
~ -.
: .
- -_I~'­
_l_j_
~-.!'L'"

·COMMODORE 64

BRUCE
BAYLEY

COMMODORE 14
EXPOSED

COMMODORE 64
E POSED

BRUCE BAYLEY

.,-
lWj

"-"L~

MELBOURNE HOUSE

Published in the United Kingdom by:
Melbourne House (Publishers) Ltd.,
Melbourne House,
Church Yard,
Tring, Hertfordshire HP23 5LU,
ISBN 0 - 86161 -133 - 0

Published in Australia by:
Melbourne House (Australia) Pty. Ltd.,
Suite 4, 75 Palmerston Crescent,
South Melbourne, Victoria, 3205,
National Library of Australia Card Number and
ISBN 0 - 86759 -144 - 7

Published in the United States of America by:
Melbourne House Software Inc.,
347 Reedwood Drive,
Nashville TN 37217.

Copyright (c) 1983 Beam Software

Contributions by: Andrew Paulomanolakos
Peter Falconer
Goodwin Yuen

All rights reserved. This book is copyright. No part of this book may be
copied or stored by any means whatsoever whether mechanical or
electronic, except for private or study use as defined in the Copyright Act.
All enquiries should be addressed to the publishers

Printed in Hong Kong by Colorcraft Ltd.
1 st Edition

Contents

Chapter 1
Programming in Basic
Immediate and Program Modes 1
Control Structures ... 2
Data Structures .. 6

Bits and Bytes... 6
Characters.. 6
Variables 6
Arrays .. 10

Operators ... 11
Arithmetic Operators .. 11
String Operators... 12
Relational Operators .. 12
Binary and Hexadecimal Number Systems 14
Masks .. 16

Chapter 2

Commodore 64 BASIC Commands.... 17

Chapter 3
Advanced BASIC Techniques 42

Compressing BASIC Programs .. 42
Abbreviations for BASIC Keywords 43
Appending BASIC Programs..... 44
BASIC Program Storage Format 45
Commodore 64 BASIC Keyword Codes.... 46
Clearing the Keyboard Buffer ... 47
Merge Routine ... 49
Block Delete Routine .. 50

Chapter 4

Sound ... 51
Waveforms ... 51
The ADSR Envelope 52
Controlling the Sound Chip 54
Playing Tunes 54
Using Multiple Voices ... 55

Using Filters and Resonance ... 58
Putting it All Together ... 60
Special Sound Effects .. 67
The Sound Chip Registers 70
Music Note Values 75

ChapterS
Graphics .. 79
Graphics Memory .. 79
Low Resolution Graphics 79

Screen Background and Border Colours 79
Character Colour.. 80

Screen Memory ... 80
Character Memory... 82
Designing Your Own Characters 83

Where to Put the New Character Set.................................. 85
High Resolution Graphics 86

Multicolour Characters ... 89
Extended Background Colour Mode 90
Multicolour Bit Map Mode...... 91
Sprites .. 91

Sprite Pointers ... 91
Turning Sprites On 92
Sprite Colour .. 93
Multicolour Sprites ... 93
Expanding Sprites .. 93
Sprite Movement .. 94
Sprite Display Priorities .. 96
Sprite Collisions ... 98

Selecting a Video Bank.. 98
VIC-II Chip Register Map............................ 100

Chapter 6

Machine Language Programming on the Commodore 64 ... 101
Introduction 101
Binary and Hexadecimal Numbering System 102
Registers and Addressing Modes .. 104
Machine Code and Instruction Mnemonics 109
6510 Microprocessor Set .. 111
Simple Machine Language Programs 113

MON - Simple Machine Code Monitor 114

Commodore 64 Memory Map and Management 118
Program Entry ... 124

BASIC Statements ... 124
Machine Language Monitor .. 125
Editor/Assembler Package .. 125

Program Execution ... 126
BASIC Control Program ... 126
Machine Language Monitor .. 127
Substitution of System Handling Routines 127

Some Commodore 64 Useful Routines 128
Commodore 64 Kernal .. 133

Concepts of Kernal and Operating System 133
Power Up Initialisations .. 134
Using Kernal Routines ... 134
Some Useful Kernal Routines .. 135
Simple Programs That Call Kernal Routines 136

Graphics Using Machine Code ... 140
Raster Interrupts ... 145

Chapter 7

External Devices ... 152
Datasette ... 152
Floppy-Disk Draves .. 152
Disc Drive Memory Manipulation .. 158
The 1515 Graphic Printer ... 161
Games Controls ... 162
Keyboard ... 163
Joystick .. 164
Paddles .. 165

Appendices

A: CHR$ Value Codes .. 167
B: Memory (Complete Map) ... 175
C: Keyboard Graphics and How to Get Them 181
D: Useful ROM Routines .. 183
E: BASIC Error Messages .. 191
F: Current Key Pressed ... 193

CHAPTER 1

PROGRAMMING IN BASIC
BASIC is only one of the many languages used to communicate with
computers. It is however, the most common language in the
microcomputer world, so it's a good one to know. BASIC varies from
computer to computer, but once one dialect is known it is easy to adapt to
others. A knowledge of Commodore 64 BASIC is a solid basis for
programming in BASIC on any computer.

COMMODORE 64 BASIC

Immediate and Program modes.
When the Commodore 64 is turned on it starts in immediate mode. In this
mode, each line typed in and completed by pressing RETURN is
executed immediately - hence the name.
Program mode is used to store programs. The name is something of a
misnomer, but it is commonly used. Actually, you're still in immediate
mode, but whenever BASIC sees a line that starts with a number, it
executes the line by storing it in memory. The statements following the
line number are executed only when you run the program.
e.g. typing PRINT "HELLO" will cause HELLO to be displayed on the

screen.
typing 10 PRINT "HELLO" will cause that line to be stored in

memory. There will be no display until you type RUN.

Points to note:
• Line numbers must be integers from 0 to 63999.
• Lines are sorted into numerical order no matter in what order they're
typed.
• Typing a line number, then pressing RETURN deletes that line.
• Typing two lines with the same line number leaves only the second line
in the program.
• Typing NEW deletes all program lines in memory so that you can type
in a new program. If you don't do this the new program may have lines
from the old program in it.
• To BASIC, a line can be up to 80 characters long (including the
RETURN to terminate it) - ie. 2 screen rows. If you continue typing after
this, none of the line will be stored in the program (if in program mode) or
executed (if in immediate mode).
• You may put more than one statement on a line by seperating them
with a colon.
e.g. PRINT "H" : PRINT "E" : PRINT "L" : PRINT "L" : PRINT "0"
This can be done in both proQram and immediate modes.

• It is a good idea to start numbering lines at 100, and increasing at
intervals of 10 or 20. This enables you to insert lines between existing
lines .
• Although the BASIC interpreter stores any spaces you put in program
lines, it ignores them when it executes. All spaces may therefore be
omitted, although this makes programs difficult to read. The spaces are
stored and when you list the program they are included in the listing. You
cannot insert any spaces into keywords.

Control Structures
These are statements which control the order in which program lines are
executed. BASIC has the simplest control structure - sequential
execution - built in. In the absence of any other control structure, a
program is executed from the lowest to the highest numbered line. If this
were the only control structure available, programs would be very limited,
so Commodore 64 BASIC has the following statements for program
control. They allow your programs to make decisions, perform loops, and
branch to different parts of the program.

IF - THEN
IF [expression] THEN [statement(s)]
e.g. 10 IF A=5 THEN B=A-1 : GOTO 200

20 IF (A >- 0 AND A -::: -3) THEN GOSUB 6000
If the expression is true then all statements following the THEN are
executed. In line 10 above, for example, if A=5 then both statements
B=A-1 and GOTO 200 are executed. If the expression is false, both
statements are ignored, and the next line is executed.
The expression may be arithmetic, in which case the THEN statements
are executed if the expression evaluates to any number other than O. In
other words, the Commodore 64 takes 0 to be FALSE and all else to be
TRUE. This isn't particularly useful, and is bad programming style, since
it isn't immediately obvious what is meant.
e.g. IF 5+6 THEN PRINT "YES"

result - prints YES
IF A-5 THEN PRINT "YES"

result - doesn't print if A=5
If the expression evaluates to a string the result is unpredictable.

FOR - NEXT

e.g.

FOR [variable] = [start] TO [limit] STEP [step]
[statement(s)]
NEXT [variable]

10 FORJ=62 TO 70 STEP 1
20 PRINT CHR$ (J) ; "IS ASCii" ; J
30 NEXT J

2

This loops through lines 10-30 in the following way.
(i) J is set to the start value - 62
(ii) statements are executed until a NEXT statement appears
(iii) the STEP factor is added to J. J = 63
(iv) J is compared to the limit value- 70. IfJ is greater than 70 the loop is
finished and execution proceeds from the line following the NEXT
statement. If J is less than or equal to 70 the program loops back to line
20. If line 10 had been FOR J = 70 TO 62 STEP -1 the values of J would
be decremented by 1 every pass through the loop. When J is compared
to the limit value 62 execution of the loop continues if J is greater than or
equal to the limit value. Execution does not proceed to the line following
the next statement until J is less than 62.
• The FOR variable must be a floating point variable
• [start], [limit] and [step] may be numeric variable names, expressions,
negative, positive, integer or floating point.
• "STEP [step)" may be left out, in which case a STEP value of 1 is
assumed. So in the example above "STEP 1" is not necessary.
• The variable name in the NEXT statement may be left out. In the
example above, line 30 may read "30 NEXT"
• FOR loops are always executed at least once, even if the start value is
initially greater than the limit for positive steps or less than the limit value
for negative steps. This is because the comparison of the FOR variable
with the limit is done at the end of the loop.
• If the step value is negative, the loop is terminated when the FOR
variable is less than the limit. Again, the loop will be executed at least
once.
• FOR statements may be nested to a maximum depth of 1 O. That is,
you may have loops within loops.
e.g.

10 FORJ=1 T05
20 FOR K=1 TO 7
30 ...
40 FOR L=1 TO 3
50 .. .
60 .. .
70 NEXTL
80 NEXTK
90 NEXT J

When nesting loops be careful to terminate them correctly. The last FOR
variable mentioned must be the first NEXT variable mentioned. If the
variable names are left out of the NEXT statements, BASIC terminates
the loops correctly. Each loop variable is placed on a stack. The NEXT
statement takes the variable from the top. This is always the last one
placed there. Hence the computer's "ability" to select the correct NEXT
variable.

3

• There may be more than one variable name in a NEXT statement. The
example above could have been terminated by 70 NEXT L,K,J. If you
leave the variable names out BASIC will only terminate the last loop for
you - ie. "70 NEXT" is only equivalent to "70 NEXT L".

GOTO
GOTO [line-number]
This is the simplest of the control statements. When executed, it causes
the program to continue from the line number named. The unrestrained
use of GOTOs can make programs difficult to follow, so it should be used
with care.
• The line number must exist in the program.
• It cannot be a variable name or an arithmetic expression.
e.g. 10X=50

20 GOTO X - incorrect
20 GOTO (40+30) -incorrect
20 GOTO 200/10 - will goto line 200
20 GOTO 200 - correct if line 200 exists

GOSUB
GOSUB [line-number] 1 RETURN
GOSUB is short for GO to SUBroutine. A subroutine is a collection of
statements terminated by a RETURN statement.
When a GOSUB is executed, the program continues from the line
number named, just like a GOTO. But, when the next RETURN
statement is reached, the program returns to wherever the GOSUB is,
continuing execution from the statement following the GOSUB.
e.g. 10

20 GOSUB 500) 500
30 ~ ~510
40 \J 520 RETURN

The arrows indicate the path the program follows.
Subroutines are useful when there is a task which must be executed
several times in the program. Using subroutines means you needn't write
the same lines several times - you just GOSUB to them each time you
need them.
• A RETURN statement without a GOSUB causes an error
• A RETURN statement is not written by pressing the RETURN key!
They are quite different.
• There may be multiple RETURN statements in a subroutine.

e.g. 10 GOSUB 500

500 IF X=5 THEN RETURN
510 IF X=6 THEN B=X: RETURN
520C=X
530 RETURN

4

This saves you having to jump to the end of the subroutine to a single
RETURN
• Subroutines may be nested.
e.g. 10 GOSUB 520

520 ...
530 GOSUB 600
540 ...
550 RETURN

600 ...
610 GOSUB 700
620 ...
630 RETURN

BASIC does this by "stacking" the return addresses. When a GOSUB is
reached, its address is put on a stack. At the next GOSUB its address is
put on top of the first, and so on. When a RETURN is reached, the
address on top of the stack is taken off, and the program branches to that
address. At the next RETURN the address next on the stack is taken off,
and so on. The addresses are stored in a special area called "stack",
which is a fixed size (256 bytes). Therefore, by nesting too many
GOSUBs you can run out of stack space. This will cause an "OUT OF
MEMORY" error message to be displayed.

ON GOTO/GOSUB
e) ON [variable] GOTO [line-number 1], [line-number 2] , .. .

ON [variable] GOSUB [line-number 1] , [line-number 2] , .. .
Depending on the value of the variable, the program will GOTO (or
GOSUB) one of the line numbers. If the variable equals 1, the program
will GOTO the first line number, if the variable equals 2, it will GOTO the
second line number, and so on.
e.g. ON X GOTO 200 , 60 , 60, 75 , 500
• If the variable is 0 or greater than the number of line-numbers, the
statement is ignored, and execution continues from the statement
following the ON statement. If the variable is negative, it causes an error.
If it is non-integer the fractional part is ignored and only the integer part is
used.
• The variable may also be an arithmetic expression.
e.g. ON (A * 3 + 4) GOSUB 100,1200,60

ON (X -3*Y) GOTO 60 , 60 , 70 , 80 , 900

END
This statements stops the execution of a program. There may be several
END statements in a program. This is handy for debugging (ie. getting rid
of errors), since after an END has stopped the program, you may check
the value of variables (by typing PRINT [variable]), change the value of

5

variables, or look at the program listing (by typing LIST). You may then
continue the program by typing CO NT. However, CO NT won't work if the
program stopped on an error, or if you attempt to edit the program.
• It is not necessary to finish a program with an END statement.

DATA STRUCTURES
For a program to be useful it must be able to store information. It does this
by using data structures. The following is a brief summary of the data
structures available on the Commodore 64.

Bits and Bytes
A bit is the basic data structure used in all digital computers. The name is
derived from Binary digiT, because a bit can take one of only two values,
1 or O. Since it would be extremely cumbersome to store information bit
by bit, there are more sophisticated data structures available to the
programmer.
A byte is 8 bits. It can represent any number from 0 to 255 using the
binary number system. The Commodore 64 is a byte addressable
machine, which means that a byte is the smallest data structure which
the programmer can directly examine or change - using PEEK and
POKE.
(For more on bits, bytes and the binary number system see the section
on Operators.)

Characters
Characters are stored as a code number in 1 byte. Thus there are
potentially 256 character codes. The most common code is ASCII (for
American Standard Code for Information Interchange). The Commodore
64 however, uses a slightly different code so as to cover colours and
other special characters. Appendix A contains a table of ASCII and
Commodore 64 character codes. You may also use CHR$ and ASC to
explore Commodore 64 character codes.
e.g. PRINT CHR$ (65) will print the character with code 65 - an "A"

PRINT ASC ("B") will print the code for "B" - 66
• There is a difference between numeric characters and numbers. A
number is read as a character when it appears between double quotes
e.g. "5" - the character 5

5 - the number 5
PRINT ASC ("5") will display the code for the character 5
PRINT ASC (5) won't work.

Variables
In general, when you store information you don't want to:
- decide where in memory to put it
- POKE it byte by byte into memory

6

- remember where you put it so you can retrieve it.
BASIC provides variables to do this for you. All you have to do is provide
a name for your information. BAS IC then attends to storage and retrieval
of that information.

Rules for naming variables.
1) The first character must be a letter: A - Z, a - z
2) Except for the last character, the rest must be letters or numbers.
3) The last character must be -

- "$" if you're storing strings
- "%" if you're storing integers
- a letter or a number if you're storing floating point numbers

e.g. AB$, NAME$ - string variables
KI%, SKILL % - integer variables
E2, TEMP - floating point variables

• Variable names can be any length.
• However, BASIC only recognises the first two characters plus the last
one, if it's either "%" or "$".
e.g. NAME$ is seen as NA$

NATURE$ is also seen as NA$
TEMP is seen as TE
SKILL% is seen as SK%

So don't use names like TEMP1 and TEMP2, since BASIC will treat them
as one variable. Make sure different variable names differ in the first or
second character.
• The advantage of long variable names is that they make programs
easier to understand.
The disadvantage is that they take up more memory.
• Different variable types can have what appears to be the same name.
e.g. NA$, NA% and NA are all different variables.
• Variable names must not contain reserved words - ie. words which
BASIC recognises as commands.
e.g. BASIC would read TOP$ as TO P$ since TO is a reserved word.
This is a consequence of spaces between keywords and variables being
optional.
FIRSTHENS would be read as FIRS THEN S since THEN is a reserved
word.
This type of thing usually results in a SYNTAX ERROR in lines that look
OK.
• Assigning values to variables is done using" ="
e.g. NAME$ "JOHN"

SKILL% 50
FROD$ NAME$ - this assigns the value of

NAME$ to FROD$

7

SKILL % SKILL % + 10 - this takes the old value of
SKILL %, adds 10, and assigns
the result as the new value of
SKILL%

• As the name implies, the value of variables may vary.
• Only the correct type of information may be assigned to a variable.
Trying to assign a number to a string variable, or a string to a numeric
variable will cause a TYPE MISMATCH error.
e.g. NAME$ = 72 - type mismatch

SKILL % = "HARRY" - type mismatch

String Variables
A string is a series of characters contained within opening and closing
quotes.
e.g. "This is a string"

Thisisnotastringitisaverylongvariablename
• Strings can be concatenated - ie. joined together using the "+"
symbol
e.g. B$ = "THE COMMO "

A$ = B$ + "DORE 64"
The value of A$ is now the string 'THE COMMODORE 64"
• Concatenation can be used to put characters in strings that you
couldn't normally put in - for example, the double quote character.
e.g. A$ = " "STRING" "will not work because it will be read as an empty

string (" "), then STRING, then another empty string. This will not
make sense to BASIC
A$ = CHR$ (34) + "STRING" + CHR$ (34)

This concatenates the value of CHR$ (34), ", with STRING and, ", giving
"STRING"
This technique can also be used to give multicoloured displays
e.g. A$ = CHR$ (30) + 'THE" + CHR$ (31) + "END"

PRINT A$ will now display a green THE and a blue END.
• String variables can be very useful in getting "bombproof" input from
the keyboard.
For example, imagine you are writing a program which at some point
prompts the user to type in a number. You can do this by using
INPUT "NUMBER",A
To execute this the Commodore 64 prints the string and a question mark,
and waits for the user to type in a number which it will assign as the value
of A. But, if the user types in a non-numeric character, this will cause the
error message REDO FROM START to be displayed. It skips down a line
and displays the question mark again, waiting for a number. It will
continue to do this until a number is input, or the program is stopped. This
can be confuSing to a user who doesn't know the meaning of REDO
FROM START, and it can also destroy screen displays.

8

To avoid this, use
INPUT "NUMBER",A$

Now the Commodore 64 expects a string, so whatever(almost) the user
types will be OK. Of course this means that the program will have to do a
little more work, converting the string to a number. To do this, use

A=VAL(A$)
If A$ is a string containing only a number, A will become that number
e.g. A$ = "7.63"

A = VAL(A$)
The value of A is now 7.63
If A$ contains non-numeric characters, VAL(A$) will return o. Thus, the
programmer can arrange to print meaningful error messages and
reprompt the user without destroying screen displays.
• Commodore 64 BASIC has extensive string manipulation functions -
RIGHT$, LEFT$, MID$, + (see Commodore 64 BASIC Commands)
• If no value is given to a string variable, its value is the empty string.

Floating Point Variables
Floating point numbers can be integers, fractions preceded by a decimal
pOint, or a combination of the two.
e.g. 6,7.346,0.593, -0.762, -3
• They can be up to 9 digits long
• If a number with 10 or more digits is entered, it is automatically
converted to scientific notation.
e.g. 12345678912

is displayed as-
1.23456789E + 1 0

The number after the E indicates the number of positions the decimal
point must be moved to give its true position. If it is positive, the decimal
point is shifted to the right; if negative, to the left.
Note that the last two digits in the original number are rounded off. In
general, if the 10th digit is 5 or more, the number is rounded up. If it is 4 or
less, it is rounded down.
e.g. 1234567886 is displayed as 1.23456789E+9

.1000000014 is displayed as .100000001
• There is a limit to the size of the numbers the Commodore 64 can
handle

smallest > 2.93873588E-39
largest -< 1. 70141183E +38

Any number smaller than the lower limit is treated as O. Any number
larger than the upper limit gives an OVERFLOW ERROR.
• Floating point numbers can be entered from the keyboard in scientific
notation.
• Floating point variables don't have a special last character
e.g. FP, FLOAT, X, L1

9

• If no value is given to a floating point variable, its value is 0

Integer Variables
Integers are numbers without a decimal point. They may be negative or
positive. Unsigned integers are assumed to be positive.

e.g. 6, +63, -7, -7934621
• Integer variables are distinguished by % as the last character.
e.g. NUM%, SC%, F%
• Integers may be assigned to floating point variables since they are a
subset of floating pOint numbers. However, they will take 5 bytes for
storage compared to 2 bytes if assigned to integer variables.
• If no value is given to an integer variable its value is O.
• In most calculations the Commodore 64 converts integers to floating
point numbers and, if necessary, converts the result back to an integer. It
is therefore slower to use integer variables than to use floating point
variables.

Arrays
Arrays are used to store large amounts of related information without
having to assign a variable name to each data item. Instead, a name is
assigned to the array as a whole, and the individual data items are
referred to by their position in the array.
• Arrays are set up using a DIM statement

e.g. DIM A$ (12)
This will set up a 1 dimensional string array with 13 elements. There are
13 because numbering of array elements starts from O. This array has
the elements A$ (0) through to A$ (12).

DIM S% (4)
This sets up an integer array of 5 elements - S% (0) to S% (4)

DIM C (2,4)
This sets up a 2 dimensional floating point array with 15 elements, 3 rows
each of 5 elements.

C (0,0) C (0,1)
C (1,0) C (1,1)
C (2,0) C (2,1)

DIM D$ (1,1,1)

C (0,2)
C (1,2)
C (2,2)

C (0,3)
C (1,3)
C (2,3)

C (0,4)
C (1,4)
C (2,4)

This sets up a 3 dimensional string array of 8 elements - D$ (0,0,0) to D$
(1,1,1)
• Array elements are used just as a variable of the same type is.
e.g. PRINT C (1,3)

X=C(2,1)
D$ (1,0,1)="HI"

10

• You cannot refer to the entire array at one time.
e.g. "PRINT A$" will not display the 13 elements of the array A$. To do

this you would need the following:
FOR J =0 TO 12 : PRINT A$ (J) : NEXT

• Arrays can hold only one type of data. An attempt to store an intege(in
a string array, or a string in a floating pOint array will produce a TYPE
MISMATCH error.
• Like variables, array elements have default values. When an array is
first DIMensioned, all its elements take the default value for that variable
type. ie. a string array is filled with null strings, a numeric array is filled
with a's.
• Arrays can also have default sizes. That is, you can refer to an array
element without having first DIMensioned the array. However, this only
applies to 1 or 2 dimensional arrays. The default DIMension is 10 - ie. 11
elements for each subscript used to reference an array element. In this
case the Commodore 64 has implicitly DIMensioned the array for you.
This can be confusing when the program is read later, so it's better to
explicitly DIMension all arrays - ie. use a DIM statement.
• Arrays can be DIMensioned only once in a program. This also applies
to arrays the Commodore 64 has implicitly DIMensioned for you. In other
words,

10 LET A (1) = 0
20 DIM A (5)

will result in aRE-DIMENSIONED ARRAY error

Operators
Expressions are made up of operators and operands. Operators are
symbols recognized by the Commodore 64 as representing operations
to be performed on the operands. Operands may be variables, constants
or other expressions. Expressions return a value, and hence may be
used almost anywhere a variable of the same type could be used. There
are exceptions to this however, such as GOTO statements. These
exceptions are explicitly noted in the description of BASIC commands.

Arithmetic Operators
Arithmetic expressions return an integer value if all operands are
integers, and a floating point value if any of the operands are floating
point numbers. Most of these operators you will have met before, so a
few examples will suffice.

Addition' +'
6+4, B%+C+6
Subtraction' - '
7-3,18-36, B%-C
The minus sign is also used to signify a negative number.

11

Multiplication '*'
7*3,8%*8,16*C*8%

Division 'I'
The value on the left of the slash is divided by the value on the right.
7/4,8%/C
Exponentiation' t '
The value on the left of the arrow is raised to the power of the value on the
right.
At 5, 2 "1 3, 6 t 8%

Order of evaluation
An expression may contain multiple operators. The order of evaluation of
the sUb-expressions depends on the precedence of the operator in
each sub-expression. Operators with the highest precedence are
carried out first. A table of operator precedences appears at the end of
the section on operators.

String Operators
Concatenation' + '
The plus sign can also be used to concatenate strings.
e.g. "FREE" + "DOM" returns "FREEDOM"

if A$="STING" and B$="RAY"
A$+8$ returns "STINGRAY"

Concatenation can be used to build strings up to 255 characters long. An
attempt to build a longer string will result in a STRING TOO LONG error.

Relational Operators
These are used to compare strings or numbers. If the expression is true,
-1 is returned, if false, 0 is returned. This means that it is possible to
perform arithmetic operations on the result of a relational expression.
The operators are:

equals
, >- ' is greater than
, < ' is less than
'= < 'or' < is less than or equal to
'= :> or' > is greater than or equal to
, < >- not equal to
e.g. 6 = 6 - returns true (-1)

6 < 4 - returns false (0)
6 < 6 - returns 0
6 < =6 - returns-1
A% <:)- 8% - result depends on the value of A%, 8%

Strings can also be compared. This is done character by character, using
the Commodore 64 character code.

12

e.g. "C" -< "D" returns true (-1) since the code for 'C' -67 - is less
than the code for 'D' -68
"CAT" :> "CATION" results in false (0)
A$=C$+D$ result depends on the values of A$, C$ and D$

Boolean Operators
These, named after the logician George Boole, are used to carry out
logical operations.

AND
The result of an AND expression is true only if both operands are true,
false otherwise.
e.g. 6 :> 5 AND 4 < 5 returns true

6 <: 5 AND 4 <: 5 returns false
6 >- 5 AND 5 <: 4 returns false

IF A=22 AND B=20 GOTO 600 - result: GOTO line 600 if both A=22
and B=20

OR
The result of an OR expression is true if either operand is true, false only
if both operands are false.
e.g. 6 >- 5 OR 4 <: 5 returns true

6 -< 5 OR 4 -< 5 returns true
6 -< 5 OR 5 <: 4 returns false

IF A=22 OR B=20 OR C=6 THEN GOSUB 20 - result: GOSUB 20 if
any of the conditions are true

NOT
This takes only one operand. The result is the logical opposite of the
operand.
e.g. NOT (6 > 5) returns false

(6 <:: 5 OR 4 -::: 5) returns false
A single operand can be tested for true or false. It acts as if it has' .{ :> 0'
appearing after it, so any value other than a will return true.
e.g. IF 6 THEN GOTO 60 - result: GOTO executed

IF AHIT% THEN GOSUB 700 - result: depends on the value of the
variable AHIT%

Boolean operations can also be carried out on bits. However, this is best
described after a more detailed discussion of the binary number system.

13

Table of Operator Precedences

I--~-

I Precedence
, 9
i 8
I 7

6
6
5
5
4
4
4
4
4
4
3
2
1

o erator
o

/
+

< >
"---

<: = or = <:
:> = or = ">

NOT
AND
OR

Meaning
Used to over-ride normal precedences
exponentiation
signifies negative number
multiplication
division
addition, concatenation
subtraction
equals
not equal to
less than
greater than
less than or equal to
greater than or equal to
logical opposite
logical AND
logical inclusive OR

--'------------~--- .--------

• As noted above, parentheses, 0, can be used to over­
ride precedences. You can, for example, force an addition to be carried
out before a multiplication by parenthesising the addition expression.
e.g. 4*6+2 returns 26

4*(6+2) returns 32
Operators with the same precedence are executed from left to right.

BINARY AND HEXADECIMAL NUMBER SYSTEMS
The decimal, binary and hexadecimal number systems all use the same
principle. Each digit position in a number represents the power to which
the base is raised. The digit in a position is multiplied by the result of the
base being raised to its relevant power, and the results of these
calculations are added to give the final value. The only difference
between the three number systems is the base. The decimal system
uses 10, the binary system 2 and the hex system 16.

14

e.g. decimal 1 2 4
1 ()2 101 1 ()O

= 1 00 + 20 + 4 = 124

binary o
24

decimal equivalent = 32 + 0 + 8 + 4 + 0 + 1 = 45

When working with hex, the letters A - F are used as the hex equivalents
of the decimal numbers 10- 15
e.g. F 3

161 16°

decimal equivalent = 240 + 3 = 243

When addresses need to be POKEd into memory (as for the USR
function) they must be POKEd a byte at a time even though they are 2
bytes long. To calculate the decimal POKE values for each of the two
bytes, convert the number into hex, then change the two hexadecimal
bytes back to decimal.
e.g. hex address 1 DOO
In decimal this is 7424, but you can't POKE this value. So take the high
byte (1 D) and convert it to decimal

1 D
161 16°

= 16 + 13 = 29 POKE Address + 1, 29
now the low byte

o 0
16 16°
o 0 = 0 POKE Address, 0

Logical Operations on Bits
When AND, OR and NOT operands have numeric operands they are first
converted to 2 byte 2's complement integers in the range -32768 to
32767. If they are not in this range an error message results.
The logical operation is then carried out on bits. If the operator is AND (or
OR) the zero bit of operand 1 is ANDed (or ORed) with the zero bit of
operand 2. This is repeated for the bit 1 pair, the bit 2 pair and so on.
e.g. 1 1

ANRL AN~
=1 =0

15

ORing two bits which both have value 0 results in a O. Any other
combination produces 1 .
e.g. 0 1

OR 0 OR 0 -- --
=0 =1

If the operator is NOT, all of the bits are complemented, i.e. a 1 becomes
a 0 and vice versa.

Masks
As you will see it is sometimes necessary to change or read the values of
only some bits of a byte, leaving the others unchanged or unread. The
method used to do this is called masking.
For example, to check the value of only the last 4 bits of byte 36876 we
AND the mask 15 with the byte value. It's easier to see how this works in
binary notation.
value of 36876 - - - - 1 0 1 0
AND 15 0 0 0 0 1 1 1 1

=0 0 0 0 1 0 1 0
Because the first 4 bits of the mask are 0, ANDing them will always
produce 0 in the first 4 bits of the result, no matter what values were in the
first 4 bits of 36876. Because the last 4 bits of the mask are 1, ANDing
them will leave the values of the last 4 bits of 36876 unchanged. In
general, to make a mask for PEEKing, put a 1 in bit positions you want
unchanged, a 0 in those you don't want to know about.
For POKEing 1 into certain bits, an OR mask should be used. For
example, to set bit 2 in 36876 OR the mask 4.
e.g. POKE 36876, PEEK(36876) OR 4
Again, it's easier to see how this works in binary.
value of 36876 - - - - 1 0 1 0
OR 4 0 0 0 0 0 1 0 0

----1110
To POKE 0 into certain bits, AND a mask with 0 bits in the positions you
want set to 0, 1 in those you want left unchanged.

16

CHAPTER 2

COMMODORE 64 BASIC Commands
The following describes, in alphabetic order, all the BASIC commands
available on the Commodore 64. Those that are described as functions
return values, like expressions, and can therefore be used where values
of the appropriate type can be used. As with expressions, there are
exceptions to this. Note that functions appearing in expressions are
evaluated before operators, unless the operators are parenthesized.

ABS

AND

ASC

: function
: ABS ([number])
ABS ([numeric variable])
ABS ([numeric expression])

: returns the absolute value of its argument ie. positive values are
unchanged, negative values become their positive equivalents
e.g. ABS (6) returns 6

ABS (-72.3) returns 72.3
ABS (6+4*-3) returns 6
ABS (A%) returns positive magnitude of A%

: operator
: [expression] AND [expression]
: returns true (-1) if both expressions are true

returns false (0) if either or both expressions are false
e.g. IF X= 1 AND Y < =7 THEN GOTO 60

IF HIT% AND Z < > 6 THEN GOSUB 70
NOTE: AND can also operate on other numeric values
(see page 15).

: function
: ASC ([character string])

ASC ([string variable])
: returns the character code value of the first character in the string
e.g. ASC (A) returns 65

ASC (BAT) returns 66
ASC (A$) returns code of first character of A$
ASC ("") null string produces ILLEGAL QUANTITY error

17

ATN
: function
: ATN ([number])

ATN ([numeric expression])
: returns the arctangent of its argument in radians. The result is in
the range: + \12 to - \12
e. g. A TN (3) returns 1.24904577

ATN (6*3-15) returns 1.24904577

CHR$
: function
: CHR$ ([number])

CHR$ ([numeric expression])
The argument to CHR$ must be between 0 and 255.

: returns the single character string whose code is equal to the
CHR$ argument
e.g. CHR$ (65) returns 'A'

PRINT CHR$(13) will print a RETURN - ie. the cursor will
act as though the RETURN key has been pressed.
Colour and reverse mode can also be controlled in this way.

CLOSE

CLR

: statement
: CLOSE [file-number]
: closes the file started in an OPEN statement. You should execute

a PRINT# to that file before closing it, to make sure that all data
has been transmitted from the buffer.
e.g. OPEN 1,4 :PRINT#1, END DATA: CLOSE 1

: statement
:CLR
: This is not equivalent to the CLR key! This statement clears out

any variables that have been defined, un - DIMensions any arrays
that have been defined and RESTORES the DATA pointer to the
beginning of data. It also closes all logical files currently open. The
commands RUN, LOAD and NEWall automatically execute a
CLR statement. Note that the program itself is left untouched after
a CLR statement.
e.g. 10 A% = 53 : CLR : PRINT A%

This will display a 0

CMD
: statement
: CMD [file-number]

Normally, the screen is used to display output - Le. it is the default

18

output device. The CMD statement changes the default output
device to the file number given as argument. This enables you to
redirect everything normally displayed by the Commodore 64 to,
for example, the printer. A CMD statement must be preceded by
an OPEN statement. There are 3 ways to exit the CMD mode:
1) Press RUN/STOP and RESTORE keys. This will

reset the Commodore 64 to its default condition.
2) Use the CMD statement to change the default output. e.g.
CMD 3 makes the screen the default.
3) Execute a PRINT# [file-number]. This is preferred since it
also empties the printer buffer.
e.g. 10 OPEN 1,4 - opens a channel to the printer

20 CMD 1 - makes printer default output
30 LIST -lists the program currently in memory to the printer
40 PRINT#1 - makes sure the printer buffer is empty, and
exits the CMD mode
50 CLOSE 1 - closes the channel to the printer

CONT
: statement
:CONT
: This continues a program which has stopped due to a STOP

keypress, or the execution of a STOP or END statement within a
program. CONT will not work if the program stopped due to an
error, or if an error is made while the program is stopped, or if any
attempt is made to edit the program (even if nothing in the
program is actually changed). Variable values may be examined
and changed, and the program may be listed.

cos
: function
: COS ([numeric expression or variable or constant])
: returns the cosine of the argument in radians
e.g. COS (0.4) returns 0.921060994

DATA
: statement
: DATA [constant], [constant], ... , ... , ...
There may be one or more numeric or string constants. String
constants need not appear within double quotes, unless the string
contains graphics characters, commas, spaces or colons. Two
commas with nothing between them will be read as either 0 or the
null string, depending on the variable type the data is being read
into. DATA statements may appear anywhere in a program.
Since they need not be explicitly executed during the running of
the program they may appear after an END statement.

19

: Provides data for a READ statement
e.g. 10 DATA 6. -73.2. HELLO."10 DATA". "A..S"

20 DATA 7.23 .. GOODSYE
: Note: DATA statements cannot be used in immediate mode.

DEFFN

DIM

: statement
: DEF FN [name] ([parameter]) = [expressions]

[name] must be a floating point variable name 5 characters or less
in length. [parameter] must be a numeric variable name.
[expression] must be numeric. user-defined; string functions are
illegal. Previously defined functions may appear in [expression]

: defines a function with 1 parameter which may be referenced later
in the program
e.g. 10 DEF FNA (X) = X t 3 - define the function

20 PRINT FNA (2) - execute the function. replacing the
parameter with value 2 result - displays 8 (2 t 3)
30 PRINT FNA (Z) - replace parameter with value of Z result
- displays value of Z t 3

: Note: Can only be used in program mode. although functions
defined in program mode may be used in immediate mode.

: statement
: DIM[variable] ([integer].[integer] •...)
: The [variable] identifies the array name and type. The integers

indicate the number of elements in each dimension of the array.
Since numbering of array elements starts from O. DIM A(10)
defines an array with 11 elements. The number of integers
indicates the number of dimensions in the array. DIM A$(4,4)
defines a 2 dimensional array of 25 elements. A DIM statement
may define more than one array.
e.g. DIM A$ (6). S (7.2). C% (1.2)

: defines an array. One or two dimensional arrays of 11 elements (1
per dimension) may be used without a DIM statement. since the
Commodore 64 will implicitly define them for you when they are
first referenced.
Arrays may be DIMensioned only once (even those implicitly
defined).
Only elements of the type specified by the array name may be
stored in the array.
The following table can be used to calculate the amount of
memory used by arrays:
5 bytes - array name
2 bytes - each dimension
2 bytes/element - each integer value

20

END

EXP

5 bytes/element - each floating point value
3 bytes - each string variable
1 byte/character- in each string element
e.g. 10 DIM A$ (10) - defines string array of 11 elements

20 DIM S% (3,5) - 2 dimensional integer array of 24
elements
30 DIM C$ (6) , D (7,6,3) - string array - 7 elements and
floating point array - 224 elements
40 PRINT C$ (3) - displays fourth element of array C$
50 D (1,4,2) = 6.2 - assigns 6.2 as value of D (1,4,2)
60 A$ = C$ (1) - assigns value of C$ (1) to A$

(See Data Structures section for details of arrays)

: statement
:END
: stops a program and returns control to the user. Doesn't clear
variables, array pointers or program, so CO NT may be used to
continue the program. There may be any number of END
statements in a program. Useful for debugging.
e.g. 100 INPUT "CONTINUE", A$

110 IF A$ = "NO" THEN END

200 END

: function
: EXP ([number])
: returns e (2.71828183) raised to the power of [number]
: e.g. EXP (2) returns 7.38905613

FOR-TO-STEP- / NEXT
: statement
: FOR[variable] = [start] TO [limit] STEP [step] / NEXT [variable]

FOR [variable] = [start] TO [limit] / NEXT [variable]
FOR [variable] = [start] TO [limit] / NEXT
[variable] must be floating point. When STEP is omitted [step] is
assumed to be 1. [start], [limit] and [step] may be negative,
positive, constants, variables or expressions

: performs a loop through all statements between the FOR and
NEXT statements.

21

FRE

GET

A FOR loop is always executed at least once, since the variable
value is compared to the limit at the end of the loop.
The loop terminates when the variable value is greater than the
limit (if [step] is positive) or less than the limit (if [step] is negative).
FOR loops may be nested to a depth of 10. When nested loops
terminate at the same point the NEXT statement may contain
more than one variable name. e.g. NEXT I,J,K. In such a case
make sure the order is correct. Innermost loops must terminate
first.
e.g.10FORJ=7TOBSTEP-3

20 .. .
30 .. .
40 NEXT J

10 FOR J = 0 TO 6
20 ...
30 FOR K = 0 TO -5 STEP -1
40 .. .
50 .. .
60 NEXTK, J
Note: When used in immediate mode, a multiple statement
line is necessary.
FOR J= 1 TO 5: PRINT CHR$ (J) : NEXT

: function
: FRE ([dummy value]) - the value of dummy is unimportant.
: returns the number of free bytes of memory, as is done

automatically when the Commodore 64 is started. If the result
returned is negative, add 65536 to get the true number of free
bytes. FRE(O) - (FRE(O) <: 0) * 65536 will always return the
correct value
e.g. PRINT FRE (0)

: statement
: GET [variable]
: checks the keyboard buffer and assigns the first character in it to

the variable. If there is nothing in the buffer it assigns the null string
to a string variable, or 0 to a numeric variable. The character it
GETs is not echoed on the screen. A RETURN keypress is not
necessary after typing the character. In fact it will GET a RETURN
quite happily, just as it would almost any other character. Since
GET doesn't wait for a key to be pressed, it is usually placed in a
loop.

22

e.g. 10 GET A$: IF A$ ="" THEN GOTO 10
5 PRINT "PASSWORD ?"

20 GETP$
30 IF P$ = " " TH EN 20 - wait for keypress
40 IF P$ = CHR$(13) THEN END - check for RETURN to
signal end of password
50 PW$ = PW$ + P$ - build password, character by
character in PW$. Note that PW$ starts off as " ", the null
string.
60 GOTO 20 - get next character of password
Note: GET cannot be used in immediate mode.

GET#
: statement
: GET# [file-number],[variable]
: same as GET, but gets characters from a previously OPENed

input device such as cassette or disk drive.
e.g. 10 OPEN 1,3

20 FOR J = 1 TO 30
30 GET # 1, B$: A$ = A$ + B$
40 NEXT
50 CLOSE 1

This gets a buffer full of data from input device, stops device and
then proceeds to read the data from the buffer. In this case it gets
the first 30 character from the buffer and builds up the string A$
character by character.

GOSUB/RETURN
: :statement
: :GOSUB[line- number] / RETURN

[line-number] cannot be a variable or expression
: branches to [line-number]. Execution continues from this line

until a RETURN statement is read. Then control branches back to
the GOSUB statement. Execution continues from the statement
after theGOSUB statement.
There may be more than one RETURN statement to cause the
branch back to GOSUB. If a RETURN statement is read without a
GOSUB first having been executed a RETURN WITHOUT
GOSUB error will result. GOSUBs may be nested.
Note: The RETURN statement and the RETURN key are quite
different.

: e.g. 10 GOSUB 560

560 IF K$ = "Y" THEN GOSUB 600: RETURN
570 IF K$ = "N" THEN PRINT "WHY NOT" : RETURN

23

GOTO

580 PRINT "ANSWER MUST BY Y OR N"
590 RETURN

600 ...

675 RETURN
This example shows the use of multiple RETURNs and
nesting of GOSUBs. GOSUB 600 is nested inside
subroutine 560. GOSUBs may be nested to a greater depth if
desired.
(For more on GOSUB see Control Structure section)

: statement
: GOTO [line-number]

[line-number] cannot be a variable or expression.
: causes the program to branch to [line-number] if such a line
exists. It is also used in immediate mode to start a program
from a particular line, (same as RUN).
e.g. 10 GOTO 200

200 ... - execution continues here

IF-THEN
: statement
: IF [condition] THEN [statement(s)]

[condition] may be logical expression, numeric expression or
variable name.

: If the condition is true the statements after the THEN are
executed. If the condition is false the THEN statements are
ignored and execution continues from the next line.
Logical expression evaluate to -1 (true) or 0 (false). Numeric
expressions and variables are treated as false if they evaluate to 0
and as true if they evaluate to any other value.
When the statement immediately following the THEN is a GOTO
[line-number], the line-number alone is sufficient.
e.g. IF A$ = "YES" THEN 70 will execute a GOTO 70 if the
condition is true.
Alternatively, THEN may be omitted if GOTO is retained.
e.g. IF A$ = "YES" GOTO 70
e.g. 10 IF (A = 6 OR B = 7) THEN GOSUB 70 : PRINT A$

20 IF HIT THEN 700 - where HIT is a variable whose value is
normally 0, but is set to -1 when a collision occurs.
30 IF NOT(A= 7 AND B=4) THEN 70

24

INPUT
: statement
: INPUT [variable list]

INPUT [string];[variable list]
[string] must be a string constant, e.g. "PROMPT"
[variable list] may be 1 or more variables separated by commas

: where there is no string, the user is prompted for input by a"?".
Where there is a string, this is printed, followed by ? INPUT
differs from GET in that it waits for input, may accept more than
single characters, echoes input on the screen, and requires a
RETURN keypress to terminate input. Where the variable list
contains more than one variable, values must be typed separated
by commas. The values are assigned to the variables in order. If
the user types in too few values, the ? reappears and INPUT
waits for more input. If too many values are typed, the message
EXTRA IGNORED is displayed. This is not an error and

execution continues.
If [string] is too long (the prompt string has a maximum length of 20
characters), INPUT will read all of the string with the input when
the input is a string, or return a REDO FROM START otherwise,
so keep prompts reasonably short. If the user types in a value of
the wrong type for the variable it is to be assigned to, a REDO
FROM START message appears, and the user is prompted for
correct input by"?".
e.g. 10 INPUT A - displays "?" and waits for a number to be

typed, followed by RETURN key.

INPUT#

20 INPUT B, C$ - displays "?", waits for a number followed
by a comma, a string and RETURN key.

30 INPUT "PRICE?"; D - displays "PRICE?", waits for
number, RETURN key.
Note: Cannot be used in immediate mode.

: statement
: INPUT# [file-number], [variable list]
: accepts input from an OPENed file by reading that file into the

buffer and assigns each data item to a variable in the variable list,
in order. Data items must agree in number and type with the
variables in the variable list. If an end - of - record is read before all
variables in the variable list have been assigned values, an OUT
OF DATA status is generated but the program continues to
execute.
INPUT# does not display error messages, it reports error
statuses, in the status byte, that the program must respond to.

: because the input buffer is only 80 characters long, an input string,

25

INT

together with separator, cannot be longer than this. Commas and
RETURNs act as separators. They cannot act as data - you need
a GET # for that.
e.g. 10 OPEN 1,1 - default values used so this OPENs the

datatsette
20 INPUT# 1 ,A$,C,D,E$ - and reads these from buffer.

Note: INPUT# can only be used in program mode.

: function
: INT ([numeric variable, constant or expression])
: returns the largest integer less than or equal to the argument.

e.g. 10 PRINT INT(6.23) - displays 6
20 PRINT INT(-4.2)- displays -5
30 X% = INT(43.4) - assigns value 43 to X%
40 PRINT INT(14) - displays 14
50 PRINT INT(A) - displays integer value of A

LEFT$

LEN

: function
LEFT$ ([string variable, constant or expression] , [integer])

: returns a string consisting of the first [integer] characters of the
original string argument. If [integer] is greater than the length of
the string, the entire string is returned. If [integer] is 0, the null
string is returned.
e.g. 10 A$ = "TEST STRING"

20 B$ = LEFT$(A$,4)
30 PRINT B$ - displays "TEST"
40 PRINT LEFT$("GOODBYE",3) - displays "GOO"
50 A$ = LEFT$(A$,3) + LEFT$(A$,4)
60 PRINT A$ - displays "TESTEST"

: LEFT$ is often used to postion the cursor. A string of cursor
control characters is created which, when printed, moves the
cursor across or down the screen. LEFT$ can then be used to
control how far across or down the screen the cursor is positioned.
e.g. 10 A$ = "CRSR CRSR "

20 PRINT LEFT$(A$,1 0) - moves the cursor across the
screen 10 spaces.

: function
: LEN ([string variable, constant or expression])
: returns the length of the string argument. Blanks and

non-printing characters are counted.
e.g. PRINT LEN ("HARRY") - displays 5

10 A$ = "MIGHTY"

26

LET

LIST

20 B$ = LEFT$ (A$,LEN$(A$)-1)
30 PRINT B$ - displays "MIGHT"

: statement
: LET[variable] = [value]
: assigns the value on the right to the variable on the left. The word

LET can be omitted, and so is rarely used.
e.g. 10 LET A$ = "HELLO"

20 A$ = HELLO - equivalent to line 10
30 C$ = LEFT(A$,4) - assigns HELL to C$
40 D$ = C$ - assigns value of C$ to D$

: statement
: LIST - displays entire program
: LIST [line-number] .- displays line [line-number]
: LIST -- [line- number] - displays from start of program to line

[line-number] (inclusive)
: LIST [line-number]- - displays from line [Iine- number] to end

of program
: LIST [line-number1] - [line--number2] displays from line
[line-number1] to [line-number2] (inclusive)

: displays all or part of the program in memory as detailed above. If
the program exceeds the length of the screen display, the screen
will scroll up. This may be slowed down by holding down the CTRL
key, or stopped using the STOP key.
e.g. LIST - 100

LIST 50 - 999
LIST 20

: If used in program mode, the program will stop after LiSTing.
Typing CO NT at this point will only repeat the LiSTing.

LOAD
: statement
: LOAD

LOAD ["filename"]
LOAD ["filename"],[device]

: transfers a program from cassette or disk into memory.
If there are no arguments to LOAD, the next program found on
tape will be LOADed.
If there is a ["filename"], the Commodore 64 will search the tape
until a program of that name is found, and load it. [device]
specifies the device the program is loaded from. If it is 8, the
program will be loaded from disk, if it is 1, from tape and if it is not
present, the default value is 1, i.e. tape.

27

LOG

MID$

NEW

e.g. LOAD - loads next program on tape
LOAD "MYPROG" - searches tape for program called
"MYPROG" and loads it if it is found.
LOAD A$ - searches tape for program whose name is the
value of A$ and loads it.
LOAD "*,, , 8 - loads first program found on disk.
LOAD "PR*" , 8 - loads first program whose name begins
with "PR" from disk.
LOAD "NB" , 8 - finds program "NB" on disk and loads it.

: When used in immediate mode, a CLR statement is automatically
executed. When used in program mode, if the new program is
shorter than the old one, variables will not be cleared, so the new
program may use the old variable values.

: function
: LOG ([numeric variable, constant or expression])
: the argument to LOG must be greater than 0
: returns the natural logarithm of the argument, ie. the power to

which e must be raised to give the argument.
e.g. 10 PRINT LOG(6.42856) - displays 1.86075056

: function
: MID$ ([string variable, constant or expression],[from],[length])

MID$ ([string variable, constant or expression],[from])
: returns a string of length [length] consisting of the characters

starting from the [from]th character of the string argument. If
[length] is omitted, returns the entire string from the [from]th
character on. If [length] is greater than the length of the string
argument, the null string is returned.
e.g. 10 PRINT MID$("HELLO",2,3) - displays "ELL"

20 PRINT MID$("GOODBYE", 1 ,4,) - displays "GOOD"
30 X$ = "HATTRICK"
40 PRINT MID$(X$,4) - displays ''TRICK''

: statement
: clears program from memory and resets variables

e.g. X = 6.2
PRINT X - displays 6.2
NEW
PRINT X - displays o. Old value of X is lost as are any
program lines.

: Using NEW in program mode will clear the program in which it is a
program statement.

28

NOT

ON

: logical operator
: NOT [expression or variable]
: logically negates the truth value of [expression]
: 10 IF NOT(A=6 AND B=9) THEN 70

If the expression (A=6 AND B=9) is false then NOT(A=6 AND
B=9) is true and the program branches to 70.
20 IF NOT HITTHEN GOSUB 500
Assume HIT is a variable set to -1 when a collision between
game characters occurs, 0 otherwise. Then NOT HIT will evaluate
to true when there is no collision, and the appropriate action
(subroutine 500) can be taken.
NOTE: NOT can also operate on other numeric values (see p 15).

: statement
: ON [variable or expression] GOTO [line-number list]
ON [variable or expression] GOSUB [line-number list]
[line-number list] is a series of line-numbers separated by
commas

: causes the program to branch to one of the line-numbers
depending on the value of the ON argument. If the argument
evaluates to 1, the program branches to the first line- number, if
2 then it branches to the second line-number, etc. If the
argument evaluates to 0 or to a number greater than the number
of line-numbers then the statement is ignored. If the argument
evaluates to a negative number an error occurs.

e.g. 10 ON X%+3 GOTO 50,72,143,90
20 ON B% GOSUB 70,90,90,300
30 ON INT(B*C/3) GOTO 20,60,90,15

OPEN
: statement
: OPEN [file-number]
OPEN [file-number],[device-number]
OPEN [file-number],[device-number],[command-number]
OPEN [file-number], [device-number], [command-number],
[string]

: OPENs a logical channel for input or output to a device. When a
channel is OPENed to an external device, a buffer is
automatically set up. Transmission and receipt of data occurs a
whole buffer at a time.
[file-number] is the logical name of the channel, It can be any
number in the range 1-255, and is the same number used in
INPUT#, GET#, PRINT# and CLOSE statements to work with
this device.

29

[device-number] specifies the device as below:
Device Number Device

o keyboard
1 cassette - default device
2 RS232 device
3 screen
4 printer
5 printer
8 disk drive

4-127 serial bus device
128-255 serial bus device - and send a

linefeed (If) after carriage return.

: [command-number] must be in the range 0-255. The same
command number will have different effects depending on the
device specified.

Device Command Number Effect
read tape file
write tape file

Cassette 0
1
2 write tape file and put EOT (end

of tape) marker when channel
CLOSEd

Disk 1 - 14
15

open data channel
open command channel
no effect Keyboard

Screen
Printer

1 - 255
1 - 255

o
no effect
upper case/graphics
upper/lower case

OR

7

: [string] is sent to the printer or screen as if a PRINT# were
performed to the device. With the cassette deck it is used as the
filename. With the disk drive it can be either a filename or a
command, depending on the command number.
e.g. OPEN 1,0 - open channel to keyboard

OPEN 1,1,0 - open channel to cassette for reading only
OPEN 1,1 ,0, MYPROG - open channel to cassette for
reading only. When a read is done, the Commodore 64 will
search tape for "MYPROG"
OPEN 1 ,3 - open read/write channel to screen
OPEN 1 ,8,15, command - open channel to disk and send
command

: logical operator
: [expression] OR [expression]
: produces a true result (-1) if either or both of the expression are

30

true, a false result (0) only if both expression are false
e.g. 10 IF (A=6 OR B$="NO") THEN 90

20 IF (HIT% OR B=6) THEN GOSUB 60
NOTE: OR can also operate on numeric values (see p 15).

PEEK
: function
: PEEK ([address])
: returns the contents, in decimal, of the byte named by [address].

In those sections of memory where there is a ROM/RAM overlay
only the ROM at that address will be PEEKed. To PEEK the RAM,
the ROM must be switched out.
e.g. 10 PRINT PEEK(53280) - displays the value of the screen

border colour byte.
20 PRINT PEEK(651) - displays the value of a counter
controlling the time a key must be pressed before it repeats
automatically

POKE

POS

: statement
: POKE [address],[value]
: puts [value] into the byte at [address]. [value] must be in the

range 0 to 255. Unlike PEEK, which will return the contents of
any address in memory, either ROM or RAM, POKE will only
change the contents of RAM. If a value is POKEd into an
area of memory where there is a ROM/RAM overlay, the
RAM is automatically accessed, whether or not the ROM is
switched out.

e.g. POKE 65514,15 POKEs a value into the RAM under the
KERNALROM.

: function
: pas ([dummy])
the value of the dummy argument may be anything as it's not
used.

: returns the cursor's position in a line. Since a logical line may be
up to 80 characters long, a value betweeen 0 and 80 may be
returned.
If no cursor is being displayed, e.g. during a string manipulation in
a program, the position of the character currently being handled is
returned. Since a string of up to 255 characters may be built using
concatenation, a value in the range 0-255 will be returned.
e.g. PRINT "CURSOR AT"; POS(O) - displays "CURSOR AT 9"

31

PRINT
: statement
: PRINT [argument]

PRINT [argument], [argument] .. .
PRINT [argument]; [argument] .. .

: displays the arguments listed after PRINT. If the arguments are
separated by a comma, the Commodore 64 reserves 11 spaces
for the arguments, so displays may be widely separated. If the
arguments are separated by semi-colons, there is no separation
between arguments.
After each PRINT statement the cursor automatically moves to
the next line. This can be stopped by finishing the PRINT
statement with a comma or semi-colon.
String arguments to PRINT may contain special characters such
as cursor control and colours. These characters appear in the
string as reversed characters. (See Appendix C) Where the
PRINT statement is executed, the special characters carry out
their function. They are not displayed.
"Programmable" cursor controls are CRSR 1", CRSR J,. , CRSR
.... , CRSR"'" , CLR, HOME, INST. Some special characters need
different treatment, however. For example, DEL and RETURN
operate normally when an attempt is made to put either in a string,
and quote marks will terminate the string.
As you have probably found out, pressing DEL deletes a
character but you might at some time want to program it into a
string. The following steps show how to achieve this:
1) Terminate the string with quotation marks. e.g. "STRING"
2) Press DEL - this will delete the closing quotation marks but
leave you out of quote mode.
3) Press INST as many times as you want to insert a DEL, say
twice.
4) Now press DEL twice. These DELs will display as reversed
characters and will not execute yet.
5) Now put in replacement letters, if any, and complete the string
with quote marks.
All your keypresses should look something like this:
"STRING" start with completed string
press DEL to remove quotemark
press INST twice to insert 2 DELs
press DEL twice
Add replacement letters, in this case FE
close quotation marks
The display should now look like this:
e.g. 10 PRINT "STRING ii ii FE""

and when executed will display "STRIFE"

32

When LISTed the string looks as it displays, so editing can
be difficult if you've forgotten what you've done.
Other special characters can be put into strings in the
following way:
(i) Type the string, and RETURN key, leaving spaces for
characters to be added later
(ii) Use cursor control keys to get back to the space
(iii) Press CTRL, RVSON
(iv) Press the keys corresponding to the special character
you want, as shown below:
Character

Shift Return
Type

SHIFT M
N

SHIFT N
H

switch to lower case
switch to upper case
disable case switching keys
enable case switching keys I

: The Shift Return character, like DEL executes when LISTed, so
editing will again be difficult.
A more general, easier to remember, and more obvious method of
"programming" special characters is to use CHR$ and
concatenation.
Note: PRINT can be abreviated to "?"
e.g. PRINT 50

PRINT#

10 PRINT A$, 60; B
20 ? "A STRING" ; 24 ; "LETTERS LONG"
30 PRINT "LATEST PROGRAM"
40 FORJ=OTO 1000 : NEXT
50 ? "CRSR t CRSR..... CRSR..;' CRSR ..;.. CRSR-!·
"DEL INST INST DEL DEL"
Lines 30-50 will display "LATEST PROGRAM", wait, and
change it to "LAST PROGRAM". Line 50 will not look like
this when you type it in. As written, it indicates the keys you
press.

: statement
: PRINT# [file-number],[variable list]
: similar to PRINT, but sends the contents of the variable list to a
device which has been previously OPENed. The variable list is
transmitted in the same format as it would be PRINTed to the
screen. If commas are used to separate variables, extra spaces
are sent, if semi - colons are used, no spaces are transmitted. The
commas and semi-colons are not themselves PRINT#ed.
If no comma or semi-colon appears at the end of the variable list
a CHR$(13) (RETURN) is sent. It is probably best to separate

33

variables with CHR$(13) on the file so that INPUT$ can be used to
read them back.
e.g. 10 OPEN 1,1,1, "Data File"

20 RT$ = CHR$(13)
30 PRINT#1, LOW SCORE ;RT$;LS;RT$; HIGH SCORE
40 PRINT#1, AVERAGE ;RT$;A$
50 CLOSE 1
OPENing the file clears the tape buffer ready for data. The
buffer retains the data until it is cleared by a statement that
does this as a part of its execution, like OPEN. Commas and
semi-colons may also be used to separate variables on the
file. these must be explicitly PRINT #ed as the RETURNS
were in the example above.

READ

REM

: statement
: READ [variable list]

variables in the list are separated by commas
: reads data from DATA statements and assigns each data item to

the next variable in the variable list. When there is no unread data
in DATA statements and a READ is attempted, an "OUT OF
DATA" error occurs and the program aborts.
DATA statements are read in order of ascending line number.
Within a DATA statement, data is read sequentially from left to
right. The Commodore 64 increments a DATA pointer after each
element is read. If a RESTORE statement is used, the DATA
pointer is reset to point to the first data item of the first DATA
statement.
e.g. 20 READ A, C$, B, D$

60 DATA 6.4, HISCORE, 2.6, LOSCORE
When new data items are assigned to a variable, the old
value is lost.
70 READ C$, C$
80 DATA HI, BYE
Final value of C$ is "BYE"
90 FOR J=O TO 5
100 READ A(J) : NEXT
11 0 DATA 1, 2, 3, 6, 9

: statement
: REM[text]
: no effect - REM statements are ignored by BASIC. They are

provided to enable programmers to include comments about
the program.

34

If graphics characters are used in a REM statement they
must be preceded by quote marks, otherwise they will be
interpreted as BASIC keywords.
REM statements may appear as the last statement on a
multiple statement line. If they are not last, any statements
following them on the line will be ignored.

e.g. 20 REM 20-160 CALCULATE GROSS WAGES
150 GOTO 200 :REM BRANCH TO "HIT" SUBROUTINE

RESTORE
: statement
: RESTORE
: each time a READ is executed, the DATA pointer is

advanced to point to the next DATA item. RESTORE resets
the DATA pOinter to the first data item of the first DATA
statement.

e.g. 10 FOR J=1 TO 5
20 READ(A$) : NEXT
30 RESTORE
40FORJ=6T012
50 READ A$(J) : NEXT
60 DATA A,B,C,D,E,F,G

RIGHT$

RND

: function
: RIGHT$ ([string variable, constant or expression],[number])
: returns the string conSisting of the rightmost [number] of
characters of the original string. If [number] equals the length
of the string, the entire string is returned. If [number] equals
0, the null string is returned.

e.g. 10? RIGHT$("FRANTIC" , 5) - displays "ANTIC"
20 ? RIGHT$(A$, LEN(A$) -1) - displays all but the leftmost
character of A$

: function
: RND ([number])
: returns a pseudo-random number between 0 and 1 (not

including 1), by performing calculations on a 'seed' value. If
the argument is positive the same pseudo-random
sequence is generated for a given seed. If the argument is
negative, the function is re-seeded with each function call. If
the argument is 0, a number is generated from the system
clock.
A seed is generated on power-up and stored in locations
139-143.

35

e.g. 10 REM SUBROUTINE FOR RANDOM DICE THROW
20 T1 =RND(O) - get random number between 0 and 1
30 T2=(T1 *6)+ 1 - change to range 1 - 6.9999 ...
40 THROW = INT(T2) - get integer value of throw
This could, of course, be done on one line.
20 THROW = INT(RND(0)*6)+1

SAVE
: statement
: SAVE
SAVE ["filename"]
SAVE ["filename"],[device]
SAVE ["filename"],[device],[command]

: saves the program currently in memory onto cassette tape or
diskette.
If there are no arguments to SAVE, the program is saved to tape
with no name. If the [filename] is given, the program is saved to
tape under that name.
[device] specifies tape (using code 1) or diskette (using code 8).
[command] may be:
1) - when loaded the program will go into the same part of
memory it came from.
2) - an end-of-tape marker will be written after the program.
When the Commodore 64 reads this at a later date, it will act as
though it has reached the end of the tape. If, for example, it is
searching for a file which was written onto tape after the end-of­
tape marker, it will stop and display a "DEVICE NOT PRESENT"
message when it reads the EOT marker.
3) - combination of 1 and 2.
e.g. SAVE

SAVE "GAME1" - saves GAME1 on tape
SAVE G$ - saves on tape with the value of G$ as name
SAVE "GAME2",8 - saves "GAME2" on diskette
SAVE "GAME3",1,1 - saves on tape - will reload into same
part of memory.
SAVE "GAME4",1,3 - saves on tape - adds EOT marker -
will reload into same part of memory.

Usually used in immediate mode, but can be used in program mode. The
program will continue normally after SAVEing.

SGN
: function
: SGN ([number])
: if [number] less than 0 returns -1

if [number] equal to 0 returns 0

36

SIN

SPC

SQR

if [number] greater than 0 returns 1
e.g. 20 IF SGN(X) = 1 THEN 60

30 ON SGN(X) + 2 GOSUB 100, 200, 300

: function
: SIN ([number])
: returns the sine of the argument, which is in radians

e.g. 20? SIN(1.5) - displays .997494987

: function
: SPC ([number])
: prints [number] spaces on the screen. [number] must be between
o and 255. SPC can only used with PRINT.

: 20 PRINT "LEFT" ; SPC (7) : "RIGHT"
PRINT SPC (21) ; "!"

: function
: SQR ([number])
: returns the square root of [number] , [number] must be greater
than or equal to 0
e.g. 10 PRINT SQR (4) - displays 2

20A = 64
30 ? SQR (A) - displays 8
40 ? SQR (A * A) - displays 64

STATUS
: function
: STATUS or
ST

: returns a value corresponding to the state of the last input/output
operation. Different bits of the status byte are set on different
conditions as shown below· ,

CASSETTE SERIAL BUS TAPE VERIFY
BIT VALUE READ RIW AND LOAD --
0 1 time out write

1 2 time out read

2 4 short block short block

3 8 long block long block
4 16 unrecoverable any mismatch

read error

5 32 check sum error check sum error

6 64 end of file E01
7 -128 end of tape device not present end of tape

37

e.g. 10 OPEN 1,1,0, "DATA"
20 GET# 1, AS
30 IF STATUS = 64 THEN 60
40 PRINT A$
50 GOT020
60 PRINT A$: CLOSE 1

NOTE: The status byte is located at 144.

STOP
. statement
: STOP
: halts a program and returns control to the user. The only

difference between STOP and END statements is that the STOP
statement produces the message "BREAK IN [line-number]".
Thus, with more than one STOP in a program, you can be sure
which one has been reached. As with the END statement,
variables can be examined and changed and the program
continued with CaNT.
e.g. 70 STOP - displays "BREAK IN 70" and halts.

STR$

SYS

: function
: STR$ ([numeric constant, variable or expression])
: returns the string representation of the value of the argument.

e.g. 10? STR$ (57.42) - displays "57.42"
20 ? STR$ (··73) - displays "- 73"
30 ? STR$ (2E T 2) - displays "200"
40 ? STR$ (3E + 10) - displays "3Et 1 0"
50 A= 67.24
60 ? STR$ (A) .. displays" 67.24"

: Note that positive nu mbers have a leading space reserved for the
sign so when STR$ed they are longer than they look.
e.g. 70? LEN (STR$ (72)) - displays 3

: statement
: SYS [address]
: in effect. performs a GOSUB to the machine language program

starting at [address]. This is the most common way to mix BASIC
and machine language programs.
The VIC20 already has useful machine language routines (Kernal
routines) which can be accessed viaSYS. Also, users may POKE
their own machine language routines Into memory and access
them with SYS.
e.g. 20 SYS 65508· gets character from keyboard buffer

30 SYS 40800 - Jumps to routine previously POf(Ed into
memory at address 40800, and returns.

NOTE: See mactline language programming chapter 6.

38

TAB

TAN

TIME

: function
: TAB ([numeric variable, constant or expression])
: moves cursor to the position in a logical line given by the

argument. If the cursor is already past that position on the current
line, it is moved to that position on the next line. The leftmost
position on the screen is O. The TAB argument must be in the
range 0 - 255. TAB must be used with a PRINT statement.
e.g. 20 PRINT "NAME" ; TAB (8) ; "ADDRESS"

: function
: TAN ([numeric variable, constant or expression])
: returns the tangent of the argument, which is in radians.

e.g. 20 PRINTTAN (1.642)

: function
: TIME or

TI
: returns the value of an internal clock which counts intervals of one

sixtieth of a second Uiffies). This is initialized on start-up and reset
to 0 after 51,839,999 increments. This may be useful for timing
program segments. Note that it is turned off during tape I/O.
e.g. 20 X = TI : GOSUB 600

30 ET = (TI- X) /60
40 ? "subroutine 600 took";
50 ? ET ; "seconds to execute"

TIME$

USR

: function
: TIME$ or

TI$
: returns a 6 character string indicating hours, minutes, seconds­

i.e. "HH MM SS" - on a 24 hour clock. The correct time must be
initialized by the user. It is lost when the Commodore 64 is turned
off, and will not be accurate after tape I/O.
e.g. 20 TI$ = "131500" - initialize to 1.15 pm.

30 IF TI$ < :> "131559" THEN 30
40 ? "WAKE UP"

: function
: USR ([arg])
: calls a user written machine language subroutine, whose starting

address is stored at memory addresses 785 and 786 (low byte in
785, high byte in 786). To calculate the POKE values for each

39

VAL

address byte, find the address in Hex and convert each byte to
decimal. The [arg] is initially stored in the floating point
accumulator (memory locations 97 - 102), and the result
returned is the final value stored in the accumulator.
e.g. 20 POKE 785, a : POKE 786; 144 - poke start address

(9000 Hex = 36864 decimal)
30 A = USR (3) - call subroutine, assign result to A

: function
: VAL ([string constant, variable or expression])
: returns the numerical value of the string argument. If the string
does not start with +, -,. or a digit, the function returns a
e.g. 20 INPUT "PRICE" ; A$

30 PR = VAL (A$)
40 IF PR = a THEN PRINT "NUMBER EXPECTED"
GOT020
50? VAL ("73.2") - displays 73.2
60? VAL ("T' + "3" + "." + "2") - displays 73.2
70 ? VAL (STR$ (73.2)) - displays 0, since STR$ returns
"[space] 73.2"
80? VAL (MID$ (STR$ (73.2),2)) - displays 73.2

VERIFY
: statement
: VERIFY

VERIFY ["filename"]
VERIFY ["filename"], [device]

: checks the program on tape or diskette against the program
currently in memory, and displays the message "VERIFY
ERROR" if they don't match. This is used to ensure that a program
has been SAVEd properly. Make a habit of VERIFYing
immediately after SAVEing.
When there are no arguments in VERIFY, it checks the next
program it finds on tape. When ["filename"] appears as argument,
the program of that name is searched for on tape and VERIFYd, if
found.
[device] is used to VERIFY a program saved on diskette. As usual
[device] is 8 for the disk drive, 1 for cassette (default).
e.g. VERIFY - checks next program on tape

VERIFY "MYPROG" - searches for "MYPROG" on tape
and VERIFYs it, if found.
VERIFY "HERPROG", 8 - searches for "HERPROG" on
diskette, and VERIFYs it, if found.

: Don't forget to rewind the tape after SAVEing so that the relevant
program can be found.

40

WAIT
: statement
: WAIT [address], [mask1]

WAIT [address], [mask1], [mask2]
: causes the program to wait until the value in [address] changes in

a way specified by [mask1] and [mask2].
The value in [address] is bitwise ANDed with the value in [mask1].
If there is a [mask2], the result of the AND is exclusively ORed with
the value in [mask2].
Exclusive OR is different to the OR met previously, which is
included. Exclusive OR (XOR) only produces a true result when
only 1 of its arguments is true, a false result otherwise.
i.e. 1 XOR 1 = 0- false

1 XOR 0 = 1 - true
o XOR 1 = 1 - true
o XOR 0 = 0- false

: If the result of the AND and XOR is 0, WAIT continues to wait. If the
result is not 0, execution proceeds normally from the statement
following the WAIT. This statement is generally used to monitor
I/O activities. A novice programmer is unlikely to need it.
e.g. 20 WAIT 160, 144, 128(160is1 byte ofthe 3-bytejiffie clock

which is continually changing its values.)
: This will cause the program to wait until bit 8 of 160 is off (0) or bit 5

is on (1) or both.
(See page 16 for more on bit, bytes and masks.)

41

CHAPTER 3

Compressing BASIC Programs
It may sometimes be desirable to compress programs. The following is a
list of methods you can use to do this

Abbreviating Keywords
Most BASIC keywords can be abbreviated as shown in the table on
pages 43, 44. Using these does not directly save memory, since
keywords are stored as tokens, not the actual word. However, it means
that it is possible to put more information on a line, thus reducing the
number of line-numbers, which do use extra memory. It also cuts typing
time. Abbreviations are expanded to the full word when LISTed.
Multiple statement lines.
These help minimize the number of line-numbers needed. The only
limitation is that a multiple statement line should not exceed 80
characters, including colons and RETURN.

Variables.
Keep variable names short.

When a number, word or string is used often in a program, it should be
assigned as the value of a variable, which can then be used in its place.

e.g. 10 A = 36874
20 POKE A, 13 : POKE A, 72 : POKE A, 16

This has the added advantage of enabling you to squeeze more on a line,
and, again, cuts typing time.

READ, DATA statement
When a repetitive task, such as defining your own character set, needs to
be done, it is more memory efficient to use DATA statements to hold the
values together with a READ statement in a loop, than to write all the
individual repetitions.

e.g. 10 FOR J = OTO 63

rather than

20 READ A,V: POKE A,V: NEXT
30 DATA 12288, 0, 12289, 48, 12290, 128 ...
40 DATA ...

10 POKE 12288,0 : POKE 12289,48 : POKE 12290,128

70 ... POKE 12351,0

42

-

Arrays
These can be used for the same purpose as DATA statements. Where
possible, use integer arrays rather than floating point arrays, since
elements use 2 bytes compared with 5 for floating point elements.

Spaces
The BASIC interpreter does not need spaces in programs, but if used
they are stored. Eliminating them therefore saves memory. It also makes
programs difficult to read, so this is best done after all debugging.

GOSUB
Using subroutines obviously saves memory, since it saves writing the
same section of code several times. You should note however, that
GOSUBs can be fairly slow, since it must stack and retrieve addresses.

TAB,SPC
These two functions may be more economical than a string of cursor
control commands to position a character on the screen.

REM statements
These may be removed entirely once the program is debugged and read
for use. This isn't a great idea, since you may have to examine or change
the program at a later date, but it does save space.

Overlays
This involves breaking programs up into sections which are loaded in
sequence. For example, many games programs involve defining a new
character set. Instead of having 1 program which both defines the
character set and runs the game, 2 programs can be written. The first
defines the character set and then LOADs the second program, which
runs the game, on top of it. Many programs have such initialization tasks
to do, and overlays can be useful in these cases - arrays and variables
can be defined and given values by one program and used by another.
However, a limitation is that the second program must be shorter than the
first program otherwise it will overwrite the variable values.

Abbreviations for BASIC keywords
Command Abbreviation Command Abbreviation
ABS A SHIFTB OPEN 0 SHIFTP
AND A SHIFTN PEEK P SHIFT E
ASC A SHIFTS POKE P SHIFTO
ATN A SHIFTT PRINT ?
CHR$ C SHIFTC PRINT# P SHIFT R
CLOSE CL SHIFTO READ R SHIFT E
CLR C SHIFT L RESTORE RE SHIFT S
CMD C SHIFTM RETURN

I
RE SHIFTT

CONT C SHIFTO RIGHT$ R SHIFTI

43

DATA
DEF
DIM
END
EXP
FOR
FRE
GET
GOSUB
GOTO
INPUT#
LET
LEFT$
LIST
LOAD
MID$
NEXT
NOT

D SHIFT A
D SHIFTE
D SHIFT I
E SHIFTN
E SHIFTX
F SHIFTO
F SHIFT R
G SHIFT E
GO SHIFTS
G SHIFTO
I SHIFT N
L SHIFT E
LE SHIFT F
L SHIFT I
L SHIFTO
M SHIFT I
N SHIFTE
N SHIFTO

RND
RUN
SAVE
SGN
SIN
SPC(*
SOR
STEP
STOP
STR$
SYS
TAB(*
THEN
USR
VAL
VERIFY
WAIT

* Take care not to put in another left parenthesis.

Appending BASIC programs

R SHIFTN
R SHIFTU
S SHIFT A
S SHIFTG
S SHIFT I
S SHIFTP
S SHIFTO
ST SHIFT E
S SHIFTT
ST SHIFTR
S SHIFTY
T SHIFT A
T SHIFTH
U SHIFTS
V SHIFT A
V SHIFTE
W SHIFT A

So far, whenever you have loaded a BASIC program it has overwritten
the program in memory. However, because the Commodore 64 relies on
pointers to tell it where the start of program memory is, it is possible to
load in a program and join it to the program already in memory.

The start of program memory pointer resides at locations 43 and 44.
Type PRINT PEEK(43), PEEK(44) in direct mode. The normal values are
1 and 8. To change the pointer to point to the end of the program
currently in memory, type:

POKE 43, PEEK(45) ~ 2 : POKE 44, PEEK(46)

Now the next program to be loaded will start at the end of the first
program. To make the Commodore 64 see both programs as one, reset
the pOinter to the original value using

POKE 43,1 : POKE 44,8

The only restriction to this technique is that the second program to be
loaded must have higher line numbers than the program already in
memory.

This technique will enable you to save common subroutines
independently and add them to programs when needed.

44

BASIC program storage format
Program lines are sorted from the start of the BASIC user area in order of
ascending line numbers. Variable storage starts from the end of the
program. Array storage starts from the end of variable storage. String
storage starts at the top end of available user memory and works down
towards the end of array storage.
The following pointers are used to keep track of storage.

43,44
45,46
47,48
49,50
53,54
51,52
55,56

65,66

- !
! Use

Start of BASIC area
Start of BASIC variables
Start of arrays
End of arrays
End of strings
Start of strings
Highest address
used by
BASIC

Current DATA item

40960
40960

Program lines are compressed before being stored. That is, keywords
are tokenized - converted into a one byte code. Each line is then stored in
the following format.

t~~~tt~cJ~j=sbSYtetlLci?6~~'Hi~-bYtetE3ASJC::_I~XT 1._~OcJ~Qf~_llrl.EL.
, 0

The link address points to the start of the next line. The line number is a
2-byte binary number from 1 to 63999. Line numbers in the BASIC text
(as arguments of GOTO, GOSUB) are stored in ASCII format - 1 byte per
digit. The end of the line is indicated by a 0 byte. The end of the program
is indicated by a 00 link address.

Worry-free overlays and the keyboard buffer
When overlays were previously mentioned, one of the restrictions was
that the overlay had to be shorter than the program it was loaded over.
Using the keyboard buffer bypasses this restriction, and makes the use
of overlays tidier. The program lines below should be added to the end of
a program to be overlaid.

60000 POKE 631 ,78: POKE 632,69: POKE 633,87: POKE 634
, 13 : POKE 635 , 76 : POKE 636 , 111 : POKE 637 , 13

60001 POKE 638 , 82 : POKE 639 , 117 : POKE 640 , 13 : POKE
198, 10

These lines POKE into the buffer the abbreviations for the commands
NEW, LOAD and RUN, each followed by a RETURN. Thus the old

45

program is cleared out, the overlay loaded in and run, all without the user
having to do anything and without the programmer having to worry about
the size of the overlay.

Commodore 64 BASIC Keyword Codes

,

I

I r~haracter /
--

Character/ Code Character/ Code Code
Keyword (decimal) Keyword (decimal) I Ke:ord (decimal)

end-of-line 0 POKE 151 178
unused 1-31 PRINT# 152 , 179

same as
i CHR$ 32-95 PRINT 153
I

SGN 180
codes CONT 154 I INT 181

unused 96-127 LIST 155 I ABS 182
END 128 CLR 156

I
USR 183

FOR 129 CMD 157 FRE 184
NEXT 130 SYS 158 POS 185
DATA 131 OPEN 159 SQR 186

INPUT# 132 CLOSE 160 RND 187
INPUT 133 GET 161 LOG 188

DIM 134 NEW 162 EXP 189
READ 135 TAB(163 COS 190
LET 136 TO 164 SIN 191

GOTO 137 FN 165 TAN 192
RUN 138 SPC(166 ATN 193

IF 139 THEN 167 PEEK 194
RESTORE 140 NOT 168 LEN 195

GOSUB 141 STEP 169 STR$ 196
RETURN 142 + 170 VAL 197

REM 143 - 171 ASC 198
STOP 144 * 172

I

CHR$ 199
ON 145

I

I 175 LEFT$ 200 I

WAIT 146 I 174 RIGHT$ 201
LOAD 147 AND 175 MID$ 202
SAVE 148 OR l 176 unused 203-254

VERIFY 149 177 255
DEF 150 L ______ '-__ ----~-----~-,-----

~--

Codes are interpreted a~cording to this table except when characters are
in a string, when CHR$ codes apply. Arithmetic and relational operators
are interpreted as keywords unless they appear in a string.

46

Clearing the keyboard buffer.
If you are using PEEK (197) to find the current keystroke, the keyboard
buffer will fill up. Thus, the next time the Commodore 64 looks at the
keyboard buffer it will find either meaningless or misleading data. This
can, under certain circumstances, cause problems. You should
therefore be aware that you can clear the keyboard buffer when
necessary.
The buffer is located at addresses 631-340.
The number of characters currently in the buffer is held at address 198.
The simplest way to clear the buffer is to POKE 0 into 198.
i.e. POKE 198,0
The keyboard buffer can also be used in a more positive fashion.
Program lines can be added and changed from within a program. For
example, the following program allows the user to input functions, have
them defined using DEF FN and then have them evaluated.
This program is a self-modifying program, creating a new line 100 each
time a new function (X$) is entered.
5 Rn'l *** [)EF JNHJG FUNCTIOl'·j::::; **~:
10 F'R INT"F.:I'.JTER FUNCTIot-··J OF X"
f'(') I NPLIT :"':$
30 POKE188,3:POKE631,lS:POKEB32,13:POKE633,13
.q (') PR It-·JT" ;':1;1 00DEFFNfH X) = "~-<$" : RETUR!'·j"

50 PRIHT";;30TO 60":SYS 42115~Rt:M 4211!:. IS BASIC
W..,Rty \ START ROUT 1 hIE

130 GO SUB 100

70 ItJPUT " ENTEF.: X"; X: PR I NT" Ft··1(~-<) = II FI·L""l(X;' :
GOTO 70

Explanation
Line 30 : sets the number of characters in the buffer and puts two

returns in there.
Line 40 : prints line 100, substituting the input function for X$.
Line 50 : prints GOTO 60, homes the cursor and ends the program.
With the program over, the characters in the keyboard buffer are
executed. The first return enters line 100 into the program. The second
causes the immediate command GOTO 60 to be executed, thus re­
entering the program.
Line 60 : causes the function to be defined.
Line 70 : evaluates the function at pOints input by the user.

Window Listing
The same technique can be used to create a program which will list
programs one line at a time and allow the user to move forwards and
backwards through the listing. Mistakes must be noted and corrected
after exiting from this program.
To use it, append it to the program to be listed, as described in the section
on appending BASIC programs, and type RUN 60000

47

60000 SA=PEEK(44)*256+PEEK(43)-I:FL=SA
60002 LN=PEEKCSA+3)+PEEKCSA+4)*256
60003 PRINT";.:a30T060010":PRINT"LIST";LN
80004 POKE631,lS:POKE632,17:POKE633,154:POKE634,
13:POKE635,lS:POKE636,13:POKEI88,6:ENO
60010 IF PEEK(187)=40 THEN 60100=REM TEST "+"
Kc:-v
• L- i

E;0020 IF PEEK(197) =43 THEt .. J 61Z12B0: REt='l TEST II - II

KEY
60030 GOTO 60010
60100 REN "+"ACTION
60105 TE=(PEEKCSA+l)+PEEKCSA+2)*256)-1
S0110 IF (PEEK(TE+1)+PEEK(TE+2)*256)()0 THEN
SA=TE
B0120 GOTO 60002
60200 REIY1 " .. " KEY ACTIOt\1
60210 IF SA=FL THEN 80002
60220 SA=SA-l:!F PEEKCSA)=0 At.JD (SA-4)<>0 AI'ID
PEEKCSA-3)()0 THEN 60002
B0230 GOTO 60210

Before reSAVEing the program reviewed, lines 60000-60230 should be
deleted to avoid saving the program above as well.

Autonumber
The following program also uses the keyboard buffer in a similar manner.
In this case to provide automatic numbering of BASIC program lines.
Type RUN 60000 to run it.

60000 POKE56,158:POKE52,158:CLR
60010 II'-IPUT"~3TART".:SA

60020 HS=INTCSA/25S):LS=SA-HS*256
80030 INPUT" INCREt-.-JENT".: IN: PR INT"irJ"
60040 HI = It·IT(IN/256;': L I = IN-H I *256
60050 POKE40705,LS:POKE40706,HS:POKE40707,LI:
POKE40708,HI
B0060 SA=PEEK(40706)*256+PEEKC40705):IN=PEEK
(40708)*256+PEEK(40707)
60070 PR INT"O"SA.: "II I ••• "; : SA=SA+ IN: POKE
40706, INn SA./256)
60075 POKE40705,(SA-INTCSA/256)*256)
E;0077 POKE204, 0
60080 GET K$:IF K$="o THEN 60080
80090 POKE207,0:PRINTK$;:POKE207,255:IF K$<>
CHR$(13) THEN 60080

48

60100 PDKES31.145:POKES32,13:POKE633,71:POKE634.
111:POKE635,54:POKE636,48
6~110 POKE637,48:POKE638,54:POKE698,48:POKE640,
13:POKE188,10:SYS42115

Before saving the program written, lines 60000-601 00 should be deleted
to avoid saving the program above as well.

Machine Language merge program
Merge program for a Commodore 64. The machine code routine is totally
relocatable. If you wish to locate the routine at an address other than
40705, then lines 10 and 20 should be changed.

!O POKE 55,Q:POKE56,159:S~R
~8 S=40785:FOR J=S TO S+78:READ ~

30 C:::C +\.': POt-<.E .J; '-,l: r-·JE><T

120 DATA 169,8,133,10,32,212,225,165
130 OATA 43,72,165,44,72,56,165,45
148 QATA 233,2,133,43,165,46,233,8
15P DATA 133,44,162,0,133,185,166,43
IS~ n~TA 164,44,169,8,32,213,255,176
178 DATA 1~,134,45,132,48,32,5!,165

188 rATA Ir4,133,44,184,133,43,96,170
tln ~ATA 281,4,144,244,240,10,104,133
~r0 nATA 44,104,133,43,24,108,0,3
~·O DATA 184,188,138,240,209,209,239
? 'l!?! r··lF [;.1

Using Merge
If the computer has just been turned on and you intend to merge two or
more programs, then use Method A. If you already have a program in
memory and you need to merge in another program, then use Method B.

When using the following method, remember to load in the program with
the lowest line numbers first.

Method A:
1. Type in Merge (or load merge if it has already been typed in and
saved)
2. Save Merge (if not already saved)
3. Run Merge

49

4. Load in first program
5. Type SYS 40705 "second program", device number
6. Repeat '5' for any other programs to be merged

Method B:
1 . Save and verify the program currently residing in memory
2. TypeNEW
3. Now use Method A

Block delete
When a large block of line numbers are to be deleted; using the method
of entering the line number and hitting the RETURN key for each line can
be time consuming and dangerous. The following routine once MERGEd
can be executed by typing RUN 60000. The prompt "FROM, TO, STEP"
will be displayed. Answer the prompt with the first and last line of the
block to be deleted and the step-size between each line. (Use step-size 1
to delete all lines of block.)

60000 REM * BLOCK DELETE * (ROUTINE)
60010 INPUT"FROIY1, TO ,STEP"; F, T ,5: PR INTCHR$(147)
60fJ20 PRINTCHR$(19)F:F=F+5:PRINT"60040 F="F":
T="T":S="S:PRINT"GOT060040"
80030 POKE 631,lS:POKE632,13:POKE633,13:POKE
634,13:POKE 188,4:END
60040 F= 40 :T= 30 :S= 10
80050 IF F>T THEN PRINTCHR$(147):END
60060 GOTO 60020

50

CHAPTER 4

SOUND

THE 6581 SOUND INTERFACE DEVICE (SID)
The Commodore 64 uses a very powerful sound chip called the 6581.
The sound chip has many powerful features each of which will be
discussed in detail throughout this chapter. Each of the sound chip's
registers (special memory locations within the chip) have been memory
mapped to the Commodore's memory. A detailed memory map of these
locations can be found at the end of this chapter.

WAVEFORMS
The tonal quality of a sound is determined by its waveform. Sound is
made up of vibrations and the shape of each vibration determines the
sound's waveform (the frequency of vibration determines the pitch.) The
perfect vibration is a sine wave. The smooth rise and fall of a sine wave
characterizes the smoothness of the sound produced by a sine wave.
The same applies to other waveforms. The following waveforms are
those used on the 6581 sound chip; their sound varies depending on the
rising and falling of their output volume controlled by the wave envelope
discussed later in the chapter.

TRIANGLE:

A very hollow or mellow sound, capable of producing the sound of an
xylophone, chimes, flute and similar sounds.

SAWTOOTH:

/V1/VV1
A very twangy, brassy sound, capable of producing the sound of a
harpsicord, trumpet and similar sounds.

PULSE:

nJlJlfllL
A hollow to reedy sound, depending on the pulse width set (gap between
each square wave), capable of producing a range of sounds from the
piano to the clarinet.

51

NOISE:

Noise, strangely enough, is a very versatile waveform used for producing
sounds such as hissing, wind, the sea, gunshots, footsteps, clapping, a
roaring crowd, etc.

THE ADSR ENVELOPE
The ADSR wave envelope is a device that gives us control over the rise
and fall of the volume during sound output. ADSR stands for Attackl
Decay/Sustain/Release.These are the four volume components of the
envelope. The first stage of the ADSR envelope is the attack stage. The
attack is actually the rate at which the volume is brought from zero level to
peak volume. The peak (maximum) volume must be set before the
envelope is used. A zero attack would give use an instantaneous output
beginning at peak volume. A maximum attack setting (8 seconds of the
6581 's envelope) would begin with zero volume and slowly increase
volume until it reaches peak volume.

This brings us to the DECAY stage of the envelope. As soon as the
volume reaches peak volume, the volume begins to decay (drop down)
to the sustain volume at the set decay rate. As with the peak volume, the
sustain level must be preset. The sustain level can be set to anywhere
between 0 and peak volume.Once the volume has decayed down to the
sustain level, the volume will stay at this level until a release signal is
sent. On the 6581 a release signal is sent by setting the GATE bit to zero
(see sound chip register map at the end of this chapter).

The release is just a secondary decay that decays the volume from the
sustain level to zero volume at a rate determined by the decay rate
setting .

... Attack time ~.~ Decay~.(-__ Sustain .----r,f-Release-,),

/

y'~i~e; duration : time :

// .' _ _,
// Peak i-"
. volume Sustain volume // 1 I

I

-l-

With the general envelope, we can choose one of the four preset
waveforms.

52

and we can choose different frequencies (spacing between wave
oscillations) :

You can see that by using different combinations of waveforms and wave
envelopes, it is possible to generate a large variety of sounds.

THE ADSR ENVELOPE
Summarizing the terms used to discuss the ADSR envelope.

ADSR Attack/Decay/Sustain/Release envelope

ENVELOPE Shape of the volume of a sound over time

Attack

Decay

Sustain

Rate at which a sound reaches peak volume

Rate at which a sound falls from peak volume to
sustain volume

The proportion of the peak volume that the volume will
DECAY to

Release Rate at which a sound falls from sustain volume to zero
volume

Without the use of a wave envelope, it would be impossible to reproduce
the sound of most of the existing musical instuments and the ability to
produce complex sounds would be limited.

For example, in order to reproduce the sound of a violin you need the
sound to build slowly, reach a peak then drop to a lower level and sustain,
ie. for as long as desired after which the volume is allowed to slowly die
away. This is similar to the ADSR envelope in the previous diagram. A
table of the possible attack, decal and release times is as follows:

Value Attack rate Value Decay/Release rate
o 2 ms 0 6 ms

16 8 ms 1 24 ms
32 16 ms 2 48 ms
48 24 ms 3 72 ms
64 38 ms 4 114 ms
80 56 ms 5 168 ms
96 68 ms 6 204 ms

112 80 ms 7 240 ms
128 100 ms 8 300 ms
144 250 ms 9 750 ms

53

=val~~ ____ I_ Att~~~_!ate --------~~-----------------
Value Decay/Release rate
--~-

160 500 ms 10 1.5 s
176 800 ms 11 2.4 s
192 1 s 12 3 s
208 3s 13 9 s
224 5s 14 15 s
240 8s 15 24 s

Later we will show how to use these values to control the ADSR envelope
from a BASIC program.

CONTROLLING THE SOUND CHIP

Now that we know theoretically how to shape a sound to produce the
sound we want, we can use the 6581 sound chip to put our knowledge
into practice. The sound chip is controlled by changing values inside the
sound chip's internal registers (memory cells within the sound Chip). In
order to control the sound chip via the computer, the sound chip registers
have been memory mapped to the Commodore 64's memory. The
memory used are locations 54272 to 54300. The sound chip is
continually copying the values stored in the first 25 locations to the first 25
of its own respective registers. Thus, changing the contents of any of the
locations 54272 to 54296 will have a direct effect on the operation of the
sound chip. These memory locations are write-only, therefore no
information can be obtained by reading them. Refer to the sound chip
register map at the end of the chapter to see the significance of each
sound chip register.

The first set of 7 registers make up the first sound channel or voice. There
are three voices altogether, each as a whole, having the ability to
generate a single sound. Each voice has frequency control, a choice of
the four waveforms (previously discussed), an ADSR wave envelope
and the ability to control the pulse width of the pulses. Other registers are
used for filtering and peak-volume control. Finally, the last four registers
are read-only registers used to store output from paddles, voice 3's
waveform and voice 3's envelope.

PLA YING TUNES
The most practical way of writing a BASIC program to playa tune is to
store the tune as data. For simple tunes, only two items of data are
needed; the note frequency and the duration of each note to be played.
The following steps are necessary when writing a BASIC program to play
a simple tune.
1. Simplify the addressing of all sound register memory locations to be
used by assigning a variable name to each location.
2. Clear the sound chip by setting all the sound chip registers to zero.

54

3. POKE the attack/decay registers and the sustain/release registers
with the attack, decay, release values chosen from the table in the
envelope setting.
4. Load the volume register with the maximum volume (ie. 15)
5. Set up a program loop that does the following:
Read the frequency of the next note and the duration of the note. If there
are no more frequencies then end. Otherwise, load the frequency
registers with their data. Turn on the waveform and the GATE bit (see
register map). Use a FOR NEXT loop to loop for the duration. Turn off the
gate bit. Use a FOR NEXT loop to create a suitable pause (say 50
counts). Go back and do it again.
6. Use the note table at the end of this chapter and durations using 1000
as an approximation of about 1 sec.
7. End data with three negative values to signal end-of-tune.
Your program should look similar to the following:

5 REM * TUNE *
10 CHIP=54272 : C=CHIP
20 NL(0)=C+0:NH(0)=C+l:W(0)=C+4:AO(0)=C+5:SR(0)

=C+6:VOLUME=C+24
FOR REG=CHIPTOCHIP+24:POKEREG,0:NEXT

40 POKE AO(0),64+9 : POKE SR(0),240+0
50 POKE VOLUME, 15
60 READ F,DUR : IF F(0 THEN POKE l..I(0),0:EI'JD
65 DUR=DUR*20
70 I'.JH(1) = I NT(F /256) : (,·L(1) =F -Nl--!(1) :t.256 : POKEl"-.. U-!(0) ,

NH(1) : POKENL(0) ,I'-L(1)
80 POKE W(0),32+1:REM ADD 1 FOR GATE
90 FOR COUNT=1 TO OUR :NEXT COUNT
100 POKE W(0),32:REM TURN OFF GATE
110 FOR PAUSE= 1 TO 50 : ('..tEXT
120 GOTO 60
3!0 DATA 4820,8,6420,8,6420,12,6068,4,6420,8,

8100,8,8100,8,7220,8,8637,8
320 DATA 9637,8,9637,12,8581,4,8100,8,7220,8,

8100,16,4820,8,6420,8,6420,12
330 DATA 6068,4,6420,8,8100,8,8100,8,7220,8,

9637,8,7220,8,7220,12,6068,4
340 DATA 6068,8,5396,8,4820,16
399 DATA -1,-1,-1
READY=

USING MULTIPLE VOICES
When using multiple voices you have the power to do many things not
possible with a Single voice. Some examples are orchestration,

55

harmonization, special effects such as echo and other combinational
sound effects.

In gaining these additional sound effects, it is necessary to include the
programming complexity of timing. There are many methods in which to
accomplish multiple voice programming, though the most effective
method used so far is a method called the interpretive method. The
simplified version of the interpretive method used here is as follows:

1. Simplify register addressing
2. For each voice:
Read note values and the duration of each note into arrays where a
duration of 1 is a 1 /16 beat and a zero for the high frequency signifies that
the duration is a rest.
(The data may be a translation of a three-piece tune taken from sheet
music.) If high is negative then store data count as end of tune for this
voice.
3. Clear sound chip, set up ADSR values, waveforms for each voice
and volume to 15, POKE in all values accept the waveform.
4. Initialize the note count array for each voice to zero.
5. The main loop should contain:

a) Cycle through each voice (1 - 3)
b) Test if duration of note for this voice has exhausted (Le., less
than 0) in which case increment the note counter and turn off the
waveform.
c) Insert a short pause to signify a breack between notes
d) If high frequency > 0 then turn on wave
e) Load high and low note values into their registers.
f) Decrement duration of note
g) If end of tune for this voice then add one to end of tune counter
h) If E = 3 then END
i) Next voice
j) Re-execute main loop

5 REH *** TUNES l,JITH IY1UL TIPLE VO ICES ***
10 CHI~=54272 : MAX=100
20 DH'I F(13),H(3,!'<lAX),L(3,t<1A~~),O(3,MftX),W(3,1)

30 FiJRV=lT03
40 C=CHIP+(V-l)*7
50 NL< V) =C +0: NH(V) =C + 1 : l,J(V, 0) =C +4
60 NEXT V
55 FOR K=0 TO 13 : READ F(K) : ~~XT

70 VOLUME=CHIP+24
80 FOR K=CHIPTOCHIP+24:POKEK,0
90 READ D:POKE K,D:NEXT

56

lC8
110 FORV=IT03 : READ WeV,l)
120 N= 1 : "·K V) =8
138 READ N$,D(V,N):IF N$="*"THEN E(V)=N:GOTO

160
132 IF N$="-" THEN H(V,N)=0:GOTO 150
134 OC =VAL(R IGHT$(t···!$, 1))
135 F =F((ASC(LEFT$(N$, 1)) -65) +(LEN(N$) -2) *7)

*2tOC+OC
140 WI) ,N) = INTC F/256;' : L< I) ,I''!) =F -H(V ,I'·D *256
150 N=N+l:GOTO 130
168 ND-:T IJ
E~00

205 POKE IJOLUt-1E, 7
210 FOR l)=lT03
2280(V,N(V»=D(V,N(V»-1
230 IF D(V,N(V»(ITHENN(V)=N(V)+1:POKEW(V,0)

, i;.K V, 1) AND254 : GOTO 280
240 H=H(V,N(V);':L=L(V,N(V»
250 IF H)0 THEN POKE I;J(V,0),l.J(V,1)
260 POKE t·JH(V) .r H : POKE NL< V) , L
280 IF N(\1) =E(IJ) THENE =E + 1 : POKEI;J(V, °) ,0: IF

E=3THEN END
308 t···lE:-~T I)

320 GOTO 210
::::0~,) RD(! NOTE -TA8LE DATA
818 DATA 451,508,268,301,337,358,401,477,0,284

,318,0,379,425
900 REM SET-UP DATA (EDIT FOR FILTERS ETC.)
910 DATA 0,0,0,8,O,24,250
~20 DATA 0,0,0,:=::,0,IE;,250
938 DATA 0,0,0,:=::,O,0,250
840 DATA 0,0,0,0
999
1000 DATA 65
1010 DATA D4,4,G4,4,G4,6,F#4,2
1020 DATA G4,4,84,4,84,4,A4,4
1838 DATA D5,4,D5,4,D5,6,C5,2
1040 DATA 84,4,A4,4,84,8
1050 DATA D4,4,G4,4,G4,6,F#4,2
1060 DATA G4,4,84,4,84,4,A4,4
1070 DATA D5,4,A4,4,A4,6,F#4,2

57

1080 DATA Ffl4,'LE4,4,04,8
18:7;8 DfITA *,0
1888

;=:008 Of'TA 33
2010 DATA 04,4,04,4,04,6,04,2
2020 DATA 04,4,G4,4,G4,4,Ffl4,4
2030 DATA G4,4,F#4,4,E4,4,A4,4
2040 DATA G4,4,F#4,4,G4,8
2050 DATA 04,4,04,4,04,6,04,2
2080 DATA E4,4,G4,4,G4,8
2070 DATA F#4,4,E4,4,F#4,6,04,2
2080 DATA D4,4,C#4,4,04,8

30GO DATA 17
3010 DATA 83,4,83,4,B3,6,A3,2
3020 DATA 83,4,04,4,04,8
3030 DATA 04,4,04,4,C4,4,E4,4
3040 DATA 04,4,04,4,04,8
3050 DATA 83,4,83,4,B3,6,A3,2
~06A DATA 83,4,04,4,C#4,8
307[': DATA D4,4,E4,4,04,6,A3,2
3080 DATA 83,4,G3,4,Ffl3,8

USING FILTERS AND RESONANCE
With the use of the 6581 sound filters and resonance, it is possible to
generate exactly the sound you want by finding the appropriate basic
waveform. Firstly, the three types of filters are Lowpass, Highpass and
Bypass. There is a filter switch for each voice therefore giving you a
choice of which voice(s) you wish to have filtered. There is also a filter
switch for external sound input so that any sound device plugged into the
audio/video socket will be filtered in the same way as sounds generated
by the 6581.

HIGHPASS FILTER
The highpass filter will pass all frequencies at or above the cutoff
frequency while attenuating the frequencies below the cutoff frequency.

(Volume) f without filtration

Peak I Lf ,wrt:::::~:~y)
Cutoff I

58

LOWPASS FILTER
The !owpass filter will pass ail frequencies at or below the cutoff
frequency while attenuating the frequencies above the cutoff frequency.

(Volume)
'l"

Peak - +-- -------.­
I

without filtration

"\ with filtration
\ iC'

\
\

___ ___ L ___ ~ (Frequency)

Cutoff

BANDPASS FILTER
The bandpass filter passes a narrow band of frequencies around the
cutoff, and attenuates all others.

(volume)
Peak - -- without filtration r-'\" v/ with filtration

/ '-.- -- -----=-----7 (Frequency)

Cutoff

HIGH/LOW PASS COMBINATION
By combining the high and low pass filters it is possible to form what is
called a notch reject filter which passes frequencies away from the cutoff
frequency while attenuating at the cutoff frequency.

RESONANCE
Resonance has the effect of emphasizing a narrow band of frequencies
around the cutoff point.

(VOlume),
\ with resonance

; \ ~ / \

I_-.-L _______ ~ ____ without resonance

I L-________ _
I

__ ~) (Frequency)

Cutoff

59

PUTTING IT ALL TOGETHER.
Now that you have convered all the basic operations of the 6581 , it is time
to put it to maximum use. The following program can be used to control all
the features of the sound chip at the same time as giving you a visual
representation exactly what is going on inside the chip including the
shape of the ADSR envelope.

SOUND GENERATOR *** 15 DIM H(50),L(50),DU(50)
16 0 Ity1 "·IL(3,4) ,NH(3,4) ,PL(3,4) ,PH(3,4;' "we 3,4),

ADC 3,4) , SR(3,4) : P$= " 0"

17DV=.8:D(3)=DV*3/32:D(4)=DV*.5:D(5)=DV*I:DC6)
=DV *.5---1 25CSRDWN I

2 ° Y $ = "!ll!M!I@Iftllltl!'lJ!!I!!!I!lll!nfllfBlIIJlIlI!l!!WlIIfl!" : ;~; $ = 0'4:-:-0 -=CCS=-=R=RT::-II

" ... "

21 S$="
22 ont tyll(14),ty12(14),t'>"13(14),~14(14) "i 40 spaces I
25 o I t>'1:Z (14,5): FORR= 1 TO 14: FORC= 1 T05: READze R,C)

:ND;T C,R
26 DATA2,25,0,3,2,3,25,0,15,1,3,25,0,240.16,3,

25~0,15,1,3,25,0,240,16,3,25

O,O,1,25,0,255,O,0,0,0,0,0,1,25
28 DATA 0,~8,0,0,0,0,0,0,0,0,0,0,0
30 K=0:REM -READ TUNE DATA-
31 K=K+l!REAO HCK),LCK),DUCK):IF HCK)<>-lTHEN 31
32 ET=K-l
35 DATA 25,177,250,28,214,250,25,177,250,25,

177,250,25,177,125,28,214,125
36 DATA32,94,750,25,177,250,28,214,250.19,63,

250,18,63,250,18,63,250
37 DATA 21,154,63,24,63,63,25,177,250,24,63,

125,19,63,250,-1,-1,-1
40 CHIP=54272:FORV=lT03
41 C =CH I P +(V-I >*7: NL(V, °) =C +0: NH(V , °) =C + 1

:PL(V,0)=C+2:PH(V,0)=C+3:W(V,0)=C+4

42 AD(V,O)=C+5:SR(V,0)=C+6:NEXT V
4?- f' :,,(0) =CH IP+21: FH(0) =CH IP+22: Rf-' (0) =CH IP+23

: t"l')(0 ::. =CH::: P +24
4<) GOSIJE"50: GOSUBE;0: ::Yt::::U8l000: GOTD200
49 REt" '" CLEflR CH I P '*
50 SWITCH=0:FOR S=CHIP TO CHIP+28:POKE

60

S ,0 : NDn: RETURN

60 REt'l 0 I SPLA'"(

70 PR I NT" ~".: : POKE5328 1 ,0: POKE53280 ,4: REM

BACKGROUND AND BORDER

82 PRINT"A-VOICE(S)

83 PRINT"8-VOLUME

84 PRINT"C-ATTACK

85 PRINT"O-DECAY

86 PRINT"E-SU8TAIN

87 PRINT"F-RELEASE

88 PRINT"G-OURATION

123
----10-15

----10-240

---10-15

---0-240

----10-15

89 PR I r··lT" H -lJ.'::WE 17 = /'v/ F 33 = ilF,.,.!!!! ,65 =iL.r,

129 =t···lO I SE

90 PRINT"I-TEST NOTE

Ctrl- 9 followed by three times
Shilt- £ and a
Ctrl-O

91 PR INT".J-NOTE

93 PRlt"·JT!Jr~.-PLfr·{

94 PR rrn"L-LOAD

FREQ.

TUNE

0-255

A REGISTER
95 PRINT"M-(SPARE OPTION)

99 PRINT"N-EXIT PROGRAM

100 GO~.U8 1500

110 P F:: I NT " SlUl!lI!ll!ll!l!lI!llmlWl!Jl!Jl!" ;
v1 HOME followed by 14 times

CSRDWN

1 1 1
112

PR INT" (.----------------------.

PR Il'IT "A I
1 1 3 P R I r··~T II t":"l I
1 1 4 P R I t"~T 11 P t
115 PRINT"LI
11 EO; PR I NT II I I
117 PRINT"TI
118 FR I NT II U I

118 PRINT"DI

121 PRINT"E!

122 PRINT" '--flTTACK--DECA""r'---SUSTAIt-·l---RELEASE-' ".:
180 GOSUE: 1000

189 RETURN

200 REt'! * STAF-:T *
210 >O:;==0:"y'=0

220 GET AS:Y=Y+l: IFY)13THENY=0

222 IF AS=" "THENC30SU850

223 GOSU8500: PR H·IT" a"; CHRS(Y+65;'; : FORK= 1 TO 10:
NDn

225 PRINT"I~".:CHR$(Y+65).: "II": IFA$< "A"ORA$)"N"

THEI'.J220 ~I CSRLFTfoliowedbya
l CTRL-O

61

230 R=ASC(AS)-84: X=0:Y=R-l:GOSUB500:
PR I NTCHRS(18); AS;

240 GOSU8 800: 1"11 (R;' =t'oV !;. : t'12(R) =1Y1(2:; : t,oI3(R) =M(3)
: 1':14(R) =1'01(4)

245
250

IF P>lANDR<7THEN:M=R:GOSU81000:R=M
Ot"-·JRGOSU83 10 F :320 , 3~:0 '" 340 F 35£1 F 360 E 37£1 ... 380,;,
390,400,410,420,430,440

254
IF(R=8ANDW=S5)THENGOSUBI10
IF Z(R,l)< >OTHENGOSUB2000

>: =0: \'=R -1: GO:::;U8500: PR I NT"~"; CHRS(Y+65::;
2E0 GOTD 2(:)8

300 REI'1 * OPTIOI'I DEPENDANT ROUTINE2, '"
303 REM * VALUES FROM INPUT ROUTINE *
304 REM * HELD IN: *
~:05 RE:y1 * r,11 R) ,r ty12 (R) ! t'l't3(Fit) " fy14 (R.) *
308 REM * WHERE R IS THE OPTION ROW
307 REM * (IE. C-ATTACK i ROW 3) *
308 REM *****************************
310 REM -VOICE(S)-

332 FOR V=l TO 3:AD(\/rl)=r1'11(R)~t'~..lE><T

338 RETURf-'~

342 FOR '1=1 TO 3:AD(V,:~)=tYll(R):NE:<T

349 RETURN
350 REM -SUSTAIN-
352 FOR 1..1=1 TO 3:SR(V,1)=~'11(R):NEXT V
35:3 RETURN
360 REM -RELEASE-
382 FOR 1..1=1 TO 3:SR(V,2)=Ml(R):NEXT
389 RETURN
370 REM -DURATION-
372 DUR=to,H(R)
379 RETURN
3:::::0 REt'l -!;JAVE-
381 IF M3(R)=ITHENFORV=IT03:PH(V,1)=Ml(R)

: PLo: \.1 , 1) =t'12(R) : NE~v;T V: t'l1(R) =0: 1'12(R.) =0

62

382 IF t'll(R)=ITHENL'J=17

383 I F ~12(R) = 1 THENW=33

384 IF N3(R) = 1 THEI'.Jl;J=65

385 I F ~(p.: R) = 1 THEt'..\W= 129

388 FOR V=1 TO 3:W(V,1)=W:NEXT

~30 REM -TEST NOTE-

391 Ir 3WITCH=0 THEN GOSUB 2000
394 FOF './ = 1 TO 3: POKE [,J(\,/ ,B) ; [..J(V, 1) : NEXT

398 FOR T=lTOnUP:NEXT

387 IF PEEK(197) = 33THEt"·J:387

::::88 Fe'::;::'/= 1 T03: POKEW \.1,0) ,[.oJ(IJ, 1)AND254: NC":l

388 RETURr-.l

400 REM -NOTE FREQ.-

402 FOR \.1= 1 T03 : NH(\.1,1) =t'H(R) : NLC Ij, 1) =ty12(R) : NEi-;T

409 RETURN

410 REM -PLAY TUNE-

412 GOSU850: IF SIJ.JITCH=0 THEt~ GO'::;U82000

41:::: FORK = 1 TOET

414 FOR\! = 1 T03: I F',,'('v' ::. = 1 THENPOKENH(IJ ,0) , He f(,)

: F'OKENLC V,0),L< K): F'OKEW(V,0) ,W(\I, i)

415 NEriT\/: FOR T = 1 TODUF: : I FPEEV-J 197) =E;4 THEN

T=DUF:: K=ET
417 NE:-;T T: FOR'..! = 1 T03: POKElJj(Ij,0) ,l,J(\"!, 1) At-!025-4

:h1Er~T V,l(

418 IF F'EEK(187)< >84THEt·141::C:

419 GOSUB 2000:RETURN

420 REM -LOAD A SID REGISTER-

422 POKE CHIP+Ml(R),M2(R)

42:3 F.:ETURt··j

430 REM -SPARE OPTION-

43:3 RETURt-·j

440 F~ E r",1 - E::-:: I T - CLA followed by 2 times

SO,=;UE: 50 (/LC::..:S:.:..:R=..DW:.:.:N-=-__ --' 442
·144 PR H!T"~ot-H: H IT RETURt·~ TO

CONT I !'·lUEUlIIIIlJ" ; : END

458 '\ GOT045 CSRLEFT times 3 and 3 times
488 STDP '--"-CS:c.R.:.::U-'-P ______ -'

500 REM * PRINT-AT ROUTINE *
510 PRINT"~";: IFX>0THENPRINTLEFT$(X$,X);

520 I F\' >0THENPR I r HLEFT$('($., Y).:

530 RETUR~··J

63

600 RElYl * »: * I !'-.!PUT ROUT INES * * *
603 IF Z(R,I)=OTHENRETURN
604 FORK = 1 T04 : ttl(K) =0: NEXT
605 X=Z(R,2):Y=R-l:L=Z(R,3):U=Z(R,4):

INC=Z(R,5):M=O:K=O:P=1024+X+Y*40
610 ON Z(R,l) GOTO 620,700,800
620 REty1 -US 1 NG INPUT?-
625 IF R(>8At-·.JDR(> 10ANDR(> 12ANOR(> l3THENHL$= " "

:GOT0630
626 IF t'1=0ANDR< > 12THENHL$= "H IGH" : GOT0630
627 IF M=0ANDR=12THENHL$="REGISTER": GOT0630
628 IFR=12THENHL$="VALUE":U=255:GOT0630
629 HL$= "LO!;J"
630 GOSU8500:PRINT"~";LEFT$(S$,38-POS(0»;

: GOSU8500 : PR I NTHL$; : I1-..JF'UT 1$: I =VAL(1$)
640 GOSU8500:PRINT"~ " . .
645 IFI<LORI >UTHEN620~1 CTRL-9 I
850 GOSU8500: PR I NT"~"; : IF M= 1 THENPR INTSTR$(tvlC 1));

STR$(I);" ~ ";:GOT06S0
655 PR I NTR I GHT$(STR$(I) , LEN(STR$(I)) - 1) ;
660 M(M+l)=I:IFCR=80RR=100RR=120RR=13)

ANDt1=0THENrvt= 1 : GOT0620
670 RETURN
875 REM -SET PULSE FREQ.-
680 GOSUS 1100:X=5:Y=20:L=0:U=255:GOSU8500:

PRINT"PULSE FREQUENCY";:X=25:GOT0620
700 REM -CHOICE-
705 FOROFF=XTO INCH U-l) +r~STEP INC: POKE l024+0FF

+Y*40,PEEK(l024+0FF+Y*40)ANDI27
706 ND-:T OFF: K =0
710 GOSU8500:POKEP,PEEKCP)ANDI27:FORT=lT050:

NEr~T: POKEP , PEEK(P)OR 128
720 GET BS: I FB$=" II" THENK =K + 1: POKEP ,PEEK(P)AI'.JD

127:GOT0750
730 IFBS<>CHRS(13)THEN710
740 K =K + 1 : lYlC K) = 1
745 IF R=8 THEN 770
750 IF K=U THEN 770
7E.;0 ;-;=;--::+INC : P=P+!t··1C : GOTO 710
770 IF R=8ANDK=3THEN 875
780 RETURN
800 REM -INPUT USING UF' & DOl>JN CURSOR-

64

801 GOSU8802:GOT0805
802 REfYl
303 B(3)=Ml(3)*D(3):8(4)=Ml(4)*DC4):B(6)=MlC6)

tD(6)
804 8 = -B(3) *< R)3) -B(4) t< R)4) -4 *C R >5) -BC 6) *(R)6)

+2:NY=23-Ml(2)/2:~~=3~:RETURN

805 FOR Z = 1 T04 : M(Z) =0 : NE>-~T
~ CSRLFTfoliowedby I

810 GOSU8500 : M=tt11< R) CTRL- 9

820 GOSU8500: PR I NT "IIiI' ; 1Y1; "I~ " ;
824 GOSIJB500: PR INT"U ".:: GETB$
825 I FB$=CHR$(13) THEt-4ttK 1) =M: ~-< =N.-~: Y=NY:

GOSUB560:PRINT" ";:RETURN

827 GOSU8 800
830 IF 8$<>"D"THEN860
840 M=M+INC:!FM>UTHENM=L
850 GOSU8 800:GOT0820

~ICSRDWN
860 IF 8$<)" !a''1HEN820
870 t<1'-'t-r1- H·jC: I Ft'K L THENtvl=U
880 GOSU8 900:GOTO 820
8ee RE!1 *** !vIOVE ENVEL.OPE CURSOR ***
810 IF R(3 OR R=5 OR R>S THEN RETURN
920 f-tt-; =X: !'lY=Y: X =NX: Y=NY: GOSU8500 : PR I NT" ".:
830 >-:=8 +I'hO(R> :Y=NY:GOSUB 500:PRINT"+"; :NX=X:

NY=Y: X=H·~: Y=MY
888 RETURt···!
1000 REM *** UPDATE ADSR DISPLAY **.
1010 GOSU8 1100
1020 X=2: Y=23: GO:=:UB 500: PR INT" 0";

1030 R=3:GOSU8802:X=B+Ml(R)*OCR):Y=NY:GOSU8
500:PRINT"A";

1040 R=4:GOSU8802:X=8+Ml(R)*DCR):Y=23-(Ml(2)
tNH 5)/240)/2: GOSUB 500: PR INT"D-5-";

1060 R=6:GOSU8802:X=8+Nl(R)*O(R):Y=23:G08UB
500:PRINT"R";

1089 RETURN
1100 REM * CLEAR ADSR DISPLAY *
1120 X=2:FORY=15T023:GOSU8500:PRINT"~";

LEFT$(S$,35);:NEXT
1188 RETURN
1200 REM * PLOTTER *
1220 :X:=X2: Y=Y2: G08UB500: PR INTP$.:
1288 RETURN

65

1'500 FEt"l t UPDATE PARAt'<lETER DISPLAY *
152'J FOR P= 1 TO 14: IF Z< P, 1) =0THEN1540
1525 X=Z(R,2):Y=P-l:L=Z(R,3):U=Z(P,4):INC=Z(R,5)
1530 ON Z(R,1)GOSU8 1600,1700,1800
1540 NE>;T R

1550 FETURN
1 E:00 F~Et'l - 1 - ~L-=n
161€: IF R=100RR=13THENGOSU8500:PRINT"ij";

STR$(("VlH R)); STR$(M2(R».:" ~";: GOTD 1688
1620 GO::::U8500 : PP I NT II 113" ; M 1(R); : GOSU8

PRINT"·- "; ~ ~ CSRLFT and a I
RETURN CTRL-~ 1688

1700 REt"1 -2-
1710 K=0:FORZ=XTOINC.(U-l)+XSTEPINC
1720 P=1024+Z+Y*40:K=K+l
1730 t'l= -~'11(R) *(~~.= 1) -t· ... ,2(R) *(K=2) -t,·t3(R) *(K=3)

-t'14(R) H K =4)
1740 IFM=lTHENPOKE P,PEEKCP)ORI28:GOTO 1780
1750 POKE P,PEEKCP)AND127
1780 1'·IEiJ;TZ
1798 RETURt-··j
1800 RElYl -3-

1 ::::20 GOTO 1600
18:38 FETURN
2000 REM * LOAD CHIP WITH VALUES SET *
2001 REM * FROM OPTION LIST.
2030 FOR V=1 TO 3 *
2040 IF V(V)=OTHENPOKEWeV,0),0:GOT02180
2100
211e:
2120
2130
214e
215~)

.::) i Cr:'\
L l.'_'''-'

POKE NU V ,a) ,.NL(V, 1)

PDKE NH(V ,a) ,NH(V, 1)
POKE PL(V,0),PL(V,l)
POKE PH(V,0),PH(V,I)
POKE ~KV,0), W(V,I)AND254
POKE AD(V,O),AD(V,1)+AD(V,2)
POKE SR(V,O),SR(V,1)+SR(V,2)

229B ~=;t~.1ITCH= 1
22:33 RETURN

66

SPECIAL SOUND EFFECTS
Apart from generating sound by presetting the sound chip and controlling
the sound via the ADS R envelope, some interesting sound effects can be
produced by dynamically controlling various features of the sound chip
during sound output.

LINKING REGISTERS
An effective way to dynamically control sound during output is to link the
output from the envelope or waveform of one voice to one of the registers
of another voice, To do this in BASIC you would need to continually
PEEK one of the output registers (25 - 28) and POKE this value to the
register representing the feature you wish to controL However, using
BASIC would produce a staggered sound movement owing to BASIC's
speed inefficiency compared to the speed of the sound chip's waveform
oscillation. To produce smooth sound changes, you need a machine
language routine to link the registers at high speed (preferably
independent of your program). The following program "REGLlNK" wi!!
suit this pupo;:,e.

:.,: *:+: REt3L Ir··Jt< *.*::f
~ **. POK~ 820-823 WITH DESTINATION

E '* .~::t L INKED TO SDUf',1O REG I STEF'::, 2'5 -23

RESPECT I VEL '{

10 FOR I=DTOI8:PEAD A:POKE49152+I,A:NEXT
20 POKE 58333,]27
30 POKE 788,0 :POKE 789,192
40 POKE 56333,129
100 DATA 160,3,185,25,212,190,52,3,157,0
110 DATA 212
120 DATA 136,16,244,76,49,234

The BASIC program will wedge the MIL (machine language) program
into the operating system so as not to effect BASIC. We will use this
program in the vibrato example on the next page. To use the routine use
the following format:
POKE [820 - 823], [any sound chip register]
where locations 820 - 823 are mapped to sound chip registers 25 - 28
respectively (see register map).

67

Even within BASIC programming, it is possible to generate some quite
interesting effects, such as echo, vibrato, modulation, portamento and
many others.

ECHO
There are many methods by which to accomplish this effect. One method
is to generate a sound with a sharp attack, medium decay and low
sustain level, then replaying the sound by turning off the wave and
turning it on again with a lower volume setting and repeating this until
either a zero volume has been reached or another sound is played.

10 CHIP = 54272 : VOLUME = CHIP + 24
20 POKE CHIP + 5, 16 + 3 : POKE CHIP + 6, 0 + 0
30 V = 15 : POKE VOLUME, V
40 POKE CHIP + 1, 10
50 FOR ECHO = 1 TO 7
60 POKE CHIP + 4, 17
70 FOR COUNT = 1 TO 100 : NEXT COUNT
80 POKE CHIP + 4, 0: REM TURN OFF WAVEFORM
90 V = V * 0.6 : POKE VOLUME, V : NEXT ECHO

100 FOR 1= 1 TO 500: NEXT: GOTO 30

VIBRATO: (A rapid variation in frequency)
This effect is accomplished by copying the output of voice 3's oscillator
(register 27) to the input of the low note frequency of the voice(s) you
wish to effect. When using this method, the vibrato will be controlled by
voice 3, therefore voice 3 must be operating, preferably with the triangle
waveform and the output turned off (to turn voice -3 output off, set bit 7 of
register 24 to 1). If 'REGLlNK' has been loaded then adding the following
lines to the end of the initialization section of any Sound program will give
the vibrato effect to each note played.

POKE CHIP + 15, 10: POKE CHIP + 18,17: POKE CHIP + 24,128 +
volume setting
POKE 822, 0 : POKE 823, 28
where the vibrato speed is controlled by the frequency setting of voice 3.

MODULATION: (A continued variation in volume)
This effect is accomplished in much the same way as vibrato except that
voice 3's oscillator (register 27) is linked to the master volume control.
Also, the fact that register 27 outputs from 0 to 15 means that the output
from register 27 must first be divided by 17. The BASIC statement to link
the two registers (for voice 1) is as follows:
POKE CHIP + 24, PEEK (CHIP + 27)/ 17
where CHIP = 54272

68

In this case 'REG LINK' cannot be used owing to the fact that volume
requires values 0 - 15 whereas a direct linkage would give values 0 -
255. Therefore the above BASIC statement must be executed as often
as possible to produce the desired effect.

The following program demonstrates modulation:
10 CHIP = 54272
20 POKE CHIP + 1, 30 : REM NOTE FREQUENCY
30 POKE CHIP + 6,240: REM MAX SUSTAIN
40 POKE CH IP + 15, 10 : REM MODULATION SPEED
50 POKE CH IP + 18, 17 : REM TRIANGLE WAVE (VOICE 3)
60 POKE CHIP + 24,128: REM TURN OFF VOICE 3 OUTPUT

* continual link of waveform to volume *
70 POKE CHIP + 24, PEEK (CHIP + 27) / 17 + 128 : GOTO 70

Run the above program and edit line 40 to obtain different modulation
speeds.

PORTAMENTO: (Frequency slide)
The portamento is a gradual slide from one frequency to another. It can
be used to simulate an accellerating jet, a falling bomb or it can be used in
music to create a sliding instrument such as a trombone. This effect is
accomplished by incrementing/decrementing the frequency of the last
note played to the frequency of the next note played. Your portamento
subroutine should look somethng like this:
1000 INC = SGN (NF - OF)
1010 OF = OF + INC
1020 POKE CHIP + 1,OF
1030 IF OF < NF THEN 1000
1040 RETURN
where CHIP = 54272

OF = high frequency of old note
NF = high frequency of next note

69

THE SOUND CHIP REGISTERS
Bit significance

REG No. b7 b6 b5 b4 ..::b~3 ~_b:::::2,- b1 bo
o I-NL7 -NL6 ~NL5 I NL4 1- Nl3 Nl2 TNL-;-Nlol
1 I NH7 NH6 NH51 NH4 I NH3 NH2 I NHI NHo I
2 I PL7 PL6 PLs PL4 I Pl3 Pl2 I PL1 PLo I
3 - - I PH3 PH2 PH1 PHo

f' n I M I RING I I ' 4 Noise U U I'V\ TEST MOD SYNC I GATE I
5 A3 A2 A1 Ao I 03 02 I 01 i Do I
6 S3 S2 Sl So R3 f32. R1 I Ro .

Register usage
(Voice-l)

Low byte of note trequency

High byte of note frequency

Low byte of pulse width

High byte 01 pulse width

Wave form control

Attack/decay for envelope

Sustain/release for
envelope

Voices 2 and 3 are mirror images of the above except that they are stored
in registers 7 to 13 and 14 to 20 respectively.

Bit significance

~~ l~H7 ~H~ I~H5f~CH4 ~~3 ~~2
23 R3 RL R1 Ro FEX F3

24 30FF HP BP LP V3 V2
----- --- ----- -----

Bit significance

Register usage
(Filter)

Low cutoff frequency

High cutoff frequency

Filter sWitches and resonance

Filter modes and volume

Register usage
(Misc.)

'-P3-l-P;--TP;-~- Paddle x

P3 P2! P1 i Po Paddle· y

03 02 I 01 I 00 OSCIllator 3 outpul

E3 _ _.E=2 ____ ~_1_.J~~_J Envelope 3 oulput

NOTE: The sound chip registers are accessed via memory locations
54272 to 54300.

70

REGISTERS 0 AND 1 (Location 54272 and 54273)
(Low and high bytes of note frequency)
These two registers form a two byte value corresponding to the
frequency of a note played. To obtain the actual frequency of the note
being played multiply the two byte value by 0.059604645.

REGISTERS 2 AND 3 (Location 54274 and 54275)
(Low and high bytes of pulse width of pulse wave)
These two registers form a 12-bit value corresponding to the pulse width
of the pulse wave. The width of the low pulse of the pulse cycle as a
percentage of the width of the pulse cycle is given by the following
formula:
Low pulse width = (12-bit value/ 40.95)% of the pulse cycle. Where a low
pulse width of 0% or 100% is a constant DC signal (i.e. zero output) and a
low pulse width of 50% is a square wave.

REGISTER 4 (Location 54276)
(Waveform control)
This register serves several functions where each bit serves a seperate
function.

Bit 0 (Gate Bit):
The gate bit controls the envelope generator. Setting this bit to a 1 turns
on the ADSR envelope and begins the envelope cycle at the attack
stage, goes on to the decay stage and finally the sustain. The sound will
continue at the sustain level until the gate bit is set to zero, in which case
envelope control will continue to the release stage. If the gate bit is set to
zero before the sustain stage has been reached then envelope control
will jump to the release stage.

Bit-1 (Sync Bit):
Setting the sync bit to 1 causes the waveform from voice 3 to be
syncronized with voice 1. Varying the frequency of voice 3 will change
the overall waveform output of voice 1.

Bit-2 (Ring Mod Bit):
Setting the ring mod bit to a 1 replaces the triangle waveform of voice 1
with a 'ring-modulated' combination of oscillators 1 and 3 for giving the
output a bell type sound. Varying the frequency of oscillator 3 causes
changes in the overall waveform output of voice 1.

Bit-3 (Test Bit):
Mainly used for testing, this bit when set to 1, causes oscillator 1 to reset
to 0 and lock there until the bit is reset. However, it can be used to
synchronize oscillator 1 to an external device.

71

Bit-4 (Triangle Waveform):
When set to 1, this bit selects the triangle waveform to be used for output
of oscillator 1.

Bit-5 (Sawtooth Waveform):
When set to 1, this bit selects the sawtooth waveform.

Bit-6 (Pulse Waveform):
When set to 1 , selects the pulse waveform.

Bit-7 (Noise Waveform):
When set to 1, selects the noise waveform.

REGISTER 5 (Location 54277)
(Attack/decay)
This register is used to select the attack and decay rate for voice 1's
ADSR envelope.

Bits 4 - 7 (Attack Rate):
Selects an attack rate from 0 - 240 where the attack times range from
2ms to 8s.

Bits 0 - 3 (Decay Rate):
Select a decay rate from 0- 15 where the decay times range from 6ms
to 24s.

REGISTER 6 (Location 54278)
(Sustain/release)
This register is used to select the sustain level and release rate for voice
1 's ADSR envelope.

Bits 4 - 7 (Sustain Rate):
Selects a sustain level from 0 - 240 where the sustain setting is a
proportion of the volume setting. To obtain the actual sustain volume use
the following equation:
Sustain volume = (volume setting *sustain setting) /240

Bits 0 - 3 (Release Rate):
Selects a release rate from 0 - 15 where the release times range from
6ms to 24s.

REGISTERS 7 - 13 (Locations 54279 - 54285)
(Voice 2)
These registers are functionally identical to registers 0 - 6 (voice 1) with
the following exceptions:
1. SYNC - Synchronizes oscillator 2 with oscillator 1.

72

2. RING MOD - Replaces the triangle output of oscillator 2 with the
ring modulated combination of oscillators 2 and 1.

REGISTERS 14 - 20 (Locations 54286 - 54292)
(Voice 3)
These registers are functionally identical to registers 0 - 6 (voice 1) and
registers 7 - 13 (voice 2) with the following exceptions:
1. SYNC - Syncronizes oscillator 3 with oscillator 2.
2. RING MOD - Replaces the triangle output of oscillator 3 with the
ring modulated combination of oscillators 3 and 2.

REGISTERS 21 AND 22 (Locations 54293 and 54294)
(Cutoff frequency)
These two registers form an 11-bit value corresponding to the cutoff (or
centre) frequency of the programmable filter. They select a cutoff value
of 0 - 262 where the cutoff frequency ranges from 30 Hz - 12KHz.

REGISTER 23 (Location 54295)
(Resonance/filter)
This register is used to select the resonance and filter switches.

Bit·O (Filter Switch 1):
When set to 1, voice 1 is sert through the filters before output. When set
to 0, voice 1 is sent directly to output.

Bits 1 and 2 (Filter Switches 2 and 3):
Same as bit 0 but for voices 2 and 3 respectively.

Bit-3 (Filter Switch EXT):
Same as bit 0 but for external audio input.

Bits 4 - 7 (Resonance Setting):
This register forms a 4-bit value corresponding to the resonance setting
of the programmable filter. They select resonance settings that range
from 16 - 240 in steps of 16. The resonance acts on a small band of
frequencies around the selected cutoff frequency.

REGISTER 24 (Location 54296)
(Voice 3's switch/filter modes/volume setting)

Bits 0 - 3 (Volume Setting):
These four bits are used to select volume settings which range from 0-
15. This is a master volume control, however each voice may be varied

73

by either setting a large attack and setting the gate bit to 0 during attack or
by setting a different sustain level for each voice, thus achieving different
volume levels for each voice within the absolute level set by the above
four bits.

Bits 4 - 6 (Filter Modes):
These three bits are used to select the filter modes for the programmable
filter. Bit 5 selects the 'Iowpass' filter, bit 6 selects the 'bandpass' filter
and bit 7 selects the 'highpass' filter. More than one filter may be selected
at one time. For example, a 'notch reject' filter can be set up by selecting
the lowpass and highpass filters.

Bit-7 (Voice 3 Switch):
Setting this bit to 1 causes voice 3 output to be disconnected without
effecting any of the voice 3 controls. This switch is used when voice 3 is
used to control another voice and the output of voice 3 is not needed.

REGISTERS 25 AND 26 (Location 54297 and 54298)
(Paddles)
These registers allow the microprocessor to read the positions of a pair of
paddles conected to port-1 (labelled port-2 on computer casing). The
paddles should give readings of 0 for minimum resistance and 255 for
maximum resistance. By reading these registers and writing their
contents to other sound chip registers, it is possible to control the sound
chip with the paddles.

REGISTER 27 (Location 54299)
(OSCillator 3 output)
This register allows the microprocessor to read the waveform output of
voice 3 where any waveform will produce values between 0 and 255. For
example, if the sawtooth is selected, register 27 will output incrementing
values from 0 to 255 at a rate depending on the frequency setting of voice
3.

REGISTER 28 (Location 54300)
(Envelope 3 output)
Same as register 27, but this register allows the microprocessor to read
the envelope output of voice 3.

74

MUSIC NOTE VALUES
This appendix contains a complete list of Note#, actual note, and the
values to be POKEd into the HI FREO and LOW FREO registers of the
sound chip to produce the indicated note.

MUSICAL NOTE OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI lOW

0 C-O 268 1 12
1 C#-O 284 1 28
2 0-0 301 1 45
3 0#-0 318 1 62
4

I
E-O 337 1 81

5 F-O 358 1 102

! 6

I
F#-O 379 1 123

: 7 G-O 401 1 145
8 G#-O 425 1 169
9 A-O 451 1 195

10 A#-O 477 1 221
11 B-O 506 1 250
16 C-l 536 2 24
17 C#-1 568 2 56
18 0-) 602 2 90
19 D#-1 637 2 125
20 E-l 675 2 163
21 F-l 716 2 204
22 F#-1 758 2 246
23 G-l 803 3 35

75

GUSleAl NOTE OSCILLATOR FREQ

~ DECIMAL HI NOTE I OCTAVE

i 24 I G#-l 851 3 83 I

I

25 A-l 902 3 134

26 A#-l 955 3 187

27 B-1 1012 3 244

32 (-2 1072 4 48

33 C#-2 1136 4 112

34 D-2 1204 4 180

35 D#-2 1275 4 251

36 E-2 1351 5 71

37 F-2 1432 5 152

38 F#-2 1517 5 237

39 G-2 1607 6 71

40 G#-2 1703 6 167

41 A-2 1804 7 12

42 A#-2 1911 7 119

43 8-2 2025 7 233

48 C-3 2145 8 97

49 C#-3 2273 8 225

50 D-3 2408 9 104

51 D#-3 2551 9 247

52 E-3 2703 10 143

53 F-3 2864 1 1 48

54 F#-3 3034 11 218

55 G-3 3215 12 143

56 G#-3 3406 13 78

57 A-3 3608 14 24

58 A#-3 3823 14 239

59 8-3 4050 15 210

64 C-4 4291 16 195

65 C#-4 4547 17 195

66 D-4 4817 18 209

67 D#-4 5103 19 239

68 E-4 5407 21 31

69 F-4 5728 22 96

70 F#-4 6069 23 181

71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49

76

MUSICAL NOTE OSCILLATOR FREQ

NOTE

74

75
80
81

82
83
84
85
86
87
88
89
90
91
96
97
98
99

100

101
102
103
104
105
106
107
112
113
114

115

116
i17

118

119

120
121
122

123

OCTAVE

A#-4
B- 4

(-5

(#-5

C-O
C#-O
0-0
F-5
F#-5
G-5
G#-5
A-5
A#-5
8-5
C-6
C#-6
0-6
0#-6

E-6
F-6
F#-6
G-6
G#-6
A-6
A#-6
8-6

DECIMAL

7647
8101
8583
9094
9634

10207

10814
11457
12139
12860
13625
14435
15294
16203
17167
18188
19269
20415
21629
22915
24278
25721
27251
28871
30588
32407

HI

29
31
33
35

37
39

42
44
47
50
53
56
59
63
67
71
75
79
84
89
94

100
106
112
119
126

C-7 I 34334 134

g: I ~m~ I m
F-7 45830 179
F# -7 48556189
G-7 51443 200
G#-7 54502 212
A-7 57743 225

__ ;~;7 __ lJ~~~~ __ l_~.~~ _.~_
77

lOW

223
165
135
134
162
223

62
193
107
60
57
99

190
75
15
12
69

191
125
131
214
121
115
199
124
151
30
24

139
126
250

6

172
243
230
143
248

46

FILTER SETTINGS

Location Contenh

54293 Low cutoff frequency (0-7)

54294 High cutoff frequency (0-255)

54295 Resonance (bits 4-7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Filter voice 1 (bit 0)

54296 High pass (bit 6)

Bandpass (bit 5)

Low pass (bit 4)

Volume (bits 0- 3)

78

CHAPTERS

GRAPHICS
As you probably already know, the Commodore 64 has graphics
capabilities available directly from the keyboard, using the graphics
characters, colour control keys, cursor control keys and PRINT
statements. However, it also has more powerful graphics capabilities
available through direct user control of sections of the memory.

Graphics Memory
There are three blocks of memory used to control graphics on the
Commodore 64 - screen memory, colour memory and character
memory - and a few odd bytes we'll discuss as we get to them. First, a
brief description of the three blocks, then a more detailed coverage of
how to use them.

Screen memory consists of one byte for each character position on the
screen. Since the screen has 1000 character pOSitions - 25 rows of 40
characters - screen memory has 1000 bytes. The first 40 bytes of
screen memory correspond to the first row on the screen, the second 40
bytes correspond to the second row, and so on.
Colour memory, like screen memory, consists of 1 byte for each screen
character position. Each byte contains a code for the colour in which
characters will be displayed at that position.
Character memory contains the coded representations of all printable
characters. It is broken into 2 blocks - one for upper case and graphics
characters, the other for lower and upper case characters.
To display a character on the screen, the Commodore 64 finds the code
for the character in screen memory, uses the code as a pointer to the
character representation in character memory, finds the colour of the
character position in colour memory and uses all this information to
display the character.

LOW RESOLUTION GRAPHICS
Screen Background and Border Colours.
These colours are controlled by the value in locations 53280 and 53281.
The values for background/border colour combinations are given in
Appendix I.
e.g. POKE 53280, 7 : POKE 53281, 4 gives a yellow border around a
purple screen.

79

Character Colour
Keyboard Control
As previously mentioned, the colour of characters can be dictated using
the colour control keys. These keys can be included in strings within a
program. They change the value in byte 646. This value can also be
changed by POKEing.

Changing this value causes everything after the change to be printed in
the colour set, Le. it changes character colour from then on. From this it
follows that you must change this value every time you want to change
character colour just as you do when using the colour control keys.

Colour Memory Control
Colour memory uses locations 55296 to 56319. You can POKE values
into colour memory thus controlling the colour of individual character
positions on the screen. This determines the colour of characters POKEd
into screen memory, but not characters which are PRINTed. These are
controlled by byte 646.

You may now determine the colour of characters POKEd into screen
memory by POKEing the desired values into the relevant bytes of colour
memory.

0 Black 4 Purple 8 Orange

1 White 5 Green 9 Brown

2 Red 6 Blue 10 Light Red

3 Cyan 7 Yellow 11 Grey 1

e.g. 10 CM = 55296
20 FORJ = CM TO CM + 1000
30 POKE J, 7 : NEXT

Screen Memory

12 Grey 2

13 Light Green

14 Light Blue

15 Grey 3

The default position of screen memory is at 1024. Screen memory can be
moved to any location that is a multiple of 1024 as long as it doesn't sit on
top of other memory locations such as your BASIC program.
Byte 648 contains the number of V4K bytes from 0 to screen memory
address. Byte 53272 contains the number of K bytes from 0 to screen
memory address. Byte 648 is a pointer for the screen editor. Byte 53272
is the actual pointer.

80

The simple way to calculate the address of the bytes in screen memory
you want to POKE is to use the formula - SM + (row*22) + column.
Where SM is the start of screen memory, 'row' is the screen row number
(0 is the top row) and 'column' is how far along the row (also starting from
o at the left of the screen).
Graph paper is handy for working out screen displays.
The values POKEd into screen memory act as pointers into character
memory. The are NOT the ASCII values of the characters. The screen
codes corresponding to ASCII values are shown below:

ASCII value Screen value
0-31 None- not displayable
32-63 32-63
64-95 0-31
96-127 64-95
128-159 None- not displayable
160-191 96-127
192-254 64-126
255 94

You will notice that some screen codes are shared by two ASCII codes.
This is because character memory is broken into two blocks. The
character displayed by a screen code corresponding to two ASCII codes
will depend on which block of characters is being used. The screen code,
as was mentioned, acts as a pOinter into the block of character memory.
(see Character Memory section for more details.)
A table of ASCII and screen codes for the two character sets is given in
Appendix A. When you know in advance what characters are to be
POKEd into screen memory, this table may be used to look up the screen
values. However, for some applications, such as GETting characters
from the keyboard, the characters can not be known in advance. The
ASCII codes convert in blocks of 32 so the screen codes may be
calculated using the following subroutine:

10 GET K$
20 SC = ASC (K$)
30 ON INT (SC/32) +1 GOTO 40,50,60,70,80,90,100
40 SC = -1 : RETURN
50 RETURN
60 SC = SC-64 : RETURN
70 SC = SC-32: RETURN
80 SC = -1 : RETURN
90 SC = SC-64 : RETURN

100 IF SC = 255 THEN SC = 94 : RETURN
101 SC = SC-128: RETURN

81

This subroutine returns -1 when the character is not displayable. The
main program can then decide what to do with it.

The following example program POKEs red 'A's into the top half of the
screen, green 'Z's into the bottom half:

10 REM Set up colour memory
20 CM = 55296
30 REM Red character positions
40 FORJ = OT0499
50 POKECM + J, 2: NEXT
60 REM Green character positions
70 FOR J = 500 TO 1000
80 POKE CM + J , 5 : NEXT
90 SM = 256 * PEEK (648)

100 REM Poke A's into first half of screen memory
11 0 FORJ = 0 TO 499
120 POKE SM + J , 1 : NEXT
130 REM Poke Z's into second half
140 FORJ = 500 TO 999
150 POKE SM + J, 26: NEXT
160 GOTO 160 : REM Wait for STOP keystroke

Character Memory
Before going into the Commodore 64's character memory it would be
worthwhile to first have a look at the character table and then follow this
with the memory and how to use it in designing your own characters.

The first block of character memory - upper case, graphics, reversed
upper case, and reversed graphics occupies the ROM locatons 53248-
55295. The second block - lower case, upper case, reversed lower
case, reversed upper case and graphics - occupies ROM locations
55296 - 57343.
Characters are displayed as patterns of dots. Each character position on
the screen is composed of an 8 x 8 square of dots (pixels). Character
memory contains the information which tells the computer which dots to
turn on or off for a particular character. If a bit is 1, the dot is on (displayed
in character colour). If it is O,the dot is off (displayed in background
colour). Therefore, to cover 64 dots, each character representation takes
8 bytes of memory.

82

e.g. The character 'A'

128 64 32 16 8 4 2 1

byte 0

1

2

3

4

5

6

7

-
IiI
{

' •... '.
}

'it:

..... :

[{.

[/ Ii
,

21
) Lt·

"'" --

Binary Decimal Equivalent

00011000 24

00100100 36

01000010 66

01111110 126

01000010 66

01000010 66

01000010 66

00000000 0

As mentioned earlier, the screen codes act as pointers into character
memory. As you can see from the table in Appendix A the screen code for
A in character set 1 is 1. Its 8 byte representation is therefore stored in:

53248 + (8*1) = 53256 and the next 7 bytes
so byte 53256 contains the value 24
so byte 53257 contains the value 36
so byte 53258 contains the value 66
so byte 53259 contains the value 126
so byte 53260 contains the value 66
so byte 53261 contains the value 66
so byte 53262 contains the value 66
so byte 53263 contains the value 00
In general, to find the starting address of the representation of a
character with screen code X use:

53248 + (8*X) for character set 1
55296 + (8*X) for character set 2

You can change from one character set to the other from the keyboard as
described earlier, or by changing the value of the character memory
pointer - byte 53272. Its value is normally 21 (upper case and graphics)
or 23 (upper and lower case).

DeSigning your own characters
Since the built-in character sets are in ROM you cannot directly change
them. However, as you have seen, the character memory pointer can be
changed. So the secret to using a character set you design yourself is to
change the pointer to point to your set.

First, however, you must deSign your characters. Take a piece of graph
paper (or draw an 8 x 8 grid), and for each special character you want,
set it up as below. As an example, our grid contains a hat character.

83

12864 32 16 8 4 2 1
Binary Decimal

byte 0 00111100 60

00111100 60

2 00111100 60

3 00111100 60

4 00111100 60

5 00111100 60

6 11111111 255

7 00000000 0

Fill in the squares to create the character you want. Then, for each row.
add up the values of the squares filled in. The sum is the value you will
POKE into the byte.
It is usual to copy some of the built in character set into RAM and then
change those characters you wish to.

A sample exercise should clarify this.
Type POKE 53272, 28

All characters on the screen should now turn to random dots, since the
character memory pointer now points to an area of memory where no
characters have been defined - the bytes here contain random values.
STOP RESTORE will return you to the normal character memory.

Now run the following program:
5 REM * CHARACTER GENERATION DEMO *

10 POKE 53272, 28
20 POKE 52, 48 : POKE 56, 48 : CLR
30 POKE 56334, PEEK (56334) AND 254
40 POKE 1, PEEK (1) AND 251
50 FOR J = 0 TO 511
60 POKE 12288 + J, PEEK (53248 + J)
70 NEXT
80 POKE 1, PEEK (1) OR 4
90 POKE 56334, PEEK (56334) OR 1

100 PRINT "A"
110 FOR J = 12296 TO 12303 : READ V: POKE J, V: NEXT
120 DATA 60, 60, 60, 60, 60, 60, 255, 0

Explanation:
Line 10- changes the character memory pointer- character

memory now starts at 7168
20- makes sure that BASIC doesn't overwrite the

character set

84

30--- turn off interrupts
40--- switch character ROM in

50-70--- copies the first 64 characters (512 bytes) from
character set 1 in ROM to RAM, starting at 7168

80--- switch out character ROM
90--- turn on interrupts

1 00--- pri nts an 'A'
110--- changes the definition of 'A' in character memory to

a hat
120--- Data statement holding the values of the new

definition of 'A'

Note that all A's displayed on the screen change.

Where to put the new character set
A safe (but not the only) place to put character memory is at 12288. To do
this POKE 53272, 28.
To ensure that BASIC doesn't overwrite your character set you must
change the pointers to the end of BASIC program memory and the end of
string storage memory. If you are starting character memory at 12288,
you can protect it by using:

POKE 52, 48 : POKE 56, 48 : CLR
This should be done before any BASIC variables are defined or
referenced, otherwise BASIC may not recognise the limitation.
Having done the above, you may now POKE in your new character set,
starting at 12288. Remember that screen codes act as pointers into
character memory, so if you POKE a value of 7 into screen memory, the
eighth character in the set will be displayed.
For those who wish to put character memory elsewhere, or use a larger
set, the following details will be useful.
In fact, both screen and character memory pointers can be changed.
Byte 53272 controls both. The first 4 bits gives the number of K (1024)
bytes from 0 to the start of screen memory. The last 4 bits gives the
number of K bytes from 0 to the start of character memory.
However, to complicate matters, both of these numbers are calculated
using addresses as seen by the Video Interface Chip. It uses different
addresses to the rest of the computer to access the same locations. The
table below illustrates the differing addresses for the memory blocks the
VIC chip can access.

85

Memory VIC chip addresses i Ordinary addresses
4096 I 53248 upper case characters

I 4608 53760 Graphics characters
5120 54272 Reversed upper case
5632 54784 Reversed graphics
6144 55296 Lowercase
6656 55808 Upper case and graphics
7168 56320 Reversed lower case
7680 56832 Reversed upper case

& graphics

Example calculation of value of byte 53272. To put screen memory at
1024, character memory at 12888:

Address
Screen - 1024
Character - 12288

Binary representation
of byte 53272

No. of K from 0
1024/1024 = 1
12288/1024 = 12

Screen mem
0001

Char mem
1100

To calculate it in decimal, use:
(16 * Screen memory pointer) + Character memory pointer

(16 * 1) + 12 = 28
So, POKE 53272, 28

28

To calculate the POKE values of bytes 52 and 56, work out the number of
%K bytes (256) from 0 to the start of character memory. Use ordinary
addresses, not the VIC chip addresses.
In this example it is 12288/256 = 48
so POKE 52, 48 : POKE 56, 48 : CLR
Bytes 55, 56 indicate the end of BASIC program memory.
Bytes 51,52 indicate the start of BASIC string storage.
Bytes 51 and 55 are 0 after a CLR or RUN and so can be ignored.

Some programs, such as the Programmer's Aide, check byte 644
instead of 55, 56 to find the end of BASIC memory. To avoid these
overwriting your character set you should POKE the same value into
644, if you're using such a program.

High Resolution Graphics
In low resolution graphics, characters are the focus of attention. You
define characters, you move characters around and so on. In high
resolution graphics the dots (pixels) which make up the characters are
the focus of attention. The difference between the two is in programming
technique, not in the way in which things are displayed.

86

i

Typically, in low resolution, the character set, once defined, is not
changed, while the screen memory is. In high resolution, screen
memory, once defined, is not changed, while character memory is. The
trick is to think of character memory not as defining characters, but as
defining the screen - one bit in character memory controlling one pixel on
the screen.

The following program demonstrates high-resolution plotting:

First, we set up our high-res screen and clear it

5 FEt'l :;: HIF:ES PLOTTING *
10 POKE53272,28
20 F'Ol-:E53265 F 59

30 FORJ=8192T016181
40 pm:,E.T ,0

~-:iO t·JF=?~-r

: REn t'10VE SCREEN
:REt"l HIRES BIT tvl0DE

Next we POKE in the background colour by POKEing the colour codes
into Screen memory

(;('1 FCtRJ = 1 A;:::4 T02023
78 POKF _T .. 16

90

Finally a small routine to enable control of pixel plotting by using the A, D,
Wand X keys

100 POKE 650,128
llC HR=8182
120 GET A$:IF A$=""THEN120
130 IFA$="A"THENX=X-l
140 I FA$= I! 0 II THEt·...(~--; =X + 1

150IFA$="L!"THENY=Y-l
160 IFA$= ";-~ "THENY='(+ 1

The following lines calculate the next pixel position and perform a
boundary test before plotting the next point

200 P=HR+INTCY/8)*320+8*INT(X/8)+(YAND7)
210 IFP{81820RP)16181THEN120
220 POKE P r PEEK(P)OR(2t(7-(XAND7»)
230 GOTO 120

87

This creates a 320 x 200 pixel hi resolution screen. Now, to change a
pixel, we merely need to change the bit in character memory
corresponding to it. If we consider the high resolution work area as a 320
x 200 grid:

o

y

200

o x 320

•

we can give any pixel X and Y co-ordinates and work out the bit to change
as follows:

CHAR = INT (X/8)
ROW = INT (Y /8)
BYTE = 8192 + ROW * 320 + CHAR * 8 + (Y AND 7)
BIT = 7 - (X AND 7)

To turn 1 bit on while leaving the other bits in the byte unchanged, OR a
mask with the current value of the byte.
e.g. POKE BYTE, PEEK (BYTE) OR (2 : BIT)
Suppose we want to turn on the pixel with co-ordinates (35, 32). For the
sake of the example assume the relevant byte has a value of 47. Using
the formulae above we get:

POKE 9504, PEEK (9504) OR 2 : 4
214 00010000

OR PEEK (9504) 001 01 1 1 1

gives 0 0 1 1 1 1 1 1
To turn off a bit, AND NOT a mask with the current value of the byte
e.g. POKE BYTE, PEEK (BYTE) AND NOT (2 ~ BIT)
To turn off the bit we just turned on

POKE 9504, PEEK (9504) AND NOT (2 t 4)
2 i 4 00010000

NOT 2 t 4 1 1 1 0 1 1 1 1
AND PEEK (9504) 00 1 1 1 1 1 1

gives 0 0 1 0 1 1 1 1

88

The following example program plots a sine curve on the high resolution
area.

10 REt·'1 :+: SINE liJAVE *
20 FORJ=8192T016191 :POKEJ,0:NEXT
30 PDKE53272,29:POKE532B5,59
40 POKE53280,e:POKE53281,0
50 PRINT CHR$(147)
E0 FOR J=1024T02023:POKEJ,16:NEXT
100 FOR:<:=0T0320
110 Y=100+SINCX/50)*100:GOSUB200
120 NE>-:n:
130 GOT0130
200 L I r··-IE =\·AND7
210 BYTE=8192+ INT(Y./8) *320+ INT(~-V8) :+:8+L INE
220 BIT=7-(XAND7)
230 POKEBYTE,PEEKCBYTE)OR(2tBIT)
240 RETURN

Unfortunately, BASIC is too slow for most high resolution applications. It
is generally better to use machine language programs which are many
times faster.

Multicolour Characters
So far, each character position has been restricted to 2 colours -
background and character. At the expense of resolution, it is possible to
add two more colours - border and auxiliary.

Instead of a character position being 8 x 8 dots, in multicolour mode it is
4 x 8 dots - i.e. it takes 2 bits to define a dot, which is now 2 pixels wide.
e.g.

screen dot 3 2 1 o
character byte 1 0 00 o 1 1 1

The colours selected by each 2 bits are as follows:

Bit Pair COLOUR REGISTER LOCATION
o 0 Background #0 (screen colour) 53281
o 1 Background #1 53282
1 0 Background #2 53283
1 1 Lower 3 bits in colour memory Colour RAM

89

When designing multi-coloured characters, the POKE values for
character memory are calculated exactly as for normal characters.

You know how to set background, border and character colours. The
auxiliary colour can be any of the 16 background colours - the following
codes apply:

0- Black
1 - White
2 - Red
3 - Cyan
4 - Purple
5 - Green
6 - Blue
7 - Yellow

8 - Orange
9 - Brown

10 - Light Red
11 - Grey - 1
12-Grey-2
13 - Light Green
14 - Light Blue
15 - Grey- 3

It is set by POKEing the relevant value into the locations from the bit-pair
table.
The video chip must be made to interpret character memory bytes as
multicoloured. To do this, bit 4 of location 53270 must be set to 1 and bit 3
of each colour memory byte that you want multicoloured must be set to 1 .
So when you POKE the colour codes into colour memory add 8 to the
normal codes. The same technique applies to characters PRINTed.
POKEing the usual code + 8 into byte 646 will make the Video chip
interpret character codes as multicoloured characters when PRINTing.

Multicolour and normal resolution characters may be mixed by setting
the 4th bit on some colour memory nybbles and not on others.

EXTENDED BACKGROUND COLOUR MODE
The single additional ability given to you in this mode is the ability to
control the background colour of a character position on the screen
independent of the global background colour.
However, once this mode is selected, you can only address the first 64
characters in your programmable character set. This is because two of
the bits of the character code are used to select the background colour.
Use the following table to select the extended background colours for
characters POKEd onto the screen.

Character range
0-63
64-127
128 - 191
192 - 255

Background Colour Register
53281
53282
53283
53284

To select extended background colour mode, use:
POKE 53265, PEEK(53265) OR 64

90

MULTICOLOUR BIT MAP MODE
Multicolour bit map mode works in the same way as standard bit map
mode except that plotting is done in multicolour. This mode suffers the
same resolution loss as multicolour mode owing to the bit pair colour
representation. The bit pairs don't represent the same colour information
as in multicolour mode. The bit pair colour table for multicolour bit map
mode is as follows:

Bits Colour information
o 0 Background colour #0
o 1 Upper 4 bits of screen memory
1 0 Lower 4 bits of screen memory
1 1 Lower 4 bits of colour memory for that byte

Multicolour bit map mode is selected by setting bit 5 in location 53265
and bit 4 of location 53270.
Use the following BASIC statement to achieve this:
POKE 53265, PEEK(53265) OR 32: POKE 53270, PEEK(53270) OR 16

SPRITES
A sprite is a form of user defined character that is controlled by a powerful
video chip called the 6566. Up to 8 sprites can be displayed at a time
automatically. More sprites can be displayed using Raster Interrupt
techniques. Sprites have the following advantages over user defined
characters:
1. Pixel by pixel movement in any direction
2. The 24 by 21 pixel sprite shape can be moved as though it were a
single character
3. Magnification (2X) in both horizontal and vertical directions
4. Independent high-res/multicolour mode
5. Selectable sprite to background overlay priority
6. Sprite to sprite collision detection
7. Sprite to background collision detection.
A sprite is larger than a character therefore more data is needed to define
the shape of a sprite. A sprite is 24 pixels (3 bytes) wide and 21 pixels
high which gives us a total of 3 x 21 = 63 bytes of data to define the shape
of a single sprite. Even though a single sprite is made up of so much data,
the video chip moves the sprite as if it were a single character.

Sprite Pointers
The 64 byte blocks of data that define the shape of each sprite can be
placed in any 64 byte multiple of unused memory. In order to tell the video
chip where in memory each sprite-shape block is located, eight sprite
pointers are provided.

91

The shape of a sprite may be changed by adjusting the sprite pointer
allocated to that sprite to point to a different block of sprite-shape data.
Using this method a single sprite may be animated by quickly changing
the sprite's pointer to switch through a series of shapes provided for that
sprites's animation (e.g. an explosion). Switching the pointer rather than
switching between sprites leaves the other sprites free for other uses.
The sprite pointers are the last 8 bytes of unused screen memory (2040
- 2047). If you move screen memory, the pointers will move with it (but
not their contents). You must remember when setting up your sprite
pOinters that the pointer must point to the first byte within the sprite and
that the value in the sprite pointer is the actual memory location of the
sprite over 64. Therefore, the following formula applies:
Location = Sprite pointer * 64
Also if you are not using video bank #0 (default bank) then you must also
add bank number * 16384 to the location. If you haven't switched video
banks, then don't worry.
Two important points to remember when choosing where to put your
sprite data in memory are 1, its location must be a multiple of 64, and 2,
check the memory map to make sure that you are only using spare
memory.

Turning Sprites On
For a sprite to be displayed to the screen, it must be turned on. The
memory location where the video chip gets its information on which
sprites should be turned on and which should be turned off is location
53269. The 8 bits within byte 53269 are labled from right to left 0 - 7.
Therefore, if we label our sprites from 0 - 7 then we easily determine
which sprites should be on and which should be off by the value
contained in byte 53269. The way that the on/off status of each sprite is
determined is a follows:
A 1 in the bit corresponding to the sprite determines that the sprite should
be displayed (turned on) and a 0 determines that the sprite should not be
displayed (turned off).
e.g. 7 6 5 4 3 2 1 0

1 1 0 1 0 1 1 1 = 215
therefore the statement POKE 53269, 215 would supply the video chip
with the following information:
Sprites 7, 6, 4, 2, 1 and 0 are to be turned on.
Sprites 5 and 3 are to be turned off.
To turn on a single sprite without effecting the others, use the following
statement:
POKE 53269, PEEK (53269) OR (2 f SN)
where SN is the sprite number (0 - 7)
To turn off a single sprite without effecting the others, use the following
statement:
POKE 53269, PEEK (53269) AND (255 - 2 t SN)

92

Sprite colour
High resolution (single colour) sprites can be anyone of the 16 colours.
The colour of each sprite 0 - 7 should be POKEd into their respective
colour registers, memory locations 53287 - 53294 (see video register
map). Each pixel turned on within the sprite will be displayed in the colour
determined by the sprite's colour register. Each pixel turned off will be
displayed in the colour behind the sprite (i.e. it is transparent).

Multicolour Sprites
In multicolour mode, it is possible to have four different colours in each
sprite. Though, as with multicoloured characters, multicoloured sprites
have only half the resolution of single coloured sprite (ie. pixels must be
displayed in pairs). The following table gives the colours determined by
each bit-pair combination.

Bit pair Resultant Colour
00 Transparent (screen colour)
01 Sprite multicolour register #0 (location 53285)
10 Sprite-colour register
11 Sprite multicolour register #1 (location 53286)

The register that holds information on which sprites are multicolored and
which sprites are not is mapped to location 53276.
To set a sprite to multicolour, use the following statement:
POKE 53276, PEEK(53276) OR (2 t SN)
where SN is the sprite number (0 - 7).
To switch a sprite out of multicolour mode, us the following statement.
POKE 53276, PEEK (53276) AND (255 - 2 t SN)

Expanding Sprites
Sprites can be expanded vertically, horizontally or both. A sprite is
expanded by putting 2 pixels in place of 1 and 2 blanks in place of 1 in the
direction of expansion thus giving a 2X expansion. To expand a sprite
horizontally, the corresponding bit in location 53277 must be set to 1. To
unexpand the sprite, the bit must be set to O. Vertical expansion is done in
the same way using location 53271. The POKE statements to control
expansion and unexpansion of sprites are as follows:
Horizontal expansion
POKE 53277, PEEK (53277) OR (2 t SN)
Horizontal unexpansion
POKE 53277, PEEK (53277) AND (255 - 2 t SN)
Vertical expansion
POKE 53271 , PEEK (53271) OR (2 t SN)
Vertical unexpansion
POKE 53271, PEEK (53271) AND (255 - 2 t SN)
where SN is the sprite number from 0 - 7.

93

Sprite Movement
Sprites are moved around the display by changing the values in each
sprites's horizontal and vertical position registers. These registers are
mapped to memory location 53248 to 53263 and a most-significant-bit
(MSB) register at location 53264. The MSB register is used to rectify the
problem of horizontal screen width. The MSB register works as follows.
In order to gain pixel by pixel movement, the horizontal position register
needs to be able to hold values from 0 to 299 (screen width). A single
register can only hold values from 0 to 255 therefore we need at least one
more bit to handle values up to 299. An extra bit (9th bit) would allow us
control over positions 0 to 511. This is the purpose of the MSB register.
The bits in the MSB register correspond to the sprite number. (ie. bit 0 for
sprite 0, bit 1 for sprite 1, etc.) A register map of all sprite positioning
registers is as follows:

Location Use of Register
53248 Sprite 0 X position
53249 Sprite 0 Y position
53250 Sprite 1 X position
53251 Sprite 1 Y position
53252 Sprite 2 X position
53253 Sprite 2 Y position
53254 Sprite 3 X position
53255 Sprite 3 Y position
53256 Sprite 4 X position
53257 Sprite 4 Y position
53258 Sprite 5 X position
53259 Sprite 5 Y position
53260 Sprite 6 X position
53261 Sprite 6 Y position
53262 Sprite 7 X position
53263 Sprite 7 Y position
53264 Sprite (0 - 7) MSB register

Note that horizontal positions 24 and 344 are the left and right
boundaries of the screen. Sprites continue to move outside this range but
cannot be seen.

It's about time we had a look at one of these sprites. Study the following
program and its comments. Type it in and run it.

1 REM *** SQUARE ***
5 REM

BORDER
*CLEAR THE SCREEN TO BLUE WITH A BLACK

94

10 PRI~ITCHR$(147):POKE53220,0:POKE53281,e
15 REM tSET SPRITE-POINTER #0 TO POINT TO
LOCATION 13*64=832
?8 pm~E 2840; 13

LOCATIONS 832 TO 832+63
30 FOR MEM=832 TO 834:POKE MEM,255:~EXT
48 FOR t'lEt1=835 TO B3fJ STEP 3

50 POKE r·"!E>l .. - 1 ;~B : F':JKEr~'lEt'~l + 1 ... €I: POKE!"1Er':+2 r 1

EO t·iD:T ~'ln'!

"'70 FDRt"-1Et-·1=882T0894: POKEt"!1Ety l,,255: t"·JEXT

REH tSET BEGINNING OF VIDEO CHIP
8~ '0} IDEO =53243

85 R~M *TURN ON SPRITE #0
30 PQ~E VIDEO+21,1

*CHOOSE THE COLOUR WHITE FOR SPRITE
100 POKE VIDEO+39,1
109 REM *MOVE SPRITE ACROSS SCREEN
110 ¥=100 : POKE VIDEO+l,Y:FOR X=0 TO 347
115 F.Er,) *CAl.CULATE ~~;-POS IT!ON AND t'lSB
120 MS8=INT(X/25S) : XP=X-256*MSB
130 pm:.E 'j J DEO t-0, ~'<P: POKE \j IDEO + 16, ['1SB
14:?1 t·jr:::::-;T ><:

Run the program and you should see a square sprite float across the
screen .
• To expand the sprite in the horizontal and vertical directions before
moving, add the following line:
105 POKE VIDEO + 29, 1 : POKE VIDEO + 23, 1
and run the program again.
The following program allows you to use the cursor keys to draw a sprite
by editing DATA statements. Type RUN 1, then use the cursor keys to
move around the DATA statements. Use the shift Q character to signify a
pixel-ON and a full-stop to signify a pixel-OFF. When you have finished
drawing your sprite, move the cursor to the top of the screen, then keep
hitting the RETURN key until you have entered all of the DATA
statements. Now type RUN, and the program will generate the sprites
and the DATA statements needed to generate that sprite. To store these
DATA statements, use the same method as you used on the last set of
DATA statements.

o GOTOl0
1 PRINTCHR$(147):POKE53268,0:LIST28-50
10 PRINTCHR$(147):FORI=0T063:POKE832+I,0:t·-IE}-:T

95

15 POKE53280,6:POKE53281,6
20 GOTO 60
29 REM ••. 012345678901234567890123
30 DATA " •.•••••••••••••••••••••• "
31 DATA " ••..•••••••••••••••••••• "
32 DATA " •.•..••••••••••••••••••• "
33 DATA " •..•..•••••••••••••••••• "
~4 C~Tp " •...•..••• ~ ••••••••••••• "
35 DATA " •....•..•••••••••••••••• "
36 CATP " •.....•..••••••••••••••• "
37 DATA " •......•..•••••••••••••• "
38 O~TA " •.......•..••••••••••••• "
39 ~ATA " •........••.•••••••••••• "
40 D~TA " •.........•..••••••••••• "
41 DATP " •..........•..•••••••••• "
42 DATA "=•..••••••••• "
43 DATA "D•..•••••••• "
44 DATA " •.............•..••••••• "
45 DATA "~••.•••••• "
46 DATA " •..............••..••••• "
47 DATA " •................•..•••• "
48 OATA " •.................•..••• "
49 DATA " •..................•..•• "
5£1 OATA " •••••••••••• _ ••••••••..• "
60 V=5324S:POKEV+16,1:POKEV+l,50 :POKEV+21,

1:POKEV+39,3:POKE2040,13
70 POKEV+23,I:POKEV+28,l
80 FORI=0T020:PR!NT1000+1,"OATA";:READA$:FORK=

0T02:T=0:FORJ=0T07=B=0
80 IF MID$(A$,~T+K*8+1, 1)="."THENB=l
100 T=T+B*2t(7-J):NEXT:PRINT T,",", :POKE 832+

I*3+K,T:NEXT:PRINT"1I ":NEXT
110 END
3000 PR II'·lTCHR$(19) : END
9aa0 SAVE"~0:SPRITE",8
801a VERJFY"SPRITE",8

SPRITE DISPLAY PRIORITIES
Sprite priority determines if the sprite should appear in front or behind
another background. If the background is another sprite, then the priority
is fixed by the sprite's sprite number. Sprite 0 has the highest priority,
sprite 1 has the next priority. and so on. up to sprite 7. For example. if

96

sprite 0 and sprite 7 are positioned so that they cross each other, sprite 0
will be in front of sprite 7, though you would be able to see sprite 7 through
sprite 0 (unless of course sprite 0 was a completely filled square). Sprite
to background priority is more flexible in the way that each sprite can be
set with priority above or below the background. The sprite to
background priorities are controlled by the sprite priority register
(memory location 53275). A 1 in the bit number corresponding to the
sprite number will set that sprite with a lower priority than the
background. A 0 in this bit position will give the sprite a higher priority
than the background. By moving sprites back and forth over other
objects, at the same time changing the sprite-background priorities, it is
possible to make it look as if the sprites are moving in front and behind the
object thus creating a three dimensional effect.

The following program overlays 8 sprites to demonstrate sprite priority:

5 REty! * DEMONSTRATING EIGHT SPRITES *
10 POKE53280,6:POKE53281,0
20 PF-~INT CHR$(147).: "CREATING SPRITES"
30 POKE 52,62 :POKE 56,62 :P=248
40 FOR IYIEtvt=2040T02047: POKEJYtEJYt, P : P =P + 1
50 NEXT MEM
51
80 BYTE=272
70 FOR SN=0 TO 7 : PRINT SN
80 LOC=PEEK(2040+SN)*64
90 BYTE=BYTE/2:B=BYTE:ROW=0
100 FORttlEM=LOCTOLOC+63STEP3
110 IFSN(=3THENI40
120 ROW=ROW+l:T=(ROW-SN-3)/4:8=0
130 IF INT(T)=T THEN 8=255
140 FOR COL=0T02: POKEMEIY1+COL,8: NEXT COL
150 NEXT tvtEJY1, SN
155
160 VIDEO=53248:A=150:B=0
170 POKE VIOEO+21,255:POKE VIOEO+28,255
175 POKE VIDEO+37,1:POKE VIDEO+38,1
180 C=0:FOR R=39 TO 46:C=1
180 POKE VIDEO+R,C:PRINTCHR$(147):NEXTR
200 I=A:A=B:B=I:0=SGN(B-A)
210 FOR SN=7 TO 0 STEP-l
215 Z = 11 *(S!,·j >3) *(PI =0 :>

220 PR INT CHR$(147); "SPR ITE"; SN

97

230 SX=VIDEO+SN*2:SY=SX+l
240 Y=A-D+Z:FORX=A+ZT08+ZSTEPD:Y=Y+D
250 POKE SX,X:POKE SY,Y
280 1'·ID<T X, SN
270 FOR PAU:=:E= 1 T020~~0: NEXT
290 GOTO 200

Sprite Collisions
Sprite collisions are detected by the computer and collision information is
stored in location 53278 for sprite to sprite collisions and location 53279
for sprite to another background collision. The bit set to 1 in each of these
registers corresponds to the sprite involved in the collision. The bit stays
set until the register is read (PEEKed). So if the collision information is to
be used more than once per collision, it would be a good idea to store the
value into a variable. Also, programs that use the sprite collision registers
should include in their initialization a PEEK of each of these registers to
clear them of previous collision data.
Note: A bit pair 01 in a multicoloured mode will not be detected in a sprite
to background collision, even though it can be seen on the screen. So, for
example, if you wish to have objects that should not cause a collision
(e.g. a cloud) then they should be coloured by using bit pair 01
(multicolour register #01).

SELECTING A VIDEO BANK
Even though there is 64K of RAM (Random Access Memory) available,
the video chip can only access 16K at anyone time. The 16K block of
RAM that your program will use depends on your particular application.
The reason for this is that each of the 16K blocks have different memory
allocations to character generation. Then there is the problem of BASIC
residency. The following memory blocK descriptions should make this
clear.

Memory
Block

o

2

3

RAM seen by
Video Chip

0-4095
and

8192-16383

Character
Set Used

ROM
4096-8191
(Standard)

RAM
16384-32767 any 2K multiple

(User generated)

32768-36863
and

40960-49151

49152-65535

ROM
36864-40959

(Standard)

RAM
any 2K multiple

(User generated)

98

Memory
Usage

System variables and
default screen memory

~
Basic programs and variables

(2048-- 40959)

I

_____ l_ Strin1space

Two more things to remember when choosing a memory block are:-
• Sprites take up 64 bytes and their position in memory must be a 64
byte multiple.
• The high-res screen takes up 8K and its position in memory must be
an 8K multiple.

As seen from the previous table, the more memory your BASIC program
takes, the further up memory you will have to put your sprite data, hires
screen and alternate character set if any of these are used; otherwise
use the default screen at location 1024 - 2047.
The bank select bits that are used to select which of the four banks of 16K
memory you wish the video chip to get all of its sprite data, character set
and screen information from are bits 0 and 1 of location 53576. However,
before changing the contents of this location to choose your video bank,
you must first set bits 0 and 1 of location 56578 to 1. The BASIC
statement to do this is as follows:
POKE 56578, PEEK (56578) OR 3
The BASIC statement to select the video bank is as follows:
POKE 56576, (PEEK (56576) AND 252) OR (3 - BANK)
where the value of BANK depends on the following table:

i----~-~------. .J Value of STARTING
~AI\I~~IT~_!~_NK LOCATION~IC_~~_CHIP RANGE

o 00 0 0 0 - 16383 (Default bank) I
1 01 1 I 16384 16384-32767 I
2 10 ~ I 3276~ 32768-49151
3 11 ~ 41952 49152- 65535 I ----. . ____ _. ____ ._.. I

99

VIC-II CHIP REGISTER MAP

Reg.#

o
1

2
3
4

5
6
7

8
9

10
11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28
29
30

31

32

33

34

35

36

37

38
39
40

41

42

43

44

45

46

~. 7 _1 __ 6 __ J __ ~_I __ ~_L3_.r. _=~~'-_ 1 0
Spnte# 0 X - pas Ilion

Spnte# 0 Y - pOSlIIon

Spnte# 1 x ~ POSition

Spnte# 1 Y - position I
Spnte# 2 x - POSition

Spnte# 2 Y - position I
Spnte# 3 x - position

Spnte# 3 Y - position

Sprrte# 4 x - position

Spnte# 4 Y - position

Spnte# 5 x - position

Spnte# 5 Y - position

Spnte# 6 x - position

Spnte# 6 Y - position

Spnte# 7 x - position

Spnte# 7 Y - position

~lle#7 Sprrte;tt6 Spnle#5 Sorlie #4 Sorlte#: Spnte#2 Sprite,,! Spnte#O MSBoj~-- pO~IIIOrl

1 ____ 1LEX-.Sl;s;~""'~""~,'__E~ ~~~ 1 ~;~f~f6 T~1 - 1 vgg'~,T' ! Mocle ~
Raster register

Light pen- x

Light pen - Y __ ~ ___ ~

~==-l-:';;"=~-"JS~#4

IRO

IRO
Sprite #7 Sprite #6 Spnte #5

Sprite #7 Sprite #6 Sprite #5

Sj:mte #7 Sprite #6 Sprite #5

Sprite #7 Sprite #6 Sprite #5

Sprite #7 Sprite #6 Sprite #5

Screen border Colour
BaCkground Colour #0

Background Colour #1

Background Colour #2

Background Colour #3

Spnte multicolour #0

Sprite multicolour # 1

Sprite #0 Colour

Sprite # 1 Colour

Sprite#2 Colour

Sprite # 3 Colour

Spnte #4 Colour

Spnte #5 Colour

Spnte #6 Colour

Spnte #7 Colour

Sprite #4

Sprite #4

Sprite #4

5(::1Ile #4

Sr:rrte #4

SP~=;3rS;;;'t"? Spe<te #t S""te #0
Scree!l -tanzania I
wldtt- - suoll

Spflle#J Sprte#2 Sprite #1 Spnte;lO

- Character base-

I
sPgijl's~g~'te b g~~ITI~,on Raster

sp~gij,~~g~'te b gr~6;Wslonl Raster

Sprite 1t3 Sprite #2 SprltB # 1 Isprlte #0

SpritBI/3 I Sprtte#2 Sprtte#1 Spntp#O

Sprite #3 Sprite #2 Sprtte # 1 Sprite #0

Sprite #3 Sprlle #2 Sprite 1/ 1 Sprite #0

Sprtte #3 Sprite #2 Sprite #1 Sprite itO
--- --- .. -

I

I
____ " ____ ""_" ___ ." ____ ---1

100

Sprite enarJ1e

Multi colour ~ suo!1

Interrupt reg.ster

l'lluupt enabie

Sprite backgroufld priority

Sprtte 01U!1lcolour select

Sprite x exoand

Sprl!e 10 Spole COlliSion

Sprite til tlackground collislof'

CHAPTER 6

MACHINE LANGUAGE PROGRAMMING ON
THE COMMODORE 64
In this chapter, the following topics will be covered:

MICROPROCESSOR & MACHINE LANGUAGE

- Binary & Hexadecimal Numbering System
- Registers & Addressing
- Machine Code & Instruction Mnemonics
- Simple Machine Language Programs

MACHINE LANGUAGE PROGRAMMING ON COMMODORE 64
- Program Entry
- Program Execution
- Some Commodore 64 Useful Routines

MEMORY MAP & MANAGEMENT
- Memory Map & 'Shadow Zone'
- Memory Management
- Some Memory Configurations

COMMODORE 64 KERNAL
- Concepts of Kernal & Operating System
- Power-up Instructions
- Using Kemal Routines
- Simple Programs that Call Kernal Routines

MICROPROCESSOR & MACHINE LANGUAGE

INTRODUCTION
A microprocessor is the central processing and control unit of a
microcomputer system just like the brain of a human being. As with any
other electronic devices, the only way to communicate with a
microprocessor chip is via electronic signal pulses. There are certain
combinations of pulses that the microprocessor can understand which
form the basis of a Machine Language. A group of all the 'words' that a
microprocessor understands is called its instruction set.

Different microprocessors speak different machine languages. In a
Commodore 64, the central microprocessor unit is named 6510. For

101

those of you who have heard of the famous 6502 which can be found
inside Apple, Atari and other Commodore models, 6510 is its cousin. It
has the same instruction set as its better known relative. The only major
difference is that 6510 has an inherent 1/0 port which makes it
impossible to use the first two bytes of RAM.

BINARY & HEXADECIMAL NUMBERING SYSTEM
In the eyes of a microprocessor, an electronic signal can only have either
one of the two states - a '0' or a '1 '. As we are going to work with a
microprocessor, we had better learn its numbering system, called binary,
in which every number is made up of a bunch of '0' bits or '1' bits (BIT is an
acronym for Binary digiT). The 6510 processor is an 8-bit machine which
means all the numbers it knows range from 00000000, 00000001,
00000010, ... upt011111111.

For those of you mathematicians, the largest number is:
1 x 27 + 1 x 2' + 1 X 25 + 1 x 24 + 1 X 23 + 1 X 22 + 1 X 21 + 1 x 2° = 255

in our human decimal system. The conversion between binary and
decimal numbers is by no means a trivial exercise. (Can you tell
immediately whether 10111010 is larger than 180?) An intermediate
numbering system was invented to facilitate conversion to and from
binary numbers and on the other hand save the finger-counting feats. It is
called hexadecimal which means 1 digit has 16 counts. Conversion with
binary numbers is simple because this one digit can represent all
combinations of 4 bits.

Conversion Table of Hexadecimal, Binary and Decimal
Note: 6502 programmers' % $ convention of prefixing binary and
hexadecimal numbers. Decimal numbers do not have a prefix.

Decimal Count BinaryBits Hexadecimal Diqit
0 %0000 $0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D ,
14 1110 E
15 1111 F

102

1. HEXADECIMAL - BINARY CONVERSION
It is a straight-forward table look-up exercise once you remember 1
hexadecimal digit is equivalent to 4 bits. Always start conversion from the
least significant digit (ie. rightmost digit).
Example:

% 10110101111000

TTTT
$ 2 D 7 8

2. HEXADECIMAL - DECIMAL CONVERSION
Conversion with decimals requires more arithmetic
a) Hexadecimal to Decimal
Look-up the decimal equivalent of each hex. digit before multiplying it by
its 'weight' factor.
Example:
$ 2 D 7 8

/ ~ ~ ~
fl.2 X 163 + 13 X 162 + 7 x 16 + 8 = 11640

It might be slightly simpler to work from the most significant digit (ie.
leftmost digit) in this case:-
(i) multiply the digit by 16
(ii) add the digit to its right
(iii) iterate from (i) unless it is the last digit.
Example:
$ 2 D 7 8

I J ~ ~
((2x16+13) x 16+7) x 16+8 = 11640

b) Decimal to Hexadecimal
Divide the decimal number by 16 repeatedly. Convert remainders to hex
representation.
Example: 2 45 727

~6)45 ~727~1640
~ ..M... ---11£.

13 87 44
2 ~ ~

D 120
7 112 --

8
11640 -- $2D78

3. DECIMAL - BINARY CONVERSION
This is best done by converting the original number to its hexadecimal
equivalent and complete the conversion to the desired number system.

103

REGISTERS & ADDRESSING MODES

A. 6510 PROCESSOR REGISTERS
Registers are the actual working vehicles inside a microprocessor. They
hold the crucial data for processing. All 6510 registers except one are
a-bits wide. The exception is the Program Counter which is 16-bits wide
enabling the processor to address 216 or 64K bytes of memory.

1. ACCUMULATOR (A)
The Accumulator is responsible for data manipulations such as memory
load/store, addition/subtraction and other logical operations. Hence, it is
often regarded as the most important register. In fact, if there ever exists
a microprocessor with 2 registers only, one of them must be the
accumulator.

2. X and Y INDEX REGISTERS (X, Y)
The primary function of an index register is to point at a memory location
for data manipulations. Other uses of an index register include temporary
storage, counter and memory load/store.
The 6510 has 2 index registers which makes indexing very efficient.
They differ slightly from each other in the most advanced addressing
modes. X index register specialises in Index Indirect addressing while Y
index register is for Indirect Index addressing. This will be explained in
detail when we talk about Addressing Modes later on.

3. STACK POINTER (SP)
A stack is a very important data structure in microprocessor
programming or in fact in any computer. It is a block of memory where
temporary storage is available. Data are stored on a Last-In, First-Out
(UFO)basis. You can imagine it as a stack of plates, where the one on
top is the one most recently added and will be the first one to be removed.
The Stack Pointer is an a-bit register that keeps track of the next
available location or the top of the stack. In 651 0, the stack is assigned to
page 1 of memory (ie. address $0100 - $01 FF) so that the high order
address is always $01. The stack pointer is initialized at $FF and
decrements towards $00 when something is pushed onto the stack.
The stack is used by the processor intrinsically to store the return
address when a subroutine is called or when an interrupt occurs. It can
also be used by programs that require data storage/retrieval in a LIFO
fashion.

4. PROCESSOR STATUS REGISTER (PS or SR)
The Process Status Register is a-bits wide and consists of 7 flags which
indicate various status of the processor.

104

bit 7 bitO

I N I v B D Z I C I
Processor Status Register Flags

a) Negative or Sign Flag (N)
- Set when the result byte of an operation has its bit 7 set (showing a

negative number in 2's compliment representation)
b) Overflow Flag (V)

- Set when an operation results in a carry from bit 6 into bit 7 (showing
an overflow in case of 2's compliment addition/subtraction)
c) Break Flag (B)

- Set when an interrupt is caused by a BRK instruction (not by a
hardware interrupt)
d) Decimal Flag (D)

- Set to let the processor operate in decimal of BCD mode (not binary
mode)
e) Interrupt Disable Flag (I)

- Set to disable any interrupt from hardware interrupt request.
f) Zero Flag (Z)

- Set when an operation results in a zero byte or equality in a
comparison
g) Carry Flag (C)

- Set when an operation results in a carry/no-borrow in an addition/
subtraction. It also serves as the 9th bit extension of the accumulator in a
shift/rotate operation. It is sometimes used as a user flag because it is
easily programmable and does not have any effect on most operations.

5. INPUT/OUTPUT PORT
This unique I/O port of 651 0 actually has 2 registers. At address $0000 is
a Data Direction Register which controls the direction of traffic of the
individual I/O lines. At address $0001 is the Data Register or the port
itself.

6. PROGRAM COUNTER (PC)
The Program Counter is the only 16-bit register in the processor. Its sole
function is to keep track of where the program is heading. It always points
at the memory location from where the processor fetches its next
instruction. Remember the processor with only 2 registers? A program
counter is the other crucial register besides an accumulator.

B. ADDRESSING MODES
Addressing modes are the various fashions in which the processor
specifies or addresses an operand. In 6510, there are 9 addressing
modes, some of which have several names:-

105

- implied, implicit or intrinsic addressing (including accumulator
addressing)
- immediate addressing
- absolute, absolute direct or extended addressing
- zero-page or zero-page direct addressing
- relative addressing
- indirect addressing
- indexed addressing (including zero-page indexed addressing)
- indexed indirect or pre-indexed indirect addressing
- indirect indexed or post-indexed indirect addressing

1. IMPLIED ADDRESSING (INCLUDING ACCUMULATOR
ADDRESSING)
Implied addressing is used by single-byte instructions to operate on
registers. Operands need not be specified; they are implied by the
instructions themselves. Instructions using this addressing mode include
register-register transfers, status flags set/clear, stack push/pop, etc.
Example:
TAX - transfer accumulator to X index register
CLC - clear carry flag
RTS - return from subroutine (modifies SP and PC)

2. IMMEDIATE ADDRESSING
The operands, mostly 8-bit constants, follow the instruction opcodes
immediately. Instructions that use this addressing mode include register
loads, arithmetic/logical operations and comparisons.
Example:
LOX #255 - load X index register with 255 or $FF
AND #$80 - logical AND accumulator with bit 7 only
Cpy #0 - compare Y index register with 0

3. ABSOLUTE ADDRESSING
With this addressing mode, the 2 bytes that follow an opcode specify the
effective address of the operand. All instructions that work with an
operand in memory can use this addressing mode.
Example:
ADC $1100 - add contents of memory location $1100 to accumulator
EOR $0004 - logical exclusive-OR accumulator with contents of
location $0004
JSR $1234 - jump to subroutine at $1234

4. ZERO-PAGE ADDRESSING
This is similar to absolute addressing except that the operand lies in page
o ($0000 - $OOFF). The instruction will be 2 bytes long only because 1
byte is sufficient to specify any location in the page o. Variables that are

106

often manipulated by a program should be stored in page 0 to take
advantage of the memory efficiency of this addressing mode.
Instructions that use this addressing mode are similar to those which can
use the absolute addresing except the 2 jump instructions - JMP and
JSR which always require a 16-bit address.
Example:
STY $12 - store Y index register at $0012
INC $20 - increment memory location at $0020 (by 1)

5. RELATIVE ADDRESSING
Relative addressing is used exclusively by Test and Branch instructions
which are 2 bytes long. The first byte is an opcode which tells what test to
perform. The second byte is a signed offset or relative count which tells
how many bytes to branch forwards or backwards if the test succeeds.
Example:
BNE -128 - branch backwards 128 bytes if Zero Flag is clear.
8MI + 127 - branch forwards 127 bytes if Negative Flag is set
(Note: -128 and + 127 are maximum branch limits)
8CC 0 - no effect; always proceed with next instruction regardless of
the test result.

6. INDIRECT ADDRESSING
This addressing mode is only used by 1 instruction in 6510 - JMP. With
this addressing mode, the destination of the jump operation is secified by
2 consecutive memory locations whose address follows the JMP
opcode. Such locations that store destinations are known as Vectors.
Example:
JMP ($0300) - jumps to location whose address is found in memory
$0300 (low order) and $0301 (high order)

Jump
$AC54 $6C Indirect ..,$3000 I $321

$00 using I $3001 $D4
vector' ,,-

Program ($30 $30001 ./ ,...
actually , ' ./ ,...

jumps here I Iv ./
$D432

low byte of destination address
high byte of destination address

7. INDEXED ADDRESSING (INCLUDING ZERO-PAGE INDEXED
ADDRESSING)
The effective address of the operand is determined by adding the
contents of the index register (X or Y) to the base address. This base
address can be 1 byte or 2 bytes long, depending on whether it is in page
o or not. This addressing mode is useful when a range of memory
locations (less than 256 bytes) is processed sequentially such as a block
move.

107

Example:
LDA $1 O,X - load accumulator with contents of address $10 + X
STA $031 0, Y - store accumulator at location Y bytes away from $0310

8. INDEXED INDIRECT ADDRESSING
This addressing mode only works with the X index register and a table of
indirect pointers in page O. The effective address of the operand is found
in 2 consecutive memory locations whose address is the sum of the
content of X index register and the base address in page O. This
addressing mode is useful when you have several possible operands
which are pOinted to by a table of indirect pointers and the X index
register can decide which one in the table.

(Note: Remember that each entry of indirect pointers is 2-bytes long and
hence the X index register should generally be a multiple of 2)
Example:
LDX#2
LDA ($40,X) - load accumulator with a memory byte whose address is
specified in $42 (low order) and $43 (high order)

X
LOX#2 [I]

LOA ($40.X)~

[IJ

I I A ;1 I .. $0040
c:::I:=J 41

42 $C6
o=J 43 82 }---.

, $82C6 ~
OOJ~ - ____ l. _ _ , _______ /'

9. INDIRECT INDEXED ADDRESSING
This addressing mode only works with the Y index register and a table of
data whose base address is stored as pointers in page O. The effective
address of the operand is the sum of the content of the Y index register
and the base address pOinter found in 2 consecutive memory locations in
page O. This addressing mode is useful when you have several tables to
process and their base addresses are stored as page 0 indirect pointers.
A block move can be done very efficiently using this addressing mode.
Example:
LDY#3
LDA ($1 0), Y - load accumulator with the 4th entry of a table whose base
address is stored in $10 and $11 (low, high order)

y

LOY#3~
LDA ($10).Y ~

G:::J

~~ ~ II---'~~~-I J --- -} $08~~ ~
34

35 $FE ,
I ________ ...1

108

MACHINE CODE AND INSTRUCTION MNEMONICS
All the machine code instructions of an 8-bit microprocessor are made up
of bytes. In 6510, the instructions are 1-byte, 2-bytes or 3-bytes long. To
a microprocessor, all instructions are purely numbers but it will be
extremely difficult for a human to write a program in a series of numbers.
Mnemonic words are invented to help the programmers memorise each
instruction.
For instance,

LDA#O
STA$D001 is more meaningful than

A9
00
8D
01
DO

The 6510 instruction set can be classified into 4 groups by functions
- data transfer
- arithmetic and logical operations
- program control
- miscellaneous

MNEMONIC CONVENTIONS
Registers
A - Accumulator
X - X index register
Y - Y index register
Processor Status Flags
C- Carry
D- Decimal

A. DATA TRANSFERS
1. Register - Register Transfer

P - Processor status register
S - Stack pOinter

1- Interrupt disable
V-oVerflow

Format: Tpq - Transfer register p to register q
Instructions: TAX, TXA, TAY, TVA, TXS, TSX

2. Register - Memory Transfers
Format: LOp - LoaD register p with memory
STq - STore register q into memory
Instructions: LOA, LOX, LDY

STA,STX,STV
3. Register - Stack Transfer

Format: PHp - PusH register p onto the stack
PLq - PulL register q off the stack
Instructions: PHA, PHP

PLA,PLP

109

B. ARITHMETIC AND LOGICAL OPERATIONS
1 . Add/Subtract with Carry /Borrow

Instructions: ADC, SBC
2. Increment/Decrement

Instructions: INX, DEX, INY, DEY (index registers)
INC, DEC (memory)

3. Logical AND, OR and Exclusive-OR
Instructions: AND, ORA, EOR

4. Comparisons
Instructions: CMP, CPX, CPY - comparisons with A, X, Y
BIT - bit-to-bit AND with A

5. Shift/Rotate c 7 0

Instructions: ASL - Arithemetic Shift Left U-I I - . 1 1 __ 0

LSR - Logical Shift Right

ROL - ROtate Left

ROR - ROtate Right

C. PROGRAM CONTROL
1 . Test and Branch

7 0 C

o ~ 1<-.... 1_· _--,-I I--n
C 7 0

Q--I 1 ... 1 1+-:1
7 0 C

~I 1 -11--9

Instructions: BPL - Branch if PLus (N flag clear)
BMI- Branch if Minus (N flag set)
BNE - Branch if Not Equal zero (Z flag clear)
BEQ - Branch if EQual zero (Z flag set)
BCC - Branch if Carry flag Clear
BCS - Branch if Carry flag Set
BVC - Branch if oVerflow flag Clear
BVS - Branch if oVerflow flag Set

2. Unconditional Jump
Instruction: JMP

3. Jump to and Return from Subroutine
Instructions: JSR, RTS

4. Software Break and Return from Interrupt
Instructions: BRK, RTI

D. MISCELLANEOUS
1. Flag Clear/Set

Format: CLf - CLear flag f
SEf - SEt flag f
Instructions: CLC, CLD, CLI, CLV

SEC, SED. SEI
2. No OPeration

Instruction: NOP

110

I­W

00
Z

o ~ (J

::)
a:
I-00
~

a:
o 00
00
w

(J

o a:
Q

.
o a:
(J

:E o
It')
CD

M
n

em
o

n
ic

A
O

C
A

N
D

A

SL
BCC
B

C
S

BEQ

BIT
BM

I
BN

E
BPL
BRK

BV

C
BV

S
CLC
CLD

CLI
CLV
CM

P
C

PX

C
PY

D

EC
O

EX

D
EY

EO

R
INC
INX
INY
JM

P
JSR

I LOA

LOX
LOY

O
p

eratio
n

A

+M
+C

--'tA

A
 x M

-7A

C
~
-
p

o
l
~
o

branch on C=O

branch on C
=1

branch on Z
-1

A
xM

branch on N

 = 1
branch on Z=O

branch on N

-O

P
~
(
S
)
-
-
,
 P...,.(S)-

branch on V
=O

branch on V

 = 1
O
~
C

O
~
O

0--7
1

O
~
V

A-M

X-M

YoM

M
-
I
~
M

X
-
I
~
X

Y
-I-4 Y

A

x M
~
A

M
+I-4M

X
+
I
~
X

Y
+1
~
Y

M
'6 --,>

 PC

PC
 -'>

 (S)--, M
'6 ~
 PC

M
~
A

M
 ...,.X

M

 --,>
 Y

IM
P

IM

M

Z-P
G

_
A

B
S

#
;1

#

;2

#
;2

#

;3

69
65

60
29

25
20

OA
06

DE

24
2C

00

18
08
58
B8

C
9

C
5

CO

EO
E4

EC
CO

C
4

CC
C

6
C

E
CA

88

49
45

40
IE

6

lEE.
E8
C

8
4C

20

A9
A5

AD
A

2
A6

AE
AD

A
4

AC

A
B

S
,X

A

B
S

,Y

Z
-P

G
,X

Z

-P
G

,Y

(IN
O

,X

(IN
O

),Y

R
E

L
IN

O

P
ro

cesso
r S

tatu
!

#
;3

#

;3

#
;2

#

;2

#
;2

#

;2

#
-
2

#

-3

N
 V

 -13 D

1
Z

C

70

79
75

61
71

j
.;

j
j

3D

39
35

21
31

j
j

iE
16

j
.;

.;
90
BO
FO

M
7 M

6
30
DO
10

1
50
70

0
10

0
0

DO
09

05
C1

01
J

.j
J

.;
.;

J
,J

.I
j

DE
06

J
J

J
.I

j
.;

50
59

55
41

51
j

.;
lEE

LFJi
.l.

.;
..L

,J

J
j

6C

BO
B9

B5
A1

B1
j

,J
BE

B6
j

,J
BC

B4
j

,J

IM
P

IM

M

Z
-P

G
.

A
B

S

A
B

S
,X

A

B
S

,Y

Z
-P

G
,X

Z-P

G
,Y

 j!N
D

,X

j!N
O

),Y

R
E

L
IN

O
 I

P
ro

ce
sso

r S
tatus

M
n

e
m

o
n

ic
O

p
e

ra
tio

n

#
=

1

#
=

2

#
=

2

#
-3

#

-3

#
-3

#

-2

#
-2

#

=
2

#

=
2

#

-2

#
-3

N

V

-

B
 0

I
Z

C

LS
R

0

--*

o
f7

C

4A

46
4E

5E

56

I
0

I
.;

N
O

P

P
C

+
1 ~

P
C

E
A

O

R
A

A

V
M

-7
A

09

05
0

0

10
19

15
01

11
/

/
D

l"t;t\ ,-;'~i!
A

-7
(S

)-
48

I
9H

P
-

"'fI'
p

-;)(S
i-

08
P

L
A

(S

)+
 -7

A

68
J

I
P

LP

(S
)+

 -"
 P

28

/
/

I
I

I
I

I
R

O
L

T

ci)©
--J

2A

26
2E

3E

36

/
,
J

/
R

O
R

~

6A

66
6E

7E

76

.j
I

.j
R

T
I

(S)+..p,(Sl++-+PC,S+1~
40

/
.;

.j';

.j
.;

./

R
T

S

(S
)++ +

1
-"P

C

60
S

S
C

A

-M
+

C
 -7

A

E
9

E
5

E
D

FO

F9

F5
E1

F1
I

/
.;

.;
S

E
C

1...."C

38

1
S

E
D

1
~
!
)

F8
1

S
E

I
1-,>1

78
1

C\J

S
T

A

A
~
M

85
8

0

9
0

99

95
81

91
S

T
X

X

...."M

86
8E

96

S
T

Y

Y
 -'?

M

84
8C

94

T
A

X

A
~
 M

;

f~
"
7

 ,/
A

A

..:!..-
.j

T
A

Y

A
~
Y

A
8

/
,J

T
S

X

S
...,>X

S

A

I
I

T
X

A

X
...."A

8A

I

.;
T

h
S

X

-7
S

M

T

Y
A

Y
~
A

98
I

,J

A

A
ccum

ulator
M

'6

16-bit O
perand in M

em
ory

-
S

ubtract
I

M
odified

X

X
-Index R

egister
(S

)-
O

perand P
ushed on S

tack
1\

A
N

D

1
S

e
t to 1

Y

Y
-Index R

egister
(S

)--
16-bit O

perand P
ushed on S

tack
V

O

R

0
C

le
a

rto
 0

P

P
rocessor S

tatus R
egister

(S
)+

O
perand P

opped off S
tack

-V
-

E
xclusive O

R

M
7

M
e

m
ory S

it 7
S

S

tack P
ointer

(S
)+ +

 16-bit O
perand P

opped off S
tack

N

o. of B
ytes for Instruction

M
6

M
e

m
ory B

it 6
P

C

P
rogram

 C
ounter

+

A
dd

M

O
perand in m

em
ory

SIMPLE MACHINE
LANGUAGE PROGRAMS
Here are a couple of simple machine language programs to get yourself
familiar with the instructions and different addressing modes of the 6510
microprocessor.

A. CONVERTING A BINARY BYTE VALUE TO 2 ASCII HEXADECIMAL
DIGITS
This program converts a binary value to 2 hexadecimal digits in ASCII
values and puts them in a buffer. It illustrates the uses of some data
manipulation instructions and the calling of subroutines.

Main conversion program.

/I

. (

.J
. L,
·s

AD
43
4ft
"IN

~ft

4ft
.":0
;~C

"13
':3
~8

?3
,~0

,:'3

sa
3C
60

C&
90
18
69

69
fOV)

2ii

2El
28
2C

0F
20
2C

28

0R
03

07

30

CIII " lnuc

C0
C0
C0

C0
C0

C0

;convert 1
hexa.sc

hexal

;dat ... area.
bInary

bufpt ..
buff

1d" b lr,ar:y
ph ...
lsr a
1 a
1
lsr ...
jsr he....:.Ql~c

Idy bufptr

"ta buff ,:'"
in;.'
p12

a.nd "",,'It
J-sr he:Aa:s.c
<.til but f, >'
In;...·

sty buffotr
rts
he-"adec Imal
crnp 1I$0a
bee hexiLl

clc
adc 117

a.dc 11$30
rts

.ds

..ds

.ct,. 256

BINASC

;gi:t b lndor>'
; ~"'VIK it

;rlllht ~t,'ft 4 tlll.""
; to :I!ljtt h 1 lilt. lIlbtfl" (JUWI,

;convert tv t1SCIJ v~l~~

;put In bl..lfft:"

;bunlf/ buit~r p~ .1r,tcr"

;~~t blnar~' ~~~ll~

;rrlA.i-k: to Sic.t I'll "ILLie
;conver~ ~o ASCII

;put 10 buff"r

digIt to ASCII ~ubr'outln~

;0-9"
;yes,add $30 onl~'

;no ,for ft,-F

; add $07 rrtOr4i:

To use 'BINASC·. POKE the binary number to be converted into the
location defined by BINARY. Call 'BINASC' by using SYS (BINASC)
where BINASC = the address of the start of the machine code (e.g.
49152 or $COOO).

113

B. RETRIEVING A VARIABLE-LENGTH MESSAGE WITH AN INDEX
This program retrieves a variable-length message (e.g. error message)
from a table of up to 128 messages given its index (e.g. error number). An
index table is kept at zero page pointing to the start of each message.
The first byte of each message is actually its length.
The two unique index addressing modes of the 6500 family processors
are utilized here for illustration purposes

Afl ?P r:I'I retr iv Ida index ;get index
nA ~ ~ 1 ~ ; times 2 to ace.55 the
r~<r~ tax :corr·ect 2 byte pointer
HI "'<1 Id" (ixtbl,x) :taKe firs.t byte of mass&g.
"["1 ?r: CI'l st..;. I"ngth ; as length of me.s.sage

's"t up pointers for retrieving actual maSftilga

R':i n<1 Ida ixtbl,x) in it pointer at stArt
R") 0,~ sta msgptr :of desired mlli!ssage
R70 .,5 Ida ixtbl+l,x
9"'i 02 sta msgptr+l

id' 111 Idy III ;start from ac:tual massage
A. 2n CI') Idx bllfptr)output buffer pOinter

;move message to buff"r using
.! 11'"10 irec"t inde:1(addressing

81 02 move Ida (tnSgptr-) ,y :retr iev. message
'-=1[1 2E C0 s1:a buff ,x)put in buffer'

':8 in>'

lOB inx
c:r 2C Cf'J dec length :for its whole length
nn FP bne move
.,F ?f1 r.1'I stx bufptr ;updat. buffer pOinter
Fn rts

;data area
index .ds 1) index no. (0-127)
1 en9th . ds 1)mt!ssage l .. ngth count .. r
bufptr .d. 1)bllffer po inter

text

msgptr .. de 2 .!message pointer (zero page)
huff .ds ?5~)256 byte buffer

:index tab! ... (zeor"o page)

ixtbl .de <1 ;table of addresses
;of msg 1 ,rnssa2 a.nd msg3

;table of variablp. length m@ssages
msg 1 .by 9 'i/o error'

• to,' 12

.bT' 15
'synt&x error'
'buff.r over11ow'

MON-- SIMPLE MACHINE CODE MONITOR
Purpose: to enable the user to examine and change the contents of
memory displayed in hex.

When the program is run the user is prompted for a start address. This
may be entered in decimal or hex. Hex addresses are indicated by a $
immediately preceding the address, e.g. $0800. Following this, 200
bytes, from the start address on, will be displayed. Cursor control keys
move the cursor around the screen as usual. A RETURN keystroke will
clear the screen and redisplay the start address prompt. Memory

114

locations are changed by changing the appropriate display. Only legal
hex digits will be accepted.

Where there are ROM/RAM overlays the ROM values will be displayed
and the RAM values changed unless the ROM is switched out by the
user.
5 REt-'1 ;>'!ACH I NE': CODE tvl0N J TOR
10 GfJTO 9.00.
20 REM DEC TO HEX. CO~VERSION
.30 H$= II II

40 V=NR- IN'(NR/16):t 1E:
50 H$=H,*< '}) +H$

80 NR = 1 !'-../T(f'.!R,.-"1 S ;.

7S ~F t-·JR< >0 THEt-..J 41(1

F0 RE.TURt··~

80 REt'1 HEX TO DES CON'lERS ION
100 t--lR=O
lie FOR .J= 1 TO LEN(NF:$)
12~ NR=OCASC(MIO$(NRS,J,1»-48)+(NR*IS)

160 REM CRSR MOVE LEFT/RIGHT
170 CA =CA +"'10VE
180 REM DISABLE CRSR,PRINT,ENABLE CRSR
180 1.,.JA I T207 ; 255,- 1 : POKE204 F 255: PCY.E205 F 1 : PR I!··JTK$;

:POKE204,0:RETURN
195 RHl CR2R t'10VE UP
2e0 I~ SA(SA+8 THEN RETURN
210 S~=CA-8:SM=SM-40:GOSU8 180:RET~RN

30~ IF CA)SA+121 THEN RETURN
21 a ::Cj =CA +F: S~1=SI1+4(l: GOSUS 180: RETURN
400 IF SM=2020 THEN RETURN

'1lf' T<:,t"1-J.060

42C :F T/40=INTCT/40) THEN CA~CA+l:SM=SM+l1
: K$= " •••••••••••• " : GOSUB 180 : RETURN :c: I cSRffi tImes 11

430 1',10VE -ABse ! t--!TC ::::t,I./2) -SJ'YI/2)
440 St>-l=St"1+(2 H-1ClVE) + 1 ~1-CS-R-R-T-time-s3---'1

450 T="'lQ\,l~*2+1:K$=RIGHT$("I.U",'T):GOSUB
160:RETURN

500 REt" CR~;R tvl0VE L~~T

510 IF ~H',-= 1031 "'!'"HEN RETURt'·!

530 ~~ T/40=INT(~/40) THEN CA=CA-l:SM=SM-12
: KS- "I " : GOSUB 180: RETURN

I CSRLFT times 1211
115

540 rl0VE =(I NT(SH/2) < >SH/2;'

550 SM=SM+(3*MOVE)-1 I CSRLFTtimes4 I
J.

560 T=ABS(t'10'.IE) *3 + 1: K$=R I GHT$("1lUI •• " F T;' ,GOSUB

160:RETURN

600 REM GET VALUE FROM SCREEN
S 10 POi<E204, 255, HE; ::OPED=>: sr'·l- 1) : LB =PEEK(SI'D : POKE204,0

e:~ ·c HB)127 THEN H8=HB-128

S~7 IF L8>127 THEN L8=L8-128

820 IF HB<48 THEN NR$=CHR$(64+HB):GOT0640

EAC I? :""8< 48 THEN i'·;R$=t'..LR$+CHR$(64 +LB) : GOTO 550
':::.50 r··jR$:=NR$+CHR$(L8)

eS0 RE-:-UI;(N

70e RErl POKE VALUE-2ND DIG I T CHANGED

710 GOSUB 800:GOSU8 90

720 POKECA., r·lR

730 IF CA=SA+400THEN PRINT"U":RETURN

740 T=(CA-SA+l)/·8<>INT«CA-SA+l)/8»

75("1 IF : THEN K$="_" :GOSU8 180:St<1=St'1+3:CA=CA+l

: RETURN J CSRRTtimes7

760 511="01<1+ 11 : CA =CA + 1 : K$=CHP$(13) + " 1"

:GOSUB 180:RETURN

800 REM CONVERT START ADDRESS
810 IF LE:FT$(SA$,-l)<>"$" THEN SA=VAL(SA$):RETURt;l

820 NR$=MIO$(SA$,2):GOSU8 80:SA=NR=RETURN

288 RF:~1 SE: UP CCNVERS I ON ARRAY~3
':11>:'" i'IN C::;:::?)

~:-:C~;J Fr::'RJ=0 TO 9:0(J)=~T:I'.J.E;-;T

838 ~OR J=17 TO 22:0lJ)=J-7:NEXT

1 1 1 () 'J H'1 H $(1 5)

~ 1;:'8 FOR .J=0 TO 9: H$(J;' =CHR$(48+J): NEXT

1130 FOR J=18 TO 15:H$(J)=CHR$(55+J):NEXT

1148 RDl INITIALIZATION fjCi:RJ ..
1150 PRINT".:J":INPUT "START ADDRESS";SA$:GO:::::U8 800

1160 CA=SA:SM=1031

1170 FOR J=0 TO 24:PRINT

11:::::8 NR =SA +.J *8: GOSLl8 20

1190 PRINTRIGHT$("0000"+H$+"

1200 FOR K=0 TO 7:

1210 r···1R==PEEK(SA+J+K):GOSU8 20

:PRINTRIGHT$("00"+H$+"

116

tI .F 7).,'!

" ,4);

1220 /'·ID<:T I<. ,.J

1230 REt··1 t-IA IN L.OOP I HOME&CSRRTtimes7 I
1240 PRINT"~rtiRtm1".:
125e

;E70

!280
1280
12.('0

1310

POKE204,0
seT K$: IF K$=!I I! THF'N 1260

.t 1 CSRupl
:F K5="O"THEN GOSUB 200:GOTO 1260
T.r- ,:$ = "..:.:;;;-:" T:;:. ~H~E:;;~. ~.J ~~~~~~-;;;~~~~;IIQC~S~RD~W~NI _~ - I' GOSU8 300:GOTO 1260
IF K$= "FJ"THEN GOSUB 400: GOTO 12601 CSRRTI

IF ~:.$="f~"THF!'J GOSU8 500:GOTO 1260~
IF K$=CHRS(13) THEN GOTO 1150

1320 REM CH~CK IF LEGAL HEX DIGIT
123('\ r.=ASC(KS)
1340 IF K(4S QR K)70 THEN 1260
1350 IF ~: >57 ANO K(65 THEN 1260
t360 GOSUS 180

1370 IF S!Y1/2 (> INT(~;"'V2) THEN Stvt=SM+ 1: GOSUB
600:GOSUB 90:POKECA,/'~:GOTO 1260

1380 IF CA=:3A+198 THEN KS="II" :GOSU8 180:GOSUB
600:GOSUB 80:POKECA,NR:GOTO 1260

1390 GOSUB 700:GOTO 1260
2000 PRINT"~":POKE204,0
2010 PRINTn~Q;FEEK(E51);PEEK(652); :GOTO 2010

117

COMMODORE 64 MEMORY MAP & MANAGEMENT

MEMORY MAP & 'SHADOW ZONES'
As you should know by now, the 6510 processor with a 16-bit address
bus has a capability of addressing 64K bytes of memory. For any
computer to operate, or almost any, this memory has to be a combination
of ROM, RAM and 1/0. With a clever design, Commodore 64 actually
puts more than 64K of memory into the machine.

Let us examine the memory map and find out how this is achieved. The
64K memory can be divided into 6 zones, 3 of which are 'shadow zones'.
In a shadow zone, more than 1 bank of memory exists. These memory
banks can be switched in and out under memory management.

Zone 6 : EOOO-FFFF

Zone 5 : OOOO-OFFF

Zone 4 : COOO-CFFF

Zone 3 : AOOO-BFFF

Zone 2 : 8000-9FFF

Zone 1 : 0000-7FFF

8K KERNAL ROM ~ RAM

4K 1/0 I RAM ~ Character ROM

4K RAM

8K BASIC ROMIExternal ROM~RAM

8K RAMI External ROM

32K

RAM

Commodore 64 Memory Map

118

ZONE 1 - 32K RAM
The first 32K of memory is RAM and RAM only. No 'shadow' memory is
hidden in this zone. However, addresses 0000 and 0001 are overridden
by the 6510 internal I/O port registers. Also, remember that Page 1
($0100 - $01 FF) is reserved as the processor stack.

ZONE 2 - 8K RAMI'AUTO-START' EXTERNAL ROM CARTRIDGE
Normally this is a RAM zone but will be overridden by a plug-in ROM
cartridge. This external ROM cartridge plugged in can have an 'auto­
start' feature to override the usual operating system. The 'auto-start'
ROM executes its own codes on power-up if the first nine bytes ($8000-
$8008) are as shown.

$30 "0"
$8007 $38 "8"

$CD "M"
$C2 "B"

$8004 $C3 "C"
WSVL Warm Start

$8002 WSVH vector
CSVH Cold Start

$8000 CSVL vector

"Auto-start" ROM Header

ZONE 3 - 8K (BASIC ROM/EXTERNAL ROM CARTRIDGE) - RAM
Usually this is the BASIC ROM but will be overridden by the second half
of a 16K ROM cartridge plugged in (A 16K plug-in ROM covers Zone 2
and 3). A 'shadow' RAM exists in this zone which can be banked in and
out under software control. A processor signal LORAM is used for this
purpose. More on this later on.

ZONE 4 - 4K RAM
This 4K of RAM in a higher portion of memory is normally used as a buffer
area by the operating system.

ZONE 5 = 4K (I/O / RAM) - CHARACTER ROM
Normally this is the I/O devices' area. Only with memory configuration
that does not have any I/O device will RAM appear in this zone. The
'shadow' character ROM can be banked in and out under processor
control of signal CHAREN.

ZONE 6 - 8K KERNAL ROM - RAM
Usually this is the KERNAL ROM but the 'shadow' RAM can be switched
in and out under software control of processor signal HIRAM.

119

NOTE: Even when RAM is banked out in case of Zone 3 or Zone 6, a
WRITE or POKE operation to a ROM address wil store the data in the
'shadow' RAM. This characteristic allows, for example, a hi-resolution
screen to be stored in a 'shadow' RAM area without banking it in and out.

MEMORY MANAGEMENT
Memory management on Commodore 64, in essence, is the selection of
banks in particular zones of memory by using some control signals. It is
best illustrated in a table:-

--

Zone Address Signal Level Ac~ess (Bank-in)

$AOOO - $BFFF 1 BASIC/External ROM
3 LORAM

(8K) 0 RAM

$DOOO - $DFFF 1 I/O / RAM
5 CHAREN (4K) 0 Character ROM

$EOOO - $FFFF 1 KERNALROM
6 HIRAM (8K) 0 RAM

Memory Management Signals (NOTE: All three signals are normally 1)

These control signals are taken from the 6510 internal I/O port which
also has 3 other signals that control a cassette. The direction of each line
of the port is set up by a bit pattern written into the data direction register
(address $0000). A 0 bit designates an input line on the I/O port (address
$0001) while a 1 bit corresponds to an output line.

Data Direction Register I/O Port Control Lines
Bit ($0000) ($0001)

0 1 (output) LORAM
1 1 (output) CHAREN
2 1 (output) HIRAM
3 1 (output) Cassette write line
4 o (input) Cassette switch sense
5 1 (output) Cassette motor control

6510 Input/Output Port Assignment

SOME MEMORY CONFIGURATIONS

Here are some illustrations of possible memory configurations available
on the Commodore 64. The characteristics and main use of each
configuration and the levels of control signals that achieve it are listed.

(NOTE: 1 = HIGH, 0 = LOW, X = DON'T CARE)

120

Standard - 8K ROM BASIC 2.0 and 38K contiguous user RAM

EOOO
DOOO
COOO

AOOO

8000

0000

8K KERNAL ROM

4K I/O
4K RAM (buffer)

8KBASICROM
1-----.

8KRAM

32K RAM
(30K user
1Kvideo
1KOS)

LORAM = 1
HIRAM = 1
CHAREN = 1
EXROM = 1
GAME = 1

Enhanced BASIC - 8K BASIC standard ROM and 8K enhanced BASIC
ROM and 32K contiguous RAM

EOOO
DOOO
COOO

AOOO

8000

0000

8K KERNAL ROM
~.

4K I/O
4K RAM (buffer)

8KBASICROM

8K ROM Cartridge
(Enhanced BASIC) _ --'-

32K RAM

121

LORAM = 1
HIRAM = 1
CHAREN = 1
EXROM = 1
GAME = 0

Language ROM - 8K Language ROM (override BASIC) and 40K
contiguous RAM

EOOO
0000
COOO

AOOO

8000

0000

--

8K KERNAL ROM

4KIIO
4K RAM (buffer)
8K Language
ROM cartridge

8KRAM

32KRAM

LORAM = 0
HIRAM = 1
CHAREN = 1
EXROM = 0
GAME = 0

Allocation ROM - 16K application or language ROM and 32K
contiguous RAM.
e.g. word processors, intelligent terminals

8K KERNAL ROM
EOOO 1----4-K-I-IO----1
0000 1---C:-=~~--:-:---:------1
COOO 1--_4_K_R __ AM_{_b_uff_e_r}_-t

16K Rom Cartridge

8000

32K RAM

0000 ~-------'

122

LORAM = 1
HIRAM = 1
CHAR EN = 1
EXROM = 0
GAME = 0

UL TIMAX Video Game - 16K ROM and 4K RAM only

EOOO
0000

AOOO

8000

1000
0000

8K ROM Cartridge

4KI/0

12K open

8K ROM Cartridge

28Kopen

4KRAM

LORAM = X
HIRAM = X
CHAREN = X
EXROM = 1
GAME = 0

Softload Language 52K contiguous RAM for softload languages, user
RAM, I/O devices and I/O drive routines, e.g. CP/M

EOOO
0000
COOO

8000

0000

8K KERNAL ROM

4KI/0
4KROM

16K RAM

32KRAM

123

LORAM = 0
HIRAM = 1
CHAR EN = 1
EXROM = X
GAME = 1

64K RAM - I/O devices must be banked in for any I/O operation

8KRAM
16K RAM EOOO 4KI/0

DOOO 4KRAM
COOO COOO

LORAM = 0 LORAM=1
16K RAM HIRAM = 0 16K RAM HIRAM=O

CHAREN = 1 CHAREN=1
8000 EXROM = X 8000 EXROM=X

GAME = 1 GAME=1

32KRAM 32KRAM

0000 '---------! 0000 '----__ ---I

PROGRAM ENTRY
There are 3 common methods of entering machine code programs on
the Commodore 64.

1. BASIC STATEMENTS
This method is suitable for simple and short machine code routines used
within a BASIC program. First of all, the routine has to be assembled,
usually by hand. Each code is converted to its decimal value (an
unfamiliar numbering system to a machine language programmer). Then
the codes are stored in BASIC DATA statments. A simple READ and
POKE loop will set up the machine code routine at a specific location.
Subsequent SYS or USR statements can use this routine.

This is the cheapest method because no additional purchase of software
is required. However, the amount of time required to debug or mOdify the
code will increase drastically with the size of the routine. Imagine typing a
500 byte program in decimal values or several scores of DATA
statements and then having to locate a typing or conversion mistake.
Example:

5 RESTORE: M = 12 * 4096 : REM $COOO
6READX:IFX<> -1 THENPOKEM,X:M=M+1,GOTO 6

10 Initialization of formal basic

1000 DATA 32, 207,255,157,0,193,232,201,13,246,96,-1

124

Notes:-
a) The use of delimiter -1 avoids the problem of having to count the
numbers of bytes as in a FOR. .. NEXT loop.
b) Subsequent running of this BASIC program should start at line 10.
This eliminates the time-consuming READ and POKE process to set up
the machine code registers (of course, self-modifying codes are always
forbidden!) .

2. MACHINE LANGUAGE MONITOR
A ROM cartridge called 64MON is provided by Commodore to let you
a) enter machine code programs in Hexadecimal codes or Mnemonic
forms
b) assemble and disassemble machine language
c) debug machine code programs
d) save and load machine code programs.
A monitor of this kind is recommended for any serious machine language
programmer. With 64MON, you can enter a machine code routine by
specifying the starting address and then the instructions.
Example:
A COOO JSR $FFCF
A C003 ST A $C1 00, X
AC0061NX
A COO? CMP #$00
A C009 BNE $COOO
ACOOA RTS

3. EDITOR/ASSEMBLER PACKAGE
An editor/assembler allows you, at the very least, to use label references
in programs and save source programs instead of object codes. A more
sophisticated package can have the following features:-
- macro, conditional and/or interactive assembly
- symbol table and cross reference
- formatted assembly listing
- object modules linking and relocation
- run-time debug aids
With an editor/assembler, you can write much better documented
assembly language programs.
Example:­

CHRIN
LlNEBUF
CR

GETLlNE:
*
JSR
STA
INX

$FFCF
$C100
13
$COO
CHRIN
LlNEBUF, X

125

; input 1 character routine
; input line buffer
; [RETURN] character
; code starting address
;input 1 character
; put character in line buffer

CMP #CR
BNE GETLINE
RTS

PROGRAM EXECUTION

; is it [RETURN] character?
; NO - get next charcter
; exit only if whole line input

A machine language program can be executed by calling it in a BASIC
program or directly run under a machine language monitor. Some of the
system handling routines can be substituted by user written ones with
careful modification of the vectors.

1. BASIC CONTROL PROGRAM
A BASIC porgram can use machine code routines as subroutines. These
subroutines must end with a 'RTS' instruction to return control to the
BASIC calling program. There are 2 ways of calling machine language
subroutines in BASIC.

a) SYS [addr] statement
This BASIC statement enters a machine language subroutine at address
[addr]. Execution continues with the next BASIC statement on return.
Parameters can be passed by putting them in commonly known memory
locations. This method allows simple and efficient interface between
BASIC and machine language programs. Multiple parameters and
several machine code subroutines are handled with ease.

b) USR ([x]) Function
This BASIC function calls a machine language subroutine whose entry
point is stored at address 785, 786 (conventional low, high byte order).
The parameter [x] is passed by putting its value in the Floating Point
Accumulator #1. On return, BASIC will take the value in the floating point
accumulator as the value of the function. This method is more suitable for
routines that pass a single parameter only, especially with floating point
numbers. Be careful to set up the correct entry point at 785 and 786
before calling this function when you have more than one machine code
subroutine.

$0066 ~_~ __ ~i~ n ...

!

I
I

Mantissa

$0062 t--··-···~
$0061 . Expone~

Floating Point Accumulator #1

126

2. MACHINE LANGUAGE MONITOR
With 64MON, you can execute a machine code routine by specifying its
starting address. The routine should end with a 'BRK' instruction to return
control the the monitor.
Example:
GCOOO
By setting up breakpoints, memory and registers can be examined at
critical pOints. The routine can then be resumed with or without any
alteration. This makes debugging of the machine language program
easier.

3. SUBSTITUTION OF SYSTEM HANDLING ROUTINES
For those system routines which are called via their indirect vectors in
RAM, they can be easily substituted by modifying their corresponding
vectors to point to the user written routines.
Such user routines must end in the same way as their system
equivalents - either with a 'RTS' or a 'RT!' instruction. Normally, you
want to do something extra before transferring the control back to the
standard routine. Therefore a 'JMP' instruction will be more frequently
used here.
Here are some system handling routines that can be substituted.
a) BASIC Interpreter Routines
- e.g. tokenize keywords, LIST, print error messages and evaluate
tokens, etc.
The vector table resides at $0300 - $030B
b) KERNAL Input/Output Routines
- e.g. OPEN/CLOSE, LOAD/SAVE, CHRIN/CHROUT, etc
The vector table resides at $031 A - $0333
c) Processor Interrupt Handlers
-e.g. hardware interrupt request (IRQ), non-maskable interrupt (NMI),
software interrupt instruction (BRK)
The vector table resides at $0314 - $0319.
(NOTE: IRQ interrupts every 1/50 of a second (1/60 in U.S.A) and the
KERNAL makes use of this to update the time (TI, TI$) and scan the
keyboard. Make sure you return to the system handler unless you intend
otherwise. Disable IRQ before you modify its vector)
d) 'Wedge' New Commands
- By detouring from the CHRGET (get next BASIC byte) routine at $73
- $SA, new commands can be added. If all new commands begin with a
common character (@ is a popular choice), 'wedging' interpretation will
be faster. Commands that do not start with '@' are passed back to the
standard handling routine; those that do start with '@' are searched and
executed by the user routine.
e)Keyboard Entry Routines
- e.g. keyboard table setup and decode, INPUT routine
Keys can be redefined according to user requirement.

127

SOME COMMODORE 64 USEFUL ROUTINES

A. PAUSING 'LIST' OUTPUT
A very short machine language routine can add to the Commodore 64 a
highly desirable feature on the LIST program command. The continuous
scrolling of text lines on the screen is usually too fast for the human eyes.
It would be nice to pause the output by holding down the shift key and be
able to freeze it by pressing the shift-lock key. The following routine does
just that.

~ h f 1 3.~ .de *028 ;($Ol=~hift-I(,,>· pr'l!!:sEtad)

31 13 t . de $,171" ; £)I..ite.Tl LIST toKen: .. routin~

• b a $cOO0 .: pa.l..i$e iQutina :it .. rts at k0<leJ

~OEl0 M5 ::8 ,oJ 1 it 1 d a shf 1 ail ;"hlft K .. y pressed?
C0"12 CIt) FC bne lola i t ; :,r' ~ S , ~a.l t for reloaase
':<,)El4 fi8 pia ;no restare toKen
;:"005 4C 1M M7 JITlP 5.1 is t ;LIST toKan

This is an example of substituting BASIC interpreter routines - the LIST
tokens handler. By modifying the vector at $0306, this coding of pause
check can be inserted before the actual printing of tokens. If we have the
above codes at $COOO, we can enable the pause feature by POKE 774, 0
:POKE 775, 192 (i.e. $COOO- $0306).

B. PROGRAMMING FUNCTION KEYS
Each of the Commodore 64's eight function keys can be used to
represent a series of keystrokes as entered from the keyboard.
The operating system uses a keyboard buffer queue to store any key
entered from the keyboard. The system IRQ interrupt handler puts
entered keys at the end of the queue while the BASIC interpreter takes
them off the queue in a first-in-first-out (FIFO) order. If a user interrupt
routine puts on the queue a string of pre-defined chracters when a
function key is pressed, the system will be deceived to ttlink that the
string was actually typed on the keyboard.
This method of programming function keys can illustrate the technique of
substituting a system interrupt handling routine. The following simple
example will put "LIST [RETURN]"on the keyboard buffer queue when
[f1] key is hit.

128

.ba k000
o:r .d .. 13 ; RETURN cn .. racter
ndx .de k6 ; no. of cha.racters 1n

Ka¥board b ... ff"" qua",.

" .. ,'d .de *~277 ;)(ej.'boa.r1 b ... ffe..- ~uaua

(10 b,tes long)
c. in'J .. d~ *0314 ; IRQ l:i"t.arru.pt vector in RAM
.; irq .tie * 31 ; SF'stem !RQ h-i-ndl in.; routine
scnt(ey .de *ff9f ;~can v 2:).'b:t3.rd .. nd rut Key

e.ntered onto q,ueuQ

;Sl!t '.'p tl) oV'i!f'ride sjlst-=:m IRQ ha.ndl 'l!r ",ith use.r routine
78 in it s~i ;IRQ must be di"abled during
... 9 !'!d Ida ttl ,u irq ;:nodifi:::)."tion of its vector

8d 14 03 sta einv
a9 cl1l Ida ~h,uirq
ad 15 03 sta c inv+l

58 eli

68 rts
;user IRQ handler(.. xec ... ted every VS0th af acond)

2" 9f ff 1-' ir Cl jsr scnKey .:sca.n Keyboard
.0.6 cS Idx 1<ndx

f" 16 beq exit ;exit if no K.¥
ca dex ;point at la~t Kill' in q u.
bd 77 "2 Ida Keyd,x
0:9 85 C/I'f> 11$85 ;[F 1 J?

d" €Ie bne axit ;no, do nothing
a"l ff Id, 11255 ; yes, put ?r .. defined string
.:8 put iny ;onto Keybo ... rd buff .. r qu.",.
.. 8 inx
b9 2d cl1l Ida str ing,y
9d 77 02 sta Ke;od,x
dl1l f6 bne put ;string t .. rmin ... ted by byte 8
86 c6 ;.t'll(*nrJx ;update na. af bytas in quau.
4c 31 ea exit j "'" So irq ;resume with .;.ystem IRQ handler

;user defin .. bl .. string af Keys

4c 49 53 s t r in 9 .b, 'LIST' cr 12!

54
0d 00

With the machine codes residing from $COOO upwards, the initialization
routine can be activated by SYS 12*4096.

C. RECOVERING "NEWed" PROGRAM

This program we will use will also serve to show how additional
commands can be 'wedged' into the BASIC operating system. Below is a
listing of an operating system routine 'CHRGET' that we will wedge our
routine into.

129

0073 E6 7 A CHRGET
00750002
0077 E6 7B
0079 AO ?? ?? CHRGOT
007CC93A
007E NOOA
0080C920
0082 FO EF
008438
0085 E930
008738
0088 E9 00
008A 60 CHRET

NOTE:

INC TXTPTR ; get next byte
BNECHRGOT
INC TXTPTR+1
LOA ???? ; get current byte
CMP#$3A
BCS CHRET ; ignore ASCII '9'
CMP #$20
BEQ CHRGET ; skip space characters
SEC
SBC#$30
SEC
SBC#$OO
RTS

Locations $7 A and $7B are used as TXTPTR which points at the current
byte in the BASIC text buffer to be interpreted. This routine is kept in RAM
so that it can modify ????, the address of the current byte, continually.

We will make use of the fact that CHRGET resides in RAM by wedging
our routine into CHRGET. To use this routine, it must have already been
loaded before the NEW command was executed. To recover a NEWed
program, simply type @OLO.

HI
2f'!
30 CHRGET
4f'! CHRGOT
:50 TXTPTR
Sf'! IERROR

.0.

.ba

.de

.de
• de
.de

$cf'!00
$73
$79
$7 •
$f'!300

70 .toa. $cf'!0e1
B0 ; DETOUR FRO~l CHRC,ET
90 LOX 112

;get next BASIC byte routlna
;get ~urrent BASIC byt. routlne
;current BASIC byte pointer
;vector of print &rror ~~»_ga routin8

11'11'1 OETRI
IleI

LOA JCODE,X ;r"pla.~e l.t in.truction uf CHRGET
STft CHRGET,X ;with 'jump wedge'

121'1
130
140
150 JCOOE
lS0 XSAVE

OEX
BPL DETRI
RTS
JMP I£DGE
.OS 1

171'1 ; CHECK FOR WEDGE COMMANDS
lB0 I£DGE
196
200
210
226 I£OG1
236
24e1

INC TXTPTR
BNE WEOGI
IN: TXTPTR+l
STX XSAVE
TSX
SEC

;jump in$truction code.

JPOINT RT NEXT BYTE

130

L.OII .el101,X
SBC II$BC
AOC $0102,X ;wa.$ CHRGET c;>lled from
SBC II$A4 ;the direct mode?

2~1!l

260
270
280
290
300
3H'l
320
330
340
3:50

BNE l<EOG9 ; ignore wedge c:olTInilnds
; from other modes

JSR CHRGOT
CMf' 1I'f! ;Ioledga command identifi .. r?
BEQ WDGCMD ;yes,dispatch command

WEOG9 L.OX XSAVE ; rio res.tore X
JMf' CHRGOT ;return

360 ; dispatch wedge commands
370 ;(for the simplicity of this ex~mple
380 proper handling should involve storing
390 all valid comrr~nds in a t~bl. and
400 searching the input cOmmAnd through
410 the table).
420 WDGCMD JSR CHRGET 1get next byte

C/YP 11'0 lold?
BEQ RECOVR ;yas,racoV8ry routine
C/YP .'R
BEQ RECOVR
L.OX 1I$0B
JMf' (tERROR)

; RECOVER "NEl<EO" PROGRAM
TXTTAB .de $cb

Jif invalid command
;print syntax error

JPointer :start of bas ic

430
440
4~0

460
470
480
490
500
510
520
530
~40

550
:560
:570
580
~S0

600
610
E.20
630
640
651!'!
661'1
671!'!
6Se
6SI!'!
71!'!0
7 II!'!

VARTAB • de $2d IPointer .atart of bcs ic vari.ble ..
ARYTAB .de $2f ;pointer :start of bas ic _rr_y~
STRENO .de $31 ;pointer lend of ba .. ic .rr.yit
PTR .de $2d
TEMP .de $2f
RECOVR

LOY 113 ; d i511a.rd next-lin .. point .. r IS. lin ..
RCVRI tNY

LOA (TXTTAB) .Y ; s.ea.rch for 1 in .. d .. l imit .. r
BNE RCVR1 H *00) of first 1 in ..
TYA
SEC ; + 1 to point to 2nd 1 ina
AOC TXTTAB
LOY III!'!
STA (TXTTAB) .Y ;rectify next-I ine pOinter

}for first I in"
STA $20 ; In it temp worK pOlntar
INY
LOA $2C
STA (TXTTAB). Y
STA $2E

721!'! ;trace next line until end of program text
731!'! LOY III!'!
740 RCVR2 L.OA ($20),Y
750
761!'!
771!'!
78 I!'!
790
81!'!€)
810
820

STA
INY
LOA
TAX
ORA
BEQ
STX
LOA

$2F

($CO),Y

$2F
RCVR3
$2E
$2F

;po.ition to addr"ss hilih

; 11nl< il.ddress :$01!'!0e?
;yes,lInd of pro\iram
;no,tr.ca n .. xt I inl<

131

no.

83£1
84£1
850
S6e Jcorrect
870 RCVR3
880
890
90£1
91£1
92£1
93£1
940
9:50
960
97£1
98£1
99£1

1688

STfI $20
OEY
BEQ RCVR2

;r.poalt,on to .ddr.55 low
;~l"&)'l> br~nch

~ll BASIC pOlnter5
Cl..C
LOA
tlOC
STA
STA
STA
LOA
AOC
STA
STA
STA
LOX
JMP
.EN

$20
112
$20
$2F
$31
$2E
118
$2E
$38
$32
.$S0
(IERROR)

;po5ition right .fter end of progr.m
;for 5t~rt of u.ri.ble5
;for 5t.rt of &rr.Y5
;for and of .rr.r5

;prlnt REflOY
;& r~turn to BASIC

30 REtv1 t..lEDGE THAT ADDS CONr·'t~N[~OLD

82 REt-! l;.JH I CH RESTORE:=; NEl . .jEC' PROGRAtvlS

1210 FOR 1=0 TO 129:FEAO A :POKE 48152+I,A:l-·lE:'-;T
1 t e
12f'l
t20

140
15!,)

17f'l
180

190

8~T~lS2,2F!88?11,192,149T115~202

nATA1G,248,96,76,~5,182;255,230

DATA122,208.2.23~,123.142,14,192

OATAt88,~S,t89,l,I.233,140.125

DATA2.~ ~ .232.r 164 ;208,7 .• 32; 121

DATAO.r 201 ,64.240, E: , 174. 14,192
OATA76,121,0,32,115,0,201,79
OATA240,8,201,82,240,5,162,11
DATA108,0,3,160,3,200,177,43

2100ATA20S,251,152,5e,!01,4S,IB0,0
220 OATA145,42,133,45,200,165,44,145
230 DATA43,133,46,160,0,17?,45.133
240 rATA47,2~0,177,45,170,5,47,240
25~ DATA9,13 4 ,48,165,47,133,45,136
?e~ ~ATA240,235,24,165,45,105,2,133

~7~ DATA45,t33,47,133,49,165,46,105
28~ DATAO.133.48,133,48,133,50.182
2913 DATA128,108,0,.3

132

COMMODORE 64 KERNAL

CONCEPTS OF KERNAL AND OPERATING SYSTEM
A microprocessor, no matter how large its instruction set is and no matter
how fast it can run, will get nowhere without a well-knit piece of software
that supervises it. This supervisory program is known as an
OPERATING SYSTEM. The operating system accepts what you type on
the keyboard; echoes it on the monitor; prints an error message if it does
not understand what you typed; executes your command if it makes
sense; loads a program from disk drive if necessary; prints something on
the printer if required; ... In other words, the operating system co­
ordinates and manages all resources of the computer to be at your
service.

The operating system has a large collection of routines that perform
system initializations, memory management and all kinds of input!
output. These routines are usually highly hardware dependent which
means different routines have to be written for different devices. From a
user point of view, you want to be able to use these routines without
worrying about what hardware you are dealing with. Most microcomputer
manufacturers prepare a list of callable system routines with their
addresses and methods of calling. The problem arises when a later
version of the operating system is released; all these entry points will be
different. Old software which made use of these routines is no longer
compatible.

Commodore 64 has solved this problem by storing all the entry points of
the supported system routines in a Jump Table called KERNAL. This
jump table is located on the last page of memory, in the KERNAL ROM.
The entries of this table are well documented and will remain unchanged
in future ROM releases. Any individual system routine can be modified
and relocated inside the ROM. However,such a change will be
'transparent' to the user program as long as the jump pointer in the
KERNAL has been updated.
Example·,--____ ---,

$FFC6 JMP $FABC

$FABC f-f--------i
RTS

ROM 1.0

JSR $FFC6

Application
Program

f---------./'1 $E678

RTS

ROM 2.0

The application program will run just as well on both ROM versions.

133

POWER-UP INITIALIZATIONS
On power-up, the KERNAL performs a series of self-tests and system
initializations. The sequence of activities is outlined below:-

1. For the 6510 processor, the Stack Pointer is reset to $FF and the
Decimal Mode Flag is cleared.

2. Location $8004 - $8008 are examined. If an 'auto-start' ROM header
is found, control is passed to the 'auto-start' ROM using the vector at
$8000. Otherwise, normal power-up sequence continues.

3. I/O ports and devices are initialized
- CIA#1 to scan keyboard, joystick, paddle and light pen
- CIA#1 to activate real-time clock
- CIA#2 to initialize Serial Bus
- CIA#2 to reset User/RS-232 port
- SID to clear all voices
- 6510 I/O port to select memory configuration for BASIC mode
- 6510 I/O port to turn off cassette motor.

4. RAM test is carried out from $0300 upwards. The top memory pointer
is determined by the first non-RAM location encountered. The bottom
memory pointer is always set to $0800. The screen memory always
starts at $0400.

5. All I/O vectors, pointers, flags and variables in RAM are initialized.

6. The screen is cleared and all the screen editor variables reset. Control
is passed to BASIC using the vector at $AOOO.
Next time if you notice a slight delay when turning the power on, you will
know that it is working very hard to get all these things straightened out.

USING KERNAL ROUTINES
For you to use the KERNAL routines, you must:-
- find out the right one to use and its entry point address
- call preparatory routine, if necessary
- pass parameters in communication registers,
- call the routine
- handle any return error (indicated by Carry Flag set)
- save and restore registers affected by the routine, if necessary

134

SOME USEFUL KERNAL ROUTINES
Regis-

Preparatory Communications ters
Routine Address Function Routines Registers Affected

User Interface

1. CHRIN $FFCF Input 1 Character - .A~input character .X • .Y
(from keyboard)

2. CHROUT $FFD2 Output 1 Character - .A~output character -
(to Screen)

3. GETIN $FFE4 Get 1 Character from - .A~character removed .X •. Y
Keyboard Queue ~Oifnone

4. PLOT $FFFO Read/Set Cursor Position - C flag ~ 1 read .A
~Oset

.X~row(O-24)

.Y~column(O-39)

storage I/O

5. SETLFS $FFBA Set Up Logical File No. - .A~logical file no. -
First Address (Device No.) .X~device no.
and Second Address .Y~command

(Command) of Device ~ $FF if no command

6. SETNAM $FFBD Set Up File Name - .A ~ length of filename -
.X~filename address
(low)
.Y~filename address
(high)

7. LOAD $FFD5 LoadlVerify Memory SETLFS .A~Oload .X •. Y
from Device SETNAM ~ 1 verify

B. SAVE $FFDB Save Memory to Device SETLFS .A~page-zero address
SETNAM of start SAVE pointer

.x~end SAVE pointer
address (low)
. Y ~ end SAVE pointer
address (high)

1. CHRIN - INPUT 1 CHARACTER (FROM KEYBOARD)
When this routine is initially called, the cursor will blink and input a line of
characters terminated with a carriage return. The routine will return with
the first character in .A. Subsequent calls will retrieve the characters
already input one by one. Detection of a carriage return means the whole
input line has been retrieved. A subsequent call will initiate the cursor
blinking and line input again.

2. CHROUT - OUTPUT 1 CHARACTER (TO SCREEN)
A character whose ASCII value is in the .A is printed on the screen and
the cursor advances.

3. GETIN - GET 1 CHARACTER FROM KEYBOARD QUEUE
Any key pressed on the keyboard is detected by the system IRQ interrupt
handler. Its ASCII code will be stored in a keyboard buffer queue which
can hold up to 10 characters. When called, this routine will remove the
first character from the queue. If there is no character in the queue, a byte
zero will be returned in the .A.

135

4. PLOT - READ/SET CURSOR POSITION
This routine can read/set the current cursor position when called with the
Carry Flag set/clear accordingly.X stores the row number (0 - 24) and
Y stores the column number (0 - 39).

5. SETLFS - SET LOGICAL FILE NUMBER, FIRST AND SECOND
ADDRESS OF DEVICE
This routine assigns a logical file number to a physical device (device
number 0 - 31). The secondary address or command of the device is
also declared here. There are a number of reserved device numbers for
the Commodore 64:-
Device number

o
1
2
3
4
5

evice
Keyboard
Cassette
RS-232 Device
Screen
Serial Bus Printer
Serial Bus Disk Drive

.A is used to pass the logical file number.X the device number and.Y the
command. If no command is required, put $FF in Y.

6. SETNAM - SET UP FILE NAME
This routine sets up a file name for the LOAD or SAVE routine .A is used
to pass the length of the file name and,X and Y contain the address of the
file name 9< = low order, .Y = high order address). If no file name is
necessary, .A stores a zero showing a file name of null length.

7. LOAD - LOADIVERIFY MEMORY FROM DEVICE
When called with a zero in .A, this routine loads a file from device into
memory. When called with a one in .A, this routine verifies a file from
device against the corresponding contents in the memory.

8. SAVE - SAVE MEMORY TO DEVICE
This routine saves a contiguous portion of memory onto a device file. The
start address of the memory to be saved is stored in a page· zero pointer.
The.A is used to pass the page-zero address of this start pointer. The.X
and 'Yare used to pass the end address (in low, high order)

SIMPLE PROGRAMS THAT CALL KERNAL ROUTINES

A. PLOT USING GRAPHICS CHARACTERS
This program plots anywhere on the screen using different graphics
characters. Three KERNAL routines are called - CHROUT, GETIN and
PLOT.

136

Call 'plot' from BASIC by typing SYS 49152_
Plot instructions:

[f1] = up
[13] = right
[f5] = left
[f7] = down
8 to ~ = graphics characters
(space) = blank

I :r~Np I = End plot

10
20.

30. chr-out
40. getin
50 plet

10.8 i"P"t-qg

110

12!'1 "

.. 0:=·

.b-'" $c80e

•• j", $f.(. + 2)

• dE' .t::26
• ,j,? $27

,'1,= $2':::

"oj e $c c
• rl~ $02':::-3_

J 30 ,: in! + j 0,1 j z e. s c r' '? e'~

\<.18

150 plotg
:6~

170
180

180

280
21.0

23e'

240 IJPshp

250

2E:0 "

.j S~" ,:hr'f)'Jt

Ida #0

s t ·3. *b 1 n :=. til

<;,f:~. r'p"t-flg

ld:>·: #1.='

ld,.. #19

1 da, **$77
st.", *shape

270 ;print shape char
2S€! ,"

280 olJtshp

137

;shap~ char to plot

.:clE:a.~· SC~·-='2n

.: ~! inK cursor

_~ init cur'::·or
;at screen centre

; LJ P fj~. t e s h ~~p e

300
310
32~)

330

340
350
360
370

380 ..

st:l{
3- t}-·
elc

*>~ save
:~}-'save

plot
1 d.;;. *shape

jsr· chrollt
l;j ·3. #$9d

.jsr chr·out

330 ;Ltiait for· Ke>' inplit
400 ;
410 inKe;}
420
430

450

.j sr- :3 e tin
1 d}~ *;.~sa.'·.Je

l.d;i *>,s·:!.ve
cmp #0

b,=q ird<e;.-"
4 70 .~ e ::{ i -: j f (:E. to F >

490

51 f~

c ";,p *i3

beq E'X).t

cmp #$20
beq tfP::,r.P

5321 .:cursor· '.l? if <fl>
540 cmp #$85

550 beq up
560 .:C'.lrso::w r·ight if <f3)
570 ernp i:I:$8S

580 beq ~i9ht
590 ;cursor 12ft if (f5)

600
610

crop #$87
beq left

620 .: e ' .. r :; r· d o~, n if (f 7 :>
G30 cmp #$88

84e beq down
650 ;if not graphics char
660 ; -: $a.0-$df-'

570 ; ':hen i3nore

880

830
700
7j0

cn,p #$0.0

bce i.nKe;.-'

emp #$e0

bes inKe,.·

138

;set cursor pos.

;print shape
.! ba.cKsFaee

720 ;update shape char
730 jmp upshp
740 ."
7SC
730 .: cu.r·sor· mOI.}enient
770 ..
780 up

Sel0
8i0
820 up 1

830 .'
840 dO.in

850
860

870

880 dOloln 1

890 .'
900 I'ight

910
92.0

93"-1

940 r-ight1

850 .'

cpx #$ff

bne up 1
Id): #24

jmp outshp

inx
cpx #25
bne downl
Idx #0
jmp c.utshp

cpy #40

bne right1

1 d;.-' #0

j mp outshp

Idee row

Fine row

; inc col

960 left

970

dey Idee col

980
990

1600 left1

1610 .'

cp;v' #$ff

bne left1

Id;.-' "*39
j rr-,p Qutshp

1620 lexit to basic

1630

1640 exit
1 F::50

Ida #$93

jsr chrout
1260 ;elear screen
1670 rts
1680 .. en

PLOT

H~0 FOR 1=0 TO 131:READ A:POKE49152+I,A:t--lEXT

110 5'1548152
120 DATAI69,147,32,210,255,169,0,133

139

1~0 DATA204,16S,128,141,138,2,162.12
14~ DATA1Se,19,168,119,133,38,134.38
130 DATAI32,40,24,32,240,255,165,38
lE0 DATA32,210,255.1B9,157.32,210,255
170 DATA32,228,255,lBB,39,164,40,201
120 DATAO.240,245,201,3,240,71,201
190DATA32,240,217,201,133,240,23,201
200 DATA134,240,39,201.135.240.45.201
210 OnTAt36,240.21.201,160,144,217,201
2200ATA224.176.213,76,20.192.202,224
230 DATA255,208,2,162.24,76.22.192
240 nATA232.224,25,208,2.1B2.0,76
25A DATA~2.192,200.182.40.208.2,160
2~0 nATAO,7~.22.1R2,136.192,255,208

270DATA2,t60,39,76,22.192.169.147
280 DATA32,210,255. gS

Graphics Using Machine Code
The following programs enable the BASIC programmer simple access to
extended graphics facilities such as high resolution plotting. When used
creatively these programs can produce quite impressive displays on
your Commodore 64.

Graphics.asm is an assembly listing of a program that provides the
BASIC programmer with access to graphics commands. These
commands, whilst being very useful, also serve as a demonstration of
assembly language programming. They enable the programmer to set
up a bit mapped screen with one SYS statement, and also to plot points
by specifying X and Y co-ordinates. Resourceful programmers will be
able to incorporate these routines into their own line drawing and circle
drawing programs.

Graphics.bas is BASIC program which reads the assembly code into
memory. It also demonstrates the correct use of the assembly routines.
Graphics.asm consists of two main routines, HIRES and PLOTXY, as
well as several subroutines. HIRES is an excellent example of changing
video banks, screens and character sets as well as clearing blocks of
memory. PLOTXY is the routine that handles the plotting of points. It calls
the routine PARAMS to obtain the X and Y co-ordinates. PARAMS in turn
calls many subroutines that reside in the BASIC operating system.The
correct use of these routines is shown in the assembly listing.

PLOT, the routine that actually plots the points in memory uses the
following formula to determine the address of the byte to be changed.

140

ROW = INT (Y / 8)
COL = INT (X /8)
LINE = YAND7
BIT = 7 - (XAND7)
ADDRESS = BASE + ROW * 320 + COL * 8 + LINE
where base is the address of the start of the bit map.

The correct bit within the byte is set as follows:­
POKE ADDRESS, PEEK (ADDRESS) OR 2 t BIT
NOTE: the assembly program uses an array containing the values of
2 t BIT.

GRAPHICS ASM
.0» ,,.tore obJect eodro in tnli:ffiOry

.ba $<:000 ;b.~in iL$,.errb I y iLt $e000 (49152)
tbase .de $fb i ViLr liLb I ro. pointror to bit m-.p bill ••

par arns Jsr $aefa Jcheck for braeKrot
j,.r $adaa ;"valuiLt. formuliL
js.r $b7f7 ;convert to 16 bit number
IdiL $14
sta ne:wcol ix POi. .. low
Ida $15
.. ta neweol+l ix pas. high
j£r $aafd 'checK for eornrna
jsr $l>7ge ;981: a bit nurrber
stx newrow iy p05.
j s.r· $aef7 ;chack for right briLeKet
r·ts

plot Ida rowers iget row
lsr a
lsr ..
isr a idivide by a
st ... trow ;t .. mp row
Ida coler,.
st. teal ; temp column
Ida colers+1
lsr a idivid" eolurm by a
ror teal
lsr a
ror teal
lsr a
ror teal
sta teal .. !
Ida rowers.
and 1t7
,.ta line offset in row
Ida eolers
and 1t7
sta bit
Ida 1t7
.. ee

141

sbe bit
sta bit ;of
Ida 110
sta *tbase ;start of 5creen (low byte)
Ida 11$60
sta *tbase + 1 ;start of screen (h igh byte)
Idx trow
b"q p1

p3 lne *tbasa+1 , add 2:56 to Acre.n addr .. ss
Ida *tbase
ele
ade 1164 ;add 64 to screen ... ddress (ia 320)
sta *tb ... se
bee Pc
inc *tb ... se+1

pc dex
bne p3

p 1 Id ... teol
asl ...
asl ...
asl a ;multiply column by B
bee p8
inc *tb ... se + 1
ele

p8 ade *tbase
sta .tbas.
bee p9
inc *tb ... se + 1

pS Ida .tbase
ele
ade 1 ine J add rOW offs.t
sta *tbasa
bee p4
inc *tbas .. + 1 ;tbase ... nd tb ... se + 1 eont ... in byte ... ddress

p4 ldx bit Joffs.t into b)'te
ldy 118
Ida (tbase) ,)'
ora ort.a.b,x 'set proper bit to 1
sta (tbas.) ,)'
rt ..

hires jsr s .. tbanK ; .. at vid .. o b ... nK
j sr setehba" .. ;set bit map base
j sr 5.Rtscr •• n 'set s.cr •• n (b it map color d ... t ...)
J sr e 1 rb it ;el r bit map memor)'
j£r elrscraan 'set bit map color dat ...
Ida $dell
ora 1132
sta $dIU 1 ;turn on bit map
Ida lie
sta oldrow ;set oldrow ... nd oldeol
sta oldeol
sta oldrow 'set oldrow ... nd oldeol
sta oldeol
sta oldeol+l
rt.

142

setb .. nK Ida $dd02
ora 113
sta $dd02 ; set to outputs
Ida $dd00
and 11252
ora 112 ;s.et banK
sta $dd00
rts

setehb .. se Ida $d018
and 11240
ora 118 ;58t char base to $2000

, ie bit map ..,t $6000)
sta $d018
rts

setsereen Ida $diB8
and 1115
ora 11112 Jset licrean to S1c00

(ie 5cra8n addralir. i. $::ie00
IOta $d018
rts.

clrscreen Ida IU6 ;cle.r screen d .. t .. (i .. bit map color dat.>
Idx 110 ;foreground color =white.baeKground=blaeK

elr sta $5c00.x
sta S5d00.x
sta $5e00.x
sta $5f00.x.
dex
bne elr
rts

e I rb It I d .. 11$60 Jcle .. r. mamory from $600£1 to $7fff)
sta .tb .. se + 1
Ida 110
sta .tbase
ldy 110

elb sta 'tbalie >.1'
dey
bne elb
inc .tbase + 1
ldx *tbalie + 1
epx 1I$8e1
bne elb
rts

plotxy jsr p.ram5 ; get x and I'

Ida newrow
crop 11200 ;legal row?
bee Xl' 1
rts

XI'I Ida naweol
emp 1164 ; legal column

143

ort.b
n .. weol
newro ..
oldrow
oldeol
rowers.
eolers
trow
teol
I in.
bit

bee
ld.
beq
rts
Id.
st.
st ..
Id.
st.
IOta
Ida
st.
st.
jsr
rts

.by

.ds

.ds

.ds

.ds

.ds

.ds

.ds

.ds

.ds

.ds

.en

xy2
neweol+1
xYC

n ... row
rowers
oldrow
n .. weol
eolers
oldeol
neweol+1
oldeol+1
eolers+l
plot

C
1
1
2
1
2
1
2

1

GRAPHICS BAS

;plot point

2 4 8 16 32 64 128
;cont~in5 new column
;eont.ins new row
;eont.ins old row
;eont.ins old column
;tempory row
I tempory eolullVl
;t"mpory row
1 teDlPory co 1 umn
loffs.t into ch.r.ct.r
;offs"t into byte

90 REM READ MACHINE CODE INTO ADDRESS 49152.
Ot-.JWARDS

100 FOR I =0 TO 345: F:EAD A: POKE 48152. + I , A: NEXT
110 GOT0600
120 DATA32.,250,174,32.,138,173,32,247
130 DATA183,165,20,141,90,183,165,21
140 DATA141,81,193,32.,253,174,32.,158
150 DATA183,142,82,193,32,247,174,96
160 DATA173,86,193,74,74,74,141,99
170 DATA193,173,87,193,141,100,193,173
180 DATA98,193,74,110,100,193,74,110
190DATA100,193,74,110,100,193,141,101
200DATA193,173,96,193,41,7,141,102
210 DATA193,173,87,193,41,7,141,103
220 DATA183,169,7,56,2.37,103,193,141
230 DATA103,193,169,0,133,251,169,86
240 DATA133,252,174,99,183,240,16,230
250DATA252,165,251,24,105,64,133,251
260 DATft144,2,230,252,202,208,240,173
270DATA100,193,10,10,10,144,3,230
280DATA252,24,101,251,133,251,144,2

144

290 DATA230 ,252,165,251 ... 24, 1~~8,. 102,1:33
300DATA133.2S1,144.2,230,252,174,103
310 DATA183,166.0,177,251,29,82.193
328 DATA145,251,86,32,198.192.32,217
330 DATA192;-32.:-22S), 182 ... 32,3, 193,:32
240 DATA239,192;173,17,268,.9,32;141
350DATAI7,208,168,0,141,93,183,141
260DATA34,133.141,85,193,36,173,2
370DATA221,9,3,141,2,221,173,0
380 DATA221,41,252,9,2,141,0,221
390 DATA96,- 173,24,208,41,240,:3,8
4000ATA141,24,208,96,173,24,208,41
410DATA15,9,112,141,24,208,96,169
420DATA16,162,0,157,0,82,157,0
430 DATA93,157,0,84,157,0,95,202
440 DATA208,241,96,169,96,133.252,169
450DATA0,133,251,160,0,145,251,136
480 DATA208,251,230,252,168,252,224,128
470 [)ATA208,243 ... 9E ... 32,0, 192, 173,82

480 DATA193,201,200,144,l,96,173,80
490 DATA 193 ,201 ,64, 144,6, 173.81 , 193
500DATA240,l,98,173,92,193,141,36
510DATA193,141,33,183,173,80,183,141
520DATA87,183,141,34,193,173,91,133
5::::0 DATA 14 1 ,. 95 .F 193 .t' 141 ... 88 }" 133 F 32 F :32

540 DATA192.9E,l,2,4,B,16,32

590 REt-,: PLOT S It~·JE CURVE

600 HIRES=49315:PLOT=49435
6!O S\'S(HIRES)

620 FOR 1=0 TO 319
830 SY£(PLOT)(I,100+SIN(1/50)*80)
640 t"-·JEXT

650 GOTO 650

RASTER INTERRUPTS
The raster interrupt is one of the most powerful and versatile features of
the Commodore 64. However, taking advantage of this feature requires
some knowledge of machine language.

145

Raster interrupts take advantage of the sequential nature of the
television display. The electron beam which draws the television image
starts at the top left corner of the screen and traces horizontally accross
the screen. When it reaches the right edge of the screen, it is turned off
and brought back to the left side of the screen, at the same time being
moved down a line. It repeats this process 312 times on a pal television
(262 times on a NTSC set). At the bottom of the screen, the beam is
turned off and returned to the upper left corner of the screen. Then the
whole cycle is repeated again.

At any given time you can determine the line at which the beam is on by
reading the raster register at location 53266 ($0012). This returns the
lower 8 bits (0 - 255). The most significant bit is bit 7 of location 53265
($0011). If this bit is set, add 255 to the previous value. The visible
display area is located from line 51 to line 251.

When the raster register is written to (including the most significant bit), ,
the number that is written is saved for use with a raster compare function.
When the actual raster value becomes the same as this number, bit 0 of
the interrupt status register at location 53273 ($0019) is set to 1. If bit 0 of
the interrupt enable register at location53274 ($001 A) has been set to 1
previously, an IRQ interrupt will occur.

When the Commodore 64 responds to an IRQ interrupt it saves all
registers before jumping through the hardware IRQ interrupt vector at
location 788 ($311) and 789 ($312). This is where the programmer can
gain control of the interrupt process.

A new interrupt routine must be written and its address must be stored in
locations 788 (lOW byte) and 789 (high byte). This routine should first
check to see if the interrupt is indeed a raster interrupt and not the
keyboard or timer A interrupt. If it is not a raster interrupt, control should
be returned to the normal interrupt routine at location $EA31. However, if
it is a raster interrupt then to turn subsequent raster interrupts on, a 1
must be written to bit 0 of the interrupt status register. Exit your interrupt
routine by jumping to location $FEBC.

Helicopter demonstrates the entire process involved in setting up a
raster interrupt. It is a simple program that puts 16 sprites on the screen
by changing the vertical position of the sprites with a raster interrupt.
The applications to which raster interrupts can be put are quite diverse.
As seen above, sprite registers can be changed, enabling the
programmer to have up to 8 entirely different sprites on every vertical line
if need be. Colour registers can be changed as can character sets. It is
also possible to mix graphics modes. This is demonstrated in the

146

program SPLIT SCREEN. The top half of the screen is in normal text
mode, while bottom half is bit mapped.

You may notice that the border between the 2 modes jumps around at
times. This is because the raster interrupt is an IRQ interrupt and is
therefore queued up after previous interrupts. This problem can be
remedied by adding the following line which turns off keyboard interrupts.
1045 POKE 56334, PEEK (56334) AND 254

The afore-mentioned technique for handling raster interrupts may also
be used to handle sprite-data collisions, sprite-sprite collisions and light
pen negative transitions. Simply use the following table when writing to
the interrupt enable register and reading the interrupt status register.

bit # description
o raster interrupt
1 sprite-data collision
2 sprite-sprite collision
3 lightpen negative transition

Note: Before attempting any cassette 1/0 the normal hardward IRQ
vector MUST be restored.
HELICOPTER

:~~ PR It'..JT";,]"
90 REM INTERRUPT CODE DATA
1.1)('1 FOR I=I?) Tr) 61~REA[l A~POKE 48152"'I,A:t'.JE~-{T!

105 REM SPRITE DATA
j 10 !='OR 1=0 TO 32:READ A:POKE 832+l,A:t~EET I
t:=':i7I FOP 1=33 TO 62:POKE 832+!,0:NEi-:T 1
J25 REM ALL SPRITES POINT TO LOCATION 13
1~8 Fr)R 1=2040 TO 2047 :POKE 1,!3:NEXT I
185 REM SPRIT~ COLORS
i,q", FnR !=53287 TO 532~3'1:POKE I,4:I'-1EXT I
145 REM HORTZONTAL POSITIONS
150 FOR 1=0 TO 14 STEP 2:POKE 53248+I,24+12*!

: NEi.;T 1
155 REIYl VERTICAL F'OSITIONS
180 FOR I=~3249 TO 53263 STEP 2:POKE 1,60:NEXT I
500 POKE 53269,255:REM ENABLE SPRITES
510 POKE 56333,127:REM TURN OFF INTERRUPTS
520 REM CHANGE IRQ INTERF:UPT VECTOR
53~ P~KE 788,I):POKF 788,192
54('1 F'OKF:. 53285 ,r'EEK(53265)AND 127

~~~ REM F1RST INTERRUPT AT LINE 100 
5~0 POKE 53266,100 

147 



57'Z'! REt! Et'Jt,BL.E H·1TERRUPTS tH··!O RASTEP. ONES 
~80 POKE ~~333,129:PO~~ 53274,129 
:=:8tl r.n·! ''1NII1ATE i-!F:L ICClPTER 

S00 POKE 833,0:PO~E 834,0 
f=; I.:::: FOR [=fJ TO ~,O: NEXT I 

S~0 POKE 823,255:POKE 834,255 
SJ3 FOR 1=0 TO 50:NEXT I 
640 80TO 600 
:en0 F<:Etl RASTER ItlTEF~RUPT 

IQ00 DATA 173,25,208,41,1,208,3,76 
1005 DATA 49,234,141,25,208,173,18,208.48,34 
1010 DATA 168,180,141,18,208,169,100,141 
1015 DATA 1,208,141,3,208,141,5,208,141 
1020 OATA 7,208,141,9.208,141,11,208 
1025 DATA 141,13,208,141,15,208,76,188,254 
1030 DATA 169,9B,141,18,208,168,60,24 
IB35 DATA 144,219 
;~0"'B REtyl :-:;PR I TE DATA 
2010 DATA 0,255,255,~,0,128,96,0 

2015 nATA 123,144,1,240,159,255,200,103,255,254 
2020 DATA 0,14,127,0,6,127,0,3 
?030 DATA 254,0,0,32,0,15,255 

The machine language source code for this program is included as a 
matter of interest for machine language programmers: 
1 €I i r· q i n tId .~. $,j 1;1 1 9 
20 ;r~~d interrupt status register 
30 and #1 

40 .: i<;. it .:;.. r.:;..ster interrupt? 
50 bne i 1 

6B ;if not then jump to normal interrupt 
routine 

7B jmp $ea31 
813 .: r·es e t t' -0<.$ t er· in t erT I.lP ts 
9B i 1 s t -3. $d 019 

100 .:o:urrent t'a:=:·ter· 1 ine 
110 Ida. $d012 

120 .:bra.nch if gr·e.~tet' th.:;..n 1 ·-=>0 
'-'-' 

130 bmi i3 
140 .:next interTtlPt at 1 ine 
15B Ida ttlE0 

148 



st.=,. $d012 

170 ;sprjt~ vertical position 
180 Ida #100 
190 ;sprlte vErtical registers 
20!,) i;=: 

210 
220 

240 

250 
2r::~ , 

270 

s t a. 
:: .• t ". 
::.t ~. 
:=·t.s. 
",. t.;;, 

s t a 
st a 
.=, ta. 

$0100 1 

$d003 

$d005 
$d0B7 
$<:1009 
$d0 l "lb 

$d~)Od 

$:d00f 

::::"30 .: t;,: r m·=:>.l in t e r-r- tl pte x itt' Gut in e 
;':.=tfl jmp $febc 
300 .: n~ :.:-t: 

310 i3 
320 

t"aster" at 1 ine 90 
1 da. *'I9l'l 

<.:.ta $d012 

330 ;sprite vertlcal position 
340 
350 clc 

bec i2 

SPLIT SCREEN 

1000 REt'! READ IN INTERRUPT ROUTIl'lE 
1010 FOR 1=0 TO 58:READ A:POKE ·:l9152+I,A:I'.JEXT 
1020 POKE 56333,127:REM DISABLE !NTERRUPTS 
1030 POKE788,0:POKE789,192 

1040 REt·! CHANGE IRQ INTERRUPT VECTOR 
1050 Po.KE5'::265, PEEK( 53;~65:; AND 127 

1080 REt'1 FIRST RASTER INTEf.:RUPT AT LINE 30 

1H70 POKE 5~266,30 

1080 RFM ~URN INTERRUPTS ON 

1090 POKE 56333, 129:POKE53274,129 

1100 POKE 53281,0:RFM BACKGROUI'ID COLOR 

1110 8A=2:tA096: REI"I 8 IT t'1AP EASE 

I 120 REl"1 CLEAR BOTTOI"! HALF OF BIT tYll~P 

1130 FORI=8f;+3520TOBA+7888:POKEI,f}:ND<T 

1140 REM SET COLORS 

11!'50 FOR I=t504 TO 2~"24:POKEI,16:NDn 

149 



2000 FOR X=0T0319STEP.5:REM DRAW CURVE 
2010 Y=ABS( INT( 90+8B*ABSO: S INC X/10»)) 
2020 CH=INT(X/8) 
20313 RO=INTCY/S) 
2("<.10 U·.J:::YAND7 
2050 8Y=BA+RO*320+8*CH+LN 
20(;[1 B I = 7 -( )-{AND7 ) 
2070 POKEBY.PEEKCBY)OR(2tBI) 
208(': NCn X 

3000 PRINTla":LIST 
5000 DATAI73,25,208,41,1.208.3,76 
5010 DATA49,234.141.25.208.173,18,208 
5020DATA48.21,173,17,208,41,95,141 
5030DATA17,208.169,21,141,24,208,169 
5040DATA145,141,18,208,76,188,254,173 
5050 DATA17,208.9.32,141,17,208,169 
SOR0 DATA25.141.24,208,169.30,141,18 
5070 DATA208,76,188,254 

The machine language source code for this program is included 
as a matter of interest for machine language programmers: 

1 0 s p 1 i tin t 1 :j a $d 13 1 9 
20 ;read interrupt status register 
30 and ~1 

bne int 1 

50 ;if not ra5t~r interrupt go to normal routine 
R0 jmp $ea31 
70 ;r·es~t raster interr·upts 
80 intI sta $d019 
90 ;r~ad raster register 

100 Ida $d012 
110 .:br;:..nch if greater than 128 
12e'1 bmi int2 
130 :turn off bit map 
140 Ida $d011 
150 
160 

and ~95 
sta $d011 

170 ;reset char base 
180 Ida "21 
190 sta $d018 
200 .: next interrupt 
210 lria ~145 

150 



220 sta $d012 
230 ;exit interrupt routine 
240. jmp Sfebc 
250 ;tur~ on hit map 
260 int2 
270 

280 
290 ;ch~ng~ 
300 
310 

Ida $dOll 
ora #32 
sta $dBII 

char base 
Ida #25 
sta Sd018 

320 ;next interrupt 
330 Ida #30 
340 sta Sd012 
350 ;exit 
360 jmp $febc 

151 



CHAPTER 7 

EXTERNAL DEVICES 
The Commodore 64 system can be upgraded with the addition of 
external devices (peripherals). In this chapter we will describe the more 
common of these devices - the Datasette, floppy disk drives and printers. 

DATASETTE 
This is the most economical method of data storage. Its disadvantages, 
in comparison to disk drives, are that it is relatively slow and can only 
store program and data files sequentially. So, to access a file that has 
been passed on the tape, you must manually rewind it. It is a good idea to 
keep a record of the locations of programs with the tape counter so that 
they can be quickly located. For the same reason it is best to use short 
tapes. Even fast forward takes a lot of time to run through a 90 minute 
tape. 
Unlike most microcomputer systems the Commodore 64 requires a 
particular cassette recorder, the Datasette. This has circuitry which 
enables the Commodore 64 to sense whether certain keys are 
pressed. It can therefore prompt the user when the required key is not 
pressed. Unfortunately it cannot discriminate between record and play 
modes. This means that it is still possible to inadvertently write over 
programs you had meant to read. 

Write-protecting tapes 
On the near edge of cassettes you will find two write-protect tabs, one for 
each side of the tape. Breaking these out will lock out the RECORD key, 
so you will be unable to write onto that side of the tape. Use this method to 
protect programs with which you do not want to run the risk of overwriting. 
You can reverse the write-protect by placing a piece of tape over the 
write-protect opening. 

Care of tapes 
Avoid touching the tape surface. The oils on your skin can destroy the 
oxide coating, thus corrupting your data. Store cassettes away from 
magnetic fields, which can also corrupt data. Television sets produce 
quite a strong magnetic field, so don't store tapes on or near them. 
Relevant BASIC commands 
SAVE, LOAD, GET#, INPUT#, OPEN, CLOSE 

FLOPPY DISK DRIVES 
The Commodore 64 can use any of the Commodore disk drives, but the 
model 1541 is designed to connect directly to the Commodore 64. Other 
models need an interface cartridge. 

152 



Disk drives are more flexible and provide faster access than the 
Datasette. They can store and access data randomly on any part of the 
diskette surface. Their disadvantage is that, being precise electro­
mechanical devices, they are expensive. 
Diskettes come in a protective jacket. Under no circumstances should 
the diskette be removed from this jacket. 

Data storage on diskette 
Each diskette used by the 1541 consists of 35 concentric circles called 
tracks. Each track is broken up into sectors, each of which holds 256 
bytes. 
Tracks 1-17 have 21 sectors/track 
Tracks 18-24 have 19 sectors/track 
Tracks 25-30 have 18 sectors/track 
Tracks 31-35 have 17 sectors/track 
Thus 1 1541 diskette can hold 174,848 bytes (170. 75K) 

Types of diskette 
If you rotate the diskette within its jacket you will find one or more holes 
which align with the small hole in the jacket. If there is only one hole, the 
diskette is soft-sectored. If there is more than one hole, the diskette is 
hard-sectored. The 1541 drive uses only soft-sectored diskettes. 

Loading and Unloading Diskettes 

Soft/hard sector hole ------
0----.. --- Read/write slot 

o 
Write protect hole --- r 

Insert into drive 

To load a diskette, gently slide it, in the orientation shown above, into the 
drive slot until it clicks in. Close the slot door. The drive will not operate 
with the door open. 
To unload, press the slot door down and release. The door will open and 
the diskette will be ejected an inch or so. Remove it carefully. 
There are two indicator lights on the drive. The green one is a power-on 
indicator. The red one lights only when there is some disk activity. 

Formatting Diskettes 
Before use, a new diskette must be formatted. This writes a disk name, 
ID number and track and sector information onto the diskette. Formatting 
is done by the commands: 

153 



OPEN 1,8,15 
PRINT#1, "NEW: diskname, 10" 

The disk name can be any string up to 16 characters long. The 10 number 
should be different for every diskette. 
A shorter version of the format command used on diskettes which have 
previously been formatted will erase all data on the diskette and rename 
it, leaving the 10 number unchanged. 

OPEN 1,8,15 
PRINT#1, "NEW: diskname" 

Note: NEW may be abbreviated to N 

Block Availability Map (BAM) and Initialization 
The BAM is found on track 18. It contains memory allocation information 
used when the disk drive is accessed. Each time this happens, the drive 
compares the 10 number on the diskette with the 10 number held in drive 
memory. If they don't match, the drive loads the diskette BAM into drive 
memory and uses this copy to access the diskette. This copying is called 
initialization. If the 10 numbers match, initialization is not carried out. This 
is why different diskettes should be given different 10 numbers. If they're 
not, the situation could arise where the BAM for another diskette with the 
same 10 number is used to access a diskette. At best this will cause 
searches to be unsuccessful. At worst programs will be overwritten. 
However, if you have given diskettes the same 10 numbers, you can 
force the drive to copy the BAM using the following: 

OPEN 1,8,15 
PRINT#1 "INITIALIZE" 

This can be abbreviated to: 
OPEN 1,8,15, "I" 

Diskette Directory 
This is located on track 18. It contains the names, starting sector 
addresses and file types of all files on the diskette. It can be displayed 
using the following commands 

LOAD "$",8 
LIST 

Write-protecting Diskettes 
Like cassette tapes, diskettes can be write-protected. This is done by 
covering the write-protect slot on the edge of the diskette jacket with 
tape. Removing the tape restores the diskette to read/write condition. 

File Manipulation Commands 

Renaming files. 
This is done with the commands: 

OPEN 1,8,15 
PRINT#1 ,"RENAME: NEW-NAME=OLO-NAME" 
R is an acceptable abbreviation for RENAME 

154 



Erasing files 
This is done with the commands: 

OPEN 1,8,15 
PRINT# 1, "SCRATCH: FILENAME" 
S is an acceptable abbreviation for SCRATCH 

Copying files 
This is done with the commands: 

OPEN 1,8,15 
PRINT# 1 ,"COpy : NEW-NAME = OLD-NAME" 
C is an acceptable abbreviation for COpy 

Joining files 
This is done with the commands: 

OPEN 1,8,15 
PRINT# 1 ,"COpy : NEW-FILE=FILE1,FILE2 

Note: Disk command strings must not be greater than 40 characters in 
length. 

VALIDATE 
This command does housekeeping on the diskette, deleting any files that 
were not properly closed, and freeing blocks which may have been 
allocated as temporary storage but are not now associated with any file. 

Multiple Disk Systems 
If you have a multiple disk system you may need to assign different 
device numbers to the different drives. At power-up they are all device 
number 8. Drives can have device numbers 8, 9, 10 and 11. To change 
the device number: 
1) Turn off all drives but the one you are changing 
2) Open a command file to the device 

e.g. OPEN 1,8,15 
3) Type PRINT # 1, "M-W" CHR$ (119) CHR$ (0) CHR$ (2) CHR$ 

(new-device-number + 32) CHR$ (new-device-number + 64) 
Leave that drive on. Turning it off will erase the new device number. Turn 
on the next drive you want to change. This is now device 8 so you already 
have a command channel open to it. If you want to change it or have more 
drives be sure to use a different device number. 

Closing Disk Files 
When a program writes to, or reads from, a disk, the data is first placed in 
a buffer. Only when the buffer is full is the data actually written to the 
diskette or, only when it is empty is more data read in. Thus, if you finish 
writing to the disk with the buffer not full, this data will not be stored on 
disk. To avoid this, you must close the file. This automatically 
writes the buffered data to disk, whether or not the buffer is full. 

155 



Maximum Number of Opened Files 
The Commodore 64 can only handle 10 open files at a time, and only 5 of 
these to disk. It is therefore a good idea to close all files immediately after 
use. . 

Disk Data Files 
Three types of file can be stored on disk. Program files have already 
been dealt with. The other two are sequential and random access files. 
Sequential Files 
These must first be opened using the following format: 
OPEN If, dev , sa, "dn : filename, SEQ, W" 
If - logical file number 
dev - device number 
sa - secondary address 
dn - drive number - this may be omitted on single-drive systems 
SEQ - indicates sequential file 
W - indicates write mode - it can also be R for read. 
e.g. OPEN 1, 8, 4, "0 : RECIPES, SEQ, W" 
To overwrite an existing file use an "@" before the drive number. 
e.g. OPEN 1, 8, 4, "@O : RECIPES, SEQ, W" 
This also applies to program files. 
e.g. SAVE "@O: PROG-NAME", 8 

Random Access files 
These are created by directly addressing diskette sectors and memory 
buffers. There are 8 buffers available on the Commodore 64 but 4 of 
these are used by the BAM, variable space, command channel I/O and 
the disk controller, so don't open more than 4 buffers at a time. The 
format for opening a random access file is as follows: 

OPEN If,dev,sa,"#buff nr" 
If - logical file number: 2-14 for data transfer, 15 for utility 

commands (see below) 
dev - device number 
sa - secondary address (2-14) 
buff nr - buffer number. This can be ommitted as the Disk Operating 

System (DOS) will automatically select one. 
Information is written to random access files using the PRINT# 
command 

Disk Utility Instructions 

Block-Read 
Purpose 
To use 

- reads any sector into one of the memory buffers 
- 1) Open a command channel 

OPEN 15,8,15 
2) Open a direct access channel 
e.g. OPEN 2,8,4,"#" 

156 



3) Specify track and sector and read it in. 
PRINT#15,"B-R:"sa;dn;T;S 
sa - secondary address from 2 above 
dn - drive number - mandatory when using direct 
access commands 

You may now use GET # and INPUT # to get the data from the buffer. 
e.g. GET#2,B 
Check ST for end of data 
Close all files when you are through. 
Note: B-R is an acceptable abbreviation for BLOCK-READ 
BLOCK-ALLOCATE 
Purpose 

To use 

- checks a sector to see whether it is availabe or 
already allocated. If available it marks it in the BAM 
as allocated. If already allocated, it leaves the BAM 
unchanged and returns the next available track and 
sector in the error channel. If no sector is available it 
returns track 0, sector 0, which is non-existent. If the 
sector you initially asked for is available the message 
'OK' is returned in the error channel. 

- 1) Open command channel 
OPEN 15,8,15 
2) Specify track and sector and check it. 
PRINT#15, "B-A":O;T;S 
T - Track number 
S - Sector number 
3) Check error channel 
INPUT # 15, E, EM$, T,S 
E - error code 
EM$ - error message 
T - track 
S - sector 
Proceed on the basis of the error channel return. 
4) Close channels 

Note: B-A is an acceptable abbreviation for BLOCK-ALLOCATE 

BLOCK-WRITE 
Purpose 

To use 

- To write data to a sector specified by you. With this 
instruction you can write to the BAM or the directory, 
thus destroying them, so it is wise ro use a BLOCK­
ALLOCATE first, to find a free sector. 

- 1) Do a BLOCK-ALLOCATE (not mandatory, but 
wise) 
2) If EM$='OK' or other free sector returned, 
continue 
3) Open direct access file 
e.g. OPEN3,8,4,"#" 

157 



4) PRINT# the data - from DATA statements, 
arrays keyboard 
e.g. PRINT #3,A 
5) The data is now in the buffer. To block-write it 
use: 
PRINT #15, "B-W:"4;0;T;S 
6) Close files 

Note: 1) The format for the BLOCK-WRITE instruction is the same 
as for BLOCK-READ 
2) B-W is an acceptable abbreviation for BLOCK-READ 

BUFFER-POINTER 
Purpose - To change the buffer pointer to start GETting at a 

particular byte, rather than starting at the first byte in 
the buffer 

To use - 1) Do a block-read to the point where you are about 
to GET # bytes 
2) Change the buffer pointer 
e.g. PRINT#15,"B-P:"sa;byte 
sa - secondary address used in setting up the direct 

access file 
byte - number of byte you want to start GETting at 
e.g. PRINT#15,"B-P:"4;47 

Note: B-P is an acceptable abbreviation for BUFFER-POINTER 
BLOCK-FREE 
Purpose - to de-allocate any block on the disk. 
To use - 1) Open command channel 

OPEN15,8,15 
2) Specify track and sector and free it 
PRINT#15, "B-F:"dr;T;S 
dr - drive number 
T - track number 
S - sector number 
e.g. PRINT#15,"B-F:"0;1;4 

Note: B-F is an acceptable abbreviation for BLOCK-FREE 

Disk Drive Memory Manipulation 
The 1541 drive controller contains a 6502 microprocessor. It has 2K of 
RAM and DOS, which resides on ROM. Some of the RAM is used for 
housekeeping. The rest is used for buffers. This is also available to the 
programmer for machine code programs. 
The buffers are: 

Buffer 
1 
2 
3 

Address (hex) 
300- 3FF 
400 -4FF 
500- 5FF 

158 



4 
5 

600- 6FF 
700-7FF 

Buffer 5 is often used by DOS, so it is not advisable to use it for machine 
language programs. If you intend to use buffer space for machine code, 
specify the buffers you want for direct access files, rather than leaving it 
up to DOS which may overwrite your machine code if left to its own 
devices. 

MEMORY-WRITE 
Purpose - to store machine code in drive memory 
To use - a singe M-W commands allows you to store up to 34 

bytes 
- All the data must be transferred as character strings 

using CHR$ 
- The number of bytes to be stored must be indicated 
- ONLY the abbreviation M-W can be used. 

MEMORY-WRITE, in full, is unacceptable 
- The machine code must end with an RTS instruction. 

Otherwise the 1541 may loop endlessly, or do 
something catastrophic to the data on the diskette. 

1) Open command channel and transfer data 
OPEN 15, 8,15 
PRINT # 15, "M-W" CHR$ (LO-ADDRESS-BYTE) 
CHR$ (HI-ADDRESS-BYTE) CHR$ (NR-BYTES­
TRANSFERRED) CHR$ (BYTE-1) CHR$ (BYTE-
2) ... 
CLOSE 15 

MEMORY-READ 
Purpose - to read data from drive memory one byte at a time 

To use: - The byte read is transferred through the error channel 
so use GET # 15 to get it 

- ONLY the abbreviation M-R is acceptable. MEMORY­
READ, in full, is not 

- The address to be read is specified using CHR$, as 
for MEMORY-WRITE 

1) Open command channel 
OPEN 15,8,15 

2) Specify address and read 
PRINT #15, "M-R"CHR$(LO-ADDRESS-BYTE) 
CHR$(HI-ADDRESS-BYTE) 
GET#15,A$ 
PRINTA$ 
CLOSE 15 

159 



MEMORY-EXECUTE 
Purpose - to run a machine language program loaded into drive 

memory by MEMORY-WRITE 
To use - ONLY the abbreviation M-E is acceptable 

1 ) Open command channel 
OPEN 15,8,15 
2) Specify start address of routine and execute 
PRINT # 15, "M-E"CHR$(LO-ADDRESS­
BYTE)CHR$(HI-ADDRESS-BYTE) 
3) Close channel 
CLOSE 15 

User Commands 

U1 
Purpose 

To use 
U2 
Purpose 

To use 
U3-U9 
Purpose 

U (orUJ) 
Purpose 
To use 

- similar to B-R. The only difference is that U1 reads 
the 2 bytes preceding the data in the sector. These 
bytes are the link address to the next sector in the file, 
giving track and sector. 

- same as B-R, but replace B-R with U1. 

- similar to B-W. The difference is that B-W terminates 
the file at the sector written. U2 allows you to write the 
link address, ie. track and sector - to the next sector 
in the file 

- same as B-W but replace B-W with U2 

- similar to M-E but they cause a jump to specific 
locations as given below: 
U3 $0500 
U4 $0503 
U5 $0506 
U6 $0509 
U7 $050C 
U8 $050F 
U9 $FFFA 
These locations are only 3 bytes long as they are 
intended to hold a JMP instruction to a location the 
programmer defines. 

- jumps to DOS to its power-up routine 
- all the U3-J commands have the following syntax for 

use: 
OPEN 15,8,15 
PRINT #15, "U4" 
CLOSE15 

160 



The 1515 Graphic Printer 
This has a built in character set including upper and lower case letters, 
numbers and graphics. To access the printer you must first open a file to 
it using the following syntax: 

OPEN If,dev,sa 
If - logical file number (0-255) 
dev - device number - either 4 or 5 - it is selected using a switch at 

the rear of the printer 
sa - used to select between character sets. If omitted the 

default character set (upper case & graphics) is used. 
If sa = 7 the alternate character set (lower case) is selected. 

Having opened a channel to the printer you now use PRINT # If to print 
your data. 

Print Formatting 

Comma 
If the PRINT# data items are seperated by a comma the print puts 11 
spaces between items printed. 

Semicolon 
This has the same effect as it does on a screen display 
TABandSPC 
These cannot appear immediately after a PRINT # 
ie. PRINT#1 ,TAS(6) is illegal; PRINT#1 ,"";TAS(6) is OK 
On the printer, both T AS and SPC have the same effect as SPC does on 
the screen display 
POS 
This reproduces the screen T AS function on the printer. That is, it starts 
printing at an absolute position rather than relative to where the current 
printing is being done. 
pas is sent to the printer as CHR$(16). The two characters immediately 
following this determine the print position. 
e.g. PRINT #1 ,CHR(16);"16";"starts printing at column 16" 

Printer Graphics 
The printer has several modes, in which characters received are treated 
differently. The modes and commands to get into them are shown below: 

Mode Command 
Double-width characters CHR$ (14) 
Single-width characters CHR$ (15) 
Reverse characters CHR$ (18) or "[CTRl] [RVS ON)" 
Normal characters CHR$ (146) or "[CTRl] [RVS OFF)" 
Graphics CHR$ (8) 
Alternate character set CHR$ (17) 
Standard character set CHR$ (143) 
Repeat Graphics CHR$ (26) 

161 



These are used in PRINT# statements 
e.g. PRINT#1 ,CHR$(17);"LOWER CASE" 
Apart from the following two, the functions of the modes are obvious 

GRAPHICS mode 
This is similar to defining custom character sets in character memory in 
that it creates patterns of dots. However, in printer graphics, rows not 
columns are given values, as below, and columns, not rows, are added. 

Row 
values 

Column values 

1 

2 

4 

8 

16 

32 

64 

COLUMNS 
ABC D E F G H 

64 64 126 126 126 12664 64 

Note that only 7 rows are used. 
To print this character do the following: 

OPEN# 1 ,4 - open a channel to the printer 
PRINT # 1 , CHR$ (8) - get into graphics mode 
PRINT# 1 , CHR$ (64 + 128) ; CHR$ (64 + 128) ; CHR$ (126 + 
128); CHR$ (126 + 128) ;CHR$ (126 + 128) ;CHR$ (126 + 128); 
CHR$ (64 + 128) ; CHR$ (64 + 128) 

Note that the column values are added to 128. It would of course have 
been simplerto put the column values in a DATA statement and read and 
PRINT #ed them in a loop. 

Repeat Graphics Mode 
This mode allows you to repeat a pattern of seven vertical dots up to 255 
times per command. 
e.g. OPEN 1,4 - open a channel to the printer 

PRINT# 1 , CHR$ (26) CHR$ (5) CHR$ (255) 
the first CHR$ value puts the printer into repeat graphics mode. The 
second CHR$ value sets the number of repeat(s). The third CHR$ value 
defines the vertical dot pattern (in this case just a solid bar 7 dots high) 
These two lines will just cause 5 bars to be printed. There is no space 
between them, they're continuous. 

Games Controls 
There are three types of games controls in common use - the keyboard, 
joysticks and paddles. This section describes these, and how they are 
used. 

162 



Keyboard 
This is the most common device for games control. Keys are assigned to 
various functions, such as move left, move right, fire, etc. 

When choosing keys for your games, ensure that they are easily usable. 
Their position should reflect their function. For example, if you have 4 
keys for up, down, left and right, use keys in corresponding positions, as 
below: 

left 0 o right 

~down 

The space bar makes a good fire button since it's large and hard to miss. 
It is annoying to have to repeatedly press and release keys to repeat an 
action, so you should set all keys so that they automatically repeat when 
held down. This is done by POKEing 128 into byte 650. POKEing 0 into 
this byte makes only the cursor control keys repeat automatically. 

Checking the keyboard. 
GET is the command to use to check the keyboard, as it doesn't echo the 
character typed in, or stop the program to wait for input. It merely checks 
the keyboard buffer and continues. If there is no character in the buffer 
the GET variable is set to 0 or the null string. If there is a character in the 
buffer it is assigned to the variable and the buffer is cleared. The GET 
variable should be a string variable, since this will accept almost any 
keystroke (except STOP, RESTORE,SHIFT, CTRL, ~ and the colour 
control keys). If a numeric variable is used you will only be able to GET 
numeric characters without causing an error. 

Having got the character, the program must decide what to do. This can 
be done in various ways. 
(i) Repeated IF-THEN-
e.g. 10 GET K$ 

20 IF K$ = "S" THEN - : GOTO 70 
30 IF K$ = "E" THEN - : GOTO 70 
40 IF K$ = "X" THEN - : GOTO 70 
50 IF K$ = "F" THEN - : GOTO 70 
60 IF K$ = "" THEN -: GOTO 70 
70 

163 



The statements after the THEN may carry out the required actions and 
then branch past the rest of the IF statements. If the actions required are 
too complex to fit on a line, the program may GOTO or GOSUB a section 
of code to carry out the actions. 
(ii) ON-GOTO-
If you are using many keys, going through all the IF statements may be 
too time-consuming. It may be quicker to use some calculation or ASCII 
values with an ON statement. The disadvantage of this technique is that 
the ASCII values of the characters you are using may be widely 
seperated, necessitating complex calculations which take as much time 
as stepping through the IF statements. 

Joystick 
This consists of a moveable stick and a fire button. When moved, the 
stick closes 1 or 2 of 4 switches. 

Up 

0 

Left 0 + 0 Right 

0 

Down 

If the stick is moved upor down or to one side, only one switch is closed. If 
it is moved diagonally, the two switches it moves between are closed. 

The state of the switches can be discovered by PEEKing certain memory 
locations. Each switch controls one bit, delivering a 0 when the switch is 
closed, a 1 when the switch is open. 

7 6 5 4 3 2 o 
_=-t FIRE I RIGHT [ LEFT DOWN I ~ 

(Bits used by location 56320 and 56321 for joystick ports 1 and 2 respectively) 

Since the program must check individual bits, bit masks must be used. 
For example, to check the fire button bit - only use: 

FB = PEEK (56320) AND 16 

If FB = 0 then the Fire button has been pushed. 

164 



The joystick direction is checked by using the following statement: 

DIR = 15-(PEEK (56320) AND 15) 

The direction is determined by the following table: 

DIR Direction 
o None 
1 Up 
2 Down 
3 
4 Left 
5 Up and Left 
6 Down and Left 
7 
8 Right 
9 Up and Right 

10 Down and Right 

The following program demonstrates joystick control: 

10 REt'l * .JOY ~:T I CK DEIY10 * 
20 FOR P=0 TO 19 
30 READ X,Y 
40 X$(P)=CHR$(X) : Y$(P)=CHR$(Y) 
50 NE?<T P 
60 DATA O,0,O,145,O,17,0,0,157,O,157,145,157, 
17,O,0,28,0,29,145,29,17 
100 30Y=56320 :PRINT CHR$( 147) 
110 PRINT"><".:CHR$( 157).: 
120 IF (PEEKC_TOY)At'''[)16)=0 THEf'..1 PRINT"."; 
CHR$( 157); 
130 P=15-(PEEKe30YJANDI5) 
lA0 PR INT " "; CHR$( 157),: X$( P); Y$( P); 
150 GOTO 110 

Paddles 
Paddles are used in place of joysticks where a variable control of 
direction is needed (e.g. moving a racquet up and down the screen for 
tennis, etc.). Each port can take two paddles, one for the x-direction and 
one for the y-direction. 
The paddles are read into memory locations 54297 and 54298. These 
are the sound chip's paddle read registers. 
A paddle set to zero position and rotated through to its maximum rotation 
will return values from 0 to 255 in increments of 1. Owing to such a large 

165 



range of possible output values and the rate that they can change, it is 
impossible for BASIC to keep up with the paddles. 
However, the 'REGLlNK' routine used in the Sound chapter can be 
modified to link the output of the paddles to the x and y co-ordinates of a 
Sprite. Use the following method to link Sprite#O to the paddles. 

1. Connect paddles to port labelled 'Port-2' 
2. Load 'REGLlNK' (listed on page 67) and change Line 110 to: 

110 DATA 208 
3. RUN "REG LINK" with the above change 
4. LOAD "SQUARE" from Graphics chapter (listed on page 94) 
5. Type: POKE 820, 0 : POKE 821, 1 
6. RUN Square 

You should be able to move the Sprite square around the screen 
independently of the operating system. 

166 



Appendix A 
1) CHR$ Value Codes 

CHR$ CHR$ 
Character Code Character Code 

0 # ~5 
1 $ 36 
2 'Y. 37 

STOP 3 & 38 
4 

.. 39 
WHITE 5 ( 40 

6 ) 41 
7 * 42 
8 + 43 
9 , 44 
10 45 
11 46 
12 / 47 

RETURN 13 0 48 
Lower case switch 14 1 49 

15 2 50 
16 3 51 

CRSR ...... 17 4 52 
RVS ON 18 5 53 
CLR/HOME 19 6 54 
INST/DEL 20 7 55 

21 8 56 
22 9 57 

23 ~ 58 
24 ; 59 

25 < 60 

26 = 61 

27 :> 62 
RED 28 ? 63 
CSRS., 29 Q) 64 
GREEN 30 A 65 
BLUE 31 B 66 
space 32 C 67 

33 D 68 
II 

34 E 69 

167 



Character CHR$ Character CHR$ 
Code Code 

F 70 lSI 109 
G 71 12J 110 
H 72 [J 111 
I 73 n 112 
J 74 • 113 
K 75 d 114 
L 76 Y 115 

'" 77 IT,"] 116 
N 78 (£I 117 
0 79 I8J 118 
P 80 101 119 
Q 81 + 120 
R 82 Cl 121 
S 83 • 122 
T 84 EH 123 
U 85 I[) 124 
V 86 tl] 125 w 87 ....... 126 
X 88 ~ 127 
Y 89 128 
Z 90 129 
[ 91 130 
L 92 SHIFT RUN/STOP. 131 
::J 93 132 
'1'- 94 f1 133 
~ 95 f3 134 
'- .. , 96 f5 135 • 97 f7 136 
tlJ 98 f2 137 
8 99 f4 138 
'- .. , 100 f6 139 - 101 f8 140 
'- .. , 102 SHIFT RETURN 141 
~r ., 103 Upper case switch142 
~Ij 104 143 
Ii] 105 BLACK 144 
~ 106 CRSR .,... 145 
~ 107 RVS OFF 146 
[J 108 CLR/HOME 147 

168 



Character CHR$ Character CHR$ 
Code Code 

INST/DEL 148 CJ 170 
149 lE 171 
150 Gil 172 
151 [9 173 
152 fi] 174 
153 - 175 
154 [D 176 
155 E!3 177 

PURPLE 156 ED 178 
CRSR ~ 157 Ell 179 
YELLOW 158 r"' ""' 180 
CYAN 159 I""' 

"' 181 
space 160 LI 182 
• .-J 161 ..... 183 
i.i 162 ~ 184 - 163 i.i 185 
........ 164 U 186 
r""' ""' 165 ~ 187 
~ 166 ~ 188 
C.1 167 EJ 189 
b;I 168 f!] 190 
~ 169 ~ 191 

Codes 192-223 are the same as 96-127 
Codes 224-254 are the same as 160-190 
Code 255 is the same as code 126 

2) Screen Codes 
Character Character Screen 
Set 1 Set 2 Code 

:i) 0 
A a 1 
B b 2 
C c 3 
D d 4 
E e 5 
F f 6 
G 9 7 

169 



Character Character Screen 
Set 1 Set 2 Code 
H h 8 
I i 9 
J j 10 
K k 11 
L 1 12 
1'1 m 13 
N n 14 
0 0 15 
p 

P 16 
Q q 17 
R r- 18 
S s 19 
T t 20 
U u 21 
V v 22 
W w 23 
X )( 24 
Y Y 25 
Z z 26 
[ 27 
£.. 28 
] 29 
....... 30 
-+- 31 

space 32 
H 

33 
34 .. 35 

$ 36 
% 37 

" 38 
~ 

39 
( 

40 
) 

41 

* 42 
+ 43 , 44 

45 

/ 
46 
47 

170 



Character Character Screen 
Set 1 Set 2 Code 

0 
48 1 
49 2 
50 3 
51 4 
52 5 
53 6 
54 7 
55 

8 
56 9 57 . 
58 

.. 
; 

59 < 60 = 61 > 62 
? 

63 
B 64 • A 65 
~1] B 66 
8 C 67 :::; D 68 - E 69 = .... : ...., F 70 
I""' 6 71 "~ 

[1 H 72 
Ii] I 73 
~ J 74 
~ K 75 
0 L 76 
lSI M 77 
I2J N 78 
0 0 79 n p 80 
ill Q 81 
~ R 82 
¥ S 83 
~": T 84 "~ 

UI U 85 
181 V 86 

171 



Character 
Set 1 

D 
+ 
CD 

• EB 
I[] 

tIJ .,.. 
~ 

space 
.OJ 

roo, 
oo~ .. 

C] 
b;) 

~ 
r.] 
IE 
GI 
[!J 

6J 

Character 
Set 2 

w 
X 
Y 
Z 

172 

Screen 
Code 

87 
BB 
89 
90 
91 
92 
93 
94 
95 

96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 



Character 
Set 1 

Character 
Set 2 

Screen 
Code 

126 
127 

Codes 128-255 produce reversed images of 
codes 0-127 

3) ASCII Codes 

Character Code Character Code 
NULL 0 GS 29 
SOH 1 RS 30 
STX 2 US 31 
ETX 3 space 32 
EDT 4 33 
ENQ 5 II 34 
ACK 6 # 35 
BEL 7 $ 36 
BS 8 % 37 
HT 9 &: 38 
LF 10 39 
VT 11 ( 40 
FF 12 ) 41 
CR 13 * 42 
SO 14 + 43 
SI 15 , 44 
DLE 16 45 
DCl 17 46 
DC2 18 / 47 
DC3 19 0 48 
DC4 20 1 49 
NAK 21 2 50 
SYN 22 3 51 
ETB 23 4 52 
CAN 24 5 53 
EM 25 6 54 
SUB 26 7 55 
ESC 27 8 56 
FS 28 9 57 

173 



Character Code Character Code 

. 
58 . a 97 

; 59 b 98 
< 60 c 99 
= 61 d 100 
> 62 e 101 
? 63 f 102 
G) 64 g 103 
A 65 h 104 
B 66 i 105 
C 67 j 106 
D 68 k 107 
E 69 1 108 
F 70 m 109 
G 71 n 110 
H 72 0 111 
I 73 P 112 
J 74 q 113 
K 75 r 114 
L 76 5 115 
M 77 t 116 
N 78 u 117 
0 79 v 118 
P 80 w 119 
Q 81 x 120 
R 82 Y 121 
S 83 z 122 
T 84 ; 123 
U 85 < 124 
V 86 = 125 
W 87 > 126 
X 88 DEL 127 
Y 89 
Z 90 
[ 91 
\ 92 
] 93 

...,... 94 
~ 95 

space 96 

174 



AppendixB 
Complete Memory Map 

Address 
(Decimal) 
o 
1 - 2 
3-4 
5-6 
7 
8 
9 
10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20- 21 

22 
23-24 
25-33 
34 -37 
38 -42 
43-44 
45-46 

47 -48 
51 - 52 

53- 54 
55- 56 
57 -58 
59-60 
61 - 62 
63- 64 
65- 66 
67 - 68 
69-70 

Description 

Chip directional register 
Memory and tape control 
Floating point - fixed point vector 
Fixed point - floating point vector 
BASIC counter. Search character ':' or end of line 
Scan-quotes flag 
Column position of cursor on line 
Flag; 0 = LOAD, 1 = VERIFY 
BASIC input buffer pointer; subscript number 
Default DIM flag 
Variable type flag: FF = string, 00 = numeric 
Numeric type flag: 80 = integer, 00 = floating 
point 
DATA scan flag: LIST quote flag; memory flag 
Subscript flag; FNx flag 
Flag; 0 = INPUT, 152 = READ, 64 = GET 
ATN sign flag; comparison evaluation flag 
Current I/O prompt flag 
Where BASIC stores integers used in 
calculations 
Temporary string stack pointer 
Last temporary string vector 
Stack for temporary string descriptors 
Utility pointer area 
Product area for multiplication 
Pointer to start of BASIC program 
Pointer to end of BASIC program; start of BASIC 
variables 
Pointer to end of variables; start of arrays 
Pointer to start of string storage - strings move 
down from top of available memory towards 
arrays. 
Pointer to end of string storage 
Pointer to top of RAM available to BASIC 
Current BASIC line number 
Previous BASIC line number 
Pointer to BASIC statement (for CO NT) 
Current OAT A line number 
Pointer to current DATA item 
Jump vector for INPUT statement 
Current variable name 

175 



71 - 72 
73-74 
75-76 
77 
78 -79 
80 - 81 
82 
83 
84-86 
87 - 96 
97 -102 

103 
104 
105 - 110 
111 
112 
113-114 
115-138 

139 - 143 
144 
145 
146 
147 
148 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 - 162 
163 
164 
165 
166 
167 
168 
169 
170 
171 

Current variable address 
Variable pOinter for FOR/NEXT statement 
Y save; operator save; BASIC pointer save 
Comparison symbol 
Work area; function definition pointer 
Work area; string descriptor pointer 
Length of string 
Garbage collect use 
Jump vector for functions 
Numeric work area 
Floating point accumulator 1 ; Exponent, 4 byte 
Mantissa, Sign 
Series evaluation constant pointer 
Accumulator 1 overflow 
Floating point accumulator 2 
Sign comparison - Acc 1 with Acc 2 
Acc 2 rounding 
Cassette buffer length; series pointer 
CHRGOT BASIC subroutine - gets next BASIC 
character 
RND storage and work area 
ST - status byte 
STOP and REVERSE flags; Keyswitch PIA 
Timing constant for tape 
Flag: 0 = LOAD, 1 = VERIFY 
Serial output; deferred character flag 
Tape EOT received 
Register save 
Number of OPEN files 
Current input device 
Current output (CMD) device 
Tape character parity 
Flag : byte received 
Output control flag: direct = 128 ; run = a 
Tape pass 1 error log 
Tape pass 2 error log 
Jifie clock - TI and TI$ use this 
Serial bit count 
Cycle count 
Tape write bit count 
Pointer to tape buffer 
Tape write count; input bit storage 
Tape write new byte; Read error; input bit count 
Write start bit; Read bit error 
Tape scan; count 
Write read length; Read checksum; parity 

176 



172 - 173 
174-175 
176 -177 
178 - 179 
180 
181 
182 
183 
184 
185 
186 
187-188 
189 
190 
191 
192 
193 - 194 
195 - 196 
197 
198 
199 
200 
201 - 202 
203 
204 
205 
206 
207 
208 
209 - 210 
211 
212 
213 
214 

215 
216 
217 - 240 
241 
242 
243 - 244 
245 - 246 
247 - 248 
249 - 250 
251 - 254 
255 

Pointer to tape buffer; scrolling 
Tape end addresses; end of program 
Tape timing constants 
Pointer to start of tape buffer 
Tape timer; bit count 
RS232 next bit to send 
Read character error; next byte out 
Number of characters in current file name 
Current logical file number 
Current secondary address 
Current device number 
Pointer to current file name 
Write shift byte; Read input character 
Number of blocks remaining to Read/Write 
Serial word buffer 
Tape motor interlock 
I/O start addresses 
KERNAL setup pointer 
Current key pressed (see Appendix H) 
Keyboard buffer counter 
Flag: screen reverse - 1 is on, 0 is off 
Pointer to end-of-line for input 
Cursor log (row, column) 
Current key pressed 
Flag: cursor blink enable (0 is on) 
Cursor blink delay 
Character under cursor 
Flag: cursor on/off 
Input from screen/keyboard 
Pointer to screen line on which cursor appears 
Position of cursor on line 
o = direct cursor, else programmed 
Screen line length, 21, 43, 65, 87 
Current screen line number - To change cursor 
position, 201, 210, 211 and 214 must be changed 
ASCII value of last character printed 
Number of INSERTs outstanding 
Screen line link table 
Dummy screen line link 
Screen row marker 
Pointer to current location in colour memory 
Pointer to keyscan table 
Pointer to RS-232 receiver buffer start 
Pointer to RS-232 transmitter buffer start 
Free zero-page locations 
BASIC storage 

177 



256- 266 
256 - 318 
256 - 511 
512 - 600 
601 - 610 
611 - 620 
621 - 630 
631 - 640 
641 - 642 
643 - 644 
645 
646 
647 
648 
649 

650 
651 
652 
653 

654 
655 - 656 
657 
658 
659 
660 
661 - 662 
663 
664 
665 - 666 
667 
668 
669 
670 
671 - 672 
673 
674 
675 
676 
677 
678 
679-767 
768 -769 
770 - 771 

Float - ASCII work area 
Tape error log 
Processor stack area 
BASIC input buffer 
Logical file table for OPEN files 
Device number table for OPEN files 
Secondary address table 
Keyboard buffer 
Pointer to start of memory for operating system 
Pointer to end of memory for operating system 
Serial bus timeout flag 
Current colour code (for PRINTed character) 
Colour under cursor 
Screen memory page indicator 
Maximum length of keyboard buffer - must be 
less than 11 
Key autorepeat (0 = cursor controls, 255 = all) 
Pre-repeat delay 
Inter-repeat delay 
Keyboard flag for SHIFT, CTRL and C= keys. If 
SHIFT pressed, bit 0 is set, if CTRL, bit 1, if C=, bit 
2 
Last shift pattern 
Pointer for keyboard table set-up 
Shift mode (0 = enabled, 128 = disabled) 
Auto scroll down flag (0 = on, else off) 
RS-232 control register 
RS-232 command register 
Non-standard (bit timel2 -100) 
RS-232 status register 
Number of bits to send 
Baud rate (full) bit time 
Pointer to RS-232 receiver buffer (end) 
Pointer to RS-232 receiver buffer (start) 
Pointer to RS-232 transmit buffer (start) 
Pointer to RS-232 transmit buffer (end) 
Holds IRQ during tape operations 
CIA 2 (NMI) Interrupt control 
CIA 1 Timer A control log 
CIA 1 Interrupt log 
CIA 1 Timer A enable flag 
Screen row marker 
PALINISC flag, 0 = NTSC, 1 = PAL 
UNUSED 
Error message link 
Basic warm start link 

178 



772 -773 
774 - 775 
776-777 
778 -779 
780 
781 
782 
783 
784-785 
788 -789 
790 - 791 
792 -793 
794 -795 
796 -797 
798 -799 
800 - 801 
802 - 803 
804 - 805 
806 - 807 
808 - 809 
810-811 
812-813 
814-815 
816-817 
818-819 
828-1019 

1024 - 2039 
2040 - 2047 
2048 - 40959 
32768 - 40959 
40960 - 49151 
49152 - 53247 
53248 - 53294 
53248 - 57343 
54272 - 54300 
55296 - 56319 
56320 - 56335 
56576 - 56591 
57344 - 65535 
57344 - 65535 
65409 - 65525 
65478 
65481 
65484 
65487 

Tokenization routine link 
Print tokens link 
Start new BASIC code link 
Get arithmetic element link 
Temporary storage of A during SYS 
Temporary storage of X during SYS 
Temporary storage of Y during SYS 
Temporary storage of P during SYS 
USR function jump 
Hardware interrupt vector (EA31) 
Break (BRK) interrupt vector (FE66) 
NMI interrupt vector (FE47) 
OPEN vector (F34A) 
CLOSE vector (F291) 
Set input device vector (F20E) 
Set output device vector (F250) 
Restore 1/0 vector (F333) 
Input vector (F157) 
Output vector (F1 CA) 
Test STOP-key vector (F6ED) 
GET vector (F13E) 
Close all files vector (F32F) 
User vector (FE66) 
Load-fram-device vector (F4A5) 
Save to device vector (F5ED) 
Cassette buffer - useful for holding machine code 
when no files are being used 
Screen memory 
Sprite pointers 
Basic programs and variables 
ROM plug-in area 
ROM Basic 
Unused 
6566 video chip 
Character set 
6581 Sound chip 
Colour memory 
6526 Interface chip-1 
6526 Interface chip-2 
ROM operating system 
Unused 
Jump table including the following: 
Set Input channel 
Set Output channel 
Restore default 1/0 channels 
INPUT 

179 



65490 
65505 
65508 

PRINT 
T est STOP key 
GET 

180 



AppendixC 
Keyboard Graphics and how to get them. 

Symbol Keypress Symbol Keypress 
----------- -------- ----------- --------

E9 or E .. IiJ or R 
8] or w lB or Q 
~ or 0 ILl or F 
~ or c ~ or v 
lSI or B • or + n or T L! or y 
!""! or U IiiiI ()[ 
~ ()[ 0 U ()[ P 
lJ or a IJ or 
Lj ()[ 8 [.j ()[ H 
IJ Ot J R"J ()[ t< 
LI Ot L LJ ()[ N 
[.1 or " ~ ()[ L 
6] ()[ S E!l ()[ x 
UJ ()[ A [9 or z 
r'I or • U BHIFT L [] SHIFT ., 
n SHIFT 0 n SHIFT P 
6J SHIFT I UI SHIFT U 
~ SHIFT I< [9 SHIFT J 
CI SHIFT W • SHIFT Q 
EB SHIFT + 181 SHIFT V 
IS'J SHIFT " IZl SHIFT N • SHIFT Z V SHIFT S 
+ SHIFT X ... SHIFT A 
0 SHIFT E t':':'l SHIFT D e SHIFT • R SHIFT C 1'··1 SHIFT F W SHIFT R .". 

Lj SHIFT T lD SHIFT G m SHIFT B lJj SHIFT -r.u SHIFT H [J SHIFT Y 
~ SHIFT L 

'" UP ARROW +- LEFT ARROW 
fl' PI 

As wRII as thR •• th.r. ar. a •• t of By~bol. u •• d to r.pr ••• nt control charact.r •• uch a. color control. and cur.or control •• 

Thw ~y.ool5 vary d.pending upon whwth.r thw COGput.r i~ in uppwr ca~. or l0W8r ca5W ~ode. 

181 



The liyllbolli are. 

Upp8r C"~IiI. 

BylRbol Keypreli. 
-------

1:.1 CLR 
~ HOt'IE 
liJ cur.er dOt«l 
D curlier up 
111 cur.er right 

•• curlier left 
Ia ctrl 1 
till ctrl 2 
GIl ctrl :5 
~ ctrl ~ • ctrl 
H ctrl b 
rill ct.rl 7 
Iii ctrl a 
~ ctrl 9 

• ctrl 0 

Low.r c •• e 

6yllbol Keypre •• 
--------

B HotIE 
III cur.er dOt«l 

• ctrl 2 
~ ctrl 4 
~ ctrl a 

• ctrl 9 

•• The (It sy8bol iii the lipeci.l lihift key 
locAted to the l.ft of the l.ft hAnd shift 
key 

182 



Appendix 0 

Useful ROM routines 
The KERNAL is the operating system of the VIC 20. It contains many 
subroutines which can be of use to the machine language programmer. 
All of these can be accessed using a JSR instruction. Control will be 
returned to your program after the KERNAL subroutine has executed. In 
the brief descriptions of these subroutines below, the following 
information is presented. 

Name, Purpose 
Address: in hex 
Communication registers: registers used to pass information to and from 

the KERNAL subroutine. 
Preparatory routines : these routines must be called prior to the 

subroutine in question. 
Possible errors: if an error occurs, when the subroutine returns the carry 

flag will be set, and the error code will be in the 
accumulator. 

Stack: number of bytes of stack used by the routine. 
Registers used: a list of all registers used by the KERNAL routine. 

1) Name: ACPTR 
Purpose: Get data from serial bus 
Address: $FF A5 
Communication registers: A; data returned in accumulator 
Prep. routines: TALK, TKSA 
Possible errors: see READST 
Stack: 13 
Regist~rs used: X, A 

2) Name: CHKIN 
Purpose: Open a channel for input 
Address: $FFC6 
Communication registers: X; load X with number of logical file to be 

used 
Prep routines: OPEN 
Possible errors: 3,5,6 
Stack: 0 
Registers used: A,X 

3) Name: CHKOUT 
Purpose: Open a channel for output 
Address: $FFC9 
Communication registers : X; load X with logical file number to be 

used 
Prep. routines: OPEN 
Possible errors: 3,5,7 
Stack: 0 
Registers used: A,X 

183 



4) Name: CHRIN 
Purpose: Get a character from input channel 
Address: $FFCF 
Communication registers: A; data byte returned in A 
Prep. routines: OPEN, CHKIN (unless device is keyboard) 
Possible errors: see READST 
Stack :0 
Registers used: A,X 

5) Name: CHROUT 
Purpose: Output a character 
Address: $FFD2 
Communication registers: A; load byte to be output in A 
Prep. routines: OPEN,CHKOUT (unless device is screen) 
Possible errors: see READST 
Stack: 0 
Registers used: A 

6) Name: ClOUT 
Purpose: Transmit a byte over the serial bus 
Address: $FFA8 
Communication registers: A; load byte to be output in A 
Prep. routines : LISTEN, (SECOND if device needs secondary 

address) 
Possible errors: see READST 
Stack: 0 
Registers used: A 

7) Name: CLALL 
Purpose: Close all files 
Address: $FFE7 
Communciation registers: none 
Prep. routines: none . 
Possible errors: none 
Stack: 11 
Registers used: A,X 

8) Name: CLOSE 
Purpose: Close a logical file 
Address $FFC3 
Communication registers : A; load A with logical file number to be 

closed 
Prep. routines: none 
Possible errors: none 
Stack :0 
Registers used: A,X 

9) Name: CLRCHIN 
Purpose: Clear 1/0 channels 
Address: $FFCC 
Communication registers: none 
Prep. routines: none 

184 



Possible errors: none 
Stack: 9 
Registers used: A, X 

10) Name: GETIN 
Purpose: Get a character from keyboard buffer 
Address: $FFE4 
Communication registers: A; character code returned in A 
Prep. routines: none 
Possible errors: none 
Stack: 0 
Registers used: A, X 

11) Name: 10BASE 
Purpose: Define I/O memory page 
Address: $FFF3 
Communication registers: X, Y; respectively low and high address 

bytes of memory section where memory 
mapped I/O devices are located are 
returned in X, Y 

Prep. routines: none 
Possible errors: none 
Stack: Two registers used: X, Y 

12) Name: LISTEN 
Purpose : Command a device on the serial bus to receive data 
Address: $FFB1 
Communication registers: A; load A with number 4-1, 3 indicating 

device. 
Prep. routines: none 
Possible errors: see READST 
Stack :0 
Registers used: A 

13) Name: LOAD 
Purpose: Load RAM from device, or verify 
Address: $FFD5 
Communication registers: A; set to 0 for load. 1 for verify. X. Y; low 

and high bytes of starting address of load 
Prep. routines: SETLFS, SETNAM 
Possible errors: 0,4,5,8,9 
Stack: 0 
Registers used: A,X, Y 

14) Name: MEMBOT 
Purpose: Set or read the address of the bottom of RAM 
Address: $FF9C 
Communication registers : Carry flag; 1 to read. 0 to set bottom of 

memory. X. Y; low and high bytes of 
address. If carry is set, the address will 
be returned in X, Y. If carry clear. 

185 



Prep. routines: none 
Possible errors: none 
Stack: 0 
Registers used: X, Y, P 

15) Name: MEMTOP 

address in X, Y will be transferred to 
pointer to bottom of RAM 

Purpose: Set or read the address of top of RAM 
Address: $FF99 
Communication registers: Carry, X, Y; as for MEMBOT 
Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: X, Y, Carry 

16) Name: OPEN 
Purpose: Open a logical file 
Address: $FFCO 
Communication registers: none 
Prep. routines: SETLFS, SETNAM 
Possible errors: 1,2.4,5,6 
Stack: 0 
Registers used: A, X, Y 

17) Name: PLOT 
Purpose: Set cursor location or read cursor location 
Address: $FFFO 
Communication registers : Carry: 1 for set cursor location 

o for read cursor location 

Prep. routines: none 
Possible errors : none 
Stack: 2 

X; column number (0-21 ) returned to or 
loaded from 

Y; row number (0-22) returned to or 
loaded from 

Registers used: Carry, X, Y 

18) Name: RDTIM 
Purpose: Read system clock - 3 byte value 
Address: $FFDE 
Communication registers: A; most Significant byte returned 

Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: A, X, Y 

X; next mostsignificant byte returned 
Y; least significant byte returned 

186 



19) Name: READST 
Purpose: read status word 
Address $FFB7 
Communication registers 

Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: A 

20) Name: RESTOR 

A; error code returned in A. See 
discussion of ST in BASIC section for 
codes and meanings 

Purpose: Restore default system and interrupt vectors 
Address: $FFBA 
Communication registers: none 
Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: A, X, Y 

21) Name: SAVE 
Purpose: Save memory to a device 
Address: $FFDB 
Communication registers : A; load with zero-page address. This 

address and the next byte contain the 
address of the start of memory to be 
saved. 
X, Y; low and high bytes of end address 
of memory to be saved. 

Prep. routines : SETLFS, SETNAM (SETNAM not needed If a 
nameless save to Datasette is desired) 
Possible errors: 5,B,9 
Stack: 0 
Registers used: A, X, Y 

22) Name: SCNKEY 
Purpose: Scan the keyboard, put value in keyboard queue 
Address: $FF9F 
Communication registers: none 
Prep. routines: none 
Possible errors: none 
Stack: 0 
Registers used: A, X, Y 

23) Name: SCREEN 
Purpose: Return number of screen rows and columns 
Address: $FFED 
Communication registers: X; number of columns returned in X 

Y; number of rows returned in Y 
Prep. routines: none 
Possible errors: none 

187 



Stack :2 
Registers used: X, Y 

24) Name: SECOND 
Purpose: Send secondary address for LISTEN 
Address: $FF93 
Communication registers : A; load with secondary address to be 

sent 
Prep. routines: LISTEN 
Possible errors: see READST 
Stack: 0 
Registers used: A 

25) Name: SETLFS 
Purpose: Set up a logical file number, device and secondary 
addresses 
Address: $FFBA 
Communication registers: A; load logical file number into A 

X; device number 

Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: A, X, Y 

Y; command (secondary address) 

26) Name: SETNAM 
Purpose: Set up file name 
Address: $FFBD 
Communication registers: A; load length of file name into A 

Prep. routines: none 
Possible errors: none 
Stack: 0 
Registers used: A, X, Y 

X, Y; low, high bytes of address of start of 
memory where file name is stored 

27) Name: SETTIM 

28) 

Purpose: Set the system clock - 3 byte value 
Address: $FFDB 
Communication registers: A; most significant byte 

Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: A, X, Y 
Name:STOP 

X; next most significant byte 
Y; least significant byte 

Purpose: Check if stop key pressed 
Address: $FFE1 

188 



Communication registers: zero flag; set if STOP key pressed 
Prep. routines: none 
Possible errors: none 
Stack :0 
Registers used: zero flag, A, X 

29) Name: TALK 
Purpose: Command a device on the serial bus to TALK 
Address: $FFB4 
Communication registers: A; load device number into A 
Prep. routines: none 
Possible errors: see READST 
Stack :0 
Registers used: A 

30) Name: TKSA 
Purpose : send a secondary address to a device commanded to 

TALK 
Address: $FF96 
Communication registers: A; load secondary address into A 
Prep. routines: TALK 
Possible errors: see READST 
Stack :0 
Registers used: A 

31) Name: UNLSN 
Purpose : Command all devices on the serial bus to stop receiving 

data 
Address: $FFAE 
Communication registers: none 
Prep. routines: none 
Possible errors: see READST 
Stack :0 
Registers used: A 

32) Name: UNTLK 
Pupose : Send an UNT ALK command to all devices on serial bus 
Address: $FFAB 
Communication registers: none 
Prep. routines: none 
Possible errors: see READST 
Stack: 0 
Registers used: A 

33) Name: VECTOR 
Purpose: Set or read system RAM vectors 
Address: $FF8D 
Communication registers: X, Y; address of list of system RAM 

vectors 
Carry flag; if S13t, the RAM vectors are 

189 



vectors. 

read into the list pointed to by X, Y and 
if clear, the contents of the list pointed 
to by X, Yare read into the RAM 

Prep. routines: none 
Possible errors: none 
Stack: 2 
Registers used: Carry flag, X, Y 

Error Codes 
Value 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Meaning 
Routine terminated by STOP key 
Too many open files 
File already open 
File not open 
File not found 
Device not present 
File is not an input file 
File is not an output file 
File name is missing 
Illegal device number 

190 



Appendix E 

BASIC error messages 
BASIC's error messages aren't always illuminating. This list of 
messages and explanations may be helpful. 
BAD DATA: 
The program expected numeric data, but received string data (from an 
OPENed file) 
BAD SUBSCRIPT: 
The program tried to reference an element of an array whose subscript 
was outside the dimensions of the array. 
CAN'T CONTINUE: 
CONT doesn't work because (a) the program was never run, (b) it 
stopped due to an error condition or (c) an attempt was made to edit the 
program. 
DEVICE NOT PRESENT: 
The relevant I/O device isn't present. 
DIVISION BY ZERO: 
Not allowed. 
EXTRA IGNORED: 
Too many data items typed in response to an INPUT statement. Only the 
required numer of items were accepted. Doesn't stop a program. 
FILE ALREADY EXISTS: 
The name of the source file being copied with the COpy statement 
alread exists on the destination diskette. 
FILE NOT FOUND: 
On tape, this means that an END-OF-TAPE marker was found, so 
search stops. On disk no such file exists. 
FILE NOT OPEN: 
You tried an I/O command on a file that hasn't been opened. 
FILE OPEN: 
You tried to open a file using a number assigned to a file already OPEN. 
FORMULA TOO COMPLEX: 
Either a string expression is too intricate, or an arithmetic expression is 
too complex. If it's a string, break it up into two parts. If it's an arithmetic 
expression, try using parentheses. 
ILLEGAL DIRECT: 
The command attempted in direct mode can only be used in program 
mode 
ILLEGAL QUANTITY: 
A number used as an argument is out of range. e.g. POKEing a value 
greater than 255. 
LOAD: 
Too many errors ( ) 31) were found on a tape LOAD 

191 



NEXT WITHOUT FOR: 
Either you've put in too many NEXT statements, forgotten a FOR 
statement or branched past a FOR statement. 
NOT INPUT FILE: 
An attempt has been made to read from a file designated as output only. 
NOT OUTPUT FILE: 
An attempt has been made to write to a file designated as input only. 
OUTOFDATA: 
A READ statement has run out of data. 
OUT OF MEMORY: 
No more RAM left for program or variables. Also caused by too many 
nested FOR loops and/or GOSUBs. In this case you may have lots of 
memory but no stack left. You may also have inadvertently changed the 
top-of-memory pOinter. 
OVERFLOW: 
The result of a calculation is greater than 1.70141884E+38. 
REDIM'D ARRAY: 
An array name appears in more than one DIM statement, or has been 
both implicitly and explicitly DIMensioned. 
REDO FROM START: 
An INPUT statement received the wrong type of data. Doesn't stop the 
program, just continues prompting until the correct type of data is input. 
RETURN WITHOUT GOSUB: 
A RETURN for which there is no corresponding GOSUB. Usually caused 
by dropping into the subroutine inadvertently. 
STRING TOO LONG: 
Strings can be a maximum of 255 characters long. 
SYNTAX: 
BASIC doesn't recognise the statement. 
TYPE MISMATCH: 
Number used in place of string, or vice-versa. 
UNDEF'D FUNCTION: 
A user defined function was called but has not yet been defined, with a 
DEF FN statement 
UNDEF'D STATEMENT: 
An attempt has been made to go to a non-existent line number. 
VERIFY: 
The program on tape or disk being VERIFYd does not match the program 
in memory. 

192 



AppendixF 
Current Key Pressed 
Location 197 stores a coded value of the current key depressed. If more 
than one key is depressed the higher value is stored. 

Key Value Key Value Key Value Key Value 

1 0 none 16 SPACE 32 Q 48 
3 1 A 17 Z 33 E 49 
5 2 D 18 C 34 T 50 
7 3 G 19 B 35 U 51 
9 4 J 20 M 36 0 52 
+ 5 L 21 • 37 @ 53 
£ 6 

CRSRf7 
22 none 38 ...... 54 

DEL 7 23 f1 39 f5 55 
f 8 STOP 24 none 40 2 56 
W 9 none 25 S 41 4 57 
R 10 X 26 F 42 6 58 
Y 11 V 27 H 43 8 59 
I 12 N 28 K 44 0 60 
P 13 29 45 61 
* 14 / 30 46 HOME 62 

RETURN 15 CRSRZ 31 f3 47 f7 63 

193 



INDEX 
Abbreviating BASIC ....... .42,43,44 Echo ........................... 68 
Absolute addressing ............. 106 Editor I Assembler ............... 125 
Accumulator .................... 104 Envelope ........................ 52 
Appending programs ............ .44 Exclusive OR XOR ............... 41 
Arrays ....................... 10,43 Expanding sprites ................ 93 
ASCII ............................ 6 Extended background colour ....... 90 
Attack ....................... 52, 72 EXTRA IGNORED ............... 25 
Attenuating ...................... 58 
Autostart . . . . . . . . . . . . . . . . . . . . . . . 119 False ............................ 2 

File manipulation ................ 154 
BAM .......................... 154 Filters ................. 56,73,74,78 
Base address .............. 107, 108 Flags .......................... 105 
BASIC interpreter ................. 2 Floating point variables ............. 9 
BASIC storage .................. .45 
BASIC syntax .................... 17 
Binary digit ................... 6, 102 

Floppy disk drive ................ 152 
Formatting Diskettes ............. 153 
FOR-NEXT ..................... 2 

Binary number system ........ 14, 102 Function keys ................... 128 
Bit mapped screen ........... 91,140 
Bits ............................. 15 Gatebit ......................... 71 
Block allocate ................... 157 GOSUB ...................... .4,43 
Block free ...................... 158 GOTO .......................... .4 
Block read ..................... 156 Graphics memory ................ 79 
Block write ..................... 157 Graphics printer ................. 161 
Boolean operators ................ 13 
Buffer ..... .45,47,119,155,156,158 Hexadecimal number system .. 14, 102 
Buffer pointer ................... 158 Hires graphics ................... 86 
Byte ............................. 6 

IFTHEN ......................... 2 
Character colour ................. 80 ILLEGAL QUANTITY ............. 17 
Character memory ............... 79 Immediate addressing ........... 106 
Caractertable ................... 82 Immediate mode .................. 1 
Collision detection ............. 91,98 Implicit addressing .............. 106 
Colour control keys ............... 80 Indexed addressing ............. 107 
Colour Memory ............ 79,80,82 Indexed indirect addressing ....... 108 
Command number ............... 30 Indirect indexed addressing ....... 108 
Concatenation ................. 8, 12 Indirect pointers ................. 108 
Control structure .................. 2 Initialisation .................... 134 
Conversion Instruction sel(6510) ............ 109 

hex to binary .................. 103 I nteger variable .................. 10 
hex to decimal ................ 103 I nterrupt request ............ 127, 146 
dec to hex .................... 103 1/0 device ...................... 119 
dec to binary .................. 103 1/0 port ........................ 105 

Datasette ...................... 152 Joy~~ ........................ 163 
Data structure. . . . . . . . . . . . . . . .. . .. 6 
Debugging ....................... 5 Kemal ......................... 133 
Decay ....................... 52, 72 Keyboard ...................... 163 
Decimal number system ........... 14 Keyword ........................ 45 
Default ................ 11, 19, 80, 99 
DEVICE NOT PRESENT .......... 36 Label references ................ 125 
Device number ................... 30 Loop variable ..................... 3 
Diskette directory ............... 154 Lores graphics ................... 79 
Disk user commands ............ 160 LIFO .......................... 104 
Drive number ................... 155 Linking registers ................. 67 

194 



Machine language ............... 101 Scientific notation ................. 9 
Masks ....................... 16,88 Screen codes .................... 81 
Memory bank ................... 118 
Memory configuration ............ 120 

Screen memory .................. 79 
Sectors ........................ 153 

Memory execute ................ 160 
Memory management signals ..... 120 
Memory map ................... 118 
Memory read ................... 159 

Sequential access ............... 156 
Sequential execution ............... 2 
Sound chip registers .............. 70 
Sound effects .................... 67 

Memory write ................... 159 
Microprocessor ................. 101 

Source program ................. 125 
SPC ............................ 43 

Mnemonics ..................... 109 
MMON ........................ 1V 
Monitor ........................ 125 
Modulation ...................... 68 
Multicolour ...................... 89 
Multicolour bit map mode .......... 91 
Multicolour sprites ................ 93 
Multiple statements .............. .42 

Sprites .......................... 91 
Sprite collisions ................. 147 
Sprite collision register ............ 98 
Sprite colour ..................... 93 
Sprite movement ................. 94 
Sprite pointer .................... 91 
Sprite priority .................... 96 
Sprite priority register ............. 97 

Nesting ....................... 3, 32 
Note values ..................... 75 
Nybbles ......................... 90 

Stack .......................... 3,5 
Stack pointer ................... 104 
String variable .................... 8 
Sustain ...................... 52, 72 

Object code .................... 125 
Sync bit ...................... 71,72 

ON GOTO/GOSUB ................ 5 TAB ............................ 43 
Operands ....................... 11 Test bit ......................... 71 
Operating system ............... 133 
Operators ....................... 11 

Timing .......................... 56 
Tracks ......................... 153 

OUT OF DATA ................... 25 True ............................ 2 
OUT OF MEMORY ................ 5 
OVERFLOW ERROR .............. 9 
Overlays ....................... .43 

Utility instructions ............... 156 

Paddles ..................... 74,163 
Pitch ........................... 51 

Variable ...................... 5, 42 
Vectors ........... 107, 119, 127, 128 
Vibrato .......................... 68 

Pixels ....................... 86,91 
Portemento ...................... 69 
Processor registers .............. 104 

VIC chip addresses ............... 86 
VIC chip registers ............... 100 
Video bank .................. 92, 140 

Processor status register ......... 104 Voices ....................... 54, 55 
Program counter ................ 105 
Program lines ..................... 1 Waveform .................... 51,72 
Program mode .................... 1 
Pseudo random .................. 35 

Write protect ............... 152, 154 

RAM .......................... 119 
X and Y index registers ........... 104. 

Random access ................. 156 
Raster interrupt .............. 91, 145 

Zero page addressing ............ 106 

Raster register .................. 146 
REDO FROM START ........... 8, 25 
Registers ................. 52, 53, 54 
Relative addressing ............. 107 
Release ..................... 52, 72 
Release signal ................... 52 
Resonance ...................... 59 
Ring mod bit .................. 71, 73 
ROM .......................... 119 
ROM cartridge .................. 119 

195 



NOTES 

196 



NOTES 

197 



NOTES 

198 



-• • • • • • • • • 
COMMODORE 64 EXPOSED 

REGISTRATION CARD 

• Please fill out this page and return it promptly in order that we may keep 
• you informed of new software and special oHers that arise. Simply cut 
: along the dotted line and return it to the correct address selected from 
• those overleaf. 

• • • • • • • • • • • • • • • • • • • • • 

Where did you learn of this product? 

o Magazine. If so, which one? 

o Through a friend. 

o Saw it in a Retail Store 

o Other. Please specify ....................................... . 

Which Magazines do you purchase? 

Regularly: .......... . ....................................... . 

Occassionally: ................................................ . 

What age are you? 

010-15 016-19 020-24 0 Over 25 
• We are continually writing new material and would appreciate receiving 
• your comments on our product. • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

How would you rate this book? 

8 Excellent 
Good o Poor 

o Value for money o Priced right o Overpriced 

Please tell us what software you would like to see produced for your 
COMMODORE 64. 

Name ____________________________________________ _ 

Address ______________________ _ 

__________________________________ Code 



P
U

T
 T

H
IS

 IN
 A

 S
T

A
M

P
E

D
 E

N
V

E
LO

P
E

 A
N

D
 S

E
N

D
 T

O
: 

In
 th

e
 U

n
ite

d
 S

ta
te

s o
f A

m
e

rica
 re

tu
rn

 p
a

g
e

 to
: 

M
e

lb
o

u
rn

e
 H

o
u

se
 S

oftw
are Inc., 347 R

eedw
ood D

rive, 
N

ashville T
N

 
3

7
2

1
7

 .. 

In
 th

e
 U

n
ite

d
 K

in
g

d
o

m
 re

tu
rn

 p
a

g
e

 to
: 

M
e

lb
o

u
rn

e
 H

o
u

se
 (P

ublishers) Ltd., M
elbourne H

ouse, C
hurch Y

ard, 
T

ring, H
ertfordshire, H

P
23 5LU

 

In
 A

u
stra

lia
 &

 N
e

w
 Z

e
a

la
n

d
 re

tu
rn

 page to
: 

M
e

lb
o

u
rn

e
 H

o
u

se
 (A

ustralia) P
ty. Ltd., S

uite 4
,7

5
 P

alm
erston C

rescent, 
S

outh M
elbourne, V

ictoria, 3205. 





Here is the definitive book for the Commodore owner. 

A complete and comprehensive guide to make you total master 
of your Commodore 64. 

Commodore 64 Exposed is an encyclopedia of solutions from 
Basic programming through to machine language, and 
includes vital tables of memory locations and system variables. 

The step by step format is designed to ensure that every 
owner will understand exactly how their Commodore 64 
works. Every feature and program variable is carefully 
explained with the aid 'of simple demonstration programs 
that can be entered in minutes. 

Whether you are a first time computer user or a serious 
programmer, if you want to take full advantage of your 
Commodore 64's impressive capabilities, then this is the book 
for you. 

.. 

Melbourne 
House 

Publishers 
ISBN 086161133 0 


