

Programmer's
Guide

to the Amiga

l

Programmer's
Guide

to the Amiga'M

Robert A. Peck

San Francisco • Paris • Dusseldorf • London

Book design by Jeff Giese

Cover art by Thomas Ingalls + Associates

Amiga and AmigaDOS are trademarks of Commodore·Amiga. Inc

Unix is a tr-ademark of Bell Laboratories, Inc.

SVBEX is a registered trademark of SVBEX, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply cornplete and accurate information However, SVBEX assumes

no responsihility for its use, nor for any infringernents of patents or other rights of third parties which

would result.

Copyright':~! 1987 SYBEX Inc, 2021 Challenger Drive #100, Alameda, CA 94501. World r-ights reserved

No part of thiS publication may be stored in a retrieval system, transmitted, or reproduced in any way,

including but not limited to photocopy. photograph, magnetic or other record. without the prior agree

ment and written permission of the publisher.

Library of Congress Card Number 86·63749

ISBN 0·89588·31OA

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

To my wonderful wife, Andrea. I couldn't have done any of this
without you.

ACKNOWLEDGMENTS
I wish to thank the management and staff at 5YBEX for the effort

that they put into producing this book. I particularly want to acknowl

edge Dr. Rudolph Langer and Karl Ray, who gave me the chance to tell

programmers more about the Amiga. My editor, Valerie Robbins, pro

vided help and guidance. It is through her efforts that this project finally

came together.

The following people put a lot of effort into this book and their work is

greatly appreciated: Olivia 5hinomoto, word processing; Cheryl Vega,

typesetting; 5uzy Anger, proofreading; Julie Bilski, paste-up; and Paula
Alston, indexing.

Thanks, too, to the crew at Hewlett-Packard for their support and

encouragement during the past few months, and for the chance they

gave me to work on an interesting and stimulating project.

And finally, hello to all of the Busy Guys who created the Amiga and to

all of the software developers who worked on the early systems. Your
efforts have provided a truly fine machine for all of us to enjoy.

XI

Table of Contents
Preface xxi

Chapter 1: Overview

Amiga Soft\Nare and Hard\Nare Hierarchy
The Bottom Level 1

The Second Level 2

The Third Level 3

The Top Level 4

What You Need to Kno\N to Program
the Amiga 4

Libraries of Functions 5

Programming in C 7

Programming in Assembly Language 7

The Include Files 7

Chapter 2: AmigaDOS 11

Printing to the CLI 11

Command-Line Argument Passing
under AmigaDOS 12

Redirecting Standard Input and Output 12

File Handles 14

Opening a File 14

Closing a File 15

Reading from a File 1 5

Writing to a File 16

XII

Console I/O Using AmigaDOS File Handles 16

Opening a New Window for Output 1 7

Getting Input from a Console Window 1 7

Getting Input without Pressing Return 18

Sending Output to a Printer 19

More Functions for Manipulating Files 20

Finding a Position in a File 21

Determining whether Your Program is Connected

to a Terminal 22

Waiting for a Character for a Specified Time 22

AmigaDOS Directory Structure 23

Dropping into AmigaDOS 24

Calling a Function versus Using Execute 25

Using the File Handle Returned by the Open Function 26

Moving across Branches in the Directory Tree 26

Climbing Around in the Directory Tree 27

Determining the CUlient Working Directory 33

AmigaDOS Utilities 37

Utilities Normally Accessed from the CLI 38

Miscellaneous Functions 42

Chapter 3: Exec ~

The Structure of Exec 49

Why Lists Are Important 50

Some Exec Functions and Terminology 50

Tasks and Processes 50

Memory Allocation 51

Simple Memory Allocation 52

Returning Allocated Memory to the Free-Memory Pool 53

Program for Memory Allocation 53

Lists 54

Initializing a List Header 54

Significance of List Nodes 54

Routines that Manipulate Lists 55

Program Using List Functions 57

S~n~s ~

What Can Happen When a Signal Occurs 58

Significance of Signals in Multitasking 58

Allocating a Signal Bit 59

Using Signal Bits in Multitasking 59

Setting a Signal Bit Directly 60

Using Multiple Signal Bits 60

Message Ports 61

Creating and Deleting a Message Port 62

Adding and Removing a Message Port 63

Finding a Message Port 64

Code Fragments for Using Message Ports 64

Watching for Signals from Message Ports 64

Messages 65

Why Use Messages? 66

The Contents of a Message 66

The Significance of Messages 67

Your O\Nn Custom Message 67

Functions that Handle Messages and Message Ports 68

Programs Using Messages and Message Ports 68

XIII

XIV

Libraries 68

The Structure of a Library 68

Opening a Library 74

Library Base Addresses and Names 74

Using the Library Functions 76

Closing a Library 76

Program to Open, Use, and Close a Library 77

Devices 78

How I/O Is Requested 78

Device Commands 79

Opening a Device 79

Names of the Commonly Available Devices 81

The Structure of a Typical 10Request Block 81

Minimum Initialization Needed for an 1/0 Request 83

Sending a Command to a Device 84

Other 1/0 Functions 85

Sample 110 Function Calls 85

Why Use a Reply Port? 86

Queueing Multiple Requests 88

Accessing a Device's Library Functions 88

Closing a Device 89

Chapter 4: Graphics 93

Opening a Window on the Workbench
Screen 93

Defining a New Window 93

Opening the Window 96

Handling Events from Intuition 96

Locating the Rastport 96

xv

Drawing into the Window 97

Selecting Colors 99

Selecting a Dravving Mode 100

Dravving the Axes 101

Dravving Boxes 103

Dotted Lines 1 09

Dravving Multiple Lines vvith a Single Function Call 109

The Main Program 1 10

Avoiding Redravving Windovv Contents 1 10

Designing and Opening a Custom Screen 117

Defining a Custom Screen 1 17

Opening the Custom Screen 1 18

Opening a Windovv on the Custom Screen 1 19

Selecting Colors 1 1 9

Determining the Colors Currently in Use 1 21

Flood-Filling Shapes 122

Oddly Shaped Filled Areas 1 22

Dravving and Reading Individual Pixels 1 26

Dravving a Map 126

Text 126

Opening a Font 131

Text Characteristics 135

Clearing and Scrolling Dravving Areas 1 38

Combining Objects to Form a Picture 139

Initializing a Bitmap 140

Initializing a Rastport 1 41

Copying Data from One Bitmap to Another 141

Using Data-Move Routines 142

Copying vvith Transparency 142

XVI

Chapter 5: Intuition

Communicating vvith Intuition
Messages from Intuition

The Contents of an IntuiMessage

An IOCMP Message Routine

Designing a Painting Program
Selecting a Screen

Finding the Mouse Location

Reading the Status of Mouse Buttons

Designing and Using Menus
HO\N Menus and Menu Items are Related

Initializing Menus

Initializing Menu Items

Requesters

Gadgets

Menu Processing

Gadget Event Processing

The Painting Program

Optional Extras
Images and Text Combined

Menu Item Lists

Chapter 6: Devices

The Timer Device

The Console Device
Console Character Codes

Complex Input Events

153

153

155

155

158

159

162

168

169

169

170

174

175

183

184

194

195

195

202

202

203

209

209

215

215

219

Ravv Key Input

Controlling the Console Device

The Input Device
The Keyboard Device

The Gameport Device

Keyboard Enhancers

Chapter 7: Animation

Simple Sprites
The SimpleSprite Data Structure

Obtaining a Sprite

Changing a Sprite

The Sprite Data

Sprite Colors

Freeing a Sprite

The Simple Sprite Program

Virtual Sprites
Advantages to Using Virtual Sprites

Disadvantages to Using Virtual Sprites

Initializing the Gel System

The MakeVSprite Routine

The VSprite Structure

The Virtual Sprite Program

Blitter Objects (Bobs)
The MakeBob Routine

The PurgeGels Routine

Advantages to Using Bobs

Disadvantages to Using Bobs

The Bob Program

XVII

219

220

224

227

227

228

235

236

236

236

237

238

239

241

241

248

249

249

250

253

256

256

262

263

267

267

267

269

XVIII

Chapter 8: Sound ll9

Audio Hardw-are 279

Communicating w-ith the Audio Device 280

Audio Softw-are 281

Allocating Channels 281

Locking a Channel 288

Setting a Ne\N Priority Value 289

Controlling Audio Output 290

Audio Data 292

The Audio Program 295

Chapter 9: Multitasking 301

Tasks 301

Processes 302

The Easy Way to Start Something New- 302

A Tasking Example 304

The Link File for the Task Example 305

The Main and Little Task Program 306

The Initialize Task Function 306

A Processing Example 306

The Link Files for the Process Example 314

The Process Programs 314

Intertask Communications 320

Finding Tasks 321

Finding Processes 321

Finding Ports 321

XIX

Appendix A: The Text Editor (ED) 329

Appendix B: The Amiga C Compiler 337

Running the Amiga C Compiler 337

Compiler First Phase 337

Compiler Second Phase 338

Compiler Third Phase 338

Summary of Compiler Calls 338

Creating and Using a Make File 339

Contents of a Make File 340

Parameter Substitution in an Execute File 341

How to Create Makesimple.a 343

Index 346

XXI

PREFACE

When writing the Amiga ROM Kernel Manual, we split the system into

various functional areas. One section of the manual covered the system

executive, another covered the graphics, others the sound, animation,

math, devices, and so on. This split along functional lines provided one

way of looking at the system. In the tutorial section of the manual, we

tried to provide a more detailed view of how the various pieces fit

together. This tutorial approach usually began by describing the data

structures that the routines used, and ended with a functioning

example that a reader could type in and try.

When I began this book, the Programmers' Guide to the Amiga, I felt

that it should provide a different way of looking at the Amiga. My expe·

rience with user networks showed that examples were often much

more effective than text at getting the point across. If a fully com·

mented example shows exactly how a particular software feature can

be used, it provides the greatest return. Thus, this book came about

with the intention to provide as many short illustrative programming

examples as possible. If a feature is described in this book, "there had

better be an example to back it up."

Wherever possible, the examples are complete in themselves. How·

ever, sometimes, to simplify things a little, parts of a prior example or

some form of setup routine is specified. You may have to compile a pro·

gram segment, then link with the setup routine to complete the

example.

The book begins by showing you how to make the Amiga do the

things that other computers can do. Along the way, while doing

those things, I've included some of the Amiga·specific functions

taking advantage of multitasking and so on. This book, as it goes

along, provides program examples that supplement the Amiga ROM

Kernel Manual, the AmigaDOS Developers Manual, and the Intuition

Manual. Together, all of these pieces comprise the Amiga system soft·

ware and that's what you're trying to understand. Along the way, since

you'll most likely be using Amiga C to compile the programs, you'll

encounter a few of the Amiga C functions.

XXII

C language compilers often come with some form of an interface

library that provides, for example, character and file input and output

routines. This book uses these language- specific interface routines as

sparingly as possible. A reader using a C compiler other than Amiga C

should therefore have little difficulty adapting the examples to another

compiler. In the back of the book, to make compiler adaptation even eas

ier, Appendix B includes a description of the ways in which Amiga C inter

faces with the system software.

The designers and developers of the Amiga system software pro

vided many routines to make the programming job easier. For example,

most of the Amiga hardware is managed in a very efficient manner by

system routines. In most cases, it isn't necessary to store data directly

into system registers to cause a certain effect to occur. Nor is it neces

sary to plumb the depths of the hardware manual to discover how to

perform a desired function. Using system software, you'll find that you

can tell the Amiga what effect you want to accomplish and how it is·to

be done, and the system software will manipulate the hardware and

memory bits to accomplish the task.

To keep things simple, wherever possible, I concentrate primarily on

the end effect rather than on the underlying control registers or the

contents of the data structures, unless they have an immediate bearing
on what is being done. I hope that you'll find this method useful.

To keep things from getting too bogged down with details, this book

concentrates on getting you up and running on the Amiga. Instead of

trying to describe every option of every routine and every data struc

ture, I've kept things as simple as possible and tried to show what pro

grammers will likely encounter when working on the Amiga.

All of the examples in this book have been compiled using Amiga C ver

sion 1.1 and run under system software version 1.1 or 1 .2. Please note

that any references in the listings to include "myintuition.h" can be

replaced by two include statements for the files "exec/types.h" and

"intuition/intuition.h:' If you don't want to type the listings, a complete

disk is available. Please see the coupon in the back of the book.

Good luck.

Overvie\N

The Amiga contains specialized hardware to help the main processor

perform many functions. Some of this hardware handles the transfer

of data to and from the disk. Some of it handles the joystick and mouse

ports. Another piece of hardware handles the keyboard, and yet

another handles the screen.

Although you can go directly to the hardware to control the Amiga,

for any application, you will find it easier to utilize the system software

routines (also called functions). These routines-of which there are over

300-provide easy access to the hardware and a consistent method of

controlling various special features of the system.

AMIGA SOFTWARE
AND HARDWARE HIERARCHY

Figure 1.1 shows a block diagram of the Amiga system software,

known as Kickstart. As you can see, various levels of the system soft

ware are built upon each other. At the top of the figure is a type of

applications program, that is, something that interacts with the user.

At the bottom of the figure is the hardware itself. A programmer uses

entry points throughout the system software to get ajob done. Which

of these entry points are used depends on the complexity of the

application.

The Bottom Level
The direct interface to the system hardware is performed by several

sets of system interface routines.

The set of routines that controls how the 68000 is utilized is called

Exec. Exec shares the 68000 among many different programs (tasks)

that might be loaded into memory at the same time; thus, the Amiga is

capable of multitasking. Exec also handles allocating memory for these

programs to use and handles interrupts that are generated by the

special-purpose hardware or by system or applications software. Exec

also maintains lists of tasks that are running or waiting for something to

happen; lists of free areas of memory; lists of messages to which an

application should respond; and lists of input events, such as mouse

moves, timer ticks, keystrokes, and so on.

Software entities called devices control access to the disk, the key

board, the gameport (the gameport handles mouse input), the audio

system, and the serial and parallel ports. The graphics system soft

ware directly controls the graphics hardware and provides routines for

PROGRAMMER'S GUIDE TO THE AMIGA

2

AmigaDOSCLI Applications Workbench Icons,
and Utilities Program Drawers, Utilities

J I 1 J

AmigaDOS Intuition

Processes,
Console

Windows, Menus,
File System

Device
Gadgets, Events

1 J ~

Input Device Layers Library

'I I r--
Exec Tasks, Keyboard Graphics Seflaland

Messages,
TrackDisk and

Rendering, Text,
Audio

Parallel
Interrupts, 1/0

Device Gameport
Gels

Device
Devices

Devices

: : Keyboard : : :
68000 Processor I Disk Control I I GraphICS I Audio I 1/0 Ports

I I and Mouse I I I
I J I I I

Amigo Hardware

Figure 1.1: Amiga system software hierarchy

creating and controlling drawing and display areas, selecting colors and

patterns, controlling sCreen resolution, manipulating graphics objects,

and many more graphics functions.

The Second Level
On the next level above the hardware interface, you find the Input

device and the Layers library. The Input device runs as an independent

task in the system and merges together the input information (called

input events) from the Keyboard device and the Gameport device (nor

mally connected to a mouse) into a single input stream. The input

stream, as shown in the figure, either feeds its events to Intuition or to a

Console device.

OVERVIEW

The Layers library is built on top of the graphics system and provides

routines for splitting a common dravving area into multiple, possibly

overlapping layers that are the basis for building a vvindovving system.

The Layers library includes routines for creating, deleting, and moving

layers as vvell as for changing the front-to-back priority of layers and for

manipulating the contents of these layers.

The Third Level
At the third level you find AmigaDOS, the Console device, and Intuition.

AmigaDOS is a disk operating system vvith multiprocessing built in; it

vvorks vvith Exec to provide a means of sharing system resources,

including sharing the central processor among cooperating tasks.

AmigaDOS also provides a filing system (a vvay to access your data) and

various utilities for manipulating that filing system and for initiating nevv

processes.

Intuition is the multiscreen, multivvindovv interface of the Amiga. Using

Intuition routines, you can create a display that shovvs one or more

screens of data. Each screen can have either 320 or 640 pixels of hori

zontalresolution, vvith either 200 or400 lines of vertical resolution. Each

640·pixel-vvide screen can have 16 different colors (out of a palette of

4,096 possible choices) on the display. Each 320-pixel-vvide screen can

have 32 different colors on the display.

Intuition is actually a library of functions. (See the heading Libraries of

Functions later in this chapter.) You call these functions to create a visual

Interface for the user, splitting the screens into multiple subsections

called vvindovvs, providing menus from vvhich a user can choose options,
and providing requesters (a special sort of a vvindovv that requests user

input).

The Input device feeds input events into Intuition. Intuition, in turn,

translates these events (keyboard key presses and releases, and

mouse movements and button press/release combinations) into Intui

tion events to vvhich you can respond as you choose. Intuition also filters

these events for you so your program vvill see only those in vvhich you

are interested.

The Console device is a special device that you can attach to an Intui·

tion vvindovv to make that vvindovv appear to be a computer terminal,

similar to that used in the early days of personal computers. The Con

sole device responds exactly like a piece of terminal hardvvare, captur

ing keystrokes that are directed to that vvindovv and typing responses

in return.

Intuition acts as a traffic cop, making only one vvindovv active at one time.

Thus, your keystrokes are sent to the vvindovv (and its console if it has one)

3

PROGRAMMER'S GUIDE TO THE AMIGA

4

only when that window is activated by a mouse selection button press

within the boundaries of that window.

The Top Level
At the top of Figure 1.1, you see three items: an applications program,

the Workbench, and the CLI (Command Line Interface). Each of these

presents its own form of interface to the user.

The CLI presents what might be called the traditional computer inter·

face, i.e., something that appears to be a computer terminal. The CLI is

actually an applications program that knows how to translate a typed

line into a command that the computer is supposed to perform.

The Workbench substitutes a selection of icons and menu items

wherever possible as a replacement for typing commands on the key

board. It performs many of the same commands that could have been

performed by the CLI. What it lacks in versatility, it makes up for in ease

of use.

An applications program presents whatever form of interface the

programmer desires, probably based on various underlying system

software elements.

WHAT YOU NEED TO KNOW TO
PROGRAM THE AMIGA

The things you need to know about to program the Amiga largely

depend on the kind of applications program you are trying to develop.

For example, you may want to create an applications program that

takes advantage of the Amiga's fabulous graphics or sound capability. In

this case, you'll need to know how to set up the data structure for

graphics or sound, how to open their function libraries, and which func

tions to use for which purpose.

Or, you may want to use the multitasking to greatest advantage, per

haps by printing a document while you are editing another document,

with yet another task retrieving electronic mail from a remote source

for you. In this case you'll need to know about multitasking or at least

how to ask AmigaDOS to start a separate process for you.

In general, you should understand the operation of the CLI and the

Exec system in addition to the specialized system software you'll need

for your applications programs, because each application needs a small

amount of bookkeeping, so to speak, before you can use graphics or

any other specialized Amiga system functions.

OVERVIEW

Libraries of Functions
In the description of the various levels of the Amiga system, the term

library was used. A library is a collection of functions that are related to

one another in some way. The Amiga designers gathered together

related functions into libraries to ensure that programs written for one

version of the Kickstart disk would be as compatible as possible with

newer versions of Kickstart. To allow this compatibility, they had to

make sure that programs could always find the system functions, no

matter how the system had changed from version to version.

To accomplish this, the designers defined a Library data structure

that contains, among other things, a table of jump instructions and func

tion addresses, such as

JUMP FunctionN

JUMP Function3
JUMP Function2
JUMP Function1

LibBase <start of Library data structure in memory>
< rest of Library data structure>

When you cold start the Amiga, the various system library groups are

sought in the Kickstart memory and are copied into RAM where they

can be modified later if necessary. Then each of the libraries that is

found is added to the system library list.

When the system powers up, a library can be positioned anywhere in the
system memory. So, for your program to access routines in a library, it

must declare a specific variable name-the library base address. For

example, here is the code that is required to access an Intuition library func

tion, where IntuitionBase is the base address of the Intuition library:

#include "exec/types. h"
#include "intuition/intuition.h"
#incl ude "intuitionlintuitionbase. h"

struct Intuition Base * Intuition Base;
extern struct Library * Open LibraryO;

mainO
{
Intuition Base = (struct Intuition Base *)

Open Library("intuition .Iibrary" ,0);

/ * must be global * /

5

PROGRAMMER'S GUIDE TO THE AMIGA

6

if(lntuitionBase = = 0)
{

printf("lntuition won't open!\n");
}
I * more program materiaL .. * I

When you compile a program (see Appendix A), you link it with a file

called arniga.lib, which adds special library function interface code to

your program.

For a given library function, amiga.lib does the following:

• Saves the appropriate registers so that the system can continue

running when the function returns

• Loads a register with the base address of the library in which it is

located

• Sets up the registers with this function's parameters

• Jumps to a known offset address with respect to the base

address of the library and enters the function

• Restores the registers to their state when the function was

entered

• Returns a value where necessary

If you fail to declare the library name that relates to the function, the

linker will tell you

<someLibBase> undefined

If you declare the library base variable but fail to open the library

before you try to use it, your program will crash.

If you both declare the library base variable and successfully open the

library, you should be able to access the routines just fine. Appendix A

of the Amiga ROM Kernel Manual lists the names of the base address

variables as well as the libraries with which each is associated. Again,

if you forget, the Amiga linker will tell you which libraries you must

declare and open.

The dos.library and exec.library are opened automatically for you by

the startup code that you link with your program (AStartup.obj or

Lstartup.obj). Therefore, you can call AmigaDOS functions and Exec

functions without explicitly opening a library to access them. There is

more information on libraries in Chapter 3.

OVERVIEW

Programming in C
The examples in this book use the C language in part because there

are at least two C compilers available for the Amiga, each with full sup

port for the Amiga definition files (known as the Include files). In addition,

all of the system data structures are relatively easily described in C, and

a large percentage of the development of the Amiga operating system

was done in C.
When you use C or Pascal or any other high level language, you will link

the output of your higher level code with a library of routines that

adapts the parameter passing conventions of that higher level language

to the parameter passing conventions of the Amiga system code.

Programming in Assembly Language
If you use assembly code to call system routines, you should be aware

of the Amiga's use of the registers of the 68000. First, registers DO, 01,

AO, and A 1 are always treated as scratch registers. They might be used

to hold an input quantity. However, the contents of these registers

are not guaranteed to be saved or restored by any of the system

routines. The system saves and restores the contents of all of the

other registers.

Functions that return a value return that value in register ~O. If a

function must return more that one value, you should plan to return the

address of a data structure that contains an array or structure of the

results.

Only one register gets special treatment in the Amiga system: A6. A6
is never used to pass parameters. The name of this register is 5ysBase.

It contains the address of a function vector table that, in turn, contains
the current addresses of various system functions. When a function is

called, Exec jumps through the addresses contained in the table to get

to the routine. Thus, a programmer can modify the table to make the

system functions perform different operations or insert debugging or

profiling code in line with the system functions to better analyze pro

gram performance.

You can find more details about programming in assembly code in the

Amiga Programmer's Handbook by Eugene P Mortimore (SYBEX, 1987),

where all the registers used for each function cali are provided.

The Include Files
The Include files on your C compiler disk and Assembler disk provide

definitions of the system constants and data structures. You will find ref

erences to these various Include files-having names ending in .h (for C)

7

PROGRAMMER'S GUIDE TO THE AMIGA

8

or .i (for assembler)-throughout the book. These files are not listed in this

book because the reader will also have obtained the Amiga ROM Kernel

Manual, which provides listings of all the Include files. The purpose of this

book is to supplement rather than to supplant that information.

You'll find many of the system routines described in the pages that fol

low in a guided tour of the system software. This book shows you what

has to happen before a routine can actually run and suggests why you

might want to use a particular routine. I hope that the tutorial approach

is useful to you. Note that although many of the program examples in

the book are complete, you will likely want to have your Amiga ROM

Kernel Manual handy should you decide to modify them.

Well, on to programming.

AmigaDOS

Although the Amiga has an icon-based interface (the Workbench), it

can also perform all of the functions that you \Nould find on a terminal

based computer. This chapter describes the terminal-based features of

AmigaDOS. You should find this chapter covers familiar ground. It dem

onstrates the follo\Ning:

• Printing a line to the CLI

• Command-line argument passing under AmigaDOS

• Getting a line from the CLI

• Opening and closing files

• Reading and \Nriting files

• Other file-related functions

• Opening a ne\N custom CON \Nindo\N for 1/0

• Opening a ne\N custom RAW \Nindo\N for 1/0

• Using AmigaDOS commands and utilities

All of the programs in this chapter must be started from the CLI

because each outputs status information to the CLI \Nindo\N from \Nhich

it is started. There are t\NO different \Nays to start a program on the

Amiga: by running a program from the CLI, or by opening the program's

icon (if available) from the Workbench.

On the Amiga, to use any of the built-in system routines, it is neces

sary to open the library in \Nhich the routine resides. You \Nill see the

OpenLibrary calls used in other chapters for this purpose. This chapter

uses no calls to OpenLibrary because the DOS library is opened automat

ically for you \Nhen the startup code (either AStartup.obj or LStart

up.obj) is linked \Nith your program. The startup programs open the DOS

libarary for you. Thus, the library interface code need not be included in

these examples. For other library routines described later in this book,

you'll al\Nays find the library interface code (initially described in Chapter

3). Additionally, if you should choose later to use your O\Nn custom start

up code, it \Nill have to include a call to open the DOS library if you \Nant

to use any of the AmigaDOS functions.

PRINTING TO THE eLI
It is traditional that the very first program you find in a book on C or

Pascal programming should be one that outputs the \Nords "Hello

PROGRAMMER'S GUIDE TO THE AMIGA

12

world." Rather than break with tradition, here is that same program

for the Amiga, As you can see, it is neither long nor complicated to do

this on the Amiga.

/* hello.c */

main()
{

printf("Hello world\n");
}

The directions for compiling this program and most of the other pro

grams in this book are summarized in Appendix A. Use the standard ver

sion of the makesimple program (on your Amiga C disk, in the examples

directory) to compile this program. When you compile and run this pro

gram, it prints the line "Hello world" to the CLI window, then it exits.

Assuming that you have compiled hello.c into an executable file named

hello, you can start this program from the CLI by typing

hello

COMMAND-LINE ARGUMENT
PASSING UNDER AMIGADOS

The startup files (Astartup.obj and Lstartup.obj) both provide

command-line passing similar to that provided by Unix or MS-DOS in that

a C language program can obtain the arguments (i.e., parameters) that

appear on the command line along with the prc:.gram name. For example,

if you have designed a program called argecho, and you type the com

mand line

argecho firstarg secondarg thirdarg

then on entry to your program, the arguments-count will be three, and

the arguments array (argv[O],argv[11,argv[2]) will point to null-terminated

strings each in turn containing one of your command-line arguments,

Listing 2.1 is a program called argecho that types the command-line

arguments it receives.

REDIRECTING
STANDARD INPUT AND OUTPUT

On the command line, you can use Unix-like redirection symbols to ask

AmigaDOS to use something other than the current CLI window for

AMIGAD05

/* argecho.c */

#include "exec!types.h"
#include "libraries/dosextens.h ll

main(argc,argv)
int argc;
char **argv~
!

int j;
for(j=O; j<argc; j++)
[

printf("Argument number %ld is %ls\n",j,argv[j]);

Listing 2.1: The argecho program

standard input or standard output. (Standard, in this sense, means the

default, i.e., it is used if no other is supplied.) You do this by placing the

redirection symbols < and> on the command line. Unlike Unix, however,

they must come immediately after the command itself, preceding any

of the arguments that you wish to pass to your program.

Here are a couple of examples of redirection, using the argecho pro

gram and a hypothetical program named mycopy. This line copies from

standard input (stdin) to standard output (stdout), assuming the exist

ence of a program called mycopy that simply reads characters one at a

time from the standard input and prints them one at a time to the stan

dard output:

mycopy < sourcefile > destfile

This means "mycopy (take stdin from) sourcefile (put stdout into)

destfile."

The following line puts the result of argecho into a file named echofile:

argecho > echofile arg1 arg2 arg3 arg4

In this example, the redirection symbol and destination file name are

stripped from the command line by AmigaOOS and your program

receives only

argecho arg1 arg2 arg3 arg4

This means that there are four arguments that will be listed in a file

named echofile.

When you use redirection in a command line, AmigaOOS actually

opens a file handle that it uses internally for handling the data stream

for input or output. When your command is carried out, this file handle is

13

PROGRAMMER'S GUIDE TO THE AMIGA

14

used to close the file automatically. Your program need never become

aware that this redirection happened at all; it simply took information

from its standard input stream and sent information to its standard

output stream and AmigaDOS handled the rest. The notations stdin and

stdout are actually defined in the startup files as file handles. If you do

not redefine the pathway to be used for stdin or stdout, they are

equated to file handles for the current console window.

The next section goes into direct use of these file handles, pointing

out where you might want to deliberately create and use file handles to

accomplish a particular task.

FILE HANDLES
A file handle is a kind of pointer that you obtain from AmigaDOS when

you open a file for reading or writing. It is subsequently used for things

such as the Execute command redirection parameters, the Write func

tion, the Read function, and finally the Close function that completes the

access to a file.

The printf function, a standard function in Amiga C. is very commonly

used to send output to the currently assigned standard output path.

There is a second way that you can send output to the current CLI win

dow. You do this by opening the current window for input and output

using a file handle.

Note that file handles under Amiga C and file descriptors for Amiga

DOS operations are different. You cannot, for example, pass a file

handle obtained by an Amiga C fopen command to an AmigaDOS func

tion, nor can you pass an AmigaDOS file descriptor obtained by the Ami

gaDOS Open function to an Amiga C function that is supposed to do file

operations. You can choose to use either the Amiga C I/O functions or

equivalent AmigaDOS I/O functions. Simply be sure to use the appropri

ate file handle when calling any function.

If you utilize the Amiga C functions for your I/O wherever possible, you

will find it easier to translate your programs to run on other systems.

However; by directly using the AmigaDOS I/O function, you might create

a program that runs more efficiently on the Amiga.

The Amiga C manual describes the standard I/O functions such as put

char and getchar. This book shows how to use the AmigaDOS functions

such as Read and Write.

Opening a File
To gain access to a file, you need a file handle. You obtain a file handle

a pointer to a data structure that contains information about that file

by using the AmigaDOS Open function.

AM1GADOS

A call to the Open function to open a file takes this form:

filehandle = Open(pathname,accessmode);

struct FileHandle *filehandle, *Open();
char * path name;
int accessmode;

The Open function takes two parameters. The first parameter is a

pointer to a string that defines the file name. The file name specifier can

include the complete directory path name as shown in this example. If

you specify only a name, the current directory is used.

The second parameter is either MODE_OLDFILE or MODE_NEWFILE.

(These terms are defined in the dos.h Include file.) MODE_OLDFILE opens

a file for read/write with the file pointer positioned at the beginning of

the file. MODE_NEWFILE opens a newly created file with this name,

again for read/write, with the pointer positioned at the beginning of the

file. If you use MODE_NEWFILE on an existing file, the existing version is

deleted (if deletable) and an empty file by this name is created. If the cur

rent version of the file is not deletable (see Protecting a File later in this

chapter), the Open command fails.

Closing a File
You terminate activity on a file by closing the file. A call to the Close

function takes this form:

Close(filehandle);

struct FileHandle *filehandle;

The Close function takes one parameter-the file handle returned by

the Open function. It terminates access to the file and writes out any

output that might have been internally buffered by AmigaDOS.

Reading from a File
You obtain information from a file by using Read. A call to the Read

function takes this form:

actual_count = Read(filehandle,buffer,count);

You tell AmigaDOS where to locate the opened file by passing a file

handle obtained from an Open command. You also specify the count of

characters you wish to read and the address of the buffer memory into

15

PROGRAMMER'S GUIDE TO THE AMIGA

16

\Nhich the characters are to be placed:

struct FileHandle *filehandle;
char *buffer;
int count, actualcount;

AmigaDOS returns the actual count of characters read.

If your call to Read \Nas able to fulfill your request, actuaLcount \Nil!

match count. If actual_count is equal to 0, then no characters \Nere read

and you have reached the end of the file. If actual_count is equal to - 1,

then there has been an error. You can get more information about the

error from loErr. The Amiga library function named getchar uses the

Read function.

Writing to a File
You add ne\N information to a file by \Nriting to it. A call to Write takes

this form:

actual_count = Write(filehandle,buffer,count);

You tell AmigaDOS \Nhere to locate the opened file by passing a file

handle obtained from an Open command. You also specify the count of

characters you \Nish to \Nrite and the address of the memory buffer

from \Nhich the characters are to be \Nritten:

struct FileHandle *filehandle;
char * buffer;
int count, actualcount;

AmigaDOS returns the actual count of characters \Nritten.

If the actual_count is equal to - 1 , then an error has occurred. You can

get more information about the error from loErr. The Amiga library

function named putchar uses the Write function.

CONSOLE 1/0 USING
AMIGADOS FILE HANDLES

Follo\Ning is a program that opens the current CLI \Nindo\N for input

and output. As \Nith hello.c, it also prints "Hello \Norld," but this program

uses a different method. In this example, the" *" notation means "use

the current \Nindo\N to locate the standard input and output path." The

notation "%ls" is the format-string descriptor that tells the function

fprintf hO\N to print the string. "%" says this is the start of formatting

data; "I" says there is a 32-bit (i.e., LONG) pointer to \Nhere the string data is

located; "s" says print the data as ASCII characters.

AMIGADOS

#include "Iibraries/dosextens.h"
extern struct FileHandle *Open();
main()
{

struct FileHandle *dos_fh;

1 * this defines FileHandle * 1
1 * declare the function type * 1

dos_th = Open("*",MODE_OLDFILE); 1 * open the console * 1

}

tprintf(dos_fh,"%ls" ,"Hello world\n");
Close(dos_fh);

Opening a New Window for Output

1* amiga.lib tunc *1

In place of the current window, you could open a new console window

for input and output by changing the specification string for the Open

command. Here is the modified version of the previous program; this

version opens a new window:

#include "Iibraries/dosextens.h"
extern struct FileHandle *Open()
main()
{

struct FileHandle *dos_fd;
dos_fh = Open("CON:10/10/500/150/New Window",
MODE_NEWFILE);

Write(dos_fh,"Helio world\n", 13);
Delay(300);
Close(dos_th);

1 * delay 6 seconds * 1

The window type is CON, meaning that it is to work just like a console.
(Vou'll find more about consoles in the next section.) The on-screen posi·
tion is to begin at X, V coordinates of 10,1 0 and it is to be 500 pixels wide

and 150 pixels high. New Window names the window. The AmigaDOS

Delay function (where delay is specified in fiftieths of a second) is used

so that you can see the output before the window closes and dis

appears. This time the mode for Open is specified as MODE_NEWFILE

because this window is not currently open.

Getting Input from a Console Window
The same console window that you opened for output can also be used

for input. The new window becomes active as soon as it is opened (unless

you click the mouse selection button on another window, of course). So if

17

PROGRAMMER'S GUIDE TO THE AMIGA

18

you type on the keyboard, the key inputs will be directed automatically to

the new window. Listing 2.2 is a modification of the previous program; this

program requests a line of input from you.

If you try this program, you will see that only printable characters are

accepted by this console window, and nothing gets printed into the origi

nal eLi window until you press Return. Function keys and arrow keys

have no effect. Essentially, AmigaDOS is receiving your input and filter·

ing it.

Because AmigaDOS is filtering the input, you can use the AmigaDOS

simple input editing commands such as pressing Backspace to back

space the cursor to erase the character most recently typed or using

the key combination etrl and X to restart the input line completely.

When you have finished formulating an input line, you press Return and

AmigaDOS passes this finished line to the program.

Getting Input without Pressing Return
In the previous example, the eON window accepts filtered input and

waits until you press Return before it returns anything from the Read

function call. If you have to respond to every single keystroke as it actu

ally occurs, you can use a RAW window in place of a eON window.

Listing 2.3 is a program that reports each keystroke to the eLi as it
occurs. If you press something other than a keyboard key (a function

key, arrow key. or help key) you will see that more than one value is gen

erated for each of the key presses. When you press Q, the sample pro

gram ends.

tinclude "libraries/dosextens .h"
extern struct FileHandle *Open();

main!)
[

char userinput[256];
int howmany;
struct FileHandle *dos fh;

dos fh = Open("CON:lO/10/SOO/150/New Window" ,MODE NEWFILE);
Write(dos th, -

"Please type an input line, then press RETURN\n" , 45);
howmany = Read(dos fh,userinput,255);
userinput[howmany]-= '\0',
printf ("You typed %ld characters: \n" ,howmany);
printf("and here they are:\n");
pri ntf (" %l s\n" ,userinput);
Close!dos_fh),

Listing 2.2: The getaiine program

AMIGADOS

'include "exec/types.h"
'include "libraries/dosextens.h"
#define OUIT Ox51 /* the uppercase (shifted) "0" key */

extern struct FileHandle *Open():

mainO
(

char userinput[256):
int howmany.j:
struct FileHandle *dos_fh:

dos fh = Open("RAW:IO/10/500/150/New Window" .MODE_NEWFILE):

fore::)
(

howmany = Read(dos fh.userinput.255):
userinput[howmany)-= '\0':

printf("just got tId values:\n".howmany):
/* note: if a user types quickly. more than */

/* key downstroke report will be sent */
/* within a single timing interval. */

printf(Uvalue stream was: "}:
for(j=O: j<howmany: j++)
(

printf("%lx H .userinput[j]):
)
printf("\n"):
if(userinput[O]==QUIT) break:

Listing 2.3: The reportraw program

It is possible to sense vvhen the user presses or releases any key. Hovv

ever, this facility is not provided through AmigaDOS. To obtain a unique

event identifier for each key dovvnstroke or upstroke, use Intuition's

reporting mechanism called the IDCMP (Intuition Direct Communication

Message Port). This facility also lets you listen in on mouse movements

and mouse button clicks. The IDCMP is covered in Chapter 5.

SENDING OUTPUT TO A PRINTER
AmigaDOS lets you send information to a printer connected to either

the serial or parallel port. There are three possible AmigaDOS paths that

you can use to transmit output to a printer:

• SER:-the serial port that is accessed through the Serial device

• PAR:-the parallel port that is accessed through the Parallel device

19

PROGRAMMER'S GUIDE TO THE AMIGA

20

• PRT-the printer port that can be either serial or parallel depend

ing on the setting of the Amiga Preferences; it is accessed through

the Printer device.

These are named devices that can be opened just like any AmigaDOS

file, and the Open command returns a file handle that can be used for

redirection or for receiving output from your program. Listing 2.4 is a

program that opens the Printer device for output, then copies a file to

the printer.

The command that is implemented in this program is similar to the

combination of the follo\Ning direct CLI commands:

JOIN filename1 filename2 morefilenames AS JoinedName
TYPE > PRT: JoinedName

Notice that the Open function could just as easily have used the Serial

or Parallel device. In this case, the output \Nould be directed through that

particular path, \Nith characteristics you have preset in Preferences

(serial baud rate, parity, number of bits, and so on).

AmigaDOS provides methods of defining hO\N a printer is supposed to

react to various standard control codes. When you go through the

Printer device, the control codes you send to the printer are translated

according to the type of printer you have declared in Preferences.

When you send output to the printer directly through the Serial or

Parallel device, you \Nill not get this translation; instead, the printer

\Nill see exactly \Nhat you send. You may find this capability useful for

controlling a printer that may not be available in the current Prefer

ences selections.

Chapter 6 provides more information about hO\N printers are sup

posed to react to the various control codes and also explains hO\N to

access the Printer device directly rather than through AmigaDOS.

MORE FUNCTIONS FOR
MANIPULATING FILES

Here are a fe\N more functions that are commonly required for file

manipulation:

• Seek-moves to a different position in the file or simply inquires

about the current value of the file position pointer

• Islnteractive-determines if the file handle is associated \Nith a

Console device

AMIGAD05

j* printem.c *j

#include "libraries/dosextens.h"
extern struct FileHandle *Open();

main(argc,argv)
int argc~
char *argv[];
(

struct FileHandle *fh, *fh2;
int datas i ze;
int n;
char buffer [256];
n ~ 1;

if(argc < 2)
(

printf("Usage: printem <filenamel> [more file names]\n"l:
exit(O);

)
fh ~ Open("PRT:",MODE OLDFILE);
if(fh ~~ 0) exit(20);- j* printer wouldn't open *j

while(argc > 1)
(

fh2 ~ Open(argv[n],MODE OLDFILE);
if(fh2 ~~ 0) -
(

printf("%ls: file not found\n"argv[n]);

else
for{;;)

(
j* forever (till error, probably EOF) *j

)

)

datasize Read(fh2,buffer,256);
Write(fh,buffer,datasize);
if(datasize < 256) break;

j* should check IOErr() here

Close (fh2) ;
n++; argc-- ~

Close (fh l:

Listing 2.4: The printem program

j* read the file *j
j* write the output *j
j* read less than asked? *j
to see if EOF *j

• WaitForChar-waits for a character from a Console device but

only for a limited time

Finding a Position in a File
When AmigaDOS opens a file and returns a file handle, the file is posi

tioned at the beginning. You can use the Seek function to find any

position within the file. You can specify that position relative to the cur

rent position, relative to the beginning of the file, or relative to the end

of the file. Seek returns the value of the current position. The file size is

specified in bytes, so each position is a byte-position in the file.

21

PROGRAMMER'S GUIDE TO THE AMIGA

22

A call to Seek takes this form:

currentposition = Seek(filehandle,position ,relative_to_ what);

struct FileHandle *filehandle;
int position;
int relative_to_what;
int currentposition;

To move to the very end of the file to append something, type

currentposition = Seek(filehandle,O,OFFSET _END);

To report the current position without moving in the file, type

currentposition = Seek(filehandle,O,OFFSET _CURRENT);

To move ten bytes farther than the current position in the file, type

currentposition = Seek(filehandle,1 O,OFFSET _CURRENT);

To return to the very beginning of the file, type

currentposition = Seek(filehandle,O,OFFSET _BEGINNING);

Determining vvhether
Your Program Is Connected to a Terminal

You can determine if the standard input of your program is connected

to a CLI by using the Islnteractive function. This function returns a non

zero value if your program was started from the CLI and a zero value if

you started the program from Workbench or by using the Execute func

tion. When you start a program from the CLI, you provide a window into

which the user can type a reply. This means the program is interactive
(can exchange data with the user). If the program is started from some

other function, there will be no input window and the standard input is

not interactive. This allows you to decide not to output instructions to

the user, waiting forever for a keystroke that may never come. The call

takes this form:

status = IslnteractiveO;

int status;

Waiting for a Character for a Specified Time
If (and only if) a file handle is connected to an interactive terminal (CLI),

the WaitForChar function can be used to wait a specified time until a

character becomes available. Perhaps you might want to flash the

AMIGADOS

screen or beep and repeat your message if a user doesn't respond. Or

perhaps you \Nant to exit the program if there has been no keystroke

by a certain time.

You can specify both the file handle for the input and the length of

time that the program should \Nait before returning to allo\N you to exe

cute the next instruction. The value returned by WaitForChar is a Bool

ean value (True = nonzero, False = 0) that tells you \Nhether there is a

character \Naiting to be read. You can decide \Nhat to do from there. The

call takes this form:

status = WaitForChar(filehandle,timeout);

BOOl status;
struct FileHandle * filehandle;
int timeout;

Note that you specify the time-out value in fiftieths of a second.

This is a friendly use of the Amiga multitasking system in that your

task actually goes to sleep, \Naiting for either a key-received interrupt

or a time-out interrupt. Other tasks are free to run \Nhile your task

remains asleep \Naiting for these things to happen.

AMIGADOS DIRECTORY STRUCTURE
AmigaD05 implements a hierarchical filing system. You can think of

this filing system as though the disk (called a disk volume) is a filing cabi

net \Nith folders and papers. The file folders are subdirectories of your

disk volume. The papers, individually, are your data or program files. The

folders can contain papers or other folders.

When you request a directory listing, AmigaD05 tells you \Nhich of the

names in the directory belong to files and \Nhich are directories by using

the notation (dir) follo\Ning the name. The root directory is the topmost

entry in a disk volume. Every other file is either part of the root or is con

tained in a subdirectory that is part of the root directory.

In AmigaD05, the root directory of any current disk is specified by

using a colon. If you type

CD:

it means "make the current directory (CD) the root of the current disk:'

If your current directory path is dfO:test/mystuff, the command "CD:"

makes dfO: the current directory. If your current directory is df1 :a/b/c,

then "CD:" makes df1: the current directory. This command moves to

the topmost level, or root of the current directory path. From this root

23

PROGRAMMER'S GUIDE TO THE AMIGA

24

directory, you can move to a 10\Nerlevel in the hierarchy by changing the

current directory to be one of the directories found in the root.

For example, if a dir command executed at the root level of a disk lists

tests (dir)

then you can make this the current directory by specifying

CD tests

or go directly to it from some other directory by specifying the com

plete path name to make the current directory:

CD dfO:tests

You can refer to an AmigaDOS disk by volume name (for example,

mydisk:testfiles/firsttryi instead of simply by disk designation (for

example, dfO:xxx or df1 :yyy). AmigaDOS is smart enough to ask for the

correct disk to be inserted into any drive before the operation is contin

ued. The volume name of a disk is applied to it at the time you format

the disk or at the time you use DISKCOPY or RENAME from the Work

bench. Remember this facility as you examine the sections that follo\N.

If you are programming the Amiga, the above information about path

names and volume names should already be familiar to you. HO\Never, it

\Nas provided here simply to remind you that you may find it necessary

during a program to move around in the hierarchy of the file system to

access various files. The section that follo\NS explains hO\N you can have

your program move around for you.

Dropping into AmigaDOS
It is comforting to be able to type commands directly into a CLI \Nin

dO\N and have AmigaDOS execute them for you. When you program for

AmigaDOS, you'll find that you can call the functions for deleting files

and renaming files directly. Also, you can programmatically perform any

of the utilities such as copying a file or changing a directory.

In addition to accessing filing system functions, you can actually per

form CLI-style commands directly from \Nithin the programming system

by using the AmigaDOS Execute command. Execute takes a command

string exactly as you \Nould have typed it into the CLI and executes it as

though there \Nere a CLI present.

Execute has t\NO restrictions:

• The RUN command must be present in the directory that you

assign to drive C \Nith an ASSIGN statement.

• The command that you Execute must be either in the current

directory or in the C directory.

AMIGAD05

Following is a program using the Execute command. Notice that the

command string includes a redirection command to place the output of

the command into a file.

/* execute.demo.c */

#include "Iibraries/dosextens.h"

main()
{

int success;
success = Execute("dir > dfO:dir.file" ,0,0);
if(success = = 0) printf("I/O error %ld",loErr());

The program places a listing of the current directory into a file named

dir.file on the drive dfO. To see the results of this program in the CLI, type

this line:

TYPE dfO:dir.file

The Execute function takes three parameters. The first parameter is a

command string that may optionally include a redirection command;

that is, an arrow «) to show where the standard input is to come from,

and an arrow (» indicating where the standard output is to be directed.

The second and third parameters are redirection file handles; they

specify how to redirect the standard input and standard output of the

command if there is no standard input or output redirection specified in

the command string that is passed as the first parameter. A value of

zero for both parameters causes AmigaD05 to assume that the stan

dard input and output for this Execute command is to be the same as

for the process that calls the function. Thus, a sirrple command such as

DIR prints its output directly to the CLI window if the execute. demo pro

gram was started from the CLI.

Calling a Function versus Using Execute
As with all of the above utilities, calling the function directly instead of

using the Execute function has both advantages and disadvantages. If

you use the function itself rather than Execute, your program does not

incur the overhead of the Execute command (the RUN function and the

command itself) and needs neither the RUN nor the command itself in

the C directory of your disk. However, calling the function directly does

prevent you from using the wild-card features that are available with

Execute.

25

PROGRAMMER'S GUIDE TO THE AMiGA

26

Using the File Handle
Returned by the Open Function

As mentioned earlier, you can have AmigaD05 manipulate file handles

for you by using redirection on the command line, or you can open a file

yourself and use the file handle that the Open command provides to

\Nork \Nith that file. Here is yet another example of using command-line

redirection:

DIR > dir.list
This executes the DIR command and places its output into a file named

dir.list. Listing 2.5 is a program that does the same thing but doesn't use

the redirection information in the command string; instead, a file handle

is obtained by opening a file named dir.list on the internal drive. The end

effect is identical. It simply demonstrates the use of the file-handle

parameters in the Execute command. You'll see more uses of file

handles later in this chapter.

Moving across Branches in the Directory Tree
The Execute example sho\Nn earlier simply executed a command

affecting the current directory. You may find it necessary to go to

another directory, or, for example, ask AmigaD05 to request that the

user insert a different disk.

AmigaD05 provides a mechanism for moving around in its file system.

This mechanism is called the Jock. Getting a lock on a directory is simply a

j* execute.demo2.c *j

#include "libraries/dosextens .hl!
extern struct FileHandle *Open();
main()
{

int succeSSi
struct FileHandle *outhandle;

outhandle = Open("dfO:dir.list",MODE_NEWFILE);
if(outhandle == 0)
{

printf("IjO error %ld\n",IoErr());
exit(20) ;

success = Execute("dir",O,outhandle)j
if(success == 0)

printf("IjO error %ld\n",IoErr());

Close(outhandle); j* close the file *j

Listing 2.5: The execute.demo2 program

AMIGAD05

'Way of telling AmigaDOS to refer all of your requests for file access to a

particular directory. This directory can be the root directory of a disk of

a particular volume name or any subdirectory 'Within any disk. Once you

have a lock on a directory, you can get information about that directory

or information about the files 'Within that directory. It is not necessary to

use a lock just to open, read, or 'Write files. The lock mechanism provides

the gate'Way for a program to access and possibly modify data that is

being maintained by AmigaDOS.

This directory-locking mechanism is necessary in a multiprocessing

system. For example, if your program obtains a lock on a particular

directory path, then AmigaDOS 'Will prevent another process from

deleting this directory or any of its parent directories 'While the lock is in

effect. Because the correct operation of AmigaDOS depends on the

proper use of this locking mechanism, if you do obtain a valid lock, you

must unlock it before your program exits.

Listing 2.6 is a program that uses a lock to set the current 'Working direc

tory. This program is equivalent to using the cd <somedirectory> com

mand from the CLI but is effective for your program instead. The program

does not change the directory in 'Which the CLI is 'Working but simply

changes the directory in 'Which your o'Wn program 'Will 'Work. Instead of list

ing the directory in 'Which the CLI is currently sitting, the my.cdir program

moves its current 'Working directory to the directory named "c" on the

internal disk. The listing is generated to the CLI 'Windo'W.

If you 'Wish to try the program, compile it and store the executable file

as my.cdir. Type the command DIR to obtain a listing of the directory in

'Which you are located. Type my.cdir and you'll get a directory listing of

the dfO:c directory instead. Type CD and you'll notice that the CLI from

'Which you ran the my.cdir program has remained 'Within the same direc

tory in 'Which you began and that only your program has moved around

'Within the filing system to perform its job.

Climbing Around in the Directory Tree
There are several functions that you need to use to move around in

the AmigaDOS directories:

• loErr-returns the error value from the most recent AmigaDOS

operation

• Lock-gains control of a specific directory path

• UnLock-releases control of a locked directory path

• CurrentDir-moves into a specific directory

27

PROGRAMMER'S GUIDE TO THE AMIGA

28

f* my.cdir.c *f
#include tllibraries/dosextens.h"
extern struct FileHandle *Open();
extern struct FileLock *Lock(),*CurrentDir();
main()
[

int success;
struct FileLock *lock,*oldlock;
struct FileHandle *myfile;

f* get a pointer to a specific directory *f
lock; Lock("dfO:c",ACCESS READ);
if(lock ;; 0)
[

J

printf("\nCan't get a lock!");
exit(20);

f* move into that directory if the pointer is valid *f
oldlock ; CurrentDir(lock);

f* open a file and thereby get a handle for accessing it *f
myfile ; Open("dfO:dir.file" ,MODE NEWFILE);
if(myfile ;; 0) -
[

J

printf("open did not work: %ld\n",IoErr(»;
f* Move to original directory *f
Oldlock ; CurrentDir(oldlock);
UnLock (lock);
exit(30) ;

/* execute a command, redirect output into the */
f* file via the handle *f
success = Execute("dir",O,O);
if(success ;; 0)
f

J

printf ("execute error: %ld\n", IoErr(»;
f* Move to original directory *f
Oldlock ; CurrentDir(oldlock);
UnLock (lock) ;
exit(40);

f* Move to original directory *f
Oldlock ; CurrentDir(oldlock);
f* close the file *f
Close(myfile);

f* and cleanup by unlocking anything we locked *f
UnLock (lock);

Listing 2.6: The my.cdir program

• Examine-fills a data structure with information about a specific

directory

Ex Next-fills a data structure with information about files in a

directory

• ParentDir-moves into the parent directory

AMIGADOS

Reading AmigaDOS Error Codes
When you are using AmigaDOS functions, their calling sequences

often specify

success = Function(parameters);

or

pointer = Function(parameters);

where a value of zero returned means that the function failed for some

reason.

You can find out why the function did not succeed by reading the

error code that AmigaDOS provides. This error code is accessed by the

loErr function. A call to loErr takes this form:

error = loErrO;

The possible errors that you can encounter are listed in the Amiga C

Include file called libraries/dos.h.

Locking Files and Directories
A call to the Lock function takes this form:

mylock = Lock(pathname_string,access_mode);

The Lock function takes two parameters. The first parameter is a

string that specifies the directory path you wish to lock. The string can
be a complete path including a volume name, a name of another direc

tory in the current directory, or the null string (""). You'll see several uses

of the null string parameter later in this chapter.

The second parameter is the access mode, specified as ACCESS_READ,
also called SHARED_LOCK. If you specify a shared lock, then other proc

esses can also read and write into this directory or file. The other access

mode is called ACCESS_WRITE or EXCLUSIVE_LOCK. No other process

can access this directory or file if you use this mode.

The Lock function returns a pointer to a FileLock data structure,

which contains information that AmigaDOS will use later to access a file

(if you lock a file) or to access items in a directory (if you lock a directory).

The Lock function has a lower overhead than the Open function.

Thus, as a faster way of determining if a file exists, you can try to lock it.

If the function returns with a valid value (any nonzero value), the file

exists and you can then decide to open it. If Lock returns a zero value,

the file was not found.

29

PROGRAMMER'S GUIDE TO THE AMIGA

30

Unlocking Files and Directories
A call to the UnLock function takes this form:

UnLock(mylock);

The parameter is a pointer to a FileLock data structure. You must

unlock anything that you lock so that AmigaDOS can continue to func

tion correctly

Moving from One Directory to Another
You use CurrentDir to move from one directory to another. The value

of old lock is provided to let you come back to wherever you were in the

first place. A call to CurrentDir takes the form

old lock = CurrentDir(mylock);

where my lock is a pointer to a lock that you obtained from calling Lock

or another function that returns a lock. It has the same effect as the

AmigaDOS CD command, changing your working directory. The follow

ing are equivalent calling sequences:

and

success = Execute("cd dfO:c",O,O);

mylock
old lock

Lock(" dfO:c" ,ACCESS_READ);
CurrentDir(mylock);

The advantage of the second form is that there need be no RUN com

mand in the C directory of the currently assigned disk.

Only locks obtained from the Lock function should be unlocked later

on. Do not call UnLock for a value that you obtain from the CurrentDir

function. You see, AmigaDOS creates its own locks for dealing with the

current directory; the value it returns is simply a pointer to AmigaDOS's

own private lock. If your program unlocks it, AmigaDOS will not be able

to access that disk or directory. Thus, only call UnLock for a lock that

you received through the use of the Lock function.

Getting Information about a File or Directory
You use the Examine function to get information about a file or a

directory A call to Examine takes the following form:

success = Examine(lock,address_oCFilelnfoBlock);

The first parameter is a pointer to a lock, usually obtained from a Lock

function call. The second parameter is the address of a FilelnfoBlock.

When you call the Examine function, a FilelnfoBlock is filled with informa

tion about a directory Among the items contained in this FilelnfoBlock

AMIGADOS

are the DirectoryType, FileName, Protection bits, Size, Comment, and so

on. The meanings of the fields in this FilelnfoBlock are summarized in the

example shown in Listing 2.7.

/* exam.example.c * /

#include "libraries/dos~h"
'include "exec/memorY.hll

long rmask ~ «long)('r') « 24):
long brmask ~ «long)(' ') «24): /* a blank in same position */
long wmask ~ «long)('w') « 16):
long bwmask ~ «long)(' ') « 16):
long emask ~ «long)('e') « B):
long bemask ~ «long)(' ') « B):
long dmask ~ (long)('d'):
long bdmask ~ (long)(' '):

struct
(

long pmask:
char stringnulli

maskout: /* place to build the protection bits value */

maine)
(

struct FileInfoBlock *fib:
int success, Pi
struct FileLock *lock:
extern struct FileLock *Lock():
/* let's examine the 'dir' command file */
fib ~ (struct FileInfoBlock *)AllocMem(sizeof(struct

FileInfoBlock), MEMF CLEAR):
lock ~ Lock("dfO:c/dir", ACCESS READ):
if(lock) -
(

success ~ Examine(lock, f ibl:
if(success)
(

printf("\n File name: %ls", &fib->fib FileName[O]):
if(fib->fib DirEntryType > 0) -

printf("\nis a directory"):
else

printf("\nis a plain file"):
/* now calculate the protection bits */

p ~ fib-> fib Protection:
maskout.pmask ~ 0:
maskout.stringnull ~ '\0': /* end of string null */

if(p & FIBF READ)
maskout:pmask I~ brmask:

else
maskout.pmask I~ rmask:

if(p & FIBF WRITE)
maskout:pmask I~ bwmask:

else
maskout.pmask I~ wmask:

if(p & FIBF EXECUTE)
maskout:pmask I~ bemask:

Listing 2.7: The exam.example program

31

PROGRAMMER'S GUIDE TO THE AMIGA

32

else
maskout.pmask 1= emask;

if(p & FIBF DELETE)
maskout~pmask 1= bdmask;

else
maskout.pmask 1= dmask;

printf("\nhas protection bits of: %ls",&maskout);
printf("\nhas a file size (bytes) of %ld",fib->fib Size);
printf("\n(%ld blocks)",fib->fib NumBlocks); -
pri ntf (" \nIts file comment: \n%l s", fib-> fib_Comment);

/* There is also a dates tamp in this FileInfoBlock */
/* that can be interpreted by the ShowDate function */
/* (see Finding the Current Date later in this chapter.) */
printf("\nhas a last-modified-date of:");
ShowDate(&(fib->fib_Date»;

)
Unlock(lock);

/* end of exam.example.c */

Listing 2.7: The exam. example program (continued)

When you are in the root directory of a disk, the FileName field con

tains the volume name of the disk itself. Thus, for any disk, vvhen you

are in its root, you can read the volume name and the creation times

tamp. It is through the use of the timestamp that you can tell the differ
ence betvveen tvvo disks that have the same volume name.

Listing 2.7 is a program that calls the Examine function. The program

lists only those data fields that might be of interest to the programmer.

Other data fields are for AmigaDOS internal use only.

The reason that the AllocMem function is used to create the Fileln

foBlock is that AmigaDOS requires it to be longvvord aligned. AllocMem

alvvays aligns on a longvvord (actually double-Iongvvord) boundary vvhen

it allocates memory.

Getting Information about the Next File or Directory
You use the ExNext function to get information about files vvithin the

same level in a directory. A call to ExNext takes this form:

success = ExNext(lock,address_oCFilelnfoBlock);

The parameters are the same as those for the Examine function.

Ex Next uses the lock pointer and the current contents of the Filelnfo

Block to determine vvhich is the next file (if any) in the same level in the

directory tree. It then fills information in the FilelnfoBlock relating to

that next file or directory.

The value of success is returned as zero vvhen there is no item to be

examined next.

AMIGADOS

Moving Up in the Directory Tree
If you have a lock on a file or a directory, the ParentDir function

returns a lock on the parent; that is, it returns the directory of which

this locked item is a part. A call to ParentDir takes this form:

parentlock = ParentDir(lock);

You use this function to move up the directory tree towards the root.

When you reach the root, there is no parent directory available so the

function returns a value of zero.

Program Using Directory Functions
Listing 2.8 is a program that implements some of the functions of the

command string

DIR opt a

As a reminder, this command string tells AmigaDOS to list all of the files

in the current directory, all of the directories within this current direc

tory, and all of the files and directories beneath them. The difference

between this and the system version is that this program outputs the

names as it finds them rather than in a sorted sequence.
You can run the opta program from any directory path and it will list

all files contained in that directory as well as all files and directories

beneath it.

Determining the Current Working Directory
You can find the current working directory by taking advantage of a

special feature built into AmigaDOS. By using a null string with the Lock

function, AmigaDOS returns a lock on the current directory. You can get

information about this directory and you can move to the parent of this

directory. (The following program gets the directory name and moves

to its parent.) In fact, by moving from parent to parent, you will eventu

ally climb the directory tree structure all the way to the root of the cur

rent file system.

After successfully obtaining a lock, you can get information about this

directory by using the Info command, or you can simply save this lock

information for later. You may want to move away from the current

directory and later return for some reason or other.

Listing 2.9 is a program that reports information about the current

directory. Notice that it performs an Unlock function before it exits. You

must unlock anything that you lock so that AmigaDOS can keep things

straight. This is akin to freeing any memory you allocate before your

program is finished.

33

PROGRAMMER'S GUIDE TO THE AMIGA

34

/* opta.c * /

#include 111ibraries/dos~"
#include "libraries/dosextens.h ll

#include "exec/memory.h tl

extern struct FileLock *Lock(),*DupLock(),*CurrentDir(),
main(argc, argv)

int argc;
char *argv[);

struct FileLock *oldlock,
struct FileLock *newlock,

char *whichdir;

if(argc == 1)
[
/* no directory specified, use current one! */

whi chdi r == ''',

else
[

whichdir = argv[l),

newlock = Lock(whichdir,ACCESS READ);
if (newlock 1= 0) -
[

else
[

oldlock = CurrentDir(oldlock),
followthread(newlock,O);
oldlock = CurrentDir(oldlock),
UnLock(newlock),

printf(Ucan't lock selected dir\n"}j

printf ("\n"),

/* now follow the thread ... might hit a directory, might hit a file. */
/* If a directory, list it and then follow it down (recursively). */
/* If hit a file, list it and proceed to the end. */

int followthread(lock,tab level)
struct FileLock *lock; -
int tab level;
[-

struct FileInfoBlock *m;
struct FileLock *newlock,*oldlock,*ignoredlock;
int success, i;

/* if at the end of the road, don't print anything */

if(llock) return(O);
/* allocate space for a FileInfoBlock */

m = (struct FilelnfoBlock *)

success

AllocMem (5 i zeof (5 truct FilelnfoB lock), MEMF _ CLEAR),

Examine(lock,m);
/* The first call to Examine fills the FileInfoBlock */
/* with information about the directory. If it is */

Listing 2.8: The opta program

AMIGADOS

/* called at the root level, it contains the volume */
/* name of the disk. Thus, this program is only */
/* printing the output of ExNext rather than both */
/* Examine and ExNext. If it printed both, then */
/* it would list directory entries twice!! */

while (success != 0)
[

if(m->fib DirEntryType > 0)
[-

/* since it is a directory, get a lock on it and */
/* go into it to list its contents as well as the */
/* name of the directory */

newlock = Lock(&m->fib_FileName[OJ,ACCESS_READ);

/* If lock is valid then make this directory the */
/* current one, but save the old lock value so */
/* that we can return here and continue to list * /
/* the rest of the files and directories located here. */

oldlock = CurrentDir(newlock);
/* move into that directory */

/* recursively follow the thread down to the bottom */
followthread(newlock,tab level+l);

/* after listing the contents of the new directory, */
/* come back here * /

ignoredlock = CurrentDir(oldlock); /* and proceed * /
)
success = ExNext(lock, m); /* examine the next entry */
if(success)
[

)

printf ("\n");
for(i=O; i<tab level; i++)
printf ("\t"); -
/* tab in to show directory level */
printf (&m -> fib FileName[O]);
if(m-> fib DirEntryType > 0)
[-

printf(" (dir]");
/* tell user this is a directory */

if(lock) UnLock(lock);
F reeM em (m ,si zeof (s truct File! nfoBlock));

Listing 2.8: The opta program (continued)

The mybranch program uses a recursive call to the function named

followpath. Its job is to continue to call the ParentDir function until it

obtains a lock value of zero and to print the name of the directory It

pops into at each step. The program prints a colon when it reaches the

root of the disk and a slash for each subdirectory along the way to the

path from which the program was started. When foliowpath reaches

the root directory, the lock that is returned gives you the volume name

of the disk.

35

PROGRAMMER'S GUIDE TO THE AMIGA

36

1* mybranch.c '1

#include "libraries/d::>s .h"
#include "libraries/d::>sextens .h"
i ncl ude "execl menory.h"
extern struct FileLock *Lock() , *DI¥=k(), *ParentDir(),
maine)
(

I

struct FileLock *mylock, *oldlock,
1* get a read lock on the current di rectory *1
oldlock = Lock("",AaESS_READ),

if(oldlock 1= 0)
[

else

printf("\nPath to the current directory is: "),

1* ron't print a slash if at Ixlttamoost level *1
followpath(oldlock,O),

printf("\n Can't lock the current directory");

1* NJTE: in this example, followpath unlocks the lock *1

int followpath(lock,printslash)
struct FileLock * lock ,
int printslash;
(

struct FileInfd3lock *myinfo,
struct FileLock *newlock,
int success ,error;

/* if it reaches the end of the road, don I t pr i nt anyt hi ng * /
if(1 lock) return(O),

myinfo = (struct FileInfd3lock *)AllocMem(sizeof(struct FileInfd31ock),MEl"F CLEAR),
if(myinfo == 0) -
!

I

printf("Ran out of menory\n"),
return(O) ,

/* see if this directory has a parent, if so, pass it en *1
newlock = ParentDir(lock) ,
error = IcErr();
1* newlock might fail because of an I/o error or because *1
/* sanebody took out the disl< *1

if(newlock = 0 && error 1= 0)
printf("\n DISK I/o ERRORI value = %ld\n" ,error);

1* recursively call thi s same functicn to follow path up to the root *1

followpath (newlock , 1) ;

1* file in the FileInfd310ck so we can print the name of this node *1

success = Examine(lock,myinfo);
if (success)
(

printf("%ls" ,myinfo -> fib FileName[O]),
if(newlock = 0)

Listing 2.9: The mybranch program

AMIGADOS

printf(",">;

else
{
;* print a slash only if p3.rarneter is n:>t zero *;
if(printslash) printf(";">;

UnLock (lock) ;
}
if (myinfo)

Fr_(myinfo. sizeof (struct FileInfdllock));
return(l) ;
printf("\n");

Listing 2.9: The mybranch program (continued)

To try this program, compile it and name the executable file mybranch,

then copy it to dfO:c. Next, execute the follo\Ning command sequence

from the eLi:

CD dfO:
MAKEDIR stuff
CD stuff
MAKEDIR morestuff
CD morestuff
CD

The eLi \Nill respond \Nith

dfO:stuff/morestuff

NO\N type the command

mybranch

The eLi \Nill respond \Nith

VOLUMENAME:stuff/morestuff

\Nhere VOLUMENAME \Nill be the name of your startup eLi disk (possibly

ceLl if you have been using the instructions that came \Nith Amiga 0.

AmigaDOS Utilities
The follo\Ning utilities are available as AmigaDOS functions that your

program can call directly:

• Rename a file or directory (Rename)

• Delete a file or directory (Delete)

37

PROGRAMMER'S GUIDE TO THE AMIGA

38

• Create a directory (CreateDir)

• Protect a file or directory (SetProtection)

• Establish a comment for a file or directory (SetComment)

• Find out the current date (DateStamp)

• Get information about a disk (Info)

There are other utility functions that work with the multiprocessing

system. These are discussed in Chapter 3, along with the multitasking

system calls and data structure discussions.

Utilities Normally Accessed from the eLI
Of the above utilities, the following are normally accessed through CLI

functions: Rename (the RENAME function), Delete (the DELETE func·

tion), CreateDir (the MAKEDIR function), SetProtection (the PROTECT

function), and SetComment (the FILENOTE function). In this section,

three alternative methods of calling these utility functions are provided,

including using the Execute command.

As a notational convention, to distinguish between lines that you type

into a CLI and lines that you use in a program, the CLI commands appear

in all uppercase letters. Throughout this section, if a line begins with a

word in all uppercase letters, it is a CLI command; if a line begins with the

returned value of success, it is a line that might appear in one of your

programs.

Renaming a File
The Rename function takes this form:

success = Rename(oldnamepointer,newnamepointer);

int success;
char *oldnamepointer, *newnamepointer;

The parameters are pointers to strings representing the old and the

new file names respectively. If the value of success is zero, you can look

at the value in loErr to see what went wrong. Note that you can use this

function to move a file from one directory level to another as long as the

file stays within the same volume. For example, to move a file named

myfile from dfO:stuff/morestuff to dfO:stuff, you would specify the

oldnamepointer as dfO:stuff/morestuff/myfile and the newnamepoin·

ter as dfO:stuff/myfile.

AMIGADOS

To rename a file from the CLl, you can type

RENAME from old name to newname

or you can use Execute, as follO\Ns:

success = Execute("rename from old name to newname" ,0,0);

Another alternative is

success = Rename("oldname" ,"newname");

Deleting a File
The Delete function takes this form:

success = Delete(currentname);

int success;
char *currentname;

The currentname parameter is a pointer to a string that describes the

path name of the file to be deleted, If it is a name alone, it refers to the

current directory. If the value of success is zero, you can look at the

value in 10Err to see \Nhat \Nent \Nrong.

To delete a file from the CLl, you can type

DELETE currentname

or you can use Execute, as foIlO\Ns:

success = Execute("delete currentname" ,0,0):

Another alternative is

success = Delete("currentname");

Creating a Directory
The call to CreateDir takes this form:

lock = CreateDir(dirnamepointer);

struct FileLock * lock;
char *dirnamepointer;

To create a directory from the CLl, you can type

MAKEDIR newdirectory

or you can use the Execute function:

success = Execute("makedir newdirectory",O,O);

39

PROGRAMMER'S GUIDE TO THE AMIGA

40

Another alternative is

lock = CreateDir("newdirectory");

Notice that the call to CreateDir returns a lock on this newly created

directory. If the lock value is zero, 10Err has information on why the func

tion failed.

Protecting a File
The Set Protection function lets you specify a protection mask for a

specified file name. The call to SetProtection takes this form:

success = SetProtection(namepointer,mask);

int success;
char * namepointer;
int mask;

Only the lowest four bits of the mask are significant. The significance

is in the sequence RWED, standing for Read, Write, Execute,and Delete.

If you set any of these bits, you are telling AmigaDOS that a file should

be protected from being read; or protected from being written; or pro

tected from being executed (as in the case of script files or normally exe

cutable binary files); or protected from being deleted. The state of the

mask is just the opposite of what you normally see when you perform
an AmigaDOS LIST command in that when the LIST command shows

RWED as the protection flags, it means that the file can be read,

written, and so on.

When you set one of these flags, it means that the corresponding bit

will become set and thereby protect the file. AmigaDOS pays attention

only to the D flag as of this writing. If a programmer creates a shell

program (a program that looks and acts like an enhanced CLI), that

shell program can use these other flags. For example, if the E flag is not

set, the shell program might not try to execute that file.

To protect a file from the CLI, you can type

PROTECT filename DW

or you can use the Execute function, as follows:

success = Execute("protect filename dw" ,0,0);

Alternatively, you can use the SetProtection function:

/* RWED */
/* binary 0101 as Wand D flags, */
/ * write-protect and delete-protect * /

success = SetProtection("filename" ,5);

AMIGAD05

Establishing a Filenote
You can use the SetComment function to add a filenote to a file or

directory. A call to SetComment takes this form:

success = SetComment{namepointer,comment);

int success;
char * namepointer;
char *comment;

You can set a filenote from the CLI by typing

FILENOTE filename "This is a note I wanted to attach"

Or, in your program, you can use the Execute function:

success = Execute{"filenote filename" "This is a note" " ",0,0);

Alternatively, you can use the SetCorlment function directly:

success = SetComment{"filename","This is a note");

Finding the Current Date
You can ask AmigaDOS to provide you \Nith the current date as it

kno\Ns it, \Nhich is not necessarily accurate, unless accurate information

is provided by the user. The function is cailed DateStamp, and a call

takes the form

DateStamp{v);

\Nhere v is the address of the first of three long\Nords (32 bits each) that

the function fills \Nith the current date and time information.

You can convert the value received from the DateStamp function to a

printable month, day, and year by the procedure in Listing 2.10. The pro

gram \Nas \Nritten by Thomas Rokicki and is included here \Nith his per

mission. Thanks, Tom, for this subroutine.

Getting Information about a Disk
After you have obtained a lock on a file or directory, you can use the

Info function to obtain information about the disk on \Nhich this file

resides. You pass a lock and an empty InfoData structure, and Info fills in

the information about the disk. This is unlike the system INFO command,

in that the Info function obtains information about one disk at a time,

\Nhereas the CLI command gathers and formats data about all block

structured devices in the file system at one time.

A call to Info takes this form:

success = Info{lock,address_oUnfoData);

41

PROGRAMMER'S GUIDE m THE AMIGA

42

char *months[]={" .. I "January" , "February", "March", "April!!, II Mayll , "June" ,
"July" , "August" t "s ept ember II ,"October ll , "November!!, "December"}
long n ;
int m, d, y ;
main ()
[

long v[3]
DateStamp(v)

ShowDate(v);

ShowDate(v)
long 'v;

n = yeO] - 2251
Y = (4 • n + 3) I 1461
n -= 1461 * y / 4
y += 1984 ;
m = (5 • n + 2) / 153
d = n - (153 • m + 2) / 5 + 1
m += 3 ;
if (m > 12)
[

)

y++ ;
m -= 12

printf("%s %d, %d\n", months[m], d, y)
return(O) ;

Listing 2,10: The printdate program

As with the FilelnfoBlock, this InfoData structure must be longword

aligned.

The info.example program in Listing 2.11 uses the Info function to get,

then report information about whichever disk has the DIR function on it.

This will normally be your Workbench or CLI disk.

Miscellaneous Functions
The functions discussed in this section are not available directly as CLI

commands, though the information that they convey is often available

from other commands, such as LIST. Functions are included here to do

the following:

• Discover the name of the volume from which you booted

• Delay for a specific period of time

• Determine the process that is handling an 1/0 device

• Change the name of a disk volume

Discovering the Name of the Boot Volume
You can find out which volume name was used as the original Work

bench boot disk (the disk you inserted just after Kickstart, when the

AMIGADOS

/* info.example.c */

#incl ude "libraries/dos .h"
#include "exec/memory.h"

main()
{

struct InfoData *id;
int success I P;
struct Lock *lock;
struct
{

long pmask;
char stringnull;

maskout;
maskout.stringnull ~ '\0';

/* let's get info about the disk where 'dir' is located */
id ~ (struct InfoData *)AllocMem(sizeof(struct InfoData), MEMF_CLEAR);

lock ~ Lock ("dfO:c/dir", ACCESS READ),
if(lock) -
{

success ~ Info(lock, idl:
if (success)
{

if(id->id DiskType ~~ -1)
{ -

printf("\nNO DISK PRESENT");
J
else
{

printf("\nSoft Errors So Far: %ld" ,id->id NumSoftErrors),
printf("\nUnit # where (is/was) mounted: %ld",id->id_UnitNumber);
printf ("\nDisk State: ");
if(id->id DiskState ~~ ID WRITE PROTECTED)

pri ntf ("Wri te-Protected"); -
else if(id->id DiskState == ID VALI~TED)

pri ntf (" Read/Wri te") ; -
else if(id->id DiskState == ID VALI~TING)

printf("Validating Disk File Structure"}:
printf("\nDisk has %ld blocks" ,id->id NumBlocksl;
printf("\nof which %ld are in use" ,id-=>id NumBlocksUsed);
printf("\nThere are %ld bytes/block" ,id->1d BytesPerBlock);
printf("\nDisk Type is: "), -
maskout.pmask = id->id DiskType;
printf(&maskout), -
if(id->id InUse ~~ 0)

printT("\nDisk is not in use"),
else

printf("\nDisk is in use");

/* end of info.example.c */

Listing 2.11: The info.example program

system asked for a Workbench disk) by passing a zero value as the lock

for the Examine command.

No matter hovv many disk svvaps you perform, along vvith ASSIGN

statements, the system still remembers vvhich disk volume name vvas

used for the original boot.

43

PROGRAMMER'S GUIDE TO THE AMIGA

44

The bootname program shown in Listing 2.12 uses the Examine func

tion to read and report the name of the disk from which you booted the

Amiga.

Delaying for a Specific Period of Time
You can use the AmigaDOS Delay function if you wish to put your task

to sleep for a period of time denominated in fiftieths of a second. The

call takes this form:

Delay(time);

int time;

Here's an example:

Delay(1S0); I * put task to sleep for 3 seconds * I

Determining the Process Handling a Particular I/O Device
This technique is necessary if you wish to use a couple of the more

advanced functions of AmigaDOS. Instead of executing an AmigaDOS

utility function as demonstrated above, for certain functions you must

send a message packet to a file process. This and the next section com

plete the AmigaDOS topics, but message passing is covered in the next
chapter, so an explanation of the message-passing technique can be

found there.

/* bootname_c */

'include <libraries/dos.h>
tinclude <libraries/dosextens_h>
#include "exec/memory.h"

main()
{

struct FilelnfoBlock *myinfo;
int success;

myinfo = (struct FilelnfoBlock *)
AllocMem(sizeof(struct FilelnfoBlock),MEMF_CLEAR);

success = Examine(O,myinfo);
if(success)

printf("%ls\n",&(myinfo -> fib_Filename[O]));
else

printf("no success\n");
FreeMem(myinfo,sizeof(struct FilelnfoBlock));

Listing 2.12: The bootname program

AMIGADOS

For a particular AmigaD05 device, you determine which process is

actually handling its 1/0 by using the DeviceProc function. A call to

DeviceProc takes the form

proc = DeviceProc(name);

where name is a pointer to a null-terminated string containing the name

of the device of interest. The name parameter could be "dfO:", "df1 :", or

"" (the null string) if it should work on whatever the current directory is

set to.

Renaming a Disk Volume
If you need to change a disk volume label from a program, you can use

either the Execute function to call the RELABEL command, or you can

send a message packet to the process that is handling the device con

taining that disk. The type of message packet is ACTION_RENAME_

DI5K. You find the process by using DeviceProc. An example program

with comments is shown below for a simple case:

/ * relabeldisk.c * /

/ * note: simply shows how to call Execute for this * /
/ * function ... programmer should build * /
/ * own string for the RELABEL function * * * * * /

mainO
{

int success;
success = Execute("RELABEL old name: newname" ,0,0);
if(!success)
{

printf("Execute failed to relabel the disk\n");
}

This chapter has covered nearly everything that AmigaD05 can do,

from console-based input and output to file manipulation. You've seen

how to open and close files, get and input data using AmigaD05. and

how to move around in and manipulate the file system.

The approach has been on cause and effect, rather than on listing

internal data structures used by AmigaD05. If you need more informa

tion about data structures, see the AmigaDOS Technical Reference Man

ual and the libraries/dos.h and Iibraries/dosextens.h Include files. The

Include files are listed in the Amiga ROM Kernel Manual.

45

PROGRAMMER'S GUIDE TO THE AMIGA

46

If you are trying to use the information contained in this book to adapt

programs from other systems to the Amiga, there is another major

area that you need to understand-device I/O. Vou'll find some informa

tion on devices covered in general in the next chapter, with specific

devices covered in Chapter 6.

Exec

3

This chapter covers things you'll need to know to interact correctly

with Exec. The following topics are covered here:

• The structure of Exec

• 50me of its basic routines

• 50me of its support functions

You won't find an in-depth examination of all of the functions of Exec.

Many of the functions that Exec performs can be considered some

what advanced. Rather than getting bogged down with advanced

details here, you will find explanations of topics that are the basis for

understanding the rest of the system.

THE STRUCTURE OF EXEC
Exec is a list-based multitasking executive. Everything that Exec man

ages is on a list somewhere in the system. MultitasKing is a term that

refers to Exec's ability to load and run many programs, switching back

and forth between them so quickly as to make it appear that all pro

grams, also called tasKs, are running at the same time.

Following is a summary of the functions of Exec:

• It allocates memory on demand for tasks from a list of free blocks

of memory.

• It controls its task switching by managing lists of tasks that are

running, ready to run, or waiting for events to occur before they

will again be ready to run_

• It maintains a list of ports at which messages can be posted from

one task to another. Within a message port, Exec maintains a

linked list of messages that have arrived at that port.

• It maintains a list of libraries of routines that allow tasks to share

common program code and a list of devices (also called device driv

ers) that tasks can use for system 1/0.

• It maintains a list of interrupt servers to manage the various hard

ware and software interrupts generated by the 68000, the cus

tom chips, and the system software.

PROGRAMMER'S GUIDE TO THE AMIGA

50

Why Lists Are Important
Exec uses linked lists to enable the Amiga operating system to be con

figured dynamically and to have no arbitrary limitations. When the sys

tem first boots (initializes), the entire system is freshly created.

Some parts of the Amiga system software require that memory

space be set aside for their internal use. If your Amiga has memory out

side the range of the custom chips (some form of expansion memory),

the system software can select and utilize that outside memory effec

tively, leaving more space in the lowest chip memory for the custom

chips to use. This gives you more space for graphics, for sound, for more

sprite data, and so on.

Some Exec Functions and Terminology
In this section you'll find an examination of some Exec functions that

manipulate or control the following:

• Tasks and processes

• Memory allocation

• Lists

• Signals

• Message ports

• Messages

• Libraries

• Devices

Those users who are primarily interested in Amiga's graphics can go

directly to the next chapter, where the graphics discussion begins. Be

aware, however, that we use some of the routines introduced in this

chapter without further explanation in the graphics examples.

Note also that some understanding of messages, ports, and signals is

essential for you to use device I/O information effectively. Device I/O is

introduced in this chapter. I/O for specific devices is covered in detail in

Chapter 6.

TASKS AND PROCESSES
As mentioned above, Exec keeps a list of tasks that can be scheduled

to run on the 68000. If a task is awaiting some form of input, it can use

EXEC

various system functions to put itself to sleep so that other tasks can

have a chance to run. In addition, every time a system interrupt

occurs-such as a timer interrupt, a keystroke or serial character

received, or the completion of a video screen-Exec looks at its list of

tasks and grants the use of the microprocessor to the highest priority

task that is ready to run. As a result of the evaluation of the task list,

the current task may be temporarily suspended in favor of a task at a

higher priority.

For each task, Exec maintains what is called a task control block.

There is only one microprocessor in the system, to be shared by all

tasks. 50 Exec uses the task control block to store the values of all of

the machine registers when that task is not running (also called

"asleep"). The process of saving the state of one task's registers,

restoring another task's registers, and making the new task active is

called task switching.

When a task again becomes active ("awakens"), Exec restores all of

its machine registers and the task continues operation as though it had

never lost the use of the processor.

A process is a superset of a task. A process control block as defined

for the Amiga-the name of the data structure is "Process"-contains

a task control block as well as several other data structures utilized by

AmigaD05. The primary difference between tasks and processes is in

the type of system functions that each can perform. In particular, if you

wish to create a program that runs independently of the program that

created it, and you wish to perform any AmigaD05 I/O functions, you

will want to create a process rather than a task. AmigaD05 uses infor

mation contained in the process control block for its I/O operations. This

information is not available in the basic task control block. Chapter 9 cov

ers the topic of tasks and processes in detail.

MEMORY ALLOCATION
Exec maintains a list of free-memory areas in the system. Your own

task or process can ask for chunks of memory from Exec. When you

are through using the memory, you can return it to Exec to be put back

on the list of available memory.

Once Exec has allocated a block of memory to your task, it no longer

knows anything about that memory Exec manages only free-memory

areas, not allocated memory, so you must return memory to the sys

tem when you are finished using it. Otherwise it will be lost until the next

system reboot.

51

PROGRAMMER'S GUIDE TO THE AMIGA

52

Simple Memory Allocation
There are several levels of memory allocation that Exec can perform.

We'll cover only the most basic method in this chapter; this is the method

that is used most often in the examples in this book.

A call to the most basic memory allocation routine takes the form

address = AllocMem(size,requirements);

where size is the number of bytes that you wish the system to allocate

for your own use, requirements tells the system what kind of memory

you must use and what to do with it before the allocation request is ful

filled, and address is the starting (lowest) address in the block of mem

ory that the system allocates for you. If the system cannot allocate a

block of memory of the size you have requested, the call to AllocMem

returns a value of O. You must check the return value to ensure that

you do indeed have the use of a memory block.

Here's what the requirements values mean:

MEMF_CHIP

MEMF_FAST

MEMF_CLEAR

MEMF_PUBLIC

Give me memory only in the area that the

special-purpose chips can access.

Give me memory only in the area outside that

which the special-purpose chips can access.

Set the contents of my memory block to all

zeros before telling me where the block is

located.

In preparation for possible memory

management (virtual memory implementation),

make sure this memory is allocated in a public

(nonswappable) space, continuously accessible

by all tasks.

When memory is allocated in MEMF _CHIP space, it means that the

special-purpose hardware can get to the data that you write there.

You'll use this requirement to provide display spaces, disk buffers, audio

waveforms, and sprites.

When memory is allocated in MEMF _FAST space, it resides outside the

range that the special-purpose chips can access. This memory is suited

well for program space and nonDMA data space. Under some circum

stances, such as heavy system DMA activity (high resolution, 16-color

graphics or heavy data moving by the special-purpose chip called the

Blitter), the special-purpose chip DMA activity can slow down the 68000.

EXEC

If, while this heavy activity is happening on the special-purpose chip

memory bus, the 68000 happens to be running a program from the

extension RAM area, there will not be any bus contention and the 68000

will not slow down. Thus the name MEMF _FAST, since this space does

not share memory cycles with the special-purpose hardware and can

speed up the system.

Using MEMF _CLEAR, you can have an entire area preset to zero auto

matically. This is often convenient for initializing arrays or data struc

tures and may save you some program code in the process.

The MEMF _PUBLIC requirement is not active as of this writing but is

useful to add to a program's code for possible later releases of the oper·

ating system. This requirement will be applied to memory shared with

the system DMA, assigned for use as a message or a message port

between cooperating tasks, or assigned to interrupt program code and

its associated data.

Returning Allocated Memory to the
Free-Memory Pool

When you've finished using memory, return it to the system by using

the FreeMem function. The call to FreeMem takes the form

FreeMem(address,size);

where address is the address of the memory block that you obtained

from the call to AllocMem, and size is the size of the memory request

that you placed when you called AllocMem.

In both the call to AllocMem and the call to FreeMem, the system auto

matically rounds the size of the allocation and frees up to the next multi

ple of MEM_BLOCKSIZE. (The current value of MEM_BLOCKSIZE is

described in the Include file execlmemory.h.)

Program for Memory Allocation
The following program shows the correct syntax for calling the Alloc

Mem and FreeMem functions. It also demonstrates that you should free

the same amount of memory that you have allocated.

#include "exec/memory.h"
main()
{

char * address;

address = AllocMem(300, MEMF _CHIP I MEMF _CLEAR);
FreeMem(address,300);

53

PROGRAMMER'S GUIDE TO THE AMIGA

54

address = AllocMem(120, MEMF _FAST I MEMF _CHIP I
MEMF _PUBLIC);

FreeMem(address,120);

address = AllocMem(12345,0);
FreeMem(address,12345);

You specify memory requirement combinations as a logical OR of the

individual requirements. Specifying 0 as the requirement means "give

me this size, in any type of memory available:' The system defaults try

MEMF _FAST first, then MEMF _CHIP.

LISTS
Lists are comprised of two basic data structures, the List structure,

which is actually a list header, and the Node structure (also called a list

node), which is a component of a list.

A list header can be thought of as the anchor of a system list. In fact,

the basic routines for list manipulation always specify the list header as

one of the parameters for the function call. In other words, the list

header specifies which list you'll be manipulating.

Initializing a List Header
The important point about list headers is that they must be properly

initialized before they are used. Fortunately, the Amiga library contains a

function that you can use to do it right-the NewList function. The call

to NewList takes the form

NewList(address_of_listheader);

where address_of_listheader is a pointer to the first (lowest) address

of a memory block that is to serve as a list header. You needn't do any

thing to initialize this memory ahead of time; NewList handles it all.

Significance of List Nodes
The list node is simply a chunk of memory that is part of many of the

other system data structures for which lists are built. The easy part of

list nodes is that they need little or no initialization in order to use the

basic system list routines. You can call AddHead (to add an item to

become the first item of a list) or AddTaii (to add an item at the end) and

several other functions, without even knowing what is going on within

the list node itself.

EXEC

Figure 3.1 is a diagram that shows a list header and a couple of list

items, each of which contains a list node as part of its own structure.

Notice that a set of pointers within both the list header and list nodes is

used to link these items into a complete list. Exec maintains both a for

ward pointer (to the next list item) and a backward pointer (to the pre

vious list item) to make it easy to search a list.

In addition to the items within the list node that are used to maintain

linked lists, there are two other fields that are used often by the system

routines: the name field and the priority field.

The name field can be used to point to a null-terminated string that is

to be the name of that node. Some of the system routines let you

search for things by name, such as tasks or ports (FindTask, FindPort).

The priority field can be used to indicate to some of the system rou

tines the sequence in which items are to be added to an existing list. List

nodes that have a higher priority are inserted in a list ahead of nodes

that have a lower priority. Routines that typically use the priority field

are AddTask and AddPort. Priority values range from - 128 to + 127.

For most applications, you use a priority value of O.

Routines that Manipulate Lists
Exec provides the routines in Table 3.1 to manipulate lists directly. The

parameters to these routines are as follows:

• node is a pointer to a node

• list is a pointer to a list header

List Header List Node

Ih Head In Succ --

Ih_Tail In Pred--

Ih _TailPred

List Node

~In Succ -

In _Pred-

Figure 3.1: A linked list

55

PROGRAMMER'S GUIDE TO THE AMIGA

56

• listnode is pointer to a node

• name is a pointer to a nUll-terminated string

• start is a pointer to a list header or a list node

The name search begins with the node after the one that start points to

so as not to include the current node in the search; thus, the list header

is a perfectly good place to start if you wish.

You can create and maintain your own special lists using these rou

tines. Simply initialize a list header by calling the NewList function, create

your own custom lists providing a list node as part of the data structure

you wish to use, and manipulate the lists with the system routines.

Function

Add Head (list,node);

AddTaii (list,node);

Enqueue(list,node);

Insert (Iist,node,
listnode);

Remove(node);

node =

RemHead(list);

node RemTail(list);

node = FindName

(start,name);

Purpose

Adds an item to the head of a list

Adds an item to the end (tail) of a list

Adds an item to a list in priority
sequence, ahead of the first item of a

lower priority than this item

Inserts a node on a list ahead of an
existing node already in that list

Unlinks a node from the list to which it is
currently attached

Unlinks and returns the address of the

node currently at the head of a list;

returns a value of 0 if the list is empty

Unlinks and returns the address of the

node currently at the tail of a list; returns

a value of 0 if the list is empty

Finds the next node in the current list

that has the same name as that pointed

to by the name field of the function call

Table 3.1: Functions for manipulating lists

EXEC

Program Using List Functions
Listing 3.1 is a simple example that uses a list to implement a LIFO

(Last·ln-First-Out) queue.

It does not matter where in your own data structure the list node

occurs as long as its starting address is fed to the list manipulation rou

tines. For most of the data structures that the system uses, the list

node is the first item in the data structure (e.g., struct MsgPort, struct

Message, and struct Task).

However, for processes (struct Process), libraries (struct Library), and

devices (struct Device), the list node is in a position in the data structure

other than the lowest address. This happens because the rules under

which these structures are used allow some kinds of data to be at posi

tive offsets (higher addresses) and some kinds of data to be at negative

offsets (lower addresses) compared to the position of the list node

/* list.example.c */

#include "exec/types.h"
#include "exec/lists .h"

struct MyListltem
[

\;

maine)
[

struct Node n;
char *data;

struct MyListltem mli[3];
struct MyListltem *mynode;
struct List MyListHead;
int i;

NewLi st (&MyLi stHead);

mli[O].data - "first ";
mli[l].data - "second ";
mli[2].data - "third ";

fodi-O; i<3; i++)
[

/* init the list header */

AddTail(&MyListHead, &mli[i]);

for(i-O; i<3; i++)
[

mynode - (struct MyListltem *)RemTail(&MyListHead);
printf{"\n Just removed item whose data is: %ls",

mynode->data) ;

/* end of list example */

Listing 3.1: The list. example program

57

PROGRAMMER'S GUIDE TO THE AMIGA

58

within the data structure. You will see this particularly in the discussion

of libraries in this chapter.

SIGNALS
Signals are the means by which Exec controls what happens to a task

as it is running. You tell Exec how your task is to react when a particular

signal is received. The receipt of a signal is simply the setting (to a value

of 1) of a particular bit within a longword (32 bits) in your task's task con

trol block. You will not usually directly examine the signal bits within your

task control block when you use signals. Rather, you will use the values

returned by Exec to determine what has happened.

What Can Happen When a Signal Occurs
There are a few different things that can happen as a result of a task

receiving a signal:

• Nothing happens if a task is not expecting to respond to this par

ticular signal.

• A sleeping task awakens if it is inactive awaiting an event for

which this signal bit was allocated.

• A task is forced into a special exception process if exception code

and data has been provided and this signal, when received, is to

cause an exception.

Note that exception processing is an advanced topic and is not covered

in this book.

Significance of Signals in Multitasking
Signals are often sent to a task as a result of a message arriving at a

message port that is owned by a task. There are 16 bits available to

each task for user signalling and 16 bits assigned to Exec. If each mes

sage port owned by a task has a unique signal bit assigned, it is easy to

determine which port has received a message by simply identifying the

source of the signal. If you have a need to provide more than 16 mes

sage ports for a task, you can share a signal bit amongst several ports,

then test each port, in turn, to see if there is a message present there.

EXEC

Allocating a Signal Bit
Your task allocates a signal bit for its O'Nn use 'Nith the AllocSignal

function. A call to AllocSignal takes the form

bitnumber = AllocSignal(number);

'Nhere number is a value from 16 to 31 if you 'Nant a specific signal bit

number to be allocated, or - 1 if you don't care about a specific number

but simply 'Nant any signal bit that might stili be available; and bitnumber

is the value that Exec returns to you as the specific one of the signal bits

that it allocates for your O'Nn use. If AliocSignal returns a value of - 1, it

'Nas unable to fulfill your request. You must check the return value to

see that a valid number has been returned. This value of bitnumber is

the exact value that is needed in the data structure for message ports

(mp_SignaIBitl specifying 'Nhich signal bit is to be set 'Nhen a message

arrives at a message port.

Here is an example of an AliocSignal call:

int signalbit;
signalbit = AllocSignal(- 1);
if(signalbit = = - 1) error();

/ * give me any available signal bit * /
/ * do something if it went wrong * /

Using Signal Bits in Multitasking
To promote efficiency in multitasking, Exec discourages busY~'Nait

loops. For example, if you 'Nant to delay a function, you should set up a

system timer some'Nhere, then put your task into a 'Nait state until the
timer causes a signal. If you are expecting a message to arrive from

another task or an l/O operation to complete, you should not sit in a for·

ever loop 'Naiting for a bit to be set or a message to arrive. Such loops

are useless time''Nasters that might slo'N dO'Nn the system unneces·

sarily, preventing other tasks 'Nith something useful to do from running.

The preferred method is to allocate a signal bit related to the item for

'Nhich your task is to 'Nait and to actually call the system Wait function

specifying the bit or bits for 'Nhich you 'Nish to 'Nait. For example, you

might allocate one signal bit to signal arrival of a message; another signal

bit may indicate a timer event has occurred, and so on. This frees the

processor for other tasks. Your task 'Nill be made ready to run again

'Nhen one or more of the bits you have requested becomes set. The sys

tem tells you 'Nhich bits have become set as the return value from the

Wait function, so you'll kno'N 'Nhat to do next. A call to Wait takes the

form

wakeupmask Wait(bitpattern);

59

PROGRAMMER'S GUIDE TO THE AMIGA

60

where bitpattern is the logical OR of the signal bits for which your task is to

wait. The occurrence of one or more of these bits as signals to your task

will make it ready to run again. The returned value, wakeupmask, is the logi

calOR of all of the signals that have occurred to wake up the task.

Note that your task must respond to all of the bits contained in the

wakeupmask, since this is the only time the bits will be reported as hav

ing been set. When your task wakes up, the bits that are reported as

set in the wakeupmask are no longer set. Thus, if you are expecting two

events to happen, each of which is associated with a unique signal bit,

both events could occur within the same sleep period (depending on sys

tem tasking). Thus you must respond to all bits, lest you respond to one

event and put the task to sleep again (another Wait) waiting for the

other event that has already happened. This would cause your task to

sleep forever.

Setting a Signal Bit Directly
There is another function that is used to set one or more signal bits in

a task, but it is seldom used. Normally, signals are set automatically by

such things as messages arriving at a message port. However, you could

use a signal to allow one task to inform another that it has completed ini

tializing a chunk of memory or perhaps has completed some custom

arithmetic and has the result waiting in a cOrTlmonly accessible memory

area. The function is called 5et5ignal. The call to 5et5ignal takes the

form

SetSignal(task,signalmask);

where task is a pointer to a task control block for the task that is to be

signaled, and signal mask is a mask containing the bits that are to be set.

Using Multiple Signal Bits
Listing 3.2 is an example of waiting for multiple signals to occur. Notice

that Alloc5ignal provides an integer value as a return. To convert that

integer value to a physical bit number, you shift a 1-bit left by the num

ber of positions in signalnumber. To wait for multiple signals to occur, you

logically OR the signal bits into a single 32-bit mask. To test for particular

signals, you logically AND the physical bit numbers against the wakeup

mask. The listing assumes that you are waiting for either a keystroke or

the receipt of a character from the serial port.

Notice that the code that tests the mask for each of the two signals

independently should be positioned to ensure that if both signals were

set, then both events would be noticed. Additionally, you must ensure

that if multiple events occurred before your task was awakened, you

EXEC

#define KEYSTRIKESIGNAL (1 « sigkey)
#define SERIALSIGNAL (1 « sigser)

int sigkey, sigser, wakeupmasK;

sigkey = AllocSignal(-l):
if (sigkey == -1)

error ():

sigser = AllocSignal(-l):
if(sigser == -1)

error ():

1* Here might be code to initialize a message port and a Message *1
1* data structure for communicating with the keyboard and assigning *1
1* the signalkey to that port: and code for setting up *1
/* a port and message for serial device communications, */
/* assigning the signalser to the port for serial communications */

1* Wait for either signal to occur by logically ORing the bits *1

wakeupmask = Wait(KEYSTRIKESIGNAL I SERIALSIGNAL):

if(wakeupmask & KEYSTRIKESIGNAL)
(
1* code to process the key received *1
J
if(wakeupmask & SERIALSIGNAL)
{
1* code to process the serial character received *1
J

Listing 3.2: Waiting for multiple signals

process all of the things that could have caused that signal bit to be set.

(Perhaps you must process all messages that have arrived at a mes

sage port because each arrival at a particular port sets the same bit.)

MESSAGE PORTS
A message port (MsgPort) is a data structure set up in memory as a

place to which a task can send a message. A message is a block of mem

ory that is located in one task's memory space. It contains information

that some other task may need.

A port generally belongs to a particular task_ When a message arrives

at a port, several actions can be made to take place. The possible

actions are indicated by the values for the port flags, called mp_Flags, in

the MsgPort data structure:

PA_IGNORE

PA_SIGNAL

Do nothing when a message arrives

Signal the task that owns this port that a

message has arrived

61

PROGRAMMER'S GUIDE TO THE AMIGA

62

Cause a software interrupt of the task that

owns this port

If the message is ignored, then it is simply added to the message list

that the port maintains. Later, the task can perform the function

GetMsg(msgport) to remove it.

If the message is to signal the task when a message arrives, then it is

also possible that a task that has gone to sleep awaiting this message

will then wake up and become ready to run.

If the message is to cause a software interrupt, it means that what

ever the task was then doing will be suspended and a special set of inter

rupt code will be executed by that task. This could occur, for example, in

a terminal program where it is important to retrieve every character

that comes across the serial line even though the task is currently try

ing to finish processing of a keyboard keystroke.

Creating and Deleting a Message Port
The Amiga library function called CreatePort allocates memory for a

message port and initializes various fields of the MsgPort data struc

ture for you. The message port has a list header as part of the data

structure, onto which lists of messages may be appended as a result of
a call to the PutMsg function. CreatePort calls NewList to properly initial

ize this list header.

CreatePort allocates memory and a signal bit. If CreatePort has prob

lems with either memory allocation (it can't find a large enough chunk of

memory) or signal bit allocation (no more signal bits are available), it

returns a value of 0.50 you must check the return value to know that a

port has indeed been created. You return the memory and deallocate

the signal bit by calling the companion function DeletePort.

CreatePort initializes the mp_Flags to PA_5IGNAL and makes the call

ing task the owner of the port by initializing the mp_ Task value to point

to the calling task. Thus, the task that creates the port is the one that

gets signaled when a message arrives there.

A call to Create Port takes the form

mp = CreatePort(name,priority);

where name is a pointer to a null-terminated string that is to be the

name of the message port and priority is the value to be applied to the

priority field of the message port.

If the name field contains a nonzero value, this port is added to the

system message-port list, using the AddPort function. This lets other

tasks locate this port by name, using the function named FindPort. If the

EXEC

name field contains a value of zero, AddPort is not called. Note that it is

not necessary to add a port to the system if you do not need to rendez

vous by name with the port.

If, for example, you have two ports with the same name, you can posi

tion one port ahead of the other in the system message-port list by set

ting the priority value of one higher than the other. When you use the

FindPort function, even though both ports have the same name, the

one with the higher priority will be found.

A call to DeletePort takes the form

DeletePort(mp);

where mp is a pointer to the message port that you obtained when you

called CreatePort.

Since a port contains a linked list of messages, you should always be

sure to get and reply to all messages that might be attached to this port

before you delete it. Otherwise, you may be stopping another task that

is waiting for your reply from completing its own activities.

Adding and Removing a Message Port
You add an initialized message port to the system message-port list

by using the AddPort function. You remove a message port from the

system with the RemPort function.

The call to AddPort takes the form

AddPort(mp);

The call to RemPort takes the form

RemPort(mp);

In both calls, mp is a pointer to a completely initialized message port. The

main field that must be initialized is the priority field, so that Exec will

know where to put the port in the system message-port list. You should

also initialize the name field so that the message port will be accessible

by name if desired. Also note that if the port is to be able to receive mes

sages, the message list header must be properly initialized.

Notice that the CreatePort function calls AddPort for you if you have

provided a name by which the port can be identified. CreatePort also

appropriately initializes all of the other parts of the MsgPort data struc

ture. DeletePort performs RemPort for you. Thus, by using these Exec

support functions, you needn't even worry about AddPort and

RemPort or any of the other initialization.

63

PROGRAMMER'S GUIDE TO THE AMIGA

64

Finding a Message Port
You can locate a message port on the system message-port list by

using the FindPort function. The call to FindPort takes the form

foundport = FindPort(pointer_to_namestring);

where pOinter _to_namestring is a pointer to a null-terminated string of

characters representing the name of the port to be found. A value of 0

is returned if a message port by that name is not currently on the sys

tem list of message ports.

Note that when a port is added to the system list, the priority field

determines its location in the list. If there is more than one port on the

system list having this particular name, the FindPort function finds only

the port that has the highest priority in the In_Pri field of the mp_Node

field of the MsgPort data structure.

If your task suspects that there might be more than one port on the

system list having the same name, you can use the FindName function

to locate any lower priority message ports on this same list. In this case,

the call to FindName would be made as follows:

struct MsgPort * mp, * mp2;

mp = FindPort("myport");

if(mp)
{

I * if nonzero (and suspect more than one by this name) * I

mpmore = FindName(mp,"myport");

if(mpmore) printf("Found another one with the same name,");

Code Fragments for Using Message Ports
Listing 3.3 shows how a message port is allocated, how a signal mask

is formed and used, and how a message port is deleted.

Watching for Signals from Message Ports
If a particular event is supposed to set a signal bit to inform a task

that this event has happened, and the task does not immediately

respond, it is possible that another such event will try again to set that

same signal bit. Often this means, for example, that another message

has arrived at a message port and will be appended to the list of mes

sages that this port contains.

EXEC

struct MsgPart * mp;
struct MsgPort *fotndport;

int signalbi t, signalmask;

mp = CreatePort("myport" ,0);

signalbit = mp->mp_SigBit;

signalmask = (1 « signalbit);

/* pointer to a message port * /
/* another pointer * /

/* name it myport, at priori ty of 0 * /

/* find the signal bit it allocated */

/* use bi t nunber to form a wai tmask * /

/* llCM if we want to wai t for a message * /

wakeupnask = l'eit(signalmask);

fO\.l1dport = FindPort (" myport") ;

if(fotndport = 0)
!

/* sh:>ws b:Jw another task can locate * /
/* my message port so as to be able * /
/* to send messages to me. Par thi s * /
/* oode fra9U"llt, the value of fotndport * /
/* should be the same as the value of mp * /

printf("am't find 'myport' ");

/* and after everything is a:me, inclooing responding to all messages * /

Del etePort (mp) ; /* deallocates menory and signal bi ts as well * /

Listing 3.3: Code fragments related to message ports

Your task cannot go to sleep \Naiting for a message to arrive at the

port then simply process a single message before going to sleep again.

Since there is only one signal bit that can be assigned to a message port

for signaling the arrival of a message, it is not possible to have each
message signal separately. Thus, a task must ensure that it responds

to all messages appended to a message port after receiving a signal

regarding that port, since messages already there can no longer set

the signal bit to rea\Naken the task. In other \Nords, messages queue,

signal bits don't.

MESSAGES
A message is simply a block of memory that is used to pass data from

one task to another. The block of memory belongs to the originating

task.

The process of posting a message to a message port consists of link·

ing the message onto the message list that is maintained by the meso

sage port. The Exec functions do not copy the message but simply

modify a set of pointers to the block of memory so that the receiving

task kno\Ns \Nhere to find the message information.

65

PROGRAMMER'S GUIDE TO THE AMIGA

66

Why Use Messages?
Message passing is used extensively in the Amiga system to initiate

I/O activity. For example, there are tasks that handle the serial and

parallel ports, the keyboard, the gameport, and the disk. The process of

initializing 1/0 on the system consists of formulating a message block

that specifies the 1/0 activity that is to take place and passing that mes

sage block to the task that handles that specific hardware.

The receiving task is likely to be sleeping (letting your task run) while it

waits for a message telling it what to do. When your task requests

some I/O activity, your task may go to sleep waiting for the data to be

returned. When the I/O task completes the request, it will return the

message block to your task, indicating that the data is now available or

signaling an error condition. Thus the I/O task may return to sleep, reac

tivating your task when the message is returned.

The Contents of a Message
The structure of a message is very simple:

struct Message
{

} ;

struct Node mn_Node;
struct MsgPort *mn_ReplyPort;
int mn_Length;

/* a list node */
/ * a poi nter to a message port * /

/ * the length of the message * /

The mn_Node is simply a list node, used to link a message onto a list. The

mn_Node.ln_ Type should be NT_MESSAGE, meaning "the type of this

node is message." The mn_ReplyPort is a pointer to the message port to

which this message is to be returned when the receiving task is finished

using it. A message originates with one task, and is likely to be passed to

another. This pointer to the reply port identifies the sender and tells to

whom it is to be "replied" (returned). When the message is returned, the

mn_Node.ln_ Type is changed by the system to NT _REPLVMSG.

Often, the task sending a message creates a message port that will

be used as the receiving place for messages, therefore designated as

the sender's reply port. The sender may decide to send a message

(using a function such as PutMsg), then go to sleep waiting for the mes

sage to be returned to its reply port.

The receiver task may have been asleep awaiting arrival of a mes

sage on its incoming message port, It may wake up, retrieve the mes

sage (using a function such as GetMsg), and return the message to the

originator (using the ReplyMsg function) once it is finished using the con

tents of that message.

EXEC

The length of the message, represented by mn_Length, is not

checked by the system message-passing routines. You can assign your

own significance to this value.

The Significance of Messages
Message passing is performed by reference, not by copying. When

your task sends a message to another task, you are passing to it the

address of a data structure within your own memory space. Your task

is essentially giving temporary custody of this memory space to the

other task.

The other task could copy the contents of the message into its own

space (see Chapter 5), or write into this space (as is done with 1/0

requests), or whatever. When the other task has completed using this

message, the message must be returned t.o the originating task by

using the ReplyMsg function.

It is particularly significant that all messages be returned as quickly as

possible. In particular, the task that sent the message may be in a wait

state pending the return of the message to its reply port. Additionally,

the originating task usually owns the memory space in which the mes

sage data is written.

Exec keeps track only of memory that is not allocated to any task,

and each task can keep track of memory it has allocated and return it to

Exec on exit. Thus, if a task never replies to the messages it receives,

this noncooperating task may prevent other tasks from running or

from returning memory resources to the system. Thus, messages sent

with a reply expected must be "replied" in order to allow the system to

continue to operate smoothly.

Your O\Nn Custom Message
Certain of the system data structures are actually custom versions

of messages that are used to pass information from a task to a special

ized 1/0 task. The data structures named 10Request and 105tdReq are

examples of this customization of the Message structure. A custom

message structure can be set up as follows:

struct MyCustomMessage
{

} ;

struct Message mcm_Message;
int item1;
int item2;
int item3;

67

PROGRAMMER'S GUIDE TO THE AMIGA

68

This shows a standard message structure with three integer items

appended to it. This custom message can be manipulated using any of

the system message-handling routines.

Functions that Handle Messages
and Message Ports

Table 3.2 is a list of the functions that relate to messages and mes

sage ports. The parameters are as follows:

• msgport is a pointer to a message port

• msg is a pointer to a message

• priority is a byte value from - 128 to + 127

• name is a pointer to the first character of a null-terminated string

Program Using Messages and Message Ports
Listing 3.4 demonstrates message passing between ports. This would

normally be done between tasks as a form of communications; how

ever, this simple case is provided here for purposes of illustration.

Chapter 9 demonstrates intertask message passing.

In this listing, the name field of the message node is used as the place in

which the message was passed. Most intertask messages will likely not

even be string-based, but will instead be a packet of information

appended to the beginning or end of a Message data structure. illustrat

Ing the general nature of these routines is what is important here.

LIBRARIES
A library is a group of related routines, When a library of routines is

loaded into the Amiga, it is possible for all tasks to access the routines in

the library. This can often make a program smaller because it need not

include the code for many of the commonly required functions, For

example, the Exec library contains the Exec-related routines such as list

handling, task control, device 1/0, message passing, and so on; the DOS

library contains DOS-related functions; and the Graphics library contains

graphics-related functions.

The Structure of a Library
A library is actually a data structure that can be linked into the sys

tem library list, This data structure contains a list node, a set of library

Function

AddPort(msgport);

RemPort(msgport);

FindPort(name);

msg =

WaitPort(msgport);

PutMsg

(msgport,msg);

msg =

GetMsg(msgport);

ReplyMsg(msg);

msgport =

CreatePort
(name,priority);

DeletePort

(msgport);

Purpose

Adds a preinitialized message port to the system

message· port list.

Removes a message port from the system list.

Finds the first port in the system message·port list of

the specified name.

Puts a task to sleep awaiting the arrival of a message

at a message port. Has a similar effect as the function

Wait(1 < < msgport· > mp_SigBit). Points to the first

message that has arrived at the port, but does not

remove the message from the port. You still must use

GetMsg to remove it.

Sends a message to a message port.

If there is a message present on that port, returns its

address and delinks the message from the list of

messages that the port is holding. If no message is

present, returns a zero.

Replies to the message by transmitting the message
(using PutMsg) to the message port specified in the

ReplyPort field of the message itself.

Allocates memory for a message port and returns a

pointer to it. If the name field is nonzero, adds this port

to the system message· port list (using AddPort).

Places the port into the list according to the value in

the priority field. Thus it is possible to position this port

ahead of a port that is already in the list. FindPort will

find the highest priority port having a particular name.

Deletes a port created by CreatePort. If the port has a

name, it will have been on the system message-port list

and is deleted from that list.

Table 3.2: Functions that handle messages and message ports

EXEC

69

PROGRAMMER'S GUIDE TO THE AMIGA

70

hnclooe "exec/types,h"
*include "exec/ports .h"
main()
[

struct Message m~
struct Message *msg;
struct Message *GetMsg();
struct MsgPort *mp;
struct MsgPort *rp;

struct MsgPort *CreatePort ();
extern

/* the message that we' 11 FSSS * /
/* a pointer to a message that we'll retrieve * /

/* a poi nter to a message port * /
/* a pointer to another message port that is * /
/* to act as a reply port * /

mp = CreatePort(O,O); /* Notice that it is Nor necessary to name */
/- a port in order to be able to send a * /
/* message to it. It is ooly necessary * /
/* to name it if)IOU wish to use FiOOPort later * /

if (mp = 0) exit (20) ; /* error in CreatePort () * /

rp = CreatePort("reply",O); /* name it reply, at priority of ° */

if(rp = 0)
(

DeletePort(mp); exit(30);

m.mn Node.ln Name = ''Hello world\n";
m.mn-ReplyPort = rp; /* define the reply port * /
m.mn=Length = 0; /* length is iJT11laterial in this case * /

PutMsg(mp,&m);
Wai tport(mp);

/* send the message to this port * /
/* wai t for it to arri ve * /

/* since a message is already there, task does not even go to sleep * /

/* if we got here, we knao; there really is a message present. * /

while(msg = GetMsg(mp))
[

/* Get all messages fran Uri s port before either going * /
/* back to Wai tport or deleting the message port i tsel f * /

printf("The message was: %ls\n", msg->mn Node.ln Name);
Repl~ (msg); /* send message back to its originator * /

Wai tport (rp) ;

while(msg = GetMsg(rp))
[

/* Wai t at the reply port for the return of the * /
/* original mrt:going message ... I won't have to call * /
/* Repl yMsg beca us e I' m the one woo sent it * /

J
printf("Reply port received this message: %ls\n",msg->mn_Node.lnyame);

DeletePort (mp);
DeletePort (rp) ;

Listing 3.4: Message passing bet'Neen ports

function vectors, and a data area. The structure of a library is illustrated

in Figure 3.2.
The library node contains information about the library size as vvell as

items that control library usage. Here IS a list of the contents of the

EXEC

Function Vector

•
•
•

Function Vector

Library Node

library Data Area

....-- Address of the library
(first byte of the list node within
the library data structure)

Figure 3.2: The structure of a library

library node:

struct Library
{

} ;

struct Node lib_Node;
UBYTE lib_Flags;
UBYTE lib_pad;
UWORD lib_NegSize;
UWORD lib_PosSize;
UWORD lib_Version;
UWORD lib_Revision;
APTR lib_ldString;
ULONG lib_Sum;
UWORD lib_OpenCnt;

It is important that you understand hO\N the fields in the library node

are used.

The lib_Flags Field
This field is used by Exec to keep track of \Nhat is happening to the

library: \Nhether someone changed a library vector; \Nhether the library

71

)ROGRAMMER'5 GUIDE TO THE AMIGA

'2

is currently being checksummed; whether there is a delayed expunge

pending, A programmer writing in assembly code that is intended to run

as a result of the 68000 entering interrupt processing mode may have a

need to examine bits within these flags, but the higher language pro

grammer will likely not need to examine these bits at all,

Here is a code fragment showing what might happen with various

flags in the library. Assume that the task that has just obtained control

needs to use a routine contained in the library and wants to know if that

routine is actually valid:

struct Library * lib;

if(lib->lib_Flags & LIB_CHANGED)
{

/ * initialized elsewhere * /

/ * maybe not consider valid if changed? * /
}
if(lib- > lib_Flags & LIB_SUMMING)
{

}

/ * checksum not currently valid; library is not * /
/ * completely stable, may not wish to use it yet * /

if(lib->lib_Flags & LlB_DELEXP)
{

/* System is running low on memory and wants to dump this */
/ * library as soon as it can. When last user task closes * /

/ * the library it will go away. * /

if(lib- > lib_Flags & LlB_SUMUSED)
{

/ * info only ... some task has set this flag to stop Exec * /
/ * from using the overhead that it takes to generate * /

/ * and/or check the checksum. * /
}

The lib Pad Field
This field is unused. Defining this field simply ensures alignment of the

fields that follow it on word C16-bit) boundaries.

The lib_NegSize Field
This field tells how many bytes of data associated with the library pre

cede the library node itself. This data area usually consists of a set of

function vectors, each containing six bytes, each taking the assembly

language form of a two-byte jump instruction followed by a four-byte

address that is the target for the jump instruction.

EXEC

The lib PosSize Field
This field tells hovv many bytes of data associated vvith the library

come after the library node itself. This is the library's data area that vvill

usually be used to hold library global variables utilized by the library rou

tines, or perhaps may even contain the library functions themselves, to

vvhich the library vectors refer.

The lib Version and lib_Revision Fields
These fields contain numbers that uniquely identify the current ver

sion and revision number of a library. When you ask to open a library for

use, you may have a special version of a library on your disk in the LIB:

directory, and you may desire to use that library of routines in place of

one that is already linked into the system by the Kickstart routines. By

specifying a version number different from that already in the system,

you can be assured of accessing your version of the routine from your

ovvn library.

The lib_ldString Field
This field contains the name of the library as it might be shovvn by a

debugger (such as WACK). Libraries actually have tvvo names associated

vvith them: the name by vvhich they are knovvn to the Open Library func

tion (e.g., graphics.library, layers.library, or diskfont.library) and perhaps

a longer name by vvhich they can be identified more fully. This lib_ld

String field may be as long as 255 characters if desired.

The lib Sum Field
This is the checksum of the library function vectors. Once a library has

been added to the system, Exec ensures the Integrity of the library by

performing a checksum on the function vectors. If a vector is changed, a

nevv checksum is calculated. This checksum value is for Exec use only.

The lib_OpenCnt Field
This field contains the count of hovv many times the OpenLibrary

function has been called for this library. When system memory is lovv, it

is possible to automatically remove from the system any library that is

no longer open to any user task. This returns this library's memory to

the system for reuse. Every time Open Library is called, this value is

incremented. Every time CloseLibrary is called for this library, this value

is decremented_ When the value reaches 0, if Exec needs memory, the

libraries vvith a lib_OpenCnt of 0 vvill remove (also called expunge) them

selves from the system and return any allocated memory to the sys

tem free-memory pool.

73

PROGRAMMER'S GUIDE TO THE AMIGA

74

Opening a Library
Before you can use the routines in a library, you must first open the

library The call to Open Library takes the form

LIB_BASE = OpenLibrary(libraryname,version);

\Nhere version is the version number of the library you \Nish to use, LlB_

BASE is a pointer variable having a name corresponding to the library

you \Nant to access, and libraryname is a pointer to a null-terminated

string that names the library you \Nant to open. It is possible that you

\Nish to use a specific version of the library. In this case, specify that par

ticular value. For example, version 31 is the number assigned for "V 1 .1 "

of the soft\Nare system. If, on the other hand, you simply \Nish to use

any version of this library name that is available, specify a value of O.

OpenLibrary returns LlB_BASE-a pointer to the base address of a

Library data structure. Note that this is a pointer to the first byte of a

library node and that there \Nill be portions of the library at higher mem

ory addresses as \Nell as portions of the library at 10\Ner memory

addresses. If the OpenLibrary function is unable to fulfill your request, it

returns a value of O.

For each library, there is a specific name given for the variable that is

named as the library base. Table 3.3 provides a list of the Amiga library

names, base addresses, and types of routines contained in each type of

librarv

The library you \Nish to open and use may be either ROM/RAM resi

dent or reside on disk. If it is not already in the memory system, Amiga

DOS \Nill search the directory currently assigned to LIB: to see if a library

by that name is present there.

Library Base Addresses and Names
The significance of assigning a specific name to the library pointer you

obtain from a call to OpenLibrary is that the Amiga library contains spe

cific interface code for each routine in each library. This code is automati

cally linked into your program at link-time; it takes the value currently in

that specific variable name and calculates, from that value, \Nhere it \Nill

find the jump vector for the routine itself. Then it takes the values that

your C routine has placed on the stack, saves certain registers, loads

your values into specific registers, then calls the specified routine.

This process of saving and restoring registers and calling the under

lying routine is thoroughly explained in the Amiga ROM Kernel Manual.

Suffice to say here that you must use the specific variable name and it

must have a valid (r,onzero) value before you call a function in that

library.

EXEC

Library Name

c1ist.library

disk font.library

exec.library

dos.library

graphics.library

icon. library

intuition. library

layers.library

mathffp.library

mathtrans.library

mathieeedoubbas.

library

timer. library

translator. library

Library Base Address

Variable Name

ClistBase

DiskfontBase

ExecBase

DosBase

GfxBase

IconBase

Intuition Base

LayersBase

MathBase

MathTransBase

MathleeeDoub

BasBase

TimerBase

TranslatorBase

Contents

Character string

handling routines

Disk·based font

routines

All Exec functions

D05 functions

Graphics functions

Workbench object

functions

Intuition user

interfacing functions

Windowing/layering

functions

Basic math functions

Trancendental math

functions

Double·precision IEEE

math functions

Timer arithmetic

The Translate function

Table 3.3: Library names. base addresses, and contents

The Amiga operating system is dynamic in its design. Library code

may, in fact, be loaded anywhere into memory either as the system is

being built (during the Kickstart process) or by a call to Open Library for a

disk·resident segment of library code. The OpenLibrary function may

load and initialize a disk·resident library and link it into the system library

list for the calling task and other tasks to use. When a disk· resident

library is loaded, its code, made relocatable by the linker, is scatter·

loaded into memory chunk by chunk, with all function vector addresses

75

PROGRAMMER'S GUIDE TO THE AMIGA

76

corrected to shovv exactly vvhere the appropriate routine is novv

located.

Thus, once you have opened the library, the location of its library base

vvill not change; you can store the library base variable and expect it to

remain valid vvhile you have the library open. Although the base address

of a library vvill not change vvhile it is resident in memory, it is possible

that the function vectors vvithin that library vvill change. Some program

mers might be tempted, once they have found the library, to store the

values found in the function vectors to speed up access to the function.

Because the Amiga library provides a function that allovvs a task to

change the values of a function vector vvithin a library, it is alvvays

smartest to go through the standard library interface code so as to

alvvays execute the current version of the function in the library.

Using the Library Functions
Once a library is open, you can call any function vvithin that library. This

is simple from C language in that you need only specify the function

name and its parameters:

result :;: Function(parameter1,parameter2);

The rest of the calling sequence to the routine is supplied by the Amiga

library.

For assembly language programmers, there is a little bit more vvork to

be done, although it is simplified by the assembly language macros that

you'll find in a file named exec/libraries.i. First, you'll have to ensure that

you've saved all of the appropriate registers on the stack and loaded all

of the appropriate values into the registers that the routine vvill need.

Then, if the library base value is already in register A6, use the CALL_LIB

macro:

If the value in A6 is not correct, use the LINK_LIB macro:

LINK_LIB _LibraryBase, _LVOFunction

Here, _LlbraryBase contains the address of the base of the library in

vvhich the function vector resides, and _LVOFunction is the Library Vec

tor Offset (LVO). This is the negative value that must be added to the

library base address to create the address at vvhich the function jump

vector can be accessed.

Closing a Library
Once you have finished using the routines in a library, you should close

the library to terminate your access to it. If you are the last user of a

b~XtT

library, it will be possible for the library to remove itself from the system

and return the resources that it used.

You terminate access to a library by calling the CloseLibrary function.

A call to CloseLibrary takes the form

CloseLibrary(libBase);

where libBase is the base address of that library.

Program to Open, Use, and Close a Library
Listing 3.5 opens a library, uses one of its functions, then closes the

library.

Note that if you use the standard startup files from C-that is, Astar

tup.asm (produces Astartup.obj) or Lstartup.asm (produces

Lstartup.obj)-you need not use OpenLibrary to get values for Exec

Base or DosBase. The startup files do this for you. Therefore, in your

program, you can feel free to call any routine in the Exec library or DOS

library without opening or closing either of these two libraries.

i ncl ude "exec/ types.h"
#include "intuition/intuition.h"
"# i ncl ude "intui tion/ intui tionbase.h"
extern struct Library *OpenLibraryO,
LONG IntuitionBase *IntuitionBase7
main()
r

/* OPEN the lihrary */

I ntui ti onBase = (5 truct Intui. tionBase*) OpenLibrary(!1 intui tion.l ibrary" ,0);
if(IntuitionBase == 0)
[

printf("Open of intuition failed\n"),

else
[

printf("intuition opened ok\n"),

/* USE one of its routines */

DisplayBeep(NULL), /* flash the display */

/* CLOSE the library */

ClOSeI,ibrary(Intui tionBase),

Listing 3.5: Opening, using, and closing a library

77

nROGRAMMER'S GUIDE TO THE AMIGA

8

DEVICES
A device, on the Amiga, is the name given to a data structure by

which an 1/0 entity (such as the serial port, parallel port, console, and

trackdisk) is accessed. Devices are constructed as a superset of

libraries; in fact, they can be built by a system programmer using library

code. There are routines for opening, closing, and expunging devices,

just as there are similar routines for libraries.

As with libraries, devices are referenced by name, such as track

disk. device, timer. device, and console. device. Again, as with libraries, a

device may be memory resident or disk resident. When an OpenDevice

function is called, if the device is not found on the system device list,

Exec will search in the AmigaD05 directory currently assigned to DEV5:

to see if there is a device with that name on disk. Exec then loads and ini

tializes the device and adds it to the system device list.

Devices have units. which are instances of a device. For example, the

TrackDisk device may have several units, each of which handles one of

the physical disk drives attached to the system; the Timer device has

two units, each a physical timer that it handles, one of which is more pre

cise than the other. You'll find more about units under the heading Open

ing a Device later in this section,

In addition to the four standard function vectors common to all

libraries (OPEN, CLOSE, EXPUNGE, and RESERVED), devices have two

standard function vectors designated as the direct entry points to the

device. These are the function vectors for BEGINIO and ABORTIO.

Although these two entry points are available to you in the Amiga

library functions BeginIO(iorequest) and AbortIO(iorequest), they are

considered to be somewhat advanced and will not be covered in this

book. Please see the Arniga ROM Kernel Manual for an explanation of

these functions.

HO\N I/O Is Requested
Device communications consists of formulating a message packet

called an 10Request block (or 1/0 Request Block) and passing it to a mes

sage port owned by the device. Normally, there is an independent pro

cess started for each device. This process is sleeping, waiting for

messages to arrive at its message port. The messages tell it what kind

of I/O to do and how to do it.

The 10Request block contains a standard Message data structure

that tells the process where to send the request block (to a reply port)

when it is finished using it. It also identifies the type of command to be

EXEC

performed as \Nell as flags that tell hO\N the command is to be per·

formed and perhaps an address to or from \Nhich the data is to be trans

ferred.

Device Commands
Device commands are used for I/O·directed activities. Table 3.4 lists

the device commands and the values (given in io.h) that indicate the com·

mand number the device is to perform. This is the value that must be

placed into the io_Command field of an 10Request block to ask the

device to perform this particular command.

Opening a Device
You communicate \Nith a device by passing an 10Request block to it.

The actual passing of this message block is handled by a set of functions

common to all device I/O, namely 0010, SendlO, WaitlO, and ChecklO.

These functions accept the message block from you and send it to the

correct device by examining the io_Device and io_Unit data fields \Nithin

the message. These fields are initialized by a call to OpenDevice.

You prepare a device for access by using the OpenDevice function. A

call to Open Device takes the form

error = OpenDevice(DEVICENAME,unit,ioRequest,flags);

\Nhere error is equal to 0 if the call is successful, or nonzero if the device

did not open.

DEVICENAME is the name of the device \Nith \Nhich you \Nish to com

municate. A list of the available device names that you can use in the

Open Device call is given in a table in the next section.

The unit parameter is the identifier of the device unit that you \Nish to

use. For the timer, for example, it might be UNIT _ VBLANK or UNIT _

MICROHZ. Each device has its O\Nn method of using this field. For most

devices (Keyboard, Input, Console, Serial, and Parallel among others) this

value canbe zero.

The ioRequest parameter is a pointer to an 10Request data structure

of a size appropriate to the particular device that you are trying to

open. Exec uses information contained in your Open Device request to

fill in portions of the uninitialized IORequest that you provide for further

use. Essentially, OpenDevice is the initializer of a message block that,

among other things, specifies the address of the device itself and

uniquely identifies the unit of that device. For a Timer device, for

example, you use a timerequest. For a Serial device, you use an 10ExtSer.

It is important that you pass the device an IORequest block of the

79

PROGRAMMER'S GUIDE TO THE AMIGA

80

Device
Command Value Purpose

Reset CMD RESET Sets the device to its default -
values, restoring everything to

the values the device had when

it was first initialized

Read CMD - READ Reads a number of bytes into a

specified memory area

Write CMD - WRITE Writes a number of bytes from

a specified memory area

Update CMD - UPDATE Writes out the contents of

internal buffers; if data is being

cached before being written to

disk, this command ensures that

the disk will match the current

contents of memory

Clear CMD CLEAR Clears all internal buffers -
without updating; throws away
the current contents of the

buffer

Stop CMD - STOP Halts the device unit; allows the

device to accept and enqueue

new commands but prevents

any queued commands from

being executed

Start CMD START Restarts a halted device unit -

Flush CMD - FLUSH Aborts all 110 requests enqueued

or in progress; all requests are

returned with an error indicating

I/O aborted

Table 3.4: Device commands and values

proper size since the device does initialize some parts of the request. If

you pass it too small a request block, it is possible that the device will

overwrite a different memory area, creating undesirable effects.

EXEC

Some devices might have specific options that you wish to have

enabled when the device is opened. The flags variable is reserved for

that use.

The following code fragme:lt illustrates opening the Timer device:

struct timerequest tr;
long error;

error = OpenDevice("timer.device",UNIT _ VBLANK,&tr,O);

if(error)
{

printf("Timer open error; value %Id\n",error);

Names of the Commonly Available Devices
Table 3.5 lists the devices that are available either on the system as it

boots up or car', be loaded from disk and added to the system in

response to the Open Device call. The Device Name column contains the

actual null terminated string (DEVICENAME) that you must put into the

call to OpenOevice to access that particular device.

The Structure of a Typical IORequest Block
Here is a common form of an 10Request data structure; it is called a

standard 10 request. or IOStdReq:

struct IOStdReq
{

} ;

struct Message io_Message;
struct Device *io_Device;
struct Unit *io Unit;
UWORD io_Command;
UBYTE io_Flags;
BYTE io_Error;
ULONG io_Actual;
ULONG io_Length;
APTR io_Data;
ULONG io_Offset;

An 1/0 request needs to have a method by which it can be linked into a

list of pending I/O operations (io_Message) as well as a method by which

the device and corresponding unit to operate on this request can be

81

PROGRAMMER'S GUIDE TO THE AMIGA

82

Device Name

audio.device

clipboard.device

console.device

gameport.device

keyboard. device

input. device

timer. device

trackdisk.device

narrator. device

serial.device

parallel.device

printer. device

Purpose

Controls the audio hardware channels

Enables applications to pass data to and

from a common area for such things as cut

and paste between applications

Allows a window to perform user 1/0 as

though the window were a terminal

connected to a standard terminal-based

computer

Controls the hardware of the gameports;

both analog and digital inputs are

accommodated

Monitors and interprets keyboard input

Merges input from the Gameport and

Keyboard devices into a time-synchronized

stream of events to be interpreted by

Intuition and possibly by a Console device

Handles hardware timers for vertical

blanking and a more precise timer for

microsecond intervals

Handles the raw data to and from the disk

Handles requests for text-to-speech output

Handles the serial interface hardware

Handles the parallel interface hardware

Provides a common input format and a

Preferences-selected variable output format

for either serial or parallel printers that you

might connect to the Amiga

Table 3.5: Commonly available devices

EXEC

identified Cio_Device, io_Unit). Both io_Device and io_Unit are supplied by

Exec during the call to OpenDevice. These values should not be changed

by the programmer.

An 1/0 request also needs to enable you to tell the device which com·

mand it is to perform (io_Command). Device·specific commands are enu·

merated in the Include files for each device. Common commands are

enumerated in execlio.h.

Formulating an 1/0 request often involves a data transfer of some

kind, so the 10StdReq includes variables that specify:

• What special options to use if any Cio_Flags)

• Where to find the data Cio_Data)

• How many data bytes to send or receive (io_Length)

• At which position the data transfer should begin (io_Offset) if it is a

block-structured device (such as a disk)

• Where the device should return the request after the I/O has been

completed (io_Message.mn_ReplyPort)

The status information returned to the caller specifies:

• How many bytes of data actually got transferred as a return

value from this request (io_Actual)

• If there was an error, what kind of error it was (io_Error)

Normally, io_Length and io_Actual will match. If they do not match,

you may be able to find out why by examining the io_Error value.

Although 10StdReq is a very common data structure for passing infor

mation to and from devices, many of the Amiga devices have their own

special version of an 10Request block structure. Each special form of

request is discussed in the particular chapter covering that device.

Minimum Initialization Needed for an 110 Request
Although it varies depending on the device you wish to use, here is the

barest minimum initialization that must be performed before any I/O

request can be transmitted:

1. Open the device. This initializes the io_Device and io_Unit fields.

2. Initialize the following data fields of the request:

block.io_Message.mn_Node.ln_ Type = NT_MESSAGE;
I * a request block is a message * I

83

PROGRAMMER'S GUIDE TO THE AMIGA

84

block.io_Message.mn_Node.ln_Pri = 0;
/ * set the message priority * /

block.io_Message.mn_Node.ln_Name = NULL;
/ * doesn't need a name * /

block.io_Message.mn_ReplyPort = NULL;
/* either NULL or an address */

/ * of a real reply port is OK * /

(These are the data fields to initialize for an 10StdReq. You should

initialize the corresponding fields of your own request block

accordingly.)

3. Specify the command to be performed:

block.io_Command = WHATEVER;

Sending a Command to a Device
After opening a device, you fill in the appropriate fields in the 10-

Request block to tell the device what you wish to do. Then you transmit

this request to the device by one of several methods. These are the

two most common methods of transmitting a request:

SendIO(request)
DoIO(request)

About Request Blocks

/ * request I/O but don't wait till done * /
/ * request I/O and sleep until done * /

Once you have transmitted a request block (or any message, in fact) to

the device, even though this request block exists in the memory space

belonging to your task, you should not read or write into that space until

the message is returned to you at your reply port. This memory space is

effectively given over to the device or other task for its own exclusive use.

Only after it is returned to you should you attempt to reuse it.

Returning the request block to the reply port means that it is

appended to the list of messages attached to that message port. To

reuse it, you will have to cali GetMsg(yourReplyPort) in order to unlink

the message from the port.

About SendlO
SendlO is given a pointer to your request and attempts to append

your message onto the device's message list. The device is managed by

a separate task in the Amiga multitasking Exec. The request is per

formed in FIFO (First-In-First-Out) sequence. If the device is busy with a

previous request, your task can go on to do something else and later

check to see if the 110 has completed. Because your task does not wait

EXEC

for the 1/0 to complete, this is known as an asynchronous 1/0 request.

When the 1/0 request has been fulfilled, whether successfully or

unsuccessfully, your request block (message) is returned to your reply

port. You must remove this message from your reply port before the

request block can be used again If you specify a reply port value of nul!,

then no ReplyPort is used. You should use ChecklO to determine

whether your I/O has completed

About 0010
0010 is passed a pointer to your request. When you use 0010 to transmit

the request, your own task is put to sleep until the requested 1/0 is com

pleted or returned with an error. 0010 automatically removes your request

block from the reply port before your task is awakened If the reply port

value is specified as null, the reply port is not used during the 1/0.

To transmit the request to the device, there is a third method, the

BeginIO(request) function. However, this requires specific knowledge of

device internals, a topic not covered in depth in this book. Most

examples in this book use either SendlO or 0010.

Other I/O Functions
The other 1/0 functions In which you'll be interested are WaitlO,

AbortlO, and ChecklO. The call to WaitlO takes the form

WaitlO(req uest);

If you have sent the request to the device using SendlO, and your pro

gram has reached a point at which you can go no further until the

request has been completed, you use WaitlO to put your task to sleep

pending the completion of the request WaitlO automatically removes

your request block from the reply port.

The call to AbortlO takes the form

AbortIO(request);

You use AbortlO to terminate a particular request, which mayor may

not have been executed already.

The call to ChecklO takes the form

result = CheckIO(request);

The returned result is a value of True if the 1/0 request has completed

You can decide to call AbortlO for this request If it has not yet com

pleted.

Sample I/O Function Calls
The code fragments in Listing 3.6 are provided to show typical use of

the 1/0 functions. (Additional examples can be found In Chapter 6.) These

85

PROGRAMMER'S GUIDE TO THE AMIGA

86

fragments use the timer and the follo\Ning data structures:

struct timerequest *message;

struct MsgPort myReplyPort;

struct timerequest myTimeReq;

/ * a pointer to a message * /
/ * retrieved from a message port * /

/ * the reply port at which the * /
/ * message will be received when * /

/ * the I/O request is returned * /
/ * by the device * /

/ * a time request message block * /

Each of the fragments assumes that the timer device has been opened

using the follo\Ning function call:

long error;

error = OpenDevice("timer.device",UNIT _ VBLANK,&myTimeReq,O);

Each fragment also assumes that the timerequest is initialized by the

follo\Ning statements:

myTimeReq.tr_node.ln_ Type = NT_MESSAGE;

myTimeReq.tr_node.ln_Pri = 0;;
myTimeReq.tr_node.ln_Name = NULL;

/ * a request block is a msg * /
/ * set the message priority * /

/ * doesn't need a name * /

/ * and let's use a reply port * /

myTimeReq.tr_node.mn_ReplyPort = &myReplyPort;

Finally, each fragment assumes that the time values have been initial

ized by the follo\Ning statements:

myTimeReq.tr_time.tv_secs = 3;
myTimeReq.tr_time.tv_micro = 0;

/* 3 seconds */
/* ° microseconds */

Notice that in code fragments 1 and 2, there \Nas no need to remove

the request block from the reply port, since 0010 and WaitlO perform

this action for you.

Why Use a Reply Port?
As you have seen, it is not necessary to specify a reply port \Nhen

arranging for device I/O in that the I/O can be completed acceptably by

specifying a value of null instead of providing a reply port. Why, then,

1* Frag.l: Put tasK to sleep awaiting 1/0 completion *1

DoIO(&myTimeReq); 1* wait for completion of request *1

1* now proceed to do something else ... *1

1* Frag.2: Start the 1/0, resynchronize with it later *1

SendIO(&myTimeReq); 1* start the timer *1

1* do a few other things *1

WaitIO(&myTimeReq); 1* go to sleep pending 1/0 completion *1

1* now go on to something else *1

1* Frag.3: Start the 1/0, do some other things, checK bacK *1
1* now and then to see if it has completed. *1

SendIO(&myTimeReq);

otherthings:

1* do a few other things *1

result = CheckIO(&myTimeReq);

if(result == FALSE)
[

goto otherthings;

1* remove the request block from the reply port *1

message = GetMsg(&myReplyPort);

1* and continue *1

1* Frag.4: Start the 1/0, do some other things, check back *1
/* to see if it has completed. If not completed, */
1* abort the attempt and continue. *1

SendIO(&myTimeReq);

1* do a few other things *1

result = CheckIO(&myTimeReq);

if(result == FALSE)
[

else
[

printf("Aborting the 1/0 request");
AbortIO(&myTimeReq);

printf("The rio completed as expected");
J
1* Remove the request block from the reply port *1

message = GetMsg(&myReplyPort);

1* (value of message should be &myTimeReq) *1

1* and continue *1

Listing 3.6: Code fragments using 1/0 functions

EXEC
87

PROGRAMMER'S GUIDE TO THE AMIGA

88

might a reply port be used':) Well, recall earlier in this chapter vvhere sig~

nals vvere discussed, you savv that a task can vvait for one or more

things to happen before it again becomes active. The receipt of a mes~

sage at a reply port (message port) can be one of those events. Thus,

setting up the reply port is a useful tool for multitasking, multievent

sequencing.

Queueing Multiple Requests
If you vvant a device to perform several operations in a rovv asyn

chronous to your ovvn task's operations, you can use 5endiO to send

multiple requests to the device. Notice that you must have a separate

appropriately initialized request block for each of the requests. As

noted earlier, the vvay to initialize a request block is usually by vvay of the

OpenDevice function. Hovvever, if you are queueing multiple requests to

the same device, then the io_Device and io_Unit values that you receive

from the first Open Device function that you execute can be copied

from the initial request block into each subsequent block, and all vvill be

valid as long as your task has the device open,

Here is a code fragment that shovvs a second request being copied

from the original one:

struct timerequest tr;
struct timerequest tr2;

error = OpenDevice("timer,device",UNIT _ VBLANK,&tr,O);
if(error = = 0)
{
tr2,io_Device = tr,io_Device;
tr2.io_Unit tr.io_Unit;
}

I * now either can be used for further device 110 * I

Accessing a Device's Library Functions
The structure of a device and the structure of a library are extremely

similar, and the device's function vectors are set up in the same vvay as

those of a library. Certain devices, notably the Timer device and Console

device, have functions that can be executed from Cjust as though they

vvere library routines. These devices also have a library base address

variable reserved. For the timer, the name applied is TimerBase. For the

console, the name applied is ConsoleBase.

To use the routines in the device's library, you must provide the appro

priate value for the base variables. You get the correct value by opening

EXEC

the device and using the io_Device value that Exec returns to you in the

IORequest block. Here is a code fragment that sets the timer variable

correctly:

/ * Fragment ... setting the value for TimerBase * /
/ * allows you to use time-arithmetic routines * /

/* AddTime, CmpTime, SubTime */

extern struct Library *TimerBase;
long error;
struct timerequest tr;

error = OpenDevice("timer.device" ,UNIT _ VBLANK,&tr,O);

if(error = = 0)
{

TimerBase
}
else
{

printf("error %Id while accessing timer"IOErr());
/ * (and do not try to use the timer functions) * /

}

Once this value is established. you can use the time functions docu·

mented in the Amiga ROM Kernel Manua/-AddTime, CmpTime, and Sub·

Time.

The Console device has one routine in its device library, Ra\NKeyCon·

vert. The setting of the ConsoleBase variable is deferred to Chapter 5

because it requires a kno\Nledge of \Nindo\Ns and this concept has not

yet been introduced.

Closing a Device
Once you have finished using a device, you must close it to terminate

your task's access to it. This is especially important for disk·resident

devices in that each device, after being loaded and initialized, takes up

memory and perhaps processor time resources as long as at least one

task has the device open. Thus, \Nhen you finish using a device, close it to

allo\N the device to free the resources it is using and return them

to Exec for reuse.

You close a device by calling the CloseDevice function. The call to

CloseDevice takes the form

CloseDevice(request);

89

PROGRAMMER'S GUIDE TO THE AMIGA

90

where request is a pointer to an 10Request block that you initialized by

the OpenDevice function. Note that if you copied the original 10Request

block to allow queueing of multiple requests, you must close the device

using only one of the request blocks. In other words, call CloseDevice to

close the device only as often as your task actually opened it.

In addition, before you close a device, make certain that the device has

responded to all of the 1/0 requests that you have sent to it. If it has

not responded to all of the requests, you should call AbortlO to abort

those requests. When you do this, you are effectively emptying the

device's list of messages to which it must respond for your own task

before you tell the device that it is no longer needed by your task.

Devices can be shared among tasks. Each time a task opens a device,

the device increments its user-count by one. Each time a task closes a

device, the device decrements its user-count by one. When your task

closes the device, if the user-count goes to zero, the device can remove

itself from the system and free its resources.

Graphics

GRAPHICS

To uncover the unique graphics capabilities of the Amiga, this chapter

provides useful tools that you will be able to incorporate into your own

programs. All of the programs that you find here will be compatible with

Intuition, the user interface of the Amiga. There are lower-level entry

points to system routines, notably in graphics and layers, that will not be

covered here in favor of creating programs that will be compatible with

each other and with Intuition.

This chapter provides basic instructions on how to create and initialize

drawing areas; how to specify and select colors; how to fill areas; and

how to draw lines, circles, and boxes.

You will find applications here working first on the Workbench screen

and then on a custom screen. You'll create a bar chart on the Workbench

screen and a geographical map on a custom screen. Then you'll see how

to program text for various fonts and sizes of type. Finally, you'll draw a

picture.

OPENING A WINDOW ON THE
WORKBENCH SCREEN

To create a window on the Workbench screen, you must specify the

following:

• Where to put the window (where to put its upper-left corner)

• How large to make it (how wide, how tall)

• What title it should have in its title bar

• What colors to use to draw the border and system gadgets

• Flags to control the type of window you are creating and the sys

tem gadgets that are attached automatically to your window

• If your window can be resized, the minimum and maximum sizes

within which you want it to be restricted

• The type of screen (in this case, Workbench) in which you want

your window to open

Defining a Nevv Windovv
To create a window, you define a data structure called a NewWindow.

Listing 4. 1 is a typical definition for a NewWindow. You will use this struc

ture definition for the bar chart program.

93

PROGRAMMER'S GUIDE TO THE AMIGA

94

/* wi ndowl. h * /

struct NewWindow my Window
{

) :

30, /* LeftEdge for window measured in pixels, */
/* at the current horizontal resolution, */
/* from the leftmost edge of the screen */

30, /* TopEdge for window is measured in lines */
/* from the top of the screen. */

500, 150, /* width, height of this window */
-1, /* Detai1Pen - what pen number is to be */

/* used to draw the borders of the window */
-1, /* B10ckPen - what pen number is to be */

/* used to draw system-generated window */
/* gadgets */
/* (for Detai1Pen and B1ockPen, the value */
/* of -1 uses default settings) */

CLOSEWINDOW I NEWSIZE I REFRESHWINDOW:
/* IDCMP flags */

SIMPLE REFRESH NORMALFLAGS I GIMMEZEROZERO:
/* window flags */

NULL, /* FirstGadget ..• explained in Chapter 5 */
NULL, /* CheckMark ... explained in Chapter 5 */

"Sample Chart",
NULL,
NULL,

10, 10,
640, 200,
WBENCHSCREEN

/* window title */
/* pointer to screen if not Workbench */
/* pointer to bitmap if a superbitmap window */

/* minimum width, minimum height */
/* maximum width, maximum height */
/* type of screen in which to open */

Listing 4.1: The window1 structure definition

IDCMP Flags
Intuition is capable of sending messages to your task to tell you that a

user has hit a particular kind of gadget or has done something you

should know about. The messages that Intuition sends are received at

the Intuition Direct Communications Message Port (lDCMP for short), In

this program, you'll see a section in which the program waits for a mes

sage to arrive at the IDCMP Then, based on the contents of that

message, the program's next action is determined.

These are the flags that have been selected for this initial application:

• CLOSEWINDOW-so the application will know when the user

wants to stop this program

• NEWSIZE-so that if the user makes the window larger or smaller,

your application can redraw the window's graphics to occupy the

blank space thus exposed

GRAPHICS

• REFRESHWINDOW-so that if the user pushes this window to the

back or brings it to the front, the application can refresh (redraw)

the window's contents

Window Flags
Three window flags are specified in the my Window structure:

SIMPLE_REFRESH, NORMALFLAGS, and GIMMEZEROZERO.

Setting the SIMPLE_REFRESH flag means that if a window is sent to

the back, then brought to the front again, the system does not have to

automatically save and restore the sections that were covered up. This

saves memory, but the program must be capable of restoring the win

dow's appearance after sensing that a refresh event has happened

The NORMALFLAGS setting is something I've concocted for this appli

cation. Most often when I'm designing a display, I want my windows to

have all of the usual system gadgets, as follows:

• WINDOW DRAGGING-lets you move the window around by using

the mouse

• WINDOWSIZING-Iets you resize the window

• WINDOWCLOSE-Iets you signal the application that it should

cease operation and close things down

• WINDOWDEPTH-Iets you depth-arrange the window

NORMALFLAGS is thus defined by the following statements:

/* mydefines.h */

#define WC WINDOWCLOSE
#define WS WINDOWSIZING
#define WDP WINDOWDEPTH
#define WDR WINDOWDRAGGING

#define NORMALFLAGS (WC I ws I WDP I WDR)

When you open a window, a Window data structure is created and ini

tialized. A RastPort data structure is a part of this Window structure.

The rastport is used to control where and how drawing is performed by

the graphics routines.

Setting the GIMMEZEROZERO flag means that the drawing area is

created so that the coordinate location is in the upper-left corner of the

area inside the window border (0,0). It also means that all drawing is

clipped (cut off) within the borders of the window. If you don't specify

GIMMEZEROZERO, the effective drawing area for a window is the

95

PROGRAMMER'S GUIDE TO THE AIVIIGA

16

upper-left corner of the window itself and drawing can occur across the

edges of the window border.

Opening the Window
Here is the code fragment that opens the window described by the

my Window structure:

struct Window *w;
w = OpenWindow(&myWindow);
if(w = = 0)
{

printf("Window didn't open!");
}

You provide a pointer to a NewWindow data structure (&myWindow),

and the system returns a pointer to a Window data structure that it has

initialized according to the parameters in that NewWindow structure.

If the return value is zero, it is possible that there is not enough free

memory available for the system to use to create the Window data

structure and all of its associated memory areas. If the returned value is

nonzero, you know that you have a valid pointer to a Window data

structure. It also means that the window you've described is now open

on the Workbench!

Handling Events from Intuition
The IDCMP flags that you set in the NewWindow data structure tell

Intuition to send three different kinds of events to the task. You'll need

a routine that will do the appropriate thing if one or more of these

events happens. This routine here wi!1 be called HandleEvent.

HandleEvent will be called from the main program, later in the chapter,

to handle an event such as a mouse click on the CLOSEWINDOW gadget

in your window, or a resizing or back-to-front request. If a CLOSE

WINDOW event is sensed, all HandleEvent needs to do is return a value

of zero. This tells the main program that the program should stop. For a

resizing or back-to-front request, the graphics should be redrawn, since

this is a simple-refresh window.

Listing 4.2 is the code for handling these events. More event handling

is shown in the next chapter.

Locating the Rastport
The next step you need to perform is to locate the rastport within

this newly created Window data structure. A rastport is a data

GRAPHICS

/* eventl.c * /

HandleEvent(class)
LONG class; /* provided by main */

switch(class)
[

case CLOSEWINDOW:
return(O) ;
break;

case NEWSIZE:
case REFRESHWINDOW:

redraw () ;
break;

default:
'break;

return(l);

Listing 4.2: The event 1 routine

structure that controls drawing into a drawing area. For most of your

programs, you need never know about the internal contents of a rast

port. You simply need a pointer to a valid RastPort structure to pass to

the system functions, which use the current contents of the rastport

to determine how to fulfill your request.

Among the contents of a rastport are the current position of the

drawing pen, the current drawing pen color, and the width and height of

the currently selected text font. You can find an in-depth description of

each of the RastPort structure variables in Chapter 2 of the Amiga Pro

grammer's Handbook, vol. 1 by Eugene P Mortimore (SVBEX, 19871.

Structure definitions are beyond the scope of this book; structure vari

ables will be discussed only as they are used.

You can locate the rastport for this newly created window by the fol

lowing code:

struct RastPort * rp;
rp = &(w->RPort);

And that's all there is to it.

I * a pointer to a rastport * I
I * a Window structure contains * I
I * a rastport, so we need to get * I

I * the address of that part of * I
I * the Window structure * I

DRAWING INTO THE WINDOVV
Thus far, the program segments have defined the characteristics of

the window and have provided a pointer to the RastPort structure that

97

PROGRAMMER'S GUIDE TO THE AMIGA

98

is to control drawing into the window. Now that you have completed

the steps to make your program compatible with Intuition, you can go

on to the code that actually uses the pointer to the rastport-the code

that does the drawing. This code uses functions in the Graphics library.

In this section, you will create a bar chart. To make this exercise more

useful, this application provides general·purpose tools for graphing

Tools are provided here for the following:

• Selecting colors

• Selecting a drawing mode

• Drawing the axes

• Labeling the axes

• Drawing boxes

• Drawing dotted lines

Drawing a graph entails placing the axes somewhere within the win

dow, then drawing the graph components. It is most convenient if you

can treat the components of the graph relative to the graph's own

coordinate system instead of the window's coordinate system. Thus,

you need a set of routines that can do this.

The drawing functions shown here all use a common data structure

to acUust for the graph's coordinates as compared to the window's

coordinates. The system functions will be expecting window-relative X

and Y, so these routines adjust to the system requirements. Listing 4.3

is the data structure that is used to hold the base values.

/* xybase.h * /

struct XYBase
{

} ;

WORD xaxis;
WORD yaxis;
WORD xlength;
WORD ylength;

/* where x-axis is positioned in window */
/* where y-axis is positioned in window */
/* how long to make the x-axis */
/* how long to make the y-axis */

Listing 4.3: The XYBase structure definition

GRAPHICS

Selecting Colors
When you are \Norking \Nith the Workbench screen, there are four col

ors of dra\Ning pens from \Nhich to choose a dra\Ning color. The system

sees these as pen numbers 0, 1, 2, and 3.

The colors that you'll be choosing for each pen can be vie\Ned on the

Preferences primary screen in the 10\Ner-left corner. Color 0 is leftmost,

color 1 is next, and so on. For each pen number that you select for dra\N·

ing, that particular color number \Nill be used to render the image. Notice

that pen number 0 is the background color.

There are three different kinds of dra\Ning pens, kno\Nn as the APen,

the BPen, and the OPen.

The APen
The APen is the primary dra\Ning pen color. When you are dra\Ning a

solid line, or a solid filled area, this is the pen number that is used. You

establish the primary pen color by using the statement

SetAPen(rp,penNumber);

\Nhere rp is a pointer to the rastport to be affected, and penNumber is a

value \Nithin the range of maximum colors available in the rastport. For

this example, the maximum value is 3.

Later, if you \Nish to find out the value currently assigned to the APen,

you can find it in the RastPort data structure, under the name FgPen

(the foreground pen). You access this value, using a pointer to the rast

port, as follo\Ns:

CurrentAPen rp->FgPen;

The BPen

The BPen is the secondary dra\Ning pen color. 1'. patterned line or a

patterned area can be formed by a combination of 1 -bits and O-bits in a

pattern. When a patterned line or a patterned area is being dra\Nn, the

areas occupied \Nith 1 -bits in the pattern are filled \Nith the primary

(A Pen) color, and the areas occupied \Nith O-bits are filled \Nith the sec

ondary (BPen) color. This occurs only if the JAM2 dra\Ning mode is set for

this rastport. (A description of dra\Ning modes follo\Ns.J

You establish the BPen color number by using the statement

SetBPen(rp,penNumber);

The BPen value is stored in the RastPort data structure as an item

named BgPen (background pen). You can access this value, using a

99

fClROGRAMMER'S GUIDE TO THE AMIGA

100

pointer to the rastport, by the follo\/Ving code:

CurrentBPen = rp->BgPen;

The OPen
The OPen is also called the area-outline pen. If you are creating a filled

polygon and if a value has been set for the OPen, then after the polygon

is filled the system \/ViII automatically outline the polygon \/Vith a line of

this color.

You establish the area-outline pen color number by the statement

SetOPen(rp,penNumber);

This value gets stored in the RastPort data structure in an item named

AOIPen (area-outline pen). You can access this value, using a pointer to

the rastport, as follo\/Vs:

CurrentOPen = rp->AOIPen;

You may \/Vish to retrieve this value and use it as your APen value \/Vhen

you are doing Flood operations. (Flood-filling is discussed in the custom

screen example later in this chapter.)

Selecting a Dra\Ning Mode
If you \/Vant to dra\/V simple lines. select the dra\/Ving mode called -.JAM 1.

This means 'jam one color into the dra\/Ving area." Let's dra\/V the x- and

y-axes for the bar chart in simple solid lines. You set the dra\/Ving mode

by using the SetDrMd function, as follo\/Vs:

SetDrMd(rp,JAM 1);

JAM2 dra\/Ving mode means "dra\/V using t\/Vo colors, not just one:' The

APen color is used \/Vherever there is a i-bit present in the line pattern or

area pattern. The BPen color is used \/Vherever there is a O-bit present in

the pattern.

COMPLEMENT dra\/Ving mode means that \/Vhatever color is present

in the target area, any i-bit in the source area or source pattern causes

the complement of the color in the target area to be dra\/Vn. A comple

ment color is one in \/Vhich the 1 -bits become O-bits and vice versa. For

example, for a 4-bit color value 0101 (binary), the complement color is

1010. COMPLEMENT mode is useful \/Vhen you \/Vish to dra\/V, then later

erase, a line (such as producing a rubber-band line or a moving selector

box). Dra\/V the line once in COMPLEMENT mode; the line appears. Dra\/V

it a second time in COMPLEMENT mode; all of the bits in the line get

restored to their original values and the line vanishes.

JAM 1 and JAM2 modes can also be used in combination \/Vith INVER

SEVID mode. This is explained in the discussion of text later in this chapter:

GRAPHICS

101

Drawing the Axes
Before you begin drawing, you have to position the drawing pen at

the desired location, then draw from there to the end point of the line.

This is accomplished by the Move(rp,x,y) and Draw(rp,x,y) functions.

The Move function picks up the drawing pen and puts it down in a new

location. The Draw function draws a line, in the current drawing mode,

from the current location to the location specified in the Draw function

call.

Many different drawing functions can move the current position of

the drawing pen. If, instead of specifically setting the pen position with

the Move function, you wish to simply discover where the drawing pen

is at the moment, you can examine the cp_x and cp_y variables, using a

pointer to the rastport as follows:

CurrentXPenPosition
CurrentYPenPosition =

rp->cp_x;
rp->cp_y;

Listing 4.4 draws axes according to the values in the XYBase struc

ture that the DrawAxes function receives. Its inputs are a pointer to an

XYBase structure that already shows where the axes are to be

located, a pointer to the rastport into which the axes are to be drawn,

the pen color in which the axes are to be drawn, and the axes placement

and length values.

Note that for simplicity, no error checking is included. For example, if

the value of yaxis minus ylength turned out to be negative, an error

might result. Also note that DrawAxes is a programmer·defined func
tion, not a function in the ROM kernel.

Labeling the Axes
To put labels on each axis, you need to know about using text on the

Amiga. To use text, you must specify where in a rastport it is to be

drawn, a pointer to the text that is to be output, and the length of the

text string.

To specify where to put the text, use the Move function; it moves the

drawing pen into position. When a text character is generated, the char

acter begins as though the drawing pen were positioned at the baseline

of the text character. For the standard system font, whose characters

are all drawn within an 8-pixel·wide·by·8-line-tall rectangle, the baseline is

the seventh line down from the top of the character's enclosing rect

angle. You can discover the current baseline value by reading it from the

TxBaseline value in your rastport. This can be done as follows:

CurrentTextBaseline = rp- > TxBaseline;

PROGRAMMER'S GUIDE TO THE AMIGA

102

/* drawaxes.c */

DrawAxes(rp,xyb,xaxis,yaxis,xlength,ylength,color)

struct RastPort *rp~
struct XYBase *xyb~
LONG xaxis, yaxis:
LONG xlength, ylength;
LONG color;

SetAPen(rp,color);

/* draw the x axis */

Move(rp,xaxis,yaxis}~

Draw(rp,xaxis + xlength.yaxis)~

/* draw the y axis */

Move(rp,xaxis,yaxis):
Draw(rp,xaxis,yaxis - ylength);

/* now preset the values of the XYBase so that */
/* other routines can use them. */

xyb->xaxis =
xyb->yaxis =
xyb->xlength
xyb->ylength

xaxi S;

yaxis;
xlength;

= ylength;

Listing 4.4: The dra\Naxes routine

When the character has been dravvn, the dravving pen has automati

cally been moved one character position to the right, so as to start

another character, at the baseline, if desired.

Once the dravving pen is positioned and the dravving modes and pen

colors have been established, the function that you call to output the

character is called Text. The call to Text takes the form

Text(rp,tptr,length);

vvhere rp is a pointer to a rastport into vvhich to render the text, tptr is a

pointer to the text to output, and length is the number of characters to

output.

To use Text for labeling axes, you have to position the text according

to its length relative to the length of the axis. If the text is to be cen

tered on its intended position, you need to knovv the length of the text

to be output. For this, you can use the TextLength function. A call to

TextLength takes the form

length = TextLength(rp,tptr,length);

GRAPHICS

103

\Nhere the values passed to the function are exactly the same as those

for Text.

Listing 4.5 labels both the horizontal and vertical axes. The labels array

is assumed to be an array of nUll-terminated strings. For convenience

and speed, integer arithmetic is used.

It is more efficient to render text in long strings rather than by single

characters for t\NO reasons. First, there is overhead associated \Nith

the repeated subroutine calls. Second, if you have imposed any styling

on the text, such as italics or boldface, the text \Nill not be correctly ren

dered if you dra\N single characters. The underlying text output system

can take a string of text and format it correctly as a string. For example,

if a set of italic letters slightly overlap or lean into one another, a single

call to Text \Nill format a long string of text correctly. If, instead, you

make a series of single character calls, you'll find that the characters are

not rendered correctly.

Drawing Boxes
Bar charts are composed of boxes of various kinds. Some may be

simple line dra\Nings, some may be boxes filled \Nith a color. The color

may be either solid or patterned to further distinguish one bar from

another on the chart. This section sho\NS you hO\N to use the system

functions to generate boxes that are unfilled, filled, and patterned.

As \Nith the other chart subroutines provided here, the boxes are

generated relative to the chart coordinates rather than relative to the

\Nindo\N coordinate system. Thus, a user can create the chart as though

\Norking on graph paper.

Unfilled Boxes
An unfilled box can be created by a Move function follo\Ned by four

successive Dra\N functions. Since Move and Dra\N are shO\Nn in the pre

ceding examples, the exercise is left to the reader.

Solid or Pattern-Filled Boxes
Filled boxes, either solid or patterned, can be produced by the system

function called RectFill. A call to RectFil1 takes the form

RectFill(rp,xmin,ymin,xmax,ymax);

\Nhere rp is a pointer to the RastPort into \Nhich a filled rectangle is to be

dra\Nn; xmin,ymin is the upper-left corner of the rectangle; and xmax,

ymax is the upper right corner of the rectangle.

What happens as a result of the RectFill call depends on the current

settings of certain rastport parameters, including the dra\Ning mode,

PRDGRAMME:R'S GUIDE TO ,HE AMIGA

104

/* labelaxes.c */

LabelHor i zonta 1. (rp. xyll, 1 abel s, howmany)

struct RastPort *rpi
struct XYBase *xyb;
char *labels!],
LONG howmany,

/* an array of label names */
/* how many labels are required */

WORD i, labelwidth, segmentwidth, currentxi
WORD actualy, actualXi

segmentwidth = (xyb->xlength)/(howmany - 1),
currentx = xyb->xaxis;

actualy :::= xyb->yaxis + 1 + (rp->TxBaseline);
/* put it below the axis line */

for(i=Oi i<howmanYi i++)
[

label width TextLength (rp, label s[i], strlen (labels[i])),

labelwidth labelwidth/2, /* center the text */

actualx = currentx + (segmentwidth * i) - labelwidth;

Move(rp,actualx,actualY)i
Text(rp,labels[i],strlen(labels[i])),

/* end of label horizontal */

LabelVertical (rp,xyb, labels,howmany)
struct RastPort *rp:
struct XYBase *xyb;
char *labels[],
LONG howmany,

/* an array of label names */
/* how many labels are required */

WORD it labelwidth, segme~theight, currentxi
WORD actualy, actualx, currentYi

segmentheight ~ (xyb->ylength)!(howmany - 1),

currentx = xyb->xaxis - 2; /* 2 pixels from axis */

/* center the text vertically. using the text heiqht */
/* value contained in the RastPort */

currenty = xyb->yaxis + ((rp->TxHeight)!2),

for(i::::O~ i<howmany; i++)
[

labelwidth = TextLength(rp,labels[iJ,strlen(labels[i])),
/* right-edge align the text along the axis */

actual x currentx labelwidth,

actualy currenty (segmentheight * i),

Move (rp,act ua 1 x, actualy);
Text (rp, label s[i], strlen (labels[i])),

/* end of label vertical */

Listing 4.5: The labelaxes routine

GRAPHICS

the area-fill pattern, and the primary, secondary, and area-outline pen

colors.

For a solid color box, you can use the following code:

SetAPen(rp,mycolor);
SetDrMd(rp,JAM 1);

/* preset the drawing pen color */
/ * jam only one color into * I

I * drawing area * /
/ * then call RectFi II * I

For an outlined, solid-color box, use the above code, and prior to calling

RectFili specify the area-outline pen color:

SetOPen(rp,myoutline); / * preset the outline pen color * I

Boxes with No Outline
Once the outline color has been established, the system will use that out

line color thereafter for both RectFili calls and area-fill calls. (Area-filling is

covered in the custom screen example later in this chapter.) To turn off the

outline pen usage, you must use the system macro BNDRV _OFF:

BNDRY _OFF(rp);

Two-Color Pattern-Filled Boxes
To produce a pattern-filled box, you need to specify both a primary

pen color and a secondary pen color, a drawing mode of JAM2, and a pat

tern that should be used for the fill. The pattern is an array of 16-bit

words used by the area-filling functions as though they were stacked

on top of one another to form a 16-bit-wide pattern in whatever size

you specify. The main restriction is that the size of the box must be a

power of two (2, 4, 8, etc.).

Listing 4.6 is a pattern that forms a checkerboard when displayed.

When the graphics functions use this pattern, if JAM2 is the drawing

mode, wherever there is a 1 -bit in the pattern, the system draws with

the APen drawing color. Wherever there is a O-bit in the pattern, the sys

tem uses the BPen drawing color. If JAM 1 is the drawing mode, the pat

tern is ignored and only the APen gets used.

To tell the system which pattern is to be used, use the SetAfPt func

bon (set area-fill pattern). This function requires a pointer to the rast

port that will be affected, a pointer to the pattern, and the size of the

pattern you are providing (specified as a power of two). The sample pat

tern is 8 words long, so its size is 3 (23).

To draw a pattern-filled box, use the following code before calling RectFill:

SetAPen(rp,myPrimaryColor);
SetBPen(rp,mySecondaryColor);

105

PROGRAMMER'S GUIDE TO THE AMIGA

106

/* mypattern.h */

UWORD mypattern[]
[

OxfOfO,
OxfOfO,
OxfOfO,
OxfOfO,
OxOfOf,
OxOfOf,
OxOfOf,
OxOfOf

/* 4 bits of l's and 4 bits of O's */

) ;

Listing 4.6: The mypattern routine

SetAfPt(rp , mypattern ,size);

SetDrMd(rp,JAM2);

I * set pattern * I

I * when drawing, use both pens * I

I * then call RectFili * I

Multicolored Pattern-Filled Boxes
Instead of drawing a two-color pattern, you can draw a pattern hav

ing as many colors as are available in the drawing area itself. For this

example, where the Workbench screen is used, there is a choice of four

colors. In a custom screen, you can have a choice of up to 4,096 different

colors for each bit position of a pattern (in hold-and-modify mode). See

Appendix B of the Amiga Programmer's Handbook, vol. 1 (SVBEX, 1987)

for a full discussion of the Amiga display modes.

The colors that are displayed on the Amiga screen are determined

from a set of data bits that are taken from different parts of memory

known as bitplanes. It is a combination of those bits that selects the

color you see on the screen.

To display a multicolored pattern, you must specify the pattern in the

form of a multilayered bitplane. It is the combination of the binary value

of the bits taken from each bitplane of the pattern that determines the

color displayed in a particular pattern position.

Here is how the bits are combined:

Bit in Bit in Pen Color

Plane 1 Plane 2 Used

o + o o

o +

C3RAPHICS

+

+

o 2

3

Here is a pattern that forms multicolored stripes:

Bit Position in Pattern Data

76543210

01020301

01020301

10203010

10203010

02030102

02030102

20301020

20301020

Listing 4.7 forms stripes on a background color.

You specify that the pattern is multicolored by the following code:

SetAPen(rp,255);
SetBPen(rp,O);
SetDrMd(rp,JAM2);

/ * draw into all available planes * /
/* BPen must be ° */

I * use JAM2 drawing mode * I

SetAfPt(rp,mymulti, - 3); / * - 3 represents the number of words that * /
/ * makes up each image of the pattern * /

There must be as many images as there are bitplanes to be drawn

into. Workbench is a four-color drawing screen; it thus requires two

images. One image appears in one bitplane, the other image appears in

the second bitplane. The value shown is - 3 because there are

8 (2 3) words in each plane of the image.

About Patterns in General
Although the pattern capabilities of the Amiga graphics are impres·

sive, there is one limitation: the patterns are always drawn with a start

ing point relative to the upper·left corner of the rastport drawing area.

Thus, any shapes drawn with a pattern could appear as cutouts against

a fixed-patterned background. This can be particularly disconcerting if

107

PROGRAMMER'S GUIDE TO THE AMIGA

108

/* multipat.h */

UWORD mymulti[] ~

(

) ;

/* plane 0 part of the multicolored pattern */

Ox3033,
Ox3033,
OxcOcc,
OxcOcc,
Ox0330,
Ox0330,
OxOeeO,
OxOeeO,

/* plane 1 part of the multicolored pattern */

Ox0330,
Ox0330,
OxOeeO,
OxOeeO,
Ox 3003,
Ox3003,
OxeOOe,
OxeOOe

Listing 4.7: The multipat routine

you are trying to animate patterned objects by quickly drawing and

redrawing them against a fixed nonpatterned background.

As an example, suppose you want to draw a pair of playing cards,

each having the same pattern on the back, and slowly move one in front

of the other. Based on the position of the moving playing card, you could

change the pattern that the system uses for the area·fill so as to keep

the appearance of the pattern the same no matter where on the

screen the card moves. As an easier alternative, you can create an

off·screen rastport, create your image there, then copy the image to

the on·screen rastport, thereby keeping the pattern the same regard

less of where the card is moved.

Adapting to the Coordinate System
Listing 4.8 adapts the rectangle coordinates from window-relative to

axes-relative. It also includes specifying the position of the lower·left conner

of the bar, and the width and height, translating this into what RectFili will

understand. Note that the APen, BPen, drawing mode, and area-fill pattern

must be properly set before calling the DrawBar function.

This could have gotten fancy and adapted to the bar as a percentage

of the maximum X and Y, as was done with the axes labeling, but that's

for you to work on if you wish.

GRAPHICS

/* drawbar.c */

DrawBar(rp,xyb,x,width,height)

struct RastPort *rp;
struct XYBase *xyb:
LONG x, width, height;

WORD xmin, ymin, xmax, ymax:

/* where to put it, how big it is */

/* bar is to be drawn resting on the x axi s * /
/* assumes that colors, outline, pattern and drawmode are OK */

xmin := X + xyb->xaxis;
xmax=xmin+width- 1;

ymax = xyb->yaxis - 1;
ymin = ymax - height + 1;

/* adjust for x axis position */

/* rest it on the x axis */

RectFill (rp, xm in, yrnin, xmax, ymax);

Listing 4.8: The drawbar routine

Dotted Lines

109

When the axes are dra\Nn, solid lines are used. If you \Nish, you can

apply a pattern to the lines,Just as you are able to apply a pattern to the

area-fills. A line pattern is established by the 5etDrPt function (set dra\N

ing pattern).

The pattern itself is a 16-bit unsigned \Nord, containing the set of 1-

and O-bits that define a patterned line. For example, a dotted line might

appear as follo\Ns:

1 1001 1001 1 00 1 1 00

When a line is dra\Nn, if the dra\Ning mode is JAM 1, \Nherever there

are ones in the pattern, the APen color \Nill be dra\Nn. Where there are

zeros in the pattern, the background color or pattern, if any, remains

undisturbed. If the dra\Ning mode is JAM2, \Nherever there are ones in

the pattern, the APen is used. Where there are zeros in the pattern, the

BPen color is used.

To use the dotted-line pattern above, you \Nould specify a line pattern

value of OxCCCc. If you do not explicitly select a line pattern, the default

pattern is used. The default value is Oxffff, \Nhich creates a solid line.

Drawing Multiple Lines with a Single Function Call
In the main program listing that follo\Ns, dotted lines are used to con

nect the tops of t\NO of the bar chart values and a solid line is used to

PROGRAMMER'S GUIDE TO THE AMIGA

110

connect the third set, The drawing of the lines is performed by using a

special function call that draws multiple connected lines with a single call.

This function is Poly Draw and it takes the form

PolyDraw(rp,xytable,count);

where rp is a pointer to a rastport; xytable is a table of words, each pair

of which defines an X,Y coordinate to connect in a set of intercon

nected lines; and count defines how many coordinate pairs are in the

xytable.

The Main Program
Now that all of the pieces have been explained, Listing 4.9 is the main

program body for the bar chart. To avoid repetition, the main program

simply includes the pieces labeled individually earlier in the chapter.

Avoiding Redra\Ning Windo\N Contents
The bar chart program uses a simple-refresh window for its drawing.

This means that for any resizing operation, or any operation where

another window has partially covered then exposed a portion of this

window, it is necessary to use redraw to restore the window to its origi

nal appearance.
You can avoid the redraw operation: instead of a simple-refresh win

dow, you can select either a smart-refresh or a superbitmap window.

Smart-Refresh Windovvs

When you select a smart-refresh window, the system automatically

saves and restores any obscured then exposed part of your window

when a back-to-front or window move operation happens. There are

certain costs to this operation:

• Saving and restoring takes as much memory as is needed to save

the obscured areas.

• When you draw into a smart-refresh window, if any part of the

window is obscured, the graphics routines draw into all parts of

the window so that when the obscured portion is exposed, the

results of your drawing need not be redone. This is both an advan

tage and a disadvantage in that the more overlapped segments

you have, the longer it takes the system to draw an image. But as

fast as the Amiga draws, the time increase over a simple-refresh

window may not even be noticed.

j* main barchart program *j

#include OIexec!types.hll
#include "intuition/intuition.h"
#include "graphicsjgf)(macros.h"

#define NORMAL FLAGS (WINDOWSIZINGIWINDOWDRAGIWINDOWCLOSElwINDOWDEPTH)

#include "mypattern.h"
#include "multipat.h"
#include '·xybase.h"
:# incl ude "windowl. h"
#include "eventl.c"
#include "drawaxes.c"
#include IIdrawbar.c"
#include "labelaxes.c"

struct Window *w~
struct RastPort *rport;

extern struct Window *OpenWindow();
int GfxBase;
int IntuitionBase~

main()
(

struct IntuiMessage *msg;
LONG resul t;

GfxBase ~ OpenLibrary(" gr aph i cs .1 ibr ary" ,0) ;
if(GfxBase ~= 0)
(

printf ("graphics.1 ibrary won't open! \n");
exit(lO),

IntuitionBase OpenLibrary("intuition.library" ,0);
if(IntuitionBase ~~ 0)
(

printf("intuition.1ibrary won't open!\n");
exit(15),

w OpenWindow(&myWindow);
if(w 0)
(

printf("Window didn't open!\n"),
CloseLibrary(GfxBase);
exit(20) ;

rport w->RPort~

redraw(); j* (redraw for the "first" time) *j

/* Now wait for a message to arrive from Intuition */
j* (task goes to sleep while waiting for the message) *j

WaitPort(w->UserPort);
j* retrieve the message from the port *j

while(l)
(

j* "forever" *j

msg (struct IntuiMessage *)GetMsg(w->UserPort);
handlei t:

result ~ HandleEvent(msg->Class);

Listing 4.9: The main barchart program

GRAPHICS

1 1 1

PROGRAMMER'S GUIDE TO THE AMiGA

112

char

char

J

iflresult == 0) 1* got a CLOSEWINDOW *1
break;

1* It is possible that Intuition might send more *1
1* than one message to the task while the task *1
1* is waiting, so the event loop must empty the *1
1* port each time it goes to check its contents *1

msg = (struct IntuiMessage *)GetMsg(w->UserPort);

if(msg != 0)

goto handlei t;

1* will be 0 when there are *1
/* no more messages */

CloseWindow(w) ;
CloseLibrary(GfxBase);
CloseLibrary(IntuitionBase):

*hlabel s[] = (

'(
"84", "85" , "86" , "87" J ,

*vlabels[] =
"0" , "10" , "20" , "30" , "40" J :

struct XYBase myxyb;
redraw ()
f

WORD i,

DrawAxes (rport ,&myxyb,3 5,120,350,100,1),

LabelHorizontal(rport,&myxyb,hlabels, 5),

LabelVertical(rport,&myxyb,vlabels,5),

SetAPen(rport,l);
SetDrMd(rport, JAMl),

for(i=l, i<5, i++)
(

DrawBar(rport,&myxyb,-31+i * 348/4,20, i * 12);
/* where, offsets, xposition, width, height */

SetAPen(rport, 1) ,
SetBPen(rport, 2) ,
SetAfPt(rport,mypattern,3),
SetOPen(rport,3),
SetDrMd(rport,JAM2),

for(i=l, i<5, i++)
(

1* 2 color pattern *1
1* outline it in third color *1

DrawBar(rport,&myxyb,-lO+i * 348/4,20,i * 18),
1* where, offsets, xposition, width, height *1

SetAPen(rport,255):
SetBPen(rport, 0),
SetAfPt(rport,mymulti,-3) ,
SetOPen(rport,l):
SetDrMd(rport,JAM2),

forli=l, i<5, i++)
{

1* 2 color pattern *1
1* outline it in first color *1

Listing 4.9: The main barchart program (continued)

DrawBar(rport,&myxyb,ll+i * 348/4,20,i * 22);
/* where, offsets, xposition, width, height */

/* end of redraw */

Listing 4.9: The main barchart program (continued)

GRAPH!CS

113

• If you resize the \Nindo\N to make it smaller, the system \Nill save

and restore only the portions of your dra\Ning that exist \Nithin the

final bounds of the \Nindo\N. When you resize the \Nindo\N to make

it larger, the system can provide you \Nith blank space only in the

area surrounding the previous size. You see, \Nhen you dra\N into a

smart-refresh \Nindo\N of a given size, any dra\Ning that falls out

side the boundaries of the \Nindo\N is clipped, that is, not dra\Nn at

all. Thus, a smart-refresh \Nindo\N, though it need not respond to

REFRE5HWINDOW Intuition events, may still have to respond

to NEW51ZE Intuition events.

To use the smart-refresh feature, replace the 5IMPLE_REFRE5H flag

in the Ne\NWindo\N data structure \Nith a 5MART _REFRE5H flag. Then

you can eliminate the REFRE5HWINDOW flag from the event· handling

routine.

If you also \Nish to avoid redra\Ning the \Nindo\N contents on a NEW51ZE

event, the alternative is simple: delete WINDOW51ZING from the \Nindo\N

flags of the Ne\NWindo\N data structure. If there is no sizing gadget

present, the system \NiH ignore the minimum and maximum sizing variables

in the Ne\NWindo\N data structure and not cause any resizing.

Superbitmap Windows
If you still \Nant to be able to freely resize your \Nindo\N \Nithout hav

ing to respond to either the REFRE5HWINDOW or NEW51ZE events, you

may \Nish to use a superbitmap \Nindo\N instead.

When you select 5UPER_BITMAP, you specify your O\Nn dra\Ning area

to link into the system display facilities. Any dra\Ning that you do is

al\Nays kept in your O\Nn dra\Ning area. When a \Nindo\N section is

obscured and then exposed, or \Nhen the \Nindo\N is sized up or dO\Nn,

the system pulls your dra\Ning area into vie\N. This means there \Nill be

no need to respond to either REFRE5HWINDOW or NEW51ZE events.

PROGRAMMER'S GUIDE TO THE AMIGA

114

This, too, has its costs:

• As \Nith smart-refresh \Nindo\Ns, this method takes more memory

than simple-refresh \Nindo\Ns, It also requires that you kno\N about

and provide a properly initialized bitmap and its associated memory,

• As \Nith smart-refresh \Nindo\Ns, this method adds a little to the

dra\Ning time in that some of the dra\Ning appears on the screen

and some of it appears off the screen,

An advantage to using a superbitmap \Nindo\N is that the bitmap can

be as large as 1 024-by-1 024 pixels, and you can, if you \Nish, reposition

your \Nindo\N on different portions of this larger bitmap regardless

of the current size of the \Nindo\N. The default positioning as you first

open the \Nindo\N is that the upper-left corners of the on-screen bitmap

and the off-screen bitmap are aligned.

A superbitmap \Nindo\N must also be a GIMMEZEROZERO \Nindo\N, If it

is not GIMMEZEROZERO, Intuition renders your gadgets and \Nindo\N

borders into the superbitmap. If you later enlarge, shrink, or scroll the

\Nindo\N against the superbitmap, the \Nindo\N borders and gadgets \Nill

still be there,

Listing 4.10 lists data declarations and a code segment that you can

insert into the bar chart program just ahead of the call to OpenWindo\N

to make this a superbitmap \Nindo\N. Note that you must put the data

declarations into the declarations part of the main program.
First, you need to change the SIMPLE_REFRESH flag in the Ne\N

Windo\N data structure to read SUPER_BITMAP Also, you must remove

NEWSIZE and REFRESHWINDOW from the IDCMP Flags variable, Then

make the additions sho\Nn in Listing 4,10 and compile the program,

NO\N \Nhen you run the program, the \Nindo\N \Nill be smaller, HO\Never,

\Nhen it is resized, the dra\Ning \Nill appear in its entirety and \Nill require

no redra\Ning.

As mentioned, the default position for the \Nindo\N is to be aligned

\Nith the upper-left corner of its superbitmap. Vou can change that posi

tion by adding and using the routine in Listing 4,1 1 .

Because ScrollWindo\N uses one of the Layers library functions, the

Layers library must be open before the function can be accessed.

Therefore you also have to add, near the beginning of the program, the

code to open the Layers library:

I * Layers library base address declaration * I

LONG LayersBase;

GRAPHICS

/* superbitmap declarations (code fragments) */

struct BitMap myBitMap;
extern PLANEPTR AllocRasterO;
ULONG *m;

/* added code for superbitmap */

my Window. Width : 120;
my Window. Height : 40; /* shrink it to a superbitmap */

/* allow the superbitmap drawing area to be as large as full-screen */

InitBitMap(&myBitMap,2,640,200);
/* depth, width, height */

/* Now allocate memory for the bitplanes associated with the bitmap */

m : AllocRaster(640,400l;

if(m :: 0)
(

}

printf(nNo memory for superbitmap\n);
exit(30);

myBitMap.Planes[O] : m; /* that takes care of the first of two */

m : AllocRasted640,400);

if(m::O)
(

printf(nNO memory for superbitmap\n);
FreeRaster(myBitMap.Planes[O]);
exit(30) ;

myBitMap.Planes[l] : m; /* and this finishes memory allocation */

/* Now that the superbi tmap is ready to use, you can attach it * /
/* to the NewWindow structure */

myWindow.Bi tMap : &myBi tMap;

Listing 4. 1 0: Superbitmap vvindovv routines

/ * opening the Layers library, install this code just * /
/ * after the opening of the Intuition library * /

LayersBase = OpenLibrary("layers.library" ,0);

if(LayersBase = = 0)
{

printf("Layers library won't open!\n");
CloseLibrary(lntuitionBase);
CloseLibrary(GfxBase);
exit(40);

115

PROGRAMMER'S GUIDE TO THE AMIGA

116

/* scro11window.c */

Scro11Window(wi,dx,dy);
struct Window *wi;
SHORT dx, dy;

struct RastPort *ra;
struct Layerlnfo *li;
struct Layer * 1:

if(ra = wi->RPort)
[

i£(l = ra->Layer)
(

if(li = l->Layerlnfo)
[

/* set RastPort pointer */

/* set Layer pointer */

/* set Layerlnfo pointer */

Scro11Layer(li,l,dx,dy);

/* end of Scro11Window */

Listing 4.1 1: The scrollwindow routine

Then, at the end of the program, vvhere the other libraries are closed,

install the code

CloseLibrary(LayersBase);

Scroll Layer is used to reposition an existing layer against its assigned

superbitmap layer. If you specify a scroll value that exceeds the maxi·

mum scroll distance, the system automatically limits the movement to

the maximum that is available. Try adding the follovving code to your pro·

gram to move your vvindovv against the larger dravving area that the

superbitmap uses:

for(i = 0; i<40; i + +)
{

}

ScroIiWindow(w,i,i);
Oelay(5);

for(i = 39; i >0; i + +)
{

ScroIIWindow(w,i,i);
Oelay(5);

1 * move it diagonally * 1
1 * delay 1/1 Oth of a second * 1

1 * move it back again * 1

The Layers library is used by Intuition extensively to create, move,

resize, and depth-arrange the vvindovvs you create. This book does not

go into the other functions of the Layers library, For more information

GRAPHICS

117

about that library, see Chapter 5 of Eugene P Mortimore's Amiga Pro

grammer's Handbook, vol. 1 (SYBEX, 1987).

In Chapter 5 of this book, you'll find proportional gadgets descnbed.

You may choose to use such a gadget to control \Nhat part of the super

bitmap you see \Nithin your \Nindo\N. But for nO\N, on \Nith graphics.

DESIGNING AND OPENING
A CUSTOM SCREEN

In this section, you'll create a custom screen, that is, a screen \Nherein

the choice of colors is yours. Instead of being restricted to the four color

choices that the Workbench provides, you can specify your O\Nn set of

up to 32 colors. On your custom screen, you'll create a map utilizing a

number of Amiga graphics-rendering functions.

You must specify the follo\Ning parameters to enable the system to

open a custom screen for you:

• Where to put the screen relative to the overall vie\Nable on-screen

area (\Nhere to put its upper-left corner)

• HO\N large to make it (ho\N \Nide, hO\N tall)

• What default title it should have in its title bar

• What colors to use to dra\N the border and system gadgets

• The characteristics of the font that the menus, \Nindo\N titles, and

so forth should use

• The type of screen (in this case, CUSTOMSCREEN) that you \Nant

to create

• HO\N many colors this screen should be capable of displaying

• What particular type of vie\Ning mode is to be used

Defining a Custom Screen
The parameters sho\Nn above must be defined in a data structure

called Ne\NScreen. Listing 4.12 is the Ne\NScreen structure definition

that \Nill be used in the map program.

PROGRAMMER'S GUIDE TO THE AMIGA

118

f* myscreenl.h *f

f* myfontl specifies characteristics of the default font; *f
f* an BO-column font that displays as *f
f* 40 columns in low-resolution mode. *f

struct TextAttr myfontl
[

"topaz.font", 8, 0, 0
) ;

struct NewScreen myscreenl
[

0, 0,

320, 200,

5,

1, 0,

0,

CUSTOMS CRE EN,

&rnyfontl,

"32 Color Test" I

NULL,

NULL

) ;

/* LeftEdge, TopEdge ... where to put screen */

f* width, height ..• size of the screen */

/* 5 planes depth, means 2 5 or */
/* 32 different colors to choose from once */
/* the screen is opened. */

/* DetailPen, BlockPen */

/* ViewModes ... value of 0 low resolution */

/* type of screen */

/* Default font for this screen */

/* DefaultTitle for its title bar */

/* screen's user-gadgets, always NULL, ignored */

/* address of custom bitmap for screen, */
/* not used in this example */

Listing 4.12: The myscreen 1 structure definition

Opening the Custom Screen
You open your custom screen by using the Open Screen function.

Here is a typical call to that function:

struct Screen os; / * declare a pointer to a Screen structure * /

5 = OpenScreen(&myscreen1);

if(s = = 0)
{

}

printf("Can't open myscreen1 \n");
exit(10);

I * try to open it * /

If this function returns a value of 0, the screen did not open. Assuming that

you've correctly specified the various parameters in the Nevvscreen data

GRAPHIC';

119

structure, the most common reason that a screen cannot open is insuffi

cient system memory. You may be trying to run too many applications pro

grams at the same time and may need to close down one or more to

provide enough memory for this program to run.

Opening a Windo\N on the Custom Screen
Listing 4.13 is a modified version of the NewWindow structure

defined earlier in the chapter.

The code below redefines a few of the variables, thereby also making

it obvious what is being changed and why. Within the code, once a

screen has been opened, the screen pointer in the NewWindow struc

ture must be changed as well, so as to tell the system in which screen it

is to open.

my Window. Screen = s; / * point to the custom screen * /
/ * and tell system it isn't WBENCHSCREEN * /

my Window .Type = CUSTOMSCREEN;

/ * Then, use the normal function call and error checking * /
/ * for OpenWindow as shown earlier in the chapter * /

If the window and screen both open successfully, then you'll have both a

custom screen and a custom designed window on the display.

Selecting Colors
Now that you have your own custom screen, you will want to specify

the colors that you'll be able to choose from when drawing. Instead of

being limited to the colors that Workbench uses, you now have your

own custom color palette to modify as you wish for this application.

The NewScreen data structure specified that there should be 32

color choices. You establish your own color palette by using the

SetRGB4 function for single colors and the LoadRGB4 function for mul

tiple colors to preset in a single function call.

To use either of these functions, you must retrieve, from the Screen

data structure, a pointer to the viewport that the system initialized for

your screen when the screen was opened. Here is the code that estab

lishes a pointer to the screen's viewport:

struct ViewPort *vp;

vp = &(s->ViewPort); / * screen contains a viewport * /

Now this pointer to a viewport can be used for either SetRGB4 or

LoadRGB4. A typical call to SetRGB4 takes the form

SetRGB4(vp,colorNumber,rValue,gValue,bValue);

PROGRAMMER'S GUIDE TO THE AMIGA

120

/* window2.h * /

struct NewWindow my Window =
[

} ;

0,

15,

280, 150,
0,

I,

/* LeftEdge for window measured in pixels, */
/* at the current horizontal resolution, */
/* from the leftmost edge of the screen. */
/* TopEdge for window measured in lines */
/* from the top of the current screen. * /
/* width, height of this window */
/* Detai IPen - what pen number is to be * /
/* used to draw the borders of the window. * /
/* BlockPen - what pen number is to be * /
/* used to draw system generated window gadgets */

CLOSEWINDOW NEWSIZE I REFRESHWINDOW, /* IDCMP flags */

SIMPLE REFRESH I NORMALFLAGS I GIMMEZEROZERO, /* window flags * /

NULL,
NULL,

"Sample Chart",

NULL,

NULL,

10, 10,
320, 200,

WBENCHSCREEN

/* window title */

/* pointer to screen if not Workbench */

/* pointer to bitmap if a SUPERBITMAP window */

/* minimum width, minimum height */
/* maximum width, maximum height */

/* type of screen in which to open */

Listing 4.13: The window2 structure definition

vvhere vp is a pointer to a vievvport; colorNumber is the color register to

be loaded vvith the RGB color values described by the remaining parame·

ters; and rValue, gValue, and bValue are the red, green, and blue values

(ranging from 0 to 15).

Here are three typical calls, using SetRGB4:

I * set background color, i.e. color 0, to black (r == 0, g = 0, b = 0) * I
SetRGB4(vp,0,0,0,0);

I * set color number 1 to solid RED * I
SetRGB4(vp, 1 ,15,0,0);

I * set color number 2 to white (maximum r,g,b values, all) * /
SetRGB4(vp,2, 15, 15, 15);

You might use SetRGB4 to cycle the colors vvithin one or more color

registers so as to give an animation effect of some kind. LoadRGB4 is

GRAPH'CS

121

most often used to preset the colors for a custom screen shortly after

the screen has been opened.

A call to LoadRGB4 takes the form

LoadRG B4(vp, colorTable, howmany);

where vp is a pointer to the viewport; colorTable is a pointer to the table

of colors to be loaded; and howmany tells how many colors there are In

the table.

LoadRGB4 always starts its loading with color number zero and pro

ceeds to load as many registers as you specify. The colors are each for

mulated as unsigned 16-bit numbers with four bits reserved for each of

the colors. The bits are arranged as

0000 RRRR GGGG BBBB

where the first four bits are ignored, the next four bits represent the

red value, the next four bits the green value, and the last four bits the

blue value_

You can load up to 32 color values into this new custom screen's view

port_ Here is an example colortable, containing a total of 16 values. The

names of the colors that each represents is shown in the comments.

UWORD mycolortable[] = {

OxOOOO, OxOe30, OxOfff, OxOb40, OxOfbO, OxObfO,
OxOSdO,OxOedO,Ox07df,Ox069f,OxOcOe,
OxOf2e,OxOfeb,OxOc98,OxObbb,Ox07df
} ;

/ * black, red, white, fire-engine red, orange, yellow, * /
/ * lime green, green, aqua, dark blue, purple, * /
/ * violet, tan, brown, gray, skyblue * /

The function call to use this new color palette for your custom screen is

LoadRGB4(vp,&mycolortable[O], 16);

It will be used in the complete map program listing.

Determining the Colors Currently in Use
The system maintains a colortable for each screen it creates_ If you do

not load your own colortable, or if you do not load the full 32 values, the sys

tem will automatically load them for you from a default color palette when

your screen is opened. If the screen was opened by Intuition (i.e., by a call to

OpenScreen), you can go into the screen's viewport to determine the color

~'ROGR/""MMER'S GUIDE TO THE AMIG;A

122

assigned to a particular color register in the colortable. The routine pro

vided is GetRGB4. A call to GetRGB4 takes the form

value = GetRGB4(vp,entry);

where vp is a pointer to the address of the screen's viewport, and entry

is the color register number in which you are interested.

The value returned is - 1 if that entry number does not contain a valid

value or the actual RGB value with four bits assigned for each red.

green. and blue intensity, where the most significant four bits of the

returned value contain O. the next four bits contain the red value. the

next four bits contain the green value. and the least significant four bits

contain the blue value.

Flood-Filling Shapes
The Amiga includes the Flood routine to fill a shape with a color begin

ning at a specified position in the drawing area. There are two modes to

this flood-filling. Mode 0 fills a shape with color starting at the cUlient

pen location and spreading out to all adjacent pixels, not stopping until a

color the same as the area-outline pen (the color set by the call to the

5etOPen function) is reached. Mode 1 fills a shape with color starting at

the current pen location and filling all adjacent pixels that are the same
color as the one on which the flood-fill began.

The interesting thing about the Flood function is that it uses the cur

rent drawing modes (JAM 1 or JAM2) and the pattern, if any. 50 you can

form an enclosed area of any shape. and flood-fill it with a multicolored

pattern if you wish. If you use this function, you'll need to be sure that

the shape you wish to fill has no breaks in its outline. Any time there is at

least one horizontally or vertically adjacent pixel available, the fill can

leak out and fill your entire window or screen area with the fill pattern.

A call to Flood takes the form

Flood(rp,mode,x,Y);

where rp is a pointer to a rastport; mode is the mode number; and x and

yare the coordinates at which to start the flood-fill.

Listing 4.14 uses the Flood function in a routine to create a filled dia

mond shape.

Oddly Shaped Filled Areas
In addition to the Flood function, the Amiga software provides a

series of functions for area-filling. With these functions, you define the

entire shape first, then tell the system to fill it. rather than drawing a

series of lines and asking for a flood-fill. The advantage to the area-filling

GRAPHICS

/* drawdiamond.c */

DrawDiamond(rport,xcenter,ycenter,xsize,ysize)
struct RastPort *rport:
WORD xcenter, ycenter, xsize, ysize;

BY'l'E oldAPen:
WORD xoff, yoff:

oldAPen = rport->FgPen: /* save old value af APen */

SetAPen(rport,rport->AOIPen):
/* same color as outline pen */

xoff = xsize/2:
yoff = ysize/2:

/* offsets from the center */

/* draw the diamond shape */

Move(rport,xcenter - xoff,ycenter):
Draw(rport,xcenter,ycenter + yoff):
Draw(rport,xcenter + xoff,ycenter);
Draw(rport,xcenter,ycenter - yoff):
Draw{rport,xcenter - xoff,ycenter);

/* flood-fill it from its center */

Flood(rport,O,xcenter,ycenter)i

SetAPen(rport,aldAPen):

Listing 4.14: The drawdiamond routine

/* out to outline pen color */

/* restore value of APen */

functions is that they automatically handle any strange shape that you

might define, \Nith no danger of a gap being left causing the fill to leak

out of the intended dra\Ning area.

Here are the functions that are used for area·filling:

error = AreaMove(rp,x,y);
error == AreaDraw(rp,x,Y);
AreaEnd(rp);

The rp parameter is a pointer to a rastport, and x and yare the coordi·

nates for a move or dra\N.

A value of - 1 is returned if there \Nas no room left in the buffer to

hold this particular AreaMove or AreaDra\N request; if there \Nas no

error, 0 is returned.

AreaMove operates similarly to Move in that it effectively means

"pick up the dra\Ning pen and move it some\Nhere else:' AreaDra\N oper

ates similarly to Dra\N in that it means "dra\N an outline (\Nith or \Nithout

an area-outline pen for the final shape) from the current pen position to

the ne\N coordinate location:' Neither AreaMove nor AreaDra\N has any

123

PROGRAMMER'S GUIDE TO THE AMIGA

124

effect on the current position of the dra\Ning pen used for Move and

Dra\N.

You can have several AreaMove and AreaDra\N functions, each defin

ing a separate shape. When you finally call AreaEnd, all of the shapes

that you defined are dra\Nn at once. No shapes or lines are dra\Nn until

AreaEnd is called,

When you call AreaMove, any prior shape being created by a series

of AreaDra\N function calls is automatically closed as though you had

called AreaDra\N one more time, specifying the coordinates of the very

first point in that shape For example, to dra\N a filled square, you need

only call AreaMove to move to the first corner and call AreaDra\N to

dra\N to the other three corners. Your next call to AreaMove (or

AreaEnd), automatically dra\Ns the closing side to the square.

Prerequisites for Area Operations
As you call the AreaMove and AreaDra\N functions, the system builds

a list of the move and dra\N operations, When you call AreaEnd, the sys

tem processes this list, dra\Ning and filling the shapes. There are a

couple of things you must do prior to calling these functions to prepare

your rastport for the system to use. You must provide the follo\Ning:

• An Arealnfo data structure for this rastport and a corresponding

data area for the Arealnfo structure

• A TmpRas data structure for this rastport and a corresponding

memory \Norkspace

The Arealnfo data structure contains variables that the system uses

to keep track of your requests for AreaMove and AreaOra\N functions.

It also contains a pointer to a memory space that 'IS used to save the

actual requests. Recall that no area-filling actually takes place until you

call AreaEnd. All of your intermediate requests to AreaMove and Area

Dra\N get stored in a memory array that you provide, and all get exe

cuted at one time \Nhen AreaEnd is called,

You must provide an array of 16-bit \Nords that the system can use

for storing your request. The array must contain five times as many

\Nords as the total number of calls to AreaMove and AreaDra\N that

you \Nish to make before calling AreaEnd. If you are creating your

shapes one at a time, you need only provide as many points as there are

vertices in the shape you are creating (plus a couple more for good mea

sure, perhaps). For this example, lets provide for a maximum of 20

points. You initialize an Arealnfo structure by using the InitArea func

tion, passing it the address of your Arealnfo structure, the address of

GRAPHICS

125

the array into which the system will store your requests, and the maxi

mum number of points to allow:

WORD areaArray[100J; 1* 20 points ti mes 5 words per point * I

struct Arealnfo myArealnfo;

InitArea(&myArealnfo,&areaArray[0],20);

rp->Arealnfo = &myArealnfo; I * link it to the rastport * I

When the system begins to fulfill your request for an area-fill, it

requires a work area in which to build and fill the shape before the shape

is moved into the actual drawing area that you have specified. The

shape is built in what is called the TmpRas, or temporary raster area.

The number of data words of space needed for a TmpRas data struc

ture is defined by the largest rectangular shape you wish to produce.

For example, if the largest shape is 200 lines tall by 640 lines wide, then

you need a space large enough to accommodate 640-by-200 bits. Only

the physical size of the multiplied width and height is taken into account.

That is, the memory is reused, for each area·fill operation, in a manner

appropriate to the shape of the object and not constrained to the rect

angular coordinates on which the memory allocation was based. For

example, if you allow a space large enough to draw a shape that fits

within a 1 00-by-1 00 rectangle, then it can just as easily handle a shape

that fits in a 1 000-by-1 0 rectangle.

You must allocate the workspace memory first, then use the Init

TmpRas function to initialize the TmpRas data structure, then link it into

your RastPort. Here is a typical sequence:

PLANEPTR workspace;
struct TmpRas myTmpRas;

workspace = AliocRaster(640,200);
if(workspace = = 0)
{

printf("No space for Temporary Raster!\n");

else
{

InitTmpRas(&myTmpRas,workspace,RASSIZE(640,200));
rp- > TmpRas = &myTmpRas; I * link it into the rastport * I

}

The macro function, RASSIZE, is used to tell the system how many data

words have been reserved by the AliocRaster call. The system then

PROGRAMMER'S GUIDE TO THE AMIGA

126

knows how large a shape can be produced using this structure.

Before using the Text function, you should provide a TmpRas struc

ture for your rastport, because if Text does not have this structure, it

must allocate and deallocate workspace memory every time it is called.

Providing a TmpRas is more efficient and therefore can make the sys·

tem run faster. Using the Text function is discussed later in this chapter.

Dra\Ning and Reading Individual Pixels
Sometimes, you will want to either draw into or find out the color of

an individual pixel (picture element), The Amiga graphics routines include

Write Pixel and ReadPixel for these purposes. The calls to these routines

take the form

WritePixel(rp,x, y);
penNumber = ReadPixel(rp,x,y);

where rp is a pointer to a rastport; and x and yare the coordinates at

which to read or write.

For WritePixel, the color that is drawn is that of the APen. For Read·

Pixel, the value returned, penNumber, ranges from 0 to 255. If it is not

possible to read the selected coordinates (perhaps they are outside the

range of the X or V coordinates for this rastport), a value of - 1 is

returned.

In the map program that follows, WritePixel is used with the Amiga's

random number function to add some action to the map.

Dra\Ning a Map
The map program in Listing 4.15 produces a map of Utah, Colorado,

Arizona, and New Mexico. It shades each state with a separate color,

then labels each state with a two·letter abbreviation of its name. Once

the states are drawn, the program "snows" on Arizona. To start the

snowing effect, click the left mouse button in the window, then click the

right mouse button.

TEXT
Thus far, you've used the default SO·column font for all of the dis·

played text. Now you'll learn how to create special effects for the text

and how to use the other available fonts.

To move the cursor correctly regardless of the type of font present,

you need to know how to find out the height, width, and baseline of the

text. And to use different fonts, you need to know how to switch fonts

#include "exec/types.h"
#include "intuition/intuition.h"

#def ine AZCOLOR 1
#define WHITECOLOR 2

1* The color numbers to use as Arizona and * I
1* as snow */

#include IImydefines .. h" 1* gets the window flags assignments *1

#include "myscreenl.h"
#include "window2.h"
#include "graphics/gfxmacros.h"
#include "eventl.c" 1* gets the event handler *1

1* define the initial placements of the 4 corners of the states *1

#define CORNERX 150
#define CORNERY 75

s truct Window *w:
struct RastPort *rp:
struct Screen *s;
struct ViewPort *vp;

1*
1*
1*
1*

struct Arealnfo myArealnfo:
PLANEPTR workspace;
struct TmpRas myTmpRas;

struct Window *OpenWindow();
struct Screen *OpenScreen();

LONG GfxBase;
LONG IntuitionBase;

pointer to a window *1
pointer to a rastport *1
pointer to a screen */
pointer to a viewport wi

WORD areaArray[lOO]; /* 20 points times 5 words per point *1

WORD ut'ahxy []
(
0, 0, -40,0, -38,-70, -15,-70, -17,-55, 0,-55, 0,0
J;

WORD coloradoxy[] =
(
0,0, 75,0, 75,-55, 0, -55
J;

WORD arizonaxy[] =
{
0,0, -40,0, -40,10, -50,10, -50,30,
-60,55, -30,70, 0,70
} ;

WORD newmexicoxy[] =
(
0,0,
J;

0,70,

UWORD mycolortable[]
(

8,70, 68,70, 68,0

OxOOOO, OxOe30, OxOfff, OxOb40, OxOfbO, OxObfO,
Ox05dO, OxOedO, Ox07df, Ox069f, OxOcOe,
OxOf2e, OxOfeb, OxOc98, OxObbb, Ox07df
J;

1* black, red, white, ~\~e-engine red, orange, yellow, *1

Listing 4,1 5: The map program

GRAPHICS

127

PROGRAMMER'S GUIDE TO THE AMIGA

128

/* lime green, green, aqua, dark blue, purple, */
/* violet, tan, brown, gray, skyblue *1

#include IIdrawdiamond.c"

main()
(

struct IntuiMessage *msg;
LONG result;
PLANEPTR workspace;
WORD rx, ry~

GfxBase = OpenLibrary("graphics.library" ,0);
IntuitionBase = OpenLibrary("intuition.library",O);
/* (error checking left out for brevity here) */
/* (should check that neither OpenLibrary returned 0) */

s = OpenScreen(&myscreenl); /* try to open it */
if (s == 0)
(

printf(IICan't open myscreenl\n"):
exit{lO) ;

myWindow.Screen ~ S; /* say where screen is located *1
myWindow.Type = CUSTOMSCREEN;

/* tell Intuition to look at w.Screen */
myWindow. Ti tIe = "Sampi e Map";

w = OpenWindow(&myWindow);
if{w 0)
[

printf("Window didn't openl\n");
CloseScreen(s);
exit(20) ;

vp &(s->ViewPort);

/* set the colors for this viewport */

LoadRGB4(vp,&mycolortable[0],16);

rp = w-> RPort;
workspace = (PLANEPTR)AllocRaster(640,200);
if(workspace == 0)
[

J

printf("No space for Temporary Raster!\n ll);

CloseWindow(w);
CloseScreen(s);
exit(30);

InitTmpRas{&myTmpRas,workspace,RASSIZE{640, 200));
rp->TmpRas = &myTmpRas; /* link it into the rastport */

InitArea(&myAreaInfo,&areaArray[0],20);
rp->AreaInfo &myAreaInfo; /* link it to the rastport */

redraw(); /* for the "first" time */

/* Now wait for a message to arrive from Intuition *1
/* (task goes to sleep while waiting for the message) */

WaitPort(w->UserPort);

Listing 4.15: The map program (continued)

GRAPHICS

1* retrieve the message from the port *1

while(l)
{

1* "forever" * 1

msg (struct IntuiMessage *)GetMsg(w->UserPort);
handlei t:

!

result = HandleEvent(msg->Class):

if(result == 0) 1* got a CLOSEWINDOW *1
break:

msg = (struct IntuiMessage *)GetMsg(w->UserPort);

if(msg != 0) 1* will be 0 when *1
/* no more messages */

goto handleit;
1* Normally, to correctly interface with the multi- *1
1* tasking, there would be a statement here to the *1
1* effect *1
1* * 1
1* WaitPort(w->UserPort); *1
1* *1
1* to put the task to sleep awaiting another *1
1* message since by now we've handled all of *1
1* them. But in this case, the task wants to *1
1* still be busy snowing-on-Arizona so the *1
1* WaitPort has been left out. *1

1* Arizona exists as an odd shape within a rectangle *1
1* based at (0,0), going to (-60,70). We want to *1
1* pepper the state itself with snow without dropping *1
1* any snow outside of the outline of the state. *1
1* Here, let's pick a random x and y position, then *1
1* use ReadPixel to see if it falls on the color *1
1* that was used to fill the state. If in range, *1
1* use WritePixel to write a white dot. *1

rx = CORNERX - RangeRand(60):
ry = CORNERY + RangeRand(70);

if(ReadPixel(rp,rx,ry) == AZCOLOR)
{

SetAPen(rp,WHITECOLOR):

WritePixel(rp,rx,ry):

1* done! Now cleanup. */

CloseWindow (w):
CloseScreen(s):
FreeRaster(workspace,640, 200):

afill(w, pairs)
WORD *w:
WORD pai rs:

1* pointer to a word */
1* how many pairs of words *1

WORD i;
AreaMove(rp,CORNERX+w[O],CORNERY+w[l]):
w++ ~ w++ ~
for(i=l: i<pairs; i++)
{

Listing 4.1 5: The map program (continued)

129

PROGr~AMMEr~'5 GUIDE TO THE AMIGA

130

AreaDraw(rp,CORNERX+w[O],CORNERY+w[l]),
w++: w++:

)
AreaEnd(rp),

redraw()
[

SetDrMd(rp,JAM1),
SetAPen(rp, 1),
afill(&coloradoxy[0),4),

SetAPen (rp, 5),
afill(&utahxy[O],7),

SetAPen (rp, 3),
afi11(&newmexicoxy[0],5),

SetAPen(rp,AZCOLOR),
afill(&arizonaxy[OJ,8);

SetOPen(rp, 12),
SetIlPen(rp, 7),
DrawDiamond(rp,20,20, 20, 10),
SetIlPen(rp,8) ,
DrawDiamond(rp,20,120,20,10),

SetIlPen(rp,6),
SetBPen(rp,O),
SetDrMd(rp,JAM2),

/* label the states */
Move (rp,CORNERX-30,CORNERY-20),
Text (rp, "UT", 2),

Move (rp,CORNERX-30, CORNERY+30),
Text (rp, "AZ", 2),

Move (rp,CORNERX+35,CORNERY-20),
Text(rp,"CO",2),

Move (rp,CORNERX+35,CORNERY+30),
Text (rp, "NM", 2),

Listing 4.15: The map program (continued)

and how to ask for normal, bold, italics, or inverse video. These are

among the topics covered in this section.

The height of the text can be found in the RastPort structure variable

named TxHeight. If you have a pointer to a rastport named rp. then you

access the text height by

myTextHeight = rp- > TxHeight;

The nominal width of the text, that is, that width of rectangle into

which all regular text (not bold, not italics) will fit is accessed by

myTextWidth = rp- > TxWidth;

GRAPHICS

131

You may wish to use the values of the text height and width to produce

a line or box cursor of the same size as the text on which you are posi

tioning the cursor.

The baseline of the text is stored in the RastPort structure variable

TxBaseline. You access this value by

myTextBaseline = rp- > TxBaseline;

The baseline is the imaginary line that positions the text. Some fonts

have descenders, so that characters such as y and g extend below the

bottommost line of other characters such as A. The baseline position is

measured from the topmost line of the standard character cell (the text

width and height).

To position a character with the upper-left corner of its character cell

at X,Y, you must perform the function

Move(rp,X,Y + baseline);

Then, when you use the Text func'tion, the character will be drawn as

you expect.

Opening a Font
There are two different kinds of fonts: ROM resident and disk resi

dent. The Amiga ROM software provides two different routines for

accessing these fonts. One is OpenFont, for the ROM-resident fonts.

The other is OpenDiskFont, for those on disk. In practice, however, the

OpenDiskFont routine is the only routine that you need to use, because

it can handle both ROM fonts and disk fonts. It simply uses the informa

tion contained in the system font list to determine where to find a font

and whether its data is already loaded or needs to be loaded.

If you wish to use a font other than the 50-column or SO-column font

you've selected by Preferences, or a font other than the default font that

you specified in your NewScreen structure, you must open the font and

you must select that opened font for your rastport.

Opening a ROM· resident font simply makes it available for use, return

ing to your calling routine a pointer to the data structure that describes

and controls the font. Opening a disk font performs that same action,

but in addition, loads the font from disk if it is present in the current

FONTS directory. Thus, once a font has been opened, it becomes avail

able for use.

The calls to Open Font and OpenDiskFont take the form

font = OpenFont(&ta);
font OpenDiskFont(&ta);

PROGRAMMER'S GUIDE TO THE AMIGA

132

\Nhere font is a pointer to a TextFont data structure returned by the

routines if it \Nas possible to open this font; and &ta is a pointer to a

TextAttr data structure.

Defining Text Attributes
The name, size, and style of each font are contained in the TextAttr

structure variables:

• ta~me is the address of a null-terminated string that describes

the name of the font as it appears in the FONTS directory (for

example, garnet).

• ta_ VSize is the nominal height of the font in lines. In the font name

subdirectory of the FONTS directory there are file names that

match the VSize entries for the font (for example, garnet/9 is a 9-

line-high version of the garnet font). This entry contains the font

itself in binary format.

• ta_Style is the primary style of the font. Some fonts \Nill be italic or

bold and are stored as such. Other fonts can be made to look bold

or italic.

• ta_Flags includes the font Preferences. Font Preferences are

those flags that you can set to ask the system to match particular

requests as \Nell as it can. For example, if you \Nanted to use a font

that \Nas designed for high-resolution, non interlaced displays, you

might set the flag FPF _ TALLDOT If there are t\NO fonts in the sys

tem having the same name and same VSize, but differing in that

one \Nas designed for high-resolution, it is the high-resolution font

that \Nill be loaded.

Here is an example of a text-attribute structure:

struct TextAttr myAttr = { "garneUont" ,9,0,0 };

Here is an example of a call to OpenDiskFont:

struct TextFont *tf;

tf = OpenDiskFont(&myAttr);

Establishing the Rastport's Font
You specify \Nhich font the rastport should use for Text calls by using

the SetFont routine. A call to SetFont takes the form

SetFont(rp, tf);

GRAPHICS

133

where rp is a pointer to a rastport, and tf is a pointer to a TextFont data

structure returned from OpenFont or OpenDiskFont. After setting the

font, any calls to Text will use this font.

Adding a Font to the System Font List
There are two fonts already on the system font list (selectable from

Preferences), namely topaz. font 8-lines high (the 40/80 column font) and

topaz. font 9-lines high (the 32/64 column font). For other fonts, if you

want them to be accessible to all tasks running concurrently, you should

add them to the system font list by using Add Font. A call to Add Font

takes the form

Add Font(tf);

where tf is a pointer to a TextFont data structure returned from a call

to Open Font or OpenDiskFont.

If two tasks need to use the same font, each will call OpenDiskFont to

get the TextFont pointer. The first thing the system will do in this case is

to look at the system font list to see if another task has already loaded

this font. If so, then the system adds one to the number of current

users of the font and returns the pointer to the TextFont structure to

the caller. If the font has not been added to the system font list, then all

of the data of the font will be loaded again, taking up unnecessary

space.

Which Fonts Are Available
Normally, a programmer will know which fonts are available to be

used and can ask for specific ones by name and by physical characteris

tics. The Open Font and OpenDiskFont routines attempt to match a

majority of the font Preferences and may return something close to the

expected font if that font is not available in the FONTS directory. For

example, if you specify garnet. font in a 9-high size, and if it is not

present, you may get some other font in 9 high. You should check the

font's characteristics (using AskFont) after calling Open Font or Open

DiskFont to see exactly what the system has found for you.

You can create a list of fonts that meet certain type characteristics

by using a routine called AvailFonts. Using this routine, you can, for

example, list all of the fonts that are ROM-based, or fonts that are pro

portionally spaced, or other possible combinations of types.

A call to AvailFonts takes the form

AvaiIFonts(&afh,AFSIZE,types);

where &afh is a pointer to an area in memory to hold the AvailFonts

Header structure and a series of AvailFonts structures; AFSIZE tells the

PROGRAMMER'S GUIDE TO THE AMIG.A

134

system how large an array you've allocated to hold both the header and

all of the entries; and types is a single byte containing bits that indicate

which types of fonts you wish included in this list. If there are

more fonts available than space to list them in, the system will stop load

ing fonts before overflowing the space you've allocated.

A types value of Oxff lists all the fonts. You can find a full list of the

font flags in graphics/text.h Here are some flags that you might set:

• FPF ROMFONT-lists those fonts that are located in ROM,

• FPF _DISKFONT-lists those fonts that are located on disk.

• FPF _REVPATH-lists the fonts that are designed to be rendered

from right to left instead of left to right (Hebrew, for example).

• FPF _ WIDEDOT-lists the fonts designed for low-resolution, inter

laced displays.

• FPF _ TALLDOT-lists the fonts designed for high-resolution, non·

interlaced displays

You select cornbinations of characteristics by performing an OR oper

ation on individual flags, Once you have generated this list, you'll be able

to look through it for fonts that have only the characteristics you want.

AvailFonts automatically calls AddFont for each of the fonts you've

listed that are not already on the system font list, This has an interest

ing side effect in that if you call AvailFonts a second time, requesting all

types, you'll find that the system will list the disk·resident fonts twice in

your AvailFonts data structure. Because AvailFonts calls AddFont the

first time you run it, the font appears on the system list as well as in the

FONTS directory. Thus it will get listed twice.

Knowing that there are currently only two fonts that are ROM·

resident, you might consider not setting the FPF _ROM FONT flag, and

you'll wind up with a list of fonts that are available exclusively from disk

when the routine returns.

After AvailFonts returns, the system will have filled in your AvailFonts

header and AvailFonts arrays for you so you'll know which fonts you

can use and what are their characteristics. Here is how the AvailFonts

Header structure and its associated AvailFonts data structures are laid

out in memory;

AvailFontsHeader
Avail Fonts

{ UWORD afh_NumEntries }
{ UWORD aC Type;

/* 1 =mem,res, 2:::;: disk */
struct TextAttr aCAttr;

AvailFonts
<more>

GRAPHICS

135

I * attributes * I

AvailFontsHeader simply contains the number of AvailFonts entries that

follow it. AvailFonts consists of the entry type (memory or disk) fol

lowed by a TextAttr data structure.

Once you have called AvailFonts, you can establish a pointer to any

one of the AvailFonts entries in the table and pass this pointer value to

OpenDiskFont, as illustrated below.

To allocate enough memory for your arrays for the AvailFonts call,

you might use the following sequence:

#define AF _NUMENTRIES 30

struct AvailFontsHeader * aftable;
struct aft =
{

struct AvailFontsHeader aft_Head;
struct AvailFonts aft_Entry[AFNUMENTRIES I;

} ;

int aftablesize;

aftablesize = sizeof(struct aft);

Then call AvailFonts by

AvailFonts(&aft,aftablesize ,0xFE);

where the types variable is set to Ox FE to exclude listing the fonts that

are ROM based. The text attributes for the ROM fonts are as follows

and can be used separately if you wish:

struct TextAttr size32_64 = { "topaz.font",9,O,0 };
struct TextAttr size40_80 = { "topaz.font",8,O,O };

Listing 4.16 provides code fragments for extracting and using infor

mation from the available fonts table.

Text Characteristics
You can control how fonts are rendered into your rastport. The

attributes you can control are color, (including inverse video), boldfacing,

italicizing, and underlining.

You select text color by using the SetA Pen, setBPen, and setDrMd

functions. The body of the text is drawn with the APen color. If the

PROGRAMMER'S GUIDE TO THE AMIGA

136

/* extract information from the fonts table */
UWORD howmany_entries;

struct TextAttr *myTextAttrPointer;

howmany_entries = aft,aft_Head,afh_NumEntries;

/* point to the first entry in the array of AvailFonts */

myTextAttrPointer = (struct TextAttr) (&aft.aft_Entry);

/* use these entries */

int i~
struct TextFont *OpenDiskFont(), *tf;

fodi
[

0; < howmany_entries~ i++)

tf OpenDiskFont(myTextAttrPointer[i]);

if(tf 1= NULL)
[

/* if the font opened */

SetFont(rp,tf);

/* rp is a pointer to a rastport that */
/* you want to use for this font when any */
/* text is being output */

Text(rp,"sample text",ll);
Delay(30) ;
CloseFont (t f); /* close what you open * /

Listing 4.16: Font-related code fragments

drawing mode is set to JAM 1, this is the only color that is rendered when

a text character is drawn. The enclosing rectangle of the text is drawn

with the BPen color if the drawing mode is set to JAM2.

Text highlighting is often achieved by inverting the colors that are

used to render the text. In other words, the APen is used to render the

background, and the BPen is used to render the text. You need not

swap the pen values to accomplish this. You need only set the drawing

mode (SetDrMd) to include INVERSVID as shown here:

SetDrMd(rp,JAM1 + INVERSVID);

SetDrMd(rp,JAM2 + INVERSVID);

I * render the text in the * I
I * background color against a * I

I * rectangle that is entirely * I
I * the primary pen color * I

I * render the text in the * I
I * background color and the * I

GRAPHICS

Bold, Italic, and Underlined Text

/ * background in the primary * /
/ * pen color * /

You select these characteristics by using the SetSoftStyle function.

You can ask the system to adjust a current font to render its charac

ters in one or more of these particular styles. A call to SetSoftStyle

takes the form

SetSoftStyle(rp,style,mask);

where rp is a pointer to a RastPort; style is a value containing bits repre·

senting the style you wish to set; and mask is a set of bits that tells the

system exactly which of the style bits you want to affect.

The mask value is useful if, for example, you have selected italics and

now want to turn on underline mode without affecting the italics set

ting. (The flag bits are specified in the system Include file graphics/

text.h.) You can set underlining without affecting any other bits by

specifying the same value for both the mask and the style value, such as

SetSoftStyle(rp,FPF _ITALlCS,FPF _ITALICS);

If you want to reset all of the style bits regardless of what they are cur·

rently set to, use a value of OxFF for the mask:

SetSoftStyle(rp,FPF _ITALlCS,OxFF);

/ * don't care if it was bold and underlined and so on." * /

/ * just make it italicized. * /

If a font has already been designed as boldfaced, then you ask the sys·

tem to render it boldfaced, no further bolding will happen since the bold

bit will already be a part of the basic style of the text itself (in the font

flags where the font is described), The same holds true for italics and

underlining. If you wish to determine which characteristics you can legitI

mately set for a current font, use the AskSoftStyle function. A call to

AskSoftStyle takes the form

enable = AskSoftStyle(rp);

where rp is a pointer to a rastport. The value returned, enable, is a data

byte containing the flags that show you which algorithmically gener·

ated styles you can choose for this font.

Here's a program fragment that lists those styles:

UBYTE enable;

enable = AskSoftStyle(rp);

137

138

if(enable & FPF _UNDERLINED)
printf("OK to ask for underlining\n");

if(enable & FPF _BOLD)
printf("OK to ask for bold\n");

if(enable & FPF _ITALICS)
printf("OK to ask for italics\n");

Here's a final note about underlining. When the system generates an

underline for text, it places it on the line below the baseline of the text.

Some fonts may be designed with no part of any character extending

below the baseline of the text. The system cannot render an underline

for this kind of a font since the underline would have to be rendered out

side of the enclosing rectangle of the text itself. You can tell if under

lining is possible by comparing the text height with the text baseline

value for the text in your rastport_ Here is one way to determine that:

if(rp- > TxHeight - rp- > TxBaseline = = 1)
printf("Won't be able to underline this one!");

The top line of text is line zero, thus the numerical value of the bottom

most line is TxHeight minus one.

Clearing and Scrolling Drawing Areas
You can clear an entire rastport drawing area by using the SetRast

function. This function sets an entire rastport's drawing area to a single

color. A call to SetRast takes the form

SetRast(rp,color);

where rp is a pointer to a rastport, and color is the color to which it is to

be set.

You can use this function on the rastport you obtain from Intuition

when you open a window. However, if you don't specify GIMMEZERO

ZERO for the window flags, using SetRast will erase all of your window's

borders and gadgets as well as the internal drawing area. If you use

GIMMEZEROZERO, only the drawing area will be affected.

The ClearEOL and ClearScreen functions are available in the Graphics

library These are text-oriented functions and are used by the Console

device to clear to the end of a line and to clear to the end of the screen.

Because they are text-oriented, the way they function depends on the

text font that is currently selected for the rastport

ClearEOL starts at the current drawing pen position and clears a rect

angular area to the rightmost edge of the rastport as tall as the Rast·

Port structure TxHelght variable setting and positioned just as text

GRAPHICS

139

\Nould be if text \Nere being dra\Nn. ClearScreen performs ClearEOL,

then clears out the area of the rastport belo\N that cleared line.

The calls to these functions take the form

ClearEOL(rp);
ClearScreen(rp);

\Nhere rp is a pointer to the rastport to be cleared.

When you are using text for things such as terminal programs or

\Nord processors, you may \Nish to scroll up a series of lines to make

room for another line at the bottom or scroll dO\Nn some lines to

make room for another line at the top. A smooth scrolling action is cer

tainly more desirable than redra\Ning all of the lines on the screen. The

ScroliRaster function can be used for this purpose. A call to Scroll Raster

takes the form

ScroIiRaster(rp,dx,dy,xmin,ymin,xmax,ymax);

\Nhere rp is a pointer to a rastport; xmin, ymin, xmax, and ymax are the

coordinates of the upper-left and IO\Ner-right corners of a rectangle

enclosing the area of the rastport you \Nould \Nant to scroll; and dx and

dy are the nur1"1ber of pixels (dx) and lines (dy) that this segregated area

should be moved to\Nards the 0,0 coordinates of this area. These may

be positive, zero, or negative values.

For example, scrolling up a set of lines to make room for another line

at the bottom \Nould use a value of dx equal to 0 (not scrolling either left

or right) and dy equal to 8 (8 pixels up\Nards, to\Nards 0,0).

5croilRaster comes in handy if you are not using GIMMEZEROZERO

\Nindo\Ns in that you can limit the scrolling area to that \Nithin the bound

aries of the \Nindo\N, leaving the borders undisturbed.

COMBINING OBJECTS
TO FORM A PICTURE

In this section you \Nililearn about creating your O\Nn off-screen dra\N

ing area. Up till nO\N, the programs in this chapter have used a rastport

obtained from an Intuition call to OpenWindo\N. Here, you'll see the func

tions required to create the dra\Ning area and its rastport directly. You

\Nill dra\N a fe\N objects in an off-screen rastport, then copy the entire

composite object into a \Nindo\N, \Nhere it may then be seen.

To understand hO\N to do this, you need to kno\N

• HO\N to initialize a bitmap and allocate memory for its bitplanes

• HO\N to initialize a rastport

PROGRAMMER'S GUIDE TO THE AMIGA

140

• Hovv to copy data from one bitmap to another

We'll examine each of these in turn.

Initializing a Bitmap
The BitMap data structure contains variables that define the size of a

dravving area and the location of the memory that is dedicated for its

use. You use the InitBitMap function to initialize the data structure itself,

then, for as many planes as the bitmap is to contain, you must allocate

some memory that it can use for storing the bits that represent the

dravving area.

As an example, say you vvant to have an off-screen dravving area of

320 by 200, that allovvs up to four colors. This requires a depth of 2, that

is, tvvo bitplanes dedicated to this bitmap. Here is a sample initialization:

#define DEPTH 2
#define WIDTH 320
#define HEIGHT 200

struct BitMap myBitM;
int i;
extern PLANEPTR AliocRasterO;

InitBitMap(&myBitM,DEPTH,WIDTH,HEIGHT);

for(i=O; i<DEPTH; i+ +)
{

}

myBitM. Planes[i] = AliocRaster(WIDTH, HEIGHT);
if(myBitM.Planes[i] = = 0)
{

I * do error processing not enough memory * I
}

And that's all there is to it. Later, vvhen you are finished using this off

screen bitmap, you must free the memory you've allocated, typically by

the follovving sequence:

for(i=O; i<DEPTH; i+ +)
{

if(myBitM.Planes[ij ! = 0)
{

FreeRaster(myBitM.Planes[ij,WIDTH,HEIGHT);

GRAPHICS

141

Initializing a Rastport
Now that you have reserved space for the bitplanes, initializing the

rastport is easy:

struct RastPort myRast;

In itRastPort(&myRast);

myRast.BitMap = &myBitM; / * link the bitmap into this rastport * /

Now, using a pointer to this rastport, you can set its drawing pen color

numbers and its drawing mode, move the drawing pen, and do every

thing else you might wish to do with graphics. The next two lines define

a pointer to an off-screen rastport and establish the value of the

pointer.

struct RastPort *offscreenrp;

offscreenrp = &myRast;

/ * a pointer to this rastport * /

In this off-screen rastport, you can draw complex shapes that you

might not want the user to see until the shape has been completed

Then you can copy this shape from the off-screen area to an on-screen

rastport.

Copying Data from One Bitmap to Another
The Amiga provides three different routines for copying data from

one bitmap to another: BltBitMap, ClipBlit, and BltBitMapRastPort.

BltBitMap copies data from one bitmap to another, bypassing the

rastport usage completely. This routine has more potential for crashing

the system than the other two in that no checking is done to determine

whether all of the bits will actually fit into the destination area. Data

moves (called blits) outside of the boundaries of the bitmap invariably

destroy some data that should not have been touched and thus can

crash the system.

ClipBlit copies data from one rastport to another. It cuts out a recto

angle of data at a particular X, V coordinate in a source rastport and

places it into a selected X,V coordinate in the destination rastport. The

disadvantage to ClipBlit is that if you have two objects that are intended

to overlap each other in the destination area, it is the rectangles that will

overlap, not just the objects themselves. If an object is surrounded by

some blank space, for example, the blank space of the second object will

erase some part of the first object placed into the destination area.

BltBitMapRastPort is slightly faster than ClipBlit because the copy

takes place from the source bitmap to a destination rastport. ThiS

means there are no layering operations done on the source area and it is

PROGRAMMER'S GUIDE TO THE AMIGA

142

assumed that the source is indeed not composed of overlapping layers.

The call to ClipBlit takes the form

ClipBlit(src_rp,src_x,src_y,dest_rp,destj,dest_y,
size_x,size_y,minterm);

The parameters to ClipBlit are as follo\Ns:

• src_rp and dest_rp are pOinters to the source and destination

rastports

• src_x and src_y are the X,V coordinates of the upper-left corner

of the source area enclosing rectangle

• dest_x and dest_y are the X,V coordinates of the destination

area at \Nhich to place the rectangle of data to be copied

• size_x and size_yare the horizontal and vertical dimensions of the

rectangle to be copied

• minterm is a value that indicates exactly hO\N the data is to be

treated as the copy progresses

A minterm value of OxCO makes a direct copy from source to destina

tion. A value of Ox30 inverts the source-\Nherever there \Nas a O-bit, a

1-bit is placed and vice versa. A value of Ox50 ignores the source data

entirely and simply inverts the destination area rectangle.

A call to BltBitMapRastPort takes the form

BltBitMapRastPort(src_bm,src_x,src_y,descrp,dest_x,desCy,
size_x,size_y,minterm);

\Nhere all the parameters are the same as those for ClipBlit, except that

src_bm is the source bitmap from \Nhich the data is to be copied.

Using Data-Move Routines
Listing 4.17 opens one simple-refresh \Nindo\N and an off-screen rast

port. In the first \Nindo\N, a fe\N colored lines are dra\Nn. In the off screen

rastport, a set of rectangles is dra\Nn and moved into the on-screen

area by ClipBlit and BltBitMapRastPort, each in turn.

In the next chapter, you'll see much more about Intuition, including

hO\N to interpret mouse position and mouse button events. For this pro

gram, a simple delay controls this operation.

Copying with Transparency
You \Nill have noticed that \Nith both ClipBlit and BltBitMapRastPort the

entire rectangle of the copied object is brought along. To avoid this, you

GRAPHICS

/* offscreen.c */

#include "exec/types.h"
#include "intuition/intuition.h tl

#include IImydefines .h"
#include "windowl.h"
i ncl ude "df 1: incl ude/ graphi cs/ gf xmacros.h"

#define DEPTH 2
#define WIDTH 640
#define HEIGHT 200

int IntuitionBase, GfxBase,

inti,j:
extern PLANEPTR AllocRaster(),

struct BitMap myBitM, /* the off-screen area bitmap */
/* the off-screen area rastport */
/* a pointer to this rastport */

struct RastPort myRast,
struct RastPort *offscreenrp:

struct RastPort *rport:
struct Window *w:

/* the on-screen rastport pointer */
/* the on-screen window pointer */

extern struct Window *OpenWindow(),

main()
[

GfxBase = OpenLibrary("graphics.l ibrary", 0) ,
if(GfxBase == 0)
f

)

printf (" graphi cs.l ibrary won' t openl \n"),
exit(lO),

IntuitionBase = OpenLibrary("intuition.library",O)i
if(IntuitionBase == 0)
[

printf("intuition.library won't openl\n"),
exi t (15) ,

w OpenWindow(&myWindow),
if(w 0)
(

rport

printf ("Window didn't openl \n"),
CloseLibrary(GfxBase),
exit(20) ,

w->RPorti

InitBitMap(&myBitM,DEPTH,WIDTH,HEIGHT),

for(i=O, i<DEPTH, i++)

r

J

myBitM.Planes[il=AllocRaster(WIDTH,HEIGHT),
if(myBitM.Planes[i] == 0)
[

/* do error processing. '0' not enough memory */
}

InitRastPort(&myRast),

myRast.BitMap = &myBitM, /* link the bitmap into this rastport */
offscreenrp = &myRast;

Listing 4.17: The offscreen program

143

PROGRAMMER'S GUIDE TO THE AMIGA

144

cl eanup:

/* draw a few lines in the on-screen area so we can */
/* see what happens when off-screen data gets moved */

SetAPen(rport,3);
SetDrMd (rport, JAMl) ;

j = 10;
for(i=O; i<30; i++)
[

Move(rport,j,O);
Draw(rport,j,lOO);
j += 10;

/* draw something into the off~screen area */

SetRast(offscreenrp,O); /* blank it out first */

SetAPen(offscreenrp,l);
SetDrMd(offscreenrp,JAMl);
RectFill(offscreenrp,30,30,50,50);

SetAPen(offscreenrp,2};
RectFill(offscreenrp,40,40,60,60};

SetAPen(offscreenrp,3};
RectFill(offscreenrp,50,50,70,70};

/* then copy it into the visible area in two different */
/* ways ... once with ClipBlit (whole rectangle comes along) */
/* and once with BltBitMapRastPort (only colored portion */
/* due to the choice of minterm) */
ClipBlit(offscreenrp,30,30,rport,lO,30,40,40,OxcO};

Delay(ISO};

BltBitMapRastPort(&myBitM,30,30,rport,90,30,40,40,OxcO};

Delay(300};

if (w)
CloseWindow(w} ;

if(IntuitionBase}
CloseLibrary(IntuitionBase};

if (GfxBase)
CloseLibrary(GfxBase};

fod i=O; i <DEPTH; i++}
[

if(myBitM.Planes[iJ != O}
[

FreeRaster(myBitM.Planes[iJ,WIDTH,HEIGHT};

/* end of main */

Listing 4.17: The offscreen program (continued)

GRAPHICS

145

might want to develop an off screen object with a transparent back

ground color. Listing 4.18 implements copying with transparency The list

ing uses a new function called ClipBlitTransparent and three other

associated functions that are needed to allocate or delete items it needs.

ClipBlitTransparent turns the ClipBlit routine into a Bob (Blitter object)

generator. Any color 0 in the source becomes transparent. The call to

ClipBlitTransparent takes the form

ClipBlitTransparent(src_rp,src_x,src_y,desCrp,desCx,desCY,
size_x,size_y,shadow_rp,makeShadow);

A shadow mask rastport points to a bitmap containing a single bit

plane the same size as the object to be blitted (moved). The bits in this

bitplane are placed there by the CreateShadowRP routine. Wherever

there is a bit of color other than color 0, there is a 1 -bit in the shadow

mask. During the blit, this mask is used to blast a hole in the destination

area. Then the object can be placed into the hole. Object colors appear in

the object area, background colors appear where no object colors are

used.

You use CreateShadowBM and CreateShadowRP to allocate and pre

pare data structures for the ClipBlitTransparent routine. However, they

don't actually create the shadow itself. To do this, you must set the

makeShadow value to TRUE. If you have executed this routine once

already, for a specific shadow bitm<!lp, makeShadow can be set to

FALSE. ClipBlitTransparent returns a value of 0 if successful; nonzero

for failure.

The short code fragment here shows how ClipBlitTransparent is

used. Listing 4.18 contains the complete example.

struct BitMap *sbm;
struct RastPort *srp;
srp = NULL;
sbm = CreateShadowBM(depth,width,height);
srp = CreateShadowRP(sbm,srp);
/ * USER code should check for NULL return values for sbm, srp * /
ClipBlitTransparent(sourceRP,sourceX,sourceY,

destRP,destX,destY,
sizeX,size Y,
srp,TRUE);

DeleteShadowRP(srp);
DeleteShadowBM(sbm);

A function that creates a bitmap for ClipBlitTransparent to use is

named CreateShadowBM. This function allocates a bitmap space for a

I)R()GRAM~!IEI<c) GUIDE TO TIE AMIGA

146

1* cliptransparent.c *1

#include "exec/types .h"
#include "intui tion/intui tion.h"
#; i ncl ude 11 exe c/ memory. h II

#def ine WINOOWFLAGS (WINOOWSIZING IWINOOWDRAG IWINOOWDEPTHIWINOOw::LOSE)

struct NewWindow nw =
I

) ;

100, 80,
340, 110,
-1, -1,
0,

WI NOOWFLAGS,

NULL,
NULL,
"ClipBlitTransparent ti ,

NULL,
NULL,
60,60,640,200,
WBENOlSCREEN

struct GfxBase *GfxBase;

1* start position *1
/* width, height *1
1* detail pen, block pen *1

1* IDCMP flags */

/* window flags *1
1* pointer to first user gadget *1
/* pointer to user checkmark */
1* window ti tle * I
1* pointer to screen * I
1* pointer to superbitmap *1
1* sizing info, minimax *1
1* type of screen in which to open */

struct IntuitionBase *IntuitionBase;

extern struct RastPort *CreateShadowRP();
extern struct BitMap *CreateShadowBM{)i
extern struct Window *OpenWindow()i

main()
r

SHORT i;
int x2, y2, error;

struct RastPort testRP;
struct Bi~~ap testBM,

struct RastPort saveRP;
struct B i b\1ap saveBM;

struct RastPort *rp;
struct Window *w:

struct RastPort *imageShadowRPi
struct BitMap *irnageShadowBM;

SHORT x,y;

GfxBase = (struct GfxBase *)OpenLibrary("graphics.library" ,0),
if (GfxBase == NULL)
r

printf ("Unable to open graphics library\n"),
exi tilOOO);

Listing 4.18: The cliptransparent program

IntuitionBase = (struct IntuitionBase *)
O:penLibrary(" intui tion.l ibrary" I O} i

if (IntuitionBase == NULL)
[

CloseLibrary(GfxBase} ;
printf("Unable to open intuition library\n"},
exi t(lOOO},

w = OpenWindow (&nw),
if(w == NULL}

gato cleanup~
rp = w->RPort;

Ini tBit.'lap(&testB.'I, 2, 300,150};
InitBit.'lap(&saveBM,2,300,150},

error = FALSE;
for(i=O; i<2; i++}
[

/* open a window */

testB.'I.Planes[i]= (PLANEPTR}AllocRaster(300,150);
if(testB.'I.Planes[iJ == O}

er ror = TRUE;

if(error}
goto cleanup;

for(i=O; i<2; i++}
[

saveBM.Planes[iJ= (PLANEPTR}AllocRaster(300,150),
if(saveBM.Planes[iJ == O}

error = TRUE;

if(error}
gate cleanup;

InitRastPort(&testRP};
testRP.Bit.'lap = &testRM,

InitRastPort(&saveRP};
saveRP.BitMap = &saveBM;
SetAPen(rp,l} ,
.'Iove(rp,O,O};
Draw(rp,200,lOO); /* in main window * /
SetAPen(rp, 2},
.'love (rp, 6, O) ,
Draw(rp,206,lOO); /* in main window */
SetAPen(rp,3} ,
.'love (rp,12 ,O);
Draw(rp,212,lOO}, /* in main window */

SetAPen(&testRP, 2};
RectFill(&testRP,O,O,130,55} ,
SetAPen(&testRP,O}; /* cut a hole in center of rectangle */
RectFill(&testRP,lO,lO,120,45};

x = 20,
Y = 10;
x2 2;
y2 = 1;

imageShadowB.'I = CreataShadowRM(2,130,55};
if (imageShadowB.'I==O)

gato cleanup:
imageShadowRP = CreataShadowRP(imageShadowBM,NULL};

Listing 4.18: The cliptransparent program (continued)

GRAPHICS

147

PROGRAMMER'S GUIDE TO THE AMIGA

148

if (imageShadowRP==O)
goto cleanup;

/* INITIALIZATICN * /

C1ipB1it(rp,x,y,&SaveRP,0,0, 130,55, oxcO); /* save back * /

/* This (TRUE) creates the shadow mask the very first time through, */
/* so that all subsequent times we can simply USE it. */
ClipBlitTransparent(&testRP,O,O,

rp,x,y,
130,55,
imageShadOWRP,TRUE);

C1ipBlit(&saveRP,0,0, rp,x,y, 130,55, OxcO); /* restore back */

for(i=O; i<60; i+~)
[

C1ipB1it(rp,x,y,&saveRP,0,0, 130,55, oxcO);
ClipB1itTransparent(&testRP, 0, 0,

rp,x,y,

De1ay(5);

130,55,
imageShadowRP,FALSE);

/* save back * /

/* USE shadowmask */

C1ipB1it(&saveRP,0,0, rp,x,y, 130,55, OxcO); /* restore back */
x += x2;
Y += y2;
if(y < 10 I y > 45)
[

y2 -y2;
x2 -x2;

cleanup:
for(i=O; i<2; i++)
[

J

if (testBM.P1anes[i])
FreeRaster(testBM.Planes[i],300,150);

if(saveBM.Planes[i])
FreeRaster(saveBM.Planes[i],300,150);

if(w) C1osewindow(w);
DeleteShadowRP(imageShadowRP);
DeleteShadowBM(imageShadowBM);

if (IntuitionBase)
C1oseLibrary(IntuitionBase);

if (GfxBase)
C1OSeLibrary(GfxBase);

/* end of maine) */

ClipBlitTransparent(srp,sx,sy,drp,dx,dy,width,height,shadowRP,makeShadow)
struct RastPort *srp, *drp, *shadowRP;
SHORI' sx,sy,dx,dy;
SHORI' width,height,makeShadow;
[

/* FORM A SHAOOW Ml\.SK BY OR' ING MULTIPLE TO SINGLE PLANE Ml\.SK * /

if (makeShadow) /* need to make the shadow first time through */

Listing 4.18: The cliptransparent program (continued)

ClipBlit(srp,sx,sy,shadowRP,O,O,width,height,OxeO);

/* value of hex eO means Band C + B not C + C not B, */
/* translates to B + C (B OR C) which also */
/* translates to "put a 1 wherever there is a 1 in * /
/* source OR destination." Allows all planes to merge * /

/* USE SHADOW MASK TO BlAST A HOLE IN THE DESTINATICN AREA * /

ClipBlit(shadOWRP,0,O,drp,dx,dy,width,height,Ox20),

/* FILL THE HCLE WITH SOURCE M1'.TERIAL * /

ClipBlit(srp,sx,sy,drp,dx,dy,width,height,OxeO),
return(O) ,

strllct BitMap

*CreateShadowBM(depth,width,height)
SHORT depth, width, height,
(

/* Shadow mask is one bitplane deep, and only as wide */
/* and high as the area we want to move. It gets one */
/* plane pointer worth of memory. BUI' it LOOKS like * /
/* a full 5 or so planes deep. */

SHORT b
struct BitMap *shadowBM,
if«shadowBM = (struct BitMap *)

AllocMem(sizeof(struct BitMap),MEMF_CHIP»
== NULL)
return(NULL) ,

InitBitMap(shadowBM,depth, width,height),

if«shadowBM->Planes[O] = (PLANEPTR)
AllocMem(RASSIZE(width,height),

MEMF_CHIP I MEMF_CLEAR»= NULL)

FreeMern(shadowBM,sizeof(struct BitMap», return (NULL) ,

for(i=l, i<depth; i++)
(

shadowBM->Planes[i]
)
return(shadowBM) ,

shadowBM->Planes[O];

) /* end of Creat eShadowBM * /

Del et eShadowBM(s1::m)
struct BitMap *s1::m,
(

if(s1::m 1= NULL)
(

if (s1::m-> Planes [0] 1= NULL)
FreeMem(s1::m->Planes[O],

RASSIZE(8 *(s1::m-> BytesPerRow) ,sbm-> Rows)),

Listing 4.18: The cliptransparent program (continued)

GRAPHICS

149

PROGRAMMER'S GUIDE TO THE AMIGA

150

)
FreeMem(sbm,sizeof(struct BitMap));

return(O) ;

5 truct Ras tPort
*CreateShadowRP(shadowBM, oldshadowRP)
struct BitMap *shadowBM;
struct RastPort *oldshadowRP;

struct RastPort *shadowRP:
f* if non NULL oldshadowRP, then we are simply linking a new bitmap *f
f* into an existing data structure *f
if(oldshadowRP == NULL)
[
if«shadowRP = (struct RastPort *)

AllocMem(sizeof(struct RastPort), MEMF CHIP))
== NULL)

return(NULL) ;
Ini tRastPort (shadowRP);
)
else
[

shadowRP = oldshadowRP; f* use old value if there is one *f
)
f* link together the bitmap and the rastport *f

shadowRP->BitMap = shadowBM;
return(shadowRP);

DeleteShadowRP(srp)
struct RastPort *srp;
[

if (srp 1= NULL)
FreeMem(srp,sizeof(struct Rastport));

return(O) ;

Listing 4.18: The cliptransparent program (continued)

single plane mask of a defined width and height. (All planes are combined

so that wherever there is a 1 ·bit in any plane there is a 1 ·bit in the mask,)

Space is used to hold a single plane shadow of the object to allow it to be

drawn transparently into a destination area by ClipBlitTransparent.

The inputs to CreateShadowBM are the depth (the number of planes

in the destination area), the width (the maximum width of the object in

pixels), and the height of the object. It returns a pointer to a BitMap

structure if successful. That structure contains a pointer to one bit·

plane of dynamically allocated memory, which can be used with

CreateShadowRP to create the actual shadow of the object in this bit

plane. The function returns 0 if there was not enough memory available

to do all the operations.

GRAPHICS

151

ClipBlitTransparent needs an area \Nhere a mask of the object can be

stored. The CreateShado\NRP function provides it. CreateShado\NRP

creates a dra\Ning data structure that can be used \Nith one or more

bitmap-oriented objects. The call to CreateShado\NRP takes the form

shadowRastPort = CreateShadowRP(shadowBitMap,oldShadowRP);

\Nhere shado\NBitMap is the pointer returned from CreateShado\NBM,

and oldshado\NRP is a pointer returned by an earlier call to Create

Shado\NRP. The first call must specify a value of NULL for this parame

ter to ask the system to dynamically allocate a RastPort data struc

ture. The parameter is provided in lieu of a separate routine that \Nould

simply link ne\N bitmaps into an existing rastport.

CreateShado\NRP returns a pointer to a rastport that you can use to

dra\N into the image shado\N or a value of 0 if there is not enough memory.

This chapter has covered many of the Graphics library function oper

ations of the Amiga. The graphics-rendering functions included here are

all compatible \Nith Intuition.

In the next chapter, \Ne'li look at hO\N Intuition constructs its displays

and hO\N it interacts \Nith you. Along the \Nay, \Ne'li provide some useful

basic tools that you can use to build your O\Nn Intuition applications.

On\Nard, Intuitively ...

Intuition

5

In this chapter you'll see a lot more interaction \Nith Intuition than has

been used thus far in the book. The Intuition screens and \Nindo\Ns that

you opened in Chapter 4 \Nill be more thoroughly explained here.

Most of Intuition's specifications for hO\N to dra\N and report things

require that you specify position values relative to other things. For

example, a \Nindo\N is positioned relative to the screen in \Nhich it

appears; a requester is positioned relative to the \Nindo\N to \Nhich it is

attached; text and gadgets are positioned relative to the requester to

\Nhich they are attached; menu items are positioned relative to their

menu; and sub items are positioned relative to their menu item.

This relativity gives Intuition a great deal of flexibility and saves you a

lot of \Nork later. For example, if you don't like the position at \Nhich

you've placed a requester,just move the requester, and its gadgets and

text go right along \Nith it. Once you understand the relativity idea, cre

ating \Nindo\Ns, requesters, gadgets, and so forth becomes a lot easier.

COMMUNICATING WITH INTUITION
The most direct method for communicating \Nith Intuition is to use the

IDCMP (Intuition Direct Communications Message Port). You tell Intuition

the kinds of events in \Nhich you have an interest, and every time such

an event happens, Intuition sends you a message to tell you about it.

The messages that you obtain from the IDCMP are called IntuiMessages.

You can get messages about the folio\Ning:

Windo\Ns

Disks

You can be notified \Nhen a user activates,

deactivates, sizes, or closes your \Nindo\N.

Like\Nise, you can be told that your \Nindo\N needs

refreshing (redra\Ning) \Nhen the system does

anything that obscures or exposes part of it. You

can use 51ZEVERIFY to ensure that something

special \Nill be done before the system allo\Ns a

resizing operation to take place. (Even though the

user requests resizing, you may decide not to allo\N

it to occur if there is not enough memory to

perform a particular data move operation on

\Nhich the resizing depends.)

Your soft\Nare might \Nant to kno\N if someone

has pulled out a disk that you may be planning to

use or on \Nhich there is a file already open

AmigaD05 \Nill later ask for that disk to be

PROGRAMMER'S GUIDE TO THE AMIGA

154

Menus

Gadgets

Keyboard

Timer

Requesters

Mouse

reinserted if a file is indeed open. But it is useful for

your software to know about the possible problem

in advance.

If a user selects a menu item, the message

contains the menu number, the item number within

that menu, and the subitem, if any.

By designing a gadget, you define a rectangle

either within a window or within a requester. If the

user presses or releases the mouse selection

button within the rectangle that is defined by one

of your gadgets, your program receives a message

telling which gadget has been pressed or released.

While yours is the active window, any input from

the keyboard is routed to your window. There are

two kinds of keyboard input you can request: raw

key press and release sequences where you trans·

late the keys yourself, and VANILLAKEV, where

only a translated version of the key press (usually

ASCII) is sent as the message. (See Chapter 6).

Intuition can generate timer events about once

each one·tenth of a second. Although the Timer

device (discussed in Chapter 6) is independently

accessible, it may be convenient to have your task

respond to this commonly available event rather

than taking the trouble to set up separate

communications with the Timer device.

You can get messages when a requester has been

put in place (REQSET) and when a requester has

been cleared out of the drawing area (REQCLEAR).

If you set REQVERIFV, you can be informed that a

requester is about to be drawn and can do

something, such as save the background area of a

simple·refresh window, before replying. When you

respond to the message, you give the system

permission to draw the requester.

Intuition keeps track of the position of the hot·spot

on the mouse within the IntuitionBase structure. It

also reflects the position of the mouse relative to

all windows in the system as well as reporting

INTUITIOf'J

155

mouse positions within certain Intuition events. In

particular, you can set the FOLLOWMOU5E flag in a

Gadget structure and while the gadget is selected,

your IntuiMessages will have reports of mouse

movements. Or, you can set the REPORTMOU5E

flag for your window and receive mouse

movement reports. Or, you can set DELTAMOVE,

which converts the mouse movements from

absolute positions to mouse motions relative to

the last move reported.

You'll find many of these features implemented in this chapter.

Messages from Intuition
Every time you get a message from Intuition, try to reply to the mes

sage as quickly as possible. Every time Intuition gets a new incoming

event of one of the types you have requested, it looks to see if there

are any messages that it can reuse, filling out the IntuiMessage struc

ture with the information you have requested. If there are no messages

to reuse, Intuition allocates a new empty message block for this new

message and sends it to you.

If your task takes a long time to respond to messages from Intuition,

Intuition continues to eat away at your free-memory area until, per

haps, you run out of available memory. Even if your task is just slow in

responding, once Intuition grabs memory for use as a message block,

that memory is never released until the system is rebooted. Once you

allocate memory for a message, Intuition keeps the memory assigned

for that messagejust in case it might be needed again for that same pur

pose. Thus, it is smart to always be sure to respond quickly and, hope

fully, keep up with Intuition. This practice preserves your allocatable

memory.

One method of replying quickly entails copying the IntuiMessage from

Intuition's message area into your own local IntuiMessage data struc

ture and replying immediately, before even attempting to process the

message. This technique is used later in the chapter.

The Contents of an IntuiMessage
There are several data fields in an IntuiMessage structure. The most

important is the Class field, which contains exactly what kind of mes

sage you are trying to interpret.

PROGRAMMER'S GUIDE TO THE AMIGA

156

Here is a list of the contents of a typical IntuiMessage structure as

defined in the Include file intuitioniintuition.h:

struct IntuiMessage
{

ULONG Class;
USHORT Code;
USHORT Qualifier;
APTR IAddress;
SHORT MouseX, MouseY;
ULONG Seconds, Micros;
struct Window * IDCMPWindow;
struct IntuiMessage * Special Link;

1* SpecialLink is for system use only * I
} ;

The Class Field
The Class field identifies the type of message that this IntuiMessage

contains. The permissable values for Class are identical to the individual

flags that you can set for the IDCMP messages you want to receive.

When testing for Class parameter values, you can specify the same

name as you used for setting the IDCMP flags.

The Code Field
The Code field is used to hold menu·related items. If the Class field con·

tains MENUPICK, the Code field tells you which item was picked from

the menu. If the Class field contains MENUVERIFY, the Code field tells

you what kind of response Intuition is waiting to receive.

The Qualifier Field
The Qualifier field is simply a copy of the Qualifier field for the current

input event. (\ntuiMessages, in general, are copies of other system

events with a few of Intuition's translations or Intuition's system vari·

abies thrown in.) The Qualifier field will have been received from the

Gameport device for a mouse· related event, from the Keyboard device

for a keyboard event, or from the Timer device for a timer-related

event. The possible values for the Qualifier field are listed in the Include

file named deviceslinputevent.h.

Among the possible qualifiers are shift-key-down, left-alt-key-down,

and ctrl-key-down, which enable you to further define the input event

you are trying to process. For example, in a word processing program,

the key combination of shift·--+ might be a signal to move the cursor

to the rightmost edge of the screen, whereas --+ alone might simply

INTUITION

157

move the cursor a single position to the right. The Qualifier field lets you

make such judgements without having to keep track of the status of all

such qualifier events.

The IAddress Field
The IAddress Field is for gadget-related events; it holds the address of

the Gadget data structure defining the gadget that was selected. Using

this address, you can get to any of the internal variables, such as the

gadget identifier (GadgetID) field, and perform an operation based on

this value.

MouseX and MouseY Values
These values, for all events, contain the current X and Y coordinates

of the mouse relative to the upper·left corner of the screen in which the

mouse is currently located. Intuition maintains the actual mouse position

in an IntuitionBase structure with a possible resolution of 640 horizontal

and 400 vertical positions. Due to the resolution of the cursor, it is not

possible to actually place the cursor at other than 320 possible horizon

tal positions. The internal count is maintained at double the visible resolu

tion to allow for future expansion and to make it possible to draw in

high-resolution mode.

If the event class is a DELTAMOVE, then MouseX and MouseY specify

the length of the move and the direction of the move. Positive move values

indicate a move to the right, or a move down. Negative move values indi

cate a move to the left or a move up. DELTAMOVE values do not stop even

if the mouse pointer is sitting at the edge of the screen attempting to go
beyond its limits. The mouse pOinter, and Intuition's internal position

counter; will not proceed beyond the limits of the screen even though the

DELTAMOVE values continue to increment or decrement.
If the event class is a MOUSEMOVE, then MouseX and MouseY indi

cate the actual position of the mouse as the event is being formulated.

Note that the mouse values are valid no matter what kind of input is

being reported. This is true even if the event is a MENUPICK or a

GADGETDOWN or an INTUITICKS. This means that the event you

receive is tied directly to the exact position of the mouse at the time the

event is generated.

For example, say that you've designed a gadget that a user will select

with the mouse. Not only can you get the GADGETDOWN report from

Intuition, but using the MouseX and MouseY values in that event, you

can tell if the user hit the top, bottom, left, right, or anywhere within

that gadget. You simply have to check the mouse position against the

LeftEdge, TopEdge, Width, and Height values of the Gadget structure to

see where in the gadget the user clicked.

PROGRAMMER'S GUIDE TO THE AMIGA

158

Listing 5.1 is an interpreter for that situation. Assume that the mes

sage was already received from Intuition and passed to this routine for

interpretation.

As a possible alternative to making a display that has lots and lots of

gadgets on it, you could, if necessary (perhaps if memory is tight), make

only a single gadget (or none at all) and interpret the IntuiMessage

MouseX and MouseY as shown in the listing.

Seconds and Micros Values
Each IntuiMessage structure has the Seconds and Micros fields, con

taining a unique time stamp for the message. No two time stamps can

be alike, so this field provides a means for uniquely identifying an

IntuiMessage.

The IDCMPWindovv Field
This variable contains a pointer to the window that was responsible

for generating this IntuiMessage. In particular, sometimes it is possible

that IntuiMessages from several windows can all arrive at the same

message port, perhaps common to several windows. The IOCMPWin

dow field allows Intuition to tag or uniquely identify the window that

caused the message to be generated.

An IDCMP Message Routine
Listing 5.2 is an extended version of the event handler routine in Chap

ter 4. It includes all of the possible input events that an IOCMP can gener

ate and includes making a copy of the event so as to reply quickly to

Intuition. Subroutines within the main routine can be stubbed out if they

are not needed. The efficient way to do this, of course, is to eliminate

the case statement for each item to which you don't wish to reply. How

ever, Listing 5.2 covers all bases with a single routine.

A few of the message classes in Listing 5.2 are mutually exclusive.

That is, if you say you expect one particular message type, you prevent

your task from getting any messages of another type even if you

request both types of messages. The exclusions are as follows:

• If you select DELTAMOVE, you will not receive any MOUSEMOVE

events. (OELTAMOVE modifies the way the mouse motion is to be

reported.)

If you select VANILLAKEY, you will not receive any RAWKEY

events. (VANILLAKEY modifies the way the keyboard events are

to be reported.)

WherelnGadget(im)
struct IntuiMessage *irn;

struct Gadget *g;

g = (struct Gadget *)im->IAddress;

if((im->MouseX - g->LeftEdge) < 4)
printf("Hit near left edge\n");

else if((g->LeftEdge + g->Width-l - im->MouseX) < 4);
printf("Hit near right edge\n");

else
printf("Hit near center on X-axis\n")~

if((im->MouseY - g->TopEdge) < 4)
printf ("Hi t near top edge\n");

else if((g->LeftEdge + g->Height-l - im->MouseY) < 4);
printf("Hit near bottom edge\n");

else
printf("Hit near center on Y-axis\n");

Listing 5.1: The whereingadget function

INTUITION

159

• If you select MOUSEBUTTONS, you vvil! not receive any GADGET

DOWN or GADGETUP events for gadgets attached to vvindovvs.

Hovvever, you'll still get these events for gadgets attached to

requesters that are attached to vvindovvs. The mouse selection

button is normally used to select gadgets. Only one event is gener

ated per mouse button press or release. MOUSEBUTTONS takes

precedence over gadget reporting.

Listing 5.3 is a file containing some routines for disabling options that

are not needed for the painting program.

DESIGNING A PAINTING PROGRAM
To design a painting program, there are many things you'll have to be

able to control and produce. The main goal of the simple painting pro

gram you vvil! build in this chapter is that vvhen the user holds dovvn the

mouse selection button, a colored dot is dravvn at the position of the

hot-spot on the cursor. If the mouse is moved vvith no buttons pressed,

nothing happens.

In addition, this program allovvs you to cal! a requester that can posi

tion colored text anyvvhere in the dravving area.

Loading and saving pictures is not included in this program You may

vvant to extend the program to include these features. A close vvindovv

gadget provides a means of exiting the program.

PROGRAM~,1t:_R'5 G,)IDE: TU THE AMIGA

160

j* event2.c */

extern struct Window *w;

GadgetDown(m) struct 1ntuiMessage om, [return(l),)

DoCloseWindow(m)
struct IntuiMessage *m~

return(FALSE), /* let maine) close the Window this time */

HandleEvent(rns)
struct IntuiMessage *rns;

struct IntuiMessage localms;
int i;
UBYTE *5, *d~

int result; /* result is what is returned from the */
/* routine and determines whether or not */
/* the program closes everything down */
/* and exits. Return 0 if supposed to */
/* close and exit, nonzero if not. */

s (UBYTE *lms, /* source ... 1ntuiMessage */
d (UBYTE *)&localms, /* dest ... local copy of 1M */

for(i~O, i< sizeof(struct IntuiMessage), i++)
[

*d++ = *6++; /* copy it */

ReplyMsg(ms) , /* and reply quickly */

/* Can use local copy to process the message contents */

/* Response routines are written to accept the address of the */
/* incoming IntuiMessage so that each routine can retrieve */
/* additional information ahout the message if required. */
/* If a user is really strappeo for time, one can ignore */
/* making the copy of the message (above) and instead of */
/* passing the address of the IntuiMessage COPY, one might */
/* pass the address of the ORIGINAL message instead. */

switch(localms.Class)
[

case SIZEVERIFY:
result
break;

case NEWS1ZE:

SizeVerify(&localmsl,

result = NewSize(&localms);
break:

case REFRESHWINDOW:
result ~ RefreshWindow(&localms),
break;

case MOUSEBUTTONS:
result ~ MouseButtons(&localms),
break;

case MOUSEMOVE:
result = MouseMove(&localms);
break,

case GADGETDOWN:
result
break,

case GADGETUP:
result
break,

GadgetDown(&localms),

GadgetUp(&localms),

Listing 5.2: The event2 routine

case REQSET:
result
break;

case MENUPICK:

ReqSet(&localms);

result = MenuPick(&localms);
break;

case CLOSEWINDOW:
result = DoCloseWindow(&localms);
break;

case RAWKEY:
result
break;

case REQVERIFY:
result
break;

case REQCLEAR:
result
break;

case MENUVERIFY:
result
break;

case NEWPREFS:

RawKey(&localms);

ReqVerify(&localms);

ReqClear(&localms);

MenuVerify(&localms);

result = NewPrefs(&localms);
break;

case DISKINSERTED:
result = Disklnserted(&localms);
break;

case DISKREMOVED:
result = DiskRemoved(&localrns);
break;

case WBENCHMESSAGE:
result = WBenchMessage(&localms);
break;

case ACTIVEWINDOW:
result = ActiveWindow(&localms);
break;

case INACTIVEWINDOW:
result = InactiveWindow(&localrns);
break;

case DELTAMOVE:
result = DeltaMove(&localms);
break;

case VANILLAKEY:
result = VanillaKey(&localms);
break,

case INTUITICKS:
result
break;

default:

IntuiTicks(&localms);

} ;
return(result);

result
break;

l;

/* As with prior versions of HandleEvent shown in */
/* this book, the value returned from HandleEvent */
/* wi.ll be used to determine whether or not to */
/* close the window and end the program. */

Listing 5.2: The event2 routine (continued)

INTUITION

161

PROGRAMMER'S GUIDE TO THE AMIGA

162

/* stubsl.c */

#define 1M struct IntuiMessage

int SizeVerify(msg) 1M *msg~ return(l)
int NewSize(msg) 1M *msg; return(l)
int RefreshWindow(msg) 1M *rnsg; return(l)
int MouseMove(msg) 1M *msg; return (l)
int RegSet(msg) 1M *rnsg; return(l)
int RawKey(msg) 1M *msg; return(l)
int VanillaKey(msg) 1M *rnsg; return(l)
int RegVerify(msg) 1M *msg; return(l)
int ReqClear(msg) 1M *rnsg; return(l)
int MenuVerify(msg) 1M *msg; return(l)
int NewPrefs(msg) 1M *rnsg; return(1)

int Disk1nserted(msg) 1M *msg; return(l)
int DiskRemoved(msg) 1M *rnsg; return(l)
int WBenchMessage(msg) 1M *rnsg; return(1)
int ActiveWindow(msg) 1M *msg; return(l)
int 1nactiveWindow(msg) 1M *msg; return(l)
int DeltaMove(msg) 1M *rnsg; return(l)

/* end of stubsl.c */

Listing 5.3: The stubs1 routines

Among the things you'll need to kno\N are the follo\Ning:

• HO\N to select a screen to use

• HO\N to determine the location of the mouse

• HO\N to read the status of the mouse buttons

• HO\N to get timer events for controlling the dra\Ning

• HO\N to design and use menus

• HO\N to specify a color

• HO\N to design and use gadgets

Selecting a Screen
You \Nill \Nant a variety of colors available to use in the painting pro

gram. The number of colors you can use depends on the depth of the

screen. If you ran your painting program on the Workbench screen, you

\Nould have only four colors to choose from. In the code provided, you'll

open a custom screen. Therefore, you'll have 16 possible colors from

\Nhich to choose. Listing 5.4 provides the code for opening a \Nindo\N in a

custom screen.

1* myscreen2.h *1

struct ~extAttr TestFont

struct NewScreen ns = (
0, 0,
320, 200, 4,
0, I,
0,
CUSTOMSCREEN,
&TestFont,
"Custom Screen",
NULL) ,

struct NewWindow nw
0, la,
WWIDTH, WHEIGHT,
0, I,
INTUITICKS I GADGETUP I
MOUSEBUTTONS I MENUPICK

WINDOWCLOSE I ACTIVATE,

NULL,
NULL,
"Tiny Paint",
NULL,
NULL,
0,0,0,0,

CUSTOMSCREEN),

1* end of myscreen2.h *1

["topaz.font",B,O,O),

1* start position */
/* width, height, depth *1
/* detail pen, block pen *1
/* viewing mode */
1* screen type */
1* font to use *1
1* default title for screen */
1* pointer to additional gadgets *1

/* start position *1
/* width, height */
/* detail pen, block pen *1
GADGET DOWN I
I CLOSEWI NDOW,
/* IDCMP flags *1
1* was BACKDROP I BORDERLESS too *1
1* window flags */
1* pointer to first user gadget *1
1* pointer to user checkmark *1
1* window title */
/* pointer to screen */
/* pointer to superbitmap *1
/* ignored/not a sized window so */
/* don't have to specify minimax */
/* size to allow */
/* type of screen in which to open *1

Listing 5.4: The myscreen2 definition

The NewScreen Structure

INTUITION

163

In Chapter 4, screens vvere utilized but not discussed fully. Because

creating screens is important to any Intuition programming, let's novv

take a closer look at the various fields in the NevvScreen data structure.

A NevvScreen structure is defined as follovvs:

struct NewScreen
{

} ;

SHORT LeftEdge,TopEdge, Depth, Width, Height;
UBYTE DetailPen,BlockPen;
USHORT ViewModes;
USHORT Type;
struct TextAttr * Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitMap * CustomBitMap;

PROGRAMMER'S GUIDE TO THE AMIGA

164

Left Edge and TopEdge for most screens are set to 0,0, This means that

the screen will be opened with its top-left corner coincident with the

top-left corner of the viewing area. Height will usually be 200 lines if the

viewing mode (ViewModes) is noninterlaced or 400 lines if the viewing

mode is interlaced.

However, if you want to create split-screen displays, you can manipu

late the screens any way)IOU want. For example, you could open two

screens, one taking up the top half of the actual viewing area (Left Edge

and TopEdge values of 0,0), and the next one taking up the lower part of

the drawing area (Left Edge and TopEdge values of 0,100), Each of the

screens you create can use its own custom set of colors and any resolu

tion you choose.

Depth specifies how many colors from which you can select for any

thing you draw in the screen. Depth values are 1 , 2, 3, 4, or 5 for the abil

ity to select from 2, 4, 8, 16, or 32 colors respectively.

The DetailPen is the pen number that is used to render the text for

the screen title. The BlockPen is used with the DetailPen to render

screen depth-arrangement gadgets.

ViewModes are a bit tricky. In this book, we use only low resolution (a

value of 0 in ViewModes), high resolution (HIRES), and interlaced (LACE).

In low resolution, you can define a display of up to 354 pixels across the

screen. In high resolution, you can define a display up to 704 pixels. Low

resolution also defines a display that is nominally 200 lines high (though

you specify the value yourself). If you specify LACE as part of View

Modes, you can ask for a screen that contains up to about 400 lines

within the same viewing space. This makes for a higher vertical resolu

tion, but on some patterns causes an unacceptable level of flicker.

The Type field describes whether this is to be a WBENCHSCREEN

Uust like the Workbench) or a CU5TOM5CREEN. There is usually only one

Workbench screen in the system. Note that the Type field in the

NewWindow data structure has a real effect on how certain data fields

are used.

The Font field describes the text font that should be used as a default

for all menus, titles, and anything else for which the screen uses text.

DefaultTitle is a pointer to a null-terminated string that provides the

title that is seen when the screen title bar is visible. The Gadgets pointer

is no longer valid-screens do not get custom gadgets. It takes up space

in the data structure, that's all.

The CustomBitMap pointer allows you to allocate and define)lour

own special memory area that the system is to use to render

your screen. If you do not define a custom bitmap, the system will auto

matically allocate the memory needed to render the screen. When the

INTUITION

165

screen closes down, this allocated memory is automatically returned to

the system. For the examples in this book, this parameter is always

specified as null.

The NewWindow Structure
Another important Intuition structure is NewWindow. The NewWin

dow data structure is defined as follows:

struct NewWindow
{

} ;

SHORT LeftEdge,TopEdge;
SHORT Width,Height;
UBYTE DetaiIPen,BlockPen;
ULONG IDCMPFlags;
USHORT Flags;
struct Gadget * FirstGadget;
struct Image *CheckMark;
UBYTE *Title;
struct Screen *Screen;
struct BitMap * BitMap;
SHORT MinWidth,MinHeight;
SHORT MaxWidth,MaxHeight;
USHORT Type;

LeftEdge and Top Edge say where to put the window relative to the

upper-left corner of the screen. Width and Height say how large to
make the window, including the border and title bar. Title specifies the

title that should appear in the title bar. As with screens, the DetallPen

and BlockPen specify how the title bar and window gadgets (the close

gadget, the depth-arrangement gadget, and the sizing gadget) should be

drawn.

The IDCMP Flags are discussed in Chapter 4.

The Flags parameter specifies what kinds of gadgets are to be

attached to the window when it is drawn and other characteristics of

the window, as follows:

WINDOWSIZING If this flag is set, the window can be

resized. You must also specify the allowable

limits on resizing in the MinWidth,

MaxWidth, MinHeight, and MaxHeight

variables. Caution: Width must be a value

between MinWidth and MaxWidth; Height

PROGRAMMER'S l"UIDC TO THe:: AMIGA

166

WINDOWDRAG

WINDOWCL05E

WINDOWDEPTH

BACKDROP

REPORTMOU5E

GIMMEZEROZERO

must be a value between MinHeight and

MaxHeight.

If this flag is set, the window can be

repositioned.

If this flag is set, the window has a close

gadget. Note: If you want to receive

messages about the user hitting the close

gadget, you must also have

CL05EWINDOW set in the IDCMP Flags

parameter.

If this flag is set, the window can be

depth-arranged. If you have selected a

BACKDROP window, when the user selects

this gadget, nothing will happen.

If this flag is set, the window is placed

behind all other windows and never allowed

to be placed in front of any other window.

This conserves memory since drawing into

this window uses the screen's bitmap.

Windows that are opened up in front of a

BACKDROP window allocate extra space

for storing their own bits.

If this flag is set, Intuition tells you about

every move the mouse makes. This is a lot

of input events-you may not want to

know about all of them.

The area entirely within the drawn borders

of the window is considered the drawing

area, starting with coordinates 0,0 in the

upper-left corner. After a window has been

opened, there are two sets of mouse

position coordinates maintained by

Intuition. The first set is MouseX, MouseY.

These are the mouse positions relative to

the upper-left corner of the full window,

including borders. The second set of

variables is GZZMouseX, GZZMouseY. This

second set keeps track of the mouse if

GIMMEZEROZERO is selected. It adjusts for

BORDER LESS

ACTIVATE

RMBTRAP

the offset from the upper~left corner

of the actual drawing area as compared to

the actual window corner itself.

If this flag is set, there will be no borders on

the window. Note that if you select

WINDOWDRAG, you'll still get borders even

though you did not want them. To install

the dragging gadget, the system always

renders the borders.

If this flag is set, this window becomes the

active window when it opens. You may

sometimes want to keep a different

window as the active one while an

informational window that is not expecting

any input is opened

If this flag is set, Right Mouse Button

events are trapped from Intuition and

given to your task through the IOCMP

Otherwise, all mouse menu button reports

go directly to Intuition and are used to

control its menus.

167

The following flags are mutually exclusive. You should select only one
of them.

SMART REFRESH

SIMPLE_REFRESH

Intuition saves everything you draw into

the window and automatically handles the

refreshing (redrawing) of the window if it is

obscured, then exposed

Intuition does not save anything drawn into

obscured areas. The application itself is

capable of redrawing the window. If you

want to use this method, you have to ask

for REFRESHWINDOW events in the IDCMP

Flags.

There is a superbitmap associated with this

window. Superbitmap windows are

discussed in Chapter 4.

PROGRAMrJ1Eh!,'S GUlnc~ TO THE AMIGA

168

The FirstGadget parameter is a pointer to the first of a set of linked

gadgets that are intended to be rendered into this window. As each

gadget is hit, you'll hear about them if you have GADGETDOWN and

GADGETUP set in the IDCMP Flags parameter. Gadgets are covered

later in this chapter.

The CheckMark parameter is a pointer to an Intuition Image data

structure that describes the form of a custom checkmark image you

might want to use when checking either gadgets or menu items when

your window is active. If you have set a menu strip (SetMenuStrip)

for your window, your menu will appear in the screen title bar when

your window is active and the menu button is pressed. Within that

menu. wherever there is a checkmark to be rendered, it can be your

own custom checkmark. If this value is NULL, the system uses a default

checkmark.

The Type parameter is critical. If you specify WBENCHSCREEN, your

window will open in the Workbench screen. This is automatic. Selecting

WBENCHSCREEN ignores any value in the Screen parameter in the

NewWindow structure. If you specify CUSTOMSCREEN, you must have

a valid pointer to a screen stored in the Screen parameter. Then, to open

your window in that custom designed screen, use this sequence:

struct Screen *s;
struct Window *w;
s = OpenScreen(&myNewScreen);
if(s)
{

w OpenWindow(&myNewWindow);
if(w)
{

}

/ * keep on going * /

Finding the Mouse Location
You can find the current mouse position in the data structure for the

window you opened. If w is a pointer to this window, then you could use

this code:

CurrentMouseX = w->MouseX;
CurrentMouseY = w->MouseY;

However, this position will not necessarily track the moves of the

mouse. Instead of the above formula, you'll want to get the mouse

INTUITION

position directly from the IDCMP messages. If im is a pointer to an

IntuiMessage, then use this code:

CurrentMouseX
CurrentMouse Y

im- > MouseX;
im- > Mouse Y;

169

In the painting program, if the mouse selection button is down, then

each time that a timer event (lNTUITICKS) comes along, a colored dot will

be drawn. This is what the IntuiTicks routine in Listing 5.5 will do. A global

variable named selectbutton keeps track of down (0) or up (1) status,

and you act accordingly. The variables wand rp are the window pointer

and the rastport pointer.

Reading the Status of Mouse Buttons
By selecting the IDCMP flag MOUSEBUTTONS in the NewWindow

structure, you get messages about the status of the mouse selection

button. The mouse menu button is usually reserved for Intuition to ener

gize the menus for you. If you needed reports on the mouse menu but

ton also, then you would specify RMBTRAP in your NewWindow flags

and you would get both left and right mouse button transition reports.

Listing 5.6 is the mousebuttons subroutine. It reports the mouse

selection button status.

DESIGNING AND USING MENUS
To create a pull-down menu for the painting program, you need to

specify the characteristics of the menu and its items and subitems.

/* ticks.c */

extern int selectbutton;
int CurrentMouseX, CurrentMouseY:

extern struct RastPort *rp:

IntuiTicks(im)
struct IntuiMessage *im:

if(lselectbutton) return(l):

CurrentMouseX = im->MouseX;
CurrentMouseY = im->MouseY;

/* no action if it is up */

WritePixel(rp, CurrentMouseX, CurrentMouseY),
return(l) ,

Listing 5.5: The ticks routine

PROGRAMMER'S GUIDE TO THE AMIGA

170

/* mousebuttons,c */

int selectbutton; /* global - select button pressed? (T/F) */

MouseButtons(im)
struct IntuiMessage *irn;
{

if(im->Code == SELECTDOWN
(

}

/* button just pressed */
selectbutton = TRUE;
IntuiTic<s(im): /* draw a pixel */
return(l):

iff im->Code == SELECTUP)
(

}

/* button just released */
selectbutton = FALSE:
return(l);

return(l): /* no handling of right button */

Listing 5.6: The mousebuttons routine

Menus appear across the top bar of the screen, replacing the screen

title bar when the mouse menu button is pressed.

Each menu is fully specified by the Menu data structure. Menus are

placed literally, not relatively. You specify at which horizontal and verti

cal position you want the left edge of a menu to begin. Each of its menu

items is placed relative to the menu to which the item is attached. Thus,

if the menu heading gets moved, the menu that drops down gets

moved as well. If a menu item in the drop-down menu has a subitem

attached to it, that subitem is positioned relative to the item to which it

is attached. 50 if you move the menu item, its subitems move as well.

Listing 5.7 creates a menu for the painting program. There are two

entries on the menu. The first is going to let the user select a color for

the brush, the second is going to let the user type text into his or her pic

ture. The program will bring up a requester that asks the user what

text to add and where to put it on the picture.

How Menus and Menu Items Are Related
To better explain the program in Listing 5.7, here's how the menus and

menu items relate to each other:

• Entries in a menu form a linked list that specifies a programmer

selected and spaced block of text that replaces the screen title bar

when the mouse menu button is pressed and held down.

INTUITION

/* initmenu.c */

char *menunames[2];

extern struct Menu
struct Menul tern

menu[2]:
textitem;
coloritem[32]:
colorimage[32];

extern struct Menultem
extern struct Image

/* value of 32 supports depth up to 5 */

InitMenu()
[

struct Menu *menuptr;

int n;
int leftside:
leftside = 2;

menunames[O]="Color";
menunames[l]="Text" ,

menuptr = &menu[O];

for (n=O; n<2; n++)
[

menuptr->LeftEdge = leftside;
menuptr->TopEdge = 0;
menuptr->Width = 9 * strlen(menunames[n]);
leftside += (menuptr->Width + 2);
menuptr->Height = 10;
menuptr->Flags ~ MENUENABLED;
menuptr->MenuName = menunames[nJ;

if(n 0)
[

else
[

menuptr->FirstItem = &coloritem[O];
menuptr->NextMenu = &menu[l];

menuptr->Firstltem = &textitem;
menuptr->NextMenu = NULL;

menuptr->JazzX
menuptr->BeatX
menuptr++i

0; menuptr->JazzY 0;
= 0; menuptr->BeatY = 0;

)
Ini tTextI tem () ;
Ini tColorItems(DEPTH);
return(O) ;

/* Every Menu must have at least one menu item. Create */
/* a single item to attach to the text menu. */

struct IntuiText textitemtext
{ 1,O,JAM2,O,O,NULL,"Insert Text",NULL J;

/* front pen, backpen, drawmode, position (left,top) */
/* relative to (left,top) of enclosing menu rectangle, */

Listing 5.7: The initmenu program

171

PROGRAMMER'S GUIDE TO THE AMIGA

172

/* font (NULL means use the default from the Screen), */
/* character string that is the IntuiText, link to next */
/* IntuiText if any (this one is NULL) */

Ini tTextItem()
[

textitem.NextItem = NULL; /* only one item */

/* When menus contain text, have to point */
/* to IntuiText to fill them. */

textitem.ItemFill (APTR)&textitemtext;

textitem.LeftEdge 0;
texti tem.TopEd·ge 8;

textitem.Width = 9 * 14;

textitem.Height = 10;

/* flush left */
/* next line, immediately */
/* below the menu itself */
/* "Insert Text" */
/* plus space for */
/* accelerator */

/* This MenuItem contains text, and has a shortcut */

textitem.Flags = HIGHCOMP I ITEMTEXT I COMMSEQ I ITEMENABLED;

/* Not trying to exclude any other selection */
textitem.MutualExclude = 0;

/* Nothing to render when this box is selected */
textitem.SelectFill = NULL;

/* Rather than use the text menu to select this item, */
/* a user should be able to use the command-key */
/* (left-Amiga) with a key (here a lowercase t) */
/* to act as a command shortcut. Your program gets */
f* an event report just as though the menu item */
/* were selected, without the menu ever appearing. */
/* This works if and only if the COMMSEQ flag is */
/* set for this MenuItem. */

textitem.Command = 't'; f* <left-Amiga>t is shortcut */
/* has no submenus to worry about *f
textitem.SubItem = NULL;
textitem.NextSelect = 0;

/* Provide as many color images in this selection menu */
/* as there are maximum colors for given value of depth. */

InitColorItems(depth)
SHORT depth;

SHORT n, colors;
struct Image *colorimageptr;
struct Menultem *coloritemptr;
struct Menultem *nextcoloritemptr:
colors = palette[depth-l];

colorimageptr = &colorimage[O];
coloritemptr = &coloritem[O];

nextcoloritemptr = coloritemptr;

Listing 5.7: The initmenu program (continued)

for(n;O; n<colors; n++)
[

/* next ..• leads the item pointer by one */
nextcoloritemptr++;

coloritemptr->NextItem ; nextcoloritemptr;
coloritemptr->ItemFill ; (APTR)colorimageptr;
coloritemptr->LeftEdge ; 2 + CW * (n % 4);
coloritemptr->TopEdge ; CH * (n / 4);
coloritemptr->Width ; CW;
coloritemptr->Height ; CH;
coloritemptr->Flags ; ITEMSTUFF;
coloritemptr->MutualExclude ; 0;

coloritemptr->SelectFill ; NULL;

coloritemptr->Command ; 0;

coloritemptr->SubItem ; NULL;
coloritemptr->NextSelect ; 0;

/* center the image in the select box */
colorimageptr->LeftEdge ; 1;
colorimageptr->TopEdge ; 1;

/* make the image a little smaller than the */
/* box it is located in. */

colorimageptr->Width ; CW-2;
colorimageptr->Height ; CH-2;
colorimageptr->Depth ; depth;

/* Not providing a bitmapped image to fit */
/* into the box. Instead, just taking */
/* advantage of being able to use PlanePick */
/* and PlaneOnOff, directly. */

colorimageptr->ImageData ; NULL;
colorimageptr->PlanePick ; 0;
colorimageptr->PlaneOnOff ; n;

coloritemptr++; /* next one in each array */
colorimageptr++;

J
coloritemptr--i /* after the loop, this pointer */

/* points array element beyond */
/* what we actually want to modify */

coloritemptr->Nextltern = NULL; /* terminate chain */
return(O);

Listing 5.7: The initmenu program (continued)

INTUITO'"

173

• In addition to the pointer to the next item within a menu. each

entry of the menu also has a pointer to a menu item that drops

down when that menu's active area is selected.

• The menu items for-m a linked list that describes the drop-down

menu. Each menu item also points to an optional submenu that

pops up when that menu item is selected. Only one level of sub

menu is allowed.

PROGRA:v1MER'5 GUIDE TO THE AMIGA

174

Initializing Menus
Menus should not overlap each other, Intuition tests the mouse posi

tion in the sequence you provide as your linked list of Menu data struc

tures, The tests for mouse position are made as the rectangles you

specify for LeftEdge, Top Edge, Width, and Height, If you create two

menus that overlap, whichever is closer to the beginning of the linked

list of menus takes precedence, For example, suppose you create two

menus-Color and Text-and specify them as as shown in Figure 5,1, If

the linkage of the menu is

menu[O]. Next
menu[1].Next

&menu[1];
NULL;

then if Text is linked to menu[O], the user can select it, But if it is linked to

menu[1], anytime the user is within the Color selector box, the Color

menu is selected. It is not possible to select the Text menu at all. The

example above uses the local variable leftside to prevent overlap,

The menu flag MENUENABLED is used for both menus, This gives the

normal appearance of the menu text. If none of the menu flags is speci

fied (the Flags parameter is set to zero), the menu cannot be selected

and appears gray,

A menu must contain text, unlike menu items and subitems that can
contain interesting imagery, But you can be creative and provide an

interesting font to use to render that text, Notice that menu text is ren

dered in the same font that is used to render the screen title (and is

specified in the NewScreen data structure when you open a screen),

Your screen's font could contain a few funky characters, with normal

text provided for the rendering of the screen title. It's up to you.

Figure 5.1: Overlapping menus

Width of Text Menu

I" -I

1=:]1
Width of Color Menu

INTUITiON

175

Initializing Menu Items
As vvith menus, you have to vvatch out for overlap situations as you

position the various rectangles that describe menu items. With menu

items, there is a more serious situation that you must vvatch for-lack

of overlap. This may sound contradictory, but vvhen you create a menu

item list, Intuition evaluates the list of rectangular areas. On its ovvn,

Intuition creates a rectangular box that is large enough to entirely

enclose all of your boxes, both the selector boxes (LeftEdge, TopEdge,

Width, and Height) and the rectangular region that might be defined by

the rendering of text or an image.

For example, if you specify that a menu item should be only 12 pixels

vvide, but then tell the system to render the vvord Text in Topaz font, 80-

column (32 pixels vvide) in that space, Intuition creates a menu item that

is at least 32 pixels vvide so that vvhatever you render vvill fit.

In addition, Intuition goes by some of its ovvn rules about vvhere a

menu item can actually be positioned relative to the menu to vvhich it is

attached. The box that Intuition creates to hold your items starts at

least as far left as the leftmost edge of its menu and extends at least as

far right as the rightmost edge of its menu, no matter vvhat vvidth and

positioning you request. You can ask Intuition to place an item in a out-of

the-vvay place, but as shovvn in Figure 5.2, Intuition dravvs the enclosing

menu box by its rules.

Even if you request that the vvords Insert Text begin in the second

position shovvn in the figure, Intuition still extends the enclosing box to

the left so that the user can drop straight dovvn into the menu item
area. Othervvise, there vvould be no vvay to drop dovvn and move over

to the menu item. Note that the menu item cannot be selected until the

mouse actually drops dovvn, then moves across to at least the left edge

of the selector box.

When you design a menu or submenu, you should design it so that

there is alvvays a small amount of overlap betvveen adjacent items.

When the user is selecting from the menu, then, at least one item is

alvvays being selected. This avoids confusing the user.

Text or Images
When you are designing menu items, you can select either text or

image data to appear in them. Text takes the form of an IntuiT ext data

structure; it requires that the Menultem structure Flags parameter

include the ITEMTEXT flag. If this flag is used, both Item Fill and SeIectFill

are specified as pointing to a text item.

If ITEMTEXT is not specified as one of the flags, then both ItemFill and

SelectFili can point to image data. This gives you more freedom to

PROGRAMMER'S GUIDE TO THE AMIGA

176

TEXT

1,-__ ln_sert_Tex_t _---'1..-.. - Menu Item

r
Menu item positioned here when LeftEdge = 0

1::1 r You can specify LeftEdge out here
~ relative to the Text menu LeftEdge

I II!I . . '"eciTe"

This filler is inserted by Intuition to make sure that the menu item at

least covers the LeftEdge of the menu to which it is attached.

Figure 5.2: Menu·item placement

design things to put into menu items. ItemFili tells Intuition what to draw

when the menu item first appears. SelectFill tells Intuition what to

draw when the item is highlighted.

In Listing 5.7, the Colorltem and Colorlmage data structures are initial·

ized at the same time, since images are used exclusively in this part of

the painting program. The Image data structure lets you specify where

INTUITION

to put the image relative to the top-left corner of its defined rectangle

and the size of the image in bits wide and tall. It also lets you save mem

ory by providing specific control over how the image is drawn (in the

PlanePick and PlaneOnOff parameters).

You could, for example, design a four-color image to render in several

places within a 1 6-color background. In several different places, perhaps,

you'd like to use a different subset of the 16 available colors to render

your four-color image. Intuition provides this facility, which is explained in

the discussion that follows.

Color Images

177

Colors are formed on the screen by a binary combination of bits

located in separate bitplanes for each pixel location on the screen. To

select pixel color number 1 (whatever is the color currently assigned to

color register number 1), use SetAPen(rp, 1) and WritePixel(rp,x, y). This

causes one or more bitplanes to be affected, depending on the number

of bitplanes being used to make up the picture. If four bitplanes are used

(giving 16 possible colors), then the combination of bits that is written at

that pixel location for color number 1 is as follows:

Plane

Bit written

3210

0001

For color number 1 0:

Plane

Bit written

3210

101 0

Say you define a four-color bit image that looks as follows:

1100330011

1100330011

0110330110

0011331100

0022332200

0220330220

2200330022

2200330022

PROGRAMMER'S GUIDE TO THE AMIGA

178

Each of the numerical values represents a pixel of one of the possible four

colors in this image. Two planes of bits combined would form the desired

pattern. The bit patterns for the two planes are shown in Figure 5.3.

If you take these bits, as shown, and always draw them into the sys

tem bitplanes 0 and 1 , then you'll always be mapping your bit image into

system colors 0, 1, 2, and 3.

Intuition gives you another alternative: you can pick which planes

your image will get rendered into. If you pick planes 3 and 1, then your

image plane 0 goes into the lowest numbered plane picked (1) and

your image plane 1 goes into the next lowest numbered plane picked (3).

Additionally, for the planes not picked, PlaneOnOff tells Intuition what

to do with them, within the enclosing rectangle of the image. If a bit for a

plane not picked is a zero, then that entire rectangle is filled with zeros. If

it is a one, then everywhere within the rectangle of the image, that

Plane 0 of the image 1100110011

1100110011

0110110110

0011111100

0000110000

0000110000

0000110000

Plane 1 of the image 0000110000

0000110000

0000110000

0000110000

0011111100

0110110110

1100110011

1100110011

Figure 5.3: A bitpiane image

INTUITION

179

plane gets filled with binary ones. For the example where planes 3 and 1

are picked, planes 2 and 0 are not picked. The bits in those positions

within PlaneOnOff determine what happens. Say these two bits are

both ones. Here's what that looks like:

mylmage.PlanePick = OxOa;
mylmage.PlaneOnOff = Ox05;

/ * bits 3 and 1 are picked * /
/ * bits 2 and 0 are ON ... they * /

/ * were not picked, so they * /
/* 'count' this time. */

So, image data go into planes 3 and 1 and binary ones go into planes 2

and 0 within the defined rectangle for the image object.

The colors that result when this image is drawn are no longer 0, 1,2,

and 3, but are instead four of the available system colors. The

PlaneOnOff forces plane 2 and 0 to always be ones:

Plane

Bit written

3210

1X1X

So, these are the possible colors that this image can contain:

1 01 0 color 10

1 0 1 1 color 11

1 0 color 14

1 1 color 15

The painting program Color menu will produce only colored recto

angles, so it ignores the image data itself, saying there is no image data

at all. The program specifies PlanePick = O. That is, draw the image into

no planes. This means that the color is exclusively determined by

PlaneOnOff for each of the rectangles, blasting ones or zeros into the

appropriate planes and thereby setting the color of the rectangle with

out ever specifying an image to use.

If you want to use the image capability, the format for storing the bits

is as an array of unsigned words. The bit data is stored left:iustified in a

rectangular matrix of words. The array is wide enough to hold the width

of the object and long enough to hold the height of the object Bits left

over at the rightmost edge simply remain unused. For example, if you

have a 29-bit-wide object image, it takes two words (32 bits) in width to

hold the image. When the image is drawn, only the leftmost 29 bits enter

into the drawing considerations. The other three bits are ignored.

PROGRAMMER'S GUIDE TO THE AMiGA

180

The image shape defined above can therefore be written as shown in

Listing 5.8.

And the rest of the image would be defined as follows:

struct Image mylmage = {
1,1,10,8,2, &myimageshape[Oj ,Ox05,OxOa };

Checkmarks

/* LeftEdge, TopEdge, Width, Height, */
/* Depth, <image>, PPick, POnOff */

Intuition lets you add checkmarks to menu items; they appear when

items are selected. Checkmarks enable a user to tell which of the

options is currently active. You can make an option active by setting the

CHECKIT flag in your Menultem data structure. To use the checkmark

image, be sure to leave enough space along the top-leftmost edge of the

menu item into which Intuition will render the checkmark (whenever

that option is selected).

The CHECKIT flag is a convenient way of having Intuition keep track

of various flags for you. In your event-processing routine, you may wish

to know the current state of the CHECKED flag for various menu items

before you proceed. You may also want to specify the MENUTOGGLE

/* myimageshape_h */

SHORT myimageshape[]

);

struet Image mylmage [

/* plane 0 of the image */
OxceeD,
OxcccO,
Ox5d80,
Ox3fOO,
OxOeOO,
OxOeOO,
OxOeOO,
/* plane 1 of the image */
OxOeOO,
OxOeOO,
OxOeOO,
OxOeOO,
Ox3fOO,
Ox5d80,
OxceeD,
OxeeeO

1,1,10,8,2, &myimageshape[O],OxOS,OxOa);

/* LeftEdge, TopEdge, Width, Height, */
/* Depth, <image>, PPick, POnOff */

Listing 5.8: The myimageshape routine

INTUITION

flag, which tells Intuition that each time the item is selected, its

CHECKED state is to be reversed. That is, if it is currently CHECKED,

make it unchecked; if it is not currently checked, make it CHECKED.

You can define your own image to be used for a checkmark in your

NewWindow data structure. (Each window can have its own menu strip

as well as its own checkmark appearance.) The CheckMark parameter

in the NewWindow data structure points to NULL (if you wish to use the

default checkmark) or to an Image data structure.

Why might you want to define your own checkmark? Well, the sys

tem default checkmark is about eight pixels wide by eight pixels high.

You may want a different image entirely. You might also consider design

ing your own checkmark, perhaps a bullet (e) or an arrow, or perhaps

invisible-only a single pixel wide and tall in the same color as your menu

itself-so that it never appears at all. By designing your own custom

invisible checkmark, you can take advantage of Intuition's CHECKED

flag handling. The checkmark can be drawn or erased with no feedback

to the user but you will know, because of the current state of the

CHECKED flag, whether the option has been chosen. You COUld, for

example, use the state of this flag to decide which image to present to

the user the next time the menu is rendered. Also, you might want to

change to alternate images for ItemFili and SelectFili based on whether

the item is checked.

Mutual Exclusion
MutualExciude, in the Menultem data structure, is a longword (32 bits)

that contains one bit position for each possible menu item number. If

there is a 1-bit in a particular position, then that item number is to be

excluded when this item is selected.

Mutual exclusion is desireable in menus, where only one item out of a

list can be chosen. Intuition allows an ideal situation in which setting the

MutualExciude variable can say "if you select me, then deselect (and

uncheck) the following group of selections." Thus, the exclusion of other

options is fully specifiable.

Say there are these four menu items in a menu:

PATIERNFILL:

BLANK
SOLID COLOR
CROSS HATCH
STRIPED

181

PROr"iRAMMcR'S C"iUIOE TO THE AMIGA

182

If you use the checkmark capability, on receiving a message that any

one of these menu items has been selected, you'll have to go through

the entire list of menu items, reset the CHECKED flag for those items

that are no longer selected, and set the CHECKED flag for the one item

that is selected.

Using MutualExciude saves you this work. When any new item is

selected, your task need not worry about doing anything to the rest of

the items in the list. All nonselected items that are set in the Mutual·

Exclude parameter for the selected item automatically get deselected.

Listing 5.9 is an example that shows how to set up the mutual exclude data

for the PATTERNFILL menu. Only MutualExciude is shown, for clarity.

The system pays attention only to bits within the range of the num·

ber of menu items provided. For example, if there are only four items in a

menu, it is OK for you to specify MutualExciude as having all ones except

for the last four bits. The system cares about only as many bits as there

are items to work with. In fact, that's what we do here-take a value

that contains all 1-bits (all 1 ·bits will exclude all selections including this

one) and reset one specific bit by using an exclusive OR. Thus, when one

item is selected, all others are deselected automatically.

Highlighting Menu Items
As a user is scanning a menu with the mouse pointer, you may some

times want to show that the system knows which item will be selected if

the menu button is released. Normally, if the button is released while the

f* setexclude.c *f
#define EXCLUDEALL Oxffffffff

SetExclude(mi,howmany)
struct Menultem *mi;
int howmany;

for(i=O; i<4; i++)
[

mi.MutualExclude
EXCLUDEALL • (1 « i);

f* resets only one specific bit to zero; that *f
f* bit corresponds to the identifier for this *f
f* particular menu item. *f

mi++; f* point to the next one to set mut.ex *f
}

Listing 5.9: The setexclude routine

INTUITION

183

mouse pointer is not positioned over anything in the menu area, then no

menu message gets sent to your task. Intuition gives you a choice of how

to show a potential selection-by using the highlighting flags.

If you specify HIGHBOX, then, as in the listing (iTEMSTUFF =

MENU ENABLED + HIGHBOX), a box is drawn around each of the selec

tor boxes as the mouse is moved.

If you specify HIGHCOMp, then the color of the box will be changed by

complementing all of the colors inside the selector box. If there is text

there, you'll get the effect of reverse video while the box is selected. We

chose to use HIGHBOX instead of HIGHCOMP to avoid changing the col

ors. After all, this is for a painting program and we're trying to select a

specific color.

If you specify HIGHIMAGE, it says that there is indeed a valid pointer in

the Menultem structure parameter Select Fill and that this alternate

image (or text) is to be used instead of the image (or text) that is speci

fied in ItemFil1.

If you specify HIGHNONE, it leaves the user in the dark. No indication

will be given by the system as to which menu item will be selected when

the user releases the menu button on the mouse. Your task may get

messages about menu selections made unwittingly by the user. This is

not a good option to choose.

Requesters
A requester belongs to a window. It is rendered in a window, relative

to the upper-left corner of that window. Requesters are implemented

as separate layers of the display area. This means that even if a window

is too small to hold its requester, the entire requester will still be ren

dered, overlapping the window's borders if necessary.

You initialize a Requester data structure by calling InitRequester and

pointing to an "empty" instance of a requester. Then you specify where

its upper-left corner is to be placed (LeftEdge, TopEdge) relative to the

upper-left corner of its window. You also specify the requester's width

and height.

A requester gets rendered by filling a rectangle with a specified color

(BackFill) and drawing a border using line segments you define (Req

Border). ReqBorder lets you draw a requester that appears to be drawn

as an image floating above the background, casting a shadow against the

background area. This is called a drop-shadow. Then the text (intuiT ext)

that you design is rendered. If you have any gadgets in this requester

(there's usually at least one-OK or CANCEU, you will need to include the

address of the first in a linked list of gadgets in your Requester data

structure. Listing 5.10 is a requester initialization routine.

PROGRAMMER'S GUIDE TO THE AMIGA

184

/* inittr.c */

struct Requester textrequest;
struct TextAttr modfontattr:

InitTextRequest()
[

BYTE ·5, *ti
InitRequester(&textrequest);
textrequest.LeftEdge ; 20;
textrequest.TopEdge ; 20;
textrequest.Width ; 280;
textrequest.Height ; 130:
textrequest.ReqGadget ; &trg[O]:
textrequest.ReqText ; &textreqtext[O]:
textrequest.BackFill ; 1;
textrequest.ReqBorder NULL;

s ; &textstring[O]; /* copy default string for text. */
t ; defaulttext;
while ((*9++ ~ *t++) l~ '\0')

/* do nothing but copy */

/* set initial text mode and style */
txfont ; 80; /* use an 80 column font */
txmode = 1: /* jam 1 color * /

modfontattr.ta Name = "topaz.font";
modfontattr.ta-YSize 8;
modfontattr.ta-Style 0:
modfontattr.ta=Flags = 0;

return{O) :

Listing 5.10: The inittr routine

Gadgets
The requester for the painting program contains gadgets for getting

text, canceling an operation, and selecting the placement of text in the

drawing area. This requester includes three different types of gadgets:

Boolean, string, and proportional. We'll look at each of these in turn. But

first, take a look at the things that are common to all types of gadgets.

Gadget Placement
If you've attached a gadget to a window, then it will be drawn relative

to the upper-left corner of the window. If you've attached it to a

requester, then it will be drawn relative to the upper-left corner of the

requester. The placement is controlled by the LeftEdge and TopEdge

parameters in the Gadget structure.

Gadget Size
The size of a gadget is defined by the Gadget structure Width and

Height parameters. These parameters, as with menu items, define the

INTUITION

185

size of the hit box. That is, they define the area within which the user

can click in order to select this gadget. As with menu items, the closer a

gadget is to the top of its gadget list, the higher the priority it assumes

with regard to user selections. If two gadgets overlap one another, it is

the one that is closest to the top of the gadget list that owns the over

lapped area.

Gadget Imagery
As with menu items, gadgets have one appearance when they are sim

ply drawn, and another possible appearance when they are selected.

GadgetRender and 5electRender correspond to Item FiJI and 5electFili

for menu items. You control the gadget highlighting by way of flags in

the Gadget structure Flags parameter. As with menu items, gadgets

can be complemented (GADGHCOMP), boxed (GADGHBOX), shown with

the alternate image pointed to by SelectRender (GADGHIMAGE), or not

highlighted at all on selection (GADGHNONE).

Unlike menu items, the imagery that SelectRender points to can be

either an Image data structure or a Border data structure. You set a

flag (GADGIMAGE) to tell the system that it really is an image. Border

items usually take up less memory space.

Gadget Identification
When you are using menus, in general, the messages you get from

Intuition are formulated by the data structure of the menus them
selves. The control you have over the code number you receive for a

menu selection is the placement of the menu item in its linked list. The

code number is strictly position dependent.

For gadgets, when you receive notification that a gadget has been

selected or released, you are given the address of the data structure that

describes the gadget. Within that data structure is a field called GadgetlD

to which you can assign any value you choose (subject to your need for

mutual exclusion.) Thus, unlike menu items that can have a maximum of

only 32 items, you can use any numbering scheme you wish for your

GadgetlDs, as well as having freedom to link them into a gadget list in any

order you choose. Gadget hit reports are not position dependent.

Mutual Exclusion
Mutual exclusion is also available for gadgets. The MutualExciude

parameter is formed in the same way as for menu items, but it depends

on the GadgetlD field of the Gadget structure rather than on the order

in which gadgets are linked into the gadget list.

PROGRAMMER'S GUIDE TO THE AMIGA

186

Gadget Types
Gadgets are either attached to \Nindo\Ns or requesters, In the Gadget

data structure, in the parameter field called GadgetType, the flag

named REQGADGET, if set, says this is a requester gadget, Other\Nise,

the gadget is a \Nindo\N gadget, The GadgetType field contains lots of

other gadget defining flags, but most of them belong to Intuition,

Gadget Flags
In addition to the flags that specify the gadget imagery, the follo\Ning

Gadget structure Flags are available:

GADGDlSABLED

SELECTED

GRELBOTTOM

GRELRlGHT

Gadget Activation

Grays out the gadget and does not allo\N it to

be selected.

Renders the gadget in its selected state. You

can look at this flag and find out if it is

currently selected,

Interprets the TopEdge parameter as though

it \Nere BottomEdge. This allo\Ns you to

attach a gadget to the bottom of a \Nindo\N

or requester. If the user resizes the \Nindo\N,
the gadget moves right along \Nith it. al\Nays

remaining visible.

Interprets the LeftEdge parameter as though

it \Nere RightEdge. Again, this keeps gadgets

available \Nhen the user resizes a \Nindo\N.

The Gadget Activation parameter tells Intuition \Nhat to do \Nhen a

gadget is selected, and \Nhile the user is still holding dO\Nn the mouse

selection button. Here are a fe\N details about activation:

GADGHIMMEDIATE

RELVERIFY

Tells Intuition to send you a message the

moment that the user presses the

selection button \Nhile \Nithin the hit box of

this gadget. You must have also selected

GADGETDOWN in your lDCMP Flags in

order to receive this message.

Tells Intuition to send you a GADGETUP

message \Nhen the user releases the

selection button. But you'll only get the

FOLLOWMOUSE

ENDGADGET

Border Flags

INTUITION

GADGETUP message if the mouse pointer

is still over the gadget. This means that if

you simply want to receive GADGETDOWN

and GADGETUP. you may have to do a little

more work, since you cannot control where

the user will place the pointer before

releasing the selection button. Notice that

GADGETUP must be set in your window's

IDCMP Flags to get this message.

Tells Intuition to send you mouse position

reports while this gadget is down. If you've

set GADGIMMEDIATE, you know when the

gadget went down. Even though you have

requested mouse movements by setting

FOLLOWMOUSE, you must also set the

MOUSEMOVE flag in your window's IDCMP

Flags. If FOLLOWMOUSE is set, then your

event processing loop can watch for any

mouse-related event other than a

MOUSEMOVE, inferring that the selection

button has finally been released.

If a gadget is installed in a requester, when

a user selects such a gadget, it

automatically ends the requester, as

though EndRequest has been called.

ENDGADGET is used in the painting

program for the cancel button.

Four border flags are located in the

Activation flags: RIGHT BORDER,

TOP BORDER, BOTTOM BORDER, and

LEFTBORDER. If any of these are set, that

border is adjusted to make room for the

gadget. These flags are used for such

things as scroll bars. For a GIMMEZERO

ZERO window, you wouldn't want the

graphics to overwrite the scroll bars or

other such gadgets. These flags ask the

system to make sure there is a protected

space in which gadgets can be drawn.

187

PROGRAMMER'S GUIDE TO THE AMIGA

188

Listing 5.1 1 is the code segment that defines all of the text requester

gadgets.

Boolean Gadgets
The first gadget in Listing 5.11 is a Boolean gadget. A Boolean gadget

has just two states, selected or not selected. For the Cancel gadget in

the requester, the flags specify GADGHCOMP, which means "change the

colors to their complements when this gadget is selected:'

The Activation flags specify GADGIMMEDIATE I ENDGADGET; that is

the OR'ed combination of both of these flags. When Cancel is hit, the

only thing the system really needs to know is ENDGADGET. END

GADGET makes the requester disappear automatically, so the

GADGETDOWN report generated from GADGIMMEDIATE is just for con

venience. More than one gadget in a requester can have the

ENDGADGET flag set. If you want your program to know which gadget

caused the requester to vanish, set GADGIMMEDIATE as well as

ENDGADGET. Otherwise, Intuition will not generate any message to

your application that this gadget was hit and you won't be able to tell

which selection ended the requester.

The GadgetType parameter specifies REQGADGET I BOOLGADGET,

saying this is a Boolean gadget installed in a requester. There is no bor

der descriptor and no special rendering when the gadget is selected. If

there had been a need for rendering an alternate image, then the

GADGHIMAGE flag would have been set.

GadgetText points to the IntuiT ext that contains the word Cancel.

Mutual exclusion is not being used. Special information comes in for

either the string or proportional gadgets. These are described in detail

later on in this section.

/* trgadgets.c */

struct Gadget trg[]
(&trg[l],
205,115,60,9,
GADGHCOMP,
GADGIMMEDIATE I ENDGADGET,

REQGADGET I BOOLGADGET,
NULL,
NULL,
&textreqtext[ll],

Listing 5.11: The trgadgets routine

/* CANCEL */
/* address of next gadget */
/* left,top,width,height of hitbox */
/* flags * /

/* tell me only when user releases the· /
/* mouse but ton and if over the * /
/* gadget at that time */
/* is a requester, is Boolean */
/* BORDER descriptor */
/* SELECT descriptor */
/* Cancel */

0,
NULL,
TEXTWRITEGADGETS + 1,
NULL) ,

(&trg[2J,
190,3,40,9,
GADGHCOMP,
RELVERIFY I GADGIMMEDIATE,
REQGADGET I BOOLGADGET,
NULL,
NULL,
&textreqtext [7J,
0,
NULL,
TEXTWRITEGADGETS + 2,
NULL) ,
(&trg[3J,
190,13,80,9,
GADGHCOMP,
RELVERIFY I GADGIMMEDIATE,
REQGADGET I BOOLGADGET,
NULL,
NULL,
&textreqtext [9 J,
0,
NULL,
TEXTWRITEGADGETS + 3,
NULL) ,

(&trg(4J,
55,60,140,10,
GADGHCOMP,

RELVERIFY

REQGADGET
NULL,
NULL,
NULL,

ENDGADGET,

STRGADGET,

0,
(APTR)&textstringstuff,
TEXTWRITEGADGETS,
NULL) ,

NULL,
190,25,
80,42,
GADGlMAGE I GADGHNONE,
GADGIMMEDIATE I RELVERIFY,
PROPGADGET I REQGADGET,
(APTR)&textimage,
(APTR)&textimage,
NULL,
OxO,
(APTR)&textslider,
TEXTWRITEGADGETS + 4,
NULL));

INTUITION

f* mutual exclusion *f
f* special info *f
/* gadget identifier, user */
f* user data pointer */

/* text mode * /

f* text style */

f* this is a string gadget *f
f* left,top,width,height of hitbox *f
/* Flags, complement mode, needed *f
f* as of this writing for string *f
f* gadgets *f
f* Activation flags, when user hits *f
/* Return, terminates (had RELVERIFY too) *f
f* input and deselects gadget *f
/* is a requester, string *f
f* BORDER descriptor */
/* SELECT descriptor */
/* IntiuText to write there */
f* mutual exclusion (could use) */
/* special info *f
f* gadget identifier, user *f
f* user data pointer */

f* a dual-proportional gadget *f
/* next gadget in this list */
/* left edge, top edge of hitbox */
f* width and height of hitbox *f
f* flags */
f* activation flags */
/* this is a proportional gadget */
f* render normally with this image */
f* render highlighted with this one */
f* no text for this prop gadget *f
/* mutual exclude */
/* special info = definition of prop *f
f* this gadget's identifier for me *f
f* no user data on this one */

189

Listing 5.11; The trgadgets routine (continued)

PROGRAMMER'S GUIDE TO THE AMIGA

190

All of the GadgetlDs are based on a preassigned value called TEXT

WRITEGADGETS. If you modify this program for a lot of gadgets, this is

an easy way to uniquely identify the groups of gadgets.

The second and third gadgets defined in the listing are for changing

the styling and rendering of the text. For the style, you can use either

JAM 1 or JAM2. The two ROM-resident fonts, topaz-60 and topaz-SO, are

the possible choices for the rendering of the text. These are Boolean

gadgets also. You could, of course, install other choices using the text

information in Chapter 4 as your base.

The difference between these and the Cancel gadget are that these

are not ENDGADGETS. The requester remains present. What is done to

process these gadgets is to provide an alternative text for the gadget

and to change flag variables accordingly, thereby choosing which kind of

text will be used.

String Gadgets
The fourth gadget in Listing 5.1 1 is a string gadget. It is used to get

information from the user. The hit box is sized to show as much of a long

string as you wish. We chose to accept a string only as long as the box is

wide, but you could select a narrow box and a very long string.

This gadget has GADGHCOMP as a Flags parameter, which is required
for string gadgets. The Activation flag has ENDGADGET set so that the

requester goes away automatically if the user selects the string gad

get, then presses Return. Pressing Return becomes a signal to accept

the result regardless of what has been done within the string gadget

(even if nothing was done).

In GadgetType, REQGADGET I STRGADGET are set, Because

STRGADGET is set, Intuition knows how to interpret the Speciallnfo

pointer in the Gadget structure. Specifically, Intuition knows that this is

a pointer to a Stringlnfo data structure. The Stringlnfo structure is pro

vided in Listing 5.12.

This Stringlnfo structure provides information above and beyond the

Gadget structure itself, including a textstring parameter that tells

where to put the text the user inputs into this string gadget, and a text

undo parameter that provides an undo buffer. While using the gadget,

the user can implement the UNDO feature to restore the default text or

the last text entered (by pressing Return).

String gadgets automatically scroll to show as many characters as

the width of the gadget hit box allows. When string gadgets are drawn,

they contain a data entry cursor that is visible when the string gadget is

active. To control the initial appearance of the gadget, the Stringlnfo

INTUITION

/* stringinfostuff.c */

UBYTE textstring[lO];
UBYTE textundo[lO];
UBYTE *rlefaulttext = "test";

struct Stringlnfo
&textstring[O] ,
&textundo(O] ,

textstringstuff = [

0,
10,
0,

O,O,O,O,O,NULL,O);

/* default and final string */
/* optional undo buffer */
/* character position in buffer */
/* max characters in buffer */
/* buffer position of first displayed */
/* character */
/* Intuition local variables */

Listing 5.12: The string info structure

structure also defines:

• The position in the buffer at \Nhich the data entry cursor should be

positioned \Nhen the gadget is first selected (0),

• The maximum number of characters this string gadget is to

accept (1 0).

• The position \Nithin the buffer of the first character to be dis
played (0)

The variables that Intuition uses to keep track of \Nhat the user is doing
\Nith this string gadget have all been set to zero.

The global variables that are sho\Nn as part of Listing 5.12 are the

data storage spaces for the text string and its undo buffer. The default

text is copied into the text string area before the requester is first pre

sented. Thus, if a user selects the string gadget and presses Return, a

default string value is used.

Proportional Gadgets
For demonstrating proportional gadgets, \Ne've provided a gadget

that has an arro\Nhead image, called a slider, \Nhich has freedom to move

in both horizontal and vertical directions. To fully specify the propor

tional gadget, beyond the Gadget structure itself. you need three

additional data structures:

• A Proplnfo data structure (named textslider in Listing 5.1 3) that

describes the enclosure for the proportional gadget as \Nell as hO\N

the gadget behaves and its initial position.

191

PROGRAMMER'S GUIDE TO THE AMIGA

192

• An Image data structure (named textimage in Listing 5,13) that

describes the size of the slider and where its data can be found

This data must be in chip-accessible memory (MEMF _CHIP), If you

simply used the data structure defined by textsliderimage, the

slider would not be visible if your program was run on a system

that had external expansion memory (beyond 51 2K on the Amiga

1000) installed

• An array of unsigned words that contains the image itself, The

pointer called chipsliderimage, within the actual program, is set to

point to a block of allocated chip-accessible memory, The slider

image is then copied into this chip memory for later use.

Listing 5,13 contains the data structures and functions that define

the slider you use to position the text.

f* slider. c * f

f* This image contains a diamond-shape. *f
f* We'll get sneaky and use it as a *f
f* left-facing arrowhead by only *f
f* specifying use of the leftmost *f
f* 4 bits of the image. *f
UWORD textsliderimage[] = [

Ox03cO,
OxOffO,
Ox3ffc,
Oxffff,
Ox3ffc,
OxOffO,
Ox03cO !:

UWORD *chipsliderimage: f* Slider image must be in chip- *f
/* accessible memory; the program */
f* allocates chip memory and then *f
f* copies the slider image into it. *f

struct Image text image ~ [
f* image 16 bits wide but only using left 8 *f
f* so that left pointing arrow says where to *f
f* put the text *f

0,0,8,7,l,&textsliderimage[0],Oxl,0 !:

struct Proplnfo textslider = [
FREEHORIZ I FREEVERT,

f* Flags .• move freely *f
f* in both directions *f

0,0, f* HorizPot, VertPot .. set *f

Listing 5,13: The slider routine

f* the initial horizontal, vert. *f
f* positions, then read these *f
f* variables while or after user *f
f* is playing with the control *f

INTUITION

j* to see where the knob is */
j* currently positioned. *j

Oxffff, j* HorizBody ... not using *j
j* autoknob so this may not be *j
j* necessary to set to other than 0 *j

Oxffff, j* VertBody *j
O,O,O,O,O,o,}; /* Intuition's variables */

InitChipS1iderImage()
[

int i;
UWORD *s,*d;

chips1iderimage = (UWORD *)Al1ocMem(14,
if(chips1iderimage == NULL)
[

J
s
d
for
[

J

return(FALSE) ;

textsliderimage;
chips1iderimage;
(i=O; i<7; i++)

*d++ = *8++;

return(1'RUE) ;

De1eteChipS1iderImage()
[

j* static data within program *j
j* an area guaranteed in chip area *j

j* copy the data *j

FreeMem(chips1iderimage, 14);

Listing 5.13: The slider routine (continued)

The Flags parameter in the Proplnfo structure is set to allo\N both hor·

izontal and vertical movement of the control knob (slider). The HorizPot

and VertPot initial values are set to 0,0, placing the slider in the upper·

left corner of the container. These values \Nill change as the user manip

ulates the slider in horizontal or vertical directions. We are using static

data structures here, \Nith initial values determined at compile time. If

the requester is brought up multiple times and the user moves the con

trol slider, then each time the requester appears, the position of the

slider \Nil I reflect the position last set by the user.

As the user manipulates the slider, the values in HorizPot and VertPot

\Nil! vary from 0 to hexadecimal FFFF. The amount that they vary

depends on the \Nidth and height of the box in \Nhich they can move. For

example, if you allo\N 20 lines of vertical movement, that is, 20 possible

vertical positions at \Nhich the user can place the slider, then there are

20 possible values that VertPot can have. Each value \Nill differ from the

adjacent value by approximately hex FFFF divided by decimal 20.

193

PROGRAMMER'S GUIDE TO THE AMIGA

194

To interpret the horizontal or vertical values, use the follo\Ning

formula:

myrange mymaxvalue - myminvalue;

/* determine the range of actual values that you'd like * /
/ * the pot value to represent * /

myactualvalue = myminvalue +
((ULONG)myrange * (ULONG)textslider.vertPot)
/OxFFFF;

/* The above is a little bit of integer arithmetic, creating */
/* a fraction by which the "myrange" value is multiplied, */

/ * (the multiplication precedes the division to preserve * /
/ * as much precision as possible) * /

Intuition also provides an autoknob capability, not used here, that lets

you automatically create the slider image, The size of the automatically

generated knob represents the proportion of a smaller image that is

actually being used. As an example, a SCIoli gadget attached to a \Nin

dO\N may have an autoknob the full size of the container if the entire

contents of the \Nindo\N are visible, or only a part of the size of the con
tainer if only part of the \Nindo\N contents is seen. In this case, you'd set

the AUTOKNOB flag in the Proplnfo structure, and not point to any

slider image at all.

If you are interested in the rest of Intuition's Proplnfo parameters, see

the explanations in the Amiga Intuition Manual. The rest are primarily

intended for Intuition's internal use and you needn't bother \Nith them to

be able to use the proportional gadget.

Menu Processing
To process menu selections (MENUPICKs), you use the system macros

MENUNUM, ITEMNUM, and SUBNUM. These retrieve numeric values

from an IntuiMessage Code parameter for \Nhich menu the selection

\Nas from (values from 0 to 30), the menu item number \Nithin that menu

(values from 0 to 63), and the subitem, if any, attached to that

menu item.

It is possible that the user might play \Nith the menus, but make no

selection \Nhatsoever. This translates to an IntuiMessage Code value of

MENUNULL \Nith an IntuiMessage Class value of MENUPICK. You can tell

that this has happened by either looking at the Code value directly or by

interpreting the menu, menu item, and menu subltem values individually.

INTUITION

195

In this case, MENUNUM(code) returns NOMENU, ITEMNUM(code) returns

NOITEM, and SUBNUM(code) returns NOSUB. The easy way out isjust to

provide processing for whatever legal values you recognize, and as a

default, ignore anything else.

Thus, the limits that Intuition imposes for menu operations are as

follows:

• 31 textual selections within the menu strip maximum

• 63 textual or image selections within the menu item group

attached to each menu selection

• 31 textual or image selections within the menu subitem group

attached to each menu item selection

That's a lot of possibilities

Listing 5.14 is the routine used to process the IntuiMessage that con

tains a MENUPICK event. Recall that the Color menu lets you pick a color

to use for drawing, and the Text menu brings up a requester that lets

you specify a position at which to place text. The menu processing does

indeed take the easy way out, processing only the legal values for the

IntuiMessage code, and ignoring anything else.

Gadget Event Processing
The routine in Listing 5.15 is a little bit complicated, since it is handling

proportional gadgets, string gadgets, and Boolean gadgets, but a switch

statement with cases for each does the trick.

Listing 5.16 includes the three routines that actually change the way

text will be rendered-textmode, textstyle, and textwrite (finally ren

der the text). The first two routines are relatively simple. The third has

code that interprets the current settings of the proportional gadgets

to determine where in the drawing area to place the text. You'll notice

that in textstyle, the system looks directly at the values of the pointers

to the identifying text. This is done in lieu of a strcmp function. If the

pointers have the same value, both pointers are pointing to the same

string. The IntuiT ext for the requester is in this module as well as the pro

cessing routines.

THE PAINTING PROGRAM
Finally, Listing 5.17 is the main body of the painting program that

brings everything together.

PROGRAMMER'S GUIDE TO THE AMIGA

196

/* menupick.c */

#define COLORMENU 0
#define TEXT MENU 1

#define FIRST ITEM 0

MenuPick(im)
struct IntuiMessage *irn:

USHORT code, k;

code ~ im->Code:

switch(MENUNUM(code))

case COLORMENU: /* set a new pen color */

k = ITEMNUM(code);

if(k >= 0 && k <= 15) /* in range? */
r

break;

SetAPen(rp, ITEMNUM(code)),
SetDrMd(rp, JAM1);

case TEXTMENU: /* bring up the requester */
/* in our window */

Request(&textrequest,w);
break;

default:
break;

ret urn (TRUE) ;

Listing 5.14: The menupick routine

/* gadgetup.c */

#define GADGETID «(struct Gadget *)IAddress)->GadgetID
GadgetUp(ms)

struct IntuiMessage *rns:

SHORT id;
struct Gadget *g;

g = (struct Gadget *)(ms->IAddress);
id = g->GadgetID;

/* which gadget number was it? */

switch(id) [

Listing 5.15: The gadgetup routine

return(TRUE) ;
I

case TEXTWRITEGADGETS:

textwri te() ;
break;

case TEXTWRITEGADGETS+l:

/* write the text! */

break; /* Cancel gadget, so no action *1
/* needed. Besides, Cancel */
/* contains an ENDGADGET that */
/* kills the Requester. */

case TEXTWRITEGADGETS+4:

break; /* proportional gadget events. */
/* Don't care what happens with */
/* the prop gadget until the */
/* user actually wants to write */
/* the text. THEN interpret it. */

case TEXTWRITEGADGETS+2:

textstyle ();
break;

case TEXTWRITEGADGETS+3:

text mode () ;
break i

default:
break;

/* topaz-60, topaz-BO */

/* JAMl, JAM2 */

Listing 5.1 5: The gadgetup routine (continued)

/* textstuff.c */

int txfont, txmode; /* globals for text control */

/* forward declarations to make compiler happy */

extern struct Window *w~
extern struct TextAttr TestFont;
extern struct Proplnfo textslider;
extern struct TextAttr modfontattr;
extern struct Gadget trg[];
extern struct Requester textrequest;

struct IntuiText textreqtext[] = (

/* requester IntuiText for this color requester */

(a,I,JAMl, 5, 3, &TestFont, "Click To Change Mode:",

Listing 5.16: The textstuff routines

INTUITION

197

PROGRAMMER'S GUIDE TO THE AMIGA

198

&textreqtext[l)),
O,I,JAMl, 5, 13, &TestFont, "Click To Change Style:",

&textreqtext[2)),
O/I,JAMl, 5, 30, &TestFont, I'Pointer Positions Text " ,

&textreqtext[3)),
O,l,JAMl, 5, 80, &TestFont, "Click In Text Box To Type",

&textreqtext[4)) ,
O,I,JAMl, 25, 90, &TestFont, "Into Drawing Area",

&textreqtext[5)),
O,l,JAMl, 5, 105, &TestFont, "Press Return To Draw Text",

&textreqtext[6)),
O,l,JAM1, 5, lIS, &TestFont, "Click CANCEL To Exit",

NULL) ,

/* gadget text is not linked into above IntuiText
/* just a convenient place to

/* gadget IntuiText for this

l,O,JAM2, I,
NULL) ,

1. 0, JAM2, 1,
NULL) ,

1, 0, JAM2, 1,
NULL) ,

1,0,JAM2, I,
NULL} ,

1,O,JAM2, 1,
NULL}

) :

textstyle()
(

0, &TestFont,

0, &TestFont,

0, &TestFont,

0, &TestFont,

0, &TestFont,

store it. */

color requester

"JAMl" ,

"JAM2",

"Topaz-80" ,

IITopaz-GO" ,

IICANCEL u ,

if(trg[l).GadgetText == &textreqtext[7))
[

else
[

trg[l).GadgetText = &textreqtext[8):
txmode = 2:

*/

if(trg[l).GadgetText == &textreqtext[8))
[

...

trg[l).GadgetText = &textreqtext[7):
txmode = 1:

)
/* we changed one of them, so refresh them all */
RefreshGadgets(&trg[1),w,&textrequeet):

textmode()
[

if(trg[2).GadgetText == &textreqtext[9])
[

else
[

trg[2).GadgetText = &textreqtext[lO]:
txfont = 60:

if(trg[2).GadgetText == &textreqtext[lO)
[

trg[2).GadgetText = &textreqtext[9):
txfont = 80:

Listing 5.16: The textstuff routines (continued)

*/

RefreshGadgets(&trg[I],w,&textrequest);

textwrite()
{

ULONG tempI, temp2;

struct TextFont *oldfontsave~
struct TextFont *myfontptr;

/* scale the positions against the actual screen size:*/
/* same could have been done with a window and so on */

f* use the high 8 bits of each value ... good enough *f
/* resolution. *f

templ «textslider.HorizPot
temp2 = «textslider.VertPot

» 8) * (WWIDTH-l)) » 8;
» 8) * (WHEIGHT-l)) » 8;

f* above converts slider position to a value within the *f
f* allowable range of the window *f
Move(rp,templ,temp2);

if (txmode == 1)
SetDrMd(rp,JAMl):

else
SetDrMd(rp,JAM2);

if(txfont == 80)
modfontattr.ta YSize 8·

else
modfontattr.ta YSize 9;

f* save current intuition font *f
oldfontsave = rp->Font;

f* select the font that user wants *f
myfontptr = (struct TextFont *)OpenFont(&modfontattr);

if(myfontptr == 0)
(

printf("\font wont open");
f* don't draw text if font not found *f
return(O);

1
SetFont(rp,myfontptr);

/* don't draw text if font is bad */

Text(rp,&textstring[O],strlen(textstring)):

/* restore old font */
SetFont(rp,oldfontsave):

/* close the new font */
CloseFont(myfontptr);
return(O) ;

Listing 5.16: The textstuff routines

INTUITION

199

PROGRAMMER'S GUIDE TO THE AMIGA

200

/* main.c */

#include "exec/types.h"

#define EDITLEFT 4
#define EDITRIGHT 324
#define EDITTOP 12
#define EDITBOTTOM 180
#define MAXVIEWS 9

/* half a screen, means 80 pixels wide max */
/* maximum 42 pixels tall for current rev. */

#define BOBDEPTH 4
#def i ne FRAMEWI DTH 80
#define FRAMEHEIGHT 42
#define getc() Read(stdin, c, 2)
#define TXHEIGHT 8

struct frame (
SHORT xmin, ymin;
SHORT xmax, ymax;
struct BitMap bitmap:
) ;

#define qr(r,rl,rh) ((r >= rl && r <= rh) ? I : 0

f* starting gadget number for gadget id's */

#defineMOVEGADGETS OxO /* move within frame */
#define COLORGADGETS OxlO f* for changing up to 32 colors *f

f* also includes proportional gadgets, and
* boolean in the system colors requester *f

#define TEXTCOLORGADGETS Ox30 f* for text primary color (up to 32) */
#define TEXTWRITEGADGETS OxSO /* string, prop, and three boolean */
#define DISKRWGADGETS Ox60 f* string, bool, some error handling */

#define SCROLLGADGETS Ox68
#define RECONFIGGADGETS Ox70
#define HELPGADGETS Ox90
#define EXITGADGETS Ox98
#define DEPTH 4
#define WWIDTH 320
#define WHEIGHT 190

#include "intuition/intuition.h"
#" i nel ude "exec/ memory .. h"

/* everything copied to RAM and compiled from there *f

:!tinclude "ram: imageedit.h"
#" i ncl ude "ram: myscreen2. hI!
#include "ram:event2.c"
#include "ram: stubsl .. c"
#include "ram:ticks.c"
#:include I'rarn:mousebuttons.c"
#include "rarn:stringinfostuff.c"
#include "ram:slider.c"
#include "ram:textstuff.c"
'include "ram:trgadgets.c"
'include "ram:inittr.c"

struct Window *w;
struct RastPort *rp~
struct ViewPort *vp~

struct Screen *screen;
struct Image colorimage[32];

Listing 5.17: The main p,og,am

/* provide for max possible */

INTUITION

201

long IntuitionBase=O;
struct Menultem coloritem[32], /* just in case depth of 5 required */

long GfxBase=O;
struct Menu menu[2]; /* one major menu item present */

extern struct Screen *OpenScreen{);
extern struct Window *OpenWindow();

#define ITEMSTUFF (ITEMENABLED I HIGHBOX)
#define CW 40 /* color block width and height for color palette */
#define CH 25

SHORT palette(] = (2, 4, 8, 16, 32, 64);

#include IIrarn:initmenu.c"
#include "ram:menupick.c ll

'include "rarn:gadgetup.c"

maine)
(

struct IntuiMessage *mess;
int havevalidimage

GfxBase = OpenLibrary("graphics.library", 0);
if (GfxBase == NULL)
(

printf("Unable to open graphics library\n");
exi t (l000) ;

J
IntuitionBase = OpenLibrary(lIintuition.library", 0);
if (IntuitionBase == NULL)
[

printf("Unable to open intuition lihrary\n");
exit(lOOO) ;

screen = OpenScreen(&ns);
if (screen == NULL)
[

exit(l) ;

nw.Screen = screen~

w = OpenWindow(&nw);
rp = w->RPort;
vp = &w->WScreen->ViewPort;

Ini tMenu();

SetMenuStrip(w, menu);

InitTextRequest();

havevalidimage = FALSE;

if(InitChipSliderlmage())
(

/* open a window */

textimage.lmageData = (USHORT *)chipsliderimage;
havevalidimage = TRUE;

)
/* had to do InitChipSliderlmage just in case system used */
/* to run this program has more than 512K of RAM. The */
/* slider image must be in chip-accessible RAM. */

Listing 5.17: The main program (continued)

PROGRAMMER'S GUIDE TO THE AMIGA

202

while(l)
(

/* "forever" ... wait for close message */

/* It is possible for Intuition to send you more */
/* than one message while your task is sleeping. */
/* You must empty the port before putting your task */
/* to sleep again. The construct shown here handles */
/* each message that it receives and only goes */
/* to sleep when the port has been emptied. */

mess ~ (struct IntuiMessage *)GetMsg(w->UserPort);

if(mess ~~ NULL)
WaitPort(w->UserPort);

else
if(HandleEvent(mess) ~= FALSE)

break;

/* clear the menu strip, then close what we opened */

if(havevalidimage)
(

DeleteChipSliderlmage();

ClearMenuStrip(w);
CloseWindow(w) ;
CloseScreen(screen);
CloseLibrary(GfxBase);
CloseLibrary(IntuitionBase);

/* end of main() */

Listing 5.17: The main program (continued)

OPTIONAL EXTRAS
The painting program built in this chapter provides many useful tools

for you to use in your O\Nn Intuition programs. Of course, It couldn't

include every available feature. There are a couple of features included

here to give you some extra ideas about things you can do to make Intui

tion even more versatile,

Images and Text Combined
Intuition lets you set the GADGIMAGE flag for gadgets to indicate

that GadgetRender and SelectRender point to image data rather than

text (IntuiText), In a similar manner, Intuition lets you set the ITEMTEXT

flag for menu items to Indicate that the ItemFill and SelectFili pointers

pOint to IntuiText rather than image data. But \Nhat if you \Nan ted your

menu item or gadget to look as though it combined both image and

text?

You can create this impression by simply combining t\NO menu items

or t\NO gadgets, one containing IntuiT ext, the other containing image

INTUITION

203

M #1 I tuiText Menu item enu tern : n

,--l
I

Text Background I ! Menu Item #2: Image Menu Item
I I
L .. _J

r
hit box for th e image portion

hit box for the text portion

Figure 5.4: A color s\Natch embedded in a menu item

data. Just size the hit boxes so that one totally encloses the other. Make

the outermost hit box belong to the gadget or menu item closest to the

front of the linked list of gadgets or menu items. Figure 5.4 shovvs a

color svvatch (image) embedded in a menu item (IntuiT ext).

Menu item 1 sets the ITEMTEXT flag and is early in the menu item list.

This forms the "Text Background" item. Menu item 2 does not set ITEM

TEXT and is later in the list than item 1. Because item 1 's hit box totally
surrounds item 2, it can never be selected directly. The item itself,

though composed of tvvo distinct menu items, looks like only a single

item to the user, even vvhen selected.

Menu Item Lists
Intuition does not restrict the vvay in vvhich you can use the menu item

lists. Once a list is built, in addition to linking it to a menu, you can link it to

one or more menu items as a submenu. For example, in the painting pro

gram, you could have built the first menu as follovvs:

Color

Drawing Pen

Text Foreground
Text Background

Then you could have linked the Color panel images as a subitem onto

PROGRAMMER'S GUIDE TO THE AMIGA

204

each of the three main menu items. Here is that linkage in pseudocode:

<color> .Firstltem = <drawing,pen>

< drawing. pen> ,Nextltem = <textforeground>
<drawing.pen > .Subltem = <firstitem.in.colorimage.list>

<textforeground > . Nextltem = <text.background>
<textforeground > .Subltem = <firstitem.in.colorimage.list>

<text.background>.Nextltem = NULL;
<text.background > .Subltem = <firstitem.in.colorimage.list>

Then each one of the menu items \Nould bring up an identical set of color

panels from \Nhich the color could be chosen.

If you use this technique, you might also consider combining it \Nith the

previous technique of apparent text and image so as to sho\N the color

that is currently selected for that item. To do this, leave out the

CHECKIT flag, since the subitem \Nil! be shared among three different

menu items. Figure 5.5 sho\NS hO\N this system might appear to the user

\Nhen the third item is selected and its submenu is on.

Notice that since the subitem starts at a position relative to the menu

item to \Nhich it is attached, the group of color s\Natches \Nill begin at

precisely the same position relative to each of the three items.
Note also that you can specify a negative value for the LeftEdge and

Top Edge of your menu items and still cause the object to be positioned

at the appropriate place. Figure 5.6 sho\NS hO\N this \Norks.

This chapter has demonstrated the primary user interface features

that you'll need to be able to create Intuition programs: screens, \Nin

dO\Ns, gadgets, requesters, and menus. Here are some summarizing

notes:

• Screens let you define the resolution and number of colors in your

dra\Ning area.

• Windo\Ns let you split screens into multiple, overlapped areas.

• Requesters, gadgets, and menus help you to get information from

users.

If you need more information about any of the topics covered in this

chapter, I suggest you study the Amiga Intuition Manual, \Nhich

describes all of the data structures and routines in great detail.

INTUITION

205

,--l
I I

Drawing Pen I I
I I L __ J
,--l (Menu Items)

I I
Text Foreground I I

I I L __ J

Text Background DODD
DODD
DODD
DODD

Select A Color

(Subitem)

Figure 5.5: A subitem of three menu items

<t 1.9
~

<t w

I f-~ u
o 5 l')
If)

fr: w

:;; ::>
<t a: (J

°llD
a:

0
n

N

V
a

lu
e

 o
f T

opE
dge fo

r r
su

b
ite

m

(n
e

g
a

tive
 v

a
lu

e
)

(M
e

n
u

 Ite
m

s)

F
irst

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

S
e

co
n

d

T
h

ird

F
o

u
rth

TO
D

Ed

I S
u

b
ite

m
 o

f T
h

ird
 M

e
n

u
 Ite

m

tiv
e

 b
e

ca
u

se
 it

h
e

 T
opE

dge o
f

m

e
tc.

J
o

sitive
 b

e
ca

u
se

 th
is

e
d

 to
 th

e
 rig

h
t re

la

tive
 to th

e
 L

e
ftE

d
g

e
 o

f its a
sso

cia
te

d

m
e

n
u

 ite
m

I"

--I
V

a
lu

e
 o

f L
e

ftE
d

g
e

 fo
r

su
b

ite
m

 (p
o

sitive
 v

a
lu

e
)

OJ
C

C

o
-iJ
iii
o Q

QJ

>

-iJ
ru
(jj
L

E

QJ
-I-'
15 :J
Ln

l!i
ui ~ :J
OJ

i.L

Devices

Recall from Chapter 3 that Exec provides a standard protocol for aili/O.

110 takes the form of a request (actually a message) that is passed from

a program (task) to a device driver. The device driver takes care of all of

the low-level interaction, i.e., the bit-manipulation that actually accom

plishes the I/O. This means that your programs can use higher level code

to communicate with devices instead of trying to control what happens

at the hardware level.

A cautionary note is in order here. Once you have formulated an I/O

request for a device and have sent it to the device, that block of mem

ory you passed to the device no longer belongs to your task. Don't

attempt to read or write from or to the 10Request block until the

request has been completed. Many devices use the data structures con

tained in the 10Request block for their own purposes. You can cause a

system crash if you attempt to read from or write to data structures

that are not exclusively under your control.

This chapter discusses communications with the Timer, Console,

Input, Keyboard, and Gameport devices. The Serial device and the

Printer device are among the devices that are not discussed here. For

information on these topics, see the Amiga ROM Kernel Manual. Note

that with release 1 .2 of the Amiga software, the Preferences program

can be used to make the most important changes to the characteristics

of the Serial device. Thus, it has become unnecessary for a program to

change these characteristics.

If you tried the painting program in Chapter 5, you may have noticed

that the speed of the painting was slow. In fact, the Amiga is capable of

considerably faster responses than you may have noticed there.

The slow drawing speed came from the choice of when to draw

another pixel. Recall that a pixel is drawn in the selected color when the

mouse selection button is held down and an INTUITICKS message is

received. Since these messages arrive only once each one tenth of a sec

ond, the drawing speed is limited to ten pixels per second.

There are several ways that you can improve the drawing speed. One

is to set the FOLLOWMOUSE flag in the NewWindow data structure.

When the selection button is held down, your program responds to

mouse coordinate reports to draw the pixels. Another method is to use

a faster timer.

THE TIMER DEVICE
There are two units to the Timer device. One unit manages a very

accurate timer, measuring in units of 16.67 milliseconds, thereby making

possible up to 60 timing events per second. That is much better than the

PROGRAMMER'S GUIDE TO THE AMIGA

210

INTUITICKS performance, but INTUITICKS is there for convenience, not

for speed. This precision timer is called the VBLANK timer.

The other timer unit is called the MICROHZ timer, since it can be pro·

grammed down to the microsecond. Rather than using this timer for its

precision, though, you will more likely use it for its speed. You see,

because of Amiga multitasking, a task may sleep waiting for a timer

message to arrive at its message port. With other tasks going on, the

task awaiting the timer message might not wake right away when the

timer times out. Thus, when you set up a timer 110 request and put your

task to sleep waiting for a timeout, your task will sleep at least as long

as the time-out you have requested. But it might sleep for an indetermi

nate amount of time after that, depending on what else is going on in

the system when the time-out happens.

To use the Timer device, you must do the following:

1. Select which of the timer units to use and open it

2. Create a timerlORequest block and write your timing values into it

3. Establish a reply port to receive the message from the Timer

device that the time has run out

4. Write the address of this reply message port into the message
block

5. Send the message block to the Timer device

6. Wait for the reply to arrive at your reply port or do something else

and check for the reply later on

7. Close the timer when you are done with it

Most of the system devices can be open and accessible to only one

task at a time. The Timer device, on the other hand, can service many,

many tasks at once.

When you transmit a timing request to the Timer device, the device

modifies the contents of the request and then sorts the list of timing

requests in a relative sequence based on the request that will time-out

first. In other words, if three tasks send messages to the timer, such as

• Task 1 : Wake me up in 5 minutes

• Task 2: Wake me up in 1 minute

• Task 3: Wake me up in 2 minutes

DEVICES

211

the Timer device will modify the timing requests, resequence them, and

change their internal meaning, as follows:

• Task 2: Wake me up 1 minute from now

• Task 3: Wake me up 1 minute later than in the previous request

• Task 1: Wake me up 3 minutes later than in the previous request

This modified set of timing requests is performed sequentially by the

timer hardware. The timer request blocks are returned to each timer, in

turn, after the time that they originally specified.

Each device uses its own version of an IORequest block. However, you

can simplify things for the timer and utilize a standard system support

function, CreateStdlO, to create a request block for the timer. In the

request block that this function returns, the fields can be renamed (with

a define statement) to allow you to use appropriate names for setting

the time values:

#define SECONDS io_Actual
#define MICROSECONDS io_Length

Both the iO_Actual and the SECONDS value in a normal timeval data

structure are defined as unsigned long data, so these name assign·

ments provide a convenient way of allocating memory for a timer

request without the need to provide an additional locally defined func

tion.

Listing 6. 1 is the code you can use to create a timer request. Note that

this code also creates a message port at which to receive the timer mes

sage when the timing is completed. The reply message port address is

part of the parameters passed to CreatePort. You use the routine to

establish an IORequest block for timer communications.

The InitTimer routine in Listing 6.2 can be used to set up the very first

timing. In a program, you will do something when the timer message is

received, then reinitialize the timer request block and send it off again.

The timer variables timerSeconds and timerMicros are global variables

so that they can be modified by other routines if necessary. To use the

timerstuff routine, you must have saved the pointer to the IOStdReq

block returned by PrepareTimer; you pass that pointer to this routine.

When you are finished using the timer, make sure the last time-out

message has been received, then delete the timer data structures using

the routine in Listing 6.3.

Listing 6.4, in pseudocode, is the sequence in which you call the rou

tines to utilize the timer. This is an excellent chance to take advantage of

PROGRAMMER'S GUIDE TO THE AMIGA

212

f* preparetimer.c *f

struct IOStdReq
struct MsgPort
struct IOStdReq
struct MsgPort

*tr~

*tp;
*CreateStdIO() ;
*CreateJ'ort ();

struct IOStdReq *
PrepareTimer ()
r

tr NULL;
tp = CreatePort(O,O);

if(tp == 0)
(

f* start out unsuccessful *f
f* create a port with no name *f
f* and set its priority to zero *f

f* report the error or do something *f
f* if the port cannot be created. *f
return (tp);

tr CreateStdIO(tp);

if(tr == 0)
(

f* returns NULL *j

f* again, do something if there is not enough *f
f* memory for the IOStdReq block. *f

)
return(tp) ;

f* end of PrepareTimer() *f

Listing 6.1: The preparetimer routine

f* timerstuff.c *j

int timerseconds, timerMicros; f* globals *f

InitTimer(trq)
struct IOStdReq *trq;

OpenDevice(TIMERNAME,UNIT VBLANK,trq);
SendTimer(trq); -
return(O);

SendTimer(t rq)
struct IOStdReq *trq;

trq->SECONDS = timerSeconds;
trq->MICROSECONDS = timerMicros;
SendIO(trq) ;
return(O);

Listing 6.2: The timerstuff routine

DEVICES

/* deletetimer.c */

DeleteTimer(trq)
struct IOStdReq *trq,

struct MsgPort *mp,
mp = trq->ReplyPort,

DeleteStdIO(trq),

DeletePort(mp) ,
return(O),

Listing 6.3: The deletetimer routine

213

Exec's ability to suspend execution of a task that is waiting for the

occurrence of one or more events. You can tell Exec that your task

wants to wake when either the timer times out or an IntulMessage is

received. (Note that you could have used UNIT _MICROHZ in place of

UNIT _ VBLANK in Listing 6.2)

Recall from the main painting program in Chapter 5 that this state

ment can be used to put a task to sleep:

WaitPort(w- > UserPort)

struct IOStdReq *myTimerRequest,

other program initialization~ ..

myTirnerRequest = PrepareTimer(); /* initialize a timer request */

InitTimer(myTimerRequest), /* start the first timeout */

/* later ... (loop?) */

go to sleep until timer times out then

wake up and do something until some terminating condition

then on termination:

AbortIO(myTimerRequest) /* make sure last timer request */
/* has completed so we can free */
/* the memory resources */

DeleteTimer(myTimerRequest),

Listing 6.4: A timer fragment

PROGRAMMER'S GUIDE TO THE AIVIIGA

214

There is another vvay to put a task to sleep. You can vvait on a combina

tion of signal bits vvhere each signal bit, vvhen set to 1, tells you that

something has happened. (See Chapter 3 for a discussion of signals.) You

can vvait on a signal bit from either of tvvo ports: the IDCMP (referenced

as vv->UserPort) and the reply port for the timer messages, vvhich can

be referenced by

myTimerRequest- > ReplyPort

There is a specific signal bit associated vvith each port. The follovving

define statements provide the method for accessing that particular sig

nal bit in each type of port:

#define IPORTSIGNAL w- >UserPort- >mp_SigBit
#define TIMERSIGNAL myTimerRequest- > ReplyPort- > mp_SigBit

If you vvant to suspend your task until either the timer message or an

IntuiMessage arrives, you use Wait instead of WaitPort and specify the

combination of bits representing events that you are avvaiting:

ULONG wakebits; I * provide a place to store the status of * I
I * which bits were set when the task woke up * I

wake bits = Wait(IPORTSIGNAL ITIMERSIGNAL);

Then, vvhen your task avvakens, you process the vvake-up call in a man

ner similar to that shovvn in Listing 6.5.

j* multiwakeup.c *j

if (wakebits & IPORTSIGNAL)
[

}

j* empty the IDCMP UserPort, processing all messages *j
j* as done in event2.c in Chapter 5 *j

if (wakebits & TIMERSIGNAL)
r

j* if there is only one timer message sent off, then *j
/* there can be only one timer message received. */
j* Remove the message from the ReplyPort and *j
/* reuse it to ask for the next timeout. */

GetMsg(myTimerRequest->Replyport);
timer->SECONDS = timerSeconds;
timer->MICROSECONDS = timerMicros;
SendIO(myTimerRequest);

/* program will loop back to the Wait statement from */
j* here since both types of messages (if any found) will *j
j* have been processed by the time the code gets here. *j

Listing 6.5: The multiwakeup routine

DEVICES

215

As part of your final processing, you call Delete Timer, \Nhich returns

all memory resources appropriated by Prepare Timer to the system

free·memory list.

THE CONSOLE DEVICE
There are many times \Nhen a programmer \Nants to emulate the

operations of a simple ASCII terminal. The Amiga can perform terminal

emulation in one or more Intuition \Nindo\Ns by using the Console device.

The Console device obeys many of the standard ANSI terminal code

sequences for moving the cursor and controlling the display. In addition,

there are several codes that the Console device follo\NS that are unique

to the Amiga. See Chapter 6 of the Amiga ROM Kernel Manual for details

about exactly hO\N the Console device handles ANSI terminal codes.

Consoles must be attached to Intuition \Nindo\Ns. Before you create a

console, you must create an Intuition \Nindo\N. If you attach an IDCMP to

the \Nindo\N, the IDCMP takes precedence over the Console device

regarding the messages that it receives. For example, if you specify

RAWKEVS or VANILLAKEVS as one of your IDCMP flags \Nhen a \Nin·

dO\N is opened, then attach a console to that \Nindo\N, the console \Nill

never see any keystrokes. Thus, it \Nill never be able to interpret them

for you.

Listing 6.6 provides a fe\N supporting routines that you can include

\Nith your code to enable you to communicate effectively \Nith the

Console device. These routines provide a \Nay to create and delete
a console, and to read characters from and \Nrite characters to a

console-perhaps several characters in a single function call.

The advantage to allocating memory and passing data as sho\Nn in

the routines in Listing 6.6 is that each time you open a Console device,

you get a unique pointer to that console's IORequest blocks (if every·

thing \Nent all right). Thereafter, you can refer to a specific console by

using its O\Nn unique pointer to its message blocks. To remove a particu·

lar console, you use DeleteConsole, passing it the pointer to that con·

sole's message blocks.

Console Character Codes
The Console device receives its input from a number of different lev·

els of hard\Nare and soft\Nare. The Amiga keyboard transmits a set of

ra\N key codes-a unique code for each key, \Nith a separate code for

key presses and releases. The Keyboard device collects these key·

strokes and feeds them as input events to the Input device. The Input

device merges together information from the Keyboard device and the

PROGRAMMER'S GUIDE TO THE AMIGA

216

/* consolestuff.c */

extern struct IOStdReq *CreateStdIO(),
extern struct MsgPort *CreatePort();

struct ConIOBlocks [

) ;

struct IOStdReq *writeReq;
struct IOStdReq *readReq;
struct MsgPort *tpr;

/* I/O write request */
/* I/O read request */
/* pointer to ReplyPort */
/* for the console read */

struct ConIOBlocks *
CreateConsole(window)

struct Window *window;

struct ConIOBlocks *c;

struct MsgPort *tpw;

int error;

c = (struct ConIOBlocks *)AllocMem(
sizeof(struct ConIOBlocks), MEMF_CLEAR);

if (c == 0) /* out of RAM */
goto cleanupl;

tpw = CreatePort(O,O); /* reply port for write */
if (tpw == 0)

gato cleanup2;

c->tpr = CreatePort(O,O); /* reply port for read */
if (c->tpr == 0)

gota cleanup3;

c->writeReq = CreateStdIO(tpw);
if(c->writeReq == 0)

goto cleanup4;

c->readReq = CreateStdIO(c->tpr);
if(c->readReq == 0)

goto cleanupS;

c->writeReq->io Data (APTR)window;
c->writeReq->io=Length = sizeof(struct Window);

error = OpenDevice("console.device",O,c->writeReq,O);
if (error != 0)

goto cleanup6; /* cannot open the console! */

c->reaoReq->io Device c->writeReq->io_Device;
c->readReq->io-Unit c->writeReq->io Unit;
/* Above copies the I/O request block from a */
/* block initialized from a successful open.*/
/* Means both read and write are talking to the */
/* same instance of a console. */
return(c); /* pointer to the ConIOBlocks * /

/* containing both read and */
/* write control blocks. */

cleanup6:
DeleteStdIO(c->readReq);

cleanupS:
DeletePort(c->tpr);

Listing 6.6: The consolestuff routines

cleanup4:
DeleteStdIO(c->writeReq),

cleanup3:
DeletePort(tpw),

cleanup2:
FreeMem(c, sizeof(struct ConIOBlocks)),

cleanupl:
return (NULL),

DeleteConsole(c)
struct ConIOBlocks *c;

struct MsgPort *mp;
AbortIO{c->readReq), /* abort any read in progress */
CloseDevice(c->writeReq)i /* close the console device */

mp = c->writeReq->io_Message.mn_Replyport:

DeleteStdIO{c->writeReq),
DeletePort (mp),

mp = c->readReq->io_Message.mn_ReplyPort:

DeleteStdIO{c->readReq),
DeletePort (mp),

FreeMem(c, sizeof(struct ConIOBlocks));
return{O),

#define CON READ c->readReq
#define CONWRITE c->writeReq

/* ask console, asynchronously, to read a character */

EnqueueRead(c, location)
struct ConIOBlocks *c;
char *location:

struct IOStdReq *conr,
conr = c->readReq:

conr->io Command = CMD READ:
conr->io-Length = 1:
conr->io-Data = (APTR) location,

7* buffer into which to store data read */
SendIO{conr),

/* asynchronous posting of a read request */

/* write a specified number of characters from a buffer to
* a particular console device.
*/

WriteConsole(c, data, length}
struct ConIOBlocKS *Ci

char *data;
WORD length,

struct IOStdReq *conw;
conw = c->writeReq:

conw->io Command CMD_WRITE, /* what to do */

Listing 6.6: The consolestuff routines (continued)

DEVICES

217

PROGRAMMER'S GUIDE TO THE AMIGA

218

conw->io Length
conw->io-Oata
DoIO(conw) ;

= length; /* how many characters */
(APTR)data; /* where is the data? */
/* synchronous ... wait until console */
/* task has accepted the data before */
/* goi ng on wi th something el se. * /

int
CGetCharacter(c,wait)

/* If wait is TRUE, wait until a character */
/* is typed. Return the character as the result. */
/* If wait is FALSE, return the character value */
/* if a character is ready~ otherwise return -1. */

struct ConIOBlocks *c;
BOOL wait;

struct MsgPort *mp;
struct IOStdReq *conr;
char *dataAddri
int temp:

mp = c->tpr:
if(wait)

/* find the read reply port */

(
WaitPort(mp);

conr (struct IOStdReq *)GetMsg(mp);
if(conr == 0)
(

else
{

return(-l); /* no character present */

dataAddr = (char *}conr->io Datai
temp = *dataAddr; /* get the value */
EnqueueRead(c, dataAddr); /* continue the read */
return(temp) ;

/* end of CGetChar */

Listing 6.6: The consolestuff routines (continued)

Gameport device, making up an input·event stream for Intuition. If Intui·

tion does not directly interpret the events in the IDCMp, the events

come through to the Console device and are translated as one or more

characters per keystroke.

There is a special map that is used by the Console device to translate

various key combinations. The default mapping of the Console device is

such that what you see on the Amiga keyboard is pretty much what

you get typed on the screen. The letter keys, for example, are trans·

lated into uppercase or lowercase ASCII characters, with the Shift key

state determining the case of the letters. The number keys on the key

board and on the numeric keypad are translated into their ASCII equiva

lents. The Enter key has the same effect as the Return key. Del, Tab, and

Backspace transmit the expected ASCII codes.

DEVICES

219

The special keys, such as arrow keys, function keys, and the Help key

transmit more than one character to the Console device for a single key

stroke. The values for these special keys are listed in Table 6.1 . The Con

trol Sequence Introduction character appears as <CSI> in Table 6.1. It is

a single character, having a value of hexadecimal 9B. In your input char

acter stream from the console, a value of 9B will tell you that somebody

has pressed one of these special keys.

Notice that the last two shifted values in Table 6.1 have a space

between the < CSI > and the character. This space is part of the

sequence transmitted.

Setting and changing console mapping is beyond the scope of this

book. (Refer to the Amiga ROM Kernel Manual.)

Complex Input Events
You can read complex input events through the Console device. Some

of the events available are raw key codes, mouse events, menu selec

tions, gadget selections, and disk insertion and removal. You could send a

special command sequence, via a console write, to the Console device to

request that you receive these events. However, getting complex input

events through Console device calls is not recommended. There is

simply too much overhead involved. The IOCMP facility of the Intuition

window can provide you with all of these events with a much lower

overhead.

Ra\N Key Input
By setting RAWKEY as an IDCMP flag in your Intuition window, you

can effectively prevent the Console device from receiving any key

board input. You will, however, receive all of the key press and release

events at your window's IOCMp, and you can translate them and

respond to them in any way you wish.

Remember that RAW KEY events undergo no translation whatso

ever. You get both the press and the release codes for each key the

user presses on the Amiga keyboard. Figure 6.1 depicts the raw key

code that each key transmits. When you receive an IntuiMessage with a

message Class of RAWKEY (see Chapter 5), the message Code tells you

which key was pressed. The codes shown in Figure 6.1 are for key

presses. If the key code is reporting key releases, the value will be as

shown with hexadecimal 80 added.

Note that the IOCMP message field named Qualifier keeps extra

details about the current keyboard state, such as which Shift keys,

which Amiga keys, and which Alt keys are down and whether the Con

trol key is also down. See the Include file named devicesJinputevent.h for

information about the Qualifier bits.

PROGRAMMER'S (JUIDE Tel THE AMIGA

220

Key Character Codes

(if Shift is up) (if Shift is down)

Fl <CSI>O <C51>1O

F2 <C51>1 <C51>11

F3 <C51>2 <CSI>12

F4 <CSI>3 <CSI>13

F5 <CSI>4 <CSI>14

F6 <CSI>5 <CSI>15

F7 <CSI>6 <CSI>16

F8 <C51>7 <CSI>17

F9 <CSI>8 <CSI>18

FlO <CSI>9 <CSI>19

Help <CSI>? <CSI>?

t <C51>A <CSI>T

.j, <CSI>B <CSI>S

-+ <CSI>C <CSI> A

+0- <CSI>O <CSI> @

Table 6.1: Console device character codes for special keys

Controlling the Console Device
Instead of simply printing characters to the console, you can use cer

tain control sequences to make the console move the cursor, erase the

screen area, change how characters are output, and so on. Additionally,

using OpenFont and 5etFont, you can change the font that the console

uses.

When you change a font in your console's window, the Console device

will readjust itself to the new font. The Console device erases the draw

ing area, then calculates a new number of characters per line and lines

per window area. The next time you output characters to the console,

the new values take effect.

Controlling a console's characteristics requires that you output spe

cific command streams to the Console device. These are listed in Table

DEVICES

221

'" " " 51 j"52 "53 I" 54 1"s5 "56 I" 57 1"58 1 '" '" 45 50 59 46 -
; 01 '021;031:04 • 051'061' 07!; 08 '09I'OA -OB I:oc 100

'A CO(, . ,
S'ACE

00 41 3D 3E 3F

"'42 !'101"11 1'121 '13 1'14 1'151"161'171'181'19 hAI'1B 144
HILP . . .
SF 20 2E 2F

';; 1~~11'20 1'21 1'22 1'231'24 1"251'261'27 1'2S 1 2912Ar;;'1
r , ,
4C 10 1E IF

SHIFT l

'321'33 j'34l'35I'36!"37 r 38L39
SHIFT

~F!~E 1

,
60 30 31 3A 61 OF 3C

1'''64
A .. '~51 ~

eNTE~

66 40 67 4A 43

Figure 6.1: Raw key codes from the Amiga keyboard

6.2. The control-character sequences can be embedded in the output

stream, right along vvith normal text. The sequences to transmit are

listed in the table as single byte values composed of tvvo hexadecimal

digits.

In the table, the values < N > and < M > can be replaced by one or more

decimal numbers. For example, insert < N > spaces, vvhere < N > is equal

to 12, vvould be transmitted to the Console device as byte values

9B 31 32 40

or in ASCII representation as

The <one or more values> for Select Graphic Rendition is a byte
stream consisting of text style, text foreground, and text background

selections. All selections are optional, but if multiple selections are made

at one time, they are to be separated by a semicolon, vvhich is a hexa

decimal value 3B. Text style values (in hexadecimal) are as follovvs:

00 plain text

01 boldfaced

03 italicized

04 underscored

07 inverse video

PROGRAMMER'S GUIDE TO THE AMIGA

222

Command

Backspace (destructive)

Line Feed

Vertical Tab

Form Feed (clear console)

Return

Shift In (undo Shift Out)

Shift Out

Escape

<CSI>

Reset To Initial State

Insert <N> spaces

Cursor up < N > spaces

Cursor dovvn < N > spaces

Cursor left <N> spaces

Cursor right <N> spaces

Cursor to <N >th line
follovving (column 1)

Byte Sequence to Transmit

08

OA

OB

OC

OD

OE

OF

1B

9B

9B63

9B <N> 40

9B <N> 41

9B <N> 42

98 <N> 43

9B <N> 44

9B <N> 45

Cursor to <N>th line prior 9B <N> 46

(column 1)

Move Cursor To Rovv. 9B <M> 3B <N> 48

Column

Erase to end of the vvindovv 98 4A

Erase to end of the line 9B 48

Insert a line above this one 9B 4C

Delete this line 9B 4D

Table 6.2: Console device codes for commands

Command

Delete <N> characters

Scroll up < N > lines

Scroll down <N> lines

Set Mode (Line Feed

Return-Line Feed)

Reset Mode (Line Feed

= Line Feed)

Set Page Length to < N >

(recalculate < N > as the

max. number of lines of the

current font to try to fit

within the console window)

Set Line Length to < N >

(considering current font

width, fit max of <N >

characters on a line)

Set Left Offset to < N >

(establish <N> raster

columns of space at left
edge of window prior to

leftmost character)

Set Top Offset to < N >
(leave <N> blank lines before

Byte Sequence to Transmit

98 <N> 50

98 <N> 53

96 <N> 54

96323068

9632306C

96 <N> 74

96 <N> 75

96 <N> 78

beginning text) 98 <N> 79

Select Graphic Rendition

Device Status Report

(report mouse position)

Window Status Report

(report window size)

Table 6.2: (continued)

96 <one or more values> 60

966E

9671

DEVICES

223

PROGRAM~v1f':R'5 GUIDE TO THf': AMIGA

224

Text foreground colors may be selected from the first eight colors

available in the screen's colortable, vvith hexadecimal 30 through 37 rep

resenting color 0 through color 7 respectively. Text background colors

may be selected in the same vvay, vvith hexadecimal 40 through 47 rep

resenting color 0 through color 7 respectively.

You can select multiple characteristics vvith a single byte stream. For

example, to select boldfaced, italicized text vvith foreground color num

ber 2 and background color number 3, send the follovving sequence to

the Console device:

98 01 38 03 38 32 38 43 38 6D

The Device Status Report command returns the current cursor posi·

tion in a byte stream as

98 <cursor.rovv> 38 <cursor.column> 52

vvhere <cursor.rovv> is one or more decimal digits (hex 30-39) repre·

senting the cursor rovv vvithin the console vvindovv, and <cursor.

column> is the column number for the cursor, also transmitted as deci·

mal digits. The top leftmost position is (1 ,1).

The Windovv Status Report command provides information about

hovv many rovvs of hovv many columns of text of the current font can

fit into the vvindovv. The values are returned as a data stream of the

form

98 31 38 31 38 <rovvs> 38 <columns> 73

vvhere <rovvs> and <columns> are transmitted as one or more deci·

mal digits.

Listing 6.7 uses the console subroutines previously introduced to demo

onstrate some of the features of the Console device, including console

input, output, and control.

THE INPUT DEVICE
The Input device combines input events from both the mouse and the

keyboard into a single input stream. Disk-insertion and disk·removal

events are received through the Input device as vvell as keyboard and

mouse events.

/* conmain.c */

/* You can create multiple consoles, each referred */
/* to by the pointer that is returned from CreateConsole */

/* EnqueueRead includes the location into which data is */
/* to be placed for the particular console */

#include lIexec/types.hll
#include "intuition/intuition.h"
#include "exec/memory.h"

ULONG IntuitionBase;

struct NewWindow nw
10, 10,
300, 100,
-1, -1,
0,
GIMMEZEROZERO I ACTIVATE I SIMPLE REFRESH I WI NDOWDRAG ,
0, -

NULL,
"Console Window",
NULL,
NULL,
0,0,0,0,
WBENCHSCREEN);

char homecursor[]
char backspacer]
char linefeed[]
char carreturn[]
char cursorfwd[]
char formfeed[]
char insertchar[]
char deletechar[]

#define HOMECURSOR(c)
#define BACKSPACE(c)
#define LINEFEED(c)
#define CARRETURN(c)
#define CURSORFWD(c)
#define FORMFEED(c)
#define INSERTCHAR(c)
#define DELETECHAR(c)

Ox9b, ' 1 ' , Ox3b, '1' , Ox4S };
Ox OS } ;
OxOa } ;

OxOd } ;
Ox9b, Ox43 };
OxOc };
Ox9b, Ox40 } ;
Ox9b, OxSO } ;

WriteConsole(c,homecursor,5);
WriteConsole(c,backspace,l);
WriteConsole(c,linefeed,l);
WriteConsoleCc,carreturn,l);
WriteConsole(c,cursorfwd,2);
WriteConsole(c,forrnfeed,l);
WriteConsole(c,insertchar,2)j
WriteConsole(c,deletechar,2);

/* You can add your own definitions and arrays to extend */
/* the example. */

#include "ram:console.c" /* if compiled from ram: */

main()
f
struct ConIOBlocks *cio, *CreateConsole();
struct Window *w, *OpenWindow();
int i;
char mybuffer[l];
int rnyinput;
char mychar [l] ;

/* where to put character */

IntuitionBase = OpenLibrary("intuition.library",O);
if(IntuitionBase ~~ 0)
(

Listing 6.7: The corlmain program

DEVICES

225

PROGRAMMER'S GUIDE TO THE AMIGA

226

printf("Intuition won't open!\n");
exit(99),

w OpenWindow(&nw),
if(w 0)
[

printf("Window won't open!\n"),
goto finishl,

cio CreateConsole(w), /* attach a console to the window */
if(cio == 0)
[

printf("Cannot create console!\nll)~
goto finish2,

EnqueueRead(cio,mybuffer),
/* done ONCE, set up for read */

WriteConsole(cio, "Hello world\n\r", 13),
WriteConsoleCcio, "Test backspace " ,14);

for(i=O, i<14, i++)
[

BACKSPACE(cio) ,
Delay(25),

LlNEFEED(cio) ,
CARRETURN(cio) ,

WriteConsole(cio, "Test Cursor Forward", 19);
CARRETURN(cio),

for(i=O, i<19, i++)
[

}

CURSORFWD(cio) ,
Delay(25),

LINEFEED(cio),
CARRE TURN (ci 0 1 ,

WriteConsole(cio, "Test Insert Character", 21);
CARRETURN(cio) ,
for(i=O; i<8, i++)
{

INSERTCHAR(cio) ,
Delay(25),

LlNEFEED(cio),
CARRE TURN (ci 0) ,

WriteConsole(cio, "********Test Delete Character", 29);
CARRETURN (cio) ,
for(i=O, ic8, i++)
{

DELETECHAR(cio),
Delay(25),

LINEFEED(cio),
WriteConsole(cio, I'Testing Home Cursor", 19);
Delay(50), /* wait before homing */

HOMECURSOR(cio),

Listing 6.7: The conmain program (continued)

Delay(100);

FORMFEED(cio) ;
LlNEFEED(cio) ;

/* 2 seconds */

Wr teConsole(c 0, "Form Feed Cleared Console\n\r", 27);
Wr teConsole(c 0, "Type A Line Please •.. \n\r\n\r", 25);
Wr teConsole(c 0, "I'll echo legal characters\n\r", 28);
Wr teConsole(c 0, "until you press RETURN\n\r" , 24);

/* Function keys and help key echo nothing in this mode */

do
r

}

/* Only doing one character at a time here. */
/* You might want to spawn a separate task */
/* that would collect characters (type ahead) */
/* while the console was busy doing something */
/* else along the way. */

myinput = CGetCharacter(cio, TRUE); /* yes, wait */
mychar[O] = (char) (myinput & Oxff);
WriteConsole(cio, mychar, 1);

while(mychar[O] 1= '\r'); /* RETURN character */

finish3:
DeleteConsole(cio);

finish2:
CloseWindow(w) ;

finishl:
CloseLibrary(IntuitionBase);
exit(O) ;

Listing 6.7: The conmain program (continued)

The Keyboard Device

DEVICES

227

The Keyboard device supplies data exclusively to the Input device.

Under the current version of Exec, Intuition, and AmigaDOS, it is not pos·

sible to turn off the Input device so as to allow direct, exclusive access to

the Keyboard device.

It is advisable to get keyboard input directly from Intuition's IDCMP if

your task uses a window for its input or to link into the Input device and

intercept keyboard messages if there is no window available.

The Gameport Device
The Gameport device also supplies data exclusively to the Input

device. All mouse input events are fed to the Input device, which in turn

makes them available through Intuition or at the Input device itself.

You do have a couple of choices, though. You can communicate with

the Input device and assign your mouse to the second port, instead of

IJROC3RAMMER'S GUIDE TO THE AMIGA

228

the default, left gameport. Also, you can communicate with the game

port and use it for joysticks and 50 on.

As with other devices, you must create an 10Request block to com·

municate with the Gameport device. You tell the device what kind of

controller you have connected to the port (either a mouse or ajoystick)

and how to respond to the device. The program in Listing 6.8 can be

compiled for either a mouse or ajoystick. The default is MOUSE. To com·

pile the program for ajoystick, change the first statement from #define

MOUSE 1 to #define JOYSTICK 1 and recompile.

Keyboard Enhancers
Some developers put together programs that perform keyboard

remapping; some of these programs are called keyboard enhancers. To

translate keyboard input into different events, you can filter all input

through the Console device or through the IDCMP and translate the key

sequences before they reach your application.

If, however, you are a developer trying to put together something

that will work with any application rather than simply your own special

application on its own custom screen, you need to go deeper into the

system. In particular, you will likely want to write your own input event

handler that you will install in the Input device handler chain.

There is a priority to the placement within this chain, whereby Intui

tion, if it gets the event first, can handle it and never pass it on to your

handler. Thus, you may wish to install your handler in the chain ahead of

Intuition 50 that you can examine the incoming events and perhaps sub

stitute a new chain of events for your handler to pass on to Intuition.

By this method you can produce a program that can remember a

user's sequence of mouse moves, selection and menu button presses,

and keyboard events (in record mode). Also, you can produce a handler

that can play back a recorded series of mouse and keyboard events. Or

you can produce a keyboard macro enhancer that, for example, can

translate a key press of F3 into "COpy myfile TO myfile.backup:'

Your primary consideration is that each input event that you record

takes up about 24 bytes (the size of the InputEvent data structure).

Keyboard events are transmitted to the application one keystroke

(press or release) at a time. Directly in an application, for example, you

can reuse InputEvent memory, grabbing just one or just a few events at

each I/O opportunity, and storing away only the data fields in the event

in which your application is interested. For a recording·mode situation,

you will most likely want to save everything about each event that

comes along.

/* joymouse.c */

/* only one can be defined at a time */

/*

*/

#define MOUSE 1

#define JOYSTICK 1

#include <exec/types.h>
#include <exec/devices.h>
#include <graphics/gfx.h>
#include <devices/gameport.h>
#include <devices/inputevent.h>

#define abs(x) (x < 0 ? -x : x)

extern struct IOStdReq *CreateStdIO();
extern struct MsgPort *CreatePort();

/* functions we use */

maine)
[

int error,errout,delta,timeouts;
struct GamePortTrigger trig;
struct IOStdReq *gameMessage;
struct MsgPort *gameReplyPort;
struct InputEvent gameEvent;
struct InputEvent *ge;
UBYTE *g;

ge = &gameEvent;

gameReplyPort = CreatePort(O,O);
if(gameReplyPort == 0)
[

/* an I/O request */
/* place to return msg */
/* place to store an event */
/* pointer to that place */

exi t(lOO); /* cannot create port */

gameMessage = CreateStdIO(gameReplyPort);
if(gameMessage == 0)
[

DeletePort(gameReplyPort);
exit(lOl); /* cannot create message */

error OpenDevi ce ("qameport. devi ce" I 1 , gameMessage, 0) :
/* unit ° is left (main) port, unit 1 of gameport device is right */
if(error)
[

J

errout = 102;
goto cleanup;

/* now tell it what kind of controller we are using */

gameMessage->io Command
gameMessage->io-Length
gameMessage->io=Data

GPD SETCTYPE;
1; - /* one byte to set type */
(APTR)&gameEvent; /* where to find data */

9 = (UBYTE *)&gameEvent;

hfdef M::lUSE
*g = (char)GPCT M::lUSE;
delta = 5; /*-report mouse move if at least 5 clicks */

#endif M::lUSE

hfdef JOYSTICK

Listing 6.8: Thejoymouse program

DEVICES

229

PROGRAMMER'S GUIDE TO THE AMIGA

230

*g = (char)GPCT ABSJOYSTICK;
delta = I; I*-report joystick move if one click, any direction *1

#endif JOYSTICK

DoIO(gameMessage);

if(gameMessage->io Error)
(-

errout = 103;
goto cleanup; 1* error while setting type *1

I
1* now set trigger conditions, when and how does device respond? *1
gameMessage->io Command
gameMessage->io-Length
gameMessage->io=oata

GPO SETTRIGGER;
sizeof (trig);
(APTR)&trig;

1* trigger a report if fire button or mouse buttons
* are pressed or released
*/

trig.gpt Keys = GPTF_UPKEYS + GPTF_DOWNKEYS;

1* trigger a report at 10 second intervals whether
* a move, or a keypress or whatever. (timeout in
* vertical blanking units, 60ths of a second for
* USA systems.)
*/

trig.gpt_Timeout = 10 * 60;

1* trigger a report if delta value is equal to or
* greater than the following values
*/

trig.gpt XDelta = delta;
trig.gpt=YDelta = delta;

DoIO(gameMessage);
if(gameMessage->io Error)
(-

errout = 104;
gato cleanup;

timeouts "= 0:
gameMessage->io Command = GPO READEVENT;
gameMessage->io=Oata = (APTR)&gameEvent;

do (
gameMessage->io_Length = sizeof(struct InputEvent);

OoIO(gameMessage);

switch(ge-> ie_Code)

case (IECOOE LBUTTON):
printf("left-button pressed\n");
break;

case (IECOOE LBl1rTON I IECOOE UP PREFIX):
printf (" left-button released\n");
break;

case (IECODE RBUTTON):
printf ("right-button pressed\n");
break;

Listing 6.8: Thejoymouse program (continued)

case (IECODE RBUTTON I IECODE UP PREFIX):
printf ("right-button released\n ll) ~
break~

case (IECODE NOBUTTON):
if(abs(gameEvent.ie X) < delta &&

abs (gameEvent. ie=Y) < delta)

printf("triggered by timeout;\n");
timeouts++;

else
[

printf("triggered by a move; \n");

hfdef MJUSE
printf("mousemoves as follows:\n");

#endif MJUSE
#i fdef JOYSTICK

printf("joystick moves as follows:\n");
#endi f JOYSTICK

cleanup:

default:

printf("x-delta = %ld\n",
gameEvent. i eX) ;

printf("y-delta = %ld\n",
gameEvent. ie_ Y);

break;

while(timeouts < 10);
errout "" 0;
/* for a joystick, this program cannot tell the
* difference between a timeout and a transition
* from any-switch-on to no-joystick-switch-on. */

DeleteStdIO(gameMessage);
DeletePort (gameReplyPort);
printf ("Done! \n") ;
exit(errout);
/* end of main */

Listing 6.8: The Joymouse program (continued)

DEVICES

231

There is another interesting consideration regarding use of the Input

device for keyboard event trapping. That is, \Nhat do you do if a user is

s\Nitching around bet\Neen several applications active on the screen (or

multiple screens) at the same timeJ What if the user types t\NO Or three

characters into one application, then activates another application and

types a couple more keysJ

If you are trying to create an abbreviation expander, your expander

program may be unable to tell that a different application received each

part of the input stream. For example, suppose you have t\NO \Nord·

processing \Nindo\Ns on the screen and have an abbreviation expander

listening to the keyboard, \Nith "mult" to be expanded into "multiplica·

tion". If the user types "mu" into the first \Nindo\N, then selects the

PROGRAMMER'S GUIDE TO THE AMIGA

232

second \Nindo\N and types "It", you \Nill \Nant to avoid expanding the

\Nord in the second \Nindo\N (since the second \Nindo\N did not receive

the complete abbreviation "mult"), You may need to tell the user that

expansion takes place only for \Nords \Nhose abbreviation is typed

entirely \Nith no intervening mouse clicks.

Using the Input device requires not only C language, but also Amiga

assembly language. Please refer to the Amiga ROM Kernel Manual for

more information about constructing and linking Input device handlers;

the manual contains a good example sho\Ning hO\N a ne\N handler is cre

ated and linked into the input stream.

Animation

This chapter describes the animation tools available on the Amiga: the

simple sprite system and the gel (graphics element) system. The gel sys·

tem consists of virtual sprites and Sobs (a short name for Slitter

objects). To animate an object on the screen using the gel system, you

define the object and how it moves relative to other objects on the

screen. The gel system uses hardware sprites to create its virtual

sprites and draws Bobs very quickly using the Blitter, a coprocessor

that can move and combine data very quickly.

Objects are drawn in the sequence you define, in the positions you

define, with an option to save the background area that each overlays

when it is drawn. Then, when the object moves to a new location, the

original background area is restored, and the objects are drawn in their

new positions.

There are many options provided by the gel system, allowing you

very close control over the animation process. All of the options are

described here, and some are used in the example programs, which

include tools that you may find useful later in trying to manipulate your

own objects.

SIMPLE SPRITES
Using simple sprites, you can create and move up to seven objects,

each of which is 16 low-resolution pixels wide (about one twentieth of

the width of your screen) and composed of up to three different colors

of your choosing. These objects can be made to move very quickly on
the screen. For example, the mouse cursor is a simple sprite. Simple

sprites actually use one of the underlying hardware features of the

Amiga-the hardware sprite system.

The display that each sprite produces is independent of the display of

the background area (called the playfield). Only in color choices is there

an interaction between simple sprites and the playfield.

There may be times when you simply want to manipulate the mouse

pointer, perhaps in response to a user moving a joystick or using a

mouse plugged into the second mouse port. Or you might be designing a

game in which you want to display small, highly mobile objects. For these

purposes, you may want to use simple sprites.

The Amiga has eight simple sprites available, each related directly to

the underlying sprite hardware. The difference between a simple sprite

and a hardware sprite is that system software for simple sprites limits

each hardware sprite to a single use within a single video display scan. It

is possible, by directly manipulating the sprite hardware, to reuse the

hardware sprites many times in a single display. Simple sprites, though,

PROGRAMMER'S GUIDE TO THE AMIGA

236

do not take advantage of that capability, but instead provide an easy

method to determine precisely where an object is located and how it

appears to the user.

The SimpleSprite Data Structure
You designate a SimpleSprite data structure for each of the sprites

you want to use in your program. This data structure is as follows (from

graphics/sprite.h):

struct SimpleSprite
{

} ;

UWORD *posctldata;
UWORD height;
UWORDx,y;
UWORD num;

To establish the contents of most of the data fields, you use system rou

tines, such as ChangeSprite and MoveSprite. However, you can read the

contents of the SimpleSprite structure to determine the current loca

tion of the sprite object or to determine which hardware sprite has

been assigned by the system so that you can directly control the

sprite's colors.

Each simple sprite, when it appears on the screen, is 16 pixels wide in

low-resolution mode. It does not matter whether the sprite is appearing

over a low-resolution screen (320 pixels across) or a high-resolution

screen (640 pixels across). Sprites always use low-resolution mode for

their picture elements (pixels).

The height of the sprite is determined by the Height value stored in its

SimpleSprite data structure. The position of the sprite is determined by

the x and y values in the data structure. How the sprite appears is

determined by the memory area to which the posctldata pointer points.

Obtaining a Sprite
Before you can build any data structures for sprites, you must first

obtain a sprite from the system so that you can assign that sprite for

your own use. To get a sprite, you use the system function GetSprite. A

call to GetSprite takes the form

spritenum = GetSprite(ssp,num);

where ssp is a pointer to a SimpleSprite data structure, and num is the

specific sprite number that you want to use (a number from 0 to 7).

ANIMATION

237

If the specified sprite has not already been reserved for use by

another task, the system will return the value of spritenum the same as

the num value you requested. If the sprite is already reserved, the sys

tem returns a spritenum of - 1, which means you have to try again.

You use a num value of - 1 to request any available sprite. If this

request returns with a value of - 1 for spritenum, you know you are

out of sprites entirely. Here is a program fragment that just asks for

any sprite:

struct SimpleSprite mysprite;
BYTE spritenum;

spritenum = GetSprite(&mysprite, -1);

if(spritenum = = -1) printf("OUT OF SPRITES!!!");

The GetSprite function fills in the num data field of the SimpleSprite data

structure. You receive the spritenum value simply as a check that all went

OK. You can use this value later to determine that sprite's colors.

Changing a Sprite
Other elements of the Simple Sprite data structure are initially estab

lished by the ChangeSprite routine. A call to ChangeSprite takes the form

ChangeSprite(pointer,addrsprite,addrdata);

where pointer contains the address of a ViewPort structure or a value

of zero. If it contains the address of a viewport, then the sprite will be
positioned relative to the top-left corner of the viewport. In the simple

sprite program, you will see how the viewport address is extracted

from a Screen data structure. If you use Intuition to establish your

Screen structure, and therefore your ViewPort data structure,

your sprites will move when the screen stops moving (as you Will see

when you try the example).

If the pOinter value is zero, then the sprites will be positioned with

respect to the View data structure. The View defines the overall dis

play area, rather than individual screens and windows. Your sprites will

be positioned relative to the upper-left corner of the physical display

selected when Preferences was run. When the pointer is zero, sprites

can move across screen boundaries. This creates a rather odd effect:

the sprite takes on the colors of the screen over which it appears.

The other two parameters to the ChangeSprite function call are addr

sprite and addrdata. The addrsprite parameter is a pointer to the

address of a SimpleSprite data structure. This data structure should

PROGRAMMER'S GUIDE TO THE AMIGA

238

already have been initialized by GetSprite to contain a valid sprite num

ber. The addrdata parameter is a pointer to the first vvord of the data

structure that describes the physical appearance of the sprite itself. i.e.,

the bit pattern (16 bits vvide) that is used by the system to define the

shape of the sprite.

The Sprite Data
Here is the data structure pointed to by the addrdata parameter to

ChangeSprite. It defines the sprite's shape. It has no specific name, but

its elements relate to the SimpleSprite data structure.

/ * spritedata,c * /

UWORD sprite_datal 1 {
0,0,
OxOfc3,OxOOOO,
Ox3ff3,OxOOOO,
Ox30c3,OxOOOO,
OxOOOO,Ox3c03,
OxOOOO,Ox3fc3,
OxOOOO,Ox03c3,
Oxc033,Oxc033,
OxffcO, OxffcO,
Ox3f03,Ox3f03,
0,0
};

/ * position control * /
/* image data line 1 */
/ * image data line 2 * /
/ * image data line 3 * /
/ * image data line 4 * /
/ * image data line 5 * /
/ * image data line 6 * /
/ * image data line 7 * /
/ * image data line 8 * /
/ * image data line 9 * /

/ * end of the structure * /

A simple sprite's data alvvays takes the form shovvn above. There are

tvvo vvords (32 bits) of zeros at the head of the structure. follovved by as

many pairs of data vvords as there are lines (tall) in the sprite, finally fol·

lovved by another tvvo vvords of zeros.

The first tvvo vvords are for position control. For a hardvvare sprite,

these establish vvhere the sprite appears on the screen (and control a

fevv other characteristics that are not discussed here). The last tvvo

vvords are also position control for the hardvvare sprite, but they are

used to establish the end of the use of the sprite for a single display

screen. Simple sprites can only be used once per screen. The sprite data

pattern shovvn here forms the characters

S!

The data that the simple sprite vvorks on must be in chip-accessible

memory. That is, it must be located in the lovvest 51 2K of the machine.

The simple sprite program in this chapter uses the above data for all the

ANIMATION

239

sprites. It allocates MEMF _CHIP memory and copies the data into that

memory space. Subsequently, a cali to ChangeSprite shows the system

where to find each unique occurrence of the data area for each sprite. A

separate data area must be provided for each sprite because the sys

tem modifies the position control items in each SimpleSprite data struc

ture, then tells the hardware sprite where to find its data.

Sprite Colors
For the lines in between the two position controls, each pair of words

defines the color value to be used for the particular bit position in that

line of the sprite. Take image data line 1 as an example:

OxOfc3, OxOOOO,

Here, OxOfc3 translates to this set of binary bits:

0000111111000011

OxOOOO becomes:

0000000000000000

Bits in corresponding positions combine to select the color for a partic

ular pixel of that line of the display. This is how the combinations are

formed:

Value in first word: 001 1

Value in second word: o 101

Color number selected: t 1 23

The t stands for a color combination that is treated as transparent. In

any region of a sprite that is transparent, you can see every other item

that has a lower video priority.

Simple sprites 0 and 1 use the same system color registers. Sprites 2

and 3 are paired, sprites 4 and 5 are paired, and sprites 6 and 7 are

paired. Each pair of sprites has a group of system color registers specifi

cally assigned. These define the colors that it can display. Table 7.1

shows the grouping.
Thus, in the simple sprite system, you actually have the choice of only

four completely different sets of colors for your sprite, and you must

also remember that the sprite colors are grouped as shown.

PROGRAMMER'S GUIDE TO THE AMIGA

240

Sprites Color Number System Color Register

Number

o and 1 1 17

2 18

3 19

2and3 1 21

2 22

3 23

4 and 5 1 25

2 26

3 27

6 and 7 1 29

2 30

3 31

Table 7,1: Simple sprite color registers

Intuition uses simple sprite number 0 as its cursor, Therefore, that

sprite is generally not available for you to assign. When you use

LoadRGB4 to establish your own custom colors for a screen, if you load

color numbers 17-19, you will affect the color of the system cursor as

well as your other sprites.

The simple sprite program has an interesting effect on the colors of

the mouse cursor as well as on the simple sprite elements. The program

defines half of the sprites as positioned relative to the viewport (that is,

relative to the screen where the window is drawn), and the other half as

positioned relative to the display.

If you use the cursor to move into the custom screen's title bar, hold

down the left mouse button, and drag the screen down about a third of

the way, you will see that the relative positions of the sprites change.

And some of the sprites will cross the screen border (as does the mouse

cursor) and change colors as they do so.

This color change happens because Intuition dynamically assigns col·

ors to the system color registers so as to allow each screen to have its

own unique set of up to 32 colors. Thus, the screen boundary is a posi·

tion at which the colors can change.

ANIMATION

241

Freeing a Sprite
If you use GetSprite to obtain the use of a sprite, you must also free

the sprite when you are finished with it. The system does not keep

track of which task allocated a sprite and whether that task is still run

ning. If you do not free a sprite, then no other application will be able to

use it until the next system reset.

A call to FreeSprite takes the form

FreeSprite(num)

where num is the number of a sprite that you allocated with GetSprite.

The Simple Sprite Program
Listing 7.1 is the program that demonstrates the features of the

simple sprite system. A 32-color custom screen is established, with a

window on that screen to provide a close gadget to stop the program

and a place to receive timing messages (iNTUITICKS) once each one

tenth of a second.

Note that simple sprites can move a lot faster than this. You may

want to modify the program to wait for Intuition events and timing

events (as mentioned in Chapter 6), just to make it run faster.

There are a few things you may notice as you run the program. As it

begins, the leftmost sprite is represented by hardware sprite number 1.

The allocations proceed across the screen to the right as hardware sprite

numbers 2,3,4,5,6, and 7. (You may want to change the sprite image data

to make the sprites actually contain the hardware sprite number that was
allocated for that image.)

The video priorities of the hardware sprites are set such that the low

est numbered sprite has the highest video priority. In other words,

sprite 0, the mouse cursor, will always appear in front of any other

sprite. Sprite 1 appears in front of any sprite except 0, and so on. The

system is also set so that all sprites appear in front of anything in the

playfield (i.e., screen) area. If you want to modify system priorities so

that some sprites occasionally disappear behind certain background ele

ments, it is possible to do so. See the Amiga Hardware Manual for details.

Drag down the custom screen and watch what happens to the sprite

positions and colors. That experiment will help you to understand how

to use MoveSprite and ChangeSprite to position your simple sprites.

Notice one difference in the listing of the NewScreen structure from

what you have seen previously in this book. That is, the Modes variable

has been set to a value of SPRITES. This tells Intuition and its supporting

routines that sprites are to be present and that instructions to support

sprite movements should be produced when the screen is constructed.

PROGRAMMER'S GUIDE TO THE AMIGA

242

/* simplesprite.c */

#include "exec/types .h"
#include "intuition/intuition.h lt

#include "graphics/sprite.'h ll

#include lIexec/memory.h"

SHORT sprgot[7];
tm:lRD *sprdata[7];
SHORT xmove[7] , ymove(7];
struct SimpleSprite sprite[7];
struct SimpleSprite *spr;
short maxgot;

/* which sprite gotten each time. */
/* seven pointers to sprite data */
/* their directions of movement */
/* seven simple sprites */

struct Window ow;
struct RastPort *rpi
struct Screen *8;
struct ViewPort *vp:

/* pointer to a sprite */
/* max # of sprites we grabbed */

/* pointer to a Window */
/* pointer to a RastPort */
/* pointer to a Screen */
/* pointer to a ViewPort */

struct Window *OpenWindow();
struct Screen *OpenScreen();
LONG GfxBase;
LONG IntuitionBase;

/* This is "prototype" data. Each sprite will start out with
* this data, but the position control values will be changed
* by the simple sprite system for each one of the sprites
* independently. Thus it is not possible to point more
* than one simple sprite to the same set of instance data.
* The other reason this is only prototype data is that
* the sprite data MUST be in CHIP-accessible RAM. If your
* Amiga has expanded RAM, the program will likely load
* into expanded memory where the chips cannot get at
* the data that is part of the program. Thus the
* specific allocation of MEMF_CHIP done below. */

/* 22 words of sprite data = 44 bytes of sprite data */

tm:lRD sprite_data[] = (
0,0, /* position control */
OxOfc3, OxOOOO, /* image data line 1*/
Ox3ff3, OxOOOO, /* image data line 2*/
Ox30c3, OxOOOO, /* image data line 3*/
OxOOOO, Ox3c03, /* image data line 4*/
OxOOOO, Ox3fc3, /* image data line 5*/
OxOOOO, Ox03c3, /* image data line 6*/
Oxc033, Oxc033, /* image data line 7*/
OxffcO, OxffcO, /* image data line S*/
Ox3f03, Ox3f03, /* Image data line 9*/
0,0 /* end of the structure */

/* Structure end is "position control" for
* the next reuse of the hardware sprite.
* Simple sprite system supports only one
* use of a hardware sprite per video frame.
* Any combination of binary bits from word
* 1 and word 2 per line establishes the
* color for a pixel on that line.
* Any nonzero pixels in lines 1-3 are color
* Ill" of the sprite, lines 4-6 are color "2",
* lines 7-9 are color 113" */

} ;

Listing 7.1: The simple sprite program

ANIMATION

/*

*/

FOLLOWING IS FOR INFORMATION ONLy the simple-sprite
system directly sets these bits~ the user has no need
to fiddle with any of them. Use the functions
ChangeSprite and MoveSprite to have an effect on the sprite.

position control:

first llmRD:
bits 15-8, start vertical value, lowest 8 bits

of this value contained here.
bits 7-0, start horizontal value, highest 8 bits

of this value contained here.

second UWORD:
bits 15-8, end (stopping) vertical value, lowest

8 bits of this value contained here.
bit 7 = Attach-bit (used for attaching sprites to

get additional colors (15 instead
of 3, supported by the hardware but
NOT supported by the simple sprite

bits 6-4
bit 2
bit 2
bit 2

system) •
(unused)

start vertical value; bit 8 of that value.
end vertical value; bit 8 of that value.
start horizontal value; bit 0 of that value.

movespri tes ()
(

short i;
short newx, newy;

/* MoveSprite first parameter equals zero: sprite is positioned
* relative to the VIEW rather than the viewport. This means
* that if the screen is dragged down while the sprite is
* moving, the sprite should stay in the same place as it
* was before the drag. If the zero is replaced by "vp",
* then the sprite stays with the screen.
*/

spr = &sprite[OJ:
for (i=O: i<maxgot: i++)
{

newx ~ xmove[i]+spr->xi
newy = ymove[i]+spr->y:

/* This may look strange, but it shows the options of
* moving a sprite with respect to a viewport or with
* respect to the overall display. Half of the sprites
* stay with the display if you drag the screen down:
* the other half move with respect to the overall
* display. When the sprites enter a different screen,
* they take on whatever colors that screen has.
*/

if((i % 2) == 0)
(

)
else
[

/* even-numbered sprites move with display */
MoveSprite(O,spr,newx,newy);

/* odd-numbered sprites move with Screen */
MoveSprite(vp,spr,newx,newy};

Listing 7.1: The simple sprite program (continued)

243

PROGRAMMER'S GUIDE TO THE AMIGA

244

if(spr->x >= 320 II spr->x <= 0) xmove[i]=-xmove[i];
if(spr->y >= 190 I I spr->y <= 0) ymove[i]=-ymove[i];

spr++; f* adjust pointer to do next sprite *f

#define AZODLOR 1
tdefine WHITEODLOR 2

f* tinclude "mydefines.h"*f
f* gets the window flags assignments *f
f* mydefines.h *f

tdefine WC WINDOWCLClSE
#define WS WINDOWSIZING
#define WDP WINDOWDEPTH
#define WDR WINDOWDRAG

#define NO~FLAGS (wclwsIWDpIWDR)

f* #include "myscreenl.h" * f
f* myscreenl.h *f

f* myfontl specifies characteristics of the default font;
* this case selects the 80-column font that displays as
* 40 columns in low-resolution mode.
*f

struct TextAttr myfontl = ["topaz. font", 8, 0, 0);

struct NewScreen myscreenl ~ r
0, 0, f* LeftEdge, TopEdge ..• where to put screen *f
320, 200, f* Width, Height ... size of the screen *f
5, f* 5 planes Depth, means 2 to the 5th or

* 32 different colors to choose from once
* the screen is opened.
*f
f* DetailPen, BlockPen *f
f* ViewModes ..• value of 0 = low resolution *f
f* Type of screen *f

1, 0,
SPRITES,
CUSTOMS CREEN ,
&myfontl, f* Font to be used as default for this screen *f

Test", f* DefaultTitle for its title bar *f "32 Color
NULL,
NULL) ;

f* screens user-gadgets, always NULL, ignored *f
f* address of custom bitmap for screen,
* not used in this example
*f

f* tinclude "windowl.h" *f
f* windowl. h * f

struct NewWindow myWindow = [
0, f* LeftEdge for window measured in pixels,

at the current horizontal resolution,
from the leftmost edge of the Screen *f

15, f* TopEdge for window measured in lines
from the top of the current Screen. *f

320, 150, f* Width, Height of this window *f

Listing 7.1: The simple sprite program (continued)

0,

1,

/* DetailPen - what pen number is to be
used to draw the borders of the window */

/* BlockPen - what pen number is to be
used to draw system-generated window
gadgets */

/* (for DetailPen and BlockPen, the value
of -1 says "use the default value") */

CLC6EWINWW I INTUITICKS,
/* IDCMP Flags */

SIMPLE REFRESH I NO~FLAGS I GIMMEZEROZERO I ACTIVATE,
/* Window Flags */

NULL, /* FirstGadget */
/* CheckMark */

Close Gadget To Stop" , /* Window ti tle * /
/* Pointer to Screen if not workbench */

ANIMATION

245

NULL,
"Click
NULL,
NULL, /* Pointer to BitMap if a SUPERBITMAP window */
10, 10,
320, 200,
CUSTOMSCREEN
) ;

/* minimum width, minimum height */
/* maximum width, maximum height */

#incl ude "graphics/gfxrnacros .h"

/* #include "eventl.c" * /
/* gets the event handler */
/* eventl.c * /

HandleEvent(code)
LONG code;

switch(codel
(

/* provided by main */

case CLC6EWINOOW:
return(O);
break;

case INTUITICKS:
movesprites(); /* 10 moves per second; test */
default:

break;
)

return(l) ;
}

UIDRD

maine)
{

mycolortable[] ~ {

OxOOOO, OxOe30, OxOfff, OxOb40, OxOfbO, OxObfO,
OxOSdO, OxOedO, Ox07df, Ox069f, OxOcOe,
OxOf2e, OxOfeb, OxOc98, OxObbb, Ox07df,

OxOOOO, OxOe30, OxOfff, Ox0b40, OxOfbO, OxObfO,
OxOSdO, OxOedO, Ox07df, Ox069f, OxOcOe,
OxOf2e, OxOfeb, Ox0c98, OxObbb, Ox07df
} ;

/* black, red, white, fire-engine red, orange, yellow,
lime green, green, aqua, dark blue, purple,
violet, tan, brown, gray, skyblue, (everything again) */

struct IntuiMessage *msg;
LCNG result;
short k, j;
UIDRD *src. *dest; /* for copying sprite data to RAM */

Listing 7.1: The simple sprite program (continued)

PROGRAMMER'S GUIDE TO THE AMIGA

246

GfxBase = OpenLibrary("graphics.library" ,0);

IntuitionBase =' OpenLibrary(lIintuition.library",O)~

f* (error checking left out for brevity here) *f

s = OpenScreen(&myscreenl); f* try to open it *f
if(s 0)
r

printf("Can't open myscreenl\n");
exit(lO) ;

mywindow.Screen = s~ f* say where screen is located */

w = OpenWindow(&myWindow);
i f{w 0)
r

printf ("Window didn't open I \n");
CloseScreen (s) ;
exi t(20);

vp &(s->ViewPort);
f* set the colors for this viewport */

LoadRGB4(vp, &mycolortable[O], 32);
rp = w-> RPort;

/* Now wait for a message to arrive from Intuition
* (task goes to sleep while waiting for the message)
*/

/* *************************************** */
f* SIMPLE SPRITE DEM) SECTICN * f

maxgot = 0;

spr = &sprite[O],

forlk=O; k<7, k++)
r

xmove[k]=l,
ymove[k J=l,

f* how many sprites did we get? */

f* address of the first simple sprite *f

f* get the next available sprite */
sprgot[k] = GetSprite(spr,-I);

if(sprgot[k] == -1) break,
maxgot++;

f* initialize position and size info */
sprite[k].x 0;
sprite[k].y = 0;

f* tell system what data looks like by specifying height *f

spri te[k] .height = 9,

f* now allocate CHIP memory to hold the actual sprite data * /

sprdata[k] = (Uw:JRD *) Allocfo\em (44, MEMF _CHIP) ;

if(sprdata[k] == NULL)
(

maxgot--;
FreeSprite(sprgot[maxgot]);

Listing 7.1 : The simple sprite program (continued)

ANIMATION

break: /* if not enought memory, stop allocating
* any more sprites but try to carryon
* anyway.
*/

/* now copy the prototype sprite data into the CHIP RAM. */

src = sprite_data: dest = sprdata[k]: /* source, destination */

for(j=O: j<22: j++)
[

*dest++ = *src++;
}
/* tell system sprite manager where to find sprites data */

ChangeSprite(vp,spr,sprdata[k]);

/* choose starting point based on which sprite this is */

MoveSprite(O,spr,lO + 20*sprgot[k],30):

spr++; /* do the next sprite now */

while (1) /* "forever" * /
[

/* wait for a message to arrive */
WaitPort(w->UserPort):

/* retrieve the message from the port */
msg = (struct IntuiMessage *)GetMsg(w->UserPort),

handleit:

}

result = -1:
if(msg 1= 0)
[

)

/* handle the event: see if CLOSEWINDOW */
result = HandleEvent(msg->Class):

/* Let Intuition reuse the msg */
ReplyMsg(msg) :

if(result == 0)
[

break: /* got a CLOSEWINDOW * /
)
/* Empty the port before going back to wait again */

msg = (struct IntuiMessage *)GetMsg(w->UserPort):

if(msg 1= 0)
[

goto handleit: /* 0 when no more messages */

/* Done I Now cleanup. */

/* free however many sprites we actually managed to get */
for(k=O, k<maxgot: k++)
[

FreeSprite(sprgot[k]): /* free the sprites so others can
* use them also
*/

Listing 7.1: The simple sprite program (continued)

247

PROGRAMME'~R'5 GUIDE TO THE AMIGA

248

FreeMem(sprdata[k],44); /* and free the memory they used */

CloseWindow (w) ;
CloseScreen (s);

Listing 7.1: The simple sprite program (continued)

VIRTUAL SPRITES
The animation system is built as a set of levels of software. The

simple sprite system is closest to the hardware system, and has the

same limitations as the hardware itself. Without using special tricks,

there are only eight hardware sprites available, so you only get eight per

display.

Virtual sprite handling by the gel system is slightly more complicated.

It is as close to the hardware as the simple sprite system at its level of

operation. However, it interfaces to the hardware in a somewhat differ

ent way. A virtual sprite is defined, as the name "virtual" implies, as soft

ware elements. Virtual sprites become "real" sprites when the system
software assigns each to be displayed by a hardware sprite.

Instead of having only eight possible sprites on the screen at a time,

you might be able to have 16, 24, 32, or even over 100, depending on

how large each sprite is and where it is located. Admittedly, that might

be pushing things a little, but you can experiment to see the actual limits

for your applications.

The gel system knows that there are eight hardware sprites avail

able, and it also knows how to arrange to reuse each sprite many times

in the span of a single display.

A virtual sprite (V5prite) data structure includes definitions for the

position of a sprite, its size, its bit pattern, and the colors that it should

display. Every time a particular sprite has completely displayed its

assigned image, it becomes free to display a new image in a new position

on the screen a couple of lines further down than the end of the pre

vious image and anywhere else horizontally.

The system not only tells the hardware sprite to redisplay itself

somewhere else with a different bit pattern. It also gives the hardware

sprite a new set of colors from a virtual sprite definition to use for the

next image.

ANIMATION

249

Advantages to Using Virtual Sprites
The main advantage to using virtual sprites is that you do not have to

worry about exactly how the system allocates sprites. That happens

automatically. You just define how the sprites are to appear and the

system does the rest. Another advantage is that with the system's

reuse of the sprites, you have more than eight sprites available.

Disadvantages to Using Virtual Sprites
If you ask the system to display more than eight virtual sprites on a

single horizontal line, some of the sprites may disappear. This is a hard

ware limitation. Once all eight hardware sprites are busy, you can't get

any more displays out of them than one set of 16 bits per horizontal line.

Another disadvantage is that you don't really have eight hardware

sprites to work with after all. In particular, as noted, hardware sprite 0 is

reserved for use by Intuition as the mouse pointer. Since hardware

sprite 0 and hardware sprite 1 both share the same set of color regis

ters, it is inappropriate for hardware sprite 1 to be used as a virtual

sprite because this would result in the colors of the mouse cursor flash

ing as sprite 1 was assigned to display various virtual sprites on the

screen.

A third disadvantage comes in the area of video priorities. Recall that

each simple sprite is directly related to a hardware sprite, with the

lower numbered sprites having video priority over the higher numbered

sprites. When you use virtual sprites, the system arbitrarily assigns
hardware sprites to display the virtual sprites. As your virtual sprites

move across one another, depending on their relative positions on the

screen, it is likely that the sprites will swap video priorities. That is, a

sprite that just one moment ago was behind another sprite will now be

in front of that sprite. This is a result of the dynamic reassignment of

sprites as the system runs.

There is one more item to contend with when you are using virtual

sprites: the color choices available to your program for drawing items in

the background area. You may wish to limit your playfield area (that is,

your screen) to a maximum of 16 colors. Alternatively, you can specify a

maximum of 32 colors, but (assuming that you do not use hardware

sprites 0 and 1 because of the mouse cursor color flashing mentioned

above) restrict your screen color usage to colors 0-20, 24, and 28. In

other words, you Will not use colors 21-23,25-27, or 29-31.

As the gel system assigns virtual sprites to hardware sprites, it also

assigns a particular virtual sprite's colors to a particular hardware

PROGRAMMER'S GUIDE TO THE AMiGA

250

sprite's color registers. Thus, anything you have dra\Nn in that color \Nill

continuously change to match the color currently assigned to that

sprite. The makevsprite program sho\Nn later outputs text material to

demonstrate color register reassignment.

Initializing the Gel System
To use virtual sprites or any other part of the gel system, you must

first initialize the system to expect gels. A routine called ReadyGels is

used for this purpose. It is sho\Nn in Listing 7,2. You must also declare a

data structure called Gelslnfo, This contains the data that the gel sys

tem \Nill need to keep track of your virtual sprites as \Nell as your Bobs,

Once you have opened a screen, ReadyGels can be run.

Sprite Head and SpriteTail
In Listing 7.2, you \Nill see the terms Sprite Head and spriteTail. The sys

tem builds a list of all of the gels in the system and their display

sequence. Gels are sorted from top to bottom and from left to right.

spriteHead and spriteTail are the t\NO ends of this gels list.

Reserved Sprites
You can tell the system \Nhich particular hard\Nare sprites to use as

virtual sprites. Setting particular binary bits to a value of 1 tells the sys

tem that it is OK to dynamically reassign that sprite and its color regis

ters as a virtual sprite, The bits of the reserved sprite parameter

(sprRsrvd) are numbered to match the sprites themselves. In other

\Nords, sprite 7 is represented by bit 7, sprite 6 by bit 6, and so on.

The form of ReadyGels in the listing uses a bit pattern of OxFC, \Nhich

has a binary value of 1 1 1 11 100. This means "do not use sprites 0 and 1 ,"

What you might consider doing is changing the sprRsrvd value to match

that of the simple sprite system, located at GfxBase- >spriteReserved.

You see, every time the simple sprite system allocates a sprite for a

task's use, it sets a bit in Sprite Reserved in GfxBase, If a bit is a one in

that variable, the corresponding bit should be a zero here,

Here is a sequence that \Nill accomplish the desired result:

struct GfxBase *GfxBase;
/ * used as an alternative to the declaration * /
/ * LONG GfxBase; that has been used elsewhere in this book. * /

/ * ... then in ReadyGels, in place of g- >sprRsrvd = OxFC * /

g- >sprRsrvd = OxFC & (!(GfxBase- >SpriteReserved));

/ * set any bit to zero for which there is a 1-bit in the * /
/* simple sprite system, */

ANIMATION

/* readygels.c */

struct VSprite *SpriteHead
struct VSprite *SpriteTail

NULL;
NULL;

ReadyGels(g, r)
struct RastPort *r;
struct GelsInfo *g;
[

/* Allocate head and tail of list. */
if «SpriteHead = (struct VSprite *)AllocMem(sizeof

(struct VSprite), MEMF PUBLIC I MEMF_CLEAR» 0)

return(-l) ;

if «SpriteTail = (struct VSprite *)AllocMem(sizeof
(struct VSprite), MEMF_PUBLIC I MEMF_CLEAR» 0)

FreeMem(SpriteHead, sizeof(struct VSprite»;
return(-2);

g->sprRsrvd = OxFC; /* do not use sprites 0 or 1. */

if «g->nextLine = (WORD *)AllocMem(sizeof(WORD) * 8,
MEMF_PUBLIC I MEMF_CLEAR» == NULL)

FreeMem(SpriteHead, sizeof(struct VSprite»;
FreeMem(SpriteTail, sizeof(struct VSprite»;
return(-3) ;

if «g->lastColor = (WORD **)AllocMem(sizeof(LONG) * 8,
MEMF_PUBLIC I MEMF_CLEAR» == NULL)

FreeMem(g->nextLine,8 * sizeof(WORD»;
FreeMem(SpriteHead, sizeof(struct VSprite»;
FreeMem(SpriteTail, sizeof(struct VSprite»;
return(-4) ;

/* Next we prepare a table of pointers to the routines that should
* be performed when DoCollision senses a collision. This
* declaration may not be necessary for a basic vsprite with
* no collision detection implemented, but then it makes for
* a complete example. */

if «g->collHandler = (struct collTable *)AllocMem(sizeof(struct
collTable), MEMF PUBLIC I MEMF_CLEAR» == NULL)

FreeMem(g->lastColor, 8 • sizeof(LONG»;
FreeMem(g->nextLine,8' sizeof(WORD»;
FreeMem(SpriteHead, sizeof(struct VSprite»;
FreeMem(SpriteTail, sizeof(struct VSprite»;
return(-5);

/* When any part of the object touches or passes across
* this boundary, it will cause the boundary collision
* routine to be called. This is at smash[O] in the
• collision handler table and is called only if
* DoCollision is called. */

Listing 7.2: The readygels routine

251

PROGRAMMER'S GUIDE TO THE AMiGA

252

g->leftmost = 0;
g->rightmost = r->BitMap->BytesPerRow * 8 - 1;
g->topmost = 0;
g->bottornrnost ~ r->BitMap->Rows - lr

r->Gelslnfo = g; /* Link together the two structures */

InitGels(SpriteHead, SpriteTail, 9);

/* Pointers initialized to the dummy sprites which will be
* used by the system to keep track of the animation system. */

SetCollision(O, border_dummy, g);
Wai tTOF();
return(O): /* a return value of 0 says all OK, any

* negative value tells you when it failed~
* (see the listing as to what the routine
* was trying to do ... all failures are
* due to out of memory conditions). */

void border_dummy()
(

/* a dummy collision routine */

return:

Listing 7.2: The readygels routine (continued)

This technique is necessary because the simple sprite system vvas

developed independently from the gel system. As of system softvvare

release version 1.2, they remain independent of one another.

Next Lines and Last Colors
The system needs certain variables to enable it to decide vvhich hard·

vvare sprite to use for the display of the next virtual sprite. These sta

tus variables are parameters in the Gelslnfo structure and include an

array of "next lines" and an array of "last colors:'

The nextline array is used to hold system information about the line

number on the screen at vvhich each hardvvare sprite vvil! become avail

able to be given a nevv virtual sprite to display,

In the lastcolor pointer array, the system stores a pointer to the color

definitions most recently used. The virtual sprite colors are vvritten into

the hardvvare sprite register set for the hardvvare sprite to vvhich that

virtual sprite is assigned. This array contains one pointer to the last set

of three colors (from the V5prite structure sprColors pointer) for each

hardvvare sprite.

As the system is scanning to determine vvhich hardvvare sprite should

next be used to represent a virtual sprite, it checks the contents of the

lastcolor array. If a hardvvare sprite is available and has been assigned

ANIMATION

253

this set of colors, no color assignment is needed, and therefore no color

change instructions will be generated for the Copper list-a coproces

sor instruction list. (5ee the Amiga Hardware Manual for information

about the Copper coprocessor.)

If all of your virtual sprites use a different set of colors (i.e., if the

pointers to sprColors are different for each of them), then you are lim

ited to four virtual sprites per horizontal line. If, on the other hand, you

define eight virtual sprites, with 0 and 1 having the same colors, 2 and 3

the same as each other, 4 and 5 the same as each other, and 6 and 7 the

same as each other, then you will be able to have all eight virtual sprites

on the same horizontal line.

5ince the system hardware shares the color registers between pairs

of hardware sprites, it thus has enough resources to assign eight virtual

sprites to hardware sprites because there are four color sets for eight

virtual sprites, exactly matching the maximum hardware capabilities.

(Note that lastcolor is not used for Bobs, just for sprites.)

The MakeVSprite Routine
Listing 7.3 contains the MakeV5prite routine, which helps define a vir

tual sprite. Although MakeV5prite creates a virtual sprite, it does not

add the sprite to the system list for possible display. That must be done

by the calling program. If MakeV5prite returns a zero value, there was

not enough memory to create the virtual sprite. A nonzero value is the

address of a virtual sprite that can now be added to the system with

Add5prite.

The VSprite Structure
The MakeV5prite routine uses the parameters to the V5prite struc

ture. This structure is used to define both virtual sprites and Bobs. A
V5prite data structure is dynamically allocated, and the variables that

you provide are installed in the structure. The structure also allocates

and initializes some collision masks and collision variables, assuming

there is a default boundary collision routine present (border_dummy is

provided in the listing). Following are descriptions of the parameters to

the V5prite structure.

Height
The lineheight parameter specifies how tall in lines this sprite is to be.

You can specify any number of lines. Your bit image of the sprite must

have this many lines. (For a Bob, the height can also be any number of

lines. The taller the Bob, the longer the system takes to draw it.)

PROGRAMMER'S GUIDE TO THE AMiGA

254

/* makevspri te.c */

struct VSprite *MakeVSprite(lineheight, image, colorset, x, y,

SHaRI' lineheight;
WORD * image;

WORD * colorset;

wordwidth, imagedepth, flags)
/* How tall is this vsprite? */
/* Where is the vsprite image data; should be

twice as many words as the value of lineheight */
/* Where is the set of three words that describes

the oolors this vsprite can take on? */
SHaRI' x, y;
SHORr wordwi dth,
{

/* What is its initial on-screen position? */
imagedepth, flags;

struct VSprite *v; /* Make a pointer to the VSprite structure that
this routine dynamically allocates */

if «v = (struct VSprite *)AllocMem(sizeof(struct VSprite),
MEMF _PUBLIC I MEMF _CLEAR)) == 0)

return(O) ;

v->Flags flags; /* Is this a vsprite, not a Bob? */

v->Y = y;
v->X = X;

/* Establish initial position relative to */
/* the Display coordinates. */

v->Height lineheight;
v->Width = wordwidth;

/* The Caller says how high it is. */
/* A vsprite is always 1 word (16 bits) wide. */

/* There are two kinds of depth •.• the depth of the image itself, and the
* depth of the playfield into which it will be drawn. The image depth
* says how much data space will be needed to store an image if it's
* dynamically allocated. The playfield depth establishes how much space
* will be needed to save and restore the background when a Bob is drawn.
* A vsprite is always 2 planes deep. but if it's being used to make a
* Bob, it may be deeper ••• */

v->Depth = imagedepth;

/* Assume that the caller at least has a default boundary collision
* routine bit lof this mask is reserved for boundary collision
* detect during DoCollision(). The only collisions reported will be
* with the borders. The caller can change all this later. */

v->MeMask = 1;
v-> Hi tMask = 1;

v->ImageData = image; /* Caller says where to find the image. */

/* ShOW system where to find a mask which is a squished down version
* of the vsprite (allows for fast horizontal border oollision detection). */

if «v->BorderLine = (WORD *)AllocMem«sizeof(WORD)*wordwidth),
MEMF _PUBLIC I MEMF _CLEAR)) = 0)

FreeMem(v, sizeof(struct VSprite));
return(0);

/* Show system where to find the mask that oontains a I-bit for any
* position in the object in any plane where there is a I-bit (all planes
* OR'ed together). */

Listing 7.3: The makevsprite routine

Image

J

if «v->CollMask = (WORD *)AllocMem(sizeof(WORD)*lineheight*wordwidth,
MEMF _CHIP I MEMF _ CLEAR» == D)

FreeMem(v, sizeof(struct VSprite»;
FreeMem(v->BorderLine, wordwidth * sizeof(WORD»;
return(D) ;

/* This isn't used for a Bob, just a VSprite. It's where the
* Caller says where to find the VSprites colors. */

v->SprColors = colorset;

/* These aren't used for a VSprite, and MakeBob'll do set up for Bob. */
v->PlanePick = DxDD;
v->PlaneOnDff = DxDD;

InitMasks(v) ;
return(v) ;

/* Create the collMask and borderLine */

/* end of listing 7.3 - Makevsprite.c */

Listing 7.3: The makevsprite routine (continued)

ANIMATION

255

The image parameter is a pointer to the array of data words that

defines the physical appearance of your sprite. The sprite image that

was shown in Listing 7.1 is a typical image. The address at which the

image starts is the location of line 1 of the image data.

Unlike simple sprites, virtual sprites do not need an individual occur

rence of the sprite image data for each image of the sprite that is pro
duced. However, as in the simple sprite system, this sprite image must

be located in chip-accessible RAM.

Colors
The colorset parameter is a pointer to a set of three words (48 bits).

which define the colors that are to be shown for this graphics object.

These words contain the actual color data for color numbers 1. 2, and 3

of a virtual sprite.

The system keeps track, in the lastcolors array, of the pointer value

used to assign colors for a particular sprite. If you have several virtual

sprites with identical colors, this pointer value should be the same for all

of them_ When the system is trying to find a hardware sprite to assign

for a particular virtual sprite. it knows that sprite pairs share the same

color registers. If you load the same colors for each of the sprites of

a sprite pair, it is much easier for the system to find an available

hardware sprite to use. However, if all of the color pointer values are

PROGRAMMER'S GUIDE TO THE AMIGA

256

different, you increase the chances of the system running out of hard

ware sprites and thus deciding not to display some of your virtual

sprites in this particular display frame. (Decisions are made once each 1/

60th of a second about what can be displayed.)

Position

Width

Depth

Flags

The x and y parameters determine the on-screen position of the

graphics object. Unlike simple sprites, which can be positioned relative to

the display, virtual sprites are restricted to positions relative to the

screen in which they are drawn. As with simple sprites, however, they

do not interfere with the playfield area.

The wordwidth parameter specifies the width of the graphics object.

For a virtual sprite, this value is always 1. (A Bob can be any width; the

wider the Bob, the longer the system might take to draw it.)

The imagedepth parameter defines how many planes of data are con

tained in the image area. For a virtual sprite, this value is always 2. (For a

Bob, the depth can be any value less than or equal to the depth of the

screen into which it will be drawn.)

The flags identify the type of graphics object that is represented by

the V5prite data structure. For a virtual sprite, set this parameter to

V5PRITE. (5et it to 0 for a Bob.)

The Virtual Sprite Program
Listing 7.4 is a program that uses the routines we've created to dupli

cate some of the features of the simple sprite program shown earlier.

The main difference between the two programs is that a lot more vir·

tual sprites are generated here, and rather than relying on INTUITICK5,

this program waits for the top of the next frame before generating the

next sprite move. The sprites in this example, therefore, move about six

times faster than in the previous example.

The initial placement of the sprites is random compared to the simple

sprite example, and enough sprites have been generated to ensure that

sometimes one or two disappear for a frame or two. Watch carefully

and you will see it.

Also notice the occasional change of priorities as the sprites pass

beyond each other, and the change in the colors of the numerals 21 -23,

1* vsprite.c *1

i ncl ude "execl types. h"
#include "intuition/intuition.h"
#include "graphicsl spri te.h"
#include "exec/memory.h"
#include "graphics/gels.h"

1* ask system to create and manage MAXSP vsprites *1
#define MAXSP 28

1* define possible speeds for vsprites in counts per vblank *1

SHORT speed[] = (1, 2, -I, -2);

SHORT xmove[MAXSP], ymove[MAXSP];

struct VSprite *vsprite[MAXSP];
struct VSprite *vspri

1*
1*
1*
1*

sprite directions of movement */
MAXSP simple sprites *1
pointer to a sprite *1

short maxgot; max # of sprites we created *1

struct Gelslnfo mygelsinfo; /* the window's RastPort needs one
* of these in order to do VSprites *1

struct Window *w; 1* pointer to a Window *1
struct RastPort *rp; 1* pointer to a Ras tPort * I
struct Screen *s: 1* pointer to a Screen *1
struct ViewPort *vp: 1* pointer to a Vi ewPort * I

struct Window *OpenWindow();
struct Screen *OpenScreen();
LCNG GfxBase;
LONG IntuitionBase;

1* 18 words of sprite data 9 lines of sprite data *1

lJW)RD spri te _ data[] = (

1* OxOfc3, OxOOOO,
Ox3ff3, OxOOOO, 1*
Ox30c3, OxOOOO, 1*
OxOOOO, Ox3c03, 1*
OxOOOO, Ox3fc3, 1*
OxOOOO, Ox03c3, 1*
Oxc033, Oxc033, 1*
OxffcO, OxffcO, 1*
Ox3f03, Ox3f03, 1*
) ;

lJW)RD * sprdata;

movesprites()
(

short i;
for (i=0; i<maxgot; i++)
(

vspr = vsprite[i];

vspr->X = xmove[i]+vspr->X;
vspr->Y = ymove[i]+vspr->Y;

image
image
image
image
image
image
image
image
image

1* move the sprites •.• here. *f

data
data
data
data
data
data
data
data
data

line 1*1
line 2*1
line 3*1
line 4*1
line 5*1
line 6*1
line 7*1
line 8*1
line 9*1

if(vspr->X >= 300 II vspr->X (= 0) xmove[i]=-xmove[i];
if(vspr->Y >= 190 II vspr->Y (= 0) ymove[i]=-ymove[i];

Listing 7.4: The virtual sprite program

ANIMATION

257

PROGRAMMER'S GUIDE TO THE AMIGA

258

)
SortGList(rp); /* get the list in order */
DrawGList(rp, vp); /* create the sprite instructions */

MakeScreen(s) ;
RethinkDisplay() ;

/* ask Intuition to pull it all together */
/* and to show us what we have now. */

#define AZCDLOR
#define WHITECDLOR 2

#define we WINDDWCLOSE
#define WS WINDOWSIZING
#define WDP WINDOWDEPTH
#define WDR WINDOWDRAG

#define NORMALFLAGS (WCIWSIWDP)
/* Did not use windowdrag because don't want screen to be moved. */

/* Allow window sizing so user can decrease size of window, then
* increase it again, thus erasing the background text. User can
* easily see that some vsprites wink out and into existence when
* too many sprites are on a single horizontal plane and the
* vsprite system runs out of sprites to assign.
*/

/* myfontl specifies characteristics of the default font;
* this case selects the 80-column font that displays as
* 40 columns in low-resolution mode.
*/

struct TextAttr myfontl = { "topaz. font" , 8, 0, 0 J;

struct NeWScreen myscreenl = (
0, 0, /* LeftEdge, TopEdge ... where to put screen */
320, 200, /* Width, Height ..• size of the screen * /
5, /* 5 planes Depth, means 2 to the 5th or

* 32 different colors to choose from once
* the screen is opened.
*/

1, 0, /* DetailPen, BlockPen */
SPRITES, /* ViewModes •.. value of 0 = low resolution */
eUSTOMSCREEN, /* Type of screen */
&myfontl, /* Font to be used as default for this screen */
"32 Color Test", /* Default'J'itle for its title bor */
NULL, /* screens user-gadgets, always NULL, ignored * /
NULL J;

struct NewWindow
0,

0,

320, 185,
0,

1,

/* address of custom bitmap for screen,
* not used in this example
*/

myWindow = (
/* LeftEdge for window measured in pixels,

at the current horizontal resolution,
frem the leftmost edge of the Screen * /

/* TopEdge for window is measured in lines
fram the top of the current Screen. */

/* Width, Height of this window */
/* DetailPen - what pen number is to be

used to draw the borders of the window */
/* BlockPen - what pen number is to be

used to draw system-generated window
gadgets */

Listing 7.4: The virtual sprite program (continued)

ANIMAnON

/* (for DetailPen and BlockPen, the value
of -1 says "use the default value") */

CLCS EWI N!XlW , /* simplesprite program used INTUITICKS also */
/* IDCMP Flags */

NORW>.LFLAGS GIMMEZEROZERO I AcrIVATE,
/* Window Flags */
/* FirstGadget */ NULL,
/* CheckMark */ NULL,

"ClicK
NULL,
NULL,

Close Gadget To Stop", /* Window ti tle * /
/* Pointer to Screen if not Workbench */

320, 10,
/* Pointer to BitMap if a SUPERBITMAP window * /
/* minimum width, minimum height */

320, 200,
CUSTOMSCREEN
) ;

/* maximum width, maximum height */

#include "grap,ics/gfxmacros .h"

/* #include "eventl.c ll */
/* gets the event handler */
/* eventl.c */

HandleEvent (code)
LCNG code;

swi tch(code)
(

/* provided by main */

case CLCSEWIN!XlW:
return(O) ;
break;

case INTUITICKS:
movespri tes (); /* 10 moves per second; test * /
defaul t:

)
return(l) ;
)

UWDRD mycolortable[] = (

break;

OxOOOO, Ox0e30, OxOfff. Ox0b40, OxOfbO, OxObfO,
OxOSdO, OxOedO, Ox07df, Ox069f, OxOcOe,
OxOf2e, OxOfeb, Ox0c98 , Ox Obbb , Ox07df.

OxOOOO, Ox0e30, OxOfff, Ox0b40,
OxOfbO, OxObfO, OxOSdO, OxOedO,
Ox07df, Ox069f, OxOcOe, OxOf 2e,
OxOfeb, Ox0c98, OxObbb, Ox07df
) ;

1* black, red, white, fire-engine red, orange, yellow,
lime green, green, aqua, dark blue, purple,
violet, tan, brown, gray, skyb1ue, (everything again) */

UWDRD colorset O[
UWDRD co1orsetl[
UWDRD co1orset2[
UWDRD colorset3[
UWDRD *colorset[

int choice;

OxOe30, Oxffff, Ox0b40
OxObfO, Ox05dO, OxOedO
Ox069f, OxOcOe, OxOf 2e
OxOc98, OxObbb, Ox07df

co1orsetO, colorsetl,
colorset2, colorset3);

Listing 7.4: The virtual sprite program (continued)

/* same as colors 17-19 */
/* 21-23 * /
/* 25-27 * /
/* 29-31 * /

259

PROGRAMMER'S GUIDe TO THE AMIGA

260

char *mnnbers [] "17","18","19",
"20","21","22","23",
"24","25","26","27",
"28", "29", "30", "31" 1;

#include "ram:purgegels.c"
#include "ram: readyge1s.c"
#include IIram:makevsprite.c"

maine)
[

struct IntuiMessage *rnsg;
LOOG resu1 t;
SHORT k, j, X, y, error~

tJW)RD 'src, *dest, /* for copying sprite data to RAM */

GfxBase = OpenLibrary("graphics.library" ,0);

IntuitionBase = OpenLibrary("intuition.library" ,0);
/* (error checking left out for brevity here) */
s = OpenScreen(&myscreen1), /* try to open it */
if (s 0)
[

pri ntf (It Can I t open myscreenl \n")-:
exi t(10);

rnywindow.Screen ~ S; /* say where screen is located */

ShowTit1e(s, FALSE), /* Dont let screen be dragged down •.• */

w = OpenWindow(&myWindow);
if(w 0)
[

printf ("Window didn't open! \n");
CloseScreen (s);
exit(20) ,

vp &(s->ViewPort);
/* set the colors for this viewport */

LoadRGB4(vp, &rnycolortable[O], 32);
rp = w-> RPort;

/* Now wait for a message to arrive fram Intuition
* (task goes to sleep while waiting for the message)
*/

/* Write Text using sprite colors so that demo can show
* how the vsprite system stuffs the colors as it goes
* down the screen. Thus if using vsprites, user should
* avoid using the color registers that the vsprites use.
*/

/* Notice also that color numbers 17-19 are untouched.
* That is because of the sprResrvd=OxFC in ReadyGels.
* (Doesn't allow the virtual sprite system to access
* either sprite 0 or 1 ... 0 is used by mouse cursor and
* shares its colors with 1, so I reserved both of them.
*/

for(j=8; j<180; j+=50)
[

for (k=O; k<lS; k++)
[

Listing 7.4: The virtual sprite program (continued)

ANIMATION

Move(rp,k*20,j);
SetAPen(rp,k+17), /* show 17-31 */
/* 16, 20, 24, 28 are unaffected by vsprites

* because they are not used by hardware sprites */

Text(rp,numbers[k],2);

)
/* ****.********************************** */
/* VSPRITE DEM::> SECrIrn * /
/* ****.*.******************************** */

/* Allocate CHIP memory to hold the actual sprite data */
/* (necessary if ever to run on an expanded RAM Amiga) */

sprdata = (U\\QRD *)Allod-lem(36, MEMF_ClIIP);

if (sprdata = NULL)
(

)
/* not enough memory for sprite */

/* now copy the sprite data into the CHIP RAM. */

src = sprite data;
dest = sprdata; /* source, destination */

for(j=O; j<18; j++)
(

*dest++ = *src++;

choice = 0;
maxgot = 0;

/* Prepare the GELS system to work wi th VSPRITE or BOOS * /

error = ReadyGels(&mygelsinfo, rp);

for(k=O; k<MAXSP; k++) /* whatever maximum number of vspri tes * /
(

xmove[k]=speed[RangeRand(4)];
ymove[k]=speed[RangeRand(4)];

/* establish a position for the sprite */
x = 10 + RangeRand(280);
y = 10 + RangeRand(170);

/* create a vsprite */
vsprite[k] = MakeVSprite(9, sprdata, colorset[choice],

x, y, I, 2, VSPRITE);
/* 9 lines high, using MEMF ClIIP image of a sprite,

• with a particular set of-colors, at an X,Y location
* 1 word wide, 2 planes deep (all vsprites are 2 deep)
* and it is a VSPRITE */

if(vsprite[k] == 0)
(

break; /* ran out of memory I */
)
AddVSprite(vsprite[k], rp);

maxgot++;
choice++; /* choose a different color set */

Listing 7.4: The virtual sprite program (continued)

261

PROGRAMMER'S GUIDE TO THE AMIGA

262

)
while(1)
[

if(choice >= 4)
[

choice = 0:

/* forever */

Wai tTOF():
movesprites():

/* wrap around on colorsets */

result = -1; /* now see if CLOSEWINDOW is waiting */
msg = (struct IntuiMessage *)GetMsg(w->UserPort):
if(msg 1= 0)
[

}

result = HandleEvent(msg->Class):

/* Let Intuition reuse the msg */
ReplyMsg(msg) :

if(result == 0)
[

break; /* got a CLOSEWINDOW * /

/* DONE. now cleanup */

/* Free however many vsprites we actually managed to create */

for(k=O; k<maxgot; k++)
{

DeleteGel(vsprite[k]):
1
/* delete what ReadyGels created */
PurgeGel s (&mygelsinfo) ;

FreeMem(sprdata, 36);

CloseWindow(w) ;
CloseScreen (s) ;

/* free what we allocated. */

Listing 7.4: The virtual sprite program (continued)

25-27, and 29-31 as the sprites move around the screen, These numer

als are drawn in those particular color numbers in the drawing area.

showing you what the gel system is doing to those color registers as the

sprites move.

Note: The program in Listing 7.4 works only for system software

release 1 .2 and beyond. There was a problem in the gel system that has

been fixed for release 1 .2. Bobs function acceptably in release 1.1. but

virtual sprites work incorrectly prior to version i .2.

BLITTER OBJECTS (BOBS)
The next topic is that of the Blitter object. also called a Bob. The Bob

data structure defines these objects. Like virtual sprites. Bobs are part

ANIMATION

263

of the gel system. Unlike virtual sprites, which are independent of the

background display, Bobs are drawn as part of the background area.

You can use a Bob as a paintbrush, drawing it anywhere you wish on the

background area in multiple colors. (There are as many colors in a Bob as

there are in the background into which it is drawn.> Or you can move a

Bob by causing it to save the background area in its enclosing rectangle

before it is drawn and to restore the background area when it is moved

elsewhere.

The Bob data structure contains fields that describe how a Bob is con

structed and how it behaves. The structure also contains a pointer to a

V5prite data structure, which contains the rest of the data definition.

Having the V5prite structure as part of the overall definition of a Bob

allowed the system designers to utilize a single routine to keep track of

the positions of all graphics elements as part of a single animation.

The MakeBob Routine
Listing 7.5 contains the MakeBob routine. Most of the parameters for

MakeBob are identical to those for MakeV5prite. Among those that are

different are the image pointer and the PlanePick and PlaneOnOff

parameters.

The Image Pointer
Recall that each line of a sprite is defined by two data words at con

secutive memory locations, for example:

OxOfc3,OxOOOO, I * image data line 1 of a sprite * I

For a Bob, the data is different. All of the data for a particular bitplane

is grouped together. When you specify the data for a Bob, it is usually

most aesthetically pleasing if you group the data to resemble the physi

cal shape of the Bob so that the bit patterns are somewhat recogniz

able. The difference between the color selection of sprites as compared

to Bobs is that the bits that combine to specify the colors for Bobs are in

corresponding bit positions in corresponding lines of the pattern defini

tion in each of the bitplanes of the pattern. A 32-bit-wide Bob is used as

the example:

/ * plane 0 of the pattern * /
OxOOOO, Ox1111,
OXCCCC, Oxeeee,
/ * plane 1 of the pattern * /
Oxffff,OxOOOO,
Oxaaaa,Ox7777

PROGRAMMER'S GUIDE TO THE AMIGA

264

/* ma1<:ebob.c * /

struct Bob *Ma1<:eBob(bitwidth,lineheight,imagedepth,image,
planePic1<:,planeOnOff, x,y, flags)

SHORT bitwidth,lineheight,imagedepth,planePic1<:,planeOnOff,x,y,flags;
WORD *imagei
r

struct Bob *b;
struct VSprite *v;
SHORT wcrdwidth;

wordwidth = (bitwidth+lS)/16;

/* Create a vsprite for this Bob, it will need to be deallocated
* later (freed) when this Bob gets deleted.
* Note: No color set for Bobs. */

if «v = Ma1<:eVSprite(lineheight, image, NULL, x, y, wordwidth,
imagedepth, flags» == 0)

return(O) ; /* not enough memory for a VSprite */

/* Caller selects the bitplanes into which the image is drawn. */
v->PlanePic1<: = planePic1<:;

/* What happens to the bitplanes into which the image is not drawn. */
v->PlaneOnOff = planeOnOff;

if «b = (struct Bob *) AllocMem (s i zeof (struct Bob).
MEMF PUBLIC I MEMF _CLEAR» == 0)

return(O) ; /* no memory for a Bob * /

v->VSBob = bi /* Link together the Bob and its VSprite structures */

b->Flags = 0; /* Not part of an animation (BOBISOOMP) and don't 1<:eep the
image present after bob is removed (SAVEBOB) * /

/* Tell where to save backgrol..IDd. Must have enough spa.ce for as many
• bitplanes deep as the display into which everything is being drawn. */

if «b->SaveBuffer = (WORD *)AllocMem(sizeof(SHORT) * wordwidth
• lineheight * imagedepth, MEMF_ClUP I MEMF_CLEAR» == 0)

FreeMem(b, sizeof(struct Boh»;
return(O) ;

b->ImageShadow = v->CollMas1<:;

/* Interbob priorities are set such that the earliest defined Bobs have
* the lowest priority; last Bob defined is on top. */

b->Before = NULL;
b->After = NULL;

b->BobVSprite = v;

/* Let the caller worry about priority later. */

/* InitMas1<:s does not preset the imageShadow •.. caller may elect to use
'* the oollMask or to create own version of a shadow, although it
* is usually the same. * /

Listing 7.5: The makebob routine

)

b->Botcanp = NULL; /* thi s is not part of an animation * /
b->DBuffer = NULL; /* this is not double buffered */

/* Return a pointer to this newly created Bob for additional caller
* interaction or for AddBob(b); */

return(b);

/* end of listing 7.5, makebob.c */

Listing 7.5: The makebob routine (continued)

A~IIMATION

265

The color of the pixel in the upper-left corner of this Bob is determined

by the combination of bits from the most significant bit of the vvords

0000 and 1 1 1 1 . The higher numbered bitplane's bits take on the greater

significance. In other vvords, here are the possible color selections for

bits in plane 1 and plane 0:

Bit in plane 1: 001 1

Bit in plane 0: o 1 0 1

Color number selected: 0123

PlanePick and PlaneOnOff
The binary bits that select color numbers are subject to modification

by the values of PlanePick and PlaneOnOff. These parameters enable

you to define an object that has only four possible color choices. For

example, although the object discribed here has only four color choices

(only tvvo planes define the object), you can define exactly vvhich four

colors-out of a possible 32 available colors in the screen-vvill be used

each time the object is dravvn.

PlanePick is a binary bit that means, vvhen set: "Pick these planes to

be affected by the pattern, starting vvith the lovvest bitplane. Dravv the

bits from the lovvest numbered plane into the lovvest numbered bitplane

for vvhich there is a 1 -bit in PlanePick. Dravv the bits from the next-to

lovvest numbered plane into the next-to-Iovvest numbered bitplane for

vvhich there is a 1-bit in PlanePick, and so on."

For example, if PlanePick has a value of binary 0101, this is taken to

mean:

Plane to be picked:

Value of PlanePick:

Use source data

from image plane:

3210

01 01

X1XO

PROGRAMMER'S GUIDE TO THE AMIGA

266

So the image data from plane 0 is written into plane 0 of the destination

area, and the image data from plane 1 is written into plane 2 of the desti

nation area.

From this scheme, there are two planes of the destination area that

are unaffected by the data that is to be written: planes 1 and 3. What is

to be done with the data that is already there?

This is where PlaneOnOff comes in. PlaneOnOff is also a binary value.

It defines, for the planes not picked, what to do with the data, For a

given bit position, if a plane is not picked and if there is a zero in that posi

tion, the plane is to be filled with zeros wherever there is a nontrans

parent color for the object in the source data definition. Wherever there

is a 1-bit for a plane that is not picked, that plane is filled with 1 -bits wher

ever a nontransparent color of the object exists,

The gel system generates and uses a mask for Bobs that contains

1 -bits wherever there is a 1 -bit in the object. By using this mask, the sys

tem can control the way it modifies the bitplanes of the display area

that are unaffected by PlanePick,

If PlaneOnOff has a value of binary 0000, then the resultant color

selections for the object are based on the positions of 1-bits in the pat

tern of the object:

OXOX

from PlaneOnOff for those not picked, and

X1X1

from PlanePick where pattern bits get drawn. The bit positions shown

here as X indicate bit values that do not enter into the color selection

process,

These are the possible color values from this combination:

0000 color 0 (transparent)

0001 color 1

0100 color 4

o 1 0 1 color 5

So PlanePick and PlaneOnOff have translated the possible combinations

of colors 0, 1, 2, and 3 of a two-plane-deep object into the selections of

colors 0, 1 , 4, and 5,

ANIMATION

267

If, conversely, PlaneOnOff had a value of binary 1010, the color selec

tions \Nould be:

101 0 color 10

1 0 1 1 color 11

1 0 color 14

1 1 color 15

In other \Nords, for this one, there \Non't be a transparent color in the

bunch_ PlanePick and PlaneOnOff are actually 8-bit binary values

(UBYTE), for \Nhich only six bits are used in the current version of the

Amiga hard\Nare. You can experiment \Nith these values to translate

colors. Note that PlanePick and PlaneOnOff can be used to translate any

depth of defined object into \Nhatever depth of playfield is to be dra\Nn.

The PurgeGels Routine
You \Nill need t\NO routines for returning memory to the system. One

is called PurgeGels; it undoes \Nhat ReadyGels sets up. The other is called

OeleteGels; it undoes \Nhat MakeBob and MakeVSprite do. DeleteGels

assumes that all gels are attached to the system gel list. Listing 7.6 is the

source code for PurgeGels and OeleteGels.

Advantages to Using Bobs
Bobs let you define objects that can be any \Nidth by any height, as

long as you have the memory space to support them. Contrast this

\Nith sprites, \Nhich can be only 16 bits \Nide.

Bobs give you a greater variety of color choices than sprites. Instead of

three possible colors plus transparent (or 1 5 colors plus transparent in a

special attach mode not covered here), you can have as many colors in the

body of a Bob as there are colors available in the playfield (screen) area. This

can mean up to 4,096 colors in the special hold and modify mode.

For Bobs, you can specifically define the dra\Ning priority by manipu

lating the Before and After pointers. You can tell the system to dra\N

this Bob before that Bob and after this other one, thereby continuously

maintaining the priority levels bet\Neen Bobs that you specify.

Disadvantages to Using Bobs
Because Bobs are dra\Nn as part of the playfield area, using Bobs is

slo\Ner than using virtual sprites. In addition, because they are part of

PROGRAMMER'S GUIDE TO THE AMIGA

268

/* purgegels.c */

/* Use this to get rid of the gels stuff when it is not needed any more.
* You must have allocated the gels info stuff (use the ReadyGels routine). */

PurgeGels(g)
struct Gelslnfo *g;
(

if (g->collHandler !~ NULL)
FreeMem(g->col lHandler, sizeof(struct collTable»;

if (g->lastColor I~ NULL)
FreeMem(g->lastColor, sizeof(LCNG) * 8);

if (g->nextLine I~ NULL)
FreeMem(g->nextLine, si zeof (WORD) * 8);

if (g->gelHead I~ NULL)
FreeMem(g->gelHead, sizeof(struct VSprite»;

if (g->gelTail I~ NULL)
FreeMem(g->gelTail, sizeof(struct VSprite»;

/* Deallocate memory that has been allocated by the routines Makexxx. */
/* Assumes images and imageshadow deallocated elsewhere. */

DeleteGel(v)
struct VSprite *v;
(

if (v 1= NULL) (
if (v->VSBob 1= NULL) (

}

if (v->VSBob->SaveBuffer I~ NULL) (
FreeMem(v->VSBob-> SaveBuffer , sizeof(SHORT) * v->Width

* v->Height * v->Depth);

if (v->VSBob->DBuffer 1= NULL) (

}

if (v->VSBob->DBuffer->BufBuffer I~ 0) (
FreeMem(v->VSBob->DBuffer->BufBuffer,

sizeof(SHORT) * v->Width * v->Height * v->Depth);
)
FreeMem(v->VSBob->D8uffer, sizeof(struct DBufPacket»;

FreeMem(v->VSBob, sizeof(struct Bob»;

if (v->CollMask I~ NULL) (
FreeMem(v->CollMask, sizeof(WORD) * v->Height * v->Width);

if (v->BorderLine I~ NULL) (
FreeMem(v->BorderLine, sizeof(WORD) * v->Width);

}
FreeMem(v, sizeof(struct VSprite»;

/* end of listing 7.6, purgegels.c */

Listing 7.6: The purgegels routine

the drawn background, it is often necessary (as is done in the program in

Listing 7.7) to double-buffer the display. This means displaying one

screen while drawing into a different screen, then swapping the screen

positions and repeating the action.

Bobs use more memory than virtual sprites since it is usually appropri

ate to set 5AVEBACK-save the background area that the Bob covers

ANIMATION

269

up when drawn-so that the system can restore the background later

when the Bob is moved. For every Bob that is on the screen, there isjust

as much extra memory space being used to save the background it

overlaps.

The Bob Program
When you run the program in Listing 7.7, you will notice that drawing

happens directly into the screen's drawing area rather than in a win·

dow.

The graphics animation capabilities of the Amiga are extensive. This

chapter has provided you with tools that you can incorporate into

dynamic graphics in your own programs.

/* bobdemo.c * /

/* This example follows the vsprite example as closely as possible
* to demonstrate that the gel system manages both VSprites and
* Bobs. By examining the two examples side by side, you can
* see how Bobs and VSprites differ. The same image data is
* used in both examples. You'll notice that Bobs have no
* effect on the background display colors since they save
* and restore their backgrounds, and have no effect on
* the sprite color registers. */

/* (NOT double-buffered) */

#include "exec/types.h"
#include "intuition/intuition.h"
#include "graphics/sprite.hl!
#: i ncl ude II exec! memory. h 11

#include "graphics/gels.h"

/* ask system to create and manage MAXSP Bobs */
#define MAXSP 8

/* define possible speeds for Bobs in counts per vblank */

SHORT speed[] = r I, 2, -I, -2 I:

SHORT xmove[MAXSP], ymove[MAXSP]:

/* changed for Bobs */
struct Bob *bob[MAXSP):
struct VSprite *vspr;

/* added for Bobs */

/* sprite directions of movement */

/* MAXSP Bobs * /
/* pointer to a sprite */

/* All the combinations of two bits on within 5:
* selects where to assign planes of the image
* of the Bob to make color choices */

BYTE pick[) = [Ox03, Ox05, Ox09, Oxll, Ox06,
OxOc, OxlS, OxOA, Oxl2, Ox14 I:

Listing 7.7: The bob program

PROGRAMMER'S (~UIDE TU THE AMICiA

270

short maxgot: /* max # of Bobs we created */

struct Gelslnfo mygelsinfo; /* the window's RastPort needs one
* of these in order to do VSprites

struct Window *w~ /* fXJinter to a Window */
struct RastPort *rp; /* pointer to a Window's RastPort */
struct Screen *5; /* pointer to a Screen */
struct ViewPort *vp; /* pointer to a ViewPort */

struct RastPort *srp; /* pointer to the Screen's RastPort */
struct Window *OpenWindow();
struct Screen *OpenScreen();
LONG GfxBase;
LONG IntuitionBase;

/* 18 words of Bob data

UWJRD *bobdata;
UWJRD * sprdata;

9 lines of data, each, in two planes */

/* first plane image ••. equal to left word
* of the vsprite image data */

OxOfc3,
Ox3ff3,
Ox30c3,
OxOOOO,
OxOOOO,
OxOOOO,
Oxc033,
OxffcO,
Ox3f03,

/* second plane image ... equal to the right
* word of the vsprite image data. */

OxOOOO,
OxOOOO,
OxOOOO,
Ox3c03,
Ox3fc3,
Ox03c3,
Oxc033,
OxffcO,
Ox3f03,
/* plane 3 of image (actually only
* 2 planes of real data, but
* InitMasks, as called in MakeBob
* and MakeVSprite requires these
* extra planes of zeros to make
* the mask correctly */

0,0,0,0,0,0,0,0,0,
/* plane 4 */
0,0,0,0,0,0,0,0,0,
/* plane 5 */
0,0,0,0,0,0,0,0,0);

/* To move a Bob, you move its underlying vsprite, so the title
* of the routine is still appropriate. */

movespri tes ()
[

Listing 7.7: The bob program (continued)

*/

ANIMATION

short i ~

for (i=O; i<maxgot; i++)
{

vspr = bob[i]->BobVSprite;

vspr->X = xmove[i]+vspr->x;
vspr->Y = ymove[i]+vspr->Y;

/* move the sprites .•• here. */

/* changed for Bobs */

if(vspr->X >= 300 I I vspr->X <= 0) xmove[i]=-xmove[i];
if(vspr->Y >= 190 I I vspr->Y <= 0) ymove[i]=-ymove[i];

SortGList(srp) ;
DrawGList(srp, vp);

MakeScreen(s) ;
RethinkDisplay();

return(O) ;

/* get the list in order */
/* create the sprite instructions */

#define AZCOLOR 1
#define WHITECOLOR 2

#define WC WINDOWCLOSE
#define WS WINDOWSIZING
#define WDP WINDOWDEPTH
#define WDR WINDOWDRAG

#define NORMALFLAGS (wclwsIWDP)
/* Did not use windowdrag because don1t want screen to be moved. */

/* Allow window sizing so user can decrease size of window, then
* increase it again, thus erasing the background text. User can
* easily see that some vsprites wink out and into existence when
* too many sprites are on a single horizontal plane and the
* vsprite system runs out of sprites to assign.
*/

/* myfontl specifies characteristics of the default font;
* this case selects the SO-column font that displays as
* 40 columns in low-resolution mode.
*/

struct TextAttr myfontl = { "topaz. font" , 8, 0, ° J;

struct NewScreen myscreenl = {
0, 0, /* LeftEdge, TopEdge ••• where to put screen * /
320, 200, /* Width, Height ••• size of the screen */
5, /* 5 planes Depth, means 2 to the 5th or

* 32 different colors to moose fran once
* the screen is opened.
*/
/* DetailPen, BlockPen */
/* ViewModes •.. value of 0 = low resolution */
/* Type of screen */

1, 0,
SPRITES,
CUSTOMSCREEN,
&!nyfontl, /* Font to be used as default for this screen */

Test", /* Defaul tTitle for its title bar * / "32 Color
NULL, /* screens user-gadgets, always NULL, ignored */
NULL) ;

Listing 7.7: The bob program (continued)

271

PROGRAMMER'S GUIDe: TO THE AMIGA

272

/* address of custom bitmap for screen,
* not used in this example
*/

struct NeWWindow
0,

myWindow = [
/* LeftEdge for window measured in pixels,

at the current horizontal resolution,
from the leftmost edge of the Screen */

/* TopEdge for window measured in lines
from the top of the current Screen. */

/* Width, Height of this window */

0,

320, 185,
0,

1,

CL05EWINDOW,

NORM1l.LFLAGS

NULL,

/* DetailPen - what pen number is to be
used to draw the borders of the window */

/* BlockPen - what pen number is to be
used to draw system generated window
gadgets */

/* (for DetailPen and BlockPen, the value
of -1 says "use the default value") */

/* simplesprite program used INTUITICKS also */
/* IDCMP Flags */

GIMMEZEROZERO I ACTIVATE I BACKDROP,
/* Window Flags */
/* FirstGadget * /
/* CheckMark * / NULL,

"Click
NULL,
NULL,

Close Gadget To Stop", /* Window ti tle * /

320, 10,
320, 200,
CUSTOMSCREEN
} ;

/* Pointer to Screen if not Workbench */
/* Pointer to BitI1ap if a SUPERBITMAP window * /
/* minimum width, minimum height */
/* maximum width, maximum height */

#include "graphics/gfxmacros .h"

/* #include "eventl.c" */
/* gets the event handler */
/* eventl.c * /

HandleEvent(code}
LCNG code;

swi tch (code)
f

/* provided by main */

case CL05EWlNDOW:
return(O} ;
break;

case INTUITICKS:
movesprites(}; /* 10 moves per second; test */
default:

break;
}

return(1);
)

UWORD mycolortable[] = (

Oxoooo, OxOe30, OxOfff , Ox0b40, OxOfbO, OxObfO,
Ox05dO, OxOedO, Ox07df, Ox069f, OxOcOe,
OxOf2e, OxOfeb, OxOc98, OxObbb, Ox07df,

OxOOOO, OxOe30, OxOfff, OxOb40,
OxOfbO, OxObfO, Ox05dO, OxOedO,
Ox07df, Ox069f, OxOcOe, OxOf2e,

Listing 7.7: The bob program (continued)

ANIMATION

OxOfeb, OxOc9S, OxObbb, Ox07df
1:

/* black, red, white, fire-engine red, orange, yellow,
lime green, green, aqua, dark blue, purple,
violet, tan, brown, gray, skyblue, (everything again) */

umRD colorsetO[
umRD colorsetl[
umRD colorset2[
umRD colorset3[
umRD *colorset[

OxOe30, Oxffff, Ox0b40 J: 1* same as colors 17-19 *1
OxObfO, Ox05dO, OxOedO J: 1* 21-23 *1
Ox069f, OxOcOe, OxOf2e J: 1* 25-27 *1
OxOc98, OxObbb, Ox07df J: 1* 29-31 *1

colorsetO, colorsetl,
colorset2, colorset3 J;

int choice;
char *numbers [] "17", "lS", "19",

"20","21","22","23",
"24","25","26","27",
"28","29",1130 11 ,"3111 }:

#include "ram:purgegels.c"
#include "ram: readygels.c"
#include IIram:makevsprite.c"
1* added for Bobs *1
#include "ram:rnakebob.c"
main()
r

struct IntuiMessage *rnsg:
LCNG result;
SHORT k, j, x, y, m, error;
umRD *src, *dest; 1* for copying sprite data to RAM *1

GfxBase = OpenLibrary("graphics . library" ,0):

Intui tionBase = OpenLibrary(" intui tion.l ibrary", 0):
1* (error checking left out for brevity here) *1

s = OpenScreen(&myscreenl); 1* try to open it *1
if(s == 0)
r

printf(IICan't open myscreenl\n");
exit(lO):

myWindow.Screen = s: /* sC'tY where screen is located * /

ShowTitle(s, FALSE); 1* Don't let screen be dragged down ... *1

w = OpenWindow(&myWindow);
if(w 0)
r

printf("Window didn't open!\n");
CloseScreen (s):
exi t(20):

vp &(s->ViewPort);
1* set the colors for this viewport *1

srp = &(s->RastPort); 1* drawing Bobs directly into Screen *1

LoadRGB4(vp, &mycolortable[O], 32);
rp = w->RPort;

/* Now wait for a message to arrive fram Intuition
* (task goes to sleep while waiting for the message)
*1

Listing 7.7: The bob program (continued)

273

PROGRAMMER'S GUIDE TO THE AMIGA

274

/*

*/

/* Write Text using sprite colors so that demo can show
* how the vspri te system stuffs the colors as it goes
* down the screen. Thus if using vsprites, user should
* avoid using the color registers that the vsprites use.
* Bobs don' t bother any of the color regi sters. * /

for(j=8; j< 180; j+=50)
r

for (k=O; k<15; k++)
(

Move (rp,k*20, j);
SetAPen(rp,k+17); /* show 17-31 */
/* 16, 20, 24, 28 are unaffected by vsprites

* becaus e they are not used by hardware spri tes * /

Text (rp,numbers[k], 2);

ScreenToBack(s) ;

/* *************************************** */
/* BOB DEroo SEcrICN * /
/* *************************************** */

/* Allocate CHIP memory to hold the actual Bob data * /
/* (necessary if ever to run on an expanded RAM Amiga) */

bobdata = (UIIORD *)AllocMem(90, MEMF_QUP);

if(bobdata == NULL)
r

J

/* not enough memory for Bob * /
printf("No memory for 1:obdatal\n"}~
goto finish;

/* now copy the sprite data into the CHIP RAM. */

src = bob data;
dest = bohlata; /* source, destination */

for(j=O; j<45; j++)
[

*dest++ = *src++:

maxgot = 0;

/* Prepare the GELS system to work wi th VSPRITE or Bobs * /

error = ReadyGels (&mygelsi nfo, srp);

for(k=O; k<MAXSP; k++) /* whatever maximum number of BOBS */
[

xmove[k]=speed[RangeRand(4)];
yrnove[k]=speed[RangeRand(4)];

/* establish a position for the BOB */
x = 10 + RangeRand(280);
y = 10 + RangeRand(170);

/* Demonstrate that Bobs give a wider variety of color

Listing 7.7: The bob program (continued)

while(l)
(

* choices by using planepick and planeonoff to select
* colors other than those available by simply using
* vsprites. */

/* create a Bob */
bob[k] = MakeBob(16, 9, 5, bobdata,

pick[RangeRand(lO)], RangeRand(31),
x,y,SAVEBACK I OVERLAY h

/* 16 bits wide, 9 lines tall, 5 planes deep,
* (even though the image itself is only 2 planes
* deep, there are 5 planes worth of data to be
* saved for each Bob we draw!llllll), Bobdata
* in chip memory, position the two planes at any 2
* out of 5 bitplanes, and then arrange a random
* filling of either l's or O's in the nonpicked
* planes so as to create the appropriate color
* in the bit mask of the bob object; put at x,y;
* save and restore the background as the Bob moves */

if(bob[k] = 0)
(

}

printf("Ran out of memory during makebob\n");
goto fini sh;

if(k > 0)
r

/* establish a definite drawing order */
m = k-l;
bob[kJ->After = bob[m]->Before;
bob[k]->After->Before = bob[k];

AddBob(bob[k], srp);

maxgot++;

/* Bobs have nothing to do with colorsets. */

/* forever * /

WaitTOF() ;
movespri tes () ;

result = -1; /* now see if CLOSEWINOOW is waiting */
msg = (struct IntuiMessage *)GetMsg(w->UserPort);
if(msg 1= 0)
[

J

result = HandleEvent(msg->Class);

/* Let Intuition reuse the msg */
ReplyMsg(msg) ;

if(result == 0)
r

break; /* got a CLOSEWINOOW * /

/* DONE, now cleanup * /

ANIMATION

275

/* Free however many Bobs we actually managed to create * /
fini sh:

Listing 7.7: The bob program (continued)

PROGRAMMER'S GUIDE TO THE AMIGA

276

for(k~; k<maxgot; k++)
(

if(bob[k])
(

DeleteGel(bob[k]->BobVSprite);

)
/* delete what ReadyGels created * /

PurgeGels(&mygelsinfo);
if (bobdata)
(

)
if(w)
(

)
if(8)
f

FreeMem(bobdata, 90);

CloseWindow(w);

CloseScreen(s) ;

Listing 7.7: The bob program (continued)

/* free what we allocated. */

Sound

This chapter introduces the sound system on the Amiga. It shO\NS you

hO\N to reserve audio channels for your O\Nn use and hO\N to store data

directly in the audio registers. To understand the purpose of the various

audio functions that the Amiga sound soft\Nare provides, it is helpful to

first understand something about the audio hard\Nare.

AUDIO HARDWARE
For most Amiga functions, such as graphics, there are several layers

of system soft\Nare bet\Neen your program and the Amiga hard\Nare.

The audio soft\Nare system provides considerably less soft\Nare over

head and expects that the programmer of the sound system \Nill often

directly manipulate the sound hard\Nare to get the desired result.

The sound hard\Nare on the Amiga consists of four independent audio

channels, t\NO of \Nhich (channels 0 and 3) are connected to the left

stereo output jack on the back of the Amiga, and t\NO of \Nhich (channels

1 and 2) are connected to the right jack. Each channel has a volume con

trol register that can set the volume for that channel to one of 64 pos

sible unique values.

Each channel has a period register and a data register. The period reg

ister is used to establish the sampling rate for the channel. As higher and

higher values are installed in this period register, a 10\Ner and 10\Ner sam

pling rate is established and a 10\Ner frequency (a 10\Ner note) is output.

The data register points to the place \Nhere the data for that channel is

stored in chip-accessible memory (MEMF _CHIP). In addition, a length reg

ister defines the length of the memory space in \Nhich the sound data

resides.

Each of the four audio channels can retrieve its data via Direct Mem

ory Access (OMA) or directly from the processor. OMA is the most com

mon method. Using OMA means that the audio system can retrieve

data automatically \Nhile the processor is doing something else. With a

total of 26 OMA channels on the Amiga, including the four OMA channels

dedicated to the hard\Nare, your program can go on to do other things,

such as calculate the next audio output \Naveform or retrieve data

from the user \Nhile the current sound is being output, \Nithout interven

tion of the 68000.

To produce data that \Nill result in a sound output from the Amiga, you

provide an area of memory in \Nhich you have built a numerical represen

tation of the audio output data. If you are operating exclusively \Nith the

hard\Nare, after filling the data area, you set the volume to the level you

\Nish to use, establish the period register value to set the rate of data

PROGRAMMER'S GUIDE TO THE AMIGA

280

output to the audio tone generation circuitry, point the data register to

the memory area \Nhere your data is stored, \Nrite the length of the

data into the length register, and start the audio DMA.

COMMUNICATING WITH THE
AUDIO DEVICE

As \Nith other devices, the Audio device uses an IORequest block for

communicating \Nith your task. The request block for audio is called

IOAudio. To gain access to the Audio device, you use the Open Device

function, passing it an IOAudio structure that contains all zeros. Open

Device \NIII initialize the address of the Audio device (10 Device), \Nhlch

\Nill be needed later \Nhen you call any of the Audio device's functions.

Listing 8.1 is some sample code that sho\NS hO\N you begin access to

the Audio device. It provides a subroutine that you can use to dynami

cally allocate an IOAudio data structure, initialized to all zeros. You can

use this data structure to create IOAudio request blocks for use \Nith

the audio routines. The CreateAudiolO routine returns a pointer to an

IOAudio request block. You complete the initialization of other data fields

for your O\Nn use. A corresponding routine, also sho\Nn, frees the mem
ory that this IOAudio request block uses. Your program should keep

track of hO\N many of these blocks it creates, and it should free all of

them \Nhen it exits.

/* newaudio.c */

struct IOAudio *
CreateAudioIO()
[

struct IOAudio *iob~

iob = (struct IOAudio *)
AllocMem(sizeof(struct IOAudio),

M£MF _ CHIP I M£MF _CLEAR) ;

return(iob);

vaicl
FreeAudioIO(iob)
struct IOAudio *iob:
[

/* returns 0 if out of memory */

FreeMem(iob, sizeof(struct IOAudio»;

Listing 8.1: The newaudio routines

SOUND

281

To open the Audio device, you use a pointer to an IOAudio request

block that you have allocated. Listing 8.2 shovvs a sample function call

for opening the Audio device.

The global variable au Device is set to the value returned in the

io_Device field from the OpenDevice call so that you can copy the value

to other uninitialized request blocks for additional audio function calls.

When an allocation has been completed, the allocation key value is

generated and stored vvith the audio channel. If your future requests do

not match the allocation key (ioa_AllocKey), your command vvill be

rejected. Thus, the allocation key that is returned from the OpenOevice

function is stored for future use.

AUDIO SOFTWARE
The audio softvvare provides vvays of adapting the Amiga hardvvare

to the needs of a multitasking system. The softvvare includes routines

for the follovving:

• Allocating one or more channels for the exclusive use of a particu·

lar task.

• Establishing a priority of use to allovv a more important sound to

be heard, even if another task already has a channel allocated.

• Letting a lovver priority task finish using a channel before it is

stolen for another task's use.

• Enabling you to start or stop an audio channel as vvell as to queue

several audio sounds for a channel to play in sequence.

• Specifying hovv often a particular vvaveform definition should be

played as vvell as informing you about vvhich vvaveforms have been

played or are currently playing.

• Enabling you to go directly to the hardvvare if you vvish to exercise

that level of control.

Allocating Channels
In the Amiga multitasking system, you might vvant to get the use of

one or more audio channels but also allovv your use of the channels to be

preempted (allovving another task to steal a channel, or simply to

request the use of a channell.

The audio system lets you request channels to be reserved for your

task by tvvo different methods: during an OpenDevice function call, and

PROGRAMMER'S GUIDE TO THE AMIGA

282

int error;
struct Device *auDevice;
struct IOAudio *audioIOB;
WORD allocationKey;

audioIOB = CreateAudioIO();

/* If audioIOB return value is 0, you ran out */
/* of memory and should exit showing an error. */
error = OpenDevice("audio.device",O,audioIOB,O);

/* If error is not 0, again, should exit */

/* Get the device address for later use */

auDevice = audioIOB->ioa_Request.io_Device;

/* Get the allocation key for later use */

allocationKey = audioIOB->ioa_AllocKey;

/* Now the rest of the audio request block can be */
/* initialized and it can be sent to the device */
/* using SendIO or DolO (or BeginIO, which is, in */
/* effect, a faster version of SendIO) */

Listing 8,2: Opening the Audio device

as a separate function, called ADCMD_ALLOCATE. During either of

these two possible allocation times, the priority of your task's use of the

channels you request is established by the priority field of the 10Audio

request block, ioa_Request.io_Message.mn_Node.ln_Pri. If you use the

CreateAudiolO routine, the priority value for your audio channel request

will be set to zero, Here is an example that sets the priority to 127,
where iob is a pointer to an 10Audio request block:

struct AudiolO * iob;

I * set the priority for this request block to 127 * I

iob- >ioa_Request.io_Message,mn_Node.ln_Pri = 127;

Priority values can be set from - 128 (minimum) to + 127 (maximum), If

you set the priority value to maximum, the system will simply refuse to

abort your task's use of the channel. If you set a lower priority value and

another task requests allocation using a higher value in its allocation

request, either your task's I/O request will be aborted, or your task will

be told that another task wants to use one or more of its channels on a

priority basis.

The priority of the channel is established when the Open Device func

tion is performed. If you wish to change the priority value later, you

SOUND

Audio Bit Position Binary Decimal

Channel in Data Byte Value Value

0 0 0001
0010 2

2 2 0100 4

3 3 1000 8

Table 8.1: Audio channel bit positions and values

must use the ADCMD_SETPREC command, sho\Nn later in this chapter.

Regardless of \Nhen you request use of one or more channels (at

Open Device or by a separate call to ADCMD_ALLOCATE), your request

takes the same form: pointing your io_Data pointer to the first byte in

an array of allocation request bytes, and setting the ioa_Length value in

your request block to specify hO\N many bytes there are in that array.

Each allocation byte contains four binary bits (the least significant

four bits of the byte) that tell the system \Nhich channel(s) of the four

possible audio channels you \Nant to reserve for your O\Nn use. The bit

positions correspond directly to the audio channel numbers, starting

\Nith channel 0, as sho\Nn in Table 8.1 .

To reserve t\NO channels for your task to use, you form a value called

an allocation mask, \Nhich is composed of values representing one left

channel and one right channel.

For your allocation mask, you can be very specific and say "If I can't have

channels 0 and 1, I don't \Nant any channels at an:' Or, you can ask the sys·

tem to search several combinations for you in a single allocation call, such as

"Give me channels 0 and 1, or 0 and 2, or 3 and 1, or 3 and 2:' These combina·

tions are those that yield a stereo pair. To make this request, you provide a

four·byte array, \Nith each byte representing one of the four bit combina·

tions that form a stereo pair, as sho\Nn in Table 8.2.

When the system completes your allocation request, the channels

that you nO\N have for your task's exclusive use are indicated by the

io_Unit field of your I/O request. Listing 8.3 utilizes the command ADCM·

D _ALLOCATE (after the device is open) to attempt to allocate either a

single channel or a stereo pair. Each routine in the listing returns a value

that indicates \Nhich channels have been allocated for your task to use.

Note that once the system allocates a channel for your use, your task

must free that channel later. If the channel is not freed, no other

task \Nill be allo\Ned to use that channel until the next system reset.

283

P~OGRAMMER'S GUIDE TO THE AMIGA

284

Channels Byte Value Byte Value

(binary) (decimal)

o and 1 0011 3

Oand2 0101 5
3 and 1 1010 10

3and2 1100 12

Table 8.2: Stereo audio channel allocation values

When the system allocates one or more channels in a single request, it

also provides a value that you use as a key to access the channel. It is

possible for any of the four audio channels to queue one or more

requests for audio output. As each request reaches the head of the

queue, the value of ioa_AllocKey in the request is matched against the

key value that the Audio device keeps internally for each channel. It is by

this key value that the channel knovvs vvhich task is its ovvner.

Each time a channel is freed, then reallocated, a nevv key value is gen

erated. Requests that have the correct key value are performed;

requests that have an incorrect value are returned to the sender, indica

ting an error. Thus, the routines in Listing 8.3 require an initialized

IOAudio request block Uust the io_Device and mn_ReplyPort fields), and

the address at vvhich a global vvord variable is located, into vvhich the allo

cation key can be stored. All control functions that you exercise on the

audio channels require that this allocation key be correct vvithin the

IOAudio request block or the command vvill be rejected.

If you vvish, you can also utilize OpenDevice to automatically allocate

channels as the device opens. This method requires the same setup as in

the last listing, but it does not require a separate call to ADCMD _ALLO

CATE. Listing 8.4 is a routine that allocates during OpenDevice and

returns the value r::epresenting vvhich channel vvas allocated.

Note that once the device is opened, you can retrieve a pointer to it

from the io_Device field of the IOAudio request block and the allocation

key from the ioa_AllocKey field of the request block. Also note that the

value in the io_Unit field of the request block contains the mask value

that defines vvhich channels have been allocated vvith this request.

It is not necessary to open the device several times. To get another

channel once the device is opened, you should use the ADCMD_ALLO

CATE command.

1* getaudio.c *1

WORD mykey; 1* a global value, key for access *1

UBYTE
GetAnyStereoPair(iob)
struct IOAudio *iob;
[

1* Assume that iob already initialized
* in Device field */

1* Also assume that the ReplyPort
* field is initialized. *1

UBYTE stereostuff[4];
UBYTE mychan;
int error;

stereostuff[O] 3;
stereostuff[l] 5,
stereostuff[2] 10,
stereostuff[3] 12;

1* Set the precedence of the channel request *1

iob-> ioa_Request. io_Message.mn_Node.ln_Pri 20;

1* Type of command is allocate *1

1* Point to the allocation map *1

iob->ioa Data = (UBYTE *)stereostuff;

1* It contains 4 entries *1

iob->ioa_Length = 4;

/* Don't wait for allocation, channels
* should be available! If we don't set
* ADIOF NOWAIT, the task will idle waiting
* for a-chance to allocate the channel,
* looking again each time another task
* allocates or frees a channel. *1

iob-> ioa_Request. io_Flags

BeginIO(iob);

ADIOF NOWAIT

error = WaitIO(iob); 1* returns nonzero if error *1
if(l(iob->ioa Request.io Flags & IOF_QUICK»
[- -

)

1* if flag not set, then the message
* was appended to the reply port
* (was not quick I/o after all) *1

GetMsg(iob->ioa_Request.io_Message.mn_ReplyPort);

if(error)
[

returniO),

mychan = ((ULONG) (iob->ioa_Request.io_Unit» & OxFF,
return(mychan) ,

Listing 8.3: The getaudio routines

SOUND

285

PROGRAMMER'S GUIDE TO THE AMIGA

286

UBYTE
GetAnyChannel(iob)
struct IOAudio *iob;
(

UBYTE anychan[4];
UBYTE mychan;
int error;

anychan[O] 1;
anychan[lJ 2;
anychan[2] 4;
anychan[3] 8;

iob->ioa Request.io Message.mn Node.ln Pri = 20;
iob->ioa-Request.io-Command = ADCMD ALLOCATE;
iob->ioa-Data = (UBYTE *)anychan; -
iob->ioa-Length = 4:
iob->ioa-Request.io Flags = ADIOF NOWAIT I IOF QUICK;
BeginIO(Iob); - -
error = WaitIO(iob); /* returns nonzero if error */

if(l(iob->ioa Request.io Flags & IOF_QUICK))
(- -

GetMsg(iob->ioa_Request.io_Message.mn_ReplyPort);

if(error)
(

return(O) ;

mychan = ((ULONG) (iob->ioa Request.io_Unit)) & OxFF;
return(mychan); -

Listing 8.3: The getaudio routines (continued)

Waiting for Allocation
In all forms of allocation, your task is put to sleep until one of your allo

cation requests has been fulfilled. Each time one or more channels has

been freed, the Audio device will examine the allocation requests and

try to fulfill the request that has the highest priority. If there are still not

enough channels free to fulfill this request, the task will continue to

sleep awaiting the reply from the Audio device.

Waiting for allocation (using DolO) is demonstrated in the GetAny

Channel and GetAnyStereoPair routines. Although it is not visible in the

OpenAnyAudio routine, the task does not return from the OpenDevice

call until the allocation succeeds.

If you do not want your task to wait for allocation, then you can set

an additional flag, ioa_Flags, to a value of ADIOF_NOWAIT. If this flag con

tains other than a zero and the allocation cannot be performed immedi

ately, the request block will be returned immediately. The error value

(ioa_Request.io_Error) will be 10ERR_ALLOCFAILED. If the allocation

/* openanyaudio.c */

BYTE
OpenAnyAudio(iob)
struct IOAudio *iob;
[

int error;
BYTE anychan[4];
BYTE mychannel;

anychan[O] l'
anychan [l] 2 ;
anychan[2] 4;
anychan[3J 8;

iob->ioa Data = (UBYTE *)anychan;
iob->ioa=Length = 4;

error == OpenDevice("audio.device",O,iob,O):

/* If error not 0, should return 0 for key */
/* and for unit value */

if(error 1= 0)
[

return((BYTE)O);
)
else
{

returner (ULONG)(iob->ioa_Request.io_Unit)) & OxFF);

Listing 8.4: The openanyaudio routine

SOUND
287

fails, the value returned from any of the allocation routines \Nill be zero,

and the error value \NiII indicate the failure code IOERR_ALLOCFAILED,

Here is an example that sho\NS setting the flag for immediate return:

iob->ioa_Requestio_Flags = ADIOF _NOWAIT;

Using the Allocated Channels
When you open the Audio device, it fills in the ioa_Request.io_Device

field of the IOAudio request block that you provided to the Open Device

function,

When you allocate one or more channels, \Nhether during Open Device

on the Audio device, or later by using ADCMD_ALLOCATE, the system

fills in the ioa_Request,io_Unit field of your request vvith the value repre

senting the channel or channels you have allocated, The system also

assigns a unique allocation key in ioa_AllocKey representing this

request,

If you use CreateAudiolO to create more than one IOAudio request

block so as to queue up multiple audio commands, then all three values

the device, the unit, and the allocation key-must be copied from an

PROGr-(AMMER'S GUIDE TO THE AMiGA

288

initialized IOAudio request block in order to be used to send requests to

that channel.

The only exception to U-lis is when you have successfully allocated a

pair of stereo channels for your task. In this case, you change the unit

value so that you send commands separately to each of the stereo

channels you have allocated. For example, if you have successfully allo

cated channels 1 and 2, the unit value that you receive will be binary

0110. You will send commands to the channels individually using unit

values of 0100 (for channel 2) and 0010 (for channel 1) Your allocation

request, returning the original value of 0 110 binary, simply indicated that

you obtained use of both channels 1 and 2. It is then up to you to send

them commands individually by splitting the unit number value that you

have received.

If you want your task to go on to do something else if an audio alloca

tion request fails the first time it is attempted, set the command flag

variable to include the value ADIOF _NOWAIT.

Locking a Channel
The priority value that you set on your audio request directs the

Audio device to reject requests that have an equal or lower priority

than yours. If you want to keep a channel forever, set your priority

value to 127. Once you are granted use of that channel, no other task's

request will be honored until you free that channel. In this case, you will

not need to lock and unlock the channel. However, if your task wants to

share the system, you will want to use a lock.

If another task makes an allocation request that has a higher priority,

you have two choices: let the channel be stolen from your task, with

your output aborted in midstream, or establish a lock on the channel. If

you establish a lock, your task receives a message stating that another

higher priority task wishes to use the channel and that it should finish

whatever it needs to do and free the channel as soon as possible. If you

are simply using the standard audio device I/O commands, locking a chan

nel is not necessary.

However, if, after allocating a channel, your task is writing directly to

the audio registers, you should use the locking function to clean up

appropriately, and to explicitly stop using the registers. This frees the

channel and allows the higher priority task access to it. If you do not per

form the lock function before writing directly to the registers, both

your task and this other task will be attempting to use the same output

registers, with unpredictable results.

Generally, you will want to lock a channel immediately after it has been

allocated for your use. If the lock fails, it means that another task with a

SOUND

289

higher priority value than yours has already stolen the channel from

you. If the lock succeeds, you have exclusive use of that channel until

you free it, regardless of the priority value of the channel.

To use Listing 8.5, the 10Audio request block must contain the alloca

tion key and the a'.JDevice value. To perform I/O, you also need a reply

port to 'Nhich the 1/0 request can be sent 'Nhen the 1/0 is completed.

Thus, the ioa_Request.ReplyPort must contain the valid address of the

reply port.

Note that the 10Audio request block that is used in this example is

simply sent to the Audio device and is held (not returned to your task)

until either another task tries to steal the channel or this task frees the

channel. Thus, you can see yet another reason for using the

CreateAudiolO function: it provides multiple request blocks to use for

communicating 'Nith the Audio device.

Setting a Ne\N Priority Value
You might be producing several sounds, some of 'Nhich are important

and some of 'Nhich are background noises. For the important sounds,

/* lockchan.c */

LockAChannel(lockiob,channel)
struct IOAudio *lockiob;
UBYTE channel;
[

/* tell it which channel to lock */

lockiob->ioa Request.io_Unit = (struct Unit *)channel;

lockiob->ioa Request.io Command = ADCMD LOCK;
lockiob->ioa=Request.io=Flags ~ 0; -

/* Send this command. It does not return to
* the reply port unless and until either this
* task frees the channel or another channel of
* higher precedence steals it. Appropriate
* to keep two reply ports, perhaps ... one for
* standard I/O replies, another for channel steal
* requests.
*/

BeginIO(lockiob);

FreeAChannel(iob)
struct IOAudio *iob;
[

/* allocation key and unit number must already be valid */
iob->ioa Request.io Command = ADCMD FREE;
iob->ioa-Request.io-Flags IOF QUICK;
BeginIO(iob); _.
WaitIO (ioh);

Listing 8.5: The lockchan routine

PROGRAMMER'S GUIDE TO THE AMIGA

290

you will not want other tasks to steal your audio channels. Thus, you will

want a high priority value on your audio channel while the important

sounds are being output and a low priority value on the channel when

less important sounds are being output.

The ADCMD_SETPREC command lets you dynamically establish the

precedence (priority value) of a channel that you own. Listing 8.6 is a rOU

tine for setting a new precedence value. Note that the cUllent prece

dence value will have been set dUring the OpenDevice function.

Controlling Audio Output
Now that you know how to allocate and free audio channels, you need

to know how to provide data for the audio channels to output, There

are a number of commands for controlling audio output. In addition,

there are two commands that let you synchronize with the output of

the audio channel. The control commands are the following:

CMD_WRITE Queues up a waveform definition for the

channel to output. This command can include

the settings for period and volume of a

waveform Or can cause the period and

volume values from the preceding

CMD WRITE to be used.

ADCMO PERVOL Changes the period Or volume (or both) for a

waveform that is already playing in a

channel. The change can be immediate or can

wait until the current waveform cycle has

finished playing.

/* setprec.c */

int
SetChanPrecedence(iob,channel,prec)
struct IOAudio *iob;
BYTE channel;
BY'l'E prec;
(

iob->ioa Request.io Command = ADCMD SETPREC;
iob->ioa-Request.io-Unit = channel;
iob->ioa-Request.io-Message.mn Node.in Pri = prec:
BeginIO(Tob); - - -
WaitIO(iob); /* wait for it to happen */
return(iob->ioa_Request.io_Error); /* 0 if no error */

Listing 8.6: The setprec routine

ADCMD_F[N[SH

CMD STOP

CMD_START

CMD_FLUSH

SOUND

291

Stops the current CMD_WR[TE waveform

from playing, either immediately, or after the

completion of the current cycle.

The flag value AD[OF _SYNCCYCLE serves

both ADCMD_PERVOL and ADCMD_F[N[SH,

specifying whether to stop immediately (the

default) or to stop only after completion of

the current cycle (if the flag is set).

Stops the channel's output temporarily

Restarts the channel's output.

Removes a[[current writes from the

channel's queue.

Restores a[[audio registers to their initial

state. Issues a CMD_FLUSH, issues a

CMD_START, and restores audio interrupt

vectors to system defaults. This is a

multichannel command; it affects a[[audio

hardware but has no effect on channel

locking. The task that locked a channel must

sti[1 free it.

The synchronization commands are as follows:

CMD_READ

ADCMD_ WA[TCYCLE

Returns a pointer to the 10Audio request

block, informing you that a particular

audio channel is now playing. (it may be

anywhere within the cycle,)

Prevents the command from returning

until the current CMD_ WR[TE has

completed. (You use Do[O to send this

command to a device,)

By using a combination of CMD_READ and ADCMD WA[TCYCLE,

your task can synchronize with the audio output that it has queued.

This feature can be useful for synchronizing sound and graphics action.

For example, you may want to make a sound when an object hits and

bounces off a wall.

PROGRAMMER'S GUIDE TO THE AMIGA

292

Audio Data
To understand how to create audio data suitable for the audio chan

nels, you need to know a few things about how the hardware inter

prets that data, To define audio output, you need to define three things:

• the waveform itself

• the sampling period

• the volume value

Waveform Definition
The waveform definition that you provide is a table of digital values

that corresponds to the audio waveform you are trying to produce,

Suppose that your waveform appeared as shown in Figure 8,1 ,

To produce this waveform, your data table must contain an even

number of signed byte values representing the waveform value

sampled at discrete, evenly spaced intervals. Generally speaking, you

will get the best quality sound if you use the full dynamic range of the

audio hardware. This means that, as shown in Table 8,3, you should draw

a waveform whose top is at or near a value of + 127 and whose bottom

is at or near - 127. This way, you provide the maximum number of pos

sible steps at which the waveform can be measured. The process of

126

63

o ---1~-4--+-+-""--I--+--+---,Jr- Ti me Interval

-6:.i

126

Amplitude

Figure 8.1: An audio waveform

SOUND
293

converting a vvaveform into discrete digital step values is called analog

to-digital conversion.

Sampling Period
To construct the vvaveform from the digital data, the sound hard

vvare sends the data to a digital-to-analog converter, one data item per

sampling period. The audio circuitry, in turn, fills in the line segments

betvveen the discrete data samples, reconstructing the vvaveform.

The faster the sampling period, the more often a vvaveform table is

sampled and, therefore, the higher the repetition rate of the system

vvhen reading the table. This means a higher frequency of output, or in

other vvords, a higher note. The slovver the sampling period, the lovver

the frequency of output, and the lovver the note that is produced.

The sampling period for Amiga vvaveforms is specified as a divider

value (called the period) rather than directly as a sampling rate. The

divider value is applied to an internal sampling rate clock vvhich, vvhen

divided by this value, determines the actual sampling rate. This means

that the value that specifies the output frequency of a vvaveform is

inversely proportional to the period value that controls the sampling

rate. In other vvords, if you vvant a very high note, you use a very lovv

period value. If you vvant a very lovv note, choose a high period value.

The minimum period value is 126 and is a limitation of the Amiga hard

vvare. This limit is established by the design of the DMA hardvvare. See

the Amiga Hardware Manual if you need more information about the lim

its of the audio hardvvare.

Time Interval Amplitude

Number of Waveform

0 0

1 63
2 126
3 63
4 0

5 -63
6 -126
7 -63

Table 8.3: Data for Figure 8.1

PROGRAMMER'S GUIDE TO THE AMIGA

294

Clear Audio Output
As part of a CMD_ WRITE, you can tell the system how many times a

waveform is to be output. Thus, the same digital data table might be

read many, many times before a new CMD_WRITE is issued. To avoid

clicks and pops in audio output, you should define a waveform so that

there is a smooth transition between waveforms if the same one is

repeated. Of course, this also holds true for transition points between

two different waveforms.

The smoothest transition between two types of audio waveforms

occurs at zero crossings. That is, if your waveform starts and ends at a

value of zero, it will be easy to splice together different waveform

types since both touch the zero axis as each waveform ends and

another begins.

If both waveforms begin and end, for example, at a value of 37, there

will not necessarily be a distortion generated as long as the slope of the

waveforms is the same at the splice point (if the first wave is going neg

ative and the spliced wave is also going negative at very nearly the

same rate). However, splicing at zero crossings is best because the volt

age value to the audio output is zero then and the minimum amount of

audio energy is available, thus avoiding a click when the waveform

changes.

Positioning the Audio Data
Your audio data must be located in memory that is accessible to the cus

tom chips. This means that you should allocate memory of the type MEMF

_CHIP and copy or generate your data into that space. Memory outside

the range of the custom chips cannot be read by the audio hardware.

The audio data must be a multiple of two bytes since the audio hard

ware retrieves two bytes each time any audio DMA takes place. In addi

tion, the first byte must be located on an even byte boundary. You need

not worry about the byte alignment if you use AllocMem, which auto

matically aligns its memory allocations on even byte boundaries.

Here is the code to allocate memory for the audio waveform shown in

Figure 8.1:

BYTE * audata;

audata = (BYTE *)AllocMem(8,MEMF _CHIP); /* 8 bytes needed */

If audata is nonzero, the audio data can be copied into that area and

used by the custom chips to produce an audio output.

Volume Control
By setting up the data table for the audio output, you have defined

the appearance of the waveform itself. You must also specify how loud

SOUND
295

the sound is to be. Each channel has a volume control associated with it;

a value of 64 is the maximum volume; a value of 0 is the minimum vol

ume. Values in between linearly control the volume of output of that

channel.

Alternatively, the volume value can be set to maximum (as in the pro

gram that follows) and an external amplifier can be used to control the

true volume of the output sound.

The Audio Program
Listing 8.7 is a full audio program that uses all four audio output chan

nels to play the sample waveform at four different frequencies simulta

neously. This program stores information directly in the audio registers.

Thus, it also locks the channels before it tries to use them.

/* audio_c * /

tinclude "exec/types .h"
'include lIexec/memorY.hl!
#include "devices/audio.h lt

extern struct I~udio *Creat~udio(): /* fwd declaration */

BYTE trianglewave[B] = [0, 63, 126, 63, 0, -63, -126, -63 J:

UWORD period[4] = [508, 428, 339, 254 J:

struct Device *auDevice=O;
BYTE *chipaudio:
struct lOAudio *audioIOB[4]:
struct lOAudio *aulockIOB[4]:
struct I~udio *aufreeIOB[4]:

extern struct MsgPort *CreatePort():
struct MsgPort *auReplyPort, *auLockPort:
extern struct I~udio *Creat~udioIO():
extern UBYTE GetAnyChannel():
extern void Fre~udioIO():

main()
[

int error,i,chan:
BYTE *8, *d;
struct Unit *auunit;

for(i=O: i<4: i++)
[

audioIOB[i] = Creat~udioIO():
aulockIOB[i] = Creat~udioIO():
aufreeIOB[i] = Creat~udioIO():

if(audioIOB[i] == 0 I I aufreeIOB[i] == 0 I aulockIOB[i] == 0)
[

finishup("out of memoryl"):

Listing 8.7: The audio program

PROGRAMMER'S GUIDE TO THE AMIGA

296

chipaudio ~ (BYTE *)AllocMem(8, MEMF CHIP);
if(chipaudio ~~ 0) -
(

fini shup ("out of memory!");

d chipaudio: 5 = trianglewave:

for(i~O; i<8; i++)
(

*d++ = *5++; /* GDPY into chip memory */

error ~ OpenDevice("audio.device",O,audioIOB[O],O);

if(error)
[

finishup ("audio device won I t open! II):
J
/* Get the device address for later use */

auDevice ~ audioIOB[O]->ioa_Request.io_Device;

/* Create ports for replies from the device */

auReplyPort
auLockPort

CreatePort(O,O);
= CreatePoequest.io_Device;

/* Create ports for replies from the device */

auReplyPort ~ CreatePort(O,O);
auLockPort ~ CreatePort(O,O);

if(auReplyPort ~~ 0 I I auLockPort ~~ 0)
[

finishup("cannot create a PJrt!");

for(i~O; i<4; i++)
(

/* initialize port addresses and device fields
* for all audio request blocks
*/

audioIOB[i]->ioa Request.io Device = auDevice;
aulockIOB[i]->ioa_Request.iO_Device = auDevice;

audioIOB[i]->ioa Request.io Message.mn ReplyPort
~ auReplyPort; -

aulockIOB[i]->ioa Request.io Message.mn ReplyPort

for(i~O; i<4; i++)
(

~-auLockPort; -

chan ~ GetAnyChannel(audioIOB[i]);

printf ("Got channel %ld\n", chan) ;

/* Make the allocation keys match */

aulockIOB[i]->ioa_AllocKey = audioIOB[i]->ioa_AllocKey;

/* Make the unit numbers match */
auunit = audioI08[i]->ioa_Request.io_Unit;

Listing 8.7: The audio program (continued)

aulockIOB[i]->ioa_Request.io_Unit

LockAChannel(aulockIOB[i],chan);

auuni tj

/* If CheckIO returns true, it means the request has
* been returned. This means the channel has been
* stolen.
*/

if(CheckIO(aulockIOB[i]»
[

finishup("A channel was stolenl");

for(i=O; i<4; i++)
[

J

/* nOw assuming nothing stolen, setup and request
* an output from that channel.
*/

audioIOB[i]->ioa Data (UBYTE *)chipaudio;
audioIOB[i]->ioa-Length 8/2; /* 4 WORDS in table */
audioIOB[i]->ioa-Period period[i]; /* from table */
audioIOB[i]->ioa-Volume 64; /* maximum */
audioIOB[i]->ioa=Cycles 10000; /* 10K times */

audioIOB[i]->ioa Request.io Command CMD WRITE;
audioIOB[i]->ioa=Request.io=Flags = ADIOF_PERVOL;

/* copy the audio block for freeing channels later */

*aufreeIOB[i] = *audioIOB[i];

printf("sending a request\n");
BeginIO(audioIOB[i]);

for(i=O; i<4; i++)
(

WaitIO(audioIOB[i]);
J
for(i=O; i<4; i++)
[

FreeAChannel(aufreeIOB[i]);
printf("freeing a channel \n");

finishup("Done! \n");

finishup(string)
char *string;
(

int i;
if(auDevice)

CloseDevice(audioIOB[O]);
if (chipaudio)

FreeMem(chipaudio,B);
for(i=O; i<4; i++)
[

if(audioIOB[i)
FreeAudioIO(audioIOB[i]);

if(aulockIOB[i))
FreeAudioIO(aulockIOB[i]);

Listing 8.7: The audio program (continued)

SOUND
297

PROGRAMMER'S GUIDE TO THE AMIGA

298

)
if (auReplyPort)

DeletePort(auReplyPort);
if(auLockPort)

DeletePort(auLockPort);

printf ("%ls\n" ,string);
exit(O) ;
)

#include IIram:newaudio.c"
#include "ram:lockchan.c"
#include IIram:getaudio.c"

Listing 8.7: The audio program (continued)

If you want to learn more about digital sound synthesis, I recommend

Musical Applications of Microprocessors by Hal Chamberlain (Hayden,

1986). In addition, a good treatment of both the sound and speech

capabilities of the Amiga can be found in the book Inside the Amiga by
John Thomas Berry (indianapolis: 5ams, 1986).

Multitasking

As introduced in Chapter 3, Exec has the ability to handle many tasks

at the same time. This chapter provides some details about hO\N Exec

manages multitasking and provides examples that sho\N how to create

ne\N tasks and how to run more than one task at a time.

TASKS
Exec shares the facilities of the processor by allo\Ning the creation of

tasks. Each task in the system has exclusive use of the machine regis

ters \Nhile it is running its program code. If you create and start a task,

then that task can share the facilities of the machine \Nith all of the

other tasks currently in the system.

A task is defined by a task control block. In this block are the parame

ters that define the operating state of the task, as \Nell as storage

areas in \Nhich the contents of the machine registers are kept when the

task is temporarily suspended.

Every time a system interrupt occurs, Exec examines the current

task and the list of tasks that are ready to run. Exec determines

\Nhich task should currently be running by comparing the priority of the

running task to the priority values for all of the other tasks that are

ready to run. If another ready task has an equal or higher priority, then

the complete state of the 68000 is saved in the task control block for

the current task and the complete state of the new task is loaded from

its own task control block and is started running, becoming the current

task. Tasks of equal priority \Nill continuously S\Nap in and out of the pro
cessor, making it appear that all tasks are running at the same time.

There are some limitations on the functions a task can perform. For

example, a task cannot do anything that requires any of the AmigaDOS

functions. The design of AmigaDOS calls for additional variables to be

associated with the task data structure. AmigaDOS uses these other

variables to receive messages, or to keep track of \Nhere the program

code and data \Nas loaded for this program, or to keep track of the lock

on the current directory, and so on.

Something to keep in mind is that only the task \Nith the highest prior

ity gets a chance to run. If you create a high priority task that does no

1/0 and performs no delay or \Nait functions, it is possible for your task

to hog the machine entirely. If a higher priority task hogs the machine,

any lower priority tasks may never get a chance to run at all.

Priorities of tasks can be set to any value from - 128 to + 127. Most

of the time, tasks are started \Nith a priority of zero. If all tasks have a

priority of zero (as AmigaDOS uses \Nhen starting your program from

the CLI), then each task has an equal chance to run and all tasks \Nill

PROGRAMMER'S GUIDE TO THE AMIGA

302

appear to be running simultaneously. All tasks of equal priority

will round·robin; that is, as each is deactivated in favor of the next task

on the task· ready list, the most recently deactivated task goes to the

tail end of the list. As each ready task is taken from the head of the list,

the task that is added to the end eventually reaches the head of the list

and runs again.

PROCESSES
AmigaD05 handles multitasking by building its own structure called a

process on top of the Exec task data structure. Most of the Process

data structure is involved with the internals of AmigaD05 and, there

fore, the items in the process control block are not described in this

book. The Process data structure is listed in the Amiga ROM Kernel

Manual in the Include file named Iibraries/dosextens.h.

Processes carry more overhead. That is, there are more things that

AmigaD05 will do with processes than with tasks. However, other than

specifying that tasks cannot perform AmigaD05 functions, this book

will not go further into the distinction between processes and tasks.

However, you will find examples of starting both processes and tasks

from which you will be able to create your own applications.

THE EASY WAY TO START
SOMETHING NEW

Before getting to the more complicated way of doing things (using

tasks and processes) here is the simple way: you can use the AmigaD05

facilities for starting a separate process and automatically continue

with your own program's operation while the other process runs right

along with yours.

If you have used the CLl, you already know a way to start several pro

grams running at the same time. For example, you can type

RUN clock

and

RUN notepad

This opens two new windows, each of which has the named program

running. You still have the original CLl available in which you can type

additional commands. Or you can type

NEwell

MULTITASKING

303

and get another CLI window from which other commands can be issued.

To easily start other programs from within one of your own pro

grams, you can call Execute with a command string that is identical to

what you would type directly into the CLI to start an independently run

ning program. Just as you might type

RUN SOMETHING

into the CLI, you can add to your program a function call to Execute such

as

success = Execute("RUN SOMETHING",O,O);

where SOMETHING is the name of the program you want to start running.

As you'll notice when you type the RUN command into the CLI, Amiga

DOS returns control immediately to the CLI so that you can continue to

type other commands. The same is true with the Execute function. RUN

loads and begins to run SOMETHING, returning control to your program,

with both programs running at the same time. You can start several pro

grams running in this manner if you wish. The return value for success is

always TRUE. That is, Execute always succeeds for a RUN command.

If you wish, you can also include redirection symbols in the command

string so that the input and the output of this independent task could

come from a disk file and go to a disk file. This would take the form

success = Execute("RUN < inputfile > outputfile SOMETHING",O,O);

where inputfile would be the name of the file from which input would be

taken and outputfile would be the name of the file into which all output

from SOMETHING would be placed as the program runs_ The arrows in

the command line are the redirection symbols of AmigaDOS. These are

explained in Chapter 2.

Once the RUN command begins, AmigaDOS starts a separate process

running for this other program. Both your process and this separate

process are allowed to run, sharing the facilities of the machine.

This simple form of starting programs that run concurrently actually

spawns (starts) an AmigaDOS process for each new running program. If

you do not specify any redirection in the command string, then all out

put is directed to the CLI from which you started the original program.

You need not worry about what kinds of functions your program uses

because there is a complete process control block set up by AmigaDOS.

So you can feel free to call AmigaDOS functions within the programs

you spawn.

Again, if you are only setting up tasks, rather than processes, you

may have to be more careful about which kinds of function calls you

PROGRAMMER'S GUIDE TO THE AMIGA

304

include in those tasks, In other words, you will have to avoid using any

thing that directly or indirectly calls AmigaDOS. Directly calling Amiga

DOS means directly using AmigaDOS functions described in Chapter 2

(such as Open, Read, Write, Close, and Delay). Indirectly calling AmigaDOS

means using any of the I/O functions built into the Amiga C library.

1/0 functions are defined as anything that moves data into or out of

your program from any peripheral device, Among these functions are

getchar, putchar, fopen, fclose, printf, and fprintf. The general guideline

you can use to recognize an 1/0 function is to ask yourself: "Does the

function move data through a peripheral such as the keyboard or

screen or disk?" If so, it might not be possible to ask a task to do it. How

ever, a process can do anything, so you might want to use a process

instead of a task.

Why use a task if a process is at least as good? Well, sometimes you

might want to minimize the space that your program uses, and if a task

can do what you need to have done, then using a task might just be the

logical choice.

Why get into tasking and creating processes when it is easy to start a

separate program from the CLI or from another program? Well, some

times you want to customize the way the system runs and perhaps

have tasks communicating and cooperating with one another. The task

ing example that follows shows how the task control block can be

extended to provide intertask communications.

A TASKING EXAMPLE
The tasking example in this section includes a tool for initializing a task

control block and starting a separate task. For convenience, both the

main program and the task it starts are contained in the same block of

code. This is a very simple program in which neither the main program

nor the little task that it spawns do anything really significant. It is pro

vided for illustration purposes only. The main program simply initializes

the little task, then sends it a startup message, then goes to sleep wait

ing for the reply.

The main program could just as easily have been made to do other

things while waiting for the little task to respond. For example, main

could be reading data from the user, and the little task could be doing

some calculations on previous data while main was getting new data.

(Specifically, imagine the little task calculating the next move of a chess

program while main was simply updating the move clock and waiting for

the user to indicate the next move.)

MULTITASKING

305

Once the little task has responded to the startup message, it goes

into a forever loop (by using Wait). Normally, \Nhen you \Nrite a program,

such as

mainO
{

printf("Helio world\n");
}

it is perfectly OK to "fall off the end" of your program. In other \Nords,

you can omit any exit or return statement, since this is assumed by the

C compiler. Once your program completes, it returns to the startup

code (AStartup or LStartup) \Nith \Nhich you linked it in the first place.

That startup code takes care of initializing your program correctly as

\Nell as cleaning up after your program is finished.

If you launch a task, it is not possible to simply fall off the end, because

the system \Nill not have a special startup code associated \Nith that

task, and it \Nill not kno\N \Nhere to go and \Nhat to do. You have t\NO

possible choices for ending your task code. You can force your task into

an endless \Nait. In this case, AmigaDOS stops the main program \Nhen it

finishes, and main frees the memory for the task you spa\Nned and

deletes the task from the system task list. Or you can cause your task

to delete itself as its final action. That method is sho\Nn here.

The Link File for the Task Example
The file in Listing 9.1 controls the linkage for the tasking example. To

compile this program, use the steps on the follo\Ning page.

tasklink.lnk

assign lib dfl:lih
(dfl: is C development ctisk.)
NOTE cornplile with the -v option in LC2 to disable stack checking
code otherwise linker coughs with undefined items cxovf and base.
(because the example does not use Lstartup.obj and Ie. lib.)

IF RUN FROM CLI:

FROM lib:Astartup.obj ram:tasking.o ram:inittask.o
TO ram:tasking
LIBRARY lib:amiga.lih

Listing 9.1 : The tasking. Ink file

PROGRAMMER'S GUIDE TO THE AMIGA

306

1. From your ovvn disk, type

COpy tasking.c ram:
COpy inittask.c ram:
COpy tasklink.lnk ram:

2. With the Amiga C disk in drive 1, type:

CD df1 :examples
EXECUTE make ram:tasking.c
EXECUTE make ram:inittask.c
df1 :c/alink with ram:tasklink.lnk

Your result vvill be a program called tasking.

3. From the CLI, issue the command

RUN ram:tasking

and you vvill see the results.

The Main and Little Task Program
Listing 9.2 is a fully commented listing that shovvs both the main pro

gram and the little task that it spavvns.

The Initialize Task Function
Listing 9.3 contains the InitTask function used in Listing 9.2. It differs

from the CreateTask function supplied in the Amiga function library in

that the task that is created is not automatically started. The example

tasking program vvaits for a startup message instead of starting imme

diately. Additionally, the main program allocates and deallocates mem

ory for the task, vvhereas in CreateTask most of the memory allocation

is done by Create Task rather than by the process that spavvns the task.

A PROCESSING EXAMPLE
If your code needs to perform I/O or to use AmigaDOS functions in any

vvay, it vvill have to be spavvned as a process rather than as a task. This

still falls under the heading of multitasking, but it is done at a higher level,

i.e., under control of AmigaDOS.

There are tvvo programs contained in this section. The proctest pro

gram loads and starts littleproc, and unloads its code and data vvhen it

MULTITASKING

/* tasking.c */

/* Sample tasking program -

* Creation of a parent and child task.

* Main task allocates space for a task control block and a
* message port, to be dedicated to the child task.

* Main initializes both port and tcb, then adds the child tasK.

* Child goes to sleep on creation, waiting for a message
* to be sent to its message port.

* On sending that message, parent task goes to sleep waiting
* childs reply.

* When parent's message arrives on child's port, child
* task awakes, retrieves the message and replies. Goes into
* an endless sleep (designer's choice).

* Parent awakens on receipt of message at its reply port,
* deallocates child memory utilization, and exits. */

/* system software version: Vl.l or higher */

/* program dependency information:

Link with Astartup.obj. InitTask.o. amiga.lib
to become

tasking * /

#include "exec/types.h"
#include "exec/nodes.h lt

#include "exec/lists.h"
#include "exec/memory.h"
#include uexec/interrupts.h"
#include "exec/ports.h"
#include uexec/libraries.h"
#include "exec/tasks.h"
#include "exec/execbase.h"

#include "exec/io.h ll

#define PRIORITY 0
#define STACKSIZE 500

extern struct Message *GetMsg() ,
extern struct MsgPort *CreatePort(),
extern struct MsgPort *FindPort(),
extern APTR AllocMem() ,
extern struct Task *FindTask () ,
extern int Ini tTask () ,

struct MyExtendedTask
struct Task
struct MsgPort
int

met Task;
met-MsgPort,
met=:Status;

J,

littletask()
(

/* a task control block */
/* to a message port */
/* a status value for info */

int signalbit; /* signal bit value for error checking */

Listing 9.2: The main and little task program

307

PROGRAMMER'S GUIDE TO THE AMIGA

308

/* pointer to little task's message port */

struct MsgPort *mp;

/* pointer to little task's message */

struct Message *msg;

/* pointer to a task */

struct MyExtendedTask *met:

met = (struct MyExtendedTask *)FindTask(O),

/* use this to mean everything is OK so far */

met->rnet Status = 0;

/* Point to the message port */

mp = &(met->met_MsgPort):

/* Now we have to set up the message port so that task can
* go to sleep waiting for a message to arrive there.

* Tell the port which task gets signaled when this port
receives a message. Nothing happens yet since mp_Flags

* is set to PA_IGNORE by the master task. */

mp->mp_SigTask = (struct Task *)met,

/* Now get a signal bit number ... this won't fail because
* this task is brand new and has plenty of signal bits
* to go around. Error checking done anyway, but what to
* do if it fails is up to you. */

signalbit = AllocSignal(-l):
if(signalbit != -1)

/* allocate ANY signal bit */

[
/* A valid signal bit has been allocated! */
/* NOW, tell the port to signal us if a message is received */
mp->mp_Flags PA_SIGNAL:

else
[

J

/* no signal bit was available */
met->met Status = -1;
goto finIsh,

/* If there was an error, then the flags variable never gets set
• to other than PA IGNORE. As a result, this poor little task
• might have to go-to sleep forever waiting for a signal that will
* never happen. Thus, a master task/process CQuid send a message
* to this little task, then wait for a limited time, and finally
* if no response from the little task, it can check the taskstatus
* to see if the little task actually started. If it did not,
* then the error code or current status can be in the status
* variable. Instead of forcing this action, we have chosen
* to terminate the task instead. (goto finish) */

Wai tPort(mp): /* wait for signal bit to be set */

/* If there is a message already there, task never even sleeps */

Listing 9.2: The main and little task program (continued)

MULTITASKING

msg = GetMsg(mp),

/* successfully responded to a message */

met->met Status ~ l~

/* 00 SOME aTHER GOOD STUFF HERE •••• WHATEVER
THE TASK WAS SUPPOSED TO 00 * /

finish:

Forbid() ,
ReplyMsg(msg) ;

/* Disable task switching */
/* Send message back to starter */

/* You would expect to free this signal bit using FreeSignal
* in about this position. However, since the task is about
* to be removed anyway, why bother. */

RemTask (0) ; /* Permit() happens automatically when remove task */

/* Remove task from task list; the next ready task
* can begin to execute. We can use this because of the
* MemList stuff in InitTask() any memory
* on the tasK's memlist is returned to the system
* automatically when RemTasK is performed. */

/* NaTICE that littletask MUST end in some kind of a
* Waite) or an endless loop, or somehow cause itself
* to be removed as is shown here. If it falls off the end
• nobody to return to. It must hold firm while the
* master task later deletes it. */

/* end of little task */

/* *** */

/* ****************************** NOTE *****************************

This example does NOT have littletask try to printf anything
because littletask is only a task, not a process. When you
RUN something (or simply start something from a CLI), that
program gets attached to a process, which is a superset
of a task. Those functions described in the ROM Kernel
Manual can be run by tasksa Those functions described in
the AmigaDOS Developers' Manual or the Lattice C manual
must be called from maine) or any of its own subroutines a
Separate items, fired up as tasks rather than processes,
must use only task-able functions. (Delay(xx) is a DOS
function, so littletask can't do that one either.)

(printf implies an output to an AmigaDOS controlled CON: or
RAW: window, is therefore an AmigaDOS interactive command
and requires a process call it rather than a task)

A user of tasks must be especially careful about controlling
the things that are requested by a task, primarily things
that are entirely self-contained code are probably the best
to use. Anything that may utilize the DOS should be avoided.
This includes opening a library, a device or a font, since
each of these causes a disk access (to load nonresident code
or devices). You may discover work-arounds, but the general

Listing 9.2: The main and little task program (continued)

309

PROGRAMMER'S GUIDE TO THE AMIGA

310

approach is that if your code has to do something that uses
AmigaDOS, then you should probably spawn a PROCESS rather than
a task.

A separate example shows how to spawn a process rather than
a task.

This tasking example works for resident code,
where both the maine) and its tasks are loaded at once.
The process example actually loads the other program as
a separate item and unloads its code when it finishes.

** */

maine)
(

struct Message mymessage~
struct MsgPort *mainmp:
struct MyExtendedTask *met;

/* an actual message data structure */
/* pointer to main's reply port */
/* pointer to an extended task */
/* control block * /

struct MsgPort *mp~
int result;

/* pntr to littletask's message port */
/* nonzero if InitTask works OK */

printf ("\n Started main() \n");

mainmp = CreatePort(O,O);

/* Using for reply only, so don't we need to name it ... */
/* address for the reply is contained in the message itself. */

if(mainmp == 0) exit(20); /* error during createport */

/* Set up the message data structure so that we can use PutMsg */
/* to transmit this to the little task we are creating. */

rnymessage.mn Node.In Type
mymessage.mn-Length -
mymessage.mn=ReplyPort

NT MESSAGE;
sizeof (struct Message);
rnainmp;

/* Now allocate space for an extended task control block and */
/* initialize it */

met = (struct MyExtendedTask *)AllocMem(sizeof
(struct MyExtendedTask), MEMF PUBLIC

if(met == 0)
(

/* Error during AllocMem */
DeletePort(mainmp);
exit(40);

MEMF CLEAR);

/* Now initialize the task control block part of the extended task */

result = Ini tTask ((struct Task *)met, "li ttletask" ,
PRIORITY, STACKSIZE);

if (result == 0)
f

/* error during InitTask ... no mem for stack */
DeletePort(mainmp);
exit(45);

Listing 9,2: The main and little task program (continued)

MULTnA5KING

cleanup:

f* Get the address of the message port *f

mp = &(met->met_MsgPort);

f* initialize the message port for the little task. *f

mp->mp Node .In Type = NT MSGPORl';
mp->mp=Flags =-PA_IGNORE;

f* is a message port *f
/* when message arrives, */
f* don't try to signal *f

NewList(&(mp->mp_MsgList)); f* initialize message list */
/* Now that the message port is set up, it is legitimate to send a */
/* message to it. We can send a message before or after adding */
f* the task *f

PutMsg(mp,&mymessage),

AddTaskf met, littletask, 0);

printf("\n Created and added the little task");

WaitPort(mainmp), f* wait for its reply */

f* This example assumes that everything will go OK. However
* if there is an error, littletask will wait forever, and so
* will main (since the message will never get back to the
* reply port). The alternative is to set up a timer, and call

*

* then if no response after a reasonable time, examine the
* met Status to find out what went wrong with poor littletask
* and-do something about it. */

GetMsg(mainmp), f* remove the message *f
printf("\n main: Little task received my message\n");

if (met)
f* remove the littletask before we exit *f
FreeMem(met, sizeof(struct MyExtendedTask));

printf ("\n main: Freed memory that littletask used");

if(mainmp)
f* and our message reply port *f
DeletePort(mainmp);

f* Delay(250),

*f

f* end of main *f

* Wait 5 seconds before exiting so
* that user can read the messages
* that we output into the Lattice
* Workbench window

Listing 9.2: The main and little task program (continued)

311

PROGRAMMER'S GUIDE TO THE AMIGA

312

/* ** *j
/* inittask.c -

1. Use memory that has been allocated by somebcdy else, and
let them deallocate it later, as well.

2. Initialize as much of the task control block as is appropriate
(same amount of init as CreateTask does).

******************************** •• ****.************ ••• ************* */

/* From original code by Carl Sassenrath and Neil Katin; modified to let
* main proqram do more initialization {extended task control block} before
* actually firing off the task. */

#include "exec/types .h"
#include "exec/ncdes .h"
#include "exec/lists.h"
:ltinclude "exec/memory.h ll

#include "exec/interrupts.h"
#: i nel ude "exec/ports .. h 11

#include "exec/libraries.h"
#include "exec/tasks .h"
#include "exec/execbase.h"

/* Initialize a task with given name, priority, and stack size. */
/* It will use the default exception and trap handlers for now. */

/* The template for the mementries. Unfortunately, this is hard to
* do from C: mementries have unions, and they cannot be statically
* initialized ...

*
* In the interest of simplicity I recreate the mem entry structures
* here with appropriate sizes. We will copy this to a local
* variable and set the stack size to what the user specified,
* then attempt to actually allocate the memory. */

#define ME STACK 0
#define NuMENTRIES 1

struct FakeMemEntry
ULONG fme Regs,
ULONG fme=Length,

),

struct FakeMemList [
struct Node fml Node,
tM:>RD fml-NumEntries,
struct FakeMemEntry fml ME[NUMENTRIESJ,

TaskMem'l'emplate = (-
! 0 1.
NUMENTRIES,

MEMF _ClEAR, 0)

) ,
int
InitTask(task, name, pri, stackSize)

struct Task *task;
char *name~
UBYTE pri,

Listing 9.3: The inittask function

/* Node */
/* num entries */
/* actual entries: */
/* stack */

ULONG stackSize;

struct Task *newTask;
struct FakeMemList fakememlist;
struct MemList *ml:

/* round the stack up to longwords ... */
stackSize = (stackSize +3) & -3;

/* This will allocate one chunk of memory: */
/* a stack of PRIVATE */
fakememlist = TaskMemTemplate;

fakememlist.fml_ME[ME_STACK].fme_Length = stackSize;

ml = (struct MemList *) AllocEntry(&fakememlist);

if(! ml) !
return(0);

/* Set the stack accounting stuff */
newT ask = task;

neWTask->tc SPLower = ml->rnl ME[ME STACK].me Addr;

MULTITASKING

313

newTask->tc-SPUpper = (APTR)T(ULONG) (newTask=>tc SPLower) + stackSize);
newTask->tc=SPReg = newTask->tc_SPUpper; -

/* Misc task data structures */
newTask->tc Node.In Type = NT TASK;
newTask->tc-Node.ln-Pri = pri;
newTask->tc=Node.ln:=Name == name;

/* Add it to the tasks memory list */
NewList(&newTask->tc MemEntry);
AddHead(&newTask->tc=MemEntry, ml);

return(1);

Listing 9.3: The inittask function (continued)

finishes. Thus, littleproc is spawned by proctest. The startup code with

which it is linked automatically waits for a Workbench startup message

before it gets going. Using the same message port that was provided

when the process was initiated, it again goes to sleep waiting for a mes

sage that contains specific information-in this case, the parameters

that the master program is using, namely its stdout and stderr file

handles. Thus, this spawned process can be made to output to the

same window from which the originating process was begun.

A process is a superset of a task, and the various AmigaDOS routines

require that a process control block and its associated information be

available in order to run. This code is provided to allow a programmer

who requires a process rather than a task to have an example on which

to build.

PROGRAMMER'S GUIDE TO THE AMIGA

314

The Link Files for the Process Example
To try this example, you will have to compile both programs sepa

rately. The link files (for use with the alink program) are provided here.

The separate steps are as follows:

1. From your source file disk, type:

COpy process
COpy littleproc.c ram:

2. With the Amiga C disk in drive 1, type:

CD df1 :examples

3. Use your favorite text editor to modify the file named make in the

examples directory. Change the line that begins "lc2" to begin as

"lc2 ·v". This disables stack checking for the example.

4. Type the following lines:

EXECUTE make ram:process
EXECUTE make ram:littleproc

df1 :c/alink with ram:process.with
df1 :c/alink with ram:littleproc.with

This is the content of the file named process.with, which is the first

link file:

FROM lib:Astartup.obj process.o
TO process
LIBRARY lib:amiga.lib

This is the content of the file named littleproc.with, which is the sec·

ond link file:

FROM Iib:Astartup.obj littleproc.o
TO littleproc
LIBRARY lib:amiga.lib

The Process Programs
To run Listings 9.4 and 9.5, make sure that they are both in the same

directory because proctest will look in the same directory for the little

proc code. Then run proctest. It loads and executes littleproc. then

unloads littleproc and exits.

MULTITASKING

1* proctest.c *1

1* system software version: VI.I *1

#include "exec/types.h H

#include "exec/nodes .h"
#include "exec/lists.hl!
#include lIexec/libraries.h"
#include "exec/ports.h"
#include "exec/interrupts.h"
#include "exec/io.h ll

#include "exec/memory.h ll

#include "libraries/dos.h"
#include IIlibraries/dosextens.h"

#: i nel ude "workbench/ start up.h II

#define PRIORITY 0
#define STACKSIZE 5000

extern struct Message *GetMsg{);
extern int LoadSeg();
extern struct MsgPort *CreateProc();
extern struct MsgPort *CreatePort();

struct MyMess
struct Message mm Message;
int rnm-OUtPointer;

);
int mm=ErrPointer;

extern int stdout;
extern int stderr;

main()
[

struct Message * reply;
struct Process *myprocess;

/* Message that we send to the process to wake it up */

struct WBStartup *msg;

/* Message to contain my own parameters to pass on to spawned
* process, sample only. Just to prove that we correctly
* create a process, we are giving it something other than nil:
* as its stdout and stderr ... in fact, giving it OUR values
* so we can share the same output window. */

struct MyMess *parms:

/* Because maine) is itself started as a process, it automatically

* has a message port allocated for itself. Located at
&((struct Process *)FindTask(O))->pr_MsgPort *1

int littleSeg;

/* Actually littleSeg is a BPTR, but the int declaration
* keeps the compiler happy and we don't use the
* value ourselves anyhow ••• just pass it on. */

char *startname, *parmname:

Listing 9.4: The proctest program

315

PROCiRAMMER'5 GUIDE TO THE AMIGA

316

struct MsgPort *mainmp~ /* pointer to main's msg port */
struct MsgPort *littleProc; /* pointer to spawned proc's msg port */

/* Provide names for the messages we are passing so we can check the returned *1
/* messages at the message ports ••.. that is if we choose to do so. */

startname " s tartermessage";
parmname = "pararneterpass" ~

/* LOAD THE PROGRAM TO BE STARTED FROM ~IN *************************.*.*. */

littleSeg ~ LoadSeg("littleproc");
if(littleSeg == 0)
(

printf("\nlittleproc not found");
exi t(999);

/* CREATE A PROCESS FOR THIS OTHER PROGRAM **************.*.************** */

littleProc = CreateProc("littleguy" ,PRIORITY, littleSeg, STACKSIZE);
if(littleProc == a)
(

printf ("\Couldn' t create the process");
UnLoadSeg (li ttleSeg);
exit (1000);

/* ** */
/* Locate the message port that is allocated as part of the process */
/* that started main() in the first place */

myprocess = (struct Process *)FindTask(O);

mainmp = CreatePort(O,O;

/* ** */
/* THE FOLLOWING CODE BLOCK STARl'S THE PROCESS RUINING,

/*

AS THOUGH CALLED FROM IDRKBENOl * /

In fact, because we created the process the
here, if you use the standard startup code,
be started as though called from Workbench.
a startup message.

way that is shown
the program must
It is now waiting for

(There is, in fact, another way to call a loaded program's code,
but it does not entail starting another process. Rather it
uses a direct call (as a subroutine) to the loaded code. The
other program runS on your own stacK I so your program must
have sufficient stack to handle both. It also runs
under your own process, so your own program does not get
control until that other program has completed. The program
return(}'s or exit()'s to you, providing the appropriate
ret urncode .)

** */

/* This message block is a wakeup call to the process we created. */
msg = (struct WBStartup *)AllocMem(sizeof(struct WBStartup),

if (msg)
MEMF _CLEAR) ;

(
/* Preset the necessary arguments for message passing */

msg->sm_Message.mn_ReplyPort = mainrnp:

Listing 9.4: The proctest program (continued)

MULTITASKING

msg->sm Message.mn Length = sizeof(struct WBStartup),
msg->sm=Message.mn=Node.ln_Name = startname,

/* Passing no workbench arguments to this process:
* we are not WBench. Of course, if we want to pass
* workbench-style arguments this way, we can. */

msg->sm_ArgList = NULL,

/* If the process is being opened without a ToolWindow
* (Workbench sets this up) as a parent, slave will simply
* go on to do its own main() ... as shown in Astartup.asm */

msg->sm_ToolWindow = NULL,

/* Send the startup message */

PutMsg(littleProc,msg),

else
(

}

printf ("\nCouldnt allocate mem for WBStartupl \n"),
goto aarrgghh, /* Oh no, a "goto" ! */

/* *** */
/* Just a sample message, still using the same message and

reply ports *

* Littleproc is a cooperating process ... it KNOWS it must wait
* until a message arrives at its port, containing the parameters
* it should use for output.

* The startup message is handled by the standard startup code.
* This parameter message is handled by the program code itself.
* The startup message is returned to the replyport by the startup
* code, after the program code exits or returns. *1

parms = (struct MyMess *)AllocMem(sizeof(struct MyMess) ,MEMF_CLEAR) ,
if (parms)
(

parms->mm Message.mn ReplyPort = mainrnp:
parms->mm-Message.mn-Length = sizeof(struct mymess)~
parms->mm=Message.mn=Node.ln_Name = parmname~

/* NOTE THAT THESE ARE THE AStartup.asm stdout and stderr,
* the example works only if both master and slave are
* compiled and linked wi th the same startup code. * /

parms->rnm_OUtPointer = (int)stdout:
parms->mm ErrPointer = (int)stderr~
/* send it our parameters */

PutMsg(littleProc,parms),

/* wait for the reply from parameter pass. */

Wai tPort (mai nmp) ,

reply = GetMsg(mainmp),

/* Message node name should contain the address of the
* string "parms" if error checking was included.

Listing 9.4: The proctest program (continued)

317

PROGRAMMER'S GUIDE TO THE AMIGA

318

else
[

)
aarrgghh:

* You should probably allocate separate pcrts for
* parameter passing different from the main port
* automatically allocated by the system when a
* process is initiated. It would alleviate
* some of the checking that is appropriate to do
* when mUltiple kinds of messages arrive at the same port.

*

NOW MAIN CAN GO ON AND DO SOMETHING USEFUL,
LATER CAN COME BACK AND SEE IF SPAv.NED PROCESS
HAS COMPLETED AND IS READY TO BE UNLOADED.

* Wait for the return of the wbstartup message before
main itself is allowed to exit. */

Wai tPort (mainmp) ;

reply = GetMsg(mainmp);
1* Message node name should be

* address of "startermessage" * /

1* NOTE: there should be checking here to see if the message
* received at this port was the string, or the wakeup call.
* This sample code only assumes that the string is received
* and replied first, then the wakeup call message is returned
* as the little task is exiting. */

UnLoadSeg(littleSeg);
printf(U\nSlave exited~ Master unloaded its code and data\n")~

pri ntf ("\nCouldn' t allocate memory for parameter message\n"),

1* arrive here on good or bad exit *1

if(mainmp)[DeletePort(mainmp);
if(parms) [FreeMem(parms, sizeof(struct MyMess»;
iflmsg) (FreeMem(msg, sizeof(struct WBStartup»;

/* end of main *1

Listing 9.4: The proctest program (continued)

Note that these programs were written to use with the Amiga start

up code (A5tartup.obj) rather than the Lattice startup code (Lstart

up.obj). No attempt has been made to adapt them to the Lattice code.

The only point of incompatibility should be in the use of stdout and

stderr, Lattice defines them differently. Lattice defines stdout

and stderr as the address of an 1/0 block. If the main process is compiled

under Lattice and the subprocess is also compiled under Lattice, then

the values passed for stdout and stderr will be compatible.

AmigaD05 stdout and stderr are BCPL language pointers to an Amiga·

DOS data structure. When using amiga.lib to provide the printf function

at link time, the amiga.lib version of printf internally uses the AmigaD05

MULTITASKING

/* littleproc.c */

/* Sample slave code for create process test */

/* system software version: Vl.l */

#include "exec/types .h"
tinel ude "exec/nodes .hOl
#include "exec/lists.h"
include "exec/libraries .h"
#include "exec/ports.h"
tinclude "exec/interrupts.htl

#include "exec/io.h"

#include "lihraries/dos.h"
#include "libraries/dosextens.hll

#include "workbench/startup.h"

/* these are going to be supplied to the slave by the starter */
/* they are actually defined in the startup code (Astartup.asm) */

extern int stdout;
extern int stderri

struct MyMess (
struct Message mm Message;
int rom OutPointer;

) ;
int mm=Errpointer;

extern
extern
extern

main()
(

struct Message *GetMsgC);
struct Task *FindTask () ;
struct FileHandl e *Open () ;

struct MyMess *msg;
struct MsgPort *myport;
struct Process *myprocessi

struct FileHandle *myOwnOutput;

myprocess = (struct Process *)FindTask(O);

myport ~ &myprocess->pr_MsgPort;

/* Wait for starter to post a message. Special sample message
* has its stderr, stdout so we can both post stuff to the
* same CLI window as it started from */

WaitPortCmyport);
msg = (struct MyMess *)GetMsg(myport);
stdout = msg->mm_OUtPointer;

/* Use printf to prove that it is really a process ...
* a simple task cannot do this without crashing! */

printf("\nHere I am, that slave process you started!!!");
printf("\nNow going to open MY OWN window.\n"};

/* NOW 00 SOMETHING USEFUL •.• DO WHATEVER THE PROCESS WAS DESIGNED
* TO ACCOMPLISH. */

Listing 9.5: The littleproc program

319

PROGRAMMER'S GUIDE TO THE AMiGA

320

myOwnOutput = Open("CON:IO/IO/320/150/SlaveProcess" ,MODE NEWFILE);
if(myOwnOutput == 0) -
(

else
(

ReplyMsg(msg); 1* tell main I'm done *1
exit(O); /* can't return an error code anyhow */

stdout = (int)myOwnOutput;
1* reset my output file handle *1
printf("See, I can do AmigaDOS!II);
Delay(250); 1* 250/50 = 5 seconds *1
stdout = msg->mm OutPointer;
Close (myOwnOutput) ;
ReplyMsg(msg) ;

1* Now simply falloff the end of the world,
* returns to the startup code, and should exit cleanly *1

Listing 9.5: The littleproc program (continued)

version of stdout. If you link \Nith Ic.lib specified first, then that link file

uses its O\Nn interpretation of stdout, \Nhich \Nill not be compatible \Nith

the values received from the Open function (Open is AmigaDOS, open is
Lattice).

Also note that the example utilizes the message port that AmigaDOS

reserves for a process to use to receive AmigaDOS 1/0 messages. If you

find this code interesting and useful. you should probably define and ini

tialize a separate message port for your O\Nn messages rather than

sharing the message port \Nith AmigaDOS. Stealing the AmigaDOS mes

sage port is simply a convenient \Nay to get things going. If your process

needs to do extensive 1/0, it is advisable to create a separate message

port for your O\Nn use.

As a final note about this processing example, you could have created

and started another process by using the Execute command of Amiga

DOS:

success = Execute("someprogram" ,0,0);

But this example \Nas provided to demonstrate interprocess communi

cation setup and message passing.

INTERTASK COMMUNICATIONS
For intertask and interprocess communications, the programs sho\Nn

have used message ports that have been explicitly created. If you have

MULTITASKING

321

processes that are started entirely independently, there are several

'Ways that you can have a process find out if another process or task is

already running so that you can communicate 'With it or use something it

has already created.

Finding Tasks
The system maintains many different lists, including a list of tasks and

a list of ports. When you start a task running by using the CreateTask

function, the function places the name of the task 'Within the list node of

the task control block. Thereafter, you can use the FindTask function to

locate it.

In Listing 9.3, the InitTask function 'Was given a name by 'Which the task

control block could be found. That name 'Was littleguy. Instead of keep

ing track of the address of the task control block that the main program

created, main could have added the task to the system, and found the

task (and thereby found the message port) as follo'Ws:

struct Task *taskblock; / * a pointer to a task control block * /

taskblock = FindTask("littieguy");

Thus, anything that you manage to associate directly 'With a task con·

trol block can be found after that task is added to the system task list.

Ho'Wever, in Listing 9.3, since main created the block, the program kne'W

'Where the block 'Was.

Finding Processes
Unfortunately, finding processes is not as easy as finding tasks.

Although AmigaD05 (as of release 1 .1) uses the task list to keep track of

processes, AmigaD05 does not initialize the task name field to relate to

the name of the process that it is running. 50 it is not possible to identify

a running process by examining the names on the task list.

Thus, if your program needs to identify a running program so it can

pass data to another program, it is more appropriate to use a task than

a process.

Finding Ports
If you name and create a message port and add it to the system list,

your task or another task or process can find that port later by using

the FindPort function:

myport = FindPort("thisport");

If the function returns a value of NULL, then there 'Was no port by that

PROGRAMMER'S GUIDE TO THE AMIGA

322

name in the system port list. If the value returned is not NULL, then

myport points to the list node of the message port of the name that it

found on the system port list.

I needed this capability for a graphics demonstration program where

each of six independent programs required a four-bitplane-deep custom

screen to demonstrate one of the many graphics functions available on

the Amiga. One of these programs is called Rectangles; it creates multi

colored rectangles in a graphics window. Another is called Lines; it

draws random, colored lines. A third is called Wallpaper; it creates multi

colored rectangles.

Custom screens can use a lot of memory, so I decided to make each

program look to see if another program of its type was already running.

If another program had already created a custom screen, each of my

programs, instead of opening its own custom screen, would open a win

dow on that other program's custom screen. Each window has its own

close gadget, which closes that program down. Each window has its

own title bar, which lists the names of all of the other programs that it

knows uses that same custom screen.

To communicate between the running programs, I created a custom

version of a message port:

typedef struct {
struct MsgPort normalMsgPort;
int usersOfScreen;
struct Screen *screen;
} MYCUSTOMPORT;

By initializing the normalMsgPort properly, it could be added to the

system port list by using the AddPort function. Remember that the sys

tem does not care how large each list item is, as long as the List struc

ture elements are initialized correctly

The first program (whichever of the group of compatible graphics

programs ran first) would allocate memory for this custom port, open a

custom screen, copy the custom screen address into the custom port

data structure, and initialize the usersOfScreen to 1. It could then add

this port to the system port list and open a window on this custom

screen.

Subsequent programs could find that port, using FindPort, and from

the usersOfScreen value, calculate where to put a new window so that

it would not totally obscure any graphics already running on that cus

tom screen or windows opening on that screen. Each new program to

find the port and open a window would increment the count of users

Of Screen.

MULTITASKING

323

Each time a program closed its window, the count of usersOf5creen

would decrement. When the count got to zero, whichever program

causes the count to get there deleted the screen, deleted the port, and

ended its operation.

Listing 9.6 shows two code segments that are part of all of the graph·

ics programs mentioned above. These segments demonstrate how the

custom port serves as the rendezvous point for all programs once they

are running in the system, seeking a custom screen on which to open.

/* =de fragment number 1 - custan port * /

/* Note: not all declarations are incorporated here. This code is
* just provided to give the p:Jtential user of multi tasked applications
* a few ideas~ */

struct MyPort (/* custom constructed message port */
/* a standard message port */

) ;

struct MsgPort mpi
struct Screen *Screen;
int Users:
int RangeSeed;

char portname[64];
char screenname[64];

/* where is the screen that is just mine */
/* how many programs are using this screen */
/* What is the current value of the random
* number generator for the most recent
* user ... else RangeSeed starts at zero
* for EVERYBODY * /

struct Screen *
Setup() /* Returns a pointer to a new or existing screen */
(

int junk;
struct MyPort *myp, *sysrnyp;
struct Screen *screen;
GfxBase :: OpenLibrary(" graphics.library", 0);
if (GfxBase == NULL)
(

J

problem = 1001;
return(O) ;

/* Can't open gfx library */

Intui tionBase = OpenLibrary(II intui tion.l ibrary", 0);
if (IntuitionBase == NULL)
(

problem = 1002; /* Can't open intuition library */
CloseLibrary(GfxBase);
return(O) ;

/* Does another application already have a custom screen open?
* If so, use it. If not, open one. Prevent multi task switching
* here in case two of these are started simultaneously. Only one
* at a time should be allowed to see if the screen-info-carrying
* port exists and then create it if it does not. */

/* Begin to create a custom message port, just in case the system
* doesn't already have one. This way, we'll be ready to add it
* and won't have to Disable() for very long at all */

Listing 9.6: Custom port code fragments

PROGRAMMER'S GUIDE TO THE AMIGA

324

myp = (struct MyPort *)AllocMem(sizeof(struct MyPort),MEMF~CLEAR);
if (myp == 0)
[

CloseLihrary(IntuitionBase),
CloseLibrary(GfxBase),
return(O) ,

else
r

/* Setup the port parameters */

rnyp->mp.mp Node.ln Pri = O~
myp->mp.mp-Node.ln-Type = NT MSGPORT,
NewLi st (& (fiyp-> mp.fip _MsgList),

/* Establish the title for the port itself, within the port */

strcpy(& (myp->portname[O]) , "lowres.16.color"),
myp->mp.mp_Node.ln_Name = & (myp->portname[O] 1 ,

/* Establish the title for the test screen, within the port */

strcpy(&(myp->screenname[O]), "TestScreen"):
ns.DefaultTitle = (UBYTE *)& (myp->screenname[O]),

/* Number of Users of a custom screen */

rnyp- > Users = l' /* One user so far, just opened it *j

/* Calculate a dummy value, to change current RangeSeed value *j

junk = RangeRand(100);

/* Starting value for random number generator for next user */

myp->RangeSeed = RangeSeed,

/* **** Start interrupt disabled Section ****************************** */

Disable() , /* prevent task switching during this operation */

/* We are ready to add our custom port to the system. Is there
* one like it already there? If so, deallocate ours. If not,
* open a custom screen, and finish initializing our port with
* its address. Then add it to the system port list. */

sysmyp = (s truct MyPort *) FindPort (" lowres .16. color") ,
if(sysmyp == 0)
r

screen = OpenScreen{&ns);
if (screen ~~ NULL)
r

problem = 1003, /* Can't open a custom screen *j
Enable(), j* Enable interrupts and task switching *j
FreeMem(myp, sizeof(struct MyPort»;
CloseLihrary(IntuitionBase),
CloseLihrary(GfxBase) ,
return{ 0),

/* Show where to find the custom screen that was just opened. *j

myp->Screen ~ screen;

Listing 9.6: Custom port code fragments (continued)

MULTITASKING

)

f* Add to system so others can find it *f

AddPort (myp) ;
Enable() ;
return(screen) ;

f* Enable interrupts and task switching *f

else f* The system already HAS this custom portl *f
(

f* If system has a port like this, it doesn't need ours *f

FreeMem(myp, sizeof(struct MyPort)),

f* Add one to the number of users *f
sysmyp->Users += 1,

f* Take prior user's RangeSeed value *f
RangeSeed = sysmyp-> RangeSeed;
junk = RangeRand(lOO), f* Changes RangeSeed value *f

/* Save a new value for next user */
sysmyp-> RangeSeed RangeS eed ,
Enable(); /* Enable task switching */

f* And return the screen location *f
return(sysmyp-> Screen),

/* rode fragment number 2 * /

/* Close the custom window and decrement the number of users of the
* custom screen. If Users value drops to zero, also delete the screen
* message port, free its memory and close the custom screen. */

int
EndTest()
(

struct MyPort *rnyp,
if (w != NULL) (

ClearMenuStrip(w),
Closewi ndow (w) ,

)
Forbid (),
myp = (struct

/* Momentarily halt task switching */
MyPort *)FindPort("lowres.16.color"),

f* This should succeed *f if (myp)
[

if«myp->Users -= 1)==0)
r

if (myp->Screen != NULL) CloseScreen(myp->Screen);
RemPort (myp) ,
FreeMem(myp, sizeof(struct Myport»),

Permi t();
return (TRUE) ;

f* Enable task switching *f

Listing 9.6: Custom port code fragments (continued)

325

PROGRAMMER'S GUIDE TO THE AMIGA

326

The multitasking capabilities of the Amiga offer significant opportuni

ties to the developer, The code shown here has just barely scratched

the surface, I hope, though, that this chapter has provided some insight

into how the multitasking system works and a jumping-off point for

future code development.

The Text Editor
(ED)

The ED program is a simple text editor that you can use to create

source files for your C compiler. For those of you who are unfamiliar

with using a text editor to create a program, this appendix guides you

through creating a short program.

As ED starts, it presents you with a blank screen on which you can

type lines of text. After you have completed typing those lines, you can

save this text to a file.

ED is a line editor, not a word processor. As you use ED, keep in mind

that although it presents you with a full screen of text with which to

work, it treats each line as an individual entity. For example, a block of

text must consist of one or more lines. A text block mark cannot be

placed in the middle of a line. Likewise, when you move or copy a block of

text, ED inserts the block in between the line in which the cursor cur

rently resides and the line immediately above it.

As you gain experience with ED, you may tend to use more of its com

mands. However, a beginning user need only remember a few basic rules

and commands in order to use the program effectively. Here are some

points to remember:

• You are always in insert mode. Wherever the cursor is located, if

you type a legal (noncommand) character, ED will insert that char

acter at the cursor position and push anything else to the right. A

Return key press in the middle of a line splits the line.

• The cursor keys work as expected. You can move through the file

exclusively with the cursor keys.

• The Backspace key deletes the character to the immediate left of

the cursor.

• The Esc key is used for extended commands. If you press the Esc

key, the cursor temporarily moves down to the status line at the

bottom of the screen and waits for you to complete the extended

command.

To start ED, make sure your Workbench or CLI disk is in the internal

drive. This disk must be write-enabled to allow the ED program to cre

ate a work file in the SYS:T directory. From a CLI window, type

ED hello.c

and press Return. A new window opens and ED displays:

Creating a new file

PROGRAMMER'S GUIDE TO THE AMIGA

330

Your cursor is at the top of the \Nindo\N. Type the follo\Ning lines exactly

as sho\Nn, pressing the Return key at the end of each line:

mainO
{

printf("\nHelio world\n");

Then press Esc X and Return. NO\N your program is saved so that it can

be used later by the compiler.

Table A.1 summarizes the ED commands. In the table, the A notation

indicates a control command. This means that you must hold dO\Nn the

Ctrl key then press the specified command letter to execute a particu·

lar command. Although the command letters appear in uppercase, you

can use 10\Nercase letters and get the same result.

Cursor Movement Commands

t

.(.

"I

"R

AT

"D

"u

AE

"J

"M

EscB

Table A.1 : ED commands

Move one line up .

Move one line dO\Nn.

Move one character to the right.

Move one character to the left.

(Tab) Move to next tab stop.

Move to end of previous \Nord.

Move to start of next \Nord.

Scroll text dO\Nn.

Scroll text up.

Move to top or bottom of screen.

Move to start or end of line.

(Return) Move dO\Nn one line and to the left

margin.

Move to end of file.

THE TEXT EDITOR (ED)

331

EscT Move to start of file.

EscN Move to start of next line.

EscP Move to start of previous line.

EscCE Move to end of current line.

EscCB Move to start of current line.

EscM Move to a specific line number within the file.

< line-number>

Insert and Delete Commands

"'A

"'B

"'H

Del

"'0

"'y

Esc A /<string>/

Esc I /<string>/

EscD

Esc DC

Table A.1: ED commands (continued)

Insert a line after the current line.

Delete the line in which the cursor is located.

(Backspace) Delete the character to the left

of the cursor and move everything back one

space.

Delete the character on which the cursor is

sitting.

If the cursor is on a space character, delete all

spaces up to the next word on the line. If the

cursor is on a nons pace character, delete this

and all characters to the right until the next

space character is encountered.

Delete to the end of the line, including the

character on which the cursor is resting.

Insert this string of characters as a line

preceding the current line.

Insert this string of characters as a line

following the current line.

Delete the current line.

Delete the character at the cursor.

PROGRAMMER'S GUIDE TD THE AMIGA

332

Esc IF

! < path name >!

Margin and Tab Commands

Insert the file vvith this name at the cUlient

cursor position.

Esc SL <number> Set the left margin at the column number

specified. (The default is 1.)

Esc SR <number> Set the right margin at the column number

specified. (The default is 80. The maximum is

255, since this is the maximum line length the

ED program and AmigaDOS allovv.)

Esc ST <number> Set the tab distance to this number. Position

the standard tab stops this far apart.

Esc EX Extend the right margin. (Same as margin

release on a typevvriter.)

Find and Replace Commands

Esc F !<string>!

Esc BF ! < string>!

Esc E! <oldstring >

! < nevvstring >!

Esc EQ! <oldstring >

! < nevvstring >!

EscLC

Search forvvard for the next

occulience of the specified string of

characters.

Search backvvard for an occurrence of

the specified string of characters.

Locate the next occurrence (forvvard

search) of the specified old string and

replace it vvith the nevv string. Do not

verify, just replace vvithout asking.

Locate the next occurrence (forvvard

search) of the specified old string and

ask for verification-if it is OK to

replace this particular occulience.

Treat upper· and lovvercase characters

as different vvhen performing searches.

Table A, 1 : ED commands (continued)

THE TEXT EDITOR (ED)

Block Commands

EscBS

Esc BE

Esc DB

EsclB

EscSB

ESCWB

Mark this line as the beginning of a block.

Mark this line as the end of a block.

Delete this entire block.

Copy the marked block to the current cursor

location.

Shovv the top line of the marked block as the

top line of the screen. (Lets you quickly move

to a marked position vvithin the file,)

1< pathname >!
Write the marked block out to a specified file.

If the path name is not simply to the current

directory, you can specify the complete path

name. including slashes. (The exclamation

points are used to delimit the path name,)

Save and Quit Commands

Esc SA

EscQ

Esc X

Save the file to the current file name and continue

editing.

Quit vvithout saving any changes made since most
recent save. ED asks you to verify that it is OK to quit.

Exit the program, saving the changes to the current

file name.

Miscellaneous Commands

Esc J

EscS

EscSH

Esc V

Combine this line and the next line as a single line.

Split the current line at the cursor. Take the character

at the cursor position and make it the first character

on the follovving line.

Shovv the status of the editor.

Redravv the screen.

Table A.l: ED commands (continued)

333

PROGRAMMER'S GUIDE TO THE AMIGA

334

Note that both Esc SA and Esc X accept an optional file name to be

used in place of the file name used to open the file, This takes the form

Esc X ! < path name >!

or

Esc SA! <pathname>!

These commands can be useful for saving intermediate forms of the

editing you are performing.

Once you have pressed Esc, your command line can contain multiple

commands, separated by a semicolon. For example

F la certain phrasel ; E/oldword/newwordl

searches for the string "a certain phrase", then following that

phrase, searches for the next occurrence of "oldword" and substitutes

"newword" for it.

You can specify how many times a command (or a command line)

should be repeated by placing a number ahead of the command to be

repeated. Alternatively, in place of the number, you can specify RP,

which repeats the command until the end of the file.

The Amiga C
Compiler

This appendix explains how to run the Amiga C compiler, which is a

derivative of Lattice C. Readers who are already familiar with the Lat

tice C compiler on other systems should have little difficulty adjusting to

this version of the compiler.

I have tried to keep compiler-specific details out of the book wherever

possible. However, to ensure that there is a common basis for discus

sion, I used the Amiga C compiler for all of the examples. If you are using

a different compiler, it may be necessary for you to modify the pro

grams to adapt to your own compiler. The examples have been kept as

short and direct as possible so as to minimize any such adaptation.

RUNNING THE AMIGA C COMPILER
Once you have created your program-using Ed, MicroEmacs, or

some other program text editor-there are three separate steps you

must perform before your program is ready to run.

Compiler First Phase
The first phase is called LC1. In this phase, your program is translated

from C into an intermediate compiler code. During this phase, program

syntax and structure are checked. Typically, you run this first phase by

typing this command line:

CD DF1:C ;change directory to Amiga C compiler disk
LC1 -i:includel dfO:hello.c to dfO:hello.q

(I am assuming that you are working with a 512K Amiga with an exter

nal disk drive containing your Amiga C compiler disk and that the pro

gram to compile is located on a disk in the internal drive and is named

hello.c.)

This command sequence produces a file named hello.q on the internal

disk drive in the root directory. The phrase

-i:includel

tells the compiler which directory it is to search to locate any files you

may have requested to be included for the compilation, where the colon

means the root of this disk (df1:) and include! is the prefix for searching

for any Include file you have specified in your program.

The output file will be named hello.q automatically (unless you provide

a different name). I specified it here so you could see what the compiler

is expected to output. The q extension stands for quad-file, the name

that Amiga C uses for intermediate output from the first phase of the

compilation.

PROGRAMMER'S GUIDE TO THE AMIGA

338

Compiler Second Phase
The second phase is called LC2, During this phase, the intermediate

language that the first phase produced is translated into an object file.

Assuming that you have successfully completed phase one, you exe

cute phase two by typing the command line

LC2 dfO:hello.q to dfO:hello.o

This produces the object file for your program.

Compiler Third Phase
The object file is not the final version of your program. It contains all of

the translated instructions for what you wish to do, but does not. at

this point, contain the code for any system routines you may have used.

To make a complete working program, you must perform a final

phase, called ALINK that combines your program with selected object

code from one or more function libraries (debug. lib or amiga.lib) and one

or more previously compiled object files.

Working with a high level language, such as C, is an advantage here.

The result of your program compilation is a relocatable code file that

AmigaD05 can load anywhere in the system memory and run as a pro

cess with other tasks in the system. Thus, whatever program you pro·

duce will be able to share the resources of the computer with other

cooperating tasks.

If you have successfully performed phase one and phase two, here is

a typical call to ALINK that turns hello into a working program:

ALINK FROM dfO:hello.o + Lstartup.obj TO dfO:helio
LIBRARY LC.LlB,AMIGA.LlB,OEBUG.LlB

(Type all of this on the same command line,) If successful, this three

phase sequence results in a program that you can execute simply by

typing:

cd dfO:
hello

Summary of Compiler Calls
Here is a summary of the steps required to compile a program under

AmigaC:

1. Create the program using your favorite text editor.

2. Run phase one of the compiler (LC 1) producing a file whose name

ends in .q.

THE AMIGA C COMPILER

339

3. Run phase t\NO of the compiler on the .q file resulting in a file \Nhose

name ends in .0.

4. Run phase three of the compiler (ALINK), linking your program

\Nith the system object files and libraries.

The result is a \Norking program.

CREATING AND USING A MAKE FILE
Running three different compile phases just to test a program may

seem like a lot of typing. The Amiga e disk includes a command script file

(called an execute file) that enables you to dispense \Nith the three

phase compilation. This particular execute file is called a make file

because it can be used to create or direct the creation of other files. The

name of the file that \Nill perform all three phases of the compilation is

make, and it is located in the examples directory on the e disk. (On some

early compiler disks, the file is called makesimple. On those same early

disks, the file named make only performed the first t\NO phases of com

pilation. A file named link performed the third phase. If you are producing

a large program consisting of several e files, you might consider compil

ing the programs separately and linking the .0 files together once all of

the separate compiles have been completed.)

Here is a typical sequence you can use to compile any of the programs

in this book:

1. Insert your eLi disk into the internal disk drive. Insert the disk con

taining your program to compile into the external drive. Then type

the command

copy hello.c to ram:

2. When the disk activity light goes out, remove your program disk

and insert the Amiga e disk into the external drive. Type the com

mand

cd df1:

This command tells AmigaDOS that the external drive is to be used

as the primary directory for any commands and data files that it

needs.

3. Issue the command

execute examples/makesimple ram:hello

PROGRAMMER'S GUIDE TO THE AMIGA

340

With that single command, you have just asked AmigaDOS to use

the make program to perform all three phases of the compilation.

AmigaDOS compiles myprogram.c on the ramdisk (the ram: directory)

and, if the compilation was successful, produces an executable program

file named myprogram (also in the ram: directory). To try the program,

you need only type

run ram:hello

or

ram:hello

Now, to save the program you have just compiled and linked, you

remove the C compiler disk from the external drive, insert your original

program disk, and issue the command

copy ram: hello to df1 :hello

Your executable program will be saved to your disk.

Let's look as the contents of a typical make file more closely. By under

standing what it does, you will be able to create your own make file for

other purposes.

Contents of a Make File
The example make file is actually a command script that AmigaDOS is

directed to perform. When you give the command

execute < somefilename >

AmigaDOS loads its EXECUTE command and takes its input from the

file name you specify, just as though you had typed it yourself. Option·

ally, EXECUTE can perform parameter substitution so that the same

command script can be used on different programs, appearing to the

computer to be different each time it is run. Files that contain com·

mands for EXECUTE to perform are called execute files.

Execute files can contain several different types of input lines. Among

them are comments, parameter substitution cornmands, and com

mands that run other programs.

Note that if column 1 of any line contains a period or a semicolon,

AmigaDOS treats the line as a comment. The EXECUTE command

treats a line beginning with a semicolon as a comment and a line begin

ning with a period as a command.

THE AMIGA C COMPILER

341

Parameter Substitution in an Execute File
You can tell the EXECUTE command that it should prepare to substi

tute parameters by using a key statement. When you provide this

statement, EXECUTE makes a copy of your command file in the :T direc

tory on the current disk, takes parameters from your command line

immediately following the command name, and substitutes the string

value of the parameter in places within your command file where you

have requested a parameter substitution.

Consider a command file named typeit, which contains only the follow

ing lines:

.key firstparm, secondparm
IF EXISTS" <firstparm >"
TYPE" <firstparm >"
ENDIF
IF EXISTS" <secondparm >"
TYPE" <secondparm >"
ENDIF

If you type the command

execute type it filenamea filenameb

then EXECUTE creates a disk-resident copy of your command file, sub·

stituting the first parameter string, here named filenamea, for any

occurrence of < firstparm > (the bracketed specification of that param

eter name from the key statement) and the second parameter name,

filenameb, for <secondparm >:

IF EXISTS FILENAMEA
TYPE FILENAMEA
ENDIF
IF EXISTS FILENAMES
TYPE FILENAMES
ENDIF

This file is then executed as though you typed it at the terminal. This

sample type file says: "Check to see if a file exists, and if it does, type it."

The same principle is applied to the C compiler. Use the ED program, or

MicroEmacs, or your favorite text editor to look at the contents of

examples/make on the Amiga C disk. You will find that the key state

ment contains parameters for the compiler control commands LC 1 and

LC2 and a command line for the ALINK command.

PROGRAMMER'S GUIDE TO THE AMIGA

342

Listing 8, 1 is a typical example of a make file, The line numbers appear

ing along the left side of this listing are for reference in the explanation

that follows. They are not part of the file.

Line 1 specifies two parameter names for substitution in the com

mand file sourcename and listingname. If the file is named make, you run

the command file by typing the line

execute make myfile

to compile the file you have named myfile.c. If the compiler encounters

errors, your make file might abort.

Line 6 tests to see if you have provided a source file name. If not, lines

23-25 output instructions. Line 9 tests to see if the file name you have

specified exists. If not, line 28 tells you it could not be found.

Lines 13 and 15 provide two alternative methods for specifying the

LC 1 command, depending on whether there is a listing file name pro

vided. The -i option on the command line shows the compiler where to

search for the Include files for the compilation. Include files contain defini

tions for constants, macros, and data structures that you will need

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

22
21
22
23
24
25
26
27
28
29

.key SQurcename,listingname
~sourcename is the name of your C language program
;listingname is the name of the file for the output listing
; if an output listing is to be produced

IF n<sourcename>" EO ""
SKIP USAGE
ENDIF
IF NOT EXISTS <sourcename>.c
SKIP NOTFOUND
ENDIF
IF u<listingname>" NOT EO ""

Lel > <listingname> -iC1.0:include/ <sourcename>.c
ELSE

Lei - ie1.0: incl ude/ <sourcename>.c
ENDIF

now do compiler phase 2
LC2 <sourcename>
, then finally link
ALINK FROM <sourcename>.o+Lstartup.obj TO <sourcename>

LIBRARY LC.LIB, AMIGA.LIB, DEBUG.LIB
SKIP DONE

LAB USAGE
ECHO "COMMP.ND IS: make sourcenarne 1 istingname
ECHO "sourcename is mandatory; represents sourcename.c"
ECHO "listingname is optional"
SKIP DONE
LAB NOTFOUND
ECHO u<sourcename>.c NOT FOUNDl!"
LAB DONE

Listing B. 1 : A sample make file

THE AMIGA C COMPILER

343

when you use the Amiga system software. The path name to the

include files is specified here as "C1.0:include". which means the include

directory on your C compiler disk. If you have relabeled the disk using

the AmigaDOS RELABEL command. you will have to modify this line to

show the actual disk name. Or. for example. you may have C 1 .1 instead

of C 1 .0. To check which name you should specify. type the CLI command

INFO. It will show you the label that is on your disk. It might say. for

example:

C1.0 [mounted]

Line 20 shows one possible form for the ALINK command. This com·

mand line links a single file with the startup file and requests that the

various libraries be searched for other object code that your program

needs to be able to run. If. as is the case for certain of the program seg

ments in this book. you must compile several program segments sepa

rately and then link them together. you might want to have a separate

version of a make file that does not use line 20. Then use a separate file.

perhaps called link. that contains something like the following two lines:

.key linkwhat,object
ALINK FROM <Iinkwhat> + Lstartup.obj TO <object>

LIBRARY LC.LlB,AMIGA.LlB,DEBUG.LlB

Then run the link program by typing the line

execute link "fa.o + fb.o + fc.o" outname

where the object file names are enclosed in quotes to direct the

EXECUTE command to treat this stream of characters as a single

parameter for substitution. and outname is the name to be applied to

the executable file resulting from the link.

You can find several additional examples of using the EXECUTE com

mand in the AmigaDOS Users' Manual.

HOW TO CREATE MAKESIMPLE.A
In Chapter 2, I refer to a file called makesimple.a. which is a derivative

of the C-disk examples/make or examples/makesimple program. To cre

ate makesimple.a. perform these steps:

1. Copy the makesimple (or make) program to a file named make

simple.a. From the CLI. type:

copy df1 :examples/makesimple to df1 :examples/makesimple.a

PROGRAMMER'S GUIDE TO THE AMIGA

344

2, Use a text editor to make the following changes, Change the line

:c/lc2 < fi Ie>

to read

:c/lc2 -v <file>

This eliminates stack checking code from being added to the com

piled program,

3, Change the line that reads

:c/alink FROM LlB:LStartup,obj + <file>,o TO <file>
LIBRARY LlB:lc,lib + LlB:amiga,lib

to read

:c/alink FROM LlB:AStartup,obj + <file>.o TO <file> LIBRARY
LlB:amiga.lib + LIBRARY LlB:lc.lib

(Note: Do not press Return until you have typed all of this.) This

changes the startup file and the order of use of the library files. It

means accepting certain limitations in the library routines provided by

amiga.lib. (See the amiga.lib documentation in the Amiga ROM Kernel

Manual for those limitations.) It also often shrinks the size of the exe

cutable file from 1 2,000 bytes down to as little as 2,000 bytes.

When you use makesimple.a in place of the original make file, your pro

gram will link into the amiga.lib version of printf and sprintf, each with

the limited formatting capability (most notably no floating-point format

ting) instead of the Lattice library version of printf and sprintf. This is

one of the reasons that the size of the final executable program is

reduced. Note that this could have serious consequences for some

types of programs, so be aware of the limitations before you try to use

this facility.

As a reminder, the purpose of this make file is to make the code, par

ticularly in Chapter 2, as portable as possible from one compiler version

to another (Lattice C, Aztec C, and so on). Thus, rather than use compiler

specific functions, such as fopen, fread, and fclose, and compiler specific

file handles, such as FILE, Chapter 2 uses Amiga-specific functions, such

as Open, Read, and Close, and Amiga-specific file handles that do not cor

respond to those of any specific compiler.

Readers who are experienced in C programming will likely utilize their

own compiler-specific I/O functions. Just be aware that the AmigaD05

file handles are indeed different and cannot be intermixed with those

obtained by Unix-like functions provided by the compiler libraries.

Index

68000 re9lsters, 7

AddFont function, 133

AddPort function, 62-63

AllocMem function, 52, 54

Alloc5ignal furlction, 59

Amiga ROM Kernel Manual, xxi, 6, 8

Amiga.lib, 6, 318, 320

AmigaD05,3

and printers, 19-20

Close function, 15

CurrentDir function, 27, 30

Date5tamp function, 41

Delay function. 17,44

DeviceProc function, 45

direct calls, 304

directories, 23-24, 27 -32, 39-40

Examine function, 28, 30

executing commands, 24-25

ExNext function, 28, 32

filtering input, 18

indirect calis, 304

Info function, 41 -42

INDfCX

AmigaDOS (continued)
Is Interactive function, 20, 22

Lock function, 26-27, 29

loErr function, 27, 29

Open function, 14-15, 17, 26

ParentDir function, 28, 33

processes, 306,313

Read function, 15-16

Seek function, 20-22

Unlock function, 27, 30

utilities, 37 -38

WaitForChar function, 21-23

Write flJnction, 16

APen,99

Area-filling, 122-125

AreaDraw function, 123-124

AreaEnd flJnction, 124

Arealnfo data structure, 124-125

AreaMove function, 123-124

AskSoftStyle function, 137

Assembly language, 7

AStartupobj, 6, 1 1, 318

Audio channels, 279

allocating, 281 -288

345

I-'ROGRAMMER'S GUIDE TO THE AMIGA

346

Audio channels (continued)

controlling output, 290

locking, 288-289

setting priorities, 289-290

synchronizing output, 291

Audio device, 280-281

Audio hardware, 279, 294

Audio software, 281 -298

Audio waveform, 292-295

AvaiFonts data structure,

134-135

AvailFonts function, 133-135

AvailFontsHeader structure,

134-135

BitMap data structure, 1 40-141

Bitplanes, 1 06-1 07, 1 77 -1 79

Blitter objects (Bobs), 262-265,

267-276

BltBitmap function, 141

BltBitMapRastPort function,

141-142

Bob data structure, 262~~263

Bobs (Blitter objects), 262-265,

267-276

Boldface, 137

Boolean gadgets, 1 88- 190

Boxes, drawing, 103- 1 06

BPen,99

C compiler, 337 -344

C language, 7

ChangeSprite function, 238-239

Class field, 156

ClearEOL function, 138-139

ClearScreen function, 138- 1 39

CLI (command line interface), 4,

11-12

CLI functions, 38-41

ClipBlit function, 141 -142

ClipBlitTransparent function,

145-151

Close function, 1 5

CloseDevice function, 89-90

Code field, 156

Colors, 177 -179

for sprites, 239-240

selecting for custom screen,

119-121

selecting for Workbench screen,

99-100

using two or more, 105-107

Colortables, 121 -122

Command line interface (CLI), 4,

11-12

Command line interface functions,

38-41

COMPLEMENT drawing mode, 100

Console device, 3, 215-224

CreateDir function, 39-40

CreatePort function, 62

CreateShadowBM function, 145,

150-151

CurrentDir function, 27, 30

Custom screens

defining, 117

opening, 1 1 8- 1 1 9

opening windows, 1 19

selecting colors, 1 1 9- 1 21

Date, current, 41

DateStamp function, 41

Delay function, 17,44

Delete function, 39

DeletePort function, 62-63

DevlceProc function, 45

Devices

Audio, 280-281

closing, 89-90

commands, 80

communicating by 10 request

block, 78, 83-88

Conso~,3,215-224

definition of, 78

Gameport, 218, 227

Input, 2-3,215,224

Keyboard, 215,227

Devices (continued)

names, 81-82

opening, 79-81

Parallel,19

Printer, 20

Serial,19

Timer, 154, 209-215

Direct Memory Access (DMA), 52,

279

Directories, 23-24, 27-33

creating, 39-40

finding current, 33

listing, 33

Disk operating system (DOS). See

AmigaDOS

Disks, 153

boot volume name, 42-44

renaming volume label, 45

DMA, 52, 279

DolO request, 85

Draw function, 101

Drawing

area-filling, 122-125

boxes, 103-106

dotted lines, 109

flooding, 122

into windows, 97 -98

lines, 99

outlining, 100

patterns, 105-108

text, 101 -1 03

using multicolors, 105- 1 07

Drawing modes, 100, 136

Drawing pens, 99-102

ED program, 329-334

Events

handling of, 96, 1 53- 1 59

keyboard,228-231

Examine function, 28, 30

Exec, 1, 49-51

Execute command, 24-25, 303

ExNext function, 28, 32

INDEX

Fields, identification of, 55,

156-158

File handles, 13-16, 26

File pointers, 13- 1 6

FilelnfoBlock, 30-32

Filenotes, adding, 41

Files

closing, 15

deleting, 38

manipulating, 20-23

opening, 1 4- 1 5

protecting, 40

reading from, 1 5- 1 6

renaming, 38

RWED,40

writing to, 16

FindName function, 64

FindPort function, 62-64

FindTask function, 321

Flood function, 122

Fonts

adding to system list, 1 33

attributes, 1 32

creating lists, 133-134

disk-resident. 1 31

flags, 134

opening, 131 -132

ROM-resident, 131

FreeMem function, 53-54

FreeSprite function, 241

Functions. See specific function

name

Gadgets, 1 84-1 88

attached to windows, 165-167,

184

Boolean, 188- 1 90

combining two gadgets,

202-203

communication about. 154

proportional, 1 91 -194

string, 190-191

Gameport device, 218, 227

347

PROGRAMMER'S C3U1DF TO THE AIVI1GA

348

Gel (graphics element) system,

248,250-252,267

GetRGB4 function, 122

GetSprite function, 236-237

GIMMEZEROZERO flag, 95-96,

166-167

Gimmezerozero windows, 1 1 4

Hardware, Amiga, 1-2

Hardware. audio. 279, 294

Hardware sprites. 235, 238

[/0 functions, 304

IAddress field, 157

IDCMP (Intuition direct

communication message port).

19, 153, 158-159

IDCMP flags, 94, 219

IOCMPWindow field, 158

Include files, 7-8

Info function, 41 -42

InitBitMap function, 140

InitTask function, 306, 312-313

Input device, 2-3, 215, 224

IntuiMessage structure, 1 55- 1 58

Intuition

and menu items. 175-177,

180-181

creating screens, 163-165

gadgets, 184-1 94

handling events, 96, 153-159

messages from, 1 53-1 59

opening windows, 1 65- 1 68

[NVER5V[D mode, 136

10 request blocks, 78-79, 81 ,

83-88

IoErr function, 27, 29

10Request data structure. 81 , 83

Is Interactive function, 20, 22

Italic. 137

JAM 1 /JAM2 drawing modes, 100

Jump instructions, 6

Keyboard, 1 54

Keyboard device. 215, 227

Keyboard remapping, 228

Kickstart, 1, 5

Layers library, 2-3, 114, 1 16-117

Libraries

base addresses, 5, 74-75

closing, 76-77

definition of, 5, 68

names. 74-75

opening, 5-6, 74-76

structure of, 68, 70-71

Library data structure, 5

Library nodes. 70-73

Lines

dotted,109

drawing multiple, 109-1 10

patterned. 99. 109

solid. 99-100

List data structure. 54

List headers. 54-55

List nodes, 54-58

Lists, 50, 54-56

LoadRGB4 function. 1 19-121

Lock function. 26-27

LStartup.obj, 6, 1 1 , 31 8

MakeBob function, 263-267

MakeV5prite function, 253. 267

Masks, 137. 145. 150

Memory allocation. 51 -53

Memory. returning to pool, 53-54

Menu items

combining two items, 202-203

designing. 175-177

highlighting, 182-183

initializing. 175

Menu Items (continued)

lists, 203-204

mutual exclusion, 181 -182

relationship \Nith menus,

170-173

using checkmarks, 1 80- 181

Menus, 154

designing, 1 69-1 70

initializing, 1 74

mutual exclusion, 181 -1 82

processing selections, 1 94-1 95

relationship \Nith menu items,

170-173

Message ports

adding, 63

creating, 62

definition of, 61 -62

deleting, 62-63

functions, 69-70

locating, 64, 321 -323

removing, 63

signals from, 64-65

Messages, 65-70

Messages from Intuition, 153-159

Mouse

and Intuition, 1 54-1 55

position and movement of, 157,

168-169

values, 157-158

Move function, 101

Multitasking, 1,49,59-60,301-326

Name field, 55

Ne\NList function, 54

Ne\NScreen data structure,

117-119,163-165

Ne\NWindo\N data structure,

93-97,165-168

Node data structure, 54

OPen, 100

Open function, 14-1 5, 1 7, 26

Open Device function, 79-81,280

OpenDiskFont function, 131-132

OpenFont function, 1 31 -1 32

OpenLibrary function, 74-75

OpenScreen function, 1 18

OpenWindo\N function, 96

Painting program, 159, 162-202

Parallel device/parallel port, 1 9

ParentDir function, 28, 33

Pen numbers, 99-1 00

Pixels, 126, 177-179,209

PlaneOnOff, 178-179, 265-267

PlanePick,265-267

PolyDra\N function, 109-110

Ports, 19-20

message, 61 -65, 69-70,

321-323

parallel,19

printer, 20

reply, 86-88

serial,19

Printer device/printer port, 20

Priority field, 55

Process control block, 51

Processes, 51,302,306,313-318

Proportional gadgets, 191-194

Qualifier field, 1 56- 1 57, 219

RastPort data structure, 96-97,

141

Ra\N key input, 219

Read function, 1 5-1 6

ReadPixel function, 126

RectFili function, 103, 105

Redirection symbols, 12-13

Registers, 7

RemPort function, 63

Rename function, 38

Reply ports, 86-88

Requesters, 154, 183-184

INDEX

349

PROGRAMMER'S GUIDE TO THE AMIGA

350

RWED (Read, Write, Execute,

Delete) sequence, 40

Scratch registers, 7

Screens

color, 177 - 1 79

custom, 117-121

makeup of, 3

opening, 1 18-1 19

scrolling, 1 39

Workbench,93,99

ScrollLayer function, 1 1 6

ScroliRaster function, 139

Seconds and Micros field, 158

Seek function, 20-22

SendlO request, 84-85

Serial device/serial port, 19

SetA fPt function, 105

SetCommand function, 41

SetDrPt function, 1 09

SetFont function, 132

Setf-'rotection function, 40

SetRast function, 138

SetRGB4 function, 119-120

SetSignal function, 60

SetSoftStyle function, 137

Signal bits, 59-61

Signals, 58-61

Simple-refresh windows, 95

Simple sprites, 235-247

SimpleSprite data structure,

236-239

Smart-refresh windows, 1 10, 1 13

Software, 1, 5

Software, audio, 281-298

Sound system, 279-298

Sprites

changing, 237 -238

colors, 239-240

defining shape, 238-239

freeing, 241

hardware, 235,238

obtaining from system, 236-237

Sprites (continued)

simple, 235-247

virtual, 248-262

Standard input/standard output,

13-14

Startup codes, 6, 1 1

String gadgets, 190-191

Style bits, 137

Superbitmap windows, 113-1 15

SysBase register, 7

Task control block, 51, 301

Task switching, 51

Tasks, 50-51

and processes, 306, 313

and signals, 58

ending, 305

limitations, 301

locating, 321

prioritization, 301-302

putting to sleep, 213-214

Text, 126, 130-131

boldface, 137

characteristics, 135-136

highlighting, 136

italic, 137

length,102

positioning of, 101 -1 03

scrolling, 1 39

setting fonts, 132-133

underlining, 137- 1 38

Text editor, 329-334

Text function, 1 02 1 03

TextAttr data structure, 132

TextFont data structure, 133

TextLength function, 102-103

Timer device, 154, 209-215

Timing requests, 210-21 1

TmpRas data structure, 124-126

Underlining, 137-138

Unlock function, 27, 29

Viewing modes, 164

Viewports, 1 1 9-1 21

Virtual sprites, 248-262

VSprite data structure, 248,

253-256

WaitForChar function, 21 -23

WaitlO request, 85

Windows

and gadgets, 184- 1 88

borders, 1 67

CLI, 16

communication about, 1 53

console, 1 7 - 1 8

drawing into, 97 -98

Windows (continued)

flags, 95, 165-167

gimmezerozero, 1 14

opening, 16-17,93,96, 119,

165-168

RAW, 18

repositioning, 166

resizing, 113, 165-166

simple-refresh, 95

smart-refresh, 110, 113

superbitmap, 1 13-115

using file handles, 14

Workbench, 4

Workbench screens, 93, 99

Write function, 1 6

WritePixel function, 126

INDEX

351

Selections from
The SYBEX Library

Computer Specific

AMIGA
AMIGA PROGRAMMER'S
HANDBOOK Volume 1
by Eugene Mortimore
575 pp. IIlustr, Ref. 367-8
All the Amlga's power at your flngertipsl
Organized for working programmers, this
is an A to Z compendium of Amiga sys
tem facilities, including ROM-BIOS exec
calls, the Graphics Library, Animation
Library, Layers Library, Intuition calls, and
the Workbench.

APPLE /I - MACINTOSH
THE PRO-DOS HANDBOOK
by Timothy Rice and Karen Rice
225 pp., illustr. Ref. 230-2
All Pro-DOS users, from beginning to
advanced, will find this book packed with
vital Information. The book covers the
basics. and then addresses Itself to the
Apple II user who needs to Interface with
Pro-DOS when programming in BASIC.
Learn how Pro-DOS uses memory, and
how it handles text files, binary files,
graphics and sound. Includes a chapter
on machine language programming.

PROGRAMMING THE
MACINTOSH IN ASSEMBLY
LANGUAGE
by Steve Williams
400 pp" illustr. Ref. 263-9
Information, examples, and guidelines for
programming the 68000 microprocessor
are given Including details of Its entire
instruction set

USING THE MACINTOSH
TOOLBOX WITH C
by Fred A. Huxham, David Burnard
and Jim Takatsuka
559 pp., illustr, Ref. 249-3
In one place, all you need to get applica
tions runnning on the Macintosh, given
clearly, completely, and understandably.
Featuring the C language

MASTERING Pro-DOS
by Timothy Rice and Karen Rice
250 pp., illustr, Ref. 3155
This companion volume to The ProDOS
Handbook contains numerous examples
of programming techniques and utilities
that will be valuable to Intermediate and
advanced users.

THE EASY GUIDE TO YOUR
MACINTOSH
By Joseph Caggiano
214 pp., IIlustr., Ref. 216-7
Simple and quick to use, this tells first time
users how to set up their Macintosh com
puters and how to use the major features
and software.

MACINTOSH FOR COLLEGE
STUDENTS
by Bryan Pfaffenberger
250 pp., illustr, Ref. 227-2
Find out how to give yourself an edge in
the race to get papers in on time and pre
pare for exams. This book covers every
thing you need to know about how to use
the Macintosh for college study

J

ATAR!
UNDERSTANDING ATARI ST
BASIC PROGRAMMING
by Tim Knight
300 pp., IIlustr., Ref. 344-9
Here is a comprehensive tutorial and ref
erence guide for ATARI ST BASIC pro
gramming, including graphics, sound
and GEM windows. With a complete ST
BASIC command summary.

CP/M SYSTEMS
THE CP/M HANDBOOK
by Rodnay Zaks
320 pp., illustr., Ref 048-2
An indispensable reference and guide to
CPIM - complete in reference form.
"An excellent reference gUide.
Dr. Dobbs Journal

MASTERING CP/M
by Alan Miller
398 pp., IIlustr Ref. 068-7
For advanced CPIM users or systems
programmers who want maximum use of
the CPIM operating system thiS book
takes up where the CPIM Handbook
leaves off.

THE CP/M PLUS HANDBOOK
by Alan Miller
250 pp., illustr., Ref. 158-6
This guide IS easy for beginners to under
stand, yet contains valuable information
for advanced users of CPIM Plus

MASTERING DISK OPERATIONS
ON THE COMMODORE 128
by Alan R. Miller
f238 pp., illustr., Ref. 357-0
This guide to using CPIM Plus on the
Commodore 128 is essential for users at
all levels, offering introductory tutorials, In

depth treatment of major topics, a look
inside the operating system, and a CPIM
Plus command summary

!BM PC AND
COMPATIBLES
OPERATING THE IBM PC
NETWORKS
Token Ring and Broadband
by Paul Berry
363 pp, illustr., Ref. 307-4
This tells you how to plan, install, and use
either the Token Ring Network or the PC
Network. Focusing on the hardware
Independent PCN software, this book
gives readers who need to plan, set-up,
operate, and administrate such networks
the head start they need to see their way
clearly right from the beginning.

THE ABC'S OF THE IBM PC
by Joan Lasselle and Carol Ramsay
(2nd Edition)
200 pp., illustr, Ref. 370-8
Complete hands-on training for first-time
users-in clear, understandable terms.
With step-by-step tutorials on everything
from handling disks, to running pro
grams, to using the PC's special capabil
ities.

MS-DOS POWER USER'S GUIDE
by Jonathan Kamin
400 pp., IIlustr., Ref. 345-7
A guide to the advanced and subtle fea
tures of DOS. Contains a goldmine of
techniques to streamline operations by
automating complex tasks and repeated
operations. Includes a review of the
baSICS, plus tutorials on less familiar DOS
functions. For version 2.1 through 3.1

THE MS-DOS HANDBOOK
by Richard Allen King (2nd Ed)
320 pp., IIlustr., Ref. 185-3
The differences between the various ver
sions and manufacturer's implementa
tions of MS-DOS are covered In a clear
straightforward manner. Tables, maps,
and numerous examples make this
the most complete book on MS-DOS
available.

ESSENTIAL PC·DOS
by Myril and Susan Shaw
300 pp., illustr., Ref. 176-4
Whether you work with the IBM PC, XT,
PC jr. or the portable PC, this book will be
invaluable both for learning PC DOS and
for later reference.

THE IBM PC·DOS HANDBOOK
by Richard Allen King
296 pp., Ref. 103-9
Explains the PC disk operating system.
Get the most out of your PC by adapting
its capabilities to your specific needs with
confidence. Includes both the PC-DOS
features and functions, and also the
advanced capabilities.

BUSINESS GRAPHICS FOR THE
IBM PC
by Nelson Ford
259 pp., illustr. Ref. 124-1
Ready-to-run programs for creating line
graphs, multiple bar graphs, pie charts
and more. An ideal way to use your PC's
business capabilities!

MASTERING THINKTANK ON
THE IBM PC
by Jonathan Kamin
350 pp., illustr, Ref. 327-9
This comprehensive guide to idea pro
cessing with ThinkTank takes you from
starting a first outline to mastering
advanced features. It includes undocu
mented tips and tricks and an introduction
to Ready!, the RAM-resident outline pro
cessor.

THE IBM PC CONNECTION
by James CoHron
264 pp., illustr., Ref. 127-6
Teaches elementary interfacing and
BASIC programming of the IBM PC for
connection to external devices and
household appliances.

DATA FILE PROGRAMMING ON
YOUR IBM PC
by Alan Simpson
219 pp., illustr., Ref. 146-2
This book provides instructions and
examples for managing data files in
BASIC Programming. Design and devel
opment are extensively discussed.

Software Specific

SPREADSHEETS
UNDERSTANDING JAVELIN
by John R. Levine, Margaret H.
Young, and Jordan M. Young
350 pp., illustr., Ref. 358-9
A complete guide to Javelin, including an
introduction to the theory of modeling.
Business-minded examples show Javelin
at work on budgets, graphs, forecasts,
flow charts, and much more.

MASTERING SUPERCALC 3
by Greg Harvey
300 pp., illustr., Ref. 312-0
Featuring Version 2.1, this title offers full
coverage of all the sophisticated features
of this third generation spreadsheet,
including spreadsheet, graphics, data
base and advanced techniques.

DOING BUSINESS WITH
MULTIPLAN
by Richard Allen King
and Stanley R. Trost
250 pp., illustr., Ref. 148-9
This book will show you how using Multi
plan can be nearly as easy as learning
to use a pocket calculator. It presents a
collection of templates for business
applications.

MULTIPLAN ON THE
COMMODORE 64
by Richard Allen King
250 pp., illustr. Ref. 231-0
This clear, straightforward guide will give
you a firm grasp on Multiplan's function,
as well as provide a collection of useful
template programs.

I

j

WORD PROCESSING

INTRODUCTION TO WORDSTAR
(3rd Edition)
by Arthur Naiman
208 pp., illustr., Ref. 134-9
A bestselling SYBEX classic. "WordStar is
complicated enough to need a book to
get you into it comfortably. Naiman's
Introduction to WordStar is the best."

-Whole Earth Software Catalog

" ... an indespensable fingertip guide,
highly recommended for beginners and
experienced users."

-Type World

PRACTICAL WORDSTAR USES
by Julie Anne Arca
303 pp., illustr. Ref. 107-1
Pick your most time-consuming
wordprocessing tasks and this book will
show you how to streamline them with
WordStar.

MASTERING WORDSTAR ON
THE IBM PC
by Arthur Naiman
200 pp., illustr., Ref. 250-7
The classic Introduction to WordStar is
now specially presented for the IBM PC,
complete with margin-flagged keys and
other valuable quick-reference tools.

WORDSTAR TIPS AND TRAPS
by Dick Andersen, Cynthia Cooper,
and Janet McBeen
300 pp., illustr., Ref. 261-2
The handbook every WordStar user has
been waiting for: a goldmine of expert
techniques for speed, efficiency, and easy
troubleshooting. Arranged by topic for
fast reference.

THE COMPLETE GUIDE TO
MULTIMATE
by Carol Holcomb Dreger
250 pp., illustr. Ref. 229-9
A concise introduction to the many appli
cations of this powerful word processing
program, arranged in tutorial form.

PRACTICAL MULTIMATE USES
by Chris Gilbert
275 pp., illustr., Ref. 276-0
Includes an overview followed by practi
cal business techniques, this covers doc
umentation, formatting, tables, and Key
Procedures.

MASTERING DISPLAYWRITE 3
by Michael McCarthy
447 pp., illustr, Ref. 340-6
A complete introduction to full-featured
word processing, from first start-up to
advanced applications-designed with
the corporate user in mind. Includes com
plete appendices for quick reference and
troubleshooting.

MASTERING WORDPERFECT
by Susan Baake Kelly
397 pp., illustr., Ref. 332-5
Solid training and support for every Word
Perfect user-with concise tutorials, thor
ough treatment of advanced features and
"recipes" for business uses. Covers all
versions through 4.1.

WORDPERFECT TIPS
AND TRICKS
by Alan R. Neibauer
350pp., illustr., Ref. 360-0
A practical companion for users of Word
Perfect versions through 4.1-packed
with clear explanations and "recipes"
for creative uses, including outline pro
cessing, graphics, spreadsheet and data
management.

MASTERING SAMNA
by Ann McFarland Draper
425 pp., illustr., Ref. 376-7
Learn the power of SAMNA Word and the
SAMNA spreadsheet from an expert user
and teacher. This comprehensive tutorial
lets you build on the basics to get the
most from the software's unique features.

MASTERING MS WORD
by Mathew Holtz
365 pp., illustr., Ref. 285-X
This clearly-written guide to MS WORD
begins by teaching fundamentals quickly
and then putting them to use right away.

Covers material useful to new and experi
enced word processors.

PRACTICAL TECHNIQUES IN
MS WORD
by Alan R. Neibauer
300 pp., illustr, Ref. 316-3
This book expands into the full power of
MS WORD, stressing techniques and pro
cedures to streamline document prepara
tion. including specialized uses such as
financial documents and even graphics.

INTRODUCTION TO WORDS TAR
2000
by David Kolodnay
and Thomas Blackadar
292 pp., illustr, Ref. 270-1
ThiS book covers all the essential features
of WordStar 2000 for both beginners and
former WordStar users.

PRACTICAL TECHNIQUES IN
WORDSTAR 2000
by John Donovan
250 pp., illustr., Ref 272-8
Featuring WordStar 2000 Release 2, this
book presents task-oriented tutorials that
get to the heart of practical business
solutions.

MASTERING THINKTANK ON
THE 512K MACINTOSH
by Jonathan Kamin
264 pp., illustr., Ref. 305-8
Idea-processing at your fingertips: from
basic to advanced applications, including
answers to the technical question most
frequently asked by users.

DATABASE
MANAGEMENT
SYSTEMS
UNDERSTANDING dBASE III
PLUS
by Alan Simpson
415 pp., illustr .. Ref. 349-X
EmphaSizing the new PLUS features, this
extensive volume gives the database ter
minology, program management, tech
niques. and applications. There are hints

on file-handling, debugging, avoiding
syntax errors.

ADVANCED TECHNIQUES IN
dBASE '" PLUS
by Alan Simpson
500 pp., iliustr, Ref. 369-4
The latest version of what Databased
Advisor called "the best choice for experi
enced dBASE III programmers." Stress
Ing design and structured programming
for quality custom systems, it includes
practical examples and full details on
PLUS features.

MASTERING dBASE '" PLUS:
A STRUCTURED APPROACH
by Carl Townsend
350 pp., illustr., Ref. 372-4
This new edition adds the power of PLUS
to Townsend's highly successful struc
tured approach to dBASE III program
ming. Useful examples from business
illustrate system design techniques for
superior custom applications.

ABC'S OF dBASE '" PLUS
by Robert Cowart
225 pp., illustr., Ref. 379-1
Complete introduction to dBASE III PLUS
for first-time users who want to get up and
running with dBASE fast. With step-by
step exercises covering the essential
functions as well as many useful tips and
business applications.

UNDERSTANDING dBASE III
by Alan Simpson
250 pp., iliustr., Ref. 267-1
The basics and more, for beginners and
intermediate users of dBASEIlI. This
presents mailing label systems, book
keeping and data management at your
fingertips.

ADVANCED TECHNIQUES IN
dBASE III
by Alan Simpson
505 pp., illustr, Ref. 282-5
Intermediate to experienced users are
given the best database design tech
niques, the primary focus being the devel
opment of user-friendly, customized
programs.

SYBEX introduces one of the most
sophisticated communications

packages for your IBM-PC at the cost
of a book!

Connect with Elf-
"as easy to use as it is powerful ...
easy to understand ... simple enough
for beginners ... satisfies the needs
of sophisticated users . . . becomes
practically automatic . . . "

Elf automates virtually all
calls and file transfers and
turns your computer into a
remote.

• Menu driven

• Easy to install

• Personality modules

• Crash-proof error handling

-PC Products

• Password protected post mode

• Supports XMODEM protocol
• Includes SYBEX-quality documentation

549.95
(Diskette and Book)

ORDER NOW! CALL: 800-227-2346

Programmer's
Guide to

the Amiga
Programs Available on Disk

If you'd like to use the programs in this book but don't want to type
them in yourself, you can send for a disk containing all the programs in
this book. To obtain this disk, complete the order form and return it
along with a check or money order for $15.00. California residents add
sales tax.

DATAPATH
P.O. Box 1828
Los Gatos, CA 95031-1828
(408) 353-3901

Name ---

Address ---

City/State/ZIP ______________ _

Enclosed is my check or money order.
(Make check payable to DATAPATH)

Programmer's Guide to the Amiga

SYBEX is not affiliated with DATAPATH and assumes no responsibility fur any defect in the disk or
program.

SYBEX Computer Books
are different.

Here is why. • •

At SYBEX, each book is designed with you in mind. Every manuscript is
carefully selected and supervised by our editors, who are themselves
computer experts. We publish the best authors, whose technical expertise
is matched by an ability to write clearly and to communicate effectively.
Programs are thoroughly tested for accuracy by our technical staff. Our
computerized production department goes to great lengths to make
sure that each book is well-designed.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.
SYBEX was among the first to integrate personal computers used by
authors and staff into the publishing process. SYBEX was the first to
publish books on the CP/M operating system, microprocessor interfacing
techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product
have made SYBEX a world leader in computer book publishing. Trans
lated into fourteen languages, SYBEX books have helped millions of
people around the world to get the most from their computers. We hope
we have helped you, too.

For a complete catalog of our publications:

SYBEX, Inc. 2021 Challenger Drive, #100, Alameda, CA 94501
Tel: (415) 523-8233/(800) 227-2346 Telex: 336311

PRoGRAMMER's GUIDE

TO AMIGA

• orilu<.io«ph~o(......... t7 7 1
.............. AII>Ip,_IIoI_ ... tI><DOS __ "'1)'01'"

• 'II) ' p_ I,"' " Io.--y,t'!'''' • · , __ al_ -

• \,,_, _ ' :''';).... 2""
--.. W ' ' . _ 57 ,,', 2 ---.---

• _1000 ... I F '''_._.~_. 2: 2
P' ' ..

• , , ...
'"'"'....., 111. ' . " "'....,.............. ' _
..... ! 'J _~IoC. _._ 77" " t ~" • ' •. AI
.."".. C.

...... _---_. __ .. e ' Z 2

p+ , 2" , . ,
·_ _ww " t" -..... " .. _,,-

	front
	sybex-back-cover

