

The Blacksburg Continuing Education Series™ of books provide a Laboratory—or experiment-oriented approach to elec

tronic topics. Present and forthcoming titles in this series include:

Advanced 6502 Interfacing

Analog Electronics for Microcomputer Systems

Analog Instrumentation Fundamentals

Apple II Applications

Apple II Assembly Language

Apple Interfacing

Basic Business Software

Basic Robotics Concepts

BASIC Programmer's Notebook

Circuit Design Programs for the Apple II

Circuit Design Programs for the TRS-80

Computer Assisted Home Energy Management

Computer Communication Techniques

Design of Active Filters, With Experiments

Design of Op-Amp Circuits, With Experiments

Design of Phase-Locked Loop Circuits, With Experiments

Design of VMOS Circuits, With Experiments

8080/8085 Software Design (2 Volumes)

8085A Cookbook

Electronic Music Circuits

Electronic Prototype Construction

Entertainment Games in Tl BASIC and Extended BASIC

Fiber Optics Communications, Experiments, and Projects

555 Timer Applications Sourcebook, With Experiments

FORTH Programming

Guide to CMOS Basics, Circuits, & Experiments

How to Program and Interface the 6800

Introduction to Electronic Speech Synthesis

Introduction to FORTH

Microcomputer—Analog Converter Software and Hardware Interfacing

Microcomputer Data-Base Management

Microcomputer Design and Maintenance

Microcomputer Interfacing With the 8255 PPI Chip

NCR Basic Electronics Course, With Experiments

NCR EDP Concepts Course

Numerical BASIC

PET Interfacing

Programming and Interfacing the 6502, With Experiments

Real Time Control With the TRS-80

16-Bit Microprocessors

6502 Software Design

6801, 68701, and 6803 Microcomputer Programming and Interfacing

The 68000: Principles and Programming

6809 Microcomputer Programming & Interfacing, With Experiments

STD Bus Interfacing

TEA: An 8080/8085 Co-Resident Editor/Assembler

TRS-80 Assembly Language Made Simple

TRS-80 Color Computer Interfacing, With Experiments

TRS-80 Interfacing (2 Volumes)

TRS-80 More Than BASIC

VIC 20 Programmer's Notebook

Wordprocessing for Small Businesses

In most cases, these books provide both text material and experiments, which permit one to demonstrate and explore the

concepts that are covered in the book. These books remain among the very few that provide step-by-step instructions

concerning how to learn basic electronic concepts, wire actual circuits, test microcomputer interfaces, and program com

puters based on popular microprocessor chips. We have found that the books are very useful to the electronic novice who

desires to join the "electronics revolution," with minimum time and effort.

Jonathan A. Titus, Christopher A. Titus, and David G. Larsen

"The Blacksburg Group"

Bug symbol trademark The Blacksburg Group, Inc., Blacksburg, VA 24060

n

n
n

\ \

L. /

n

n

n

n

n

n

The Commodore 64

Starter Book

7\

Dr. Jonathan A. Titus is with the Blacksburg

Group, Blacksburg, VA. Most of his current work

involves writing about small computers, particularly

their hardware side. He has written a number of arti

cles about computers for both professional and popu

lar publications, and got his start in microcomputers

with the Intel 8008 in the early 1970s.

Jon is a radio amateur, holding an Advanced Class

License (KA4QVK), and operates both phone and CW

on the higher bands. He is also interested in astron

omy, and looks forward to clear, calm evenings for

good observing.

Jon received his B.S. degree from Worcester Polytechnic Institute in

1967, his M.S. degree from Rensselaer Polytechnic Institute in 1969, and

his Ph.D. from Virginia Polytechnic Institute and State University in 1978.

David G. Larsen is an instructor in the Department

of Chemistry at Virginia Polytechnic Institute and

State University, where he teaches electronics and

automated instrumentation. He is a coauthor of many

of the books in the Blacksburg Series and is a mem

ber of the Blacksburg Group. Dave is a coinstructor of

a series of one-to-five-day workshops that cover the

"microelectronic revolution," which are taught under

the auspices of the Extension Division of the Univer

sity. These programs attract professionals from all

parts of the world.

Dave received his B.S. degree from Oregon State

University in 1963, and worked for Varian before joining the staff at

Virginia Polytechnic Institute and State University.

Dr. Christopher A. Titus currently writes and edits

books for the Blacksburg Group, with many of them

being in the microcomputer field. Chris has designed

and programmed small systems based on the popular

8-bit microprocessors, and has worked with the 8086

and the Z8001/2. His current interests include

computer-aided design and microcomputer-based

industrial control systems. In his spare time, Chris

enjoys camping and gardening.

Chris received his B.S. degree from Clarkson

College of Technology in 1972, and his Ph.D. from

Virginia Polytechnic Institute and State University

in 1977.

u

u

u

LI

U

if

U

LJ

U

■U

u

n

1

n

- The Commodore 64

Starter Book
H by
! I Jonathan A. Titus

Christopher A. Titus

« and

! David G. Larsen

n

n

TM

_ HouuQrd W. Sams & Co., Inc.
| I 4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46266 USA

Copyright • 1984 by Jonathan A. Titus, Christopher A.

Titus, and David G. Larsen

FIRST EDITION

FIRST PRINTING -1984

u

u

u

u

u

All rights reserved. No part of this book shall be

reproduced, stored in a retrieval system, or transmitted , |

by any means, electronic, mechanical, photocopying, j
recording, or otherwise, without written permission LJ
from the publisher. No patent liability is assumed with

respect to the use of the information contained herein. , .

While every precaution has been taken in the

preparation of this book, the publisher assumes no LJ
responsiblity for errors or omissions. Neither is any

liability assumed for damages resulting from the use of

the information contained herein. I

International Standard Book Number: 0-672-22293-0 j r

Library of Congress Catalog Card Number: 83-51228

Edited by C.W. Moody j j

Illustrated by T. R. Emrick jj

Printed in the United States ofAmerica.

n

n

n

n

n

PREFACE

Reading this book and learning about your Commodore 64™*

computer will be an interesting, rewarding, and fun experience.

We've used a common-sense approach to computers, and have

included many experiments, questions, and problems that you can

do on your own. No computer experience is necessary. You'll start

using your Commodore 64 computer right away, exploring the key

board and display and then going on to other topics.

This book is simple to understand, whether you have a specific

use for a computer or you just want to know more about what a

computer can do. To make computers easy to understand, we've

avoided many of the terms and words that "computer experts"

seem to use to confuse the rest of us. Where special words seem to

fit we'll tell you about them.

After reading this book and doing most of the experiments, you

will be able to:

• Use the keyboard and the display.

• Use 20 simple program commands and know what they do.

• Use the special control keys on the keyboard.

• Know what kinds of information the Commodore 64 computer
can use.

• Know how labels are used to locate information.

• Use the computer to add, subtract, multiply, and divide values.

• Know how computers make decisions.

• Control the display of information on the TV screen in color and

in "reverse."

• Know how "loops" are used in programs to control the

computer.

• Know how the computer uses words and sentences.

• Use the Commodore 64's digital clock.

• Use the computer to make special sounds.

• Know how large amounts of information are saved in the
computer.

• Know how to test and evaluate programs for your computer.

• Know how to care for and protect your computer.

♦Commodore 64 is a trademark of Commodore Electronics Limited.

u
9 Know how to type in and correct programs. ,

® Know how to add useful remarks and comments to programs.

m Know about some special math operations. "-J

Our purpose is to give you a good understanding of what comput- I j

ers can do, and how they do it, without forcing you to become a LJ
computer expert. Since a computer is told what to do by using

step-by-step instructions, or a program, you will see how a com- . .

puter is programmed to do specific things. You will type in the pro- M
grams shown in the experiments and you'll get a chance to try a

few short programs of your own. Although you will learn about

computer programs and some of the instructions they use, you I I
won't be a programming expert when you finish this book. In fact, 1—1
to use most small computers, you don't have to be a programming

expert. I I

These days, small computers are easy to use, so you don't have IJ
to know all the details of exactly what is going on inside the com

puter box. If you had to be an expert at everything you did, you'd , ,

have to be a pump, water, and soap expert just to use a washing

machine. Most of us just want to know enough to load the clothes, L-'
dump in the soap, and press a button. Computers can be used the

same way; load a program and run it. I I

You'll work with your Commodore 64 computer by using its key- LJ
board and a TV set. Programs and information will be typed in on

the keys and the computer will display information on the TV . .

screen. The Commodore 64 displays things in different colors, so a M
color TV set is recommended, but a black-and-white TV is fine, too.

We have used a standard Commodore 64 computer, just as it comes

out of the box, without add-ons or accessories, and it's all you'll j
need to use this book. U

If all of a sudden the people around you started using a foreign

language, it would be very hard to understand them. Your com- i j

puter has the same problem. It wants you to talk to it in a language |J
called BASIC, and as you'll see, it is fairly easy to understand.

Most people learn a language by using simple words and sentences: ,

"Open the door," or "Where is the school?" You'll learn about the

BASIC language the same way: using simple commands to do sim- LJ
pie things.

Besides reading the text and doing the experiments, we want | I

you to explore the computer on your own, too. There are problems LJ

at the end of most chapters, and if you are interested in program

ming, or learning more about what the computer can do, you can . i

u

n

n

n

n

n

n

try and solve them. Solutions to selected problems are provided in

Appendix D. You won't bother the computer by pressing the

wrong keys or by programming it incorrectly. You may get some

interesting sounds and displays, and things may not come out the

way you expected, but YOU CANT HURT THE COMPUTER

unless you get mad at it and give it a kick.

Here's a quick overview of what is included in this book. In

Chapter 1 you'll turn on your computer and learn about the key

board and the display. Since these two parts of the computer let it

"communicate" with you, they are very important. You will see

how you can put letters, numbers, and special symbols on the TV

screen, and how the color of the display can be changed.

Once you have used the keyboard and the display, you are ready

to learn what a computer really does. It is simpler than you think,

as you'll find out in Chapter 2. You will learn about a couple of

BASIC instructions that you can use to get information into and

out of the computer, and you'll find out about the two types of

information that the Commodore 64 can use.

Simple arithmetic is very important to a computer, and Chapter

3 shows you the four basic math operations of addition, subtraction,

multiplication, and division, and how to get the computer to easily

do them. Since everyone makes mistakes, several of the "correc
tion" keys will be described, too.

Chapter U gives you a good understanding of how programs can

control what the computer does. You'll find out how the computer

can make simple decisions, and how decisions tell the computer

what to do next. Although we think of computers as doing very

complicated things, they can only make very simple decisions. You

will also learn more about numbers, how the computer uses them,

and how it can "dream up" a number for you, much like a throw of
dice.

More "computer power" is described in Chapter 5. You'll see

how the computer can be told to do something a specific number of

times. Computers can store large quantities of information, and
you'll find out how to do it in this chapter.

Computers can also work with names, addresses, and other
"words." Chapter 6 shows you how this type of information can be
put into the computer and used in different ways. The Commodore

64 has its own digital clock, and and you will learn how to use it to
keep track of time and to turn on an "alarm."

Some special math operations, such as logarithms and trig opera
tions, are described in Chapter 7. We've provided some interesting

u
history, so this isn't a dull, dry chapter. However, if you aren't ; i

interested in these operations and don't have a use for them, you jj
can skip ahead to Chapter 8 and learn how to control the TV screen

and the information that it displays. Moving the cursor, changing

the color, printing in reverse, and doing other interesting things 1 I
with the TV display are all described for you. LJ
The Commodore 64 can also create interesting sounds that can

be used in many types of programs, and it can sound like musical i j

instruments, too. You will learn how to control these sounds in |J
Chapter 9, and many experiments give you a chance to try some of

the Commodore 64's sound effects. »

The first nine chapters give you a detailed introduction to your

Commodore 64 computer, how it works, and what you can do with ^
it. Most of the things you learn about BASIC programs can be used

on other computers, and there are many books that will take you | I
further into learning BASIC so that you can become a good pro- LJ
grammer, if you want to. The last two chapters in this book discuss

some of the accessories for your Commodore 64 and what you can j i

do with them, and how to take care of your computer, both hard- JJ
ware and software.

In Chapter 10, we'll tell you about the cassette unit, the VIC-

1525 graphic printer, the joystick, and plug-in program and mem

ory cartridges. In Chapter 11, you will learn how to care for your u

computer, from simple inexpensive steps you can take, to how to

get service for the computer, should it ever fail. We will also tell j j

you about computer programs, or "software," how to review it, y

what to look for, what to avoid, and so on.

We want to thank Mr. Rik Andrews of Holdrens, Inc., Roanoke, . ,

Virginia, for loaning us a VIC-1525 printer that was used in prepar- M
ing Chapter 10. Rik's help was invaluable. We also want to thank u
Mr. Bob Veltri, Blacksburg, Virginia, for working with us and

doing most of the photography work included in this book. We also j j
appreciate the continued support of our many friends at Howard LJ
W. Sams & Co., Inc.

Although we have mentioned some specific equipment, books, i i

magazines, and suppliers in this book, these are not necessarily jj
endorsements of them. Check carefully to be sure that your pur

chases do what you want them to and that you get your money's

worth.

u

n

n
- If you have any questions or comments about this book, please

write to us directly at:

The Blacksburg Group, Inc.

R P.O. Box 242
1 1 Blacksburg, VA 24060 USA

n
Jonathan A. Titus

Christopher A. Titus

David G. Larsen

n

n
n

I

n

n
This book is dedicated to ourfamilies, both near andfar.

u

Contents |J

u

Chapter 1. Getting to Know Your Commodore 64 15

Getting Started 15

The Keyboard 18

Printing Keys 19

Experiment No. 1-1. Simple Typing 20

Action Keys 21

Experiment No. 1-2. The SHIFTKey 22

Experiment No. 1-3. Going Home and Clearing Out 24

Experiment No. 1-U. Moving the Cursor 25

Your Eraser 26

Experiment No. 1-5. The INST/DEL Key 27

Experiment No. 1-6. Deleting and Inserting 28

Drawing Pictures 30

Experiment No. 1-7. Drawing Things 31

Color Fun 33

Experiment No. 1-8. The Color Connection 34

Experiment No. 1-9. Printing in Reverse 35

Secrets 37

Questions 37

Food for Thought 38 I I

Chapter 2. Using a Small Computer 39

What Can Your Computer Do? 39

Simple Programs 41

Getting Started 42

Experiment No. 2-1. A Simple Input/Output Program 43

Experiment No. 2-2. Running Your Program 45

Experiment No. 2-3. Bad Data 47

Labels, Labels, Everywhere 48

Commodore 64 Labels 50

Experiment No. 24. Short Labels 51 j I

The Computer Information Diet 52 | I
Types of Information and Labels 53

Experiment No. 2-5. Inputting Strings 55

Experiment No. 2-6. Mixed Labels 56

Intelligent Questions and Answers 57

Experiment No. 2-7. Printing Messages 60

Conclusion 61

u

Questions 61

Food for Thought 63 U

fl

n

n

Chapter 3. Number Crunching 65

Simple Arithmetic 65

Setting Up the Problem 66

A NEW Operation 67

Experiment No. 3-1. A Simple Math Program 67

Experiment No. 3-2. More Math Fun 68

Using Labels in Math Problems 70

Getting Your Values - the INPUT Command 71

Experiment No. 3-3. Your Calculator 73

One Line for Many 75

Experiment No. 34* More on a Line 75

Doing More Than One Thing at a Time 77

Using Parentheses in Math Problems 78

What's Going on Here? 80

Your Efficient Secretary 81

Experiment No. 3-5. The INST/DEL Key 81

Questions 84

Problems 85

Chapter 4. Making Decisions 89

The GOTO Command 89

Breaking Out 94

Experiment No. 4-1. Loops and Breaks 96

Real Decisions 98

The IF-THEN Operation 99

Experiment No. 4-2. The IF-THEN Operation 103

More Loops 105

Experiment No. 4-3. Counting Loops 106

To Be AND/OR Not to Be 108

Mixed Operations 109

The NOT Operation. Ill

A Little History Ill

Pick a Number, Any Number 112

Experiment No. 44. Random Value Program 1 112

Experiment No. 4-5. Random Value Program 2 114

Integers 114

A Word of Caution 115

Questions 116

Food for Thought 118

Problems 118

Chapter 5. More Power to You 123

Specialty Printing 123

Experiment No. 5-1. Clearing the Screen 124

Typing Special Symbols 125

Playing for Position 126

Experiment No. 5-2. Printing in Columns and Rows 126

n

n

n602s^93*J,,«BX9<LL
802S9P°0tsP9dS
2,02

^Qg

002

261

68T

681suopDunj

ggXsuopsanj)

XgxsSuu^gpiresenjBA'sanjBAPUBsStiuis

QHHOO1Dsfj3pidiuojwfl.Buisfi'i-

ISLl

IIfiipxreuraiooX30aqx
tnGwu/is'o/o92PP}ffl&y$^1
glllutKidojifj6uiss<yft{)"pu>ojfay'$-9'ojtf%v&ujifybddx3

RinsmtvMdoUHBIUVuvUdaiirU

02,xsSuu^gSunSuBiufi

Pi99X jg9X&WU4Svduypiyag'1-9*o

29XsSuu^gSuxsfi

p-tX9TsSuiqxpuBs3uu;s'!

8SI

nI
'9-9

duipiojLqnsvBmsfi'Q-q'oh

anosanaq^o*seui^nojqng

de^giireto9uoe^X

sd0°TP^S9N niz\

981doofIBJ0J9SHTB9HV
rexdooiIX3N-H0jI9%L't-9'0

suoispaaajoj\[

82Xyogy'S-9o

LZl

n

n

n

n

n

References 211

Problems 211

Chapter 8. Lights, Action 215

The Space Command. 215

Moving from Place to Place 216

Experiment No. 8-1. Moving the Cursor 217

The Magic Color Screen 220

Experiment No. 8-2. Color Control 223

Experiment No. 8-8. Reversed Printing 225

Advanced Displays and Graphics 227

Experiment No. 84. Filling the TVScreen 227

Drawing Graphs * 228

Screen Controls and Maps 230

Experiment No. 8-5. Using the POKE Command 235

Reversed Characters 240

Experiment No. 8-6. A Flashing Sign 240

Seeing What You Have Done 243

More Characters 244

Screens and Borders 244

Fun Programs 245

More Graphics? 246

A Note About Codes 247

Questions 247

Problems 249

Chapter 9. Sound Off, 1, 2,3, 4 253

Sound Is Important 253

Sound from the Commodore 64 254

Experiment No. 9-1. A Simple Tone Test 258

Experiment No. 9-2. Changing the Tone 261

Experiment No. 9-3. Changing the Voices 264

Using Sound in a Program 267

Noise 269

Experiment No. 94. Making Noise 269

Name That Tone! 271

The Pulse Tones 272

Attack! 273

Experiment No. 9-5. Using the Attack and Decay Rates 278

Questions 281

Problems 282

Chapter 10. Accessories for the Commodore 64 285

Program Cartridges 285

The Cassette Unit 287

Saving Information on a Cassette 288

Experiment No. 10-1. Saving Information 291

[J

LI

Experiment No. 10-2. Getting Datafrom the Cassette 293

Experiment No. 10-3. Saving Strings on a Tape 295

The Cassette and the GET Command 297 JJ
Experiment No. 104. Using the GET Command

with the Recorder 298

The Graphic Printer 300

Starting the Printer 301

The Joystick Controls 304

The Floppy-Disk Unit 307

Disk-Drive Setup 308

Experiment No. 10-5. Setting Up a New Disk 310

Saving, Loading, and Verifying Programs 312

Experiment No. 10-6. Saving, Loading,

and Verifying a Program 312 I I

Saving a Corrected Program 315 M
The Directory of Programs 316

Clearing an Old File 317

Renaming or Copying a File 317 j I

Saving and Loading Data from a Disk 318 M
Suppliers and Distributors of Cartridges, Cassettes,

and Disks 320

Chapter 11. Computer Care — Hardware and Software 321

Hardware Care 321

A Special Place 322

Static 323

Protection 323

Power 323

Clean Up 326

Troubleshooting 326

Software 329

What's Available 329

Information and References 329

Demonstrations and Documentation 330

Testing Programs 331

Updates and Revisions 332

Flexibility 333

Protection 333

Appendix A. Commodore 64 Error Codes 335

Appendix B. Reserved Words for the Commodore 64 339

Appendix C. Answers to Questions 341

Appendix D. Solutions to Selected Problems 353

References 375

Index 377

u

n

nn CHAPTER 1
n

n

n

n

n

n

GETTING TO KNOW YOUR

COMMODORE 64

Before you can get your Commodore 64 to do useful and helpful

things, it's important for you to be familiar with the keyboard and

the display. To get started, just sit down in front of your computer

and continue reading. If you don't have your computer handy, you

can still read through the chapters, using the illustrations as

guides. We hope that you will go back later and do the experi

ments.

GETTING STARTED

The first thing you need to do is to check the various connections

to the computer, so it will be ready when you turn it on. The basic

computer system is shown in Fig. 1-1. Let's look at the power mod

ule first. It's the large, heavy plastic box that has two wires coming

out of it, and it's shown in Fig. 1-2. One of the wires has a standard

two-prong plug on the end, and it is plugged into a wall or floor out

let to get power. The other wire is somewhat thicker, and it has a

7-pin connector on the end. This connector is pressed into the 7-pin

P receptacle marked POWER on the right side of the keyboard case.
1 I This power connection is shown in Fig. 1-3.

A cable assembly connects the computer and your television, or

H TV, as shown in Fig. 1-4. The Commodore 64 works with either a

15

u

Fig. 1-2. The Commodore 64 power module.

color or black-and-white TV set, and the connections are the same

for both. The computer is connected to the VHF antenna screws on

16

u

u

u

Fig. 1-1. The basic Commodore 64 computer system—computer, power module, II
and TV set. "LJ

u

u

u

u

n

n

Fig. 1-3. The power module connected to the Commodore 64.

r

n

n

n

n

n

Fig. 1-4. The TV set and computer cable connections.

the back or side of the TV case through the TV/COMPUTER

switch box supplied with the computer. When using the computer,

be sure that this switch is in the COMPUTER position. When you

are finished using the computer, switch back to the TV position so

that you can use the TV to watch a regular show.

There is a small switch on the back of the Commodore 64 case,

next to the TV cable connector, and it lets you switch the computer

display to either channel 3 or channel 4 on the TV set. The channel-

3 setting is toward the large cartridge slot and the channel-4 set

ting is toward the TV connector. You can try either setting to see

which channel gives you the best display.

Now it's time to turn on the computer. The computer's power

switch is on the right side of the keyboard, next to the power wire,

as seen in Fig. 1-5. Push the switch up to the ON position. The red

light marked POWER on top of the keyboard should be lit when

the computer is on. Turn on your TV and set it to channel 3 or 4.

17

u

Fig. 1-5. Location of the ON/OFF power switch.

Give the computer a few seconds to get started. If you don't see

anything on channel 4, switch the TV to channel 3. Be sure the TV/

COMPUTER switch is in the COMPUTER position. In case of dif

ficulty, or for more information about the cables and connections,

refer to the computer guide supplied with your computer.

When the computer is first turned on, you'll see a large, dark-

blue square area with a light-blue border around it that goes to the

edge of the TV screen. On a black-and-white TV, you'll just see

that the large, central area is darker than the border. The com

puter will display a message at the top of the square area, including

the word READY. We're not interested in the other information.

You will also see a small, flashing square, or cursor, on the screen,

which is a "place marker," telling you where the computer is. We'll

just show the cursor as a black square I.

u

THE KEYBOARD

Now that your computer has been turned on, let's take a close

look at the keyboard, since it's the most important and most-used

part of the Commodore 64 computer. You may have used some of

the keys when playing games or when using the computer for other

things, but you may not know exactly what the keys do. Even if

you have used a typewriter or other computer, all of the letters,

numbers, words, and symbols can be confusing.

There are two types of keys on the Commodore 64, action keys

and printing keys, as shown in Fig. 1-6. The 50 printing keys are in

u

u

u

18

n
PRINTING KEYS

n

n

n

n

ACTION KEYS —i^^^^^^MHMHH ACTION KEYS

Fig. 1-6. The Commodore 64 keyboard showing the action and printing keys.

the middle of the keyboard, and there are five action keys on the

left and seven action keys on the right of the keyboard. (We will

look at the four tan "f' keys later on in the book.) The printing

keys are used to really "print" something on the TV screen, while

the action keys tell the computer to do something, such as GO TO

CAPITAL LETTERS, LIKE THIS. Of course, the computer

won't actually print things on the screen, it just displays them for

you, but "print" is a handy word, so we'll use it.

n

p
11

n

n

n

PRINTING KEYS

First, let's look at the tops of the printing keys in the center of

the keyboard, as shown in Fig. 1-7. We'll look at the special sym
bols on the front side of these keys later.

Fig. 1-7. The Commodore 64 printing keys.

If you haven't used a keyboard like this before, the first thing

you will see is that the letters are not in alphabetic order. You

think of the alphabet as ABCDEFG . . . , but the letters on the

Commodore 64 keyboard are scrambled. It may take a while to get

19

u
used to, but this type of standard keyboard is used on almost all , .

computers. I

The 26 letters, A to Z, are located in the bottom three rows, and u
toward the center of the keyboard, as shown in Fig. 1-7. You'll see

that the capital, or upper-case letters, are the only ones shown on j I

these key tops. ' LJ

The top row of keys is shown in Fig. 1-8, and the keys are in

Fig. 1-8. The 10 number keys. \

order, "1" through "9," with the "0" key just to the right of the

"9" key. The key tops for keys "1" through "9" have other sym- i i

bols on them, too. For example, the "4" key also has a dollar sign jj
($) on it. We'll talk more about this shortly.

Besides the letter and number keys, there are other printing

keys, such as those for the asterisk (*), comma (,), semicolon (;), j

question mark (?), and period (.). Some of these keys also have two <-*

symbols, one above the other on the key tops.

Experiment No. 1-1. Simple Typing [J

Now you will have a chance to use the computer and type some

numbers and letters on the TV screen. If your computer is turned t »

off, turn it on. Once the computer displays the word READY on (I
the TV screen, press the "F," "G," "H," and "J" keys one at a

time. They are in the center of the keyboard. Don't press any of the

"action" keys. What happens as you press the four letter keys? [
You should see the letters, F, G, H, and J displayed on the screen l—'
just as they are pressed, or "typed" on the keyboard. Type a few

more letters or some numbers until your typing reaches the right j i

side of the display. [J

What happens when the letters and numbers you are typing

reach the right side of the screen? What happens as you keep typ- , .

ing them? When your typing reaches the right side of the screen, }
and you keep typing, the cursor moves down and starts a new line *-'
at the left side of the screen.

The RETURN key is located on the right side of the keyboard. I j

Press it several times until the cursor is oil the bottom line. The LJ
computer may display a message such as SYNTAX ERROR on the

TV screen. This isn't important right now. Just continue to press i

20 ^

n

n

n

n

n

n

n

n

n

n

the RETURN key until the cursor is on the bottom line. If you get

too energetic, you may find that the information on the top of the

TV screen moves up, off the screen. This isn't important, either.

Once the cursor is on the bottom line of the display, type in let

ters until the cursor reaches the right side of the TV screen. You

can use several fingers to quickly do the typing. What happens

when the cursor reaches the bottom right-hand corner and you

type a few more letters? The display seems to move up, providing

"clean" lines for you to use. The computer automatically moves the

display up one or two lines. The cursor moves up, too.

The long bar at the bottom of the keyboard is the "space bar."

Does it print anything when you press it? It doesn't print

anything, but it leaves a space, so that your typing doesn't

LOOKLIKETHIS. What happens if you hold the space bar down?

The computer continues to leave spaces and the cursor moves for

as long as you hold the space bar down. Do any of the other "print

ing" keys work this way? None of the other "printing" keys have

this repeating action.

ACTION KEYS

The action keys cause the computer to do special things and

some of them change the way in which things are displayed on the

TV screen. You've seen that some of the printing keys have two

symbols on their tops. For example, the "4" key has a dollar sign

($) above the 4. In Experiment 1-1, you found that you could print

the numbers on the TV screen, but you couldn't print the symbols.

|) The SHIFT key is the action key that lets you print the "top" sym-

1 bol on each of the "printing" keys. There are two SHIFT keys,

both in the bottom row of keys, with one at each end. You may use

"I either one if a SHIFT action is needed, since they both do the same

j thing.
The SHIFT key must be pressed down and held down while the

other key is pressed to get its "top" symbol displayed on the TV

screen. If you don't hold the SHIFT key down, the regular, or

"bottom," symbol will be typed. Since the SHIFT key must be

pressed and held down when it's used, we'll call this action press-

and-hold, or press/hold for short. After a little practice, you will

remember when you need to use the SHIFT key.

Whenever an action key is noted in this book, its legend will be in

upper-case, or capital letters; for example, the SHIFT key. If the

21

word "key" is not used, the name of the key will be found in brack

ets: [SHIFT].

Experiment No. 1-2. The SHIFT Key

The SHIFT key is important, since it lets you "shift" between

the different characters that can be displayed on the TV screen. In

this experiment, you will see how it can be used.

Once your computer has been turned on, press the SHIFT key.

Can you see anything happening on the TV screen? No, the SHIFT

key doesn't do anything by itself. Press the SHIFT key and hold it

down while you press the 10 number keys, "1" through "0." Now

release the SHIFT key. You should see the symbols:

$ () 0

displayed on the TV screen. The zero key is not "changed" by the

SHIFT key, and you'll see that there is no symbol above the "0" on

the key top. You MUST hold down the SHIFT key for as long as

you want to type the shifted or "top" symbols. Try using the

SHIFT key with the two keys to the right of the "L" key and the

three keys to the right of the "M" key, as shown highlighted in

Fig. 1-9. These keys will let you print the special symbols:

u

u

LJ

U

u

u

LJ

LJ

U

U
Fig. 1-9. Some of the special symbol printing keys.

22

n

n

n

All of the keys used so far pop right back up after you remove

your finger from them. The SHIFT LOCK key on the left side of

the keyboard (Fig. 1-6) is different. If you press it, it will stay

pressed until you press it again, to pop it back up. Press the

SHIFT LOCK key and it goes down, press it again and it comes up.

When it is pressed in, the computer acts as though the SHIFT key

is being pressed all the time. Press the SHIFT LOCK key just to

P| see how it operates. When it is pressed in, type some of the num-

| j bers. Now press the SHIFT LOCK key again so that it springs up.
Type some numbers again. Did you see what happened?

When the SHIFT LOCK key is pressed in, the "top" symbols on

the printing keys with two symbols are displayed on the TV

screen. When the SHIFT LOCK key is in the "up" position, the

"bottom" symbols on the keys are displayed.

p Now let's look at three other action keys, as highlighted in Fig.
! 1-10. The first of these is in the upper right-hand corner, and it is

marked:

n

n

n

n

- " ," -? -

Fig. 1-10. The CLR/HOME and CRSR action keys.

CLR

HOME

This key is used to do two things: it lets you move the cursor

| back to its home base in the upper left-hand comer of the TV dis-

1 play area, and it lets you clear the display area. The other two

action keys are in the bottom right-hand corner, and they are both

H marked CRSR. You can see in Fig. 1-11 that there are left and

23

24

u

u

u

u

Fig. 1-11. The two cursor action keys.

right arrows on one, and up and down arrows on the other. The two

CRSR keys let you control the motion of the cursor. Here are two

experiments that will show you how these three action keys work.

Experiment No. 1-3. Going Home and Clearing Out

This experiment explores the uses of the CLR/HOME key.

Before you get started, check the SHIFT LOCK key to be sure

that it is in the up position. You can press it to check the different j |

positions. Just leave it up when you're finished. [J
If you don't have many numbers, letters, or symbols on the TV

screen, type several of the printing keys so that some are dis- (

played. A few are all you need. Now, press the CLR/HOME key. j

What happens to the cursor, and where does it go? The cursor goes *—■

to its home base, which is in the upper left-hand corner of the large

square display area on the TV screen. Is anything erased or [j

cleared from the TV screen when the cursor goes to its home posi- LJ
tion? No, the unshifted CLR/HOME key just moves the cursor to

its home base. . .

Letters, numbers and other things displayed by the computer on

the TV screen are called characters, so instead of saying numbers,

letters, or symbols, from now on we'll just say they are "charac

ters." Is the cursor now "on top of," or superimposed on a charac- j I
ter? This will depend on what you have displayed on your TV LJ
screen. If the cursor is "on" a character, you'll see that the charac

ter isn't erased. Instead, when the cursor is off, the character is j i

displayed normally. When the cursor is on, the character is jj
"printed" on the cursor.

Now that you have a few characters on the screen, let's clear the ,

TV screen. The CLR/HOME key is used for this, since it has two

operations. The normal operation, HOME, places the cursor in its ^J
home position. The second operation, CLR, clears the screen. To

clear the TV screen, you must press/hold the SHIFT key and then | j

press the CLR/HOME key. U
Press the SHIFT key and, while holding it down, press the CLR/

HOME key. Now, let the SHIFT key pop up. What happens to the { ,

u

n

n

n

n

n

n

characters displayed on the TV screen? Where does the cursor go?

The screen is cleared, and the central display area is "erased." The

cursor is moved back to its home position in the upper left-hand

corner of the TV screen. When the CLR operation is done, the TV

screen is cleared and the cursor is moved.

Can you think of another way to clear the screen? If you keep the

space bar pressed down long enough, everything will be "pushed

up" off the screen. This can take over a minute, and it leaves the

cursor at the bottom of the screen. Using the CLR/HOME key is

easier and quicker.

Experiment No. 1-4. Moving the Cursor

Use the CLR/HOME key to clear the screen. Remember to use

the SHIFT key, too. Press the ASDFGHJKL keys located in the

middle of the keyboard to put these nine characters on the screen.

The keys are all in a row, from left to right on the keyboard. Now

use the CLR/HOME key to put the cursor at its home base. If you

cleared the screen, you pressed the SHIFT key and the CLR/

HOME key. Go back and type the characters again. Use the CLR/

HOME key without pressing [SHIFT] to get the cursor back to its
home base.

Now that you have a few characters on the screen, use the space

bar to move the cursor to the letter J in your line on the screen.

What happens as you press the space bar? The cursor can be

moved with the space bar, but it erases characters as it passes over

them. Actually, it doesn't erase them, it just puts a space in their

place. The computer "sees" spaces as though they are characters,

even though it doesn't print anything on the TV screen.

The two CRSR keys at the bottom right-hand corner of the key

board, shown previously in Fig. 1-11, let you move the cursor with

out erasing or changing the display. The four arrows, two on each

key, show the directions in which the cursor can be moved; up,

down, right, or left.

Clear the screen with the SHIFT and CLR/HOME keys and use

the two CRSR keys to move the cursor down and to the right so it

is near the center of the TV screen. The arrows on the bottom of

the key tops show the direction the cursor will move. The SHIFT

key must be used to get the cursor to move in the direction shown

on the top of the CRSR key tops. This should be fairly easy to do,

but you may need to practice using the CRSR keys. Don't worry if

the cursor goes in the wrong direction. Remember that you can

always move the cursor back to its home position by using the

25

u
CLR/HOME key. Try and move the cursor back to the home base , j

by using the SHIFT and the two CRSR keys. Can you do it? Just M
take your time and get used to the operation of the keys. The

CRSR keys are repeating keys, just like the space bar. You can

press them once and move the cursor one position, or you can hold [
them down and the cursor will move for as long as the CRSR key is J
pressed. Of course, you'll need to use the SHIFT key, too, to make

the cursor go up or to the left. 1 |

Clear the screen again using [SHIFT] and [CLR/HOME], and jj
type about 10 or 12 characters on the screen. Can you use the

CRSR keys to put the cursor on top of, or superimposed on, any of .

the characters? Try it. When the cursor is "on top of a character,

the cursor and the character flash, as shown in Fig. 1-12. "On top *-'
of doesn't mean that the cursor is above the letter.

E
CURSOR OFF CURSOR ON CURSOR OFF

Fig. 1-12. Putting the cursor on a character makes it seem to "flash."

u

u

u
The CRSR keys can put the cursor anywhere on the screen,

within the central square area. The cursor does not erase charac- » >

ters when it is moved with the CRSR keys. You'll soon find out jj
how you can use the CRSR keys to go back and make changes to

the characters and other information shown on the TV screen.

Now that you have had a chance to try the CLR/HOME and the J
two CRSR keys, you will be able to use these keys when you need U
them, or when you're asked to clear the screen, send the cursor

home, or move the cursor in an experiment. It will take some prac- | j

tice to get used to some of the special keys, but this is true for all of jj
the computer operations. The keyboard has some other features,

and we will look at these next. , ,

YOUR ERASER

Everyone makes mistakes, so it's a good idea to have an eraser

handy. The Commodore 64 has a special key that can be used to w

"erase" mistakes, and this is the INST/DEL key located on the

keyboard, as shown in Fig. 1-13. When this key is pressed, the cur-) j

U

n
H

n

n

n

n

n

Fig. 1-13. The INST/DEL key located In the upper right-hand corner of the

keyboard.

sor moves to the left, erasing characters as it goes. This key can be

used when you are typing and discover a mistake. You can simply
"back up," erase, and then continue typing.

We do not expect you to be an expert at using the INST/DEL

key after you read this section and do an experiment. We just want
you to know how this key can be used.

Experiment No. 1-5. The INST/DEL Key

In this experiment, you will find out how you can "erase" mis

takes by using the INST/DEL key. Use the CLR/HOME key to

clear the TV screen. Remember to use the SHIFT key, too, or you

will simply move the cursor to its home position. Once the TV

screen has been cleared, type the following:

THIS IS THE COMMODORE 641

Leave the cursor so that it is just to the right of the number 4 in

COMMODORE 64. Let's assume that you wanted to type, THIS IS

YOUR COMMODORE 64 instead of THIS IS THE COMMO

DORE 64. You can go back and correct the information typed on

the TV screen by using the INST/DEL key. Press the INST/DEL

key once. What happens to the cursor? Is anything erased from the

TV screen? The cursor moved one space to the left. Since it was

placed just to the right of the 4 in COMMODORE 64, the 4 was

erased, leaving THIS IS THE COMMODORE 61 on the TV

screen. Press the INST/DEL key 16 more times. What is left on

27

the TV screen now? You should see only THIS IS! on the TV (

screen. Now type a space and then type YOUR COMMODORE 64.

You should now have this on the TV screen: '-'

THIS IS YOUR COMMODORE 641 , ,

Since the cursor is now to the right of the 4 in COMMODORE U

64, press the INST/DEL key and hold it down, but release it after

a few seconds. What happens to the cursor now? The cursor moves j i

to the left for as long as the INST/DEL key is pressed. It erases jj
characters as it goes. When it reaches the left side of the TV

screen, it will go on to the line above, if there is one, and will con- }

tinue to erase whatever is there. When the cursor is moved back to

the upper left-hand corner (home) with the INST/DEL key, it will J
go no further.

Clear the screen and move the cursor down four lines. Now type I I

the following: U

ERASE THIS LINE!

Now press the INST/DEL key and hold it down. What happens? jj
The line just typed is erased and the cursor goes from the left side

of the screen to the right side of the screen, but on the line above.

If you keep the INST/DEL key pressed long enough, the cursor j
will move right back to its home position. ^
You can use the INST/DEL key to "erase" information on the

screen whenever you wish. Just remember that it backs up and j j

"erases" to the left of the cursor. The INST/DEL key also has an jj
insert (INST) operation that is used to make "openings" in groups

of characters so that other characters can be added with a mini- . ,

mum of retyping. j I
You can use the CRSR keys to place the cursor in the middle of a u

line of characters, then the INST/DEL key can be used to erase

and open spaces for changes. Here is another experiment that will I I

show you how the INST and DEL operations can be used together. J

Experiment No. 1-6. Deleting ancj Inserting , ,

What happens when the INST/DEL key is used to erase some- [J
thing in the middle of a line of characters? How do you insert char- .

acters? You'll see how it's done in this experiment. Clear the ,

screen and move the cursor down four lines. Type the following and j
leave the cursor to the right of the D, as shown: ^

SEE HOW HE JUMPEDI j

28 ^

n

n

n

n

n

n

n

Move the cursor to the left so that it is superimposed on the J in

JUMPED, making the J seem to "flash" in the cursor block. Use

the SHIFT key and the left-hand CRSR key to do this. Once the

cursor is on top of the J, press the INST/DEL key once. What hap

pens to the characters on the TV screen? The space between HE

and JUMPED is erased, so the line now looks like this:

SEE HOW HEJUMPED

with the cursor still on the J. Now press the INST/DEL key two

more times. What happens now? Can you describe what the INST/

DEL key does when it is used in the middle of a line of characters?

The line is now SEE HOW JUMPED, with the cursor still on top of

the J in JUMPED. When the INST/DEL key is pressed, it

"erases" a character to its left. Any character under it, and charac

ters to its right are moved over to the left to take up the space left

by the "erased" character.

Now we want to insert the word THEY, so that the line of char

acters looks like this:

SEE HOW THEY JUMPED

The insert operation on the INST/DEL key can be used to

"open" spaces in a line of characters so that changes can be made.

How many spaces would be needed in the line SEE HOW

JUMPED to make it SEE HOW THEY JUMPED? You need five

spaces, four for the letters in THEY and one for the space between

THEY and JUMPED. To "open" five spaces, press/hold the

SHIFT key and press the INST/DEL key five times. Don't hold

the INST/DEL key down, since it is a repeating key, and too many

spaces will be "opened." What happens to the display on the TV

screen? When the SHIFT key is pressed and held and the INST/

DEL key is pressed, the cursor stays in its place, but it "opens"

spaces to its right. The characters to the right of the cursor are

pushed to the right, one space at a time, "opening" spaces in the

line of characters. Now that there are five spaces, you can simply

type THEY. Remember to press the space bar once for the space

between THEY and JUMPED. Does the TV screen now display,

SEE HOW THEY JUMPED? If not, you may want to go back and

try this experiment again, since it takes some practice to get used

to the operation of the INST/DEL key. As you will see later on, the

INST/DEL key can be used for making corrections and changes in

computer programs, too. You don't have to be a master of the

INST/DEL key right now.

29

DRAWING PICTURES

Many of the printing keys can be used to draw pictures, make up

game characters, draw graphs, and put graphic information on your

TV screen. When reading a book such as this, photographs, draw

ings, charts, and figures illustrate important things, or show some

thing that would take many extra words. The same thing is true for

the computer. It is often easier to have the computer "draw" sim

ple pictures, graphs, and shapes than it is to have the computer list

columns of numbers or letters. Look at Fig. 1-14. It is easier to see

HEATING BILLS FOR 1982-1983*

JUN

JUL

AUG

SEP

OCT

NOV

DEC

JAN

FEB

MAR

APR

MAY

$

$

$

$

$

$

$

50

55

40

55

70

150

190

$220

$250

$

$

$

180

110

75

•INCL HOT WATER & DRYER

Fig. 1-14. Graphic and tabular information tell the same story: high heating bills

in the winter.

the increases in heating bills by looking at the chart rather than the

list of costs. The Commodore 64 computer can display many differ

ent shapes, lines, and figures on the TV screen, and these can be

put together to make complex "drawings" of all sorts.

You probably noticed that all of the letter keys, A through Z,

have two special graphic symbols on the front of them. Five of the

other printing keys, +,-,#,©, and * have special symbols on

them, too. These symbols can be seen on the front of the keys in

Fig. 1-15. All of these graphic symbols can be "printed" on the TV

screen.

u

u

u

u

LJ

LJ

U

U

Fig. 1-15. The special graphic symbols are found on the front of the keys.

30 u

n

n

n

n

n

n

The special graphic symbols, or graphic characters, are dis

played on the TV screen by using the SHIFT key or a new action

key we'll call GRAPHICS. The GRAPHICS key is shown in Fig. 1-

16, along with the two SHIFT keys. When you look at your key-

Fig. 1-16. The GRAPHICS key is in the lower left-hand corner of the keyboard.

board, you'll see that the legend on the GRAPHICS key looks like

a large letter "C" with a small flag or equals sign attached to it;

C=.

If you press the SHIFT key and one of the keys having a pair of

shapes or symbols on its front, the right-hand shape will be dis

played on the TV. If your computer is turned on, press/hold the

SHIFT key and press the "Z" key and then the "S" key. You

should see a diamond and a heart displayed on the TV screen.

The GRAPHICS key works the same way as the SHIFT key. It

must be pressed and held when you want to display the left-hand

graphic symbol on the front of a key. Again, if your computer is

turned on, press/hold the GRAPHICS key and press the "+" key

and then the "B" key. You'll see a part of a "flag" and a square full
of "dots" displayed on the TV screen.

Experiment No. 1-7. Drawing Things

Use the CLR/HOME key to clear the screen. Press the SHIFT

key and hold it down. Now, press some of the keys with the graphic

symbols on the front. You should see the shapes, lines, and other

31

u
special symbols displayed on the TV screen. The cursor moves one

space to the right, just as it did when you were typing numbers and

letters in some of the earlier experiments. The CLR/HOME and ^J
CRSR keys may be used to clear the screen, put the cursor at its

home base, or place the cursor anywhere you want it. I j

Clear the screen again, press the GRAPHICS key and hold it U
down. Now press some of the keys with the graphic symbols on the

front. You should see that you are printing the left-hand figure i i

shown on the key onto the screen. You can release the GRAPHICS jj
or the SHIFT keys at any time to print the "normal" characters on

the screen.

The lines and shapes can be combined to make interesting fig- I
ures and designs. For example, clear the screen and move the cur- LJ
sor away from the edges of the screen. Press the SHIFT key and

then press the "U" and "I" keys. Let the SHIFT key come up I i

again, and move the cursor down one space and to the left two [J
spaces. You'll have to use the SHIFT key with the CRSR keys to

move the cursor where you want it. You can probably do this with- , ,

out any more help. Now, press the SHIFT key and then press the

"J" and "K" keys. What shape did you draw? You should find that U
you have drawn a circle on the screen. What happens when you

press the SHIFT key and then the "W" key? A smaller circle J j

appears. U
Here is a more complicated figure you can create. Clear the

screen and move the cursor so it's near the center of the TV t i

screen. Press/hold the GRAPHICS key and type the letters [J
"NBB." Release the GRAPHICS key and move the cursor down

one line and three spaces to the left. Press/hold the GRAPHICS

key and type the letters "NBB" again. Release the GRAPHICS

key and move the cursor down one line and to the left three spaces. L-l
Press the GRAPHICS key and the "N" key. Move the cursor down

one line and to the left one space. Press the GRAPHICS key and i j

the "N" key. You should have the checkered winner's flag in the jj
center of your TV screen.

It won't take you long to learn how to use the graphic symbols, ,

since it's more fun to draw things than it is to simply sit and type |
numbers and letters. You can move the cursor anywhere on the ^
screen that you want to, and you can clear the screen as needed.

Here are a few things to keep in mind as you draw figures and I I

shapes with the special graphic symbols: LJ

1. You can move the cursor "over" anything on the screen with-
s i

32

n

r

n

out destroying it. If you want to change something, simply use

the cursor controls to get to the character or symbol and

retype it.

2. When you clear (CLR) the screen, your graphic artwork or typ

ing will be erased and you won't be able to get it back.

3. When the cursor reaches the bottom border, you can move it

"down" another line, but this will cause everything on the

screen to move "up" a line. The top line will be pushed up "off"

the TV screen and lost. The display is said to "scroll" up.

n

n

n

n

n

n

n
I !

n

COLOR FUN

When the computer is turned on, the color of the central area on

the TV screen is dark blue, and the cursor is light blue. If you have

a color TV set, you can change the color of the cursor and the char

acters that are to be printed. If you have a black-and-white TV set,

you will see the color changes as shades of grey. The color of the

cursor is changed by using the number keys, "1" through "8." You

can see in Fig. 1-17 that these keys have three-letter color names

on the front of them, and these colors are also shown here:

Fig. 1-17. The color codes are on the front of the number keys, 1 through 8.

KEY COLOR

"1"BLK

"2" WHT

"3" RED

"4" CYN

"5" PUR

"6" GRN

"7" BLU

"8" YEL

Black

White

Red

Cyan (light blue)

Purple

Green

Blue

Yellow

The control key, marked CTRL, is used to change the cursor's

color, and it is shown highlighted in Fig. 1-18, right below the "1"

key. If you press and hold the CTRL key and one of the color keys,

the color of the cursor will change to the color noted on the key.

When you release the color key, the cursor will stay the color you

33

Fig. 1-18. The CRTL key is at the upper left side of the keyboard under the

"1"key.

have selected, unless you change it by pressing the CTRL key and

one of the other color keys.

Experiment No. 1-8. The Color Connection

In this experiment, you will find out how to change the color of

the cursor and print things on the screen in different colors. Unfor

tunately, most of the colors don't show up well on the dark-blue

background.

Clear the screen. Press/hold the CTRL key and press the "1"

key to change the cursor to black. Now type the word, BLACK.

You should see BLACK printed in black letters on the screen. Can

you change the color to white? Press/hold the CTRL key and press

the "2" key, the one with the WHT notation on the front. Now,

type the word WHITE. Change the color to red (RED) and type

the word, RED. Change the color to cyan (CYN), which is a very

light blue, and type CYAN. Change the color to purple (PUR) and

type PURPLE, change it to green (GRN) and type GREEN, and

finally change it to yellow (YEL) and type YELLOW. Do you have

all of the colors spelled out now?

On our color TV set, only the words WHITE, CYAN, and YEL

LOW, printed in those colors, looked good. The other colors were

LJ

U

U

U

U

34

n

n

n

n

n

n

n

n

on the TV screen, but the letters were difficult to read. Some colors

just don't look good together.

If you have a black-and-white TV set, you will see that the white,

cyan, green, and yellow "colors" look light grey. It is difficult to

tell much of a difference between them.

Even when you have changed the color, you can still use all of

the printing keys, including the special graphic characters. You can

change the color at any time to put green dots, purple triangles,

red squares, and other colorful figures on the TV screen. Many of

these are used in games, educational programs, and other pro

grams where it is useful to use colors for emphasis or special

effects. When you change from one color to another, the characters

already being displayed on the TV screen are NOT changed.

There are eight other colors that you can control from the key

board using the number keys, 1 through 8, but the GRAPHICS key

controls them, instead of the CTRL key. These colors will be

described in Chapter 8. Since you found that some color combina

tions don't look very good, we'll also tell you about some of the

color combinations to avoid in your displays.

The computer can also "reverse" its display to highlight words,

numbers, or special symbols. You can turn the "reverse" on and

off, using the reverse-on (RVS ON) and reverse-off (RVS OFF)

keys, found on keys "9" and "0," as shown in Fig. 1-19. The

Fig. 1-19. The "9" and the "0" keys also turn the reverse printing on or off.

reverse operation is controlled by the CTRL key, as are the color

keys.

Experiment No. 1-9. Printing in Reverse

Clear the screen and change the color to white. Try to do this

without help, and without going back in this chapter. If you need

help, press/hold [SHIFT] and press [CLR/HOME]. Now, press/hold

[CTRL] and press [WHT] (the "2" key). That should do it.

35

To reverse the printing, press/hold the CTRL key and then press t ,

the RVS ON key (the "9" key). Do you see any changes on the I

screen? No, nothing has been printed yet. Type the word, TEST. U
What do you see on the TV screen now? The word TEST is printed

on the screen. The letters are the color of the big square area on I I

the TV screen (blue) and they are printed on the color you selected U
(white).

Change the color to cyan (press/hold [CTRL] and press [CYND. |
The cursor should now be cyan, or light grey on a black-and-white I
TV. Type TEST again. What do you see on the screen? The letters

are the same color as the large square area, but they are printed on

a cyan, or light-blue background. j (
Press-and-hold the CTRL key and press the RVS OFF key. This ^

will turn off the reverse printing, so that information is printed

normally on the TV screen. When you pressed the CTRL and RVS I

OFF keys, did you notice a change on the TV screen? There is no J
change, since you haven't printed anything yet. Type the word

TEST again. What is displayed on the TV screen? The word TEST (

is printed in cyan letters on the normal dark blue background. You J |
can experiment with reverse printing for the other colors, too, but ^

most of them will not show up too well.

When the reverse printing is turned off, the areas that were I j
printed in reversed colors stay that way. They do not change. U
When the reverse printing is turned on with the CTRL and "9"

keys, the characters already printed on the TV screen are not i i

changed. Only the characters typed after the change in the display jj
format are reversed.

We haven't talked about the color blue (BLU), found on the "7"

key. What do you think would happen if you change to this color? If j
you decide to try it, you'll see that the cursor disappears. When the ^
printing color is changed to blue and the background color is blue,

you won't be able to see any of the characters you type. Blue char- j j

acters on a blue background don't show up. U
If you haven't already changed the cursor to the color blue, you

can do it now. Type some characters and then change to the color { ,

white. Has the cursor moved from where it was when you changed j
to blue? Yes, it has, since it has printed blue characters on the blue

background, even though you can't see the characters you've typed

in. Remember that changing to the color white doesn't change [j

those characters already typed to white. They stay the way they LJ

are, including the blue characters you typed in (and still can't see).

36

LJ

n
SECRETS

n
I '- We didn't talk about the RESTORE or RUN/STOP keys in this

chapter, and we didn't say much about the RETURN key, either.

n These aren't secret keys, but they don't have much to do with the

keyboard or TV display. These are action keys that control the

operation of the computer. We will talk about them in another

-^ chapter.

I

QUESTIONS

"~j 1. How do you set up the computer to use channel 3 on the TV set
I for its display?

2. What types of keys are there on your Commodore 64, and what

kinds of things do they do?

ri
H 3. What does the SHIFT key do?

i I

I 4. What two operations does the CLR/HOME key do?

1
\ 5. Why do you use the CRSR keys?

6. Do any of the keys "repeat" their action if they are held down

for a while? Which keys do this?

P 7. What does the INST/DEL key let you do?

! I

n
37

n

9. How can you change the colors of the things you are typing on

the TV screen?

jj
8. What does the GRAPHICS key look like, and what does it do? i >

u

u
10. What color do you get when you press the SHIFT key and the

"6" key? , ,

lI
11. If you type several words and then change the color of the cur- I

sor, is the color of the previously typed words changed, too? -J

FOOD FOR THOUGHT j I

If you look at all the graphic symbols, you'll see that there isn't a

symbol for a solid block, the size of the cursor. However, you can

display a solid block of color (not the cursor) on the TV screen. How

can this be done? jj

jj

n

n CHAPTER 2

n

n

n

n

n

n

USING A SMALL COMPUTER

WHAT CAN YOUR COMPUTER DO?

Now that you're familiar with the keyboard, you're ready to

start using your Commodore 64 computer for more than typing and

drawing, but what exactly do computers do? If you think about

computers in a very general way, you'll find that they simply pro

cess information. In fact, computers were originally called elec

tronic data processors. Here are some ways in which computers

are used: traffic-light control, bank accounting, cash register, calcu

lator, spacecraft, or satellite control.

Computers have to get the information they're going to process

and they have to do something with it when they are finished, so

they also transfer information. Computers have two main func

tions; processing and transferring information.

«-) Let's look at the satellite computer shown in Fig. 2-1 to see if

I computers really work this way. The satellite's computer gets

information from various sensing devices that tell it where it is,

how fast it's going, and so on. This information is processed and

nthen transferred to various devices; to the rocket motors to reposi

tion the satellite, and to a radio transmitter to send the new posi

tion back to an earth station. The principle is the same; information

T-j is transferred and processed.

39

u

u

u

u

u

Fig. 2-1. Block diagram of a simple satellite computer system.

It's a bit awkward to talk about information being transferred to

and from a computer, so the words input and output are commonly-

used. For example, information is input to the computer and after

it is processed, it is output to a printer or a TV screen. In almost all

cases, input refers to input to the computer, while output refers to

output from the computer. The devices that put information into

the computer are simply input devices, and the keyboard on your

computer is a good example of one. Devices that receive informa-

40

n

n
1 1

n

n

n

n

n

tion from the computer are output devices, and the TV screen is a

good example.

These devices are often put under the heading of input/output

devices and are called I/O devices for short. Here are examples of

some I/O devices that can be easily connected to your Commodore

64 computer:

I/O DEVICE USE

Game Paddle

Printer

Game Cartridge

Disk

Cassette

INPUT

OUTPUT

INPUT

INPUT and OUTPUT

INPUT and OUTPUT

The disk and cassette I/O devices can be both input and output

j—| devices, storing information from the computer and later transfer-

| } ring it back to the computer. The I/O devices are often called
peripherals, and you will see this word used to describe all types of

I/O devices.

You'll need to give the computer only a few simple instructions

to get it to input or output information and we will describe these

later in this chapter.

SIMPLE PROGRAMS

Now that you have an idea of what your Commodore 64 can do,

you can write some simple programs, but there's no reason to get

high blood pressure or sweaty palms over them. You have already

used the computer to do some simple keyboard operations, and you

may have played some games or used the computer for something

else. It's really pretty easy. Here's a bit of history to ease you into

programming your Commodore 64.

Just as we think and communicate using the English language,

the Commodore 64 is set up to think and talk in a language called

BASIC. We'll just call it BASIC from now on. BASIC was devel

oped at Dartmouth College between 1963 and 1964, and its purpose

has been to provide beginners with a simple, easy-to-understand

way to use computers. BASIC is basic, and it gives you an ideal

way to start using your Commodore 64 computer.

You can't destroy your computer by programming it the wrong

way. You may not get the answer you want, or the computer may

tell you that you've done something wrong, but you can't destroy

it. You're the computer's master, too. You can always "pull the

41

plug," walk away and take a break. In fact, it's a good idea to do i i

that every once in a while. M

GETTING STARTED

Your computer can be set up to process information for hours at J
a time, but if you can't get information in or out, the processing

doesn't do you any good. So, your first step in programming is t »

learning how to get the computer to input information and to out- J
put it, too. There are two "words" in BASIC that you can use to

tell the computer that it is to input and output information. They

are INPUT and PRINT. In almost all computer languages, these j I
are called commands, since you use them to command the com- LJ
puter to do something.

In the Commodore 64 computer, you use the INPUT command | |

to get information from the keyboard. You use the PRINT com- jj
mand to put information on the TV screen so you can see what the

computer has done. These commands are easy to use and you'll get . .

a chance to try them very soon.

You will write simple BASIC programs using individually num- ^
bered instructions, or steps, for the computer. This lets you and the

computer keep track of where you are and where you are going. In j [

BASIC programs, each operation or command is put in a separate LJ
"sentence" or line. The lines are numbered in sequence with line

numbers, much like the numbered steps in instructions for assem- ■ i

bling a bicycle. Here is a simple BASIC program that will give you JJ
an idea of what's ahead:

10 INPUT ALPHA * i

20 PRINT ALPHA |J
In this simple program, line numbers 10 and 20 are used to guide

the computer through the program, one line at a time. Lines 11 r

through 19 aren't "missing," they just haven't been used in this

program. The computer simply goes from one line number to the '-'
next highest one, so after finishing the command at line 10, it goes

to the command at line 20. Most people who write computer pro- I j
grams in the BASIC language use line numbers that are multiples LJ
of 10, starting with 10; 10,20, 30, and so on. You don't have to num

ber your lines this way, but most programmers do. The following j <

program will do the same thing as the preceding one: M

12 INPUT ALPHA

130 PRINT ALPHA J I

42

n

n

What does this simple program do? Here's a general description:

The first thing it does is to command the computer to get a value

from the keyboard (INPUT ALPHA). We have told the computer

that we want this number to be called ALPHA, so we can easily

identify it later on in the program. Once the value has been typed

in and labeled ALPHA, the computer prints it on the TV screen.

p Experiment No. 2-1. A Simple Input/Output Program

In this experiment, you'll learn how to use the keyboard to type

a short program into the computer. Turn on your computer. If it is

on, turn it off, wait a few seconds and turn it back on. This will give

you a fresh start, clearing the computer and the screen.

You type in programs one letter or number at a time. Use the

RETURN key on the right side of the keyboard to tell the com

puter when you have finished typing in each line. We'll show the

RETURN key in brackets, [RETURN], so you'll know when to

press it. Don't worry if you make a mistake. We'll show you how to

n correct it in a minute. Here is the short program. Type in each line,

and press the RETURN key at the end of each line:

n 10 INPUT ALPHA [RETURN]

! I 20 PRINT ALPHA [RETURN]

The RETURN key tells the computer that you have finished an

p| operation. You'll find that using the RETURN key becomes second

! I nature, but we'll tell you when to press it in the first few experi
ments to get you started. Remember, you don't type the word

"RETURN," you just press the RETURN key.

! | Now you will check to be sure that your program has been typed
into the computer correctly. You can ask the computer to "list"

your program on the TV screen so that you can review it and check

for any ett-ors. This is called "listing your program."

To list a BASIC computer program on the TV screen, simply

type the word LIST and press [RETURN]. Go ahead and type

LIST [RETURN]. What happens on the TV screen? You should

now see your program displayed on the TV screen. This type of dis

play is called a "listing." Check the listing displayed on the TV

screen with the previous program to see if you have typed in the

program correctly. If you have made mistakes while typing the

program, don't worry, they are easy to correct.

If you slipped and used an incorrect line number, when you list
your program it might look like this:

n

n

H

n

43

10 INPUT ALPHA

29 PRINT ALPHA

You can remove line 29 from your program by typing just the

line number followed by [RETURN]; that is, 29 [RETURN]. You j «

can also retype any line that is incorrect. You don't have to erase it jj
first. Just start with the same line number, retype the information

and press the RETURN key. The computer automatically replaces ^

the old line in your program with the new one. I

Now, retype any incorrect lines and erase any incorrect line i—>
numbers. You can retype incorrect lines as many times as needed

until you get them right. You can also list your program as many J I

times as you want to check it. Before going on, be sure your pro- jj
gram looks like this:

10 INPUT ALPHA I [

20 PRINT ALPHA U

Change line 10 by typing this into the computer:

10 INPUT ALFA [RETURN] II
Type LIST [RETURN] and see what has happened to your pro

gram. You should see the following listing on the TV screen: . ,

10 INPUT ALFA U
20 PRINT ALPHA

Could you get line 10 back to: 10 INPUT ALPHA? It's not diffl- j j

cult to do, simply retype the correct line and press [RETURN]. [J
Let's put another line in the program and change line 10 at the

same time. Type in the following: I .

10 INPUT ALPHA [RETURN] U
36 INPUT COUNT [RETURN]

Now list the program by typing LIST [RETURN]. The program I I

listing should look just like this: LJ

10 INPUT ALPHA

20 PRINT ALPHA I I
36 INPUT COUNT LJ

When lines are typed in from the keyboard, the numbered lines

can be typed in any order. The computer automatically sorts them J I
out and will print them in the correct order when you list the pro- LJ
gram. Just remember to use the RETURN key when you finish

typing each line. J |

44

n

n

n

n

n

n

n

Do you remember how to get rid of the command at line 36? You

can simply type 36 [RETURN]. Do this, and then list the program

on the TV screen by typing LIST [RETURN]. You should see only
lines 10 and 20 in the listing:

10 INPUT ALPHA

20 PRINT ALPHA

In this first programming experiment, you have already learned
quite a bit. You have:

• Typed in a simple computer program.

• Used several different line numbers.

• Corrected errors in line numbers.

• Added and deleted lines.

• Learned how to list a program on the TV screen to see that it is
correct.

Leave your computer on if you're going to go ahead to the next

section. Otherwise, you can turn it off. Remember that you will not

"hurt" or "destroy" the computer by typing in incorrect lines or

commands. The computer may not understand what you're asking

it to do, and it will let you know quickly. You can't hurt it through
errors in your programs either.

Experiment No. 2-2. Running Your Program

Now you will learn how to tell the computer to run or "do" a sim

ple two-line program, and you will learn how the RUN command is

typed in from the keyboard. So far, you've simply typed in a pro

gram and checked it to be sure it was typed correctly. If the follow

ing program is not in your computer, type it in now:

10 INPUT ALPHA

20 PRINT ALPHA

When typing in a program, remember to press the RETURN

key after you finish each line:

10 INPUT ALPHA [RETURN]

20 PRINT ALPHA [RETURN]

How do you get the computer to run the program? What do you

think will happen when the program is run? You start a BASIC

program by typing RUN [RETURN]. You would type the three

letters R, U, and N, and press the RETURN key. Don't get con

fused by the RUN/STOP key on the left side of the keyboard. This

45

H

key has a special use, but it doesn't start programs. DON'T USE i i

IT! [J
When a program is started with a RUN command, the computer

goes to the lowest line number and starts to do the things that you

have told it to, one line at a time. In this case, the computer goes to

line 10 and starts an INPUT operation. You'll probably remember LJ
that an INPUT command asks you to type in information from the

keyboard. j I

Before you run your program, clear the screen. Do you remem- jj

ber how to do this? (Press/hold [SHIFT] and press [CLR/HOME].)

Type RUN [RETURN]. What happens on the screen? Your screen , .

should look like this:

RUN

u
The question mark and flashing cursor show that the computer is

waiting for you to type in information from the keyboard. In this

case, the computer is waiting for you to type in a number, or value. I I
To get a value into the computer, you simply type in the numbers U
you want to enter and then press the RETURN key; for example,

1239 [RETURN]. j I

Type in the three-digit number, 345. Does anything happen? You [J
must press the RETURN key to tell the computer that you've fin

ished typing information. Once you have typed in your number and

pressed the RETURN key, your screen should look like this: |

RUN

? 345 | ,

345 [J

READY

u
The computer has input the value with the INPUT ALPHA com

mand, and it has printed it with the PRINT ALPHA command. . i

The label ALPHA was used to identify the value for the computer. M
The value we chose for this experiment was 345. Any numeric

value (within the computer's range) could have been typed in with

similar results. There is nothing special about the choice of 345. j I
Run the program again by typing RUN [RETURN]. Now type LJ

in a number of your choice between zero and a million. Don't forget

to press [RETURN] to tell the computer that you have finished i j

46

typing your value. Did the computer display the value properly? It

should have.

The READY message and the flashing cursor let you know that

the computer is ready for your next "command." You could tell it

to run a program again, print a listing of a program, or accept some

lines typed in for a new program.

Do you think the computer "used up" your program? You can

H ask the computer to list your program to see if it's still there. Go

I | ahead and type: LIST [RETURN]. Is the program still in the com

puter? It should be.

n

n

n

n

n

n

n

71

Experiment No. 2-3. Bad Data

Now you will program the computer to input a value labeled

ALPHA. When the computer "asks" for the value, you will see

what happens if you try and trick it by typing in something else. If

the following program is not in your computer, type it in from the

keyboard:

10 INPUT ALPHA

20 PRINT ALPHA

If you are unsure of how to do this, go back and do Experiment

No. 2-1, then do this experiment.

Clear your screen and run the program. (Hint: Simply press/hold

[SHIFT] and press [CLR/HOME]. Now type in: RUN [RETURN].)

Let's try and fool the computer. Since the computer expects you to

type in a value; that is, several numbers, what do you think will

happen if you type in letters instead?

When you have started the program and the question mark can

be found on the TV screen near the flashing cursor, type in the

characters, WAS, and press the RETURN key. What shows up on

the TV screen after you press the RETURN key? The computer
prints:

RUN

? WAS

?REDO FROM START

? ■

This message tells you that your letters, "WAS," were "thrown

out" by the computer, because it expected you to type in a value,

instead. It knows that "WAS" isn't a value, so it gives you another
chance to input a number.

47

jIu£uibpbui'sjnoifsi^unooDBqoii
<<#9SB9jd^D9qOBqSBD0}93RIpj,,

njoS9UIBU9snl<upip^eqq.jpreqbq^iM^unooDBSupfD9qobSuiABq

^noqB^Bq/vv#Suisnjuoo9qp^noM^i^uuidsB9q^pugnoifppoM,

nl'SBS'eyp'&djoS9^oq9q^jo^fuBuospqej9ABq^<upip

Snjpbo^uiSud^bm9uiSbuiinoAubq-uoi^buliojuis^ijo:

9DUIS^UB^JOdlUIi?J9A9JBSpqB^#pip

,uiuip9d/C^noifS9iqBA

p9snJ9inauioo9ui'up9ziib9j9abuaou^Cbui

3U3HMAU3A3'S139V1'

n%STWLrtl#

'P9UJ9DU0Dsij9^nduiODaiRsbjbjsy'auras9q^9jbg^gpue

9DUIS*p9p99uBjfl&i^ousig^gjo^uojjuiuSissnid9qj,-

n-JOJUlJllOiC^d9DDB^OU\\UAJ9^ndlU009q^*9JBAdlQJI#S9iqBA

q^iMp9sn9JBspquiiCs^Bp9dsJ9q}0jo$'#'%ou

180*0-ZVS^8+W0'i86-A8600'

9uios9j

snutuijo(+)stqdbJ9q;i9puB^uiod{BiuiD9p9uo9snosjbubd

yBnaiyj.osg.i6ipdi$H\%oq^iMs9rqBAui

-moo9q^*J9qui9ui9a*9tqBAjaq^o9Uiosjo*o

him«-soNva^Lssimsossijo'saoNnon'soNfiodex
bjog

Cs^i<J9^nduioo9q^ox#uSisJBjppbsi$b:yeq;uM0iq,,1.US90P

^l^OBJUJ#iC9U0UIS;U9S9jd9JIlSlSJB^OpB

-uioo9qxa*aiBn°PwPJ0M9q^J°a^duidjdoadXqp9snsi

puBq-^ioqsbsiuStsJB^op91^^q/vi^no^iSMOjq^J9^nduioo

^nq'9uipuBnoio^sjBnopxis-iCqjgpuep9jpunqjnoj95^
b99^$si-9iqBAbsb95^$^d9DDB

noX^BqMsiq^si-uibSbsJB9ddB

-S9UI0033exLL#su9ddBq^BqM99spuB[NHJliaH]99^$«!

*9iqBABUI

noXS9AiSJ9^nduioo9q^puBsjB9ddB9Sbss9ui

os*9iqBAb^^si<#6#8'S

uope^B^dsipsi

n

n
n

n

n

n

n

n

n

n

"Well, I have $458.98 in it."

"Yes, madam, but we have 15 accounts with $458.98 in each

one. Which one is yours?"

It's pretty hard to imagine life without "labels" or names for

things so we can identify them. Computers have the same problem;

we need to label or identify information for them, so they know

what to do with it and how to process it.

HereVa problem for you. You sold 14 cartons of eggs and there

are 12 eggs per carton, how many eggs were sold? Everything in

this problem has a "name": cartons, eggs per carton, and eggs. You

can set up the problem as shown in Fig. 2-2. When you're finished

/
\ A A

IL
V A A

/

7"= ^

A A A

A A A /
\

Fig. 2-2. Using labels to identify information.

solving the problem, the answer is given the label, EGGS. In fact,

this same type of "problem solving" can be used in a computer pro

gram. The only difference is that most computers use an asterisk, *

, in place of the usual multiplication sign, X. Here is the calculation

part of the program.

EGGS PER CARTON = 12

CARTONS = 14

EGGS = EGGS PER CARTON * CARTONS

In this problem, we first assigned the value of 12 to the label,

EGGS PER CARTON, and we assigned the value 14 to the label,
CARTONS. Of course, the word CARTONS isn't equal to 14, that
doesn't make any sense. At the end of the problem, we've given the
total number of eggs (168) the label, EGGS. Now, you could tell the

49

computer to print the number of eggs you sold. It's not difficult at , ,
all.

What do you think the computer would do if you forgot to give a u
value to the label, CARTONS? The computer would look at the

label, CARTONS, and find that there was no value attached to it. | I

Without a value for CARTONS the computer would tell you that it U

couldn't figure out the number of EGGS. You couldn't figure it out

either. The computer wouldn't say, "HOW MANY CARTONS, i ,

DUMMY?", but it might say "ERROR . . . ". So, you can see how M
important labels are.

COMMODORE 64 LABELS
i_

In the Commodore 64 computer, labels can have up to 255 char

acters, but the first character must be one of the letters of the I I

alphabet, A through Z. The characters that follow the first letter \J
can be numbers or letters, and you can use spaces as in EGGS PER

CARTON to make labels readable. It's not too easy to read , ,

EGGSPERCARTON. Which of the following labels could be used
in your Commodore 64 computer? *-*

DAYS EGG ROLLS MARKER , ,

MOTHS ACCOUNT NUMBER DATE OF TEST

30TH 7A ACT3 U

Except for 30TH and 7A the other labels are fine. These two i i

don't follow the rule of using a letter to start a label. M
It's more meaningful to use the label, EGG ROLLS, for the num

ber of egg rolls sold than to use the totally unrelated label, MCW.

Someone looking through a program is going to wonder what MCW I
stands for. There's not much question about the label, EGG I—'
ROLLS. Meaningful labels serve a purpose, allowing you to clearly

identify things. I i

However, the Commodore 6U computer uses or "sees" only the |j
first two characters in a label. This means that in the preceding

list, while you see ACCOUNT NUMBER and ACT3, the Commo- , ,

dore 64 sees the two-character label, AC, for both. The same is true

for the labels, EGGS and EGGS PER CARTON. Avoid choosing u
labels with the same first two letters, or the Commodore 64 will

think they are the same thi$g! This just happens to be the way the } I
Commodore 64 operates. Larger computers can use many more U
characters in their labels, simplifying things a lot. Well, you can't

have everything in a small computer. i i

50

n

n

n

n

n

Since the Commodore 64 uses only the first two characters, how

would you get around this in the egg-counting problem we dis

cussed before? Try the following:

CARTONS = 14

AMT PER CARTON = 12

EGGS = AMT PER CARTON * CARTONS

Now there is no conflict between the first two letters in any of

the labels. The computer sees:

EG as the Label for EGGS

AM as the Label for AMT PER CARTON

CA as the label for CARTONS

This seems to be fine, and it brings us to two programming rules:

Rule 1. Make your labels meaningful

Use meaningful labels for things. If you use labels such as YT for

eggs, QW for eggs per carton, and P for cartons, your calculation

will look like this:

YT = QW * P

With these labels, it's not easy to see what you're doing.

Rule 2. Avoid using the numbers 0 and 1, or the letters 0 or I in

labels.

The numbers 0 and 1 are easily confused with the letters 0 and I,

and if you look at a label quickly, it's easy to be confused. For

example, VO; is it vee-oh or vee-zero? It may be difficult to tell.

Experiment No. 2-4. Short Labels

This experiment will show you that the computer really uses

only the first two characters in the label to identify information.

In the following program, the label BETA is used to identify a

value, but the Commodore 64 will use only the first two letters,

BE, to identify information. Let's try and confirm this.

Type the following program into your computer. Don't forget to

use the RETURN key at the end of each line:

10 INPUT BETA

20 PRINT BETA

List the program on the TV screen to check that it has been

typed in correctly. Run the program and test it by typing in 234 or

51

n

u
any other three-digit number. You should see the 234 or your

three-digit number printed on the screen, followed by the READY

message. I—'
If an error message, or something else unexpected, is displayed

on the TV screen, check your program again. You can list a pro- I I

gram on the TV screen at almost any time, but you can't list it U
when the computer is waiting for you to input information. That is,

when the flashing cursor is "waiting" after a question mark on the i i

TV screen. M
Once the two-line program has been run and tested successfully,

change line 20 to:

20 PRINT BE |J
Remember, you just type in the new line 20, as shown, and press

the RETURN key. The new line is substituted for the "old" line 20 II

in the program. List your program, and it should look like this: [J

10 INPUT BETA

20 PRINT BE I I

Run this program and type in a value. Does the computer oper- ^
ate the same way it did when the PRINT BETA command was

used at line 20? It should, since the Commodore 64 computer uses I I

only the first two letters of a label to identify the information. This U
means that you shouldn't try and use the labels BETA and BE for

different pieces of information in a program, since the computer i i

will think they are the same. Be careful! il

THE COMPUTER INFORMATION DIET j ,

Your Commodore 64 computer can process or "work on" two LJ
general types of information. The first type of information is simply

a value, and you have already seen that the computer can input and i j

print a value. Later you will see how the Commodore 64 can add, |J
subtract, multiply, divide, and use the values in other ways. The

Commodore 64 can work with some very large and small numbers,

probably larger and smaller than you can imagine right now.

Suppose that you want the Commodore 64 to keep a list of names '—'
and phone numbers. How does the computer work with a name

such as Stew Watson? It's pretty obvious that a name such as this I I

can't have a value, so this brings us to the second type of informa- LJ
tion that the computer earn process; groups of characters, just like

the ones in this sentence. You'll remember that we talked about i i

52

Q

n

n

n

n

n

n

characters in Chapter 1, and you learned that characters are simply

symbols such as A through Z.

The computer "sees" Stew Watson's name as a group of charac

ters: S, T, and so on. Once the computer has groups of characters,

it can see if two names match, it can put characters together to

form sentences, and it can search a mailing list for all your friends

in Washington, DC. There are lots of useful things you can do with

groups of characters, and computers use them every day. Since

groups of characters is a bit of a mouthful, the word string is used

to identify these groups.

The following list contains both "values" and "strings." Try and

figure out which group each belongs in. You can circle your

answers or use a sheet of paper.

Smith

12.87

Green paint

23

Main Street

24060

String or Value

String or Value

String or Value

String or Value

String or Value

String or Value

Smith, Green paint, and Main Street are all strings. It's not easy

to tell if 12.87, 23, and 24060 are values or strings. The 24060 looks

like a ZIP or mail code. Maybe it's not really twenty four thousand

and sixty, but two-four-oh-six-oh. Since the computer lets you put

labels on things, it really won't be that diflacult to tell the strings

and values apart.

TYPES OF INFORMATION AND LABELS

Labels are used to identify information, and they are also used to

tell the computer what type of information is going to be proc

essed. If you want to give labels to values, just use letters and

numbers in the label. The first character in a label must be a letter,

A through Z. For example:

BALANCE = 234.76

TEST NUMBER = 70

M32 = 34689

MILLI = 0.001

Just remember that the longer labels are for your convenience;

the Commodore 64 sees them as the first two characters:

53

u
BA = 234.76

TE = 70

M3 = 34689

MI = 0.001

When the computer is going to process strings of characters,

labels are also used, but you put a dollar sign ($) at the end; for

example, TEST$. The dollar sign is a signal to the computer that

the label is assigned to a string, and not to a value. Here are a few I I
examples: U

NAMES = "BOB EBBS"

DATES = "SEPTEMBER 17, 1948" I I
TESTS = "TESTING, 1, 2, 3." U

The Commodore 64 sees the string labels as the first two charac- , ,

ters and the dollar sign:

NAS = "BOB EBBS"

DAS = "SEPTEMBER 17, 1948" , ,

TES = "TESTING 1, 2, 3." M

In a previous example, the value 70 was assigned to the label,

TEST NUMBER. Would this conflict with the use of the label, i i

TEST$, for a string! (J

TEST NUMBER = 70

TESTS = "TESTING 1, 2, 3." I j

No, there is no conflict, since these are two different types of '—'
informationy and the computer sees the label, TE, identifying a

value and a different label, TE$, identifying the string. j j

TE = 70 ^
TES = "TESTING 1, 2, 3."

Note that string labels always end with a dollar sign. This infor- M
mation tells the computer that your string is simply a collection of

characters and not a value, even though numbers may be used

quite properly in a string of characters, as shown. (NOTE: The

closing quote mark at the end of a string is not required, but we I—I
think it makes good sense to use it. The closing quote mark clearly

shows where the string ends. We will use both quotes throughout I j

this book.) Here are some examples of labels and the information [J
assigned to them. Can you tell which ones are in the proper form,

and which ones are not? , ,

54

n

n

n

n

n

n

n

(a) SAMPLE = 34.8972

(b) GUN = "M-16 RIFLE

(c) NUMBER OF NAMES = 45

(d) CITY$ = "HAMILTON"

(e) LENGTH = 12

(f) TIME$ = ONE O'CLOCK

(g) DOLLARS = ONE

(h) DIRECTION = "ONEWAY"

Here are the answers:

(a) Correct.

(b) Incorrect. The label, GUN, needs to be GUN$, and we rec

ommend a quote mark at the end of the string: GUN$ = "M-

16 RIFLE"

(c) Correct.

(d) Correct.

(e) Correct.

(f) Incorrect. The ONE O'CLOCK must be put in quotes to be a

string: TIME$ = "ONE O'CLOCK"

(g) Incorrect. It's hard to tell if it's supposed to be DOLLARS

= 1 or DOLLARS$ = "ONE"

(h) Incorrect. The DIRECTION label needs a dollar sign at the

end: DIRECTION$ = "ONE WAY"

Experiment No. 2-5. Inputting Strings

If the Commodore 64 computer is to work with strings, there

must be some way to input them. In this experiment, you'll see

how labels for strings can be used in INPUT commands.

You can use the computer to input strings of characters in place

of values. All you have to do is use a label for a string in the

INPUT command in place of a label for a value. This tells the com

puter what type of information is to be typed in from the keyboard.

Type in the following program:

10 INPUT TY$

20 PRINT TY$

You now have the label TY$ set up to identify the string that is

to be input by the INPUT TY$ command at line 10. The PRINT

command at line 20 uses this label to locate the string to be printed

on the TV screen. The dollar sign at the end clearly identifies the
string type of label.

55

n

Clear the screen and run the program. When the question mark . .

and flashing cursor appear, type in: !

COMPUTER FUN

Did you forget to press the RETURN key after typing COM- I

PUTER FUN? If so, press it now. What does the computer print L
on the TV screen? You should see this on your screen:

RUN j !
? COMPUTER FUN U
COMPUTER FUN

READY. [J
D

Run the program again and type in another short string of your I

own. Is it displayed on the TV screen? It should be. J
Run the program again and type in the numbers 12345. What is

displayed on the TV screen? Did you expect an error message or a } ,

REDO message because you typed a number? The computer sim

ply displays 12345. There is no error message, nor a REDO mes-

sage, because the computer simply treats 12345 as a string of five

characters, which just happen to be digits. We used the string j j

"September 17, 1948" in one of our examples earlier in this chap- U
ter. The date has no "value," it's just a string of characters to the

computer. This means that you must distinguish between strings i i

and values when you use labels in your programs. (J

Experiment No. 2-6. Mixed Labels

The Commodore 64 computer can input and use strings and val

ues in the same program. The proper labels are all that are needed. I—'
Type the following program into your computer:

10 INPUT XP i I
20 INPUT TR$ U
30 PRINT TR$

40 PRINT XP | I

Run the program. When the first question mark appears, type in U
a value. When the second question mark appears, type in your last

name. What happens when you press the RETURN key after typ- j I
ing in your name? The computer prints your name and then it u

prints the value you typed. The computer was able to label each

piece of information so it could use it later. The type of label used i j

56

u

n

p lets the computer tell whether it is to work with a value or a string.

j [Change lines 20 and 30 to:

20 INPUT XP$

n 30 PRINT XP$

n

n

n

n

n

n

n

n

n

The complete program should now look like this:

10 INPUT XP

20 INPUT XP$

30 PRINT XP$

40 PRINT XP

Run the program and again type in a value after the first ques

tion mark, and then a string of five or six letters after the second

question mark. Are the string and the value displayed as you

expected? They should be. To the Commodore 64, XP and XP$ are

two different labels, one for a string (XP$), and the other for a

value (XP).

If you were trying to use the computer, it would be very difficult

to know when to type in a value and when to type in a string in

response to the question mark and flashing cursor. Now you'll

learn how programs can be made easier to use.

INTELLIGENT QUESTIONS AND ANSWERS

In the previous program examples and experiments, you used

simple programs that input information from the keyboard and

then displayed it on the TV screen. When the computer was wait

ing for you to input information, it displayed a question mark and

the flashing cursor:

When you see this on the TV screen, there's no way of knowing

what the computer is waiting for. Maybe it needs your name (a

string), or perhaps it's waiting for your bank account total (a value);

who knows? Imagine that a friend has sent you a check-account

program to run on your Commodore 64. Your friend promises that

the program will quickly and painlessly balance your checkbook.

This sounds great. You type in the long program and run it. The

computer responds with the ? I display. What's next, the number

of checks, the starting balance, or something else? You would need

a complete instruction book just to run the checkbook program.

To help you use the computer, you can put special messages in

57

u
the INPUT and PRINT commands, along with the usual labels for , ,

values and strings. These messages will be displayed on the TV 11
screen when the computer is doing INPUT and PRINT commands

so that you'll know what you are to type in, and what is being

"printed" on the TV screen. When messages are used, you can get J I
this type of display on the TV screen: LJ

POUNDS OF CLAMS CAUGHT TODAY? 480

COST PER POUND IN DOLLARS? 3.40 1

GROSS INCOME = $ 1632 -J

YOUR WEEKLY CATCH = 1257 POUNDS

This display is much more meaningful than seeing the following |

on the TV screen: *->

? 480 |

? 3.40

1632 U
1257

It is much easier to see what is happening in the first example. M
Someone has caught 480 pounds of clams and sold them for $3.40

per pound. The gross income was $1632. The computer program is

also keeping track of the weekly total catch. In the second example, j I
the same information is typed in, processed, and displayed, but LJ
without the messages the user doesn't know what the computer is

requesting or displaying. j j

It is easy to "build in" messages in INPUT and PRINT com- [J
mands, so that "questions" are asked, or "answers" are printed.

Here are some examples of how the computer can be programmed { ,

to provide this extra information:

INPUT "TYPE A STRING11; TY$

PRINT "EGGS SOLD = " EGGS ,

INPUT "NUMBER OF STUDENTS11; NS

PRINT "NAME FOUND IS " NAMES

In each of these examples, a message has been put into the com- . i

mand. These messages are enclosed in quotes, and they have abso- M
lutely no effect on the INPUT or PRINT operations. The computer

simply puts the information between the quote marks on the TV

screen as an aid. You can put almost anything you want in these

messages to make the computer easier to use. LJ
There are just a few things to remember when these types of

messages are to be used. First, the message must be placed i

58

n

n
between quote marks. Second, for INPUT commands, there must

be a semicolon (;) between the message and the label. A semicolon

is not used for the PRINT commands. The INPUT and PRINT

commands shown above with messages in them follow these rules.

Let's look at an example. If the following INPUT command is

used in a program:

INPUT "TYPE YOUR NAME11; NAMES

the computer will print, TYPE YOUR NAME, on the TV screen as

part of the keyboard input process. Now, you know what you are

r-| supposed to type in when you see the flashing cursor on the screen.

' [In fact, it will look like this:

TYPE YOUR NAME? I

n The question mark is placed right after NAME, and the cursor

shows you that the computer is ready to accept information from

the keyboard. Using the messages in INPUT commands certainly

makes the computer easier to use. The same thing can be said for

the PRINT commands, since messages are used to tell you what is

being displayed on the screen.

n You can also put messages in PRINT commands by themselves.

| { They are used simply to print information on the TV screen. No
labels are used with these PRINT commands, since they don't

^ print anything but the "message." Here is an example:

100 PRINT "CHECK ACCOUNT PROGRAM11

120 PRINT "COPYRIGHT 1984"

140 PRINT "ELIZABETH SCOTT"

n

If these lines are used in a program, they will print the informa

tion between the quotes on the TV screen to identify the program

and its author. In the TYPE YOUR NAME example shown pre

viously, you might want to remind the user to press the RETURN

key when typing information. You could put a message in several

PRINT commands to print this reminder on the screen at the start

of the program:

10 PRINT "WHEN ENTERING YOUR INFORMATION"

n 20 PRINT "TO THE COMPUTER, DON'T FORGET TO"

| I 30 PRINT "PRESS THE RETURN KEY WHEN YOU"
[40 PRINT "ARE FINISHED."

r-< You can also print other things, such as:

59

n

n

n

n

n

n

n

n
1

n

pessnosip9q]\uaye\#suiB.1S0.1d

bq^iMop0}pesoddnsaxenoif

Suisn^noq^i^i*9sn

spueuiuiooXfldNIPUB

09

iq^i9sno^Awqjo'ure.iSo.id

moidjo;gjqtssoduii^souqBsi

puBinj8uiuB9uisure.iSo.id

UIsaS^sseuijoesn

-uaoo^SGDBds

0^p9snsi

-sip9q;S9op

ut

asnwed

q^ui

ptreaS^ssaui9q^90Bds

ung'

Awwir3d.noaos

:sxqi95piSuiq^9uios^oo^ppoqs

^uibubuib<1&\puBuiBjSojd9

sauioo^jisui9^onbSuisop

$3WVNnBd.nOAOShINIdd0£

:o^08

"AC1V3U

uosi

awwit3d,noAos

AWWIT63WVNdHOA3dAl

1S31indNI9NIdlS

99Sppioqsno

uiuiaor*089unin

$3WVN„3d,D0AOSnINIdd0£

$3WVN',,3WVNdnOA3dAl,,IDdNI02

,.lS3iiOdNI9NiaiS.«lNIddOL

ui9cLCj,-

99S

-jodun

buip9sn9qubd

JO

9ouig

"z-3"on

jo9iuosuj no/L][&\\\ua9

,,******************,,INIdd

.1*WVdDOdd1S31*,,INIddOZL

INIdd00L

n

n

H

and developed in the following chapters, you'll see that messages

are used extensively.

CONCLUSION

You have seen quite a bit of new information about computers in

this chapter, particularly if this is your first time using a small com-

puter. You have seen that computers can process information and

transfer it in and out. The Commodore 64 computer can process

both values and strings, and in this chapter you saw how labels can

be used to identify information that the computer is to use. Labels

were used to distinguish between actual values to be processed and

strings of characters.

Although no information was "processed" in any of the experi

ments, you learned how INPUT and PRINT commands can be

used to tell the computer to get information from the keyboard and

_ to display, or print, it on the TV screen. You also found that the

| j Commodore 64 uses only the first two letters in a label, and that it
can be confused by labels such as BEACH and BEETS, since the

first two letters are the same. In the last section, you found that

the INPUT and PRINT commands can be expanded to include

messages that can be printed on the TV screen so that the input

and output processes give the user guides as to what is happening.

—i In the next chapter, we will introduce you to the actual process-

| j ing of information within the computer, and we will also tell you
how you can control the operation of the computer. Some new key

board operations will be introduced, too.

I
i

QUESTIONS

j Here are some questions that you can answer to check your
understanding of the ideas presented in this chapter. The answers
are provided in the back of the book.

I 1. What types of information can be used with the Commodore
1 64?

2. What are the two general types of operations that all comput
ers perform?

61

n

u

u
3. Which of the following would be considered valid labels for

information in the Commodore 64 computer? I J

LABEL

TYPES$

CHT$

$LABEL

3 1 S

STREET

SPENDS

DO NUTS

T

A1TESTS

3STATE$

SPAGHETTI

EGGS$

SPELLER

4. If the valid labels in the above list were all used in one com

puter program, would there be any conflicts? If there are con

flicts, what are they? |
i I

5. Find the errors in the following labels or information. What are

they?

(a) TEST = $56 I I
(b) TIME = "TEN OP FIVE"$ U
(c) TM = 56.89

(d) LINK$ = NUMBER OF TESTS } [

(e) SEEDS = 78 |J
(f) LINES = "10 LINES PER INCH

6. The following PRINT and INPUT commands have messages in

them. Which ones are incorrect? What is wrong with them?

(a) INPUT "YOUR NAME, PLEASE", NAME$

(b) PRINT "TEST RESULTS

(c) PRINT "BALANCE IN ACCT ="; BAL

(d) INPUT " TODAY'S SPECIAL "

(e) INPUT "ENTER THE YEAR"; YR$

(f) PRINT "THIS IS A COMMODORE 64"

62

u

n

n

n

n

7. If you type in a program line with the wrong line number, how

do you "erase" it from your program?

n
i I 8. If you make an error typing in a line in your program, how can

you correct it?

r

9. Describe how you start a program once it has been typed into
J the computer.

H
I \ 10. Describe how to list a program that is already in your

computer.

FOOD FOR THOUGHT

The following are provided as things to think about. You may not

M know the answers, but you can try and think out a logical answer

' for each. You can also try and run programs on the computer to see
what happens.

| 1. If you run the following programs, what will happen?

(a) 10 INPUT NAME$

p. 20 PRINT NA

(b) 10 PRINT NA

20 INPUT NA

(c) 10 PRINT NA

n 20 INPUT NAMES$

I!
63

(d) 10 INPUT "TEST VALUE"; VLU

20 PRINT VLU I I

30 PRINT VLU U
40 PRINT" "VLU

used in a program, will there be any conflicts? Between which

ones? Why?

u

2. If the labels TEAM SPORTS, TEAMS, and TEETH$ are all

LJ

U

U

U

u

u

64
u

p

n

n

n

CHAPTER 3

NUMBER CRUNCHING

In the previous chapter you learned how the computer keeps

p track of information by assigning labels to it. You also learned that
' the Commodore 64 computer can operate on numbers, or values, as

well as work with strings of characters. In this chapter, we will

concentrate on how the computer uses values, and you'll see how to

make the computer do simple arithmetic operations such as addi

tion and subtraction. You will also find out how the computer can

do several things at once, and how programs can be made more effi

cient.

SIMPLE ARITHMETIC

The Commodore 64 can do many interesting things with num

bers, but in this chapter, we'll concentrate on the simplest arithme

tic or math operations: addition, subtraction, multiplication, and

division. Your Commodore 64 can do many other complicated

things with numbers and values, but we'll leave these for later. The

four simple operations are a good place to start.

The four basic math operations are very common and we use

them frequently without even thinking about them. You can

quickly add a few prices to see if you have enough money, and you

can multiply the kids at a birthday party by the cookies each will

65

eat to see if you have enough. Even though you don't think about j ,

it, you're doing simple, and even complicated, math in your head. j
Unfortunately, a computer can't just run off a simple calculation ^

without first having been "told" exactly what to do. This is called

"programming" the computer, since you set up a step-by-step pro- [

gram of things for it to do. Computers don't know anything about J
the cost of groceries or how many cookies kids eat at parties, so

every piece of needed information must be put into the computer , i

right at the start. j I

SETTING UP THE PROBLEM <

Here are a few examples that show how simple math problems ^
can be set up. You can probably think of many others:

235

+ 68

290

- 79

I

X

JO

9

4782

71

In these problems, the two values are put one over the other, but . (

you could just as easily have written them on a line like this: i f

235+68 = ? 290-79 = ? 30X9 = ? 4782 / 71 = ?

It may not be easy for you to solve the second set of problems in I [
your head, or on paper, since the columns of digits aren't lined up. LJ

In the Commodore 64, math problems are set up in almost the

same way, but there are two slight differences: (1) a label is used to j j

identify the "answer," and (2) the problems are "reversed," with jj
the label for the answer on the left side. Here's an example:

SUM = 43+3421 j j

When the computer finishes this addition problem, it gives the ^
label "SUM" to the answer, which is 3464. Remember that the

word used as the label, SUM, is not equal to 3464. The computer j j

simply needs a label so it can identify the answer if you want to use IJ
it sometime later. There is nothing special about the label, SUM.

You can choose almost any label you like: ANSWER, RESULT, , .

Q9, or something else. Remember, the Commodore 64 uses only the

first two letters, or letter and number, in a label.

Now that you have a way of identifying the answer from the sim

ple addition problem, what can you do with it? Why don't we use j [

the computer to display the answer on the TV screen? A PRINT LJ
command can be used to do this, and you probably remember from

Chapter 2 that it would look something like this: j j

66

n

n

n

j

n

n

PRINT SUM

By using both a math and a PRINT operation, you can put

together a simple program for the Commodore 64. Here it is:

50 SUM = 43+3421

60 PRINT SUM

Remember that line numbers are always used in BASIC pro

grams for the Commodore 64.

A NEW OPERATION

Before you do the first experiment in this chapter, we want you

to know about a new command that will save you time when you

want to clear the computer and get it ready for a new experiment

or program. In a few of the experiments, you were told to turn

your computer off and to turn it back on again. This "wiped out,"

or erased, old programs, clearing the computer so a new program

can be typed in and used. Whenever the computer's power is

turned off, your BASIC-language programs are lost. Although this

is a way of clearing the computer for new programs, it isn't really

practical.

You can clear the computer for a new program by typing the

word "NEW" and pressing the RETURN key, [RETURN]. The

NEW command completely clears the computer, erasing all traces

of your program. Although it doesn't happen very often, if you acci

dentally type in the NEW command, you'll have to retype your

program.

Experiment No. 3-1. A Simple Math Program

This experiment will show you how a simple math problem can

be set up and programmed into your Commodore 64 computer.

You'll also run the program to see what it does. This experiment

will help break down some of the mystery of how computers are

programmed.

With the computer turned on, type NEW [RETURN]. What hap

pens? The computer just responds with the READY message to let

you know that it is ready for your next command, or for a new pro

gram. Type in the following short program. The plus sign is in the

upper row of keys, near the right side of the keyboard.

50 SUM = 1590+398

j"J 60 PRINT SUM

67

L

List the program on the TV screen to be sure that you have » »

typed it correctly. Just type the word LIST and press the M
RETURN key. If there are any errors in your program, retype the

corrected lines. Don't forget to press the RETURN key at the end

of each line.

Now run the program. (Remember, you just type the word RUN

and press the RETURN key.) What is displayed on your TV

screen? If you listed the program to check it, and then ran it, you j j

will see something like this: M

LIST

50 SUM = 1590+398

60 PRINT SUM

READY.

RUN

1988

The result of the addition should be displayed on the TV screen j ,

(1988). Is this what you found? If your program is working prop- j

erly, the result should be displayed. List your program again to be U
sure it's still in the computer. Now, type NEW [RETURN]. What

is displayed when you list the program again? The program is no (I

longer in the computer, since the NEW command told the com- LJ

puter to "erase" it and get ready for a new program. Use the NEW

command whenever you need to completely "erase" old programs, i j

or when you're told to clear the computer for a new experiment. M

Experiment No. 3-2. More Math Fun

The program in this experiment will show you how the other

three math operations can be used to do a subtraction, a multiplica

tion, and a division problem. Type NEW [RETURN] to clear the

computer for this experiment. Type the following program into i j

your computer. It is the same kind of program you used in the pre- [J
vious experiment.

u

50 QX = 1590+398

60 PRINT QX u
Use the LIST operation to list the program on the TV screen so

you can check it to be sure it is correct. How would you substitute j i

this subtraction problem for the addition problem used in the pro- [J
gram?

371-83 = ?

68
u

u

n

n

n

n

n

n

The following program line could be used:

50 QX = 371-83

The same label, QX, is used, even though a subtraction is being

done. This means that the label can be almost anything you choose.

You might have chosen another label, for example, CT:

50 CT = 371-83

but you would have to change the PRINT part of the program so

that it uses the same label, too. Just continue to use QX as your

label, since it saves time.

Put the following program line in your program. Just type it in. It

will replace the "old" line 50 in the program:

50 QX = 371-83

Run the program. Is the correct answer displayed? What is it?

The correct answer, 288, should be displayed on the TV screen.

Now put the following program line in your program:

50 ZIP = 371-83

What do you think will happen if you run the program now? Go

ahead and run the program and see what is displayed on the

screen. Is this what you expected? The answer displayed is zero. Is

that the result of 371-83? Something must be wrong. List your

program and check it. It should look like this:

50 ZIP = 371-83

60 PRINT QX

In this program, the result of the subtraction is labeled ZIP,

while the PRINT command prints the value that has been labeled

QX. Two different labels are used, one for the subtraction and one

for the PRINT command. When you tell the Commodore 64 to

RUN a program, it first clears all the labels to zero. Since QX

hasn't had a new value assigned to it, the PRINT QX command at

line 60 just prints the zero on the TV screen. To correct the pro

gram, simply type in:

60 PRINT ZIP

Now run the program. Is the answer from the subtraction dis

played correctly? It should be. Now change program line 60 back

to:

69

u
60 PRINT QX

and continue with the experiment. L-l
Let's try multiplication and division. The computer uses a slash

mark (/) for division and an asterisk (*) for multiplication. Try to f j

write a two-line program to solve each of the following problems, [J
one at a time. Use the label QX for the answer to each problem.

360/15 (Answer: 24) J |

34*56 (Answer: 1904) \j

The following programs can be used, one at a time. For the divi

sion problem, you would use: j |

50 QX = 360/15 ^
60 PRINT QX

And for the multiplication problem, you would use: [J

50 QX = 34*56

60 PRINT QX j j

Suppose that you wanted the computer to solve a different multi- ^
plication problem. How would you get the new numbers into the

program so that the computer could use them? Right now, the only j [

way would be to put new instructions at line 50 in the program. For IJ
example, if you wanted to multiply 58 by 1295, you would have to

change line 50 to: ,

50 QX = 58*1295 U
and you would have to run the program again to get the answer

displayed on the TV screen. { j

As you saw in these experiments, getting the computer to do U
simple math problems isn't difficult, and the computer can do them

quickly. However, it is going to be difficult to use the computer if .- .

you have to change the program whenever you want to do a math M
operation with new values. Can you think of a way to get around

this?

USING LABELS SN MATH PROBLEMS ~

You may not remember it, but two values were multiplied in one | I

of the examples in Chapter 2. Here is how the multiplication jj
looked:

EGGS = AMOUNT PER CARTON*CARTONS

70
u

n

n

n

n

n

n

In this example, labels have been used instead of the actual val

ues. The computer is being told to get the value labeled AMOUNT

PER CARTON and multiply it by the value labeled CARTONS.

When the values have been multiplied, the computer labels the

answer EGGS.

No matter what, the number of eggs mil always be found by

multiplying the number in each carton by the number of cartons.

Even though the numbers may change from day to day, the prob

lem is always solved the same way. All of the math operations can

use labels this way. In the following examples, the problems stay

the same, but different values can be used:

MONEY = SAVINGS+CHECKING

PAY = WAGE-TAXES

DAYS = HOURS/HRS PER DAY

COST = CAKES*PRICE PER CAKE

n

n

n

n

n
In each of these examples, the labels were chosen with care so

n that there would not be conflicts between the first two letters in

j I each label. Remember that the Commodore 64 only "sees" or uses
the first two letters in a label. So, the preceding examples are actu

ally "seen" by the computer as:

MO = SA+CH

PA = WA-TA

DA = HO/HR

CO = CA*PR

When you use labels in a problem, you face another job. How do

you get your values into the computer so the problem can be

solved? The INPUT command is used in the program to "ask" for

these values, so they can be typed in from the keyboard.

GETTING YOUR VALUES - THE INPUT COMMAND

It is easy to use the INPUT command to "ask" for values from

the keyboard. Now a simple multiplication program can be set up,

and it looks like this:

30 INPUT A

40 INPUT B

50 ANS = A*B

60 PRINT ANS

The two numbers are input at lines 30 and 40. One is labeled A

71

u
and the other is labeled B. These values are multiplied at line 50, i i

and the answer, ANS, is printed on the TV screen by the PRINT M
command at line 60. Here's what it looks like when it is run:

RUN

?34

? 12 U
408

READY. U
1 •

This program isn't particularly useful, unless you just want to sit

and fool with the computer. Here is a useful program that uses a *—

multiplication operation:

30 INPUT HOURS I I
40 INPUT WAGE L-1
50 PAY = HOURS*UAGE

60 PRINT PAY |

When you run this program and type in two values, it looks like ^
this on the TV screen:

RUN I I
? 34 LJ
? 12

u
READY.

i
You can probably see that the two sample programs do exactly J

the same thing: input two numbers, multiply them, and display the

answer. The only difference is that in the second example, mean- » »

ingful labels have been used so you can see what is being calcu

lated. However, the computer programmer is the only one who

sees these labels; the computer user doesn't. It would be much

more meaningful to use "messages" in the INPUT and PRINT I j
commands so that the information to be input and displayed is LJ
meaningful to the operator. Here is a better program:

30 INPUT "HOURS WORKED11; HOURS J j
40 INPUT "HOURLY WAGE"; WAGE U
50 PAY = HOURS*WAGE

60 PRINT "WEEKLY PAY IS $"PAY | j

72

n

n

n

n

n

n

n

n

If you run this program, here's what is displayed on the TV
screen:

RUN

HOURS WORKED? 40

HOURLY WAGE? 5.50

WEEKLY PAY IS $ 220

READY.

H Experiment No. 3-3. Your Calculator

I I Although you won't be writing long programs in this book, you
will see how to write a simple one in this experiment. It is a math

H program that will add, subtract, multiply, and divide two numbers,

| j all at the same time. At least it will seem to be happening at the
same time. Type NEW and [RETURN] to clear the computer for

this experiment.

Two numbers are to be input to the computer. The first number

typed in will be labeled A and the second number typed in will be

labeled B. Use INPUT commands and "messages" to get the user

to type in the two values from the keyboard. Write your program

lines below, starting with line 10:

1GL.

20.

What do your program lines look like? They should look some-

[~l thing like this, but the messages you put between the quote marks
! i may be different:

10 INPUT "FIRST NUMBER"; A

20 INPUT "SECOND NUMBER11; B

Now write four program lines to calculate the following:

S = A+B, T = A-B, Q = A*B and R = A/B.

30

40.

50

60

73

Your program lines should look like this, although they may be in i i

a different sequence: jj

30 S = A+B

40 T = A-B II

50 Q = A*B LJ
60 R = A/B

Now, write four more program lines to print the results. Use ! I

"messages" so that the user will know which operation was per- LJ
formed:

70_

80

,0

100 ..

Your complete program should now look like this: LJ

10 INPUT "FIRST NUMBER"; A

20 INPUT "SECOND NUMBER";B I I
30 S = A+B LJ
40 T = A-B

50 Q = A*B I!

60 R = A/B LJ
70 PRINT "A+B = " S

80 PRINT "A-B = " T .

90 PRINT "A*B = " Q

100 PRINT "A/B = " R U

Check the program lines you wrote in the spaces provided and , »

make any corrections needed. Now type in your program, list it on M
the TV screen, and correct any errors. You may use any meaning- u
ful messages you like between the quotes.

Run your program and check to see if it operates as you would I I
expect. You may want to use a calculator to check the results lJ
quickly.

In this experiment, you wrote a simple program to do math with | i

two numbers. Although the program wasn't too complicated, it did jj
show you several things:

1. The computer can do math operations quickly. I I

74

n

n 2. You can type in numbers from the keyboard using an INPUT

! I command and a label.
3. Problems can be set up using labels.

— 4. Messages are useful in telling the user what is to be typed in or

I what has been displayed.
5. Programs can be easy to write.

j| ONE LINE FOR MANY

In the math experiments and examples, a program line was used

nfor each operation. Sometimes it is easier to write all of these oper

ations on a single program line with a single line number. This can

simplify a program and, in some cases, make it more efficient. You

ncan put several operations on a single line, separating them with a

colon (:). The Commodore 64 "sees" the colon as separating each of

the operations, so it does each one in turn, from left to right. You

will probably see programs that use this technique. Here are some
\[examples:

100 RATE = MILES/HRS : PRINT RATE

75 S=TR+QW: INPUT "VALUE";VA : QX = VA + S

In the first example, two operations, a division and a print, were

put in a single line. In the second example, three operations were

put in a line. Extra spaces have been used in these examples so you

can clearly see the positions of the colons. Some programmers try

and squash everything into as little space as possible, writing a pro
gram line like this:

75S=TR+QWsINPUTMVALUE";VAsQW=VA+S

Not very easy to read, is it? The use of colons sometimes makes

programming a bit easier, but it may be difficult to make simple

changes in long program lines. There are some special keyboard

operations that you can use to change program lines, and you'll
read about them shortly.

Experiment No. 3-4. More on a Line

This is a short experiment to show you how colons are used in

program lines. You will be able to put several operations on a sin
gle program line.

Type in NEW [RETURN] to clear out any remaining programs

or program lines. You can use the LIST operation to be sure that

75

I

j I

n

n

LJ
the computer has been "cleaned-out" for your new program. Type i i

in the following program: [J

10 INPUT AZ

20 DX = AZ * 80 II
30 PRINT DX U

To keep the program simple, no messages are used in the

INPUT or PRINT commands. List the program and check it to be II
sure that it has been correctly typed in. When you are sure it has LJ
been typed in correctly, run the program. What does it do? Does it

operate properly? The program multiplies the value you type in by I i

80 and displays the result. Can you suggest how the complete pro- [j
gram could be put on a single line? Use the space provided:

10.

The following program line will work properly:

10 INPUT AZ : DX = AZ*80 : PRINT DX) I

Type NEW [RETURN] to clear the computer for this one-line •—'

program, and then type in this program line. Run this one-line pro

gram. Does it give the same results as the three-line program you J J

used earlier in the experiment? It should, since the same things are LJ
being done.

Sometimes when fairly long program lines are used, they will | ,

"wrap around," continuing on the following line. For example, if y

the following program line is used in a Commodore 64 program:

1000 PRINT "TEST PROGRAM11 : INPUT "FIRST VALUE11; j j

FV U

it will look like this when the program is listed on your TV screen:

1000 PRINT "TEST PROGRAM11 : INPUT "FIRST I]
VALUE"; FV

At first, this may look confusing, but the second line is just a con- | i

tinuation of the first, since each line on the TV screen can only jj
hold 40 characters. Just look for the line numbers on the left side of

the screen, since they will show you where each program line

starts.

As you read this book, you will find a few programs in which sev- U
eral operations are combined on a single line, using colons to sepa

rate each one. If these program lines have more than 40 characters

u
76

n

n

n

n

n

in them, they will simply "end" at the right side of the screen and

continue on the line below.

DOING MORE THAN ONE THING AT A TIME

In many programs, the computer does only one math operation

per line. There are times when it is useful to combine operations so

that several are done at the same time. This means that several

operations can be "bundled" into one. When the computer is doing

many things, this type of "bundling" saves computer time. Here is

an example:

In the egg problem described before, the number of eggs sold

was simply the number of cartons sold times the number of eggs in

each carton. That's pretty simple, but let's assume that some eggs

are also sold from a basket where customers can help themselves.

Now we have to figure out the number of eggs sold in cartons and

then add in the loose eggs sold from the basket. It can be done like
this:

EC = EGGS PER CARTON*CARTONS SOLD

EL = LOOSE EGGS SOLD

TOTAL = EC + EL

In this example, EC labels the eggs sold in cartons, and EL

labels the loose eggs sold. The total number sold is just EC plus

EL. The multiplication and addition operations could be put on a

single program line and separated by a colon, but nothing much is

gained. It would be better if the operations could be combined.

Let's try using some numbers in this problem so we can see what is
happening.

Here's the problem:

TOTAL = EGGS PER CARTON*CARTONS SOLD + LOOSE EGGS
SOLD

TOTAL = 12 * 3 + 4

When the math operations are shown this way, it's a bit confus

ing, since we don't know which operation should be done first. Does
the computer first multiply 12 and 3 and then add 4, or does it add 3
and 4 and then multiply the sum by 12?

TOTAL = 12 * 7 = 84

or

TOTAL = 36 + 4 = 40

77

n

u
As you can see, the answers are different, depending on whether

the addition or the multiplication is done first. Actually, this

doesn't confuse the computer, since it follows two rules when doing

math. Here they are:

1. Multiplications and divisions are done first.

2. Subtractions and additions are done next.

This problem can be solved just as it is written, since the EGGS

PER CARTON will be multiplied by the CARTONS SOLD and

then the LOOSE EGGS SOLD will be added in. Different math

operations can be separated by using parentheses, and they can

help you see what is happening in a complicated math problem.

That's the next subject.

USING PARENTHESES IN MATH PROBLEMS

In complex math operations, you can use sets of parentheses to

"contain" individual math operations. The egg example can be

written as:

TOTAL = EG * CA + EL

or as:

TOTAL = (EG * CA) + EL

In this problem, the computer first does the math operation I I
enclosed in the parentheses, then it does the other operation. When U
parentheses are used, there is no doubt about which operation is

done first. i i

You will see parentheses used frequently in BASIC computer jj
programs. Just remember that the "problem" in the inner set of

parentheses is solved first. After that has been solved, the com

puter moves outward, solving the "problem" placed between the j
next set of parentheses, and so on. Here's an example of how U
parentheses are used:

? = (3 + ((9*4) / 12)) M

Go to the inside set of parentheses and multiply 9 and 4, which is

36. Remove the parentheses surrounding this part of the problem

and you have:

? = (3 + (36 / 12))

Now go to the inside set of parentheses and divide 36 by 12, I J

78

u

n

n

n

n

J

which is 3. Remove the parentheses surrounding this part of the

problem and you have:

? = (3 + 3)

Just add 3 and 3, and you've solved the problem.

If you look at a problem that uses parentheses, how can you tell

which set is the inner set? Let's look at the problem that we just
went through:

? = (3 + ((9*4) / 12))

I Use your finger or a pencil as a marker and move it from left to

' right across the problem line. Look at the parentheses as they pass
your pointer. We've left out the math operations, but you'll first

npass three parentheses that look like this: (((. When you reach one

that curves in the opposite direction: (((9*4), you've reached the

right side of the inner set. Solve the 9*4 problem between this set

r-j of parentheses. You can now "erase" or mark-off this inner set of

I j parentheses and start over again looking for another "inner" set of
parentheses. Just continue to do this until all the parentheses have

been removed. Then, the problem has been solved.

This may sound complicated, but you can see in the example in

Fig. 3-1 that it's not difficult to "break down" the parentheses so

((8 + (((8*6) + 12)/5))*6) = ?

((8 + ((48 +12)/5))*6)=?

((8 + (60 / 5)) • 6) = ?

((8 + 12) . 6) = ?

(20 . 6) = ?

120 = ?

Fig. 3-1. Breaking down parentheses in a math problem.

n

n
that the problem can be solved. In this example, only five steps

nwere needed to get the answer.

^ Use paper and pencil to figure out the answers to each of the
sample problems shown below:

["I A = (9 + (5*3))
! | B = ((6 / 2)*12)

C = ((4*5) + 4)/3

n D = (((5*8)/4) + 10)*5

79

Here are the answers. A = 24, B = 36, C = 8, D = 100. You can j i

check your answers on the Commodore 64 by simply typing in: IJ

PRINT (9 + (5*3)) [RETURN]

and so on for the other problems. This is using the Commodore 64

as a calculator and it lets you do simple math problems quickly. I—I
You DO NOT use a line number, so the problem is not saved in the

computer for later use. It is solved immediately for you. Use the j I

Commodore 64 as a calculator and check your answers to the pre- IJ
ceding problems. You should get A = 24, B = 36, C = 8, and D =

100. Of course, the Commodore 64 won't print the "A =" part of K ,

the answer, it just displays the value of the answer. M

WHAT'S GOING ON HERE? .

Although there are more interesting things to learn about in this J
chapter, we want to tell you about a few things that will make your

programming or computer-using experiences better. If you write j i

computer programs, you need to keep track of what you do. We [J
recommend that you buy and use a spiral-bound notebook in which

you can write all of your programs, what goes wrong, what works,

and so on. Make the notebook readable, so you can go back and see

what you've done and where you are, when you're working on a *-*

program. Even when you are using programs prepared by others,

take notes about problems, times when the program wouldn't run, j j

interesting results, and so on. Notes are important, and keeping jj
them in one place will be helpful.

Good programmers also put helpful notes and comments right in j .

their programs. The computer ignores these remarks and doesn't M
even "know" they are there. When you run a program that con

tains this information, it is not printed on the TV screen, and can

only be read when listing a program on the TV or printer. If you I I
decide to go back and work on a program sometime later, remarks U
can be useful in telling you what you've done. It is often difficult

enough to remember why you did something in a program, but i i

without the frequent use of remarks, it's almost impossible to IJ
reconstruct your "trail."

To put remarks in your programs, you simply type in a line num- {

ber where you want the remark to be put, then type in REM, for

remark, followed by a line of remarks or comments. You can use as «-»

many REM statements in a program as you like. Here are some

examples from different programs: I j

80

L

n

n

n

n

n

n

n

n

290 REM FEBRUARY 1984 VERSION

20 REM TAX CALCULATION PROGRAM

450 REM THIS SETS UP SPECIAL VALUES

You can also put remarks in program lines, along with other

operations. Just remember to separate the operations with a colon:

1090 TX=RT*GS: REM TAX = RATE*GROSS SALES

Good programmers make frequent use of REM lines in a pro

gram so that other programmers looking at the program listing

will have a pretty good idea of what is going on. Some of the pro

gram examples in this book will use REM commands to tell you

what's going on, if it's not explained in the text. We recommend

that you use REM comment or remark lines in BASIC-language

programs you write.

YOUR EFFICIENT SECRETARY

In past experiments, you were told to make corrections in pro

gram lines by simply retyping the entire line. When complex pro

gram lines are used, there is a good chance that you will make even

more mistakes when trying to correctly retype a line. To help you

correct errors or make changes in programs, a special key is

included on the keyboard. This is the INST/DEL key that is

located in the upper right-hand corner. The INST stands for insert

and the DEL stands for delete. You can use this key along with the

SHIFT key to make program changes, even in complex program

lines.

Rather than tell you how to use the key, we will show you how to

use it in the next experiment.

Experiment No. 3-5. The INST/DEL Key

The purpose of this experiment is to have you investigate the use

of the INST/DEL key and see how it can be used to make changes

in programs.

Turn your computer on. Type in NEW [RETURN] to clear out

any old programs and then type in the following program line:

10 PRINT " YOU PEST "

You should be able to list your programs without help. If your

program is incorrect, retype the line and check it again. Run the

program and be sure that YOU PEST is displayed on the TV

screen.

81

u

82

We now want to change the program so that YOUR TEST is dis

played when the program is run. To make the changes, first list the (
program on the TV screen. Then, use the cursor control keys at the L-'
bottom right-hand corner of the keyboard to position the cursor so

it is right on top of the E in PEST. This means that the cursor will

surround and flash the E character on the TV screen. Remember

to use the SHIFT key with the CRSR keys to move the cursor in

the directions shown on the top of the two cursor keys. If you have

difficulty, just clear the screen and type in LIST again, to get a j

new listing. To clear the screen press/hold the SHIFT key and

press the CLR/HOME key.

When the cursor is at the E, press the DEL key once. What hap- j I
pens? Press the DEL key again. What happens now? When the ^J
cursor is positioned at the E and the DEL key is pressed once, the

P in PEST is removed, and the letters EST move one space to the } |

left. When the DEL key is pressed again, the space between YOU [J
and EST is removed, leaving:

10 PRINT " YOUEST ■■ j I

Two characters were removed from the line. Remember that the '-'
computer "sees" the space as a character, too. The cursor is still at

theE. j |

Press the RETURN key. Now, clear the screen and list your U
program again. It should look like this:

10 PRINT " YOUEST " j I

Run the program. What is displayed on the TV screen? You

should see YOUEST displayed.

Can you generally describe what the DEL key does? When the J j
DEL key is pressed, the character just to its left is "erased," and U
the character under the cursor and those to its right move one

space to the left, taking up the space of the "erased" character, j i

The DEL key can be used to erase characters from anywhere in a M
program line.

When you ran the program, YOUEST was displayed on the TV

screen. Since you want to display YOUR TEST, you need to insert

three characters in the message part of the print command: R, '—'
space, and T.

List your program again and use the cursor keys to position the j I

cursor at the E in YOUEST. The cursor will flash the E on the jj
screen when it is in position. You can use the INST key and the

SHIFT key to "open" three spaces in YOUEST for the needed , ,

L

n

n

n

n

n

n

n

n

n

n

n

n

characters. With the cursor positioned at the E, press and hold the

SHIFT key and then press the INST/DEL key three times. What

happens? When the SHIFT key is pressed and held, spaces are

inserted in YOUEST each time the INST/DEL key is pressed.

Now YOUEST has become YOU EST. The cursor remains in

place, "pushing" the characters under it to the right. Remember, a

space is a character, too. The program now looks like this:

10 PRINT " YOU! EST "

Since the cursor is next to the U in YOU EST, type in an R,

a space, and a T. Now press [RETURN]. What does the program

look like? It should look like this:

10 PRINT " YOUR TEST M

Clear the screen and list it to be sure the changes have been

made. Then, run it to be sure it prints YOUR TEST as you would

like it to.

The insert/delete key (INST/DEL) is very useful in helping you

make changes in programs. To make changes, simply list the

program and position the cursor where it is needed. To delete char

acters, simply press the DEL key and the cursor will "erase" char

acters to its left. The changes made to a program line with the

INST/DEL key only go into effect when you press the RETURN

key.

To make additions, again place the cursor where it's needed and

press the INST key as many times as there are characters to be

inserted. Remember that the cursor moves the character under it

to the right, "opening" spaces for new characters. Remember, too,

that spaces are characters.

When changes have been made, remember to press the

RETURN key to tell the computer that you have completed the

changes. It is a good idea to list the changed program again to

check and be sure the changes are as they should be.

You can also use the DEL key as an "eraser" to "back up" the

cursor and make changes in a program line as you are typing it.

This is useful if you catch a mistake before pressing the RETURN

key at the end of a command or program line. Once you press the

RETURN key, you'll have to use the cursor and INST/DEL keys

to make the correction, or retype the complete line.

For example, you want to list a program and you type LISR

instead of LIST. If you catch the error before pressing the

RETURN key, you can use the INST/DEL key to back up and

83

u
"erase" the R in LISR. You can then type in the T at the end, so ,

LIST is spelled correctly. Press the RETURN key and the pro- j
gram will be listed for you.

It takes a while to get used to the operation of the INST/DEL

key. We suggest that you go through this experiment at least one j
more time so you become familiar with the operation of this useful l_j

key. As with the cursor keys, you must use the SHIFT key to

cause the INST operation to take place. i j

U
QUESTIONS

1. What basic math operations can the Commodore 64 do? LJ

LJ

2. What math operations does the Commodore 64 do first, and

which does it do second?

3. How many program steps can you put in a single program line?

4. How are individual program steps separated when they are

used in a single program line?

5. What are parentheses used for in math program steps?

6. What is the answer to each of the following math operations:

(a) ?=5*12 + 4 Jj
(b) 7=3*4 + 12/5*8

(c) ?=((((4*6)/3) + 18)-7) | I

84

n

n

n

n

n

7. What does REM stand for and how is it used in a BASIC

program?

8. What operation lets you put values into the computer from the

keyboard?

9. How does the computer identify information?

R 10. What does the INST/DEL key do?

PROBLEMS

1. Write a program that lets you enter three numbers. The first

two numbers are added together and the result is multiplied by

the third number. The result is then displayed.

2. Using the formula C = 5/9*(F - 32), write a program that lets

you enter a temperature in degrees Fahrenheit (F) and dis

plays the equivalent temperature in degrees Celsius (C). If you

enter 68 (F), a 20 (C) should be displayed.

3. Write a program that lets you convert dollars into Swiss

francs. Assume that there are 2.5 Swiss francs to the dollar

(each franc is worth $0.40 or 40 cents). You should be able to

enter any amount in dollars (such as 5.00) and the equivalent

number of Swiss francs (12.5) should be displayed.

4. If the speed of light is 186,000 miles per second, how many sec

onds are required for light to travel 1 mile? How many seconds

are required for light to travel 1 foot (assume that there are

5280 feet in a mile)?

5. If a 3-pound sack of apples costs $1.29, and a 5-pound bag of

apples costs $2.20, which costs less per pound, the sack or the

bag of apples?

6. Write a general-purpose program that lets you enter two prices

and two weights for something that you want to purchase, and

ii
85

flour, how much of each ingredient will be required if you have

86

u
have the computer determine the cost per unit of measure, so j i

that you can determine the less expensive item. For example, if M
a 24-ounce box of detergent costs $2.29 and a 52-ounce box

costs $4.89, which is the better buy?

7. If a car travels for 2 hours and 20 minutes, and goes 120 miles, J

what is the average speed of the car in miles/hour? If 3.8 gal

lons of gasoline were used by the car, how many miles/gallon is

the car getting?

8. If 14 aluminum drink cans weigh one pound, and you can sell

them at the rate of 5 pounds for $1.28, how many cans do you j ,

need to earn $10.00? j

9. Write a program that lets you enter the number of drink cans

that you have, and calculates the amount of money that you j

will receive, based on the rate of 14 cans/pound, and $1.28/5 J

pounds.

10. If a recipe calls for 2 eggs, one cup of milk, and 1% cups of (

5 eggs, and you want to use all of them in the recipe?

11. If an acre of land is a square, 208.71 feet on each side, how i j

many square feet are there in an acre? How many acres are. [J
there in fields that are 425 feet X 1023 feet, 500 feet X 712

feet, and 3028 feet X 1120 feet? ,

12. If a farmer has a field in the shape of a circle, and the diameter |J
of the field is 345 feet, how many acres of land are in the field?

To calculate the area of a circle, use the formula 0.7854*D*D, , .

where D is the diameter of the circle. There are 43,560 square j
feet per acre.

13. If the shortest day of the year has 7 hours and 20 minutes of j .

sunlight, and the longest day has 14 hours and 52 minutes of J

sunlight, on the average, how many additional minutes of sun

light do we get each day, as we go from the shortest day

(December 21 in the northern hemisphere) to the longest day j I
(June 21 in the northern hemisphere)? Assume that there are J
182 days between the shortest and the longest days.

14. A bank pays you 8.5% interest per year on your savings

account. Thus, if you had $100.00 at the beginning of the year, LJ
you would have $108.50 at the end of the year. If you have

u

LJ

n

n

n

n

n

n

n

n

n

n

$524.30, how much will you have at the end of the year (assume

that no money is withdrawn from the account)?

15. The bank mentioned in Problem 14 has changed its policy so

that instead of paying you 8.5% interest each year, it will pay

you 8.5/12% interest each month. Assuming that your $524.30

is in the bank for a year, how much money will you have in

your account after a year? If you had your choice of having

your interest "compounded" monthly or yearly, which would

you prefer?

87

n

n

n

n

n CHAPTER 4

n
MAKING DECISIONS

n

n

| j
1

A computer cannot make up its "mind" about anything; it must

H be programmed by someone to make specific decisions. A computer

| ! can, however, make these programmed decisions quickly and
choose among many alternatives. When spacecraft landed on Mars,

on-board computers made almost instantaneous decisions about flr-

ing the rocket engines, where to land, how fast to land, and so on

(Fig. 4-1). Of course, the computer didn't just decide to go to Mars

one day; people built the lander and programmed the computer to

do just what it did.

Your Commodore 64 can be told to do many things, but these

must be preset in programs that are no more than lists of instruc-

tions. So far, all of the example and experimental programs have

been simple. The computer has done some math and it has input

and output information, but the programs have not altered the path

that the computer took through the program. The computer went

R from one program line number to the next higher line number, one
if at a time. This is called a straight-line program, as opposed to a

branch program, both of which are shown in Fig. 4-2.

("] THE GOTO COMMAND

An easy thing for you to do is to tell the computer to go back and

H do a task again and again. In a previous chapter, you saw a pro-

89

n

u

u

Fig. 4-1. Mars lander makes decisions quickly as it lands.

gram in which two values were multiplied to calculate a person's

wage:

30 INPUT "HOURS WORKED11; HOURS

40 INPUT "HOURLY WAGE11; WAGE

50 PAY = HOURS*WAGE

60 PRINT "YOUR PAY THIS WEEK IS " PAY

The program is started by typing RUN. (We'll assume you

remember to press the RETURN key, so we won't show it.) When

the computer completes the calculation, it displays READY on the

TV screen. To get it to run the same program again, for another

employee, you would have to type RUN. This can be a bother, par

ticularly if you have people waiting in line to get paid. It would be

nice to simply tell the computer, "When you're finished, go back

and do it again."

The GOTO command is used to tell the computer to go to a spe

cific place in a program. The example in Fig. 4-3 shows how the

GOTO command can be used to direct the computer to a specific

line in a program. There are other program lines between the

GOTO command at line 350 and the PRINT command at line 1200,

but to make the example clearer, they have been left out.

When the computer reaches line 350 and reads the GOTO 1200

LJ

U

u

90

n

n

n

n

n

DECISION

1 DECISION

1

p-> (A) Straight-line program. (B) Branching program.

Fig. 4-2. Comparison of straight-line and branching programs.

n

n

I PROGRAM FLOW
I

I

JL

350 IGOTO 1200H-,
360 ...

370 ...

380

ETC.

PROGRAM IMMEDIATELY

j GOES TO LINE 1200

n

I

lm200 print "result is" answ

[program contines...
T

Fig. 4-3. Using the GOTO command to get to a specific line in a program.

command, it immediately goes to program line 1200 and starts

work there, skipping over the program lines in between. In this

example, the computer "jumps" from line 350 to line 1200 whpre it

91

prints the message, RESULT IS, followed by the value labeled j t

ANSW. The Commodore 64 computer doesn't care what is done at M
line 1200, the GOTO command just tells it where to go. After com

pleting the PRINT operation, the computer goes on to the next line

that follows 1200. j j
Of course, if a GOTO 456 command is used in a program, the com- LJ

puter program must contain line U56, if the computer is to operate

properly. For example, if you have only the following three-line j [

program in the computer, what do you think the computer will do jj
when it reaches the GOTO command at line 30?

10 INPUT V j
20 PRINT V L
30 GOTO 100

Since the program tells the computer to go to line 100, it will try j J
to find line 100 in the program. Since there isn't a line numbered I—'
100 in the program, an error message will be displayed on the TV

screen: \ j

RUN lj
? 45

u
?UNDEF'D STATEMENT ERROR IN 30

READY. j j

The undefined statement error message tells you that something I—I
was undefined in line 30. In this case, the computer couldn't find

line 100 in the program. There are other conditions that can cause | I

errors, and the error messages for the Commodore 64 computer jj
are listed for you in Appendix A. Errors don't harm the computer,

but they must be corrected if a program is to run properly. ,

By using the GOTO command and a line number, you can force j

the computer to go to any place in a program where there is a line *—'
number. This is a powerful addition to your list of BASIC instruc

tions, since you can now cause the computer to do things again and j I

again. LJ
Here is a simple program that uses a GOTO command so you can

see how it is used. Can you figure out what the computer will do? i i

10 INPUT "VALUE 1"; V1 LJ
20 INPUT "VALUE 2"; V2

30 SUM = V1 + V2 | j

92

n

n

40 PRINT SUM

50 GOTO 10

Once the computer has printed the sum of the two values, VI and

V2, the GOTO command at line 50 points it back to line 10, and it

continues working there. The computer does not "know" that it

has been pointed back to the start of the program. It simply goes to

the line number used in the GOTO command.

Here is what the TV screen would look like if this program were

run:

VALUE 1? 5

VALUE 2? 6

11

VALUE 1? 234

p VALUE 2? 521
1 i 755

and so on.

p Here is an interesting variation on the VALUE program just
! shown. Can you see what is different?

10 INPUT "VALUE 1"; V1

P 20 INPUT "VALUE 2"; V2
< 30 PRINT V1 + V2

40 GOTO 10

p The intermediate step of labeling the sum of VI and V2 has been
! I removed. In this program, the computer is told to print the result

of VI + V2 without labeling and saving the result. This type of

p-j operation can be used to speed up a program if a result is not going

j j to be used somewhere else in the program. Since you only want to

see the result, why have the computer take the time to label it and
set it aside?

p Here is another interesting program for you to think about:

! ' 100 z = o
110 PRINT Z

120 Z = Z + 1

130 GOTO 110

If you run it, this program will display numbers on the TV

screen, starting with 0 and increasing by one: 0, 1,2, 3, and so on.

It does it quickly, too. In this program, the GOTO command points

the computer to program line 110 rather than to the start of the
program.

93

n

u
Look at program line 120. This shows you another interesting i j

way in which labels are used. The program line Z = Z + 1 simply |J
says to get the value labeled with Z, add one to it, and then label

the result Z. The program line Z = Z + 1 is NOT saying that Z

equals Z plus 1. The label has been used to identify the starting

value and it is then switched over to identify the result. The overall Lj
effect is to simply add one to the value labeled Z. This is done fre

quently in computer programs. J j

These computer programs are called loops, since the computer is JJ
forced to loop back and go through some of the same program steps

again and again. Loops are important in computer programs, since ,

they give you more control over what the computer is doing.
Lj

BREAKING OUT I

Are there any problems with these "loop" programs? The big LJ
problem is that once the looping program is started, there is no

way to get the computer out of it. The computer will complete its j i

operations, go back and do them again, complete its operations, go Jj

back . . . , on and on and on. Is there a way to get the computer

out of the loop? Actually, there are several ways, but only one is

useful. Of course, you can always pull the plug, but that doesn't

count. '-'
The Commodore 64 has a RUN/STOP key on the left side of the

keyboard, shown in Fig. 4-4. When the computer is running a pro- j j

gram, you can use this key to stop it. When the key is pressed, it LJ
will tell you where the computer was operating in the program by

displaying a message such as: ; \

BREAK IN 450 LJ
READY.

This tells you that you have caused the computer to break out of j j
a program, and it gives you the line number where the computer U
was working. In this case, the computer was doing something at

line 450 in the program when the RUN/STOP key was pressed. j |

Now that the computer has been stopped, the program can be [J
listed, changed, corrected, and so on. You can also tell the com

puter to continue its operation by typing CONT [RETURN]. This

tells the computer to continue on, even though you stopped it tem

porarily. You cannot use the RUN/STOP key to stop the computer LJ
if it is waiting for information from the keyboard; that is, if it is

working on an INPUT command. Since the computer is waiting for j j

94

0

n

n

n

n

n

n

Fig. 4-4. Location of the RUN/STOP key on the left side of the keyboard.

information to be typed in, you must "reset" it. You can do this by

pressing and holding the RUN/STOP key and then pressing the

RESTORE key located on the right side of the keyboard, as shown
in Fig. 4-5. When this is done, the READY message is displayed on

Fig. 4-5. Location of the RESTORE key on the right side of the keyboard.

the TV screen. If you stop a program by using the RUN/STOP and

RESTORE keys together, you must type RUN to start it again.

When the RUN/STOP and RESTORE keys are pressed this

95

or

BREAK IN 120

READY.

or

u
way, the computer is reset, just as if you were restarting the pro- , .

gram. Of course, the program is still in the computer ready to be M
used again. Remember that the RUN/STOP key must be pressed

and held while the RESTORE key is pressed.

Experiment No. 4-1. Loops and Breaks [j
In this experiment you will see how you can use the RUN/STOP

and RESTORE keys to break out of loops in computer programs. j j

Type NEW to clear out any programs in the computer. Type the jj
following program into the computer and list it to be sure it is cor

rect. Make any changes needed and then run it. (

100 X = 0 Ll
110 PRINT X

120 X = X + 1 M

130 GOTO 110 M

What is displayed on the TV screen? A column of numbers is dis

played on the left side of the TV screen. The numbers seem to j »

move up the side quickly, with new numbers being displayed in the jl
bottom left corner of the display area.

While the program is running, press the RUN/STOP key. What

happens? What is displayed on the screen? The numbers stop J j
increasing and a message is displayed on the TV screen. The mes- Lj
sage should look like one of these:

BREAK IN 110 I |
READY. U

u

BREAK IN 130 u
READY.

Why could three different messages be displayed? When you

press the RUN/STOP key, it's impossible to know where the com

puter is in this program; it could be at line 110,120, or 130. Run the

program again and stop it again. Just press the RUN/STOP key to J j
stop it. Now what line number is shown in the BREAK message? LJ
Is it the same one?

Restart the program by typing RUN. Press the RUN/STOP key. j i

96

n

n
Did the computer stop at the same line number? You can try this

several times to see if you can stop the computer at different places

in the program. It took us seven tries before we got the computer

to stop at least once at each program line: 110,120, and 130.

Can you stop the computer at line 100? Probably not, since this

program step is done only once, right at the start of the program.

It isn't included in the loop, so you'd have to be pretty fast in going

from typing RUN to pressing the RUN/STOP key to catch it doing

this at the start of the program.

Run the program again and wait until the numbers being dis

played are into the hundreds. Press the RUN/STOP key. The num

ber display will stop. Now, type CONT. What happens? Remember

to press the RETURN key. The display continues. It does not start

over again from zero. Press the RUN/STOP key again to stop the

program. Now type X=10000 [RETURN]. Type CONT. What is

displayed now? The display continues, but the numbers are in the

ten thousands. When you used the RUN/STOP key to stop the pro-

H gram, you were able to change the value given the label X. You

j (then restarted the program and the count continued, starting with

the new value.

p. If your program is running, stop it. Just press the RUN/STOP

key. Now, press/hold the RUN/STOP key and press the

1 ' RESTORE key. What happens? The TV screen is cleared and the
READY message appears in the upper left-hand corner.

nType NEW to clear out the program and type in the following

program:

50 INPUT X

1 60 PRINT X
I 70 GOTO 50

n

n

n
Check it and make any corrections that are needed. Run the pro

gram and type a value when the computer displays the question

mark on the screen. Is the value "printed" on the TV screen prop

erly? Is the computer waiting for another value? The number

should be displayed and another question mark should appear

below it.

When the question mark appears again, press the RUN/STOP

key. Does it have any effect on the program or the display? No,

there is no effect. The RUN/STOP key cannot be used to break the

computer out of an INPUT command, where it is waiting for infor

mation from the keyboard.

Press/hold the RUN/STOP key and press the RESTORE key.

97

What happens now? The screen is cleared and the READY mes- i i

sage appears. When the RUN/STOP key seems to have no effect M
on the program, you can use the RUN/STOP and the RESTORE

keys together to reset the computer.

REAL DECISIONS -

Although the GOTO command can be used to force the computer i i

to go to a specific program line, no decision is made. So, how can M

computers make complex decisions in medicine, finance, and sci

ence? Most complex "questions" can be broken down into smaller

ones that are easier to understand and answer. Your doctor doesn't I
take one look at you and decide that you have an ear infection. He *—l
asks questions such as:

"What hurts?" | I
"Do you have a fever?" «-J

"Are you taking any medicine?"

"Have you had any trouble hearing?" \ I

and so on. ^J
Computers make decisions in the same way, and it's the com

puter programmer who breaks down the complex questions into I I

simpler, smaller ones that are easier to answer. Computers really |J
use statements, instead of questions, and they evaluate the

statements, telling whether they are true or false. Here are a few , (

examples of statements that can be evaluated by a computer such

as your Commodore 64: '—'

5 is greater than 78. (True or False) . »

INCOME is less than EXPENSES. (True or False)

WEIGHT is equal to 1000. (True or False) U

These statements are either true or false, and we'll assume we , ,

know the values for INCOME, EXPENSES, and WEIGHT. The J

computer can test similar statements and then use the true-or-false

answer to make decisions. The computer can't give you a true-or-

false answer for questions such as, "Margaret is prettier than j I
Joan," or "Fred is nicer than Sam." U

Here's an example of a statement that is either true or false, and

two "actions" that are based on the answer: j i

It is raining today. (True or False) LJ
If the answer is TRUE, take your umbrella.

If the answer is FALSE, don't take your umbrella. j j

98

U

n

n

n

n

n

n

n

n

n

n

You can see how the statement is evaluated and the proper

action taken by looking at theflowchart in Fig. 4-6. Once the state-

TAKE YOUR UMBRELLA DON'T TAKE YOUR UMBRELLA

CONTINUE...

Fig. 4-6. The "umbrella" flowchart with true and false actions.

ment has been evaluated, the "program" branches in either of two

directions, based on the answer.

You can simplify this type of operation by putting the statement

and the "true" answer in a slightly different form: IF "It's rain

ing" is true, THEN take your umbrella.

The "false" answer isn't included here, since if it isn't raining,

you usually don't think about an umbrella at all. You can "test" the

statement, "It's raining," by looking out the window or opening

the door. If the statement is true, THEN you do something special.

If the statement is false, no special action is needed. This type of

operation is shown in Fig. 4-7.

Computers using BASIC language programs can evaluate state

ments in a similar way to see whether they are true or false. Of

course, your Commodore 64 computer can't look out a window and

tell you that it's raining, so what can it do to make decisions? Since

you've used four simple math operations, you'll now see how the

computer can compare values to see whether they are equal or

unequal. You'll also see how the computer can test two values to

see if one is greater-than or less-than the other. These operations

give the computer a great deal of decision-making power.

THE IF-THEN OPERATION

Just as we used simple if-then sentences in the previous exam

ples, the computer can use IF-THEN operations in programs. As

99

TRUE

TAKE YOUR UMBRELLA

CONTINUE...

Fig. 4-7. The "umbrella" flowchart with only the true action.

part of an IF-THEN operation, the computer is given a "state

ment" to evaluate and a "command" to do if the statement is true.

Here's the general form for the IF-THEN operation used with

your Commodore 64:

IF (this statement is true) THEN (do this

command)

and it can be condensed to:

IF (statement) THEN (command)

Let's look at the types of statements that can be evaluated as

either true or false by the Commodore 64:

SCORE = 100 (Is "SCORE equal to 10011 True or

False?)

SCORE < 75 (Is "SCORE less than 75" True or

False?)

SCORE > AVERAGE (Is "SCORE greater than AVERAGE11

True or False?)

The symbol < is used for "less-than" and the symbol > is used

for "greater-than." You'll see these symbols used often in com

puter programs. Here's how one of these statements might be used

in a BASIC-language program for your Commodore 64:

140 IF SCORE = 100 THEN PRINT "PERFECT11

100

u

u

u

u

u

Q

0

n

n

n

n

n

n

n

In this example, SCORE is a label for a value, and the computer

evaluates the statement, "SCORE = 100," to see if it is true or

false. If it is false, the computer goes on to the next program line.

If it is true, the command following THEN is done and PERFECT

is "printed." After PERFECT is displayed on the TV screen, the

computer goes on to the next program line. This can be shown with

the help of theflowchart in Fig. 4-8.

CONTINUE...

Fig. 4-8. A typical IF-THEN flowchart.

All types of commands can be used in IF-THEN operations. For

example, if you want the computer to go to line 1575 when SCORE

is greater than AVERAGE, the IF-THEN operation would look
like this:

IF SCORE > AVERAGE THEN GOTO 1575

A flowchart for this is shown in Fig. 4-9. Keep in mind that the

computer only goes to line 1575 if the statement "SCORE >

AVERAGE" is true. Labels have been used in this statement to

keep it general. Perhaps test scores have been typed in from the

keyboard and the computer has figured out the average before it

gets to this part of the program.

The command that follows the THEN is just like a separate pro

gram line in a BASIC program, and several commands can be used

together as long as they are separated by colons. In this example, a

PRINT and a GOTO command are used after the THEN:

101

u

CONTINUE...

Fig. 4-9. An IF-THEN flowchart with a GOTO command.

IF SCORE < 75 THEN PRINT "NOT TOO GOOD11 : GOTO

450

A flowchart for this is shown in Fig. 4-10.

u

FALSE

U

CONTINUE...

Fig. 4-10. An IF-THEN flowchart with multiple commands.

u

102

u

n

n

n

n

n

n

n

n

n

n

Experiment No. 4-2. The IF-THEN Operation

This experiment will show you how an IF-THEN operation can

be used in a BASIC language program to make a decision. You will

be able to type in numbers between 0 and 100 and the computer

will tell you whether they are greater-than or less-than 50. Clear

out any old programs that are in your computer and type in the fol

lowing program. Watch those line numbers!

20 INPUT "NUMBER "; N

60 IF N > 50 THEN PRINT "GREATER THAN 50"

70 IF N < 50 THEN PRINT "LESS THAN 50"
90 GOTO 20

List your program to be sure that it has been typed in correctly.
Make any changes that are needed.

Run the program. Type in several values between 0 and 100,

some greater-than and some less-than 50. Does the computer give

you the right response for each? Is the computer really "smart"?

The computer should give you the right answers as it determines

whether the value is greater-than or less-than 50. If the program

does not work correctly, stop the computer, list the program, and

check it again. The computer isn't really very smart, since your

program tells it exactly what to do. A computer just follows direc
tions.

Your computer will continue to wait for numbers to "test." What

happens when you type the number 50? Is anything printed? Is this

what you expected? The computer program checks for values

greater-than or less-than 50, but it does not check for the value 50,

itself. Can you suggest a way to have the computer check the value

typed in to see if it is 50? Line 80 has not been used, so you can try

and put in a program line of your own, if you wish to.

80

You can check for the condition, N = 50, and the following pro

gram line can be used:

80 IF N = 50 THEN PRINT "EQUAL TO 50"

Type in program line 80 shown above, so your complete program

looks like this:

20 INPUT "NUMBER "; N

60 IF N > 50 THEN PRINT "GREATER THAN 50"

70 IF N < 50 THEN PRINT "LESS THAN 50"

103

u
80 IF N = 50 THEN PRINT "EQUAL TO 50" I I

90 GOTO 20 U
Now run the program. When the computer "asks" for a value,

type in 50 from the keyboard. Does the computer program display I I

the correct message? If line 80 has been typed in correctly, the |J
computer should print the message, EQUAL TO 50, when you type

in the value, 50. . .

At the start of this experiment, it was noted that values between

0 and 100 could be typed in. When the program is running, type in u
567. What happens? This value is accepted, and the "GREATER

THAN'50" message is displayed. We would like to limit the num- j I
bers that can be input to between 0 and 100. Can the computer be U
used to detect numbers greater than 100? What about numbers less

than 0? Yes, an IF-THEN operation can be used to check the key- i i

board entries and to reject any that are outside of the 0 to 100 jj
range. You won't have to write these program steps, but think

about what you'd like the computer to do. Here are several addi

tional lines (marked with an asterisk (*)) that will solve the prob

lem: U

* 10 PRINT "NUMBERS BETWEEN 0 AND 100 ONLY11

20 INPUT "NUMBER "; N I I
* 30 IF N > 100 THEN GOTO 10 U
* 40 IF N < 0 THEN GOTO 10

60 IF N > 50 THEN PRINT "GREATER THAN 50" | I

70 IF N < 50 THEN PRINT "LESS THAN 50"]J

80 IF N = 50 THEN PRINT "EQUAL TO 50"

90 GOTO 20

What effect do these program lines have? Line 10 just prints a [J
message on the screen that tells the user what range of numbers is

allowed. Once the value has been input by the computer at line 20,

it is checked to be sure that it is in the range of 0 to 100. How is

this done? At line 30, the computer tests the value to see if it is LJ
greater than 100. If it is, the computer goes back to line 10 and

then asks for another value. At line 40, the computer tests the I j

value to see if it is less than zero. If it is, the computer goes back to [J
line 10 and then asks for another value. Only if the value is between

0 and 100 does the computer go on to line 60, where the value is ,

tested to see if it is greater-than, less-than, or equal-to 50. If you

would like to, you can type in the new lines marked with an aster-

isk (don't type in the asterisks!), and see how the program works.

You can also try to sketch the flowchart for the complete program. I I

104

U

n

n
In Experiment 4-2, you saw how the IF-THEN operation can be

used to make decisions. Although these decisions weren't critical,

this type of decision-making is what makes computers so powerful.

_ It can make these types of decisions quickly, without coffee breaks,

I I and it will not make mistakes. Yes, mistakes are made, but because
' a program doesn't work properly or a circuit doesn't work the way

it should. Computers have survived millions of miles of space travel

and have worked perfectly in the far reaches of our solar system.

They are making true-false decisions all the time.n

n

n

n

n

n

MORE LOOPS

You have seen how a GOTO command can be used to force the

computer to go to a specific line in a program. When used in a loop

such as:

10 PRINT "TEST11

20 GOTO 10

there is no easy way to get out of the loop. If you wanted to go

through the loop only 10 times, there is no way to tell the computer

to stop after "printing" TEST on the TV screen 10 times. Although

it is not often used this way, the IF-THEN operation can be used

to count loops. (You'll see a better way to control loops in another

chapter.)

Let's take a further look at how IF-THEN operations can be

used to count loops and to provide a way out. Earlier in this chap

ter, a program was used to show how the GOTO instruction could

be used:

10 X = 0

20 PRINT X

30 X = X + 1

40 GOTO 20

Remember that the X = X 4- 1 operation simply increased the

value labeled X by one. If you run this program you'll see a column

of numbers on the left side of the TV screen. The numbers are

"pushed up" as new ones are "printed" at the bottom of the TV

screen. The value of X is increased by one each time the computer

goes through the loop. An IF-THEN statement could be used to

break out of the loop after the computer goes through it a set num

ber of times. Here is an example of that type of program:

105

u
10 X = 0 ||

20 PRINT X M
30 X = X + 1

40 IF X = 10 THEN END

50 GOTO 20

The IF-THEN operation tests the statement, X = 10, to see if it

is true. If it is true, the command following THEN is done. The

END command may be a new one to you, but it is easy to figure out

what it does. It simply stops the computer. What happens if X is '—'
not equal to 10? Well, the statement, X = 10, is then false, and the

computer goes on to program line 50. It does not reach the END I

command unless the condition in the IP statement is true. L
Can you figure out what numbers will be printed on the TV

screen when this program is run? t

Experiment No. 4-3. Counting Loops Lj

This experiment will show you how to use an IF-THEN com

mand to get the computer to "break out" of a loop after doing it a J [
number of times. You will not have to put together any program LJ

lines of your own.

Clear the computer for a new program. Type in the following t i

program and check it. Correct any errors. M

10 X = 0

20 PRINT X | |

30 X = X + 1 I
40 GOTO 20 u

Run the program. What do you see on the TV screen? Is this i i

what you expected? You should see a column of numbers on the left M
side of the screen. The numbers seem to "move up" as new ones

are displayed at the bottom of the column. Can you stop the com

puter? Yes, press the RUN/STOP key. Now, change program line J I
40 and add program line 50, as shown below: LI

40 IF X = 10 THEN END

50 GOTO 20 II

Check your program to be sure these lines have been typed in

correctly. Before you run the program, try and figure out what

numbers will be displayed on the TV screen. Run the program and I
see if you are right. You should see the numbers 0 through 9 dis- LJ
played in a column on the left side of the TV screen. Is this what

you expected? Maybe you thought you would see 0 through 10. j j

106

u

n

n

n

n

n

n

n

n

n

n

n

Remember that after the one is added to the value labeled X (line

30), it is tested by the IF-THEN operation (line 40). If X is not

equal to 10, the computer goes on to line 50 where it is pointed back

to line 20. If X is equal to 10, "X = 10" is true and the computer is

stopped by the END command. The value 10 is never printed.

However, the computer did go through the loop 10 times, printing

10 values on the TV screen. A flowchart for this program is shown

in Fig. 4-11.

Fig. 4-11. A flowchart for the loop-counting program.

In the IF-THEN commands, GOTO commands are often used to

point the computer to a line in the program:

IF XF = FR + FQ THEN GOTO 1265

However, you may find IF-THEN commands in which the word

GOTO has been left out. The following program line has the same

107

n

effect as the preceding one. The computer "knows" that you want

it to go to line 1265 if XF is equal to (FR + FQ):

IF XF = (FR + FQ) THEN 1265

TO BE AND/OR NOT TO BE L*

Sometimes it is helpful to make several true or false decisions at \ \

the same time. These statements can be combined in one IF-THEN jj
operation. Look at the following:

IF we are out ofeggs AND IF you want eggs for breakfast, I I

THEN buy some on the way home. [J

IF it is raining OR IF rain is forecast,

THEN take your umbrella. I j

These can be simplified so they are easier to understand:

IF (we are out of eggs) AND (you want eggs for breakfast), j j

THEN... [j

IF (it is raining) OR (rain is forecast), THEN . . .

By using AND and OR operations, the computer can test several

different statements at the same time. This saves "computer '—'
time," and by combining statements this way, programs may be

simplified, too. It is easy to put statements together in IF-THEN I [

operations as long as you know the rules for using the AND and LJ
OR operations. Here they are:

1. When an AND is used, both of the statements must be true for j j
the THEN command to be done. If either of the statements is U
false, the THEN command is not done. This is shown in Table

4-1. The results of testing or evaluating each statement are i i

shown in parentheses. jj

Table 4-1. Table of Results for an AND Operation

Statement

(False)

(False)

(True)

(True)

Statement

(False)

(True)

(False)

(True)

THEN Command Done?

No

No

No

Yes

2. When an OR is used, either or both of the statements must be

true for the THEN command to be done. If both of the state-

108

u

u

n

n

n

n

n

n

ments are false, the THEN command is not done. This is shown

in Table 4-2.

Table 4-2. Table of Results for an OR Operation

Statement

(False)

(False)

(True)

(True)

Statement

(False)

(True)

(False)

(True)

THEN Command Done?

No

Yes

Yes

Yes

In a previous experiment, two IF-THEN operations were used

nto test a number to see if it was between 0 and 100. If it was below

0 OR above 100, it was rejected. Here is how the operations were

used:

H 10 PRINT "NUMBERS BETWEEN 0 AND 100 ONLY11

i ! 20 INPUT "NUMBER "; N
30 IF N > 100 THEN GOTO 10

40 IF N < 0 THEN GOTO 10

and so on.

If the number typed in is greater than 100, the IF statement at

line 30 detects this and the computer is forced to line 10. If the

number is less than 100, the computer goes on to see if the number

is less than 0. If it is, the GOTO operation at line 40 forces the com

puter to line 10. Only when the number is between 0 and 100 will

the computer go on to the program line following line 40.

The two IF statements can be combined into one by using an OR

operation, and parentheses have been used to separate the state

ments:

10 PRINT "NUMBERS BETWEEN 0 AND 100 ONLY"

20 INPUT "NUMBER"; N

30 IF (N > 100) OR (N < 0) THEN GOTO 10

In this example, the IF-THEN operation checks two statements

to see if the number is greater than 100 OR less than 0. It is possi-

R ble to have the computer check and see if the number is within the

| j range, instead. This would use an AND operation, and it would be
more complicated than the OR operation, at least in this case.

jj MIXED OPERATIONS

There are times when you will want to check the same two val-

n ues for two different conditions. For example, it might be useful to

109

u

110

check today's RAINFALL to see if it is greater-than or equal-to

the RECORD rainfall that is on file in the computer. You could use

the OR operation to do this:

IF (RAINFALL > RECORD) OR (RAINFALL = RECORD)

THEN . . .

By looking at Table 4-2, you can see that the THEN command

would be done if either of the statements is true. Since the same

two values, RAINFALL and RECORD, are being compared in

each operation, you can have the computer do the greater-than and

equal-to operations at the same time. Other combinations of

greater-than, less-than, and equal-to operations can be used, too, as

shown here:

GRADE <= SCORE (GRADE Less-than or equal-to

SCORE)

RAINFALL >= RECORD (RAINFALL greater-than or

equal-to RECORD)

TRY O TARGET (TRY less-than or greater-than

TARGET) _

This combination of operations is only useful when the same two

values are being compared in different ways. In the TRY <> J I

TARGET example, the computer is really checking for the not- LJ
equal condition; that is, TRY is not equal to TARGET.

These conditions can be checked by using simple IF-THEN oper- « »

ations, and several examples are shown here. Different types of M
commands are shown following "THEN" so you can see examples

of how they are used.

IF RAINFALL >= RECORD THEN PRINT "NEW RECORD IS " M

RAINFALL

In this example, if the RAINFALL is greater-than or equal-to t ,

the RECORD, the computer prints the message, "NEW RECORD M
IS," followed by the value assigned the label RAINFALL. u

IF TRY O TARGET THEN PRINT "YOU MISSED, TRY j j

AGAINn:GOTO 595 jj

In this example, the program tests to see if the values labeled

TRY and TARGET are not equal. If they are not equal, the com- j j

puter prints the message, "YOU MISSED, TRY AGAIN," and it \J

goes to program line 595.

IF GRADE <= SCORE THEN GOTO 250 I I

u

n

n

n

n

n

n

n

n

n

n

n

Here, the computer checks the value labeled GRADE to see if it

is less-than or equal-to the value labeled SCORE. If this is true, the

computer goes to program line 250.

THE NOT OPERATION

You have seen how the AND and OR operations can be used in

IF-THEN operations so that several different statements can be

tested at the same time. There is one other operation that isn't

used very often, so we've left it for last. This is the NOT operation,

and it allows you to reverse the meaning of a statement. For exam

ple, "You say white, I say black. You say black, I say white," or "If

it's true, make it false. If it's false, make it true."

Here are two examples in which the NOT operation has been

used to "reverse" the meaning of each statement:

NOT (COST = VALUE) (COST is not equal to VALUE)

NOT (COST < VALUE) (COST is not less-than VALUE)

It takes ajtit of programming experience and trial and error to

get used to the NOT operation. It isn't used very often, but we just

wanted to show you that it is part of programming in BASIC.

A LITTLE HISTORY

The AND, OR, and NOT operations are called logical operations,

and although you may find it difficult to believe, these operations

have been in use for over 100 years. In the nineteenth century, the

English mathematician, George Boole, devised a way of solving

logic problems with a special form of mathematics. This type of

math is now known as Boolean algebra, but it was relatively

unused until scientists and engineers applied it to solving problems

with the first electronic computers in the 1940s.

These three logical operations are the foundation of all desk-top

computers, just like the one you are using. These logical operations

are done by tiny electronic circuits, of which there are thousands

and thousands in your computer. These circuits make hundreds of

thousands of decisions each second, and it is this high-speed deci

sion making that makes small computers so powerful and useful.

Even the biggest computers used by banks, universities, and

research centers use electronic circuits that do AND, OR, and NOT

operations. In the same way that all math operations depend on

addition and subtraction, all modern computer operations depend

111

u
on AND, OR, and NOT operations. Even small pocket calculators

and digital clocks depend on these simple operations.

PICK A NUMBER, ANY NUMBER

In many games, you don't know how many spaces you'll move

until you spin the spinner or toss the dice. Since computers are

used in many games, they need some way to "spin a spinner," too.

We don't know of any computers that have spinners or dice in

them, but most computers do have a way of "picking a number," or

coming up with a random value. This means you can get the com

puter to "pick a number" for you. Of course, you won't know ahead

of time what number the computer will come up with.

The Commodore 64 can "pick" a random number, or value

between 0 and 1, by using the RND(l) operation which is part of its

BASIC language. This means that the computer can come up with

values between 0 and 1, such as 0.345,0.914, and 0.310. The RND(l)

operation NEVER gives you the value 0 or 1 — that's just the way

it works. You can use a BASIC operation like this in a program to

get a random value:

SAMPLE = RNDd)

The computer labels the random number "SAMPLE."

Experiment No. 4-4. Random Value Program 1 i I

You will type in and run a program that will print random values [J
on the TV screen. The purpose of this experiment is to show you

that the random number operation really works. j »

Use the NEW command to clear out the computer for a new pro

gram. Type in the following program and check it:

10 SAMPLE = RNDd) I ,

20 PRINT SAMPLE

30 GOTO 10 U

Run the program. You will see values displayed on the TV j i

screen, but they will move up the screen too quickly to be read. JJ

Press the RUN/STOP key to stop the program, and you should see

24 or so random values displayed on the TV screen. The chances

are very good that no two values will be the same. You may see a I
value such as 8.93456278E-03. Although it looks odd, it's just the U
computer's way of displaying a very small value and you don't need

to know what it means right now. j j

112

u

U

n

n

Did you see the value 0 or 1 displayed? The display may have

moved too quickly for you to see all the values clearly, so you might

have missed the value 0 or 1 if either was displayed. Can you think

of a way to check for the values 0 or 1? An IF-THEN operation can

compare the value labeled SAMPLE with the values 1 and 0.

Here's how it could be done:

30 IF (SAMPLE = 1) OR (SAMPLE = 0) THEN END

40 GOTO 10

The program would now be:

R 10 SAMPLE = RNDd)
I i 20 PRINT SAMPLE

30 IF (SAMPLE = 1) OR (SAMPLE = 0) THEN END

p 40 GOTO 10

1 The IF-THEN operation at line 30 tests for either the SAMPLE
= 1 or the SAMPLE = 0 condition. If either of these conditions is

""I true, the THEN command is done. In this case, the END command

\ will stop the computer.

Put the new line 30 in your program and add line 40 to complete

the new program. Run your program. Does the computer stop? No,

the computer continues to display random values on the TV screen.

You can let it run all night if you want to, but it will continue to dis

play new values without stopping. What is your conclusion? The

RND(l) operation generates random values between 0 and 1, but it

does not generate the value 0 or 1.

Since it's difficult to move your game marker by 0.984812986

spaces, the random values picked so far don't seem to be particu

larly useful. However, by simply multiplying the random values by

another value, you can have the computer pick more useful num

bers. For example, if you want to have the computer pick a random

number between 0 and 10, you can do this by multiplying the value

found in the RND(l) operation by 10. Here is what that part of the

program would look like:

n

n

n

n

SAMPLE = RND(1)*10

Now the results will be between 0 and 10 instead of between 0

and 1. If you want a random value between 0 and 50, you can get

the computer to pick one in this range by using the following pro

gram line:

SAMPLE = RND(1)*50

113

n

In both cases, the RND(l) operation "picks'' a random value

between 0 and 1, but the multiplication operation spreads the num

bers over a larger range. In almost every case, the value used in

the multiplication is a whole number, or integer.

Experiment No. 4-5. Random Value Program 2

In this experiment, you will find out how the computer can be

made to "Pick a number between 0 and 10." Clear your computer

then type in and check the following program: ,

10 SAMPLE = RND(1)*10

20 PRINT SAMPLE .

30 GOTO 10 I

Run the program. You will see the random values "move up" the

screen as new values are displayed on the bottom row on the TV

screen. After the program has run for a few seconds, press the j j
RUN/STOP key to stop the program. Are the values displayed LJ
between 0 and 10? Are any values displayed more than once? The

values are between 0 and 10, and we didn't find any values that j t

were equal when we ran the program. Although the chances are fj

small, you may find two equal values displayed on your TV screen.

The values 0 and 10 aren't found. . .

Change program line 10 in your program to the following: j

10 SAMPLE = RND(1)*90

Now run the new program. After a few seconds, stop the pro- j

gram and look at the values displayed on the TV screen. Are they I

between the values 0 and 90? The values should be between 0 and

90.

In this experiment, you saw that you could change the "range" j j
of random values that the computer can "pick" for you. LJ

INTEGERS I t

Although the range of the random values can be changed, it is *—'
still difficult to move a game marker by 8.73481053 spaces. So,

what can be done to have the computer pick values such as 9,4, and j j

6, instead of 9.45271052, 4.8562321, and 6.46241739. The integer LJ
operation, INT, is used to remove or "strip-off" any decimal frac

tions; digits to the right of the decimal point. In this way, it . i

"changes" a number that has a decimal fraction into an integer or

whole number. Here is how it is used:

PRINT INT(9.45271052) , ,

114 ^

U

n

n

n

n

n

n

When this is done by the computer, only the 9 is displayed on the

TV screen. The INT and RND operations can be used together to

make the computer "pick" random whole numbers.

Once a random value between 0 and 1 has been "chosen" by the

RND operation, a multiplication operation increases its "range."

The INT operation is used last to "strip-off" the decimal fraction

and "change" the value into an integer. This may seem a bit confus

ing, so look at the following example. This program line causes the

computer to "pick" a number between, and including, 0 and 9:

SAMPLE = INT(RND(1)*1O)

The largest random values will always be one less than the value

used in the multiplication. Here are some sample program lines

that you can use in your programs. The label, X, has been used as

the label for the value:

(a) Coin Flip: 1 = heads, 0 = tails

10 X = INT(RND(1)*2)

(b) Dice Toss: Values 1 through 6

10 X = INT(RND(1)*6) + 1

We're not trying to make you an expert programmer, but here

are some general-purpose random-value program lines in which you

can substitute your own ranges for games, teaching programs,

magic tricks, puzzles, and other programs where a random integer

is needed.

(a) To pick a number between 0 and T:

10 X = INT(RND(1)*(T + 1))

(b) To pick a number between 1 and T:

10 X = INT(RND(1)*T) + 1

(c) To pick a number between Q and R, where R > Q:

10 X = INT(RND(1)*(R - Q + 1)) + Q

A WORD OF CAUTION

Although you're not going to be a programmer, we want you to

know that you cannot use what are called "reserved words" as

labels in your computer programs. It is unlikely that you will run

115

u
into any problems with prepackaged computer programs or car- .

tridges that have been developed by a commercial group or compe

tent programmer. However, if you decide to try your hand at even *—'
simple programs, you may run into problems without realizing it.

Reserved words are nothing more than the words in the BASIC | I

language that represent operations. For example, IF, THEN, Li
AND, and RND are all reserved words. So, what's the big deal?

Well, if you're writing programs, be sure to check your labels so } *

that you don't use any of the reserved words in them. There is a j

complete list of the reserved words in Appendix B, so these words

can be found in one place.

Suppose that you wrote a short program to count something j J
you've decided to call "Information Files." As a label, you've LJ
decided to use IF. Well, the computer "sees" the IF you've used as

a label in one of your calculations:] l

145 IF = A5 + (TQ / 17) Ll
The computer thinks that it is "looking at" the start of an IF- .

THEN operation. That really confuses the computer and it will

give you an error message: *—'

7SYNTAX ERROR IN 145 u

READY. M

If you see this type of error message when you try to run a pro

gram, check to be sure that a reserved word hasn't been used. < i

QUESTIONS

1. What does a GOTO command do in a BASIC-language J I
program? LJ

I J

2. What information must you provide in a GOTO command?

3. Can a GOTO command cause a computer error? If so, what

kind of an error?

116

4. Does a GOTO command have to point the computer to the startn«*. jL/ues a Kjyj i v command nave to point tne compi

of a program, or can it point it somewhere else?

5. How can you get out of an "endless" loop?

6. How can you stop the computer when it's waiting for you to

type in information for an INPUT command?

H 7. What kinds of "statements" can the Commodore 64 test, or

I t evaluate?

n
8. How are statements used so the Commodore 64 can make

decisions?

9. What conditions can be checked in IF-THEN commands?

M 10. What kinds of commands can be used after the THEN in an

1 IF-THEN command?

n
11. What do the AND, OR, and NOT operations do?

12. What operation gets a random number from the computer?

n

117

n

n

n

n

n

n

n

81.1.

aq;ji-oujojo*J0S9^J0JI
pire'dnpaSSnjdsiurexpj^maq;jinoits^sbuaq;aa;nd

-uiodaqj,#ouJ0J0*J0sa^J0JI*J91RPTO^•ra^sireno^-Sura
-urusieuniDBuiSuiqsBMaq^jinoXs^se^mpui-eoSoad

aq^aoBsjaquinuai$jo

auou^mpjauinssy'paaa^uaaxesaaquinuaq^qoiqMinaouanbas

jossaipj-eSaapaonpoadaq\\ua^pisaaaui^saq^'ua^uM

siuiBjSojdjnoi?ji'snq^uapao&wsinpaaa^uaaqweo

saaquinuaqi^q^amnssv#pa^dsipuaq^si^psajuoisiAipaqx

•jaquinu^san'euisaq^itqpapiAipuaq^jsi^nsajaq^pun

-piuiajBsjaquinu^saS^om^aq.Lua^nduiooaq^o^ui

aq;inojjpaja^uabxbsjaquinuaajq;ajaqMuiejSojidva;u^-\

SlA13iaOdd

•oo;*paMOi[Baxe00T

0sarq-BAaq;<aaquiauia(a'OOIP^bouaaA^aq9JBsan^A

aansaqo;^oaqo\jv\s;snuiuopyeaadoaqx•p'ea^sinpasnaqpjnoo

ASSg*oireq;-ssaj^0001

bm;ijiaaso;aaqumub^oaqoo;pasnsbmpuBin

-uiodNaHJ/iilTO'uopwadoHO^I80!9lBJ°Qldinraau«uj

-uiatqojdbaApso;£e/Aauoireq;ajom

asn;nq'Sinq;auiBSaq;saop;i;i?q;osuiBjSoadaq;

nOZ0109OS

0N3N3H10L=Xdl0^7

1L+X=X0£
XINiadOZ

no=xoi

:dooj*bjo;noaa;nduiooaq;;aSo;pasnaq

ppioopuBiuuioDNHHX'iilTO&o\{noj?Moqso;pasnsbmuibjS

-ojdSuiMonojaq;<ja;dBqDsiq;ins;uauiLiadxaaq;joauouj#x

aood

n machine is running and the water drain is plugged, the com-

! t puter should display the words, "STOP THE WASHING

n

n

n

n

n

n

n

n

MACHINE."

3. Write a program that lets you enter an amount of money, such

as 2.43, which represents $2.43. The computer then tells you

how many quarters, dimes, nickels, and pennies would be

required for this amount of money. You want to use as few

coins as possible, so calculate how many quarters are required

first, followed by dimes, nickels, and pennies.

4. Write a program where the computer generates an integer ran

dom number between 0 and 100. The number is then displayed
on the TV screen.

5. Write a program that generates a random number between

35.46 and 48.7. The program should generate random numbers
continuously and display them on the TV screen.

6. Have the computer generate two random numbers between 0

and 50. These numbers should be displayed on a single line,

separated by a plus (+) sign. You then have to enter the sum of

these two numbers. If you enter an incorrect sum, the com

puter displays the same "problem" again. If you enter the cor

rect answer, the computer generates a new problem for you.

7. Modify the program from Problem 6 so that the computer asks

you 10 problems and gives you a grade between 0 and 100 after

all 10 problems have been answered. If an incorrect answer is

entered, 10 points should be subtracted from the grade and the

computer should generate a new problem. Any "missed" prob

lems should not be repeated.

8. Write a program where the computer generates a random num

ber between 0 and 100, and you have to guess the number by

entering guesses on the keyboard. After you enter each guess,

the computer should tell you if your guess is too high, too low,

or correct. If your guess is too high or too low, you continue to

enter guesses until the correct number is entered on the

keyboard.

9. Write a program that converts degrees Celsius to degrees

Fahrenheit. The equation for this is F=1.8*C+32, where C is

the temperature in degrees Celsius, and F is the resulting tem

perature in degrees Fahrenheit. When this program is run-

119

n

n

n

n

n

-Si}0%euir}e^B^ubosn$'s^xsodepjoaequinub9ABqjo

jo^ojbe^uAv.noiCji-s^isodeppuBS3p9qojoaaqumu

9ABqnoiC^«ipsigxurajqojjjojuopnpsbvj\j#uaurajqojdeuQ'^

sis^09qD\(ejo

-sod9pipjojew9q^'q^uoui^SBtuiojj3^ooq3iD9qDonoifjo9DUB
-psq9q^J9^U9mouno^-^isod9pqoB9jo^unouiB9q^Aqp9M0|

-pj'epmnnoiC^eq^s^isod9pjoJ9qumu9q^J9^U9o^d\qe9q

^xgupjnoqsno^'^uedsiJ9uouijo^unouiB

ppioqsJ9^nduiOD9qj,*^o9qoqDB9jo^unoure9q;JLq

'q^uouisnoiA9jd9q;u^ixm.s^D9qojo

ppoqsnoiC'unsiSozdsiq^uj-ure.iSo.id(<3jooq5{O9qo,,b9^lia\l'81

•U99J0Sfcl9JJj\UO

6=£*£

9=Z*£

£=l*£

9=£*2

*=Z*Z

2=W

£=£H

Z=ZH

i=i*i

:99sppoqs

'snqx-gpuBxu99M^9qs-raqumujosuo^Buiquioo9iqissod

jpaoj9^qB^uopBDitdi^nuibS9^bj9U9S^Bq;uiB^Soadb

(•^umo^uiBjSojdsnoip9^puBSuo\bsisiqj,rgiON)'VI

q;qfb

joifep9q^puBq^uoui

'S98Vu>eIU99MC^9qifBpBJ9}U9ViOJiS^^Bq^UIBjSOjdB9^UjVV'XI

n
r#dnpunoj^

jo9*si9jn^Ba9dui9^9q^jovredpuopoBaj9q^ji-p9^Bidsip9q

ppoqs£g^#^gsi9jn^BJ9dui9;p9^noiBD9q}ji'981^93^'8*69

UBq^.raq^BJoi9qppoqsp9iCBidsip9jn^BJ9dui9;9q^fp9J9^U9si

\Zjo9jm^BJ9dui9^bji'snqj,-uMopjodnpgpunoj9jb(£)pgifB^d

-sipS9Ji^BJ9dui9^9q^^Bqios6ui9iqojjuiurejSojd^

ppioqsJ9^nduiOD9qx'\Z

n

n

n

n

n

n

n

n

n

ure out. Modify the solution to Problem 13 so that when an

amount of 0 for a check or deposit is entered, the computer

assumes that you have finished entering either a check or

deposit amount. For instance, you might see the following:

CHECK AMOUNT ? 34.56

CHECK AMOUNT ? 89.50

CHECK AMOUNT ? 3.75

CHECK AMOUNT ? 0

TOTAL CHECKS: 127.81

DEPOSIT ? 100.37

DEPOSIT ? 0

PREVIOUS BALANCE ? 389.37

CURRENT BALANCE: 361.93

The CURRENT BALANCE was determined by adding

100.37 to 389.37, and then subtracting 127.81 from the result of

489.74.

121

n

n

n

n

n

n

n

n

n

n

n

n

n

CHAPTER 5

MORE POWER TO YOU

Your Commodore 64 gives you a lot of computer power in a small

H package. If you want to use this power, there are new things to

! learn about. For example, there are new ways that the computer
can make decisions, ways of making programs simpler, new ways

—I to store information, and so on. We'll talk about these things in this

! chapter. We'll start by showing you a few "tricks" that can be used

to print information on the TV screen.

n
; I SPECIALTY PRINTING

So far, you have been able to display numbers and letters on the

n TV screen by using a PRINT command. The PRINT command

I I prints messages that are enclosed in quotation marks along with
labeled values. Here is an example:

10 PRINT "THIS IS A MESSAGE11

When the computer finds this command in a program, it prints

THIS IS A MESSAGE on the TV screen. It looks just the same as

if you had typed it on the keyboard. Since you can put letters and

numbers in a "message," to have them printed on the TV screen,

you can put other types of keyboard operations in messages, too.

In one of the first experiments you did, you used the CLR/

123

u
HOME key to move the cursor to its home position in the upper

left-hand corner of the screen. You also found that if you pressed |
the SHIFT key and then pressed the CLR/HOME key, the screen ^

was completely cleared and the cursor moved to its home position.

The CLR/HOME key only clears the TV screen. Programs aren't I I

cleared out of the computer. [J
It is often helpful to start with a clear or "clean" TV screen.

Some programs clear the TV screen to erase an old game display, i i

or to show a new problem to be solved. Since the computer can't] j

reach out and press the SHIFT and CLR/HOME keys, there must

be another way to clear the TV screen.

The SHIFT and CLR/HOME key actions can be put in the mes- | |
sage part of a PRINT command. When the computer reaches a U

PRINT command where the SHIFT and CLR/HOME operations

are part of the "message," it automatically clears the TV screen. j j

Here's an experiment that shows you how to do this. [J

Experiment No. 5-1. Clearing the Screen

In this experiment, you will see how action keys can be used in jj
the message part of a PRINT command to clear the TV display.

Clear the computer for a new program, and use the CLR/HOME . ,

key to clear the TV screen. Now type the following program line

into your computer and leave the cursor as shown: ^

10 PRINT "1 [I

You now have the first part of a PRINT command typed into the

computer. Press the SHIFT key and then press the CLR/HOME

key as if you were clearing the TV screen. What happens on the j I
TV screen? Did you expect the computer to clear the screen? The LJ
computer displays a "reversed heart" symbol, Q , right after

the quote mark. Maybe you thought that the screen would be i i

cleared instead. Your Commodore 64 computer is pretty smart. It [J
can tell that you're typing the SHIFT and CLR/HOME keys as

part of a PRINT command's message; that is, between the quote

marks. The computer "knows" that you don't want it to take any j
action right away. L-'

Since the CLR/HOME key is an action key, it doesn't actually

print anything on the screen when you press it. Instead, it clears I j

the screen. The "reversed heart" symbol is just the computer's U
way of telling you that it knows that this clear-the-screen operation

is to be done later, when the program is actually running. As you'll , \

124 '-'

n

n

n

p.

I

n

n

o

see later in this book, there are other symbols that stand for other

special operations.

Type the final quote mark and press the RETURN key, so the

line looks like this:

10 PRINT "Q "

When the computer reaches this line in a program, it will recog

nize the special symbol and will know that it is supposed to clear

the screen. Add the following line to your program:

20 PRINT "CLEAR TEST11

List the program and check it to be sure it is correct. Remember,

you can simply retype a line if you've made an error. List the pro

gram three more times just to put more characters on the TV

screen. Now run the program. What happens? The screen is

cleared and the CLEAR TEST message appears at the top of the

screen. Remember, the program simply cleared the screen and

printed this message. (The usual READY message appears, too.)

When this short program is finished, the computer is ready to do
something else.

The clear-the-screen operation is quite useful to programmers. It

is often used to clear the screen at the start of a program, or to

clear it when a program has been run. You can use it whenever you
need a clear screen.

TYPING SPECIAL SYMBOLS

When computer programs are provided as part of an experiment

or problem, it would be confusing to see special symbols, such as a

"reversed heart," in the program listing. The special symbols are

not on the keyboard, so you might get confused trying to print

them on the TV screen. When we provide computer programs for

you to type in, you'll see the keys that you are to press instead of

the special symbols. For example:

10 PRINT "[SHIFT] [CLR/HOME]11

However, if you list this, you'll see:

10 PRINT " £2"

If a program is complicated, we'll show you a complete program

listing, so you can compare your program with the one provided in

the experiment. Just remember that you'll have to press and hold

125

u
the SHIFT or CTRL key when either one is shown in a program

line.

PLAYING FOR POSITION

In several of the experiments you did in previous chapters, you M
found that it was fairly easy to display numbers in a column on the

left side of the TV screen. The Commodore 64 can also display num

bers across the screen, in a row. When the Commodore 64 finishes j
a PRINT command it always places the cursor at the left side of ^J
the line below it. This automatically gives the computer a "clean"

line on the TV screen for the next PRINT command. This is called I j

a "line feed," and it is an automatic part of the PRINT command. [j
However, you can tell the computer that you don't want a

"clean" line, so that printing will continue on the same line, , .

instead. To keep the computer printing on the same line, you must

put a semicolon at the end of the PRINT command. Here's an

example:

670 PRINT MONE LINE11; M
680 PRINT " OF PRINT11

After the computer prints ONE LINE on the TV screen, instead i i

of moving the cursor to the left side of the line below, it leaves the M
cursor right after the E in LINE. When it reaches the following

PRINT command, it continues printing OF PRINT right after

ONE LINE. The result is ONE LINE OF PRINT, printed on a

single line on the TV screen. The semicolon at the end of line 670 I—I
"told" the computer to leave the cursor where it was and not to go

to a clean line. j |

Here's another example that shows how semicolons may be used y

to keep the computer printing on one line:

240 RZ = 2500 I I

250 PRINT "SCORE =■■; jj
260 PRINT RZ;

270 PRINT "POINTS" , ,

This causes the computer to print a single line on the TV screen: U

SCORE = 2500 POINTS

Experiment No. 5-2. Printing in Columns and Rows M

In this experiment you'll see how a semicolon can be used with a

PRINT command to tell the computer to print in rows instead of . i

126 ^

n

n

n

n

n

n

n

n

n

columns. Clear your computer for a new program and type in the

following program:

10 PRINT X

20 X = X + 1

30 GOTO 10

Run the program. What do you see on the TV screen? Increasing

numbers are displayed on the left side of the TV screen. Change

line 10 in the program by typing in the following. Remember the

semicolon at the end of the PRINT command:

10 PRINT X;

Your complete program should now look like this:

10 PRINT X;

20 X = X + 1

30 GOTO 10

Run the program. What do you see on the TV screen? The num

bers are displayed across the screen, line after line. Stop the com

puter when the numbers reach 1000 or more. Are any of the num

bers at the right "edge" of the TV screen "broken," or are only

complete numbers displayed?

At first the numbers are in neat columns, but when the computer

gets to 1000, some of the numbers are broken at the right edge of

the TV display, and several lines look like this:

1 1012 1013 1014 1015 1016 1017 1

018 1019 1020 1021 1022 1023 1024

1025 1026 1027 1028 1029 1030 103

1 1032 1033 1034 1035 1036 1037 1

The numbers are not lined up in columns, and a whole screen of

numbers looks very confusing. In the next section you will find out

how to get the computer to print neat columns. In this experiment,

we accomplished our goal of printing numbers across the screen

rather than up and down one side.

THE TAB COMMAND

If you were running a program to help you balance a checkbook

or put grocery prices on the TV screen, the "jumbled" display

shown in the previous section would be very difficult to read and

understand. Help is on the way. The TAB command can be used to

127

line up columns of numbers on the TV screen, and TAB is just ■ .

short for "table." A printed "table" puts information in up-and- M
down columns that are easy to read, and the TAB command lets

the computer display information in this easy-to-read form.

The TAB command uses a number that tells the cursor how far j I
to move from the left side of the TV screen. For example, a TAB(9) U
command tells the cursor to move over nine spaces from the left

side of the TV screen, while a TAB(15) command tells the cursor to i i

move over 15 spaces from the left side of the TV screen. The TAB [J
command is used only as part of a PRINT command. For exam-

pie:

10 PRINT TAB(5) COST; U

In this example, the computer moves the cursor over five spaces

to the right and prints the value that has been labeled COST. Since I I
a semicolon has been put at the end of the command, the cursor LJ
won't go on to a clean line below. Perhaps something else is going

to be printed on the same line. j i

When using the TAB command, don't use any extra spaces [J
between the word TAB and the parentheses, or the computer will

not know what you mean. For example, this TAB command is

incorrect:

TAB (9)

Experiment No. 5-3. Using the TAB Command I I

The purpose of this experiment is to show you how the TAB com

mand can be used to control the display of information in neat col

umns that are easy to read. I
Clear your computer for a new program and carefully type in the LJ

following program:

10

20

30

40

50

60

70

PRINT

X = X

PRINT

X = X

PRINT

X = X

GOTO

x;

+ 1

TAB(5)

+ 1

TABdO)

+ 1

10

X;

U

Be sure you have typed in the semicolons at the end of lines 10 LJ
and 30. Run the program. What do you find displayed on the TV

screen? Three columns of numbers are displayed on the TV screen, i i

128

n

n

n

n

n

n

n

n

n

n

and the numbers should be easy to read in this form. Change line

50 in the program to the following:

50 PRINT TAB(15) X

What do you think will happen when you run the program? Run

it and see. The right-hand column has been moved farther to the

right. The TAB command is used when you want to have numbers,

words, or other information displayed in neat columns that you can

read without straining your eyes. If you decide to try the TAB

command in a program, just remember that you can only use it

with a PRINT command. The TV screen display for the Commo

dore 64 has 40 characters in each row.

MORE DECflSJONS

In the previous chapter, you saw how the computer made deci

sions by using the IF-THEN command. This is a useful command,

since it lets the computer test a statement to see if it is true or

false. If the condition is true, the command following the THEN is

done. Here's an example:

50 IF ALFA = 100 THEN PRINT "LIMIT REACHED":; END

In this example, if the statement, ALFA = 100, is true, the com

puter prints LIMIT REACHED, and the program ends. If ALFA

= 100 is found to be false (this means that ALFA is not eqwal to

100), then the computer continues to the next program line.

Remember that ALFA is just a label that identifies a value saved

by the computer.

The Commodore 64 has another type of decision-making instruc

tion. While it's not as flexible as the IF-THEN command, it can be

used in some cases to save time. This new command is the ON com

mand, and it is only used to test a value to see if it is equal to 1,2,3,

4 and so on up to a maximum value of 255. What does the ON com

mand do once it has done the test? Look at this example:

100 ON ALFA GOTO 155, 300, 950

ALFA is first tested to see if it is equal to 1. If it is, the com

puter goes to line 155 in the program. If ALFA is not equal to 1,

the computer tests to see if it is equal to 2. If it is, the computer

goes to line 300 in the program. If the value isn't 2, the computer

tests to see if it is equal to 3. If it is, the computer goes to line 950.

129

If the value is not 1, 2, or 3, the computer just keeps going in the i i

program. A flowchart for this ON command is shown in Fig. 5-1. [J

TRUE
TO LINE 155

TRUE
TO LINE 300

TRUE

TO LINE 950

CONTINUE...

Fig. 5-1. Flowchart for an ON command.

u

u

u

u

u

uIn this example, the ON command only tested the three values,

1, 2, and 3, since there were only three line numbers after the

GOTO part of the command. The ON command always starts test- I I

ing with a value of 1, and it runs as many tests as there are line y

numbers in the ON command. How could the ON command be used

in a program? Many programs ask you to type in a number; to .

answer a multiple-choice problem, to move a player in a game, or to

select a special action from a list. In the following example, the '—'
computer user has been asked to type in a number to tell the com

puter which one of several programs to run. The choices are: I I

1. ROAD-RACE GAME

2. MATH PROBLEMS ,

3. BUSINESS PROBLEMS

4. PHONE NUMBER FILE U

Here are several program lines that could be used to "select" the I I

130

n

n

n

n

n

n

n

n

n

program to be run. To make this simple, the program steps for each

of the choices haven't been shown:

200 PRINT "TYPE YOUR CHOICE11

220 INPUT CHOICE

240 ON CHOICE GOTO 1250, 3570, 5790, 7100

260 GOTO 200

1250 REM START OF ROAD-RACE GAME PROGRAM

1255 Etc . . .

3570 REM START OF MATH PROBLEMS FOR KIDS

3575 Etc . . .

5790 REM BUSINESS CALCULATIONS PROGRAMS

5795 Etc . . .

7100 REM PHONE NUMBER AND ADDRESS FILES

7120 Etc o o o

In this example, if the CHOICE typed in is not 1, 2, 3, or 4, the

computer reaches the GOTO command at line 260 and it asks you to

type in another choice. This is an important part of the program,

since it prevents the computer from taking any unplanned action

when some number other than 1,2,3, or 4 is typed in. This is called

an "error trap," since it "traps" numbers that can't be used for

choices. Some programs use very complicated "error traps" so that

programs can't be "messed-up" by someone who types in some

thing a bit unusual.

When a computer asks you to tell it what you want it to do by

listing several choices, this list is called a menu. Many programs

use menus so that you can select one action from a list. When you

hear people talk about a program that uses a menu, this list of

choices is what they are talking about.

You can probably see that the ON command is limited in what it

can do, but it can be used to replace many IF-THEN commands:

IF CHOICE = 1 THEN GOTO 1250

IF CHOICE = 2 THEN GOTO 3570

IF CHOICE = 3 THEN GOTO 5790

IF CHOICE = 4 THEN GOTO 7100

There is no reason why some of the line numbers in an ON com

mand can't be the same. In the following example, if the value

131

n

labeled CANS is 3 or 5, the computer goes to the same line in the i i

program:

100 ON CANS GOTO 155, 200, 890, 1550, 890

COUNTING LOOPS — THE FOR-NEXT COMMAND

10

20

30

40

T = 1

PRINT

IF T =

T = T

"YOUR NAME"

5 THEN END

+ 1

u
When we were discussing the IF-THEN command, we showed

you how it could be used to get the computer out of a loop after it j I

had gone through it a set number of times. The following program LJ
shows how an IF-THEN command can control a loop program so

that "YOUR NAME" is printed on the TV screen five times: , ,

u
50 GOTO 20

Computer programmers would say that the computer made five | I

"passes" through this loop. "Pass" is a word used when we are [J
talking about loops, and it means that the computer has made a

"trip" through the program loop.

Using an IF-THEN command to count passes through a loop is

not very efficient, since you have to program the computer to count ^
each pass and check to see if the limit has been reached. The FOR-

NEXT command is used just to count passes through loops, and a I j

loop counter is built right into it. The FOR-NEXT command has U
two parts: a FOR command at the start of the loop and a NEXT

command at the end of the loop. Here is how a FOR command i i

starts a loop:

50 FOR GAME = 1 TO 10

The FOR operation first sets up a loop counter that has been I j
labeled GAME in this example, but almost any label can be used. LI
The example shown sets the counter to 1, and sets the maximum

loop count to 10. The loop count has 1 added to it after each pass I I

through the loop, so you can see that the computer will make 10 [J
passes through this loop, with loop counts of 1, 2, 3, and so on up to

10.

The NEXT command is put at the end of the loop: I

100 NEXT GAME

This tells the computer that it has reached the end of the loop.

132
u

u

n

n

n

n

n

n

n

n

The computer then adds 1 to the loop counter (GAME) and checks

to see if it has gone through the loop 10 times. When all 10 passes

through the loop have been made, the computer continues with the

program line that follows the NEXT command. Here is how a

FOR-NEXT command can be used:

50 FOR LTR = 1 TO 12

70 PRINT "I LOVE YOU!"

100 NEXT LTR

120 PRINT " JACK"

When this program is run, it prints the message, I LOVE YOU!,

on the screen 12 times, followed by JACK: a computerized Valen

tine. A flowchart for this program is provided in Fig. 5-2.

50 FORLTR = 1TO12

70 PRINT "I LOVE YOU"

100 NEXT LTR

120 PRINT "JACK"

Fig. 5-2. Flowchart for a FOR-NEXT operation.

The PRINT command at line 70 has been indented several extra

133

u
spaces so you can quickly identify the steps in the loop. This is a i i

simple thing to do, and it lets you immediately identify the loop M
operations. If you decide to write programs that use loops, use the

indentations. It helps keep track of what's going on.

Experiment No. 5-4. The FOR-NEXT Loop LI
This experiment shows you how the FOR-NEXT command can

be used in programs to count passes through loops. Clear your com

puter for a new program and type in the following program: L-

10 FOR TR = 1 TO 10

50 PRINT "NAME11 |

90 NEXT TR L

Run the program. What happens? You should see the message,

NAME, printed on the TV screen 10 times. Go back and change I j
line 50 so the computer will print your first name. Run the program LJ
again to be sure it works correctly.

How can you change the program so the computer goes through i [

the loop 100 times? Just set the upper limit of the loop count to 100. [J
Change line 10 in your program so that it is now:

10 FOR TR = 1 TO 100

Run the program. Did the computer display your name 100 u
times? Did you really count all of them? It's probably difficult to

tell, since the display moved so quickly. It would be difficult to try j j

and count names as they flash by. [J
You can display the value of the loop count along with your

name, since the count has been given a label. This will let you keep ^ ,

track of the number of passes the computer has made through the (
loop. Add the following line to your program so that the loop count

is displayed on the TV screen:

60 PRINT TR M
Here is a listing of the complete program for you:

10 FOR TR = 1 TO 100 II
50 PRINT "NAME11 LJ
60 PRINT TR

90 NEXT TR j j

Run the program. Can you see the numbers as they flash by on LJ
the TV screen? They are hard to see, but 100 should be the last

number displayed. ! j

LJ
134

n

n

n

n

To convince you that the computer made 100 passes through the

loop, try this: run the program again, but right after you start it,

press the CTRL key and hold it down. What happens to the TV dis

play? The display slows down so you can see what is happening on

the TV screen. You can press the CTRL key to slow down the rate

at which information is displayed on the TV screen.

You can also slow the TV display by giving the computer some

thing else to do. Add the following line to your program:

70 FOR P = 1 TO 120 : NEXT P

Now run the program. Don't press the CTRL key this time.

What has happened? The display has been slowed so you can read

the numbers on the screen. Do you know why the added program

line slowed the display? The added program line is a loop, too, but

the FOR and NEXT operations have been put on one line, sepa

rated by a colon. Here's what they look like when they are written

one over the other:

70 FOR P = 1 TO 120

80 NEXT P

This loop doesn't have anything to do between the FOR and

H NEXT commands, so it's often called a "do-nothing" loop. It just
' i causes the computer to go through this simple loop 120 times.

Although the computer can do things quickly, making it do "nota

ry ing" 120 times slows it down quite a bit. This type of do-nothing

| I loop is also called a time-delay loop, and it is often used to slow the

computer so you can keep up with it.

Let's do one last thing with this program. Add a command so you

I can type in the number of loops that the computer is supposed to

' do. Here is the line to put in your program:

5 INPUT "LOOPS11; LP

Now change line 10 to:

10 FOR TR = 1 TO LP

List your program. It should look like this:

5 INPUT "LOOPS"; LP

10 FOR TR = 1 TO LP

50 PRINT "NAME"

60 PRINT TR

70 FOR P = 1 TO 120 : NEXT P

90 NEXT TR

135

n

u
The number of passes that you want the computer to make i i

through the loop is now typed in from the keyboard. Run the pro- [J
gram and type in a value for LOOPS. Since the time delay FOR-

NEXT line (line 70) is still in your program, it will take quite a

while for the computer to make a million passes through the loop, j
so keep your number below a thousand. *-*

Can you take the time delay loop out of your program? You

should be able to. How do you stop the program before all the j j

passes have been done? LJ

A REAL USE FOR A LOOP i j

[J
There are many times when an average of several values is

needed. Remember that the average of several values is simply the

sum of the values divided by the number ofvalues added together. j j
This type of calculation is used to calculate the average balance in a LJ
checking account, the average cost of groceries over several

months, the average cost of gasoline for a year, and so on. There j j

are many uses for this type of program. JJ
The following program can be used to figure or "compute" the

average of values that are typed in from the keyboard. Let's say ,

that we're averaging a family's grocery bills for a month. Since the

number of bills will be different from month to month, it is helpful ^
to be able to type in the number of bills that are to be averaged.

This program is very flexible and you can use it to average many j j

other things. If you want to, you can type it into your computer and LJ
try it. You don't have to type in the REM line, line 15:

10 PRINT "□" j j

15 REM THIS CLEARS THE SCREEN |J
20 INPUT "NUMBER OF VALUES ="; NV

30 SUM = 0 .

40 FOR LP = 1 TO NV

50 INPUT "VALUE ="; V U
60 SUM = SUM + V

70 NEXT LP (|

80 PRINT "AVERAGE IS" SUM / NV U

90 GOTO 20

If you decide to try this program, try averaging the following

three values to test the program: 85.90, 97.50, and 68.72. The aver- ^
age is 84.04.

Several important things happen in this program. It lets you J j

136

u

n

n

n

type in the number of values that are to be averaged. This number

is labeled NV and it is used in the FOR command at line 40. This

sets up the loop counter and also the maximum number of passes

through the loop, or NV. The values to be averaged are input at

line 50. Once a value has been input, it is added to the running

total, or SUM, and to get the average value, the SUM is divided by

the number of values, NV, at line 80. This line also prints the aver
age on the TV screen.

NESTED LOOPS

You have probably used sets of measuring cups that could be

placed one inside the other to make a neat stack that can be easily

stored. Program loops can be placed one inside the other, too. Let's

look at a program that uses two loops, one inside the other. In this

program, one loop simply prints the numbers 1 through 10 on the

fmmf TV screen, while the other loop prints five asterisks between each

I j number. Here is the program:

10 FOR N = 1 TO 10

n

n

n

n

n

20

30

40

50

60

70

80

PRINT N

FOR T = 1 TO

PRINT "*";

NEXT T

PRINT

NEXT N

GOTO 10

Let's look at this program, starting with the inner loop that

prints the five asterisks. Here it is:

30 FOR T = 1 TO 5

40 PRINT "•";

50 NEXT T

60 PRINT

A flowchart for this program is shown in Fig. 5-3. The FOR com

mand sets up the loop for five passes, and the computer prints five

asterisks on the same line. The semicolon keeps the printing on the

same line. The PRINT command at line 60 is not part of the FOR-

NEXT loop, and it doesn't "print" anything. It's just used to

return the cursor to the left side of the line below so that the next

number will be printed on a "clean" line.

137

u

u

u

CONTINUE...

Fig. 5-3. Flowchart for the "five asterisk" loop.

Now take this loop out of the program and look at what's left:

10 FOR N = 1 TO 10

20 PRINT N

70 NEXT N

80 GOTO 10

This is a simple loop, too, and it is shown in the flowchart in Fig.

5-4. The loop has been set up for 10 passes, and since the label N

has been used to identify the loop count, you can print the loop

count, too. The GOTO command at the end of the loop simply tells

the computer to go back and start the program over again. A com

plete flowchart for the program is shown in Fig. 5-5.

When loops are used this way, one inside another, they are said

to be "nested," and programmers use nested loops often. The

138

u

u

u

u

LJ

U

n

n

n

n

n

n

n

n

n

n

OTHER LOOP

TRUE

Fig. 5-4. Flowchart for the main printing loop.

"smallest" loop is called the "inside" loop and the "largest" loop is

called the "outside" loop. Since an indented program listing was

used in this example, it shouldn't be hard to tell the loops apart.

Let's look at another program that uses nested loops, but if

you've had enough of them, you can go on to the next section.

Although the next program looks complicated, it just uses two

nested loops like those shown in the previous example, but there

are more things done in each loop. This program was written by a

housewife who wanted to do more than just average her food costs

each month. This program also tells her the total amount spent on

groceries over several months and the average spent each month.

139

TRUE

140

u

u

u

u

LJ

Fig. 5-5. Flowchart for the complete printing program. LJ

The illustration in Fig. 5-6 shows what the program calculates for j I

the three monthly grocery bills. You can break this program into LJ
smaller pieces if you want to look at it in detail. Here's the pro

gram:

LJ

n

n

n

n

n

n

n

n

RUN

GROCERY BILL PROG.RAM

NUMBER OF MONTHS TO AVERAGE? 3

NUMBER OF BILLS THIS MONTH? 3

AMOUNT =? 100

AMOUNT =? 75

AMOUNT =? 50

MONTHLY AVERAGE IS 75

NUMBER OF BILLS THIS MONTH? 4

etc...

TOTAL OF ALL BILLS IS 486.95

AVERAGE COST PER MONTH IS 223.98

Fig. 5-6. Typical printed output from the grocery-bill program.

100 PRINT "GROCERY BILL PROGRAM"

120 INPUT "NUMBER OF MONTHS TO AVERAGE"; NM
140 TTL = 0

160 FOR M = 1 TO NM

180 INPUT "NUMBER OF BILLS THIS MONTH"; NB
200 SUM = 0

220 FOR B = 1 TO NB

240 INPUT "AMOUNT ="; AMT
260 SUM = SUM + AMT

I j 280 NEXT B
1 ' 300 PRINT "MONTHLY AVERAGE IS" SUM / NB

320 TTL = TTL + SUM

340 NEXT M

141

LJ
360 PRINT "TOTAL OF ALL BILLS IS" TTL

380 PRINT

400 PRINT "AVERAGE COST PER MONTH IS" TTL/NM

TAKE ONE G8ANT STEP u
Let's look at a slightly different use of FOR-NEXT loops. In the

FOR-NEXT loops that you've seen so far, 1 is added to the loop | f

count each time the computer passes through the loop so the com- jj
puter can tell how many passes it has made. There may be times

when you'd like to add some value to the loop count other than 1. j ,

You can do this simply by telling the computer what you want M
added to the count. Here's an example:

100 FOR TR = 1 TO 200 STEP 3 | j

In this case, the computer adds 3 to the count after each pass I—'
through the loop. So, the loop count would be 1, 4, 7, and so on. If

you don't tell the computer what size "step" is being used, it sim- j I

ply adds 1 to the count after each pass through the loop. LJ
Since the maximum loop counter value in this example has been

set to 200 in the FOR command, what happens as the loop count < .

increases toward 200? When counting by 3s, the count looks like

this: U

. . . 187, 190, 193, 196, 199 j »

In this case, the computer gets out of the loop after reaching a LJ
count of 199, since the next value, 202, is greater than 200. Remem

ber that a maximum loop count of 200 was set up in the FOR com- j i

mand. LJ
Do you want to count to 100,000 by 17s? Here's a program that

does it for you: . -,

100 FOR C = 1 TO 100000 STEP 17 LJ
110 PRINT C

120 NEXT C ||

The computer quits at 99995, since the next value (100012) puts it LJ
over the 100000 mark.

Loops don't have to start with a count of 1. Any other value can j j

be used, as long as the maximum value is greater than the starting jj
value. The following program goes through this loop six times:

250 FOR TX = 15 TO 20 I j

142

il

n

n

n

260 PRINT "HAVE FUN11

270 NEXT TX

Remember, the loop counts would be 15,16,17,18,19, and 20!

Loops can count down, too. Here's an example that we'll let you

think about:

1020 FOR XZ = 100 TO 50 STEP -1

1030 PRINT XZ

1040 NEXT XZ

In this program, the loop count starts at 100. This is higher than

the final loop count, which is set at 50. How can this be? Well, the

step has been set at -1, which simply means that the loop count

will have 1 subtractedfrom it each time the computer goes through

H the loop. So, the first count is 100, the next count is 99, and so on.
I ! The loop is finished when XZ gets to 50.

P SUBROUTINES TO THE RESCUE

We all do routine jobs, again and again, but at different times

^ and places; making a bed, fixing a sandwich, and mowing a lawn are

| things we do frequently. Many computer programs have operations

1 that do the same thing, but at different times and places in a pro

gram. Let's look at an example.

n An office-cleaning service uses a computer program to do these
three things:

1. Print bills to be sent to customers.

p 2. Print letters typed by a secretary.
i I 3. Print envelopes.

The computer prints the company's name and address on each

H bill, letter, and envelope. Do the three parts of the program each
! i have instructions to do this printing? Probably not, since it is

wasteful of both the computer's time and the programmer's time to

n duplicate the same program steps three separate times. It is better

to put the part of the program that prints the name and address in

one place and let the different parts of the program share it. This is

n shown in Fig. 5-7. You can see that when the printing subroutine is

shared, the program is shorter and any errors or changes are lim
ited to one part of the program.

Although our example may be a bit simple, this program-sharing

H technique is common. When programmers are writing long com-

143

n

100 STEPS

100 STEPS

100 STEPS

-200 EXTRA STEPS

(A) Without a subroutine. (B) With a subroutine.

Fig. 5-7. Using a subroutine saves program space and limits errors.

plex programs, they like to save as much time and energy as possi

ble, so they look for tasks that can be shared. These shared tasks

are called subroutines, and they provide a way of simplifying and

shortening programs.

Here is another example of how a subroutine could be used. A

hardware store manager uses a computer to keep track of the prod

ucts he sells. The products have been given part numbers between

1 and 10000, so that the computer can tell one from another. The

product numbers are used by different parts of the hardware-store

program, so a subroutine is used to get the product number from

the computer keyboard whenever it is needed. Simple INPUT com

mands could have been used throughout the program, but the pro

grammer decided to check the number to be sure it is in the range

1 to 10000. This takes more program steps, so why spend time

duplicating these steps (and any errors) throughout the program,

when the program can share one set of instructions that is easy to

get to? Here's what the steps might look like:

2000 PRINT "TYPE THE PART NUMBER11

2020 INPUT PN i PN = INT(PN)

2040 IF (PN < 1) OR (PN > 10000) THEN PRINT

"OUT OF RANGE"? GOTO 2000

When a number is typed in, the computer uses the INT com

mand to remove any decimal fractions that might have been typed

144

u

u

LI

U

U

n

n

n

n

in by accident. The IF-THEN operation checks to be sure the num

ber is between 1 and 10000. If it is outside this range, the message,

"OUT OP RANGE," is printed and the user gets another chance

to type it in. This "traps" any incorrect numbers. Other types of

errors could be checked for, too.

Whenever the programmer needs a part number for a task, he

can "tell" the computer to go to this number-input subroutine and

get it. Programs use a GOTO command to point the computer to a

specific program line, and there is a similar instruction for subrou

tines. This is the go-to-subroutine, or GOSUB instruction, and a

line number is used with it to tell the computer where the subrou

tine is. Unlike a GOTO command that simply tells the computer,

"Go to a specific place," the GOSUB command tells it, "Go, but

remember to come back when you're done."

I A RETURN instruction is used at the end of every subroutine to

J tell the computer that it's time to go back to the main program.

Here's what the complete number-input subroutine would look like:

H 2000 PRINT "TYPE THE PART NUMBER11
1 2020 INPUT PN : PN = INT(PN)

2040 IF (PN < 1) OR (PN > 10000) THEN PRINT

H "OUT OF RANGE11: GOTO 2000

j ! 2060 RETURN

And here is how the main program would point the computer to

H it:

1 250 GOSUB 2000
260 etc ...

n

n

n

n

Now, whenever the programmer needs to have a part number

typed in from the keyboard, he can simply use the GOSUB 2000

command to get it. He doesn't have to retype all of the input and

error-checking steps. Subroutines are very useful to programmers.

Let's do an experiment to see how a subroutine can be used in a

program to save programming time.

Experiment No. 5-5. Using a Subroutine

In this experiment, you'll see how a subroutine can be used for a

simple task, and how the subroutine can be used at several places

in a program. Clear your computer for a new program, and type in

the following subroutine:

2000 FOR P = 0 TO 39

145

2010 PRINT "*"; i i

2020 NEXT P M
2030 RETURN

Do you know what this subroutine will do? Let's just run the i »

subroutine and see. Type GOSUB 2000 [RETURN] and see what [J
happens. You should see a line of asterisks across the TV screen. If

the asterisks go down the screen instead, you forgot the semicolon

at the end of the PRINT command at line 2010. | {
Now let's use the subroutine in a program. Add the following LJ

lines to the ones already in the computer:

100 FOR L = 1 TO 10 I j
110 PRINT L LJ
120 NEXT L

130 GOSUB 2000) i

140 END LJ

The complete program will look like this when you list it:

100 FOR L = 1 TO 10 j |
110 PRINT L U
120 NEXT L

130 GOSUB 2000 (.

140 END [J

2000 FOR P = 0 TO 39

2010 PRINT "*"; I (
2020 NEXT P LJ
2030 RETURN

Run the program. You can type RUN or RUN 100. You can give j j
the computer a specific line number in RUN, GOTO, or GOSUB LJ
commands that you type in from the keyboard if you want the com

puter to start at a particular place in a program, rather than at the j j

lowest line number. (J
What is displayed on the TV screen when the program is run?

You should see the numbers 1 through 10 displayed down the left (,

side of the TV screen, with a row of asterisks across the screen

below them. Now add the following lines to your program: L-l

140 FOR Q = 1 TO 3

150 PRINT "C64"

160 NEXT Q LJ
170 GOSUB 2000

180 END I j

146

u

n

n

o

n

n

n

n

n

The complete program, including the subroutine, should look like

this:

100 FOR L = 1 TO 10

110 PRINT L

120 NEXT L

130 GOSUB 2000

140 FOR Q = 1 TO 3

150 PRINT "C64"

160 NEXT Q

170 GOSUB 2000

180 END

2000 FOR P = 0 TO 39

2010 PRINT "*";

2020 NEXT P

2030 RETURN

! screen:
Run the program. You should see a display like this on the TV

re

1

n 3
4

5

6

7

8

9

10

C64

C64

C64

In this experiment, the subroutine has been used to do a simple

task; print 39 asterisks across the TV screen. However, it saved

programming time and effort, since the same asterisk-printing

instructions were used twice in the program. This meant that you

didn't have to duplicate or copy the program lines that printed the

asterisks across the TV screen when they were needed again. You

simply used the GOSUB 2000 command.

147

Can you think of other tasks that might be done by using subrou- ,

tines instead of writing the same program steps over and over

again? Special math operations might be put in subroutines; for

example, figuring sales tax.

Subroutines are very useful, even in short programs where it is II

necessary to have the computer do the same thing again and again. LJ
The task might be as simple as printing a line of asterisks across

the screen, or it might be as complex as figuring how to point a j i

telescope at a particular star in the night sky. H

LOTS OF INFORMATION 1 j

There are many times when we need to have the computer store

more than one or two pieces of information. In all of our previous

examples, we have shown you how the computer uses labels to I J
identify information and save it for use somewhere else in a pro- LJ
gram. This has worked out well so far, but there is a limit to the

amount of information that can be stored this way. i j

Let's assume that we are running tests on flashlight batteries to jj
see how long they last. We put the batteries in a flashlight and

leave it on, and we keep a record of how long it takes for the light ,

to go out. If we wrote the results on paper, they might look like

this: U

Battery type 1, 5% hours .

Battery type 2,4% hours

Battery type 3, 6 hours

How can we use the computer to store the test results for eight i j

kinds of batteries? A program could be written using eight differ- M
ent labels: Bl, B2, B3, and so on. That seems to do the trick, but we

still have to get the information into the computer. Since eight dif

ferent labels have been used, one for each type of battery, we'll j
need eight INPUT commands: LJ

160 INPUT "B1 VALUE11; B1 . ;

180 INPUT "B2 VALUE11; B2 I
200 INPUT "B3 VALUE11; B3

220 INPUT MB4 VALUE11; B4

240 INPUT "B5 VALUE11; B5 j I
260 INPUT "B6 VALUE11; B6 LJ
280 INPUT MB7 VALUE11; B7

300 INPUT "B8 VALUE11; B8 j j

148

n

n

n

n

n
i

n

n

n

n

Imagine testing 100 batteries and trying to save the test times

this way! Computers would lose a lot of their power if we had to set

up programs with many input commands such as those shown.

There is a better way to store this kind of information.

The computer can easily store a lot of information, and you can

think of it being stored in a chest of drawers, as shown in Fig. 5-8.

"BAT"

— BAT(1)

— BAT(4)

— BAT(8)

Fig. 5-8. An array of information is organized like a set of drawers.

Each drawer has been numbered and can hold a piece of informa

tion. The chest is given a "name" so you can identify all of the

information stored in it.

In computers, this is called a table and it is given a name, too.

Individual pieces of information in the table are given a number to

identify them. So, each piece of information in a table can be identi

fied using the name of the table and the number where it is located.

149

Here's what a table might look like: » »

TABLE "BAT" — BATTERY TEST TIMES U

Battery Type Test Time

1 51/2 hours | |

2 4% hours jj
3 6 hours

This table has been named BAT, and the test information has i j

been put in it as BAT(l), BAT(2), BAT(3), and so on for each type of |J
battery tested. The number in parentheses identifies or "locates"

each piece of information. When the computer "sees" a label fol

lowed by a number in parentheses, such as BAT(7), it knows this is

the seventh value in the BAT table. A table like this is also called '-'
an array of inforrnation, or just an array, and it's nothing more

than an orderly arrangement of information. I I

However, it might still look as though individual INPUT com- U
mands are needed to get this information into the computer:

160 INPUT "B1 VALUE91; BATd) I I
180 INPUT "B2 VALUE11; BAT(2) LJ

and so on.

When an array or a table is used, you can get at the different I I
pieces of information by using the name of the table and a label in LJ
place of the number in the parentheses. For example, the program

line:

20 INPUT BATd)

does the same thing as these:

10 TEST = 1

20 INPUT BAT(TEST)

10 FOR TEST = 1 TO 8

20 INPUT BAT(TEST)

30 NEXT TEST

You're familiar with the FOR-NEXT loop, and you can see that

150

u

u

The only difference is that a label has been used in place of the I j

number in the second set of instructions. You can use many differ- LJ
ent types of instructions to change a labeled value so the computer

can quickly locate information in a table, or array. Here's an exam- j i

pie of how an array can be used to store eight values typed in from M
the keyboard. The program has been kept simple:

LJ

U

n

n

n

n

n

n

the computer will go through this loop eight times. When the com

puter goes through the loop the first time, the value of the loop

counter, TEST, is 1, so at line 20 the computer is really doing this:

20 INPUT BATd)

1 ' This means that the first value typed in becomes the first value

in the BAT table. When the computer goes through the loop the

j""| next time, the loop counter is equal to 2, so the the second value

input is labeled BAT(2). The computer goes through this loop eight

times, storing eight values in the BAT table. They are stored as

BAT(l), BAT(2), and so on up to BAT(8). You can get them out of

the table just as easily. Let's do an experiment to see how the com

puter can store and get values using a table.

H Experiment No. 5-6. Using an Array or Table

I In this experiment, you will use a simple program to store an
array in the computer. Clear your computer and type in the follow-

—I ing program:

1 10 FOR TR = 1 TO 8
20 INPUT BAT(TR)

r\ 30 NEXT TR

Now run the program. When the computer displays a question

mark on the screen, type in the value 1. Remember to press

H [RETURN]. Now type in values of 2,4,8,16,32,64, and 128 for the
I I other question marks. Your TV screen should look something like

RUN

? 1

? 2

? 4

? 8

? 16

? 32

? 64

? 124

READY.

The eight values are stored in the array labeled BAT. How can

you display one of these values on the TV screen? You can simply

151

u
type PRINT BAT(4) to get the fourth value printed on the TV I i

screen. Go ahead and do this. Is the correct value displayed on the |J
TV screen? The number 8 should be displayed, since it is the fourth

value you typed in. You can display the other values this way, too. ,

Just use a PRINT command followed by the label for the array and

the location of the value in parentheses. Try to display two or three '—'
of the other values; for example, type in PRINT BAT(7).

Add the following program lines to your program. Just type I J

them in as shown:]_}

40 SUM = 0

50 PRINT "VALUES ARE:" I I
60 FOR X = 1 TO 8 U
70 PRINT "VALUE" X" IS" BAT(X)

80 SUM = SUM + BAT(X) I I

90 NEXT X LJ
100 PRINT "TOTAL IS" SUM

Here is the complete program: I

10 FOR TR = 1 TO 8

20 INPUT BAT(TR) , ,

30 NEXT TR

40 SUM = 0 U
50 PRINT "VALUES ARE:"

60 FOR X = 1 TO 8 I I
70 PRINT "VALUE" X "IS" BAT(X)

80 SUM = SUM + BAT(X)

90 NEXT X

100 PRINT "TOTAL IS" SUM u
Run this program. After you type in the eight values, the com

puter displays them for you. It also gives you the "location" of the I I
value in the table, and the total is displayed. I—I
Run the program again, but use some different numbers. You

can check your results by using a calculator, if one is available. Can I I

you change the program so that the array is set up to store only [J
five values? You can try this if you want to.

This experiment shows you how the computer can be used to . ,

store information in a table, and you have seen how the computer

can recall the information that it needs. You should be able to see '"'
that using an array is much easier than using individual labels and

INPUT commands to type in many pieces of information. I j

152

n

n

n

n

n

n

n

THE SIZE OF YOUR ARRAYS

When arrays are used, they are given a name, and a number in

parentheses is used to "locate" a stored value. When a number is

used this way with the label or name of an array, it is called a

subscript In the Commodore 64, you can have arrays with sub

scripts from 0 through 10, so 11 pieces of information can be stored.

In the previous examples, arrays started with the subscript 1, since

it's easy to remember that the first value is XYZ(l).

You can have larger arrays, but you must tell the Commodore 6k

the maximum size ofthe array before you try and use it. To set up

a large array, you use the dimension command, DIM, and follow it

with the name of your array and the maximum subscript that you

plan to use. For example, an array named CHECKS with 100

pieces of information would be set up with this command:

10 DIM CHECKSdOO)

Actually, 101 places in the array can be used, but let's assume

that we start storing information at CHECKS(l), instead of at

CHECKS(O). If you see a DIM command in a program, you'll

understand that the programmer is simply telling the computer

that an array is going to be used to store information. This doesn't

mean that you must use all of the locations in an array for informa

tion. At some times, the array may contain only a few pieces of

information, while at others it may be filled. The DIM command

just tells the computer the array's maximum size.

You can set up several arrays at the same time, for example:

10 DIM CHECKS(50), AM0UNTS(50)f DATES(50)

This statement sets up three arrays that can hold up to 50 pieces

of information in each. Perhaps a checking account program is

going to use arrays to store information. The arrays are always set

up with a DIM command right at the start of the program. In fact,

this is the first thing done in a program if an array is going to be

used. Remember that you can set up and use an array with a sub

script of up to 10 without using the DIM command. If you want to

store more information, you'll have to use the DIM command.

A SPECIAL KIND OF ARRAY

Arrays or tables are very useful, since they let us store a lot of

information in the computer. Let's assume that we want to store

153

u
the weights of the nine planets, Mercury through Pluto, in the com- i i

puter so they can be used in an action game for kids. A loop could M
be set up so that the weights are typed in at the start of each game,

but it would be a real bother to type them in each time the game is

run. You could set up the weights in an array right at the start of

the program; for example: LJ

10 PLANET(1)=123456 : PLANET(2)=456789 , ,

and so on. LJ
This can be a bother, too, and there's a better way to store this

kind of information in a program. You can simply use a DATA i i

statement in your program and put the weights of the planets in a [J
single line:

100 DATA 123456, 456789, 1298098 j I

and so on.

This simply tells the computer, "Store this information for later

use, but don't give it a label, yet." By the way, most programmers

put DATA statements at the end of their programs. I—'
Now that the information has been stored in a DATA statement,

you can get at it with a READ operation or command. The READ I I

command simply reads each piece of information from the DATA |J
statements as if it were reading it from a list of values. Once the

information has been read, you can give it a label or use it in any , ■

way you want. When you use the READ command again in your

program, the second piece of information is read from the DATA

statement In this way, you can put information right in your pro

grams and use it one piece at a time. Let's do an experiment to see I I
how this works. LJ

Experiment No. 5-7. Using the DATA and READ Commands |

The purpose of this experiment is to show you how the DATA |J
and READ commands can be used. Clear your computer for a new

program and type in the following program: i .

10 FOR T = 1 TO 4 LJ
20 READ QX : PRINT QX

30 NEXT T

40 DATA 123, 456, 789, 88

Run the program. Are the data values displayed on the TV

screen? They should be. You can change the four values in the data

154

u

u

n

n

n

n

n

n

n

n

n

n

statement if you want to and run the program again to see them

printed on the TV screen.

The values in the DATA statement are really part of your pro

gram, and you cannot change them except by typing in a new pro

gram line. Change line 10 in the program to:

10 FOR T = 1 TO 5

Run the program. Are the values printed? What else is displayed

on the TV screen? You should see an "error message" printed on

the screen, since the FOR-NEXT loop tries to READ five values

from the DATA statement, and there are only four values in it. The

computer displays the following:

?OUT OF DATA ERROR IN 20

READY.

You cannot read more information from a DATA statement than

is really there.

DATA statements are very useful, since they let you store a

great deal of information in the computer for later use. For exam

ple, if you are using the computer to play a space-war game, the

weight of each planet and its size can be stored in a DATA state

ment. Two READ commands are used to read them. Instead of

using values in this example, we'll just show you what would be

stored in the DATA statement. Of course, the values would be

used in a real program:

50 READ WEIGHT : READ SIZE

60 DATA Weight of Mercury, Size of Mercury,

Weight of Venus, Size of Venus, etc - . „

The first READ command reads the first value in the DATA

statement, Weight of Mercury, and labels it WEIGHT. The next

READ command reads the second value, Size of Mercury, and

labels it SIZE. When the computer comes back to the READ com

mands, the READ WEIGHT command reads the third value in the

DATA statement, Weight of Venus, and labels it WEIGHT. The

READ SIZE command reads the fourth value, Size of Venus, and

labels it SIZE. In this way, the weight and size of the planets are

stored together, each being read in order by a different READ

command.

Notice that you can assign any labels you want to the values the

computer gets in the READ command or commands. However,

when DATA and READ commands are used, programmers must

155

pay very careful attention to the order in which the information is i i

stored and how it is read. I
When a game or other program has finished, it may use a GOTO

command to start over again. If this is done, the programmer must

point the computer back to the start of the DATA statement, so it II
will "read" through the information again. The RESTORE com- U
mand does this. For example:

10 READ RX : PRINT RX j
20 RESTORE U
30 READ RX : PRINT RX

40 READ RX : PRINT RX I I

50 READ FZ : PRINT FZ U
60 etc . . .

100 DATA 12, 67, 99 LI
In this example, the first READ RX : PRINT RX operation

prints the value 12 on the TV screen. The computer gets ready to i i

go on to the second value in the DATA statement, but the M
RESTORE command says, "No, go back to the first value." The

READ RX : PRINT RX commands at line 30 print the value 12

again. The following READ command at line 40 gets the value 67

and it is printed. The READ command at line 50 gets the value 99 U
and it is printed, too. Note that this value is labeled FZ. You can

use any labels you want to get information from a DATA state- I j

ment. LJ
The RESTORE command simply tells the computer to go back

to the first value in the DATA statement. This is useful if you want , .

to go through the information again. For long lists of information,

you can use multiple DATA statements in your program. Here is

an example:

200 DATA 200, 547, 6789, 2, 512, 43 [}
220 DATA 400, 600, 53, 1, 0, 0, 45

The Commodore 64 sees this as a continuous list of 13 values. t i

QUESTIONS

1. You can use special "commands" in the message part of a

PRINT command to get the computer to do keyboard-type <—'
operations. How would you get the cursor to its home position

without clearing the screen? I I

156

u

n

n
2. How would you use two PRINT commands in a program to

print something on a single line on the TV screen?

I j 3. What is the TAB command, and how is it used?

n
' ' 4. What do you think would happen if you tried to do a PRINT

TABQ5) "FUN"; and then a PRINT TAB® "TIME" on the

R same TV screen line?

5. What does the ON command do? What is tested by this

decision-making command?

6. When would you use the ON command in a program?

n
_ 7. What does the FOR-NEXT command do?

8. Can you use steps other than 1 with a FOR-NEXT command?

What kinds of steps can be used?

n
9. What is a nested loop?

n
10. What is a subroutine? How might it be used?

157

11. What is an array? How is it used?

12. Why are arrays so flexible? How big can an array be?

13. What are the READ, DATA, and RESTORE operations used

for?

158

PROBLEMS ^

1. Write a program that draws a diagonal line from the top left-

hand side of the TV screen to about the middle of the bottom of U

the screen. (HINT: To draw the diagonal line, use the graphics

character produced by a [SHIFT] M. This graphics character j I

will be enclosed in quotes in a PRINT statement.) jj

2. Modify the solution to Problem 1 so that the line is drawn from

the top right-hand side of the screen to the bottom left-hand I I

side of the screen. LJ

3. Write a program that flashes the message "THIS MESSAGE

GETS YOUR ATTENTION" on the TV screen. The message I j
should flash on and offbetween 1 and 3 times every second. U

4. Write a program that causes the "heart" character ([SHIFT] S)

to move from the center of the left-hand side of the TV screen, I I
to the center of the right-hand side of the TV screen. Once the LJ
heart is on the right-hand side of the screen, the movement of

the heart from left to right should be repeated. i i

5. Write a program that causes the following to be displayed on LJ
the TV screen:

u

n

n

n

n

n

n

ADD - 1

SUBTRACT - 2

MULTIPLY - 3

DIVIDE - 4

COMMAND ?

Once you enter a command number (between 1 and 4), the

computer will ask you for two numbers, which will then be

added, subtracted, multiplied, or divided, depending on the

command (number) that you entered first. Once the result is

displayed, the program should be repeated. For example,

ADD - 1

SUBTRACT - 2

MULTIPLY - 3

DIVIDE - 4

COMMAND ? 1

NUMBERS ? 3, 4

R RESULT IS 7
I I

ADD - 1

-; SUBTRACT - 2

j MULTIPLY - 3
DIVIDE - 4

H COMMAND ? 3
! ; NUMBERS ? 3, 5

RESULT IS 15

] | 6. Write a program that displays a multiplication table that con
tains all possible combinations of the numbers 1 through 3

— times the numbers 10 through 13. Assume that multiplying 2

j times 10 is the same as multiplying 10 times 2.

7. Write a program that calculates and displays all of the prime

n numbers between 1 and 100. A prime number is a number that

can only be exactly divided by itself and by 1. Some examples

of prime numbers are 2, 3, 5, 7, and 11. Nonprime numbers

include 4 (which can be divided by 4,1, and 2) and 12 (which can

be divided by 1,3,4, 6, and 12).

159

8. Write a program that lets you enter between 2 and 20 num- i j

bers. These numbers are stored in the computer so that it can [I
calculate and display the average of all the numbers (the sum of

the numbers divided by the number of numbers entered), the

lowest number entered, and the highest number entered. No

calculations must be performed on the numbers as they are *->

entered into the computer. All calculations must be performed

after all numbers have been entered. j

9. Write a program where a single "die" is thrown 100 times •—'

(there are two "die" in a pair of dice). Keep track of how many

times a 1, 2, 3, 4, 5, and 6 is thrown, and at the end of 100 I j
throws, display the total number of times each number was U
"thrown."

10. Write a program that is used to keep track of car sales for each I j
of five salesmen. At the end of the month the computer should LJ
display the name of each salesman, along with the number of

cars sold. j j

11. Write a subroutine that draws a playing card from a deck of I—I
cards. After the card has been drawn, the computer displays its

suit (heart, club, diamond, or spade), along with its value of j j

either 2 through 10, Jack, Queen, King, or Ace. (HINT: jj
Assume that each card is given a value of from 1 to 13. Once a

card is "drawn," somehow "mark it" so that it can't be drawn , ,

again.) jj

12. Write a program that lets you enter an amount of money in dol

lars and cents. The computer then displays the equivalent num- t i

ber of French francs, German marks, and English pounds, (j
Assume that there are 7.49 francs, 2.48 marks, and .642 pounds

per dollar. These values should be stored in a DATA state

ment, along with the name of the country and its unit of { I
currency.

u

u

160

r

'' CHAPTER 6
I!

n
STraNGS AND THINGS

n

j

^ In previous chapters, you saw how the computer used values in

i j math and decision-making operations. Computers process values

' j very quickly, doing thousands of math operations each second, and

this is exactly what makes them so useful and powerful. Computers

P] process strings quickly, too; sorting names on address lists, locat-

i j ing information in library records, and printing business reports. In

this chapter, you'll see how your computer uses strings, combining

them, taking them apart, and using them to make decisions.

Strings are simply groups of letters, numbers, punctuation

marks, and other symbols, all of which we'll put under the heading

of "characters." A string such as "TEST REPORT 12" cannot be

given a numeric value, and this type of information cannot be proc-

essed by "multiplying" or "adding" it to some value. The Commo

dore 64 computer stores strings the same way it stores values.

Both are given a label so that they can be identified for later use.

Here are some examples of strings and the labels given them:

NAMES = "JIMMY SMITH11

DATES = "MAY SIXTH11

UNITS = "KILOGRAMS11n

n
Each string label ends with a dollar sign, and the characters in

the string are enclosed in quotes. As we said earlier, the last quote

161

u
mark isn't needed, but we like to use it to mark the end of a string.

Since the Commodore 64 recognizes only the first two letters (or

letter and number) of a label, the preceding labels and strings are

the same as these:

[JNA$ = "JIMMY SMITH11

DA$ = MMAY SIXTH11

UN$ = "KILOGRAMS11 (

The Commodore 64 prints a value on the TV screen by using a [J
PRINT command and a label, and it prints a string the same way.

Here are two program lines that will display the word, KILO- j

GRAMS, on the TV screen: j

10 UNITS$ = "KILOGRAMS18

20 PRINT UN$ j i

You can also use the computer to input a string of characters and Li
store it for later use. The INPUT command does this, but you must

remember to use a string label in the command. Here is how the | i

INPUT and PRINT commands can be used in a program: |_j

250 INPUT R$

270 PRINT R$ | I

When this program is run, individual characters are typed in and

then the RETURN key is pressed. The RETURN key tells the

computer that you have finished typing in your information, letting j j
it go on to the next program step. The string of characters typed in U
is labeled R$, and it can be used later in the program.

You can also put messages in the INPUT and PRINT commands i j

that are used with strings to make them more useful. Here is jj
another example:

250 INPUT "TYPE YOUR STRING"; R$ I I

270 PRINT "THE STRING IS ..." R$ [J

USING STRINGS I

Your computer can do many useful things with strings, and we'll

start by looking at how the computer puts strings together. You

can think of the strings as characters printed on strips of paper. By I j
using some adhesive tape, you can connect or put together these U
"strings" in many ways (Fig. 6-1). In the Commodore 64, strings

are connected, or linked, by using the plus sign (+). The strings are

162

n

n

n

n

i !

n

n

■BigHsM

Fig. 6-1. Using strips of paper and tape to make up strings.

n

n

not "added" to one another, since this would be meaningless. When

the plus sign is used with strings, it just means that the strings are

linked to form a new string. Here is a program we wrote and ran to

show you how this works:

10 FIRSTS = "KAREN"

20 LASTS = "SUMMERS"

30 PRINT FIRSTS + LASTS

RUN

KARENSUMMERS

READY.

The two strings labeled FIRST$ and LAST$ are linked in the

PRINT command so the computer prints KARENSUMMERS on

163

the TV screen. The computer does not insert any spaces between j |

the strings. It prints exactly what is in the two strings. jj
There are no extra spaces in either string, so none are printed on

the TV screen. If you want to have spaces printed in the strings,

you must put them in each string. In this example, there is a space

after KAREN, and one after SUMMERS: L»

10 FIRSTS = "KAREN " ,

20 LASTS = "SUMMERS " j

30 PRINT FIRSTS + LASTS U
RUN

KAREN SUMMERS j

READY.

If you don't include spaces or other special characters in your j {
strings, they can be linked to the strings later. This example shows Li
how an asterisk can be placed between the strings FIRST$ and

LAST$:) i

10 FIRSTS = "KAREN11 Lj
20 LASTS = "SUMMERS"

30 PRINT FIRSTS + "*" + LASTS | j

The result is KAREN*SUMMERS. The asterisk is a one- ^
character string that has been put in between the FIRST$ and

LAST$ strings. Other characters or strings can be linked this way, I i

too. U
When numbers or values are added, their order, or position, is

not important. For example, 3 + 4 gives the same result as 4 + 3. \ t

When strings are linked, their order is very important. Here is a (j
program example that shows what happens when strings are com

bined in different ways:

10 FIRSTS = "KAREN " jj
20 LASTS = "SUMMERS "

30 PRINT FIRSTS + LASTS

40 PRINT LASTS + FIRSTS j

When this program is run, two different strings are printed on

the TV screen: .

KAREN SUMMERS LI
SUMMERS KAREN

In these examples, the linked strings have been printed, but they j

L
164

n

n

n

were not saved in the computer. If you want to link strings and

store them for later use, you just use a label for the new string:

250 NAMES = LASTS + FIRSTS

All sorts of strings can be put together this way, and the follow

ing experiment gives you a chance to try doing it.

Experiment No. 6-1. Building a String

In this experiment, you will run a program that uses a loop and

an INPUT command to get characters from the keyboard. The pro

gram links the individual characters you type to form a complete

n string that is displayed on the TV screen.

Clear your computer for a new program and type in the follow

ing:

H 10 FOR T = 1 TO 12

I I 20 INPUT X$
30 R$ = R$ + X$

«-) 40 NEXT T

50 PRINT R$

After checking your program to be sure that you have typed it in

_ correctly, run it and type in a letter after each question mark.

\ j Remember to press the RETURN key after typing each letter.
What happens? After the 12 letters have been typed in, the com

plete string is displayed on the TV screen. Your letters are proba-

R bly different, but your TV screen should display something like
I I this:

RUN

n ?A
i I ? C

? z

n ? q
1 ? F

? K

? E

? S

? T

? B

? P

ACZFQFKESTBP

READY.

165

n

n

n

u

u
Now, type the command, PRINT R$, and press the RETURN

key. What happens? The 12-letter string is printed on the TV

screen again. Since the letters form a string that was labeled R$

and was saved by the computer, the string can be used again and

again. ,]
Look at the letters from left to right. Are they shown in the '—'

same order as you typed them in? Yes, the order is correct. As new

characters were typed in, they were linked to the right end of the j J

string by the R$ = R$ + X$ command, as shown in Fig. 6-2. jj

OPERATION: R$ = R$ + X$

'-'

U

| LINKTORIGHj

R$

Fig. 6-2. Linking characters to the right-hand end of a string.

Rim the program again, but now type in two or three letters after

each question mark appears. Again, you must press the RETURN

key to get the letters into the computer. Does the computer accept

and store all of the letters? Yes, they are all saved. You are not lim

ited to one character for each entry. Complete words or sentences

could be typed into the computer this way.

Now, change your program so that line 30 looks like this:

30 R$ = X$ + R$

How do you think this will change the operation of the program? . ,

Run the modified program, but type only one letter after each j j
question mark. What does the display look like now? When the U
complete 12-letter string is displayed, it shows the letters in the

reverse order, since the letters are linked to the left end of the j j
string, as shown in Fig. 6-3. In the original program, each letter LJ
was linked to the right end of the string.

OPERATION: R$ = X$ + R$ J [

LJ
[l|-H ink to left I

X$ R$

Fig. 6-3. Linking characters to the left-hand end of a string. J j

One final note about typing in strings: When a string of charac

ters is typed infrom the keyboard, it can only have 89 characters.

Experiment No. 6-2. Peculiar Characters LJ

When you do this experiment, you'll find that not all of the char

acters on the keyboard can be typed in as part of a string. Some of \ j

LJ
166

u

n

n

n

them do unusual things when you try and input them.

In the previous experiment, you typed letters into the computer.

We avoided having you type other characters, since some of them

are not accepted by an INPUT command. Clear your computer and

type in the following program:

500 INPUT H$

510 PRINT M *"+ H$ +11*"

520 GOTO 500

Be sure to leave four or five spaces between the first quote in the

PRINT command and the asterisk. This will place the display away

from the left margin so that it is easy to see. Run the program.

When a question mark appears, type in a letter and press the

RETURN key. You should see the letter printed on the TV screen

between two asterisks: *F*, for example. You can safely assume

that the INPUT command will accept all of the letters, numbers,

and special graphic symbols. Try the punctuation marks and sym

bols such as %, (, etc. Are they all printed between the asterisks?

There are four "characters" that cause problems for the com

puter's INPUT command. These are the space, the quote mark, the

comma, and the colon. The quote mark is simply ignored and noth

ing is printed on the TV screen for it. The comma and the colon are

also ignored, but they cause the computer to display the message,

EXTRA IGNORED. The space character is also ignored, but the

previously typed character is printed again between the asterisks.

How can you type in these four peculiar characters and link them

to a string if they are ignored? There is another keyboard input

n, command that is often used for string-input operations, and we will

j j show you how it works later in this chapter.

n STRING DECISIONS

I Your computer can make decisions based on the information in

strings. For example, a computer program can be used to "look

through" a series of names to see if Chris Hendrie's name is there.

The computer compares each of the names it has with the string,

CHRIS HENDRIE, to see if there is a matching name on the list.

At another time, the computer might be asked to print the names

of all the people on a magazine subscription list, except for those

people living in New Jersey. Now, the computer would look at all

the state names and print the information for those people whose

state did not match the string, NEW JERSEY.

n

n

n
167

n

These string operations are similar to the equal-to and not-equal- i j

to operations that were used with IF-THEN commands to compare [
values. In fact, these same operations can be used with strings.

(The IF-THEN command tests a statement to see if it is true or

false. If the condition is true, the command following the THEN is !

done and the computer continues on in the program. If the condi- *_j

tion is false, the computer simply goes on with the program.)

Here's a simple example of a decision that's based on a string. j

When a program has finished its job, it might be programmed to [^
ask you if you want to go through it again. You answer by typing

YES or NO, and the computer makes a decision using simple string

comparisons. Here are a few program lines that show you how it's [
done: *-*

1040 PRINT "WANT TO DO IT AGAIN?11 | j

1045 PRINT " TYPE YES OR NO11 U
1050 INPUT A$

1060 IF A$ = "YES" THEN GOTO 100 t

1070 END [_

The string you type in is compared with the string "YES" by the

IF-THEN command at line 1060. If the strings are the same, the I [
computer is pointed back to line 100 in the program (GOTO 100). If J
the strings are not the same, the program ends.

There is a problem in this program. The computer will go back j j

and do the program again if you type YES, but if you type any- [j
thing else, the program will end. The person who wrote this short

program didn't bother to have the computer also check for the NO .

answer. Suppose you made a mistake and typed YEA instead of I
YES? The program would end. U
A good programmer realizes that people make mistakes, so his

program tests for a YES or a NO answer. If anything else is typed I j

in> you get another chance to type YES or NO. Here is a better LJ

program:

1040 PRINT "DO YOU WANT TO TRY IT AGAIN?11 I I
1045 PRINT "TYPE YES OR NO11 U
1050 INPUT A$

1060 IF A$ = "YES11 THEN GOTO 100 j
1070 IF A$ = "NO" THEN END L
1080 PRINT "JUST YES OR NO - PLEASE"

1090 GOTO 1040 u

u
168

H

n

n

The string typed in is checked with the string YES at line 1060,

and if there is a match the computer goes to program line 100. If

the string does not match YES, it is checked with NO at line 1070.

If the string matches NO, the computer program stops. If the

string doesn't match either YES or NO, the computer types out a

short message and gives you another chance to type in either YES

or NO.

Here is a simple game in which the computer tests two strings

for a match:

100 R$ = "MAGIC"

110 INPUT W$

120 IF R$ = W$ THEN PRINT "YOU WIN": END

130 PRINT "TRY AGAIN"

140 GOTO 110

! I The "hidden" word, MAGIC, is labeled R$, and the player is sup

posed to guess it by typing in one word at a time. The chances are

n small that you could guess the word without a clue or two, but this

I sample program shows how the computer can compare strings. Of

course, the strings aren't really "equal" in the sense that 5 = 5.

However, the strings must have the exact same letters in exactly

jj the same positions if they are to be seen as the same by the Com-
{ modore64.

Computer programs can also check to see if two strings are

**j "unequal," or not the same. This is shown in the following example:

' ' 220 INPUT R$
230 IF R$ O "BUGS" THEN END

|"! 240 etc ...

1 When the greater-than and less-than symbols are used together,
this means "not-the-same-as." In this example, if the string typed

in is not the same as BUGS, the computer is stopped by the END

command. In order to continue the program, the computer user

must type in the password BUGS. This program could have used

the NOT command, instead:

220 INPUT R$

230 IF NOT(R$ = "BUGS") THEN END

240 etc ...

String-comparison operations are used in games and learning

programs such as "guess-a-word" or "hangman," in which the

computer-user must correctly spell a word within a certain number

169

u
of tries. Most string-tests only check to see whether or not two j i

strings are the same, they don't usually check to see if one string is jl
"greater-than" or "less-than" another.

In the examples, upper-case, or "capital" letters have been used.

However, the Commodore 64 can be set up to use lower-case let- j {
ters, too. Since the Commodore 64 "sees" "y" and "Y" as different Lj
characters, programmers must pay careful attention to the types of

the letters being used. If the following command is used in a pro- j j

gram to test for the string APRIL: [_\

100 IF PX$ = "APRIL11 THEN ...

The string, PX$, must be APRIL and not April, april, or some- [J
thing else if the computer is to reach the THEN. . . command.

UNTANGLING STRINGS jj

There are three operations that let you "cut up" strings so you

can get at pieces of them. You can take characters from the left, j |

right, and middle of a string, once you have decided on the string to [J

be used and the number of characters you want. There is also an

operation that tells you the number of characters in a string, or its ,

length. [j

The Length of a String

The length operation, LEN, is used with a string to "count" the

characters in it. Letters, numbers, spaces, and all special charac- ^
ters (except for quote marks) are included in the count. Here is an

example of how the characters in a string are counted. It doesn't j J

matter whether you count from the left or the right: U

THIS IS A 30-CHARACTER STRING! i .

123456789101112131415161718192021222324252627282930 (J

The LEN command specifies a string and it gives you a value

that can be printed, labeled, or used in a calculation. Here is how I I
the LEN command might be used in a program: LJ

100 PRINT LEN(MBLUE RIDGE11) , ,

The computer would print the number 10 on the TV screen, since LJ

there are 10 characters in this string. The LEN command generally

uses a label, and here is an example that shows this: \ f

Li-
170

n

n

n

n

n

n

n

500 F$ = "THIS IS A TEST STRING11

510 PRINT LEN(F$)

In this program, the computer counts the number of characters

in the string, F$, and prints this number (21) on the TV screen. The

quote marks are not part of the string; they just show the com

puter where the string starts and ends.

The LEFTS and RIGHTS Operations

The computer uses the LEFT$ and RIGHT$ operations to get

characters from each end of the string. In each case, the string's

label and the number of characters wanted must be put in the

instruction. Fig. 6-4 is an example of how these instructions work.

QW$= "JUST ANOTHER TEST STRING"

JUST ANOTHER TEST STRING

L RIGHT$(QW$,5)

j

TRING

Fig. 6-4. Using the LEFTS and RIGHTS instructions.

The LEFT$ and RIGHT$ operations each put together a new

H string, so the results of these operations can be labeled, as shown in

I I the following program listing and sample run:

350 H$ = "COMPUTER POWER"

P 370 W$ = LEFT$(H$,4>
' I 390 K$ = RIGHT$(H$,3)

410 PRINT W$

430 PRINT K$

450 PRINT H$

RUN

COMP

M WER

1 I COMPUTER POWER

READY.

171

u

172

The computer printed the left-hand four characters, COMP, and | I

the right-hand three characters, WER, on the TV screen. The orig- [J
inal string has not been changed by the LEFT$ or RIGHT$ opera

tions, and it was displayed, too. ,

Here is another example of how the LEFT$ and RIGHT$ opera- |
tions work. What do you think this program will display on the TV

screen? You can type this program into your computer and try it,

but before you do, try to come up with the answer. I

560 P$ = "TERMITE KILLING ACTION11

580 X$ = LEFT$(P$,7)

600 G$ = RIGHT$(X$,4)

620 PRINT G$ Lj

The program first sets up string X$ as the seven left-hand char- . »

acters, or TERMITE. Next, the four right-hand characters of this M
new string are made into string G$ by the RIGHT$ command. The

result is MITE.

The RIGHT$, LEFT$, and LEN operations can be combined in a II
word-guessing game program, as shown in the next experiment. LJ

Experiment No. 6-3. A Word-Guessing Program . ;

This experiment gives you a simple word-guessing program that LJ
you and a friend can try just for fun. The LEFT$, RIGHT$, and

LEN operations have been used to give "clues" about the word . ,

that is to be guessed. Clear your computer and type in the follow

ing program. Check it carefully: U

10 INPUT T$. (

20 Z = LEN(T$) jj

30 PRINT ■■ [SHIFT] CCLR/HOME] " : PRINT

40 PRINT Z "LETTERS11

50 PRINT LEFT$(T$,1) " " RIGHT$(T$f1) I (
60 FOR G = 1 TO 5 LJ
70 INPUT K$

80 IF K$ = T$ THEN GOTO 500 | j

90 NEXT G [j
100 PRINT "SORRY, WORD IS ..."

110 PRINT " " T$ ■

120 END

500 PRINT "CORRECT" LJ
510 PRINT "MATCHED IN " G "TRIES"

520 END | I

o

0

0

n

Before you run this program, let's see what it does. The first line

lets you type in the word to be used in the game. The computer

then determines its length, clears the screen, and prints the num

ber of letters in the word. The PRINT command at line 50 prints

the left-most and the right-most characters to give the player a clue

about the word to be guessed. The steps that follow get the

player's guesses and keep track of the number of tries used. Up to

five tries are possible before the computer prints the correct
answer.

Run the program and type in a simple word, such as FLAVOR.

Your TV screen might look something like this:

6 LETTERS

F R

? FLOWER

? FLAMER

? FLAVOR

CORRECT

MATCHED IN 3 TRIES

_ READY.

; i Or, maybe it will look like this:

n 6 LETTERS

I F R

1 ' ? FLOWER
? FLAMER

f] ? FRAMER
i I ? FAVOUR

? FESTER

n SORRY, WORD IS ...

I I FLAVOR

n

n

0

n

n

READY.

It depends on whether or not the guesses lead to the correct

answer. Although this may seem like a simple program, it can be

developed into one that is more complicated, using colors, sounds,

scores, and a large array, or table, of words to be matched or

spelled correctly.

The LEN, RIGHT$, and LEFT$ operations can "extract" useful

information from a string.

173

n

In the Middle of a String ; i

You can get characters from the middle of a string by using the U
MID$ command. Fig. 6-5 is an example of how this command

RX$ = "SPECIAL COLOR MIXTURES" I I

MID$(RX$,9,5)

COLOR j

Fig. 6-5. Using the MID$ instruction. I

works. The MID$ operation identifies the string, and the first num- .

ber (9) tells the computer where to start getting the characters, i

counting from the left-hand side of the string. '—'
The quote marks are not part of the string, so they aren't

counted. The second number (5) tells the computer how many char- J

acters to get. Here is a short program that shows how the MID$ (j
command might be used. You can type it into your computer and

runitifyouwantto: (i

10 T$ = "COMPUTER11 U
20 FOR F = 1 TO 8

30 PRINT MID$(T$,F,1) j ,

40 NEXT F

50 END

THE GET COMMAND u
In one of the experiments in this chapter, you found that there

are four characters that the INPUT command "ignores." Program- J j
mers use the INPUT command mainly to input values and simple LJ
strings that do not use the space, colon, quote, or comma charac

ters. However, if information containing these characters is to be j |

typed in, the GET command is used. [I
The main difference between the INPUT and the GET com

mands is the way the keyboard is used. The INPUT command will

input characters until you press the RETURN key, so you can use j
a single INPUT command to get a string with many characters, or U
a value with many digits.

When the computer reaches a GET command in a program, it I I

L
174

U

n

n

n

n

n

n

immediately goes to the keyboard and gets whatever key is

pressed at that moment. It doesn't wait for you to press a key, nor

does it wait for the RETURN key to be pressed. If no key is

pressed, the computer gets "nothing." The GET command will only

input a single character from the keyboard, but it won't "ignore"

any key that is pressed.

It may sound as though you have to know exactly when the com

puter reaches a GET command in a program so you can have your

finger ready to type a key. It's easier than that, since in most cases

the GET command is used over and over again in a loop to get indi

vidual characters from the keyboard. The GET command is easy to

use, as you'll see in the next experiment.

Experiment No. 6-4. Using the GET Command

The GET command is very useful for getting information from

the keyboard, since no characters are ignored. You will see how the

GET command can be used in this experiment. Clear your com

puter and type in the following program:

100 GET A$

110 PRINT A$;

120 GOTO 100

This program gets the character for whatever key is pressed on

the keyboard and displays the character on the TV screen. The

GOTO command points the computer back to the start of the pro

gram so it will do this again and again. Run the program. Watch

the display and press several keys. What happens? The characters

ri are displayed on the TV screen as they are typed in. The

| | RETURN key has no effect except to cause the cursor to return to
the left side of the line below. Do the space bar, quote, comma, or

colon keys have any special effect on the display? No, they just

j] print their characters on the TV screen. Of course, the space bar
I I just moves the display over a space, as it would on a typewriter.

The computer is going through this three-line program very

quickly. What do you think the GET command does when there are

no keys pressed? Change the program by removing the semicolon

in line 110. The complete program now looks like this:

100 GET A$

110 PRINT A$

120 GOTO 100

n

n

When you run this program, the display will be much different.

175

n

u
Go ahead and start the program. Press some of the keys. What is . ,

shown on the TV screen? The characters are displayed on the left

side of the TV screen, but they move up the side quickly. In fact, it

is difficult to see them. Even when no keys are pressed, the display

still moves up. Remember that the computer goes through this loop I I

many times each second. When no key is pressed, the computer LJ
receives a "null" or "nothing" character from the keyboard, and

the PRINT command prints "nothing." However, since the semico- j j

Ion has been removed from the PRINT command, the computer M
still advances to a new line each time the PRINT command is

executed. This has the effect of "moving up" all the lines on the TV

display.

By changing the program this way, you can see that the com- l—'
puter still goes through the GET, PRINT, and GOTO commands,

even though none of the keys is pressed. J j

Experiment No. 6-5. Building Your Own String

In this experiment, you'll get a chance to see how the computer i i

can "build" a string by using the GET command. Any of the key- [J
board characters may be used in the string. Clear your computer

and type in the following program:

100 GET R$ LJ
140 T$ = T$ + R$

160 GOTO 100 ,

Run the program and type in two or three words, using the space LJ
bar to separate them. Is anything displayed on the TV screen?

How can you get your information back on the TV screen? Nothing j i

is displayed, since there is no PRINT command in the program. jj
Stop the program and type in PRINT T$ [RETURN]. Are the

words displayed on the TV screen now? They should be. The string

was put together from the characters you typed and it was labeled [
T$. Although the computer didn't know what you might do with it, LJ
it was still set aside for later use.

Change the program so that the information is printed on the TV I j

screen. Add this line to your program: [J

120 PRINT R$;

Now, the complete program should look like this: i

100 GET R$

120 PRINT R$; i i

176

u

n

n

n

n

n

n

n

n

140 T$ = T$ + R$

160 GOTO 100

Run this program and type in several words. You can use the

space bar, colon, comma, and quote keys if you want to. Do they

work the way the other keys do? Are the characters printed on the

TV screen? The keys just print their characters on the TV screen.

Stop the program and again type PRINT T$ [RETURN]. Is your

complete string printed again? It should be.

It is unfortunate that you have to stop the computer to get the

entire string printed out. Let's see if we can have the computer

type out the complete string when we type the "*" key. Now, the

program will have to use an IF-THEN command to check for the

asterisk. Here is the complete program for you to type in:

100 GET R$

110 IF RS = "*" THEN GOTO 500

120 PRINT R$;

n 140 T$ = T$ + R$

I 160 GOTO 100
500 PRINT T$

510 GOTO 100

! | Run the program and type in a short, complete sentence. You
can use the INST/DEL key to back space and correct any typing

errors. When you're finished typing your sentence, press the * key

M and see what happens. You should see the computer display your

' ' complete sentence on the TV screen.

Experiment No. 6-6. Getting a Few Characters

This experiment lets you further explore the use of the GET

command and how it might be used in a program to get only a few

characters. This experiment is optional, and you can skip over it if

you want to.

Suppose you want the computer to get only five characters from

the keyboard. The GET command can be used in a loop that is done

five times by the computer. Clear your computer and type in this

program:

120 PRINT "TYPE 5 LETTERS11

140 FOR LC = 1 TO 5

160 GET L$

180 TS$ = TS$ + L$

200 NEXT LC

177

220 PRINT TS$ « ,

240 PRINT "THE END11 |J

The computer will go through the loop between lines 140 and 200

five times, linking each letter to the string TS$. When five charac- i i

ters have been obtained from the keyboard, the computer prints |J
THE END. Run the program but don't type any letters.What do

you see on the TV screen? The computer displays THE END, , .

which means that it reached the end of your program! How can this

happen, since you didn't type your five letters? The computer went ^
through the loop five times, getting a "null" character from the

keyboard each time. Your program can't tell the difference I j

between a useful character and a "null" character. Remember that U
the string operations are not affected by a null.

The program can be modified to accept only printing, non-null i

characters. Add the following line to your program: I

170 IF L$ = "" THEN GOTO 160

In line 170, the quote marks are right next to each other, there is

no space between them. This represents a null character to the

computer, and this statement tells the computer that if a null char

acter is obtained from the keyboard, ignore it and go back and do I j

the GET command again. The computer will only pass the IF- U
THEN command when a non-null character has been typed in.

Once you have added line 170 to your program, run it. Is the i i

message, THE END, displayed on the TV screen? It shouldn't be. [J
Type in five letters. What is displayed after all five have been

typed? The five letters should be displayed as a complete string.

This program shows how the GET command can be used with an I j
IF-THEN command that checks for and ignores the null charac- I—I
ters.

TELLING TIME LJ

The Commodore 64 computer has a built-in 24-hour digital clock i i

that is easy to use. The clock has been given the string label, I
TIMES$, or simply TI$, and you can use this label to "set" and

"read" the time. The clock is accurate to one second and it will run

for as long as the computer is powered. The clock is completely J j
independent of your programs, so no matter what you do, the clock U

still keeps accurate time. This type of clock is called a real-time
clock. |

178 ^

n

n

n

n

n

n

n

n

n

Setting the clock is easy. You put together a 6-character string of

numbers that represents the hours, minutes, and seconds with two

characters for each. So, to set the clock for exactly 5:30 a.m., you

type in:

TI$ = "053000" [RETURN]

Since the clock has a 24-hour "cycle," times after noon must have

12 added to them. For example, 6:00 p.m. is 1800, 11:00 p.m. is 2300,

and so on. You can set the seconds, too. For example, 9:00 a.m. and

i5 seconds would be set by:

TI$ = "090045"[RETURN]

You don't have to do anything special with the string, TI$. Sim

ply by labeling the string of digits, you set the clock's time. Read

ing the clock is also easy. You simply use the label TI$ in your pro

gram. For example, by asking the computer to PRINT TI$, you

will have the time printed on your TV screen. If your computer is

on, you can type in:

PRINT TI$ [RETURN]

If the clock doesn't show the right time, it's probably because it

wasn't set. Here's an experiment that shows you how to use the

clock.

Experiment No. 6-7. Using the Computer's Clock

In this experiment we will show you how to use the Commodore

64's built-in clock. Clear your computer and type in the following

program:

100 INPUT "TIME "; TI$

120 PRINT " [SHIFT] [CLR/HOME] "

130 PRINT TI$

150 PRINT " [CLR/HOME] "

160 GOTO 130

This program lets you type in the time to "set" the clock. After

the clock has been set, the time is displayed on the TV screen. You

can run the program and set the clock to any time you wish. Just

remember that the format of the characters in the string is:

M ^^163000^

HOURS MINUTES SECONDS

179

LJ
The characters must be typed in as a group of six, without any I I

spaces or other characters used in the string. If you have a watch [J
handy, you can synchronize the Commodore 64's clock with the

time on your watch. You'll find that the computer's clock keeps

good time.

Stop the program and start it again. Type in the following time: '—'

235800 , ,

Do you know what time this is? It's 11:58 p.m., and no seconds. U
Watch the display. What happens when the seconds reach 59?

What happens when the minutes reach 59? In about two minutes, i i

the time changes to 000000, or midnight. M
Since the time can be obtained from the computer by using a

string label, can you suggest how you might change the program to

include an "alarm"? You can set up an alarm by comparing the

clock's time, TI$, with your own string that represents the alarm's LJ
time. Here's how you might do it:

100 INPUT "TIME "; TI$ I I
110 INPUT "ALARM "; AL$ U
120 PRINT " [SHIFT] [CLR/HOME] ■■

130 PRINT TI$ I I

140 IF AL$ = TI$ THEN PRINT "GET UP!!!" U
150 PRINT " [CLR/HOME] "

160 GOTO 130 i

You can test this program by typing in a time that will start the L
clock and an alarm time that is only a minute or two later. For

example: i j

RUN LJ
TIME ? 040000

ALARM ? 040200 i t

What happens when the clock reaches the alarm time? The alarm LJ
message, GET UP!!!, is printed on the TV screen. This is not a very

effective alarm unless you happen to be using the computer. In a II

later chapter, you'll learn how the Commodore 64 can make sounds [J
and generate a useful alarm signal.

At first, the clock may seem interesting but not very practical. , ,

However, many computer programs use a clock. For example, pro

grams can "stamp" a time on a computer file so you know when it ^
was last used. Games often use a clock so that if you don't make

your move in a specific time, the computer just goes on. Some peo- I I

180

H

n

n

n

n

n

n

n

pie use "appointment book" programs to keep appointments in a

computer file, so the clock can remind them when they are sched

uled for important meetings.

STRINGS AND VALUES, VALUES AND STRINGS

It is important to remember that strings are not values and val

ues are not strings. You can quickly tell one from the other by the

labels used; if the label ends with a dollar sign, it's for a string, oth

erwise, the label is for a value.

Sometimes it is useful to change strings into values and values

into strings. Of course, this is only useful for "numbers." It doesn't

make sense to try and get a numeric value for the strings "BETH

SCOTT," or "SARA JANE."

Let's look at a use for these operations. How can you set an

alarm for an hour from now? In the experiment you just finished,

you typed in a string of numbers to set the alarm. If you didn't

want to have to figure out the new alarm time and type in a new

setting, you'd have to do something such as this:

1. Get the present time string, TI$.

2. Convert it to a value.

3. Add one hour to it.

4. Convert it back to a string.

5. Save it as the alarm string, AL$.

The actual program to advance the alarm can be quite complex,

and we won't discuss it any further. However, the operations that

perform these conversions are the STR$ for the value-to-string

operation, and the VAL for the string-to-value operation. These

operations are only used when you have strings of numbers, or val

ues that are to be converted. Here is a simpler example that shows

how the STR$ operation can be used to get the first digit of a mail

ing code:

500 INPUT "MAIL CODE91; MC

510 M$ = STR$(MC)

520 X$ = MID$(M$f2f1)

530 PRINT X$

The first step is to INPUT the mail code, no matter how many

digits it has. The STR$(MC) operation converts the value into a

string of characters, and the MID$ operation gets the left-hand

digit.

181

There is a special reason why the MID$ operation is used instead i i

of the LEFT$ operation to get the left-most character in the mail [J
code. The STR$ operation automatically inserts the sign of the

number at the start of the resulting string. A minus sign is put on

the left side of a string for a negative number, but the computer I
leaves a blank space for positive numbers. If a number doesn't ■—'
have a minus sign, it's assumed to be positive.

So, if you type in the value -11743, the string M$ is "-11743" I j

with the minus sign at the left end of the string. If you type in U
41609, M$ is just "41609" with a space at the left end. To get the

first digit without the sign (or the space for it), the MID$ operation | i

is used. The MID$ operation in the sample program says to the

computer, "Go in two characters from the left and get one charac

ter."

The VAL operation does the reverse, converting a string into a I I
value that can be used in math problems, for example. These opera- LJ
tions are not found in too many programs. For more information

about the STR$ and VAL operations, check the Commodore 6U i

Programmer's Reference Guide. |_

QUESTIONS | I

1. How can you tell that a label is used to identify a string instead '—'
of a value?

2. Can a string of characters be input to the Commodore 64 with a

standard INPUT command? If so, how?

3. How are strings combined?

4. Can strings be combined in any order?

5. What characters are "ignored" by an INPUT command? How

can they be input for use in a string?

182

n

n

6. What types of decisions are made for strings?

7. What operation tells you the length of a string? Are all charac

ters counted?

8. How can you get the left three characters and the right six

characters of the string, CAT$?

n9. How can you get the middle five characters of the string, G$

"QUESTIONS"?

10. If a key is not pressed when a GET command is done by the

Commodore 64, what is the result?

n
r-j 11. What kind of clock is built into the Commodore 64?

12. What is a "real-time clock"?

13. Can values and strings be interchanged? Could this be a useful

operation?

n

n
183

u

u

PROBLEMS

1. Write a program so that you can enter a string and have the

computer display the number of characters in the string.

2. Write a program that lets you enter a string. The computer

then separates the string into two equal pieces and displays the

two pieces of the string, each on a separate line. If the string

contains an odd number of characters, then one piece will be

one character shorter than the other.

3. Write a program that uses arrays, where you enter the names

of five people, along with their ages. Once this is done, enter a

name and the person's age should be displayed. If you enter an

age, the person's name should be displayed. A typical display

would be:

NAME OR AGE ? WENDY

AGE IS: 19 i

NAME OR AGE ? 23

NAME IS: HENRY

NAME OR AGE ? DAN

NO SUCH PERSON!

4. Write a program so that once a string has been entered into the

computer, the characters in the string are displayed on the TV

screen, one character per line. For example: , ,

STRING? COMPUTER

CHARACTERS ARE:

C

0

M

P

U

T

E

R

184

u

u

u

u

n

n
5. Write a game program that lets you enter a word (a string).

The computer then "scrambles" the string and displays the

result. To scramble the string, just randomly change the posi

tion of the characters in the word. The program should operate

on strings of any length. You then have to enter a guess as to

what you thought the string (word) originally was. If your

guess is wrong, the computer lets you enter another guess. If

you guess correctly, you can enter another word to be

scrambled.

6. Write a subroutine that causes a string to be displayed in the

center of a line on the TV screen. You can assume that the

string to be centered is called A$, and that it is less than 40

characters long.

7. Write a program so that once a string has been entered from

the keyboard, the first character of the string is displayed on

one line, the first two characters are displayed on the next line,

the first three on the next, until finally the entire string is dis

played on the last line. As an example:

H
I STRING TO USE ? ORANGE

n °r1 ' ORA
ORAN

H ORANG
1 ! ORANGE

n

n

n

n

n

n

8. Write a program that lets you enter two strings, and then the

computer displays them in alphabetical order. Assume that the

strings only contain letters, no numbers or special symbols.

9. If you have solved Problem 8, write a program that lets you

enter five strings into an array. The computer then displays

the strings in alphabetical order, one string per line.

NOTE: In this problem, the strings do not have to be

"sorted," that is, they do not have to be moved about inside

the array. Instead, the program simply finds the first string

and displays it, and then the next string, etc. The strings are

185

n

not moved around in the array. If you want, you can eliminate i «

the strings from the array (set them to null "" strings) once M
they have been displayed.

10. In Problem 11, Chapter 4, you had to write a program that con- i i
verted a day between 1 and 365 to the month and day of the \J

month. Now, solve the same programming problem using the

additional statements and commands that you have learned

about in the last two chapters. (HINT: Use DATA statements j j
in your program.) Li

11. Write a program that lets you enter a number such as 1208976. ,

This number is converted to a string and then the computer j
displays the string, with commas in it, such as 1,208,976. Don't ^
worry about detecting a number that has been entered using

scientific notation, that is, numbers such as 6.5E+30 or I

4.203E-5. L

12. Write a program that causes the Commodore 64 to simulate a

tickertape or electronic billboard. After entering a string (con- I I
taining 40 or more characters), the first 39 characters of the LJ
string are displayed on the top line of the display. After a short

period of time, for example, % second, 39 characters are dis- i j

played again on the top line of the display, starting at the sec- [J
ond character. This continues until the last character is dis

played again, starting at the beginning.

13. If you have solved Problem 12, modify the program so that [J
instead of displaying the last character in the message and 39

spaces, the message "wraps around." This means that as you . .

get toward the end of the message, the beginning of the mes

sage starts to appear on the right-hand side of the screen.

14. Using the clock built into the Commodore 64 (TI$), write a pro- . j

gram that lets you enter four or five times, such as 2 minutes, M
30 seconds (enter as 230), 4 minutes (enter as 400), and 10 min

utes (enter as 1000). After these times have been entered, the

computer starts to keep track of the time. After 2 minutes and I I
30 seconds have elapsed, the computer displays the message U
"TIME 1 HAS ELAPSED." After the second time period has

elapsed, the computer displays the message, "TIME 2 HAS j j

ELAPSED." This process should continue until all of the times [J
that were entered on the keyboard have been "timed." This

type of program would be useful in photography, where a num- , j

u
186

n

n

ber of the film development steps have to be timed, one right

after the other.

15. Write a program that asks you the time, and then asks how

many hours and minutes to wait before displaying the message,

"ALARM," on the TV screen. Thus, if you tell the computer

that it is 103015, and that you want the alarm to go off in 2

hours (020000), the computer will display the ALARM message

at 123015.

n

n

n

n
! 1

n

n

H

187

u

u

u

n

n

n

n

CHAPTER 7

SPECIAL MATH FUNCTIONS

p There are some special math functions that you will come across

j j less frequently than addition, subtraction, multiplication, and divi
sion. Since these new functions are not found often in computer

programs, we have put them in their own chapter. We will also tell

R you about the types of "codes" that computers use to transfer
! ! information. There are no experiments in this chapter, so you won't

need to use the computer as you read it.

n Most computer programming books that discuss BASIC-

i [language programs simply list the special math functions without
telling you much about them. They leave it to you to decide

whether or not you need to use them, providing a few simple exam-

j[pies of how these instructions work and what they do. There is a
} I great deal of interesting history behind these math operations, and

we thought you would be more interested in this than in learning

n 20 ways of using the cosine function.

THE SQUARE ROOT

Most people who have attended high school have heard of a

"square root" even if they haven't actually used this interesting

function. Let's go back to the sixth and fifth centuries, B.C.,

and look at the work of Pythagoras and his colleagues, the

189

H

Pythagoreans, who lived in what is now southern Italy. The

Pythagoreans were interested in the abstract side of mathematics

and did not use their mathematical skills in any commercial ven

tures. One of their beliefs was that there was a common measure

between any two lengths. Thus, no matter what their lengths,

there was a common measure between two pieces of rope, as shown

in Fig. 7-1. In this example, one piece of rope has two "units"

'l^^'^Zr-^<^^-^^^TJ ROPE #1

I

^^1 ROPE #2

I COMMON UNIT J I
OF MEASURE [_

Fig. 7-1. There is a common unit of measure between the two pieces of rope.

| !
while the other has three "units." Of course, other lengths of Li
rope would probably require different common "units."

Ancient Egyptian land surveyors used a rope triangle with sides |

of 3, 4, and 5 units during their surveying. Such a triangle always [_

contained a "right angle," or an angle of 90°, which made it an

ideal tool for laying out square or rectangular plots of land. No mat- , .

ter what size triangle was chosen, if the ratio of the sides was 3 to 4

to 5, a right angle was always formed. You can measure a piece of '-'

string and prove this for yourself.

Using this type of special triangle as an example, the J j

Pythagoreans discovered an interesting thing about right triangles [J
— those in which one angle is 90°. If a square was constructed for

each side of the triangle, as shown in Fig. 7-2, the area of the large j .

square (25) on the long side was found to be equal to the sum of the j

areas of the two smaller squares (9 + 16). It is thought that the

Pythagoreans also knew this was the case for a right triangle in

which the two short sides were of equal length, as shown in Fig. 7-3. J j
This "sum-of-the-squares" relationship can be proven for other LJ
right triangles, too, but in their time the Pythagoreans probably

weren't able to do so. Today, this relationship between the i j

"squares" on the sides of a right triangle is called the Pythagorean jj

Theorem.

The Pythagoreans looked at the type of triangle shown in Fig. 7-

3 and found that there was no common measure between the two j
short equal sides and the longer side. No matter how small a "mea- »—'
sure" was used to divide the sides, they could not find one that was

common to the short sides and the long side. Since the common- I

190 ^

j !

n

25 UNITS IN SQUARE

(16 UNITS+ 9 UNITS)

><
)<
y 3

y
4

90°^

16 UNITS IN SQUARE

9 UNITS IN SQUARE

Fig. 7-2. A 3-4-5 right triangle shows the sum-of-the-squares rule.

n

n

2 UNITS IN SQUARE

(1 UNIT + 1 UNIT)

1 UNIT IN SQUARE

1 UNIT IN SQUARE

Fig. 7-3. Another right triangle that shows the sume-of-the-squares rule, but

without a common measure between the short and long sides.

measure principle was central to their mathematical thinking, this

posed a perplexing problem.

Obviously, the area of the large square is 2 square units, so the

n length of the long side must be a number that when multiplied by

I \

191

itself yields 2. We know that this number is approximately 1.41, . ,

but the Pythagoreans did not have decimal numbers and could not ([
find a number that would exactly represent this length. Since there ^
was no common "measure" or ratio between the lengths of the

short and long sides, the length of the long side was said to be "not

a rational" number, or irrational. i_

As mathematics evolved, the side of a square was called the

"root" of the square, or the number from which the square j |

"grew." Now we simply say "square root," and calculators and If

computers can easily find the square root of a number. In the case

of the value 2, the square root is close to 1.414. We say close,

because the square root cannot be calculated to a final value. A

pocket calculator gives the value as 1.4142136 . . ., and more deci- L-l
mal places may be calculated.

The Commodore 64 calculates square roots very easily using the j j

SQR operation, and here is what it looks like: }J

ROOT = SQR(number) or DX = SQR(2.00)

The SQR function expects the number you want the root of to be

greater-than or equal-to zero.

Here is how you can use the square root operation to find the

long side of a right triangle if you are given the lengths of the two | j
short sides: LJ

500 REM COURTESY OF PYTHAGORAS

520 PRINT "ENTER TWO SHORT SIDES11 j
540 INPUT S1 : INPUT S2 ^J

560 LG = SQR(S1*S1 + S2*S2)

580 PRINT "LONG SIDE IS . . . " LG n

There are many uses for the square root function in engineering, L-»
science, mathematics, statistics, surveying, astronomy, and other

fields that evaluate numeric information. It is one of the more use- j j

ful functions that we'll describe in this chapter. jj

THE VALUE OF PI | j

One of the problems facing ancient mathematicians was the exact

measurement of the circumference, or the "length" around the out

side of a circle. While the radius (r) and diameter (d) for the circle j

shown in Fig. 7-4 can be easily measured, there is no accurate way LJ

to measure the length of the circumference (c). You can use a com

pass to mark out a circle and you can try to measure the circumfer- i i

192 ^

u

n

n

n

n

n

n

CIRCUMFERENCE

c

Fig. 7-4. The radius and diameter of a circle are easy to measure; the

circumference isn't.

ence with a ruler. You'll find that it's difficult to measure a curved

line with a straight-edged ruler, and the early mathematicians had

the same problem. In their attempts to measure the circumference,

they found that it was approximately three times the length of the

diameter. Ancient Hebrew and Babylonian mathematicians fixed

the ratio of the diameter to the circumference at exactly 1 to 3, or

just 3.

The ancient Egyptians knew better, however, using the ratio of 1

to 3.1605 as early as 2200 B.C. Of course, they didn't have decimal

numbers, so the ratio was written in a different form. The main

point is that the Egyptians were able to come up with a more accu

rate ratio, realizing that the circumference was not simply three

times the length of the diameter of a circle.

The Greek mathematician, Archimedes, who lived between 287

and 212 B.C., improved upon this ratio by using a process of approxi

mations that is shown in Fig. 7-5. Using this method, a circle has a

square placed inside it so that each corner touches the circle.

Another square is placed outside the circle so that each side

touches the circle. It is easy to measure the perimeter of both

squares, and the circumference lies somewhere between these two

values. Archimedes increased the number of sides on each square,

making them into octagons, and he added more and more sides as

he went on. In each case, the inside polygon had all its sides equal,

and each corner touched the circle. The outside polygon had its

sides of equal length, too, and each side touched the circle. As the

193

OUTSIDE SQUARE

\
OUTSIDE POLYGON

Fig. 7-5. Using approximations to measure the circumference of a circle.

number of sides of each of the polygons was increased, their perim

eters more closely matched the circumference of the circle. When

Archimedes had gotten the polygons so they had as many sides as

possible, he was able to put the diameter-to-circumference ratio

between 71 to 223 and 70 to 220. More simply, the circumference

was between 3.14085 and 3.14286 times the length of the diameter.

A Hindu mathematician, Aryabhata, who lived in the sixth cen

tury a.d., was able to further refine the value to 3.1416, which is

extremely close to the present value of 3.14159. This is a constant,

and it is used by engineers, scientists, mathematicians, students,

and almost anyone who has taken even an introductory course in

geometry. The constant is called pi, for the Greek letter, tt, which

is used to stand for the value 3.14159. You can simply think of it as

a special label for this value.

Most people can tell you the simple relationships:

circumference = x*diameter of the circle

And, since the diameter is twice the length of the radius:

circumference = 7r*2*radius of the circle

LJ

U

L

U

u
The value of pi has been preset in your Commodore 64 computer,

and you will see the Greek pi symbol, tt, on the up-arrow key on the

right side of the keyboard. This is a special label used just for this i [
value in the Commodore 64 computer. You can type: LJ

PRINT 7T

194
L

n

n

ll

n

n

n

n

and you will see the value 3.14159265 displayed on the TV screen.

You can use this value in a program by using the label, tt, in your

math formulas. Here is a sample program that calculates the cir

cumference of a circle when you type in its radius:

250 INPUT "RADIUS = "; RD

260 PRINT "CIRCUMFERENCE IS = ■■ 2*tt*RD

270 GOTO 250

Now, with an accurate value for the ratio between a circle's

diameter and circumference, it was possible for mathematicians to

look more closely at circles and some of their other measurements.

We now move on to trigonometry.

TRIGONOMETRY

Although this subject often seems to strike fear into the hearts

of students, trigonometry is nothing more than "tri-angle measure

ment," or the measurement of triangles. Aristarchus, another

Greek mathematician, first used what we would consider to be

"tri-angle measurements" when he attempted to measure the dis

tance between the earth and the sun, as shown in the distorted dia

gram in Fig. 7-6. His methods used complex geometric reasoning,

but his result was incorrect due to the inaccuracy of his measure

ments. However, his line of reasoning, using triangles and the

lengths of their sides, was correct and it pointed the way to more

accurate measurements and further investigations of triangles.

The next mathematician we encounter is Hipparchus, who is

thought of as the "inventor of trigonometry." Modern trigonome

try arises from his measurement of chords in circles. As shown in

Fig. 7-7, a chord is nothing more than a straight line that cuts a cir

cle into two pieces. The resulting curved line is called an arc, and

Hipparchus realized that there was a definite relationship between

the length of the chord and the length of the arc. He wrote several

"volumes" about measuring the "arc in a circle."

If lines are drawn between each of the two points where the

chord line cuts through the circle and the center of the circle (Fig.

7-8), you'll see that an angle is formed. Each circle was considered

to have 360°, so these angles could be measured in degrees. How

ever, chords were measured by their length, and this was based

not on a standard of inches or centimeters, but on the length of the

radius of the circle. This type of measurement could lead to prob-

195

MOON AT

"HALF-MOON PHASE

Fig. 7-6. Using angles to measure the distance from the earth to the sun.

\

ARC

LI

LJ

u

U

u
Fig. 7-7. An arc and a chord in a typical circle.

196

n

n

n
.CHORD

n

n

n

Fig. 7-8. An angle is formed between the center of a circle and the points where

the chord crosses it.

j I lems, since the measurement of a chord depended on the units used
to measure the radius of the circle.

^ This brings us back to the Hindu mathematician, Aryabhata. His

i j contribution to trigonometry was to divide each chord in half, as

' shown in Fig. 7-9, and he also introduced a right angle, or 90° angle,
into the measurement. As trigonometry developed, it was realized

r^ that the ratio between the length of the radius and the length of

the half-chord was more useful than the lengths by themselves. For

example, consider the two triangles (or half-chords) shown in Fig.

j—I 7-10. The circles have been left out for clarity. The angles are

| exactly the same, but the lengths of the "radius" and the "half-
chord" are different. However, when the lengths are measured and

the ratios are calculated, they turn out to be exactly the same.

P With an inexpensive ruler, we found that each "half-chord" was
just about 0.46 times the length of the "radius." This is an impor

tant relationship, since no matter what size the triangle is, if the

n angles are the same, the ratios are the same.

The word to describe this relationship was translated and mis

translated several times, so we finally have the Latin word, sinus,

^ which means "curve" or "bosom." This has been abbreviated to

sine (which is pronounced "sign"), and is usually found in mathe

matics books as simply sin. The words "radius" and "half-chord"

are no longer used in this relationship. Instead, we refer to the

long, angular line as the hypotenuse, and the other lines are said to

197

LJ

Fig. 7-9. The angle in a circle-chord can be simplified by looking at only half of it.

CHORD B

CHORD A _

RADIUS A

86 =0-465

0.465 =

CHORD B

RADIUS B

rF5=0-469

0.469

Fig. 7-10. Two triangles that have the same angles have equal ratios between the

sides.

be adjacent-tOy or opposite-front, the angle we're interested in. The

sine of angle A is just the ratio of the length of the opposite side to

the hypotenuse. Of course, this is only true for a right-triangle.

198

u

u

u

n

n

n

n

n

n

Without going into the history behind them, we'll simply tell you

that there are two other ratios of interest. One is called the cosine,

or cos, and the other is called the tangent, or tan, of the angle.

These are also ratios of the lengths of the sides of the triangle. The

three relationships are illustrated in Fig. 7-11.

SINE

COSINE

TAKinCMT

SIN A =

COS A =

TAW A —

OPPOSITE SIDE

HYPOTENUSE

ADJACENT SIDE

HYPOTENUSE

OPPOSITE SIDE

ADJACENT SIDE ^_

ADJACENT

Fig. 7-11. The sine, cosine, and tangent ratios between the sides of a right

triangle.

n
COMMODORE 64 TRIGONOMETRY

Your Commodore 64 computer can give you the sin, cos, and tan

for any angle you give it, so it is possible to use these ratios in

many interesting ways. They are particularly useful in science,

engineering, and mathematics. We'll look at an example in just a

moment. The formats for these BASIC-language operations are

fairly simple:

A = SIN(QX) D = COS(FK) R = TAN(YW)

However, there is one problem: the Commodore 64 does not

accept angles measured in degrees. A circle contains 360°, and this

is convenient for many measurements. However, the Commodore

64 trigonometric, or trig functions require that the angle be mea

sured in a unit called the radian. A radian is nothing more compli

cated than a "radius." Since the circumference of a circle is equal

to:

circumference = 2 *tt* radius

there are 2 ic radiuses, or radians, around the circle as shown in

Fig. 7-12. No matter what the actual radius is, this will always be

true. Since there are also 360° in a circle, it is not difficult to con

vert from radians to degrees, or vice versa.lt may take you a while

to get used to the term radian. Just remember that there are about

57° per radian. You can convert from degrees to radians with this

formula:

199

1 RADIUS

1 RADIUS

1 RADIUS

1 RADIUS

0.28 RADIUS

1 RADIUS

1 RADIUS

u

LJ
CIRCLE = 2tt RADIUSES = 6.28 RADIUSES =6.28 RADIANS

Fig. 7-12. The relationship between the radius of a circle and the number of

"radians" around its circumference.

radians = (anglefal

or from radians to degrees with this formula:

degrees = (radigf360

In BASIC, these are:

RAD = DEG*2*tt/ 360

and:

DEG = RAD*360 / (2*rr)

USING TRIG FUNCTIONS

Here are two examples that show you how trigonometry can be

used. Not all of the mathematics or algebra is shown, since that is

really secondary. We want you to have an appreciation for the

types of problems that can be solved with the trig functions. The

BASIC programs are provided for you.

In the first example, several young people are testing model.

200

n

n

n

n

I I

n

n

n

n

rockets and they want to know how high the rockets are going. The

rockets are fired straight up and there is no wind to blow them off

course. Two people use a home-built device at an observing point to

measure the angle between the rocket and the level ground. This is

shown in Fig. 7-13. Once the rocket has been fired, the students

OBSERVERS MEASURED ANGLE = A

ROCKET

650 m LAUNCH

1 "DISTANCE"

Fig. 7-13. Measuring the angle between the ground and the rocket to get its

height.

track it until it reaches its maximum height. At this point, they

note the angle between the earth and the rocket. Since the distance

from the launch site and the students doing the measurements is

650 meters, can we calculate the altitude of the rockets?

The diagram of the launch site can be simplified to a right trian

gle. The angle, A, has been measured and the side of the triangle

marked "distance" is 650 meters. The tangent function can help us
out, since:

tan(angleA) =
side rocket heighth g

adjacent side distance from launcher

And, by rearranging the equation, you get:

rocket height = distance from launcher * tan (angle A)

The angle must be converted into radians, too. Here is a com
puter program that will solve the problem:

200 PRINT "***ROCKET ALTITUDE CALCULATOR***"

220 INPUT "DISTANCE TO LAUNCHER"; DTL

240 INPUT "MAXIMUM ANGLE"; MA

260 RAD = MA*2*tt/ 360

280 ALT = DTL*TAN(RAD)

300 PRINT "ALTITUDE" ALT

201

In the second example, we'll extend this application a bit by sup- I j

posing that a light wind is changing the rocket's flight path so that [J
it doesn't always go straight up. Is it possible to measure its maxi

mum altitude? Since the rocket is no longer going straight up, it , .

cannot be done with only one observation. Two observers are j

needed, as shown in Fig. 7-14. The only measurements needed are: *—'

1. The base-line distance between observers (BL). I

2. The angle between the ground and the rocket for each observer

(GAandGB). U
3. The angle between the base line and each observation (HA and

hb). y

Since it is important that the observers record their angles at

exactly the same time, a set of walkie-talkie radios is used to coor

dinate the measurements.

There are two ways to solve this problem: (1) make a scale draw- I—'
ing using the angles and the base-line distance and "measure" the

rocket's altitude, and (2) calculate the altitude using trigonometry. !

We'll take the latter course. Here's the BASIC program that will _
solve the problem:

100 PRINT "***ROCKET ALTITUDE CALCULATIONS***" |
120 PRINT " FOR TWO OBSERVERS" U
140 PRINT

160 INPUT "BASE LINE LENGTH"; BL j I

180 PRINT LJ
200 INPUT "OBSERVER A GROUND ANGLE"; GA

220 INPUT "HEIGHT ANGLE"; HA i .

240 PRINT M
260 INPUT "OBSERVER B GROUND ANGLE"; GB

280 INPUT "HEIGHT ANGLE"; HB

300 PRINT I j
320 REM CONVERT TO RADIANS LJ

340 C = 2*tt/ 360

360 GA = GA*C : HA = HA*C j

380 GB = GB*C : HB = HB*C L

400 BX = BL/((TAN(GB)/TAN(GA)) + 1)

420 AX = BL - BX

440 PA = AX/COS(GA)

460 PB = BX/COS(GB) U
480 REM ALTITUDE CALCULATIONS

500 A1 = PA*TAN(HA) I j

202

n

n

n

n

n

n

n

n

n

Fig. 7-14. Using two observers to measure the height of a curved flight for a

rocket.

520 A2 = PB*TAN(HB)

540 AVG = (A1 + A2) / 2

203

560 PRINT "OBSERVER A ALT = " A1 i I

580 PRINT "OBSERVER B ALT = " A2 \J

600 PRINT "AVERAGE ALTITUDE = " AVG

If you decide to run this program, here are some values you can I j

use: LJ

Base line between observers: 3000 meters

Observer A ground angle: 45° j j
Observer A height angle: 37° Li
Observer B ground angle: 26.5 °

Observer B height angle: 26° | i

You'll find that the altitudes calculated for observers A and B LJ
are 1066 and 1090, respectively. The average is 1078. Remember,

these values are based on experimental measurements, and there j j

are always errors in them. LJ
The important point of these examples is to give you an apprecia

tion for the use of trigonometry and for the tremendous work done j ,

by early mathematicians as they developed these relationships and jl
came up with the ratios used in the sine, cosine, and tangent opera

tions.

There is one last trigonometry operation in the Commodore 64, j j
and it is called the arc-tangent, or arctangent. If you have the tan- LJ
gent of an angle, the arctangent operation will give you the angle,

in radians. The form for this operation is: | j

ANGLE = ATN(tangent of the angle) L»
There are many other trig operations that can be done, based on

the SIN, COS, TAN, and ATN functions of the Commodore 64, and \
they are listed in the Commodore 6U Programmer's Reference ^
Guide.

LOGARITHMS ^

Early mathematicians spent years computing and compiling the i s

values of the sine, cosine, and tangent for angles. Since these val- jj
ues were still thought of as "lengths of a chord," very small units

were used to measure the radius of the circle so that fractional

lengths were avoided as often as possible. The calculations of these J
"lengths" required tedious multiplications and divisions in the LJ
interest of greater accuracy, and they were not always error-free.

A better method was needed for manipulating large numbers, j |

204

n

n

n

n

and the Scottish mathematician, John Napier, contributed two solu

tions. His first was the development of decimal fractions as we

know them, something we take for granted. Earlier mathemati
cians often multiplied small numbers by a million so they wouldn't

have to work with fractions. At least one table of square roots was

published in which this was done. The square root of 3000000 is

1732, which doesn't require any fractions, while the square root of

3 is 1.732. The value 1.732 would have been 1 and 183/250ths to the

mathematicians in the sixteenth century. Although the roots in the

table were 1000 times too great, this was easy to remember and
fractions were dispensed with.

It did not occur to many mathematicians to extend their digits to

the right as we do today, using a decimal point and decimal frac-

tions. Napier developed the idea of using a "period" or decimal

j point and extending the fractions as their decimal equivalents in
tenths, hundredths, thousandths, and so on. This meant that frac

tions could be easily represented and worked with using a single
line of decimal numbers.

Napier's second development was the logarithm, which he

described in a book published in 1614. It had taken him 20 years to

r*. develop and refine this idea and to provide useful tables of loga-

j j rithms that others could use to simplify calculations. This had a
1 profound influence on the mathematics of Napier's time, and loga

rithms are widely used today.

H Without going into more of the history of logarithms, or "logs"
! I as they are commonly called, we'll just say that Napier developed a

special way of treating numbers. Basically, all numbers can be rep-

—\ resented as a common, or base value with an appropriate expo-

j nent. Exponents or superscripts are mathematical shorthand notes
that are placed above and to the right of numbers or labels to indi

cate how many times they are multiplied by themselves. Since

modern logarithms use a base of 10, here is an example:

10*10*10 = 103 = 1000

Thus, the base-10 logarithm of 1000 is 3. There are tables of loga

rithms that provide the exponent, or "log," for any value, and most

scientific calculators and small computers can give you the log of a
number.

Let's see how logs can be used. In the following example, a

value, X, is multiplied by itself five times:

X*X*X*X*X = answer

n

205

Exponents can be used to simplify the way the problem is writ- i i

ten: [J
X*X*X*X*X or X2*X3 or X5

There is something very interesting about the way the problem j j

has been rewritten. Instead of doing the actual multiplications, the LJ
exponents have been added. Napier used this approach in his sys

tem of logarithms. By using logarithms, multiplication of numbers j" |

became the addition of their exponents, and division of numbers M

became the subtraction of their exponents. Other complex func

tions can be simplified by using logarithms, too.

Using logarithms, you can easily multiply 3.98712 by 2.12678 J
without doing any multiplication at all. You can find the log for LJ
each of these values in a table of logarithms and, since each log rep

resents an exponent, simply add them. The result would be an j' i

exponent which is the log of the answer.Here is what the problem jj
looks like:

3.98712 log(3.98712) = 0.6006584

X2.12678 log(2.12678) = 0.3277226 jj

log(3.98712) + log(2.12678) = log(answer) = 0.928381 I i

Now, you would look in the table in the logs column until you LJ
found 0.928381. On the same line would be the value 8.47971, which

is the result of the original multiplication. Although this has been j j

simplified a bit, it still shows you how powerful logs were in easing |J
the job of complex calculations.

Napier's original table of logarithms is no longer used. It was , -,

quickly improved upon by other mathematicians, and the base-10,

or common, logarithms are the ones in general use today. However,

10 is not the only base possible for logarithms.

There is another type of logarithm called the Napierian or natu- j I

ral system of logarithms, and it is based on the value 2.7182818. U
This "natural" base is simply called "e" by people who use this

form of logarithm. Although called Napierian logarithms, these are r •

not the original logarithms Napier developed. M
As long as you are just using the logarithms to simplify multipli

cation, division, and other complex math operations, the base is

unimportant. However, in some calculations it is important to dis- j
tinguish between the two systems of logs. In the common log sys- LI
tern, logs are noted as log(x), while in the natural log system, they

are noted as ln(x). J j

LJ

206

n

o

n

n

n

n

n

n

n

n

n

COMMODORE 64 LOGS

The Commodore 64 uses natural logs, so it is unfortunate that

the LOG notation has been chosen for the logarithm command in

BASIC. To have the computer give you the natural log of a value,
you use the command:

QX = LOG(value) (The value must be greater than
zero.)

You are asking the computer, "What exponent do you use with
V to get Value'?"

Once you have obtained the logarithm of a number from the com

puter, how can you get back to the original number? The Commo

dore 64 uses the EXP operation to do this. Here is an example:

DZ = EXP(value)

You are asking the computer, "What is the result of raising V to

the Value' power?" In this case, the value must be less than 88.
The 88th power of e is a very big number!

If there is a need to, you can convert between the natural and

common logs. Here are these important relationships:

ln(x)= 2.3026*log(x) or 0.4343*ln(x) = log(x)

and

ex _ jq(0.4343*x) or e(2.3026*x) = jqx

Logs are often used when people are comparing power levels,

and the following relationship is used:

power ratio = 20*log (power out / power in)

For example, if a hi-fi amplifier can produce 150 watts of power

from a tape recorder that gives it only 0.1 watt, the relationship is:

power ratio = 20*log (150 / 0.1)

= 20*log(1500)

= 63.52

The power ratio is called the "decibel," or dB, named after Alex

ander Graham Bell, the inventor of the telephone. Bell worked with

deaf people, and the telephone was an attempt to develop a device

to increase their ability to hear. Decibel simply means tenth-of-a-

bel, since the larger unit of bel is not frequently used. If you buy a

hi-fi amplifier and the salesman tells you that the amplifier can

207

u
deliver a 50-decibel power gain, you'll have a good idea of what he i i

is talking about. [J
Since the Commodore 64 uses natural logs, the power relation

ship would be: (

power ratio = dB = 20*0.4343*ln(power out / power in) [J

or, in a BASIC computer program:

DB = 20*0.4343*L0G(P0 /PI) j j

There are many other uses for logarithms in science, mathemat

ics, and engineering. I |

SPECIAL CODES

Hundreds of years ago, if "information" was to be sent quickly j j
over long distances, flags, fires, or other signaling devices had to be U
used. When the electric telegraph was developed by Samuel F. B.

Morse, the "Morse" code of dots and dashes was used. In this code, | i

dots and dashes were used to represent each letter, number, or y

other special symbol to be communicated from one telegraph sta

tion to the next. Morse code is still used today for radio communica- t

tions.

As communication techniques advanced, the teletypewriter was U

developed. This is an electromechanical device that automatically

transmits information from a keyboard to a device that prints j j

actual letters and numbers on a strip of paper. Instead of using |J
dots and dashes, a special code was developed by Emile Baudot,

and the "Baudot" code was used to transfer information from one j ,

teletypewriter to another over telegraph wires. |
As more and more computers came into existence in the 1950s

and 1960s, it was obvious that a more efficient and "universal"

code had to be adopted so that information could be transferred I j

from one computer to another. One such code is called the Ameri- LJ
can Standard Code for Information Interchange. This is abbrevi

ated ASCII, and most people who are familiar with it call it the i i

"as-key" code. [J
All of the letters, numbers, punctuation marks, and special sym

bols such as $, have a unique ASCII "code." By using this code,

computer designers and programmers can be sure that the code for I
the letter "A" will be the same from one computer to another. LJ
Without this standard, it would be difficult to transfer information

from one computer to another. j

208

U

n

n

n

n

n

n

n

n

Your Commodore 64 computer can use the ASCII representation

for information. There are two special operations that may be used

in BASIC programs to convert from string characters to their

equivalent code and back again. Although these operations are not

frequently used, you may find them in a program or two, particu

larly if communications between several computers are involved.

These operations are the ASC and CHR$ operations. The ASC

operation lets you "convert" a string character into its equivalent

coded representation. For example, PRINT ASC("H") would print

the value 72 on the TV screen, since 72 is the ASCII equivalent for

the letter "H." The CHR$ operation "converts" from ASCII to a

string character. For example, the PRINT CHR$(87) would print

the letter "W" on the TV screen, since W is the character with the

ASCII value of 87.

Here is an example of how the ASC operations can be used:

50 INPUT A$

60 PRINT ASC(A$)

70 GOTO 50

When this program is run, the value of the code for each charac

ter will be displayed on the TV screen as its decimal value. For

example, the code for the letter "X" is 88. This type of character-

to-ASCII conversion process is used when the Commodore 64 is

used as a terminal to "talk" with another computer over a tele

phone line.

The CHR$ command does just the opposite, taking a code and

converting it to its equivalent character. Here is an example:

100 INPUT CODE

120 PRINT CHR$(CODE)

140 GOTO 100

If the value 50 is typed in, the string character "2" is printed on

the TV screen. The values for the CHR$ instruction can be

between 0 and 255. However, in the Commodore 64, only the val

ues of 13, and those between 32 and 95 correspond to the standard

ASCII codes. The other codes have special functions within the

Commodore 64. Some display the special graphic symbols on the

TV screen and do other things. However, the values for the letters,

numbers, punctuation marks, and special symbols are the same.

THE TAN "I" KEYS

The four tan keys marked f1 through f4, and located on the right

side of the keyboard, have been ignored so far. These keys are not

209

u
used when you are programming the computer, since they don't

print a special symbol or have any special meaning to the Commo

dore 64. However, these keys are useful, and you may see a game

or other program that tells you to press one of them to cause some

thing special to happen.

Each of the keys has its own special ASCII value, as listed in

Table 7-1. You can get at the even-numbered "f" keys by pressing

[SHIFT] and one of these keys. The keys can be used in a program

by using a sequence of instructions such as this:

Table 7-1. ASCII Values for the Tan "f" Keys

Key

11

f2

f3

f4

f5

f6

17

18

Value

133

137

134

138

135

139

136

140

200

220

240

260

INPUT FK$

F =

IF

IF

■ ASC$(FK$)

F = 133 THEN

F = 137 THEN

GOTO

PRINT

This simple sequence checks for the fl and f2 key operations, and

takes whatever action the programmer has put in the program.

The program would probably trap errors, but we haven't shown

that. The ON command could be used, too, by subtracting 132 from

the code for the "f" keys. This gives you a 1 for the fl key, a 2 for

the f2 key, and so on. Now the following program lines could be

used:

500 GET F$

520 IF F$ ="" THEN 500

540 F = ASC$(F$) - 132

560 ON F GOTO 3500, 4590, etc . . .

This can simplify things a bit if sequential "f' keys are being

used. The main purpose of the "f' keys is to give you some extra

keys that can serve special purposes in a complex program.

For additional information about the ASCII characters and their

codes, we suggest that you look at the appendixes in your Commo-

210

u

u

u

u

ndore 64 computer guide, supplied with the computer, or in the

Commodore 6k Programmer's Reference Guide, where this infor

mation is listed for you.

n

r

n

n

n

n

n

n

REFERENCES

1. Hooper, Alfred, Makers of Mathematics. New York: Random

House, Inc., 1948.

2. Commodore 6U Programmer's Reference Guide. Indianapolis:

Howard W. Sams & Co., Inc., 1982.

PROBLEMS

1. You are standing on top of a building that is 650 feet high (Fig.

7-15). You look down at the roof of another building, 230 feet

away, at a 20° angle. How tall is this building?

650 ft

Fig. 7-15. Determining the height of a building.

n 2. When measuring the acidity of a liquid, the acidity is usually

211

n

expressed in units of pH. Water, a neutral liquid, has a pH of 7.

A mildly acidic substance, such as vinegar, might have a pH of

5 or 6. A strong base, such as some bathroom cleaners, might

have a pH of 13 or 14. The pH of a substance is defined as:

pH =-log(H+)

Thus, if the hydrogen ion (H +) concentration is 0.0000001

molar, or 1.0 X 10 "7, the pH will be 7. Write a general-purpose

program that lets you enter a hydrogen ion concentration, such

as 2.89E -6, and displays the pH (5.55 for 2.89E -6). (Hint:

Remember, the computer LOG function is really the natural

log Qn) function, so you will have to convert from LOG to In!)

3. Write a program that displays the sine of the angles, 10,20, 30,

. . ., 350° on the TV screen. The program should display both

the angle and the sine of the angle.

4. Modify the program from Problem 3 so that the sine function is

"plotted" on the TV screen. The sine for 0° should be at the

top of the screen, and the sine for 360° should be at the bottom

of the screen. The TV screen should appear as shown in Fig. 7-

16. (Hint: Use the TAB function.)

u

u

u

*

*

*

*

*

*

u
Fig. 7-16. Displaying the sine function on the TV screen.

212

u

n5. Suppose the computer does not have a tangent (TAN) function.

Write a program that compares the tangent of an angle to the

sine divided by the cosine of the angle. Does this give us basi

cally the same result? Can you guess how your computer deter-

mines the tangent of an angle?

n

n

n

n

n
:_)

213

u

u

u

u

u

"U

n

n

n CHAPTER 8

LIGHTS, ACTION

p In this chapter, you will take a closer look at controlling the TV

I j screen display. You will see how to use a computer program to

position the cursor and how to control the color of what is displayed

on the TV screen. You'll also see how you can control the screen

| without using PRINT commands, so that special displays can be
i put together.

n

1

n

'v
in

THE SPACE COMMAND

In a previous chapter, you saw how the TAB command is used to

position columns of information so they are easy to read. There is

another command that is used to position information on the TV

screen and it is called the space command, SPC. This is used within

a PRINT command and it tells the computer to move the cursor a
specific number of spaces to the right.

At first it may seem as though the SPC and TAB commands do
the same thing; both commands move the cursor to the right, but
they differ in how they do it. A TAB(IO) command moves the cur

sor 10 spaces to the rightfrom the left edge ofthe display area, but

an SPC(IO) command moves the cursor to the right 10 spaces from
its present position. These operations are shown in Fig. 8-1. Nei
ther the SPC nor the TAB command will erase or "destroy" any of

215

LEFT

EDGE OF

DISPLAY

AREA

0 1

I

I

I

i

I

_]

I

I

i

i

1

2 3

1

1

I

T
I

I

i

1

1

I
1

1

4 5

1

1
TAB(5)

t
SPC(5)

6 7

r "

i

T
1

1

8

"T
I

1
i

i

1

"|-

1
l

9

' "1
I

i

i

i

i

10 11

TAB(11)

t
SPC(6)

u

u

u

Fig. 8-1. How the TAB and SPC commands move the cursor.

the characters on the screen as they move the cursor from place to

place.

Here is a sample program that uses the SPC command. You can

type it into your computer and run it:

20 FOR S = 1 TO 38

30 PRINT SPC(S)11*11

40 NEXT S

50 FOR S = 37 TO 2 STEP -1

60 PRINT SPC(S)11*11

70 NEXT S

80 GOTO 20

MOVING FROM PLACE TO PLACE

The SPC and TAB operations move the cursor along a line on the

TV screen to display information in an orderly way. Sometimes, it

is useful to have complete control of the cursor, using the two cur

sor keys and the SHIFT key to move the cursor wherever you

want. These same keyboard operations can be put in the "mes

sage" part of a PRINT command. You've already seen how this

was done with the CLR/HOME key. If you are typing a "message"

in a PRINT command and you press the cursor control keys, you'll

find that the cursor doesn't move at all. Instead, each time one of

the cursor control keys is pressed, a special symbol is printed in the

"message." Here is an example in which the DOWN cursor control

key was pressed while the "message" was being typed:

350 PRINT " HI

u

u

u

u

216

n

n

n

The reversed "Q" displayed after the quote mark is the com

puter's notation to do a down-cursor movement when the "mes

sage" is used by the program.

When the cursor keys are pressed as a messsage is being typed,

the Commodore 64 realizes that you don't want the cursor moved

right now. However, when the computer gets to this "message" in

the program, it recognizes the special symbols and then moves the

cursor. Each of the four cursor movements prints a special symbol

in a "message," and these are listed in Table 8-1. For example,

when the computer gets to the following PRINT command, it will

move the cursor down two lines and to the right two spaces before

printing BIKES:

550 PRINT "MBflMM BIKES11

Table 8-1. Cursor Control Symbols Used in

Commodore 64 Messages

Key Symbol

DOWN 9

UP □
RIGHT fel

LEFT D

(NOTE: The UP and LEFT operations use the SHIFT key.)

Since the cursor commands move the cursor from its present

position to a new position, it's a good idea to know exactly where

the cursor is before you start to move it. Maps in shopping centers

and large buildings have a brightly colored arrow saying "YOU

ARE HERE." Without this guide, it might be difficult to figure

out where you are and where you want to go. Since the cursor can

be easily sent to its home position in the upper left-hand corner of

the TV screen, that's a convenient place to start the cursor.

Experiment No. 8-1. Moving the Cursor

This experiment will show you how to use a program to position

the cursor on the TV screen. Clear your computer and type in the

following program. You must press the cursor keys as shown in the

PRINT messages. Check your program for any mistakes. Be sure

to type the semicolon (;) at the end of lines 10-30:

10 PRINT "[SHIFT] [CLR/HOME]";

20 PRINT "[DOWN] [DOWN] [DOWN] [DOWN] [DOWN]";

30 PRINT "[RIGHT] [RIGHT] [RIGHT] [RIGHT]

[RIGHT]";

217

40 PRINT "HERE" , ,

When this program is listed it will appear on the TV screen with LJ
the special symbols as follows:

10 PRINT

20 PRINT

30 print tBH
40 PRINT "HERE"

I I

LJ

After you have checked your program and corrected any errors, '-'
run the program. What do you see? The "message," HERE, is dis

played near the upper left-hand corner of the TV screen. The I I
READY message is also displayed. LJ
Here's something a bit more complicated. Let's try a counting

program that displays increasing numbers but only at one place on i i

the screen. DO NOT CLEAR THE COMPUTER, since the pro- M
gram you just typed in will still be used. Here's the new program

for you to type in: (Remember to press the [SHIFT] and [UP/

DOWN] keys for the [UP] operation.) I I

100 PRINT "[SHIFT] [CLR/HOME]";

110 PRINT "[DOWN] [DOWN] [DOWN] [DOWN] [DOWN]
[DOWN]";

120 PRINT "[RIGHT] [RIGHT] RIGHT] [RIGHT] [RIGHT] ^J
[RIGHT]";

130 PRINT X I I

140 X = X+1 LJ
150 PRINT "[UP]";

160 GOTO 120 ,

What happens when you list this program on the TV screen? U

You'll see the program lines from the first part of the experiment,

followed by the program lines you just typed in. Both programs are i \

present in the computer. The program lines 100 to 160 should look JJ
like this:

100 PRINT "13 "; i
110 print

120 print " winni "<° ~
130 PRINT X

140 X = X + 1 |(
150 PRINT "□ "; U
160 GOTO 120

If you are confused by seeing all of the program lines on the TV

218

u

n

n

n

n

i i

n

n

screen at the same time, you can tell the computer to list only the

lines that you want to look at. In this case, type LIST 100-200

[RETURN] and the computer will list only the program lines with

numbers between 100 and 200.

Are you ready to run the program? Clear the TV screen and type

RUN, but DON'T press the RETURN key yet. Carefully watch

the upper left-hand corner of the TV screen as you press the

RETURN key. Did you see the "HERE" message flash quickly on

the TV screen when you started the program? What else happens

on the TV screen? The "HERE" message was displayed quickly,

just above the number. You can stop the program, clear the TV

screen, and start the program again if you missed seeing it. You

should be able to see "HERE" flash quickly on the TV screen right

above the display of the numbers.

Let's continue with the counting program. Each higher number

in the count "writes over" the one displayed before it, so the dis

play counts quickly, much like a digital clock when it is being set to

a new time.

The illustration in Fig. 8-2 shows how the cursor is moved by this

CLR/HOME (CURSOR'S HOME POSITION)

Fig. 8-2. The cursor movements for the number display program in

Experiment 8-1.

program. The cursor is first moved down and to the right to place it

near the center of the TV screen. After a number has been printed,

the computer moves the cursor to the left side of the line below.

This is the normal line-feed operation that automatically takes

219

u
place after each PRINT operation unless a semicolon is used to pre- j |

vent it. The cursor operation in the PRINT command at line 150 jj
moves the cursor back up to the line above so that the next number

will be printed "over" the previous one.

This is one way in which values can be displayed in the same j I
place in games, educational programs, and business programs. Do t—'

you know why the "HERE" message was displayed quickly on the

TV screen when you started the program with the RUN command? I I

The first program you typed in at the start of the experiment JJ

doesn't have an END command to tell the computer that it has

reached the end of that program. So, after the computer displays . ,

the "HERE" message, it keeps going right into the second pro

gram. An END command is used to stop the computer at the end of

each program so that this sort of thing doesn't happen.

Type in the following program line to add it to your program: j j

50 END "

Now type LIST 10-50 [RETURN] to list the first program. The j i

program should look like this: M

10 PRINT "□";
20 print " saaagasaya",- i
30 PRINT " >■—I "; [J
40 PRINT "HERE11

50 END .

Now type RUN [RETURN]. What happens on the TV screen? LJ
The computer simply types HERE on the screen. It never gets to

the counting program. Stop the computer and type RUN 100 » »

[RETURN]. What happens now? The HERE message is cleared M

and the computer starts the counting program. The HERE mes

sage is not flashed on the screen, not even for an instant, as it was

earlier in this experiment. I

In this experiment you have seen how the cursor control keys uJ
can be used in the "message" part of a PRINT command to control

the movement of the cursor from one position to the next. j i

THE MAGIC COLOR SCREEN

You can also use a BASIC program to change the color of the

characters displayed on the TV screen. This is done using special u-'
keyboard operations in a "message" in the same way that the cur

sor was moved. There are many times when it is useful to change j I

220

n

n

n

n

n

n

n

n

n

n

to a different color to call attention to a word, number, or sentence

on the TV screen.

The color of the cursor is changed by using the CTRL key (or the

GRAPHICS key) and the eight color keys that share their func

tions with keys 1 through 8 in the top row of the keyboard, as

shown in Fig. 8-3. If you press and hold the CTRL key and then

Fig. 8-3. The color control keys.

press one of the color keys, the cursor will change to the color

shown on the key. Now when you type, the characters are dis

played in the color you have selected. If you have a black-and-white

TV set, you will see changes in the shades of grey as you change

from color to color.

When the GRAPHICS key (C=) is used with the color keys, you

get five other colors and three shades of grey. These "extra" colors

are not shown on the keys, but they are listed in Table 8-2 for you.

As you found earlier in this book, or by experimenting on your

own, some of the screen/character color combinations don't look

good. All the combinations are listed in Table 8-3, and are rated as

excellent, fair, and poor.

Table 8-2. GRAPHICS Key Color-Control Operations

Keys Used

GRAPHICS and "V

GRAPHICS and "2'

GRAPHICS and "3'

GRAPHICS and "4'

GRAPHICS and "5'

GRAPHICS and "6'

GRAPHICS and "V

GRAPHICS and "8"

Printing Color

Orange

Brown

Light Red

Dark Grey

Medium Grey

Light Green

Light Blue

Light Grey

When the color of the cursor is changed, the characters already

on the TV screen stay the same. Only the characters printed after

the color has been changed are displayed in the new color.

You can also "reverse" the characters being displayed by using

the CTRL key and the RVS ON and RVS OFF keys that share

221

u
Table 8-3. Recommended Screen/Character Color Combinations

Printing Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Light Red

Dark Grey

Medium Grey

Light Green

Light Blue

Light Grey

8
CD

E

E

E

E

M

E

M

M

E

E

E

E

E

WhiteEE
M

M

E

E

E

M

E

E

E

E

RedE
E

E

E

M

E

CyanE
M

E

M

E

Purple
E

E

M

M

Green
M

E

M

E

M

Blue
E

E

M

M

M

E

E

Yellow
E

E

E

E

M

E

Orange
E

M

E

M

E Brown
E

E

E

E

M

M

LightRed
E

M

E

M

E

M

DarkGrey
E

E

M

M

E

E

E

M

E

MediumGrey
E

E

E

E

E

LightGreen
E

E

M

E LightBlue
E

E

M

E

M

M LightGrey
E

E

M

M

M

E

M

E

M

E

E

M

E = Excellent Combination

M = Marginal Combination

Blank = Not Recommended

their functions with the 9 and 0 keys. When the display is

"reversed" by using the CTRL and RVS ON keys, the cursor color

becomes the background color, and the background color is used to

print the characters. This change won't be obvious from looking at

the cursor, since its color and position stay the same. The

"reverse" printing may be turned off by using the CTRL and RVS

OFF keys. Reversed printing adds emphasis to a display, and cre

ates a special visual effect. Only the characters printed after the

display has been ((reversedy9 will be displayed in the reverseform.

The color-change and reverse-printing operations can be included

in the "message" part of a PRINT command, and they use special

symbols to represent their actions. The symbols are shown in Table

8-4. The computer changes the color or displays characters in

reverse only when it finds these special symbols in a program. For

example, when the computer gets to the following print command:

100 PRINT " 3 THIS IS WHITE11

it recognizes the 9 symbol and switches the printing color to

u

u

u

u

u

222

n

n

n

n

n

n

Table 8-4. Color Control Symbols Used in Commodore 64

Messages

Keys Symbol

CTRL and BLK (Black) ■

CTRL and WHT (White) H
CTRL and RED (Red) 3
CTRL and CYN (Cyan) k
CTRL and PUR (Purple) M

CTRL and GRN (Green) fl

CTRL and BLU (Blue) B
CTRL and YEL (Yellow) - S3

CTRL and RVS ON 3

CTRL and RVS OFF ■
GRAPHICS and BLK (Orange) □

GRAPHICS and WHT (Brown) ■

GRAPHICS and RED (Light Red) SI
GRAPHICS and CYN (Dark Grey) 3
GRAPHICS and PUR (Medium Grey) H
GRAPHICS and GRN (Light Green) U

GRAPHICS and BLUE (Light Blue) H
GRAPHICS and YEL (Light Grey) H

white. The message, THIS IS WHITE, is then printed on the TV

screen as white letters on the background color. Once the color has

been changed, the computer uses the selected color until it is

changed by another color-change operation in the program, or by a

keyboard operation. Several special operations can be put in a

"message." For example, clear, home, cursor, color, and reverse

operations have been combined in this command:

100 PRINT " i,"JM»Hll^ COMBO"

This PRINT operation clears the screen and moves the cursor to

its home position Q . It then movesthe cursor down three lines
2B98I and °ver three spaces t^Ml . The color is changed to
green S3 and the color is reversed {jg - The word COMBO is

printed as background-colored letters surrounded by a green area.

Experiment No. 8-2. Color Control

This experiment shows you how to control the color of the TV

display from within a program. If you have a black-and-white TV

set, you'll see changes in the shades of grey. Clear your computer

and type in the following program:

10

20

30

^ ■ 40

| 50
100

PRINT

PRINT

X = 1

PRINT

X = X

GOTO

"[SHIFT]

"[CTRL]

X

+ 1

40

[CLR/HOME]"

[4]"

223

V-

u
Here is how the program will appear on your TV screen when , »

you list it:

u

10

20

30

40

50

100

PRINT

PRINT

X = 1

PRINT

X = X

GOTO

II t

X

+ 1

40
J

What do you think this program will do? This program will dis

play an increasing value on the screen; 1,2,3,4, and so on.

What special symbol was displayed in line 20 when you typed the [
[CTRL] [4] color change? What will this do when the computer ^
reaches this command? When you are typing characters on the key

board and you press/hold the CTRL key and then press the 4 key, J j

the next characters you type will be colored cyan, or very light U
blue. However, when the CTRL and 4 keys are pressed in a "mes

sage," a special symbol is displayed. It looks like a small triangle. »

When the computer reaches the statement: \

20 PRINT "E"

in the program, it will change the printing color to cyan. Anything j j
that is then printed will be cyan. Run the program. What is dis- LJ
played on the TV screen? The TV screen is cleared and the num

bers are displayed on the left side of the screen. The numbers are j i

cyan. Stop the program by pressing the RUN/STOP key. Now list [J
your program. What color are the characters in the program list

ing? The characters are all cyan. Do you know why? There are no , ,

other color-change commands in your program, so the TV display

will continue to stay cyan until you change it to another color. Can '—'
you change the color to black right from the keyboard? Try to do

this. U

The color can be changed to black by pressing the CTRL key and fc
then pressing the 1 key. This changes the color of the cursor and

any characters that are then printed. If you list the program now, i

the listing will be printed in black, but it may be difficult to read ^
the black letters and numbers on the dark blue background.

Can you add a program line to change the color of the numbers

when the value 100 is displayed? How can the computer make this j
decision? It can check for the condition, X = 100. Here is a pro- L
gram line that will change the display to white when the value

labeled X reaches 100: ;

224

u

n

n

n

n

n

n

60 IF X = 100 THEN PRINT "[CTRL] [2]";

When the program is listed, it should look like this:

10 PRINT "□"
20 PRINT "B»
30 X = 1

40 PRINT X

50 X = X + 1

60 IF X = 100 THEN PRINT "|";

100 GOTO 40

After correcting any mistakes, run your program. You can press

the CTRL key by itself to slow the display. What happens when

the number 100 is displayed? Did the display change color? The

number 100 is displayed in white, and so are the numbers that fol
low it.

Experiment No. 8-3. Reversed Printing

J In this experiment, you will find out how the reverse printing

' operation works and how it can be used in a program. Clear your
computer and type in the following program:

20 PRINT "[SHIFT] [CLR/HOME]"

40 FOR N = 1 TO 5

60 PRINT N

80 NEXT N

Run this program to test it. The numbers 1 through 5 should be

displayed in the upper left-hand corner of the TV screen. When the

"""! program works properly, change line 20 so that a white color-
t change operation is included in the message:

20 PRINT "[SHIFT] [CLR/HOME] [CTRL] [2]"

! This will change the display color to white. The program should

- ' now look like this:

20 PRINT "Oil "
40 FOR N = 1 TO 5

60 PRINT N

80 NEXT N

Run the program again. Do the numbers appear on the screen in

white? The numbers should be printed in white on the normal back

ground color. Now change the program so that line 20 also contains

a reverse-on operation, RVS ON:

225

20 PRINT "[SHIFT] [CLR/HOME] [CTRL] [2] [CTRL] | j

[9]" LJ
This will change the listing of the program so it looks like this:

20 print " LJaua m 11
40 FOR N = 1 TO 5 U
60 PRINT N

80 NEXT N j j

Run the program. Are the numbers printed in reverse, as the

background color surrounded by white? No, they're not. Unlike the

color-changing operations, you cannot set the Commodore 64 to the j j
reverse mode and have it stay there. The reverse mode must be set LJ
for each printing command in which it is to be used. Here is how

you can do it. Change line 20 so it contains only the clear-home and j i

white color-change operations: LJ

20 PRINT "[SHIFT] [CLR/HOME] [CTRL] [2]M

Change line 60 so that the reverse printing operation is con-

tained in the "message" part of the PRINT command: u

60 PRINT "[CTRL] [9]M N ,

Check your program with the listing shown here: L

20 PRINT "□!»

40 FOR N = 1 TO 5 I
60 PRINT "H" N

80 NEXT N

Run the program. Are the numbers printed in reverse? You

should see them printed in the background color, with a white area u
around them.

NOTE: If you want to use the reverse printing operation in a j J

program, remember to set it in each of the PRINT commands in LJ
which you want to use it. The reverse printing will be set back to

the normal mode whenever (1) the Commodore 64 does a line-feed « j

on the display, (2) the RETURN key is pressed, or (3) the program JJ
stops. The colors are not changed by these operations, and the cur

sor's color will stay as it is unless you change it.

The PRINT command can get the computer to do many interest- J I
ing things on the TV screen just by using the cursor, color, and LJ
reverse operations in the "message." All of the letters, numbers,

punctuation marks, and graphic symbols may be printed on the J j

226

n

n

n

n

H

screen to make colorful displays of information or art. By using

color in your displays, you add value and interest to games and to

education, business, and other programs.

The PRINT command is very useful and flexible, and you will

find that it can take care of almost all of your needs to display infor

mation on the TV screen. However, there are some times when it

would be helpful to have even greater control of the TV screen.

ADVANCED DISPLAYS AND GRAPHICS

The Commodore 64 can display up to 25 lines of information, and

each line can have up to 40 characters. So, there are 1000 positions

for characters on the TV screen. Do you think it's possible to "fill"

them all with information?

Experiment No. 8-4. Filling the TV Screen

This experiment will let you see whether or not you can com

pletely fill the TV screen with characters.

Here is a program that will print 1000 "@" signs on the TV

screen. Clear your computer and type in this program:

100 PRINT "[SHIFT] [CLR/HOME]";

120 FOR W = 1 TO 1000

140 PRINT M@";

160 NEXT W

Run the program. Is the screen completely filled with 1000 "@"

symbols? It is difficult to tell, since as soon as the program ends,

the READY message is displayed on the TV screen. Clear the TV

screen and add the following line to your program:

180 GOTO 180

This will keep the computer in an "endless" loop so the program

will never end and the READY message will not appear.

Run the program again. Are all 1000 "@" signs displayed? It

looks as though they might be, but as soon as the last one is

printed, the display moves up, leaving two blank lines at the bot

tom of the display. Stop the program with the RUN/STOP key,

clear the TV screen, and change line 120 to:

120 FOR W = 1 TO 999

Now run the program again. What is displayed on the TV

screen? The TV screen is completely filled with "@" symbols,

except for the last space in the lower right-hand corner.

227

u
When the Commodore 64 displays a character in the last space | I

on a line, or in the last space on the display, it automatically moves jj
the cursor to the next line. At the bottom of the display, it will

move the display "up" by 1 or 2 lines. If you had had useful infor

mation at the top of the display, the first two lines would have been

"lost." This is an annoyance, and it makes it difficult to display ^
information in the last place on a line if you don't want the cursor

to automatically move. j I

DRAWING GRAPHS

Graphs can give you a quick visual indication of how values,

prices, and scores are related to one another, and the Commodore

64 can draw graphs for you without much effort. In this section,

we'll give you two graph programs that you can use to draw hori- I I
zontal graphs on your TV screen. In the first program, the com- U
puter will simply use horizontal lines of asterisks to represent the

values: i j

***************************** u
and so on. Here is Graph Program No. 1:

10 PRINT "[SHIFT] [CLR/HOME]"; I I

20 DIM DT(25): MAX = -1000000 : MIN = 1000000 LJ
30 INPUT "NUMBER OF VALUES =";NV

40 FOR X = 1 TO NV j »

50 INPUT DT(X)

60 IF DT(X) > MAX THEN MAX = DT(X)

70 IF DT(X) < MIN THEN MIN = DT(X)

80 NEXT X | I
100 PRINT "[SHIFT] [CLR/HOME]"; U
110 FCTR = 38/(MAX-MIN>

120 FOR G = 1 TO NV I I

130 NS = INT((-MIN + DT(G)> * FCTR) jj
140 FOR Z = 0 TO NS

150 PRINT "*";

160 NEXT Z

170 PRINT U
180 NEXT G

200 GOTO 200

228

u

LJ

n

n

This program lets you type in your values and it then graphs

them on the TV screen for you. An array for 25 values has been set

up, since this is the maximum number of lines that can be displayed

on the TV screen for the Commodore 64. You can graph only a few

values, not all 25 must be used. The computer inputs the values and

looks for the minimum (MIN) and maximum (MAX) values. It needs

these so it can figure out how to fit all of the information on the

screen. The graphs are drawn as horizontal lines of asterisks on the

1 ' TV screen, as shown previously.

In the next graphing program, the computer will put a title on

H the graph for you, and it will let you give 4-letter (or number) leg-

i I ends to each piece of information. Graphing Program No. 2 is

longer, since it asks some "intelligent" questions and has some

-, error traps. It can take values between -1000000 and +1000000:

!] 10 PRINT "[SHIFT] [CLR/HOME]";
20 DIM GL$(24), DT(24)

PI 30 MAX = -1000000 : MIN = 1000000
i I 40 INPUT "GRAPH TITLE"; GTS

50 INPUT "HOW MANY VALUES"; NV

rn 60 IF NV > 24 THEN PRINT "NOT MORE THAN 24

! PLEASE" : GOTO 50

100 FOR X = 1 TO NV

120 PRINT "LEGEND " X;

140 INPUT GL$(X)

160 IF LEN(GL$(X)) > 4 THEN PRINT "UP TO 4
CHARACTERS" : GOTO 120

180 PRINT GL$(X) "'S DATA";

200 INPUT DT(X)

220 IF DT(X) > MAX THEN MAX = DT(X)
240 IF DT(X) < MIN THEN MIN = DT(X)
260 NEXT X

280 FCTR = 32 / (MAX - MIN)

300 PRINT "[SHIFT] [CLR/HOME]";
320 PRINT TAB(5) GT$

340 FOR G = 1 TO NV

360 NS = INT((-MIN+DT(G>) * FCTR)
1 380 PRINT GL$(G); : PRINT TAB(5);
I 400 FOR Z = 0 TO NS

420 PRINT "*";

, 440 NEXT Z

! 460 PRINT

n

n

i

229

480 NEXT G I

500 GOTO 500 LJ

Here is a sample run of this program:

GRAPH TITLE ? TEST SCORES I I
HOW MANY VALUES ? 8 U

LEGEND 1 ? JON

JON'S DATA ? 87 LJ
LEGEND 2 ? JAMES

UP TO 4 CHARACTERS j i

LEGEND 2 ? JIM [J
JIM'S DATA ? 38

and so on, which produces a graph that looks like this: J I

TEST SCORES
JON ******************************

JIM **************** j j

JANE ********************** LJ
BETH *************************

CHRS *********************

SPRK ***********

LUCK *****************************

SARA ***********************

SCREEN CONTROLS AND MAPS

u

This program can display something other than an asterisk if you LJ
change the character at line 420 so that another character is put

between the quote marks. i i

More complicated graphing programs can be written for the |J
Commodore 64, but these two examples show you what types of

things can be done with the BASIC language and the TV display.

Color could also be used, and other information could be displayed, [

too. U

u
The PRINT command is used extensively in programs, such as

the graphing programs you just saw, but in the Commodore 64 it i i

has some limitations. Now we will tell you about another way to j]
control the TV display. So far, the screen looks like individual lines

with characters on them. You can also think of the TV display as a

grid of squares, each of which can hold one character, as shown in

230

u

n

n

n

n
; J

n

Fig. 8-4. The grid, or "map/' is laid out in the same way in which

characters are displayed on the TV screen; 40 squares across the

top and 25 squares down the side.

40 SQUARES

©
o o

'♦♦♦♦♦♦♦♦♦♦•

♦♦♦♦♦♦♦♦♦♦•

♦«♦♦♦♦♦♦♦♦<
♦♦♦♦♦♦♦♦«♦<
♦♦♦♦♦♦♦♦♦♦<

♦♦♦♦♦♦♦♦♦♦<

♦♦♦♦♦♦«♦♦?«
♦♦♦♦♦♦♦♦♦♦<
♦♦♦♦*♦♦♦«♦<
«♦♦♦♦♦♦«♦♦<

♦♦♦♦♦♦♦♦♦♦«
♦♦♦♦♦♦♦♦♦♦4
♦♦♦♦♦♦♦♦♦♦4

n

n

i !

Fig. 8-4. The TV screen grid: 40 characters across by 25 display lines.

This is the way that the Commodore 64 actually arranges the

information that you see on your TV set. When information is to be

printed on the TV screen, the computer automatically puts the

needed characters in the map squares, one by one. It happens very

quickly, and it is completely taken care of by the computer. The

overall result is that the characters show up in matching positions

on the TV screen.

The squares used to hold the TV display information are grouped

in a display map, and they are numbered in sequence, just like bins

in a warehouse or boxes in a post office. In the Commodore 64, the

display map numbers start at 1024 and end with 2023, as shown in

Fig. 8-5. Any square on the map can be easily located, since each

has a unique number or "address." Once you have the map, individ

ual characters can be put in each square to display them on the TV

screen. The Commodore 64 has a second map that looks exactly like

the display map, except that its addresses start with 55296 and end

with 56295. This is the color map, and it is used to set the color of

each of the characters displayed on the TV screen. Each position on

the TV screen has a matching position in the display map and in the

color map, as you can see in Fig. 8-6. You can think of the display

231

sauvnos qz

CO

s.

Fig. 8-5. The screen display map.

232

LJ

n

n f

n

n
i

n

ft DC

SI

sauvnos 92

Fig. 8-6. The screen color map.

233

map as holding the character outlines and the color map as holding

colored lights that shine through to the TV screen.

The two maps are used together so that when a character is put

in the display map at address 1102, its color must be put in the

color map at address 55374, which is right "behind" it, providing

the colored light. The addresses in the color map are 54272 greater

than the matching addresses in the display map, so it's not too diffi

cult to keep track of them.

If you could look into the squares in the maps, you wouldn't find

the actual characters and colors. The Commodore 64 uses a special

"screen code" for each character and a "color code" for each color.

For example, the screen code for "P" is 16 and the color code for

red is 2. So, by placing the proper screen code in one of the display-

map squares and a color code in the matching color-map square,

the colored character appears on the TV screen. This is shown in

Fig. 8-7. The characters and their screen codes are shown in Table

8-5. The Commodore 64 has two sets of characters, either of which

SCREEN CODE FOR "M"

AT ADDRESS 1102

COLOR CODE FOR RED

AT ADDRESS 55374

RED "M

TV Display Display Map Color Map

Fig. 8-7. Alignment of the screen display and color maps for TV display.

you can use. We'll show you how to switch between them later in

this chapter. The 16 color codes are listed in Table 8-6.

A new command, POKE, is used to "address" a square in the dis

play and color maps and place, or "poke," a code into it. The POKE

command looks like this:

POKE address, code

To display a character on the TV screen at a specific spot, the

matching display map and color map squares must have a screen

234

u

u

u

u

u

u

u

u

u

n

n

n

n

n

n

code and a color code poked into them. Two POKE commands, one

for the display map and one for the color map, are used to print the

letter "M" in red near the middle of the screen, at display map

address 1524. The matching color address is 1524 + 54272, or

55796:

100 POKE 1524, 13 : POKE 55796, 2

In this example, the screen code (13) was poked into the display

map and then the color code (2) was poked into the color map. The

same thing happens even if the POKE commands are reversed:

100 POKE 55796, 2 : POKE 1524, 13

A POKE command can be used to address any of the display-map

or color-map squares at any time in a program. When the POKE

command is used, its action is independent of the cursor and it will

not cause line feeds to take place, nor will it advance or "push up"

the display.

Experiment No. 8-5. Using the POKE Command

In this experiment, you will learn how the POKE command can

be used to control the display of characters and their colors on the

TV screen. You will use the POKE command to control the display

and color maps. Clear your computer and type in the following pro

gram:

220 FOR AD = 1024 TO 2023

240 POKE AD,42

260 POKE AD + 54272,2

280 NEXT AD

300 GOTO 300

This program will do two things. The FOR-NEXT loop will go

through all of the addresses in the display map, and the first POKE

command will put the display code (42) for an asterisk (*) in a

display-map square. The second POKE command will put the red

color code (2) in the matching color-map square.

Run the program. What is shown on the TV screen? Are all of

the positions "filled" with an asterisk? The entire screen fills with

red asterisks. Stop the program by pressing the RUN/STOP key

and clear the TV screen. Now change line 220 to:

220 FOR AD = 1024 TO 2022

[I This should leave the last space on the display "blank." Run the

235

n

Table 8-5. Screen Codes for the Display Characters

SET1

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q

R

S

T

SET 2

a

b

c

d

e

f

g

h

i

j

k

I

m

n

0

P

q

r

s

t

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

SET1

U

V

w

X

Y

z

[

£

]

t

4-

!

II

#

$

o/o

&

'

(

)

SET 2

u

V

w

X

y

z

1

POKE

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

SET1

+

—

/

0

1

2

3

4

5

6

7

8

9

:

i

<

=

>

SET 2 POKE

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Courtesy Commodore Business Machines, Inc.

236

u

n

Table 8-5. Screen Codes for the Display Characters (cont)

CD

D

SET1 SET 2 POKE

? 63

64

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

78

79

P 80

Q 81

R 82

S 83

o

□

SET1 SET 2 POKE

T 84

85

86

87

88

Q

tt

u

v

w

X

Y

z 90

91

92

93

94

95

96

97

98

99

100

□

□

r\

101

102.

103

104

jjg 105

j

p

SET1 SET 2 POKE

I 106

B 107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

□ >/ 122

123

124

125

126

127

c

a

n

Courtesy Commodore Business Machines, Inc.

237

Table 8-6. Screen Color Codes

Color

Black

White

Red

Cyan

Purple

Green

Blue

Yellow

Orange

Brown

Light Red

Dark Grey

Medium Grey

Light Green

Light Blue

Light Grey

Color Code

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

program and see if this is what happens. The last space should be

left blank. Stop the program and clear the TV screen again.

Change line 220 back to:

220 FOR AD = 1024 TO 2023

and run the program. The complete display should be filled again.

The display can also be "filled" from the bottom. Stop the pro

gram and clear the TV screen. Change line 220 to:

220 FOR AD = 2023 TO 1024 STEP -1

and run the program again. The display of asterisks should start at

the bottom right-hand corner and end in the upper left-hand corner.

It would be difficult to do this type of printing with a PRINT com

mand. Stop the computer, clear the TV screen, and change line 220

back to:

220 FOR AD = 1024 TO 2023

but don't run the program again. Now, let's change the program so

that different colors are selected as the program is running. When

the computer is READY, type in the following command:

POKE 53281, 1 [RETURN]

This will change the screen color to white. We'll tell you more

238

u

u

LI

U

U

U

U

U

U

U

n

n

n

n

n

about changing the screen colors later in this chapter. The white

screen will make the colors used in this experiment easier to see.

The random number command (END) can select a random color

code between 0 and 7 that can be poked into the color map. Add the

following line to your program:

250 CL = INT(RNDd) * 8)

and change line 260 to:

260 POKE AD + 54272, CL

These new program lines will come up with a random number

between 0 and 7, and will place it in the color map as the asterisks

are printed on the TV screen. Here is a listing of the complete pro

gram:

220 FOR AD = 1024 to 2023

240 POKE AD,42

250 CL = INT(RND(1)*8)

260 POKE AD + 54272, CL

280 NEXT AD

300 GOTO 300

| I Run the program and watch the display. Are different colored
1 asterisks shown as you expected? There are colored asterisks

printed on the screen, but some asterisks seem to be "missing." Do

"""' you know why? These "missing" asterisks aren't missing at all.

The color code used for them is 1, for white. A white character

printed on a white background cannot be seen on the TV display.

n Stop the computer, clear the TV screen, and change line 300 to:

I I 300 GOTO 220

This command will point the computer back to the beginning of

I the program. What will this do to the TV display? Run the program

! and find out. The asterisks stay on the screen, but their colors
change as the computer goes through the program again and again.

This experiment has shown you how POKE commands can be

used to control the TV display so that characters of any color can

be displayed anywhere on the TV screen. You also saw an interest

ing use for the random number operation. If you're interested, you

might try and think of a way to avoid printing white asterisks.

Once a character has been displayed on the TV screen, you can

change its color by changing the color code placed in its matching

square in the color map. You can also change the character being

239

n

displayed and do many other interesting things with the display i i

maps.

REVERSED CHARACTERS I

If you look at the characters in Table 8-5, you'll see that none of Li
them is shown in its reversed mode; that is, the character printed

in the background color in a block of another color. Each character >

can be reversed just by adding 128 to its screen code. For example, [j
3 is the code for "C" and 131 is the code for a reversed "C,"

It is easy to switch to the reverse mode by adding 128 to a charac- , }

ter's screen code. By subtracting 128 from a reverse character's j

screen code, the character goes back to normal.

Experiment No. 8-6. A Flashing Sign j i

Flashing signs are used to get your attention, and computer dis- Lj
plays use the same technique. The cursor flashes to show you

where it is, and flashing legends and messages can be useful, too. i i

In this experiment, you'll see how a message can be flashed on the M
screen. Clear your computer and type in this program:

50 POKE 53281, 1 | j

100 PRINT "[SHIFT] [CLR/HOME]"; []
120 DATA 4, 1, 14, 7, 5, 18

140 FOR AD = 1520 TO 1525 ,

160 READ CH

180 POKE AD, CH U
200 POKE AD + 54272, 2

220 NEXT AD I j

This program uses a DATA statement to hold screen codes for

the letters D, A, N, G, E, and R so that "DANGER" can be

printed on the TV screen. The FOR-NEXT loop reads the codes I J
from the DATA statement and pokes them into the display map. LJ
The POKE command at line 50 sets the screen to white for you (if it

isn't already white), and the POKE command at line 200 sets the j i

color of each letter to red. y^

Run the program. You should see the word DANGER displayed

near the center of the TV screen. If it is not displayed, carefully

check your program. To flash the word DANGER on the TV

screen, you display it in the same place, but in reverse. This is done *-l
by using the same screen codes, but with 128 added to each one.

Clear,the TV screen and add the following lines to your program: I

240

n

n

n

n

n

240 FOR T = 1 TO 1000: NEXT T

260 RESTORE

280 FOR AD = 1520 TO 1525

300 READ CH

320 POKE AD, CH + 128

340 NEXT AD

360 RESTORE

380 FOR T = 1 TO 1000: NEXT T

400 GOTO 140

These program lines place "reversed" screen codes in the same

n display map squares that were used in the first part of the pro

gram. The difference is that 128 has been added to the original

codes. Since the color code has already been poked into the map

n once, this doesn't have to be done again. The FOR-NEXT loops at

|] lines 240 and 380 are "do-nothing" loops used to slow the computer
so you can see the display change. The RESTORE commands reset

the READ command so it starts from the beginning of the list of

I codes in the DATA statement. Here is the complete program:

50 POKE 53281, 1

n 100 PRINT "[SHIFT][CLR/HOME]";

• I 120 DATA 4, 1, 14, 7, 5, 18

140 FOR AD = 1520 TO 1525

160 READ CH

180 POKE AD, CH

200 POKE AD + 54272, 2

220 NEXT AD

n 240 FOR T = 1 TO 1000: NEXT T

I | 260 RESTORE
280 FOR AD = 1520 TO 1525

300 READ CH

) 320 POKE AD, CH + 128

i 340 NEXT AD
360 RESTORE

H 380 FOR T = 1 TO 1000: NEXT T

j | 400 GOTO 140

Run the complete program and see if DANGER is flashed on the

""[screen. It should be. If it is not, carefully check your program.
I This program flashed the word DANGER by changing the dis

play from the normal letters to the reversed letters. Another type

of display might turn the letters on and off. Let's try that, too.

241

Once the screen codes have been placed in the display map, the » ,

characters are "lit" by poking a color code into the color map. In M
the asterisk display experiment, you saw that if the color code was

the same as that for the background, an asterisk wasn't seen. You

can turn off characters, or "remove them," simply by setting their ,

color code to the background color code. Lj
Stop the computer, clear the TV screen, and remove lines 200

through 400 from your program. Type the line number for a line to

be "erased" and press [RETURN] to remove a line from your pro

gram. The lines remaining should be:

50 POKE 53281, 1

100 PRINT "[SHIFT] [CLR/HOME]";

120 DATA 4, 1f 14f 7, 5, 18

140 FOR AD = 1520 TO 1525 [j

160 READ CH (J

180 POKE ADf CH

Add the following line to the program: < j j

200 NEXT AD

Run the program. Does the word DANGER appear on the TV I
screen? No, it doesn't, since no color codes were placed in the color

map as part of this program.

Stop the computer, clear the TV screen, and add the following j j
lines to the program: LJ

220 FOR AD = 1520 TO 1525 , (

240 POKE AD + 54272, 2

260 NEXT AD U

Now run the program. Lines 220, 240, and 260 set the matching J I

squares in the color map to red, so the DANGER message should LJ
show up on the TV screen. Now add these lines to the program to

make the message flash: j \

280 FOR T = 1 TO 100: NEXT T ^
300 FOR AD = 1520 TO 1525

320 POKE AD + 54272, 1 j I

340 NEXT AD LJ
360 FOR T = 1 TO 100: NEXT T

380 GOTO 220

242

n

n

n

The complete program will look like this:

50 POKE 53281, 1

100 PRINT "[SHIFT] [CLR/HOME]";

120 DATA 4, 1, 14, 7, 5, 18

140 FOR AD = 1520 TO 1525

160 READ CH

180 POKE AD, CH

200 NEXT AD

220 FOR AD = 1520 TO 1525

240 POKE AD + 54272, 2

n 260 NEXT AD

i I 280 FOR T = 1 TO 100: NEXT T
300 FOR AD = 1520 TO 1525

r, 320 POKE AD + 54272, 1

n

n

340 NEXT AD

360 FOR T = 1 TO 100: NEXT T

380 GOTO 220

This seems like a lot of trouble to go to to flash a message on the

screen, but it shows you how the display of information can be con

trolled by a program. Since you changed the color of the letters

from red to white, back to red, and so on, you can change the color

code in line 320 so that DANGER goes back and forth between red

and yellow letters. Try it.

SEEING WHAT YOU HAVE DONE

The POKE command is used to put codes in the display and color

maps. The Commodore 64 also has an operation that you can use to

take a look into the maps to see what code is stored in a particular

square, or address. This is the PEEK operation, and it lets you

"peek" into any square to get the code that has been put there.

Here is what a PEEK command looks like:

PEEK (address)

When you give the PEEK command an address, the computer

will get a copy of the code in that square. The PEEK command is

often used with a label so you can use the coded information from

the map in a program. For example, the PEEK command:

200 DR = PEEKC55296)

will get the color code from the upper left-hand square in the color

243

I !

u
map (see Fig. 8-6). The PEEK operation copies the code, and it i i

doesn't change the color map in any way. j
How could this operation be used in a program? One simple use

would be to have the program get screen codes from the display

map so the characters could be "reversed." Here is how it might be J j
done: LJ

680 SC = PEEK (AD)

700 RC = SC + 128 ! I
720 POKE AD, RC Li

We assumed that the screen code wasn't already "reversed." . ,

The PEEK command isn't used as often as the POKE command, I
but it serves a useful purpose, and it's helpful to know that this

type of look-and-see operation is available.

MORE CHARACTERS U

Two sets of characters are shown in Table 8-5, but so far only Set

1 has been used. You switch to Set 2 by pressing the SHIFT and I j
GRAPHICS keys at the same time. When you do this, you'll see Lj
the entire display change to the second set of characters. The char

acters from Set 2 will continue to be used until you switch the com- | |

puter back to Set 1. You can also change to the second set of char

acters from within a program, and this is done with a POKE com

mand that uses address 53272. For example, this instruction will

switch the Commodore 64 to the characters in Set 2:
U

100 POKE 53272, 23

while this command: I j

200 POKE 53272, 21 ^
will switch the Commodore 64 back to Set 1. Unlike the color and t ,

reverse printing operations, the switch from one character set to \
the other immediately switches the whole TV display to the new

character set.

Since the computer uses Set 1 when it is turned on, you don't j i
have to do anything else to use that set. In most cases, you won't LJ
be switching back and forth between the two sets of characters.

SCREENS AND BORDERS jj
When you turn on the Commodore 64 computer, the color of the

square central area is dark blue, and the surrounding border color j j

244

n is light blue. You can change these colors by using two POKE com-

! mands, one for the screen color and one for the border color. Each
of the POKE commands uses one of the standard color codes listed

nin Table 8-6, so there are 256 possible color combinations. The

POKE commands are:

POKE 53280, Border color code

r-| POKE 53281, Screen color code

! I For example, the typed-in command:

POKE 53280,5 : POKE 53281, 1 [RETURN]

n sets up a green border with a white central area in the center of

the TV screen. Many programmers use these POKE commands to

r-t change the screen colors for different games or programs. The

j POKE commands can be part of a program, or you can type them
in at any time to change the screen colors. Why is it useful to

change these colors? We found the dark blue screen color a bit hard

j[on our eyes, so we changed it to white, with grey letters. Changes
in the screen colors can be used to show what kind of a program is

being run; red for financial, green for games, and so on. Borders

H might be used in educational programs to tell teachers at a quick

i i glance what level different kids are working on.

So far, you have seen how the computer uses "maps" and codes to

p control the characters displayed on the TV screen and their colors.

j (You'll find that the Commodore 64 has other maps with their own
* addresses, and these control other parts of the computer. For

example, there is a "map" that controls the sounds the computer
H can make.
! i
! I

FUN PROGRAMS

i | Here are two programs that you can type in and run just for fun.
One is a maze-drawing program that you can type in and run on

_ your computer. It randomly selects graphic characters and displays

I ; them to create different mazes. Some of the mazes may be simple

to solve, others may be complex. This program uses the top-,

bottom-, left-, and right-line characters. Others such as the "cor
ner" characters could be used to create different types of mazes.

100 REM MAZE PROGRAM FOR THE COMMODORE 64
120 DATA 163,164,165,167
140 FOR S = 0 TO 3

245

i \

u
160 READ A(S) (

180 NEXT S

200 PRINT "[SHIFT] [CLR/HOME]"; U
220 FOR P = 1 TO 24*40

240 T = INT(RNDd) * 4)

260 PRINT CHR$(A(T));

280 NEXT P

300 GOTO 300

u

Here is a kaleidoscope program that you can run on your com- •—'

puter. It creates an interesting display on a color TV set:

100 REM KALEIDOSCOPE PROGRAM FOR THE COMMODORE 64 I
120 PRINT "[SHIFT] [CLR/HOME]"; LJ
140 POKE 53281, 1

160 GR =160 j |

180 CL = INT(RNDd) * 8) U
200 IF CL = 1 THEN GOTO 180

220 Q = RND(O) , ,

240 X = INT(RNDd) * 20)

260 Q = RND(O) U
280 Y = INT(RNDd) * 12)

300 A = 1024 + (12-Y)*40 + 20 + X If
320 B = 1024 + (12-Y)*40 + 20 - X LI
340 C = 1024 + 4CM12+Y) + 20 + X

360 D = 1024 + 40*(12+Y) + 20 - X m

380 POKE A, GR : POKE A+54272, CL |J
400 POKE B, GR : POKE B+54272, CL

420 POKE C, GR : POKE C+54272, CL

440 POKE D, GR : POKE D+54272, CL

460 GOTO 180 U

In this program, random numbers select a color and the position , ,

to be colored on the TV screen. The RND(0) operation is a new one, II
but it simply resets the random number part of the computer. This

helps prevent the computer coming up with the same sequence of

numbers, which is possible in a simple program such as this. The I-
graphic character chosen (GR = 160) is just a reversed space (32 + LJ
128). A different character can be used instead.

MORE GRAPHICS? [\
The Commodore 64 computer is quite powerful when it comes to

graphics and "animated" displays for games and recreational pro- ! j

246

n

grams. Creating these visual effects takes quite a good knowledge

of programming and special programming techniques. If you are

interested in these techniques, we suggest that you look for a more

advanced book about the Commodore 64, and that you purchase a

copy of the Commodore 61* Programmer's Reference Guide.

A NOTE ABOUT CODES

In the Special Math Functions chapter, we introduced the Ameri

can Standard Code for Information Interchange, or ASCII. This

code is a standard one that has been adopted by computer equip

ment manufacturers so that information can be easily transferred

from one computer to another. You learned about the CHR$ and

ASC operations that can convert string characters to their ASCII

p equivalent and back again. The screen codes used in the Commo-

| | dore 64 computer are different from the ASCII values assigned to
each letter, number, and punctuation mark. Most of the special

graphic characters that can be displayed with the Commodore 64

j| have no ASCII equivalent. Likewise, there are no ASCII equiva-
* lents for reversed characters. Although you won't be concerned

with this right now, remember that the screen code and ASCII

H valuefor a character are not the same thingl

i i
QUESTIONS

P 1. What does the SPC, or space, command do?

n

n

I !

2. How does the SPC command differ from the TAB command?

! 3. What happens when you are typing a "message" for a PRINT

command and you try and use the CRSR keys?

H

^ 4. What commands can be used in a PRINT command to control
I i the cursor?
i i

247

u
5. What does the END command do? Why is it useful? j i

6. How do you get the Commodore 64 computer to change the

color of the characters it is displaying?

7. When the color is changed, does this change the color of every

thing being displayed?

8. How can the color be changed from within a program?

9. How do you get the computer to print in reverse? Can you set

the computer to the reverse mode and use it as you wish?

u
10. What two maps control the TV display? How many locations

are there in each map? j |

11. What information must be placed in the two maps to control

the TV display? U

u
12. How can a character be "reversed" on the TV screen?

u

13. What does the POKE command do? What does the PEEK com

mand do? j I

248
u

u

n

n

n

14. How many sets of display characters does the Commodore 64

computer have? How can you switch from one to the other?

Does this "switch" change all of the characters on the TV

screen?

n
1 ! PROBLEMS

1. Write a program so that the background color on the TV

screen is changed to green.

2. Using POKEs, move a red ball ([SHIFT] [QD along the top line

H of the TV screen, from left to right. Once the ball reaches the

! t right-hand side of the TV screen, it should bounce back toward

the left-hand side of the screen. The red ball should continue to

<—I bounce offthe sides of the TV screen.

' 3. Write a program so that a black diamond ([SHIFT] [Z]) is

moved about on the top line of the TV screen in a random man-

n ner. This means that the diamond can either (1) stay where it

j | is, (2) move one position to the left, or (3) move one position to
the right.

p> 4. Display a sine wave on the TV screen (Fig. 8-8), assuming that

{ | the angle varies betwen 0 and 2 ir radians (0 and 360°). If you
aren't comfortable using the SIN function (from Chapter 7),

n skip this and the next problem.

J 5. Modify the program from Problem 4 so that in addition to plot
ting a sine wave on the TV screen, a coordinate system is also

n plotted (Fig. 8-9).

I 6. Write a program so that a red asterisk (*) moves around the

edge of the TV screen, in a clockwise manner.

H 7. Write a program that asks you to enter a number that repre-

! i sents the border color and a number that represents the back
ground color. Once both numbers have been entered, these col-

n ors are actually changed on the TV screen. For this problem

j | use the "menu" approach of entering a selection's number
shown in Problem 5-5.

p 8. Write a program that displays the up-arrow character (t) in the

249

Fig. 8-8. Displaying a sine wave on the TV screen.

middle of the bottom line of the TV screen. By pressing the

"V" key, the arrow moves to the left, and by pressing the "N"

key, the arrow moves to the right. (HINT: Use the GET$ com

mand in your program.)

9. Write a program that lets you enter a character (A-Z) from the

keyboard, which is then displayed in the center of the TV

screen. The cursor keys can then be used to move the character

around on the TV screen.

10. Modify the program from Problem 9 so that as the character is

moved, it leaves a trail of characters, the same way the Etch-

O-Sketch® toy works.

11. Modify the program from Problem 8 so that the arrow shoots a

white asterisk toward the top of the screen. Once a shot has

been taken, no other shots can be taken until the asterisk goes

off the top of the screen. As the asterisk moves toward the top

of the screen, the "V" and "N" keys should still be able to

move the arrow around on the bottom line.

12. Write a program that puts three asterisks on each line of the

TV screen, in random places in each line. The color for each line

250

u

u

L

u

u

u

u

u

n

n

n

n

n

n

n

n

* *

* *

* *

Fig. 8-9. Adding a coordinate system to the sine-wave display.

of asterisks should also be randomly chosen. The program

should not allow the screen color to be used, thus "invisible"

asterisks are avoided.

13. Write a program so that an asterisk is placed on the left-hand

side of the TV screen on a randomly chosen line. The asterisk is

then moved from the left-hand side of the TV screen to the

right-hand side. Once the asterisk disappears off of the right-

hand side of the screen, another asterisk should appear on the

left-hand side of the screen on a randomly chosen line, and it,

too, should move over to the right-hand side of the screen.

14. Modify the program from Problem 13 so that an asterisk

appears randomly on either the left-hand or right-hand side of

the TV screen, on a randomly chosen line. The asterisk should

then move toward the other side of the screen. Once the aster

isk reaches the other side of the screen, this process should be

repeated.

15. Modify the program from Problem 14 so that at the beginning

of the program the user can enter a skill level between 0 and 9.

The higher the skill level, the faster the asterisk travels across

the screen.

251

16. Modify the program from Problem 12 so that once the TV II

screen is filled, a new line of three randomly placed asterisks [J
will appear at the bottom of the screen. This will cause the top

line on the screen to be scrolled off of the screen. The three

new asterisks should all be the same (randomly chosen) color.

u

u

u

u

b

252

II

n

CHAPTER 9

SOUND OFF, 1, 2, 3, 4

n
; t

n SOUND IS IMPORTANT

| If you can use more of your senses in something, the more enjoy-

! able it can be. Pictures of animals just can't be compared to a trip
to a zoo where the animals can be seen, heard, touched, and even

p smelled. Many an early video game used only a black-and-white TV
1 set to display a set of "paddles" and a "ball" that moved around

the screen. Later, sound effects and realistic color displays were

p, added, and more and more people started playing video games.

I j Unfortunately, many computers just use a TV screen to display

letters and numbers, so using a computer isn't always as interest-

^ ing as it could be. In an earlier chapter, you learned how to use col-

! ors to call attention to information and to interest people in what

1 the computer is doing. In this chapter, you'll see how the Commo
dore 64 can make special sounds, so your sense of hearing can be

R involved, too.

i i Besides being used in game programs for sound effects, sounds

have other important uses in small computers. In some, a quick

n "tick" is heard each time a key is pressed. If you are typing infor-

| ! mation without looking at the keyboard, this lets you know that
1 each key has really been pressed. The "tick" is reassuring, and it

takes the place of the "snap" you would hear from a typewriter as

PI the type hits the paper.

253

H
I

Sounds can also be used to call attention to something the com- r *

puter is doing. Perhaps a quick "beep" will let you know you've 11
pressed a wrong key, or a warbling tone will tell you that some

thing special is about to happen. Sounds add a lot to computer sys

tems. 1 I

SOUND FROM THE COMMODORE 64

Your Commodore 64 computer can put together or create many jj
sounds, and these sounds can range from simple tones to complex

music, all controlled by a BASIC program. The Commodore 64 has . .

three "voices," or sources of sound, and they are built into the com

puter. The sounds from these voices are transmitted to your TV ^
set and can be heard on its built-in speaker. You can't hear the

sounds directly from the keyboard unit. Generating sounds with I I

the Commodore 64 can lead to some complex programming, partic- U
ularly if you want the computer to create special sound effects or

sound like a three-piece band. However, some very interesting j i

tones and sounds can be put together without too much difficulty. jj
In this chapter, we will introduce you to using the Commodore 64

to generate sounds, but not all of the different effects or controls

will be explained. For additional information about the many fea- j j
tures of the sound generator in the Commodore 64, we recommend LJ
Appendix 0 in the Commodore 6k Programmer's Reference

Guide.This appendix describes the operation of the sound- j j

generator circuit in the computer. You can also experiment with jj
the voices, trying different effects and combinations of sounds.

A simplified block diagram for the sound generator is shown in ,■ •

Fig. 9-1. As far as we are concerned, the three voices are exactly

the same and can generate the same sounds. Since they can be ^
independently controlled, you can use one voice, or you can mix in

the other voices to get interesting effects and musical notes. Each j J

voice has a set of seven map addresses that control it and there are U
four addresses that are used for other voice-control purposes. Some

of the more useful addresses are shown in Fig. 9-2. Since the voices \

are the same, we have shown only the map for VOICE-1, but the t
ranges of addresses for the other two voices are noted. In the two

maps used to control the TV display, you could POKE a character

code and a color code into the appropriate locations to have a char-

acter displayed on the TV screen. The voice maps work in almost LJ
the same way. In Fig. 9-2, two of the addresses (HI TONE and

LOW TONE) are used to control the tone that is created by the) (

254

U

n

n

n

n

n

VOLUME

7) *» TO TV SET

TO COMMODORE 64 COMPUTER

* Filter not described or discussed.

Fig. 9-1. Block diagram of the Commodore 64 sound-generating system.

VOICE-3 I ADDRESSES 54286-54292

VOICE-2 I ADDRESSES 54279-54285

VOICE"! 54272-LOW TONE

54273-HI TONE

54274-

54275-

54276—SOUND

54277-

54278—SUSTAIN

CONTROL 54293-

54294-

54295-

54296-VOLUME

Fig. 9.2. Simplified sound map for VOICE-1.

voice. Both pieces of information must be supplied if the note is to

be "played" properly. A list of musical notes and the HI and LOW

codes is provided in Table 9-1. If you can read music, you can see

that there are seven octaves that can be produced by the computer.

This means that you can get musical tones for all but the 12 highest

255

keys on a piano. For example, to set up VOICE-1 for note C-3, you

would have to da the following operation to set up the HI tone and

LOW tone addresses in your computer:

Table 9-1. HI and LOW Tone Codes for Mus cal Notes

MUSICAL NOTE

OCTAVE

C-0
C#-0
D-0..
D#-0
E-0

F-0 ..
F#-0
G-0

G#-0.
A-0
A#-0

B-0

C-1
C#-1
D-1 .

D#-1
E-1

F-1 .

F#-1

G-1
G#-1

A-1

A#-1

B-1

C-2
C#-2
D-2..
D#-2
E-2

F-2 ..
F#-2
G-2

G#-2.

A-2
A#-2

B-2

C-3
C#-3

D-3
D#-3

E-3
F-3

F#-3
G-3
G#-3

A-3

A#-3
B-3

TONE CODE

HI

2

3

.3.

4

4

.4.

9
10

.11.

11

12
.13.

14

14

15

LOW

12

28
..45
62
81

.102

123
145

.169

195
221

250

24

56

..90

125
163
.204

246

35

..83
134

187
244

48
112

.180
251
71

.152

237

71

.167

12

119
233

97

225

.104

247

143
..48

218
143
..78

24

239
210

MUSICAL NOTE

OCTAVE

C-4
C#-4

D-4..
D#-4
E-4

F-4 ..

F#-4
G-4
G#-4.

A-4

A#-4
B-4

C-5
C#-5
D-5..

D#-5
E-5

F-5 .,

F#-5
G-5
G#-5,

A-5
A#-5
B-5

C-6
C#-6
D-6..
D#-6
E-6

F-6 ..

F#-6
G-6

G#-6.
A-6
A#-6

B-6

C-7

C#-7

D-7..

D#-7

E-7

F-7 ..

F#-7

G-7
G#-7.
A-7

A#-7
B-7

TONE CODE

HI

16

17

18.
19
21

22.

23
25

26.

28
29
31

33
35

37.

39
42
44.

47

50.

53.

56

59
63

67

71

75.

79
84

89.
94

100
106.
112

119
126

134

142
150.

159
168

179.

189
200
212.

225
238
253

LOW

195

195
.209

239
31

181
30

.156

49
223

165

135
134

.162

223
62

.193
107
60

..57

99
190
75

15

12

191
125

.131
214

121

.115
199
124

151

30
24

.139
126

250
...6

172

243
.230

143

248
46

U

POKE 54272,97 : POKE 54273,8

256

p

n

p The volume of the sound sent from the Commodore 64 to your

| ! TV set is controlled by the code at address 54296 (VOLUME), with
15 being the highest volume and 0 being the lowest, or off. In

almost all programs, the volume will be set to the maximum (15)

and left there. Each voice has its own volume control, which is

called SUSTAIN. This lets you set the volume of each voice inde

pendently so that sounds can be mixed and combined in interesting

P| ways. The SUSTAIN codes also have a range from 15 for highest

i I volume, down to 0 for off, but these codes are used in a slightly dif

ferent way, as you'll see shortly.

RTo set the overall volume, you can do a POKE operation to the

VOLUME address in the sound map, address 54296. We will

assume that the volume is always set to its maximum:

P POKE 54296, 15

! To set the volume for VOICE-1, you use the same type of opera

tion with the SUSTAIN address, but the volume code must be mul-

H tiplied by 16 before it is poked into the SUSTAIN address in the

\ sound map. You don't have to worry about why this is done, it's

just the way the Commodore 64 takes care of the SUSTAIN infor-

r-> mation for each of the voices. Here are examples of how the maxi

mum volume for VOICE-1 can be selected:

POKE 54278, 15*16 or POKE 54278, 240

H Here is how a code of 7, for about half-volume, would be selected
i ! for VOICE-1:

POKE 54278, 7*16 or POKE 54278, 112

I j The last thing to be done is to select the type of sound that you

want the computer to generate. This is done by placing a code in

the SOUND address for the voice you are using. This code lets you

I select one of the four sounds listed here:

Code 16 Triangle — mellow, flute-like quality

r^ Code 32 Sawtooth — bright, brassy quality

j l Code 64 Pulse — for special tone effects

! ; Code 128 Noise — hiss

!_» Triangle, sawtooth, and pulse are just technical terms for the

! way the sounds are generated by the electronic circuits. These
terms are fairly common, so we will use them in this chapter. We

think that you will be more interested in what they sound like than

f"| in what they are called, or exactly how they work. Each voice can
i i

257

u
also generate noise, which is like the "rushing" or "hissing" sound t i

that comes from a TV set that is tuned to an unused channel. Noise (J
is used to create special sound effects for games and special pro

grams, and you can simulate bomb blasts and explosions with it.

The pulse type of sound is fairly specialized, and we don't think j
that a person getting started with the Commodore 64 will use it. It •—'
is more difficult to use than the triangle, sawtooth, and noise

sounds, so we won't talk about it in detail when we get to it later in j [

the chapter. y

You can choose the type of sound you want to create and select

the code for it. For example, the code for the mellow flute-like tri- i .

angle sound is 16. Placing this code in the SOUND address does not M

automatically cause the tone to be sounded on the speaker. To start

a tone, you must add 1 to the SOUND code to tell the computer to

turn on that voice. To stop it, you can simply put the original tone j j
code, or 0, in the SOUND address. For example: U

POKE 54276, 16 + 1

would start a mellow tone at VOICE-1, while: II

POKE 54276, 16 or POKE 54276, 0

would turn it off. Each voice's sound is controlled this way. So, j j

before you can create a sound with the Commodore 64, you must do LJ
four things:

1. Set up the overall VOLUME. • j [

2. Set a TONE for the voice. LJ
3. Set the SUSTAIN volume for the voice.

4. Select the type of sound and start the voice. i ,

Experiment No. 9-1. A Simple Tone Test Lt

Sounds aren't really difficult to create and you will find out how

to do it in this experiment. You will also find out how to use a tone J I

code and the computer's volume control. LJ
When the sound-creating part of the Commodore 64 is going to

be used in an experiment, it is a good idea to completely clear the j i

sound map. This can be done with a simple program such as this: M

10 FOR AD = 54272 TO 54296

20 POKE AD, 0 | ,

30 NEXT AD M

Or, the steps can be placed on one line:

10 FOR AD = 54272 TO 54296 : POKE AD,0 : NEXT AD I I

258

Lj

fl

n

r-i If any information is left in the sound map from another experi-

I I ment or program, this will clear it out, giving you a fresh start. If
you decide to experiment with the voices on your own, be sure to

clear the sound map before you use it.

M Clear your computer for a new program. Turn the volume con-

' ' trol on your TV set so that it is at the lowest volume setting. At the
highest setting you will hear a hum or a slight hiss. You want the

f\ position opposite from this. Type the following program into your

! f computer:

10 FOR AD = 54272 TO 54296

20 POKE AD, 0

30 NEXT AD

100 POKE 54296, 15

n 120 POKE 54278, 15*16

! 140 POKE 54272, 209: POKE 54273, 18
160 POKE 54276, 17

p| After the sound map has been cleared by the program steps in

I lines 10 - 30, the program does four things:

1. Sets the overall volume for the sounds to maximum.

ri 2. Sets VOICE-1 SUSTAIN volume to maximum.

I 3. Sets up a note for VOICE-1.
4. Sets the sound to "triangle" and turns it on.

H Run the program and adjust the volume control on your TV set

I so that the tone can be heard comfortably. If you don't hear the
tone, check the program and try it again. The sound map must be

r*j cleared and all four operations noted must be done if the tone is to

| | be heard.

How do you think you can turn off the tone? Type in the com

mand:

| i POKE 54276, 16

This sets the SOUND code to turn off the tone. Remember that

n you need to add 1 to the SOUND code to turn on a voice in the

I | Commodore 64 computer. If you use the SOUND code by itself, or
zero, the tone is turned off.

Run the program again. You should hear the tone on the speaker

again. Press the RUN/STOP and the RESTORE keys together.

Does the tone stop? It should. You can always use the RUN/STOP

and RESTORE keys together to turn off a tone.

Can you think of any other way to turn off the tone? You can put

n

n
259

u
the VOLUME code at its lowest setting. For example, the com
mand: U

POKE 54296, 0

will also turn off the tone. To turn the tone back on, type in: I I

POKE 54296, 15

Let's use the program already in the computer to test the differ- j j

ent volume settings. Remove line 100 from the program and add \J

the following program lines:

200 FOR VL = 0 TO 15 II

220 INPUT Z U

240 POKE 54296, VL

260 PRINT VL I

280 NEXT VL M

The complete program should look like this:

10 FOR AD = 54272 TO 54296] I
20 POKE AD, 0 LJ
30 NEXT AD

120 POKE 54278, 15*16 i i

140 POKE 54272, 209 : POKE 54273, 18 M
160 POKE 54276, 17

200 FOR VL = 0 TO 15

220 INPUT Z

240 POKE 54296, VL U
260 PRINT VL

280 NEXT VL I I

When you run this program, the volume will first be set to zero.

When the computer reaches the INPUT command and displays the

?, press the RETURN key. This will advance the volume code by j I

one, from 0 to 1, and so on up to the maximum volume code, 15. U
Run the program and press the RETURN key after each ques

tion mark appears on the TV screen. Can you hear the volume of i i

the tone increase each time the RETURN key is pressed? We M
found that it was difficult to hear much of a volume change once the

volume code was between 12 and 15. Change line 220 in your pro

gram to: | I

220 FOR T = 1 TO 100 : NEXT T

and then run the program. This new program line will let the pro-

260
u

n

n

n

n

gram increase the volume by itself, without making you press the

RETURN key to go to the next step.

Remove the print command at line 260 and add the following

lines to your program:

300 FOR VL = 14 TO 0 STEP -1

320 FOR T = 1 TO 100 : NEXT T

n 340 POKE 54296, VL

! I 360 NEXT VL
' ' 380 GOTO 200

nThe complete program should now look like this:

10 FOR AD = 54272 TO 54296

20 POKE AD, 0

30 NEXT AD

120 POKE 54278, 15*16

140 POKE 54272, 209 : POKE 54273, 18

160 POKE 54276, 17

200 FOR VL = 0 TO 15

220 FOR T = 1 TO 100 : NEXT T

240 POKE 54296, VL

280 NEXT VL

300 FOR VL = 14 TO 0 STEP -1

320 FOR T = 1 TO 100 : NEXT T

340 POKE 54296, VL

360 NEXT VL

380 GOTO 200

Now run the complete program. Can you hear the sound slowly

increase and then decrease in volume? You should be able to, and

the sequence will repeat itself again and again. What do you think

would happen if you removed the time delay loops at lines 220 and

320? You can try it if you want to.

In this experiment, you have changed the volume of the sound

going from the computer to the TV set. You can do this at any time

in a program, since it is completely independent of the voices.

(NOTE: You can only decrease the SUSTAIN volume for individual

voices once you turn them on.)

Experiment No. 9-2. Changing the Tone

This experiment will show you how you can change the tone that

is created by a "voice" in the Commodore 64. Clear your computer

and load the following program into it:

261

n

n

n

u
10 FOR AD = 54272 TO 54296 , ,

20 POKE AD, 0

30 NEXT AD U
100 POKE 54296, 15

120 POKE 54278, 15*16 II
140 INPUT "HI TONE11; HT U
160 INPUT "LOW TONE11; LT

180 POKE 54273,HT : POKE 54272, LT) (

200 POKE 54276, 17 JJ

220 GOTO 140

This program will let you type in a LOW and a HI tone code, so j I

you can have the computer create any tone you want, within its LI
range. Run the program and when the computer asks for a HI and

a LOW tone, type in 1 and 12. This is the lowest musical tone the i j

computer can generate. You may have to increase the TV set's vol- M
ume to hear it. It was a bit rumbly and scratchy, at least on our TV

set. Try typing in several other combinations, or look in Table 9-1

for musical notes.]
The HI tone part of the code has the most importance, so small i—'

changes in the LO code don't have much effect on the tone. For

example, you won't be able to hear the difference between: I i

HI Tone = 200 and HI Tone = 200 LJ
LOW Tone = 120 LOW Tone = 121

Most TV sets have inexpensive low-quality speakers, so not all

tones will be reproduced well. This is particularly true for the '-'
higher tones. If you can't hear a high tone, or if a tone seems

unusual, it may be due to the type of speaker used in your TV set, I I

rather than due to a problem with your program or the computer. LJ
For TV shows, the internal speaker is fine, but it is definitely not

hi-fi quality. . *

Let's change the program so that the computer varies the tone I
by using a few new program steps. In this program, we will not use

the LOW tone location in the sound map. We will leave it set at

zero. Stop the computer program and type in the following new

program steps: 1—1

140 POKE 54276, 17

160 FOR HT = 0 TO 255 I I
180 POKE 54273, HT LJ
200 NEXT HT

220 END |

262

n

n

n

The complete program should look like this:

10 FOR AD = 54272 TO 54296

20 POKE AD, 0

30 NEXT AD

100 POKE 54296, 15

120 POKE 54278, 15*16

140 POKE 54276, 17

160 FOR HT = 0 TO 255

180 POKE 54273, HT

200 NEXT HT

220 END

Run this program. What happens to the tone? It increases

quickly to a high-pitched note, which continues to be heard. Why is

the last tone still on? The last tone was never turned off within the

program. It could be turned offby poking a 0 into the SOUND loca

tion in the sound map. Change line 160 to:

160 FOR HT = 200 TO 250

and change line 220 to:

220 GOTO 160

The complete program should look like this:

q 10 FOR AD = 54272 TO 54296

j 20 POKE AD, 0

30 NEXT AD

100 POKE 54296, 15

M 120 POKE 54278, 15*16
! I 140 POKE 54276, 17

160 FOR HT = 200 TO 250

p 180 POKE 54273, HT

! 200 NEXT HT
220 GOTO 160

j~1 Ready for take-off? Run the program. Now, the range of tones

has been limited to the higher ones and the increasing tone

sequence has been repeated. You can also cause the tones to go to

lower notes by adding a few more steps to your program. Change

program line 220 to:

n

n

n

n

220 FOR HT = 250 TO 200 STEP -1

and add the following program lines:

263

u
240 POKE 54273, HT

260 NEXT HT

280 GOTO 160

The complete program should look like this:

10 FOR AD = 54272 TO 54296

20 POKE AD, 0

30 NEXT AD

100 POKE 54296, 15

120 POKE 54278, 15*16

140 POKE 54276, 17

160 FOR HT = 200 TO 250

180 POKE 54273, HT

200 NEXT HT ,

220 FOR HT = 250 TO 200 STEP -1

240 POKE 54273, HT LJ
260 NEXT HT

280 GOTO 160 | I

Run this program and you should be able to hear the frequency

increase, decrease, increase, and on and on ... The upper and

lower frequencies are set up in the FOR commands at lines 160 and I I

220. You can experiment with changing these limits, if you want to. LJ

Experiment No. 9-3. Changing the Voices ,

In this experiment, you will find out how to use the other voices, y

VOICE-2 and VOICE-3. You will also be able to hear the differ

ence between the "triangle" and "sawtooth" tones.

Clear your computer for a new program. In this program,

VOICE-2 will be used to generate tones. Type in the following pro- LJ
gram:

10 FOR AD = 54272 TO 54296

20 POKE AD, 0

30 NEXT AD

100 POKE 54296, 15 II
120 POKE 54285, 15*16 LJ
140 POKE 54279, 0 : POKE 54280, 200
160 POKE 54283, 17

Run this program. What do you hear? A high-pitched tone should

be heard from the TV set's speaker. Can you hear any difference

between this tone and any of the tones generated by VOICE-1? We I I

264

n

n

n

n

n

couldn't hear any difference. It would be a bit difficult to switch

back and forth between the voices, since the map addresses in the

program would have to be changed. Suppose we could have the

_ computer change them for us? Load the following program steps

into your computer. Program lines 10-100 are still going to be used:

120 INPUT "TONE"; HT

140 AD = 54272

160 FOR X = 1 TO 3

180 POKE AD+1, HT

200 POKE AD+6,15*16

220 POKE AD+4, 17

240 FOR T=1 TO 1000 : NEXT T

260 POKE AD+4, 16

280 FOR T=1 TO 100 : NEXT T

300 AD = AD+7

320 NEXT X

j| The complete program should look like this:

10 FOR AD = 54272 TO 54296

H 20 POKE AD, 0

i I 30 NEXT AD
100 POKE 54296, 15

120 INPUT "TONE"; HT

n 140 AD = 54272
160 FOR X = 1 TO 3

180 POKE AD+1, HT

200 POKE AD+6, 15*16

220 POKE AD+4, 17

240 FOR T=1 TO 1000 : NEXT T

260 POKE AD+4, 16

280 FOR T=1 TO 100 : NEXT T

300 AD = AD+7

320 NEXT X

In this program, the computer will use the same HI tone code in

each of the voices, one after the other.

No specific addresses have been used for the sound map, except

for the first address. This may seem like a programming "trick,"

but it is a way of making programs simpler. Just as you might say

the sixth house on the right, the computer can say the sixth

address from the start. At line 300, the address is increased by

265

n

seven to point to the locations for the next voice. This lets the com- i i

puter easily switch from one voice to the next. (J
Run the program and type in a number for the tone. A choice of

200 would be good for a start. Can you hear the three voices turned

on and off in sequence? Do they sound different? We couldn't

detect any change in the tones between the voices. '—'
Now that this computer program has been set up, let's change it

so that only two of the voices are used, but we will use a triangle I I

tone at one and a sawtooth at the other. It will be interesting to U
hear the difference between them. Change the following lines in

your program: i i

140 AD = 54272 : SD = 16 LJ
160 FOR X = 1 TO 2

220 POKE AD+4, SD+1 I I

260 POKE AD+4, 0 U
300 AD = AD+7 : SD = SD*2

And add this line: I I

340 GOTO 120 ^
The complete program should now look like this: , ,

10 FOR AD = 54272 TO 54296 U
20 POKE AD, 0

30 NEXT AD i ,

100 POKE 54296, 15 M
120 INPUT "TONE"; HT

140 AD = 54272 : SD = 16

160 FOR X =1 TO 2 I
180 POKE AD+1, HT U
200 POKE AD+6, 15*16

220 POKE AD+4, SD+1 I I

240 FOR T=1 TO 1000 : NEXT T \j
260 POKE AD+4, 0

280 FOR T=1 TO 100: NEXT T .

300 AD = AD+7 : SD = SD*2

320 NEXT X U
340 GOTO 120

Now run this program and type in a tone code when the com

puter asks for TONE? Start with a fairly low tone code, of 3 or 4, LJ
and increase it in multiples of two or three. Try several tones and

then try a code of 100 or so. Can you hear a difference between the I I

266

u

n

n

n

n

n

n

n

n

triangle and sawtooth tones? (The first tone is the triangle tone,

and the second is the sawtooth tone.) The triangle tones were melo

dious, while the sawtooth tones were raspy and rough. The saw
tooth tones at 100 or so sounded brassy.

USING SOUND IN A PROGRAM

In the experiments, you learned how the three voices in the

Commodore 64 computer are controlled. If you are interested in
using these voices, we encourage you to try some simple programs

of your own. The sound effects you have heard, along with others,
can be used in programs to add the sense of hearing to the experi

ence of using a computer. In a typical program, you may be asked

to type in a value that the computer will use in some way. If an

incorrect value is typed in, a sound could be used to tell you that
there is a problem.

In this program, you are asked to type in a value between 0 and

10,000. If the value is outside those limits, the computer will ask for

another value. Sound has been used to alert you to an incorrect
value.

100 REM SET UP SOUND GENERATOR

120 FOR AD = 54272 TO 54296 : POKE ADfO : NEXT AD
140 POKE 54278,15*16 : POKE 54296, 15
160 Etc ...

1000 INPUT "TYPE YOUR VALUE"; VA

1020 IF VAX) AND VA<=10000 THEN GOTO 1300
n 1040 POKE 54276, 17

j | 1060 FOR Y=1 TO 15

1080 POKE 54273, 200

1100 FOR T = 1 TO 20 : NEXT T

M 1120 POKE 54273, 140

1 I 1140 FOR T = 1 TO 20 : NEXT T
1160 NEXT Y

p 1180 POKE 54276,0

I i 1200 PRINT "ONLY VALUES FROM11
1220 PRINT " 0 TO 10000"

1240 GOTO 1000

j j 1300 REM VALUE IS OK, SO USE IT ...

The commands at lines 100 - 140 clear the sound map and set up

I"! the SUSTAIN code for VOICE-1 and the VOLUME for the overall
! I

267

n

sound generator. The IF-THEN command at line 1020 checks the i »

value to see if it is between 0 and 10000. If it is, the computer goes |J
on to line 1300, where the value is used in some way by the pro

gram. -

However, if you have typed in a value that is outside the range 0

to 10000, the computer generates a "warbling" tone using program ^
lines 1040 to 1180. After generating the sound, the computer prints

a two-line message and you get another chance to type in a value. | I

You can type in this program and try it, but don't type in line 160. LJ
Sometimes several sounds are generated in a program for different

reasons. The warbling tone just described indicates an incorrect i j

value has been entered. Other tones might tell you that an answer |j
to a question is correct or incorrect. Sounds can also be used as

"rewards" in teaching programs. Here are the input and sound

parts of a "multiple-choice" test program that uses three sounds: a

medium warbling tone when an incorrect value is typed in, a high I—I
warble for a correct answer, and a low tone for an incorrect

answer. This is not a complete program, but it shows how tones can j j

be used. Since the program is a bit complex, it has been broken into [J
segments for you.

100 REM SET UP SOUND GENERATOR

120 FOR AD = 54272 TO 54296 : POKE AD#O : NEXT AD

140 POKE 54278,15*16: POKE 54296, 15

160 Etc ... j j

1000 INPUT "YOUR ANSWER 1-4"; AN U
1020 AN = INT(AN)

1040 IF AN>=1 AND AN<=4 THEN 2040 i i

1060 HT = 200 : LT = 100 : GOSUB 5010 M
1080 PRINT "ANSWERS FROM11

1100 PRINT " 1 TO 4 ONLY11

1120 GOTO 1000 I

2000 REM PROCESS THE ANSWER HERE

2020 REM CA = CORRECT ANSWER VALUE

2040 IF AN O CA THEN 2200

2060 PRINT "GOOD FOR YOU" U
2080 HT = 220 : LT = 190 : GOSUB 5010

2100 GOTO ... j j

2200 PRINT "INCORRECT" ^
2220 HT = 140 : LT = 120 : GOSUB 5010

2240 GOTO ... |

Lj
268

u

n 5000 REM SOUND GENERATOR SUBROUTINE
I I 5010 POKE 54276, 17

5020 FOR Y = 1 TO 5

p 5030 POKE 54273, HT

j 5040 FOR T = 1 TO 50: NEXT T
5050 POKE 54273, LT

5060 FOR T = 1 TO 20: NEXT T
P 5070 NEXT Y
I 5080 POKE 54276, 0

5090 RETURN

"I This program expects you to type in a value of 1, 2, 3, or 4 as an
I answer to a multiple-choice question. The computer inputs the

value and then uses the INT operation to remove any decimal frac-
r-j tion. For example, 4.5 would be converted to 4. The program
j j checks to see if the value is between 1 and 4, and if it isn't, a tone is

generated and a message displayed. You get another chance to
^ type in a value between 1 and 4.

j The second part of the program checks to see if the answer, AN,
matches the correct answer, CA. If there is a match, a high tone is

generated and the computer goes on. If an incorrect answer is

p found, a low tone is generated and the computer goes on.

i In this sample program, the tone program is used as a

subroutine, and the main program simply points the computer to

p the subroutine to generate a tone. Each part of the program that
J | uses this must supply a high tone (HT) and a low tone (LT) code.

This simplifies the program quite a bit, and it means that by sup-

plying different high and low tone codes, different effects can be

PI generated with one subroutine. This example shows how sound can
i i be added to a program to increase its value to the person using it.

This program has also shown a good use for a subroutine. The
r-j tone-creating instructions were used only once in the program, but

] I three parts of the program can use these steps.

- NOISE

i A noise tone is available from each voice, and it is used to add
"hiss" to a sound, or to create "explosions," "blasts," and other

p sound effects for games and recreational programs.

! Experiment No. 9-4. Making Noise

This experiment will give you a chance to see how "noise" can be

R used for a sound effect in a simple computer program. The "noise"

269

sounds generated are really the mixture of a tone and noise. Clear i i

your computer and type in this program: jj

10 FOR AD = 54272 TO 54296

20 POKE AD, 0

30 NEXT AD [_
40 POKE 54296, 15

50 POKE 54278, 15*16 . ,

100 POKE 54276, 128+1

120 POKE 54273, 100 U

The noise-generating section of the Commodore 64 computer

may not operate properly unless it is reset. Several things can take

place to cause problems with the noise generator, so we suggest

that you type the following line into your computer:

POKE 54276,8 : POKE 54276,0 [_

This will clear the noise generator in VOICE-1 and get it ready

to use.

Once you have cleared the noise generator, run your program.

You should hear some rushing or hissing noise on the TV set's

speaker. Once you have heard the noise, change program line 120 , .

as follows:

120 FOR D = 1 TO 255

and add the following lines to your program: j j

140 POKE 54273, D ^
160 NEXT D

180 GOTO 120 i I

The complete program should look like this:

10 FOR AD = 54272 TO 54296 i .

20 POKE AD, 0 M
30 NEXT AD

40 POKE 54296, 15

50 POKE 54278, 15*16

100 POKE 54276, 128+1

120 FOR D = 1 TO 255

140 POKE 54273, D

160 NEXT D

180 GOTO 120

Run this program. You should be able to hear the noise change in

270

tone, from a low rumble to a high-pitched hiss. This cycle will be

td i d i

1

! repeated again and again.

n

n

Now, remove line 180 from your program, and make the follow

ing changes:

120 INPUT "NOISE CODE11; NC

140 POKE 54273, NC

160 GOTO 120

Here is the complete program for you:

10 FOR AD = 54272 TO 54296

i 20 POKE AD, 0

1 30 NEXT AD

40 POKE 54296, 15

"I 50 POKE 54278, 15*16

I 100 POKE 54276, 128+1
120 INPUT "NOISE CODE11; NC

n 140 POKE 54273, NC

| I 160 GOTO 120

The changes will let you type in your own code for the noise gen

erator, so you can type in HI tone codes between 0 and 255 to see

what effect they have on the noise produced. Remember that the

LOW tone code stays 0. Run the program and try it with several

values, starting with 1 and going up to about 10 or so. Then try

some other values: for example, 15, 20, 50,100,150, and 200. What

change do you hear in the noise? For the low values, there is a rum

bling sound. As the numbers become larger, the sound changes to a

high-pitched hiss.

NAME THAT TONE!

j I The range of useful musical tones, notes, or frequencies is listed

* in Table 9-1, so you can get the HI and LOW tone codes for notes
that you need. However, you may want to have the computer cre-

H ate some other tone, or frequency, that falls somewhere between or

I outside the range of those tones found in the table. There is a for

mula that lets you calculate the codes needed for a tone noted in

p hertz (Hz); for example, 2350 Hz. For the Commodore 64, the upper

1 frequency limit is 4000 Hz.

A frequency must be converted into the HI (HT) and LOW (LT)

codes used in the sound map, and the following BASIC program

P will do it for you:
) i

271

1000 INPUT "FREQUENCY11; FQ

1020 NB = FQ / 0.06097

1040 HT = INT(NB / 256)

1060 LT = INT(NB-(HT*256)+0.5)

1080 Etc ...

You can poke the LT and HT codes into the sound map later on

in your program, or you can display them on the TV screen so they

can be noted for later use. By using this short program, you get the

tone codes so the Commodore 64 computer can produce non-musical

tones.

u

THE PULSE TONES

The fourth type of tone that you can generate with the Commo

dore 64 is called pulse. This type of tone is like the triangle and

sawtooth tones, except that the computer needs more information.

Each of the voices has two PULSE WIDTH locations in its map, as

shown in Fig. 9-3. The pulse width can be a number between 0 and

ADDRESSES 54286-54292VOICE^J

VOICE-2 I ADDRESSES 54279-54285

VOICE"! 54272—LOW TONE

54273—HI TONE

54274—LOW PULSE WIDTH

54275—HI PULSE WIDTH

54276—SOUND

54277—

54278—SUSTAIN

CONTROL 54293—

54294-

54295-

54296-VOLUME

Fig. 9-3. Modified sound map for VOICE-1 showing the two PULSE WIDTH

addresses.

4095. This tells the computer how long the pulses are to be. In

order to put the pulse-width information into the two locations, you

heed to do a few simple math operations. These operations break

apart the values between 0 and 4095 so that they can be poked into

the proper map locations.

Once you have chosen a pulse width, PW, the following program

steps will put it into the correct VOICE-1 map addresses:

u

u

u

u

272

n
1000 H = INT(PW / 265)

1020 L = INT(PW-(H*256)+0.5)

1040 POKE 54275, H : POKE 54274, L

n

p These operations are very similar to those used to get tone codes

j i for a particular frequency. You can change the POKE command

addresses shown above if you want to use VOICE-2 or VOICE-3.

p We didn't hear much of a difference between the triangle and saw-

j tooth sounds and the pulse sounds. However, the pulse sounds are
' used in some musical effects, and you can find examples in the

Commodore 6k Programmer's Reference Guide.

[™j You can run the following program if you want to hear the pulse
i I sounds for a particular tone code:

100 FOR AD = 54272 TO 54296

I 120 POKE AD, 0

1 140 NEXT AD
200 POKE 54296, 15

220 POKE 54278, 15*16

240 INPUT "TONE CODE11; TC

260 POKE 54273, TC

r-, 280 POKE 54276, 64+1

j ! 300 FOR H = 0 TO 15
! 320 POKE 54275, H

340 INPUT Z

f] 360 NEXT H
1 i 380 GOTO 240

n This program will let you type in your tone code and it will

| | sequence through different pulse-width levels. Each time you press

1 the RETURN key, the computer will go from one pulse width to
another, from the lowest (0) to almost the highest (about 3800 out of

H 4095). Sixteen levels can be heard this way. In our opinion, if you

i | are beginning to use the Commodore 64 and learn about the sound
generators, or "voices," you will be better off using the triangle

pi and sawtooth tones.

] I

ATTACK!

R Musical instruments can play the same notes, but they don't gen-
' ' erate the same types of tones. If they did, all instruments would

sound alike. The differences between instruments are due to the

P way they produce sounds. In some instruments, a note reaches its

I I
273

n

full volume very quickly, within a few thousandths of a second. In

others, it can take some time to reach maximum volume. Likewise,

when a musician stops playing a note, it can rapidly decrease in vol

ume, or the note can linger for a while. The effects of changing vol

ume in different ways, from instrument to instrument, are called

attack, decay, sustain, and release, and they are shown in Fig. 9-4.

FULL-,

LU

OFF-

SUSTAIN VOLUME

TIME

NOTE ON

POKE 54276,17

NOTE OFF

POKE 54276,0

U

u

L

LJ

LJ
Fig. 9-4. The effect of attack, decay, sustain, and release rates on the volume.

The attack is the rate at which the volume is turned on, and the

release is the rate at which it is turned off. In between, the sound

has decreased a bit at a decay rate, and it is maintained at a sus

tain volume.

You can make many different selections as to the attack, decay,

and release rates as shown in Table 9-2. Each portion of the sound

has 16 different settings, from 2 milliseconds to 8 seconds for the

attack time, and from 6 milliseconds to 24 seconds for the decay and

the release times.

Remember that "sustain" refers to a volume, and not to a time

or rate. The sustain volume can be set to one of 16 settings, from 0

to 15, or off to full volume. You have already been using a sustain

level of 15, for full volume, in the experiments. Although you didn't

realize it, you also used attack, decay, and release rates. They were

set to their fastest settings, 0, so you probably didn't hear any

"odd" sound effects.

The examples in Fig. 9-5 show some of the different types of vol

ume sequences that you can produce from the Commodore 64 com

puter. By changing the shape, or "envelope" of the sound, the com

puter can sound like many different musical instruments. Several

u

u

LJ

LJ

274

Table 9-2. Attack, Decay, and Release Rates and Their Codes

n

n

n

t :

i ■

CODE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ATTACK

RATE

2 ms

8 ms

16 ms

24 ms

38 ms

56 ms

68 ms

80 ms

100 ms

250 ms

500 ms

800 ms

1s

3s

5s

8s

DECAY/

RELEASE

RATE

6 ms

24 ms

48 ms

72 ms

114 ms

168 ms

204 ms

240 ms

300 ms

750 ms

1.5 s

2.4 s

3s

9s

15s

24 s

ms = milliseconds; 100 ms = 1/1 Oth second

different types of musical instruments and the necessary settings

for them are listed in Table 9-3.

Table 9-3. Some Musical Instrument Settings for

the Commodore 64

INSTRUMENT

Piano

Flute

Harpsicord

Xylophone

Organ

Calliope

Accordion

Trumpet

SOUND

Pulse*

Triangle

Sawtooth

Triangle

Triangle

Triangle

Triangle

Sawtooth

ATTACK-DECAY

CODE

9

96

9

9

0

0

102

96

SUSTAIN-

RELEASE CODE

0

0

0

0

240

240

0

0

♦Pulse Width: HI = 0, LOW = 255

The attack, decay, and release codes are poked into the sound

map, as shown in Fig. 9-6. The sound map for each voice is now

complete. Since the ATTACK and DECAY, and the SUSTAIN and

RELEASE codes share addresses in the map, you must do a cou-

275

i t

Attack = 500 ms

Decay = 300 ms

Sustain = 10

Release = 750 ms

(A) Woodwind, brass, and string instruments.

All D&R

Attack = 2 ms

Decay = 750 ms

Sustain = 0

Release = 750 ms

(B) Cymbals and drums.

Attack = 38 ms

Decay = 72 ms

Sustain = 0

Release = 6 ms

U

u

u

y
(C) Xylophones and bells.

Attack = 2 ms

Decay = 750 ms

Sustain = 0

Release = 6 ms

(D) Harpsicords and pianos.

Fig. 9-5. Different attack, decay, sustain, and release rates change the sounds

for different instruments.

pie of simple math operations to get the codes in the correct form

so they can be used. You have already seen that the SUSTAIN

276

u

LJ

LJ

U-

n

ADDRESSES 54286-54292

I I
/ I

n

n

n

r

n

VOICE-3

VOICE-2 I ADDRESSES 54279-54285

V0ICE1 54272—LOW TONE

54273—HI TONE

54274—LOW PULSE WIDTH

54275—HI PULSE WIDTH

54276—SOUND

54277—ATTACK-DECAY

54278-SUSTAIN-RELEASE

CONTROL

i>
54293—

54294-

54295—

54296-VOLUME

Fig. 9-6. Modified sound map showing all addresses for VOICE-1.

code is multiplied by 16 before it is poked into the sound map. Here

are the needed operations for VOICE-1:

POKE 54277, (ATTACK Code*16+DECAY Code)

POKE 54278, (SUSTAIN Code*16+RELEASE Code)

Except for the addresses in the POKE commands, the operations

are the same for the other two voices. Using the information in

Table 9-2, here is how the computer would be set up for:

Attack rate •= 16 milliseconds

Decay rate = 6 milliseconds

Sustain volume = half volume

Release rate = 3 seconds

POKE 54277, (2*16+0)

POKE 54278, (7*16+12)

ATTACK Code = 2

DECAY Code = 0

SUSTAIN Code = 7

RELEASE Code = 12

The information for the instruments listed in Table 9-3 has

already been multiplied and added, so to set the Commodore 64 for

a flute-like sound, the following operations would be used:

ATTACK-DECAY = 96 SUSTAIN-RELEASE = 0

POKE 54277, 96

POKE 54278, 0

You can use the information in the table, or you can experiment

with settings for the rates and the sustain volume of your own.

The time that a note is played, or its "length," can also be set.

277

u
The tone is started when you tell the computer what type of sound i i

you want, by selecting either noise, triangle, sawtooth, or pulse, M
and adding one to its code. This starts the tone sequence. The com

puter "attacks" the tone, increasing it to its full volume at the

ATTACK rate you selected. After the maximum volume has been j [
reached, the computer lets the tone "decay" to the SUSTAIN vol- LJ
ume level. The computer will continue to sound the note at the sus

tain level for as long as you want. When you turn off the note by |

clearing the SOUND address to 0, or by poking in one of the sound [_

codes without one added to it, the computer knows that you want

the tone turned off. It turns the note off at the RELEASE rate .

that you set, allowing the volume to finally reach "off." For some j
types of sounds, only the attack and decay rates are used. The sus- ^
tain volume is set for 0 (off) and the release rate is very fast. Most

of the instruments listed in Table 9-3 use only the ATTACK and j j
DECAY settings. U

Experiment No. 9-5. Using the Attack and Decay Rates

In this experiment you will have a chance to try different set- ^

tings of the attack and decay rates for noise tones. Since noise isn't

used too frequently, you will have a chance to hear several special

sound effects. j

Load the following program into your computer: LJ

10 FOR AD = 54272 TO 54296

20 POKE ADf 0 j
30 NEXT AD LJ
40 POKE 54276f 8 : POKE 54276, 0

100 POKE 54296, 15 \\

120 INPUT "TONE11; TN LJ
140 INPUT "ATTACK CODE11; AC

160 INPUT "DECAY CODE"; DC .

180 POKE 54277, (AC*16+DC)

200 POKE 54273, TN U
220 POKE 54276, 129

240 FOR T = 1 TO 2000 : NEXT T I I
260 POKE 54276, 0 LJ
280 GOTO 120

This program will let you type in a HI tone code for the noise, J j
and values for the attack and decay rates. You can look at Table 9-2 LJ
for the rates and their codes. The program first clears the sound

map and then clears the noise source (line 40). The rest of the pro- j

278

n
PJ gram is fairly standard, and similar to the sound programs used in

I j other experiments in this chapter.
Run the program. Type in a TONE code of 10, ATTACK code of

n 0, and DECAY code of 12. What do you hear? Remember to adjust

the volume control on your TV set so you can hear the sound.

With codes of 10, 0 and 12, a low noise tone has been selected,
^ along with a fast attack rate and a slow decay rate. It sounded to us

H like an explosion or a cannon firing. Here are some other settings
i I you can try:

TONE ATTACK CODE DECAY CODE SOUND HEARD?

j 5 0 12

200 0 9

10 10 12

r-i 1°0 12 12
I 100 10 5
i I

We heard a low explosion, a gun firing, surf on a beach, and

P paper ripping. Perhaps you thought of other things to go with the

i I sounds. Try some other settings, too. If the computer tends to "cut
off" your sound, "lengthen" the time delay loop at line 240 by

increasing the upper limit to 4000, or so. This will make the com-

P puter spend a longer time in this loop, so the sound can be com-
i \ pleted.

Here is a simple program that will play a short tune. It was origi-

r-! nally listed in the Commodore 6k Programmer's Reference Guide,

\ j but we have modified it so that it is easier to follow, and you can

type in your own attack and decay rates to see what effect they

have on the tune. Type the program into your computer and try it.

500 FOR AD = 54272 TO 54296

520 POKE AD, 0

540 NEXT AD

560 POKE 54296, 15

580 INPUT "ATTACK RATE11; AC

600 INPUT "DECAY RATE11; DC

620 POKE 54277, (AC*16+DC)

640 READ HT, LT, DR

660 IF HT < 0 THEN RESTORE : GOTO 580
680 POKE 54272, LT : POKE 54273, HT

700 POKE 54276, 33

720 FOR T = 1 TO DR : NEXT T

740 POKE 54276, 0

n

n

n

R 760 FOR T = 1 TO 50 : NEXT T
!)
1 \

n

279

u
780 GOTO 640 \ j

900 DATA 25,177,250,28,214,250 |J
910 DATA 25,177,250,25,177,250

920 DATA 25,177,125,28,214,125

930 DATA 32,94,750,25,177,250 i

940 DATA 28,214,250,19,63,250 U
950 DATA 19,63,250,19,63,250

960 DATA 21,154,63,24,63,63) j

970 DATA 25,177,250,24,63,125 U
980 DATA 19,63,250,-1,0,0

Run the program and use an attack rate of 0 and a decay rate of j
9. What does the tune sound like? What type of instrument do you I—'

hear? Here are some other attack and decay rates you can try:

ATTACK DECAY INSTRUMENT I
CODE CODE SOUND? J

3 9

4 7 j |

: : lj
3 8

You can also change the sound from sawtooth (33) to triangle (17) LJ

at line 700 in the program:

700 POKE 54276, 17 jj

Now try the attack and decay settings listed above. It is also

interesting to hear the noise sounds for this tune. Change line 700 , ,

to: jj

700 POKE 54276, 129

Does this sound like someone hammering boards to the beat of j I
the short tune? *-*

This program is fairly simple to change for another tune. The

notes are listed in the DATA statements as HI tone code, LOW j

tone code, and "time." The time is in multiples of approximately 62 [j
or 63; that is, 63, 125, 250, 500, 750, and so on. You can substitute

your own codes for new notes and times to get the computer to

play other tunes. i

In this chapter, we have introduced you to the sounds that the '—i
Commodore 64 computer can produce. There are many other sound

eflfects and types of sounds that the computer can put together j I

280

u

n

from the three voices. There are also some other ways to use the

voices that we haven't talked about. These are a bit complex, and

probably more that most people will use. Some games and enter

tainment programs make use of many different sounds, and you

m will be able to copy many of them by doing some experimenting

' and "fooling around." That's part of the fun of learning to use a

small computer.

n
I j QUESTIONS

r-i 1. How many sources of sound does the Commodore 64 computer

I [have?

R
1 j 2. What kinds of sounds can be created?

3. Can you control the volume of the sounds? If so, how do you do

it?

R 4. How many different tones can each "voice" create?
| J

5. Is there any overlap between the tones generated by each

"voice"?

6. What is "noise"?

) i

r^. 7. Can all of the voices be used at the same time?

I ■
/ i

("7 8. Can you suggest some uses for sound in computer programs?

281

9. What four things must be set up in the sound map before you
can get a sound?

continue to enter different "durations" until you get the proper

sound, at which time a 0 is entered so that the duration is saved

in the array.

u

10. How are different musical instruments "played" by the \J
computer?

i!

PROBLEMS u

1. Write a program that plays one of 10 possible tones when the i i

keys 0 through 9 are pressed. You can choose any tones that M

you like, along with the volume value, the sound channel or

"voice" used, and the waveform.

2. Write a program that generates a "jet plane" (whoosh) sound. (J

3. Write a program that lets you enter numbers for one of the

"voices'." Ordinarily, the numbers entered will be between 1 j j

and 65,535. As these numbers are entered, they are stored in jj
an array until the number 0 is entered, at which time the val

ues entered will cause the appropriate sounds to be generated. -. ,

Each tone should be played for the same amount of time.

4. Modify your solution to Problem 3 so that along with the values

that are entered, a number that represents the duration of the i »

tone can also be entered. Once the value 0 is entered, the M

"tune" is played.

5. Modify the solution to Problem 4 so that as keys are pressed, j i

the appropriate tone is also generated. If the tone isn't what jj
you want, you can enter other numbers. Only when the value 0

is entered is the tone value saved. The computer then lets you

enter the duration of the tone, which is then played. You can

continue to enter different "durations" until von a-pt t.hp nronpr I-J

u
282

n
p 6. Write a program that generates random tones for random

durations of up to one second per tone.

n

n

n
n

n

n

n

n
283

u

u

u

n CHAPTER 10
p ACCESSORIES FOR THE

COMMODORE 64

n

There are many useful accessories for your Commodore 64 com

puter that can be added to it so it can do new and interesting

things. These accessories range from plug-in cartridges to floppy-

disk storage systems, and their prices range from about $25 to sev

eral hundred dollars. In this chapter, the plug-in cartridges, the

cassette recorder, the graphic printer, the joystick control, and the

floppy-disk storage unit will be discussed. You will be given some

programs that you can use to control the cassette to save informa

tion on it, and you will see how you can use the joystick. Some

printer control operations are also listed for you, along with some

of the useful disk operations.

Several experiments are provided in the cassette section, and

you can do these if you have a Commodore Cassette Unit and are

interested in how the cassette works. If you are only interested in

using the recorder to save and load programs, you can skip over

the cassette recorder experiments.

PROGRAM CARTRIDGES

Plug-in cartridges are used to preprogram the Commodore 64

with ready-to-run programs for games, education, home finance,

and other uses. The cartridges plug into the recessed, open slot at

285

the rear right side of the keyboard case. A typical cartridge is

shown in Fig. 10-1, and one is shown inserted into the computer in

Fig. 10-2.

Fig. 10-1. A typical plug-in cartridge for the Commodore 64.

Fig. 10-2. A cartridge inserted into the Commodore 64.

Most of the programs that are available in cartridges will "take

over" the computer so the special program starts as soon as the

computer is turned on. Other plug-in cartridges, such as an

m

y

u

LJ

286

L

n

n

n

n

n

n

n
{ |

1

n
11

n

n

assembly-language monitor program, a tool for advanced program

mers, are started by using a special command. Although cartridges

will hold programs almost forever, they can be destroyed if you

plug them in or take them out of the computer when the computer

is turned on. Turn offthe power before a cartridge is changed.

Many programs are available in cartridge form, so it is easy (but

not necessarily inexpensive) to have many interesting programs

that can be plugged in and used quickly. Most of the popular com

puter magazines contain advertisements for companies that pro

duce cartridges for the Commodore 64 computer.

THE CASSETTE UNIT

Besides plug-in cartridges, you will find that the cassette

recorder is one of the most useful accessories for your computer.

The cassette recorder is called the C2N Cassette Unit by Commo

dore, and it is easily connected to the computer, as shown in Fig.

10-3. The C2N cassette recorder was designed specifically to work

Fig. 10-3. The cassette recorder connected to the Commodore 64.

with Commodore-brand computers such as the Commodore 64, and

a regular audio cassette recorder cannot be used without modifica

tions or extra add-ons. We will call the C2N Cassette Unit the cas

sette recorder, or just recorder. (At the computer end of the con

necting cable, you may find a long piece of silver, braided wire.

This is not used in Commodore 64 systems, and you can let it hang

free, or you can tape it to the cable to keep it out of the way.)

The cassette recorder is easy to use and it will let you save both

programs and information so that they can be put back into the

computer at another time. Many commercial programs are avail

able on cassette tapes instead of in cartridges, so you will need the

recorder if you want to use these programs.

BASIC programs that you have written can be stored for later

287

use by recording them on a cassette tape. This is easy to do, and i i

you can store several programs on one tape. Good audio-quality M
cassette tapes are recommended. Since it is unlikely that you will

record an hour's worth of information, you can use the shorter

audio cassettes, marked C-5 (5 minutes) or C-10 (10 minutes). I I
Instructions that tell you how to store a program on the cassette LJ

tape are contained in your computer instruction manual, and in the

C2N Cassette Unit instruction manual. Three commands are used: |

SAVE, LOAD, and VERIFY. The Commodore 64 saves your pro- J
gram twice on the tape, placing the second recording right after

the first. This provides the computer with a backup copy it can use

if it has problems reading the first one. After you have recorded a

program, the VERIFY command can be used to check the tape to u

be sure that the program has been recorded correctly. We recom

mend verifying your programs, even though it takes a little extra I I
time to rewind the tape and have the computer check it. LJ
When programs are to be saved, verified, and loaded, you can

give them a name so that they can be easily identified by the com- i i

puter. If you are putting only one program on each tape, you don't \M

need to do this, but be sure you carefully label each cassette. In any

case, putting a name on the tape right along with the program

makes the program easy to identify and locate. The name may have I |
up to 16 characters, and any of Commodore 64's characters, num- L-l
bers, letters, or symbols may be used. Unlike labels used in your

programs, the Commodore 64 uses all 16 characters in a name to] j

locate a program on a tape. (J

SAVING INFORMATION ON A CASSETTE I

The SAVE, LOAD, and VERIFY commands are used only to ^
save, load, and verify programs. If you want to use the cassette

recorder to save information, such as values and strings, you will I I

have to use two new commands, OPEN and CLOSE. The recorder LJ
can be thought of as a drawer that will hold your information.

Before you can use it, it must be opened, and when you are fin- i j

ished, it must be closed. The OPEN and CLOSE commands are |J
used to control some of the other Commodore 64 accessories, and

each accessory has been given a number so the computer knows

which one is being used. The computer has preset the cassette 1 1
recorder to be device #1. The computer uses device code #1 for its LJ
own purposes, and you don't have to be concerned with this num-

u
288

nWhen the recorder is to be used, the computer must be told

whether you are going to put information on the tape; that is,

"write" information, or whether you are going to get information

^ from the tape; that is, "read" information. The read and write oper-

] ations each have their own code: 0 for read and 1 for write.

• ' Information is stored on the tape as a "file," and you can give

each of your files a "file name" so they will be easy to locate. This

~| means that several files can be saved on the same cassette tape.

I The command to "open" the cassette recorder looks like this:

OPEN your id number, 1, read/write code, "file

P name11

Once the cassette recorder has been "opened," you can refer to

_ it by using the identification (id) number you gave it in the OPEN

I command. This makes it easy to point the computer to the cassette

! recorder when you want information transferred back and forth.

Here is a typical example of how the OPEN command is used:

H OPEN 9,1,1,"BANK11
This command tells the computer to "open" the cassette

r^ recorder so that a file named "BANK" can be recorded on a tape.

J j The cassette recorder is identified as #9. This number was chosen
at random, and another number would do just as well, for example:

n

p

OPEN 12,1,1,"BANK"

Once information has been placed on a tape, the cassette

recorder must be "closed" until you want to use it again. The

CLOSE command is simple; CLOSE9 for the first example and

CLOSE12 for the second one.

Getting information to and from a tape is very easy. The PRINT

r> and INPUT commands are used, just as they were when informa-

i ! tion was displayed on the TV screen and input from the keyboard.
The only difference is that you identify the recorder by using the

identification number you gave it in the OPEN command. When

! I the INPUT and PRINT commands are used with the keyboard and

the screen, identification numbers are not used. Here is an example

in which 100 data values are saved on a cassette tape with the file

p name "NUMBERS." The recorder has been given the identifica-

) • tion number, 9:

120 OPEN 9,1,1,"NUMBERS"

p 140 FOR NB = 1 TO 100
i I

289

u
160 PRINT NB | i

180 PRINT#9, NB

200 NEXT NB U
220 CLOSE 9

The OPEN command tells the computer to set up the cassette U
recorder so that the file called "NUMBERS" can be recorded on

the tape. It also tells the computer that you are going to call the i i

recorder "#9" later on in your program. The PRINT#9, NB com

mand tells the computer to "print" the value labeled NB on the

tape. Once all 100 values have been recorded, the CLOSE 9 com

mand tells the computer that you are finished with the cassette I j
recorder. LJ

It is your responsibility to place a cassette tape in the recorder,

rewind the tape to the start, and follow the directions that the com- j I

puter automatically displays on the TV screen. We recommend that \J

you practice recording and loading some simple programs using the

SAVE, VERIFY, and LOAD commands before you try using the ,
recorder to save other types of information. j

Most audio-quality cassette tapes have a clear or colored plastic ^
"leader" at the start of the tape. If you rewind a tape, you can see

this leader in the opening in the side of the plastic case. The com- I j

puter will generally go past the leader before it starts to record U
information. However, if you have difficulty getting information

stored on the tape, we recommend rewinding the tape and reset- i i

ting the counter wheels on the cassette recorder (press the small M
black button). This will put the count to 000. Now "play" the cas

sette until the count reaches the 010 mark. This should advance the

tape past any plastic leader so the cassette is ready to record infor- j j
mation. LJ

Getting information back off a tape is not difficult. The difference

is that the recorder must be "opened" so that the information can I I

be read, and an INPUT command must be used to read the infbr- {J
mation from the tape:

500 OPEN 9#1#0f"NUMBERS11 [I
520 INPUT#9, DV LJ
540 PRINT DV

560 GOTO 520 j i

The read/write code in the OPEN command is now a 0, since this ^
program reads information from the cassette recorder into the com

puter. This particular program will read information from the tape, { j

290

u

n

n

n

n

n

p

but it will never stop. There are no instructions in the program or

on the tape that tell the computer there is no more information on

the tape. When information is read from the tape into the com

puter, the computer must have a way of knowing that all of the

information has been received. In the preceding example, only 100

values were saved, so a FOR-NEXT loop could be used to count

the values as they are received. Here is a program that shows how

this can be done:

500 OPEN 9,1,0,"NUMBERS"

520 FOR NV = 1 TO 100

540 INPUT#9, DV

560 PRINT DV

580 NEXT NV

600 CLOSE 9

Now the computer searches the tape for the file called "NUM

BERS" and uses a loop to count off the first 100 values from it.

After these values have been received, the CLOSE command turns

off the recorder and "closes" it so it can be used later. The informa

tion from the tape doesn't have to be displayed. It can be placed in

an array, or used in some other way.

Experiment No. 10-1. Saving Information

In this experiment you will find out how you can save informa

tion on a cassette tape so that it can be used later by the computer.

You will need a C2N Cassette Unit (recorder) and a blank audio

cassette tape in this and the following cassette experiments.

Turn off your computer and be sure that the cassette unit is

properly connected to the Commodore 64. If it is not connected,

refer to the operating instructions that came with the cassette unit.

Once the recorder has been connected and checked, continue to the

next step.

There is an opening on the cassette tape and you can see the nar

row, brown tape or plastic leader pass through it. On the opposite

edge of the cassette, you will see two square areas near the cor

ners. To use the cassette in this experiment, there must be plastic

tabs in these square areas. If either of the plastic tabs is missing,

leaving a square hole, another cassette must be used. A broken tab

will prevent you from recording information on the tape.

Turn on your computer, place the cassette tape in the recorder,

and rewind it by pressing the REWIND button. After the tape has

291

u
been rewound, press the STOP button. Clear your computer for a i i
new program and type in the following program: M

100 OPEN 7,1,1,"DATA"

120 FOR DV = 0 TO 100 m

140 PRINT DV M

160 PRINT07, DV

180 NEXT DV

200 CLOSE 7 |

Run the program. The computer will display the message

"PRESS RECORD & PLAY ON TAPE" on the TV screen telling . ,
you to press the RECORD and PLAY buttons on the

recorder.Press these buttons at the same time. They should both

stay down. What does the computer do? The TV screen goes

"blank" and the recorder starts. The recorder stops and the infor- I J
mation on the TV screen reappears. You should be able to see the LJ
counting numbers on the left side of the TV screen. When the com

puter reaches 38 or so, the screen goes blank again and the j I

recorder starts again. The Commodore 64 cannot use the TV dis- jj
play and the cassette recorder at the same time. To use the

recorder, the TV screen is "blanked," becoming the border color all

over. Eventually the numbers reach 100, after the screen has been [
blanked several times. When the recorder finally stops, the ^
READY message is displayed on the TV screen.

When the READY message is displayed, press the STOP button I I

on the recorder and rewind the cassette tape. You have saved the LJ
numbers from 0 to 100 on the tape. In the next experiment you will

find out how you can read the numbers back into the computer. i ,

In this experiment, you found that when the recorder is M
"opened" so that you can save information on a tape, the screen is

blanked and the recorder starts to run immediately. The computer

runs the tape forward a bit to put some space between the last file I I

that was recorded, if any, or to get past any plastic leader at the LJ
start of the tape. The computer also puts the name of the data file

on the tape so it can be identified later when you want to read it. j |

The computer did not wait for all of the information to be dis- |J
played before it started to record the information. The computer

works much the way we do when we use a clothes washer. We

don't wash each piece of clothing, one at a time, we wait until we

have a full load and then run the washing machine. The computer *-»

does not record each value, one at a time. Only when the computer

has enough information will it send a complete "block" to the I I

292

u

n

n

n

n

n

recorder. This saves time and space on the tape. Once the com

puter has accumulated a complete "block" of information, it auto

matically blanks the TV screen and records the information on the

tape. If the computer doesn't have a full "block" of information to

be recorded, it will not send the information to the recorder until it

reaches a CLOSE command that "closes" the recorder. This is why

the CLOSE command is so important. It causes the computer to

save any last pieces of information that don't make up a complete

"block."

Experiment No. 10-2. Getting Data from the Cassette

In this experiment, you will see how data stored on a cassette

tape can be read into the computer. Clear the computer for a new

program. The cassette tape prepared in the previous experiment

R will be used in this experiment. If you don't have a tape with that
! information on it, go back and do Experiment No. 10-1. Type in the

following program: .

F] 300 OPEN 8,1,0#MDATA"
i 320 FOR L = 0 TO 100

340 INPUT08, DV

n 360 PRINT DV;

I 380 NEXT L
400 CLOSE 8

H Be sure that your tape has been rewound, then run this program.

I ' The TV screen will display the message, "PRESS PLAY ON
TAPE," telling you to press the PLAY button on the cassette

recorder. Press only the PLAY button! It should stay down. The

recorder starts to operate, and the computer blanks the TV screen.

You will see that the recorder starts and stops as "blocks" of infor

mation are read in and displayed on the TV screen. When the val

ues have been received by the computer, the READY message will

be displayed and you can see the numbers. Some of the numbers

are "broken" at the right edge of the display area on the TV

—I screen. Change the following line in your program:

320 FOR L = 200 TO 300

Rewind the tape and run the program again. The same display of

["] numbers from 0 to 100 should be seen on the TV screen. The loop
count values were changed just to show you that these values and

the values stored on the tape are not related. Change line 300 to:

H 300 OPEN 8,1,0,"NMBR"

293

u
Rewind the tape and run the program. What happens? When the I i

PLAY button is pressed, the TV screen is blanked and the cassette |J
recorder starts. The screen flashes quickly several times, but the

numbers 0-100 are never displayed. The cassette recorder contin
ues to run. I

Press the RUN/STOP key on the keyboard and press the STOP ^
button on the recorder. Do you know why no values were dis

played? The information was recorded on the tape as a file called I I

"DATA." The computer is told to "open" the recorder for a read U
operation, and to look for a file called "NMBR." The computer can

not find the file called "NMBR," so it will continue searching for it i i

right up to the end of the tape! Change line 300 back to: M

300 OPEN 8,1,0,"DATA"

and change line 320 to: I I

320 FOR L = 0 TO 50

Now the program looks like this: j I

300 OPEN 8,1,0,"DATA" U
320 FOR L = 0 TO 50

340 INPUT#8, DV (I

360 PRINT DV; LJ
380 NEXT L

400 CLOSE 8 I -

Rewind the tape and run this program. Follow the directions for LJ
the cassette recorder displayed on the TV screen. What values are

eventually displayed? Only the values from 0 to 50 are displayed. i i

Even though there is more information on the tape, you can take M

only a small part of it if that's all you want.

In this experiment you saw how the computer could read infor

mation from a cassette tape. The file name used in the OPEN com- I I
mand must match a file name used to record information on the u

tape. A loop was used to control the amount of information taken

from the tape. In some cases, you may not know ahead of time how I I

much information is to be stored in a file, so some flexible and y

adaptable method of reading and writing must be used. A special

value or character can be put at the end of a file so that when the , .

computer reads the character, it knows that the end of the file has

been found. Here is a sample program that gets strings of charac- u
ters from the keyboard and puts them on the tape in a file called

"STRING." When the computer gets a one-character string, *, [I

294

U

n

n

n

from the keyboard, the computer stops. The asterisk is the last

character in the file named "STRING":

200 OPEN 9,1,1 /'STRING11

220 INPUT U$

240 PRINT#9, U$

260 IF W$ O M*" THEN GOTO 220

280 CLOSE 9

Here is how the strings can be read back into the computer:

500 OPEN 9,1,0,"STRING11

520 INPUT#9, W$

540 PRINT W$

560 IF W$ O "*" THEN GOTO 520

580 CLOSE 9

In this program, the computer tests each string to see if the

string is a single asterisk. If it is, the end of the file has been found,

and there is no more information to get from the tape. The program

"closes" the recorder as the last operation, so the recorder can be

used somewhere else in the program. A "marker" is used to end a

cassette tape file when you don't know how much information is to

be saved.

Experiment No. 10-3. Saving Strings on a Tape

Saving strings of different lengths on a cassette tape isn't diffi

cult. You will see how it is done in this experiment. You will also

see how a "marker" can be used to end a file. Clear your computer

for a new experiment and rewind the tape in the cassette recorder.

Type the following program into your computer:

200 OPEN 9,1 f1/'STRING11

■H 220 INPUT CSS

j | 240 PRINT#9, CSS
260 IF CSS O "*" THEN GOTO 220

n 280 CLOSE 9

This program will let you type in a string, which will then be

saved on the tape. If you type an asterisk,*, it will be saved on the

^ tape, too, but it will also cause the computer to go to line 280. The

j CLOSE 9 command "closes" the recorder and records any remain

ing information that doesn't make up a complete "block."
Start the program and follow the instructions on the TV screen

H for the recorder. The screen will go blank, and the recorder will run

295

71

n

n

r

u
for several seconds. When the screen information appears again, a i i
question mark will be displayed on the TV screen. When you see M
the question mark, type in your strings. Don't use any special sym-
bols or punctuation marks in your strings, and remember to end

each string by pressing the RETURN key. Type in several strings, I I
such as: U

? THIS IS AN EXPERIMENT

? MY NAME IS FRED I
? MY ADDRESS IS GREENLAWN U
? WHAT TIME IS IT?

When the next question mark appears on the TV screen, type *
[RETURN]. What happens? The recorder will probably run for a
while, and then the READY message will appear on the TV
screen. When the READY message appears, rewind the tape. I I
Type the following program into your computer. It will be used LJ

to read the strings from your tape.

500 OPEN 9,1,0,"STRING" I I
520 INPUT09, RS$ U
540 PRINT RS$

560 GOTO 520 I I

Rewind the tape and then run the program by typing RUN 500

[RETURN]. Follow the cassette instructions displayed on the TV

screen. After pressing the recorder controls and giving the com- I I
puter a chance to get the information from the tape, what is dis- U
played on the TV screen? You should see your original strings dis

played on the TV screen. You may see other information, too, or | I

you may get an error message, such as; [_[

7STRING TOO LONG ERROR IN 520

Why do you think the other information or the error message

was displayed? There may be other information left on the tape ^
from old programs or data that were saved sometime earlier. The

program does not have any way of knowing where to stop the tape, I I
so it keeps the recorder running, reading this "unknown" informa- L!
tion from the tape. To stop this from happening, the program needs

to be changed to look for the asterisk. Here are the program lines i f

to add to your program: [I

560 IF RS$ O "*" THEN GOTO 520

580 CLOSE 9

296

u

Li'

n

n

n

n

Rewind the tape and run the program again. What do you see on

the TV screen when the recorder finally stops? The original strings

are seen. No other information or error message is seen. When the

computer saw that an asterisk had been received from the tape, the

program "closed" the recorder and stopped it. Save your tape with

the STRING file on it for use in the next experiment.

THE CASSETTE AND THE GET COMMAND

The GET command is used to get individual characters from the

keyboard, and it does the same thing with a cassette tape. (You

may remember that the GET command gets a "null" or "nothing"

character if a key isn't pressed when the computer "looks" at the

keyboard.) When used with the recorder, the GET command gets

characters from the tape, one at a time. There are no "null" charac

ters between the characters on the tape, or anywhere else in the

information. Since the GET command gets single characters from

p the tape and the keyboard, strings and values must be put back

| i together from the individual characters. Short BASIC programs
can do this.

_ In most cases, the INPUT command will be used to control the

j recorder, since this command gets a complete string or a complete

! value from the tape. When the INPUT command is used, no special
operations are needed to put the information back in a meaningful

P form.

I i It isn't difficult to end a file with a "marker," and this can be
done with a few extra software steps. However, if you are using a

tape from someone else's Commodore 64 computer, there may be

no "marker" at the end of their data file. Don't worry, the Commo

dore 64 automatically puts a null character at the end of each data

^ file. The null character can be looked for as a file is read from the

i j tape using a GET command. Here is how it can be done for strings:

700 OPEN 9,1,0,"STRING".

^ 720 GET#9, R$

! 740 IF R$="" THEN GOTO 800
760 PRINT R$

780 GOTO 720

P 800 CLOSE 9

! i 820 etc ...

This program gets individual characters from the tape and

p checks each one to see if it is a null. If it isn't a null, the program

297

n

u
displays the character and gets the next one. If a null is found, I j

that's the end of the file, so the recorder is "closed" and the pro- [J

gram ends. The value of the GET command is in getting informa

tion from a tape when you don't know how much information there , ^

is in a file. j

When this technique is used with values that have been stored '—'
on a tape, the program is more complex, since individual digits

must be put back into strings, and the strings converted to the val- j j

ues originally stored. Here is how it is done: LJ

1000 OPEN 7,1 f0,"DATA11: B$ = ""

1020 GET#7, H$ I
1040 IF H$ = CHR$(13) THEN GOTO 1140 U
1060 IF H$ = "" THEN CLOSE 7 : GOTO 1200

1080 B$ = B$+H$ I I

1100 GOTO 1020 U
1120 REM GET THE VALUE OF THE STRING

1140 X = VAL(B$) : B$ = "" , ,

1160 PRINT X

1180 GOTO 1020 u
1200 etc ...

This program first "opens" the cassette and then "clears" the LJ
string labeled B$. The computer checks for two conditions. If a null

character is received from the tape, the computer stops the i i

recorder and goes to the program steps starting at line 1200. When M
the computer puts values or strings on a tape with a PRINT#-type

command, it places a RETURN character between the values or

strings to separate them. The return character is CHR$(13), and if j I
it is found, it means that the computer has reached a "separator" LJ
between two values or strings that have been put on the tape. The

computer then converts the string of individual digits into a real i i

value, X. This value is displayed, but something else could have y

been done with it, too. Perhaps it could be stored in an array for

later use. The B$ = "" operation clears the string B$ so it starts ,

"empty" for the next string that is to be converted to a value.

Experiment No. 10-4. Using the GET Command with the Recorder

This experiment will demonstrate how the GET command can H
get individual characters from a tape. The cassette tape with the ^
STRING file from the previous experiment will be used. If you do

not have a cassette tape with that file on it, go back and do the pre- I j

298

u

H
l

n

n

n

vious experiment. Clear your computer for a new program and

type in the following program:

400 OPEN 9,1,0,"STRING"

420 GET#9, H$

440 PRINT H$

460 GOTO 420

Rewind the tape and run the program. Follow the directions dis

played on the screen for the recorder. As you press down the

PLAY button on the cassette recorder, press the CTRL key on the

computer and hold it down. This will slow down the speed of the

display, but it will be a while before you see anything happening on

the TV screen. What is displayed? The screen displays the original

strings, one character at a time, with the characters going down

the left side of the TV screen. Does the program or the recorder

stop? The recorder continues to run, and no READY message is

seen on the TV screen. If your tape was used previously to store

H other information, you may see other characters displayed on the
! I TV screen, too.

The GET command gets individual characters from the tape. It

p does not put the characters together to form the complete strings

I | that you originally put on the tape. Here is a new program you can
use to link the individual characters back into the original strings:

p 400 OPEN 9,1f0,"STRING"

| | 420 GET #9, H$
440 IF H$ = CHR$(13) THEN GOTO 600

460 IF H$ = "" THEN GOTO 700

480 TS$ = TS$+H$

500 GOTO 420

600 PRINT TS$: TS$ = ""

p 620 GOTO 420

| | 700 CLOSE 9
720 END

~| You can type in this program if you want to see how it works to
put the strings back together again.

This program gets the individual characters from the tape. Char-
P acters are linked at line 480 into a total string, TS$. If a RETURN

[character, CHR$(13), is found, that means that the end of a string
has been found, and the complete string can be displayed (line 600).
The TS$ string is reset to "nothing" to give it a fresh start for the

]l next string.
I I

299

n

If a null character is found, that means that the end of the file I (

has been found and the recorder is "closed." [J
Rewind your tape and run the program. You should see the com

plete strings displayed on the TV screen. I ,

A program to do basically the same thing with values stored on a j

tape has been provided in this section. The only extra operation ^
needed for values is to convert from a string of digits to a real

value that the computer can use. j I

The recorder will not be used again in this chapter, so you can LJ
remove the tape and disconnect the recorder, if you want to, but

turn off the power first. Some of this programming is a bit is

advanced, but it is useful. For example, if you are trying to keep M
track of household expenses for the last 12 months, it would be a lot

of work to type in many of the same values every month. By using

the recorder, you can save the values for the past 12 months on a

tape. You can also save your household calculation program, so ^
everything is on one cassette tape. Student grades, sales reports,

car expenses, patient information and other things can be stored on j j

a tape using the types of programs shown in this section. [J

THE GRAPHIC PRINTER |

The Commodore VIC-1525 Graphic Printer is a useful accessory

for your Commodore 64 computer, since the printer gives you the

opportunity to actually print information, program listings, and I
graphics on a sheet of paper. The user's manual supplied with the Lj
printer is fairly complete, so we won't go into details about con

necting the printer to the computer or setting it up. We will give i

you some information about how the computer and printer are used [_

together.

The printer is a dot-matrix printer that uses small needles to

form the individual characters. The dots are used in a 6-column, 7-

row format, as shown in Fig. 10-4 for the letter "R." The printer LJ

Fig. 10-4. A 6 by 7 dot matrix for the

letter "R."

THIS COLUMN ALWAYS BLANK

TO SPACE CHARACTERS

300

u

u

u

n

n

can print 80 characters in a line, which is fairly standard among

computer printers. The printer can duplicate all of the characters,

symbols, and graphic characters that can be displayed on the TV

screen, and characters can be printed in "reverse," too. Of course,

the printer can't print in color.

STARTING THE PRINTER

The printer is just like the cassette recorder in that it must be

^ "opened" and "closed" with the OPEN and CLOSE commands.

j I The Commodore 64 computer can use up to two printers, and

I I device codes 4 and 5 have been set aside for them. If only one
printer is to be used, code 4 should be used, and this is set on a

j—| small switch on the back of the printer where the computer-printer

J ! cable is connected. The OPEN command for the printer looks like
this:

r-i

| OPEN your id number, 4, character set code

The identification (id) number you assign to the printer can be

Pj anything you choose, as long as it hasn't already been used to iden-
i tify some other device, such as the cassette recorder. The character

set code is also called a secondary address, and it lets you select the

j—j set of characters that will be displayed on the printer. Commodore

! calls these two sets of characters the "CURSOR UP" and "CUR
SOR DOWN" sets. The CURSOR UP set is the one normally used

on the TV screen (Set 1), and it has a code of 0. The CURSOR

! DOWN set has a code of 7, and it corresponds to Set 2 for the TV

1 screen display. Here are examples of the OPEN commands for
both character sets:

! | OPEN 33, 4, OCid #33, Set 1 characters)

OPEN 52, 4, 7(id #52, Set 2 characters)
n

! j The identification numbers, 33 and 52, have been chosen at ran
dom.

r-. The printer can be used to get a printed result from a program,

| ! and this is often called "hard copy," which just means that you can
hold onto the copy and save it for later use. The PRINT# command

is used to control the printer, and here is an example of a simple
R program that prints 10 numbers on a line:

301

n

u
100 OPEN 46, 4, 0

120 FOR T = 1 TO 10 jj
140 PRINT#46,T;

160 NEXT T , .

180 CL0SE46 M

The semicolon suppresses the printer's line feed, so that all of

the numbers are printed on one line. When this program is run, the J |

numbers are not printed on the TV screen. They are only printed U
on the paper in the printer. Since it is often better to test a pro

gram using the TV screen (it's faster and doesn't use paper), it will i ,

be a bother to try and convert all of the PRINT commands to I
PRINT# commands when you want to switch over to the printer

for a "hard copy" of the program results.

The CMD command lets you switch all of the printing operations J j
over to the printer, and only a single CMD command is needed, LJ
right at the start of the program. For example, the following pro

gram can be used to print a message on the TV screen: j i

200 PRINT "♦*****♦**************"

220 PRINT M* *" , .

240 PRINT M* TEST MESSAGE *" I
260 PRINT M* *" U
280 PRINT M***********#*********"

Two commands can be added to this program so that the mes- U
sage is printed on the printer, instead:

160 OPEN 43, 4f 0 M
180 CMD43
200 PRINT "ft********************"

220 PRINT "* *" t I
240 PRINT "* TEST MESSAGE *M U
260 PRINT "* *M

280 PRINT "*********************M j [

The CMD43 command switches all of the PRINT commands to

print their information on the device we've called 43; the graphic . .

printer. Since the printer can print 80 characters on a line, long M

printing lines with more than 40 characters will "wrap around" on u
the TV screen when the program is listed.

When the CMD command is used, all of the printing is switched I {

302

u

n

n

R

over to the printer, so even the READY message will be printed

on the paper. To switch the computer back to the TV screen, you

simply use a PRINT#43 command at the end of your programs.

(We assumed that your id #43 is still being used, as in the preced

ing examples.) Here is another example of how this can work when

a line of letters, A - Z, is printed on the printer:

500 OPEN 43,4,0

520 CMD43

540 FOR LT = 65 TO 90

560 PRINT CHR$(LT);

580 NEXT LT

600 PRINT#43

620 CL0SE43

The OPEN and CMD commands set up the printer and switch

printing over to the graphic printer. The letters are printed on a

line, and the PRINT#43 command is a "dummy" command that

n switches back to the TV display for normal computer use. The

i CLOSE command simply "closes" the printer, since it won't be
used again in the program.

n The CMD command is useful when you want to print everything

i \ on the printer. If you want to print some information on the printer

and some on the TV screen, you will need to use the PRINT and

PRINT# commands individually.

p. In the preceding printing program, the CHR$ command was
(; used to "convert" a value into its equivalent string character, 65 =

A, 66 = B, and so on. The VIC-1525 printer uses some special

p string characters to set it up for special printing operations. The

I I codes are listed in Table 10-1. For example, the CHR$(14) "charac
ter" sets the printer so that it prints double-wide characters. The

double-wide characters are useful for labeling tables, charts, and
; j figures, and for chapter headings in manuscripts and reports.

1 There are also CHR$ "characters" that can be used to switch to
and from the CURSOR UP and CURSOR DOWN sets of charac-

p ters, set printing positions, and display graphic information on the

i I paper.

You can list your programs on the printer once it has been
^ opened. The following can be typed in to do it:

! ! CMD43 : LIST [RETURN]

This tells the computer to send the listing to the printer. How-
"i ever, when the listing has been completely printed, the READY

303

Table 10-1. Special Printer Control Codes for the VIC-1525

Graphic Printer

Code

CHR$(8)

CHR$(10)

CHR$(13)

CHR$(14)

CHR$(15)

CHR$(16)

CHR$(17)

CHR$(18)

CHR$(26)

CHR$(27)

CHR$(145)

CHR$(146)

Description

Enter graphics mode1

Line feed after printing

Carriage return 2

Start double width

Start standard width

Tab setting1

Cursor Down (Set 2) characters

Start reverse printing

Repeat graphics1

Specify dot address1

Cursor Up (Set 1) characters

End reverse printing

1 These operations require additional commands or information.

2Carriage-return returns printing head to the start of the same line, without

advancing the paper.

message will be printed on the printer and not on the TV screen.

To switch back to the TV, just type:

PRINT#43 [RETURN]

and the computer will again use the TV screen.

The use of the printer to print the standard graphic symbols

found on the keyboard is not difficult, and these characters can be

put right in PRINT and PRINT# commands. The printer can also

be used to print complicated graphs and special characters that can

be set up in programs. Although there are several examples in the

printer user's manual, we don't recommend that you try and use or

understand these programs, since they are quite complex, and it

won't be obvious from the program listings what is being done. The

special graphics modes for the printer aren't the type of thing that

we'd recommend to beginners who are just becoming familiar with

BASIC programs and the BASIC commands.

LJ

u

U

u

u

THE JOYSTICK CONTROLS

A joystick is another useful accessory for your Commodore 64,

since it is used in many games to move a "player" or other object

on the TV screen. A typical joystick is shown connected to a Com

modore 64 computer in Fig. 10-5. The Commodore 64 has two joy-

u

304

u

n

n

n

Fig. 10-5. A joystick connected to CONTROL PORT 2 on the Commodore 64.

stick connectors on the right side of the keyboard, and they are

marked "CONTROL PORT 1" and "CONTROL PORT 2."

The joystick unit contains four switches that are attached to the

"stick," and as the stick is moved, the switches are actuated. The

four switches are located in the NORTH, EAST, SOUTH, and

WEST positions, as shown in Fig. 10-6. The joystick can be placed

TOP V4EW (SWITCH 0)

fsiORTH

NORTHWEST NORTHEAST

(SWITCH 2)

WEST ' ■Of
(SWITCH 3)

' EAST

SOUTHWEST SOUTHEAST

(SWITCH 1)

SOUTH

CONTROL BUTTON (SWITCH 4)

Fig. 10-6. Joystick positions can be related to compass directions.

in between adjacent positions, actuating two switches, so the

NORTHWEST, NORTHEAST, SOUTHWEST, and SOUTH

EAST positions are possible, too.

Most joysticks have a "fire" or control button that is used to tell

the computer to shoot missiles, launch rockets, and cause other

things to happen. This control button is a separate switch that is

independent of the joystick, and it can be pressed at any time.

305

u
* Although joysticks are most frequently used with games, they

have other uses, too. For example, the joystick might be used to

point to answers in a multiple-choice test. Instead of numbering the

possible answers, they are places in NORTH, SOUTH, EAST, and

WEST positions on the TV screen. Moving the joystick moves a

colored square to the selected answer, and pressing the control but

ton tells the computer to go ahead and accept that choice. People

who have limited physical movement can control many things with

a simple joystick, having the computer make decisions based on the

joystick's position. The joystick can be used in more ways than as a

simple game control. The five joystick switches are electrically con

nected to the computer, and they can be "looked at" by using a

BASIC program. Each joystick has its own "address" within the

computer: 56320 for Control Port 1 and 56321 for Control Port 2.

Here is a program that can be used to give the positions of the joy

stick and the control button, as values:

1000 REM SET UP JOYSTICK MAP ADDRESS

1020 AD = 56321

1040 JS = PEEK(AD) AND 15

1060 FB = (PEEK(AD) AND 16) / 16

1080 PRINT JS, FB

1100 GOTO 1040

This program will display values that correspond to the positions

shown in Fig. 10-7. These values can be used in IF-THEN or ON

14

13

BUTTON PRESSED, FB = 0

BUTTON NOT PRESSED, FB = 1

Fig. 10-7. Joystick positions and values for the BASIC control program.

L

u

u

U

LJ

U

U

U

U

306

u

n

n

commands to tell the computer what to do with the different joy

stick positions (JS). The control button value (FB) will be 0 when

the button is pushed, 1 when it isn't. This program displays the val

ues of JS and FB on the TV screen. (NOTE: To change the pro

gram for a joystick connected to Control Port 1, set AD = 56320 in

line 1020.) You may clear your computer for a new program and

type in the preceding joystick program if you want to see how the

joystick works. Plug your joystick into the Control Port 2 connec

tor on the right side of the computer's keyboard case, as shown ear

lier in Fig. 10-5.

p There are other ways to figure out the position of the joystick,

I j and one is listed in the Commodore 6U Programmer's Reference
Guide, along with more information about exactly how the joystick

works.

THE FLOPPY-DISK UNIT

PI The Commodore 64 computer can store information and pro-

! (grams on the cassette unit, and the computer can also use a floppy-

disk storage device. A floppy disk is a circular, flat piece of plastic

r^ coated with magnetic material similar to that used on the tape in a

! | cassette. Information is recorded on the disk in almost the same

way it's recorded on a cassette tape. The magnetic disk is perma

nently enclosed in a flexible, protective plastic container, so the

""I disk itself won't be damaged or pick up dirt. Two disks are shown
\ in Fig. 10-8. One of the disks has been opened just to show you

what the inner disk actually looks like. Be careful with the disk,

—I and bend or flex it as little as possible. You should NEVER open a

; disk unless you are about to throw it in the garbage. Floppy disks

come in several sizes, with 5%-inch disks being used in most small

computers, including the Commodore 64. Each of the disks used

I i with the Commodore 64 computer can store 174,000 pieces of infor

mation, with each "piece" being a letter, digit, graphic symbol,

punctuation mark, and so on. Up to 144 programs can be saved on a

""• disk, but to actually get this many on one disk, the programs would

I have to be very short. When information is stored on a disk, it is
often called a,file.

r-. Floppy disks are used by placing them in a disk drive, which is

I quite a bit like a phonograph. The information is read from

"tracks" on the disk, but unlike the grooves on a phonograph

record, the tracks are invisible to us. The electronic circuits in the

I "disk drive" take care of recording (saving) and reading (recalling)

307

Fig. 10-8. Two 5%-inch floppy disks, with one shown out of its protective cover.

the information. The Commodore 64 uses the VIC-1540 or VIC-

1541 Single Drive Floppy Disk drive unit, which is manufactured

by Commodore for its line ofcomputers. A typical VIC-1541 unit is

shown in Fig. 10-9. We'll call this a disk drive.

There are several advantages to using a disk drive instead of a

cassette recorder. The disk drive is fairly fast, and it can store and

recall programs and information quickly. If you have saved a pro

gram near the end of a cassette tape, you will have to let the com

puter run through all of the other programs on the tape until it

reaches the one you want. The disk drive doesn't have this limita

tion, since it can go from one program to another very quickly. You

can pick up the arm on a phonograph and move it from song to song

on a record, and the disk drive does just about the same thing with

a floppy disk.

DISK-DRIVE SETUP

The floppy-disk unit plugs into the back of the Commodore 64

computer, and it also plugs into a wall outlet to get power. There

are no special controls to set on the disk drive or the computer, so

we'll just refer you to the disk-drive user's manual for any other

hookup information you need.

u

L

u

u

u

u

u

u

u

308

n

n

n

) i

Fig. 10-9. TheVIC-1541 floppy-diskdrive.

When the disk drive is connected to the computer and to a wall

outlet, you can turn it on, and the green light on the front will be

lit. The power switch is located on the back of the disk drive. There

is also a red light on the front of the disk drive, and this will be lit

when the computer is actually using the disk to save or recall infor

mation. You'll see how this works later in this section.

NOTE: Some of the user's manuals supplied with the disk drives

tell you that you must not remove a disk when the green light is on.

This is incorrect The disk must not be removed when the red light

is on. The green light is just a power-on indicator.

Disks are inserted into the disk drive with the label up and on

the edge of the disk that is closest to you. There is an open slot on

the protective cover and this edge goes into the computer first, as

shown in Fig. 10-10. Disks come with a small notch on one edge.

Some disks may have this covered with a piece of tape, which tells

the disk drive that it must not put any information on the disk. This

protects the information on the disk so you can't wipe it out by try

ing to put something else on the disk. This is called write protect,

and most prepackaged programs available from computer dealers

and computer stores have this tape in place on the disk. Blank disks

with no programs or information on may not have the tape stuck

over the notch. Without the tape stuck over the notch, the disk

drive recognizes that it may save information on that disk. If you

309

; I

u

OPEN

NOTCH

DISK

WRITE-PROTECT-

NOTCH \s^ LABEL

Fig. 10-10. Insert the floppy disk with the open notch toward the drive and the j I
label up and toward you. [J

purchase disks and find that the notches are "open," you'll proba- ,

bly find some special stickers included with the disks. The stickers

must be opaque; that is, they must be able to block out light.

Here are some experiments you can do with your VIC-1541 disk

drive unit, so you'll be familiar with how the disks can be used with 1 (
your Commodore 64 computer. U

Experiment No. 10-5. Setting Up a New Disk < ,

In this experiment, you'll find out how to format a disk so that it LJ
can be used with the VIC-1541 disk drive and the Commodore 64

computer system. j i

The Commodore 64 and the VIC-1541 disk drive should be prop- [J
erly connected, and each should have its power turned on. Take a

blank disk with no information on it and check it to be sure the tape

covering the write protect notch has been removed. DO NOT USE

THE DEMONSTRATION DISK PROVIDED WITH YOUR "

DISK SYSTEM! Insert the blank disk into the disk drive by press

ing it in until it stops. The disk will disappear into the slot and it I

will be held in place. If the disk pops out of the slot, you need to L
press it in further. Gently press down on the short plastic bar that

is just above the disk slot. This will lower a "gate" that latches in

place, holding the disk in the unit. To remove the disk, gently press

this small plastic bar in, toward the disk drive. This will unlatch the

"gate," so it moves up and the disk pops forward. DO NOT

CLOSE THE GATE WITHOUT A DISK IN PLACE. Practice

310

! |

n

n

I i

inserting and removing your disk several times, so you know how

to latch a disk in place and how to remove it.

Place a blank disk in your disk drive and type in the following

commands on a single program line:

0PEN63f8,15 : PRINT#63,"NEW0:TEST DISK,JT" :

CLOSE 63

Note that a zero follows directly after NEW. This line will look

like this on the TV screen:

0PEN63,8,15 : PRINT#63,"NEW0:TEST DISK,J

T" : CLOSE 63

Once this line has been entered, press the RETURN key. The

disk drive will probably make some clicking noises and you may

hear it make other low noises or a buzz as it formats the disk.

These noises are normal for the format operation. As the disk is

-i being formatted, the red light should be lit. It will take about a

| minute and 20 seconds for the disk drive to format the disk so that
it's ready to use.

The red light shows you that the disk drive is "busy," and that

(the disk is being used. You must not remove a disk when the red

light is lit If the red light flashes, this means that there is a disk

error. You can cause an error by trying to format a vmte-protected

n disk; one with the notch taped over. To correct this type of error,

| just remove the tape, insert the disk, and type in the disk format
instructions again.

^ The commands used with the disk drive first "open" it,

j i just as the cassette recorder and printer were opened, and assign

' ! the disk drive our identification number, 63. We chose this at
random; other identification numbers can be used instead, as

Pi l°ng as they are between 2 and 127. The second command,

I S PRINT#63,"NEW0:TEST DISK,JT," tells the disk drive to for
mat this disk so we can use it to record information later on. If the

r-m disk had been used previously, any old information stored on it is

j erased.

The NEW command can be abbreviated with an N followed by a

zero, so the command can be simplified a bit:

I | OPEN 63,8,15 : PRINT#63,"N0:TEST DISK,JT"
CLOSE 63

H If you are interested, here is what the commands cause the disk
I i

311

u
drive to do. The NEWO: operation tells the disk drive that it is to j /

clear out the disk for new programs and information. jj
TEST DISK is the name we have chosen for this disk, but you

can choose your own names for your disks, with up to 16 characters ,

per name. This names the overall disk, and we suggest that you use I

different names for your disks, just so you can tell them apart. The ^
two letters that follow, JT, give the disk a two-letter identification

code that it can use for its own purposes. Again, each disk should I f

be set up with its own set of two letters. {J

When the disk has been formatted so that programs and other

information can be stored on it, the READY message will be dis- \ j

played on the TV screen, and the red light will be off. You can jl
remove the disk from the disk drive and format another one, or you

can leave it in the computer for use in the next experiment.

II
SAVING, LOADING, AND VERIFYING PROGRAMS

Saving a program on a disk is almost the same as saving a pro- j I

gram on a cassette tape. However, the disk keeps its own list of the u

programs that have been stored on it, so you don't have to keep a

list on paper. This makes things simple, since you can ask the com- i .

puter to get the list of programs from the disk and display it on the j I
TV screen for you. This type of list is called a disk directory, or

more often just a directory. The directory in a Commodore 64 com

puter system with a disk is limited to 144 program names. Once j I
programs have been saved on the disk, it is easy to load them into Lj
the computer to either run them or make additions and corrections.

You can also verify your programs to be sure that they have been j i

saved correctly. jj

Experiment No. 10-6. Saving, Loading, and Verifying a Program

In this experiment, you will find out how you can store a pro- j
gram on a disk, and how you can load the program into the com-

puter from the disk. You will also see how to verify that the pro

gram has been stored correctly. | j
If you removed your formatted disk from the disk drive, insert it LI

now. If you don't have a formatted disk, go back and do Experi

ment 10-5. Once the formatted disk has been inserted in the disk j (

drive, type in the following program: (j

20 PRINT "COUNTING11

40 FOR T = 0 TO 10 II

312

u

n

60 PRINT T

80 NEXT T

100 END

Run the program to be sure that it works, printing COUNTING

and the numbers 0 - 10 on the TV screen. Correct any errors, and

type in the following command to save the program COUNTING

on the disk:

I [SAVE "COUNTING",8

Press the RETURN key and the computer will display:

SAVING COUNTING

The red light on the disk drive will be lit, and you may be able to

hear the disk drive make a whirring sound. When the program has

been saved, the computer will display the READY message, and

the red light will be turned off. The SAVE command is very similar

to the one used to save programs on the cassette recorder. The

only difference is that when programs are saved on the disk, the

SAVE command must be followed by a comma and the number 8.

This lets the computer know that you want to save the program on

the disk and not on the cassette. Here are several examples of com

mands used to save programs on a disk:

SAVE "TESTING", 8

SAVE "CHECKING ACCT", 8

SAVE "LAB CALCS", 8

Now that you have saved your program on the disk, it is a good

idea to verify it, just to be sure that it has been saved properly. To

do this, just type in:

VERIFY "C0UNTING"#8

The computer prints the message:

SEARCHING FOR COUNTING

VERIFYING

OK

READY.

after it has found and verified that the program in the computer

and the program saved are exactly the same. Type in the VERIFY

command without the comma and the 8, just to see what happens:

VERIFY "COUNTING"

313

n

u
Without this "extra" information, the computer assumes you * j

want to verify the program on the cassette recorder, so it displays M
the message:

PRESS PLAY ON TAPE j j

Press the RUN/STOP key to get out of the cassette-verifying LJ
program and then list your program. It should look like this:

20 PRINT "COUNTING11 j !
40 FOR T = 0 TO 10 U
60 PRINT T

80 NEXT T i I

100 END [J

Remove the END command. Just type the line number, 100, and

press the RETURN key. Now the program should look like this: j

20 PRINT "COUNTING" ^
40 FOR T = 0 TO 10

60 PRINT T j [

80 NEXT T U

Type the command:

VERIFY "COUNTING",8 (J
and see what the computer does. Since the program has been

changed, do you think the computer will verify that the program in J j

the computer is the same as the one saved on the disk? The com- jj

puter displays this on the TV screen:

VERIFY "COUNTING",8 j j

SEARCHING FOR COUNTING (J
VERIFYING

7VERIFY ERROR .

READY. M

Since the program in the computer no longer matches the pro

gram on the disk, the computer cannot verify them. The VERIFY i \

ERROR message lets you know that the program on the disk M

doesn't exactly match the program in the computer. If this happens

after you save a program on the disk, you'll want to save your pro

gram again, and we'll show you how to do this shortly. j
Clear your computer using the NEW command and type LIST, U-

just to confirm that there are no program lines saved in the com

puter. To get your program back again, type in: j j

!

314

n

n

n

LOAD "COUNTING",8

The computer displays:

LOAD "COUNTING11,8

SEARCHING FOR COUNTING

^ LOADING

| I READY.

You can use the LIST command to have the program that you

p loaded from the disk displayed on the TV screen. This shows you

i j that the program really did come from the disk. Run your program
J just to be sure it works properly.

We chose the name "COUNTING" for the program used in the

previous experiment, but any other name could have been used. In

most cases, you'll want to choose a name that tells you what the

program does. Names such as PROGRAM-1, PROGRAM-2, and so

f] on aren't as useful as KEYBOARD TEST, CHECKING ACCT,

j ; and so on.

- SAVING A CORRECTED PROGRAM

! If you are going to write fairly long programs, you'll want to

save them on a disk so they can be recalled later and tested. If you

P recall a program from the disk and correct an error, you cannot put

J i the program back on the disk using the same "name" for it. This is
a limitation of the disk drive, and at first it seems to be difficult to

p[correct programs and put them back on the disk. You might have

J [to make up new names as you go along, testing, correcting, testing,
correcting, and so on, calling the programs COUNT-1, COUNT-2,

COUNT-3, and so on, as corrections are made. This would take up a

I \ lot of the disk's storage space very quickly, and it wouldn't be very

' ' handy.
You can use a special command to rewrite a program onto the

r^ disk using the same "name" for it. For example, if you have

J recalled a program named "CHECKING" from the disk and have
made changes in the program, you can use the same name to store

^ the program back on the disk by using this type of command:

I » SAVE "@0:CHECKING",8

^ The @0: characters let the disk know that the new program

F] called "CHECKING" is replacing the old one with the same name
j \

315

I \

on the disk. If you have a verify error when verifying a program J j

that has been saved onto the disk, you can try to save it again by jj
using a new name, or you can type in the SAVE command with the

@0: characters in front of the original name. The choice is yours. .

THE DIRECTORY OF PROGRAMS

The VIC-1541 disk drive can be told to list its directory of the J j
programs stored on a disk, providing a list of names of the pro- U
grams stored. To get this list, you can type the following command:

LOAD "$",8 J j

and the disk drive will load the names into the computer for you,

displaying:

SEARCHING FOR $ I
LOADING

READY. (

on the TV screen. To display the list of names, just type LIST. One tj
of the problems with using the LOAD "$",8 command is that this

erases any programs that you have in the computer when the "$" < »

information is loaded in. Likewise, if the listing of the directory I
information is in the computer when you type in a program, it can

cause problems, and the program probably won't run properly.

This can be overcome by using a special program that has been j I

put on the demonstration disk that comes with your disk drive sys- U

tern. On our demonstration disk, this program was called "C-64

WEDGE." This provides some special features that let you do j .

disk-related tasks more easily. One of the things you can do is have JJ
the directory of programs on the disk displayed on the TV screen

without interfering with your programs that are in the computer.

To use the WEDGE program, first remove any disk from the disk j I
drive and insert the demonstration disk. List its directory by typ- U
ing LOAD "$",8 to be sure that the WEDGE program is on the

disk. In our system, we typed in: 1 /

LOAD "C-64 WEDGE",8 *-J
to get the WEDGE program into the computer. Type RUN to run . i

it. Once the WEDGE program has been loaded and run, you can

type >$ to have the directory typed on the TV screen. This infbr-

mation won't interfere with any of your programs, and you can use

this operation to type out the disk's directory at any time. J \

316

Lr

n

I !

-j CLEARING AN OLD FILE

- If you have an old program that you don't need any longer, you

^ can erase it from your disk by using the SCRATCH command.

I | Clearing old programs and files gives you extra storage space on a

l i disk, and lets you "clean up" a disk by getting rid of old programs.

To remove a program called "EST REV A" from the disk, just

p| type in the following command:

J > OPEN 67, 8, 15 : PRINT#67,"SCRATCH0:EST REV A11
CLOSE 67

H You can abbreviate SCRATCH as just S:

OPEN 67,8,15 : PRINT#67,"S0:EST REV A11 CLOSE 67

R Again, remember that a zero follows the SCRATCH command or

| i the letter S. After you use the SCRATCH command, you can list
the directory with the >$ command. The EST REV A program

r^ will not be in the directory.

RENAMING OR COPYING A FILE

p You can rename and copy your programs or files by using simple

{ I commands much like the SCRATCH command already described.
Suppose that a program called "TEST 32" is now ready to be given

pi the name "RAILROAD GAME." You could load the program into

i the computer and then save it using the new name:

LOAD "TEST 32",8

n
) (READY.

SAVE "RAILROAD GAME",8

"-J Then you'd have to go back, verify it, and "scratch" the program

{ called "TEST 32." If you just want to put a new name on your pro

gram or file, you can rename it by using the following type of com-

— mand:

n

OPEN 72,8,15 : PRINT#72,"RENAME0:RAILR0AD

GAME=TEST 32" CLOSE 72

You can abbreviate RENAME with an R:

OPEN 72,8,15 : PRINT#72,"R0:RAILROAD GAME=TEST
32"

C] CLOSE 72
/ i

317

u
Copying a program makes a duplicate on the disk, and you must j j

give the copy or duplicate program a new name. Unlike the renam- y

ing operation, the old program stays on the disk after it has been

copied. In the following example, the TESTING program is copied

and the copy is named "HARRY":

OPEN 70,8,15 : PRINT#70,"C0PY0:HARRY=TESTING"
CLOSE 70 . ,

The COPY command can be abbreviated with a C: U

OPEN 70,8,15 : PRINT#70,"C0:HARRY=TESTING"

CLOSE 70 |

At the end of this operation, there is a program named "TEST

ING" and one named "HARRY" on the disk. They are exactly thfc <

same. I
If you value your programs, we suggest making duplicate copies

of them on different disks. If a disk is damaged, you'll have a

backup copy that you can use. Some games and commercial pro- j
grams may be copy-protected, so you may not be able to make L>
backup copies of them. We'll talk more about this in the next chap

ter, i i

SAVING AND LOADING DATA FROM A DISK

Like the cassette recorder, the disk drive can be used to save

and load information consisting of values and strings. The pro- ^
grams used with the disk drive are a bit more complicated, since

the disk must be set up for several operating conditions, and many I j
special disk operations can be added to these programs to check for L*
disk problems, errors, and so on. If you are interested in this type

of programming, you can use the simple programs that we've pro- j j

vided as starting points, and refer to the user's manual for more fj
information.

The first program sets up the disk drive for a file called "TEST,"

and it then puts 100 values into the file for later use. In our exam

ple, a FOR-NEXT loop was used to quickly come up with the 100 *-*

values (VLU), but values from a checking account, student-grading,

or business accounting program could be saved this way, too. | j

Here's the program for you: L[

220 OPEN 2,8,2,"@0:TEST,S,W"

240 FOR VLU =1 TO 100 I)

318

n

n

n

n

i .

n

n

n

n

260 PRINT#2, VLU

280 NEXT VLU

300 CLOSE 2

320 END

You can recall this information from the disk very quickly, using

a program that inputs the values:

H 400 OPEN 2,8,2,"0:TEST,S,R"

! 420 FOR VLU =1 TO 100
440 INPUT#2, NBR

r-> 460 PRINT NBR

• \ 480 NEXT VLU
500 CLOSE 2

520 END

i I In the program example that follows, five values can be typed in
from the keyboard. They are saved in a file called "VALUE-5":

H 20 OPEN 2,8,2,"@0:VALUE-5,S,W"

: 40 FOR VN = 1 TO 5
60 INPUT "VALUE TO SAVE = "; VTS

r+ 80 PRINT#2, VTS

U 100 NEXT VN
120 CLOSE 2

__ 140 END

Getting these values from the computer takes only a short pro

gram:

520 OPEN 2,8,2,"0:VALUE-5fS,R'

540 FOR NMBR = 1 TO 5

560 INPUT#2, X

580 PRINT X

i 600 NEXT NMBR

620 CLOSE 2

640 END

These programs can be used to point you in the right direction if

you choose to put together your own programs to use the disk

drive. There are many other things that you can do with the disk

drive, but we'll leave these for readers who want to get more

involved with programming the computer and reading through the
computer jargon in the disk-drive user's manual. We don't think

that most people will be using the disk drive for more than loading

319

and saving programs, or for storing information from a commercial
program package.

In this section, we have given you an overview of the disk drive,

and you should be able to load, save, and verify programs without

difficulty. You can also load in the WEDGE program from your

demonstration disk so that printing the disk directory doesn't erase
or destroy your BASIC programs.

SUPPLIERS AND DISTRIBUTORS OF PLUG-IN CARTRIDGES,

PROGRAM CASSETTES, AND DISKS FOR THE COMMODORE 64

COMPUTER

u

u

Academy Software

P.O. Box9403

San Rafael, CA 94912

415-499-0850

Info-Designs, Inc.

6905 Telegraph Road

Birmingham, MI 48010

313-540-4010

Human Engineered Software

71 Park Lane

Brisbane, CA 94005

Microphys Programs

1737 West Second Street

Brooklyn, NY 11223

u

u

Micro Systems Development, Inc. Micro-Ware Distributing, Inc.

11105 Shady Trail, Suite 104 1342 B Route 23

Dallas, TX 75229 Butler, NJ 07405

1-800-527-5285 201-838-9027

u

Precision Technology, Inc.

P. O. Box 15454

Salt Lake City, UT 84115

801-487-6266

Pyramid Computerware

278 Warren Street

Edgewater Park, NJ 08010

609-386-9353

Southern Solutions

P. O. Box P

McKinney,TX 75069

214-542-0278

320

Professional Software, Inc.

51 Fremont Street

Needham, MA 02194

617-444-5224

Skyles Electric Works

231G South Whisman Road

Mountain View, CA 94041

415-965-1735

u

u

u

u

: CHAPTER 11

COMPUTER CARE-

HARDWARE AND SOFTWARE

By taking good care of your computer, you can extend its useful

r* life by many years, and it will reward you with good service and

! ! operation. Most "computer care" is common sense, but most com

puter users ignore this important area, and they are more likely to

^ take better care of garden tools and household appliances. Taking

i care of your computer also means a careful evaluation of software

for it. In the last part of this chapter, we will suggest some ways to

evaluate software products to be sure you get what you want.

P] Some of this evaluation is common sense, too, and other people may

: have their own ways of testing and checking software.

_ HARDWARE CARE
; |

One of the first things to do is to protect the computer from

physical abuse. If youngsters are going to use the computer to play

p* games, run educational programs, or do something else, they need

! ! to be told that the computer is a delicate piece of electronic equip

ment, and that it must be taken care of. Most people need to be

reminded of this from time to time, since as they become more and

({ more familiar with the computer, they will take it for granted. Be

! sure that users don't bang on the keys and that they don't hit the

computer if something goes wrong. As silly as it sounds, it does

r- happen.

321

n

A Special Place

A good way to protect your computer is to set aside a special

place for it. If you are using the computer on the kitchen table,

there is always the possibility of dropping or damaging the com

puter when it is put away during meals or other activities. If a desk

or small table can be set aside for your "computer center," this will

decrease the possibility of damage to the computer since it won't
be moved as much.

Once your computer has been set up in a special place, you'll

have a convenient place for all of the other computer materials that
you're bound to collect: books, magazines, program cartridges, cas- f
settes, and so on. A neat, logical layout is helpful, and storage bins "

or small sets of drawers are recommended as a way of organizing

your materials. A disorganized work area means that program list- j I

ings, cassettes, and special notes can be lost or damaged under the LJ
"junk pile." Cassettes and disks store information and programs

using magnetic material. If you don't take good care of the cas- i t

settes and disks, the information on them can mysteriously disap- II
pear. Don't leave cassettes and disks near electrical equipment,

and don't put them on top of the computer or TV set.

Most cassettes come in their own plastic cases. Be sure that the I J
cassettes are returned to the cases when you are finished using U

them. Don't leave a cassette in the recorder for any longer than is

necessary. Disks and cassettes can be further protected by using

some sort of a "file" for them. Many record stores sell cassette

organizers, and most computer stores have similar storage cases

for disks. If you value your programs and information, take care of , .

your cassettes and disks.

When you set up your computer equipment, place the cables and "

wires neatly. You can coil unused lengths of wire and cable, secur

ing them with plastic bag ties or rubber bands. Keeping the wires j I

and cables behind the computer equipment decreases the chances LJ
that something will get tangled in them and that someone will mis

takenly unplug them, l j

The Commodore 64 uses an antenna switch to connect the TV jj
antenna (or cable) or the computer's TV cable to the TV set. If the

TV set you are using is going to be used by others for normal TV

watching, remember to switch back to the "TV" or the

"ANTENNA" position when you are finished using the computer. U
This will avoid someone looking for you when the midnight late

show comes on and they find, "the TV isn't working right." j j

322

u

n

PI Static

1 If you find that you are getting shocks from static electricity
every time you move across the room in which you have the com-

[""] puter, it's a good idea to do something about it to protect your com-

J I puter equipment. You might first try changing your shoes, since

the material on the soles may be the culprit. If that doesn't reduce

the static electricity, try using another chair, since plastic or

plastic-covered chairs often generate static electricity. You can also

use a humidifier in the computer room. Static electricity is reduced

when the humidity is increased, so static is most often a problem

during dry weather (usually during winter). Your nasal passages

and throat will also thank you.

n

H Protection

1 There are some other steps you can take to keep your computer

running smoothly. One is the use of dust covers for the equipment.

n Plastic, nonstatic dust covers are recommended for all of your com-

! ; puter equipment, particularly the keyboard, disk drives, and
printer. Other equipment may be covered, but the items just listed

_ are the most prone to damage. Dust covers don't only protect the

I j equipment from dust, but from deodorant, wax, polish, and other

aerosol sprays that can leave a film on equipment, causing malfunc

tions.

■""j Dust covers can also protect against accidents such as liquid

spills, cigarette ashes, and other types of material (Fig. 11-1). Make

it a rule not to eat, smoke, drink, or do other noncomputer things

r-j around your computer. The authors have seen a can of soda disap-

| ■ pear into a printer mechanism and have seen the disastrous effects

of nondairy creamer on a small computer. It is easy for crumbs and

small pieces of "junk" to accumulate between the keys. Such mate-

j | rial can also get on your disks and cassettes, causing problems

when you try to retrieve or store information and programs. The

two photographs in Fig. 11-2 illustrate the difference between a

clean and a dirty disk "head," the part that actually reads and

writes the information to and from the disk surface.

Power

It is a good idea to use a "plug strip" as the power source for

your computer equipment. Many of these devices have a master

switch and a circuit breaker, so all of the equipment can be con

trolled from one place. With this type of a setup, you won't go away

n
323

Fig. 11-1. A cover can protect a small computer from dirt, ashes, and other

"pollution." (Courtesy Inmac)

on a trip and suddenly remember that the computer is still on.

Remember that in the Commodore 64 computer, the "power cube"

that is plugged into the wall outlet has power connected to it for as

long as it is plugged m.The power switch on the Commodore 64

just connects the cube's power to the computer. If you're going to

turn off the computer for a while, we recommend unplugging the

power cube or using a "plug strip" to turn off all the equipment. A

typical power strip is shown in Fig. 11-3. These are available from

hardware and electrical supply stores.

Power surges aren't normally a problem, although there are com

panies that advertise surge protectors that are built into plug

adapters and strips. Your local situation will determine whether or

not you need this kind of protection. You can ask some of the local

computer users about their experiences.

Lightning often strikes power lines, and it can damage delicate

electronic equipment that is plugged in, even if the equipment is

turned off. We have seen television sets that have been damaged

324

u

u

u

u

u

u

u

n

n

n

After

Fig. 11-2. Clean and dirty disk read/write heads. (Courtesy Radio Shack, a

Division of Tandy Corp.)

by nearby, indirect lightning strikes to the power line. If lightning

_ storms occur in your area fairly frequently, it might be wise to

! f unplug your computer equipment when you aren't using it.

p
325

Fig. 11-3. A power strip provides a central source of power.

Clean Up

All computer equipment needs to be cleaned once in a while. You I I

can easily dust the keyboard unit and television set with a vacuum LJ
cleaner, but this isn't recommended for cassette and floppy-disk

units. Printers can be dusted carefully with a vacuum cleaner on a j i

low suction setting. Vacuuming can remove paper lint and dust I
that can cause problems. When dusting, don't use any commercial

spray materials that leave a film or residue. If anyone else will be

cleaning near the computer equipment, remind them NOT to use j I
such products on the equipment. A commercial window-cleaning LJ
product can be used to clean the TV screen, but take the TV set

out of the "computer center" so that spray droplets of the cleaner j I

don't get into the other equipment. [J
Cleaning disk drives and cassette units calls for care. Special kits

are available for cleaning both of these devices, with cassette head- , .

cleaning kits available at most record and radio-TV stores. Clean-

ing kits for floppy disk drives are available from many computer ^
suppliers, and a typical kit is shown in Pig. 11-4. This kit contains a

special cleaning disk and cleaning solvent. The cleaning solvent is I j

squirted onto the cleaning disk and the disk is placed into the disk- U
drive unit. The disk is then activated so that the cleaning pad

gently removes any dirt and residue from the disk-reading mecha- j i

nism. This takes about 30 seconds, and it is a worthwhile task, pro- H
longing the life of both the disk-drive unit and your disks. Disk

heads should be cleaned once a week, or more frequently if the

disks are used heavily.

Troubleshooting ^
Most computer manufacturers provide service for the equipment

they sell, either through a direct service facility or through service j j

326

u

n

n

n

n
i

H

Fig. 11-4. A typical disk cleaning kit. (Courtesy 3M Co.)

outlets. In most cases, you will have to deliver your computer

equipment to the service center, either by shipping it, or by hand-

carrying it. We suggest checking the information supplied with the

computer for service information, or you can call or write the Com

modore service centers to get more information about having your

computer serviced:

Commodore Computer Service Center

950 Airport Road

West Chester, PA 19380

or

Commodore Computer Service Center

390 Reed Street

Santa Clara, CA 95050

Commodore suggests that you call first, before sending your unit

327

u
for servicing. The latest number we have is (408) 727-3754. You can

check with your computer dealer for any other servicing informa
tion. LJ

If servicing is required, be sure to send a complete description of

the problem along with the piece of equipment to be repaired. A I j

note telling the service people that the equipment doesn't work U
isn't very helpful. If the problem can be localized, it will speed the

repair job and get the computer back to you quickly. Be sure to i i

carefully pack your equipment and insure it, so it is covered for any U
shipping damage, or if it is lost.

It isn't too difficult to try and track down some computer prob

lems on your own. The first thing is to be sure that the computer is I I
set up properly, and that you aren't doing something odd to it. For LJ
example, check the cables and cords to be sure they are all firmly

mated or "seated" in position. Also check to make sure all of the I I

equipment has been turned on. Many people forget to turn on \j
power or connect needed accessories. If the computer still isn't

working properly, set up just the computer and the TV set and run

a simple BASIC program. Something as simple as typing a few

numbers on the TV screen will do fine as a test.

If the basic computer system is operating properly, reconnect

the accessories, one at a time, and continue to test the computer. If I I

you have reconnected the cassette unit, try loading and saving a U
program to test the system. This will help you localize the problem.

For example, (1) you have your system connected, except for the i i

printer, and all seems to be operating properly; then (2), the printer [J
is connected, and the system doesn't work. Set up the computer

with just the TV and the printer and try it again. If the printer still

doesn't work, the problem may be in either the computer or the

printer. '—I
If you know of another person with a Commodore 64 who lives

close by, you might arrange to try your computer and printer with I j

the other person's equipment. This may narrow the problem even y

further. Many towns and communities have enough Commodore 64

users so a club or users' group has planned activities and even a j i

newsletter. A similar group may exist in your town. Sales people at

the store may know about such a group, or you may see a meeting

notice in a local newspaper. There are several computer magazines

that contain lists of local interest groups and clubs. You'll find peo- I j
pie in these groups who have a wide range of interests, and many U
of them will be happy to help you.

u
328

n
SOFTWARE

i i Software has been said to be the most important ingredient of
any computer system. It takes a great deal of time to put together

H computer programs, check them, and get them to work properly,

I and you will find that software represents your biggest computer

investment, even if you purchase only a few programs, or "pack-

_ ages," as they are often called. In this section, some of the details

j i of program selection and evaluation will be described. It isn't par-

1 ticularly difficult to evaluate a simple game or recreational pro

gram, but programs for special applications can cost several hun-

R dred dollars, so you can't afford to make the wrong choices.

What's Available

p Once you have decided that a particular type of program is

I j needed, it is a good idea to try and find out what programs are

available to meet your needs. For example, if you are interested in

_ an address-file program, you will have to look for that specific type

| | of program. If you subscribe to a magazine about computers, par-

1 ticularly the Commodore-64, you may find several manufacturers

or distributors who sell the type of program you are looking for.

H A local user's group or computer club may be able to tell you

I about someone who has a similar program or who may have looked
at several. Most people are glad to tell you about their experiences.

Information and References

Once you have found some programs that sound interesting, ask

^ the manufacturers and suppliers for information about them. The

! | responses you get are often good indicators of what the programs

are like. A professional response with interesting informative liter

ature generally means that the company operates in a professional

p| manner. On the other hand, photocopied typewritten information

! ; that is unreadable or full of computer terms may mean that the
company doesn't understand its market or its potential customers.

j— Use the information about the programs to make comparisons

j between them. How quickly do the programs run? How much infor

mation can they use? Your questions should be based on your

needs. For example, if you are looking at a word processing pro-

"""[gram, you want to know how many pages of typewritten material
can be saved on a disk or cassette. You may also want to know if

the program requires a special printer, or if a standard Commodore
r-* printer can be used.

329

n

u
Ask the manufacturer, distributor, or dealer for the names of . ,

several people who are using the program. Most dealers will share

this information with you, and these people will be able to give you

an unbiased opinion about the program. Ask them how they like

the program, how they are using it, how long they have been using I I
it, and so on. Be sure to ask them what they dislike about the pro- U
gram. Also ask if they have had any problems with the program,

with the dealer, or with the manufacturer. If one or two of these i i

people are located in your area, you might ask if you could visit jj
them and actually see how the program works. Don't ask for a copy

of the program to take home and try. This is asking the other per- .

son to violate the copyright on the program, and it is illegal.

Demonstrations and Documentation

Visit several dealers, if you can. Ask for demonstrations of the I j

computer program and also ask to look at the user's manual or LJ
other written materials that come with the program. This is called

"documentation," and it is what you will use to guide you when you t i

use the program. One thing to look for is clearly written informa- M
tion that is easy to read and understand. If it seems to have been

written for a computer expert, more than likely the program will

be set up the same way — for an expert. I
The written materials and instructions are probably the most LJ

important part of a computer program, since they tell you how to

effectively use the program. Unfortunately, many program manu- | i

facturers do a poor job of preparing a manual for the user. In look- [J
ing at a manual, check for an index so you can quickly locate infor

mation. A set of examples is also important, since it lets you see

how the program works and what it actually looks like when it is

running. Many manuals contain exercises that you can do to ^
become familiar with the program, along with photographs or

examples of the TV screen display. | I

If a visit to a dealer isn't possible, you should at least review the [J
instructions for the program package. Many software suppliers

realize that people want to look at this material, so it is sold sepa- i .

rately. In some cases, suppliers will give you credit for this pur- jj
chase if you decide to buy the complete software package within a

limited time. A smaller number of manufacturers supply demon

stration or "demo" copies of their programs so you can try them. j j
These "demo" programs may not be able to do everything the reg- U
ular program can, but they will give you a good idea of how the pro

gram operates. 1 I

330

u

n Testing Programs

' I If you can actually try the program, so much the better. You'll be
able to see how it will work in your application. No program is per-

p feet in the sense that it does everything exectly as you want it to.

I Of course, the program should give the correct results, but it may

display the results on the bottom of the screen, while you'd rather

p have them at the top. These things are usually minor, unless you
I ! find that the final result of the program is not what you want.

If a dealer will not supply you with a program that you can test,

you may be able to try the program in his store or office. Other

jj users may let you try the program at their office or home, giving

f ! you an hour or two to use it. A few hours of testing time is a worth
while "investment."

n If y°u are spending a considerable amount of money to buy the
j program, and if you expect to use the program frequently, testing

is almost mandatory. How you test the program depends on what
^ kind of program it is. Business accounting programs and word pro-
| | cessing programs do different things, so they are tested differently.

During your test, make an effort to cause problems for the com

puter, to see what happens. For example, if the computer asks for a

P YES or NO answer, type something else to see if the computer will

\ "trap" your incorrect answer and give you another chance to type

in a correct answer. If the computer does something unexpected,
r-i there may be other flaws in the program, too. Try as many combi-

I nations of commands and conditions as you can.

As you test a program, be sure that it is easy to use and that the

"menus" displayed on the TV screen are easy to understand and
H are meaningful. For example, if the program displays this type of
■ ; menu at one time:

MORE DATA TO BE ENTERED?

H 1. YES
i 2. NO

TYPE 1 OR 2

fl and this at another:

DISPLAY RESULTS AGAIN?

0. YES

H 1. NO
j i TYPE 0 OR 1

^ it will be difficult to remember whether a 1 is a YES or a NO

I j answer. The answers should be consistent, and in this example it

331

u
would have been much easier to just type YES or NO, or, Y or N. J J
If the program is difficult to use, you will spend as much time mas- LJ
tering it as actually using it. Even though many people have

"standardized" some difficult-to-use programs, this doesn't mean i i

that they are the best ones available. y

Many programs are confusing just because of the many different

things they can do. Many people find that they can do a very good .

job without many of the special operations provided. In many j
cases, a simpler less-expensive software package will take care of •—'
your needs as well as a more-expensive package that has opera

tions you won't use. I I

Updates and Revisions

Before you purchase a program, ask the dealer or supplier if it is i »

the latest version. You might ask if a revised or updated program M
is expected in the near future. Sometimes, minor "bugs" or prob

lems are found in a program, and the manufacturer modifies the

program to take care of this. Many manufacturers continue to j
change their programs to make them easier to use, to change the U
display format, and so on, in response to their customers' needs.

Ask whether updated programs are going to be available, and what j j

the terms are. Here are some typical arrangements: jj

1. The current program is the only one available. No revisions,

updates, or changes are going to be developed or provided. I j

2. New programs or documents may be available, but you will [J
have to buy them just as if you were buying a new program.

3. New programs and manuals may be available, and there is a . .

small charge for exchanging your "old" program for the new

one.

4. New programs and manuals may be available, and the

exchange is free for the first six months you own the program. \ j

The last two choices are the best, since they tell you that the

manufacturer is interested in continuing to work with you, and that

you are a valued customer. I I
Some manufacturers provide a "hot-line" telephone service that LJ

you can use if you have a problem or difficulty in using the pro

gram. Ask if this is available for the software packages you are i j

looking at. This type of service is expensive, so it adds to the cost |_J
of the program. Don't expect to have this kind of service for an

inexpensive program or game. , .

You might also ask if there is a users' group that is centered

332

n
around the software packages you are interested in. Some of the

most popular programs have spawned their own groups, so addi

tional information, hints and assistance is available from an ama-

n teur group. Some dealers and suppliers are familiar with software,

j | so you might also ask if they provide any local assistance to their

customers. This is a good reason to deal with a local dealer instead

0 of a mail-order dealer.

I Flexibility

If you expect your uses for your computer to increase, as they

H almost always do, you want to be sure that the program will be

1 I able to expand, too. For example, a program for teachers that will
handle up to 25 students is going to be useless if the next class has

p 27 students in it. It is often difficult to think about the future and

; | how things may change, but programs should be adaptable to new

situations and requirements.

pj Protection

i We know one person who buys phonograph records and immedi

ately makes a tape recording of them. He plays the tapes, saving

f~| the record as a "master" or "source," so it won't be damaged by

j ■ day-to-day use. It is a good idea to do the same thing with pro

grams. Be sure that you can copy or duplicate any programs you

^ buy to provide "backup" copies. In most cases, the original is set

j aside for an emergency, and the backup copies are used in the com

puter. Since some manufacturers protect their programs by mak

ing it difficult or impossible to copy them, ask the supplier if you

H will be able to make backup copies for your own use. If the answer
■ i is no, ask how you get backup copies of the program. If such copies

aren't readily available, look elsewhere for programs.

<— It is a good idea to make backup copies of your own programs

| | and information. This preserves them so that if a disk or cassette

tape is ruined, you still have your information. Disks and tapes

don't last forever, although most people have very good luck with

i i them, using them for years. One company we know of recommends

' throwing out disks after only a month's use. These disks are used

every day, so they go through a lot of use very quickly. Don't

r^ expect tapes and disks to last forever.

333

u

n

!! APPENDIX A
COMMODORE 64 ERROR

CODES

COMMON ERROR CODES

BAD SUBSCRIPT — The computer tried to use a subscript that

didn't exist in the array. For example, A = RD(57) where the

array, RD, only goes from RD(0) to RD(40).

H CAN'T CONTINUE — The computer cannot continue after you
' ; typed the CONT command. You may have changed something in

the program itself, or the program may not have been started. You

p can't continue after an error message, either.

I i DIVISION BY ZERO — The computer just can't divide zero into
another number. Neither can you, since the result is infinity.

R EXTRA IGNORED — You typed in something "extra" when the
! computer asked for information. The "extra" thing depends on

what type of information you are typing in: string or value.

H ILLEGAL DIRECT — You have asked the computer to do some-
' thing it cannot do. For example, you can tell the computer to

PRINT 5+89 right from the keyboard, but you can't tell it to

p INPUT X : PRINT X*80, unless this is put in a program with a

I | line number.

ILLEGAL QUANTITY — You have asked the computer to do

p something with a number that is too big or too small for it to han-
f >

335

n

die. The computer can handle numbers up to 1 with 35 zeros after * .

it, and down to a 1 with 35 zeros before it!

NEXT WITHOUT FOR — You always need to use NEXT and

FOR together. The computer will tell you if you have forgotten the , ,

FOR command. M

OUT OF DATA — This error takes place when you try and get

more pieces of information from a DATA statement than are actu- . ,

ally there. Make sure you don't try and READ more information

than there is in the DATA statement. ^

OUT OF MEMORY — You completely filled up the computer's . .

memory. The solutions are to cut your program into smaller chunks

or save some information on tape or disk. ^

OVERFLOW — The result of an operation is just too big for the ,

computer to handle. Look for errors in your math, or have the com- j
puter work with smaller numbers. Since the computer can count ^
the number of water molecules in a cubic kilometer of water,

you're talking about a big, big number. j I

REDO FROM START — The computer expected a value, and LJ
you typed in some other character. The complete entry has been

ignored, so just type it in again and try and get it right. I j

RETURN WITHOUT GOSUB — The computer found a LJ
RETURN command in the program, but the program never told it

to GOSUB. Check your program and be sure that you have a j j

GOSUB command for the subroutine. If you have unused subrou- jj
tines, that's fine, but just be sure that the computer hasn't gotten

to them with a GOTO or other command. Remember to use the , ,

END command to stop the computer when necessary so it doesn't j
go off into other programs. '-J

STRING TOO LONG — Strings saved in the computer can have

up to 255 characters. Strings input with an INPUT W$ command

can have up to 89 characters in them. U

SYNTAX — This means that something was messed up and the

computer couldn't understand what you wanted it to do. Check the

line noted in the error message.

NOT-SO-COMMON ERROR CODES

BAD DATA — The computer expected to receive numeric data

from a "file" or peripheral device. It got non-numeric characters,

or a string, instead.

336

u

u

n
DEVICE NOT PRESENT — You have told the computer to use a

peripheral that hasn't been hooked up or turned on yet.

FILE NOT FOUND — The computer has looked at a disk or

f—I tape, but it couldn't find the file you asked it to read. The file name

j I cannot be found.

FILE NOT OPEN — You can't use a file without opening it first.

n Go back and be sure that you have the appropriate OPEN com-

j I mands in your program.

FILE OPEN — You have tried to open a file that is already open.

H You can't open something unless it's closed. Check to be sure that

I I you closed your files, or that you haven't opened them twice.

FORMULA TOO COMPLEX — Split your formula into smaller

H pieces. You have asked the computer to do too much at one time.

LOAD ... — The computer is having a problem loading your

program from the cassette recorder.

| I NOT INPUT FILE — You have tried to get information from an
output-only file. The printer is an output-only device, so don't try

and get informationfrom it.

n
j | NOT OUTPUT FILE — You have tried to output data to an

input device.

r-j REDIM'D ARRAY — Once you set up an array, you can't

I j change its size within the program. If you need to change the size

of an array, stop the program, change the DIM command, and

^ rerun the program.

! | TYPE MISMATCH — You have tried to use a value in place of a
string, or a string in place of a value. The two are separate types of

^ information, so check what you are doing.

\ UNDEF'D FUNCTION — The computer was told to do a "spe
cial function," but you never told it what the function was.

H UNDEF'D STATEMENT — You told the computer to go to a

1 i line number that isn't included in your program. This type of error
occurs with GOTO and GOSUB commands.

[""] VERIFY ... — The computer cannot verify your program,
saved on tape or disk.

337

n

n
i i

n

n APPENDIX B

RESERVED WORDS FOR THE

COMMODORE 64

ABS

AND

ASC

ATN

CHR$

CLOSE

CLR

CMD

CONT

COS

DATA

DEF

DIM

END

EXP

FN

FOR

FRE

GET

GET#

GOSUB

GOTO

IF

INPUT

INPUT#

INT

LEFT$

LEN

LET

LIST

LOAD

LOG

MID$

NEW

NEXT

NOT

ON

OPEN

OR

PEEK

POKE

POS

PRINT

PRINT#

READ

REM

RESTORE

RETURN

RIGHT$

RND

RUN

SAVE

SGN

SIN

SPC(

SQR

STATUS

STEP

STOP

STR$

SYS

TAB(

TAN

THEN

TI

TI$

TO

USR

VAL

VERIFY

WAIT

7T

/ \

t i

339

u

u

u

u

u

u

u

u

n
APPENDIX C

ANSWERS TO QUESTIONS

n

CHAPTER 1

1. To use channel 3, set the TV channel selector switch to channel

3 and set the switch on the back of the Commodore 64 key

board unit to the channel-3 position. This is with the switch

pushed over toward the large open cartridge slot. Remember

to move the TV antenna switch to the COMPUTER position.

2. There are printing and action keys on your Commodore 64

computer. The printing keys print one or more characters on

the TV screen. The action keys can perform actions on their

own; for example, the CLR/HOME key; or they can change the

operation of the printing keys; for example, the GRAPHICS

key doesn't do anything by itself, it just lets you print special

graphic characters.

3. The SHIFT key has two uses:

(a) It lets you print the upper symbol for those keys that have

an "upper" and a "lower" symbol on their key tops.

(b) It lets you print the right-hand graphic symbol for those

keys that have a graphic symbol on their front surface.

4. The CLR/HOME key can be used by itself to move the cursor

341

to the upper left-hand corner of the TV screen's display area.
When used with the SHIFT key, the CLR/HOME key clears
the display area and moves the cursor to the upper left-hand
corner.

characters.

342

u

5. The two cursor control keys, CRSR, are used to move the cur-

sor on the TV screen. The cursor can be moved down, right, up,

or left. The SHIFT key must be used to move the cursor up or
left. When the cursor is moved, no characters are "erased."

6. Yes, several of the keys "repeat" their action. The space bar
and the two cursor control keys are examples. i

7. The INST/DEL (insert/delete) key is used to correct errors. L
You can use it to remove or "erase" characters and to insert
new ones on the TV display. The insert operation uses the j |
SHIFT key. [j

8. The GRAPHICS key is located in the lower left corner of the
keyboard, and it looks as though it has a large "C" with an) j
equal sign on it: C=. It lets you type the left-hand graphic sym- (J
bols for the keys that have graphic symbols on the front of
them.

9. Colors are changed by using the CTRL key and the number U

keys, "1" through "8." The colors are noted on the front of

these keys. You must press and hold the CTRL key when you (,

press the color keys. You can also press and hold the GRAPH- jj
ICS key and one of the color keys to change to eight other col-

ors, although most of these won't show up well. These details

are described in Chapter 8. I j

10. The SHIFT and "6" keys will print the "and" symbol, &, on

the TV screen. No color change takes place. The CTRL key

and a number key must be used to change the color of the
cursor. U

11. No, changing the color of the cursor doesn't change the color of

anything else on the screen.

CHAPTER 2

u
1. The Commodore 64 can process both values and strings of

u

2. In general, computers are used to process information and to

transfer information.

3. Of the 12 labels, several are not valid. These are $LABEL,

31ST STREET, and 3STATE$. Here is why they cannot be

used:

(a) $LABEL (Labels cannot start with a dollar sign.)

(b) 31ST STREET (Labels cannot start with a number.)

(c) 3STATE$ (Labels cannot start with a number.)

4. Yes, there is a conflict between SPAGHETTI and SPELLER,

since the computer would see both as the label SP for use with

a value. There is no conflict between SPEND$ and either SPA

GHETTI or SPELLER, since SPEND$ is a label for a string,

and its two-letter label would be SP$.

5. There are several errors in these labels and information. They

are:

(a) TEST = $56 (This must be TEST = 56. The dollar sign

cannot be used as part of a value.)

(b) TIME = "TEN OF FIVE"$ (This must be: TIME$ =

"TEN OF FIVE". The dollar sign is in the wrong place.)

(c) TM = 56.89 (This is correct.)

(d) LINK$ = NUMBER OF TESTS (The string must be

enclosed in quotes: LINK$ = "NUMBER OF TESTS"

(e) SEEDS = 78 (This is correct.)

(f) LINES = "10 LINES PER INCH" (The label, LINES,

must have a dollar sign after it to label a string: LINES$ =

"10 LINES PER INCH"

6. There are errors in several of these commands. The corrections

have been underlined for you:

(a) INPUT "YOUR NAME, PLEASE"i_ NAME$

(b) PRINT "TEST RESULTS^

(c) PRINT "BALANCE IN ACCT = "_ BAL (No semicolon

needed)

(d) INPUT "TODAY'S SPECIAL"; SPEC

(e) INPUT "ENTER THE YEAR"; YR$

(f) PRINT "THIS IS A COMMODORE 64"

7. An entry with an incorrect line number can be erased by sim

ply typing the incorrect line number and [RETURN]. This

"erases" the line from the computer program.

343

11
8. You can finish the line, type [RETURN] and retype it, or you

can use the INST/DEL key to "back-up" and erase an error. 1

9. To start a BASIC program, ju^t type RUN [RETURN].

10. To list a program on the TV screen, simply type LIST t !

[RETURN]. |J

CHAPTER 3

1. So far, the Commodore 64 can do addition, subtraction, multi- L
plication, and division.

2. The Commodore 64 does the multiplication and division opera- I I
tions in a program step first, and addition and subtraction oper- LJ
ations second.

3. You can put almost as many program steps on a line as you J {
want. Programs with too many steps are difficult to "read" and ^
understand, so don't try and cram too many on a line.

4. Individual program steps are separated by colons when they I f
are combined in a single program line. *-*

5. Parentheses are used to separate math operations so they can <
be easily broken down. Individual operations are easy to under

stand when parentheses are used, and there is no question

about which operations are done in what order.

LJ
(a) ? = 5*12+4 (Answer: 64)

(b) ? = 3*4+12 / 5*8 (Answer: 31.2) j ;

(c) ? = ((((4*6)/3)+18)-7) (Answer: 19) jj

7. REM stands for REMark, and it is used to put a comment or

note in a program so that the programmer will understand why I j

something was done, what value is being used, and so on. The (J

program doesn't do anything with a remark, it skips over it to

the next real program step. (.

8. The INPUT command lets you have the computer get infbrma- [J
tion from the keyboard. A label must be used with an INPUT

command so the computer knows how to identify the i .

information.

9. The computer always uses labels to identify and locate

information. I »

344

u

n

10. The INST/DEL (insert/delete) key is used to help you correct

program lines and other information on the TV screen. The

INST/DEL key uses the cursor as its "marker." The changes

only go into effect after the RETURN key is pressed.

CHAPTER 4

1. The GOTO command causes the computer to go to a specific

line in the program. It doesn't care where the line is or what

command is there.

■r"i 2. The GOTO command must be followed by a line number that is

| i, really part of the program.

3. The GOTO command will cause an error condition when the

H line number used is not found by the computer. The error tells

j \ you that something (the line number) is not properly defined in

the GOTO command.

H 4. The GOTO command can point the computer to any line num-

j ber in the program.

5. You can get out of an "endless" loop by pressing the RUN/

H STOP key. You can also pull the power plug to the computer,
J < but that will "erase" your program!

^ 6. You can use the RUN/STOP and the RESTORE keys to get

| ; the computer out of an INPUT command when it's waiting for

-£ information from the keyboard. You can pull the plug, too, but

that is not the recommended solution.

j • 7. The Commodore 64 can evaluate, or test, almost any statement

- l that can be answered with true or false.

^ 8. The statements are used in IF-THEN commands. The com-

j | puter evaluates the statement to see if it is true or false. The

- answer is used to make the decision.

pi 9. The conditions of equal-to, greater-than, and less-than can be

I tested. These conditions can be combined; for example, less-

than OR equal-to.

-n 10. Any of the BASIC commands can follow the THEN in an IF-

| | THEN command. Multiple commands can be used, too, as long
as they are separated by a colon.

P] 11. The AND and OR operations let the computer test for several

j I

345

II
conditions in a single IF-THEN command. For example, IF (A <

= GR) AND (FX>6) THEN ... The NOT operation reverses !
the true-false result when a statement is evaluated by the com

puter. For example, the statement "7 = 7" is true, while the

statement "NOT (7 = 7)" is false. | j

12. The RND(l) operation is used to get a random number between

0 and 1. Other operations are used to "scale" the value and to

"strip off" any decimal fractions that aren't wanted. j

13. You can remove the decimal fraction part of a value by using

the INT operation. For example, PRINT INTQ5.962) would (

display 15 on the TV screen.

CHAPTER 5

1. Just use (press) the CLR/HOME key in the message part of the j

PRINT command: ^

130 PRINT "[CLR/HOME]11 . ,

This gives you a "reversed S" and it looks like this: L*-

130 PRINT "H"

2. You can combine printing operations on a single line by using a Q
semicolon after each PRINT command. For example:

200 PRINT "TESTING"; I t

220 PRINT " 1, 2, 3" Q

will print:

TESTING 1, 2, 3 If

on the TV screen.

3. The TAB command is used to space columns of information on j [

the TV screen in an orderly form. The TAB® command moves LL
the cursor five spaces away from the left margin.

4. You cannot move the cursor to the left with a TAB operation.

Once you have done a TAB(15) operation to column 15 on the

TV screen, you can't move back to column 8 on the same line

with a TAB(8) operation.

5. The ON command acts like a group of IF-THEN commands. It

checks a label to see if it is equal to 1, equal to 2, equal to 3, and

soon.

346

n

6. The ON command would be used when integer answers of 1,2,

3,4, and so on are expected. These results are used to point the

computer to specific line numbers in a program. If the condition

is not met, the program just continues with the next following

instruction.

7. The FOR-NEXT command is used to count the number of

passes through a program loop. You must set the starting and

final count, and you must give the loop counter a label. For

example:

20 FOR TX = 1 TO 14

30 PRINT "*";

40 NEXT TX

This program would print 14 asterisks on a line on the TV

display.

8. You can use almost any size steps you want to. You must spec

ify them in the FOR part of the command with a STEP size:

20 FOR TX = 5 TO 200 STEP 5

Fractional and negative steps can be used also:

30 FOR GM = 1 TO 50 STEP 0.5

or

40 FOR DS = 100 TO 20 STEP-2

9. A nested loop is one loop within another:

20 FOR T = 1 TO 20

30 FOR GH = 1 TO 10 .

40 INPUT F I
50 PRINT F*12 inner Loop Outer Loop
60 NEXT GH J

70 PRINT "*"

80 NEXT T

10. A subroutine is a "piece" of a program that is used over and

f-t- over again by different parts of a "main" program. It is easier

J \ to put the group of often-used instructions in a subroutine than

to duplicate the steps everywhere they are needed in the main

rr

347

program. A subroutine might be used to calculate the sales tax j I
on several different types of sales transactions. LJ

11. An array is a collection of similar information that has an over

all label or name. It is used to store or save information that j j
would require many different labels. Arrays are particularly Li
useful for saving check values, game scores, test results, and so

1112. Arrays are flexible since you can use a label as a subscript to ^

identify a piece of information in the array. In this way, you can

easily change the subscript used to point to the information. In] I

effect, you are changing the label so it can point to new infor- (J
mation. For example, the following program would get seven

values from the array called DR and print them on the TV -j f

screen: j

400 FOR AX = 1 TO 7

420 PRINT DR(AX) j (

440 NEXT AX (J

There is no easy way to do this with nonarray labels. The

arrays used in the Commodore 64 can save up to several hun- "j j

dred pieces of information. If you are going to go above 11 H
pieces of information, INFO(0) to INFO(IO), you'll need to use

a dimension statement, DIM, at the start of your program.

13. The DATA statement lets you put data right in your program [J
without labeling it. The READ statement gets the information

from the DATA statement, one piece at a time, just as if it -. .

were a list of information. Once you get the information this I

way, you can print it, process it, or do almost anything you ^
want with it. The RESTORE command points the computer

back to the start of the DATA statement, so the READ com- j j

mand will get information from the start of the list again. LJ

CHAPTER 6 1 |

1. All string labels end with a dollar sign; for example, EST$. LJ

2. Yes, a string of up to 89 characters can be input with an .

INPUT command. The INPUT command must use a string (
label: INPUT WET$. LJ

3. Strings are combined with a "plus" sign (+). This links ,

the strings as if they were written one after another: J

348

~] A$+TR$+"FUN"+RZ$.

4. Yes, strings can be combined in any order you want.

^ 5. The comma, quote, space, and colon are ignored by an INPUT

| | command. The GET command can be used to input them in a

string.

r^. 6. The most common decisions are based on comparing two

\ strings to see if they are the same, or not the same. The

greater-than and less-than comparisons don't make a lot of

sense for strings.
r^

I i 7. The LEN command will give you the number of characters in a
string, or its length. All of the characters except the quotes are

counted. For example, there are seven characters in this

R string: "TXSD.8*"

8. The left three characters and the right six characters can be

obtained from the string CAT$ by using the LEFT$ and

H RIGHT$ operations: LS$ = LEFT$(CAT$,3) and RS$ =
] RIGHT$(CAT$,6).

^ 9. You can get the middle five characters from G$ = "QUES-

H TIONS" by using the MID$ operation: MS$ = MID$(G$,3,5).
1 l This gets the middle five characters, ESTIO, starting with the

third one from the left "end" of the string.

j ; 10. If the GET command is done by the computer and no key is

s pressed, the computer gets a "null" or "nothing" character. It

has no meaning in a string and is totally ignored.

; j 11. A six-digit, 24-hour digital clock is built in. It tells time to the

' : nearest second and you can use it by using the TI$ string label.

^ 12. A real-time clock is one that continues to keep accurate time no

j I matter what the computer is doing (unless it's turned off).

13. Yes, values and strings can be interchanged, but this only

o makes sense for changing values into strings of numbers, and

| i vice versa. You cannot change the string "BLUE SKY" into a
' • value.

1 1 CHAPTER 8
I i

1. The SPC command moves the cursor to the right. The number

^ of spaces to be moved is included in the command. The SPC

i command is used in a PRINT command to move the cursor.

349

2. The SPC command moves the cursor from its present position, J I

while the TAB command moves the cursor based on the left LJ
edge of the display. For example, the TAB(7) command moves

the cursor seven spaces to the right from the left edge of the i f

display, while SPC(7) moves the cursor seven positions to the If
rightfrom its present position, wherever that is.

3. When you try and use the CRSR keys while typing the "mes

sage" part of a PRINT command, special symbols are dis

played on the line. This means that the computer will only

move the cursor when it reaches this message in the program.

Each cursor movement has its own special symbol, as shown

earlier in Table 8-1. u

4. There are many commands and keys that can be used — the \ \

four cursor control keys, the CLR/HOME key, the space key, jj
and the SPC and TAB commands. There are many ways to con

trol the position of the cursor on the TV screen.

5. The END command tells the computer that it has reached the y

end of a program. It is useful when there are several programs

in the computer at one time. The END command prevents the ,

computer from running from one program into the next.

6. The color of the display can be changed by using one of the

color keys, located on the number keys, 1-8, and the CTRL or j .

GRAPHICS keys. These color-change operations can be used f!
in the "message" part of a PRINT command, too.

7. When the color is changed, only the cursor's color changes. | J

After the cursor has changed its color, anything typed or [J
printed is shown in the new color. Information, displays, or

graphics already on the TV screen are not changed.

8. You can change the color of the information to be printed by LJ
using the CTRL or GRAPHICS keys and the color keys within

the "message" part of a PRINT command. I \

9. The RVS ON and RVS OFF keys can be used to control the LJ
printing in reverse. These can be typed directly from the key

board, or the actions can be placed in the "message" part of a j s

PRINT command. The computer does not stay in the reverse M

mode until it is changed back to the normal mode. There are

several built-in computer actions that change it back. In gen

eral, you must set the reverse mode each time you need it.

350

r-* 10. The TV is controlled by the display and color maps. There are

I j 40X25, or 1000 locations in each map.

11. Special codes must be placed in both maps to control the TV

r- display. The display map requires a screen code for the charac-

| | ter to be displayed, and the color map requires a color code for

L the color to be used. This information must be placed in the cor-

responding "squares" in the map for a single location on the

(\ TV display.

12. A character can be reversed by adding 128 to its screen code.

„ Subtracting 128 from a reversed character's screen code

I j returns the character to normal.

13. The POKE command lets you place a code in a map, while the

l-s PEEK command lets you get a copy of the code from a location

! ! in a map.

14. The Commodore 64 has two sets of characters, Set 1 and Set 2,

p as shown in Table 8-5. Normally, Set 1 is used. You can switch

j \ from set to set by using the GRAPHICS and SHIFT keys
together, or you can use the POKE 53272, 23 command to get

^ Set 2, and POKE 53272, 21 command to get Set 1. Switching

j j from one set to the other changes the entire display.
/ i

^ CHAPTER 9

1. The Commodore 64 has three separate "voices" or sources of

sound.

i I 2. Each of the voices can create four different types of sound: tri
angle, sawtooth, noise, and pulse.

p 3. Yes, you can control the volume. You can set the overall vol-

j | ume by using the volume control on the TV set, or you can set

the volume by poking a control code (0 to 15) into the volume

address (54296) in the sound map. You can also control the

Pi SUSTAIN volume of each voice.
i !

4. Each voice can create 65,536 different tones, using codes of HI

= 0, LOW = 0, to HI = 255, LOW = 255.

! ; 5. Yes, all of the tones overlap. That is, each voice is the same as
the others, covering the same range of tones.

pj 6. Noise is a collection of random sounds all mixed together. The

351

n

u
result is a "hiss" or "rumble," depending on the tone codes t
used. • [

7. Yes, all of the voices can be used at the same time, but only one

type of sound can be created for each voice. Some interesting i

effects are possible, and it can be fun to experiment with the I

sound part of the Commodore 64 computer. U

8. There are many uses, beyond the ones we described. Sounds i »

can call your attention to something, tell you that a limit has jj
been reached, sound an alarm, "beep" and "bop" for games,
and on and on.

9. After clearing the sound map, you must: y

(a) Set up an overall VOLUME.

(b) Set up tone codes for the voice being used. \ j
(c) Set up a SUSTAIN level. \J

(d) Set up the type of sound you want, and add one to its code.

You can also use the ATTACK, DECAY, and RELEASE I j

codes, if you want to. Remember that if you select the pulse U

type of sound, you must provide a set of pulse width codes for

the voice being used. . -.

10. Different musical instruments are played by setting up various U
attack, decay, and release rates, along with a sustain volume.

Other special sound effects can also be created by mixing sev- * j

eral different kinds of sounds, using several voices at the same JJ
time.

u

u

u

u
352

[7

n

APPENDIX D

SOLUTIONS TO SELECTED

PROBLEMS

CHAPTER 3

Problem 3-1 Listing

10 INPUT "FIRST NUMBERM;F

20 INPUT "SECOND NUMBER";S

30 INPUT "THIRD NUMBER";T

40 PRINT

50 PRINT "ANSWER IS";(F+S)*T

60 END

Problem 3-1 Sample Run

FIRST NUMBER? 8

SECOND NUMBER? 4

THIRD NUMBER? 5

ANSWER IS 60

READY.

Problem 3-3 Listing

1000 PRINT "HOW MANY DOLLARS DO YOU WANT TO"

1010 INPUT "CONVERT"; D

1020 PRINT

1030 PRINT "YOU WILL GET"; 2.5*D; "SWISS FRANCS"

1040 PRINT "FOR THIS"

1050 END

353

n

Problem 3-3 Sample Run

HOW MANY DOLLARS DO YOU WANT TO

CONVERT? 100

YOU WILL GET 250 SWISS FRANCS

FOR THIS

READY.

HOW MANY DOLLARS DO YOU WANT TO

CONVERT? 25-3

YOU WILL GET 63.25 SWISS FRANCS

FOR THIS

FIRST PACKAGE COSTS

$.0620833333 PER UNIT WEIGHT

SECOND PACKAGE COSTS

$.0513888889 PER UNIT WEIGHT

u

u
Problem 3-6 Listing

10 PRINT "HOW MUCH DOES THE FIRST PACKAGE11 I
20 INPUT "WEIGHT ";FW U
30 INPUT "ITS PRICE ";FP

40 PRINT j ,

50 PRINT "HOW MUCH DOES THE SECOND PACKAGE" j }
60 INPUT "WEIGHT ";SW U
70 INPUT "ITS PRICE ";SP

80 PRINT

90 PRINT "FIRST PACKAGE COSTS" (
100 PRINT "$";FP/FW; "PER UNIT WEIGHT" LJ
110 PRINT

120 PRINT "SECOND PACKAGE COSTS"

130 PRINT "$";SP/SW;"PER UNIT WEIGHT" I
140 END LJ

Problem 3-6 Sample Run

HOW MUCH DOES THE FIRST PACKAGE I I
WEIGHT ? 24 M
ITS PRICE ? 1.49

HOW MUCH DOES THE SECOND PACKAGE I j

WEIGHT ? 36 M
ITS PRICE ? 1.85

LJ

U

354

n

Problem 3-9 Listing

10 INPUT "HOW MANY DRINK CANS DO YOU HAVE";N
20 PRINT

30 PRINT "ASSUMING 14 CANS/LB AND $1.28/5 LBS1

40 PRINT

50 PRINT "YOU WILL RECEIVE $"(N/14)*(1.28/5)

60 PRINT

70 END

Problem 3-9 Sample Run

HOW MANY DRINK CANS DO YOU HAVE ? 300

ASSUMING 14 CANS/LB AND $1.28/5 LBS

YOU WILL RECEIVE $ 5.48571429

READY.

HOW MANY DRINK CANS DO YOU HAVE ? 70

ASSUMING 14 CANS/LB AND $1.28/5 LBS

YOU WILL RECEIVE $ 1 .28

P Problem 3-11 Listing
! i 10 PRINT "ALL DIMENSIONS ARE IN FEET !!!"

20 PRINT

_ 30 INPUT "LENGTH ";L

H 40 INPUT "WIDTH ";W
i i 50 PRINT

60 PRINT (L*W)/43560 "ACRES"
70 END

; Problem 3-11 Sample Run

ALL DIMENSIONS ARE IN FEET !!!

p. LENGTH ? 300

| | WIDTH ? 456

n
3.14049587 ACRES

READY.

ALL DIMENSIONS ARE IN FEET !!!

LENGTH ? 3028

WIDTH ? 1120

77.8549128 ACRES

355

n

u
Problem 3-15 Listing , >

10 PRINT "HOW MANY DOLLARS DO YOU HAVE IN THE"
20 INPUT "BANK ";M U
30 PRINT

40 PRINT "WHAT IS THE YEARLY INTEREST RATE " |)
50 PRINT "(THIS WILL BE DIVIDED BY 12 TO GIVE "

60 INPUT "YOU THE MONTHLY RATE) ";I U
70 MR=(I/100)/12

80 X = 1

90 M=M+(M*MR)

100 X=X+1

110 IF X<13 THEN 90

120 PRINTi c u r n x n i j i

130 PRINT "YOU NOW HAVE";M;"IN THE BANK"
140 END LJ

u

u

u

Problem 3-15 Sample Run

HOW MANY DOLLARS DO YOU HAVE IN THE

BANK ? 100

WHAT IS THE YEARLY INTEREST RATE

(THIS WILL BE DIVIDED BY 12 TO GIVE

YOU THE MONTHLY RATE) ? 8

YOU NOW HAVE 108.299951 IN THE BANK

CHAPTER 4

Problem 4-1 Listing

10 INPUT "FIRST NUMBERM;A

20 INPUT "SECOND NUMBER";B

30 INPUT "THIRD NUMBER";C

40 IF (A<B) AND (A<C) THEN X=(B*C)/A

50 IF (B<A) AND (B<C) THEN X=(A*C)/B

60 IF (C<A) AND (C<B) THEN X=(A*B)/C

70 PRINT "ANSWER";X

80 PRINT: GOTO 10

Problem 4-1 Sample Run

FIRST NUMBER ? 5

SECOND NUMBER ? 6

THIRD NUMBER ? 2

ANSWER 15

?

SECOND NUMBER ? 3

THIRD NUMBER ? 6

ANSWER 16

356

u

Ll

U

ll

Ll

n

H Problem 4-3 Listing

! ! 10 PRINT "HOW MUCH MONEY DO"
20 INPUT "YOU WANT TO CHAN6E";M

30 IF M<=0 THEN 10

n *0 PRINT

| j 50 Q=0
! ' 60 D=0

70 N=0

_ 80 M=M-.25

i [90 IF M<0 THEN 120

! 100 Q=Q+1
110 GOTO 80

120 M=M+.25

n 130 m=m-.io

i 140 IF M<0 THEN 170

150 D=D+1

160 GOTO 130

170 M=M+.1O

H 180 M=M-.O5
j S 190 IF M<0 THEN 220

200 N=N+1

210 GOTO 180

r- 220 P=INT((M+.051)*100)

| I 230 PRINT "QUARTERS:";Q

J ! 240 PRINT "DIMES:";D
250 PRINT "NICKELS:";N

260 PRINT "PENNIES:";P

H 265 PRINT
! ! 270 GOTO 10

Problem 4-3 Sample Run

n HOW MUCH MONEY DO
I ! YOU WANT TO CHANGE? 2.39

H
QUARTERS: 9

DIMES: 1

NICKELS: 0

PENNIES: 4

HOW MUCH MONEY DO

YOU WANT TO CHANGE? 1.47

QUARTERS: 5

DIMES: 2

NICKELS: 0

PENNIES: 2

Problem 4-6 Listing

10 A=INT(RND(1)*50)

20 B=INT(RND(1)*50)

30 PRINT A;" + ";B;" =";

40 INPUT Q

50 IF QOA + B THEN 30

60 GOTO 10

357

u
Problem 4-6 Sample Run ,

u

Problem 4-8 Listing

44

6 +

12

14

14

14

10

15

33

+ 27

13

+ 10

+ 11

+ 11

+ 11

+ 45

+ 32

+ 48

= ?

= ?

= ?

= ?

= ?

= ?

= ?

= ?
=

71

19

22

20

24

25

55

47

10 Q=INT(RND(1)*100)

20 INPUT "YOUR GUESS";G

30 IF 6<Q THEN PRINT "TOO LOW"

40 IF 6>Q THEN PRINT "TOO HIGH'

50 IF GOQ THEN 20

60 PRINT "THAT'S RIGHT"

70 GOTO 10

Problem 4-8 Sample Run

YOUR GUESS ? 50

TOO LOU

YOUR GUESS ? 75

TOO HIGH

YOUR GUESS ? 62

TOO HIGH

YOUR GUESS ? 56

TOO LOW

YOUR GUESS ? 59

TOO LOW

YOUR GUESS ? 61

THAT'S RIGHT

YOUR GUESS ? 50

TOO LOW

YOUR GUESS ? 75

TOO HIGH

YOUR GUESS ? 62

TOO HIGH

YOUR GUESS ? 56

TOO LOW

YOUR GUESS ? 59

THAT'S RIGHT

U

u

358
U

n

n

Problem 4-11 Listing

10 INPUT "DAY OF YEAR";N

12 IF N>31 THEN 20

r-, 14 PRINT "JANUARY";

| 16 GOTO 200
I 20 N=N-31

22 IF N>28 THEN 30

24 PRINT "FEBRUARY";

p 26 GOTO 200

! I 30 N=N-28

1 32 IF N>31 THEN 40
34 PRINT "MARCH";

^ 36 GOTO 200

i 40 N=N-31

I 42 IF N>30 THEN 50
44 PRINT "APRIL";

46 GOTO 200

p 50 N=N-30

! 52 IF N>31 THEN 60

; 54 PRINT "MAY";
56 GOTO 200

60 N=N-31

62 IF N>30 THEN 70

64 PRINT "JUNE";

66 GOTO 200

70 N=N-30

72 IF N>31 THEN 80

74 PRINT "JULY";

76 GOTO 200

80 N=N-31

82 IF N>31 THEN 90

84 PRINT "AUGUST";

86 GOTO 200

90 N=N-31

92 IF N>30 THEN 100

94 PRINT "SEPTEMBER";

96 GOTO 200

100 N=N-30

102 IF N>31 THEN 110

104 PRINT "OCTOBER";

106 GOTO 200

110 N=N-31

112 IF N>30 THEN 120

114 PRINT "NOVEMBER";

116 GOTO 200

120 N=N-30

124 PRINT "DECEMBER";

200 PRINT N

210 PRINT

220 GOTO 10

n

n

n

n

n
i i

359

n

Problem 4-11 Sample Run

DAY OF YEAR? 1

JANUARY 1

DAY OF YEAR? 15

JANUARY 15

DAY OF YEAR? 100

APRIL 10

DAY OF YEAR? 365

DECEMBER 31

U

u

u

u
Problem 4-13 Listing

10 PRINT "HOW MANY CHECKS DID YOU"

20 INPUT "WRITE THIS MONTH";NC
40 PRINT

50 X = 1

60 TC=O

70 INPUT "AMOUNT OF CHECK";A

80 TC=TC+A

90 X=X+1

100 IF X<=NC THEN 70

110 PRINT

120 PRINT "TOTAL OF CHECKS";TC

130 PRINT

140 X=1

150 TD=O

160 INPUT "NUMBER OF DEPOSITS";ND

180 PRINT i |

190 INPUT "DEPOSIT AMOUNT";D

200 TD=TD+D u
210 X=X+1

220 IF X<=ND THEN 190 I i

230 PRINT

240 INPUT "PREVIOUS BALANCE";PB U
250 PRINT "CHECKS";TC

260 PRINT "DEPOSITS";TD ,-

270 PRINT "NEW BALANCE";PB+TD-TC

280 END U

u

u

u

u
360

r

n

r

Problem 4-13 Sample Run

HOW MANY CHECKS DID YOU

WRITE THIS MONTH? 3

AMOUNT OF CHECK? 10

AMOUNT OF CHECK? 20

AMOUNT OF CHECK? 5

TOTAL OF CHECKS 35

NUMBER OF DEPOSITS? 2

DEPOSIT AMOUNT? 35

DEPOSIT AMOUNT? 65

PREVIOUS BALANCE? 100

CHECKS 35

DEPOSITS 100

NEW BALANCE 165

CHAPTER 5

n

n

Problem 5-1 Listing

100 PRINT "CSHIFT3 CCLEAR/HOMED";

110 FOR 1=0 TO 23

120 PRINT TAB(I) "CSHIFT3 CM3"

130 NEXT

140 GOTO 140

Problem 5-3 Listing

10 PRINT "CSHIFTD CCLEAR/HOMED"

20 PRINT "THIS MESSAGE GETS YOUR ATTENTION1

30 FOR J=1 TO 200: NEXT J

40 PRINT "CSHIFT3 CCLEAR/HOMED"

50 FOR J=1 TO 200: NEXT J

60 GOTO 20

n
361

u

u
Problem 5-5 Listing

10 PRINT

20 PRINT "ADD - 1"

30 PRINT "SUBTRACT - 2"
40 PRINT "MULTIPLY - 3"
50 PRINT "DIVIDE - 4"

60 PRINT: INPUT "COMMAND ";C
70 C=INT(C)

80 IF (C<1 OR C>4) THEN 60

90 ON C GOSUB 200,300,400,500
95 GOTO 10

100 PRINT: INPUT "NUMBERS ";X,Y
110 RETURN

200 GOSUB 100 | i

210 A=X+Y

220 PRINT "RESULT IS ";A ^
230 RETURN

300 GOSUB 100

310 A=X-Y

320 GOTO 220

400 GOSUB 100

410 A=X*Y

420 GOTO 220

500 GOSUB 100

510 A=X/Y

520 GOTO 220

Problem 5-5 Sample Run

u

ADD - 1

SUBTRACT - 2

MULTIPLY - 3

DIVIDE - 4

COMMAND ? 1

NUMBERS ? 2,3

RESULT IS 5

ADD - 1

SUBTRACT - 2

MULTIPLY - 3

DIVIDE - 4

COMMAND ? 3

NUMBERS ? 6.5 , 7.2

RESULT IS 46.8
U

U

362

u

n

n

Problem 5-7 Listing

n

n

p

p

p

p

p

p

10

20

30

35

40

50

60

70

FOR 1=2 TO 100

FOR X=2 TO I

IF (I/XXXINTCI/X)) THEN 40

B = B + 1

NEXT X

IF B=1 THEN PRINT I

B=0: NEXT I

END

Problem 5-7 Sample Run

2

3

5

7

11

13

17

19

23

29

31

37

41

43

47

53

59

61

67

71

73

79

83

89

97

Problem 5-9 Listing

10

20

30

40

50

60

70

80

90

DIM T(6)

FOR 1=1 TO 100

X=1+INT(RND(0)*5.999)

T(X)=T(X)+1

NEXT

FOR 1=1 TO 6

PRINT I;11: n;T(I)

NEXT

END

363

Problem 5-9 Sample Run

1 .

2 :

3 :

4 :

5 :

6 :

: 25

7

21

14

17

16

Problem 5-11 Listing

10

20

30

40

50

60

70

80

90

100

110

120

125

130

131

132

133

140

150

170

171

172

173

200

210

220

230

DIM C(52)

FOR 1=0 TO 3

FOR J=1 TO 13

C(I*13+J)=J

NEXT J

NEXT I

S=INT(RND<1)*3.9999)

V=1+INT(RND(1)*12.9999)

A=C(S*13+V)

IF A=0 THEN 70

C(S*13+V)=0

ON S+1 GOSUB 200,210,

PRINT TABC10);

IF A=1 THEN 170

IF A=11 THEN 171

IF A=12 THEN 172

IF A=13 THEN 173

PRINT A

GOTO 70

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

•ACE": GOTO 70

•JACK": GOTO 70

220,230

•QUEEN11: GOTO 70

•KING": GOTO 70

•SPADES: ";:

•HEARTS: ";:

•DIAMONDS: ";:

•CLUBS: ";:

RETURN

RETURN

RETURN

RETURN

u

u

u

u

LJ

U

U

364

u

n

Problem 5-11 Sample Run

I SPADES:
CLUBS:

HEARTS:

H SPADES:

SPADES:

' DIAMONDS:
CLUBS:

_ DIAMONDS:

; CLUBS:

; CLUBS:

CLUBS:

CLUBS:

-^ CLUBS:

j HEARTS:

! HEARTS:

SPADES:

DIAMONDS:

■ CLUBS:

| HEARTS:

HEARTS:

DIAMONDS:

n DIAMONDS:

CLUBS:

1 SPADES:
HEARTS:

CLUBS:

! HEARTS:

I HEARTS:
DIAMONDS:

CLUBS:

r-i DIAMONDS:

! HEARTS:

> CLUBS:

DIAMONDS:

CLUBS:

I DIAMONDS:

I SPADES:

HEARTS:

SPADES:

p-s SPADES:

i HEARTS:
i HEARTS:

HEARTS:

SPADES:

"~! DIAMONDS:
! DIAMONDS:

DIAMONDS:

SPADES:

p-u SPADES:

1 SPADES:

i DIAMONDS:

SPADES:

10

6

KING

9

2

3

ACE

7

4

5

KING

2

JACK

ACE

QUEEN

QUEEN

10

7

6

4

ACE

JACK

QUEEN

JACK

9

8

3

5

QUEEN

9

2

8

3

4

10

9

4

JACK

3

ACE

2

7

10

7

6

5

8

8

KING

6

KING

5

n

n
365

LJ
CHAPTER 6

Problem 6-2 Listing

10 PRINT: INPUT "STRING TO SPLITM;A$, ,
20 L=LEN(A$)

30 H=INT(L/2) M
40 PRINT MID$(A$,1,H)

50 PRINT MID$(A$,H+1,L"H)
60 GOTO 10 I |

Problem 6-2 Sample Run y

COMPUTER

LJ

Problem 6-3 Listing U
5)

u

u

u

u

LI

U

STRING TO SPLIT? MICROCOMPUTER

MICROC

OMPUTER

STRING TO SPLIT? SPLIT THIS STRING

SPLIT THI

S STRING !

10 DIM N$(5), A$(5)

20 FOR X = 1 TO 5

30 PRINT

40 INPUT "NAME"; N$(X)

50 INPUT "AGE"; A$(X)

60 NEXT X

70 PRINT: INPUT "NAME OR AGE"; B$

80 K = 1

90 IF B$ = N$(K) THEN PRINT "AGE IS "; A$(K): GOTO 70

100 IF B$ = A$(K) THEN PRINT "NAME IS "; N$(K): GOTO 70

110 K = K + 1: IF K<6 THEN 90

120 PRINT "NO SUCH PERSON!": GOTO 70

366

Q

n

n

i i

n

I |
| !

Problem 6-3 Sample Run

NAME? WENDY

AGE? 19

NAME? BILL

AGE? 34

NAME? LOIS

AGE? 33

{ t NAME? HENRY
AGE? 23

NAME? MARGARET

AGE? 36

NAME OR AGE? WENDY

AGE IS 19

NAME OR AGE? 23

NAME IS HENRY

NAME OR AGE? JIM

NO SUCH PERSON!

NAME OR AGE? 45

NO SUCH PERSON!

Problem 6-5 Listing

5 DIM S$(5O)

10 PRINT: PRINT: PRINT "STRING TO": INPUT "SCRAMBLE";W$

20 L=LEN(W$)

30 FOR 1=1 TO L

40 S$(I)=MID$(W$,I,1)

50 NEXT

60 FOR 1=1 TO L

70 Z=INT(RND(1)*(L+.999))

80 IF S$(Z)="" THEN 70

90 PRINT S$(Z);: S$(Z)=""

100 NEXT

f! 110 B$="M: PRINT: PRINT: PRINT "? ";

j \ 120 FOR 1=1 TO L

■' ' 130 GET A$: IF A$ = "" THEN 130
140 PRINT A$;: B$=B$+A$

_ 150 NEXT

I j 160 IF B$=W$ THEN 10
| | 170 PRINT: PRINT "TRY AGAIN": GOTO 110

Problem 6-6 Listing

H 100 L=(40-LEN(A$))/2
j j 110 PRINT TAB(L) A$

120 RETURN

n
367

u

LI

U

Problem 6-7 Listing

10 INPUT "STRING TO USE";A$

20 PRINT

30 FOR K=1 TO LEN(A$)

40 PRINT MID$<A$,1,K)

50 NEXT

60 PRINT: GOTO 10

Problem 6-7 Sample Run

STRING TO USE? ORANGE j f

OR

ORA

ORAN

ORANG

ORANGE

STRING TO USE? MICROCOMPUTER

M

MI

MIC

MICR

MICRO

MICROC

MICROCO

MICROCOM

MICROCOMP

MICROCOMPU

MICROCOMPUT

MICROCOMPUTE

MICROCOMPUTER

Problem 6-9 Listing

10 DIM S$(5) | I

20 FOR 1=1 TO 5

30 PRINT "STRING11;!;: INPUT S$(I) U
40 NEXT

50 FOR 1=1 TO 5

60 T$="ZZZZZZ"

70 FOR J=1 TO 5

80 IF S$(JXT$ THEN T$ = S$(J)
90 NEXT

100 FOR G=1 TO 5

110 IF S$(G)=T$ THEN S$ (G) = "ZZZZZZM
120 NEXT

130 PRINT T$

150 NEXT

160 END

U

u
368

H

n

n

n

Problem 6-9 Sample Run

STRING 1 7HOUSE

STRING 2 7DOORMAT

STRING 3 7KITCHEN

STRING 4 7HALLWAY

STRING 5 7WIND0W

DOORMAT

HALLWAY

HOUSE

KITCHEN

WINDOW

Problem 6-10 Listing

10 DATA

20 DATA

30 DATA

40 DATA

50 DATA

60 DATA

70 DATA

80 DATA

90 DATA

•JANUARY",31

"FEBRUARY",28

"MARCH",31

"APRIL",30

MAY",31

JUNE",30

JULY",31

'AUGUST",31

•SEPTEMBER",30

100 DATA "OCTOBER",31

110 DATA "NOVEMBER",30

120 DATA "DECEMBER",31

130 INPUT "DAY";D

140 READ M$,A

150 IF D>A THEN D=D-A: GOTO 140

160 PRINT M$;D: RESTORE: GOTO 130

Problem 6-11 Listing

10 PRINT: INPUT "INPUT A NUMBER";N

20 N$=STR$(N)

30 L=LEN(N$)-1

40 B$=""

50 K=0

60 B$=MID$(N$,L+1,1)+B$

70 L=L-1: IF L=0 THEN 110

80 K=K+1: IF K<3 THEN 60

90 B$=","+B$

100 GOTO 50

110 PRINT B$: GOTO 10

n

n

369

Problem 6-11 Sample Run

INPUT

1

INPUT

12

INPUT

123

INPUT

1,234

INPUT

12,345

A

A

A

A

A

INPUT A

123,456

INPUT

1,234,

NUMBER?

NUMBER?

NUMBER?

NUMBER?

NUMBER?

NUMBER?

A NUMBER?

567

1

12

123

1234

12345

123456

1234567

Problem 6-14 Listing

10 PRINT: PRINT "HOW MANY TIME DELAYS"

20 INPUT "WOULD YOU LIKE";N

30 DIM A$(N)

40 FOR 1=1 TO N

50 PRINT "DELAY ";I;: INPUT B$

60 A$(I)=RIGHT$("000000"+B$,6)
70 NEXT

80 FOR 1=1 TO N

90 TI$="000000"

100 IF TI$<A$(I) THEN 100

110 PRINT "TIME";I;"HAS ELAPSED"

120 NEXT

130 END

U

U

u

u
Problem 6-13 Listing j j

10 INPUT "MESSAGEM;M$ U
20 L=LEN(M$)

30 M$=M$+" C4 SPACES] "+M$

40 PRINT "[SHIFT] [CLEAR/HOMED"; j {
so 1=1 y
60 PRINT MID$(M$,I,39)

70 FOR K=1 TO 300: NEXT

80 PRINT "CSHIFT] [CLEAR/HOMED"; I j
90 1=1+1: IF I=L+5 THEN 40 M
100 GOTO 60

U

L!

u

Li
370

n

! i

n

n

n

n

CHAPTER 7

Problem 7-3 Listing

300 PRINT "ANGLE SIN"

305 FOR 1=0 TO 350 STEP 10

310 A=(I/360)*2*3.14159

320 PRINT I,SIN(A>

330 NEXT

340 END

Problem 7-3 Sample Run

ANGLE

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

SIN

0

.173648033

.342019866

.499999598

.642787158

.766043969

.866024962

.939692268

.984807548

1

.984808009

.939693175

.866026288

.766045674

.64278919

.500001915

.342022359

.173650645

2.65227048E-06

-.17364542

-.342017373

-.49999732

-.642735126

-.766042265

-.866023636

-.93969136

-.984807088

-1

-.984808469

-.939694083

-.866027614

-.76604738

-.642791222

-.500004212

-.342024853

-.173653257

371

Problem 7-5 Listing

2000 PRINT "ANGLE TAN
2010 INPUT A

2020 PRINT A,

2030 A=(A/360)*2*3.1415y
2040 PRINT TAN(A>, SIN (A)/COS (A)
2050 GOTO 2010

Problem 7-5 Sample Run

SIN/COS1

ANGLE

10

60

130

190

230

305

355

Problem

10 POKE

.1

1.

-1

s

1

-1

8-1 Listing

53281,5

TAN

76326S29

73204727

.19175823

176324093

.19174539

.42816167

0874939371

CHAPTER 8

.1

1.

-1
m

1

-1

-

SIN/COS

76326829

73204727

.19175823

176324093

.19174539

.42816166

.0874939371

u

u

u

u

LI
Problem 8-3 Listing

10 X=20: PRINT "CSHIFT3 CCLEAR/H0ME3"
20 D=1-INT(RN0(1)*2.9999)

30 POKE 1024+X,32: REM WIPE OUT PREVIOUS DIAMOND
40 X=D+X : REM CALCULATE NEW POSITION
45 REM MAKE SURE THAT WE DON'T EXCEED THE SCREEN LIMITS
50 IF X<0 THEN X=0

60 IF X>39 THEN X=39

65 REM POKE THE CHARACTER THEN THE COLOR
70 POKE 1024+X,90: POKE 55296+X,0
80 FOR J=1 TO 100: NEXT

90 GOTO 20

372

\j

n
Problem 8-6 Listing

1 10 PRINT "CSHIFH CCLEAR/HOMED"
20 X=0: Y=0

30 FOR X=0 TO 38.5

P 40 60SUB 300

! 50 NEXT
60 FOR Y=0 TO 23.5

70 GOSUB 300

p 80 NEXT
| | 90 FOR X=39 TO 0.5 STEP -1

100 GOSUB 300

110 NEXT

P 120 FOR Y=24 TO 0.5 STEP -1
| ; 130 GOSUB 300

140 NEXT

150 GOTO 10

P 300 S=1024+X+(Y*40)

j j 310 C=55296+X+(Y*40)
320 POKE S,42

330 POKE C,2

0 340 FOR J=1 TO 20: NEXT

j 350 POKE S,32
360 RETURN

_ Problem 8-9 Listing

I 10 X=20: Y=12
1 20 INPUT A$

30 A=ASC(A$)-64

n 35 PRINT "[SHIFT] CCLEAR/HOMED";

1 , 40 P=X+Y*40

! i 50 S=1024: C=55296
60 POKE S+P,A: POKE C+P/O

n 70 GET A$: IF A$ = MfI THEN 70

I » 80 B=ASC(A$)
1 90 IF B=17 THEN Y=Y+1

100 IF B=29 THEN X=X+1

^ 110 IF B=145 THEN Y=Y-1

120 IF B=157 THEN X=X-1

! 130 IF X<0 THEN X=0
140 IF X>39 THEN X=39

_ 150 IF Y<0 THEN Y=0

I \ 160 IF Y>24 THEN Y=24

! i 170 POKE S+P,32
180 GOTO 40

n

373

Problem 8-11 Listing

10 X=20:S=0: PRINT "CSHIFTD CCLEAR/HOMED"
20 POKE 1984+X,30: POKE 56256+X,0

30 GET A$: IF A$OIMI THEN 90

40 IF S=0 THEN 30

50 POKE D+P,32

60 D=D-40: DC=DC-40

70 IF D<1024 THEN S=0: GOTO 30

80 POKE D+P,42: POKE DC+P,1: GOTO 30

90 IF A$O"V" THEN 120

100 POKE 1984+X,32: X=X-1: IF X<0 THEN X=0
110 GOTO 140

120 IF A$O"N" THEN 150

130 POKE 1984+X,32: X=X+1: IF X>39 THEN X=39
140 POKE 1984+X,30: POKE 56256+X,0: GOTO 40

150 IF S=1 THEN 30

160 P=X: S=1: D=1944: DC=56216: GOTO 50

Problem 8-13 Listing

=o

GET RANDOM Y POSITION

X POSITION

CLEAR PREVIOUS ASTERISK

POKE THE ASTERISK

POKE THE COLOR (BLACK)

WAIT A LITTLE

GENERATE A NEW X POSITION

DO ANOTHER LINE

Problem 9-1 Listing

10 FOR AD = 54272 TO 54296: POKE AD,O: NEXT

20 GET A$: IF A$ = "" THEN 20

LJ

U

L!

U

U

10

20

30

40

50

60

70

80

90

PRINT "CSHIFTD CCLEAR/HOME]";: X=

Y=INT(RND(1)*23)

FOR

POKE

POKE

POKE

FOR

NEXT

GOTO

X=0 TO 39

1024+X-1+(Y*40),:

1024+X+(Y*40),42

55296+X+(Y*40),0

J=1 TO 10: NEXT J

10

:REM

:REM

52 :REM

:REM

:REM

:REM

:REM

:REM

CHAPTER 9

30

40

50

60

70

A = VAL(A$) + 1

FOR J = 1 TO A:

POKE 54296, 15

READ H, L: NEXT

:REM HIGHEST VOLUME

POKE 54273, H: POKE 54272, L:

POKE 54278, 240 :

80 POKE 54276, 17

REM HI/LO VALUES

REM SUSTAIN VALUE

REM TRIANGLE

90 RESTORE: GOTO 20

100 DATA 30, 141, 32, 94, 34, 75, 36, 85, 38, 126

110 DATA 40, 200, 43, 52, 45, 198, 48, 127, 51, 97

Q

U

LJ

374

n

n

Problem 9-3 Listing

10 DIM A(50): K=0
20 FOR AD=54272 TO 54296: POKE AD,O: NEXT

30 INPUT "NOTE VALUEM;X

40 IF X=0 THEN 60

50 A(K)=X: K=K+1: GOTO 30

60 FOR J=0 TO K

70 H=INT(A(J)/256): L=INT(A(J)-H*256)

80 POKE 54296,15: REM VOLUME AT HIGHEST LEVEL

90 POKE 54273,H: POKE 54272,L: REM HIGH AND LOW FREQUENCY

100 POKE 54278,240: REM SUSTAIN VALUE

110 POKE 5427f,17: REM TRIANGLE

120 FOR G=1 TO 200: NEXT

130 NEXT

140 GOTO 60

Problem 9-6 Listing

10 FOR AD=54272 TO 54296: POKE AD,O: NEXT

20 X=INT(RND(1)*65535)

30 H=INT(X/256): L=INT(X-(H*256))

40 POKE 54296,15: REM VOLUME AT HIGHEST LEVEL

50 POKE 54273,H: POKE 54272,L: REM HIGH AND LOW FREQUENCY

60 POKE 54278,240: REM SUSTAIN VALUE

70 POKE 54276,17: REM TRIANGLE

80 A=RND(1)*1000

90 FOR G=0 TO A: NEXT

100 GOTO 20

REFERENCES

INTERESTING MAGAZINES FOR COMMODORE 64 OWNERS

Commodore—The Microcomputer Magazine. 1200 Wilson Drive,

West Chester, PA 19380. Specific to the Commodore line of com

puters - VIC 20, Commodore 64, and PET. Adult level.

Power/Play—The Home Computer Magazine. 1200 Wilson

Drive, West Chester, PA 19380. Specific to the Commodore line of

computers. Aimed at the individual user who wants programs to

run. Also contains general articles. Adult level.

Compute! P. O. Box 5406, Greensboro, NC 27403. General com

puter magazine that covers most popular small computers. Con

tains programs, articles, columns, and reviews. High school

through adult level.

Creative Computing. P. O. Box 5214, Boulder, CO 80321. General

computer magazine that contains mainly recreational and game

programs, plus reviews. High school through adult level.

375

u
BUSINESS-RELATED BOOKS , .

Barden, William, Jr. What Do You Do After You Plug It In? "

Indianapolis: Howard W. Sams & Co., Inc. 1983.

Beasley, Jack 0. Microcomputers on the Farm. Indianapolis: j
Howard W. Sams & Co., Inc., 1983. ^

Blumenthal, Susan. Understanding and Buying a Small- ,

Business Computer. Indianapolis: Howard W. Sams & Co., Inc.,
1982. U

Brooner, E. G. Basic Business Software. Indianapolis: Howard j j
W. Sams & Co., Inc., 1980. II

Brooner, E. G. Microcomputer Data-Base Management. Indian

apolis: Howard W. Sams & Co., Inc., 1982. | *

Digital Equipment Corp. Guide to Personal Computing. May- U
nard, MA: Digital Equipment Corp., 1982.

Eischen, Martha. Compuguide. Beaverton, OR: Dilithium Press, J |
1982. U

Jong, Steven F. Word Processing for Small Businesses. Indian- ,

apoHs: Howard W. Sams & Co., Inc., 1983. j

376

u

a

u

u

n

Index

n

R

n

n

Action keys, 18,21-26

Advanced displays and graphics,

227-228

Alignment of screen display and color

maps for TV display, 234

AND, OR operations, 108,109

A note about codes, 247

Array(s)

of information, 150

or table, using, 151-153

size of, 153

special kind, 153-156

Arithmetic, simple, 65-66

setting up the problem, 66-67

ASCII code, 208

Attack, 273-280

and decay rates, using them, 278-281

decay, release rates and their codes,

275

B

Bad data, 47-48

Basic computer system, 16

Baudot code, 208

Boolean algebra, 111

Branching program, 91

Breaking out, 94-98

Building

a string, 165-166

your own string, 176-177

Care of hardware, 321-328

Cartridges, 285-287

Cassette

and the GET command, 297-300

getting data from, 293-295

saving information on, 288-297

unit, 287-288

Changing

the tone, 261-264

the voices, 264-267

Characters, 24

peculiar, 166-167

reversed, 240-243

Clearing

an old file, 317

the screen, 124-125

Clear the sound map, 258

Clock, real-time, 178

CLR/HOME key, 23-25

Code(s)

a note about, 247

377

Code(s)—cont

ASCII, 208

Baudot, 208

special, 208-209

Color

codes, 33

fun, 33-37

connection, 34-35

control, 223-225

keys, 221

symbols, 223

screen, 220-227

Command

INPUT, 71-75

GET, 174-178

GOTO, 89-94

NEW, 67

PEEK, 243-244

RESTORE, 156

space, 215-216

SPC, 215

TAB, 127-129

Commands INPUT and PRINT, 42

Commodore 64

labels, 50-52

logs, 207-208

sound from, 254-267

sound-generating system, 255

trigonometry, 199-200

Common error codes, 335-336

Computer

clock, using, 179-181

information diet, 52-53

system, basic, 16

Controls, joystick, 304-307

Corrected program, saving on disk,

315-316

Counting loops, 106-109

flowchart for, 107

the FOR-NEXT command, 132-136

CRSRkey,23,24

Cursor, 18

control symbols, 217

moves with SPC and TAB, 216

moving, 25-26,217-220

D

Data, bad, 47-48

DATA

and READ commands, using, 154-156

DATA—cont

statement, 154

Decay rate, 274

Decisions

real, 98-99

string, 167-170

Deleting and inserting, 28-29

Demonstrations and documentation, 330

Devices

input, 40

1/0,41

output, 41

Directory of programs, 316

Disk-drive setup, 308-312

Displays and graphics, advanced,

227-228

Doing more than one thing at a time,

77-78

Dollar sign, 54

Do-nothing loop, 135

Drawing

graphs, 228-230

pictures, 30-33

things, 31-33

E

Efficient secretary, 81-84

Electronic data processors, 39

Eraser, 26-29

Error

codes

common, 335-336

uncommon, 336-337

message, undefined statement, 92

F

Filling the TV screen, 227-228

Flashing sign, 240-243

Flexibility, 333

Floppy-disk unit, 307-308

Flowchart

for a "five asterisk" loop, 138

for FOR-NEXT operation, 133

for ON command, 130

IF-THEN, 101

with GOTO command, 102

with multiple commands,

loop-counting program, 107

umbrella, 99

Format a disk, 310

a

a

a

a

11
Li

1 ,
LJ

a

a

a

La

1 1

Lj

I

Lj

i i

378

R
FOR-NEXT loop, 134-136

j Fun

programs, 245-246

with color, 33-37

n

R

! I

n

n

GET command, 174-178

using, 175-176

Getting

a few characters, 177-178

data from the cassette, 293-295

started, 15-18,42-48

GOTO command, 89-94

Graphic

printer, 300-301

symbols, special, 30

GRAPHICS key, 31

Graphs, drawing, 228-230

Greater-than symbol, 100

H

Hardware

care, 321-328

troubleshooting, 326-328

HI and LOW tone codes for musical

notes, 256

I

IF-THEN operation, 99-105

Information and references, software,

329-330

Input

devices, 40

/output program, simple, 4345

INPUT, 42

commands, 71-75

Inputting string, 55-56

Insert/delete key, 83

INST/DEL key, 26-29,81-84

Integers), 114-115

operation, INT, 114

Intelligent questions and answers, 57-61

I/O devices, 41

Joystick controls, 304-307

K

Key(s)

action, 18,21-26

Keys—cont

CLR/HOME, 23-25

color control, 221

CRSR,23,24

graphics, 31

insert/delete, 83

INST/DEL, 26-29,81-84

number, 20

printing, 18,19-21

repeating, 26

RETURN, 20

RUN/STOP, 94

RVS OFF, 35

RVS ON, 35

shift, 21-23

SHIFT LOCK, 23

tan "f," 209-211

Keyboard, 18-21

Labels, 48-50

Commodore 64, 50-52

mixed, 56-57

short, 51-52

LEFT$ and RIGHT$ operations,

171-172

Length of a string, 170-171

Less-than symbol, 100

Line

feed, 126

numbers, 42

Linking strings, 163

Listing your program, 43

Location of ON/OFF power switch, 18

Logarithms, 204-206

Logical operations, 111-112

Logs, Commodore 64,207-208

Loop(s), 94

and breaks, 96-98

counting, 106-109

flowchart for, 107

do-nothing, 135

FOR-NEXT, 134-136

nested, 137-142

real use for, 136-137

time-delay, 135

M

Magic color screen, 220-227

Making noise, 269-271

379

Making noise—cont

screen color, 233

screen display, 232

Math problem(s)

parenthesis in, 78-84

simple, 67-68

using labels in, 70-71

Messages, printing, 60-61

Middle of a string, 174

Mixed

labels, 56-57

operations, 109-111

Modified sound map for VOICE -1,277

More

characters, 244

decisions, 129-132

graphics, 246-247

loops, 105-108

math fun, 68-70

on a line, 75-77

Moving

from place to place, 216-220

the cursor, 25-26,217-220

Musical instrument settings for the

Commodore 64,275

N

Name that tone, 271-272

Nested loops, 137-142

NEW command, 67

Noise, 269-271

NOT operation, 111

Number keys, 20

Old file, clearing from disk, 317

ON command, flowchart for, 130

One line for many, 75-77

ON/OFF power switch, location, 18

Operation(s)

AND/OR, 108,109

IF-THEN, 99-105

INT, 114

logical, 111-112

mixed, 109-111

NOT, 111

of LEFT$ and RIGHT$, 171-172

Other printing keys, 20

Output devices, 41

380

Paranthesis in math problems, 78-80

Peculiar characters, 166-167

PEEK command, 243-244

Peripherals, 41

Pick a number, 112-114

Pictures, drawing, 30-33

Pi, value of, 192-195

Playing for position, 126-127

POKE command, using, 235-240

Power, 323-326

module, 16

PRINT, 42

Printer

codes for VIC-1525 graphics printer,

304

graphic, 300-301

starting it, 301-304

Printing

in columns and rows, 126-127

in reverse, 35-37

keys, 18-21

special symbol, 22

messages, 60-61

reversed, 225-227

specialty, 123-125

Program(s)

branching, 91

cartridges, 285-287

directory of, 316

for fun, 245-246

listing it, 43

random value, 112-114

removing lines from, 44

running it, 45-47

simple 41-42

straight-line, 91

Protection

for hardware, 323

software, 333

Quote marks, 58,59

Random value program 2,112-114

Real

decisions, 98-99

-time clock, 178

use for a loop, 136-137

U

u

u

u

u

u

n

r

n

n

n

n

n

Removing lines from a program, 44

REM statements, 80,81

Renaming or copying a file, 317-318

Repeating keys, 26

Reserved words, 115-116

RESTORE command, 156

RETURN key, 20

Reversed characters, 240-243

Reverse printing, 37-39,225-227

Running your program, 45-47

RUN/STOP key, 94

RVS OFF key, 35,221

RVS ON key, 35,221

Satellite computer system, 40

Saving

a corrected program, 315-316

and loading data on disk, 318-320

information on a cassette, 288-297

loading, and verifying programs,

312-315

strings on a tape, 295-297

Screen(s)

and borders, 244-245

/character color combinations, 222

clearing, 124-125

codes for display characters, 236-237

color

codes, 238

map, 233

controls and maps, 230-240

display map, 232

Secretary, efficient, 81-84

Seeing what you have done, 243-244

Setting up

a new disk, 310-312

the problem, 66-67

Setup of disk drive, 308-312

SHIFT key, 21-23

SHIFT LOCK key, 23

Short labels, 51-52

Sign

dollar, 54

flashing, 240-243

Simple

arithmetic, 65-66

setting up the problem, 66-67

input/output program, 43-45

math problem, 67-68

Simple—cont

programs, 41-42

tone test, 258-261

typing, 20-21

Size of arrays, 153

Software, 329-333

Sound

from the Commodore 64,254-267

-generating system, Commodore 64,

255

importance of, 253-254

using it in a program, 267-269

Space command, 215-216

SPC command, 215

Special

codes, 208-209

graphic symbols, 30

kind of array, 153-156

place for hardware, 322

symbol printing keys, 22

symbols, typing, 125-126

Specialty printing, 123-125

Square root, 189-192

Starting the printer, 301-304

Statement

DATA, 154

REM, 80,81

Static, 323

Straight-line program, 91

String(s), 53

and values, 181-182

building, 165-166

building your own, 176-177

decisions, 167-170

inputting, 55-56

length, 170-171

untangling, 170-174

using, 162-167

Subroutine®, 143-148

use of, 145-148

Subscript, 153

SUSTAIN, 257

Sustain volume, 274

Symbol

greater-than, 100

less-than, 100

TAB command, 127-129,215

using, 128-129

381

Table, 149,150

Tan "f' keys, 209-211

Tape, saving strings on, 295-297

Telling time, 178-181

Testing programs, 331-332

The pulse tones, 272-273

Time-delay loop, 135

To be AND/OR not to be, 108-109

Tone, changing it, 261-264

Tones, pulse, 272-273

Trig functions, using, 200-204

Trigonometry, 195-199

Commodore 64,199-200

Troubleshooting hardware, 326-328

TV screen grid, 231

Typical IF-THEN flow chart, 101

with GOTO command, 102

with multiple commands, 102

Typing

simple, 20-21

special symbols, 125-126

U

Umbrella flowchart, 99

Uncommon error codes, 336-337

Undefined statement error message, 92

Untangling strings, 170-174

Updates and revisions, 332-333

Using

an array or table, 151-153

a subroutine, 145-148

attack and decay rates, 278-281

computer's clock, 179-181

DATA and READ commands,

154-156

GET command, 175-176

with the recorder, 298-300

labels in math problems, 70-71

POKE command, 235-240

sound in a program, 267-269

strings, 162-167

TAB command, 128-129

trig functions, 200-204

Value of pi, 192-195

Values and strings, 181-182

VIC-1541 floppy-disk drive, 309

Voices, changing them, 264-267

W

What can your computer do, 39-41

What's available in software, 329

Word-guessing program, 172-173

Words, reserved, 115-116

Write protect notch, 310
u

382

u

u

n

_ SAMS.

n

n

n

n

n

More Books

for

Commodore 64 Owners!

COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE
f—i A creative programmer's working tool and reference source, packed with information on all aspects of

t Commodore BASIC programming. By Commodore Computer. 486 pages, 5V2 x SYa, comb-bound. ISBN

I I 0-672-22056-3. © 1982.
No. 22056 $19.95

_ LEARN BASIC PROGRAMMING IN 14 DAYS ON YOUR

| j COMMODORE 64
1 ■ Consists of 14 chapters intended to be covered at the rate of one per day or one per sitting. Especially

good for those aged 9 thru 19, but works fine for adults, too. Gil Schechter. 208 pages, 5% x SVfe, comb-

bound. ISBN 0-672-22279-5. © 1984.

p No. 22279 $10.95

i | MOSTLY BASIC: APPLICATIONS FOR YOUR COMMODORE

64, Book 1
Brings you 38 chapters filled with fun-and-serious BASIC programs that help you save money on energy

usage, bar-chart your business sales, dial the telephone, learn a foreign language, and more. By Howard

Berenbon. 192 pages, 8V2 x11, comb-bound. ISBN 0-672-22355-4. © 1984.

No. 22355 $12.95

MOSTLY BASIC: APPLICATIONS FOR YOUR COMMODORE

64, Book 2
This second collection of Commodore 64 BASIC programs includes dungeons, memory challengers, a

student grader, phone directory, monthly budget, ESP tests, and more. By Howard Berenbon. 264 pages,

8V2 x 11, comb-bound. ISBN 0-672-22356-2. © 1984.

No. 22356 $13.95

COMMODORE 64 GRAPHICS AND SOUNDS
Helps you quickly learn and use the Commodore 64's powerful graphic and sound capabilities in a

number of spectacular routines that add pizzazz to any program. By Tim Knight. 112 pages, 5Vi x 8V2,

softbound. ISBN 0-672-22278-7. © 1984.

No. 22278 $9.95

COMMODORE 64 BASIC PROGRAMS
Generously illustrated collection of thoroughly documented and described, fun-and-practical programs

for the powerful Commodore 64. By Knight and LaBatt.

BOOK: 176 pages, 5Va x 8V2, softbound. ISBN 0-672-22171-3. © 1983.

No. 22171 $9.95

BOOK/TAPE: ISBN 0-672-26171-5.

No. 26171 $16.95

COMMODORE SOFTWARE ENCYCLOPEDIA (3rd Edition)
, : Completely updated, highly comprehensive directory of software and more for the Commodore 64, VIC-

! 20, PET, and other Commodore computers. By Commodore Computer. 896 pages, 8V2 x 11, softbound.

' - ' ISBN 0-672-22091-1. © 1983.

No. 22091 $19.95

~ COMMODORE 64 USER'S GUIDE
' Shows you how to set up, program, and operate your 64 (same book that comes packed with the comput-

I \ er itself). By Commodore Computer. 166 pages, 5% x 8y2, comb-bound. ISBN 0-672-22010-5. © 1982.
No. 22010 $12.95

B

USER'S GUIDE TO MICROCOMPUTER BUZZWORDS
A handy quick-reference for those people who don't care what happens inside a microcomputer, yet find

they must communicate with others who do. Many illustrations. By David H. Dasenbrock. 110 pages, 51/2 x

8V2, softbound. ISBN 0-672-22049-0. © 1983.

No. 22049 $9.95

COMPUTER LANGUAGE REFERENCE GUIDE (2nd Edition)
If you know at least one programming language, this newly updated reference can help you understand

eight more, including C and FORTH. By Harry L. Helms, Jr. 192 pages, SVz x 8V2, softbound. ISBN 0-

672-21823-2. © 1984.

No. 21823 $9.95

USING COMPUTER INFORMATION SERVICES
Shows you how to use your microcomputer to communicate with the national computer networks and

their wide range of services. By Sturtz and Williams. 240 pages, 51/2 x 8V2, softbound. ISBN 0-672-21997-2.

©1983.

No. 21997.. $12.95

ELECTRONICALLY SPEAKING: COMPUTER SPEECH

GENERATION
Teaches you the basics of generating synthetic speech with a microcomputer. Includes techniques, a

synthesizer overview, advice on problems, and more. By John P. Cater, 232 pages, SVt x 8V2, softbound.

ISBN 0-672-21947-6. © 1982.

No. 21947 $14.95

EXPERIMENTS IN ARTIFICIAL INTELLIGENCE FOR SMALL

COMPUTERS
You'll conduct interesting and exciting experiments in artificial intelligence, such as reasoning, creativity,

problem-solving, verbal communication, game playing, and more. By John Krutch. 112 pages, 51/z x 8V2,

softbound. ISBN 0-672-21785-6. © 1981.

No. 21785 $9.95

HOW TO MAINTAIN AND SERVICE YOUR SMALL COMPUTER
Shows you some easy maintenance and operating procedures, plus how to diagnose what's wrong, how

to identify the faulty part, and how to make many simple, money-saving repairs yourself. By John G.

Stephenson and Bob Cahill. 224 pages, 8V2 x11, softbound. ISBN 0-672-22016-4. © 1983.

No. 22016 $17.95

These and other Sams Books and Software products are available

from better retailers worldwide, or directly from Sams. Call 800-

428-SAMS or 317-298-5566 to order, or to get the name of a Sams

retailer near you. Ask for your free Sams Books and Software

Catalog!

Prices good in USA only. Prices and page counts subject to

change without notice.

u

u

u

ti

u

u

n

n

n

n

n

n

n

n

n

n

n

The Blacksburg Group

According to Business Week magazine (Technology July 6,1976) large scale integrated circuits or LSI "chips" are

creating a second industrial revolution that will quickly involve us all. The speed of the developments in this area

is breathtaking and it becomes more and more difficult to keep up with the rapid advances that are being made. It

is also becoming difficult for newcomers to "get on board."

It has been our objective, as the Blacksburg Group, to develop timely and effective educational materials that

will permit students, engineers, scientists, technicians and others to quickly learn how to use new technologies

and electronic techniques. We continue to do this through several means, textbooks, short courses, seminars

and through the development of special electronic devices and training aids.

Our group members make their home in Blacksburg, found in the Appalachian Mountains of southwestern

Virginia. While we didn't actively start our group collaboration until the Spring of 1974, members of our group

have been involved in digital electronics, minicomputers and microcomputers for some time.

Some of our past experiences and on-going efforts include the following:

—The design and development of what is considered to be the first popular hobbyist computer. The Mark-8 was

featured in Radio-Electronics magazine in 1974. We have also designed several 8080-based computers, including

the MMD-1 system. Our most recent computer is an 8085-based computer for educational use, and for use in

small controllers.

—The Blacksburg Continuing Education Series™ covers subjects ranging from basic electronics through micro

computers, operational amplifiers, and active filters. Test experiments and examples have been provided in each

book. We are strong believers in the use of detailed experiments and examples to reinforce basic concepts. This

series originally started as our Bugbook series and many titles are now being translated into Chinese, Japanese,

German and Italian.

—We have pioneered the use of small, self-contained computers in hands-on courses for microcomputer users.

Many of our designs have evolved into commercial products that are marketed by E&L Instruments and PACCOM,

and available from Group Technology, Ltd., Check, VA 24072.

—Our short courses and seminar programs have been presented throughout the world. Programs are offered by

the Blacksburg Group, and by the Virginia Polytechnic Institute Extension Division. Each series of courses pro

vides hands-on experience with real computers and electronic devices. Courses and seminars are provided on a

regular basis, and are also provided for groups, companies and schools at a site of their choosing. We are strong

believers in practical laboratory exercises, so much time is spent working with electronic equipment, computers

and circuits.

Additional information may be obtained from Dr. Chris Titus, the Blacksburg Group, Inc. (703) 951-9030 or from Dr.

Linda Leffel, Virginia Tech Continuing Education Center (703) 961-5241.

Our group members are Mr. David G. Larsen, who is on the faculty of the Department of Chemistry at Virgina

Tech, and Drs. Jon Titus and Chris Titus who work full-time with the Blacksburg Group, all of Blacksburg, VA.

