

This book belongs to

The author wants to thank Jim Bach for his work on translating the programs in this book into Commodore 64 BASIC.

Library of Congress Cataloging in Publication Data

Kohl, Herbert R.
Commodore 64 puzzlements.
"A Creative Pastimes book."
1. Commodore 64 (Computer)
2. Computer games.
I. Title.

QA768.C64K64 $1984 \quad 795.8^{\prime 2} \quad 84-3490$
ISBN 0-8359-0788-1

Commodore 64 is a registered trademark of Commodore Business Machines.

Copyright © 1984 by
Reston Publishing Company, Inc.
A Prentice-Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may be reproduced in any way, or by any means, without written permission from the publisher.
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

Printed in the United States of America.

Contents

Introduction 1
Error Puzzles 7
Single Line Scrambles 25
Line Number Scrambles 45
Missing Line Puzzles 69
SHIFT Graphics Puzzles 89
Appendix: Planning Sheets 109

Introduction

Most computer puzzles are versions of ordinary word games, such as crossword puzzles or anagrams, that draw their vocabulary from the world of computing. The puzzles here are different. They provide games, amusements, and challenges from within the world of computing itself and require some familiarity with Commodore BASIC. The puzzles in this first volume are quite simple, though we plan additional volumes with more complex and sophisticated puzzles. You do not have to be a computer buff or a skillful programmer to solve them. In fact, they would be an ideal complement to any text or reference manual for a person of any age who is just learning BASIC and is beginning to feel the power of creating programs.

We have included very few PEEKs or POKEs in the puzzles; however, each time we use one it is fully explained. Also the programs that are the bases of the puzzles are no longer than 15 lines. These puzzles are designed to help you think in BASIC, learn to read a program, and understand something about program structure. All the commands in the book are included in the Commodore BASIC Reference Manual or in any introductory text on BASIC. Since the programs are not that long or complex (though some are tricky and not easy to solve automatically), many can be done with a paper and pencil. In fact, it's a good idea to try to think through many of these problems without using your computer. Program design is a mental activity that is computer-assisted and working on computer problems without using a computer can help develop that skill. In order to help you sketch out solutions, we've provided some formats designed to help with problem solving. They are in the Appendix to the book and you should feel free to copy them.

There are five different types of problems in the book: Error Statement Problems, Line Scrambles, Line Number Scrambles, Missing Code Lines, and Control Character Graphics Design Problems. Some of the programs deal with numbers; others deal with words. Color and graphics are often used. The programs themselves have been selected to illustrate certain aspects of Commodore BASIC such as nested loops, subroutines, branching, and the mix of graphics, words, and numbers. You might even find it useful to incorporate some of the smaller programs here as parts of larger programs you build yourself.

The answers to the programs will provide explanations of what the program does and give hints that might help you solve other problems. They will also give you a correct program. Remember, however, that
often there is more than one correct answer and, if you feel correct, run your program. If it works you have come up with another solution!!

Here is a simple example that should give you a sense of the specific nature of the different types of puzzles in the book:

10 PRINT "ON A SCALE OF 1 TO 10"
20 PRINT "HOW DO YOU FEEL TODAY?"
30 PRINT "1 IS MISERABLE, 10 GREAT"
40 INPUT X
50 IF $X>5$ THEN PRINT "HAVE FUN!": END
60 PRINT "MAYBE THIS WILL HELP.."
70 PRINT "THINGS ARE NEVER AS BAD"
80 PRINT "AS THEY SEEM."
90 PRINT "TAKE A DEEP BREATH. COUNT" 100 PRINT "TO 10 AND SLOWLY SMILE"

This program asks how you feel on a scale of 1 to 10,1 being miserable and 10 great. If you answer with a number above 5 the computer prints "HAVE FUNI" and the program ends. If you answer 5 or less and indicate you are not feeling too great, the computer gives you some friendly advice on how to cope with being down.

This program can be used to illustrate the nature of different puzzle types in this book.

You probably guessed that the error was the missing quotation marks at the end of the line.

Line Scrambles

In these puzzles, one line is all scrambled up. You have to unscramble it to make the program work. Here's a scramble of line 50:

50 PRINT 5 THEN $>$ " X " END FUN IF :HAVE

Throughout the book there will either be descriptions of how the program will run or pictures of what should appear on the screen. These are called screen dumps. If you leaf through the book you'll see lots of them.

Line Number Scrambles

Instead of just scrambling a line, these puzzles mix up all the line numbers. You have to renumber each line to put the program in order and have it run as planned. This requires some thought and experimentation and it is here that you are likely to find more than one correct unscrambling of a program.

A very simple scramble would reverse all of the line numbers so that line 10 becomes line 100
line 20 becomes line 90
line 30 becomes line 80
etc.
However, you are not likely to come upon such patterned scrambles. The line number patterns do not provide hints to the unscrambling of the lines. You have to think through to the program structure to solve the puzzle.

Missing Code Lines

In this variation on program puzzles, one line of code is missing. It might be in our sample:

PRINT "??????????????" is the indicator of the missing code line. That does not mean that PRINT,", or ? necessarily appear on the missing line.

Shift Character Graphics Design Problems

In addition to letters, your Commodore 64 has graphics characters on the keyboard. You can get this set by holding down the shift key and pressing any of the other keys, or by holding down the Commodore key and doing the same things. Notice that each key on the Commodore keyboard has two graphics characters printed on it. To get the character on the left, you press:
© [KEY]
To get the character on the right you press:

SHIFT [KEY]

Thus for the A key

[A] gives you:

and

SHIFT [A] gives you:

These characters can be combined to make interesting patterns and drawings. They can also be used within your program. Here's a short program that produces a fancy design using control character graphics. The screen dump shows you how the program looks when it is running.

10 PRINT"TTTトFHHAM "; 20 PRINT" H H H H"; 30 g0T010

READY.

A number of interesting puzzles can be created using character graphics. A simple one would provide you with a screen dump and ask you to create a program to produce that pattern. There are a number of other challenges in this section as well.

Now that you have a sense of the kinds of challenges in this book try your hand at solving them. Each section begins simply and then moves on to more complex demands. The answers and their explanations are at the end of each chapter. I hope you have as much fun solving the puzzles as I had inventing them.

0ne of the most frustrating things about learning to program a computer is that you can work hard at a program and make a tiny mistake that throws the whole thing off. It is particularly annoying if you have not internalized the programming language you are using. This first section contains some puzzles that embody the simplest mistakes everybody makes when learning to program. These mistakes should be looked at as puzzles to solve rather than as signs of your inability to master computing.

1

A SIMPLE CRYSTAL BALL

This program asks whether you like the number 3 or 4 better. When run, this is how it is supposed to respond:

However, your program simply bombs when you input the number 3. It seems ok if you input 4:

Here is the program. What is the mistake?

10 PRINT"WHICH NUITBER IS YOUR FAVORITE"
20 FRINT"OF THESE TWO: 3 OR 4"
30 IAFUTK
40 IF $\%=3$ THENGOTO1010
50 IF $\mathrm{K}=4$ THENGOTO1509
1009 PRINT"YOU HFVE MY'STICAL POWERS"
1010 ENII
1596 FRINT"YOU RRE DEEP RND INTUITIVE" 1510 ENI

REATY.

In this program the intent was to fill the screen up with a random distribution of characters.

Instead you got this on the screen:

How could you change this program to give you the full screen?

10 PRINTCHR(19);
$20 \gamma=\mathrm{R} \cdot \mathrm{HD}(1) * 12+1$
30 FORZ=1TO'r: FRINT: $\mathrm{HE} \times T$

50 GOTO10
RERD'r.

COUNT DRACULA

You write a simple program asking your friend's name. You want the computer to tell your friend that he or she is a nice person. One of your friends decides to play around and type in Count Dracula and here is what happens with your program:

10 IMFUT"HHAT IS YOUR NAME"; R央
20 PRINT"MOU ARE A HICE GENTLE PEREOH" 30 FEIMTA

REETI'.

How can you fix your program so that it gives Dracula his full compliments like this?

4
 STRING THE VARIABLES ON

You want to print out STRING VARIABLE running diagonally down the screen like this:

However, what you get is this:

Here's your program. What went wrong?

```
10 A =="STRING URRIABLE"
20 FORK=1TO1.
30 PRINTTAB(X)MID$(A*,1,%)
4 0 ~ H E N T T
```

RERDIT.

IN FIVE YEARS

This simple program is supposed to ask a person's age and then tell them how old they will be in 5 years. It should run like this:

Instead it runs like this:

Here's the program. Where's the error?

10 IHPUT"HOW OLI ARE YOU"; A
20 FRINT"IN FIVE YERRS YOU WILL BE"
30 PRIMTK+5

RERD't'.

6

HIP, HIP, HOORAY!

This is a reverse puzzle. Here is a program that will print HIPI HIPI HOORAYI three times as in the screen dump:

$19 \mathrm{FORA}=1$ TOS
$20 \mathrm{FORE}=1 \mathrm{TO2}$
30 PRINT"HIP!"
40 HEKTE
50 PRINT"HOORAY!"
60 MEXTA

RERDY.

Now here are three similiar screen dumps that almost do what the program does. Can you construct three programs that lead to these screen dumps?

纵焠彸烙	
淡炵恅縈	
䊶慈復 RUH	
㷋㷋俢 HIF！	
㷋㷋縈㐱 HIP！	
淡濨縈 HODRR＇Y！	
溪渗 HIP！	
淡焾㷋 HIP！	
㷋炎绛 REPRDY．	
䊽泫洛慈－	
淡㴓滋	

Answers

At line 40 you instructed the program to GOTO line 1010 which ended the program. You always have to be careful that you have your program jump to exactly the lines you want it to. It makes sense to check all GOTO statements if you have a program that doesn't run properly. Here's the program with the intended reference:

```
10 FRINT"WHICH BUMEER IS YOUR FAVORITE"
20 FFINT"OF THESE,TWO: 3 OF 4"
30 IHFIUTX
40 IFK=3THEHGOTO10100
50 IF%=4THENGOTO150G
1000 PRIHT"YOUS HF'VE MYSTICAL POMERS"
1010 EWI
1500 FRINT"'rOLJ ARE DEEF GHI INTUITIVE"
1510 EHII
```

REFD'r'.

The problem was at line 20 . You only used half the screen. You have to be careful about the screen dimensions. At line 20 the number 12 should be 24 as in this program:

Here is a program that will give Dracula his due:

15 INFUT"WHAT IS rOUR NAME"; fis
29 FRINT"YOU GREE A HICE GEHTLE PERSOH"
30 FRINTA

FERAD'

Notice that at line 10 there is an $\mathbf{A} \$$ indicating that there will be an alphabetic input. However, on line 30 the $\$$ has been dropped so that you get a 0 returned instead of a word. It is important to check that letter variables are properly referenced by including the $\$$ after the variable name.

4

Here is a program that will give you what you wanted:

```
10 F:="STRIMG V/PRIRBLE"
20 FOF%=1T015
30 FRINTTAB(%)MII来(F来,*,1)
40 HEXT
```

FEAD't'.

Notice that at line 30 the midstring command $\operatorname{MID} \$(A, B, C)$ had its variables reversed. Instead of MID\$(A\$,X,1), which gives you what you want, the error program had MID\$(A\$,1,X). Although this was an error in the context of this puzzle, the error itself makes for an interesting program. It is a technique worth using in other programs. Discoveries like this should not be discarded as errors but saved for other programs where they might be useful.

```
19 INFUT"HDW OLI ARE YOU";
20 FFINT"IN FIWE 'TEFFS HOU MILL EE"
30 FRINTM+5
```

REATIT'.

Notice that in the error program you INPUT A and then added +5 . However, there was no X to add anything with. Your variables did not agree so the computer printed 5 no matter what age was entered. When line 10 was changed to:

10 INPUT "HOW OLD ARE YOU"; X
the program worked. It is essential to check all of your variables and see that they are properly referenced to each other. This is a basic principle of programming.

6

A
10 FDF:H=1TO2
20 FORE $=1$ TOS
30 PRIHT"HIP!"
40 HENTB
50 FRIMT"HODFF'V!"
60 WEXTH
FEEADT.

B

16 FDEA= 1 TOS
20 FORE=1T02
30 FRINT"HOORAY!"

50 PRINT"HIP!"
60 HEKTA
RERDT:

C

```
10 FOPF=1TO3
20 FORE=1 T02
30 FRIHT"HIF!"
4 0 ~ N E N T H ~
5@ PRIRT"HDORA'!"
60 NENTB
```

RERD'I'.

Notice that the differences in these programs all have to do with the way in which FOR/NEXT loops are used. You always have to be careful that you go through the loop the number of times you plan to and that each FOR statement has a NEXT statement to continue and eventually close the loop. A simple FOR/NEXT mistake can turn an otherwise elegant program into a mess.
a
a
a
a
a
a

The puzzles in this section consist of short programs with one line all scrambled up. There is a screen dump accompanying each program so that you can tell what the program is supposed to do. An ERROR statement marks the scrambled line so you don't have to figure it out for yourself. Before we begin, here are examples of scrambled and unscrambled lines:

Scrambled:
50 REM ERROR $X=L E T()() * R N D 10 I N T$
Unscrambled:
50 LET $X=\operatorname{INT}(\operatorname{RND}(1) * 10)$

SIMPLE MULTIPLICATION

We'll start with a simple multiplication program. As you can see from the screen dump, the program gives you multiplication problems as well as an opportunity to try again if you get the wrong answer.

Here's the scrambled program:

```
10 FRINT "HERE'S A SIMFLLE MLILTIFLICATION FROBLEM"
20 PRINT
30 LET:<INT(FNII(1)*10)
40 LETY=INT(ENJD(1)*10)
50. FFIIHT%;"TIMES";';"="
60 INFUTZ
70 REM EFROR- MTC*THEH1GOIFGOTO=
60 FRINT"TE:T FIGHIN":GOTOGE
1G0 FRIHT"GOOI GOING! HERE'S FNOTHER EXRMFLE:"
110 EOTO1E
```

FERII't.

2

 SPLIT SCREEN

 SPLIT SCREEN}

This split screen word puzzle prints one thing on one side of the screen and another on the other side as illustrated in the screen dump:

Here is the scrambled program:

10 LETA: =" MORI FUZZLE"
20 LETE: =" sTEING VFRIABLE"
36 FFINTCHFWく147)
40 FOF $\%=11$ TO1STEF-1

 7E HERT

EEEAD'T.

HOURS TO SECONDS

This simple program converts hours to seconds. It asks you how many seconds there are in any number of hours. It won't ask for seconds in more than 10 hours since the calculating gets boring at that point; nevertheless. it could.

Here's the scrambled program:

10 PRINT"THERE RRE 60 MIHUTES IH FHH HOUR."
20 PRINT"THEFE RRE 60 SECOHDS IH A MIHUTE."
30 LET $\alpha=$ IHT ($\mathrm{FHD}(1)$ \% 10) +1
46 FRINT"HOW MAH't' SECOHDS RRE THERE IN" \times "HOURS?"
56 IHFIUTT'T

7G FRINT"HOT QUITE.":GOTOSQ
FEFTH.

4

QUICK CALCULATION

This program sees if you can do simple number manipulations under some time pressure．It mixes multiplication with simple addition by asking you to add 1 to your times answer．Of course，any number could be added and the challenge could be made more complex．

Here is the scrambled program：
10 FFIHT＂CAN TOU CHLEULATE QUICKLT？＂
20 FEIHT＂LET＇S SEE．＂
30 FEIHT
4 FE FHT＂WHFT IS．．＂

6日 FREIHT

80 FOFZ＝1T0150日：NEYT
90 FRIHT
16E IHFUT＂WHAT IS TOUR AHSNER＂：＇T

130 FFIHT＂TE゙T FGHIH．＂：GOTO10日
FERTIT．

SIMPLE NUMBER COMPARISON

This is a simple number comparison game for young children．It asks whether one number is greater than another．If you look closely at the program you＇ll see that the computer will never select two equal numbers． It teaches the use of $>$ and $<$ ．

10 PRINT＂HERE＇S A SIMPLE HUMBER GAME：＂

30 IF $\%=10$ THENGOTO20
40 PRINT＂IS 10 GREATER OR LESS THFN＂；$\%$
50 PRINT
6日 PRINT＂TTFE＞IF IT IS GREATER FWD＜IF IT IS LESS＂
70 INFUTAT
80 IFXC10THEN1000
90 IF＊） 1 TTHEN 4000
106 HE MT
$106 \mathrm{IFF}==">$ THENPRIMT＂YOU GOT IT＂：EHII
1015 PRINT＂SORR＇T．TYPE RUNH FHD TRY＇AGHIN IF YOU LIKE． ＂：ERHI
206に IFR务＝＂く＂THEHPRINT＂YOU GOT IT＂：END
2010 FRINT＂GORRIT．TYFE RUH RHD TRYY FGAIN IF YOU LIKE． ＂：END

RERAD＇r＇．

6

MINUTE／DAY CONVERSION

Here＇s a minute／day conversion program that tells you how many minutes there are in any number of days．It does not quiz you but answers your question instead．


```
流㴓柊 HERE'S A PROGRAM THAT WILL TELL
漗俢缀 YOU HOW MRHNT MINUTES THERE ARE IN
嘫泫俢 FHVY NUMBER OF IHMS.
谈炵泫後多
**綕幻 HOW MAHNT DHYS? 3
```



```
流㷡液 ID YOU WHNT TO CHAHVE THE RUMMBER OF
滋嬨絈 IJHTS?
絃玹㷋 ? TES
```



```
滋沟俢 
沙淃㙏 
```



```
溪俢畗 IUHTS?
```



```
滋炎湘络
```



```
汶俢汶多
```



```
%"%
```


Here is the scrambled program：
10 FRINT＂HEFE＇S A FRUGRAM THAT WILL TELL＂
20 PRINT＂YOU HOW MFHY MINUTES THERE RRE IN＂
30 PRINT＂FHIT NUMBER OF JR＇TS．＂
45 PRINT
50 IHPUT＂HOW MAN＇DAT＇S＂；
60 6051E500
70 FRINTT＂II YOU WFHT TO CHANGE THE HUMBER OF DFT＇S？＂
80 INFUTA $\$$
90 IF $\mathrm{F} \ddagger=$＂YES＂THEN5 5
100 EHD
501 PRINT
510 REM ERROR－X＂XGOFRINT＂THERE＊MINUTES料DAYS＂＂IN＂ARE＂； 24
520 RETURR
RERDY＇

NUMBER STRING

This puzzle challenges you to add a string of six numbers together quickly.

Here is the scrambled program:

10 PRINT"HEFE IS A LIST OF HUMEEFS"
20 FRIHT"TR'T TO AIID THEM TOGETHER DUICKL''"
30 FORZ $=1$ TO1GO日: HEXT
40 DIMA (E)
50 FDF $\%=1$ TOE

70 PRINTA (O)
80 HEKT
90 FORZ $=1$ TO2000 : HE MT
100 FRINTT
110 IHFIJT"WHAT IS YOUR FHSSNER"; 'T'
120 IF $\mathrm{H}^{\prime}=\mathrm{A}(1)+\mathrm{A}(2)+\mathrm{A}(3)+\mathrm{A}(4)+\mathrm{A}(5)+\mathrm{A}(6)$ THENFRINT "YOU VE GOT IT":EHD
 OMCE MORE. ":GOTO116

REFEDT.

COUNT THE DOTS

This is a dot counting game.

Here is the scrambled program:
10 PRINT "HOW MARH' DOTS ARE OH THE SCREEN?"
20 LET $:=$ INT(RHD(1)*15)+1
30 FOR' $T^{\prime}=1$ TO\%
49 FEM ERROR- " PRIHTU";
56 HERT
60 PERIT
70 IHFUT"roun guess"; 2
80 IFZ=*THEHFRINT"EKAC:TLT!!!!": EHI
90 FRINT"COUNT AGHIH....": gOTOTG
READ'r'.

9

RIDICULOUS

This program can print the word "RIDICULOUS" any number of times, perhaps a ridiculous venture but one whose structure has use in some programming contexts.

Here is the scrambled program:
10 PRINT"HOW MANY TIMES WOULI 'rou Like ME TO"
29 PRINT"PRINT YOUR NFME OR FHY OTHER WORIT?"
30 INFIUT\%
49 PRIMT"UHAT WORI WOULI YOU LIKE ME TO FRINT "X"TIMES?"
50 IHFUT R ${ }^{5}$.
EG FEM ERROR- =XTOITFUR
70 FRINTA末" ":
EO HENT
FEAD'T.

BARBER'S PARADOX

This little scramble is a version of the classical Barber's Paradox: There is a barber in a town who shaves all and only people in the town who don't shave themselves. Does he shave himself?

I've taken the paradox to school you might say:

Answers

REROTH.

As you can see, line 70 (the scrambled line) checks for correct answers using the variable Z which is the answer you input. If $\mathrm{Z}=\mathrm{X}^{*} \mathrm{Y}$ then you got the program and are sent to line 100 for congratulations and a chance at another example. If $\mathrm{Z}><\mathrm{X} * \mathrm{Y}$ then the program moves to line 80 which sends you back to the problem you missed. This little technique can be incorporated in games where you want to give people many chances to answer a question as well as to generate new questions.

2

10 LETAF=" WOFD PUZZLE"
20 LETE $=$ =" STRING VAFIABLE"
3 FRINTCHF(147)
40 FOF $\alpha=11$ TO1STEF-1

70 HEXT
REFID'T.

The scrambled line 60 uses the TAB, RIGHT\$, and LEFT\$ commands. One strategy for going about unscrambling the line is to figure out how these commands are used in Commodore BASIC. For example, RIGHT\$ and LEFT\$ both take three variables separated by commas and surrounded by parentheses. This gives you a way of beginning to decipher the scrambling. Understanding structure is usually an aid to deciphering whether it has to do with line scrambles or secret codes.

3

10 PRINT"THERE RRE 60 MINUTES IN RN HOUR."
20 FRINT"THERE RRE 60 SECOHDS IN A MINUTE."
30 LET $\%=$ INT (RND (1) * 10) +1
40 FRINT"HOW MANY SECOHDS ARE THERE IH"ㅈ"HOURS?"
51 INPLITY

70 FRINT"HOT QUITE.":GOTOS0
REEFIT'.

The key to unscrambling this puzzle is to know that you calculate the number of seconds in an hour using the formula X(the number of hours)*60*60 which is the conversion formula. This form of program can be changed to ask about converting feet or miles to inches, meters to centimeters, etc. It is a simple and generalizable form of a conversion quiz program.

[^0]```
70 FRIHT"(2 TIMES";X;CHF倳(157`") +1="
G0 FORZ=1TO15GO:NE%T
90 FRINT
10日 INFUT"WHAT IS YOUR RHSNER";'
110 IFT=\2納)+1 THEHPRINT "YOU GOT IT!!!":ENII
130 FRINT"TR'' AGAIN. ":GOTO10D
FEERIT'.
```

The key to unscrambling this is to figure out that there is only one variable in this challenge．$(2 * X)+1$ is the major part of the reconstruction of the scrambled line．

## 5

10 PRINT＂HERE＇S A SIMFLE MUMBER GAME：＂
$20 \mathrm{LETX}=\mathrm{INT}$（ FHIN （1）＊20）

40 FRINT＂IS 10 GREATER OR LESS THRN＂；$\%$
50 FRIHT
E0 PRINT＂TYPE＞IF IT IS GREATER AHI＜IF IT IS LESS＂
70 INFUTF
80 IF이TOTHEN1000
90 IF O 10 THEN 20 O
100 HENT
10日日 IFA $=$＝＂＞＂THEFPRRINT＂YOU GOT IT＂：EHID
1010 FRINT＂GURRY．TYPE RUH FIND TRY FGAIN IF YOU LIKE． ＂：EHD

2010 PRINT＂SORRY．TYPE RUH RHD TRYY FIGAIN IF YOU LIKE． ＂：EMD

REFDY．

This is simply an unscrambling of the integer random number function in Commodore BASIC．Some beginning programmers confuse RND（1）＊X which gives a decimal answer with $\operatorname{INT}(\operatorname{RND}(1) * X)$ which gives an integer． There are times when having integers is essential to a game or program． Also，it is important to pay attention to the placement of parentheses in the INT statement．A simple mistake like：
can cause quite a mess. Try to figure out the different effects of $\operatorname{INT}(\operatorname{RND}(1)) * 6)$. What you will see is the result of the fact that $\operatorname{INT}(\operatorname{RND}(1))$ is always 0 .

## 6

10 FRRINT"HERE'S A PROGRAM THAT WILL TELL"
20 FRINT"HOU HOW MRHY MINUTES THERE RRE IN"
30 PRINT"RHI' HUMEER OF DFYS."
40 PRINT
50 IHFUT"HOW MFNY IAYS"; $X$
60 008010500
39 FREINT"DO YOU WFNT TO CHANGE THE HUMEER OF DATS?"
80 IUPUTA $\$$
90 IF $\mathrm{H}^{*}=$ ="TES"THEH50
100 ENT
500 FRINT
 520 RETURN

## RERDY.

Line 510 combines calculation with printing and, like the previous conversion puzzle (number 3), can be used to perform many different types of conversions. In unscrambling this the thing to watch for is the placement of quotes and semicolons. A misplaced quote or semicolon can destroy an entire program.

```
50 FOR %=1T06
```

E日 $\mathrm{F}(\mathrm{K})=\mathrm{INT}(\mathrm{RHD}(1)$ 米10)
70 PRINTA (K) ;
80 HENT
90 FORZ=1TO2000: HEXT
100 FRIIHT
110 INFUT"WHRT IS TOUR RHSWER";'T'
120 IFY $=A(1)+A(2)+B(3)+A(4)+F(5)+F(6)$ THEHFRIHT"YOU VE
GOT IT": END

OHCE MORE:":GOTO110

READY＇．

This program makes use of a powerful aspect of Commodore BASIC． the array．$A(X)$ is dimensioned on line 40 to contain six numbers．The scrambled line 60 places a random integer between 0 and 10 in each position．That way，lists of numbers can be generated and used as in this program．Beginning and intermediate programmers should take advantage of the ability to store and use lists that this function provides．For examples of the use of arrays see your Commodore BASIC Reference Manual or look up arrays in a text if you are not already familiar with them．

```
10 PRINT "HOW MRHY DOTS ARE OH THE SCREEH?"
20 LET X=IHT(RHID(1)*15)+1
30 FORY=1TO%
40 FFIIHT"由";
5 0 ~ H E X T T
G0 PFINT
70 INPIIT"YOUR GUESS";Z
80 IFZ=&THENFRINT"EXRCTL'!!!!":END
GG PRINT"COUNT RGAIN....":GOTOTG
READ'%.
```

This program is an example of how you can use SHIFT graphics characters (in the case of this program SHIFT Q) in your program. It is worth exploring this extra graphics keyboard that your Commodore provides for you. It is the easiest of the different graphics modes that are available to you and can create interesting graphics with some experimentation.

```
10 FRINT"HOW MANH TIMES WOULD YOU LIKE ME TO"
20 FRIHT"PRINT GOUR HATME OR FHH'OTHER WORI?"
30 INPUTX
40 FRINT"WHAT WORII WOLLT YOU LIKE ME TO FRINT ":%"TIMES?"
50 INFUIT F**
60 FOF:T=1TO%
70 FRINTA末" ";
SO HEXT
```

RERII't.

This is a scramble of the FOR statement of the FOR/NEXT loop used in the program to produce the ridiculous repetition. Notice that the number of times through the loop (the $X$ variable) changes each time you run the program. Most beginning programmers use fixed loops like FOR $X=1$ TO 59; but, sometimes it is more useful to change the number of times through the loop as the program is running.

The scrambled line 80, as well as line 90 , make the paradox continue until you are bored and shut down the computer. However, these lines illustrate a technique you can add to many of the games and quizzes in this section. It will allow them to run many times instead of ending after just one play.

Here's a very simple example:

```
10 PRINT "WHAT NUMBER IS THIS?"
20 LET X=INT(RND(1)*20)
30 INPUT Y
40 IF X=Y THEN PRINT"GREAT":GOTO 10
50 IF X < >Y THEN PRINT"TRY AGAIN":GOTO 30
```

This way you have many guesses and can take a new turn once you guess correctly.


The puzzles in this section leave all the codes in a program intact. All they do is scramble the line numbers. These numbers are not scrambled according to any pattern, so there is no use trying to solve the puzzles by trying to figure out a pattern for transforming the line numbers. You have to pay attention to the screen dumps and try to put a program structure together that will do what the illustrations show.

Scrambling line numbers of even the simplest programs can destroy them. For example, take this two-line program:

$$
10 \text { PRINT "HO HO HO!"; }
$$

20 GOTO 10
This will fill the screen up with a jolly greeting. Reverse the line numbers and you get:

10 GOTO 10
20 PRINT "HO HO HO!";
This program will lock up at line 10 and stay there until you press the BREAK key. Nothing will happen. In the simplest way, this is an illustration of the importance of program structure in BASIC. Now for the puzzles.

## I WILL NOT BEND

This program prints a $V$ shape and moves relentlessly down the screen printing "I will not bend," every 10 repeats of the V-form. Here is the screen dump and a scrambled version of the program. Unscramble the program and, if you feel like it, make it fancier.


10 FORY=1T010
20 NEXT
30 PRINTTAB ( $X$ )" "
40 GOTO10
$50 X=I N T(R N D(1) * 38)$
60 PRINTTAB(12)"I WILL NOT BEFID."
RERDY.

## 2 <br> I'M TRYING TO BEND

This simple variant on puzzle 1 produces a completely different result. You should be able to think through the difference and reconstruct the program that makes a bit of a curve.

$10 \mathrm{X}=\mathrm{x}+\mathrm{INT}$ (RND(1) ) 3 )-1
20 IFK KOTHENX $\mathrm{K}=38$
30 FORY=1TO10
40 PRINTTAB(11)"I'M TRYING TO BEND."
50 GOTO10
$60 \chi=I N T(R N T /(1) * 38)$
70 WEKT
80 IF $M>38$ THEN $X=0$
90 PRINTTAB(X)"•"
READY.

## A POETIC SCRAMBLE

Here is a little poem with some input about the weather. The input combined with the poem should help you reassemble the scrambled program.


10 PRINTA\$" WERTHER"
20 PRINT"WELL, WHETHER YOUJ LIKE IT"
30 PRINT"IS THE ONL'Y KIHD OF WERTHER"
40 PRIMT"OR WHETHER NOT"
50 PRINT"WE GOT."
60 PRINT
70 INFUT"HOW IS THE WERTHER TODAY"; ${ }^{*}$
REFIT'T.

## 4 <br> WHERE AM I？

This program allows you to pick a column on the screen from 1 to 39 and then pick the number of stars you want to print out．The result of picking column 34 with length of 10 is this：

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
| \％ |  | 變＊ |
| $\cdots$ |  | \％ |
| 篤 RUN |  | ， |
| ．${ }^{\text {d }}$ COLOUMN（0 TO 39）？ 34 |  | 縎 |
| 粚 LENGTH？ 10 |  |  |
|  | ＊ |  |
|  | ＊ |  |
| 3 3＊＊＊＊＊＊ | ＊ |  |
|  | ＊ |  |
|  | ＊ |  |
|  | ＊ |  |
| Wexem | ＊ |  |
|  | ＊ | \％${ }^{\text {che }}$ |
|  | ＊ | ＊ |
| Wemme | \％ |  |
| mavim COLOUMN（0 T0 39）？■ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

10 NEXT
20 GOTO10
30 INPUT＂LENGTH＂；B
40 FORC＝1TOB
50 INPUT＂COLOUMN（0 TO 39）＂；A
G0 PRINTTAB（A）＂米＂
RERD＇Y．

## A LITTLE DIFFERENT ORDER

Look at this scrambled screen dump:


Here is the scrambled program and a dump of what the unscrambled program is supposed to do. What is the unscrambled program?

10 INPUT"FIRST HUMBER"; $\%$
20 PRINT"DON'T ASK ME WHY. PLEASE"
30 PRINT"GIVE ME TWO NUMBERS TO ADD."
40 PRINT"THE ANSWER IS A GLORIOUS"; $x+y$
50 PRINT"I AM CRAZY ABDUT ADDING EUT"
60 PRINT"THANK YOU. THAT WAS DELICIOUS!"
70 INPUT"SECOND NUMBER";
RERDY.


## CAN YOU COUNT?

This program picks a number and asks you what comes next.


10 PRINT"WHAT NUMBER COMES AFTER": $\%$
20 IFY $O X+1$ THENPRINT"TRY FGGIN. YOU CAN DO IT!!!"
30 LET $\%=\operatorname{INT}$ (RND(1) 11 )
40 IF $Y=\hat{C}+1$ THENPRINT"RIGHT OHU!!!":END
50 007030
60 IMPUTY
READY.

## NEXT LETTER?

This program is supposed to ask what letter comes next in the alphabet after one chosen by the computer. When scrambled here is what it does:


Here is the scrambled program and a screen dump of it running unscrambled:

## 10 PRINTXCHR(157)"TH IN THE RLPHABET?"

20 INPUTB
30 PRINT"GUESS AGRIN"
40 PRINT"WHAT LETTER COMES";
50 IFMID $\$(A \$, x, 1$ ) $=$ B\$THENPRINT"RIGHT": END

70007050
80 LETK=INT (RHJ (1) 2 26) +1
RERDY.




## NAME NAME

This program asks for your name and then prints it out 24 times. Here is what the program looks like on the screen as well as the scrambled version of the program and a dump of how this version runs. Unscramble the program and print out a friend's name.



$57$

## 9

## MEDITATION

A screen dump can hardly capture this colorful program so you will have to imagine how this looks in Commodore color. Notice that this program uses some commands you may not be familiar with. BRD is the border color variable, BCK is the background color variable, 53280 is the border color memory location, and 53281 is the background color location. In order to make the program have a complex color cycle, the border, background, and type colors have all been used. Here is a screen dump of the program. Imagine that it is in color and unscramble the program:


10 POKE53281, ECK
20 POKES3280, BRD
$30 \mathrm{BCK}=1 \mathrm{HT}(\mathrm{RND}(1)$ 米15)
40 PRINT:PRINT:PRINT:PRINT:PRINT
50 FORX $=1$ TOS0日: $\mathrm{HE} X T$
60 PRINTTAB(7)"HERE ARE SOME COLORS FOR"
70 G0T050
80 FORX=1T0500: NEXT
90 PRINTCHR\$(147)CHR (5)
$100 \mathrm{BRI}=I \mathrm{HT}(\mathrm{RND}(1)$ *15)
110 PRINTTAB(7)"MEDITATION AND RELAXATION"
READY.

## 10

## AN OPTIMISTIC PSYCHIATRIST'S PROJECTIVE TEST

This test asks you for a color preference. All the responses are in full color and are positive because the psychiatrist that taught the test to me never found a person she didn't believe in. The black and white can't show you the passionate red, the sky blue, or the luminescent yellow but, once you get the program straightened out, you'll see them. Try to unscramble the program and then add color upon color until you can make positive statements corresponding to all the colors that can be produced by your Commodore 64.





10 PRINTTAB(17)"WITH JOY"
20 IFD $\$=\mathrm{B} \$$ THEN2000
30 PRINT:PRINT:PRINT:PRINT
40 PRINTTAB(17)"THE SKY"
50 POKE53281,2
60 POKE53281,0:PRINTCHR $\$(5)$
7日 PRINTTAB(15)"IS THE LIMIT"
80 END
90 PRINTTAB(17)"YOU FREE"
100 PRINT
110 PRINT:FRINT:PRINT:FRINT
1000 PRINT" RED BLUE YELLOW"
1010 PRINTTAB ( 16 ) "YOU SHIME"
1020 A\$="RED": B $=$ ="BLUE": C $\ddagger=" Y E L D O W "$
1030 PRINT:PRINT:PRINT:PRINT
1040 END

2000 POKES3281.14
2010 PRINT"FAYORITE.
2020 IFD $=$ = 末THEN $^{2} 000$
2030 PRINT"WHICH OF THESE THREE COLORS IS YOUR"
2040 PRINTTAE (16)"PASSIONATE"
3000 POKE53281.?
3010 IFD $\$=$ C 5 THEN 3000
3020 IMFUTD圭
3030 FRINTCHR: (147)
3040 ENTD
RERDY.


## Answers

1

```
10 PRINTTAB(12)"I WILL HOT BEND."
20 X=INT(RND(1)*38)
30 FORY=1T010
40 PRINTTAB(X)"`"
5 0 \text { NEXT}
60 GOT010
```

RERDY.

The key to unscrambling this is in figuring out where the GOTO statement must be placed. It gives you a sense of reference back and forward in the program and helps you reconstruct the original. In fact, try this same program with the following simple line change and see what happens:

60 GOTO 40
2

PRINTTAB(11)"I'M TRYING TO BEND."
$20 \mathrm{X=INT}$ (RND(1)*38)
30 FORY=1T010
49 PRINTTAB $(X)$ " $V$ "
$50 \mathrm{x}=\mathrm{K}+\mathrm{INT}$ (RHD(1)米3)-1
60 IF $\times>38$ THEN $X=0$
70 IFXCOTHENX=38
80 NEXT
90 G0T010
READY.
Compare the unscrambled version of this program with that of puzzle 1. Notice how line 50 causes the bending. In computer algebra, you can change the values of the variables in mid-program. A statement like LET $\mathrm{X}=\mathrm{X}+1$ is perfectly legitimate in computer algebra and is not valid for any X in the kind of algebra you learned in school.

10 INPUT"HOW IS THE WERTHER TODA'゙"; Fis
20 PRINT
30 PRINT"WELL, WHETHER YOU LIKE IT" 40 PRINT"OR WHETHER NOT"
50 PRINTA\$" WERTHER"
60 PRINT"IS THE ONLY KIND OF WEATHER"
70 PRINT"WE GOT."
READY.

Almost any saying can be turned into a fun program using this form. Try an input to the following:

Too many X's spoil the $Y$.
$\mathrm{A} X$ in time saves Y .
Better X than Y .

```
10 INPUT"COLUMN (0 TO 39`";A
2g INPUT"LENGTH"; B
30 FORC=1TOB
40 PRINTTAB(A)"*"
5 0 ~ N E X T ~ T
60 GOT010
```

REFDY.

After you understand how this program works, try to change the positioning of the stars. See if you can make them print out from left to right instead of top to bottom by having the player pick a row instead of a column.

READY.

Of course, this program can easily be extended to multiplication. See if you can get a bit more complex and extend it to division so the answer comes out even and to subtraction so the answer comes out positive. A few more lines of code will be required to guarantee these conditions.

## 6

10 LETK=INT〈RND(1)*11)
20 PRINT"WHAT NUMBER COMES RFTER";
30 INPUTY
40 IFYmX+1THENPRINT"RIGHT ON!!!!":END
50 IFYOX+1THENPRINT"TRY RGAIN. YOU CAN DO IT!!!" 60 G0T030

READ'

Here are some interesting modifications:
Can you tell me what is 5 times $X$ ?
Can you tell me what is 5 times $X$ divided by three? (In this case set the program up so that the answer comes out even.)

## 7

```
10 A$="ABCDEFOHIJKLMNOPQRSTUYWXYZ"
```



```
30 PRINT"WHAT LETTER COMES";
40 PRINTYCHR*(157)"TH IN THE ALPHABET?"
50 INPUTB$
```



```
70 PRINT"GUESS AGAIN"
80 60T050
```

RERDY.

Notice that the alphabet is stored in this program in A\$ which was set equal to "ABCDEFGHIJKLMNOPQRSTUVWXYZ." Also notice that the key to the program is the powerful BASIC command MID\$(A\$,X,1) which allows you to choose the Xth member of $A \$$. This is used in many code and word programs. You can use it to choose any number of letters out of a string. Here's an example of how it might be used:

## Set $A \$=" H I E R A R C H Y "$ <br> Then MID\$( $A \Phi, 5,8$ )

will produce the word "arch." You can use this substring extraction to set up games that ask people to find out what words are contained within a given word.

READY.

Play with the border and background colors. They can be used to dress up your programs and provide interesting detail to games and other things you program. One way to start is to cycle through all of the border and background colors and see what they do on the screen. Just play around with them and you will most likely find effects you can use in many different ways.

## 10

10 POKE53281,0:PRINTCHR $\$$ (5)
20 A\$="RED": B\$="BLUE":C末="'VELLOW"
30 PRINT"WHICH OF THESE THREE COLORS IS YOUR"
40 PRINT"FAVORITE......."
50 PRINT
60 PRINT"
70 INPUTD $\$$
80 PRINTCHR\$(147)
90 IFD $\$=$ R $\$$ THEN1000
100 IFD $=$ B5THEN2000
110 IFD $\$=$ C $\$$ THEN 3000
1000 POKE53281,2
1010 PRINT:PRINT:PRINT:PRINT
1020 PRINTTAB(17)"YOU ARE"
1030 PRINTTAB (16)"PASSIONATE"
1040 END
2000 POKE53281,14
2010 PRINT:PRINT:PRINT:PRINT

```
2020 PRINTTAE(17)"THE SKY"
2030 PRINTTAB(15)"IS THE LIMIT"
2040 END
3000 POKE53281,7
3010 PRINT:PRINT:PRINT:PRINT
3020 PRINTTABC16)"YOU SHINE"
3030 PRINTTAB(17)"WITH JOY"
3040 END
```


## RERDY.

Here are a few color character equivalents l've managed to come up with:
orange-abundant and nourishing
pink-shy but perceptive
black-powerful and intelligent
green-fruitful and abundant
dark blue-deep and curious
Surely you can come up with dozens more!

I$n$ these puzzles, one line is missing from the programs. The missing line is indicated by the line number and the statement PRINT "?????????????". In choosing what lines to drop out, the main consideration was to leave out some essential part of the program structure. In effect, these puzzles are exercises in reading and understanding program structure. The screen dumps should give you enough of an idea of how the program runs to allow you to think your way through to the full program. If you come up with a line that works and is not the one given in the answer please write and let me know. There are many ingenious ways to solve programming problems.


## COUNTING BACKWARDS

This program asks you for an integer and then counts backwards from that number to 1 and prints out the list.


10 PRINT"WATCH ME COUNT BACKWARDS."
20 INPUT"WHAT NUMBER SHOULD I STRRT FROM"; $X$
30 PRINT"????????????????????"
40 PRINTZ
50 NEXTZ
READY. <br> \title{
PATTERN MAKING
} <br> \title{
PATTERN MAKING
}

This program prints out a pattern. One aspect of the pattern is left out for you to figure out.

10 PRINT"HERE'S AN ERSY PATTERN TO PRINT WITH A"' 20 PRINT"COMPUTER. TRY TO MAKE YOUR OWN FATTERNS."
30 FORX=1T0750:NEXT
40 PRINT"????????????????????"
50 PRINT"Illllll|l";
60 007040

READY.

## A GOOD DAY

This program asks you if it's a good day for you. Here are the responses:


Here is the program with the missing line of code:

10 INPUT"IS THIS A GOOD DAY FOR YOU"; $\$$
20 PRINT
30 IFA\$m"YES"THENPRINT"SHARE IT WITH YOUR FRIENDS":END 40 IF A $\$=$ "NO"THENGOTO10日
100 PRINT"MAYBE THIS WILL MAKE YOU FEEL BETTER.."
110 FORX $=1$ TO1500: NEXT
120 PRINTTAB(RND(1)米20)" $/$ ";
130 PRINT"????????????????????"
140 OOTO120
RERDY.

## GUESS

This is a letter counting game. It flashes a word on the screen and asks you to guess how many letters it has. You can count the letters but estimating the length of the word is more fun.


Here is the program with the missing line of code:
10 A $=$ ="HOPEFUL": B $=$ ="INDEPERUIENCE": $C=$ = $=$ TROUBLE"
20 FRINT"HERE ARE SOHE WORDS TO STUDH FDR FA FEN"
30 PRINT"SECONDS. GUESS HOW MFHTH LETTERS RRE"
40 PRINT"IN EACH WURD."
50 FOR $\%=1$ TOFS日: HE KT
100 PRIMT
110 PRINTA $\$$
120 INPUT"MOUR GUESS"; 4
130 FRINT"???????????????????"
140 IFWC)LEN(As) THENPRINT"TAKE RHOTHER LOOK":FORX=1TO 750 : NEXT : GOTO100

200 PRINT
210 PRINTB
220 INPUT"YOUR GUESS"; $W$
230 IFW=LEN(B) THEHPRINT"GREFT! TRY RNOTHER":FORK=1TO 750: HEXT: GOT0300
240 IFWくLEN(B3) THENPRINT"TAKE ANOTHER LOOK":FORK=1TO 750: HEXT: GOTO200
300 PRINTT
310 PRINTC
320 INPUT"YOUR GUESS"; $W$
330 IFW=LEN(C\$)THENPRINT"GRERT! YOU GOT RLL THREE!":EHD
 750 : NEXT:GOTO300

READ'T.

## $-5$ <br> NEXT LETTER

This program asks for a letter and then gives you the next letter in the alphabet. It won't be tricked if you ask for the letter after Z .


Here is the program to fill out:
10 PRINT"GIVE ME A LETTER IN THE fLPHABET"
20 PRINT"FHD I'LL TELL YOU THE HEXT LETTER." 30 PRINT"DON'T TRY TO TRICK ME WITH Z BECRUSE" 40 PRINT"I YE ALREADY LEARNEI THAT IT IS THE"
50 PRINT"LAST LETTER."
60 LETA $\$=$ "ABCDEFGHIJKLMNOPQRSTUVMX:YZ"
70 INPUTB $\$$
80 FORX $=1$ T026
90 PRINT"????????????????????"
100 NEXT
READ'r.

## $\longrightarrow$ <br> THIRD LETTER

Here is a puzzle that uses the same concept as puzzle 5. You should be able to get this one more easily:


10 INPUT"WHAT IS YOUR NAME"; $F$ \$
20 PRINT
30 PRINT"DID YOU KNOW THRT THE THIRD"
40 PRINT"LETTER IN YOUR HAME IS..":
50 PRINT"?????????????????????"
RERDY.

## 7

## NEXT NUMBER

Recently you tried a next letter puzzle. Here is a next number puzzle.


10 PRINT"WHAT HUMBER COMES AFTER";

30 PRINTX
40 INPUTY
50 IFY=K+1THENPRINT"ABSOLUTELY!": END
60 IFY
70 PRINT"????????????????????"
RERIJY.

## 8

## CALCULATE

Here is a simple arithmetic challenge:


Here is the program for it with a missing line:

10 INPUT"PICK A NUMEER FROM 1 TO 20"; $\%$
20 PRINT
30 PRINT"UHAT IS 4 TIMES THAT NUMBER MINUS $3 "$
40 INPUTY
50 PRINT"????????????????????"
60 IFY=ZTHENPRINT"YOU GOT IT!!":EWI
70 IFYOZTHENPRRINT"TRY AGRIN..." 80 G0T030

RERDY.

## 9

## COMPARISON

This program generates two random numbers and asks you which is the larger. It does not give you a second chance but gives you another problem instead.


10 PRINT"HERE'S A RERL SIMPLE MATH GAME"
20 LET $X=$ INT (RND (1) * 5 50)
30 LETY=INT (RHD(1)*50)
40 IF $X=Y$ THEN 20
50 PRINT"WHICH HUMEER IS LARGER?"
60 PRINT
70 PRINTX, "OR", Y
80 PRINT
90 INPUTZ
100 IFZ $=$ KTHENGOTO1006
110 PRINT"????????????????????"
 1010 FRINT" SORRY, TRY FNOTHER EXFMFLE": GOTO20 2000 IFHNTHENPRINT"RIGHT, TRY AHOTHER OHE": GOTO20 2010 PRINT" SORRY, TRI' ANOTHER EKFIMFLE": GOTO20

# 10 

 DICEThis program sets up the computer to roll a pair of dice and then gives you the total of the two rolls. It can be incorporated into many game programs.


Fill in the missing line:

```
10 PRINT"I KNOW HOW TO ROLL DICE"
20 PRIHT"HERE'S MY ROLE:"
30 LETX:INT(RNI\(1)*6)+1
40 LETY=INT\(RHI\(1)**)+1
50 PRINT
60 PRINT"DIE 1:",%
70 PRINT"DIE 2:",Y
80 PRINT
90 PRINT"????????????????????"
1 0 0 ~ P R I N T T
129 INPUT"DO YOU WFNT ME TO ROLL RGAIN"; F*
130 IFA$="YES"THENGOTO20
140 PRINT"THAT'S ALL FOLKS.":END
```

READY.

## Answers

## 1

10 PRINT"WATCH ME COUNT BRCKWRRDS."
20 INPUT"WHAT NUMBER SHOULI I STRRT FROM";
30 FORZ=1 TOISTEP-1
40 PRINTZ
50 NEXTZ
READY'.

The missing line decreases the size of $X$ each time the program runs through the loop. You can count backwards by 2's, or 3's or any other number.

2

10 PRINT"HERE'S GN ERSY PATTERN TO FRINT WITH A" 20 PRINT"COMFUTER. TRY TO MAKE YOUR OUN PHITTERNS."
30 FOR $\%=1$ TO750: WE KT
40 FRIVT " $\times \infty \times \infty \times \infty 1$ ":
50 PRINT"Illllllll";
60 E0T040
REFITY.
It is very easy to make patterns with your Commodore 64 . In fact, the last section of this book has a whole series of moderately complex pattern puzzles. In making patterns, you have to look at the arrangement of blank spaces as much as the placement of symbols. The colon is what creates a continuous pattern across the screen and, since the line scrolls around, you will often find patterns that don't look at all like you expect them to. It is a delightful idle activity to explore patterns at random and develop an intuitive sense of how lines like these will look when repeated on the screen in an infinite loop:


10 INPUT"IS THIS A GOOD DAY FOR TOU"; $A$
20 PRINT
30 IFR $\$=$ "YES"THENPRINT"SHRRE IT WITH YOUR FRIENDS": END
40 IF A\$="NO"THENGOTO100
100 PRINT"MAYEE THIS WILL MAKE YOU FEEL BETTER."."
110 FORX=1T0150日: HEXT

130 PRINTTAB(RND(1)*20+29)""
140 GOTO120

## READY.

The challenge here is to figure out the way to reconstruct a graphic design from the alphabet of graphic symbols available to you. When you become as familiar with these as you are with the alphabet and numbers you can do interesting graphics without having to PEEK, POKE, or do any complex programming. It is not enough, however, to study the symbols on your keyboard. You have to experiment with them because their power lies in the way they can be combined and not just in the individual symbols.

10 A $\$=$ HOPEFUL": $B \$=$ INDEPENDENCE": $C \$=" T R O U B L E "$
20 PRINT"HERE ARE SOME WORDS TO STUDY FOR F FEW"
30 PRINT"SECONDS. GUESS HOW MFNH LETTERS ARE" 40 PRINT"IN ERCH WORD."
50 FORK=1TOT50: HEXT
10 PRINT
110 PRINTA $\$$
120 INFUT"YOUR GUESS"; W
 750 : NEXT:GOTO200
140 IFWCOLEN(A) SHENPRINT"TFIKE FNOTHER LOOK":FORK=1TO 750 : NEXT: GOTO100
200 PRINT
210 PRINTB $\$$
220 INPUT"YOUR GUESS"; W 750 : NEXT: GOTO300
230 IFW=LEN(SE\&)THENPRINT"GRERT! TRY ANOTHER": FORX=1TO
240 IFWC 750 : NEXT: ©OTO200

```
300 PRINT
310 PRINTC$
320 INPUT"YOUR GUESS";W
330 IFW=LEN\CC&)THENPRIHT"GREAT! YOU GOT ALL THREE!":EHID
340 IFWOLEN(C%)THENFRIHT"TAKE FHOTHER LOOK":FOR%=1TO
 750: NEKT:GOTO300
```

READY.

This program uses a command you may not be very familiar with, LEN(A\$). This command gives you the length of a word or sequence of letters stored in a string. Thus, if there are 50 letters stored in A\$, $\operatorname{LEN}(A \$)=50$. In this program, the LEN function is used to match your guess against the actual length of the word. LEN is very useful when you are dealing with comparisons of the lengths of strings rather than the specific contents of them.

10 PRINT"GIVE ME A LETTER IN THE GLFHABET"
20 PRINT"RND I'LL TELL YOU THE NEXT LETTER."
30 PRINT"DON'T TR'Y TO TRICK ME WITH 2 BECFUSE"
40 PRINT"I VE ALREED' LEAFRUED THAT IT IS THE"
50 PRINT"LAST LETTER."
60 LETA $=$ ="RBCDEFGHIJKLMMOPGRSTIVHKYZ"
70 INPUTB $\boldsymbol{F}^{7}$
80 FORK=1T026
90 IFB $=$ MID $\$(A \$ \mathcal{X}, 1$ )THENPRINT"THE MEXT LETTER IS "; MIDs(A\$, $x+1,1$ )
100 NEXT
RERDY.

The missing line involves using the midstring function MID\$(A\$,X,Y) that has been used a number of times before in this book. It is another example of how convenient it is to be able to pull a letter or series of letters out of a string whenever you need them in your program.

## 6

10 INPUT"WHAT IS YOUR NAME"; ${ }^{2}$ 事
20 PRINT
30 PRINT"DID YOU KNOW THAT THE THIRD"
40 PRINT"LETTER IN YOUR NFME IS.:";
50 PRINTMID\$(A\$, 3, 1)
REFDTY.

10 PRINT"WHAT NUMBER COMES AFTER";
20 LETK=INT(RND(1)米100)+1
30 PRINTK
40 INPUTY
50 IFY= $\mathrm{K}+1$ THENPRINT"RBSDLUTELY!": END
60 IFYCXK+1THENPRINT"TRY RGAIN..."
70607040
READY.

This puzzle deals with setting up a loop to let a person try to correct a wrong answer. The reference of GOTO statements is essential to how a program runs. If you tried

$$
70 \text { GOTO } 20
$$

the target number and, therefore, the correct answer would be changed. It is sometimes useful to deliberately mess up your own programs and see what happens. Sometimes you'll make interesting and useful discoveries. Other times you'll internalize ERROR statements and help yourself create bug-free programs.

8
10 INPUT"PICK A HUMEER FROM 1 TO 20"; $\%$
20 PRINT
30 PRINT"UHRT IS 4 TIMES THAT HUMEER MINUS 3"

```
40 INFUTY
50 LET Z=4秋尓-3
60 IFY=ZTHENPRINT"YOU GOT IT!!":END
70 IFYCSZTHEHPRINT"TR゙' AGFIN..."
80 GOT030
```

READY．

In this case，you have to figure out how to perform the calculation asked for correctly and then give its result a new variable name，Z．If you forget to use this new variable you won＇t be able to use the result of the calculation in other parts of the program without doing a recalculation．In many programs，the introduction of new variables to indicate the results of processes or calculations is a convenient programming tool．

## 9

```
10 PRINT"HERE'S A RERL SIMPLE MATH GAME"
20 LET X=INT(RND(1)*50)
30 LETY=INT(RND\1)*50)
40 IFK=YTHEN20
50 PRINT"WHICH NUMBER IS LARGER?"
6 0 ~ P R I N T ~ T
79 PRINTX,"OR",V
8 9 ~ P R I N T
90 INPUTZ
100 IFZ=\,THENGOTO1000
110 IFZ=%THENGOTO2000
1000 IFK>YTHENPRINT"RIGHT, TRY ANOTHER OHE":GOTO20
1010 FRINT" SORRY, TRY ANOTHER EXRMPLE":GOTO20
2000 IFY>KTHENPRINT"RIGHT, TRY ANIDTHER ONE":GOTO20
2010 PRINT" SORRY, TRY ANOTHER EXPMPLE":GOTO20
REFD'Y.
```

This is another puzzle in which you have to figure out the correct GOTO reference．Instead of sending you back to an earlier part of the program as most of the GOTO puzzles did，this one sends you to the end of the program．It is important to realize that the GOTO command can allow you to jump all over your program．
10 PRINT"I KHOW HOW TO ROLL DICE"
20 PRINT"HERE'S M'r ROLE:"
30 LETX=INT(RND(1)*6) +1
40 LETY=INT ( $\mathrm{ENHD}(1)$ 颗) +1
50 PRINT
60 PRINT"IIE 1: ", x
70 PRINT"DIE 2:", r
80 PRINT
90 PRINT"TOTAL: ", $\times+\%$
100 FRINT
120 INPUT"ID YOU WFINT ME TO ROLL RGAIN"; F ${ }^{\circ}$
130 IFA $\$=$ "YES"THENGOTO20
140 PRINT"THAT'S FLL FOLKS.": ENJI
READY.
Line 90 lets you both add the total and print it out at the same time. There are times when it is convenient to use the PRINT statement in conjunction with a computation, especially if you do not want to store the result of the computation in any other part of the program.


The Commodore 64 computer has two graphics keyboards that are invisible unless you press, the SHIFT key or the Commodore Key. (Consult your Commodore 64 User's Guide for instructions on using the graphics keyboards.)

The shapes on these keyboards can be used to make very interesting designs and pictures. They can also be mixed with letters to make borders and designs within your ordinary text. They do not need a special graphics command and print straight from the keyboard. They can also be embodied in PRINT statements along with numbers and letters and can be stored in strings the way letters can. There have been examples of these graphics in other parts of the book. Here are a number of puzzles that depend essentially on the use of this graphics mode. command and print straight from the keyboard. They can also be embodied

## 1

## A FACE WITH CHARACTER

Here is a face, perhaps not the most beautiful one in the world but nevertheless one with character. Using SHIFT graphics, try to reconstruct it.


## $\longrightarrow$ <br> PLASTIC SURGERY

Here's the same face scrambled up as well as the program that generates the scramble. Try to reconstruct the original face by reordering the line numbers without looking at the answers to puzzle 1. The answer to this puzzle is exactly the same as the answer to puzzle 1.


## TITLE PAGE

This program asks for someone's name and then prints out a simple title page for a book. Construct a program that does this for any name input.


## SHIFT CHARACTER DESIGNS

This is a series of SHIFT character designs for you to decipher and try to reproduce. Remember that some of the characters are made up of combinations of other characters. Also, the use of blank spacing is essential to get the design. I suggest you do some sketching and experimenting with combinations of SHIFT characters in the course of trying to reproduce these designs. The Appendix contains a sketch pad that is a reproduction of the grid of your Commodore 64 screen. The screen uses regular print as well as SHIFT graphics.

## CLEAR CUTTING IN THE MOUNTAINS:

解

## FENCES AND ROADS:



## DENSE ENVIRONMENT



## STRIPES


$\qquad$

## 8

## ALPHABET RECONSTRUCTION

Now that you've spent some time dealing with some fairly complicated designs, here's a simple alphabet to reconstruct. It doesn't use SHIFT characters but does use the keyboard and the program structure of BASIC in the same way that the previous programs did.

| LMNOP QRS \& TUV W $x$ \& $Y Z$ ABC DEFG HIJK $L$ MNOP QRS \& TUY W $X$ \& YZ ABC DEFG HIJK LMNOP QRS \& TUU W $x$ \& OP QRS \& TUY $W X$ \& YZ ABC DEFG HIJK LMNO $P$ QRS \& TLUY $W X \& Y Z$ ABC DEFG HIJK LMNOP QRS \& TLU $W X$ \& YZ ABC DEFG HIJK LMINOP QRS \& TUU W $X \& Y Z$ ABC DEFG HIJK LMHOP $Q$ RS \& TUY $W X$ \& YZ RBC DEFG HIJK LMNOF QR RS \& TUY $W X$ \& YZ AEC DEFG HIJK LNOF QRS $S$ \& TUV W $X$ \& YZ RBC DEFG HIJK LMNOP QRS \& TUV W $x \& Y Z$ ABC DEFG HIJK $\angle M H O P$ QRS \& TUV W $X$ \& YZ ABC DEFG HIJK LMNOP QRS \& TUY W $X$ \& YZ ABC DEFG HIJK LMNOP QRS \& $T$ UH W $X \& Y Z$ ABC DEFG HIJK LMFNOF QRS \& TU $y$ W $x$ \& $Y Z$ ABC DEFG HIJK LINHOP QRS \& TUY $W X \& Y Z$ ABC DEFG HIJK LMNOP QRS \& TUV$W \& H Z A B C$ DEFG HIJK LANOF QRS \& TUV $W$ $X$ \& YZ ABC DEFG HIJK LMHOP QRS \& TUU W $x$ \& YZ ABC DEFG HIJK LPIHOP QRS \& TUW W $X$ \& YZ ABC DEFG HIJK LIHNOF QRS \& TUV W $x$ \& YZ ABC DEFG HIJK LMHOP QRS \& TIU $W K \&$ $Y Z$ ABC DEFG HIJK LMNOP QRS \& TUV W $X \& Y$$Z$ ABC DEFG HIJK LMHOP QRS \& TUY W $K \& Y Z$ |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

## NUMBER GRAPHICS

Now that you've had a chance to relax, here's a slightly more complex problem using a mix of SHIFT graphics and numbers. Notice that the numbers change in the design in a regular way. The program structure is somewhat different than the ones you've seen before but the program is not much longer.


## FINISH THE TABLE

Put the missing leg on the table using SHIFT graphics. To do it without hints you have to figure out how to draw the whole table. However, if you would like hints here is a program that draws a one-legged table.


```
10 PRINT"
20 PRINT"
30 PRINT"
4 0 ~ P R I N T " '
50 PRINT"
6 0 ~ P R I N T " '
```



```
FRINT" |"
PRINT" L"
```

READY.
This drawing problem can lead to dozens of others. Try to make some up for your family and friends, and have them be as creative in drawing and challenging you as well.

## 11

## STORMY WEATHER

The sea is not calm tonight，as you can see from the screen dump below． Under that is a puzzling sea，one that questions the very nature of calm－ ness．Can you write programs for each of these screen dumps？
为

| RUN |  |
| :---: | :---: |
| THE SEA IS NOT CALM TONIGHT | 絲涪 |
| $\sim \sim \sim 4{ }^{\sim}$ |  |
| ？？？？？？ |  |
| ？？？？？？？？？？？？人 |  |
| ？？？？？？？？？？？？？？？？？？へ N |  |
| フ？？？？？？？？？？？？？？？？？？？？？？？～N N |  |
| $\checkmark$ ム ${ }^{\text {N }}$ |  |
| ， |  |
| NA以 |  |
|  |  |
| ？？？？？？？？人／N／ |  |
| ？？？？？？？？？？？？？？～へ（ |  |
| ？？？？？？？？？？？？？？？？？？？？ |  |
| ～？？？？？？？？？？？？？？？？？？？？？？？人 |  |
| 人 |  |
| $\wedge \wedge$ ，$\wedge$ ？？？？？？？？？？？？？？？？？？？？？？？ |  |
| $\wedge \sim$ 人 | 濼 |
|  |  |
|  |  |
|  |  |

## SYMBOL ARITHMETIC

Here is a game using numbers and SHIFT characters. Three symbols represent numbers. You are asked to memorize the symbol/number equivalents and then do adding using the symbols. It is a good memory game that can be made quite complex. Write a program for this game.



## SIMPLE ANIMATION

Here are two simple animations you can make with SHIFT graphics. You can actually get quite complex with them although, of course, you won't be able to duplicate the work of Walt Disney or George Lucas. These two dumps show a figure that moves up the screen changing position and posture. See if you can recreate the figures and have them move as in the screen dumps.

A


B


## Answers



READ'T'.

Notice that the chin seems pushed off the face on lines 100 and 110. When you run the program you'll get the face properly aligned. The reason that these lines are offset is that your Commodore 64 automatically puts a space between the line number and the command following it. Since line numbers 10 to 99 have only two digits they line up. 100 and 110 have three digits so they push the command over one space. You have to back it up in your mind to reconstruct the image the program will run. This is important to remember when you list and edit SHIFT character graphics.


RERDY:


READY.

## 4 to 7

4


30 00T010
REAI'r.

## 5


20 G0T010
FEEATH.

## 6

```
10 PRINT":1000* (moon-4";
20 G0T010
```

REAIT'.

```
7
10 PRINT"rrer $N*्NT 77า7";
20 G0T010
```

READ $\%$.

8
10 PRINT"ABC IEFG HIJK LINNOP";
20 FRINT"QRS \& TUV $W X \& Y Z " ;$
30 GOTO10
RERDY.
Notice that I used three lines in the program instead of two. Using the colon at the end of lines 10 and 20 creates the continuity of the program.

## 9

10 FORX=1T010
20 FORY=1T010
30 PRINT"H";
40 NEKTY
50 HEXTX

## READY.

Notice that the changes in the numbers throughout the program are determined by the nested FOR/NEXT loops. It would be useful if you are not familiar with nested loops to trace the program step by step. For example, the X loop instructs you to print what is inside the Y loop 10 times and then go back to the start and keep on repeating the Y loop 10 full runs. Once you understand this and trace it through you should be able to use nested loops in many different contexts.



RERDY．

10 PRINT＂THE SEA IS KOT CALM TONIGHT．．．＂

30 PRINT＂？？？？？？？？？？？？？？？？？？？？？？？＂
$4060 T 020$
REATI＇s．

10 PRINT＂HERE＇S A LITTLE SMMBOL－HUMBER GAME：＂
20 LETA丰＝＂\＃＂：LETB家＝＂＋＂：LETC $\ddagger=" \perp "$
30 PRINT＂STUD＇t THIS TABLE OF VALUES：＂

| 40 PRINT＂ | $=1^{\prime \prime}$ |
| :--- | :--- |
| 50 PRINT＂ | $\pm=3^{\prime \prime}$ |
| E0 PRINT＂ | $\pm=3^{\prime \prime}$ |

obrnt
$+=3^{\prime \prime}$
79 PRINT
80 FRINT＂UHEN YOU HRVE THE TABLE MEMORIZED＂
90 INPUT＂PRESS 7 ＂；
100 IF $\%=$ TTHEFAPRINTCHF（\＄（147）
110 LET＇T＝INT（ENJ（1）＊3）＋1
$120 \operatorname{LETZ}=\mathrm{INT}(\mathrm{RND}(1)$ ） 10$)+1$
130 FRINT＂HOW MUCH DO THESE ADD UP TO？＂
140 FROM $=1$ TOZ
150 IFY＝1THENPRINT＂＂；
160 IFT $=$＝2THENPRINT＂+ ＂；
170 IFY＝3THENFRINT＂」＂；
180 NEXT
190 IMPUTH
200 IFN＝Y＊ZTHENPRINT＂YOU GOT IT DOWN！＂：END 210 FRINT＂TRY ANOTHER TIME．＂：GOTO190

READY．

|  | 0 PRINT＂ | 中＂ | 10 | PRIHT＂ | 乎 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 PRINT＂ | －1－7 | 20 | FRINT＂ | －1－7＂ |  |
|  | 0 FRINT＂ | د1＇ | 30 | PRINT＂ | －1＂ |  |
|  | 0 PRINT＂ | 111 | 40 | FRINT＂ | 111 |  |
|  | 0 PRINT |  | 50 PRINT |  |  |  |
|  | FOF $\alpha=1 T$ | 100－F F \％ | 60 FORK＝1T0100：NENT |  |  |  |
| 70 | 0 PRIMT＂ | 中＂ | 70 | PRIHT＂ | 中＂ |  |
|  | 0 PRIHT＂ | －1－10＂ | 80 | PRINT＂ | －1－1－1／ |  |
|  | （PRINT＂ | －1＂ |  | PRINT＂ | －1 |  |
|  | 00 PRIHT＂ | ／＊${ }^{\prime \prime}$ | 100 | FRINT＂ | $\checkmark$ ， |  |
|  | 10 FRIPTT |  | 110 | FRIINT |  |  |
|  | $20 \mathrm{FOR} \%=1$ | 0100 ：FENT | 120 | FORX＝1T0100 ：NEXT |  |  |
| $130 \mathrm{GOTO10}$ |  |  | 130 | PRINT＂${ }^{\text {P }}$ |  |  |
|  |  |  | 140 | FREINT＂ |  | ＊ 1 ／＇ |
| REED＇T． |  |  |  | PRIHT＂ |  |  |
|  |  |  |  | PRINT＂$/$＂＂ |  |  |
|  |  |  | 170 | FRINT |  |  |
|  |  |  | 180 | FORX＝1T0100 ：NEXT |  |  |
|  |  |  | 190 | G0T010 |  |  |

READT＇．

The key structural elements of these programs could be described as：
PRINT Figure A
PAUSE TO SEE IT
PRINT Figure B
PAUSE TO SEE IT
GO BACK TO FIGURE A
Teasing out the structure of programs in this way can help you create your own programs or modify those other people design．

## Appendix Planning Sheets

These pages are designed to help you solve some of the problems in this book. They consist of a series of TV or monitor screens with room under them to write lines of code. They can be used in many different ways and some readers will certainly develop their own aids to solve the puzzles. Here is an example of how they can be used for two puzzle versions of this simple program:

```
10 PRINT "HOW OLD ARE YOU?"
20 INPUT }
30 LET Y=1983-X
4 0 ~ P R I N T ~ " Y O U ~ W E R E ~ B O R N ~ I N ~ " ; Y '
```

Puzzle version 1 :missing line of code

```
10 PRINT "HOW OLD ARE YOU?"
20 INPUT X
30 PRINT "?????????????"
40 PRINT "YOU WERE BORN IN ";
```

Puzzle version 2:scrambled line number version
10 INPUT $X$
20 PRINT "HOW OLD ARE YOU?"
30 PRINT "YOU WERE BORN IN "; $Y$
40 LET $Y=1983-X$




same as above

30? need to get to Y $\downarrow$

30 LET X=1983-X


Same as above + you were born in $y$

40 PR. "You were born in" $; y$

Same
You were born in

40 you were born in; $y$

$114$

$115$

$116$


$118$


COMMODORE $64{ }^{\circledR}$ PUZZLEMENTS
Herbert Kohl
This book of puzzles will make you long for rainy Sunday afternoons rather than moan about them! Written for beginners (but not without plenty of challenges), COMMODORE 64® PUZZLEMENTS will make you think-and, as an added bonus, it teaches you to think in BASIC. Most of the puzzles can also be worked out on paper, so you can while away the tedium of airplane trips or waiting for the dentist and still sharpen your computer skills.

Mastering the simple programs so elegantly presented for your Commodore Home Computer will provide hours of entertainment for the whole family. Even young readers will enjoy experimenting with combinations of the programs to come up with unique challenges of their own. And, how refreshing to find that your solutions don't have to match an answer key to be exactly, entirely correct.
A Creative Pastimes Book RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company Reston, Virginia

illustrations by C. MICHA


[^0]:    10 FRINT"CAN YOU CFLLCULATE BUICKL'T?"
    20 PRIHT"LET'S SEE."
    30 FRINT
    40 FRIMT"WHAT IS.."
    50 LET $\%=I H T(R N D(1) * 50)$
    60 FRIMT

