COMMODORE
COMPUTING

IAN SINCLAR

Commodore 64
Computing

Commodore 64
Computing

lan Sinclair

GRANADA
London Toronto Sydney New York

Granada Technical Books
Granada Publishing Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Granada Publishing 1983
Reprinted 1983 (five times)
Reprinted 1984

Copyright @ lan Sinclair 1983

British Library Cataloguing in Publication Data
Sinclair, Ian

Commodore 64 computing

1. Commodore 64 (Computer)

1. Title

001.64'04 QA76.8.C/

ISBN 0-246-12030-4

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain
by Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

Contents

Preface
1 Preliminaries
Beginning BASIC
Processing
Decisions and Loops
Data Processing and Program Design
Introducing Graphics
Sprites and Colour

Function Keys and the Sound Generator

O 00 N N L A WDN

Sorting Out and Other Topics

10 System Expansion and Advanced Features
Appendix

Index

vil

15
29
40
55
69
82
103
115
124
130
131

Other Granada books for Commodore 64 users

THE COMMODORE 64 GAMES BOOK
Owen Bishop
0246 12258 7

SOFTWARE 64

Practical Programs for the Commodore 64
Owen Bishop

0246 12266 8

COMMODORE 64 GRAPHICS AND SOUND
Steve Money
0246 123427

LEARNING IS FUN - 40 EDUCATIONAL GAMES FOR THE
COMMODORE 64

Vince Apps

0246 12318 4

INTRODUCING COMMODORE 64 MACHINE CODE
Tan Sinclair
0246 123389

Piﬂeface

Any manual for a computer can carry only a limited amount of
information, and the manual for the Commodore 64 is unusually
brief. A computer is a more complex device than a toaster or a
washing machine, and a full-scale encyclopaedia would be needed to
explain in detail every possible action and application of a machine
like the Commodore 64. Computer manuals are therefore a com-
promise, listing the computer actions in enough detail to allow the
experienced user to work out the rest. In the case of the Commodore
64, it is likely that the user will have had experience of previous
Commodore machines, so that the style of operating the machine
will not seem so novel as it would to anyone who has not used a PET
or a VIC-20. This, however, is of little comfort to the absolute
beginner, or to anyone who has come to the 64 from another type of
machine.

This book is intended to be used along with the Commodore 64
manual; with the manual acting as an appendix of data to be used
along with the book. It is intended to offer the beginner a helping
hand in learning the BASIC programming language which is built
into the 64, and in understanding how the machine can be used with
other programs. At the same time it will act as a guide for anyone
who has come to the 64 after some experience on a different type of
machine,

This is not a book of computer programs, nor is it devoted to
‘blob-chasing’ games. The program examples that appear are short
and simple. The aim is to help you, the reader, to understand
computer action, not to dazzle you with elaborate programs nor to
wear out your typing finger(s) with long examples. By working
through the examples in this book, however, you should end up with
a sound knowledge of what the Commodore 64 can do, and how you
can use it. That is my aim, and I hope it meets with your approval. In
particular, I have emphasised the data processing uses of the

viii Commodore 64 Computing

machine, in the belief that the 64 will have considerable appeal for
business users because of its memory size and the vast range of
suitable programs (software), together with the range of printers and
disk units which are available now. I have not, however, neglected
the aspects of colour graphics and sound, which have been dealt with
in detail because of the unique and rather complex method that is
used to program these effects.

A book like this owes much to a lot of people who worked hard to
organise it. In particular, I would like to thank Richard Miles of
Granada Publishing Ltd who tirelessly pursued the objective of get-
ting hold of a Commodore 64 ata time when machines were very scarce.
I must pour out thanks also to Peter Walker, Susan Morris and
Debbie Stephens, of Peter Walker Associates who made enormous
efforts to ensure that I received a 64 for Christmas. I am greatly
indebted to Henry Budgett, editor of Computing Today, for per-
mission to use the C.T. standard symbols for graphics and other
non-printable characters in this book. I also have a particular debt
to acknowledge to Rod Wellburn of Commodore who volunteered
to print the listings from my cassette, since I could not interface any
of my printers to the 64. This has ensured that the listings are
reproduced correctly, as they appear on the screen.

Ian Sinclair

Chapter One
Preliminaries

The Commodore 64 is a complete computer which needs only a TV
receiver to be useful for programming. For any really serious work,
however, you need to be able to record and replay programs
(computer instructions), because a program ceases to exist when the
computer is switched off. The two normal methods of recording
(called saving) and replaying (called loading) are the use of cassettes
and disks. The use of cassettes is cheaper, but the actions of loading
and saving require a much longer time as compared to the same
actions using disks for storage. The 64, like all Commodore models,
requires a special cassette recorder which has been designed to
operate only with Commodore machines. This has the considerable
advantage that the setting-up difficulties users of other machines
encounter when using ordinary cassette recorders do not trouble
Commodore users. You cannot use an ordinary cassette recorder
unless it has been considerably modified and provided with a
suitable connecting cable. A few firms claim to provide suitable
adaptors, but I was unable to check how well such an adaptor would
work because the supplier was unable to furnish me with a sample. It
makes sense, then, to use the correct Commodore type of recorder.

For serious computing purposes, particularly for business use, a
floppy disk system is much more satisfactory. A floppy disk is a thin
plastic disk which is coated with magnetic material (like cassette
tape), and enclosed in a cardboard sheath. The cardboard protects
the surface of the disk from fingerprints and other contamination,
and the disk cannot easily be removed from the cardboard. When
the floppy disk is inserted into the ‘player’, or disk drive, it is spun up
to a speed of 300 revolutions per minute. A pick-up head can be
placed over any part of the usable surface of the disk — there is a slot
in the cardboard sheath to permit this. Signals can then be recorded
or replayed at very high speed. Because any part of the exposed disk
can be used, there is no rewinding problem as exists when cassettes

2 Commodore 64 Computing

are used, and access to any part of the disk is very rapid, a small
fraction of a second. The disk system is completely controlled by the
computer, and there are no adjustments to make.

Throughout this book, I'll assume that you are using a cassette
recorder at present, but will probably change to a disk system later
as your needs develop. The differences between the two affect only a
few commands, but the cassette recorder needs more attention from
you when it is used.

Connecting up

The connections that have to be made for a working system are to
the power supply, the TV and the storage system, which I'll assume

Low voltage supply lead

Mains plug
(two leads only)

Power plug for
Commodore 64

Fig. 1.1. The power connections. The high-voltage connection is to a mains
plug - use a 3-amp fuse. The low voltage is to a special 4-pin plug.

will be the cassette recorder. The power supply for the UK version of
the 64 is a grey metal box (a transformer) which has a mains lead on
one side and a low-voltage lead for the 64 on the other side. In the
United States the transformer is housed in a black plastic box. This
low voltage lead is fitted with a special plug (Fig. 1.1) which pushes

Preliminaries 3

into a socket on the right-hand side panel of the 64. Itisa goodideato
keep this plug in place once the system is fitted up, because frequent
insertion and removal will eventually loosen the contacts and may
eventually cause intermittent loss of power. Though this will not
harm the computer, it will cause loss of any program that you
happen to be working on at the time. There is a power switch on the
64, close to the power socket, but this switches only the low voltage
supply, not the mains. At the end of a computing session you should
always switch off the mains socket or remove the mains plug. If you
do not do this, the separate transformer unit of the 64 will still be
operating whether the machine is switched on or not. Though the
transformer is constructed so as to withstand this continuous
operation, and should not overheat, I always prefer to switch off all
mains supplies when they are not in use. Incidentally, the trans-
former must be placed where there will be a free flow of air around it,
so that it will not overheat.

The other sockets on the same side of the 64 casing are for use with
games accessories, such as joysticks and controllers, and also for
light-pens, which allow the user to carry out actions like choosing an
item simply by pointing the pen to the appropriate part of the TV
screen. The light-pen can also be very useful in generating graphics
displays.

T.V. Cable

End which plugs
into Commaodore 64

End which
plugsinto T.V.

Fig. 1.2. The TV connection cable. A different cable is needed for a video
monitor.

The picture signal connectors (Fig. 1.2) are at the back of the 64.
There are two sets, depending on whether you wish to use an
ordinary TV receiver or a ‘video monitor’, also called a VDU (Visual
Display Unit). A monitor is a high-quality variety of TV display
which does not need to use the coded signals that are normally trans-

4 Commodore 64 Computing

mitted — it cannot therefore be used as a TV receiver operating from
an aerial. It will, however, accept signals from computers or video
recorders, and produce pictures which are very much clearer and
better focused than can ever be obtained from ordinary TV recei-
vers. All computers that are intended for, or can be used for, serious
business purposes feature a signal output for a monitor, because a
computer that is likely to be used for eight or more hours per day
needs a display that is less visually tiring than that of a TV receiver.
The output for these signals is a 5-pin socket on the back panel, next
to the TV aerial cable connector. Suitable plugs for these and the
other sockets can be obtained from any of the large number of
Commodore dealers.

If a video monitor is used, there is no setting-up to do apart from
ensuring that its signal plug is pushed into the correct socket of the
64. A TV receiver, however, needs considerably more setting up, and
if we assume that you don’t have a video monitor at present, then
setting up the TV receiver is the first priority.

Start by plugging the TV cable that is provided with the 64 into the
correct sockets. One end plugs into the aerial socket of your TV
receiver and the other end into the 64. Switch the TV receiver on,
and also switch on the 64. Unless you are lucky, you won’t see any
picture, because the 64 contains a miniature TV transmitter, called a
modulator, which is transmitting on one particular TV channel. On
US versions of the 64, this channel can be changed by a switch
situated next to the TV output socket of the 64, in case of possible
interference. There is no external provision for changing channels on
the European versions of the 64, however, and you will have to
retune the TV to find this signal.

This is simple enough if you have done it before or if you are using
a black/white (B/ W) receiver which has variable tuning. Variable
tuning in this sense means that different transmitting stations are
selected by turning a dial on the front or the side of the TV, so that all
you have to do is to turn this dial (see Fig. 1.4a) until the 64 tuning
signal appears bright and clear. Most tuner dials of this type have a
‘fine-tune’ section which can be turned to make very small
adjustments to the tuning. Adjust the dial until the signal has no
trace of ‘ghosting’ and is steady and clear (Fig. 1.3).

Most colour receivers , and a number of B/ W receivers, use push-
button tuners. Select a button that is not used for TV reception in
your district, and push it right in. This selects a channel, but it
probably isn’t one that will receive the 64 signal. To adjust the
tuning, you will have to find out what method is used on your TV.

Preliminaries 5

Light coloured blobs between letters

Fuzzy letter shape

g(‘\\ ‘Gr;ost’ ilrnages
after a letter
g/

Fig. 1.3. Picture flaws caused by faulty tuning.

Some older receivers require the tuning push-buttons to be rotated
(Fig. 1.4b), more modern receivers have a panel of tuning controls
(Fig. 1.4c) and you will have to find which of these controls
corresponds to the button that you have pressed. Once you find it,
adjust the tuning until the picture appears to be clear and steady.
The adjustment of the tuning control is very critical, and very small
changes will have a large effect on the picture.

If you have used a colour receiver, the picture will appear as light
blue letters, with a light blue border and a dark blue background. A
colour TV needs much more careful tuning than a B/ W receiver, and
will never display pictures as clear and well-focused as a good B/ W
receiver. Even for business purposes, however, the use of a colour
receiver can at times be justified to produce graphical displays like
bar charts. The dual signal outlets of the 64 permit the use of a colour
receiver for such displays along with the use of a high-quality B/ W
monitor for programming use, so that it is possible to have the best
of both worlds. In addition, of course, the TV output is valuable for
educational, display and conference use since it can supply signals to
a large screen TV or to a video recorder for later display.

An interesting feature of the 64 is that it can transmit signals to the
sound section of a TV receiver in addition to the picture circuits.
This facility is primarily intended for games programs, but it can be
a useful ‘attention-getter’ for the programmer or in the course of
computer generated demonstrations or other displays.

Having set up the computer and the TV receiver, we have a
working system but to complete the system we need a cassette
recorder or a disk system. These both make use of the connections at
the back of the 64, and the computer must always be switched off
when these connections are made. The cassette recorder is connected
to the flat 6-pin socket which is next to the ‘user port’; the disk

6 Commodore 64 Computing

(@) —

| - Tuning dial-
turn to tune.

——
G-

-
et
——

LR RNT]

/ — Select by pushing in.
Tune by twisting

(c) Selector Switch-press

N\

Adjusting
Wheel
(turnto tune)

ITTD (XTI TS QD I

e

(ITTID (QNTTED QITITED NI (R QD

Tuning Panel Cover

Fig. 1.4. Common types of TV tuning circuits.

Preliminaries 7

system connects to the other 6-pin connector (the serial port), which
is also used for the Commodore printer. For the moment, we’ll defer
the subject of checking out the cassette or disk system, because we
need to try out the keyboard first.

The keyboard

Viewed from above, the keyboard of the 64 is laid out in a pattern
that closely resembles that of a typewriter. The top row of keys,
looking for the moment at the markings on the tops of the keys,
carries the number digits, along with some symbols, and also has the
keys marked CLR/HOME and INST/DEL at the right hand side.
The next row contains the Q to P keys, exactly following the type-
writer pattern, with@* t and two important computer-control keys,
marked CTRL (control) at the left and RESTORE at the right. The
next line of keys contains keys A to L, with brackets, colon, semi-
colon and equality sign. This row also has the RUN/STOP and the
SHIFT LOCK keys on the left, and the RETURN key on the right.
The RETURN key is a way of signalling to the computer that you
have completed an instruction or action, so this key position is one
that you will have to find frequently. The final row of keys contains
Z to M, with the < and > marks, period (full stop), and comma,
question mark and divide sign (/) and the SHIFT keys. On the left of
this row is the Commodore key, marked with the C= logo, which is a
selection key. On the right hand side is the pair of ‘cursor’ shift keys
which are used in editing. The final key, under this line, is the large
space-bar key which once again, is identical in style and use to the
typewriter space-bar,

In general, then, the special keys which are peculiar to computing
are located to the left or right of the normal typewriter keys, and we
can use the other keys, the letter and digit keys, just as we would use
the keys of a typewriter. It’s important to realise at this stage that
random pressing of keys cannot damage your computer, though it
may cause a stored program to be wiped out. The only way that you
can physically damage the computer is by maltreatment, such as
spilling coffee over it, or by making incorrect connections to the
sockets. When you connect attachments you should always have the
computer switched off, and you should be particularly careful of
attaching any non-Commodore devices.

8 Commodore 64 Computing

The characters

No, this isn’t the cast-list for a play, it’s a description of the shapes
that appear on the screen when you press keys. When you switch on
the 64 pressing any of the letter keys will produce the ‘upper-case’ or
capital letter version of that key on the screen. The position of the
letter on the screen before you type it is indicated by the ‘cursor’, a
flashing white block. When you type a letter, the letter replaces the
cursor, and the cursor moves one space to the right, indicating the
position of the next letter. At the end of a line, you do not have to
press a ‘carriage return’ key — the cursor will automatically move to
the left hand side of the next line down. This point is important,
because the RETURN key of the computer has a very different
action as compared to the carriage return of a typewriter.

The reason for the automatic selection of upper-case letters is that
we normally write programs in upper-case letters, and the 64 there-
fore sets up this condition when it is switched on. If you press either
of the two SHIFT keys at the same time as you press a letter key, you
will not get a lower-case (small) letter, but a graphics character. The
graphics character that will appear on the screen will be the one that
is printed on the front right-hand side of the key. For example,
SHIFT and Q, which we can write as AQ, gives the symbol @ .

The Commodore key (marked with the Czlogo) allows these key
actions to be changed. If you press the Cz key and the SHIFT key
together, the 64 keyboard will from then on behave like an ordinary
typewriter keyboard, on which the keys give the lower-case letters when
the SHIFT is not pressed, and give upper-case letters when the SHIFT
key is pressed. This mode of use is handy when you have to type
instructions into programs, or for messages, and is indispensable
when using word-processing. In this mode, if the C= key is pressed
along with a letter key, then the graphic symbol that is illustrated on
the left hand side of the front of the key will appear on the screen.
The keyboard can be restored to normal program mode by pressing
the C= key and SHIFT together once more. The = key can also be
used along with the CTRL key to produce colour displays, a topic
that we shall deal with more fully in Chapter Seven.

Keyboard use

For the first few chapters of this book, we shall concentrate on the
use of the keyboard for learning to program, leaving special effects

Preliminaries 9

like graphics, colour and sound until later. We shall also leave the
action of the special ‘user-programmable’ keys, the four keys at the
right hand side of the keyboard, until Chapter Eight.

In programming mode, as we have just seen, the letter keys give
upper-case (capital) letters, and the keys which show one symbol
above another, such as you see on the top row of keys, will give the
lower symbol unless the SHIFT key is also pressed. If you are
familiar with the use of a typewriter, you will be familiar with this
idea, but it needs to be said in case you have never used a typewriter.
The same applies to the three action keys that are labelled
RUN/STOP, CLR/HOME and INST/DEL - I have used the
oblique stroke here in place of writing one word over the other. The
same system is also found on the keys that are marked CRSR
(cursor control keys).

Of these keys, the CLR/HOME is a cursor and screen control
key. When the key is pressed by itself, the action is ' HOME’ meaning
that the cursor is returned to the top left hand corner of the screen. If
the SHIFT key is used at the same time as the CLR/HOME Kkey,
then the action is to clear the screen as well as placing the cursor in
the HOME position. This is a useful way of getting rid of any clutter
on the screen, and preparing for a programming session.

The INST/DEL key is a vital editing key, which allows anything
that you have typed to be altered. DEL means delete, and its action
is to wipe out the character on the immediate left hand side of the
cursor. It’s a back-space-and-erase key of the type which on some
other computers is marked with a left-arrow. You must not expect
the left-arrow cursor key of the 64 to carry out this action. If you
delete a character which is followed by other characters, then the
action of deletion will also move all the characters to the right of the
cursor so that they fill in the gap as Fig. 1.5 shows. When the
INST/DEL key is pressed at the same time as the SHIFT key, the
action is INSerT. A space is inserted at the cursor position, shifting
all the following characters to the right, as shown in Fig. 1.6. A space
is inserted at the cursor position so that if a letter has been omitted in
a word, it can now be put into its correct place.

When you are typing and you notice an error, the delete action is
usually the easiest method of correcting the mistake. When the error
is near to the start of a line of characters, and deleting would mean
removing a lot of typed material, the cursor movement keys can be
used to place the cursor, with no effect on the characters, where the
error can be dealt with. The CRSR keys, used by themselves, will
move the cursor to the right or downwards. Used along with the

10 Commodore 64 Computing

PRINYTH

move cursor left
PRINYER

press DEL key
PRINE

move cursor right
PRINTH

Fig. 1.5. Deleting a character. To change a character you need only place the
cursor over it and type a new character.

PRINTABR
move cursor to left

\/

PRINT®B
press INSERT key (SHIFT + DEL)

\

PRINTHEAB

\

type T
PRINTTEB
move cursor right

\

PRINTTABHE

Fig. 1.6. Inserting a space between characters.

SHIFT key, the cursor keys will move the cursor left or upwards (the
usual directions for correcting an error). If a CRSR key is held
down, with or without the SHIFT key, then its action repeats, so
that you do not have to keep stabbing at the keys to move the cursor
several characters along a line or several lines up or down. When the
cursor is in place, you can use DEL to delete the character on the left
of the cursor, or you can replace the character under the cursor by
typing a new character, or you can make a space by using INST, and
then fill it with a new character.

The RUN/STOP key is used to a lesser extent. The action of the
key, when used alone is to stop a program, and we deal with this use
in Chapter Four. The RUN action should not be confused with the
word ‘RUN’ typed (one letter at a time) as a command. The RUN key
(SHIFT and RUN/STOP) is used to cause a tape to be loaded and
its program run automatically.

NOTE: Always ensure that the cursor has been moved down to a

Preliminaries 11

vacant line before typing a new line or a command (like LIST,
RUN). Failure to do this will result in an error message.

The RESTORE key is used in conjunction with the RUN/STOP
key to reset the machine to the state of waiting to run a program.
This is necessary in three particular cases. One is when the machine
uses the instruction INPUT (see Chapter Two), and you wish to
break off the program at that point. This cannot be done by using
the RUN/STOP key by itself, only by using the RESTORE key as
well. This is a safety precaution to prevent an inexperienced
operator from stopping a program accidentally. Another use
concerns the sound system. It is possible for the machine to stop with
a sound signal being sent out, and the use of RESTORE with
RUN/STOP will cut off this signal. Similarly, if a program leaves
the screen with a colour display, possibly with the text invisible
(because it is the same colour as the background), then RESTORE
and RUN/STOP will cause a return to normal appearance. The two
keys must be tapped sharply - it is not sufficient to press them gently.

Saving and loading

Until you have saved and reloaded a program, you cannot be sure
that the cassette or disk system of the 64 is acting correctly. The
cassette system in particular needs to be checked fairly carefully,
especially if you are trying to use a non-Commodore recorder with
an adaptor. Before we can test the action, however, we need a
program. Press the RUN/STOP and RESTORE keys together,
which will clear the screen and restore normal operation regardless
of any other keys that you may have pressed previously. Now type
the simple program that is illustrated in Fig. 1.7. The word REM

1§ REM
20 REM
3¢ REM
4§ REM

Fig. 1.7. A simple ‘program’ for testing cassette recorder action.

means reminder, and it’s a signal word to the computer that what
follows is not an instruction. The ‘program’ consists of four lines

12 Commodore 64 Computing

that are numbered 1¢,2¢,3¢ and 4¢, and the word REM. Don’t omit
the numbers - that’s what makes it a program, even though it does
not do anything. You will have to press the RETURN key after each
line is complete (after the M of REM). After the last line has been
typed and RETURN pressed, type the words:

SAVE“TEST”

and then press the RETURN key. The computer will then print on
the screen:

PRESS PLAY AND RECORD ON TAPE

and your response to this should be to press these keys on the
recorder, holding the RECORD key down first, thenthe PLAY, and
pressing them hard enough to be sure that they lock in place. The
screen will clear while the computer is recording your program on to
the tape, and the word READY will appear when recording is
complete. You can then press the STOP key of the recorder. If you
are using a non-Commodore recorder with an adaptor, you will
have to follow the instructions that come with the adaptor unit to see
what sequence will be needed.

You can now test the efficacy of recording. Switch off the
computer, and then switch on again. When you have switched on
again, type LIST and then press the RETURN key. Nothing new
should appear, indicating that there is no program in the computer.
Now rewind the tape, and type:

LOAD“TEST”
and then press RETURN. The screen will then show the message:
PRESS PLAY ON TAPE

As before, if you are using the Commodore recorder, pressing its
PLAY key so that it locks in place will start the tape running, and the
screen of the computer will clear. The computer is now looking for
the recording of the name of the program, TEST. When this is
found, the message:

FOUND TEST
will appear, and you can load the program by pressing the Czkey. If
you decided that you didn’t want to load this program, you could

press the RUN/STOP key instead. Once the program has loaded,
the

READY

Preliminaries 13

prompt signal will reappear, and typing LIST followed by pressing
RETURN should make your program reappear on the screen. If you
don’t press any keys when the FOUND message appears, then the
program will be loaded after a short delay.

Once again, if you are using a cassette recorder which is not a
Commodore type, along with an adaptor, you will have to follow the
instructions that come with the adaptor. In addition, you will have
to set the volume control of the cassette recorder, using cut-and-try
methods. In general, a volume control setting of about halfway, with
any tone control set at a maximum treble, will be a good starting
point, but you may have to attempt several loads with slightly
different volume control settings in order to achieve satisfactory
loading. When you have found a satisfactory position, mark it!
Users of the Commodore machine have no volume controls to worry
about.

Disk storing and loading

The use of disks is rather beyond the scope of this book, but brief
advice on the saving and loading of programs may be useful. In
general, saving and loading on disk are both operations that are
simpler than corresponding cassette operations. You must first
ensure that a disk has been placed in the disk drive, correct way up.
Starting once again with the four-line program of Fig. 1.7 type:

SAVE“TEST”,8

and then press RETURN. The digit 8 is the reference number for the
disk system - this is the only way in which the computer can
distinguish a cassette SAVE operation from a disk SAVE operation.
The disk drive will start to spin the disk, and you will seeappearingin
quick succession on the screen the messages:

SAVING“TEST”
OK
READY

When the READY signal has appeared, the program is saved and you
can turn off the computer (check your disk drive manual about the
procedure for turning off the computer when the disk drive is fitted).
Turn on the system again, and type LIST (followed by pressing
RETURN) to ensure that no program is present, then type:

14 Commodore 64 Computing

LOAD“TEST”,8
Press RETURN, and the disk drive will start, then the messages:

SEARCHING FOR TEST
LOADING
READY

will appear. You can then LIST (press RETURN) to see the four-
line program displayed. Note that a new disk has to be ‘formatted’,
and a formatted disk has to be ‘initialised’ before being used. For the
meaning of these words, and the methods of achieving these actions,
see the disk-user manual.

Using cartridges

A range of programs, and particularly programs for business
purposes as well as for games, will be available on cartridge. The
cartridge contains additional memory of a permanent kind, and by
plugging in this cartridge, you are connecting this pre-programmed
memory into the main memory of the computer. To use the
cartridge, first switch off the computer and all of its attachments.
Insert the cartridge into the large slot at the back of the computer -
the one with eleven contacts. Now switch the computer on. Read the
instruction sheet that comes with the cartridge - this will tell you
which key on the 64 you will have to press to start the cartridge
program running. Normally, either the ¢z key or the RUN key
(SHIFT with RUN/STOP) will be used for this purpose.

Chapter Two

Beginning BASIC

If your computer-owning days started with a Commodore machine
such as the PET or the more recent VIC-20, then this chapter and
the three following will have few surprises for you, because
Commodore have very sensibly retained the same BASIC for the 64
as they used in the earlier models. BASIC s the computing language
that was developed for easy learning, and though some manufac-
turers pride themselves on using an ‘extended BASIC’ that is much
more difficult to learn and to use, Commodore have retained the
original simplicity of BASIC. The reason is that the 64 can make use
of a variety of languages, so that anyone who needs to use a different
language in order to do different things has only to plugin a different
language chip or cartridge.

The 64 may, however, be your wise first choice of computer by
consideration of price, availability, the huge range of add-on extras
and the equally large range of software that is available now (not at
some promised time in the future!), ease of use, potential for
development, and all the other points that make this suchanexcellent
machine. If this is so, you probably don’t know any BASIC, and this
chapter, with the three that follow, will help you. Learning BASIC is
like learning any other language. There are rules, called syntax, and
there are words, the keywords, which have to be learned and used.
The difference between BASIC and a ‘foreign’ language is that
BASIC has very few words for you to learn, and the rules are simple,
with no confusing exceptions. The easiest way to learn BASIC, like
any other language, is by using it. You should therefore try out
everything that is suggested in this and the following chapters on
your own machine. In this way you become familiar with the
keyboard and with the commands of the machine very much faster
than you would simply by reading.

16 Commodore 64 Computing
Direct commands

To start with, a command can be issued by typing a command word,
or keyword, followed by pressing the RETURN key. Nothing
happens when you type words — the action is always started by the
use of the RETURN key, because this is the ‘get-it-done’ key. Until
you press RETURN, you can change what you have typed as much
as you like, but pressing RETURN carries out the action very
rapidly - if it can be done. Try it - type:

PRINT 2.6 — 1.1 (now press RETURN)

The result 1.5 printed on the screen below the characters PRINT
2.6—1.1. The keyword in this example is PRINT, meaning print-a-
new-line-of-information-on-the-screen. If we want to print on
paper, we need to specify this in a different way, and we shall look at
this in Chapter Five.

The computer does as you instruct it; it can’t read your thoughts.
If you type simply: 2.6 — 1.1 = (with no PRINT instruction), then
when you press RETURN, you will find that the computer ignores
what you have typed. You will have disobeyed a rule of computer
grammar, which is that the first part of a command must be an
instruction word taken from the list of BASIC instruction words
given in the manual. The number 2.6 isn’t an instruction word, and
the computer can make no sense of it. You’re dealing with a
machine, not a thinking, guessing, human. Type NEW and press
RETURN to remove the error.

Symbol Use Example
+ positive number +6
- negative number —5
t raise to power 312=932=9)
* multiply by 5*%6=30
/ divide by 81/3 =27
+ add to 5+44=9
— subtract from 17—-8=9

These are listed in order of precedence.

Fig. 2.1. The arithmetic symbols that are used for the 64.

Beginning BASIC 17

The way that we used PRINT was as a direct command, and you
could use the 64 just asa calculator, with the arithmetic symbols that
are illustrated in the table of Fig. 2.1. You didn’t buy a 64 just to use
it as a calculator, though, so we’ll leave the subject of direct commands
for the moment and move to programming. The difference is that a
direct command is carried out whenever the RETURN key is
pressed. If you want to repeat the same command, you have to type
it all again and press RETURN again, which is tedious. The
computer provides a better method, program mode.

A program instruction is distinguished from a direct command
because it starts with a number rather than with a command word.
The number must be a positive whole number like 1,10,98, (not —12
or +13.7), and the range of numbers that you can use is from 0 to
63999. Your computer will use these numbers in two ways:

(1) To indicate that what follows is a set of instructions that are
to be carried out later,
(2) to show in what order the instructions are to be carried out.

If you have three instructions in three lines that are numbered 1, 2,
and 3, then the instructions will be carried out in ascending order of
these line numbers from 1 to 3. As it happens, using 1, 2, 3
numbering is inconvenient because if we need an extra instruction
between lines we can’t fit it into place so easily (we can’t use line 1.5)
so we generally use numbers that rise in tens, such as 1¢/,2¢,3¢, ...
and so on.

When we start with a number then, the computer does not carry
out the instruction when we press RETURN, it simply szores the
instruction(s) in its memory and waits for more. You still need to
press RETURN when you have finished typing a complete
instruction line, but RETURN causes storage, not execution of the
instructions. To execute the instructions, you need to use a new
command word, RUN.

Note, incidentally, that a ‘line’ in this sense does not mean one line
on the screen. It means whatever you type followinga line numberright
up until the point when you press RETURN. This can make several
lines of text on the screen, and you must not be tempted to
press RETURN when you see the letters reaching the right hand side
of the screen. The computer will automatically place letters on a new
screen line as you continue to type; if you press RETURN, this will
be taken as the end of the instruction. This is slightly difficult to
grasp if you are an experienced typist!

Now try the example in Fig. 2.2. It’s a three-line program, so that

18 Commodore 64 Computing

18 FRINT 2.3+1.6
20 PRINT 4.7%2.25
30 PRINT 16.3/2.4

Fig. 2.2. A simple arithmetic program.

when you have finished entering line 3@ all that you will see on the
screen will be the program lines that you typed, not the answers. If
you want to see the program lines repeated, type the command word
LIST (then press RETURN). The program will run (be carried out)
if you type the word RUN and then press RETURN. Once again,
notice how RETURN is used to cause the command to be carried
out.

Now try this one - type a new line which has the number 15. You
can make it something like:

15 PKINT 6.7 — 2.6 (press RETURN)

On the screen at the moment the line appears under the others, but it
has been stored in such a way that it will be carried out between lines
10 and 20, where its line number places it. To see how the computer
has arranged these lines in its memory, type again the word LIST
and press RETURN. You will now see the lines arranged in their
correct order.

More print actions

So far, we've printed only the answers to arithmetic problems. The
PRINT instruction is capable of much more than this, however, and
it’s the main way in which we get information from the computer. To
extend its use, we add other marks, called print modifiers, to the
PRINT instruction. To start with, we can use inverted commas, or
quotes (“’). When you follow a PRINT instruction with quotes, then
anything placed between the quotes is printed exactly as it appears
between the quotes. Try the example in Fig. 2.3. When you RUN
this one, the first action is to print the word ARITHMETIC. Under

18 FRIMT"ARITHHMETIC"
28 FRIMT
38 PRIMT"2 TIMES & IS ";2%6

Fig. 2.3. Printing words as well as results.

Beginning BASIC 19

this is a space, a blank line, because nothing followed the word
PRINT in line 2. When you use PRINT, the computer always
selects a new screen line to print on, unless you instruct it otherwise.
The third line reads 2 TIMES 6 IS 12 when the program runs (did
you put a space between the S of IS and the second quote mark?).
You haven’t put the number 12 into your program, it was calculated.
The items outside the quotes are calculations, the items inside the
quotes are printed as they are, literally. Such items that are placed
between quotes are called string literals — any set of characters that
you like to type. These string literals put between quotes will always
be printed exactly as you typed them.

So far, each time we use PRINT, the computer takes a new line to
print on. We can suppress that action by adding a semicolon (;) sign
after a printed item, outside the last quote mark. For example, if we
type the short program in Fig. 2.4, then when we RUN this we shall

16 FRIMT"USTIHG"
28 PRIMT" THE":
38 FRIMT" SEMICOLON"

Fig. 2.4. How semicolons alter the effect of PRINT.

see the message printed on one line — the semicolon has prevented
the new line from being taken. The use of the semicolon will also
suppress spaces, so that if you type:

1§ PRINT “THIS” “ONE”

(using the space-bar to create the spaces), and RUN this, you will see
THISONE - the space that was between the wordsdoesnotappearin
the printed output. If you want to make spaces appear, they must be
placed inside the quotes.

Did you find that this program produced more than you
expected? If you have had a program stored in memory from a
previous exercise, then some lines from that program will still be
present. This can be a nuisance, so to remove such unwanted
programs before you start typing in a new one, you can type NEW
(then press RETURN) so as to clear the way for your new items.

The comma (,) also serves to modify the PRINT instruction, but
in a rather different way. Try the program in Fig. 2.5. When you
RUN this, the four letters are spread over the line, spaced out
equally. The comma causes a space of ten letter widths to be allo-
cated to each item between the commas, so that the width of the
screen, which will accommodate 40 letters or digits (or other

20 Commodore 64 Computing
16 FRIMT"A", vgv, ngn, ngo
Fig. 2.5. The effect of using commas.

characters) is split into four columns. If you take up too much space
for one item, then the next column can’t be used for anotheritem—try
the example in Fig. 2.6. The first item here is too longto fit into a ten-

18 PRINT"MUCH TOO LONG","EB","C","D"

Fig. 2.6. If one item is too long, the fields are rearranged.

letter wide column, so the next column cannot start at the eleventh
space, and must start at the twenty-first space. This leaves only two
columns for “B” and “C”, so that “D” has to be printed on the next
line. This use of commas provides a simple way of making neat
columns of items that need fewer than ten spaces, however. Try the
lines in Fig. 2.7 which will arrange the words so that they fall into

@ PRIMT"THIS IS"."S0 IS", "AMOTHER"."THE FIMAL"
@ PRIMT"A TITLE","THIS OME","TITLE","TITLE"

1
5

Fig. 2.7.Printing in four columns.

four columns, but arranged as two lines. See how the computer has
printed the first four items across the screen, then printed the next
four directly underneath. This is a particularly useful way of
arranging columns for display purposes; it’s a most useful feature for
classification, for example.

By this time, incidentally, you will have noticed that when you
type a new line 1(, the previous line of that numberisreplaced. Even
if you simply type 1§ and then press RETURN, you will have
removed any line 1§ that previously existed. Wiping a line is just one
way of altering what you have typed, and the use of NEW will
remove a whole program. From now on, we shall use another

instruction which clears the screen of the clutter of old program lines
that accumulated there. You will now have seen that the screen

‘scrolls’ — the printed items on the screen move upward to make
room for new items, and eventually disappear from the top of the
screen. This is one way of removing unwanted lines, but the PRINT
“CLR” instruction (CLear Screen) will provide you with a blank
screen at any stage in a program. We have already seen the use of the
CLR key on the keyboard to do the same thing. Neither the CLR
key nor the PRINT “CLR” instruction remove anything from the

Beginning BASIC 21

memory of the computer — your program is still safely stored. Note
that “CLR” appears on the screen as an inverse heart symbol.
We’ve seen that the spacing of columns on the screen can be
organised by using the commas outside quote marks. There’sanother
way of organising spacing which is more controllable — the
instruction TAB. TAB means tabulate, meaning move across the
screen to some position. You have to specify what that position is by
typing a number following TAB, and the numbering is done in the
same way as on a typewriter, by starting from the left hand side of
the screen. Computers usually start number counts with () rather
than 1, so the tabulation numbers start at f and end at 39, since the
64 uses a screen ‘width’ of 40 characters - this is referred to as a ‘40
celumn screen’. The number that follows TAB must be enclosed
within brackets (parenthesis) — try the example in Fig. 2.8. By using

1@ PRIMTTABCLITO"TITLE"
20 PRINT:PRINT

30 PRIMTTAB(1)"THIS SHOWS HOW A TITLE CAM BE
PLACED"

40 PRINTTAB(S)"IM THE CEMTRE OF THE SCREEM,"
Fig. 2.8. Using TAB to position the start of printing.

TAB(17) for the first item, the word TITLE is placed in the centre of
the screen. There’s no magic about finding the number, just a
calculation that typists have been using for generations - it’s illus-
trated in Fig. 2.9.

1. Count the number of letters and spaces in the title Example: 14
2. Dividethis by 2, and round up if there isaremainder ~Example: 7
3. Subtract this number from 19 Example: 13
4. Use this as the TAB number.

Fig. 2.9. How to calculate the value for TAB.

Another point to note about this particular program is that it has
two instructions in line 2, separated by a colon (:). This is called a
‘multi-statement line’, and it achieves the same effect as having two
lines with the instruction PRINT in each. The instructions in a
multi-statement line like this are executed in the order that youread
the line, from left to right, and there is a limit — you can’t have more

22 Commodore 64 Computing

than 80 characters (letters, digits, spaces, punctuation marks) in a
line. You must also place the colon after each ‘statement’, where you
would normally have taken a new line and pressed RETURN. The
advantage of using lines like this is that it keeps instructions grouped
‘as you want them, and that it saves on memory space. Thisis because
each time you take a new line, the computer has to store the address
(an index to that line) in its memory, and this index entry takes up
memory space.

19 PRINTTAB(S)"ITEN"; TRBC2@) "ANOTHER" ; TRB(3S)
"ITEN"
28 PRINTSPCCS)" ITEM"; SPC(205 "ANDTHER" ; SPCC 10)
" I TEM "

Fig. 2.70. TAB and SPC contrasted.

There are two more ways in which we can modify PRINT, but we
use them rather less than TAB. One is SPC, which will print a
number of spaces. How many? As many as we specify within
brackets following SPC - the limit is 255. This is useful if we want a
fixed number of spaces following an item, as illustrated in Fig. 2.10
which contrasts the effects of TAB and SPC. Another instruction
word that is concerned with the PRINT position on a line is POS.
This finds the position along the line where the next item will be
printed — but we’ll leave that one for the moment.

Variables

By this time you are probably wondering if you ought to have taken
a course in typing before you learned BASIC, since every serious
computer requires the use of some typing skills. Fortunately, it’s
possible to reduce the amount of typing, and gain some other
advantages, by using what we call ‘variables’. A variable is a code of
one or two letters, and like any other code, we can decide what our
variable will represent. Take a look at Fig. 2.11. In line 1§, which is
another multi-statement line, we have allocated (or assigned) two
variable names. This simply means that we have decided what letter
codes we shall use for two items. One item is the name SMITH, and
it has been allocated thecode SN$. The SN partisthe uniquecode, the
dollar sign, called a string in computing lingo, is a signal to the
computer that we are using the letters SN here to mean a ‘string’, a
set of letters rather than a number. The reason for specifying this is

Beginning BASIC 23

1@ SHg="SHMITH" :T$="THIS NAME IS"
20 PRIMT T#." DOWALD";" "iSHE
30 PRINT T4;" KIRSTIE"," "iEH$
42 PRIMT T#:" GORDON";" "iSN$
5@ PRINT T#:" SARAH";" "iSH$

Fig. 2.11. Using variables to represent words.

that the same code letters with no dollar sign attached would be
treated as a code for a number, and the computer treats numbers
very differently from the way it treatsstrings. Youcan multiply 27 by 32,
for example, but you can’t multiply 27 Blackberry Way by 1010
42nd St., or JONES by SMITH. Anything that you would PRINT
placed between quotes will need a variable name that is followed by
its dollar sign — we call this name a ‘string variable’.

See how the use of string variables in Fig. 2.11 saves typing. The
string variables are assigned with values in line 1f), and the other
lines make use of them. Wherever any name or set of letters is used
more than once, it makes good sense to assign it to a string variable
in this way. We can change this assignment any time we like — that’s
why it’s called a variable — but the letters remain assigned until we do
change the assignment. A very few computers require you to type the
word LET when you assign a variable name with a value (such as
LET A =6, LET A$ = “NAME”). The 64 follows the world-wide
MICROSOFT standard which does not require this word to be
used. If you type LET, however, the computer will not reject it.

10 SHE="SIHCLAIR":SH=1.867: SHE=2446
28 PRINT"SHE IS ",SH$

38 PRIMT"SM IS "iSH

48 PRIMT"SHX IS "iSME

Fig. 2.12. Three different types of variables can use the same letters (name).

In addition to string variables, we can assign two types of number
variables. We can even use the same code letters for the two different
types of number variable and the string variable, providing that we
remember to use the distinguishing marks! Just to take an example
in Fig. 2.12, SN$ is a string variable, SN is an ordinary number
(called a ‘real’ number) and SN% is an integer number. Why the
difference? An integer is a positive whole number whose value lies
between —32768 and +32767 and the usefulness of it is that the
computer can store numbers of this type very compactly, taking up
only two units (called bytes) of its memory. It can also carry out work

24 Commodore 64 Computing

on these numbers very quickly, much more quickly than it can deal
with numbers like —27.64, 136.43 or 1.2E-7, which are the ‘real’
numbers. Real numbers need a lot more memory for storage, five
units each in fact.

One point in particular that you need to be aware of is that
arithmetic using integers is always exact, but when real numbers are
used, the answers are practically never exact! The error may be only
in the tenth decimal place, and not visible on the screen, but it does
mean that you have to take some care with involved calculations.
We'll look at this point in more detail in Chapter Three. Note,
by the way, at this point, that some variable names are ‘illegal’
— they are reserved for use by the 64. Normally we can use any
combination of letters, or letter and digit provided that the first
character is a letter. Fig. 2.13 is a list of variable names that are used
in a special way by the 64, and which we should not use for other
purposes. If you try to use these variable names, you will find that
their values change as the program progresses!

ST Used when data is replayed from a cassette
TI Used as a timer
TI$ Used to hold six ‘time of day’ characters.

In addition, several two letter names which are reserved words (like GO,
TO) or which are the first two letters of reserved words, cannot be used.

Fig. 2.13. Reserved variable names - the use of these will be rejected.

Inputs to programs

So far, on the program examples that we have looked at, we have
programmed so as to produce outputs which take the form of
printing on the screen. We can also provide for inputs, which allow
the computer to suspend a program until you have typed some
number, word, or phrase. This ‘input’ might for example, be an
answer to a question that has been printed on the screen, and we
signal that our reply is complete by pressing the RETURN key. The
instruction word that produces this effect is INPUT, and its use is
illustrated in Fig. 2.14. Whatever you type as a reply to the question
of line 1) has to be allocated to a variable name — you can’t have a
line which simply consists of the word INPUT. Since what you are
going to replay is a name rather than a number, the variable name
that we use must be a name with the string sign attached; a string

Beginning BASIC 25

16 PRIMT"WHAT IS YOUR HAME"
28 THPUT HM$
38 PRIMT HWM$;" .1 LIKE IT"

Fig. 2.14. Using INPUT to type a reply to a question.

variable name. Line 3§ then simply demonstrates that this variable
name has been allocated.

There are several unexpected points about the use of INPUT. One
is that when the computer comes to line 20, it will take a new line on
the screen, place a question mark (query) at the start of that line, and
wait. It will wait for as long as it has to, because unless you signal by
pressing RETURN that you have completed your input, it will stay
in this waiting state. When the variable that is being used is a string
variable, then any item that you type, number or letter, as long as it
does not contain more than 255 characters, will be accepted.

If you type nothing, and simply press RETURN, the computer
takes this as meaning a blank, and the PRINT NMS$ instruction (with
nothing else but NM§ printed) will then print a blank line on the
screen. In line 30 of the example, only the words ‘, I LIKE IT” will
appear.

Another point about the INPUT instruction is that you don’t need
to place quotes around the name that you type in response to the
query. It is only when you allocate a string variable name to a string
within a program line that you need the quotes. If you add quotes to
the item that you type, then these quotes will be taken as part of the
item, and will appear when it is printed.

1@ PRINT"YOUR MAME. FLERSE",
IHPLIT HiM$
FRIMT"I KHEW R "iHME:" OHMCE."

T)
fae By Y

Fig. 2.15. A neater form of INPUT, using the same line.

Since the INPUT instruction is so often used as the reply to a
question printed on the screen, it is natural to have PRINT and
INPUT used together, with PRINT used to ‘ask’ the question, and
INPUT to answer it. By using a semicolon, we can place both
question and answer on the same line, as is illustrated in Fig. 2.15.
This looks neater than having the question and the answer on

18 IHFUT"YOUR HAME. PLERSE":HMME
28 PRIMT"AT ERSE.":MME," AT ERSE."

Fig. 2.16. Combining INPUT with a printed message. Note the semicolon,
which must not be omitted.

26 Commodore 64 Computing

separate lines, and is so useful that the actions can be combined as
illustrated in Fig. 2.16. The question is placed between quotes
following the INPUT instruction word, then a semicolon is used to
separate this from the variable name that we are goingto allocate to
the answer.

If a string variable is used, then any reply is acceptable, but if a
number variable is used, then only a number is acceptable. In
addition, the number variable must be of the correct type - it is
useless to have INPUT N9 and then to type 1.746 as a reply, because
1.746 is not an integer. If there is any doubt as to what the answer
might be, always use a string variable. Using a number variable and
then typing a string will cause the error message REDO FROM
START. Unlike the action of many computers, this does not stop
the program from running, it simply allows you another chance to
put in the correct kind of information.

READ ... DATA

There is another way of allocating a value or a string item to a
variable name, that of reading the item from a list. Thelist is called a
data list, and it is placed into the program using the word DATA as a
marker. DATA is the first word in the list following the line number.
The items of the list are separated by commas (though no such
separation is needed between the word DATA and the first item),
and they are used only by an instruction READ placed somewhere
else in the program. If the DATA line occurs early in the program,
the computer simply ignores it until there is a READ instruction.
This is the first exception to the rule about lines being carried out in
strict sequence. If there is more than one DATA line the computer
treats the higher-numbered DATA lines as simply being extensions
of the first one.

1@ DATA ALBATROSS.BAT. CUCKOO
2@ READ A%:Wg=" THIS ITEM IS"
38 PRIMT W4&," "iR%

40 READ RS PRIMT Y4," “iA$

5@ RERD A%:PRIMT V4" "iA%
Fig. 2.17. Reading items from a DATA list.

Figure 2.17 shows this pair of instruction words being used in a
program that needs rather too much typing for my taste. The DATA
line is put at the start of the program, but it could have been placed at

Beginning BASIC 27

the end or in the middle, it makes no difference. The list consists of
three items, and when the computer carries out line 20, the first of
the items is used. This is printed in line 3@, along with the phrase
“THIS ITEM IS”, which has been allocated to V$. Line 4¢ contains
another READ instruction, and because we are reading from a list,
the item that is read is the second item, which is allocated to V$ in
place of ALBATROSS and so is printed in line 4¢. Similarly, line
50 reads the third item and prints it.

If we had a fourth READ in the program, but only three items of
DATA, it would be impossible to proceed, and the computer would
halt with the error message OUT OF DATA. When this happens,
you can’t resume the program from where it halted — you have to
correct the fault and start again. The only error message that will still
permit you to continue is the REDO FROM START message that
appears when you have made an incorrect type of reply (string in
place of number) to an input. If youtryto READ a number variable
(READ A), but have a string as data, then the computer will stop
with a TYPE MISMATCH error message.

The example that has been used here is clumsy, because identical
instructions have been repeated, typed and executed more than
once. Note that AS$ is allocated to a different word each time, so
there is no reason why we should not simply repeat the same
instructions three times. This type of action is called a loop, and we
shall deal with this topic in much more detail in Chapter Four.

Sometimes we want to be able to read a list from the start again in
a program which has already read the list once. This action can be
ensured by using the instruction word RESTORE. This has the
effect of causing any READ instruction to start once again at the
first item of DATA, rather than continuing with a list, or delivering
an OUT OF DATA error message. RESTORE will start the data list
at the lowest numbered DATA line — some machines have the
facility to RESTORE to any number line, but this is not available on
the 64.

GET it?

Sometimes the use of INPUT takes too long! Typing a word and
pressing RETURN is a long procedure if all you want to do is to
press one key to make a choice. To make life easier for you, the 64
offers a different instruction, GET.

GET exists in the forms GET N, for a number, and GET N§$ fora

28 Commodore 64 Computing

letter. The Nand N$ areexamples of variable names only,and you can
use any valid variable names that youlike. Theeffect of GETis similar
to that of INPUT - the computer detects a key being pressed, butyou
have to arrange for the instruction to be repeated until this happens.
The program then continues. You don’t have to press RETURN. of
course, if you use this deliberately to enforce a wait, and print the
message “PRESS ANY KEY TO PROCEED”, then the RETURN
key is as good as any to press. The point is that only one key needs
to be pressed, not two.

18 PRINT"FICK A LETTER, FLERSE"
2@ GET L$:IF L$=""THEM 28
a0 PRIWT"YES,":L$;" IS A LETTER."
48 PRIMT"PICK A NUMBER. PLEASE"
5@ GET L:IF L=8 THEM 5@

- £@ PRINT"YES.";Li" IS A HUMBER."
7@ FRIWT"PRESS AMY KEY TO PROCEED"
3@ GET L4$:IF L$=""THEN 8@
4@ PRIWT"vOU JUST DID !

Fig. 2.18. Using GET in place of INPUT.

Figure 2.18 shows three common uses of GET. Inline 2¢, GETLS$
will accept any key that is pressed. Even though the instruction in line
1§ is PICK A LETTER, any key will be accepted — ways of rejecting
undesirable inputs are dealt with in the following chapter. In line 50,
GET L will accept only a number, stored as a real number variable.
You can also use GET L% so asto obtain aninteger. GET L% is used
in exactly the same way as GET L.

Lines 70 and 8¢ then show another use of GET. In this case, you
are using GET just as a way of making the computer wait for you,
not because you are interested in using the key that has been pressed
or making an answer to any question. This waiting action is often
useful.

Chapter Three
Processing

In Chapter Two, we saw how we can print numbers or letters on the
screen and how we can put numbers or letters into the memory of the
computer in the form of variable names. It’s time now to look at
what we can do with these inputs so as to make them into outputs —
in other words, how we can process numbers and letters. We’ll start
with numbers. The most obvious type of processing that we
probably want to carry out using numbers will be arithmetic and the
solution of formulae. Processing of this type is particularly
important in accounting or scientific programming, and is well
provided for in the 64, making this computer an excellent choice for
these activities.

We have looked previously at the arithmetic commands +,—, *, /
and t. When more than one of these instructions is used in a single
instruction (called an expression), then the computer follows a
definite order of precedence. For example, if you have a line:

PRINT 26 + 4.2*2.7—36/3.2

then the order of carrying out the operations is not the same as the
order of reading from left to right. The operations of multiplication
and division are always performed before addition and subtraction,
so that in the example above, the computer will start by calculating
4.2*%2.7 (which is 11.34) and then 36/3.2 (which is 11.25), and then
will calculate 26 + 11.34 — 11.25 giving the answer 26.09. If the
computer followed a strict left-to-right order, then 26 + 4.2 = 30.2,
then 30.2%2.7 = 81.54, then 81.54 — 36 gives 45.54 and 45.54/3.2 =
14.23125, quite a different answer. If we want to ensure that the
computer carries out operations in the order that we want (different
from its normal order), then we have to use brackets to enforce our
choice. If we wanted to use the order of writing (left to right) in the
example, we would have to write it as:

(26 + 4.2) * 2.7 — 36)/3.2

30 Commodore 64 Computing

What happens is that the innermost set of brackets is treated first, so
that 26 + 4.2 is worked out. This result is then multiplied by 2.7 (into
the outer brackets, now), and then 36 is subtracted. Finally, the
result is divided by 3.2. The use of brackets will enforce any order
that we choose, but otherwise the normal order of precedence is
followed. Exponentiation, which is raising a number to some power
like 2 (square) or 3 (cube) is given priority ahead of multiplication
and division, and sign (+ or —) is accorded top priority. If all
priorities are equal, then the order of carrying out operationsis simply
left to right.

All of these arithmetic operations can be carried out using number
variables rather than with the numbers directly. This allows us to
program a formula and to use INPUT so as to put in the numbers
that we want to use. For example, suppose that we want to take an
amount SP (selling price) and add 15% sales tax to it. We can
program this as:

SP=SP+.15*SP

which looks very curious to anyone brought up on algebra. What it
means is that the new value of SP is equal to its old value plus 0.15
times its old value (15% has been expressed as 0.15). If we start with
SP = 1§ then after this instruction has been carried out, SP will be
equal to 115. This places the new value into the same variable name
as we used for the old value. We don’t have to do this, but it’s often
useful, as you will see in the course of this book.

In the course of a program which deals with calculating final
prices of a number of items, you might have to carry out this
operation of adding 15% on a number of different variables with
different names. When this has to be done, you don’t have to write a
separate line for each, you can use what is called a defined function.
A defined function is a way of writing a formula which can then be
used on any variable name you care to choose. In our example, you
could use the defined function that is shown in Fig. 3.1. The defined
function consists of the formula, equated to the DEF FNA(SP) onthe
left hand side. DEF means define, FN is the abbreviation for function, A
is a name, just as a variable might be named, and the SP in brackets
is the variable name that is used in the formula. Whatever quantity
you like can be placed between the brackets of FNA(), and this quan-
tity will be used in place of the SP that we put there in the definition
part. When we reply to the question on sale price in line 20, and type
a number, this is allocated to X. By placing X in the FNA brackets in
line 3¢, as FNA(X), what we are doing is to select the formula of

Processing 31

18 TEF FHACEP)I=5P+, 15%SF
2@ IMPUT"SALE PRICE";X
38 FRIMT'FIMAL PRICE IS "iFMHACK)

Fig. 3.1. A program which uses a defined function.

function A, as defined in line 1), but with X substituted for SP. We
could use any other variable name we liked, the same process will be
carried out on it. Only one variable name can be used within the
brackets in this way. The variable can also be a ‘dummy variable’,
meaning that it is not actually used in the formula.

18 DIEF FHRCAY=CIMTCA%108) /180
28 THPUT"HUMBER",B:PRIMT FHMRCE?

Fig. 3.2. A defined function which chops a number to two decimal places.

Figure 3.2 shows another example of a defined function in use.
This example chops a figure to two decimal places, a very useful
operation for financial work. This is done by multiplying by 100,
removing the fraction, and then dividing by 100. Details of this
operation are discussed later.

When you need to use a formula that involves more than one
variable, such as calculating the long side of a right-angled triangle
from the data on the other two sides, then a defined function is not
quite so convenient, as its formula must contain all but one of the
factors that you will use. The formula can be used directly, if it is to
be used only once, or it can be programmed as a subroutine (see
Chapter Four). Figure 3.3 shows this example, where the long side
equals

VA? + B?

where A and B are the lengths of the shorter sides. This program
performs correctly, but you will find that the long side C has its value
printed to more decimal places than could possibly be justified by
the sizes of the quantities A and B. For example, if A = 3.6 and
B = 4.4, then C = 5.6850681, and a value rounded to 5.7 would be
more appropriate, because A and B contain only one place of
decimals. If a set number of decimal places, rather than strict
rounding up, is acceptable, then a defined function as shown in Fig.
3.2 can be used to round off the results. The defined function uses the
instruction INT. INT means integer part, and its use will remove the
fractional part from any number that follows INT within brackets.
For example, if A = 3.67 then INT(A) = 3; if A= ().14 then INT(A)

32 Commodore 64 Computing

= () and so on. When A is negative, the use of INT(A) will round the
number down, so that if Ais—3.6, then INT(A)is—4. By using brackets
in the expression of Fig. 3.2 we compel the multiplication A * 1) to be
carried out first, and then the integer part taken. For example, if we
take C=5.6850681, then carrying out thisaction on C, using FNR(C)
will cause C * 10§ = 568.50687 to be found, then the integer part is
taken, which is 568. When this is divided by 10§ again, the result is
5.68, which is the value of C taken to two decimal places with no
rounding up or down. If you want the number rounded up, then the
defined function that is illustrated in Fig. 3.3 is more suitable.
Alternatively, by adding.f@5to thefigure before usingthe multiplica-
tion and INT, it will convert a 5.6854 to 5.69 and a 5.6844 to 5.68, so
performing rounding up. To obtain more decimal places, you canuse
1000 or 10PPP instead of 100. If you want only one place of decimals,
use 10 in the formula. You willhave to make adjustments to the round-
ing portion if you use this alternative method, but if you add .5 to the
number after it has been multiplied but beforethe use of INT, only the
power of ten has to be changed in the formula.

The use of INT in this way is a useful safeguard against the small
errors that are caused by the way the computer stores numbers. The
numbers that are shown on the screen are always rounded up, but
this is not the way in which they are stored, so that PRINT 2 * 2
will give a 4 on the screen, but the number stored may be
3.9999999999... If you have to check whether two numbers are
equal, you will have to ensure that both of them are rounded to the
same number of decimal places before the comparison. For
example, in accounts programs, you may wish to check that the
sums of two columns of figures are identical. If multiplication or
division have been used, it’s almost certain that they will not be
identical, and even if only addition and subtraction have been used,
it’s possible that the numbers may not be absolutely identical to
the last place of decimals. Since financial sums deal only with
pennies, cents, mils, sous, pfennigs, you name it — there is no need to
use more than two places of decimals, so that the rounding function
shown in Fig. 3.3 should be used.

For scientific use, the 64 can be used to work out considerably
more complex formulae than we have shown here. We shall not
spend time on these, because if you understand the use of the
formulae, then putting them into BASIC form for the 64 will be the
least of your problems. If a formula is too complicated though, the
64 may refuse to tackle it in one step, and you will have to re-
program it in steps, using one variable name allocated to the value of

Processing 33

one part of the formula, and another variable name for another part,
so that you end up with a simple function like multiplying one
variable by another.

18 DEF FMRCAY=CINTCR%108+.5)) /100
28 IMPUT"SIDE 1";A

38 IMPUT"SIDE 2";B

48 C=SGRCAT2+B12)

S6 PRINT"LOMG SIDE IS ";C." LOMNG"
&8 PRINT"WHICH IS APPROX. "FHRC(CY

Fig. 3.3.A 'triangle-solver’ program which needs a defined function to round
up the result to two decimal places.

String along with me

The ways in which the computer can process string variables are very
different from the way in which it can process number variables.
This is the reason for the distinguishing $ in the string variable name,
and the quotes around strings when you type them into program
lines. No arithmetic processes can be carried out on strings, but the
=+ sign can be used to join two strings together, as Fig. 3.4 shows.
This applies even if the string is a string of digits, looking like a
number! If A§ =“12” and B§ =“13”then A$ +B$=*1213", not 25.
Once again, the computer treats and stores strings quite differently
from the way it treats and stores numbers. The actions that can be
carried out on strings are called string functions, and we shall look
at, and illustrate, some of these string functions now.

18 IMPUT"YOUR SURMAME.PLERSE":S%
20 THFUT"YOUR FOREMAME.,PLERSE":F#
38 PRIMT Fg+" "+5%;" ,THIS IS YOUR LIFE."

Fig. 3.4. Concatenating strings, using the + sign.

LEN, VAL and STR$

LEN and VAL are string functions which result in a number. Each
has to be followed by a variable name of a string variable, enclosed
in brackets. As you might expect, LEN gives the length of a string —
its number of characters, and VAL gives the number value of a string

34 Commodore 64 Computing

10 A$="TITLE"

20 A=LEMCAS$)

3@ TB=(20-A/2)

49 FRIMTTABLTE.HE

Fig. 3.5. Using LEN to centre a title.

which consists of a number in string form. Figure 3.5 shows LEN
used to ensure that a title is printed centred on the screen. If we use
any title of less than 40 letters, then by allocating this title to A$, it
will be printed centred, so that it has the same margin on each side.
The formula is the same as the one that we used in Chapter Two; all
we have done here is to make use of LEN(AS$) to find the number of
characters in the string.

10 A$="12" R$="13"
28 PRIMT RA$+B$
30 FRIMT YALCA$)+VAL (B

Fig. 3.6. String-to-number conversion using VAL.

VAL is used when the string consists of digits, but stored in string
form. What VAL does is to convert the string form back to a number
form, so that we can carry out arithmetic. Figure 3.6 shows an
example, in which A$ and BS$ are string variables whose values are
purely number values, with no letters present. If we simply use the +
sign as in line 2f), then the result is joining, concatenation, of the
strings, but if we convert each string to its number form using VAL,
then we obtain the result we would expect from adding, the number
25.

When a string consists of a number and letters mixed, the use of
VAL will extract only a number that is present at the start of the
string. For example, if A$ = “25 Acacia Ave.” then VAL(AS) = 25,
but if A$ is assigned to “Route 12”, then VAL(A$) = ¢J. This is
illustrated in Fig. 3.7, where the numbers are correctly extracted
from A$ and BS$, but not from C$ because when the computer starts
to read the string it does not find a number.

18 A$="315T," BF="12 ACACIA AVE.":Ce="JULDSZ"
26 PRIMT'DAY MO, "SVALCA%:

3@ PRIMT"HOUSE MO. ":VALCES)

4@ PRIMT'REG. HO. "iYALCCED

Fig. 3.7. Extracting numbers using VAL.

Processing 35

VAL is particularly useful when you have a program that requires
you to make a choice from several numbered options (a ‘menu’). If
you use GET R$ to obtain the reply, then no matter what key has
been pressed, the program will continue with no error messages. If
you then want to extract a number, then VAL(RS$) will get it; if a
letter key was pressed, the value will be §. If some of your choices are
of numbers and some are of letters, then by using VAL(RS$) you can
sort out the numbers, leaving you to check the letters if VAL(RS) is
Zero.

It’s a good general principle that when your program uses an input
from a user who may not be greatly skilled, then the computer must
accept that input, and if it is wrong, show what is wrong with it. The
REDO FROM START error message is useful when you know
what causes it, but it is very much more satisfactory to be able to
print something like:

YOU TYPED A LETTER - PLEASE TYPE A NUMBER
FROM THE CHOICE SHOWN

to remind the user of what is needed. We’ll come back to that point
later. For the moment, the important point is that the computer will
accept any key, number or letter, as a value for R§ if you use GET
R$, with no error message from the computer, and it is generally
more satisfactory.

18 A=42:B=1.6

20 R$=STRECAD (BE=STRECE)

3@ PRIMT R+B

48 PRIMT A%+B$

50 CE=ETRE(VALCAFI+YALCBE))
£8 PRIMT" C% IS ",C%

Fig. 3.8. Converting numbers to string form using STR$.

The function STR$ is used to perform the opposite action to
VAL(AS). Following STR$ there must be a number or number
variable name, within brackets, and the action of STR$ will be to
convert that number into string form. Figure 3.8 shows an example
of this process in action. The numbers that are allocated to the
number variables A and B in line 1§ are converted into string form in
line 2, using string variables A$ and B$. Those forms are different,
as lines 3¢) and 4)) show. We can add the numbers and then reconvert
to string form by a line like 50 — I have deliberately used the string
forms to illustrate the use of VAL. Finally, line 6¢) prints the value

36 Commodore 64 Computing

that is found by line 5@, in string form.

Why should we want to put numbers into string form? The main
reason is that strings can be manipulated in ways that numbers
stored in the memory of the computer in number form cannot be. At
this point, it’s too early to see precisely what the advantages of using
strings are, but all will become more clear as we go on. One point,
however. When you convert a number to string form, as for example
by using A = 3:A$ = STR$(A) then the length of the stringis always
one more than you might expect — it will be 2 in this example, for a
single-digit number. The reason is that the STR$ action always
leaves space for a signin front of the number, + or—. If youdon’t put
one there, then a blank space appears, and that’s counted as a
character by LEN.

CHR$ and ASC

When strings are stored, the computer has to convert each press of a
key on the keyboard into a number code which representsa letter or
digit, because all the computer can deal with is numbers. The
standard number coding system that is used for this purpose is called
ASCII code, from the initials of the American Standard Code for
the Interchange of Information. The version of ASCII (we pro-
nounce it as ASKEY) code numbers for each character of the 64 are
illustrated in Appendix F of the manual. The character codes consist
of numbers between 32, which is the space that you obtain by pressing
the space-bar, and 127. The computer can also handle another set of
codes which, on the 64 are reserved for graphics characters; the
shapes that can be used for drawing pictures.

18 PRIMT RSCC"A")
28 PRIMT RSC("2")
30 A$="COMMODORE"
46 K=ASCORED

S8 FPRIMT X

Fig. 3.9. Finding ASC code numbers. Note that the 64 does not use the whole
of the standard ASCII code set.

The instruction ASC(A$) will find the ASCII code for the first
letter of the string A$. If there is only one letter, that’s the one whose
code is found. Since ASC(AS$) by itself does not cause any output, we
use it along with PRINT or X = to get the number code into a form
we can use, as illustrated in Fig. 3.9. A line which contained just
ASC(A$) would be rejected by the computer as a syntax error.

Processing 37

The CHRS$(N) instruction performs the opposite action. Figure
3.10 shows a program in which the screen display changes from
upper-case to lower-case on the screen. Since the 64 does not have
separate codes for lower-case letters, unlike most computers, all of
the letters on the screen are affected by the conversion. Line 1)
clears the screen and prints the title, with line 20) used to create some
space. When a (capital) letter is typed in line 3¢) and RETURN
pressed, the use of code number 14 changes all the screen lettering to
lower-case.

18 PRIMT"A" FRIMTTABCLE) "LETTERS™

2B PRIMT:PRIMT

3@ IMFUT"TYPE R CRPITAL LETTER.FLERSE".R$
46 AF=CHREEC 140 +R%

S8 FRIMT"LOWER-CRSE LETTER IS ".A%

Fig. 3.10. Using CHR$ to carry out the effect of a key.
String slicing

The most important actions that we can perform on strings, and
only on strings, are the slicing actions. Slicing means selecting part
of a string, perhaps the left-hand side, the right-hand side, or the
middle. A slice of string can be printed or it can be allocated to
another string. Figure 3.11 shows this in action, and will print
your initials (two only) when given your surname and one forename.
How is this done? Lines 1§ to 3)) should be familiar ground to you, and

18 PRIMT"Z" FRINT

268 IMFUT"Y0UR SURMAME . PLERSE" : SHE

38 IHFUT"YOUR FIRST MAME.PLERSE"FE#

48 AF=LEFT$IENE, Lo+

S BE=LEFTHIFRE, La+", "

A8 PRINT'YOU WILL BE KHOWM AS "iEBE+AF
Fig. 3.11. Using LEFT$ to extract part of a string.

they result in the two names being allocated to two different string
variables, SN$ for the surname, and FRS$ for the forename.

The processing starts in line 4. A new string, AS$, is created,
which consists of the first left-hand letter of SN§. This is done by
using LEFT$(SN§,1) — one character from the left hand side of
SNS$. To this is joined (concatenated) a full-stop (period), which we
add to show that the letter is an initial. This character needs to have
quotes around it. Line 5@ then does the same with FR$, and finally

38 Commodore 64 Computing

we run the two together in line 6, using another concatenation step.

This could have been done more economically if we had not
been so intent on illustrating a principle. Suppose we had allocated a
string variable name to the full stop (period) in line 15:

15 C$ —_ “.’,
then we could have ended our program at line 4¢) by making it read:

49 PRINT“YOU WILL BE KNOWN AS *;LEFT$(FRS,1)+
C$+LEFTS$(SNS,1)+C$

Alternatively, we could have programmed:
4¢ INS=LEFT$(FR$,1)+C$+LEFT$(SNS,1)+C$

where INS$ (initial string) can be used anywhere else in the program —
it’s likely that your initials might be wanted more than once. This can
be useful in games programs, where the initials of a player are given
along with a score, or in business programs where someone who
enters data into a file also enters initials as a check to trace errors.

If we use instructions such as S§ = LEFT$(NMS§,J) then we can
choose how many letters we slice from the string by allocating a
value to J before the instruction to take the slice is executed. This can
be used for some interesting effects, as we shall see later.

To take a character or a number of characters from the right hand
side of a string, we use RIGHTS (string name, number). Suppose,
for example, that we have a set of components held in a store, witha
code that is of the form XXX1234Q. The last letter indicates which
row of shelves is used to store XXX, and the number of the part is
1234. We could print this shelf-row information by making use of
RIGHTS, as indicated in Fig. 3.12. Once again, it’s simple but
useful.

18 PRIMT"I" PRIMNT

2@ RERD CD#

3@ PRIMT'ITEM IS5 OM SHELF ";RIGHT$(CD%, 15
48 DATH PY.J417H

Fig. 3.12. Using RIGHT$ to find the right hand part of a string.

The most powerful of all the string slicing actions, however, is
MIDS$. MIDS$ is followed, within brackets, by a string variable name
and two numbers, each separated by commas. The sense is that the
slice is taken from the character represented by the first number, and
for as many characters as are represented by the second number.

Processing 39

Numbering, for this purpose, starts with 1, which is the first
character on the left hand side of the string. As a formula, this is
(string, start, how many).

For example, if we allocate A$ to “COMMODORE”, then
MID$(A$,4,3) is “MOD”, because the fourth letter in COM-
MODORE is M, and the three letters that start at this point
are MOD. What makes the instruction so useful is the fact that we
don’t have to write numbers such as 4 and 3. We can, in their place,
write number variables, such as J, K, or even expressions like J*2—1,
or K — 5 in place of the numbers. If you make the position number,
the first one, too large, then nothing will be sliced. If you make the
number of characters too large, then the slice will be taken to the end
of the string.

18 PRIWMT"Z":A$="COMMODORE"

2@ w=IMTCRMDCL %90 +1

30 Y=IHTCRMDCL)#80+]

48 PRIMT"RAMDOM SELECTION IS " MID$CRE, X.Y¥)

Fig. 3.13. How MID$ can extract letters from any part of a word.

Figure 3.13 shows a use of MID$ which is not exactly important,
but which illustrates the use of the method. Inline 1§, A$ is allocated
to COMMODORE and in lines 2¢ and 3() two random numbers are
generated. The instruction RND(1) by itself will generate a number
picked at random between @) and 1 but always more than §) and less
than 1. Multiplying this random fraction by 9 will result in a number
which must be greater than zero and less than 9. Add 1 to this, and
you have a range of 1 to 9.999 (approximate). Take the INT of this
lot, and the result is a whole number in the range of 1 to 9, chosen at
random. Line 3() uses an almost identical formula to generate
another random number lying between 1 and 8, and these numbers
are then used in line 49 to pick a section at random from the string
A$. You should obtain a different selection each time you run this
program, showing that the numbers have indeed been picked at
random.

Chapter Four
Decisions and Loops

Up to now, all the programs that we have used as examples have
been linear programs. A linear program is one that carries out
instructions in sequence, following the order of the line numbers of
the program from start to finish. We can write a different type of
step, a branching step that allows a program to proceed along
different paths depending on the result of a test. The keyword to
making a decision about branching is IF. ‘IF” has to be followed by a
test condition, and by the keyword THEN, followed in turn by what
you want done if the test succeeds (the condition is true). An
example will make it all clearer, I hope.

18 PRINT"I" :PRIMTTABL1G)"DECISIONS . DECISIONS”
28 PRIMT:FRIMT

38 IMPUT"PLEASE TYPE YES OF HO":R%

42 IF LEFT#C(R%, 1)="Y"THEN PRIMT"YOU TYPED YEE&":
GOTG 7@

58 IF LEFT#CA%.1:="H"THEN PRIMT "YOU TYPED HWO":
G0TC7

S8 PRINT"9OU CHERTED!"

7a EMD

Fig. 4.1. Using IF to make decision steps.

Figure 4.1 shows a program that allows the computer to act
differently according to your answers, YES or NO, to a question. In
line 40, the first letter of the answer is compared to the letter Y. If the
two match, the phrase YOU TYPED YES is printed, and a new
command GOTO 7§ causes the next line of the program to be line 7
(the end), not line 5f. If the reply was NO then line 40 is not
executed, and the next line, line 50, is tried. In line 50, if the first
letter of your answer word was N, then the phrase that is printed is
YOU TYPED NO and once again the program moves to line 79, the

Decisions and Loops 41

end. If what you answered matches with neither YES nor NO, then
line 60 is executed, and the program ends, as before, in line 7(.

It’s a trivial example, but it indicates how a decision can be made
among three possibilities (Y, N, or anything else), and can cause
different effects. In most ‘real’ programs, the action that is carried
out when the test succeeds is not just a print action. We can, for
example, use:

THEN GOTO 1§¢¢

following a test. This means that if the test succeeds, the next line
that will be carried out will be line 10$@), and the program will then
run from this line onward (lines 1¢1¢,1¢2¢ ... etc.). In this way, you
can direct the computer to do much more than a simple PRINT or
other one-step instruction as the result of a test.

Note that anything which follows the IF ... will be ignored when
the test does not succeed. This includes following statements of a
multi-statement line. If, for example, you have a line like:

109 IF Y =2 THEN GOTO 20¢§:PRINT“CHEAT!”:GOTO5¢

then the instructions PRINT“CHEAT!”:GOTOS5() are never
carried out for any value of Y. It is generally easier to understand IF
tests when each one is put on a separate line. This ensures that if one
test fails, the next one will be tried, and we can use GOTO after each
IF test to make sure that the program moves to the correct line when
a test succeeds. Remember that when a test fails, the next line that
will be executed will be the next line in number order.

GOTO and GOSUB

The IF ... THEN decision test can be used to alter the ‘flow’ of a
program, meaning that it alters the sequence of lines that are carried
out. GOTO and GOSUB are commands that are also closely
associated with the flow of programs, because these commands
direct the program to the next line that will be executed. When you
program a line like:

20 GOTO 199§
3¢ PRINT A

you force the flow of the program to move from line 2§ to line 193¢
in place of line 3@). There is nothing in the use of GOTO 10@¢ that
will cause the program to return to line 3%), however. By contrast:

42 Commodore 64 Computing

26 GOSUB 199
3¢ PRINT A

will cause a branch at line 2(, but the program will return later to
line 39. GOSUB is a shortened version of GO to SUBroutine, and a
subroutine is a piece of program, one line or more, which can be
executed out of line number sequence. The distinguishing feature of
a subroutine is that it will return the program to the instruction
following the one that caused the branch. In the example above,
then, control will return to line 3¢. If we had:

19 GOSUB 1¢f¢: PRINT “DONE”

then when the subroutine returned, the PRINT action would be
carried out because even the next statement of a multi-statement line
will be carried out after a GOSUB.

18 PRINT"D" :PRIMTTABC15) "SUEBROUTIME"
20 PRIWT"THIS IS A"

39 GOSUEB1066

4@ PRINT" SUBROUTINE"

56 PRIMT"MIX GREEW LIGHT AMD BLUE LIGHT"
60 PRIMT" AMD GET =~ "i

78 GOSUB19EG

86 PRIMT" LIGHT"

98 EMD

1286 PRIMT " YELLOW";

1816 RETURM

Fig. 4.2. How a subroutine is used.

To illustrate this, take a look at the example in Fig. 4.2. Silly it
may be, but it does show what a subroutine does and how it is
programmed. The subroutine in line 1§p prints the word
YELLOW, with a semicolon placed after it to ensure that the next
PRINT instruction does not cause a new line to be printed. The
point here is that the word RETURN in line 1§1§) will cause the
program to do just that — to return to the instruction following the
GOSUB that caused the subroutine to run. The flow of the program
of Fig. 4.2, using line numbers to trace the action, will be
16, 20, 3¢, 1999, 1619, 44, 5¢, 6, 7¢, 10¢9, 1§19, 89, 99.
By using END in line 9§, we prevent the program from
continuing from line 8¢ to line 19@@, and so printing YELLOW
once again. An unwanted use of a subroutine like this is called
‘crashing through’, and the use of END makes certain that the

Decisions and Loops 43

subroutine is used only when it is ‘called’ by the use of GOSUB1$§§.
If you forget to use RETURN at the end of the subroutine, your
program will end at line 1)) when the subroutine is first called. If
you forget the END in line 9§, then the program will print
YELLOW at the end, and you will get the error message RETURN
WITHOUT GOSUB - a sure sign of a crash through.

18 IHFUT"YOUR TITLE. PLERSE";TT#
28 PRIMT"D":PRIWT:GOSUELG0@

A0 EHT

1006 LH=LEHCTTS) : TE=28~LH/2

1816 FRIMTTRECTRITTS

16828 RETURM

Fig. 4.3. A title-centring subroutine.

Notice that the same subroutine can be called from more than one
place in the program. This is what makes the subroutine so useful - it
can be used more than once and for more than one purpose. Just to
drive this point home, Fig. 4.3 shows a subroutine which will print a
title TT$ centred on the screen. The title should not contain more

FRIMT""

TT#="THIS IS A TITLE WHICH"
GOSUBLBEE

TT#="15 MUCH LLOMGER THAM HORMAL"
GOSUE 1668

EHD

1688 LH=LEMCTTS$) TE=2@-LH/2

1918 PRIMTTARITENTTS

1828 RETURM

Ty 1 B O By
[e s B s R e |

Fig. 4.4. Why the subroutine is so useful.

than 38 letters, but providing it is suitable it will be printed centred
on the line that we select. Suppose you have a title of more than 38
letters? The use of the subroutine makes this easy, as Fig. 4.4 shows —
if you add lines 10 to 6§ to the subroutine, then the title will be
printed in two sections, with each section centred on its print line.

Looping lines

GOTO and GOSUB can cause a program to branch in the way that
we have demonstrated, but there is another very important type of

44 Commodore 64 Computing

branch, called a loop, which can be achieved by using GOTO. If a
program includes a GOTO which is followed by a line number that is
lower than the number of the line that contains the GOTO, then a set
of lines will be repeated until something happens to stop the
repetition. The ‘something’ will usually be an IF test which may use

18 PRIMT"D" :TT$="ACCUMULATIONS" : GOSUE1880
26 M=@

3@ PRIMT"TYPE R MUMBER. FLERSE":

468 THPUT J:H=H+J

58 FRIMT"RUMHIMG TOTAL IS5 "iM

sE GOTOZE

1008 LH=LENCTTS) TB=20-LH/2

18168 PRINTTRBCTEITTS

1826 PRINT:PRIMT:RETURM

Fig. 4.5. A running-total program. You may need to use RESTORE with
RUN/STOP to break out of this one.

another GOTO, or be a part of the original GOTO. Figure 4.5 shows
a running-total program which has no method of escape - to stop
this running you will have to use the RESTORE and STOP keys.
We can make the program break out of its loop by adding a couple
of lines:

45 IF J=p THEN GOTO 7§
7 END

With these lines added, if you enter a zero, the program will stop
looping back to line 3p) and will end at line 7() instead. A better use of
the IF test is to cause the loop to return, so that the program ends

1@ PRINT"I": TT4="ACCUMULATIOMS" : GOSUE1 D88
26 H=8

3@ FRIMT"TYPE A HUMBER. PLERSE";

46 THPUT J:iH=H+J

a8 PRIMT"RUMHIMG TOTAL IS “iM

A IF T8 THEM GOTO 3@

7@ END

1088 |H=LEM{TT$): TB=20~LH/2

1816 PRIMTTRECTRITTS

1828 PRINWT:PRIMT:RETURH

Fig. 4.6. Altering the running-total program so that entry of ¢ will stop the
program.

Decisions and Loops 45

when the test fails. This requires only one GOTO, and looks neater,
as Fig. 4.6 illustrates.

Conditions

So far, the only condition that we have used to any extent in the IF
test has been the test of equality; more precisely, identity, using the =
sign. We can also test to find if items are unequal, or if one is greater
than another. Figure. 4.7 shows some of the other conditions that

Equal to (must be identical for this to succeed)

> Greater than (left side greater than right side)
< Less than (left side less than right side)
<> Not equal
>= Greater than or equal
<= Less than or equal
These Can be Used With
AND Several quantities tested
OR Any one of a group tested
NOT Test for opposite

Fig. 4.7. The conditions that can be tested, and the signs that are used.

can be tested, either for numbers or for strings. When numbers are
tested, some care is needed to ensure that the test is not spoiled by
errors (Fig. 4.8) caused by the way in which numbers are stored (see
Chapter Two). The numbers should always be rounded off to the

1@ A=2.7:B=2,

26 C=9:D=98

3@ IFA~B=C/DTHEW PRINT"EQUAL":EMD
48 PRIMTA-E:" 15 MWOT EQUAL TO ";C¢D

Fig. 4.8. The effect of errors on stored numbers.

same number of decimal places before they are tested for equality.
When strings are tested, the basis for comparison is the ASCII code
numbers, starting with the first letter of each string. Since the ASCII
code for T is greater than the code for S, then ‘S’ is regarded as a
string which is less than the string “T". If the first letters of two strings
are identical, the second letters are compared, and so on, so that the

46 Commodore 64 Computing

word ELECTRIC is considered as coming lower in a list than
ELECTRON, because ‘I’ comes earlier than ‘O’ and has a lower
ASCII code. Figure 4.9 illustrates this in action — two words can be

10 PRIMTCHR$<147): TT$="ALPHABETICAL SORT":CC$=
"ORDER I8~ "

20 GOSUB1o0e

30 IMPUT"FIRST WORD";R$

4@ IMPUT"SECOMD WORD";B$

5@ IF A$<B$ THEM PRIMT CC$:AR$," THEW ";B$:
GOTO?G

@A PRIMT CC$,R%:" THEM ";A$

7@ EMD

1666 LH=LEMC(TTS) : TB=20-LH/2

1818 PRINTTRBCTESTTS

1828 RETURH

Fig. 4.9. Comparing strings on the basis of alphabetical order.

typed, and the program will tell you which is the correct alphabetical
order. This is a very simple example, and normally when we want to
arrange items into alphabetical order we need something much more
elaborate — more of that later.

FOR ... NEXT

Looping is such an important process that a special set of loop
instructions has been devised, avoiding the use of GOTO. The
general form of the loop is that it starts with:

FOR variable = number TO number

in which we have to fill in values for a pair of numbers, and use a
variable name. We can also use variable names in place of the
numbers, or even use expressions like Kt2—5. The loop returnsata
stage in the program (later) which contains the word NEXT.

As usual, an example is more helpful than a description, and Fig.
4.10 shows an elementary example which will print a phrase ten
times. Line 3 sets up the number of repetitions by settinga variable
N to start at 1 and to increase by a step of 1 each time the loop is used,
until the value of N exceeds 1§. For as long as the value of N is 1§) or
less, the loop will be carried out, but when N exceeds 10, the loop
stops, and the next instruction to be obeyed is in line 60, the

Decisions and Loops 47

18 PRIMTCHR$C147) : TT$="FOR~MEXT LOOP"
2@ G05UB1680

3@ FOR M=1 TO 1@

48 PRIMT"COMMODORE €4 COMPUTIMG"

50 MEXT

6@ PRIMT"END OF LOOP"

78 EMD

1008 LH=LEWCTT$): TB=20-LH 2

161@ PRINTTAECTENTTS

1828 RETURM

Fig. 4.10. Using the FOR ... NEXT loop.

instruction following NEXT. This applies also if NEXT is in a multi-
statement line, and if the FOR N = 1 TO 1§ is also in a multi-
statement line. The value of N when the loop stops will always be one
step greater than the maximum value that you specified, so that in
Fig. 4.10, N will have a value of 11 when the program ends.

You can, if you like, repeat the name of the variable following
NEXT, so that it reads NEXT N (or NEXTN). This is optional, but
it can be useful in a program that contains a lot of steps in the loop,
so that you know which loop is being terminated at that point. If you
don’t specify any step size, this quantity is always set at 1, but if you
add to the FOR ... NEXT part of the loop the additional instruction
STEP, you can control the step size for yourself. For example, you
could use:

FORN=1TOS5STEP .25 to step in units of one quarter,
or:

FOR N = 1§ TO § STEP—1 to obtain a countdown.

Uses of loops

Loops can be used for counting, for timing and for repeating
operations. Take a look at some examples of these operations in
action. Figure. 4.11 illustrates how items can be counted out from a
DATA line by using the READ controlled by a FOR ... NEXT
loop. So that the program runs one step at a time, lines 7¢) and 80
have been put in to ensure that the NEXT instruction is not obeyed
until a key has been pressed. If you keep your finger on the
RETURN key for too long when the program starts, though, it will
print out all of the values. To avoid this, a time loop has been set up

48 Commodore 64 Computing

1@ PRINTCHR$(147 :TT$="ITEM COUMT"
28 GOSUB1996

30 FOR M=1T0160@'HEXT

4@ FOR M=1T010

5@ READ A$

£@ PRIMT"ITEM "iMi" IS ";A%

7@ PRIMT"PRESS AMY KEY TO PROCEED"
9@ GETZ$:1F Z¢="" THEN 80

9@ NEXT

18@ END

119 DATABULLDOG, BEAR, ERGLE. DINGO, GOOSE , SWAN.

WOLF , FOX., DUCK, ANTELOPE

1000 LN=LENCTT$): TB=20-LN-/2
1010 PRINTTRB(TBITTS

1820 RETURM

Fig. 4.17. Using a FOR ... NEXT loop to control a READ ... DATA program.

in line 3¢. This simply allows a time delay between lines 2 and 4,
and the time that is needed is set by the speed of operation of the 64.
With a number of 1§f@) as shown, the time delay is approximately

1Y, seconds.

12 PRIMTCHRSC 1475 : TT$="WORDS ! " : GOSLUR 1000

2@ IMPUT"STARTIHG WORD":A$
30 L=LEMCA%) : Wg=""

48 FOR J=1 TO 18

5@ LH=INT{RMDC(1)#(L~-20+2)
6@ FOR M=1 TO LH

7B SR=INTC(RHDCL %L+

60 bE=WE+MIDF(A%. SR, 1)

@ NEXT

188 PRINT W$:Ug=""

118 MEXT

126 EMD

1088 LM=LEM(TT$): TB=20~LN/2
1810 PRIMTTABCTBITTS

1626 RETURM

Fig. 4.12. Randomly generated ‘words’ picked out from a starting word.

This program has illustrated two uses of the FOR ... NEXT loop,
but the next illustration is much more elaborate. This one (Fig.
4.12) uses FOR ... NEXT loops to generate groups of ten ‘words’
with letters selected at random from a starting word. The title of the

Decisions and Loops 49

program is printed as usual, and the starting word is requested. If the
starting word is reasonably long, then a large number of ‘words’ can
be created from it by this process — this is a useful way of finding
names for your ‘aliens’! The length of the starting word is found in
line 3@, and the string that will be used to accumulate letters into a
word, W$, is set to a blank, “ ”. The loop that starts in line 4§
determines the number of these ‘words’ that will be generated and at
the start of each one, the quantity LN, the length of the word, is
calculated. It will be a random length which must not exceed L and
which must not be less than 2. Each word of a group of ten is then
created by the loop that starts in line 6@). This uses LN as its finishing
value, and picks letters from A$ at random, using SR as the starting
point for each letter. The word builds up because of line 8p, which
adds to WS$ each letter as it is picked out, and calls the result by the
same variable name of W$. This loop ends in line 90, and the word is
printed in line 19@. The variable W$ is then reset to a blank
(otherwise more will be added to it), so that it is ready to accumulate
another set of letters when the NEXT in line 110 is executed. We
could have used the variable names with each NEXT, so that we had
NEXT N in line 99 and NEXT J in line 11§ so as to remind us of the
correct order — each loop must end in the reverse order of starting. If
you start with:

FORN=1TO1¢ :FORJ=1TOS5

then you must finish with NEXT J:NEXT N. The ‘inner’ loop, using
J, must be complete before the outer loop, using N, can be
completed. If you simply use NEXT, the computer will take care of
this for you, but if you specify the variable names, then you must get
them in the correct order. This use of one loop inside another is
called ‘nesting’, and each loop that is contained inside another one
must be completely contained, with its start and finish points within
the outer loop. If your nesting goes wrong, your chickens will come
home to roost in the form of a NEXT WITHOUT FOR error
message. Another important point about loops is that the counting
variables, such as N, J in these examples, must not be re-assigned to
any other number while the loop is running. This could end theloop
prematurely, or possibly prevent it from ever ending! One exception
is when we read a value that is tested and when a value is read that
must end the loop, the counter variable is set to the end value. This
would use a line such as:

IF A$ = “END” THEN N = 10§

50 Commodore 64 Computing

if the loop started with FOR N = 1 TO 1§9.

Subscripted variables

So far, when we have used items read from a list, we have used one,
printed it, and then re-allocated the variable name to another item.
You can’t do this if you need to make use of all of the items in a list. If
you want to add a set of figures in an accounts program, for
example, you still need to be able to use the individual figures when
you display the items. To get around this problem, computers use
what are called subscripted variables.

A subscripted variable means one with a number-tag attached.
Suppose we choose a number variable such as A. Instead of using
other variable names like B,C,D, ... for other numbers, we can use
A(1), A(2), A(3), ..., pronounced as A-of-1, A-of-2, A-of-3, ... and
so on. Each of these will be treated separately as a different variable
name with a different value. What makes the scheme so usefulis that
the subscript numbers within the brackets can themselves be
represented by another number variable.

19 PRINTCHR$¢ 147 TT4="SURSCRIPTS" : GOSUR 166G
o6 FOR M=l TO 189

28 READ ACH

48 MEXKT

5@ THPUT"PICK A HMUMBER. 1 TO 10":H

&0 IF %216 0OR ®<1 THEN PRIMT "IMCORRECT RAMGE":
GOTOSE

7O PRIMT"ITEM CHOICE IS "iRACHD

&A@ GOTOSA

9@ EHMD

108 DATALG5.6.112.27,93,106.54,22.1.76,9.21.
1174.2

120 EMD

1080 LN=LENCTT$) TB=2¢-LH/2

1818 PRIMTTABLTR)TTE

1828 RETURH

Fig. 4.13. Using an array - this is a number array.

Take a look, for example, at Fig. 4.13. This reads a set of numbers
from a DATA list into a set of subscripted variable names. This set
of subscripted variables is called an array, so what we have present
after line 4¢) has been executed is a number array. In lines 50 to 80,

Decisions and Loops 51

we choose a number between 1 and 1), and the program prints the
corresponding value that exists in the array. If we choose number 3,
for example, then A(3), which is 27, is printed out. Note the use of
line 60 to reject impossible choices of array subscript numbers — this
type of line is called a ‘mugtrap’. The use of a mugtrap, or several
mugtraps, is essential if the program is to be used by unskilled
operators. Even when you have designed a program for yourself and
use it yourself, yowll be grateful at times for the use of a good
mugtrap to save you from your own mistakes!

18 PRINTCHREC 1470 TT$="STRING ARRAY":GOSUBLGEE
26 FOR H=1TO18:PRIMT"EMTER HAMES, PLERSE"

3@ PRIMT"ITEM "iH:" FLEASE".

4@ THPUT WDECHD

560 NEWT

A PRIMTCHREC 1470 TT="RANDOM CHOICE":GOSUELGG@E
7@ PRIMTYEACH TIME %0U PRESS A KEY YOU WILL GET"
86 PRIMT"AHW ITEM CHOSEM AT RAHDOM, "

93 FRIMT" START MOW....TO EHMD, PRESS "G

188 GET A%:IF AE="" THEW 1&@

118 J=INTCRMDC L s%16+1)

1260 PRIWT WhECTy

128 IF A" THEW {96

148 EMD

1888 PRINTTABCZO-CLEMCTTS)0420TT$ RETURH

Fig. 4.14. Using a string array, with values inserted by a FOR ... NEXT loop
using an INPUT instruction in the loop.

We have illustrated the use of a number array which was created
by using the READ ... DATA instruction in a loop, but we can
equally easily use string arrays, and fill them either from READ ...
DATA or by the use of INPUT lines. Figure 4.14 shows an example
of a string array filled from an INPUT statement. The program
allows you to input a number of string items such as names, and then
makes random choices. You could make it the basis of a ‘what-shall-
I-read/listen-to/do’ sort of choice, or if you happen to be
Chancellor of the Exchequer, a ‘what-could-I-do’ choice. Most of
the program should be familiar material to you, but note the use of
line 13¢), which looks for the decision to quit. If the Q key was not
pressed in line 1@, then this test in line 13() will cause the program to
loop back to line 19§ to pick again at random. If the Q key was
pressed, however, the program ends in line 14§.

52 Commodore 64 Computing
Dimensioning

In these examples, we have used arrays which were of only ten items.
This is the maximum number that the computer will accept without
notice, as it were. Arrays take up quite a lot of storage space in the
memory, and space is allocated for subscript numbers up to 10 only
when you switch the computer on, so that if you want to use larger
arrays, you have to reserve the space. This is done very early in the
program by using an instruction called DIM. DIM means
DIMension, and the dimension of an array is the maximum size of
subscript number that you will want to use. Suppose, for example,
that you are writing a program for cataloguing film slides, and that
you have 1000 titles to list. If you choose the variable name of
SLIDES (yes, you can use variable names of more than two letters,
but the computer ignores all but the first two), then the dimension
instruction must be:

19 DIM SLIDES(1¢99)
or
1$DIM SL$(1999)

and this will reserve the use of subscripts of up to 109 for this
variable. If you try to exceed this number, you will get a BAD
SUBSCRIPT error message.

When you dimension an array, for example N$(100), for a
hundred items, this does not dimension any other arrays, only the
array with that variable name. Every array that uses a number
greater than 1§ must be dimensioned, and the BASIC of the 64
allows you to carry out the dimensioning of a set of arrays together.
You could, for example, have:

1 DIM ITEMS$(1¢¢), NT (1¢¢), CN(5¢), HD$(5¢)

to dimension four sets of arrays, two with dimensions of 10§ and
two with 5.

Once you have dimensioned an array, you must not attempt to
alter that dimensioning again in the course of the program. This is
because once the computer has allocated memory for an array
(strictly speaking, for the subscripts of the array), it will have used
the memory above and below this region for other purposes. A
change of use will therefore mean having to spring-clean the
memory, and re-allocate it, and this can’t be done while a program is
using the memory. Any attempt to re-dimension an array will

Decisions and Loops 53

therefore cause the error message: REDIM’D ARRAY

Matrices

The 64 allows you to set up arrays with more than one dimension, a
variety that we call a matrix (one matrix, two matrices). The word is
also used for a criss-cross grid arrangement, a way of writing
number relationships, and a management system in which you have
two bosses and don’t need to pay any attention to either of them. In
our use of the word ‘matrix’, however, it simply means a set of items
that belong together and which can be given one variable name.

The simplest matrix to understand is the two-dimensional matrix.
Suppose that we are keeping a track of the articles on the 64 in our
favourite magazines. You would need, at least, to keep a record of
the name of the article and the name of the magazine. If we allocated
the variable ARS for the article name, and MGS$ for the magazine,
we could use two arrays to hold the names, but since the items
belong together, we could use a matrix called AR$(X,Y). The mean-
ing of this is most easily seen if we look at the items of this matrix
(Fig. 4.15). Supposing that item 1 is an article, then the variable
name for this article is AR$(1,1), and the name of the magazine is
AR$(1,2). The next entry, item 2, would use AR$(2,1) for the article
name, and AR$(2,2) for the magazine name. The system is that the
first number is the item number, and the second is the classification —
article or magazine.

ROWS COLUMNS

! 1 2

1. programming Byte

2. machine code P.C.W.

3. Commodore hints Kilobaud

(as many rows of items as you need)

The matrix is always written as (row, column)
so that Kilobaud would be item (3,2)

Fig. 4.15. The row-column representation of a matrix.

54 Commodore 64 Computing

A matrix is used when the components of each item belong tightly
together, and are never going to be re-allocated. For example, if we
want to arrange our articles in alphabetical order, we shall want the
correct magazine names still associated with the articles. We are not
likely to want a list which has the magazine names also put into
alphabetical order so that the article called Beating The Opposition
is associated with the magazine Byte when it actually appeared in
Popular Computing!

We needn’t stop at article name and magazine name, of course; we
could have year and month of issue, and the page number also listed.
Suppose we have a program which will search for a given article
name, and will then place on to the screen the name of the magazine,
the year and month of issue, and the page at which the article starts.
We might then have, for article 1, the variable name AR$(1,1) for the
name of the article, AR$(1,2) for the magazine name, AR$(1,3) for
the year and month, and AR$(1,4) for the page number. Qur matrix
would now consist of four columns and as many rows as we have
articles to list. A matrix like this needs a dimension statement of
DIM AR$(109,4) if you want to store 100 items in it. One dimension
is for the number of rows, the other for the number of columns. This
is the simplest way to visualise a two-dimensional matrix - as a set of
rows and columns.

If we have a set of items that are related to both row and column
items, then we could create a three-dimensional matrix, which we
might dimension, for example, by DIM TD$(100,4,2). It’s unusual
to need so many dimensions for a simple catalogue program, but
you might need to go to three-dimensional (or even more) matrices
for programs of the financial spreadsheet type, or games programs
of the ‘adventure’ type.

Number matrices are used for the solution of certain types of
mathematical problems. In general, unless you understand the
mathematical theory, you are unlikely to be able to make much use
of number matrices. For that reason, there is little point in
discussing them in this book.

Chapter Five
Data Processing and
Program Design

Data processing is the task that computers were designed for in the
first place, and for which most computer owners have some need.
The simple machines that are designed primarily for games purposes
are generally poorly equipped for data processing, but the 64 asyou
might by now expect, is fully able to carry out this important work as
well. This chapter will deal with data processing actions, and how
programs are designed.

A data processing program will normally make provision for
entry of data, like article names and pages, the recording of the data
on tape or on disk and recovery of previously recorded data,
processing and display. Processing may mean arranging into
alphabetical order, picking out a specified item, adding amounts for
a given year, counting how many entries concern a requested topic,
and so on. Display may mean using the screen, but is much more
likely to require the printer to turn out a permanent record on paper.
Data processing is the main activity of any computer that is used for
business purposes.

You might think that the very wide variety of tasks that the
computer could be called on to do might make it impossible to say
much of a general nature on this subject. You would be wrong,
because all data processing programs are surprisingly similar. In
addition, the best ways of designing a program in BASIC apply with
the same force whether the program is intended for data processing
or for any other purpose. One feature that is common to practically
all data processing programs, however, is the use of a menu.

A menu, as the name suggests, is a method of presenting a set of
choices for the user. The program should be devised so that it always
returns to this menu after a task, selected from the menu, has been
completed. In this way, the user will be able to carry out a set of
different activities on the data that is already stored in the computer,
without having to re-load any information. This implies that the

56 Commodore 64 Computing

108 FRIMT"I: TTH="MENU" GOSUR1EEE

118 PRINTTABCZ)"1. EMTER HAMEZ."

120 PRIMTTAECZ)"2, RECORD ITEMS."

130 PRIMTTARCZ2"3, REPLAY PREVIOUS LIST."
148 PRIMTTABCZ2"4, UFDATE PREVIOUS LIST."
158 FRIMTTRECZ)"S, SELECT ITEM."

166 PRIMTTRECZ)"E. EMD PROGRAM. "

170 PRINT'FRESS MUMBER KEY TO SELECT.®
igE GETAS:IF AfF=""THEH13E

198 W=WRALIA%) (IF Y=1THEN1 588

208 IF V=2 THEM 2O@@

218 IF V=3 THEM 25680

2eg IF V=4 THEW 3026

236 IF V=5 THEM 3584

24@ IF V=& THEM EMD

256 PRIMT"D" FRIMT"YOUR AHSHER "iR%:" IS HOT
UHDERSTOOD. "

250 PRIMT'PLERSE TRY AGRIM":GOTOL18

1008 PRINTTABCZE-LEMCTTS /20 TTS RETURN
1568 FRIMNT"ROUTIHE 17 :EMD

SEER FRIMT"ROUTIME 2.":EMD
2R0R PRINTYROUTIME 3.":EMD
A0PE PRIMT'ROUTIME 4." EMD
ASEE FRIMT"ROUTIME 5.7 EMD

Fig. 5.1. A menu which can form the core of a data processing program.

menu should always contain a ‘quit’ option, the selection of which
will end the program.

One simple way of organising a menu is illustrated in Fig. 5.1.
Each choice is listed, along with a reference number, and the user is
requested to make the choice by pressing the appropriate number
key. This is done by using GET AS$ in line 18¢, with a string variable
used so that any key is acceptable. The value is then found from V=
VAL(AS), and tested in lines 19 to 249 to direct the program to the
correct routines. If a wrong key has been pressed, the program will
reach lines 250, 260, so that the message is printed, and the program
returns to the menu display. Each routine that is used, shown in this
example as starting at line numbers 1500, 20@§, etc., should end
with an END, so that the program is completed after each selection.
An alternative would be to end with GOTO 1§ to repeat the menu.

The BASIC of the 64 allows several variations on this theme. One
of these is illustrated in Fig. 5.2, making use of the ON N GOTO
instruction. In this instruction, N is a number variable which is used

Data Processing and Program Design 57

1@e PRINT"I": TT#="MEMU" GOSUBlGa@E

118 PRIMTTABL2:"1. EWTER NAMES."

i28 PRIMTTHECZ20"E. RECORD ITEME."

120 PRINTTABCZ) "3, REPLAY PREMIOUZ LIST.®
148 FRIMTTRECZ)"4, UPDATE FRENMIOUS LIST."
158 FRIMTTABCZY"S. SELECT ITEM."

168 PRIMTTRECZ2"6. EMD PROGRAM, "

170 PRIMT"FRESS HUMEER KEY TO SELECT."
128 GETA%: IF AF=""THEH1EE

198 V=\'ALCAF) IFYESL OR V26 THEMZS@

208 0M Y GOTO 1508, 2000, 2500, 3006, 3708, 4608
218 GOTO4686

250 PRINT'J":FRIMT"YOUR AMSWER "iRE:" IS HOT
IMDERSTOOD, "

266 PRIMT'FLERSE TRY AGAIM":GOTOLiA

{@BR PRIMNTTARC2E~LEHCTTS) /23 TTE RETURH
1506 PRIMT*ROUTIME 1" :EMD

0B FRIMT"ROUTIME 2,":EMD

258 FRIMTUYROUTIME 3."EHD

3AE8 PRINT"ROUTIME 4.":EMD

35HE FRINT"ROUTIME 5."EHD

4868 EMD

Fig. 5.2. Using the ON N GOTO instruction for a menu.

for the user choice — we have used V for this variable in Fig. 5.2. The
value of this variable is used to make a selection from a list of line
numbers which follow the GOTO part of the instruction. If V is 3,
for example, the GOTO will take the line number which is third in
the list of line numbers. Figure 5.2 shows this in action, replacing
lines 199 to 24f of the program in Fig. 5.1. When this method is
used, the program will need a test of the number that the user entered
before the use of ON V GOTO. This will have to ensure that the
value of V is reasonable — not less than 1, not more than 6, and with
no fractions or negative signs. If an incorrect number reaches the
ON V GOTO line, then the error message UNDEF'D STATEMENT
will appear. A suitable mugtrap for faulty numbers is illustrated in
Fig. 5.2, line 190.

There is also the instruction ON N GOSUB, and this has benefits
both for program operation and also for the way in which programs
can be designed. Figure 5.3 shows how a menu choice is arranged
when this method is used - the advantage here is that we do not need
a GOTOI1§§ instruction at the end of each of the subroutines that
deal with the menu choices, simply a RETURN on all except the

58 Commodore 64 Computing

188 PRIMT"I": TT$="MENU" : GOSUB1066

118 PRIMTTABCZ)"1. EMTER MAMES."

126 PRIMTTABCZ)"2. RECORD ITEME."

138 PRIMTTAB(Z2)"3, REPLAY PREWIOUS LIST."
148 FRIMTTAECZS"4. UPDRTE FRENMIOUS LIST."
158 PRIMTTAB(Z2"S, SELECT ITEM."

168 PRIMTTARCZ)"E. EMD PROGRAM. "

178 PRIMT"FRESS WUMBER KEY TO SELECT."
186 GETR%:IF A%=""THEWH136

198 W=YALC(AEY IFYLL OR V5 THEMZSE

2@ 0M Y GDSUR 15686, 2080, 2500, 3006, 3560, 4860
218 GOTO4a66

258 PRINT"":PRINT"YOUR AMSWER "iA$" IS MOT
UMDERSTOOD, "

268 PRIMT"PLEASE TRY HGAIM™:GOTO11@

l@ea PRIMTTABCZA-LEMCTTS) /20 TTH: RETURM
1568 FRIMT"ROUTIME 1.":RETURH

2008 FRIMT"ROUTIME 2.":RETURH

2508 PRINT"ROUTIME 3."RETURM

2086 FRIMT'EOUTIME 4.":RETURH

2508 FRIMT'ROUTIHE 5." RETURM

4BpE EMD

)

Fig. 5.3. Using ON N GOSUB. In all of these examples, it would be preferable
to use an integer for the variable (ON N% GOSUB for example).

“END PROGRAM?” choice. When any other subroutine ends, the
program will return to line 2¢@), which directs control to line 21§.
This makes the ‘flow’ of the program clearer, because anyone
reading the program can now see how the menu return is arranged,
instead of having to check for a GOTO at the end of each of the
routines that are selected from the menu.

Figure 5.4 shows a much more visual type of menu arrangement in
which the choices are not numbered, but are arranged on separate
lines. The choice is made by moving an arrow which is in turn
controlled by arrowed 1| cursor keys, and then pressing the space-
bar when the arrow is pointing to the choice that you want. This
avoids the possibility of an incorrect selection, because the program
controls the movement of the arrow within the limits of the number
of lines on the screen. It also allows easier selection from a large
number of items, because GET AS$ is usable onlyif the reply canbea
single key (though you still have the choice of letters as well as
numbers). A pictorial menu of this type is sometimes more
appropriate for programs than the choose-a-number type.

Data Processing and Program Design 59

18 PRIMT"D" :PRIMT:PRINT

20 AD=11@4:H=1:CL=35376

166 PRINTTABCZ)"1. FIRST."
118 FRIMTTAB(Z) "2, SECOMD. "
120 PRIMTTABCZ"3. THIRD."
148 PRIMT:FRIMT

156 POKERD+4@%H, 62 POKECL+404%H, 7
168 GET A%:IF A$=""THEM1CO
178 W=RECIA%)

175 POKERD+40%H, 32

186 IF V=17THEH M=H+1

199 IF VY=145 THEM H=H-1

208 IF H=4THEM H=1

218 IF M=@ THEW M=3

22t IF W<i3z THEM 150

238 OW M GOSUB 1808,26040, 3000
248 EMD

le8a FRIMT"1ST. " :RETURH

2008 PRINT"ZMD." RETURN

2009H PRIMT"IRD. " RETURH

Fig. 5.4. Avisual choice menu. Moving the marker to the selected position and
pressing the space-bar makes the choice. See Chapter Six for an explanation
of the POKE instruction.

Program design

The use of a program based on a menu, with subroutines to carry out
the actions that are specified by menu selection, is the key to simple
program design for data processing. The difficult part of designing a
program is not the use of the programming language, it is the
analysis of the problem that you want to solve into steps that can be
put into the form of program subroutines. By designing your
programs ‘top-down’, this analysis can be made much easier. Top-
down means that you start by considering the outline of the problem
only, and then gradually work down to finer details. For most data
processing problems, design will therefore start with considering:

(1) what type of data is being dealt with,

(2) whether recording and replay of data is needed,

(3) whether printed copy is needed,

(4) whether recorded data needs to be updated,

(5) what you expect to see on the screen or have to type on the
keyboard at each stage in the program.

60 Commodore 64 Computing

Unless your requirements are unusually complex, it should be
possible to make these decisions and write them down early in the
design process. Writing the specification is vitally important,
because it is surprisingly easy to lose sight of your objectives later on
when you start to program the details. The more paper you use at the
planning stage, the more likely it is that your program will run
correctly.

The next step is to design the menu choices. At this stage,
remember that each action will return to the menu, so only the most
important choices need to be included. If there is a step which is only
ever used as part of another one, it need not appear in the menu. For
example, if data is always to be alphabetically sorted after entry,
there is no point in having a menu choice of SORT DATA ITEMS.
Take time over your menu, because the appearance of the menu and
the choice that it presents can make all the difference between a
program that will be a pleasure to use and one which gives you very
little satisfaction, or even perhaps one you try to avoid using. Once
the menu is designed, the main part of program planning is finished!

The ‘core’ of the program can now be written. Start writing the
menu section, starting at line 19§ so that you have ample space for
dimensioning instructions and other routines in lines 1 to 99.
Whether you use ON N GOSUB or a set of lines such as:

IF V% = 1 THEN GOSUB

it is always an advantage to use GOSUB rather than GOTO, because
the RETURN at the end of the GOSUB will always lead to the next
line of the menu. This makes your program simple to follow —
something for which you will be grateful as you extend the program,
and which will be even more useful if you have to revise, amend or
extend it later.

This completes a skeleton around which your program can be
constructed. As it happens, this skeleton can probably be used for
many other programs so that it is a good idea to save this core
program on tape or disk, ready to load in next time you want to
devise a program. The important point is what you have done so far
avoids the type of detail that will cramp your style later. Each action
of the program is now dealt with using subroutines, and each one of
these subroutines can now be designed as if it were a little program in
its own right. What you now have to do is to decide the order of
importance of the subroutines, what variables they will use, and
what values need to be passed from one subroutine to another. One
important point here is that none of the subroutines must use the

Data Processing and Program Design 61

variable name that has been used to select items from the menu (we
used V in our example). In our example, if V = 2 is selected so as to
start the second subroutine, which might be one that reads items,
then V must have the same value at the end of the subroutine. If V is
changed, then it could cause another subroutine to be selected,
unwanted, when the first subroutine returned, or it could cause the
program to hang up with an error message.

The subroutines

The separate actions of the menu have to be carried out by the
subroutines. As I have hinted, each subroutine should be designed
like a separate program by itself. A complex program might require
that each subroutine had its own menu, in which case you will have
to go through the actions of menu design for each one. Whether this
is needed or not, your aim must always be to break down the action
into steps that can be tackled in order, always leaving details to the
end.

Suppose, for example, that we have assessed the ENTER ITEMS
menu choice as being the most important one whose subroutine
must be attended to first. You start the design of this subroutine by
deciding what items are to be entered (number, string?), how you
expect the screen to look as each item is entered (any prompts?), and
how entry is to be terminated (enter § , “X” ?). The next step is to
decide how we detect errors (at entry, on a review later?), what
mugtraps to use, whether a review of all the entries is needed. We
may decide, for example, that we want a simple numbered list for
entry, using an INPUT instruction, and that we want to test each
entry for an obvious error and then list all entries later as a further
check. There is no need at this point to become bogged down in
details of how to test and review items — simply write these sections
as separate subroutine calls. Figure 5.5 shows how this would be
done in our example. The first three lines are taken up with a title
and brief instructions. Note that we need some method of
terminating entry. When a fixed number of items is to be entered, we
can control the entry with a FOR ... NEXT loop so that entry will
cease automatically when the correct number of items has been
entered. In this case, we might want to print a warning on the screen
such as “THIS IS THE LAST ITEM” just to remind the user. Yes,
it’s another subroutine — we can plan it later. In other cases, we might
program for an entered limit, meaning that at an early stage in the

62 Commodore 64 Computing

18 GOSUR1568

26 EMD

1088 PRINTTABCZO~LEMCTTE) /20 TTE: RETURH

1598 PRINT"I" TT4="ENTRY OF ITEME":GOZUB1GGE
1516 PRIWNT'PLEAZE TYPE ITEM WHEM FROMPTED BY 2"
1528 FRIMT"TYPE @ A3 AM ITEM TO EHD EMTRY."
15368 H=1

1548 PRIMTH: (INRUT RE

1556 GOSUB10606: REM CHECE IWFUT

1568 M=+ GOSUERLE360

1578 IF A$="0" THEM 1556

1575 AfCHY=R%:GOTOL54E

1586 PRINT" DO YOU WAMT TO REVIEW?":PRIMT"
(AMSWER 7 OR M2

1556 GOSUB18106:REM Y/M RERLY

1608 IF AH$="'Y"THEM GOSUE 1826@0:REM REVIE
SUBROUTINE.

1518 RETURM:REM TO CALLIMG ROUTIME

16a8a REM CHECK

18616 RETURH

1a18 GET AME: IF AME=""THEH1A1E8E

18116 IF AME="Y"0R AHE="H"THEH RETURH

18128 FRIMT"YOUR REFLY ":AME" IS5 HOT UWDERSTOCOD, "
18136 PRIMT"PLERSE TRY AGAIM -~ ¥ OR H."

1al4e GOTO1G166

10208 PRIMT"REVIEN HOM, ..."

10216 RETURM

10386 IF Mx1@ THEM FRIMT'EMD OF EHTRY":A%="@"
l@318 IF M=18 THEM PRIMT"LAST ITEM"

183260 RETURM

Fig. 5.5. A typical data entry subroutine. The checking that can be carried out
depends on the type of data that you want to use.

18 GOSUB1SE6

26 EMD

1608 PRIMTTABC2O~LEHCTTS) /20 TT4 RETURH

1588 PRIMT"A": TT$="EMTRY OF ITEMS":GOSUB1G60
1518 THPUT"HOW MANY ITEMS"HER

1520 DIM AFCHRD: FORCOUMT=1TOHER

15936 PRIMTCOUNT : IMPUT R$CCO2

1548 HEXT

1558 RETURM

Fig. 5.6. Checking for the number of entries, so that an array can be correctly
dimensioned.

Data Processing and Program Design 63

subroutine, the user would be asked:
HOW MANY ENTRIES WILL YOU USE?

This suggestion is dealt with in Fig. 5.6. The only snag with this
system is that an incorrect entry of this number, perhaps because
you miscounted or because another item turns up that was
overlooked, can cause problems. It can also be difficult to add an
item once the list has been prepared. The advantage of the system, as
with the fixed-number entry system, is that the array of inputs,
shown as A$ in the example, can be dimensioned very precisely. This
dimensioning can be done in a line immediately following the input
of the number of items, so that we could add:

1515 DIM A$(NR)

to carry this out.

When “free-entry’ is used, with no obvious preset limit, we are still
restricted, when we use an array, by the dimensioning of the array. If
the value of N in the example of Fig. 5.5 becomes greater than the
value dimensioned in the core part of the program (which is not
illustrated here), then the program will halt with an error message.
To avoid this, we shall need a subroutine (see Fig. 5.5) which tests N
to check that it is not about to exceed the dimensioned limit.

Note, however, the important points. If we put the details into
subroutines, then these subroutines can be written later as we
become clearer about what we need. These subroutines might call
others in turn, and if we are careful about our variable names we
should be able to make use of these same subroutines at other parts
of the program. When, for example, we come to the UPDATE
PREVIOUS LIST part of the program, it’s highly likely that all of
the subroutines that we have used in the ENTER ITEMS choice will
again be useful. Some subroutines may be useful during review and
correction of items, some in the selection of items from the list, and
so on. Any piece of program that solves a problem which can turn up
elsewhere is a good candidate for a subroutine. Any piece of
program which needs more thought or more information before you
can write the lines of BASIC is also a candidate for a subroutine.
Only when the planning is complete do you start to write these final
subroutines.

Some useful routines

When you program in this top-down way, you will often find that

64 Commodore 64 Computing

you use the same subroutines over and over again in your programs.
If you can keep a set of these subroutines on tape or on disk, in
addition to your core programs, perhaps, then the physical effort of
typing is greatly reduced. Some of the subroutines that you will use
are so often employed that they will appear in virtually every
program that you write. Of these, the most common ‘universal’
routines are these concerned with the reading and writing of data on
tape or disk.

The 64, following the methods that were established by its
ancestors, allows data to be ‘connected’ to various devices by
specifying a code number, § for the screen, 1 for the cassette system,
4 for the printer, and 8 for the disk system. The ability to transfer
data out of the computer is something that the computer has to
organise, so that instructions are needed to assist it in this task. The
first of these organisation instructions is to ‘open a file’, meaning
that the data is arranged with a filename by which it can be
identified. On the 64, as on a number of other computers, this is done
by means of the OPEN instruction, which is followed by at least two
numbers. Of these numbers, the first is a reference number which the
computer uses as a means of recognising the group of data. The
numbers used here can be in the range §) to 255, and obvious choices
are numbers like 1,2,3, ... etc. The second number is the device
number chosen from the list of §,1, 4, and 8 as noted above. The
third number, if used, is called the ‘secondary address’ and is used for
supplementary information, such as whether a cassette file is to be
written or read, or how the printer is to be controlled.

Suppose, for example, that we want to ‘open a file’ to send data to
the cassette recorder. If we pick reference number 1, then the
statement that we need will be:

OPEN 1,1,2

which selects reference number 1, selects the cassette recorder, and
selects a write operation with an end-of-tape marker. The OPEN
instruction, however, does not cause any of the data to be recorded
on the tape. When the OPEN instruction is carried out, the message
PRESS RECORD AND PLAY ON TAPE will appear, and when
you follow this instruction, the screen will clear and the tape will
start as usual. What is being recorded is a ‘leader’, consisting of
recognition signals that the computer will use to identify this data
file when the tape is replayed. To carry out the data recording action,
we now need to use the instruction PRINTH#, along with the same
reference number, and specifying the data variable names that we

Data Processing and Program Design 65

want to record. If we use PRINT#1,A$, for example, we shall record
A$ with reference number 1, which is the one allocated to the
cassette recorder. If we want to record a set of items whose number is
contained in the number variable NR, and which consist of an array
AS$, then we can use:

FOR J =1 TO NR
PRINT#1,A$(J)
NEXT

which will gather the set of items and record them on the tape. Since
we normally choose to write the items with an end-of-file marker, we
can read the items in until the end of file mark is received, or we can
precede the recording of the data with a recording of the maximum
number of items, NR in this example, using:

PRINT#1,NR

It’s up to you to choose — the method of recording NR separately is
probably easier for many purposes until you are familiar with data
filing methods and since the manual illustrates the use of an end-of-
file marker (any item which can be recognised, like the number 999
or the string “END”), we’ll show the alternative. Note that an end-
of-file marker is not the same as an end-of-tape marker. The end-of-
tape marker will prevent the machine from reading any more files
from the same tape unless the tape is removed and re-inserted.

It is particularly important, after a file has been recorded, to close
the file, using the instruction CLOSE 1 (the example is for the
cassette file in the illustration). The use of CLOSE records any
remaining data on to the tape, so that if this is omitted, only part of
the data may be recorded. In addition, the machine will not act
correctly if a file is not closed correctly.

Our cassette-filing program subroutine will therefore look as Fig.
5.7 — I have used the line numbers that were used in the menu
program of Fig. 5.1. The important features of the program, apart
from the use of the OPEN and the PRINT# commands are the
messages. As well as the messages that the machine operating system
delivers, such as PRESS RECORD AND PLAY ON TAPE, one
message announces that data is about to be recorded, another
announces that recording is complete. Each message is followed by a
“PRESS ANY KEY” step which should really be put into a
subroutine because it is invariably used many times in a program of
this type. These messages are essential to let the user of the program
know what is going on. There is nothing worse than a program

66 Commodore 64 Computing

18 FORN=1TOS

20 PRIMT"ENMTER A HAME"

38 IMPUT RA$CHD

4@ HEXT

@ HR=3

&8 GOSUB2@69

7@ EWD

2060 OPEM1,1.2

2010 PRINT"DATA WILL HMOW BE RECORDED"
2020 PRINT"PLERSE PREPARE RECORDER.":PRIMT"FRESS
AHY KEY WHEN READY"

2030 GET K$:IF K$=""THENZ2030

2046 PRIMT#1.NR

2050 FORJ=1TOMR

2A60 PRIMTH#1.A%(T:

2E7E MEWT:CLOSEL

2030 PRIWT"ZJ:PRINT"EMD OF RECORDIMG"
2A9@ PRIMT"PREZS AMY KEY TO PROCEED"
2108 GET K#:'IF K$=""THEMz16E

2116 RETLIRH

Fig. 5.7. A subroutine for data filing on cassette.

20 OPEN 1,¢ : REM SCREEN IS 1
25 OPEN 2,1,1 :REM CASSETTE WRITE 2
3¢ OPEN 3,4 :REM PRINTER IS 3
35 OPEN 4,1,) :REM CASSETTE READ 4

5¢¢¢ N = 1 :REM SELECT SCREEN

5¢1¢ PRINT#N,“DATA”IF N=3 THEN 50 3¢
5¢2¢ N=3:GOTO 50 1¢

5¢3¢ GOSUB 6¢¢¢ :REM CASSETTE MESSAGE
5¢4¢ N=2 :REM CASSETTE WRITE

559 FOR J =1 TO NR

5069 PRINT#N, A$(J)

5¢7¢ NEXT

Fig. 5.8. Using the PRINT # instruction to direct data to various destinations or
to receive data from various sources.

which gives the user no indication of what he/she is supposed to do
next. Even if you write and use the program yourself, you may easily

Data Processing and Program Design 67

forget what the intention was — when the screen stops changing do
you start the recorder, press any key, or just wait? Messages avoid
these problems.

The PRINT# command is a general type of instruction which
means ‘put the data out on a line with a stated reference number’.
The line 1, as we have set it up in the example, causes cassette
recording. If we make every PRINT in the program into a
PRINT#N, then by using different values of N, we can direct data to
the cassette recorder, to the screen, to the printer or to a disk system.
The general method is illustrated in Fig. 5.8 — though this has not
been tested, since I did not have a printer or a working disk system.
A set of OPEN instructions early in the program allocates the
reference numbers, and wherever we would use a PRINT
instruction, we place PRINT N in its place. In this way, by allocating
N, we can choose whether to place the data on the screen, to the
printer, to tape, or to the disk system. It’s important to note,
however, that you must not attempt to send data to or read data
from devices which are not connected. This can cause the computer
to hang up, and it is not always possible to recover your program
when this happens.

The most common switch of destination of data is between the
screen and the printer, so that the 64 uses a special instruction,
CMD for this purpose. If, for example, the printeris on line number
3, then the instruction CMD3 will send all PRINT items to the
printer in place of the screen. The snag is that to reverse the
instruction you have to close the line, using CLOSE 3. Having done

1@ GOEUR2SEE
_u EHI
596 PRIMTOY:PRIMT'PLEASE PRERARE TO READ DATA"
hJ]G FRIMT"FREFARE RECORDER-PRESS AMY KEY TO
STRRT"
on2@ GET K4 IF Es=""THEHZDZE
2538 OPEMS. 1,8 REM RERD
J&4w THPUTHS HE
SEE FORT=1TOHR
Tt IHFHT#J;Hf T HERT

o FORICITONR: FRINT 50T < HEKT
RETLIRH

Fig. 5.9. A data-file reading subroutine.

68 Commodore 64 Computing

this, a new OPEN 3,4 will have to be used if the printer is to be used
again.

Reading files from cassette or disk requires the use of OPEN
along with INPUTH#, followed by the reference number that has been
used in the OPEN instruction. As for writing, the file should be
closed when the reading is complete. This does not mean when one
item, or even a list of items, has been read, but only when all file
reading has been completed — omitting CLOSE in a reading
program will not cause the loss of data as it might in a tape-writing
program. A good place to put the CLOSE instructionis at the end of
the subroutine that deals with reading.

Figure 5.9 shows a typical file reading subroutine which uses
reference number 5 for the input file. This program will read the data
that was recorded by the writing program of Fig. 5.7.

Other subroutines

In the course of a data processing program, certain subroutines tend
to be used more than others, and some subroutines appear in
practically every program that you use. In general, you will gather a
collection of subroutines as your experience of writing such
programs grows, and there are books available, such as my own
Some Useful Basic Subroutines (Newnes) which list, with
comments, subroutines that are particularly useful. Of the longer
subroutines, the most useful are these which deal with string arrays.
A string-search subroutine, for example, will hunt through a string
array looking for a string with specified characteristics. These may
be initial letter, groups of letters, length of string or other
distinguishing features. An alphabetical sort is another subroutine
which is likely to feature in most data processing programs. Most
books illustrate sorting programs with reference to a type known as
the bubble-sort, which has the distinction of being the least efficient
of all sorting methods, and one which should be avoided at all costs
if several hundred items are to be sorted. The time difference
between a bubble-sort and a more efficient type, such as the Shell-
Metzner sort, can be several hours!

Chapter Six
Introducing Graphics

Graphics characters are shapes that can be used to create pictures
rather than text (numbers or letters) on the screen of the TV or
monitor. Graphics characters have obvious uses in games and other
leisure-programs, but they also have applications to business
programs. Thedisplay of bar charts, forexample, can be very usefulin
such programs, as can drawing of graphs and other aids to the
comprehension of figures. Pictorial aids may also be surprisingly
useful to help concentrate attention on important information.
The standard graphics characters of the 64 are the symbols that
appear on the keys, and which can be entered into programs directly
just like any other characters that are printed on the keys. It is
possible, for example, to mix graphics with text so as to create
underlinings and borders, as Fig. 6.1 shows. One program listing (Fig.

18 TT4#="oesessss TITLE seseseds’ PRIMT"D
20 GOSUEB12688:REM FRINT AT CENTRE

38 TTé=" - GOSUE 1860
48 EMD

1086 PRINTTABCZO-LEMCTTE) /25 TTE RETURH

(2)

1¢ TT$=[8G>Q][SPC] TITLE[SPC][8G<Q]"
2() GOSUB 1¢¢¢:REM PRINT AT CENTRE

39 TT$=123G>+8G>Q]”:GOSUB 199

4¢ END

10¢0 PRINTTAB (2¢-LEN(TT$)/2)TT$:RETURN

(b)

Fig. 6.1. Using keyboard graphics. (a) Printed version, showing the
appearance of the listing on the screen. (b) Typed version using C.T.
standards.

70 Commodore 64 Computing

6.1(a)) has been produced from a printer in this case and the other
(Fig. 6.1(b)) has been written using the C.T. standards for indicating
special key functions. These standards were pioneered by the
magazine, Computing Today, to whom I am grateful for permission
to reproduce theitemsshownin Fig. 6.2. Thesquare bracketsindicate

1. Use of SHIFT key.

[1] square brackets indicate use of graphics keys
number indicates number of times used

A symbol for shift key

H followed by normal letter shown on key

[5AH] Example - press SHIFT H 5 times

2. Use symbols to right or left of keys, and special keys.

[CLS] Clear the screen
[HOM] Home the cursor

[CL] Move cursor left
[CR] Move cursor right
[CU] Move cursor up
[CD] Move cursor down

[REV] Reverse video on

[OFF] Turn effect off

[SPC] Space

[CTL] Control key

[fn] Programmable function key

[G<S] Graphic symbol on left hand side
[G>] Graphic symbol on right hand side

Fig. 6.2. The C.T. standards for typing listings that contain non-printable
characters.

the use of keys for other than alphabetical or numeric/ punctuation
characters. The symbol, [G<], for example, means the graphics-left,
which is the graphics symbol on the left-hand side of the key. [G>]
would similarly mean the graphics symbol on the right hand side of
the key. On the 64, the graphics-right symbols are obtained by
pressing the SHIFT key along with the character key when the
machine is working in program mode (no? in upper-case/lower-case
mode). The graphics left symbols are obtained by pressing the
Commodore key (€z) and the SHIFT key together, followed by the
Commodore key (Cz) along with the character key.

In Fig. 6.1 the string starts with[8 G>Q], meaning press SHIFT Q
(to get the right hand side graphics on the Q key) eight times. This is

Introducing Graphics 71

followed by a space [SPC], then the word TITLE, and the same
border pattern is then repeated in reverse order. This string is printed
centred by the subroutine at line 1#$)@), and then the stringis redefined
as 23 presses of the graphics symbol on the right hand side of the +
key, whichis the chequerboard pattern. Thisisalso printed centred by
the subroutine.

The effect of the graphics addition is to highlight the title, and the
effect will be enhanced if colourisused (see Chapter Seven). Thereisa
wide choice of characters that can be used for these purposes, though
some of them are obviously designed to be used with games programs
rather than for business applications. If you are mixing graphics
characters with text it makes sense totryto usethe right hand graphics
as far as possible, because these need only the use of the SHIFT key
when the machine is in program mode. If you use lower-case text, you
will have to become used to the procedure for shifting back to
program mode for graphics entry.

Field marking

One notable use for graphics characters in data processing is to
provide more visual information when the INPUT instruction is
used. Data processing programs oftenrequire theentry of datainaset
format, and graphics characters can be used to ensure that this is

16 PRIMT"2": TTE="uu{ INPUT uix"

20 GOSUB1@AE:PRINT:PRIMT LT="" HR$=""
28 PRIWMT" 111 Q0o ;

42 PRIMT"INNENNENERE"

50 FORM=1TOd4: GOSUBSOE: FRINT A%

BE LTE=LTH+AF HEXT

7 PRIMT" "

88 FOR H=1TO2:GOSUBS@E:FRINT A%

Q8 HRE=HR$+AE HEAT

186 PRIMT:FRINT

118 FRIMT"REFEREMCE I8 "iLT$+HRE

126 END

mE0 GET A%:IF Ag=""THEHIOE

505 REM TEST FOR VALUE HERE

518 RETURM

1068 PRINTTARC2O~LEHCTTE) /25 TT4: RETURN

Fig. 6.3. Using a ‘fielded’ input. This is very commonly used indata processing
programs.

72 Commodore 64 Computing

correctly done. Suppose, forexample, that wehavetoenter codes that
consist of four letters and three digits. When this is done using the
normal input methods, a reminder must be printed, and even this
cannot prevent mistakes. A ‘fielded’ input can help here by reducing
the possibility of error. This uses graphics characters to indicate the
numbers of each type of character to be entered, and the characters
that are typed in will replace the graphics characters so that the
operator can see at a glance how the entry is progressing and if
anything is left undone. An example of this type of programming is
illustrated in Fig. 6.3, in which a four-letter and three-digit entry is
called for and GET is used in place of input. GET is used within a
subroutine so that if an incorrect entry is made it will be possible to
correct this either during entry or at a subsequent review. A
conventional INPUT can be used to allow more time for second
thoughts — some programmers prefer thisto the use of GET because it
allows time to check the entry after the last character has been typed.

Graphics strings

As we saw in Fig. 6.1 a set of graphics characters can be printed by
treating the characters as if they were ordinary keyboard characters.
We can also incorporate these characters into strings as we did in Fig.
6.3, with or without other text.

The advantage of incorporating graphics characters into strings is
that the whole string can be printed at different parts of the screen. We
can position the printing by using the TAB across the screen and the
down-arrow character to movedown thescreen. Itis possibleto make
up a string that contains, both graphics characters and cursor-shift
characters (up, down, left, right), so that a pattern will appear on the
screen when the string is printed. This can, for example, be used to
considerable effect as acompanylogo, or forany other distinguishing
mark. The Commodore printer will reproduce all of the 64 graphics
characters, so that the creation of a company logo shape which can
also be printed on paper is fairly easy. Some other printers, notably
the Epson series, permit any graphics pattern to be reproduced by
sending control codes and numbers to the printer, but this is by no
means so straightforward as the use of the Commodore printer.

Figure 6.4 shows a typical logo created by using graphics
characters, and printed at the centre of the screen, on which text can
also be printed. A subroutine for clearing the text part of the screen,
but leaving the logo undisturbed is also included. The printing of the

Introducing Graphics 73

19 LG#=" ~ ~SINDEE~ ‘*-OaEEEl 1"
15 PRIMT"I
28 FRIMTTRECISOLGE

Fig. 6.4. A simple ‘logo’ created from graphics characters.

symbolis greatly simplified by the fact that the logo canbe printed by
the simple command PRINT LGS, rather than by the laborious
method of printing each character separately. This is a considerable
advantage for the use of keyboard graphics — there are several
machines which claim advanced graphics capability, but which
cannot make use of this method.

Another advantage of containing a complete pattern of graphics
characters in the form of a string is that animation is possible.
Animation is achieved by printing the string at some position on the
screen, then after a short time interval, deleting this string, and
printing the pattern, slightly displaced. If this process of print, delete,
print displaced is carried out in succession over several print
positions, the pattern will appear to move across the screen, up or
down, according to the direction of shifting. More complex
movements can be carried out by using a combination of these
movements. Figure 6.5 shows an illustration of a simple pattern
which is moved into place and then used as the ‘frame’ for a title.

18 TTE="0-0"

2B PRIMT"D: FORM=GTOLS

30 FRINTTABCHTTE: (FPREIMT"IHED
48 FORI=1T050 HEXT

SE OPRIMT" N CPRIMTHEE

FE HEST

TE PRINTTARCLI9:TTE

Fig. 6.5. Animating a graphics string so as to create a moving logo.

POKE graphics

Graphics characters and strings can be put into place by the PRINT
instruction, but there is also a faster system which makes use of the
keyword POKE. POKE means ‘put into memory’, and has to be
followed by a position number, called an ‘address’, and a data
number. The address number decides where the data number is to be
stored, so that the instruction POKE 1$24,48 will place the number

74 Commodore 64 Computing

code 48 into memory location 1¢24. POKE is an instruction that has
to be used with some discrimination, because any part of the usable
memory can be affected by it. If you POKE a number into the wrong
address it may have the effect of sabotaging the operating system of
the computer. This won’t cause any physicaldamage, butit may cause
the computer to go into what looks like a trance, with nothing new
appearing on the screen, and no response to the keyboard. To get out
of this state, tap the RUN/STOP and RESTORE keys. The worst
that can happen to you when you get a ‘system crash’ like this is that
you lose the program that you were working on. The moralis always
to record a program before you try it — this applies to modified
versions of programs for which you already have a recording.
Personally, I keep acassettejust fordevelopingeach programsothatI
have a version of each stage in development.

The screen of the 64 is ‘memory mapped’, which means that each
printable position on the screen hasa memory address dedicated toit.
Printing a character on the screen corresponds to placing the number
code for that character into the corresponding memory address, so
that the POKE instruction can be used to carry out PRINT actions.
The difference is that the POKE action can be used for any point on
the screen, selected at random, whereas the PRINT actionis carried
out in sequence, left to right in each line, and moving down from one
line to the next. The other difference is that POKE deals with one
code, one character, at a time, whereas PRINT can be used to placea
whole string of characters onto the screen. The PRINT instruction, in
fact, is a form of POKE to the screen addresses used with a loop.

Figure 6.6 shows an example of POKE at work. The screen
memory uses 1@ addresses. This is because the screen permits 25

1@ PRIMTO": POKES3281, 3 FORM=1624TO1984STEP4O
2@ READ J%: POKEM, ASCCI$)~54 HER

38 DATAS, C,RLELE.M ¥ P LK E, Hu DL E MO HL S0 TR,
AT, 1, 0.H

Fig. 6.6. Using the POKE instruction. Note the instruction which changes the
colour so that the poked characters are visible.

lines of 40 characters per line, which means that a total of 10f§
character positions are used. The memory addressesare 1¢24t02¢23
inclusive, and a POKE to any of these positions will affect the screen
picture. This screen layout is illustrated in Fig. 6.7. The address
numbers refer to the positions for the start of each line, with the
tabulation numbers () to 39 added to the start-of-lineaddress number

Rows

Down

(POKE
numbers)

1024
1064
1104
1144
1184
1224
1264
1304
1344
1384
1424
1464
1504
1544
1584
1624
1664
17¢4
1744
1784
1824
1864
1904
1944
1984

——3 Across (TAB Numbers)

g1 23 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 3¢ 31 32 33 34 35 36 37 38 39

To find the address number for any block on the
screen, add its column number (@ to 39) to the row number

Fig. 6.7. The screen ‘'memory map’ layout.

2023

G/ saiydeisn buronpoapuf

76 Commodore 64 Computing

to find the position of any point in a line. The startingaddress, 1$24 is
the HOME position of the cursor, the top left-hand corner; the
finishing point of 223 is at the bottom right-hand corner of the
screen. A minor complication is that a code POKEd to these
addresses produces no visible effect until either the colour of the
character or of the background is changed. In Fig. 6.6 the
background colour has been changed.

If we place character code numbers in the first memory address of
each line, the effect will be to print a column on the screen, and this is
what the program of Fig. 6.6 does. The FOR ... NEXT loop starts
with the first memory address, the HOME address, and goes in steps
of 40 so that it progresses from 1§24 to 1964, 1194, 1144, and so on,
which are the first character positions of each line. Into each of these
addresses, the program pokes an ASCII code number, and by using
ASC(J$), we select the ASCII code number of the letter which has
been read by the READ ... DATA instruction. Theeffect istherefore
to place the words into column format the left hand side of the screen.

The very considerable advantage of using the POKE instruction is
that it does not affect the cursor position. We can use POKE to place
individual characters anywhere on the screen, and thenreturn to print
instructions which will be placed at the cursor position. In games
programs, this can be used for the rapid printing of patterns or for
moving single characters around. For data processing programs, the
POKE facility offers a way of drawing bar charts, graphs, and other
diagrams.

Suppose, for example, that we want to chart the pre-tax profits ofa
small business over a period of four years. We shall need to know the
starting year and the figure of pre-tax profitseachyear, so that wecan
use these figures to construct the chart. We’ll imagine for the sake of
simplicity that the maximum profit level is £200,000 and that we shall
represent this on the chart by a bar which is 20 lines high.

The program exampleisshownin Fig. 6.8. Lines 1{) to 5) obtain the
range of years and the profit figure for each year. The profit figure
must be between £10,000 and £200,0@@ for this particular program —
imposing these limits allows us to keep the program simple and to
demonstrate bar chart drawing without the excessive complications
of being able to adjust the scales to fit anyrange of data that was used.

Line 7 contains a time delay, simply to give you time between
entering the last value and seeing the bars appear. The title is then
printed, and line 99 calculates how many steps of £10,0§ units are
needed to represent each amount. INT is used because we will use a
graphics block torepresent £10,0@§) amounts, and we cannotsoeasily

Introaucing Graphics 77

18 PRINT"D":TT$="PROFITS" :GOSUB1G@8E

28 PRIMT: INPUT"STARTIMG YEAR";&Y

30 FOR YR=2Y TO &Y+3

40 PRIMT"PROFIT FOR YEAR "iYR;" I8 ";

g6 GOSUR 1ze@

68 MEST FPRIMT"PLERSE WAIT"

A FOR H=1 TO 18@8:HEXT

8@ TT4="PROFITS CHART":GOSUR 1606

9@ FOR H=1 TO 4:BHC(HM>=INT(FRIHDA1B0BE)

95 PRINTTABCS#H~1N;

186 HEAT : BA=19@4

185 POKES3281.3

118 FOR M=1T04

128 FOR J=1 TO BHiH>

130 POKE BRA+S#H-4047, 102

148 HEXT

158 MEAT

168 GET A%:IF A%=""THEM 1&@

208 EMD

1@0a PRIMT" FRIMTTAB(Z26-LEMCTTS) A2 TTH: RETURM
1206 IHPUT P

1218 IF F:200006 THEM PRIMT"TOO LARGE":GOTO1z24@
1228 IF P<1688@ THEW PRIMT "TOO SMALL":GOTO 1249
1228 PROYR-SY+15=P:RETURM

1248 PRIMT"AGAIM. PLEASE"::GOTO120@

Fig. 6.8. A simple bar chart programto illustrate the use of POKE instructions.

use half-blocks without introducing considerable complications into
the program. The variable BH for each profit figure will therefore be
the number of complete blocks for each bar.

Line 19§ finishes the loop and sets the final address in the bottom
line of the screen as the variable BA. The bars are then drawn in the
loopsstarting in lines 11¢) and 12¢). The FOR N=1TO4loop ensures
that a bar will be drawn for each of the profit figures. The next loop,
FOR J=1TO BH(N) will decide how high to draweach bar, because
BH(N) is the number of graphics blocks in each bar. The POKE
instructions in line 13@) then puts each graphics block into place. By
using the formula that isshown, for one value of N, the graphics block
will always be placed on the same position along each line, but by
using 40 * J, one block is placed ontop ofanother for as many times as
the value of BH determines. When a pile of graphics blocks has been

78 Commodore 64 Computing

stacked up for a bar, the J-loop ends, and the next N loop begins,
tracing the next bar in the same way. The year numbers have previously
(in line 95) been printed at the top of the screen. The program finally
enters a loop in line 16§ to prevent the cursor from appearing.
Obviously, this bar chart program could be writtenasasubroutineso
that it could be used withinanother program. Ifitisimpossibleto place
into the program in advance the maximum range of the quantities that
will be charted, then an autoscaling subroutine must be used. A suit-
able routine is illustrated in Fig. 6.9. In this example, the size of each

18 Z=18:FOR J=1TOZ
28 MCTo=RHDCL)#IS+]
3@ NEXWT
48 GOSURSA@E
S0 FORJ=1TOZ:PRIMT M{Ty NERT
E PRIMTMAKIMIM 135 "M
78 EMD
SRAD ME=MC] FOR J=1 TO 2
516 TF MadHOTaTHEM My=H(T:
SE2@ HEXT RETURH
Fig. 6.9. Aroutine for finding the maximum value in a set of numbers. This can

then be used to scale the barchart, making the maximum value apply to, say,
20 blocks and using proportional values for other numbers.

entry is checked, and the maximumsize of entry is used to represent the
maximum height of bar that will be plotted.

A bar chart program is much easier to produce if the bars are
horizontal rather than vertical, because when the number of blocks is
known, a string can be packed with the required number and then
printed. The vertical bar diagram is more common, however, and has
been used so as to illustrate POKE graphicsinabusinessapplication.
If you waint a mental exercise, try modifying the program so that the
bars are much wider — perhaps five character widths per bar.

Using PEEK

The keyword PEEK performs the opposite of POKE by providingthe
number that is stored at a given memory address. The syntax is
PEEK (address), and the PEEK must be used ina PRINT statement
(PRINT PEEK(1()24)); as an assignment (P%=PEEK(1()24)) or as a
test (IF PEEK(1¢24) = 32 THEN ...). The value of PEEK in a
graphics program is that it can be used to test what is stored in the

Introducing Graphics 79

memory and in particular on the screen. PEEK can be used, for
example, to find if a memory location is occupied, and to cause an
appropriate reaction.

Try the program in Fig. 6.10. This reproduces a phrase on the
screen — but inverts the pattern of the printed line! The value SR (for

10 PRIMT"O"; (K=439:SR=1024
28 PREIMT"THIS IS A TEST"
38 FORM=39 TO @ STEP-1

48 POKESR+K~H, PEEK(SR+H)
45 POKES3281.15

S8 MEXT

Fig. 6.10. Using POKE to create a pattern inversion.

START) is the address of the first position of the top line on the
screen, and the constant K has been chosen as 439, an interval of
almost eleven lines. In the loop that starts at line 3@, the values of N
run from 39 to), so that in the first run the POKE SR+K—N givesan
address number of 1024 + 439 — 39, which is 1424, the address of the
start of the tenth line. The PEEK, however, is from SR + N, which is
1963, the end of the first line. On the next run through the loop, the
value of N is38,sothatthe POKEisto 1425, the second position of the
tenth line, and the PEEK is from 1062, one space from the right hand
side of the first line. In this way, the characters are read from the first
line in inverse order and printed in the tenth line in this order starting
at the left hand side. It may look pointless when carried out on textin
this way, but it’s a useful way of printing symmetrical patterns when
you use graphics blocks in place of letters.

We can also use PEEK in useful processing operations, such as
replacing dollar signs by pound signs (for use by printers), or in
converting one graphics character into another. Suppose, for
example, that we wish to reproduce a pattern on the screen using a
printer which is not able to reproduce Commodore graphics directly.
By testing each screen location, using a loop such as:

FOR N9, = 1§24 TO 223
K% = PEEK(N%)

then each character code is assigned to the variable K%, and we can
test:

IF K%>127 THEN GOSUB 5000

This test will detect the use of a graphics code (with numbers greater
than 63), and call a subroutine which will substitute some other code

80 Commodore 64 Computing

or a set of codes to send to the printer. Line 50@§ will contain the
instruction:

K$ = GR$(K%)

with GRS being the set of codes corresponding to the number K%,.
We would need to have defined these codes, and the complete string of
codes would then have to be converted into numbers to send to the
printer. This is particularly applicable to printers such as the Epson
Mk.3 which has definable graphics, meaning that it will print a
pattern defined by a set of number codes sent to it. Note the use of
integer variables in the program, since each address number and the
number stored in it must be an integer.

Planning block graphics

Another use for graphicsindata processing programsisthe provision
of large title letters and emblems. These can be put into the form of
strings, as we noted earlier in this chapter, or they can be poked piece
by pieceinto the screen memory directly. Either way, some planningis
needed.

Planning graphics is most easily done if a good screen-plan
diagram is available. Figure 6.7 showed a screen diagram which
indicated character positions, along with both the POKE numbers
and the TAB numbers. By laying tracing paper over this grid and
using a pencil, you can design your pattern by shadinginblocks onthe
screen to show the appearance of the graphics pattern that you want.
Designers tend to work in negative, meaningthatashaded block will,
in fact, appear on the screen as white or in other foreground colours,
rather than in black as the paper drawing suggests. Until we have
black paper and white pencils, this willhaveto be the way wedoit, but
if you want to work in ‘real’ shades, there is no reason why you should
not, except that it usually involves more work.

Creating simple geometrical patterns can often be most simply
dealt with by using POKE instructions, but other patterns are most
easily dealt with by assigning the characters to strings and then
printing them with the appropriate TAB numbers. Unlike the ‘pixel’
graphics shapes that are used in other computers, the graphics shapes
of the 64 have been designed with some thought to their combination
into patterns. The graphics shapes on keys U,I,J,and K, forexample,
are sections of a circle which can be combined to create a circular
shape that occupies the intersections of four character blocks. The

Introducing Graphics 81

four basic playing-card patterns of spades, hearts, diamonds and
clubs are onkeys A,S,Z, and X, and the patterns of diagonals on keys
N and M are useful as cross-hatching.

Video inversion

In addition to the patterns that are shown on the keys, the inverse
patterns, in which foreground and background colours are swapped,
can be obtained. The keys which carrythe9 and) symbols ontopalso
havethe wordsRVS ON and RVS OFF (respectively) printed ontheir
sloping fronts. When the Commodore key (€=) ispressed atthesame
time as the ‘9’ key, the effectisto start reverse video, so thateverything
typed from then on has the foreground and the background colours
reversed. If, for example you were typing in white on black, then
pressing CTL9to put RVS ON would thencausetypingto be black on
white. Being able to reverse the video like this has the effect of adding
another set of graphics characters, because everything that can be
placed on the screen in normal video canalso be used ininverse video.
The reverse video can be switched off by using CTL §, RVS OFF. As
usual, the codes for theseactions can betyped into strings, as Fig. 6.11
shows.

19 PRIMT"THIS IS5 IM HORMAL WILDED"
28 PRIMT"®THIS IS IM IMVERSE VIDEQ"
38 PRIMT"Se O & 4"

Fig. 6.11. Using reverse video codes within strings.

Chapter Seven
Sprites and Colour

The graphics patterns that are obtainable from the keyboard are
preformed patterns whichare classed as low-resolution, meaningthat
only 40 X 25 character positions can be used. The 64 also has the
capability to create graphics characterstoyour owndesign. Theseare
high resolution, meaning that they make use of the screen as if it
consisted of 320 dots across by 20¢ dots deep, with each dot
individually controllable. In addition, these graphics patterns can be
moved aboutthescreenand itis possibletoassign prioritiesto themso
that one pattern will always appear to pass ‘in front’ of another when
two patterns cross. These movable graphics patterns are known as
‘sprites’ or, less imaginatively, as MOBS (Mobile Object BlockS).

1st Group 2nd Group 3rd Group
A A N\
~OMNMrrO TN T ~ONr~ O TN~ OM+—=0OT N
1
2
3
4
5
6
7
8
9
10

NN =t =t b b bk b b b
S Q. OONODTTDHWN =

Fig. 7.1. Sprite planning grid. Don’t attempt to use fine detail, because the
sprite is a very small block on the screen. For large objects, you can magnify
the display, or use more than one sprite.

Sprites and Colour 83

The use of sprite graphics involves considerably more work than
the use of the keyboard graphics, but it enables you to create any
patterns that you wish, subject to the size and complexity of the
pattern, and to move these patterns with considerable freedom.
Sprites are planned on a grid, illustrated in Fig. 7.1, which is made up
of 24 units across by 21 units deep. By placing a piece of tracing paper
over this grid and working with a soft pencil, youcancreate your own
pattern whose actualsize ona 14” TV receiver, if you have used the full
grid, is about 15 mm by 10 mm.

These sprite patterns are controlled by a separate set of controls
within the 64. These controls allow you to create up to eight sprites at
any time onthescreen, to move themindependently, detect collisions,
and change their colours. As you might expect, all of this requires a
considerable amount of programming effort.

The method by which you, the programmer, create and control
sprites is by the use of addressnumbersinthe memory. The keyword to
changing the contents of these memory addresses is the POKE
instruction which we used earlier to control normal screen graphics
Sprites are created and controlled by using POKE instructions to the
special memory addresses that are reserved for the sprites. The
numbers that are used for the POKE instructions are normal denary
numbers (decimal numbers), but these represent the values of binary
numbers. The binary (scale of two) numbers represent the positions of
I’s and §’s in sets of eight, one set of eight to a memory address, and
each 1 or § acts as a signal to the computer. It is these signals which
correspond to the details of the sprite patterns, and which are used to
select which sprite is moved. Before we can go much further in sprite
graphics, then, we have to understand something of binary numbers.

Binary numbers

We write numbers normally by usingascale of ten. This means that we
use ten digits, 0 to 9, and that the number tenis indicated by taking a
separate column, so that 17 means one ten and seven units, 48 means
four tens and eight units, and so on. The next column position is 10X
10, equal to 100, so that 285 means two hundreds, eight tens and five
units.

Our choice of tenasa ‘base’, meaning the number at which wetakea
new column for writing digits, is quite arbitrary, and probably derives
from having ten digits on our two hands. Computers, however, use a
binary scale, a scale of two, because they count using miniature

84 Commodore 64 Computing

switches. A switch is either on or off, two possible states, so that the
natural counting scale is one that uses the two digits) (for off) and 1
(for on). A count-up in binary would therefore start conventionally
with @) and then 1, but the next number will betwo, meaning one ‘two’
and zero units. Thisis writtenas 10, usingthe positionto theleft of the
zero (units column) to indicate the number of twos (the twos column).
The next number in the count is 11 (a two and a unit, equal to three),
and for four we have tomove another place overto theleft, writing the
number as 10§.

Denary Binary

0909
09p1
pg1¢
po11 q
g19¢ 23
g1g1 =
¢11¢ most

g111 signiff'mnt l:”:l
1006 bit

1061

1919

1911

11¢¢

1161

111¢

1111

eights
twos

2
5
least significant
I:H:l bit

0NN PhA WN =S

— \O
=

—_—
—_—

—
[T~ S I S)

Fig. 7.2. A binary number count.

Figure 7.2 shows a count from § to fifteen, comparing denary
numbers with binary numbers so that you can see the sequences of
binary digits. Converting a binary number into denary is simple,
making use of Fig. 7.3 Each 1 in a binary number occurs at a position
which corresponds to some denary value, and this position will be one
of these shown in the table. By adding all the denary values
corresponding to these ‘1’ positions, the denary value for the binary

number is found.
The example shows how the figures are obtained. The relevance of

this is that the computer works with 8-digit binary numbers (eight-bit
numbers, as they are called), so that each memory address can store
a number which, in binary, is between PPP@PPGP and 11111111.
This corresponds in denary to the range §) to 255, and itis numbers in

Sprites and Colour 85

Procedure Example

1. Write binary number (eight bits) ¢ 1 1 gr119
2. Write denary value of each 1 NI N
3. Add these values ll¢

Denary Values:

128 64 32 16 8 4 2 Denary numbers

[:] [] D 10] I___l D D Boxes for binary bits

Write the binary number into these boxes (use tracing paper), and then note
the denary number for each box that contains a 1. Add the denary numbers

Fig. 7.3. Binary — denary conversion.

this range that we can POKE into memory addresses. For graphics
purposes, we deal with several blocks of these groups of eight, but
the conversion of each block into a denary number is carried out in
the same way. The block of eight is called a ‘byte’, and this is the unit
that is used for measuring memory size — 1024 bytes is a kilobyte (K).

Practical sprite generation

Let’s illustrate the generation of a sprite pattern in the simplest
possible way, which is to take an example, and to follow the
programming steps in detail. Let’s assume that you want to display
your mobile-homes emblem, along with the letters CCC (Chislebury
Caravan Company), in sprite form. Using a sprite allows you to
move the caravan across the screen, and you may later plan a point-
of-sale exhibit in which the caravan tows a banner and in which the
screen then switches to a sales message. The first act of sprite
creation is the planning of the image, so we need to make use of the
sprite planning grid. Trace the outline of the sprite lightly, and try to
make it as simple as possible unless you are convinced of your
artistic abilities. At the moment, it’s the main outline of the shape
that’s important, and Fig. 7.4 shows a suggestion. Take some time
over this planning stage — it’s by far the most difficult part of sprite
production, particularly if you are as inartistic as I am.

The next step is to convert each row of filled-in squares into
numbers. The 24-squares across needs three numbers because, as we
saw earlier, the computer works with binary numbers that have eight

86 Commodore 64 Computing

Numbers to POKE

ﬂ’”’ﬂ

00,0

9,0,0

0,2,0
2,63,192
7,255,252
31,255,252
63,255,254
49,255,142
49,255,142
127,255,254
127,227,254
127,227,254
127,227,251
63,227,254
63,227,248
28,0,112
28,0,112
1,182,0
1,36,8
1,182,0

Fig. 7.4. A sprite shape, with the numbers that will be needed to create it.

digits each. Each group of eight binary digits can then be converted
into a denary number between @) and 255 by adding up the denary
equivalents. When you have completed the sprite plan, you will have
21 sets of three numbers, 63 numbers in all for each sprite. It’s hard
work!

Getting back to our pattern, the first three rows of squares are all
blank, so that we start with nine zeros (three per row, remember). In
row four, there is one shaded square, the ventilator of the caravan,
which is in the 2-position of the second group of figures. The
numbers for this row will therefore be $,2,§. In the fifth row,
however, we have more to do. The 2-position of the first group is
filled, and the 32,16,8,4,2, and 1 positions of the second group are
filled. This gives 2 as the first number, and the sum of 32...... to 1,
which is 63, for the second number. In the third group of this row,
the 128 and 64 positions are shaded, making the number 192. The set
of three figures for the row is therefore 2,63,192.

We go down the rows in this way, counting the filled squares and
writing the groups of numbers. It’s useful to remember that a
complete set of shaded squares gives the number 255. If the square
on the left of the group is missing, the number is 127, and if the
square on the right is missing, the number is 254. In other words, if a
lot of squares are shaded, it’s often easier to subtract than to add
numbers. We should now have a set of 21 X 3 = 63 numbers.

These numbers are now typed into DATA lines. You can put them
all into one large DATA line (remember the comma between each

Sprites and Colour 87

number and the next) or you can use 21 DATA lines with just three
numbers in each. Using 21 DATA lines makes it much easier to
change your pattern because there is then a direct relationship
between the rows of the pattern and the DATA lines. When you
have obtained the final pattern, however, the creation of the sprite
will be quicker and will use less memory if you put all the numbers
into one long DATA line.

Having completed the DATA for the simple shape, we then have
to arrange for the computer to READ these numbers into the
correct memory locations and to make use of them. There is one
particularly important number involved here — 53248. This is the
first number of a set of memory addresses that controls the ‘video
chip’, which is the part of the computer that deals with sprites, so we
start any sprite program by allocating this number to a variable. I
have chosen the variable name VC to remind me that this is the
starting address for the Video Chip. The first useful address for us in
the set that starts at VC (equal to 53248) is 21 places on from this
starting point, so we can refer to it as VC + 21. This is the address
that lets us choose the /evel of the sprite. Level doesn’t just mean a
reference number for the sprite, it also means relative importance. A
level () sprite will always appear to pass in front of any other level
sprite, for example, so the number indicates priority. This isn’t
important if you have only one sprite or if you aren’t going to move
sprites, but it is useful for moving displays where you may want one
pattern always to be seen. In our example, the caravan is the only
sprite, so we’ll give it priority level 7. The priority levels range from ()
to 7 (not 1 to 8 - binary again!) so that this is the lowest priority. This
way, if we add other sprites later, the others will always be visible,
appearing to pass in front of the caravan when they move around the
screen.

The memory at address VC + 21 consists of the usual eight bits,
with the usual denary equivalent numbers. The top levelis indicated
by a 1 in the left-hand position, corresponding to the denary number
128. To establish that this sprite is a level 7 one, then, we need to
program:

POKE VC + 21,128

This step will ensure that the sprite has lowest priority, and it also
ensures that we can make it appear on the screen when we want it. If
we later POKE a 1 into this address, we shall have changed the
priority of this sprite to level §, which is the highest level of priority. A
() poked into this address will disable the sprite so that it does not appear.

88 Commodore 64 Computing

Address Sprite level

2049 0

2041 1

2042 2 The number thatis POKEd into one of these
2043 3 addresses must be a ‘block number’. This
2044 4 indicates which block of memory holds the
2045 5 data numbers for this sprite.

2046 6

2047 7

Fig. 7.5. The sprite pointer locations.

The next step is to place the DATA for the sprite shape into the
correct memory locations. The memory locations are arranged in
blocks of 64, and we need one block for each sprite. This is done in
two steps. The first step is to set a ‘pointer’ to indicate which block
we are using. The pointers are put in at memory locations 204§ to
2047 (Fig. 7.5). We need to use the correct pointer for the level of
sprite that we have selected, so for a level 7 sprite we have to use the
address 2047. The number that we POKE into this address will
represent the location of the block of memory that will be used to
store the sprite numbers, and the same reference number will always
refer to this set of data. We can choose numbers between 13 and 20.
Suppose we choose 13. The next command will therefore be:

POKE 2047,13

and we’re almost ready to put the data in place. Since each block of
numbers consists of 64 numbers, then the thirteenth block will start at
address 64 X 13 =832. Note that this enables us to hold ‘spare’ sprite
data ready for use. We must now poke the data numbers into
addresses starting at this figure of 832, and this is donebya FOR ...
NEXT loop:

FOR N = ¢ TO 62: READ D:POKE 832 + N,D:NEXT

This completes the creation of the sprite, and we next have to think
about where we want to have the sprite appear on the screen.

Position and movement

The sprites are positioned and moved on the screen by using a set of
number co-ordinates. The X co-ordinate represents positions across
the screen, like TAB numbers. The Y co-ordinate represents

Sprites and Colour 89

positions down the screen. The starting place for these sprite co-
ordinates is the top left hand corner, the same HOME position at
the top left hand corner that we use for printing. The co-ordinate
numbers also have a greater range than TAB numbers. For printing,
we use 40 character positions across the screen and 25 lines down.
For sprites, we use up to 320 points across the screen and up to 200
points down the screen. The location point foraspriteistakenasbeing
its top left-hand corner, so that if we use co-ordinates X = ¢ and
Y = @, then we will place the sprite so that its bottom left-hand
corner is at the top left hand corner of the screen. Note that the
bottom left hand corner of the sprite is not necessarily the first block
that is filled in, it is the first square at the bottom left hand corner of
the set of 24 by 21, whether it is filled in or not.

The position of each sprite is dealt with by poking its proposed X
and Y co-ordinates into a separate set of memory addresses. For a
level 7 sprite, we use address VC + 14 for the X co-ordinate,and VC
+ 15 for the Y co-ordinate. VC, you remember, is the Video Chip
address of 53248. To make a sprite appear and move, we have to
POKE numbers into these addresses and then change these
numbers. Putting numbers in causes the sprite to appear and
changing the numbers causes it to move. We do not have to rub out
the old image when we use a new sprite position — this is done
automatically so that sprite animation is made much easier than
animation by other methods.

Suppose, then, that we want our caravan to move across the
screen from left to right, and to appear about halfway up the screen.
Our Y range is up to 200, so if we use a Y co-ordinate of 19§, the
caravan should appear with its wheels somewhere near the middle of
the screen. Remember that it will be the top left-hand corner of
the entire sprite which will appear at the co-ordinate points. All we
have to do to achieve the correct Y co-ordinate entry isto POKE VC
+ 15,1¢¢. The X co-ordinate is not quite so simple. We want the
sprite to move all the way across the screen, calling for a range of @ to
320 for the X co-ordinate, if the caravan is to disappear from the
right hand side of the screen. The maximum size of number that we
can poke into a memory, however, is 255, so that for the higher
values of X, a constant must be added. This is done by poking a
number into the address VC + 16. For a level 7 sprite, this number
will be 128, so that the instruction is:

POKE VC + 16, 128
This has the effect of adding 256 to the X co-ordinate number, so

90 Commodore 64 Computing

that the movement from left to right has to take place in two steps:

FOR X = ¢ TO 255: POKE VC + 14, X:NEXT

POKE VC + 16, 128: FOR X = TO 64: POKE VC + 14, X:
NEXT

POKE VC + 16, §: REM RESET

Since we can have up to eight sprites operating at the same time,
we need eight pairs of memory addresses to hold their X and Y co-
ordinates. These memory addresses are shown in Fig. 7.6. The extra
position that is needed, called the MSB (meaning Most Significant
Bit) to get X values from 256 to 329 is stored at VC + 16 as we have
seen. The program of Fig. 7.7 illustrates these changes so far.

Starting Address for Video Chip = 53248
Using VC = 53248, we can indicate X and Y co-ordinatenumbersas VC+n,
where n is a number up to 16

Value of n Use

X co-ordinate for Sprite §
Y co-ordinate for Sprite §§
X co-ordinate for Sprite 1
Y co-ordinate for Sprite 1
X co-ordinate for Sprite 2
Y co-ordinate for Sprite 2
X co-ordinate for Sprite 3
Y co-ordinate for Sprite 3
X co-ordinate for Sprite 4
Y co-ordinate for Sprite 4
X co-ordinate for Sprite 5
Y co-ordinate for Sprite 5
X co-ordinate for Sprite 6
Y co-ordinate for Sprite 6
X co-ordinate for Sprite 7
Y co-ordinate for Sprite 7
MSB store

Pk kot
AP LWNRSSVoONONWVP W =S

Fig. 7.6. The sprite X and Y co-ordinate addresses.

The control over sprite position that can be obtained using the
POKE addresses for X and Y co-ordinates extends well beyond
simple movement. We can double the size of any sprite in either the
X-direction, the Y-direction, or both. This is done by poking to
addresses VC + 23 (to expand Y) and VC + 29 (to expand X). The
numbers that are poked to these addresses will have to be the sprite

Sprites and Colour 91

18 WC=53248

15 PRIMT" "

28 POKE WC+21,128

30 POKE 204713

48 FOR N=@TO&Z 'RERD D:POKE S32+M. D HEY
S8 FOKE WC+15, 108

Eg FORK=ETO255: POKE WC+14, 9 :FOR J=1TO25: HEXT:
MEXT

7@ POKE YC+16, 128 FORK=BTIE4 POKE WC+14,%: FOR
J=1TO25 HEST ' HEWT

28 POKE YCHIE, 8 POKEVC+21, 60 REM RESET
188 DATRE.6,9.6,0.8.9,08.6,0,2.0

118 DRTRZ.&3, 192

128 DAETAT. 255, 252

138 DATAZL. 255,252

148 DATASI 255,254

158 DATR49, 255, 254

160 DATA43, 255, 142

178 DATARLZT. 255, 2594

138 TATALST, 227,254

198 DATAL27, 227, 254

288 DATALZ7, 227,254

218 DHTAEZ. 227, 254

220 TATHES, 227,248

238 DATAZE, @, 112

248 DATR2E.8, 112

258 DRTAL. 182,68

DATAL. 36,0

DATAL. 182.8

Fig. 7.7. The complete sprite program so far.

L]
o O
=

level numbers (1,2,4,8,16,32,64 or 128). Try adding this line:
45 POKE VC + 23, 128: POKE VC + 29, 128

to see the effect of doubling the size of this sprite. The size on a 14”
screen is now about 35 mm by 25 mm, about one tenth of screen

dimensions.

Multiple sprites

We can create more than one sprite at a time, and these additional
sprites can be of different shapes, of the same shape, and of the same

92 Commodore 64 Computing

shape but different size. Since we have placed all the data to form
our caravan shape into block 13 of memory already, we can use it to
add more sprites of the same shape. How do we do this? If we make
the new sprite at level 6, then the number that has to be poked is 64,
and the sprite is turned on by using address VC + 21. If we want to
retain our original sprite, however, we need to add the numbers that
are poked to this address. Since 128 + 64 = 192, then line 2¢) has to
be altered so as to read:

20 POKE VC + 21, 192

We then have to provide the location of data for this sprite. Since its
level is 6, the data block 13 that we have filled has to be poked to
address 20046 rather than to 2047 this time, so we add in line 3¢:

POKE 2046, 13
to make the line now read:
3p POKE 2¢47, 13: POKE 2046, 13

None of this will make the new sprite appear, however, because we
have not yet put values of X and Y co-ordinates into its position
registers. Suppose we make the Y-position somewhere near the
bottom of the screen by using

55 POKE VC + 13, 18¢

Since the range of values in the Y direction is up to 200, 180 should
represent a position reasonably near the bottom of the screen. We
now have to add the X co-ordinate by having:

POKE VC + 12, X

at around the same part of the program as we have VC + 14 in the
original version. We also have to change the MSB of 128 inline 7§ to
192 to accommodate the new sprite, and the program is now ready
to run, as Fig. 7.8 shows.

We can now demonstrate the priority of sprites. If we shift the Y
position of the level 7 sprite to 16§ by a change in line 50:

POKE VC + 15, 16§
and then put its X co-ordinate to halfway along the screen by:
POKE VC + 14, 16§

then we can keep it there by removing the changes in X co-ordinates
in lines 6() and 7@, leaving only the movement of the level 6 sprite.

Sprites and Colour 93

18 WC=53248

15 PRIMT"I

28 POKE WC+21.,1592

20 POKE 2@47.13:POKE204E, 13

49 FOR H=8T0EZ:READ D:POKESSZ+H. D :HEXT
45 POKEVC+23, 128 POKEVC+29, 128 REM EXPAHD
568 POKE VC+15, 188

55 POKE WC+13,180

60 FORX=@TO25S:POKE YC+14, % POKEVCHIZ, ¥ FOR J=
17025 MEKT tHEXT

70 POKE YC+1E,192:FORK=BTOG4: POKE YC+14, ¥ POKE
VC+12, ¥ FOR J=1T025: HEXT :HEXT

80 POKE WC+16,0:POKEVC+21,@:REM RESET
108 DATAG.0.0.0,0.0.0.0.0,8.2,8

11@ DATRZ, &3, 152

1268 DATA?, 255, 252

13@ DATAZ1, 255,252

148 DATRAEZ, 255,254

1568 DATA49,253, 254

168 DATR49,255. 142

17@ DATAR127,235, 254

186 DATA12Y. 227,254

190 DATA127,227.234

200 DATAL27, 227,254

218 DATAE3, 227,234

226 DATAEZ. 227, 248

230 DATAZE.8.112

248 DATAzSZ. 8,112

258 DATAL. 182.8

268 DATAL. 3.8

220 DATAL. 182,08

Fig. 7.8. Introducing a second sprite of the same shape.

The new program is shown in Fig. 7.9. When you run this, it shows
the level 6 sprite (small caravan) passing in front of the level 7 sprite
(large caravan). Just for good measure, we’ve added a sales message!

Now by changing the priorities, we can make the large caravan
into a level 5 sprite (requiring a 32 to be poked in place of 128) in
lines 2§ on:

29 POKE VC + 21, 96

30 POKE 2045, 13: POKE 2§46, 13

45 POKE VC + 23, 32: POKE VC + 29, 32
59 POKE VC + 11, 160

56 POKE VC + 10, 160

94 Commodore 64 Computing

10 YC=52248

15 PRINT""

17 PRIMT:PRINT"CARAVAHS RIG OR SMALL . WE SUFPLY

THEM ALL"

20 POKE VC+21.192

a6 POKE 2047, 13:POKEZ846. 13

4@ FOR H=@TOEZ: READ D:FOKESS
POKEYC+23, 128 POKEYC+29, 1

POKE WC+15. 1608

POKE WC+13. 138

FOKEYC+H14, 1680

FrORKX=@T(255 : POKENVC+12, ¥ FOR J=1T025 HERT S HEXT

POKE YC+16, 64 FORK=GTOES : POKEVC+12, A FOR J=

1TO2S HEXT ' HEAT

8 POKE WC+16,8:POKEVC+21,3 REM RESET

1AR DATFAG,@,2.0,9,0.0,8,0.0.2.08

118 TRTARZ. &3, 192

126 DATAT. 255,252

138 DATAZL, 255,252

1468 DRATRES, 255, 254

1568 DATA49, 255, 254

166 DATA49,255, 142

178 DATRALE?., 255,254

189 DATALZ?. 227,254

19 DATAL2T. 227,254

oA DATA12T. 227,254

218 DATAE3, 227 . 254

ozB DATAGS, 227,248

ZaE DATR2E, B

248 DATAZE.@

omE DRTAL 182,89

SR DATHL 36,8

oEE TATHRL 182.8

24H. D HERT
22 REM EXFAMHD

-
S
i

& = Oy O S Ln

=~} Th L AR

Fig. 7.9. A stationary sprite and a moving sprite.

This establishes a new level 5 sprite — the large caravan — and we can
see what happens by running the program. The results are
disappointing! The large caravan does not appear! The small
caravan appears, and at the middle of its journey, it seems to be
shadowed. The reason is that our level 5 sprite is sitting at the correct
position, but it is invisible because it happens to be the same colour
as the background.

The cure is to change the colour of the sprite. When we first create

Sprites and Colour 95

19 YC=53248

15 PRINT"I"

17 PRINT:PRIMT"CARAYANS BIG OR SMALL.WE SUFPLY
THEM ALL"

20 POKE VC+21,96

38 POKE 2245.13 ' POKE2046.13

49 FOR N=B8T0SZ:READ D:POKESZZ2+H. D:MEKT
45 POKEYC+23, 32 POKEVC+23, 32 REM EXFAND
58 POKE WC+11, 160

55 POKE WC+13, 180

56 FOKEYC+18, 160

57 POKEWC+H44,73

60 FOR¥=@TOZ5S: POKEVC+1Z, ¥ FOR J=1TO25: NEAT ' HEXT
7@ POKE VC+16,64 FORK=BTOE4 : POKEVC+1Z, W FOR J=
17025 MEXT : HERT

8@ POKE VC+16.0:POKEYC+21,@:REM RESET
149 DATA®.0.0,0.0.0.0,08,0,0,2.0

116 TATAZ.&3.192

128 DRTA7. 255, 252

138 DATA3L, 255, 252

148 DATRES, 255, 254

156 DATA49, 255, 254

160 TATA49, 255, 142

178 DATA127,255,254

186 DATA127.227, 254

196 DATARLET. 227, 234

200 DATA127. 227,254

218 DATAGS, 227, 254

228 DATAGS3, 227 . 248

230 DATAZE. 8. 112

246 DATARZS. 8. 112

258 DATAL. 182.8

260 DATAL.36.8

228 DATAL.182.8

Fig. 7.10. Priority levels illustrated.

sprites, the colours are set in colour registers VC+ 32to VC+46. Of
these, VC+ 32to VC+ 36 deal with background, but VC+39to VC
+ 46 deal with sprite colours. We can change the colour of a level 5
sprite by poking to address VC + 44, and by using POKE VC + 44,
5 we get a sprite which is green. The complete program, Fig. 7.10,
shows the small caravan passing behind the large one, showing that
the level 5 sprite has priority over the level 6 one. Figure 7.11 shows

96 Commodore 64 Computing

Value Colour Value Colour

0 Black 8 Orange

1 White 9 Brown

2 Red 10 Light Red

3 Cyan 11 Grey (1)

4 Purple 12 Grey (2)

5 Green 13 Light Green
6 Blue 14 Light Blue
7 Yellow 15 Grey (3)

Fig. 7.11. Colour code numbers for sprites.

the colour codes which can be poked into the registers to create
sprites of different colours.

Sprite collisions

The register system allows us to check for ‘collisions’ of sprites. A
collision occurs when any part of one sprite touches any part of
another, and such events are detected by the sprite-sprite collision
register at VC + 30. If we are using levels 5 and 6, then the register
numbers of 32 and 64 add to give 96, so that this is the number that
will appear in the collision register (which normally contains zero)
when these levels of sprites touch. By adding lines 65 and 66 to the
program, having deleted the word NEXT in line 6), we can try this —
Fig. 7.12 shows the complete program. The PEEK action reads the
contents of the register as the sprite moves, and in this example,
stops the program when a collision is detected. There is a rich choice
of possibilities here — you could print a message, reverse the
direction of the small caravan, start the large one moving, or
whatever you like. The register at VC + 31 can be used in a similar
way to detect when a sprite is touching the background colour.

A further refinement is to allow the sprite to have lower priority
than text. Normally a sprite appears ‘in front’ of text on the screen,
but by poking a sprite level number into register VC + 27, this
priority can be reversed. In this way, is is possible to have some
sprites appearing in front of text and some behind.

Another remarkable set of sprite experiments can be carried out
with sprite levels) and 1. These can be multicolour sprites, as the
program in Fig. 7.13 shows. The multicolour sprite select register is
at VC + 28, and by poking 1 into this register, we make a level §

Sprites and Colour 97

18 YO=SE24E

15 PRIHT"H”

17 PRIMT:FRIMT'CARAYANS BIG OR SHMALL.WE SUPFLY
THEM ALL"

2@ POKE WC+21. 98

0 POKE 2845, 13 POREZE4E, 132

A6 FOR H=ATOSZ READ D:POKESZ2HH. I HERT

5 POKEYCHIE, 32 POKEYC+29, 32 REM ExPAMD

@ FOKE ”*+1J:1bﬂ

5 ORMEE WO E. 1EE

A FOEENVC+18, 18

57 PORENC+H44, 5

A0 FORZ=0TOZ255 FOKEVCHL 2w FOR T=1T025: HEST

£5 1F PEEECWCARA=%% THEW STOF

55 HESRT

A POKE WO+H1E, 64 FORY=0TOS POREVCH1Z2 4 FOR J=
TG HEST (HEXT

QE POKE YOH1E, B POKENCH
168 DATAG. 0. 0.8, 8. 8,8,8.,
118 DATAZ &3, 132

126 DAT

138
14m

2
I

REM REZET

1.8:
B.8.2.8

ﬂHTH4”‘¢
16"1 TIHTH4Q~E‘J"’|. 14-
179 DATRIZTY. 255, 254
186 DRTRIZT, 227 25
199 DRTR1ZT, 227, 254

ZE0 TATALET, 227, 254
219 DATREE, 227, 25¢

238 IIHTHL-’.’-.: .
248 DATRZE. 8, 112
2968 DATAL. 122,68
266 TATAL, 28006
288 TATAL, 1gz.8

Fig. 7.12. Detecting sprite-sprite collisions.

sprite into a multicoloured one with different colours at ‘openings’
mdmmysOmmwm%mwanMmeb@mmMmmm
VC + 37 - the variety is limitless!

98 Commodore 64 Computing

5 WC=53248
POKEVC+21, 1:REM SPRITE @
POKE2040, 13

FORN=BTOEZ READ T POKES3Z+H, I: HEXT
3 POKEYC, 168 POKEYC+L, 108

41 POKEVC+23, 1:FOKEVC+2S, 1

42 POKEVC+2E, 1

43 POKEVCH37, 5

45 STOP

88 POKE VC+16,0:POKEVC+21, 0 REM RESET
1660 DATAG. 8, 8, 8. 6,8,8,0,0,0,2,8

116 IATAZ, 63,152

126 DRTH?, 255, 252

130 DRTA31, 255, 252

146 DATAER, 255, 254

156 TATA49, 255, 254

160 DATA49, 255, 142

178 DATAL27, 255, 254

189 DATA127, 227, 254

196 DRTAL2?, 227, 254

208 DATA127, 227, 254

218 IRTAEZ. 227, 254

228 DATRE, 227, 246

230 TATAZE. 8, 112

240 DRTAZ2S, 8,112

250 DRTAL, 182,08

268 DRTAL, 3.0

220 DATAL 182,18

L) R
SRS

Fig. 7.13. Multicolour sprites (level @ and 1 only).

Colour displays

Like graphics characters themselves, colours can be added from the
keyboard or as POKE instructions to addresses in the memory of the
computer. Colour is most effective when it is used in large areas,
because when a colour TV is used for display, the displayed colours
are usually poorly focussed and positioned. This is the fault of TV
design rather than of the computer, and good quality colour pictures
can be obtained from a colour monitor such as the type which can be
used with video cassette recorders. We shall assume for the purposes
of this chapter, however, that only a normal colour TV is available.

The colours which are printed on the number keys will cause text

Sprites and Colour 99

or graphics to appear in colour if these keys are pressed at the same
time as the control key [CTRL]. If, for example, you press [CTRL]
and 8, you will thereafter get yellow characters appearing on a
colour TV screen. You will generally find that the tuning of the TV
receiver is much more critical for colour signals than for B/ W, so
that a good test is to set up a colour signal on the screen. Draw a
yellow + sign at each corner of the screen and one in the middle.
‘Draw’ means type in this case, because the -+ is a keyboard
character. Adjust the tuning of the receiver as described in Chapter
One so that each cross appears clear, and then adjust the colour
controls until the colour intensity looks about right. To check for
colour balance, add some red and blue + signs, and try to balance
the control settings so that they all look about equally bright. This
adjustment can be very time consuming, because small alterations
can often have a considerable effect, but once correctly set up, the
receiver should stay that way for a long time. If a colour monitor is
being used, of course, the only controls will be intensity, brightness
and contrast.

In addition to the eight colours (including black and white), that

Keys Colour

CTRL+

1 Black

2 White

3 Red

4 Cyan

5 Purple

6 Green

7 Blue

8 Yellow

C+

1 Orange

2 Brown

3 Light Red

;1 gig } difterent shades
6 Light green

7 Light blue

8 Grey (third shade)

Fig. 7.14. The colour codes that are obtained from the keyboard.

100 Commodore 64 Computing

¢ PRINT“[CTRL3]RED[SPC][CTRL6]GREEN[SPC][CTRLS]YELLOW”

Fig. 7.15. Colours obtainable within PRINT instructions by using key codes.

can be attained by using [CTRL] with the number keys, another set
of colours (see Fig. 7.14) can be obtained when the Commodore key
(€=) is held down along with a number key.

Colour effects can be obtained within programs by using the
colour keys within PRINT instructions. Figure. 7.15 shows an
example of a text line printed in different colours — the program is
written using the C.T. standards to indicate the control key pressed.
A print-out of this program would not reveal which key had been
pressed, so that this method of writing is necessary for programs that
make use of these special keys.

Another method of putting colour into text, which can, of course,
include graphics strings, is to make use of the colour code numbers
which are shown in Fig. 7.16. These numbers are used along with the
CHRS instruction, as the program in Fig. 7.17 illustrates. The
advantage of this method is that the program can use CHR$(CL)
(for example) to control the colour, with the number variable CL
being set to different values so as to obtain different colours. We
could, for example, use a READ ... DATA to obtain different
values of CL at different stages in the program. Note how the use of
blue characters makes the READY prompt invisible.

POKE colours

By using POKE instructions, we can alter the colour of the border

Colour CHRS Number

White 5
Red 28
Green 30
Blue 31
Black 144
Purple 156
Yellow 158
Cyan 159

Fig. 7.16. Colour codes for use with CHR$.

Sprites and Colour 101

18 PRIMT CHR$(158>"YELLOW"
28 PRIMTCHRSC30)"GREEM"

30 PRIMTCHR$(15€) "PURFPLE"
48 PRIMTCHR$C31)

Fig. 7.17. Using the CHR$ colour codes.

and the background of the screen in addition to the colour of the
text. The addresses that we have to use are the video chip addresses
5328(), which controls border colour, and 53281, which controls
background colour. The values which can be poked into these
addresses were illustrated in Fig. 7.11. Any value up to 255 can, in
fact, be poked into these addresses, but only the listed values will
affect the colour.

When we use the POKE instruction to place graphics or text
characters directly on to the screen, we can also POKE colours to the
same positions. The colour memory (Fig. 7.18) for the screen extends
from address 55296 to address 56295 (190 places in all), and these
numbers correspond exactly with the addresses for the screen
positions. For example, POKE 1024, 15 will place a block on to the
top left hand corner of the screen, and POKE 55296, 7 will change
the colour of that block to yellow. Since there is a one-to-one
correspondence between the position numbers and the colour
memory numbers, we can use instructions like:

DF = 54272
POKE PO, DA: POKE PO + DF,CL

In this example, the variable DF is the number difference between
the colour POKE address and the position POKE address. If we use
variable PO for a position address and DA for a character number,
then POKE PO, DA will place the data (character) in place. With
CL used for the colour code, then, POKE PO+ DF, CL will put the
colour code into the correct memory to affect the character. The
colour numbers that must be allocated to CL are picked from the
same range of () to 15 as were illustrated in Fig. 7.11.

102 Commodore 64 Computing

S629S 'suoonIsul IH0d 104 dew Atowasw 1nojod dyl ‘8L°L ‘614

@ Jaquinu SSO0JOY + JaquINu MOY = Jaquinu }00|g

96295
9L29S
9/19S
9€195
96095
95095
91095
9.6SS
9£65S
96855
99855
91855
9.1SS
9€.SS
96955
96955
91995
97695
9€55S
961755
95¥SS
9SS
9.€5S
9€€sS
96255

6€ 8E L€ 9T GE VE €€ TS L€ (€ 62 82 L2 92STc e €2 L2 P 6L 8L LLEOLSL YL ELCLLLGL 6 8 L 9 G ¥ € 2 L @

SS0Y «-——

(umop)
smoy

Chapter Eight
Function Keys and the
Sound Generator

Function keys

Many new designs of computers feature ‘user-programmable keys’
which can easily be programmed, using BASIC, to carry out an
action or even a series of actions initiated by pressing one key. The
function keys of the Commodore 64, however, are not simply
programmable in this way. They can be used ina BASIC program as
a way of responding to questions on the screen (PRESS f1 for YES,
f3 FOR NO), because each key has a corresponding code number
(see Fig. 8.1). For really effective use, however, these keys have to be

Key CHRS number
fl 133
2 137
f3 134
4 138
5 135
f6 139
7 136
8 140

Fig. 8.1. The CHR$ codes for the function keys.

programmed using machine code, which is outside the scope of this
book. This is why the manual for the 64 makes practically no
reference to these keys. Programs available for the 64 in cartridge
form make very effective use of the function keys, however.

The sound generator

A sound generator is virtually essential for any computer that is to

104 Commodore 64 Computing

be used for games programs. Its inclusion in a machine which s also
an excellent choice for business use can be justified by the additional
scope that this gives. Several operations in data processing
programs take a noticeable time to perform, particularly string
sorting, so that it is useful if the operator does not have to
concentrate on screen messages while such processes continue. The
use of sound as a prompt allows the operator more freedom in this
respect, and the use of different notes for different types of adviceis a
distinct help to the user. The sound generator of the 64 is
considerably more advanced than is needed just for these purposes
and it allows many of the actions of a simple music synthesiser to be
carried out. The sound channel does not use an internal loudspeaker
because the tiny loudspeaker which would be needed could not do
justice to the sound. Instead, the sound signal can be taken from the
audio/visual socket at the rear of the case. This output can be
connected to a hi-fi or other sound system to allow the sound to be
played or recorded. Alternatively if a TV receiver is in use rather
than a monitor, the TV volume control can be used to control the
sound level at the loudspeaker of the TV. In this case no additional
connections are needed — the sound signal is sent to the TV receiver
along with the vision signal. Whichever method is used, the user can
control the volume of sound externally, which is a most desirable
feature!

Musical notes

Though it is easy to learn to program the sound generator of the 64,
full benefit of the system can be obtained only if you have some
understanding of sound. A musical note consists of vibrations in the
air, and the number of vibrations per second is called the frequency
(Fig. 8.2). Our ears detect this as the pitch of the note, so thata note
whose frequency is 100 vibrations per second (called 100 hertz)
sounds low to our ears, a bass note. A note whose frequency is 3000
vibrations per second (3 kilohertz) sounds high to our ears, a treble
note. The sensation of pitch can therefore be expressed by a number,
the frequency of the sound vibrations.

The volume of a note is measured by the amount or amplitude of
the vibration, and the sound generator of the 64 is represented by a
scale of § (no sound) to 15 (maximum volume). The maximum
setting should be used until you have some experience of the sound
generator, because you can independently control the sound volume

Function Keys and the Sound Generator 105
—— > Direction of Wave

O T T

High pressure Low pressure

W LT
AT

Small amplitude Larger amplitude

Y

< 1second
Frequency = Number of
waves passing a fixed
point in one second

Fig. 8.2. The frequency and amplitude of a sound wave.

Triangle wave

e aveavd

Sawtooth wave

Square wave

Fig. 8.3. The waveforms that the 64 can generate.

4

106 Commodore 64 Computing

at the TV receiver or hi-fi unit in any case. Control of volume by the
64 is used to alter the volume of one note relative to another, rather
than to set the volume of a complete sound program.

Your ear can readily distinguish between the same pitch of note
played on different instruments, and this is because of the different
waveshapes or waveforms. The waveshape (waveform) is the
appearance of the graph of amplitude of vibration plotted against
time for one complete vibration, and the types of waveform that the
64 can generate are shown in Fig. 8.3. These are four basic types of
waveshapes, but a musical note can be much more complicated than
this, because a note may consist of several waves of different
amplitudes (Fig. 8.4). Instruments which make use of hammers

\ Amplitude AT T‘T‘\\ Decay Sustain

e

Attack / | \ﬁ
4 | \\ Release

I |
1

Duration
(This sideis a

[N
I
L' mirror-image of the top)

—

0
|
|
M

|
I
|
|
|

Fig. 8.4. The ‘envelope’ of a set of waves. Changing the envelope shape has a
very considerable effect on the sound.

(piano, drums) have a sharp ‘attack’, meaning that the vibrations
rise to a large amplitude very rapidly and die away more slowly. The
dampers of a piano can also ensure that a note can die away (decay)
rapidly after a short time, so that the ‘envelope’ shape has attack-
sustain-decay and release sections. These separate sections can be
programmed, so that the type of sound can be varied as well as the
pitch, volume and waveform.

In addition, the 64 has three ‘voice’ settings, meaning that up to

Function Keys and the Sound Generator 107

three notes can be sounded simultaneously. This has obvious
applications in generating music, but the use of pleasant chords to
announce the end of a process and discords to announce errors can
be very useful in data processing work as a reminder to the operator.
We’ll spend the rest of this chapter on programs which allow you to
explore some of the possibilities of the sound generating system of
the 64. Before starting, though, you should be certain that you have
read and understood the section on binary numbers in Chapter
Seven, and the use of POKE in Chapter Six.

The sound POKEs

To produce a sound, the following POKE instructions have to be
carried out:

Volume, using address 54296.

Waveform, using a different address for each voice.
Attack/Decay, using a different address for each voice.
Sustain/Release, using a different address for each voice
(optional).

5. Frequency, using the two addresses 54273, 54272.

sl i

In addition, a FOR ... NEXT loop has to be set up to control the
time for which each note is played, and the note has to be cancelled
by further POKE instructions so that it will not repeat on the next
FOR ... NEXT loop.

Assuming that we leave volume set at maximum for our first
experiments in sound, what do we have to use to create a sound? The
next item on the list is waveform, of which the 64 provides four
choices. A simple constant volume sine wave sounds like a whistle,
and is a sound that the ear soon tires of. The musical instrument that
comes nearest to this waveshape is the flute, and a human whistler
can produce sine waves which when displayed on a cathode-ray
oscilloscope (which can show waveform shapes on a TV-like screen)

Amplitude

ANANYAE-
VAV

Fig. 8.5. A sine wave, the simplest waveform of all. Other waveform shapes
can be analysed into a mixture of sine waves of different frequencies.

108 Commodore 64 Computing

look almost perfect (Fig. 8.5). Because the pure sine wave is used to
such a small extent in music (and because it’s difficult to generate!),
the 64 uses the choices of triangle, sawtooth, square and noise
signals.

The triangular wave produces interesting sounds, and is
programmed by the code number 17. The three voices of the 64 use
three different addresses for poking this waveform code number;
they are 54276 for voice 1, 54288 for voice 2, and 54290 for voice 3.
Figure 8.6 shows a program that will produce notes which have a

18 PRINT"PRESS AMY KEY TO STRART"

20 GET K#'IF K$=""THENZO

30 POKE 54296, 15:REM WOLUME

4@ READ AD:IF AD=B THEW EMD

a0 POKES4277.AD

55 PRIMT"ATTACK-DECAY HUMBER IS "iRD

€8 POKES4276.17

78 POKE G4273,34 POKE 34272, 75:REM HMOTE
8A FORT=1T0256:HEXT

98 POKES4276.0:POKE 54273,08:POKE 54272.8
169 GOTOZE

200 DATA128,129,136.132,136,64,65.66,68.72,32,
33,34.36,40,1€,17,18.20.24.8

Fig. 8.6. The effects of different attack/decay values on a triangular
waveform.

triangular waveform, using the same pitch and volume settings but
with different combinations of attack and decay. The attack starts
with the maximum setting and with zero decay, and the decay rate is
raised in four steps, following which the next level of attack is used.
There are twenty notes played in all, and you can hear for yourself
how the different attack and decay rates affect the character of the
notes that are produced. This program deliberately uses notes of
long duration so that you have time to hear the effect of each change.
In normal use, we would have timing loop values of closer to 19§ to
20¢ rather than the 25¢ that is used in this program.

In addition to the values shown in the program, however, we can
add the attack and decay numbers so as to obtain a whole new range
of effects. If we consider the attack/decay address as a set of eight
bits (Fig.8.7) then the attack is controlled by the top four bits and the
decay by the bottom four. In this way, numbers ranging from 255
(maximum attack and decay) down to 16 (lowest attack, no decay)

Function Keys and the Sound Generator 109

Starting Address

ATTACK/DECAY SUSTAIN/RELEASE
Voice 1 +5 Voicel +6
Voice2 +12 Voice2 +13
Voice 3 +19 Voice 3 +20

SRE- R SRE- I

quopoooon poogooon

— | RS L N)
v z 7
< < = &
=R -
< A %) e

Fig. 8.7. Analysing the attack/decay numbers.

can be used. This gives a very large range of possible effects to
experiment with, but you have to remember that you can’t just
change numbers in a simple add-one, subtract-one way. Figure 8.8
shows a chart that helps to unravel the two separate sections of the
attack/decay number so that you can choose your separate values of
attack and decay and then combine them into the correct number to
poke into memory. The same methods can be used for the
sustain/release numbers.

Now try the same program of Fig. 8.6 with line 6¢) changed so as to
use the sawtooth waveform by poking 33 in place of 17. The notes
this time appear to be quite different, although the pitchis the same.
Try also the square wave, obtained by poking 65, and then the noise
(poke 129) in new versions of line 6¢) to appreciate the wide range of
sound effects that can be created by this very versatile system. Figure
8.9 shows a summary of the design of sound programs.

Warning notes

The program of Fig. 8.10 gives a sharp buzz which is useful as a
warning note. This can be used as a reminder that an incorrect key
has been pressed, or that an incorrect command has been issued or
incorrect option taken in a program. The buzzprogramis writtenasa
subroutine which would be called by an IF ... THEN test

110 Commodore 64 Computing

ATTACK/DECAY

Attack Section
Value

— bttt
N PD WNRSU0 00 WA WN—~S

Decay Section
Value

—_—
SO XN DW=,

—_—
N —

13
14
15

Combining times:

Time
2 ms

8 ms
16 ms
24 ms
38 ms
56 ms
68 ms
8¢ ms
100 ms
25 ms
500 ms
8¢ ms

1s
3s
5s
8s

Time
6 ms
24 ms
48 ms
72 ms
114 ms
168 ms
204 ms
240 ms
3¢ ms
75 ms
1.2s
2.4s
3.0s
9.0's
15s
24 s

SUSTAIN/RELEASE

Sustain Section

Release Section

ATTACK/DECAY Select attack number, multiply it by 16, and add decay

number.

SUSTAIN/RELEASE Select sustain number, multiply it by 16, and add

release number.

Note: Times are ms (milliseconds, equal to thousandths of a second) and

s (seconds).

Fig. 8.8. How to combine attack/decay (and sustain/release) numbers.

Function Keys and the Sound Generator 111

(1) Set volume by poking to 54296. The same number is used no matter
which voice is selected.

(2) Set Attack/Decay level. This needs a poketo adifferentregister foreach
voice. The Attack/Decay should be poked before the waveform is
set - if you don’t do this, the volume level may seem disappointingly low.

(3) Set Sustain/Release. This is optional, and you can omit it.

(4) Poke the note numbers — two addresses for each voice.

(5) Set the waveform — one address per voice. The settings of 17and 33 are
the most useful for the musical notes. 129 is useful for noise effects. The
pulse wave, 65, is not particularly useful unless you can find more
information on its use. When the pulse waveform is selected, a different
pair of addresses have to be poked with note values.

(6) Putin a timing loop to set the duration of the note. Values of 250 or so
are useful. If you select avery long wait, the note may dieaway too much.
If you select a very short time, the note may never get beyond its
attack stage.

(7) Turn off the waveform, attack/decay and sustain/release settings. If
you do not, the note will continue after the program has ended.

Fig. 8.9. Sound program design summarised.

somewhere in the main program or in another subroutine, such as:

50 GET AS$

519 IF A$ = “W1” THEN GOSUB 10$({

52¢ PRINT “DO YOU REALLY WANT TO WIPE THIS
FILE?”

53¢ (continue routine ...)

Variations on this theme can be used to signal different
conditions. For example, the buzz can signify an incorrect entry,
and two buzzes, or a longer buzz with a different pitch, can signify a

1@ GOSUEB1666E

26 EMD

10000 V1.=54296: HF=54275: AD=5421 7¢HH=542?31HL=
J

19@30 FOKEYL. 15 POKEWF 33 POKERD, 15° POKEHH. 3
PDP‘EHL‘ i -..'

10046 FORM=1T0100:HEXT
1Ge56 POKENL, @ FOKEHH, 8 FOKERD. A
1ae6a RETURM

Fig. 8.10. A warning-note program.

112 Commodore 64 Computing

serious error, like destroying data if you proceed. A musical note
(try a triangular wave with small attack and decay numbers) can
signal that the program needs attention, but not urgently. This
might be used to draw attention to the need for entry of information.
Note that in the program of Fig. 8.10 the poke addresses have been
assigned to variables that should remind you of their uses. This
greatly simplifies the use of sound in programs. A further simpli-
fication is made by using standard subroutines, such as that shown
in Fig. 8.11, though generally it is better to make the initial settings

R

1@ WL=54295 WF=54275 AD=54277 HH=54273 ML=E4272
28 POKE WL. 1%

90 GOsSUB 11868 605U {2686

18 IHPUT"HUMBER" A

118 IF AX1ETHEW GOZUB 11836 GOSURIZ006: PRINT
"MUST BE LESS THRAM 11" :GOTO1EE

128 EHD

11688 REM SET UP WOICE 1

11816 POEE WF.23:POKE AD, 19

11628 RETURH

11836 REM SET UP 20UMD 2

11648 FOKE WF.17:POKE ADLES

11858 RETURH

12066 REM HOTE 1

12816 POKE HH. 3 POKE ML TS

12026 FOR TH= 1Tuh_0 MEXT FOKE MH.@:FOKE [HL.8
128738 RETURH

138860 FEM HOTE 2

173885 FORH=ETO%E

1316 POKE WL oW FOEEHH. 34 POKEML . 198
1REZE MENT

126825 POKEMH. @ POKEML, 2 POEERD., 2
138368 RETURM

Fig. 8.117. A typical set of sound subroutines illustrated.

of volume, waveform, attack/decay and possibly sustain/release at
the start of the main program - this could alternatively be done in
another subroutine which concentrates on all set-up conditions.
Each sound subroutine can then make use of these initial settings.
Another possibility is to have a set of several subroutines which
allow a choice of sound settings. In this way, the appropriate
subroutine is called before the sound is needed so that the correct

Function Keys and the Sound Generator 113

poke instructions have been carried out in advance, and only the
frequency value has to be set. The example shows the two simple
notes used in contrasting warnings — one to advise that an input is
expected, the other to warn that the input is unacceptable.

Sound subroutines

Having introduced the subject of sound subroutines, a few more
useful subroutines can now be examined. These are grouped as set-
up routines and note routines, because of the fact that it is often
more useful to keep the two separate. For many uses, a single set-up
routine, or two at most, may be sufficient.

Figure 8.12 shows a subroutine which produces a warbling note.

1 VL=54296: WF=54276: AD=>54272:HF = 54273:L
F=54272

20 POKEVL,15

3¢ POKEAD,19¢

40 POKEHF,17:POKELF,33

5¢ POKEWF,17

7¢ FORW=1T025¢:POKEHF,19:FORJ=1TO1§:
NEXT:POKEHF,17

8¢ NEXT

9¢ POKEWF,§:POKEAD,

10¢ END

Fig. 8.12. A subroutine to produce a warbling note.

This is a note routine only, as it can be used along with any of the set-
up routines. A warbling note is a better attention-getter than a
steady note, though the effect should not be overdone. Note that it is
possible to make each note continue until a key is pressed by
incorporating the GET AS$ instruction into the sound loop. This can
be more useful to force attention than sounding a single note which
may be unheard or ignored.

The note routines that we have used up to now have made use of a
time delay loop to get the time of the note. Any loop will act as a time
delay, and a loop which pokes gradually changing values into the
volume setting address will cause the volume of the note to change
during the time while the note is being sounded. This can cause
interesting effects, as illustrated in Fig. 8.13. If the volume was
originally set by means of a separate set-up routine, it is advisable to

114 Commodore 64 Computing

10 VL=54296: WF=54276: AD= 54277:HF=54273:L
F=54272

26 POKEAD, 199

3¢ POKEHF,17:POKELF,33

49 POKEWF,17

5¢ FORN=ITOI5STEP.1

6¢ POKEVL,N

76 NEXT

8¢ POKEWF,§:POKEAD,§

10¢ END

Fig. 8.13. Changing volume settings within a note.

store the original value at the start of the subroutine (using another
variable) and then restore the value at the end of the subroutine, so
that the next subroutine that uses the sound settings will be able to
start with the volume correctly set.

The delay loop can also be replaced by a loop which changes the
pitch of the note within a FOR ... NEXT loop. This produces rising
or falling notes which can be used as games sound effects or for
attention-getting in business programs.

Chapter Nine

Sorting Out and Other
Topics

The Commodore 64 is such a versatile computer that it’s difficult to
find space within one book to explain some of the instructions when
they can’t be naturally associated with a group. This chapter is
therefore dedicated to the forgotten actions in the belief that some of
them will turn out to be very useful to you in your own programs.

One of these is FRE(X). X can be any number variable, even if
no value has ever been assigned to X. It’s called a ‘dummy variable’
and the only reason for its presence is that it’s easier to have a useless
variable in an instruction than to design the computer to cope with
an instruction that has no variable following it. FRE always has to
follow something else like PRINT or MEM =, and what it provides
is the number of unused bytes in the memory. This can be extremely
useful if you are using a data program which places a lot of data into
the memory, because you can use FRE to print a warning:

IF FRE(MM) = 5¢ THEN PRINT“NEARLY OUT OF
MEMORY”:PRINT“PLEASE RECORD DATA NOW.”:
GOTO (or GOSUB)

and then start a recording to dump the data before the program is
brought to an untimely end by an OUT OF MEMORY message

Another instruction in this miscellaneous group is SGN(X). The
variable name that is used here is not adummy this time, it must be a
number variable, and the value of SGN(X) will indicate the sign of
the number represented by X. If, for example, we have:

SG = SGN(NR)

then SG will be +1 if the number NR is positive, —1 if NR is
negative, and @) if NR is zero. A line such as:

IF SGN(NR)=—1 THEN PRINT “NEGATIVE VALUE”:
GOTO ...

116 Commodore 64 Computing

can be used to avoid a hang up due to, for example, trying to take a
square root of a negative number. If you don’t need such a warning,
simply a change of any negative values to positive ones, then
ABS(NR) will give the positive value of any number. By using NR =
ABS(NR), we eliminate any negative quantities that might have
been allocated to the variable NR. To change the sign of a number
(+ to—,—to +), we can write:

NR =NR *—1

Debugging commands

Every now and again, a new program works almost as we expected it
to. Much more frequently, it doesn’t, and we have to investigate to
find out why. In computer parlance, the program has a buginit, and
we have to debug it. What title we create for ourselves in carrying out
this work I leave up to your imagination. If we wrote the program in
the form of a core with subroutines, as advised in Chapter Five, then
sorting out what part of it is causing trouble should be com-
paratively easy. Once you know where a program has failed,
then it seldom takes long to find the causes, except when the
machine uses a complicated version of BASIC. You will find that
the BASIC of the 64 is particularly simple to work with when things
go, wrong, and the commands STOP and CONT will help you
considerably in debugging.

STOP means what it suggests. If you place the STOP command in
a program anywhere, in a line by itself, or as one statement in a
multi-statement line, then the program willstop at that point. Whatis
more valuable is that everything remains intact. All of your program
variables retain the values that they had when the program stopped
so that you can check any values by a direct command like:

PRINT TL, SM, PR, NM$§

to see that has happened to your variables. This facility exists until
you type RUN, or until you edit or enter a new line. If you have not
changed the program in any way, then typing CONT (for continue)
and then pressing RETURN will allow the program to carry on from
where it left off.

How can we make use of this? There are two ways, since STOP
can be executed by having a program line containing the word, or by
pressing the STOP key when a program is running. The use of the

Sorting Out and Other Topics 117

STOP key is particularly useful if a program seems to have got itself
into a long loop and is showing no signs of emerging under its own
steam. Pressing the STOP key will stop the program, and the
message BREAK IN ... will come up on the screen, specifying the
line that was being executed when the program was stopped. You
can then take a close look at your program, listing lines and printing
variable values, to see what the reason for the problem might be.
Some string-sort routines can take a remarkably long time, and a
good way of deciding whether the delay is natural or not is to print
the values of all the quantities that change during the sorting
process, or in whatever loop appears to be giving trouble. Note these
values (write them down, don’t trust to memory!), type CONT and
press RETURN to start the program again, and then use the STOP
key again some time later. When you print out the variables again,
you ought to see some changes in the right direction. If not, then the
loop is faulty in some way, and the chances are that it will never
finish correctly. The values that you have noted, however, should
provide you with some clue as to why the loop has stuck.

The STOP that is inserted into a program line, or in a line of its
own, is particularly useful when you have an idea of where the fault
might be, but the program runs too fast for you to be able to pin-
point the place where the trouble starts. The program may, for
example, use several subroutines before it gets into difficulties. A
STOP placed just before the RETURN part of a subroutine will
allow you to find, by printing variable values, what the subroutine
has done. If all is well, you can type CONT, press the RETURN key,
and you will find the program stopping at the end of the next
subroutine ready to inspect another set of variables. You can place
as many STOP instructions as you like in a program, but remember
that you will have to take them out again when you have found the
fault.

END can be used to ensure that a program does not ‘crash-
through’ into a subroutine accidentally. When the program comes to
and END, you will not get any BREAK IN ... message, simply the
normal cursor appearing on the screen. If there is another section of
program, or even a different program, following the END, then
CONT will allow this to run. If, however, you use CONT at the
genuine END of the program, on the highest numbered line, then
you will get a CAN'T CONTINUE error message. You will also get
this message if you try to use CONT when the program has stopped
due to an error.

CONT and STOP are such useful devices for debugging that it is

118 Commodore 64 Computing

hard to believe that not all computers use them both. Even one
rather expensive and much-praised machine totally lacks the CONT
command, making debugging a long and difficult business, even if
all the bugs are only in the user’s program!

Program testing

Program debugging and program testing go hand-in-hand, but
testing can start seriously only when all of the bugs that I class as
‘silly-but-serious’ have been eliminated. A silly-but-serious bug in
this sense is one like a syntax error which will cause the program to
hang up displaying an error message. There s, on the other hand, no
harm in starting to test a program which has a few faulty print
commands, such as printing badly divided or with the data poorly
displayed, since these will not cause any hang-ups. Any fault which
can cause an error message must be dealt with, however, because if
you need to inputa lot of data to test a program then there’s a chance
that all your effort will be lost if the program stops and you aren’t
careful about preserving the data. If the program stops with an error
message, then you cannot use CONT to pick up the threads again. If
you use RUN, then all of your variables will be reset and you will
lose all of your data. You may be able to continue by picking a line
number at which you can restart (a good one to pick is usually the
start of the menu), and then using GOTO line number, press
RETURN, to get a second chance. This, on the other hand may
simply lead you to the same fault again, or to another one.

A method that I use for large data handling programs is always to
test in sections as the program is being developed, and to ensure that
the core program has a “DUMP DATA TO TAPE” option, even if
this is not needed in the program. Provided that the dump routine is
reliable, this allows me to use GOTO with the line number of the
start of the menu, and to dump all of the data on tape (or, of course,
disk) if anything untoward happens. Since 90% of the time that is
needed for testing a data processing program can be in the entry of
data, this hint can save many hours of work.

In general, testing is a thoroughly boring, frustrating and utterly
essential piece of drudgery. At every INPUT or GET part of the
program, you will have to try each possible incorrect response.
These must either be rejected, if the error can be detected (like a
number in place of a letter or a number in the wrong range), or
questioned, such as:

Sorting Out and Other Topics 119

ARE YOU SURE? (Y OR N)

If the program works with numbers, try it on numbers that are very
near to the limits of acceptability — very small and very large.
Generally, if a program works with the extremes, it should work
with everything in between, but watch out for zero! A divide-by-zero
error is always one that will hang the program up with the error
message. The other point to watch is that you do not suffer from
cumulative errors caused by the way that the computer stores
numbers in binary form. If you always remove excessive decimal
places before comparing numbers, then this should present no
problems.

If the program works with strings, then try very short strings and
very long strings, strings that start with upper-case (capital) letters,
strings that start with lower-case (small) letters, similar-looking
strings, strings containing numbers and all the other evil entries that
can appear. In particular, always remember to test what happens
when RETURN is pressed without having pressed any other key.
This should result in a blank string that the computer can deal with,
but in some cases it can cause problems, particularly when LEN is
used, and string slicing takes place. If the program uses arrays, check
that the dimensioning cannot be accidentally exceeded. One fruitful
cause of this can be when a set of results are printed in neat columns
using two loops of the style:

FOR N = | TO 3¢¢: FOR J = ¢ TO 3
PRINTTAB(1¢*J); L§(N + J): NEXTJ: PRINT: NEXT N

This looks innocent enough, but when the dimensioning of L$(IN)
has been for 3@ items, you will get an error message in the last line.
When N = 3¢¢, as it must when the N loop is almost ended, the J
loop will force the computer to find items L$(30@) to L$(3(3), even
if there are no entries in the array beyond 3¢@. This is harmless
enough, but if the dimensioning was only for 3@ 1 items, then 3(2
cannot be accepted. A good way of testing for dimensioning errors is
to test the program with the dimensionings deliberately low — you
can use 5, for example, over-riding the normal 10 that is allowed.
This makes testing to the limits much easier.

If the program contains a string sort, ensure that the dimensioning
is adequate, and that the entry of items will be automatically aborted
if any attempt is made to add anitem beyond the dimensioned limit.
Some programs cope well with initial entry, but permit items to be
added later on with no warnings that they may be taking the total

120 Commodore 64 Computing

number beyond limits. A crash during a sort may leave some of your
data in a peculiar state, to say the least. Any string sort should
always be tested with the maximum number of items, and this is
something that you cannot simulate by using small numbers. One
method is to add temporarily to the program a subroutine (Fig. 9.1)

5 DIMG$C19a)

G Ss:ll "

18 FORM=1TO100

20 FORJ=1TOIMTCRMDCL %30
25 G=IHNTCRHDC1#2E+65)
30 S$=35+CHREG)

48 MEXT

o6 S4(MI=5%

55 5$=.ll "

Ea MEX

Fig. 9.1. Creating random ‘words’ for testing programs.

that generates the correct number of ‘words’ made out of letters
chosen at random, and with random length (perhaps from two
characters to nine). You may then find that a string sort which is
perfectly satisfactory for 50 entries is desperately slow for 350
entries. It’s better to find this out at the testing stage than later when
you are sorting a set of strings that took you the best part of a couple
of days to enter. Even if nothing can be done to speed up the sort
(and something can a/lways be done) then it’s a comfort to know that
it will finish eventually, rather than leave you wondering if the
computer is in an endless loop. Just for the record, a string sort that I
once used (never again) took 1, hours.

Patience is the name of the testing game, and the ultimate test is to
write brief instructions, and have someone who has had no part in
designing the program test it for you, with no prompting. It can be a
humiliating experience, but it will certainly teach you a lot about
testing!

Machine code access

When you type an instruction word like PRINT in BASIC, this
causes a long chain of actions to start. These actions are carried out
by the microprocessor (a type 6510) inside the 64, and its
instructions are in the form of electrical signals. We can convert

Sorting Out and Other Topics 121

these electrical signals to and from binary number codes which don’t
mean very much to you unless you have had a lot of experience with
them. Programs written in these number codes are called machine
code (or object code) programs.

In the space of a book that is dedicated to the 64 and its
programming in BASIC, we can’t possibly start to deal with the
writing and use of machine code, but we can deal very briefly with
the ways in which the 64 can make use of such programs. Machine
code can be placed in the memory from cassettes, from disks, or by
means of cartridges, and each machine code program will have some
unique starting address in the memory. This address has to be passed
to the computer — it may be stated in the program documentation.
To make the machine code program run, you will then need one of
two instructions SYS or USR, unless a cartridge is being used.
Cartridges are normally self-starting, and need no special action on
your part.

The simpler of the two start-up commands is SYS (SYStem).
Typing SYS followed by an address number in denary will, when
you press RETURN, have the effect of starting the microprocessor
executing machine code that starts at that address. Machine code is
executed very quickly so that unless the program causes some
noticeable effect, like printing a message on the screen, you may not
be aware that the program has run. The SYS command is used when
the machine code is a ‘patch’, meaning a piece of code that adds some
modification to the behaviour of the machine itself, rather than one
which operates on the values of variables that are present in a
BASIC program. A typical ‘patch’ might be one which added a new
command word “DUMP” which sent any picture on the screen to
the printer to be reproduced.

When variables are operated on by a machine code program, then
the instruction USR(X) is used in preference to SYS. The address at
which the machine code starts is placed in coded form into two
memory locations, and the variable X has a value that will be used by
the machine code program. When the machine code has done its
work, a new value may be passed back, as for example by use of a
line such as:

NX = USR(X)

in which the value NX is one that has been obtained by the action of
the machine code on the quantity X.

122 Commodore 64 Computing
The real-time clock

The 64 reserves two variable names, TI and TI$, for maintaining a
‘real-time clock’. The phrase ‘real-time’ is used to distinguish the
action of timing in seconds from the action of the high-speed ‘clock’
pulses which determine the speed at which actions are carried out.

The variable TI is used as a counter. When the computer is
switched on at first, T is reset to zero, and its value is incremented
(increased by 1) at intervals of 1/100 second (Europe) or 1/120
second (US and Japan). The limit to the count is 16,777,215 — this
means that the value of TI will let you time more than 46 hours
(European version) before the value resets. TI$ is a more useful
time display, consisting of hours, minutes and seconds. When
TIS is reset, using TIS=“PPPPAP”, then TI is reset also. Note the
quotes round the zero, made necessary because TI$ isastring variable,
not a number.

TI can be used in delay loops which must be exactly timed - for
example:

199 S =TI
11¢ IFTI<S + 1¢¢¢ THEN 11¢
126 PRINT “END”

which gives a ten-second delay (in Europe). For a ten second delay in
the US, use 120§ in place of 1¢$§ in line 11§.

TI$ can be used to establish a time display that can be called up at
any stage in a program. An outline for this is shown in Fig. 9.2 in the

1@ FRIMT"": 5T4=""

20 PRIMT:PRIMT

39 PRIMT"PLEASE TYPE HOUR - USE 24 HOUR CLOCK":
48 IMFUT H%:IF LEMCH$ =] THEM HE="@"+HE

56 PRIMT"PLEASE TYFE MIMUTEE";

£8 IWPUT M$:IF LEMCMES=1 THEM HME="@"+M3

78 FRIMT". .HOW SECOMDE. . ")

88 IMFUT 540 IF LEM(S$3=1 THEM S$="0"+5%

96 IF LEHCH$+ME+SE026 THEM PRIMT"MISTREE -
PLERSE TRY AGAIM":G0TO1E

168 TIf=HE+M$+5%

118 PRIMT"I" :PRINT:PRINT:FRIMT

128 PRIMT"TIME IS ",LEFT#(TI%.20+":"+MID%
CTIE, 3,204 "+RIGHTS(TI$, 20

130 S#=RIGHT$(TI$. 2>

148 IF RIGHT$(TI#$.25=S4THEN146

158 GOTOL16

Fig. 9.2. A digital clock program using TI$.

Sorting Out and Other Topics 123

form of a digital clock program. Lines 1{) to 90 establish values of
hours, minutes and seconds in string form. If any value is a single
figure, it is then padded out with a zero so as to conform to the
standard that is needed for TI$. Finally in line 1¢§, TI$ is equated to
the string of hours, minutes and seconds. From this point on, TI$
will be synchronised to the time of day, so that printing TI$ will
produce a time display. This is not in a very readable form, however,
and line 12¢) improves on it by adding colons between each of the
three separate sections of TI$. In addition, if TI$ is updated in a
loop, the screen will flicker very noticeably, so that lines 130,140
ensure that the loop caused by the GOTO11§ in line 15§ is traversed
only as each second is completed. This is done by using a temporary
variable S$ to hold each value of seconds, and keeping the program
looping in line 14() while TI$ contains the same value of seconds.

In a program, the time value might be set initially, using lines 1§ to
199, but the value might be printed as a reminder only at intervals
(perhaps each 20 minutes), not using the continuous loop that has
been illustrated. Line 120 is, however, a useful method of displaying
the time which can be used in other subroutines. Alternatives to
display include sending a warning when a preset time is reached
(alarm clock action), recording a time on cassettes of data, or
printing a time on memos.

Chapter Ten
System Expansion and
Advanced Features

Printer connection

The 64 allows for the connection of the Commodore printer to the
serial port. The serial port is one from which data is taken piece by
piece in sequence, and this port permits inputs or outputs. Only the
Commodore printer can be connected directly — the use of any other
type of printer requires modifications either to software (adding a
‘driver’ program) or to hardware (adding an interface). A particular
advantage of using the Commodore printer is that it will reproduce
on paper the effects that appear on the screen.

The use of a printer is essential for most data processing purposes,
and business users may feel that they need two printers, one dot-
matrix type for fast printing which need not be of the highest quality,
and one daisy-wheel type which is slower, but which gives print
quality comparable with a good electric typewriter. At the time of
writing, ink-jet printers which combine reasonable prices with fairly
high quality were just becoming available. Your local Commodore
dealer will be able to show you examples of work printed on
different types of printer. The 64 will permit more than one printer
to be connected at the same time, selecting which one is used by the
OPEN statement, assuming that suitable interfaces are used.

Communicating with other computers

The 64 is constructed so that it can be used in networks with other 64
machines. By using the serial input/output connections, data can be
fed into or out from the computer. The source or destination of the
data can be another computer, and the system can be arranged so
that one computer can control the other. The serial input/output
can be used along with a device called a modem to send and receive

System Expansion and Advanced Features 1 25

computer signals over the telephone lines, allowing your 64 to pass
data to or receive data from any other 64, and possibly other
machines as well. This facility is useful if the telephone system
permits links of reasonable quality, but if the service is poor, then
radio links may be preferable. In some countries, pigeon post is
quicker!

Joysticks, paddles, graphics tablets and light-pens

Joysticks and paddles are traditionally associated with games, but
can also find uses in data processing applications. The use of a
joystick, for example, can allow the computer to be operated by a
partially disabled person, providing that the programs have been
written with this in mind. Joysticks can also be useful in point-of-
sales applications, in which the customers can use the joystick to
move an arrow on the screen to select an item of information. This is
usually preferable to allowing the keyboard to be used, because the
joystick use can be controlled by the program in such a way that no
fatal mistakes can ever be made. By contrast, the use of the
keyboard, with its inviting STOP and BREAK keys, cansoon result
in a program crash, which does not inspire confidence.

Graphics tablets, as the name suggests, are like miniature drawing
boards. A drawing traced on the graphics tablet can cause a
corresponding pattern to appear on the screen of the computer, and
a suitable program will allow the data from the drawing to be
recorded and later replayed. The matching accessory, the XY
plotter, will produce a drawing from X,Y co-ordinates and on/ off
pen controls fed to it from the computer, and is a very valuable
accessory when the computer is used in drawing offices. The prices
of graphics tablets and XY plotters have been traditionally very
high, as these were normally used only with high-priced computers,
but the falling price of computers has caused a fall in the price of
these accessories. The fall has not assumed great proportions as yet,
but we can expect that in the near future you will not have to pay
more for a graphics tablet or an XY plotter than for any other
computer accessory, and certainly not as much as the computer cost.

The light-pen is, as its name suggests, a pen-like object whose tip is
light-sensitive. The light-pen is connected to the computer and used
to detect light, usually on the screen, under the command of a
program. One typical use is in drawing patterns. When the tip of the
light-pen is placed close to the screen, a spot of light appears on the

126 Commodore 64 Computing

screen where the light-pen is pointing, and this remains lit when the
pen moves on. If the pen is held close to the screen as it is moved, the
tip will leave a path of light drawn on the screen. If the pen is lifted
away from the screen, drawing stops, but will resume at any other
place where you put the tip of the pen against the screen.

The light-pen requires both hardware (the pen and its cable) and
software. For a drawing program, the software consists of a routine
which pokes each screen address until the light-pen responds. The
points which do not cause any response are restored to their original
contents, but when the point that causes a response is found, the
character poked into this address is allowed to remain. This is
repeated as the pen moves, but the search is easier when the pen is
kept in contact with the screen, because only the area round the
point of contact needs to be searched. This search program needs to
be written in machine-code, because BASIC is generally too slow to
respond.

The light-pen can also be used in menu selection, pointing to an
item that you want to select, or for deleting an entry (draw a line
across the item with the light-pen). These uses are particularly
appropriate for business purposes, in which the light-pen can often
provide an alternative to typing an entry. This has obvious
advantages for many disabled users, and also the advantage that the
keyboard need not be made available to all users of the program.

Cartridge options

The 64 provides for a range of plug-in cartridges which contain
memory that is already programmed in a permanent form. This can
be used to add new facilities to the machine in a particularly simple
way. The IEE-488 cartridge, for example, allows the 64 to make use
of the attachments which were designed for the older CBM designs,
notably the PET series. If you already have a PET printer or disk
system, for example, or have developed control equipment that is
operated by a PET, then the 64 with its IEE-488 cartridge will also
connect to and operate the same equipment.

A PET Emulator cartridge is also available which allows the 64 to
run programs that were designed for the PET computer. This allows
you access to a huge range of well-tried and well-known software,
and, once again, allows you to replace a retired PET with a 64
without having to replace all of the valuable software.

The Z-80 cartridge contains more than just a program in memory.

System Expansion and Advanced Features 127

It contains a Z-80 type of microprocessor, and by re-allocating the
memory of the 64 and controlling it with the Z-80, this allows the
CP/M operating system to be used on the 64. This can be good news
if you have a considerable investment in CP/M programs which can
be transferred from another machine into the 64, butthesystemis not
quite so attractive as it might appear. Programs that use CP/M will
generally be on disk, and it is unlikely that a disk created by a
different type of machine will be able to operate on the 64 disk
system. This is why the method of passing the program from one
machine to the other is more useful. In addition, it would be
pointless to use the CP/M option just to gain access to software,
because the price of CP/M software is very high. Several CP/M
programs cost more than the 64 itself, and in general you could
obtain programs to carry out the same results much more cheaply if
you do not use CP/M but concentrate on the PET option. In
addition, CP/M was designed to be used by professional
programmers rather than users, and is not particularly easy or
convenient compared to some other systems, particularly if you
have only the manuals to go on.

Another cartridge option is Simons BASIC. This consists of a
very greatly extended BASIC language that contains a large number
of the instructions that have appeared in other versions of BASIC. It
offers a choice of new keywords which greatly extend the usefulness
of BASIC, and in particular allows graphics and sound program-
ming to be carried out much more easily without the use of POKE
instructions. The use of this BASIC, however, eats up a very large
part of the memory of the 64.

The use of cartridges can permit other programming languages to
replace the BASIC of the 64, and also permits the BASIC to be
replaced by specialist programs. Other languages, such as
PASCAL, very popular among academics, and FORTH, used for
machine-control, can be achieved with cartridges, and machine
code programs, such as word-processor programs, can replace
BASIC, so as to leave a lot of free memory available for text. All of
these cartridges will eventually be available from your Commodore
dealers — and probably sooner than I shall be able to get a working
operating system for my other computer!

Disk systems

A disk system is virtually essential for a computer that is to be used

128 Commodore 64 Computing

for business purposes. A disk drive consists of mechanical parts
which can grip a thin plastic disk and revolve it at 300 r.p.m. A
record/replay head can then be positioned over tracks in the disk,
and data can be recorded on to the magnetic coating of the disk, or
replayed if the disk has previously been recorded. Included in the
same casing as the disk drive, however, must also be a disk
controller. An important difference between a disk system and the
use of a cassette recorder is that the disk system is operated under
complete computer control. Any disk command that is contained in
a program will cause the disk to be spun at the correct speed, the
head to be placed on the correct track, and the correct data read, or
new data recorded in the correct place. All that the user needs to do
is to ensure that the correct disk is in place! All of this, however,
needs a very complex control system, which is the factor that
accounts more than anything else for the price of disk systems.
The control system for Commodore disk system uses its own
complete computer system and memory built into the disk system
itself. Because of this, disk systems made by other manufacturers are
not generally suitable for Commodore systems, since most of these
other systems make use of the computer in some way. The
Commodore system has the great advantage that the addition of a
disk system to the 64 does not require any of the memory of the
computer. Many other types of computers use 3K to 5K of the
computer’s own memory in order to control the disk system, and in
some cases this leaves very little room for programs in the computer.

Other developments

At the time of writing, several miniature disk systems, using disks
ranging in diameter from 3” to 4”, are on the point of production.
These systems are in no way inferior to 5Y,” disks in terms of storage,
and we can expect the use of such miniature disks to increase if only
the manufacturers can agree to a common standard. At present,
each disk system for 5,” disks uses different standards, so that disks
are not interchangeable, even when a common operating system
such as CP/M is used. If a common standard for smaller disks can
be agreed, then the advantages to software suppliers will be
enormous. If there is no agreement, we can expect to find the same
conditions applying to the miniature disks as to 5Y%,” disks, and there
will be little, if any, incentive to use the smaller disks. At present, the
only agreement is on the format of the older type of 8” disk, but 8”
disk drives are less common on the smaller computers.

System Expansion and Advanced Features 129

These and other newly developed devices will be evaluated for use
on your 64, and put on sale whenever Commodore are convinced of
their usefulness. Keep a close watch on the computing magazines,
and on the local Commodore dealers to keep in touch with progress.

Last word

We’ve reached the end of this particular path now. With the
formalities of introduction now complete, you and your 64 now
have to get thoroughly acquainted. You can do this by tackling
problems, not the problem examples that you find in some
textbooks, but your own real problems. It’s by using the 64 for
problem solving on your own applications that you will make the
most rapid steps in learning the art of program design and the rather
lower level craft of using BASIC to carry out that design. Happy
programming!

Appendix

The BASIC of the Commodore 64 is MICROSOFT, which is
regarded as a worldwide standard form of BASIC, and is very
widely used on computers. Two computers, however, use instruc-
tions which differ considerably from MICROSOFT in some details.
These are the Acorn Atom, whose BASIC is very different from

MICROSOFT, and the
instruction is used for

Sinclair ZX series, in which a different
the LEFT$, MID$ and RIGHTS$ of

MICROSOFT. The table below deals with the conversions which

are needed for programs
instructions can be used.

written for these computers so that these

XZ Series

LET B$ = AS%(3)
LET B$ = A$(TO 3)
LET B$ = A$(3 TO)

LET B$ = A$(3 TO 5)

Atom

$B = SA

$B _|_ 3 — (133}
$B=S%5A+2
$B = $A

$B _|__ 6 — €69
$B=$%B + 2

Commodore

B$ = MID$(A$,3,1)

B$ = LEFT$(AS,3)

B$ = RIGHTS$(AS,5) assuming
LEN(AS) =7

B$ = MID$(AS$,3,3)

Commodore
B$ = LEFT$(AS,3)
B$ = RIGHTS$(AS,2)

B$ = MIDS$(AS,2,6)

Index

Acorn Atom, 130
Address, 73

Adventure programs, 54
Alarm-clock action, 123
Alphabetical sort, 68
Animation, 73
Arithmetic, 29
Arithmetic symbols, 16
Array, 50

ASC, 36

ASCII code, 36
Assignment, 22

Attack, 106
Attack/decay numbers, 110

Bar chart program, 77
Base for numbers, 83
BASIC, 15

Binary number count, 84
Binary numbers, 83
Branching step, 40
Bubble sort, 68

Byte, 85

Cartridge options, 126
Cartridge use, 14

Cassette file, 64

Cassette recorder, 1
Changing volume, 114
CHRS, 36

CLOSE, 68

CMD, 67

CONT, 116

Co-ordinate addresses, 90
Co-ordinates, 88

Colour codes, keyboard, 99
Colour displays, 98
Colour memory map, 102
Colour of sprites, 94
Comma, 19

Commodore key (Cz), 7
Commodore printer, 72
Company logo, 72
Computing Today, 70
C.T. standards, 70
Concatenating strings, 33
Conditions to test, 45
Connecting up, 2

Core, 60

Crashing through, 42
Cursor, 8

Data entry subroutine, 62
Data processing, 55
Debugging commands, 166
Decay, 106

Defined function, 30
Delete action, 9

Digital clock program, 122
Dimensions, 52

Direct commands, 16

Disk drive, 1

Disk systems, 127

Disk use, 13

Dummy variable, 31, 115

Editing key, 9

End of file marker, 65
End of tape marker, 65
Envelope, 106
Extracting numbers, 34

Field marking, 71
Fielded input, 71
Financial spreadsheet, 54
Floppy disk system, 1
FOR ... NEXT, 46
FORTH, 127

Frequency and amplitude, 105

FRE(X), 115

132 /ndex

Function keys, 103

GET, 27

Ghosting, 4

GOSUB, 41

GOTO, 41

Graphics characters, 8, 69
Graphics strings, 72
Graphics tablets, 125

High-resolution, 82

IF test, 41

Inputs, 24

INT, 31

Integer number, 23

Joysticks, 125

Keyboard, 7
Keyboard graphics, 69
Keywords, 15
Kilobyte, 85

Leader, 64
LEFTS, 37

LEN, 33

LET, 23

Level of sprite, 87
Light-pen, 125
Line, 17

LIST, 18
Loading, 1, 12
Loop, 27, 44
Low-resolution, 82
Lower-case, 8

Machine code access, 120
Matrices, 53

Matrix, 53

Memory map, 75

Memory mapped screen, 74
Menu, 35, 55

MIDS, 38

Miniature disk systems, 127
MOBS, 82

Modem, 124

Modulator, 4

Monitor, 3

Movement of sprite, 88
Mugtrap, 51, 57
Multicolour sprites, 96
Multiple sprites, 91
Multi-statement line, 21
Musical notes, 104

Names for aliens, 49
Nesting, 49
Number variables, 23

ON N GOSUB, 57
ON N GOTO, 57
OPEN, 64

Other languages, 127

PASCAL, 127

PEEK, 78

PET, 15

POKE colours, 100
POKE graphics, 73
PRINT, 16

PRINT #, 64

Paddles, 125

Pattern inversion, 79
Pitch, sound, 104
Planning block graphics, 80
Position of sprite, 88
Power connections, 2
Power switch, 3
Practical sprite generation, 85
Printer connection, 124
Priority illustration, 95
Priority of sprites, 92
Program instructions, 17
Program testing, 118
Programming mode, 9

Quit option, 56
Quotes, 18

Random fraction, 39
Random words, 120
READ... DATA, 26
Real number, 23
Real-time clock, 122
Re-dimensioning error, 52
Release, 106
Reserved names, 24
RESTORE key, 11
RETURN key, 17
RIGHTS, 38
RND(1), 39
RUN/STOP key, 10

Saving, 1, 12

Sawtooth wave, 109
Screen-plan diagram, 80
Semicolons, 19

Serial input/output, 124
SGN (X), 115

Shell-Metzner sort, 68
SHIFT, 8

Simons BASIC, 127
Sound generator, 103
Sound POKEs, 107
Sound-program design, 111
Sound subroutines, 112
SPC, 22

Sprite collisions, 96
Sprite colour, 94

Sprite graphics, 83
Sprite level, 87

Sprite planning grid, 82
Sprite pointers, 88
Sprites, 82

Square wave, 109
Statement, 22

STOP, 116

STRS, 35

String array, 51

String literals, 19
String slicing, 37

String sort, 119
Subroutine, 31, 42
Subroutines, 61
Subscripted variables, 50
Sustain, 106
Sustain/release numbers, 110
Syntax, 15

SYS, 121

System expansion, 124

TAB, 21

Index 133

Test conditions, 45
Top-down design, 59
Transformer unit, 3
Triangle solver, 33
Triangle wave, 108
Tuning TV, 4

TV connection cable, 3

Unused bytes, 115
Upper-case, 8
Uses of loops, 47
USR(X), 121

VAL, 33

Variables, 22

VDU, 3

VIC-20, 15

Video chip, 87

Video inversion, 81
Video monitor, 3
Visual menu choice, 58
Voice settings, 106
Volume, sound, 104

Warbling note, 113
Warning note program, 111
Warning notes, 109
Waveforms, 105
Waveshape, 106

X-Y plotters, 125

ZX series, 130

MOVE UP TO COMMODORE 64 COMPUTING!

COMMODORE 64 COMPUTING is an introductory guide
and reference book for all Commodore 64 users, and is
essential for getting the best out of this powerful new
machine. It covers the setting up and operation of the
microcompuier and its many facilities in detail. BASIC
syntax is comprehensively summarised with examples to
serve as a useful reference for the experienced user and a
helpful guide for the less experienced. The book sets out
and explains fully the features which make this computer
so unusual and such remarkable value for both business
and domestic users -such as graphics, sprites,
programmable function keys, colour commands,
programming for sound, using the 64K option, CP/M and
running programs written for PET machines.

The Author
lan Sinclair is a well-known and regular contributor to
journals such as Personal Computer World, Computing
Today, Electronics and Computing Monthly, Hobby
Electronics, and Electronics Today International. He has
written some forty books on aspects of electronics and
computing.
‘This book is a must . . . of very high quality’

'MICRO DECISION

More books on the Commodore 64 from Granada
THE COMMODORE 64 GAMES BOOK Learning is Fun!

21 Sensational Games 40 EDUCATIONAL GAMES
Owen Bishop FOR THE COMMODORE 64
0246 122587 Vince Apps

SOFTWARE 64 0246123184

Practical Programs for the- COMMODORE 64 GRAPHICS
Commodore 64 AND SOUND |

Owen Bishop Steve Money

0246122668 0246123427

INTRODUCING COMMODORE 64

MACHINE CODE

lan Sinclair

0246123389

Front cover photograph courtesy of Commodore Business Machines (UK) Ltd.

GRANADA PUBLISHING £5.95 net

Printed in Great Britain 0246 12030 4

	Chapter One - Preliminaries

	Chapter Two - Beginning BASIC

	Chapter Three - Processing

	Chapter Four - Decisions and Loops

	Chapter Five - Data Processing and Program Design

	Chapter Six - Introducing Graphics

	Chapter Seven - Sprites and Colour

	Chapter Eight - Function Keys and the Sound Generator

	Chapter Nine - Sorting Out and Other Topics

	Chapter Ten - System Expansion and Advanced Features

	Appendix

	Index

