultem structure which

represents a linked list of the items found in the

menu. This structure is described below.

JazzX, JazzY, For the internal use of Intuition only.

BeatX, BeatY

Each menu has options below it. These are called menu

items and are defined in Menultem structures. A Menultem

structure is linked to a particular menu through the Menu

structure's Firstltem pointer. Each item and subitem in a menu

must have one of these structures properly linked to some

thing else.

309

Chapter 7

struct Menultem {

struct Menultem *NextItem;

SHORT LeftEdge, TopEdge, Width, Height;

USHORT Flags;

LONG MutualExclude;

APTR ItemFill, SelectFill;

BYTE Command;

struct Menultem *SubItern;

USHORT NextSelect; }

where the fields are as follows:

Nextltem

LeftEdge,

TopEdge,

Width, Height

Flags

Points to the next item in the linked list of

Menultem structures. If this is the last item in the

linked list, it should be set to NULL.

Indicate the position and size of the menu item's se

lect box. The LeftEdge is relative to the left edge of

the menu, and the TopEdge is relative to the bottom

line of the menu bar. As with the Menu structure,

you are responsible for insuring that the select boxes

don't overlap. If you are using checkmarks, you

have to make sure that there's room for the check

mark imagery. For high-resolution (640 wide)

screens, Amiga recommends adding CHECKWIDTH

to the LeftEdge. If you're using a low-resolution (320

wide) screen, you should add LOWCHECKWIDTH.

The following flags are shared by your program and

Intuition:

CHECKIT—Tells Intuition that you would like this

item to be rendered with a checkmark in front of it.

This tells Intuition to reserve some space in front of

the menu item for the checkmark.

CHECKED—If you set this flag and CHECKIT is set

when you first submit the menu strip, the item will

be selected. You can check this flag to find out

whether it is still checked after the user has played

with the menus.

ITEMTEXT—Used to tell Intuition that the structure

pointed to by the ItemFill field is IntuiText, not an

Image structure.

COMMSEQ—Setting this flag tells Intuition that the

menu entry has a command-key alternative as speci

fied in the Command field below.

ITEMENABLED—Tells Intuition whether the item is

currently enabled. If it is not enabled, the item will

be dithered and the user will not be able to select it.

u

u

u

u

u

310

\—1

u

u

C Programming

; \

n

I I

You must set this flag to its proper state before

submitting the menu strip to Intuition. Afterwards,

you can change the state of the item with the

OnMenu() and OffMenu() functions.

The following flags indicate how the item is to be high

lighted when selected. These are referred to as HIGHFLAGS

in the Amiga documentation.

HIGHCOMP—All of the bits in the select box

should be complemented.

HIGHBOX—A border should be drawn around the

outside of the item's select box.

HIGHIMAGE—Use an alternative image for the se

lected menu item (see the SelectFill and ItemFill

fields).

HIGHNONE—Perform no highlighting.

These last two flags are used solely by Intuition. You can

inspect them, but don't change their values.

ISDRAWN—Set by Intuition when the item's

subitems are being displayed on the screen.

HIGHITEM—Intuition sets this flag if the item is

currently highlighted.

MutualExclude Refers to those items which are excluded when this

one is selected. This is described in more detail

below.

ItemFill A pointer to the data used to render the menu item

entry. It can either point to an IntuiText or an Image

structure. You must set the ITEMTEXT flag if this

points to an IntuiText structure.

SelectFill Points to the data used to render a selected menu

item entry. It must be of the same type as ItemFill.

Command If the COMMSEQ flag is set in the flags field, this

field holds a key the user can press in conjunction

with the right Amiga key to simulate selecting this

item. This is transparent to the program. As far as

your program is concerned, the user has used the

mouse to select the option. The menu item will be

rendered with the fancy Amiga symbol followed by

the proper key. If you are using command keys, you

must add COMMWIDTH (for high-resolution

screens, LOWCOMMWIDTH for low-resolution

screens) to the width of the select box to give them

enough room to hold the additional imagery.

311

u
Chapter 7

u

Subltem Should point to the first subitem under this item. If j f

this item doesn't have any subitems, set this pointer ;—>

to NULL.

NextSelect After you have processed a menu selection, you \ j

should check this field. If this field has something <—'
other than MENUNULL in it, there was another

menu selection made which you must process. ■

Menus have one feature which makes them somewhat {—'
unique among the input methods available to the Amiga pro

grammer. This is mutual exclude (although gadgets have a

mutual exclude field, the current documentation states that

this feature is not yet implemented). Mutual exclude refers to

the following: Suppose you have a set of options, but only

one may be valid at a time (for example, when you cast your

ballot, you can only vote for one candidate, not all of them).

Mutual exclude makes Intuition handle this situation for you.

Each Menultem and Menu structure is associated with a

number. The first node in each list is zero, the second is one,

and so on. For mutual exclude you set the bits which corre

spond to the Menultem of those items which you want ex

cluded. For example, suppose you have three items which are

mutually exclusive. The first menu item would have the

MutualExclude field 0X06 (the binary pattern 110), the sec

ond, 0X05 (binary 101), and the third, 0X03 (binary 011).

To complicate things somewhat, Intuition also looks at the

CHECKED and CHECKIT flag. The CHECKIT flag tells In

tuition whether the menu item is an action or attribute item.

Action items can be selected any number of times and are not

rendered with checkmarks. Mutual exclude ignores action

items. An attribute item is rendered with a checkmark when

selected. Attribute items can be selected only once and must j >

be deselected through mutual exclude. The state of the *—J
CHECKED flag tells you whether the menu item is currently

selected. \ j

Once you've put together a menu system, you need to in- *—'

stall it on the window. This is as simple as making one func

tion call: the SetMenuStrip() function will install the menu on j ,

a particular window. The only way to change the menu (say, »—»

you want to rename one of the items) is to call ClearMenu-

Strip(), change the menu system, and then use SetMenu- i »

Strip() again. This keeps the Intuition routines happy. *—>

Once you know how to install and remove menus, the

312 LJ

C Programming

next step is using them. Intuition will send an IntuiMessage of

class MENUPICK whenever the user presses the menu button.

The Code field of the IntuiMessage will hold a "menu num

ber." If the user did not select a menu item, this field will hold

the constant MENUNULL. Otherwise, the Code field should

be treated as a bit field structure which holds the number of

the menu, item, and subitem that was selected. You should

use the macros MENUNUM(), ITEMNUM(), and SUBNUM()

to get the menu number, item number, and subitem number

rather than manipulate the code directly. This will insure up

ward source code compatibility should the bit field structure

change. Remember, the menus, items, and subitems are num

bered starting at zero with the first element in their respective

linked lists. You can also use the function ItemAddress() to

get a pointer to the Menultem associated with that particular

Code.

Once you've processed MENUPICK IntuiMessage, you

should check the NextSelect field of the Menultem structure to

make sure that the user didn't select multiple options in one

IntuiMessage. NextSelect will hold MENUNULL if no other

item was selected, or it will hold the menu number (the same

type of number returned in the Code field of the Intui

Message) of the next selected item. The following code frag

ment illustrates how to handle this situation.

while (menu-number != MENUNULL) {

/* handle the menu event */

menu_number = ItemAddress(menu_strip,menu_number)

->NextSelect;

Multitasking
Your Amiga is a multitasking computer. This is a feature

P""[which makes your computer stand out among the personal

computer crowd. But what exactly does the term multitasking

mean? A task is essentially a program which is doing some-

p*j thing in the computer. For instance, you may have noticed

that every time you pop a disk into the computer, the drive

runs for a while and then stops. That's the disk validator run-

p-> ning in the background under AmigaDOS. When you pop in

- ; the disk, the program is informed (by another task) that a disk

has been inserted, and the validator runs the drive to see what

n
313

Chapter 7

the new disk is about. As you can see, multitasking is a very | (

powerful feature and is easy to get used to. However, with this *—'

power comes added complexity and programmer responsibility.

Memory Management and Shared Resources i—1
Each task running in the Amiga thinks that it has complete

possession of the computer. In other words, as far as a task is \)

concerned, there are no other tasks. To keep all of the dif- ^
ferent tasks in the Amiga from running into one another, you

have to follow certain conventions when dealing with shared

resources. Shared resources are those parts of the computer

which the various tasks must share with one another because

of the resource's own limitations. In the Amiga these resources

include the printer, disk drives, memory, and the micro

processor. Although it may seem otherwise because of the

speed with which individual instructions are carried out, the

Amiga can do only one thing at a time. In the same way, only

one task can use a particular location of memory at a time.

Only one task can use the printer at a time. Only one task can

load or store data on a particular disk drive at a time.

Memory is probably the most troublesome of the shared

resources. For example, imagine the chaos if your word

processing task started to store the text you were working on

in the same memory as your compiler was storing its vari

ables. Since the Amiga has no hardware method of protecting

one task's memory from another task's (it has no hardware

Memory Management Unit), you have to rely on the software

to take care of that for you.

The Amiga Kernel routines provide two functions which

are used to allocate memory (make available to a program)

and deallocate memory (return to the system). They are j /

AllocMem() and FreeMem(). Note that the Amiga Kernel Lj
does not keep track of which task has allocated a particular

chunk of memory; it's up to the particular task to free up any j j

memory it's allocated before exiting. If you use these routines <—>

when you need space for dynamic variables, then there won't

be any problems. Note that the standard C functions to allo- < j

cate memory, for example, malloc(), rely on these routines. I—I
You can use them, too, if you wish. However, as the Lattice C

manual points out, when you start with one method, it's prob- < »

ably best to use it consistently throughout your program. That L>
will avoid confusion on your part and probably speed the

debugging process.

314 Li

n
C Programming

r—| Intuition also provides a method of allocation and freeing

■-■■ ' memory through the two routines AllocRemember() and
FreeRemember(). AllocRemember() will maintain a linked list

p—j of all the memory allocated through calls to it. When you

L-* want to free the entire chain, you call FreeRemember(). This
offers a convenient way to release memory in the event of a

P^ premature program abort.

' There are two things which are important to know about
memory management on the Amiga. First, the Amiga is very

much a pessimist in regards to memory allocation. If the

Amiga's internal routines detect a memory management error

(one of your programs went wild and stored something where

it shouldn't have), then the system declares a "software fail

ure" and resets. Second, if the system runs out of memory, it

will probably crash (and may or may not reset, depending on

the severity of the crash). This problem is software dependent.

One can hope that later versions of the Amiga operating sys

tem will be able to cope with the problem of running out of

memory in a more elegant fashion.

Interprocess Communication

As we've said above, each process considers itself the sole

owner of the computer. But if each task is independent in this

way, how does one task communicate with another (as in the

example of the disk validator)? This is a problem in any

multitasking computer and there are many solutions. The

Amiga uses a message dispatcher to channel messages be

tween the tasks. This is much like a telephone switchboard

transferring calls between houses. Each house is analogous to

a task, and the switchboard is like the message dispatcher.

r-^ In the Amiga, messages are queued (that is to say, they

L ' are buffered) as they are sent from one task to another, and
they are sent to a task one at a time. The message dispatcher

deposits the message in the task's message port. It is generally

your responsibility to prepare a message port for the task if

you expect to be receiving messages from other tasks. The

,—j IntuiMessages and IDCMPs that we talked about previously

I _ i are simply extensions of standard messages and message
ports. The commands which you use here are the same com-

r—•> mands which we mentioned briefly when we discussed

[j IDCMPs above.

There are two ways a task can check to see if a message

R 315

n

Chapter 7 '-'

u

has arrived. The first is to poll its message port until some- / >

thing is found. Although this sounds like a good idea, it's very I—/
unfair to the other tasks running in the system. As your task is

looping, waiting for input (and doing nothing else), the other t i

tasks aren't given much time to run themselves. It's important LJ
to remember that your program is part of a community of pro

grams sharing the same resources. The more resources (such c ,

as CPU time or memory) your process hogs, the less the other Lj
tasks can get. Thus, the better method for checking for mes

sages is to wait for them, using the Amiga's Wait() command.

In this method, your task goes to sleep while waiting for a

message, and the other tasks are allowed to use the computer.

The Amiga's Kernel routines provide you with two meth

ods to wait for a message. The first way is simple: You just

wait for messages to appear at a particular message port. Sup

pose, however, that you wanted to wait for messages at more

than one message port at the same time. This is where the

second method, signal bits, comes in.

Each message port is assigned a signal bit. If a message

appears at the port, your task is signaled with that signal bit.

Signal bits are allocated on a per-task basis, and each task is

allowed up to 32 signal bits; however, half of them are allo

cated for system use, so each task really has only 16 to play

with. When you open a window which has IDCMP flags set,

Intuition allocates a signal bit for you. If you are waiting for

signals from many IDCMPs, all you do is bitwise OR them to

gether and use the Wait() function.

You'll find the following commands useful in dealing with

interprocess messages:

Wait() As the name implies, this function is used to wait

for something to happen. In particular, it waits for a \'i

set of signal bits. The task which calls Wait() is put LJ
to sleep until any one of the signal bits it is waiting

for is received. When a task is put to sleep, other

lower priority tasks in the system are allowed to run [,
until it is awakened. Execution of this task resumes

as soon as a message is received. If there is already

a signal bit waiting to be processed, this function re- j j

turns immediately. Once you're running again, it's

the program's responsibility to figure out what sent

the signal and to do whatever it needs to do to han- ^ >

die the message. L—»

316 u

H

H

n

n

C Programming

H

n

n

n

WaitPort() This command is like Wait() except that it waits for

a message to appear at the specified message port. If

a message isn't ready, this routine calls Wait() and

puts your task to sleep until a message is ready.

PutMsg() This command is used to send a message to a

particular task's message port. If a task is waiting for

a message, then this will reawaken that other task.

GetMsg() You use this function to get the message from the

message port. GetMsg() will return a NULL if no

message is ready. Otherwise, GetMsg() returns a

pointer to a Message structure. This command is

used to check for messages in normal situations.

ReplyMsg() Once you have a message, you can use this function

to tell the sending task that you've received it (this

can help keep your multitasking activity somewhat

synchronized). When you use this call, you must

save your own copy of the message as this function

may corrupt the data stored in the message. The use

of this command depends on your own particular

implementation of interprocess communication. In

tuition, for example, requires that you reply to all its

messages.

That's essentially all there is to know about interprocess

communication on the Amiga. Generally, you will use these

commands in connection with IDCMPs. Although it is possible

to create subtasks from within a C program (with the Exec

AddTask() and RemTask() functions), you are not allowed to

do so if the machine is running AmigaDOS. AmigaDOS has

its own way of handling tasks, and bypassing these techniques

will confuse it to no end.

Fast Floating Point
The floating-point routines that the Lattice compiler uses are

not very fast. Lattice C converts all floating-point numbers

into double-precision before performing any calculations. The

Amiga itself, however, includes the Motorola Fast Floating

Point package in an internal math library. We can use these

routines to perform floating-point operations when speed is

required. In benchmark tests, these routines have outstripped

the IEEE-standard Lattice C routines by a factor of ten. There

is a penalty for this speed, however. The Lattice C compiler

does not know how to use these routines directly, so you have

317

Chapter 7

u

to use a set of function calls and funny type declarations to j ">

make it all work out. i—>
The Lattice compiler uses 32-bit ints, which are conve

niently the same size as the Motorola FFP (fast floating point) j j

values. We use ints for all of our communication with the FFP uj
routines. The routines themselves are usually straightforward

and easy to use. If we have two FFP variables, a and b, addi- \ >

tion is done by: I—I

c = SPAdd(a, b);

However, subtraction and division have the operands reversed

so that the Motorola equivalent of

c = a — b;

is

c = SPSub(b, a);

Other simple arithmetic operations include negation, ab

solute value, and conversion to and from normal integers.

There are also two comparison tests: "test" (the signum func

tion), which returns — 1, 0, or 1, depending on the sign of the

arguments, and "compare," which returns 1 if its first argu

ment is greater than its second, — 1 if less, and 0 if equal.

Here is a table of the standard Motorola routines and their C

equivalents.

Motorola Standard C

c = SPAdd(a,b); c = a + b;

c = SPSub(b,a); c = a - b;

c = SPMul(a,b); c = a * b;

c = SPDiv(b,a); c = a / b;

c = SPNeg(a); c = -a;

c = SPAbs(a); c = (a > 0) ? a : -a;

i = SPFix(a); i = (int) a; \ \

c = SPFlt(i); c = (float) i; ^
c = SPTst(a); c = (a > 0) ? 1 :

(a < 0)7-1:0; 1 \

c = SPCmp(a,b); c = (a > b) ? 1 : Lj

To use these routines it is necessary to open the mathffp t \

library in ROM. We use the normal OpenLibrary() call, and '—l
assign the value to the integer MathBase. Note that, again, the

variable name must be MathBase, just as IntuitionBase and i j

GfxBase are required names. So, to use the Motorola routines, ^
add these lines to your code:

318 U

C Programming

C*) int MathBase;
'—* MathBase = OpenLibrary("mathffp.library," 0);

if (MathBase = = 0) exit(l);

f""[The functions described above are only half of the fast

floating point library. Two things are missing from it: the abil

ity to convert values back and forth between Motorola and

p] IEEE standard C floats, and the transcendental functions like
sine, cosine, and logarithm. These are provided in the

mathtrans library, a RAM library, which can be accessed with:

int MathTransBase;

MathTransBase = OpenLibrary("mathtrans.library," 0);

if (MathTransBase = = 0) exit(l);

Two routines are provided for Motorola-to-IEEE conver

sion. One is SPFieee(), which converts from IEEE to Motorola;

the other is SPTieee(), which converts back to IEEE. However,

here's where the strange data structures become necessary. To

pass a parameter to the SPFieee() routine, it must be an int: A

float will be cast to a double and its value hopelessly confused

by the time the FFP library gets it. So, we have to assign the

value as a float and pass it as an int. The easiest way to do

this is with a union:

union FFP {int i;float f;

};

For example, to convert the value 3.14159 into Motorola

format, we'd have to go through the following contortions:

union FFP a;

a.f = 3.14159;

a.i = SPFieee(ai);

fmmm> If we had said SPFieee(3.14159), Lattice C would have

j _ t converted it to double before passing it. Unfortunately, the

SPFieee() function expects a float, not a double.

The inverse function is much simpler to use and very

; 1 helpful. To print the value of our a variable above, all that's

needed is

— printf("%f \ n", SPTieee(a.i));

(s If you're going to be using this function, you can avoid a few
compiler warnings by inserting the line

P float SPTieee();

at the beginning of your file. The other FFP functions return

(_ ints, which is the default type C assumes for functions.

1 ' 319

Chapter 7

u

The fast floating point functions (including the transcen- j t

dental functions) are listed in Appendix I. '—'

A Sample Program: Mandelbrot Sets i :

Although the concept of mathematical research may be puz- <^

zling to some, there is in fact a great deal of time and effort

being put into the study of mathematical systems. In recent j /

years there has been a great deal of effort put into an interest- '—'
ing phenomenon called Mandelbrot sets. A Mandelbrot set is a

region on the complex plane in which a particular function is

divergent when performed recursively on itself. There is no

way to predict ahead of time what a Mandelbrot set is going

to look like. It is not random, for every time you run the same

mathematical function you will get the same set. However,

given a certain function, no one can say what it will look like

unless it's been seen before.

You don't need to know what this means to appreciate

the colorful pictures generated by Mandelbrot set-generating

programs. Since the particular function must be applied recur

sively, it demands a great deal of computer power. You'll have

to be patient if you want to generate detailed pictures.

Program 7-7, Mandelbrot.c, uses a menu to change the

screen type. You need to have the Image window active to get

at the menu. If you want to change the screen resolution and

depth, you have to select the options you want from the

Screen menu, and then select Restart from the Projects menu.

This will clear the screen and start over (bypassing the hello

screen) in the new screen configuration. If you have several

hours, you might want to generate a 640 X 400, 16-color

Mandelbrot set. It's quite an impressive sight.

You might have noticed a mysterious 64-color mode. This < /

is available only on Amigas which have the newer versions of Lj
the graphics chips. This mode is called EXTRA_HALFBRITE,

which allows the Amiga to use six bit planes and display 64 i

colors on the screen simultaneously. If you don't notice any I—>
difference between 32- and 64-color modes, then your com

puter doesn't have the newer hardware. Amiga hasn't yet an- i ,

nounced a hardware upgrade policy. t—I
There are two ways to exit the program. You can either

select the Quit Item in the Project menu, or you can select the « »

close gadget on the image window. You may notice a slight UJ

320

n
C Programming

p*1 delay since the IDCMP is not polled very often. This delay

shouldn't be more than a second or so at the most.

We've left the program with lots of room for improve

rs ment. You could add zoom and relocation gadgets to the gad
get window. In addition you might also want to include a way

of changing the colors. The Save routine uses an entire byte to

f~j hold each pixel (resulting in huge files); you might consider a

simple compaction technique to reduce file size. In any event,

Mandelbrot.c is a good base for lots of Amiga C coding.

More Information

The following books are considered good C teaching guides:

C Primer Plus, by Mitchell Waite, Stephen Prata, and Donald

Martin. Howard W. Sams and Company, 1984.

The C Programmer's Handbook, by Thorn Hogan. Brady

Communications Company, 1984.

The C Programming Language, by Brian W. Kernighan and Den

nis M. Ritchie, the creators of the C programming language.

Prentice-Hall, 1978.

From BASIC to C, by Harley Templeton. COMPUTE! Publica

tions, 1986.

The Amiga developer's package includes the following

books, all from Commodore-Amiga, Inc.:

Lattice C Compiler Manual

AmigaDOS User's Manual, AmigaDOS Developer's Manual, and

AmigaDOS Technical Reference Manual. Originally by Tim King,

revised by Jessica King.

p"j Intuition: The Amiga User Interface, by Robert J. Mical and Su-

' san Deyl.

ROM Kernel Manual

L ' Amiga Hardware Manual, by Robert Peck, Susan Deyl, and J.
Miner.

fH For those of you with access to a major computer net

work, there are two information sources you might find useful.

ARPA Internet users can request to be included in the dis-

P^ tribution of the "info-amiga" mailing list by mailing to "info-

1 amiga-request@red.rutgers.edu." Usenet users have access to
the newsgroup "net.micro.amiga."

' ; 321

u
Chapter 7

The authors can be reached at these electronic addresses:

LJ

Chris Metcalf

metcalf@yale.ARPA

...!decvax!yale!metcalf \ I
metcalf@yalecs.BITNET ^

Marc Sugiyama ,

sugiyama@ingres.berkeley.edu 1 \
...!ucbvax!ingres.berkeley.edu!sugiyama

sugiyama@fourcc.bitnet

u

322 LJ

3
g

a
z]
3

a

P
r
o
g
r
a
m

7
-
7
.
M
a
n
d
e
l
b
r
o
t
.
c

/
* *
m
a
n
d
e
l
b
r
o
t
.
c

*
A

d
e
m
o

p
r
o
g
r
a
m

u
s
i
n
g

m
a
n
y

o
f

t
h
e

f
e
a
t
u
r
e
s

o
f

t
h
e

C
o
m
m
o
d
o
r
e

A
m
i
g
a
.

* *
C
h
r
i
s

M
e
t
c
a
l
f

*
J
a
n

7
,

1
9
8
6

V
^
i
n
c
l
u
d
e

<
e
x
e
c
/
t
y
p
e
s
.
h
>

#
i
n
c
l
u
d
e

<
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
h
>

t
i
n
c
l
u
d
e

<
l
a
t
t
i
c
e
/
s
t
d
i
o
.
h
>

/
*

T
e
l
l

C
w
h
a
t

t
h
e
s
e

f
u
n
c
t
i
o
n
s

a
r
e

s
o

w
e

a
r
e
n
'
t

g
i
v
e
n

t
o
o
m
a
n
y

w
a
r
n
i
n
g
s

*
/

e
x
t
e
r
n

s
t
r
u
c
t

I
n
t
u
i
M
e
s
s
a
g
e

*
G
e
t
M
s
g
(
)
;

e
x
t
e
r
n

s
t
r
u
c
t

S
c
r
e
e
n

*
O
p
e
n
S
c
r
e
e
n
(
)
;

e
x
t
e
r
n

s
t
r
u
c
t

W
i
n
d
o
w

*
O
p
e
n
W
i
n
d
o
w
(
)
;

e
x
t
e
r
n

s
t
r
u
c
t

M
e
n
u
l
t
e
m

*
I
t
e
m
A
d
d
r
e
s
s
(
)
;

/
*

d
e
f
i
n
e

t
h
e

g
l
o
b
a
l

v
a
r
i
a
b
l
e
s

r
e
q
u
i
r
e
d

b
y

t
h
e

A
m
i
g
a

l
i
b
r
a
r
y

*
/

s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*
I
n
t
u
i
t
i
o
n
B
a
s
e
;

s
t
r
u
c
t

G
f
x
B
a
s
e

*
G
f
x
B
a
s
e
;

i
n
t

M
a
t
h
B
a
s
e
,

M
a
t
h
T
r
a
n
s
B
a
s
e
;

^ O

/
*

O
u
r

o
n
l
y

g
l
o
b
a
l

d
a
t
a

s
t
r
u
c
t
u
r
e
.
.
.

t
h
e

e
i
g
h
t
y

c
o
l
u
m
n

f
o
n
t

*
/

s
t
r
u
c
t

T
e
x
t
A
t
t
r

F
o
n
t
8
0

=
{

"
t
o
p
a
z
.
f
o
n
t
"
,

T
O
P
A
Z
_
E
I
G
H
T
Y
,

F
S
_
N
O
R
M
A
L
,

F
P
F
_
_
R
O
M
F
O
N
T

c
o g

/
*

D
e
f
i
n
e

a
f
e
w

d
e
f
a
u
l
t
s

f
o
r

i
n
i
t
i
a
l
i
z
a
t
i
o
n

*
/

Q O 5

h
o
4

#
d
e
f
i
n
e

B
I
T
_
P
L
A
N
E
S

4

#
d
e
f
i
n
e

W
I
D
T
H

1

#
d
e
f
i
n
e

H
E
I
G
H
T

1

#
d
e
f
i
n
e

C
O
U
N
T

1
0
0

#
d
e
f
i
n
e

M
A
X

C
O
U
N
T

5
0
0

/
*

o
n
e

t
o

s
i
x

(
o
n
e

t
o

f
i
v
e

i
n

6
4
0

c
o
l
u
m
n
s
)

*
/

/
*

1
f
o
r

3
2
0

m
o
d
e
,

2
f
o
r

6
4
0

m
o
d
e

*
/

/
*

1
f
o
r

2
0
0

m
o
d
e
,

2
f
o
r

4
0
0

m
o
d
e

*
/

/
*

i
n
i
t
i
a
l

m
a
x
i
m
u
m

i
t
e
r
a
t
i
o
n

c
o
u
n
t

*
/

/
*

m
a
x
i
m
u
m

t
h
a
t

c
o
u
n
t

c
a
n

b
e

s
e
t

t
o

*
/

Q i
/
*

d
e
f
i
n
e

o
u
r

g
l
o
b
a
l

v
a
r
i
a
b
l
e
s

*
/

s
t
r
u
c
t

S
c
r
e
e
n

*
s
c
r
e
e
n
;

/
*
.
t
h
e

s
c
r
e
e
n

w
e
'
r
e

u
s
i
n
g

*
/

s
t
r
u
c
t
W
i
n
d
o
w

*
m
_
w
i
n
d
o
w
,

*
g
_
w
i
n
d
o
w
;

/
*

t
h
e

t
w
o

w
i
n
d
o
w
s

*
/

s
t
r
u
c
t

M
e
n
u

*
m
e
n
u
_
s
t
r
i
p

=
N
U
L
L
;

/
*

m
e
n
u

s
t
r
i
p

f
o
r

t
h
i
s

p
r
o
g
r
a
m

*
/

c
h
a
r

f
i
l
e
n
a
m
e
[
3
1
]

=
"
m
a
n
d
.
s
a
v
e
"
;

/
*

g
l
o
b
a
l

f
i
l
e
n
a
m
e

f
o
r

l
o
a
d

a
n
d

s
a
v
e

*
/

i
n
t

s
c
a
l
e
[
M
A
X
_
_
C
O
U
N
T
]
;

/
*

t
h
e

c
o
n
t
o
u
r
i
n
g

a
r
r
a
y

*
/

i
n
t

W
=

W
I
D
T
H
,

H
=

H
E
I
G
H
T
;

/
*

w
i
d
t
h

a
n
d

h
e
i
g
h
t

f
l
a
g
s

f
o
r

t
h
i
s

s
c
r
e
e
n
*
/

i
n
t

b
i
t
_
p
l
a
n
e
s

=
B
I
T
_
P
L
A
N
E
S
;

/
*

t
h
e

n
u
m
b
e
r

o
f

b
i
t

p
l
a
n
e
s

i
n

t
h
e

s
c
r
e
e
n

*
/

i
n
t

c
o
u
n
t

=
C
O
U
N
T
;

/
*

t
h
e

m
a
x

n
u
m
b
e
r

o
f

i
t
e
r
a
t
i
o
n
s

*
/

i
n
t

l
e
f
t
,

r
i
g
h
t
,

t
o
p
,

b
o
t
t
o
m
;

/
*

p
i
x
e
l

b
o
r
d
e
r
s

o
f

w
i
n
d
o
w

*
/

f
l
o
a
t

x
_
_
r
i
g
h
t
,

x
_
_
l
e
f
t
;

/
*

r
e
a
l

b
o
r
d
e
r
s

o
f

t
h
e

w
i
n
d
o
w

*
/

f
l
o
a
t

y
_
_
t
o
p
,

y
_
b
o
t
t
o
m
;

i
n
t

r
e
s
e
t
=
0
;

/
*

s
e
t

t
o

1
o
r

2
w
h
e
n

w
e

w
a
n
t

t
o

r
e
d
r
a
w

*
/

i
n
t

f
i
r
s
t
_
t
i
m
e

=
T
R
U
E
;

/
*

f
i
r
s
t

t
i
m
e

t
h
r
o
u
g
h

o
p
e
n
_
_
w
i
n
d
o
w
s
(
)

*
/

i
n
t

d
o
_
c
o
n
t
o
u
r

=
T
R
U
E
;

/
*

r
e
c
o
m
p
u
t
e

c
o
n
t
o
u
r
i
n
g

a
r
r
a
y

*
/

/
*

k
e
e
p

t
h
e

C
c
o
m
p
i
l
e
r

h
a
p
p
y

.
.
.

*
/

v
o
i
d

c
a
l
c
u
l
a
t
e
_
e
d
g
e
s
(
)
,

h
a
n
d
l
e
_
m
e
s
s
a
g
e
s
(
)
,

h
a
n
d
l
e
_
m
e
s
s
a
g
e
(
)
,

h
a
n
d
l
e
_
_
g
a
d
g
e
t
(
)
;

v
o
i
d

h
a
n
d
l
e
_
_
m
e
n
u
(
)
,

h
a
n
d
l
e
_
j
p
r
o
j
e
c
t
(
)
,

h
a
n
d
l
e
_
_
s
c
r
e
e
n
(
)
;

v
o
i
d

o
p
e
n
_
_
l
i
b
r
a
r
i
e
s
(
)
,

o
p
e
n
_
w
i
n
d
o
w
s
(
)
,

h
e
l
l
o
_
w
i
n
d
o
w
(
)
;

v
o
i
d

g
a
d
g
e
t
s
_
w
i
n
d
o
w
(
)
,

a
d
d
_
_
m
e
n
u
s
(
)
,

c
o
m
p
u
t
e
_
c
o
n
t
o
u
r
(
)

;

v
o
i
d

l
o
a
d
_
s
c
r
e
e
n
(
)
,

s
a
v
e
_
s
c
r
e
e
n
(
)
,

c
l
o
s
e
_
_
w
i
n
d
o
w
s
(
)
,

d
o
n
e
(
)
;

/
*

t
h
e

n
u
m
b
e
r
s

o
f

t
h
e

d
i
f
f
e
r
e
n
t

g
a
d
g
e
t
s

(
f
o
r

o
u
r

c
o
n
v
e
n
i
e
n
c
e
)

*
/

/
*

N
o
t
e
:

d
e
c
l
a
r
i
n
g

e
n
u
m
s

o
n

t
h
e

L
a
t
t
i
c
e

c
o
m
p
i
l
e
r

b
r
i
n
g
s

d
o
w
n

t
h
e

s
y
s
t
e
m

11
*
/

c:
c

c
c

c
c

c
c

r;
t:

r:
c

c
r:

c
d

r:

h
o

#
d
e
f
i
n
e

L
O
A
D
_
G

0

#
d
e
f
i
n
e

S
A
V
E
_
_
G

1

#
d
e
f
i
n
e

F
I
L
E
_
G

2

#
d
e
f
i
n
e

R
E
P

G
3

/
*

t
h
e

n
u
m
b
e
r
s

o
f

t
h
e

d
i
f
f
e
r
e
n
t

m
e
n
u

i
t
e
m
s

(
a
g
a
i
n

f
o
r

o
u
r

c
o
n
v
e
n
i
e
n
c
e
)

*
/

#
d
e
f
i
n
e

P
R
O
J
E
C
T
J
t
f

0

#
d
e
f
i
n
e

S
C
R
E
E
N
_
M

1

#
d
e
f
i
n
e

P
A
U
S
E
_
M

0

#
d
e
f
i
n
e

R
E
S
T
A
R
T
_
_
M

1

#
d
e
f
i
n
e

Q
U
I
T
_
_
M

2

#
d
e
f
i
n
e

H
I
R
E
S
J
V
I

0

#
d
e
f
i
n
e

L
A
C
E
_
_
M

1

#
d
e
f
i
n
e

C
O
L
O
R
S
_
_
M

2

/
*

a
t
y
p
e
d
e
f

t
o

a
l
l
o
w

u
s

t
o

c
i
r
c
u
m
v
e
n
t

L
a
t
t
i
c
e

C
w
h
i
l
e

u
s
i
n
g

F
F
P

*
/

t
y
p
e
d
e
f

u
n
i
o
n

{
f
l
o
a
t

f
;

i
n
t

i
;

}
F
F
P
;

/
*

M
o
t
o
r
o
l
a

f
a
s
t

f
l
o
a
t
i
n
g

p
o
i
n
t

*
/

/
*

M
A
J
O
R

H
a
c
k
l
1

L
a
t
t
i
c
e

C
b
a
d
l
y

b
r
o
k
e
n

o
n

s
u
c
c
e
s
s
i
v
e

c
o
n
s
t
a
n
t

d
e
c
l
a
r
a
t
i
o
n
s

*
/

f
l
o
a
t

t
w
o
(
)

{
r
e
t
u
r
n

2
.
0
;

}

f
l
o
a
t

n
e
g
t
w
o
(
)

i
r
e
t
u
r
n

-
2
.
0
;

}

f
l
o
a
t

o
n
e
(
)

{
r
e
t
u
r
n

1
.
2
5
;

}

f
l
o
a
t

n
e
g
o
n
e
(
)

{
r
e
t
u
r
n

-
1
.
2
5
;

}

m
a
i
n
(
)

{
f
l
o
a
t

x
_
m
u
l
t
,

y
j
m
u
l
t
;

/
*

c
o
n
v
e
r
t

t
o

r
e
a
l
s

f
r
o
m
p
i
x
e
l
s

*
/

F
F
P

c
r
,

c
i
,

z
r
,

z
i
;

/
*

c
o
m
p
o
n
e
n
t
s

o
f

c
,

z
,

a
n
d

z
*
2

*
/

F
F
P

s
i
,

t
i
#

t
r
;

/
*

t
e
m
p

c
o
m
p
l
e
x

n
u
m
b
e
r
s

*
/

F
F
P

z
e
r
o
,

f
o
u
r
;

/
*

c
o
n
s
t
a
n
t

F
F
P

v
a
l
u
e
s

*
/

i
n
t

i
,
j
;

/
*

c
u
r
r
e
n
t

p
i
x
e
l

l
o
c
a
t
i
o
n

*
/

Q I

i
n
t

k
;

/
*

i
t
e
r
a
t
i
o
n
s

w
h
i
l
e

w
a
i
t
i
n
g

*
/

Q

o
p
e
n
_
l
i
b
r
a
r
i
e
s
(
)
;

z
e
r
o
.
i

=
S
P
F
l
t
(
0
)
;

f
o
u
r
.
i

=
S
P
F
l
t
(
4
)
;

**

x
_
r
i
g
h
t

=
t
w
o
(
)
;

-*
i

x
_
l
e
f
t

=
n
e
g
t
w
o
(
)
;

y
_
t
o
p

=
o
n
e
(
)
;

y
_
b
o
t
t
o
m

=
n
e
g
o
n
e
(
)
;

r
e
s
e
t
_
s
c
r
e
e
n
:

i
f

(
d
o
_
_
c
o
n
t
o
u
r
)

c
o
m
p
u
t
e
_
c
o
n
t
o
u
r
(
)
;

/
*

c
o
m
p
u
t
e

"
c
o
u
n
t
o
u
r
i
n
g

a
r
r
a
y
"

*
/

i
f

(
r
e
s
e
t

=
=

1
)

c
l
o
s
e
_
w
i
n
d
o
w
s
(
)
;

/
*

c
l
o
s
e

t
h
e
m

i
f

t
h
e
y
'
r
e

o
p
e
n

*
/

i
f

(
r
e
s
e
t

<
2
)

o
p
e
n
_
w
i
n
d
o
w
s
(
3
2
0
*
W
,

2
0
0
*
H
)
;

i
f

(
r
e
s
e
t
—

3
)

g
o
t
o

d
o
n
e
;

/
*

j
u
s
t

l
o
a
d
e
d

t
h
e
w
i
n
d
o
w

*
/

r
e
s
e
t

=
0
;

/
*

d
o
n
'
t

r
e
s
e
t

a
g
a
i
n
l

*
/

c
a
l
c
u
l
a
t
e

e
d
g
e
s
(
)
;

x
_
m
u
l
t

=
T
x
_
r
i
g
h
t

-
x
_
l
e
f
t
)

/
(
r
i
g
h
t

-
l
e
f
t
)
;

y
_
m
u
l
t

=
(
y
—
t
o
p

-
y
_
b
o
t
t
o
m
)

/
(
b
o
t
t
o
m

-
t
o
p
)
;

f
o
r

(
i

=
b
o
t
t
o
m
;

i
>
=

t
o
p
;

i
—
)

f
o
r

(
j

=
l
e
f
t
;

j
<

r
i
g
h
t
;

j
+
+
)

{
c
r
.
f

=
(
j
-
l
e
f
t
)

*
x
_
_
m
u
l
t

+
x
_
l
e
f
t
;

z
r
.
i

=
c
r
.
i

=
S
P
F
i
e
e
e
(
c
r
.
i
)
;

/
*

.
i

n
o
t

.
f

1
1

*
/

c
i
.
f

=
(
b
o
t
t
o
m
-
i
)

*
y
m
u
l
t

+
y
_
b
o
t
t
o
m
;

z
i
.
i

=
c
i
.
i

=
S
P
F
i
e
e
e
T
c
i
.
i
)
;

f
o
r

(
k

=
1
;

k
<
c
o
u
n
t
;

k
+
+
)

{
i
f

(
S
P
C
m
p
(
S
P
A
d
d
(
t
r
.
i

=
S
P
M
u
l
(
z
r
.
i
,

z
r
.
i
)
,

t
i
.
i

=
S
P
M
u
l
(
z
i
.
i
/

z
i
.
i
)
)
,

f
o
u
r
.
i
)

>
0
)

b
r
e
a
k
;

s
i
.
i

=
S
P
M
u
l
(
z
r
.
i
#

z
i
.
i
)
;

z
r
.
i

=
S
P
A
d
d
(
S
P
S
u
b
(
t
i
.
i
,

t
r
.
i
)
,

c
r
.
i
)
;

z
i
.
i

=
S
P
A
d
d
(
S
P
A
d
d
(
s
i
.
i
,

s
i
.
i
)
,

c
i
.
i
)
;

i
f

(
k

<
c
o
u
n
t
)

{

n
n

3
3

'j
d

n
u

n
zi

D
D

D
C

C
D

D
D

C
C

S
e
t
A
P
e
n
(
m
_
w
i
n
d
o
w
-
>
R
P
o
r
t
,

s
c
a
l
e
[
k
]
)

W
r
i
t
e
P
i
x
e
l
(
m
_
_
w
i
n
d
o
w
-
>
R
P
o
r
t
,

j
,

i
)
;

h
a
n
d
l
e
_
m
e
s
s
a
g
e
s
(
)
;

i
f

(
r
e
s
e
t
)

g
o
t
o

r
e
s
e
t
_
s
c
r
e
e
n
;

d
o
n
e
:

r
e
s
e
t

=
0
;

F
O
R
E
V
E
R

i

W
a
i
t
(
l

(
m
_
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
J
3
i
g
B
i
t
)

1
<
<

(
g
_
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
)

h
a
n
d
l
e
_
j
n
e
s
s
a
g
e
s
(
)
;

i
f

(
r
e
s
e
t
)

g
o
t
o

r
e
s
e
t

s
c
r
e
e
n
;

C
O

v
o
i
d

c
a
l
c
u
l
a
t
e

e
d
g
e
s
(
)

{
l
e
f
t

=
m
_
_
w
i
n
d
o
w
-
>
B
o
r
d
e
r
L
e
f
t
;

r
i
g
h
t

=
m
_
w
i
n
d
o
w
-
>
W
i
d
t
h

-
m
_
w
i
n
d
o
w
-
>
B
o
r
d
e
r
R
i
g
h
t

-
1
;

t
o
p

=
m
_
w
i
n
d
o
w
-
>
B
o
r
d
e
r
T
o
p
;

b
o
t
t
o
m

=
m
_
w
i
n
d
o
w
-
>
H
e
i
g
h
t

-
m
_
w
i
n
d
o
w
-
>
B
o
r
d
e
r
B
o
t
t
o
m

-
1
;

v
o
i
d

h
a
n
d
l
e
_
_
m
e
s
s
a
g
e
s
(
)

s
t
r
u
c
t

i
n
t
u
i
M
e
s
s
a
g
e

^
m
e
s
s
a
g
e
;

w
h
i
l
e

(
m
e
s
s
a
g
e

=
G
e
t
M
s
g
(
m
_
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
)
)

h
a
n
d
l
e
_
_
m
e
s
s
a
g
e
(
m
e
s
s
a
g
e
)

;

w
h
i
l
e

(
m
e
s
s
a
g
e

=
G
e
t
M
s
g
(
g
_
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
)
)

h
a
n
d
l
e
_
_
m
e
s
s
a
g
e
(
m
e
s
s
a
g
e
)
;

Q

0
0

v
o
i
d

h
a
n
d
l
e
_
m
e
s
s
a
g
e
(
m
e
s
s
a
g
e
)

§
s
t
r
u
c
t

I
n
t
u
i
M
e
s
s
a
g
e

*
m
e
s
s
a
g
e
;

ct
-

i
n
t

c
l
a
s
s

=
m
e
s
s
a
g
e
-
>
C
l
a
s
s
;

i
n
t

c
o
d
e

=
m
e
s
s
a
g
e
-
>
C
o
d
e
;

A
P
T
R

a
d
d
r
e
s
s

=
m
e
s
s
a
g
e
-
>
I
A
d
d
r
e
s
s
;

R
e
p
l
y
M
s
g
(
m
e
s
s
a
g
e
)
;

s
w
i
t
c
h

(
c
l
a
s
s
)

{

c
a
s
e

C
L
O
S
E
W
I
N
D
O
W
:

d
o
n
e
(
N
U
L
L
)
;

c
a
s
e

N
E
W
S
1
Z
E
:

{

i
n
t

x
=

m
_
_
w
i
n
d
o
w
-
>
W
i
d
t
h

-
m
_
w
i
n
d
o
w
-
>
B
o
r
d
e
r
R
i
g
h
t

-
1
;

i
n
t

y
=
m
_
w
i
n
d
o
w
-
>
H
e
i
g
h
t

-
m
_
_
w
i
n
d
o
w
-
>
B
o
r
d
e
r
B
o
t
t
o
m

-
1
;

i
f

(
r
i
g
h
t

<
x
)

x
=

r
i
g
h
t
;

i
f

(
b
o
t
t
o
m

<
y
)

y
=

b
o
t
t
o
m
;

S
e
t
A
P
e
n
(
m
_
w
i
n
d
o
w
-
>
R
P
o
r
t
#

0
)
;

/
*

b
l
a
n
k

w
i
n
d
o
w

*
/

R
e
c
t
F
i
l
l
(
m
_
w
i
n
d
o
w
-
>
R
P
o
r
t
#
l
e
f
t
,
t
o
p
,
x
#
y
)
;

r
e
s
e
t
=
2
;

/
*

"
s
o
f
t
"

r
e
s
e
t

*
/

b
r
e
a
k
;

} c
a
s
e

G
A
D
G
E
T
U
P
:

h
a
n
d
l
e
_
g
a
d
g
e
t
(
(
s
t
r
u
c
t

G
a
d
g
e
t

*
)
a
d
d
r
e
s
s
)
;

b
r
e
a
k
;

c
a
s
e

M
E
N
U
P
I
C
K
:

h
a
n
d
l
e
_
_
m
e
n
u
(
c
o
d
e
)

;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

d
o
n
e
(
"
f
a
t
a
l

e
r
r
o
r
:

b
a
d

I
n
t
u
i
M
e
s
s
a
g
e
"
)
;

z
i
n

z
i
a

g
z
\

i]
zi

z
i

z
i

r:
c:

c
c

c
c:

c
c

c
c

v
o
i
d

h
a
n
d
l
e
_
g
a
d
g
e
t
(
g
a
d
g
e
t
)

s
t
r
u
c
t

G
a
d
g
e
t

*
g
a
d
g
e
t
;

e
x
t
e
r
n

i
n
t

c
o
u
n
t
;

s
w
i
t
c
h

(
g
a
d
g
e
t
-
>
G
a
d
g
e
t
I
D
)

{

c
a
s
e

L
O
A
D
J
3
:

l
o
a
d
_
s
c
r
e
e
n
(
)
;

b
r
e
a
k
;

c
a
s
e

S
A
V
E
_
G
:

s
a
v
e
_
s
c
r
e
e
n
(
)
;

p
r
i
n
t
f
(
"
M
a
n
d
e
l
b
r
o
t

d
a
t
a

s
a
v
e
d

a
s

%
s
\
n
"
,

f
i
l
e
n
a
m
e
)
;

b
r
e
a
k
;

c
a
s
e

R
E
P
_
_
G
:

c
o
u
n
t

=

(
(
s
t
r
u
c
t

P
r
o
p
l
n
f
o

*
)
g
a
d
g
e
t
-
>
S
p
e
c
i
a
l
I
n
f
o
)
-
>
H
o
r
i
z
P
o
t
;

c
o
u
n
t

=
(
M
A
X
_
C
O
U
N
T

*
c
o
u
n
t
)

/
0
x
f
f
f
f
;

i
f

(
c
o
u
n
t

<
2
)

c
o
u
n
t

=
2
;

b
r
e
a
k
;

c
a
s
e

F
I
L
E
_
_
G
:

b
r
e
a
k
;

/
*

d
o
n
'
t

c
a
r
e
,

w
e

j
u
s
t

w
a
n
t

t
h
e

s
t
r
i
n
g

*
/

d
e
f
a
u
l
t
:

d
o
n
e
(
"
f
a
t
a
l

e
r
r
o
r
:

b
a
d

G
A
D
G
E
T
U
P
"
)
;

I
w

v
o
i
d

h
a
n
d
l
e
_
m
e
n
u
(
m
e
n
u
_
_
n
u
m
b
e
r
)

to
i
n
t

m
e
n
u

n
u
m
b
e
r
;

u>
<•

O
<=

>
w
h
i
l
e

(
m
e
n
u
_
n
u
m
b
e
r

1
=
M
E
N
U
N
U
L
L
)

{

s
w
i
t
c
h

(
M
E
N
U
N
U
M
(
m
e
n
u
_
n
u
m
b
e
r
)
)

{

c
a
s
e

P
R
O
J
E
C
T
_
M
:

h
a
n
d
l
e
_
j
>
r
o
j
e
c
t
(
m
e
n
u
_
n
u
m
b
e
r
)
;

Q
b
r
e
a
k
;

^

c
a
s
e

S
C
R
E
E
N
_
M
:

h
a
n
d
l
e
_
s
c
r
e
e
n
(
m
e
n
u
_
n
u
m
b
e
r
)
;

b
r
e
a
k
;

d
e
f
a
u
l
t
:

d
o
n
e
(
"
f
a
t
a
l

e
r
r
o
r
:

b
a
d

m
e
n
u

n
u
m
b
e
r
"
)
;

m
e
n
u
_
n
u
m
b
e
r
=
I
t
e
m
A
d
d
r
e
s
s
(
m
e
n
u
_
s
t
r
i
p
,

m
e
n
u
_
_
n
u
m
b
e
r
)
-
>
N
e
x
t
S
e
l
e
c
t
;

#
d
e
f
i
n
e

T
O
G
G
L
E
C
H
E
C
K
(
n
u
m
b
e
r
)

\

I
t
e
m
A
d
d
r
e
s
s
(
m
e
n
u
_
s
t
r
i
p
,

n
u
m
b
e
r
)
-
>
M
u
t
u
a
l
E
x
c
l
u
d
e

"
=

(
1

<
<

I
T
E
M
N
U
M
(
n
u
m
b
e
r
)
)
;

v
o
i
d

h
a
n
d
l
e
^
p
r
o
j
e
c
t
(
m
e
n
u
_
n
u
m
b
e
r
)

i
n
t

m
e
n
u
_
_
n
u
r
a
b
e
r
;

s
t
a
t
i
c

i
n
t

r
u
n

=
1
;

s
w
i
t
c
h

(
I
T
E
M
N
U
M
(
m
e
n
u
_
n
u
m
b
e
r
)
)

{

c
a
s
e

P
A
U
S
E
_
_
M
:

T
O
G
G
L
E
C
H
E
C
K
(
m
e
n
u
_
n
u
r
a
b
e
r
)
;

r
u
n

=
I
r
u
n
;

w
h
i
l
e

(
I
r
u
n
)

{
/
*

r
e
-
e
n
t
r
a
n
t

c
o
d
e

w
a
r
n
i
n
g
l

*
/

W
a
i
t
(
l

<
<

m
_
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t

I
1

<
<

g
_
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
;

D
G

G
G

Q
G

3
G

G
G

c
f

r:
tj

r:
o

to
r:

o
r.

h
a
n
d
l
e

m
e
s
s
a
g
e
s
(
)
;

} b
r
e
a
k
;

c
a
s
e

R
E
S
T
A
R
T
_
M
:

r
e
s
e
t
=
1
;

/
*

c
o
l
d

r
e
s
e
t

..
*
/

b
r
e
a
k
;

c
a
s
e

Q
U
I
T
J
4
:

d
o
n
e
(
N
U
L
L
)
;

d
e
f
a
u
l
t
:

d
o
n
e
(
"
f
a
t
a
l

e
r
r
o
r
:

b
a
d

m
e
n
u

i
t
e
m

u
n
d
e
r

P
R
O
J
E
C
T
"
)
;

}
} v
o
i
d

h
a
n
d
l
e
_
s
c
r
e
e
n
(
m
e
n
u
_
n
u
m
b
e
r
)

i
n
t
m
e
n
u

n
u
m
b
e
r
;

t
s
w
i
t
c
h

(
l
T
E
M
N
U
M
(
m
e
n
u
_
n
u
m
b
e
r
)
)

{

c
a
s
e

H
I
R
E
S

M
:

{
i
n
t

i
t
e
m

=
S
H
I
F
T
M
E
N
U
(
S
C
R
E
E
N
_
M
)

I
S
H
I
F
T
I
T
E
M
(
C
O
L
O
R
S
_
M
)

;

T
O
G
G
L
E
C
H
E
C
K
(
m
e
n
u
j
n
u
m
b
e
r
)
;

W
=

3
-

W
;

/
*

m
a
p
s

1
t
o

2
a
n
d

2
t
o

1
*
/

i
f

(
W
=
=

2
)

{
Q

O
f
f
M
e
n
u
(
m
_
w
i
n
d
o
w
,

i
t
e
m

I
S
H
I
F
T
S
U
B
(
4
)
)
;

O
f
f
M
e
n
u
(
m

w
i
n
d
o
w
,

i
t
e
m

I
S
H
I
F
T
S
U
B
(
5
)
)
;

}
"

e
l
s
e

{

O
n
M
e
n
u
(
m
_
w
i
n
d
o
w
#

i
t
e
m

I
S
H
I
F
T
S
U
B
(
4
)
)
;

O
n
M
e
n
u
(
m

w
i
n
d
o
w
,

i
t
e
m

I
S
H
I
F
T
S
U
B
(
5
)
)
;

3
}

"
3

w
b
r
e
a
k
;

2
}

C
O

c
a
s
e

L
A
C
E
_
M
:

T
O
G
G
L
E
C
H
E
C
K
(
m
e
n
u
_
n
u
m
b
e
r
)
;

H
=

3
-

H
;

b
r
e
a
k
;

c
a
s
e

C
O
L
O
R
S
_
M
:

{
i
n
t

i
t
e
m

=
S
H
I
F
T
M
E
N
U
(
S
C
R
E
E
N
_
M
)

I

b
i
t
_
j
?
l
a
n
e
s

=
S
U
B
N
U
M
(
m
e
n
u
_
n
u
m
b
e
r
)

d
o
_
c
o
n
t
o
u
r

=
T
R
U
E
;

i
f

(
b
i
t
_
j
?
l
a
n
e
s

>
4
)

O
f
f
M
e
n
u
(
m
_
w
i
n
d
o
w
,

e
l
s
e

O
n
M
e
n
u
(
m
_
w
i
n
d
o
w
,

i
t
e
m
)
;

b
r
e
a
k
;

Q i
S
H
I
F
T
I
T
E
M
(
H
I
R
E
S
_
_
M
)

;

+
l
;

i
t
e
m
)
;

d
e
f
a
u
l
t
:

d
o
n
e
(
"
f
a
t
a
l

e
r
r
o
r
:

b
a
d

m
e
n
u

i
t
e
m

u
n
d
e
r

S
C
R
E
E
N
"
)
;

I
N
I
T
I
A
L
I
Z
E

S
C
R
E
E
N
A
N
D

M
A
N
D
E
L
B
R
O
T

W
I
N
D
O
W

v
o
i
d

o
p
e
n
_
w
i
n
d
o
w
s
(
w
i
d
t
h
,

h
e
i
g
h
t
)

i
n
t

w
i
d
t
h
,

h
e
i
g
h
t
;

s
t
a
t
i
c

s
t
r
u
c
t

N
e
w
S
c
r
e
e
n

n
e
w
_
_
s
c
r
e
e
n

=
{

0
,

/
*

L
e
f
t
E
d
g
e

(
u
n
i
m
p
l
e
m
e
n
t
e
d
)

*
/

0
,

/
*

T
o
p
E
d
g
e

*
/

0
,

/
*

W
i
d
t
h

(
s
e
t

i
n

c
o
d
e
)

*
/

0
,

/
*

H
e
i
g
h
t

(
s
e
t

i
n

c
o
d
e
)

*
/

0
,

/
*

m
a
x

n
u
m
b
e
r

o
f

b
i
t
-
p
l
a
n
e
s

(
i
n

c
o
d
e
)

*
/

0
,
1
,

/
*

s
c
r
e
e
n
p
e
n

c
o
l
o
r
s

*
/

d
z
i
d

:_
]

;]
n

3

D
3

D
U

]
13

2)
I]

7J

N
U
L
L
,

/
*

V
i
e
w
M
o
d
e
s

(
s
e
t

i
n

c
o
d
e
)

*
/

C
U
S
T
O
M
S
C
R
E
E
N
,

/
*

t
y
p
e

o
f

s
c
r
e
e
n

*
/

&
F
o
n
t
8
0
,

/
*

a
s
s
o
c
i
a
t
e
d

f
o
n
t

*
/

"
M
a
n
d
e
l
b
r
o
t

S
e
t
s
"
,

/
*

t
i
t
l
e

o
f

s
c
r
e
e
n

*
/

N
U
L
L
,

/
*

g
a
d
g
e
t
s

f
o
r

t
h
e

s
c
r
e
e
n

*
/

N
U
L
L

/
*

c
u
s
t
o
m

b
i
t
m
a
p

*
/

}; s
t
a
t
i
c

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

n
e
w
_
w
i
n
d
o
w

=
I

0
,

0
,

0
,

0
,

-
1
,

-
1
,

C
L
O
S
E
W
I
N
D
O
W
I
N
E
W
S
I
Z
E
I
M
E
N
U
P
I
C
K
,

A
C
T
I
V
A
T
E
I
W
I
N
D
O
W
S
I
Z
I
N
G
|
W
I
N
D
O
W
D
E
P
T
H
|
W
I
N
D
O
W
C
L
O
S
E
I
W
I
N
D
O
W
D
R
A
G
|

S
M
A
R
T
_
_
R
E
F
R
E
S
H
,

N
U
L
L
,

N
U
L
L
,

"
I
m
a
g
e
"
,

N
U
L
L
,

N
U
L
L
,

1
0
0
,

6
0
,

0
,

0
,

C
U
S
T
O
M
S
C
R
E
E
N

}; n
e
w
_
w
i
n
d
o
w
.
M
a
x
W
i
d
t
h

=
n
e
w
_
s
c
r
e
e
n
.
W
i
d
t
h

=
3
2
0
*
W
;

n
e
w
_
w
i
n
d
o
w
.
M
a
x
H
e
i
g
h
t

=
n
e
w
_
s
c
r
e
e
n
.
H
e
i
g
h
t

=
2
0
0
*
H
;

n
e
w
_
s
c
r
e
e
n
.
D
e
p
t
h

=
b
i
t
_
p
l
a
n
e
s
;

n
e
w

s
c
r
e
e
n
.
V
i
e
w
M
o
d
e
s

=
(
W

=
=

2
?
H
I
R
E
S

:
0
)

|
(
H
=
=

2
?
L
A
C
E

:
0
)
;

i
f
T
b
i
t
^
p
l
a
n
e
s

=
=

6
)

n
e
w

s
c
r
e
e
n
.
V
i
e
w
M
o
d
e
s

|
=
E
X
T
R
A
_
H
A
L
F
B
R
I
T
E
;

i
f

(
(
s
c
r
e
e
n

=
O
p
e
n
S
c
r
e
e
n
T
&
n
e
w
j
s
c
r
e
e
n
)
)

=
=

N
U
L
L
)

d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n

s
c
r
e
e
n

f
o
r

m
a
n
d
e
l
b
r
o
t
"
)
;

n
e
w
_
_
w
i
n
d
o
w
.
W
i
d
t
h

=
w
i
d
t
h
;

n
e
w
_
_
w
i
n
d
o
w
.
H
e
i
g
h
t

=
h
e
i
g
h
t
;

n
e
w
_
w
i
n
d
o
w
.
M
i
n
W
i
d
t
h

=
1
0
0
*
W
;

n
e
w
_
_
w
i
n
d
o
w
.
M
i
n
H
e
i
g
h
t

=
6
0
*
H
;

n
e
w
_
w
i
n
d
o
w
.
S
c
r
e
e
n

=
s
c
r
e
e
n
;

i
f

(
f
i
r
s
t
_
t
i
m
e
)

h
e
l
l
o
_
_
w
i
n
d
o
w
(
s
c
r
e
e
n
)
;

i
f

(
(
m
_
w
i
n
d
o
w

=
O
p
e
n
W
i
n
d
o
w
(
&
n
e
w
_
w
i
n
d
o
w
)
)

=
=

N
U
L
L
)

d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n
w
i
n
d
o
w

f
o
r
m
a
n
d
e
l
b
r
o
t

g
r
a
p
h
i
c
s
1
1
)
;

g
a
d
g
e
t
s
_
w
i
n
d
o
w
(
s
c
r
e
e
n
)
;

#
d
e
f
i
n
e

T
E
X
T
(
w
,
x
,
y
,
s
)

{
M
o
v
e
(
w
-
>
R
P
o
r
t
,
x
,
y
)
;

T
e
x
t
(
w
-
>
R
P
o
r
t
,

s
,

s
t
r
l
e
n
(
s
)
)
;

}
v
o
i
d

h
e
l
l
o
_
w
i
n
d
o
w
(
s
c
r
e
e
n
)

s
t
r
u
c
t

S
c
r
e
e
n

*
s
c
r
e
e
n
;

f
CD

i
n
t

o
f
f
s
e
t

=
(
W

=
=

2
)

?
1
2
5

:
0
;

^

s
t
a
t
i
c

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

n
e
w
_
_
w
i
n
d
o
w

=
{

-s
j

3
5
,

7
2
,

2
5
0
,

6
6
,

-
1
,

-
1
,

C
L
O
S
E
W
I
N
D
O
W
,

W
I
N
D
O
W
C
L
O
S
E

|
A
C
T
I
V
A
T
E

I
S
I
M
P
L
E
_
R
E
F
R
E
S
H
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L
,

0
#

0
/

0
,

0
,

C
U
S
T
O
M
S
C
R
E
E
N

In s
t
r
u
c
t
W
i
n
d
o
w

*
w
i
n
d
o
w
;

n
e
w
_
w
i
n
d
o
w
.
S
c
r
e
e
n

=
s
c
r
e
e
n
;

n
e
w
_
w
i
n
d
o
w
.
L
e
f
t
E
d
g
e

=
3
5
*
W
;

n
e
w
_
w
i
n
d
o
w
.
T
o
p
E
d
g
e

=
7
2
*
H
;

n
e
w
_
w
i
n
d
o
w
.
W
i
d
t
h

=
2
5
0
*
W
;

n
e
w
_
w
i
n
d
o
w
.
H
e
i
g
h
t

=
6
6
*
H
;

i
f

(
(
w
i
n
d
o
w

=
O
p
e
n
W
i
n
d
o
w
(
&
n
e
w
_
w
i
n
d
o
w
)
)

=
=

N
U
L
L
)

d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n
h
e
l
l
o

w
i
n
d
o
w
"
)
;

T
E
X
T
(
w
i
n
d
o
w
,

4
9
+
o
f
f
s
e
t
,

2
0
*
H
,

"
C
L
O
S
E

T
H
E

W
I
N
D
O
W

T
O
"
)
;

T
E
X
T
(
w
i
n
d
o
w
,

6
1
+
o
f
f
s
e
t
,

3
0
*
H
,

"
S
T
A
R
T

M
A
N
D
E
L
B
R
O
T
"
)
;

T
E
X
T
(
w
i
n
d
o
w
,

3
3
+
o
f
f
s
e
t
,

5
0
*
H
,

"
U
s
e

t
h
e
m
e
n
u
s

t
o

c
h
a
n
g
e
"
)
;

T
E
X
T
(
w
i
n
d
o
w
,

6
9
+
o
f
f
s
e
t
,

6
0
*
H
,

"
t
h
e

p
a
r
a
m
e
t
e
r
s
"
)
;

W
a
i
t
(
l

<
<

(
w
i
n
d
o
w
-
>
U
s
e
r
P
o
r
t
-
>
m
p
_
S
i
g
B
i
t
)
)
;

C
l
o
s
e
W
i
n
d
o
w
(
w
i
n
d
o
w
)
;

f
i
r
s
t
_
t
i
m
e

=
F
A
L
S
E
;

I
N
I
T
I
A
L
I
Z
E

G
A
D
G
E
T
S

W
I
N
D
O
W

c
c

c
c

c:
•
d

c
c

c
c

u
>

v
o
i
d

g
a
d
g
e
t
s
_
_
w
i
n
d
o
w
(
s
c
r
e
e
n
)

s
t
r
u
c
t

S
c
r
e
e
n

*
s
c
r
e
e
n
;

s
t
a
t
i
c

s
t
r
u
c
t

I
n
t
u
i
T
e
x
t

l
o
a
d
_
t
e
x
t

=
{

2
,
2
,

J
A
M
1
,

/
*

p
e
n

c
o
l
o
r
s

a
n
d

m
o
d
e

*
/

4
,
2
,

/
*

s
t
a
r
t
i
n
g

l
o
c
a
t
i
o
n

r
e
l
a
t
i
v
e

t
o

s
e
l
e
c
t

b
o
x

*
/

&
F
o
n
t
8
0
,

"
L
O
A
D
"
,

/
*

t
e
x
t

f
o
n
t

a
n
d

s
t
r
i
n
g

*
/

N
U
L
L

/
*

n
e
x
t

I
n
t
u
i
T
e
x
t

(
n
o
n
e
)

*
/

}, s
a
v
e
_
t
e
x
t

=
{

2
,

2
,

J
A
M
1
,

4
,

2
,

&
F
o
n
t
8
0
,

"
S
A
V
E
"
,

N
U
L
L

}
,

r
e
p
_
t
e
x
t

=
{

2
,

2
,

J
A
M
1
,

1
2
,

1
2
,

&
F
o
n
t
8
0
,

"
R
e
p
e
a
t

C
o
u
n
t
"
,

N
U
L
L

}
,

f
i
l
e
_
t
e
x
t

=
{

2
,

2
,

J
A
M
1
,

2
4
,

1
2
,

&
F
o
n
t
8
0
,

"
F
i
l
e

N
a
m
e
"
,

N
U
L
L

}
;

/
*

l
o
a
d

a
n
d

s
a
v
e

g
a
d
g
e
t
s

*
/

s
t
a
t
i
c

S
H
O
R
T

l
o
a
d
_
b
o
r
d
e
r
[
5
]
L
2
]

=
{

0
,
0
,

4
1
,
0
,

4
1
,
1
3
,

0
,
1
3
,

0
,
0

}
;

s
t
a
t
i
c

s
t
r
u
c
t

B
o
r
d
e
r

l
o
a
d
_
b
o
x

=
t

-
1
,

-
1
,

/
*

s
t
a
r
t
i
n
g

p
o
s
i
t
i
o
n

r
e
l
a
t
i
v
e

t
o

s
e
l
e
c
t

*
/

1
,

0
,

J
A
M
1
,

/
*

p
e
n

c
o
l
o
r
s

a
n
d

m
o
d
e

*
/

5
,

(
S
H
O
R
T

*
)
l
o
a
d
_
b
o
r
d
e
r
,

N
U
L
L

/
*

n
e
x
t

B
o
r
d
e
r

(
n
o
n
e
)

*
/

}?
c

s
t
a
t
i
c

s
t
r
u
c
t

G
a
d
g
e
t

l
o
a
d
_
g
a
d
g
e
t
=
1

N
U
L
L
,

/
*

n
e
x
t

g
a
d
g
e
t

(
n
o
n
e
)

*
/

-
5
0
,
-
1
8
,
4
0
,
1
2
,

/
*

l
o
c
a
t
i
o
n

a
n
d

s
i
z
e

o
f

s
e
l
e
c
t

b
o
x

*
/

G
A
D
G
H
C
O
M
P

I
G
R
E
L
B
O
T
T
O
M

|
G
R
E
L
R
I
G
H
T
,

/
*

f
l
a
g
s

*
/

R
E
L
V
E
R
I
F
Y
,

/
*

A
c
t
i
v
a
t
i
o
n

f
l
a
g
s

*
/

B
O
O
L
G
A
D
G
E
T
,

/
*

t
y
p
e

o
f

g
a
d
g
e
t

*
/

(
A
P
T
R
)
&
l
o
a
d

b
o
x
,

/
*

p
o
i
n
t
e
r

t
o

B
o
r
d
e
r

*
/

N
U
L
L
,

7
*

p
o
i
n
t
e
r

t
o

r
e
n
d
e
r
i
n
g

o
f

s
e
l
e
c
t
e
d

p
i
c
t
u
r
e

*
/

&
l
o
a
d
_
_
t
e
x
t
,

/
*

a
s
s
o
c
i
a
t
e
d

I
n
t
u
i
T
e
x
t

*
/

£J
N
U
L
L
,

/
*

m
u
t
u
a
l

e
x
c
l
u
d
e

b
i
t
s

*
/

Q
on

N
U
L
L
,

/
*

s
p
e
c
i
a
l

i
n
f
o

p
o
i
n
t
e
r

(
n
o
n
e

f
o
r

b
o
o
l
e
a
n
)

*
/

L
O
A
D
_
G
,

/
*

G
a
d
g
e
t
I
D

*
/

N
U
L
L

/
*

U
s
e
r
D
a
t
a

p
o
i
n
t
e
r

*
/

}
,
s
a
v
e
_
g
a
d
g
e
t

=
{

&
l
o
a
d
_
g
a
d
g
e
t
,

1
0
,

-
1
8
,

4
0
,

1
2
,

G
A
D
G
H
C
O
M
P

I
G
R
E
L
B
O
T
T
O
M
,

R
E
L
V
E
R
I
F
Y
,

B
O
O
L
G
A
D
G
E
T
,

(
A
P
T
R
)
&
l
o
a
d
_
b
o
x
,

N
U
L
L
,

&
s
a
v
e

t
e
x
t
,

N
U
L
L
,

N
U
L
L
,

S
A
V
E

G
,

N
U
L
L

}
;

/
*

f
i
l
e

n
a
m
e

g
a
d
g
e
t

*
/

s
t
a
t
i
c

S
H
O
R
T

f
i
l
e
_
_
b
[
5
]
[
2
]

=
{

0
,
0
,

1
2
1
,
0
,

1
2
1
,
1
1
,

0
,
1
1
,

0
,
0

}
;

s
t
a
t
i
c

s
t
r
u
c
t

B
o
r
d
e
r

f
i
l
e
_
b
o
x

=

{
-
1
,

-
2
,

1
,

0
,

J
A
M
1
,

5
,

(
S
H
O
R
T

*
)
f
i
l
e
_
_
b
,

N
U
L
L

}
;

s
t
a
t
i
c

c
h
a
r

u
n
d
o
[
3
1
]

=
"
"
;

s
t
a
t
i
c

s
t
r
u
c
t

S
t
r
i
n
g
l
n
f
o

f
i
l
e
s
t
r
i
n
g

=
{

f
i
l
e
n
a
m
e
,

u
n
d
o
,

/
*

s
t
r
i
n
g

a
n
d

u
n
d
o

b
u
f
f
e
r
s

*
/

9
,

s
i
z
e
o
f
(
f
i
l
e
n
a
m
e
)
,

/
*

i
n
i
t
i
a
l

a
n
d

m
a
x

c
u
r
s
o
r

p
o
s

*
/

0
,

/
*

p
o
s

o
f

f
i
r
s
t

d
i
s
p
l
a
y
e
d

c
h
a
r
a
c
t
e
r

*
/

}; s
t
a
t
i
c

s
t
r
u
c
t

G
a
d
g
e
t

f
i
l
e
_
_
g
a
d
g
e
t

=
{

&
s
a
v
e
_
g
a
d
g
e
t
,

1
0
,

5
0
,

1
2
0
,

1
0
,

G
A
D
G
H
C
O
M
P
,

R
E
L
V
E
R
I
F
Y
,

S
T
R
G
A
D
G
E
T
,

(
A
P
T
R
)
f
i
t
f
i
l
e
_
b
o
x
,

N
U
L
L
,

&
f
i
l
e
_
t
e
x
t
,

N
U
L
L
,

(
A
P
T
R
)
&
f
i
l
e
s
t
r
i
n
g
,

F
I
L
E
_
G
,

N
U
L
L

}; /
*

r
e
p
e
a
t

c
o
u
n
t

g
a
d
g
e
t

*
/

s
t
a
t
i
c

s
t
r
u
c
t

P
r
o
p
l
n
f
o

r
e
p
_
j
?
r
o
p

=
{

A
U
T
O
K
N
O
B

|
F
R
E
E
H
O
R
I
Z
,

/
*

F
l
a
g
s

*
/

c
c

c
c

c
c

:
:

i:
:

0
,

/
*

H
o
r
i
z
P
o
t

(
i
n
i
t
i
a
l
i
z
e
d

i
n

c
o
d
e
)

*
/

0
,

/
*

V
e
r
t
P
o
t

*
/

0
x
f
f
f
f

/
1
6
,

/
*

H
o
r
i
z
B
o
d
y

*
/

0
x
f
f
f
f

/
*

V
e
r
t
B
o
d
y

*
/

s
t
a
t
i
c

s
t
r
u
c
t

I
m
a
g
e

r
e
p
_
_
i
m
a
g
e
;

/
*

I
n
t
u
i
t
i
o
n

i
n
i
t
i
a
l
i
z
e
s

i
t

*
/

s
t
a
t
i
c

s
t
r
u
c
t

G
a
d
g
e
t

r
e
p
_
g
a
d
g
e
t

=
{

&
f
i
l
e
_
g
a
d
g
e
t
,

1
0
,

2
0
,

-
2
0
,

1
0
,

G
A
D
G
H
C
O
M
P

|
G
R
E
L
W
I
D
T
H
,

R
E
L
V
E
R
I
F
Y
,

P
R
O
P
G
A
D
G
E
T
,

(
A
P
T
R
)
&
r
e
p
_
i
m
a
g
e
,

N
U
L
L
,

&
r
e
p
_
t
e
x
t
,

N
U
L
L
,

(
A
P
T
R
)
&
r
e
p
_
j
>
r
o
p
,

R
E
P
J
3
,

N
U
L
L

/
*

n
e
w
w
i
n
d
o
w

*
/

s
t
a
t
i
c

s
t
r
u
c
t

N
e
w
W
i
n
d
o
w

n
e
w
_
_
g
_
w
i
n
d
o
w

=
{

1
7
0
,

3
0
,

1
4
0
,

9
5
,

-
1
,
-
1
,

G
A
D
G
E
T
U
P

|
M
E
N
U
P
I
C
K
,

W
I
N
D
O
W
D
E
P
T
H

I
W
I
N
D
O
W
D
R
A
G

I
S
M
A
R
T
_
R
E
F
R
E
S
H
,

&
r
e
p
_
g
a
d
g
e
t
,

N
U
L
L
,

"
C
o
n
t
r
o
l
s
"
,

N
U
L
L
,

N
U
L
L
,

0
,

0
,

0
,

0
,

C
U
S
T
O
M
S
C
R
E
E
N

n
e
w
_
g
_
w
i
n
d
o
w
.
S
c
r
e
e
n

=
s
c
r
e
e
n
;

n
e
w
_
g
_
_
w
i
n
d
o
w
.
L
e
f
t
E
d
g
e

=
1
7
0
*
W
;

n
e
w
_
g
_
w
i
n
d
o
w
.
T
o
p
E
d
g
e

=
3
0
*
H
;

n
e
w
_
g
_
w
i
n
d
o
w
«
W
i
d
t
h

=
1
4
0
*
W
;

r
e
p
_
_
t
e
x
t
.
L
e
f
t
E
d
g
e

=
(
W

=
=

2
)

?
8
2

:
1
2
;

f
i
l
e
_
_
t
e
x
t
.
L
e
f
t
E
d
g
e

=
(
W
=
=

2
)

?
9
4

:
2
4
;

r
e
p
_
p
r
o
p
.
H
o
r
i
z
P
o
t

=
c
o
u
n
t

*
0
x
f
f
f
f

/
M
A
X
_
C
O
U
N
T
;

f
i
l
e
_
b
[
l
]
[
0
]

=
f
i
l
e
_
b
[
2
]
[
0
]

=
l
+
(
f
i
l
e
_
g
a
d
g
e
t
.
W
i
d
t
h

=
(
W
=
=
2
)
?
2
6
0
:
1
2
0
)
;

w
i
f

(
(
g
_
_
w
i
n
d
o
w

=
O
p
e
n
W
i
n
d
o
w
(
&
n
e
w
_
_
g
_
w
i
n
d
o
w
)
)

=
=

N
U
L
L
)

vi
d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n

w
i
n
d
o
w

f
o
r

m
a
n
d
e
l
b
r
o
t

g
a
d
g
e
t
s
"
)
;

Q B h"

•

a
d
d

m
e
n
u
s
(
)
;

Q

}
~

?

v
o
i
d

a
d
d

m
e
n
u
s

(
)

§>

I
"

"*

#
d
e
f
i
n
e

P
R
O
J
E
C
T
_
W
I
D
T
H

(
C
H
E
C
K
W
I
D
T
H

+
C
O
M
M
W
I
D
T
H

+
8
*
8

+
4
)

#
d
e
f
i
n
e

S
C
R
E
E
N
_
W
I
D
T
H

(
C
H
E
C
K
W
I
D
T
H

+
6
*
8

+
4
)

#
d
e
f
i
n
e

C
O
L
O
R
S
_
_
W
I
D
T
H

(
C
H
E
C
K
W
I
D
T
H

+
2
*
8
)

#
d
e
f
i
n
e

I
N
T
U
I
T
E
X
T
(
s
)

{
2
,
1
,
J
A
M
1
,

C
H
E
C
K
W
I
D
T
H
,

1
,

&
F
o
n
t
8
0
,

s
,

N
U
L
L

}

s
t
a
t
i
c

s
t
r
u
c
t

I
n
t
u
i
T
e
x
t

i
t
_
_
p
a
u
s
e

=
I
N
T
U
I
T
E
X
T
(
"
P
a
u
s
e
"

)
,

i
t
_
r
e
s
t
a
r
t

=
I
N
T
U
I
T
E
X
T
(
"
R
e
s
t
a
r
t
"
)
,

i
t
_
_
q
u
i
t

=
I
N
T
U
I
T
E
X
T
(
"
Q
u
i
t
"
)
,

i
t
_
h
i
r
e
s

=
I
N
T
U
I
T
E
X
T
(
"
H
i
r
e
s
"

)
,

i
t
_
_
l
a
c
e

=
I
N
T
U
I
T
E
X
T
(
"
L
a
c
e
"

)
,

i
t
_
c
o
l
o
r
s

=
I
N
T
U
I
T
E
X
T
(
"
C
o
l
o
r
s
"
)
,

i
t
_
n
[
6
]

=
{
I
N
T
U
I
T
E
X
T
(
"
6
4
"
)
/
I
N
T
U
I
T
E
X
T
(
"
3
2
"
)
/
I
N
T
U
I
T
E
X
T
(
"
1
6
"
)
#

I
N
T
U
I
T
E
X
T
(
"
8
"
)
,

I
N
T
U
I
T
E
X
T
(
"
4
"
)
,

I
N
T
U
I
T
E
X
T
(
"
2
"
)

}
;

#
d
e
f
i
n
e

N
_
_
I
T
E
M
(
n
e
x
t
,

t
o
p
#

e
x
c
l
u
d
e
,

t
e
x
t
)
\

{
n
e
x
t
,

S
C
R
E
E
N
_
W
I
D
T
H
-
2
,

t
o
p
,

C
O
L
O
R
S
_
W
I
D
T
H
,

1
0
,

C
H
E
C
K
I
T
I
I
T
E
M
T
E
X
T
I

\
I
T
E
M
E
N
A
B
L
E
D
|
H
I
G
H
C
O
M
P
,

e
x
c
l
u
d
e
,

(
A
P
T
R
)
t
e
x
t
,

N
U
L
L
,

N
U
L
L
,

N
U
L
L

}

s
t
a
t
i
c

s
t
r
u
c
t

M
e
n
u
l
t
e
m

m
i
_
n
[
6
]

=
{

N
_
I
T
E
M
(
N
U
L
L
,

2
5
,

0
x
l
f
,

&
i
t
_
_
n
[
0
]
)
,

N
_
I
T
E
M
(
&
m
i
_
_
n
[
0
]
,

1
5
,

0
x
2
f
,

&
i
t
_
n
[
l
]
)
,

N
_
I
T
E
M
(
&
m
i
_
n
L
l
]
,

5
,

0
x
3
7
,

&
i
t
_
n
[
2
]
)
,

N
_
I
T
E
M
(
&
m
i
_
n
[
2
]
,

-
5
,

0
x
3
b
,

&
i
t
_
n
[
3
]
)
,

.
cr

c
c

c
c

c
d.

c
c

N
_
I
T
E
M
(
&
m
i
_
n
[
3
]
,

-
1
5
,

0
x
3
d
,

&
i
t
_
n
[
4
]
)
,

N
_
I
T
E
M
(
&
m
i
_
n
[
4
]
,

-
2
5
,

0
x
3
e
,

&
i
t
_
n
[
5
]
)

C
O

c
o

v
o

#
d
e
f
i
n
e

S
_
I
T
E
M
(
n
e
x
t
,

t
o
p
,

f
l
a
g
s
,

t
e
x
t
,

s
u
b
m
e
n
u
)

\
{
n
e
x
t
,

0
,

t
o
p
,

S
C
R
E
E
N
_
W
I
D
T
H
,

1
0
,

f
l
a
g
s
I
I
T
E
M
T
E
X
T
I
I
T
E
M
E
N
A
B
L
E
D
I

\
H
I
G
H
C
O
M
P
,

N
U
L
L
,

(
A
P
T
R
)
t
e
x
t
,

N
U
L
L
,

s
u
b
m
e
n
u

}

s
t
a
t
i
c

s
t
r
u
c
t

M
e
n
u
l
t
e
m

m
i
_
c
o
l
o
r
s

=
S
_
_
I
T
E
M
(
N
U
L
L
,

2
0
,

N
U
L
L
,

&
i
t
_
_
c
o
l
o
r
s
,

N
U
L
L
)
,

m
i
^
l
a
c
e

=
S
_
I
T
E
M
(
&
m
i
_
c
o
l
o
r
s
,

1
0
,

C
H
E
C
K
I
T
,

&
i
t
_
l
a
c
e
,

N
U
L
L
)
,

m
i
j
i
i
r
e
s

=
S
_
I
T
E
M
(
&
m
i
_
l
a
c
e
,

0
,

C
H
E
C
K
I
T
,

&
i
t
_
h
i
r
e
s
,

N
U
L
L
)
;

#
d
e
f
i
n
e

P
_
I
T
E
M
(
n
e
x
t
,

t
o
p
,

f
l
a
g
s
,

t
e
x
t
,

c
m
d
)

\

{
n
e
x
t
,

0
,

t
o
p
,

P
R
O
J
E
C
T
_
W
I
D
T
H
,

1
0
,

f
l
a
g
s
I
I
T
E
M
T
E
X
T
I

\
C
O
M
M
S
E
Q
I
I
T
E
M
E
N
A
B
L
E
D
I
H
I
G
H
C
O
M
P
,

N
U
L
L
,

(
A
P
T
R
)
t
e
x
t
,

N
U
L
L
,

c
m
d
,

N
U
L
L

}

s
t
a
t
i
c

s
t
r
u
c
t

M
e
n
u
l
t
e
m

m
i
_
q
u
i
t

=
P
_
I
T
E
M
(
N
U
L
L
,

2
0
,

N
U
L
L
,

&
i
t
_
q
u
i
t
,

'
Q
'
)
,

m
i
_
r
e
s
t
a
r
t

=
P
_
I
T
E
M
(
&
m
i
_
q
u
i
t
,

0
,

N
U
L
L
,

&
i
t
_
_
r
e
s
t
a
r
t
,

'
R
'
)
,

m
i
^
p
a
u
s
e

=
P
_
I
T
E
M
(
&
m
i
_
_
r
e
s
t
a
r
t
,

1
0
,

C
H
E
C
K
I
T
,

&
i
t
_
p
a
u
s
e
,

'
P
1
)
;

s
t
a
t
i
c

s
t
r
u
c
t

M
e
n
u

s
c
r
e
e
n
_
m

=
{

N
U
L
L
,

/
*

N
e
x
t
M
e
n
u

*
/

P
R
O
J
E
C
T
_
W
I
D
T
H
+
1
,
0
,
S
C
R
E
E
N
_
_
W
I
D
T
H
,
0
,

/
*

L
e
f
t
,
T
o
p
,
W
i
d
t
h
,
H
e
i
g
h
t

*
/

M
E
N
U
E
N
A
B
L
E
D
,

/
*

F
l
a
g
s

*
/

"
S
c
r
e
e
n
"
,

/
*

M
e
n
u
N
a
m
e

*
/

&
m
i
_
h
i
r
e
s

/
*

F
i
r
s
t
l
t
e
m

(
s
e
t

i
n

b
o
d
y

o
f

f
u
n
c
t
i
o
n
)

*
/

}
,

p
r
o
j
e
c
t
^
j
m

=
{

&
s
c
r
e
e
n
_
m
,

1
,

0
,

P
R
O
J
E
C
T
_
W
I
D
T
H
,

0
,

M
E
N
U
E
N
A
B
L
E
D

,
"
P
r
o
j
e
c
t
"
,

f
c
m
i
j
p
a
u
s
e

Q

i
n
t

i
;

£
T I

*
N
o
t
e

t
h
a
t

w
e

h
a
v
e

t
o

r
e
s
e
t

m
a
n
y

o
f

t
h
e

f
l
a
g
s

i
n

t
h
e

b
o
d
y

o
f

■

*
t
h
e

c
o
d
e

s
o

t
h
a
t

w
h
e
n

w
e

r
e
s
t
o
r
e

(
l
o
a
d
)

t
h
e

s
t
a
t
i
c
a
l
l
y

a
l
l
o
c
a
t
e
d

*
f
l
a
g
s

w
i
l
l

t
a
k
e

o
n

t
h
e

c
o
r
r
e
c
t

v
a
l
u
e
s
.

*
/

m
i
_
c
o
l
o
r
s
.
S
u
b
I
t
e
m

=
&
m
i
_
_
n
[
5
]
;

f
o
r

(
i

=
0
;

i
<

6
;

i
+
+
)

{

m
i
_
_
n
[
i
]
.
F
l
a
g
s

&
=

"
C
H
E
C
K
E
D
;

m
i
_
n
[
i
]
.
F
l
a
g
s

1
=

I
T
E
M
E
N
A
B
L
E
D
;

m
i
_
n
[
6

-
b
i
t
_
j
>
l
a
n
e
s
]
.
F
l
a
g
s

|
=

C
H
E
C
K
E
D
;

m
i
_
l
a
c
e
.
F
l
a
g
s
=
m
i
_
_
h
i
r
e
s
.
F
l
a
g
s
=
I
T
E
M
T
E
X
T
I
I
T
E
M
E
N
A
B
L
E
D
I
C
H
E
C
K
I
T
I
H
I
G
H
C
O
M
P

;

m
i
_
h
i
r
e
s
.
M
u
t
u
a
l
E
x
c
l
u
d
e

=
m
i

l
a
c
e
.
M
u
t
u
a
l
E
x
c
l
u
d
e

=
N
U
L
L
;

i
f

(
w

=
=

2
)

{

m
i
_
_
n
[
0
]
.
F
l
a
g
s

&
=

"
I
T
E
M
E
N
A
B
L
E
D
;

m
i
_
n
[
l
]
.
F
l
a
g
s

&
=

"
I
T
E
M
E
N
A
B
L
E
D
;

m
i
_
_
h
i
r
e
s
.
F
l
a
g
s

|
=

C
H
E
C
K
E
D
;

m
i
_
_
h
i
r
e
s
.
M
u
t
u
a
l
E
x
c
l
u
d
e

=
(
1

<
<

H
I
R
E
S
J
M
)
;

i
f

(
H
=
=

2
)

{

m
i
_
l
a
c
e
.
F
l
a
g
s

|
=

C
H
E
C
K
E
D
;

m
i
_
_
l
a
c
e
.
M
u
t
u
a
l
E
x
c
l
u
d
e

=
(
1

<
<

L
A
C
E
_
M
)

;

i
f

(
b
i
t
_
j
p
l
a
n
e
s

>
4
)

m
i
_
h
i
r
e
s
.
F
l
a
g
s

&
=

"
I
T
E
M
E
N
A
B
L
E
D
;

S
e
t
M
e
n
u
S
t
r
i
p
(
m
_
_
w
i
n
d
o
w
#

m
e
n
u
_
s
t
r
i
p

=
&
p
r
o
j
e
c
t

m
)
;

c
n

c
l

c
c

[i
\z

c
c

M
I
S
C
E
L
L
A
N
E
O
U
S

F
U
N
C
T
I
O
N
S

v
o
i
d

c
o
m
p
u
t
e

c
o
n
t
o
u
r
(
)

I
i
n
t

i
n
t
e
r
v
a
l
,

i
,

c
o
l
o
r
,

j
;

i
n
t

c
o
l
o
r
s

=
(
1

<
<

b
i
t
_
p
l
a
n
e
s
)
;

d
o
_
c
o
n
t
o
u
r

=
F
A
L
S
E
;

f
o
r

(
i

=
i
n
t
e
r
v
a
l
=
1
;

;
i
n
t
e
r
v
a
l

+
=

2
)

f
o
r

(
c
o
l
o
r
=
1
;

c
o
l
o
r

<
c
o
l
o
r
s
;

+
+
c
o
l
o
r
)

f
o
r

(
j

=
i
n
t
e
r
v
a
l
;

j
;
—
j
,

+
+
i
)

i
f

(
i

<
M
A
X
_
C
O
U
N
T
)

s
c
a
l
e
[
i
]

=
c
o
l
o
r
;

e
l
s
e

r
e
t
u
r
n
;

v
o
i
d

s
a
v
e
_
s
c
r
e
e
n
(
)

i
n
t

i
,
j
;

F
I
L
E

*
f
d
;

#
d
e
f
i
n
e

P
U
T
W
(
w
)

{
p
u
t
c
(
(
w

>
>

8
)

&
B
Y
T
E
M
A
S
K
,

f
d
)
;

p
u
t
c
(
w

&
B
Y
T
E
M
A
S
K
,

f
d
)
;

}
Q

i
f

(
(
f
d

=
f
o
p
e
n
(
f
i
l
e
n
a
m
e
,
V
)
)

=
=

N
U
L
L
)

{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
c
a
n
'
t

o
p
e
n

%
s
\
n
"
,

f
i
l
e
n
a
m
e
)
;

D
i
s
p
l
a
y
B
e
e
p
(
s
c
r
e
e
n
)
;

r
e
t
u
r
n
;

^

P
U
T
W
(
m
_
w
i
n
d
o
w
-
>
W
i
d
t
h
)
;

/*
s
a
v
e

t
h
e

c
r
u
c
i
a
l

p
a
r
a
m
e
t
e
r
s

*/
B#

P
U
T
W
(
m
_
w
i
n
d
o
w
-
>
H
e
i
g
h
t
)
;

/
*

t
h
e
s
e

a
r
e

s
a
v
e
d

a
s

S
H
O
R
T
s

*
/

p
u
t
c
(
W
,

f
d
)
;

£
p
u
t
c
(
H
,

f
d
)
;

^
p
u
t
c
(
b
i
t
_
j
?
l
a
n
e
s
,

f
d
)
;

f
o
r

(
i

=
b
o
t
t
o
m
;

i
>

t
o
p
;

i
—
)

f
o
r

(
j

=
l
e
f
t
;

j
<

r
i
g
h
t
;

j
+
+
)

^
p
u
t
c
(
0
x
f
f

&
R
e
a
d
P
i
x
e
l
(
m
_
w
i
n
d
o
w
-
>
R
P
o
r
t
,

j
#

i
)
,

f
d
)
;

CD

i
f

(
f
e
r
r
o
r
(
f
d
)
)

{
*

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
e
r
r
o
r

s
a
v
i
n
g

f
i
l
e
\
n
"
)
;

^

D
i
s
p
l
a
y
B
e
e
p
(
s
c
r
e
e
n
)
;

f
c
l
o
s
e
(
f
d
)
;

v
o
i
d

l
o
a
d
_
s
c
r
e
e
n
(
)

I
F
I
L
E

*
f
d
;

i
n
t

i
,

j
;

i
n
t

w
i
d
t
h
,

h
e
i
g
h
t
;

#
d
e
f
i
n
e

G
E
T
W
(
w
)

t
w

=
g
e
t
c
(
f
d
)

<
<

8
;

w
+
=

g
e
t
c
(
f
d
)
;

}

i
f

(
(
f
d

=
f
o
p
e
n
(
f
i
l
e
n
a
m
e
,

"
r
"
)
)

=
=

N
U
L
L
)

{
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
c
a
n
'
t

o
p
e
n

%
s

f
o
r

r
e
a
d
\
n
"
,

f
i
l
e
n
a
m
e
)
;

D
i
s
p
l
a
y
B
e
e
p
(
s
c
r
e
e
n
)
;

r
e
t
u
r
n
;

G
E
T
W
(
w
i
d
t
h
)
;

/
*

r
e
t
r
i
e
v
e

t
h
e

k
e
y

p
a
r
a
m
e
t
e
r
s

*
/

G
E
T
W
(
h
e
i
g
h
t
)
;

W
=

g
e
t
c
(
f
d
)
;

H
=

g
e
t
c
(
f
d
)
;

b
i
t
_
j
?
l
a
n
e
s

=
g
e
t
c
(
f
d
)
;

c
l
o
s
e
_
w
i
n
d
o
w
s
(
)
;

/
*

i
m
i
t
a
t
e

a
h
a
r
d

r
e
s
e
t

*
/

o
p
e
n
_
_
w
i
n
d
o
w
s
(
w
i
d
t
h
,

h
e
i
g
h
t
)
;

c
c

c
r:

c
c

c
c

c
c

c
a
l
c
u
l
a
t
e
_
_
e
d
g
e
s
(
)

;

f
o
r

(
i

=
b
o
t
t
o
m
;

i
>

t
o
p
;

i
—
)

f
o
r

(
j

=
l
e
f
t
;

j
<

r
i
g
h
t
;

j
+
+
)

{
S
e
t
A
P
e
n
(
m
_
w
i
n
d
o
w
-
>
R
P
o
r
t
,

g
e
t
c
(
f
d
)
)
;

W
r
i
t
e
P
i
x
e
l
(
m
_
w
i
n
d
o
w
-
>
R
P
o
r
t
,

j
,

i
)
;

f
c
l
o
s
e
(
f
d
)
;

d
o
—
c
o
n
t
o
u
r

=
T
R
U
E
;

/
*

w
e
'
l
l

n
e
e
d

t
o

r
e
c
o
n
t
o
u
r

i
f

w
e

r
e
s
t
a
r
t

*
/

r
e
s
e
t
=
3
;

/
*

j
u
m
p

t
o

F
O
R
E
V
E
R

l
o
o
p

w
h
e
n

w
e

r
e
t
u
r
n

*
/

v
o
i
d

c
l
o
s
e
_
w
i
n
d
o
w
s
(
)

i
f

(
m
e
n
u
_
s
t
r
i
p
)

C
l
e
a
r
M
e
n
u
S
t
r
i
p
(
m
j
v
i
n
d
o
w
)
;

i
f

(
g
_
w
i
n
d
o
w
)

C
l
o
s
e
W
i
n
d
o
w
(
g
_
w
i
n
d
o
w
)
;

i
f

(
m
_
_
w
i
n
d
o
w
)

C
l
o
s
e
W
i
n
d
o
w
(
m
_
w
i
n
d
o
w
)
;

i
f

(
s
c
r
e
e
n
)

C
l
o
s
e
S
c
r
e
e
n
(
s
c
r
e
e
n
)
;

I
N
I
T
I
A
L
I
Z
E

A
N
D

E
X
I
T

C
O
D
E

Q
v
o
i
d

o
p
e
n
_
l
i
b
r
a
r
i
e
s
(
)

1
S

i
f

(
(
M
a
t
h
B
a
s
e

=
O
p
e
n
L
i
b
r
a
r
y
(
"
m
a
t
h
f
f
p
.
l
i
b
r
a
r
y
"
,

0
)
)

=
=

N
U
L
L
)

—

d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n

m
a
t
h

f
f
p

l
i
b
r
a
r
y
"
)
;

i
f

(
(
M
a
t
h
T
r
a
n
s
B
a
s
e

=
O
p
e
n
L
i
b
r
a
r
y
(
"
m
a
t
h
t
r
a
n
s
.
l
i
b
r
a
r
y
"
,

0
)
)

=
=

N
U
L
L
)

8
d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n

m
a
t
h

t
r
a
n
s
c
e
n
d
e
n
t
a
l

l
i
b
r
a
r
y
"
)
;

2
i
f

(
(
I
n
t
u
i
t
i
o
n
B
a
s
e

=
(
s
t
r
u
c
t

I
n
t
u
i
t
i
o
n
B
a
s
e

*)
"

O
p
e
n
L
i
b
r
a
r
y
(
"
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
"
f
0
)
)

=
=

N
U
L
L
)

d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n

i
n
t
u
i
t
i
o
n

l
i
b
r
a
r
y
"
)
;

co
i
f

(
(
G
f
x
B
a
s
e

=
(
s
t
r
u
c
t

G
f
x
B
a
s
e

*
)

£
O
p
e
n
L
i
b
r
a
r
y
(
"
g
r
a
p
h
i
c
s
.
l
i
b
r
a
r
y
"
,
0
)
)

=
=

N
U
L
L
)

d
o
n
e
(
"
c
o
u
l
d
n
'
t

o
p
e
n

g
r
a
p
h
i
c
s

l
i
b
r
a
r
y
"
)
;

v
o
i
d

d
o
n
e
(
s
)

{
c
l
o
s
e
_
w
i
n
d
o
w
s
(
)
;

i
f

(
G
f
x
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
G
f
x
B
a
s
e
)
;

i
f

(
I
n
t
u
i
t
i
o
n
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
I
n
t
u
i
t
i
o
n
B
a
s
e
)
;

i
f

(
M
a
t
h
T
r
a
n
s
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
M
a
t
h
T
r
a
n
s
B
a
s
e
)
;

i
f

(
M
a
t
h
B
a
s
e
)

C
l
o
s
e
L
i
b
r
a
r
y
(
M
a
t
h
B
a
s
e
)
;

i
f

(
s
)

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
m
a
n
d
e
l
b
r
o
t
:

%
s
\
n
"
#

s
)
;

e
x
i
t

(
s
=
=
N
U
L
L

?
0

:
1
)
;

}

Q I (
D

c
c

c
c

c
c

tr
c

D

O

D

O

a

o

□

a

o

n

Machine Language
Tim Victor

a;
number of different devices cooperate to run the Amiga

personal computer. For instance, a 6500 microprocessor

i is used just to read the keyboard; the graphics

coprocessor is another complete, if rudimentary, micro

processor. Other peripheral devices also have their own intelli

gent controllers. But the most powerful device is the central

processing unit (CPU), a Motorola 68000 microprocessor,

which controls everything else in the computer. Although low-

priced computers have only recently begun featuring this

processor, it has been available since 1979, and was the most

powerful available microprocessor for several years. Its per

formance has since been surpassed by several devices—includ

ing more recent offerings from Motorola—but the 68000 is

still an extremely capable processor. The machines that use it

are among the most powerful personal computers ever offered.

You can write Amiga programs in a number of languages,

including Amiga BASIC, C, Pascal, Modula-2, and assembly

language. But the 68000 can only execute programs which are

stored as raw numbers in memory chips. To get from

programming languages—which use words, numbers, and

alphanumeric symbols for human convenience—to machine

language, the 68000's native tongue, requires a translator.

Most often, the 68000 performs this translation itself by

executing a machine language program designed for the pur

pose. Amiga BASIC, for instance, is an interpreted language;

the computer translates each BASIC statement into machine

j—*£ code while the BASIC program is running. Other languages (C

is one) are translated before execution in a separate process

called compilation. The end product in both cases is a series of

I""*J 68000 opcodes which the 68000 can execute directly.

68000 Overview

p—; Why program in machine language? In theory, at least, all

1 -■-* computing languages are functionally equivalent: If a program
can be written in one language, it can be written in any other

<■—j language. If that's true, why learn how to program at the ma-

-) chine level? Perhaps the primary reason is efficiency. A pro

gram that works well in machine language may be unacceptably

H 347

Chapter 8 '—'

LJ

slow when written in a higher-level language. Every high- . .

level language includes some inefficiency, or overhead, com- I {
pared to well-written machine language. The amount of

overhead depends on several factors (which language is used, , ,

the efficiency of the compiler or interpreter, the cleverness of I |
the programmer, and so on), but it's always present. In the

highly competitive commercial program market, the penalties .

in speed and program size that result from high-level I j
programming can't be ignored. As a general rule, the more

speed-crifical the task, the more you stand to gain by

programming in machine language.

Machine language also offers the ultimate in flexibility

and control. High-level languages (particularly Amiga BASIC)

have certain built-in constraints that may be inconvenient or

impossible to circumvent in some cases. When you can control

the processor directly, the only limits are those imposed by

the machine itself. Apart from practical considerations, some

programmers enjoy the feeling of being in complete control of

the computer—for the same reasons that other people like to

grow their own vegetables or repair their own cars.

Besides, 68000 machine language isn't particularly hard to

learn. If you learned ML programming on a simpler micro

processor like the 6502, the 68000's extensive instruction set may

seem almost like a high-level language. Many high-level opera

tions can be performed with just one or two 68000 instructions.

68000 registers. In order to write effective machine lan

guage programs, you must understand a few facts about the

68000 microprocessor's internal structure. The 68000 chip con

tains 17 data storage locations, called registers (see Figure 8-1).

Sixteen of the 17 onboard registers can be accessed at any

given time. Each register can hold a four-byte (32-bit) number,

called a long word. The 68000 can move data from one register [^J
to another, from a memory location to a register, from a reg

ister to memory, or from one memory location to another.]

Most arithmetic and logical operations require that you put j ,

one of the necessary operands in a register. The 68000 can

also interpret the contents of a register as a memory address

and access the memory location specified by a register. j I
The 68000's internal registers are divided into two

groups—address registers and data registers. Each register in a ,

group is numbered 0-7: The data registers are numbered I >
D0-D7 and the address registers are numbered A0-A7. How-

348 LJ

n
Machine Language

n

n

Figure 8-1. 68000 Registers

31 16 15

31 16 15

Data

Registers

Address

Registers

H

H

n

15

Program Counter

* Register A7 ordinarily serves as a stack pointer.

Status Register

ever, the seventh address register (A7) is special. Register A7

serves as the stack pointer, which points to an area of memory

where certain opcodes and addressing modes store and re

trieve data. The microprocessor's stack can be located at any

even-numbered (word-aligned) memory address.

349

Chapter 8 . '—'

u

The 68000 actually maintains two different stack pointers, , ,

one for each of two operating modes. When the micro- I !
processor is in user mode, operations on register A7 refer to the

user stack pointer. In supervisor mode, register A7 is actually ,

the supervisor stack pointer. This explains how two groups of \ 1
8 registers can contain 17 registers. Since the Amiga operates

in user mode most of the time, this point isn't too critical. k >

One of the most distinctive features of 68000 register Lj
usage is its generality. Though the registers are divided into a

data group and an address group, most operations can be per

formed on either type of register. There are even addressing

modes which use the contents of a data register as an address.

This is understandable, since data and addresses have very

similar forms, but each group of registers is better suited to its

own purpose.

Data types. Although each internal 68000 register can

hold 32 bits (a long word) of data, the processor can also han

dle data in units of 8-bit bytes or 16-bit words. For instance,

the instruction MOVE.W 10000,D0 loads register DO with the

16-bit value contained in memory locations 10000 and 10001.

In this case, location 10000 contains the more significant byte

of the value, and 10001 contains the less significant byte.

(Note that this high-byte/low-byte order is the reverse of how

most microprocessors handle addresses. Another significant

difference involves the MOVE instruction, which stores the

value from the left operand into the right operand. For in

stance, the instruction MOVE.W 10000,D0 moves the left op

erand value—the contents of locations 10000-10001—into the

destination expressed by the right operand—the internal reg

ister DO. Equivalent instructions on many other computers

work in the opposite direction.) y >

To take another example, the instruction ADD.L (A0),D0 t—>

uses the contents of A0 to define a memory address, then

adds the contents of the four bytes beginning at that address \ ,

to the long word contained in data register 0 (DO). The result I S
goes in DO. The bytes that make up the long word are also

stored in order of decreasing significance (the high bytes come , >

before the lower bytes). I ;
Any opcode that ends in .W signals a word-length opera

tion, while the suffix .L denotes a long-word operation, and .B , >

signals a byte-length operation. For instance, the instruction L_,

350

Machine Language

O MOVE.B D0,$22223 stores the lowest byte of register DO in

'-- memory location $22223 (the dollar sign before the number

indicates that it's expressed in hexadecimal, or base 16 notation).

P-j You can use byte-length operations to access any byte in

'—^ memory, but the same is not true of word-length or long-word-
length operations. When the 68000 handles any value longer

pi than a byte, its operands must be located in even-numbered

'--■] memory locations; this arrangement is called word alignment.
Note that long-word (32-bit) operands must be word-aligned,

but need not be Zong-word-aligned in memory (the address

must be divisible by 2, but need not be divisible by 4).

Amiga's macro assembler. The Amiga developer's pack

age includes a 68000 macro assembler program named Assem.

Like other machine language programs, Assem is called by

entering its name from the AmigaDOS Command Line Inter

preter (CLI) prompt. After the program name, you would or

dinarily supply the name of a text file containing the source

code for the program you want to assemble. To indicate that

you want to generate object code, the command should also

include the option flag -o followed by the name you want to

call the resulting object file. Consider this example:

assem program.s -o program.o

This command tells the macro assembler to assemble the con

tents of the source code file called program.s and store the

resulting object code in a new file called program.o.

The Amiga assembler accepts source files written in stan

dard 68000 assembly language format. A program line can

have up to four components: a label, an opcode, a list of

operands, and a comment (very few lines actually contain all

<_-) four). Since the assembler distinguishes one component from

| | another chiefly by its position on a line, these are usually

~~ called fields. Let's look at each field in turn.

Label field. A label is an alphanumeric symbol associated

j [with some value. When a label falls at the beginning of a pro-
'^ gram line, it is given the address of that instruction. Since an

^ Amiga machine language program is usually written without

• j knowing where in memory it will eventually execute, a label is

usually relocatable*. It is assigned the difference between the

address of the instruction that follows and the address of the

f"""| start of the program. No matter where the program eventually
resides when it runs, this offset will be the same. Later, when

n

Chapter 8

u

the computer loads the program into RAM, it replaces re- I /

locatable values with actual addresses. >—'
You can also use the EQU assembler directive to create

absolute labels that represent important numbers and sizes of j ;

data structures. These will not be altered when the program *—>

loads. The result of a subtraction operation on two relocatable

labels is an absolute value. I /

The Amiga assembler interprets any symbol that starts in (—1
the first (leftmost) column of a program line as a label. A sym

bol that begins in any other column will be treated as a label

only if it ends with a colon (:). Labels can contain up to 30

characters, including uppercase and lowercase letters, numer

als, underscores (_), and periods(.). However, the first charac

ter in a label can't be a numeral. The assembler distinguishes

between uppercase and lowercase letters, and doesn't permit

duplicate labels (once a value has been assigned to a label, the

same label can't be reassigned in that program).

Opcode field. The second field in a line of assembler

source code contains the opcode. This field should be pre

ceded by at least one space or tab character to signal that it's

not a label, even if the line has no label. The opcode is usually

a mnemonic—the symbolic name for an actual 68000 instruc

tion—but it can also be a pseudo-op, or assembler directive. A

pseudo-op has the same format as a machine language opcode,

but instead of creating an ML instruction, it tells the assembler

to perform a certain job at assembly time. For instance, the DC

(Define Constant) pseudo-op tells the assembler to create data

rather than an ML instruction. Like a real 68000 instruction,

DC includes a size indicator to signal whether the data should

take the form of bytes (.B), words (.W), or long words (.L).

Here's a typical use: I >

dew 1000 *—'
This statement tells the assembler to generate a word (two

bytes) of data representing the value 1000. The DC pseudo-op j j
lets you insert numeric constants or strings into the object

code and is equivalent to an initialized variable in a high-level

language. If you include several data items after DC, separated j^J
by commas, the assembler creates an array of items of the

specified size. If you supply a quoted string after DC.B, the

assembler creates a string. For instance, this statement gen- j >

erates the string Hello, world followed by a carriage return and

a linefeed character:

352 U

n
Machine Language

j i

n
deb 'Hello, world',13,10

The DS pseudo-op creates uninitialized data areas. It is

followed by a single number or absolute label that shows how

jj many items of a particular size the data area should hold. For
instance, DS.W 1 reserves 2 bytes, enough room for one word

of data; DS.B 4 generates a 4-byte data area; and DS.L 100

P""j makes room for 100 long words (400 bytes) of data.
The EQU pseudo-op can assign any value to a label. For

example, the following line creates an absolute label named

Dozen and assigns it the value of 12:

Dozen EQU 12

Another important pseudo-op is XREF. This directive tells

the assembler that the following label will be used, but not de

fined in this program. When the label is used, the assembler

will attach a note to the object code file indicating that an ex

ternal reference needs to be resolved later on. It is the pro

grammer's job to provide another file which contains a value

for this label. This is done in the second stage of assembly,

when you link the object code to whatever external modules it

needs in order to work.

Operand field. In the third field of a program line, after an

opcode or pseudo-op, the assembler expects to find an operand

(or, in many cases, two operands) for the instruction. The

operands can be registers, memory locations, numerical values,

or combinations of several different items. For instance, in the

line MOVE.W 10000,D0, the operand field consists of two

operands: a memory location (10000) and a register (DO). The

68000 permits 12 different addressing modes, but only a few

instructions can use all 12 modes. In many cases, labels are

(—\ substituted for memory locations or numeric values. When it

1 \ finds a label in the operand field, the assembler replaces the
label with the value which you previously defined. For in-

r—-, stance, if your program begins with the line BIGNUM EQU

I ! 10000, then the line MOVE.W BIGNUM,D0 produces the
same code as MOVE.W 10000,D0.

— Comment field. Comments can be included at any point in

t \ a program; they are signaled by a semicolon (;) or an asterisk

(*). The assembler ignores everything to the right of a semi-

<—_ colon, regardless of its line position. If a line begins with an

) (asterisk, the entire line is treated as a remark. A completely
blank line is also treated as a comment.

l> 353

u
Chapter 8

u

Linking machine language modules. Turning a machine j (•

language source program into executable object code is or- '—'
dinarily a two-stage process. The first step—assembly—pro

duces an object code file, but that code is not quite ready to be j (

executed. The second step—called linking—permits one or s—'

more separate object files to be combined into a single, execut

able parcel of object code. The Amiga developer's package in- j ?

eludes a program called Alink, which does just this. '—^
Why is linking necessary? The small programs in this

chapter don't need anything more in the way of code, but

they do need more information. When an Amiga ML program

calls a built-in system routine (which may be part of

AmigaDOS, Intuition, or some other system library), it knows

only the name of the routine. To translate the symbolic name

of the routine into a numeric value requires an external ref

erence to a value defined in another object file. The linker

looks for the tags that the macro assembler attached to its out

put file. For each external symbol which needs to be defined,

the linker tries to find a matching symbol which was defined

in another file. (Don't worry if that sounds confusing. We'll

explain more about linking later on, when we examine the

sample programs.)

A single file named AMIGA.LIB contains definitions for

all the Amiga's system routines. In this library, the linker can

find values to replace the external labels that we used. For in

stance, the following command links a file called program.o to

the objects that it needs, producing an executable file called

program:

alink program.o to program library lib/amiga.lib

Because AMIGA.LIB is ordinarily found in the LIB sub

directory of the assembler disk, we must refer to it as] j
LIB/AMIGA.LIB.

A useful shortcut. Here's a handy command file that lets

you perform both stages of the assembly by issuing a single)\
command from the CLI prompt. Enter and save it as an or

dinary text file, using the system editor ED or any other text

editor. We've named the file MAKE; of course, you can call it] \
anything you like.

u

354 LJ

R
Machine Language

H ~

n.key file/a
c/assem <file>.s -o <file>.o -i include -c W200000

if NOT WARN

r c/alink <file>.o TO <file> LIBRARY lib/amiga.lib

jI endif

The MAKE command file expects your source code's filename

pT to end with an .S suffix. If no errors occur during assembly

' and linking, it produces an executable program in a file of the
same name, but without any suffix (the first stage of the

assembly also produces an intermediate file ending with the

suffix .O). For instance, let's assume you have a source file

named PROGRAM.S and have created this command file

using the filename MAKE:. Entering the following command

at the CLI will produce an executable object file named

PROGRAM:

execute make program

Programming Fundamentals

Before you can write elaborate machine language applications,

you'll need to know how to do fundamental tasks like printing

messages on the screen, receiving input from the person who

uses your program, and so on. The example programs in this

section illustrate typical solutions to a few such problems.

More important, they demonstrate how your own applications

can access the multitude of native software routines (usually

called libraries) contained in the Amiga system. For all but the

most rudimentary applications, using system libraries is an ab

solute necessity. The final example in this section introduces

the use of macro directives, an advanced assembler feature.

p—* Simple text output. Program 8-1 prints a short message

to the screen. Enter the program as listed (use ED or another

text editor that produces a plain ASCII text file without any

[—? control codes or formatting characters), then assemble it with

^ the MAKBt command file shown above.

n

355

C
O

O
N

P
r
o
g
r
a
m

8
-
1
.
H
e
l
l
o

*
P
r
o
g
r
a
m
l
:

p
r
i
n
t
m
e
s
s
a
g
e

o
n

c
o
n
s
o
l
e

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

A
b
s
E
x
e
c
B
a
s
e

;
b
a
s
e

a
d
d
r
e
s
s

f
o
r

e
x
e
c

l
i
b
r
a
r
y

L
V
O
O
p
e
n
L
i
b
r
a
r
y

;
e
x
e
c

f
u
n
c
t
i
o
n

t
o

o
p
e
n

a
l
i
b
r
a
r
y

i 0
0

L
V
O
O
u
t
p
u
t

L
V
O
W
r
i
t
e

;
D
O
S

f
u
n
c
t
i
o
n
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

D
O
S

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

;
f
i
n
d

e
x
e
c

l
i
b
r
a
r
y

m
o
v
e
.
l

#
D
O
S
_
_
N
a
m
e
,
a
l

;
p
a
s
s

s
t
r
i
n
g

c
o
n
t
a
i
n
i
n
g

n
a
m
e

c
l
r
.
l

d
0

;
e
x
p
e
c
t

a
n
y

v
e
r
s
i
o
n

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
l

d
0
,
a
6

t
s
t
.
l

d
0

b
e
q

A
b
o
r
t

7
O
K
?

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
i
n
t

t
o

s
t
d
o
u
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

j
s
r

_
_
L
V
O
O
u
t
p
u
t
(
a
6
)

7
g
e
t

a
f
i
l
e

h
a
n
d
l
e
,

a
l
r
e
a
d
y

o
p
e
n

b
e
q

A
b
o
r
t

m
o
v
e
.
l

d
0
,
d
l

7
g
e
t

r
e
a
d
y

t
o
w
r
i
t
e

t
o

i
t

m
o
v
e
.
l

#
T
e
s
t
M
s
g
,
d
2

7
a
d
d
r
e
s
s

o
f

a
s
t
r
i
n
g

m
o
v
e
q
.
l

#
T
M
_
_
L
e
n
,
d
3

7
l
e
n
g
t
h

o
f

s
t
r
i
n
g

j
s
r

_
_
L
V
O
W
r
i
t
e
(
a
6
)

7
p
r
i
n
t

i
t

c

c
c
r

c

D
3

::
■
n
j

3
u

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

l
e
a
v
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A
b
o
r
t
:

c
l
r
.
l

d
i
d

r
t
s

D
O
S
_
N
a
m
e
:

d
c
.
b

'
d
o
s
.
l
i
b
r
a
r
y
'
,
0

T
e
s
t
M
s
g
:

d
c
.
b

'
H
e
l
l
o
,

w
o
r
l
d
1
,
1
3
,
1
0

T
M
_
L
e
n

E
Q
U

*
-
T
e
s
t
M
s
g

E
N
D

E C
D C
D

LJ
Chapter 8

LJ

The source code for Program 8-1 begins with four XREF I (

directives. These identify four values (—AbsExecBase,

-LVOOpenLibrary, -LVOOutput, and _LVOWrite) which

we'll expect the linker to supply. All of these are found in the | f

file named AMIGA.LIB. By design, the Amiga's software sys- "^
tern is infinitely flexible. You can add or remove individual

system program libraries on the fly and load them into mem- j (

ory in any order. Since the location of a library can change

from one minute to the next, your program can't use a fixed

address to refer to a library. Instead, it defines each library en

try with an offset from a reference point called the library base.

Before you can call a routine, you must open a library

with the Exec routine known as OpenLibrary. The Open-

Library routine returns the base address of a particular library.

The only exception to this system is the Exec library itself: The

label _AbsExecBase points to its base address (actually stored

in memory location 4). When the base address of Exec is

known, any other library can be located and opened.

Calling an entry in the newly opened library is fairly

straightforward. First, store the library's base address in ad

dress register A6. Once this is done, the routine is called with

a JSR (Jump to SubRoutine) instruction; the JSR must use ad

dress indirect with displacement addressing mode, which gen

erates the destination address from the contents of A6. For

instance, Program 8-1 contains the following instructions:

move.l _AbsExecBase,a6

jsr _LVOOpenLibrary(a6)

The first instruction puts the base address of Exec in reg

ister A6. The label —LVOOpenLibrary contains the offset of

OpenLibrary from the base address of Exec. The JSR instruc

tion combines the base address with the offset to produce an

actual destination address. By putting the base address in A6,

we also tell OpenLibrary where its current library base is.

Most of the Amiga's library routines expect you to supply

one or more parameters. In Program 8-1, the AmigaDOS rou

tine that displays our message must be told which file to

write, where to find the text data, and how much data there

is. In the Amiga, all this data is passed via the 68000's reg

isters, but we need to know which register gets which piece of

data. Some libraries are consistent in their register usage, but

358

Machine Language

n

[j for most routines it's necessary to refer to the Amiga devel
oper's documentation.

DOS routines always receive parameters in data registers,.

I [with register Dl holding the first parameter. Intuition's library
routines accept parameters in both address and data registers;

. pointers to data structures are passed in the address registers,

j i beginning with AO. The data registers hold single data fields,

beginning with DO. Note that some Intuition functions might

not use one or the other group of registers.

When Program 8-1 opens the AmigaDOS library, it passes

a string containing the name of the library to OpenLibrary in

register Dl. This string, called DOS—Name, is created with a

DC.B directive; the end of the string is marked with a null

terminator (zero byte). A MOVE instruction puts the address of

this string in Dl.

All system routines return a result in register DO. The

same is expected of application programs which run from the

CLI or the Workbench. When Program 8-1 terminates, it clears

DO to indicate a successful execution. The value that

OpenLibrary returns is the base address of the library that has

been opened. If this value is zero, it shows that the library

could not be opened. Program 8-1 tests for this possibility

with a TST.L instruction and branches to Abort if the error

occurs.

Standard console output. A program run from the CLI

can use the CLI's window for its input and output, or it can

open a window of its own. Program 8-1 uses the currently ac

tive window (the default output device) to print its message on

the command line. It calls the AmigaDOS Output routine to

get a pointer to the standard output device—in this case, the

["""j CLI window, which is already open. (Since output can be di
verted from the default output device—the CLI window—to

other devices or entities, the general term file pointer is often

["7 used to describe this pointer.) No arguments are needed for
this call. After transferring the pointer to Dl, the program

loads D2 and D3 with the address and length of the message

|""| to be printed. A call to the AmigaDOS Write routine (with the

AmigaDOS library's base address still in A6) actually prints

the message.

j | The TestMsg string in Program 8-1 is created with a DC.B

directive; notice, however, that this string doesn't end with a

zero. The Write routine can be used to output either text or bi-

rn

1 359

LJ
Chapter 8

u

nary data (which may include zero bytes), so it needs to know II

the length of the string in advance. The expression *—TestMsg

permits us to compute this string's length: The asterisk repre

sents the address of the next byte of object code that the M

assembler will produce. To calculate the length of the string,

we simply subtract the address of the start of the message

from the address represented by *. This value is assigned to j j
the label TMJLen with an EQU directive. —'

Echoing the command line. Program 8-2 prints a mes

sage with the same technique shown in Program 8-1, but it

gets the text of the message from a different source—the com

mand line itself.

When you run a program from the CLI, the system passes

information about the command tail (everything typed on the

command line after the program's name) to your program. The

address of the command tail is put in register AO, the first ad

dress register. Register DO receives the tail's length. Before do

ing anything else, Program 8-2 saves the contents of these two

registers on the stack with a MOVEM.L instruction. It's critical

to preserve these two items of data, since you can't use them

until the AmigaDOS library is open, but the process of open

ing the library disrupts the contents of AO and DO. The op

erand —(SP) pushes the values onto the stack, using register

indirect with predecrement addressing mode: Before it stores

the data, the microprocessor subtracts the length of the data

item from the stack pointer SP (actually register A7). This is

the standard means for accessing a stack in 68000 machine

language. Since any address register (not just SP) can use this

addressing mode, the 68000 can maintain several stacks at the

same time. Keep in mind, however, that A7 is the standard

stack pointer for many operations, including subroutine calls, j I

traps, and interrupts. —

Later in the program, assuming that the AmigaDOS

library can be opened successfully, we retrieve the stored con- I i

tents of A0 and DO from the stack using a MOVEM.L instruc- '—!
tion with register indirect with postincrement addressing. This

addressing mode is signaled by the expression (SP)+. With a j I

pointer to the standard output file in Dl, these registers are '—'
moved to D2 and D3. Finally, we call the Write routine to do

the actual printing. i i

Copying console input to console output. Program 8-3 '—'
shows how to use the standard input device to read data from
the CLI. f I

360 L-1

D
:

g

P
r
o
g
r
a
m

8
-
2
.
C
o
m
m
a
n
d
L
i
n
e
E
c
h
o

*
P
r
o
g
r
a
m
2
z

C
o
m
m
a
n
d

l
i
n
e

e
c
h
o

X
R
E
F

_
A
b
s
E
x
e
c
B
a
s
e

j
b
a
s
e

a
d
d
r
e
s
s

f
o
r

e
x
e
c

l
i
b
r
a
r
y

X
R
E
F

_
J
L
j
V
O
O
p
e
n
L
i
b
r
a
r
y

;
e
x
e
c

f
u
n
c
t
i
o
n

t
o

o
p
e
n

a
l
i
b
r
a
r
y

X
R
E
F

_
L
V
O
O
u
t
p
u
t

X
R
E
F

L
V
O
W
r
i
t
e

;
D
O
S

f
u
n
c
t
i
o
n
s

*
*
*
*
*
*
*
*

p
u
s
h

p
o
i
n
t
e
r
s

t
o

c
o
m
m
a
n
d

l
i
n
e

a
r
g
u
m
e
n
t
s

*
*
*
*
*
*
*
*

m
o
v
e
m
.
l

a
0
/
d
0
,
-
(
S
P
)

;
p
u
s
h

'
e
r
a

*
*
•
*
•
*
•
*
*
*
•
*
*
•
•
*
*
*
*
*

o
p
e
n

D
O
S

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

;
f
i
n
d

e
x
e
c

l
i
b
r
a
r
y

m
o
v
e
.
l

#
D
O
S
_
_
N
a
m
e
,
a
l

;
p
a
s
s

s
t
r
i
n
g

c
o
n
t
a
i
n
i
n
g

n
a
m
e

c
l
r
.
l

d
0

;
e
x
p
e
c
t

a
n
y

v
e
r
s
i
o
n

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
1

d
0
,
a
6

t
s
t
.
l

d
0

b
n
e

D
o
s
O
k

;
0
K
?

m
o
v
e
m
.
l

(
S
P
)
+
,
a
0
/
d
0

;
n
o
:

f
i
x

t
h
e

s
t
a
c
k

a
n
d

q
u
i
t

b
r
a

A
b
o
r
t

D
o
s
O
k
:

*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
i
n
t

c
o
m
m
a
n
d

l
i
n
e

t
o

s
t
d
o
u
t

*
*
*
*
*
*
*
*
*
*
*
*
*

C
D

O
3
O
N

j
s
r

_
L
V
0
0
u
t
p
u
t
(
a
6
)

;
g
e
t

a
f
i
l
e

h
a
n
d
l
e
,

a
l
r
e
a
d
y

o
p
e
n

m
o
v
e
.
l

d
0
,
d
l

;
g
e
t

r
e
a
d
y

t
o
w
r
i
t
e

t
o

i
t

b
e
q

A
b
o
r
t

m
o
v
e
m
.
l

(
S
P
)
+
,
a
0
/
d
0

;
p
o
p

a
d
d
r
e
s
s

a
n
d

l
e
n
g
t
h

m
o
v
e
.
l

a
0
,
d
2

;
a
d
d
r
e
s
s

o
f

a
s
t
r
i
n
g

m
o
v
e
.
l

d
0
#
d
3

;
l
e
n
g
t
h

o
f

s
t
r
i
n
g

j
s
r

_
L
V
0
W
r
i
t
e
(
a
6
)

;
p
r
i
n
t

i
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

l
e
a
v
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A
b
o
r
t
:

c
l
r
.
l

d
0

r
t
s

D
O
S
_
N
a
m
e
:

d
c
.
b

•
d
o
s
.
l
i
b
r
a
r
y
'
,
0

E
N
D

i 0
0

P
r
o
g
r
a
m

8
-
3
.
C
o
p
y
C
o
n
s
o
l
e
I
n
p
u
t
t
o
C
o
n
s
o
l
e
O
u
t
p
u
t

* *
P
r
o
g
r
a
m
3
:

c
o
p
y

c
o
n
s
o
l
e

i
n
p
u
t

t
o

c
o
n
s
o
l
e

o
u
t
p
u
t

*

X
R
E
F

_
A
b
s
E
x
e
c
B
a
s
e

;
b
a
s
e

a
d
d
r
e
s
s

f
o
r

e
x
e
c

l
i
b
r
a
r
y

X
R
E
F

J
L
V
O
O
p
e
n
L
i
b
r
a
r
y

;
e
x
e
c

f
u
n
c
t
i
o
n

t
o

o
p
e
n

a
l
i
b
r
a
r
y

X
R
E
F

_
L
V
O
I
n
p
u
t

X
R
E
F

_
L
V
O
O
u
t
p
u
t

;
D
O
S

f
u
n
c
t
i
o
n
s

c
c

c
c:

c
u:

c:
c

c
c

X
R
E
F

J
L
V
O
R
e
a
d

X
R
E
F

_
L
V
O
W
r
i
t
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

D
O
S

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

7
f
i
n
d

e
x
e
c

l
i
b
r
a
r
y

m
o
v
e
.
l

#
D
O
S
_
_
N
a
m
e
,
a
l

7
p
a
s
s

s
t
r
i
n
g

c
o
n
t
a
i
n
i
n
g

n
a
m
e

c
l
r
.
l

d
0

7
e
x
p
e
c
t

a
n
y

v
e
r
s
i
o
n

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
1

d
0
,
a
6

t
s
t
.
l

d
0

b
e
q

A
b
o
r
t

7
O
K
?

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

r
e
a
d

a
s
t
r
i
n
g

f
r
o
m

c
o
n
s
o
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*

j
s
r

_
J
L
V
O
I
n
p
u
t
(
a
6
)

7
g
e
t

i
n
p
u
t

f
i
l
e

h
a
n
d
l
e
,

a
l
r
e
a
d
y

o
p
e
n

m
o
v
e
.
l

d
0
,
d
l

7
f
i
l
e

h
a
n
d
l
e

b
e
q

A
b
o
r
t

m
o
v
e
.
l

#
M
s
g
B
u
f
f
,
d
2

7
b
u
f
f
e
r

a
d
d
r
e
s
s

m
o
v
e
q
.
l

#
8
0
,
d
3

7
b
u
f
f
e
r

l
e
n
g
t
h

j
s
r

_
_
L
V
0
R
e
a
d
(
a
6
)

7
f
i
l
l

b
u
f
f
e
r

m
o
v
e
.
l

d
0
#
M
s
g
L
e
n

7
s
a
v
e

l
e
n
g
t
h

c
m
p
.
l

#
l
#
d
0

7
a
n
y
t
h
i
n
g

t
h
e
r
e
?

b
m
i

A
b
o
r
t

7
q
u
i
t

i
f

n
o
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
i
n
t

t
o

s
t
d
o
u
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

j
s
r

_
L
V
O
O
u
t
p
u
t
(
a
6
)

7
g
e
t

a
f
i
l
e

h
a
n
d
l
e
,

a
l
r
e
a
d
y

o
p
e
n

m
o
v
e
.
l

d
0
,
d
l

7
g
e
t

r
e
a
d
y

t
o

w
r
i
t
e

t
o

i
t

b
e
q

A
b
o
r
t

1
3 11

w
m
o
v
e
.
l

#
M
s
g
B
u
f
f
,
d
2

;
a
d
d
r
e
s
s

o
f

a
s
t
r
i
n
g

^
m
o
v
e
.
l

M
s
g
L
e
n
,
d
3

;
l
e
n
g
t
h

o
f

s
t
r
i
n
g

j
s
r

_
L
V
O
W
r
i
t
e
(
a
6
)

;
p
r
i
n
t

i
t

»§

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

l
e
a
v
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

® 0
0

A
b
o
r
t
:

c
l
r
.
l

d
0

r
t
s

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

D
O
S
_
N
a
m
e
:

d
c
.
b

'
d
o
s
•
l
i
b
r
a
r
y
'
,
0

S
E
C
T
I
O
N

m
e
m
,
B
S
S

M
s
g
B
u
f
f
:

d
s
.
b

8
0

M
s
g
L
e
n
:

d
s
.
l

1

E
N
D

c
c

c
c

Machine Language

; | The AmigaDOS Input routine returns a pointer to the

standard input device, which is ordinarily the CLI window it-

self. This pointer is transferred to register Dl; the address of

I \ an input buffer goes into D2, and the length of the buffer (80,

in this case) goes in D3. The Read routine gets as many bytes

n as it can until it either reaches the end of the file or fills the

j \ buffer. Since this input is coming from the console device, the

end of the file is signaled by a carriage return at the end of a

line. The CLI uses this same routine to get commands, so nor

mal line editing is available.

The SECTION directives in Program 8-3 divide the pro

gram into sections according to the type of data that each part

contains. Although no SECTION statement precedes the first

part of the program, this segment has the type of CODE by

default. The second section has the type DATA, since it con

tains no program code. The final section, with the BSS (Block

Storage Section) type, contains only uninitialized data fields.

Since the initial values of these fields are unspecified, they

don't need to be included in the object file. Only when the

program is loaded will space be allocated for block storage.

This saves a lot of disk space for programs that handle large

arrays or other data entities.

After you divide a program with SECTION, the different

program segments no longer need to be adjacent—each seg

ment can be loaded anywhere in memory. When would this

be desirable? Frequent allocation and deallocation of memory,

especially in a multitasking environment, can leave the system

with many small, isolated chunks of free memory, a condition

known as fragmentation. In this situation, there might not be

enough contiguous RAM to hold an entire program (or a large

f""} display bitmap, and so on) if the entire program entity has to
be in one place. By loading the different sections into separate

regions of memory (a technique called scatter loading) the

Amiga's memory is used more effectively.

Macro instructions. Program 8-4, which types files on the

console, introduces an assembler feature known as the macro

instruction, for which Amiga's macro assembler is named.

365

O
\

P
r
o
g
r
a
m

8
-
4
.
T
y
p
e
a
F
i
l
e
o
n
t
h
e
C
o
n
s
o
l
e

*
P
r
o
g
r
a
m
4
:

l
i
s
t

f
i
l
e
s

a
s

r
e
q
u
e
s
t
e
d

*

X
R
E
F

_
_
A
b
s
E
x
e
c
B
a
s
e

;
b
a
s
e

a
d
d
r
e
s
s

f
o
r

e
x
e
c

l
i
b
r
a
r
y

X
R
E
F

J
L
V
O
O
p
e
n
L
i
b
r
a
r
y

;
e
x
e
c

f
u
n
c
t
i
o
n

t
o

o
p
e
n

a
l
i
b
r
a
r
y

! CD 0
0

X
R
E
F

J
L
V
O
I
n
p
u
t

X
R
E
F

_
L
V
O
O
u
t
p
u
t

X
R
E
F

_
L
V
O
O
p
e
n

X
R
E
F

_
L
V
O
C
l
o
s
e

X
R
E
F

_
L
V
O
R
e
a
d

X
R
E
F

_
L
V
O
W
r
i
t
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;
D
O
S

f
u
n
c
t
i
o
n
s

a
n
d

w
r
i
t
e

M
A
C
R
O
S

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

W
r
i
t
e
F
i
l
e

M
A
C
R
O

;
F
i
l
e
,
S
t
r
i
n
g
,
L
e
n

m
o
v
e
.
l

\
l
,
d
l

;
f
i
l
e

t
o
w
r
i
t
e

m
o
v
e
.
l

\
2
,
d
2

;
s
t
r
i
n
g

t
o

w
r
i
t
e

m
o
v
e
.
l

\
3
,
d
3

;
n
u
m
b
e
r

o
f

c
h
a
r
s

t
o

w
r
i
t
e

j
s
r

_
L
V
O
W
r
i
t
e
(
a
6
)

;
w
r
i
t
e

'
e
m

E
N
D
M

R
e
a
d
F
i
l
e

M
A
C
R
O

m
o
v
e
.
l

\
l
,
d
l

m
o
v
e
.
l

\
2
,
d
2

m
o
v
e
•
1

j
s
r

E
N
D
M

\
3
#
d
3

_
L
V
O
R
e
a
d
(
a
6
)

;
F
i
l
e
,
B
u
f
f
e
r
f
L
e
n

;
f
i
l
e

t
o

r
e
a
d

j
b
u
f
f
e
r

t
o

f
i
l
l

;
m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

c
h
a
r
s

t
o

r
e
a
d

;
r
e
a
d

'
e
m

c
c

c
c
:

l:
r:

c
\z

c
c

3
~J

3
Zl

Z)
a

O
N

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

D
O
S

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

E
x
i
s
t
i
n
g
:

E
Q
U

1
0
0
5

;
D
O
S

f
i
l
e

m
o
d
e
-

d
o
n
'
t

c
r
e
a
t
e

a
n
e
w

f
i
l
e

m
o
v
e
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

;
f
i
n
d

e
x
e
c

l
i
b
r
a
r
y

m
o
v
e
.
l

#
D
O
S
_
N
a
m
e
,
a
l

;
p
a
s
s

s
t
r
i
n
g

c
o
n
t
a
i
n
i
n
g

n
a
m
e

c
l
r
.
l

d
0

;
e
x
p
e
c
t

a
n
y

v
e
r
s
i
o
n

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
l

d
0
,
a
6

;
a
6

h
o
l
d
s

D
O
S

l
i
b
r
a
r
y

p
o
i
n
t
e
r

f
r
o
m

n
o
w

o
n

t
s
t
.
l

d
0

b
e
q

A
b
o
r
t

;
0
K
?

*
*
*
*
*
*
*
*
*

f
i
n
d

s
t
a
n
d
a
r
d

i
n
p
u
t

a
n
d

o
u
t
p
u
t

f
i
l
e
s

*
*
*
*
*
*
*
*
*
*

j
s
r

_
L
V
0
I
n
p
u
t
(
a
6
)

j
g
e
t

i
n
p
u
t

f
i
l
e

h
a
n
d
l
e
.

a
l
r
e
a
d
y

o
p
e
n

m
o
v
e
.
l

d
0
,
s
t
d
l
n

j
h
a
n
g

o
n

t
o

i
t

b
e
q

A
b
o
r
t

j
s
r

_
_
L
V
O
O
u
t
p
u
t
(
a
6
)

;
g
e
t

o
u
t
p
u
t

f
i
l
e

h
a
n
d
l
e
,

a
l
r
e
a
d
y

o
p
e
n

m
o
v
e
.
l

d
0
#
S
t
d
O
u
t

;
k
e
e
p

i
t

t
o
o

b
e
q

A
b
o
r
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

g
e
t

n
a
m
e

o
f

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

G
e
t
F
N
a
m
e
:

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
F
N
a
m
e
_
_
P
r
o
m
p
t
,
#
P
r
o
m
p
t
_
_
L
e
n

R
e
a
d
F
.
i
l
e

S
t
d
l
n
#
#
M
s
g
B
u
f
f
,
#
8
0

c
m
p
i
.
b

#
3
2
,
M
s
g
B
u
f
f

b
c
s

A
b
o
r
t

;
q
u
i
t

o
n

n
u
l
l

s
t
r
i
n
g

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

t
r
y

t
o

o
p
e
n

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

& C
D

<^
>

m
o
v
e
.
l

#
M
s
g
B
u
f
f
,
a
0

;
n
a
r
n
e

o
f

f
i
l
e

o°
c
l
r
.
b

-
l
(
a
0
,
d
0
.
L
)

;
n
u
l
l

t
e
r
m
i
n
a
t
e

i
t

m
o
v
e
.
l

a
0
,
d
l

m
o
v
e
.
l

#
E
x
i
s
t
i
n
g
,
d
2

;
s
e
t

a
c
c
e
s
s

m
o
d
e

j
s
r

_
_
L
V
0
0
p
e
n
(
a
6
)

;
g
i
v
e

i
t

a
g
o

m
o
v
e
.
l

d
0
,
F
i
l
e
H
a
n
d
l
e

b
n
e

D
i
s
p
l
a
y
_
_
F
i
l
e

;
d
i
d

w
e

g
e
t

o
n
e
?

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
N
o
t
F
o
u
n
d
,
#
N
o
t
F
o
u
n
d
L
e
n

;
e
x
p
r
e
s
s

r
e
g
r
e
t
s

b
r
a

G
e
t
F
N
a
m
e

;
t
r
y

a
g
a
i
n

*
*
*
*
*
*
*
*
*
*
*
*
*

r
e
a
^

s
o
m
e

b
y
t
e
s

f
r
o
m

t
h
e

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*

D
i
s
p
l
a
y
_
F
i
l
e
:

R
e
a
d
F
i
l
e

F
i
l
e
H
a
n
d
l
e
,
#
M
s
g
B
u
f
f
,
#
8
0

;
f
i
l
l

b
u
f
f
e
r

t
s
t
.
l

d
0

b
e
q

E
n
d
_
_
o
f
_
_
F
i
l
e

;
d
o
n
e
?

*
*
*
*
*
*

d
i
s
p
l
a
y

t
h
e
m

o
n

t
h
e

s
t
a
n
d
a
r
d

o
u
t
p
u
t

d
e
v
i
c
e

*
*
*
*
*
*
*

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
M
s
g
B
u
f
f
#
d
0

b
r
a

D
i
s
p
l
a
y
_
_
F
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*

c
l
o
s
e

i
t

n
o
w

t
h
a
t

w
e
'
r
e

d
o
n
e

*
*
*
*
*
*
*
*
*
*
*
*
*

E
n
d
_
o
f
_
F
i
l
e
:

m
o
v
e
.
l

F
i
l
e
H
a
n
d
l
e
,
d
l

j
s
r

_
L
V
0
C
l
o
s
e
(
a
6
)

b
r
a

G
e
t
F
N
a
m
e

;
d
o

a
n
o
t
h
e
r

i o
o

C
CI

C
C

c
c

c
c

c.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

l
e
a
v
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A
b
o
r
t
:

c
l
r
.
l

d
0

r
t
s

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

D
O
S
_
N
a
m
e
:

d
c
.
b

'
d
o
s
.
l
i
b
r
a
r
y
'
,
0

F
N
a
m
e
_
P
r
o
m
p
t
:

d
c
.
b

'
N
a
m
e

o
f

f
i
l
e
:

'

P
r
o
m
p
t
_
_
L
e
n

E
Q
U

*
-
F
N
a
m
e
_
P
r
o
m
p
t

N
o
t
F
o
u
n
d
:

d
c
.
b

'
C
o
u
l
d
n
"
t

f
i
n
d

t
h
a
t

f
i
l
e
.
'
,
1
3
,
1
0

N
o
t
F
o
u
n
d
L
e
n

E
Q
U

*
-
N
o
t
F
o
u
n
d

S
E
C
T
I
O
N

m
e
m
,
B
S
S

M
s
g
L
e
n

d
s
.
1

1

M
s
g
B
u
f
f

d
s
.
b

8
0

;
r
e
a
d

b
u
f
f
e
r

S
t
d
l
n

d
s
.
l

1
;
i
n
p
u
t

f
i
l
e
h
a
n
d
l
e

S
t
d
O
u
t

d
s
.
l

1
;
o
u
t
p
u
t

f
i
l
e

h
a
n
d
l
e

O O
N

F
i
l
e
H
a
n
d
l
e
:

d
s
.
l

1

E
N
D

;
f
i
l
e

t
h
a
t

i
s

b
e
i
n
g

r
e
a
d

C
D i

Chapter 8

u

u

In Program 8-4, the MACRO pseudo-op defines the labels j j

WriteFile and ReadFile as macro instructions. Once you have '—

defined a macro instruction, the assembler replaces any later

occurrence of its name with a predefined block of statements } f

known as the macro body. Everything in the program text be- '—l
tween the MACRO and ENDM pseudo-ops is treated as the

macro body. Within this area, a macro can contain 68000 \ f

opcodes, label definitions, or even calls to other macros. '—'

The symbols /I, /2, and /3 in this program's macros

represent parameters which should follow the name of the

macro when it is called. The comments on the first line of

each macro explain what parameters the macro expects to get.

The macro named WriteFile generates instructions to prepare

the Dl, D2, and D3 registers for a call to the AmigaDOS Write

routine, then generates the JSR instruction that calls the rou

tine. The macro named ReadFile does the same for the Amiga-

DOS Read routine.

Once Program 8-4 has opened the AmigaDOS library and

located the standard Input and Output routines, it uses the

WriteFile macro to print a prompt message. The labels

FName_Prompt and Prompt__Len are preceded by the pound

symbol (#) to generate an immediate addressing mode op

erand. Since the pointer to the standard Output routine is

stored in StdOut, a long-word variable, this operand must use

absolute addressing in order to read the memory location. But

FName_Prompt is actually the pointer to the string to be

printed. This value (not the contents of the memory location it

addresses) should go into D2. Likewise, since the Prompt—Len

label has been assigned the actual length of the string, it

should also be used as an immediate Operand.

After using the ReadFile macro to get a line of input from j f

the console, Program 8-4 tests the first character of the input ^—'
buffer to see if a blank line was entered. If the line is blank, it

terminates. Otherwise, it adds a null terminator to the string \ >

and tries to open a file with this name by calling the {—'

AmigaDOS Open routine. The value Existing tells AmigaDOS

that we expect this file to exist already (and don't want to ere- j >

ate a new file if this one isn't found). If the call to Open sue- '—'
ceeds, we enter a loop beginning at Display_File, which reads

a bufferful of bytes from the file and writes them to the stan- j j

dard output file. When the Read routine returns zero as the *—1
number of bytes read, the program closes the file and jumps

back to GetFName to try to list another file. \ j

370 ^

Machine Language

p"! Translating C Programs into Machine Language
In addition to machine language programming tools, the

Amiga development system includes a compiler for the C lan-

p^ guage. Since C programs are easier to read than machine lan
guage, you'll find that many example programs for the Amiga

are published in C. In most cases, it's not difficult to write an

p7 equivalent machine language program based on the C ex
ample. Since C programs use integer arithmetic to perform

logical and arithmetic operations, you can usually do the same

operation in a single 68000 instruction (though it may be nec

essary to move one operand into a data register first). The re

sult can then be assigned to a variable with a MOVE instruction.

The Amiga software library routines perform operations

on objects like tasks, message ports, messages, windows, and

screens. In the C language these objects are implemented as

structures, which are compound data types composed of any

number of members. Each member (also called a field) can be a

numeric variable, another structure, or a pointer to a variable

or structure. A structure can express the logical organization of

a software object very neatly, but there's no equivalent built-in

facility in machine language. Thus, in order to translate struc

ture operations, we must reproduce the actions that a com

piled C program performs when accessing a field within a

structure.

The label that identifies a structure is treated as a base ad

dress; each of the members that belong to that structure is de

fined as an offset from that base. The first field in a structure

always has an offset of zero. The next field begins immedi

ately after the first field; the offset for this (the second) mem

ber is simply the length of the first member, and so on. To

P"? access a particular field in a structure, you must add that

field's offset to the base address of the structure. Here's a sim

ple C program that defines a structure and accesses one of its

p*| members.

main() /* demonstrate C structures */

_, {
!(struct Car {

1 charMake[30]
char Model[30]

r—I int Year;

' * };
struct Car NewCar;

P^ NewCar.Year = 1986;

] l } 371

u
Chapter 8

u

This program first defines a structure (called Car) consist-] r

ing of three members: Make, Model, and Year. Then NewCar '—'
is defined as an instance of the Car structure, reserving 62

bytes of space for its contents (two 30-byte strings and one 2- j (

byte integer). Finally, we store the value 1986 in the Year field {—*
of NewCar. Now let's do the same job in machine language.

This program creates an identical data block and assigns the) [

same value to it. '—'

* Car structure definition

Make EQU 0

Model EQU Make+30

Year EQU Model+30

CarLen EQU Year+2

move.w #1986,NewCar+Year ;store value in newcar.year

clr.l dO ;end of program

rts

CNOP 0,2

NewCar ds.b CarLen ;make room for a Car structure

In this program the pseudo-op CNOP 0,2 tells the assem

bler to word-align NewCar in memory. The alignment is nec

essary because the Year field is accessed with a word-length

operation.

In many C programs, a variable will be defined as a

pointer to a structure, with a statement like this:

struct Car *NewCar

Instead of reserving 62 bytes for an entire Car-sized structure,

the compiler allocates only 4 bytes for NewCar, enough room

for a pointer which can hold the address of a block of memory

allocated elsewhere in this program (or possibly in another

program). To access a field from a Car structure, NewCar must

first be assigned with the address of another structure. Then 1 j

the following instruction could be used:

NewCar->Year = 1986;

Here's the machine language equivalent: 1 >
movea.l NewCar,aO ;put pointer to the structure in register aO

move.w 1986,Year(aO) ;then store 1986 in the Year field ! (

The operand Year(AO) causes the microprocessor to find the 1—'
field's address by adding the offset Year to the address held in

register AO. Note that the value 60 is substituted for the label (I

Year during the assembly process, but this value is not added '—'

to a base address until the instruction actually executes.

372 LJ

Machine Language

Standard Amiga header files. When C programmers

need to define a structure for an Exec message or an Intuition

window, they use a header file to use the standard structure

definitions instead of building their own. The C statement in

clude tells the compiler to read a header file from disk and

process the source code that it contains. In addition to defining

standard structures, header files also give names for standard

values that library functions might expect. For instance, pass

ing a value of 1005 to the AmigaDOS Open routine tells it to

create a new file if the named file is not found. The header file

called libraries/dosM defines a symbol (MODE-NEWFILE)

with this value, relieving the programmer of some detail work

and making the program more readable.

Machine language programs have equivalent header files

which define the same structures and standard values. The file

libraries/dos.i contains information about DOS structures and

values in a format that's usable by the Amiga assembler.

Here's a typical use of this header file:

INCLUDE "libraries/dos.i"

The INCLUDE pseudo-op is an assembler directive. When the

assembler encounters this statement, it processes all of the

code in the libraries/dos.i header file, then proceeds to the rest

of the program.

There is one important difference between header files in

tended for C programs and those designed for machine lan

guage: In a machine language file, every member of the

various structures has a name that starts with a two-letter pre

fix. Each structure has its own unique prefix, which is shared

by every member in that structure.

This scheme is necessary because C compilers work some

what differently from machine language assemblers. In C, the

name of a particular member is meaningful only within the

enclosing structure; this permits the programmer to reuse the

same field name in many different structures. But in assembly

language, all labels are global; a particular label can be defined

p^ only once and always has the same value regardless of con-

/ s text. By adding prefixes to field names, the Amiga header files

can distinguish between similarly named members in different

p.- structures. For example, in the C header file called

I > intuition/intuition.h, both the Window and NewWindow struc

tures have fields named Title. But in the machine language

" 373

n

Chapter 8

header file named intuition/intuitionA, the first of these fields

is called wd—Title, while the second is called nw_Title.

Cross-referencing libraries. Another important difference

between C and machine language concerns the handling of li

braries—objects external to the program itself. For instance,

say that a C program contains this statement:

CloseWindow(MyWindow)

The effect of this statement is to call a function named Close-

Window(), passing it a structure named MyWindow. If the

current source file doesn't contain a definition for CloseWindow,

the C compiler assumes that this function is defined in a sepa

rate object module: It simply tags each use of the undefined

function in the object module that it creates and assumes that

the linker will resolve the external reference later on.

You can accomplish the same task in machine language,

but the process requires a bit more work. The source file must

include an XREF pseudo-op for every library routine that the

program calls. Consider this example:

XREF -LVOCloseWindow

This statement tells the assembler to expect the otherwise un

defined label _LVOCloseWindow to be used somewhere in

the program and to tag the object file for this external ref

erence. Note that every external label that defines a library

routine must begin with the four characters _LVO. When you

convert C programs to machine language source code, remem

ber to add this prefix to all library routines.

Using Intuition libraries. Program 8-5 demonstrates the

use of Intuition libraries in a machine language program. It

opens a full-featured Intuition window entitled DemoWindow.

The source code for Program 8-5 employs an INCLUDE

pseudo-op to access two standard Amiga header files:

exec/typesA and intuition/intuitionA. The first of these defines

a number of macros to emulate C data types. None of these

macros are used by Program 8-5 directly, but they must be de

fined for the second header file, which does use them. The

intuition/intuitionA file defines structures and labels for

describing windows, screens, IDCMPs (Intuition Direct

Communication Message Ports), gadgets, and many other In

tuition objects.

374

P
r
o
g
r
a
m

8
-
5
.
O
p
e
n
a
n
I
n
t
u
i
t
i
o
n
W
i
n
d
o
w

* *
p
r
o
g
r
a
m
5
-

o
p
e
n

a
n

I
n
t
u
i
t
i
o
n

w
i
n
d
o
w

*

I
N
C
L
U
D
E

"
e
x
e
c
/
t
y
p
e
s
.
i
"

I
N
C
L
U
D
E

"
i
n
t
u
i
t
i
o
n
/
i
n
t
u
i
t
i
o
n
.
i
"

X
R
E
F

_
A
b
s
E
x
e
c
B
a
s
e

X
R
E
F

_
_
L
V
O
O
p
e
n
L
i
b
r
a
r
y

X
R
E
F

_
_
L
V
O
W
a
i
t

X
R
E
F

_
L
V
O
O
p
e
n
W
i
n
d
o
w

X
R
E
F

_
L
V
O
C
l
o
s
e
W
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

t
n
e
m
t
u
i
t
i
o
n

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

#
I
n
t
u
i
t
i
o
n
N
a
m
e
#
a
l

;
a
s
k

f
o
r

'
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
'

m
o
v
e
.
l

#
2
9
,
d
0

;
v
e
r
s
i
o
n

2
9

o
r

l
a
t
e
r

m
o
v
e
a
.
l

_
_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
1

d
0
,
I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y

b
e
q

A
b
o
r
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

o
u
r

s
i
m
p
l
e

w
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
1

#
D
e
m
o
W
i
n
d
o
w
,
a
0

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
,
a
6

j
s
r

_
L
V
O
O
p
e
n
W
i
n
d
o
w
(
a
6
)

m
o
v
e
.
l

d
0
,
M
y
W
i
n
d
o
w

;
p
o
i
n
t
e
r

t
o
n
e
w
l
y

o
p
e
n
e
d

w
i
n
d
o
w

b
e
q

A
b
o
r
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

w
a
i
t

f
o
r

m
o
u
s
e

c
l
i
c
k

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Q P
m
o
v
e
a
.
l

M
y
W
i
n
d
o
w
,
a
0

;
w
h
e
r
e

i
s

o
u
r

I
D
C
M
P

r
e
c
e
i
v
e

p
o
r
t
?

»
C

m
o
v
e
a
.
l

w
d
_
_
U
s
e
r
P
o
r
t
(
a
0
)
,
a
0

;
w
h
i
c
h

o
f

o
u
r

t
a
s
k
'
s

s
i
g
n
a
l

b
i
t
s

w
i
l
l

b
e

s
e
t

m
o
v
e
.
b

M
P
_
S
I
G
B
I
T
(
a
0
)
,
d
l

;
w
h
e
n

I
n
t
u
i
t
i
o
n

s
e
n
d

u
s

a
m
e
s
s
a
g
e
?

0
0

m
o
v
e
q
.
l

#
l
,
d
0

;
c
o
n
v
e
r
t

t
h
e

n
u
m
b
e
r

o
f

t
h
e

s
i
g
n
a
l

b
i
t

l
s
l
.
l

d
l
,
d
0

;
i
n
t
o

a
b
i
t

m
a
s
k

b
y

s
h
i
f
t
i
n
g

m
o
v
e
a
•
1

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
_
L
V
O
W
a
i
t
(
a
6
)

;
n
o
w

s
i
t

t
i
g
h
t

u
n
t
i
l

t
h
i
s

b
i
t

i
s

s
e
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

c
l
o
s
e

t
h
e
w
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

M
y
W
i
n
d
o
w
,
a
0

m
o
v
e
a
.
l

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
#
a
6

j
s
r

_
_
L
V
O
C
l
o
s
e
W
i
n
d
o
w
(
a
6
)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

q
U
j
_
t

i
n

a
h
u
r
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A
b
o
r
t
:

c
l
r
.
l

d
0

r
t
s

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

i
n
t
u
i
t
i
o
n
N
a
m
e
:

d
c
.
b

'
i
n
t
u
i
t
i
o
n
.
l
i
b
r
a
r
y
'
,
0

M
y
G
a
d
g
e
t
s

E
Q
U

W
I
N
D
O
W
S
I
Z
I
N
G
1
W
I
N
D
O
W
D
R
A
G
I
W
I
N
D
O
W
D
E
P
T
H
1
W
I
N
D
O
W
C
L
O
S
E

M
y
F
e
a
t
u
r
e
s

E
Q
U

S
M
A
R
T
_
R
E
F
R
E
S
H
l
A
C
T
I
V
A
T
E

M
y
F
l
a
g
s

E
Q
U

M
y
G
a
d
g
e
t
s
1
M
y
F
e
a
t
u
r
e
s

c
c

c
c

c
c

c
c

g

M
y
T
i
t
l
e
:

d
c
.
b

'
D
e
m
o
W
i
n
d
o
w
1
,
0

;
t
h
e

t
i
t
l
e

o
f

o
u
r

w
i
n
d
o
w

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

a
n
e
w
w
i
n
d
o
w

s
t
r
u
c
t
u
r
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

D
e
m
o
W
m
d
o
w
d
e
w

2
0

d
e

d
e

d
e

d
e

d
e

d
e

d
e

d
e

d
e

d
e

d
c
,

d
c
,

d
c

d
c

d
c

d
c

d
c

w w .
w b ,
b

,
1

.
1

.
1

.
1

.
1

.
1

.
1

.
w

.
w

•
w

.
w

•
w

2
0

3
0
0

1
0
0

0 1 C
L
O
S
E
W
I
N
D
O
W

M
y
F
l
a
g
s

0 0 M
y
T
i
t
l
e

0 0 6
4

2
0

6
4
0

2
0
0

W
B
E
N
C
H
S
C
R
E
E
N

S
E
C
T
I
O
N

m
e
m
,
B
S
S

I
n
t
u
i
t
i
o
n
L
i
b
r
a
r
y
:

d
s

•
1

1

C
O

M
y
W
i
n
d
o
w
:

d
s
.
l

1

E
N
D

L
e
f
t
E
d
g
e
:

T
o
p
E
d
g
e
:

W
i
d
t
h
:

H
e
i
g
h
t
:

D
e
t
a
i
l
P
e
n
:

B
l
o
c
k
P
e
n
:

I
D
C
M
P
F
l
a
g
s
:

F
l
a
g
s
:

*
F
i
r
s
t
G
a
d
g
e
t
:

*
C
h
e
c
k
M
a
r
k
:

*
T
i
t
l
e
:

*
S
c
r
e
e
n
:

*
B
i
t
M
a
p
:

M
i
n
W
i
d
t
h
:

M
i
n
H
e
i
g
h
t
:

M
a
x
W
i
d
t
h
:

M
a
x
H
e
i
g
h
t
:

T
y
p
e
:

2
0

2
0

3
0
0

1
0
0

0 1 W
i
n
d
o
w

C
l
o
s
e
d

A
l
l

S
o
r
t
s

O
f

D
e
f
a
u
l
t

D
e
f
a
u
l
t

'
D
e
m
o

W
i
n
d
o
w
1

D
e
f
a
u
l
t

D
e
f
a
u
l
t

6
4

2
0

6
4
0

2
0
0

W
B
E
N
C
H
S
C
R
E
E
N

;
k
e
e
p

a
d
d
r
e
s
s

o
f

I
n
t
u
i
t
i
o
n

h
e
r
e

;
a
d
d
r
e
s
s

o
f

t
h
e

s
t
r
u
c
t
u
r
e

d
e
s
c
r
i
b
i
n
g

o
u
r

w
i
n
d
o
w

tr
1

0
9 C
D

Chapter 8

After opening the Intuition library, the program loads reg

ister AO with a pointer to a NewWindow structure called

DemoWindow, then calls OpenWindow to open it and draw it

on the Workbench screen. The ACTIVATE flag in MyFlags

tells Intuition to make this window the active window as soon

as it's opened. A number of other flags are also set to ask In

tuition for a close box, a drag bar, a depth gadget, and a sizing

gadget. The IDCMP flag CLQSEWINDOW tells Intuition to

send a message when the window's close box is selected. A

call to the Exec Wait routine suspends execution of the pro

gram until this message arrives.

A message is a data structure containing information to be

passed between different tasks in the Amiga's multitasking

environment. Each message is sent and received at a message

port, another data structure which is said to be owned by a

particular task. When one task wants to communicate with an

other, it asks Exec's message handler to move a message from

one of its own ports to a port owned by the receiving task.

Since Intuition and an executing application are separate tasks,

an Intuition window contains pointers to two IDCMPs, each of

which includes a standard Exec message port along with some

additional fields. One IDCMP, called the UserPort, receives

messages from Intuition. WindowPort, the other, can be used

to send messages to Intuition.

When one task receives an Exec message from another,

the Exec message handler announces the event by setting one

of the receiving task's 32 signal bits, also known as semaphores.

The MP—SIGBIT field in a message port data structure in

dicates which signal bit is associated with the port. To await

the receipt of a message by a particular window, a task must

first find the UserPort for that window. The MessagePort

structure for this IDCMP will contain the number of the signal i_J
bit that indicates its activity. This C expression is equivalent to

the three machine language instructions that locate the

UserPort IDCMP's signal bit in Program 8-5: M

MyWindow->UserPort->MP_SIGBIT

To let the Wait routine test several signal bits at once, j (

Exec expects to receive a bit mask rather than the number of a '—;
single bit. The mask should have a one bit in the bit position

of every semaphore that you want to test and a zero bit in ev- (j

ery other bit position. In a C program, you can make this sort [—'

378 LJ

H
'■--• Machine Language

n

f^*s of bit mask by left-shifting the number 1 to the position of the

'. ! signal bit with this expression:

1 « BitPosition

{""] In machine language, the LSL (Logical Shift Left) instruction
performs this same operation. Program 8-5 puts the shift count

in register Dl and sets the lowest bit of DO by loading it with

I | 1. Then it left-shifts DO to create the mask, puts the base ad

dress of the Exec library in A6, and calls Wait. When Wait re

turns, we know that the window's close box was clicked; so

the program closes the window and terminates.

File copying utility. Program 8-6 demonstrates a more

complete Amiga application, which is also very useful. It's a

copying utility that lets you copy a file or group of files from

one disk to another without the disk swapping normally re

quired on single-drive systems.

This program is designed to be run from the CLI, and re

quires two command line arguments: After the program name

(on the same CLI line), enter the name of the file you want to

copy and the directory to which the file should be copied (be

sure to separate the filename and directory name with a blank

space). By using wildcard symbols, you can also copy several

files at once. When the asterisk (*) and question mark (?)

characters appear in a filename, they are given special

meanings.

An asterisk will match any number of characters in a file

name. For instance, the name file* matches filel, file of mine,

filestuff, and just plain file. To allow a file specification to con

tain more than one asterisk, Program 8-6 must be able to

match a character following an asterisk to some character in

the filename being tested. For instance, the specification * *

f"^ will match only those filenames that contain at least one pe
riod. This can cause occasional problems, since a character in a

filename might accidentally match the character following the

fj asterisk when it was intended to match the asterisk itself. For
example, consider the filename add. Even though it ends with

a d, it doesn't match the specification *d, because the first d in

p~j the filename has already matched the only d in the spedfica-
tion. Once you're aware of this problem, it's usually simple to

avoid.

p"] The question mark wildcard symbol works in a simpler
way: It matches any single character. For instance, the

n 379

Chapter 8

specification program? matches files named programl, programs,

and program., but not a file named program. When more than

one file in a directory matches an ambiguous file specification,

Program 8-6 copies all of them.

Note that the wildcard scheme in Program 8-6 is the same

one employed by most pre-Amiga computers. Since Amiga-

DOS itself uses an entirely different method for pattern match

ing, legal AmigaDOS filenames can contain both asterisks and

question marks. Program 8-6 may not work properly with files

containing these characters.

Including AmigaDOS routines. Program 8-6 begins by

INCLUDEing two header files (exec/types.i and libraries/dos.i)

to define the file information block structure that it uses to

search a directory. After declaring all its external references

and defining the WriteFile macro, the program then creates a

structure called StoredFile. To speed up the copy process and

prevent disk swapping on single-drive systems, the program

doesn't write any files until it has identified and loaded into

memory all the files that match the file specification. These

files are stored in a linked list of structures, each of which

contains the name and size of a file along with its contents.

Exec's AllocMem and FreeMem routines are called to allocate

and deallocate memory for each node in the linked list.

After opening the DOS library and locating the standard

output file, Program 8-6 parses the command line. After we

find the end of the first argument (which is assumed to be a

source file specification), the ScanLoop routine scans this argu

ment looking for slash (/) and colon (:) characters, which in

dicate that the source argument contains a directory name. It

also looks for wildcard characters. If a wildcard is found, the

loop called WildLoop checks for more directory characters; if

one of these appears, the program prints a "Bad Arguments"

message and quits, since wildcards aren't permitted in direc

tory names.

When either loop reaches the end of the source argument,

the directory pathname and the filename are both copied to

buffers and terminated with zero bytes. Then the destination

pathname is also located, copied to its own buffer, and ter

minated with a zero.

If the source field contains no directory name, the pro

gram searches the current default directory for filenames. The

CurrentDir routine is called to get a lock (a structure which de-

380

Machine Language

n

n scribes a file or directory) for the current directory. When

called, this routine expects Dl to contain a lock for a new cur

rent directory. Since no new directory is being set, Dl is

p-i cleared. Then the lock for the original current directory is

L * stored in both OldDir and DirLock.
If a directory was named, Lock is called to get a lock for

r-> this directory. The ACCESS-READ flag requests a nonexclu-

L.i sive lock; since we're just reading this directory, we may as
well let other tasks access it at the same time. The lock that

DOS returns is stored in DirLock, then CurrentDir is called to

find out what the original current directory is. OldDir receives

this lock so the program can restore it when the copying is

done.

The AmigaDOS routine Examine fills Dirltem, a File-

InfoBlock structure, with information about the directory that

we'll be searching. Then ExNext is called to scan through all

the entries in the directory. If an entry turns out to be a file,

not a subdirectory, FMatchLoop compares its name to the file

specification. Any filename that matches is printed on the con

sole, then AllocMem is asked to supply enough memory for a

StoredFile structure to hold the file. The file is opened, read,

and closed, and the next file is examined.

The SaveFiles subroutine is called when the entire direc

tory has been searched. It makes the destination directory cur

rent, then links through the list of StoredFiles, opening,

writing, and closing each one in turn. When every file has

been written, SaveFiles returns to the main procedure, which

restores the original current directory and exits.

381

o
o

P
r
o
g
r
a
m

8
-
6
.
C
o
p
y

U
t
i
l
i
t
y

* *
p
r
o
g
r
a
m
6
:

q
u
i
c
k

c
o
p
y

w
i
t
h

w
i
l
d
c
a
r
d

f
i
l
e

s
e
l
e
c
t
i
o
n

I
N
C
L
U
D
E

"
e
x
e
c
/
t
y
p
e
s
.
i
"

I
N
C
L
U
D
E

"
l
i
b
r
a
r
i
e
s
/
d
o
s
.

Q i G
O

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

X
R
E
F

_
_
A
b
s
E
x
e
c
B
a
s
e

L
V
O
O
p
e
n
L
i
b
r
a
r
y

L
V
O
A
l
l
o
c
M
e
m

J
L
V
O
F
r
e
e
M
e
m

L
V
O
L
o
c
k

_
_
L
V
O
U
n
L
o
c
k

_
_
L
V
O
D
u
p
L
o
c
k

_
_
L
V
O
C
u
r
r
e
n
t
D
i
r

L
V
O
E
x
a
m
i
n
e

L
V
O
E
x
N
e
x
t

_
L
V
O
O
u
t
p
u
t

L
V
O
O
p
e
n

L
V
O
C
l
o
s
e

L
V
O
R
e
a
d

L
V
O
W
r
i
t
e

L
V
O
E
x
i
t

;
b
a
s
e

a
d
d
r
e
s
s

f
o
r

e
x
e
c

l
i
b
r
a
r
y

7
e
x
e
c
:

o
p
e
n

a
l
i
b
r
a
r
y

7
a
l
l
o
c
a
t
e

m
e
m
o
r
y

b
l
o
c
k

7
f
r
e
e

m
e
m
o
r
y

b
l
o
c
k

7
D
O
S

f
u
n
c
t
i
o
n
s

W
r
i
t
e
F
i
l
e

M
A
C
R
O

;
F
i
l
e
,
S
t
r
i
n
g
,
L
e
n

m
o
v
e
.
l

\
l
,
d
l

;
f
i
l
e

t
o

w
r
i
t
e

m
o
v
e
.
l

\
2
,
d
2

/
s
t
r
i
n
g

t
o

w
r
i
t
e

m
o
v
e
.
l

\
3
,
d
3

;
n
u
m
b
e
r

o
f

c
h
a
r
s

t
o

w
r
i
t
e

j
s
r

_
_
L
V
O
W
r
i
t
e
(
a
6
)

;
w
r
i
t
e

'
e
m

\w
j-

w
V~

~»
-

^
—
~
~

^
*
—
*

c
c

c
:
c

3
3
a

a

E
N
D
M

*
S
t
o
r
e
d
F
i
l
e

s
t
r
u
c
t
u
r
e

N
e
x
t
S
F

E
Q
U

0
7
p
o
i
n
t
e
r

t
o

n
e
x
t

s
t
o
r
e
d

f
i
l
e

S
F
L
e
n
g
t
h

E
Q
U

N
e
x
t
S
F
+
4

7
s
i
z
e

o
f

t
h
e

f
i
l
e

i
n

t
h
i
s

b
l
o
c
k

S
F
N
a
m
e

E
Q
U

S
F
L
e
n
g
t
h
+
4

7
n
a
m
e

o
f

t
h
e

f
i
l
e

i
n

t
h
i
s

b
l
o
c
k

S
t
o
r
e
d
F
i
l
e

E
Q
U

S
F
N
a
m
e
+
3
0

7
c
o
n
t
e
n
t
s

o
f

t
h
e

f
i
l
e

s
t
a
r
t

h
e
r
e

m
o
v
e
m
.
l

a
0
/
d
0
,
-
(
S
P
)

7
s
a
v
e

c
o
m
m
a
n
d

l
i
n
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
p
e
n

D
O
S

l
i
b
r
a
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

7
f
i
n
d

e
x
e
c

l
i
b
r
a
r
y

m
o
v
e
.
l

#
D
O
S
_
N
a
m
e
,
a
l

7
p
a
s
s

s
t
r
i
n
g

c
o
n
t
a
i
n
i
n
g

n
a
m
e

c
l
r
.
l

d
0

7
e
x
p
e
c
t

a
n
y

v
e
r
s
i
o
n

j
s
r

_
L
V
O
O
p
e
n
L
i
b
r
a
r
y
(
a
6
)

m
o
v
e
.
1

d
0
,
a
6

m
o
v
e
.
l

a
6
,
D
o
s
L
i
b
r
a
r
y

b
e
q

A
b
o
r
t
1

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

f
i
n
(
j
o
u
t
p
u
t

d
e
v
i
c
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

j
s
r

_
L
V
O
O
u
t
p
u
t
(
a
6
)

?
g
e
t

a
f
i
l
e

h
a
n
d
l
e
#

a
l
r
e
a
d
y

o
p
e
n

m
o
v
e
.
l

d
0
,
S
t
d
O
u
t

b
e
q

A
b
o
r
t
1

I

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

c
o
m
m
a
n
d

l
i
n
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

C
O

0
0

C
O

m
o
v
e
m
.
l

(
S
P
)
+
,
a
0
/
d
0

7
g
e
t

c
o
m
m
a
n
d

l
i
n
e

i
n
f
o

b
a
c
k

m
o
v
e
.
l

d
0
,
d
2

a
d
d
.
l

a
0
#
d
0

?
c
a
l
c

a
d
d
r
e
s
s

o
f

e
n
d

o
f

c
m
d

l
i
n
e

C
O
0
0

m
o
v
e
.
l

d
0
,
C
m
d
E
n
d

;
w
e
'
l
l

n
e
e
d

t
h
i
s

l
a
t
e
r

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

g
e
t

s
o
u
r
c
e

s
p
e
c

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

c
m
p
i
.
b

#
3
4
,
(
a
0
)

;
l
e
a
d
i
n
g

q
u
o
t
e
?

b
n
e

N
o
Q
u
o
t
e

a
d
d
q
.
l

#
l
,
a
0

s
u
b
q
.
l

#
l
,
d
2

m
o
v
e
q
.
l

#
3
4
,
d
l

;
l
o
o
k

f
o
r

t
r
a
i
l
i
n
g

q
u
o
t
e

b
s
r

I
n
S
t
r
i
n
g

b
r
a

P
r
o
c
S
o
u
r
c
e

N
o
Q
u
o
t
e
:

m
o
v
e
q
.
l

#
*

'
,
d
l

;
l
o
o
k

f
o
r

t
r
a
i
l
i
n
g

s
p
a
c
e

b
s
r

I
n
S
t
r
i
n
g

P
r
o
c
S
o
u
r
c
e
:

s
u
b
q
.
l

#
l
,
d
0

b
l
e

B
a
d
A
r
g
s

l
e
a

l
(
a
0
,
d
0
.
L
)
,
a
3

;
s
t
a
r
t

l
o
o
k
i
n
g

f
o
r

d
e
s
t

h
e
r
e

c
l
r
.
l

d
l

;
i
n
d
e
x

c
l
r
.
l

D
i
r
L
e
n

;
e
n
d

o
f

d
i
r
e
c
t
o
r
y

s
p
e
c

S
c
a
n
L
o
o
p
:

;
l
o
o
k

f
o
r

d
i
r

m
o
v
e
.
b

0
(
a
0
,
d
l
.
L
)
,
d
3

c
m
p
i
.
b

#
l
:
'
,
d
3

;
c
o
n
t
a
i
n
s

c
o
l
o
n
?

b
e
q

F
o
u
n
d
D
i
r

c
m
p
i
.
b

#
'
/
'
t
d
3

/
c
o
n
t
a
i
n
s

s
t
r
o
k
e
?

b
n
e

N
o
D
i
r

G
O

c
c

c
tr
c

c
c

c

u
a

j
a

n
a

3
3

a

F
o
u
n
d
D
i
r
:

m
o
v
e
.
1

d
l
,
D
i
r
L
e
n

a
d
d
q
.
l

#
1
,
D
i
r
L
e
n

N
o
D
i
r
:

c
m
p
i
.
b

#
'
*
•
,
d
3

b
e
q

F
o
u
n
d
W
i
l
d

c
m
p
i
.
b

#
'
?
'
,
d
3

b
e
q

F
o
u
n
d
W
i
l
d

a
d
d
q
.
l

#
l
,
d
l

c
m
p
.
l

d
0
,
d
l

b
e
q

N
o
W
i
l
d

b
r
a

S
c
a
n
L
o
o
p

;
e
n
d

o
f

d
i
r

=
i
n
d
e
x
+
1

;
c
o
n
t
a
i
n
s

a
s
t
e
r
i
s
k
?

;
c
o
n
t
a
i
n
s

q
u
e
s
t
i
o
n
?

;
d
o
n
e
?

*
*
*
*
*
*
*
*
*

C
h
e
c
k

f
o
r

w
i
l
d

c
a
r
d
s

i
n
d
i
r
e
c
t
o
r
y

s
p
e
c

*
*
*
*
*
*
*
*

0
0

C
J
1

W
i
l
d
L
o
o
p
:

m
o
v
e
.
b

0
(
a
0
#
d
l
.
L
)
#
d
3

c
m
p
i
.
b

#
'
:
'
#
d
3

b
e
q

B
a
d
A
r
g
s

c
m
p
i
.
b
#
7
'
,
d
3

b
e
q

B
a
d
A
r
g
s

F
o
u
n
d
W
i
l
d
:

a
d
d
q
.
l

#
l
,
d
l

c
m
p
.
l

d
0
f
d
l

b
n
e

W
i
l
d
L
o
o
p

N
o
W
i
l
d
:

s
u
b
.
l

D
i
r
L
e
n
,
d
0

m
o
v
e
.
l

d
0
,
F
i
l
e
L
e
n

;
c
o
l
o
n
?

7
s
t
r
o
k
e
?

7
c
a
l
c
u
l
a
t
e

l
e
n
g
t
h

o
f

f
i
l
e
n
a
m
e

g:

w
*
*
*
*
*
*
*
*
*
*

c
o
p
y

p
a
t
h

a
n
d

f
i
l
e

s
p
e
c
s

t
o

b
u
f
f
e
r
s

*
*
*
*
*
*
*
*
*
*

<*
'

p
m
o
v
e
.
l

D
i
r
L
e
n
,
d
0

;
i
s

t
h
e
r
e

a
d
i
r
e
c
t
o
r
y

p
a
t
h
?

t
*

b
e
q

N
o
P
a
t
h

£

m
o
v
e
a
.
1

#
D
i
r
P
a
t
h
,
a
l

0
0

b
s
r

B
u
f
f
C
o
p
y

;
p
u
t

i
t

i
n

b
u
f
f
e
r

N
o
P
a
t
h
:

m
o
v
e
•
1

F
i
l
e
L
e
n
,
d
0

b
e
q

B
a
d
A
r
g
s

;
h
a
v
e

t
o

h
a
v
e

s
o
m
e
t
h
i
n
g
—

a
t

l
e
a
s
t

*

m
o
v
e
a
•
1

#
F
i
l
e
S
p
e
c
,
a
l

b
s
r

B
u
f
f
C
o
p
y

;
p
u
t

f
i
l
e

n
a
m
e

i
n

b
u
f
f
e
r

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
o
c
e
s
s

d
e
s
t
i
n
a
t
i
o
n

s
p
e
c

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
•
1

C
m
d
E
n
d
,
a
l

S
t
a
r
t
L
o
o
p
:

c
m
p
i
.
b

#
■

§
,
(
a
3
)

;
f
i
n
d

s
t
a
r
t

o
f

t
h
e

d
e
s
t
i
n
a
t
i
o
n

s
p
e
c

b
n
e

F
o
u
n
d
S
t
a
r
t

a
d
d
q
.
l

#
l
,
a
3

c
m
p
a
.
l

a
3
,
a
l

b
n
e

S
t
a
r
t
L
o
o
p

b
r
a

B
a
d
A
r
g
s

F
o
u
n
d
S
t
a
r
t
:

m
o
v
e
.
l

a
l
,
d
2

s
u
b
.
l

a
3
,
d
2

;
f
i
n
d

l
e
n
g
t
h

o
f

d
e
s
t

*
*
*
*
*
*
*
*
*
*
*
*

f
i
n
d

e
n
d

o
f

t
h
e

d
e
s
t
i
n
a
t
i
o
n

s
p
e
c

*
*
*
*
*
*
*
*
*
*
*

c
c

c
c

c
c

c
n

c
c

J
3

I]
a

a
a

T
r
a
i
l
L
o
o
p
:

c
m
p
i
.
b

#
3
2
,
-
l
(
a
3
,
d
2
.
L
)

;
k
i
l
l

t
r
a
i
l
i
n
g

s
t
u
f
f

b
h
i

N
o
T
r
a
i
l

s
u
b
q
.
l

#
l
f
d
2

b
e
q

B
a
d
A
r
g
s

b
r
a

T
r
a
i
l
L
o
o
p

N
o
T
r
a
i
l
:

c
m
p
i
.
b

#
3
4
,
(
a
3
)

b
n
e

Q
u
o
t
e
l
e
s
s

;
l
e
a
d
i
n
g

q
u
o
t
e
?

c
m
p
i
.
b

#
3
4
,
-
l
(
a
3
#
d
2
.
L
)

;
t
r
a
i
l
i
n
g

q
u
o
t
e
?

b
n
e

B
a
d
A
r
g
s

a
d
d
q
.
l

#
l
,
a
3

s
u
b
q
.
l

#
2
,
d
2

Q
u
o
t
e
l
e
s
s
:

;
a
d
j
u
s
t

f
o
r

q
u
o
t
e
s

m
o
v
e
.
l

d
2
,
D
e
s
t
L
e
n

m
o
v
e
.
l

d
2
,
d
0

m
o
v
e
a
.
1

a
3
,
a
0

m
o
v
e
a
.
1

#
D
e
s
t
S
p
e
c
,
a
l

b
s
r

B
u
f
f
C
o
p
y

;
s
a
v
e

d
e
s
t
i
n
a
t
i
o
n

p
a
t
h

n
a
m
e

i
n
i
t
i
a
l
i
z
e

l
i
s
t

o
f

f
i
l
e
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

I
c
l
r
.
l

F
i
r
s
t
F
i
l
e

m
o
v
e
.
1

#
F
i
r
s
t
F
i
l
e
,
L
a
s
t
F
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

e
x
a
m
i
n
e

d
i
r
e
c
t
o
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o
o

o
o

t
s
t
.
l

D
i
r
L
e
n

b
n
e

C
h
a
n
g
e
D
i
r

;
w
a
s

o
n
e

s
p
e
c
i
f
i
e
d
?

;
y
e
s
:

m
a
k
e

i
t

c
u
r
r
e
n
t

c
l
r
.
l

d
l

;
n
o
:

f
a
k
e

p
o
i
n
t
e
r

t
o

l
o
c
k

j
s
r

_
L
V
0
C
u
r
r
e
n
t
D
i
r
(
a
6
)

;
l
o
c
k

o
f

c
u
r
r
e
n
t

d
i
r

r
e
t
u
r
n
e
d

i
n

d
0

m
o
v
e
.
l

d
0
,
O
l
d
D
i
r

m
o
v
e
.
l

d
0
,
d
l

j
s
r

J
L
V
O
D
u
p
L
o
c
k
(
a
6
)

m
o
v
e
.
l

d
0
,
D
i
r
L
o
c
k

b
r
a

E
x
a
m
i
n
e
D
i
r

C
h
a
n
g
e
D
i
r
:

m
o
v
e
.
l

#
D
i
r
P
a
t
h
f
d
l

m
o
v
e
.
l

#
A
C
C
E
S
S
_
R
E
A
D
,
d
2

j
s
r

_
L
V
O
L
o
c
k
(
a
6
)

;
t
r
y

t
o

f
i
n
d

t
h
i
s

d
e
v
i
c
e

m
o
v
e
.
l

d
0
#
D
i
r
L
o
c
k

b
e
q

A
b
o
r
t
l

;
g
o
t

i
t
?

j
s
r

_
L
V
0
C
u
r
r
e
n
t
D
i
r
(
a
6
)

;
m
a
k
e

i
t

c
u
r
r
e
n
t

m
o
v
e
.
l

d
0
,
O
l
d
D
i
r

;
s
a
v
e

o
l
d

d
i
r
e
c
t
o
r
y

0
0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

g
e
t

d
a
t
a

a
b
o
u
t

d
i
r
e
c
t
o
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

E
x
a
m
i
n
e
D
i
r
:

m
o
v
e
.
l

D
i
r
L
o
c
k
,
d
l

m
o
v
e
.
l

#
D
i
r
I
t
e
m
,
d
2

j
s
r

_
L
V
0
E
x
a
m
i
n
e
(
a
6
)

;
g
e
t

d
a
t
a

a
b
o
u
t

d
i
r

t
s
t
.
l

d
0

;
s
u
c
c
e
s
s
f
u
l
?

b
e
q

A
b
o
r
t

N
e
x
t
F
i
l
e
:

:
:
c

c
c

c
c
:
c

c

j
3

3
3

3

m
o
v
e
.
l

D
i
r
L
o
c
k
,
d
l

m
o
v
e
.
l

#
D
i
r
I
t
e
m
,
d
2

m
o
v
e
a
.
l

D
o
s
L
i
b
r
a
r
y
#
a
6

j
s
r

J
L
V
O
E
x
N
e
x
t
(
a
6
)

;
g
e
t

d
a
t
a

a
b
o
u
t

n
e
x
t

e
n
t
r
y

t
s
t
.
l

d
0

b
e
q

Q
C
D
o
n
e

;
i
s

t
h
e
r
e

a
n
o
t
h
e
r
?

;
n
o
:

q
u
i
t

t
s
t
.
l

f
i
b
_
p
i
r
E
n
t
r
y
T
y
p
e
+
D
i
r
I
t
e
m

;
i
s

d
i
r
?

b
p
l

N
o
M
a
t
c
h

;
c
a
n
'
t

u
s
e

i
t

*
*
*
*
*
*
*
*
*
*
*
*
*

d
o
e
s

i
t
m
a
t
c
h

t
h
e

f
i
l
e

s
p
e
c
?

*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
1

#
D
i
r
I
t
e
m
+
f
i
b
_
F
i
l
e
N
a
m
e
,
a
0

m
o
v
e
a
•
1

#
F
i
l
e
S
p
e
c
,
a
l

0
0

F
M
a
t
c
h
L
o
o
p
:

m
o
v
e

•
b

(
a
l
)
,

d
i
d

c
m
p
.
b

(
a
0
)
,
d
0

b
e
q

C
h
a
r
M
a
t
c
h

c
m
p
i
.
b

#
'
*
'
,
d
0

b
n
e

N
o
t
S
t
a
r

m
o
v
e
.
b

l
(
a
l
)
,
d
l

c
m
p
.
b

(
a
0
)
,
d
l

b
n
e

N
o
t
S
t
a
r
E
n
d

a
d
d
q
.
l

#
l
,
a
l

b
r
a

C
h
a
r
M
a
t
c
h

N
o
t
S
t
a
r
E
n
d
:

b
r
a

W
i
l
d
M
a
t
c
h

;
g
e
t

c
h
a
r

f
r
o
m

F
S
p
e
c

;
m
a
t
c
h
?

;
y
e
s
:

p
r
o
c
e
s
s

m
a
t
c
h

;
*

w
i
l
d
c
a
r
d
?

;
c
h
e
c
k

i
f
w
e
'
r
e

a
t

t
h
e

e
n
d

o
f

*
w
i
l
d
c
a
r
d

;
y
e
s
:

a
d
v
a
n
c
e

F
S
p
e
c

a
n
d

p
r
o
c
e
s
s

m
a
t
c
h

;
n
o
:

p
r
o
c
e
s
s

p
s
e
u
d
o

m
a
t
c
h

C
O
V
O
O

;
?
w
i
l
d
c
a
r
d
?

;
n
o
:

f
a
i
l
u
r
e

;
y
e
s
:

p
s
e
u
d
o

m
a
t
c
h

;
n
o
t

g
o
o
d

e
n
o
u
g
h

;
m
a
t
c
h
e
d

n
u
l
l

t
e
r
m
i
n
a
t
o
r
s
?

;
n
o
:

g
o

o
n

;
y
e
s
:

s
u
c
c
e
s
s

N
o
t
S
t
a
r
:

c
m
p
i
.
b

#
'
?
'
,
d
0

b
n
e

N
o
M
a
t
c
h

a
d
d
q
.
l

#
l
,
a
l

W
i
l
d
M
a
t
c
h
:

t
s
t
.
b

(
a
0
)

b
e
q

N
o
M
a
t
c
h

a
d
d
q
.
l

#
l
,
a
0

b
r
a

F
M
a
t
c
h
L
o
o
p

C
h
a
r
M
a
t
c
h
:

t
s
t
.
b

(
a
0
)

b
n
e

N
o
t
F
N
E
n
d

b
r
a

M
a
t
c
h

N
o
t
F
N
E
n
d
:

a
d
d
q
.
l

#
l
,
a
l

a
d
d
q
.
l

#
l
f
a
0

b
r
a

F
M
a
t
c
h
L
o
o
p

M
a
t
c
h
:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

p
r
i
n
t

f
i
l
e
n
a
m
e

t
o

s
t
d
o
u
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

s
u
b
a
.
l

#
D
i
r
I
t
e
m
+
f
i
b
_
F
i
l
e
N
a
m
e
,
a
0

;
c
a
l
c
u
l
a
t
e

l
e
n
g
t
h

o
f

n
a
m
e

m
o
v
e
.
l

a
0
,
F
N
a
r
n
e
L
e
n

7
a
n
d

s
a
v
e

i
t

f
o
r

l
a
t
e
r

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
D
i
r
I
t
e
m
+
f
i
b
_
F
i
l
e
N
a
m
e
,
a
0

;
w
r
i
t
e

i
t

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
N
e
w
L
i
n
e
,
#
2

*
*
*
*
*

a
l
l
o
c
a
t
e

s
p
a
c
e

t
o
h
o
l
d

f
i
l
e

i
n
f
o

a
n
d

c
o
n
t
e
n
t
s

*
*
*
*
*

t CD 0
0

r
c

tr
c

c
c

G
G

G
G

G
G

G
G

G
G

v
o

*
s
p
a
c
e

n
e
e
d
e
d
:

*
4
—

p
o
i
n
t
e
r

t
o

n
e
x
t

f
i
l
e

*
4
—

l
e
n
g
t
h

o
f

f
i
l
e

*
3
0
—

n
a
m
e

o
f

f
i
l
e

*
?
?
—

c
o
n
t
e
n
t
s

o
f

f
i
l
e
:

f
i
b
_
S
i
z
e

*
t
o
t
a
l
:

l
e
n
g
t
h

o
f

f
i
l
e
+
3
8

m
o
v
e
.
l

D
i
r
I
t
e
m
+
f
i
b
_
S
i
z
e
#
d
0

;
l
e
n
g
t
h

o
f

f
i
l
e

a
d
d
i
.
l

#
3
8
,
d
0

;
+
3
8

c
l
r
.
l

d
l

;
r
e
q
u
e
s
t

a
n
y

k
i
n
d

o
f

R
A
M

m
o
v
e
a
.
l

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
L
V
O
A
l
l
o
c
M
e
m
(
a
6
)

*
u
n
s
u
c
c
e
s
s
f
u
l
?

c
a
l
l

s
u
b
r
o
u
t
i
n
e

t
o
w
r
i
t
e

o
u
t

t
h
e

f
i
l
e
s
,

t
h
e
n

r
e
t
r
y

t
s
t
.
l

d
0

b
n
e

A
l
l
o
c
O
K

t
s
t
.
l

F
i
r
s
t
F
i
l
e

b
e
q

N
o
M
e
m

b
s
r

S
a
v
e
F
i
l
e
s

b
r
a

M
a
t
c
h

;
a
n
y
t
h
i
n
g

t
o

s
a
v
e
?

7
n
o
-

q
u
i
t

7
s
a
v
e

e
v
e
r
y
t
h
i
n
g

7
t
r
y

a
g
a
i
n

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

i
o
a
(
i
t
h
e

f
i
l
e

i
n
t
o

R
A
M

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

A
l
l
o
c
O
K
:

m
o
v
e
a
.
l

L
a
s
t
F
i
l
e
,
a
l

m
o
v
e
.
l

d
0
,
L
a
s
t
F
i
l
e

m
o
v
e
.
1

d
0
,
(
a
l
)

m
o
v
e
.
l

d
0
,
a
l

c
l
r
.
l

(
a
l
)
+

7
s
a
v
e

o
l
d

l
a
s
t

f
i
l
e

7
e
s
t
a
b
l
i
s
h

n
e
w

l
a
s
t

f
i
l
e

7
l
i
n
k

t
o

o
l
d

l
a
s
t

f
i
l
e

7
i
n
d
i
c
a
t
e

l
a
s
t

f
i
l
e

er
g

C
D

C
O
S
O

m
o
v
e
.
l

D
i
r
I
t
e
m
+
f
i
b
_
S
i
z
e
,
(
a
l
)
+

;
s
t
o
r
e

f
i
l
e

s
i
z
e

m
o
v
e
.
l

F
N
a
m
e
L
e
n
,
d
0

m
o
v
e
a
.
l

#
D
i
r
I
t
e
m
+
f
i
b
_
F
i
l
e
N
a
m
e
,
a
0

b
s
r

B
u
f
f
C
o
p
y

;
s
t
o
r
e

f
i
l
e

n
a
m
e

m
o
v
e
.
l

D
i
r
L
o
c
k
,
d
l

m
o
v
e
a
.
l

D
o
s
L
i
b
r
a
r
y
,
a
6

j
s
r

_
L
V
0
C
u
r
r
e
n
t
D
i
r
(
a
6
)

;
m
a
k
e

i
t

c
u
r
r
e
n
t

m
o
v
e
.
l

#
D
i
r
I
t
e
m
+
f
i
b
_
F
i
l
e
N
a
m
e
,
d
l

m
o
v
e
.
l

#
M
O
D
E
_
O
L
D
F
I
L
E
,
d
2

j
s
r

_
L
V
O
O
p
e
n
(
a
b
)

;
O
p
e
n

t
h
e

f
i
l
e

m
o
v
e
.
l

d
0
,
d
l

m
o
v
e
.
l

d
0
,
F
i
l
e
H
a
n
d
l
e

m
o
v
e
.
l

L
a
s
t
F
i
l
e
,
d
2

a
d
d
i
.
l

#
S
t
o
r
e
d
F
i
l
e
,
d
2

m
o
v
e
.
l

D
i
r
I
t
e
m
+
f
i
b
_
S
i
z
e
,
d
3

j
s
r

_
L
V
O
R
e
a
d
(
a
6
)

;
R
e
a
d

i
t

m
o
v
e
.
l

F
i
l
e
H
a
n
d
l
e
#
d
l

j
s
r

_
L
V
O
C
l
o
s
e
(
a
6
)

;
b
e

n
i
c
e

N
o
M
a
t
c
h
:

b
r
a

N
e
x
t
F
i
l
e

9 f 0
0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

c
l
e
a
n

u
p

h
o
u
s
e

a
n
d

l
e
a
v
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;
w
r
i
t
e

o
u
t

t
h
e

f
i
l
e
s

Q
C
D
o
n
e
:

b
s
r

S
a
v
e
F
i
l
e
s

\z
\z

\z
c:

(
Z

[I
C

C

d
d

O

b
s
r

R
e
s
t
o
r
e
D
i
r

m
o
v
e
.
l

D
i
r
L
o
c
k
,
d
l

j
s
r

_
_
L
V
O
U
n
L
o
c
k
(
a
6
)

;
r
e
s
t
o
r
e

o
r
i
g
i
n
a
l

d
i
r
e
c
t
o
r
y

;
f
r
e
e

l
o
c
k

s
t
r
u
c
t
u
r
e

b
r
a

A
b
o
r
t
l

;
a
n
d

e
n
d

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

e
r
r
o
r

h
a
n
d
l
i
n
g

r
o
u
t
i
n
e
s

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

B
a
d
A
r
g
s
:

;
b
a
d

c
o
m
m
a
n
d

l
i
n
e

a
r
g
u
m
e
n
t
s

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
B
A
M
s
g
,
#
B
A
L
e
n

b
r
a

A
b
o
r
t
l

N
o
M
e
m
:

;
f
i
l
e

t
o
o

b
i
g

t
o

l
o
a
d

m
o
v
e
a
•
1

D
o
s
L
i
b
r
a
r
y
,
a
6

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
N
o
M
e
m
M
S
G
,
#
N
M
M
L
e
n

b
r
a

A
b
o
r
t

S
a
v
e
F
a
i
l
e
d
l
:

;
f
i
l
e

i
s

o
p
e
n

m
o
v
e
.
l

F
i
l
e
H
a
n
d
l
e
,
d
l

j
s
r

_
L
V
0
C
l
o
s
e
(
a
6
)

;
c
l
o
s
e

t
h
e

f
i
l
e

S
a
v
e
F
a
i
l
e
d
:

m
o
v
e
.
l

D
e
s
t
L
o
c
k
^
d
l

j
s
r

_
L
V
0
U
n
L
o
c
k
(
a
6
)

;
c
o
u
l
d
n
'
t

w
r
i
t
e

f
i
l
e

S
a
v
e
A
b
o
r
t
:

W
r
i
t
e
F
i
l
e

S
t
d
O
u
t
,
#
F
a
i
l
e
d
M
S
G
#
#
F
a
i
l
e
d
L
e
n

A
b
o
r
t
:

b
s
r

b
s
r

F
r
e
e
A
l
l

;
f
r
e
e

a
l
l

m
e
m
o
r
y

R
e
s
t
o
r
e
D
i
r

;
r
e
s
t
o
r
e

o
r
i
g
i
n
a
l

c
u
r
r
e
n
t

d
i
r
e
c
t
o
r
y

C
D

C
O

S
O

m
o
v
e
•
1

D
i
r
L
o
c
k
,
d
l

j
s
r

_
L
V
O
U
n
L
o
c
k
(
a
6
)

;
u
n
l
o
c
k

s
o
u
r
c
e

d
i
r
e
c
t
o
r
y

A
b
o
r
t
l
:

j
s
r

_
L
V
0
E
x
i
t
(
a
6
)

;
f
l
e
e

*
*
*
*
*
*
*
*
*
*
*

s
u
b
r
o
u
t
i
n
e

t
o

s
a
v
e

a
l
l

t
h
e

f
i
l
e
s

*
*
*
*
*
*
*
*
*
*
*
*

S
a
v
e
F
i
l
e
s
:

t
s
t
.
l

F
i
r
s
t
F
i
l
e

b
e
q

S
a
v
e
D
o
n
e

Q i 0
0

b
s
r

s
e
t

d
e
s
t
i
n
a
t
i
o
n

d
i
r
e
c
t
o
r
y

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

R
e
s
t
o
r
e
D
i
r

;
s
t
a
r
t

p
a
t
h

a
t

o
r
i
g
i
n
a
l

d
i
r
e
c
t
o
r
y

m
o
v
e
.
l

#
D
e
s
t
S
p
e
c
,
d
l

m
o
v
e
.
l

#
A
C
C
E
S
S
_
R
E
A
D
,
d
2

j
s
r

_
L
V
O
L
o
c
k
(
a
6
)

;
t
r
y

t
o

f
i
n
d

t
h
i
s

d
e
v
i
c
e

m
o
v
e
.
l

d
0
,
d
l

m
o
v
e
.
l

d
l
,
D
e
s
t
L
o
c
k

b
e
q

S
a
v
e
A
b
o
r
t

;
g
o
t

i
t
?

j
s
r

_
_
L
V
O
C
u
r
r
e
n
t
D
i
r
(
a
6
)

j
m
a
k
e

i
t

c
u
r
r
e
n
t

m
o
v
e
a
.
l

F
i
r
s
t
F
i
l
e
,
a
0

;
f
i
n
d

s
t
a
r
t

o
f

f
i
l
e

l
i
s
t

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

O
p
e
n

d
e
s
t
i
n
a
t
i
o
n

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

S
a
v
e
L
o
o
p
:

m
o
v
e
.
l

a
0
,
F
i
l
e
P
T
R

m
o
v
e
.
l

a
0
#
d
l

c
c:
:

r:
c:

c
[:

:
c

c
:
c

c

3
3

3
3

3
1
3

3
Z
)
3

s
o

a
d
d
i
.
l

#
S
F
N
a
m
e
,
d
l

m
o
v
e
.
l

#
M
O
D
E
_
N
E
W
F
I
L
E
,
d
2

j
s
r

_
L
V
O
O
p
e
n
(
a
6
)

;
o
p
e
n

i
t

m
o
v
e
.
l

d
0
f
F
i
l
e
H
a
n
d
l
e

b
e
q

S
a
v
e
F
a
i
l
e
d

;
p
o
i
n
t
e
r

t
o

f
i
l
e

n
a
m
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

w
r
i
t
e

t
h
e

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;
f
i
l
e

h
a
n
d
l
e

m
o
v
e
a
.
l

F
i
l
e
P
T
R
,
a
0

m
o
v
e
.
1

d
0
,
d
l

m
o
v
e
.
l

a
0
,
d
2

a
d
d
i
.
l

#
S
t
o
r
e
d
F
i
l
e
,
d
2

;
p
o
i
n
t
e
r

t
o

d
a
t
a

m
o
v
e
.
l

S
F
L
e
n
g
t
h
(
a
0
)
f
d
3

;
f
i
l
e

l
e
n
g
t
h

j
s
r

J
L
V
O
W
r
i
t
e
(
a
6
)

c
m
p
i
.
l

#
-
l
#
d
0

;
e
r
r
o
r
?

b
e
q

S
a
v
e
F
a
i
l
e
d
l

m
o
v
e
.
l

F
i
l
e
H
a
n
d
l
e
#
d
l

j
s
r

L
V
O
C
l
o
s
e
(
a
6
)

;
c
l
o
s
e

t
h
e

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

n
e
x
t

f
i
l
e

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

m
o
v
e
a
.
l

F
i
l
e
P
T
R
,
a
0

t
s
t
.
l

(
a
0
)

m
o
v
e
a
.
1

(
a
0
)
,
a
0

b
n
e

S
a
v
e
L
o
o
p

;
l
i
n
k

t
o

n
e
x
t

f
i
l
e

g §

S
a
v
e
D
o
n
e
:

m
o
v
e
.
l

D
e
s
t
L
o
c
k
,
d
l

j
s
r

_
L
V
0
U
n
L
o
c
k
(
a
6
)

;
f
r
e
e

m
e
m
o
r
y

u
s
e
d

f
o
r

l
o
c
k

(
D

b
s
r

O
O
N

F
r
e
e
A
l
l

;
f
r
e
e

m
e
m
o
r
y

u
s
e
d

f
o
r

f
i
l
e
s

c
l
r
.
l

F
i
r
s
t
F
i
l
e

r
e
i
n
i
t
i
a
l
i
z
e

l
i
s
t

o
f

f
i
l
e
s

m
o
v
e
.
1

#
F
i
r
s
t
F
i
l
e
,
L
a
s
t
F
i
l
e

r
t
s

*
*
*
*
*
*
*
*
*
*

r
e
s
t
o
r
e

o
r
i
g
i
n
a
l

c
u
r
r
e
n
t

d
i
r
e
c
t
o
r
y

*
*
*
*
*
*
*
*
*
*
*

R
e
s
t
o
r
e
D
i
r
:

m
o
v
e
.
l

0
1
d
D
i
r
,
d
l

m
o
v
e
a
.
l

D
o
s
L
i
b
r
a
r
y
,
a
6

j
s
r

_
_
L
V
O
C
u
r
r
e
n
t
D
i
r
(
a
6
)

r
t
s

*
*
*
*
*
*
*
*
*
*

g
i
v
e

b
a
c
k

a
l
l

t
h
e

a
l
l
o
c
a
t
e
d

m
e
m
o
r
y

*
*
*
*
*
*
*
*
*
*
*

F
r
e
e
A
l
l
:

m
o
v
e
a
.
l

F
i
r
s
t
F
i
l
e
,
a
l

t
s
t
.
l

F
i
r
s
t
F
i
l
e

b
e
q

F
A
D
o
n
e

;
a
n
y
m
o
r
e

t
o

f
r
e
e
?

m
o
v
e
.
l

(
a
l
)
,
F
i
r
s
t
F
i
l
e

;
l
i
n
k

f
o
r
w
a
r
d

m
o
v
e
.
l

4
(
a
l
)
,
d
0

;
l
e
n
g
t
h

o
f

f
i
l
e

a
d
d
i
.
l

#
3
8
,
d
0

;
+

3
8

=
l
e
n
g
t
h

o
f

b
l
o
c
k

m
o
v
e
a
•
1

_
A
b
s
E
x
e
c
B
a
s
e
,
a
6

j
s
r

_
L
V
O
F
r
e
e
M
e
m
(
a
6
)

;
f
r
e
e

t
h
i
s

b
l
o
c
k

b
r
a

F
r
e
e
A
l
l

F
A
D
o
n
e
:

r
t
s

Q I CD 0
0

c
c

c
:
c

n
c

c
c

c

n
)
3

*
*

s
u
b
r
o
u
t
i
n
e

t
o

c
o
p
y

n
a
m
e

t
o

b
u
f
f
e
r

a
n
d

n
u
l
l

t
e
r
m
i
n
a
t
e

*

B
u
f
f
C
o
p
y
:

l
e
a

0
(
a
l
,
d
0
*
L
)
,
a
2

;
f
i
n
d

s
t
o
p
p
i
n
g

a
d
d
r
e
s
s

D
C
L
o
o
p
:

m
o
v
e
.
b

(
a
0
)
+
#
(
a
l
)
+

;
c
o
p
y

d
e
s
t

s
p
e
c

t
o

b
u
f
f
e
r

c
m
p
a
.
l

a
l
,
a
2

b
n
e

D
C
L
o
o
p

c
l
r
.
b

(
a
2
)

r
t
s

n
u
l
l

t
e
r
m
i
n
a
t
e

O V
O

*
*
*
*
*
*
*
*
*

s
u
b
r
o
u
t
i
n
e

t
o
p
e
r
f
o
r
m

I
N
S
T
R

f
u
n
c
t
i
o
n

*
*
*
*
*
*
*
*
*
*

*
a
0
.
L
:

s
t
a
r
t
i
n
g

p
o
s
i
t
i
o
n

*
d
l
.
B
:

s
e
a
r
c
h

f
o
r

t
h
i
s

c
h
a
r
a
c
t
e
r

*
d
2
.
L
:

l
e
n
g
t
h

o
f

s
t
r
i
n
g

t
o

s
e
a
r
c
h

*
d
l
.
L
:

p
o
s
i
t
i
o
n

o
f

f
i
r
s
t

o
c
c
u
r
a
n
c
e

o
f

t
h
i
s

c
h
a
r
a
c
t
e
r

(
o
f
f
s
e
t

f
r
o
m

s
t
a
r
t
)

I
n
S
t
r
i
n
g
:

m
o
v
e
q
.
l

#
l
,
d
0

;
s
t
a
r
t

a
t

c
h
a
r

#
1

I
n
S
t
r
L
o
o
p
:

c
m
p
.
b

-
l
(
a
0
,
d
0
.
L
)
#
d
l

b
e
q

I
n
S
t
r
D
u
n

a
d
d
q
^
l

#
l
,
d
0

c
m
p
.
l

d
2
,
d
0

b
i
s

I
n
S
t
r
L
o
o
p

c
l
r
.
l

d
0

;
c
h
a
r

n
o
t

f
o
u
n
d
:

r
e
t
u
r
n

0
I
n
S
t
r
D
u
n
:

r
t
s

(
D

C
O
V
©

0
0

S
E
C
T
I
O
N

d
a
t
a
,
D
A
T
A

D
O
S
_
N
a
m
e
:

d
c
.
b

'
d
o
s
.
l
i
b
r
a
r
y
'
,
0

B
A
M
s
g
:

d
c
.
b

'
B
a
d
A
r
g
u
m
e
n
t
s
'
,
1
3
,
1
0

B
A
L
e
n

E
Q
U

*
-
B
A
M
s
g

N
o
M
e
m
M
S
G
:

d
c
.
b

'
N
o
t

E
n
o
u
g
h

R
A
M

f
o
r

c
o
p
y
1
,
1
3
,
1
0

N
M
M
L
e
n

E
Q
U

*
-
N
o
M
e
m
M
S
G

F
a
i
l
e
d
M
S
G
:

d
c
.
b

'
U
n
a
b
l
e

t
o
w
r
i
t
e

f
i
l
e
1
,
1
3
,
1
0

F
a
i
l
e
d
L
e
n

E
Q
U

*
-
F
a
i
l
e
d
M
S
G

N
e
w
L
i
n
e
:

d
c
.
b

1
3
,
1
0

S
E
C
T
I
O
N

m
e
m
,
B
S
S

C
N
O
P

0
,
4

;
l
o
n
g
w
o
r
d

a
l
i
g
n

D
i
r
l
t
e
m
:

d
s
.
b

f
i
b
_
S
I
Z
E
O
F

D
o
s
L
i
b
r
a
r
y

d
s
.
l

1
;
h
a
n
d
l
e

f
o
r

D
O
S

l
i
b
r
a
r
y

F
i
r
s
t
F
i
l
e

d
s
.
l

1
;
p
o
i
n
t
e
r

t
o

f
i
r
s
t

S
t
o
r
e
d
F
i
l
e

i
n

l
i
s
t

L
a
s
t
F
i
l
e

d
s
.
l

1
;
p
o
i
n
t
e
r

t
o

l
a
s
t

S
t
o
r
e
d
F
i
l
e

i
n

l
i
s
t

F
i
l
e
P
T
R

d
s
.
l

1
;
p
o
i
n
t
e
r

t
o

c
u
r
r
e
n
t

S
t
o
r
e
d
F
i
l
e

d
u
r
i
n
g

s
a
v
e

I C
D 0
0

(
Z
C

C
C

C
c

c
c

n

d
u

a
3

3
3

3

F
i
l
e
H
a
n
d
l
e

d
s
.
l

1
;
h
a
n
d
l
e

o
f

f
i
l
e

b
e
i
n
g

s
a
v
e
d

D
i
r
L
o
c
k

d
s
.
l

1

D
e
s
t
L
o
c
k

d
s
.
l

1

O
l
d
D
i
r

d
s
.
l

1

S
t
d
O
u
t

d
s
.
l

1

C
m
d
E
n
d

d
s
.
1

1

D
i
r
L
e
n

d
s
.
l

1

D
i
r
P
a
t
h
:

d
s
.
b

8
0

F
i
l
e
L
e
n

d
s
.
l

1

F
i
l
e
S
p
e
c
:

d
s
.
b

8
0

D
e
s
t
L
e
n

d
s
.
l

1

D
e
s
t
S
p
e
c
:

d
s
.
b

8
0

F
N
a
m
e
L
e
n

d
s
.
l

1

E
N
D

;
l
o
c
k

f
o
r

d
i
r
e
c
t
o
r
y

b
e
i
n
g

e
x
a
m
i
n
e
d

;
l
o
c
k

f
o
r

d
e
s
t
i
n
a
t
i
o
n

d
i
r
e
c
t
o
r
y

;
l
o
c
k

f
o
r

o
l
d

d
i
r
e
c
t
o
r
y

;
h
a
n
d
l
e

f
o
r

d
e
f
a
u
l
t

o
u
t
p
u
t

d
e
v
i
c
e

;
l
e
n
g
t
h

o
f
p
a
t
h

s
p
e
c

7
b
u
f
f
e
r

f
o
r

d
i
r
e
c
t
o
r
y

n
a
m
e

7
l
e
n
g
t
h

o
f

f
i
l
e

s
p
e
c

7
b
u
f
f
e
r

f
o
r

f
i
l
e

s
p
e
c

7
l
e
n
g
t
h

o
f

d
e
s
t
i
n
a
t
i
o
n

p
a
t
h

7
b
u
f
f
e
r

f
o
r

d
e
s
t
i
n
a
t
i
o
n

p
a
t
h

7
l
e
n
g
t
h

o
f

f
i
l
e
n
a
m
e

9 C
D

D

O

D

O

a

o

□

a

o

D

O

D

O

a

o

□

a

o

n
Appendix A

1 >

n

n

rr

R

Tl

t

n

1

5

'/

t

(

)

*

t

,

i

/

g

1

Hex

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

Decimal

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Keypress

space bar

SHIFT-1

SHIFT-'

SHIFT-3

SHIFT-4

SHIFT-5

SHIFT-7

SHIFT-9

SHIFT-0

SHIFT-8

SHIFT-=

-

•

/

0

1

2

3

4

5

7

8

9

i

i

■

I

<

>

■

0

A

B

C

Hex

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

Decimal

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

Keypress

2

3

4

5

6

7

8

9

SHIFT-;

;

SHIFT-,

=

SHIFT-.

SHIFT-/

SHIFT-2

SHIFT-A

SHIFT-B

SHIFT-C

403

Appendix A

9

£

F

6

H

I

J

X

1

H

N

0

P

R

S

T

II

V

N

Hex

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

Decimal

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Keypress

SHIFT-D

SHIFT-E

SHIFT-F

SHIFT-G

SHIFT-H

SHIFT-I

SHIFT-J

SHIFT-K

SHIFT-L

SHIFT-M

SHIFT-N

SHIFT-O

SHIFT-P

SHIFT-Q

SHIFT-R

SHIFT-S

SHIFT-T

SHIFT-U

SHIFT-V

SHIFT-W

X

Y

2

[

\

J

A

-

i

a

b

c

tl

e

8

h

i

j

k

Hex

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

Decimal

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Keypress

SHIFT-X

SHIFT-Y

SHIFT-Z

[

\

]

SHIFT-6

SHIFT-

A

B

C

D

E

F

G

H

I

J

K

LJ

LJ
I—-J

U

U

u

u

LJ

"LJ

404 U

Amiga Character Codes

1

"1

—1

n

n

n

H

1

H

n

0

V

q

r

5

t

U

V

»

X

y

z

{

1

>

ii

Hex

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

A0

Decimal

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

124

125

126

127

160

Keypress

L

M

N

O

P

Q

R

S

T

U

V

w

X

Y

Z

SHIFT-[

SHIFT- \

SHIFT-]

SHIFT-'

ALT-space bar

i

4

t

Y

1

■■

@

i

«

-

-

0

t

2

3

l

Hex

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

Bl

B2

B3

B4

Decimal

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Keypress

ALT-SHIFT-1

ALT-SHIFT-'

ALT-SHIFT-3

ALT-SHIFT-4

ALT-SHIFT-5

ALT-SHIFT-7

ALT-'

ALT-SHIFT-9

ALT-SHIFT-0

ALT-SHIFT-8

ALT-SHIFT-=

ALT-,

ALT-

ALT-.

ALT-/

ALT-0

ALT-1

ALT-2

ALT-3

ALT-4

405

Appendix A

M

*
■

I

1

o

»

A

A

A

K

X

«

Hex

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

Cl

C2

C3

C4

C5

C6

C7

C8

Decimal

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Keypress

ALT-5

ALT-6

ALT-7

ALT-8

ALT-9

ALT-SHIFT-;

ALT-;

ALT-SHIFT-,

ALT-=

ALT-SHIFT-.

ALT-SHIFT-/

ALT-SHIFT-2

ALT-SHIFT-A

ALT-SHIFT-B

ALT-SHIFT-C

ALT-SHIFT-D

ALT-SHIFT-E

ALT-SHIFT-F

ALT-SHIFT-G

ALT-SHIFT-H

E

E

E

i

i

1

i

»

tf

Q

6

8

0

u

d

0

U

Hex

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

Decimal

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

L

Keypress ,

ALT-SHIFT-I

ALT-SHIFT-J [__

ALT-SHIFT-K
1
1

ALT-SHIFT-L *"~

ALT-SHIFT-M

ALT-SHIFT-N

ALT-SHIFT-O

ALT-SHIFT-P

ALT-SHIFT-Q

ALT-SHIFT-R

ALT-SHIFT-S

ALT-SHIFT-T

ALT-SHIFT-U

ALT-SHIFT-V

ALT-SHIFT-W
| |

ALT-SHIFT-X

ALT-SHIFT-Y |_J

ALT-SHIFT-Z

ALT-[

ALT- \ j_J

406 U

Amiga Character Codes

n

n

B

A

3

ji

1

£

1

i

I

Hex

DD

DE

DF

EO

El

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

Decimal

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Keypress

ALT-]

ALT-SHIFT-6

ALT-SHIFT-

ALT-'

ALT-A

ALT-B

ALT-C

ALT-D

ALT-E

ALT-F

ALT-G

ALT-H

ALT-I

ALT-J

ALT-K

ALT-L

ALT-M

ALT-N

■■

*

tf

6

6

b

0

ik

<L

ii

♦

y

Hex

EF

F0

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

Decimal

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Keypress

ALT-O

ALT-P

ALT-Q

ALT-R

ALT-S

ALT-T

ALT-U

ALT-V

ALT-W

ALT-X

ALT-Y

ALT-Z

ALT-SHIFT-[

ALT-SHIFT- \

ALT-SHIFT-]

ALT-SHIFT-'

ALT— (on

numeric keypad)

I 1

407

u

o

u

Appendix B

AmigaDOS Command

Summary
-» Sheldon Leemon and Arlan R. Levitan
v

1^s aPPendix is a command-by-command listing of

AmigaDOS. For the most part, its format is self-

explanatory. However, under the "Format" headings

there are several typographical devices used to show you what

is required and what is optional.

• Keywords which are required are in uppercase boldface ro-

man type. ASSIGN and COPY are examples.

• Keywords which are optional are in uppercase boldface ital

ics. LIST is an example.

• Optional entries are enclosed in brackets—[].

• Parameters are in lowercase italics. These denote where

you'll enter something. If required, the parameter is not en

closed in brackets. If optional, it is enclosed in brackets.

Thus,

COPY [FROM fromname] [TO toname] [ALL] [QUIET]

indicates that the keyword COPY is required, that the

keywords FROM, TO, ALL, and QUIET are all optional, and

that the two parameters fromname and toname are also

optional.

ASSIGN
Builds, removes, and lists associations between logical device

^ names and filing system directories, physical devices (DF1:,

I i PRT:, and so on), and disk volume names.

Format

j—£ ASSIGN devname dirname [LIST]

devname The logical device name that you wish to as

sign to a directory, physical device, or disk volume.

jj dirname The directory path, physical device, or disk
volume name that will be represented by references to the

specified devname.

H

409

Appendix B

BREAK
Sets attention flags which interrupt a process as if the user had

pressed specified CTRL-key combinations in an active window.

Format

BREAK tasknum [C] [D] [E] [F] [ALL]

tasknum The number assigned by the system to the

CLI process that you wish to interrupt (for more information,

see the STATUS command).

[q [D] [E] [F] [ALL] The attention flag(s) associated

with the interrupt type that you wish to issue.

CD
Sets or changes the current directory or drive. Also used to

display the current drive and directory.

Format

CD [name]

name The name of the directory path or logical device

name that you wish to make the current directory.

COPY
Copies one or more files or directories from one disk to an

other and as an option lets you give the copies a name dif

ferent from the orginal(s).

COPY can also copy files to the same disk if different

names are used for the copies or if they're copied to different

directories.

Format

COPY [FROM fromname] [TO toname] [ALL] [QUIET]

[FROM fromname] Specifies the directory or file(s) you [_J
want copied. The keyword FROM is not needed as long as the

files are named in the correct order (fromfile, then tofile). If you

change the order (COPY TO tofile FROM fromfile), the key- |l
word FROM is required.

[TO toname] Specifies the TO target (where you want

to put the FROM files you are copying). The keyword TO is j [
necessary only if the TO destination is listed before the FROM

source.

410 u

AmigaDOS Command Summary

[ALL] If you use this keyword, any files, subdirectories,

and the files in the subdirectories located in fromname's direc

tory will be copied to the toname directory.

[QUIET] When copying multiple files (due to the use

of pattern matching or the ALL keyword), the name of the

files being copied and directories created are displayed unless

^i keyword is specified.

DATE
Used to display, change, or store the current setting of the sys

tem date and time. If you haven't bought and connected a

separate clock/calendar accessory, AmigaDOS checks the

boot-up disk for the date of the most recently modified or cre

ated file and sets the system date a bit in advance of that.

Format

DATE [date] [time] [TO or VER name]

date The day of the month, the month, and the year to

which the system date will be set. A specific desired date is

typed in as DD-MM-YY.

time The time of day to which the system clock is to

be set. The time should be entered in the form HH:MM:SS,

representing hours, minutes, and seconds of the desired clock

setting.

[TO or VER name] The TO and VER options allow you

to store the present system date and time to name, which may

be a disk file or a physical device such as a printer.

DELETE
Removes files and directories from the designated drive. If no

f"1 drive is designated, the current default drive is assumed. If no

' directory path is specified, the files and/or directories are de

leted from the current directory. DELETE accepts patterns as

f"! well as specific filenames.

Format

DELETE name,,nnn,[ALL] [Q or QUIET]

- } name The name of the file(s) or directory entry(s) to be

removed. Up to ten file or directory names may be entered

p-[within a single DELETE command.

411

Appendix B

[ALL] When this keyword is used, DELETE erases all

files and subdirectories contained within the directory as well

as the directory itself.

[QUIET] Suppresses the status reports that are issued

as each file's deletion is attempted during a DELETE which

erases more than one file.

DIR
Lists the file and subdirectories with the present directory or

another specified directory. The list is normally grouped into a

list of subdirectories, followed by a sorted list of files. Options

available for use with this command allow you to use a special

interactive mode and/or ask for an extended listing which lists

the contents of subdirectories as well.

Format

DIR dirname [OPT A or OPT I or OPT AI]

dirname The name of the directory or logical device

whose contents you want displayed. An AmigaDOS pattern

may also be used to display multiple directories. If no direc

tory or AmigaDOS pattern is specified, the current directory is

displayed.

[OPT A or OPT I or OPT AI] When the OPT A key

word is used, the display includes the contents of any

subdirectories residing in the directory being listed. This lets

you see everything in a directory with a single command.

OPT I invokes the special interactive mode of DIR. In

interactive mode your system pauses as each subdirectory en

try or file is listed, displaying a question mark to the right of

the entry. When in interactive mode, you may use any of the

following subcommands: > f

Key(s) Function ^
<RETURN> Doesn't do anything with the current item. Goes

on to the next item in the DIR listing. i I

T <RETURN> Types (lists) the file. To pause the display while <—'
listing, hit the space bar or any key. To resume

after pausing, press the BACK SPACE key or i (

CTRL-X. When you want to abandon the listing of 1 1
the file contents before the complete file has been

listed, type CTRL-C. You'll be returned to the

interactive mode. T is an invalid option for J j
subdirectories.

412 u

n
AmigaDOS Command Summary

n

r—j DEL <RETURN> Erases the file. Subdirectories may be erased only

' I if they're empty.
E <RETURN> Enters a subdirectory. Displays the files and

p—i subdirectories within a subdirectory. The listing

1 ! remains in interactive mode. Not a valid option
for a file.

I—» B <ENTER> Goes back to the previous DIR item, still in inter-

i \ active mode. This lets you back up in case you pass
by an item you later decide you want to act on.

Q <ENTER> Quit. Abandons the DIR listing and goes back to

the CLI prompt.

OPT AI combines both the A and I options, resulting in

an interactive listing of all files and directories within the

specified directory.

DISKCOPY
Makes duplicates of the entire contents of 3V2-inch disks.

When you use DISKCOPY, any information previously stored

on the destination disk is erased.

Format

DISKCOPY [FROM] source drive TO destination drive [NAME

volname]

[FROM] source drive The name of the drive in which

the disk you wish to copy will be mounted.

TO destination drive The TO keyword must be used

with the DISKCOPY command. This is the name of the drive

in which the disk to be copied to will be mounted.

[NAME volname] The volume name that will be given

to the copy of the original disk.

^ ECHO
ECHO is used in command files to display a message on the

J—] system screen. This is most often helpful when the RUN com

mand is being used to carry out a background operation

whose completion would otherwise not be readily apparent to

r~! the user.

H

H 413

Appendix B

u

Format i i

ECHO string U
string The message to be written to the currently active

output stream. If it contains spaces, string should be contained j [
within quotation marks.

ED LJ
The ED command is used to edit the contents of a file using

AmigaDOS's full-screen editor.

Format

ED [FROM] name [SIZE] n

[FROM] name The name of the AmigaDOS file which

you wish to edit using the full-screen editor. If name is the first

argument in an ED command statement, the FROM keyword

need not be specified.

[SIZE] n Used to set the size of the editor's workspace.

If n is the second argument in an ED command statement, the

SIZE keyword need not be given.

EDIT

The EDIT command is used to edit the contents of a file using

AmigaDOS's line editor.

Format

EDIT [FROM] fromname [TO] toname [WITH] withname [VER]

vername [OPT option]

[FROM] fromname The name of the file whose con

tents will be edited. If fromname is the first argument in the

EDIT command, the FROM keyword is optional. EDIT requires

fromname, and it must already exist. j |
[TO] toname The name of the file to which the edited

text is saved when a Q or W subcommand is executed from

within the line editor. If toname is the second argument in an j [
EDIT command (following fromname), the TO keyword is

optional.

[WITH] withname Lets you specify a file which will be J I
used as input to the line editor's command processor. The

contents of withname should be a series of valid line editor

subcommands. If withname is the third argument in an EDIT | I
command (following fromname and toname), the WITH key

word is optional.

414 LJ

AmigaDOS Command Summary

n

ri [VER] vername Lets you specify where you want mes-
1 sages and verification output produced by the line editor sent;

vername may be a file or logical device. If vername is the

p"| fourth argument in an EDIT command (following fromname,

toname, and withname), the VER keyword is optional.

[OPT Pn or OPT Wn or OPT PnWn] These options let

[—] you set the maximum line length (Wn) and number of lines

(Pn) that EDIT will keep memory resident. The default maxi

mum line length is 120. The default number of lines is 40.

Multiplying the value for Pn by Yin yields the amount of

memory that EDIT reserves as a temporary work area. If either

Pn or Wn is to be specified, the OPT keyword must be used.

ENDCLI
ENDCLI terminates the current Command Line Interpreter.

Format

ENDCLI

EXECUTE
The EXECUTE command is used to invoke AmigaDOS com

mand sequence files. Command sequence files contain a

prestored series of commands which are executed sequentially

once the command file has been started by EXECUTE.

Format

EXECUTE name [argl argl,,,,]

name The name of the command sequence file to be

invoked; name is a required parameter and may be any valid

AmigaDOS filename.

p-[[wgl M%l,,,i\ Arguments to be passed to the command

' * sequence file. Arguments may be any valid AmigaDOS string

(including filenames and logical and physical devices).

FAILAT
The FAILAT command is used within command sequence files

{~} and RUN command statements to alter the failure level
threshold of the system.

When AmigaDOS commands encounter an error upon

["""I execution, a numeric return code is set (usually 5, 10, or 20).
The higher the return code, the greater the severity of the er

ror. If a return code which exceeds the current failure level

n

Appendix B

u

threshold is encountered during execution of a command se- I j

quence file or multiple command task set up by a RUN, execu

tion stops. The default failure level threshold of AmigaDOS

command sequence files and RUN background tasks is 10. j j

Format

FAILATn , (

n The new failure level threshold. If n is not specified, *—'
FAILAT displays the current failure level threshold.

FAULT
The FAULT command provides English-language explanations

for many of the error codes which AmigaDOS generates.

Format

FAULT n,,,,,,,,,

w,,,,,,,,,, The error number (fault code) which you want

explained. Up to ten error numbers may be specified within

one FAULT command. If no information is available on the er

ror, the system simply repeats the error number.

FILENOTE

FILENOTE lets you store comments about AmigaDOS files.

Any comments stored using FILENOTE remain distinct and

separate from the actual contents of the file. Comments stored

using FILENOTE may be viewed by using the LIST command.

Format

FILENOTE [FILE] filename [COMMENT] string

[FILE] filename The name of the file that is to have a

comment attached. j i

[COMMENT] string Defines the comment assigned to l—'
the specified file. The COMMENT keyword is optional if string

is the second argument of a FILENOTE statement (following j j

filename); string, the comment to be attached to the file, can be '—'
up to 80 characters in length and must be enclosed in quota

tion marks if it contains spaces. i i

FORMAT
Initializes a floppy disk as a blank AmigaDOS disk. Caution: If I J

a used disk is formatted, all information on it will be erased. —'

416 U

AmigaDOS Command Summary

P| Format

FORMAT DRIVE drivename NAME string

n DRIVE drivename The disk drive in which you will in

sert the disk that's to be formatted. The DRIVE keyword must

be used. The valid values for drivename are dfO:, dfl:, df2:,

,—] and df3:.

L * NAME string The volume name assigned to the

formatted disk. The NAME keyword is mandatory. String is

the name you want to call the disk, and it must also be speci

fied; string can be up to 30 characters long and must be en

closed in quotation marks if it contains spaces.

IF-ELSE-ENDIF

The IF command and its associates (the ELSE and ENDIF

commands) are used within AmigaDOS command sequence

files to carry out groups of commands within the command se

quence file if one or more conditions are met. If an IF state

ment is satisfied, the commands following the statement are

executed sequentially until an ELSE or ENDIF statement is en

countered. If the IF conditional is not satisfied and an ELSE

statement is encountered before an ENDIF, the commands be

tween ELSE and ENDIF are executed.

Format

IF [NOT] [WARN] [ERROR] [FAIL] [<stringl> EQ <string2>]

[EXISTS name]

[NOT] Reverses the result of the IF test. If any of the

conditionals is true and NOT is also used, the IF statement

will not be satisfied. If all the other specified conditionals are

—- false and NOT is used, the IF statement will be satisfied.

I t [WARN] Is satisfied (true) if the return code of the pre
vious command is greater than or equal to 5.

I—, [ERROR] Is satisfied (true) if the return code of the

I I previous command is greater than or equal to 10.
[FAIL] Is satisfied (true) if the return code of the pre-

— vious command is greater than or equal to 20.

I I [<stringl> EQ <string2>] Is satisfied (true) if stringl is
identical to string!. Case is ignored.

I , [EXISTS name] Is satisfied if name exists; name may be

I I any AmigaDOS file or directory.

n 417

LJ
Appendix B

LJ

INFO !j
Displays information about disk volumes and the system RAM

disk.

Format | (
INFO

INSTALL U
The INSTALL command makes a formatted disk capable of a

minimal startup of the AmigaDOS environment (assigning

SYS: to the booted disk).

Format

INSTALL [DRIVE] drive

[DRIVE] drive The disk drive in which the disk you

wish to make bootable resides. The DRIVE keyword is op

tional. Valid values for drive are dfO:, dfl:, df2:, and df3:.

JOIN
JOIN lets you merge the contents of up to 15 files into one

file. The files are merged in the order given to JOIN.

Format

JOIN namel name! ,„„„„„„ AS destname

namel namel „„„„,„„ The names of the files you want

merged together. A minimum of 2 files must be given, with a

space between each name. Up to 15 files may be merged by a

single JOIN command.

AS destname The name of the file that the contents of

all files preceding the AS keyword (which is required) will be

merged into; destname can be a new or old file, but it cannot «

be any of the files which precede the AS keyword. If destname I t
already exists, its previous contents will be replaced.

LAB U
LAB is used within command sequence files to define a loca

tion in the command file that may be jumped to by the SKIP »- \

command. '—}

LJ

418 U

AmigaDOS Command Summary

Format

LAB

f—>- sfrmg A "signpost" that can be used by a SKIP com-

' V mand to jump to the spot in the command file where a spe

cific LAB statement is located. Once jumped to, command file

r-y- execution continues with the commands following the LAB

i V statement.

LIST
Displays the name, size, protection status, time and date of

creation, and the Amiga filing system block numbers of (a) a

directory, (b) a selected portion of a directory, or (c) a single

file. LIST also displays any comments attached to a file by a

FILENOTE command.

Format

LIST listname [P or PAT pattern] [KEYS] [DATES] [NODATES]

[TO device or filename] [S string] [SINCE date] [UPTO date]

[QUICK]

listname Can be the device name or volume name of a

disk, a directory, or the name of a specific file.

[P or PAT pattern] When you use this option, the P or

PAT keyword must precede the pattern. A pattern allows you

to specify a number of files, each of which has some common

characteristic.

[KEYS] Specifying this option includes the block num

ber associated with eacfr file and directory displayed.

[DATES] Includes file and directory creation date and

time information in the LIST display.

(—) [NODATES] Instructs LIST to suppress the display of

r * file and directory creation date and time information.

[TO device or filename] Selects where the output of

— LIST is to be sent; device or filename may be any valid

r [AmigaDOS filename or a logical device known to the system.

If a file of the same name already exists, the existing file will

j_. be deleted and a new file with the same name is created.

I I [S string] To use this option, the S keyword must
precede string, which can be any character string. LIST then

p. displays only those filenames or directories which include

I 1 string. If spaces are included in string, quotation marks must
enclose it.

1 ^ 419

Appendix B

u

[SINCE date] Displays information only for those files j j

and directories created or modified on or after date; date may

be specified in the format DD-MMM-YY, or as an indirect ref

erence of YESTERDAY, TODAY, or TOMORROW. The days of } j

the past week, SUNDAY through SATURDAY, can also be '—'
used as date.

[UPTO date] Instructs LIST to display information only \ /

for those files and directories created or modified on or before *—'
date, which is subject to the same restrictions as the SINCE

keyword.

[QUICK] Instructs LIST to display only file and direc

tory names. However, if the DATES and/or KEYS keywords

are specified as well, LIST displays file and directory names

along with the information associated with DATES and/or

KEYS.

MAKEDIR
MAKEDIR creates directory entries, allowing you to partition

an AmigaDOS disk into a type of multileveled filing cabinet.

Format

MAKEDIR name

name The name of the directory to be created; name

must be specified. MAKEDIR fails if name is the name of a file

or subdirectory which already exists in the "parent" directory

(the next highest directory in the hierarchy). MAKEDIR also

fails if a nonexistent pathname is specified.

NEWCLI
NEWCLI opens a new CLI window on the system display.

Format Lj
NEWCLI [COAT: hpos/vpos/width/height/windowtitle]

[CON: hpos/vpos/width/height/windowtitle] CON: J J

lets you specify the size, position, and title of the new CLI —4
window. CON: is required if any of the following parameters

is specified. j >

• hpos is the horizontal position of the top left corner of the

window (expressed as the number of pixels in from the left

edge of the screen). If a value for hpos is omitted, it's as- [I
sumed to be zero.

420 LJ

n
AmigaDOS Command Summary

j~] • vpos is the vertical position of the top left corner of the win
dow (expressed as the number of pixels down from the top

edge of the screen). If a value for vpos is omitted, it's as-

|~| sumed to be zero.
• width and height, which must be specified, give the size of

the window in pixels. The maximum size for a CLI window

P"l is the screen size, 640 X 200 pixels. The minimum is 90 X
25 pixels.

• windowtitle, which is optional, allows you to enter the text of

a title to appear in the title bar. If you want to set

windowtitle, all preceding parameters must also be set.

PROMPT
The PROMPT command changes the CLI prompt for the cur

rently active CLI. The default prompt for any given CLI is n>,

where n is the task number associated with that CLI.

Format

PROMPT prompt

prompt The string you want to substitute for the active

CLI's prompt. If no value for prompt is specified, the CLI

prompt will be changed to >; prompt may be a maximum of

59 characters. If it contains spaces, the entire prompt must be

enclosed by double quotation marks.

PROTECT
PROTECT allows you to alter the attributes of AmigaDOS files

and directory entries. There are protection flags associated

with each of four attributes. The flags are r, w, e, and d; they

(tell the system if the file or directory entry may be read (r),

) v written over (w), executed (e), or deleted (d).

It is important to note that in the initial releases of

AmigaDOS (1.0 and 1.1), only the Delete flag works. You can set

I j the others, but DOS does not act on those settings.

Format

r—j PROTECT [FILE] name [FLAGS] [R][W][E][D]

[FILE] name The name of the file whose protection

flags are to be modified; name, which is mandatory, may be

[""] any valid AmigaDOS filename or directory name. The FILE
keyword is optional.

n
421

u
Appendix B

u

[FLAGS] [R][W][E][D] The protection flags which will) /

be turned on by PROTECT. The FLAGS keyword does not —'
have to be entered—it's optional. The protection flags to be

turned on must be specified as a single string in any desired I I

order. Remember that if a flag is set to on, the operation asso- —'
ciated with the flag may be carried out. If no flags are speci

fied, all flags are turned off. These are the operations J j

associated with each flag:

R Read

W Write

E Execute

D Delete

QUIT
The QUIT command is used within command sequence files to

exit the command sequence file and, optionally, to set the re

turn code.

Format

QUIT [returncode]

returncode The return code which is reported when the

command sequence file is terminated by a QUIT. If returncode

is nonzero, the message

quit failed returncode returncode

is displayed on the screen, with the number specified sub

stituted for returncode. If returncode is set to zero or is not

specified, no message is displayed on termination of the com

mand sequence file by QUIT.

RELABEL . ,
RELABEL lets you change the volume name associated with a (—>
floppy disk.

Note: RELABEL does not prompt you for the disk to be in- i i

serted. If you have a single-drive system and insert the disk LJ
you wish to relabel ahead of time and then issue the RE

LABEL command, you'll be prompted to insert the disk with i)

the command library on it in any disk drive. Once you do so, I—I
RELABEL promptly renames the volume with the command

library on it. The following procedure will work for single-) j

drive system owners. 1—>

I J

422 <—'

AmigaDOS Command Summary

n

pi COPY :C/RELABEL TO RAM:

1 * RUN RAM:RELABEL dfO: NewName

Format

PI RELABEL [DRIVE] drive [NAME] name

[DRIVE] drive The disk drive in which the disk to be

(—) relabeled is mounted. The DRIVE keyword is optional if drive

I. \- precedes the volume name in the RELABEL statement.

[NAME] name The volume name which will replace

whatever name is currently associated with the target disk;

name may be up to 30 characters long. If the volume name

contains spaces, quotation marks must enclose it. The NAME

keyword is optional if name follows drive.

Note: Under AmigaDOS version 1.0, RELABEL fails if no

drive is specified or if name is omitted.

RENAME
RENAME allows you to change the name of AmigaDOS files

and directories. AmigaDOS's RENAME function also lets you

move files from one directory to another on the same disk and

reorganize directory structures at will.

Format

RENAME [FROM] fromname [TO or AS] toname

[FROM] fromname The file or directory that's to be re

named. The FROM keyword is not required if fromname is the

first argument of a RENAME statement.

[TO or AS] toname The new name to be given to the

file or directory specified by fromname. The TO and AS

keywords may be used interchangeably and are optional if

n toname is the second argument of a RENAME statement. If

fromname already exists, RENAME will fail.

Note: fromname and toname must reside on the same disk

n volume.

RENAME's ability to manipulate AmigaDOS directory

structures makes this one of the most powerful AmigaDOS

n commands and, consequently, a command that should be used

with great care. An entire directory, including all files,

subdirectories, and files within its subdirectories may be

j—, moved to another location in the volume's directory tree struc-

I 1 ture with a single RENAME.

' ' 423

A A. „ U
Appendix B

u

RUN r
The RUN command may be used to create a system CLI task —'

which executes in the Amiga's background (in other words,

the task doesn't present you with an interactive CLI window).) I

RUN allows multiple AmigaDOS commands to be executed in 1—*
sequence. Once all commands given to a RUN statement are

executed, the background task disappears. j j

Format

RUN command+command,,,,,,,

commands-command,,,,,,, The AmigaDOS command

you want executed in the background. More than one com

mand may be strung together in a RUN sequence.

SAY
The SAY command is used to invoke the Amiga's built-in

speech synthesis capabilities. The quality and speed of speech

may be controlled by the user. SAY has two modes—inter

active and direct.

In direct mode, the text to be spoken or an AmigaDOS file

containing the text to be spoken is specified on the command

line with the keyword SAY.

Interactive mode is entered by typing SAY by itself. Two

windows will appear on the system screen.

The Phoneme window initially displays the option codes

which may be used to control the quality and speed of the

synthesized voice. As text is spoken, the phoneme codes that

SAY uses are displayed.

The Input window is where text you wish spoken is dis

played as it's typed in. The text is passed to SAY when the

RETURN key is pressed. The interactive mode is exited by j \

typing a line consisting only of a RETURN keystroke. '—'
The SAY command was added to AmigaDOS in release 1.1.

Format j j
SAY [options] [text],,,,,,,,,,

[options] Controls the quality, pitch, speed, and source i ,

of the text to be spoken. SAY identifies an option by a leading I—'
dash (-). These are valid options for SAY:

U

424 U

AmigaDOS Command Summary

r—! Option Function

' -f Use female voice.

-m Use male voice.

r--^ -n Use natural voice.

i I -r Use robot voice (monotone).
-p### Set pitch of voice to ### (valid values are 65-320).

>r_ -s### Set speech rate to ### (valid values are 40-400).

j \ -x file Say contents of file. The -x option may not be invoked in

the interactive mode of SAY; file must be an AmigaDOS

file in the current directory and may not contain any

spaces or be enclosed in parentheses.

Multiple options, separated by spaces, may be specified at

one time.

[text] The text to be spoken.

SEARCH
SEARCH lets you scan AmigaDOS files for a specified string

of characters. You may SEARCH a single file, all files match

ing an AmigaDOS pattern, all files within a directory, and, op

tionally, all files within a directory's subdirectories.

Format

SEARCH [FROM] name [SEARCH] string [ALL]

[FROM] name The file or directory that you want

searched; name may also be an AmigaDOS pattern. If name is

the first argument in the SEARCH command, the FROM key

word is optional.

[SEARCH] string The text string that will be searched

for. If string is the second argument in the SEARCH com

mand, this second SEARCH keyword is optional. If string con-

tains any spaces, it must be enclosed in quotation marks.

f \ [ALL] If the ALL keyword is specified and name is an
AmigaDOS directory, all files within the directory and its

t subdirectories are searched.

/ (
; (Semicolon)

RThe semicolon (;) command allows the insertion of informa

tional comments in command sequence files.

Format

j—? ; [comment]

[comment] May be any text string, up to 254 characters

in length (if the ; is the first character of a line).

f [■ 425

Appendix B

SKIP
The SKIP command is used within command sequence files to

jump to a specified label. If a SKIP is executed, command

execution continues immediately after the label which was

skipped to.

Format

SKIP [string]

[string] The string attached to a LAB command which

SKIP searches for in the currently executing command file.

The search starts at the command following SKIP and contin

ues downward toward the end of the command file. If the

matching LAB string command precedes the SKIP command,

SKIP will not find it, and the command file terminates with an

error.

If string is not specified, the first LAB command following

SKIP will be skipped to.

SORT
SORT performs an alphabetic sort on contents of an

AmigaDOS text file. SORT is line-oriented.

Format

SORT [FROM] fromname [TO] toname [COLSTART n]

[FROM] fromname The name of the AmigaDOS file

whose contents are to be sorted. If fromname is the first argu

ment of a SORT command, the FROM keyword is optional.

[TO] toname The name of the AmigaDOS file or logical

device that the sorted lines from fromname will be sent to. If

toname is the second argument of a SORT command, the TO

keyword is optional; toname must be different from fromname t \

or the SORT will fail. LJ
[COLSTART n] Lets you specify that SORT will com

pare lines beginning with the nth character in each line. If n is i j

given, the COLSTART keyword must be used. If COLSTART n <—>

has been specified and lines are found to be equal, SORT at

tempts a secondary sort of the equal lines, starting with the i /

first character of each line. '—'

STACK j ;
The STACK command may be used to display or set aside the l—'
amount of stack space for the currently active CLI.

426 U

AmigaDOS Command Summary

p*j Format

STACK [n]

f , [n] The amount of space, in bytes of memory, that you

j j wish to assign as stack space for the currently active CLI. If n

is omitted, the current stack size is displayed.

H STATUS
The STATUS command displays system information about ac

tive tasks.

Format

STATUS [tasknum] [FULL] [TCB] [SEGS] [CLI or ALL]

tasknum The number of the task which STATUS is to

report on. If tasknum is not specified, all active tasks are

reported.

[FULL] Displays all the information normally reported

by STATUS if the TCB, SEGS, and ALL keywords were all

specified. The FULL keyword is optional.

[TCB] Causes STATUS to display information dealing

with the stack size, global vector size, and priority of each ac

tive task known to the system. The TCB keyword is optional.

[SEGS] Causes STATUS to display each active task's

segment list section names. The SEGS keyword is optional.

[CLI or ALL] Specifying either CLI or ALL causes

STATUS to report on all currently active CLI tasks and display

the section names of all commands currently loaded within

the CLI. The CLI and ALL keywords are interchangeable and
optional.

Jrn TYPE

j \ The TYPE command lets you output the contents of any
AmigaDOS file to the screen, a disk file, or any AmigaDOS

i—, physical device.

^ (Format
TYPE [FROM] fromname [[TO] toname] [OPT N or OPT H]

ft [FROM] fromname The name of the file you want
TYPEd; fromname is required and may be any valid

, , AmigaDOS filename. The FROM keyword is optional and

need not be specified if fromname immediately follows TYPE.

[[TO] toname] The name of the file or device you want

the output of the TYPE operation sent to. The TO keyword is

427

*• « LJ
Appendix B

u

optional if the first argument of TYPE is fromname and the j {

second argument is toname. If no destination for TYPE'S out- *—J

put is specified, the output is displayed on the screen.

[OPT N or OPT H\ Adding OPT N to a TYPE com- j {

mand instructs the system to precede each line output by '—l
TYPE with a line number. AmigaDOS treats any number of

characters within a file ending with a linefeed as one line. i ;

Specifying OPT H instructs TYPE to produce a formatted LJ
hexadecimal dump of the fromname file's contents. The N and

H options are mutually exclusive—only one may be specified.

If either option is desired, the OPT keyword must be used.

WAIT
WAIT can be used to put a task in a state of suspended anima

tion for a user-definable period of time or until a specified

time of day. WAIT can be used in command sequence files or

in conjunction with a RUN command.

Format

WAIT [n] [SEC or SECS] [MIN or MINS] [UNTIL time]

[n] [SEC or SECS] [MIN or MINS] The amount of time,

in minutes or seconds, that the system will wait. If n is omit

ted and the SEC or MIN keyword is specified, n defaults to 1.

Using the SEC or SECS keyword tells AmigaDOS to wait n

seconds, while using MIN or MINS causes the CLI task to

wait n minutes before continuing. SEC/SECS and MIN/MINS

keywords are optional. If they're omitted, the default unit of

time is seconds.

[UNTIL time] The time of day you want the current

process to wait until before continuing. If time is specified, the

UNTIL keyword is required; time must be stated in the format

HHMM, where HH and MM are the hour and minute of the

day in military (24-hour) time. If UNTIL time is used, the sys

tem will "wake up" sometime between HH:MM:00 and

HH:MM:59.

WHY
WHY can be used to obtain additional information about fail

ing commands.

Format

WHY

428

n
Appendix 0

^ Frequency Values for

~ Equal-Tempered
n

n

n

n

n

The following frequency numbers approximate the 88

notes on a piano. These values can be used as fre

quency parameters for SOUND commands in

AmigaBASIC or as the basis for a pitch table in machine lan

guage programs. Each number has been rounded off to three

decimal places. You can obtain more precise values by gen

erating a frequency table mathematically with an AmigaBASIC

routine similar to the one illustrated in Chapter 6.

Note

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Octave

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

Pitch

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

6

C

C#

D

D#

E

F

F#

G

G#

Frequency

Number

27.500

29.135

30.868

32.703

34.648

36.708

38.891

41.203

43.654

46.249

48.999

51.913

55.000

58.270

61.735

65.406

69.296

73.416

77.782

82.407

87.307

92.499

97.999

103.826

429

Appendix C

Note

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Octave

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

Pitch

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

Frequency

Number

110.000

116.541

123.471

130.813

138.591

146.832

155.563

164.814

174.614

184.997

195.998

207.652

220.000

233.082

246.942

261.626

277.183

293.665

311.127

329.628

349.228

369.994

391.995

415.305

440.000

466.164

493.883

523.251

554.365

587.330

622.254

659.255

698.456

739.989

783.991

830.609

430

U

LJ

LJ

U

Frequency Values

R

n

Frequency

Note Octave Pitch Number

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

C#

D

D#

E

F

F#

G

G#

A

A#

B

C

880.000

932.328

987.767

1046.502

1108.731

1174.659

1244.508

1318.510

1396.913

1479.978

1567.982

1661.219

1760.000

1864.655

1975.533

2093.005

2217.461

2349.318

2489.016

2637.020

2793.826

2959.955

3135.963

3322.438

3520.000

3729.310

3951.066

4186.009

D

O

D

O

a

o

□

a

o

n
Appendix D

Lattice C Compiler

Flags

The Lattice C compiler is in two passes, LCI and LC2,

which have the following options.

LCI

-b Forces all static and external data to be addressing using

a base register (a5 or a6). This limits the size of static

data objects to 64K. It must be used if you want to pro

duce position-independent code.

-c Precedes the following compatibility control flags. Any

number of these flags may follow the -c, but there must

be no spaces.

c—Allows comments to be nested. The current default

does not allow nesting of comments,

d—Allows the dollar sign ($) to be used in identifiers,

m—Allows the use of multiple character constants,

s—Forces the compiler to produce only one copy of

identical string constants. The current default is to pro

duce unique copies of each string constant,

u—Causes all char declarations to be interpreted as un

signed char.

w—Turns off warnings generated by return statements

that do not specify a return value from within functions

declared as ints.

n-d Forces debugging information to be included in the

quad file generated by the first pass compiler.

-dSYMBOL Allows the identifier SYMBOL to be defined during

I—} compile. To set a value to the symbol, use

[I -dSYMBOL=something.

-iPREFIX Tells the compiler where to find the include files. You

r^ may have up to four of these. This PREFIX is appended

/ \ to the beginning of all include file requests.

-1 Makes the compiler align data to addresses evenly divis-
^ ible by four.

I I -n Causes the compiler to use only the first 8 characters of
the identifiers to distinguish them. Generally the com-

piler uses the first 31 characters.

H
433

Appendix D

-oNAME

"P

-u

-X

LC2

-in

-oNAME

-r

-v

Changes the name of the output file to NAME.Q.

Makes the compiler produce preprocessor output. The

output will be in the file with the extension .p. The .q

file will not be produced.

Cancels all automatic symbol definitions for this

compilation.

Forces the compiler to interpret all external declarations

as external reference rather than external definitions. In

other words, the compiler normally allocates storage for

an external variable and makes it publicly accessible.

This option tells the compiler to assume that some other

object module has already allocated the space and that

these externs are references to them.

Specifies which address variable should be used as the

stack frame pointer—a5 or a6; n is either 5 or 6. If -b is

used in LCI, whichever register is not used for the stack

frame pointer will be used for the addressing of static

and external data structures.

Changes the name of the output file to NAME.o.

Forces all function calls to be made relative to the PC.

This forces the range of function calls to be ±32K. This

must be used if position-independent code is desired.

Adds a section name to this object module. ALink will

merge all modules with the same name into one load

unit.

This flag tells the compiler not to include stack checking

in the code for entering functions. This has several ef

fects: First, it improves the performance of your C pro

gram by around 20 percent (depending on the number

of function calls your program makes). It also reduces

the size of your code 14 bytes per function (since the

stack-checking code is eliminated). However, it also

means the runtime package may not detect a stack er

ror. Once you have debugged a program, it's probably a

good idea to use this flag.

u

LI

U

LJ

434

n

Appendix E

Selected Intuition

Routines

r-i AddGadget()
' ■ Adds a gadget to the gadget list of a window or screen.

SHORT AddGadget(Pointer, Gadget, Position);

Registers aO—Pointer; al—Gadget; dO—Position

Pointer Pointer to the Window or Screen structure to which the

gadget is to be added.

Gadget Pointer to the Gadget structure which is being added to

the gadget list.

Position Integer position in the list for the new gadget. If this is

zero, the gadget is added to the head of the list. If po

sition is one, the gadget is inserted between the first and

second gadget, and so on. Using a position greater than

the number of gadgets in the list inserts the new gadget at

the end of the list.

See also RemoveGadget().

AllocRemember()
Allocates a block of memory and a Remember structure, and

links the Remember structure into the list of allocated blocks.

APTR AllocRemember(RememberKey, Size, Flags);

Registers aO—RememberKey; dO—Size; dl—Flags

RememberKey An address to a pointer to a Remember structure.

Before the first call to AllocRemember, the

RememberKey should be set to NULL.

-^ Size The number of bytes to allocate.

] i Flags The specifications for the memory to be allocated.
These are the same as the EXEC function

AllocMem(); please refer to AllocMem documenta

ry tion in the ROM Kernel Manual for more details.
i \

Note: AllocRemember() calls the EXEC function AllocMem().

rmm^ AllocRemember() will return a NULL if the memory could not

£ S be allocated. Otherwise, it returns a pointer to the block of

memory that was allocated.

r—j See also FreeRemember(); AllocMem() in Appendix F.

435

Appendix E

ClearMenuStrip() jj
Clears the menu strip from a window. ^

ClearMenuStrip(Window);

Registers aO—Window [_J
Window The pointer to the window which has the menu you are

removing.

See also SetMenuStrip(). j^J

CloseScreen()
Closes a screen.

CloseScreen(Screen);

Registers aO—Screen

Screen A pointer to the Screen structure of the screen you want
to close.

Note: Everything which is rendered in the screen must be shut

down before the screen is closed.

See also OpenScreen().

CloseWindow()
Closes a window.

CloseWindow(Window);

Registers aO—Window

Window A pointer to the Window structure you want to close.

Note: If this window has menus, then you must ClearMenu-

Strip() on the window before closing the window. In addition,

the menu cannot be displayed on the screen when Close-

Window() is called.

See also OpenWindow().

FreeRemember() Uy
Frees memory that was allocated using AllocRemember() to

the system. \ ?

FreeRemember(RememberKey, Flag); ^—*
Registers aO—RememberKey; dO—Flag

RememberKey Address of the pointer to the Remember structure i ;

used with AllocRemember(). *—^
Flag If a Boolean True, free up both the Remember struc

tures and the associated allocated memory blocks. If * >

False, free up only the Remember structures and 1 !>
leave the allocated memory blocks intact.

See also AllocRemember(). j f

436 ^

Selected Intuition Routines

n

i S

ItemAddress()
Returns the address of the specified Menultem.

struct Menultem *ItemAddress(MenuStrip, MenuNumber);

Registers aO—MenuStrip; dO—MenuNumber

MenuStrip A pointer to the first Menu structure in the menu

strip holding the Menultem you are trying to find.

MenuNumber The value returned in a MENUPICK IntuiMessage. If

this is MENUNULL, ItemAddress returns NULL.

ModifyIDCMP()
Changes the state of a window's IDCMP flags.

Modi£yIDCMP(Window, NewIDCMPFlags);

Registers aO—Window; dO—NewIDCMPFlags

Window A pointer to the Window structure holding the

IDCMP you want to change.

NewIDCMPFlags The new flag bits which you want to use.

Note: If you open a window with IDCMPFlags = NULL, the

window will be opened with no IDCMP. If you call

ModifyIDCMP() with flags on that window, the ports will be

opened for you. The opposite if also true; if you start with

IDCMP flags and call ModifyIDCMP() with NewIDCMPFlags

= NULL, then the ports will be closed.

ModifyPropO
Changes the parameters of a proportional gadget.

ModifyProp(Gadget, Pointer, Requester, Flags, HorizPot, VertPot,

HorizBody, VertBody);

Registers

Gadget

Pointer

Requester

Flags, HorizPot,

VertPot, HorizBody,

VertBody

aO—Gadget; al—Pointer; a2—Requester; dO—

Flags; dl—HorizPot; d2—VertPot; d3—

HorizBody; d4—VertBody

The pointer to the Gadget structure we are

going to modify.

A pointer to the graphics element the gadget

appears in (in general, this would be a pointer

to a Window structure).

Points to a Requester structure if this is a re

quester gadget. Otherwise, set this to NULL.

The same as in the Proplnfo structure.

437

LJ
Appendix E

~ u
OffGadgetO]
Disables a gadget. ^

OffGadget(Gadget, Pointer, Requester);

Registers aO—Gadget; al—Pointer; a2—Requester [j
Gadget Points to the Gadget structure which represents the gad

get we are disabling.

Pointer A pointer to the graphics element the gadget appears in (a I >

pointer to a Window structure if this gadget appears in a ^
window).

Requester Points to a Requester structure if this is a requester gad

get. Otherwise, set this to NULL.

Note: When a gadget is disabled, the gadget is ghosted, the

GADGDISABLED flag is set, and the user is no longer allowed

to select the gadget. If you are modifying a requester gadget,

the requester must be displayed.

See also OnGadget().

OffMenuC)
Disables a particular menu or menu item.

OffMenu(Window, MenuNumber);

Registers aO—Window; dO—MenuNumber

Window Pointer to the Window structure of the window to

which the menu belongs.

MenuNumber A menu number generated with the macros

SHIFTMENU(), SHIFTITEM(), and SHIFTSUB() or

returned by a MENUPICK IntuiMessage.

Note: OffMenu() will disable an entire menu, a single item, or

a single subitem, depending on what MenuNumber indicates.

When a menu, an item, or a subitem is disabled, it will appear

ghosted and cannot be selected by the user. ,

See also OnMenu(). M^

OnGadgetO i -
Activates a gadget. I—i
OnGadget(Gadget, Pointer, Request);

Registers aO—Gadget; al—Pointer; a2—Requester j /

Gadget Points to the Gadget structure which represents the gad- ^—*
get we are enabling.

Pointer A pointer to the graphics element the gadget appears in (a j ,

pointer to a Window structure if this gadget appears in a Lj
window).

438 u

Selected Intuition Routines

j"| Requester Points to a Requester structure if this is a requester gad
get. Otherwise, set this to NULL.

{__T Note: When a gadget is enabled, it will be displayed normally

[j (that is, not ghosted), the GADGDISABLED flag will be

cleared, and the user will once again be able to select the

,—j gadget.

1 _s See also OffGadget().

OnMenuC)
Activates a menu or menu item.

OnMenu(Window, MenuNumber);

Registers aO—Window; dO—MenuNumber

Window Pointer to the Window structure of the window to

which the menu belongs.

MenuNumber A menu number generated with the macros

SHIFTMENU(), SHIFTITEM(), and SHIFTSUB() or

returned by a MENUPICK IntuiMessage.

Note: OnMenu() will enable an entire menu, a single item, or

a single subitem, depending on what MenuNumber indicates.

When a menu, an item, or a subitem is enabled, it will appear

ghosted and cannot be selected by the user.

See also OffMenu().

OpenScreen()
Opens a new screen.

struct Screen *OpenScreen(NewScreen);

Registers aO—NewScreen

NewScreen A pointer to a NewScreen structure.

^i^ Note: Returns NULL if the screen could not be opened. Other-

/ \ wise, it returns a pointer to the Screen structure associated
with the new screen.

■p* See also CloseScreen().

OpenWindowC)
r—I Opens a new window.

- ' struct Window *OpenWindow(NewWindow);

Registers aO—NewWindow

p-* NewWindow A pointer to a NewWindow structure.

439

u
Appendix E

u

Note: Returns NULL if the window could not be opened. jj

Otherwise, it returns a pointer to the Window structure asso

ciated with the newly opened window.

See also CloseWindow(). j [

RemoveGadget()
Takes a gadget out of a window or screen. |^J

USHORT RemoveGadget(Pointer, Gadget);

Registers aO—Pointer; al—Gadget

pointer Pointer to the Window or Screen structure from which the

gadget is to be removed,

gadget Pointer to the Gadget structure which is being removed

from the gadget list.

Note: Will return the ordinal position of the gadget it re

moved. If the gadget wasn't found or if it was searching in the

wrong list (that is, pointer was bad), then it will return —1.

See also AddGadget().

SetMenuStripC)
Installs a menu strip to a window.

SetMenuStrip(Window, Menu);

Registers aO—Window; al—Menu

Window A pointer to the Window structure of the window you

want to attach the menu to.

Menu A pointer to the first menu in the menu system you've

built.

See also ClearMenuStrip().

ViewAddress()
Returns the address of the Intuition View structure.) !

struct View *ViewAddress(); /* takes no parameters */

Registers None

Note: The view address is useful when using Kernel graphics Li
primitives.

See also ViewPortAddress(). i /

440

Selected Intuition Routines

ViewPortAddress()
Returns the ViewPortAddress of a particular window.

struct ViewPort *ViewPortAddress(Window);

Registers aO—Window

Window Pointer to the Window structure of the window whose

ViewPort we want to find.

Note: The ViewPort address is an important variable when

using Kernel graphics primitives.

See also ViewAddress().

n

r 1

n

441

D

O

D

O

a

o

□

a

o

Appendix F

Selected Kernel EXEC

Routines

p AllocMem()
Acquires a block of free RAM.

APTR AllocMem(Size, Type);

Registers dO—Size; dl—Type

Size The number of bytes needed in a block. The size of the

allocated block will always be a multiple of eight bytes.

This parameter will be rounded upward if necessary.

- Type Desired characteristics of RAM block:

MEMB—PUBLIC: Accessible to all executing tasks.

MEMB_CHIP: Accessible to the Amiga's I/O hardware

(video, sound, disk).

MEMB-JFAST: Nonchip memory.

MEMB—CLEAR: Memory should be initialized to zero

bytes.

Note: Returns pointer to the block if successful; zero, other

wise. On Amiga systems with 512K or less memory, the

distinctions concerning public, chip, and fast RAM do not ap

pear to apply.

See also FreeMem().

CloseLibraryC)
Informs library manager that we no longer require access to a

particular library.

i^ CloseLibrary(Library);

[I Registers al—Library
Library Pointer to a valid Library structure.

See also OpenLibrary().

FreeMemO
Returns a block to the pool of free RAM.

/_i FreeMem(MemPointer, Size);

Registers al—MemPointer, dO—Size

MemPointer Address of block being freed.

443

Appendix F

Size Number of bytes in block being freed. If Size is not a

multiple of eight bytes, it will be rounded upward, giv

ing the actual size of a block allocated with the same

Size parameter.

See also AllocMem().

GetMsg()
Gets the next available message from a message port.

struct Message *GetMsg(Port);

Registers aO—Port

Port A pointer to a MsgPort structure.

Note: Returns NULL if there was no message to receive.

Otherwise, it returns a pointer to the Message structure which

was sent.

See also PutMsg(); ReplyMsg(); WaitPort().

OpenLibrary()
Informs library manager that we require access to a particular

library.

struct Library *OpenLibrary(Name, Version);

Registers al—Name; dO—Version

Name A string holding the name of the library we want to open.

Version The minimum version number of the library we can ac

cept. This feature doesn't seem to be implemented, but

should be set to zero.

Note: Returns a pointer to a Library structure if access to the

library is permitted. Otherwise, it returns NULL.

See also CloseLibrary().

PutMsg() U
Sends a message to a particular port.

PutMsg(Port, Message); ,

Registers aO—Port, a1—Message LJ
Port A pointer to the MsgPort structure where the message

should be sent.

Message A pointer to the Message structure which is being sent. I I

See also GetMsg(); ReplyMsg(); WaitPort().

Li

n
Selected Kernel EXEC Routines

H ReplyMsg()
Sends a message back to the sender.

r^) ReplyMsg(Message)

I I Registers al—Message
Message A pointer to the Message structure which is to be returned

—. to the sender.

L s Note: This routine assumes that the reply port field of the

Message structure points to the proper message port.

See also GetMsg(); PutMsg(); WaitPort().

WaitO
Puts the process to sleep and waits for one or more signal bits

from other processes.

Wait(Signal);

Registers dO—Signal

Signal The signal bits that we are supposed to wait for.

WaitPortC)
Waits for a message to appear at a given port.

struct message *WaitPort(Port);

Registers aO—Port

Port A pointer to MsgPort structure.

Note: Waits for a message to appear at port. When one does,

it returns with a pointer to the message that was sent. It will

not remove the message from the message port. You must do

this yourself using GetMsg();

See also GetMsg(); PutMsg(); ReplyMsg().

n

n

n

^ 445

D

O

D

O

a

o

□

a

o

n
Appendix G

n

Selected Kernel

Graphics Routines

j—\ Move()
• Changes the location of the graphics pen.

Move(RastPort, x, y);

Registers al—RastPort; dO—x; dl—y

RastPort A pointer to a raster structure. This is pointed to by the

RPort field of the Window structure.

x,y A point in the raster; (x,y) is relative to the upper left cor

ner of the window.

ReadPixelC)
Reads the color at a particular point in a raster.

int ReadPixeK RastPort, x, y);

Registers al—RastPort; dO—x; dl—y

RastPort A pointer to a Raster structure. This is pointed to by the

RPort field of the Window structure.

x,y A point in the raster; (x,y) is relative to the upper left cor

ner of the window.

Note: Returns the pen used to draw that particular pixel. If the

pixel could not be read (if it is off the edge of the screen, for

example), this routine returns —1.

RectFill()
Draws a rectangular solid in the raster.

RectFilK RastPort, xmin, ymin, xmax, ymax);

p^ Registers al—RastPort; dO—xmin; dl—ymin; d2—xmax; d3—
ymax

RastPort A pointer to a Raster structure. This is pointed to by

f** the RPort field of the Window structure.

f _ \ xmin, ymin,
xmax, ymax The coordinates of the upper left and lower right cor-

—^ ner of the rectangle to draw.

I >

447

u
Appendix G

u

SetAPen()
Sets the color register to use for APen drawing.

SetAPen(RastPort, pen);

Registers al—RastPort; dO—pen ji
RastPort A pointer to a Raster structure. This is pointed to by the

RPort field of the Window structure,

pen The color register to use. This must be a value from 0

through 255.

Text()
Draws characters.

int Text(RastPort, string, stringlength);

Registers al—RastPort; aO—string; dO—stringlength

RastPort A pointer to a Raster structure. This is pointed to by

the RPort field of the Window structure,

string The string we are trying to write out.

stringlength A count of the number of characters in the string.

Note: Drawing is started at the current position.

See also Move().

WritePixel()
Draws a pixel of color APen at a particular point on a particu

lar raster.

WritePixeK RastPort, x, y);

Registers al—RastPort; dO—x; dl—y

RastPort A pointer to a Raster structure. This is pointed to by the

RPort field of the Window structure.

x,y A point in the raster; (x,y) is relative to the upper left cor

ner of the window.

u

u

u

n
Appendix H

rmmm\

i_!

. Selected DOS Library

Routines

<-*) Close()
' - • Ends access to contents of a file.

Close(FileHandle);

Registers dl—FileHandle

FileHandle Handle to a file obtained calling Open(). A program

should close all files that it opens.

See also Open().

CurrentDir()
Changes the current DOS directory and returns old directory.

APTR CurrentDir(NewDir);

Registers dl—NewDir

NewDir A pointer to a Lock structure describing the directory

which will become the default directory for disk

operation.

Note: Returns a lock to the previous current directory.

See also Lock().

DupLockC)
Makes a copy of a Lock structure.

APTR DupLock(Lock);

Registers dl—Lock

Lock Pointer to lock to be duplicated. Only nonexclusive

;—| (ACCESS-READ) locks can be duplicated.

~ Note: Returned value is pointer to copy.

-_ See also Lock().
1

Examine()
Gets information about a file or directory.

0 int Examine* Lock, FIB);
Registers dl—Lock; d2—FIB

_ Lock Pointer to a Lock structure indicating the file to be

/ i examined.
FIB Pointer to a FilelnfoBlock structure. Examine will initialize

it and store the information here.

r\

1 -* 449

u
Appendix H

u

Note: The information returned includes name, file length, I |

and whether it is a file or a subdirectory. If a value of zero is

returned, no information could be found.

See also Lock(), ExNext(). j^J

ExNext()
Gets information on the contents of a directory. (J

int ExNext(Lock, FIB);

Registers dl—Lock; d2—FIB

Lock Pointer to a Lock structure indicating the directory to be

examined.

FIB Pointer to a FilelnfoBlock structure, initialized by a pre

vious call to Examine.

Note: Successive calls to ExNext will return information on

each member of a directory. When a value of zero is returned,

the end of the directory has been reached.

See also Lock(), Examine().

Input()
Returns file handle for the default input device.

ULONG Input();

Registers None

Note: The file handle returned by Input will usually be asso

ciated with the CLI window, unless input has been redirected

from the command line. Input will return zero if the calling

program was not run from the CLI.

See also Output().

LockO <
Requests access to a file or directory. L^J

APTR Lock(Name, Access);

Registers dl—Name; d2—Access j ^

Name Pointer to a null-terminated string containing the name of i^j
the file or directory to be accessed.

Access Lock can either be exclusive (ACCESS-WRITE) or non-

exclusive (ACCESS-READ). (_j

Note: Returns a pointer to a Lock structure which can be used

to set the default directory or to catalog a directory. , j

See also DupLock(), Examine(), UnLock(). —!

n
Selected DOS Library Routines

D

I \ OpenO

n

Begins accessing the contents of a file.

ULONG Open(FileName, OpenMode)

Registers dl—FileName; d2—OpenMode

FileName Pointer to a null-terminated string containing the name

of the file to be accessed.

j> OpenMode Indicates whether a new file should be created if File-
Name cannot be found (MODE_NEWFILE) or not

(MODE_OLDFILE).

Note: Returns a file handle which can be used for Read() and

Write() operations.

See also Close(), Read(), Write().

Output()
Returns file handle for default output device.

ULONG Output();

Registers None

Note: The file handle returned by Output will usually be asso

ciated with the CLI window, unless output has been redirected

from the command line. Output will return zero if the calling

program was not run from the CLI.

See also Input().

Read()
Gets data from a file or device.

LONG Read(FileHandle, Buffer, Count);

Registers dl—FileHandle; d2—Buffer; d3—Count

FileHandle Handle of the file to be read.

"— Buffer Pointer to buffer to receive data.

j Count Number of bytes desired.
Note: Read returns the actual number of bytes that were read. If an

error has occurred, it will return — 1.

n See also Open(), Write().

UnLockC)
f! Releases access to a file or directory.

UnLock(Lock);

n Registers dl—Lock

Lock Pointer to a Lock structure created by Lock or DupLock.

H
451

LJ
Appendix H

u

Note: If locks are not freed by UnLock, the RAM which they j j

occupy cannot be reused.

See also Lock(), DupLock().

WriteO
Sends data to a file or device.

LONG Write(FileHandle, Buffer, Count); U
Registers dl—FileHandle; d2—Buffer; d3—Count

FileHandle Handle of the file to be written to.

Buffer Pointer to buffer containing data.

Count Number of bytes in buffer.

Note: Write returns the actual number of bytes that were writ

ten. If an error has occurred, it will return —1.

See also Open(), Read().

u

u

452

U

u

Appendix I

H

n

Fast Floating Point

Functions

—» Functions in

_ ? SPFix(a)
SPFlt(a)

SPCmp(a/b)

SPTst(a)

SPAbs(a)

SPNeg(a)

SPAdd(a,b)

SPSub(a,b)

SPMul(a,b)

SPDiv(a,b)

Functions in

SPFieee(a)

SPTieee(a)

SPAtan(a)

SPSin(a)

SPCosine(a)

SPTangent(a)

SPSincos(&b,

SPSinh(a)

SPCosh(a)

SPTanh(a)

SPExp(a)

SPLog(a)

SPPow(a,b)

—y SPSqrt(a)

"mathffp.library"

convert FFP to integer

convert integer to FFP

compare (equivalent to SPTst(a—b))

test (signum)

absolute value

negate

addition

subtraction (b—a)

multiply

divide (b/a)

"mathtransiibrary"

convert from IEEE format

convert to IEEE format

arctangent

sine

cosine

tangent

a) sine of a (cosine returned in b)

hyperbolic sine

hyperbolic cosine

hyperbolic tangent

exponential

logarithm

raise b to the 0th power

square root

453

Index

ABS BASIC function 33

AddGadget Intuition routine 435

ADD instruction 350

add-ons, third-party 15

Aegis Animator program 24

Agnes animation chip 17, 23

Alink program 354

AllocMem() Kernel EXEC routine 443

AllocRemember() 435

Amiga

external description 4-6

starting 6

Amiga BASIC 31-108, 347

variables 32-33

Amiga Developer's Kit 266, 351

AmigaDOS 6, 11, 111-43, 313, 360, 365

commands 119-32, 409-28

custom disk 117-18

devices 114

speech and 228-29

Amiga Hardware Manual 321

AND operator 33, 185

animation 23-25, 188-205

playfield 23-24

sprite 24

AREA BASIC statement 33-34, 174-75

AREAFILL BASIC statement 33-34, 174-75

ASC BASIC function 34

A-Squared Company 14

Assem macro assembler program 351-55

ASSIGN batch file command 143, 409

* (asterisk) device name 116

ATN BASIC function 34

audio 3, 25-27

background 251

bar, window 9, 10

BASIC programming 31-108

batch files 112, 135-43, 267

labels and 142-43

parameters and 140-42

BEEP BASIC statement 34-35

bit plane 148-49, 151, 156-57

blitter (block image transferrer) 23-24, 189

blitter object. See bob

bob 189-91

border structure 297-98, 299

"Bouncing Spaceships" program 203-5

BREAK AmigaDOS command 410

BREAK BASIC statement 35

CALL BASIC statement 35, 165-66

"CC" program 271

"CCNL" program 271

CD AmigaDOS command 120, 410

CDBL BASIC function 35

CHAIN BASIC statement 35

character codes 403-7

character sets, extra 13

Cherry Lane Company 14

454

CHR$ BASIC function 36

CINT BASIC function 36

CIRCLE BASIC statement 36, 167-69

CLEAR BASIC statement 37

ClearMenuStrip() Intuition routine 436

CLI (Command line Interface) 11, 111-14,

150, 359-60, 379

prompt 113

starting 112-14

windows 113-14

CLNG BASIC function 37

CLOSE BASIC statement 38

Close() DOS library routine 273, 449

CloseUbrary() Kernel EXEC routine 443

CloseScreen() Intuition routine 436

CloseWindow() Intuition routine 436

CLS BASIC statement 38

COLLISION BASIC function 38, 200-202

collisions 200-203

color

available 20-21

indirection 21

registers 157

resolution 148

selection 156-60

COLOR BASIC statement 39, 157

command field 353

"Command line Echo" program 361-62

Command line Interface. See CLI

complement drawing mode 172

CONT BASIC statement 39

copper display coprocessor 149

COPY AmigaDOS command 120-21, 410-11

"Copy Console Input to Console Output"

program 362-63

"Copy Utility" program 379-99

COS BASIC function 39

CP/M 111

C Primer Plus 321

C Programmer's Handbook, The 321

C programming language 265-344

books 321

compilers 266

floating-point and 317-20

gadgets and 300-308

graphics and 273

menus and 308-13

multitasking and 313-17

multitasking functions 316-17

programs, translating to ML 371-74

screens and 274-77

windows and 277-87

C Programming Language, The 321

CSNG BASIC function 40

CSRLIN BASIC statement 40

CurrentDir() DOS library routine 449

Daphne graphics chip 17

DATA BASIC statement 404-41

u

u

u

u

u

u

u

Ls

LJ

u

H

H

H

n

n

n

n

n

n

DATE AmigaDOS command 121, 139-40,

411

DATES BASIC statement 41

DC (Define Constant) pseudo-op 352

DECLARE FUNCTION BASIC statement

162-63

DEF BASIC statement 41

DEFDBL BASIC statement 41

DEFINT BASIC statement 42

DEFLNG BASIC statement 42

DEFSNG BASIC statement 42

DEFSTR BASIC statement 42

DELETE AmigaDOS command 121-22,

411-12

DELETE BASIC statement 42-43

Deluxe Video Construction Set program 7

digitizer pad 4

DIM BASIC statement 43, 183

DIR AmigaDOS command 114, 115, 119,

412-13

directories 116

DISKCOPY AmigaDOS command 122-23,

413

disk names 115-16

disk use light 6

display modes 147-49

DMA (Direct Memory Access) 251

DOS library routines 449-52

drawing modes 171-74

drawing points 160-63

drawing shapes 163-69

DS pseudo-op 353

DupLock() DOS library routine 449

duration, sound 233

ECHO AmigaDOS command 118, 136,

413-14

ED AmigaDOS command 414

ED full-screen editor program 118, 137-38,

144, 355

EDIT AmigaDOS command 414-15

EDIT text editor program 137

ELSE BASIC statement 43

emulation, IBM PC 3, 20

END BASIC statement 43

ENDCLI AmigaDOS command 114, 123, 415

ENDM pseudo-op 370

EQ batch file operator 141

EQV BASIC operator 44

ERASE BASIC statement 44

ERROR BASIC statement 44-45

Examine() DOS library routine 449-50

EXECUTE AmigaDOS command 137, 415

ExNext() DOS library routine 450

expansion bus 3-4

EXP BASIC function 45

external disk drive port 5

FAILAT AmigaDOS command 415-16

fast floating point functions 455

FAULT AmigaDOS command 416

FIELD BASIC statement 46

FILENOTE AmigaDOS command 123-24,

416

file processing 100-105

files, erasing 8

files, random 104-5

files, sequential 102-4

FILES BASIC statement 46

filled shapes 174-76

fill pattern 176-78

FIX BASIC function 46

flags, IDCMP 284-86

font 179-81

FOR BASIC statement 46-47

FORMAT AmigaDOS command 124, 416-17

FRE BASIC function 47

FreeMem() Kernel EXEC routine 443-44

FreeRemember() Intuition routine 436

frequency, sound 231-32

frequency values for equal-tempered scales

429-31

From BASIC to C 321

gadget flags 301-4

Boolean 300, 306

custom 277-80, 300-308

integer 300

proportional 300, 304-5

string 300, 305-6

window 9-10

gender, of voice 219

genlock interface 5, 25

GET BASIC statement 182-85

GetMsg() Kernel EXEC routine 444

GOSUB BASIC statement 48

GOTO BASIC statement 48-49

graphic objects 188-205

graphics 3, 147-205

hard disk 15

Harmony program 27

header files 272, 373

"Hello" program 356-57

HEX$ BASIC function 49

high resolution 22, 147, 151

HitMask 202

hand controller port 4

hold and modify resolution mode 22

IBM PC emulation 3, 20

icons 7-9

IDCMP 283-87, 315, 321

IF BASIC statement 49-51

IF batch file command 140-41, 417

image, manipulating 182-85

image, storing and retrieving 182-88

image processors 14

image structure 298-99

IMP BASIC operator 51

INCLUDE pseudo-op 373

INFO AmigaDOS command 124, 418

INKEY$ BASIC function 51-52

INPUT BASIC statement 52-53

input devices 11-17

Input() DOS library routine 450

INSTALL AmigaDOS command 124, 418

INT BASIC function 53

Intel 8088 chip 16

Intel 80287 chip 16

455

interlaced mode 22, 148

interpreter 265, 347

interprocess communication 315-17

IntuiMessage 283-84, 315

IntuiText structure 296

Intuition illustration data types 296-99

Intuition libraries, ML and 374, 378

Intuition operating system 6, 111, 147, 272,

281, 300-313

communicating with 283-87

routines 435-41

Intuition: The Amiga User Interface 321

INVERSVID drawing mode 172

ItemAddress() Intuition routine 437

JOIN AmigaDOS command 124-25, 418

Kernel 147, 281-82, 314-15

Kernel EXEC routines 443-45

Kernel graphics routines 447-48

keyboard 12-14

keyboard, reading 347

keyboard port 4

Kickstart disk 6

KILL BASIC statement 54

LAB AmigaDOS command 418-19

label field 351-52

Lattice C compiler 266-69, 317-19

flags 433-34

LEFTS BASIC function 54

LEN BASIC function 54

LET BASIC statement 55

libraries 272-73, 358

cross-referencing 374

LIBRARY BASIC statement 162, 165

LINE BASIC statement 55-56, 163-64, 174

LINE INPUT BASIC statement 56

line numbers, Amiga BASIC and 31

linking 266, 267, 354

LIST AmigaDOS command 125, 419-20

LIST BASIC statement 57

List window 31

LLIST BASIC statement 57

LOAD BASIC statement 57

LOCATE BASIC statement 57-58

Lock() DOS library routine 450

LOG BASIC function 58

low resolution 22, 147, 151

LPOS BASIC function 58

LPRINT BASIC statement 58

LSET BASIC statement 58

machine language 347-99

"Machine Language Sound" program 252-62

Macintosh computer 7, 111

macro instruction 365, 370

MACRO pseudo-op 370

MAKEDIR AmigaDOS command 125, 420

"Mandelbrot.c" program 323-44

memory 14-15

memory management, multitasking and

314-15

MENU BASIC statement 58-60

menu flags 310-12

menus 10-11, 308-13

MID$ BASIC function 60-61

456

MIDI interface 27-28

mnemonic 352

MOD BASIC statement 61

ModifyIDCMP() Intuition routine 437

ModifyProp() Intuition routine 437

modulation 254-57

monitors

composite 17

monochrome 17

RGB 17

mouse 4,

mouse, imitating from keyboard 13

mouse, operating 11-12

MOUSE BASIC statement 61-63

mouse pointer 7, 191

MOVE instruction 350, 351, 359, 371

Move() Kernel graphics routine 447

MS-DOS 111, 116, 265

multitasking 3, 113, 117, 313-17

graphics and 147

Musicraft program 26

NAME BASIC statement 63

NEW BASIC statement 63

NEWCLI AmigaDOS command 113, 114,

125-26, 420-21

NEXT BASIC statement 63-64

NIL device name 115

NOT BASIC operator 64

Notepad Workbench tool 8

OBJECT BASIC statements 64-68

OBJECT.CLIP BASIC statement 196-97

OBJECTC.PRIORITY BASIC statement 195

OBJECTCX BASIC statement 196

OBJECT.HIT BASIC statement 202

OBJECT.PLANES BASIC statement 194-95

objects

color 193-96

creating and displaying 191-93

positioning 196-200

OBJECT.START BASIC statement 197

OBJECT.STOP BASIC statement 197

OBJECT.VX BASIC statement 197

OBJECT.VY BASIC statement 197

OBJECT.Y BASIC statement 196

ObjEdit program 191

OCT$ BASIC function 68

OffGadget() Intuition routine 438

OffMenu() Intuition routine 438

ON BASIC statement 68-71

OnGadget() Intuition routine 438-39

OnMenu() Intuition routine 439

opcode 347

opcode field 352-53

"Open an Intuition Window" program

375-78

"Open a Window" program 288-95

Open() DOS library routine 273, 451

OpenUbrary() Kernel EXEC routine 444

OpenScreen() Intuition routine 439

OpenWindow() Intuition routine 439-40

operand field 353

optical scanner 4

OPTION BASE BASIC statement 71

u

u

u

Li

U

u

u

(J

LJ

U

n

r>

n

n

OR operator 71-72, 185

output devices 17-20

Output() DOS library routine 451

Output window 31, 152-56

paddle 4

PAINT BASIC statement 72, 175-76

PALETTE BASIC statement 72-73, 158-60

parallel port 4

PAR device name 115

pathnames 116

pattern array 176-78

PATTERN BASIC statement 73, 169-71

patterned lines 169-71

PC-DOS. See MS-DOS

PEEK BASIC statement 74

pen 157-59

Kernel and 282

Performance Assistance Logic (PAL) chip 20

phoneme 211, 215

strings 223-24

table 230-31

"Phoneme Builder" program 225-28

phonemes, unusual 222-25

piano keyboards 14

playfield 22-23

POINT BASIC function 74, 162

POKE BASIC statement 74-75

Portia chip 17

POS BASIC function 75

Preferences Workbench tool 8, 112

PRESET BASIC statement 75, 160-62

PRINT BASIC statement 76-77

printer control 19-20

printers, drivers supplied for 18-19

projects 7. See also files

PROMPT AmigaDOS command 126, 421

PROTECT AmigaDOS command 126-27,

421-22

PRT device name 115

PSET BASIC statement 77-78, 160-62

pseudo-op 352

PTAB BASIC statement 78, 181

PUT BASIC statement 78-79, 184-85

PutMsg() Kernel EXEC routine 444

QUIT AmigaDOS command 422

RAM, expansion 15

RAM device name 115

RAM disk 115-16

"Random File Example" program 106-8

RANDOMIZE BASIC statement 79-80

READ BASIC statement 80-81

Read() DOS library routine 451

ReadPixel() Kernel graphics routine 447

RectFill() Kernel graphics routine 447

registers, 68000 348-49

RELABEL AmigaDOS command 422-23

REM BASIC statement 81

RemoveGadget() Intuition routine 440

RENAME AmigaDOS command 127, 423

ReplyMsg() Kernel EXEC routine 445

resetting the Amiga 13

resolution 21-22

RESTORE BASIC statement 81-82

RESUME BASIC statement 82

RETURN BASIC statement 82-83

RGB monitor port 5

RIGHTS BASIC function 83

RND BASIC function 83-84

ROM Kernel Manual 321

RUN AmigaDOS command 117, 127-28, 424

RUN BASIC statement 84

SADD BASIC function 85

SAVE BASIC statement 85

SAY AmigaDOS command 128-29, 137-38,

229, 424-25

SAY BASIC statement 85-86, 210-11,

221-23

scale, musical 232

SCREEN BASIC statement 86-87, 151-52

screens 149-52

scripts. See batch files

SCROLL BASIC statement 87, 181-82

SEARCH AmigaDOS command 129, 425

select box 300, 301

; (semicolon) AmigaDOS command 425

sequencer, music 26

sequences. See batch files

serial port 5

SetAPen() Kernel graphics routine 448

SetMenuStrip() Intuition routine 440

SGN BASIC function 87

SIN BASIC function 88

65C02 chip 16

65000 chip 347

68000 chip 1, 347

SKIP AmigaDOS command 426

SLEEP BASIC statement 88

SORT AmigaDOS command 129-30, 426

sound 209-62

SOUND BASIC statement 88-89, 231-36

sound channel 209-10

sound commands, multiple, synchronizing

235-36

sound control registers 250

SOUND RESUME BASIC statement 236

SOUND WAIT BASIC statement 236

SPACES BASIC function 89

speaker ports 5

speech 210-31

"Speech Experimenter" program 212-14

sprites 23, 189-90

SQR BASIC function 90

S subdirectory 138

STACK AmigaDOS command 130, 426-27

stack pointer 349

startup-sequence batch file 138-40

STATUS AmigaDOS command 427

STEP BASIC statement 90

stereo output 209-10

STICK BASIC function 90-91

STOP BASIC statement 91

STR$ BASIC function 91

STRIG BASIC function 90-91

STRINGS BASIC function 92

subdirectories 116, 138

subprograms 99-100

457

u.

supervisor mode 350

SWAP BASIC statement 92

synthesizer, music 25

SYSTEM BASIC statement 92

TAB BASIC function 92-93

TAN BASIC function 93

text, graphics and 178-81, 296

Text() Kernel graphics routine 448

Texture program 27

TIME$ BASIC function 93

TIMER BASIC statement 93-94

Transformer, The program 3, 15, 20

TRANSLATES function 210-11, 215-17, 223,

229

Trashcan 8

TROFF BASIC statement 94

TRON BASIC statement 94

TV display 17

TV port 5

"Type a File on the Console" program

366-69

TYPE AmigaDOS command 130-31, 136,

427-28

UCASE$ BASIC function 94-95

Unix operating system 264

UnLock() DOS library routine 451-52

user mode 350

VAL 9ASIC function 95

variables, Amiga BASIC 32-33

VARPTR BASIC function 95, 166

vendors, third-party 15, 24, 26-27, 266

video display 17-18

video port 5

ViewAddress() Intuition routine 440

ViewPortAddress() Intuition routine 441

VMS operating system 265

voice

array 217

changing 217-20

channel 220-21

synchronization 221-22

synthesis 3, 18, 137

volume, sound 233-34

WAIT AmigaDOS command 131, 428

Wait() Kernel EXEC routine 445

WaitPort() Kernel EXEC routine 445

WAVE BASIC statement 95-96, 236-42

"Waveform Builder" program 242-45

waveforms 237-42

waveform sampling 248-49

WHILE-WEND BASIC statement 96

WHY AmigaDOS command 131-32, 428

WIDTH BASIC statement 96-97, 179

WINDOW BASIC statement 97-98, 152-56,

163

windows 3, 9-11, 152-56

C and 277-87

defining 153

Kernel routines and 281-82

manipulating 9-10

Workbench 7-10, 111

Workbench disk 6

Workbench screen 150

WRITE BASIC statement 98

Write() DOS library routine 452

WritePixel() Kernel graphics routine 448

"xopenscreen.c" program 270-71

XOR operator 98, 185-86

XREF directive 358

u

458

D

O

D

O

a

o

□

a

o

	Binder1.pdf
	front.jpg
	back.jpg

	Binder1.pdf
	Compute's_Amiga_Programmers_Page_1.jpg
	Compute's_Amiga_Programmers_Page_2.jpg

