£ 2

|

4

O cormrmocton

a, w E R g el R TS
cw g 80 gd ¢ \ od ed ed o0 od
A s oy E H AR S
@8 @ G 98 o0 ol oS ©d o L

2‘ X‘ c_ v
¥ @ 08 =

GCOMMODORE 64

GOMMODORE 64

BBBBBBBBBBB

il

MELBOURNE HOUSE

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Melbourne House,

Church Yard,

Tring, Hertfordshire HP23 5LU,
ISBNO-86161-133-0

Published in Australia by:

Melbourne House (Australia) Pty. Ltd.,

Suite 4, 75 Palmerston Crescent,

South Melbourne, Victoria, 3205,

National Library of Australia Card Number and
ISBNO-86759-144-7

Published in the United States of America by:
Melbourne House Software Inc.,

347 Reedwood Drive,

Nashville TN 37217.

Copyright (c) 1983 Beam Software

Contributions by: Andrew Paulomanolakos
Peter Falconer
Goodwin Yuen

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publishers

Printed in Hong Kong by Colorcraft Ltd.
1st Edition

Contents

Chapter 1
Programming in Basic ... 1
Immediate and ProgramModes ... 1
CoNtrol StruCtUrescooooiieiiiiiiccccee e 2
Data StruCturesccooiiieiieeiecce e 6
Bits @Nd BYESccviiiiiiiiiiieici 6
CRAFACETS ...oceveevee ettt 6
VAKHDIES ...vveeeeee ettt 6
ATTAYS .ottt 10
OPEIAtOrSoooniiiiiiiiece e 11
Arithmetic Operatorscccooiieiiiiie 11
String OPEratorsccocoooeoreiiieiiie s 12
Relational Operatorscccccovviririiiiiiiie e 12
Binary and Hexadecimal Number Systems 14
MASKS ..ot 16
Chapter 2
Commodore 64 BASIC Commandscccooeeeeiniiiennn, 17
Chapter3
Advanced BASIC Techniquesccccooriiiiiiiniine 42
Compressing BASIC Programsccocovniiiniinininnnn. 42
Abbreviations for BASIC Keywordscccocooiiieiiienecns 43
Appending BASIC Programscocooeiniiiiiinininns 44
BASIC Program Storage Formatcccoeniiiinn 45
Commodore 64 BASIC Keyword Codesccoccocenenn 46
Clearing the Keyboard Buffer ... 47
Merge ROULINEccooviiiiiiiiii i 49
Block Delete ROUINEccoevveeniieiiiciiiiiiieicesie e 50
Chapter 4
SOUNA ...t 51
WAVETOIMS ...vviivee ettt 51
The ADSR ENVEIOPEccooviiciiiiiiiiicie e 52
Controlling the Sound Chipcccoiiiiiiiiis 54
Playing TUNESc.ociiiiiiiiiieiei e 54

Using Multiple VOICEScooviiiiiiiiiiiccies 55

Using Filters and Resonanceccccoocoevoeeinn. 58

Putting it All Together ... 60
Special Sound Effectsccooooiiiiiiiiieeee 67
The Sound Chip Registersccocvooviioiiieieieiea 70
Music Note Valuescocooioiiieiiiiiieeeeeeeee 75
Chapter 5
GraphiCsoocooiiiiiiiii e 79
Graphics MemOry ... 79
Low Resolution Graphicsccocooooviiii 79
Screen Background and Border Colours 79
Character Colouroooevieioeiie e, 80
ScreenMemory ..o 80
Character MemoOryocoooiiioioeieeeeeeeeeeeeee 82
Designing Your Own Characters ... 83
Where to Put the New Character Set 85
High Resolution Graphicscccooovevii 86
Multicolour Charactersccocccoovoeeiioiiceoieeieee. 89
Extended Background ColourMode 90
MulticolourBitMap Modecoocoovemini . 91
SPIItES ... 91
Sprite POINErsccoooiiiiiiiiieeeeeeeeeeeeee, 91
Turning Sprites ONn ..o 92
SPrit€ COlOUN ...t 93
Multicolour Spritescccoooeveiiiiiieee e 93
EXpanding SPrit€sccooovoeiiiiiiioeeeee e 93
Sprite Movementcccooooiiiiiiiiieee e 94
Sprite Display Prioritiescc.cocoooioeoeeeeeeeree, 96
Sprite ColliSIONSc.oovviviiieieiiiceee e 98
Selectinga VideoBank.........................cccococoomvriieoe . 98
VIC-lIChip RegisterMapc.ccocooovvoiviee 100
Chapter 6
Machine Language Programming on the Commodore 64 ...101
Introduction ... 101
Binary and Hexadecimal Numbering System 102
Registers and AddressingModes .. 104
Machine Code and Instruction Mnemonics 109
6510 MicroprocessorSetccocoocveeoecoeeeoe 111
Simple Machine Language Programs 113

MON — Simple Machine Code Monitorc........... 114

Commodore 64 Memory Map and Management 118

ProgramENtry ... 124
BASIC Statementsccceveivieerieeieeeeenieeeie e 124
Machine Language Monitorccccooiiiiiiiinis 125
Editor/Assembler Packagec.cccooiiiiiiiiiniin s 125

Program Execution ... 126
BASIC Control Programc..cccooviiimimimiiniiiiieieee 126
Machine Language Monitor ...t 127
Substitution of System Handling Routines 127

Some Commodore 64 Useful Routines 128

Commodore 64 Kernalcoocoeeiiiiiiiiiii 133
Concepts of Kernal and Operating System 133
Power Up INitialisationsc...cccocoeoiiiiiiininniee e 134
Using Kernal ROUtINEScocooiiiiiiiiiiic s 134
Some Useful Kernal Routines ..., 135
Simple Programs That Call Kernal Routines 136

Graphics Using MachineCodeccoccoiiin, 140

RasterInterrupts ... 145

Chapter 7

External Devicescccoooviiiiiiiii 152
Datasetteccccooiiuiiiiiiiee e 152
Floppy-Disk Dravesccccocooviiiiiiiiniiisccs e 152
Disc Drive Memory Manipulation ... 158
The 1515 Graphic Printercccoiiiiiiiiiii e 161
GamES CONMIOISooveiiiieiiiie et 162
KeybOo@rdccceeiiiiiiiiiiciie i 163
JOYSHCK ..ot 164
PaddIesooooiiiiiieieeeeeee e 165

Appendices

A: CHRS$ ValueCodescccoooieviiiiiiiiiiinecice 167

B: Memory (Complete Map)cccooriiie 175

C: Keyboard Graphics and How to Get Them ... 181

D: Useful ROMROULINESccoooviiiiiiiiiiie e 183

E: BASICError Messagescccceoiemiuiiiiciieninesieaie 191

F: CurrentKey Pressedcccoooiiiiiiiiiiiiine 193

CHAPTER1

PROGRAMMING IN BASIC

BASIC is only one of the many languages used to communicate with
computers. It is however, the most common language in the
microcomputer world, so it's a good one to know. BASIC varies from
computer to computer, but once one dialect is known it is easy to adapt to
others. A knowledge of Commodore 64 BASIC is a solid basis for
programming in BASIC on any computer.

COMMODORE 64 BASIC

Immediate and Program modes.

When the Commodore 64 is turned on it starts in immediate mode. In this

mode, each line typed in and completed by pressing RETURN is

executed immediately — hence the name.

Program mode is used to store programs. The name is something of a

misnomer, but it is commonly used. Actually, you're still in immediate

mode, but whenever BASIC sees a line that starts with a number, it

executes the line by storing it in memory. The statements following the

line number are executed only when you run the program.

e.g. typing PRINT “HELLO” will cause HELLO to be displayed on the
screen.

typing 10 PRINT “HELLO” will cause that line to be stored in

memory. There will be no display until you type RUN.

Points to note:

e Line numbers must be integers from 0 to 63999.

e Lines are sorted into numerical order no matter in what order they’re
typed.

e Typing a line number, then pressing RETURN deletes that line.

e Typing two lines with the same line number leaves only the second line
in the program.

e Typing NEW deletes all program lines in memory so that you can type
in a new program. If you don't do this the new program may have lines
from the old programin it.

e To BASIC, a line can be up to 80 characters long (including the
RETURN to terminate it) — ie. 2 screen rows. If you continue typing after
this, none of the line will be stored in the program (if in program mode) or
executed (if in immediate mode).

¢ You may put more than one statement on a line by seperating them
with a colon.

e.g. PRINT “H” :PRINT “E” : PRINT “L” : PRINT “L” : PRINT “O”
This can be done in both program and immediate modes.

® It is a good idea to start numbering lines at 100, and increasing at
intervals of 10 or 20. This enables you to insert lines between existing
lines.

¢ Although the BASIC interpreter stores any spaces you put in program
lines, it ignores them when it executes. All spaces may therefore be
omitted, although this makes programs difficult to read. The spaces are
stored and when you list the program they are included in the listing. You
cannot insert any spaces into keywords.

Control Structures

These are statements which control the order in which program lines are
executed. BASIC has the simplest control structure — sequential
execution — built in. In the absence of any other control structure, a
program is executed from the lowest to the highest numbered line. If this
were the only control structure available, programs would be very limited,
so Commodore 64 BASIC has the following statements for program
control. They allow your programs to make decisions, perform loops, and
branch to different parts of the program.

IF — THEN

IF [expression] THEN [statement(s)]
e.g. 10IFA=5THENB=A-1:GOTO 200
20IF (A = OANDA <« —3) THEN GOSUB 6000
If the expression is true then all statements following the THEN are
executed. In line 10 above, for example, if A=5 then both statements
B=A-1 and GOTO 200 are executed. If the expression is false, both
statements are ignored, and the next line is executed.
The expression may be arithmetic, in which case the THEN statements
are executed if the expression evaluates to any number other than 0. In
other words, the Commodore 64 takes 0 to be FALSE and all else to be
TRUE. This isn’t particularly useful, and is bad programming style, since
it isn’t immediately obvious what is meant.
e.g. IF5+6 THEN PRINT “YES”
result — prints YES
IF A—5 THEN PRINT “YES”
result — doesn't printif A=5
If the expression evaluates to a string the result is unpredictable.

FOR — NEXT

FOR [variable] = [start] TO [limit] STEP [step]
[statement(s)]
NEXT [variable]

e.g.
10 FORJ=62TO 70 STEP 1
20 PRINT CHRS$ (J) ; “ISASCII" ; J
30 NEXT J

This loops through lines 10-30 in the following way.
(i) Jissetto the start value - 62
(ii) statements are executed until a NEXT statement appears
(iii) the STEP factoris addedtoJ. J = 63
(iv) Jis compared to the limit value - 70. If J is greater than 70 the loop is
finished and execution proceeds from the line following the NEXT
statement. If J is less than or equal to 70 the program loops back to line
20. If line 10 had been FOR J=70 TO 62 STEP —1 the values of J would
be decremented by 1 every pass through the loop. When J is compared
to the limit value 62 execution of the loop continues if J is greater than or
equal to the limit value. Execution does not proceed to the line following
the next statement until J is less than 62.
e The FOR variable must be a floating point variable
e [start], [limit] and [step] may be numeric variable names, expressions,
negative, positive, integer or floating point.
e “STEP [step]’ may be left out, in which case a STEP value of 1 is
assumed. So in the example above “STEP 1” is not necessary.
e The variable name in the NEXT statement may be left out. In the
example above, line 30 may read “30 NEXT”
e FOR loops are always executed at least once, even if the start value is
initially greater than the limit for positive steps or less than the limit value
for negative steps. This is because the comparison of the FOR variable
with the limit is done at the end of the loop.
e |f the step value is negative, the loop is terminated when the FOR
variable is less than the limit. Again, the loop will be executed at least
once.
e FOR statements may be nested to a maximum depth of 10. That is,
you may have loops within loops.
e.g. :

10 FORJ=1TO5

20FORK=1TO7

30...

40FORL=1TO3

50...

60 ...

70NEXTL

80 NEXT K

90 NEXT J
When nesting loops be careful to terminate them correctly. The last FOR
variable mentioned must be the first NEXT variable mentioned. If the
variable names are left out of the NEXT statements, BASIC terminates
the loops correctly. Each loop variable is placed on a stack. The NEXT
statement takes the variable from the top. This is always the last one
placed there. Hence the computer’s “ability” to select the correct NEXT
variable.

® There may be more than one variable name in a NEXT statement. The
example above could have been terminated by 70 NEXT L,K,J. If you
leave the variable names out BASIC will only terminate the last loop for
you — ie. “70 NEXT" is only equivalent to “70 NEXT L".

GOTO

GOTO [line—number]
This is the simplest of the control statements. When executed, it causes
the program to continue from the line number named. The unrestrained
use of GOTOs can make programs difficult to follow, so it should be used
with care.
® The line number must exist in the program.
® |t cannot be a variable name or an arithmetic expression.
e.g. 10X=50

20 GOTO X — incorrect

20 GOTO (40+30) —incorrect

20 GOTO 200/10 - will goto line 200

20 GOTO 200 — correct if line 200 exists

GOsuB

GOSUB [line—number] / RETURN

GOSUB is short for GO to SUBroutine. A subroutine is a collection of
statements terminated by a RETURN statement.

When a GOSUB is executed, the program continues from the line
number named, just like a GOTO. But, when the next RETURN
statement is reached, the program returns to wherever the GOSUB is,
continuing execution from the statement following the GOSUB.

eg. 10
20 GOSUB500 —»500
30 % 510
40 ... $520 RETURN

The arrows indicate the path the program follows.

Subroutines are useful when there is a task which must be executed
severaltimes in the program. Using subroutines means you needn’t write
the same lines several times — you just GOSUB to them each time you
need them.

® A RETURN statement without a GOSUB causes an error

® A RETURN statement is not written by pressing the RETURN key!
They are quite different.

® There may be multiple RETURN statements in a subroutine.

e.g. 10 GOSUB 500

500 IF X=5 THEN RETURN

510 IF X=6 THEN B=X : RETURN
520 C=X

530 RETURN

This saves you having to jump to the end of the subroutine to a single
RETURN

e Subroutines may be nested.

e.g. 10GOSUB 520

520 ...

530 GOSUB 600
540 ...

550 RETURN

600 ...

610 GOSUB 700
620 ...

630 RETURN

BASIC does this by “stacking” the return addresses. When a GOSUB is
reached, its address is put on a stack. At the next GOSUB its address is
put on top of the first, and so on. When a RETURN is reached, the
address on top of the stack is taken off, and the program branches to that
address. At the next RETURN the address next on the stack is taken off,
and so on. The addresses are stored in a special area called “stack”,
which is a fixed size (256 bytes). Therefore, by nesting too many
GOSUBs you can run out of stack space. This will cause an “OUT OF
MEMORY” error message to be displayed.

ON GOTO/GOSuUB
e) ON [variable] GOTO [line—number 1], [line—number 2] ...

ON [variable] GOSUB [line—number 1], [line—number 2] ...
Depending on the value of the variable, the program will GOTO (or
GOSUB) one of the line numbers. If the variable equals 1, the program
will GOTO the first line number, if the variable equals 2, it will GOTO the
second line number, and so on.

e.g ONXGOTO200,60,60, 75, 500
e |f the variable is O or greater than the number of line—numbers, the
statement is ignored, and execution continues from the statement
following the ON statement. If the variable is negative, it causes anerror.
If it is non-integer the fractional part is ignored and only the integer part is
used.
e The variable may also be an arithmetic expression.
e.g ON(A*3+4)GOSuUB100, 1200, 60

ON (X—3*Y) GOTO 60, 60, 70, 80, 900

END

This statements stops the execution of a program. There may be several
END statements in a program. This is handy for debugging (ie. getting rid
of errors), since after an END has stopped the program, you may check
the value of variables (by typing PRINT [variable]), change the value of

5

variables, or look at the program listing (by typing LIST). You may then
continue the program by typing CONT. However, CONT won’t work if the
program stopped on an error, or if you attempt to edit the program.

® |tis not necessary to finish a program with an END statement.

DATA STRUCTURES

For a program to be useful it must be able to store information. It does this
by using data structures. The following is a brief summary of the data
structures available on the Commodore 64.

Bits and Bytes

A bit is the basic data structure used in all digital computers. The name is
derived from Binary diglIT, because a bit can take one of only two values,
1 or 0. Since it would be extremely cumbersome to store information bit
by bit, there are more sophisticated data structures available to the
programmer.

A byte is 8 bits. It can represent any number from 0 to 255 using the
binary number system. The Commodore 64 is a byte addressable
machine, which means that a byte is the smallest data structure which
the programmer can directly examine or change — using PEEK and
POKE.

(For more on bits, bytes and the binary number system see the section
on Operators.)

Characters
Characters are stored as a code number in 1 byte. Thus there are
potentially 256 character codes. The most common code is ASCII (for
American Standard Code for Information Interchange). The Commodore
64 however, uses a slightly different code so as to cover colours and
other special characters. Appendix A contains a table of ASCIl and
Commodore 64 character codes. You may also use CHR$ and ASC to
explore Commodore 64 character codes.
e.g. PRINT CHRS$ (65) will print the character with code 65 — an “A”
PRINT ASC (“B”) will print the code for “B” — 66
® There is a difference between numeric characters and numbers. A
number is read as a character when it appears between double quotes
e.g. “5” —the character5
5 — the number 5
PRINT ASC (“5”) will display the code for the character 5
PRINT ASC (5) won't work.

Variables

In general, when you store information you don't want to:
— decide where in memory to put it

— POKE it byte by byte into memory

— remember where you put it so you can retrieve it.

BASIC provides variables to do this for you. All you have to do is provide
a name for your information. BASIC then attends to storage and retrieval
of that information.

Rules for naming variables.

1) The first character mustbe a letter : A—Z, a—z
2) Except for the last character, the rest must be letters or numbers.
3) The last character mustbe —
— “$” if you're storing strings
— “%" if you're storing integers
— a letter or a number if you're storing floating point numbers
e.g. ABS$, NAMES$ — string variables
Kl%, SKILL% — integer variables
E2, TEMP — floating point variables
e Variable names can be any length.
e However, BASIC only recognises the first two characters plus the last
one, if it's either “%” or “$”.
e.g. NAMES is seen as NA$
NATURES is also seen as NA$
TEMP isseenas TE
SKILL% is seen as SK%
So don’t use names like TEMP1 and TEMP2, since BASIC will treat them
as one variable. Make sure different variable names differ in the first or
second character.
e The advantage of long variable names is that they make programs
easier to understand.
The disadvantage is that they take up more memory.
e Different variable types can have what appears to be the same name.
e.g. NAS$, NA% and NA are all different variables.
e Variable names must not contain reserved words — ie. words which
BASIC recognises as commands.
e.g. BASIC would read TOP$ as TO P$ since TO is a reserved word.
This is a consequence of spaces between keywords and variables being
optional.
FIRSTHENS would be read as FIRS THEN S since THEN is a reserved
word.
This type of thing usually results in a SYNTAX ERROR in lines that look
OK

e Assigning values to variables is done using “="

e.g NAME$ = “JOHN”
SKILL% = 50
FROD$ = NAMES$ — this assigns the value of

NAMES$ to FROD$

SKILL% = SKILL% + 10 — this takes the old value of
SKILL%, adds 10, and assigns
the result as the new value of
SKILL%

® As the name implies, the value of variables may vary.
e Only the correct type of information may be assigned to a variable.
Trying to assign a number to a string variable, or a string to a numeric
variable will cause a TYPE MISMATCH error.
e.g. NAMES$ = 72 — type mismatch

SKILL% = “HARRY" — type mismatch

String Variables

A string is a series of characters contained within opening and closing

quotes.

e.g. “Thisis astring”

Thisisnotastringitisaverylongvariablename

e Strings can be concatenated — ie. joined together using the “+”

symbol

e.g. B$="“THECOMMO "~
A$ = B$ + “DORE 64”

The value of A$ is now the string “THE COMMODORE 64”

e Concatenation can be used to put characters in strings that you

couldn’t normally put in — for example, the double quote character.

e.g. A$=""STRING” " will notwork because it will be read as an empty
string (“), then STRING, then another empty string. This will not
make sense to BASIC
A% = CHRS (34) + “STRING” + CHRS$ (34)

This concatenates the value of CHR$ (34), “, with STRING and, ", giving

“STRING”

This technique can also be used to give multicoloured displays

e.g. A$ = CHR$ (30) +“THE” + CHR$ (31) + “END” ,

PRINT A$ will now display a green THE and a blue END.

e String variables can be very useful in getting “bombproof” input from

the keyboard.

For example, imagine you are writing a program which at some point

prompts the user to type in a number. You can do this by using

INPUT “NUMBER",A

To execute this the Commodore 64 prints the string and a question mark,

and waits for the user to type in a number which it will assign as the value

of A. But, if the user types in a non—numeric character, this will cause the
error message REDO FROM START to be displayed. It skips down a line
and displays the question mark again, waiting for a number. It will
continue to do this until a number is input, or the program is stopped. This
can be confusing to a user who doesn't know the meaning of REDO
FROM START, and it can also destroy screen displays.

To avoid this, use
INPUT “NUMBER”,A$
Now the Commodore 64 expects a string, so whatever(almost) the user
types will be OK. Of course this means that the program will have to doa
little more work, converting the string to a number. To do this, use
A=VAL(AS)
If A$ is a string containing only a number, A will become that number
e.g. A$="7.63"
A =VAL (A%)
The value of A is now 7.63
If A$ contains non—numeric characters, VAL(A$) will return 0. Thus, the
programmer can arrange to print meaningful error messages and
reprompt the user without destroying screen displays.
e Commodore 64 BASIC has extensive string manipulation functions —
RIGHTS, LEFT$, MID$, + (see Commodore 64 BASIC Commands)
e |f no value is given to a string variable, its value is the empty string.

Floating Point Variables

Floating point numbers can be integers, fractions preceded by a decimal
point, or a combination of the two.
e.g. 6,7.346,0.593, -0.762, -3
e They can be up to 9 digits long
e |f a number with 10 or more digits is entered, it is automatically
converted to scientific notation.
e.g. 12345678912

is displayed as -

1.23456789E+10
The number after the E indicates the number of positions the decimal
point must be moved to give its true position. If it is positive, the decimal
point is shifted to the right; if negative, to the left.
Note that the last two digits in the original number are rounded off. In
general, if the 10th digit is 5 or more, the number is rounded up. Ifitis 4 or
less, it is rounded down.
e.g. 1234567886 is displayed as 1.23456789E+9

.1000000014 is displayed as .100000001
e There is a limit to the size of the numbers the Commodore 64 can
handle

smallest > 2.93873588E—39

largest < 1.70141183E+38
Any number smaller than the lower limit is treated as 0. Any number
larger than the upper limit gives an OVERFLOW ERROR.
e Floating point numbers can be entered from the keyboard in scientific
notation.
e Floating point variables don’t have a special last character
e.g. FP, FLOAT, X, L1

e [f no value is given to a floating point variable, its value is 0
Integer Variables

Integers are numbers without a decimal point. They may be negative or
positive. Unsigned integers are assumed to be positive.

e.g. 6, +63, -7, —7934621

® [nteger variables are distinguished by % as the last character.

e.g. NUM%, SC%, F%

® Integers may be assigned to floating point variables since they are a
subset of floating point numbers. However, they will take 5 bytes for
storage compared to 2 bytes if assigned to integer variables.

e |f no value is given to an integer variable its value is 0.

e In most calculations the Commodore 64 converts integers to floating
point numbers and, if necessary, converts the result back to an integer. It
is therefore slower to use integer variables than to use floating point
variables.

Arrays

Arrays are used to store large amounts of related information without
having to assign a variable name to each data item. Instead, a name is
assigned to the array as a whole, and the individual data items are
referred to by their position in the array.

e Arrays are set up using a DIM statement

e.g. DIMAS (12)
This will set up a 1 dimensional string array with 13 elements. There are
13 because numbering of array elements starts from 0. This array has
the elements A$ (0) through to A$ (12).

DIM B% (4)
This sets up an integer array of 5 elements — B% (0) to B% (4)

DIMC (2,4)
This sets up a 2 dimensional floating point array with 15 elements, 3 rows
each of 5 elements.

C (0,0 C(0,1) C(0,2) C(0,3) C(0,4)
C(1,0) c(1,1) C(1,2) C(1,3) C(1,4)
C(2,0) C(2,1) C22) C(2,3) C(24)

DIMD$ (1,1,1)
This sets up a 3 dimensional string array of 8 elements — D$ (0,0,0) to D$
(1,1,1)
e Array elements are used just as a variable of the same type is.
e.g. PRINTC (1,3)
X=C (2,1)
D$ (1,0,1)="HI"

10

e You cannot refer to the entire array at one time.
e.g. “PRINT A$” will not display the 13 elements of the array A$. To do

this you would need the following:

FORJ=0TO 12 :PRINT A$ (J) : NEXT
e Arrays can hold only one type of data. An attempt to store an integer in
a string array, or a string in a floating point array will produce a TYPE
MISMATCH error.
e Like variables, array elements have default values. When an array is
first DIMensioned, all its elements take the default value for that variable
type. ie. a string array is filled with null strings, a numeric array is filled
with O’s.
e Arrays can also have default sizes. That is, you can refer to an array
element without having first DIMensioned the array. However, this only
applies to 1 or 2 dimensional arrays. The default DIMensionis 10 — ie. 11
elements for each subscript used to reference an array element. In this
case the Commodore 64 has implicitly DIMensioned the array for you.
This can be confusing when the program is read later, so it's better to
explicitly DIMension all arrays — ie. use a DIM statement.
e Arrays can be DIMensioned only once in a program. This also applies
to arrays the Commodore 64 has implicitly DIMensioned for you. In other
words,

10LETA(1)=0

20DIM A (5)
will result in a RE—DIMENSIONED ARRAY error

Operators

Expressions are made up of operators and operands. Operators are
symbols recognized by the Commodore 64 as representing operations
to be performed on the operands. Operands may be variables, constants
or other expressions. Expressions return a value, and hence may be
used almost anywhere a variable of the same type could be used. There
are exceptions to this however, such as GOTO statements. These
exceptions are explicitly noted in the description of BASIC commands.
Arithmetic Operators

Arithmetic expressions return an integer value if all operands are
integers, and a floating point value if any of the operands are floating
point numbers. Most of these operators you will have met before, so a
few examples will suffice.

Addition ‘+’

6+4,B%+C+6

Subtraction ‘'

7-3,18-36,B%—-C

The minus sign is also used to signify a negative number.

11

Multiplication ™’

7*3, B%*8, 16*C*B%

Division */'

The value on the left of the slash is divided by the value on the right.
7/4,B%/C

Exponentiation * %’

The value on the left of the arrow is raised to the power of the value on the
right.

A+5/2:3,67B%

Order of evaluation

An expression may contain muitiple operators. The order of evaluation of
the sub—expressions depends on the precedence of the operator in
each sub—expression. Operators with the highest precedence are
carried out first. A table of operator precedences appears at the end of
the section on operators.

String Operators
Concatenation ‘+’
The plus sign can also be used to concatenate strings.
e.g. “FREE” + “DOM” returns “FREEDOM”
if AS="STING” and B$="RAY"
A$+BS$ returns “STINGRAY”
Concatenation can be used to build strings up to 255 characters long. An
attempt to build a longer string will resultina STRING TOO LONG error.

Relational Operators

These are used to compare strings or numbers. If the expression is true,
—1 is returned, if false, 0 is returned. This means that it is possible to
perform arithmetic operations on the result of a relational expression.
The operators are:
=’ : equals
oy . is greater than

is less than
< ort £

’

o
=

. islessthan or equal to
or = . is greater than or equal to
' : notequalto
6 - returns true (—1)
4 - returns false (0)
6-

0 .

T

o

g

Raa Il

returns O
6 - returns —1
A% < = B%-result depends on the value of A%, B%
Strings can also be compared. This is done character by character, using
the Commodore 64 character code.

6
6
6
6

‘-‘V

12

e.g. “C" < “D” returns true (—1) since the code for ‘C’'—67— is less
than the code for ‘D’-68
“CAT” > “CATION" results in false (0)
A$=C$+D$ result depends on the values of A$, C$ and D$

Boolean Operators
These, named after the logician George Boole, are used to carry out
logical operations.

AND

The result of an AND expression is true only if both operands are true,
false otherwise.
e.g. 6 = 5AND4 < 5returnstrue

6 < 5AND4 < 5returnsfalse
6 > 5AND5 < 4returnsfalse
IF A=22 AND B=20 GOTO 600 — result: GOTO line 600 if both A=22
and B=20

OR

The result of an OR expression is true if either operand is true, false only
if both operands are false.
e.g. 6 » 50R4 < 5returnstrue

6 < 50R4 < 5returnstrue

6 < 50R5 < 4returnsfalse
IF A=22 OR B=20 OR C=6 THEN GOSUB 20 — result: GOSUB 20 if
any of the conditions are true

NOT

This takes only one operand. The result is the logical opposite of the
operand.
e.g. NOT (6 > 5)returnsfalse
(6 < 50R4 - 5)returns false

A single operand can be tested for true or false. ltacts asifithas* < > (0}
appearing after it, so any value other than O will return true.
e.g. IF6 THEN GOTO 60 — result: GOTO executed

IF AHIT% THEN GOSUB 700 - result: depends on the value of the

variable AHIT%
Boolean operations can also be carried out on bits. However, this is best
described after a more detailed discussion of the binary number system.

13

Table of Operator Precedences

Precedence| Operator Meaning

9 () Used to over-ride normal precedences
8 : exponentiation
7 — signifies negative number
6 * multiplication
6 / division
5 + addition, concatenation
5 — subtraction
4 = equals
4 < not equal to
4 < less than
4 > greater than
4 < =or= < | lessthanorequal to
4 »=or =" | greaterthanorequalto
3 NOT logical opposite
2 AND logical AND
1 OR logical inclusive OR

| S i

e As noted above, parentheses, (), can be used to over-
ride precedences. You can, for example, force an addition to be carried

out before a multiplication by parenthesising the addition expression.
e.g. 4*6+2returns 26

4*(6+2) returns 32
Operators with the same precedence are executed from left to right.

BINARY AND HEXADECIMAL NUMBER SYSTEMS

The decimal, binary and hexadecimal number systems all use the same
principle. Each digit position in a number represents the power to which
the base is raised. The digit in a position is multiplied by the result of the
base being raised to its relevant power, and the results of these
calculations are added to give the final value. The only difference
between the three number systems is the base. The decimal system
uses 10, the binary system 2 and the hex system 16.

14

e.g. decimal 1 2 4
12 100 10°

100+ 20 +4 =124

binary 1 0 1 1 0 1
25 2 2 22 2! 2

32 +0 +8 +4 +0 +1 =45

decimal equivalent

When working with hex, the letters A—F are used as the hex equivalents
of the decimal numbers 10 — 15
e.g. F 3

16' 16°

decimal equivalent =240+ 3 = 243

When addresses need to be POKEd into memory (as for the USR
function) they must be POKEd a byte at a time even though they are 2
bytes long. To calculate the decimal POKE values for each of the two
bytes, convert the number into hex, then change the two hexadecimal
bytes back to decimal.

e.g. hexaddress 1D00

In decimal this is 7424, but you can't POKE this value. So take the high
byte (1D) and convert it to decimal

1 D
16 160
=16 + 13 =29 POKE Address + 1,29
now the low byte
0 0
16 16°
0 0 =0 POKE Address, O

Logical Operations on Bits

When AND, OR and NOT operands have numeric operands they are first
converted to 2 byte 2's complement integers in the range -32768 to
32767. If they are not in this range an error message results.

The logical operation is then carried out on bits. If the operator is AND (or
OR) the zero bit of operand 1 is ANDed (or ORed) with the zero bit of
operand 2. This is repeated for the bit 1 pair, the bit 2 pair and so on.

e.g. 1 1
AND{ ANDg
=1 =0

15

ORing two bits which both have value O results in a 0. Any other
combination produces 1.
e.g. 0 1
OR0 ORO
=0 =1

If the operator is NOT, all of the bits are complemented, i.e. a 1 becomes
a 0 and vice versa.

Masks
As you will see it is sometimes necessary to change or read the values of
only some bits of a byte, leaving the others unchanged or unread. The
method used to do this is called masking.
For example, to check the value of only the last 4 bits of byte 36876 we
AND the mask 15 with the byte value. It's easier to see how this works in
binary notation.
valueof36876 - - - - 1 0 1 0
AND 15 00001111

=0 0001010
Because the first 4 bits of the mask are 0, ANDing them will always
produce 0 in the first 4 bits of the result, no matter what values were in the
first 4 bits of 36876. Because the last 4 bits of the mask are 1, ANDing
them will leave the values of the last 4 bits of 36876 unchanged. In
general, to make a mask for PEEKing, put a 1 in bit positions you want
unchanged, a 0 in those you don’t want to know about.
For POKEing 1 into certain bits, an OR mask should be used. For
example, to set bit 2 in 36876 OR the mask 4.
e.g. POKE 36876, PEEK(36876) OR 4
Again, it's easier to see how this works in binary.

valueof36876 - - - — 1 01 0
OR4 00000100
= ----1110

To POKE 0 into certain bits, AND a mask with 0 bits in the positions you
want setto 0, 1 in those you want left unchanged.

16

CHAPTER 2

COMMODORE 64 BASIC Commands

The following describes, in alphabetic order, all the BASIC commands
available on the Commodore 64. Those that are described as functions
return values, like expressions, and can therefore be used where values
of the appropriate type can be used. As with expressions, there are
exceptions to this. Note that functions appearing in expressions are
evaluated before operators, unless the operators are parenthesized.

ABS

AND

ASC

: function
: ABS ([number])

ABS ([numeric variable])
ABS ([numeric expression])

- returns the absolute value of its argument ie. positive values are

unchanged, negative values become their positive equivalents
e.g. ABS (6) returns 6
ABS (—72.3) returns 72.3
ABS (6+4*—3) returns 6
ABS (A%) returns positive magnitude of A%

: operator
: [expression] AND [expression]
: returns true (—1) if both expressions are true

returns false (0) if either or both expressions are false
e.g. IFX=1ANDY < =7 THEN GOTO 60

IFHIT% ANDZ < > 6 THEN GOSUB 70
NOTE: AND can also operate on other numeric values
(see page 15).

: function
: ASC ([character string])

ASC ([string variable])

: returns the character code value of the first character in the string

e.g. ASC (A) returns 65
ASC (BAT) returns 66
ASC (A$) returns code of first character of A$
ASC (“”) null string produces ILLEGAL QUANTITY error

17

ATN

: function
:ATN ([number])
ATN ([numeric expression])
: returns the arctangent of its argument in radians. The result is in
therange: +VvV2 to -2
e.g. ATN (3) returns 1.24904577
ATN (6*3—15) returns 1.24904577

CHR$

: function
: CHR$ ([number])
CHRS$ ([numeric expression])
The argument to CHR$ must be between 0 and 255.
- returns the single character string whose code is equal to the
CHRS argument
e.g. CHRS$ (65) returns ‘A’
PRINT CHR$(13) will print a RETURN — ie. the cursor will
act as though the RETURN key has been pressed.
Colour and reverse mode can also be controlled in this way.

CLOSE

: statement

: CLOSE [file—number]

: closes the file started in an OPEN statement. You should execute
a PRINT# to that file before closing it, to make sure that all data
has been transmitted from the buffer.

e.g. OPEN 1,4 :PRINT#1, END DATA : CLOSE 1

CLR

: statement

:CLR

: This is not equivalent to the CLR key! This statement clears out
any variables that have been defined, un—DIMensions any arrays
that have been defined and RESTORES the DATA pointer to the
beginning of data. It also closes all logical files currently open. The
commands RUN, LOAD and NEW all automatically execute a
CLR statement. Note that the program itself is left untouched after
a CLR statement.
€.g. 10A% =53:CLR :PRINT A%

This will display a 0

CMD

: statement
: CMD [file-number]
Normally, the screen is used to display output - i.e. it is the default

18

output device. The CMD statement changes the default output
device to the file number given as argument. This enables you to
redirect everything normally displayed by the Commodore 64 to,
for example, the printer. A CMD statement must be preceded by
an OPEN statement. There are 3 ways to exit the CMD mode:
1) Press RUN/STOP and RESTORE keys. This will
reset the Commodore 64 to its default condition.
2) Use the CMD statement to change the default output. e.g.
CMD 3 makes the screen the default.
3) Execute a PRINT# [file—number]. This is preferred since it
also empties the printer buffer.
e.g. 10 OPEN 1,4 - opens a channel to the printer
20 CMD 1 - makes printer default output
30 LIST - lists the program currently in memory to the printer
40 PRINT#1 - makes sure the printer buffer is empty, and
exits the CMD mode
50 CLOSE 1 - closes the channel to the printer

CONT

: statement
: CONT
- This continues a program which has stopped due to a STOP

COS

keypress, or the execution of a STOP or END statement within a
program. CONT will not work if the program stopped due to an
error, or if an error is made while the program is stopped, or if any
attempt is made to edit the program (even if nothing in the
program is actually changed). Variable values may be examined
and changed, and the program may be listed.

: function
: COS ([numeric expression or variable or constant])
: returns the cosine of the argument in radians

e.g. COS (0.4) returns 0.921060994

DATA

: statement
: DATA [constant], [constant],...,...,...

There may be one or more numeric or string constants. String
constants need not appear within double quotes, unless the string
contains graphics characters, commas, spaces or colons. Two
commas with nothing between them will be read as either O or the
null string, depending on the variable type the data is being read
into . DATA statements may appear anywhere in a program.
Since they need not be explicitly executed during the running of
the program they may appear after an END statement.

19

: Provides data for a READ statement
e.g. 10DATA6, —73.2, HELLO,“10 DATA", “A.,B”
20 DATA 7,23, GOODBYE
:Note: DATA statements cannot be used in immediate mode.

DEFFN

DIM

: statement
: DEF FN [name] ([parameter]) = [expressions]
[name] must be a floating point variable name 5 characters or less
in length. [parameter] must be a numeric variable name.
[expression] must be numeric, user—defined; string functions are
illegal. Previously defined functions may appear in [expression]
: defines a function with 1 parameter which may be referenced later
in the program
e.g. 10 DEF FNA (X) = Xt 3 - define the function
20 PRINT FNA (2) - execute the function, replacing the
parameter with value 2 result - displays 8 (2 + 3)
30 PRINT FNA (Z) - replace parameter with value of Z result
- displays valueofZ + 3
:Note: Can only be used in program mode, although functions
defined in program mode may be used in immediate mode.

: statement

: DIM[variable] ([integer],[integer],...)

: The [variable] identifies the array name and type. The integers
indicate the number of elements in each dimension of the array.
Since numbering of array elements starts from 0, DIM A(10)
defines an array with 11 elements. The number of integers
indicates the number of dimensions in the array. DIM A$(4,4)
defines a 2 dimensional array of 25 elements. A DIM statement
may define more than one array.

e.g. DIMAS$ (6), B (7,2), C% (1,2)

: defines an array. One or two dimensional arrays of 11 elements (1
per dimension) may be used without a DIM statement, since the
Commodore 64 will implicitly define them for you when they are
first referenced.

Arrays may be DIMensioned only once (even those implicitly
defined).

Only elements of the type specified by the array name may be
stored in the array.

The following table can be used to calculate the amount of
memory used by arrays:

5 bytes — array name

2 bytes — each dimension

2 bytes/element — each integer value

20

END

EXP

5 bytes/element — each floating point value

3 bytes — each string variable

1 byte/character — in each string element

e.g. 10 DIM A$ (10) - defines string array of 11 elements
20 DIM B% (3,5) - 2 dimensional integer array of 24
elements
30 DIM C$ (6) , D (7,6,3) - string array - 7 elements and
floating point array — 224 elements
40 PRINT C$ (3) - displays fourth element of array C$
50 D (1,4,2) = 6.2 - assigns 6.2 as value of D (1,4,2)
60 A$ = C$ (1) - assigns value of C$ (1) to A$

(See Data Structures section for details of arrays)

: statement

:END

: stops a program and returns control to the user. Doesn't clear
variables, array pointers or program, so CONT may be used to
continue the program. There may be any number of END
statements in a program. Useful for debugging.
e.g. 100 INPUT “CONTINUE", A$

110 IF A$ = “NO” THEN END

200 END

: function

: EXP ([number])

- returns e (2.71828183) raised to the power of [number]
:e.g. EXP (2) returns 7.38905613

FOR-TO-STEP- / NEXT

: statement

- FOR][variable] = [start] TO [limit] STEP [step] / NEXT [variable]
FOR [variable] = [start] TO [limit] / NEXT [variable]
FOR [variable] = [start] TO [limit] / NEXT
[variable] must be floating point. When STEP is omitted [step] is
assumed to be 1. [start], [limit] and [step] may be negative,
positive, constants, variables or expressions

: performs a loop through all statements between the FOR and
NEXT statements.

21

FRE

GET

A FOR loop is always executed at least once, since the variable
value is compared to the limit at the end of the loop.
The loop terminates when the variable value is greater than the
limit (if [step] is positive) or less than the limit (if [step] is negative).
FOR loops may be nested to a depth of 10. When nested loops
terminate at the same point the NEXT statement may contain
more than one variable name. e.g. NEXT I,J,K. In such a case
make sure the order is correct. Innermost loops must terminate
first.
e.g 10FORJ=7TOBSTEP -3

20...

30...

40 NEXT J

10FORJ=0TO®6

20...

30FORK=0TO —-5STEP —1

40...

50...

60 NEXTK, J

Note: When used in immediate mode, a multiple statement
line is necessary.

FORJ=1TO5:PRINT CHR$ (J) : NEXT

: function
: FRE ([dummy value)) - the value of dummy is unimportant.
returns the number of free bytes of memory, as is done

automatically when the Commodore 64 is started. If the result
returned is negative, add 65536 to get the true number of free
bytes.FRE(0) — (FRE(0) < 0) * 65536 will always return the
correct value

e.g. PRINT FRE (0)

: statement
: GET [variable]
: checks the keyboard buffer and assigns the first character in it to

the variable. If there is nothing in the buffer it assigns the null string
to a string variable, or 0 to a numeric variable. The character it
GETs is not echoed on the screen. A RETURN keypress is not
necessary after typing the character. In fact it will GET a RETURN
quite happily, just as it would almost any other character. Since
GET doesn't wait for a key to be pressed, it is usually placed in a
loop.

22

e.g. 10GETAS$:IFA$ =" THEN GOTO 10
5 PRINT “PASSWORD ?”
20 GETP$
30 IFP$ = """ THEN 20 — wait for keypress
40 IF P$ = CHR$(13) THEN END — check for RETURN to
signal end of password
50 PW$ = PW$ + P$ — build password, character by
character in PW$. Note that PW$ starts off as * ”, the null
string.
60 GOTO 20 — get next character of password
Note: GET cannot be used in immediate mode.

GET#
: statement
: GET# [file—number],[variable]
: same as GET, but gets characters from a previously OPENed
input device such as cassette or disk drive.
e.g. 10 OPEN 1,3
20FORJ=1TO30
30 GET#1,B$: A$ = A% + B$
40 NEXT
50 CLOSE 1
This gets a buffer full of data from input device, stops device and
then proceeds to read the data from the buffer. In this case it gets
the first 30 character from the buffer and builds up the string A$
character by character.

GOSUB/RETURN

. :statement

: :GOSUB[line—number] / RETURN
[line—number] cannot be a variable or expression

: branches to [line—number]. Execution continues from this line
until a RETURN statement is read. Then control branches back to
the GOSUB statement. Execution continues from the statement
after theGOSUB statement.
There may be more than one RETURN statement to cause the
branch back to GOSUB. If a RETURN statement is read without a
GOSUB first having been executed a RETURN WITHOUT
GOSUB error will result. GOSUBs may be nested.
Note: The RETURN statement and the RETURN key are quite
different.

1e.g. 10 GOSUB 560

560 IFK$ = “Y” THEN GOSUB 600 : RETURN
570 IF K$ = “N” THEN PRINT “WHY NOT” : RETURN

23

580 PRINT “ANSWER MUST BY Y ORN”
590 RETURN

600 ...

675 RETURN

This example shows the use of multiple RETURNSs and
nesting of GOSUBs. GOSUB 600 is nested inside
subroutine 560. GOSUBs may be nested to a greater depth if
desired.

(For more on GOSUB see Control Structure section)

GOTO
: statement
: GOTO [line—number]
[line—number] cannot be a variable or expression.
: causes the program to branch to [line-number] if such a line
exists. |t is also used in immediate mode to start a program
from a particular line, (same as RUN).
€.g.10 GOTO 200

200 ... — execution continues here

IF — THEN

: statement

: IF [condition] THEN [statement(s)]

[condition] may be logical expression, numeric expression or
variable name.

: If the condition is true the statements after the THEN are
executed. If the condition is false the THEN statements are
ignored and execution continues from the next line. '
Logical expression evaluate to —1 (true) or O (false). Numeric
expressions and variables are treated as false if they evaluate to 0
and as true if they evaluate to any other value.

When the statement immediately following the THEN is a GOTO
[line—number], the line—number alone is sufficient.
e.g. IF A$ = “YES” THEN 70 will execute a GOTO 70 if the
condition is true.
Alternatively, THEN may be omitted if GOTO is retained.
e.g. IFA$ = “YES” GOTO 70
e.g.10IF (A =6 ORB = 7) THEN GOSUB 70 : PRINT A$
201F HIT THEN 700 — where HIT is a variable whose value is
normally O, but is set to —1 when a collision occurs.
30 IF NOT(A=7 AND B=4) THEN 70

24

INPUT
: statement
- INPUT [variable list]
INPUT [string];[variable list]
[string] must be a string constant, e.g. “PROMPT”
[variable list] may be 1 or more variables separated by commas
: where there is no string, the user is prompted for input by a “?”.
Where there is a string, this is printed, followed by ? . INPUT
differs from GET in that it waits for input, may accept more than
single characters, echoes input on the screen, and requires a
RETURN keypress to terminate input. Where the variable list
contains more than one variable, values must be typed separated
by commas. The values are assigned to the variables in order. If
the user types in too few values, the ? reappears and INPUT
waits for more input. If too many values are typed, the message
EXTRA IGNORED is displayed. This is not an error and
execution continues.
If [string] is too long (the prompt string has a maximum length of 20
characters), INPUT will read all of the string with the input when
the input is a string, or return a REDO FROM START otherwise,
so keep prompts reasonably short. If the user types in a value of
the wrong type for the variable it is to be assigned to, a REDO
FROM START message appears, and the user is prompted for
correct input by “?”.
e.g.10 INPUT A — displays “?” and waits for a number to be
typed, followed by RETURN key.
20 INPUT B, C$ — displays “?", waits for a number followed
bya comma, a stringand RETURN key.
30 INPUT “PRICE?”; D — displays “PRICE?", waits for
number, RETURN key.
Note: Cannot be used in immediate mode.

INPUT#

: statement

: INPUT# [file—numberl], [variable list]

: accepts input from an OPENed file by reading that file into the
buffer and assigns each data item to a variable in the variablelist,
in order. Data items must agree in number and type with the
variables in the variable list. If an end—of —record is read before all
variables in the variable list have been assigned values, an OUT
OF DATA status is generated but the program continues to
execute.

INPUT# does not display error messages, it reports error
statuses, in the status byte, that the program must respond to.

: because the input buffer is only 80 characters long, an input string,

25

together with separator, cannot be longer than this. Commas and
RETURNS act as separators. They cannot act as data - you need
a GET# for that.
e.g. 10 OPEN 1,1 - default values used so this OPENs the
datatsette
20 INPUT# 1,A$,C,D,E$ — and reads these from buffer.
Note: INPUT# can only be used in program mode.

INT

: function

- INT ([numeric variable, constant or expression])

- returns the largest integer less than or equal to the argument.
e.g. 10PRINT INT(6.23) — displays 6

20 PRINT INT(—-4.2)- displays —5

30 X% = INT(43.4) — assigns value 43 to X%

40 PRINT INT(14) — displays 14

50 PRINT INT(A) — displays integer value of A
LEFTS$

. function
LEFTS$ ([string variable, constant or expression] , [integer])

:returns a string consisting of the first [integer] characters of the
original string argument. If [integer] is greater than the length of
the string, the entire string is returned. If [integer] is 0, the null
string is returned.

e.g. 10AS$ = “TEST STRING"
20 B$ = LEFT$(A$,4)
30 PRINT B$ — displays “TEST"
40 PRINT LEFT$(*GOODBYE",3) — displays “GOQ"
50 A$ = LEFT$(AS$,3) + LEFT$(A$,4)
60 PRINT A$ - displays “TESTEST”

' LEFT$ is often used to postion the cursor. A string of cursor
control characters is created which, when printed, moves the
cursor across or down the screen. LEFT$ can then be used to
control how far across or down the screen the cursor is positioned.
e.g. 10AS$ = "CRSR CRSR

20 PRINT LEFT$(A$,10) — moves the cursor across the
screen 10 spaces.
LEN

- function
: LEN ([string variable, constant or expression])
returns the length of the string argument. Blanks and

non-—printing characters are counted.
e.g. PRINTLEN ("HARRY") - displays 5
10 A$ = "MIGHTY"

26

20 B$ = LEFTS$ (A$,LEN$(A$) 1)
30 PRINT B$ — displays “MIGHT”
LET

. statement
- LET[variable] = [value]
. assigns the value on the right to the variable on the left. The word
LET can be omitted, and so is rarely used.
e.g. 10LET A$ = "HELLO"
20 A$ = HELLO - equivalentto line 10
30C$ = LEFT(A$,4) — assigns HELL to C$
40 D$ = C$ — assigns value of C$ to D$
LIST

- statement

- LIST - displays entire program

: LIST [line—number] — displays line [line —number]

- LIST - [line—number] — displays from start of program to line
[line—number] (inclusive)

- LIST [line —number] — — displays from line [line - number] to end
of program
- LIST [line—~number1] — [line—~number2] - displays from line

[line - number1] to [line —number2] (inclusive)

- displays all or part of the program in memory as detailed above. If
the program exceeds the length of the screen display, the screen
will scroll up. This may be slowed down by holding down the CTRL
key, or stopped using the STOP key.

e.g. LIST - 100
LIST 50 — 999
LIST 20

- If used in program mode, the program will stop after LISTing.

Typing CONT at this point will only repeat the LISTing.
LOAD

. statement

. LOAD
LOAD [“filename"]

LOAD [“filename"],[device]

- transfers a program from cassette or disk into memory.

If there are no arguments to LOAD, the next program found on
tape will be LOADed.

If there is a [“filename”], the Commodore 64 will search the tape
until a program of that name is found, and load it. [device]
specifies the device the program is loaded from. If it is 8, the
program will be loaded from disk, ifitis 1, from tape and if it is not
present, the default value is 1, i.e. tape.

27

LOG

MID$

NEW

e.g. LOAD - loads next program on tape
LOAD “MYPROG” — searches tape for program called
“MYPROG"” and loads it if it is found.
LOAD A$ — searches tape for program whose name is the
value of A$ and loads it.
LOAD “*”, 8 — loads first program found on disk.
LOAD “PR*’, 8 — loads first program whose name begins
with “PR” from disk.
LOAD “NB", 8 — finds program “NB” on disk and loads it.

: When used in immediate mode, a CLR statement is automatically

executed. When used in program mode, if the new program is
shorter than the old one, variables will not be cleared, so the new
program may use the old variable values.

: function

: LOG ([numeric variable, constant or expression])

: the argument to LOG must be greater than 0

: returns the natural logarithm of the argument, ie. the power to

which e must be raised to give the argument.
e.g. 10 PRINT LOG(6.42856) — displays 1.86075056

: function
: MID$ ([string variable, constant or expression),[from],[length])

MIDS$ ([string variable, constant or expression],[from])

:returns a string of length [length] consisting of the characters

starting from the [from]th character of the string argument. If
[length] is omitted, returns the entire string from the [from]th
character on. If [length] is greater than the length of the string
argument, the null string is returned.
e.g. 10PRINT MID$(“HELLO”,2,3) — displays “ELL”

20 PRINT MID$(*GOODBYE",1,4,) — displays “GOOD”

30 X$ = “HATTRICK”

40 PRINT MID$(X$,4) — displays “TRICK”

: statement
: clears program from memory and resets variables
e.g. X=6.2
PRINT X — displays 6.2
NEW

PRINT X — displays 0. Old value of X is lost as are any
program lines.

: Using NEW in program mode will clear the program in which it is a

program statement.

28

NOT

: logical operator

: NOT [expression or variable]

- logically negates the truth value of [expression]
:10 IF NOT(A=6 AND B=9) THEN 70

ON

OPEN

If the expression (A=6 AND B=9) is false then NOT(A=6 AND
B=9) is true and the program branches to 70.

20 IF NOT HIT THEN GOSUB 500

Assume HIT is a variable set to —1 when a collision between
game characters occurs, 0 otherwise. Then NOT HIT will evaluate
to true when there is no collision, and the appropriate action
(subroutine 500) can be taken.

NOTE: NOT can also operate on other numeric values (see p 15).

: statement
: ON [variable or expression] GOTO [line—number list]
ON [variable or expression] GOSUB [line—number list]
[line—number list] is a series of line—numbers separated by
commas
: causes the program to branch to one of the line—numbers
depending on the value of the ON argument. If the argument
evaluates to 1, the program branches to the first line—number, if
2 then it branches to the second line—number, etc. If the
argument evaluates to 0 or to a number greater than the number
of line—numbers then the statement is ignored. If the argument
evaluates to a negative number an error occurs.
e.g. 100N X%+3 GOTO 50,72,143,90
20 ON B% GOSUB 70,90,90,300
30 ON INT(B*C/3) GOTO 20,60,90,15

: statement

: OPEN [file—number]
OPEN [file—number],[device —number]
OPEN [file—number],[device —number],[command —number]
OPEN [file—number] , [device —number] , [command —number]
[string]

: OPENSs a logical channel for input or output to a device. When a

channel is OPENed to an external device, a buffer is
automatically set up. Transmission and receipt of data occurs a
whole buffer at a time.
[file—number] is the logical name of the channel, It can be any
number in the range 1—255, and is the same number used in
INPUT#, GET#, PRINT# and CLOSE statements to work with
this device.

29

[device —number] specifies the device as below:

Device Number Device
0 keyboard
1 cassette - default device
2 RS232 device
3 screen
4 printer
5 printer
8 disk drive
4-127 serial bus device
128-255 serial bus device - and send a

linefeed (If) after carriage return.

: [command—-number] must be in the range 0—255. The same
command number will have different effects depending on the
device specified.

Device Command Number Effect
Cassette 0 read tape file
1 write tape file
2 write tape file and put EOT (end
of tape) marker when channel
CLOSEd
Disk 1-14 open data channel
15 open command channel
Keyboard 1-255 no effect
Screen 1-255 no effect
Printer 0 upper case/graphics
7 upper/lower case

- [string] is sent to the printer or screen as if a PRINT# were
performed to the device. With the cassette deck it is used as the
filename. With the disk drive it can be either a filename or a
command, depending on the command number.

e.g. OPEN 1,0 — open channel to keyboard
OPEN 1,1,0 — open channel to cassette for reading only
OPEN 1,1,0, MYPROG - open channel to cassette for
reading only. When a read is done, the Commodore 64 will
search tape for "MYPROG"
OPEN 1,3 — open read/write channel to screen
OPEN 1,8,15, command — open channel to disk and send
command

OR

: logical operator
: [expression] OR [expression]
: produces a true result (—1) if either or both of the expression are

30

PEEK

true, a false result (0) only if both expression are false
e.g. 10IF (A=6 ORB$="NO") THEN 90
20 IF (HIT% OR B=6) THEN GOSUB 60
NOTE: OR can also operate on numeric values (see p 15).

: function
: PEEK ([address])
- returns the contents, in decimal, of the byte named by [address].

POKE

POS

In those sections of memory where there is a ROM/RAM overlay
only the ROM at that address will be PEEKed. To PEEK the RAM,
the ROM must be switched out.
e.g. 10 PRINT PEEK(53280) — displays the value of the screen
border colour byte.
20 PRINT PEEK(651) — displays the value of a counter
controlling the time a key must be pressed before it repeats
automatically

: statement

: POKE [address],[value]

: puts [value] into the byte at [address]. [value] must be in the
range 0to 255. Unlike PEEK, which will return the contents of
any address in memory, either ROM or RAM, POKE will only
change the contents of RAM. If a value is POKEd into an
area of memory where there is a ROM/RAM overlay, the
RAM is automatically accessed, whether or not the ROM is
switched out.

e.g. POKE 65514,15 POKEs a value into the RAM under the
KERNAL ROM.
: function
: POS ([dummy])

the value of the dummy argument may be anything as it's not
used.

- returns the cursor’s position in a line. Since a logical line may be

up to 80 characters long, a value betweeen 0 and 80 may be
returned.

If no cursor is being displayed, e.g. during a string manipulation in
a program, the position of the character currently being handled is
returned. Since a string of up to 255 characters may be built using
concatenation, a value in the range 0—255 will be returned.

e.g. PRINT“CURSORAT";POS(0) — displays “"CURSOR AT 9"

31

PRINT

: statement

: PRINT [argument]

PRINT [argument], [argument] ...
PRINT [argument]; [argument] ...

: displays the arguments listed after PRINT. If the arguments are
separated by a comma, the Commodore 64 reserves 11 spaces
for the arguments, so displays may be widely separated. If the
arguments are separated by semi-colons, there is no separation
between arguments.

After each PRINT statement the cursor automatically moves to
the next line. This can be stopped by finishing the PRINT
statement with a comma or semi—colon.
String arguments to PRINT may contain special characters such
as cursor control and colours. These characters appear in the
string as reversed characters. (See Appendix C) Where the
PRINT statement is executed, the special characters carry out
their function. They are not displayed.
“Programmable” cursor controls are CRSR t, CRSR ! , CRSR
+, CRSR-*, CLR, HOME, INST. Some special characters need
different treatment, however. For example, DEL and RETURN
operate normally when an attempt is made to put either in a string,
and quote marks will terminate the string.
As you have probably found out, pressing DEL deletes a
character but you might at some time want to program it into a
string. The following steps show how to achieve this:
1) Terminate the string with quotation marks. e.g. “STRING”
2) Press DEL - this will delete the closing quotation marks but
leave you out of quote mode.
3) Press INST as many times as you want to insert a DEL, say
twice.
4) Now press DEL twice. These DELs will display as reversed
characters and will not execute yet.
5) Now putinreplacement letters, if any, and complete the string
with quote marks.
All your keypresses should look something like this:
“STRING" start with completed string
press DEL to remove quotemark
press INST twice to insert 2 DELs
press DEL twice
Add replacement letters, in this case FE
close quotation marks
The display should now look like this:
e.g. T0PRINT “STRING FE”

and when executed will display “STRIFE”

32

When LISTed the string looks as it displays, so editing can
be difficult if you've forgotten what you've done.

Other special characters can be put into strings in the
following way:

(i) Type the string, and RETURN key, leaving spaces for
characters to be added later

(i) Use cursor control keys to get back to the space

(iii) Press CTRL, RVSON

(iv) Press the keys corresponding to the special character
you want, as shown below:

Character Type
Shift Return SHIFT M
switch to lower case N
switch to upper case SHIFT N
disable case switching keys H

enable case switching keys |

: The Shift Return character, like DEL executes when LISTed, so
editing will again be difficult.
A more general, easier to remember, and more obvious method of
“programming” special characters is to use CHR$ and
concatenation.
Note: PRINT can be abreviated to “?”
e.g. PRINT 50
10 PRINT A$, 60; B
20 ? “ASTRING” ;24 ; “LETTERS LONG”
30 PRINT “LATEST PROGRAM”
40 FORJ=0TO 1000 : NEXT
50 ? “CRSR ¢ CRSR -~ CRSR -+ CRSR - CRSR -
“DEL INST INST DEL DEL”
Lines 30—50 will display “LATEST PROGRAM”, wait, and
change it to “LAST PROGRAM”. Line 50 will not look like
this when you type it in. As written , it indicates the keys you
press.

PRINT#

: statement

: PRINT# [file—number],[variable list]

- similar to PRINT, but sends the contents of the variable list to a
device which has been previously OPENed. The variable list is
transmitted in the same format as it would be PRINTed to the
screen. If commas are used to separate variables, extra spaces
are sent, if semi—colons are used, no spaces are transmitted. The
commas and semi—colons are not themselves PRINT#ed.

If no comma or semi—colon appears at the end of the variable list
a CHR$(13) (RETURN) is sent. It is probably best to separate

33

READ

variables with CHR$(13) on the file so that INPUT$ can be used to
read them back.
e.g. 10 OPEN 1,1,1,"Data File”
20 RT$ = CHR$(13)
30 PRINT#1, LOW SCORE ;RT$;LS;RT$; HIGH SCORE
40 PRINT#1, AVERAGE ;RT$;A$
50 CLOSE 1
OPENing the file clears the tape buffer ready for data. The
buffer retains the data until it is cleared by a statement that
does this as a part of its execution, like OPEN. Commas and
semi-—colons may also be used to separate variables on the
file. these must be explicitly PRINT#ed as the RETURNS
were in the example above.

: statement
: READ [variable list]

variables in the list are separated by commas

: reads data from DATA statements and assigns each data item to

REM

the next variable in the variable list. When there is no unread data
in DATA statements and a READ is attempted, an “OUT OF
DATA" error occurs and the program aborts.
DATA statements are read in order of ascending line number.
Within a DATA statement, data is read sequentially from left to
right. The Commodore 64 increments a DATA pointer after each
element is read. If a RESTORE statement is used, the DATA
pointer is reset to point to the first data item of the first DATA
statement.
e.g. 20READ A, C$, B, D$

60 DATA 6.4, HISCORE, 2.6, LOSCORE

When new data items are assigned to a variable, the old

value is lost.

70 READ C$, C$

80 DATAHI, BYE

Final value of C$ is “BYE”

90FORJ=0TO5

100 READ A(J) : NEXT

110 DATA1,2,3,6,9

: statement

: REM[text]

: no effect — REM statements are ignored by BASIC. They are
provided to enable programmers to include comments about
the program.

34

RESTORE
. statement
: RESTORE
: each time a READ is executed, the DATA pointer is

e.g.

e.g.

RIGHT$

RND

e.g.

If graphics characters are used in a REM statement they
must be preceded by quote marks, otherwise they will be
interpreted as BASIC keywords.

REM statements may appear as the last statement on a
multiple statement line. If they are not last, any statements
following them on the line will be ignored.

20 REM 20-160 CALCULATE GROSS WAGES

150 GOTO 200 :REM BRANCH TO “HIT" SUBROUTINE

advanced to point to the next DATA item. RESTORE resets
the DATA pointer to the first data item of the first DATA
statement.

10FORJ=1TO5

20 READ(AS) : NEXT

30 RESTORE

40FORJ=6TO 12

50 READ A$(J) : NEXT

60 DATAAB,CD,EF,G

: function
: RIGHTS$ ([string variable, constant or expression],[number])
:returns the string consisting of the rightmost [number] of

characters of the original string. If [number] equals the length
of the string, the entire string is returned. If [number] equals
0, the null string is returned.

10 ? RIGHT$(“FRANTIC", 5) — displays “ANTIC"

20 ? RIGHT$(AS$, LEN(AS$) —1) — displays all but the leftmost
character of A$

: function
: RND ([number])
‘ returns a pseudo—random number between 0 and 1 (not

including 1), by performing calculations on a ‘seed’ value. If
the argument is positive the same pseudo-random
sequence is generated for a given seed. If the argument is
negative, the function is re-seeded with each function call. If
the argument is 0, a number is generated from the system
clock.

A seed is generated on power-up and stored in locations
139-143.

35

e.g. 10 REM SUBROUTINE FOR RANDOM DICE THROW
20 T1=RND(0) — get random number between 0 and 1
30 T2=(T1*6)+1 — change to range 1 — 6.9999...
40 THROW = INT(T2) — get integer value of throw
This could, of course, be done on one line.
20 THROW = INT(RND(0)*6)+1

SAVE

: statement
: SAVE
SAVE [“filename”]
SAVE [“filename™],[device]
SAVE [“filename"],[device],[command]
: saves the program currently in memory onto cassette tape or
diskette.
If there are no arguments to SAVE, the program is saved to tape
with no name. If the [filename] is given, the program is saved to
tape under that name.
[device] specifies tape (using code 1) or diskette (using code 8).
[command] may be:
1) — when loaded the program will go into the same part of
memory it came from.
2) — an end—of—tape marker will be written after the program.
When the Commodore 64 reads this at a later date, it will act as
though it has reached the end of the tape. If, for example, it is
searching for a file which was written onto tape after the end-of-
tape marker, it will stop and display a “DEVICE NOT PRESENT”
message when it reads the EOT marker.
3) — combination of 1 and 2.
e.g. SAVE
SAVE “GAME1" — saves GAME1 on tape
SAVE G$ - saves on tape with the value of G$ as name
SAVE “GAME2",8 — saves “GAME2" on diskette
SAVE “GAME3",1,1 — saves on tape — will reload into same
part of memory.
SAVE “GAME4",1,3 — saves on tape — adds EOT marker —
will reload into same part of memory.
Usually used inimmediate mode, but can be used in program mode. The
program will continue normally after SAVEing.

SGN

: function

: SGN ([number])

- if [number] less than O returns —1
if [number] equal to O returns 0

36

if [number] greater than O returns 1
e.g. 20IF SGN(X) = 1 THEN 60
30 ON SGN(X)+2 GOSUB 100, 200, 300

SIN
: function
: SIN ([number])
: returns the sine of the argument, which is in radians
e.g. 20 ? SIN(1.5) — displays .997494987
SPC
: function
: SPC ([number])
: prints [number] spaces on the screen. [number] must be between
0 and 255. SPC can only used with PRINT.
: 20 PRINT “LEFT” ; SPC (7) : “RIGHT”
PRINT SPC (21) ; “!”
SQR
: function
: SQR ([number])
: returns the square root of [number] , [number] must be greater
than or equal to 0
e.g. 10 PRINT SQR (4) - displays 2
20A =64
30 ? SQR (A) - displays 8
40 ? SQR (A * A) - displays 64
STATUS
: function
: STATUS or
ST
: returns a value corresponding to the state of the last input/output
operation. Different bits of the status byte are set on different
conditions, as shown below:
CASSETTE SERIAL BUS TAPE VERIFY
BIT VALUE READ R/W AND LOAD
0 1 time out write
1 2 time out read
2 4 short block short block
3 8 |long block long block
4 16 unrecoverable any mismatch
read error
5 32 check sum error check sum error
6 64 end of file EO1
7 —128 |end of tape device not present | end of tape

37

NOTE
STOP

e.g. T00PEN1, 1,0, "DATA"
20 GET# 1, A$
30 IF STATUS == 64 THEN 60
40 PRINT A$
50 GOTO 20
60 PRINT A$: CLOSE 1

: The status byte is located at 144.

. statement
- STOP
“halts a program and returns control to the user. The only

STR$

difference between STOP and END statements is that the STOP
statement produces the message “BREAK IN [line-number]".
Thus, with more than one STOP in a program, you can be sure
which one has been reached. As with the END statement,
variables can be examined and changed and the program
continued with CONT.

e.g. 70 STOP - displays “BREAK IN 70" and halts.

- function
: STR$ ([numeric constant, variable or expression])
- returns the string representation of the value of the argument.

e.g. 10 ?STRS (57.42) - displays "57.42"
20 ? STRS (—73) - displays " -73"
30 ? STRS (2E + 2) - displays "200"
40 ? STRS$ (3E + 10) - displays "3E + 10"
50A =67.24
60 ? STRS (A) - displays " 67.24"

: Note that positive numbers have a leading space reserved for the

SYS

sign so when STR$ed they are longer than they look.
e.g. 707 LEN (STR$ (72)) - displays 3

. statement
: SYS [address]
- in effect, performs a GOSUB to the machine language program

starting at [address]. This is the most common way to mix BASIC
and machine language programs.
The VIC20 already has useful machine language routines (Kernal
routines) which can be accessed viaSYS. Also, users may POKE
their own machine language routines into memory and access
them with SYS.
e.g. 20 SYS 65508 - gets character from keyboard buffer

30 SYS 40800 - jumps to routine previously POKEd into

memory at address 40800, and returns.

NOTE: See machine language programming chapter 6.

38

TAB

TAN

TIME

TIMES

- function
: TIMES or

USR

- function
- TAB ([numeric variable, constant or expression])
- moves cursor to the position in a logical line given by the

argument. If the cursor is already past that position on the current
ling, it is moved to that position on the next line. The leftmost
position on the screen is 0. The TAB argument must be in the
range 0 — 255. TAB must be used with a PRINT statement.

e.g. 20PRINT “NAME" ; TAB (8) ; "ADDRESS"

- function
: TAN ([numeric variable, constant or expression])
- returns the tangent of the argument, which is in radians.

e.g. 20 PRINT TAN (1.642)

- function
- TIME or

Ti

: returns the value of an internal clock which counts intervals of one

sixtieth of a second (jiffies). This is initialized on start-up and reset
to O after 51,839,999 increments. This may be useful for timing
program segments. Note that it is turned off during tape 1/0O.
e.g. 20X = TI.:GOSUB 600

30ET = (TI— X) /60

40 ? “subroutine 600 took";

50 ? ET ; "seconds to execute”

TI$

: returns a 6 character string indicating hours, minutes, seconds —

i.e. "HH MM SS" — on a 24 hour clock. The correct time must be
initialized by the user. it is lost when the Commodore 64 is turned
off, and will not be accurate after tape 1/0.
e.g. 20TI$ = "131500" — initialize to 1.15 pm.

30IFTI$ < = "131559" THEN 30

40 ? "WAKE UP"

- function
- USR ([arg])
. calls a user written machine language subroutine, whose starting

address is stored at memory addresses 785 and 786 (low byte in
785, high byte in 786). To calculate the POKE values for each

39

VAL

address byte, find the address in Hex and convert each byte to
decimal. The [arg] is initially stored in the floating point
accumulator (memory locations 97 — 102), and the result
returned is the final value stored in the accumulator.
e.g. 20 POKE 785, 0 : POKE 786; 144 — poke start address
(9000 Hex = 36864 decimal)
30 A = USR (3) — call subroutine, assign result to A

: function
- VAL ([string constant, variable or expression])
: returns the numerical value of the string argument. If the string

does not start with +, —, . or a digit, the function returns 0
e.g. 20INPUT “PRICE” ; A$
30 PR = VAL (A%)
40 IF PR = 0 THEN PRINT “NUMBER EXPECTED" :
GOTO 20
50 ? VAL ("73.2") — displays 73.2
60 ? VAL (“7” + “3” + “.” + “2") — displays 73.2
70 ? VAL (STR$ (73.2)) — displays 0, since STR$ returns
“[space] 73.2”
80 ? VAL (MID$ (STR$ (73.2), 2)) — displays 73.2

VERIFY

. statement
: VERIFY

VERIFY [“filename”]
VERIFY [“filename™], [device]

: checks the program on tape or diskette against the program

currently in memory, and displays the message “VERIFY
ERROR" if they don’t match. This is used to ensure that a program
has been SAVEd properly. Make a habit of VERIFYing
immediately after SAVEing.
When there are no arguments in VERIFY, it checks the next
programitfinds on tape. When [“filename”] appears as argument,
the program of that name is searched for on tape and VERIFYd, if
found.
[device] is used to VERIFY a program saved on diskette. As usual
[device] is 8 for the disk drive, 1 for cassette (default).
e.g. VERIFY — checks next program on tape
VERIFY “MYPROG"” — searches for “MYPROG" on tape
and VERIFYs it, if found.
VERIFY “HERPROG", 8 — searches for “HERPROG" on
diskette, and VERIFYs it, if found.

: Don't forget to rewind the tape after SAVEing so that the relevant

program can be found.

40

WAIT

. statement
- WAIT [address] , [mask1]
WAIT [address], [mask1], [mask2]
: causes the program to wait until the value in [address] changes in
a way specified by [mask1] and [mask2].
The value in [address] is bitwise ANDed with the valuein [mask1].
If there is a [mask2], the result of the AND is exclusively ORed with
the value in [mask2].
Exclusive OR is different to the OR met previously, which is
included. Exclusive OR (XOR) only produces a true result when
only 1 of its arguments is true, a false result otherwise.
ie. 1XOR1=0—false
1 XOR0 = 1—true
O X0R1=1—true
0XOR 0 = 0— false
. If the result of the AND and XOR is 0, WAIT continues to wait. If the
result is not 0, execution proceeds normally from the statement
following the WAIT. This statement is generally used to monitor
I/0 activities. A novice programmer is unlikely to need it.
e.g. 20WAIT 160, 144,128 (160 is 1 byte of the 3-byte jiffie clock
which is continually changing its values.)
: This will cause the program to wait until bit 8 of 160 is off (0) or bit 5
ison (1) or both.
(See page 16 for more on bit, bytes and masks.)

41

CHAPTER3

Compressing BASIC Programs

It may sometimes be desirable to compress programs. The following is a
list of methods you can use to do this

Abbreviating Keywords

Most BASIC keywords can be abbreviated as shown in the table on
pages 43, 44. Using these does not directly save memory, since
keywords are stored as tokens, not the actual word. However, it means
that it is possible to put more information on a line, thus reducing the
number of line-numbers, which do use extra memory. It also cuts typing
time. Abbreviations are expanded to the full word when LISTed.

Multiple statement lines.

These help minimize the number of line-numbers needed. The only
limitation is that a multiple statement line should not exceed 80
characters, including colons and RETURN.

Variables.
Keep variable names short.

When a number, word or string is used often in a program, it should be
assigned as the value of a variable, which can then be used in its place.
e.g. 10A =36874
20 POKE A,13 : POKE A,72 : POKE A,16
This has the added advantage of enabling you to squeeze more on alline,
and, again, cuts typing time.

READ, DATA statement
When a repetitive task, such as defining your own character set, needs to
be done, it is more memory efficient to use DATA statements to hold the
values together with a READ statement in a loop, than to write all the
individual repetitions.
e.g 10FORJ=0TO®63

20 READ A,V : POKE A,V : NEXT

30 DATA 12288, 0, 12289, 48, 12290, 128 ...

40 DATA ...
rather than

10 POKE 12288,0 : POKE 12289,48 : POKE 12290,128

70 ... POKE 12351.0

42

Arrays

These can be used for the same purpose as DATA statements. Where
possible, use integer arrays rather than floating point arrays, since
elements use 2 bytes compared with 5 for floating point elements.

Spaces

The BASIC interpreter does not need spaces in programs, but if used
they are stored. Eliminating them therefore saves memory. It also makes
programs difficult to read, so this is best done after all debugging.

GOSuB

Using subroutines obviously saves memory, since it saves writing the
same section of code several times. You should note however, that
GOSUBs can be fairly slow, since it must stack and retrieve addresses.

TAB, SPC

These two functions may be more economical than a string of cursor
control commands to position a character on the screen.

REM statements

These may be removed entirely once the program is debugged and read
for use. Thisisn’t a great idea, since you may have to examine or change
the program at a later date, but it does save space.

Overlays

This involves breaking programs up into sections which are loaded in
sequence. For example, many games programs involve defining a new
character set. Instead of having 1 program which both defines the
character set and runs the game, 2 programs can be written. The first
defines the character set and then LOADs the second program, which
runs the game, on top of it. Many programs have such initialization tasks
to do, and overlays can be useful in these cases - arrays and variables
can be defined and given values by one program and used by another.
However, a limitation is that the second program must be shorter than the
first program otherwise it will overwrite the variable values.

Abbreviations for BASIC keywords

Command Abbreviation Command Abbreviation
ABS A SHIFTB OPEN O SHIFTP
AND A SHIFTN PEEK P SHIFTE
ASC A SHIFTS POKE P SHIFTO
ATN A SHIFTT PRINT ?

CHR$ C SHIFTC PRINT# P SHIFTR
CLOSE CL SHIFTO | READ R SHIFTE
CLR C SHIFTL RESTORE RE SHIFTS
CMD C SHIFTM RETURN i RE SHIFTT
CONT C SHIFTO RIGHT$ R SHIFTI

43

DATA D SHIFTA RND R SHIFTN
DEF D SHIFTE RUN R SHIFTU
DIM | D SHIFTI SAVE S SHIFTA
END | E SHIFTN SGN S SHIFTG
EXP E SHIFT X SIN S SHIFTI
FOR F SHIFTO SPC(” S SHIFTP
FRE F SHIFTR SQR | S SHIFTQ
GET G SHIFTE STEP ST SHIFTE
GOSuUB GO SHIFTS |STOP S SHIFTT
GOTO G SHIFTO STR$ ST SHIFTR
INPUT# I SHIFTN SYS S SHIFTY
LET L SHIFTE TAB(* T SHIFTA
LEFTS LE SHIFTF |THEN T SHIFTH
LIST L SHIFTI USR U SHIFTS
LOAD L SHIFTO VAL V. SHIFTA
MID$ M SHIFTI VERIFY V SHIFTE
NEXT N SHIFTE WAIT W SHIFTA
NOT N SHIFTO

* Take care not to put in another left parenthesis.

Appending BASIC programs

So far, whenever you have loaded a BASIC program it has overwritten
the program in memory. However, because the Commodore 64 relies on
pointers to tell it where the start of program memory is, it is possible to
load in a program and join it to the program already in memory.

The start of program memory pointer resides at locations 43 and 44.
Type PRINT PEEK(43), PEEK(44) in direct mode. The normal values are
1 and 8. To change the pointer to point to the end of the program
currently in memory, type:

POKE 43, PEEK(45) — 2 : POKE 44, PEEK(46)

Now the next program to be loaded will start at the end of the first
program. To make the Commodore 64 see both programs as one, reset
the pointer to the original value using

POKE 43,1 : POKE 44,8

The only restriction to this technique is that the second program to be
loaded must have higher line numbers than the program already in
memory.

This technique will enable you to save common subroutines
independently and add them to programs when needed.

44

BASIC program storage format

Program lines are sorted from the start of the BASIC user area in order of
ascending line numbers. Variable storage starts from the end of the
program . Array storage starts from the end of variable storage. String
storage starts at the top end of available user memory and works down
towards the end of array storage.

The following pointers are used to keep track of storage.

" Pointer Address Use E Default 11
43,44 | Startof BASIC area : 2048 !
45,46 . Startof BASIC variables | — ‘

47,48 . Startof arrays | —

49,50 i Endofarrays | —
53,54 . End of strings ; — |
‘ 51,52 . Startof strings | 40960 \
i 55,56 ~ Highest address | 40960 |
“ . used by |
- BASIC |
65,66 ~ Current DATA item ‘ — "
I | |

Program lines are compressed before being stored. That is, keywords
are tokenized - converted into a one byte code. Each line is then stored in
the following format.

Link Address {Lmenr ______|BASICTEXT | _End-of-line
Lo-byte Hi-byte |Lo-byte Hi-byte [0

The link address points to the start of the next line. The line number is a
2-byte binary number from 1 to 63999. Line numbers in the BASIC text
(as arguments of GOTO, GOSUB) are stored in ASCII format - 1 byte per
digit. The end of the line is indicated by a 0 byte. The end of the program
is indicated by a 00 link address.

Worry-free overlays and the keyboard buffer
When overlays were previously mentioned, one of the restrictions was
that the overlay had to be shorter than the program it was loaded over.
Using the keyboard buffer bypasses this restriction, and makes the use
of overlays tidier. The program lines below should be added to the end of
a program to be overlaid.
60000 POKE 631, 78 :POKE 632, 69 :POKE 633, 87 : POKE 634
,13:POKE 635, 76 : POKE 636, 111 : POKE 637, 13
60001 POKE 638, 82 : POKE 639, 117 : POKE 640, 13 : POKE
198,10
These lines POKE into the buffer the abbreviations for the commands
NEW, LOAD and RUN, each followed by a RETURN. Thus the old

45

program is cleared out, the overlay loaded in and run, all without the user
having to do anything and without the programmer having to worry about
the size of the overlay.

Commodore 64 BASIC Keyword Codes

Character/ Code Character/ Code Character/ Code
Keyword (decimal) Keyword (decimal) Keyword (decimal)
end-of-line 0 POKE 151 | = 178
unused 1-31 PRINT# 152 179
same as
CHRS$ 32-95 PRINT 153 SGN 180
codes CONT 154 INT 181
unused 96-127 LIST 155 ABS 182
END 128 CLR 156 USR 183
FOR 129 CMD 157 FRE 184
NEXT 130 SYS 158 POS 185
DATA 131 OPEN | 159 SQR 186
INPUT# 132 CLOSE | 160 RND 187
INPUT 133 GET 161 LOG 188
DIM 134 NEW 162 EXP 189
READ 135 TAB(| 163 COSs 190
LET 136 TO 164 SIN 191
GOTO 137 FN 165 TAN 192
RUN 138 SPC(166 ATN 193
IF 139 THEN 167 PEEK 194
RESTORE 140 NOT | 168 LEN 195
GOSuUB 141 STEP 169 STR$ 196
RETURN 142 + 170 VAL 197
REM 143 - 171 ASC 198
STOP 144 * 172 CHR$ 199
ON 145 / 175 LEFTS$ 200
WAIT 146 | 174 RIGHTS$ 201
LOAD 147 AND 175 MID$ 202
SAVE 148 OR 176 unused |203-254
VERIFY 149 177 255
L DEF 150
_ L _ L

Codes are interpreted according to this table except when characters are
in a string, when CHR$ codes apply. Arithmetic and relational operators
are interpreted as keywords unless they appear in a string.

46

Clearing the keyboard buffer.

If you are using PEEK (197) to find the current keystroke, the keyboard
buffer will fill up. Thus, the next time the Commodore 64 looks at the
keyboard buffer it will find either meaningless or misleading data. This
can, under certain circumstances, cause problems. You should
therefore be aware that you can clear the keyboard buffer when
necessary.
The buffer is located at addresses 631-340.
The number of characters currently in the buffer is held at address 198.
The simplest way to clear the buffer is to POKE 0 into 198.
i.,e. POKE 198,0
The keyboard buffer can also be used in a more positive fashion.
Program lines can be added and changed from within a program. For
example, the following program allows the user to input functions, have
them defined using DEF FN and then have them evaluated.
This program is a self-modifying program, creating a new line 100 each
time a new function (X$) is entered.
S OREFM #¥3 DEFTHING FUMCTIONS s#3
18 FRIMT'"EMNTER FUMCTION OF X"
FROTHFUT ME
AN POKEI98 ,2:POKEE31, 19 FOKEE32, 13 POKEERE, 13
40 PRINT'"IMAADEFFHAL X = "XE" i RETURM"
=0 PRIMT"@®GEOTO E@":SYS 42115:REM 42115 13 BASIC
WARM START ROUTINE
£ GOSUE 188
TR OINRPUT "RERTER H":XiPRIMT"FM{H2="FLS M
GOTO 7@
Explanation

Line 30 : sets the number of characters in the buffer and puts two
returns in there.

Line 40 : prints line 100, substituting the input function for X$.

Line 50 : prints GOTO 60, homes the cursor and ends the program.

With the program over, the characters in the keyboard buffer are

executed. The first return enters line 100 into the program. The second

causes the immediate command GOTO 60 to be executed, thus re-

entering the program.

Line 60 : causes the function to be defined.

Line 70 : evaluates the function at points input by the user.

Window Listing

The same technique can be used to create a program which will list
programs one line at a time and allow the user to move forwards and
backwards through the listing. Mistakes must be noted and corrected
after exiting from this program.

To use it, append it to the program to be listed, as described in the section
on appending BASIC programs, and type RUN 60000

47

E@OAR SA=PEEK(44)%25E+PEEK(42)-1:FL=5A

FRAOAE LH=PEEK(SA+2+FEEK(SA+d 2 %x25E

EQANS PRIMT" IRGOTOEAQIA" (PRINT"LIST" LN

€0204 POKEE31,18:POKEG32,17: PDKEBSB 154 :POKEEZ4,
12:POKEERS, 19 POKEGRE, 13:FOKE LSS, 8:END

EQQ12 IF PEEKC 197)=40 THEMN E€@1@A:REM TEST "+"
KEY

€020 IF PEEK{ 197 :=42 THEM EQ20@:REM TEST "-"
KEY

EQAZR GOTO EAR1A

E2100 REM "+"ACTICH

£E01As TE=(PEEK£°¢+"+DEEh’° +2 k23621

E01180 IF (FEEK{ TE+1:+FPEEK! TE+22 %2564 >80 THEN
SA=TE

ERIZR GOTO &eeng

£82Z08 REM "-" KEY ACTIO

ERE12 IF SA=FL THEM EQQBE

SOZZ0 SA=SA-1:1F PEEX{SAI=0 AMND {SA-4:< >0 AND
PEEK{SA-35{ >0 THEN BBB az

EAZ220 GOTO ER2ip

Before reSAVEing the program reviewed, lines 60000-60230 should be
deleted to avoid saving the program above as well.
Autonumber

The following program also uses the keyboard buffer in a similar manner.

In this case to provide automatic numbering of BASIC program lines.

Type RUN 60000 to run it.

E000@ POKESE, 15S9:POKES2,153:CLR

ERRLA INFUT"START":SA

OAZR HS = INT(SA-256) 1 LS = s
A28 IMPUT" II--ICF:EM'-"NT "PIMIPRIN

2040 HI=INT(IN/2SE:LI=IN-HI4

M m
1

ho I
ho)

m n
o0

S50 POKE4OTAS LS POKE4@,@8,.
E40708,HI

EQOER SA=PEEK! 40TOE) *2SE+FPEEK(4ATAS) : IN=PEEK
(4B702 42SE+PEEK{ 48707)

EPA7O PRINT"D"SA: "N INER" - SA=SA+IMN:POKE
40706, INT{ SA./256)

82075 POHEA4AATAS . SA-INT. SA/256 4256

s
Q
IR R

EQATTY FOKEZBR4,@

AR GET K£:IF KE="" THEN €008

E€023@ POKERO7,0:PRINTKS: :POKEZAT ,255: IF K$< >
CHR#(12 THEN €0080

48

E@108 POKMERSR2!,145:POKEERZ, 123:POKEER2, 71 :POKES24,

111:POKEEBES,54: POKEE3E, 48

60110 POKEB37,48:POKEG32,54 :POKERR 8:POKEE4R
1ZiPOKEL98,19:3y5421 15

Before saving the program written, lines 60000-60100 should be deleted
to avoid saving the program above as well.

Machine Language merge program

Merge program for a Commodore 64. The machine code routine is totally
relocatable. If you wish to locate the routine at an address other than

40705, then lines 10 and 20 should be changed.

POKE =5 Asonuet

"MStFOR JI=5

ERRIR " 1 EMND
1E, 225, 165
5,165,435
E 4,222,090
133 125, 166,453
16 12,255,178
141 22,51, 165
10 2,4%,36,170
(:,}

e
A Y

Using Merge

If the computer has just been turned on and you intend to merge two or
more programs, then use Method A. If you already have a program in
memory and you need to merge in another program, then use Method B.

When using the following method, remember to load in the program with
the lowest line numbers first.

Method A:

1. Type in Merge (or load merge if it has already been typed in and
saved)

2. Save Merge (if not already saved)

3. RunMerge

49

4. Loadin first program
5. Type SYS 40705 “second program”, device number
6. Repeat ‘5’ for any other programs to be merged

Method B:

1. Save and verify the program currently residing in memory
2. Type NEW

3. Now use Method A

Block delete

When a large block of line numbers are to be deleted; using the method
of entering the line number and hitting the RETURN key for each line can
be time consuming and dangerous. The following routine once MERGEd
can be executed by typing RUN 60000. The prompt “FROM, TO, STEP”
will be displayed. Answer the prompt with the first and last line of the

block to be deleted and the step-size between each line. (Use step-size 1
to delete all lines of block.)

00 REM x BLOCK DELETE % (ROUTIMNE:

SAR1a IMNPUTY"FROM,TO,STEP":F ,T,S:PRINTCHR$ 147
EAS20 PRIMTCHRS: 13 F:F=F+S:1PRINT"ER248 F="F":
T="Tr":S="S:FRINT"GOTOGEO40 "

AR POKE qu 12 IFQKEE3S2 1ZIPOKEERZ , 131 PQKE
€24 ,13:FCOK 1538 ,4:END

EARAR F= 48 T= 38 :18= 12

sSA0SA IF F>T THEN PRIMTCHRSC 1472 :END

50

CHAPTER 4

SOUND

THE 6581 SOUND INTERFACE DEVICE (SID)

The Commodore 64 uses a very powerful sound chip called the 6581.
The sound chip has many powerful features each of which will be
discussed in detail throughout this chapter. Each of the sound chip’s
registers (special memory locations within the chip) have been memory
mapped to the Commodore’s memory. A detailed memory map of these
locations can be found at the end of this chapter.

WAVEFORMS

The tonal quality of a sound is determined by its waveform. Sound is
made up of vibrations and the shape of each vibration determines the
sound’s waveform (the frequency of vibration determines the pitch.) The
perfect vibration is a sine wave. The smooth rise and fall of a sine wave
characterizes the smoothness of the sound produced by a sine wave.
The same applies to other waveforms. The following waveforms are
those used on the 6581 sound chip; their sound varies depending on the
rising and falling of their output volume controlled by the wave envelope
discussed later in the chapter.

TRIANGLE:
VAV VANV AN

A very hollow or mellow sound, capable of producing the sound of an
xylophone, chimes, flute and similar sounds.

SAWTOOTH:

A

A very twangy, brassy sound, capable of producing the sound of a
harpsicord, trumpet and similar sounds.

U uUUlL

A hollow to reedy sound, depending on the pulse width set (gap between
each square wave), capable of producing a range of sounds from the
piano to the clarinet.

PULSE:

51

NOISE:

/\AW'W/\/\P/\\A

Noise, strangely enough, is a very versatile waveform used for producing
sounds such as hissing, wind, the sea, gunshots, footsteps, clapping, a
roaring crowd, etc.

THE ADSR ENVELOPE

The ADSR wave envelope is a device that gives us control over the rise
and fall of the volume during sound output. ADSR stands for Attack/
Decay/Sustain/Release. These are the four volume components of the
envelope. The first stage of the ADSR envelope is the attack stage. The
attack is actually the rate at which the volume is brought from zero level to
peak volume. The peak (maximum) volume must be set before the
envelope is used. A zero attack would give use an instantaneous output
beginning at peak volume. A maximum attack setting (8 seconds of the
6581's envelope) would begin with zero volume and slowly increase
volume until it reaches peak volume.

This brings us to the DECAY stage of the envelope. As soon as the
volume reaches peak volume, the volume begins to decay (drop down)
to the sustain volume at the set decay rate. As with the peak volume, the
sustain level must be preset. The sustain level can be set to anywhere
between 0 and peak volume.Once the volume has decayed down to the
sustain level, the volume will stay at this level until a release signal is
sent. On the 6581 a release signal is sent by setting the GATE bit to zero
(see sound chip register map at the end of this chapter).

The release is just a secondary decay that decays the volume from the
sustain level to zero volume at a rate determined by the decay rate
setting.

« Attacktime . Decay , . _ Sustain ___, Release ,,

T time duration . time |

A N k I

S SN B B i __m‘\ |

" Peak 1 |

, volume Sustain volume '

2 ! i {

/ l | N .

L . - e - —e ey time

With the general envelope, we can choose one of the four preset
waveforms.

52

e.g. /\.

/T Wﬂm N\/V\/\N\/W

and we can choose different frequencies (spacing between wave
oscillations):

You can see that by using different combinations of waveforms and wave
envelopes, it is possible to generate a large variety of sounds.

THE ADSR ENVELOPE

Summarizing the terms used to discuss the ADSR envelope.

ADSR Attack/Decay/Sustain/Release envelope

ENVELOPE Shape of the volume of a sound over time

Attack Rate at which a sound reaches peak volume

Decay Rate at which a sound falls from peak volume to
sustain volume

Sustain The proportion of the peak volume that the volume will
DECAY to

Release Rate at which a sound falls from sustain volume to zero
volume

Without the use of a wave envelope, it would be impossible to reproduce
the sound of most of the existing musical instuments and the ability to
produce complex sounds would be limited.

For example, in order to reproduce the sound of a violin you need the
sound to build slowly, reach a peak then drop to a lower level and sustain,
ie. for as long as desired after which the volume is allowed to slowly die
away. This is similar to the ADSR envelope in the previous diagram. A
table of the possible attack, decay and release times is as follows:

Value Attack rate Value Decay/Release rate

0 2ms 0 6 ms
16 8 ms 1 24 ms
32 16 ms 2 48 ms
48 24 ms 3 72 ms
64 38 ms 4 114 ms
80 56 ms 5 168 ms
96 68 ms 6 204 ms
112 80 ms 7 240 ms
128 100 ms 8 300 ms
144 250 ms 9 750 ms

53

Value Attack rate Value Decay/Release rate
160 500 ms 10 1.5s
176 800 ms 11 24s
192 1s 12 3s
208 3s 13 9s
224 5s 14 15s
240 8s 15 24s

Later we will show how to use these values to control the ADSR envelope
from a BASIC program.

CONTROLLING THE SOUND CHIP

Now that we know theoretically how to shape a sound to produce the
sound we want, we can use the 6581 sound chip to put our knowledge
into practice. The sound chip is controlled by changing values inside the
sound chip’s internal registers (memory cells within the sound chip). In
order to control the sound chip via the computer, the sound chip registers
have been memory mapped to the Commodore 64's memory. The
memory used are locations 54272 to 54300. The sound chip is
continually copying the values stored in the first 25 locations to the first 25
of its own respective registers. Thus, changing the contents of any of the
locations 54272 to 54296 will have a direct effect on the operation of the
sound chip. These memory locations are write-only, therefore no
information can be obtained by reading them. Refer to the sound chip
register map at the end of the chapter to see the significance of each
sound chip register.

The first set of 7 registers make up the first sound channel or voice. There
are three voices altogether, each as a whole, having the ability to
generate a single sound. Each voice has frequency control, a choice of
the four waveforms (previously discussed), an ADSR wave envelope
and the ability to control the pulse width of the pulses. Other registers are
used for filtering and peak-volume control. Finally, the last four registers
are read-only registers used to store output from paddles, voice 3's
waveform and voice 3's envelope.

PLAYING TUNES

The most practical way of writing a BASIC program to play a tune is to
store the tune as data. For simple tunes, only two items of data are
needed; the note frequency and the duration of each note to be played.
The following steps are necessary when writing a BASIC program to play
a simple tune.

1. Simplify the addressing of all sound register memory locations to be
used by assigning a variable name to each location.

2. Clear the sound chip by setting all the sound chip registers to zero.

54

3. POKE the attack/decay registers and the sustain/release registers
with the attack, decay, release values chosen from the table in the
envelope setting.

4. Load the volume register with the maximum volume (ie. 15)

5. Set up a program loop that does the following:

Read the frequency of the next note and the duration of the note. If there
are no more frequencies then end. Otherwise, load the frequency
registers with their data. Turn on the waveform and the GATE bit (see
register map). Use a FOR NEXT loop to loop for the duration. Turn off the
gate bit. Use a FOR NEXT loop to create a suitable pause (say 50
counts). Go back and do it again.

6. Use the note table at the end of this chapter and durations using 1000
as an approximation of about 1 sec.

7. End data with three negative values to signal end-of-tune.

Your program should look similar to the following:

5 REM % TUNE x

10 CHIP=54272 : C=CHIP

20 NL(DO>=C+B:NH(B)=C+1: W B>=C+4:AD(B>=C+5:SR(A
=C+6:VOLUME=C+24

29 FOR REG=CHIPTOCHIP+24:POKEREG,0:NEXT

4R POKE AD{@),64+3 : FOKE SR({©:,240+0

S0 POKE WOLUME, t

82 READ F,DUR : IF F<@ THEN POKE W 8),0:END

£§5 DUR=DUR¥29

TO MHC 1= INTCF 2567 1ML 12 =F -MNH{ 12 %256 1 FOKEMNA(87
MNHC 19 tPOKENLC @2 ,NLC 1)

20

a9

100 <

110 FOR PARUSE=! TO 50 :MEXT

122 GOTO €9

210 DATA 4820,%,E420,8,6420,12,6068,4,6420,8,
s1e8,8,8100,3,72208,8,3637,8

=229 DATA 9637,38,36237,12,8521,4,3100,8,7220,5,

2102, 16,4829,8,6420,8,6420, 12

220 DATA EPEE,4,E420,%,8100,8,2100,8,7220.8,
2€27,8,7220,8,7E28, 12,6065, 4

249 DATA E0E8,S,5396,2,4220, 18

293 DATA -1,-1,-1

READY .

USING MULTIPLE VOICES

When using multiple voices you have the power to do many things not
possible with a single voice. Some examples are orchestration,

55

harmonization, special effects such as echo and other combinational
sound effects.

In gaining these additional sound effects, it is necessary to include the
programming complexity of timing. There are many methods in which to
accomplish multiple voice programming, though the most effective
method used so far is a method called the interpretive method. The
simplified version of the interpretive method used here is as follows:

1. Simplify register addressing
2. Foreach voice:
Read note values and the duration of each note into arrays where a
duration of 1 is a 1/16 beat and a zero for the high frequency signifies that
the duration is a rest.
(The data may be a translation of a three-piece tune taken from sheet
music.) If high is negative then store data count as end of tune for this
voice.
3. Clear sound chip, set up ADSR values, waveforms for each voice
and volume to 15, POKE in all values accept the waveform.
4. Initialize the note count array for each voice to zero.
5. The main loop should contain:
a) Cycle through each voice (1 — 3)
b) Test if duration of note for this voice has exhausted (i.e., less
than 0) in which case increment the note counter and turn off the
waveform.
c) Inserta short pause to signify a breack between notes
d) Ifhighfrequency > O0thenturnonwave
e) Load high and low note values into their registers.
f) Decrement duration of note
g) Ifend of tune for this voice then add one to end of tune counter
h) IfE = 3then END
i) Next voice
j) Re-execute main loop
5 REM k%% TUMES WITH MULTIPLE VOICES x%x%
19 CHIP=54272 : MAX=120
DIM FOI2) ,HOE, MAXY L2, MAN Y , DO, MAKY WS, 12
FORY=1TO3
C=CHIP+(V-13%7
LW =C+BINH(Y > =C+ 1KY, Ad =0+
HEHT ¥
FOR K= TO 12 : READ F(K>» @ NEXT
YOLUME=CHIF +24
FOR K=CHIPTOCHIF+24:FOKEK ,0
READ D:POKE K,D:NEXT

[0 T TS A0 B0 B B A % I |
o I o T S | A TR S e A

56

W =0
B TR T B

H
W

wow
b1 B =Y

o ;-;, ; I:
in .
DR eI

e

o

Mo D0
o

0
o

mn
W
o) @

m oo
oo ob
oI

")
)
=

wmom oW
- D
P I IR |

9

o

w D
W —= 03
o}

o3

0
b
D m

Jo]
g — 3 1

P T e N = R o I
R R
m b

@
-
b

o B IO B IO B |

FORV=1T0Z2 : READ WOY,12
M=1:P Y2 =R

FEAD ME, DY, MNIIIF ME="%x"THEN E(YI=N:G0OTO

160

IF HE="-" THEM H(V ,N2>=0:G0T0 138

OC=VAL{RIGHTF{(MN¥, 12>

F=F{{ASCCLEFTE(MNF, 13 -B52+(LEN(NE> -2

*¥=10C+0C

HOW RO =INT{F/258 2t L(V ,NY=F
M=H+1:6GOT0O 136

MHEST W

3
.

POKE YOLUME,7?
FCOR VY=1TO2
DY ROV =DV MUY 2 2 -1

-H{ ¥

S x258

*7

2

IF DO MOV 2 24 1THENN< V=MV I+H1IIPORELK Y 0%

AV, 1:aND2E4:GOTO 288
H=H{W NOV22iL=L0V MOV 22

IF H>® THEM POKE LIKV,803, WV, 1)

POKE MH{WV: HEPOKEE MNL{WY)Y,L

IF MEWI=E(YITHENE=E+1 :POKELIK ¥

E=3THEMN END

MNERT W

GOTO 210

REM MOTE-TABLE DATA

S82,0:1F

DaTa 451 .50 ,268,201,2327,358,401,477,

,218,0,379,425

REM SET-UF DATA (EDI
DATA 2,0,0,8,9,24,250
DRTRA @,2,0,2,.0,16,250
naTA 0,0,0,2,60,0,230
nDAaATA 2.0.,08.,0
DATA &5
nATA D4 ,4,64,4,64,6,F#4,2
DATA G4.,4,B4,.4,B4,4,R4.,4
oATa DS,4,05,4,05,6,C5,2
DATA B4.4.,AR4.4,B4.,8
DATA D4,.4,G4,4,64,6 ,F#4,2
DATA G4,4,B4.,4,B4 .4 .74 ,4
DATAE 05.4,A4,4,A4 ,6,FH4,2

57

T FOR FILTERE ETC.

1A20 DATR FH4,4,E4,4,D4,8
1998 DATA %,0

1299 @

s DeETAR 32

21 NATA 04 .,.4,04,4 .04 .6.,04 .2
229 DAaTa DI ,4,64 .4 .64 .4 . FH4 .4
226 DATA G4 .,4,FH#4 .4 ,E4,4,°34,4
zZa4dn DATA G4 ,4 ,.F84.,4,64.,8

7050 0DATA D4 .4,04.4.04,€6.,04.,2
s DATR E4.,4,G4.4,G4,8

7Te NATAR FHE4,4,E4,4 . FE4,6,04,2
=Rz DARTAR D4 .4 ,.C8#4,4,04,8

S8 DATH .0

~Ra9

2000 DATAR 1T

ze1e nAaTa B3R ,4,B2,4,B2,E6,A2,2
220 DATAR B3.,4,04.,4.04,8

2020 DAaTA D4.,4.,04,4,C04,4,E4,4
20240 DATH R4 .,4,04,4,04,8

Za5e DATA R2,4,E32,4,B2,6,A3,2
ZAEN OATA BZ2.4,04.4,CH4,8

207 DATA D4 ,4,E4,4.,04 ,6,A3,2
IARR DARATA R2.,4,632 .4 ,FH=2,8

Z229% DATA %.0

USING FILTERS AND RESONANCE

With the use of the 6581 sound filters and resonance, it is possible to
generate exactly the sound you want by finding the appropriate basic
waveform. Firstly, the three types of filters are Lowpass, Highpass and
Bypass. There is a filter switch for each voice therefore giving you a
choice of which voice(s) you wish to have filtered. There is also a filter
switch for external sound input so that any sound device plugged into the
audio/video socket will be filtered in the same way as sounds generated
by the 6581.

HIGHPASS FILTER

The highpass filter will pass all frequencies at or above the cutoff
frequency while attenuating the frequencies below the cutoff frequency.

(Volume) without filtration
Peak :[with filtration

, Coorr , (Frequency)
uto

58

LOWPASS FILTER

The lowpass filter will pass all frequencies at or below the cutoff
frequency while attenuating the frequencies above the cutoff frequency.

{(Volume)
Peak -+~ — - —p - . withoutfiltration
| with filtration
e
| x‘,l
| ‘,
L L. i (Frequency)
> q y

Cutoff

BANDPASS FILTER

The bandpass filter passes a narrow band of frequencies around the
cutoff, and attenuates all others.

(volume) o
Peak - - e -~ without filtration
\ with filtration
\ L
/ \“
/ \
// \\
L l -, (Frequency)
Cutoff

HIGH/LOW PASS COMBINATION

By combining the high and low pass filters it is possible to form what is
called a notch reject filter which passes frequencies away from the cutoff
frequency while attenuating at the cutoff frequency.

RESONANCE

Resonance has the effect of emphasizing a narrow band of frequencies
around the cutoff point.

(Volume)
T N _withresonance
/ \ I -
1 / \\\
é-h;f; .~ without resonance
Lo ——— s (Frequency)
Cutoff

59

PUTTING IT ALL TOGETHER.

Now that you have convered all the basic operations of the 6581, it is time
to put it to maximum use. The following program can be used to control all
the features of the sound chip at the same time as giving you a visual
representation exactly what is going on inside the chip including the
shape of the ADSR envelope.

1@ REM ®xx% sSoUrD GEMNERATOR PR % 4

15 DIM HS@: , L{Sa), DUCS@2

168 DIM MLCR,42 ,NHC3,4) ,PL(3,4) ,PH(3,4>» W 3,42,
Al 2,42 ,SR{(3,4>:PFE="0"

17 DV=.8: D 2:=0Vx2/722:0(4 2=0V%.S:0(5:=0V%1:0{6
=DY*.5

21 Sx=" "
22 DIM MIC14),MBC 140, M3 147 ,M4¢ 14)
25 DIMZ(14,5>:FORR=1TO14:FORC=1TOS:READZL{R,C>
INEXT C,R
e DaTA2,25,0,3,8,2,25,0,15,1,3,25,0,240.16,3,
25,08,15,1,3,25,0,240,16,3,25
27 paTAa @,15,1,1,25,9,22767,0,2,9,0,4,8,0,8,0,
o)

7 r1)'Q
0,255,0,06,0,8,0,0,1,23

2,0.,1, -89,

28 DaTa @,:22.,0,0,92,0,0.0,0,0,0,8,9

268 K=90:REM -READ TUNE DATA-

21 K=K +1:READ HOKE? ,LOKD ,DULK YT IF H{KO{>-1THEN 31

22 ET=K-1

25 OAaThA 25,177 ,250,28,214,250,2%,177,250,25,
ivvy,258,25,177,125,288,214, 125

3E DHTH°E,Q4 TSR .25,.177,252,28,214,250,19,E63,

52,13,62,258,18,683,250

27 DATA _1,154;83;24;63,53,25,177,&5@,84,83,

ik5,12,85,250,-1,-1,-1

49 CHIFP=S4272:FORY=1T03

41 C=CHIP+{Y-1)%7iNL(V,B)=C+D:INH(V,0)=C+1
IPLCV,B)=C+2:PH(V,B)>=C+3:W(V,0)=C+4

42 AD(Y,B)=C+5:SR(V,B)=C+6:NEXT V

47 Fi.i@)=CHIP+21:FH(@)=CHIP+22:RF{D)=CHIP+23

HMYC B2 =CHIP+24

4% GOSUESA:GASUBER:3ISUE1000:60TGR200

49 REM % CLEAR CHIFP &

SO SWITCH=R:FOR S=CHIP TO CHIP+28:POKE

60

ma s W

<

o M m ;M o

m

m

W ow

o
MY »= 300 0 M0 TO et e s b s o bt bt b b 30D CN S) = D

DM e DW= NA L WM —®m

™ W

ol

m O 0 TO MU TY = = bt b b bt bt b ot b b pt b pm s ()
W,

m
o)

S,8:MEXT:RETURN
REM DISPLAY

PRINT".j®®": :POKESZ2E1,0:POKES32280,4:REM
BEACKGROUND AND BORDER

PRIMNT"A-YOICE:S) 1 23
FRINT"E-YOLUME
PRIMNT"C-ATTACK
FRINT"D-DECAY ————@-1°
PRINT"E-SUSTRIN ——@-240
FRIMT"F-RELEASE —B-15
PRIMT"S-DURATION

PRIMNT"H-WAVE 17=,"./ ,33=FFB ,65=[],

Hon

o »=

ll

a

ui

123=MNOISE N\t Toliowed by three times
Shift—f£anda
PRIMT"I-TEST MOTE Cirl—0

FRINT"JI-MNOTE FREG. 8-253
PRINT"E -PLAY TUME
PRIMT"L-LOARD & REGISTER
PRIMT"M-{SPARRE CQPTIGHK:>
PRIMT"M-EXIT PROGRAM
GOSUBE 15eg HOME followed by 14 times
PR IMT " ol eirgeyaqniefelelqnIaie] " ‘/1ﬁ$mwN y]
PRIMNT™" S
PRIMT"R |
PRIMT"M] !
PRINT"P| |
PRINT"L | {
PRIMT"I] H
|
H
H
|

PRINT"T]
FRIMT"U|
PRINT"D |
PRIMT"E |
PRIMT" —ATTACK—TLECAY—=SCUSTAIN—RELEASE— ":
GOSUE 1000

RETURRM

REM % START x%

:':=E1:"7’=E}

GET AF:Y=Y+1:!IFYX12THENY=0

IF Af=" "THEMNGOIUEBRSS
GOSURSAA:PRINT"J"CHRE(Y+ES»; :FORK=1T010:
MNEHXT

PRINT"IS":CHEE(Y+ES>: "I§" : IFAF{ "A"ORAE>"N"
THEMZZ0O ‘\‘ 8$g||:lf_T{;)ilowedbya |

61

m
1)
]
i)

R=ASC(A%Y-E4: ¥=@:Y=R-1:G0SUBSOE:
PRINTCHRS$(182 A%:

240 GOSUEB ERAB:IMICRI=M(12 IMR{RI=M(22IM3{RY =M 3)
PMACR D =M 40

245 IF R>1ANDR{ TTHEM:M=R:GOSUE 1080 :R=M

250 ONRGOSURZ 10, 320,330,340 ,350,360,3702,384,

290,400,416 ,422,428, 4438

253

254

Ehsja CHRE(Y4653 ;
zeo i

228 REM It AMT ROUTIMEES x
202 REM % VALUES FROM IMPUT ROUTINE
204 REM % HELD INM *
205 REM # MICRS,MEIRI,MIORD,MECRY %
208 REM % WHERE R IS THE OFTIOM ROW
207 REM ¥ {IE. C-ATTACK IS ROW 3>
ZOT REM ok kbl ko K ROk KKK R KR ROKCE E R OR K 8
31@ REM -VOICE{S)-

T2 VC1X=MICRIIVE2I=MIIRY 1V 3 =MBLR)
213 RETURM

22@ REM -YOLUME-

322 MU 1I=MILR)

223 RETURM

233 REM -ATTACK -

2z FOR W=1 TO 2:aDdV, 1 2=MI{R2INEXT
328 RETURN

248 REM -DECSY-

242 FOR V=1 TO 2:aD0V ., 2:=MICRY INEXT
243 RETURN

58 REM -SUSTAIN-

52 FOR W=1 TO Z:SR(OV,1x=MICRI:MNEXT V

|
¥

RETURN

REM -RELERSE-

FOR ¥=1 TC 2:SR(Y,2Z=MI(RIINENXT
RETURN

REM -DURATION-

W L) o) o) W
-l =) MM
W Ny w

o]

272 DUR=MI(R?

272 RETURRN

220 REM -LIAVE-

281 IF M3{R:=1THENFORV=1TO3:PHC V,l) =MiI{R?>

PLAY,12=MECRIINERT WiMICR>=0:M2(R>=0

62

222 IF MI(R:>=1THENN=17Y
222 IF MP(R>=1THENW=33
2L4 IF M2 RI=1THENW=63
205 IF MACRI=1ITHERNMI=123
388 FOR V=1 TO 3:lV,1)=WINEXT
222 RETIRK
238 REM -TEST NOTE-
291 IF SWITCH=8 THEM GOSUR Z00Q
294 FOR vw=1 TO Z:FPOKE LNV, LNV, 1 INEXT
298 FOR T=1TARUR:RENT
297 IF FEEE{ 197 :=323THENZZ7
222 FORV=1TOR:IPOKEL V,0 WiV, 1 2aMNDa254 i NERT
2899 RETURHN
42 REM -MNOTE FREG, -
4AZ FOR W=1T03 MHOY, 1D)=MICRYINLIY, 10=ME(R IHERT
402 RETURMN
8 REM -PLaY TUMNE-
2 GOSURSQ: IF SWITCH=9 THEN GOSUBRZOQG

FORK=1TOET
FORV=1TO2: IFVI V=1 THENPOKENHI Y, 00 HUK?
'POKENL(U,B),L(K):PGKEN(V @), WY, L

R R .Y
b e b e
ds o)

415 MHEXNTVIFOR =1 TODOUR : IFFEEK{ 127 »=E4THEM
T=DUR -:-‘~ET

417 MWEHT T:FORVY=1TO3:POKEL Y, 0 LWV, 1 >8KH0254
SNEXT VLK

418 IF PEEK(12724 »B84THER41Z

419 GOSUR 2ZAAR:RETURR

420 REM —LGPD # SID REGISTER-

422 POKE CHIP+MICR: M2LR

422 RETURM

47Z@A REM -SPARE OPTION-

4=

jjg i ITILR followed by 2 times

144 PRIMNT® MO”T HIT RETURM TO
COMNT IMNU 'El.m" riEND

453 GOTO43 lCSRLEFTlimesaandStinﬂ

429 STAP up

sa@ REM % PRIMT-AT ROUTIME #

=10 PRINT"S":: IFXXATHERPR I'~'TLEFT${ RE, X227

=20 IFY>ATHERPRINTLEFTH(YE,

=20 RETURM

63

m
o}

n

o]

s oM

m

3

m
o

m

i

m m
m

(EA IR B U

[I s BT BN |

m m

o
o

ESEEN |

....
o)

-
iy
o)

)

B

5
o)

]

S B Y I |

D]

moan b

-

y
i~

o]

-]
-J

41
@

w0 -d
o)
)

REM %3k IMPUT ROUTIMES x#%%

IF Z<R,1»=0THEMRETURM

ORE=1TO4 MK 2 =0 1 MNERT

o -,E):‘r'=R-1=L.=Z(R,CJ-I'J=U=Z(R,4)=

IMC=2(R, IM=B:K=0:P=1824+X+Y%48

ar Z(R,1» GOQTO E28,700,8008

REM -USIMG INFPUT?-

IF R<{ >BAMNDREY »1@AMNDRK > 12ANDRLS X 13 THENHLF=""
:G0TOE39

1IF M=@RNDR{ >12THENHLE="HIGH" :GOTOEZO

IF M=afMNDR=12THENHLE="REGISTER": GOTCE2D
IFR=12THEMNHL$="YALUE" : U=255:50TOE2A

HLE="L0M"

GOSUBSAN:PRINT "B " LEFT$(S$,39-P0OS<0));
:GOSUBSBB:PRINTHLS;:INPUTI$:I=V L I
GOSURS@R:PRIMT"H "y

IFI<LORI *UTHEMNESO ____—Tcmi—9]

GOSUESAO:PRIMT 2" f IF M=1THEMPRINTSTRE(MC 133

STREC(1y;:" = "::GOTOGED
PRINTRIGHTS(STR® 17, LEN(STREC 120-1);

B M+13=1: IF{ R=80RR=100RR=120RR=13
AMDM=0THENM=1:GOTOB20

RETURHM

REM -SET PULSE FREQ.-

GOSUE 110@:X=5:Y=20:L=0:U=255:G0SUB508:
PRINT"PULSE FREQUEMCY";:X=25:G0TOE20
REM -CHOICE-

FOROFF =XTOINC*(U-13+XSTEP INC : POKE 1824 +0FF
+7 440 ,PEEK(1024 +OFF +Y*40AND 12

MEXT OFF:K=0
GOSUBSAR:FOKER ,PEEK{ F)AND127 :FORT=1T058:
NEXT:FOKEP ,PEEKCP JOR128

GET B%:IFE®="M"THEMK =K + 1 : POKEP ,PEEKC F X AND
127:GOTOTS0

IFE#$: >CHR%(12) THENT 10

K=K+ 1iMOKa=1

IF R=8 THEM 77€

IF K=U THEN 770

M=+ IMC @ P=P+IMNC ! GOTO 71@

IF R=2ANDK=2THEM &75

RE TURHM

REM -IMPUT USING UF & DOWN CURSOR-

64

w Lo
[

13

wn -

w
o]
Y

0w MmO D000 momo o
WMe@ODOEW0 Mmoo
DN IO OO0 - N

[y]
o

o m
Wy - 3 m

a

- e s [
[0 B BN
[]

,..
o
™
o]

1860

1893
1100
1

L S e
mmiro [
Mm@ WM
W S

B=-R{2:x(R>22-B(4>x({R>4-4x{ R>53-B
+2:NY=22-MI(22,2 NK=39:RETURN

FOR Z=1TO4:MM(Z2>=0:NEXT

GOSUBSA8 : M=MIi¢ R
GOSUBSOA::PRIMNT"IaE" : M "M "
GOSURS@Q@:PRINT"W "::GETE%$
IFEF=CHREC 12> THEMMS 12 =M K=Nxr=NY:
GOSUEBSO8:PRINT" "; :i:RETURN

GOsSUR 966

IF B${>"[Q"THEMNEED

M=M+INC: IFM>ITHEMNM=L

SOSUR 2ef: 5070224

IF B#{ >"H'"THEMEZ@

A== TRC T TFMS LTHEMNM=U

GOSUE 200:G0TC 828

REM xxx MOVE EMVYELOPE CURSOR %%
IF R{2 0OR R=% 0OR R85 THERM RETURHM
Mo =R s MY =Y i n=MNL V=Y I GOSURSOAIPRINT" ":
H=B+MxD{ R
NY=Y1X=M{:Y=MY

GOSUR2A2:60TOZ2RS

REM

BC2=MIC22%DC 232 BC4)=MIC42xD{ 4 :B(BI=MI(B)
*DCE2

B RED

CSRDWN

SAQ:PRINT"+"; 1 NX=X:

RETURHM

REM %x% UPDATE ADSR DISPLAY %x%

GOSUE (1aa

R=ZiW=23:603UE S8e:PRIMNT"oO":?
R=3:GOSUBR3AR : H=B+MILR*xD{ Rt VY=NY:GOSUR
SRA:PRINT"A"?

P=4=GGSUPS'E =B+MICRIAD(RI 1 Y=23 - (M1 2>

*M1{353/248> *E-GOCUB SOB:IPRINT"D—S-—";
R=6:G0SUBEAR2: X=B+MI{RIY*D(R»:V=23:50SUE
SBOIPRINT"R":

RETURNM

REM x CLEAR ADSR DISPLAY x
H¥=2:iFORY=15T0O22:GOSURSQA:PRINT"®E" ;
LEFTH S$,35)>7 :NEXT

RETURN

REM % PLOTTER %

MER2IY=YZ2IGOSURSOA FPRIMNTPE:

RETURHM

65

T =P

-
m

f

Pt e b Rt e

fot b b b b s

0 Mo M mmrnmimwim e

-
1

"y mn

i m

L
@

o
[

o

w m

8}

m m

0 B R R B)

W e W0

-J

B

o MR E Wwe N9

TRV

oW

0

oy m

oo m

bt bk b e et b et ke [
W g D g W N e 3

n

£

o)
IO RS

,,,.
]

U

=

FERR O]

iy
"

iy
o

N

o

mm W

r

LI TS T s T Y N o T S I

[Y

IF P=laOPP‘1°THFWGq°UBq@ﬂ'PRIHT”ﬂ";
STREMI(RIZ;STRE(M2(R ;" W' :G0OTO1E38
GOSUBSQ@:PRINT"HA" :MICR>; :GOSUEB 566:

PRINT "3 ": \L SALFTanda

KM=A:FORZ =MTOINC#{U-1>+RXETEFINC
P=1024+Z +Y%4@ 1k =K+ 1

M=-MICRY¥ (=1 -M2{RI¥{(K=22-M3(RIK(K=3"
“MA{RI¥(K=4)

IFM=t{ THENPOKE P ,PEEK(PI>OR1Z22:G0OT0O 173€
POKE P,PEEK{P>AND127Y

MNMEKXKTZ

RETURM

REM -Z-

SOTO1EQE

RETURM

REM % LOAD CHIP WITH VYALUES SET %

REM % FROM OPTION LIST. *

FOR ¥=1 TC =

IF YW =ATHEMNPOKEW(Y,
POKE MNLIV 22, Nuf”,l)
PORE MHIWV, @ MHOY L
POKE PL(V,B),PL&V,I)
POKE PH{Y .83 , FPHIY,
FOKE LEY,83, WY, 1 r’-‘lHDE
POQKE ADCY, @3 ,aldyW, 1y+30(Y
POKE SR{V,8:,SR{V,1>+3R(
MEXRT W

POKE MR(A , ML)

SLIITCH=1

RETURN

66

,{ CTRL—9

SPECIAL SOUND EFFECTS

Apart from generating sound by presetting the sound chip and controlling
the sound via the ADSR envelope, some interesting sound effects canbe
produced by dynamically controlling various features of the sound chip
during sound output.

LINKING REGISTERS

An effective way to dynamically control sound during output is to link the
output from the enveiope or waveform of one voice to one of the registers
of another voice. To do this in BASIC you would need to continually
PEEK one of the output registers (25 — 28) and POKE this value to the
register representing the feature you wish to control. However, using
BASIC would produce a staggered sound movement owing to BASIC’s
speed inefficiency compared to the speed of the sound chip’s waveform
oscillation. To produce smooth sound changes, you need a machine
language routine to link the registers at high speed (preferably
independent of your program}. The foliowing program “REGLINK" wili
suit this puposa.

BGoTo e Frk REGL TR ¥4

Towxy POKE 22a-2232 KWITH DESTINATION
REGIZTER TO BE

B oxxr LIMNKED TO SOURD REGISTERS 25-25
RESPECTIVELY

e FOR I
POKE
FOKE

)

ol
YR |

o]

]
3
RN
~
D

T
)
I =
- al
D
[0 N
M e @M M

i SR

=
o]

[n I

T
-
o)
-

The BASIC program will wedge the M/L (machine language) program
into the operating system so as not to effect BASIC. We will use this
program in the vibrato example on the next page. To use the routine use
the following format:

POKE [820 — 823], [any sound chip register]

where locations 820 — 823 are mapped to sound chip registers 25 — 28
respectively (see register map).

67

Even within BASIC programming, it is possible to generate some quite
interesting effects, such as echo, vibrato, modulation, portamento and
many others.

ECHO

There are many methods by which to accomplish this effect. One method
is to generate a sound with a sharp attack, medium decay and low
sustain level, then replaying the sound by turning off the wave and
turning it on again with a lower volume setting and repeating this until
either a zero volume has been reached or another sound is played.

10 CHIP = 54272 : VOLUME = CHIP + 24

20POKE CHIP + 5,16 + 3:POKECHIP + 6,0 + 0

30V = 15:POKE VOLUME, V

40 POKE CHIP + 1,10

50 FORECHO =1TO7

60 POKE CHIP + 4,17

70 FOR COUNT = 1 TO 100 : NEXT COUNT

80 POKE CHIP + 4, 0 : REM TURN OFF WAVEFORM

90V =V *0.6 :POKE VOLUME, V : NEXT ECHO
100 FOR I = 1 TO 500 : NEXT : GOTO 30

VIBRATO: (A rapid variation in frequency)

This effect is accomplished by copying the output of voice 3's oscillator
(register 27) to the input of the low note frequency of the voice(s) you
wish to effect. When using this method, the vibrato will be controlled by
voice 3, therefore voice 3 must be operating, preferably with the triangle
waveform and the output turned off (to turn voice -3 output off, set bit 7 of
register 24 to 1). If REGLINK’ has been loaded then adding the following
lines to the end of the initialization section of any Sound program will give
the vibrato effect to each note played.

POKE CHIP + 15, 10 : POKE CHIP + 18, 17 : POKE CHIP + 24, 128 +
volume setting

POKE 822, 0 : POKE 823, 28

where the vibrato speed is controlled by the frequency setting of voice 3.

MODULATION: (A continued variation in volume)

This effect is accomplished in much the same way as vibrato except that
voice 3's oscillator (register 27) is linked to the master volume control.
Also, the fact that register 27 outputs from 0 to 15 means that the output
from register 27 must first be divided by 17. The BASIC statement to link
the two registers (for voice 1) is as follows:

POKE CHIP + 24, PEEK (CHIP + 27)/ 17

where CHIP = 54272

68

In this case '‘REGLINK' cannot be used owing to the fact that volume
requires values 0 — 15 whereas a direct linkage would give values 0 —
255. Therefore the above BASIC statement must be executed as often
as possible to produce the desired effect.

The following program demonstrates modulation:

10 CHIP = 54272

20 POKE CHIP + 1,30 : REM NOTE FREQUENCY

30 POKE CHIP + 6, 240 : REM MAX SUSTAIN

40 POKE CHIP + 15,10 : REM MODULATION SPEED

50 POKE CHIP + 18, 17 : REM TRIANGLE WAVE (VOICE 3)

60 POKE CHIP + 24, 128 : REM TURN OFF VOICE 3 OUTPUT
* continual link of waveform to volume *

70 POKE CHIP + 24, PEEK (CHIP + 27) /17 + 128 : GOTO 70

Run the above program and edit line 40 to obtain different modulation
speeds.

PORTAMENTO: (Frequency slide)

The portamento is a gradual slide from one frequency to another. It can
be used to simulate an accellerating jet, a fallingbomb or it can be used in
music to create a sliding instrument such as a trombone. This effect is
accomplished by incrementing/decrementing the frequency of the last
note played to the frequency of the next note played. Your portamento
subroutine should look somethng like this:
1000 INC = SGN (NF — OF)
1010 OF = OF + INC
1020 POKE CHIP + 1, OF
1030 IFOF < NF THEN 1000
1040 RETURN
where CHIP = 54272

OF = high frequency of old note

NF = high frequency of next note

69

THE SOUND CHIP REGISTERS

8it significance flegister usage
{Voice-1)

REGNo.D7 ~ be bs of} b3 b2 o1 o0

0 NL7 NL6 NLs NL4 NL3 NL» NL1 ‘ NLo Low byte of note trequency
1 NH7 | NHe | NHs | NHa | NH3 | NH2 | NH1 ‘ NHo | High byte of note frequency
2 |PL7 |Pls | Plo | PLa | PLs | PLz | PL1 | PLo | Lowbyteof puisewiatn

3 — — — — | PH3 | PH2 | PH: 1 PHo | High byte of pulse width

. RING |

4 Noiser\ /]/! | rest MOD SYNC! GATE | Wave form control

5 A3 Ao A1 Ao Da D2 D1 1 Do Attack. decay for envelope
6 |Ss |S2 |St |So |Rs | Re | Ri | Ro oot elease for

Voices 2 and 3 are mirror images of the above except that they are stored
in registers 7 to 13 and 14 to 20 respectively.

Bit significance Register usage
(Filter)

21 - —_ — — —_ CLe CL1 Clo Low cutoff frequency

22 CH7 | CHe| CHs| CHa| CH3| CHz| CHi| CHo | Highcutofffrequency

23 R3 Rz Ri1 Ro Fex | F3 F2 F1 Filter switches and resonance
24 30FF | HP BP LP V3 Vo Vi Vo j Filter modes and volume

Bit significance Register usage
(Misc.)
25 (F’? Pe Ps Pa P3 P2 ' P ’ Po Paddie - x
26 P7 Pe Ps P4 P3 P2 f P Po Paddie - y
27 O7 ' O Os O4 ‘ O3 2 i O j Qo [Oscillator - 3 output
28) E/"iﬁ,ﬁEQ Es | B4 | B3 | E2 I B EO__! Envelope - 3 output

NOTE: The sound chip registers are accessed via memory locations
54272 to 54300.

70

REGISTERS 0 AND 1 (Location 54272 and 54273)

{Low and high bytes of note frequency)

These two registers form a two byte value corresponding to the
frequency of a note played. To obtain the actual frequency of the note
being played multiply the two byte value by 0.059604645.

REGISTERS 2 AND 3 (Location 54274 and 54275)

{Low and high bytes of pulse width of pulse wave)

These two registers form a 12-bit value corresponding to the pulse width
of the pulse wave. The width of the low pulse of the pulse cycle as a
percentage of the width of the pulse cycle is given by the following
formula:

Low pulse width = (12-bit value/40.95)% of the pulse cycle. Where a low
pulse width of 0% or 100% is a constant DC signal (i.e. zero output) and a
low pulse width of 50% is a square wave.

REGISTER 4 (Location 54276)

(Waveform control)
This register serves several functions where each bit serves a seperate
function.

Bit 0 (Gate Bit):

The gate bit controls the envelope generator. Setting this bitto a 1 turns
on the ADSR envelope and begins the envelope cycle at the attack
stage, goes on to the decay stage and finally the sustain. The sound will
continue at the sustain level until the gate bit is set to zero, in which case
envelope control will continue to the release stage. If the gate bit is set to
zero before the sustain stage has been reached then envelope control
will jump to the release stage.

Bit-1 (Sync Bit):

Setting the sync bit to 1 causes the waveform from voice 3 to be
syncronized with voice 1. Varying the frequency of voice 3 will change
the overall waveform output of voice 1.

Bit-2 (Ring Mod Bit):

Setting the ring mod bit to a 1 replaces the triangle waveform of voice 1
with a ‘ring-modulated’ combination of oscillators 1 and 3 for giving the
output a bell type sound. Varying the frequency of oscillator 3 causes
changes in the overall waveform output of voice 1.

Bit-3 (Test Bit):

Mainly used for testing, this bit when set to 1, causes oscillator 1 to reset
to 0 and lock there until the bit is reset. However, it can be used to
synchronize oscillator 1 to an external device.

71

Bit-4 (Triangle Waveform):
When set to 1, this bit selects the triangle waveform to be used for output
of oscillator 1.

Bit-5 (Sawtooth Waveform):
When set to 1, this bit selects the sawtooth waveform.

Bit-6 (Pulse Waveform):
When set to 1, selects the pulse waveform.

Bit-7 (Noise Waveform):
When set to 1, selects the noise waveform.

REGISTER 5 (Location 54277)

(Attack/decay)

This register is used to select the attack and decay rate for voice 1's
ADSR envelope.

Bits 4 — 7 (Attack Rate):
Selects an attack rate from 0 — 240 where the attack times range from
2ms to 8s.

Bits 0 — 3 (Decay Rate):
Select a decay rate from 0 — 15 where the decay times range from 6ms
to 24s.

REGISTER 6 (Location 54278)

(Sustain/release)

This register is used to select the sustain level and release rate for voice
1's ADSR envelope.

Bits 4 — 7 (Sustain Rate):

Selects a sustain level from 0 — 240 where the sustain setting is a
proportion of the volume setting. To obtain the actual sustain volume use
the following equation:

Sustain volume = (volume setting *sustain setting) / 240

Bits 0 — 3 (Release Rate):
Selects a release rate from 0 — 15 where the release times range from
6ms to 24s.

REGISTERS 7 — 13 (Locations 54279 — 54285)

(Voice 2)

These registers are functionally identical to registers 0 — 6 (voice 1) with
the following exceptions:

1. SYNC — Synchronizes oscillator 2 with oscillator 1.

72

2. RING MOD — Replaces the triangle output of oscillator 2 with the
ring modulated combination of oscillators 2 and 1.

REGISTERS 14 — 20 (Locations 54286 — 54292)

(Voice 3)

These registers are functionally identical to registers 0 — 6 (voice 1) and
registers 7 — 13 (voice 2) with the following exceptions:

1. SYNC — Syncronizes oscillator 3 with oscillator 2.

2. RING MOD — Replaces the triangle output of oscillator 3 with the
ring modulated combination of oscillators 3 and 2.

REGISTERS 21 AND 22 (Locations 54293 and 54294)

(Cutoff frequency)

These two registers form an 11-bit value corresponding to the cutoff (or
centre) frequency of the programmable filter. They select a cutoff value
of 0 — 262 where the cutoff frequency ranges from 30 Hz — 12KHz.

REGISTER 23 (Location 54295)

(Resonance/filter)
This register is used to select the resonance and filter switches.

Bit-0 (Filter Switch 1):
When set to 1, voice 1 is sent through the filters before output. When set
to 0, voice 1 is sent directly to output.

Bits 1 and 2 (Filter Switches 2 and 3):
Same as bit 0 but for voices 2 and 3 respectively.

Bit-3 (Filter Switch EXT):
Same as bit 0 but for external audio input.

Bits 4 — 7 (Resonance Setting):

This register forms a 4-bit value corresponding to the resonance setting
of the programmable filter. They select resonance settings that range
from 16 — 240 in steps of 16. The resonance acts on a small band of
frequencies around the selected cutoff frequency.

REGISTER 24 (Location 54296)
(Voice 3's switch/filter modes/volume setting)

Bits 0 — 3 (Volume Setting):

These four bits are used to select volume settings which range from 0 —
15. This is a master volume control, however each voice may be varied

73

by either setting a large attack and setting the gate bit to 0 during attack or
by setting a different sustain level for each voice, thus achieving different
volume levels for each voice within the absolute level set by the above
four bits.

Bits 4 — 6 (Filter Modes):

These three bits are used to select the filter modes for the programmable
filter. Bit 5 selects the ‘lowpass’ filter, bit 6 selects the ‘bandpass’ filter
and bit 7 selects the ‘highpass' filter. More than one filter may be selected
at one time. For example, a ‘notch reject’ filter can be set up by selecting
the lowpass and highpass filters.

Bit-7 (Voice 3 Switch):

Setting this bit to 1 causes voice 3 output to be disconnected without
effecting any of the voice 3 controls. This switch is used when voice 3 is
used to control another voice and the output of voice 3 is not needed.

REGISTERS 25 AND 26 (Location 54297 and 54298)

(Paddles)

These registers allow the microprocessor to read the positions of a pair of
paddles conected to port-1 (labelled port-2 on computer casing). The
paddles should give readings of O for minimum resistance and 255 for
maximum resistance. By reading these registers and writing their
contents to other sound chip registers, it is possible to control the sound
chip with the paddles.

REGISTER 27 (Location 54299)

(Oscillator 3 output)

This register allows the microprocessor to read the waveform output of
voice 3 where any waveform will produce values between 0 and 255. For
example, if the sawtooth is selected, register 27 will output incrementing

values from 0 to 255 at a rate depending on the frequency setting of voice
3.

REGISTER 28 (Location 54300)

(Envelope 3 output)
Same as register 27, but this register allows the microprocessor to read
the envelope output of voice 3.

74

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the
values to be POKEd into the HI FREQ and LOW FREQ registers of the
sound chip to produce the indicated note.

MUSICAL NOTE OSCILLATOR FREQ
NOTE OCTAVE DECIMAL HI LOwW
0 c-0 268 1 12
1 C#-0 284 1 28
2 D-0 301 1 45
3 D#-0 318 1 62
4 E-0O 337 1 81
5 F-0 358 1 102
) F#-0 379 1 123
7 G-0 401] 145
8 G#-0 425 1 169
9 A-0 451 1 195
10 A#-0 477] 221
n B-0 506 1 250
16 Cc-1 536 2 24
17 C#-1 568 2 56
18 D-1 602 2 90
19 D#-1 637 2 125
20 E-1 675 2 163
21 F-1 7164 2 204
22 F# -1 758 2 246
23 G-1 803 3 35

75

MUSICAL NOTE

OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOW
|24 G#-1 851 3 | 83
| 25 A-1 902 I3 | 134
26 A#H -] 955 3 187
| 27 B-1 1012 3 244
32 c-2 1072 4 48

33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 4 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71
40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A# -2 1911 7 119
43 B-2 2025 7 233
48 Cc-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E-3 2703 10 143
53 F-3 2864 11 48
54 F#-3 3034 1 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A# -3 3823 14 239
59 B-3 4050 15 210
64 C-4 4291 16 195
65 C#-4 4547 P17 195
66 D-4 4817 18 209
67 D# -4 5103 19 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F# -4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49

76

MUSICAL NOTE OSCILLATOR FREQ
NOTE OCTAVE DECIMAL Hi LOW
74 A# -4 7647 29 223
75 B-4 8101 31 165
80 Cc-5 8583 33 135
81 C#-5 9094 35 134
82 C-0 9634 37 162
83 C#-0 10207 39 223
84 D-0 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
L2l B-5 16203 63 75
Q6 C-6 17167 67 15
27 C#-6 18188 71 1
98 D-6 19269 75 69
99 D# -6 20415 79 191
100 E-6 21629 84 125
101 F-6 22915 89 131
102 F# -6 24278 Q4 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 112 199
106 A# -6 30588 19 124
107 B-6 32407 126 151
112 c-7 34334 134 30
13 C#-7 36376 142 2
114 D-7 38539 150 139
115 D# -7 40830 159 126
ERT) E-7 43258 168 250
7 F-7 45830 179 [}
B F# -7 48556 189 172
119 G-7 51443 2C0 243
120 G#-7 54502 212 230
121 A-7 57743 225 143
122 A#-7 61176 238 248
123 B-7 64814 253 46

77

FILTER SETTINGS

Location Contents
54293 Low cutoff frequency (0-7)
54294 High cutoff frequency (0—255)
54295 Resonance (bits 4—7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Filter voice 1 (bit 0)
54296 High pass (bit 6)

Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0—-3)

78

CHAPTER 5

GRAPHICS

As you probably already know, the Commodore 64 has graphics
capabilities available directly from the keyboard, using the graphics
characters, colour control keys, cursor control keys and PRINT
statements. However, it also has more powerful graphics capabilities
available through direct user control of sections of the memory.

Graphics Memory

There are three blocks of memory used to control graphics on the
Commodore 64 — screen memory, colour memory and character
memory — and a few odd bytes we’ll discuss as we get to them. First, a
brief description of the three blocks, then a more detailed coverage of
how to use them.

Screen memory consists of one byte for each character position on the
screen. Since the screen has 1000 character positions — 25 rows of 40
characters — screen memory has 1000 bytes. The first 40 bytes of
screen memory correspond to the first row on the screen, the second 40
bytes correspond to the second row, and so on.

Colour memory, like screen memory, consists of 1 byte for each screen
character position. Each byte contains a code for the colour in which
characters will be displayed at that position.

Character memory contains the coded representations of all printable
characters. It is broken into 2 blocks — one for upper case and graphics
characters, the other for lower and upper case characters.

To display a character on the screen, the Commodore 64 finds the code
for the character in screen memory, uses the code as a pointer to the
character representation in character memory, finds the colour of the
character position in colour memory and uses all this information to
display the character.

LOW RESOLUTION GRAPHICS
Screen Background and Border Colours.
These colours are controlled by the value in locations 53280 and 53281.

The values for background/border colour combinations are given in
Appendix .

e.g. POKE 53280, 7 : POKE 53281, 4 gives a yellow border around a
purple screen.

79

Character Colour

Keyboard Control

As previously mentioned, the colour of characters can be dictated using
the colour control keys. These keys can be included in strings within a
program. They change the value in byte 646. This value can also be
changed by POKEing.

Changing this value causes everything after the change to be printed in
the colour set, i.e. it changes character colour from then on. From this it
follows that you must change this value every time you want to change
character colour just as you do when using the colour control keys.

Colour Memory Control

Colour memory uses locations 55296 to 56319. You can POKE values
into colour memory thus controlling the colour of individual character
positions on the screen. This determines the colour of characters POKEd
into screen memory, but not characters which are PRINTed. These are
controlled by byte 646.

You may now determine the colour of characters POKEd into screen
memory by POKEing the desired values into the relevant bytes of colour
memory.

0 Black 4 Purple 8 Orange |12 Grey?2

White 5 Green 9 Brown 13 Light Green
2 Red 6 Blue 10 LightRed |14 Light Blue
3 Cyan 7 Yellow 11 Grey 1 15 Grey 3

e.g. 10CM = 55296
20FORJ = CMTOCM + 1000
30 POKE J, 7 : NEXT

Screen Memory

The default position of screen memory is at 1024. Screen memory can be
moved to any location that is a multiple of 1024 as long as it doesn’t sit on
top of other memory locations such as your BASIC program.

Byte 648 contains the number of %K bytes from 0 to screen memory
address. Byte 53272 contains the number of K bytes from 0 to screen

memory address. Byte 648 is a pointer for the screen editor. Byte 53272
is the actual pointer.

80

The simple way to calculate the address of the bytes in screen memory
you want to POKE is to use the formula — SM + (row*22) + column.
Where SM is the start of screen memory, ‘row’ is the screen row number
(O is the top row) and ‘column’ is how far along the row (also starting from
0 at the left of the screen).

Graph paper is handy for working out screen displays.

The values POKEd into screen memory act as pointers into character
memory. The are NOT the ASCII values of the characters. The screen
codes corresponding to ASCII values are shown below:

ASCII value Screen value

0-31 None—not displayable
32-63 32-63

64-95 0-31

96-127 64-95

128-159 None —not displayable
160-191 96-127

192-254 64-126

255 94

You will notice that some screen codes are shared by two ASCII codes.
This is because character memory is broken into two blocks. The
character displayed by a screen code corresponding to two ASCII codes
will depend on which block of characters is being used. The screen code,
as was mentioned, acts as a pointer into the block of character memory.
(see Character Memory section for more details.)

A table of ASCII and screen codes for the two character sets is given in
Appendix A. When you know in advance what characters are to be
POKEd into screen memory, this table may be used to look up the screen
values. However, for some applications, such as GETting characters
from the keyboard, the characters can not be known in advance. The
ASCIl codes convert in blocks of 32 so the screen codes may be
calculated using the following subroutine:

10 GET K$

20 SC = ASC (K$)

30 ONINT (SC/32) +1 GOTO 40, 50,60, 70,80,90, 100

40 SC = —1:RETURN

50 RETURN

60 SC = SC-64 : RETURN

70 SC = SC—-32:RETURN

80 SC = —1:RETURN

90 SC = SC-64 : RETURN
100 IF SC = 255 THEN SC = 94 : RETURN
101 SC = SC—-128 :RETURN

81

This subroutine returns —1 when the character is not displayable. The
main program can then decide what to do with it.

The following example program POKEs red ‘A’s into the top half of the
screen, green ‘Z’s into the bottom half:

10 REM Set up colour memory
20 CM = 55296
30 REM Red character positions
40 FORJ =0TO 499
50 POKECM +J,2:NEXT
60 REM Green character positions
70 FORJ =500TO 1000
80 POKECM +J,5:NEXT
90 SM = 256 * PEEK (648)
100 REM Poke A’s into first half of screen memory
110 FORJ=0TO 499
120 POKE SM + J, 1 :NEXT
130 REM Poke Z’s into second half
140 FORJ =500 TO 999
150 POKE SM + J, 26 : NEXT
160 GOTO 160 : REM Wait for STOP keystroke

Character Memory

Before going into the Commodore 64’s character memory it would be
worthwhile to first have a look at the character table and then follow this
with the memory and how to use it in designing your own characters.

The first block of character memory — upper case, graphics, reversed
upper case, and reversed graphics occupies the ROM locatons 53248 —
55295. The second block — lower case, upper case, reversed lower
case, reversed upper case and graphics — occupies ROM locations
55296 — 57343.

Characters are displayed as patterns of dots. Each character position on
the screen is composed of an 8 x 8 square of dots (pixels). Character
memory contains the information which tells the computer which dots to
turn on or off for a particular character. If abitis 1, the dot is on (displayed
in character colour). If it is 0,the dot is off (displayed in background
colour). Therefore, to cover 64 dots, each character representation takes
8 bytes of memory.

82

e.g. The character ‘A’

128 64 32 16» 8 4 2 1 Binary Decimal Equivalent
byte 0 00011000 24
1 00100100 36
2 01000010 66
3 01111110 126
4 01000010 66
5 01000010 66
6 01000010 66
7 00000000 0

As mentioned earlier, the screen codes act as pointers into character
memory. As you can see from the table in Appendix A the screen code for
A in character set 1 is 1. Its 8 byte representation is therefore stored in:
53248 + (8*1) = 53256 and the next 7 bytes
so byte 53256 contains the value 24
so byte 53257 contains the value 36
so byte 53258 contains the value 66
so byte 53259 contains the value 126
so byte 53260 contains the value 66
so byte 53261 contains the value 66
so byte 53262 contains the value 66
so byte 53263 contains the value 00
In general, to find the starting address of the representation of a
character with screen code X use:
53248 + (8*X) forcharacter set 1
55296 + (8*X) for character set2
You can change from one character set to the other from the keyboard as
described earlier, or by changing the value of the character memory
pointer — byte 53272. Its value is normally 21 (upper case and graphics)
or 23 (upper and lower case).

Designing your own characters

Since the built-in character sets are in ROM you cannot directly change
them. However, as you have seen, the character memory pointer can be
changed. So the secret to using a character set you design yourself is to
change the pointer to point to your set.

First, however, you must design your characters. Take a piece of graph
paper (or draw an 8 x 8 grid), and for each special character you want,
set it up as below. As an example, our grid contains a hat character.

83

128 64 32 1_6 8 4 2 1 Binary Decimal

00111100
00111100
00111100
00111100
00111100
00111100
11111111 255
00000000 0

byte 0

283383

N O A 0N =

Fill in the squares to create the character you want. Then, for each row.
add up the values of the squares filled in. The sum is the value you will
POKE into the byte.
It is usual to copy some of the built in character set into RAM and then
change those characters you wish to.
A sample exercise shouid clarify this.
Type POKE 53272, 28
All characters on the screen should now turn to random dots, since the
character memory pointer now points to an area of memory where no
characters have been defined — the bytes here contain random values.
STOP RESTORE will return you to the normal character memory.
Now run the following program:
5 REM *CHARACTER GENERATION DEMO *
10 POKE 53272, 28
20 POKE 52, 48 : POKE 56, 48 : CLR
30 POKE 56334, PEEK (56334) AND 254
40 POKE 1, PEEK (1) AND 251
50 FORJ=0TO511
60 POKE 12288 + J, PEEK (53248 + J)
70 NEXT
80 POKE 1, PEEK (1)OR 4
90 POKE 56334, PEEK (56334) OR 1
100 PRINT “A”
110 FORJ = 12296 TO 12303 : READ V : POKE J, V: NEXT
120 DATA 60, 60, 60, 60, 60, 60, 255, 0

Explanation:
Line 10— changes the character memory pointer — character
memory now starts at 7168
20— makes sure that BASIC doesn't overwrite the
character set

84

30— turn off interrupts
40— switch character ROM in
50-70— copies the first 64 characters (512 bytes) from
character set 1 in ROM to RAM, starting at 7168
80— switch out character ROM
90— turn on interrupts
100— prints an ‘A’
110— changes the definition of ‘A’ in character memory to
a hat
120— Data statement holding the values of the new
definition of ‘A’

Note that all A’s displayed on the screen change.

Where to put the new character set

A safe (but not the only) place to put character memory is at 12288. To do
this POKE 53272, 28.
To ensure that BASIC doesn’t overwrite your character set you must
change the pointers to the end of BASIC program memory and the end of
string storage memory. If you are starting character memory at 12288,
you can protect it by using:

POKE 52, 48 : POKE 56, 48 : CLR
This should be done before any BASIC variables are defined or
referenced, otherwise BASIC may not recognise the limitation.
Having done the above, you may now POKE in your new character set,
starting at 12288. Remember that screen codes act as pointers into
character memory, so if you POKE a value of 7 into screen memory, the
eighth character in the set will be displayed.
For those who wish to put character memory elsewhere, or use a larger
set, the following details will be useful.
In fact, both screen and character memory pointers can be changed.
Byte 53272 controls both. The first 4 bits gives the number of K (1024)
bytes from 0 to the start of screen memory. The last 4 bits gives the
number of K bytes from O to the start of character memory.
However, to complicate matters, both of these numbers are calculated
using addresses as seen by the Video Interface Chip. It uses different
addresses to the rest of the computer to access the same locations. The
table below illustrates the differing addresses for the memory blocks the
VIC chip can access.

85

VIC chip addresses Ordinary addresses| Memory

4096 ﬁ 53248 Upper case characters
4608 53760 Graphics characters
5120 54272 Reversed upper case
5632 54784 Reversed graphics
6144 55296 Lower case
6656 55808 Upper case and graphics
7168 56320 Reversed lower case
7680 56832 Reversed upper case

& graphics

Example calculation of value of byte 53272. To put screen memory at
1024, character memory at 12888:

Address No. of K from 0
Screen - 1024 1024/1024 = 1
Character - 12288 12288/1024 = 12

Binary representation Screen mem Char mem

of byte 53272 0001 1100 = 28

To calculate it in decimal, use:
(16 * Screen memory pointer) + Character memory pointer
(16*1) +12 =28
So, POKE 53272, 28

To calculate the POKE values of bytes 52 and 56, work out the number of
aK bytes (256) from O to the start of character memory. Use ordinary
addresses, not the VIC chip addresses.

In this example it is 12288/256 = 48

so POKE 52, 48 : POKE 56, 48 : CLR

Bytes 55, 56 indicate the end of BASIC program memory.

Bytes 51, 52 indicate the start of BASIC string storage.

Bytes 51 and 55 are 0 after a CLR or RUN and so can be ignored.

Some programs, such as the Programmer's Aide, check byte 644
instead of 55, 56 to find the end of BASIC memory. To avoid these
overwriting your character set you should POKE the same value into
644, if you're using such a program.

High Resolution Graphics

In low resolution graphics, characters are the focus of attention. You
define characters, you move characters around and so on. In high
resolution graphics the dots (pixels) which make up the characters are
the focus of attention. The difference between the two is in programming
technique, not in the way in which things are displayed.

86

Typically, in low resolution, the character set, once defined, is not
changed, while the screen memory is. In high resolution, screen
memory, once defined, is not changed, while character memory is. The
trick is to think of character memory not as defining characters, but as
defining the screen - one bit in character memory controlling one pixel on
the screen.

The following program demonstrates high-resolution plotting:

First, we set up our high-res screen and clear it

5 REM ¥ HIREES PLOTTIMNG x

i@ POEESZRTZ2 .29 tREM MOVE SCREEM
20 FOVESZEES 589 tREM HIRES BIT MODE
20 FORI=2192TO16191

48 FPOKET .2

[OOMENT

Next we POKE in the background colour by POKEing the colour codes
into Screen memory

£ FORJI=1AZ4TO2022

TOOPOKE 1,16

80 MEXT

=18

Finally a small routine to enable control of pixel plotting by using the A, D,
W and X keys
FOKE B5@.1
HR=8122
GET A%:IF Ax=""THENL1Z@O
IFASE="A"THENX=X-1
IFAL="D"THENX=X+1
IFAE="W"THENY=Y-1
IFAE="X"THEMY="v+1
following lines calculate the next pixel position and perform a
boundary test before plotting the next point

&

o
o

r

™ e 0
o)

[
TR

m W
I

]

e el
oy
@

5

P=HR+IMT(Y /82 %220+2 ¢ INT(X /8 2+ YANDT
IFF{81320RP>168191THENIZO

FOKE P,PEEK{PIOR{Z24{7-(HANDY2)

E07T0 126

mmmi
W = D
]

]

87

This creates a 320 x 200 pixel hi resolution screen. Now, to change a
pixel, we merely need to change the bit in character memory
corresponding to it. If we consider the high resolution work area as a 320
x 200 grid:

0 X 320
0 >
Y
200 w

we can give any pixel X and Y co-ordinates and work out the bit to change
as follows:
CHAR = INT (X/8)
ROW = INT (Y/8)
BYTE = 8192 + ROW * 320 + CHAR *8 + (Y AND 7)
BIT=7-(XAND7)
To turn 1 bit on while leaving the other bits in the byte unchanged, OR a
mask with the current value of the byte.
e.g POKEBYTE, PEEK (BYTE)OR (2 : BIT)
Suppose we want to turn on the pixel with co-ordinates (35, 32). For the
sake of the example assume the relevant byte has a value of 47. Using
the formulae above we get:
POKE 9504, PEEK (9504) OR2 : 4
214 00010000
ORPEEK(9504) 00101111

gives 00111111
To turn off a bit, AND NOT a mask with the current value of the byte
e.g POKEBYTE, PEEK (BYTE)ANDNOT (2 : BIT)
To turn off the bit we just turned on
POKE 9504, PEEK (9504) ANDNOT (2 : 4)

2.4 00010000

NOT2t4 11101111

AND PEEK (9504) 00111111
gives 00101111

88

The following example program plots a sine curve on the high resolution
area.

I
28 FORI=219
20 POKEER
40 POKES ,
S0 FRIMT CHR%(
€A FCR J=1824
FORK=0TO220
Y=102+SIN H-/502% 100 : GOSUEZ2AR
MHERTS
GOTOLZ8
LIMNE=YANDY
EYTE=8182+INT. Y. 8) %320+ IMNT{ K/ /8)%8+L INE
BIT=7-(=AND7>
POKERYTE ,PEEK(EYTEOR.(2tBIT2
RETURM

[
= 3
m o e

-) L
om0

MMM mMmIimy -
w n
o3

D
3

Unfortunately, BASIC is too slow for most high resolution applications. It
is generally better to use machine language programs which are many
times faster.

Multicolour Characters

So far, each character position has been restricted to 2 colours -
background and character. At the expense of resolution, it is possible to
add two more colours - border and auxiliary.

Instead of a character position being 8 x 8 dots, in multicolour mode it is
4 x 8 dots - i.e. it takes 2 bits to define a dot, which is now 2 pixels wide.

e.g.

screen dot 3 2 1 0

character byte 10 00 01 11

The colours selected by each 2 bits are as follows:

Bit Pair COLOUR REGISTER LOCATION
00 Background #0 (screen colour) 53281
01 Background #1 53282
10 Background #2 53283
11 Lower 3 bits in colour memory Colour RAM

89

When designing multi-coloured characters, the POKE values for
character memory are calculated exactly as for normal characters.

You know how to set background, border and character colours. The
auxiliary colour can be any of the 16 background colours - the following

codes apply:
0 - Black 8 - Orange
1 - White 9 - Brown
2 - Red 10 - Light Red
3-Cyan 11-Grey — 1
4 - Purple 12-Grey — 2
5-Green 13 - Light Green
6 - Blue 14 - Light Blue
7 - Yellow 15-Grey — 3

It is set by POKEing the relevant value into the locations from the bit-pair
table.

The video chip must be made to interpret character memory bytes as
multicoloured. To do this, bit 4 of location 53270 must be setto 1 and bit 3
of each colour memory byte that you want multicoloured mustbe setto 1.
So when you POKE the colour codes into colour memory add 8 to the
normal codes. The same technique applies to characters PRINTed.
POKEing the usual code + 8 into byte 646 will make the Video chip
interpret character codes as multicoloured characters when PRINTing.

Multicolour and normal resolution characters may be mixed by setting
the 4th bit on some colour memory nybbles and not on others.

EXTENDED BACKGROUND COLOUR MODE

The single additional ability given to you in this mode is the ability to
control the background colour of a character position on the screen
independent of the global background colour.

However, once this mode is selected, you can only address the first 64
characters in your programmable character set. This is because two of
the bits of the character code are used to select the background colour.
Use the following table to select the extended background colours for
characters POKEd onto the screen.

Character range Background Colour Register
0—63 53281
64 — 127 53282
128 — 191 53283
192 — 255 53284

To select extended background colour mode, use:
POKE 53265, PEEK(53265) OR 64

90

MULTICOLOUR BIT MAP MODE

Multicolour bit map mode works in the same way as standard bit map
mode except that plotting is done in multicolour. This mode suffers the
same resolution loss as multicolour mode owing to the bit pair colour
representation. The bit pairs don’t represent the same colour information
as in multicolour mode. The bit pair colour table for multicolour bit map
mode is as follows:

Bits Colour information

00 Background colour #0

01 Upper 4 bits of screen memory

10 Lower 4 bits of screen memory

11 Lower 4 bits of colour memory for that byte

Multicolour bit map mode is selected by setting bit 5 in location 53265
and bit 4 of location 53270.

Use the following BASIC statement to achieve this:

POKE 53265, PEEK(53265) OR 32 : POKE 53270, PEEK(53270) OR 16

SPRITES

A sprite is a form of user defined character that is controlled by a powerful
video chip called the 6566. Up to 8 sprites can be displayed at a time
automatically. More sprites can be displayed using Raster Interrupt
techniques. Sprites have the following advantages over user defined
characters:

1. Pixel by pixel movement in any direction

2. The 24 by 21 pixel sprite shape can be moved as though it were a
single character

3. Magnification (2X) in both horizontal and vertical directions

4. Independent high-res/multicolour mode

5. Selectable sprite to background overlay priority

6. Sprite to sprite collision detection

7. Sprite to background collision detection.

A sprite is larger than a character therefore more data is needed to define
the shape of a sprite. A sprite is 24 pixels (3 bytes) wide and 21 pixels
high which gives us a total of 3 x 21 = 63 bytes of data to define the shape
of asingle sprite. Even though a single sprite is made up of so much data,
the video chip moves the sprite as if it were a single character.

Sprite Pointers

The 64 byte blocks of data that define the shape of each sprite can be
placed in any 64 byte multiple of unused memory. In order to tell the video
chip where in memory each sprite-shape block is located, eight sprite
pointers are provided.

91

The shape of a sprite may be changed by adjusting the sprite pointer
allocated to that sprite to point to a different block of sprite-shape data.
Using this method a single sprite may be animated by quickly changing
the sprite’s pointer to switch through a series of shapes provided for that
sprites’s animation (e.g. an explosion). Switching the pointer rather than
switching between sprites leaves the other sprites free for other uses.
The sprite pointers are the last 8 bytes of unused screen memory (2040
— 2047). If you move screen memory, the pointers will move with it (but
not their contents). You must remember when setting up your sprite
pointers that the pointer must point to the first byte within the sprite and
that the value in the sprite pointer is the actual memory location of the
sprite over 64. Therefore, the following formula applies:

Location = Sprite pointer * 64

Also if you are not using video bank #0 (default bank) then you must also
add bank number * 16384 to the location. If you haven't switched video
banks, then don't worry.

Two important points to remember when choosing where to put your
sprite data in memory are 1, its location must be a multiple of 64, and 2,
check the memory map to make sure that you are only using spare
memory.

Turning Sprites On
For a sprite to be displayed to the screen, it must be turned on. The
memory location where the video chip gets its information on which
sprites should be turned on and which should be turned off is location
53269. The 8 bits within byte 53269 are labled from right to left 0 — 7.
Therefore, if we label our sprites from 0 — 7 then we easily determine
which sprites should be on and which should be off by the value
contained in byte 53269. The way that the on/off status of each sprite is
determined is a follows:
A1 inthe bit corresponding to the sprite determines that the sprite should
be displayed (turned on) and a 0 determines that the sprite should not be
displayed (turned off).
€g. 76543210

11010111 =215
therefore the statement POKE 53269, 215 would supply the video chip
with the following information:
Sprites 7, 6, 4, 2, 1 and 0 are to be turned on.
Sprites 5 and 3 are to be turned off.
To turn on a single sprite without effecting the others, use the following
statement:
POKE 53269, PEEK (53269) OR (2 1 SN)
where SN is the sprite number (0 — 7)
To turn off a single sprite without effecting the others, use the following
statement:
POKE 53269, PEEK (53269) AND (255 —2 ¢ SN)

92

Sprite colour

High resolution (single colour) sprites can be any one of the 16 colours.
The colour of each sprite 0 — 7 should be POKEd into their respective
colour registers, memory locations 53287 — 53294 (see video register
map). Each pixel turned on within the sprite will be displayed in the colour
determined by the sprite’s colour register. Each pixel turned off will be
displayed in the colour behind the sprite (i.e. it is transparent).

Multicolour Sprites

In multicolour mode, it is possible to have four different colours in each
sprite. Though, as with multicoloured characters, multicoloured sprites
have only half the resolution of single coloured sprite (ie. pixels must be
displayed in pairs). The following table gives the colours determined by
each bit-pair combination.

Bit pair Resultant Colour

00 Transparent (screen colour)

01 Sprite multicolour register #0 (location 53285)
10 Sprite-colour register

11 Sprite multicolour register #1 (location 53286)

The register that holds information on which sprites are multicolored and
which sprites are not is mapped to location 53276.

To set a sprite to multicolour, use the following statement:

POKE 53276, PEEK(53276) OR (2 + SN)

where SN is the sprite number (0 — 7).

To switch a sprite out of multicolour mode, us the following statement.
POKE 53276, PEEK (53276) AND (255 —2 + SN)

Expanding Sprites

Sprites can be expanded vertically, horizontally or both. A sprite is
expanded by putting 2 pixels in place of 1 and 2 blanks in place of 1 in the
direction of expansion thus giving a 2X expansion. To expand a sprite
horizontally, the corresponding bit in location 53277 must be setto 1. To
unexpand the sprite, the bit must be set to 0. Vertical expansion is done in
the same way using location 53271. The POKE statements to control
expansion and unexpansion of sprites are as follows:

Horizontal expansion

POKE 53277, PEEK (53277) OR (2 t SN)

Horizontal unexpansion

POKE 53277, PEEK (53277) AND (255 -2 t SN)

Vertical expansion

POKE 53271, PEEK (53271) OR (2 t SN)

Vertical unexpansion

POKE 53271, PEEK (53271) AND (255 — 2 t SN)

where SN is the sprite number from 0 — 7.

93

Sprite Movement

Sprites are moved around the display by changing the values in each
sprites’s horizontal and vertical position registers. These registers are
mapped to memory location 53248 to 53263 and a most-significant-bit
(MSB) register at location 53264. The MSB register is used to rectify the
problem of horizontal screen width. The MSB register works as follows.
In order to gain pixel by pixel movement, the horizontal position register
needs to be able to hold values from 0 to 299 (screen width). A single
register can only hold values from 0 to 255 therefore we need at least one
more bit to handle values up to 299. An extra bit (9th bit) would allow us
control over positions 0 to 511. This is the purpose of the MSB register.
The bits in the MSB register correspond to the sprite number. (ie. bit O for
sprite 0, bit 1 for sprite 1, etc.) A register map of all sprite positioning
registers is as follows:

Location Use of Register
53248 Sprite 0 X position
53249 Sprite 0 Y position
53250 Sprite 1 X position
53251 Sprite 1 Y position
53252 Sprite 2 X position
53253 Sprite 2 Y position
53254 Sprite 3 X position
53255 Sprite 3 Y position
53256 Sprite 4 X position
53257 Sprite 4 Y position
53258 Sprite 5 X position
53259 Sprite 5 Y position
53260 Sprite 6 X position
53261 Sprite 6 Y position
53262 Sprite 7 X position
53263 Sprite 7 Y position
53264 Sprite (0 — 7) MSB register

Note that horizontal positions 24 and 344 are the left and right
boundaries of the screen. Sprites continue to move outside this range but
cannot be seen.

It's about time we had a look at one of these sprites. Study the following
program and its comments. Type it in and run it.

! REM #xx SQUARE ¥x¥
% REM *CLEAR THE SCREEM TO BLUE WITH A EBLACK
EORDER

10) 1POK @,0:POKES3281,E
15 R PRITE-P FO#A TO POINT TG
LocA 2

za P

25 SOUARE SPRITE IN MEMORY
Lec 32+63

20 824 :1FOKE MEM, 2SS MNENT
49 £39 STEF 2

=0 OKEMEM+ 1,8 POKEMENM+2, 1
€0

70 (POKEMEM, 255t MEXT

7S MNMING OF WIDEQ CHIP

20

25 SPRITE #0

20 POKE VIDEO+21,1

25 REM %CHOOSE THE COLOUR WHITE FOR SPRITE #
1AR POKE VIDEQ+33,1

199 REM #MOVE SPRITE ACROSE SCREEM

118 ¥=108 : POKE VIDEQ+1,Y:FOR X=2 TOQ 247
115 REM xCALCULATE H-FOSITION AMD MSE

120 MSE MAREEY 1 MP=X-RSE4MSE

130 POKE YINEOQ+D,XP: POKE VIDEQ+1E,MSE
1492 MR

Run the program and you should see a square sprite float across the

screen.

e To expand the sprite in the horizontal and vertical directions before

moving, add the following line:
105 POKE VIDEO + 29, 1 : POKE VIDEO + 23, 1
and run the program again.

The following program allows you to use the cursor keys to draw a sprite
by editing DATA statements. Type RUN 1, then use the cursor keys to
move around the DATA statements. Use the shift Q character to signify a
pixel-ON and a full-stop to signify a pixel-OFF. When you have finished
drawing your sprite, move the cursor to the top of the screen, then keep
hitting the RETURN key until you have entered all of the DATA
statements. Now type RUN, and the program will generate the sprites
and the DATA statements needed to generate that sprite. To store these
DATA statements, use the same method as you used on the last set of

DATA statements.

fn GOTO1A
1 PRINTCHR#{ 147) :POKESZZ
18 PRINTCHR#${ 147> :FORI=BTOE3Z:POKE

95

69,0:LISTZ

=3
532

SO
+1,

BiMERT

W]

15 POKES3z20,68:POKESZ2281 ,E
2 GOTO &8
23 REM. . .R1224567230 1224567830123
20 DATA "e. . ne00aacSRI0OCERECEEREE"
1 DATA "a8..00800008000800308808"
22 DATA "s. 8. . ceceBccoEoORREEOOER"
"S..8. . . 23230220220 000888"
"€#...%, . CERANNUNRCECREIRER"
"E....%..08000000030000288"

"#.,....8,. . sEERCEGRREECEGN"
"$......8..823500000500088"

"B il B, . BESACEROEQRRERE"
"S........8..600080008880"

"l iiia..0. . SAGBGCARENS"
"#.:..0005..98. . 08000088088"

B .. 80800888 "

™™ "$........:...8,..00808080"

T &. . se0008"

43 DATAE "a. seaaa. 8. . 000888"
A8 DATA "®. .ot anaanaa &, . BEO08"
T OATA "@. .. i, c..a888"
42 DATA "®. ...t e nncsszzas &®..880"
13 DATA "®. i s s s s s aaa s ®..80"

50 DATA "S0LeeLEeERRNASQRBEERE. . 8"

S0 VU=532242:POKEY+16, 1 :POKEV+1,50 :POKEV+21,
1:POKEV+33,3:POKEZB048,13

TR POEEVY+2Z 1 tPOKEY+23 1

20 FORI=ATOSO:PRINTIOEO+I: "DATA"; :READAFIFORK=
B8T02: T=0:FORJ=0TOV:B=0

an IF MIDEARE, J+H %2+1,12=" " THEMNB=1

1080 T=T+B#2t{7-J2:NEXKT:PRINT T:","::FPOKE 832+

¥3+K, THNEXT:PRINT"I ":NEXT

11 ERD

2008 PRIMTCHR®C 192 tEMND

N SAVE"RAISFRITE" .2

9010 VERIFY"SPRITE",Q

SPRITE DISPLAY PRIORITIES

Sprite priority determines if the sprite should appear in front or behind
another background. If the background is another sprite, then the priority
is fixed by the sprite’s sprite number. Sprite O has the highest priority,
sprite 1 has the next priority, and so on, up to sprite 7. For example, if

96

sprite 0 and sprite 7 are positioned so that they cross each other, sprite 0
will be in front of sprite 7, though you would be able to see sprite 7 through
sprite O (unless of course sprite 0 was a completely filled square). Sprite
to background priority is more flexible in the way that each sprite can be
set with priority above or below the background. The sprite to
background priorities are controlled by the sprite priority register
(memory location 53275). A 1 in the bit number corresponding to the
sprite number will set that sprite with a lower priority than the
background. A 0 in this bit position will give the sprite a higher priority
than the background. By moving sprites back and forth over other
objects, at the same time changing the sprite-background priorities, it is
possible to make it look as if the sprites are moving in front and behind the
object thus creating a three dimensional effect.

The following program overlays 8 sprites to demonstrate sprite priority:

REM % DEMOMSTRATIMG EIGHT SPRITES %
POKESZR280 ,6:POKES3281,0

FEIMT CHR#${ 147 "CREATING SPRITES"
POKE 32,82 :POKE 56,62 :P=248

FOR MEM=2040T02047 :POKEMEM,P:P=P+1
HEXT MEM

I O

[B

BYTE=272
FOR SH=8 TO 7 : PRINT SH
LOC=FEEK(2042+ZM) xE4
BYTE=BYTE/2:B=BYTE :ROL=8
FORMEM=LOCTOLOC+E3STEP2
IFSMK =3THEN149
ROW=ROL+1 : T=(ROW-SN-2 274 :1E=0
IF IMNT{T>=T THEN E=255
FOR COL=ATO2:FPOKEMEM+COL ,B:NEXT COL
MEXT MEM,SH

@

DO 0D

VIDEQ=52248:A=150:B=0

POKE YIDED+21,285:POKE VIDEQ+28,255
FOKE YIDED+37,1:POKE VIDEO+3S,1
C=0:FOFR R=38 TO 4€:C=1

POKE VIDEC+R,C:PRINTCHRS. 1472 1 NEXTR
I=AiA=B:B=1:D=SGMN B-A>

FOR SH=7 TO @ STEP-1

Z=11xC SN2 ¥ /=022

PRINT CHR%(147> "SPRITE" SN

0 - ~1m
DO A @A

TU TU TO M) b s e b b b b b b b p e (D00 =) M D 0 M) e (N
[B B N € I 1 Yy T B B
mo o]

Mo e 13 2

]

97

229 SHA=VIDEQ+SM#2 1 SY=2x+1

24R Y=a-D+4Z tFORA=A+ZITOR+ZSTERD Y=+l
2= POEE S, MIFPOKE SY.,Y

Zen MERT ,&8M

270 FOR PRUSE=1TOZA2AINEXT

o=@ GOTO 220

Sprite Collisions

Sprite collisions are detected by the computer and collision information is
stored in location 53278 for sprite to sprite collisions and location 53279
for sprite to another background collision. The bit setto 1 in each of these
registers corresponds to the sprite involved in the collision. The bit stays
set until the register is read (PEEKed). So if the collision information is to
be used more than once per collision, it would be a good idea to store the
value into a variable. Also, programs that use the sprite collision registers
should include in their initialization a PEEK of each of these registers to
clear them of previous collision data.

Note: A bit pair 01 in a multicoloured mode will not be detected in a sprite
to background collision, even though it can be seen on the screen. So, for
example, if you wish to have objects that should not cause a collision
(e.g- a cloud) then they should be coloured by using bit pair 01
(multicolour register #01).

SELECTING A VIDEO BANK

Even though there is 64K of RAM (Random Access Memory) available,
the video chip can only access 16K at any one time. The 16K block of
RAM that your program will use depends on your particular application.
The reason for this is that each of the 16K blocks have different memory
allocations to character generation. Then there is the problem of BASIC
residency. The following memory block descriptions should make this
clear.

| Memory | RAM seen by Character Memory
Block Video Chip Set Used Usage
0—4095 ROM System variables and
0 and 4096—8191 default screen memory
8192—16383 (Standard)
RAM Basic programs and variables
1 16384—32767 | any 2K multiple (2048— 40959)
(User generated) 1
32768—36863 ROM l String space
2 and 36864—40959 | _ v __ __ T __
40960—49151 (Standard)
RAM
3 49152—65535 | any 2K multiple
(User generated)

98

Two more things to remember when choosing a memory block are:-

e Sprites take up 64 bytes and their position in memory must be a 64
byte multiple.

e The high-res screen takes up 8K and its position in memory must be
an 8K multiple.

As seen from the previous table, the more memory your BASIC program
takes, the further up memory you will have to put your sprite data, hires
screen and alternate character set if any of these are used; otherwise
use the default screen at location 1024 — 2047.

The bank select bits that are used to select which of the four banks of 16K
memory you wish the video chip to get all of its sprite data, character set
and screen information from are bits 0 and 1 of location 53576. However,
before changing the contents of this location to choose your video bank,
you must first set bits 0 and 1 of location 56578 to 1. The BASIC
statement to do this is as follows:

POKE 56578, PEEK (56578) OR 3

The BASIC statement to select the video bank is as follows:

POKE 56576, (PEEK (56576) AND 252) OR (3 — BANK)

where the value of BANK depends on the following table:

Vv f .
Ba,&ur\?Ko BITS | BANK Egéﬂlgﬁ VIC -1l CHIP RANGE
0 00 0 0 0 — 16383 (Default bank)
1 01 1 16384 | 16384 — 32767
2 10 | 2 32768 | 32768 — 49151
3 11 3 41952 | 49152 — 65535

99

VIC-ll CHIP REGISTER MAP

Reg. # 7 I 6 l 5] 4 I 3 | 2 l 1 I 0

0 Sprite# 0 X — position

1 Sprite# 0 y — position

2 Sprite# 1 X — position

3 Sprite# 1 y — position

4 Sprite# 2 X — position

5 Sprite# 2 y — position

6 Sprite# 3 X — position

7 Sprite# 3 y — position

8 Sprite# 4 x — position

9 Sprite# 4 y — position
10 Sprite# 5 x — position
1" Sprite# 5 y — position
12 Sprite# 6 X — position
13 Sprite# 6 y — position
14 Sprite# 7 X — position
15 Sprite# 7 y — position
16 | Sprite #7 | Sprte #6 | Sprite #5 | Sprite #4 | Spiite #3 | Sprite #2 | Sprte #1 | Sprite #0
17 — [exemoeo] B [oumm [Seem | — e | —
18 Raster register
19 Light pen — x
20 Light pen —y
21 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprite #3 | Sprite #2 | Sprite #1 | Sprite #0
22 —_ — Reset Multi chee\n —_ ~orizontal _—

Multi colour width scroll

23 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprite #3 | Sprte #2 | Sprite #1 | Sprie #0
24 Screen location —_— — Character base — -
" IRQ | — | — | — |G S serelgafitoon Raster
26 IRQ J— —_ _— L‘;g[:‘ Spc'(‘:ﬁfsslgv'»"e oq:s Or(l)(‘ﬁm"l Raster
27 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprite #3 | Sprite #2 | Sprte #1 | Sprite #0
28 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprite #3 | Sprite #2 | Sprite #1 | Sprite #0
29 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprite #3 | Sprie #2 | Sprte #1 | Sprite #0
30 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprite #3 | Sprte #2 | Sprte #1 | Sprite #0
31 Sprite #7 | Sprite #6 | Sprite #5 | Sprite #4 | Sprte #3 | Sprite #2 | Sprae #1 | Sprite #0
32 Screen border Colour
33 Background Colour #0
34 Background Colour # 1
35 Background Colour #2
36 Background Colour #3
37 Sprite multicolour #0
38 Sprite multicolour #1
39 Sprite #0 Colour
40 Sprite #1 Colour
41 Sprite #2 Colour
42 Sprite #3 Colour
43 Sprite #4 Colour
44 Sprite #5 Colour
45 Sprite #6 Colour
46 Sprite #7 Colour

100

MSB of x
Mode y

position

scroll

Sprite enable
Multi colour x scroff
Sprite y — expand
Interrupt register
Interupt enable
Sprite - background priority
Sprite multicolour select
Sprite x - expand
Sprite to Sprite collision

Sprite to background collision

CHAPTER6

MACHINE LANGUAGE PROGRAMMING ON
THE COMMODORE 64

In this chapter, the following topics will be covered:

MICROPROCESSOR & MACHINE LANGUAGE

— Binary & Hexadecimal Numbering System
— Registers & Addressing

— Machine Code & Instruction Mnemonics
— Simple Machine Language Programs

MACHINE LANGUAGE PROGRAMMING ON COMMODORE 64

— Program Entry
— Program Execution
— Some Commodore 64 Useful Routines

MEMORY MAP & MANAGEMENT
— Memory Map & ‘Shadow Zone’
— Memory Management

— Some Memory Configurations

COMMODORE 64 KERNAL

— Concepts of Kernal & Operating System
— Power-up Instructions

— Using Kernal Routines

— Simple Programs that Call Kernal Routines

MICROPROCESSOR & MACHINE LANGUAGE

INTRODUCTION

A microprocessor is the central processing and control unit of a
microcomputer system just like the brain of a human being. As with any
other electronic devices, the only way to communicate with a
microprocessor chip is via electronic signal pulses. There are certain
combinations of puises that the microprocessor can understand which
form the basis of a Machine Language. A group of all the ‘words’ that a

microprocessor understands is called its instruction set.

Different microprocessors speak different machine languages. In a
Commodore 64, the central microprocessor unit is named 6510. For

101

those of you who have heard of the famous 6502 which can be found
inside Apple, Atari and other Commodore models, 6510 is its cousin.|t
has the same instruction set as its better known relative. The only major
difference is that 6510 has an inherent I/O port which makes it
impossible to use the first two bytes of RAM.

BINARY & HEXADECIMAL NUMBERING SYSTEM

In the eyes of a microprocessor, an electronic signal can only have either
one of the two states — a ‘0’ or a ‘1. As we are going to work with a
microprocessor, we had better learn its numbering system, called binary,
in which every number is made up of a bunch of ‘0’ bits or ‘1’ bits (BIT is an
acronym for Blnary digiT). The 6510 processor is an 8-bit machine which
means all the numbers it knows range from 00000000, 00000001,
00000010, ...upto 11111111,

For those of you mathematicians, the largest number is:
IX2+IX2B+1X2B5+1x22+1x2B8+1x22+1x2' +1x2°=255
in our human decimal system. The conversion between binary and
decimal numbers is by no means a trivial exercise. (Can you tell
immediately whether 10111010 is larger than 1807?) An intermediate
numbering system was invented to facilitate conversion to and from
binary numbers and on the other hand save the finger-counting feats. Itis
called hexadecimal which means 1 digit has 16 counts.Conversion with
binary numbers is simple because this one digit can represent all

combinations of 4 bits.

Conversion Table of Hexadecimal, Binary and Decimal
Note: 6502 programmers’ % $ convention of prefixing binary and
hexadecimal numbers. Decimal numbers do not have a prefix.

Decimal Count Binary Bits Hexadecimal Digit
0 %0000 $0

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

CoNOOOBRWN =

—_
— O

MMOOTD>OONOOOTPWN =

—_ i A
(6200 NP \V)

102

1. HEXADECIMAL — BINARY CONVERSION

It is a straight-forward table look-up exercise once you remember 1
hexadecimal digit is equivalent to 4 bits. Always start conversion from the
least significant digit (ie. rightmost digit).

Example:

Y% 1000

1011010111 100C
Pyl e
$ 2D 7 8

2. HEXADECIMAL — DECIMAL CONVERSION

Conversion with decimals requires more arithmetic

a) Hexadecimal to Decimal

Look-up the decimal equivalent of each hex. digit before multiplying it by
its ‘weight’ factor.

Example:

$ 2 D 7 8

" v v "
R2x16° + 13%x162 + 7x 16 + 8 = 11640

It might be slightly simpler to work from the most significant digit (ie.
leftmost digit) in this case:-

(i) multiply the digit by 16

(i) add the digit to its right

(iii) iterate from (i) unless it is the last digit.

Example:
$ 2 D 7 8
i o

((2x16+13) x 16+7) x 16+8 = 11640

b) Decimal to Hexadecimal
Divide the decimal number by 16 repeatedly. Convert remainders to hex

representation.

Example: 2 45 707
16354 16J727% 1617640
32 64 112
13 87 44
2 80 32
D 120
7 112
8

11640 - $2D78

3. DECIMAL — BINARY CONVERSION

This is best done by converting the original number to its hexadecimal
equivalent and complete the conversion to the desired number system.

103

REGISTERS & ADDRESSING MODES

A. 6510 PROCESSOR REGISTERS

Registers are the actual working vehicles inside a microprocessor. They
hold the crucial data for processing. All 6510 registers except one are
8-bits wide. The exception is the Program Counter which is 16-bits wide
enabling the processor to address 2'¢ or 64K bytes of memory.

1. ACCUMULATOR (A)

The Accumulator is responsible for data manipulations such as memory
load/store, addition/subtraction and other logical operations. Hence, it is
often regarded as the most important register. In fact, if there ever exists
a microprocessor with 2 registers only, one of them must be the
accumulator.

2. X and Y INDEX REGISTERS (X, Y)

The primary function of an index register is to point at a memory location
for data manipulations. Other uses of an index register include temporary
storage, counter and memory load/store.

The 6510 has 2 index registers which makes indexing very efficient.
They differ slightly from each other in the most advanced addressing
modes. X index register specialises in Index Indirect addressing while Y
index register is for Indirect Index addressing. This will be explained in
detail when we talk about Addressing Modes later on.

3. STACKPOINTER (SP)

A stack is a very important data structure in microprocessor
programming or in fact in any computer. It is a block of memory where
temporary storage is available. Data are stored on a Last-In, First-Out
(LIFO)basis. You can imagine it as a stack of plates, where the one on
top is the one most recently added and will be the first one to be removed.
The Stack Pointer is an 8-bit register that keeps track of the next
available location or the top of the stack. In 6510, the stack is assigned to
page 1 of memory (ie. address $0100 — $01FF) so that the high order
address is always $01. The stack pointer is initialized at $FF and
decrements towards $00 when something is pushed onto the stack.

The stack is used by the processor intrinsically to store the return
address when a subroutine is called or when an interrupt occurs. It can
also be used by programs that require data storage/retrieval in a LIFO
fashion.

4. PROCESSOR STATUS REGISTER (PS or SR)

The Process Status Register is 8-bits wide and consists of 7 flags which
indicate various status of the processor.

104

bit 7 bit 0
IN[v] [B|D|1 [z]cC

Processor Status Register Flags

a) Negative or Sign Flag (N)

— Set when the result byte of an operation has its bit 7 set (showing a
negative number in 2’s compliment representation)
b) Overflow Flag (V)

— Setwhen an operation results in a carry from bit 6 into bit 7 (showing
an overflow in case of 2’'s compliment addition/subtraction)
c) Break Flag (B)

— Set when an interrupt is caused by a BRK instruction (not by a
hardware interrupt)
d) Decimal Flag (D)

— Set o let the processor operate in decimal of BCD mode (not binary
mode)

e) Interrupt Disable Flag (l)

— Set to disable any interrupt from hardware interrupt request.
f) Zero Flag (Z)

— Set when an operation results in a zero byte or equality in a
comparison
g) Carry Flag (C)

— Set when an operation results in a carry/no-borrow in an addition/
subtraction. It also serves as the 9th bit extension of the accumulator in a
shift/rotate operation. It is sometimes used as a user flag because it is
easily programmable and does not have any effect on most operations.

5. INPUT/OUTPUT PORT

This unique 1/0 port of 6510 actually has 2 registers. At address $0000 is
a Data Direction Register which controls the direction of traffic of the
individual 1/0 lines. At address $0001 is the Data Register or the port
itself.

6. PROGRAM COUNTER (PC)

The Program Counter is the only 16-bit register in the processor. Its sole
function is to keep track of where the program is heading. It always points
at the memory location from where the processor fetches its next
instruction. Remember the processor with only 2 registers? A program
counter is the other crucial register besides an accumulator.

B. ADDRESSING MODES

Addressing modes are the various fashions in which the processor
specifies or addresses an operand. In 6510, there are 9 addressing
modes, some of which have several names:-

105

— implied, implicit or intrinsic addressing (including accumulator
addressing)

— immediate addressing

— absolute, absolute direct or extended addressing

— zero-page or zero-page direct addressing

— relative addressing

— indirect addressing

— indexed addressing (including zero-page indexed addressing)

— indexed indirect or pre-indexed indirect addressing

— indirect indexed or post-indexed indirect addressing

1. IMPLIED ADDRESSING (INCLUDING ACCUMULATOR
ADDRESSING)

Implied addressing is used by single-byte instructions to operate on
registers. Operands need not be specified; they are implied by the
instructions themselves. Instructions using this addressing mode include
register-register transfers, status flags set/clear, stack push/pop, etc.
Example:

TAX — transfer accumulator to X index register

CLC — clear carry flag

RTS — return from subroutine (modifies SP and PC)

2. IMMEDIATE ADDRESSING

The operands, mostly 8-bit constants, follow the instruction opcodes
immediately. Instructions that use this addressing mode include register
loads, arithmetic/logical operations and comparisons.

Example:

LDX #255 — load X index register with 255 or $FF

AND #$80 — logical AND accumulator with bit 7 only

CPY #0 — compare Y index register with 0

3. ABSOLUTE ADDRESSING

With this addressing mode, the 2 bytes that follow an opcode specify the
effective address of the operand. All instructions that work with an
operand in memory can use this addressing mode.

Example:

ADC $1100 — add contents of memory location $1100 to accumulator
EOR $D004 — logical exclusive-OR accumulator with contents of
location $D004

JSR $1234 — jump to subroutine at $1234

4. ZERO-PAGE ADDRESSING

This is similar to absolute addressing except that the operand lies in page
0 ($0000 — $00FF). The instruction will be 2 bytes long only because 1
byte is sufficient to specify any location in the page 0. Variables that are

106

often manipulated by a program should be stored in page 0 to take
advantage of the memory efficiency of this addressing mode.
Instructions that use this addressing mode are similar to those which can
use the absolute addresing except the 2 jump instructions — JMP and
JSR which always require a 16-bit address.

Example:

STY $12 — store Y index register at $0012

INC $20 — increment memory location at $0020 (by 1)

5. RELATIVE ADDRESSING

Relative addressing is used exclusively by Test and Branch instructions
which are 2 bytes long. The first byte is an opcode which tells what test to
perform. The second byte is a signed offset or relative count which tells
how many bytes to branch forwards or backwards if the test succeeds.
Example:

BNE —128 — branch backwards 128 bytes if Zero Flag is clear.

BMI +127 — branch forwards 127 bytes if Negative Flag is set

(Note: —128 and +127 are maximum branch limits)

BCC 0 — no effect ; always proceed with next instruction regardless of
the test result.

6. INDIRECT ADDRESSING

This addressing mode is only used by 1 instruction in 6510 — JMP. With
this addressing mode, the destination of the jump operation is secified by
2 consecutive memory locations whose address follows the JMP
opcode. Such locations that store destinations are known as Vectors.
Example:
JMP ($0300) — jumps to location whose address is found in memory
$0300 (low order) and $0301 (high order)

, .

Jum

$AC54 $6C Indirgct 433000 [$32 [low byte of destination address

$00 | using 7 $3001 $D4| high byte of destination address

vector / -

Program $30 | $3000° -7

actually 1 ! - -

jumps here l ‘k -

$D432 ! h

7. INDEXED ADDRESSING (INCLUDING ZERO-PAGE INDEXED
ADDRESSING)

The effective address of the operand is determined by adding the
contents of the index register (X or Y) to the base address. This base
address can be 1 byte or 2 bytes long, depending on whether itis in page
0 or not. This addressing mode is useful when a range of memory
locations (less than 256 bytes) is processed sequentially such as a block
move.

107

Example:
LDA $10,X — load accumulator with contents of address $10 + X
STA $0310,Y — store accumulator at location Y bytes away from $0310

8. INDEXED INDIRECT ADDRESSING

This addressing mode only works with the X index register and a table of
indirect pointers in page 0. The effective address of the operand is found
in 2 consecutive memory locations whose address is the sum of the
content of X index register and the base address in page 0. This
addressing mode is useful when you have several possible operands
which are pointed to by a table of indirect pointers and the X index
register can decide which one in the table.

(Note: Remember that each entry of indirect pointers is 2-bytes long and
hence the X index register should generally be a multiple of 2)
Example:

LDX #2

LDA ($40,X) — load accumulator with a memory byte whose address is
specified in $42 (low order) and $43 (high order)

X A $0040
LDX #2 2] 41
42[$Ce
LDA ($40.X)[_2] 43] $82 }‘\;
! $82C6
€« I !

9. INDIRECT INDEXED ADDRESSING

This addressing mode only works with the Y index register and a table of
data whose base address is stored as pointers in page 0. The effective
address of the operand is the sum of the content of the Y index register
and the base address pointer found in 2 consecutive memory locations in
page 0. This addressing mode is useful when you have several tables to
process and their base addresses are stored as page 0 indirect pointers.
A block move can be done very efficiently using this addressing mode.
Example:

LDY #3

LDA ($10),Y — load accumulator with the 4th entry of a table whose base
address is stored in $10 and $11 (low, high order)

$10| 32 }--u; $0832

Y A $11 08 33

LoY #3 [2 3
a0y [3| 35 | SFE
\
Lo] Ceed, . __ ___

108

MACHINE CODE AND INSTRUCTION MNEMONICS

Allthe machine code instructions of an 8-bit microprocessor are made up
of bytes. In 6510, the instructions are 1-byte, 2-bytes or 3-bytes long. To
a microprocessor, all instructions are purely numbers but it will be
extremely difficult for a human to write a program in a series of numbers.
Mnemonic words are invented to help the programmers memorise each
instruction.

For instance,

A9
LDA #0 00
STA $D001 is more meaningful than 8D
01
DO

The 6510 instruction set can be classified into 4 groups by functions
— data transfer

— arithmetic and logical operations

— program control

— miscellaneous

MNEMONIC CONVENTIONS

Registers

A - Accumulator P — Processor status register
X — Xindex register S — Stack pointer

Y — Y index register

Processor Status Flags

C— Carry | — Interrupt disable
D — Decimal V — oVerflow

A. DATA TRANSFERS
1. Register — Register Transfer
Format: Tpq — Transfer register p to register q
Instructions: TAX, TXA, TAY, TYA, TXS, TSX
2. Register — Memory Transfers
Format: LDp — LoaD register p with memory
STq— STore register q into memory
Instructions: LDA, LDX, LDY
STA, STX, STY
3. Register — Stack Transfer
Format: PHp — PusH register p onto the stack
PLq — PulL register q off the stack
Instructions: PHA, PHP
PLA, PLP

109

B. ARITHMETIC AND LOGICAL OPERATIONS

1. Add/Subtract with Carry/Borrow
Instructions: ADC, SBC

2. Increment/Decrement
Instructions: INX, DEX, INY, DEY (index registers)
INC, DEC (memory)

3. Logical AND, OR and Exclusive-OR
Instructions: AND, ORA, EOR

4. Comparisons
Instructions: CMP, CPX, CPY — comparisons with A, X, Y
BIT — bit-to-bit AND with A

5. Shift/Rotate

Instructions: ASL — Arithemetic Shift Left éet&]‘—o
LSR — Logical Shift Right 0 aifI:_l&J—ﬂﬁ
ROL — ROtate Left O[T T«
ROR — ROtate Right r’ —»Lf]

C. PROGRAM CONTROL
1. Test and Branch
Instructions: BPL — Branch if PLus (N flag clear)
BMI — Branch if Minus (N flag set)
BNE — Branch if Not Equal zero (Z flag clear)
BEQ — Branch if EQual zero (Z flag set)
BCC — Branch if Carry flag Clear
BCS — Branch if Carry flag Set
BVC — Branch if oVerflow flag Clear
BVS — Branch if oVerflow flag Set
2. Unconditional Jump
Instruction: JMP
3. Jump to and Return from Subroutine
Instructions: JSR, RTS
4. Software Break and Return from Interrupt
Instructions: BRK, RT!I

D. MISCELLANEOUS
1. Flag Clear/Set
Format: CLf — ClLear flag f
SEf- SEtflagf
Instructions: CLC, CLD, CLI, CLV
SEC, SED, SEI
2. No OPeration
Instruction: NOP

110

6510 MICROPROCESSOR INSTRUCTION SET

IMP IMM | Z-PG.| ABS | ABS,X| ABS,Y| Z-PG,X|Z-PG,Y| (IND,X)| (IND),Y| REL | IND Processor Sta

Mnemonic Operation #=1| #=2| #=2| #=3| #=3| #=3] #=2| #=2| #=2| #=2 | #=2| #=3] N|V pDl1lzZlcC
ADC A+M+C—>A 69 [65 [6D |[7D [79 |75 61 |71 /v /1y
AND A X MsA 29 25 2D 3D 39 35 21 31 J /
ASL Cell__0le-0 |0A 06 |OE |[iE 16 / /v
BCC branch on C=0 90
BCS branchon C=1 BO
BEQ branchonZ=1 FO
BIT AxM 24 |2C M7M6
BMI branch on N=1 30
BNE branch on Z=0 Do
BPL branch on N=0 10
BRK PC—(S)--, P—(S)- 00 1
BvVC branch on V=0 50
BVS branch on V=1 70
CLC 0—~>C 18 0
CLD 0—-D D8 Q
CLI 01 58 o]
CLv 0>V B8 0
CMP A-M C9 |C5 |CD |Do |[D9 |Ds C1 |Dt v A
CPX X-M EO |E4 |[EC v AR
CPY Y-M Co _|C4 |CC J L1y
DEC M-Il->M Cé |(CE |DE D6 v v
DEX X-1= X CA J J/
DEY Y-l->Y 88 J v/
EOR AXM>A 49 45 4D 5D 59 55 41 51 J /
INC M+l M E6 |EE [FE E6 N A
INX X+1—>X E8 J v
INY Y+1->Y (07:] i J/
JMP M;s —PC 4C 6C
JSR PC—(S)-,M;g—>PC 20
LDA M—>A A9 |A5 |AD |BD |B9 |B5 A1 B1 v J
LDX M—-X A2 |[A6 |AE BE B6 J v/
LDY MY A0 [A4 |AC |[BC B4 J/ v

111

iMP | IMM | 2.pG.| ABS | ABSX| ABS.Y| Z-PG,X|Z-PG.Y| (IND,X){ (IND),Y| REL | IND Processor Status

Mnemonic Operation #=1| #=2| #=2| #=3| #=3| #=3| #=2 | #=2| #=2| #=2 | #=2| #=3| N|V|-B|D| 1| 2Z|C
LSR 07 __o»C 4A 46 | 4E | 5E 56 0 ari
NOP PC+1—>PC EA
ORA AVM - A 09 | 05 [OD | ID |19 | 15 o1 | 1 / v/
PHA" 74| A—>(S) - 48
BHP- ~#p2| P—>(S)- 08

PLA (S)+ >A 68 J v/
PLP (S)+ >P 28 JIVIVIVIVIVTY
ROL 2A 26 | 2E | 3E 36 v/ v/
ROR (= 6A 66 | 6E | 7E 76 v /v
RTI P,(5): +-PC,S+1+5| 40 JIVI VYV
RTS (S),. +1—PC 60
SBC A-M+C—>A EQ9 | ES | ED | FD | F9 | F5 E1 | F1 /1 AN
SEC 1—-C 38 1
SED 1-D F8 1
SEI 11 78 i

STA A-=>M 85 8D | 9D | 99 95 81 91

STX X—>M 86 | 8E 96

STY Y=>M 84 8C 94

TAX A>M 7 2= AA v v
TAY A—Y A8 / J
TSX S>X BA v /
TXA X—A 8A / v/
TXS X—-S 9A

TYA Y—>A 98 v/ v

A Accumulator M, 16-bit Operand in Memory - Subtract J Modified

X X-Index Register (S)- Operand Pushed on Stack A AND 1 Setto 1

Y Y-Index Register (S)-- 16-bit Operand Pushed on Stack v OR 0 Clearto 0

P Processor Status Register (S), Operand Popped off Stack - Exclusive OR M; Memory Bit 7
S Stack Pointer (S). ., 16-bit Operand Popped off Stack # No. of Bytes for Instruction Mg Memory Bit6
PC Program Counter + Add

M Operand in memory

112

SIMPLE MACHINE
LANGUAGE PROGRAMS

Here are a couple of simple machine language programs to get yourself
familiar with the instructions and different addressing modes of the 6510
microprocessor.

A. CONVERTING ABINARY BYTE VALUE TO 2 ASCIIHEXADECIMAL
DIGITS

This program converts a binary value to 2 hexadecimal digits in ASCII
values and puts them in a buffer. It illustrates the uses of some data
manipulation instructions and the calling of subroutines.

Main conversion program. BINASC
A0 2A C@ binasc 1da binary jget binary
43 pha isave 1t
v A lsr a
: 4n lsr a
1A lsr a sraight shift 4 tines
JA lsr a sto et high naibble down
9 20 Co Jsr hexasc sconvert tu n3CIl! value
; AC 2B Co ldy bufptr ;
943 2C Cco sta buff,, jput an buffed
H <3 iny sbumg butter puilnter
$ r38 Ppla et banary again
+ 23 OF and H$It JmaikK to get low nibble
] 20 20 Co Jsr hexasc ;convert to ASCII
I 39 2C Co cta butf,y Jput in buffer
47 C8 Ny
3C 2B Ce sty bufptr iupdate buiter pulnter
// [=Y5] rts
jcorivert 1 hexadecimal digit to ASCII :ubroutine
e CS 2R hexasc cmp #¥$0a ;0-97
4 306 a3 bcc hexal ;yes,add $30 onl.
e 18 clc ;no,for A-F
EN 63 o7 adc #H7Y ;jadd $07 more
hexal
7 63 308 adc #230
q =) rts
sjdata area
binary .ds 1
bufptr .ds 1
buft .ds 256

To use ‘BINASC’, POKE the binary number to be converted into the
location defined by BINARY. Call ‘BINASC’ by using SYS (BINASC)
where BINASC = the address of the start of the machine code (e.g.
49152 or $C000).

113

B. RETRIEVING A VARIABLE-LENGTH MESSAGE WITH AN INDEX
This program retrieves a variable-length message (e.g. error message)
from a table of up to 128 messages givenits index (e.g. error number). An
index table is kept at zero page pointing to the start of each message.
The first byte of each message is actually its length.

The two unique index addressing modes of the 6500 family processors
are utilized here for illustration purposes

AN PP CA retrivy l1da index ’get index
nA asl a (times 2 to access the
[l tax jcorrect 2 byte pointer
Al Mg 1da <ixtbl,x> take first byte of message
2N 2c £ sta length ;as length of message
cset up pointers for retrieving actual message
B3 N4 lda ixtbl,x }init pointer at start
/5 A2 sta msgptr sof desired message
RS 05 lda ixtbl+1,x
25 N2 sta msgptr+l
noong 1dy #1 ’start from actual message text
AF 20 CA 1dx bufptr soutput buffer pointer

;move message to buffer using
!indirect index addressing

Bl 02 moue l1da <{msgptr),y retrieve message
[PE CA sta buff x put in buffar
(] iny
£’ inx
°F 2C Cn» dec length ;for its uwhole length
nn Fe bne move
“F 2D o stx bufptr Jupdate buffer pointer
[(X5] rts
;jdata area
index .ds 1 Jindex no. (0-127)
length .ds 1 Jmessage length counter
bufptr .de 1 sbuffer pointer
msgptr .de @2 !message pointer (zero page)
PSR ;256 byte buffer

buf+f .ds

‘index table (zero page?

ixtbl .de 4 stable of addresses
;of msgl,msg2 and msg3

;table of variable length messages

msg i .by 9 'i/o error’'
mea by 12 ‘'syntax error'
mzg3 .by 15 'buffer overflou'

MON— SIMPLE MACHINE CODE MONITOR

Purpose: to enable the user to examine and change the contents of
memory displayed in hex.

When the program is run the user is prompted for a start address. This
may be entered in decimal or hex. Hex addresses are indicated by a $
immediately preceding the address, e.g. $D800. Following this, 200
bytes, from the start address on, will be displayed. Cursor control keys
move the cursor around the screen as usual. A RETURN keystroke will
clear the screen and redisplay the start address prompt. Memory

114

locations are changed by changing the appropriate display. Only legal
hex digits will be accepted.

Where there are ROM/RAM overlays the ROM values will be displayed
and the RAM values changed unless the ROM is switched out by the
user.

INE CODE MARITOR

&a REM DEC TO HEXM CORVERZICH

HE=HE Y2 +HE

4 Y=hR-IMRT{ MR 18 s 18
56
€ ME=TMTIMNRSISE

A%

an BE!‘-’! HEH TO DEC COMNVERZION
1

1

160 REM CRE

170 CA=CA+MOVE

182 REM DISAE JENGELE CRER

192 WAITEET, 255, 1:POKES04 , 2S5 I POKERRS, 1t PRINTKE

:F’QKEE@'—'#,O-.\ET.J'?
135 REN CRER MOVE UF

Paa 17

e

o} LIRM
aApe IF TAA=IMTY T 40 : THEMN CA=CA+1:SM=CHK+11
k=Y ":GOSUB 128 :RETURN

[CSART times 11]

420 MOVE=ARS(IMT{ SM 2 =5SMA 20

430 SM=GM+{ ZEMOVE 3 +1

450 T=MOYE 42 +1:K$=RIGHTS. "NRM" , T :GOSUB
1EQ:RETURN

SR REM CRSRE MOYE LEET

Si1@ IF Shi=ig T

520 T=RM-1073

SEQ TE ToA= INTY T4 -1:1SM=SM-12
F= I EEENEREREREL : GO 18@ RETURN

115

540 ¢ INTCSMAZ < SSMAR D
=50 M+ 3 HMOVE) - 1
se0 1S¢ MOVE) 43 +1 1K S=R IGHTS. "IERER" , T): G05UB
RETURN
LY SET YALLUE FROM SCREEN
510 POXE204,255:HE=PEEKC SM-1) :LB=PEEK(SM) : POKE204 ,8
E1T IF HE3127 THEN HE=HB- 123
;1T IF LB)i27 THEN LB=LBE-
A iF 3 THEN MR$=CHRS$(64+HE):50T0640

MRE=CHRE!HR)
£ 1 LB{4E& THEM MNRE=NRE+CHRF(S4+LEY:G0TD SEQ
D MNRE=MNRE+CHRF{LE:?
A RETHRR
RER POKE YALUE-2MD DIGIT CHARGED
:DQUT EQR: GOSUR 30
POk
IS CA=S/R+47 DFIHT"H"'FLTUPN
{ Cf : 3. CA-SA+1:/7832
1= T TH»% b$°"!!P:’ﬁCUE 128:8M=EM+3:CA=CAR+1
-RE.URN JEEEEEEZJ
TRA SM=SM+11ICA=SCA+1IKE=CHRSC 127 + " sRRRRRE"
IGOSUE 189 :RETURMN

N MmN
AS TN | I O SV I 1 D SRS
o}

200 REM CONVERT START ADDRESS

210 IF LEFTH(SAE, 12 >"F" THEMN SA=VAL{SAF) :RETURN
220 MNREE=MIDF ZAF, 2 :G0SUE 30:Sa=NR:RETURM

AR REM SET UP CCMNYERSIOM ARRSYS

Al DIM DO EED

227 FOR J=@ TO 9:0{ J3=J:NEXT

A28 FOR J=17 T 22:00 J)=J-TiNEXT

1110 DIM HE 150

CIF® FOR J=6 TO S:H$(JY=CHRE(48+I) tNEXT
1130 FOR J=12 TO 15:H$(J)=CHR$ S5+.J3 tNEXT
1148 REM ’NTTTHLI ATION (A

1159 PRINT"J": INPUT "START ADDRESS":SA%$:GOSUE 200
11e@ Cﬁ=SH:SM=1@31

1178 FOR J=@ TO 24:PRINT

1129 NR=SA+I¥2:G0SUE 20

1190 PRINTRIGHTS! "@000" +HE+" ", 73:

1282 FOR K=@ TO 7:

1210 MR=PEEK{SA+J+K):G0SUB 20

IPRINTRIGHTSS "08" +HE+" ",

116

ZEA MEST K, J

REM MAIN LODF [HoMEs CSART times7 |
FRINT " SREmERRm
POKE=ZDS . &

T & [P | =g

=0 _kI 1F f THEP! 11_...9 ICSRUP

IF KME="0"THEM GSCSUBR 200:G60T0

IF KE="FM"THEMN GOSUE 202:60T0
4

- i §§RDWN|

CSRRT]

&)

M [N |m
= |0

IF K&="RI"THEN SOSUB
TF KE="10"THFM GOSHE SAR:GOTO
IF ME=CHR%{ 13> THEM GOTO 1150
REM CHECK IF LEGRL HEX DIGIT

%

AT I

mirr|n

[

m
EJ
/2]
)
=

15 K{d4% OR K>7V2 THEMN 1268
IF Y257 abD K{e5 THEM 1

128
Mo L3> INTOEM 2 THENW EM=SM+1:G0SUB
:GOsSUBE 98:POKECA,HNR:GOTO 1260
1222 IF CA=2RA+199 THEMN KE="R":G0SUE 1290:G60SUE
£20:50%UR 38:POKECA,MNR:GOTO 12686

i}
o
e}
D
"]
3]
7
J
]

20 GOSUE 709:G0TO 1260
2092 PRINT"J":iPCOKEEZ94,0
2017 PRINT"E":FEEX(ES!PEEN] 652);

EVIESE coTO 22180

117

COMMODORE 64 MEMORY MAP & MANAGEMENT

MEMORY MAP & ‘SHADOW ZONES’

As you should know by now, the 6510 processor with a 16-bit address
bus has a capability of addressing 64K bytes of memory. For any
computer to operate, or almost any, this memory has to be a combination
of ROM, RAM and 1/0. With a clever design, Commodore 64 actually
puts more than 64K of memory into the machine.

Let us examine the memory map and find out how this is achieved. The
64K memory can be divided into 6 zones, 3 of which are ‘shadow zones'.
In a shadow zone, more than 1 bank of memory exists. These memory
banks can be switched in and out under memory management.

Zone 6 : EO00-FFFF 8K KERNAL ROM«>RAM
Zone 5 : DOOO-DFFF 4K 1/0 / RAM« Character ROM
Zone 4 : C000-CFFF 4K RAM
Zone 3 : AO0O-BFFF 8K BASIC ROM/External ROM<«>RAM
Zone 2 : 8000-9FFF 8K RAM/External ROM

| 32K
Zone 1 :0000-7FFF RAM

Commodore 64 Memory Map

118

ZONE 1 — 32K RAM

The first 32K of memory is RAM and RAM only. No ‘shadow’ memory is
hidden in this zone. However, addresses 0000 and 0001 are overridden
by the 6510 internal 1/0 port registers. Also, remember that Page 1
($0100 — $01FF) is reserved as the processor stack.

ZONE 2 — 8K RAM/'AUTO-START’ EXTERNAL ROM CARTRIDGE

Normally this is a RAM zone but will be overridden by a plug-in ROM
cartridge. This external ROM cartridge plugged in can have an ‘auto-
start’ feature to override the usual operating system. The ‘auto-start’
ROM executes its own codes on power-up if the first nine bytes ($8000 —
$8008) are as shown.

$30 “0”
$8007 $38 “8”
$CD “M”
$C2 “B”
$8004 $C3 “Cc”
WSWL Warm Start
$8002 WSV vector
CSVH Cold Start
$8000 CSwL vector

“Auto-start” ROM Header

ZONE 3 — 8K (BASIC ROM/EXTERNAL ROM CARTRIDGE) — RAM

Usually this is the BASIC ROM but will be overridden by the second half
of a 16K ROM cartridge plugged in (A 16K plug-in ROM covers Zone 2
and 3). A ‘shadow’ RAM exists in this zone which can be banked in and
out under software control. A processor signal LORAM is used for this
purpose. More on this later on.

ZONE 4 — 4K RAM

This 4K of RAM in a higher portion of memory is normally used as a buffer
area by the operating system.

ZONE 5 = 4K (1/0 / RAM) — CHARACTER ROM

Normally this is the 1/0 devices’ area. Only with memory configuration
that does not have any 1/0 device will RAM appear in this zone. The
‘shadow’ character ROM can be banked in and out under processor
control of signal CHAREN.

ZONE 6 — 8K KERNAL ROM — RAM

Usually this is the KERNAL ROM but the ‘shadow’ RAM can be switched
in and out under software control of processor signal HIRAM.

119

NOTE: Even when RAM is banked out in case of Zone 3 or Zone 6, a
WRITE or POKE operation to a ROM address wil store the data in the
‘shadow’ RAM. This characteristic allows, for example, a hi-resolution
screen to be stored in a ‘'shadow’ RAM area without banking itin and out.

MEMORY MANAGEMENT

Memory management on Commodore 64, in essence, is the selection of
banks in particular zones of memory by using some control signals. It is
best illustrated in a table:-

Zone| Address Signal Level| Access (Bank-in)
1 BASIC/External ROM

3 | $A000— $BFFF || opam -xterna

(8K) 0 | RAM

$D000 — $DFFF 1 I/0 / RAM
> | (4K CHAREN 0 Character ROM
6 $E000 — $FFFF HIRAM 1 KERNAL ROM

(8K) 0 | RAM

Memory Management Signals (NOTE: All three signals are normally 1)

These control signals are taken from the 6510 internal 1/0 port which
also has 3 other signals that control a cassette. The direction of each line
of the port is set up by a bit pattern written into the data direction register
(address $0000). A 0 bit designates an input line on the /0 port (address
$0001) while a 1 bit corresponds to an output line.

Bit Data Direction Register 170 Port Control Lines
: ($0000) (30001)

0 1 (output) LORAM

1 1 (output) CHAREN

2 1 (output) HIRAM

3 1 (output) Cassette write line

4 0 (input) Cassette switch sense

5 1 (output) Cassette motor control

6510 Input/Output Port Assignment

SOME MEMORY CONFIGURATIONS

Here are some illustrations of possible memory configurations available
on the Commodore 64. The characteristics and main use of each
configuration and the levels of control signals that achieve it are listed.
(NOTE: 1 = HIGH, 0 = LOW, X = DON'T CARE)

120

Standard — 8K ROM BASIC 2.0 and 38K contiguous user RAM

EO00
D000
Ccooo

A000
8000

0000

8K KERNAL ROM

4K1/0

4K RAM (buffer)

8K BASIC ROM

8K RAM

32K RAM
(30K user
1K video
1K OS)

LORAM = 1
HIRAM = 1
CHAREN =1
EXROM = 1
GAME = 1

Enhanced BASIC — 8K BASIC standard ROM and 8K enhanced BASIC
ROM and 32K contiguous RAM

E000

D000
C000

A000
8000

0000

8K KERNAL ROM

4K1/0

4K RAM (buffer)

8K BASIC ROM

8K ROM Cartridge
(Enhanced BASIC)

32K RAM

121

LORAM = 1
HIRAM = 1
CHAREN = 1
EXROM = 1
GAME =0

Language ROM — 8K Language ROM (override BASIC) and 40K

contiguous RAM

EO00

D000
C000

A0QO

8000

0000

8K KERNAL ROM

4K'1/0

4K RAM (buffer)

8K Language
ROM cartridge

8K RAM

32K RAM

LORAM =0
HIRAM = 1
CHAREN = 1
EXROM =0
GAME =0

Allocation ROM — 16K application or language ROM and 32K

contiguous RAM.

e.g. word processors, intelligent terminals

EO00
D000
C000

8000

0000

8K KERNAL ROM

4K 1/0

4K RAM (buffer)

16K Rom Cartridge

32K RAM

122

LORAM = 1
HIRAM = 1
CHAREN =1
EXROM =0
GAME =0

ULTIMAX Video Game — 16K ROM and 4K RAM only

EO00
D000

A000
8000

1000
0000

8K ROM Cartridge

4K 1/0

12K open

8K ROM Cartridge

28K open

4K RAM

LORAM = X
HIRAM = X
CHAREN = X
EXROM = 1
GAME =0

Softload Language 52K contiguous RAM for softload languages, user

RAM, 1/0 devices and I/0 drive routines, e.g. CP/M

EO00
D000
C000

8000

0000

8K KERNAL ROM

4K1/0

4K ROM

16K RAM

32K RAM

123

LORAM =0
HIRAM = 1
CHAREN = 1
EXROM = X
GAME =1

64K RAM — 1/0 devices must be banked in for any 1/0 operation

8K RAM
16K RAM E000 0
D000 :KK ILXAM
C000 C000
LORAM =0 LORAM=1
16K RAM | HIRAM =0 16K RAM | HIRAM=0
CHAREN = 1 CHAREN=1
8000 EXROM = X 8000 EXROM=X
GAME = 1 GAME=1
32K RAM 32K RAM
0000 0000

PROGRAM ENTRY

There are 3 common methods of entering machine code programs on
the Commodore 64.

1. BASIC STATEMENTS

This method is suitable for simple and short machine code routines used
within a BASIC program. First of all, the routine has to be assembled,
usually by hand. Each code is converted to its decimal value (an
unfamiliar numbering system to a machine language programmer). Then
the codes are stored in BASIC DATA statments. A simple READ and
POKE loop will set up the machine code routine at a specific location.
Subsequent SYS or USR statements can use this routine.

This is the cheapest method because no additional purchase of software
is required. However, the amount of time required to debug or modify the
code will increase drastically with the size of the routine. Imagine typing a
500 byte program in decimal values or several scores of DATA
statements and then having to locate a typing or conversion mistake.
Example:

5RESTORE : M = 12 * 4096 : REM $C000

6 READ X : IF X <> —1 THENPOKEM, X :M=M+1, GOTO 6

10 Initialization of formal basic

'1 000 DATA 32, 207,255,157,0,193,232,201,13,246,96, — 1

124

Notes:-

a) The use of delimiter —1 avoids the problem of having to count the
numbers of bytes as in a FOR...NEXT loop.

b) Subsequent running of this BASIC program should start at line 10.
This eliminates the time-consuming READ and POKE process to set up
the machine code registers (of course, self-modifying codes are always
forbidden!).

2. MACHINE LANGUAGE MONITOR

A ROM cartridge called 64MON is provided by Commodore to let you
a) enter machine code programs in Hexadecimal codes or Mnemonic
forms

b) assemble and disassemble machine language

¢) debug machine code programs

d) save and load machine code programs.

A monitor of this kind is recommended for any serious machine language
programmer. With 64MON, you can enter a machine code routine by
specifying the starting address and then the instructions.

Example:

A C000 JSR $FFCF

A C003 STA $C100, X

A C006 INX

A C007 CMP #$0D

A C009 BNE $C000

A CO0A RTS

3. EDITOR/ASSEMBLER PACKAGE

An editor/assembler allows you, at the very least, to use label references
in programs and save source programs instead of object codes. A more
sophisticated package can have the following features:-

— macro, conditional and/or interactive assembly

— symbol table and cross reference

— formatted assembly listing

— object modules linking and relocation

— run-time debug aids

With an editor/assembler, you can write much better documented
assembly language programs.

Example:-
CHRIN = $FFCF ; input 1 character routine
LINEBUF = $C100 ; input line buffer
CR = 13 ; [RETURN] character
*= $C00 ; code starting address
GETLINE: JSR CHRIN ;input 1 character
STA LINEBUF, X ;putcharacter in line buffer

INX

125

CMP #CR ;is it [RETURN)] character?
BNE GETLINE ;NO — get next charcter
RTS ; exit only if whole line input

PROGRAM EXECUTION

A machine language program can be executed by calling it in a BASIC
program or directly run under a machine language monitor. Some of the
system handling routines can be substituted by user written ones with
careful modification of the vectors.

1. BASIC CONTROL PROGRAM

A BASIC porgram can use machine code routines as subroutines. These
subroutines must end with a ‘RTS’ instruction to return control to the
BASIC calling program. There are 2 ways of calling machine language
subroutines in BASIC.

a) SYS [addr] statement

This BASIC statement enters a machine language subroutine at address
[addr]. Execution continues with the next BASIC statement on return.
Parameters can be passed by putting them in commonly known memory
locations. This method allows simple and efficient interface between
BASIC and machine language programs. Multiple parameters and
several machine code subroutines are handled with ease.

b) USR ([x]) Function

This BASIC function calls a machine language subroutine whose entry
point is stored at address 785, 786 (conventional low, high byte order).
The parameter [x] is passed by putting its value in the Floating Point
Accumulator #1. On return, BASIC will take the value in the floating point
accumulator as the value of the function. This method is more suitable for
routines that pass a single parameter only, especially with floating point
numbers. Be careful to set up the correct entry point at 785 and 786
before calling this function when you have more than one machine code
subroutine.

Sign
$0066 J
Mantissa
$0062
$0061 Exponent

Floating Point Accumulator #1

126

2. MACHINE LANGUAGE MONITOR

With 64MON, you can execute a machine code routine by specifying its
starting address. The routine should end with a ‘BRK’ instruction to return
control the the monitor.

Example:

G C000

By setting up breakpoints, memory and registers can be examined at
critical points. The routine can then be resumed with or without any
alteration. This makes debugging of the machine language program
easier.

3. SUBSTITUTION OF SYSTEM HANDLING ROUTINES

For those system routines which are called via their indirect vectors in
RAM, they can be easily substituted by modifying their corresponding
vectors to point to the user written routines.

Such user routines must end in the same way as their system
equivalents — either with a ‘RTS’ or a ‘RTI’ instruction. Normally, you
want to do something extra before transferring the control back to the
standard routine. Therefore a ‘JMP’ instruction will be more frequently
used here.

Here are some system handling routines that can be substituted.

a) BASIC Interpreter Routines

— e.g. tokenize keywords, LIST, print error messages and evaluate
tokens, etc.

The vector table resides at $0300 — $030B

b) KERNAL Input/Output Routines

— e.g. OPEN/CLOSE, LOAD/SAVE, CHRIN/CHROUT, etc

The vector table resides at $031A — $0333

c) Processor Interrupt Handlers

—e.g. hardware interrupt request (IRQ), non-maskable interrupt (NMI),
software interrupt instruction (BRK)

The vector table resides at $0314 — $0319.

(NOTE: IRQ interrupts every 1/50 of a second (1/60 in U.S.A) and the
KERNAL makes use of this to update the time (TI, TI$) and scan the
keyboard. Make sure you return to the system handler unless you intend
otherwise. Disable IRQ before you modify its vector)

d) ‘Wedge’ New Commands

— By detouring from the CHRGET (get next BASIC byte) routine at $73
— $8A, new commands can be added. If all new commands begin with a
common character (@ is a popular choice), ‘wedging’ interpretation will
be faster. Commands that do not start with ‘@’ are passed back to the
standard handling routine; those that do start with ‘@’ are searched and
executed by the user routine.

e)Keyboard Entry Routines

— e.g. keyboard table setup and decode, INPUT routine

Keys can be redefined according to user requirement.

127

SOME COMMODORE 64 USEFUL ROUTINES

A. PAUSING ‘LIST' OUTPUT

A very short machine language routine can add to the Commodore 64 a
highly desirable feature on the LIST program command. The continuous
scrolling of text lines on the screen is usually too fast for the human eyes.
It would be nice to pause the output by holding down the shift key and be
able to freeze it by pressing the shift-lock key. The following routine does
just that.

zhflag .de ¥028 ;(¥01=5hift-Key pressed)
3113t .de ¥a7la ’3ys3tem LIST tokens routine
.ba $cO@O :pause routine starts at $cOLO
009 AS 23 walt 1da shflag /shift Kay pressaed?
cag2 oa FC bne wait Jyws, walt for relaase
-AQ4 B9 pla ;jno rastore token
Cee05 4C 1A AT Jmp slist JLIST tokan

This is an example of substituting BASIC interpreter routines — the LIST
tokens handler. By modifying the vector at $0306, this coding of pause
check can be inserted before the actual printing of tokens. If we have the
above codes at $C000, we can enable the pause feature by POKE 774, 0
:POKE 775, 192 (i.e. $C000 — $0306).

B. PROGRAMMING FUNCTION KEYS

Each of the Commodore 64's eight function keys can be used to
represent a series of keystrokes as entered from the keyboard.

The operating system uses a keyboard buffer queue to store any key
entered from the keyboard. The system IRQ interrupt handler puts
entered keys at the end of the queue while the BASIC interpreter takes
them off the queue in a first-in-first-out (FIFO) order. If a user interrupt
routine puts on the queue a string of pre-defined chracters when a
function key is pressed, the system will be deceived to think that the
string was actually typed on the keyboard.

This method of programming function keys can illustrate the technique of
substituting a system interrupt handling routine. The following simple
example will put “LIST [RETURN] on the keyboard buffer queue when
[f1] key is hit.

128

a3
34d
a9
24
58
60

20
a6
f0
ca
bd
c9
40
an
=8
e
hS
3d
do
36
4c

ad
19
[=4%]
15

23

£+

a2

ca
22

.ba
.de
.de

ver
21

+
—_n 02

da
sta
14a
sta
cli
rts
Juser
uirq Jjsr
1dx
beq
dex
lda
cmp
bne
1dy
iny
inx
l1da
sta
bne
stx
Jme
Juser definable

exit

string by

214
¥01331
B £3f

ride systam

#1 ,uirq
cinwv

#h ,uirq
cinuv+l

IRQ handlerf{axecuted every

3cnkey
tndx
exit

Keyd,x
H$85
axit
#2555

string,y
Keyd,x
put

xndx
sirq

s3tring of

'LIST!

JRETURN character

sno. of characters 1n
Keyboard buffer queue
jxeyboard buffer
{18 bytes long>
JIRQ intarrupt vectar in RAM
ssrstem IRQ handlin3 routine
vaybaard and put Key
antered onto Qqueue

uaude

}3can

IRQ handlar with user routine
;IRQ must be disabled during
smadification of its vector

1/58th of a sacond)
:scan Keyboard

jexit if no Key

spoint at last Key in quaue
JLF1I?

jno, do nothing

syes, put predefined string

ionto Keyboard buffer queue

string terminated by bytae @
supdate no. of bytas 1in queue
jresume with system IRA handler
Keys

<r @

With the machine codes residing from $C000 upwards, the initialization
routine can be activated by SYS 12*4096.

C. RECOVERING “NEWed” PROGRAM

This program we will use will also serve to show how additional
commands can be ‘wedged’ into the BASIC operating system. Below is a
listing of an operating system routine ‘CHRGET that we will wedge our
routine into.

129

0073 E67A CHRGET INC TXTPTR ; get next byte

0075 DO 02 BNE CHRGOT

0077 E6 7B INC TXTPTR+1

0079AD ???? CHRGOT LDA 7?77 ; get current byte
007C C93A CMP #$3A

007E NO 0A BCS CHRET ; ignore ASCIl ‘9’
0080 C9 20 CMP #$20

0082 FO EF BEQ CHRGET ; skip space characters
0084 38 SEC

0085 E9 30 SBC #$30

0087 38 SEC

0088 E9 DO SBC #$D0

008A 60 CHRET RTS

NOTE:

Locations $7A and $7B are used as TXTPTR which points at the current
bytein the BASIC text buffer to be interpreted. This routine is keptin RAM
so that it can modify ???7?, the address of the current byte, continually.

We will make use of the fact that CHRGET resides in RAM by wedging
our routine into CHRGET. To use this routine, it must have already been
loaded before the NEW command was executed. To recover a NEWed
program, simply type @OLD.

10

«08

20 .ba $cooa

30 CHRGET .de $73 jget next BASIC byte routine

4@ CHRGOT .de $79 ;geat current BASIC byte routine
58 TXTPTR .de $7a jcurrent BASIC bytae pointer

60 I1ERROR .de $0300 svector of print error message routine
70 .ba $c000

80 ; DETOUR FROM CHRGET

390 LOX #e

108 DETR! LDA JCODE ., X Jreplace 1st instruction of CHRGET
110 STA CHRGET , X juith 'Jump wedge'

120 DEX

130 BPL DETR1

140 RTS

150 JCODE JMP WEDGE sJume instruction codes

160 XSAVE .08 1

170 ; CHECK FOR WEDGE COMMANDS

180 WEDGE

190 INC TXTPTR JPOINT AT NEXT BYTE

200 BNE WEDG1

218 INC TXTPTR+1

220 WEDG! STX XSAVE

230 TSX

240 SEC

130

250 LDA $B101,X

260 SBC #$8C

270 ADC $01082.,X juas CHRGET called from
280 SBC #$A4 ;the direct moda?

290 BNE WEDGY jignore wedge commands

300 ;from other modas

319 JSR CHRGOT

320 CMP #'@ suedge command identifier?
332 BEQ WDGCMD jyes ,dispatch command

340 WEDGS LDX XSAVE ino restore X

350 JMP CHRGOT jreturn

360 ; dispatch wedge commands

378 :(for the simplicity of this exampla

380 ; proper handling should involve storing

380 2 all valid commands in a table and

488 ; searching the input command through

410 ; the table>d.

428 WOGCHMD JSR CHRGET Jget naxt byte

430 CP #'0 jo0ld?

440 BEQ RECOVR jyes ,recovery routine

450 CMP #'R

460@ BEQ RECOVR

470 LDX #$0B 2if invalid command

430 JMP ¢ IERROR) ;print syntax error

490 ; RECOVER “NEWED" PROGRAM

508 TXTTAB .de $2b ;pointer istart of basic
510 VARTAB .da $2d Jpointer tstart of basic variablas
520 ARYTAB .de $2f jpointer :start of basic arrays
530 STREND .de $31 ;spointaer iend of basic arrays
540 PTR .de $2d

550 TEMP .de $2f

%68 RECOVR

570 LDY #3 ;jdisgard next-line pointer & line no.
580 RCVRI1 INY

5950 LDA (TXTTAB),Y ;search for line delimitaer
600 BNE RCVR1 }1{$88) of first line

610 TYA

[=¥={%] SEC ;+1 ta point to 2nd line
630 ADC TXTTAB

640 LDY #0©

650 STA (TXTTAB).,Y ’rectify next-line pointer
660 Jfor first line

870 STA $2D init temp Work pointer
680 INY

690 LDA $2C

700 STA (TKTTAB) ,Y

710 STA $2E

728 strace next line until end of program text

730 LOY #O

74@ RCVR2 LDA ($20),Y

750 STA $2F

760 INY sposition to address high
770 LDA ($2D0),Y

788 TAX

790 ORA $2F Jlink address =$00007

800 BEQ RCWVR3 ;yvas ,and of program

810 STX $2E jno,trace next link

828 LDA $zF

131

830 STA $2D

840 DEY Jreposition to address lowu

850 BEQ RCVR2 jalways branch

860 correct all BASIC pointers

870 RCVR3 cLcC

880 LDA $20

890 ADC #2 sposition right after end of program

900 STA $2D ;for start of variablas

910 STA $2F sfor start of arrays

320 STA $31 ;for and of arrars

930 LDA $2E

940 ADC #O

85a STA 3$2E

960 STA €30

a7e STA $32

980 LDX #$80 ;print READY

838 JMP (IERROR) & return to BASIC

16080 JEN

20 REM LEDGE THAT

27 REM

19 FOR SETNERT

e gyes

129 0aTa

12 NLeTH

148 oaTs 3

1572 DATH PR SR 1 s

e DATAE . LERZ, 184,228,732, 121

170 DaTaE0 . 291,64 .240 68,174, 14,192

12a F121 3,115 zet!,7va

1323 2 S1E2,11

sen ; ! , FITT 43

Z1n DATR2AS,251,152,56,101,4%, 166 ,0

P20 NATAI45,42,1232,45 200, 185,44, 145

220 N3TARAR 12248 16,80 ,.177,45,133

T Ta,5,47,248
TTaa 12%.,45,128

5,105,2,133
SES 46,105
132 ,5@, 152

132

COMMODORE 64 KERNAL

CONCEPTS OF KERNAL AND OPERATING SYSTEM

A microprocessor, no matter how large its instruction set is and no matter
how fast it can run, will get nowhere without a well-knit piece of software
that supervises it. This supervisory program is known as an
OPERATING SYSTEM. The operating system accepts what you type on
the keyboard; echoes it on the monitor; prints an error message if it does
not understand what you typed; executes your command if it makes
sense; loads a program from disk drive if necessary; prints something on
the printer if required; ... In other words, the operating system co-
ordinates and manages all resources of the computer to be at your
service.

The operating system has a large collection of routines that perform
system initializations, memory management and all kinds of input/
output. These routines are usually highly hardware dependent which
means different routines have to be written for different devices. From a
user point of view, you want to be able to use these routines without
worrying about what hardware you are dealing with. Most microcomputer
manufacturers prepare a list of callable system routines with their
addresses and methods of calling. The problem arises when a later
version of the operating system is released; all these entry points will be
different. Old software which made use of these routines is no longer
compatible.

Commodore 64 has solved this problem by storing all the entry points of
the supported system routines in a Jump Table called KERNAL. This
jump table is located on the last page of memory, in the KERNAL ROM.
The entries of this table are well documented and will remain unchanged
in future ROM releases. Any individual system routine can be modified
and relocated inside the ROM. However,such a change will be
‘transparent’ to the user program as long as the jump pointer in the
KERNAL has been updated.

Example -
$FFC6 | JMP §FABC v JMP $E678 | SFFC6
JSR $FFC6
$FABC N
/
RTS 1 $E678
Application
Program RTS
ROM 1.0 ROM 2.0

The application program will run just as well on both ROM versions.

133

POWER-UP INITIALIZATIONS

On power-up, the KERNAL performs a series of self-tests and system
initializations. The sequence of activities is outlined below:-

1. For the 6510 processor, the Stack Pointer is reset to $FF and the
Decimal Mode Flag is cleared.

2. Location $8004 — $8008 are examined. If an ‘auto-start’ ROM header
is found, control is passed to the ‘auto-start’ ROM using the vector at
$8000. Otherwise, normal power-up sequence continues.

3. 1/0 ports and devices are initialized

— CIA#1 to scan keyboard, joystick, paddle and light pen

— CIA#1 to activate real-time clock

— CIA#2 toinitialize Serial Bus

— CIA#2 to reset User/RS-232 port

— SID to clear all voices

— 6510 1/0 port to select memory configuration for BASIC mode
— 6510 1/0 port to turn off cassette motor.

4. RAM test is carried out from $0300 upwards. The top memory pointer
is determined by the first non-RAM location encountered. The bottom
memory pointer is always set to $0800. The screen memory always
starts at $0400.

5. All'1/O vectors, pointers, flags and variables in RAM are initialized.

6. The screen is cleared and all the screen editor variables reset. Control
is passed to BASIC using the vector at $A000.

Next time if you notice a slight delay when turning the power on, you will
know that it is working very hard to get all these things straightened out.

USING KERNAL ROUTINES

For you to use the KERNAL routines, you must:-

— find out the right one to use and its entry point address

— call preparatory routine, if necessary

— pass parameters in communication registers,

— call the routine

— handle any return error (indicated by Carry Flag set)

— save and restore registers affected by the routine, if necessary

134

SOME USEFUL KERNAL ROUTINES

Regis-
Preparatory Communications teegs
Routine Address Function Routi Registers Affected
User Interface
1. CHRIN $FFCF | Input 1 Character — .A=input character X,.Y
(from keyboard)
2. CHROUT $FFD2 | Output 1 Character — .A=output character —
(to Screen)
3. GETIN $FFE4 Get 1 Character from — .A=character removed| .X,.Y
Keyboard Queue =0 if none
4. PLOT $FFFO Read/Set Cursor Position — C flag= 1 read A
=0 set
X=row(0-24)
.Y =column(0-39)
storage I/0
5. SETLFS $FFBA | Set Up Logical File No. — .A=logical file no. —
First Address (Device No. .X=device no.
and Second Address .Y=command
(Command) of Device =$FF if no command
6. SETNAM $FFBD | Set Up File Name — .A=length of filename —
X=filename address
(low)
.Y=filename address
(high)
7. LOAD $FFD5 | Load/Verity Memory SETLFS [.A=0load XY
from Device SETNAM |=1 verify
8. SAVE $FFD8 | Save Memory to Device | SETLFS |.A=page-zero address
SETNAM |of start SAVE pointer
.X=end SAVE pointer
address (low)
.Y=end SAVE pointer
address (high)

1. CHRIN — INPUT 1 CHARACTER (FROM KEYBOARD)

When this routine is initially called, the cursor will blink and input a line of
characters terminated with a carriage return. The routine will return with
the first character in .A. Subsequent calls will retrieve the characters
already input one by one. Detection of a carriage return means the whole
input line has been retrieved. A subsequent call will initiate the cursor
blinking and line input again.

2. CHROUT — OUTPUT 1 CHARACTER (TO SCREEN)

A character whose ASCII value is in the .A is printed on the screen and
the cursor advances.

3. GETIN — GET 1 CHARACTER FROM KEYBOARD QUEUE

Any key pressed on the keyboard is detected by the system IRQ interrupt
handler. Its ASCII code will be stored in a keyboard buffer queue which
can hold up to 10 characters. When called, this routine will remove the
first character from the queue. If there is no character in the queue, a byte
zero will be returned in the .A.

135

4. PLOT — READ/SET CURSOR POSITION

This routine can read/set the current cursor position when called with the
Carry Flag set/clear accordingly .X stores the row number (0 — 24) and
Y stores the column number (0 — 39).

5. SETLFS — SET LOGICAL FILE NUMBER, FIRST AND SECOND
ADDRESS OF DEVICE

This routine assigns a logical file number to a physical device (device
number 0 — 31). The secondary address or command of the device is
also declared here. There are a number of reserved device numbers for
the Commodore 64:-

Device number evice

Keyboard

Cassette

RS-232 Device

Screen

Serial Bus Printer

Serial Bus Disk Drive

ahrhWON-—-O

.Ais used to pass the logical file number .X the device number and.Y the
command. If no command is required, put $FF in Y.

6. SETNAM — SET UP FILE NAME

This routine sets up a file name for the LOAD or SAVE routine .A is used
to pass the length of the file name and,X and Y contain the address of the
file name (X = low order, .Y = high order address). If no file name is
necessary, .A stores a zero showing a file name of null length.

7. LOAD — LOAD/VERIFY MEMORY FROM DEVICE

When called with a zero in .A, this routine loads a file from device into
memory. When called with a one in .A, this routine verifies a file from
device against the corresponding contents in the memory.

8. SAVE — SAVE MEMORY TO DEVICE

This routine saves a contiguous portion of memory onto a device file. The
start address of the memory to be saved is stored in a page-zero pointer.
The A is used to pass the page-zero address of this start pointer. The.X
and Y are used to pass the end address (in low, high order)

SIMPLE PROGRAMS THAT CALL KERNAL ROUTINES

A. PLOT USING GRAPHICS CHARACTERS

This program plots anywhere on the screen using different graphics
characters. Three KERNAL routines are called — CHROUT, GETIN and
PLOT.

136

Call ‘plot’ from BASIC by typing SYS 49152.
Plot instructions:

[f1]=up

[f3] = right

[f5] = left

[f7] = down

= to g™ = graphics characters
{space! = blank

= End plot

M) e
9 9
o
w

-
n]
n

]
o
u
m

B

o]
vLoL

i

8]
o]
)

"

n
]

Ju

i

1
]
i

DU
wl
i

5

)
s
0]

.
2o
n

b heah feeb fusb fuab
B Yo 3
P BN I K R
n fve o aw

o

o5

+

]

Vot

2]

M

i}

l

"3

m

]

3

Al
ho
a9 -
»]

1 tg ldz #%9%

1659 isr chraut fclear sorsaEn
pra lda 48

120 =tz #hlnzw thlink cursor

128 14z #E2aQ

2R zta retflz fenable repeat
e 5 L= or

W "
it
Y-
0
AT
W
+
»
n

r
fomd e et
e = T N
oM
i
N |
~|

oI

249 upshp s=ta *=hape tupdate zhapa
2oe

2R

27A :orint zshape char

2z

290 outshye

137

2
-
n
-+
b
-

i

i

3

ot

[I

0 e
s
+

STV B |

)
ho]
"3
o
—
[}
-+
n
)
-+
n}
e
he 3
[0}
=]
5

s
o R
i
-
(]
b 5
0
‘o

1))

o]

i I
n
N«
T
-8
o
[

-+ m

) i)
Jom
o]

1

w

i

H
w

[

o |
1
s
"
g
-
w}
-+

W
m

W
-
:
-
-+
-h
0
]
-
m
™
0
P
v+

r A

o)
3

iriKe:

Hob kb
J i) e
o IO B

Y

a e
- TR

(XYY
=g T da
OS]

Ju B

Y
w0
]

L I3
T
9308

oo

wn
b0 Y
vl

b

K

!

[4)]
) I)
[0 B

n

o pight i {£320:

b
O]
il
;
0

I |

0
o

oo
w0
o]

Icurzsar laft if €5

m N

oo e 3
o] oo

[}

3

L 0

v~ dF

m ,l,H.

)

n
o I

£
cursar dowh iF {F
=

M0

i

m
A
.

By I
Rl

it riol graph
CFID-FdF

P+hen ignors

o= oM onm
[I B A B BN
o T T TS B
[B

g N

oo

pae At

oW

xom o=

m ®m

~ 3

&

15

m oo
[I) B VR
i T I IO

[
o

Q0 0o
mm - m
5 JEEA B IO |

(VU
o
o

w0
W T -
o

3

o

W
]

i)
m b
o]

w0 LI} 0
D0

0

i)
¢ 0
DO]

nmommmm
Do) I S B (VI
[I I o T A T > B

1)

L o 1P S =

mon ™
g -l m

'u
e
3 0

upl
down iy
[=553
brie
1dx

J mp

right iny
CFY
bne

Tdy
Jmp

._,.
m
-+
..+

N
m
.

il
5

L e T
[B}
Mom

p—
m
—h
f+
[
[
s}
'
3

fexnit to basic

exit lda
jsr

fclear screen
rts
=2

i31:

HEFF
upl
HE4
outshg

#40
rightl
#2
outzhp

BEFSF
lestl
#=9
cutshp

READ A:POKEA4A9152+1,A:NEXRT

139

inc

dec

[aleR™

o

col

S 15¢
DATALES 147 ,32,218,255,169,0, 133

130 182,158,141, 138, 2, 162, 12
140 1EF, 12,169,115, 133,32, 124,39
150 128,40 ,24,3% 249,255, 165,38
16 DATAZZ 210,855, 169,157 ,22,210,255
170 DATAZD,B228,855, 166,32, 164,402,201
170 DATS0,248,245,201,2,240,71,201
15 T 240,217,201, 133,249,232, 201
o 246,39,201,135,240,45,201
= PaAp, 1,201, 160,144,217 ,201
176,812 ,76,20, 192,202,284
PnE, R, 187,04 ,76 22,138
,PE4 g,182,0,76
12z, , A7, 208, 2, 162
5, PR , 198,255,208
1A, 3 197,169,147

Graphics Using Machine Code

The following programs enable the BASIC programmer simple access to
extended graphics facilities such as high resolution plotting. When used
creatively these programs can produce quite impressive displays on
your Commodore 64.

Graphics.asm is an assembly listing of a program that provides the
BASIC programmer with access to graphics commands. These
commands, whilst being very useful, also serve as a demonstration of
assembly language programming. They enable the programmer to set
up a bit mapped screen with one SYS statement, and also to plot points
by specifying X and Y co-ordinates. Resourceful programmers will be
able to incorporate these routines into their own line drawing and circle
drawing programs.

Graphics.bas is BASIC program which reads the assembly code into
memory. It also demonstrates the correct use of the assembly routines.
Graphics.asm consists of two main routines, HIRES and PLOTXY, as
well as several subroutines. HIRES is an excellent example of changing
video banks, screens and character sets as well as clearing blocks of
memory. PLOTXY is the routine that handles the plotting of points. It calls
the routine PARAMS to obtain the X and Y co-ordinates. PARAMS in turn
calls many subroutines that reside in the BASIC operating system.The
correct use of these routines is shown in the assembly listing.

PLOT, the routine that actually plots the points in memory uses the
following formula to determine the address of the byte to be changed.

140

ROW = INT (Y / 8)

COL = INT (X /8)

LINE=YAND7

BIT=7 - (XAND?7)

ADDRESS = BASE + ROW *320 + COL * 8 + LINE
where base is the address of the start of the bit map.

The correct bit within the byte is set as follows:-
POKE ADDRESS, PEEK (ADDRESS)OR2 4+ BIT

NOTE: the assembly program uses an array containing the values of
2 4+ BIT.

GRAPHICS ASM
.08 Jstore object code in mamory
.ba $c000 sbegin assembly at $c@®® (43152)
thase .de $fb svariable: pointer to bit map base
params Jsr $aefa Jchack for brackat
jsr %$ad8a sevaluate formula
Jsr $b747 sconvert to 16 bit number
lda %14
sta neuwcol ’x pos. low
lda %15
sta newcol+1! ;x pos. high
Jsr $aefd jchaeckK for comma
isr $b73e ;gat 8 bit number
stx newrou iy pos.
Jsr $aef? sicheck for right bracket
rts
plot lda roucrs ;get rouw
1sr a
lsr a
l1sr a sdivide by 8
sta trouw ;tamp row
lda colcrs
cta tcol stemp column
lda colcrs+1i
lsr a ;divide column by 8
ror tcol
lsr a
ror tcol
lsr a

ror tcol

sta tcol+l

lda roucrs

and #7

sta line ; offsat in rou
lda colcrs

and #7

sta bit

lda #7

sec

141

P3

p2

(7Y

P8

pS

P4

Ne N

hires

N ve

sbc
sta
lda
sta
l1da
sta
1dx
beq
inc
lda
clc
adc
sta
bcc
inc
dex
bne
lda
asl
asl
asl
bcc
inc
clc
adc
sta
bcc
inc
lda
clc
adc
sta
bcc
inc
ldx
ldy
1da
ora
sta
rts

Jsr
Jsr
isr
Jsr
Jsr
1da
ora
sta
lda
sta
sta
sta
sta
sta
rts

bit

bit

Ho
xtbase
#$60
xtbase+1
trow

Pl
stbase+1l
stbase

#64
*tbase
p2
¥tbase+l

P3

tcol

a

a

a

-]
*tbase+!

xtbase
stbasae
3}
*tbase+1
*tbase

line
stbase

P4
stbasae+!
bit

#0
(tbase),y
ortab,x
(thase),y

setbank
setchbase
setscreen
clrbit
clrscrean
$d611

#32

$d011

#Q

oldrou
oldcol
oldrou
oldcol
oldcol +1

jof
sstart of screen (low byte)

sstart of screen (high byte)

} add 256 to screan addraess

;add 64 to screaen addraess (ia 320)

smultiply column by 8

5 add rouw offsat

jtbase and tbase+! contain byte addrass
sJoffset into byte

’set proper bit to 1

;set video bank

;set bit map base

iset screen (bit map color data)
;clear bit map mamory

’sat bit map color data

2turn on bit map

;set oldrouw and oldcol

’set oldrow and oldcol

142

setbank lda $dde2
ora #3
sta $ddo2 ;7 set to outputs
l1da $ddoe
and #252
ora #2 ;sat bank 1
sta $ddeo
rts
setchbase lda $d018
and H240
ora #8 ’set char base to $2000
(ie bit map st $6000)>

sta $d4018
rts

etscreen lda $d018
and #15
ora #112 ’Jsaet screen to $1c00
(ie screen address is $5c00
sta %4018
rts

clrscreen lda #16 iclear screen datalie bit map color data)

ldx #e ;foreground color =white,background=black
clr sta $5c00,x

sta $5d008,x

sta $5e00,x

sta $5f00,x

dex

bne clr

rts

e N

clrbit lda Hs$60 Jclears mamory from $6000 to $7fff)
sta xtbase+l
l1da 4O
sta *tbase
ldy #©

clb sta (tbasa),y
dey
bne clb
inc *tbasa+i
ldx *tbasetl
cpx #$80
bne clb
rts

T v N

lotxy Jsr params ; get x and y
lda newrou
cmp H200 ;legal row?
bcc xy1
rts

xy 1 1da newcol

cmp HE4 ;legal column

143

bcc xy@2

lda newcol+l
beq xy2

rts

jJupdate variablaes

lda neurow
sta roucrs
sta oldrou
lda neucol
sta colcrs
sta oldcol

xXye

1da neucol+!
sta oldcol +1
sta colcrs+i
Jsr plot

rts

’plot point

2 4 8 16 32 64 128

1

.by
.ds 2

ortab

jcontains new column

jcontains new rowu

neuwcol

1

.ds
.ds 1

newrous

icontains old rou

oldrow

scontains old column

stempory rou

.ds 2

oldcol

.ds 1

rouwcrs

.ds 2 jtempory column
;tempory rouw

colcrs
trou

1

.ds
.ds 2

Jtemeory column

tcol

.ds 1 Joffseat into character
joffset into byte

line
bit

.ds 1
.en

GRAPHICS BAS

sa

MACHINE

REM READ

-

[

POKE 4

tREAD A

2435

TO

r-
ol

ol
m
)
[

o

-

-t
&

- -0
sl Mo M
- G G s
4 - ~ Qu
-~ w0
N et (J) e
(U R
[] e
-t - ~ M N
S Pe e @0
(] [N N e ~
Gl o~ - “ M
R~ S S A
[N ~ N ()
G 0ol
- o3 &
— e e () ~
s NI m

[~

&
al
[ax
Ql

Ql

[on

o
=

,251,144,

- 0l ol oo

144

DaTA230,852, 185,251 ,24,199, 102, 133
DATA132,251, 144 ,2,220,252, 174, 103
DATALS2, 166,08, 177,251,858 ,88, 192
DATA145,251,98,32,1988,192,32,217
DATA1S2,22 225,192 ,32,3, 152,32
DATA239,192,172,17,202,9,22,141
DATALT,208,189,0, 141,593,193, 141

2EM DATA94,192,141,95, 193,536,173 ,2

272 DATASE1,9,3,141,5,821,173,0

220 DATARE21,41,.252,9,2,141,0,8281

230 DATASE,173,24,202,41,240,3,8

490 DRTA141,24,208,96,173,24,208,41

419 DATALIS,9,112,141,24 208,35, 169

4Z@ DATHIE,162,0,157,8,92,157,0

422 DATAR2,157,@.94,157,2,95,202

440 DATARES,241,96,169,36, 122,252, 169

450 DATAR, 133,251 ,160,0, 145,251,126

452 DATR208.25!,230,252, 166,252,224, 128

470 DATAREOS,243,96,32,0,182,172,92

426 DATALS2,201,200,144,1,96,173,98

492 DATA192,201,64,144,68,173,31,193

500 DATAR4M, 1,96, 172,28,132,141,96

5192 DATA1S83,141,3%,1932,173,30, 193, 141

S29 DATAST,193,141,94,18%,172,91,192

szo 141,95,192,141,38, 192 32

540 DATA192,96.1,2,4,8,16,32

S52 DATAES, 122

590 REM PLOT SIME CURVE

E@? HIRES=43315:PLOT=49435

£10 SYS(HIRES:

29 FOR I=0 TO 31%

20 SYS(PLOTI 1,100+SIM(1.-50) %80

B42 MEXT

=0 GOTO 650

RASTER INTERRUPTS

The raster interrupt is one of the most powerful and versatile features of
the Commodore 64. However, taking advantage of this feature requires
some knowledge of machine language.

145

Raster interrupts take advantage of the sequential nature of the
television display. The electron beam which draws the television image
starts at the top left corner of the screen and traces horizontally accross
the screen. When it reaches the right edge of the screen, it is turned off
and brought back to the left side of the screen, at the same time being
moved down a line. It repeats this process 312 times on a pal television
(262 times on a NTSC set). At the bottom of the screen, the beam is
turned off and returned to the upper left corner of the screen. Then the
whole cycle is repeated again.

At any given time you can determine the line at which the beam is on by
reading the raster register at location 53266 ($D012). This returns the
lower 8 bits (0 — 255). The most significant bit is bit 7 of location 53265
($D011). If this bit is set, add 255 to the previous value. The visible
display area is located from line 51 to line 251.

When the raster register is written to (including the most significant bit), ,
the number that is written is saved for use with a raster compare function.
When the actual raster value becomes the same as this number, bit 0 of
the interrupt status register at location 53273 ($D019) is setto 1. If bit 0 of
the interrupt enable register at location53274 ($D01A) has been set to 1
previously, an IRQ interrupt will occur.

When the Commodore 64 responds to an IRQ interrupt it saves all
registers before jumping through the hardware IRQ interrupt vector at
location 788 ($311) and 789 ($312). This is where the programmer can
gain control of the interrupt process.

A new interrupt routine must be written and its address must be stored in
locations 788 (low byte) and 789 (high byte). This routine should first
check to see if the interrupt is indeed a raster interrupt and not the
keyboard or timer A interrupt. If it is not a raster interrupt, control should
be returned to the normal interrupt routine at location $EA31. However, if
it is a raster interrupt then to turn subsequent raster interrupts on, a 1
must be written to bit 0 of the interrupt status register. Exit your interrupt
routine by jumping to location $FEBC.

Helicopter demonstrates the entire process involved in setting up a
raster interrupt. It is a simple program that puts 16 sprites on the screen
by changing the vertical position of the sprites with a raster interrupt.
The applications to which raster interrupts can be put are quite diverse.
As seen above, sprite registers can be changed, enabling the
programmer to have up to 8 entirely different sprites on every vertical line
if need be. Colour registers can be changed as can character sets. It is
also possible to mix graphics modes. This is demonstrated in the

146

program SPLIT SCREEN. The top half of the screen is in normal text
mode, while bottom half is bit mapped.

You may notice that the border between the 2 modes jumps around at
times. This is because the raster interrupt is an IRQ interrupt and is
therefore queued up after previous interrupts. This problem can be

remedied by adding the following line which turns off keyboard interrupts.

1045 POKE 56334, PEEK (56334) AND 254

The afore-mentioned technique for handling raster interrupts may also
be used to handle sprite-data collisions, sprite-sprite collisions and light
pen negative transitions. Simply use the following table when writing to
the interrupt enable register and reading the interrupt status register.
bit # description

0 raster interrupt

1 sprite-data collision

2 sprite-sprite collision

3 lightpen negative transition

Note: Before attempting any cassette 1/O the normal hardward IRQ
vector MUST be restored.

HELICOPTER

R PRINTA"

26 rREM IMTERRUPT CODE DATER

1A FOR 1= TN EB1:sREAD A:POKE 42152+1,8MNERT I
1 REM SFR

2
2

110 Far [=0
1T EQR 1237
125 REW ALL
170 FaR =2
175 REM SFR
197 FOR 1=5
145 PEM HOR
154 EOR 1=
TMNENT
155 REM YER o
160 FRR =5 2262 STEP
=AQ POKE 53 ,255:REM EMGBLE SPRITES
=1 POKE SE322,127:REM TURM QFF INTERRUFTS
520 REM CHAaN IRG IMTERFEUPT WECTOR
=27 PAKE 722,0:FOKE 729,192
sS40 FOKE S20505,0FCK(S2EE5ANDI2T
==n BEM FIRST IMTERRUPT AT LIME 100
S0Q POKE S226E6, 100

147

[

I
o

memo

PO IS

™M n
U IR
o}

n
1Y

B

3

-}

=
x'3.

e T
3

o
Lh

fica Ty T i Y
[
o1 m

9

s o |
on

o}
o Ty i
=

W
]

T o b e e e

9

3

i)
o
=

)
ol

2

V]
ho!

)
m

Ly on

]

-

pol

Ok
FOR
FOKE
FOR

MTERRLPT

ATA 172,25,208,41,1,20
OATA 43,234, 141,225,292
DATA 189;15 S 141, 13, ER
CATA 1,208, 141,3,208, 1
DT ?,383,141,_,¢DJ,1
DATA 141,17%,208,141,15
DATA 189,380,141, 18,3208,
DATA 144,219
REM SFRITE DATA
naTA 9,255,255,2,0, 128
nATA 129 144,_,349,139
DATR @,14,127,8,6,127,
RATA 254,9,8,32.0, 15,2

o

J::J'-'al.i's
;-rc_ll-Ao-—\

m s

F

w0
-~
m w w

et

~

U IS |

TE

FoiS
,18,202,:
9,199, 14
,208,141
1,208

2, 76,188,254
LS8, 24

)
,290,103,2

The machine language source code for this program is included as a
matter of interest for machine language programmers:

5

i

18 irgint lda #4913

20 fread interrupt ztzatusz re

=9 and #1

40 iz it a2 raster interrupt?

TR bhe il

EA :if not then jump to normal
routine

70 Jmg ¥eal3l

20 freset raster interrupts

A il =tas F¥HO13

129 fcurrent rastar line

119 lda Q12

128 :tranch if grsatsr than

120 bmi 13

149 naxt interrupt at 1line

159 lda H1IS2

s

tar

i

interrupt

LER etxn FIDLE
172 fzprite #rtical pozition
139 1da #1498
128 sprate wertical regiszters
20 {iF s2ta F1001
s stz P03
=tz FIAMNS
& =ta =0T
249 =tz ¥1202
250 =ta FAO0k
ER zta F£4900d
270 zta FAQOF
220 rrvarmal intarrupt exit routine
HEO imp Efebc
00 razter at line 20
219 1da an
=i E AR

J
w
o o]

zprite wvert oz ition
3240 1da #29
25 clc
3EA Mrelative branct
aZTa oo 12

SPLIT SCREEN

1090 REM READ IM IMTERRUPT ROUTIME

1019 FOR 1=0 TO SS:READ AIPOKE 481S2+1,
1920 POKE SE333, 127:REM DISABLE IMTERRU
1920 POKETSR2,2:1PO0KETS29, 132

1940 REM CHAMGE IRQ IMTERRUPT VECTOR
1950 POKESIAES, FEEK(S3265 2 AMND 12T

10EQ RFM FIRST RASTER IMTERFUPT AT LINE 20
N7 PAKE S3286,30

1252 RFM TURRM IMTERRUPTS OM
1A9N POKE SA333, 129:FOKESZETA

1107 POKFE S3221,0:RFM PACKGROUND COLOR
1117 RA=2%4A3R:REM RIT MARP ES

112 REM V'FPP EOTTOM HALF OF BIT MAF
11E0 FORI=BA+3I5EATORA+7S9IIFOKET, B NEXT
142 REM SET COLORS
=15

T

T

n~er

NEART

)

i
i

4

149

U]
Do]

ol
o O]

(U]
m
T e
s B

U
3

"
o B B
[B RO O I

U]

(o IRy I B B
"

o0
5]
@ M

oo

o
o M
=2

T

o

o T o IR

P
m o o .
oo

]

[
ho

LI
2 D
4D
2 ®

FOR M=0TQ213STEP.S:REM DRAW CURVE

(=ABSC IMNTL 90+88xAEBS{ SIN(R/182 222

CH=TIMNT HS

REO=INT{ Y.

LH:VHNW7
=BA+RO*2ZO+2 2 CH+LMN

B I =7 -CHAMDT)

FOKEERY ,PEEK(BYIOR(21B 1)

MEKT K

PRINT"A":LIST

b

G m

b

DATARLIT2,25,208,41,1,203.3,7E
DATA49,224,141 25,802,172 ,13,288
DATAR4S ,21,172,17,208,41,95, 141
DATHLT 208,169,211 ,141 ,24 ,29&, 162
DAaTA145,141, 18,208 ,76, 188,854,173
DATR17,283.9,32,141,17,208, 163
NDATAES - 141,24 ,208,163,28,141, 18

DATAZAR 76,128,254

The machine language source code for this program is included
as a matter of interest for machine language programmers:

19
3
3n
44
50
314
e

N pH W= 3009
DN O 900030

w o~ m
PO

T = bt b b et et b e =
- D
o T IO B0

)
ol

splitint lda #4213

*read interrupt ztatus register
and #1
bne intl

fif naot razter interrupt gso to nor

Jmp Feall
.at raster interrupts

intl zta Fd@19
fread raster resister

lda ®£d4@12

fbranch if greater than 128

bmi int2
tturn off bit map
lda #4111l
and #3935
=ta #Fde1ll

jrezset char base

lda #H21
sta 018

next interrupt

1da #145

150

mal routine

rexit

fturn

in

‘am

ful
T

hU

i

b=
[t

fnext

=tz @12
intarrupt routines
Jrap $febc
orn kit map
lda #d@11}
ora #3I2
=ta #£do11
char baze
lda #25
=ta $d4A18
interrurpt
l1da #20
=ta F4012

['¥]
i

Jmp Ffebc

151

CHAPTER7

EXTERNAL DEVICES

The Commodore 64 system can be upgraded with the addition of
external devices (peripherals). In this chapter we will describe the more
common of these devices - the Datasette, floppy disk drives and printers.

DATASETTE

This is the most economical method of data storage. Its disadvantages,
in comparison to disk drives, are that it is relatively slow and can only
store program and data files sequentially. So, to access a file that has
been passed on the tape, you must manually rewind it. Itis a good idea to
keep a record of the locations of programs with the tape counter so that
they can be quickly located. For the same reason it is best to use short
tapes. Even fast forward takes a lot of time to run through a 90 minute
tape.

Unlike most microcomputer systems the Commodore 64 requires a
particular cassette recorder, the Datasette. This has circuitry which
enables the Commodore 64 to sense whether certain keys are
pressed. It can therefore prompt the user when the required key is not
pressed. Unfortunately it cannot discriminate between record and play
modes. This means that it is still possible to inadvertently write over
programs you had meant to read.

Write-protecting tapes

On the near edge of cassettes you will find two write-protect tabs, one for
each side of the tape. Breaking these out will lock out the RECORD key,
so you will be unable to write onto that side of the tape. Use this method to
protect programs with which you do not want to run the risk of overwriting.
You can reverse the write-protect by placing a piece of tape over the
write-protect opening.

Care of tapes

Avoid touching the tape surface. The oils on your skin can destroy the
oxide coating, thus corrupting your data. Store cassettes away from
magnetic fields, which can also corrupt data. Television sets produce
quite a strong magnetic field, so don'’t store tapes on or near them.
Relevant BASIC commands

SAVE, LOAD, GET#, INPUT#, OPEN, CLOSE

FLOPPY DISK DRIVES

The Commodore 64 can use any of the Commodore disk drives, but the
model 1541 is designed to connect directly to the Commodore 64. Other
models need an interface cartridge.

152

Disk drives are more flexible and provide faster access than the
Datasette. They can store and access data randomly on any part of the
diskette surface. Their disadvantage is that, being precise electro-
mechanical devices, they are expensive.
Diskettes come in a protective jacket. Under no circumstances should
the diskette be removed from this jacket.

Data storage on diskette

Each diskette used by the 1541 consists of 35 concentric circles called
tracks. Each track is broken up into sectors, each of which holds 256
bytes.

Tracks 1-17 have 21 sectors/track

Tracks 18-24 have 19 sectors/track

Tracks 25-30 have 18 sectors/track

Tracks 31-35 have 17 sectors/track

Thus 1 1541 diskette can hold 174,848 bytes (170.75K)

Types of diskette

If you rotate the diskette within its jacket you will find one or more holes
which align with the small hole in the jacket. If there is only one hole, the
diskette is soft-sectored. If there is more than one hole, the diskette is
hard-sectored. The 1541 drive uses only soft-sectored diskettes.

Loading and Unloading Diskettes

O Read/write slot
Insert into drive

To load a diskette, gently slide it, in the orientation shown above, into the
drive slot until it clicks in. Close the slot door. The drive will not operate
with the door open.

To unload, press the slot door down and release. The door will open and
the diskette will be ejected an inch or so. Remove it carefully.

There are two indicator lights on the drive. The green one is a power-on
indicator. The red one lights only when there is some disk activity.

Formatting Diskettes

Before use, a new diskette must be formatted. This writes a disk name,
ID number and track and sector information onto the diskette. Formatting
is done by the commands:

Soft/hard sector hole __

|

Write protect hole \j

153

OPEN1,8,15

PRINT#1, “NEW : diskname, ID”
The diskname can be any string up to 16 characters long. The ID number
should be different for every diskette.
A shorter version of the format command used on diskettes which have
previously been formatted will erase all data on the diskette and rename
it, leaving the ID number unchanged.

OPEN1,8, 15

PRINT#1, “NEW : diskname”
Note: NEW may be abbreviated to N

Block Availability Map (BAM) and Initialization

The BAM is found on track 18. It contains memory allocation information
used when the disk drive is accessed.Each time this happens, the drive
compares the ID number on the diskette with the ID number held in drive
memory. If they don’t match, the drive loads the diskette BAM into drive
memory and uses this copy to access the diskette. This copying is called
initialization. If the ID numbers match, initialization is not carried out. This
is why different diskettes should be given different ID numbers. If they're
not, the situation could arise where the BAM for another diskette with the
same ID number is used to access a diskette. At best this will cause
searches to be unsuccessful. At worst programs will be overwritten.
However, if you have given diskettes the same |ID numbers, you can
force the drive to copy the BAM using the following:

OPEN1,8,15

PRINT#1 “INITIALIZE"
This can be abbreviated to:

OPEN 1,8,15,"1"
Diskette Directory
This is located on track 18. It contains the names, starting sector
addresses and file types of all files on the diskette. It can be displayed
using the following commands

LOAD “$",8

LIST

Write-protecting Diskettes

Like cassette tapes, diskettes can be write-protected. This is done by
covering the write-protect slot on the edge of the diskette jacket with
tape. Removing the tape restores the diskette to read/write condition.

File Manipulation Commands

Renaming files.

This is done with the commands:
OPEN1,8,15

PRINT#1,"RENAME : NEW—NAME=0OLD—NAME"
R is an acceptable abbreviation for RENAME

154

Erasing files
This is done with the commands:
OPEN 1,8,15
PRINT# 1, “SCRATCH : FILENAME”
S is an acceptable abbreviation for SCRATCH
Copying files
This is done with the commands:
OPEN1,8,15
PRINT# 1,“COPY : NEW—NAME = OLD—-NAME"
C is an acceptable abbreviation for COPY
Joining files
This is done with the commands:
OPEN1,8,15
PRINT# 1,“COPY : NEW—FILE=FILE1,FILE2
INote: Disk command strings must not be greater than 40 characters in
ength.

VALIDATE

This command does housekeeping on the diskette, deleting any files that
were not properly closed, and freeing blocks which may have been
allocated as temporary storage but are not now associated with any file.

Multiple Disk Systems
If you have a multiple disk system you may need to assign different
device numbers to the different drives. At power-up they are all device
number 8. Drives can have device numbers 8, 9, 10 and 11. To change
the device number:
1) Turnoff all drives but the one you are changing
2) Openacommand file to the device

e.g. OPEN 1,8, 15
3) Type PRINT# 1, “M-W"” CHR$ (119) CHR$ (0) CHR$ (2) CHR$

(new-device-number + 32) CHR$ (new-device-number + 64)

Leave that drive on. Turning it off will erase the new device number. Turn
on the next drive you want to change. This is now device 8 so you already
have a command charnnel opento it. If you want to change it or have more
drives be sure to use a different device number.

Closing Disk Files

When a program writes to, or reads from, a disk, the data is first placed in
a buffer. Only when the buffer is full is the data actually written to the
diskette or, only when it is empty is more data read in. Thus, if you finish
writing to the disk with the buffer not full, this data will not be stored on
disk. To avoid this, you must close the file. This automatically
writes the buffered data to disk, whether or not the buffer is full.

155

Maximum Number of Opened Files

The Commodore 64 can only handle 10 open files at a time, and only 5 of
these to disk. ltis therefore a good idea to close all files immediately after
use. ’

Disk Data Files

Three types of file can be stored on disk. Program files have already
been dealt with. The other two are sequential and random access files.
Sequential Files

These must first be opened using the following format:

OPEN If, dev, sa, “dn :flename, SEQ , W"

If - logical file number

dev - device number

sa - secondary address

dn - drive number - this may be omitted on single-drive systems
SEQ - indicates sequential file

w - indicates write mode - it can also be R for read.

e.g OPEN1,8,4,"0:RECIPES, SEQ,W"

To overwrite an existing file use an “@" before the drive number.
e.g. OPEN1,8, 4, "@0:RECIPES, SEQ,W"

This also applies to program files.

e.g. SAVE “@0 :PROG-NAME", 8

Random Access files
These are created by directly addressing diskette sectors and memory
buffers. There are 8 buffers available on the Commodore 64 but 4 of
these are used by the BAM, variable space, command channel 170 and
the disk controller, so don't open more than 4 buffers at a time. The
format for opening a random access file is as follows:

OPEN If,dev,sa,"#buff nr’

If - logical file number: 2-14 for data transfer, 15 for utility
commands (see below)

dev - device number

sa - secondary address (2-14)

buff nr - buffer number. This can be ommitted as the Disk Operating
System (DOS) will automatically select one.

Information is written to random access files using the PRINT#

command

Disk Utility Instructions

Block-Read
Purpose - reads any sector into one of the memory buffers
Touse - 1) Openacommand channel

OPEN 15,8,15
2) Open adirect access channel
e.g OPEN28,4,“#"

156

3) Specify track and sector and read it in.
PRINT#15,“B-R:"’sa;dn;T:S
sa - secondary address from 2 above
dn - drive number - mandatory when using direct
access commands
You may now use GET# and INPUT# to get the data from the buffer.
e.g. GET#2,B
Check ST for end of data
Close all files when you are through.
Note: B-Ris an acceptable abbreviation for BLOCK-READ

BLOCK-ALLOCATE

Purpose - checks a sector to see whether it is availabe or
already allocated. If available it marks it in the BAM
as allocated. If already allocated, it leaves the BAM
unchanged and returns the next available track and
sector in the error channel. If no sector is available it
returns track 0, sector 0, which is non-existent. If the
sector you initially asked for is available the message
‘OK’ is returned in the error channel.

To use - 1) Opencommand channel
OPEN 15,8,15
2) Specify track and sector and check it.
PRINT#15,“B-A":0;T;S
T - Track number
S - Sector number
3) Check error channel
INPUT#15,E,EMS$,T,S
E - error code
EMS - error message
T - track
S - sector
Proceed on the basis of the error channel return.
4) Close channels

Note: B-Ais an acceptable abbreviation for BLOCK-ALLOCATE

BLOCK-WRITE

Purpose - To write data to a sector specified by you. With this
instruction you can write to the BAM or the directory,
thus destroying them, so it is wise ro use a BLOCK-
ALLOCATE first, to find a free sector.

To use - 1) Do a BLOCK-ALLOCATE (not mandatory, but
wise)
2) If EM$="OK or other free sector returned,
continue
3) Opendirect access file
e.g. OPEN3,8,4,“#"”

157

4) PRINT# the data - from DATA statements,
arrays keyboard
e.g. PRINT#3,A
5) The data is now in the buffer. To block-write it
use:
PRINT#15,“B-W:"4:0:T;S
6) Close files
Note: 1) The format for the BLOCK—WRITE instruction is the same
as for BLOCK-READ
2) B—W: s an acceptable abbreviation for BLOCK-READ

BUFFER-POINTER

Purpose - To change the buffer pointer to start GETting at a
particular byte, rather than starting at the first byte in
the buffer

To use - 1) Do ablock-read to the point where you are about

to GET# bytes

2) Change the buffer pointer

e.g. PRINT#15,“B-P:"sa;byte

sa - secondary address used in setting up the direct
access file

byte - number of byte you want to start GETting at

e.g. PRINT#15,"B-P:"4:47

Note: B-P is an acceptable abbreviation for BUFFER-POINTER

BLOCK-FREE

Purpose - tode-allocate any block on the disk.
To use - 1) Opencommand channel
OPEN15,8,15

2) Specify track and sector and free it
PRINT#15,“B-F:"dr;T;S
dr - drive number
T - track number
S - sector number
e.g. PRINT#15,"B-F:"0;1;4
Note: B-F is an acceptable abbreviation for BLOCK-FREE

Disk Drive Memory Manipulation

The 1541 drive controller contains a 6502 microprocessor. It has 2K of
RAM and DOS, which resides on ROM. Some of the RAM is used for
housekeeping. The rest is used for buffers. This is also available to the
programmer for machine code programs.

The buffers are:

Buffer Address (hex)
1 300 - 3FF
2 400 - 4FF
3 500 - 5FF

158

4
5

600 - 6FF
700 - 7FF

Buffer 5 is often used by DOS, so it is not advisable to use it for machine
language programs. If you intend to use buffer space for machine code,
specify the buffers you want for direct access files, rather than leaving it
up to DOS which may overwrite your machine code if left to its own

devices.

MEMORY-WRITE

Purpose -
To use -

1)

MEMORY-READ
Purpose -

To use:

to store machine code in drive memory
a singe M-W commands allows you to store up to 34
bytes
All the data must be transferred as character strings
using CHR$
The number of bytes to be stored must be indicated
ONLY the abbreviaton M—W can be used.
MEMORY—WRITE, in full, is unacceptable
The machine code must end with an RTS instruction.
Otherwise the 1541 may loop endlessly, or do
something catastrophic to the data on the diskette.
Open command channel and transfer data
OPEN 15, 8,15
PRINT# 15, “M-W” CHR$ (LO-ADDRESS-BYTE)
CHR$ (HI-ADDRESS-BYTE) CHR$ (NR-BYTES-
TRANSFERRED) CHR$ (BYTE-1) CHR$ (BYTE-
2)...
CLOSE 15

to read data from drive memory one byte at a time

The byte read is transferred through the error channel
so use GET # 15to get it

ONLY the abbreviation M-R is acceptable. MEMORY-
READ, in full, is not

The address to be read is specified using CHR$, as
for MEMORY-WRITE

1) Open command channel

OPEN 15,8,15

2) Specify address and read
PRINT#15, “M-R"CHR$(LO-ADDRESS-BYTE)
CHR$(HI-ADDRESS-BYTE)

GET#15,A%
PRINTA$
CLOSE 15

159

MEMORY-EXECUTE

Purpose -

To use -

User Commands

u1
Purpose

To use -

U2
Purpose -

To use -

U3-u9
Purpose -

U (or UJ)
Purpose -
Touse -

to run a machine language program loaded into drive
memory by MEMORY-WRITE

ONLY the abbreviation M-E is acceptable

1) Open command channel

OPEN 15,8,15

2) Specify start address of routine and execute
PRINT#15,“M-E”"CHR$(LO-ADDRESS-
BYTE)CHR$(HI-ADDRESS-BYTE)

3) Close channel

CLOSE 15

similar to B-R. The only difference is that U1 reads
the 2 bytes preceding the data in the sector. These
bytes are the link address to the next sector in the file,
giving track and sector.

same as B-R, but replace B-R with U1.

similar to B-W. The difference is that B-W terminates
the file at the sector written. U2 allows you to write the
link address, ie. track and sector - to the next sector
in the file

same as B-W but replace B-W with U2

similar to M-E but they cause a jump to specific
locations as given below:

us3 $0500
U4 $0503
us $0506
ué $0509
u7z $050C
us $050F
U9 $FFFA

These locations are only 3 bytes long as they are
intended to hold a JMP instruction to a location the
programmer defines.

jumps to DOS to its power-up routine

all the U3-J commands have the following syntax for
use:

OPEN 15,8,15

PRINT#15,“U4”

CLOSE15

160

The 1515 Graphic Printer

This has a built in character set including upper and lower case letters,
numbers and graphics. To access the printer you must first open a file to
it using the following syntax:

OPEN If,dev,sa

If - logical file number (0-255)

dev - device number - either 4 or 5 - it is selected using a switch at
the rear of the printer

sa - used to select between character sets. If omitted the

default character set (upper case & graphics) is used.

If sa = 7 the alternate character set (lower case) is selected.
Having opened a channel to the printer you now use PRINT# If to print
your data.

Print Formatting

Comma
If the PRINT# data items are seperated by a comma the print puts 11
spaces between items printed.

Semicolon
This has the same effect as it does on a screen display

TAB and SPC

These cannot appear immediately after a PRINT #

ie. PRINT#1,TAB(6) is illegal; PRINT#1,";TAB(6) is OK

On the printer, both TAB and SPC have the same effect as SPC does on
the screen display

POS

This reproduces the screen TAB function on the printer. That is, it starts
printing at an absolute position rather than relative to where the current
printing is being done.

POS is sent to the printer as CHR$(16). The two characters immediately
following this determine the print position. '
e.g. PRINT#1,CHR(16);16"; starts printing at column 16"

Printer Graphics

The printer has several modes, in which characters received are treated
differently. The modes and commands to get into them are shown below:

Mode Command
Double-width characters CHRS$ (14)
Single-width characters CHRS$ (15)
Reverse characters CHR$ (18) or “[CTRL] [RVS ONJ}”
Normal characters CHR$ (146) or “[CTRL] [RVS OFF]”
Graphics CHRS$ (8)
Alternate character set CHR$ (17)
Standard character set CHRS$ (143)
Repeat Graphics CHRS$ (26)

161

These are used in PRINT# statements
e.g. PRINT#1,CHR$(17);"LOWER CASE”
Apart from the following two, the functions of the modes are obvious

GRAPHICS mode

This is similar to defining custom character sets in character memory in
that it creates patterns of dots. However, in printer graphics, rows not
columns are given values, as below, and columns, not rows, are added.

COLUMNS

A B CDEFGH
1
2
4
Row 8

values

16
32
64

Column values 64 64 126 126 126 126 64 64

Note that only 7 rows are used.
To print this character do the following:
OPEN# 1, 4 - open a channel to the printer
PRINT# 1, CHRS (8) - get into graphics mode
PRINT# 1, CHR$ (64 + 128) ; CHR$ (64 + 128) ; CHR$ (126 +
128) ; CHR$ (126 + 128) ;CHR$ (126 + 128) ; CHR$ (126 + 128) ;
CHRS$ (64 + 128) ; CHR$ (64 + 128)
Note that the column values are added to 128. It would of course have
been simpler to put the column values in a DATA statement and read and
PRINT#ed them in a loop.

Repeat Graphics Mode
This mode allows you to repeat a pattern of seven vertical dots up to 255
times per command.
e.g. OPEN 1,4 - openachannel to the printer

PRINT# 1, CHRS$ (26) CHRS$ (5) CHRS$ (255)
the first CHR$ value puts the printer into repeat graphics mode. The
second CHR$ value sets the number of repeat(s). The third CHRS$ value
defines the vertical dot pattern (in this case just a solid bar 7 dots high)
These two lines will just cause 5 bars to be printed. There is no space
between them, they're continuous.

Games Controls

There are three types of games controls in common use - the keyboard,
joysticks and paddles. This section describes these, and how they are
used.

162

Keyboard

This is the most common device for games control. Keys are assigned to
various functions, such as move left, move right, fire, etc.

When choosing keys for your games, ensure that they are easily usable.
Their position should reflect their function. For example, if you have 4
keys for up, down, left and right, use keys in corresponding positions, as

below:
e

left | S F | right

down

The space bar makes a good fire button since it's large and hard to miss.
It is annoying to have to repeatedly press and release keys to repeat an
action, so you should set all keys so that they automatically repeat when
held down. This is done by POKEing 128 into byte 650. POKEing 0 into
this byte makes only the cursor control keys repeat automatically.

Checking the keyboard.

GET is the command to use to check the keyboard, as it doesn’t echo the
character typed in, or stop the program to wait for input. It merely checks
the keyboard buffer and continues. If there is no character in the buffer
the GET variable is set to 0 or the null string. If there is a character in the
buffer it is assigned to the variable and the buffer is cleared. The GET
variable should be a string variable, since this will accept almost any
keystroke (except STOP, RESTORE,SHIFT, CTRL, (& and the colour
control keys). If a numeric variable is used you will only be able to GET
numeric characters without causing an error.

Having got the character, the program must decide what to do. This can
be done in various ways.
(i) Repeated IF-THEN-
e.g 10GETKS$
20 IFK$ =“S"THEN-:GOTO 70
30 IFK$ = “E" THEN-:GOTO 70
40 IFK$ = “X"THEN-:GOTO 70
50 IFK$ = “F" THEN-:GOTO 70
60 IFK$ ="“"THEN-:GOTO 70
70

163

The statements after the THEN may carry out the required actions and
then branch past the rest of the IF statements. If the actions required are
too complex to fit on a line, the program may GOTO or GOSUB a section
of code to carry out the actions.

(i) ON-GOTO-

If you are using many keys, going through all the IF statements may be
too time-consuming. It may be quicker to use some calculation or ASCI|
values with an ON statement. The disadvantage of this technique is that
the ASCII values of the characters you are using may be widely
seperated, necessitating complex calculations which take as much time
as stepping through the IF statements.

Joystick

This consists of a moveable stick and a fire button. When moved, the
stick closes 1 or 2 of 4 switches.

Left | O + O | Right

Down

If the stick is moved upor down or to one side, only one switch is closed. If
itis moved diagonally, the two switches it moves between are closed.

The state of the switches can be discovered by PEEKing certain memory
locations. Each switch controls one bit, delivering a 0 when the switch is
closed, a 1 when the switch is open.

7 6 5 4 3 2 1 0

FIRE RIGHT LEFT | DOWN upP

(Bits used by location 56320 and 56321 for joystick ports 1 and 2 respectively)

Since the program must check individual bits, bit masks must be used.
For example, to check the fire button bit — only use:

FB = PEEK (56320) AND 16

If FB = 0 then the Fire button has been pushed.

164

The joystick direction is checked by using the following statement:
DIR = 15—(PEEK (56320) AND 15)

The direction is determined by the following table:

Direction
None
Up
Down

Left
Up and Left
Down and Left

Right

Up and Right
10 Down and Right

(OGJ\JO)WA(.ON—*O%

The following program demonstrates joystick control:

19 REM % JOY STICK DEMO %

20 FOR P=2 TO 19

20 READ X,

40 HFPI=CHRS{(NK}) 1 YE(P2=CHRF{ Y2

S MNERT R

EQ DATA 8,0,0,145,0, ,9,0,157,0,157,145,157,
17,9,0,28,9,23,145, 29 17

10 J0Y=56220 :(PRINT CHR3${ 147>

112 PRIMT"X":CHRS(157>

122 IF (PEEK{JOY>ANDIE =0 THEN PRINT"8";
CHR${ 157);

1320 P=15-(FEEK{ JOYOXAND 1S

140 PRIMNT " ";CHRBISTIIKEIPIIYE(P)?

152 GOTC 118

Paddies

Paddles are used in place of joysticks where a variable control of
direction is needed (e.g. moving a racquet up and down the screen for
tennis, etc.). Each port can take two paddles, one for the x-direction and
one for the y-direction.

The paddles are read into memory locations 54297 and 54298. These
are the sound chip’s paddle read registers.

A paddle set to zero position and rotated through to its maximum rotation
will return values from 0 to 255 in increments of 1. Owing to such a large

165

range of possible output values and the rate that they can change, it is
impossible for BASIC to keep up with the paddles.

However, the ‘REGLINK’ routine used in the Sound chapter can be
modified to link the output of the paddles to the x and y co-ordinates of a
Sprite. Use the following method to link Sprite#0 to the paddles.

Connect paddles to port labelled ‘Port-2’

Load ‘REGLINK’ (listed on page 67) and change Line 110to:
110 DATA 208

RUN “REGLINK” with the above change

LOAD “SQUARE” from Graphics chapter (listed on page 94)

Type: POKE 820, 0 : POKE 821, 1

RUN Square

oorL N

You should be able to move the Sprite square around the screen
independently of the operating system.

166

Appendix A

1) CHR%$ Value Codes

Character

STOP

WHITE

RETURN

CHRs$
Code

QUNDPUSDWN =

Lower case switch 14

CRSR
RVS ON
CLR/7HOME
INST/DEL

RED
CSRS 3
GREEN
BLUE
space

167

Character

vENSB SR

+ M~ -

MOODWDROVIVIEASD s JONPUDRWN =O N

CHR$
Code

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49

30
51
o2
a3
24
55
26
57
a8
o9
60
61
62
63
64
&5
66
67
68
69

Character CHR$

Code

70
71
72
73
74
75
76
77
78
79
80
81
82
a3
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
&= 102
103
104
105
106
107
108

AN<SXECCHNIPRTVOZINrAU~I@T

A3 UM

e
'\l.

Character CHR%

Code
= 109
A 110
[111
| 112
- 113
[114
\ 4 115
H I 1146
[d 117
X 118
& 119
e 120
E 121
L 122
2] 123
K] 124
i 125
2 126
~N 127

128

129

130
SHIFT RUN/STOP. 131

132
f1 133
+3 134
5 135
+7 136
2 137
4 138
f6 139
8 140
SHIFT RETURN 141
Upper case switchl142

143
BLACK 144
CRSR 1 145
RVS OFF 144
CLR/HOME 147

168

Character

INST/DEL

CHR%
Code

148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
163
166
167
168
169

Character CHR%
Code

M | 170
H 171
& 172
RS 173
(o] 174
175
176
177
178
179
180
181
182
] 18X
™ 184
185
186
187
188
189
190
191

BHBHL

por p —
- L

ROBLEOCL

Codes 192-223 are the same as 6—-127
Codes 224-254 are the same as 160—-190
Code 255 is the same as code 126

2) Screen Codes
Character
Set 2

Character
Set 1

oamMMmMoONWD e

a+snanocaw

169

Screen
Code

NOCUBRWN=O

Character Character Screen
Set 1 Set 2 Code

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

N X EKCEMFNYITODOI B3 -XW =T

N<XECC-HUIDBTVOZIMARU~TI
Ay

space
]

e Nex

+ "~

170

Character Character Screen
Set 1 Set 2 Code

48
49
30
91
952
23
54
25
56
37
58
99
60
61
62
63
64
65
&6
&7
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

SAYVIEAG s QONOCURWNROD
P

4
i
See

£
L

BIONBCEED

BEES€]
<C-HUIDTOZIFrALU~IOTIMOUOWD

171

Character Character Screen

Set 1 Set 2 Code
=] W 87
<+ X 88
K Y 89
L Y4 0
H 91
El 92
TG 93
a A 94
~N N 95
space 96
K: Q7
- 98
! 99
i 100
101
& 102
<1 103
104
4] % 105
1 106
H 107
= 108
L) 109
"l 110
= 111
3 112
B 113
& 114
Hl 115
[116
L: 117
i1 118
m 119
. 120
i 121
o 122
=l 123
o 124
23] 125

172

Character Character Screen

Set 1 Set 2 Code
(ol 126
"] 127

Codes 128-255 produce reversed images of
codes 0-127

3) ASCII Codes

Character Code Character Code
NULL Q 6S 29
SOH 1 RS 30
8TX 2 us 31
ETX 3 space 32
EOT 4 ! 33
ENG S " 34
ACK & # 35
BEL 7 £ 3 36
BS g YA 37
HT 4 & 38
LF 10 ’ 39
vT 11 (40
FF 12) 41
CR 13 X 42
S0 14 + 43
SI 15 ’ 44
DLE 16 - 45
DC1 17 . 44
DC2 18 / 47
DC3 19 o 48
DC4 20 1 49
NAK 21 2 50
SYN 22 3 51
ETB 23 4 52
CAN 24 S 53
EM 25 6 54
SUB 26 7 55
ESC 27 8 956
FS 28 ? 57

173

Character Code Character Code
¢ 58 a 97
5 59 b 98
< 60 c 99
= 61 d 100
> 62 e 101
? 63 f 102
) 64 g 103
A 65 h 104
B 66 i 105
c &7 b 106
D 68 k 107
E 69 1 108
F 70 m 109
6 71 n 110
H 72 o 111
I 73 P 112
J 74 q 113
K 75 r 114
L 76 s 115
M 77 t 116
N 78 u 117
0 79 v 118
P 80 w 119
Q 81 X 120
R 82 y 121
S 83 z 122
T 84 ; 123
u 85 < 124
v 86 = 125
W 87 > 126
X 88 DEL 127
Y 89
4 90
L 91
\ 92
] 93
T~ 94
< 95
space 96

174

Appendix B

Complete Memory Map

Address
(Decimal)

0
1-2
3-4
5-6
7
8
9

Description

Chip directional register

Memory and tape control

Floating point - fixed point vector

Fixed point - floating point vector

BASIC counter. Search character ‘;’ or end of line
Scan-quotes flag

Column position of cursor on line

Flag ;0 = LOAD, 1 = VERIFY

BASIC input buffer pointer ; subscript number
Default DIM flag

Variable type flag : FF = string, 00 = numeric
Numeric type flag : 80 = integer, 00 = floating
point

DATA scan flag : LIST quote flag ; memory flag
Subscript flag ; FNx flag

Flag ;0 = INPUT, 152 = READ, 64 = GET
ATN sign flag ; comparison evaluation flag
Current 170 prompt flag

Where BASIC stores integers used in
calculations

Temporary string stack pointer

Last temporary string vector

Stack for temporary string descriptors

Utility pointer area

Product area for multiplication

Pointer to start of BASIC program

Pointer to end of BASIC program ; start of BASIC
variables

Pointer to end of variables ; start of arrays
Pointer to start of string storage - strings move
down from top of available memory towards
arrays.

Pointer to end of string storage

Pointer to top of RAM available to BASIC
Current BASIC line number

Previous BASIC line number

Pointer to BASIC statement (for CONT)
Current DATA line number

Pointer to current DATA item

Jump vector for INPUT statement

Current variable name

175

71-72
73-74
75-76
77
78-79
80 - 81
82

83
84 - 86
87 -96
97-102

103
104
105-110
111
112
113-114
115-138

139- 143
144
145
146
147
148
150
151
152
153
154
155
156
157
158
159
160 - 162
163
164
165
166
167
168
169
170
171

Current variable address

Variable pointer for FOR/NEXT statement
Y save ; operator save ; BASIC pointer save
Comparison symbol

Work area ; function definition pointer

Work area ; string descriptor pointer

Length of string

Garbage collect use

Jump vector for functions

Numeric work area

Floating point accumulator 1 ; Exponent, 4 byte
Mantissa, Sign

Series evaluation constant pointer
Accumulator 1 overflow

Floating point accumulator 2

Sign comparison - Acc 1 with Acc 2

Acc 2 rounding

Cassette buffer length ; series pointer
CHRGOT BASIC subroutine - gets next BASIC
character

RND storage and work area

ST - status byte

STOP and REVERSE flags ; Keyswitch PIA
Timing constant for tape

Flag :0 = LOAD, 1 = VERIFY

Serial output ; deferred character flag

Tape EOT received

Register save

Number of OPEN files

Current input device

Current output (CMD) device

Tape character parity

Flag : byte received

Output control flag : direct = 128 ;run =0
Tape pass 1 error log

Tape pass 2 error log

Jifie clock - Tl and TI$ use this

Serial bit count

Cycle count

Tape write bit count

Pointer to tape buffer

Tape write count ; input bit storage

Tape write new byte ; Read error ; input bit count
Write start bit ; Read bit error

Tape scan ; count

Write read length ; Read checksum ; parity

176

172-173
174-175
176-177
178 -179
180
181
182
183
184
185
186
187-188
189
190
191
192
193-194
195-196
197
198
199
200
201 - 202
203
204
205
206
207
208
209-210
211
212
213
214

215
216
217-240
241
242
243 - 244
245 - 246
247 - 248
249 - 250
251-254
255

Pointer to tape buffer ; scrolling

Tape end addresses ; end of program
Tape timing constants

Pointer to start of tape buffer

Tape timer ; bit count

RS232 next bit to send

Read character error ; next byte out
Number of characters in current file name
Current logical file number

Current secondary address

Current device number

Pointer to current file name

Write shift byte ; Read input character
Number of blocks remaining to Read/Write
Serial word buffer

Tape motor interlock

1/0 start addresses

KERNAL setup pointer

Current key pressed (see Appendix H)
Keyboard buffer counter

Flag : screenreverse - 1 is on, 0 is off
Pointer to end-of-line for input

Cursor log (row, column)

Current key pressed

Flag : cursor blink enable (0 is on)

Cursor blink delay

Character under cursor

Flag : cursor on/off

Input from screen/keyboard

Pointer to screen line on which cursor appears
Position of cursor on line

0 = direct cursor, else programmed
Screen line length, 21, 43, 65, 87

Current screen line number - To change cursor
position, 201, 210, 211 and 214 must be changed
ASCII value of last character printed
Number of INSERTSs outstanding

Screen line link table

Dummy screen line link

Screen row marker

Pointer to current location in colour memory
Pointer to keyscan table

Pointer to RS-232 receiver buffer start
Pointer to RS-232 transmitter buffer start
Free zero-page locations

BASIC storage

177

256 - 266 Float - ASCIl work area

256 - 318 Tape error log

256 - 511 Processor stack area

512-600 BASIC input buffer

601-610 Logical file table for OPEN files

611-620 Device number table for OPEN files

621 - 630 Secondary address table

631 -640 Keyboard buffer

641 - 642 Pointer to start of memory for operating system

643 - 644 Pointer to end of memory for operating system

645 Serial bus timeout flag

646 Current colour code (for PRINTed character)

647 Colour under cursor

648 Screen memory page indicator

649 Maximum length of keyboard buffer - must be
less than 11

650 Key autorepeat (0 = cursor controls, 255 = all)

651 Pre-repeat delay

652 Inter-repeat delay

653 Keyboard flag for SHIFT, CTRL and C= keys. If
SHIFT pressed, bit 0 is set, if CTRL, bit 1, if C=, bit
2

654 Last shift pattern

655 - 656 Pointer for keyboard table set-up

657 Shift mode (0 = enabled, 128 = disabled)

658 Auto scroll down flag (0 = on, else off)

659 RS-232 control register

660 RS-232 command register

661 - 662 Non-standard (bit time/2 —100)

663 RS-232 status register

664 Number of bits to send

665 - 666 Baud rate (full) bit time

667 Pointer to RS-232 receiver buffer (end)

668 Pointer to RS-232 receiver buffer (start)

669 Pointer to RS-232 transmit buffer (start)

670 Pointer to RS-232 transmit buffer (end)

671-672 Holds IRQ during tape operations

673 CIA 2 (NMI) Interrupt control

674 CIA 1 Timer A control log

675 CIA 1 Interrupt log

676 CIA 1 Timer A enable flag

677 Screen row marker

678 PAL/NISC flag, 0 = NTSC, 1 = PAL

679-767 UNUSED

768 - 769 Error message link

770-771 Basic warm start link

178

772-773
774 -775
776-777
778-779
780

781

782

783
784 - 785
788 - 789
790 - 791
792 - 793
794 - 795
796 - 797
798 - 799
800 - 801
802 - 803
804 - 805
806 - 807
808 - 809
810-811
812-813
814-815
816-817
818-819
828-1019

1024 - 2039
2040 - 2047
2048 - 40959
32768 - 40959
40960 - 49151
49152 - 53247
53248 - 53294
53248 - 57343
54272 - 54300
556296 - 56319
56320 - 56335
56576 - 56591
57344 - 65535
57344 - 65535
65409 - 65525
65478

65481

65484

65487

Tokenization routine link

Print tokens link

Start new BASIC code link

Get arithmetic element link
Temporary storage of A during SYS
Temporary storage of X during SYS
Temporary storage of Y during SYS
Temporary storage of P during SYS
USR function jump

Hardware interrupt vector (EA31)
Break (BRK) interrupt vector (FE66)
NMl interrupt vector (FE47)

OPEN vector (F34A)

CLOSE vector (F291)

Set input device vector (F20E)

Set output device vector (F250)
Restore 1/0 vector (F333)

Input vector (F157)

Output vector (F1CA)

Test STOP-key vector (F6ED)

GET vector (F13E)

Close all files vector (F32F)

User vector (FE66)
Load-from-device vector (F4A5)
Save to device vector (FSED)
Cassette buffer - useful for holding machine code
when no files are being used
Screen memory

Sprite pointers

Basic programs and variables
ROM plug-in area

ROM Basic

Unused

6566 video chip

Character set

6581 Sound chip

Colour memory

6526 Interface chip-1

6526 Interface chip-2

ROM operating system

Unused

Jump table including the following:
Set Input channel

Set Output channel

Restore default 170 channels
INPUT

179

65490 PRINT
65505 Test STOP key
65508 GET

180

Appendix C
Keyboard Graphics and how to get them.

Symbol Keypress Symbol Keypress
[22] x E 18 53] & R
H x W 0] & aQ
"] xk D "] x F
[] xk C m x v
[=®] k B m & +
! x T m x Y
| am] x U d x I
] &k O - x P
. x 2 n x -
[] xk 8 | & xkx H
[B] x J [¥} &x K
e x L W] & N
1 xk M (=] x £
1] x 8 [21] & X
3 &k A a2] x z
N x 3
L BHIFT L [} BHIFT 3@
m SHIFT 0 m SHIFT P
[N] SHIFT 1 a SHIFT U
<4} SHIFT K (A} SHIFT J
o] BHIFT W - BHIFT Q@
=] SHIFT + [o24] SHIFT v
[N] SHIFT M v} BHIFT N
* SHIFT 2 v SHIFT §
+ SHIFT X -~ SHIFT A
[} SHIFT E o} 8HIFT D
) SHIFT & SHIFT C
] SHIFT F) SHIFT R
i SHIFT T i} SEHIFT G
i SHIFT B i §; SHIFT -
W SBHIFT H W | SHIFT Y
[4] SHIFT £
7~ UP ARROW €« LEFT ARROW
L. 8 PI

As well as these there are a set of symbols
used to represent control characters such as color
controls and cursor controls.

The symbols vary depending upon whether the
Computer is in upper case or lower case mode.

181

The symbole ares

Upper case.

Syabol Keypress
(V] CLR
€] HOME
(1] cursor down
a cursor up
[1] cursor right
[]] cursor left
- ctrl 1
1= ctrl 2
ctrl 3
[N ctrl %
- ctrl
[1] ctrl b
-] ctrl 7
] ctrl <]
(] ctrl L
[] ctrl (o]
Lower case

Syabal Keypress
HOME
(Y] cursor down
= ctrl 2
N ctrl 4
R ctrl a8
a ctrl 9

1 34 The <k symbol 1s the special shift key

located to the left of the left hand shift
key

182

Appendix D

Useful ROM routines

The KERNAL is the operating system of the VIC 20. It contains many
subroutines which can be of use to the machine language programmer.
All of these can be accessed using a JSR instruction. Control will be
returned to your program after the KERNAL subroutine has executed. In
the brief descriptions of these subroutines below, the following
information is presented.

Name, Purpose

Address : in hex

Communication registers : registers used to pass information to and from

the KERNAL subroutine.

Preparatory routines : these routines must be called prior to the

subroutine in question.

Possible errors : if an error occurs, when the subroutine returns the carry
flag will be set, and the error code will be in the
accumulator.

Stack : number of bytes of stack used by the routine.

Registers used : a list of all registers used by the KERNAL routine.

1) Name : ACPTR
Purpose : Get data from serial bus
Address : $FFA5
Communication registers : A; data returned in accumulator
Prep. routines : TALK, TKSA
Possible errors : see READST
Stack : 13
Registers used : X, A
2) Name : CHKIN
Purpose : Open a channel for input
Address : $FFC6
Communication registers : X; load X with number of logical file to be
used
Prep routines : OPEN
Possible errors : 3,5,6
Stack : 0
Registers used : A, X
3) Name : CHKOUT
Purpose : Open a channel for output
Address : $FFC9
Communication registers : X; load X with logical file number to be
used
Prep. routines : OPEN
Possible errors : 3,5,7
Stack :0
Registers used : A, X

183

4)

5)

6)

7)

8)

9)

Name : CHRIN

Purpose : Get a character from input channel

Address : $FFCF

Communication registers : A; data byte returned in A

Prep. routines : OPEN, CHKIN (unless device is keyboard)

Possible errors : see READST

Stack : 0

Registers used : A, X

Name : CHROUT

Purpose : Output a character

Address : $FFD2

Communication registers : A; load byte to be cutput in A

Prep. routines : OPEN,CHKOUT (unless device is screen)

Possible errors : see READST

Stack : 0

Registers used : A

Name : CIOUT

Purpose : Transmit a byte over the serial bus

Address : $FFA8

Communication registers : A; load byte to be output in A

Prep. routines : LISTEN, (SECOND if device needs secondary
address)

Possible errors : see READST

Stack: 0

Registers used : A

Name : CLALL

Purpose : Close all files

Address : $FFE7

Communciation registers : none

Prep. routines : none

Possible errors : none

Stack : 11

Registers used : A,X

Name : CLOSE

Purpose : Close a logical file

Address $FFC3

Communication registers : A; load A with logical file number to be
closed

Prep. routines : none

Possible errors : none

Stack : 0

Registers used : A, X

Name : CLRCHIN

Purpose : Clear I/0 channels
Address : $FFCC
Communication registers : none
Prep. routines : none

184

10)

11)

12)

13)

14)

Possible errors : none

Stack : 9

Registers used : A, X

Name : GETIN

Purpose : Get a character from keyboard buffer

Address : $FFE4

Communication registers : A; character code returned in A

Prep. routines : none

Possible errors : none

Stack : 0

Registers used : A, X

Name : IOBASE

Purpose : Define I/0 memory page

Address : $FFF3

Communication registers : X, Y; respectively low and high address
bytes of memory section where memory
mapped 1/O devices are located are
returnedin X, Y

Prep. routines : none

Possible errors : none

Stack : Two registers used : X, Y

Name : LISTEN

Purpose : Command a device on the serial bus to receive data

Address : $FFB1

Communication registers : A; load A with number 4-1, 3 indicating

device.

Prep. routines : none

Possible errors : see READST

Stack : 0

Registers used : A

Name : LOAD

Purpose : Load RAM from device, or verity

Address : $FFD5

Communication registers : A; set to 0 for load, 1 for verify. X, Y; low

and high bytes of starting address of load

Prep. routines : SETLFS, SETNAM

Possible errors : 0,4,5,8,9

Stack : 0

Registers used : A, X,Y

Name : MEMBOT

Purpose : Set or read the address of the bottom of RAM

Address : $FF9C

Communication registers : Carry flag; 1 to read, O to set bottom of
memory. X, Y; low and high bytes of
address. If carry is set, the address will
be returned in X, Y. If carry clear,

185

15

~

16)

17

18)

~

address in X, Y will be transferred to
pointer to bottom of RAM
Prep. routines : none
Possible errors : none
Stack:0
Registersused : X, Y, P
Name: MEMTOP
Purpose : Set or read the address of top of RAM
Address : $FF99
Communication registers : Carry, X, Y; as for MEMBOT
Prep. routines : none
Possible errors : none
Stack : 2
Registers used : X, Y, Carry

Name : OPEN

Purpose : Open a logical file
Address : $FFCO

Communication registers : none
Prep. routines : SETLFS, SETNAM
Possible errors : 1,2,4,5,6

Stack : 0

Registers used : A, X, Y

Name : PLOT
Purpose : Set cursor location or read cursor location
Address : $FFFO
Communication registers : Carry : 1 for set cursor location
0 for read cursor location
X; column number (0-21) returned to or
loaded from
Y; row number (0-22) returned to or
loaded from
Prep. routines : none
Possible errors : none
Stack : 2
Registers used : Carry, X, Y

Name : RDTIM

Purpose : Read system clock - 3 byte value

Address : $FFDE

Communication registers : A; most significant byte returned
X; next mostsignificant byte returned
Y; least significant byte returned

Prep. routines : none

Possible errors : none

Stack : 2

Registers used : A, X, Y

186

19)

20)

21)

22)

23)

Name : READST

Purpose : read status word

Address $FFB7

Communication registers : A; error code returned in A. See
discussion of ST in BASIC section for
codes and meanings

Prep. routines : none

Possible errors : none

Stack : 2

Registers used : A

Name : RESTOR

Purpose : Restore default system and interrupt vectors

Address : $FF8A

Communication registers : none

Prep. routines : none

Possible errors : none

Stack : 2

Registers used : A, X, Y

Name : SAVE

Purpose : Save memory to a device

Address : $FFD8

Communication registers : A; load with zero-page address. This
address and the next byte contain the
address of the start of memory to be
saved.
X, Y;low and high bytes of end address
of memory to be saved.

Prep. routines : SETLFS, SETNAM (SETNAM not needed if a

nameless save to Datasette is desired)

Possible errors : 5,8,9

Stack : 0

Registers used : A, X, Y

Name : SCNKEY

Purpose : Scan the keyboard, put value in keyboard queue

Address : $FF9F

Communication registers : none

Prep. routines : none

Possible errors : none

Stack: 0

Registers used : A, X, Y

Name : SCREEN

Purpose : Return number of screen rows and columns

Address : $FFED

Communication registers : X; number of columns returned in X
Y; number of rows returned in Y

Prep. routines : none

Possible errors : none

187

24)

25)

26)

27)

28)

Stack :2

Registers used : X, Y

Name : SECOND

Purpose : Send secondary address for LISTEN

Address : $FF93

Communication registers : A; load with secondary address 1o be
sent

Prep. routines : LISTEN

Possible errors : see READST

Stack : 0

Registers used : A

Name : SETLFS

Purpose : Set up a logical file number, device and secondary

addresses

Address : $FFBA

Communication registers : A; load logical file number into A
X; device number
Y: command (secondary address)

Prep. routines : none

Possible errors : none

Stack : 2

Registersused : A, X, Y

Name : SETNAM

Purpose : Set up file name

Address : $FFBD

Communication registers : A; load length of file name into A
X, Y; low, high bytes of address of start of
memory where file name is stored

Prep. routines : none

Possible errors : none

Stack: 0

Registers used : A, X, Y

Name : SETTIM

Purpose : Set the system clock - 3 byte value

Address : $FFDB

Communication registers : A; most significant byte
X; next most significant byte
Y; least significant byte

Prep. routines : none

Possible errors : none

Stack : 2

Registers used : A, X, Y

Name : STOP

Purpose : Check if stop key pressed

Address : $FFE1

188

29)

30)

31)

32)

33)

Communication registers : zero flag; set if STOP key pressed
Prep. routines : none
Possible errors : none
Stack : 0
Registers used : zero flag, A, X
Name : TALK
Purpose : Command a device on the serial bus to TALK
Address : $FFB4
Communication registers : A; load device number into A
Prep. routines : none
Possible errors : see READST
Stack : 0
Registers used : A
Name : TKSA
Purpose : send a secondary address to a device commanded to
TALK
Address : $FF96
Communication registers : A; load secondary address into A
Prep. routines : TALK
Possible errors : see READST
Stack : 0
Registers used : A
Name : UNLSN
Purpose : Command all devices on the serial bus to stop receiving
data
Address : $FFAE
Communication registers : none
Prep. routines : none
Possible errors : see READST
Stack : 0
Registers used : A
Name : UNTLK
Pupose : Send an UNTALK command to all devices on serial bus
Address : $FFAB
Communication registers : none
Prep. routines : none
Possible errors : see READST
Stack: 0
Registers used : A
Name : VECTOR
Purpose : Set or read system RAM vectors
Address : $FF8D
Communication registers : X, Y; address of list of system RAM
vectors
Carry flag; if sat, the RAM vectors are

189

read into the list pointed to by X, Y and
if clear, the contents of the list pointed

to by X, Y are read into the RAM
vectors.

Prep. routines : none

Possible errors : none

Stack : 2

Registers used : Carry flag, X, Y

Error Codes

Value Meaning
Routine terminated by STOP key
Too many open files
File already open

File not open

File not found

Device not present
File is not an input file
File is not an output file
File name is missing
lllegal device number

OO~NOOMEWN~O

190

Appendix E

BASIC error messages

BASIC's error messages arent always illuminating. This list of
messages and explanations may be helpful.

BAD DATA:

The program expected numeric data, but received string data (from an
OPENGed file)

BAD SUBSCRIPT:

The program tried to reference an element of an array whose subscript
was outside the dimensions of the array.

CAN'T CONTINUE:

CONT doesn't work because (a) the program was never run, (b) it
stopped due to an error condition or (c) an attempt was made to edit the
program.

DEVICE NOT PRESENT:

The relevant I/0 device isn’t present.

DIVISION BY ZERO:

Not allowed.

EXTRA IGNORED:

Too many data items typed in response to an INPUT statement. Only the
required numer of items were accepted. Doesn't stop a program.

FILE ALREADY EXISTS:

The name of the source file being copied with the COPY statement
alread exists on the destination diskette.

FILE NOT FOUND:

On tape, this means that an END-OF-TAPE marker was found, so
search stops. On disk no such file exists.

FILE NOT OPEN:

You tried an I/0 command on a file that hasn't been opened.

FILE OPEN:

You tried to open a file using a number assigned to a file already OPEN.
FORMULA TOO COMPLEX:

Either a string expression is too intricate, or an arithmetic expression is
too complex. Ifit's a string, break it up into two parts. If it's an arithmetic
expression, try using parentheses.

ILLEGAL DIRECT:

The command attempted in direct mode can only be used in program
mode

ILLEGAL QUANTITY:

A number used as an argument is out of range. e.g. POKEing a value
greater than 255.

LOAD:
Too many errors (> 31) were found on a tape LOAD

191

NEXT WITHOUT FOR:

Either you've put in too many NEXT statements, forgotten a FOR
statement or branched past a FOR statement.

NOT INPUT FILE:

An attempt has been made to read from a file designated as output only.
NOT OUTPUT FILE:

An attempt has been made to write to a file designated as input only.
OUT OF DATA:

A READ statement has run out of data.

OUT OF MEMORY:

No more RAM left for program or variables. Also caused by too many
nested FOR loops and/or GOSUBSs. In this case you may have lots of
memory but no stack left. You may also have inadvertently changed the
top-of-memory pointer.

OVERFLOW:

The result of a calculation is greater than 1.70141884E +38.

REDIM’'D ARRAY:

An array name appears in more than one DIM statement, or has been
both implicitly and explicitly DIMensioned.

REDO FROM START:

An INPUT statement received the wrong type of data. Doesn’t stop the
program, just continues prompting until the correct type of data is input.
RETURN WITHOUT GOSUB:

A RETURN for which there is no corresponding GOSUB. Usually caused
by dropping into the subroutine inadvertently.

STRING TOO LONG:

Strings can be a maximum of 255 characters long.

SYNTAX:

BASIC doesn'’t recognise the statement.

TYPE MISMATCH:

Number used in place of string, or vice-versa.

UNDEF'D FUNCTION:

A user defined function was called but has not yet been defined, with a
DEF FN statement

UNDEF’'D STATEMENT:

An attempt has been made to go to a non-existent line number.
VERIFY:

The program on tape or disk being VERIFYd does not match the program
in memory.

192

Appendix F
Current Key Pressed

Location 197 stores a coded value of the current key depressed. If more
than one key is depressed the higher value is stored.

Key Value Key Value Key Value Key Value
1 0 none 16 SPACE 32 Q 48
3 1 A 17 Z 33 E 49
5 2 D 18 C 34 T 50
7 3 G 19 B 35 V] 51
9 4 J 20 M 36 (o] 52
+ 5 L 21] 37 @ 53
£ 6 ; 22 none 38 T~ 54

DEL 7 CRSR€3 23 1 39 5 55
€ 8 STOP 24 none 40 2 56
W 9 none 25 S 41 4 57
R 10 X 26 F 42 6 58
Y 11 \ 27 H 43 8 59
| 12 N 28 K 44 0 60
P 13 , 29 : 45 — 61
* 14 / 30 46 HOME 62

RETURN 15 CRSRJ 31 B 47 17 63

193

INDEX

Abbreviating BASIC 42,43,44
Absolute addressing 106
Accumulator 104
Appending programs 44
Arrays ... 10, 43
ASCI ... 6
Attack ...l 52,72
Attenuating 58
Autostart 119
BAM 154
Baseaddress 107, 108
BASIC interpreter 2
BASICstorage 45
BASICsyntax 17
Binarydigit 6, 102
Binary number system 14,102
Bit mapped screen 91, 140
BitS............. 15
Blockallocate 157
Blockfree 158
Blockread 156
Blockwrite 157
Booleanoperators 13
Buffer 45,47, 119, 155, 156. 158
Bufferpointer 158
Byte ... 6
Charactercolour 80
Charactermemory 79
Caractertable 82
Collision detection 91,98
Colour controlkeys 80
ColourMemory 79, 80, 82
Command number 30
Concatenation 8,12
Control structure 2
Conversion
hextobinary 103
hextodecimal 103
dectohex 103
dectobinary.................. 103
Datasette 152
Datastructure 6
Debugging 5
Decay 52,72
Decimal number system 14
Default 11,19, 80, 99
DEVICE NOT PRESENT 36
Devicenumber................... 30
Diskette directory 154
Disk usercommands 160
Drivenumber 155

194

Echo ... 68
Editor/Assembler 125
Envelope 52
Exclusive ORXOR 41
Expanding sprites 93
Extended background colour 90
EXTRAIGNORED 25
Falseo 2
File manipulation 154
Fiters 56,73,74,78
Flags 105
Floating point variables 9
Floppy diskdrive 152
Formatting Diskettes 153
FOR—NEXT 2
Functionkeys 128
Gatebit 71
GOSUB ... 4,43
GOTO ... 4
Graphicsmemory 79
Graphicsprinter 161
Hexadecimal number system . .14, 102
Hiresgraphics 86
IFTHEN, 2
ILLEGAL QUANTITY 17
Immediate addressing 106
Immediatemode 1
Implicitaddressing 106
Indexed addressing 107
Indexed indirect addressing 108
Indirect indexed addressing 108
Indirectpointers 108
Initialisation 134
Instruction set (6510) 109
Integervariable 10
Interruptrequest 127, 146
1/0device 119
1/Oport ..o 105
Joystick 163
Kermnal ... 133
Keyboard 163
Keyword 45
Labelreferences 125
Loopvariable 3
Loresgraphics 79
LIFO 104
Linkingregisters 67

Machine language 101

Masks 16, 88
Memorybank 118
Memory configuration 120
Memoryexecute 160
Memory management signals 120
Memorymap 118
Memoryread 159
Memorywrite 159
Microprocessor 101
Mnemonics 109
64MON 127
Monitor, 125
Modulation 68
Multicolour 89
Multicolour bitmapmode 91
Multicolour sprites 93
Multiple statements 42
Nesting 3,32
Notevalues 75
Nybbles 9C
Objectcode 125
ONGOTO/GOSUB 5
Operands 11
Operatingsystem 133
Operators 11
OUTOFDATA 25
OUTOFMEMORY 5
OVERFLOWERROR 9
Overlays 43
Paddles 74,163
Pitch 51
Pixels 86, 91
Portemento...................... 69
Processorregisters 104
Processor status register 104
Programcounter 105
Programlines 1
Programmode 1
Pseudorandom 35
RAM ... 119
Randomaccess 156
Rasterinterrupt 91, 145
Rasterregister 146
REDO FROMSTART 8,25
Registers 52,53, 54
Relative addressing 107
Release 52,72
Releasesignal 52
Resonance 59
Ringmodbit 71,73
ROM 119
ROMcartridge 119

195

Scientific notation 9
Screencodes 81
Screenmemory 79
Sectors 153
Sequentialaccess 156
Sequential execution. 2
Sound chip registers 70
Soundeffects 67
Sourceprogram................. 125

............................ 43
Sprites 91
Sprite collisions 147
Sprite collision register 98
Spritecolour 93
Sprite movement 94
Sprite pointer 91
Sprite priority 96
Sprite priority register 97
Stack 3,5
Stackpointer 104
Stringvariable 8
Sustain 52,72
Syncbit............. 71,72
TAB ... 43
Testbit 71
Timing 56
Tracks 153
True ... 2
Utility instructions 156
Variable 5,42
Vectors 107,119,127, 128
Vibrato 68
VIC chip addresses 86
VIC chipregisters 100
Videobank 92, 140
Voices 54,55
Waveform.................... 51,72
Write protect 152, 154
XandY indexregisters 104,
Zero page addressing 106

NOTES

196

NOTES

197

NOTES

198

COMMODORE 64 EXPOSED

REGISTRATION CARD

Please fill out this page and return it promptly in order that we may keep
you informed of new software and special offers that arise. Simply cut
along the dotted line and return it to the correct address selected from
those overleaf.

Where did you learn of this product?

(] Magazine. If so,whichone?
[] Through a friend.

[[] Saw it in a Retail Store

[Other. Please specify ..
Which Magazines do you purchase?

Regularly:
Occassionally:o
What age are you?

[]10-15 (]16-19 []20-24 (] Over 25

We are continually writing new material and would appreciate receiving
your comments on our product.

How would you rate this book?

Excellent [] Value for money
Good (] Priced right
[] Poor ‘ (7] Overpriced

Please tell us what software you would like to see produced for your
COMMODORE 64.

Name
Address

Code

PUT THIS IN A STAMPED ENVELOPE AND SEND TO:
In the United States of America return page to:
Melbourne House Software Inc., 347 Reedwood Drive,
Nashville TN 37217.°

In the United Kingdom return page to:
Melbourne House (Publishers) Ltd., Melbourne House, Church Yard,
Tring, Hertfordshire, HP23 5LU

in Australia & New Zealand return page to:
Melbourne House (Australia) Pty. Ltd., Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria, 3205.

re

.

Here is the definitive book for the Commodore owner.

A complete and comprehensive guide to make you total master
of your Commodore 64.

Commodore 64 Exposed is an encyclopedia of solutions from
Basic programming through to machine language, and
includes vital tables of memory locations and system variables.

The step by step format is designed to ensure that every
owner will understand exactly how their Commodore 64
works. Every feature and program variable is carefully
explained with the aid of simple demonstration programs
that can be entered in minutes.

Whether you are afirst time computer user or a serious
programmer, if you want to take full advantage of your
Commodore 64’s impressive capabilities, then this is the book
for you.

O carmmacanre - 6

1 W2 WS s\
K WHT RED CYN PR GRN "
0 ﬁ W E R T Y u \ L .
' pe' @0 80 gd od oo ed sm 0 un nn as
A4S S0 N E 8 H J K L
e’ @¢ @8 o8 oo oo o |m ag
z, X, c, v, B N <

AT Y e oed me e od| o8] N A

ISBN 0 861611330

