

Commodore 64

Getting the Most From It

Executive Editor: Terrell Anderson

Production Editor/Text Designer: Paula Huber

Art Director: Don Sellers

Assistant Art Director: Bernard Vervin

Photographer: George Dodson

Indexer: Cindy Shore

Typesetter Harper Graphics, Waldorf, MD

Printer: R.R. Donnelley and Sons Company, Harrisonburg, VA

Typefaces: Aster (text and display), Monospace (programs)

Commodore 64

Getting the Most From It

Tim Onosko

Robert J. Brady Co.

A Prentice-Hall Publishing and Communications Company

Bowie, MD 20715

Commodore 64: Getting the Most From It

Copyright © 1983 by Robert J. Brady Company.

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and

recording, or by any information storage and retrieval system, without permission in

writing from the publisher. For information, address Robert J. Brady Co, Bowie,

Maryland 20715.

Library of Congress Cataloging in Publication Data

Onosko, Tim.

Commodore 64, getting the most from it.

Includes index.

1. Commodore 64 (Computer)—Programming. I. Title.

QA76.8.064056 1983 001.64'2 83-14127

ISBN D-fl^3D3-3flD-M

Prentice-Hall International, Inc., London

Prentice-Hall Canada, Inc., Scarborough, Ontario

Prentice-Hall of Australia, Pty., Ltd, Sydney

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd, Singapore

Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA., Rio de Janeiro

Printed in the United States of America

83 84 85 86 87 88 89 90 91 92 93 10 9 8 7 6 5 4 3 2 1

Contents

Introduction ix

1 Where Did It Come From? 1

Inside the Commodore 64

2 Setting Up 5

Unpacking • Finding a Home • Television Sets vs. Video Mon

itors • Hooking Up • Checking It Out • Lots of Keys • Typing

on QWERTY

3 Some Essential Skills 25

The RETURN Key • LOADing Up • LOAD From Tape • My

Program Won't LOAD • SAVE to Tape • Checking Your Work

• RUNning the Program • About Commodore's Disk Drives •

Using the Disk Drive • The Disk Directory • Preparing a Disk

• LOAD from Disk • SAVE andVERIFY • Erasing Disk Files •

Validate the Disk • Disk ERRORs • Some Disk Cautions •

Commodore LOAD Compatibility • Using Your Computer as a

Calculator • How Much Memory Is Left? • Beware the Quote

Marks • What Time Is It?

4 Programming—An Introduction 49

Basically BASIC • A Program Defined • Numbering and List

ing • The END • Variables: How the Computer Keeps Its Facts

Straight • BASIC Punctuation • Programming PRINT

5 Programming—The Big Ten 69

Using INPUT to Ask for Information • GOTO • IF, THEN, and

OR • GETting More Information • FOR the NEXTwords... •

GOSUB and RETURN • A Closing REMark

6 Programming—How the Computer

Stores Information 85

Another Kind of Variable • A DIM View • READing DATA •

Disk and Tape Files from Arrays • Creating a Mailing List

Program • Designing the Program • Programming Con

siderations • Starting to Program • Using the Program •

Choosing a Data Base Program • Mailing List Program

7 Programming—The Rest of BASIC 119

PEEK and POKE • SYSandUSR • CMD • SPCandTAB •

STOP and WAIT • ON • Mathematical Functions • String-

Handling Words • LEN, VAL and STR$ • ASC and CHR$ •

LEFT$, MID$, RIGHTS

8 Word Processing: The Electronic Typewriter 133

What is a Word Processor? • What You'll Need: Printers and

Disks • Advanced Word Processing Functions • Four Com

modore 64 Word Processors • Quick Brown Fox • WordPro 3

Plus/64 • Easy Script • PaperClip • A Few Tips

9 Color, Graphics, Sound, and Games 151

VICtor and SIDney • RaNDom Notes • Screen and Border

Colors • Character Colors • PRINTing Graphics • Digital

Dice • Digital Dice Program • Sprite Graphics • The Old Shell

Game • Shell Game Program • SID sound • Song Program •

The Joy of Joysticks • What's Left?

10 Beyond BASIC 181

Hardware and Enhancements • Entertainment Programs •

Spreadsheets and Advanced Software • Other Languages •

Human-to-Machine Interfacing

Appendix 1: Exploring the

Commodore 64 Jim Butterfield 193

WhyTinker? • The Computer's Memory • Kinds of Memory •

Memory Maps • RAMbling • The Great Memory Shuffle •

Summary

Appendix 2: Exploring Graphics on the

Commodore 64 Paul F. Schatz 207

Is It All Done With Mirrors? • Who's Pulling the Strings? •

How Do I Talk to VIC? • Sprites • Gallop Program • Sum

mary of Sprite Registers • Sprite Editor Program • Characters

• Gothic Character Program • Bit Map Graphics • Mini-

graph.Dat Program • Minigraph.Demo Program • A Few Con
cluding Remarks

vi

Appendix 3: Exploring Sound

and Music Dr. Frank H. Covitz 251

The Fundamentals ofTones • Addressing SID • Moving on to

Dynamics • The Well-Tempered Computer • Sounds from

Hyperspace • Sound Effects Programs

Appendix 4: Error Messages 283

Appendix 5: ASCII/CHR$ Codes & Base Conversion Table 289

Glossary 295

Index 299

Acknowledgments 305

vii

LIMITS OF LIABILITY AND

DISCLAIMER OF WARRANTY

The author and publisher of this book have used their best efforts in pre

paring this book and the programs contained in it These efforts include

the development, research, and testing of the programs to determine their

effectiveness. The author and the publisher make no warranty of any kind,

expressed or implied, with regard to these programs, the text, or the

documentation contained in this book. The author and the publisher shall

not be liable in any event for claims of incidental or consequential damages

in connection with, or arising out of, the furnishing, performance, or use of

the text or the programs. The programs contained in this book and on any

diskettes are intended for use of the original purchaser-user. The diskettes

may be copied by the original purchaser-user for backup purposes without

requiring express permission of the copyright holder.

Note to Authors

Do you have a manuscript or a software program re

lated to personal computers? Do you have an idea for

developing such a project? If so, we would like to hear

from you The Brady Co. produces a complete range of

books and applications software for the personal com

puter market We invite you to write to David Culverwell,

Editor-in-Chief, Robert J. Brady Co., Bowie, Maryland

20715.

viii

Introduction

If you are reading this book, you have either bought a computer, will

buy one, or are at least considering the idea. Its purpose is to provide
you with enough information about the Commodore 64 computer to

use it well. You will learn what it is, where it came from, and what it

can and cannot do for you.

First, and to the point, this book is only about the Commodore 64
and other computers in the same family (a portable and a classroom
version). Aside from certain basic ideas common to most computers

and references to other computers manufactured by Commodore—
the VIC-20 in particular—you11 learn little or nothing about how to use
an Apple, or TRS-80, or Atari, or any other personal computer.

Are you trying to decide which computer to buy? This book (and
books about other computers, too) may help you make that decision.

Getting information this way is better than being bombarded by the

propaganda that computer salesmen might heap on you. This book
contains both information and a little opinion as well.

Are you still deciding whether or not to buy a computer at all? This

book, too, might help you realize just how a computer can help you at

home, in school, or in your profession.

If you're an "old pro" and have been in personal computing from

the "beginning"—How long ago was that? Five or six years?—there's

something here for you, too. The Commodore 64 is a computer de
signed with many interesting, powerful and unique features.
Most likely, though, you've either just purchased a Commodore 64

or have access to one at work or at school.You maybe ill at ease about
just what a computer is. You may feel that you are not good enough at
mathematics to use it, or that you lack the skills necessary to program
it. It seems complicated and, perhaps, intimidating.

Despite the advances of the last decade, computers often appear to
be "cold" machines (no matter how much manufacturers call them
"user-friendly"). You may think that the computer doesn't like you or
anyone else that comes near it.

Forget it. Computers are amazing, intriguing machines, but are no
more complex, really, than an automobile. And you need about as
much skill—perhaps less—to begin to use one. Programming doesn't
necessarily rely on complex mathematics. It only requests that you
think a problem through and learn how to break it down into a num
ber of smaller problems. And as for math, many personal computer
users who were terrible at math while in school soon learn that they
are quite good at it when it comes to doing practical things. In a

ix

classroom, mathematical exercises for their own sake aren't always

the most rewarding of challenges. When you program a computer,
however, it is possible to see the numbers go to work for you.

Even though programming has its own rewards, some computer

users program very seldom, if at all. They choose, instead, to use any
number of good, commercially available programs. Learning to use a

program usually requires much less skill than writing one.You simply

load it into the computer, then follow directions. Be forewarned,
though.Manyvery powerful programs also require thatyou learn how
to take full advantage of their capabilities, a process that can demand
almost as much attention and concentration as learning to program.

If you don't need a computer to solve any pressing problems or aid
you in your day-to-day life, don't worry about it. It also happens to be
the best toy you can buy. It can make music and pictures and will keep
you amused for hours on end. It will play with you when no one else
wants to. Computers arejust as much for play as they are forwork, and

don't let anybody tell you otherwise.

One good reason to own and use a computer is just to learn about

them. You could go to a special school or take a class to learn about

computers. Or maybe you are learning about them in school or on the

job right now. Those are good ways to learn, too. But buying and using

a personal computer might be the best tuition you will every pay.

Sometimes, people are confused or afraid of computers because an

entire language of its own has developed around these "thinking"

machines. Most often, computer lingo is just "techno-babble." But

some computer words aren't just jargon. Computers do require a few

particular words to describe what they're made of and how they oper
ate. You'll find those words in this book (and, at the end, there's a glos

sary for you to consult, just in case you forget what a word means).
Whatyou won't find, though, is jargon forthe sake ofjargon. This book
cant teach you how to talk like a computer "hacker," but maybe it
might help you decipher what these people are talking about.
Are you a professional? Do you bring your work home with you? Do

you want to get ahead at the office? Are you one of many who have a
difficult time keeping yourself organized? Then you are probably ask
ing one question: What, exactly, will a computer do for me? The
answer to that question may or may notbe here. It can come only from
you, once you know the computer's capabilities and limitations. You
must remember that computers aren't magical solutions to unknown
problems. (Any sales pitch that tells you otherwise is just plain hype.)

In this book, you11 get some information about the most common
professional computer applications. From it, you might decide that a
computer can ease your work load.
The book is organized into two main sections. The first is about the

computer and how to use it. It includes lessons in BASIC program
ming as well as information about applications, particularly word
processing. At the end of the book is a section prepared by and for
more experienced Commodore users. It will help you better under-

stand how the machine works, and about computer graphics, music,

and sound.

You should remember, though, that neither this book nor any other

will teach you everything there is to know about computers. If such a
book existed, there would be no need for others. Instead, much like a

smorgasbord, this book is intended for many different tastes.

As you read this book and begin to use your computer, keep a few

important things in mind.

• Be patient. Don't get frustrated. Everyone can learn to use the

computer. Don't be tempted to give up too soon.

• Don't expect the computer to start giving immediately. You must

first learn how to ask it to help you.

• NEVER assume your own level of intelligence. A computer de

mands that you only be smart enough to follow instructions carefully.

• The computer doesn't always know what you are talking about or

trying to do, so follow directions to the letter. You will be talking (via

the keyboard, naturally) to a machine—nothing more. The computer

is literal and logical, sometimes (it seems) to a fault

• If possible, make learning about the computer easy foryourselfby
approaching it with someone else—a friend, a son or daughter,

mother or father, a wife or husband, boyfriend or girlfriend, a next

door neighbor, etc. By doing so, you will help each other and under

stand the ideas more quickly.

• Finally, remember that you will only get out of the computerwhat

you put into it in time and effort.

Above all, try to keep your interest in the computerbalanced with the

rest of your daily life. Maybe the most "magical" thing about any per

sonal computer is how it can absorb your time. It is all too easy to

become preoccupied with the machine, or try to stay with a problem

until you can walk away with the answer. Learning does not come

easy, though, when you have spent hours on a problem or are fatigued.

If you don't seem to be making progress, turn the machine off and

come back to it another time. A fresh approach is all that may be
necessary.

Ideally, the computer should save you, not cost you, time. It is in
tended to make your life easier, not more difficult

xi

TRADEMARKS

64NET is a trademark of American Phototonics, Inc.

Amdek Color-I is a trademark of Amdek Corp.

Apple, Apple II, Apple He, and Apple Lisa are trademarks of Apple Computer, Inc.

Atari is a trademark of Atari, Inc.

Cardette is a trademark of Cardco, Inc.

Commodore, Commodore 64, Easy Graphics, Easy Finance, Easy Comm, and Easy

Script are trademarks of Commodore Business Machines, Inc.

CompuServe is a trademark of CompuServe, Inc. and H.&R.Block Co.

CP/M is a trademark of Digital Research

Dow Jones News/Retrieval Service is a trademark of Dow Jones & Company, Inc.

Epson MX-80, MX-100, and FX-80 are trademarks of Epson America, Inc.

Gemini and Star are trademarks of Star Micronics, Inc.

IBM is a trademark of International Business Machines Corp.

Interlogic, Zork, Starcross, Suspended, and Deadline are trademearks of Infocom, Inc.

MAE is a trademark of Eastern House Software

Microsoft is a trademark of Microsoft Corp.

NEC Spinwriter is a trademark of NEC Home Electronics, Inc.

Okidata is a trademark of Oki Electric Industry Co., Ltd.

PaperClip 64 is a trademark of Batteries Included, Inc.

PetSpeed is a trademark of Small Systems Engineering

Prowriter is a trademark of C. Itoh, Inc.

Quick Brown Fox is a trademark of Quick Brown Fox, Inc.

Radio Shack and TRS-80 are trademarks of Tandy Corp.

The Source is a trademark of Source Telecomputing Corp.

Univac is a trademark of Sperry Univac, Inc.

VicTree and Arrow are trademarks of Skyles Electric Works

VisiCalc is a trademark of Visicorp.

WordPro and WordPro Plus are trademarks of Professional Software, Inc.

Where Did It Come From?

In 1953, it was the "electronic brain/' Thirty years later, it had become

"Machine of the Year,;; and had displaced a human being on the cover of

Time magazine's prestigious year-end issue. Today, there is probably one in

front of you. What is this thing called computer?

A computer bears little resemblance to your brain. Whether it "thinks"

or not is a question of how you use the word. Left to itself, it does little or

nothing and is completely dependent on you, the human. Computers, simply

put, are complex collections of simple devices. They take instructions, move

numbers into and out of their memory, and make elementary decisions.

That's all they do.

The first electronic computer was ENIAC, a now legendary machine built

in the late 1940s by two scientists named Eckert and Mauchly. It followed

centuries of mechanical machines, from the abacus of the ancient Chinese

to the "analytic engine" of British mathematician Charles Babbage. There

has even been speculation that Britain's mysterious Stonehenge was the

"computer" of early astronomers. None of these, however, were computers

as we know them today.

The ideas behind ENIAC became UNIVAC, the first commercial computer

built by Remington Rand in the 1950s. The company whose name was to

become synonymous with computers, International Business Machines (IBM),

made its entry into computers soon after. IBM's major business at the time

was office equipment, including adding and tabulating (counting) machines.

The hallmark of the tabulating era was the rectangular punched card, nick

named the "IBM card" but actually named the Hollerith after its originator

Where Did It Come From?

The ENIAC Computer. Smithsonian Institution Photo No. 6/7989

Herman Hollerith, IBM's chief engineer. The Hollerith became the first stan

dard for humans to communicate with computing machines.

The early electronic computers used vacuum tubes, like those still to be

seen in old radios, and mechanical relay switches. By the middle 1950s, the

semiconductor transistor had been developed. It had the ability to switch

streams of electrons passing through it and led to computer-like logical de

signs. Transistors had replaced tubes in computers by the next decade, and

opened the way for larger, more powerful machines. Still, even the smallest

and most reliable computers of the 1960s were as big as several refrigerators

and often as temperamental as antique wristwatches.

The breakthrough in computer design came late in that decade, as sci

entists discovered ways to put tens, then hundreds of transistors on a single

"chip" of silicon metal. These were the first integrated circuits. One problem,

though, was still to be solved.

Inside the computers of old, numbers were stored in "core memory."

Each little bit of memory was a tiny ring or donut which could be magnetized

in one direction or another. There could be thousands, or even tens of thou

sands, of such memory devices in a computer. The steady development of

electronic integrated circuits paved the way for electronic memories on mi

crochips, which became popular during the 1970s and have all but replaced

I—Where Did It Come From? 3

core memory. The difference between core and the kind of modern electronic

memory widely used today is that core memory was permanent, its contents

remained after the computer's power was turned off. Today's random access

memory chips lose what is stored in them when power is shut off.

Shortly after memory chips made their appearance, the first micropro

cessor integrated circuit was developed. Like a computer, the microprocessor

could be given a sequence of instructions to carry out. It wasn't long before

engineers and basement tinkerers began imagining real computers con

structed from microprocessors and RAM memory chips.

''Personal" computers were born of these early, sometimes halting at

tempts. Computers with strange-sounding names came and went. There were

the MITS Altairs, IMSAIs and SOLs. (SOL deserves a footnote in modern

computing for being named after a magazine editor, Leslie Solomon, who

extolled its virtues.) Most of these tiny computers were sold as kits for hob

byists, but once assembled, they did little other than flash their front panel

of lights. The potential was unmistakable, though.

By 1976, two companies saw their promise and began to design personal

computers that could be used by almost anyone. At a new company called

Apple, two young men, Steve Jobs and Steve Wozniak, built a computer on

a single circuit board and took it around to meetings of computer and elec

tronics enthusiasts in northern California. It was the Apple I. (The Apple II

would follow when Jobs' and Wozniak's business was established.)

Commodore Business Machines grew from a typewriter repair business

started after World War II by Jack Tramiel, a Polish-born immigrant and

survivor of the Nazi concentration camps. Commodore had become a major

seller of electronic calculators, a business near death due to fierce compe

tition, when a team of young engineers led by Chuck Peddle, a microprocessor

pioneer, started work on Commodore's own computer, the PET. Both the

PET and Apple were based on the same microprocessor chip, the 6502. It

came from MOS Technology, a company now owned by Commodore. A ver

sion of the same 6502 further popularized the chip by being at the heart of

Atari's incredibly successful video game system as well as their personal

computers.

(The name PET started as something of a joke based on the "pet rock"

novelty craze of the time. When it came time to make the name "legitimate,"

PET became short for Personal Electronic Transactor. Some in the industry

joked that PET stood for Peddle's Ego Trip, recalling the days when the

steamboat was "Fulton's Folly.")

The Pet was designed for another company to sell. That company was

Radio Shack, which, after evaluating the Commodore computer, decided to

design and sell its own, eventually named the TRS-80. By late 1977, all three

computers were on the market, vying for the few brave souls who were

interested in owning their own machines and willing to answer others who

wondered why anybody would buy one. The age of personal computing had

begun.

4 Inside the Commodore 64

Inside the Commodore 64

The Commodore 64 computers owe much to the design of the original

PET computer and to the VIC-20. An early forerunner of the 64 was designed

but never built. It used the same microprocessor as the PET, originated the

concept of keys for controlling color, and presaged its advanced sound ca

pabilities. Like the PET, it too had an odd name—the TOI computer. (TOI

supposedly stood for the high-minded The Other Intellect, but the joke around

the office soon said it stood for Tool Of Idiots.) The TOI was put on hold,

though, when designers were told to come up with an inexpensive color

computer, the VIC-20. Many of the TOI's features eventually became part of

the Commodore 64.

Inside the 64 computers is a new version of the 6502 microprocessor

which performs a neat trick. It can control the "shape" of the machine's

internal design. Most microcomputers were originally designed with one

portion—the master program called the "operating system/' and the BASIC

programming language—stored permanently in ROM, or Read Only Memory

chips. The 64 breaks from this design in that there is the maximum allowable

memory (for the 6502 and other so-called "eight-bit" microprocessors) inside

the computer. The BASIC programming language can be "dropped" from

the computer by the microprocessor, or replaced by a cartridge program, or

switched between ROM and random access memory. This chameleon-like

structure, or "architecture" in computer jargon, is extremely clever and is

now being imitated by other manufacturers.

In addition to being distinguished by its memory and design structure,

the 64 also delivers exceptional graphic and sound capabilities because of

two new chips, its video controller and sound generator. Other powerful

integrated circuits connect the computer with the outside.

There is a world inside this computer, one that deserves exploration.

Throughout this book, you will learn how to travel its highways and byways

via the BASIC programming language and programs designed for special

purposes. Learning what is here, you can begin to make the computer's power

work for you. Ready? Let's go ...

Setting Up

This section is about the most down-to-earth aspects of computing: Setting

up your computer system and checking the machine out. This is the practical

side of personal computing, one that isn't always considered.

Unpacking

If you are like most people, you have probably already taken the com

puter out of the box and have plugged it in. Even though instruction books

always say to "read these instructions thoroughly first/' it is difficult to follow

directions when your excitement is running high. And, since a computer is

one of the most exciting purchases you've ever made, this enthusiasm is

understandable.

Your eagerness shouldn't get in the way of inspecting what you've bought.

Make sure you've gotten your money's worth. For instance, is everything in

the box? The Commodore 64 should come with its own power supply—that

is the heavy black box with two electrical cords connected to it. There should

also be a video cable, a small metal switch box that allows you to choose

between the computer and normal television reception, and a book entitled

the Commodore 64 Users Guide. Is it all there?

Look at the power supply and, ill particular, the plastic case housing the

computer and keyboard. Does the plastic appear cracked or chipped? If it

does, it means the computer couid have been dropped or otherwise damaged

Finding a Home

in shipment. These could be symptoms of hidden internal damage. If anything

looks suspicious, lake it back to where you made your purchase and insist

on a new one. Don't let a dealer tell you the damage is only cosmetic without

having it thoroughly checked.

Finding a Home

You should decide where you're going to use your computer. Your first

thought may be lo put it in the living room, near the television set. The

computer isn't a video game, though. A video game doesn't have a keyboard,

and you wouldn't think of using a typewriter on the floor or on a living room

coffee table, would you?

If at all possible, choose another place, one more conducive to thinking

and work. Where do you do homework, tend to your personal records, pay

bills or write letters? Wherever that is, it is probably the best place for the

computer.

Like a typewriter, the correct placement of a computer is ideally lower

than a standard desk or table top. This is so you can type on the keyboard

without straining your hands and arms. Some desks have little shelves that

slide out to accommodate a typewriter. Others are designed with computers

2—Setting Up

in mind. Of course you don't need a new desk. A dining room table will do

in a pinch.

Since a complete computer system is more than just the computer itself,

consider space. If you have a Commodore 64, you will need a television set

or a video monitor, to start. (The portable and classroom versions of the 64

have their own video screens.) You may choose to use either a tape recorder

or a floppy disk drive for data storage. If you want to use a modem—a

telephone link to talk to other computers—it, too, takes up space. So does

the power supply. All of these pieces of equipment should be laved out so

that they are not cramped. There should be enough space between the com

puter and screen, for example, so that you can get to the computer to plug

and unplug cables and game or program cartridges.

One space-saving accessory is a small shell stand for a monitor or TV

set. These come from various manufacturers and usually provide room for

extensions and accessories attached lo the back of the computer, as well as

a shelf for a cassette tape recorder and/or a floppy disk unit.

The table top or desk that you choose should also have enough room for

books and other working materials that you'll use with your computer. To

make things easier while copying data into the machine, you might consider

using a typist's page stand, available at most office supply or stationery

stores. If you are going to copy programs from books or magazines, take a

8 Television Sets vs. Video Monitors

look also at some of the cookbook stands that are available. They work very

well, keeping your hands free.

Lighting is an important consideration. Overhead lighting is probably

the best. A desk lamp is good for illuminating the keyboard and printed

materials. In either case, make sure that the light is neither too bright nor

too dim, and above all, that it does not reflect off the video screen. Don't put

the screen opposite a window in the room. Window glare and reflections are

distracting and can cause eyestrain.

Consider your access to electric power and to wall sockets. For the Com

modore 64 system, you will need one outlet for the computer (actually the

power supply), another for the video screen, another for a floppy disk drive,

and possibly one more for a printer, if you have one. If you choose not to use

Commodore's modem (which requires no external power connection) but

another brand, you'll need still another outlet.

The solution to this minor energy crisis is to use an electrical accessory

called a "power strip" or junction box. Hardware stores sell them and most

models are useful. Make certain, however, that the box or power strip is fused

or has its own "circuit breaker." This will prevent a socket from becoming

overloaded. Overloading is dangerous, but there is one more consideration.

If you are programming or entering data and blow a fuse, you will lose the

program or data you have entered.

Junction boxes can be mounted at the back or underneath a table or

desk. One switch usually controls all the outlets, eliminating the need to turn

individual pieces of equipment on or off. One flip of the switch will power

up your entire computer system.

Television Sets vs. Video Monitors

You have two choices in selecting a video display for the Commodore

64. You can choose to use either a TV set or a video monitor. Here are the

differences between them.

A television set is a receiver. Like a radio, it is meant to tune in broadcast

(or cable) TV stations. These stations put out RF, or radio frequency signals.

The 64 puts out a similar television signal on channel 3 or 4 that looks, to a

TV set, like any other station. Inside the television, circuitry separates out

the video signal and feeds it to the picture tube.

A video signal is different from an RF signal and is usually considered

to be visually "cleaner." A video monitor is designed to accept video signals—

most TV sets can't. Since a monitor does not need to process the signal and

separate it from its radio frequency components, it usually displays clearer,

sharper images. Furthermore, since most monitors don't contain TV channel

selectors (tuners), they are not sensitive to strong signals from nearby TV

stations or other types of radio frequency interference.

Some of the very newest consumer television systems are called "com

ponent" TVs. These sets consist of a separate monitor and tuner and are
usually ideal for computer use.

2—Setting Up

One very common kind of interference is produced by the computer itself.

The microchips inside, as well as wires attached to it, can and often do

interfere because of the speed at which the chips operate. For example, some

early computers put out interference that disturbs reception on a standard

TV set. The video monitor is also insensitive to this.

Not all television sets work well with personal computers. Many older

sets were not designed with computers (or even video games) in mind. Pic

tures on these sets tend to lack stability—they look "squeamish." Other older-

sets (and a few new ones) are just not sharp enough to read the characters

a personal computer sends to the screen.

Color can also be a problem. If the picture tube ol an old set is bad, it

may not display colors correctly, or a condition known as "blooming" can

occur. When this happens, one color on the screen lights up brighter than

others and blurs the words on ihe screen. It can cause fringing and smearing

and make a line printed by the computer difficult or impossible to read.

Another condition common to television sets (and lound on monitors,

too) is "overscanning." Basically, this means that a portion of the picture on

the top and bottom or sides of the screen is chopped off. All TV sets and most

monitors overscan slightly (otherwise you'd always see a black border around

a TV picture), but the degree to which the cropping occurs varies wildly.

Occasionally an old TV set will overscan so badly that it will crop valuable

10 Television Sets vs. Video Monitors

screen information. This kind of set is totally useless with any computer.

(One advantage of the Commodore 64 family computers is that the screen is

surrounded by a border, so overscanning is somewhat less of a problem.)

If you are going to use a television set—and because of cost considera

tions, many people do—a good rule of thumb says that a new, but inexpensive

TV is almost always better than an old one. Bargain hunting for a used set

is the least preferable of the alternatives.

There's a difference, too, between the quality of black-and-white and

color monitors. All video screens (except those found on some of the new,

high-tech pocket portables) are comprised of phosphors, chemical coatings

which light up when struck by a beam of energy inside the picture tube.

Color video screens use an arrangement of green, blue and red colored

phosphors. Screens that aren't designed for color—monochrome screens that

display white, green, blue or amber images against a dark background—use

only one kind of phosphor. Green is the most popular color for a monochrome

monitor since most people believe it is easiest on your eyes.

The color monitor, on the other hand, makes its blackrand-white picture

by a combination of its colored phosphors, so the characters on its screen

are generally not as sharp. Most monochrome monitors can easily display

as many as 80 computer-generated characters on a single line. Color monitors

that can be used with the Commodore 64 family are usually limited by their

resolution to about half that many screen characters.

One type of color monitor is known as "RGB" (for Red, Green and Blue),

and its picture is especially sharp, with almost the clarity of some mono

chrome monitors. RGB monitors require a special video output other than

the one found on the Commodore 64 family. (Don't worry, most other com

puters in their price range don't have RGB outputs either.) So you're re

stricted to using most other monitors which accept so-called "composite"

video, the most common type.

The Amdek Color-I is an example of an industry standard color monitor

and is well suited for use with the Commodore 64. It is rugged and displays

a very high-quality picture. In addition, the 64's sound can be piped through

its internal amplifier and speaker. Commodore also sells its own line of color

monitors specially designed for use with its computers.

If you have purchased your computer primarily for recordkeeping tasks

or to use as a word processor, color and graphic capabilities are of much less

importance to you. You should consider using a monochrome monitor as it

will be much easier to read and could minimize eyestrain.

A standard, black-and-white television set will not always work as well

as a monochrome monitor. When using a monochrome monitor, you can use

a special video signal the computer puts out. This signal does not contain

color information and is easier to read on a monochrome monitor. There is

no such black-and-white signal that can be readily used with a standard
television set, however.

2—Setting Up

Hooking Up

11

Connecting a Commodore 64 is about as simple as attaching ihe pieces

of a stereo hi-fi system. You shouldn't need any help, even if you consider

yourself technically inept.

To get going, here is a

computer itself.

lisi of the most important connections on the

Power The electric power connector is located on the right side of

the Commodore 64, near the rear. It is a round, 7-pin socket that is used to

attach the power supply. If the cords at either end of the power supplv are

bent or broken, do not plug it in. It could have a disastrous effect on the

computer. Never attach any other kind of power supplv to the computer,

either, even if the plugs fit correctly.

Cassette Port Looking at the back of the Commodore 64, this is the

second opening from the right. Actually, it is the edge of the printed circuit

board on which the computer is built. Attach the Commodore cassette re

corder to this flat connector, making sure the "key" (a piece of plastic inside

the plug on the cassette cable) is in the same position as the slot on the

connector.

12 Hooking Up

RF Modulator "RF" stands for radio frequency modulator. (It is
also called the "TV Connector" by Commodore.) This is the connection that

feeds a TV signal from the computer to a standard television set. Plug the

thin cable that comes with the 64 between this round connector (fifth hole

from the right, looking at the back) and the switch box that connects to the

TV set. Connect the switch box to the antenna terminals of the television set.

Serial Port This is an all-important connection between the com
puter and floppy disk storage units, printers, etc. Located third from the right

at the rear, it uses a 5-pin round plug. The cable furnished with Commodore's

floppy disk drive or printer fits it. Plug one end into the computer, the other

into either similar socket at the rear of the disk unit or printer. To distinguish

the serial port from the connector that accommodates the modem, or tele

phone link, it is often called the "VIC serial bus."

Cartridge Port Located at the far left of the machine, when looking
at it from the back, this connection has a myriad of uses. This is where games

or other programs packaged as cartridges will be plugged in. Some adapters

that allow you to use disk drives other than Commodore's also use this port,

as do cartridges containing optional microprocessor chips.

User Port Located in back on the far right side, this is an all-purpose

connector. Primarily, it is used to connect Commodore's telephone link, or

modem, but is also sometimes used to connect printers and other accessories

as well. Experimenters like this port for homemade gadgets. It is often re

ferred to as the "parallel port" because it has eight parallel data connections.

Control Ports Located on the right side of the computer, the two
control ports are used mainly for connecting.game controllers, joysticks, and

paddles. Some programs, however, are being sold with tiny "black boxes"

called "keys" that are required to be connected to one of the control ports

to work. (This is a security measure that protects that program against un

authorized circulation.)

A-VPort This is also called the audio-video connector. It is the socket

used to connect the 64 to monochrome and color monitors, to connect the

output of its sound generator to an external amplifier (like a stereo system),

and to feed sound from an outside source (such as a tape recorder, micro

phone, or musical instrument) to the computer.

If you are handy with a soldering iron, you can make your own con

necting cables based on the description of the plug in the manual that came

with your computer. If not, you can have your dealer (or someone else) make

them for you, or you can buy commercially available ones.

When using a standard television set, don't worry about this audio-

video plug. Both sound and picture will come out of your TV.

If you plan to use a monochrome video monitor (not a black-and-white

television set), ask your dealer or a technician to make a special cable for

2—Setting Up 13

you. Pin #1 on the audio-video connector is identified as "luminance." This

allows you to use only the black-and-white portion of the computer's video

signal and offers the best screen sharpness.

Checking It Out

If you already have connected the components of your computer system

and know lhal it is working correctly, you can skip this section and read on.

However, if you've jusl purchased your machine and want to know if every

thing is working as it should, here's a simple check-out you can perform.

To make sure that your computer system is working, connect all the

pieces. If you are using a color television set, connect the round video cable

to the RF modulator output and the antenna switch box. Attach the switch

box to your television's antenna connector. II you are using a video monitor,

connect ihe appropriate cables to it. Connect the Commodore cassette re

corder and/or the floppy disk drive to the computer. If you have a printer,

connect it not to the computer, but to the empty socket at the rear of the

disk drive.

If you have the portable or classroom version of the Commodore 64, most

of these connections are already made for you inside the case.

To get everything going, turn on each piece of equipment. Adjust the

color on the monitor or television set so that the screen is blue, with light

blue characters and border. On the Commodore 64 ihe screen should read:

**** COMMODORE L4 BASIC VE ****

b4K RAM SYSTEM 3flqil BASIC BYTES FREE

READY.

*-*** COHtiODORE 64 BASIC y2 ****

64K RAH SYSTCtt 38311 BASIC BVTES FBEE

EADV,

14 Checking It Out

(The message that comes up on the portable and classroom computers

should be similar, if not exactly the same.)

There should be a small, light blue square flashing on and off beneath

the word READY. This square is called the "cursor." It is a French word that

means "runner." The cursor "runs" across the screen, always indicating your

current position.

What does this message mean?

The top line tells you that this is BASIC V2, or version #2 of the com

puter's programming language, called BASIC. Sixty-four "K" (for "kilo" or

thousand) RAM means that there are over 64,000 characters of RAM, or

random access memory, also called read-and-write memory, available in the

system. Finally, 38911 BASIC BYTES FREE means that, of the total memory,

38,911 bytes (each byte is the equivalent of a character) are available for

writing BASIC programs. If there is 64K of memory in the computer, why

can't you use more of it? The computer itself uses the remainder of the

memory for the BASIC language and for its own operation.

If your Commodore 64 doesn't come up with that magic number—38911

BASIC BYTES FREE—put it back in the box and return it to where it was

purchased. Something is wrong and the computer needs to be repaired or

replaced.

If the cursor is not on the screen near the word READY, or if it is not

blinking on and off, this is also a sign that the computer isn't working prop

erly.

Assuming your machine has passed inspection so far, you can now make

a quick check of the system by entering a short program. Don't worry if you

don't know a thing about programming. For this little test you needn't know

the details of what you will be doing.

The keyboards of the Commodore 64 family work slightly differently

than an ordinary typewriter keyboard. For one thing, there are more keys,

and, when the machine is turned on, all of the letters typed will be in upper

case (capital letters) on the screen. If you press the SHIFT key and try to

type a letter, you will see an unusual symbol. For now, don't worry about

those.

Type in this short program exactly as it appears below. At the end of

each numbered line press the RETURN key. It is used to enter information

into the computer.

ID PRINT "THIS IS MY COMMODORE COMPUTER"

ED GOTO ID

Briefly, line number 10 of this little program tells the computer to type

the sentence THIS IS MY COMMODORE COMPUTER on the video screen.

Line number 20 tells the machine to do it again and again and again. This,

by the way, is probably the kind of BASIC computer program anyone who

has used a personal computer has written first.

Now type the word RUN and press the key marked RETURN to enter

this command.

2—Setting Up 15

The screen should quickly fill with the sentence THIS IS MY COMMO

DORE COMPUTER. Although the bottom line should be flickering on and

off (indicating that several new lines per second are being displayed on the

screen), the sentence should be clear and easy to read. If the screen is filled

with "snow11 or other interference, it has flunked the test. Take it back to

where you bought it and ask them for a new computer.

Some of Commodore's computers come off the assembly line in less than

perfect condition. One of the more common problems (at least with early

models) is that the Commodore 64's screen becomes "snowy" when a program

is running. This is Commodore's problem, not yours, and you are entitled to

a computer that works properly.

If this test program RUNs and the computer works well, stop the program

by pressing the key marked RUN/STOP at the left of the keyboard. The screen

should now read:

BREAK IN LINE ID

READY.

or

BREAK IN LINE ED

READY.

The cursor should again be visible and blinking.

Now, try to SAVE and LOAD this program to and from a cassette tape.

Put one in the recorder and make sure it is rewound. To SAVE the program

to tape, type the words:

SAVE "PROGRAM ONE11

Press the RETURN key.

The computer should come back with:

PRESS RECORD & PLAY ON TAPE

Do what the computer tells you. Press the keys marked RECORD and

PLAY on the Commodore cassette recorder. The screen should go blank and

turn the same color of light blue as the border for about 20 seconds. When

the screen comes back, it should again say READY. Now, rewind the tape.

By the way, if you are attempting to use any cassette recorder other than

Commodore's, it won't work unless you have the proper adapter. The Com

modore Datasette cassette recorder has special circuitry which senses when

its keys are pressed down. Several commercially available adapters allow

you to use standard cassette recorders and mimic the functions of Commo

dore's recorder.

With the tape rewound, turn the computer off and on again. This com

pletely clears whatever was in its memory. (This is just one way to reset the

machine. You'll learn about other, better ways.) Type the word LOAD and

press the RETURN key. The computer should say:

PRESS PLAY ON TAPE

16 Checking It Out

Press the key marked PLAY on the cassette recorder. The screen will

again go blank for a few seconds. When the tape recorder stops, the screen

will return with the words:

FOUND PROGRAM ONE

The machine is waiting for you to tell it to go ahead and LOAD the

program. To do so, press the key in the lower left-hand corner of the keyboard

with the Commodore logo on it. The screen will again go blank for a few

seconds. When it comes back it should say:

LOADING

READY.

Type RUN and press the RETURN key. The program should operate as

it did before. Since the computer's memory was cleared when you flipped

the power switch off and on again (no matter how briefly it was off), this

proves that it can SAVE and LOAD a program to and from cassette tape. If

it passed this test, it's in good shape.

If you have a disk drive, try to SAVE and LOAD to and from a floppy

disk. Turn the disk drive on, making sure that there is no disk inside of it.

NOTE: Unlike many other computers, Commodore's disk drive is likely

to damage the data on the disk if it is turned on or off with a floppy disk

locked inside.

Insert a new, blank floppy disk with the label up and the oblong disk

opening to the rear. Push it in until the disk stops in place inside the drive.

Close the disk drive door by pulling the metal tab down and toward you until

it latches.

You will first need to prepare the disk before you use it. This preparation

writes invisible tracks onto the magnetic disk surface. This procedure is

required only for disks that are either new or are being erased and reused.

Each time you prepare a disk this way you destroy the data or programs that

were previously stored on it.

To prepare a disk, type:

OPEN 1, fl , 15 [then press RETURN]

PRINT #1, »N: PROGRAM DISK,PD» [then press RETURN]

The red light on the front of the disk drive should go on for a minute or

two and you should be able to hear the disk spinning inside.

There are two small lights on the front of the Commodore disk drive.

The green light shows that the machine is turned on. The second light, a red

one, has two functions. First, it shows you that information is being taken

from or given to the floppy disk. But if this red light flashes, it is an indication

that an error has occurred. Such an error might be yours, or it might be the

machine's.

If the red light is flashing, try again and make certain you type the above

sequence exactly as shown. If it is not flashing on and off, you have success

fully prepared the disk. Now type;

SAVE "PROGRAM ONE",fl

2—Setting Up 17

Press the RETURN key. The disk drive should activate for a few seconds,

showing you that it is storing the program on the disk.

When the disk drive stops (you'll hear it and the red light will go out),

turn the computer off and on again. Then type this:

LOAD " $ " , fi [then press RETURN]

When the machine comes back with READY, type LIST and press RE

TURN. You should see something like this:

D "PROGRAM DISK " PD ZA

1 "PROGRAM ONE" PRG

bb3 BLOCKS FREE.

READY.

This is the disk directory—it tells you the name of the disk ("PROGRAM

DISK"), the programs stored on it (just one, called "PROGRAM ONE"), and

how much room is left (663 blocks, or approximately 168,000 bytes of mem

ory). For now, just be assured it's all there.

Finally, type:

LOAD "PROGRAM ONE" , fi [then press RETURN]

This should LOAD our little program back into the machine so you can

RUN it.

Putting the Commodore disk drive through this test is very important.

As with the computers themselves, Commodore occasionally ships untested

disk drives to its dealers. A number of these will fail a test like this one. You

will know that it has failed if the disk unit does not correctly prepare the

disk, or LOAD and SAVE programs to and from it.

Most often, the problem with a new disk drive is the speed at which it

rotates the disk inside. If you have purchased your disk drive from an elec

tronics store or a computer specialty shop, you can probably return it for a

simple adjustment. If you have purchased it from a department or discount

store which does not have its own computer repair service, ask the store for

a new one instead of leaving it for repair. Or, you may choose to locate a

"factory authorized" Commodore service department at a computer store

and ask if they will check the drive for you.

(Be forewarned, though, some computer stores will not be completely

cooperative if you did not purchase the machine from them.)

So far, you may be confused about what you have just done. If you don't

understand, don't worry. You'll learn the "whys" as well as the "hows" in

a few pages from now. You have seen, though, the basic way to LOAD and

SAVE programs to and from cassettes and disks.

Our main job here was to perform a quick system check. Needless to

say, this isn't a complete test run. If your computer system passes the test,

you'll only know if it appears to be working and LOADs and SAVEs programs.

Everything working as it should? Good. On to the keyboard.

18 Lots of Keys

Lots of Keys

The Commodore 64 family keyboards are somewhat unusual in their

design. Generally, each key produces three different results. This can be mind-

boggling, since not all of these are always clearly labeled. Taking a lour of

the keyboard should familiarize you with what it can do. Don't be discouraged

if you don't pick all this up the first time around. The keyboard has so many

functions that it does take lime to set used to.

The RETURN Key This key takes a word or line that is typed on
the video screen and enters it into the computer's main memory. It is prob

ably the single most important key on the keyboard. On some other makes

and models of computers it is marked ENTER, to more accurately describe

its function. Its name comes from the old days of typewriters and teletype

machines, when it was originally called a "carriage return," which was its

real purpose.

SHIFTKey On a typewriter, the SHIFT key selects upper case (cap

ital) or lower case (small) letters. On the computer's keyboard, it works in

about the same way. The difference, though, is that there are more than just

capital and small letters to consider. The general rule still applies. If you

press the SHIFT LOCK key once (you'll hear it click), the keyboard will act

as though you always have the SHIFT key pressed. This can cause problems.

So avoid using SHIFT LOCK, and occasionally check it if you think that a

key isn't doing what it should. Unlock the SHIFT LOCK by pressing it again.

The RUN/STOP Key This key is used to STOP a program while

it is RUNning. On other computers it is sometimes labeled "Break." RUN/

STOP can also be used with the SHIFT key (both pressed together) to LOAD

and RUN programs from the cassette recorder.

2—Setting Up 19

Graphics Mode and Typewriter Mode The first thing to rec
ognize is that the Commodore keyboard acts differently than a typewriter

when the computer "comes alive." The keys that would normally result in

lower case (small) letters produce upper case (or capitals). This is because

64 family computers come up in what is called the "graphics mode/' This

means that pressing most keys along with the SHIFT key will produce special

graphic symbols which are used to make simple pictures, boxes, borders,

game pieces, etc. There is another mode—a "typewriter mode"—that makes

the computer behave like a typewriter.

The COMMODORE Key To enter the typewriter mode, depress
either SHIFT key, and, while doing so, press the COMMODORE (logo) key

in the lower left-hand corner. You should notice the results on the screen

instantly—Avhat were upper case (capital) letters now become lower case

(small) letters. Try typing on the keyboard in this mode. Familiar, isn't it?.

An important thing to remember about going from the graphics mode

to this typewriter mode is that the computer isn't making the same distinction

between capital and small letters that you are. When in the graphics mode,

the computer expects lines of BASIC programming and other commands to

the machine to be written in capital letters. But while in the typewriter mode,

the computer expects to see these same words in lower case (small) letters.

In other words, BASIC programming and commands to the machine are

always written without using the SHIFT key, regardless of the mode you are

in. If you use capital letters in the typewriter mode, the computer won't know

what you're talking about.

For the time being, go back to the graphics mode, so we can look at some

of the other keyboard functions. Use the COMMODORE key and SHIFT to

make the change.

The COMMODORE key, you may remember, is also used to tell the

computer to help LOAD a program from a cassette tape. There are still a few

more uses for it, too.

Graphic Symbols You may have noticed that there are two small

boxes on the front of almost every key. Each of these contains a special graphic

symbol.

While in the graphics mode, press the W key. It prints a W, right? Now

press the SHIFT key and the W at the same time. You should see something

that looks like the letter O. It is not, though. This is a graphic symbol. Now

depress the COMMODORE key and press the W again. This time you should

see a symbol that looks like a T tipped on its right side. You've just produced

three different characters from one key.

If you press SHIFT and the COMMODORE key together, you'll see what

you get by pressing this same W key in the typewriter mode. You should see

a small letter w, a capital, and the same graphic symbol you got last time,

the T on its side. This is usually what happens—the cases reverse (small

letters become capitals and vice versa) and the left graphic symbol stays the

same, from the graphics to the typewriter mode. Usually, that is, with a few

20 Lots of Keys

\ ftjf* fun

'V \ / \
\ I \ !

exceptions. Try this same experiment with the key that is marked with an

"up arrow" and with the "British Pound Sterling" key. Type these the three

different ways (unSHIFTed, SHIFTed and with the COMMODORE key de

pressed). Then go from the graphics to the typewriter mode. You should see

different graphic symbols appear. This is one of the exceptions to the rule,

but it probably won't get in your way too often.

The CTRL Key We've learned that the COMMODORE key can be

thought of as a second SHIFT key. There is another key that performs a

similar function. It is the CTRL key; the abbreviation stands for "control."

Mode To see one way the control key is used, press CTRL,

and while holding it down, press the number 9 key on the lop row. Now type

anything on the screen. Everything you type now should be reversed. That

is, each character you type should be the color ol the screen against its own

light background. They should appear dark blue, each in its own light blue

box. (This is only the case with the colors the screen and characters appear

in when the computer is turned on. The background color of a reverse char

acter is always the color that the character originally was.) This reverse mode

is useful for highlighting certain words or phrases in text printed on the

screen.

To return to the standard (not reverse) screen mode, depress CTRL and

number key 0. Notice that these two keys have their functions printed clearly

on the front. RVS ON means "reverse on," and RVS OFF, of course, means

"reverse off."

Colors Now try pressing CTRL and any of the number keys 1 to 8

and look at the cursor. You've just found the way to change the colors ol

characters you type on the screen. Here is a list of the colors you gel by

pressing CTRL and a number key together:

2—Setting Up 21

Press Color Key Legend

CTRL-1 Black BLK

CTRL-2 White WHT

CTRL-3 Red RED

CTRL-4 Cyan (powder blue) CYN

CTRL-5 Purple PUR

CTRL-6 Green GRN

CTRL-7 Blue BLU

CTRL-8 Yellow , YEL

Even though the keyboard does not indicate it, eight more colors are

directly available by pressing another combination of keys. Use the COM

MODORE key in the lower left-hand corner to get these new colors:

Press Color Key Legend

BLK

WHT

RED

CYN

PUR

GRN

BLU

YEL

Don't be alarmed if you can't read what you type in certain colors against

the blue background. Many Commodore 64 computers (especially very early

models) are limited in the number of background and foreground color com

binations that can be used. There is no set rule about which colors "read"

well against various backgrounds. You'll need to determine this on your own

by trial and error.

Background and border colors, unfortunately, cannot be changed with

a single keystroke, as character colors can.

The Function Keys Look at the four large keys to the right of the

keyboard. The tops of the keys are marked fl, f3, f5, f7. The fronts are marked

f2, f4, f6, f8 and should be thought of as the SHIFTed versions of the keys.

Ironically, though they are called "function keys," they have no function at

all without programs that take advantage of them. These keys will be utilized

in different ways in many programs, however.

The RESTORE Key The key marked RESTORE, on the right side

of the keyboard, is an important one. Pressing the RUN/STOP and RESTORE

keys together interrupts a program (as does pressing RUN/STOP alone) and

brings the computer back to its original condition. This means that the screen

will revert to its original colors (light blue on a dark blue background) and

COMM-1

COMM-2

COMM-3

COMM-4

COMM-5

COMM-6

COMM-7

COMM-8

Orange

Brown

Light Red (hot pink)

Gray 1 (dark gray)

Gray 2 (medium gray)

Light Green

Light Blue

Gray 3 (light gray)

22 Lots of Keys

L

<

*

V..'V »»

1 *

p <

c

*

> ?

/

5>

3

f

^ <-*

—

SHIFT

t

CLR INST

HOME DEL

RESTORE

RETURN

CRSR CRSR
.it . =>

—

that any sounds the computer was making will stop, too. Other internal

conditions are reset to what they were when the machine was turned on.

The best thing about using the RESTORE key, however, is that any

program in memory will remain there, even though the computer has been

reset. Turning the machine off and on to reset it is often referred to as a "cold

start," and destroys the program in memory. RESTORE can be thought of

as a "warm start," since memory is not cleared.

The Editing Keys Among the most powerful keys on the Com

modore 64 family keyboards are the four editing keys. Commodore computers

have always had excellent editing capabilities that make program writing

as easy as possible. In addition to editing programming lines and other screen

text, the editing keys can be used in a special way in programming. To gel

you acquainted with these keys, here is a quick explanation of what they do.

The CRSR Keys At the bottom right corner of the keyboard are

two keys that control the cursor. They are marked CRSR up and down and

CRSR left and right, and function just as they appear. Press the CRSR up

and down key. It should move down. Now press the SHIFT key and the same

CRSR key. The cursor moves up. Press the CRSR left and right key and it

will move right. Pressing SHIFT and this key moves the cursor back to the

left. (If it doesn'l appear to be working properly, check the SHIFT LOCK key

to make certain it isn't depressed.)

The CLR/HOME Key The editing keys at the top right corner of

the keyboard are marked CLR/HOME and INST/DEL. HOME stands for the

cursor's "home," which is at the top left corner of the video screen. Pressing

CLR/HOME will return the cursor to this position each time. CLR means

"clear the screen." Pressing SHIFT and CLR'HOM brings the cursor back to

its home, but also erases whatever is on the screen. If you press SHIFT and

CLR/HOME before you've pressed RETURN, you'll lose any new line you

may have been typing or working on.

2—Setting Up 23

The INST/DEL Key DEL stands for "delete," and INST means
"insert." Try typing a line into the computer. Now press the INST/DEL key.

Each time it is tapped, the cursor will move back one space and delete

whichever character it is passing over. Pressing SHIFT and the INST/DEL

key together inserts blank spaces in a line.

Type something on the screen. Now put the cursor anywhere in the

middle of the line by using the CRSR left and right key. Press SHIFT and

tap the INST/DEL key a few times. Everything to the right of the cursor will

move farther right on the screen, leaving empty spaces where the letters once

were. These spaces can be filled by pressing any character key or even the

SPACE bar.

Together, the eight functions on these four keys comprise a unique and

extremely convenient way of entering data into the computer. Nothing comes

easy, though, and using the editing system can be difficult at first. After you

get accustomed to what these keys do and where they are, you'll be zipping

all over the screen with total control.

It is also important to learn these editing keys if you are going to use

your computer to do word processing (electronic writing and editing), since

they are used heavily by most such programs.

Repeating Keys Four keys on the Commodore keyboard automat

ically repeat if they are held down for even the shortest length of time. These

are the two CRSR keys (left and right, up and down), the INST/DEL key,

and the SPACE bar at the bottom of the keyboard. This was designed into

the machine because these keys are used heavily during editing.

The very best way to make yourself comfortable with this, or any key

board, is to spend some time with it. Type on it as you would a typewriter,

using the editing keys to change what you've written.

(Don't bother pressing the RETURN key as you would when typing on

a typewriter. The computer might not understand what you're trying to say

and signal that you've made a mistake.)

Typing on QWERTY

Many people have trouble with any kind of typewriter-like keyboard.

Your Commodore computer (as well as almost every other personal com

puter) has what is called a QWERTY keyboard, after the arrangement of the

top row of letter keys. The actual top row is QWERTYUIOP. Legend has it

that it was designed so that salesmen who sold typewriters when they began

to appear in 1873 could type the word "typewriter" on the top row of keys

alone. (Look closely, it can be done.)

The real logic behind the clumsy QWERTY keyboard, however, is that

it was designed to actually slow down typing speed. By widely separating

the most often used keys, its designers meant to insure that typists would

stay confused and type slowly enough so that early, delicate printing mech-

24 Typing on QWERTY

anisms wouldn't jam up. Over 100 years later, we're still using the ancient

and inconvenient QWERTY keyboard, and, now, with the advent of personal

computers, the inventors of QWERTY have even further reason to chuckle

at us from their graves. There are more QWERTYs than ever before.

Why hasn't someone done something about it? A few have tried. QWERTY

was replaced by keyboards in alphabetical order on some of the tiny pocket

computers sold in the last few years. It turned out they were even more

difficult to use than QWERTY. Another alternative was the DSK (for Dvorak

Simplified Keyboard), which originated in 1932 after two decades of research.

The DSK brought the most often used letters to the "home row" of keys

(ASDF ... on the QWERTY). It was claimed that the 3,000 most often used

words in the English language could be typed on just this one row of keys.

In the last decade, an attempt was made to introduce a one-handed keyboard,

where combinations of fingers were used to enter a single character. (A min

iature, hand-held word processor sold in Great Britain also uses this key

board.)

The dominance of QWERTY, however, remains virtually unchallenged,

and other keyboard styles have been all but forgotten. Few typewriters are

equipped with alternatives and, for all intents and purposes, no personal

computers.

In order to communicate with your personal computer you will need to

struggle with the poor design of the traditional keyboard. One side benefit

of personal computing is that you will learn to type almost without effort—

you will grow more and more comfortable at the keyboard. Of course, after

reading the section in this book on word processing, you may wonder why

anyone would want to use a typewriter anyway.

Some Essential Skills

Whether you intend to program your computer or use it with commercial

programs, you must acquire a few essential skills. These will allow you to

LOAD and SAVE programs to and from cassette or disk and to RUN them.

You should also know about some peculiarities of editing BASIC programs,

how to use the computer as a calculator, and its built-in timekeeping func

tions.

The RETURN Key

Throughout this book you will be asked to type in programming examples

and demonstrations of how keyboard commands work. In order to send this

information to the computer, you must always press the large key at the

right of the keyboard marked RETURN. If you do not, the computer will

wait, thinking that more instructions are coming. In some places, you will

be reminded to press this key. In others, however, it will be assumed that

you've learned this all-important step. The RETURN key should always be

pressed when you've finished entering a BASIC program line, after you've

changed something on a line, or when you want to send a command directly

from the keyboard.

25

26 LOADing Up

LOADing Up

Computerprograms originate by typing them into the machine's memory

from the keyboard. It would be incredibly lime-consuming, though, to type

every program each time you want to use it. Instead, the computer can SAVE

programs to a cassette tape or a magnetic disk, also called a "(loppy disk."

(Compuler lore has named il "floppy" to distinguish it from a different kind

of disk storage system, a rigid or "hard" disk which holds enormous amounts

of memory.)

After a program is SAVEd to either disk or tape, it can later be recalled

to the computer's memory with the LOAD command. Both SAVE and LOAD

function similarly in that they copy the program into or oul of memory or

other outside storage device. When you SAVE a program, a copy is made on

the tape or disk, but it is still inside the compuler. Likewise, when you LOAD

a program inlo memory, il slill exists on the tape or disk.

The computer's main read-and-write memory called RAM (for Random

Access Memory), is temporary. Anything put here—a program, data, or a

picture—will be lost as soon as the power is turned off, even for a fraction

of a second. LOAD takes digital signals from a disk or audio signals from a

lape and stores them in RAM memory. SAVE converts the contents of memory

into these same kinds of signals and sends them to the lape or disk.

LOAD always clears the computer's memory and then lills it with the

new program. (You cannot use LOAD twice to add one program lo another.)

LOAD From Tape

To begin LOADing, you can use the tape you created if you followed the

testing directions in the section of this book entitled "Setting Up." Or, you

may use another tape that contains a prerecorded program.

3—Some Essential Skills 27

LOAD can be used with or without a program name. Type:

LOAD [and press the RETURN key]

or

LOAD "PROGRAM ONE" [and RETURN]

Typing LOAD and pressing the RETURN key will always cause the com

puter to respond with this message on the video screen:

PRESS PLAY ON TAPE

Pressing PLAY on the tape recorder "blanks" the screen. Actually, it turns

the entire screen the same color as the border and anything written on it

will temporarily vanish. When the screen returns to normal, you'll see an

other message.

FOUND

This means the tape recorder has located a program. If the program has

a name, you will see it, too. The next move is yours. You must press the

COMMODORE (logo) key in the lower left-hand corner of the keyboard. If

you did not use a name when you typed LOAD, the first program on the tape

will be LOADed.

If you used a name, the computer will ignore any program unless it is

the program you named. It will stop and display each name, and you must

press the COMMODORE key to continue your search for the proper program.

Once the program has been LOADed, the screen returns to normal and

says:

READY.

Now, you can type RUN (and press the RETURN key) and the program

begins operating.

On earlier Commodore computers, including the PET, CBM (an upgraded

PET model), and the VIC, you did not need to press a key to LOAD the

program. But the video microchip inside the Commodore 64 family makes

new demands on the system, and it became necessary to blank the screen

when a program was being LOADed or SAVEd. If you have used those earlier

Commodore machines, be sure to remember this extra step; otherwise, the

computer will not LOAD your program.

Another way to LOAD the first program from a tape is to hold down

either SHIFT key and then press the RUN/STOP key. When you do this, the

words LOAD and PRESS PLAY ON TAPE will instantly appear. You still

must press the COMMODORE key when FOUND appears. This time, though,

the program RUNs automatically—a handy shortcut.

When you use LOAD with a program name, it insures that only the

program with that name will be LOADed. The name must always be preceded

by a quotation mark; however you need not always type the entire name.

Let's say that three programs, named PROGRAM ONE, PROGRAM TWO,

and PROGRAM THREE, are all stored on the same side of a cassette tape.

The command LOAD "PROGRAM THREE" will LOAD only that program.

28 LOAD From Tape

The Commodore computers use a technique called "pattern matching"

to identify the programs they should LOAD. IF you use only the first letter

of the name—LOAD "P—the computer will LOAD any program that begins

with the letter P—"PROGRAM ONE,'1 "PROGRAM TWO," or even "PING

PONG" (if it were on the tape). If you use the first word—LOAD "PRO

GRAM—the computer will LOAD every program that begins with that word,

and so on.

For pattern matching to work, the last quotation mark must not be used.

If it is, the computer thinks of the name in quotes as unique, and will only

LOAD programs that match it exactly.

LORD "PRO

LORD "PROGRAM"

The first command will LOAD any program with PRO as the first three

letters of its name. The second will LOAD only the program named PRO

GRAM.

From time to time, you will encounter a program that needs to be LOADed

in a particular manner. Instructions for LOADing will look something like

this:

LOAD "PROGRAM NAME", 1,1

What does this mean? The two numbers, 1 and 1, give the computer

unique instructions. The first number 1 stands for the device number of the

cassette recorder, which is always 1. (You'll learn more about device numbers

as you go along and in the section entitled "How the Computer Stores In

formation.") This is how the computer knows you are using a cassette re

corder. But, if LOAD is used without any numbers following it, the computer

assumes you are using the recorder.

The second number 1 tells the computer to LOAD the program in a special

place. Beginning with the VIC, Commodore computers incorporated some

thing called a "relocating LOADer." This is a program in the machine's

operating system that allows many BASIC programs written for the Com

modore PET and CBM computers to be used with the VIC and 64 family. It

is necessary because of differences in the way that the various computers

store programs.

Unless this second number 1 is used, the computer will always begin

LOADing programs in the place where BASIC programs are stored. Some

programs, however, are not written in BASIC but in a code referred to as

"machine language," which operates much, much faster. Often, you will be

asked to LOAD using ",1,1" to insure that they LOAD properly.

My Program Won't LOAD

There are dozens of reasons why programs won't LOAD correctly. Here

are the four most common.

Reason One: There's something wrong with your cassette recorder. It

can range from a faulty plug to damaged electronic circuitry inside. If any-

3—Some Essential Skills 29

thing is obvious, see the dealer you purchased it from. Unfortunately, coming

to this conclusion can sometimes be frustrating.

Reason Two: Your recorder is in working condition except for one thing—

it is out of alignment. This is most often the case if you can LOAD program

cassettes that you have recorded, but have trouble with tapes recorded by

others. The solution is to align the recording/playback head. It is not, however,

a simple chore, since you cannot hear what is coming from the tape. You

can make a minor adjustment and see if the problem is corrected.

There is a small hole located on top of Commodore's cassette recorder.

When you press the PLAY key, you can put a tiny jeweler's screwdriver

through this hole to turn an adjustment screw. Once you fit the screwdriver

in, you should memorize its position. Turn it a quarter turn or so, and try

LOADing the cassette. If that doesn't work, try turning it in the opposite

direction.

Caution: Try this only if you feel confident that you know what you're

doing. If you do not remember the screw's original position, or turn it too

far, you could misalign the recorder further so that even your own tapes will

not LOAD.

If you have had good luck LOADing other cassettes from a variety of

sources and should happen upon one or two that don't LOAD correctly, your

recorder is probably in good shape. The problem may be with the recorder

that those tapes were made on, not yours.

If you continue to have problems you think are due to misalignment,

take the recorder to your dealer or to a Commodore service shop so that it

can be aligned properly.

Reason Three: If you have trouble LOADing when another program is

in the machine and has been running, the fault may be neither the computer's

nor the tape recorder's. Some programs can change the way the computer

works to prevent you from making copies of it. Other programs might use

special features that could affect the way programs LOAD, too.

One situation likely to occur when using tape happens when a program,

most likely a game, uses ''sprite" graphics. (Sprites are colored objects that

are moved around the screen, and are one of the many graphic features of

the Commodore 64 family.) Sometimes programmers will use an area of

memory called the "cassette buffer" to store these pictures. If these sprites

are visible on the screen, programs may not LOAD properly. The easiest way

to get rid of the sprites is to press the RUN/STOP and RESTORE keys to

gether.

A good rule to follow if you are having trouble LOADing and suspect

these problems is to turn the computer off then on again.

Reason Four: If the program will not LOAD from your cassette recorder

or any other you've tried, it is probably because it was recorded on bad or

damaged tape. Tape quality is a difficult thing to judge. Generally, you should

use a good grade of cassette tape, at least suitable for quality voice repro

duction. Too much, however, has been made of the necessity to buy expensive

cassettes. Some discount store and "off" brand cassettes will work perfectly

30 My Program Won't LOAD

well for storing programs, and you should experiment to find a good tape at

a low cost. When you find a good brand, stay with it.

Damaging the tape inside a cassette can destroy a program, too. Since

the program is stored as audio information, the slightest interruption in the

sound will cause a bad LOAD. If you do damage a cassette, throw it away

or dori't use it again with the computer. Don't even try to fix it or smooth

out a wrinkled portion.

SAVE to Tape

SAVE is almost always used with a program name.

SAVE "PROGRAM NAME"

This command will store a BASIC program on cassette tape. If you do

not use a name, the program will still be SAVEd, but you will not be able

to identify it when LOADing. SAVE, like LOAD, will not work with certain

programs—those which have been protected to avoid unauthorized copies,

and certain programs that are not written in BASIC.

When you type SAVE and a program name (remember to press the RE

TURN key), the computer will respond with:

PRESS RECORD AND PLAY ON TAPE

When you press these two keys on the cassette recorder, the screen will

go blank until the program has been SAVEd on tape.

You must remember to press both the PLAY and RECORD keys when

you SAVE to tape. The computer cannot actually tell if both have been

pressed, and will act the same even if you only press PLAY. (If you do, of

course, the program will not be SAVEd.)

If you want to protect this copy from accidental erasure, remove the

leftmost small plastic tab on the back edge of the cassette. This will prevent

you from pressing RECORD and PLAY together on the recorder. If you change

your mind, a piece of tape (masking tape or transparent tape) will fix the

cassette so you can record on it again.

Checking Your Work

It would be nice to know if you have successfully SAVEd your program,

wouldn't it? This would insure that the program you wrote is safely stored

on tape. The VERIFY command does just this. It compares what is on the

tape to what is stored in the computer's memory.

If you use VERIFY with a program name, the cassette recorder will go

through all programs on the tape, looking for the program with that name

to compare. If you use VERIFY alone, the first program on the tape will be

compared.

3—Some Essential Skills 31

When a program is successfully checked, you will see the message "OK"

appear on the video screen. If the program does not match, you will see this

line instead:

? VERIFYING ERROR

This indicates that the tape copy of the program is not the same as what

is in memory. The tape may be bad, or you may have changed something on

a program line by mistake.

VERIFY can also be used to find your position on a tape. Say that you

have two programs, named "PROGRAM ONE" and "PROGRAM TWO," stored

on the same side of the tape. You have made some changes in "PROGRAM

TWO," which is in the computer's memory, and want to SAVE it again on

the tape. If you LOADed "PROGRAM ONE," the program in memory would

be destroyed. You can VERIFY "PROGRAM ONE," though, and the tape will

advance to the beginning of "PROGRAM TWO" without disturbing the pro

gram in memory. You will still see the above ERROR message, but you can

ignore it. After this, you can SAVE "PROGRAM TWO" again and record over

the previous version, as long as the changes haven't dramatically affected

the length of the program. (If the program is too long, the new version will

begin to record over the next program on the tape.)

RUNning the Program

The RUN command starts a program operating. Most programs will be

interrupted when the RUN/STOP key is pressed.

RUN always resets all the information in the program. (Read about

variables in Chapter Four.) This means that numbers, names, and other data

that a program is using will be gone the next time you RUN it. There are

two ways to interrupt a program and keep the information it uses.

After using the RUN/STOP key—whether you've pressed it by mistake

or on purpose—you can type the command CONT, which stands for CON-

Tinue. (Type it directly from the keyboard and press RETURN.) The program

will resume at the place where it left off.

The other way to get back into the program is with the word GOTO,

which must be followed by the number of the BASIC line you want the

program to begin operating from. (Again, you can use the GOTO command

directly from the keyboard but remember to press RETURN.) To use GOTO,

you should have a firm understanding of how the program works, either by

reading REM (REMark) statements in the program or by being able to read

BASIC. Don't ever try to use GOTO with a random line number if you don't

know the correct number to use.

You can also use RUN with a number. This will start the program op

erating from that particular line number, but it will also erase all the variable

information, just as using RUN by itself will.

32 About Commodore's Disk Drives

About Commodore's Disk Drives

The Commodore 1541 disk drive plays back and stores information to

and from the computer, just like the cassette recorder does. Information is

stored on the magnetic surface of a flexible ("floppy") round disk enclosed

in a square black plastic envelope. Unlike the recorder, the disk drive can

randomly access many different programs, much faster than from cassette.

(Programs LOAD about seven times faster from disk than cassette.) Moreover,

the disk allows you to select programs and files out of sequence, and elim

inates the need to ever have these stored in any particular order.

In the upper right-hand corner of the black plastic envelope is a notch.

This notch is used to tell the disk drive whether or not it should try to record

information on the disk. If the notch is open and visible, you can LOAD and

SAVE programs and data on it. When the notch is covered (usually by one

of the small adhesive tabs that come with floppy disks), il is "write pro

tected." That is, you can LOAD from the disk, but not SAVE to it.

Blank disks must first be prepared for use with the disk drive. Almost

any blank disk can be used, but make sure that the disks you buy arc labeled

"single-sided double density." This means that only one side of the disk can

be used. (Some disk drives record on both sides—your 1541 doesn't.) Double

densitv is a holdover term from the davs when the amount of information

3—Some Essential Skills 33

that could be stored on a disk was growing. Your 1541 disk drive isn't a

"double density" drive (strictly speaking), but you should use this type of

disk to avoid problems.

Other terms used to identify types of blank disks are "soft sector" or

"hard sector." You needn't worry about these. Either kind will work equally

well in the 1541. Any manufacturer's brand of disk can be used. As with

cassettes, shop around and find one that offers good performance at a rea

sonable price and stick with it.

Preparing a disk is called formatting it. When the disk is formatted,

several things are done. It is given a name and a two-character identification

number. A portion of the disk is made into a directory, where the names of

programs and other files will be stored. Finally, 35 tracks are constructed on

the disk's surface. Each of these tracks is used for storing information; one

particular track, number 18, is used for the directory. Each track, in turn, is

divided into sectors, each containing 256 bytes, or characters, of information.

These sectors are also called blocks. The total usable storage space on a disk

is 664 blocks, or almost 170,000 bytes or characters.

You should understand, right from the start, that you cannot use a disk

prepared on another type of computer—an Apple or Atari, for instance—on

your Commodore 64, even if it contains a BASIC program that will operate

on your machine. Not only does every computer have a different way of using

and storing BASIC programs within it, but each also has a different way of

storing information on the disk itself. (The same thing goes for cassettes.

Don't even bother trying to LOAD a cassette prepared on another computer.)

Floppy disks should be treated very gently. Even though the fragile na

ture of floppy disks is usually exaggerated (they do stand up to everyday

handling quite well), it is easy to damage the information on the disk itself.

Handling and storage tips are packed with most commercial brands of blank

disks, but a few are always worth repeating.

• Never touch the surface of the disk visible in either of the cut-out holes

in the outside plastic envelope. Be particularly careful of the hole on

the bottom side of the disk; that's the side the 1541 records on. Don't

ever bend the disk, either.

• When not using it, always keep the disk inside its protective paper

envelope. Keep your disks in a box or other storage container and

away from tobacco smoke, dust, and dirt which could ruin the infor

mation stored on them. Make sure that disks are stored in a cool, dry

place. (Not, for example, in a car with the windows rolled up on a

summer day.)

• Keep the disks away from magnets or any strong magnetic fields like

those given off by electrical transformers in stereo amplifiers or tel

evision sets.

34 Using the Disk Drive

Using the Disk Drive

On the front of the disk drive are two colored lights. (They're actually

LEDs, or Light Emitting Diodes.) The green light indicates that the disk drive

is turned on. The red light tells you two things: It will stay on or flash on

and off occasionally when the disk drive is LOADing or SAVEing. When the

red light flashes on and oil regularly and the motor has stopped running (you

won't hear its familiar whirr), it indicates an ERROR. Always watch this

light when using the disk drive.

You should have the disk that comes packed with each 1541 disk drive.

It is called VIC-1541 TEST/DEMO. In addition to some test programs, it

contains a program called "Wedge" or DOS Manager. This program is so

useful that you will not want to be without it. (The test programs on this

disk arc an absolute necessity, too. RUN them to evaluate your disk drive

and return it to your dealer if the drive does not pass these tests.)

Wedge lets you easily LOAD programs, see the disk directory, erase (scratch)

programs and files, format the disk, and read diskERRORs.lt is called Wedge

for two reasons: Its commands are "shoehorned," or wedged into the com

puter's operating system. It also uses a special character— ">"—the "greater

than" sign before each disk command. The name DOS Manager comes from

3—Some Essential Skills 35

the fact that this little program manages the machine's Disk Operating Sys

tem, a program that runs the whole disk show.

You can do things with Wedge that are difficult to do using conventional

disk commands. As we go along, you'll see the proper BASIC form for these

commands.

To LOAD Wedge, open the door on the disk drive, insert the disk with

the label up and the open windows to the rear, then carefully close the door

by gently pulling the tab-like latch down and toward you. Then type

LOAD »C-b< WEDGE" , fl [and press the RETURN key]

The computer should respond with:

SEARCHING FOR C-fc< WEDGE

LOADING

READY.

You will hear the disk drive spinning and the RED light will come on.

If you notice, LOADing from disk is almost exactly the same as LOADing

from tape. The exception is the addition of a comma and the number 8.

All devices like cassette recorders, disk drives, printers and modems, or

telephone links are given identifying numbers in a Commodore system. These

numbers are set inside each device. The cassette recorder is always number

1. The printer is almost always device number 4. The disk drive comes from

Commodore's factory as device number 8. So, when you tell the computer

to LOAD "C-64 WEDGE",8 you're telling it to LOAD from device number 8,

the disk drive.

When the computer comes back with READY, type RUN. The red light

on the disk drive should come on again, letting you know that another pro

gram is being LOADed. (The purpose of the first part of the Wedge program

is to LOAD the next one.) You won't need to type RUN again. Instead, you'll

see a message that confirms Wedge has been LOADed. It will say:

DOS MANAGER (then a version number)

BY BOB FAIRBAIRN

Until the machine is turned off, you'll have Wedge in the machine, sitting

in a part of memory where it will not be disturbed by most BASIC programs.

It will continue to be in the computer even after you reset it using the RUN/

STOP and RESTORE keys.

The Disk Directory

If you walk into a building and want to know where a certain office is

located, you look at the building directory. You can see what is on a disk by

looking at its directory, too. It tells you the name of the disk, its two-character

ID number, the program names, and the number of empty blocks, or sectors,

left on it. Here is a sample of what a disk directory looks like. (It will differ,

of course, from disk to disk.)

36

D

13

5

A

1

A

11

A?

57

The

"1S41TEST/DEM0

"HOW TO tiSE"
"HOW PABT TWO"

"VIC-ED WEDGE"

"C-t< WEDGE"

"DOS 5.1"

"MAIL"

"DATABASE"

q BLOCKS FEEE

Disk Directory

" ZX EA

PEG

PEG

PEG

PEG

PEG

SEQ

PEG

The first number on the top line is the drive number. This is a carryover

from a previous Commodore disk drive system which had two drives which

were numbered Drive 0 and Drive 1. Since the Commodore 64 so closely

resembles its predecessors, it still thinks of your 1541 disk drive as Drive 0.

Remember this because you'll find this drive number useful with other disk

commands.

Next on that line is the name of the disk, in this case " 1541 TEST/DEMO."

The next two letters, ZX, are the disk's ID. This is part of the directory

required by the disk drive. Each disk must have its own unique two-character

ID. The 2A refers to the version of Commodore's disk operating system—the

program that runs the disk drive—that wrote the disk. For now, it's unim

portant.

The numbers in the left-hand column show how many blocks or sectors

on the disk are used for each program. In the middle is the program name,

followed by a three-letter abbreviation. This abbreviation indicates whether

it is a program or another kind of file. Only programs with the abbreviation

PRG can be LOADed directly from disk. If the abbreviation after the name

is SEQ or REL (for "sequential" or "relative" files), it is an information file,

not a program file, and must be recalled by another program specifically

designed to use this data. (See "How the Computer Stores Information.")

Finally, at the bottom of the directory is the number of blocks or disk

sectors left for storage.

You can see the disk directory using either Wedge or a BASIC command.

You have already seen how to LOAD a program from disk when you LOADed

Wedge. You use LOAD with a program name, followed by a comma and the

number 8 (",8"). If you remember, you use the "greater than" sign (">") with

a Wedge command. (For your convenience, you can also use another char

acter, the commercial "at" symbol—"@"—with Wedge.) Type either of these

disk directory commands:

LORD »$",fl

or

>$ (or @$)

Both of these do the same thing—they allow you to see the disk directory.

When you use the BASIC form—LOAD "$",8—the directory will be LOADed

into the computer's memory. To see it, you must type LIST (and press RE

TURN). LOADing a directory this way always destroys whatever is in the

computer's memory, including any BASIC program that may be there.

3—Some Essential Skills 37

It is better, then, to use the Wedge version—>$ or @$—because Wedge

transfers the directory directly from the disk to the video screen without

destroying the program in memory.

If the disk is blank and not formatted, you will not see any directory.

Instead, the disk will spin and you might even hear a grinding noise or two

from it. Then, the red ERROR light will begin flashing.

Preparing a Disk

You can prepare a new disk using either BASIC or Wedge. Since the 1541

disk drive is ''smart" (it has its own microprocessor chip, memory, and a

program inside that runs it), it can look at a group of commands and perform

the correct disk operation. The commands are letters, punctuation marks,

and numbers inside the quote marks that contain the program or disk name.

For example, this is the way you prepare a disk using BASIC commands

typed from the keyboard:

OPEN 1,3,15

PRINT#1,»ND:DISK NAME,ID"

The first command that you typed—OPEN 1,8,15—is the way that you

tell the disk drive to get ready for a special disk operation, like formatting

and naming the disk. The first of the three numbers after OPEN—1—is called

a file number. Though it can be any number between 0 and 255, there's no

real reason to use a number other than 1 if you're just preparing disks. The

second number —8—is the device number. It means that we're talking to

the disk drive. The last number is called a secondary address. You'll read

more about secondary addresses in another part of this book called "How

the Computer Stores Information." For the time being, however, you should

understand that the number 15 is always used by the system to tell the disk

to prepare for a special command.

It is a good idea to CLOSE the file you have OPENed after you are done

with it, especially if you will be using information files in your programs.

Just type:

CLOSE 1

Again, you will learn more about the how's and why's of OPEN and

CLOSE in "How the Computer Stores Information."

Inside the quotes, the numbers and letters form a code for the disk drive

to understand. "N" tells the disk that the special operation will be to prepare

or format a New disk. The next character is the number 0 (zero), which tells

the disk drive you'll be using drive 0. (If you recall, your drive is always drive

0 since the 1541 is a single disk drive unit.) The colon—":"—is a necessary

punctuation mark that separates that command from the disk name. (Here

called DISK NAME.)

Following another punctuation mark, a comma, is the disk's ID mark, a

two-character identification mark that Commodore disks require. You should

try to make each ID mark unique. In the example, the ID is of course ID.

38 Preparing a Disk

You can begin to see the advantage of using Wedge for your disk com

mands by its simple way of preparing a new disk.

>ND:DISK NAME,ID

With Wedge, you don't need either the OPEN, PRINT#, or CLOSE com

mand to format a new disk. Notice, too, that you no longer need the quotation

marks around the command letters, numbers, and name.

Preparing a disk takes a few minutes. So if your disk drive seems to be

going forever and the red light stays on, don't worry. Everything is going as

it should. When the disk drive has finished its preparations, the red light

will go out and the video screen will say READY. Check your disk by looking

at the directory. It should look like this:

D "DISK NAME " ID EA

BLOCKS FREE

Of course, the disk name and ID mark you choose will be there instead

of the ones used in this example.

LOAD from Disk

LOADing a program from disk is about as simple as LOADing from

cassette, with a few exceptions. Remember that you can only LOAD a pro

gram off the disk if it really is a program, indicated by the PRG abbreviation.

You can always look at the disk directory, then use this command:

LOAD "DISK NAME»,fl

If you choose to type in the entire program name, you must type it exactly

as it is shown on the directory. If you do not, the computer will respond with

a FILE NOT FOUND ERROR and the red light on the front of the disk drive

will flash on and off regularly. If you're lazy—or, in fairness, just want to

save time and effort, like everyone else—you can use a shortcut.

Just as you can LOAD a cassette program with only the first few letters

of the name, you can do the same with disk programs. Instead of omitting

the last quotation mark, you'll use an asterisk—"*"—and close the quotes.

Commodore's designers were very clever in the way they have used the

asterisk to make using the disk drive easier. Here are the rules for its use:

• When you begin using the disk drive, LOAD "*",8 will LOAD the first

program listed on the disk directory. (This can be especially handy if

the first program is always Wedge, for example.)

• After LOADing any program, LOAD "*",8 will always LOAD that pro

gram again, even if it was not the first program.

• Using the asterisk in any program name will have the effect of LOADing

the first program on the directory whose name matches the letters

that come before it. Example: LOAD "PRO*",8 will LOAD programs

3—Some Essential Skills 39

named PROGRAM, PROGRAM ONE, PROGRAM TWO, PROFES

SIONAL, etc.

Wedge lets you LOAD programs two different ways. (You can always use

the asterisk with Wedge commands, too.)

To LOAD a program, you can use:

/PROGRAM NAME

The character is a "slash," found on the same key as the question mark.

It LOADs a program and waits for you to type RUN to start it operating.

You can automatically LOAD and RUN the program with another Wedge

command:

[Up Arrow] PROGRAM NAME

You don't type the words "Up Arrow," of course. Instead, you press the

"up arrow" key on the keyboard, which is located in the second row from

the top between the asterisk and RESTORE keys. When a BASIC program

is LOADed, the computer will then immediately start the program.

Some programs will require a LOADing procedure to LOAD them in a

specific place in the computer's memory. Usually, these are programs that

are not written in BASIC. This LOAD command looks like this:

LOAD "PROGRAM NAME",fl,l

The last number 1 tells the computer to LOAD the program, not in the

place where BASIC programs are usually stored, but in the place in memory

where they must reside to operate properly. If you have used a Commodore

PET or CBM computer, you will recognize that this is a different procedure

from what you're used to. (With those machines, no special LOAD command

is needed. Programs always LOAD in their proper place.)

The equivalent command in Wedge looks like this:

% "PROGRAM NAME"

In almost every case, you will be specifically told to use this LOAD

command with the programs that require it. If you aren't told to LOAD this

way, use the conventional form or Wedge commands above.

SAVE and VERIFY

You SAVE a program to disk just like you SAVE a program to cassette

tape. The only difference is the addition of the comma and the device number

8.

SAVE "PROGRAM NAME",fi

If you are using Wedge, SAVE a program using the "left arrow" key

found at the top left corner of the keyboard.

[Press the left arrow key] "PROGRAM NAME"

40 SAVE and VERIFY

You can also use the drive number (0) when you SAVE a program.

SAVE "D:PROGRAM NAME",fi

With cassette tape, you can always rewind the tape and record a new

version of the program over the last one. Since you cannot rewind a disk, a

particular character is used to record over a program with the same name.

This character is the commercial "at" symbol, "@." It is used before the

program name and is separated from it by a colon.

SAVE "@:PROGRAM NAME",fl

or

SAVE "@D:PROGRAM NAME", fl

You must be careful to type the name exactly as it appears on the disk

directory, or you will not SAVE over the original program.

You can check your work to make sure the disk has SAVEd any program

correctly. Use VERIFY with the program name and the device number 8.

VERIFY "PROGRAM NAME",fl

Since the asterisk can be used instead of the last name recognized by

the disk drive, you can SAVE the program with the proper name, then im

mediately VERIFY it with the asterisk.

VERIFY "*",fl

If the program has not been SAVEd correctly, you will see a VERIFY

ERROR message on the video screen.

Erasing Disk Files

Even though a single disk can hold almost 170,000 bytes, you'll find that

disks fill up quickly with early versions of programs, miscellaneous infor

mation files and programs that you just don't want anymore. You can erase—

or "scratch"—these programs and files to make room on the disk for others.

Like formatting or preparing a disk, scratching programs and files can

be done either from BASIC or with Wedge.

OPEN l,fl,15

PRINT#1/"SD: PROGRAM NAME",fl

or

>SD: PROGRAM NAME

3—Some Essential Skills 41

Validate the Disk

Unlike a cassette tape, the disk is a complicated organization of infor

mation with pieces of programs scattered about tracks and sectors, and some

thing called the Block Availability Map (BAM) which maintains the overall

order. Occasionally, the total number of blocks used for programs and in

formation files and the number of free blocks won't add up to the magic

number of 664 blocks or sectors.

Essentially, the disk is messy, even though it may continue to work

properly. You run the risk, however, of further disorganizing it and losing a

valuable program or file. To clean up the disk and restore order, you can

"validate" it, using either BASIC or Wedge. It is a good idea to validate your

disks from time to time, or whenever you spot a potential problem.

0PENl,fl,15

PRINT#1,"V"

or

PRINT#1,»VD»

With Wedge, use this command:

>V

or

>VD

Disk ERRORS

You know there is a problem with the disk drive whenever the red light

flashes on and off regularly. A disk ERROR has occurred, although you can't

tell what kind of ERROR it is since a message doesn't appear on the video

screen. And, the light will continue flashing until you find out what the

ERROR is. So how do you find out?

The solution to this problem isn't an easy one if you are not using Wedge.

First, try intentionally causing a disk ERROR by asking for a program

that doesn't exist.

LOAD "MMFPLTSK»,fl

Unless you actually have a program with this name (which is unlikely),

the red disk light will regularly flash on and off. Now type in this little

program exactly as it appears and RUN it.

ID OPEN 1,0,15

2D INPUT#1,&$,B$,C$,D$

3D PRINT ft$,B$,C$,D$

AU CLOSE 1

42 Disk ERRORs

The video screen should look like this:

b2 FILE NOT FOUND DD DD

The first number is the ERROR number which is spelled out to the right,

FILE NOT FOUND. The next two numbers are the track and sector numbers

where the ERROR occurred. (These aren't used for the FILE NOT FOUND

ERROR.)

Typing in this program, however, is inconvenient, and sometimes you

can't use it because a program is already in memory. The best way to see

disk ERRORs, then, is to use Wedge. Just type the "greater than" (">")

symbol anytime you see the red disk light flashing on and off. You will see

the same information, the ERROR number, ERROR message, and track and

sector numbers where the ERROR occurred.

Some Disk Cautions

Using Commodore's disk drive is much more convenient than using the

cassette recorder. And since it offers advantages in addition to speed, it makes

your computer system much more powerful.

No system, however, is perfect, and the 1541 disk drive is no exception

to this rule. A few cautions when using the disk drive are in order.

• If you forget to close the door on the disk drive, you will see a FILE

NOT FOUND ERROR message on the video screen. Even after closing

the door, trying to LOAD the same program may not work, and you'll

see the same ERROR. Open the door on the disk drive, take the disk

out, and reinsert it. This usually solves the problem.

• If you want to use two disk drives, one must be assigned a device

number other than 8. Unless you have electronic experience, ask your

dealer to change the device number for you, since it requires cutting

a piece of the printed circuitry inside. Once you have both drives

connected to your computer, always remember to turn on the power

to the computer last. This way, it will properly recognize both drives.

If you forget, press the RUN/STOP and RESTORE keys together to

"wake up" the system.

• Be careful when using the same floppy disk in both your 1541 and the

original Commodore 4040 dual disk drive units. Although they are

supposed to be, the two machines are not always compatible. The

problem lies with the disk operating system inside some 1541 drives.

This can be identified by any good computer dealer. Until you know

if you have a 1541 in which the problem has been corrected, never

mix disk drives. In other words, if a disk has been created on a 1541

drive, don't record on the same disk in a 4040 drive unit. It could spell

disaster.

• Some 1541 disk drives come from the Commodore factory slightly out

of adjustment. The problem is usually speed. Always check your drive

3—Some Essential Skills 43

with the "Performance Test" program on the disk furnished with your

1541. Then try your disk on another 1541. If it LOADs smoothly, ev

erything is probably all right. If it doesn't, you may have an adjustment

problem. Usually this has to do with the speed at which the disk

rotates. Though it is possible to do the job yourself (there is a "strobe"

pattern and a tiny adjustment on the bottom of the drive itself), you

should take the disk drive back to your dealer for this adjustment.

• If you need, for any reason, to bring the 1541 into a dealer for repair

or adjustment, have him check the metal pulley that connects the

spindle to the motor with a belt. On some disk drives, this pulley will

work itself loose and fall off. If you happen to be recording a program

or file to the disk when this happens, it could ruin your disk and destroy

valuable information. Ask your dealer to make certain this pulley fits

tightly or have him make the necessary repairs.

• Never block the ventilation holes on the plastic case of the 1541 drive.

This means don't pile papers and books on top, covering the vent slots,

and don't put the drive on carpeting or any other surface that will

block the vents underneath. It is quite easy for the drive to overheat

and ruin sensitive electronic parts inside.

Commodore LOAD Compatibility

One of the nicest features of the Commodore 64 family is its ability to

use programs written for other Commodore computers, the PET, CBM, and

VIC. Unfortunately, the computers are not 100% compatible. Programs that

will not RUN on the Commodore 64 include:

• Most programs written in a language other than BASIC.

• BASIC programs with machine references, usually PEEK and POKE

commands.

• Programs that were written for the VIC's 22 character-wide screen.

• Programs written with commands from Commodore 4.0 BASIC.

This probably looks like there aren't many programs that are inter

changeable among machines. That's not exactly so, although you'll need to

experiment to find out which transfer successfully.

Among the programs written on a Commodore 64 computer that will

not work correctly on a PET, VIC, or CBM are:

• Most programs written in a language other than BASIC.

• Many programs that use color commands, and almost all programs

that use 64 sound techniques.

In addition:

• Programs that use the function keys will not transfer to the PET and

CBM, but may work on the VIC.

44 Commodore LOAD Compatibility

• Programs with screen widths wider than 40 characters will not transfer

to the VIC.

• Programs that take up more than 32K of memory won't work on the

VIC (even when its memory is expanded), CBM, or PET.

For LOADing some programs from the PET and CBM into a Commodore

64 computer, you'll need a little program called a "PET Emulator." One,

written by Bob Fairbairn, is available through Commodore. (At press time,

price and method of distribution were uncertain.) Fairbairn has designed the

program so that it RUNs PET software written for Commodore 2.0 BASIC

(which is closest to the version inside the 64 computer family). The Emulator

will even allow the 64 to use PET-style sound effects, includes the Wedge

DOS Manager program, and LOADs from disk.

The PET Emulator does not allow you to RUN all existing PET software,

though. (Two of the most popular PET/CBM programs, "VisiCalc" and

"WordPro" will not run.) You'll have to experiment to see which programs

will work.

Three quick commands are all that are necessary to LOAD programs

written on a Commodore 64 into a PET or CBM computer. On the PET or

CBM, type these:

POKE 41,&

POKE ED4fl,D

NEW

Then LOAD your 64 program. Again, not every 64 program will RUN

correctly on the PET and CBM.

Using Your Computer as a Calculator

It is possible to use the very powerful mathematical features of the Com

modore 64 as a calculator without the need to write a program. On a con

ventional pocket calculator, you start an equation from the beginning and

end with an equal sign (" = "), like this:

12+484.25 =

The only difference when using the computer is that you skip the equal

sign and, instead, ask for the answer with the PRINT command.

PRINT 1E + 4&4.2S [and press RETURN]

The answer will appear on the next line on the video screen.

You can also use variables directly from the keyboard. If you don't know

what variables are, you'll learn about them in the first chapter on BASIC

programming. Type this:

PRINT 12 + A

3—-Some Essential Skills 45

Use the standard plus (+) and minus (-) signs for addition and sub

traction. Use the asterisk (*) for multiplication and the slash mark (/) for

division. Negative numbers are preceded by a minus sign; exponential num

bers by the "up arrow" symbol. Square root is available with the word SQR.

The computer also supports "less than" and "greater than" symbols (< >),

and so-called logical operators AND, OR, NOT. There are also the trigono

metric functions SIN (sine), COS (cosine), TAN (tangent), ATN (arctangent)

and LOG (logarithm). You use these words with object numbers that are

enclosed in parentheses. For instance, you can get the square root of 2 by

typing:

PRINT SQR (2)

Parentheses can also be used, as in paper mathematics, to enclose a

complete thought within an equation.

PRINT (l

This equation first adds 12 and 484.25 then multiplies it by 53.

Two quick cautions: Never use commas in numbers more than three

digits (1000 instead of 1,000); and, don't try to use equations longer than 80

characters, or two screen lines, directly from the keyboard.

If you do not plan to use the machine as a calculator or program it for

"number crunching," don't be frightened by these functions. Just remember

they are there if you need them.

A shorthand form of the word PRINT is available. The question mark

(?) can be used instead of typing out the entire word PRINT every time. Try

it. You'll hear about it again in the first chapter on BASIC programming and

see a caution about it in the chapter about data handling.

How Much Memory Is Left?

You know that the Commodore 64 has over 64,000 bytes, or characters,

of memory inside it. From the message you see when you turn the machine

on, you also probably know that 38,911 of these are available for program

ming in BASIC. (The programming techniques and not BASIC.)

While programming, or after LOADing a program into memory from

tape or disk, you can ask the computer how much of its memory is still

available. You ask it to PRINT the number of free bytes.

PRINT FRE(D)

The word FRE means FREe bytes. Any number or letter can be inside

the parentheses. (Since it makes no difference, this is called a "dummy.")

The number that appears on the screen is the number of FREe bytes minus

3. The command PRINT FRE(0), you see, takes 3 bytes by itself.

If the number you see on the screen is a negative number (it is preceded

by a minus sign), you must do a little arithmetic and subtract it from 65536.

This number is actually the 64K you hear about all the time, since IK of

memory (computer jargon for a thousand bytes) is actually 1,024 bytes.

46 Beware the Quote Marks

(This is apparently a tiny mistake in the design of the Commodore 64.

The routine that returns the number of FREe bytes is the same as in the

PET, but the 64 has twice the memory.)

Beware the Quote Marks

A good way to familiarize yourself with the Commodore 64 editing func

tions—the CRSR right and left keys and INST/DEL key—is to practice typing

on the keyboard. An even better way is to type in all the BASIC programming

examples and programs in this book. Practice is the only way to grow ac

customed to the excellent screen editing system built into the computer. (If

you get a chance to use other personal computers, you'll soon realize just

how good the 64 is.)

It's easy to get yourself into a situation where it looks like you're stuck

or you've broken the computer. (You're not and you haven't.) This will happen

after you type one set of quote marks (") or an odd number of quote marks.

Here's what happens.

When typing a line, you type the quote mark, intentionally or uninten

tionally. You change your mind and use a CRSR key to make a correction.

Instead, you see a funny-looking symbol. What's going on?

You're in something called the "quote mode." This means that seven of

the eight editing functions work differently. CLR (clear the screen), HOME

("home" the cursor), CRSR right, left, up, down, and INST (insert) all leave

these odd symbols instead of working as they should. Only DEL (delete) works

the same and allows you to erase the quote mark or anything else you've

typed. The reason for this is discussed in Chapter 4 on BASIC programming

about the word PRINT. In brief, when these editing functions are used within

quotes and with the word PRINT in a BASIC program, they work at the time

the program is RUN.

Even though the DEL key will erase what you've typed by mistake, you'll

still be in the quote mode. You will remain that way until you either type

another quote mark or press the RETURN key. Or, if you don't want to enter

what you've written into the computer's memory, you can press the SHIFT

and RETURN keys together. (The computer won't recognize SHIFT and RE

TURN as the signal to enter the line.)

Another problem could seem to appear, though, if you go back to the

line and want to get into the quote mode when a program demands it. The

solution is to position the cursor over the place where the first quote mark

should be, then type a new first quote.

With a little experience, the quote mode won't seem as awkward as it

does reading about it. The key to this dilemma is to remember that you are

always in the quote mo4e after typing odd numbers of quotes in a single
program line.

3—Some Essential Skills 47

What Time Is It?

There's a clock inside each Commodore 64 computer. It starts when you

turn the machine on, and stops when you turn it off.

This clock is represented by the initials TI and TI$. These are known as

"reserved variables"—variables because they stand for other information,

reserved because you cannot use TI or TI$ in any other way. The computer

thinks of TI as a number and TI$ as a string of characters. (You'll learn about

variables and strings in the pages ahead.)

To see the numbers in the computer's clock, type this:

PRINT TI$

You should see a number six digits long, something like 012236, for

example. What do they mean?

Think of these six digits as three groups of two numbers each—01 22 36.

The first two numbers, 01, represent the number of hours since the computer

was turned on. The second set, 22, represents the minutes, and the third set,

36, the seconds. So the computer has been on 1 hour 22 minutes and 36

seconds.

Since turning the computer off and on again is not a very good way to

reset the clock, you can do it from the keyboard. Type this:

TI$="0DDDD0"

Now ask the computer to PRINT TI$ again. The numbers you see should

be close to 000000. Try this:

TI$=»D2D51D»

When you type PRINT TI$ now, the time will begin advancing from 2

hours 5 minutes and 10 seconds because that's what you've set it to.

You can use TI$ this way, or in a BASIC program, reading the clock and

resetting it under program control. You must remember to use the quote

marks surrounding the time you are setting the clock to, otherwise an ERROR

message will appear.

This clock is often referred to as the "real time" clock, because it keeps

real time. That's logical, isn't it? It is a 24-hour clock, meaning that if you

set it to 00 00 00 at midnight, it would read 13 00 00 at 1 o'clock pm, and

23 00 00 at 11 o'clock at night.

A major caution about the real time clock is that it stops while the cassette

recorder is LOADing or SAVEing programs or other information. Actually,

the clock stops each time the screen is blanked, for whatever reason. This

means that you should only use it between cassette operations.

There's another clock inside the computer, though it is less useful for

timekeeping. It is called the "jiffy" clock, a so-called jiffy being l/60th of a

second. It starts from 0 (zero) and keeps going until it reaches 51,839,999

jiffies, then resets to 0. If you use the jiffy clock, don't be too concerned that

it will reset in the middle of something you're keeping track of. Fifty-one

million jiffies is over 230 hours.

48 What Time Is It?

You can see the time in jiffies by typing this:

PRINT TI

The number that appears on the screen is the number of jiffies since the

machine was turned on. If you divide it by 60, you'll get the total number

of seconds the machine has been on. If you divide it by 3600 (60 times 60),

you'll get the total number of minutes, and so on.

The jiffy clock cannot be reset by making TI equal to 0 (zero). Instead,

it is reset by setting TI$ to "000000."

Programming—

An Introduction

In the not too distant past, anyone who could program a computer was

considered to be a "genius/' or worse, in possession of magical powers. In

reality, these people only knew the computer's capabilities and how to break

a large problem down into smaller parts. They also knew the language of

the computer, just as they knew their own language.

Today, people who can program a computer are no longer considered

special, only skilled. Many more people can program computers than those

who choose to make their living at it. This is a skill that can enhance your

life and can be used personally, as well as professionally. Taken solely as an

intellectual exercise, there are few challenges as rewarding as learning to

program.

Learning how to use only a few simple words, you will begin to acquire

this skill and discover how to make the computer do some very impressive

things.

After reading this section, you will know something about what a com

puter program is, how the computer stores words and numbers, and how

the word PRINT works.

A word of encouragement: If you are new to programming, you will be

surprised at how much you can do after learning to use only a few words.

Lines of BASIC programming are offered as examples throughout this

book. Each time you want to see how one of these examples works, you will

49

50 4—Programming—An Introduction

need to clear the computer's memory and make it ready for a new program.

Unless you are told otherwise in the text, type NEW and press the RETURN

key for each new example you want to try for yourself.

While you are learning BASIC you are almost certain to make mistakes.

This is a normal part of the process and you shouldn't get frustrated by the

problems you encounter. For every mistake just retype the example and try

again.

Scattered throughout the next few sections on programming (as well as

other parts of this book) you'll find information on ERROR messages. ERROR

messages are the computer's way of telling you that you've made a mistake.

Each ERROR and its possible causes are described, as well as hints for

correcting it. The reasons behind ERRORs are sometimes very subtle and

your best clue to them, overall, is that the computer is literal and exacting

in its demands.

Basically BASIC

The computer language that the Commodore computers use most com

monly is called BASIC. It was developed by John Kemeny and Thomas Kurtz

in the 1960s and introduced at Dartmouth College to offer people an alter

native to computer languages that were considered less than "human." With

few exceptions, its words are English words or clear derivations of them.

The name BASIC is an acronym for Beginners' All-purpose Symbolic

Instruction Code. It is not the "basic" computer language on which others

are built, but rather a collection of simple, useful commands. Nor is BASIC

the most powerful computer language. There are others better suited to

certain particular uses. One computer language, FORTRAN, is especially

good for recordkeeping and mathematics. Another, called COBOL, is said to

be good for compiling statistical information. The language known as LISP

is well suited for keeping and updating lists and for artificial intelligence

experiments.

Like any language, BASIC has its own vocabulary (the BASIC words) and

syntax, which is the proper way to use them.

BASIC is good for introducing people to computers and for general pro

gramming. Although almost any program can be written in BASIC, other

languages may require less effort, use less memory, or may run more quickly.

A word about speed: The version of BASIC in Commodore computers is

called an interpreted BASIC. This means that the computer looks at each step

in the program, item by item, and does what it is told. Another kind of BASIC

is called compiled BASIC. The program is converted to another set of numbers

that the machine can execute much more quickly. Programs converted with

a BASIC compiler run much faster than with the version built into your

Commodore computer.

To find out more about a compiled BASIC for the Commodore 64 family,

look at the section of this book entitled "Beyond BASIC." It includes infor

mation on a BASIC compiler available for your computer.

Basically BASIC 51

Commodore BASIC is a version of the language originally written for

the company by Microsoft, a Bellevue, Washington programming group. It

was first written for the MITS Altair, an early personal computer that is no

longer manufactured. Since its introduction, Microsoft BASIC has gone on

to become closest to a "standard" version of BASIC for tiny computers.

Still, there are differences in the versions of BASIC that Microsoft has

designed for the TRS-80, the Apple II, and other machines. Most BASIC words

function the same in all these computers, but there are still many significant

variations from machine to machine. So a program written in the Commo

dore version ol Microsolt BASIC won't necessarily run correctly on an Apple,

and vice versa. This isn't your computer's fault; it is just a fact of life.

All BASICs are not equal.

Commodore has also modified its first Microsoft BASIC over the years,

and each generation ol its computers used slight variations of the original.

For example, early Commodore PET computers had a BASIC with certain

annoying mistakes, or "bugs" in it. When Commodore introduced an up

graded version of the PET, it also upgraded the BASIC to fix some of these

bugs. The version of Commodore BASIC used in the 64 family is closest to

this upgraded revision, called V2, or version #2.

52 4—Programming—An Introduction

A Program Defined

A computer program is a list of things that the computer should do.

Remember that the program takes a large task and breaks it down into

smaller ones.

Take, as an example, the list of things to do—the "program"—for making

a TV dinner.

1. Pre-heat the oven to 400 degrees.

2. Take the frozen dinner out of the box.

3. Put it in the oven.

4. Wait 45 minutes.

5. Unwrap and eat.

Or at least that's what it says to do on the box. In reality, you may choose

to do things a bit differently. You might check first to see if the oven is

heating up properly, and if it isn't, then determine the cause of the problem.

This TV dinner "program," then, could be rewritten to ask questions like "is

the stove in working condition?"

So, too, can a computer program perform these kinds of tests, ask ques

tions, and make decisions.

Numbering and Listing

Just like the TV dinner example, a BASIC program is a numbered list

of instructions. Since BASIC is a language, you can think of each line of

instructions as a kind of sentence. Each line in Commodore BASIC is given

a number from 0 to 63999. (The computer won't accept program lines num

bered any higher.)

You can see the complete list of program lines inside the computer by

typing the word LIST and pressing the RETURN key. The lines will appear

one after another on the screen, so quickly that you can't usually read them.

To slow down the LIST, press the CTRL (control) key. The LIST will continue,

but it will slow down considerably.

(While you have the CTRL key depressed, you can press the SPACE bar

to speed up the LISTing again. Pressing CTRL also slows the speed at which

most BASIC programs RUN.)

Pressing the RUN/STOP key while a program is LISTing to the screen

will freeze the action altogether and READY will appear. (You'll need to type

LIST to get going again.) LIST can also be used to see only the lines or

portions of the program you want to see. Some examples:

Type The Computer Lists

LIST All program lines in computer memory

LIST 100 Only program line 100

LIST 100 - 150 All program lines numbered between 100 and 150

LIST - 150 All program lines up to and including line 150

LIST 150 - All program lines beginning with line 150

Numbering and Listing 53

If you can't remember the exact numbers of the program lines you're

looking for, don't worry. The third, fourth, and fifth examples use the numbers

only as a range. So if there is no line 100 or 150, LIST will still print out

lines numbered between 100 and 150, like 101 or 149.

Usually, when writing a program, you begin with a line number higher

than 0 so that, if you wish, you can later add new lines before the first one

you wrote. Likewise, good BASIC programmers tend to leave gaps between

numbers so that other lines can always be inserted between existing lines

later on. It is a good idea to number program lines in increments of ten, so

that you have enough room for these kinds of insertions.

Each line of Commodore BASIC can be longer than a single line on the

video screen. Including the line number, each can be up to 80 characters

long. (Since the video screen is 40 characters wide, this is the equivalent of

two lines on the screen.)

When you begin programming, make sure the computer's memory is

clear. Either type the word NEW and press the RETURN key, or turn the

machine off then on again to enter the command. (Try to avoid turning the

computer on and off too often. This can be hard on its electronic components.)

This readies the computer for a new program and voids any previous program

that may have been in the machine. Start a program line with a number,

followed by the appropriate BASIC instructions. Pressing the RETURN key

will enter that line into memory. Pressing RETURN is essential. Until you

do so, the program line is only on the video screen.

While typing, you can go anywhere in the program line (up to two screen

lines long) and edit it with the INST/DEL and CRSR (cursor) keys. The screen

editor built into the computer is designed to always keep track of what you

are doing.

Once RETURN is pressed and the line is entered into memory, the cursor

will automatically move to the next available line on the screen. If you have

made a mistake or have changed your mind about entering the line you're

working pn, either move the cursor to the next line on the screen or hold

down the SHIFT and press RETURN. (If you press SHIFT and RETURN, the

cursor will jump to the next line, but you'll "fool" the computer and the line

will not be entered.)

Remember that 80 characters is the longest BASIC line you can enter.

If you go over this limit, the computer will not accept what you've typed.

To eliminate unwanted program lines, type the line number all by itself,

then press RETURN. To get rid of line 100, for example, just type 1DD on a

blank line and press RETURN. When you try to LIST that line, it will no

longer appear.

Using the very powerful editing features of the Commodore computers,

you can also duplicate lines or portions of lines. Type the BASIC line:

ID PRINT "LINE ID"

Press RETURN to enter it. Now move the cursor back up to the line and

change the line number to 20, then change the number 10 (in quotes) to 20,

as well. Pressing RETURN will enter the line as if it were a brand new one.

54 4—Programming—An Introduction

LIST the program and you will see both lines. This handy feature allows you

to enter several similar lines easily, and takes much of the drudgery out of

programming in BASIC.

The END

Many computers that use BASIC insist that the word END be used at

the end of a program. The purpose of this word is obvious: END simply

makes the program quit running. While it is probably good programming

form to use END, Commodore BASIC doesn't require this word.

However, there are logical reasons to use END other than on the last

line of the program. These will be explained as you begin to understand how

programs are written and how BASIC works.

Variables: How the Computer Keeps Its Facts

Straight

How does a computer know what we mean when we ask it for the total

of a grocery bill, or when we ask it for the answer to a question? How does

it know which facts are which?

A BASIC program must give names to every piece of information that

the computer will deal with, whether they are numbers, words, sentences,

or even pictures. These names are called variable names, because the infor

mation they stand for can always be changed. Variables come in two varieties:

Names that stand for numbers (and numbers only) and names that stand for

letters and other symbols. Here are some examples of variable names:

A= 10.20

A$ = "THIS IS MY COMMODORE COMPUTER"

AB = 4096

AB$ = "THIS IS ANOTHER COMPUTER"

A2 = 45.50

A2$ = "45.50"

The computer knows the information on the right side of the equal sign
(=) by the name given to it on the left side. Ask for what A is, and the computer

will answer 10.20. Ask what AB$ stands for, and it will give you the sentence
"THIS IS ANOTHER COMPUTER," etc.

Names for letters and numbers are recognized by Commodore BASIC as
being one or two characters long. The first character must always be a letter.
The second can be a number or a letter. So, a variable name can be a single
letter (A = 10.20), two letters (AB = 4096), or a letter and a number (A2 = 45.50).
For obvious reasons—it would confuse the computer—a variable name can
not be two numbers (like 22 = 25).

Variables: How the Computer Keeps Its Facts Straight 55

Names that stand for numbers are called numeric variables. (A= 10.20,

AB = 4096 and A2 = 45.50 from the above list.)

Names that stand for words, sentences, or other symbols are called string

variables. They are always followed by a dollar sign ($). (A$ = "THIS IS

MY.../' AB$ = "THIS IS ANOTHER..." and A2$ = "45.50" from the list.)

It should be obvious by looking at them that strings—called that because

the computer sees them simply as characters strung together—are always

enclosed in quotation marks ("). Numbers can be part of a string, but the

computer recognizes them only as any other character, letter, or symbol.

Quote marks are used by journalists to separate the word-for-word com

ments of a noted person in a longer sentence or paragraph in a news story.

The quote marks perform roughly the same function in a BASIC line. They

are the only way the computer knows where any string begins and ends. And

the computer will always remember that string word-for-word when quotes

are put around it.

One possible point of confusion is the last example of a string variable

above—A2$ equals "45.50." Why, if this is a number, is it a string? The clue

to the answer is the quote marks. By putting quotes around it, we are telling

the computer to regard "45.50" as a group of characters, just like a word or

sentence, without caring about its value.

Remember, though, that A2$ = "45.50" is not the same as A2 = 45.50. The

first is a string, the second is a number.

Numeric variables allow numbers to be manipulated—added, sub

tracted, multiplied and divided. If AB stands for 10 and CD stands for 250,

then AB plus CD would equal 260. In the same way, CD minus AB would

equal 240.

Likewise (and perhaps to your amazement and amusement), strings can

be added something like numbers. If AB$ stands for "THIS IS MY "andCD$

stands for "COMMODORE COMPUTER," then AB$ plus CD$ would equal

the sentence "THIS IS MY COMMODORE COMPUTER." This adding or

combining of two different strings is sometimes referred to as concatenation,

a word that means to link together to form a chain. In BASIC, this is written

like this:

ID AB$ = "THIS IS MY "

ED CD$ = "COMMODORE COMPUTER"

3D EF$ = AB$ + CD$

The new string, EF$, equals AB$ and CD$, or the entire sentence.

Even though you can add strings together to combine words and phrases,

you cannot subtract them or do any other kind of arithmetic with them. Nor

can you add a numeric variable to a string variable. So, if A2 equals 45.50

and A2$ equals "45.50," they cannot be added to arrive at "91.00." Why?

Because numbers and strings don't mix. The computer sees A2 as a number

and A2$ as a string of characters.

(There is a way to get a number out of a string, but we'll save that for

later.)

56 4—Programming—An Introduction

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

TYPE MISMATCH ERROR

This kind of ERROR is always caused by trying to put a character

into a numeric variable or an actual number into a string variable.

Strings and numbers don't mix. Trouble statements look like this:

id a$ = q (or) a$ = a

or

ID A=»EXftMPLE" (or) A = A$

Just like the dollar sign, a percent sign (%) gives special meaning to a

variable name. The letter A, all by itself, can be virtually any number, in

cluding numbers with decimal points. The number 10.5 is the number 10

plus five tenths (or a half). Numeric variables followed by a percent sign,

such as A%, can be used by the computer to name only whole numbers, also

called integers, between — 32768 and 32767. If you need to use numbers larger

or smaller, you can always store them as plain old numeric variables, like

A = 365000.

Why would you use such integer variables? For one thing, programs

operate slightly faster. (Only very slightly faster. Don't expect any dramatic

increase in speed.) For another, storing whole numbers as integer variables

takes up less of the computer's memory. Integer variables can also be used

to turn numbers with decimals into whole numbers. Try this:

ID fi£ = lD3.qfl7

5D PRINT A%

When you RUN this example, A% will be PRINTed as 103. You'll notice

that this isn't true "rounding." Normally, 103.987 would round off to 104,

not 103. Some programmers insist that it is good form to always use integer

variables for whole numbers. Others seldom use them.

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

ILLEGAL QUANTITY ERROR

Integer variables are recognized by the percent sign (%). If this

ERROR occurs in a line with an integer variable, check to see that

the variable does not stand for a number greater than 32767 or

less than -32768. If the ERROR is not in a line with an integer

variable, check for problems with POKE.
**

What if you want to use variable names longer than two characters for
numbers or strings? Fine, go ahead and use them. The Commodore computers

Variables: How the Computer Keeps Its Facts Straight 57

will remember the entire name, but will only recognize the first two letters.

So be cautious of confusing the computer. If, in a program, you use GAS = 25.87

and GAMES = 35.55, the computer won't know the difference between how

much you paid for GAS and how much you spent on GAMES. The version

of BASIC in some personal computers (particularly the Atari computers) will

allow these kinds of long variable names. Commodore BASIC will not.

Finally, you should know that Commodore computers cannot use a few

particular variable names. These "forbidden" names include IF, TO, OR, and

GO because they are in BASIC. Neither TI nor TI$ can be used because they

are reserved for use with the internal clocks built into all Commodore com

puters. The name ST$ can be used for strings, but ST cannot be used to stand

for a number.

To help you remember how the computer uses variable names, here is

a quick chart you can refer to:

Variable Name Okay? Why?

A$, A or A% Yes

AA$, AA or AA% Yes

22$, 2B or 22% , No

Al$, AlorAl% Yes

TI$, TI or TI% No

TO$,TOorTO% No

ST No

ST$ Yes

HOTEL$ or HOTEL Yes

HOME$ or HOME No

Any single letter (A-Z) can be used.

Most two-letter combinations are okay.

The first character must be a letter.

Combinations of numbers and letters are accept

able.

Used by computer's internal clock.

TO is a BASIC word.

Reserved by BASIC.

Just another two-letter name.

Names longer than two characters can be used,

but only the first two letters will be recognized.

Confusion with above examples.

There are limits to the size of numeric and string information that can

be stored by the computer. Each number stored as a numeric variable has

a limit of nine digits. This means, for example, that the variable name AB

can equal the number 999999999, or the number .999999999, which is a

decimal fraction.

(Unlike humans, the computer does not want to see numbers of more

than three digits written the way we do. That is, never use commas in num

bers over 999. The computer expects to see them written, for instance, as

1000 or 12520.)

Numbers larger than 999,999,999 and smaller than .000000001 can also

be stored, but the computer thinks of them in a way other than as conven

tional digits. Making AB equal the number 200,000,000,000 (two hundred

billion), then asking the computer for the value of AB brings the response:

2E+11.

This is the computer's way of referring to the number exponentially in

scientific notation.

If you're interested, this is briefly the way exponential numbers work.

The number 10 times itself, or 10 squared (102 or 10 to tiie 2nd power), is
100. Ten cubed (103 or 10 to the 3rd power) is 10 times 10 times 10, or 1000.

58 4—Programming—An Introduction

In each case, the number of zeros behind the number 1 is the same number

of the exponent of ten (10n). Two hundred billion (200,000,000,000) is 2 fol

lowed by 11 zeros and is 2 times 1011 (10 to the 11th power). Exponents can

be negative as well. The decimal number .000000000002 is 2 times 10"n (10

to the minus 11th power).

Since the Commodore computers can't display numbers that look like

211, they PRINT the root number (2 in the above example, followed by the

letter E for exponent, then the exponent itself from -35 to +35. The final

exponential number is spoken 2 times 10 to the 11th.

(Confused? Need more information? A full explanation of exponential

numbers and scientific notation can be found in most any high school math

book.)

If you are not going to be using numbers so great or small that they need

to be written exponentially, you shouldn't worry about not understanding

the concept of scientific notation. Thousands of useful programs have been

written without regard for these kinds of numbers.

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

OVERFLOW ERROR

This ERROR occurs when you attempt to work with the largest

number that the computer can use, 1.70141884E + 38, or the num

ber multiplied by 1 followed by 38 zeros. The solution (not always

possible) is to break up your calculations so that this number is

never achieved.

The rule governing the length of string variables is far simpler. No string

can be more than 255 characters long. That includes strings that are added

together or concatenated.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

STRING TOO LONG ERROR

Strings can only be 255 characters long. String ERRORs are likely

to occur when you concatenate, or add, one string to another. Check

the length of each string when looking for the source of this

ERROR.

Very rarely, you'll see the word LET used in a BASIC program. It is used

to define a variable. LET, however, is used optionally in Commodore BASIC,

but it does add to the readability of a program. It is just as valid to use either

line:

Quantity Error 59

ID LET AB

or

10

BASIC Punctuation

Since BASIC is a language made up of words and rules about how they

are used, wouldn't you expect rules of punctuation, too? There are such rules,

just as in English or any other language. The rules of punctuation in BASIC,

however, are much simpler than in English.

Just as several short English language statements can share a single line,

several BASIC statements can share a program line. In English, the state

ments—let's say two-word sentences—are separated by periods. For exam

ple, the line:

Go home. Eat lunch.

The punctuation mark to separate statements in a BASIC line is not a

period, but a colon (:). A BASIC line with more than one statement looks like

this:

ID PRINT "THIS IS MY COMPUTER":GOTO ID

The important thing to notice about this line is how the colon is used,

in this case to separate two distinct BASIC statements. A BASIC program

line, including its number and spaces, can only be up to 80 characters, or

two screen lines long.

Colons can also be used to make lines of BASIC more readable. For this

purpose, one or more colons can be the first character or characters after the

line number to set it apart from the rest of a program LISTing. For example:

ID PRINT "THIS IS MY COMPUTER"

20 : :GOTO ID

If you notice, the use of the two colons provides for a kind of indentation

that is often visually helpful in keeping a program line recognizable.

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

SYNTAX ERROR

Syntax ERRORs can be caused by dozens of problems, but all are

associated with BASIC "grammar." The most common problems

are misspellings and missing punctuation marks, particularly co

lons (:) and commas (,). Also look for use of semicolons (;) in place
of colons, and make certain parentheses are closed. Check rules for

use of problem words.

60 4—Programming—An Introduction

Other punctuation marks are used in BASIC programming, including

the comma (,), the semicolon (;) and the quote mark, which you have already

been introduced to. These are used mainlv with the BASIC word PRINT.

Programming PRINT

PRINT is one of the most often used words in the BASIC language. By

itself, it is one of the easiest words to understand. With the addition of

punctuation marks, though, it can be made to work in many different ways.

Don't be discouraged if you find PRINT confusing at first. Since there are so

many more variations to PRINT than there are to other BASIC words, it may

take you longer to learn about its possibilities.

PRINT tells the computer lo put something on the video screen. It can

PRINT words and sentences, the results oi a calculation, and even pictures.

You were shown a simple program in the section of this book about

setting up and checking out your system. Its first line said:

ID PRINT "THIS IS MY COMMODORE COMPUTER"

This line does exactly what it looks like it would do.

PRINT is usually followed by telling the computer what it is you want

it to PRINT. In this case, it is the sentence THIS IS MY COMMODORE

COMPUTER. As you can see, the sentence is in quotation marks in the pro

gram, but the quotes vanish when it appears on the screen. The quote marks

only indicate to the computer that it should PRINT whatever is between them.

18 PRINT "THIS IS MY COHHODORE COMPUTER1

20 END

THIS IS MV COMMODORE COMPUTER

READV.

Try retyping the above BASIC line with other words in between the

quotes. Then RUN. You should see whatever you put inside the quotes.

Programming PRINT 61

PRINT can also be used to PRINT the numbers and characters that

numeric and string variables stand for:

ID A = 4Dqt

ED B$="THIS IS MY COMMODORE COMPUTER"

3D PRINT A

4D PRINT B$

A Shortcut Let's try a shortcut that you can use from now on. Retype
the program line like this:

ID ? "THIS IS MY COMMODORE COMPUTER"

After typing the line this way (with a question mark instead of the word

PRINT), LIST the line. Even though you did not type the word PRINT, the

computer understood what you meant. It knows that the shorthand version

of the PRINT command is a question mark. Don't assume that it will un

derstand anything else, though. It will not. It only knows that the question

mark is a substitute for PRINT. Most of the time, unless you are told otherwise

in the instructions in this book, you can use this shorthand method instead

of typing the entire word PRINT.

PRINTing a Blank Line Try telling the machine to PRINT with
out anything following the command.

ID PRINT "THIS IS MY COMPUTER"

ED PRINT

3D PRINT "THIS IS MY COMPUTER"

You should see the two identical sentences PRINTed on the video screen,

separated by a blank line. Using the word PRINT, by itself, is one way to

skip a line when PRINTing to the video screen.

Now, try another way of saying the same thing, but on just one program

line, separated by the BASIC punctuation mark, the colon.

ID PRINT "THIS IS MY COMPUTER" :PRINT:PRINT "THIS IS

MY COMPUTER"

Two other BASIC punctuation marks, the comma (,) and the semicolon

(;), are often used with PRINT statements. Using either one affects the way

PRINT works.

PRINT with Semicolon Type in these program lines exactly as

shown, including spaces. (You can substitute the shorthand ? for the word

PRINT.)

ID PRINT "THIS IS ";

ED PRINT "MY COMPUTER"

RUN the program and see what happens. If you typed it in correctly,

paying close attention to the space between the word "is" and the last quote

62 4—Programming—An Introduction

mark in line 10 and the semicolon at the end of that line, it should type our

sentence "THIS IS MY COMPUTER."

16 PRINT "

26 PRINT !i

30 END

RUN
THIS IS MV

READV.

THIS IS ";

My COMPUTER"

COMPUTER
•

The semicolon is a way of telling the computer where it should begin

PRINTing. Ordinarily, every time a PRINT command is used in a program

the computer will begin PRINTing on the next line of the video screen. The

semicolon tells the computer nut to go to the next line, but to keep its place

on the screen and begin PRINTing in the very next space. This way, two

parts of a single sentence or a group of characters can be linked. It is a quick

way of linking sentences and text together on the screen. (This occurs only

on the screen. Strings stored separately as variables remain separate in mem

ory.)

The space between the word "is" in line 10 and the last quote mark

in the same line is important. Without it, the sentence would read "THIS

ISMY COMPUTER."

Numbers as well as words can be written on the video screen using the

PRINT command and the semicolon.

ID fi

ED B = l

3D C = R + B

4D PRINT C

In line 10 you are plugging in the number 100 for the variable name A,

and in line 20, the number 1 for B. RUNning this program will first assign

the names to the numbers, then print out the sum of A (100) plus B (1), or

101.

Programming PRINT 63

Without looking at the program, the PRINTed result of A plus B may

appear meaningless. To identify it on the video screen, we can instruct the

program to tell us what this number is each time it is PRINTed. Change line

40 to this: (Don't type NEW!)

AD PRINT "A + B = »;C

This might look like you are repeating yourself, but you are not. Line 40

first tells the computer to PRINT A + B =. Then the semicolon tells it to

continue PRINTing on the same line. Finally, the computer PRINTs the value

of C, the sum of A + B, or 101. If this line PRINTs two things on the screen,

the statement (A + B =) and the result, why is the BASIC word PRINT used

only once? The computer makes an important assumption when it sees a

semicolon in a line. Unless a colon is encountered, the computer assumes

that it should continue PRINTing whatever follows.

You may notice that the number 101 isn't PRINTed exactly next to the

equal sign =. This is because the semicolon treats numbers slightly differ

ently than it does strings. It PRINTs two spaces away from the last thing

PRINTed. This is not a mistake in BASIC. It is designed to keep numbers

separate from each other at all times to avoid confusion. Here is a variation

on the same program:

ID A = 1DD

AD PRINT A;B;C

It PRINTs the number values of all the variables in the program, sepa

rated by two spaces each. This kind of logical separation also happens when

you PRINT a string after a number using the semicolon. Try this:

ID A = 1DD

5DB = 1

3DC=A+B

AD PRINT A;B;C; "THESE ARE THE VALUES of A, B and C"

PRINT with Comma Another punctuation mark that is used with

PRINT is the comma. It is used in the Commodore 64 family to organize the

video screen in columns. Here is a program that will graphically illustrate

how commas work:

ID A$ = "COLUMN 1"

ED B$ = »COLUMN 5"

3D C$ = »COLUMN 3"

AU D$ = »COLUMN A"

7D C = 3

flOD = 4

RD PRINT A$,B$,C$,D$

ltlD PRINT A,B,C,D

64 4—Programming—An Introduction

When you RUN this program, you will see that the 40-character video

screen is divided into four columns, each 10 spaces wide. You should also

see the difference between PRINTing strings and PRINTing numbers in these

columns. Strings will begin PRINTING in the very first position in a column.

(The string columns start on the video screen at positions 1, 11, 21, and 31,

when you count the first position as number 1.) Numbers skip a space and

begin PRINTing in the second space. (Starting locations of columns con

taining numbers are screen line positions 2, 12, 22, and 32.)

le
26
36
46
56
>6
78
86
96
L88
RUN

A5 = "
B5 = "
CS = "
DS = "

A = i
B = 2
C = 3
t\ — A

PRIH
PRI

CfiLliHN

I

READV ,

COLUMN
COLUMN
COLUMN

COLUMN

, ■ >

3"
4"

T A$,B$,C$,D$
HI ft, B CD

I COLUM :;-■■ :
2 3

UOLUMW 4
4

Change line 40 in the program above to this:

40 D$ = "THIS IS COLUMN NUMBER FOUR"

RUN the program again. You will see what happens when the infor

mation in a column takes up more than ten spaces (nine spaces when numbers

alone are used) on the screen. The computer will PRINT into the next column,

then advance to the next. These long columns can disturb a carefully orga

nized screen, so to avoid this trap, it is wise to know what will be PRINTed

first.

You should keep track of what you arc doing each time you use the

semicolon or the comma. Using either one at the end of a line will mean that

the next PRINT statement will begin PRINTing in the appropriate position—

in the next space or two if you use a semicolon, in the next column if you

use a comma. So, if the last character in a PRINT statement is not a comma

or a semicolon, the cursor will automatically move to the next line when it

PRINTs again.

Programming PRINT 65

PRINT Example Result

10 PRINT A

10 PRINT A;B;C;D

10 PRINT A,B,C,D

10 PRINT A;B

20 PRINT C;D

10 PRINT A,B

20 PRINT C,D

10 PRINT A$

10 PRINT A$;B$;C$;D$

10 PRINT A$,B$,C$,D$

10 PRINT A$;B$

20 PRINT C$;D$

10 PRINT A$,B$

20 PRINT C$,D$

PRINTs the number named A on the screen—cursor

moves to the next line.

PRINTs the numbers named A, B, C and D next to each

other on the same line, each separated by 2 spaces.

PRINTs the numbers named A, B, C and D in four col

umns of nine spaces each.

PRINTs the numbers named A and B on one line, sepa

rated by two spaces, then PRINTs the numbers named

C and D on the next line in the same way.

PRINTs the numbers named A, B, C and D on two lines

in the first two screen columns.

PRINTs the string named A$—cursor moves to the

next line.

PRINTs the strings named A$, B$, C$ and D$ next to

each other on the same line without spaces between

them.

PRINTs the strings named A$, B$, C$ and D$ in four

columns on the screen, length permitting.

PRINTs the strings named A$ and B$ on one line, next

to each other without spaces, then PRINTs the strings

named C$ and D$ on the next line in the same way.

PRINTs the strings named A$, B$, C$ and D$ on two

lines in the first two screen columns, length permit

ting.

PRINTing Directly From the Keyboard In the event that you
want an immediate answer to what the numbers or strings are that are stored

by variable names, it is unnecessary to write a program line. PRINT (or the

shorthand question mark) can be used directly from the keyboard.

PRINT [or ?] &B [then press RETURN]

The above line will print the number that AB stands for.

PRINT [or ?] AB$ [then press RETURN]

The above line will print the string of characters that AB$ stands for, as

well.

PRINTing Screen Functions The PRINT command is also used

for several screen functions, including moving the cursor around the screen,

moving the cursor back to "home" (the top left corner of the screen), and for

erasing everything on the screen.

In addition to moving the cursor around the screen from the keyboard

(with the cursor up and down, left and right keys), a BASIC program can

also position the cursor in a similar way. This is accomplished by PRINTing

cursor commands. To see how this works, type these lines:

ID PRINT "LINE #1"

ED PRINT "[press the CRSR DOWN key five times]"

After you type the first quotation mark, don't type the above sentence,

but press the CRSR DOWN key five times. Instead of seeing the cursor moving

66 4—Programming—An Introduction

down five lines, you will see five symbols on the screen. (They look like the

letter Q, reversed against the background.)

Type another set of quote marks to close the statement. Now type another

line:

3D PRINT "LINE #E»

RUN the program. It will PRINT the words LINE #1, then five blank

lines, then LINE #2.

Any cursor commands (up, down, left, or right) will work this way. You

may have some difficulty since the movement of the cursor is often difficult

to visualize. One tip is to make notes with a pencil and paper to keep track

of where the cursor is moving. Once the program is RUNning, the cursor is

invisible and things happen too quickly to analyze.

Using the same program (don't type NEW), add this line:

5 PRINT "[hold down the SHIFT key, then press CLR/HOME]"

You should see another symbol, a heart reversed against the background.

RUN the program again. This line tells the computer to clear the video screen

before RUNning the program as originally written. It also relocates the cursor

to the top of the screen.

If you had pressed the CLR/HOME key without the SHIFT, you would

have seen a different symbol inside the quotes, the letter "S" reversed against

the background. It would have relocated the cursor to the top, but would not

have cleared the screen. It is handy to use this "home" symbol when you are

doing complicated cursor moves. It assures that you are always starting from

the same place, the top left corner.

You may have noticed that this program begins PRINTing, not on the

very top line of the screen, but on the second line. Without a semicolon after

a PRINT "clear the screen" or "home the cursor" statement, the cursor will

Programming PRINT 67

always go to [hat second line. {This is logical, and follows the rules aboul

using the semicolon and comma.)

PRINTing to the video screen is enhanced when used with similar Special

keys, the RVS ON and RVS OFF keys. Typing a quote mark, then pressing

CTRL (control) and RVS ON together, tells the computer to PRINT what

follows as reversed characters against the background color. In the graphic

mode, you will see a special character, a reversed letter "R," when you press

the RVS ON key after a quote mark.

EADY.

>LE OF "£US OFF KEV
VS OFF KEV

PRINTing will automatically return to normal at the end of a line with

a RVS ON in it. Or, you can turn off the reverse PRINTing inside the line by

typing another special character, RVS OFF. To turn off RVS, hold down the

CTRL key and press RVS OFF. In the graphic mode, you will see a square

with a line near the bottom, reversed against the background. When this

RVS OFF character appears mid-line, between quotation marks and after a

RVS ON character, anything before it will be PRINTed in reverse, and ev

erything after it will be PRINTed normally.

ID PRINT "NOT IN REVERSE [press CTRL and RVS ON] IN

REVERSE [press CTRL and RVS OFF] NOT IN REVERSE"

Color keys are treated in the same way, each yielding a different color

of PRINTing on screen when used in quote marks. To obtain a color, press

CTRL and the desired key numbered 1 through 8, or the COMMODORE key

and any of the same keys. See the charts in the section entitled "Setting Up"

for a description of which keys produce which colors.

A major difference when using the color keys and the reverse keys is that

the machine will continue to PRINT in the color vou have told it to until

68 4—Programming—An Introduction

you indicate otherwise. So, if you begin PRINTing in blue and change to red

to highlight a word, you will need to press the appropriate keys to return to

the original blue color.

ID PRINT »[press CTRL and WHT] THIS WILL CONTINUE TO PRINT

IN WHITE1'

ED PRINT "UNTIL YOU INDICATE [press COMMODORE key and

BLU] OTHERWISE"

If you are thinking that using PRINT is complicated, you are correct.

Since it offers so many possibilities, there are a large number of rules that

accompany its use. Most BASIC words, however, don't have as many options

available to them and are considerably easier to describe and understand.

Programming

The Big Ten

As in any spoken language, certain BASIC words form its core. These are

words that are among the most useful. The ten words you'll learn about in

this chapter—INPUT, GOTO, IF and THEN, GET, FOR and NEXT, GOSUB

and RETURN, ahd REM—offer a great many possibilities. With these (and

PRINT from the previous chapter) you can really begin to program. These

ten words also introduce you to new corlcepts. GOTO, GOSUB and RETURN,

for example, have to do with the order in which a program does things.

INPUT and GET involve giving the computer information. With IF and THEN,

the computer can test information and make simple decisions. REM lets you

add comments to BASIC programs, to make them more understandable. If

you learn nothing more than these few words, you will have unlocked much

of your machine's power.

Using INPUT to Ask for Information

The BASIC word INPUT is, in many ways, the direct opposite of the word

PRINT. Yet, this word follows some of the same rules that PRINT does.

INPUT is used to take information from the keyboard and put it into a

named variable. When INPUT is used, the program will PRINT a question

mark on the screen, pause and wait for someone to type in an answer (a

69

70 5—Programming—The Big Ten

string or a number) and press the RETURN key. Then, if there are program

lines following it, INPUT will go back to RUNning the program.

In its simplest form, INPUT is used with only a variable.

ID INPUT A

The above line PRINTs a question mark, then pauses and waits for some

one to type in a number to be stored as the variable named A.

ID INPUT A$

Likewise, this line above does exactly the same thing, except that it wants

a string of characters to store as "A$." One peculiarity of INPUT is that it

will not accept string answers with commas in them. If an INPUT statement

asks you for your city and state, for example, you cannot answer "Flint,

Michigan" or "Atlanta, Georgia." INPUT will accept what is written before

the comma and ignore everything after it. (You'll see why.)

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

EXTRA IGNORED

This is really an ERROR that you cannot correct, and happens

when your answer to an INPUT statement contains a comma where

one does not belong. Commas are used by the Commodore com

puters as special characters. The only time that they are allowed

within an answer to,INPUT is when the program is looking for

several answers at once. Like this:

ID INPUT A$,B$,C$

Commas in strings will also cause problems when they are stored

and recalled to and from disk information files.
**

Using INPUT this way, simply asking for information without first

PRINTing a question, is awkward. To make the program's requests clearer,

you may ask it to PRINT something just before the question mark it will

always put on the screen. Type your question in quotation marks, just as you

would if you were PRINTing it on the video screen. For example:

10 INPUT "WHAT IS THE VALUE OF A" ; A

This line PRINTs WHAT IS THE VALUE OF A? (The question mark was
PRINTed by INPUT.) You must use the semicolon, as above, to separate the
variable name from the question you are asking.

You can also ask for more than one number at a time, by separating the
numeric variables with commas.

10 INPUT "WHAT ARE THE VALUES OF A, B, C»;A,B,C

This line will PRINT the question WHAT ARE THE VALUES OF A, B,
C? Then it will wait for the proper responses. When INPUT asks for more

Using INPUT to Ask for Information 71

than one response, all of the responses must be typed before pressing the

RETURN key. For the computer to understand that each number typed is

separate, you must type the numbers with commas in between, like this:

1D D , 1D , S 5 [then press RETURN]

Since it is often unclear to the program user that the computer demands

these commas, it is usually safer to use separate INPUT lines this way:

ID INPUT "WHAT IS THE VALUE OF A" ; A

ED INPUT "WHAT IS THE VALUE OF B" ;B

3D INPUT "WHAT IS THE VALUE OF C» ;C

If a program like the example above asks for numbers, nothing else will

be accepted. If, for the question WHAT IS THE VALUE OF A?, you type the

answer TWO, the computer will signal that you have made a mistake and

will ask you to re-enter the answer as the number, rather than the word.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

REDO FROM START

This message appears whenever you answer an INPUT statement

with a string, when it expects a number. Correct the situation by

answering with a number.
**

If any question posed by INPUT is not answered—no number or string

is typed—and only the RETURN key is pressed, INPUT will assume that the

answer is either 0 (for a number) or nothing at all for a string. This empty

string is often called a "null" string. Such a string, for instance, can be written

A$ = "" (with no space between the quotes). Null strings can be useful, as

you will learn.

(Those who have used and programmed the original Commodore PET

computer should be happy to know that INPUT now accepts 0 and null strings

as answers. With the PET, the response of just pressing the RETURN key

would suddenly end the program.)

To better learn how INPUT is used, type in the following short program:

ID INPUT "WHAT IS YOUR NAME" ; NA$

ED INPUT "HOW OLD &RE YOU11; AG

3D PRINT "YOUR NAME IS " ; NA$

AU PRINT "YOU ARE"; AG; "YEARS OLD"

This program will first PRINT the question WHAT IS YOUR NAME?

Then it will pause and wait for your response. After typing in your name, it

will PRINT the second question, HOW OLD ARE YOU? It will wait, again,

for your response, then immediately PRINT two sentences: YOUR NAME IS
(the name you typed), and YOU ARE (the number you typed for your age)

YEARS OLD.

72 5—Programming—The Big Ten

INPUT, as you may have guessed, is a relatively simple and uncompli

cated word to use. Except for using it outside of a program (directly from

the keyboard), there are few ways to use it incorrectly.

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

ILLEGAL DIRECT

While many BASIC words can be typed directly from the keyboard

and used outside a program, INPUT cannot. This is logical, con

sidering its use.
**

GOTO

An important idea central to computer programming is that a program

needn't necessarily run in the order that it is written. The word GOTO, or

GO TO, is used for "branching," or telling the program which line—out of

sequence—to execute next. It is also used to put a program in a "loop/' so

that it runs continuously.

The first program seen in this book is an example of a loop.

ID PRINT "THIS IS MY COMMODORE COMPUTER"

EO GOTO ID

The statement GOTO 10, of course, means GOTO line 10. This is a perfect

example of an endless loop—once set in motion, this program will continue,

literally, forever.

GOTO isn't always used to create loops.

ID PRINT "THIS IS MY COMPUTER"

ED GOTO 40

3D PRINT "THIS LINE DOESN'T WORK"

40 PRINT "THIS IS MY COMPUTER"

Even though there are three lines that will PRINT to the video screen,

line 20 (GOTO 40) tells the program to skip the line that should PRINT the

sentence THIS LINE DOESN'T WORK. (And it doesn't, either.)

Of course, writing a program with unnecessary lines is pointless. But if

we could tell the computer to make a decision based on other information

it gets from the program, this kind of branching becomes practical.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

UNDEFINED STATEMENT ERROR

You must use GOSUB and GOTO with line numbers that are ac

tually used in the program. This ERROR often happens when you

edit programs or change line numbers and forget to change the

GOTO 73

GOTO and GOSUB statements that refer to them. Check line num

bers in which the ERROR occurs, then try to LIST that line. Since

RUN can also be used with line numbers, UNDEFINED STATE

MENT ERRORs can occur this way, too.

IF, THEN, and OR

Much of the computer's power comes from its ability to make simple

decisions based on the answers to simple questions or tests. The word IF

checks for conditions and allows these decisions to be made. THEN is always

used with IF to tell the computer what to do next. Using the words you

already know, you can write this program.

ID INPUT "ANSWER YES OR NO . DO YOU LIKE COMPUTERS " ; ft$

50 IF A$="YES" THEN PRINT "GOOD. KEEP LEARNING ABOUT

THEM."

3D IF A$ = "NO" THEN PRINT "GOODBYE"

This program is the first example in this book that makes a decision. It

asks the question DO YOU LIKE COMPUTERS?, using INPUT in line 10.

The answer to the question—YES or NO—is stored as the variable named

A$.

Then the program makes its decision, which is actually one of three

possibilities. In line 20, it asks if the answer (A$) is YES. If this is true, it

PRINTS the response, GOOD. KEEP LEARNING ABOUT THEM. If the an

swer is not true, the computer goes to the next line and asks if the answer

is NO. If this is true, it responds with a curt GOODBYE. If the answer is

neither YES nor NO—a third possibility, since you could have answered the

question with any other word—it PRINTs no response at all.

You can (and often will) use IF with numbers as well as strings. In

addition to matching number answers with questions, you can also test for

a range of numbers by using signs other than the equal sign (=). The less-

than sign (<) and greater-than sign (>) are used for this purpose. If you have

trouble remembering which is which, think of the old trick of looking at them

like you would a funnel. More always goes in the open end. Less always

comes out the smaller end.

ID INPUT "HOW OLD ARE YOU" ; A

50 IF A<lfl THEN PRINT "YOU ARE UNDER Ifl YEARS OLD. "

3D IF A>lfl THEN PRINT "YOU ARE OVER Ifl YEARS OLD. "

Like the other program, these responses are based on the answer to a

question. Unlike the YES/NO example, however, it asks to see if the answer

falls into one of two broad age groups, under 18 years old and over 18 years

old. Line 20 says that IF A (the answer in numbers) is less than 18, it PRINTs
one response; if A is greater than 18, another.

The problem with this program is that it ignores the possibility that the
person who is answering is exactly 18 years old. Typing 18 would produce

74 5—Programming—The Big Ten

no response at all, since the test is for numbers greater than 18 (19 and over)

and less than 18 (17 and under).

One solution is to add another line.

4D IF A = lfl THEN PRINT "YOU ARE EXACTLY Ifl YEARS OLD."

This way, no number could be typed without getting a response from

the computer.

There is another alternative. The "<" and ">" signs can be used along

side the equal sign with yet another meaning.

5D IF A< = lfl THEN PRINT "YOU ARE Ifl YEARS OLD OR

UNDER."

3D IF A> = lfl THEN PRINT "YOU ARE Ifl YEARS OLD OR OVER."

Line 20 is read IF A is less than or equal to 18. Line 30 reads IF A is greater

than or equal to 18.

Finally, you can use two IFs in a single statement to test the range.

ID INPUT "HOW OLD ARE YOU" ; A

ED IF A> = 13 AND IF A< = iq THEN PRINT "YOU ARE A

TEENAGER."

3D IF A<13 THEN PRINT "TOO YOUNG. "

40 IF A>iq THEN PRINT "TOO OLD. "

Lines 30 and 40 should be obvious. They simply test to see whether the

answer (A) is less than 13 or greater than 19, the definition of a teenager.

Line 20 is read IF fy. is greater than or equal to 13 AND IF A is less than or

equal to 19 THEN PRINT. The response YOU ARE A TEENAGER will not

appear unless both of these conditions are met. AND always checks to see

that all IFs are true. Any number of ANDs can be used on the same IF line.

OR checks to see IF either (or any) of two or more tests are true.

ID INPUT "HOW OLD ARE YOU"; A

ED IF A< = 12 OR A> = 2D THEN PRINT "YOU ARE NOT A

TEENAGER."

The last way that "<" and ">" can be used is together, as "< >." This

is the opposite of the equal sign and means "not equal/' A little guessing

"game":

ID PRINT "I'M THINKING OF A NUMBER BETWEEN 1 AND 1DD. "

ED INPUT "WHAT IS IT"; A

3D IF A<>5b THEN PRINT "WRONG" :GOTO ID

40 IF A = 5t THEN PRINT "YOU'RE RIGHT!"

In case you hadn't noticed, the "game" is rigged. (The answer is always

56.) It first tells you I'M THINKING OF A NUMBER BETWEEN 1 AND 100.

The INPUT statement asks WHAT IS IT? then waits for the answer to be

typed. But line 30 tells the computer that it should say you are WRONG if

the number you picked (A) is not equal to 56, and go back to the beginning

of the program. (If the number is exactly 56, you are congratulated.)

IF, THEN, and OR 75

IF works in a completely logical way. It can be used not only with the

PRINT and GOTO examples here, but to redefine variables and with virtually

any other BASIC commands. One thing that befuddles some first-time pro

grammers, however, is that IF the condition is not true, everything on the

same program line is ignored. It is very important, then, to remember not

to include anything on a line that begins with IF that doesn't depend on the

correct response to a test or question.

ID INPUT "YES OR NO»;A$

ED IF A$=»YES» THEN PRINT "YOU ANSWERED YES»:A=1DD

When the answer is NO, the value of A will remain zero. When the answer

is YES, A becomes 100. Sometimes, programmers forget about the IF on a

line and include important statements. These will always be ignored unless

the line passes whatever test IF creates. Be especially careful of this as these

problems are sometimes very difficult to find in a program and there is no

ERROR message to warn you of your mistake.

GETting More Information

Another word, in addition to INPUT, can be used to store information

taken from the computer's keyboard. That word is GET.

Like INPUT, it temporarily stops the program until it has the information

it needs. However, INPUT will accept multiple characters or numbers, and

GET accepts only one at a time. And while INPUT waits for the RETURN

key to be pressed to signal that the information is complete, GET automat

ically goes back to the program after a single key is pressed.

GET is always followed by a variable name and is almost always used

with the word IF.

ID PRINT "PRESS ANY KEY TO END THIS PROGRAM"

ED GET C$:IF C$ = »» THEN GOTO ED

3D PRINT "PROGRAM ENDED"

The above example is used very often in BASIC programs written for the

Commodore computers. Its function is to pause the program until the user

wants it to continue. This is handy, for instance, for keeping PRINTed in

structions on the screen until they are read, or to give players time before

starting a game.

In the example, the program first PRINTs the message PRESS ANY KEY

TO END THIS PROGRAM. Then, GET pauses the program, and looks for a

key—any key—to be pressed. The IF statement does the actual checking. It

asks IF the value of C$ is " ". These two quote marks without anything

between them (not even a space) are called a null string, or a string of nothing,

if you remember. IF C$ contains nothing, it THEN goes back to the beginning

of the same line and tries to GET a key character again. When a key is pressed,

making C$ anything other than "", the program leaves the GET line and

continues.

76 5—Programming—The Big Ten

Pressing certain keys, though, will have no effect on this use of GET.

Those keys include both SHIFT keys, SHIFT LOCK, RESTORE, CTRL, and

the COMMODORE (logo) key. For the reason that it would stop the program

altogether, the RUN/STOP key can't be pressed either.

The main purpose of GET, of course, isn't just this little pause routine.

It is to obtain a value—a number or a string—for the variable name that it

is used with.

ID PRINT "TYPE Y FOR YES, N FOR NO"

50 GET A$:IF &$ = "" THEN GOTO ED

3D IF ft$ = "Y" THEN PRINT "YOUR ANSWER WAS YES"

AD IF A$ = "N" THEN PRINT "YOUR ANSWER WAS NO"

5D IF A$< >"Y" OR IF A$< >"N" THEN GOTO ID

In this case, the string variable named A$ stores a letter. Either "Y" or

"N" is what the program is looking for, and it makes its decisions based on

either of those possibilities. Line 50 rejects any other choice. It is read IF A$

is nor equal to "Y" OR IF A$ is not equal to "N" THEN GOTO line 10. (It is

the line that asks for "Y" or "N.")

You can use GET to choose an item from a list on the video screen. Such

a list is nicknamed a ''menu" in computer jargon. Let's try a menu of four

different choices. Instead of number keys, however, we will use those some

what puzzling, unused "function" keys at the right of the machine. The

keytops say "fl," "f3," "f5," and "f7." To the computer, they look just like

any other key, even though they don't PRINT anything when pressed. When

entering this example, do what you are told inside the square brackets "[]".

Do not type the words as you read them.

ID PRINT "[Hold down the SHIFT key and press CLR/HOME]"

ED PRINT "CHOOSE AN ITEM FROM THIS LIST"

3D PRINT "PRESS THE FUNCTION KEYS NEXT TO THE

KEYBOARD"

AD PRINT "F1--THE YEAR OF THE FIRST MOON LANDING"

5D PRINT "F3--THE HEIGHT OF THE EIFFEL TOWER"

bO PRINT "F5--THE SPEED OF LIGHT"

?D PRINT "F7-THE TEMPERATURE AT WHICH WATER BOILS"

flD GET C$:IF C$ = "" THEN flD

RD IF C$ = "[Press fl key]" THEN PRINT "l^bR"

1DD IF C$ = "[f3]" THEN PRINT "Rfl< FEET"

11D IF C$ = "[f5]" THEN PRINT "lflb,EflE MILES PER

SECOND"

1ED IF C$ = "[f7]" THEN PRINT "E1E DEGREES FAHRENHEIT"

13D PRINT "PRESS ANY KEY TO CONTINUE"

IAD GET C$: IF C$ = "" THEN IAD

15D GOTO ID

In this example, line 10 first clears everything off the video screen. Lines

20 and 30 give the instructions to choose an item from the list and press the

appropriate function key. Lines 40 through 70 PRINT the menu. In line 80,

a pause is set up with GET, as in the previous example.

Getting More Information 77

(If you noticed, there is something missing from lines 80 and 140. Instead

of saying GOTO 80, line 80 only says IF C$= "" THEN 80. The computer is

smart enough to know that any number after THEN is always the line number

it should GOTO.)

In line 90, you can see how the function keys work. Normally, no char

acters appear on the screen when a function key is pressed. But when you

type a quote mark first, you will see a unique character for each one you

type. For keys f1 and f3 you'll see a reversed box with a horizontal line through

it. If you press f5 and f7 you'll see a similar box divided with a vertical line.

When the computer sees these characters in statements like lines 90 to 120,

it treats the functions keys just like any other key.

When a function key is pressed, the program PRINTs the appropriate

information—the year of the moon landing, the height of the Eiffel tower,

etc.—then it pauses again and waits. Then the instruction to PRESS ANY

KEY TO CONTINUE is PRINTed. Pressing any key will start the program

over again with the GOTO in the last line.

You can GET numbers as well as other characters by using a numeric

variable name, but it is slightly more difficult. Since the way we tell the

computer to wait until a key is pressed is to look for a null string (" "), we

cannot use this method for numbers. Strings and numbers don't mix, re

member? So, you must use IF to test for the results of each possible number

that you are looking for.

ID PRINT "CHOOSE A NUMBER BETWEEN 5 AND fl"

ED GET A:IF A<5 OR A>fi THEN ED

In line 20, the test is made to see whether the number pressed is less

than 5 OR greater than 8. If no number is pressed, the program assumes that

the value of A is 0. Since 0 is less than 5, it returns to the beginning of the

line and tries to GET again until a proper number key is pressed.

FOR the NEXT Words...

You've seen how you can use GOTO to make a computer program loop

around inside itself, going from the end of the program back to the beginning,

and so forth. You've also seen that, unless otherwise told, the computer will

continue in its loop indefinitely.

There are ways to control the number of times a program goes through

a loop. The simplest is by using a loop with the words FOR and NEXT.

ID FOR 1 = 1 TO ED

ED PRINT "THIS IS MY COMMODORE COMPUTER"

3D NEXT I

This short program is almost like the first program in this book. Where

the original program told the computer to PRINT the sentence THIS IS MY

COMMODORE COMPUTER until you pressed the RUN/STOP key, this new

version PRINTs it only twenty times.

78 5—Programming—The Big Ten

How does it work?

In a way, FOR is like LET (but much more important). It defines a

numeric variable, in this case named I. It then tells the computer to first

plug in the number 1 for I. When the computer sees the word NEXT, it goes

back to the line with FOR in it and advances the value of I to the NEXT

number, in this case 2; then 3, and so on. This looping continues until the

variable in the FOR statement reaches the number on the other side of TO.

To prove that the variable named I is advancing, substitute a new line

for line 20 in the example.

2D PRINT I; "THIS IS MY COMMODORE COMPUTER"

It will number each line every time it is PRINTed on the screen, using

the value of I.

Using the same idea, you can use the variable's value for something

meaningful. The following program PRINTs a multiplication table.

ID PRINT "[press SHIFT and GLR/HOME key]

MULTIPLICATION TABLE FOR Ifl"

ED FOR 1 = 1 TO ED

3D PRINT I; "TIMES Ifl EQUALS" ;I*lfl

4DNEXTI

You can see by this example that the variable I is used both as the number

that 18 is multiplied by, as well as to calculate the necessary results, 1*18.

These kinds of FOR/NEXT loops can be written inside each other. This

is called "nesting" the loops. (Think of asking someone to count to ten, ten

times. That's a nested loop.) They are usually used when one variable must

advance independently of another. We can modify the above program to

PRINT all the multiplication tables between 1 and 100 just by adding another

FOR/NEXT loop.

ID FOR 1 = 5 TO 1DD

5D PRINT "[press SHIFT and CLR/HOME key]

MULTIPLICATION TABLE FOR"; I

3D FOR J=l TO ED

AD PRINT J;"TIMES";I;"EQOALS"; J*I

5D NEXT J

tD PRINT "PRESS ANY KEY TO CONTINUE"

7D GET C$:IF C$ = "" THEN 7D

flD NEXT I

These nested loops may look a bit confusing, but they really aren't. In

line 10, you are selecting the number of multiplication tables you want the

computer to PRINT—you want 99 of them. It sets up the first (or outside)

loop, FOR 1 = 2 TO 100. Line 20 PRINTs a "headline" for each one. When I

is 2, the computer will PRINT the line MULTIPLICATION TABLE FOR, and
then the number 2.

Line 30 sets up the second (or outside) loop, FOR J= 1 TO 20. This will

be the range of each table. Line 40 PRINTs each line, a number (J) TIMES

For the NEXT Words ... 79

the number of the table (I) "EQUALS,"and finally the result, J times I. Line

50 is the end of the second loop.

In lines 60 and 70, we use the little trick using GET to pause the program.

This keeps the tables on the screen so that they can be read. If this GET line

wasn't here, the tables would PRINT so quickly you'd barely be able to tell

them apart.

The last line, line 80, is the end of the first loop. NEXT I tells the computer

to PRINT another table, this time for the next number.

A third loop can be added to the "multiplication table" program to

replace the pause section. Remove lines 60 and 70 from the program. (Type

each line number and press RETURN.) Now add this new line:

tD FOR K = l TO 1DDD:NEXT K

Now there are three separate loops working inside one another. As you

can see, this is an empty loop that simply increases the value of K each time

it comes to NEXT K. Its purpose (a common one using FOR/NEXT loops) is

simply to add a delay to the program. Now you have about two seconds

between each multiplication table that is PRINTed. It is hardly enough time

to read each one, but it keeps the program advancing slowly without the

need to press a key.

The smaller the range of K (1 TO whatever), the less time it will take to

complete this loop. Try a different number and watch the results.

By the way, you will notice that the variables I, J, and K are used quite

often in other BASIC programs with FOR/NEXT loops in them. These letters

have no particular meaning by themselves. (Indeed, any legitimate variable

name can be used.) These are, however, part of programming lore that has

separated them from other variable names. Variables in loops are "incre

mented," or moved up by one, hence the letter I. It is thought that J and K

were used for this purpose only because they followed I in the alphabet.

It is important to remember a few things when using FOR/NEXT loops.

First, keep track of what you are doing. You can become confused quickly,

especially when using more than two loops inside each other. Second, try to

keep GOTO and other statements that jump around inside the program out

of the loops. Using these is an easy way to get completely tangled in your

work.

A word that is used solely with FOR/NEXT is STEP. It tells the loop how

big of a STEP to take each time a new number is used for the variable.

ID FOR 1 = 1 TO ED STEP E

ED PRINT I; "THIS IS MY COMMODORE COMPUTER"

3D NEXT I

Here, STEP 2 means that the computer should advance I by 2 numbers

instead of 1 each time. When you RUN this example you'll see that it numbers

the lines 1, 3, 5, 7, 9 and so on. Try the same example substituting different

numbers after STEP.

You can also STEP backward through a loop. Change line 10 above to

this:

80 5—Programming—The Big Ten

ID FOR I = ED TO 1 STEP-1

This negative number (-1) will number each line in descending order,

from 20 to 1.

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

NEXT WITHOUT FOR ERROR

Using the word NEXT without opening a loop with FOR produces

this message. This will happen if NEXT is used with the wrong

variable.

ID FOR 1 = 1 TO ID

ED NEXT K

No ERROR message will be given if the reverse happens—FOR is

used without NEXT. Instead, the loop will simply not continue as

it should.
**

GOSUB and RETURN

GOTO is a straightforward BASIC word. It means that the program

should GO TO another line. GOSUB is almost as simple to understand. Like

GOTO, it is used with a line number and directs the program to that line.

Unlike GOTO, GOSUB also keeps track of where it was in the program and

can RETURN to that spot after it is finished doing whatever it should. The

word GOSUB, itself, is a contraction, or shortening, of the words GO to the

SUBroutine.

Subroutines are an essential part ofcomputer programming. As the name

implies, subroutines are routines, or short programs, within programs. Each

subroutine usually accomplishes a small task that must be done over and

over. To avoid writing BASIC lines many different times in different places

throughout a program, they are written as a subroutine only once. Or, a

subroutine may be a major portion of a program written this way for the

sake of organization.

Whenever the computer encounters a GOSUB in a program, it moves to

the first line of the subroutine and does its job. When it sees the word RE

TURN, it does just that, hopping back to where it was even if that was in

the middle of a previous line. (The BASIC word RETURN has absolutely

nothing to do with the RETURN key on the keyboard—another case for

calling the key ENTER.)

You can probably see that GOSUB is a potentially powerful command,

useful in a way that GOTO could never be.

Using most of what you've read about (and learned, we hope!), let's take

the "menu" program from the section on using the word GET and write it
using subroutines.

GOSUB and RETURN 81

First, here is the subroutine to clear the video screen and PRINT the

menu:

1DD PRINT "[Hold down the SHIFT key and press CLR/HOME]"

11D PRINT "CHOOSE AN ITEM FROM THIS LIST"

1ED PRINT "PRESS THE FUNCTION KEYS NEXT TO THE

KEYBOARD"

13D PRINT "Fl—THE YEAR OF THE FIRST MOON LANDING"

1<D PRINT "F3—THE HEIGHT OF THE EIFFEL TOWER"

15D PRINT "F5—THE SPEED OF LIGHT"

lbD PRINT "F7—THE TEMPERATURE AT WHICH WATER BOILS"

17D RETURN

These lines, by themselves, clear the screen and PRINT the menu. They

would run by themselves as a program if they did not end with the word

RETURN. (If you try to run the subroutine with RETURN at the end you

will get an ERROR message.)

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

RETURN WITHOUT GOSUB

GOSUB and RETURN work together. This message will appear if

a program encounters RETURN without being told to GOSUB. It

is most often seen when a program line is called with a GOTO

instead.

If you notice, the above subroutine example begins with line number

100, not line 10. Here, we are trying to separate it from the main body of the

program.

As explained, a more useful subroutine is one that simplifies a program

by reducing the number of times a program line must be written. The original

"menu" program used the GET command twice. This can be reduced to the

single subroutine:

EDD GET C$:IF C$="" THEN EDD

E1D RETURN

Now we have two subroutines: Subroutine 100 to PRINT the menu and

subroutine 200 to GET a character or key. Knowing the locations of these

two, we can write the main body of the program. Together they should look

like this:

ID GOSUB 1DD

ED GOSUB EDD

3D IF C$ = "[Press fl key]" THEN PRINT "IRfcR"

AQ IF C$ = "[f3]" THEN PRINT "Rfl^ FEET"

5D IF C$ = "[f5]" THEN PRINT "lflb,EflE MILES PER SECOND"

82 5—Programming—The Big Ten

tD IF C$ = "[f7]" THEN PRINT »S12 DEGREES FAHRENHEIT"

7D PRINT "PRESS ANY KEY TO CONTINUE"

flD GOSUB EDD

RD GOTO ID

1DD PRINT "[Hold down the SHIFT key and press CLR/HOME]"

11D PRINT "CHOOSE AN ITEM FROM THIS LIST"

1ED PRINT "PRESS THE FUNCTION KEYS NEXT TO THE

KEYBOARD"

13D PRINT "Fl—THE YEAR OF THE FIRST MOON LANDING"

1<D PRINT "F3—THE HEIGHT OF THE EIFFEL TOWER"

15D PRINT "F5—THE SPEED OF LIGHT"

ibO PRINT "F7—THE TEMPERATURE AT WHICH WATER BOILS "

17D RETURN

EDD GET C$:IF C$ = "" THEN EDD

E1D RETURN

This program RUNs exactly the same as the previous version of "menu,"

but it is organized differently. The most helpful change is that the program

GOSUBs to line 200 every time the GET pause is used.

There is one potential danger in including subroutines in programs. The

subroutines must be clearly separated from the main body of the program

itself. Try RUNning the "menu" program after taking out line 90. (Type the

line number and press RETURN.) You will see an ERROR message and the

program will not RUN correctly.

This is because the computer doesn't know where to stop. Instead of

understanding that the subroutines begin at line 100, it just goes on and tries

to treat them as if they were more of the program.

The best way to separate the main body of a program from its subroutines

is to use the word END. Think of it as setting up a fence between the program

and subroutines.

RDEND

Now, the "menu" program will run logically, although it will not work

continously as it did before. END, if you recall, is not usually necessary in

Commodore BASIC. This is the exception, but a real practical use of the

word.

Do subroutines just give us another way to organize our programs? No.

In addition to helping keep the number of lines in a program to a minimum,

GOSUB can also be thought of as a way to make them more readable. Each

subroutine is easily identifiable; it starts with the line number following
GOSUB and ends with RETURN.

BASIC programs, in fact, are often criticized for being difficult to read

by anyone other than the programmers who wrote them. Once in a while,

it's even possible to write a program yourself, then not be able to read it six
months or a year later. Using subroutines can help solve this problem. Writing
subroutines wherever possible and practical is sometimes called structured

A Closing REMark 83

programming (because it supposedly gives structure to a program) and many

programmers believe this is good BASIC style.

A Closing REMark

Making programs readable is a good goal for programmers, especially

first-timers. Getting into good writing habits is as important in BASIC as it

is in English. One word in BASIC, in fact, allows you to include English (or

any other language that can be typed from the keyboard) in your programs.

The word is REM and stands for REMark. Some people think of it as the

word REMember, a way of REMinding themselves that this is a note. Almost

any comment can be written into a program, as long as it is separated by

REM.

ID REM THIS ENTIRE LINE IS A REMARK

The word REM can also be used at the end of a program line when it is

separated with the BASIC punctuation mark, the colon (:). Everything before

the colon will work normally, and when the computer sees REM, it will

ignore any comment which follows.

ID PRINT "REMS ARE ALWAYS SEPARATED BY COLONS":REM -

- JUST LIKE ANY OTHER WORD

One peculiarity of Commodore BASIC is its limitation of using only

unSHIFTed letters and numbers after REM. You can demonstrate the prob

lems caused by shifted letters by typing this line:

ID REM [press SHIFT and ABCDEFGHI]

Type LIST and look at the line.

ID REM ATNPEEKLENSTR$VALASCCHR$LEFT$RIGHT$

It doesn't look anything like the way you originally wrote the REMark,

does it? (The computer misinterprets the SHIFTed letters after REM as BASIC

words.) This won't be a problem as long as you remember to just stick to

using the keyboard without SHIFTing. This means upper case only in the

graphics mode/and lower case only in the typewriter mode.

Just a few short years ago, computer memory chips were very expensive

and of limited capacity. Personal computers came equipped with relatively

small amounts of memory, and programmers were often forced to use each

byte carefully. Since the comments behind REM statements can eat up lots

of memory (one byte for each character, letter or number) they weren't used

as frequently as they probably should have been.

Although this conservation of memory is still important for very long

programs, it is less of an issue today. The Commodore 64 family of computers

allows you to use almost five times the BASIC memory of the original Com

modore PET. With this increase in capacity comes the opportunity to use

84 5—Programming—The Big Ten

REMarks more often. In doing so, you may make your program easier to

understand for others and possibly even yourself.

Remember, computers are meant to make bur lives less complicated,

not more. What would we be like if valuable textbooks, reference manuals,

and encyclopedic works were impossible to read and understand? Keep this

in mind each time you write a computer program.

Programming—How the

Computer Stores

Information

It's easy to store information in the computer. (You already know about

variables.) It's another matter to organize that information, change it, or be

able to get it out of the machine. That is what this section is all about.

Data storage is one of the practical uses for your computer. At home, an

electronic filing system simplifies domestic recordkeeping. Both teachers and

students can use the same kind of system in the classroom to keep track of

test grades or prepare book lists. At work, accurate recordkeeping is a ne

cessity, and a computer can help solve the problem of constantly changing

facts and figures.

The computers of the Commodore 64 family are well suited to these

tasks. Their ample memory is usually enough for most personal information

needs. But, for serious, professional uses, most information systems use the

floppy disk as an extension of that memory. (The capacity of the disk is more

than triple that of the computer's.)

In this section, we'll look at how the computer, the floppy disk drive,

and the cassette recorder organize and store information as files. You'll be

introduced to new kinds of variables, too. Several words of BASIC are used

85

86 6—Programming—How the Computer Stores Information

especially for information handling. They are DATA and READ, DIM, PRINT#,

INPUT#, GET#, OPEN, CLOSE, RESTORE, and CLR. How are these infor

mation-handling programs, or data bases as they're known, written? You'll

understand the functions of such programs and see how they are designed

from a simple demonstration program that you can enter into your own

computer and use.

Finally, you'll learn about a few of the advantages that commercially

available data base programs offer, and what to look for when considering

these.

Another Kind of Variable

If you remember, variables are names that identify information stored

inside the computer. Look at this list:

A$ = "AUTOMOBILES"

B$ = "BIRDS"

C$ = "CITIES"

D$="DOGS"

We know that it is a list of string variables because each is a letter

followed by a dollar sign. Each variable stands for a group of things—A$ is

for autos, B$ for birds, etc. Under each of these variable names we might

want to store additional information: Types of cars, birds and dogs, or the

names of cities. But there is no way to store more data behind these because

we've already used the names A$, B$, C$ and D$.

The solution to this problem is to use another kind of variable, called a

subscripted variable. Now, before you turn the page and go away, rest assured.

This is a relatively simple concept.

A subscript is a number that identifies one of a number of things in a

group. In mathematics, subscripted variables look like:

A6 B25 C1Ooo

These examples mean "the sixth thing named A," "the twenty-fifth thing

named B," and "the one-thousandth thing named C." (The oppiosite of a

subscript is a superscript, which usually indicates numbers multiplied by

themselves, like 32, or the number 3 squared.) The computer can organize

information with these subscripts; but it can't recognize subscripts written

with a number underneath the variable name, so they must be written like

this:

A(b) B(25) C(1DDD)

The parentheses—()—indicate which variables are subscripted or iden

tified by number. When programmers speak about variables like these they

usually use the word "sub" for subscript. So A(6) becomes "A sub 6" and

B(25) is spoken as "B sub 25."

Another Kind of Variable 87

1 Triumph Herald

2 Morris Minor

3 Sunbeam Alpine

4 Citroen 2 CV

5 Honda Civic

6 Buick Century

7 Nash Rambler

8 Nissan Sentra

9 Jeep

10 Chevette

Above is a list of automobiles, numbered from 1 to 10. We can call each

of these individual names A$ if we use subscripts. The position on the list

will represent its subscript number. We could make A$(7) equal "Nash Ram

bler" and A$(2) mean "Morris Minor/'

Subscripted variables can be strings, like above, or numbers, and they

follow the rules governing variables stated earlier (See Chapter 5).

Type in this example to demonstrate subscripted variables to yourself:

ID A$="AOTOMOBILES"

ED A$(1) = "TRIUMPH HERALD"

3D A$(5) = "MORRIS MINOR"

AU A$(3)="SUNBEAM ALPINE"

5D A$(4) = "CITR0EN E CV"

bO A$(5) = "HONDA CIVIC"

7D A$(b)="BUICK CENTURY"

flD A$(7) = "NASH RAMBLER"

RD A$(fi) = "NISSAN SENTRA"

1DD A$(q)="JEEP"

11D A$(1D) = "CHEVETTE"

1ED PRINT "[CLR]"

13D PRINT A$

1AU FOR 1 = 1 TO ID

15D PRINT A$(I)

NEXTI

This program plugs in the word "AUTOMOBILES" for the variable named

A$; then, from A$(l) to A$(10), puts our list in each of the numbered A$()

variables. Notice that A$ is not the same as A$(l). Without a subscript number,

A$ stands all by itself and is related to A$(l) or any other A$() variable in

name only.

The subscript numbers inside the parentheses can be any positive number

between 0 (zero) and 32767. The parentheses can also hold a numeric variable.

Line 140 sets up a simple loop, FOR 1= 1 TO 10, then PRINTS each of

the auto names according to their subscript number.

To prove that numbers can be stored the same way as strings, enter this

three line example:

88 6—Programming—How the Computer Stores Information

ID FOR I = D TO ID

ED A(I)=I+E5

3D NEXT I

The loop FOR 1 = 0 TO 10 puts the numbers 0 through 10 into the sub

scripted variable A(). To test this, ask for the numbers directly from the

keyboard.

PRINT (or ?) A(5)

The answer should be 30, or whatever number is in the parentheses plus

25.

A DIM View

That's DIM as in DIMension. To use subscripted variables, Commodore

BASIC demands that you first determine how many of them you want to use.

But wait. Didn't we just successfully use subscripted variables without

telling the computer how many?

Add this line to the earlier program example with the auto names:

115 A$(ll) = "TOYOTfi TERCEL" /

And change line 140 to this:

1AQ FOR 1 = 1 to 11

Now RUN the program. What happens? You should see this ERROR

message.

?BAD SUBSCRIPT ERROR IN LINE 115

The program is reminding us that we must tell it how many subscripted

variables we will be using. Why now? Why not before? The answer is that

Commodore BASIC will let us use up to 11 subscripted variables numbered

from 0 to 10 before we must tell it how many will be used.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

BAD SUBSCRIPT ERROR

A bad subscript is just what its name implies—a subscript number

too big for the size of the array DIMensioned. If a DIMension line

reads DIM A$(100), for instance, there can be no variable named

A$(101). This ERROR also happens when no DIM statement is used

at all and variables with subscript numbers larger than li are

used. Check variables used as subscripts for the problem.

We tell the computer about the use of subscripted variables with the

DIM statement. It stands for DIMension, meaning the extent to which we will

A DIM View 89
i

need the variables. When we use DIM, it sets up an array, that is, a definition

of how many variables there will be.

ID DIM ft$(lDD)

We are asking BASIC to reserve 101 numbered places for the subscripted

variable named A$(). (Remember, zero can be used as a subscript, too.) We

can use as few of these as we want, but none can be numbered over 100. This

is called setting up a one-DIMensional array. It has only one DIMension

because it is a list of single variables like this:

A$(l), A$(3), A$(3) A$(1DD)

An array can be set up with more than one DIMension, too.

ID DIM A$(1DD,S)

Each variable A$() now carries two independent numbers to identify it.

There can still be 101 different variables named A$() and numbered up to

A$(100), but for each one, there can also be up to 6 more. Think of the pro

gression this way. The variables are now named A$(l,0), A$(l,l), A$(l,2),

A$(l,3), A$(l,4) and A$(l,5). This array has become two DIMensional, with

height and width, if you wish. You can visualize the list like this:

A$(l,5), A$(S,S), A$(3,5) A$(1DD,5)

A$(l,4), A$(5,4), A$(3,<) A$(10D,4)

A$(l,3), A$(5,3), A$(3,3) A$(1DD,3)
A$(l,2), A$(3,5), A$(3,5) A$(10D,2)

A$(l,l), A$(2,l), A$(3,l) A$(1DD,1)

A$(1,D), A$(2,D), A$(3,D) A$(1DD,O)

If this seems confusing at first, don't be worried. The concept of multi-

DIMensioned arrays has eluded many first-time programmers. This kind of

array is usually used to get information from a table of numbers by calcu

lating two or more variables. For instance, if X is calculated to be 3, and Y

comes up as 2, then A$(X,Y) means A$(3,2) in the example above.

Let's put a two-DIMensional array to work by making a table. The in

formation on the table will consist of months, from January to April, each

numbered 1 to 4, and weeks of each month, also numbered 1 to 4. For each

week of each month, we will note how many times we've used our personal

computer.

Week / January (1)

1 /25

2/19

3/13

4/15

February (2)

15

6

17

9

March (3)

30

11

5

8

April (4)

17

22

3

21

Week numbers are read down, months across. We can store these num

bers as a two-DIMensional array.

90 6—Programming—How the Computer Stores Information

ID DIM A(4,4)

ED A(1,1)- = S5

3D A(1,E)=15

AU A(l,3)=30

5D A(l,4)=17

E>D A(B,l)=iq

7D A(E,E)=b

flD A(E,3)=11

RD A(E,4)=EE

1DD A(3,l)=13

11D A(3,E)=17

1ED A(3,3)=5

13D A(3,4)=3

15D A(4/E)=q

ltD A(4,3)=fl

17D k(A,A)=51

RUN this example. Now ask for the numbers from the table we've con

structed in memory.

PRINT (or ?) A (Week number, Month number)

If you are asking for the number in the first week in February, you'd

type PRINT A(l,2). The answer you receive should be the same as from the

printed table.

You might never use arrays with more than one DIMension in programs

that you write. Still, the general idea behind multi-DIMensioned arrays is

illustrated above for you to consider.

Several different variables can be DIMensioned on a single line, like this:

ID DIM A$(1DD),B$(1DD),C$(1DD),D$(1DO)

Each of the variables above—A$(), B$(), C$(), and D$()—can now store

pieces of information numbered from 0 to 100. When setting up these arrays,

make sure you know how many places you will ask BASIC to reserve. You

cannot change your mind and use DIM again to change the number in an

array.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

REDIM'D ARRAY ERROR

DIM can be used only once to create an array of a variable. Once

that array is created, it cannot be DIMensioned again, or re-

DIMensioned. This will occur primarily when editing programs or

trying to link two programs with DIM statements in them together.

You can, however, use a variable to establish an array.

Reading Data 91

ID INPUT "HOW MANY AUTO NAMES?"; A

ED DIM A$(A)

In this example, the program asks the user for the number of automobile

names it will be using and stores it as the numeric variable A. When it

DIMensions the variable A$() in line 20, it uses that number for the size of

the array.

READing DATA

A previous programming example demonstrated how a list of automobile

names was stored as subscripted string variables. The way they were stored—

A$(l) = "TRIUMPH HERALD,"A$(9) = "JEEP,"etc.—is the simplest way to

define these variables. It is not, however, the most convenient way. If we

were to change the names on the list, we would need to change many, many

program lines. You can imagine how impractical this would be if we had

much more information.

The designers of BASIC had a solution to this problem. What if all the

information we needed in a program could be grouped in one or more places?

Then all the variables could be filled from this list.

The BASIC words DATA and READ do this. Lines that begin with DATA

are set aside to contain the information. READ takes one piece of it from the

list and assigns it to any variable, string or numeric, subscripted or not.

Each item, string or number on the list following the word DATA is

separated by commas. (This means, of course, that strings cannot contain

commas as characters.) Two entire screen lines, or up to 80 characters in

cluding the line number and the word DATA, can be used for each BASIC

line of information. DATA lines look like this:

ID DATA 1,E,3,4,5,b,7/0,1,10,11,IE/13

or

ID DATA OP, DOWN, RIGHT, LEFT, SIDEWAYS

The word READ is always used with a variable, either string or numeric,

depending on the type of information in the DATA statements. This can be

the intended variable name, or it can be another temporary variable used to

transfer the information to the intended name.

ID FOR 1 = 1 TO 5

ED READ A$(I)

3D NEXT I

or

ID FOR 1 = 1 TO 5

5D READ N$

3DA$(I)=N$

4DNEXTI

92 6—Programming—How the Computer Stores Information

Using this, we can rewrite our program example with the list of auto

mobiles.

ID DIM ft$(ll)

ED FOR 1 = 1 TO 11

3D RE&D N$

AQ A$(I)=N$

5D NEXT I

fcO FOR 1 = 1 TO 11

?D PRINT fi$(I)

flO NEXT I

1DD DATA TRIUMPH HERALD, MORRIS MINOR, SUNBEAM

ALPINE

11D DATA CITROEN 2 CV, HONDA CIVIC, BUICK CENTURY

150 DATA NASH RAMBLER, NISSANSENTRA, JEEP, CHEVETTE

130 DATA TOYOTA TERCEL

While it is possible for the DATA list to have more information than

necessary, it cannot have less than the program needs. In the above example,

the DATA list could have contained several more auto names, but the program

will only use the first 11. If the DATA list contained only 10 names, though,

the program would be interrupted by an ERROR message.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

OUT OF DATA

Count the number of pieces of information in DATA statements,

then check to see how many times the program uses READ. (One

way is to look for FOR/NEXT loops with READ in them.) Check

the DATA statements in the program LISTing you are entering

from, or compare the information used to prepare the DATA state

ments.

Numbers and strings can also be mixed on the DATA list, although you

must keep track of the kind of information the program wants. (Remember

that a string can't be plugged into a variable that expects a number.) Here's

another version of the example with auto names. In it, we will make an array

of both the names as well as the price that each car might have on a used

car lot! To do so, we'll alternate string and numeric information.

10 DIM A$(11),A(11)

E0 FOR 1 = 1 TO 11

30 READ A$(I),A(11)

40 NEXT I

50 PRINT »[CLR] CAR PRICE"

tO FOR 1 = 1 TO 11 '

?D PRINT A$(I) ,»$»;A(I)

Reading Data 93

flDNEXTI

1DD DATA TRIUMPH HERALD, 75D, MORRIS MINOR, 5DDD

11D DATA SUNBEAM ALPINE, 55DD, CITROEN S CV, 2DDD

1E0 DATA HONDA CIVIC, 3DD0, BUICK CENTURY, 45DD

13D DATA NASH RAMBLER, 750, NISSAN SENTRA, 4DDD

1<D DATA JEEP, 5DD, CHEVETTE, E7DD, TOYOTA TERCEL,

4DD0

Line 10 sets up two arrays, A$(ll), which will hold 11 auto names a's

strings, and A(ll), a numeric variable array to take up to 11 numbers, the

corresponding prices of the cars. Lines 20 to 40 READ in the car names and

numbers off the DATA list. Line 50 clears the screen, then PRINTs the words

CAR and PRICE. Lines 60 to 80 PRINT the name of the car—A$()—then a

dollar sign and the price next to it for each.

You also should know that the computer always takes care of keeping

its place on the DATA list, and it will recognize information even if the lines

of the DATA list are widely separated by other program lines. Two other

BASIC words, RESTORE and CLR, will affect how READ works, and the

information contained as variables.

RESTORE has nothing at all to do with the key on your Commodore

keyboard marked RESTORE. Instead, it resets the DATA process so that

READ will begin READing from the beginning of the DATA list again.

CLR is used to erase all information stored as variables, either string or

numeric. You must use CLR cautiously, though, because it is not selective.

It will empty out every variable, including those that might be important to

the way your program RUNs. If you only want to erase a particular variable,

you can always do something like this:

ID A$ = »»

or

ID A = D

or

ID FOR 1 = 1 TO ID

5D A$(I) = »»

3D NEXT I

By the way, be sure not to confuse the word CLR in some of the program

examples in this book for the CLR/HOME key. If CLR has square brackets

around it—like this, [CLR], it still means to press the CLR/HOME key, not

to type the BASIC word CLR.

Disk and Tape Files from Arrays

Before getting into this topic, be sure that you've read everything about

using the Commodore disk drive and cassette tape recorder in Chapter 3.

94 6—Programming—How the Computer Stores Information

Once information is entered into the computer, there must be some way

of storing it on floppy disk or on a tape cassette. Otherwise, it would all be

lost the instant that the computer is turned off. One way of storing infor

mation on tape or disk is to SAVE it with the BASIC program. You've seen

how to do this using DATA statements. But, just as DATA simplified the

process of entering information for variables, another method further sim

plifies information handling.

The 64 family of computers, like previous Commodore machines, are

called file-oriented machines. That is, the computer sends and receives all

outside information to and from these files. Disk or tape files can be OPENed,

CLOSEd, written to and read from, just like paper file folders. BASIC also

thinks of the printer in a 64 system as using these files, and many file-handling

commands also apply to it. New words used with files are really variations

on words you already know: PRINT#, INPUT# and GET#.

There are several different types of files that the Commodore 64 can

construct on tape or disk. Information is most commonly stored as sequential

files. They are called sequential because pieces of information are stored in

them, one after another. These kinds of files on tape or disk are different from

programs in that they cannot be LOADed into the computer by themselves.

The BASIC word that starts the file process is OPEN. It is a word that

can be used several ways; but, in this section we'll stick to a discussion of

how it is used to create sequential files.

OPEN is used with a file number, a device number and a secondary address

number.

ID OPEN 1,6,3

In this example, 1 is the file number, 8 is the device number, and 3 is

the secondary address number.

File numbers are numbers that you give to them, and up to five sequential

files can be OPEN at once. The device number is the number that the cassette

recorder, disk drive, and printer are each given. (The computer doesn't un

derstand words like recorder, disk and printer, so it "sees" them as numbers.)

These device numbers are set for you. The cassette recorder is always device

number 1. Printers are almost always called device number 4. If you are using

two printers (one dot matrix and one letter quality, for example), a second

printer is usually device number 5. Disk drives come from the Commodore

factory set as device number 8. This number can be changed, however, and

a second disk drive is usually device number 9.

When making tape files, there are three important secondary address

numbers. If you don't use a secondary address, the computer assumes the

number is 0 (zero), meaning that the file is OPEN for recalling information

from tape. Secondary address number 1 means that the file is OPEN to send

information to the cassette recorder. Secondary address number 2, when used

with tape, writes a special mark that indicates the end of the tape. This is

done so that you needn't go all the way to the end of a cassette searching for

information that's not there. "End of Tape" files can be made to contain no
information, just this mark.

Disk and Tape Files from Arrays 95

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

NOT INPUT FILE ERROR

NOT OUTPUT FILE ERROR

Cassette tape files are OPENed as either INPUT or OUTPUT files,

depending on their secondary address. An address of 1 means that

the tape file is OPENed for recording information to it. You cannot

use INPUT# or GET#, or the first ERROR will be seen. If no

secondary address number is used with the cassette recorder, the

computer assumes that information will be recalled from it. Using

PRINT# will produce the second ERROR message.
**

When making disk files, secondary address numbers are numbers you

choose. Each numbered disk file should have its own secondary address. You

can record information to, or recall information from, these disk files without

the special secondary address you need for tape files.

Using Commodore's 1541 disk drive, it is recommended that you use

only the numbers 2 or 3 as secondary addresses and try not to OPEN more

than two disk files at a time. This isn't really a limitation, and you should

be able to do most information handling with only one OPEN disk file.

Secondary address number 15 is used for a special purpose, to send

commands to the Commodore disk drive and to read the meaning of the disk

drive's flashing red ERROR light.

Following the file number, device number and secondary address, we

can give the OPEN file a name that we can identify it by when recalling it

from tape or disk.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

FILE NOT OPEN ERROR

FILE OPEN ERROR

When using data-handling words PRINT#, INPUT#, and GET#,

you must first OPEN a file, otherwise a FILE NOT OPEN ERROR

will occur. This also happens when CMD, a word used to transfer

information meant to be PRINTed on the video screen to a printer

or disk drive, is used without OPENing the correct file, and with

the word CLOSE, as well. FILE OPEN ERRORs will be seen when

you try to OPEN a file that has been OPENed but not CLOSEd.

Always check the file sequence to make sure the file is CLOSEd

after use.
**

Here is a summary of how OPEN is used to help you understand how

this BASIC word works. Remember that these are just examples and that

file numbers and some secondary addresses are your own choice.

96 6—Programming—How the Computer Stores Information

OPEN 2,1,1,'TEST"

OPENs file number 2 on cassette (device 1) for recording sequential file

called TEST. File number is chosen by the user.

OPEN 3,1,0/TEST"

OPENs file number 3 on cassette (device 1) for recalling sequential file

called TEST. File number is chosen by the user.

OPEN 1,1

OPENs file number 1 on cassette (device 1) for recalling any next se

quential file on tape. File number is chosen by the user.

OPEN 2,1,2,"END OF TAPE"

OPENs file number 2 on cassette (device 1) for recording file called END

OF TAPE with special End of Tape mark. File number is chosen by the user.

OPEN 1,8,2,"TEST,SEQ,WRITE"

OPENs file number 1 on disk (device 8) for recording sequential file called

TEST. File number and secondary address are chosen by the user.

OPEN 3,8,3,"TEST"

OPENs file number 3 on disk (device 8) for recalling sequential file called

TEST. File number and secondary address are chosen by the user.

OPEN 2,8,2,A$ + "SEQ,WRITE"

OPENs file number 2 on disk (device 8) for recording sequential file with

any name stored as string variable A$. File number and secondary address

are chosen by the user.

OPEN 1,9,2,"TEST,SEQ,WRITE"

OPENs file number 1 on second disk drive (device 9) for recording se

quential file called TEST. File number and secondary address are chosen by

the user.

OPEN 4,8,l,"0:" + A+'SEQ,WRITE"

OPENs file number 4 on disk (device 8) for recording sequential file with

any name stored as string variable A$ on disk #0 on dual drive system.

Requires IEEE-488 interface adapter with Commodore 64 computer family.

File number and secondary address are chosen by the user.

OPEN 1,8,1,'TEST"

OPENs file number 1 on disk (device 8) for recalling sequential file called

TEST. Secondary address is chosen by the user.

OPEN 1,8,15

OPENs file number 1 on disk (device 8) for sending message to, or reading

ERROR from Commodore disk command channel. File number is chosen by

the user, but secondary address is special for accessing this command chan
nel.

OPEN 1,4,3

OPENs file number 1 on printer (device 4) for printing text. File number
and secondary address are chosen by the user.

Disk and Tape Files from Arrays 97

OPEN 4,4,7

OPENs file number 4 on printer (device 4) to send special command

(secondary address) to Commodore printer or smart printer interface. File

number is chosen by the user.

The BASIC word that sends information to the cassette recorder, disk

drive, or printer is PRINT#. The words PRINT and PRINT# are not the same,

although they act almost exactly alike and follow the same rules of use.

PRINT puts information on the video screen. PRINT# sends the informa

tion—strings or numbers—to a file with the number that follows it.

If you are accustomed to using the shorthand ? instead of typing the

entire word PRINT, be careful that you use it only for PRINT, not PRINT#.

You cannot use ?# as an abbreviation for PRINT#. If you make the mistake

of typing ?#, the program will be interrupted by a SYNTAX ERROR. When

you LIST the line with the ERROR, PRINT# will look correct on the screen.

To the computer, however, you've still made a mistake. Sometimes, SYNTAX

ERRORs caused this way are extremely difficult to find and correct.

Just as INPUT is the opposite of PRINT, INPUT# is the opposite of

PRINT#. INPUT# receives information from a file on the cassette recorder

or disk drive stored as a sequential file. It receives strings or numbers that

are stored as variables, and, again, is used with a file number.

As with INPUT, you should take care not to use commas in strings taken

from tape or disk files with INPUT#. The computer and disk drive use com

mas for special purposes, and any information after a comma will be ignored.

GET#, too, is related to GET. GET accepts a single key pressed down

on the keyboard. GET# takes one piece of information, a single character

from a string or a number stored on tape or disk as a sequential file, and

stores it as a variable. If you must use commas in sequential disk or tape

files, use GET#. Be forewarned that using it slows down the file-handling

process.

We start using sequential files with the BASIC word OPEN. It is only

logical, then, that we CLOSE the file after we are done recalling all the

information we need from it. CLOSE is used with the same file number we

used with OPEN.

Cassette Files Sequential information files are recorded on cassette

tape like program files, but, as stated earlier, they can't be LOADed by them

selves. Information is recorded on the tape, then recalled by the computer

in exactly the same sequence. So the lines of BASIC programming to recall

information from the tape almost always look similar to the lines that record

the information.

Let's say that we have a category, followed by information grouped under

that name. We can use the previous examples of A$, which stood for auto

mobiles, and A$(), which contained the actual list of names. To make such
a sequential tape file, we will first OPEN the file and give it a name. Then
we will record the category name, A$, which stands for "AUTOMOBILES."
Subscripted string variables that stand for the 11 car names are recorded

next.

98 6—Programming—How the Computer Stores Information

Let's try it. The following example will record the information on cassette

tape as a sequential file.

ID DIM A$(ll) :A$ = "AUTOMOBILES»

ED FOR 1 = 1 TO 11

3D READ N$

4D A$(I)=N$

50 NEXT I

LD OPEN E,1,1,"LIST"

7D PRINT#E,A$

flD FOR 1 = 1 TO 11

qD PRINT#E,A$(I)

1DD NEXT I

11D CLOSE E

EDD DATA TRIUMPH HERALD, MORRIS MINOR, SUNBEAM

ALPINE

E1D DATA CITROEN E CV, HONDA CIVIC, BUICK CENTURY

EED DATA NASH RAMBLER, NISSAN SENTRA, JEEP, CHEVETTE

E3D DATA TOYOTA TERCEL

The first thing that happens in this program is that an array for A$() is

DIMensioned to hold 11 pieces of information. Then A$ is defined as being

"AUTOMOBILES." Lines 20 to 60 READ in the list of names on DATA lines

200 to 230.

Now the process of storing the information begins. On line 60, file number

2 is OPENed on the cassette recorder (device 1), with the secondary address

number 1. (The number 1 says that the file is being OPENed to send infor

mation, remember?) The file is named LIST. At this point, the computer puts

an instruction up on the video screen:

PRESS RECORD & PLAY ON TAPE

When you begin recording, lines 70 to 100 PRINT# the information from

A$(l) to A$(ll) on the tape. Finally, file number 2 is CLOSEd in line 110.

We've made a sequential file on tape. But we can't LOAD the tape, and

there's no way to look at it to prove that the information is there. The only

way to tell whether our experiment was successful is to write another little

program to put the information back into the computer. We'll mimic what

we did above. (Be sure to type NEW before entering the program and rewind

the cassette tape that you've recorded.)

ID DIM J$(ll)

ED OPEN 1,1

3D INPUT#1,J$

AD FOR 1 = 1 TO 11

5D INPUT#1,J$(I)

tD NEXT I

7D CLOSE 1

flD PRINT "[CLR]»

HO PRINT J$

Disk and Tape Files from Arrays 99

1DD FOR 1 = 1 TO 11

11D PRINT J$(I)

12D NEXT I

This program gets right to work. It DIMensions an array of 11 places for

J$(), then OPENs file number 1 on the cassette recorder. There is no secondary

address necessary because the file is being OPENed to recall information.

(The secondary address number is actually 0.) Line 50 takes the first piece

of information that we recorded on the tape, the word AUTOMOBILES, and

calls it J$. Then, lines 40 to 60 put the appropriate information into J$(l) to

J$(ll). The file is CLOSEd. Finally, the program clears the screen, PRINTs

J$, followed by the list of names, to prove that everything was received

correctly.

As you can see, the file OPENed was a different number than the one we

OPENed when we created the tape in the other program. File numbers don't

need to be the same as they were when we made the sequential file since

they aren't recorded as part of it. The number only needs to be the same as

itselfinside the program we're using. In the last example, the file is numbered

1 throughout. You can also see that we are using different variable names.

In the first program, we called the variables A$ and A$(). In the second

program, the variables are named J$ and J$(). We could have called them

anything, as long as one was a string variable and the other a subscripted

string variable DIMensioned for at least 11 spaces. Variable names are not

stored in a sequential file, either.

An "End of Tape" mark was mentioned earlier. Making one is simple

and you needn't even write a program. Just type this directly from the key

board:

OPEN1,1,2:CLOSE1

Rewind the recording made by this command, then type LOAD and press

return. When the computer finds it, the word FOUND will appear. Press the

COMMODORE key. A DEVICE NOT PRESENT ERROR message will appear.

The cassette recorder is obviously in place and turned on, though. This is

the Commodore 64's rather strange way of telling you that you've encoun

tered an "End of Tape" mark.

The most important thing to remember about making sequential tape

files is always to keep straight the order in which information is recorded,

then duplicate this order when you write program lines that will recall the

information. Also remember to CLOSE the file after you are through with

it. Finally, don't include commas in strings written in sequential files.

As you can see, there's really nothing mysterious about sequential tape

files. You'll soon see that disk files are only slightly more complicated.

Disk Files If you've been successful in understanding sequential tape

files, you shouldn't have any problem with disk files of the same type.

If you've looked at a disk directory, you've probably seen different three-

letter abbreviations in the right-hand column on the screen. Programs that

100 6—Programming—How the Computer Stores Information

can be LOADed and RUN are labeled PRG. When you add a sequential file

to the disk, it will be identified with the letters SEQ.

Like the cassette recorder, the Commodore disk drive needs to be told

when it should make a sequential file. Instead of using a particular secondary

address, though, this is done at the time the file is OPENed with a special

naming sequence. OPEN is followed by a file number (you choose it), a device

number (almost always 8, for disk) and a secondary address (choose either

2 or 3). The entire naming sequence sent to the disk looks like this:

ID OPEN 1,fl,3,"TEST,SEQ,WRITE"

This command tells the computer and disk to OPEN file number 1 on

device 8. The name of the file is TEST and it will be a sequential file. The

word WRITE tells the disk to open the file for recording information. From

time to time, you'll also see this kind of line written like this:

ID OPEN 1,fl,3,"D:TEST,SEQ,WRITE"

The 0 (zero) inside the quotes means that the file should be written to

the disk drive identified as drive 0. This is a carry-over from the original

Commodore disk systems, which had two drives, instead of one, like the 1541.

Although there were two drives, the computer recognized both of them as

device 8. To differentiate, one drive was named drive 0, the other drive 1.

Any disk commands like this, with the disk drive number 0, will still work

with the 1541. Commands with the number 1, however, will not, unless you

are using a Commodore dual disk drive. (This also requires an IEEE-488

interface.)

If you have two 1541 disk drives, the first one will be device 8, and the

second must be assigned a different device number. (Usually this one will

become device 9.) You will not, however, be able to treat these two as drive

0 and drive 1.

As a matter of form, and to prevent unanticipated problems with the

1541 disk drive, it is a good idea to always use the optional prefix "0:" when

OPENing disk files.

To convert our "auto names" program to a sequential disk file we need

to change only one line. Substitute this line for line 60 in the earlier program:

fcD OPEN E,fl,£,"D:LIST,SEQ,WRITE"

To modify the program that recalled information from the tape file, you

also need to change a line. This line replaces line 20 in the example:

ED OPEN l,fl,3,"D:LIST,SEQ"

What if the name of the file is not always the same? You can first use

INPUT to accept a string as the name, then use the variable instead. To do

so, you must concatenate or add the variable to the naming sequence.

ID INPUT "WHAT IS THE FILE NAME";N$

ED OPEN E,fl,E,N$ + ",SEQ,WRITE"

Disk and Tape Files from Arrays 101

You'll notice that the disk version of the program needs ftie name of the

file it is looking for, even though a name is optional when using the cassette

recorder. The first file from the cassette will be recalled if no name is specified.

Since a disk can contain many, many files, the disk drive always needs this

name information.

You'll need to be particularly careful about CLOSEing sequential disk

files. You can tell if a disk file is left OPEN by looking at the disk directory.

If an asterisk ("*") is next to SEQ, the file has been left OPEN. Such a file

is useless (you cannot add information to it) and erasing this file (see "Some

Essential Skills") may damage the data on the disk. No problems should

occur, though, if you always CLOSE the file after OPENing it to store infor

mation.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

FILE NOT FOUND

This message will appear if you try to LOAD a program or file

from disk that does not exist. If you are sure that you have the

program, check the disk directory to see if it is on that particular

disk, or check your spelling. This disk drive expects absolute ac
curacy when asking for a program by name. Avoid this ERROR

by using an asterisk for pattern matching purposes.

One last caution about sequential files on both tape and disk. You already

know about string variables that contain no information. These are called

"null strings." Even though Commodore BASIC allows you to use such empty

strings, you can confuse sequential files if you try to record them.

ID A$

5D OPEN l,fl,E,lfD:TEST,SEQ,WRITE"

3D PRINT#1,&$,B$,C$

4D CLOSE 1

When this example records the sequential file it will skip B$ because it

is a null string. When you go back to recall the file, the second piece of
information, B$, will become "NO," instead. One method of eliminating the
problem is to test to see whether a string is empty or not. If it is, another

string that will record properly can be substituted.

ID A$ = »YESlf :B$ = MM :C$ = "NOM

ED OPEN l,fl,2,"D:TEST,SEQ,WRITE"

3D PRINT#1,A$

40 IF B$=""THEN B$ = fl***n

5D PRINT#1,B$

bD PRINT#1,C$

7D CLOSE 1

102 6—Programming—How the Computer Stores Information

In the example, line 40 first tests to see if B$ is empty. If it is, it substitutes

3 asterisks—"***"—for the empty string. The 3 asterisks were chosen be

cause they will probably not interfere with any legitimate information and

record properly. We could have chosen another substitute—"FEFF" or "???"—

as easily and logically.

When the file is recalled, we test for the substitute.

ID OPEN l,fl,E,"TEST,SEQ»

ED INPUT#1,A$

3D INPOT#1,B$

40 IF B$ = M***lf THEN B$ = MM

5D INPUT#1,C$

tD CLOSE 1

Line 40 asks if the string is "***" and, if it is, makes B$ a null string

once again.

When substituting for null strings, always be certain that the substitute

is unique enough so that it can't be confused with real information, which

would be lost.

Printer files In the Commodore 64 family, any information can be

printed on paper by OPENing a file and sending it to the printer. Secondary

addresses can play an important part in OPENing these files, but these num

bers sometimes mean different things to different printers. The Commodore

printers, in particular, use secondary addresses to go from the graphics to

the text mode, and to set up other operating conditions. "Smart" printer

interfaces also interpret secondary address numbers as operational com

mands. If you are using a printer or smart interface, make sure that you read

the manual supplied with it and learn about how these secondary addresses

are used. Also study the section of the manual that covers special "control"

characters and number sequences.

Most printers are controlled by microprocessors that enable a variety

of special features. No two printers are exactly alike, however, so it would

be impossible to summarize these codes.

A printer file can be OPENed with only the file number and device

number. Printing on paper is almost exactly like PRINTing on the video

screen. You use PRINT# instead, but punctuation marks like commas and

semicolons behave the same way on screen or paper.

ID OPEN 1,4

5D PRINT#1, "HEY! MY PRINTER WORKS!"

3D CLOSE 1

One potential problem is that extra, blank lines may creep in between

the lines you are printing. This double spacing is the result of both the

computer and the printer sending a "line feed" command. The easiest way

of turning off the extra line feed is to eliminate it at the printer. (See your

manual.) Some smart interfaces also remove this extra linefeed before
it gets to the printer.

Creating a Mailing List Program 103

Mastering your printer requires attention and an understanding of how

it works and how special characters change its operation. Making good use

of some extensive features can get confusing. For the time being, though, be

satisfied with this simple way of printing using the computer's file system.

Creating a Mailing List Program

A data base program is one used to store and read information. Such

programs range from simple to complicated, depending on their features.

Though the programs are often called "data bases,11 they are not, strictly

speaking. Data bases are actually the information that these programs ac

cumulate. A list of baseball batting averages is a data base. So are the closing

stock prices that are published in a daily newspaper. Even a cookbook could

be considered a data base of recipes. A data base can be thought of as any

organized group of information.

At the end of this chapter you'll find a simple data base program written

in BASIC that you can enter and begin using. It can act as a personal mailing

list. Though you can make practical use of it, it is intended to show you how

a simple data base is created. Many commercially available data base pro

grams will be more flexible, have many more features, and store data dif

ferently. This mailing list program is limited to storing information in the

computer's memory and recording it as a sequential file.

If you are new to programming, it is a good idea to finish reading how

the program is written before entering it into the machine. This way, you'll

begin to understand how it works and get keyboard practice at the same

time.

When you are typing the program into the computer, do it a little at a

time and be careful to copy each line exactly as it is printed in the book. As

with the earlier BASIC examples, press the keys specified by the words inside

the square brackets [like these], not the words. Also, be aware that the pro

gram uses both upper and lower case text, so put the computer in the type

writer mode by pressing the COMMODORE and SHIFT keys together, before

you begin to program.

When entering this or any program, be sure to SAVE it to tape or disk

frequently. You'll protect yourself against losing all of your work if the com

puter should be accidentally turned off. (You can rewind the cassette and

record over the previously stored portion, or SAVE over your previous work

on disk with SAVE "@:".) See the section on Essential Skills if you're not

sure about how to do this.

Finally, you'll probably make some mistakes while typing the program.

If you get an ERROR messsage, it will most likely be a SYNTAX ERROR,

due to hitting the wrong key, or leaving put a colon or other BASIC punc

tuation mark. Some typing mistakes, however, will produce other ERRORs

as well. Try to figure out what the ERROR is on your own, before coming

bagk to the book. If you can't find the problem, look at the ERROR messages

scattered throughout the text, then look at the line in the printed program

LISTing to make sure you've typed everything correctly.

104 6—Programming—How the Computer Stores Information

Designing the Program

What do we want a mailing list program to do? We should have a plan

before we start programming. We wouldn't build a house or write a book

without a plan, would we? Our plan will come from thinking about the

features we want to build into the program.

The mailing program should be able to store names, addresses, and

telephone numbers. We should be able to read these, change them if we want

to, and record them on tape or disk. We should have the option of printing

out the mailing list on paper. Finally, we should be able to erase any indi

vidual piece of information, or all of it. Here is a more detailed description

of the parts of the program:

Enter This portion of the program will take information and store it

in the proper place inside the computer in the correct format. It should be

easy to use, and will ask for the information by name, giving us a little

"nudge" each time it wants something. The "Enter" portion will also keep

track of how many name/address entries the computer can hold and how

many have been used.

Read The purpose of this program is to be able to see the names and

addresses in the file. Sometimes, we will want to read all of the information.

At other times, we might only want to read a particular name, or maybe just

the records that match with a ZIP code or phone number.

Change Our information won't always remain correct or current.

(People may move or change their phone number.) So this portion of the

program will let us change what we want.

Erase Since we are limited to the amount ofmemory in the computer,

we may want to keep only the most important names and addresses in our

file. From time to time, then, we might want to erase an entry. In this section,

we can either scan the mailing list, or ask that a particular entry be erased.

Print We may want a paper copy of the mailing list. It is a relatively

easy task to transfer the information from our file to the printer.

LoadandSave Even though we'll call these sections Load and Save,
we won't use the BASIC words LOAD or SAVE. Instead, we will be creating

sequential files on tape or disk, then recalling them.

Menu The entire program will be operated from menus. This will

simplify its use and allow us to use the function keys on the keyboard. Each

of the major portions of the program will be reached through a "main menu."

Programming Considerations 105

Programming Considerations

Creating a mailing list is a fairly simple project, since the program is

designed to store a specific kind of information—names, addresses, and tele

phone numbers. We will use simple arrays, one for each particular piece of

information, names, street numbers, cities, states, ZIP codes and phone num

bers. We will also reserve a numeric variable to keep track of how many

entries there are on the list. Here's how this information will be organized:

N$()—Names

A$()—Addresses (Street Numbers)

C$()—Cities

S$()—States

Z$()—ZIP codes

P$()—Phone numbers

(These variables will actually appear in lower case, not capital, letters in

the program printed in the book and on your video screen. Why? We put the

computer in the typewriter mode and always use unSHIFTed keys to enter

BASIC words and variables. For this discussion, though, you'll continue to

see these in capital letters.)

Setting the above categories limits the flexibility of any data base pro

gram, but a more generalized program would have been many times larger

and more complicated than the demonstration that will be offered here.

We will make room for 100 total entries by DIMensioning each array to

100. The numeric variable "N" will count the total number of entries. We

set this up with this line:

15 X=1D1:DIM N$(X),A$(X),C$(X),S$(X),Z$(X),P$(X)

:N = D

The variable named "X11 stands for the total number of item entries that

will be stored, so DIM N$(X) is the same as DIM N$(101). Why use the variable

instead of 101? By changing X we can always change the total number of

possible entries by just changing one line (line 120), instead of looking for

other places where the number is used. (Even though we will only store 100

complete entries, X is 101 to accommodate the routine that erases an entry

in the file.)

Starting To Program

The screen colors chosen by Commodore make text on the screen some

what difficult to read. We can choose other colors that will make reading

easier.

5D POKE 53260,15:REM BORDER GRAY 2

3D POKE 53261,15:REM SCREEN GRAY 3

106 6—Programming—How the Computer Stores Information

These numbers are POKEd into the appropriate memory locations inside

the computer's video chip to change the colors. You can change these to any

other colors that you prefer by POKEing in the other numbers from 0 to 15.

(You'll find a list in the section about color graphics.)

Everything in the program will be PRINTed on the screen in black. (See

line 60.)

Lines 40 and 50 perform two nice little tricks.

AD PRINT CHR$(fl)

5D PRINT CHR$(14)

In BASIC, CHR$() is a special way of PRINTing characters on the screen.

Each character has its own number, the number in the parentheses of CHR$().

CHR$(8) and CHR$(14), though, are special characters that don't appear on

the screen.

PRINTing CHR$(8) will switch the computer from the graphics mode to

the typewriter mode, the same as pressing the SHIFT and COMMODORE

keys together. It is done here in the program, so that the user needn't press

the keys. But what if someone presses those two keys together during the

program? That's what CHR$(14) is for. It disables the SHIFT and COM

MODORE key so that you can't switch between the graphics and typewriter

modes without resetting the computer using the RESTORE key.

Since this is a menu-style program, all of its activities branch off a main

loop. This loop does only two things: It PRINTs the main menu, then waits

for a function key to be pressed, indicating what you want to do. Everything

that happens in the program can always be traced back to this loop, which

starts at line 60 and ends with a GOTO 60 in line 220. When a key is pressed,

the appropriate subroutine is selected.

Here's what the main menu looks like:

fl—Enter

f3—Read

f5—Print

f?—Erase

fa—Load

ft—Save

fb—Change

Here is a list of the important subroutines in the program:

Line # Purpose of Subroutine

10000 ENTER—Routine for entering data
11000 READ—Reads names/addresses
12000 PRINT—Prints list to a printer
130°0 ERASE—Deletes names/addresses from list
140°0 LOAD—Recalls file from disk or tape
15000 SAVE—Stores file on disk or tape
16000 CHANGE—Changes information in an entry

Using the Program 107

Using the Program

The choices of what the mailing list program offers are quite obvious

from the main menu. Pressing the proper keys will take you from place to
place within the program. Two words, scan and match, are used to describe

other options. Scan lets you look through all of the information in the name/

address file, making decisions as you go along. Match lets you match a name
with one in the file.

In the "enter'' mode, the program will always prompt you, letting you

know what kind of information it wants next. When you want to change

something, you will be asked which category of information you'd like.

The most important thing to remember about using this program is that
it is written in BASIC and subject to its limitations. The major one is that

BASIC does not allow you to use commas when entering information in
response to an INPUT statement. For example, this information:

Jefferson Smith, Attorney

145 Iota Court

Chicago, Illinois 60601

312-555-1212

must be given to the program without the commas, something like this:

Jefferson Smith—Attorney

145 Iota Court

Chicago

Illinois

60601

312-555-1212

You can also skip information, and enter a blank (a null string) by just

pressing RETURN.

Be careful going from activity to activity within the program. In some

cases you are given an opportunity to return to the main menu before con

tinuing. In other cases, you may produce an error. If you try recalling the

name/address file from disk or tape without first creating one, you will pro

duce an error or wait interminably while the cassette player looks for a file

that isn't there. If you try using the print section without having a printer

attached, the program will stop. In either case, if you have entered valuable

information, all of it will be lost when you type RUN to get the program

going again.

The most obvious thing missing from this program is a way to sort the

list by one of the categories. Sorting routines, though, can be complicated

and, in BASIC, very slow.

Another limitation is the use of sequential files. The entire file is swapped

between the computer's memory and the disk or tape. The program is set

up to use 600 string variables in DIMensioned arrays. Since a string can be

as large as 255 characters, this means that long strings would swell the

computer beyond its limits if all 600 were actually used. The Commodore

computers can build another kind of disk file, however, called a relative file.

108 6—Programming—How the Computer Stores Information

If relative files were used, the entire capacity of a disk could be devoted to

a single filing system.

(Relative files are very complicated and difficult to program. They are

beyond the scope of a book like this one, but are discussed in some advanced

BASIC texts.)

Choosing a Data Base Program

All commercially available data base programs are not alike, and you

should shop carefully before choosing one. As with word processing pro

grams, people tend to stay with the program they are using since information

files are not generally compatible from one data base program to another.

The alternative, of course, is to use two or three such programs for appli

cations that vary in complexity.

The first consideration in selecting a data base program should be the

language that it is written in. BASIC is seldom suitable for a data base, and

all-BASIC programs should probably be avoided because they will be slow
and inflexible. Most good data base programs are written in machine code.

Flexibility is an all-important consideration. Some data base programs

restrict you to the type, amount, and length of individual entries. A good

program, however, will even allow you to go beyond a single screen of in

formation. One point of reference to keep in mind is that you should be able

to do almost anything you can with a paper filing system.

Any good data base program will also offer fast sorting capabilities. In

addition to being able to sort information in one category, you should also

be able to select information that matches more than one condition. Say you

have a long mailing list, and the list also contains names of certain club

members or professional associates. You may not only want to select those

people on your mailing list who live in Florida, but also those who both live

in that state and are members of your club. A flexible, well-written data base

program will let you do this.

Most good programs of this type also let you print out "reports." Simply

stated, a report is a list of the information you want selected from the total

data base. A powerful report "generator" will offer more, too. It will let you

design the way the information will be printed on the page, fill in preprinted

forms, or may even offer mathematical features that let you manipulate

numbers from the data base.

A data base designed for use with Commodore computers should always

use relative files. Though it is possible that some data base programs will

appear that use their own unique type of disk file, any program that only

uses sequential files is likely to be of limited use, except for the simplest of

applications.

Finally, you'll know a good data base program when you see one. Because

these programs can be among the most complex, they can also be the most

confusing. You should be able to use the program you select without the need

for an open manual next to you at all times. The program should be logical,

and its commands should be easy to remember. It is understandable that

Choosing a Data Base Program 109

some of its more powerful functions could require some study and practice,

but you should be able to use the program on a simple level without devoting

much time to it.

Storing and recalling information is a valuable and practical use for any

computer, and you shouldn't be without a program that performs this general

task. You might be surprised to discover, though, that with a little thought

and effort, you might be able to write your own filing and recordkeeping

programs tailored to your own individual needs.

10 rem ** mailing list program **

15 x=101:dim n$(x),a$(x),c$(x),s$(x),z$(x),p$(x):n=0

20 poke 53280,12: rem border gray 2

30 poke 53281,15: rem screen gray 3

40 print chr$(14): rem switch lower case

50 print chr$(8): rem disable comm key

60 print"[clr] [blk] [rvs on]Mailing List"

70 pririt:print" [rvs on]fl[rvs off] Enter"

80 print"[rvs on]f3[rvs off] Read"

90 print"[rvs on]f5[rvs off] Print"

100 print"[rvs on]f7[rvs off] Erase" .

110 print:print"[rvs on]f2[rvs off] Load"

120 print"[rvs on]f4[rvs off] Save"

130 print"[rvs on]f6[rvs off] Change"

140 getc$:if c$="" then 140

150 ifc$="[fl]"then gosub 10000

160 ifc$="[f3]"then gosub 11000

170 ifc$="[f5]"then gosub 12000

180 ifc$="[f7]"then gosub 13000

190 ifc$="[f2]"then gosub 14000

200 ifc$="[f4]"then gosub 15000

210 ifc$="[f6]"then gosub 16000

220 goto 60

10000 rem ** enter **

10002 if n>=x-l then return

10004 print" [clr] [rvs on]fl[rvs off] Continue"

110 6—Programming—How the Computer Stores Information

10005 print"[rvs on]f8[rvs off] Return to Menu"

10006 get c$: if c$=nn then 10006

10007 if c$="[fl]wthen 10010

10008 if c$="[f8]"then return

10009 goto 10000

10010 n=n+l

10020 print"[clr][rvs on]Enter Names/Addresses"

10030 print"Entry #";n,-"of"?x-l

10040 input"Name";n$(n)

10050 input"Address";a$(n)

10060 input"City";c$(n)

10070 input"State";s$(n)

10080 inputflZIP";z$(n)

10090 input"Phone";p$(n)

10100 print:print"[rvs on]Another Entry? (Y/N)"

10110 get c$:if c$="" then 10110

10115 if n>=x-l then return

10120 if c$="y" then goto 10010

10130 if c$="n" then return

10140 goto 10110

11000 rem ** read **

11005 if n=0 then return

11010 print11 [clr] [rvs on]Read Names/Addresses"

11020 print

11030 print "[rvs on]fl[rvs off] Read All"

11040 print "[rvs on]f3[rvs off] Match Name"

11050 get c$sif C$0"'1 then 11050

11060 if c$="[fl]"then 11090

11070 if c$=»[f3]"then 11220

11080 goto 11000

11090 for i=l to n

11100 print"[clr]Entry #";i;"of",-n

Choosing a Data Base Program 111

11110 print "Name: ";n$(i)

11120 print "Address: ";a$(i)

11130 print "City: ";c$(i)

11140 print "State: ";s$(i)

11150 print "ZIP: ";z$(i)

11160 print "Phone: ";p$(i)

11170 print:print"[rvs on]Press Any Key to Continue"

11180 get c$:if c$=""then 11180

11200 next i

11210 return

11220 input"[clr]Match Which Name";t$

11230 for i=l to n

11240 if n$(i)=t$ then goto 11290

11250 next i

11260 print:print"[rvs on]No Such Name in File"

11270 print:print"Press Any Key To Return to Main Menu"

11280 get c$:if c$="" then 11280

11285 return

11290 print"[clr]Entry #";i;"of";i

11300 print "Name: ";n$(i)

11310 print "Address: ";a$(i)

11320 print "City: ";c$(i)

11330 print "State: ";s$(i)

11340 print "ZIP: ";z$(i)

11350 print "Phone: ";p$(i)

11360 print:print"[rvs on]Press Any Key to Return to Main Menu"

11370 get c$: if c$="" then 11370

11380 return

12000 rem ** print **

12004 print"[clrl[rvs on]fl[rvs off] Continue"

12005 print"[rvs on]f8[rvs off] Return to Menu"

12006 get c$: if c$="" then 12006

112 6—Programming—How the Computer Stores Information

12007 if c$="[fl]"then 12010

12008 if c$="[f8]"then return

12009 goto 12000

12010 print-[clr][rvs on]Print"

12020 open 1,4,4

12030 fori=l to n

12040 print#l,n$(i)

12050 print#l,a$(i)

12060 print#l,c$(i)

12070 print#l,s$(i)

12080 print#l,z$(i)

12090 print#l,p$(i)

12100 print#l,chr$(13)

12110 next i

12120 close 1

12130 return

13000 rem ** erase **

13002 ifn=0 then return

13004 print"[clr][rvs on]fl[rvs off] Continue"

13005 print"[rvs on]f8[rvs off] Return to Menu"

13006 get c$: if c$="" then 13006

13007 if c$="[fl]"then 13010

13008 if c$="[f8]"then return

13009 goto 13000

13010 print"[clr][rvs on]Erase Names/Addresses"

13030 print "[rvs on]fl[rvs off] Scan All"

13040 print "[rvs on]f3[rvs off] Match Name"

13050 get c$:if c$="" then 13050

13060 if c$="[fl]"then 13090

13070 if c$="[f3]"then 13230

13080 goto 13000

13090 for i=l to n

Choosing a Data Base Program 113

13100 print"[clr]Entry #";i;no£";n

13110 print "Name: M;n$(i)

13120 print "Address: ";a$(i)

13130 print "City: ";c$(i)

13140 print "State: ";s$(i)

13150 print "ZIP: ";z$(i)

13160 print "Phone: fl;p$(i)

13170 print:print"[rvs on]fl[rvs off] Continue"

13180 print:print"[rvs on]f8[rvs off] Erase"

13190 get c$:if c$=""then 13190

13200 if c$="[fl]" then goto 13225

13210 if c$="[f8]" then gosub 13800:goto 13224

13220 goto 13190

13224 n=n-l:i=i-l

13225 next i

13226 return

13230 input"[clr]Match Which Name";t$

13240 for i=l to n

13250 if n$(i)=t$ then gosufc 13800:n=n-l:i=i-l

13260 next i

13265 return

13270 print.-print" [rvs on]No Such Name in File"

13280 print:print"Press Any Key To Return to Main Menu"

13290 get c$:if c$="" then 11280

13800 fork=i to n

13810 n$(k)=n$(k+l)

13820 a$(k)=a$(k+l)

13830 c$(k)=c$(k+l)

13840 s$(k)=s$(k+l)

13850 z$(k)=z$(k+l)

13860 p$(k)=p$(k+l)

114 6—Programming—How the Computer Stores Information

13870 next k

13880 return

14000 rem ** load **

14004 print"[clr] [rvs on]fl[rvs off] Continue"

14005 print11 [rvs on]f8[rvs off] Return to Menu"

14006 get c$: if c$="" then 14006

14007 if c$="[fl]Mthen 14010

14008 if c$="[f8]"then return

14009 goto 14000

14010 print"[clr][rvs on]Load File"

14020 print:print" [rvs on]fl[rvs off] Load from disk"

14030 print"[rvs on]f4[rvs off] Load from Tape"

14040 get c$:if c$="" then 14040

14050 if c$="[fl]"then 14100

14060 if c$="[f4]"then 14250

14070 goto 14040

14100 openl,8f3,"0:mail list,seq"

14140 input#l,n

14150 fori=l to n

14160 input#l,n$(i)

14170 input#l,a$(i)

14180 input#l,c$(i)

14190 input#l,s$(i)

14200 input#l,z$(i)

14210 input#l,p$(i)

14220 next i

14230 close 1

14240 return

14250 open 1,1,1,"mail list"

14260 goto 14140

15000 rem ** save **

Choosing a Data Base Program 115

15002 if n=0 then return

15004 print11 [clr] [rvs on]fl[rvs off] Continue"

15005 print"[rvs on]f8[rvs off] Return to Menu"

15006 get c$: if c$="" then 15006

15007 if c$="[fl]"then 15010

15008 if c$="[f8]"then return

15009 goto 15000

15010 print"[clr][rvs on]Save File"

15020 print:print" [rvs on]fl[rvs off] Save to Disk11

15030 print"[rvs on]f4[rvs off] Save to Tape"

15040 get c$:if c$="" then 15040

15050 if c$="[fl]"then 15100

15060 if c$="[f4]"then 15250

15070 goto 15040

15100 open 1,8,15

15110 print#l,"s0:mail list"

15120 close 1

15130 openl,8,3,"0:mail list,seq,write"

15140 print#l,n

15150 fori=l to n

15160 print#l,n$(i)

15170 print#l,a$(i)

15180 print#l,c$(i)

15190 print#l,s$(i)

15200 print#l,z$(i)

15210 print#l,p$(i)

15220 next i

15230 close 1

15240 return

15250 open 1,1,1,"mail list"

15260 goto 15140

16000 rem ** change **

116 6—Programming—How the Computer Stores Information

16002 if n=0 then return

16004 print"[clr] [rvs on]fl[rvs off] Continue"

16005 print"[rvs on]f8[rvs off] Return to Menu"

16006 get c$: if c$="" then 16006

16007 if c$="[fl]"then 16010

16008 if c$="[f8]"then return

16009 goto 16000

16010 print"[clr] [rvs on]Change Entry"

16020 print:print"[rvs on]fl[rvs off] Scan & Change"

16030 print"[rvs on]f3[rvs off] Match"

16040 get c$:if c$="" then 16040

16050 if c$="[fl]"then 16100

16060 if c$="[f3]"then 16300

16070 goto 16040

16100 fori=l to n

16110 print«[clr]";n$(i)

16120 printa$(i)

16130 printc$(i)

16140 prints$(i)

16150 printz$(i)

16160 printp$(i)

16170 print:print"[rvs on]fl[rvs off] Continue"

16180 print"[rvs on]f3[rvs off] Change"

16190 get c$:if c$="" then 16190

16200 if c$="[fl]" then goto 16230

16210 if c$="[f3]" then gosub 16800:goto 16230

16220 goto 16190

16230 next i

16240 return

16300 print" [clr]"

16310 input"Match with what name";m$

16320 fori=lton

Choosing a Data Base Program x 117

16330 ifn$(i)=m$ then gosub 16500:return

16340 next i

16350 print" [rvs on]No such name in file"

16360 print"[rvs on]Press Any Key to Return to Main Menu"

16370 get c$:ifc$="" then 16370

16380 return

16500 print"[clr]";h$ (i)

16510 printa$(i)

16520 printc$(i)

16530 prints$(i)

16540 printz$(i)

16550 printp$(i)

16800 print"l — Name"

16810 print"2 — Address"

16820 print"3 — City"

16830 print"4 — State"

16840 print"5 — ZIP"

16850 print"6 — Phone"

16860 print:input "Change Which";c

16870 on c gosub 16910, 16920f 16930, 16940, 16950, 16960

16880 return

16910 print:input"To What";d$:n$(i)=d$:i=i-l:return

16920 print:input"To What";d$:a$(i)=d$:i=i-l:return

16930 print:input"To What";d$:c$(i)=d$:i=i-l:return

16940 print:input"To What";d$:s$(i)=d$:i=i-l:return

16950 print:input"To What";d$:z$(i)=d$:i=i-l:return

16960 print:input"To What";d$:p$(i)=d$:i=i-l:return

Programming—

The Rest of BASIC

You'll be surprised at the number of programs that you can write with the

BASIC words you've already learned. They are not all the words in the com

puter's vocabulary, however.

In this chapter, you'll learn a little about how the rest of BASIC works.

You'll know what PEEK and POKE, SYS and USR, CMD, SPC and TAB,

STOP and WAIT, and ON mean.

If you are interested in using the computer for math, you'll want to know

about the mathematical functions of INT, ABS, SGN, SQR, SIN, COS, TAN,

ATN, DEF and FN.

You'll see how strings can be taken apart and put back together again

with LEN, VAL, STR$, ASC, CHR$., LEFT$, MID$, RIGHT$.

These, along with explanations of BASIC words in other chapters in this

book, complete the BASIC story.

PEEK and POKE

The two most straightforward words in BASIC are PEEK and POKE.

Though their names sometimes evoke chuckles, the two words are completely

descriptive of their functions. PEEK lets you look at the contents of a location

119

120 7—Programming—The Rest of BASIC

in the computer's memory. POKE puts a number into any location in mem

ory. The two words are often called "machine level11 commands, since they

deal directly with the computer's memory.

PEEK and POKE will let you play with the machine—kind of like playing

with the insides of an auto engine or other mechanical device. POKE is also

essential for making color graphics and sound on the Commodore 64. Putting

certain numbers in specific memory locations can even affect the way the

computer works. (You can also "crash" the computer so that it will no longer

respond to you by POKEing the wrong number into the wrong memory lo

cation, but don't worry, you can't damage it. Just turn the computer off then

on again, and everything will be back to normal. And PEEK never affects

the computer at all.)

POKE is always followed by a memory location, a comma, then a number

or numeric variable that will be put into that place in memory. The only

numbers that can be POKEd into memory locations are those between 0

(zero) and 255. (Want to know why? Check the "Exploring" chapters at the

back of this book.) The Commodore 64 has 64K, or 65,536 different memory

locations that you can POKE numbers into. The number immediately fol

lowing POKE must be a whole number between 0 and 65535, or a numeric

variable that stands for one of those numbers.

POKE can be used in a program line, or directly from the keyboard.

POKE 5357E,23

or

ID POKE S3S73,S3

In the example above, POKEing the number 23 into memory location

53272 switches the computer from the graphic character set (capital letters

and graphic symbols) to the typewriter character set (capital and lower case

letters). POKEing 21 into 53272 will switch the computer back again. This

memory location is in the computer's VIC video controller chip.

Different numbers in different locations do different things. To use POKE,

study the memory map located near the end of the book. Meanwhile, try

POKEing numbers 0 (zero) to 15 into memory locations 52380 and 53281

and see what happens to the video screen.

Always use PEEK with the number of a location in memory (0 to 65535).

This number should be enclosed in parentheses—(). You can use it either in

t a program, or directly from the keyboard. Usually, you PRINT the results of

a PEEK if you are typing directly on the keyboard.

PRINT PEEK(53E7E)

In a program, you can also store the number you get with PEEK as a

numeric variable

ID A=PEEK(53E7E)

PEEK and POKE 121

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

ILLEGAL QUANTITY ERROR

When this ERROR occurs in a program line with a POKE state

ment, check to see that no number greater than 255 or less than 0

(zero) is being put into a location in memory, If variables are used,

check the numbers they stand for to see if they were calculated to

greater than 255 or less than 0.

Using PEEK and POKE can make a program confusing, since what you

are doing is not obvious. Also, relying on too many PEEKs and POKEs can

make your program incompatible with other Commodore computer models,

since both words make use of specific features on each computer model.

Sometimes, though, for instance, in programming graphics and sound, you

just can't get away from using the two words.

SYS and USR

SYS stands for the word SYStem and is used to switch out of BASIC

and into a "machine code" program or subroutine. Machine code is a more

rudimentary—though more difficult—means of programming the computer.

Its advantage is speed. Machine code programs often run hundreds of times

faster than their BASIC counterparts.

SYS is followed by the memory location that begins the machine code

program or subroutine. It can be used in a program or directly from the

keyboard. For example:

SYS(EDbl)

or

ID SYS(EDtl)

After a machine code subroutine has been executed, the computer returns

to its BASIC program.

USR stands for USeR, and does just about the same thing as SYS, but

works differently. It is more complicated, and is used in programs less often

than SYS.

1DOSR(1D)

This command sends the program to a machine code subroutine that

begins at the address stored in memory locations 785 and 786 and transfers

the number (or value of the numeric variable) in parentheses to a part of the

computer known as the "floating point accumulator."

Since both SYS and USR relate to the use of machine code programs,

they aren't intended for novice programmers. However, you will occasionally

use SYS, instead of RUN, to start a machine code program operating.

122 7—Programming—The Rest of BASIC

CMD

It's not quite clear what CMD stands for, but it is probably short for

CoMmanD. CMD performs a simple function—switching information that

would ordinarily be PRINTed on the video screen to another device like the

cassette recorder or disk drive. Usually, CMD is used to send information to

a printer. It is followed by a device number, works with the OPEN and CLOSE

statements (see "How the Computer Stores Information1'), and is followed

by a file number. It can be used in a program or directly from the keyboard.

Here is the most common example of how CMD is used. This procedure

LISTs a BASIC program on the printer. You can enter it directly from the

keyboard, or use it in a program.

OPEN 1,4,4

CMD 1

LIST

CLOSE 1

The sequence OPENs file number 1 on device number 4 (the printer),

with the secondary address of 4. CMD 1 refers to the file number. LIST would

ordinarily PRINT the program LISTing onto the video screen, but since CMD

switched it to the printer, it will appear there instead. CLOSE 1 shuts file

number 1.

SPC and TAB

Both of these words are used with PRINT. SPC stands for SPaCe, and

TAB means tabulation (similar to a typewriter function).

ID PRINT SPC(17) "TEST"

or

ID PRINT TAB(17) "TEST"

Each of these commands will move the cursor 17 spaces from its present

location and then PRINT the word TEST. TAB and SPC differ from each

other in that TAB cannot be used with PRINT# (a file-handling word), but

SPC can. TAB always uses measures from the leftmost screen position (col

umn 1). When either word is used with PRINT, the spaces they put on the

screen are nondestructive. That is, they do not erase what was there before.

In that respect, SPC and TAB don't PRINT spaces at all.

STOP and WAIT

STOP is a handy word for testing programs. You can bury it anywhere

in a program to help determine how it is working. An example: A certain

STOP and WAIT 123

portion of your program is not performing correctly. You can insert STOP

in the area of the lines you are having trouble with. When STOP is encoun

tered, it has the same effect as pressing the RUN/STOP key. You'll see a

message on the video screen something like this:

BREAK IN LINE 1DD (or in whichever line the program found STOP)

This way, you'll know if the program ever got to that line, and, if it did,

that it is working correctly up to that point. Restart the program by typing

CONT. (If you use RUN, the program will start from the beginning with all

empty variables.)

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

CAN'T CONTINUE ERROR

CONT can be used to continue a program after the RUN/STOP key

was pressed or the word STOP was used. If you change any line

in the program during a break, however, the above ERROR will

appear. It will also be seen when the program has not been RUN

at all. In either case, RUN the program (again).

WAIT is completely different. It is used with patterns of individual bits

in memory locations. When the computer sees WAIT, it will pause until the

number stored in a particular location matches the condition set up by WAIT.

Many (if not most) programmers find WAIT mystifying and even Commodore

suggests that you don't use it. If you are up to the challenge, however, take

a look at any reference work on Commodore BASIC.

ON

This is one of the most intelligent and intriguing words in BASIC, yet

many programmers never use it. Maybe this is because ON looks unusual in

use and programmers don't take time to learn about it. It is extremely simple

to use.

ON is used with a numeric variable and one or more GOTO or GOSUB

statements. A typical ON line looks like this:

ED ON A GOSOB 1QD, 15D, iflD, EED

When the number that A stands for is 1, the program will GOSUB to

line 100. When it is 2, it will GOSUB to 150. The number 3 for A makes the

program GOSUB to line 180, and so on.

Try this example:

ID INPUT "TYPE A NUMBER FROM 1 TO 5"; a

ED ON A GOSUB 1D0, 15D, IflD, EED

3D GOTO ID

1DD PRINT "ONE"

11D RETURN

15D PRINT "TWO11

ltD RETURN

124 7—Programming—The Rest of BASIC

iflD PRINT "THREE"

iqD RETURN

EED PRINT "FOUR"

E3D RETURN

The program first PRINTs TYPE A NUMBER FROM 1 TO 5, then waits

for you to INPUT a number and press RETURN. That number becomes the

numeric variable A. If in line 20, A= 1, then the program GOSUBs to line

100, PRINTs the word ONE, and RETURNS. The whole thing starts over

again and it asks for another number. If you type a number from 1 to 4, the

correct spelling of the number is PRINTed. If you type the number 5, or

answer with 0 (zero), the ON statement is ignored.

In some cases, ON can be used to replace several IF/THEN statements.

Look for places in programs where IF looks for specific numbers. Here's what

the above example would look like if IF and THEN were used instead of ON:

ID INPUT "TYPE A NUMBER FROM 1 TO 5" ; &

ED IF a = l THEN GOSUB 1DD

3D IF ft = E THEN GOSUB 15D

AU IF R = 3 THEN GOSUB IflD

50 IF A = 4 THEN GOSUB EEO

fcD GOTO ID

1DD PRINT "ONE"

11D RETURN

15D PRINT "TWO"

lfcD RETURN

iflD PRINT "THREE"

IRQ RETURN

EED PRINT "FOUR"

E3D RETURfi

Using ON is one way to help make your programs more "elegant," or

more cleanly and efficiently written. It saves programming time, and though

you may never run up against the computer's limits, saves memory, too.

Mathematical Functions

One of the obvious uses for a computer is to have it perform repetitive,

complicated math. Computer veterans call this "number crunching."

Since this is a computer book and not a math text, only short descriptions

of the math function words in Commodore BASIC are included here. For

more information on what these mean and how to use them in equations,

look at any high school mathematics book. If you won't be using your com

puter for mathematics, don't get flustered by this material.

INT stands for INTeger, and makes a whole number out of a decimal

fraction.

Mathematical Functions 125

It is the most often used math function in BASIC. Look at this example:

. lDA=lD.E5fl

ED PRINT INT(A) •

INT simply chops off the fractional part of the number (.258) and PRINTs

the number 10. Be cautious, though. INT cannot be used for rounding num

bers. In other words, 10.568 will not become li.

ABS means ABSolute and takes the minus sign off negative numbers.

ABS is used like this:

ID A=-1D

ED PRINT ABS (A)

SGN stands for SiGN. It determines whether a number is positive or

negative. If the number is positive, SGN will be the number 1. If it is negative,

it will be -1. Try this:

10 A=-ED.E5fl

ED PRINT SGN(A)

Or this:

ID A=-ED.E5fi

ED IF SGN(A)=1 THEN PRINT "POSITIVE NUMBER"

3D IF SGN(A) = -1 THEN PRINT "NEGATIVE NUMBER"

Change the number that A stands for to see how SGN works. (By the

way, SGN(0)*=0.)

SQR returns the square root of a number.

ID PRINT SQR(E)

SIN, COS and TAN return the SINe, COSine and TANgent of angles,

which are always measured in radians.

ATN returns the ArcTaNgent of a number and is measured in radians.

If you want to convert an angle in degrees to radians use the formula

A(radians) = A(degrees) times pi divided by 180.

ID PRINT SIN(E)

ED PRINT COS(E)

3D PRINT TAN(E)

AU PRINT ATN(E)

DEF means DEFine andFN means FuNction. They are used to store an

equation named by two variables, and to use that function in a program.

The second variable is passed along to the equation. For example:

ID DEF FN B(D)=X+Y+D

ED X = 5: Y = b

3D FOR D = l TO ID

4D PRINT FN B(D)

5D NEXT D

126 7—Programming—The Rest of BASIC

In the above example, line 10 DEFines the FuNction named B(D) as

X+ Y+ D. In line 20, X becomes 5 and Y becomes 6. Lines 30 to 50 PRINT

ten results of the equation named B(D)—X + Y + D—or numbers from 12 to

22 as the value of D goes from 1 to 10.

String-Handling Words

The computer can manipulate strings as well as numbers. YouVe already

seen that strings can be added together or concatenated. (You cannot subtract

one string from another, though.)

String-handling words are among the most powerful in Commodore BASIC.

LEN stands for LENgth and determines the number of characters in a string.

VAL means VALue and can turn a string containing numbers into real num

bers the computer can work with. STR$ turns any number into a string. ASC

is short for ASCII, the number code all characters are represented by. CHR$

is used to PRINT characters called by their ASCII number.

LEFT$, MID$ and RIGHT$ are words used to extract specific portions

of strings.

LEN, VAL and STR$

A string can be up to 255 characters long. Sometimes in a program, you

may need to know the exact number of characters in a string. The most

obvious way of counting the number of characters is to PRINT the string on

the screen and count the number of places it takes up. This isn't always

possible, since some strings are used to make pictures and others may have

hidden spaces or cursor moves buried in them. Also, strings may vary in

length each time a program is RUN. If a string is obtained using INPUT, for

example, you have no control over the number of characters it will contain.

The only practical way is to use the BASIC word LEN, for LENgth. It is

amazingly simple and can be used in a program or directly from the keyboard.

PRINT LEN(A$)

or

ID A$=»ABCD1534»

20X = LEN(A$)

In either case, the answer to LEN(A$) will be 8. The use of LEN will
become more apparent to you as you read on.

You know that strings can be any combination of characters—letters of
the alphabet, symbols, cursor moves, editing commands, and even numbers.
For example "1234" is a string and 1234 is a number. You cannot add strings

LEN, VAL and STR$ 127

to numbers, but you can turn a string into a number. To do so, just ask the

computer for the VALue of the numbers inside the quotes.

ID A$ =

ED B=1E34

3D A=VAL(A$)

4D PRINT A + B

One possible use for VAL is to help GET numbers from the keyboard. If

you remember, GET was comparatively difficult to use in this manner. Try

this example:

ID GET C$:IFC$ = IMt THEN GOTO ID

ED C = VAL(C$)

3D PRINT C + 1D0

The GET command is used to GET a string called C$. We can't do any

arithmetic with C$, so we make C equal to the VALue of C$. If C$ is any

other key—like a letter or a cursor key—C will be equal to 0. This works

well, as you can see, for numbers between 0 and 9. But what if you need a

number between 0 and 99? Here's one solution:

ID PRINT "ENTER A NUMBER BETWEEN D AND qq»

ED GET C$:IF C$ = »"THEN GOTO ED

3D PRINT C$;

AU GET D$:IF D$ = ""THEN GOTO A0

5D PRINT D$

fcDE$ = C$ + D$

7DE = VAL(E$)

flD PRINTE + 1DD

We've added a step here, if you notice. By PRINTing C$ and then D$

next to it, we can see which keys we've pressed. The two single-character

strings, C$ and D$, are added together to make a two-digit number, and its

VALue is taken. Beware of the nature of VAL, however. If you press 4 and a

non-number key, like "M" for instance, the VALue of E$ will be 4, not 40.

And, if you press a non-number key first, the VALue of E$ will be 0. When

using this kind of routine, it might be a good idea to make a test to see that

each key pressed is a number.

If, for some reason, you have a number that you want to turn into a

string, you can reverse the above process by using STR$.

ID A

EDA$ = STR$(A)

Why would you want to turn a number into a string? One reason might

be the difference in rules concerning the way numbers and strings PRINT

on the screen. If you remember, an extra space is added when you PRINT a

number next to a string or another number using a semicolon. By turning

the number into a string, you can PRINT numbers next to one another with

out spaces.

When we say that VAL and STR$ turn strings into numbers and vice

128 7—Programming—The Rest of BASIC

versa, we really don't do anything to the original variable, either string or

numeric. If we made a new numeric variable named EE out of EE$, the

original string variable (EE$) will still continue to exist. The same thing goes

for using STR$.

ASC and CHR$

ASC, as stated earlier, stands for ASCII, the name given to the number

code for each character that the Commodore computers can use. ASC, with

the character in parentheses and quotation marks, returns that character's

unique number.

PRINT ASC(»5")

The answer you will see on the video screen will not be 5, but 53. What's

going on?

The number 53 is an ASCII code number that stands for the character

numbered 53. ASCII is an acronym that stands for American Standard Code

for Information Interchange, and is pronounced ASK-EE. Almost all com

puters built today use ASCII to represent characters and to communicate

with one another over telephone lines.

Commodore computers do not use true ASCII codes. They must use their

own version of ASCII because the number of characters used by the com

puter— graphic symbols, lower case letters, cursor and editing symbols,

color codes, etc.—is much greater than the original 128 characters defined

as being true ASCII. Ever since the first PET computer, Commodore machines

have used a variation nicknamed PET ASCII. How different is PET ASCII?

Well, some characters are the same numbers as true ASCII, others are dif

ferent; and since there are 256 PET ASCII character code numbers, there are

128 numbers that don't correlate to any of the original true ASCII numbers.

How much of a problem is this? Not a big problem, as long as you know

that PET ASCII exists. Many programmers, especially novices, don't even

worry about it. It does become an issue when you go outside of the machine

to communicate with another computer or, perhaps, a printer.

For now, just be aware that the numbers that ASC gives you are PET
ASCII numbers.

ASC will always return a character number, or the number of the very
first character in a string. For example:

PRINT ASC("532 Elmwood Drive")

This example will also return the number 53, since 5 is the first character
in the string.

When using ASC(), null strings are not allowed. If you use ASC("") or

ASC(A$) when A$ = "", the program will stop and you will see an ILLEGAL
QUANTITY ERROR.

ASC and CHR$ 129

CHR$ can be thought of as the reverse of ASC. It takes a PET ASCII

number and PRINTs its character.

PRINT CHR$(53)

There's that number 5 again. This method of PRINTing may seem a bit

tedious. Why not just PRINT 5? Well, some characters are difficult, if not

impossible to PRINT. Try PRINTing a quotation mark, for example.

ID A$= """

5D PRINT A$

No, that won't work at all. Now try this:

ID A$ = CHR$(34)

ED PRINT A$

That PRINTs a quote mark because 34 is the code number for that char

acter. You can't PRINT a carriage return (the same as pressing the RETURN

key), either. But you can PRINT CHR$(13).

This is helpful when you PRINT# to a printer, for instance. Other codes

like this are also recognized by printers and will perform certain special
functions when sent to them.

Here's a list of the most interesting CHR$ codes inside your Commodore
64.

PRINT CHR$() FUNCTION

8 Disables the SHIFT and COMMODORE key

combination that switches between the graphic and

typewriter mode.

9 Enables those keys after disabling them.^

13 PRINTs a carriage return, same as pressing RETURN

key; moves cursor to next line.

14 Switches from typewriter to graphic mode.

34 PRINTs a quote mark.

142 Switches from graphic to typewriter mode.

Other CHR$ codes move the cursor around and change character colors,

too. Look in the back of this book for a complete list of what these codes

represent. Also check your printer manual for a summary of which CHR$

codes control its functions.

LEFT$, MID$, RIGHT$

There is no easy way to understand these three very versatile commands

except to sit down at the computer and try them. Each is used to pull apart

strings and extract specific information from them. LEFT$ is used to read

the leftmost characters in a string; RIGHT$ is used to read characters to the

right. MID$ can pull out characters from the middle of the string.

130 7—Programming—The Rest of BASIC

Here's where LEN comes in, too.

ID a$ =

ED L=LEN(A$)

3D FOR 1 = 1 TO L

AU PRINT LEFT$(fi$,I)

5D NEXT I

If you RUN the above example, you should see this:

1

12

123

1234

12345

123456

1234567

12345678

123456789

1234567890

Why? LEFT$, will return everything left, beginning with the position

indicated by the number inside the parentheses. We've used LEN to deter

mine the last number in the FOR/NEXT loop so that we won't try PRINTing

any more characters than there are in the string. Type the same program

example, but use RIGHT$ instead of LEFT$, this time. Now RUN the program

again. You'll see the reverse of what happened before.

0

90

890

7890

67890

567890

4567890

34567890

234567890

1234567890

That's because RIGHT$ returns everything right, beginning with the

position indicated by the number inside the parentheses.

Using MID$ can get tricky and confusing if you don't keep track of what

you're doing. You'll need two numbers inside the parentheses, not just one.

ID A$ =

ED PRINT MID$(A$,5,S)

The first number tells the computer how many positions go into the

string. The second number tells it how many characters, beginning with that
position, to PRINT. The above example will PRINT 56 on the video screen.

LEFT$, MID$, RIGHT$ 131

For a more thorough demonstration, enter the following example:

ID A$ = "lS3<St7fl.q"
2D L=LEN(A$)

3D FORI = 1 TO L

AD FORK = 1 TO L

5D PRINT MID$(&$,I,K)

tD NEXT K

7DNEXTI

To get a better look at what is going on, press the CTRL key to slow

down the action while the program is RUNning. This may look like something
of a puzzle, but it isn't. What you will see is completely logical and will
reveal the strength behind MID$.

Let's use LEFT$, MID$, and RIGHT$ in a demonstration of the Com

modore 64 real-time clock. Here's a short program that puts the clock in the

upper left-hand corner of the screen. It takes apart TI$ and rearranges it so

that it looks like the display of a digital clock. By changing the line numbers

and using this as a subroutine, you can write programs that keep track of
time while they are RUNning.

ID INPUT "HOURS";H$

ED INPUT "MINUTES";M$

3D TI$ = H$ + M$ + "DD"

AD PRINT "[press CLR]"

50 PRINT "[press HOME]" ;

tD PRINT "TIME";

7D PRINT LEFTS(TI$,S);":";MID$(TI$,S,S) ;":";
RIGHT$(TI$,4)

flD GOTO 5D

You must enter the hours, minutes, and seconds in two-digit form. So,

if the time is 1:03, type 01 in response to HOURS, and 03 to MINUTES. The

program assumes that the seconds will begin with 00. It takes the two strings,

H$ and M$, and adds them to "00," then puts that string in place of TI$ to

set the clock. In the main loop of the program, lines 50 to 80, here is what

happens: The cursor is sent back to the HOME position (upper left-hand

corner), stays on that line and begins PRINTing. It PRINTs, in this order,

the word TIME, a space, the leftmost two characters of TI$ (the hours), a

colon (":"), the middle two characters of TI$ (the minutes), another colon,

and, finally, the rightmost two characters of TI$ (the seconds).

The whole process starts again when the program goes back to line 50

and PRINTs a new time over the last one. In operation, you see the seconds

changing and the program looks like it is RUNing at a leisurely speed. Inside,

however, the computer is going like crazy, PRINTing the line over and over,

even if the time hasn't changed by a single second. If you want to incorporate

this routine into one of your own programs, you may choose to use it as a

subroutine, someplace out of the way from the main program.

(Take out the GOTO statement and insert RETURN; put the lines that

132 7—Programming—The Rest of BASIC

set the clock at the beginning of your program. Each time you want to PRINT

the clock on the screen, however, you will need to GOSUB to these lines. It

might not be practical then to show the seconds.)

String handling and manipulation is an easy concept to learn, but it can

remain confusing, even for experienced programmers. You will only master

string handling with practice, patience, and a clear head.

Word Processing: The

Electronic Typewriter

"It's an interesting machine, but what do you actually use it for?"

That's one of the most frustrating questions asked of personal computer

owners. It is also often the most difficult to answer. This section is about one

of the most practical uses for your computer—word processing.

Even the simplest personal computers are extremely powerful. They can

perform lightning fast calculations and keep track of information far better

than a human being can. But not all of us need to make millions of calcu

lations or keep so many records that we can't organize them some other way.

Every one of us, though, has written something at one time or another,

from grocery lists to term papers, from letters to professional reports. As

people, we aren't perfect. We make mistakes and, in our search for perfection,

we change our minds. Consequently, we don't always say what we mean

when we write.

Word processors let us express ourselves more clearly and accurately.

For the last few years, word processors have been known as machines

that have taken the place of typewriters in offices. Inside these business

machines are small computers, sometimes no more powerful than your Com

modore 64. The difference is that these computers are dedicated to one single

task—word processing.

You may have seen other word processors. Many, if not most, American

newspapers no longer have typewriters in their city rooms and editorial

133

134 8—Word Processing: The Electronic Typewriter

offices. Instead, reporters write on things they call "VDT's," for Video (or

Visual) Display Terminals. These are really just terminals that are connected

to a giant computer with a souped-up word processing program. (In most of

these systems, the computer also manages incoming wire service reports,

and even controls a typesetter.)

One of the first word processing programs for large business computer

systems was ATMS (for Automated Text Management System), designed for

IBM computers in the 1970s. A few years later, when the first personal com

puters began appearing, a landmark program called "Electric Pencil" intro

duced word processing to individual users. It started a revolution that has

produced dozens of excellent word processors, including several for the Com

modore 64 family.

What is a Word Processor?

Essentially, the name says it all. A word processor is a program that

processes words. This means working with words—rearranging and reor

ganizing them.

These are the important functions that make a word processor.

Entering text This is the ability to writeon the computer's keyboard

and to store what you've written in memory. You should be able, of course,

to read what you've written, as well.

Editing text Editing is a vague term, at best. The most important
editing features are the ability to insert and erase (or delete) words, sentences,

and paragraphs. These are the functions most often used in any word pro

cessor. All the rest are frosting on the cake, but make the program more

flexible and turn it into a professional-quality tool.

Storage and retrieval This means that what you write can be
stored on a disk (or perhaps cassette tape), then played back into the computer

when you need to read or work on whatever you've written. There probably

hasn't been a word processing program written that doesn't let you do this.

Printing text The end result of any word processor is seeing what
you have written on paper. With a good word processor program, you should
also be able to change the shape (or format) of the printed text.

That, in a nutshell, is word processing. As you can see, this kind of

program turns your computer into a powerful and sophisticated electronic

typewriter.

Who can benefit most from word processors? Anyone who has a need to
put his or her thoughts down on paper. Students often discover for the first
time that they can write. Businessmen and other professionals find that they
can improve their productivity by writing reports and correspondence faster
and better. Professional writers, always plagued by deadlines, regard the

What is a Word Processor? 135

word processor as a godsend. (This book was written on a Commodore com

puter using two different word processing programs.) If you're none of the

above types, take heart. With a word processor you'll soon be writing the

letters that you've been ignoring for months, dashing off notes to family and

friends, and you may even tackle that idea for a novel that you've had for

years. When writing duty does call, you'll find that having access to a word

processor is the next best thing to having a secretary. Word processing is fun

and impressive, too. Watching your ideas moving around on the screen can

be endlessly fascinating, all by itself. (Just don't forget that this is a tool,

though, not just a toy.)

What You'll Need: Printers and Disks

Naturally, you're going to need a printer to begin word processing. It's

what makes the system practical. You'll also need a program and some way

to store what you've written—either a disk drive or cassette recorder.

Printers A printer is a useful investment for reasons other than word

processing. Though it is a necessity for word processing, a printer can also

be used to LIST BASIC programs on paper, and with a data base manager,

spreadsheet and other programs.

Two types of computer printers are commonly available: Dot matrix

printers and letter quality printers.

Dot matrix printers produce characters by striking the paper (through

a ribbon) with a group of electronically controlled wires. Each wire makes

a dot on the page; each group of dots forms a letter, number, or other symbol.

Because the character is made up of dots and is not solid, some dot matrix

printers, particularly early ones, produce copy that can be comparatively

difficult to read. Some of the new printers, on the other hand, space the dots

closer together and their printing looks much closer to that of a typewriter.

This improved dot matrix printing is called "correspondence quality."

1

1
•t
A.

1

•i
X

350

360

370

380

390

T

T

I

Q

Q

i:::*

F

C.»'i

T
.5.

}...
I

t
1...

I

< N

.i.

r.;:' x:::
j.... t

NK

TO

"\" L.I
1 i i

TH

T* (

EY*

DR

E

E

ti

A

M

M

IF

W

•5

.1.

1

It

R

-:i

•»!

:!.

G
1"

10 goto9000:rem (c)
20 getc$:ifc$goto20

25 getc$:ifc$thenpr

27 print" <c-l>";:g

30 get#1 ,*c$:x=0:ifc

The speed of dot matrix printers ranges from about 80 to 160 characters

per second. This kind of printer usually sells for about $300 to $1000 de

pending on features.

Some examples of dot matrix printers are the Epson MX-80, MX-100

and FX series, the C. Itoh Prowriters, the Star Micronics Gemini, and printers
by Okidata and NEC. Commodore's own dot matrix printers are models 1515,

136 8—Word Processing: The Electronic Typewriter

1525E, 4022, and 8023. (Not all of these will work directly with the Com

modore 64 computers. More about this later.)

Letter quality printers are sometimes referred to as solid-font printers,

because the characters they print are solid, like those produced by a type

writer. Some early letter quality printers used interchangeable IBM Selectric*

style "golfball" type elements. (A few of these are still around and for sale.)

They were slow, printing about 12 to 14 characters per second.

Most modern letter quality printers use a type element called a "daisy

wheel." This is a plastic, sometimes metal, wheel with flexible spokes (the

"petals"). At the end of each spoke is a piece of type for one letter. As the

wheel spins, an electronically controlled hammer hits the appropriate one,

printing the character on paper. These daisy wheel printers produce copy

that can't be distinguished from pages typed on an excellent typewriter, and,

therefore, are preferred for word processing. Printing speeds for letter quality

printers range from 15 to 55 characters per second.

Unfortunately, daisy wheel printers are complicated and are therefore

more expensive than dot matrix machines. They begin at about $400 and

although prices have dropped in the last few years, some still sell for over

$2000. The least expensive daisy wheel printers (those sold by Smith-Corona^

and Brother^ for example) are slow—under 20 characters per second. More

expensive models—Qume^ Diablo® and C.Iloh Starwritei1—are much faster,

up to 55 characters per second, and offer many more features. (Related to

daisy wheel printers are the NEC Spinwriters"J which use a plastic "type

thimble" instead of a wheel.) Commodore sells its own daisy wheel printer,

the model 8300, which is a version of a Diablo machine.

The speeds of both dot matrix and letter quality printers look impres

sive. Even 10 characters per second is faster than a typist working at 90

words per minute. A double-spaced manuscript page, for example, is about

1500 characters and takes a little under a minute to print on a good letter

What You'll Need: Printers and Disks 137

quality printer. If you have a 100-page manuscript, that's about an hour and

a hall.

Interfaces Most letter quality and dot matrix printers can't be used

directly with the Commodore 64. They require what is known as an interface.

Personal computers send information to printers in different ways. These arc

known as data standards. Printers sold by companies other than Commodore

usually come equipped to work with one of the two most popular data stan

dards, parallel or "Centronics parallel" (called that because Centronics, a

printer manufacturer, promoted the standard), or serial. Serial printers take

the form of data called RS-232, the same as most modems, or telephone links.

Still another data standard is called IEEE-488 (or "I-Triple E"). This is the

standard originally used by the Commodore PET and CBM computers. Except

for the model 1515 and 1525E printers, this is the standard that Commodore

printers use.

The advantage of buying a printer other than Commodore's is that you

will have a much wider variety to select from with different features and

prices. The disadvantage is that you will need to purchase an interface at

additional cost, and some soltware may occasionally not work exactly as

planned. (This is rare, though.)

An interface is a small box that contains some electronic circuitry. It

changes the organization of data from one standard to another. Think of the

interface as a translator, listening to one language and simultaneously speak

ing another.

Commodore says that printers and disk drives designed for the Com

modore 64 data standard shouldn't be used with equipment designed for

Commodore's earlier computers. This means you can't use a standard 1541

disk drive (designed for the 64 family), with a printer originally intended to

138 8—Word Processing: The Electronic Typewriter

work with a PET or CBM computer. It also means that you can't use a 1525E

printer (the 64's) with a 4040 or 8050 disk drive system (the PET's).

The earlier Commodore disk drives and printers are designed for the

IEEE-488 data standard. To use these, you must use an IEEE-488 interface

which usually plugs into the cartridge port. Commodore makes one such

interface that is "officially" supported by the company. That is, Commodore

has designed its own software to always work with it. Other manufacturers

make IEEE-488 adapters, too.

You can mix a standard Commodore 1541 disk drive with a parallel-

style printer via several different interfaces. Serial printers are another story.

Although serial printers can accept RS-232 data with a connection to the

user port (some additional hardware may be required), it is more difficult

to use and few programs seem to be supporting this scheme.

The best bet for using a non-Commodore printer with the 64 family seems

to be to choose a parallel printer—either dot matrix or letter quality—in

conjunction with the proper interface. (Look at the section of this book called

"Beyond BASIC" for details about these.) This will offer you the most flex

ibility. One added advantage in buying a parallel printer is that it will have

resale value to users other than Commodore owners if you should decide to

upgrade your system.

In any case, the most important thing to consider in assembling a word

processing system is to shop carefully and ask questions. Make certain that

the printer, interface, and word processor program you select are all com

patible with each other. Ask friends who have put together a system, take

up the problem at a user group meeting, or ask for a demonstration of the

available programs at a computer store.

Advanced Word Processing Functions

As you have learned, a word processor lets you write on the computer's

keyboard, change what youVe written, store the text on disk or tape, and

get a copy on paper. Word processors differ in their capabilities, some of

which are extremely powerful.

In addition to inserting and deleting words, sentences, and paragraphs,

a good word processor will also be able to move these around the text. The

way this usually works is by setting a range within the lines on the video
screen. On command, you can move whatever is within that range—from a

single word to several paragraphs—anywhere else in the text.

One reason for using a word processor is to send multiple, personalized
letters using information from a name and address file. Since this information
varies from letter to letter, it is organized as variable blocks. This function is
also know as mail merge in some programs.

The opposite of variable text is information that occurs repeatedly from
one manuscript to another. This kind of repeating information is called boil

erplate. (The term comes from the legal profession, where it means to use any
kind of standard clause in a contract or agreement, again and again.) The

Advanced Word Processing Functions 139

ability to easily add these repetitive pieces of prose into a manuscript is

called appending.

Manuscript pages are best identified by having certain information at

the top or bottom of each page. These lines, which could include the author's

name, the title of the manuscript, and the page number, are called headers

(if at the top) and footers (at the bottom).

For very long manuscripts, some word processors can make notes (on a

floppy disk) to themselves. This note file is designed to be a table ofcontents

or, with enough notes, an index file. This feature is a real help to anyone who

has ever had the time-consuming job of preparing an index to a book or other

long document.

Have you ever misspelled a word throughout what you are writing, only

to go back and correct it each time? This task is trivial for a good word

processor. It is called search and replace. You merely give the computer the

incorrect and correct spelling and it goes to work, finding arid fixing all of

the mistakes.

Every word processing program is limited by the amount of memory it

can use to store words. Since the Commodore 64 computers have 64K bytes

of RAM memory, a good word processor can store many printed pages of

text. Still, the length of a manuscript may be more than the capacity of the

computer. For this reason, the full text will be broken down into linked disk

or cassette tape files. These multiple files are also called global files.

One common criticism of the Commodore 64 family of computers is their

40 character-wide screen. A standard typewritten page is 60 characters wide,

and doing any kind of writing where it is necessary to organize the page into

columns can be a mess. So, some word processors allow the screen to actually

be wider than the normal 40 characters. How is it done? The screen moves

horizontally, left and right to read the longer lines. This variable screen width

is a highly desirable feature. This does not mean, however, that a word

processor that is limited to the standard 40-character screen is useless. On

the contrary, some users (this author included) prefer this size screen over

wider ones.

Going hand-in-hand with a wider screen is the ability to manipulate

columns by duplicating and moving them. Some programs also have built-

in arithmetic functions so that columns of numbers can be added or sub

tracted. Related is the capability to sort columns. With this, you can organize

a column of names alphabetically, or an address file by ZIP code.

Before typing out a page on your printer, you should be able to see what

it looks like. This function is often called output to video. Even though you

may not be able to read all of the text on the screen (due to the 40-character

width), you can get an idea of where pages begin and end. This is useful when

writing letters, for making tables and charts, and for separating ideas within

a manuscript.

Before printing out a copy of what you've written, you should be able

to select margins (where the words begin and end on the line), type size (e.g.,

"pica" or 10-pitch type, and "elite" or 12-pitch), and spacing (single or double

spaces between lines). The program should be capable of justifying (making

140 8—Word Processing: The Electronic Typewriter

each line length exactly the same), centering words and phrases, underlining,

and typing words in bold print for emphasis.

From the sound of some of the above features, word processors are dif

ficult to use. Well, yes and no. Depending on their degree of flexibility, there

can be dozens of commands to learn before you can start using a word

processing program. Most commands, however, are combinations of one or

two keys and a good program gives you visual, on-screen clues to help you

along.

Though word processors often resemble each other in their functions,

each usually has its own unique command set. Switching, then, from one

program to another means learning new commands, even though the basic

functions of the programs are similar.

There's another problem, too, with switching between word processors.

Most programs won't be able to read the disk or tape files written by other

programs. Because of this, the program you choose will probably be the one

that you will use for a long time.

Four Commodore 64 Word Processors

At the time of this writing, several word processing programs had been

introduced for the Commodore 64 family. Four of these have been selected

as good examples. Each is a reasonably powerful program and is written,

not in BASIC (which would make it too slow for practical use), but in machine

code. All four programs are useful to various degrees, and each is slightly

different in its approach to the essential functions of a word processor.

Quick Brown Fox

QBF is best described as a "mini" word processor, and comes supplied

as a cartridge that plugs into the back of the Commodore 64. Included with

the package are a loose-leaf instruction manual and several pages of notes

on the Commodore version of the program. (Other versions are designed to

operate on the IBM-PC and CP/M style computers.) Everything is packaged
like an expensive book in its own slipcase.

When the computer is turned on (always with the cartridge in place to
prevent damage), the screen looks like this:

Quick Brown Fox

(C)

A quick tap on the RETURN key and the "main menu" appears.

. . . Quick Brown Fox

Type

View

Print

Quick Brown Fox 141

B.View

6.Edit

L.Edit

Move

Delete

Zap Memory

Send

Receive

Clerk.?

Typing the first letter of any word listed on the screen makes the com

puter ready for that activity. Type means to enter text into memory. (There

are 37,886 bytes available to write in, or approximately 25 double-spaced

manuscript pages.) Unlike most other word processors, QBF is what is known

as a "line-oriented" editor. In the Type mode, you can only edit the line you

are writing on. When you move to the next line, you must use another function

of the program to edit what you've written.

One of QBF's good features is the fact that it does not break up words

on the screen. Instead, it automatically moves the cursor to the next line.

(Many word processors don't do this, and words are almost always broken

at the end of a line, sometimes making them difficult to read on the screen.)

L.Edit (for line edit) is used to edit lines of text. The lines you have

written appear at the bottom of the screen. Pressing the CRSR DOWN key

brings the next line. Somewhat confusingly, pressing CRSR UP will display

a new line—the previous one! So the screen looks like this:

over the lazy dog.

The quick brown fox jumped

This is the way QBF goes backwards and forwards in the text you're

editing, always one new line being displayed at a time. The disadvantage of

line-oriented editors is that there is no convenient way to simply move the

cursor and begin working on an earlier line. The effect is unnerving, especially

when you see complete sentences in reverse order. An additional inconven

ience is that you are always working on the last few lines on the video screen,

even while the rest of it is blank or unused.

This all sounds confusing, and it is, at first. You do adjust to this awkward

scheme in very little time, however. The other Edit function in the program

is G.Edit, the initial of which stands for "global" editing. B.View lets you

read and change "boilerplate" text.

Delete and Move are two more editing functions. They let you erase

portions of the text and/or move them around. These work, but take a bit of

practice to get accustomed to.

Zap Memory is QBF's way of saying to erase all of, or clear, everything

in memory. You must Zap before you load text from disk or tape, for example.

Send and Receive are unique among the word processors reviewed for

this book. Using a modem, you can send text written with QBF over the

telephone lines to another computer using the same program. The accom-

142 8—Word Processing: The Electronic Typewriter

panying manual offers some cautions, however. The book only says that "The

quickest way to find out about Send/Receive is to try it."

Clerk takes care of making and reading disk or tape files of what you've

written.

View and Print are related; View lets you see what you will put on paper

before it is printed using the Print command. The manual does a good job

of describing embedded commands—special combinations of letters with the

"#" sign that change spacing and margins, set tabs (like on a typewriter),

center words and phrases, indent paragraphs, and print in heavy, bold face

type. Some of these commands, says the manual, will work on only certain

printers. It recommends that a specific interface, the Cardprint (see "Beyond

BASIC"), be used with non-Commodore printers. Some printers can also be

attached to the user port, according to the manual. It is probably a wise idea

to have a dealer first demonstrate the program with the printer and interface

you own or intend to buy.

QBF's manual, in an effort to be "user-friendly," makes the mistake of

trying to be too cute, sometimes at the expense of the facts; and some infor

mation not common to versions for all computers is not always clear. But,

since this is not a complicated program, learning to use it is still relatively

simple. Lessons in the manual also help you along.

How useful is Quick Brown Fox? That depends on how often you will

use it, how much writing you will be doing, and how well you adjust to its

unusual editing style. Some people will probably pick up the "backwards"

editing quickly. Others will struggle.

One note to those who do not own a disk drive: Since the program comes

on a cartridge and can be used with a cassette recorder, this program may

be your best bet to get into word processing. While far from perfect, it appears

to do what it advertises.

(Quick Brown Fox—Quick Brown Fox, Inc., 548 Broadway, Suite 4F,

New York, NY 10012.)

WordPro 3 Plus/64

WordPro is the original word processing program for Commodore com

puters. It was designed by a bright Canadian programmer named Steve

Punter who recognized its need several years ago and has since produced

many upgraded versions. What's in a name? WordPro "3" means this is the

third of those versions. (There's a "4" for the CBM 8032 professional com

puter.) The "Plus" means that it was upgraded after first being introduced

for the original Commodore PET.

This version differs little from its PET counterpart, with a few exceptions.

One is that the colors of the screen, border, and characters can be changed

to suit your own tastes. Another is that the "Control" key—which puts the

program in a kind of "command" mode—was the OFF RVS key on the PET.

On the Commodore 64, you can use either the COMMODORE key, the CTRL

key, or Fl, a function key.

WordPro 3 Plus/64 143

The program requires a disk drive and one of several different types of

printers, specifically Commodore printers, the NEC Spinwriter, Diablo, Qume,

and TEC (also known as the C. Itoh Starwriter). Other printers can be used,

but some features (like underlining) may not operate correctly. Any interface

can be used, as long as it does not in any way change the text sent to the

printer. Both the Micro World Electronix and Cardprint interfaces have been

tested with WordPro, and both work well. Because the Cardprint is a "smart"

interface capable of operating in several different ways, it must be set up for

WordPro by first typing in a few words of BASIC. This is a simple task and

is thoroughly explained in the instructions that come with it.

WordPro is a good standard by which to judge other Commodore word

processors. It is powerful, fast, and moderately easy to use. The WordPro

manual, although wordy, is probably the best of any word processor manuals

and includes good, thorough lessons on how to familiarize yourself with the

program. .

After LOADing WordPro from disk, the program asks a few questions to

"customize" itself to your system. One that it asks is how many lines should

be devoted to main memory? A maximum of 329 lines is allowed. This means

that 13,160 bytes are available to write your text in, the equivalent of about

9 double-spaced manuscript pages. Another "extra"text area is available (you

must take memory away from the main area to use it), and is usually used

for variable blocks in printing personalized form letters. The extra text area

can also be used to see a disk directory, if you choose.

The WordPro screen has 23 lines for entering text. At the top of it is a

"status line" that looks like this:

WordPro 3 Plus :X:I:S:C:N C =

144 8—Word Processing: The Electronic Typewriter

The letters grouped in the middle of the line remind you of what you

are doing. C stands for "Control." You press one of the control keys to get

to WordPro's functions. When you press it, the color of the C (in the " :X:I:S:C:N")

is reversed. (Pressing the C a second time always cancels that order, except

for a small "bug" in early versions of the program. More on that later.)

The other letters also show that you are in special WordPro modes. I

stands for "Insert." In this mode, anything you type will be inserted into the

text already on the screen. Everything after your new words moves to ac

commodate them. X means "extra text" and tells you when you are in the

extra text memory, rather than the main area. S tells you that you are in a

mode in which everything typed will be in capital letters. N stands for the

"numeric" mode. This affects the way numbers appear on the screen.

C = and L = at the right of the line are always followed by numbers that

tell you where the cursor is in relation to available memory. C means column

number; L means line number.

WordPro's screen can be thought of as a "window" into memory. What

ever you do on it will also be done to the text in memory. When you type

more than the screen will hold (23 lines), it will move up a line. Using the

CRSR UP and DOWN keys, you can quickly "scroll" in either direction,

forward or backward through the text, correcting or editing at any time.

There are no separate Type and Edit functions to switch between. Using the

INST/DEL key, you can erase words or spread them apart to insert other

words. (If you have learned how to use the Commodore's editing keys, you've

already got a jump on using WordPro.)

There are 46 different control key functions in WordPro, too many to

summarize here. Major ones, however, include deleting words and sentences

(control-D), setting a range of lines and transferring the text in range to

another place (control-R and control-T), getting a disk directory (control-0),

erasing the text (control-E) and printing out the text on paper (control-O).

In addition to the above control key functions, there are 23 different

formatting commands that can be added to the text to determine its shape

—margins, justification, centering, bold face printing, etc.—when printed

on paper.

WordPro was the first word processor for the Commodore computers to

offer the ability to do simple arithmetic. Numbers in the text can be added

and subtracted very easily. More complicated math, though, must be done

outside the program.

One disadvantage to WordPro is the lack of a way to preview what has

been written as it will appear on paper. This "output to video" function is

in versions of the program for the Commodore CBM 8032 computer (with an

80-character screen), but is missing on both the PET and 64 family versions.

WordPro's designers missed another opportunity on the 64 version. Like

the PET and CBM versions, WordPro 3 Plus/64 takes up memory space usually

devoted to BASIC programs. It does not, however, make use of the additional

memory available in the 64. Using this would have dramatically increased

the memory available to write into, cutting down on the number of linked
or global files necessary for long manuscripts.

WordPro 3 Plus/64 145

There is also a bug in some early versions of the program. Pressing the

CTRL (or other control key), followed by E puts the program in the "erase"

mode. Touching a control key again should cancel this order, but it doesn't.

This is potentially disastrous. Professional Software, the company that sells

the program in the U.S., says that users with these early versions should

inquire about getting an upgraded, corrected copy.

Finally, the program uses a disk protection scheme that prevents making

unauthorized copies. It is certainly the right of a software author or distrib

utor to guard against piracy, but this also eliminates the possibility of making

back-up copies of the program. If the original disk is damaged, it must be

sent back to the distributor and a new disk can be purchased for a handling

fee.

Though it is limited in some respects, WordPro 3 Plus/64 is a good writing

tool that will even meet the demands of some professionals. Learning to use

all of its functions can be time-consuming, but a couple hours of study is all

it should take to start using it.

Note: Although WordPro 3 Plus/64 is an adaptation of a previous version

of the program, a new one, specifically designed to use the features of the

Commodore 64 family, is being prepared.

(WordPro 3 Plus/64—Professional Software, Inc., 51 Fremont Street,

Needham, MA 02194.)

Easy Script

Easy Script is Commodore's "official" word processor for the 64 family.

At press time, the company indicated the possibility of including the program

(and others) with the purchase of the portable version of the Commodore 64,

so you may already have a copy.

Created for Commodore by Precision Software, a British company, Easy

Script is very similar to WordPro in design, but very different in operation.

Like WordPro, it is a character-oriented word processor in which the video

screen acts as a window to the memory where text is stored. A disk drive (or

cassette recorder) and printer are required, and, though early versions of the

program appeared on disk, plans call for it to ultimately be distributed on

a cartridge. This would mean that the program could be used without a disk

drive.

Thankfully, Commodore hasn't gone so far as to restrict the program to

work only with its own printers. While any Commodore printer can be used,

it will also function with the Epson, NEC Spinwriter, Qume, Diablo, and

other printers. In addition to printers connected the normal way (attached

to the same connector as the disk drives), both parallel and serial (RS-232)

printers can be connected to the 64's "user port" if you have the proper

cables.

A preliminary manual and program used for this review indicate that

764 screen lines are available for writing text. That is 30,560 bytes, or about

20 double-spaced manuscript pages. Text space is expanded by using the

146 8—Word Processing: The Electronic Typewriter

additional memory in the 64 not usually available for BASIC programming.

This comes as a welcome improvement to anyone who has run up against

the limits of a computer's memory when writing. Manuscripts longer than

20 pages, of course, can be divided into linked, or global, files.

Unlike most other word processors, Easy Script makes use of the 64

family's function keys to simplify operation. Most often used are the Fl key,

which acts like a control key to change operating modes, and F4, which puts

the program in the "disk mode" to store and retrieve what you've written

as well as to see disk directories.

Like WordPro, you can write and edit simultaneously, and a status line

at the top of the screen reminds you of where you are in the text and which

program mode you are in. Two other good features are variable screen width

and the ability to preview what your printed manuscript will look like. Screen

width can be set anywhere between 40 and an amazing 240 characters wide.

Though the screen still shows only 40 characters at a time, you can move

left and right (in addition to up and down) for writing and reading long lines.

Using the "output to video" command, you can actually see the entire page,

exactly as it will be printed, again using the CRSR keys to move left and

right. (A "quick scan" feature uses the F7 key to jump around for fast check

ing.)

Special commands embedded in the text affect the format of the printed

pages, and Easy Script's commands are almost exactly like WordPro's.

lmlD:rm?D:cnl

The above line (preceded by a check mark symbol in WordPro, a reversed

asterisk in Easy Script) means the same thing to both programs: Set the left

Easy Script 147

margin to 10 spaces, the right margin to 70 and center the line on the page.

Other format codes, too, are the same, but Easy Script and WordPro will not

accept each other's disk or tape files. And, while their basic functions are

similar, most of Easy Script's commands are different, though just about as

logical as WordPro's.

The fact that Commodore is sponsoring Easy Script means that it stands

a good chance of becoming the standard word processor for the 64. As good

as it is, it seems to lack a few functions. (There doesn't appear to be a numeric

mode or arithmetic functions.) Still, it is a well-written program suitable for

both amateur and professional users alike.

(Easy Script—Commodore Business Machines, 1200 Wilson Drive, West

Chester, PA 19380.)

Paperclip

PaperClip is kind of a "dream machine" word processor that hails from

Batteries Included, a Canadian software company with a humorous name.

(No batteries are included with the program, or are actually necessary.) Just

about every feature you could think of in a word processing program is here.

In fact, PaperClip is so powerful that it can take a long time to learn how to

fully exploit its many, many features. There are nearly 150 different operation

and format commands! Yet only a few of these are necessary to start working

with it.

The program resembles both WordPro and Easy Script in its operation

and commands. Though the manual fails to mention it, PaperClip will even

accept disk files written by WordPro and, with some minor modifications,

Easy Script. (Beware, though. WordPro won't accept Paperclip's files.) You

can also store text on cassette tape files and probably LOAD the PaperClip

program itself from tape. But since it is extremely long, using it without a

disk drive is impractical.

Nearly any printer can be used with the program due to the novel way

PaperClip has of customizing itself for use with your printer and interface.

More than a dozen standard "printer files" are included on the same disk as

the program. These are designed to work with the Commodore, Epson, NEC

Spinwriter, TEC (C. Itoh), Diablo, and Olympia printers, and are entered

with PaperClip itself. If none of the supplied files work with your printer,

you can build one using a program that's also included. Instead of entering

this file each time you want to print, yet another program will make a new

version of PaperClip, with your printer information permanently in place.

Like Easy Script, you can write on a line longer than PaperClip's normal

40 characters—up to 126 characters. Again, you use the CRSR keys to move

left and right, as well as backwards and forwards through text. You can also

preview wh^it you've written before it is printed on paper using an "output

to video" command. Unlike Easy Script, however, PaperClip will not allow

you to see the entire page—the right side is likely to be chopped off—due to
the limitations of screen width. This is still useful for seeing where pages

148 8—Word Processing: The Electronic Typewriter

begin and end. You can also switch between video and printer output, so

that only selected pages are printed. (This is great when you want to print

only the last two pages of a very long manuscript.)

For jobs when columms of information (lists, etc.) are important, PaperClip

will move these columns, perform simple arithmetic (addition and subtrac

tion), and even sort numbers or words by values or alphabetically. This means

you can set up a mailing list, put new entries at the bottom, then ask the

program to insert them in their proper places on the list.

A table of contents, or index file, can also be generated automatically by

the program. To use this feature, you type in special lines identifying the

topics you're discussing. When you "output to video," PaperClip will take

these comments and build a new disk file that indicates the page on which

each topic appears.

Unlike the other word processors in this chapter, PaperClip comes fur

nished on an unprotected disk so you can easily make back-up copies to use

if the original disk is damaged or destroyed. To protect the program against

unauthorized copies, an electronic "key" is included. It plugs into the com

puter on control (joystick) port number 1, and PaperClip won't run without

it. To hide from prying eyes, the electronic circuitry inside the key is embed

ded in rock-solid epoxy.

If there is one complaint about PaperClip, it is its instruction manual.

This program is extremely powerful, yet the book does not go far enough in

explaining the myriad of features. Particularly poor are the instructions on

how to build printer files and make custom copies of the program. The printer

files that are supplied on the master disk aren't identified well, either. To

top it off, the book was written for the PET/CBM version of PaperClip and

only one page is devoted to the differences between it and the 64 version.

(Batteries Included promises to revise the book, and says that all owners of

the program will be sent the new edition or update notes.)

Despite the poor manual, this is a terrific program that should satisfy

virtually anyone who uses it. Its flexibility and compatibility with other

programs makes it an invaluable addition to any Commodore 64 system.

(PaperClip 64—Batteries Included, 71 McCaul Street, Toronto, Ontario,

Canada M5T-2X1)

A Few Tips

Using a word processor will change the way that you write. In addition

to the opportunities you have to correct errors, it can also improve the quality

of your writing. For example, if you've used a word earlier that is more

suitable in another place, don't hesitate to change it. Nor should you ever

need to exclude ideas just because you thought of them late—go back and
insert them where they belong.

Everyone establishes their own system for working, but here are a few
tips to get you started:

A Few Tips 149

• If possible, make a copy of the word processing program as the first

file on each disk you use. That way, you'll cut down on shuffling disks

back and forth put of the disk drive.

• Organize your disks, one for letters, one for school work, one for that

pet project you've been working on, etc. That way, your work will

always be easy to locate. Or, organize disks by time, labeling them by

month or even week for easy reference.

• Try to put the title at the top of each text file as a non-printing com

ment. You'll never need to worry about storing it on disk by the wrong

name.

• Always make back-up copies of your files if what you are working on

is important. True misery is losing weeks of work. Update the back

up copies as you rewrite and edit so that they contain the same text

as the masters. Save your work to disk or tape often, so that you won't

lose all of it if you make an operating mistake.

• Make a copy of the command summary from your manual and keep

it in front of you until you know the program backwards and forwards.,

If there is no such summary, make one for yourself.

• While proofreading from the video screen is tempting and saves paper,

print out a checking copy. There's nothing like seeing words on paper

to catch mistakes.

• Be sure to set up the place where you will work so that you will be

comfortable—computer at the right height, plenty of room for working

materials, no glare from back-lighting. Take frequent breaks so that

you're not staring at the video screen for long periods of time.

• Don't be tempted to rewrite your work to death. Though word pro

cessors offer the chance to continually improve, too much rewriting

can hurt what you created. Don't spend more time than it would take

you to write on a typewriter. When the job is done, the work is over.

Color, Graphics, Sound,

and Games

Some personal computer owners never take advantage of the color, graphics,

and sound features of their machines. To others these are among the most

important aspects of any computer. There are those who would argue that

these "frills" aren't important for "serious" computing—math, word pro

cessing, data base management, etc. They point a finger at video games.

Certainly advanced graphics and audio features make a machine perfect

for games, but they offer even greater opportunities. Graphics are becoming

more and more important and the computer is providing new ways of vi

sualizing information. (Have you seen USA Today, the national newspaper?

Many of its colorful "information graphics" are produced by computer.)

Recent, advanced computers like the Xerox Star and Apple Lisa are also

breaking new ground in the use of graphics.

Just because a computer can produce the bleeps and yelps of a video

game doesn't mean that is all it can do. Computers can be musical, or re

produce human speech with startling accuracy.

The Commodore 64 family really shines when it comes to its graphic

and sound capabilities. Unfortunately unlocking that power can be complex

and time-consuming. That's because our only convenient link to the machine

is the BASIC programming language. Making pictures and sounds with BASIC

is a little like trying to describe a sunset or symphony with only a few words.

There's little chance for poetry, but we can, with difficulty, get the idea across.

151

152 9—Color, Graphics, Sound, and Games

This chapter will introduce you to color, graphics, and sound on the

Commodore 64 family. It isn't intended as a complete treatment of these

topics, but only to whet your appetite for more. More is available, too, near

the end of this book in two chapters entitled "Exploring Graphics1' and

"Exploring Sound." Those chapters will require you to come to them with

a good understanding of other ideas in this book. Even they cannot teach

you everything, though. Graphics and sound deserve a book all to themselves.

In this chapter, you will learn how to make your programs more at

tractive-looking, and how to start using a few graphic tricks. You'll learn

how the computer can be taught to play simple songs. If you are interested

in games, you may want to know about the computer's "random number

generator"—it can toss a pair of dice or spin a wheel of fortune. Finally,

you'll learn a little about the "control ports." That's where you plug in

joysticks and game paddles.

Victor and SIDney

VIC and SID sound like a couple of guys who might inhabit a Las Vegas

casino. In the case of the Commodore 64 computers, though, they are the

names given to two incredibly capable microchips that control everything

you see and hear on a television set or video monitor.

VIC stands for Video Interface Controller, and SID is an acronym for

the Sound Interface Device. Inside these two chips are more features than

most computers can boast of.

VIC offers a variety of graphic modes. The first of these is the character

mode. It is the one that the computer "comes alive" in and is the simplest

to use. The PRINT command is used to put something on the screen. Though

it is also the most limited, clever programmers are always finding new ways

of making attactive video pictures in this mode.

One way of enhancing the appearance of a screen in the character mode

is to redefine the computer's character set. The VIC chip can be instructed

to change from its standard alphabet, numbers, and other symbols, to char

acters of your own design. Special symbols for math and science, other lan

guages, even music can be programmed as new characters.

In the character mode, the video screen has 1,000 individual places (25

lines of 40 characters), and each is represented by 1 byte of memory. In total,

1,000 bytes are used for the screen. Since it can accommodate up to 16

different colors of characters on the screen at one time, additional memory

stores this color information. For its color, each character requires only one-

half byte, or four bits. (This may sound like a joke, but it isn't: These half-

bytes are called "nybbles.") Another 500 bytes, then, are devoted to screen

color.

Another graphic mode, called high-resolution graphics, is used to over

come the limitations of the character mode. With high-resolution graphics,

the screen is made up completely of dots, called pixels, for picture elements.

VICtor and SIDney 153

(You cannot use the PRINT command, here.) Each dot represents a single

bit in memory. The dimensions of a hi-res screen are 320 dots across by 200

down. This corresponds to 8,000 bytes of memory.

There can be two colors, one color for the background and another for

the dots. One variation on this mode allows you to determine different regions

on the screen, each region being an area of character-size blocks. You can

set a different background and dot color within a region for colored hi-res

screens, but only two colors can be used in each region.

You can double the number of colors used on the screen if you use another

mode, called multicolor. Four different colors can be used simultaneously,

but the screen's resolution is cut in half. A multicolor screen has only 160

dots across, but 200 down. (You can't use the PRINT command in multicolor
mode, either.)

Sprites can be used in any graphic mode. These are small, high-resolution

pictures stored in various places in memory. The VIC chip can recognize

these pictures and put them on the video screen, where you can move them

around using BASIC. A sprite is made up of as many as 540 dots—24 across

by 21 down—or 63 bytes of memory. It can be in any one of the 64's sixteen

colors, and can be doubled in width, height or both. These single-color sprites

are the most impressive graphic device that inexperienced programmers can

use. Another kind of sprite is a multicolor sprite. Like the multicolor hi-res

screen, a multicolor sprite can be four colors, including the background color

of the screen. Multicolor sprites are more difficult to use and program than

single-color sprites.

Sprites, redefined characters and hi-res screens are explained in more

detail in "Exploring Graphics." In this chapter, you'll learn about character

graphics, and how to turn sprites on and off and move them on the screen.

VIC isn't the only chip to offer creative possibilities. What VIC does for

your eyes, SID does for your ears.

Some computers can squeak and grunt. SID can croon, and, in the near

future, may even talk. (Programmers are working on speech synthesizer pro

grams for SID right now.) SID's three voices allow it to make three distinct

sounds simultaneously. The chief difference between the audio capabilities

of the 64 computer family and their predecessor, the VIC-20, is in the quality

of sound produced. (The VIC-20 has no SID chip of its own.)

The components of a sound, as used by an electronic music synthesizer

for instance, are attack, decay, sustain and release (ADSR). The differences in

these are the primary reason why a piano sounds different than a banjo, or

why a pipe organ doesn't sound like a Chinese gong. Attack, decay, sustain

and release are measured in time—tiny fractions of a second. Each of SID's

voices can have different ADSR settings.

Attack refers to the speed with which a note sounds. An example of a

sharp, short attack is a banjo, or any other plucked instrument.

Decay comes after attack and is the falling action. In a piano, the orig

inal sound is loud, but gradually falls off to a "ringing" level.

The length of time that a note sounds is called its sustain value, and the

time it needs to become completely silent again is called release.

154 9—Color, Graphics, Sound, and Games

These are simple concepts that are often very difficult to understand,

and are covered in more detail in the chapter entitled "Exploring Sound."

For right now, you'll learn how to get SID to make a sound, and how the

computer can play musical notes and simple songs.

The shape that results from setting the ADSR is called an envelope. In

addition to different ADSR settings, SID can give each voice a different basic

sound, or waveform. Think of the waveform as the kind of cloth a shirt is cut

from, and the style of the shirt itself as the envelope. The sound can then be

further changed by the effects of various filters. If you're familiar with elec

tronic music synthesizers, you'll also be interested to know that there is a

ring modulator in the SID chip, and that you can actually mix "real" sound

from a tape recorder, microphone, or musical instrument with the SID sound.

(There's an input, pins numbered 5 and 2, on the Audio/Video plug at the

back of the computer. Don't try connecting anything to these unless you

know what you're doing.)

Finally, there are non-audio and non-video functions of SID and VIC.

Inside VIC are memory locations used with a light pen. In the SID are memory

locations used to read the position of game paddles.

As mentioned earlier, there are no words in BASIC that deal directly

with VIC and SID. We can communicate with these chips, though, using

POKE to put numbers into memory locations inside them. There are 24

memory locations in VIC, numbered 53248 to 53271. Inside SID are 25 lo

cations that refer to sound making, numbered 53272 to 53296.

RaNDom Notes

Before we go any further, let's take a look at a BASIC word you'll find

in two of the programs in this chapter. That word is RND, for RaNDom. It

produces random numbers in all the Commodore computers, from the VIC

to the members of the 64 family.

Random numbers are an essential part of game playing. Every time you

roll dice, spin a wheel, or shuffle cards, you get random numbers or a random

sequence of numbers. They are produced by the computer with a mathe

matical formula called a random number generator. These numbers are ac

tually not completely random, but the way the formula works is so clever

that you won't see any pattern.

RND is used with a "seed" number, which determines how the random

number is selected. You can use different seed numbers, and each is enclosed

in parentheses following RND. Turn your computer off, then on again, and
type this example:

ID FOR 1 = 1 TO 5

ED PRINT RND(l)

3D NEXT I

RaNDom Notes 155

You will see five numbers on the screen.

.185564016

.0468986348

.827743801

.554749226

.897233831

You may not see this particular sequence, but each time you turn the

machine on and RUN this program, you will see the same sequence of num

bers. You may ask why this sequence is the same if random numbers are

supposed to be generated? Good question.

Here's how the random number generator works. When the computer is

turned on, a "seed" number is automatically selected. This seed generates a

list of numbers. Each time the RND function is used with any positive number

in parentheses, the next number from the list is returned. Each time RND

is used with a different negative number, a new list of numbers is selected.

If RND is used with 0 (zero) a random number is generated, based on the TI

clock. Here's an example:

ID X=RND(-1)

5D FOR 1 = 1 TO ID

3D PRINT RND(l)

AD NEXT I

Each time you RUN this program, you will see the same sequence of

numbers generated by RND(l). If you change the first negative seed, however,

you will see a different list, but, again, the same one over and over. Try it.

Change RND(-1) to RND(- 2).

156 9—Color, Graphics, Sound, and Games

What is the best way to generate random numbers? One way is to first

select a negative seed number at random, using the TI clock.

1DN=TI

ED X=RND(-N)

3D FOR 1 = 1 TO ID

40 PRINT RND(l)

When RND is used this way, a different number (negative TI) is used as

a seed. Each time the program is RUN, it generates a different list.

Or, you can use RND(O) which also generates random numbers based

on a formula involving the TI clock. The advantage to either of these is that

TI can be any number between 0 and 51,839,999, and you can never predict

what it will be. Even if you could, it would be nearly impossible to wait for

a specific seed number, since TI changes every 1/60 of a second.

You've probably already noticed that the numbers RND spits out aren't

exactly the kind of numbers you'd want to use in a game. To get whole

numbers instead of decimal point fractions, we will use a math function,

INT, for INTeger. To set a range of numbers, we will multiply the RND

number. Even if you're not good at arithmetic, you'll want to follow along.

The example you'll see is the model for almost all uses of the random number

generator.

Let's say that we want random numbers between 0 (zero) and 10. It's

easy.

ID N = INT(1D*RND(D))

ED PRINT N

3D GOTO ID

When you RUN this example, you'll see a steady stream of numbers

between 0 and 10. The number that you multiply RND by always sets its

range. INT tells the computer to take the whole number and eliminate any

decimal fraction. In some cases, you may not want the number 0, only num

bers between 1 and the last number in the range. All you need to do is add

1, like this:

ID N=INT(10*RND(0)+l)

ED PRINT N

3D GOTO ID

Using RND, be sure that you have typed the correct number of paren

theses. If you have one too many or not enough, the computer will give you

a SYNTAX ERROR message. Just remember that there should be an even

number of parentheses and check for the directions they're facing.

Here's a quick example of how RND can work in a card game. We'll set

up an array of the names of 52 cards in a deck. The program will let you

"cut" the cards.

ID PRINT "[CLEAR]1'

ED DIM CA$(5E)

RaNDom Notes 157

3D FOR 1 = 1 TO 13:READ CA$(I) :CA$ (I) =CA$ (I) + " OF

HEARTS"

40 NEXT I

50 RESTORE

tD FOR 1 = 14 TO Et: READ CA$(I) : CA$ (I) =CA$ (I) + » OF

SPADES"

70 NEXT I

flD RESTORE

qO FOR I = E7 TO 3R:READ CA$(I) :CA$ (I) =CA$ (I) + " OF

CLUBS"

100 NEXT I

11D RESTORE

150 FOR 1 = 40 TO 5E:READ CA$(I) : CA$ (I) =CA$ (I) + " OF

DIAMONDS"

13D NEXT I

15D PRINT "PRESS ANY KEY TO CUT THE CARDS"

ibO CA=INT(55*RND(0)+l)

170 GET C$:IF C$ = ""THEN 170

1BD PRINT CA$(CA)

IRO GOTO 150

1D0D DATA ACE,KING,QUEEN,JACK,10,R,fl,7,b,5,4,3,5

This program doesn't shuffle the deck. In fact, the deck stays just as it

looks when you break open a new pack, with all the cards in order. The RND

statement picks a random number from 1 to 52, and displays the card for

which it stands. You can see how RESTORE works, too. Only one line of

DATA is all that is required; it is READ four different times. Each time, the

suit—hearts, spades, clubs and diamonds—is added to the value of the card.

Screen and Border Colors

Two memory locations in the VIC chip control the color of the video

screen and its border. These are set by POKEing any of 16 numbers between

0 and 15 into these locations. POKE 53280 sets the color of the border, and

POKE 53281 changes the color of the screen.

ID POKE 53560,11:POKE 53231,15

This line sets the screen to gray 3, the lightest gray (almost white), and

the border to gray 1, the darkest gray. Each color in the Commodore 64

spectrum has its own number.

158 9—Color, Graphics, Sound, and Games

POKE 53280 53281 COLOR

0 Black

1 White

2 Red

3 Cyan (powder blue)

4 Purple

• 5 Green

6 Blue

7 Yellow

8 Orange

9 Brown

10 Light Red (hot pink)

11 Gray 1 (dark gray)

12 Gray 2 (medium gray)

13 Light Green

14 Light Blue

15 Gray 3 (light gray)

One way around the job of remembering each of these colors and memory

locations is to define variables and use these instead of POKE numbers.

ID BORDER=53EflO: SCREEN = 532fll

ED REM COLORS FOLLOW

3D BL = D:WH = l:RE = 2:CY = 3:P0 = 4:GR = 5:BU = fc:YE = 7

5D POKE SCREEN,RE: REM POKE SCREEN RED

fcD POKE BORDER,GR: REM POKE BORDER GREEN

This is a good method of keeping track of memory locations inside VIC

and SID. You must be careful, though, that your abbreviations don't duplicate

one another (if you notice BL stands for black but BU means blue) and that

they are not BASIC words or reserved variables (OG stands for orange, not

OR).

Character Colors

You know that pressing the CTRL (control) key and a number key (0 to

9), will change the color of the characters you type on the screen. You get

another eight colors by pressing the COMMODORE key and a number key

together. The names of the first set of eight colors are printed on the front

of each number key, but the names of the second set are not.

Changing character colors is almost a necessity after you change the

screen color, since some are practically unreadable against certain screen

colors. But changing the color you are typing in does not change the color

that a program will PRINT in.

Like the editing keys—CRSR up, down, left, right, INST/DEL and CLR/

HOME—the color keys work with PRINT statements. Using PRINT and quo-

Character Colors 159

tation marks and pressing a color key will not change the color you are typing

in, but, instead, will leave a command mark that will change colors when

the program is RUNning. The command mark is a symbol reversed against

the background.

Try this: (Press the keys named inside the square brackets; don't type

the words themselves.)

D5 POKE 53Efll,ll:POKE 53530,15

ID PRINT "[CTRL and BLK] BLACK [CTRL and WHT] WHITE"

ED PRINT "[CTRL and RED] RED [CTRL and CYN] CYN"

3D PRINT "[CTRL and PUR] PURPLE [CTRL and GRN] GREEN"

4D PRINT "[CTRL and BLU] BLUE [CTRL and YEL] YEL"

5D PRINT "[COMM and BLK] ORANGE [COMM and WHT] BROWN"

fcD PRINT "[COMM and RED] LT RED [COMM and CYN] GRAY 1"

7D PRINT "[COMM and PUR] GRAY 5 [COMM and GRN] LT GREEN"

fiO PRINT "[COMM and BLU] LT BLUE [COMM and YEL] GRAY 3"

After you type the first quotation mark ("), any combination of CTRL or

COMMODORE and a color key will leave its command mark. If you make a

mistake and leave this "quote mode" (see "Some Essential Skills"), the color

that you are typing in will change instead. To leave a color command mark,

you must get back into the quote mode by correctly repositioning the cursor

and typing a single quote mark.

When you RUN the above example, you will see each color name PRINTed

in the correct color. One color, gray 3, will not be PRINTed because it is the

same color as the background. Try changing the numbers with POKE 53281

to see which character colors work well with screen colors.

You will always continue to PRINT in the color selected until you indicate

otherwise in your program. To highlight a particular word in text, you must

change colors twice—once from the original color you have chosen, then once

again to go back to that color. An example:

ID PRINT "[CTRLBLK]IN [CTRLRED] RED [CTRLBLK] AND BLACK"

PRINTing Graphics

The graphic symbols you see on the fronts of almost all the keys are your

clues to a simple system of PRINTing screen graphics. In combination, these

symbols can be used to create borders, boxes, visual highlighting, and em

phasis, and, with enough imagination, even pictures. The technique of mak

ing graphic displays with these symbols has various names, including "building-

block graphics,11 and "mosaic graphics." We'll continue to call them char

acter graphics.

Let's put a box on the video screen, using the graphic symbols. Remember

to press the keys indicated within the square brackets.

ID PRINT "[CLR][CRSR DN]" ;

ED PRINT "[SPACE][SHIFT O][COMM Y][COMM Y][SHIFT P]"

160 9—Color, Graphics, Sound, and Games

3D PRINT »[SPACE][COMMH][SPACE][SPACE][SHIFTN]»

4D PRINT "tSPACE][SHIFT L][COMM P][COMM P][SHIFT @]fl

When you RUN the example, a square box should appear in the upper

left-hand corner of the screen. If spaces were not PRINTed first in lines 20

to 40, or if the CRSR down (DN) in line 10 wasn't there, the edges of the box

would merge with the background color. Use CRSR down to reposition the

box on the screen. Change line 10 to:

ID PRINT »[CLR][5 CRSR DN]" ;

Instead of typing a single CRSR down, press the key five times. Now the

box will be PRINTed lower on the screen. Try inserting spaces into lines 20

to 40, after the first quote mark. If you've inserted exactly the same number

of spaces in each line, the box will move to the right.

As you can see, the box that will be PRINTed is clearly visible when you

LIST the program lines. Be careful, however. If the line number jumps from

99 to 100, or from 100 to 1000, the difference in spacing may mislead you.

Change line 40 to line 10000 and LIST again. Even though the box looks

wrong in the LISTing, it will continue to PRINT correctly.

You can store some small screen graphics as strings, too. Each string

can contain graphic symbols as well as CRSR moves that will put each

symbol in its correct place.

SHIFT and the U, I, J and K keys will PRINT the graphic symbols used

to make rounded corners. If we put all four of them together, we can make

a ball. (It will be a little square-looking, though.) One way to put the ball on

the screen is with two separate PRINT statements.

PRINTing Graphics

ID PRINT "[SHIFTU][SHIFTI]"

5D PRINT "[SHIFT J][SHIFT K]"

161

Since the cursor moves down and goes to the beginning of a new line

after PRINTing the top half of the ball in line 10, the bottom half is positioned

correctly by line 20. We can accomplish the same thing by PRINTing a string

that represents the ball, complete with the correct CRSR moves. (CRSR LT

is CRSR left.)

ID A$ = "[SHIFT U][SHIFT I][CRSR LT][CRSR LT][CRSR DN][SHIFT

J][SHIFTK]"

ED PRINT "[CLR]";A$

Erasing screen graphics is done by PRINTing spaces. If we wanted to

erase the ball in the above example, we could define another string as a block

of four spaces and CRSR moves. Add these lines to the example:

3D FOR 1 = 1 TO 1DDD:NEXT I

40 B$ = »[2 SPACES][2 CRSR LT][CRSR DN][2 SPACES]"

5D PRINT "[HOME]11; B$

When the program gets to line 30, it will pause so that you can see the

ball PRINTed. Line 40 defines B$ as a string that PRINTs a block of four

spaces, the same size as the ball. When the cursor is positioned exactly as it

was when the ball was PRINTed, B$ will erase it.

One advantage of defining a graphic as a string is that we can now PRINT

it anywhere on the screen without worrying about the correct spacing. Change

line 20 to this:

5D PRINT "[CLR][CRSR DN][CRSR RT]" ; A$

162 9—Color, Graphics, Sound, and Games

Experiment with the number of CRSR right and CRSR down keys pressed.

Make sure you don't have more than the screen can handle, 25 CRSR downs

or 40 CRSR rights.

The best rule to follow when creating graphics is to count the number

of spaces and non-PRINTing characters (like CLR, CRSR moves and color

command marks) to make sure you get what you want. Make a diagram on

paper, following the movement of the cursor, if you need help. Another good

idea is to always use HOME to put the cursor back at the upper left-hand

corner before making any complicated moves. This becomes your reference

point and never changes.

Be particularly careful about including semicolons where they belong.

If you aren't clear what semicolons do, read about how they work with PRINT

in Chapter 4. Semicolons are important in accurately positioning PRINTed

character graphics.

Even veteran programmers make mistakes, however, and PRINTing a

graphic display requires concentration. Programs with graphics in them sel

dom RUN correctly the first time. Write a graphic program in small chunks,

testing each section as you write it.

Digital Dice

We can use RND and character graphics in a program to simulate the

roll of a pair of dice. The LISTing of this simple program follows. Enter it

into the computer, pressing the keys indicated within the square brackets.

If the square brackets contain a number and a key—like [8 CRSR DN]—

then press that key the number of times you see, eight CRSR down keys in

the case of this example. When you press the graphic keys (a key plus the

SHIFT or COMMODORE key), you should see the graphic symbols that com

prise the pictures of each die.

Line 10 of the program POKEs numbers into memory locations 53280

and 53281 to change the color of the screen to gray 3 (light gray) with a gray

1 (dark gray) border. A FOR/NEXT loop begins at line 30.

3D FOR 1 = 1 TO E5

Here's what happens inside this loop: Two random numbers are gen

erated, numeric variables Dl and D2, for die 1 and die 2. Each number has

a range of from 1 to 6, since that is the number of possibilities for each die.

One picture of each possible die is stored as a subroutine, beginning at line
1100.

The cursor is positioned in line 60 by placing it in the HOME position

for reference, then moving it down 10 lines and over 15 spaces. ON is used

in line 70 to PRINT the appropriate die. If Dl is 1, then the picture of a die

with one spot is PRINTed. If Dl =2 then the picture of a die with two spots

is PRINTed, and so on. The cursor is repositioned in line 80, then the second
die is PRINTed according to its value.

Digital Dice 163

DICE

PRESS ftM¥ KEf

You might notice that each die is exactly alike, except for the pattern of
its spots. When dice are PRINTed rapidly, one after another, the effect of a

"roll" is simulated. This is the reason for the loop, FOR 1= 1 TO 25. The last
set of random numbers, the 25th, is the pair of numbers the dice "land" on.

In line 120, a GET statement waits for any key to be pressed, then "rolls"

the dice again.

Entering this program is much simpler than it looks. To save time and

effort, type the subroutine that PRINTs the picture of the die with the value

of 1, from lines 1100 to 1170. Use the SHIFT key and the letter Q for making

the spots. After you type the subroutine once, change the line numbers by

typing over them and pressing RETURN. Then move the cursor to change

the value of the die from 1 to 2, and press RETURN each time you make a

change. Do this, changing the line numbers— 1100, 1200, 1300, 1400, 1500

and 1600—until subroutines for all six dice are created.

Be careful that the characters inside each square (the die) are spaces,

not CRSR commands. The pictures will change correctly only if spaces erase

one die value and PRINT the next.

"DIGITAL DICE"

10 POKE53280,11:POKE53281,15

20 PRINT11 [CLR] [BLK] [8 CRSRS DN][15 CRSR RT] DIGITAL DICE11 ;

30 FORI=1TO25

40 D1=INT(6*RND(0)+1)

50 D2=INT(6*RND(0)+1)

60 PRINT" [%0&E] [10 CRSR DN][15 CRSR RT]";

70 ON Dl GOSUB 1100,1200,1300,1400,1500,1600

164 9—Color, Graphics, Sound, and Games

80 PRINT"[HOME][10 CRSR DN][21 CRSR RT] » ;

90 ON D2 GOSUB 1100,1200,1300,1400,1500,1600

100 NEXTI

110 PRINT"[HOME][16 CRSR DN][14 CRSR RT]PRESS ANY KEY"

120 GET C$:IFC$=""THEN120

130 GOTO30

1100 PRINT"[SHIFT 0][COMM Y][COMM Y][COMM Y][SHIFT P][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1110 PRINT"[COMM H][3 SPACES][COMM N][CRSR LEFT][CRSR LEFT][CRSR LEFT]

[CRSR LEFT] [CRS4*-4.EFT] pe^SR^DOWN] " ;

1120 PRINT" [COMM fc]7f[SHIFT & /[COMM N] [CRSR LEFT] [CRSR LEFT] [CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1150 PRINT"[COMM H][3 SPACES][COMM N][CRSR LEFT][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1160 PRINT"[SHIFT L][COMM P][COMM P][COMM P][COMM 0]"

1170 RETURN

1200 PRINT"[SHIFT 0][COMM Y][COMM Y][COMM Y][SHIFT P][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1210 PRINT"[COMM H][SHIFT Q][2 SPACES][COMM N][CRSR LEFT][CRSR LEFT][CRSR LEFT]

(CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1220 PRINT"[COMM H] [3 SPACES] [COMM N] [CRSR LEFT] [CRSR LEFT] [CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1250 PRINT"[COMM H][2 SPACES][SHIFT Q][COMM N][CRSR LEFT][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1260 PRINT"[SHIFT L][COMM P][COMM P][COMM P][COMM 0]"

1270 RETURN

1300 PRINT"[SHIFT 0][COMM Y][COMM Y][COMM Y][SHIFT P][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1310 PRINT"[COMM H][SHIFT Q][2 SPACES][COMM N][CRSR LEFT](CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1320 PRINT"[COMM H][SPACE][SHIFT Q][SPACE][COMM N][CRSR LEFT][CRSR LEFT]

[CRSR LEFT1[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1350 PRINT"[COMM H][2 SPACES][SHIFT Q][COMM N][CRSR LEFT][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1360 PRINT"[SHIFT L][COMM P][COMM P][COMM P][COMM 0]"

1370 RETURN

1400 PRINT"[SHIFT 0][COMM Y][COMM Y][COMM Y][SHIFT P][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

Digital Dice 165

1410 PRINT"[COMM H][SHIFT Q][SPACE][SHIFT Q][COMM N][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1420 PRINT"[COMM H][3 SPACES][COMM N](CRSR LEFT][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1450 PRINT11 [COMM H] [SHIFT Q] [SPACE] [SHIFT Q] [COMM N] [CRSR LEFT] [CRSR LEFT]

[CftSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1460 PRINT11 [SHIFT L] [COMM P] [COMM P] [COMM P] [COMM 0]"

1470 RETURN

1500 PRINT11 [SHIFT 0] [COMM Y] [COMM Y] [COMM Y] [SHIFT P] [CRSR LEFT] [CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1510 PRINT"[COMM H][SHIFT Q][SPACE][SHIFT Q][COMM N][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1520 PRINT"[COMM H][SPACE][SHIFT Q][SPACE][COMM N][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1550 PRINT"[COMM H][SHIFT Q][SPACE][SHIFT Q][COMM N][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1560 PRINT"[SHIFT L][COMM P][COMM P][COMM P][COMM 0]»

1570 RETURN -

1300 PRINT"[SHIFT 0][COMM Y][COMM Y][COMM Y][SHIFT P][CRSfc LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1610 PRINT"[COMM H][SHIFT Q][SHIFT Q][SHIFT Q][COMM N][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1620 PRINT"[COMM H][3 SPACES][COMM N][CRSR LEFT][CRSR LEFT][CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1650 PRINT"[COMM H] [SHIFT Q] [SHIFT Q][SHIFT Q] [COMM N] [CRSR LEFT] [CRSR LEFT]

[CRSR LEFT][CRSR LEFT][CRSR LEFT][CRSR DOWN]";

1660 PRINT"[SHIFT L][COMM P][COMM P][COMM P][COMM 0]"

1670 RETURN

166 9—Color, Graphics, Sound, and Games

Sprite Graphics

Sprite graphics are more difficult to program in BASIC than character

graphics. You do not use PRINT to put a sprite on the video screen. Instead,

all sprite programming is done with POKE (arid sometimes PEEK). You'll

learn much more about sprite graphics in "Appendix 2: Exploring Graphics/'
but here is a quick description of how they work, along with a sprite dem

onstration program.

Sprites are objects described by POKEing values into blocks in the com

puter's memory. Each sprite requires 63 bytes of memory and is 24 dots

across by 21 down. Each sprite block is numbered, from 0 to 255. The VIC

chip can interpret these blocks of memory, color them/put them on the video

screen, and move them around. The VIC can also expand the sprites hori

zontally, vertically, or in both directions, and make them appear to be in

front of or behind characters PRINTed on the screen.

Each sprite is numbered from 0 to 7, and all eight sprites can be on the

screen at once. Sprites pass over one another on the video screen, lending a

three-dimensional effect when in motion. The level each sprite is on is de

termined by its number. In other words, sprite 0 always passes in front of

sprite 1 on the screen. Sprite 5 can be seen behind sprite 4 if the two cross

paths. More advanced sprite functions include ways to determine whether

one sprite has collided with another, with a character, or the background

screen; Another sprite graphics mode, called the multicolor sprite mode, lets

you make sprites of up to four different colors, but cuts in half the number

of dots across.

There are four distinct disadvantages to sprite graphics as designed for

the Commodore 64 family.

First, the way that BASIC uses the computer's memory limits you to

only three different sprites at one time. To solve the problem, you must change

this BASIC memory use. (Not a problem, but tough for beginners to under

stand.) You can, however, use all eight sprites at once, as long as they are

all identical.

Second, it is only convenient to move a sprite across part of the screen,

the left two-thirds. Even though there are more than 300 screen positions on

which to put sprites, any position on the right third means POKEing more

than one memory location. This can be complicated in BASIC. As a result,

you can expect to see many programs that limit sprites to the left side.

Third, sprites are difficult to design. You'll need some complicated and

time-consuming math to determine the numbers that end up in the sprite

memory blocks. The best way around the problem is to use a program called

a sprite editor. You'll find a useful one near the end of this book.

Fourth, since there are no words at all in Commodore BASIC to handle

sprites, it is almost impossible to read a BASIC program with sprites in it.

This is remedied by using special programming tools. More about this later.

The Old Shell Game

The Old Shell Game

167

You can get some idea of how sprites look and are programmed by

entering and studying the following demonstration. It is a version of the old

shell game. A pea is hidden under one of three nutshells and the shells are

shuffled. You must guess which shell is hiding it. Sprites, here, represent the

nutshells and will always cover any characters PRINTed under them on the

screen. That's how the shell sprites cover the "pea," a character that is

actually a green SHIFTed Q.

EXftHPLE:

WHERE IS IT?

168 9—Color, Graphics, Sound, and Games

The program is worthy of the con men who made the old shell game (a

classic ruse) famous. The pea doesn't move at all. Instead, a random number

between 1 and 3 is generated and the pea is PRINTed under one of the three

shells just before it is "lifted." This isn't really a game in that it RUNs

continously, selecting random numbers and challenging you to pick the shell.

With a little work however—an INPUT or GET statement could be inserted—

you could change it to an interactive guessing game.

REMark statements are used quite heavily throughout the program to

explain what is happening. A few comments are in order, however.

Line 30 "enables" the sprites. It tells the VIC chip which sprites and how

many will be used. The program uses only three sprites, and each is identical.

Their descriptions are POKEd into one sprite block, number 13. The memory

locations 2040, 2041 and 2042 are not in the VIC chip. Instead, VIC looks at

these numbers for the information about where the sprite pictures are

described.

Lines 60, 70 and 80 position the sprites. Think of the screen as a window

to the area in which sprites move. There are approximately 344 horizontal

postions and 250 vertical positions where a sprite can be placed. (Variable

X is used for horizonal, Y for vertical.) In some positions, the sprite will be

invisible, hidden by the edges of the screen border. Position numbers are

POKEd into the correct pairs of memory locations beginning at 53248 (hor

izontal position, sprite 0) and 53249 (vertical position, sprite 0). Remember,

though, that numbers greater than 255 cannot be POKEd. (This is the problem

of moving a sprite entirely across the screen.)

Animating the sprites—lifting, dropping, and "shuffling" the shells—is

accomplished by POKEing one new value, horizontal or vertical, for each

sprite. You can see how these work in the "reveal" subroutines at 13000,

13100, and 13200, and in the "shuffle" subroutine beginning at line 14000.

SHELL

10 PRINT11 [CLR] "; : POKE53280,12: POKE53281,15:REM COLOR SCREEN LIGHT GREY

20 V=53248:REM BASE OF VIDEO CHIP

30 POKEV+21/7:REM ENABLE SPRITES 0,1,2

35 FORI=0TO62:READD:POKE832+I,D:NEXT:REM READ DATA FOR SPRITE INTO

BLOCK 13

40 POKE2040,13:POKE2041,13:POKE2042,13:REM ALL SPRITES DEFINED BY

BLOCK 13

50 POKEV+39,9:POKEV+40,9:POKEV+41,9:REM COLOR ALL SPRITES BROWN

55 POKEV+23,7:POKEV+29,7:REM EXPAND ALL SPRITES IN X AND Y DIRECTIONS

60 POKEV+0,85:POKEV+1,120:REM PUT SPRITE 0 AT 85,120

70 POKEV+2,160:POKEV+3r120:REM PUT SPRITE 1 AT 160,120

80 POKEV+4,235:POKEV+5,120:REM PUT SPRITE 2 AT 235,120

The Old Shell Game 169

90 PRINT"[BLU][HOME][15 CRSR DN] [5 SPACES]WELCOME TO THE OLD SHELL

GAME"

100 GOSUB30000:REM DELAY

110 GOSUB15000:REM CLEAR TEXT

120 PRINT"[BLU][HOME][15 CRSR DN][6 SPACES]THE OBJECT OF THE GAME

IS TO "

130 PRINT"[BLU][HOME][15 CRSR DN][14 SPACES]FIND THE PEA"

135 GOSUB30000:REM DELAY

140 PRINT"[BLU][HOME][19 CRSR DN][13 SPACES]PEA > [GRN][SHIFT Q]

[BLU] < PEA"

145 GOSUB30000

150 GOSUB15000:REM CLEAR SCREEN

165 GOSUB30000:REM DELAY

170 PRINT"[BLU][HOME][14 CRSR DN][16 SPACES]EXAMPLE:"

175 GOSUB30000:REM DELAY

190 GOSUB12000:REM PUT PEA UNDER CENTER

200 GOSUB13000:REM CENTER SHELL REVEAL

255 GOSUB30000:REM DELAY

270 GOSUB14000:REM SHUFFLE SHELLS

365 GOSUB30000:REM DELAY

370 PRINT"[BLU][HOME](15 CRSR DN][14 SPACES]WHERE IS IT?"

375 GOSUB30000:REM DELAY

380 A=INT(3*(RND(0))+1):

382 IFA=1THEN GOSUB 12000:GOSUB13200:GOSUB13100:GOSUB13000

384 IFA=2THEN GOSUB 12050:GOSUB13000:GOSUB13100:GOSUB13200

386 IFA=3THEN GOSUB 12100:GOSUB13200:GOSUB13000:GOSUB13100

410 GOSUB15000:REM CLEAR TEXT

420 GOSUB30000:GOSUB30000:GOSUB30000:REM TRIPLE DELAY

999 RUN

9999 REM SPRITE DATA FOLLOWS

10000 DATA 0,0,0,0,0,0,0,0,0

10010 DATA 0,0,0,0,0,0,0,0,0

170 9—Color, Graphics, Sound, and Games

10020 DATA 0,0,0,0,0,0,0,0,0

10030 DATA1,254,0,7,255,128,15,255,192

10040 DATA63,255,240,127,255,248,255,255,252

10050 DATA255,255,252,127,255,248,31,255,224

10060 DATA 0,0,0,0,0,0,0,0,0

12000 REM;PUT PEA UNDER CENTER SHELL

12010 PRINT" [HOME] [12 CRSR DN] [19 SPACES] [GRN] [SHIFT Q] [BLU] [11 SPACES]11

12020 RETURN

12050 REM: PUT PEA UNDER LEFT SHELL

12060 PRINT"[HOME][12 CRSR DN][10 CRSR RT][GRN][SHIFT Q][BLU][30 SPACES]"

12070 RETURN

12100 REM: PUT PEA UNDER RIGHT SHELL

12110 PRINT"[HOME][12 CRSR DN][29 SPACES][GRN][SHIFT Q][BLU]"

12120 RETURN

13000 REM: MIDDLE SHELL REVEAL

13010 FORI=120TO90STEP-1

13020 POKEV+2,160:POKEV+3,I

13030 NEXTI

13040 FORI=1TO500:NEXT I

13050 FORI=90TO120

13060 POKEV+2,160:POKEV+3,I

13070 NEXTI

13080 RETURN

13100 REM: RIGHT SHELL REVEAL

13110 FORI=120TO90STEP-1

13120 POKEV+0,235:POKEV+1,I

13130 NEXTI

13140 FORI=1TO500:NEXT I

13150 FORI=90TO120

13160 POKEV+0,235:POKEV+1,I

The Old shell Game 171

13170 NEXTI

13180 RETURN

13200 REM: LEFT SHELL REVEAL

13210 FORI=120TO90STEP-1

13220 POKEV+4,85:POKEV+5,I

13230 NEXTI

13240 FORI=1TO500:NEXT I

13250 FORI=90TO120

13260 POKEV+4,85:POKEV+5,I

13270 NEXTI

13280 RETURN

14000 REM: SHUFFLE THE SHELLS

14010 FORI=160TO85

14020 POKEV+2,I:POKEV+3,120

14030 NEXTI

14040 FORI=85TO235

14050 POKEV+0fI:POKEV+1,120

14060 NEXTI

14070 FORI=235TO85STEP-1

14080 POKEV+4,I:POKEV+5,120

14090 NEXTI

14100 RETURN

15000 REM: CLEAR TEXT FROM SCREEN

15010 PRINT"[BLU][HOME][14 CRSR DN][39 SPACES]"

15020 PRINT"[BLU][HOME][15 CRSR DN][39 SPACES]"

15030 PRINT"[BLU] [HOME] [16 CRSR DN] [39 SPACES]"

15040 PRINT"[BLU][HOME][17 CRSR DN][39 SPACES]"

15050 PRINT"[BLU][HOME][18 CRSR DN][39 SPACES]"

15060 PRINT"[BLU][HOME][19 CRSR DN][39 SPACES]"

15070 RETURN

30000 REM:DELAY LOOP

30010 FORI=1TO1000:NEXT I

30020 RETURN

172 9—Color, Graphics, Sound, and Games

SID Sound

Sound, like graphics, is a real challenge for any programmer. Like the

VIC chip, there is no way to communicate with the SID chip other than

POKEing numbers into its important memory locations. Even worse, you

cannot use PEEK to see the numbers stored in these SID locations—PEEK

will always return the number 0.

Here are a few facts about how SID makes its sounds. Don't worry about

absorbing all of this now. It's offered only to give you a general understanding.

To produce any sound at all, the master volume control in the SID chip

must be set. There are sixteen different volume levels, numbered from 0 (zero)

to 15, with 0 as "off" and 15 as the loudest. This is set by POKEing a number

into 54296.

Four values determine the kind of sound produced: Attack/decay, sustain/

release, frequency and waveform.

Attack and decay are set by adding two numbers together and POKEing

their sum into the correct memory location. The attack number you select

should be either 128, 64, 32 or 16, or the sum of any of those numbers. Add

the attack number to any decay number of 8, 4, 2 or 1, or the sum of any of

those numbers. The larger the attack number is, the longer a note will take

to "fade up." If the attack number is 0, the note will sound immediately. The

larger the decay number is, the longer the decay will be. If the decay number

is 16, the note will fade at a slower speed. Using zero, there will be no decay

time.

To set the attack and decay for voice 1, POKE the sum of these numbers

into memory location 54277. Voices 2 and 3 are set by POKEing a similar

number into 54284 and 54291.

Sustain and release are set the same way as attack and decay. For voice

1, the sum of sustain and release numbers is POKEd into memory location

54278. The location for voice 2 is 54285, and for voice 3 is 54292.

The pitch, or frequency, of the sound produced is POKEd into two lo

cations, a "high" location and a "low" location. Get the values for musical

notes from the note/frequency table you will find at the end of this chapter.

For voice 1, POKE 54272 with the "low" number, and 54273 with the "high"

number. (Low and high don't refer to a number greater or less than the other.

Low and high are two specific numbers you'll see on the note table.) For

voice 2, this pair of locations is 54279 and 54280. For voice 3, the locations

are 54286 and 54287.

You must select a waveform, or basic sound. Any of four different wave

forms, each with a different tone, can be selected—triangle, sawtooth, pulse,

and noise. The first three produce tones; noise is most often used for "per

cussive" sound effects, like a drum, a rifle shot, "hissing" sounds, or the roar

of the surf.

The waveform memory location for voice 1 is 54276.

POKE 54276,33 for sawtooth waveform.

POKE 54276,17 for triangle waveform.

SID Sound 173

POKE 54276,65 for pulse waveform.

POKE 54276,129 for noise.

Voices 2 and 3 are set by POKEing the same numbers into memory

locations 54283 (for voice 2) and 54290 (for voice 3).

When all this is done in a program, a note sounds continuously. To stop

the sound, POKE all the locations for each voice with 0 (zero). When the

proper information is POKEd into the necessary locations again, another

note will sound.

Here's a little program that will make just one sound. Be sure that you

have the sound on your television turned up, or, if you are using a video

monitor, that the sound is connected.

ID VL=54Eqb: REM VOLUME

ED LO=54E7E:HI=54E73: REM PITCH LOW AND HI

3D WF=54E7b: REM WAVEFORM

AD AD=S4E77: REM ATTACK/DECAY

5D SR=54E7fl: REM SUSTAIN/RELEASE

bD POKE VL/15

7D POKE AD/l^DrPOKE SR,D

flD POKE WF,33

RD POKE LO,Efl:POKE HI/214

1DD FOR 1 = 1.TO 5DD:NEXT I: REM DURATION

110 POKE AD, D:POKE SSR,D:POKE WF,D:POKE VL,D

As you can see, making a single sound takes quite a bit of work. Exper

iment by changing the attack/decay, sustain/release and waveform numbers.

Playing even a simple song this way would require lots of programming.

With a little ingenuity, we can write a program that plays one note after

another. The LISTing for such a program can be found following a few words

about how it works. It creates arrays of pitch numbers, notes in a song, and

the duration each note should play. This musical information is stored as

DATA statements.

The DATA statements that begin with line number 10000 contain infor

mation in groups of three. The first, C4, is the musical note—"C";—and the

octave, the fourth of eight possible ones. The next two numbers are the high

and low pitch numbers. Wherever you see "#" the note is a half-step, or

sharp. Only two octaves are entered as DATA at present, but you can add

the remaining notes by making new DATA statements following the given

form and using numbers from the note/frequency table.

At the end of the DATA statement in line 10040 you'll see some unusual

letters and numbers. "R,0,0" stands for a musical ''rest" where no sound is

produced. The READ statements in the program need the X as the last char

acter in note DATA group to know that it is at the end of this information.

The DATA statements beginning on line 20000 are the song information

in groups of two. The first contains the note, the second the duration. A

duration of 16 represents a "whole note," 8 a "half note," 4 a "quarter note/1

and so on.

174 9—Color, Graphics, Sound, and Games

In the LISTing, the song table is really just two octaves of the eight-note

musical scale. ("Do-re-mi," etc.) By changing the notes and their durations,

you can enter simple, one-voice songs. Tempo is controlled by the value of

"T" in line 300.

SONG

10 SID=54272:REM ADDRESS OF SID CHIP

20 DIM N$(94),NL(94),NH(94),S$(200),D(200),SH(200),SL(200)

30 X=1:REM X-l WILL BECOME NUMBER OF NOTES IN MEMORY

40 READ N$(X):IF N$(X)=WX"THEN 60:REM CHECK FOR END OF NOTE DATA

50 READ NH(X):READ NL(X):X=X+1:GOTO 40

60 N=1:REM N-l WILL BECOME NUMBER OF NOTES IN SONG

70 READS$(N):IFS$(N)="X"THEN GOTO 90

80 READD(N):N=N+1:GOTO 70

90 FORI=1TON-1

100 FORK=1TOX-1:IFS$(I)=N$(K) THEN SL(I)=NL(K):SH(I)=NH(K):GOTO120

110 NEXTK

120 NEXTI

300 VL=54272:VH=54273:AD=54277:SR=54278:CR=54276:VO=54296:T=10:PRINT"[CLR] '

310 POKE VO,15:REM FULL VOLUME

320 FORI=1TON-1:REM BEGINNING OF PLAY LOOP

330 POKE VL,SL(I):POKE VH,SH(I)

340 PRINTnPOKE SH,";SH(I);"POKE SL,";SL(I);"DURATION";D(I)

350 POKE AD,90:POKE SR,128:POKE CR,17

360 FORK=1TOT*D(I):REM DURATION LOOP

370 NEXT K

380 POKE AD,0:POKE SRf0:POKE CR,0:REM TURN OFF

390 NEXT I

400 POKEVO,0:REM VOLUME DOWN

9999 REM NOTE DATA C4 TO C6

10000 DATA C4,16,195,C#4,17,195,D4,18,209,D#4,19,239

10010 DATA E4,21,31,F4,22,96,F#4,23,181

10020 DATA G4,25,30,G#4,26,156,A4,28,49,A#4,29,233,B4,31,165,C5,33,135

SID Sound 175

10030 DATA C#5,35,134,D5,37,162,D#5,39,233,E5,42,6 2,F5,45,198,F#5,

47,107

10040 DATA G5,50,60,G#5,51,197,A5,56,99,A#5,59,190,B5,64f188,C6,68,

149,R,0,0/X

19999 REM SONG DATA, TWO OCTAVES

20000 DATA C4,16,D4,16,E4,16,F4,16,G4,16,A4,16,B4,16,R,16,R,16

20010 DATA C5,16,D5,16,E5,16,F5,16,G5,16,A5,16,B5,16,C6,16,X

Musical Notes and Frequencies

MUSICAL NOTE

OCTAVE

C - 0

C# - 0

D - 0

D# - 0

E - 0

F - 0

F# - 0

G - 0

G# - 0

A - 0

A# - 0

B - 0

C - 1

C# - 1

D - 1

D# - 1

E - 1

F - 1

F# - 1

G - 1

G# - 1

A - 1

A# - 1

B - 1

C - 2

C# - 2

D - 2

D# - 2

E - 2

F - 2

F# - 2

G - 2

G# - 2

A - 2

A# - 2

OSCILLATOR FREQUENCY

DECIMAL

268

284

301

318

337

358

379

401

425

451

477

506

536

568

602

637

675

716

758

803

851

902

955

1012

1072

1136

1204

1275

1351

1432

1517

1607

1703

1804

1911

HI

1

2

2

2

2

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

6

6

7

'1

LOW

12

28

45

62

81

102

123

145

169

195

221

250

24

56

90

125

163

204

246

35

83

134

187

244

48

112

180

251

71

152

237

71

167

12

119

176 9—Color, Graphics, Sound, and Games

OCTAVE

B - 2

C - 3

C# - 3

D - 3

D# - 3

E - 3

F - 3

F# - 3

G - 3

G# - 3

A - 3

A# - 3

B - 3

C - 4

C# - 4

D - 4

D# - 4

E - 4

F - 4

F# - 4

G - 4

G# - 4

A - 4

A# - 4

B - 4

C - 5

C# - 5

D - 5

D# - 5

E - 5

F - 5

F# - 5

G - 5

G# - 5

A - 5

A# - 5

B - 5

C - 6

C# - 6

D - 6

D# - 6

E - 6

F - 6

F# - 6

G - 6

G# - 6

A - 6

A# - 6

B - 6

C - 7

C# - 7

D - 7

D# - 7

E - 7

F - 7

F# - 7

DECIMAL

2025

2145

2273

2408

2551

2703

2864

3034

3215

3406

3608

3823

4050

4291

4547

4817

5103

5407

5728

6069

6430

6812

7217

7647

8101

8583

9094

9634

10207

10814

11457

12139

12860

13625

14435

15294

16203

17167

18188

19269

20415

21629

22915

24278

25721

27251

28871

30588

32407

34334

36376

38539

40830

43258

45830

48556

HI

7.

8

8

9

9

10

11

11

12

13

14

14

15

16

17

18

19 -

21

22

23

25

26

28

29

31

33

35

37

39

42

44

47

50

53

56

59

63

67

71

75

79

84

89

94

100

106

112

119

126

134

142

150

159

168

179

189

LOW

233

97

225

104

247

143

48

218

143

78

24

239

210

195

195

209

239

31

96

181

30

156

49

223

165

135

134

162

223

62

193

107

60

57

99

190

75

15

12

69

191

125

131

214

121

115

199

124

151

30

24

139

126

250

6

172

The Joy of Joysticks 177

MUSICAL NOTE

OCTAVE

G - 7

G# - 7

A - 7

A# - 7

B - 7

DECIMAL

51443

54502

57743

61176

64814

OSCILLATOR FREQUENCY

HI

200

212

225

238

253

LOW

243

230

143

248

46

The Joy of Joysticks

After you become comfortable with video graphics and sound, you will

probably want to write your own games. The most popular game controller

is the joystick. Using one with the Commodore 64 computers is very simple.

Joysticks are nothing new. As a controller, they originated in the days

of the first aircraft and were adopted by Atari when the company introduced

their video games in the mid-1970s. The Atari joystick quickly became a

standard for video play and almost all of today's joysticks work just like

Atari's.

The Atari-style joystick is a switch-type controller. (Another type is called

an "analog" joystick, and is incompatible with switch-type sticks.) Inside are

five switches, four for directions—north (up), south (down), east (right) and

west (left)—and one for a "fire" button. Four other directions—northwest,

northeast, southwest and southeast—come from two switches being closed

at once.

If you have an Atari joystick (or one that works just like it), plug it into

control port 2 on the right side of the computer. Why port 2? Control port 1

178 9—Color, Graphics, Sound, and Games

can be used, but programming it is slightly more complicated. So, for this

lesson, we'll stay with port 2.

By PEEKing at a specific memory location, we can tell whether the

joystick is being pushed in any direction.

ID PRINT PEEK(5b3£D) :GOTO ID

When you RUN this line, a steady stream of numbers should appear on

the screen. The number should be 127. Now push the joystick up. What

happens? Since you are closing a switch inside, the number changes. (A

number from 0 to 255 is made up of eight bits. Five of these bits are repre

sented by the switches inside the joystick.) We can use the numbers to in

terpret changes in direction.

ID A=PEEK(5b3ED)

ED IF A = 1E7 THEN PRINT "CENTER" ;

3D IF A = lEb THEN PRINT "NORTH" ;

AD IF A = 1E5 THEN PRINT "SOUTH" ;

5D IF A = 1E3 THEN PRINT "WEST" ;

tD IF A = liq THEN PRINT "EAST" ;

7D IF A = 122 THEN PRINT "NORTHWEST";

flD IF A = llfl THEN PRINT "NORTHEAST" ;

HU IF A = 117 THEN PRINT "SOUTHEAST"; \

1DD IF A = 121 THEN PRINT "SOUTHWEST"; \\l
11D B=PEEK(5b3ED) AND It y \T

1ED IF B = D THEN PRINT "—FIRE":GOTO ID Q*
13D PRINT "":GOTO ID 4)

The results you get from the control port can be used in a program to

make decisions and control what is PRINTed on the screen. Think of the

joystick as a kind of mini-keyboard with only five keys. For example, instead

of using GET and asking someone to PRESS ANY KEY, you could PEEK(56320)

and look for the fire button to be pressed.

What about those cousins of the joysticks, the game paddles you have if

you own a video game? Paddles do not have switches (they do have one, a

fire button). Instead, they use potentiometers, like the volume control on your

television or stereo. The computer can interpret these too, although it isn't

as simple as using the joysticks. Paddles return numbers from 0 to 255.

Turning a paddle all the way to the right makes the number 0; turning it

completely to the left returns 255.

If you have game paddles, plug them into the other socket, control port

1. Now PEEK at memory location 54297.

ID PRINT PEEK(54Eqfl) :GOTO ID

RUN this line and look at the screen. Turn one of the paddles. Try the

other paddle if the numbers don't change from 0 to 255. (The paddle fire

buttons are read by PEEKing another location, 56321.)

Now turn the paddle to the center and put it down. Chances are good

that the number will still change slightly (up or down a number or two).

The Joy of Joysticks 179

Because of this inaccuracy, you must do some arithmetic to get an average

number. This is why paddles are more complicated to use than the joysticks.

Commodore, in fact, suggests that the game paddles be read using a machine

code, not a BASIC, subroutine.

What's Left?

All that PEEKing and POKEing gets tedious, doesn't it? Much of this

chapter may have left you asking what you've gotten yourself into. Fear not.

Help is on the way.

The way around these preposterous PEEKs and POKEs is to use a pro

gramming tool designed for graphics and sound. Several program packages

are scheduled for the Commodore 64 computers, and these are meant to solve

some of the deficiencies in BASIC.

Commodore, itself, has developed a program called Easy Graphics (for

merly VSP, the Video Support Package). It is a cartridge program that plugs

into the 64 machines and adds new words to BASIC. Among these are com

mands that change graphic modes, from character mode to hi-res screens,

to multicolor mode, even a split screen that gives you both characters and

high-resolution pictures together on the same screen.

With the built-in sprite editor in Easy Graphics you can design and save

sprites and multicolor sprites. Other sprite commands move them across the

screen (without the limitations of using the right side) and detect when a

sprite collides with another sprite or a character. Joysticks and game paddles

are easy to use and have their own commands.

Most important, perhaps, is a set of hi-res commands that draw circles,

boxes and other shapes, each of which c^n be filled with colors using the

PAINT command. For music fans, Easy Graphics includes a predefined set

of nine musical voices, as well as designing your own "instruments," and

commands for entering and playing multiple-voice music.

Commodore also has graphic and sound enhancements to BASIC in an

other cartridge program called Simons' BASIC. Developed in the United

Kingdom by a young programmer, Simons 'BASIC adds other useful features

that bring the total of new BASIC commands to 114.

A music composer cartridge is marketed by Commodore in its line of

video games. Though somewhat simple—it uses a character graphic display

and stores songs on cassette tape—this cartridge might help you familiarize

yourself with simple musical ideas.

You needn't wait for these tools, though. In "Appendix 2: Exploring

Graphics," Paul F. Schatz' contribution to this book, you'll find graphics

programs you can enter into your computer and use right now. In addition

to some fascinating visual demonstrations, there's an easy-to-use sprite ed

itor, and some routines that let you draw on high-resolution screens. If that's

not enough, Dr. Frank Covitz offers his own very thorough explanation of

music, sound, and the SID chip in "Appendix 3: Exploring Sound." In it,

you'll find a program that plays three-voice music.

Beyond BASIC

Your computer is part of a larger system. As time goes by, you may want to

build on it, just as you would a stereo or video system. Each expansion will

add new possibilities and new power. This computer isn't just a toy, and you

might be amazed to see how much more capable it becomes as it grows.

Your interest in the machine and, of course, your budget will dictate how

and when you expand.

In which direction should you go? What new opportunities are there to

seize? How much should you buy? Those are questions only you can answer.

This last chapter is devoted to a glimpse of your system's future, from the

practical to the exotic.

Hardware and Enhancements

If you don't already have one, the first thing on your "wish list" should

be Commodore's 1541 disk drive. Not only do programs LOAD and SAVE to

and from disk much faster than from cassette, but the disk drive is practically

a necessity for sophisticated programs like data base managers, spreadsheets,
and word processors.

In going from the original PET and CBM to the Commodore 64, you may

already have a model 2031, 4040, or 8050 dual disk drive. Since these are

built around a different data standard, they cannot be directly connected to
the 64. The solution is to use a disk interface. Several are available. One,

181

182 10—Beyond BASIC

called the "CIE" from Southwest Micro-Systems (2554 Southwell, Dallas,

TX 75229), works well with the Commodore 64. It plugs into the cartridge

port and connects to any of Commodore's PET and CBM disk drive systems.

Using the CIE allows you to take advantage of the earlier disk drives' speed

(they are much faster than the 1541) and reliability.

In addition to other manufacturers, Commodore has designed its own

disk interface. When using any such interface, you do take a risk, however,

that some software will not operate correctly. Commodore claims their "of

ficial" disk interface is the only one that is compatible . . . with their software.

Still, if you have one of the earlier disk drives and a Commodore 64, there

is no reason not to use the two together.

At the other end of the scale are cassette recorders. Some users buy a

computer and disk drive, but never invest in a recorder. Having one, though,

could open the door to more programs, and lets you trade programs with

other users who might not have a disk drive. If you don't want to spend much

money, you may be able to adapt a recorder you already own. That's what

the "Cardette" claims to do. This little box from a company called Cardco

(313 Matthewson, Wichita, KS, 67214) contains the circuitry necessary for

using a portable cassette recorder with your computer.

Another kind of interface was already discussed in the chapter about

word processing. A parallel printer interface will let you choose from the

wide variety of printers on the market. Cardco's "Cardprint" box is quite

good and offers amazing versatility because of its "smart" design. Just as

with disk interfaces, you may find that some programs are especially designed

to work only with Commodore's printers. This is a fairly rare occurrence and

being able to choose from printers with many features justifies the purchase

of an interface.

Another excellent addition to your system is a modem, an electronic

device that lets your computer talk to other computers over the telephone.

Commodore's modem is economical and does the job. (It attaches directly

to the "user port.") With it, you can connect to information services such as

Dow-Jones Information Retrieval Service, CompuServe, and The Source, which

offer practical information, news, and recreational activities. If you are a

businessman, you may be able to dial your company's computer directly

with the modem. (Check with your data processing department about this.)

Modems require software that turns the computer into a "terminal" to these

other machines. Among Commodore's programs for this is a cartridge called

"Easy Comm."
Modems from other manufacturers can also be used with the 64 family,

but most require a special interface. Some, however, are worth the effort and

expense, with advanced features for automatic telephone dialing and other

"smart" functions.

Ifyou use your computer in a school, laboratory, or office, there is another

type of communications scheme you may be interested in. It is known as a

Local Area Network (LAN) and links small computers together so that they
may pass information and programs among each other and share common

disk drives and printers.

Hardware and Enhancements 183

One such LAN is specifically designed for linking as many as 32 Com

modore 64 computers, disk drives, and printers. Called 64NET, it does not

use wire, but rather hair-thin fiber optic strands. The information is con

verted to light and transmitted along the fiber optic, which can be as long

as 1000 feet from the network's central hub, or "node," as it is called. (Prices

vary with the size of the installation. Information available from American

Photonics, Inc., Milltown Office Park, Route 22, Brewster, NY, 10509.)

You can add to your machine inside as well as out. Several enhancements

to the Commodore 64 family are packaged as cartridge programs and add

to the computer's versatility. Some add new commands to BASIC and others

make programming simpler and more understandable.

Skyles Electric Works (231G South Whisman Road, Mountainview, CA,

94041) has been in the business of bettering Commodore computers for sev

eral years. One of their products is the "VicTree" (named so because it was

originally designed for the VIC-20 and adapted to the Commodore 64.) This

package boasts 42 additional BASIC commands, including words from Com

modore's 4.0 BASIC (found on the CBM series) which make dealing with the

disk drive easier. "VicTree" also offers programming aid words that auto

matically number and renumber program lines, delete lines, and search BASIC

programs for words, numbers, and statements. Another Skyles product is

aimed at cassette users. "Arrow" will cut LOAD and SAVE times to and from

cassette to about a sixth of the ordinary time, and has its own set of pro

gramming aids, as well.

Entertainment Programs

Because of the Commodore 64's advanced graphics capabilities, you're

sure to see hundreds of very high-quality video games written for it. As a

game machine, the '64 has few equals.

But mention should be made of a unique and challenging series of games.

Actually, to call them games almost diminishes their creativity. These are

the "Interlogic" prose adventures from Infocom (55 Wheeler Street, Cam

bridge, MA, 02138.) They are actually interactive stories in which you par

ticipate and affect the plot. Although the games use only text (read from the

video screen), the creators of the series often refer to the use of "the world's

most powerful graphics technology—your imagination."

Three of the games form the "Zork" trilogy, an underground adventure

of mythological theme and proportion. Another, "Starcross," is a science-

fiction adventure in the world of a mammoth alien spacecraft. In "Sus

pended," another SF opus, you are in cryogenic suspension in the master

control complex of a planet whose mass transit, food production, and weather

are your responsibility. You must learn how to control six robots, each with

their own specialized senses, and solve the riddle of how the computerized
complex actually operates.

''Deadline" is Infocom's homage to the detective thrillers of the 1930s
and '40s. In it, you are the shamus, investigating the murder of a wealthy

184 10—Beyond BASIC

industrialist, questioning suspects, sending clues to the crime lab for analysis,

and finally fingering the killer. But wait, the grand jury will indict only if

there is enough evidence. Then there's a jury trial where the accused may
still beat the rap.

Each of the Infocom games takes a long time to play. The company

estimates 12 to 40 hours, depending on the game and level of your skill. You

communicate with other characters in these stories in normal English sen

tences, and each game has a "vocabulary" of over 600 words. (Still, there

are times when the computer won't understand you or will ask you to re

phrase a question or command.)

The Infocom games are among the most sophisticated computer adven

tures yet created and are available for most other personal computers, as

well as the Commodore 64. A cult has formed quickly around these, and there

is even a "user group" that offers visual materials (maps, etc.) and hints.

Spreadsheets and Advanced Software

All programs are not created equal, and a well-written program is a joy

to behold and spectacular in operation.

There is a flood of software following the introduction of any popular

computer, and the Commodore 64 family should prove no exception. Some

programs, however, do not live up to their claims. Good programs, too, are

likely to be expensive, reflecting the amount of time and effort necessary to

write them. A good game is easy to spot—you either like it or you don't. But

practical programs are more difficult to evaluate.

You've already read some tips about the features to look for in selecting

a data base. Reviews of four word processing programs are in another chap

ter. So far, though, there has been only a passing mention of a very important

type of program, the spreadsheet.

Spreadsheet programs, like word processors, can be given credit for

helping to popularize personal computers. These are programs that help you

do financial calculation and scheduling, budgeting, accounting, and any job

where numbers are the main kind of information. In short, they allow you

to enter tables of numbers which depend on one another and ask the question

"what if?" When one number on the table is changed, other numbers that

depend on it do, too. Tables are recalculated with stunning speed. In a good

spreadsheet program, the table you build can be much, much larger than

the video screen, which you use as a "window" moving around to see smaller

sections at one time.

The first of these popular programs was "VisiCalc" which started the

trend. Other "calcs" have followed—-some better, some worse. (Among the

least practical of these are the so-called "mini" spreadsheets which limit the

size of the tables. Almost all of these are written in BASIC—far too slow for

a good spreadsheet.)

One excellent spreadsheet for the Commodore 64 family is called "Calc

Result." Written in Sweden, it takes full advantage of the computer's ex-

Spreadsheets and Advanced Software 185

panded memory and color capabilities. As many as 63 columns of 225 number

"cells" comprise one "page" (or table), and up to 32 different pages can be

used at once. Because of these multiple pages, "Calc Result" is called a "three-

dimensional" spreadsheet. Numbers can actually be passed from page to

page for calculation.

Number cells and the words that describe them can be colored. This,

too, is probably the only multi-lingual spreadsheet. Its many "help" screens—

instructions and reminders you can consult along the way—can be read in

English, Spanish, German, French, Italian, Swedish (naturally), Dutch, and

Finnish!

All of this means that "Calc Result" has several distinct advantages over

the original "VisiCalc." But perhaps the best improvement is its ability to

produce bar graphs in color on the video screen. (These same graphs can

also be printed on Commodore's 1525E printer or in color on a new color

plotter.) The book that comes with "Calc Result" and teaches you to use the

program is quite good, though you should know what you're getting yourself

into when you decide to buy any spreadsheet. "Calcs" are highly sophisticated

programs with many features, and learning to use one to the fullest extent

of its power can be as challenging as learning a programming language.

"Calc Result" is available from Computer Marketing Services (300 W.

Marlton Pike, Cherry Hill, NJ, 08002). It comes packaged as a set of one disk

and a cartridge program. (The disk can be duplicated to make back-up copies.)

Though a disk drive is necessary for this "advanced" version of the program,

another abridged version is available for use with cassette.

If your program needs run to numbers, but you don't need the flexibility

of a spreadsheet, shop for software that accomplishes specific tasks. Business

software varies greatly in quality however, and you should always ask for

demonstrations when in the market for these. This is especially true of in

ventory, general ledger, and payroll programs. Some business programs are

limited in their scope, but highly practical for certain applications. One good

example is Commodore's "Easy Finance" package, which offers several dif

ferent kinds of financial calculations, including buy/lease, loan, annuity, profit,

and payback analysis.

Other Languages

Human languages possess their own attributes. French, for example, is

claimed to be very expressive. The classical languages—Greek and Latin—

are regarded for their precision and strictness of form. Japanese and Chinese,
we are told, are elegantly descriptive.

If a parallel can be drawn, then BASIC is to computers what English has

become to the world. It is serviceable but complex, with almost as many
exceptions as rules. And it has become a de facto standard, at least for personal
computers.

Computer languages are large programs that interpret different styles

of commands. Since the 64 family has the extra memory necessary to st(re

186 10—Beyond BASIC

:HISTORY QUIZ
MIO HAS NOT A PRESIDENT?

'FORD GRANT EDISON

I: EDISON

tss TY:THAT IS CORRECT!
198 Til: NO, EDISON MAS AN IMUEHTOR.

AMPLE OF A PR06RAH IN PILOT

new languages, they are ideally suited to "learning" new languages. (The
question is, are you?)

Pilot One of these new languages is Pilot, which might best be de
scribed as tiny but powerful, limited in its application but, some say, perfectly

suited for what it was designed for, education. It is becoming increasingly

popular in classrooms, particularly elementary schools, and, with books and

magazine columns devoted to it, a small but vocal cult of devotees has formed

around it.

Pilot's disciples most often cite its deceptively simple commands (most

of which are single letters instead of words) and its ability to understand the

sometimes balky responses of very young children. Many educators tout the

language's appeal to young programmers, some of whom can't yet read or

write.

Pilot, like BASIC, has taken many different paths in its life. The most

popular versions of microcomputer BASIC, for example, have been greatly

enhanced since its original development at Dartmouth College. One enhance

ment to Pilot has been the addition of a graphic "turtle," a graphic device

for drawing on the screen. Unfortunately, Commodore 64 Pilot has no such

turtle (many will see this as a drawback), but it does take advantage of the

64's unique color graphic and sound capabilities.

Other Languages 187

Entering Commodore Pilot, you soon know that you are in a new kind

of computer communication environment. It is LOADed from a floppy disk,

and, because of the 64's unique architecture, takes the place of BASIC. In

addition to an entirely new character set (with only passing resemblance to

the 64's resident alphabet and numbers), you notice the first major difference.

Pilot has four distinct modes, or ways of operation.

Pilot always begins in the Command mode. This is like a crossroads,

where you decide where you'll go next. One choice you can take is to go to

the Immediate mode, where you can test Pilot's single-letter commands, called

"Op-codes" in "computerese." Once familiar with the commands, you can

enter the Edit mode, where programs are composed. Finally, entering the

Run mode puts your Pilot program into action.

Without delving into the details, the most obvious attraction of Pilot to

educators is its suitability to creating classroom quizzes for computer-aided

instruction. Its advantage seems to be the ability to decipher the correct

answer by separating it from a long or jumbled response.

This is part of a Pilot program:

TSrWhat are the colors in the Canadian flag?

A:

M:red & white

The first line for instance, tells the screen to Type (like PRINT in BASIC)

the question "What are the colors in the Canadian flag?" (For the curious,

the "S" in "TS:" means to clear the Screen.) The single letter "A," for Accept,

waits for the answer.

"M" means Match any answer with "red" and "white" in it. By modifying

the Match command it will understand the answer of "white and red" (re

verse order) or even misspelled words like "read" and "wite."

Equally interesting is Pilot's graphic capabilities. Although it will allow

you to use the 64's high-resolution graphics, its use of "sprites"—those mov

able graphic objects on the video screen—is more straightforward.

Instead of using a "sprite generator" program, Pilot lets you simply draw

a picture using several lines of a program. Each of the 21 lines of 24 dots in

a program represents the appropriate data for the 64's video chip to interpret

as a picture. Likewise, Pilot allows the memory locations for the 64's SID

sound synthesizer chip to be filled by a single program line.

Pilot also includes op codes for logic and integer arithmetic, uses vari

ables and has a few more graphic features. There are some drawbacks besides

the missing turtle. The most obvious one is that you cannot see a disk

directory while in the language.

LOGO Some will find another new language, LOGO, more exciting.

Developed at the Massachusetts Institute of Technolgy, LOGO is often called

a "dialect" (or form of) LISP, a language used heavily by experimenters in

artificial intelligence. The idea behind LOGO is unique. Its command words

are called "procedures," and LOGO comes with a relatively small number

of these.

188 10—Beyond BASIC

Its power, though, comes from the fact that new procedures can be

constructed out of the original ones, and these new procedures, too, can be

used to create other new ones. Because of this, LOGO is often called "recur

sive." (For an example of something recursive, think of a drawing of an artist

drawing a picture of himself drawing a picture of himself.) It is exactly this

ability of "learning" new commands that makes LOGO so clever and fasci

nating.

Perhaps the most popular feature of LOGO is its turtle, the name given

to a triangular cursor that draws on the computer's high-resolution screen.

The cursor's name is not an attempt to be cute. The machine thinks of the

turtle as an intelligent, moving thing with a pen in its belly. When the pen

is down, it draws a line. Here's what a sequence that draws a square looks

like:

TO SQUARE

PENDOWN

REPEAT A [FORWARD 5D RIGHT qQ]

END

The process is simple. The turtle puts its pen down to draw and moves

forward 50 units, each unit equal to a dot on the hi-res screen. Then the

turtle turns right, 90 degrees. This is repeated four times to make the square.

Once the computer knows how to make a square, you needn't repeat the

sequence, only use the word SQUARE.

A virtual cult has formed around LOGO and its innovative concepts.

LOGO buffs have embraced it for teaching computers to children, working

with the handicapped, for music, graphic art, and the designing of "micro-

worlds," visual simulations of everyday life. Commodore's LOGO was written

by Terrapin, an aptly-named Cambridge, Massachusetts software house that

specializes in LOGO. A preliminary copy used for this preview showed a

version similar to Terrapin LOGO for the Apple II, with several enhance

ments. Newcomers and LOGO fans alike are sure to be pleased.

You won't be able to write a word processor or spreadsheet in LOGO,

or do complex mathematics in Pilot. They aren't meant as replacements for

BASIC and have personalities all of their own. Both these languages appeal

to the imagination and the power of our minds.

Fast BASIC The most common complaint about good old BASIC

is that it is slow. (To computer professionals and those accustomed to working

on larger machines, it is often intolerable.) From programming a video game

to writing "number crunching" routines, it is seldom fast enough. Why is it

so slow?

Most personal computers, your 64 included, store BASIC words as single

characters in memory. The computer must interpet what the command means

and look for the numbers that go along with it. Then it goes to routines in

the BASIC ROMs, and does what it should. This all takes time, and is why

Commodore BASIC is called an interpreted BASIC.

Other Languages 189

A compiler, however, turns the lines of a BASIC program into faster-

running, more direct computer code. Though some commands do not benefit

as much as others, the original program operates dozens of times faster.

One such compiler for the Commodore 64 family is Peispeed, a British

program that originated on the PET and CBM, and has since been adapted.

It is available in the United States from Small Systems Engineering (1056

Elwell Court, Palo Alto, CA, 94303).

Petspeed comes packaged on a disc and with an electronic security key

that plugs into control port 2. (The program will not run without the key,

which prevents piracy.) When operating, it LOADs the BASIC program to be

compiled and begins taking it apart, piece by piece. Four separate "passes"

eventually rewrite the program as a compiled, Petspeed version which can

be LOADed, SAVEd and RUN normally. It cannot, however, be LISTed or

edited. (The BASIC version remains intact on the same disk, though.)

In its design, Petspeed is something of a software engineering marvel.

Tens of thousands of bytes of intermediate disk files are generated, and the

whole operation takes place inside the computer and on a single disk. When

Petspeed works, it works very well, indeed. Programs operate noticeably

faster. The major problem with the compiler is that it is quirky. Some pro

grams compile easily and smoothly, while others return puzzling error mes

sages or simply "crash" the computer. (In testing it, Petspeed would even

occasionally have trouble with a program that compiled correctly minutes

before.)

Petspeed also had trouble with some programs containing character

graphics, and many programs with sprites require some adjustment in the

way they use memory space. Other oddities include a restriction on the

number of characters in a program name (Petspeed allows names of only 10

letters) and the use of variables. (Using NEXT without a variable is legal in

BASIC if the meaning is clear. Petspeed sometimes doesn't like this.) Most

agonizing is that, while Commodore BASIC'S INPUT statement was fixed in

the VIC-20 and 64, Petspeed still compiles it as though it weren't. With

INPUT, an answer of a null string ("") breaks the program.

Finally, despite the speed it adds to a program, compiling is a long and

tedious process, due in part to the slow 1541 disk drive. A program the length

of the data base demonstration in this book took over twenty minutes to

compile with the disk drive spinning away, grinding from track to track. (It

is a genuine endurance test for the little 1541.)

Petspeed would be a little less confounding if it were better documented.

The entire instruction book for this powerful and complex program is only

3 pages long and offers only the barest details about how to use it and how

it works. This is not a program for inexperienced programmers, even though

those are the people who could probably benefit from it best. Petspeed, then,

winds up being a paradox: There are too many problems to make it a reliable,

everyday tool, yet its results can be very impressive.

Simons'BASIC Commodore BASIC isn't a bad language. A version
of Microsoft BASIC, it has very few peculiarities and no major "bugs." Its

190 10—Beyond BASIC

only real problem is that it didn't grow up with the company's computers.

While it was serviceable for the original 8K PET, which had no color, sound,

or high-resolution graphics, Commodore BASIC just isn't enough for the 64,

which has all of those features. Programming even the most rudimentary

graphics and sounds on the 64 is an endless job of PEEKing and POKEing.

Simons' BASIC doesn't only offer a solution to the problem, but almost

makes the 64 into an entirely new computer. The 114 new commands are so

comprehensive that they make Simons' BASIC more than a good language

extension.

The origin of Simons' BASIC is interesting in itself. It was created by

a sixteen-year-old British programmer named David Simons, whose parents

gave him his first computer on his thirteenth birthday. According to the

official company legend, Simons surveyed other BASICs and their extensions

and picked from among their features.

Simons' BASIC comes packaged as a ROM cartridge and its new com

mands are grouped into several categories: Programming aids ("toolkit" com

mands and other conveniences); new BASIC words for inputting information;

arithmetic and math extensions; disk functions; high-resolution graphics;

screen manipulation; sprite graphics words; error trapping schemes; music

notation, and commands that read controllers (light pens, joysticks, paddles,

etc.). Finally, another set of new words are used for structured programming,

and can make this BASIC very FORTRAN-like, if you choose to use them.

Space prohibits going into detail about Simons' BASIC. (It deserves a

book all its own.) But this is one of the best, most comprehensive pieces of

software available for the Commodore 64 and, in fact, for computers in gen

eral. If you have picked up the basics of BASIC, you should have no trouble

understanding the new commands. At press time, no prices were set by

Commodore, who will sell the Simons' BASIC cartridge. Still, short of an

exorbitant price tag, Simons' BASIC is a must for Commodore 64 owners.

Assembly Language True program speed comes upon entering the
final realm of programming—machine code. It is programmed in "assembly

language," with the use of a program called an "assembler." (Logically, the

equivalent of LISTing a program in assembly code is called "disassembling"

it.) There are fewer commands in assembly language than in BASIC, and

each one is called a mnemonic because it is a three-letter abbreviation for

the command. However, programming is more difficult for several reasons.

Conventional, decimal numbers are not used. It requires hexadecimal num

bers—a number system with a base of 16 numbers instead of 10. This makes

arithmetic, especially decimal point arithmetic, tough.

Assembly language also deals with the machine on its own terms, so

you must completely understand where everything inside the computer is

located and where programs can and cannot be stored. Nor are there any

ERROR messages when writing programs this way. When an assembly lan

guage program has a flaw in it, the computer often "crashes" without giving

a clue as to why. Programming in BASIC is like driving on an expressway.

Assembly language is like taking the back roads and stopping in every little

Other Languages 191

town along the way. It is the way to learn the countryside, but it takes longer

and demands more attention to detail.

There's no reason to be scared away from the challenge, though. Many

novice programmers have mastered assembly language, and those who have

prefer it to BASIC for many things. The jobs that are easier in BASIC can

still be done that way, with fast machine code portions being called with the

SYS command.

To write assembly code, you'll need an assembler and other associated

programming tools. The version sold by Commodore is very good and is used

by the company's own software development team. Another good assembler

is MAE (from Eastern House Software, 3239 Linda Drive, Winston-Salem,

NC, 27106). Its designers boast that a version was used on NASA's Space

Shuttle project.

Human-to-Machine Interfacing

That's computer jargon for ways to communicate with the machine. The

most often used way of talking to any computer is through the keyboard, of

course. But it's not the only way. You already know that you can use joysticks

and game paddles. Have you ever heard of a light pen?

A light pen is not a pen that writes in light. It is a pen-shaped sensor

that is used to point out objects on the screen. The computer can detect the

position of the light pen and this information is then passed along to the

program to use in making decisions. Inside the light pen is a light-sensitive

transistor connected to control port 1 via some electronic circuitry.

Light pens are especially good for programs where choices are always

made from a menu. Pointing at your choice keeps the program moving along.

Light pens can also be good for games or educational programs where chil

dren can't be expected to type on the keyboard. Few commercial programs

are written for a light pen, but you can expect to see some come along. So,

you'll need to modify programs or write them yourself, but rewriting should

be minimal. Simple PEEK statements read where the pen is pointing on the

screen. This is easy on the Commodore 64 computers since special light pen

memory locations are built into the VIC chip.

Not all light pens are the same. Differences in the size and brightness of

video screens make some work better than others. One very good light pen

previewed for this book is manufactured and sold by Madison Computer

(1825 Monroe Street, Madison, WI, 53711). The pen tested was sturdy, reli

able, and looked like a desk set, with a wooden base for it when not in use.

It comes with several demonstration programs, "Othello," a novel "Hang

man" game, and an excellent routine to copy programs and files from one

disk to another on a single 1541 disk drive.

Light also plays a part in communicating with your computer on a touch-

sensitive video screen, maybe the ultimate in computer communication. No

need for a light pen here. You just touch an object on the screen and the

computer knows what you're doing. How does it work?

192 10—Beyond BASIC

The most popular scheme for touch-sensitivity is to frame the video

screen with light sources and light detectors. Most use infrared light, which

is invisible, and infrared detectors opposite the light sources. They are ar

ranged in such a way that when you touch the screen, you break two beams

of light—one for the horizontal position and one for the vertical. The com

puter interprets this information and makes its decision.

The most visible touch-sensitive video screens in the world are located

in EPCOT Center at Walt Disney World in Orlando, Florida, where they are

used for computer demonstrations and games, and as part of the exposition's

World Key information system. Dozens of other touch screens are behind-

the-scenes, controlling EPCOT's ride and show mechanisms.

EPCOT's touch screens were engineered by Carroll Touch Technology

(2902 Farber Drive, Champaign, IL, 61821), a pioneer in the technique. Carroll

sells a kit that you can experiment with using your Commodore 64 or most

any personal computer. It is a frame that can be mounted on the screen of

a 12-inch video monitor. The frame uses infrared light to send position in

formation back to the computer via an RS-232 data connection. Being a

pioneer has its price, however. The cost of Carroll's experimenter and eval

uation system is over $1000.

In the beginning of this book you were told that there was a world inside

the computer you have before you, and that the possibilities were practically

limitless. Perhaps you believe that more now. It is fun to think of these

possibilities in a world that is filled with limitations, and fun to be part of

the ground-breaking movement that personal computing and technology is

today.

We should be proud, though, not of our machines, but what we can make

them do. Take delight not in what you have, but in what you can do. The

real buried treasures you may discover are your own abilities.

ox n

Exploring the

Commodore 64

Jim Butterfield

Inside the Commodore 64 there's a whole world to explore. You can look at

the inner workings of the computer, and even try changing things around to

see what happens.

You don't need to open up the computer to do this. You may peek inside

the computer's workings "logically"—in fact, you'll use a function called

PEEK to look around. Similarly, you won't need to fiddle with wires in order

to poke around the innards and change the way things work—you have a

POKE command to make the changes for you.

We'll go on a quick tour of the inner workings of the Commodore 64,

looking at a few points of interest on our way. After our familiarization tour,

you'll be able to explore on your own.

Why Tinker?

Why would you want to rummage around a computer's insides? There

are several reasons.

193

194 Appendix 1

First, you sometimes need—in fact, you're sometimes instructed—to do

this. The Commodore 64 user guide, for example, instructs you to change the

screen border color with a POKE 53280,X where X is a color code number

from 0 to 15. You are being told to change something within the computer's

innards. As you gain more experience, you'll develop a roster of addresses

that are useful for various jobs.

Secondly, it's a useful way to gain insight into the workings of the ma

chine. You may examine the data that is stored within the computer. You

can try tampering with it to see what happens.

A word about tampering with the computer's memory: you can't hurt

anything. The worst that can happen is that the computer might stop work

ing. If that happens, all you need to do is to turn the power off and on again

. . . and the machine will be back in operation.

The Computer's Memory

The computer uses its memory for just about everything it does. Almost

all its important activities are related to memory, which contains such things

as computer instructions, data, your programs, and a copy of the screen.

There are lots of things in there.

Memory consists of cells in which information can be stored; each cell

has an "address." There are 65536 cells which may be reached in the Com

modore 64; the addresses start at 0 and go up to 65535. Each cell may contain

any value from 0 to 255. Various areas of memory have been assigned for

specific jobs; you'll get to know certain addresses quite well after a while.

There are three kinds of memory devices used in a computer; one kind

isn't really memory at all. Let's talk about them and where they are located.

Kinds of Memory

RAM is memory we can write (POKE) and read (PEEK). It's like a storage

area: we can put information there; later, we can go back and look at the

information we have stored. When you type a program into the Commodore

64, it is stored in RAM. When your program calculates values, these will be

stored into (and recalled from) RAM. RAM, by the way, stands for Random

Access Memory; that's not a very meaningful name.

The Commodore 64 in its usual configuration has RAM available from

address 2 to address 40959, and from address 49152 to 59151. The lower

block is used for BASIC programs and working values; the upper block isn't

used at all by BASIC. As we'll discuss later, you have more RAM than this

available which you can put to work in your 64 if desired.

ROM is fixed memory; you can read it (PEEK it), but you can't store

into it. The values in ROM have been set at the factory, and can't be changed.

ROM stands for Read Only Memory, which is a fair description. It may seem

kinds of Memory 195

limiting to have ROM which cannot be changed, but if you don't like what's

in a ROM, you can swap it out and put RAM in its place. ROM holds the

main logic of the computer: how to calculate a square root, for example, or

how to write information to a cassette tape. Most of the "built-in" features

of any computer are usually built into ROM.

The Commodore 64 usually has ROM available from address 40960 to

49151 and from 57644 to 65535. The first block tells the computer how to

recognize and implement the BASIC language; the second, how to do input/

output activities such as keyboard, screen, disk, or tape. There's a third ROM

tucked away inside the 64 where we can't usually PEEK it ... this is the

character generator, which shows how to draw each character on the screen.

And if you plug in a video game, chances are you're plugging in an extra

ROM, containing instructions on how to play the game.

The third type of memory device is called an Interface. These are not

really memory, since we can't be sure that information stored here will be

available for us to recall at a later time. Their main job is to perform inter

facing to things outside the central computer. There's a Video Interface Chip

which creates the image we see on the screen. There's a Sound Interface

Device which makes the sounds that we hear. And there are two Complex

Interface Adaptors which make connections to the keyboard, to and from

disk, from the joysticks ... and perform other functions as well, such as

timing.

The Video Interface Chip is located at addresses 53262 to 53286 in the

Commodore 64. The Sound Interface Device is located at addresses 54272 to

54300. And the two Complex Interface Adaptors are located at 56230 to 56335

and 56576 to 56591. Locations 0 and 1 have special interface functions of

their own: their most important job is to control the way the other chips

appear in memory.

Memory Maps

You'll find some lengthy "memory maps" at the end of this appendix.

Their purpose is to give you a hint as to how the various locations are used.

RAM is the most fun, since we can try changing things to see what
happens. We'll browse a little more in RAM in just a moment.

We can't change ROM, so its structure is of interest mostly for study
purposes. If we want to analyze in detail how the machine works, we can

peruse ROM. To do so, we'll need to understand a new type of language:
6502 machine language.

The 6502 is a very close relative of the 6510 microprocessor used in the
Commodore 64. The instructions in ROM are 6502-type instructions . .. it's
a whole specialized field of study to learn how to read them.

The Interface chips are very practical to use; indeed, many of the interface
locations are mentioned in the 64 User's Guide . .. you'll need to know some
of them in order to make sounds, or to change some of the screen charac
teristics.

196 Appendix 1

You may note that the interface chips are drawn as charts. That's because

many interface locations control more than one activity. The memory cell is

composed of individual control elements, called "bits," which are coded using

the following numbers:

128 64 32 16 8 4 2 1

For example, if you see that a given location contains a value of 20, a

little arithmetic will reveal that the bit marked 16 and the bit marked 4 are

"on" and all the others are off. No other combination of bits gives a total of

20.

When you reference the Interface chip charts, you'll see the individual

bits and see how to combine them to make a composite control value.

RAMbling

RAM memory is so much fun that it's worth talking about a little more.

We'll look through the addresses, and pick out a few interesting ones.

Addresses 2 to 1023 is a work area for the computer; it's very rich with

important locations. The area from 2 to 255 is called "zero page" and it's

jammed with the computer's working values. If you command PRINT

PEEK(203), for example, you'll discover whether a key is being held down

at the moment or not: a value of 64 means that no key is being pressed. This

isn't much use as a direct statement: you'd need to be very fast to take your

hand from the RETURN key before the answer is printed. But within a

program, PEEK(203) can tell you that someone is holding a key. Which key?

The GET statement will tell you.

Locations 256 to 511 are fairly quiet. This is used for an inner computer

work area called the "stack" .. . you won't get much useful action in this

area.

Locations 512 to 677 are quite busy. One of my favorites here is location

650, which controls how the keyboard keys repeat. You may have noticed

that cursor keys and the space bar repeat; try POKEing 650 with values such

as 255, 127, and 0 and see what happens.

Locations 768 to 819 are specialized. They contain a number of "link"

addresses which allow machine language programmers to change the be

havior of the computer. They do this by changing the addresses stored within

the links to new addresses of their own. This way, they can make the computer

do marvelous new things. If you don't have machine language skills, all you'll

do by changing these locations is cause the machine to behave erratically

... or not at all.

From 828 to 1019, we have a cassette buffer area. If you use cassette tape

to store or recall information, this memory area will change as the tape data

is handled. If you don't happen to be using the cassette, this area is free and

available .. . it's often popular as an area for "sprites" to enliven screen

graphics.

RAMbling 197

Locations 1024 to 2047 are used for "screen memory." Here's a fun area:

POKEing to this area will cause a character to appear on the screen—try

any value from 0 to 255; each will create a different screen character. It works

both ways: if a program PEEKs one of these addresses, it will "see" what's

on the screen in the corresponding location. Many games POKE and PEEK

the screen area to create lively animation.

From 2048 to 40959 we have the memory where the computer keeps the

BASIC program that we type in. When the program runs, its variables and

arrays are also stored in the same area. This area is a bit hard to use, since

BASIC uses it, but you might like to explore the way a program is stored . ..

it's more complex than you might think.

2048 to 40969 is a large area, and you might not need it all to hold your

BASIC program. You can trim it down so as to release space for sprites or

machine language programs ... we can't go into the details here, but it

involves fiddling with the addresses stored in 43 and 44 (start-of-BASIC) or

in 55 and 56 (limit of BASIC). How do you read an address stored in two

bytes? Well, you PEEK the first byte, and add it to 256 times the PEEK of

the second byte. This gets tricky ... a BASIC program can't change its own

start and end addresses while it is running, of course. As we said, we can't

go into the details here.

There's extra RAM up at addresses 49152 to 53247 and normally nobody

uses it. It's a great place for experiments . . . especially trying out machine

language programs to see if they work.

The Great Memory Shuffle

It seems that we have clearly identified the pieces and places. But wait—

the Commodore 64 has a secret. Hint: it's in the name.

The Commodore 64 has RAM everywhere .. . 64K of it, in fact, which

amounts to 65536 locations. Even at addresses where we have ROM, there's

RAM lurking behind it ... waiting to be used.

For example, if we PRINT PEEK(45000), we'll get the contents of ROM

memory . .. it's part of the BASIC instructions. But if we POKE 45000,100

the computer knows that we can't store into ROM ... so it stores the value,

100, into the RAM behind the ROM. Can you read the RAM? Not with the

ROM in the way: another PEEK to 45000 will just show us the ROM contents.

But we can flip the ROM away by using the controls in address 1.

Wait just a moment. If we flip the ROM away, we'll lose BASIC. That's

bad, because we need it in order to give commands . . . even POKE is a BASIC

command. Is there any way we can move out the ROM and still keep BASIC?

It's easy, once you think of it. Just copy the ROM into the RAM beneath,

and when we electronically make the ROM disappear, BASIC will still be

there in the RAM. This gives us something new: a way to change BASIC.

Let's copy BASIC from the ROM into the RAM beneath. Type the fol

lowing line:

FOR J = 4DcltD TO ^151: POKE J,PEEK(J) :NEXT J

198 Appendix 1

At first glance this seems like nonsense. We are POKEing into each lo

cation the same information that we have just found there. But once we

understand that it's coming from ROM and going into RAM, the whole thing

makes sense. It will take a little while for the computer to copy all eight

thousand odd bytes. When it's finished, type:

POKE "1,54

And BASIC is now operating out of RAM. Try this:

POKE

Your machine should now reply BEADY instead of READY. You've changed

BASIC ... in a minor way, but it's still a genuine change.

You may restore the BASIC ROM by typing POKE 1,55. BEADY will

once again become READY.

Summary

I can only hint at the treasures that you can uncover if you like rambling

through the insides of your machine. You don't need to, of course: the 64 can

be used as the sensible, straightforward machine you always knew it was.

But isn't it fun to tinker sometimes?

Commodore 64 Memory Map, Compiled by Jim Butterfield

Hex

0000

0001

0003-0004

0005-0006

0007

0008

0009

000A

000B

oooc

000D

000E

000F

0010

0011

0012

0013

0014-0015

0016

0017-0018

0019-0021

0022-0025

0026-002A

002B-002C

002D-002E

Decimal

0

1

3-4

5-6

7

8

9

10

11

12

13

14

15

16

17

18

19

20-21

22

23-24

25-33

34-37

38-42

43-44

45-46

Description

Chip directional register

Chip I/O; memory & tape control

Float-Fixed vector

Fixed-Float vector

Search character

Scan-quotes flag

TAB column save

0 = LOAD, 1= VERIFY

Input buffer pointer/# subscrpt

Default DIM flag

Type: FF=string, 00 = numeric

Type: 80 = integer, 00 = floating point

DATA scan/LIST quote/memry flag

Subscript/FNx flag

0 = INPUT;$40 = GET;$98 = READ

ATN sign/Comparison eval flag

Current I/O prompt flag

Integer value

Pointer: temporary strg stack

Last temp string vector

Stack for temporary strings

Utility pointer area

Product area for multiplication

Pointer: Start-of-BASIC

Pointer: Start-of-Variables

Summary 199

Commodore 64 Memory Map continued

Hex Decimal Description

002F-0030

0031-0032

0033-0034

0035-0036

0037-0038

0039-003A

003B-003C

003D-003E

003F-0040

0041-0042

0043-0044

0045-0046

0047-0048

0049-004A

004B-004C

004D

004E-0053

0054-0056

0057-0060

0061

0062-0065

0066

0067

0068

0069-006E

006F

0070

0071-0072

0073-008A

007A-007B

008B-008F

0090

0091

0092

0093

0094

0095

0096

0097

0098

0099

009A

009B

009C

009D

009E

009F

00A0-00A2

00A3

00A4

00A5

00A6

00A7

47-48

49-50

51-52

53-54

55-56

57-58

59-60

61-62

63-64

65-66

67-68

69-70

71-72

73-74

75-76

77

78-83

84-86

87-96

97

98-101

102

103

104

105-110

111

112

113-114

115-138

122-123

139-143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160-162

163

164

165

166

167

Pointer: Start-of-Arrays

Pointer: End-of-Arrays

Pointer: String-storage (moving down)

Utility string pointer

Pointer: Limit-of-memory

Current BASIC line number

Previous BASIC line number

Pointer: BASIC statement for CONT

Current DATA line number

Current DATA address

Input vector

Current variable name

Current variable address

Variable pointer for FOR/NEXT

Y-save; op-save; BASIC pointer save

Comparison symbol accumulator

Misc work area, pointers, etc

Jump vector for functions

Misc numeric work area

Accum#l: Exponent

Accum#l: Mantissa

Accum#l: Sign

Series evaluation constant pointer

Accum#l hi-order (overflow)

Accum#2: Exponent, etc.

Sign comparison, Acc#l vs #2

Accum#l lo-order (rounding)

Cassette buff len/Scries pointer

CHRGET subroutine; get BASIC char

BASIC pointer (within subrtn)

RND seed value

Status word ST

Keyswitch PIA: STOP and RVS flags

Timing constant for tape

Load = 0, Verify =1

Serial output: deferred char flag

Serial deferred character

Tape EOT received

Register save

How many open files

Input device, normally 0

Output CMD device, normally 3

Tape character parity

Byte-received flag

Direct = $80/RUN = 0 output control

Tp Pass 1 error log/char buffer

Tp Pass 2 err log corrected

Jiffy Clock HML

Serial bit count/EOI flag

Cycle count

Countdown,tape write/bit count

Tape buffer pointer

Tp Wrt ldr count/Rd pass/inbit

200 Appendix 1

Commodore 64 Memory Map continued

Hex Decimal Description

00A8 168 Tp Wrt new byte/Rd error/inbit cnt

Q0A9 169 Wrt start bit/Rd bit err/stbit

00AA 170 Tp Scan;Cnt;Ld;End/byte assy

00AB 171 Wr lead length/Rd checksum/parity

00AC-00AD 172-173 Pointer: tape bufr, scrolling

00AE-00AF 174-175 Tape end adds/End of program

00B0-00B1 176-177 Tape timing constants

00B2-00B3 178-179 Pntr: start of tape buffer
00B4 180 1 =Tp timer enabled; bit count

00B5 181 Tp EOT/RS232 next bit to send

00B6 182 Read character error/outbyte buf

00B7 183 # characters in file name

00B8 184 Current logical file

00B9 185 Current secndy address

00BA 186 Current device

00BB-00BC 187-188 Pointer to file name

00BD 189 Wr shift word/Rd input char

00BE 190 # blocks remaining to Wr/Rd

00BF 191 Serial word buffer

00C0 192 Tape motor interlock

00C1-00C2 193-194 I/O start address

00C3-00C4 195-196 Kernel setup pointer

00C5 197 Last key pressed

00C6 198 # chars in keybd buffer

00C7 199 Screen reverse flag
00C8 200 End-of-line for input pointer

00C9-00CA 201-202 Input cursor log (row, column)

00CB 203 Which key: 64 if no key

OOCC 204 0 = flash cursor

00CD 205 Cursor timing countdown

00CE 206 Character under cursor

OOCF 207 Cursor in blink phase

00D0 208 Input from screen/from keyboard

00D1-00D2 209-210 Pointer to screen line

00D3 211 Position of cursor on above line

00D4 212 0 = direct cursor, else programmed

00D5 213 Current screen line length

00D6 214 Row where cursor lives

00D7 215 Last inkey/checksum/buffer

00D8 216 # of INSERTS outstanding

00D9-00F2 217-242 Screen line link table

00F3-00F4 243-244 Screen color pointer

00F5-00F6 245-246 Keyboard pointer

00F7-00F8 247-248 RS-232 Rev pntr

00F9-00FA 249-250 RS-232 Tx pntr

00FF-010A 256-266 Floating to ASCII work area

0100-103E 256-318 Tape error log

0100-01FF 256-511 Processor stack area

0200-0258 512-600 BASIC input buffer

0259-0262 601 -610 Logical file table

0263-026C 611-620 Device # table

026D-0276 621-630 Sec Adds table

0277-0280 631-640 Keybd buffer

Summary

Commodore 64 Memory Map continued

201

Hex

0281-0282

0283-0284

0285

0286

0287

0288

0289

028A

028B

028C

028D

028E

028F-0290

0291

0292

0293

0294

0295-0296

0297

0298

0299-029A

029B

029C

029D

029E

029F-02A0

02A1

02A2

02A3

02A4

02A5

02C0-02FE

0300-0301

0302-0303

0304-0305

0306-0307

0308-0309

030A-030B

030C

030D

030E

030F

0310-0312

0314-0315

0316-0317

0318-0319

031A-031B

031C-031D

031E-031F

0320-0321

0322-0323

0324-0325

0326-0327

Decimal

641-642

643-644

645

646

647

648

649

650

651

652

653

654

655-656

657

658

659

660

661-662

663

664

665

667

668

669

670

671-672

673

674

675

676

677

704-766

768-769

770-771

772-773

774-775

776-777

778-779

780

781

782

783

784-785

788-789

790-791

792-793

794-795

796-797

798-799

800-801

802-803

804-805

806-807

Description

Start of BASIC Memory

Top of BASIC Memory

Serial bus timeout flag

Current color code

Color under cursor

Screen memory page

Max size of keybd buffer

Repeat all keys

Repeat speed counter

Repeat delay counter

Keyboard Shift/Control flag

Last shift pattern

Keyboard table setup pointer

Keyboard shift mode

0 = scroll enable

RS-232 control reg

RS-232 command reg

Bit timing

RS-232 status

bits to send

RS-232 speed/code

RS-232 receive pointer

RS-232 input pointer

RS-232 transmit pointer

RS-232 output pointer

IRQ save during tape I/O

CIA 2 (NMI) Interrupt Control

CIA 1 Timer A control log

CIA 1 Interrupt Log

CIA 1 Timer A enabled flag

Screen row marker

(Sprite 11)

Error message link

BASIC warm start link

Crunch BASIC tokens link

Print tokens link

Start new BASIC code link

Get arithmetic element link

SYS A-reg save

SYS X-reg save

SYS Y-reg save

SYS status reg save

USR function jump

Hardware interrupt vector

Break interrupt vector

NMI interrupt vector

OPEN vector

CLOSE vector

Set-input vector

Set-output vector

Restore I/O vector

INPUT vector

Output vector

(B248)

(EA31)

(FE66)

(FE47)

(F34A)

(F291)

(F20E)

(F250)

(F333)

(F157)

(F1CA)

202 Appendix 1

Commodore 64 Memory Map continued

Hex

0328-0329

032A-032B

032C-032D

032E-032F

0330-0331

0332-0333

033C-03FB

0340-037E

0380-03BE

03C0-03FE

0400-07FF

0800-9FFF

8000-9FFF

A000-BFFF

AOOO-BFFF

COOO-CFFF

D000-D02E

D400-D41C

D800-DBFF

DCOO-DCOF

Decimal

808-809

810-811

812-813

814-815

816-817

818-819

828-1019

832-894

896-958

960-1022

1024-2047

2048-40959

32768-40959

40960-49151

40960-59151

49152-53247

53248-53294

54272-54300

' 55296-56319

' 56320-56335

DD00-DD0F 56576-56591

D000-DFFF

EOOO-FFFF

EOOO-FFFF

FF81-FFF5

FFC6-

FFC9-

FFCC-

FFCF-

FFD2-

FFE1 -

FFE4-

53248-53294

57344-65535

57344-65535

65409-65525

Set Input channel

Set Output channel

Restore default I/O

INPUT

PRINT

Test Stop key

GET

Description

Test-STOP vector

GET vector

Abort I/O vector

Warm start vector

LOAD link

SAVE link

Cassette buffer

(Sprite 13)

(Sprite 14)

(Sprite 15)

Screen memory

BASIC RAM memory

Alternate: ROM plug-in area

ROM: BASIC

Alternate: RAM

RAM memory, including alternate

Video Chip (6566)

Sound Chip (6581 SID)

Color nybble memory

Interface chip 1, IRQ (6526 CIA)

Interface chip 2, NMI (6526 CIA)

Alternate: Character set

ROM: Operating System

Alternate: RAM

Jump Table, Including:

channels

(F6ED)

(F13E)

(F32F)

(FE66)

(F4A5)

(F5ED)

$0000

$0001

Summary

Processor I/O Port (6510)

IN IN OUT

Tape

Motor

IN

Tape

Sense

OUT

Tape

Write

OUT

D-ROM

Switch

OUT

EFRAM

Switch

OUT

ABRAM

Switch

203

DDR0

PR 1

Voice 1

$D400

$D401

$D402

$D403

$D404

$D405

$D406

Voice 2

$D407

$D408

$D409

$D40A

$D40B

$D40C

$D40D

Voice 3

$D40E

$D40F

$D410

$D411

$D412

$D413

$D414

SID (6581)

—

0 0

Voice

NSE,PUL,

Attack

2ms -

Sustain

i i

0

Type:

SAW,

Time

8ms

Level

Frequency

Pulse Width

0

TRI ,

i

i i i

Decay Time

6ms - 24 sec

Release Time

6ms 24 sec

L

H

L

H

Key

Voice 1 Voice 2. Voice 3

54272 54279 54286

54273 54280 54287

54274 54281 54288

54275 54282 54289

54276 54283 54290

54277 54284 54291

54278 54285 %54292

Voices (write only)

$D415

$D416

$D417

$D418

0

V3 off,

0 0 0 0

Filter Frequency

Resonance

Passband:

HI , BP , LO | ,

Filter Voices

V3 V2

Master

Volume

L

H

VI

Filter & Volume (write only)

Paddle X (A/D #1)

Paddle Y (A/D #2)

Noise 3 (random)

Envelope 3

Sense (read only)

Note: Special Voice Features

(TEST, RING MOD, SYNC)

are omitted from the above diagram.

54293

54294

54295

54296

204 Appendix 1

CIA (IRQ) (6526)

$DC00

$DC01

$DC02

$DC03

$DC04

$DC05

$DC06

$DC07

$DC0D

$DC0E

$DC0F

SDDOO

$DD01

SDD02

$DD03

$DD04

$DD05

$DD06

$DD07

$DD0D

$DD0E

$DD0F

Paddle Sell

A B Fire

Joystick 0

Right Left Down Up

Kevboard Row Select (inverted)

Joystick 1

Fire Right Left Down Up

Keyboard Column Read

SFF-AI1 Output

$00-All Input

Timer A

Timer B

Tape

Input

1 1 1

1 1 1

One

Shot

One

Shot

Out

Mode

Out

Mode

Timer Interrupt

B A

Time

PB6 Out

Time

PB7 Out

Timer

A Start

Timer

B Start

Serial

IN

DSR

IN

Clock

IN

CTS

IN

CIA 2 (NMI) (6526)

Serial

OUT

Clock

OUT

DCD*

IN

ATN

OUT

RI*

IN

RS-232

OUT

DTR

OUT

VIC II

addr 15

RTS

OUT

VIC II

addr 14

RS-232

IN

$3F-Serial

$00-P.U.P. All Input or

Timer A

Timer B

$06-RS-23I>

RS-232

IN

Timer Interrupt

B A

1 1 1 1 1 .

1 1 1 1 1 1

Timer

A Start

Timer

B Start

PRA 56320

PRB 56321

DDRA 56322

DDRB 65323

TAL 56324

TAH 56325

TBL 56326

TBH 56327

ICR 56333

CRA 56334

CRB 56335

PRA 56576

PRB 56577

DDRA 56578

DDRB 56579

TAL 56580

TAH 56581

TBL 56582

TBH 56583

ICR 56589

CRA 56590

CRB 56591

Summary 205

VIDEO (6566)

EXT.

COLOR

MODE

BIT

MAP

DISPL.

ENABLE

ROW

SELECT

A

RASTER REGISTER

LIGHT PEN INPUT

Y-SCROLL

X

Y

53265

53266

53267

53268

RESET MULTI

COLOR

COL

SELECT

X-SCROLL
53270

IRO INTERRUPT

•+ SENSE *-

INTERRUPT

ENABLE-^

X
LP SSC SBC RST

LIGHT SPRITE RASTER

PEN COLLISION

COLOR REGISTERS

x

EXTERIOR

BACKGROUND No. 0

BACKGROUND No. 1

BACKGROUND No. 2

BACKGROUND No. 3

SPRITE
MULTICOLOR No. 0

SPRITE
MULTICOLOR No. 1

53272

53273

53274

53280

53281

53282

53283

53284

53285

53286

206 Appendix 1

SPRITE VIDEO

X

— POSITION -

Y

[^X^] COLOR

r SPRITE No. —l

7 6 5 4 3 2 10

X-POSITION HIGH

SPRITE ENABLE

Y-EXPAND

BACKGROUND PRIORITY

MULTICOLOR

X-EXPAND

INTERRUPT: SPRITE COLLISION

INTERRUPT: BACKGROUND
COLLISION

SPRITE

0 ■

I

53248.

53249.

53287 .

53264

53269

53271

53275

53276

53277

53278

53279

SPRITE

7

I

.. 53262

.. 53263

..53294

Exploring Graphics on the

Commodore 64

Paul F. Schatz

The Commodore 64 has some very powerful graphics capabilities including

high-resolution ("bit map") graphics, several color display modes, characters

that you can redefine, and moving colored objects called sprites. Designing

and programming computer graphics can be a complex process, and the

Commodore 64's features can be combined in so many ways that the task of

explaining all the options quickly becomes overwhelming. Making it even

more difficult is the fact that the Commodore 64 comes out of its box without

any graphics commands in its BASIC.

Using the graphics on the Commodore 64 requires a more fundamental

understanding of just how the computer works. This chapter will explain in

simple language how numbers stored in the computer's memory are trans

lated into a picture on the video screen. You will learn something about three

special graphics features—sprites, programmable characters, and bit map

graphing. Each will be explained and demonstrated with some simple pro

grams. With a working knowledge of these features, you will be able to

program some impressive pictures.

207

208 Appendix 2

Is It All Done With Mirrors?

The key to understanding the graphics is understanding how numbers

in the computer's memory are used to define a picture. You will have to

understand what is meant by the term byte. When you first turn on your

computer, one line of the message which appears on the screen reads:

RAM SYSTEM 3flRll BYTES FREE

The BYTES FREE refers to the number of memory locations, also called

registers, the computer has for storing characters which make up a BASIC

program. Earlier in this book, bytes were equated with characters. Any one

of 256 different characters can be placed into a memory location. These

characters are represented by the numbers 0 to 255. Why only 256 characters?

Why not more? Or less? The answer to this question lies in how the computer

stores numbers. Each memory location can be considered a set of eight switches,

numbered 0 to 7, which can be turned on or off. If each switch is assigned a

number, as shown in Figure 1, any number from 0 to 255 can be represented

by adding the numbers of the "on" switches.

SWITCH

NUMBER

7

128

6

64

5

32

4

16

3

8

2

4

1

2

0

1

Figure 1.

The condition of the switches can be represented by l's and 0's, with 1

representing "on" and 0 being "off." The series of 1 's and 0's is called a binary

number. It can stand for a more conventional decimal number. (The numbers

we use every day are called decimals because they use ten different digits,

0 through 9.) In computer jargon, these switches are called bits, and a byte

is eight of these bits. For example, the number 16 is represented by switch

four turned on (1) and all the other switches turned off (0).

SWITCH

ON/OFF

NUMBER

7

0

128

6

0

64

5

0

32

4

1

16

3

0

8

2

0

4

1

0

2

0

0

1

The number 129 is represented with switches zero and seven "on," and

switches six, five, four, three, two, and one "off."

SWITCH

ON/OFF

NUMBER

7

1

128

6

0

64

5

0

32

4

0

16

3

0

8

2

0

4

1

0

2

0

1

1

The largest decimal number that can be represented by a byte is 255—

all eight bits are one, or "on ." Table 1 gives the eight-bit binary numbers

for decimal numbers from 0 to 255. This will be a handy reference when

programming graphics.

In computer graphics a byte is used to define a row of dots, or picture

elements on the video display. These picture elements are called pixels. The

T
A
B
L
E

1:
B
i
n
a
r
y
-
D
e
c
i
m
a
l
C
o
n
v
e
r
s
i
o
n

B
i
t
s
0
-
3
a
r
e
a
t

E
x
a
m
p
l
e
:
T
h
e

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

m
i

0
0
0
0 0

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

1
7
6

1
9
2

2
0
8

2
2
4

2
4
0

t
h
e
t
o
p
s
o
f
t
h
e
c
o
l
u
m
n
s
.

b
i
n
a
r
y
r
e
p
r
e
s
e
n
t
a
t
i
o
n
o
f

0
0
0
1

.
1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

0
0
1
0 2

1
8

3
4

5
0

6
6

8
2

9
8

1
1
4

1
3
0

1
4
6

1
6
2

1
7
8

1
9
4

2
1
0

2
2
6

2
4
2

0
0
1
1 3

1
9

3
5

5
1

6
7

8
3

9
9

1
1
5

1
3
1

1
4
7

1
6
3

1
7
9

1
9
5

2
1
1

2
2
7

2
4
3

B
i
t
s
4
-
7
a
r
e
a
t

1
8

is
0
0
0
1

0
0
1
C

0
1
0
0 4

2
0

3
6

5
2

6
8

8
4

1
0
0

1
1
6

1
3
2

1
4
8

1
6
4

1
8
0

1
9
6

2
1
2

2
2
8

2
4
4

0
1
0
1 5

2
1

3
7

5
3

6
9

8
5

1
Q
1

1
1
7

1
3
3

1
4
9

1
6
5

1
8
1

1
9
7

2
1
3

2
2
9

2
4
5

t
h
e
s
t
a
r
t

)
(
s
e
c
o
n
d

0
1
1
0 6

2
2

3
8

5
4

7
0

8
6

1
0
2

1
1
8

1
3
4

1
5
0

1
6
6

1
8
2

1
9
8

2
1
4

2
3
0

2
4
6

o
f
t
h
e

r
o
w

-

0
1
1
1 7

2
3

3
9

5
5

7
1

8
7

1
0
3

1
1
9

1
3
5

1
5
1

1
6
7

1
8
3

1
9
9

2
1
5

2
3
1

2
4
7

r
o
w
s
.

t
h
i
r
d
c
o
l
u
m
n
)
.

1
0
0
0 8

2
4

4
0

5
6

7
2

8
8

1
0
4

1
2
0

1
3
6

1
5
2

1
6
8

1
8
4

2
0
0

2
1
6

2
3
2

2
4
8

1
0
0
1 9

2
5

4
1

5
7

7
3

8
9

1
0
5

1
2
1

1
3
7

1
5
3

1
6
9

1
8
5

2
0
1

2
1
7

2
3
3

2
4
9

1
0
1
0

1
0

2
6

4
2

5
8

7
4

9
0

1
0
6

1
2
2

1
3
8

1
5
4

1
7
0

1
8
6

2
0
2

2
1
8

2
3
4

2
5
0

1
0
1
1

1
1

2
7

4
3

5
9

7
5

9
1

1
0
7

1
2
3

1
3
9

1
5
5

1
7
1

1
8
7

2
0
3

2
1
9

2
3
5

2
5
1

1
1
0
0

1
2

2
8

4
4

6
0

7
6

9
2

1
0
8

1
2
4

1
4
0

1
5
6

1
7
2

1
8
8

2
0
4

2
2
0

2
3
6

2
5
2

1
1
0
1

1
3

2
9

4
5

6
1

7
7

9
3

1
0
9

1
2
5

1
4
1

1
5
7

1
7
3

1
8
9

2
0
5

2
2
1

2
3
7

2
5
3

1
1
1
0

1
4

3
0

4
6

6
2

7
8

9
4

1
1
0

1
2
6

1
4
2

1
5
8

1
7
4

1
9
0

2
0
6

2
2
2

2
3
8

2
5
4

1
1
1
1

1
5

3
1

4
7

6
3

7
9

9
5

1
1
1

1
2
7

1
4
3

1
5
9

1
7
5

1
9
1

2
0
7

2
2
3

2
3
9

2
5
5

5
T

210 Appendix 2

leftmost pixel of a set of eight pixels is the same as bit number 7 of a byte.

Wherever a switch in the byte is on, the pixel is on. Wherever a switch is off,

the pixel is off. One way of looking at the byte is as if the switches were

controlling a row of eight light bulbs. By placing several rows of light bulbs

next to one another, a picture can be created, just like the large electric

billboards in ballparks.

Sprites, programmable characters, and bit map graphics are all similar

in that the images are made from rows of eight pixels defined by the contents

of memory locations. The graphics features differ in the number of memory

locations used for displaying the image and in how the computer arranges

the rows of pixels, end to end and/or side by side.

Who's Pulling the Strings?

The memory locations are used for creating an image, and how the

information is displayed on the screen is determined by the Video Interface

Controller chip—the VIC chip. This is the sophisticated microchip inside the

Commodore 64 that generates the video signals. The VIC chip increases the

efficiency of the computer in terms of memory utilization and program ex

ecution time. Many of the tasks performed by the VIC—sprites for instance—

can be done on computers with complicated programs. But a program that

does what the VIC does with sprites will need memory space and run slower

than making and controlling sprites with a chip.

To answer the question that might arise, this chip named VIC is not the

same one that is inside Commodore's wildly successful computer, the VIC-

20. It is related, but in name only. This VIC is much, much more powerful

than its little cousin.

How the VIC chip makes its pictures is determined by what's inside the

47 memory locations inside of it, numbered 53248 to 53294. Dramatic changes

on the screen can be made by changing the values in any of these locations.

Some of the locations are groups of on/off switches. For example, location

53269 can be considered eight switches which turn on and off individual

sprites. There are also switches for changing graphics modes, such as char

acter, bit map, and extended background color modes. Still other locations

tell the VIC chip where video information is stored in the computer's memory.

Before continuing, you must know that the VIC chip has some limitations.

The most important one is that it can only look at 16,384 (16K) memory

locations. Any video information must be within this 16K block of memory.

When the Commodore 64 is turned on, the VIC chip is set so that the 16K

block of memory it looks at extends from location 0 to location 16383. This

will place some contraints on where the video display information is stored

since certain areas of this memory are used by the computer for other tasks.

Most notable are locations 0 to 827 which are used by BASIC and the op

erating system for storing pointers and other numbers. Another potential

conflict is the section of memory where a BASIC program is stored. The

computer starts storing a BASIC program at location 2048 and continues on

Who's Pulling the Strings? 211

up. Many programs are short enough so that there is room left at the end of

the first 16K block for storing video display information. However, a long

program can consume all of the memory from location 2048 to 16383. In this

case, it is possible to tell the VIC chip to get its video information from a

different 16K block of memory. Since this introduction is going to try to keep

things simple, the topic of switching the video information to locations other
than 0 to 16383 is going to be avoided.

How Do I Talk to VIC?

The BASIC words needed for altering the contents of the Video Interface

Controller chip are PEEK, POKE, AND, OR, and NOT. Unless you have been

programming for a while, these may be unfamiliar to you.

PEEK is used for looking at the contents of a specific memory location.

Try this:

PRINT PEEK(53E7E)

The computer responds by PRINTing the number 21. The contents of

memory location 53272 control where the character set is located. Switch to

the other built-in character set by pressing the COMMODORE key while

holding the SHIFT key down. PEEK at location 53272 again. There's a dif

ferent number in there now. The computer is getting the characters from a

different section of memory.

POKE is used for putting numbers into specific memory locations. An

other way of changing the character set is with the POKE command.

POKE 53572, El

Which character set is the computer using? Change the character set

again with

POKE 53E7E, E3

Only whole numbers between 0 and 255 can be POKEd into memory

locations. Any other will produce an ILLEGAL QUANTITY ERROR message.

Unfortunately, the explanation of the words AND, OR, and NOT is not

as straightforward as that for PEEK and POKE. These words are called logical

operators which, in graphics, are use;d for turning on and off specific switches,

or bits, without changing any of the other bits. Let's look at how they are

used.

OR is used for setting bits. For example, to turn on bit 1 of location

53272 without affecting any of the other bits, we use this command:

POKE 53E7E, PEEK(53E7S) OR S

PEEK gets the character stored at location 53272. The number following

OR determines which bits are set. OR 2 sets bit 1 in the binary number to

one. POKE puts the new number back into location 53272.

212 Appendix 2

SWITCH

ON/OFF

NUMBER

7

0

128

6

0

64

5

0

32

4

0

16

3

0

8

2

0

4

1

1

2

0

0

1

That's the number 2, above. Since the only "on" switch is number 2, it

sets that bit in any number it is used with. More than one bit can be set at

a time. For example, OR 129 will set both bit 7 and bit 0 of a byte to l's.

SWITCH

ON/OFF

NUMBER

7

1

128

6

0

64

5

0

32

4

0

16

3

0

8

2

0

4

1

0

2

0

1

1

Table 1 can be used for determining the decimal number that follows

OR sets specific bits.

Bits are cleared using a combination of the AND and NOT commands.

For example, to clear bit 1 of location 53272, enter the command

POKE 53E7E, PEEK(5327E) fiND NOT E

The PEEK command gets the character. Bit 1 is cleared with the AND NOT

2 command, and the new character is put back into location 53272.

Sprites

One of the most exciting features of the Commodore 64 is its sprite

graphics. Sprites are pictures you create which the computer treats sepa

rately from the rest of its graphics. These little pictures are defined in 63

bytes of memory and can be moved around the video screen with BASIC

programming commands. By placing numbers into specific memory loca

tions in the VIC chip, up to eight objects can be made to appear and disappear,

change color and size, and change shape and location. This makes it possible

to get smooth and impressive animation in a BASIC program.

A sprite picture is defined by the contents of a block of 63 memory

locations. The first row of the sprite is defined by the contents of the first

three memory locations, the second row by the contents of the next three

memory locations, and so on. A sprite has 21 rows. Since each memory

location controls eight pixels, and a sprite row contains 24 pixels, the reso

lution of a sprite is 24 dots across by 21 dots deep. Figure 2 shows the

arrangement of characters, or bytes, in the memory locations.

BYTE 1 BYTE 2 BYTE 3

BYTE 4 BYTE 5 BYTE 6

BYTE 7 BYTE 8 BYTE 9

BYTE 55 BYTE 56 BYTE 57

BYTE 58 BYTE 59 BYTE 60

BYTE 61 BYTE 62 BYTE 63

Figure 2. Memory Map of Sprite.

Sprites 213

The way that sprites are used in a program can be broken down into

several steps.

1. Design a sprite picture.

2. Convert the sprite picture into numbers.

3. Store the numbers in the computer's memory.

4. Tell the computer where the sprite picture numbers are stored.

5. Define the color of the sprite.

6. Tell the computer where the sprite should be on the screen.

7. Turn on the sprite.

How do you go about determining which numbers are required to pro

duce a desired sprite image? First, you need the proper tools: a sheet of graph

paper, a pencil, and an eraser—a BIG eraser. Graph paper with eight to ten

squares per inch is a good size because there is enough room to write numbers

between the lines. Next, outline an area 24 squares horizontally and 21 squares

vertically on the graph paper. The 504 squares within the outlined area

represent the 504 pixels (63 bytes) that make up the sprite image.

Create the sprite picture by filling in the squares. Usually there will be

lots of redrawing, so mark lightly at first. After you are satisfied with the

image, you are ready to figure out the numbers the computer will need to

display the sprite. The grid is divided into three vertical columns of eight

squares each. The columns correspond to the columns of bytes in Figure 2.

The binary numbers of each set of eight pixels are found by substituting 1 's

for filled squares and 0's for empty squares. You can look up the decimal

numbers in Table 1.

A specific example of creating a sprite from numbers is illustrated with

the horse-shaped sprite in Figure 3. An asterisk represents an "on" pixel and

a period represents an "off" pixel.

0,

0,

0,

0,

0,

0,

0,

0, 0

0, 0

0, 12

0, 62

0, 126

0, 255

1, 251

0, 127, 241

3, 255, 240

3, 255, 240

4, 255, 240

0, 255, 240

0, 224, 60

1, 96, 20

2, 192,

2, 128,

2, 128,

12, 128,

0, 128,

0, 192,

0, 64,

10

10

4

2

0

0

0

**

**

*

*

*.

*.

*.

**

*

.**

**

*

*

*

*

** #

*

**

#******

***** **

**** m m #*

****....

****....
****# #m m

m#****# m

* *

*. .

*.

Figure 3. Horse Sprite.

214 Appendix 2

If you look closely and study the example, you'll see that the numbers

in the horse sprite do indeed describe the picture. For example, the last

memory location in the third row shows that bit 2 and bit 3 are on and the

rest of the bits are off. This corresponds to decimal numbers eight and four

which add up to twelve.

Now we've got to find 63 memory locations in the computer's memory

where the sprite data can be stored. The VIC chip divides the 16K graphics

memory block into 256 sprite memory blocks. The blocks actually contain

64 locations because it is easier for the computer to think of them that way.

The last memory location in a sprite data block is never used. These sprite

blocks are numbered 0 to 255. You must be careful that none of the blocks

overlap other graphics data that you'll learn about, like screens, character

sets, and bit maps.

The number of the first memory location in any sprite block is always

a multiple of the number 64. (Locations 64, 128,192, etc.) If you are not using

more than three sprites, a convenient place to store sprite pictures is in an

area used by the cassette recorder, called the cassette buffer. It is located in

memory locations 828 to 1023. The sprite blocks in this buffer are called

number 13 (locations 832 to 895), number 14 (locations 896 to 959), and

number 15 (locations 960 to 1023).

This limitation of three sprite data blocks does not mean that the number

of sprites is limited to three. There can still be up to eight sprites, but only

three different sprite shapes. If more than three different sprite shapes are

used in a program, it is necessary to move special pointers and reserve RAM

space at the end of the graphics block, or move the place where BASIC

programs are stored. We'll leave that for now, and take it up again later,

when we talk about programmable characters and bit maps.

The next step after designing the sprite and deciding where to place it

in memory is to write a few program lines that READ and store the DATA

in the selected locations. These lines will store the numbers for the horse

sprite from the DATA statements into sprite block 13.

1DD READ SB: IF SB<D THEN 1DDD

11D SS = SB*t4

1E0 FOR I = D TO bE: READ SD

130 POKE SS + I, SD: NEXT I

14D GOTO 1DD

15D DATA 13

lbDDATAD, D, 0, D, D, 0, D, D, IE

17D DATA D, D, bE, D, D, lEb, D, D, E55

iflD DATA D, 1, E51, 1, 1E7, E41, 3, E55, E4 0

1R0DATA3, E55, E4D, A, E55, E55, D, E55, E4D

EDD DATA D, 224, bD, 1, Rb, ED, E, 1R2, ID

E10DATAE, lEfl, ID, E, lEfl, A, IE, lEfl, E

EEODATAD, lEfl, D, D, IRE, D, D, b4, D

Sprites 215

DATA -1

1DDD REM: START PROGRAM

Line 100 READs the first DATA statement. This is the sprite block number

and is used to calculate the number of its first memory location (line 110).

Lines 120 and 130 READ the next 63 numbers from the DATA statements

and store them in 63 consecutive memory locations, starting at the location

calculated in statement 110, location 832.

After 63 numbers are READ, the computer is told by line 140 to go back

to line 100 where it READs the number in the DATA statement following the

sprite data. If this is another sprite block number, the program calculates a

starting location for another sprite data block. It then READs and stores the

next 63 numbers in that data block. If the number statement 100 READs is

a negative number, the program branches to the next part of the program.

The negative number is a way to tell the program there is no more sprite

data to READ.

The VIC chip has to know which data block to use for drawing a sprite.

The Commodore 64 uses the last eight memory locations of screen RAM

memory as pointers to the sprite blocks. The sprite block pointers for sprites

0 to 7 are locations 2040 to 2047, respectively. Continuing with the horse

sprite program, sprites 0-3 can be told to appear as horses with the state

ments

1D1D FOR I = D TO 3

1DED POKE 2D4D + I, 13: NEXT I

If you notice, we can have more than one sprite, even though only one

sprite picture is stored in memory.

The colors of the horses are defined by POKEing in numbers into loca

tions 53287 to 53294. These control the colors of the eight sprites numbered

0 to 7.

1D30 POKE 53267, D: REM SPRITE D - BLACK

1D4D POKE 53533, 1: REM SPRITE 1 - WHITE

1D5D POKE S32flq, *\: REM SPRITE 5 - BROWN

IDbD POKE 53EqD, IE: REM SPRITE 3 - MED GRAY

Eight sprites numbered 0 to 7 are turned on or off by setting (l's) or

clearing (0's) the corresponding bits in location 53269. Bit 0 turns on sprite

0, bit 1 turns on sprite 1, etc. For example, to turn on sprite 1, the number

2 (00000010) is placed in location 53269. Table 1 is again useful for deter

mining the decimal number to be POKEd in location 53269. Up to eight

sprites can be turned on at the same time. Here's what you'd do to turn on

four sprites:

1D7D POKE 535^, 15: REM TURN ON SPRITES D - 3

The most complicated aspect of using the sprites is placing them at

specific locations on the screen. Each sprite uses two memory locations plus

part of a third memory location to define its position on the display. Com

plicating things even more, the video "map" on which the sprites are dis-

216 Appendix 2

played is larger than the screen! (This way, sprites can be smoothly moved

onto the screen from the edges, behind the screen border.)

The upper left corner of a visual sprite block is used for its position on

the screen. To have a full sprite appear on the screen, the vertical position

must be 50 or greater but not greater than 229. The horizontal position

number must be 24 or greater but not greater than 320. The VIC registers

which define the positions are given in Table 2.

TABLE 2: Sprite Position Registers

Sprite

0

1

2

3

4

5

6

7

Vertical Position

53249

53251

53253

53255

53257

53259

53261

53263

Horizontal Position

53248 + bit 0 of 53264

53250 4- bit 1 of 53264

53252 + bit 2 of 53264

53254 + bit 3 of 53264

53256 + bit 4 of 53264

53258 + bit 5 of 53264

53260 + bit 6 of 53264

53262 + bit 7 of 53264

Since the vertical position is never greater than 255 only one register

per sprite is needed for this. However, the horizontal position does exceed

255 and a second memory location is needed to represent numbers greater

than 255. The extra number is never going to be more than 1, so bits in

memory location 53264 are used to indicate that 256 needs to be added to

the number in a sprite's horizontal position memory location. This gets tricky.

By using the extra bit, numbers for the horizontal position can be as large

as 511. (You won't see the sprite if the horizontal position number is more

than 344, though.) To remove some of the confusion, the horizontal positions

of the sprites in our first example will not be greater than 255. Add the

following commands to the program to position the horses around the screen.

IDflD POKE 5354fl, 15: POKE 5354R, bD: REM SPRITE D

POSITION

lD^D POKE 53550, ibD: POKE 53551, 15D: REM SPRITE 1

POSITION

HDD POKE 53555, 555: POKE 53553, tt<=l: REM SPRITE 5

POSITION

HID POKE 53554, 1DD: POKE 53555, 535: REM SPRITE 3

POSITION

115D POKE 535fll, 13: REM LIGHT GREEN SCREEN

113D PRINT »[CLR]»

The program is now ready to run. Part of a black horse will appear at

the left edge of the screen near the top, a white horse will be near the center

of the screen, a brown horse will be near the bottom right, and part of a gray

horse will be on the bottom edge. Try modifying the program by changing

the colors and positions of the sprites. Since the program is using only one

register for the horizontal position, none of the sprites is on the right third

Sprites 217

of the screen. Placing sprites in this area will be discussed and demonstrated

later.

An interesting experiment is to position the sprites so that they overlap

one another by various amounts. Notice that if sprite 0, the black horse,

overlaps any of the other sprites, it is sprite 0 which is seen in its entirety.

Similarly, sprite 1, the white horse, has priority over sprites 2-7. This ranking

continues until sprite 7 which appears behind all the other sprites.

Try listing the program while the sprites are still on the screen. Notice

that the characters appear behind the sprites. The priority of the sprites

relative to the characters (or foreground on a bit map) is determined by the

contents of location 53275. This is another of those registers where each bit

selects the mode of the corresponding sprite. If a bit is set to 1, the corre

sponding sprite will appear behind characters. A clear bit assigns the sprite

priority over characters. Enter POKE 53275, 15. Now all the sprites appear

in back of the characters of the listing. If the value POKEd is 3, sprites 0 and

1 appear behind the characters and sprites 2 and 3 appear in front of the

characters.

If there is a conflict of priorities, the sprite over sprite priority takes

precedence. For example, if sprite 1 is defined as having priority over char

acters and sprite 0 is defined to appear behind characters, an overlap of all

three will result in the characters appearing in front of sprite 0. If sprite 0

is moved away, the characters will disappear, leaving sprite 1. If sprite 1 is

now moved away, the characters will reappear.

The dimensions of the sprites can be expanded both horizontally and

vertically. A bit set to 1 in location 53271 expands the corresponding sprite

vertically. A bit set to 1 in location 53277 expands the corresponding sprite

horizontally. Try the following experiment. Modify statements 1080, 1090,

1100, 1110 in the horse sprite program.

IDflD POKE 5324fi, 3D: POKE 5324R, 7D: REM SPRITE D

POSITION

1DRD POKE 5325D, 2DD: POKE 53251, 7D: REM SPRITE 1

POSITION

HDD POKE 53252, 3D: POKE 53553, 17D: REM SPRITE 2

POSITION

HID POKE 53254, 2DD: POKE 53255, 17D: REM SPRITE 3

POSITION

RUN the program and the four horses appear on the screen. In the direct

mode enter POKE 53271, 10: POKE 53277, 12. The sprites will change in

appearance. Sprite 0 is unchanged from before, sprite 1 is doubled in height,

sprite 2 is doubled in width, and sprite 3 is doubled in both width and height.

So far we have kept things simple by not using a horizontal position

greater than 255. However, after you start to use sprites you will not want

to be limited to this range. The following program demonstrates how to move

a sprite beyond the 255 limit. It also demonstrates how animation can be

achieved by changing the shape of a sprite as it moves across the screen. The

program defines eight sprite shapes, an ordered set of views of a galloping

218 Appendix 2

horse. Each time the sprite is moved, sprite 0 data block pointer, memory

location 2040, is changed. The program tests to see if the last data block is

being used. If it is, sprite 0 data block pointer is initialized to the first block

of the set.

To move a sprite beyond the 255th horizontal position on the screen

requires the use of memory location 53264. This location keeps track of which

sprites are displayed on the right-hand portion of the screen. If the bit cor

responding to a displayed sprite is one, then the computer adds 256 to the

number in the sprite's horizontal position memory location and uses the

resulting number to position the sprite on the screen. If the entire horizontal

range is going to be used, a program will have to make sure the bit in location

53264 is zero if the horizontal position is less than 256, and one if the hori

zontal position is 256 or greater. Statements 1090 to 1100 are used for po

sitioning sprite 0.

Let us examine in detail how sprite 0 is positioned on the screen. The

vertical position (memory location 53249) is kept constant. The variable X

corresponds to the horizontal position. In statement 1090, the horizontal

position is ANDed with 255 and placed in location 53248. The AND 255

adjusts the horizontal position value so that the number placed in location

is between 0 and 255. Attempting to place a number outside this range in a

memory location causes the computer to respond with an error message. If

the horizontal position is less than 256, the result of X AND 255 is equal to

X. If the horizontal position is greater than 256, the result of X AND 255 is

equal to 256-X. The program checks to see if the horizontal position is greater

than 255. If it is, bit 0 is set to one in location 53264 and the program skips

to the next program statement. The next statement (statement 1100) is carried

Sprites 219

out if the horizontal position of the sprite is less than 256. This statement

clears bit 0 of location 53264 to zero.

"GftLLOP"

10 POKE 52,62:POKE56,62:CLR: REM MOVE TOP OF BASIC

20 READ SB: IF SB<0 THEN 1000: REM READ SPRITE DATA LOCATION

30 SS=SB*64

40 FOR I = 0 TO 62: READ SD

50 POKE SS+I, SD

60 NEXT I

70 GOTO 20

100 DATA 248,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0

110 DATA 30, 0, 0, 62, 0,124,255, 1,255,243, 3,255,240, 6,255,240, 12

120 DATA255,224, 0,239,224, 1,231,192, 1,193,192, 2,129, 64, 2,130, 64

130 DATA 4,140, 64, 0, 0, 64, 0, 0, 64, 0, 0, 32,249, 0, 0, 0, 0

140 DATA 0, 0, 0, 0, 96, 0, 0,240, 0, 1,240, 0, 1,248, 0,255,200

150 DATA 3,255,192, 2,255,128, 4,255,128, 12,255,128, 8,127, 0, 0, 55

160 DATA128, 0, 51, 64, 0, 51, 32, 0, 49, 64, 0, 31,192, 0, 12, 0, 0

171 DATA 8, 0, 0, 4, 0, 0, 0, 0,250, 0, 0, 0, 0, 0, 0, 0, 0

180 DATA 96, 0, 0,240, 0, 1,240, 0, 1,248, 0,199,200, 1,255,128, 7

190 DATA255,128, 15,255,128, 25,255,128, 49,255,128, 1,223,192, 0,194, 64

200 DATA 0,193, 64, 0,229, 64, 0,147, 64, 0,136, 64, 0, 68, 0, 0, 64

210 DATA 0, 0, 32, 0,251, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0/ 30

220 DATA 0f 0, 62, 0, 0,127, 0, 0,251, 0, 63,249, 1,255,240, 3,255

230 DATA240, 7,127,240, 4,127,240, 0,115,248, 0,240, 8, 0,176, 8, 1

240 DATA160, 12, 1, 32, 10, 1, 32, 1, 1, 16, 0, 1, 16, 0, 0,136, 0

250 DATA252, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 62, 0, 0,126, 0

260 DATA 0,254, 0, 1,251, 0,127,241, 3,255,240, 3,255,240, 4,255,240

270 DATA 0,255,240, 0,224, 60, 1, 96, 20, 2,192, 18, 2,128, 10, 2,128

280 DATA 10, 12,128, 4, 0,128, 2, 0,192, 0, 0, 64, 0,253, 0, 0, 0

290 DATA 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0,126, 0, 0

300 DATA254, 0,115,251, 3,255,243, 6,255,240, 12,255,240, 0,255,224, 1

310 DATA255,224, 3,193,240, 7,128, 72, 31, 0, 68, 2, 0, 66, 2, 0, 33

220 Appendix 2

320 DATA 2, 0, 32, 2, 0, 32, 2, 0, 16,254, 0, 0, 0, 0, 0, 0, 0

330 DATA 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 62, 0, 0,126, 0,255,251

340 DATA 3,255,241, 6,255,240, 12,255,240, 0,255,224, 1,199,224, 3,193

350 DATA240, 3, 0,144, 14, 0,136, 2, 0,132, 4, 0,130, 12, 1, 1, 0

360 DATA 1, 0, 0, 0,128,255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

370 DATA 12, 0, 0, 28, 0, 0, 62, 0,120,254, 3,255,247, 6,255,241, 12

380 DATA255,224, 0,255,224, 1,255,224, 1,195,224, 3, 1, 96, 2, 1, 32

390 DATA 4, 2, 32, 8, 2, 16, 0, 4, 16, 0, 4, 16, 0, 4, 8, 0, 4

400 DATA 8,-1

1000 PRINT"[CLR]»

1010 POKE 53287, 9: REM SPRITE0 - BROWN

1020 POKE 53269, 1: REM ENABLE SPRITE0

1030 POKE 53249, 150: REM SPRITE0 - Y POSITION

1040 POKE 53277, 1: REM DOUBLE WIDTH SPRITE

1050 POKE 53281, 13: REM LIGHT GREEN SCREEN

1060 SD=248: POKE 2040, SD: REM SELECT BLOCK

1070 FOR X= 0 TO 345 STEP 6: REM MOVE ACROSS SCREEN

1080 FOR T = 0 TO 50: NEXT T: REM DELAY LOOP

1090 POKE 53248, X AND 255: IF X>255 THEN POKE 53264, 1: GOTO 1110

1100 POKE 53264, 0

1110 SD = SD+1: IF SD=256 THEN SD=248: REM CHANGE SHAPE

1120 POKE 2040, SD

1130 NEXT X

1140 GOTO 1070

Summary of Sprite Registers

The sprite registers can be divided into two types. The first type is the

register which stores information for only one sprite (one sprite/register).

These are listed in Table 3.

Summary of Sprite Registers 221

TABLE 3: Eight-Bit Sprite Registers

Sprite

0

1

2

3

4

5

6

7

Horizontal Position

(Bits 0-7)

53248

53250

53252

53254

53256

53258

53260

53262

Vertical Position

53249

53251

53253

53255

53257

53259

53261

53263

Color

53287

53288

53289

53290

53291

53292

53293

53294

The second type uses one register to store information for all eight sprites

(one sprite/bit). Each bit controls the mode of the corresponding sprite. These

registers are listed in Table 4.

TABLE 4: One-Bit Sprite Registers

Register Function

53264 Horizontal position greater than 255

53269 Turn on and off sprites

53271 Vertical doubling

53275 Priority over characters

53277 Horizontal doubling

A selected bit is set to 1 by ORing the existing value in a register with the

appropriate number. A bit is cleared to 0 by ANDing the existing value with

the complement of the number used to set the bit. The general form of the

statement to set a bit is

POKE [location] OR BE

The general form to clear a bit is

POKE [location], PEEK ([location]) AND NOT BE

In these statements, [location] refers to the one bit sprite register and B2

depends on the sprite number (see Figure 1).

Designing and entering sprites can become quite laborious. A sprite ed

itor program can eliminate much of the drudgery while giving the user direct

visual feedback as the sprite is being created. The following program is a

sprite editor that allows you to create a sprite, see how it looks on the screen,

and then list the commands for creating the sprite in a program. The program

divides the video display into three areas. The large 24 by 21 character grid

is for editing the sprite. As the sprite is created, it will appear in an outlined

area in the upper right of the screen. Expanded sprites are displayed in an

outlined area in the lower right. The cursor mode is indicated by a letter. In

the drawing mode, D, pixels are turned on wherever the cursor moves. In

the erase mode, E, pixels are turned off wherever the cursor moves. In the

222 Appendix 2

normal mode, N, cursor movement has no effect on the pixels. After a sprite

has been created, the commands and DATA statements that would create

the sprite in a program can be listed to the screen or to a printer. The sprite

editor commands are listed in Table 5.

TABLE 5: Sprite Editor Commands

Key Function

* Turn on pixel at cursor

space Turn off pixel at cursor

cursor left Move cursor left

cursor right Move cursor right

cursor up Move cursor up

cursor down Move cursor down

return Move cursor to left edge

home Move cursor to upper left corner

clear Clear screen and home cursor

X Expand sprite horizontally

Y Expand sprite vertically

B Expand sprite both ways

L List commands

Fl Select background color

F3 Select sprite color

F7 Select cursor mode

Q Quit program

"SPRITE"

5 CS=2:BG=1:PL=0:REM WHITE BACKGROUND, RED SPRITE

7 PM(0)=14:PM(1)=4:PM(2)=5

10 POKE 53280,6:POKE53281,1:REM BLUE BORDER, WHITE SCREEN

20 SC=1024:SP=832:CR=55296:REM SCREEN AND COLOR RAM

30 REM COLOR RAM TO GIVE CYAN POKED CHARACTERS

40 PRINT"[CLR]":FOR I=0TO999:POKECR+I,3:NEXT I

50 PRINT"[HOME][BLU][RVS ON] SPRITE EDITOR BY PAUL SCHATZ [RVS OFF]1

60 REM OUTLINE WORKING AREA

70 POKE SC+81,112:POKE SC+106,110:POKE SC+961,109:POKE SC+986,125

80 FOR I=0TO23:POKE SC+82+I,114:POKESC+962+I,113:NEXT I

90 FOR I=0TO20:POKE SC+121+(40*1),107:POKE SC+146+(40*I),115:NEXT I

100 REM COLOR WORKING AREA RED

110 FOR I=0TO20:FOR J=0TO23:POKE CR+122+(40*1)+J,2:NEXT J,I

115 GOSUB1700:REM COLOR SPRITE AREAS

120 REM OUTLINE FOR SPRITE

130 POKE SC+110,112:POKE SC+115,110:POKE SC+270,109:POKE SC+275,125

140 FOR I=0TO3:POKE SC+lll+I,64:POKE SC+271+I,64 :NEXTI

150 FORI=0TO2: POKE SC+150+(40*1),93:POKE SC+155+(40*1),93:NEXT I

Summary of Sprite Registers 223

160 FORI=0TO2:FORJ=0TO3:POKESC+151+(40*I)+J,160:NEXTJ,I

170 PRINT"[HOME][CRSR DOWN][CRSR DOWN][28 CRSR RT]S[CRSR DOWN]

[CRSR LEFT]P [CRSR DOWN][CRSR LEFT]R[CRSR DOWN][CRSR LEFT]I

[CRSR DOWN][CRSR LEFT]T[CRSR DOWN][CRSR LEFT]E"

200 REM OUTLINE FOR EXPANSIONS

210 POKE SC+710,112:POKE SC+718,110:POKE SC+990,109:POKE SC+998,125

220 FOR I=0TO6:POKE SC+711+I,64:POKE SC+991+I,64:NEXTI

230 FOR I=0TO5:POKE SC+750+(40*1),93:POKE SC+758+(40*1),93:NEXT I

2 40 FORI=0TO5:FORJ=0TO6:POKESC+751+(40*I) +J,160:NEXTJ,I

250 PRINT"[HOME] [16 CRSR DN][28 CRSR RT] " ;

260 PRINT"[CRSR DOWN]E[CRSR DOWN][CRSR LEFT]X[CRSR DOWN][CRSR LEFT]P

[CRSR DOWN] [CRSR LEFT]A[CRSR DOWN][CRSR LEFT]N[CRSR DOWN][CRSR LEFT]D

[CRSR DOWN][CRSR LEFT]E[CRSR DOWN][CRSR LEFT]D[HOME]"

300 REM COMMAND TABLE

305 PRINT"[HOME][7 CRSR DN][30 CRSR RT]CURSOR:":PRINT

310 PRINT"[28 CRSR RT]COMMANDS:"

320 PRINT"[29 CRSR RT][LT RED]L[BLU]1ST"

330 PRINT"[29 CRSR RT][LT RED]Q[BLU]UIT"

340 PRINT"[29 CRSR RT]EXPAND [LT RED]X[BLU]"

350 PRINT" [29 CRSR RT]EXPAND [LT RED]Y[BLU]"

360 PRINT"[29 CRSR RT]EXPAND [LT RED]B[BLU]OTH"

370 PRINT"[CRSR UP][29 CRSR RT][LT RED]F1 F3 F7[BLU]"

380 POKESC+318,PM(PL):POKECR+318,10

400 REM MOVE SPRITE DATA TO SCREEN

410 GOSUB1000

420 REM PUT SPRITE IN BOX

430 GOSUB1200

440 REM HOME AND TURN ON CURSOR

450 PRINT"[RED][HOME][CRSR DOWN][CRSR DOWN]":POKE211,2:POKE204,0

500 REM GET COMMAND

510 GETA$:IFA$=""THEN510

520 IF A$="Q"THENPOKE53269,0:PRINT"[CLR]":END

530 IFA$="L"THEN GOSUB2000:GOTO40

540 IFA$="X"THEN GOSUB1400

550 IFA$="Y"THEN GOSUB1500

560 IFA$="B"THEN GOSUB1600

570 IFA$="[HOME]"THEN GOSUB1300:GOTO450

580 IFA$="[CLR]"THEN GOSUB1100:GOSUB900:GOTO450

590 IFA$="[CRSR UP]"THEN GOSUB3000

600 IFA$="[CRSR DOWN]"THEN GOSUB3100

224 Appendix 2

610 IFA$="[CRSR LEFT]"THEN GOSUB3200

620 IFA$=n[C-R]"THEN GOSUB3300

630 IFA$=CHR$(13)THEN GOSUB3400

640 IFA$=" "THEN GOSUB3500:GOSUB3300

650 IFA$="*"THEN GOSUB3600:GOSUB3300

660 IFA$="[Fl]°THENBG=BG+1:GOSUB1700

670 IFA$="[F3]"THENCS=CS+1:GOSUB1800

680 IFA$="[F7]"THENPL=PL+1:IFPL>2THENPL=0

690 POKESC+318,PM(PL)

700 GOTO510

900 REM CLEAR SCREEN

905 POKE 204,1:REM TURN OFF CURSOR

910 FOR I=0TO20:FOR J=0TO23:POKE SC+122+(40*I)+J,32:NEXT JrI

920 RETURN

1000 REM SUBROUTINE - MOVE SPRITE TO SCREEN

1005 POKE 204,1:REM TURN OFF CURSOR

1010 FOR Io0TO20:FORJ»0TO2:FORK»7TO0STEP-l

1020 CH°32:IF(PEEK(SP+(3*I)+J)AND(2[UP ARROW]K))THEN CH=204

1030 POKE(SC+122+(40*I)+(8*J)+(7-K)),CH

1040 NEXT K,J,I:RETURN

1100 REM SUBROUTINE - CLEAR SPRITE

1110 FOR I»0TO62:POKE832+I,0:NEXTI:RETURN

1200 REM SUBROUTINE - SPRITE TO SCREEN

1210 POKE 2040,13:REM SPRITE DATA IN LOCATIONS 832-894 (64*13=832)

1220 POKE 53248,20:POKE53264,1:REM X COORDINATE OF SPRITE 0

1230 POKE53249,75:REM Y COORDINATE OF SPRITE 0

1240 POKE 53287,CS:REM COLOR OF SPRITE 0

1250 POKE 53269,1:REM ENABLE SPRITE 0

1260 RETURN

1300 REM MOVE CURSOR REPLACE CHARACTER

1310 LO=SC+(40*PEEK(214))+PEEK(211):REM GET POSITION

1320 CH=32:POKE204,1:REM TURN OFF CURSOR

1330 IF(PEEK(LO)AND127)O32THENCH=204

1340 POKELO,CH:RETURN

1400 REM EXPAND X

1410 POKE2041,13: REM SPRITE DATA 832-894

1420 POKE53277,2:REM EXPAND X ON SPRITE 1

1430 POKE53271,0:REM NO Y EXPANSION

Summary of Sprite Registers 225

1440 POKE53250,20:POKE53264,PEEK(53264)OR2:REM X COORDINATE OF SPRITE 1

1450 POKE53251,197:REM Y COORDINATE OF SPRITE 1

1460 POKE53288,CS:REM COLOR OF SPRITE 1

1470 POKE53269,3:REM ENABLE SPRITE 0 AND SPRITE 1 (2+1-3)

1480 RETURN

1500 REM EXPAND Y

1510 POKE2041,13: REM SPRITE DATA 832-894

1520 POKE53277,0:REM NO X EXPANSION

1530 POKE53271,2:REM EXPAND Y ON SPRITE 1

1540 POKE53250,20:POKE53264,PEEK(53264)OR2:REM X COORDINATE OF SPRITE 1

1550 POKE53251,197:REM Y COORDINATE OF SPRITE 1

1560 POKE53288,CS:REM COLOR OF SPRITE 1

1570 POKE53269,3:REM ENABLE SPRITE 0 AND SPRITE 1 (2+1=3)

1580 RETURN

1600 REM EXPAND X AND Y

1610 POKE2041,13: REM SPRITE DATA 832-894

1620 POKE53277,2:REM EXPAND X ON SPRITE 1

1630 POKE53271,2:REM EXPAND Y ON SPRITE 1

1640 POKE53250,20:POKE53264,PEEK(53264)OR2:REM X COORDINATE OF SPRITE 1

1650 POKE53251,197:REM Y COORDINATE OF SPRITE 1

1660 POKE53288,CS:REM COLOR OF SPRITE 1

1670 POKE53269,3:REM ENABLE SPRITE 0 AND SPRITE 1 (2+1=3)

1680 RETURN

1700 REM COLOR BACKGROUND FOR SPRITE AREAS

1710 IFBG>15THENBG=0

1720 FORI=0TO2:FORJ=0TO3:POKECR+151+(40*I)+J,BG:NEXTJ,I

1730 FORI=0TO5:FORJ=0TO6:POKECR+751+(40*1)+J,BG:NEXTJ,I:RETURN

1800 REM COLOR SPRITES

1810 IFCS>15THENCS=0

1820 POKE53287,CS:POKE53288,CS:RETURN

2000 REM LIST ROUTINE

2010 POKE204,1:POKE53269,0:REM DISABLE SPRITE

2020 INPUT"[CLR][CRSR DOWN][BLU]WHICH SPRITE";S:IFS>7ORS<0THEN2020

2030 INPUT"WHICH DATA BLOCK" ;B

2040 INPUT"TO [RVS ON]P[RVS OFF]RINTER OR [RVS ON]S[RVS OFFJCREEN";

B$:PRINT"[CLR]"

2050 OD=3:IF B$="P"THENOD=4

2060 OPEN1,OD:IFOD=4THENGOSUB2500

2070 VC=53248:BP=2040

226 Appendix 2

2080 PRINT#1," 1000 POKE53269 , PEEK(53269) 0R";2[UP ARROWjS;

2085 PRINT#1,":REM ENABLE SPRITE";S;CHR$(13);

2090 PRINT#1," 1010 POKE";BP+S;",";B;

2095 PRINT#1,":REM SPRITE";S;"DATA AT";B*64;"TO";B*64+62;CHR$(13);

2100 PRINT#1," 1020 FOR 1= 0TO62: READ DT: POKE";B*64;"+I,Q: NEXT I";

CHR$(13);

2105 PRINT#1," 1030 IF ABS(X/256)THEN POKE 53264, PEEK(53264) OR";

2107 PRINT#1,2[UP ARROW]S;":X=X-256";CHR$(13);

2110 PRINT#1," 1040 POKE";VC+2*S;", X :REM X COORDINATE OF SPRITE";S;

CHR$(13);

2120 PRINT#1," 1050 POKE";VC+1+2*S;

2125 PRINT#1,", Y :REM Y COORDINATE OF SPRITE";S;CHR$(13);

2130 PRINT#1," 1060 POKE";53287+S;",";CS;":REM COLOR OF SPRITE";S;CHR$(13);

2140 PRINT#1," 1070 POKE 53277 , PEEK(53277) OR";2[UP ARROWJS;

2145 PRINT#1,":REM EXPAND X OF SPRITE";S;CHR$(13);

2150 PRINT#l,n 1080 POKE 53271 , PEEK(53271) OR";2[UP ARROWjS;

2155 PRINT#1,":REM EXPAND Y OF SPRITE";S;CHR$(13);

2160 IFOD«3THENPRINT#1,CHR$(13);M[RVS ON]PRESS ANY KEY TO CONTINUE[RVS OFF]"I

GOSUB2300

2170 FORI=0TO6

2180 PRINT#1,1090+I*10;"DATA»;

2190 FORJ=0TO7:PRINT#1,PEEK(SP+I*9+J);",";:NEXTJ

2200 PRINT#l,PEEK(SP+I*9+8);CHR$(13);:NEXTI

2210 PRINT#1:CLOSE1:PRINT:PRINT"[RVS ON]PRESS ANY KEY TO RETURN TO EDITOR

[RVS OFF]"

2300 GETC$:IFC$=""THEN2300

2310 RETURN

2500 REM SUBROUTINE - PRINT SPRITE IMAGE

2505 OPEN4,4,4

2510 PRINT#4,"SPRITE IMAGE";CHR$(13);CHR$(13);

2520 PRINT#4, " " ;CHR$ (13) ;

2530 FOR I = 0TO20:LN$=""

2540 FOR J=0TO2:FORK=7TO0STEP-1

2550 CA$=" ":IF(PEEK(SP+(3*I)+J)AND(2[UP ARROW]K))THENCA$=n*"

2560 LN$=LN$+CA$:NEXTK,J

2570 PRINT#4/".";LN$;n.M;CHR$(13);:NEXT I

2580 PRINT#4, " " ;CHR$ (13) ;

2585 PRINT#4,CHR$(13);CHR$(13);

2590 RETURN

3000 REM MOVE UP

Summary of Sprite Registers 227

3010 IF PEEK(214)<4THEN RETURN

3012 IFPL=2THENGOSUB3500

3014 IFPL-1THENGOSUB3600

3020 GOSUB 1300:CM=PEEK(211):RO=PEEK(209)-40

3025 IF RO<0THEN RO=256+RO:POKE210,PEEK(210)-1

3030 POKE209,RO:POKE211,CM:POKE204,0:REM MOVE CURSOR AND TURN ON FLASH

3040 POKE214,PEEK(214)-1:POKE201,PEEK(201)-1:RETURN

3100 REM MOVE DOWN

3110 IF PEEK(214)>22THEN RETURN

3112 IFPL=2THENGOSUB3500

3114 IFPL=1THENGOSUB3600

3120 GOSUB 1300:CM=PEEK(211):RO=PEEK(209)+40

3125 IF RO>255THEN RO=RO-256:POKE210,PEEK(210)+1

3130 POKE209,RO:POKE211,CM:POKE204,0:REM MOVE CURSOR AND TURN ON FLASH

3140 POKE214,PEEK(214)+1:POKE201,PEEK(201)+l:RETURN

3200 REM MOVE LEFT

3210 IF PEEK(211)<3THEN RETURN

3212 IFPL=2THENGOSUB3500

3214 IFPL=1THENGOSUB3600

3220 GOSUB 1300

3230 POKE211,PEEK(211)-1:POKE204,0:REM MOVE CURSOR AND TURN ON FLASH

3240 RETURN

3300 REM MOVE RIGHT

3310 IF PEEK(211)>24THEN RETURN

3312 IFPL=2THENGOSUB3500

3314 IFPL«1THENGOSUB3600

3320 GOSUB 1300

3330 POKE211,PEEK(211)+1:POKE204,0:REM MOVE CURSOR AND TURN ON FLASH

3340 RETURN

3400 REM RETURN

3410 GOSUB1300

3420 POKE211,2:POKE204,0

3430 RETURN

3500 REM CLEAR BIT

3510 LO=SC+(40*PEEK(214))+PEEK(211)

3520 POKELO,32

3530 J=INT((PEEK(211)-2)/8):K=9-PEEK(211)+(J*8)

228 Appendix 2

3540 I=PEEK(214)-3

3550 P0KE(SP+(3*I)+J),PEEK(SP+(3*1)+J)AND(255-(2[UP ARROW]K))

3570 RETURN

3600 REM SET BIT

3610 LO=SC+(40*PEEK(214))+PEEK(211)

3620 POKELO,204

3630 J=INT((PEEK(211)-2)/8):K-9-PEEK(211)+(J*8)

3640 I*PEEK(214)-3

3650 POKE(SP+(3*I)+J),PEEK(SP+(3*I)+J)OR(2[UP ARROW]K)

3670 RETURN

Characters

The Commodore 64 has two built-in sets of characters, each containing

256 characters. It is possible to alternate between the character sets by press

ing the shift key and the Commodore key simultaneously. When the Com

modore 64 is turned on, the upper case/graphics character set is used. The

alternate character set has lower and upper case letters. The character set

which is displayed is determined by the contents of bits 1-3 of register 53272.

Try this experiment. Turn on the computer and enter

PRINT PEEK(53272)

The value returned will be 21. Now press the shift and Commodore keys to

change to the other character set. PEEK location 53272 again. The value

returned will be 23.

to see what characters are included in each set, enter the following

program.

ID POKE 53561,0: REM WHITE SCREEN

ED SC=1024: CR=552flb: REM SCREEN AND COLOR RAM

LOCATIONS

3D PRINT"[CLR][BLK]»: REM CLEAR SCREEN

4D FOR I = D TO 255

5D POKE SC + fiD + 2*1,1: POKE CR + flD + 2*1, D: NEXT I

bD POKE 5327 2, 21: REM TURN ON GRAPHICS CHARACTER SET

7D PRINT»[HOME]GRAPHICS CHARACTER SET"

flD GET A$: IF A$ = '!" THEN flD

RD POKE 53272, 23: REM TURN ON U/L CASE CHARACTER SET

1DD PRINT»[HOME]U/L CASE CHARACTER SET"

11D GET A$: IF A$ = ••■• THEN 11D

12D GOTO tD

Characters 229

All 256 characters are displayed on the screen. Pressing any key toggles

between the two sets.

Besides using either of these character sets, you can define a completely

new character set. Thus, a personalized set of characters can be created for

foreign languages, animation, drafting, etc. The character descriptions of the

customized characters are stored in RAM. The amount of RAM required for

256 characters is 2048 locations. The contents of bits 1-3 of register 53272

point to the start of a 2K RAM block containing tjie character set. Bits 4-7

of 53272 point to the start of screen RAM, therefore it is important to change

bits 1-3 without altering the higher bits. This is accomplished with the state

ment

POKE 53E7E, (PEEK(53272) AND BAD) OR CS

The values for CS are given in Table 6. Values that result in conflicts with

BASIC or the operating system are not in the table.

TABLE 6: Character Set Pointer

Start of character set CS

4096

6144

8192

10240

12288

14336

(Graphics characters)

(Upper/lower case)

4

6

8

10

12

14

Notice that the descriptions of the built-in character sets are at locations

4096 and 6144. Because of the manner in which the Commodore 64 accesses

the character descriptions, these locations cannot be used for user defined

character storage. These RAM locations do not actually have the character

descriptions. Just before the computer is ready to display a character on the

screen, the computer switches on a ROM which the video chip thinks is

addressed at 4096. The ROM which contains the character descriptions is

actually located from 53248 to 57343.

To learn how to define a character set, it is useful to first examine how

a character is created. Each character in the Commodore 64 is a dot pattern

built on an 8 x 8 matrix. For example, character 0, the @, is a pattern of

pixels as shown in Figure 4.

60

102

110

110

96

98

60

0

. * *

* * .

* * •

* * •

* * • • •

* * • • •

. * * * *

* *

* *

* *

* *

Figure 4. Pixel pattern of CHR$(0) ("@").

230 Appendix 2

The * represents an on pixel and the • represents an off pixel. The com

puter stores this picture in eight consecutive memory locations. Each number

is a description of the dot pattern for a row, and the numbers are ordered

from the top row down. The numbers used to describe a row are derived

from the 8 bit binary representation of that number. The eight numbers to

describe @ are 60, 102, 110, 110, 96, 98, 60, and 0. These numbers are stored

in eight sequential memory locations. The description of character 1, the

letter A, is stored in the next eight memory locations. When the computer is

commanded to display character zero, the video display chip takes the eight

numbers from the memory locations assigned to character zero and recon

structs the @ on the screen. When commanded to display the letter A, the

second group of eight numbers is used.

The first step in defining a new character is to construct a dot picture

of it on an 8 x 8 matrix. Get out some graph paper and outline an area eight

squares by eight squares. Create a character by filling in the squares. Each

of the rows is translated into a binary number by substituting ones for filled

squares and zeroes for empty squares. The decimal number equivalents are

found in Table 1.

Once you are satisfied with the set of characters you have designed, you

are ready to begin programming. First, you must reserve the memory space

for the character set to protect it from being clobbered by the BASIC system.

This is accomplished by moving the end of memory and the beginning of

string pointers. Enter the statement

ID POKE52,5b:POKE5b,5b:CLR

The above statement will not allow BASIC to use the locations above 14336.

The character set, located in RAM locations 14336 to 16383, will not be

disturbed.

It is a good idea to move the characters from the character generator

ROM into the reserved space. This ensures that there will be a character

description for every character number. It is easiest to move down 256 con

tiguous characters. To allow the computer to access the memory locations

in the character ROM for anything other than displaying characters, it is

necessary to turn off the keyboard and switch on the character ROM. The

following code moves the entire graphics character set into a new location.

ID POKE52,5k:POKE5b,5k:CLH

ED POKE 5b334, PEEK(5b334) AND 254

3D POKE 1, PEEK(l) AND 251

AD FORI = D TO 2D47

5D POKE I + 1433b, PEEK(5324fl + I)

tD NEXTI

7D POKE 1, PEEK(l) OR A

flD POKE 5E.334, PEEK(5b334) OR 1

Statements 20 and 30 allow access to the character ROM locations. State

ments 70 and 80 restore the computer to its original state. The value of the

PEEK determines which characters are transferred. Table 7 shows which

groups of character descriptions start at different locations.

Characters 231

It is possible to selectively move in groups of characters or individual

characters. For example, the following code would build a character set such

that screen characters 0 to 127 are the upper/lower case characters, screen

characters 128 to 191 are the graphics characters, and screen characters 192

to 255 are the reverse field graphics characters.

ID POKE 55, 5b: POKE 5b, 5b: CLR

ED POKE 5b334, PEEK(5b334) AND 254

3D POKE 1, PEEK(l) AND E51

AD FORI=D TO 1DE3: POKE I + 1433b, PEEK(552qb + I) :

NEXT I

5D FORI = D TO 511: POKE I + 153bD, PEEK(53?bO + I):

NEXT I

bD FORI = D TO 511: POKE I + 15fl?2, PEEK(547fl4 + I):

NEXT I

70 POKE 1, PEEK(l) OR A

flD POKE 5b334, PEEK(5b334) OR 1

TABLE 7: Character ROM Locations

PEEK Character Set Transferred Screen Display Code

53248 + I Upper case letters 0- 63

53760 + I Graphic characters 64-127

54272 + I Reverse field upper case 128-191

54784 + I Reverse field graphics 192-255

55296 + I Lower case letters 0- 63

55808 + 1 Upper case letters 64-127

56320 + I Reverse field lower case 128-191

56832 + I Reverse field upper case 192-255

A convenient method for placing the description of custom characters into

the reserved RAM is to use a FOR/NEXT loop to READ DATA and to POKE

the values into the appropriate memory locations. The following BASIC code

accomplishes this.

RD READ CN: IF CN<D THEN 1DDD

1DD FOR I = DTO7: READ CD

11D POKE 1433b + fl*CN + I, CD: NEXT I

1ED GOTO RD

13DDAT&D, AD, 1b, 14b, E14, ESA, 23b, IRfl, D

1AU DATA etc.

qqqDATA-i

1DQDPOKE5357E, (PEEK(53E7E) ANDE4D) OR 14 : REM START

OF PROGRAM

Statement 90 READs the first number of the DATA statements. This is the

character number of the character to be defined. It also serves as a flag to

signal when there is no more DATA to be read. The last DATA statement

232 Appendix 2

contains a character number which is negative and the program branches

to a part of the program which utilizes the new characters. Statement 100

READs the next eight values in a DATA statement. In statement 110 the

character number, CN, and the row index, I, are used to calculate the memory

location where the row descriptor will be placed. Statement 120 sends the

program back to statement 90 where a new character number is read. State

ment 1000 is the start of the program which uses the new character set. The

character set pointer in location 53272 is reset at the start of the program.

There is an alternate method for defining characters that may be easier

to use because the input is closely related to the visual image. It is slower

and consumes more memory than the first method. It is most useful when

only a few characters are going to be redefined.

RD READ CN: IF CN<D THEN 1DDD

1DD FOR 1= D TO 7 : READ CD$

11D BY = 1433b 4- fl*CN + I: POKE BY,D

150 FOR J= D TO 7

13D IF MID$(CD$, J + l, 1)= •■» GOTO 15D

14D POKE BY, PEEK(BY) OR 2 (7-J)

15D NEXT J: NEXT I

ibD GOTO RD

17DDATAD

171

17E

173

174

175

17 b

177

17fl

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

ii * *

ii

ii*

ii**

*

* *

* **

»i*******

ii*** ***

ii**

ii

**

ii

ii

ii

ii

ii

»»

ii

ii

data -i

1DDD POKE 53E7E, (PEEK(5327E) AND E4D) OR 14

There are some limitations inherent in the previous methods of incor

porating new characters. The most serious limitation is the amount of mem

ory consumed with the character defining program and the associated DATA

statements. If only a few characters are redefined and the rest of the program

is fairly short, the amount of memory left may not be a constraint. However,

if a lot of characters are redefined or if the program using the character set

is sizeable, another method for READing in the character set will have to be

used. Even with a better method, any program with redefined characters

gobbles up 2048 bytes of the RAM area to store the characters.

The most straightforward solution to a memory squeeze is to divide the

program into two parts. The first program allocates space and sets up a new

Characters 233

character set. The second program, which uses the redefined character set,

is then loaded in to the computer.

The following program loads in a character set which replaces the letters

A to Z of the graphics character set with the corresponding Gothic style

letters. Notice that besides replacing characters 1 through 26, the characters

129 through 154 are replaced. These are the reverse field characters for A to

Z.

€6E $OCf>*€ CfifcRACCER SEC fi&5 BEE* LOWDED

"GOTHIC CHAR"

10 POKE52, 56: POKE56, 56:CLR: REM MOVE TOP OF BASIC

20 POKE 56334, PEEK(56334) AND 254

30 POKE 1, PEEK(l) AND 251

40 FOR I = 0 TO 511

50 POKE I + 14336, PEEK(53248 +1)

60 NEXT I: REM TRANSFER CHARACTER SET

7 0 POKE 1, PEEK(l) OR 4

80 POKE 56334, PEEK(56334) OR 1

90 READ CN: IF CN<0 THEN 1000

100 FOR 1= 0 TO 7: READ CD

110 POKE 14336 + 8 * CN + I, CD

120 POKE 14336 + 8 * (128 + CN) + I, 255-CD: NEXT I

130 GOTO 90: REM DEFINE NEW CHARACTERS

234 Appendix 2

140 POKE 56334, PEEK(56334) OR 1

150 READ CN: IF CN<0 THEN 1000

160 FOR 1= 0 TO 7: READ CD

170 POKE 14336 + 8 * CN + I, CD: POKE 14336 +8*NEXT I

180 GOTO 150: REM DEFINE NEW CHARACTERS

200 DATA 1, 48, 72, 20, 34, 62, 34, 65, 0

202 DATA 2, 92, 34, 66, 124, 66, 34, 92, 0

204 DATA 3, 28, 34, 84, 80, 80, 34, 28, 0

206 DATA 4, 88, 100, 66, 66, 66, 100, 88, 0

208 DATA 5, 92, 34, 64, 112, 64, 34, 92, 0

210 DATA 6, 92, 34, 32, 120, 32, 32, 64, 0

212 DATA 7, 28, 34, 64, 94, 98, 62, 2, 6

214 DATA 8, 28, 34, 32, 60, 34, 34, 36, 0

216 DATA 9, 2, 60, 72, 8, 10, 60, 64, 0

218 DATA 10, 1, 2, 2, 2, 34, 68, 56, 0

220 DATA 11, 66, 36, 40, 112, 40, 36, 66, 0

222 DATA 12, 24, 36, 32,. 32, 32, 33, 94, 0

224 DATA 13, 84, 42, 42, 106, 42, 42, 64, 0

2,26 DATA 14, 66, 50, 42, 106, 42, 42, 68, 0

228 DATA 15, 28, 34, 81, 81, 81, 34, 28, 0

230 DATA 16, 92, 34, 34, 124, 32, 32, 64, 0

232 DATA 17, 56, 84, 34, 2, 12, 26, 124, 0

234 DATA 18, 92, 34, 34, 120, 36, 34, 66, 0

236 DATA 19, 2, 60, 64, 60, 2, 60, 64, 0

238 DATA 20, 1, 126, 48, 80, 80, 33, 30, 0

240 DATA 21, 33, 82, 18, 18, 18, 18, 12, 0

242 DATA 22, 76, 178, 34, 34, 34, 20, 8, 0

244 DATA 23, 128, 92, 82, 82, 82, 84, 40, 0

246 DATA 24, 34, 84, 12, 8, 24, 37, 66, 0

248 DATA 25, 66, 164, 36, 36, 26, 66, 60, 0

250 DATA 26, 126, 2, 4, 8, 16, 32, 64, 126

990 DATA -1

Characters 235

1000 POKE 53272f (PEEK(53272)AND 240) OR 14

1010 POKE 53281,1: PRINT"[CLR]«

1020 PRINT"[BLK]THE GOTHIC CHARACTER SET HAS BEEN LOADED."

1030 NEW

By periodically changing the characters displayed on the screen, an il

lusion of motion can be created. The following short programs will dem

onstrate this. In the first example, the normal character set is used. Enter

and run the following program.

ID ID S$ = "[white] A. . ,
ii

1D5D PRINT"[clear]";S$;"[home]";

1D3D FOR I = D TO 3fl

1D4D PRINT "O[cursorleft]";

105D FOR T = D TO 1DD: NEXT T

IDbD PRINT " C[cursor left]" ;

1D7D FOR T = D TO 1DD: NEXT T

IDflD NEXT I

This program can be enhanced with custom characters. Add the following

statements to the beginning of the program.

ID POKE5S,5b:POKE5b,5k:CLR

5D POKE 5b334, PEEK(5b334) AND 254

236 Appendix 2

3D POKE 1, PEEK(l) AND 551

40 FORI=Q to 5047

50 POKE I + 1433b, PEEK(5354fl + I)

bO NEXTI

?D POKE 1, PEEK(l) OR 4

flO POKE Sb334, PEEK(5b334) OR 1

<=\Q READ CN: IF CN<0 THEN 1DDD

1DO FOR 1= D TO 7: READ CD$

110 BY = 1433b + fl*CN + I: POKE BY,0

150 FOR J= D TO 7

13D IF MID$(CD$, J + l, 1) = "" GOTO 15D

140 POKE BY, PEEK(BY) OR 5 f (7-J)

150 NEXT J: NEXT I

ibO GOTO RO

170 DATA 1: REM REDEFINE A

171 DATA " ***** ii

175 DATA "******* ■'

173 DATA »* * * »

174 DATA »* * * »

175 DATA ti******* »

17b DATA ii******* ii

177 DATA ii* * * * ii

176

iflO

Ifll

Ifl5

163

164

165

16b

167

166

iqo

iqi

IRS
1 Ql

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA
n 7\ rp7\

II

3:
ii

if

11

: REM REDEFINE C

ii****

ii**

M****

II

II

II

15: REM
ii

ii

ii)

II

II

II

II

II

II

II

II

REDEFINE 0
ii

ii

* ii

1C14 DATA ii******* ii

1R5 DATA ii******* ii

IRb DATA » ***** I'

1R7 DATA » *** "

iqfl DATA " "

500 DATA 4b: REM REDEFINE PERIOD

501 DATA » "

505 DATA •• "

503 DATA " "

504 DATA " ** "

505 DATA » ** "

Characters 237

EDb DATA " "

ED7 DATA » "

EDfl DATA " lf

1DDD POKE 53E7E,3D

1D1D S$ = "[white] A
H

1DED PRINT "[clear]'1; S$; "[home]" ;

1D3D FOR I = D TO 3fl

1D4D PRINT "O[cursor left]" ;

1D5D FOR T = D to 1DD: NEXT T

IDtD PRINT " C[cursor left]";

1D7D FOR T = D TO 1DD: NEXT T

IDflD NEXT I

Now RUN the program. Notice the difference the new characters make in

the program's visual appeal. To get back to the normal character set, enter

POKE 53E7E, El

Bit Map Graphics

The Commodore 64 is capable of displaying 64,000 dots on the screen.

It is a simple matter to confirm this by a calculation. As was mentioned in

the section on programmable characters, each character on the screen is

made up of dots in an 8 by 8 matrix. Since a row is 40 characters long and

there are 25 rows, the computer is displaying 320 dots in the horizontal

direction and 200 dots in the vertical direction. The state (off or on) of each

238 Appendix 2

dot on the screen corresponds to the status of a bit (0 or 1) in the computer's

memory. In the bit map mode, each dot on the screen can be individually

turned on and off. The display on the screen is an image of a section of the

computer's RAM. Since there are 64,000 dots on the screen and there are 8

bits in a byte, the bit map requires a block of 8,000 memory locations.

The memory locations are mapped on the screen in a manner similar to

the way the bytes which make up a character are mapped on the screen, in

sets of eight bytes arranged vertically. Figure 5 explains the arrangement

much better than is possible with words.

Character

Column

Row

0

1

Character rows

24

0

0

1

2

3

4

5

6

7

320

321

322

323

324

325

326

327

2-23

7680

7681

7682

7683

7684

7685

7686

7687

1

8

9

10

11

12

13

14

15

328

329

330

331

332

333

334

335

7688

7689

7690

7691

7692

7693

7694

7695

2

16

17

18

19

20

21

22

23

336

337

338

339

340

341

342

343

7696

7697

7698

7699

7700

7701

7702

7703

38

304

305

306

307

308

309

310

311

624

625

626

627

628

629

630

631

7984

7985

7986

7987

7988

7989

7990

7991

39

312

313

314

315

316

317

318

319

632

633

634

635

636

637

638

639

7992

7993

7994

7995

7996

7997

7998

7999

Vertical

Position

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

192

193

194

195

196

197

198

199

Horizon. 0-7 7-15 16-23 304-311 312-319

Figure 5: Arrangement of Bit Map.

If the horizontal and vertical positions of a pixel on the bit map are

designated as PX and PY, respectively, an equation to calculate the specific
memory location, ML, which contains the corresponding bit, can be derived.

The character row, RW, and character column, CL, of the memory location

are obtained by dividing the horizontal and vertical coordinates. The quo

tients are the character row and character column.

Bit Map Graphics 239

CL = INT(PX/fl)

RW = INT(PY/fl)

The first memory location in the character block of a specific row and

column, FML, is defined by the following relationship.

FML = fl*CL + 32D*RW

FML = fl*(CL + 4D*RW)

An offset into the character block has to be added to the first memory

location of the character block to obtain the location which contains the

designated pixel. The offset, OY, is the remainder when 8 is divided into PY.

The following relationship determines OY.

OY = PY - fl*INT(PY/fl)

OY = PY - fl*RW

The memory location which contains the pixel at (PX, PY) is equal to

the first memory location of the character block plus the offset. Substituting

for OY and collecting similar terms, we get

ML = fl*(CL + 4D*RW) + OY

ML = fl*(CL + 4D*RW) + PY -fl*RW

ML = fl*(CL + 3R*RW) + PY

Substituting for CL and RW, the relationship becomes

ML = fl*INT(PX/fl) + 3S*(INT(PY/fl)) + PY

This assumes a bit map starting at address 0. The location of the bit

map can vary depending on how it is set up. The address of the byte in the

bit map is determined by adding an offset equal to the starting address of

the bit map.

ML = SA + fl*INT(PX/fl) + 3q*(INT(PY/fl)) + PY

The location of the bit in the byte which controls the pixel is the re

mainder when PX is divided by 8. The remainder is the offset to the right.

offset to right= PX - fl*INT(PX/fl)

For example, if PX = 19, the remainder after dividing by eight is three.

The bit to be set is three bits to the right of the leftmost bit. The bit arrange

ment on the screen has the highest bit of a memory location, bit 7, in the

leftmost position. In the example, the third bit to the right is bit 4. The

number of the bit to be set or cleared for a specific PX is described by the

relationship

BT = 7 - (PX - fl*INT(PX/fl))

A pixel is turned on by ORing the existing contents of a location with 2

to the bit power. A pixel is turned off by ANDing the existing contents of a

location with the complement of 2 to the bit power. The procedure for plotting

or erasing a point on the bit map can be summarized as follows:

240 Appendix 2

1. Find the memory location and bit referred to by the pixel coordinates,

PX and PY.

ML = Sft + fl*(INT(PX/fl) + 3q*INT(PY/fl)) + PY

BT = 7 - (PX - fl*INT(PX/fl))

2. Plot a point,

POKE ML, PEEK(ML) OR (5|BT)

or erase a point,

POKE ML, PEEK(ML) AND NOT (5|BT)

The colors of the foreground (pixel on) and background (pixel off) dis

played on the bit map are determined by a color map. This color map is not

to be confused with the color RAM used in the character mode. The map is

a IK area of RAM. The contents of each byte in the color map define the

foreground and background colors of an 8 by 8 region on the screen. The

position of each region corresponds to the position a character would occupy

on a text screen. The color byte is divided into two parts. Bits 0-3 define the

screen color and bits 4-7 define the foreground color. All 16 colors available

to the Commodore 64 can be used in any combination. The only limitation

is that no more than two colors can be within any 8 by 8 color region. Table

8 lists the values for all the color combinations.

The bit map mode is selected by the condition of bit 5 of location 53265.

The command to turn on the bit map is

POKE 535b5, PEEK(535b5) OR 3E

The bit map is turned off with

POKE 535t5, PEEK(535b5) AND NOT 35

The following program demonstrates the bit map graphics mode. First,

the area to be used for the bit map must be protected from BASIC. This is

accomplished by changing the end of BASIC and the start of string pointers.

ID POKE 55, 35: POKE5b, 35: CLR

The bit map and color map locations are selected. The bit map is located

from 8192 to 16383 and the color map is located from 1024 to 2023. The bit
map is then turned on.

5D SA = SIRS: SC = 1D54

3D POKE 53575, 54 : REM BIT MfiP AND COLOR MAP LOCATIONS

AD POKE 535b5, PEEK(535t5) OR 35: REM TURN ON BIT MAP

Next, the color map is filled with ones. This gives a white screen and

black dots. The bit map is cleared by filling the bit map locations with zeroes.

These sections of the program are written as subroutines.

5D GOSUB 53D: REM COLOR SCREEN

tD GOSOB 55D: REM CLEAR SCREEN

T
A
B
L
E

8
:
C
o
l
o
r
B
y
t
e
s
f
o
r
B
I
T
M
A
P
M
o
d
e

F
o
r
e
g
r
o
u
n
d
c
o
l
o
r
s
a
r
e
t
h
e
c
o
l
u
m
n
s
.
B
a
c
k
g
r
o
u
n
d
c
o
l
o
r
s
a
r
e
t
h
e
r
o
w
s
.

B
l
a
c
k

W
h
i
t
e

R
e
d

C
y
a
n

P
u
r
p
l
e

G
r
e
e
n

B
l
u
e

Y
e
l
l
o
w

O
r
a
n
g
e

B
r
o
w
n

L
i
g
h
t
R
e
d

D
a
r
k
G
r
a
y

M
e
d
i
u
m
G
r
a
y

L
i
g
h
t
G
r
e
e
n

L
i
g
h
t
B
l
u
e

L
i
g
h
t
G
r
a
y

B
l
k 0

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

1
7
6

1
9
2

2
0
8

2
2
4

2
4
0

W
h
t 1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

R
e
d 2

1
8

3
4

5
0

6
6

8
2

9
8

1
1
4

1
3
0

1
4
6

1
6
2

1
7
8

1
9
4

2
1
0

2
2
6

2
4
2

C
y
a
n 3

1
9

3
5

5
1

6
7

8
3

9
9

1
1
5

1
3
1

1
4
7

1
6
3

1
7
9

1
9
5

2
1
1

2
2
7

2
4
3

P
r
p
l 4

2
0

3
6

5
2

6
8

8
4

1
0
0

1
1
6

1
3
2

1
4
8

1
6
4

1
8
0

1
9
6

2
1
2

2
2
8

2
4
4

G
r
n 5

2
1

3
7

5
3

6
9

8
5

1
0
1

1
1
7

1
3
3

1
4
9

1
6
5

1
8
1

1
9
7

2
1
3

2
2
9

2
4
5

B
l
u
e 6

2
2

3
8

5
4

7
0

8
6

1
0
2

1
1
8

1
3
4

1
5
0

1
6
6

1
8
2

1
9
8

2
1
4

2
3
0

2
4
6

Y
e
l 7

2
3

3
9

5
5

7
1

8
7

1
0
3

1
1
9

1
3
5

1
5
1

1
6
7

1
8
3

1
9
9

2
1
5

2
3
1

2
4
7

O
r
n
g 8

2
4

4
0

5
6

7
2

8
8

1
0
4

1
2
0

1
3
6

1
5
2

1
6
8

1
8
4

2
0
0

2
1
6

2
3
2

2
4
8

B
r
w
n 9

2
5

4
1

5
7

7
3

8
9

1
0
5

1
2
1

1
3
7

1
5
3

1
6
9

1
8
5

2
0
1

2
1
7

2
3
3

2
4
9

L
t

R
e
d

1
0

2
6

4
2

5
8

7
4

9
0

1
0
6

1
2
2

1
3
8

1
5
4

1
7
0

1
8
6

2
0
2

2
1
8

2
3
4

2
5
0

D
a
r
k

G
r
a
y

1
1

2
7

4
3

5
9

7
5

9
1

1
0
7

1
2
3

1
3
9

1
5
5

1
7
1

1
8
7

2
0
3

2
1
9

2
3
5

2
5
1

M
e
d

G
r
a
y

1
2

2
8

4
4

6
0

7
6

9
2

1
0
8

1
2
4

1
4
0

1
5
6

1
7
2

1
8
8

2
0
4

2
2
0

2
3
6

2
5
2

L
t

G
r
n

1
3

2
9

4
5

6
1

7
7

9
3

1
0
9

1
2
5

1
4
1

1
5
7

1
7
3

1
8
9

2
0
5

2
2
1

2
3
7

2
5
3

L
t

B
l
u
e

1
4

3
0

4
6

6
2

7
8

9
4

1
1
0

1
2
6

1
4
2

1
5
8

1
7
4

1
9
0

2
0
6

2
2
2

2
3
8

2
5
4

L
t

G
r
a
y

1
5

3
1

4
7

6
3

7
9

9
5

1
1
1

1
2
7

1
4
3

1
5
9

1
7
5

1
9
1

2
0
7

2
2
3

2
3
9

2
5
5

8

242 Appendix 2

530 FOR I = SC TO SC+qqq: POKE I, 1: NEXT I

540 RETURN

550 FOR I = SA TO Sft + 7clcm: POKE I, D:NEXT I

5bO RETURN

The first point is plotted in the middle of the bit map. The point plotting

is written as a subroutine.

?D PX = 15=1: PY = qq: GOSUB 270 :REM PLOT POINT

E7D ML = SA + fl*(INT(PX/fl) + 3q*INT(PY/fl)) + PY

5fiO BT = 7 - (PX - fl*INT(PX/fl))

5qO POKE ML, PEEK(ML) OR (5|BT)

3DD RETURN

After plotting the first point on the bit map, the program reads joystick

port two. This is the port towards the back of the computer. If there is any

input from the joystick, the program plots a new point and then goes back

to read the joystick port.

flD GOSUB 110: IF J = 15 THEN flD: REM REfiD JOYSTICK

90 GOSUB 570: REM PLOT NEW POINT

1D0 GOTO flD

11D J = PEEK(5t3S0) AND 15

150 IF (J AND fl) =D THEN PX = PX + 1: REM RIGHT

13D IF (J AND A) = 0 THEN PX = PX-1: REM LEFT

140 IF (J AND 5)=D THEN PY = PY + 1: REM DOWN

15D IF (J AND 1)=D THEN PY = PY-1: REM UP

lbo if PY>iqq then py = iqq

17D IF PY<D THEN PY = D

iflD IF PX>3iq THEN PX = 3iq

iqD IF PX<D THEN PX = D

500 GET A$: IF A$ = »[CLR]» THEN GOSUB 550: GOSUB 570:

REM CLEAR SCREEN

51D IF A$= "[F7]" THEN 310: REM EXIT ON F7

550 RETURN

If the CLR/HOME key is pressed while the shift key is held down, the bit

map is cleared. Pressing the F7 key turns off the bit map and ends the pro

gram.

310 POKE 53575, 51: REM NORMAL SCREEN AND CHARACTERS

350 POKE 535t5, PEEK(S35fcS) ANDN0T35: REM TURN OFF

BITMAP

330 END

Bit Map Graphics 243

This program turns your Commodore 64 into a joystick-controlled sketch

pad.

The description of the high-resolution graphics up to this point has been

very limited in scope. For one thing, any BASIC program is limited to 6K in

size by the memory and graphics configuration. Furthermore, the commands

used to enable the bit map and plot points on it are cumbersome. These

shortcomings can be remedied using the following program, MINIGRAPH.

The program loads a set of machine language routines into memory locations

36883 to 37681. Enabling the bit map and plotting on it are reduced to single

commands. The bit map is located outside the BASIC program RAM locations

leaving 33K of RAM for writing programs. And as an added bonus, the rou

tines are executed very rapidly since they are written in machine code. When

entering the numbers in the DATA statements, it is extremely important to

be accurate. An incorrect number can send the computer into never-never

land. If that happens, the only way to regain control is to turn the computer

off. This results in the loss of the program in the memory at the time.

Enter the program and save it on tape or disk. This is a utility program

that will be loaded into the computer and run before any other program that

uses the routines is loaded. The routines are called with a SYS command. A

SYS command sends the computer to the designated location in the memory

and executes the machine code there. After executing the routine, the com

puter returns control to the BASIC program. The bit map is enabled with

the command

SYS 501^5

The bit map is disabled with

SYS SDlRfl

The bit map is cleared, i.e., all the bits are zero, with

SYS 5DED7

The colors displayed on the bit map are set with

SYS 5DE1D, F, B

F and B are numbers or variables with a value from 0 to 15. The first number,
F, sets the foreground color and B sets the background color. A point is plotted
on the bit map with the command

SYS 50501, X, Y, M

244 Appendix 2

X and Y are the horizontal and vertical positions of the point. The horizontal

position can be from 0 to 319 and the vertical position can be from 0 to 199.

The upper left corner is 0, 0. The last variable, M, sets the plotting mode. If

the value of M is one, a point is plotted in the foreground color. If M is two,

a point is plotted in the background color. If M is zero, the color of the point

is flipped. If the point at that location is in the foreground color, it is changed

to the background color, and vice versa. A line is drawn with the command

SYS 5DED4, X, Y, M

X and Y are the horizontal and vertical positions of the end point of the

line. The starting point of the line is defined by either the point plotting

command or by the end point of the last line drawn. The drawing mode is

the same as in the point plotting routine. Values outside the allowed ranges

for X, Y, M, F, and B will cause an ILLEGAL QUANTITY ERROR.

NOTE: This line drawing command must always be either the last in

struction in a BASIC program line, or must be alone on its own line. If not,

you will see an ERROR message. If SYNTAX and ILLEGAL ERRORs begin

appearing in any program that uses MINIGRAPH, check for this unique

problem.

The program following MINIGRAPH demonstrates how to use the rou

tines to draw several geometric shapes on the bit map screen. To exit the

program, hold down any key.

MINIGRAPH.DAT COMMODORE 64

10 PRINT"[CLR]MINIGRAPH LOADER BY PAUL SCHATZ"

20 PRINT"PLEASE WAIT..."

30 A = 0: FOR I = 50195 TO 50975: READ BY

40 POKE I, BY: A = A + BY: NEXT I

50 IF AO95619 THEN PRINT"ERROR IN DATA STATEMENTS": STOP

60 PRINT"[CLR]MINIGRAPH INSTRUCTIONS"

70 PRINT"[CRSR DOWN]TURN ON BITMAP -SYS 50195"

80 PRINT"TURN OFF BITMAP -SYS 50198"

90 PRINT"CLEAR BITMAP -SYS 50207"

100 PRINT"COLOR BITMAP -SYS 50210,F,B"

110 PRINT"PLOT POINT @ X,Y -SYS 50201,X,Y,M"

Bit Map Graphics 245

120 PRINTMDRAW LINE TO X,Y -SYS 50204,X,Y,M"

130 PRINT11 [CRSR DOWN]F = FOREGROUND B = BACKGROUND"

140 PRINT"X = 0 TO 319 Y = 0 TO 199"

150 PRINT"M = 0, 1, OR 2 (FLIP, DRAW, OR ERASE)

160 NEW

200 DATA 76,244,198, 76, 7,199, 76, 37,196, 76,114,197, 76, 30,197, 76, 66

210 DATA197,169, 0,141, 4,196, 32,253,174, 32,235,183,224,200,144, 3, 76

220 DATA 26,199,142, 3,196,166, 20,165, 21,240, 8,201, 1,208,240,224, 64

230 DATA176,236,141, 2,196,142, 1,196, 32,253,174, 32,158,183,224, 3,176

240 DATA220,142, 0,196,173, 0,196,240, 27, 74,144, 12, 32,174,196, 32,135

250 DATA196, 29,158,196,145,251, 96, 32,174,196, 32,135,196, 61,166,196,145

260 DATA251, 96, 32,174,196, 32,135,196, 93,158,196,145,251, 96,173, 1,196

270 DATA 41, 7,170,120,160, 52,132, 1,160, 0,177,251,160, 55,132, 1, 88

280 DATA160, 0, 96,128, 64, 32, 16, 8, 4, 2, 1,127,191,223,239,247,251

290 DATA253,254,169, 0,133,251,169,224,133,252,173, 1,196, 41,248, 24,101

300 DATA251,133,251,173, 2,196,101,252,133,252,173, 3,196, 72, 41, 7, 24

310 DATA101,251,133,251,144, 2,230,252,104, 74, 74, 74, 10,170,189,236,196

320 DATA 24,101,251,133,251,189,237,196,101,252,133,252, 96, 0, 0, 64, 1

330 DATA128, 2,192, 3, 0, 5, 64, 6,128, 7,192, 8, 0, 10, 64, 11,128

340 DATA 12,192, 13, 0, 15, 64, 16,128, 17,192, 18, 0, 20, 64, 21,128, 22

350 DATA192, 23, 0, 25, 64, 26,128, 27,192, 28, 0, 313,162, 32,169,224,133

360 DATA252,169, 0,133,251,168,145,251,200,208,251,230,252,202,208,246, 96

370 DATA 32,253,174, 32,158,183,224, 16,144, 3, 76, 26,199, 96,169,192,133

380 DATA252,169, 0,133,251, 32, 52,197,138, 10, 10, 10, 10,141, 9,196, 32

390 DATA 52,197,138, 13, 9,196,162, 2,160, 0,145,251,200,208,251,230,252

400 DATA202, 16,246,145,251,200,192,232,144,249, 96,169, 0,141, 8,196,141

410 DATA 10,196, 32,253,174, 32,235,183,224,200,144, 3, 76, 26,199,142, 7

420 DATA196,166, 20,165, 21,240, 8,201, 1,208,240,224, 64,176,236,141, 6

430 DATA196,142, 5,196, 32,253,174, 32,158,183,201, 3,176,220,142, 0,196

440 DATA173, 5,196, 56,237, 1,196,141, 12,196,173, 6,196,237, 2,196,141

450 DATA 13,196, 16, 20,206, 10,196, 56,169, 0,237, 12,196,141, 12,196,169

460 DATA 0,237, 13,196,141, 13,196,169, 0,141, 11,196,173, 7,196, 56,237

470 DATA 3,196,141, 14,196,173, 8,196,237, 4,196,141, 15,196, 16, 20,206

246 Appendix 2

480 DATA 11,196, 56,169, 0,237, 14,196,141, 14,196,169, 0,237, 15,196,141

490 DATA 15,196,169, 0,141, 18,196,173, 14,196, 56,237, 12,196,173, 15,196

500 DATA237, 13,196,144, 27,174, 14,196,173, 12,196,141, 14,196,142, 12,196

510 DATA174, 15,196,173, 13,196,141, 15,196,142, 13,196,206, 18,196,173, 12

520 DATA196,141, 16,196,173, 13,196,141, 17,196, 32, 91,196,173, 18,196,208

530 DATA 18,173, 1,196,205, 5,196,208, 27,173, 2,196,205, 6,196,208, 19

540 DATA240, 16,173, 3,196,205, 7,196,208, 9,173, 4,196,205, 8,196,208

550 DATA 1, 96,173, 18,196,208, 6, 32,192,198, 76,118,198, 32,218,198, 32

560 DATA152,198, 32,152,198, 16, 20,173, 18,196,208, 6, 32,218,198, 76,140

570 DATA198, 32,192,198*, 32,172,198, 32,172,198, 32, 91,196, 76, 64,198,173

580 DATA 16,196, 56,237, 14,196,141, 16,196,173, 17,196,237, 15,196,141, 17

590 DATA196, 96,173, 16,196, 24,109, 12,196,141, 16,196,173, 17,196,109, 13

600 DATA196,141, 17,196, 96,173, 10,196,208, 9,238, 1,196,208, 3,238, 2

610 DATA196, 96,173, 1,196,208, 3,206, 2,196,206, 1,196, 96,173, 11,196

620 DATA208, 9,238, 3,196,208, 3,238, 4,196, 96,173, 3,196,208, 3,206

630 DATA 4,196,206, 3,196, 96,173, 0,221, 41,252,141, 0,221^169, 59,141

640 DATA 17,208,169, 8,141, 24,208, 96,173, 0,221, 9, 3,141, 0,221,169

650 DATA 27,141, 17,208,169, 21,141, 24,208, 96, 32, 7,199, 76, 72,178

IHNIGRAPH INSTRUCT IOHS

MINIGRAPH.DEMO

10 PRINT"[CLR]MINIGRAPH DEMO"

20 PRINT"BY PAUL SCHATZ"

30 GOSUB 1000: REM PAUSE

40 SYS50207: REM CLEAR BITMAP

COMMODORE 64

Bit Map Graphics 247

50 SYS50210,1,2: REM COLOR BITMAP

60 SYS50195: REM TURN ON BITMAP

70 Nl=30: N2=33: REM DRAW SQUARES

80 FORI=0 TO 12:X1=N1-2*I:X2=N2+I[UP ARROW]2

90 SYS50201,X1,X1,1: REM PLOT POINT

100 SYS50204,X2,X1,1

110 SYS50204rX2,X2,l

120 SYS50204,X1,X2,1

130 SYS50204,X1,X1,1

140 NEXT I

150 GOSUB 1000

160 SYS 50210, 5, 1

170 SYS 50207

180 FP=1:A1 =77: Bl =23: DL =9: C =0

190 FOR I =0 TO 40: C =C+DL: A = A1*C*/180: B =B1*C*/180

200 X =INT(100*SIN(A)+160.5)

210 Y = INT(80*COS(B)+100.5)

220 IF FP=1 THEN FP =0: SYS50201,X,Y,0:GOTO 240

230 SYS 50204, X, Y, 0

240 NEXT I

250 GOSUB 1000

260 SYS 50210, 7, 2

270 SYS 50207

280 XI = 0: X2 = 319

290 FOR I = 0 TO 199

300 Yl = I: Y2 = 199-1

310 SYS 50201, XI, Yl, 0

320 SYS 50204, X2, Y2, 0

330 NEXT I

340 Yl = 199: Y2 =0

350 FOR 1=0 TO 319

360 X1=I: X2=319-I

370 SYS 50201, XI, Yl, 0

Appendix 2

380 SYS 50204, X2, Y2, 0

390 NEXT I

400 GOSUB 1000

410 SYS 50210, 0, 10

420 SYS 50207

430 PP=1:A1 =13: Bl =26: DL =6: C =0

440 FOR I =0 TO 80: C =C+DL: A = A1*C*/180: B =B1*C*/180

450 X =INT(100*COS(A)+160.5)

460 Y a INT(80*SIN(B)+100.5)

470 IP FP»1 THEN FP =0: SYS50201,X,Y,1:GOTO 240

480 SYS 50204, X, Y, 1

490 NEXT I

500 GOSUB 1000

510 SYS 50210, 15, 12

520 SYS 50207

530 FOR X = 0 TO 319

540 Y=INT(100+70*SIN(X/10))

550 SYS50201,160,10,1

560 SYS50204, X, Y, 1

570 NEXT X

900 GET A$: IFA$=ntlTHEN 30

910 SYS50198

920 END

1000 FOR I=0TO2000:NEXTI:RETURN

A Few Concluding Remarks

This chapter is a very brief and basic introduction to the Commodore

64 graphics. Hopefully it will give you a starting point for incorporating the

graphics features into your own programs. Table 9 lists all 47 memory lo

cations which control the VIC chip. The last column indicates the graphics

feature each location affects, S for sprites, B for bit map mode, and C for

character mode. This table will be a handy reference when you are ready to

experiment with further graphic features.

A Few Concluding Remarks 249

TABLE 9: Video Interface Controller Memory Locations

Location Video Operation

53248

53249

53250

53251

53252

53253

53254

53255

53256

53257

53258

53259

53260

53261

53262

53263

53264

53265

53266

53267

53268

53269

53270

53271

53272

53273

53274

53275

53276

53277

53278

53279

53280

53281

53282

53283

53284

53285

53286

53287

53288

53289

53290

53291

53292

53293

Bits 0-7

Bits 0-2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Bits 0-7

Bits 0-2

Bit 3

Bit 4

Bits 0-7

Bits 1-3

Bit 3

Bits 4-7

Bits 0-7

Bits 0-7

Bits 0-7

Bits 0-7

Bits 0-7

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

Bits 0-3

SpriteO horizontal position (low byte) S

SpriteO vertical position S

Sprite 1 horizontal position (low byte) S

Sprite 1 vertical position S

Sprite2 horizontal position (low byte) S

Sprite2 vertical position S

Sprite3 horizontal position (low byte) S

Sprite3 vertical position S

Sprite4 horizontal position (low byte) S

Sprite4 vertical position S

Sprite5 horizontal position (low byte) S

Sprite5 vertical position S

Sprite6 horizontal position (low byte) S

Sprite6 vertical position S

Sprite7 horizontal position (low byte) S

Sprite7 vertical position S

High order bit of horizontal position sprites 0-7 S

Vertical position for scrolling BC

Select number of rows (24 or 25) BC

Blank screen

Select bitmap mode <B

Select extended background color mode C

High order bit of raster position

Raster position

Horizontal position light pen

Vertical position light pen

Turn on and off sprites 0-7 S

Horizontal position for scrolling BC

Select number of columns (38 or 40) BC

Select multicolor mode BC

Double height—sprites 0-7 S

Character set pointer C

Bitmap pointer B

Character screen or colormap pointer BC

Interrupt register

Interrupt register

Priority register for sprites 0-7 S

Select multicolor sprites 0-7 S

Double width sprites 0-7 S

Sprite with sprite collisions S

Sprite with character collision S

Border color BC

Screen color C

Character multicolor 1 C

Character multicolor 2 C

Sprite multicolor 1 S

Sprite multicolor 2 S

SpriteO color S

Sprite 1 color S

Sprite2 color S

Sprite3 color S

Sprite4 color S

Sprite5 color S

Sprite6 color S

Sprite7 color . S

Exploring Sound

and Music

Dr. Frank H. Covitz

Of the 5 human senses, sound is probably second only to sight in importance.

("A picture is worth 1000 words.") Certainly the amount of information

received by the ear and processed by the brain is prodigious. Think about it

for a minute: All speech, including the identity of the speaker in all possible

spoken languages. All the content ofpast, present, and future music, including

subtleties such as orchestration, playing styles, and various musical instru

ments. The almost infinitely varied natural sounds from the rush of surf to

the song of a canary.

Just as it can take many written words to describe a picture, you can

expect some difficulty in using words to describe sounds, particularly if our

goal is to understand them well enough to be creative. The SID (Sound

Interface Device) chip in the Commodore 64 is capable of producing a wide

variety of sounds with high-fidelity quality. To use this resource to any extent

approaching its full capability, let's first agree on some principles we will

need to understand descriptions of sound.

It should be very clear that we are talking about vibrations. In normal

hearing, vibrations in the air are picked up by the mechanisms in the ear

and converted to nerve signals for the brain to interpret. If the vibrations

251

252 Appendix 3

are very low in frequency, we can actually feel them as well as hear them—

put your hand in front of a reasonably large loudspeaker playing throbbing

rock music! We need to understand the details of vibrations if we are to

understand what makes up a sound and create the sounds we want.

Vibrations can be represented in forms other than actual pressure fluc

tuations in the air. We will use those forms which are the most convenient.

For example, though the information recorded on audio magnetic tapes (mag

netic fluctuations) or phonograph records (surface fluctuations) is not sound

in itself, it can be easily converted into sound by amplifiers and speakers.

For our specific purposes, the information needed to construct a sound will

be in the form of numbers stored in our computer's memory. What these

numbers mean, where they go, and how they become sound will be discussed

later.

The questions are two: 1) What are the fundamental characteristics of

the vibrations which make up sound? 2) How can we use these characteristics

to "create" a particular sound?

The Fundamentals of Tones

Let's first consider the case of the relatively simple sounds we call tones.

For our purpose, a tone is a steady sound with a definite pitch. By steady, I

mean that it doesn't change in quality with time (except of course that it has

a beginning and an end). The term pitch is somewhat subjective, but it can

mean that the sound has a dominant frequency with which, for example, we

could whistle along "in tune."

Frequency is a number which specifies the rate of change of a vibration.

The units of frequency were once called cycles-per-second, but, in honor of

the pioneering contributions of Heinreich Rudolph Hertz in the fundamentals

of electromagnetic waves and related phenomena, the name Hertz (abbre

viated as Hz) has been universally adopted.

Since it is so important to have a good understanding of the meaning of

frequency, let's use a couple of examples. Think about the motion of the

pendulum in a grandfather clock. The frequency of that motion should be

very close to exactly 1/2 Hz (each half-swing takes one second). In this case,

you can actually see and count the vibrations; for sound, the frequencies are

much too high to see the individual cycles, except with the aid of something

like an oscilloscope. Let's go another step higher and take the case of an

ordinary flat knife resting half on and half off the edge of a table. By holding

the flat edge firmly against the table and "plucking" the overhanging part,

you will set it into vibration with a frequency of about 10 Hz.

For audible sounds, the frequency limits of human hearing are usually

20 Hz to 20,000 Hz, although the average person will not be able to hear

much above 15,000 Hz or below 30 Hz. (You can still "feel" these low fre

quencies, however.) Wait just a minute!! If we can only hear down to about

20 Hz, how come we can easily hear the table knife vibration, which I just

said had a frequency about 10 Hz? What you are really hearing is the sound

The Fundamentals of Tones 253

of the blade hitting the table edge at a rate of about 10 hits per second, and

you can hear each hit.

The details of this vibration are actually quite a bit more complex than

the pendulum's motion, and take us into the lowest level of what we are

going to discuss, namely, the "pure" tone.

The pendulum's motion is pure in that there is no point in its travel

where either the speed or direction changes abruptly. The sound of a tuning

fork is close to a pure tone. Although pure tones are very rare in nature, we

need to understand them, since any tone can be constructed by mixing pure

tones of the right frequencies and amplitudes. Since pure tones are easy to

generate by electronics, they form the basis for artificially synthesizing and

analyzing sounds.

To understand this point clearly, let's take the case of that slow-moving

pendulum again, but with some differences. Instead of a disc supported by

a stiff rod, as in the grandfather clock, imagine that our pendulum consists

of a bucket of sand suspended by a flexible string. The sand will be allowed

to trickle out of a small hole in the bottom of the bucket. If we were to set

this pendulum in motion, while pulling a long sheet of paper underneath,

we would see the sand forming a pattern; something like that shown in the

following figure:

Figure 1. Sand pendulum

254 Appendix 3

In a more idealized visual form, we have:

Figure 2. Sine waveform

Theoretically, the motion of the sand pendulum will continue for quite

a while, so that over a fairly large number of swings, we only need two

numbers to represent its motion quite well—the amplitude (how far away

from the center it reaches) and the frequency (the number of swings per

second). The shape of the curve representing this idealized motion is called

a sine waveform. If we could see the motion of a tuning fork, it would look

quite similar. For the tuning fork, though, the amplitude will be related to

the loudness of the sound it produces, and its frequency related to the per

ceived pitch of the sound.

Now think of the pendulum with the sand trickling out, tracing its motion

on the paper, and imagine what would happen if during its smooth back and

forth motion you were to strike the string above the bucket with a sharp

blow, sort of like a mini-karate chop. Now, in addition to the slow swinging,

an additional vibration of much higher frequency would set in, and our sand

picture of the resulting motion would look something like this:

Figure 3. Sine waveform with high frequency component

If this were a sound waveform, what would it sound like? The sensation

of pitch would be the same as that for the tone of a pure sine waveform, but

the quality of the tone would be noticeably different—it would have a "bright

er' ' or more "lively" sound. The technical term for this property is timbre

(pronounced "tamber" as in tambourine, not "timber" as in lumberjack).

The waveforms of most real sounds would be quite a bit more complex

than the example just given, and it is difficult if not impossible to predict

exactly what most complex waveforms would sound like from only their

visual representation. However, no matter how complex its shape, any re

petitive waveform can be broken down (by a rather complicated mathe-

The Fundamentals of Tones 255

matical procedure known as "Fourier analysis'1) into components, called

harmonics. Each of these components would have the sine waveform shape

(each with its own amplitude), and each would have a frequency which is

an integer multiple of the lowest frequency component.

This lowest frequency component, for the most part, is what gives the

tone its pitch, and the relative amounts of the higher ones, called harmonics,

give it its timbre. Specifically, it is easier (but still very difficult) to under

stand, predict, and modify sounds based on knowledge of the harmonic con

tent, compared to examining its waveform.

Had enough of this technical jargon? Let's just look at the following table

to make sure we are talking the same language before going on to putting

the amazing SID chip to work and creating some tones.

Technical Term Audible Equivalent

Frequency Pitch

Amplitude Loudness

Harmonic content Timbre

Addressing SID

Think of the SID chip as a house with rooms and floors, and our explo

ration of it as an adventure game. To get into a particular room, we need to

know the address of the house as well as the name of the room. At this stage,

we are only going to explore the rooms having to do with frequency and

amplitude (or pitch and loudness). As far as the computer's microprocessor

is concerned, the SID is accessed just like any other piece of memory, so we

are going to use POKEs to get data into SID. The SID chip has 29 registers

(a register to the SID is the same as a memory location) located at addresses

starting at location 54272. Rather than constantly keying in or remembering

that formidable number, let's use the computer to do much of the remem

bering by entering this program line:

ID SID = 54E7E

(Remember that the Commodore BASIC looks only at the first two char

acters of a variable name, so we shouldn't use any other variable name

starting with SI). SID can handle three separate sounds, which we will call

voices. (For addressing purposes, think of them as three separate floors of

the house). Each voice needs a frequency, so we need to know where to put
the pitch information:

ED Fl = SID : FE = SID + 7 : F3 = SID + 14

For starters, let's only deal with one voice, so we will silence voices two
and three by putting zeroes in their frequency registers:

3D FOR I = D TO 1 : POKE FE + I,D : POKE F3 + I,D : NEXT I

256 Appendix 3

It takes two POKEs per voice to get the frequency data into the registers.

This is because the number representing the frequency has a range 0 to 65535,

which is greater than can be POKEd into any single memory location. SID

solves this by using two adjacent memory locations, the first representing

the low part of the number (think of it as a fraction), and the second rep

resenting the high part (think of it as a whole number).

Suppose we have a number, F, in the range 0 to 65535 that we want to

put into SID. We use these formulas: FH = INT(F/256) and FL = F-256*FH.

FH and FL mean Frequency High and Frequency Low. A quirk of the 64;s

microprocessor requires these double numbers to be stored into registers

with the low part first and the high part second. So, for example, we would

put this number into frequency register 1 via: POKE F1JFL : POKE Fl + 1,FH

(remember that Fl and Fl + 1 are the addresses of the registers, and FL and

FH are the numbers that go into the registers.)

Is the number we just put into the frequency registers the frequency we

will get when we start the sound going? No. The frequency, in Hz, is related

to the number in the register, F, by the following equation:

F = HZ*16.40439

Let's give voice 1 a frequency of 1000 Hz. In BASIC we should enter:

40 HZ = 1DDD : C = lb.4D43R

5D F = HZ*C

fcD FH = INT(F/E5b)

7D FL = F-E5b*FH

flD POKE F1,FL : POKE F1 + 1,FH

If you actually entered this example, you wouldn't get any sound. That's

because the SID still doesn't know enough about what you want. SID needs

to know at least 3 more things before it can make a sound—the overall volume

(loudness of all 3 voices), the amplitude envelope (2 registers for each voice)

and the waveform type (1 register for each voice). These will be explained

in detail later, but for now let's just list the addresses of these registers:

HD HI = Fl + 4 : WE = FE + 4 : W3 = F3 + 4 : REM FOR WAVEFORM

TYPE

1DD Al = Fl + 5 :&2 = FE + 5 : A3 = F3 + 5 : REM FOR ATTACK/

DECAY

11DS1 = Fl + b :SE = FE + b : S3 = F3 + b : REM FOR SUSTAIN/

' RELEASE

1ED VOL = SID + E4 : REM TOTAL VOLUME

Without worrying about the numbers that go into these registers (that

will come later), just add the following program lines:

13D POKE VOL, 1.5

14D POKE Al,fl5 : POKE S1,Q5

15D WV = &>4 : POKE W1,WV + 1

ifcD FOR I = D TO 1DDD : NEXT I

17D POKE Wl/WV

Addressing SID 257

If you have entered these new lines into the computer and RUN them,

you should finally (whew!) have produced a sound from SID. Now will be a

good point to SAVE the program from lines 10-120 since we will be using

them again. After SAVEing, feel free to experiment with numbers that go

into Al and SI (line 140), the value for WV in line 150 (use 128, 64, 32, or

16 for now), and the loop end value in line 160. You may get some feeling

for what's happening at this point, but if not, take heart, the next section

will clarify any mysteries of Al, SI, and Wl, and more.

A review of the addresses we have used up to now and their meaning is

in order:

Name Address Meaning

Base address for SID

Frequency, low part

Frequency, high part

Waveform/control register

Attack/decay register

Sustain/release register

Frequency, low part

Frequency, high part

Waveform/control register

Attack/decay register .

Sustain/release register

Frequency, low part

Frequency, high part

Waveform/control register

Attack/decay register

Sustain/release register

Volume 0-15 register

BASIC PROGRAM TO SET UP SID ADDRESSES

ID SID = S4E7E : REM BASE ADDRESS

ED C = lb.4D43R : REM FOR CONVERTING HZ TO REGISTER

VALUE

3D F1 = SID : FE = SID + 7 : F3 = SID + 14 : REM

FREQUENCY REGISTERS

4D Wl = Fl + 4 : WE = FE + 4 : W3 = F3 + 4 : REM WAVEFORM/

CONTROL REGISTERS

5D Al = Fl + 5 : AE = FE + 5 : A3 = F3 + 5 : REM ATTACK/DECAY

REGISTERS

bD SI = Fl + b : SE = FE + b : S3 = F3 + b : REM SUSTAIN/

RELEASE REGISTERS

7D VOL = SID + E4 : REM OVERALL VOLUME FROM D TO 15

Voice #1:

SID

Fl

Wl

Al

SI

Voice #2:

F2

W2

A2

S2

Voice #3:

F3

W3

A3

S3

All Voices:

VOL

54272

SID

Fl + 1

Fl+4

Fl+5

Fl + 6

SID + 7

F2+1

F2 + 4

F2 + 5

F2 + 6

SID+14

F3+1

F3 + 4

F3 + 5

F3 + 6

SID+ 24

258 Appendix 3

I strongly urge you to enter this program piece if you haven't already

done so, and SAVE it, since it will always be used as an opening procedure

for setting up for SID programs.

Moving on to Dynamics

At this point, you should have some understanding about the nature of

sound, the general meaning of frequency, pitch, and timbre, as well as the

specific SID registers dealing with frequency. Now, we will go over the SID

registers having to do with waveform type and control, the registers dealing

with attack, decay, sustain, release, and the registers associated with volume

and filtering.

Waveform/Control Register The registers we have been calling
Wl, W2, and W3, have a dual purpose, as have several other SID registers.

Any memory location in your computer can only hold a number between 0

and 255. This number is made up of eight individual bits—each of which

can be set to one or zero, "on" or "off." Bits are numbered from zero (the

bit farthest to the right) to seven (leftmost). The individual bits of the wave

form/control register have the specific meanings as follows:

Bit # Weight Meaning

7 128 Select noise waveform

6 64 Select pulse waveform

5 32 Select sawtooth waveform

4 16 Select triangle waveform

3 8 Reset voice output

2 4 Ring modulation on

1 2 Synchronization on

0 1 Start ASDR

The "weight" numbers are added together for each bit you "set" to get

a number from 0 to 255. This gives us the technique for controlling the

individual bits. For example, let's use the variable WC to represent the con

tents of the waveform control register for voice #1 (this was labeled WV in

our previous section). If we start off with WC = whatever, and want to turn

on only one bit, say bit 7, we would do:

WC = WC OR lEfl:POKE W1,WC

The reason for using WC is that PEEK won't work with the SID registers.

WC is a variable that stands for the contents of memory location Wl. We

can call the SID registers "write only," since once we POKE in a number,

we can't read it.

To turn off only bit 7, we would do:

WC = WC AND E54:POKE W1,WC

Moving on to Dynamics 259

If you find this confusing, you should re-read the section in Appendix 2

about AND and OR. Several of the SID registers are bit-oriented, so you will

need to know how to control individual bits if you are going to fully under

stand SID programming.

Each SID voice must be assigned a waveform type consisting of either

triangle, sawtooth, pulse, or noise (see figure below) as controlled by the correct

bits.

TRIANGLE (16)

SAWTOOTH (32)

-PULSE-**

WIDTH

PULSE (64)

NOISE (128)

Figure 4. The SID waveforms

Let's briefly discuss the quality, or timbre, of these waveforms. The
simplest and purest is the triangle waveform (bit #4), one cycle of which
consists of a smooth straight line of increasing value up to its maximum,
followed by a straight line of the opposite slope going down to its minimum
value, as the name suggests. Although the slope changes abruptly at the top

260 Appendix 3

and bottom, the actual values along the waveform have no such abrupt

change.

The next waveform the SID can produce is the sawtooth waveform (bit

#5), which, as the name suggests, consists of a straight line slope from its

minimum value to its maximum, and at the start of its next cycle the am

plitude drops abruptly back to the minimum. This abrupt change in ampli

tude results in a much richer sound than the triangle and a more "brilliant"

timbre.

The last periodic waveform the SID can produce is the pulse waveform

(bit #6), which consists of a partial cycle during which the amplitude has a

constant negative value, and then a constant positive amplitude for the re

mainder of its cycle. Another number is needed to describe the pulse wave

form—a duty cycle.

Changes in the duty cycle affect the harmonics of the sound and its overall

characteristics. By changing the duty cycle, you can produce a square wave

form, which is less rich than the sawtooth, but much richer than the triangle

waveform, and has a characteristic "metallic" or "reedy" sound. As you move

the duty cycle to a value of zero, the pulse waveform sounds very harsh and

"buzzy." The SID chip allows you to change this duty cycle while a sound

is in progress, achieving a striking dynamic timbre—we will experiment with

this effect later.

The noise waveform (bit #7) is also available for each of the three SID

voices. Noise is the presence of many frequencies, and the noise waveform

creates sound without pitch. Nevertheless, noise can have a variety of timbres,

depending primarily on the distribution of frequencies. Emphasizing the high

frequencies gives it a "hissy" character, while emphasizing the lows gives it

a "rumbling" character. The timbre of the noise waveform in the SID can

be varied by changing the frequency values in the appropriate registers while

the sound is in progress.

Let's review: Before a SID voice can be played, it must be assigned a

waveform type—noise, pulse, sawtooth, or triangle depending on the setting

of bits #7,6,5, and 4 of the waveform/control register. Each has its charac

teristic timbre, and the timbres of the pulse and noise waveforms can be

controlled dynamically. Before moving on, remember one more important

point. Only one of the waveform types should be selected at a time. Each

voice, however, can have its own waveform.

Of the other bits in the waveform/control registers (W1,W2, and W3),

bits #3,2, and 1 won't concern us yet; bit 0 is literally the "key" to setting

the SID chip into action. When this bit is "on" the sound begins. When this

bit is "off," the sound starts to die out. So, assuming you have set WC to a

valid waveform type (128,64,32, or 16), you would activate voice #1 with
POKE W1,WC+1 and release voice #1 with POKE Wl/WC. You can also

silence a voice at any time by setting its frequency register to 0 with POKE

F1,0:POKE Fl +1,0 for voice #1, etc.

ADSR We are now ready to delve into something called ADSR. At

tack, Decay, Sustain and Release comprise the particular way that the am-

Moving on to Dynamics 261

plitude, or loudness, of a sound changes with time. Many sounds, particularly

musical ones, can be simulated by an amplitude "envelope" consisting of

the 4 phases just mentioned. With the SID chip, you can control the rate, or

length of time, attack, decay, and release take. The value of sustain is am

plitude, or loudness, not rate or time. Each one of these ADSR phases can

have 1 of 16 values, a number from 0 to 15 represented with 4 bits. Each

SID chip is eight bits, so ADSR phases are paired as attack/decay and sustain/

release. Each four bits is called a nybble.

The attack and decay nybbles go into registers Al, A2, and A3 (each voice

can have its own ADSR), and the sustain, amplitude, and release nybbles go

into registers SI, S2, and S3. The beginning of a sound can be likened to

opening a gate, so it is referred to as "gating on" the sound. Here is the

sequence of events that takes place when a voice is "gated on" by setting bit

0 of the waveform/control register (see above):

The amplitude, or loudness, of the sound rises from zero to a maximum

at a rate governed by the attack nybble. It then decays, or begins to fade out,

at a rate governed by the decay nybble until the loudness reaches the value

specified by the sustain nybble. The voice remains at the sustain amplitude

until it is "gated off" by turning off bit 0 of the waveform/control register.

Then the loudness fades to zero at a rate given by the release nybble.

Figure 5. ADSR envelope

Here is a table that gives you the rates for the 16 different nybbles

(ms = milliseconds, s = seconds):

Nybble Attack Decay/Release

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2 ms

8 ms

16 ms

24 ms

38 ms

56 ms

68 ms

80 ms

100 ms

250 ms

500 ms

800 ms

1 s

3s

5s

8s

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

300 ms

750 ms

1.5 s

2.4 s

3s

9s

15 s

24 s

262 Appendix 3

Attack and decay rates go into registers Al, A2, and A3 (each voice can

have its own ADSR), and the sustain amplitude and release rate go into

registers SI, S2, and S3. These have only to be set once, and not each time

a sound is to be played. Let's give a concrete example to make sure we

understand what is necessary to get a particular ADSR. A "blown" sound,

for example as in a trumpet note, has a fast attack and decay rate, a relatively

loud sustain, and a fairly rapid release rate. Let's use a 16 ms attack rate, a

72 ms decay rate, a sustain amplitude of 12, and a release rate of 114 ms.

With the help of the table above, we have:

AD = (attack/decay) =16*2 + 3

SR = (sustain/release) =16*12 + 4

Figure 6. Blown sound

For voice 1, we do POKE A1,35: POKE SI, 196. No sound, right? Re

member, we also have to specify waveform type and frequency, and then

gate the voice on. Also, keep in mind that the release doesn't happen until

you gate the voice off. Here are a few sets of ADSRs to give you a better feel

for what's needed. Experiment with the waveform type to get the timbre you

want. First numbers are attack/decay, second are sustain/release

Percussion—9,8 = very fast attack (16*0), moderate decay (9), zero sustain

amplitude (16*0), and medium release (8). (Try noise waveform.)

Figure 7. Percussion

Piano—10,48 = very fast attack (16*0), medium release (10), low sustain

amplitude (16*4), and very fast release (0). (Try sawtooth waveform.)

Moving on to Dynamics 263

Figure 8. Piano

Organ—0,240 = very fast attack (16*0), no decay (0), high sustain amplitude

(15*16), and very fast release (0). (Try pulse waveform.)

s

i
gate]

t
L

Figure 9. Organ

Violin—133,165 = moderately slow attack (8*16), medium decay (5), me

dium sustain amplitude (10*16), and medium release (5). (Try pulse wave

form.)

Figure 10. Violin

Keep in mind that the SID chip's main versatility is in creating sounds

not easily made by real instruments. For example, one could easily reverse

the normal type ADSR's to create a pretty strange sound.

As we've seen, the SID has many registers and functions, and it will be

helpful, if not essential, to keep these organized if we are to use it to its full

capability. The SID functions can be conveniently grouped into two cate

gories: The ones that affect individual voices, and the ones that affect all of

the voices at once. Starting at the base address for SID, the first three groups

of seven are for individual voices. The next four control the filter and overall

volume of the chip, and the remaining four are special. (We haven't gotten

to these yet.) Let's list the registers and their contents:

264 Appendix 3

Register Meaning

0,7,14

1,8,15

2,9,16

3,10,17

4,11,18

5,12,19

6,13,20

21

22

23

24

The following are read-only:

25

26

27

28

Frequency (low byte)

Frequency (high byte)

Pulse width (low byte)

Pulse width (bits 0-3 are high nybble)

Control register

Bit O-gate (1 = start, 0 = release)

Bit 1—sync bit

Bit 2—ring modulation bit

Bit 3—test bit

Bit 4—triangle waveform

Bit 5—sawtooth waveform

Bit 6—pulse waveform

Bit 7—noise waveform

Attack/Decay register

Sustain/Release register

Filter frequency (bits 0,1,2 form low part)

Filter frequency (high byte)

Resonance/Filter Register

Bit 0—connect voice 1 through filter

Bit 1—connect voice 2 through filter

Bit 2—connect voice 3 through filter

Bit 3—connect external signal through
filteriiiier

Bits 4-7—filter resonance

Mode/Volume

Bits 0-3—overall volume

Bit 4—select low-pass filter

Bit 5—select band-pass filter

Bit 6—select high-pass filter

Bit 7—disconnect voice 3 from audio

output

POTX

POTY

Output of oscillator 3

Envelope of voice 3

For relatively simple sounds (like the ones used for music, as opposed

to the ones used for sound effects), the important registers we've discussed—

at SID + 0 to 20—set up the frequency, waveform type, (and pulse width, if

we've selected pulse waveform), envelope, and whether to start a voice going

(gate bit = 1) or to release it (gate bit = 0). The low nybble of register 24

controls the overall volume. For musical sounds there is a sane way to handle

all these pieces of information, and that is just what we will discuss in the

next section.

The Well-Tempered Computer

Up to now, we've not heard too much from SID; we've mainly discussed

theory of sound and SID organization. We'll just take a moment to consider

The Well-Tempered Computer 265

what kinds of frequencies to use, and we will be ready to play some music

with SID. If we stick to Western music (the music of Western civilization,

that is, not the "wild west"), this is fairly straightforward. A musical "scale"

consists of 12 pitches (do, re, mi, fa, sol, la, ti, and the 5 sharps or flats in

between) per octave. In each octave, the frequencies come from the preceding

one. In the so-called equal-tempered scale (the one most commonly used),

each of the steps is a fixed multiple of the preceding one. The fixed ratio of

the equal-tempered scale is actually a compromise that allows many tuned

instruments to play in harmony with each other.

This fixed multiple is (and has to be) the 12th root of two (which is equal

to 1.0594630943593 where did he get all those numbers!?). This number,

when multiplied by itself twelve times, results in 2; in other words it gets

us to the next octave, and everything can start over again, only doubled in

pitch. In principle, then, we only have to agree on the exact frequency for

one particular note, and we can derive ALL of the other ones by successive

multiples (to go higher in pitch) and divides (to go lower in pitch).

Musicians have internationally agreed that the note A4 (the "la" in the

4th octave) will have a frequency of exactly 440 Hz. From this piece of in

formation, and the conversion factor given in the section on the frequency

register, we could calculate the appropriate double-byte number for each

note in the equal-tempered scale that we wanted to play. Would we put you

and your computer through all that work every time we want to play a note?

No. Instead, we'll take advantage of the octave relationship to shorten this

considerably, by calculating a table of only 12 frequency values (the 13th

value starts the next higher octave), and we can quickly get the correct values

for the notes of other octaves by dividing by 2 the appropriate number of

times.

Here is a BASIC program to calculate (once and for all) the frequency

values for the "top" octave (attach this to our fundamental address program,

given earlier.)

1DD DIM F(1S) : REM F(l) IS SID FEEQ FOR At, F(1E) IS

SID FREQ FOR G#7

11D A7 = fl*440 : REM FREQUENCY IN Hz FOR HIGHEST A-NOTE

IN 7TH OCTAVE

1SD K = 2*(l/15) : REM THE EQUAL TEMPERAMENT INTERVAL

13D FRQ = A7*C : REM CONVERT TO SID VALUE, C=lt.4D43q

FROM PREVIOUS PROGRAM

1<D FOR 1 = 15 TO 1 STEP -1

15D FRQ = FRQ/K : REM GET NEXT LOWER HALF- STEP

lbOF(I)=FRQ

17DNEXTI

At this point, let's clear out the SID registers to prevent any "hang-overs"

from any previous program from interfering, and set up a few other initial

conditions:

EDD FOR I = D TO Efl: POKE SID + I,0:NEXT I

E1D POKE VOL, 15 : REM SET OVERALL VOLUME TO MAXIMUM

EED TI$ = "0QD0DD» : REM SET TIMER TO D

266 Appendix 3

53D DIM N(1E) : REM TO HOLD PARAMETERS

240 FOR I = 1 TO q : READ N(I) : REM READ SOUND

PARAMETERS FOR EACH VOICE

55DNEXTI

StD REM FOLLOWING DATA ARE EXAMPLES ONLY, FEEL FREE

TO USE YOUR OWN

27 D DATA lb, It, It : REM WAVEFORM TYPE FOR EACH

VOICE

E&O DATA 55,55,55 : REM ATTACK/DECAY FOR EACH VOICE

2RD DATA 55,55,55 : REM SUSTAIN/RELEASE FOR EACH

VOICE

300 POKE W1,N(1) : POKE WS,N(2) : POKE W3, N(3) : REM

INSTALL ADSR

31D POKE A1,N(<) : POKE A2,N(S) : POKE A3,N(t)

35D POKE S1,N(?) : POKE S2,N(fl) : POKE S3,N(R)

33D FOR 1 = 1 TO 3 : REM TAKE CARE OF PULSE

340 READ W : N(I + R)=W*40qfc

3bO NEXT I

37D DATA .5, .5, .5 : REM MUST BE A FRACTION BETWEEN D

AND .5

3flD POKE Fl + 3,INT(N(lD)/55b) :POKE Fl + 5,

N(10)-E5b*INT(N(10)/E5fc)

3RD POKE FB+3,INT(N(ll)/55b) : POKE F2 + 2,

N(ll)-E5k*INT(N(llj/E5k)
400 POKE F3 + 3,INT(N(lS)/55t):POKE F3 + 5,

N(12)-25&,*INT(N(12)/25fc,)

(Remember, the pulse width will affect the sound only if you have se

lected the pulse waveform with 64 as the waveform type.)

If you intend to try your hand at music programming, SAVE the whole

program for later use: lines 10-70 (sets up SID addresses), lines 100-160

(calculates the top octave of the equal-temperament scale), and lines 200

onward. (We may change this last section later.) The SID chip is now set to

play music if we give it some data. Let's start off simply by using only one

voice, but feel free to change the waveform type and ADSR data.

<RD S = 1 : REM TEMPO CONSTANT

5DD READ TM : REM READ NOTE DURATION

51D IF TM = D THEN qqqq : REM DONE IF TM = D

550 IF TM<D THEN qqqq : REM DONE IF TM<D

53D T=TI+S*TM : REM THIS TELLS US WHEN TO STOP

PLAYING A NOTE

540 READ N,0 : REM READ NOTE AND OCTAVE #

55D FR = F(N)/(5*O) : REM CALCULATE FREQUENCY FOR SID

5E.D FH = INT(FR/55t) : FL = FR-55b*FH

57DPOKEF1,FL : POKE F1 + 1,FH : REM INSTALL FREQUENCY

The Well-Tempered Computer 267

SflD POKE W1,N(1)+1 : REM ATTACK BEGINS

5RD IF TKT THEN SRD : REM WAIT FOR NOTE TO END

tDD POKE W1,N(1) : REM RELEASE BEGINS

fclD GOTO 5DD : REM GET MORE DATA

7DD DATA 40,4,2

71D DATA 4D,b,a

72D DATA 4D,fl,2

730 DATA 4D,R,2

?4U DATA 40,11,2

ISO DATA 40,1,1

7tD DATA 4D,3,1

77D DATA 40,4,1

7flDDATAD

qqqq for i = d to aa : poke sid+i,d : next i : end : rem

SILENCE SID, AND END

Now RUN the program—pretty neat, right? This is a good point to

experiment a bit with waveform types and ASDRs for our 1 voice piece. Try

the pulse waveform (put a 64 as the 1st number in line 270), and use different

pulse widths (first number in line 370). Now for a bit more explanation. The

variable TI used in line 590 is special. It is the computer's internal timer,

just like TI$, except it is a number (not a string like TI$), and it is measured

in units of l/60th of a second. So the 40's in the DATA statements beginning

on line 700 mean 40/60ths of a second, or about .67 second.

Line 590 is the key to accurate timing, since it doesn't depend on the

time it takes BASIC to execute a statement like the FOR/NEXT loop we

previously used to get a delay. If you study the program, you'll see that the
reason for testing the variable TM for both zero and negative numbers (lines

510 and 520) is to look for two conditions. After playing for a while, you may

want to change the waveform or ADSR, for example, by READing in more

DATA and POKEing into the right place. If TM equals zero, the program will

"branch" to let you do that. A negative value for TM means you are completely

finished. In our example, both cases took us to line 9999, the end of the

program.

There are several ways we could have encoded our notes—for example

using string values like A2,C#3,Bbl... or actually using frequency values

like 880, 2113, 987.2.... or do,re,mi... .or perhaps even graphically as in a

musical score. We obviously could have done something similar with du

rations. However, the way I have outlined is a good compromise between

readability and speed of decoding. It is certainly not sacred, so if you later

feel more comfortable with other notations, go to it and try your hand at

programming them. For now, stick with it and use the following table and

figure to help you translate:

268 Appendix 3

Note* Music symbol

1

2

3

4

5

6

7

8

9

10

11

12

la or A

(le) or A# or Bb

ti orB

do orC

(di) or C# or Db

re or D

(ra) or D# or Eb

mi or E

fa or F

(fi) or F# or Gb

sol or G

(si) or G# or Ab

CODE NOTATION

3,1

11,2*

f<

n

)

I •

y

8,2

4,2

1,2

9,3

6,3

3,3

11,4

8,4

4,4

1,4

9,5

6,5"

1,1

9,2

6,2

3,2

11,3

8,3

4,3

1,3

9,4

6,4

3,4

11,5

8,5

MUSIC NOTATION

B

G

D

B

F

D

A

F

D-

B

G

E •

C

A

F ■

D

B

G-

E •

TREBLE

OR

G

CLEF

TO SHARP (#) A NOTE, ADD 1

TO FLAT (\) A NOTE, SUBTRACT 1

So now you know why we used the sequence 4,6,8,9,11,1,3,4 for our note

codes to play a C-scale, and why we switched from two octaves down to one

octave between 11 and 1. In conventional music notation, durations are

indicated either directly as fractions of a whole note, such as lA note, V2 note,

etc., or by means of graphic symbols. If we arbitrarily call 160 60th of a

second the duration value for a whole note, then a whole note is encoded

with a 160, a V2 note will have the value 80, a lA note gets the value 40, etc.

This technique allows you to have "oddball" durations such as a xh note =

53 (16%), or a dotted quarter note = 60 (40 + one half of 40). Of course, you

don't have to follow this convention, and you could have any reasonable

timing constant you like. In any case, here is a table that will take you from

conventional notation to what we're using as duration values.

The Well-Tempered Computer 269

NAME

DOTTED

WHOLE

WHOLE

DOTTED

HALF

HALF

DOTTED

QUARTER

QUARTER

SYMBOL

O

J.

J

VALUE

240

160

120

80

60

40

NAME

DOTTED

EIGHTH

QUARTER

TRIPLET

EIGHTH

EIGHTH

TRIPLET

SIXTEENTH

THIRTY-

SECOND

SYMBOL

j:

3

3

VALUE

30

27

20

13

10

5

As in real life everything is relative, so the value for S (in line 490) is a

scale factor which multiplies the time value, and is our way of permitting

tempo (overall speed of the music) control with a single number. If S were

2, then the tempo would be 2 times slower; if it were Vz, the tempo would

be 2 times faster. Try setting S = 2 and S = .5 to verify that it works the way

you expect. At this point, you should definitely try your hand with the note

DATA statements to get different tunes encoded, which will give you practice

in getting the durations and note values correct.

OK, assuming you've experimented with single voice tunes, we'll go on

to something even more fun, multiple-voice music. I think you can see how

we will proceed. Our DATA statements will now consist of three sets of

information instead of one. We could do three sets of POKEs to get the SID

chip activated. This would be fine if all 3 notes always started and finished

at the same time, but this is not usually the case in most music.

In much music, the notes frequently don't "line up." This gives it its

multiple-voice sound. Two general techniques are prevalent in encoding mu

sic for computers. One is called ''horizontal," which simply has the timing

and frequency values for each voice in a separate table (as you would read

each voice in a score by scanning it horizontally). This would be relatively

easy to use if we had a separate timer for each voice.

The other technique is called "vertical," which means that data for all

three voices are grouped together, as if they were musical chords. (This is

closer to how people read and play multi-part music.) The complication in

vertical coding arises when, say, one voice needs to be changed, while the

other two need to continue sounding. Although both methods could be im

plemented, it will be easier to program for vertical encoding.

270 Appendix 3

What this means is that data must be made available to the program

each time something "new" is about to happen, that is every time one or

more voices needs to be set into an attack or a release. For example, suppose

we had three notes that started together, but one of them was a quarter note,

while the others were half notes. We would split this vertically into two

separate "events." Each event, for our purpose, means a new DATA statement.

In the first event, we would start all notes into their attack phase. The du

ration for our timer would get the value for a quarter note. The next event

would pick up another quarter note duration, and release (or pick up a new

attack) for the original quarter note, while the other two would be left sound

ing. It is critical that you understand why the sum of the two events must

add up to the half note, and why the first event must be a quarter note in

duration. If you see this clearly, you are in excellent shape for what follows;

if not, try to follow along and perhaps it will become clearer as we give you

some more examples.

Here is our three-voice program, starting with the first simple example

in the data of lines 800-880. We assume you have our opening program

already present (up to line 400):

410 BYTE=E5b : Z = D : W = l : M=-l : REM CONSTANTS

AEQ DIM FH(12,b),FL(12,k),O(L) : REM FOR FREQUEN

CIES AND OCTRVE DIVIDER

A3Q FOR J=D TO t : O(J)=5*J : NEXT J

AAQ FOR 1 = 1 TO 12 : FOR J = D TO b

ASU FR = F(I)/0(J) : FH(I,J) =INT(FR/BY) :FL(I,J)=FR-

BY*FH(I,J)

4bDNEXTJ,I

S = 1 : REM TEMPO CONSTANT

5DDREADTM : T=TI+S*TM : REM READEVENTDURATION, AND

SET TIME VALUE

51D IF TM = Z THEN IRRR : REM DONE IF TM = D

5ED IF TM<Z THEN RS^ : REM DONE IF TM<D

S3Q :

SAQ READN1,O1,NE,O2,N3,O3 : REM NOTE AND OCTAVE #■ S

55D REM RELEASE BEGINS HERE
5bO IF Nl THEN POKE W1,N(1)

57D IF N5 THEN POKE W2,N(2)

5flD IF N3 THEN POKE W3,N(3)

SRD REM ATTACK BEGINS HERE

fcOD IF Nl >Z THEN POKE F1,FL(N1,O1) :P0KE Fl + W,

FH(N1,O1) : POKE W1,N(1)+W

fclD IF N5 >Z THEN POKE FS/FL'(N3,OS) :POKE F2 + W,

FH(N5,02) : POKE W2,N(2) +W

bSD IF N3 >Z THEN POKE F3,FL(N3,03) : POKE F3 + W,

FH(N3,O3) : POKE W3 ,N(3) +W

t3D :

The Well-Tempered Computer 271

b40 IF TI>T THEN 500 : REM GET MORE DATA

b50 GOTO b40 : REM WAIT FOR TIMER

This is slightly different in style from our previous music program. We

gave variable names to our most heavily used constants—256, 1,0, and - 1—

in order to gain speed, since BASIC doesn't have to repeatedly make con

versions. We also ^recalculated the octave divisors into array 0(1), and the

entire frequency table in FH(I,J) and FL(I,J). (You should delete the REMarks

and extra spaces from your working version.) Speed is more critical now

since 3 sets of parameters have to be installed into SID instead of one, and

of course the ear is very sensitive to timing differences when three sounds

are supposed to sound simultaneously. As before, you should definitely SAVE

this piece of the program (call it SIDMUSIC3 if you want to) before pro

ceeding.

Now enter this set of DATA statements:

flDD DATA 4 0,04,2,04,1,00,0

BIO DATA 4 0,0^,2,03,1,00,0

fl20 DATA 4 D,Dfl ,5,01,5,00,0

fl30 DATA 4 0,aq,2,ll,2,0a,0

fl4 0 DATA 40, 11, 2, OR, 2, 00,0

fi50 DATA 40,01,1,03,2,00,0

fltO DATA 4 0, 03,1,0b, 2, 00,0

fl?0 DATA 4D, 04,1,04,2,00,0

flflO DATA 0

qqqq FOR 1 = 0 TO 2fl : POKE SID+1,0 : NEXT I : END:REM

SILENCE SID, WE'RE DONE

After you RUN this, you will see that the "events" here are very simple,

since each of the two voices were synchronized, one playing a C-scale up,

and the other playing it down. Now let's get just a little more complex, and

you will see why we need the extra condition (IF N1>Z in the program).

flOO DATA 4 0,04,2,04,1,00,0

filO DATA 40, 0b, 2,0D, 0,00,0

fl20 DATA 4 0,03,2,01,2,00,0

fl30 DATA 4 0, OS, 2, 00, 0,00,0

fl40 DATA 40,11,2,0q,2,00,0

fl50 DATA 4 0,01,1,00,0,00,0

fltO DATA 40,03,l,0b,2,0D,0

fi7 0 DATA 4 0,04,1,00,0,00,0

The 0's for the note ID in the second voice means "don't do anything";

i.e., keep sustaining. So, we now have a series of lA notes in voice 1, playing

against a series of Vi notes in voice 2. Do you see that playing a single Vi

note is not the same as playing two lA notes? Remember, each time we "play"

a note it goes into an attack mode. Try adding the following lines to make

sure you understand the significance. (Delete line 880, first.)

272 Appendix 3

ROD DATA 40,04,5, 04,1,00,D

qiD DATA 40,0b,5,04,1,00,0

qao data 4 0,oa,2,01,5,00,0

^3 0 DATA 40,0^,5,01,5,00,0

R4 0 DATA 4 0,11, 5, OR, 5, 00,0

qSO DATA 4 0,01,1,0^,5,00,0

RbO DATA 4 0,03,1,0b, 5, 00,0

R7 0 DATA 4 0,04,1,0b,5,00,0

HflO DATA 0

Makes a difference, right? Now, suppose instead of wanting to play lA
notes against Vi notes, we want to make the second voice to also play lA notes

but with a lA "rest11 in between? In our 1 voice program there was no provision
for rests, in case you didn't already notice it. In music, rests are quite im
portant even though, or better yet, because they force silence. To take care

of this case, we are going to use - 1 in our note code to indicate that we want
that voice to release without immediately attacking. And that's why we needed
the extra conditionals. So try the following to hear the effect.

qOO DATA 4 0,04,5,04,1,00,0

RIO DATA 40, 0b,5,-1,0,00,0

R50 DATA 40,0fl,5,01,5,D0,0

R30 DATA 40,0^,5,-1,0,00,0

R4 0 DATA 40,11,5,OR,5,00,0

R50 DATA 40,01,1,-1,0,00,0

RbO DATA 40,03,1,0b, 5, 00,0

R7 0 DATA 40,04,1,-1,0,00,0

qao data o

Makes a difference, right? Now let's put it all together with some real

music. What could be better suited to the 3-voice SID than a Bach 3-part

Sinfonia? The first few measures of the Sinfonia #10 are reproduced below,

so you can follow along with the encoding.

Sinfonia 10. a s. bach)

Figure 13. Sample musical score

The Well-Tempered C trnputer 273

Here's the program code for the first measure:

REM MEASURE 1

flOO DATA 20,00,0,00,0,11,5

flO2 DATA 20,11,3,00,0,00,0

flO4 DATA 10, 0D, 0,00, 0,03,4

flOb DATA 10,10,3,00,0,00,0

flOfl DATA 10,11,3,00,0,00,0

fllO DATA 10,01,5,00,0,00,0

fllS DATA 10,03,2,00,0,11,5

S14 DATA 10,04,2,00,0,00,0

flit DATA 10, Ob, 2, 00, 0,00,0

filfi DATA 10,03,2,00,0,00,0

DATA 0

Try RUNning this little bit before you continue the programming. I

suggest you RUN and listen after entering each measure.

filR REM MEASURE 2

fl20 DATA 20,03,2,00,0,04,4

fl22 DATA 20, Ob, 2, 00, 0,00,0

fi24 DATA 20,04,2,00,0,00,0

fl2b DATA 20,03,2,00,0,00,0

fl2fl DATA 20,01,2,00,0,Db,4

fl30 DATA 20,11,3,00,0,00,0

fl32 DATA 20,10,3,00,0,00,0

fl34 DATA 20,OS,3,00,0,00,0

fl3b DATA 20, Ob, 3, 00,0, Ob, 5

fl3fl DATA 20,04,2,00,0,00,0

fl40 DATA 20,03,2,00,0,00,0

fl42 DATA 20,01,2,00,0,00,0

Voice 2 still hasn't made its appearance yet, but will in the following

measure; event structure like measure 1:

fl44 REM MEASURE 3

fl4b DATA 4 0,03,2,00,0,11,5

fl4fl DATA 4 0,00, 0,0b, 3, 00,0

fl50 DATA 20,00,0,00,0,11,4

fl52 DATA 20,01,2,05,3,00,0

fl54 DATA 20, 03, 2, Ob, 3, 00,0

fi5t DATA 20,05,2,06,3,00,0

fi5fl DATA 20, Ob, 2,10, 3,10,4

flbO DATA 20,00,0,11,3,00,0

flb2 DATA 20, OD, 0,01, 2, 00,0

flb4 DATA 20,00,0,10,3,00,0

flbb REM MEASURE 4

flbfi DATA 10,00,0,03,2,11,4

fl7 0 DATA 10,00,0,01,2,00,0

fl?2 DATA 10,00,0,11,3,00,0

274 Appendix 3

fl?4 DATA 10,00,0,10,3,00,0

fl?b DATA 10,00,0,Do,3,01,3

fl?fl DATA 10,00,0,0b,3,00,0

QflO DATA 10,00,0,05,3,00,0

flfl5 DATA 10,00,0,03,3,00,0

flfl4 DATA 10,05,2,01,3,01,4

flflb DATA 10,00,0,11,3,00,0

flflfl DATA 10,00,0,10,3,00,0

aqo data io,oo,o,oa,3,oo,o

Notice the forced rest (-1,0) for voice 3 in the 5th event of the following

measure

REM MEASURE 5

flq4 DATA 10, Ofc, 5,10, 3, 0b, 4

DATA 10,00,0,01,3,00,0

DATA 10,00,0,03,3,00,0

ROD DATA 10,00,0,05,3,00,0

qO5 DATA 10, 00, 0,0b, 3, -1,0

qO4 DATA 10,05,5,00,3,00,0

qOb DATA 10, 0b, 5,10, 3, 00,0

qoa data io,oa,a,ii,3,00,0

RID DATA 10,10, 5, 01, S, 00,0

DATA 10,11,5,03,2,00,0

DATA 10,01,1,04,5,00,0

Rib DATA 10,10,5,01,5,00,0

qifl REM MEASURE b

qSO DATA 10, 03,1,0b, 5, 00,0

R55 DATA 10,01,1,00,0,00,0

q54 DATA ID, 11, 5, 03, 5, 00,0

q5b DATA 10,10, 5, 00, D, 00, D

q5fl DATA 10,Dfl,a,ll,3,00,D

q30 DATA 10, Ob, 5, OD, 0,00,0

q35 DATA 10,04,5,03,3,00,0

R34 DATA 10,03,5,00,0,00,0

q3b DATA 10,04,5,01,5,00,0

q3fi DATA 10,11,5,00,0,00,0

q4 0 DATA 10,10, 2, 00,0, DO, 0

q42 DATA 10,05,5,00,0,00,0

Voice 3 comes back again in the following measure, and picks up the

theme.

q44 REM MEASURE 7

q4b DATA 10, Ob, 5, 00, 0,^00,0

q4fi DATA 10,00,0,04,5,00,0

q50 DATA 10, DD,0,03, 2,11,4

q55 DATA 10,00,0,01,5,00,0

q54 DATA 10,00,0,03,5,00,0

Sounds from Hyperspace 275

DATA lD,Db,a,DD,D,lD,4

DATA lQ,Dfi,E,DD,D,ll,4

DATA IQ/Dq/B/DD/D/Dl/a

RfcE DATA 1D,11,E,PD,D,Q3,3

DATA 1D,DD,D,D1,E,D4,3

DATA 1D/DD/D>D3'/5/DEi#3
DATA 1D,DD,Q,11,3,D3,3

Makes you feel like continuing, doesn't it? I hope you've got the hang of

it. Try changing the nature of the voices, and adjust the tempo until it suits

you. A few suggestions—in "live" music the durations cannot be precise (nor

should they be, else you will get an "organ grinder" effect). You can get a

more "human" sound if you vary the duration values by slowly increasing,

then decreasing the duration values. That's one of the reasons we chose this

particular way of coding—it doesn't restrict you to exact Vs, lA, etc., dura

tions—even though we didn't do it in our example. (Some composers will

give you specific instructions on tempo changes; rit. for retard; ace, for ac

celerate; a tempo for "go back to original tempo;" and others.) You should

also try your hand at programming more convenient ways of encoding the

music and ways of SAVEing just the DATA. (Hint—you can READ the data,

then PRINT # to tape or disk and INPUT # when you want it back.) Another

suggestion for advanced programmers and/or musicians: Try experimenting

with different temperaments, or other than 12-tone scales.

Sounds from Hyperspace

This section is fun. You can't go wrong with sound effects, since you

decide what the "rules" are. One of the most versatile sound effect features

of SID is the noise waveform, which hasn't been used yet. Although it is true

that noise does not have a definite pitch, it does have "coloration" which

can be controlled. SID creates noise by outputting random numbers as its

"waveform," but the rate at which it does this depends on what has been

stored in the frequency register. At low rates, the noise will sound "staticky,"

at high rates "hissy." The quality can be 250 : further controlled by the filter

(which we haven't used yet), and of course, a voice Used with noise still has

controllable ADSR. So let's put some of these into effect. LOAD in the opening

program (lines 100-190) to define some of the SID addresses.

1DD POKE VOL/15 : REM SET VOLUME TO MAXIMUM

lib WV=12fl : REM NOISE WAVEFORM
13DAT=1

13D DE = fl

1'AU SU=fl

REM ATTACK RATE

REM DECAY RATE

REM SUSTAIN AMPLITUDE

ISO RE = 1D : REM RELEASE RATE

ltD FRQ = 1DDD : REM FREQUENCY IN HZ

17D TM = b : REM TIME IN SECONDS

iflD :

276 Appendix 3

FH = INT(FR/E5b) : FL=FR-E5b*FH : REMGET

HIGH AND LOW BYTE

EDD TI$=»QQDDDD» : TM=TM*bD : REM TIME IN JIFFIES

E1D :

EEDPOKE Al,lb*AT + DE : REM INSTALL ATTACK/DECAY RATES

E3DPOKESl,lb*SU + RE : REM INSTALL SUSTAIN AMPLITUDE

AND RELEASE RATE

E4 0POKEF1/FL : POKE Fl + 1 ,FH : REM INSTALL FREQUENCY

E5D :

EfcD T=TI+TM : POKE W1,WV+1 : REM START THE SOUND

E7D IF TKT THEN E7D : REM KEEP NOTE GOING

EflD POKE Hl/WV : REM RELEASE

RUN this repeatedly, first trying out different values for FRQ (cannot be

higher than 3900 Hz), then with different numbers for AT, DE, SU, and RE.

(Note that ifTM is too small, the release happens before the sustain is reached,

which can give you the effect of controlling the volume.) Try both very low

frequencies (around 20 Hz) as well as very high frequencies (around 3000

Hz). With fast attack (AT = 0), and no sustain (SU = 0) you can get gunshots,

door slams, footsteps, and various "impulse" type sounds. With medium

attack and decay, medium sustain amplitudes, and long releases, you can

get wind, surf, distant explosions, thunder and other types of "rushing sounds."

There are also filters inside the SID which let you "color" the sounds

produced by the chip. The use of the filters can be complicated, especially

programming SID from BASIC. You can, however, study the following sound

effect examples and change the numbers POKEd into the registers for the

filter that we haven't discussed. As the names suggest, the high pass filter

allows only frequencies higher than the resonance frequency to pass through;

the low pass filter allows only frequencies lower than the resonance frequency

to pass through; and the band pass filter allows only frequencies somewhat

above and below the resonance frequency to pass through.

FREQUENCY

HIGH PASS (64)

FREQUENCY

BAND PASS (32)

FREQUENCY

LOW PASS (16)

Figure 14. Filter modes

To play with the filter, add the following lines to the sound effect above:

175 MODE = 32 : REM FILTER MODE

174 RS = 15 : REM FULL RESONANCE

171 RFRQ = 1DDDD : REM FILTER FREQUENCY

Sounds from Hyperspace 277

17fl RF =(RFRQ-3D)/5.fl:RH = INT(RF/fl) :RL=RF-fl*RH :

REM RESONANCE FREQUENCY

POKE SID + E3,lb*RS + l : REM INSTALL RESONANCE,

CONNECT VOICE 1 TO FILTER

POKE SID+S1,RH : POKE SID+E2,RL : REM INSTALL

FILTER FREQUENCY

POKE VOL,MO + 15 : REM INSTALL FILTER MODE,

VOLUME TO MAXIMUM

RUN this, experimenting with MODE (line 172), values 64 (high pass),

32 (band-pass), and 16 (low pass). Also, check out the effects of changing FRQ

(line 160) and RFRQ (line 176). You will find that, in general, the overall

volume is diminished, since the filter in many cases removes a lot of the

"energy'1 in the sound. Also experiment, of course, with the attack/decay and

sustain/release values.

The full effect of the filter can better be heard by changing its resonance

frequency while the sound is sustaining. You can do this simply by changing/

adding the following lines:

27D ML = 1.1 : REM FACTOR WHICH CHANGES RESONANCE

FREQUENCY

EflD E = fl:W = l:HI = SDDQ:LO = 50D : REM CONSTANTS TO

SPEED COMPUTATIONS

EHD IF TI>TM THEN 3bD : STOP WHEN TIMER EXCEEDS.TM

3DD RF = RF*ML

31D IF RF>HI AND ML>W THEN ML = W/ML : RF = RF*ML : REM

MAKES RF REVERSE

BED IF RF<LO AND ML<W THEN ML = W/ML : RF = RF*ML

33D RH = INT(RF/E) : RL = RF - E*RH : REM CALCULATE

LOW, HIGH PARTS

34D POKE SID + E1,RL : POKE SID + EE RH : REM INSTALL

RESONANCE FREQUENCY

35D GOTO 3DD

3tD POKE W1,WV : REM GO INTO RELEASE PHASE

Now you have some filter dynamics to play with. Try changing ML (line

270) which controls the rate of the filter frequency sweep. SAVE this program,

called SIDNOISE.

You probably already guessed that not only can noise be "tailored" by

the filter, but so can the other waveform types. You will find that the sawtooth

and pulse waveforms are the best ones to use since they are rich in harmonics,

and are therefore most affected by filtering. So try the effect of WV = 64 and

WV= 32 in our previous program.

Finally, here is a set of sound effects that illustrate many of the principles

we have been discussing. As usual, I assume you have our opening program

(lines 10-90) already LOADed in. The title and REMs should be sufficient for

you to figure out what is going on, and you can experiment liberally.

278 Appendix 3

GUNSHOT

100 POKE Fl,200 : POKE Fl+1,40 : REM FREQUENCY, VOICE 1

110 POKE Al,0+15 : REM FAST ATTACK, SLOW DECAY

120 POKE S1,0 : REM NO SUSTAIN, FAST RELEASE

130 FOR I = 15 TO 0 STEP -1 : REM 15 STEPS

140 POKE Wl,128+1 : REM NOISE WAVEFORM FOR VOICE 1, START ATTACK

150 POKE VOL,I : REM DYNAMIC VOLUME IS OK FOR NOISE WAVEFORM

160 NEXT I

170 POKE W1,0 : REM RELEASE VOICE 1

DOLL CRYING

100 POKE VOL,15 : REM VOLUME TO MAXIMUM

110 POKE Al,15 : REM FAST ATTACK, SLOW DECAY

120 POKE S1,0 : REM NO SUSTAIN, FAST RELEASE

130 POKE Fl+1,40 REM FREQ. HIGH FOR VOICE 1 DOESN'T CHANGE

140 POKE Wl,32+1 : REM SAWTOOTH WAVEFORM FOR VOICE 1, START ATTACK

150 FOR I = 200 TO 5 STEP -2 : REM FREQUENCY SWEEP DOWN

160 POKE F1,I : REM SWEEP FREQUENCY LOW

170 NEXT I

180 FOR I = 150 TO 5 STEP -2 : REM SECOND FREQUENCY SWEEP

190 POKE F1,I

200 NEXT I

210 POKE W1,0 : RELEASE VOICE 1

VIBRATO

100 POKE SID+3,4 : REM 25% PULSE WIDTH

110 POKE Al,2*16+9 : POKE SI,5*16+9 : REM SET ADSR FOR VOICE 1

Sounds from Hyperspace 279

120 POKE F3,120 : REM FREQ. FOR VOICE 3 IS 7.5 HZ

130 POKE W3f16 : REM TRIANGLE WAVEFORM FOR VOIC 3

140 POKE VOLf128+15 : REM VOICE 3 DISCONNECTED, MAXIMUM VOLUME

150 READ FR,DR : REM READ FREQUENCY, DURATION

160 IF FR=0 THEN END

170 POKE Wl,64+1 : REM VOICE 1 ATTACK

180 FOR T = 1 TO DR*3 : REM # OF CYCLES

190 FQ = FR+PEEK(SID+27)/2 : REM READ VOICE 3 OUTPUT, ADJUST

FREQUENCY

200 FH = INT(FQ/256) : FL = FQ AND 255 : REM FREQUENCY HIGH, LOW

210 POKE F1,FL : POKE F1+1,FH

220 NEXT T

230 POKE Wl,64 : REM RELEASE VOICE 1

240 GOTO 150 : REM GO FOR MORE DATA

250 :

260 DATA 4817,2,5103,2,5407,2

270 DATA 8583,4,5407,2,8583,4

280 DATA 5407,4,8583,12,9634,2

290 DATA 10207,2,10814,2,8583,2

300 DATA 9634,4,10814,2,8583,2

310 DATA 9634,4,8583,12

320 DATA 0,0

SIREN

100 R3 = SID+27 : REM V3 READ

110 BYTE=256 : K = 3.5 : REM CONSTANTS

280 Appendix 3

111 POKE F3,5 : REM V3 FREQUENCY 1/3 HZ

112 POKE W3,16 2 REM V3 IS TRIANGLE

120 POKE Fl+3,2 : REM 12% VI DUTY CYCLE

130 POKE VOL,128+15 : REM V3 OFF, VOLUME SET TO MAXIMUM

140 POKE SI,15*16+0 : REM VI MAXIMUM SUSTAAIN, FAST RELEASE

150 POKE A1,0 : REM VI FAST ATTACK, FAST DECAY

160 POKE Wl,64+1 : REM VI ATTACK WITH PULSE WAVEFORM

170 FR = 7000 : REM VI FREQ = 440 HZ

180 FOR T = 1 TO 400 : REM FREQ. SWEEP

190 FQ = FR + K* PEEK(R3) : ADJUST FREQUENCY

200 FH = INT(FQ/BY) : FL = FQ-BY*FH

210 POKE F1,FL : POKE F1+1,FH : REM INSTALL NEW FREQUENCY

220 NEXT T

230 POKE W1,0 : RELEASE VOICE 1

HAMMERING

100 RF = SID+23 : REM RESONANCE/FILTER

110 FC = SID+21 : REM FILTER CUT-OFF

120 POKE Fl+1,30 : REM VI FREQ = 480 HZ

130 POKE Al,0+6 : REM VI FAST ATTACK, MEDIUM DECAY

140 POKE S1,0 : REM VI NO SUSTAIN, FAST RELEASE

150 POKE FC+1,150 : REM FILTER FREQ.

160 POKE RF,0+1 : REM NO RESONANCE, VI CONNECTED TO FILTER

170 POKE VOL,64+15 : REM HIGH-PASS MODE, MAXIMUM VOLUME

180 FOR I = 1 TO 15 : REM # OF CLAPS

190 POKE Wl,128+1 : REM ATTACK WITH VI NOISE

200 FOR J = 1 TO 200 : NEXT J : REM DELAY

210 POKE Wl,128 : REM RELEASE VI ,

Sounds from Hyperspace 281

220 FOR J = 1 TO 100 : NEXT J : REM DELAY

230 NEXT I

240 END

MOSQUITO

100 POKE Fl+1,100 : REM VI FREQ. 1600 HZ

110 POKE Al,13*16+13 : REM VI SLOW ATTACK, SLOW DECAY

120 POKE S1,0 : REM VI NO SUSTAIN, FAST RELEASE

130 POKE F3+l,28 : REM V3 FREQ. 450 HZ

140 POKE VOL,15 : REM MAXIMUM VOLUME

150 POKE Wl,16+2+1 : REM VI IS TRIANGLE, SYNC WITH V3, ATTACK

160 FOR I = 1 TO 5000 : NEXT I : REM DELAY

170 POKE Wl,16+2 : REM RELEASE VOICE 1

180 FOR I = 1 TO 1000 : NEXT I : REM DELAY

190 POKE W1,0 :REM RELEASE VI

200 END

CLOCK CHIME , '

100 POKE Fl+1,130 : REM VI FREQ = 2000 HZ

110 POKE Al,0+9 : REM VI FAST ATTACK/MEDIUM DECAY

120 POKE F3+l,30 : REM V3 FREQ = 480 HZ

130 POKE VOL,15 : REM MAXIMUM VOLUME

140 FOR I = 1 TO 12 : REM 12 CHIMES

150 POKE Wl,16+4+1 : REM VI IS TRIANGLE, RING MODULATE WITH

V3, ATTACK

160 FOR J =1 TO 500 : NEXT J : REM DELAY

170 POKE Wl,16+4 : REM RELEASE VI

282 Appendix 3

180 FOR J = 1 TO 100 : NEXT J : REM DELAY

190 NEXT I : REM NEXT CHIME

200 POKE W1,0 : REM RELEASE VI

210 END

Error Messages

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

BAD SUBSCRIPT ERROR

A bad subscript is just what its name implies—a subscript number

too big for the size of the array DIMensioned. If a DIMension line

reads DIM A$(100), for instance, there can be no variable named

A$(101). This ERROR also happens when no DIM statement is used

at all and variables with subscript numbers larger than 11 are

used. Check variables used as subscripts for the problem.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

CAN'T CONTINUE ERROR

CONT can be used to continue a program after the RUN/STOP key

was pressed or the word STOP was used. If you change any line

in the program during a break, however, the above ERROR will

appear. It will also be seen when the program has not been RUN

at all. In either case, RUN the program (again).

283

284 Appendix 4

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

EXTRA IGNORED

This is really an ERROR that you cannot correct, and happens

when your answer to an INPUT statement contains a comma where

one does not belong. Commas are used by the Commodore com

puters as special characters. The only time that they are allowed

within an answer to INPUT is when the program is looking for

several answers at once. Like this:

ID INPUT fi$,B$,C$

Commas in strings will also cause problems when they are stored

and recalled to and from disk information files.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

FILE NOT FOUND

This message will appear if you try to LOAD a program or file

from disk that does not exist. If you are sure that you have the

program, check the disk directory to see if it is on that particular

disk, or check your spelling. The disk drive expects absolute ac

curacy when asking for a program by name. Avoid this ERROR

by using an asterisk for pattern matching purposes.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

FILE NOT OPEN ERROR

FILE OPEN ERROR

When using data-handling words PRINT#, INPUT# and GET#,

you must first OPEN a file, otherwise a FILE NOT OPEN ERROR

will occur. This also happens with CMD, a word used to transfer

information meant to be PRINTed on the video screen to a printer

or disk drive, is used without OPENing the correct file, and with

the word CLOSE, as well. FILE OPEN ERRORs will be seen when

you try to OPEN a file that has been OPENed but not CLOSEd.

Always check the file sequence to make sure the file is CLOSEd

after use.
**

Error Messages 285

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

ILLEGAL DIRECT

While many BASIC words can be typed directly from the keyboard

and used outside a program, INPUT cannot. This is logical, con

sidering its use.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

ILLEGAL QUANTITY ERROR

When this ERROR occurs in a program line with a POKE state

ment, check to see that no number greater than 255 or less than 0

(zero) is being put into a location in memory. If variables are used,

check the numbers they stand for to see if they were calculated to

greater than 255 or less than 0.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

ILLEGAL QUANTITY ERROR

Integer variables are recognized by the percent sign ('%')• If this

ERROR occurs in a line with an integer variable, check to see that

the variable does not stand for a number greater than 32767 or

less than -32768. If the ERROR is not in a line with an integer

variable, check for problems with POKE.

**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

NEXT WITHOUT FOR ERROR

Using the word NEXT without opening a loop with FOR produces

this message. This will also happen if NEXT is used with the wrong
variable.

ID FOR 1 = 1 TO ID

50 NEXT K

No ERROR message will be given if the reverse happens—FOR is

used without NEXT. Instead, the loop will simply not continue as
it should.

286 Appendix 4

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

NOT INPUT FILE ERROR
NOT OUTPUT FILE ERROR

Cassette tape files are OPENed as either INPUT or OUTPUT files,

depending on their secondary address. An address of 1 means that

the tape file is OPENed for recording information to it. You cannot

use INPUT# or GET#, or the first ERROR will be seen. If no

secondary address number is used with the cassette recorder, the

computer assumes that information will be recalled from it. Using

PRINT# will produce the second ERROR message.
**

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

OUT OF DATA

Count the number of pieces of information in DATA statements,

then check to see how many times the program uses READ. (One

way is to look for FOR/NEXT loops with READ in them.) Check

the DATA statements in the program LISTing you are entering

from, or compare the information used to prepare the DATA state

ments.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

OVERFLOW ERROR

This ERROR occurs when you attempt to work with the largest

number that the computer can use, 1.70141884E + 38, or the num

ber multipled by 1 followed by 38 zeroes. The solution (not always

possible) is to break up your calculations so that this number is

never achieved.
**

#% #% A #* W% W* W9 W» w* ww ww *» »» ww »» »» -- -- -- -- -- -- --

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

REDIM'D ARRAY ERROR

DIM can be used only once to create an array of a variable. Once

that array is created, it cannot be DIMensioned again, or re-

DIMensioned. This will occur primarily when editing programs or

trying to link two programs with DIM statements in them together.

Error Messages 287

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

REDO FROM START

This message appears whenever you answer an INPUT statement

with a string, when it expects a number. Correct the situation by

answering with a number.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

RETURN WITHOUT GOSUB

GOSUB and RETURN work together. This message will appear if

a program encounters RETURN without being told to GOSUB. It

is most often seen when a program line is called with GOTO in

stead.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

STRING TOO LONG ERROR

Strings can only be 255 characters long. String ERRORs are likely

to occur when you concatenate, or add, one string to another. Check

the length of each string when looking for the source of this ER

ROR.

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

SYNTAX ERROR

Syntax ERRORs can be caused by dozens of problems, but all are

associated with BASIC "grammar." The most common problems

are misspellings and missing punctuation marks, paricularly co

lons (':') and commas (',')• Also look for use of semicolons (';') in

place of colons, and make certain parentheses are closed. Check

the rules for use of problem words.

288 Appendix 4

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

TYPE MISMATCH ERROR

This kind of ERROR is always caused by trying to put a character

into a numeric variable or an actual number into a string variable.

Strings and numbers don't mix. Trouble statements look like this:

ID A$ = q (or) A$ = A

or

ID A=»EXAMPLE" (or) A = A$

ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR ERROR

UNDEFINED STATEMENT ERROR

You must use GOSUB and GOTO with line numbers that are ac

tually used in the program. This ERROR often happens when you

edit programs or change line numbers and forget to change the

GOTO and GOSUB statements that refer to them. Check line num

bers in which the ERROR occurs, then try to LIST that line. Since

RUN can also be used with line numbers, UNDEFINED STATE

MENT ERRORS can occur this way, too.

ASCII/CHR$ Codes &

Base Conversion Table

DISABLES

SWITCH TO

LOWER CASE

MSk

PRINTS CHR$ PRINTS CHR$ PRINTS CHR$ PRINTS CHR$

0

1

2

3

4

5

6

7

IS 8

ENABLES Q H(3 9

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

#

S

%

&

•

(

)

*

+

-

/

0

1

2

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

3

4

5

6

7

8

9

:

;

<C

@

A

B

C

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

289

I
O

t
o

U
i

t
o

-f
c.

1
>
J

"
0
S
O Z H C/
3

O
„

<
-
c

c
„

I
—

t
-
J

O
O

f
r
q
O

4
-

L
-
J

t
O

-
O
C
O
O
O
O
O
O
O
C
X
C
O
C
O
C
O
Q
O
O
C

O
'
■
O

C
O

-
~
J

(
J
*

U
i

4
-

O
J

N
>

•
—
•
O

•
-
J

-
J

-^
1

-
0

-
J

-
J

-
J

-
J

^
J

C
O

~
O

O
1

U
l

-
£
•

L
u

I
O

>
—
•
O

O -
0 2 H O s
o

l
o

t
o

t
o
—

—
—

—
—

—
—

—
—
O
O
O
O
O
O
O
O
.
O
O

(
j
J
|
O
—

O
v
D
C
O
-
O
O
-
U
I
-
^
L
f
J
l
O

—
O

r
r
- r
O

O
T

D3
-
D 2 z H C/
5

n S
O

O
U
l

U
l

U
l

O
^
D

C
O

"
~
J

U
l

U
i

U
i

U
i

U
i

O
U
l

-
t
-

U
J

t
O

O
U
J

t
o
—

W
U
J
W

O
J

C
O

-
J
O

U
l

o

z H n x I
S
)

291

BASE CONVERSION TABLE

BIN

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

mi

10000

10001

10010

10011

10100

10101

10110

10111

11000

nooi
11010

11011

11100

11101

11110

11111

100000

100001

100010

100011

lodioo
100101

100110

100111

101000

101001

101010

101011

101100

101101

101110

101111

110000

110001

iiooio
110011

110100

DEC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

HEX

00

01

02

03

04

05

06

07

08

09

0A

0B

OC

0D

OE

OF

10

11

12

13

14

15

16

17

18

19

1A

IB

1C

ID

IE

IF

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

BIN

110101

110110

110111

111000

111001

111010

111011

111100

111101

111110

111111

1000000

1000001
1000010

1000011

1000100
1000101

1000110

1000111

1001000

1001001

1001010

1001011

1001100

1001101

1001110

1001111

1010000

1010001

1010010

1010011

1010100

1010101

1010110

1010111

lonobo
1011001

1011010

1011011

ion ioo
1011101

1011110

1011111

1100000

1100001

1100010

1100011

1100100

1100101

1100110

1100111

1101000

1101001

DEC

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

HEX

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

292

BASE CONVERSION TABLE (Continued)

BIN

1101010

1101011

1101100

1101101

1101110

1101111

1110000

1110001

1110010

1110011

1110100

1110101

1110110

1110111

1111000

1111001

1111010

1111011

1111100

1111101

1111110

1111111

10000000

10000001

10000010

10000011

10000100

10000101

10000110

10000111

10001000

10001001

10001010

10001011

10001100

10001101

1J0001110

10001111

10010000

10010001

10010010

10010011

10010100

10010101

10010110

10010111

10011000

10011001

10011010

10011011

10011100

10011101

10011110

DEC

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

HEX

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

%

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

BIN

10011111

10100000

10100001

10100010

10100011

10100100

10100101

10100110

10100111

10101000

10101001

10101010

10101011

10101100

10101101

10101110

10101111

10110000

10110001

10110010

10110011

10110100

10110101

10110110

10110111

10111000

10111001

10111010

10111011

10111100

10111101

10111110

10111111

11000000

11000001

11000010

11000011

11000100

11000101

11000110

11000111

11001000

11001001

11001010

11001011

11001100

11001101

11001110

11001111

11010000

11010001

11010010

11010011

DEC

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

HEX

9F

A0

Al

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

B0

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

Cl

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

DO

Dl

D2

D3

293

BASE CONVERSION TABLE (Continued)

BIN

11010100

11010101

11010110

11010111

11011000

11011001

11011010

11011011

11011100

11011101

11011110

11011111

11100000

11100001

11100010

11100011

11100100

11100101

11100110

11100111

11101000

11101001

DEC

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

HEX

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

E0

El

E2

E3

E4

E5

E6

E7

E8

E9

BIN

11101010

11101011

11101100

11101101

11101110

11101111

11110000

11110001

11110010

11110011

11110100

11110101

11110110

11110111

11111000

11111001

11111010

11111011

11111100

11111101

11111110

11111111

DEC

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

HEX

EA

EB

EC

ED

EE

EF

FO

Fl

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

Array—A grouping of information stored by the computer in its memory,

usually organized as subscripted variables.

ASCII—A code of 128 numbers where each stands for a character, letter,

number, symbol or signal. Commodore computers use a variation called PET

ASCII, with 255 code numbers. American Standard Code for Information

Interchange.

BASIC—Beginners All-purpose Symbolic Instruction Code. A programming

language that has become the standard for personal computers.

Bit—The simplest division of memory, which can contain only a 1 or 0;

likened to a switch that is either on or off. Eight of these bits comprise a

byte.

Branching—When a computer program goes from one part of itself to an

other, out of sequence.

Byte—The standard division of memory. Can contain numbers from 0 to

255. Eight bits.

Cassette Buffer—That area in memory used for temporary storage and trans

ferring information from the cassette player to the computer's main memory.

Cold Start—A complete resetting of the machine in which memory is cleared

and programs are destroyed.

Compiled BASIC—The program that translates BASIC into intermediate

code or machine code that runs many times faster than interpreted BASIC.

Concatenate—To add one thing to another, usually strings when used in

computing.

295

296 Glossary

Copy Protect—A scheme to prevent unauthorized copies of a program.

Crash—When a computer quits operating, apparently inexplicably.

Cursor—The mark on the screen that indicates a typing location. From the

French word.

Data—Any information.

Data Base—An organized collection of information accessed by a program

called a Data Base Manager.

Decrement—Decrease a number by one or some other regular step.

DOS—A Disk Operating System, the program that controls a disk storage

device.

Exponent—A number that tells how many times a number is multiplied by

itself.

Floppy Disk—A flexible plastic disk on which information is recorded mag

netically.

Garbage Collection—A function of Commodore BASIC in which the computer

halts to reorganize the memory used for storing variables, especially strings.

Global—Refers to several different tape or disk files that are all part of a

larger file. A word processing file, for instance, can be much longer than the

computer can contain at one time, and is broken down into smaller, linked

parts called global files.

Graphic Mode—When the computer displays upper case letters and graphic

symbols.

Hacker—A computer enthusiast identified by his or her tireless devotion to

programming and learning about the machine.

Increment—Increase a number by one or some other regular step.

Integer—A whole number, or a number minus its decimal fraction.

Interface—An electronic circuit that connects one device to another. Usually

used to connect computers to printers and disk drives designed for a different

data standard.

Interpreted BASIC—Method of storing BASIC as individual commands that

are interpreted by the computer one by one. The actual operating code is

contained in a larger program, called BASIC.

Jiffy—A 60th of a second as used by the computer's clock. (TI)

K—From "kilo," for one thousand. One "K" of memory is actually 1,024

bytes.

Language—A set of instructions, rules, and words for communicating with

the computer.

Glossary 297

Loop—A number of program lines that form a repetitive pattern, usually

with GOTO or FOR/NEXT.

Machine Code—The most elemental code or language the computer's mi

croprocessor understands. Also called machine language and, occasionally,

assembly language.

Memory Map—A key to the locations in the computer's memory; describes

the function of various portions of the memory.

Menu—A screen list of choices offered by a program.

Microchip—An electronic integrated circuit (IC), miniaturized to micro

scopic proportions and manufactured of the metal, silicon.

Microprocessor—An electronic integrated circuit with its own set of instruc

tions that can be programmed for various activities and functions.

Modem—A device that converts digital information to audio signals so they

can be sent over the telephone lines.

Nesting—When one loop is inside another.

Null String—An empty string, indicated by quotation marks that enclose no

characters—"".

Number Crunching—Slang for any complicated, repetitive mathematical

activity.

Nybble—Four bits; half a byte.

Operating System—The master program that oversees the functions of a

computer, (OS)

Parallel—The data standard in which eight bits of information are sent at

once, over eight different wires. A printer standard also called "Centronics

Parallel."

Pattern Matching—A technique used by the Commodore computers to iden

tify tape and disk programs or files.

Pixel—A picture element, or one of many dots that comprise an image on a

high-resolution screen.

Program—A list of instructions written in a computer language that breaks

down a problem into smaller, easier-to-solve pieces.

RAM—Random Access Memory; memory that can store information and be

erased. Usually loses that information when power is interrupted.

Random Number—Any number selected at random. A number generated by

a formula used to simulate randomness is strictly speaking "pseudo random.1'

Real Time^Time measured in hours, minutes, and seconds. Can be 24-hour
notation instead of am and pm.

298 Glossary

ROM—Read Only Memory; memory in which information is permanently

stored and not destroyed when power to the machine is turned off.

Screen Memory—The portion of memory that contains text or pictures dis

played on the video screen.

Sequential File—A tape or disk file containing information, not a program.

Serial—The data standard in which bits are sent sequentially over a pair of

wires. Sometimes called "RS-232 serial," although serial data need not con

form to this one specific standard.

Smart—From "intelligent" machine; shorthand description of any electronic

device controlled by its own internal microprocessor and program. The Com

modore disk drives are, for example, smart devices.

Sort—A program or routine that reorganizes information, usually by number

or alphabetically.

Sprite—Also called a movable object block (MOB), it is a small, high-reso

lution picture defined independently in memory that can be placed anywhere

on the video screen.

String—A single character or group of characters, letters, symbols, numbers,

or editing commands. If a string contains numbers, the computer regards

them as characters without numeric value.

Structured Programming—A technique in which GOTO commands are sel

dom used, this kind of program usually consists of many distinct subroutines

designed to make the program easier to read.

Subroutine—A program within a program called with GOSUB.

Syntax—The correct usage of any word or command, either in a spoken or

computer language.

Typewriter Mode—When the computer displays upper- and lower-case let

ters of the alphabet.

Warm Start—A way to reset the machine that does not disturb the contents

of memory. Programs are left intact.

Word Processing—Electronic text preparation; typing and editing on the

computer's video screen.

Write Protect—Usually refers to the notch on a floppy disk which determines

whether or not the disk can be recorded on.

Zero Page—The area of memory containing locations 0 to 255.

Index

ABS, 125

Address, 194, 196

secondary, 39, 94-96, 100, 102
ADSR, 153,260-263

Amdek Color-I, 10

AND logical operator, 211-212, 218
Animation, 217

Appending, 139

Apple, 3, 33, 51
Array, 89-90, 93, 98-99, 105, 295

ASCII, 128,295

codes, 289-290

Assembly language, 190

Atari, 57, 177

ATN, 125

Audio-video connector, 12

Babbage, Charles, 1

BAM, 41

Bar graphs, 185

Base Conversion Table, 291-293

BASIC, 19, 25, 30-31, 35, 40, 43,

295

compiled, 50, 189, 295

Fast, 188-189

Microsoft, 51, 189
punctuation, 59-60

Simon's, 179, 189-190

V2, 14, 51

Binary number, 208

decimal conversion, 209, 291

hex conversion, 291
Bits, 123, 152, 196, 208, 218-219, 295

setting, 211

Block, 33, 35-36, 41, 194
Availability Map, 41

character, 239

sprite, 166

variable, 138, 143

Boilerplate, 138, 141

Branching, 72, 295

Butterfield, Jim, 193

Byte, 14, 33, 40, 45, 152, 208, 295

Calc Result, 184-185
Calculator, 44-45

Cartridge port, 12, 138
Cassette

buffer, 29, 196, 295
files, 97-99

port, 11

recorder, 15-18, 28-29, 35, 94, 96,
122

tape, 26, 94

Character set, 228-237

Chips, 2-4, 9, 12, 152-154

interface, 195-196

video, 106, 120,229
see also microprocessor, SID, VIC

CHR$, 106, 128-129

codes, 289-290

Clock, 47

realtime, 131

CLOSE command, 37, 94, 97-98, 101,
122

CLR statement, 93

CLR/HOME key, 22, 46, 93

with PRINT command, 66

CMD, 122

COBOL, 50

Cold start, 22, 295

Colon usage, 59

COLOR, 9, 10, 21, 67, 105, 244

bytes, 241

character, 158
map, 240

monitor, 10

reverse mode, 20

of screen, 152-153,157
of sprite, 222

Commas, 97

with DATA statement, 91

with INPUT statement, 70, 107
with numbers, 45, 57

with PRINT command, 63-64 '

COMMODORE key, 19-20, 27, 67, 103,
106,142

Commodore Business Machines, 3-4,
compatibility, 43-44

Concatenate, 55, 100, 126, 295

CONT command, 31, 123

COS, 125

299

300 Index

Covitz, Dr. Frank, 179, 251

CRSR keys, 22-23, 46, 53, 65

CTRL key, 20, 52, 76, 142

Cursor, 14-15,22,46,296

with PRINT command, 65-66

with sprite editor, 222

with TAB, 122

triangular, 188

Data

bases, 86, 103, 108, 296

reading, 91-93

RS-232, 137-138, 192

standards, 137

storage, 85, 101, 109

DATA statement, 91-93, 98

DEF, 125

Device number, 28, 37, 94, 95, 102, 122

Dice program, 163-165

DIMension, 88-91, 98-99,105

Disk, 16, 32, 34, 38-41

1541,32-33,36-37,42

cautions, 42-43

directory, 17, 33-38, 101, 143

drive, 13, 16, 94, 96, 101, 122, 137-

138

Commodore's, 32-35, 95, 100, 181-

183

dual, 42, 96

interface, 181

speed, 17,42

erasing, 40

errors, 41-42

files, 95, 99-102

floppy, 7, 16,32-33,85,94

formatting, 16, 33, 37-38

operating system, 35

DOS manager, 34-35, 44, 296

Dot matrix printer, 135

Drive number, 36

Easy Graphics, 179

Easy Script, 145-147

Editing

commands, 126

keys, 22, 46, 53

text, 134

END command, 54, 82

of tape, 94, 96

Error

disk, 41-42

light, 34, 37, 41

messages, 283-288

programming, 50, 107

quantity, 56

syntax, 59, 97, 103

verifying, 31

Exponential numbers, 58"

Fairbairn, Bob, 35, 44
Fiberoptic, 183

File, 85, 93-94

cassette, 97

disk, 95, 99-102

global, 139

index, 139,148

information, 36, 85

INPUT, 95

linked, 139

number, 37, 94-98, 122

OUTPUT, 95

printer, 102-103

program, 36

relative, 107-108

sequential, 94, 96-100, 298

tape, 94, 97-99

Floating point accumulator, 121
FN, 125

FOR, 77-80

FOR/NEXT loops, 92, 231

FORTRAN, 50

Function

keys, 21, 43, 76, 142

mathematical, 119, 124-125, 139

Games, 183-184

dice, 162

GET, 75-77, 94-95, 97, 127

GET#, 97

GOSUB command, 72, 80-82, 123

GOTO command, 31, 72-73, 123

Graphics, 151,207

bitmap, 210,214,237-248

character, 152, 159,228

color, 120

high-resolution, 152-153, 179, 243

mode, 19, 102,120,152

screen, 159-161

sprite, 29, 166-171, 212-228

symbols, 19

turtle, 186, 188

Hertz, Heinreich Rudolph, 252

Hollerith, Herman, 2

Hz, 252

IBM, 1, 134

IF statement 73-75

Index 301

IF/THEN statements, 124
INPUT, 69-72, 95, 97, 107, 124

INPUT#, 97

INST/DEL key, 22-23, 46, 53
INT, 124, 156

Integers, 56, 296

Interfaces, 137-138, 142-143, 147
chips, 195

disk, 181

IEEE-488, 100, 137-138

parallel printer, 182

Interference, 8-9, 15
Interpreted BASIC, 50, 188, 296

Jobs, Stephen, 3

Joysticks, 12, 152, 177-179
Junction box, 8

Kemeny, John, 50

Keyboard, 14, 18-24
Kurtz, Thomas, 50

Languages, 185-192

Left$, 129-131
LEN, 126,130

LET command, 58-59

Letter quality printer, 135-136

Line feed command, 102

LISP, 50, 187

LIST command, 17, 36, 52

LOAD command, 15-16, 35, 36, 94
from disk, 38-39

from tape, 26-30
Load compatibility, 43-44

Local Area Network, 182

Logical operators, 211

LOGO, 187-188

Loop, 72, 77-78,231,297

Machine

code, 108, 121, 140, 190,297

language, 28, 195,243

Mathematical functions, 119, 124-125,

139

Memory, 2, 15, 18, 37, 45-46, 53, 56, 83,

85, 194-202,232,297

location, 120, 123, 154, 238-239

maps, 195-196, 198-202, 212

screen, 197

see also RAM, ROM, VIC

Microprocessor, 3, 102, 297

6502 chip, 3-4

MID$, 129, 131

Mode, 19, 129

graphic, 102, 106, 120, 152

text, 102-103

type, 141

typewriter, 106

Modem, 7-8, 12, 35, 137, 182, 297

Music synthesizer, 153-154

Nesting, 78, 297

NEW command, 50, 53

NEXT command, 78-80

NOT logical operator, 211-212
Null, 71, 75, 128, 297
Nybble, 152,261,264,297

ON command, 123-124

OPEN command, 37, 94-103, 122

Operating system, 4, 35-36, 297

OR logical operator, 211-212
Overloading, 8

Overscanning, 9

Pattern matching, 28, 297

Parentheses, 86, 120
Peddle, Chuck, 3

PEEK command, 43,119-121,193-194,
231

PET, 3-4,27-28,39,43-44,51,71,83,137,
142

emulator, 44

Pilot language, 186-187
Pixels, 152, 208, 210, 212-213, 222, 230,

239, 297

PLAY key, 15,29,30

POKE command, 43-44, 105-106, 119-

121,193-194,231

Ports, 11-12

control, 12, 152, 177-178
Processor I/O, 203

Power

strip, 8

supply, 5, 8, 11

PRG, 36, 38, 100

PRINT command, 60-68, 95, 97, 122

with calculator, 44-45

with comma, 63
FREe memory, 45

from keyboard, 65

reversed characters, 67

with screen functions, 65-68

with semicolon, 61

Printer 13,35, 94, 96,122,135-138,142,

143, 145, 147

daisy wheel, 136

dot matrix, 135-136

files, 102-103

302 Index

interface, 182

letter quality, 135-136

parallel, 137-138, 297
serial, 137-138

PRINT#, 97-98, 102, 122, 129

Program, 52, 103,297

designing, 104

listing, 52

sample mailing list, 109-117

. spreadsheet, 184-185
Punter, Steve, 142

QBF, 140-142

Question mark, 61

as print command, 97

Quote mode, 46

QWERTY, 23-24

Radians, 125

Radio frequency, 8, 12

RAM, 3, 14, 26, 139, 194-198, 229, 238

Random numbers, 154-157, 275, 297
generator, 152, 154

READ command, 91-93, 98

Real time, 47, 297

RECORD key, 15, 30
Recordkeeping, 85

REL, 36

Relative file, 107-108

REM,31,83

Repeating keys, 23, 124, 129

Report generator, 108

Reserved

variables, 47

words, 57

RESTORE key, 21-22, 29, 76, 106

RESTORE statement, 93

RETURN key, 14-16, 18, 22, 25, 53, 107,
124,129

RETURN statement, 80
Reverse mode, 20

RF modulator, 12, 13
RGB monitors, 10

RIGHTS, 129-131

RND, 154-157, 162

ROM, 4,190,194-195,197-198,229-231,
298

Rounding numbers, 56, 124
RUN command, 27, 31, 35, 46, 121, 123
RUN/STOP key, 15,18,21,27,29,31,52,

76, 123

RVS, 20, 67

SAVE command, 15-16, 26, 94, 103
to disk, 39

to tape, 30

Schatz, Paul, F., 179, 207, 222

Scientific notation, 58

Screen, 53, 120,139,192

color, 152-153, 157

graphics, 159-161

Secondary address, 37, 94-96, 100, 102
Sectors, 33, 35-36,41

Seed, 154-156

Semicolon with PRINT, 61-63

SEQ, 36,96, 100, 101

Sequential file, 94-101, 298

Serial port, 12

SGN, 125

SHIFT key, 14, 18-20, 22, 76, 83, 103

SHIFT LOCK key, 18, 22, 76

SID, 152-154, 158, 203, 251, 255-285

registers, 264

Signal

RF,8

video, 8

Simons, David, 190

SIN, 125

Sort, 107, 108,139,148,298

Sound, 120-121, 153, 172-175,

251-282

and filters, 275-276

frequency, 172, 252, 254, 257, 265
tempo, 269

SPACE bar, 23, 52
SPC, 122

Sprite, 29, 153, 196, 210, 212-228, 298

block, 166,214-215
editor, 166,221-228

graphics, 166-171

position registers, 216, 220-222

SQR,45, 125
STEP, 79

STOP, 122-123

String variables, 55-56, 298

handling, 126-128
null, 71, 75, 101, 128, 297

Structured programming, 82-83, 298
STR$, 126-128

Subscript, 86-90
Subroutines, 80, 106, 298
Superscript, 86

SYS command, 121,243

TAB, 122

TAN, 125

Tape, 15, 16,26,29,30, 94
recorder, 7

Television, 7-8, 10
connector, 12

THEN statement, 73-75, 77

Index 303

Time, 47

real, 131

Tones, 252-253

Tracks, 33

Tramiel, Jack, 3

Trigonometric functions, 45

Typewriter mode, 19, 298

Video

cable, 5, 13

display terminals, 134

monitor, 7, 9, 13

screen, 53, 120, 139, 191-192

signal, 8

VisiCalc,44, 184

USR, 121

VAL, 126-127

Variables, 44, 54-59, 86, 91-93
in loops, 79

names, 57

numeric, 55-56, 86, 123, 127

limit, 58
reserved, 47

string, 55-56, 86, 96, 126-127

subscripted, 86-90

VERIFY command, 30-31

Vibrations, 251-252

VIC, 152-154, 158, 191, 210-212, 215-

216,248

memory locations, 249

WAIT, 123

Warm start, 22, 298

Waveform, 154, 172-173, 254, 257
control register, 258

noise, 275

pulse, 260, 267

sawtooth, 260

triangle, 259

Wedge, 34-42, 44

WordPro, 44, 142-145
Word processing, 23, 108,133-149, 298

Easy Script, 145-147

PaperClip, 147-148

QBF, 140-142

WordPro, 44, 142-145

Wozniak,Steve,3
Write protected, 32

Acknowledgments

Fewbooks are written without the help of many people, and this one is

no exception. I would like to thank those who took an interest in my

work and helped with information, tips, and hints.

Many thanks to Mr. Steve Muni, Mr. Bob Fairbairn, and Ms. Diane

LeBold of Commodore Business Machines. Their cooperation was

vital.

I greatly appreciate the time spent by those who reviewed the con

tent of the book, particularly Mr. Gene Streitmatter, whose insightful

comments were both valuable and encouraging.

Thanks, too, to Mr. Michael Richter, whose program was used in

preparing the listings in the book, and to Mr. William Seiler for his

friendship, enormous technical knowledge,and historical perspective.

My contributors Dr. Frank Covitz, Mr. Jim Butterfield and, in par

ticular, Mr. Paul Schatz, each added to the scope of this book. They

are good company.

Thank you to the personnel at the Robert J. Brady division of

Prentice-Hall: Messrs. Harry Gaines, David Culverwell and Terry

Anderson, and to Ms. Laura Dysart Marcy who brought this book to
the company's attention.

As always, thank you to my family, especially my father, who had the

foresight to understand the impact of computers many years before
others did.

Finally, the personal and professional contributions of Ms. Beth
Abrohams were the most important to me. Thanks, Beth.

Commodore 64: /

Getting The MEost From It

Tim Onosko

Hej&'s a concise, handy guide that offers a 'from the ground up' introduction to

; the Commodore 64 andjthe new portable version! Specifically designed for users

~<uuth little or no computer experience; this easy-to-read text explains what the

-^mmodore-64 ^s^yi about and how to use it—complete with step-by-step in-
sfructijCHis for BASIOtirogramrning as well as important information on a wide

variety of applications, including:;

$/ord Processing .Jj^- ■ -.]

: Color. Graphics, and Games

: :Mu$.i&t S.<Amd qhd Mukk More!

Where Did It Come From Setting Up Some Essential Skills Programming—Ari In

troduction Programming—The Big Ten Programming—How the Computer Stores In
formation Programming—Tire Rest of BASIC Word Processing: The Electronic Typewriter

Color! Graphics.Soiii| and-Gafne's \ Beyond BASIC". Appendix 1: Exploring the Com
modore 64 Appendi^2?ExploHngGraphics'on the Commodore 64 Appencjjx3: Exploring ;'

Stiund and MusiC; Appendix 4:";ferror Messages Glossary Index

