

101 Programming Tips \& Tricks
 For the VIC-20 and Commodore 64

by Howard Adler

FIRST EDITION FIRST PRINTING

© 1983 by ARCsoft Publishers, P.O. Box 132, Woodsboro, MD 21798 USA
Reproduction or publication of the contents of this book, in any manner, without express permission of the publisher, is prohibited. No liability is assumed with respect to the use of the information herein.

Library of Congress (LC) catalog number: 83-5973
Trademark credits and software copyrights:
VIC-20, Commodore 64 and PET are trademarks of Commodore Business Machines, Inc.

Applications software, programming advice and programs in this book are Copyright 1983 by ARCsoft Publishers.

ISBN 0-86668-030-6

Preface

The microcomputers from Commodore Business Machines Inc. are among the most popular around the world for use in the home, in the classroom, in the business office. In fact, the VIC-20 may be the all-time best selling personal computer to date.

The lightweight desktop design of the ultramodern VIC and Model 64 and their powerful BASIC language capabilities place them in the forefront of the new wave of computers for hobbyists, students, teachers, parents, professionals and business persons who want to learn the new technology.

These powerful microcomputers are not toys! Their hardware and software combinations make them highly useful tools in the business environment and the classroom as well as in the home.

The total number of applications to which the various Commodore models can be put is limited only by the scope of the imagination. In this book, we have attempted to create and share 101 new practical sets of program ideas and appropriate applications software for your use.

This book, as well as all published by ARCsoft Publishers, is written for newcomers, novices and firsttimers, as well as for advanced users of microcomputers. Our intention has been to provide easy-to-type-and-run programs for the VIC-20, Commodore 64 and other computers using the Commodore version of the BASIC programming language. You type these programs into your computer and it does the rest. You do not have to be a programmer or program writer to use this book.

This volume is a companion book to 34 VIC -20 Computer Programs for Home, School \& Office and the VIC-20 Computer Program Writing Workbook.
-Howard Adler

Table of Contents

Tip

Page
Introduction 9

Fun \& Games
1 Coin Toss 16
2 Traditional Dice Roll 16
3 See Two Dice 17
4 See Four Dice 18
5 Secret Message 19
6 Sound Off 20
7 R2D2 Sound Effect 21
8 Piano 21
9 Mystery Clues 22
10 Original Hi/Lo Game 23
11 Code Groups 25
12 60-Second Timer 26
13 Find Highest/Lowest 28
14 Sorting Scores 28
15 Keeping Game Scores 30
16 Batting Average 31
17 Computer Rating Service 32
18 Box Score 33

Text on Text

19 Create a Quiz 36
20 Killing Time 37
21 Word-Error Trapping 38
22 Character Numbers 39
23 One-Time Password 40
24 Three-Tries Password 40
25 Multiple Passwords 41
26 Name In A Box 42
27 Entering: Letter Stop 43
28 Entering: Zero Stop 44
29 Super Reverser 45
30 Marching Numbers 46
31 Superior Decision Maker 46
32 Sentence Writer 47
33 Categorizing 48
34 Alphabet Soup 51
35 Create A Table 52
36 Question \& Answer 53

Gee Whiz

37 Gee Whiz I: Smart Adder 56
38 Gee Whiz II: Three-Digit Mystery 57
39 Gee Whiz III: Yes/No Decision Maker 57
40 Gee Whiz IV: First Alphabet Spotter 58
41 Gee Whiz V: Second Alphabet Spotter 59
42 Gee Whiz VI: Guess The Number 59
Number Crunching
43 Memory Tester 62
44 Number Reverser 63
45 Exam Score Sorter 63
46 Number-Error Trapping 64
47 Standard Deviation 65
48 Percentages 66
49 Logic Functions 67
50 Above \& Below a Line 68
51 Factoring 69
52 Which is Smallest? 70
53 Which is Largest? 71
54 Reciprocals 71
55 Dump the Integer 72
56 Averages 73
57 Mid-Range Number 73
58 Rounding Off 74
59 Two-Digit Round Off 75
60 Percent to Decimal 76
61 Every 10th Answer 77
62 Random Sampler 77
63 Random Numbers: Zero To Nine 78
64 Random Numbers: Distribution 79
65 Random Numbers: Averages 81
66 Random Numbers: Sorting High/Low 81

Money Matters

67 Money Grows 84
68 Shopper's Friend 85
69 Car Payments 87
70 To Nearest 95 Cents 88
71 To the Nearest Penny 90
72 Mark Up 91
73 Percentage Off 91
74 Dollars \& Cents 92
75 Wages \& Hours 93
76 Invoicing 94
77 Unit Price 95
78 Inventory Counter 96
79 Daily Code 99
80 Daily Receipts Adder 100
81 Advertising Cost-per-Thousand 102
82 Advertising Cost-per-Unit Sold 103
83 Making Change 104
84 Single-Digit Adder 106
85 Currency Converter 107
86 Fractional Feet 109
87 Simulated RPN Calculator 110
88 60-Second Timer 111
89 Stopwatch 112
90 Shipments 113
91 Marketing Performance 115
92 Cash Receipts Comparer 118
Colorful Graphics
93 Box 122
94 Graphic-Screen Familiarization Tour 122
95 Graphic-Screen Character Spotter 123
96 Dancing Spot 124
97 Beautiful Braided Rug 124
98 Screen Filler 125
99 Snowfall 126
100 Making Things Move 127
101 Drawing Sketches 127

Introduction

This is a book of programming advice and actual working programs for the Commodore VIC-20, Commodore Model 64, and other personal microcomputers using the Commodore Business Machines Inc. version of the BASIC programming language.

There continues to be a great need for practical and useful software for the new generation of popular personal computers. The Commodore 64, Commodore VIC-20, and other personal microcomputers from Commodore Business Machines Inc., are among the world's most popular computers for use in the home, in the classroom and even in the business office.

Commodore computers are powerful, versatile and flexible-but what can they do?

Once you've purchased the hardware, you need down-to-earth workable programs to run the computer. The aim of this book is to provide more than 101 new and different program ideas and appropriate complete easy-to-type ready-to-run all-new and different sets of program
listings for you to use in your own Commodore computer, to make your computer work for you.

These programs are useful in themselves. They also make good starting points for further development as you learn more and more about how to program your own computer. Read these 101 programs. Type them into your computer. Watch them run. Analyze how the lines in the listings cause the computer to step through a sequence of operations to reach a final goal. You'll see how programs are organized, how they work. You can use these fun and practical programs and then, later, modify them to do more or different work. Expand them to suit your needs as your interests grow.

These programs are designed to be typed into your Commodore computer, just as you find them in this book, via the typewriter-style keyboard. No other programming is needed.

We assume you have read the owner's manual and instructional pamphlets which came with your Commodore computer and any accessories you may have. You know how to hook the computer to your TV and to other accessories you have. You know how to type programs into the computer. If you don't know these beginning steps, please review the instructions in the Commodore owner's manual.

You do not have to be a programmer to use these pieces of software. Just type them in, as you find them here, and run them. They will work!

Computer printouts

To make sure no errors appear in this book, we have written and tested each of these programs on our own VIC-20 and we have printed every one on a VIC-1525E graphic printer. The hardcopy printout from that line printer is reproduced directly in this book.

The Commodore computer operated the printer and listed these programs. No human hands came between the computer and these listings so no re-typing or proofreading errors have been introduced. You should find that these programs will run exactly as reproduced here.

If, after typing in a program, you get an error message from your Commodore computer, compare your typed
program carefully with the program lines in this book. Remember that every space, punctuation mark, letter, number and symbol counts and must be in the computer exactly as in this book.

If you do get such an error message, the most likely cause will be found to have been a typing error in transferring the program from this book into the computer. However, should you find an error in this book, please call it to the attention of the author by sending a postcard or letter to him in care of ARCsoft Publishers, P.O. Box 132, Woodsboro, MD 21798 USA. The author will appreciate being able to make any necessary corrections to future editions of this book.

How to use this book

This book has been organized into seven sections for convenience in locating programs. The sections are:

Fun \& Games includes many new ideas you can use in writing game programs for your Commodore computer;

Text on Text has programming tips for handling words in your Commodore computer;

Gee Whiz is a group of quick-type-and-run programs you can use to excite your family, friends and neighbors;

Number Crunching includes many hints, secrets and shortcuts for handling numbers in your Commodore computer;

Money Matters holds interesting programs to help you handle your household budget as well as store and office routines for business persons;

Colorful Graphics are programming shortcuts designed to help you get unusual video displays from your Commodore machine;

Please note that each and every one of the 101 tips in this book includes a complete, ready-to-run program in BASIC for you to use. Try them all. They are great fun to run. They are especially designed to be short so you won't have to spend hours typing in one program.

As your knowledge of BASIC and how it makes your Commodore computer work grows, you will be able to build on these elementary programs to create ever-morecomplex schemes for practical applications.

Endless running

Many of the programs in this book will continue to run until you command them off manually via the RUN STOP key. You may stop any run, at any time, by pressing the RUN STOP key on the left side of the keyboard. This RUN STOP function in the Commodore computers is the same as what is called BREAK on other microcomputers.

REMarks

As you read through the 101 programs in this book, you will notice very few REM, or remarks, statements. The author's training in writing BASIC-language computer programs included an emphasis on brevity and saving memory space. A sharp editing pencil was in order-and still is!

REMarks and explanations in software are out. Honing, fine tuning and waste trimming are in. Use of coding form program-writing worksheets is encouraged. Such worksheets can be found in the publication, VIC-20 Computer Program Writing Workbook, available from ARCsoft Publishers. Your objective always should be to make the most efficient use of available memory.

Here's another important note to remember: even though they may be headed toward the same goal, no two programmers will write the exact same list of BASIC instructions, or program lines, from scratch. As you load these programs into your Commodore computer, one at a time, you'll make modifications to suit your personal needs and interests if you want to. For instance, the exact wording of PRINT statements can be changed. Or two or more programs can be combined into one grand scheme. Your applications may vary.

By the way, if you want to load more than one of these programs into your computer at the same time, be sure to use different sets of line numbers for different programs. For example, only one line can be numbered 10. There cannot be two lines numbered 10 in the computer at the same time.

We use the words ENTER and RETURN interchangeably. Programmers today generally mix the use of the two words, to mean the same thing. In this case, we mean the RETURN key on the right hand side of the Commodore keyboard. For example, you ENTER a line into
program memory by typing it into the computer and pressing the RETURN key at the end of the line. Pressing RETURN causes it to be ENTERed into the computer's program memory.

Other computers

These programs will run on other computers which use the BASIC language. However, to run these programs on other non-Commodore computers, you probably will have to make at least slight modifications to program lines. Graphics commands, especially, will differ elsewhere. Also, use of multiple-statement lines, using the colon (:), can be quite different in other brand-names of computer hardware.

Also, if you use a non-Commodore computer, such thlings as line numbering, spacing, logical tests, multiplication symbols, print statements and other instructions may be different.

Refer to the owner's manual which came with your non-Commodore computer. Compare its version of the BASIC language with Commodore BASIC.

The author would like to have your suggestions for future editions of this work, or for other titles in this series for the Commodore computers. The author may be addressed in care of ARCsoft Publishers.

Standalone vs. subroutine

The 101 programs in this book may be used as portions of larger lists of instructions to your Commodore computer. They can be written in as GOTO or GOSUB objects. To do so, make appropriate changes to the first line (usually numbered 10 in this book) and to the last line of each program.

If you create a subroutine, remember that every GOSUB must have a RETURN. RETURN must be the last line of every subroutine.

If you work one of these programs into a larger set of instructions, be especially careful of your memory (variable) names or labels. They must agree with, and fit into, those you are using in the main program. Also, be careful of line numbers. No two programs can occupy the exact same set of line numbers.

Learning programming

These programs are written to be typed into your Commodore computer just as you find them here-with no extra programming needed. We assume you know how to turn on your computer and how to go about typing in a program.

Many of the programs and most of the programming advice in this book will be of interest to old hands, as well as newcomers, since we are presenting new twists and more powerful exercises aimed at making your computer do more work, more quickly.

Amidst the 101 programs in this book, you will find countless ideas for using your computer. Each piece of software is intended to make you a more-versatile programmer and make your programming chores lighter.

This is not a replacement for the owner's manual which came with your Commodore computer. You need to read it thoroughly, first, then use this book as a supplement.

Use this book to stimulate your thinking about how to approach various software problems and projects. Use it to get good ideas for new and different approaches to all of your programming goals. As you grow and develop as a program author, modify these programs to make your computer do even more.

Happy programming!

Fun \& Games

1 Coin Toss

Here's a handy way to settle arguments. Toss a coin. Only this time, let the computer do the work!

Type in the program. Run it. The computer will report heads or tails after each toss.

For a new toss, press the RETURN key on your computer's keyboard.

Line 10 clears the screen. A random number-either zero or one-is generated at line 20 and tested to see if it is a zero. If it is, the computer prints heads. If not, the computer drops to line 30 where it prints tails. Lines 50 , 60 and 70 accomplish the restart when you press RETURN.

Program Listing

```
10 PFIMT CHESG14T%:FEM ECFEEH ELEFF
150=FHTG-TI%
```



```
    "HEADS":GOTD 40
30 PFIHT "TFILS"
4G FEINT:FFIMT:FEINT
SE FENMT"PRESS RETUPM"
EE INFUT"TD TOSE FHOTHEF EOIN":K&
TB CLE
E0 goTO 10
```


2 Traditional Dice Roll

Here's a simple, brief way to roll and display results for two dice.

Lines 100-110 get a random number between 1 and 6 and store it in A. Lines 200-210 get another random number from 1 to 6 and store it in B.

Lines 300-310 print the contents of A and B along with a suitable message.

Program Listing

```
QE=FTIM-TI%
```



```
1L IF FIOT THEN 10E
2GE E=\HTCT:QFWTC1%%
E10 IF EC1 THEM EEIE
#GEFFW'IMT"FIFET IIEE: ":F
SLE FFITT"SFEOMHD DIEE:";B
```



```
*LE FFTHT"FFESE% RETMFH"
```



```
4EILE
4** EOTG EO
```


3 See Two Dice

Here's a quick way to add real dice to any fun program you are designing for your computer.

This program rolls two dice and lets you see the results, as with real dice. This is especially useful in those games where it is important to see the value of each.

The subroutine in lines 100-140 generates the necessary pair of random numbers. Lines 60, 70 and 80 make the display you want.

Note that lines 60 and 80 each have nine asterisks. Line 140 is RETURN and must be the last line in the program.

After you type in and RUN the program,press RETURN on your computer's keyboard to roll the dice.

Program Listing

```
10 M=FWI!-TI%
20 FRIHT CHFSG14T%:FEM SCREEM ELEFE
SO FRIMT"FEESE FETIFF|"
```

4 IMFUT"TD FOLL TW DIEE": FA:FRIMT:FRIMT

50 BREUE 100

90 FEIMT:FRIMT:GOTD 20

110 IF DLC1 THEN 100

130 IF DFC1 THEM 12E
14 EETLFA

4 See Four Dice

Two dice not enough for your game? Here's how to see four dice after a roll!

Naturally, this program works just like the program in tip number 3 except that the FOR/NEXT loop in lines 50140 makes the computer roll and display four times rather than two times. If you need six, eight or ten dice on display, change the number two in line 50 to three, four or five.

Program Listing

$10 \mathrm{Q}=\mathrm{FH} \mathrm{M}-\mathrm{TI}$

$3 E$ FEIMT"FPESE RETLIFM"

BE DF=IMTCTMFMC1\%
SO TF DFC1 THEN EO

LSE FFIHT:FFIMT
14 HEWT L

5 Secret Message

Secret messages can be lots of fun! They often are composed of codes in which letters of the alphabet have been replaced by numbers.

In this easy-to-use program, the computer generates a list of pseudorandom numbers and assigns one number to each letter of the alphabet. You use the numbers, in lieu of letters, to write notes to your friends.

There is very little chance of the same number being assigned to two different letters because available numbers range from zero to 999.

When typing this program into yourcomputer, be sure to separate the alphabet letters with commas in line 100.

By the way, note the nice two-column screen printing format! Line 250 does that.

Program Listing

```
IQ FEJMT EHESUMT`:EEM CLEAFE EOFEEH
20 Z=FtMa-mT%
1EG INTF H,B,G,I,E,F,O,H,I,T,K,L,M,M,
    \square,F,O,F,E,T,W,W,W,*,',Z
2g| FDF M=1 TO LS
```



```
2OCEEFH L*
```



```
24B FEFHIT
```



```
20 MEMT M
OE MET K*
```



```
SZE FESTMFE
3G प0TW 10
```


Sample Run

A	861	B	110
C	73	D	56
E	783	F	714
G	444	H	228
I	160	J	25
G	954	L	386
M	952	N	279
O	944	F	999
Q	869	F	310
S	323	T	401
U	603	V	9
W	286	X	5.4
Y	352	Z	3 S

6 Sound off

You can make your computer beep on command.
Line 10 clears the screen. The FOR/NEXT loop in lines 20 to 90 make the VIC sound its built-in beeper 10 times. You can change the number of times the sound is made by changing the number 10 at the end of line 20. Line 30 actually prints the word beepon the screen.Lines 40 and 50 make the beeper sound off.

Program Listing

```
10 FEIMT EHF&(147):FEM LLEFFEGREEM
2G FOF L=1 TO 10
SE FRIIT"BEEF"
4G FOKE 365TS,1E
#GOME 3EST4,241
GO FOFT=I TG SOW:MENT
TG PDE SESTE,0
GQ FIRE T=1 TO SOEMENT T
GG HEMT L
```


7
 R2D2 Sound Effect

The computer does its best to emulate the cuddly little robot. Now, where's C3PO?

Program Listing

10 PEINT CHEZC147\%

30 FFIMT"积 FOEOT SOUHI *"

EG FOKE 3057B,
90 OOTO 50

8 Piano

Just about the world's simplest piano. Play the letters $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{A}$, and B. This program lets you practice, up and down, up and down the musical scale, over and over again.

Program Listing

1BQ IF K\$="E" THEM M=239: GOTG 200
190 OOTO 100
20E FRIHT THECSO: "FIFMO"
210 FFINT TFBC1Eう:Kt
2eg Foke 3gerank
$230 \mathrm{FOF} T=1$ TO 1EG:WEMT T
24 FOFE SEST4, 0
250 00TO 10

9 Mystery Clues

Want to create your own murder mystery? Figure out whodunit and write your program backwards from there. When your players make wrong guesses, give them tantalizing clues.

Here's a short program which you can load into your computer in a matter of minutes. Key it in and try it out. It shows how you can add clues to your mysteries.

For simplicity, we assume here the Butler did it. Note that, in line 20 , we are making him equal to $X \$$. At line 30 , the computer stops to ask you whom you think did it. Your answer is recorded in A\$.

In line 40, your answer, lodged in A\$, is compared with the computer's already-certain knowledge that the Butler did it. $\mathrm{A} \$$ is compared with $\mathrm{X} \$$. If they agree, and only if they agree, the computer displays the message, "You guessed it." If you got it right, things will end right there.

If, however, you missed it, program execution (sorry about using that word in a murder mystery!) drops to line 50 where we hear the computer, "Clue: servant." After deftly dropping that clue, the computer moves back and runs through the whole affair another time. It will keep running through it until you answer, "Butler," in response to its question in line 30.

Program Listing

10 FFIMT DHESG14T: FEM CLEFF: ECFEEH

OE IPFUT"MHOULHIT": FF
40 IF $\mathrm{X}=\mathrm{F}=\mathrm{F}$ THEN 1 DE
50 FFIMT:PEIMT"CLIJE:"."SEFWFMT":FEIHT
: OOTG 2E
100 FEIMT CHFOG147
$110 \mathrm{FFIMT"rES}$
120 FRTMT"rMU GUESEET IT"

$14 \mathrm{FDF} \mathrm{T}=1 \mathrm{TO} 99$ MENT T
150 FOKE 36ETG, G:POKE SEGT4: 0
160 EHI

10 Original Hi/Lo Game

Here it is. Where everybody started in microcomputer programming back in the Seventies. The first game ever played was a high-low guess-the-number routine.

The computer selects a secret number. You try to guess it. The computer tells you whether or not you are too high, too low, or right on the number.

Here's how it works: the secret number can be zero to 1000 . Line 100 generates a random number (the secret number) and stores it. Line 210 asks you to guess the number.

Lines 300-310 decide if you are right or wrong. Line 220 keeps track of the number of attempts.

Program Listing


```
230 FFIMT:FEIMT:FRIMT"THAT WFS TF'T NO"":T
3EG IF E%P THEH FEIHT:IWFUT"TOU HIGH.
    GUESS AMAIM":E:COTO こzE
310 IF EGF THEN FFINT :INFUT"TOD LOH.DMEES
    FGAIM";E:GOTG 2EE
400 FFIHT OHF秉(147)
410 FFIHT"TES, 'MUM IOT IT"
4ED FFIMT F:"IS THE HUMEEE"
4BE FFINT"TDUS SOT IT"
440 FRIMT"IM":T;"TRIES"
4SG FOR L=1 TO 1G:FFIMT:HEMT L
460 [LF
4% 00T0 30
```


Sample Run

I HANE A SECPET WUMBEE:
CFt TOU GUESS IT 5DO
THAT WFIS TF'T' MO. 1
TOO HIGH, MUESE FGFIM 250
THAT WFE TET WI. 2
TOD LDU, GIIESS FGATH 40 G
THAT WFE TRT MO. 3
TOO HIDH, DUESS AOAIM 300
THAT WFIS TET' NO. 4
TOD LOA, GUESS FGAIM 29E
THFT WFE TE'T HO. 5
TOD LOM, BUESE FGAIH $35 E$
THAT WFS TFIT MO. 6
TOO HIEH, GIUES FGHIN 240
THAT WAS TEOT WOn $?$
TOD HIDH, MUES FWHIH 330
THAT WFE TPY' $H \mathrm{H}_{\mathrm{n}} \mathrm{E}$
TOD HIDH, GUESE FWAIM ZEO
THAT WAS TE'T' WID 9
TOD LDM, GIESS FGAIH S1E
THAT WHS TRT'MO. 1E
TOL LDA, BESE FGHIN SES
THAT WAS TE'T M 11
TOD LDM, GUESS FGAIM 327
THAT WFS TF'T HD. 12
TOU HIGH,GUESE FGAIN 32 C

```
THFIT WFE TF'r'HD. 1S
TOG HIDH, BLESE FGFIH S2G
THFT WFE TFE'T HOM 14
'TES, 'TGLI GOT IT
    S2E IS THE MUMEER
TOU GOT IT
IH 14 TETES
```


11 Code Groups

Need some secret codes for your latest sensitive mission? How about sets of five random letters for use in Morse code practice?

This program has the computer generate an endless string of random combinations of five letters.

Program Listing

```
10 PFINT EHFTC147%:REM SCFEEN CLEFF
20 FOF L=1 TO 5
```



```
40 IF H<ES THEV SG
50 FEINT EHFSGN:
EO HENT L
TG PRIMT:GOTG EG
```


Sample Run

J\%SE'	BriliH.J	CSTRI
S¢'1k	15500	+WLLML
WHELE	YFSkS	W200\%
TRUSM	HTSKQ	UFFFFF
EFWMO	リD'91时	
FH1L ${ }^{\text {a }}$	FSuinF	TIWSO
21FFIF	ICHW	WFFOH
HTTMM	IMLFE	WEMFT
FYECK	E'thend	GULFI

Program Listing

 EMIFUTEF:

6 OFEN 3.4
5 CHII 3

2G FOF $L=1$ TG

40 IF WGE THEN 30
ED FRIHT EHEWCM:
EO NEMT L
$7 \mathrm{FFRITT}: \mathrm{GOTO} \mathrm{EQ}$

Sample Run

FIUEE
2HEES
FIGHEF
ETHIN
MUTET
KLLZZ
TDFES
WV'T'TK:
PTVFE
F $x^{\prime \prime} \mathrm{T}^{\prime} \mathrm{F}^{\prime} \mathrm{H}^{\prime} \mathrm{r}^{\prime}$

12 60-Second Timer

A one-minute timer can be very handy for fun-ngames. This easy-to-use clock "ticks" as it counts off seconds up to 60 . When it reaches 60 seconds, it rings an alarm.

The number of seconds counted can be changed by
changing the number 60 in line 20.
The clock can be calibrated by changing the number 800 in line 50 . Line 50 is a time-delay loop set for approximately one second.

Program Listing


```
L5 POrE SGB7G,1m
Z0 FOFE T=1 TG EG
```



```
40 FETNT T, "SEWMMS"
SG FOF L=% TG BEQ:MENT L
ED NEMT T
70 FOKE 3E8T4, %5%
GE FOF T=1 TG 5QQ:MEMT T
OG FDKE SGT4,0
```


Sample Run

1	EEmiMrIM
2	EECLHTOE
3	EEOTH
4	EECOHIIE
5	EEmodIE
E	EECMM
7	5 ECOH
8	EEEM1
9	EEminl
1 L	EEEMMTIE
1.1	SEminl\|c
12	EEmianIm
13	EECOUSIS
14	EEmindIE
15	SEmind
16	EECHMTS
17	Emimrdec
16	SEEMMTLE
19	EEmintIE
2 C	EEmoldtuc
21	EECOHTIE
$\underline{2}$	SECTHTIS

13 Find Highest／Lowest

Suppose we have a list of people and each person has been assigned a number or score．This program accepts the names and scores and sorts out the persons with the highest and lowest scores．Here＇s how it works．

Lines 20－90 take in the info on each person．As each person＇s score is entered，lines 50－80 determine if it is higher or lower than all previous scores．If higher or lower，it is so noted．

To complete data entry，simply pressRETURNwithout data．That will prompt the computer，at lines 110－140， to print the lowest score and the highest score．

Program Listing

```
10 FEIHT GHE&G147%:REM CLEFR ECPEEH
20 IWF|T"MFME: ";暁
30 IF HW=""" THEH 100
4@ IMFIT"SLOFE: ":S
50 < %%+1
```



```
70 IF E&S THEM LS=S:LM车=W性
```



```
90 惊="":ODTG 2G
100 FFINT:PEIHT:FRIHT
110 FREIMT LMF:" WFE LOM"
120 FRIMT"FT":LS
1BE FEIMT HM, " WAE HISH"
140 FEIMT"HT";HS
150 FFINT:FFINT:FRIHT:FRIMT
1G0 IMFUT"FRESE EETUFH FOF MDPE":K゙$
170 OLF:KOTM1日
```


14 Sorting Scores

Here＇s how to sort a set of scores．Any numbers can be used．Zero is assumed to be lower than any positive
number and a negative number is lower than zero.
Key in as many numbers as you like. Then key a zero when you want your computer to compute final results. Obviously, a zero cannot be in the set of numbers you are sorting since we use zero to get out of the input loop.

At the end of the RUN, the computer will tell you which number is lowest and which is highest.

Program Listing

10	FRIWT CHFS(147):REM GCREEN IHFUT"SCOPE:": iN
31	IF M=G THEM 1 CE
40	$5=5+1$
	IF $\mathrm{E}=1$ THEW LMAM:HMOM
60	IF HGLM THEH LHOH
70	IF M MH: THEM HH=W
8 E	GITO 20
100	FFINT 以HESC147)
110	PETMT"LOM HUMEEE: ": LH
120	FEIHT"HIGH HUMEEE: $"$:HM
130	FOR $L=1$ TO 1Q:FPIHT:HEST L
140	FEIHT"FIFe A IIFFEPEWT"
150	PFIMT"SET OF HMEEES"
160	FEIMT"PFESS Fldr ME't"
170	EET F\%
180	IF Kt="" THEV 170
190	ClFe: gota 10

Sample Run

SCORE: 7 P 9
GMEE: 654
SOORE 123
GORE: 4ES
GCORE: 642
SCOPE: 99g
SCOPE: 111
EOOPE 155
SCOPE: 473
ELORE: \square

LIM M MAEEE: 111
 HIGH MMEEE: $9 g$

FGR B IIFFEFEMT
SET DF MUMEES
FRESS AH'r' KE'r'

15 Keeping Game Scores

Writing a computer football game? Spelling bee? Cave adventure? No matter what kind of fun you are preparing, you'll need a way to keep score. Here's how.

The wealthy English duke has just been killed in our little mystery game. In lines 10 through 160 of our program listing, below, you play the game, attempting to find out whodunit.

The trick here is in the scorekeeping. Note line 150 .If you guessed correctly in response to the query inline140, at line 150 the computer will give you credit by adding one point to your score stored in memory location R. It does that by comparing your line140 answer stored in $\mathrm{P} \$$ with the correct answer stored in A\$.

If you blew it and guessed wrong, the program drops below line 150 to line 160 where it increases your "wrong score" by adding one point to W.

If you got a $W+1$ at line 160, the program moves back toline 90 and gets you to try again. If you scored a victory and got an R+1 at line 150, the program jumps to line 200 where it stops to display your total right and wrong score. After that, it's back to line 20 for a complete new runthrough.

Program Listing


```
30 IF Ex1 THEN 40
4@ FOF L=1 TGE
```

```
50 FEFII H宫
G REMT L
TO FESTOFEE
```



```
GO FFIMT"MHO KILLED THE IHKE?"
```



```
110 FESTUFE
LZG FW'AT:FFTHT"MFE IT THEn"."
```



```
140 FRIMT:IMFUT"MHOLINIT":FW
```



```
        :FRIMT"OKG'T', 'OUU APE FIGHT"
        :PRIMT"IT WHE THE ":F采:DTO EOQ
|E FRTHT EMF*G1&7%:FFIMT"MO. MOT THE "
        FF事:M=N+1.FFIMT:GOTM EQ
    2OE FrIHT:FRIMT",OMF S%MFE ISn^""
```



```
    22G FMFE L=y TO E:FFINT:NEMT L
    230 FFTMT"LET'S FLH'T mGWIM"
    2401 FIF
    2500TM 20
```



```
        BOM,AIFE
```


16 Batting Average

Once you know the number of times you were right and wrong in a game，as in Tip Number 15 ，it＇s fun to convert those raw numbers to a batting average．Numbers right and numbers wrong take on a new meaning when changed to a batting average．Folks seem to be able to understand a batting average better．

Our program，starting at line 900，is a partial listing designed to be tacked onto the end of your longer game program to display the final results of play．It will show the number of tries，number of right answers，percentage right，and batting average．

You＇ll want to test load this program so add lines 10 ，

800,810 and 820 as shown. Lines 800,810 and 820 will give you the R and T values you'll need going into the program at line 900.

Program Listing

$\frac{10}{800}$	IFFUT"MMBEF FIGHT: ": EE
810	IMFUTMUMEEF DF TETES:": T
820	FFIHT EHFes 147
900	FFIMT E: "FIEHT"
918	FRIMT" IH": T: "TEIES"
920	
930	FFIIMT
940	FEIHT F: "FEFCEMT"
950	FFIMT
960	Fritut 'rou mre mat ildgias

17 Computer Rating Service

Of course, once you know a player's batting average it still might need some interpretation. In this program, the computer takes a look at a batting average and makes a comment.

Remember that this listing, starting here with line 800, is a partial program to be tacked on the end of a longer game. Note that, at 800, you already have values for G (number right) and E (number of tries). Line 810 converts those raw numbers to a batting average (H).

Program Listing

10 PRINT CHPSG147 : REM CLEAFE SDREEH
TOC IWFUT"HUMBEE RIDHT: ": G
710 IHFUT"MDMEF TRIES: ";
720 PRINT DHP: (147)
gOO FPIHT G;"RIGHT", "IH";E:"TRIES"

EED PRIMT＂TOU FRE BATTING＂：H
G3D FEIHT＂TMU FEE＂；
840 IF HC10G THEM FREIT＂THE PITS＂：OGTO 910

87U IF HCTEO THEW FRIMT＂TOF MOTLH＂：GOTO 910
OSE IF HCOQE THEN FRIMT＂IFMN MEGR PERFEGT＂
：GTO 916
B90 PRIMT＂HFLL OF FHME＂
900 FETHT＂MFTEETAL＂
910 FOFE L＝1 TO 1日：FRINT：NEXT L
920 IHFUT＂FIF MORE PEESS PETUFM＂：KK
ESD ELF：GOTG 10

18 Box Score

To dress up scores during and at the end of a game program，use this method of putting those scores in a box．The box around the score will highlight it and jazz up your video display．

Program Listing

```
    1E PRINT GHFESG14%%
    20 FEIMT"T'TFE F MAME FMI SGOFE"
    3O FREIMT"口F ENFUTL'T TEN"
    4G PRIMT"CHFFMCTERS, IMWLINING SPHEES"
    50 PEIMT:INFUTT T韦
    GE IF LEHCT:S%1E THEH FETHT"TOD LOMG"
        OMTO 50
    T0 IF LENGTS`\1O THEM FFIMT"TOM EHOFT"
        COTO 50
```



```
90% FFIHT EHFw"112%
S40 FRINT THESS%:MHE&(65%:
950 FEIMT THEG4%;T娄
```

```
960 FRIMT THEC16O:CHF&&167%
```



```
980 FOF L=1 TO 1Q:FFINT EHFOCIE4%:WEMT L
```



```
1000 FFITMT EHFOC144%
101g PEINT EHFWG144%
1100 GET K**
111E IF K&="" THEN 110E
1120 ULF
1130 EOTO 10
```


Sample Run

TTFE A MFNE FHII ECOPE
GF EMHOLLT TEN
CHAEACTEFE, IHELUDIMG SPAGES

```
WHLLL'T'4321
```

T'TEE A MATE FWI ECORE OF EMHCTL'T'TEN
GHAFACTEFS IWLUDIFG EFREES

```
EI 7654321
```

T'rFE H MANE AND SCORE
OF EXAGTL't' TEN
GHARALTEPE, INGUITMG EFACES
AMIPEM 987

Text On Text

19 Create a Quiz

One of the most fascinating uses for your computer is in having it carry on a video conversation with your friends, relatives and neighbors. One useful way to promote such conversation is through a quiz. An instruc. tional, educational quiz, such as we have here.

Quiz data-the computer's storehouse of know. ledge-is in lines 20 to 70 . Be careful, when you type them into your computer, to include the commas separating the two halfs of each data line. Spelling and spacing must be exact.

Lines 90 and 100 obtain a random number in the range of 1 to 11 . Line 110 selects the data line for a question. Lines 120 through 140 get the appropriate word FIRST, SECOND, THIRD, FOURTH, FIFTH or SIXTH from the selected data line. Lines 160 to 180 print the quiz question on the screen, while line 190 reads the DATA line to learn the correct answer. You provide your response when the computer asks for it at line 200. Lines 220-240 decide whether you are right or wrong.

Of course, the quiz can be made much longer. In this example, it could be expanded to encompass all past U.S. presidents.

Program Listing

```
10 FFIMT DHPSG147%:FEM LLEAF SCPEEH
20 DATA FIPST.GEORGE WFSHINOTOW
30 DATA SECDHTI,JOHN FDAIE
40 DATH THIFII, THOMHE JEFFERSOH
SO DATA FOUFTH, TANES MAIISOM
GO DATH FIFTH,SFMES MOHFOE
7B DATA EI%TH, JOHN OUINCT FIAME
7S FEINT"HOM MFN'"
80 FRIMT"\amalgG. FRESIDEHTS"
85 PRIMT"CFH YOU MFME?"
g0 R=INT<12*F+|\1) 
10O IF FC1 THEN QX
```



```
120 FOF L=1 TGF
130 REFIIS*
140 WENT L
150 FRIMT:FRIMT
160 FFIMT"WHO MFE THE"
17E FEIHT Sw:" PEEETTEMT"
180 FETHT"DF THE UnE."
190 FEFHI 区西
200 IHFITT I来
210 FOF L=1 TO 11:FRIMT:MEMT L
```



```
    GOTD 24E
230 FRIHT"THAT"S WFOM"
24Q PETHT"THE ":S乎
2SE FEIMT"PRESIJEMT MFE"
2G0 PEIMT [*
270 EESTOFE
2GO FRIMT:PRINT
290 50TO 90
```


20 Killing Time

Sometimes，it may seem to you as if the computer will never get to the result of a job．You understand the processing delay but your non－computer friends may not． They could be confused by the wait and think the com－ puter is＂broken．＂

To keep their minds off the slowness，give them something to look at while the computer is＂thinking．＂

The added，extra lines，numbered $50,60,70$ and 80 ， take up more processing time but make for less confu－ sion．Computing may take a bit longer but your fun will be increased．

If you delete lines 50－80 you＇ll see how the program runs faster but the blank screen is confusing．

Program Listing

16 PEINT CHEWG14\％：EEM SCREEN DLEAR

```
20 IMFUT"GIUE ME A MUMEEE:":N
30 FOF: L=1 T0 N
40 %=%+L
50 FOF: T=1 TO IEG:NEMT T
```



```
TE FOFT=1 TO 1GQ:HEXT T
80 FRINT"I FM THIMKING"
90 MEXT L
100 FFIHT EHFOC147%:FEM SCREEN GLEFRE
11G FRIMT"I HFWE THE FMSMER"
120 FRIMT
13O FFIMT"THE TOTHL OF"
140 FETMT"FlLL MUMEEES FEOM"
150 FFEINT"1. TG":N
LE FRIMT"IS":%
17Q FRIHT:FFIIT:FRIMT
180 Clm
190 GOTO 20
```


21
 Word-Error Trapping

Error trapping is available for strings. Suppose the program, as in this example, asks at line 10 for a word. It is looking for YES or NO. If it gets a YES, then line 20 sees that it got what it wanted and moves operations along to line 100.

If it gets a NO, then line 20 hasn't received what it wants so program execution moves on to line 30 . Here, at line 30 , the program finds something useful and shoots operations down to line 200.

If, however, neither YES nor NO were entered at line 10, then neither lines 20 nor 30 would be satisfied so action would drop to line 40 . Here, the error is trapped by commanding the operator to give one of the two correct answers. Then, at line 80, the operation is returned to line 10 for a new try at the correct input.

Program Listing

```
5 ~ F F I M T ~ C H F B C 1 4 T O : F E M ~ C L E F E ~ S C R E E M ~
```



```
20 IF F事="'TES" THEM 100
OE IF H婁="MO" THEM 200
4 0 ~ F F I M T
SQ FRIMT"FLEHSE FHEMER"
GO FFINT"MM'T'rEE DF'N"
70 FEINT
80 GOTO 10
10Q FFIMT"THFH|E 'OU FORE THFT ":M年
110 FRIMT:FRIHT:FRIMT
120 GOTG 10
200 FRIMT
20 PRINT"THAHE MOU FORE THAT ":H*
22Q FETMT"THIS FUN IS NOW AT FW ENIN"
2g0 EVII
```


22 Character Numbers

This brief program displays the ASCII value for each keyboard character，side－by－side with the character it stands for．You will be able quickly to tell what each number prints．

Line 40 is a timing loop to slow down the presenta－ tion so you can digest the information．To make it even slower，increase the number 400 in line 40 ．To make it faster，decrease the number 400 in line 40.

Program Listing

```
10 FFINT LHF*G147):REM CLEFR ECREEM
20 FOR M=33 TG 127
```



```
40 FOF: T=1 TG 4GE:NEKT T
5 0 ~ I F ~ M = 2 5 5 ~ T H E N ~ 2 0 , ~
GO HENT H
T0 FOR W=151 TO 255
E0 GOTO SO
```


23
 One-Time Password

If you don't want unauthorized use of your programs, insert a requirement that a user know a password. This particular routine allows only one try at entering a correct password.

For our password, we have selected "elephant" and stored it in line 30. You can change the password to whatever you like.

If a correct attempt at entering the password is made, program action will progress to line 100. Otherwise, action drops to line 40 and action ends.

Program Listing

20 IHFUT"AHFT IS THE PASSNORI": AF

40 PEIMT"MROHM"
50 EM
100 FRIMT"TMU GMT IT EIEHT"
LIE FFIHTMMM THE FROGEAM MOULII FUN"

24
 Three-Tries Password

Here the software lets you try three times to enter the correct password. You don't get to go forward with the program if you don't get it right in three tries.

Again the password is "elephant" and is stored in line 30. You can change the password to whatever suits you.

Lines 40 to 60 allow the three attempts. If no good after three tries, then END.

Program Listing

20 TMFOT"MHAT IS THE PASSUORTD: Ft
30 IF At "ELEEHMNT" THEM 100
$40 \quad \mathrm{~B}=\mathrm{B}+1$
以G IF E=S THEN PETMT"WROMG": EHI
60 GUTO 20
$1 \mathrm{OB} F \mathrm{FAT}$ "rOU BOT IT FIGHT"

25 Multiple Passwords

Here's a really complex password entry system. It has a unique "account number" and a password for each person. This will allow several different persons access to the program but each person will have a different combination to the lock!

account number 12345	password
23456	zebra
34567	goose
45678	trout
	snake

Each individual user must correctly enter his unique account number and then his own personal password. If account number is wrong, then the password never can be right. If account number is okay but password doesn't match, the user gets no run.

You can add users to this program by adding lines to the 300-340 subroutine.

Program Listing


```
40 FOF L=1 TG 3
SG IMFUT"FRSSNORD";FSA
GO IF FSS="" THEN SO
70 IF FS&:FWH{ THEN 110
80 NEMT L
Sg FRIMT"YOU WEPE INCOPRECT"
100 ENT
1,G PEIMT"rOUN GOT IT FLL FETGHT"
12G FRIMT"WOW THE FPOGEAM WOULD PUN"
130 EHI
```



```
310 IF UA=2345G THEM FHW="DODEE"
32E IF UA=345ET THEN FH手="TROUT"
301 IF |A=4567S THEM FW年="SHFKE"
34O EETUFW
```


26 Name In A Box

Put your name up in lights！Or，at least，on the video display screen of your computer．

This short program creates a box on the screen and puts a name you have specified into that box．The name is highlighted．

You can change what the box is composed of by changing the asterisks in lines 70，100 and 120.

Program Listing

```
IE FEIMT एMPSG14T
LE FEINT"WHWT IE MOUF MFME"
E IMFUT H蒵
SOLNELNOMS
4G LT=LNH4
50%FMT OHF$G47%
GE FOF L=F TG LT
70 FEXMT "杪":
80 MWT L
ga FeTMT
```



```
1|E FOFL=\ TM LT
12Q FEIMT "挑";
130 NEMT L
140 FOF: L=1 TO 1E:FETMT:NEXT L
156 [Le
1EG BOTT 15
```


Sample Run

WHT TS MOUF WME
MADEEA

: HMDEEM:

WHT IE TWUF MME
ED

27
 Entering: Letter Stop

One way to conclude an input series, and get out of its entry loop, is to use a key letter to promote a jump. In this brief example, we input numbers, at line 100, as string values. If we give the computer an X rather than a number, it will jump down to line 200 for new action.

Numbers keyed in are stored first as strings. Then line 120 changes them to number values for the addition in line 130.

Program Listing

[^0]| 100 | FRTHT"GIVE ME B MUMEE" IHFUTT F本 |
| :---: | :---: |
| 110 | IFF Fiw"\%" THEM 2 CE |
| 12 C | E=W9LCAW\% |
| 130 | $\mathrm{C}=\mathrm{F}+\mathrm{C}$ |
| 140 | Buti 1 Qa |
| 2010 | FFIMT EHEs $\mathrm{CaF}^{\text {a }}$ |
| 210 | PEIMT"THE TOTHL OF" |
| 2 c | FRIMT"THOEE HUMEEES IS |
| 230 | FRINT E |
| 3010 | FRINT:FEINT:FRINT |
| 310 | $\mathrm{C}=\mathrm{C}$ |
| 320 | GUTO 10 |

28 Entering: Zero Stop

Here's another way to conclude an entry loop: have the computer be on the lookout for a plain zero. When a zero is entered, the computer will jump out of the entry cycle and on to further action.

This program totals numbers as they are added and accumulates them in memory location B. If one of the numbers entered is a zero alone, then line 110 will spot it and send the computer on down to line 200, breaking the entry cycle.

Naturally, you can't use a zero in a string of numbers to be added since zero causes the computer to quit entering and get on with displaying.

Program Listing

```
10 FRINT OHFW\47%
201E=0
IQO FELMT"GIVE ME G MUMEEP"
105 INFUT F
11Q IF F=O THEU EGG
120 B=5+G
130 FEIHT
```

```
140 EOTG 100
20日 FRINT [HF%W147%
210 FEIHT"THE TOTML DF"
220 FEIMT"THOSE WUMEEPS IS"
2@D FRINT E
SGG FFINT:PRINT:FRIMT
310 ELE
320 GOTM 20
```


29 Super Reverser

Enter any word or number and find it reversed on the display!

After a run, the computer awaits your press of any key to do another.

Program Listing

```
10 PRTHT OHPW(147%:PEM OLEFF SCFEEM
20 IWFUT"WOFTMMUMEEE:":W㐁
OC IF HF=:"" THEW 2O
5 FRIHT CHPSG47%
40 L=LEM&W%
4E FRIMT"ORIOIMFL:":MF
SE PRTMT"FEMEFGET:":
60 FOE 'T=L TG % ETEP-1
```



```
GO FEIMT Es:
S0 HExT' 'r'
1OG FOF K=1 TO 1Q:FEINT:HERT K
110 FETHT"FFESE HWT KET"
12G FFIHT"TG DO HMOTHEF"
130 GET K'T
14B IF KT%"#"THEU JSG
150 B&=""
160 GOTO 10
```


30 Marching Numbers

This little program does a big job! It creates the unusual display of numbers from one to nine marching across the screen. Try it; you'll like it.

Program Listing

```
1Q FFIMT OHFSGL4%
20}%
30 %=%+1
4O IF N% THEN 2G
50 FRIMT %:
E0 BIOT SE
```


31 Superior Decision Maker

Remember that YES/NO Executive Decision Maker which was so popular for the computer? Well, the power in the Commodore computer makes a muchimproved decision maker possible.

In this superior edition, a choice of eight replies is possible.

After a run, the computer awaits your press of any key to do another.

Program Listing

10 DATA FIPE SOMEOHE
20 DATA PASS THE BUCE
3 DATA 'TES
4 CO DATA MF'TEE
50 DATA FEORGFHIZE
GO DHTA SIT OH IT
70 DATF MO
EO DATF SEE 'TOUF FHAL'ST
90 OwFtIT-TI)

106 FETMT EHEWG47\%

12 IF WC THEN 11 B
$130 \mathrm{FOF} \mathrm{L}=1 \mathrm{TO} \mathrm{N}$
140 FEFII 工象
150 HEMT L
160 FEIMT 2t
170 GET K\$

190 EESTOPE
e00 GOTO 100

32 sentence Writer

Practice your English!
Exhibit your knowledge of nouns and verbs. This program leads the computer to solicit individual words from you and use those words to create sentences.

Besides helping you better understand verbs, nouns and simple declarative sentence structures, the program demonstrates the computer's ability to simulate conversation and communication.

Lines 20, 30 and 40 take in the words.
You may modify the program to suit your own interests or needs.

Program Listing

```
10 FETMT mHFSG167%
```



```
G# IWFUT"G wEEE":VE$
```



```
50 FeJNT OHPQG4%
```



```
PGFOF L=& TO 10:FRIMT:NENT L
GO FRIMT"FPESE RETUFM"
Og IMFUT"TM DO HMOTHEF":&F
100 GITG 10
```


33 Categorizing

A large quantity of numbers can be categorized and thereby cut down into a smaller quantity of numbers．See our example：it takes test scores and divides them into ranges labeled A，B，C，D，and F．

The program assumes exam or test scores in a range of zero to 100．The letter grades include zero to $59, \mathrm{~F}$ ； 60－69，D；71－79，C；80－89，B；90－100，A．

Key in as many scores as you like and then enter the letter X to stop the entry cycle．

Lines $100-140$ sort all scores into the A through F categories．Lines 150－170 sort highest and lowest scores． Line 200 finds mid－range and average scores．

Program Listing

```
10 FEINT EHFw, 4% 
OG FEIMT"EMTEF: DROUF OF SCOREE"
3G FFIMT"FFOM ETO 1EO:"
40 FRIMT"DHE FT F TIME"
GO FRINT:FRIMT"EMTEF %"
GU FFTMT"AFTEE LHET SGOFE"
TO FEIMT:FEIMT
SQ IHFUT"SCDEE":M变
ES IF Gs="" THEN ED
90 IF G果""," THEN EOE
100 G=wHLUG%
110 M=N+1
12G IF ECEE THEN F=F+1:MOTO 15G
1.E IF GCOU THEM Tm#N1:GOTG 15G
13G IF GCSG THEN E=W+N:GOTO ISG
135 IF ECO THEN E=E+1:GOTO 150
140 f=F%%
15GIF M=1 THEM L=M:H=N
1GE IF GG THEM L=O
1TU IF OMH THEN H=C
1005=5+C
155 [本=":
150%000
```



```
210 FRIHT EHF$, 147%
22g FrIMT"THEFE MEPE";M;"EORES"
230 FFTMT"FAMSING":L;"TG":H
24Q FFINT"MITMFHWM:":M
2SG FFIMT"FWEFHGE: ":F
260 FFTMT
2T0 FFTMT"TOTFI_E EHLH LFETTEF"
Eg FrTHT
2G FETMT "F".H
SOE FEINT "E".E
34E FFINT "C",%
320 FrIMT "D",I
3SO FRIMT "F".F
4QG FFINT:FEINT:PETMT
410 FFIHT"FOF MOFE"
4EQ INFUT"FFESE FETUFN":&
40 ULE
440 60TG10
```


Sample Run

EMTEE GRCUF OF ELOPES

FFOM OTO 100.
OUE HT A TIME

```
EMTEP%
MFTET LHST STOFE
```

GOPEES
SCOPEES
ETORET
BORESS
Empeg
EGTEM
THEEE MEFE 5 EOFE
FHMTHGESTO 9
MTM-H1GE: 77
HVEFGE: 7

TOTHLE EHWH LETTEE

H	1
E	1
C	1
I	1
F	

FORE MOFE FPESS FETURH

ENTEE GFOUF QF GLIFES
FEOM 0 TO 1GE.
OHE HT GTIME

EHTET:
BFTEE LFET GCDEE

EOTETE
OOPEE 4
EDREE
BOFEE
GORETE
GOTEE
SCOPE4S
EMOEEE1
GORETS
gOORETE
EORES4
EOREST
SCOPESS
GOORE\%
THEPE AEFE 13 SCOPES
FTWINTG 4S TO 94
MID-FPWGE: 71
AVEFAG: $\quad 7.307692$

TOTHLS EHCH LETTEE

G	2
E	4
\square	4
\square	1
F	2

FOE: MOFE
FRESE FETUFH

34 Alphabet Soup

Sure, everybody knows there are 26 letters in the alphabet. But, do you know which letter is number 20? Number 5? Number 17? Well, your Computer knows!

Type in this short ready-to-run program. RUN it. The computer will spit out number-and-letter combinations all day long. The number on the left is the position in the alphabet of the letter on the right.

It's a fun way to demonstrate to your friends just how "smart" the computer is!

Program Listing

```
10 FEINT EHFw,147%
20 z=FMDG-TI%
```



```
4O IF FGES THEH SD
50 (% =WHF&@F%
EO FEIMT F-G4,%*
TE GOTG 30
```


Sample Run

17
0
4
D

2	E
2Ξ	W
5	E
1	A
\vdots	C
4	D
\vdots	C
16	F
7	G
9	I
13	M
19	S
5	N
14	L
12	L
21	I
9	Y
25	N
14	E
14	L

35 Create A Table

This program generates a table of values, as a demonstration on how to set up a table on the video display.

Subroutine lines 900 and 910 generate random numbers in the range of zero to 99 . Lines 20 and 30 find how many times through the random number generator it takes to get a number greater than 50. The answer is stored in A.

Lines 40 and 50 do it again and store the answer in B . Lines 60 and 70 do it and store in C.

Line 10 prints the table heading and line 100 displays the results. Line 110 causes the whole operation to repeat until you have a table of 20 lines on the screen.

Program Listing

$\vec{T}=\mathrm{FHICTI}$

15 FEIMT
20 GOEUE 900

40 GOmF ama

G0 GOEUE GOO

116 IF T=, THEM 2GE

दGQ GET Fक

220 ULF
230 G0T0 5
$900 \%=I T G 100 W F H D 1 \%$
GLE EETLEH

36 Question \& Answer

Here's how to use the DATA statement, and the computer's ability to, search for data, to create a Q\&A.

We put DATA in lines 20-130. It could be anywhere in the program. For instance, at the end at lines 400-510.

The computer sees two items in each data line. Program lines 140 and 160 force the machine to take only odd-numbered data from the list. That is, $\mathbf{S} \$$ in line 180 is always the first piece of data in a data line. And $\mathrm{C} \$$ in line 210 is always the second item in a data line. Line 230 checks to see if you answered the line $\mathbf{2 2 0}$ question correctiy.

Program Listing

```
10 FFIMT FHFS&M%
20 DHTH THMNHET,O1
SO DATG FEERUFF'',2S
4 0 ~ I F T A ~ M A F O H , 3 1
```



```
EO INTA MHN'sI
70 DATA JUHE,SE
```



```
gZ InGTA m|Bust,3%
100 DATH SEFTEMEEE,3G
1.1E DATA OCTOEEFES1
12G DATA MOUEMEEE,GE
13E DFTA DFOENEEE,SI
```



```
15B IFFC] THEN 14E
```



```
TG FOF: L=1 TO F
LEG EEFIS$
IS0 HEMT L
20U FESMT "MOHTH TS ":S*
210 FEHD E*
2eg INFUT"HMM MFr'r MF'G"; I*
```



```
    : GOTU SOE
24G FETHT:FEINT"以FOMG"
SQG FETMT"&MEEE OF DH'S IE ":W*
OE EESTOFE
SEG FOF L=1 TO G:PEIMT:NEMT L
E0 LLE
90 GOTO 1.40
```


Gee Whiz

37 Gee Whiz I: Smart Adder

These six programs, in this section of the book, make up our Gee Whiz series. One of the fun ways to use your computer is in wowing your friends. Next time they ask, "But, what can it do?", show them its uncanny abilities at adding, spelling, writing upside down, even cracking jokes. Try these six Gee Whiz programs on your friends. You'll love their reactions.

Smart Adder is the first in the series. When your neighbor drops in for a cup of coffee, bring out the computer for a demonstration of its lightning speed.

This program adds long strings of numbers in a flash. You give the computer a number. It starts at 1 and adds all numbers up to and including your number. For instance, if you give it a five, it will add 1 plus 2 plus 3 plus 4 plus 5 and display the result.

Ask your neighbor how fast he or she can add all the numbers to 100. It should take several minutes. While he's working on it, let your computer do it in a split second. Your neighbor's reaction is bound to be,"Gee whiz!"

Program Listing


```
2O IMFUT"GJME ME H MHFEE":M
OE TF W|1 THEN 2G
40 FOF L=A TO H:N=W+L:NEMT L
W0%FIMT:FETMT"THE TMTHL OF"
EG FBIMT"Flu Murbere"
FQ FETMT"FEOM 1. TM":N
GO FEMT"LE":%
GC FEMN:FEIMT:FRIMT:FEINT
MUSLESOTOEO
```


38 Gee Whiz II: Three-Digit Mystery

Have your neighbor secretly select any three-digit number in which all three digits are the same. Then have him tell the computer only the sum of those three digits. The computer will identify his secret number!

Program Listing

10 FFINT EHFA\& 147%
20 FPJMT"SELEOT A"

4E FEIMT"MTTH MLL THFEE"

EFFIMT

90 FRITT

11 ITFUT"THE THFEE ITBITS":
120 IF 4 G
$1204=37$ 相
1.4 FEINT : FEITT

17 BL 以

39 Gee Whiz III: Yes/No Decision Maker

This is handy for the busy executive who doesn't have time for decisions.

Line 10 clears the screen. Line 20 generates a random number from zero to 100 . Line 20 selects a yes
answer if the random number is greater than 49. Otherwise, line 30 chooses a no answer. Press any key to repeat the run.

Program Listing


```
    :GOTO 40
S0 FRIMT"P"
40 EET K゙支: IF K$="" THEH 4Q
G0 GOTO 10
```


40 Gee Whiz IV: First Alphabet Spotter

There are 26 letters in the alphabet. Each has a number. For instance, number 1 is A. Number 20 is T. This Gee Whiz program has the computer ask you for a number from 1 to 26 and then, faster than a jackrabbit, tell you what letter it goes with.

Naturally, you'll know how it works but to your noncomputer friends it will seem like the computer is a genius!

Program Listing

```
10 FFIMT CHFE&147%
2O FFINT"GIUE ME THE MMPEP"
30 PEINT"OF F LETTEF"
4Q FEINT"FFOM THE RLFHAEET"
50 INFUT"FROM I TD 2G":N
5S IF HM1 DF W2G THEN 50
60 %=14+64
PG PRIMT:FRIMT:FRINT
GO FRIMT"LETTEE NUHTEE":M:"IS ":OHESGN
90 FDR L=1 TG 7:PEIMT:MEMT L
10G GOTO 20
```


41 Gee Whiz V: Second Alphabet Spotter

This is a variation on the previous program. This Gee Whiz program has the computer ask you for a number from 1 to 26 and then, faster than a jackrabbit, tell you what letter it goes with.

Program Listing

```
10 FRINT CHESG14TO
OQ FRIMT"GIME NE THE MMNEEE"
30 PEIMT"GF G LETTEF"
40 FEIHT"FFOM THE BLFHARET"
50 IMFUT"FOM d T0 2E";N
60 IF WC1 DF M+EE THEM 50
T0 FOF L=1. TOM
EO REFD F%
90 MEMT L
1,GG FEITN:FRIMT:FPIMT
1. F FETMT"LETTEE HUMEEE":H:"IS ":M*
2DE FOF: L=1. TO 7:PFIMT:WEMT L
210 RESTOFE
220 B0TO 20
GO IFTH F,B,G,D,E,F,G,H,W,I,K,L,M
310 DHTF M,O,F,D,F,G,T,U,W,W,%,T, ב
```


42
 Gee Whiz VI: Guess The Number

Here it is! The world's oldest, longest running, most popular game: Guess The Number.

When you start the program running, the computer thinks of a number and stores that away. You try to guess the number. If your number is too high, the computer says, "TOO HIGH."

If you are too low, the computer will report "TOO LOW." The possible numbers range from zero to 100.

Program Listing

```
LG FRIMT GHF&C147%:Z=F4IG-TI%
```



```
30 M=IMTC101胙WDC1%%
4G IMFUT"GUESS THE MMMEF":G
```



```
GO IF GM THEN FETMT"TOD LOM":GOTO 4O
FG FEIMT:FEINT"EIGHT !"
BQ FPTMT"LETS BCHMHIM"
90 %OTM 20
```


Sample Run

GUESS THE MUNEEE 100
TOD HITH
GUESS THE MIMEE
TOIL LOM
GUESS THE MUMEE 5 S
TOU HIOH
GUESS THE MUMEEE 9
TOO LOM
DUESS THE MUMEEE $2 G$
TOU HIOH
GINES THE MNEEE IE
TOO HITH
GUESE THE MMEEE 12
TOU LOM
GUESE THE HMEEE 13
EIGHT !
LET S GO FGHIN

Number Crunching

43 Memory Tester

Most everybody can remember numbers. At least short numbers with few digits. But how long a number can you recall in a flash?

The computer will briefly display a number. It then will remove the number from your view and ask you to repeat what it was. If you miss three times, the computer will tell you to FORGET IT, give you your score and end the game. Then it will start over.

On the other hand, if you recall correctly, the computer will say so and then give you a new number. The new number will have more digits than the previous number. Each time you guess correctly, the number gets longer.

No matter how good you are, at some point you won't be able to recall all the digits in proper sequence.

How many digits can you quickly recall?

Program Listing

```
    10 FTIMT GHFWG14%%:FEM GLEHR SOPEEM
    20 E=FTIM-TI):Z=!
    30 5=10%F|MC1%
    40 M=IMTCS#Z,
```



```
    G0 IF W=S THEH FRIMT"FOFOET IT !":GOTO 1.4G
    TO FDE T=1 TG 1GOQ:NENT T
```



```
    90 %MFUT"मHAT WmE IT";S
```



```
        :A=A+1: \MTO EO
```



```
12E FETMT F:" "TGMT EQ FFP"
125 FOF T=1 TM 1WEDVFMT T
120 FF゙MT:BTM 30
```



```
150 FETNT:FFTMT"LET` GTMET MWEE"
1GE FETMT"FREES FH'r' KE'Y"
170 EET K$
10E IF K&="" THEN 1TG
190 marmata IE
```


44 Number Reverser

Give yourcomputer any three-digit number and, as a result of this particular programming trick, it will reverse the original number. For example, 789 will be transformed into 987. Or 123 into 321. It takes your three-digit number apart and reassembles it in reverse order.

Program Listing

```
10 PEIMT GHFSG14T`:FEM ELEFME EREEM
20 FEIMT"TYFE A THPEE-IIGIT"
SO INFUTTMUMEEF";N
40 IF NGIGG OE NSgeg THEM FEINT:GOTO EQ
50 A=2MTMM, M0;
```



```
EE FEIMT:FFINT FIGHT*STPक6O%,1%
```



```
SE FRIMT:PRINT:FRIMT
100 Clr:GOTG 20
```


45 Exam Score Sorter

A quick way to sort and count a book full of letter grades, this program permits one-key entry of a mixed series of data.

We use the familiar letter grades A, B, C, D, and F. You may substitute any other set of five characters you wish in the IF statements in lines 50 to 90.

The letter X is used to conclude the series and lead the computer to display final results.

You press the appropriate key and the computerknows immediately what grade you have indicated. Key in as many grades as you like in any mixed order.

When you have completed entering all grades, type in the letter X. The computer will report the total of A's, B's, C's, D's, and F's.

We use exam－score sorting as our example here but this same program would be good for data collection in the field in many professions．And you can stretch out the possible categories to 25 or more．

To make the program run again，press the RETURN key on the computer＇s keyboard．

Program Listing

	PEIPT CHEWC147：PREM GLEHE GCPEEH FEIMT＂EUTERE LETTEE GFANES＂
20	FFIMT＂F，E，M，In，F＂；
25	GET ■嵒
	IF G＊＝＂＂THEM 2
40	IF 万乐＝＂象＂THEN 116
59	IF Gisw＂F＂THEM GmF＋1：GTO L
60	IF G\％＂B＂THEN E＝E＋1：GOTO ID
70	
E0	
90	IF GS＝＂F＂THEM F＝F＋1：GOTM 10
100	GTTO 10
110	
12 c	FFIMT＂F＂．f
130	FFEIT＂B＂． E
140	FFIMT＂C＂．
1500	FreIMT＂J＂．n
160	FEIMT＂F＂F
170	FFINT：PFINT：PEIMT
180	
158	Cle：gTo 16

46 Number－Error Trapping

Good programs，those which are well written，need error trapping．It＇s a technique for making sure persons communicating with the computer don＇t key in inap－ propriate data or make mistakes which would cause com－ putation problems for the computer．

For instance, see the example program here. In line 10 the computer asks for a number. In line 20, if the number is too low, it says so and goes back to line 10 to repeat its request.

At line 30, if the number received at line 10 is too large, it says so and goes back to line 10 for a better choice.

The result is only printed at line 40 when a satisfactory number has been keyed in back at line 10.

You can set your own limits by changing the 10 in line 20 and the 100 in line 30.

Program Listing

 10 IMFUT"GIVE ME H WUMEE":
20 IF FCIO THEN FRIMT"TOO LOM": GOTO 10
 401 FEIHT

47

Standard Deviation

Here's a way to determine mean and standard deviation. In this particular program, you exit the entry cycle by entering the large number 999999999 (nine 9's) so you can't use 999999999 as one of your data points.

This is a great opportunity to experiment with standard deviation computations. Try a series of data points such as $3,5,3,7$, and 4 . They should result in

DATH FOINTS TOTAL 22
MEFH 4.4
UARIFHOE 2.29999998
ETH DEUTATIDN 1.4956595

Program Listing

```
1E FEIMT OHF$G147%:FEM DLEHFE STEEH
2O IWFUT"DATH FGINT:":*
30 IF %=999999990 THEM EO
```

```
40 T=T+%:S=5+%T2:M=WN
50 M0TM 20
```



```
FE FEIMT:FEIMT:FEIMT
GO FFINT"DFTM FOXNTS TOTFL":T
g% FEIMT"MEM|":H
10E FEIMT"MENHME":W
```



```
12G FEIMT:FFTMT:FETMT
```



```
14O ELF:GOTM 10
```


Sample Run

```
MMTH FOIMT: g
```

TMTF FOIMT: E
DAT"F FOIMT:
InTA FOMMT: 6
MHTH FOLMT: 5
IMTF FOTMT: 4
MATH FOTMT: 3
IMTH FGIMT: 2
DFTM FOIMT : 9999995
IMTH FOIMTS TOTHL 44
MEFA 5
WAETHAE 5n E
5TM WuTATION 2.2912eres
FOF MOEE FPESE FETUFM

48 Percentages

Usually it's more convenient to enter percentages as percent rather than having to convert to decimals in your head first. Of course, the computer needs that converted decimal value to do its work. How to get it?

This program does the trick. You give it a percentage
and it converts that to a decimal. The computer does the hard work for you!

Line 30 makes the actual conversion. Use this idea as part of a larger check-balancing, accounting or bookkeeping program and save lots of mental effort.

Program Listing

```
MEFINT OHFWGLA%:FWM EOREEM WLEME
20 IFFUT"FEPCEMTHGE":F
```



```
4E FFTMT"DEUTMFL":M
EG FEIMT:FrIMT:FENMT
GG UIF:OOTO EE
```


49 Logic Functions

You can make your computer do things based on its decision that something exists. That is, in the first program listing here, it only will print the value of C if it finds that B has an existing value. If B is found to have no value, does not exist, C will not be printed.

The decision is in line 40. The machine only prints C if B does not equal zero. Since, in line 20 , we set $B=10$, the computer will find that something exists in B and, thus, go ahead and do the work assigned in the last half of line 40 . If nothing had been stored in B, the last half of line 40 would have been ignored.

Program Listing


```
20 B=10
30 E=10% E
4O IF E THEW FRIMT C
```

In the second program here, the computer only displays the results of the tests in lines 40 and 50 if the results of one or both is "true."

By doing the simple math in your head, you can see that the information in the right-hand side of line 20 is true. The information in the right-hand side of line 30 is false.

Line 20 says that $6+8$ is greater than 3 times 4 . That is, 14 is greater than 12. That is true.

Line 30 says that $5+2$ is greater than $9+2$. That is, 7 is greater than 11. That is false.

After reading line 20, the computer will store a 1 in B since the statement is true. Upon reading line 30 , the computer will store a zero in C since the statement is false.

As action drops to line 40, the computer will find the 1 it stored in B and, thus, complete the action called for at the right-hand end of line 40 . It will display the message, "B OKAY."

At line 50, however, the computer will find "nothing" (zero) in C and will not complete the right-hand end of that instruction. It only will do the right-hand end if it finds something in the left-hand end.

These logic functions are great for quick tests.

Program Listing

$30 \mathrm{C}=6+2 \mathrm{~b} \boldsymbol{6} \mathrm{c}+2 \mathrm{a}$
4 AF I THEN FEIMT "E OKH'"
50 IF C THEM FETMT "G OEMT"

50 Above \& Below a Line

Here's a way to count numbers above and below a cut-off line. The computer solicits numbers between 1 and 100. Any numbers you key in which are below 1 or above 100 are trapped out by line 40 . Entering a zero ends the input cycle.

Line 50 counts the total numbers. Line 60 counts on-
ly those numbers between 1 and 50 . Line 80 counts the numbers from 51 to 100 . Lines 90 to 130 present results.

Program Listing


```
2G INFUT"GIUE ME H MUMBEE":Z
S0 IF ב=0 THEM E0
4Q IF Z<1 DR Z \OU THEN 2Q
50 M M,N+1
60 IF ZES1 THEM E=S+%
70 B0T0 20
C0 Haw-m
OQ FOR L=& TU 1G:FRIMT:NEMT L
10G FFTMT"MMEEFS TOTFL":N
11G FETMT"1-5G",E
120 FRIMT"51-1GM",F
130 FOF L=1 TO 15:FRINT:WENT L
140 Mm:GOTG EO
```


51 Factoring

This program finds and lists the factors of any number you specify. It can be used as a subroutine in a larger program, with appropriate attention to line numbers, variable names, and RETURN.

The number of individual factors are limited by the DIM statement in line 20.

The list will exclude the number itself divided by 1.
For a quick sample run, try the number 18. You should find factors are 9, 6, 3 and 2.

Program Listing

```
10 FETMT OHE$S14%:FEM GLEHF SCPEEM
20 ITM 2450%
30 IMFUT"WUNEEN",N
4O FOE L=2TO H2
```

```
50 Mm=M,M
```



```
70 MEWT L
BQ FFTNT:FFTMT"FHOTOF:G MEE:"
GO FDFE L=1 TO M%
```



```
14%"#+1
LEO MEMT L
SO TF MEJ THEN FETMT"MOME":GOTG 15G
```


52 Which is Smallest?

How can the computer tell which number is smaller or larger? Here's how.

Type in the program and RUN it. It will ask for, and accept a continuous string of numbers until you end the input routine by keying in a zero.

Lines 40 to 60 make the decision as to which number is lowest.

Program Listing


```
2E #MFUT"SWE ME M MUMBEF":%
SO IF E=O THEM ED
40 M=M+1
50 IF M=1 THEM \== 
G0 ,TF2世T THEW D=2
T0 GOTO 2E
GE FEIMT:FEIMT:FFINT
GG FETMT"THE SHMLLEST"
LGG FEJMT"M的EEES";D
110 FrIMT:FFIMT:FETMT
12O NWUT"FOF MOFE FrESE FETUFM";F*
\OLGF:GOTG10
```


53 which is Largest?

Suppose you have a group of numbers and you would like to know which number is largest within the group? Here's a software routine for your computer so it can locate the largest number.

You can key in as many numbers as you wish. To end that entry cycle, type in a zero. The computer will see that zero as its cue to leave ihe entering routine and get on with computing.

Line 40 tests each new number as you enter it. If a new number is larger, that new number is stored in memory location D. At the end of the entry cycle, the largest number is left stored in D. Line 70 recalls that largest number and prints it.

Program Listing

46 TF 2 OD THEM JIM
50 $00 T 0$ 20
6 FEIMT:FFIMT:FRIMT
7 CEPINTHHE LFEGEST"
ED FRTMTMUNEEETE": D
90 FETMT:FFIHT:FETHT

54 Reciprocals

Key in any number. The computer will display its reciprocal. The actual conversion is done here at line 30.

Program Listing

15 FRIMT"MMEEE TO BE COWEPTEI"
20 IMFUT"TG ITE REGIFROLAL":
25 IF $H=0$ THEN FRIWT:GOTG 15
$30 \mathrm{E}=1 \mathrm{~N}$
$4 \mathrm{GEINT}: P \mathrm{FINT}: F E T M T$
50 FRIMT"FGIFEOML DF":

TE FEINT:FEIMT:FEIMT
QU IHFUT"FOR MOFE FRESE RETIRM": Kt
ge Le:gOTG ig

55 Dump the Integer

Look at the number 123.456 with an eye toward how to get rid of the portion left of the decimal point. Keep only . 456 and dump 123. Here's a short program tc accomplish that.

Try 5.67. It will come out .67 . Or 500.5 which will come out. 5 .

Program Listing

10 FRIMT CHES (147): REM SCREEN CLEAR
20 Print"give ME a whrler?
30 IHFUT"bITH A DECIMFL": H^{2}
$40 \quad \mathrm{x}=\mathrm{H}-\mathrm{INT}(\mathrm{H})$
50 PEINT
60 PRIMT"THE FRACTIOAFL"
PO PRIHT"FORTIOH OF"
Be FEINT H: "IS": \%
90 FRINT:PRIHT:FRINT
100 I-AFIT"FOR MORE PRESS RETURN"; K
110 CleggTa 10

56 Averages

Key in numbers in any order. A zero will end entry. The computer will tell you the average number of all numbers you entered.

Line 40 finds the total number of all numbers entered. Line 50 finds the total of entered numbers. Line 70 computes the average.

Program Listing


```
OQ IWFUT"GIUE ME H MUMBEE";z
SO IF Z=E THEM TE
40 14=H+1
50 T=T+Z
60 GOTO 20
70 F=TM
100 FEINT:FPIMT:FETHT
110 FETMT"THE GUEPGGE IE":A
12G FFIMT:FEIMT:FENMT
1BQ IMPUT"FOF MOPE FRESS EETUPW":K*
140 Cle:GOTO 10
```


57 Mid-Range Number

Here's how to find the middle of a range of numbers. You key in as many numbers in a series as you wish. After the last number, key in a zero to move the program out of the entry cycle.

Lines 40 to 70 select the highest and lowest numbers in the range. They actually define the range. Then line 90 finds the middle point of that range.

Program Listing

$48 \quad 10=1+1$

EG IF 2 CL THEH $\mathrm{H}=2$
TO TF Z \because THEM HEZ
00 BTO 2 O
$90 \mathrm{M}=\mathrm{L}+\mathrm{CH} \mathrm{H} \boldsymbol{\mathrm { L }}$ ソ)
100 Frat: FFIMT:FFIMT

120 FeIMT:F世IMT:FEIMT
130 IHFUT"FIF MOEE PGESE FETUFM": K\$
140 EROMTO 10

58 Rounding off

The technique for rounding off numbers is easy. This program, which can stand alone or be worked into a larger program as a subroutine, rounds a decimal to the nearest whole number.

There are two views on how to round off. One holds that "if the number is more than five, you round up." Which means that exactly 0.5 rounds down.

Another view is that "any number less than five rounds down." In that case exactly 0.5 rounds up.

The first set of program lines below is for the fellow with the "more than five rounds up" idea.

Program Listing

10	
00	PRIMT"TG BE POUMDEIGFF"
48	ITFIUT N
50	IF WOMTCN THEM EO
80	F
70	gotg 180
80	
9	IF TOQw THEM 129

```
NO F=IMTCN
110 GMTU 130
12巴 F=INT:MN+N
130 FETMT EMENG14%
14E EFIMT M
L0 FEIMT"WUMIS OFFTG"
160 FFIMT F
1FGFENMTFPTMT:PETMT
```


The second set of program lines rounds off on the "less than five rounds down" theory.

Program Listing

20 FRIMT"GIUE ME F MUTEEF"
SE FRIMT"T BE ROIMDEI DFF"
4 EI IWIUT H

$6 \mathrm{BE}=\mathrm{d}$
7 BaOTO 130
$\operatorname{sex} 0 \mathrm{mmTM}$
$9 \mathrm{OF} \mathrm{IC}=\mathrm{FHEN} 12 \mathrm{C}$
$10 \mathrm{E}=74 \mathrm{mbNa}$
110100180
120 F\#WTM
130 FएIMT MFक 1.47
1.4 FETHT H

15G Fexm"noumge off To"
16 EFPMTP
170 FeTMT:FETHT:FRIMT
180 ロIF: MOTM 0

59 Two-Digit Round Off

It is possible to round off to the nearest hundredths place. That is, to two digits after the decimal point. Here's how:

Program Listing

	FPIMT CHEAC147):REM OLEAE SREEEN FRIMT"GIQE ME G MUEEE"
	FEIMT"TO MOFE THFM"
	IWFIT"TMO DECIMEIL FLACES":
50	
60	
70	
8 E	
1 mb	Fendt mume 147%
110	FEIMT M: "OUHES TO"
120	FFTMT
130	FFIMT:FETMT" DF"
140	
	FFTHT"事":
	FEIMT:FEIMT: PRIMT
176	
	ELFe: Duta 1 O

60 Percent to Decimal

Checking, interest, sales tax, and other financial programs are more "user friendly" if you don't have to make manual conversions in your head. For example, if you know your savings account earns 8 percent interest, and you need to multiply by the decimal value for 8 percent (which is 0.08), it is easier to be able to enter 8 and let the computer figure out the decimal value.

Here's another way to change percentages to decimals inside a program to simplify entry by permitting percents to be entered as simple numbers.

For some examples, try entering a price of 2.50 and a sales tax percentage of 6 . Your computer will find the bill totals $\$ 2.65$. Or try $\$ 7.80$ and 5 percent tax. The bill will be $\$ 8.19$. Try $\$ 123.75$ at 8 percent tax. The bill will total \$133.65.

Program Listing

19 PRTMT CHEAG47\％：EEM SCREEN CLEAR
2O IHFUT＂FEICE 半＂：
SQ IMFUT＂EALES TAK $\because ": ~ B$
$4 \mathrm{~T}=\mathrm{B}$ ． 81 涑下

EQ FETMT EHFSG47，
90 PFIMT＂SHLESTH＂：＂事＂：SW
1 OEFEINT＂TOTHL BILL＂，＂制＂：E＊
110 FFIMT：FEIMT：FRIMT

$130 \mathrm{GE}: \mathrm{GOTO} 1 \mathrm{O}$

61
 Every 10th Answer

This program generates a random number in the range of zero to 999 ．However，it has a difference．It only shows you every tenth number it generates．

Line 20 generates the numbers．Line 40 selects the tenth number from each set．

Program Listing

$30 \quad$ \％$=4+1$
 50 GOTG 0

62 Random Sampler

This program strengthens your confidence in the ran－
dom number generator built into your computer.
It generates 100 numbers between zero and 100 and tells you how many of those are above 49 and how many are below 50. See the sample RUN for several sets of results in our recent test.

Program Listing


```
QE FOF L=1 TG 1UQ
```



```
4Q IF REG THEN 'r=%+1
EG IF M%45 THEN M=W+1.
GB HEMT L
FG FFINT 'r':"rFS",M;"NO"
EQ FEIMT:FEINT:FETMT
GO OLE:GOTG EO
```


Sample Run

49 'rEs	5 J W
54 TE5	46 HE
5 E 're	48 m

63 Random Numbers: Zero To Nine

Although you see four program lines below, what we really have here is a very convenient single-line program for you to insert in a larger game or educational-testing program.

Line 20 is the winner here. It prints a random number from zero to nine every time. For your use here, we print that number on the screen. You could just as easily have the computer store that random number in a memory location for later recall and use.

We have added lines to make your computer
show you a whole series of random numbers from zero to nine. Remember, line 20 is the important singleline program element here.

If you would like random numbers in the range from zero to 99 , make it 100^{*} in line 20 . For zero to 999 , use 1000* in line 20.

Program Listing

30 FDF: T=1 TG WEMETT
40 MaTion 20

64 Random Numbers: Distribution

Ever wonder how "random" are the numbers generated by the random-number generator in your computer when you use the RND instruction? Try this program.

It generates 100 random numbers in a range from zero to nine and counts how many there are of each number between zero and nine.

By the way, while it is doing that it will display the message "counting" so you can tell it is working.

At the end of its run, the computer prints a neat chart, on the video display, of results.

Program Listing


```
EOFOE L=1 TG 1BG
```



```
50 IF N=1 THEW E=EW1
GO IF N=% THEM [=C+%
TG IF M=S THEW IN=D+!
```

```
O0 IF N=4 THEM E=EE+1
OG IF M=5 THEN F=F+1
LUC IF MmG THEN G=N+1
110 TF M=7 THEM H=H+1
120 TF H=S THEN I=I+1
130 IF N=9 THEN I=N+N.
14E FFLHT"GOUMTIN"
150 MERT L
```



```
208 FRIMT "G".H
218 FEIMT "1".8
22g FPIMT "2".E
2O区 FFINT "g".I
24Q PFINT "4".E
250 FEZMT "S".F
260 FFIWT "G".G
2%0 FFIMT "T".州
2EQ FFIMT "g",I
EgU FEINT "G".J
3OO FFINT:FFIMT:FRIMT
310 IM"UT"FrESS RETDEt FOF MOFE":N*
Seg ELE:GOTO IG
```


Sample Run

Cunt IMS
OOUNTIHE
COUNTIF
EOUNTMG

9	5
1	14
2	6
2	12
4	11
5	11
6	9
7	9
9	12

FRESE FETUFW FOR MOEE

65 Random Numbers: Averages

This program generates 100 random numbers and totals them. Then it finds the average of all 100 numbers.

In fact, the average number itself is a useful new random number.

To make the program run again, press the RETURN key on the computer's keyboard.

Program Listing

20 FOF $L=0$ TO 99

$40 \mathrm{HT}=\mathrm{HT}+\mathrm{H}$
50 FRIMT"FUEEAGING"
6 GE MEN L

E0 FV=NT 100
gQ PEIMT"TOTHL OF $10 G "$
100 FRIMT"FAMIMM HMEERS"
110 FRIMT"FFOM ZEFO TO ${ }^{2}$
12 CEFTH IG":MT
130 FETHT
140 PRIMT"FWEFAGE IS": FW
1SE FEIMT:FEIMT:FRINT:FRIWT
160 IMFUT"FDP MOPE FRESS RETUFH":KW

1. F GLE: GTO

66 Random Numbers: Sorting High/Low

It's important to be able to sort a group of numbers to see what the highest and lowest values are. This program does that.

The random number generator is in line 30. It gives numbers in a range of zero to 999 . Line 50 determines the lowest number in the set and line 60 finds the highest number.

Program Listing


```
EE FOF L=E TG ge
```



```
4B IF L=OCTHEM LHOW:HM=W
SO IF HMH THEM LHWN
GE IF M%HNTHEM HWN
TG FETMT"SOETING"
EE HENTL
```



```
100 FeIMT"LIMM MIMEEEE:"MM
110 FeIMT"HIDH M|NEEE:",HH
EGG FexHT:FETMT:FEINT:FETMT
ま10 FeTHT"TG mu FHOTHE|"
2cG FFIMT"FFESE WH'M KEr"
2% GET K$
24G IF K&=""THEN 2%D
2g0 Ule
2EG G0TO 10
```


Sample Run

EWTHTM
EOFTTMO
EOTTIMTO
soft Tim
EORTINT
कणtu Im
EOTTME
EnTTME
somt im
EOTTME
LOU HIMEEEP: 41
HIGH MUMEEE: 99
TO DOM HMTME
FrEs Fin'r kE'y

Money Matters

67 Money Grows

This section of the book includes a number of programs relating to household money management and to small-business applications. This first program shows you how your money grows when deposited in a savings account at a certain annual interest rate, compounded monthly.

The program will have the computer ask for the initial amount of principal saved by depositing in the account. Then the annual interest rate and the number of months to be displayed. The result of the run is a display of the changing principal as months pass and interest is added on.

Line 10 clears the text screen. Lines 20 to 40 take in data from you. Lines 50 to 90 put out the results. Very handy!

Line 85 is a timing loop to slow down the presentation so you can digest the information. To make it even slower, increase the number 400 in line 85 . To make it faster, decrease the number 400 in line 85.

Program Listing

	IWFUT"PEINWIPAL 末";
36	IWFUT"HMMHL IMTEEEST \%":
48	IWFUT"MOMEEE MOMTHs":
45	
50	FeIMT"MOHTH": SPCut': "BAlmber
	FOFE $\mathrm{O}=1$ TOM
70	$\mathrm{P}=\mathrm{P}+\mathrm{I}$
75	$\mathrm{FF}=\mathrm{F}+\mathrm{HT}$ (1006F+0.59, 100
	FEIHT Q,FF
	HEMT P
1 BL	FFIMT:FETHT
110	IHFUT"FOE MOFE FrEsS FETUPH":
	Gle:GOTG 1 a

Sample Run

FFTMEIFWL 事 19 OL	
Frrmblll	IWTEPEST \because,
OHICTEE	MITHTHE 12
M101TTH	EHLCHIEE
1	1685\%
$\underline{2}$	1世16, 6
3	10 EM
4	183\%
510	1042,
\because	10151.
7	1059, 1
8	1088, 4
9	1077 5
10	1865
11	185
12	1104071

FOR MOFE FEESS FETUFH

(8) Shopper's Friend

This program finds the computer asking for certain information and then telling you which product brand name is the best buy.

The computer wil ask for the brand name of a product, the quantity in the product package, and the price of the package. Then it will ask for the name, quantity and price for a second product.

After digesting all this information, it will tell you the brand name of the best-buy product and show you the unit prices for both brand names so you can agree with the computer's judgment.

For example, suppose you were looking at corn flakes in boxes, one by Post and one by Kellogg. Suppose the Post box contained 24 ounces of flakes and was priced on the grocery shelf at $\$ 1.98$ while the Kellogg box held 18 ounces
and was priced at $\$ 1.59$. Which would be the better buy based on unit price per ounce of flakes?

Run the data through your computer and you'll find it computes the Post corn flakes to be the best buy with a unit price of $8 \mathbb{\$}$ vs. the Kellogg unit price of 9Φ.

By the way, if the unit prices turn out to be equal, the computer will say they are equal.

Program Listing


```
2G FFIMT SFUS%:"EHOPFEE"S FFIEMG"
30 FOP L=1 TU Q2:PFTMT"淦":MF,GT L.FFTMT
4G INFUT"FIEGT EPAmD":%*
SG IMFUT"DUHNTTTY":M
SE IF M=0 THEM 50
GE IWFIT"FFIME":M
```



```
80 IMFUT"GMHMTTT'":%
SE TF W= THEN EE
90 IWFUT"FRICE";F
```



```
1.0 IF HM=FOTHENSOL
120 IF WMGRG THEM SOE
2QE FETMT 'r':'" TS EEST EU'r"
210 B#TG 4g%
S00 FeTrT ,b:" TE EEST EU'"
4GG FETHT
```



```
    +0.5%>100
```



```
    HES5100
480 FOF L=1 TM E:FRTMT:NENT L
44E J.NWT"F口F MOFE PFESE FETUFM":G$
450 Clm
4GO BITM 10
500 FEIMT
```



```
520 MTTO 400
```


69 Car Payments

Shopping for a new car? Use your computer to compute quickly the potential monthly car payment on various models.

Imagine you want an $\$ 8000$ car and are prepared to put up $\$ 1000$ against the purchase. You want to arrange to finance the car for 36 months. You know the current annual interest rate on car loans is 15 percent.

Key in those few numbers and the computer instantly tells you the car payment will be $\$ 242.66$ per month.

Program Listing


```
O FmIMT"WUTOMGEHE FHMWMT"
4a moclm कृG
50 FFTMT
G6 FEIMT"F|FMHEE FFICE *"
TW IWWTT T
G0 FeINT"WOMM FHMMEMT *"
g TMFT E
ME FENTMMUMEE OF MONTHE"
1% 7MFUT M
I2G FRIMT"MHNGL IMTEEEST %"
1%G IMFUT \
146 I=6@"01%1%,12
```



```
\EWETMT
100 FFIMT"FWrMEMT क"FF
190 FeTMT
2g\mp@code{mguE 5en}
2| FrTMT
```



```
90 Glm
24010TO 10
30% FW% L=w TW 2.
```



```
EQ NENT L
SO FETIFEM
```


Sample Run

 MUTOMOETLE FHYMEMT

FIRCMAGE FTICE

 gembIINMA FHMTEMT * 1800
MMEEE OF MOMTHS
3
GHUAHL IMTEEEST \% 15
FHTMEMT * 242.6E

FOR MOFE FFESG FETDFW

70 To Nearest 95 Cents

Many companies like to price their goods at a figure ending in 95 cents. For instance, a ten dollar item might be marked $\$ 9.95$ or $\$ 10.95$.

Here's a program which demonstrates how to make all prices come out to the nearest 95 cents. See line 40 . It merely takes the integer portion of the dollars number and adds 0.95 to it.

Program Listing

> 10 FFINT EHFSC14T):REM SCREEH CLEAR EG PRIMT"MFPNFFGTURING EOST F"

```
25 INFUT C
SG PRINT"FEIEIPG MULTIFLEE"
S IMFUT M
40 F=INTCD, MO+G.55
50 FRINT:PRIMT
gE PRINT"EETHIL FEJEE 事:F
TG FEINT:FRINT:FEINT
BE ClE:GOTG 20
```


Sample Run


``` 1.23
FFIUING MUTIFLEE 5
FETAIL FEICE \(\$ 6.95\)
MFHJFMCTUFIHG EOET 5.67
FRIGIM Mblaflien 3
FETAIL FETOE \# 17.95
```



```
.46
FRIGIMG MULIFIEE 10
FETALL FRTEE * 4.95
```


71 To the Nearest Penny

This program is useful when you have a dollar-andcents figure with more than two decimal places. For example, $\$ 151.6972$. You need to transform $\$ 151.6972$ to the more common \$151.70

This small program would make a good subroutine in a larger set of instructions. To do so, insert GOSUB at the appropriate place in the larger set of program lines. Modify the line numbers of this small program so the subroutine will be located in an unused position in the larger listing. Change the last line of this small program to RETURN. Delete the first line.

Program Listing


```
    EG FFIMT"T'rFE IM W"
```



```
    4C FW,NHT"TM MOEE THMM"
    EG PRINT"TMG IEEMMA FLMEES"
    5 5 ~ M M F I T T ~ M
```



```
    70 FEIMT
```



```
        (4)j-1)
```



```
    &"%-m%
```



```
105 FFTHT M*
110 FFIMT"TM MEFEEST FEMN'N"
115 FFTMT ए必
\0 FETMT:FFINT:FWINT:FFTMT
130 FmTMT"FFESE M,' KEw"
1.40 FETMT"TO DU FHOTHEF"
150 5ET K*
LOTF K$="" TMFH IFS
170 GLE
180 00T# 10
```


72 Mark Up

Mr. Storekeeper, here's just what you have needed to compute mark ups. This program causes your computer to find the retail pricefor which your percentage off would give the wholesale cost.

For instance, if you got 40 percent off on an item and paid $\$ 60$, how much was it priced at, at retail? The answer is $\$ 100$. To put that another way, if retail price or suggested retail price is $\$ 100$ and you got 40 percent off at wholesale, what is the wholesale price? The answer is \$60.

Try $\$ 40$ wholesale which is 60 percent off. The answer is $\$ 100$ retail. Or try $\$ 10$ wholesale at 90 percent off. Retail would be $\$ 100$. Or $\$ 75$ wholesale at 25 percent off gives $\$ 100$ retail.

Here's a toughie! Try $\$ 19.95$ wholesale cost. Mark-up percentage is 40 . The correct retail answer is $\$ 33.25$.

Program Listing

```
10 FrTMT GHF&G147%:FEM BOEEEM WLEAF
EG FETMT"MHOLEMLE GOET *"
SE NWITT b
AG FEJMT"MWEM-MF FEMGEMTAGE %"
50 INFOT F
```



```
7% F=w
FPEIMT
GQ FTGMT"FETMIL FFICE *"
EE Fe|MT F
OD FEINT:FRIMT:FEIMT
100 GLE:GOTO 2O
```


73 Percentage Off

From earlier tips in this book, you know how to make
your computer convert percentages to decimals. But what if you want to know "percentage off?"

For example, how much is 40 percent off? This program can be used to interpret 40 percent off and compute the decimal value needed. Try 40 percent off $\$ 100$. The computer will change 40 percent off into decimal value 0.60 . If you multiply 0.60 times $\$ 100$ you find $\$ 60$ is 40 percent off $\$ 100$.

Line 50 makes the important translation.

Program Listing

```
LG FETMT EHFSG147%:FEM EOPEEN OLEAE
2Q IHFUT"LIET FRICE";L
30 IMFIT"FERUEUT DFF":F
40 FEIMT EHF&G147%:EEM DLEAFE BREEH
50 I=1-9,01:%F
60 PEINT"TG GOMFUTE WITH"
70 Frint Fi"M OFF"
GO FRIMT"THE IEEIMHL MILL BE"
SQ FETMT IT
LEG FETAT
110 FEINT F:"% OFF":L
12G PFINT"FESILTE IN F EOET DF"
130 FEINT "来": IML
140 FRIMT:FETHT:FRIMT
150 ElF:MOTD EG
```


74 Dollars \& Cents

If the result of your computation is a "money" answer, and you don't know whether to display it in dollars or cents, let the computer decide.

This program decides whether to display the output in dollars or cents. Line 50 in the program makes the decision.

Program Listing


```
4OT=WF
```



```
EEFTHT"EFTH EOET *":T
```



```
#FIVT:FFINT:GO:GHTG EG
```


75 Wages \＆Hours

These useful lines compute total hours worked at regular pay and number of hours worked at time－and－a－ half overtime．The computer then finds gross pay and rounds off to the nearest cent．

The program knows that overtime starts after 40 hours．It makes payroll bookkeeping quick and simple．

Program Listing

```
10 FRTMT CHPSG4%
2日 FETMT"HOUFL'.'FH'FGTE"
25 IMFUT"事"; %
30 FRIWT"HMEEF HOUFS मWRGEI"
5 IMFUTT H
40 IF H4G THEN ET=H-4B:DOTG 100
501/N=H|NF
GQ PRINT"GROSE MFEE"
T0 FeIMT"年:%
OC ENL
```



```
110 GOTO E0
```


76 Invoicing

There's a lot of repetitious math work to be done before you mail invoices to your customers. This software has the computer collect a few pertinent bits of data from you and then present all the various totals you need to plug into an invoice.

It gives you a total retail price for all goods sold on the invoice, total sales tax if applicable, shipping charges and the grand total amount due you from your customer.

Program Listing


```
ZCIWFUT"UHTT FRTEE * ":F
4O IMFUT"EHES TH% FEFUEMT":S
50 IWFUT"EHFFTME EMFFGES 婁 ":H
```



```
14 PRTMT"FRTGE *",G
|2G FRIMT"TH% 束",TT
ISG FETNT"SHIFFTMG s", H
140 FeTMT
150 F"TMT"TOTm,"
160 FeTMT"INWOEE *".FF
OOE GET &क
```



```
2eg Elv:gota 40
```


Sample Run

OHMTIT' SOLT LED
UNT FrTte *
SHEE TA\% PETMEMT 5
GHIFTMG GHFDEE *
FRTEE * EQU

Suppose you find 895 green Widgets and buy them for $\$ 695$. How much did each green Widget cost? Rounded off, 78 cents.

Unit price is total price divided by quantity. The quantity can be expressed in weight, total numbers, etc. It works the same whether you are talking about pounds of coffee, yards of concrete, gallons of ice cream, boxes of books, or units of Widgets.

This program asks for the name of the item, quantity purchased and total price paid. It then displays quantity, name, total and unit price.

Program Listing

```
10 F%TNT WHFw,4%%
2E FEIMT"ITEM MWEE:"
2E INFUT W事
BEFINT
35 FTIMT"WMMTTT'MF ITEME:"
4| INFUT E
4* FFIMT
SD PFIMT"TMTHL FRTCE"
5# FemM"FHIN FWE ITEME:"
68 IM||":* ";F
70 LiwFM
```



```
90 F%INT
MOB FEIMT W*:" INIT FFIEE"
110 FFTMT"IS 事:UN
1EQ FFTHT:FEINT:FFTMT
```

```
1sQ INFUT"FOR MORE FRESS RETIRH";K*
144 Cle:GOTa 10
```


Sample Run

```
ITEM FFIN:
```

ITEM FFIN:
MIDGET
MIDGET
QUFHTITY OF ITEME:
QUFHTITY OF ITEME:
9 9 9
9 9 9
TOTHL PEIEE
FHID FOR ITEME:

* 14653
GIDGET UNJT FETEE
IE 1% 14.67

```

\section*{78 Inventory Counter}

The computer makes it very convenient to tally the number of items in your inventory.

This workaholic program is set up for up to ten different inventory items. You code them with the numbers 1 through 10.

You may enter any quantity for any item code in any mixed sequence. You may repeat item codes and add to quantities as often as you like.

When you finish entering quantities, enter a zero in response to the "item code" query. The computer will respond with a display of grand totals for each of the ten item codes.

Here's the routine:
Line 25 asks for the item code number from one through 10. If you enter a zero, action jumps to line 70 for a display of grand totals. Otherwise, the computer proceeds to line 40.

You are limited to item-code responses from zero through ten. If you try to enter a number larger than 10, the
computer will discover that via the test in line 40 and ship the whole operation back to line 20 where it asks you again for a valid number. If, at line 40, it finds a valid item code number from one to ten it will allow the execution to go on to line 50.

At line 50 , the computer asks for the quantity of the item. Line 60 causes the computer to jump to the appropriate line to add that quantity to the various item totals.

Each of the lines 201 through 210 end with a jump to line 20. This allows you to continue to enter item codes and quantities as long as you like. When you finish, enter zero for item code and line 30 will push action to line 70.

At line 70, the computer finds instructions, through line 90 , to display the grand totals.

Lines 100 to 130 ask if you want to do more.
To make the program run again, press the RETURN key on the computer's keyboard.

\section*{Program Listing}

```

2% IMFUT"TTEM WMWE":G
S% IF C=E THENTG
4% IF ए%| THEN 2G
E% TM",T"W|F|TTT',";
EQ वF G=1 THEN 2G%
G1 वF W=% THEM ETE
G2 IF E=3 THEN EOS
EO IF W=4 THEN 2W4
G4 IF O=5 THE4 2O5
E IF E=6 TMEN ODE
EE IF E=, THEM EOT
ET IF O=% TWEN EOE
G5 IF O=S THEN 20S
Gy IF=wGTHWNO

```

```

90 50%|E 2g%
100 FTIMT:FEJMT:F世JMT
10 IWFUT"FOE MOEE FRESS RETUFU":M*
120 KLE
130 GTG%0
201 T= 540:0070 20
202 K**+4:MOTO -0

```
```

203 L=L+Q:OMTO 20
204 M=W+Q:G0TO 20
2a5 N=N+0:g0TO 20
206 r=w+0: MTTG 20
207 5=5+0:00T0 20
20日 T=T+Q:G0TQ 20
2ge |=1|+0:M10 20
210 v=w+%:gOTO 2E
22G ENT
2GB FRINT"ITEM"
260 FRIMT"GODE": "WFWTTT'r"
270 FEINT
300 FEINT "1".J
310 FFINT "2".K
320 PEINT "S":L
3GQ FEINT "4".M
340 PFIHT "S".N
350 FeTMT "E".E
660 FFINT "7", %
GO FPINT "G".T
OCO FEINT "G".U
SEO FEINT "IG".G
4OE EETLFH

```

\section*{Sample Run}
ITEM GOIE E
ロUFMTIT'T 12
ITEM COLE 8
```QUMWTTT'r ב
```

ITEM COIE ..... 3
DUAMTIT'r ET
ITEM CIIE 4

```DUFHTITTA.
```

ITEM TOLE 9
QUFMTIT' $=$
ITEM CONE T

```
OUFHTIT'r 21
ITEM OOME G
ITEM
CODE
```


## WUANTIT'T

```
\begin{tabular}{ll}
1 & 6 \\
2 & 6 \\
3 & 6 \\
4 & 12 \\
5 & 12 \\
5 & 21 \\
6 & 2 \\
6 & 9 \\
9 & 6
\end{tabular}
```

FDE MOEE PRES FETURM

## 79 Daily Code

Need to have a secret code each day of the year? This software generates a list of code numbers. Of course, you can change the list every day if you wish.

## Program Listing


20 GOEUB 20G
10G FRIMT"GUMAF", G:guSIE $2 G Q$

120 FRIHT"TUFEMFt". $\mathrm{G}: \mathrm{GOEUE}$ 20E

140 FRIMT"THIREDAT", G:GOBE Z日G
150 FrimT"FeITM'". ■: Ducue ebo

```
160 FeTMT"GFTLF"NT",E:EMIN
```



```
2lg IF EMbgQ THEN EGO
```



## Sample Run

SUMDH'	972
MOUDH'r	1496
TUESIM'	7646
WEDPEETH'T'	1580
THINPSIM' ${ }^{\prime}$	5115
FFEIDA't'	3417
SATUFTHTH	274

## 80 Daily Receipts Adder

This program allows a businessman to quickly add up his day's receipts, from both wholesale and retail orders as desired.

The machine first collects wholesale dollars from you. You key in "nothing" by pressing the RETURN key, without any data, to exit the wholesale entry loop.

Next the machine will go to retail and ask for those dollar figures from you.

Then it prints a summary of results including total wholesale dollars, total number of wholesale entries, total retail dollars, total number of retail entries, and then the grand total of all dollars and grand total of all entries.

## Program Listing


2G FEIMT"MHIL'FEEEIFTS ADIEE"

40 IFFUTT"HHOLESHLE * ": WH

ED $\mathrm{HT}=\mathrm{HT}+1$


```
80 w|:=""
90 00T0 40
1E9 INFUT"FETMIL * ";FL.*
```



```
120 FT=:=T+1
```



```
140 FLL*=""
15010TE 100
```



```
1EO FeTMT"MHOLESALE *":MD
190 FEIMT MT:"EWTFTES"
2gE FETHT
2IM FETMT"FETATL *":FT
22G FETMT FT:"EMTFIES"
230 FeIMT
```



```
2EQ FETMT WTHTT:"EMTETES"
2GG FEIMT:FFINT:FEIHT
```



```
Eg% Glm:GMTO 10
```


## Sample Run

DHIL'r FECEIFTS ADIEF:

WHOESHE W 2 S
WHOLESHEE * 51
WHOESHLE F SE
MHOLEEHLE $\$$ 4
WHOLESHEE 利 9
WHOLESMLE W 11
WHOLESFLE W $^{\text {GI }}$
WHOLESHLE \# 5 E
WHOESALE F 7
WHOESFILE
FETHIL * 1 OE
FETFIL * 21
FETHIL * SEG4
FETMIL * *35
FETFIL

## WHLESHLE 4 4

## 9 EMTETES

FETATL +40 C
4 EUTRIES
TOTAL $\#$ : 18 E
13 EVTETES
FGE MOFE FRESE FETUFH

## 81 Advertising Cost-per-Thousand

Suppose your local radio station time salesman told you he could deliver 51,000 listeners for each $\$ 133$ ad run on his station. And your local newspaper space salesman said he could deliver 160,000 readers for each $\$ 330$ ad run in his paper. Which would be the better quantity buy for you?

This program gives you the answers in black and white. The newspaper would cost you about $\$ 2.06$ for each 1000 readers while the radio station would cost almost $\$ 2.61$ per thousand listeners. Now all you need to decide is which audience you prefer.

By the way, the cost-per-thousand comparison applies to magazines, TV, or any medium.

## Program Listing

10 FRINT पHFE 147
20 IHFUT"AI EOST \# ":
SO IHFUT"GIFCULATIDH":
$40 \quad M=1006 \% \mathrm{CO}$
45 PEINT
50 FRIHT"事";
55 FRIMT"COST FEE THOUSFMU"
6日 FDE Q=1 TG 1Q:FFIHT:MEMT Q
70 GOTO 20

## Sample Run

HII COET * .3 S<br>

4. 2.6078414<br>GOT FER THOUSFMI

HI COST $\%$ SG
CIFCILATIOH 160 ODO

2 2.065<br>COET FEE THOUSAMI

FI GOST F 50 EO
GFCULATIOH FGGGQD
+10
COET FEE THOUSHMI

## 82 Advertising Cost-per-Unit Sold

Your favorite newspaper had the lowest cost-perthousand so you ran an ad. The ad cost you $\$ 330$. Lots of customers came by to check out your merchandise and you actually sold 77 pieces. What'd it cost you to sell each item?

With this quickie program you'll know it cost you $\$ 4.28$ in ad money to sell each unit.

## Program Listing

10 PeIMT CHEW4\%

玉G INFUT"MITE EOLI":

```
4% =%MM
5C FPINT
EG FHNM"THE MG EOST"
70 FRIMT"年";
BO FEINT"FER LMIT SOLLT"
GO FOR F=1. TG I1:FRIMT:NEMT F
10M ULE
ANGOTG EO
```


## Sample Run

```
AW COST ： 5 OE
UMITE SOLTT
THE FTI GOST
＊ 4.205142 E
FEFE MHT 501 LT
HI EMST \＆50GC
UnTE 5OLO EOGOE
THE ME EOST
```



```
FEE：WHIT EOLTH
月J モOET 1 mE
MITS EOLT ETEGE
THE GI COET
```



```
FEE UHIT GLIITH
```


## 83 Making Change

A penny saved is a penny earned．Every businessman is aware of pennies，nickels，dimes，even quarters lost by sales people who can＇t make correct change．If you have sales people out front accepting cash
away from your register, or if you're too small to have a cash register, use this program to make correct change.

Key in the amount of the sale and the amount of money tendered by the customer and this software will tell you exactly how many quarters, dimes, nickels and pennies to hand back to the customer.

## Program Listing

```
10 PETMT EHF**147%
2g IHFUT"EFLmE FMOUMT EEMTS":%
SO IMFUT"GEMTS TEMDEFEI":T
40| F=T-%
```



```
60% % % %
TO F=W--5
E0 MTO 50
OE IF FC1Q THEN 1SE
106 II=T+1
11% F=wn-w%
220 mTM #
130 IF F% THFM 170
1401 N=N+1
150 M-w-m
160 GTTM 130
1, FE=F
IEG FFENT
190 FFTMT Q, "MMFTEES"
2GE FETMT T, "DINES"
2IE FETMT M, "MICKLES"
2eg FFIMT F,"FEWMNES"
23G FOP Z=1 TO NE:FENMT:NEWT Z
240 Wl:
20 5TTMEO
```


## Sample Run

SFLE MMIMT PEMTE O

$\because$	以1\%FTFme
1	ITHME

SFLE GMOUMT CEMTS 1 CENTE TENDEFEI 1 BG

3	QUAETEES
2	MINES
6	FEMNES
4	

EFLE FMOUMT GENTS ET CEMTE TEMTEED EG

9	MIFTEFS
2	IIES
9	FEWLEE
3	

## 84 Single-Digit Adder

Here's a bean counter for use in those jobs where you don't want to expend any mental energy on overseeing calculations. This program watches the keyboard for your single-digit number and immediately displays the total. You do not have to press RETURN after keying in a single-digit number.

Suppose you were counting beans in a jar. You could keep your finger near the number one key and repeatedly press it. The total of the number of times you pressed one would be displayed and immediately updated after each new press of one.

Of course, you could do the same for any of the keyboard numbers from zero through nine. Pressing any other key will cause your results to go bonkers.

Maybe you have sorted a pile of pennies into stacks of
five each．Press a five for each stack and you＇ll have the total number of pennies．

## Program Listing

```
10 FFIHT CHESG14%%
20 Gח%uE 2Ga
SO ET K$
40 IF K$=":" THEN SO
50 IF K*="C" THEN T=G:GOTO EO
```



```
70 H=,MLCKW%
g0 T=T+N
90 50%1E 200
10日 FTEMT"TOTFL":T
1,0 GOTO S0
2g0 PETMT EHFw,147%
```



```
220 FOT L=1 TO 22:FFIMT"䡉": :NEMT L
2SO EETUFM
```


## 85 Currency Converter

A customer in England sends you payment in Pounds．How many dollars is it worth？

This program converts foreign currency into U．S． dollars．

Call your bank for today＇s exchange rate．Suppose you have 100 English Pounds you wish to exchange for U．S． dollars．Your bank tells you the current rate is $\$ 2.50$ per Pound．Your computer tells you that you have $\$ 40$ in U．S． funds．Similarly，if you had $\$ 40$ ，the computer would have computed the exchange to 100 Pounds．

## Program Listing

```
10 FEIMT EHPw,14%
2O FRINT"T'TPE OF OUPPEHC'"
SO IMFUT 区क
```

```
40 PRIHT
SG FEIHT"GOMWEFT FEOM IOLLFPE"
GE FEINT"DE TO MOLLGES?"
TC FFINT:FRINT"FFESE F&FEMM OFTTGTG\"
GE DET K$
9G IF K゙$="" THEN EG
```



```
110 0MTO 50
```



```
210 IHEUT"ENCHFMGE FATE":F
215 IF K&:"T" THEM SOQ
2eg INFuT"MOLLmES"; I
230 %=口%"
240 PEIMT
EWGFETMT D;"MOLLFE"
2ge FRINT "=";%;世&;""
2TG FEIMT:FFIMT:FFIMT:FEIMT
EEE IWFUT"FDR MOFE PrESS PETUFH":O*
```



```
SGG FEIMT
310 FETMT"HOW MFHT"
320 FFINT 区未: "E":
300 INFUT II
340%=T,F
S5 FEINT
36 FETMT D:G*:"G"
马7G FETMT"=";品;"MOLIFES"
SO BOTG E7G
```


## Sample Run

T＇TEE OF UTPREMG＇T
FOIMTI
COMVET FFOM DOLLFFE
ロT TO IOLLME？
FEESS FFFOM）OR TGTO
F
EMCHHME FATE EnS TOLLAFB 4 B

```
 40 DOLLFES
=10G POumLs
FWR MOFE FRESE FETUFM
T'TEE OF WUFPEMW'r
FOU|MTL
WOHNEFT FFOM DOLLFPG
GE TG DMLLHES?
FEESS FFFFOM% MFTCTG\
T
ENGHFWGE FATE E.5
HOW MHNT
FOMNTE }10
 40 FOUNIE
=40 IOLLAFS
FOE MOFE PFESG FETUPN
```


## 86 Fractional feet

You are measuring a box and the computation comes out to 14.5 feet. How do you change 14.5 feet into 14 feet 6 inches? Here's how:

## Program Listing

10 FEINT WHEF 147
20 FRIMT"T'TFE FFACTIOHFL FEET"
SO FFIUT"FEET TQ H DECIMFL?"
40 IWFIT $F$
45 W=IWT:F
$5 \mathrm{~EB} \mathrm{~B}=\mathrm{F}-4$
$60 \mathrm{D}=12 \boldsymbol{2}$


```
7E I=INTCTO+!
BE FRIMT
GO FRINT F: "FEET ="
10E FFIMT A; "FEET":I;"NWHES"
200 FOF L#1 TM IE:PEINT:MEMT L
218 INFUT"PEESE FETUFH FOR MOPE":N$
2еO Elm:GOTO 10
```


## Sample Run

```
TTFE FFFHOTIONGL FEET
GEET TG G DECXPML:
```

$14.5 \mathrm{FEET}=$
14 FEET $G$ IMGHES

FPESE FETUFW FOF MOFE

## Q Simulated RPN Calculator

The computer can be made to act very much like a calculator with Reverse Polish Notation (RPN).

To start a run , kev in a number followed immediately by a math operator symbol. Your choices are limited to REM , -, / and *. Don't use other keys except BREAK. BREAK ends the run.

## Program Listing




```
25 PETMT T:
SGET NF
OE IF H&:="" THEN OE
```




```
 THEM &&=,*+N$:GOTOSO
G0 IF ASCMM, =4E THEN 1.EG
```

```
TO IF FSTCHOS=4S THEN 12OQ
```




```
G5 GOTO 10
1100 &=WHLG%%
1110 T=T年%
ALE GOT# 14EG
1200 %=w%lur%%
121@T=T+%
12e0 GOTO 1.420
1300 %=4月Lus%
1310 T=T-*
1320 BOTO 1.400
1400 %=WHL&%
1418 T=TM%
1420 T*=5TE*くT
1480 GOTO 10
```


## 88 60．Second Timer

A one－minute timer can be very handy for fun－n－ games．This easy－to－use clock counts off seconds up to 60.

The number of seconds counted can be changed by changing the number 60 in lines 20 and 80.

The clock can be calibrated by changing the number 725 in line 40 ．Line 40 is a time－delay loop set for approxi－ mately one second．

## Program Listing

```
10 FEINT EHESG14%
2Q FOFT=1 TG EO
ge FetMT THEG10%T
4E FWFTT=1 TO TEE:NFMTT
```



```
6B NEXT T
FemeINT EHE$G4%
```

```
EG FRTMT"EG EECOMDS ELMFSEL"
OQ FOF H=1 TO E
100 FOKE 365%,15
110 FOKE 2GET4,255
```



```
13O FOFE SEST,0
14世 FWFEM=1 TO 250:MEMT O
1WE NEWT F
160 FOF G=1 TO 10:FETMT:MENT G
```



```
1EG ELFE:MTO \O
```


## 89 stopwatch

Now you can leave that chrome－plated stopwatch at home next time you travel to your favorite auto or horse race．This program turns your computer into a handy stopwatch timer using the TV display．

When you RUN the program，the stopwatch will start counting seconds．

You can adjust the accuracy of the seconds count by changing the number 725 in line 120 ．We show it setat 725．To slow down the timer，increase that number．To speed up the clock，decrease the number．

## Program Listing

10 MEIE 40 O
20 FETMTMUEEE MF SEMMHE＂
EU FETUT＂TO BE OUNTES DOMM＂
4 AMFI I

EO FTINT＂FTESE FHT KET＂．

CE DET ド
OE IF 氏゙क：＂＂THEN EE
100 FOb 4 ag
110 FDr TESTO 1 STEF－ 1

はE FeTMT T

```
14% |EGT T
20 5OElm a40
#N FMTM"TIME TE UF"
```








```
28 F!% S%%%,0
```



```
Mg |EwT E
```




```
#% %im: B%T0 10
```





```
40 FWTMT
4% FET\FM
```


## 90 shipments

A bar graph displaying number of shipments per month can be a useful way to see the trend in the movement of inventory from your warehouse.

This program collects data from you for one calendar year, January through December, in lines 100 to 210. That data is printed on the computer's video display by lines 410 to 750.

There are 17 graph squares left to right.
By the way, so the graph won't overflow the screen, the graph has 17 available positions from left to right.

## Program Listing

10 FeIMT CHEatar
1 OL IMFIT: MHAMET": MA
110 IFWT"NEBTHFT": FE
120 IM"リTMFETH": Mm

```
130 IWFUT"月FEM":AF
```



```
15G INFT"THE";TU
160 IFFUT"TUL'r":TL
170 IMFUT"FUGUET":GU
1GQ IMFUT"SEFTEMEEF":SE
190 "HFUT"MLTOEEE":ON
EOQ IWFUT"WOMEMEEE",MO
210 IMFUT"IECEMBEE";DE
```



```
BQE FFIMT THECz,:"MOMTHL SHIPMEMTS"
51g FETMT TBEGO,"GEMME:O TD 17%"
Fed FerNT"Jm,":
```



```
G4E FETMT"FEE":
550 Z=FE:GOGUE 50G
5G0 FFINT"MAE";
5ra z=m月:GDEUE 5##
SEE PeIMT"mFe":
50 z=F%:G0%|E 90%
EBQ FPTMT"MH:"
EIG z=Mr:GOSUE gag
GEQ FRTHT"JIN":
60 z= J1:G0G4% 900
E4! PWHT"JUL":
650 z=TL:GOGUB 500
6E0 FTIMT"Fug":
670 2=mu:g0%UE 500
6EU FETMT"SEF":
6Sप 二=5E:005UE 90%
FOQ FFTHT"OTT";
710 z=0G:G0%|E 500
7Eg FFIHT"MOW":
702 2=00:08UE 900
74B FEIMT"DEC":
TGE=NE:GOSUB gQE
EOU FOF L=1 TO S:FENAT:NEMT L
B18 IHFUT"FOR NOEE FFESE FETUFM":M*
E2G GLF:GMTO JG
90G FOr L=1 TG z
g10 FEINT एHF*&162%
92区 NEWT L
```

```
930 FEINT
949 FETLFEM
```


## Sample Run

 ..... 17
FEBRUAF: ..... 16
MHFCH ..... E
MFrit ..... 1
Mr ..... 3
T1HF ..... -
गiLT 12

```muget 15
```

SEFTEMEEE
OTTOEEE $1 \%$
WOVEMEEE ..... 1.3
NECMEEE ..... E
MOWTHL'T SHFFEETE © CHFE : TG 17

FFFem

```NFit manam
```
```SEPm
```
```IECOMmanmanman
```

FOR MOEE FRESE RETURU
91 Marketing Performance

Ever stared at a page of numbers for hours without really seeing their relationships? Well, that doesn't have
to happen when you put those numbers on a visual display-a graph.

This program is set up to take in data on each quarter of three years and then display that data on a color graph on your computer's video display.

The graph has 17 available positions from left to right so the graph won't overflow the screen. You could make it dollars or millions or whatever you need.

Anyway you cut it, it's a short, easy-to-type-in program which can give you a quick look at how marketing performance in one quarter-year relates to marketing performance in other quarter years.

## Program Listing

	FTHT OHP*CI4F
100	IWFUT"DIFPTEP $1 .{ }^{\text {" }}$ A
110	IMFUT"DUAETEE 2 ":
120	IPFUT"QuAFTEE 3 ":
150	IWFUT"QUMFTETE 4 ":
44	IWFUT"DUARTEE $\mathrm{S}^{\prime}$ : E
150	MFUT"Qumetee ${ }^{\text {a }}$ "F
160	IWHT"GUAFTEF 7 " ${ }^{\text {a }}$
1.70	
180	\#HFUT"DUFETEP ${ }^{\text {a }}$ "I
190	IMFUT"DUFFTEE 10":
E0	IMFUT"QuFFTEre 11":k
210	IWFUT"WUAFTEF 12":
460	
410	Fex mT EMmex56
450	
460	
500	FeIMT UHFaces,
510	Frat
50	FeTMT:Q 1":
5 EC	Z $=\mathrm{H}$ :GOUE 9GE
548	FFTMT"Q 2":
55	Ex:gnsus 900
560	Fetrt"G 3":
57	z=C:ODSUE ¢6
580	FRIMT"Q a":
590	

```
600 FFIMT"Q F";
E10 2=w:GOEUE 50
6eg FrIMT"O E";
68 2=F:GOEUB G#U
*44 F%%サT"$7":
65 2=G:G0%UE 50
GE# FFIMT"GE":
G0 z=w:GOE|E G00
6ED FFINT"E 5":
690 2=I : %051% 900
70% F"IMT"Q1M":
710 2=, %ME|E gm0
7e4 FrIMT"@1.":
7% zm&:GOSUE ged
740 FFIM""u%";
7% Z#L MOEUE g0%
EBO FGF W=1 TG S:PFIMT:MENT M
```




```
SE cle:GOTG lu
g0% IF z%| THEM FFIMT" NOEE THMN |F"
 : FETUFMM
G05 FOFT=1 TG Z
910 TF 2%O THEN FWNM WHE&NE,
9eO WEMT T
SE FFTMT"
G4 EETUFM
```


## Sample Run

QUFETEE	1	17
QUFPTEE	2	1.
DLAFTEE	3	1
WUFTEE	4	2
QUPVTEE	5	1.
QUFETEE	F	-
WHFTETE	7	
Qumbte	8	4
QUFETEE	9	
Onfrtter	10	5
MHETEE	11	
QifrTer		



FOE MOEE FRESS FETURN

## 92 <br> Cash Receipts Comparer

Business been up? Or, dropping off? How have your cash receipts looked over the last six months?

This short, easy-to-key-in piece of software accepts data from you about each month's receipts and then displays that data in an easy-to-read graph. The graph shows exactly how one month's receipts compare with another.

Lines 100 to 160 ask for the month's total receipts.
Lines 300 to 360 create the graph.
By the way, so the graph won't overflow the screen, the graph has 17 available positions from ieft to right.

## Program Listing

```
LG FETMT EHFw, 47%
20 ITM OEC%
10% FपF: L=1. TO E
110 FETHT"OFSH EECETFTS"
L20 FFTMT"FOF MOMTH":
```

```
13G INFUT CECL`
140 IF GRGM%1S THEN 130
150 FEIMT
160 MENT L
```



```
2l0 FETMT EHFक(144%
2,O FEINT THEG4%:"CHEH FECEIFTS"
2SE FETMT THEGS,"&FHME:O TG IEO"
24E PEINT OHPa<eg
25g FETMT
EQ FOR T=1 TO E
305 FFIMT T:
SM IF EPGTSYIE THEN FEIMT" NOEE THFN 1S"
 MENT T
32g FOF %=1 TO EFCT
```



```
 :M%NG160%:
340 HEMT %
```



```
SE MERT T
4OE FOE W=, TO E:FFTMT:MENT W
40 FETMT GHENGS%
42E IMPUT"FOF MOFE PEESS FETMDM";'真
4%प שle:MTO 10
```


## Sample Run

```
GABH EECEIFTS
FOE MONTH 1
 18
GHSH FEEETFTS
FOFMWHTH =
 12
EHEH FECEIPTS
FOEMOMTHS
 E
GEH FEGENFTE
FDF MMMTH:4
 3
```

```
MHSH FECETPTS
FW%MMMW5
 L
GHOH PECETPTS
F口FMMNTHG
 18
 GFEH FEGETFTS
 GmHE:OTO 1E%
```




```
 3 m,um,m,man
 4 4,
```



```
 6
 M",
 FOm MORE FrESG ETMFM
```


## Colorful Graphics

## 93 box

In this Colorful Graphics section of the book, you will find a number of interesting new and different applications for the graphics capabilities of the computer. These can be modified, combined or otherwise changed to suit your own needs. Our titles represent only the thoughts we had when we watched these programs run. You might like to dream up new and different titles for your own creations made by modifying these programs.

Colors can be changed. Screen locations can be changed. Movement can be reversed. Try all of these programs. You'll like them!

Here's how to draw a box on the graphics displayscreen area on your TV monitor.

## Program Listing

```
10 FFINT OHPSG147%
20 PEIMT:FEINT:FEINT
3GFRINT SFGG%:EHF*&111%:
```



```
50 FEIMT GHESG112%
60 FO| L=1 TG 13
```



```
GO NEMT L
```




```
1% FrIMT OHFs,1EG%
```


## 94 Graphic-Screen Familiarization Tour

To make your color graphics as good as you can, you must know where you are drawing on the video display. And you need to know what you can draw. This program makes graphics screen locations familiar.

Lines 20 and 30 use text screen to ask you to select a particular graphics-screen location for use. The possible range of numbers here is 7680 to 8185 .

Lines 40 to 60 set up the graphics screen. Then, the loop in lines 70 to 90 runs through and repeats all possible color-graphics characters available for you to command.

At line 80, the character numbers are POKEd into the screen location you selected back at line 30.

Try running this program several times, using different screen locations from 7680 to 8185 each time. You'll soon get a feel for the large number of locations available on the graphics screen. The more locations, the higher the resolution of the graphics.

Press BREAK to end.

## Program Listing

```
1Q FFINT EHR束G4T
2G FRIMT"SElEGT EGREEM LOGHTIOH"
S0 INFUT"TGES TO E1E5":SL
40 FRIHT CHES<147%
GO FOLE EL+GOTED,0
70 FOE E=0 T0 255
BO FOKE SL.E
90 MENT E
10日 gaTO 70
```


## 95 araphic:scraen Character Spotter

Just the opposite of the previous program, this set of program lines will let you select the graphic-screen character you want to see.

Lines 20 and 30 ask for your choice of a character number between zero and 255.

Lines 70-90 place your selected character in all locations on the face of the video display.

Press any key to repeat the run.

## Program Listing

```
10 FFINT EHFSNMT
2Q FMTMT"SELECT EMAPATTER"
```



```
4G FFINT GHFw, 4%%
70 FOF 5L=TEED TO E|E%
75 FOKE SOTEQNEL.O
gO FOGE EL,M
O0 मFMT SL
MOE GET &゙%
```



```
MECLEMOTM IG
```


## 96 Dancing Spot

You can make any one spot on the face of your television set, or video-display tube, dance or glitter with color using this program.

We generate random character numbers in line 20. Then we plug those numbers into our POKE statement in line 30.

Change the location of the spot on the screen by changing the number 7889 in lines 30 and 40 to any number between 7680 and 8185.

## Program Listing




$4 \mathrm{COFE} 7 \mathrm{FE} . \mathrm{EL}$
50 BOTM 20

## 97 Beautiful Braided Rug

Just goes to show that some of the most attractive
computer graphics require some of the shortest programs.

## Program Listing

10 PFINT OHESM47



5 EPOE PL, 1 GE


## 98 Screen Filler

This program fills the screen, side to side, top to bottom, with the character specified by the number at the end of line 30 .

In this case, 128 is the number for a "reversed" white-on-black @ character. The program puts a reversed (a) at every one of the 506 text-screen video locations.

## Program Listing

```
10 FFINT OHESG14%%
2G FGF L="6E0 TM E1B5
25 FOKE L+TET20.0
OUME L:12C
4G MEMT
S0 BuTM 50
```

Some say it looks like Outer Space. Maybe a view of Earth from out there? Whatever, it makes a fun, colorful display.

A random number from one to 255 is generated by line 30. It is used in the POKE statement in line 40 to create the myriad characters on the text-screen video display.

For a variation, change line 60 to:

$$
60 \text { GOTO } 20
$$

which will provide a continuously-changing screen pattern.

## Program Listing


20 FOF $勹=668 \mathrm{TO}$ ELS


4 B FOKE $\because \mathrm{B}$
50 NEXT $\psi$
60 GOTO 60

## 99 snowfall

White flakes sprinkle down the screen, over and over-until you press the * key. It may be useless but it's a lot of fun to watch!

## Program Listing




```
\5 % %TESO THEM EG
4 FOKE SL,4Z
WET K$
GE IF K$="极" THEN OE
70 MTM 20
GQ FeIMT OHFS|.4%
GE FOKE SGETE,2?
MO FTIMT"FEES g TO MIT"
14 FEJMT"FEESE F TO FUN FGAIM"
\Q पET <T*
1QE FF <T&="; THEM 1ED
44 IF <TW="%"THEM IG
GO IF KT*"Q" THEN IFG
IGO GOTU 120
176 EMI
```


## 100 <br> Making Things Move

Movement on the computer display screen is an illusion. As in any television picture, the turning on and turning off of dots in a pattern across a screen can seem to provide motion to an object drawn on the face of the tube.

There are a number of ways to get the look of motion. Let's send a dot across the screen:

## Program Listing

10 FeIMT UHEQC4
20 FOKE 56ETG,4E

40 FOKE EL+SQTED. 1
50 FOKE SL.EA
60 FOF $T=1 \quad T \mathrm{BQ} \quad \mathrm{AETT} T$
TO FOKE SL+3OTED.2
EG FOKE EL. G1
G0 4 GT SL
100 OOEUB 200
110 FOF SL=TEA TO TGOQ STEF ....
120 FOKE EL+GQreg. 1
1 BG FOKE SL. $\%$

ASGFOKE SL+50720.2
160 POKE IL .8
170 WEVT EL
160 gחvit ego
190 חOTO 30
200 FOKE 3657. 15
210 POKE SEET4.240
玉е FOF T=1 TO 1UMENT T
2 SE FOKE 3E日G. B
240 FOKE 36574.0
2SE FETUEN

## 101 Drawing Sketches

Now you can draw lines, rules, diagrams, maps, charts,
boxes－anything you can imagine－－on the face of your color TV set．Use the Computer keyboard as your pen and its video output as your ink．

Lines 40 to340accept your up，down，right，or left com－ mands，as U，D，R，or L．No other letters will work．Lines 400 and 410 draw your lines．

## Program Listing



```
ZO FOKE SG%G,w
O4 %-80
40 OT K゙家
50 TF K+F"" THENM4D
60 IF Kक:#"\" THEM BE
70 50T0 |M0
```



```
90 GOTO MOE
```



```
1.10 GOTO EOC
```



```
AE DGTO 4##
#0 JF &":",." THEN Ee口
ま|Q MOTM SEG
```



```
2कल IF %-1, mem THEN 40
"40%%w
50 MTO 4G%
OE IF &F="F" THEM 2e%
4Q 50% 4O
```



```
कण IF *+1>E|Ew THFM 4W
40%%%N
4W% FWE %小%GED, -
4W FW%E M,B
4% MITO 4%
```


# 101 Programming Tips \& Tricks for the VIC-20 and Commodore 64 

by Howard Adler

Here's a giant collection of practical, useful, efficient programming techniques and operating shortcuts for the Commodore VIC-20 Commodore Model 64, and other personal computers using the Commodore BASIC programming language, right out of a master programmer's notebook.

Loaded with hints, secrets and easy-to-follow instructions, this book shows you how to handle routine programming chores on the Commodore computers more quickly, do special effects, make your computer work for you - faster and more efficiently.

Each of the 101 computer programming tips in this book features a complete, tested, ready to type and run program. Each will run immediately, as you find it in this book, or it easily can be included in a larger set of instructions to your computer. All 101 programs in this book have been thoroughly tested on the VIC-20 and are ready to type in and run.

These are ideal programs for beginners, newcomers, novices and first-timers in the world of computers, as well as those old-hands needing new and different ideas for ways to use their Commodore computers.

Learn insider's how-to secrets for using the exciting BASIC words CLR, DATA, DIM, FOR, TO, STEP, END, GOSUB, GOTO, IF, THEN, INPUT, NEXT, PRINT, READ, REM, RESTORE, RETURN, CHR\$, INT, LEFT\$, MID\$. RIGHT\$. RND, SQR, STR\$, TAB, TIME, VAL, AND, OR, and many more.

Sections in this book include Introduction, Fun \& Games, Text On Text, Gee Whiz!, Number Crunching. Money Matters, Colorful Graphics, and a handy Appendix.

## ARCsoft Publishers Woodsboro, Maryland


[^0]:    10 PRTMT EHES 147

