INCLUDES 50 READY-TO-RUN
EDUCATIONAL PROGRAMS

DAVID H. AHL

The
Commodore 64
ildeabook

Includes 50
Ready-to-Run Programs

David H. Ahl

lllustrations: Wayne Kaneshiro

Creative Computing Press
Morris Plains, New Jersey

Copyright ©1983 by Creative Computing Press

All rights reserved. No portion of this book may be rel?roduced—
mechanically, electronically or by any other means, including photo-
copying—without permission of the publisher.

Library of Congress Number 83-73076
ISBN 0-916688-68-2

Printed in the United States of America
First printing October 1983
10987654321

Creative Computing Press
39 E. Hanover Avenue
Morris Plains, NJ 07950

v

Dedication: To Betsy, for her friendship,
encouragement and understanding.

About the Author

David H. Ahl has a BEE from Cornell University, MBA from Carnegie-
Mellon University and has done further work in educational psychology at
the University of Pittsburgh.

He served in the Army Security Agency, was a consultant with Manage-
ment Science Associates and a senior research fellow with Educational Sys-
tems Research Institute.

In early 1970, he joined Digital Equipment Corporation. As education
product line manager, he formulated the concept of an educational computer
system consisting of hardware, software and courseware and helped guide
DEC into a leading position in the education market.

Mr. Ahl joined AT&T in 1974 as education marketing manager and was
later promoted to manager of marketing communications for the unit later to
become American Bell. Concurrent with this move, he started Creative
Computing as a hobby in late 1974.

As Creative Computing grew, Mr. Ahl left AT&T in 1978 to devote full
time to it. Creative Computing magazine today is Number 1 in software and
applications. In January 1980, Ahl founded SYNC magazine and, over the
years, has acquired or started several other publications.

Mr. Ahl is the author or editor of 16 books and over 150 articles about the
use of computers. He is a frequent lecturer and workshop leader at educa-
tional and professional conferences.

V1

Contents

Preface

1. Drill and Practice

Addition practice

Addition practice, adjusted by grade level
Time/speed/distance problems
Kinematics problems

2, Problem Solving

How many tickets? (Flow Chart)
Drinking and blood pressure
Two simultaneous equations
Quadratic equation solver
Exponential equation solver
Roots of any function

Plot any function

3. Sets and Repetitive Trials

Group of girls and boys
Brown’s books
Intersection of sets
Prime factors

Greatest common divisor
Cryptarithmetic problems
Sailors and monkey
Super Accuracy
Palindromes

4. Convergence and Recursion

Change for a dollar

Change for any amount to $5.00
Converge on e and pi

Converge on pi revisited

Length of any curve

Converge on a square root

vl

IX

—
NO O H W

15

18
20
22
24
26
28

31
32
34
36
38

42
45
48
50

53
54
56
59
62
64
66

5. Compounding 69

Indians and interest 70
Systematic savings 72
Systematic savings revisited 74
Loan payments 76
Interest on credit purchases 78
Population growth 80

6. Probability 82
Pascal’s triangle—calculated 83
Pascal’s triangle—by probability 84
Common birthdays 86
Coins in a pocket 88
Baseball cards 90
System reliability 93

7. Geometry and the Calculus 95
Crossed and slipped ladders 96
Distance between coordinate points 99
Area—by calculation 100
Area—by integration 102

8. Science 105
Gas Volumes 106
Charles’ Law drill 108
Boyle’s Law drill 110
Photoelectric emissions 112
Mutation of moths 114
Projectile motion 116

9. Potpourri 121
Number guessing game 122
Depreciation—three methods 124
Smog simulation 126
Lunar landing simulation 129
Hammurabi land management game 132
References 139

VIII

Preface

Although Charles Babbage laid down several ideas for computing “en-
gines,” the forerunners of today’s computers were largely developed in the
early 40’s as part of the war effort. The Robinson series cryptoanalytic ma-
chines developed in England in 1941 spawned many families of computers
still in use today. The MIT differential analyzer and real-time aircraft simula-
tion project led to the Whirlwind, and eventually to the immensely successful
DEC family of PDP computers (Programmed Data Processors). And, of
course, Eniac built at the University of Pennsylvania, was the guiding light
behind Univac, IBM and many other successful manufacturers.

Many people today poke fun at these early machines and regard them as
dinosaur-like relics. However, it is interesting to consider that a large-scale
computer of about 25 to 30 years ago had about the same amount of power as
a typical personal computer of today. It was generally not as reliable or user-
friendly as a personal computer, and, of course, cost tens of thousands times
as much. Why bring this up?

Because a computer of the 50’s required that the programmer be very
clever and resourceful to solve problems within the capabilities of the com-
puter. He did not have vast gobs of memory available, blinding quick calcula-
tion speed, or random disk access. In other words, he had about the same
problem to face as you do with your personal computer.

I do not mean to imply that your personal computer is not a full-fledged
computer. It certainly is just as much a computer as a room-filling giant of to-
day. However, because of the relatively small memory, it cannot store a large
data base. Nor is it suitable for extensive word processing or massive calcula-
tions. Highly detailed graphics are best left to other machines as well.

What can we learn from the computing pioneers of the 50’s that will help
us today? Perhaps most important is the discipline of thoroughly analyzing a
problem, breaking it down into manageable steps, and solving it a step at a
time. It is also important to determine what can be done “off line” and what
must be done on the computer.

X

That is what this book is all about. While it has more than 50 ready-tc-run
programs, the main thing you should look for from the book is an approach
to solving problems—big and small. Some of the problems demonstrate the
capability of the computer; others identify its shortcomings. It is important to
be familiar with both the strengths and weaknesses of your tools so you can
recognize the types of jobs for which they are suitable (and not suitable).

This book focuses primarily on mathematical and educational applications
for the computer. There are many other excellent sources of information
about other applications and for making best use of your personal computer.
Using the approaches described in this book should enable you to easily con-
vert programs and use applications from other books and magazines such as
Creative Computing.

This book is designed to be read with a working computer at hand. While
there is textual material to be read, the most important things are the experi-
ments and problems to be tried with your own computer. The book raises
many questions for which you should try to find answers. There are no an-
swers to these questions and problems in the back of the book; you should be
able to discover the answers as you work the problems out on your computer.

You will be able to incorporate many of the routines and approaches in the
book into programs of your own as you use your computer to deal with “real
world” problems. Other programs will simply point you in the right direc-
tion. And some of the programs in the book are just plain fun. Learn. Experi-
ment. Have fun!

Morristown, New Jersey
August 1983 David H. Ahl

The
Commodore 64
ildeabook

1

Drill and Practice

Throughout life, there are certain things that simply must be memorized.
Obvious things that fall into this category are the addition and multiplication !
tables, the spelling and meaning of words, how to tell time, and the monetary
system.

However, depending upon one’s chosen profession, there are many other
things to be memorized. A doctor must know what diseases match what
symptoms. A chemist must know the gas laws, the properties of elements and
so on. A pilot must instantaneously know the meaning of readings on scores
of instruments.

To memorize a set of facts, you must go over them again and again and
keep trying different variations. Here is where the computer comes in. It is
able to present randomly scores of different problems to you for as long as
you wish. Some programs will automatically adjust to your level of com-
petence and will grade you; other programs simply present the problems and
leave the grading up to you.

There are four programs in this chapter and two in the Science chapter
which present material in a drill and practice format. Examine the methods
used in these programs and then make up some drill programs of your own
for subjects with which you are having trouble, or make up programs for
other members of your family.

Addition Practice

This program demonstrates a simplified addition drill and practice routine.
This type of drill is sometimes called computer assisted instruction (CAI), al-
though CAI can also apply to tutorial and other approaches as well.

When the program is run, it will first ask “No. of digits?” You enter a
number and each addend will contain that many or fewer digits.

The program will present any number of practice problems that you spec-
ify. The program presents each problem in turn. The program will not pro-
ceed to the next problem until the current one has been answered correctly.
After the last problem is answered correctly, the score is printed with an
appropriate comment.

There are many improvements and extensions possible in a program like
this one. For example, you might want to modify the program so it tells the
user the correct answer after a problem has been answered incorrectly two (or
three) times.

A more complicated modification would be to change the program to
present different kinds of arithmetic problems such as subtraction, multiplica-
tion, and division.

Some of these modifications have been made in the next program.

S Print chré(14)!rem suitch lower case

18 Print chr$(147);"Rddition Practice”

208 inPut "No. of digits"in

30 infut "No. of pProblemsp

42 =@

50 x=w+i

60 9=0

79 a=mint{19M¥rnd{1))+1

80 beint (1@ M¥rnd(1))+1

99 print

10@ print tab(8~int{108¢a)/100¢10)+13);a

110 print £ab(7-1nt{100(h)/ 100410Y+1));"+" ;b
120 pPrint " w—eeeeea "

13@ c=a+b

140 Print tab(7-int(109(2)/100410Y+1));

158 inPute

160 if o=z then 230

172 q=3+4

182 if a>1 then 200

190 w=y+]

2008 Print Print "lhat? Try again.”

228 goto 90

230 Print:Print "Rioht! ";

240 if x>=p then 280

230 Print "Here’s another"

270 sotn 50

2808 Print:Print:Print "You Qot";p-u; "correct the first time."
298 i wl.22% then 320

300 print "And wou missed”;y;

MO end on Practice
320 printiPrint "Sood work!"; end AN

No. of Problems? 3
189
+ 973
T 1162
Right! Here’s another

777

What? Try again,

777
+ 418

Rioht! Here’s another

830
+ 810

Right!

You @ot 2 correct the first time,
And wou missed {

Addition Practice,
Adjusted by Grade Level

One of the major disadvantages with many drill and practice exercises is
that they tend to be either boring or frustrating, depending upon the ability of
the user relative to the level of the material. To compensate for this, a method
is needed which will adjust the difficulty of the problems to the ability of the
user.

Ideally, such a system would weigh the most recent performance most
heavily but would not ignore previous performance. It should allow a user to
advance to more difficult problems than his current mastery level. It should
also continue to give some practice on problems already mastered.

Some commercial software packages approach these goals along traditional
lines, i.e., determine in which type of problems a student should receive prac-
tice by using a complicated computer managed instruction score recording
and adjustment system.

The approach here is more innovative; it uses a single measure for each
type of problem—call it “estimated grade level’—which meets all of the
objectives stated above.

How does it work? The most recent problem presented counts 10% of the
overall score if it was answered correctly and was over the current user grade
level, or if it was answered incorrectly and was under the current user grade
level. Otherwise it is ignored. This may be easier to visualize in the form of a
chart:

Answer
Right Wrong
Higher than Raise student Ignore
grade level grade level
Problem
Lower than Ignore Lower student
grade level grade level

At first glance this might look complex and somewhat goofy, however,
what it really means is that a student is rewarded for doing a problem beyond
his grade level but he is not penalized if he cannot do it. On the other hand he
is penalized if he cannot do a problem lower than his grade level, but is not
rewarded for doing one lower.

Each problem affects the estimated grade level a little bit, with the most
recent problems being weighed the most heavily. If the current grade level of
a student is L and the level of the most recent problem to be averaged in is P,

6

then the averaging formula is simply:
L=9L + .1P

The remaining task before a program can be written is to assign a grade
level to each problem presented. Unfortunately, this will vary depending
upon the local school system, the textbook used, and the teaching method.
Also a huge data base can not be stored in a small computer, so it is desirable
to devise a simple method of determining grade level for different problems.
One straightforward approach is to present problems up to one-half a grade
level over and under where the student currently is. Thus the overall range of
problems for a student at grade level 3.2 would be 2.7 to 3.7.

How do we generate the right problems? Consider one type of skill, vertical
addition. It is normally introduced in the first grade and continues through
Grade 4 (actually 4.9). The simplest problem in this program is 1 + 1 and the
most difficult is 999 + 999. Since learning is not a linear process (it is slow at
first, and then progresses rapidly), an exponential formula can be used. For
example:

Addend = 1.73 x (Grade level)*
or

Grade level = Y Addend/1.73

This means that students at various grade levels will be working with the
following maximum addends:

Grade level Addend
1.0 1
2.0 27
3.0 140
4.0 442
49 997

Now it is a relatively straightforward, although somewhat tedious, matter
to tie all these elements together in a computer program.

A few notes about the program. The variable G2 is the problem grade level
that is always within one-half of a grade level of the current student level, G1.
The complicated mess in Statement 290 produces a moving grade level
average.

The recording of the grade level and carrying it over to the next lesson is a
manual process. On a computer system with a permanent mass storage de-
vice, this would be kept on the system.

There are many possible changes and extensions to this program. For
example it could present different types of problems such as horizontal addi-
tion, vertical and horizontal subtraction, as well as multiplication, division
and fraction problems. '

7

8 orint chr$(i4):rem suitch lower case

18 w=@

28 print chre(147);"Hl, To stoP enter 5999 as answer.”
30 inPut "Grade level";9l

40 92=91-.SMrnd(®

50 reint(2+1,7302104)+1

60 a=int(100M92Mrnd(1))+1

70 if ad>r then 69

88 bar-g .

98 print:Print tab(8-intlo9Cb+lr/109¢102+1))ib
188 Print tab(7-1nt{109¢a+1)/1091@)+12); "+";a
110 Ppint " === N

120 r=a+b

130 Print tab(7-int(los(r)/109¢1@2+10);

140 inPutg

150 if ©w9999 then 320

160 if 9mr then 260

170 wsu+i

180 if w>1 then 210

190 Print:print "Wrong, try asain”

200 9oto 99

210 print:Print "You missed that 2 times. The answer is';r
230 w=@

248 {f 92>91 then 300

250 9oto 299

269 u=0

270 print:print "Correct!";

280 1£92(91 then 300

290 oim, 991+, 1MsAr(sar(r/2/1.73))

300 Print:Print "Here’s another..." Print

310 eoto 40

320 print chr$(147)

330 pPrint "Okay. So long.”

340 sim(int(100W91))/100

3%8 print "New Srade level";sl

Hi. To stoP enter 5955 as ansuer.
Orade level? 4

349 296
+ 73 + 55
? 422 ? 341
Wrong, try again
Correct!
296
280 + 5%
+ 12 memeomeses
---------- ? 351
2 405
Correct!
Correct!
76
208 + 211
1 meeemeee—-
---------- ? 9999
? 377
Okay. So long.
Correct! New Srade level 3.93

“You won't believe this, but Zarg can actually add without a computer.”

9

Time/Speed/Distance Problems

As well as being able to present simple numerical drill and practice prob-
lems, the computer can present word problems for solution as well.

In this program the formula relating time, speed and distance was applied
to a problem involving both a car and train.

The problem can be stated as follows. A car traveling C miles per hour
(computer generates an integer 40 through 65) can make a certain trip in D
hours (computer generates an integer 5 through 20) less than a train traveling
at T mph (computer generates an integer 20 through 39). How long does the
trip take by car? When the two simultaneous equations are solved they pro-
duce the single equation for the answer shown in Line 60.

Notice the calculation in Line 70. This calculates the percent difference be-
tween the actual answer and the one entered by the user.

Notice also that the computer calculates the correct answer in Line 60 and
prints it (on the screen) in Line 130. This answer may have many decimal
places; as the program is written it is rounded off to two decimal places. If the
0.5 was not added in Line 60, the number would be truncated and not
rounded off. This is an important calculation and one which you will find in
many other programs throughout the book.

Consider other problems that can be used as the basis for this kind of drill
and practice exercise. Teachers, for example, might wish to have students
write drill and practice programs on their own. Different problems could be
given to one or a small group of students to serve as the basis for a program.

After the programs are written, students can try out the programs of other
class members. This approach ensures that each student not only understands
the type of problem assigned to him, but also gets practice in solving other
problem types as well. This is an effective technique for stimulating interest as
well as for learning how to solve word problems.

i

N

sl \'-L“,
mast l_ru (@

—

’\«\/‘/\":‘ "\::) -

3 Print chr$(14) rem switch lower case

12 emint(rad(1)%25)+48

20 dmint{rnd(1)¥15)+3

30 twint(rnd(1)#19)+20

35 Print chr$(147);

40 Print "R car at”;ci"mPh makes a triP in";d."hrs
45 Print "than a train at";t;"mph

30 print:input "Car trir hrs";a

68 vmint(.3+100K(Nt/ (c-t)))/100

70 e=int(abs({(v-20%100/2)+.3)

80 pPrint

90 if e>3 then 120

100 print "Good. You were within":e;"Percent.”
112 soto 130

120 print "Sorry. VYou were off by" ei"percent.”
130 print "Correct times";y

140 print:inPut "Another (y,n)";z$

150 1§ z$="y" or 28="Y" then 10

1608 print:print "Okay. So long."

170 end

R car at 33 mPh makes & trip in 5 hrs less
than a train at 23 mbh
Car trif hrs? 4

Bood. VYou were within 4 percent.
Correct time= 3,83

RAnother (y,n)? v

A car at 38 mPh makes & triP in 14 hrs less
than a2 train at 31 mPh

Car trip hrs? 13

Sorry. You were off by 24 percent.
Correct time= 16,07

fAnother (y,n)?7 ¥

A car at 36 mPh makes a trip in 11 hrs less
than a train at 26 mPh

Car trip hrs? 7.2%

Sorry. You were off by 31 percent.
Correct time= 9,33

fAnother (y,n)? n

Okay. So long.

11

less "

B

Kinematics Problems

Kinematics relates to the dynamics of motion of bodies apart from consid-
erations of mass and force. Like many other types of problems, these can be
generated and presented by the computer to provide practice in solving them.

This program presents a simple kinematics problem for solution. The com-
puter generates a new value for each problem. The problem is as follows. A
ball (or any other object) is thrown up at velocity V meters per second (com-
puter generates an integer between 5 and 40). The user must then calculate
three factors about the resulting flight of the ball: maximum height, time until
it returns, and velocity after T seconds (computer generates a time less than
the total flight time).

The key benefit in using a computer to present problems of this type is
motivation. The calculations required of the user are no different than those
in the back of a chapter in a book or those on homework assignments. How-
ever, answering them when they are presented by the computer seems to
make it more of a challenge and, frankly, more fun.

The computer program checks each of your responses to see if it is within
15% of the correct answer. If it is, your answer is considered correct. You
may wish to change this percentage to require more or less accurate calcula-
tions. You may also wish to change the computer calculations to round off to
one or two decimal places.

-2

N N4 ~
AT T
= o

0 &£

5 Print chr$(l4) rem suitch lower
10 9=
20 vuS+int(3TMrnd(1))

case

30 Print chrec147);"Ball is thrown up at";vi'meters/sec”

40 a=.05%v12

50 inPut "What is the maximum height";9

62 sosub 210

78 a=y/S

80 Print:inPut "When will it come
90 sosub 210

100 t=2+int(2Mvirnd{1))/10

110 if £>= /3 then 100

120 a=y-iOmt

138 print:Print "What is velocity
148 inPute

130 sosub 210

162 print:Printq;"right out of 3"
170 if a>1 then Print “Not bad."

down (sec)";9

at';t;"secs”;

180 print:infut "Another (y,n)".z¢

190 if z$="y" or z$="Y" then 10
200 end

210 1f abs((9~a)/a) {.15 then 240
220 Print "Not even close.,.”

230 goto 260

240 print "Pretty 900d."

230 q9mq+y

268 print "Correct ansuer =";a
278 return

Ball is thrown up at 24 meters/sec
What 1s the maximum height? 30
Pretty Qood.

Correct ansuer = 28,8

When will 1t come down (sec)? 5
Pretty 9oo0d.
Correct answer = 4.8

What is velocity at 2.3 secs? 2.3
Not even close...
Correct answer = |

2 right out of 3
Not bad.

Another (y.n)? ¥

Ball is thrown uP at 13 meters/sec
What is the maximum height? 8
Pretty good.

Correct answer = 8,45

When will it come down (sec)? 2.9
Pretty 9ood.

Correct answer = 2.6

What is velocity at 2.3 secs?-9
Pretty @ood.

Correct answer =-10

3 right out of 3
Mot bad.

Another (4,n)? n

13

2

Problem Solving

In many courses in school, the textbooks present a great variety of devices
for solving the problems that have been neatly grouped together at the end of
each chapter. Typically these devices consist of formulae, equations, rules and
theorems. After a careful study of these devices, teachers give exams which
test your ability to recall them.

But what do you do if you are faced with the more realistic situation of not
being told what device is likely to solve which problem or, worse yet, of hav-
ing forgotten how to use a technique altogether? Is all hope lost? Of course
not, although some people seem to believe that it is.

In this chapter, several of these nasty devices mentioned above are pre-
sented. For example, there are devices written into computer programs that
will solve a quadratic or exponential equation and others that will calculate
the roots and draw a plot of any function.

However, you must remember that while these devices are useful in solving
certain problems, the really important thing is to understand the underlying
logic and approach. Then when it comes time to solve real world problems
you will be better prepared to face them. Incidentally, many of the methods
and devices presented in this chapter are used in later chapters to solve other
kinds of problems.

15

How Many Tickets?

Here is a problem. At a school raffle to raise money, the organizers have as
a prize an electronic game for which they paid $18.00. To add interest to the
raffle, the organizers have decided to sell tickets for an amount (in cents)
equal to the number on the ticket for tickets numbered 1 to 50. For ticket
numbers over 50, the price is 25 cents each. The organizers want to know
how many tickets they must sell to exactly break even.

It is probably easiest to visualize a problem of this sort with a flowchart. In
the flowchart, T will equal the total money collected and will increase as
more tickets are sold. The ticket number is N. When T equals or exceeds
$18.00, N will be the answer.

Note that the flowchart has two logical branching points (IF statements in
the program). The first compares the current ticket number to 50; if it is less,
the ticket number is added to the total whereas if it is greater than 50, the
total is increased by 235 cents. '

T=0
FOR N =
{ To 2000
Nes N¢= 507 No
T=T+N T T +25

T>= 1800 TS

PRINT

N,T NEXT N

16

The second branch point compares the total amount collected, T, to $18.00
(actually 1800 cents). If T is equal to or greater than 1800, the break even
point has been reached and the values of N and T are printed (on the screen).

A problem of this kind can be done by hand, however, because of the repet-
itive additions it is quite tedious. Also, doing it by hand frequently leads to an
answer of 72 rather than the correct answer of 71. Try it yourself and see
what you get.

10 t=0

2@ for n={ to 2009

30 if n<=3@ then 60

40 t=t+25

38 goto 70

62 tatn

78 if t>=1800 then 90

80 next n

9@ Print w;"TICKETS SOLD"

108 print "COLLECTED $";t/100

71 TICKETS SOLD
COLLECTED $ 18

Many problems can be solved quickly and correctly with a computer using
logical analysis and a flowchart. More complex problems may have to be bro-
ken down into additional steps and require a longer flowchart, but the ap-
proach is fundamentally the same.

Here are two problems for you to solve.

The diameter of a long-playing record is 12 inches. The unused center has a
diameter of 4 inches and there is a smooth outer edge 122 inch wide around
the recording. If there are 91 grooves to the inch, how far does the needle
move during the actual playing of the recording?

A movie theater charges $2.50 for an adult admission and $1.00 for a child.
At closing, the cashier counted 385 ticket stubs and had $626.50 in cash.
How many children entered?

17

Drinking and High Blood Pressure

This program illustrates how several simple equations can be put in a com-
puter program to solve a more difficult overall problem.

Here is the problem. In a survey of 1000 adults, it was found that 35 had
high blood pressure. Of those with high blood pressure, 80% drink 15 oz. or
more of alcohol per week. Of those without high blood pressure, 60% drink a
similar amount. What percent of drinkers and non-drinkers have high blood
pressure?

This problem requires the solution of several simple equations. They could
all be combined into one large equation, but it may be easier to understand
the approach (and change variables later on) by writing a program with five
separate equations.

If H equals the number of people with high blood pressure, then H = 35
(Line 10). Letting H1 equal the number of people with high blood pressure
who drink leads to H1 = .8 x H (Line 20).

Letting L1 equal the number of people with low blood pressure who drink
yields L1 = .6 x (1000 - H). Then, the total number of drinkers, D = H1 +
L1.

Finally, the percentage of drinkers with high blood pressure is X = Hl x
100 / D.

The program solves the problem in a jiffy. The solution for this type of
problem can be easily written directly in Basic without any need for a flow-
chart or detailed analysis. Recognizing this type of problem readily will save
a great deal of pencil pushing time.

1@ h=33

20 hi= 8%h

30 11=,6%(1208~h)

48 d=hi+ll

56 x=h¥100/d

60 xi=h¥100/1000

78 Print "HIOH BLOOD PRESSURE"
g2 print "POPULATION" x1;"4"
98 print "DRINKERS "ix;"#"

HIGH BLOOD PRESSURE
POPULATION 3.3 %

DRIMKERS S.766@6261 %

18

Here is a problem that doesn’t require a single equation but makes use of
the approaches discussed so far in this chapter. Can you solve it with three
Basic statements?

In early January, a shopkeeper marked down some calendars from $2.00 to
a lower price. He sold his entire stock in one day for $603.77. How many did
he have?

Here’s another easy one. A town in India has a population of 20,000 peo-
ple. Five percent of them are one-legged and half of the others go barefoot.
How many sandals are worn in the town?

Two Simultaneous Equations

So far in this chapter, only problems with linear equations have been
considered. But the computer can be used to solve much more difficult equa-
tions. In fact, it is in problems involving second and third degree equations,
exponentials, and the like where the computer really starts to pay off. Con-
sider the following two simultaneous equations:

2X___1_gx X = 27y

It is not at all easy to solve these two equations by hand. But a simple Basic
program can be written to solve the equations using trial and error. This is
sometimes referred to as a brute force approach because every possible
combination of numbers between an upper and lower limit is tried until a
solution is reached or until the program runs out of values.

5 print "SOLVES TWO SIMULTANEOUS EQUATIONS"
1@ for x=i to 4

1% for x={ to 4

28 for ywi to ¢

30 if 2164y /3 or int(INIO2THY then 60
40 print llx-ll"x' ll’-";,

%58 stop

€0 next v

70 next x

80 print "NO INTEGER SOLUTION"

SOLVES TWO SIMULTANEOUS EQUATIONS
x= 4 ym 3

In this particular case, a solution is reached rather quickly with x = 4 and
y = 3. However, if in the second equation the y coefficient is changed slightly
from 27 to 28, the computer will try 10,000 possible solutions before finally
concluding that no integer solution exists—at least within the range of 0 to
100. Warning: this will run for a very long time.

30 1F21O16M/3 or int(3HO284y then 60

SOLVES TWO SIMULTANEOUS EQUATIONS
NO INTEGER SOLUTION

20

Although the trial and error (brute force) approach is widely used, it is
highly inefficient. In general, a systematic or guided trial and error approach
is preferable to one that simply tries every possible solution. However, for
some problems the simple “try every value” approach may be appropriate. A
comprehensive discussion of trial and error approaches can be found on pp
36-40 of Computers in Mathematics: A Sourcebook of Ideas.)

Three problem solving approaches have been discussed so far. Remember-
ing them, how would you do this problem? A boy and his sister visited a farm
where they saw a pen filled with pigs and chickens. When they returned
home, the boy observed that there were 18 animals in all, and his sister re-
ported that she had counted a total of 50 legs. How many pigs were there in
the pen?

2)
W AN) A

Quadratic Equation Solver

For any values A, B, and C of a first degree quadratic equation (Ax® + Bx
+ C = 0), this program will compute the roots of the equation. The solution
is based on the quadratic theorem which solves for roots with the following
formula:

_ -B£+V/B*H4AC

X
2A

Assuming that A, B, and C are real numbers, the following principles
apply:

1. If B2 - 4AC is positive, then the roots are real and unequal.

2. If B2 - 4AC equals 0, then the roots are real and equal.

3. If B2 - 4AC is negative, then the roots are imaginary and unequal.

The program takes into account all these possibilities and correctly identi-
fies the type of roots along with their values for any set of coefficients.

Is this program useful by itself? Except for solving quadratic equations for
algebra class, probably not. However, as a routine in a larger program to
solve quadratic equations that might be encountered, it could be very useful.

10 print:Print "QURDRATIC SOLVER"

20 infut "A.B.C";a,b.C

30 rshr2~4Kamc

49 if 2{>0 then 60

53 Print "FIRST DEGREE EQUATION":¢oto 139
6@ Print "ROOTS ARE ";

70 if r{@ then 120

83 if rwd then 119

98 Print (~b+sar(r))/2Na; (~b~sarir)d/2Ma
180 goto 150

119 print ~b/2Wa'9oto 1358

120 print "IMRGINARY"

130 print C~b/2Ma);"+";sqr(~r)/2%a; "Hi"
140 Print (-b/2¥a);:"=";sar{-r)/2%s; "Hi"
158 inPut "ANOTHER (Y.N>".a$

160 if as$="y" then 18

170 stof

QURDRATIC SOLVER GURDRATIC SOLVER
A,B,C?71, 2,1 A,B.C? 2,98, 2
ROOTS ARE ~1 ROOTS ARE -2 -8
ANOTHER (Y,N)? V¥ ANOTHER CY.N)? ¥
QURDRATIC SOLYER GUADRATIC SOLVER
A,B.C?7 @, 2, 4 A,B.C? 4,2, 4
FIRST DEGREE EQUARTION ROOTS ARE IMROINARY
ANOTHER (Y,N)? ¥ -4 + 15.4519334 %I

-4 ~ 15,4919334 %1
ANOTHER (Y,N>? N

22

“According to the computer simulation, it should hit the earth in 0.00298 seconds.”

23

Exponential Equation Solver

Another general routine for solving a particular type of equation is this one
to solve for an exponent 1n an exponential equation.

Given the values A, B, m, and n, this program will solve for x in any
exponential equation of the form:

Amx+n — B
For example, the program will solve any of the following problems:
1. 5% = 40
2. 53%X+1 = 7.6
3.17%3 = 8.12
4. 112X = 247

If you were to solve an exponential equation by hand, you would probably
go through the following steps:
5% =40
log 5% = log 40
x log 5 = log 40
x = log 40/log 5
x = 1.6021/.6990 = 2.292
However, in more generalized form, the solution for x is:

log B

X = lOg A
M-(N/M)

The data for the four problems listed above were entered into the four data
Statements (100-130).

The program as it is presented here can be improved in several ways. First,
it always solves the same four equations. How can you generalize it to solve
for other equations? Second, if you were to make use of this routine in an-
other program, you would probably not be able to use a READ statement; how
could you get rid of it?.

24

S print chré(i4) rem sultch lover case

10 Print chr$(147);"Exponential Eduation Solver”
20 print

30 print " A B M N ®"

48 print M- — ——— —— ———

50 read a.b.,mn

62 x={1lo9(h)/loslad)/m=(n/m)

70 x=int(.5+100%x)/100

80 Print a;tab(?);b;tab(14);m;tabl21)in, tab(27)ix
90 SotoS0

100 data 5.40.1.9

110 data 5.7.6.3.1

120 data 17,8,12,1,-8

130 data 11,247,-2.1

Exponential Equation Solver

R B M N X

S 48 1] 2.29
3 7.6 3 1 .@9
17 8.12 | ~3 3.74
i1 247 -2 1 -.6%

25

Roots of Any Function

This program will find the roots of a function, any function! The function
may be linear, quadratic, cubic, trigonometric or any combination as long at
it can be represented in the Basic language. The program as it appeats here
finds the roots between -20 and 20 although you can change these boundaries
in Statement 50.

The method used involves evaluating the function at small incremental
intervals, finding places where the value of the function changes sign and
then, by successive approximations, finding the zero point. This approach
borrows from Newton’s method in the final narrowing down but, unlike
Newton’s method, will not fail to converge in the event one makes an unlucky
first guess.

Before running the program you must first type in your function in state-
ment 30. For example,

DEF FNA (X) = 2+X13+11+X12-31+X-180
DEF FNA (X) = X-4
DEF FNA (X) =SIN(X)-.5

You may have to refer to the Basic manual with your system to see exactly
how a function should be stated.

The routine used in this program is very powerful and could possibly be
used as a subroutine in many other programs.

How can you use this program to help you solve this problem for x?

12 12 ";’12 +,/12 +/12 +.

X

26

% print chre(i4) :rem suitch lower case
19 print chr$(147);"Roots of any function, Define function in line 30"
30 def fnalx)=2mx3+iiux12-314x~-180

40 zi=-200

39 for i=-19.9 to 20

60 1f son(fnaciy)mson(fnali+1)) then 230
70 k=i

60 Jjwi+i

90 if frackd{fnadd) then 130

100 zw=k

110 k=

128 J=z

130 z=(k+))/2

140 1f fnalz)<O then 170

15@ Juz

160 goto 160

170 k=z

160 if abs(fnalz))>.0000%5 then 130

190 zmson(zONintabs(z)%10000+.0%)/10000
200 if zmzi then 230

21@ print "f(";zi")=@"

220 zi=z

230 next i

Roots of any function. Define function in line 39
(-5 =@
£(~4.3 =9
£¢ 4 =0

30 def fnalx)ax~4

Roots of any function. Define function in line 3@
£C 4 =@

def fnalx)sgin(x)-.%

Roots of any function. Define function in line 30

£(-18.3259 =@
£(~16.2313 =@
£(-12.0428 =@
£(~9,9483)=0
£¢-5.7396 =0
£(~3.6651 =@
f¢ 5235 =0

£¢ 2.6179 =0
£¢ 6.8067 =0
£¢ 8.5011)=
£¢ 13,0899 (=2
£¢ 15,1843 =0
£¢ 19.3731 =8

27

Plot Any Function

Here is a nifty program that will produce a plot of any function on the
screen or printer.

Before running this program, you must type in your function in line 200.
Like the previous program, which finds the roots of any function, this one
will plot any function. You must tell the program between what values you
want the function plotted, i.e., a minimum and maximum value of the x co-
ordinate. You also input the x plotting increment you wish.

As it appears here, the program does not allow the user to select the y co-
ordinates; the program plots y values between -30 and 30.

Here are several functions you might want t0 try plotting:

Function X Limits Increment
DEF FNA(X) =2+*X -15 15 1

DEF FNA(X) = 30+SIN(X) -5 5 .25
DEF FNA(X) = X-X*X -5 6 .5
DEF FNA(X) = 30+«EXP(-X*X/100) -30 30 1.5
DEF FNA(X) = X*X-X -5 6 1

DEF FNA(X) = Xt2-X-15

The last function listed is the one plotted in the sample run with the pro-
gram. Exponential functions are a great deal of fun and sometimes lead to
unexpected and interesting results, particularly when combined with trigo-
nometric functions. Experiment! Have fun!

5 printchr$(14) irem suitch lower case

10 Print chr$(147);"Plot any function. Define function in lire 3e."
20 print

308 def fnalx)=x12-13

48 inPut "Initial value of x"ixi

80 inPut "Final value of x";x2

60 infut "val of step”s

70 print tab(19);"Xs";xi

88 for x=x1 to x2 steP -s

98 if aba(x){.00001 then 168

100 y=fnaix)+20

110 if y<40 then 130

120 y=39

130 if ¥>20 then 208

148 print tably); "W tab(28)" "

158 soto 210

168 print "-¥"; for t=i to a6:print "="; imext tippring 4w
170 Print " -20 ~10 -} +10 +20
180 x=x-s

190 soto 210

202 Print £ab(20);" " tably); K"

210 next x

228 print tab(19);"Xe";x2

230 90t0230

Pilot ﬁy function. Define function in -
line .
Initial value of x? B
Final value of x? -6
Val of step? 1 -5
. *
*
%
* :
* :
*
¥ +¥
-28 . =18 -] «ia +20
* :
€ :
%
: *
*
X=-8

Plot gy function. Define function in
line .

Initial value of x? B
inal value of x? -6
al of step? .9

H *
3 *
: *
- *
H 3
*
»*
* .
*
* :
*
» .
4 T |
28 . e e 18 +20
* +
* :
»* H
* :
*
<+
: *
H »
*
: *
X=-6

29

“I'm in the kitchen, dear—using the computer.”

30

3

Sets and Repetitive Trials

For solving relatively simple problems, the computer may not be any help
at all. In fact, it may take more time to write a program to solve a problem
than it would to solve it by hand or with a calculator. This chapter should
help you recognize problems that are suitable for computer solution and
those that are not. ‘

In some problems, you may think that the computer will not be any help.
However, one thing writing a computer program will always do is force you
to reason out the approach to solving the problem logically and precisely. The
computer can’t solve problems unless it is told exactly how to proceed; hence
you must understand a problem completely before you can program it for the
computer.

Several of the sections in this chapter discuss sets of data. While the sets
used in the examples have relatively few elements or values, you should bear
in mind that real world problems often have thousands or millions of pieces
of data and the only practical way to solve problems of this size is with a
computer. For example, consider how you would most efficiently schedule
the shipments on a railroad train leaving Boston with 4000 diverse cargoes
bound for Phoenix and 780 points in between. Now consider that there are
200 freight trains per day leaving Boston. Now add to that the 10,000 other
trains leaving other cities every day that must use the same network of track
and you can see that dealing with real world sets of data is no easy task.

31

Group of Girls and Boys

In the previous chapter we said that there may be some problems for which
brute force trial and error is appropriate. This would be the case if the prob-
lems were relatively small and trying every possible solution would not tie up
a great deal of valuable computer time. Here is a problem involving two lin-
ear equations that lends itself to a trial and error approach.

The problem is as follows: When 15 girls leave a group of boys and girls,
there are two boys for every girl (lucky girls). Next, 45 boys decide to leave;
then there are 5 girls for every boy (lucky boys!). How many girls were there
in the group before anyone left?

Before rushing to the computer, you must recognize that this problem re-
quires the solution of two simultaneous equations. If G equals the original
number of girls and B the original number of boys, then the two equations
are:

(G-15x2 =8B

(B-45)x5=(G-15

5 print chr$(14) :rem suitch lover case

10 =@

20 print" Program is SLOW, be Patient....”
30 for 9=1 to 100

40 for bwi tol00

59 imi+l

60 if 2w(9~15)Ob then 100

70 if SH(b~45>{>(9~15) then 108

80 Print 9:"0irls "ib;"Boys"

90 9oto 130

102 next b

110 next @

120 print "No integer solutiom from @ to 100."
130 print 1;"Trials.”

Prodram is SLOW, be Patient...
48 Oirls 350 Bovs

3950 Trials.

The computer program uses two FOR loops (Statements 30-110 and 40-
100) to try every combination of values for B and G between 1 and 100 until a
solution is found or until the program runs out of values. The variable I
(Statement 50) is a counter which records the number of trials required to
reach a solution.

32

The program is straightforward and finds a solution after 3950 trials. How-
ever, it would have been a simple matter to substitute the value of B from the
first equation in the second one and quickly solve the problem by hand or
with the aid of a calculator. It is important to recognize that if a problem can
easily be solved by other methods, the computer offers little or no advantage.

Try this problem. You may or may not want to use your computer. If Mat-
thew can beat Jeff by one-tenth of a mile in a two-mile race and Jeff can beat
Steven by one-fifth of a mile in a two-mile race, by what distance could Mat-
thew beat Steven in a two-mile race? (Hint: the answer is not 3/10 mile.)

>
e "z

33

Brown’'s Books

The use of a trial and error approach can generally be improved signifi-
cantly if the combinations to be tried can be narrowed down in some way.
The solution to this problem illustrates how the speed of obtaining a solution
can be improved well over 100 fold by combining equations and eliminating
certain solution possibilities.

Here is the problem. Brown sold 48 books at a flea market, some for $3
each, some for $5 each and others for $8. He collected a total of $175. He
remembered having an even number of $5 books. Can you determine how
many of each kind of book he had?

The equations for solution are (letting T equal the number of $3 books, F
the number of $5 books, and E the number of $8 books):

T+F+E =48
3*T + S*F + 8*E = 175

The first program was written simply to try all possible combinations of T,
F, and E from 1 to 48. It yields three solutions for the problem, although the
two solutions with an odd number of $5 books can be eliminated leaving just
the one desired solution.

8 print chrs(14):rem switch lower case"
1@ print "Brown’s Books."

20 print "L~0=N~G run time"

40 print "$3 3 48"

50 for tei to 48

60 for f=i to 48

70 for ewi to 48

80 if (t+f+e){>48 then 110

90 if tHINFASHENSIL?S then 110
100 Print titab(4);f; tab(i@die
110 next ¢

120 next f

Brown’s Books.
L=0~N=-0 run time

$3 45 $8
42 3 5
37 8 3
34 13 1

This program took approximately 22 minutes and 13 seconds to run on the
Commodore 64 computer. A typical minicomputer (PDP-8/¢) could run this
problem in about 7.3 seconds. In either case, this is a long time to tie up the
computer.

34

It is rather easy to combine the two equations into one by solving for T.
The single equation is then:
2*F +5*E = 31
In this equation, the limits can be reduced (from 48 used in the first run)
since F cannot possibly be greater than 31/2 or 15.5 and E cannot be greater
than 31/5 or 6.2. Making the appropriate program modifications leads to the
second program.

28
Se

60 for f=1 to 15

70 for e=i to 6

80 if (fH2+e¥3){D31 then 110
99 tadS~f~¢

138

Brown’s Books.
L~0~N=G run time
£3 £5 48

49 3 5
37 8 3
34 13 1

Using this program produces a dramatic improvement in the time to solu-
tion. On the Commodore 64, the time is approximately 2.5 seconds and on
the PDP-8, about 0.16 seconds.

Since the problem states that F must be even, a final modification which
steps F by two in Statement 20, can be made. This version of the program
takes only 1.25 seconds to run on the Commodore 64 and 0.06 seconds to run
on the PDP-8.

30 Print "F Even”
62 for =2 to 14 step 2

Broun’S Books.

F Even
$3 5 48
37 8 3

Notice the enormous improvement in computing time required for a solu-
tion, over 1000 fold on the Commodore 64 and 100 fold on a PDP-8. Brute
force certainly is inefficient! It is generally worthwhile to think through most
problems, particularly big ones, before rushing to the computer. The com-
puter may be fast, but we just improved its performance by 1000 times by
using a little common sense.

35

Intersection of Sets

Two sets of numbers can be combined to yield a third set by the operation
of intersection. The intersection of two sets A and B is the set that contains all
elements that belong to both A and B. It does not contain any other elements.
The intersection is usually written A N B.

For example if M = < 0,2,4,6 > and K = < 1,2,3,4 >, then M N K =

<24 >.

This program finds the intersection of two sets of numbers. It has been
written to find the intersection of the two repetitive sets described in State-
ments 30 and 40. In the sample run, Statement 30 describes the set

x = < 1,3,5,...19 > and Statement 40 describes the set
y=<258,...29 >.

Notice that successive values of x increase by 2 and y by 3.

10 Print chr$¢14) :rem suitch lower case
20 Print "Sets x, v intersect at points:";
30 for x=i to 19 step 2

40 for ym2 to 29 steP 3

%@ if x=y then 90

60 next ¥

78 next x

80 end

90 print x;

10@ 9oto 78

Sets x, v intersect at points: 3 11 17

However, if the set cannot be so neatly described, it may be desirable to
rewrite the program to examine any set of data. This is done with the READ
statement which reads into x the data points in the DATA statement.The pro-
gram is set up to use the same y set as the first program, but the x set is de-
fined in the data statement.

You should be able to see from the first combination of sets that if there is a
numerical pattern in the sets which intersect, then there is also a pattern in
the resulting intersecting set. In the example, the x values increase by 2 and
the y values by 3, hence the values in the intersecting set increase by2x3 =
6. Although the intersection of these sets could easily be calculated by hand,
the computer can be an aid in evaluating more complicated sets.

36

% print chr$(14) rem suitch lover case
18 Print "Sets x, ¥ intersect at pointe:”;
20 read x

30 for ¥y=2 to 29 ster 3

40 if xmy then 80

5@ next v

60 soto 20

70 end

80 pPrint x;

92 soto 60

100 data 2,3,8.9, 14,195,209, 221.:26.27

Gets x, v intersect at Pointe’ 2 8 14 20 26
20ut of dats error in 20

37

Prime Factors

A prime factor is a positive integer that has no factor except itself and one.
The first ten prime factors (or numbers) are 2, 3, 5, 7, 11, 13,17, 19, 23, and
29. The definition gives the basic method for determining whether a number
is prime: divide by all smaller integers down to 2, testing whether the remain-
der is zero for at least one of them. If not, the number is prime.

But this is highly inefficient. It is obvious that a number is not prime if it is
any even number greater than 2; hence only odd divisors need to be tried.
Also, it is not necessary to try divisors greater than the square root of the
number.

Since the division method is inefficient, various schemes have been devised
to avoid division. The basic idea underlying all such schemes is called the
sieve of Eratosthenes (276 B.C.-195 B.C.). Imagine a list of odd numbers
from 3 up. Strike out every third number after 3, every fifth number after 5,
and so on. This will leave only prime numbers.

% print chr$(i4) rem suitch lower case
10 dim a(108

20 c=@

30 print "Prime Factors”

40 Print "Enter @ to stop”

%3 {nPut "Your number'im

60 if mm@ then stoP

70 n=m

88 x=2

98 if md? then 110

100 Print "Invalid. Again...":ooto 50
110 isl

120 imi+l

130 if 1dm then 190

140 1f m/1Ointim/i) then 120
150 xmx+]

160 a(xO=d

170 mam/1

180 ooto 140

199 if x=1 then 240

200 for 1si to x

210 print aCl);

220 next 1
230 soto 230
240 print n;"is prime."; Prime Factors
260 Print Enter @ to stop
270 soto 30 Your number 103
2680 end 335 7?7
Your wumber 72
2 2 2 33
Your number 362
2 181

Your number 89
89 is Prime.
Your number @

38

The program here finds the prime factors of any integer, or prints out “N is
prime” if the integer has no proper divisors.

Run this program for a large number of different integers and see if you
can discover relationships between numbers and their prime factors. You
should also try to figure out the method employed in the program to find the
prime factors of any integer. To do this, you might want to draw a flowchart
to show what is happening in the program. This will help you see the method
used to find a prime factor and might help you in writing a program to gen-
erate primes.

In writing a program to generate prime factors, you can use the sieve
method. However, as the numbers become very large, you will have to figure
out a way to represent integers with more digits than your computer can han-
dle at one time. (One approach is described on pp. 19-21 of Computers in
Mathematics.)

Goldbach was a mathematician who made a conjecture that every even
number greater than 4 can be written as the sum of two prime numbers (16 =
11 + 5,30 = 17 + 13, etc.). No one has ever proved it but no one has dis-
proved it either. That is why it is called a conjecture. Can you write a pro-
gram that will prove or disprove this conjecture? Or how about writing a
program to prove Goldbach’s conjecture for even numbers up to 50? You
should be able to write this program with 12 or fewer statements.

Here is another problem involving prime numbers. Assume a life span of
80 years. In what year of the 20th century (1900-1999) would a person have
to be born to have the maximum number of birthdays occurring in prime
years? The minimum number?

39

Greatest Common Divisor

The greatest common divisor of a set of numbers is, as its name implies, the
greatest integer that will divide into a set of two or more numbers. For exam-
ple, the set of numbers 12, 20, and 28 have a greatest common divisor of 4.
Nothing larger than 4 will divide evenly into all three numbers.

This program will find the greatest common divisor for any set of integers.
To run it, you simply input the number of integers in your set, type them in
when requested and let the program calculate the GCD. The heart of the
calculation is in Statement 150.

Do you know the meaning of a relatively prime set of numbers? Can you
figure out the meaning from the third sample run of the program or from
runs of your own? How is a set of relatively prime numbers different from a
set of prime factors? Can you find a set of 10 integers that is relatively prime?

8 print chr$(id4) irem suitch louer case Greatest Commen Divisor
168 dim x(3@>
20 Print chr$(14?

30 print "Oreatest Common Divisor” Wumbers in set? 3
35 print Numbers? 12

48 infut "Numbers in set”in 36

59 print "Numbers": 96

60 sw1e25 Numbers OCD is 4
70 for k=i ton Another (4,m)?7 ¥
80 inPut xCkd

90 if xtk)>s then 110 Numbers in set? 3
100 s=x(k) Numbers? 20

110 next k 36

120 o=@ 96

130 for me2 to 3 Numbers OCD is 4
14@ for im1 to n finother (v,™? ¥
150 if x¢12/mOInt(x(i)/md then 1680

168 next i Numbers in set? 3
170 o=m Numbers? 20

180 next m 36

190 print "Numbers "; 97

200 if $>0 then 230 Numbers are relatively prime.
210 print "are relatively prime,"” Rnother (y,n3? n
220 9oto 240

230 print "GCD is":9 Okay. Bye for now.

249 inPut "Another IR AN <
2%9 if zéw"y" or z$e"Y" then 3B
260 print "Okay. DBye for nou. "

In the last section we discussed prime numbers. Here is an interesting chal-
lenge for you involving prime numbers. Until late 1982, the longest pro-
gression of prime numbers in which all differed by the same number was 17.
Prof. Paul Pritchard in the computer science department at Cornell Univer-
sity wrote a program to determine if there was a longer progression. Using a
DEC VAX-11/780, he found the string of 18 numbers shown below. He also
discovered fourteen other 17-number progressions and ten 18-number pro-
gressions, but none yet with 19 numbers. He believes there is at least one; can
you find it?

107928278317 197233324147
117851061187 207156107017
127773844057 217078889887
1137696626927 227001672757
147619409797 236924455627
157542192667 246847238497
167464975537 256770021367
177387758407 266692804237
187310541277 276615587107

41

Cryptarithmetic Problems

Cryptarithmetic or alphametic problems are arithmetic expressions in
which the digits are replaced by letters of the alphabet. Each digit is asso-
ciated with a letter to produce an interesting statement, for example:

SEND
+ MORE
MONEY

If the college student who sent this message to his father needed $106.52
for plane fare home, this was the right message to send since this combination
of letters has one unique solution, in particular:

9567
_+ 1085
10652

However, if the student let things go to the last moment and was in more of

a rush, he might have reworded the message:
WIRE
—+ MORE
MONEY

In this case, how much should his dad send? Earlier in the book, trial and
error approaches to solving problems were discussed. It was noted that the
brute force approach of trying every alternative was sometimes appropriate.
Is it in this case?

No! The number of possible alternative solutions is the factorial of the
number of different letters in the alphametic expression, i.., 8! or 40,320. A
program to try out every one of these possibilities would run for a 1-o-n-g
time.

In this case it is much more efficient to apply some common sense to nar-
row down the number of alternatives. The best approach to this process is to
divide up the search space into large classes (or sets), according to a common
property shared by members of each class, and then attempt to eliminate en-
tire classes by the method of contradiction.

Consider the “WIRE + MORE = MONEY” problem. Can E = 0? Since
E + E = Y, Y must also equal 0, contradicting the fact that Y and E must be
different digits. Thus, the entire class of solutions in which E = 0 can be
ruled out.

Consider E = 3. Now Y = 6 and there is no carry to the next column. So
in this column R + R = Eor E + 10if a carry is involved. But in either case
E must be an even number since 2R is always even; this contradicts the
assumption that E = 3.

By following this type of classificatory contradiction process for each of the

42

digits in the order E, R, I, O and N, the computer program will search out all
possible solutions to the problem. Unlike the “send more money” problem,
the “wire more money” problem has five possible solutions. A smart father
would choose the lowest solution and wire his son $103.48.

S Print chrs$(id) rem suitch lower case
19 Print chre(147)

20 Print "Cryptarithmetic solver...."
3@ print

42 Print ¢ W I R E"
5@ pPrint " +M O R E"
€0 Print "e~mmemm—ee———
70 frint "M O N E Yy
90 Print

100 mmf

110 for e=2 to 9

122 ywete

130 if w>10 then 160

140 ci=

158 9oto 180

160 ci=y

170 y=y-19

1688 for ra@ to 9

199 if rmm or r=e or ray then 480

200 if r+r+ciwe then 230

210 i€ rériclme+i® then 230

220 9oto 480

230 c2=0

249 9oto 260

230 c2=1

260 for im) t0 9

278 if imm or ime or imy or imr then 470

280 for o=@ to 9

290 if omm or ome or owy or osr or o=i then 460

300 n=i+o+c2

310 if nd=1@ then 340

320 3%

330 soto 360

340 c3=f

350 n=n-10

360 if n=m or nwe or nsy or ner or nwi or n=o then 460

370 for w=d to 9

380 1f wem or uwe or wey or wer or wsi or wes or wsn then 459
390 1f o+18usm+cd then 430

408 Print

410 Print " "juiiirie
428 print " + "imioirie
430 Print " ~—~mmmmcece—- i

440 print mioinieiy;
443 Print:print

430 next w

460 next o

470 next i

480 next r

490 next e

300 stor

43

Cryptarithmetic solver....

5 %5 7 4

W 1RE + 10 7 &
+M 0 R E e ——
M ONEVY Lesss
8 7 6 2 5287

+ 106 2 + 1887
;“;"g";"; 1 @8 3 7 4
g 2 7 4 9 3 87
+ 1 87 4 +1 087
1 @ 3 4 8 1 8 6 7 4

There are other approaches to solving cryptarithmetic problems, but all of
them benefit greatly from reducing the search space as much as possible be-
fore putting the problem on the computer. See if you can devise another
successful approach and write a program to implement it.

Here are some problems for you to try.

DONALD
+ GERALD

ROBERT

ABC
X DE

FEC
DEC

HGBC

ONE
TWO
+ FIVE

EIGHT

TWO
x TWO

THREE

THE
EARTH
VENUS

SATURN
+ URANUS

NEPTUNE

FORTY
TEN
+ TEN

SIXTY

ABCDE
X 4

EDCBA

SPRING
RAINS
BRING

+ GREEN

PLAINS

FIVE
-FOUR

ONE
+ ONE

TWO

VIOLIN + VIOLIN + VIOLA + CELLO = QUARTET

THREE + NINE = EIGHT + FOUR

44

Sailors and Monkey Probiem

There are many variations of the sailors and monkey problem. Here is one
of them. -

Five sailors and a monkey were on an island. One evening the sailors
rounded up all the coconuts they could find and put them in a large pile. Be-
ing exhausted from working so hard, they decided to wait and divide them up
equally in the morning. During the night, a sailor awoke and separated the
nuts into five equal piles, but had one nut left over which he gave to the mon-
key. He took one pile, hid it, and pushed the other four together and went
back to sleep. He was followed in this action by the other four sailors, each of
whom did exactly the same thing. Next morning the remaining nuts were di-
vided equally with one remaining nut going to the monkey. What is the small-
est number of coconuts with which they could have begun?

Although there is an elegant algebraic solution to this problem, a more
suitable approach for the computer is that of working backwards. A typical
solution to a problem can be thought of as a path that leads from the given
information to the goal. However, in this case the goal, or final state, is
known, thus it is easier to start there and work backwards to the initial state.

As mentioned at the outset, many sailor and monkey problems exist, in
fact, an infinite number of them: For example, instead of five sailors, there
could be three or six or 14. Thus it is desirable to devise a general solution in-
stead of just one to solve one specific problem.

In the flowchart and computer program, S is the number of sailors and A is
the number of coconuts that each sailor received in the final division of the
pile. Since one coconut was given to the monkey at each division, the total
number of coconuts left in the morning must be S x A + 1. But this pile came
from pushing together S - 1 equal piles. Thus, the key condition that must
hold for (S x A + 1) / (S - 1) to be an integer K, which represents the num-
ber of coconuts that the last sailor stole from a pile of S x K + 1 coconuts.
But this pile is the result of pushing together S - 1 equal piles by the previous
thief, so again (S x K + 1) / (S - 1) is an integer and so on back through all S
raids on the pile.

Note in the flowchart (and program) that the first trial value for A is 1
(Statement 40). In Statement 80 this value is increased by 1 until the value of
(SxK + 1)/ (S - 1) is an integer as tested for in Statement 70. This process is
then continued until the counter for the second loop, N (nighttime pile di-
visions) equals the number of sailors.

Although the program will work tor any number of sailors, it takes a fairly
long time to run for more than five. Remembering what you have learned ear-
lier in this chapter, can you devise a way to make the program more efficient?

45

INPUT

A=l

k= A
N=O

Looe

No

Yes

NeN+1\

SR+l
K'-g:r-

Yes

Loof

Mo | A=A+l

PRINT
S,S*k+{, A

46

5 print chr$(14) rem suitch lower case

10 Print chr$(14?)

20 Print "Sailors & Monkey"

3@ inPut "No. sailors”;s

42 a={

50 kea

60 n=Q

70 1f (sWk+1)/(s=1)mint(CsMk+1)/(s~1)) then 180
62 awp+i

98 Soto 50

180 nsn+{

110 kmlgiic+1)>/{s~1)

120 if nwg then 140

130 oto 70

140 print "Coconuts =";slk+1

138 print "In the morning, each sailor Sets"ia;

Sailors & Monkey

No. sailors? 3

Coconuts » 79

In the morning, each sailor Sets 7

Sailors & Monkey
No. sailors? 5

Coconuts = 13621

c(‘V\ /15.,\\\ in the morning, each sailor Sets 1023
-

Super Accuracy

Under normal circumstances, your computer performs computations to six
or seven digits of accuracy. Double precision computations increase accuracy
to 13 digits or so.

However, it is possible to do computations one digit at a time and assign
each digit to an element in an array. This will achieve virtually any desired
accuracy. Any, up to the maximum array size that is.

This example program performs the rather simple operation of successively
doubling a number (which is the same as raising 2 to a power).

If the number to be represented is 8192, then:

A®4) A(3) AQ2) A(l)
8 1 9 2

To add this to itself, first the rightmost digits are added: A(l) + AQD).

If there is a carry, the variable C is set equal to 1, otherwise C is 0. The total
is put into B in Line 100.

If B is less than 10, there is no carry (C=0) and the new A(1) equals B. If
B is greater than 10 there is a carry (C= 1) and the new A(1) equals B-10.

This operation is continued for all the digits (D) of the number and, when
it is finished, the new number is printed in Lines 190-210.

If A(N) is printed followed by a semicolon(;) for tight packing, the Basic
print routine would leave a space in front of each digit (for the sign) and a
space after each digit (for readability). In the program here, these spaces are
not wanted, hence the print routine in Line 200 is used which prints the string
value of the ASCII value of each digit (which is the same as the digit itself)
but without the spaces. .

This program, incidentally solves the challenge to calculate the number of
moves in the Towers of Brahma problem (see “Change for Any Amount to
$5.00). The approach is also used in the next section, “Palindromes.”

48

3 Print chr$(14):ren switch lower case
10 Print “ComPutes 2 £to Nth to any accuracy”:print
20 dim 2¢(100)

30 m=Q:c=@

49 d=@ -

30 for imi to 30:ali)=@:next {
68 a(i)ag

70 i=Q:cm@

688 mam+{

90 imi+i

180 bwalid+alid+c

119 if b{1@ then c=@:g9oto 140
120 b=b-10

130 c=y

140 &(i)mb

190 if iC¢d then 5@

160 if c=1 then 959

17@ print m;

160 d=i

198 for nwi to 1 step ~i

200 Print chré$dain)+48);

210 next n

220 print

230 9oto 70

ComPutes 2 to Nth to any accuracy

1 2 34 17179869184

2 4 35 343597383468

38 36 68719476736

4 16 37 137438953472

5 32 I8 274877906944

6 64 39 549735813886

7 128 80 1099511627776

8 256 41 2199023255552

? 512 42 4398046511104

10 1024 43 8796093022208

11 2048 44 17592186044416

12 4096 4% 35184372088832

13 8192 46 70368744177664

14 16384 47 1407374883553260

15 32768 48 281474974710636

16 65538 49 S62949953421312

17 131072 50 1125899906842624

18 262144 51 22517998134685248

19 524288 52 4503599627370496

20 1048576 53 9007199254740992

21 2097152 54 180143985094819684
22 4194304 S5 346028797018963948
23 8388608 36 72057594037927936
24 16777216 87 1441151880738556872
25 33554432 58 288230376151711744
24 67108864 39 57644607352303423488
27 134217728 60 11529213046068446976
28 268435456 &1 230384300921 346939%52
29 334870912 62 46114686018427387904
30 1073741824 &3 92233720346854773808
31 2147483648 64 184446744073709551616
32 4294967296 &5 34893488147419103232
33 8389934592 b6 73786976294838206464

49

Palindromes

A palindrome is a word, verse, or number that reads the same backwards
or forwards. For example, the words “mom” and “eye” are palindromes. So
are each of the lines in this verse:

Egad, a base life defiles a bad age

Doom an evil deed, liven a mood

Harass sensuousness, Sarah

Golf; No, sir, prefer prison-flog

Ban campus motto, “Bottoms up, MacNab”

Numeric palindromes are those numbers which read the same backward as
forward. The examination of these numbers is a field rich with possibilities
for creative computing.

One conjecture concerning palindromes raises an interesting unanswered
question. Begin with any positive integer. If it is not a palindrome, reverse its
digits and add the two numbers. If the sum is not a palindrome, treat it as the
original number and continue. The process stops when a palindrome is ob-
tained. For example, beginning with 78:

78
+ 87

165
+561

726
+ 627

1353
+3531

4384

The conjecture, often assumed true, is that this process will always lead to
a palindrome. And indeed that is just what usually happens. Most numbers
less than 10,000 will produce a palindrome in less than 24 additions. But
there is a real thorn in the side of this conjecture, the number 196. Can you
determine if a palindrome will ever be produced with a starting number of
196?

The number 196 will produce 1675 after two reversals, but after 100 rever-
sals the resultant sum has 47 digits and is still not palindromic. Why mention
1675? Because ten other numbers under 1000 will also lead to the sum of
1675 and thus may not become palindromic. The first five of these numbers
are 196, 295, 394, 493, and 592. What are the other five?

50

The program here will accept any number as a starting value and complete
the process of adding the successive reversals and testing if the sum is a palin-
drome. Try it with some numbers and see if you can identify any patterns.

S erint chr8(14) rem switch lower case
i@ brtnt "Tests conlecture that adding reversed digits will Produce a Palindroma

20 print

30 dim b(5®)

48 pPrint

%0 inPut "Enter number"a

60 e=@

70 eme+]

80 a=a/10

92 1€ intCa)d@ then 70

180 for cme to | step -1

110 swani@

120 blciwint(a-10Kintla/10))
130 next c

140 d=@

15@ for cmi to int(e/2)

160 if b(c)mb(e+i~c) then 160
170 dmi

160 next c

190 for cwe to 1 step ~i

200 print chr$lblc)+48);

218 next ¢

220 if d=i then 260

238 Print " Palindrome!"

230 Qoto 4@

260 Print " Not wet"

270 if e/2{=int(e/2) then 290

280 blint(e/2)+1)w2hb(int(e/2)+1)
290 for cwi to intle/2)

300 blc)sbl{c)+ble+l~c)

310 next ¢

320 for c=i to int(e/2)

330 ble+i-ciuplc)

340 next ¢

350 ble+l)=@

360 for c=l to e

370 blc+i)mblc+1d+intlb(c)/10)

380 blcimb(c)~10Mint(b(c)/10)

3990 next ¢

400 if ble+1){(=B then 140

410 eme+]

420 9oto 140

Tests conlecture that adding reversed digits will Produce a Palindrome

Enter Number 19
19 Not yet
118 Not yet
121 Palindrome!

51

Enter Number 96

96 ot vet
165 Not wet
726 HNot set

1353 Not wet
4884 Palindrome!

Enter Number 196
196 Not vet

887 Not wet
1675 Not vet
7436 Not vet
13783 Not vet
%2%14 Not vet
94039 Not vet
197088 Not vet
1967869 Not vet
1075%47@ Not wvet
168211171 Not yet

Using this method, write a program that examines all the integers between
1 and 10,000 excluding those that sum to 1675 at any point. What does this
show? By the way, you will have to devise a way to deal with 14-digit integers
which are larger than your computer can normally handle.

Huh? Is this program “too hot to hoot?”

4

Convergence and Recursion

The computer is especially suitable for doing repetitive and tedious calcula-
tions. Two mathematical approaches for solving problems that involve repet-
itive calculations are convergence and recursion.

Some problems can be reasonably easily stated in words or described with a
few simple equations but there are many possible solutions. For example, how
many ways can you make change for a dime? It is simply stated and the num-
ber of ways can be enumerated fairly easily: two nickels, one nickel and five
pennies, or ten pennies, three ways in all. But if you want to solve for all the
ways of making change for a dollar or five dollars, it would be nice to have
some help.

Help on this kind of problem comes from a class of computer program that
simply breaks the problem into smaller ones and counts up all the alternative
solutions according to a set of rules. But an even more powerful technique is
known as recursion. Using this technique, a simple solving algorithm or rou-
tine is set up to solve the smallest subset of the problem. The unique power in
a recursive routine comes from the ability of the routine actuallly being able
to call itself. This is discussed further in the second program in this section.

Another approach for solving problems that do not have an exact answer is
that of successive approximations. For example, the exact value of pi, e or the
length of an irregular curve cannot be precisely determined. But by means of
increasingly accurate approximations, it is possible to approach the desired
value from above or below or to converge on it from two directions. The last
four programs in this chapter illustrate successive approximations and
convergence.

53

Change For a Dollar

Even though there is very little you can buy for a penny these days, the
coin will probably be around for some time to come since it is needed to make
change for odd amounts of sales tax and to fill up penny collections.

Today U.S. coinage consists of five coins: penny, nickel, dime, quarter, and
half dollar. How many ways can coins of these denominations be used to
make change for one dollar? For example, one way is two half dollars, an-
other is one half dollar and two quarters, and so on. Make a best guess now
and write it down before you read further.

There are several different ways to approach a problem of this kind. One is
to break it down into smaller, nore easily solved problems. In other words,
how many ways can you make change for a quarter? For a dime? You would
solve these subproblems and combine the answers to give the overall solution.

If you were more mathematically inclined, you could write a series of equa-
tions relating each piece of change to every other one and to the dollar and
solve them.

A third approach is to do the problem by writing down combinations until
all the different possibilities are exhausted (or until you are exhausted) and
then count them all up. This might be called solving the problem by exhaus-
tion and is a method quite suitable for putting on the computer.

Write a program that uses this approach to solve the problem. If you use
loops and count by one, it could take a long time for the computer to run
through all the possible combinations, possibly many hours. :

Also, if you want to print out all the possible combinations, be warned that
the printing could also take quite some time and a fair amount of paper.
There are more combinations than you might think!

In fact, most people will not be able to guess the answer to this problem, or
even come close. Ask several of your friends how many ways they think a
dollar can be changed. Record all the responses and then tabulate them on
your computer. What is the mean (average) of all the guesses? The extremes?

The program included here uses the first method discussed to solve the
problem, in particular, breaking down the problem into subproblems and
then combining the solutions into one final answer.

First, the main problem is broken into the next smaller one of making
change for half dollars. There are three such problems: no half dollars (H =
0), one half dollar (H = 1), and two half dollars (H = 2). The last probiem is
trivial since there is only one way, but the other two need to be broken down
further.

This is done by dividing the remaining money into quarters and consid-
ering the subproblems on down to the lower denominations. As the number
of subproblems is expanded, each one becomes easier to solve. In fact,

54

subgoals, which can be solved in only one way, are finally reached. For exam-
ple,if H=1,Q = 1,D = 2,and N = 0, then the pennies (P) must equal
five in order that the total equal 100.

Notice that at the quarter, dime and nickel stages, adjustments are made in
the limits of the loops depending upon how much money there is left to
change. For example, if H = 1, the only possible subgoals for quarters are o,
1, and 2, but not 3 or 4. Also notice that there is no need to test combinations
of coins to see if they add up to 100, nor is it necessary to include the penny
as a variable. Simply counting the number of subgoals is sufficient since each
one can be solved in only one way.

S print chr$(i14) rem suitch lower case
10 c=0@

28 for he@ to 2

38 for 9m8 to 4-24h

40 for d=@ to 18-5kh~2.3%9

58 for n=@ to 20-12¥h-5Mq-2md

60 cmc+]

78 next n

80 next d

90 next ¢

180 next h

110 Print "R dollar can be changed in";ci"different vays."

A dollar can be changed in 292 different wavs.

Try to make some changes in this program or write a new one to solve the
fqllowing problems. Say you want two quarters in your change to play some
video games. In how many ways can a dollar be changed to provide at least
two quarters?

Visiting a small town, you find the parking meters still take pennies. In
how many ways might you get change so that you had at least three pennies?
Is this any different than the number of ways that would give you five pen-
nies? Say you want to make a phone call also; in how many ways can you
change a dollar to produce at least four pennies and one dime?

55

Change For Any Amount to $5.00

Another way to attack the change problem in the previous section is by
means of the programming technique called recursion. Get familiar with this
one—it is very powerful! Donald Piele and Larry Wood described this
method in an issue of Creative Computing.

First, define the variables which represent the number of ways to make
change for n cents using the coins specified:

A Only pennies

B Nickels and pennies

C Dimes, nickels, and pennies

D Quarters, dimes, nickels, and pennies

E Halves, quarters, dimes, nickels, and pennies. 4

Initially, there are two subproblems in making change for n cents. In the
first, no half dollars are used, and D is the number of ways to change n cents.
Second, when one or more halves are used, after one is paid, there remain
n-50 cents to pay which can be done in E,_so ways.

Since these two cases are mutually exclusive, it can be inferred that E, =
D, + E,_so. Similarly,

D, = Ca + Dnoas
C. = B, + Co0
B, = A, + By

Now, begin with the simplest case and build up to Eigo. First of all, it is
casy to understand why E; = 1. From above, when n = 50, E,, = Do t
E,, and it is possible to make change for 50 cents only one more way if half
dollars are allowed. Therefore E, = 1. Likewise, D, = C, = B, =A, = 1.
It is also true that A, = 1 for all values of n since there is only one way to
make change using only pennies. Now the recursive relationships can be used
to solve the original problem.

This is the strategy used in the program. It also has the added advantage
that it can count the number of ways of making change (with coins) for any
specified amount.

Now it is your turn. Can you modify the program here to include dollar
bills so it could count the number of ways to make change for any amount up
to $10.00?

Using any method of change making you prefer, write a program to make
change for one ruble. Russian coins come in denominations of 1, 2, 3, 5, 10,
15, 20, 50, and 100 kopecks. There are 100 kopecks in one ruble.

56

S print chr$(14):rem suitch louer cCise
10 dim aC181);b(101),c¢101),d(101),e(101)
13 print

20 inPut "Amount to be chanded".x

38 meint(20Mx)+1

40 a1d=1:pC1)ml c(i)n] d(1)n] e(1)n]
90 for Je2 tom

60 a(l)mi

70 bCJ)ma())+bti~1)

80 cCirsh(y)

90 1f J(=2 then {10

100 c(iI=sb(id+e(i-2)

110 d(J)ecl)?

120 if J¢=S then 140

130 dC¢J)mel)r+d(i-%)

148 eCi)=d(y)

15@ 1f J¢=1@ then 170

160 e¢J)=d())+e()-10)

170 next J

180 pPrint "You can make change in" el(m);"wavs."
190 soto 1S

Amount to be changed? 1.13
You can make chande in 384 wavs.

Amount to be chanded? 4.23
You can make chan9e in 32983 ways.

Amount to be changed? .1
You can make chanse in 4 wavs.

Amount to be changed? .12
You can make chanSe in 4 ways.

57

Perhaps the most famous problem used to demonstrate the principles of
recursion is the Towers of Brahma. It is sometimes called the Towers of Ha-
noi or Pharoah’s Needles. Here is the problem in as close to original form as
possible. You should be able to solve it with a relatively short program using
recursion.

In the great temple at Benares beneath the dome which marks the center of
the world rests a brass plate in which are fixed three diamond needles, each a
cubit high and as thick as the body of a bee. On one of these needles, at the
Creation, God placed 64 discs of pure gold, the largest disc resting on the
brass plate and the others getting smaller and smaller up to the top one. This
is the Tower of Brahma.

Day and night unceasingly, the priests transfer the discs from one needle to
another, according to the fixed and immutable laws of Brahma. These laws
require that the priest on duty must not move more than one disc at a time
and that he must place this disc on a needle so there is no smaller disc below
it. When the 64 discs shall have been thus transferred from the needle which,
at the Creation, God placed them, to one of the other needles; tower, temple,
and Brahmans alike will crumble into dust, and with a thunderclap, the
world will vanish.

If the priests were to effect one transfer every second, and work 24 hours
per day for each day of the year, it would take them 58,454,204,609 decades
plus slightly more than six years to perform the feat, assuming they never
made a mistake—for one small slip would undo all the work.

How many transfers are required to fulfill the prophecy? Try out your pro-
gram with fewer discs than 64 to make sure you are on the right track. Here
is a table of the first few transfers:

Discs Moves Discs Moves
1 1 6 63
2 3 7 127
3 7 8 255
4 15 9 511
5 31 10 1023

58

Converge on e and Pi

An incredibly important mathematical constant is designated by the small
letter e. This constant is both irrational and transcendental. Look up those
terms in a dictionary or math book if you wish, or just plunge on to the next
paragraph.

The constant e was first derived by John Napier, also the inventor of loga-
rithms, to whom we owe an eternal debt of gratitude. Why? If e had never
been discovered, advances in mathematics, physics, and astronomy would
have lagged a century or more, because ¢ is the base of all natural logarithms
and these logarithms are the basis for many branches of science and
mathematics.

How is e calculated? The constant e is the limiting value of this expression
as n approaches infinity:

e = (1+Yn)h

Its exact value can never be found, but to 15 places e equals
2.718281828459045 . . . How can e be calculated? First take 1-'/, and square
it; that equals 2-Y/,. Then cube 1-%/; and you get 2.3686. Raising 1-)/, to the
fourth power gives 2.414, and so on. Write a program for this method and
have it print out the initial value of e and each value after each additional
fraction is added on.

Another approach is to expand the expression above using the binominal
theorem and, again, letting n approach infinity. The expression for the expan-
~ sion is: 1

1 1 1 1
e=1+1+5+5+atsa

Now here is where the computer can again be of some assistance. Since 3! is
3*2! and 4! is 4*3!, all the calculations need not be done for each additional
fraction. Look at the program and particularly note the calculations in State-
ments 70 and 90.

S print chr$(i4) rem suitch lover case Converse on ¢
10 Print "Converse on e 2
20 e=i 2.5
30 i=0 2.66666667
40 imi+] 2.70833334
50 d={ 2.71666667
60 forj=i to 1 2.7168053%6
78 dwdi) 2.71625397
8@ next J 2.71827877
90 eme+i/d 2.71828153
100 print e 2.7182818
110 Soto 40 2.71828183
2.71828183
2.71828183

2.718208183
59 2.71820183

Pi is another important mathematical constant that is irrational (meaning
its exact value can never be determined) and transcendental (meaning it is not
the solution to any algebraic equation). Interestingly, pi was known and used
by the ancients. Archimedes, who lived in the second century B.C., by using a
regular polygon of 96 sides (nearly a circle), proved that the value of pi was
less than 22/7 and greater than 3-'%,, a remarkable achievement for the
mathematics of his day.

Ptolemy in 150 A.D. used the value of 3.1416 for pi and in the middle of
the sixteenth century the amazing fraction 355/ 113 was discovered, giving
the value of pi accurately to six decimal places.

Incidentally, in 1897, the General Assembly of Indiana passed a bill ruling
that the value of pi was four.

Several infinite series can be used to grind out increasingly accurate values
for pi. One such series is (1-'3 + s - 1, + Y, ...). This series is called an
arithmetic series and converges very slowly. The program here displays only
every 500th value of the series. Don’t be alarmed if the program does not
seem to be running very fast; a fair amount of calculating is going on between
each value that is printed.

% print chr$(14):rem switch louer case
10 print chr$(i4?)

20 print "Converse on Pi Arithmetic series”;
30 s=i

490 i=]

%50 9=0

60 p=@

70 q=q+i

80 p=p+s/i

90 imi+2

100 s=-s

110 if 9<499 then 70

120 9=0

130 print:Print Pi4;

148 9oto 79

Converse on P1 Arithmetic series
3.143%9667

3.14059066
3. 14226067
3.14109167
3.14199346
3.14125867
3,14187896
3.14134218
3.14181534
3.14139227
3.14177483
3.14142368

Actually, the approach used by Archimedes converges much more quickly
and, with the aid of a computer, it is possible to go far beyond the 96-sided
polygon used by Archimedes.

His approach was to construct inscribed and circumscribed polygons and
measure the perimeters to approximate the circumference of a circle. Con-
sider a polygon circumscribed around a circle of radius 1. The perimeter
equals the length of one side times the number of sides. Since the tangent of x
= AB/BC, but BC = 1, then tan (x) = AB and the length of a side = 2 tan
(x). Since the circumference = 2 pir and r = 1, then pi is the circumference
(or perimeter of an n-sided polygon) divided by 2.

Similar trigonometry leads to the perimeter of an inscribed polygon being
equal to the number of sides times sin (x) * cos (x).

The second program produces values for pi using inscribed and circum-
scribed polygons. Unfortunately, there is one large flaw in the program, be-
cause degrees must be converted into radians in Statement 40. This means, of
course, that you must already know the value of pi, since the conversion fac-
tor is 360 degrees divided by 2 pi.

Setting this flaw aside, it is interesting to note how quickly this program
converges on the value of pi compared to the preceding one. That is because
this one converges geometrically rather than arithmetically.

Can you figure out a geometric convergence to the value of pi that does not
require that you know it (or a conversion factor) before you start?

S Print chr$(14) rem suitch lower case
12 Print "Converse on P1 by FolySons.”:Print
13 print" Inscribed Circumscribed” :Print
20 nw§

30 n=2in

48 x=360/(nS7, 29578)

38 Print nisin(x)¥cos(x)/2;
60 Print tab(13); mktan(x)/2

Converse on Pi by Polugons.

Inscribed Circumscribed
70 soto 39
2.59808762 3.464102158
2.99999998 3.21539028
3.103828%51 3. 13963992
3. 13262839 3.14600615
3.13935018 3.14271458
3.14103193 3.14187303
3. 14145243 3.14166272

61

Convergence on Pi Revisited

In answer to the question posed in the last paragraph of the preceding sec-
tion, here is a way to converge on pi without knowing its value beforehand.

As in the previous program, the basic approach is to add up the length of
the sides on an inscribed polygon and divide by 2r to obtain a value for pi.
The program starts with a square (four sides) and doubles the number of sides
each time. If the old side length is S, then the length of S’ of a side of a new
polygon with twice as many sides is obtained by applying the Pythagorean
theorem. In particular,

X2 + (S/2)% = R?

(R-X)? + (8722 = (8)
s =V (R-VRZ- (5/2°F + (/27

It is easy to reduce this formula algebraically, but accuracy suffers if this is
done. Also, you will find that S*S is slightly more accurate than St2.

Unfortunately, striving for maximum accuracy is somewhat moot on a
computer that does not have double precision arithmetic. Notice that ac-
curacy does not improve with more than 1024 sides and, indeed, as numbers
in the calculations start to exceed the capacity of the computer (4194304
sides), the accuracy starts to deteriorate badly.

There is yet another method to compute pi by convergence. It uses discov-
eries of Gregory and Euler. Gregory discovered the formula for arctangent:
Arctan x = x - x3/3 + x8/5-x"/7 + ...

Euler came up with a rather interesting formula for pi:
pi = 4 (arctan (%) + arctan (')
See if you can combine these two formulas to calculate pi. If you are very
clever, you can do your calculation to yield far more than the seven decimal
place accuracy obtained by the programs presented here so far.

Thus,

Center R
of Circle

3 Print chr$(id):rem suitch lower case
10 Print "Converse on Pi by inscribed Polvgons”
20 Print "Sides Perineter"

30 r=10

40 zw2

350 nez+z

60 swrigar(z)

7@ for k=1 to 28

88 Print nitab(10); (s¥n)/C2Mr)

90 ymsis/(zHz)

182 xmr~gar(rir~y)

11Q s=sar(ix+y)

128 n=vmz

130 next k

Converse on Pi by inscribed polydons

Sides Perimeter
4 2.82842713
8 3.06146746
16 3.12144513
32 3.13654849
64 3.14033116
128 3.14127725
236 3.1413138
512 3.14157294
1924 3.14138773
2048 3.14139142
4096 3, 14139233
8192 3.14159258
16384 3.14139264

63

Length of Any Curve

The previous programs have demonstrated how it is possible to compute a
very accurate value of pi by adding together the length of the sides of a poly-
gon as it approaches a circle and dividing by 2r.

Using a similar approach, it should be possible to inscribe a polygon, or
portions of a polygon, inside any regular curve and thus determine the length
of the curve. This program approximates the length of any curve as defined in
Statement 100 by dividing it into an increasing number of subintervals and
computing the sum of the secants (a straight line that cuts a curve at two or
more points).

To run the program, you must enter the formula or equation describing
your curve in Statement 100 in the form:

100 DEF FNA(X) = your function of X

You then type RUN and enter the end points of the curve you want to use
in your calculation. These points are entered in the form of the abscissa,
which means the horizontal (or y) coordinate of the point.

The program is written to sum the successive secant lengths and to cal-
culate the percent of change in each summation compared to the preceding
one. The sample run uses the function 2x* + 3x* -2x +3. Note the substan-
tial improvements in the length calculation as the number of intervals in-
creases from 2 to 16, but the rather slight improvements beyond 16.

Try this program with different curves and functions. It might help to plot
the function first (remember the program to do that?) and then compute its
length. Is this method of length calculation more accurate for a function with
no changes in direction of the curve within the interval selected or for a func-
tion with one or more changes? Why?

3 Print chré(14):rem switch lower case
18 print chr$(147)

20 Print "Curve length.,”

30 Print "Define function in line 189"
48 print

30 Print

60 inPut "Rbscissas of end Points";P.9
78 Print

80 print "Inter Secant % change”
83 print "Vals Lensth in length"
90 Print

93 s1=9

100 def falx)a2ix13+3Kx12-20x+3

110 for n=! to 9 '

128 e=21(n~1)

138 h=(9-p)/e

140 s=0

150 for i=@ to e-1

160 1msar((fnacp+idh+h)~fna(p+inh)) 12+hih)
170 s=s+l

188 next i

190 if 3150 then 220

202 Print e ;tab(%);s;" No Previous value"
210 Soto 240 -

220 pIm((abs(si-2)) 81100

230 pPrint e;tab(3);s;tab(?);P3

240 siag

230 next n

Curve lenSth.
Define function in line 100

Abscissas of end Points? -1 . 6

Inter Secant % change
Vals Len9th in length

1 325.046666 No Previous value
2 323, 138263 0212346484

4 529.632248 . 855739211

8 331.017134 257694732

16 531.964256 . 178360033

32 332. 0216366 9.83336535¢-03
64 $32.041679 4,72022717e-03
128 532,048%62 1,29376759¢-03

65

Converge on a Square Root

Since most square roots are irrational, methods used to calculate them usu-
ally involve successive approximations. Although you can simply call up the
square root function in Basic or on many pocket calculators, it is interesting
to explore various methods of calculating square roots without these built-in
functions. After all, these built-in functions are nothing more than successive
approximation routines already installed in the machine.

Goviously, a square root is the inverse of the operation of squaring a num-
ber. All of the methods of calculating square roots use this fact, but the way
in which it is employed is quite different in various calculators and
computers.

The program here calculates an upper and lower limit for the square root
of a number and, by successive approximations, pinches the root to within a
smaller and smaller interval until it reaches the desired level of accuracy.

The starting value for the lower limit is 0 and for the upper limit the num-
ber, Z, whose square root is sought. The program then divides this interval
into ten steps by simply dividing the difference between the numbers by 10.
The variable 1 is increased from the lower limit to the upper one by the value
of the step, S. At any point, if I squared becomes greater than Z, a new upper
limit is set to I and a new lower limit is set to I - S.

This method converges very quickly and adds approximately one decimal
place of accuracy with each pass beyond the third. What happens when you
enter into the program a number that has an exact square root such as 25 or .
49? Why?

Another approach to calculating square roots by successive approxima-
tions is to start with a trial root, X. If X * X is less than the original number
N, then increase the trial value by a 0.1. If X * X is greater than N, return to
the previous value. This is the first digit of the root. Now, start advancing by
0.01. Continuing in this way, one digit is developed at a time until the desired
precision is reached.

This method is quite suitable and fast for square roots of numbers less than
1. A good first trial root value is 0.1. But is it suitable for larger numbers?
How should a starting trial value be determined? In this method, especially
for numbers greater than 10, the initial trial value for the root matters a great
deal in determining the length of time it will take for the calculation to con-
verge. Write a program using this method and compare the speed and ac-
curacy with the program in the book.

66

% print chr$(14)irem switch lower case
18 print "Sduare Roots”

208 inPut "Your number";z

30 e=.00001

40 print "Low Limit Up Limit”
50 3s0

60 bwz

70 s=(b~2)/10

80 print a;tab(id)ib

90 if absCaib-~2)Ce then 188
100 for ima to b steP

110 {f z<iW then 130

120 next {

130 bab¥id

148 9oto 78

158 b=i

160 a=i-s

178 soto 70

180 print "Rccurate to .00001"
198 Print "Average =";(a+b)/2

Square Roots

Your number? 54
Low Limit Up Limit
"]

54
5.4 10.8
7.02: 7.56
7.344 7.398
7.344 7.3494
7.34832 7.34886
7.348428 7.348482
7.3484658 7.3484712
7.34846904 7.34846958

Rccurate to .00001
Average = 7,34846931

gauare Roots

Your number? 3

Low Limit e Limit
3

2

1.9 1.8
1.71 1.74
1.731 1.734
1.7319 1.7322

Accurate to 20001
Averase = 1.73203

67

“I've just programmed our computer to give surprise birthday parties.”

68

5

Compounding

As with successive approximations and recursion, compounding requires
many repetitive calculations. Some compound interest and growth situations
can be represented by a formula, but for many problems, solving by repetitive
calculations is an excellent approach.

There is nothing magical about compounding; you generally start with an
initial amount of money, number of animals, etc. This quantity then grows or
diminishes by a certain percentage at set intervals. The new amount is the old
amount increased or decreased by this percentage. Repeat this calculation
over and over again, and you have solved the problem.

Five different types of problems which involve compounding of some sort
are described in this chapter. Try the extra problems that follow some of the
programs; you may be surprised at the results.

69

Indians and Interest

Here is a simple compound interest problem that produces an astonishing
answer. The problem has to do with the sale of Manhattan Island to the
Dutch for approximately $24 worth of trinkets and beads.

If the $24 that the Indians received in 1626 had been deposited in a bank
paying 5-%,% interest compounded annually, how much would it amount to
in 19837

The program here solves this little problem by making use of the formula
to calculate compound interest. In particular, if P dollars are invested at an
interest rate of R (expressed as a decimal) and compounded N times, then the
total amount A is given by the formula:

A =P + RN

How much was gained in 1983 alone? How much was gained in the decade
from 1974 to 1983? You can change the value of N in Statement 30 to get the
answers to these questions. But a better way might be to enter the ending year
with an INPUT statement. '

Can you read a number expressed in the E (exponential format)? In a more
conventional format, the number is $11,176,500,000 or $11.2 billion.

There are many other ways you can improve the program and make it
more suitable for general purpose compound interest calculations. Modify it
to accept any starting and ending year, any rate of interest, and any starting
principal amount.

The problem as stated is somewhat unrealistic since banks were not paying
interest rates of 5-%,% from 1626 to 1983. Change the program to calculate
the total amount based on the following interest rates:

Years Interest Rate
1626-1830 1.5%
1831-1870 2.0%
1871-1910 3.0%
1911-1921 3.5%
1922-1929 6.5%
1930-1940 2.3%
1941-1945 3.5%
1946-1960 5.3%
1961-1980 6.5%
1981-1983 9.5%

70

18 p=24

20 r=, 0375

30 n=1983-1626

40 ampR((14r))

38 Print "Indians Qot $24 in 1626 for NY."
608 print "By 1983 at 3.75% it would be $";a;

Indians Qot $24 in 1626 for NY.
By 19683 at 5.7537% it would be $ 1.11764526e+10

d

Systematic Savings

In the previous program, compound interest was calculated by means of a
formula well known to bankers, money lenders and real estate agents. How-
ever, if you did not know the formula, how would you calculate interest on
money in a savings account by hand or with a calculator?

You would probably begin by multiplying the principal amount P by the
interest rate R and adding that amount to the original principal at the start of
the second year. Doing that for all the years the money is in the bank will
yield a final amount. Why not write a program to perform the calculations in
this manner rather than use a formula? Here is such a program.

It is set up for an initial principal amount of 100 (Statement 50), an interest
rate of 10% (R = 0.1 in Statement 60) and ten years (N = 10 in Statement
70). Naturally these values could be read in using INPUT statements. The
clever calculation in Statement 100 rounds off the amount to two decimal
places (dollars and cents).

In contrast with the program in the previous section, this one does not use
a compound interest formula, but simply adds the interest each year to the
growing principal amount in Statement 90.

5 print chr$(id) rem switch louer case

10 Print chr$(147);"Calculates interest on $108 invested at 10% for 10 years"
20 print

30 print "Rt end Current"

48 pPrint "of vear balance"

50 p=100
60 re, i
70 =10 Calculates interest on $180
80 for isi to n invested at 10% for 10 vears
90 P=p+PMr
100 print 1;tab<1@);int(Pk100+.5)/100 At end Current
110 next 1 of year balance
1 110
2 121
3 133.1
4 146.41
o] 161.03
6 177.16
? 194,87
8 214,36
9 235.79
10 239,37

Now, how could this program be modified to allow for a plan of systematic
saving? In other words, instead of letting the $100 lie around all lonely while
it is compounding, each year you add another $100 to it. With this program,
making the modification for systematic savings is easy: Statement 105 is
added to add the new deposit each year to the ever growing principal.

72

3 Print chr$(id4) rem suitch lower case

10 Print chr$Ci47); "Calculates interest on $102 invested at 104 every year';
20 print "for 1@ vears."

30 Print "End Current"

40 print "¥r Invested Bal”

30 p=108

55 c=100

63 re=,)

70 n=i@

80 for isf ton

90 P=P+PHr

100 print 1;tabddd;imc;tab(11); int(PiRR+.5)/100
107 pwp4c

110 next |

Enéculutts interest on $10@ invested st 107 every vearfor 10 vears.
n

Current

Yr Invested Bal

1 180 119

2 200 231

3 300 364.1

4 400 510.51
3 500 671.96
6 600 848,72
7 700 1043.59
8 800 1257.95
9 900 1493.74
18 1000 1733.12

In an effort to attract depositors, many banks over the last 20 years have
started offering savings and investment accounts in which the deposits are
compounded more often than annually. In the early 50’s, many banks went to
quarterly compounding; in the late 50’s, to daily; and in the early 60’s, some
“competitive” S&L’s went to continuous compounding.

How much does more frequent compounding really mean? Modify either
of the two programs to compute the interest for more frequent compounding.
What is the difference in interest for one year for annual, quarterly, monthly,
daily, and continuous (every second) compounding on a principal amount of
$1000 invested at 8%? How about for ten years?

Incidentally, if you want to use the formula method in the previous section
for this calculation, the formula for P principal invested at R rate com-
pounded N times per year is:

A = P(1 + R/N)N

Try this problem which uses the same principles of compounding. Con-
sumer prices rose an average of 8.8% in 1980. While the government keeps
trying to bring inflation under control, they don’t seem to be meeting with
much success. Assuming that prices continue to go up this much (8.8%) ev-
ery year, how much will a $6000 economy car (1980 dollars) cost in the year
2000? How much will it cost when you are 65 years old?

73

Systematic Savings Revisited

Using the formula for compound interest and systematic savings, this pro-
gram will calculate the amount accumulated after a given period of time.

When you run the program, it will ask how much you wish to save each
month, the number of compounding periods in a year, the interest rate, and
the length of time you wish to continue your systematic savings program. The
program will then calculate the total amount at the end of that period.

From the preceding programs, you should be able to see that a systematic
savings program is a very effective way to accumulate a nest egg for the
future.

3 print chr$(14) rem suitch lower case

18 print "Calculates interest and balance for & systematic savines pProdram,"
18 print

20 inPut "Monthly dePosit $";a

40 inbut "ComPounding Periods Per wear'b

680 inPut "Interest rate Oox.x)'ir

100 r=r/108

118 inPut "No. of vears":n

130 Print

140 Print "End Current"

150 Print "Year Invested Bailance"

168 Print

170 c=i2¥a

160 Pai2¥a

190 for is] to n

200 pepM(i+r/b)

210 print 1;tab(6);iMc;tab(14); int(PH100+,%5)/100
220 Pupie

238 next 1

Calculates interest and balance for a systematic savings Prosram.

Monthly defosit $? 10
ComPounding Periods Per year? 12
Interest rate (xx.x>? 13

No. of vears? 3

End Current
Year Invested Balance
{ 120 139.29
2 240 300.97
3 360 488,63
4 480 706.49
3 600 939,35

74

Calculates interest and balance for & systematic savin®s Prosram.

Monthly deposit $? 10

ComPounding Periods Per vear? !
Interest rate (xx.x)? 8.5

No. of vears? 8

End
Year Invested

120
240
366
480
600
720
840
960

O O & LN -

Current
Balance

130.2
271.47
424.74
391.04
771.48
967.26
1175.68
1410.13

Calculates interest and balance for a ssstematic savin9s Program.

Monthly deposit $7 18

ComPounding Periods Per vear? 363
Interest rate (xx.x)? 8.5

No. of years? 8

End
Year Invested

120
240
360
480
600
720
840
968

MNAAR QDN

Current
Balance

130,64
272.98
427.73
596,32
779,86
979.68
1197.20
1434.09

Try to combine the things that you have learned from the programs in
these sections to write a completely generalized program for systematic sav-
ings. It should accept the following information as input:

o Initial deposit

® Frequency of periodic deposits

e Amount of each deposit

o Interest rate

o Interest compounding frequency

® Length of time of savings program

Your program should produce output in tabular form showing years (or
other time periods), amount invested without interest, total amount with in-

terest, and the interest alone.

75

Loan Payments

Although saving money in a systematic way is a noble goal, many people
frequently find themselves talking to a different bank officer, namely the one
in charge of loans.

This program will calculate the payments for a loan for a period of one
year or longer. The program asks you to enter the key facets of the loan in
question: amount borrowed, annual rate of interest, interval between pay-
ments and term of the loan in years.

The sample run shows a relatively short-term loan (2 years) of $3000 at a
bargain basement interest rate of 8.5%. The monthly payment of the loan is
computed to be $136.37 and the total interest $272.79. Why is the total in-
terest not $255 (8.5% of $3000)? Instead it is 9.09% Is this a mistake in the
program?

Try the program for some longer term loans at real world interest rates.
For example, run it for an automobile loan of $8000 at 12% over a 5-year
period. Perhaps you can see from this that systematically saving your money
and paying cash for an item makes more sense than time payments.

Run the program to calculate the mortgage payments on a $150,000 house
with a $40,000 down payment. Try it with a 16% interest rate stretched over
a 30-year period. Ouch! Look at all that interest!

At the heart of this program are Statements 180-210. Can you see what is
happening in these calculations?

76

3 print chr$(l4) rem switch lower case
1@ Print "Calculates payment achedule on 3 loan,"
28 print

30 inPut "Amount borrowed";a

4@ inpubt "Interest rate (ox.x)";i

30 input "Payment interval (months)";p
€0 inPut "Term (years)".y

70 inPut "OQutPut table (1) or totals only (2)";v
80 pPrint

150 if v=2 then 188

160 Print "Period Interest Princiral”
170 print Due Due "
180 z=(yMi2)/p

190 k=(ik<(p/12))/100

200 e=ami/(1-1/¢1+k) 12>

210 emint(en100+.5)/100

220 ceg

230 =8

240 di=Q

250 tis=@

260 tiwti+l

270 if t1d>z then 380

260 b=ti

290 cec-f

300 dwcwk

310 fme~d

328 d=sint(dk100+,5)/100

330 f=int(fN100+.3)>/100

340 di=di+d

350 if ve2 then 260 .

360 Print b;tab(8);d;tabli®;f

370 9oto 262

3680 if v=l then 430

390 disint(dinigo+.5)/100

429 print "Princiral $";a

418 Print "Interest $",di

428 goto 450

430 Print " ~——— ————l
440 print "Total ",di;tab(20);a:Print
450 eSaint({d1+2)%100+.%)/100

460 eb=eT/((y¥12)/P)

470 ef=int(100%e6+,%3)/100

480 print "Total $";e5

490 print "Each Paynent $£" ef

Calculates Payment schedule on a loan,

Amount borrowed? 3000

Interest rate {xx.x>? 8.5

Payment interval (months)? {

Term (years)? 2

OutPut table ¢(1) or totals only ()7 1

Princiral $ 3000

Interest $ 272.79
Total $ 3272.79
Each Payment $ 136.37

77

Interest on Credit Purchases

All too frequently, the rate of interest to be charged on a loan or credit pur-
chase is hidden in the small type. After all, the bank or car dealer or finance
company wants to convince you that you can afford that new car or home
improvement or whatever.

This program calculates the interest rate on a loan given the principal value
of the loan, the number of payments, and the amount per payment. To make
things even easier, the program will accept the cash purchase price of the arti-
cle and the down payment and automatically compute the principal value of
the loan.

The sample run shows a rather unrealistic loan for an item costing $88.99.
The down payment was $10.00 and the loan is over a period of 18 months;
each monthly payment is $4.85. The program run shows that the actual in-
terest rate is a modest 7.01%.

Now try the program with a more realistic loan. A termite company in
New Jersey advertises a total treatment for your house for only $200; just
$29.95 down and 24 monthly payments of $11.95 per month. Is this the bar-
gain that it seems? What is the annual rate of interest?

78

S5 print chr$(14):rem suitch lower case
10 Print chr$(147);"Interest rate of & Purchase on credit”
20 1nPut "Purchase Price";p

3@ inPut "Down Payment";d

40 inPut "Number of Payments”;n

30 inPut "Payments Per month";m

68 inPut "Amount Per Payment”;a

70 plmp-d

80 tm=adn~p1

90 ymn/<mM12)

102 reint(10000%t/Pi/y+.5)/100

118 print:print "Interest rate is";r;"%"

Down Payment?Interest rate of a Purchase on credit
Purchase Price? 88,99

Pown Payment? 10

Number of Payments? 18

Payments Per month? 1

Amount Per Payment? 4.85

Interest rate is 7,01 %

Interest rate of & Purchase on credit
Purchase Price? 1000

Down Payment? 8

Number of Payments? 24

Payments Per month? 2

fAmount Per Payment? 5@

Interest rate is 20 7%

79

Population Growth

So far, all the compounding problems in this chapter have involved
money—interest, savings, and loans. But many fascinating compounding
problems do not involve money. Consider the following problem.

In 1960, the population figures for the United States and Mexico were 180
million and 85 million respectively. The annual population growth rate for
the United States was 1.23% and for Mexico 2.23%. If these growth rates
remain steady, in some distant year the population of Mexico will exceed that
of the United States. In what year will this occur?

The program uses the method of accumulating the principal amount rather
than a formula, and applies it to both populations. The sample run reveals
that the population of Mexico will overtake that of the U.S. in the not too
distant future.

5 Print chr$(14) ren suitch lower case
10 u=180000020

20 m=835000000

30 ri=1,0123

40 r2=1,0223

50 y=1960

€0 umumrl

78 mumir2

80 ywy+l

90 if mCu then 60

108 print "Year ="y

110 Print tab<9):"PoPulation”
120 print "U.S.A. "ju

139 print "Mexico "im

Year = 2037
Population

U.S.R. 461406338

Mexico 464464688

But what if the Mexican people were diligently trying to bring their
increasing population under control and their annual growth rate was
increasing by only 0.001% per year, compared to the increase of the U.S.
growth rate of 0.01% per year. If that were the case, would the population of
Mexico ever exceed that of the U.S.?

Insert Statements 60, 70, and 85 into the first program, run it and find out
the answer to the question.

68 u=u¥(1.01%r12

70 m=m¥(1,001%r2)
85 if y>9999 then 118

80

Going back to the first program, run it with the population data from the
U.S. (180 million) and California (15.7 million) from 1960. At that time, the
annual growth rates were 1.23% and 3.7% respectively. Running the pro-
gram will indicate the year that the population of California will exceed that
of the United States. This, of course, is nonsense. Where is the discrepancy?

This program might make more sense if it were restated to ask in what year
the population of California would exceed that of the remainder of the U.S,, if
ever?

Compounding can also be used to solve other kinds of population growth
problems. Consider the bristleworm. The bristleworm can reproduce by split-
ting itself into 24 segments, each of which grows a new head and tail. What is
the maximum number of bristleworms that could be obtained in this fashion,
starting with only one worm, after ten splittings? Assuming a splitting occurs
every 22 days, how many offspring will one worm produce in a year? When
will the earth be overrun with bristleworms?

Here is another problem for which the principle of compounding is useful.
It takes nature about 500 years to produce one inch of topsoil. Many years
ago, the United States had an average depth of almost nine inches of this
good dirt, but as of 1975, the country was down to about six inches. This type
of soil is necessary, of course, for growing food.

Careless management of our soil causes about 1% per year to erode away;
it is then lost forever. Once soil depth reaches three inches or less, it is impos-
sible to grow crops on a large scale. Write a program to calculate the year in
which the U.S. will have less the 3” of topsoil, assuming that it continues to
erode away at 1% per year.

Will you be alive then? Will your children be alive? Will anyone be alive?

81

6

Probability

Statistics and probability are subjects that bring up all kinds of images.
Some people who have not had a pleasant time in a required college statistics
course keep as far away from the subject as possible. To other people, statis-
tics is something with which devious manufacturers can mislead you about
their products.

Not long ago, one foreign automobile manufacturer boasted that 90% of
their cars sold in the United States in the last seven years were still on the
road. This sounds like excellent reliability. But consider the fact that this
manufacturer was rapidly expanding in the U.S. market and 65% of the cars
they had sold in the U.S. had been sold in just the previous two years. You
would expect that all of these would still be running.

If the manufacturer had sold 10% of their 7-year volume in Years 1 to 3,
and most of these cars were not running, then the advertising claim loses
much of its meaning.

When approached in a logical, step-by-step manner, statistics and probabil-
ity are not difficult. In fact, they can be a great deal of fun.

Some of the programs use a formula while others simulate the event in
which we are interested. The results are the same, but you may find that the
simulations help you to understand exactly what is happening.

82

Pascal’s Triangle—Calculated

Pascal’s Triangle is quite fascinating. As you can see from the portion of
one reproduced below, each row is symmetrical. Each row also contains the
coefficients for a binomial expansion. The sums across the ascending diag-
onals form the Fibonacci sequence. The sums across the rows are all powers
of two. Each row corresponds to the digits of a power of 11. Every element is
the sum of the two above it. And, in case you care, all the elements in it are
identities in combinatorial theory.

The ways this marvelous triangle can be generated are as varied and in-
teresting as its properties, though perhaps more difficult to figure out. Here is
one way to use a computer to generate the triangle.

Any element can be found be adding together the two elements immedi-
ately above it. The program uses this principle to produce a triangle eight lev-
els deep. Lines 10-30 set the rightmost diagonal to 1. Each element is stored
in the two-dimensional variable P(R,C) with R denoting the row and C
denoting the “column.” The variable T (Line 50) simply leaves some blank
spaces so the output resembles a triangle. The crux of the calculation is in
Line 70 in which the value of each new element is calculated.

There is another interesting way to calculate Pascal’s Triangle in even
fewer statements than the program here. It generates the triangle one element
at a time and does not use any arrays or two-dimensional variables. Can you
figure out how to write such a program?

18 for cmy to 8 1

20 pCc,cim]

30 next ¢ 1 1

40 for ref to 8

50 t=20-r#2 1 2 1

€0 for cw2 to r+l

70 pir+i.c)mplr,c)+p(r,c-1) 1 3 3 1
88 1f P(r,c)w@ then 110

98 print tab(t);plr.c); 1 4 6 4 |
100 tw=tid

110 next c { 5 10 16 5 1
120 Print

130 Print 1 6 13 20 15 6 1
140 next r

83

Pascal’s Triangle—by Probability

This program simulates the dropping of balls through a triangular array
shown below. At each level, a ball is equally likely to fall either to the left or
right. At the bottom of the array a cup is placed at each end point; these cups
collect the balls. After each group of balls has been dropped, the number of
balls in each cup is tallied and displayed.

S print chr$(14) rem switch lower case

10 print "Pascal’s train9le by Probability"
20 inPut "Balls to droP"im

30 inPut "No. of levels")k

4@ print "Position Balls"

50 for n=i to m

60 t=0

70 for 1®1 to k Pascal’s train9le by Probability
80 if rnd(1)>.5 then 100 Balls to droP 1000
90 twi+l No. of levels 2

100 next 1 Position Balls
110 blt+1)mb(t+1)+1 1 249
120 next n 2 316
130 for 1m§ to k+{ 3 233
140 print 1;tab(12);b(1)

150 b(1)=9

168 next 1

Pascal’s traingle by Probability
Balls to dror 1000

No. of levels 4

Position Balls

64

241

3s0

241

64

[T R AN VR

Pascal’s traingle by Probabllity Pascal’s traingle by Probability

Balls to drop 169 Balls to drop 649
No. of levels 4 No. of levels €
Position Balls Position Balls
1 9 1 9
2 45 2 70
3 56 3 142
4 40 4 208
5 10 5 134
6 51
7 6

The number of balls landing in the various cups at each level, when re-
duced to the lowest common denominator, should approximate the numbers
in Pascal’s Triangle. Do you know why they should?

Try a few runs of the program with a different number of balls. Do the
numbers obtained really approximate those in Pascal’s Triangle? If, at each
dividing point in the array, every other ball went in the opposite direction,
then Pascal’s Triangle would be produced. Try running the program with 4
balls at Level 2; with 8 balls at Level 3; and with 16 balls at Level 4. Do your
results look like those of the previous program which calculated the triangle?
Does the approximation come closer as the number of balls is increased?

How can you determine how close your results from this program are to
the exact value of Pascal’s Triangle? One way is to take the number of balls
that dropped into each cup on a given level and divide that by the total num-
ber of balls divided by the theoretical sum of the row. So, in the sample run at
Level 4, you would divide the balls in each cup by 62.5 (1000/16). You then
compare that to the “correct” number and compute the percent difference.

Here is the result of this procedure for Level 4 (actually the fifth row) in
the sample run:

Cup Balls +62.5 Correct Deviation
1 64 1.02 1 2.00%
2 241 3.86 4 3.50%
3 390 6.24 6 4.00%
4 241 3.86 4 3.50%
5 64 1.-2 1 2.00%

85

Common Birthdays

Here is an interesting little problem in probability. In a group of ten people
selected at random, what is the probability that any of them will share the
same birthday? How about a group of 20 people? Of 50 people?

Conversely, how many people would you need in a group such that there is
a 50% probability that at least two of them have the same birthday? How
many people would be needed for a 90% probability of an overlap?

Try to answer these questions, either by guess or by calculation, before you
look at the output from the program.

This program provides a painless introduction to the world of statistics.
The calculation is actually quite trivial. The probability that any person in a
group has a birthday on January 1 is 1/365. If our group has only two people
in it, the probability that both of them have a birthday on January 1 is 1/365
times 1/365, or a very small number indeed. The probability that they have a
common birthday is 365 times the very small number just obtained, or about
0.27%.

However, if there are three people in the group, the probability goes up
slightly. Call the three people Betsy, Ken, and Larry. From the reasoning
above, we know that there is a 0.27% probability that Betsy and Ken have
the same birthday; also a 0.27 % probability that Betsy and Larry share a
birthday; and finally, a 0.27% chance that Larry and Ken have a common
birthday. Hence, the total probability for a group of three people is three
times the probability for just two people.

A group of four increases the probability over that of two people by a fac-
tor of six, five people by a factor of 10, six people by 15, seven people by 21,
and so on. There is a progression here, but the probability can also be cal-
culated by the formula:

365-N
365

Can you see why this formula produces the same result as the description
in words and associated progression above?

Consider all the presidents of the United States. (How many have there
been to date?) Two of them, James Polk and Warren Harding, were born on
November 2. Is this to be expected given the size of the group?

Since birthdays can be predicted, at least statistically, it ought to be pos-
sible to predict deaths as well. It is interesting too that John Adams, James
Monroe, and Thomas Jefferson all died on July 4th. Millard Fillmore and
William Taft both died on March 8. What is the probability of that set of
events?

P=1-

86

3 Print chré$(14) rem switch lower case

1@ Print "PeoPle Same birthday Probabitity"
26 4=364/363

30 for n=2 to 40

40 P=1@OWCi~q)

50 print n;tabl20);int{PR100+.3)/100;"%"

60 9=qM(365~n) /365

70 next n

PenP le Same birthday Probability 21 44.37 %
2 27 7 22 47.57 %
2 féfy 23 50.73 %
.64 24 24 53.83 %

3 2.71 % 25 56.87 %
6 4.05 % 26 59.82 %
7 5.62 % 27 62.69 %
8 7.43 % 28 65.45 %
] 9.46 ¥ 29 68.1 ¥
10 11.69 % 30 78,63 ¥
11 14.11 % 31 73.0% %
12 16.7 % 32 75,33 ¥
13 19.44 ¥ 33 77.5 %
14 22.31 % 34 79.53 %
15 2%.29 % 35 81.44 %
16 28.36 % 36 83.22 %
17 3.5 % 37 84,87 %
18 34.69 % 38 86.41 %
19 37.91 % 39 87.82 ¥
20 41,14 2 49 89.12 %

Now it is your turn to write a program. Here is a game to be played among
your friends. You make a bet that they have similar preferences in colors.
Each person in the group puts up one penny and you, because you are so sure
of yourself (and probability), put up an amount in cents equal to the number
of people in the group. If you win, you get to keep all of the money; if your
friends win, each of them gets double his original bet, or two cents.

Then each person selects a color (from a larger list than there are people, of
course). If any two have picked the same color, you win; if all have picked
different colors, they win.

Since you would like to win, you need to know how many colors should be
on the list for different size groups to give you a better than 50-50 chance of
winning. You might like the probability to be up around 70% or so. You can
produce the necessary table with a five-line program. Go to it!

87

Coins in a Pocket

The next two programs were originally written by Glenda Lappan and
M.J. Winter and appeared in Creative Computing magazine. They are marvel-
ous simulations for illustrating various aspects of probability.

Coins in a Pocket is a simulation of the following situation. A newspaper
costs 5 cents. A customer has 5 pennies and a dime in his pocket and offers to
pay for his paper by letting you, the vendor, select at random two of the six
coins. If you and this customer repeat this procedure for the 20 working days
of a month, how much more or less than $1.00 (20 days x 5 cents) are you
likely to have collected?

The program below solves this little problem. The first random coin is se-
lected from a group of six (Line 50 in which X = INT(RND*6)). The value
of X canbe 0, 1, 2, 3, 4, or 5. If it is O, we assume the dime was selected and a
second pick is not made, because it will surely be a penny. Thus 11 cents is
added to the running total in Line 110.

If the first coin is a penny (X = 1, 2, 3, 4, or 5) then we make a second pick
from the five remaining coins. Again, if the dime is chosen (Y = 0), 11 cents
is added to the total; otherwise 2 cents is added.

As you can see from the sample runs, after a great number of trials, the
average amount of money collected each day seems to be close to 5 cents. If
‘you would like to convince yourself that the answer is, in fact, 5 cents, con-
sider the following. Assign a letter to each coin, A - F. Let A be the dime and
B through F be the pennies. Since all combinations are equally probable, here
are all the possible combinations:

AB

ACBC

AD BD CD

AE BE CE DE
AF BF CF DF EF

There are five combinations with a dime (5 x 11 cents) and ten combina-
tions of only pennies (10 x 2 cents). Add it up and you have 55 cents plus 20
cents divided by a total of 15 combinations which equals an average value of
75/15 or 5 cents.

88

5 print chr$(id):rem lover case

10 Print "Simulates takind 2 coins at random from a dime and 5 Pennies”
208 inPut "No, trials"n

30 u=@

40 for k=1 to n

50 x=int{rnd(1>%6)

60 if x=@ then 110

70 ysint(rnd(1)%6> B
80 if ymd then 110

98 umu+2

100 ooto 120

110 usy+i]

120 next k

130 print "Average value is";u/n;"cents.”

Simulates taking 2 coins at random from a dime and 5 Pennies
No. trials? 100
Average value is 4,16 cents.

Simulates taking 2 coins at random from 2 dime and 5 Pennies
No. trials? 1000
Averade value is 4.7 cents,

89

Baseball Cards

In statistics and probability, it is frequently necessary to predict the num-
ber of trials on average until one is successful. For example, if you are trying
to roll a four with one die, on average how many tries will it take until you do
so?

Since a die has six sides, the probability of rolling any number between 1
and 6 is p = Y. Thus, on any given roll, you have a Y, chance of rolling a
four and % chance of rolling something else. This failure is designated g- So
to be successful in rolling a four, we have a Y, chance on the first roll. On two
rolls, the probability is two trials x the probability of one failure, then success
(2 x % xY). On the third roll, the probability of success is three trials x the
probability of two failures followed by one success (3 x % x % x V).

Continuing this reasoning leads to the formula for the expected number of
trials to success:

E=1p+2qxp+3qxp+4gqxp + ...

This series can be reduced and solved for E which leads to:

11
1-q p

So now the answer to the original problem can be calculated. The expected
number of trials to roll a four is 1/p = 6 tries until success.

But there is another way to approach this type of problem with the assis-
tance of the computer. Consider the problem. Assume there are ten different
prizes in Crunchies cereal boxes. How many boxes of cereal would you have
to buy to obtain the complete set? The formula above can be expanded to
solve this problem:

%+~%+—%+ . -+~?=N(1+%+—5—+ e

For a value of ten, you can solve this formula by hand. However, let’s say
you would like to solve this problem for baseball cards as found in packs of
bubble gum. If there are 50 cards in a complete set, how many packs of gum
must you buy, on average, to get a complete set. Write a computer program
using the general formula above to solve for a set of any size. The answer for

50 cards is 224.96 packs of gum; how many would you have to buy for a set of
100 cards?

90

There is another way of approaching this problem. This method is similar
to that used to randomly select coins out of the pocket. In this case, the ran-
dom group is set equal to the total number of cards; this value is accepted as
input in Statement 20. Each purchase is set equal to a random number be-
tween 1 and N (Statement 120). This card is then put into its proper place in
the collection (Statement 130). However, if there is already a card there from
a previous purchase, we simply increment the purchase counter (Statement
160) but do not get any closer to obtaining a complete set. After each pur-
chase, we test to see if the set is complete (Statement 170), otherwise we go on
buying more packs of bubble gum.

When the set is complete, the number of packs of gum are tallied up and
printed out. After a set of trials, the average is computed. This averaging
value should be reasonably close to the value obtained by the formula al-
though it will take a great number of trials before the two numbers are within
1% of each other.

5 brint chre(id) irem suitch louer case
10 Print "Simulates buying Sum with baseball cards, "
20 inPut "Cards in series”in
30 inbut "No. similar cards'ik
40 dim c(108)

50 print "Trial Packs"
60 s=0

70 for iml to k

82 dw@

99 for Jmi to n

100 c(Jy=0

1108 next J

120 xmintCrnd{1idMn)+i

130 cixIma(xd+]

140 if elx)=1 then 160

150 doto 120

160 dwdéq

170 if den then 190

160 soto 120

198 t=0

200 for Jmwi to n

210 twtec(d)

220 next J

230 print {;tab(i1);t

240 s=sHt

250 next i

268 Print "Averagse “is/k

91

cards.
Cards in series? 10
No. similar cards? 5

Simulates buving Sum with baseball

Trial Packs
1 36
2 25
3 21
4 20
3 19

fiverase 24.2

If you run this second program for a set of 100 cards, it will sometimes run
for a very long time before arriving at the answer. Try it with a set of 500
cards as are used by some real bubble gum manufacturers. You can go have
your dinner while the program computes just the first value. Be sure to
change the dimension statement in Line 40 to C(500).

System Reliability

As more and more people in the world come to depend upon mechanical
and electronic devices in a myriad of different ways, it is important that these
technological devices continue to function.

Some years ago, the military came up with a measure that could be applied
to all kinds of systems, big and small, to measure reliability. It is called
“mean time between failures.” What this means is the length of time, on av-
erage, between breakdowns. For a tank, this may be 100 hours, while for a
spacecraft, the MTBF must be considerably longer than the planned mission.

As we saw in an earlier section, it is frequently desirable to break down a
large problem into smaller subproblems. To calculate the MTBF for a space-
craft would be quite impossible. Instead, it is necessary to start with smaller
systems and build up to the whole.

Consider one of the electrical subsystems of a spacecraft. It uses five
components as shown below, two parallel systems A and B, arranged in se-
ries. The parallel subsystems are said to be “redundant.” This is one method
of increasing reliability since the system will continue to work if at least one
of the components works.

>[1 [0 []
o [1 [

If the manufacturer of the components stated that each one has a 60%
probability of lasting 1000 hours, what is the chance that the entire system
will last 1000 hours? Take a guess before reading on to the solution below. Is
your guess greater than 60% or less? Why?

The program below is a simulation of this system. Remember in subsystem
A, it will continue to work if any of the three components works and in B if
either of the two components works. However, the system will fail if all three
of the A components or both of the B components fail.

In Statement 30, the program is set up to make 500 trials of the system.
Statement 50 selects a random integer between 1 and 10 for each component
for each trial. If the value of this integer is 6 or under, the component is okay
(60% probability of working at the end of 100 hours). If it is 7, 8, 9, or 10,
this means the component has failed, and the program prints “Bad!”

93

S print chr$(14) :rem switch lower case

1@ print "Simuiates use of a circuit for 1000 hrs”:Print
20 s=0

30 for iml to 500

48 for Jmi to 5

20 cCJomint{rnd(1)¥18)+1

60 if cCJ)>6 then 50

78 c(i)=l

80 goto 100

90 c(J>=@

100 next J

110 1f cC1)=] or c(2)=i or c(3)=l then 149

126 print "Bad!";

138 9oto 180

148 if c¢dd=1 or c(5)=l then 170

150 print "Bad!";

160 goto 180

170 sxg+i

180 next i

199 print:print "Reliability is approx.";int(10000%(s/500)>+.5)/100;"%"

Simulates use of 3 circuit for 1002 hrs

Bad!Bad!Bad!Bad!Bad!Bad! Bad!Bad!Bad ! Bad!
Rad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
BadiBad!BadiBad!Bad!Bad! Bad!Bad!Bad!Bad!
Rad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
Bad!Bad!Bad!Bad!Bad!Bad!Bad! Bad!Bad!Bad!
Bad!BadiBad!Bad!Bad!BadiBad!Bad!Bad!Bad!
Bad!BadiBad!Bad!BadiBad!Bad! Rad!Bad!Bad!
Bad!BadiBad!Bad!Bad!Pad!Bad! Bad!Bad!Bad!
gagiBad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!Bad!
I1

Reliability is approx. 81.8 %

Statement 110 tests whether subsystem A works and Statement 140 checks
out subsystem B. If both work, a success is counted in Statement 170.

There are, of course, shorter ways to do this. For example, all the individ-
ual tests (Statements 110 to 140) can be replaced by one overall test (new
Statement 110).

110 if CcC1)+c(2+4c(3))¥(c(4)+c(5))=0 then 140
130 s=s+1
140 next 1

Reliability is aPProx. 78.9 %

Now it is your turn to use what you have learned in this chapter and write
a program to determine the mean time between failures of the system above.

94

7

Geometry and Calculus

In this chapter several of the problem solving approaches from earlier
chapters are used to solve geometric problems. You will find that many prob-
lems can be solved in a variety of different ways—by applying a formula, by
trial and error, by successive approximations, and, in some cases, by common
sense. Perhaps the most important thing to learn from these problems and
programs is how to analyze a problem to reach the solution quickly and
painlessly.

95

Crossed and Slipping Ladders

Here is a simple problem of a slipping ladder. A ladder 25 feet long is
placed so its foot is 7 feet from the base of a building. The base of the ladder
slipped on some loose gravel so that the top is 4 feet lower than where it was
to start. How far did the foot of the ladder slip?

X 25 (X-4) 25

7 Y

The diagrams show the two positions of the ladder. By the Pythagorean
theorem we know that a®? + b® = c?, hence, the equations needed to solve the

problem are:
x = V25 -T2

y = VI GAY
and the amount of slippage of the base is z = y - 7. These three equations are
put into a computer program which quickly calculates an answer of 8 feet.

10 Print "SliPPing Ladder” 1ipping Ladder
28 2% ase sliPPed 7.99999999 ft

30 be?

40 x»34r(c12-b12)

50 yasdr(ct2-(x~4)12)

€0 z=y-b

78 Print "Base slipped”;z;"ft"

While the aritmetic in the above problem is not particularly messy, it is still
no great joy to solve by hand. However, the computer is just as happy to do
the problem with really messy dimensions, say a ladder length of 27.83 feet
and a distance from the wall of 7.62 feet.

20 c=27.83 Slirping Ladder
30 bw?.62 Base stipped 8.38612 ft

96

Let’s consider an old problem found in many classic collections. Two lad-
ders, one 25 feet long and the other 35 feet long lean against buildings on op-
posite sides of an alley as shown below. The point at which the ladders cross
is 12 feet above the ground. How wide is the alley?

35
25

x 4

By using similar triangles twice we find that
12/a + 12/b = 1
Then, by applying the Pythagorean theorem and reducing, we obtain:
a’ - b? = 600
Using one of the methods described in the Problem Solving chapter, you
can solve these two simultaneous equations. Or they can be combined into
one equation in which z, the width of the alley is
z=v35-a%
By eliminating b, the following fouth degree equation is obtained
a* - 24a® - 600a® + 14400a - 86400 = O
Again, this can be solved using one of the methods in the chapter on Prob-
lem Solving. This is the traditional approach, but there is another. The solu-
tion is the intersection of the curves described by the two original equations.
By using successive approximations, say in steps of 1 for a, you could solve
for b, and b, in the following restated original equations

12a
a-12

b, = V600 - a?

When b, falls below b,, reduce the step to 0.1 to obtain a closer approxima-
tion. By continuing this method of successive approximations, it is possible to
obtain a very accurate solution.

97

Is there another approach? Yes, there is and it also avoids the quartic equa-
tion. It uses the original equations in a trial and error procedure as described
in the chapter on Sets and Repetitive Trials. See if you can write a program
using this approach.

Here is another classic problem for you to solve in any way that you like.
What is the longest ladder that can be carried in a horizontal position around
the corner made where a 12-foot wide alley meets one that is 8 feet wide. The
diagram shows the problem.

98

Distance Between Coordinate Points

This program solves for the distance between any two points in three-
dimensional space defined by their x, y, and z coordinates.

The formula for the distance between two points in three-dimensional
space is:

d = (xz - x1)2 + (Yz - yl)z + (Zz - 21)2

It would be desirable for the program to be able to solve any problem of
this kind. One approach would be to use INPUT statements to accept the point
coordinates. Another is to use a DATA statement to define the points. Then
only this one statement has to be changed for a new problem or set of
problems.

The program is written to calculate the distance between three sets of
points. The points used were:

0,00 and 3,4,5
3.5,-4.7,6.2 and -0.9, 3.0, 4.4
67, 36, 82 and 54, 25, 90

This calculation is used extensively in aerospace navigation. Can you deter-
mine the angle or “compass heading” of the resulting flight path? Better start
with just two dimensions.

S Print chr$(14) rem suitch louer case

1@ print chr$(147)

20 print "Calculates distance betueen Points in 3-D space"
30 pPrint

40 print "Coordinates Distance”

%0 read a.b,c.d,e.f

60 1ms9r{(a-d) 12+ (b-e)12+(c~f)12)

78 print asbic

80 Print die;f;tab(18);int{1M1000+.%)/1000
98 Print

100 Soto 40

110 data 0.0.0,3.4,%

120 data 3.5,~4.7,6.2,-.9,3.,4.4

130 data 67,36.82,54,25,90

Calculates distance between Points in 3-D sPace

Coordinates Distance
2 @ 9

3 4 3 7.071
Coordinates Distance
3.% ~4.7 6.2
-2 3 4.4 9.049
Coordinates Distance
67 36 82

54 25 9@ 18.815

99

Area—by Calculation

It is a simple matter to calculate the area of regular geometric figures by
using the usual formulae. However, the problem becomes more difficult when
it is necessary to calculate the area of two combined regular shapes or the
area of irregular shapes. This program shows the method of analysis for solv-
ing a problem of the first type, while the next program demonstrates four
methods of dealing with irregular areas.

The problem is to solve for the shaded area of the figure below for any
value of the radius, R.

The first step is to recall the formulae for calculating the area of a circle

and square:
A (circle) = pi * R?
A (square) = Side® or (2 * R)?

The difference in area between a square and a circle inscribed within its
borders is:

A (difference) = A (square) - A (circle)
and the area of one corner is the difference divided by 4. The program below
will calculate the area for any radius.

Now it is your turn. Write a program to calculate the difference in area
between a circle and square in which the square is inscribed within the circle.
Now, change your program to calculate the difference in area for a triangle, a
hexagon and an octagon inscribed within a circle.

100

5 print chrs(l14) rem suitch lower case

1@ Print "Ares betueen circle inscribed in square"
20 inPut "Radius”ir

30 c=3,14139%r12

40 s=(2kr>12

50 dmg-c

60 disd/4

70 Print "TrapPed area";d

80 Print "One correr”;dl

Ares betueen circle inscribed in sSuare
Radius 10

Trapped arez £3,8410001

One corner 21.46023

fires betueen circle inscribed in square
Radius 1

Trapped area 8384095999

One corner .2146025

Extend your program to calculate the difference in area for any regular fig-
ure inscribed within a circle of radius 1.0. Set up a table or results as follows:
Number of sides Difference in Area

[c BN B NV I AV

What can you conclude from these results? Do these areas follow in some
sort of progression?

101

Area—by Integration

In many cases it is necessary to determine the area of an irregular figure or
the area under a curve where an exact formula is not available. The ap»roach
most commonly used is to divide up the enclosed area into small regu, irly
shaped pieces and sum up the areas of all of these pieces.

The easiest shape to use in these calculations is a rectangle. A group of
rectangles can either be inscribed within the irregular figure or curve, or
circumscribed around it. The first two diagrams show these two methods be-
ing used to find the area under a curve. A third method is to use trapezoids
which, depending upon the direction of curvature, will either be inscribed or
circumscribed automatically.

Inscribed Circumscribed Trapezoid
Rectangle Rectangle

102

A fourth method, known as Simpson’s Rule; essentially fits a series of
parabolas between the points of the curve and calculates the average area. It
requires that the area be divided into an even number of parallel slits. Let us
call the total number of divisions 2m which are h distance apart. The point on
the curve where the first line intersects is yq, the second y;, and so on until
yam. The area is then given by the formula:

A= "sh[(yo + yom) T 4(y1 + y3 +
+ yome1) T 2(y2t Yot ... Yoam-2)]

The area as calculated by Simpson’s Rule converges extremely quickly
compared to the other methods. Nevertheless, as the number of intervals in-
creases, all the methods approach the same limit. As might be expected, the
trapezoidal approach converges more quickly than either of the approaches
using rectangles. Compute the average of the two methods using rectangles.
What do you get? Does this suggest another method?

The methods used in this program involve the calculus. And you thought
the calculus was difficult! Now you know otherwise.

5 print chr$(id) :rem switch lower cise

10 print chr$(147)

20 print "ComPutes are under & curve by 4 methods of intesration.”
40 print

50 Print "Enter start and end values for x (small one first)"
60 inPut a.b

70 Print "Rande of x=";a;","ib

8@ print:pPrint "No. intervals

90 print "Inscribed Rects TraPezoids"
100 Print "Clrcumscribed Rects Parabolss"
118 m=-2

120. 3=

130 -def fnalx)=x13

140 m=m+3

190 for nem to m+2

160 cws

170 q=@

160 pw@

190 d=2Mn

200 he(b-2)/d

210 for 1w to d-{

220 xma+idh

230 pwp+hfnalx)

240 amq+hMfna(x+h)d

2%0 next i -

260 t=(p+d>/2

276 usfoalad+fnalx+h)

200 for Jw2 to (d-2) step 2

290 umy+2Hfnala+iih)

300 next J - ¢

310 v=@' R

320 for k=i to (d-1) ster 2

330 vey+dkfng (d+kih)

342 next k

3350 swlu+yINCh/3)

103

360 print:print d:Print:Print P tabl12) t:Print 4;tab(12):s
370 next n

380 if d(64 then 140

390 if abs({c-8)/{{c+£)/2)))>.0001 then 140

400 stop

ComPutes are under & curve by 4 methods of integration.

Enter start and end values for x (small one first)

?1
7?7 1@
Range of x= { , 18

Ne. intervals

Inscribed Rects Trapezoids
Circumscribed Rects Parabolas
2 y

7353, 187501 3000.937%
85248, 6873 5499, 75001
4

1501.17168 2623, 04688
3748, 92188 2499.75

8

1969, 13672 2331.07422
3093.01172 2499.75

16

2226.61231 2507.358106
2788, 54981 2499.75

32

2361.22339 2301.70776
2642.19214 2499,7%

64

2429.99726 2500. 23944
2570.48163 2499.7%

104

8

Science

Using techniques and approaches presented in the previous chapters, this
chapter contains five programs in the area of science. One uses a formula to
solve simple gas problems, two are drill exercises on the gas laws of Boyle and
Charles, and the last two are simulations. You will see that the simulations
draw upon many previous techniques such as progressions and repetitive
calculations.

105

Gas Volume

Here is a simple program to produce a not-so-simple table of values for gas
volumes.

The volume of a gas varies directly with the absolute temperature T (Kel-
vin) and inversely with the pressure P. If a certain quantity of gas occupies
500 cubic feet at a pressure of 53 pounds per square foot and an absolute tem-
perature of 500 degrees, what volume will it occupy at 600 degrees absolute
temperature and pressures from 100 to 1000 pounds per square foot in in-
crements of 50 pounds?

The original conditions are used to solve for the constant K in Statement
50 (K = V*P/T). Then new volumes are computed for varying pressures
with T equal to 600 degrees. The formula used is V = K*T/P.

In the second part of the program, Lines 70 to 100 are replaced to produce
a plot of the gas volume for the various pressures.

How would you modify the program to deal with a more general case G.e.,
other gasses and different temperatures)? Second, can you write a program
that produces a table of values for a gas at different pressures and
temperatures?

3 Print chr$(14) irem suitch lower case

10 print "Cas volumes at different Pressures":pprint
20 y=320

30 pa33

40 +=%02

30 kswip/t

60 inPut "Temperature (k)";ti1

70 Print "Pressure Yolume"

80 for P100 to 1000 step 30 Gas volumes at different Pressures

98 vaickt] P

100 Print P;tabC10);y TenPerature Ck)? 609

110 next . Pressure Yolume

‘ 100 318

150 212
200 159
2% 127.2
300 106
359 90,8571429
400 79.5
450 70. 6666667
500 63.6
550 57.5181818
690 53
650 46, 9230769
700 48,428371%
7% 42.4
800 29.7%
8% 37.4117647
900 3%.3333333
950 33.4736842
1000 31.8

106

%5 print chr$(14) rem switch lover cise
10 print "Oas volumes at different Pressures’:print
20 v=35008

30 pe33

48 t=500

30 keyip/t

60 inPut "TemPerature Ck)>";ti

6% print

70 print "Pressure Volume Plot"

86 for Pwi0Q to 1000 ster 30

90 vmkWtl/P

100 Print P;tab{4+v/17);"N"

110 next P

fas valumes at differesnt pressures
Tewperature (k)? 688
P ure Volume Plo;
*
*

*
*

s g
*

I3y ey i

8999""

*'**&******
Rk

107

Charles’ Law Drill

In the previous program, gas volumes were calculated using Charles’ Law
and Boyle’s Law. Here is a drill and practice program (remember Chapter 1?)
that produces problems relating the volume and temperature of a gas. When
pressure is constant, the volume/temperature relationships can be stated as

follows:
VO —_ V|

To T,
The program presents four problems, one to solve for each of the four vari-
ables in the equation above.
How can you make the program more efficient? More interesting?

S Print chr#(14) ‘rem switch louer case
10 print "Charles’ Law drill”

20 Print "Volume in milliliters"”

30 print "TemPerature in desrees Kelvin"
40 Print

58 vwint{rnd(1)NS0+52 %100

68 vimint{rnd(1)%30+52)4100

70 taint(rnd(1IM125+123)

88 timint(rnd(1)N{25+125)

90 csmc+l

10@ on ¢ doto 110,130, 190,238,270
110 v=@

120 Print:Print "Solve for v when”
130 qimviNt/t1

140 Soto 260

158 vis@

160 Print " UWhat 1s vi 9{ven"

170 qievikti/t

180 9oto 280

190 t=@

200 print:Print "Calculate value of T"
210 qiwyiti/vi

220 ooto 260

230 ti=p

240 Print:Print "Solve for t1 Qiven”
250 qistivi/v

260 ooto 280

270 stop

260 print "ve "y tab(11);"te" ;¢
290 Print "vim "yl tab(11);"tim" ;8]
30@ inPut "Your answer";q

310 print "Correct value”;qi

320 Print

332 90oto%0

108

Charles’ Law drill
Volume in milliliters
TemPerature in degrees Kelvin

Salve for v when

ve @ t= 217

vi= 6008 ti= 196
Your answer? 114418

Correct value 6642.83713

What is vi 9iven

vs 35000 t= 183
vis @ ti= 243
Your ansyer? 3523821
Correct value 7941.17647

Calculate value of T

vs 7100 t« 0
vi= 9800 ti= 162
Your answer? 18494

Correct value 117.367347

Solve for t1 9iven

vs 9500 t= 222
vi= 8300 ti= 2
Your ansuer? 73000
Correct vaiue 193.957893

109

Boyle’'s Law Drill

Boyle’s Law describes the behavior of gases under ideal conditions when
pressure and volume are varied. When the temperature is constant, Boyle
found that:

Po*Vo=P*V,

Pressure is normally measured in centimeters of mercury while volume is
measured in millilitres. As with the drill on Charles’ Law, this program
presents four problems, one to solve for each of the four variables in the equa-
tion above.

Unlike many other drill and practice programs, these two do not compare
your answer with the correct one. Instead, they leave that up to you to do. Is
this desirable? Why or why not? If you feel it is undesirable, change the pro-
grams so they do compare answers and calculate a score.

S Print chr$(14) rem switch lower case
10 print "Bovle‘s Law drill"

28 print "Yolume in mitlitliters"

30 print "Preasure in cmmer";

40 print

50 veint(rnd({)N50+52 1100

60 visint(rnd(1)K50+350)%100

70 Puintlrnd(1)%130+150)

80 pl=int(rnd(1>¥150+150)

90 cmc+]

100 on ¢ 9oto 110,150,199,230,270
118 v=@

128 printiprint "Solve for v when"
130 qi=piMvi/P

140 9oto 2060

150 vi=@

160 print "What is vi 9iven”

170 qi=pky/pi

180 9oto 260

190 pe@

200 print:print "Calculate value of P*
210 qispimvisy

220 9oto 260

230 pi=Q

240 printiprint "Solve for P1 given"
298 qimpiyv vl

260 goto 280

270 stop

280 Print "y= ";yv;tabdil);"ps";p

298 print "vi=m "ivi;tabCi1d;"pla";py
308 infut "Your answer';q

319 print "Correct value";ai

320 print

338 90to50

110

Bovle‘s Law drill
Volume in miliiliters
‘Pressure in cm ner

Solve for v when

ve 0@ P 294

vi= 9538 pi= 273
Your ansuer? 114418

Correct value 8821.42837

What is vi given

ve 5400 pm 276
vim @ pim 1950
Your answer? 523821
Correct value 9296.84211

Calculate value of P

ve 7700 p= @
vim 7400 pi= 233
Your ansuer? 18494

Correct value 245.064533

ve 7008 pm 163
vis 9100 Pi= @
Your ansuer? 73000
Correct value 126,923677

111

Photoelectric Emissions

When light of a short wavelength falls on a metal surface, electrons are
emitted from the metal. According to the description of this phenomenon by
Einstein, there is a maximum wavelength for every metal above which no
electrons are emitted. This is called the critical wavelength of the metal.

This program simulates a laboratory experiment in which a metal is placed
in a vacuum and bombarded with soft X-rays. The number of electrons emit-
ted is collected and measured with a microammeter. The program simulates
three trials at each of nine wave lenghts.

After each set of experimental data, the program asks if you would like an-
other run at a higher light intensity. The reason for doing this is that some-
times at low light intensities, not enough electrons have been emitted for
meaningful measurements.

You can increase the precision of the experiment by increasing the number
of wavelengths at which it is run. This value can be changed in Statement 60;
note that the variable L is divided into 1000 in order to express the wave-
length in Angstroms. One Angstrom (A) equals 10-® centimeters or 10-%
microns.

Here are the coefficients for several metals:

Silver .308
Bismuth .338
Cadmium 318
Lead .340
Platinum .385

It is a rare physics laboratory in a high school or college today that has the
experimental apparatus to run this experiment, yet with a small computer the
equipment can be simulated. There are many other things with which you
would not normally be able to experiment that can be simulated with a com-
puter. Things such as a nuclear power plant, a malaria epidemic, an urban
mass transit system, and a bicycle factory.

Can you write a simulation for a real world system? You will find sections
on simulations in the books Computers in Mathematics and Computers in Sci-
ence and Social Studies. These, along with articles in Creative Computing
magazine, might be of some help in writing a simulation of your own.

112

S print chr$(i4) rem switch lower case

10 Print "Bombardment of metal with soft X-ravs,”
20 inPut "Coefficient”;v

30 k=int{1+2¥rnd(1))

33 print

40 print "QutPut in microampPs"
45 print

50 Print " Wave Trial Trial"
35 print "Length 1 2"
56 print " "

60 for 1=,42 to .25 step -.02,

70 mmint(1000/1)

80 Print m;

9@ for =i to 2

180 if 1Dv then 130

110 i=sqr{int{25Mrnd(1)))

120 goto 140

130 1wsqr(iomkMi+int (3BMrnd(1)))

140 nmint(10%i+.3)/18

130 print tablJ#7);n;

160 next J

170 print

180 next 1

190 print:infut "Increase intensity of lisht (y,n)";a$
210 if a$="n" or a$="N' then 270

220 inPut "By what factor (1 to 1@ f
240 k=ihs

230 pPrint

2608 9oto 30

270 stop
Bombardment of metal with soft X-rays.

Coefficient? ,34

QutPut in microamps
Wave Trial Trial

Length 1 2

2380 10.3 1@.2
2%0 18.3 1e.5
2631 11.2 11

2777 11 11.1

2941 3.3 2.8
3123 3.6 4.2
3333 1 4.9
3371 2.4 1.7
3846 3.5 1.7

Increase intensity of light (y,n)? y
By what factor (1 to 18)? S

Wave Trial Trial
Lenoth 1

2380 3.1 %0
2%ee 30.2 30.3
2631 Se.i 5e.i
2777 sa.

2941 4
3123 4.
3333 3.
st 2
3846 1

Increase intensity of light (y,n)? n

113

Mutation of Moths

This program is a simulation of the growth of a colony of pepper moths.
The program allows a genetic mutation to be introduced in some year be-
tween 1 and 30. The mutation can favor either dark or light colored moths.

The program as it appears starts with a total colony of light moths; you
could add an initial group of dark colored moths in Statement 45 as P1.

The sample run shows a mutation which favors dark moths occurring in
Year 3. The mutation affects about 2% of the light moths each year and
causes them to become dark. The program displays the number of moths of
each color over a 30-year period.

Obviously, because of the long time period involved it would be difficult to
carry out this experiment in school, so the computer again is of real benefit.

3 Print chr$(i4) rem suitch louer case

18 print "Mutation of a colony of moths."
20 inPut "Rate of mutation (1 to 18)";m
40 pOw10000

50 z=p@

60 inPut "Environmental change occurs in year";x
80 1af

90 dw2

100 inPut "Change favors lisht or dark (L.D)":e$
120 print:print "Year Dark Lisht"

128 pPrint "eese come cceoat

130 for t=i to 30

140 if tdmx then 178

156 pi=@

160 goto 230

170 if «$OO"D" and e$CO"d" then 150

180 Pisint(pi+,@1Mmmpo+,3)

190 pOwint(z~pi+.5)

200 if pPi1Cz then 230

210 pimz

220 po=Q

230 Print t.tab(3);p1;tab(12);r0

240 next t

The so-called “killer bees” that were introduced into South America in the
mid 70’s were supposed to help honey production because they were much
more energetic than the lazy honey bees in Brazil. The idea was that they
would mate with the existing honey bees and produce a more productive
strain. However, they went on a rampage killing people and terrorizing the
country. Then they started to migrate north. U.S. agricultural officials be-
came alarmed that they would invade this country and bring death and
destruction.

114

Mutation of a colony of moths.

Rate of mutation <1 to 18)? 2
Environmental change occurs in vear? 3
Chanse favors 1isht or dark (L.D)? d

Year Dark Light
1] 10000
2 -]) 10000
3 208 96800
4 356 9624
3 388 9412
[776 9224
7 962 9049
8 1141 8839
9 1318 8682
10 1492 8508
11 1662 8338
12 1829 81714
13 1992 8008
14 2182 7648
15 2309 7691
16 2463 7337
17 2614 7386
18 2762 7238
19 2997 7893
20 3049 6951
21 3188 6812
22 3324 6676
23 3458 6542
24 3389 6411
23 3747 6283
26 3843 6157
27 3966 5034
28 4987 3913
29 420% 5795
30 4321 3679

Over the years, the killer bees have started to mate with the more docile
South American honey bees, but only at the rate of 3% per year. Assuming
they pose a danger to the U.S. until their numbers are reduced to 15% of
their original quantity, how many years will it take for this to occur? The
present migration patterns will bring them to the U.S. by 1989; will they still
be dangerous (assume that the year of introduction was 1974)?

115

Projectile Motion

The path followed by a projectile is called its trajectory. The trajectory is
affected to a large extent by air resistance, which makes an exact analysis of
the motion extremely complex. We shall, however, neglect the effects of air
resistance and assume the motion takes place in empty space.

In the general case of projectile motion, the body (bullet, rocket, mortar,
etc.) is given an initial velocity at some angle 6 above (or below) the
horizontal.

If Vg represents the initial velocity (muzzle velocity), the horizontal and
vertical components are:

Vox = Vocose s Voy = Vosm()
Since we are neglecting air resistance, the horizontal velocity component
remains constant throughout the motion. At any time, it is:
Vi = Vox =V, cosf = constant (1)

The vertical part of the motion is one of constant downward acceleration
due to gravity. It is the same as-for a body projected straight upward with an
initial velocity Vg sin 6. At a time “t” after the start, the vertical velocity is:

Vy = Voy -gt=Vsinb-gt (2)

where *“g” is the acceleration due to gravity.

116

The horizontal distance is given by:
x=V t=(V cosf)t 3)
and the vertical distance by:
y= cht - 1/2 gt?
=(Vgsin8)t-1/2g2 4

The time for the projectile to return to its initial elevation is found from
Equation (4) by setting y = 0. This gives

2Vsind

t=—————
g

The horizontal distance when the projectile returns to its initial elevation is

called the horizontal range. “R.” Introducing the time to reach the point in
Equation (3), we find:

)

2 .
_ 2V0 sin @ cos 8

R= 6
. (6)
Since 2sin 6 cos 6 = sin 26, Equation 6 becomes:
V,? sin 20
R=——" (N

The horizontal range is thus proportional to the square of the initial veloc-
ity for a given angle of elevation. Since the maximum value of sin 28 is 1, the
maximum horizontal range, Rmax is Vo2/g. But if sin 26 = 1, then 26 = 90°
and 6 = 45°. Hence the maximum horizontal range, in the absence of air
resistance, is attained with angle of elevation of 45°.

From the standpoint of gunnery, what one usually wishes to know is what
the angle of elevation should be for a given muzzle velocity vq in order to hit
a target whose position is known. Assuming the target and gun are at the
same elevation and the target is at a distance R, Equation (7) may be solved

for 6.
6 =1/2sin™? (VE%—)
0

=1/2sin™! (E:}a;)

Provided R is less than the maximum range, this equation has two solu-
tions for values of @ between 0° and 90°. Either of the angles gives the same
range. Of course, time of flight and maximum height reached are both greater
for the high angle trajectory.

®

117

For example, say the maximum range of our gun is 10,000 yards and the
target is at 5,900 yards:

e 5900
6 = 1/2sin™ 15500
- 1/236°

18°,0r 90° - 18° =72°

Try the computer game Gunner which appears below. Use trial and error
to try and destroy the target (see sample run). You get five chances per target.
How many shots did it take to destroy all five targets? Did you ever fail to de-
stroy a target in five trials?

From the discussion above, you should realize that 45 degrees of elevation
provides maximum range with values over or under 45° providing less range.

The maximum range of the gun will vary between 20,000 and 60,000 yards
and the burst radius of a shell is 100 yards.

You can also determine the correct firing angle from sine tables, or a slide
rule, a scientific calculator or a computer. You should be able to destroy ev-
ery target with just one shot. What happens when the target is very close?
Can you always use whole angles?

Now write a computer program to accept the maximum range of your gun
and the range to the target and then calculate the correct firing angle. You
will have to solve two problems to write such a program:

1. The Basic language does not have an ARCSIN function. However, the
following formula may help.

sin™! x =tan™! X
V1-x2

2.You must convert from radians to degrees.

118

5 Print chr$(l4):rem switch lower case
8 Print chri(14?)

18 Print "You are commanding a dun crew.
9 print

72 r=int(408@0Mrnd(1)+20000)

80 Print "Max ranfe”;r;"sards”

‘90 2=

180 ai=@

110 twint(ri(, 14.88rnd(1)))

120 s=@

132 goto 310

140 print "Min = { deSree”

150 Qoto 320

160 Print "Max = 89 deorees"

178 Soto 320

160 Print "Over by";abs(e); "vards"
199 ooto 320

200 Print "Short by";sbs(e)"vards"
210 9oto 320

220 print “Tarset destroved!”

230 Print s"Rounds used”

248 print

230 simgi+s

260 if zwd then 450

270 zmz4l

2608 print

298 Print "More enemy activity"
308 goto 110

310 Print "Tardet at";t;"yards"
320 rem

338 Print:inPut "Elevation”;b

340 if b>89 then 160

330 if bC1 then 140

360 sws+i

370 1f 3<6 then 410

388 pPrint chre(14?)

Hit within 100 yards of the target.”

Ggg Print tab(12)"Boom!":Print tab(5)"Boomi":Print tab(14)"Boom!":print

Print "Enemy Sot vou first":9octo 480
410 b2=,033Mb: farksin(b2) i xnt~1 enint(x)
420 1f abs(e)<100 then 220
430 if e>180 then 200
440 goto 160
430 print chr8(147);"Total rounds =";si
460 if 81218 then 480
470 Print "Nice shooting!"; :9oto 450

480 Print:Print "Go back to Fort 8111 for more training.”;

490 Print:infut "Try adain C(y,n)";2¢
500 ifzse"y" or z$e"Y" then 50

810 Print:print "0K. Return to camp."
520 stop

550 end

119

You are commanding & Sun crew. Hit within 100 vards of the taroet.
Max rande 33171 yards
Tarcet at 39743 vards

Elevation? 28.%
Over by 4927 wards

Elevation? 23
Over by 1069 yards

Elevation? 23
Short by 1415 yards

Elevation? 23.7
Short by 324 vards

Elevation? 23.9
Short by 274 vards

Elevation? 24
Boom!
Boom!

Boom!
Enemy 90t you first
Bo back to Fort $111 for more training.
Try again (y,n)? v
Max range 38683 yards
Target at 23871 wvards

Elevation? 135
Over by 3543 vards

Elevation? 12
Short by 1941 vards

Elevation? 13.8
Over by 1385 vards

Elevation? 12.6
Short by 821 wvards

Elevation? 13

Target destroved!
5 Rounds used

Try a0ain (v,nd? n

OK. Return to camp.

120

9

Potpourri

Here are five programs that didn’t seem to fit anywhere else. The first and
the last are games, although you may come to think of the lunar landing
simulation as a game also. One is a nifty simulation of smog, and the other
calculates depreciation by three different methods.

121

Number Guessing Game

Here is a computer program that plays the popular number guessing game.
In it the computer picks a secret number between 1 and 100. You attempt to
guess that number in as few tries as possible.

There are many ways to go about guessing the secret number. Let some of
your friends play this game and see what approaches they use to find the se-
cret number. One approach is to start with a guess of 10. If this is too low, in-
crease each guess by 10 until the computer says that a guess is too high.
When this point is reached, start from the previous guess and increase each
guess by 1. This is the method used to solve some of the problems in the chap-
ter on convergence.

Another approach is to try to bracket the number between upper and lower
limits and reduce the limits by steps until the number is finally found. Two of
the convergence programs used this approach.

Is one of these the best way? Well, these methods are not bad, particularly
compared to starting with 1 and simply counting to 100 until the solution is
found. But there is a better way. It is known as binary search.

This technique involves dividing the search domain, in this case 1 to 100, in .
half, and then in half again, and so on until the secret numbser is found. Play
the game many times using different approaches. In the long run you should
find that the binary search approach is the most efficient.

In Line 230, the program contains the statement that “you should not need
more than 7 guesses.” Why? If the secret number was between 1 and 128,
what is the maximum number of guesses that would be necessary to find it?
What if the number range were 1 to 130; then what would be the maximum
number of guesses?

Revise the program to choose a secret number between 1 and 10,000. Now
the upper limit is 100 times the 1 to 100 game here which requires a maxi-
mum of seven guesses to find the secret number; how many guesses will now
be required?

Can you write a program in which the roles of the computer and player are
reversed? In other words, the computer will try to guess your secret number
between 1 and some upper limit. After each guess, you enter L for low, H for
high, or C for correct. Can you write this program so the computer can tell if
you are cheating, i.e., giving it inconsistent clues?

122

S Print chre(14):rem switch louwer case
10 Print "1‘ve a secret number between 1 & 108, Try to Juess it.";
20 print " 111 9ive vou clues.”

30 print

40 Print

50 c=@

60 n=int(rnd(1)%100>+1

70 cwc+l

80 Print tab(10);"Cuess";

98 inPut ¢

100 1f n=9 then 160

118 if 9On then 140

120 pPrint "Too low.”

130 soto 78

148 Print "Too high."

13@ ooto 70

160 print Print "Correct in";c.;"tries."”;

170 if >3 then 200

1680 Print " You were lucks.”

198 goto 240

200 if c>7 then 230

210 Print " Oood Job."

220 soto 240

230 print " You shouldn’t need more than 7 tries."
240 print

250 Print

260 inPut "Play another Qame (v,n)" a$

270 if a$="y" or a$s="y" then 30

280 stop

1‘ve a secret number between { & 100.
Try to suess it.
1711 9ive vou clues.

Ouess? 30
Too low.

Ouess? 73
Too low.

Ouess? 63
Too low.

Ouess? 950
Too low.

CGuess? 95

Correct in 3 tries. Bood Job.

Play another oame Cy,n)? o

123

Depreciation—Three Methods

This program shows how a piece of capital equipment depreciates accord-
ing to three commonly used methods of depreciation: straight line, sum of the
year digits, and double declining.

The program asks for the original cost of the item, its expected life in years
(the period of time over which it is to be depreciated), and its expected scrap
(or sale) value at the end of that time. A table showing the annual depreci-
ation for each of the three methods is then displayed.

5 print chr$(14):rem suitch lower case
18 print "Depreciation by 3 methods."
20 pPrint

3@ infut "Origonal cost”c

%50 inPut "Life (yvears)";l

78 inPut "Scrap value's

90 Print

100 vy=c-g

119 di=y/1

120 Print "Straidht line dePreciation is $";di."per vear.":Print
130 y=((1+1)/20%1

148 z=1

150 Print " Sum of Double”
160 print "Year Digits Declining
165 print "=-—- "

170 for x=1 to 1

180 d2svi(z/y)

190 d2=int{d2%100+,35/108

200 z=z-1

210 d3=2kc/1

220 d3=int(d3%100+.5)/100

230 cmc~d3

240 print x;tab(5);d2;tab{17);d3
250 next x

Depreciation by 3 methods.
Origonal cost? 5000

Life (years)? 8

Scrap value? 500

Straisht line dePreciation is ¢ 537.3 Per vear.

Sum of Double
Year Digits Declining
1 16686.67 2000
2 1438,33 13500
3 1230 1128
4 1041.67 843.73
S 833.33 632.81
6 623 474,61
4 416.67 353,96
€ 208.33 266.97

124

o ———— ey el ey
THINK [iepesc IATE

HL, g
%5

125

Smog Simulation

This program is an adaptation of the smog model originally written by
Herbert Peckham. The model assumes that vehicular traffic is the sole pro-
ducer of smog, a somewhat poor assumption. It also assumes that most auto-
mobile traffic occurs during the daylight hours and that traffic volume is very
low (actually, zero) at night. The smog generated by the cars is dissipated by
atmospheric conditions which vary depending upon sunlight, temperature,
and weather. All of these conditions may be specified by the user.

The model could be improved significantly by taking into account other
sources of smog, by varying vehicular traffic according to the hour of the day,
and by allowing daily variation of weather factors. Nevertheless, even in this
rudimentary form it is interesting and instructive.

A plot of the smog level is produced in Statement 400. Under some con-
ditions, the smog level reaches a value that cannot be plotted because it is
greater than the width of the screen (and printer). For runs with conditions
like this, you might want to delete the plotting routine. A more elegant solu-
tion would be to estimate the maximum value of the smog level from the in-
put factors and calculate an appropriate plotting multiplication factor.

12 Printchr$(147);"Smo9 Simulation®

20 print

30 te?

33 print

40 Print "Cars Per road mile":Print "Los Angeles 200" :print "Detroit 1

a "

45 print "Tulsa 23"

60 Print "Smoo City "5 tinfute

63 Print

;glvrtnt "Smo9 Seneration factor”:print "15%8 Auto 203" :Print"197% Auto .
"

78 print "Bus .010"

80 Print "Smo9 City ";:inPutll

90 Print

100 print "Daytime smo9 breakdown”:Print "in Percent Per hour"

183 print "Clear 82" :print "Cloudy .01

110 Print "Smo9 City ";:inPutri

120 print

130 print "Niohttime breakdoun®:Print "Hot .03":print “Cool .10"
140 print "Smoo City ";:{nPutr

150 print

162 print "Dispersion (X Per hour)":Print "High wind & rain 1.00"
165 pPrint "No wind and dry 9.01"

178 pPrint "Smo® City " inPubr3

{80 Print

190 inPut "Table or Plot <t or P)";a$

200 print "Hour Smo9 Level”

210 prart

220 ki=11

230 timint((t~6)/12)

240 1f t1/2=int(t1/2) then 279

126

2% ki=0

268 r=r2

270 ama+k iNcH1D~ris-r3Ns

280 if s(=0 then s=@

290 tat+l

300 t3=int(t/12)

310 t2=t-t3%12+41

320 x=int(1000ms+.5>/1000

330 if £3/2=int(t3/2) then 350

349 print £2;"PM";tab(7); ‘9oto 360

3%8 print £2:"AM" tab(?);

360 if a$="p" or a$="P" then 398

370 Print x
380 soto 210
390 if x>17 then x=17
400 print tab(6+x);"¥"
418 goto 212

Smo9 Simulation

Cars Per road mile
Los Angeles 200
Detroit 100
Tulsa 23
Smo9 City 7 120

Smog generation factor
1950 Auto . 003
1975 Ruto .081

Bus .018
Smog City ? .081

Daytime smod breakdown
in Percent per hour
Clear .02

Cloudy .01

8mog City? .01

Nishttime breakdown
Hot .03
Cool o1

Smog City? .1i

Dispersion <X per hour)
High wind & rain 1.00
No wind and dry 0.01
Smo9 City ? .03

127

Table or Plot (t or P)? ¢

Hour
9 AM
10 AM
11 AM
12 AM
1 PM
2 PM
3 PM
4 PM
3 PM
& PM
7 PM
8 PM
9 PM
10 PM
11 PM

Smo9 Level
1
1.94
2.824
3.634
4,433
3.169
5.839
6.307
7.117
7.69
8.228
6.594
5.943
5.033
4,295
3,651
3,103
2.638
2.242
1.906
1.62
1,377
1.17
2.1
2.974
3.796
4.568
5.294
3.976

128

Suog Level

£
xX¥
o*
FE

yon I T I I I T I D
L3

22RER2LXL EXTE -~
KKK
t %* %k ****

.u.hkhﬂﬁﬂﬂﬂhﬂﬁhWNPE:;QWﬂﬂMhWNP;;;E
F¥Fdan
XX
*
£

wa*F

33533
#***
*

e
*

222 8EREREREL -3
* Xk
% * %k
**** ***
%* %

* *x k¥
*1=# *

*

;;aqumbmwahntsew4nmawm
;DDD
*

3REXTRT -~ IITTIT FIIF

v L
PP 11
32X

*
*

Lunar Lander Simulation

This program is one of the most popular computer simulations around. It
is available in many versions; this one is adapted from the original program
written in 1969. "

The program represents an exact simulation of an Apollo lunar landing
module during the final descent. This portion of the descent would normally
be controlled by the on-board computer backed up by another computer in
the lunar orbiter, and still another computer on Earth. However, to exercise
your knowledge of physics and to make an interesting game, we will assume
that all three computers have had a simultaneous malfunction. Hence, it is up
to you to land the spacecraft safely.

To make a soft landing, you may change the burn rate of the retro rockets
every ten seconds. You have a choice of not firing at all (burn rate of 0) or of
firing at a fuel rate of between 8 and 200 pounds per second. Engine ignition
occurs at 8 pounds, hence values between 1 and 7 pounds are not possible.
You have 16,500 pounds of fuel. This is 500 pounds more than an actual
LEM has, which will give you a little margin for error. When you get pro-
ficient, change Statement 130 to N = 16000 to simulate the real thing more
closely. The capsule weight is 33,000 pounds.

.Not that this is the way to come in, but if you did not fire the rockets at all,
the estimated time for a free fall descent is 120 seconds to impact (and a huge

splat).
Good luck!
5 print chr$(i4) rem suiten lover case
10 print chr8(147);" Lunar Lander”
13 Print " by David Ahl
20 print:Print "ComPuter malfunction - take manual control of Lunar caPsule.”
38 print

40 print "CaPsule weioht -- 32300 lbs"

43 print "Fuel weight -- 16500 lbs”

50 Print

60 Print "Set retro burn rate every 10 secse to 8 or & value betueen";
70 print "8 & 200 lbs Per sec.”

88 Print

90 print "Miles MPH Fuel Time Burn"
95 Print "ewm—- — ———— ——— -l
100 a=120

110 vel

120 m=33000

130 n=16380

140 9=.001

150 z=1.8

160 p=int{3680Mv+.5)

178 if abs(P)O={ then 150

180 pwint((360@kv+,.5)%10080> /1000
190 if ac1@ then 210

200 dwint{a+.3) goto 248

218 if all then 230

129

220 dwlint(1dWa+,.5))/10 9oto 240

238 dm(int(1000%a+,%))/1000

240 Print d;tab(8);p;tab(17);m=n; £ab(267; 1;tabl34); infut k
268 1f kD200 then 298

278 1f k>7 then 300

260 if k=0 then 300

290 Print "Can’t do--again Please":gotn 248

300 t*10

328 if m~n{.001 then 439

330 if £<,001 then 160

340 sat

330 if mdOn+sik then 370

360 ss{m-n)/k

370 gosub 770

360 if i{=0 then 630

398 if v(E@ then 410

4080 if J<@ than 650

410 Sosub 579

423 9oto 320

430 Print "You ran out of fuel at";1;"seconds."

440 g=(~v+8qr-{yiy+2HaN9)) /9

459 ymvioNs

460 1=1+s

470 w=3600%y

480 Print "On the moon at";int(1):"sec. ImPact velocity was";
483 Print int(100My+.5)/100; "MPh"

490 if wd>1.2 then 510

560 Print "Perfect landing!":end

310 if w>10 then 530

$20 print "OocoomPh! That’s roush on the shocks. You need more Practice!” end
330 if w>60 then 330

340 Print "Severe craft damage! VYou‘re stranded until help arrives.": end
330 print "Sorry, there uere no survivors., You blew it."
360 Print "In fact, vou blasted & new lunar crater”;int(uk,278); "feet deeP!":end
370 i=l+s

960 tat-s

590 mam—gkic

600 a=i

610 ymj

620 return

630 if 2(.003 then 472

640 dmy+ear{uMy+20ak(Q~zik/m))

6350 s=2¥a/d

660 Qo0sub 770

67@ 9osub 570

680 9oto 630

690 wa(1-mkg/(zMk) /2

700 smmiy/(zMiok(wrsar{uluty/z)))+, 05

710 gosub 770

720 if 1<(=@ then 630

730 eosub 570

740 if >0 then 320

730 if v>8 then 690

768 9oto 320

770 qmgiic/m

780 Jmy+Qls~ZHANMC 1 +aNC, THaM(L/3+q8(, 25+4q/5))))

798 i=a~CHsMe/2-yHs+ZzHSHAN(, S+ak{ | /C+a%(1/12+49/20)))

800 return

130

Lunar Lander
by David Rhl

Computer malfunction = take manual control of Lunar cafsule.

Capsule weiSht ~- 32308 lbs
Fuel weight -~- 16308 lbs

Set retro burn rate every 10 s#cs to @ or a value between 8 & 200 lbs Per sec.

Miles MPH Fuel Tine Burn

- - — - o

120 3600 16300 [} ?Q
i1@ 3636 16308 6 7?8
100 3672 16580 2 70
90 3708 16500 % 7?38
79 3643 160@0 48 7 38
69 a%81 15302 Se 730
59 3313 13000 6 7 100
50 3341 14009 70 7 189
41 3161 13000 88 ? 100
32 2974 12000 98 ? 109
24 2779 11000 i8¢ 7 200
17 2323 Sa0e 116 7 200
i1 1832 7000 120 7 200

7.1 1292 Jeee 130 2 200

4.4 693 3008 140 7 200

3.3 32 1000 152 7 13@
You ran out of fuel at 136.666667 seconds.
On the moon 2t 372 sec. ImPact velocity was 448,42 MPh
Sorry, there were no survivors. VYou blew it.

In fact, you blasted a new lunar crater 124 feet deep!

Hammurabi

Hammurabi is one of the all-time favorite computer games. On the one
hand, it may be considered a game, but on the other it is an intriguing simula-
tion of barter and management.

Hammurabi is your servant as you try to manage the ancient city-state of
Sumeria. The economy of the city-state revolves around just one thing—the
annual crop of grain (probably soybeans).

Each year, you must determine how many bushels of grain you wish to
feed to your people (you’ll quickly discover how much a person needs to sur-
vive), how much you wish to use as seed in planting crops for the coming
year, how much you wish to use for the purchase of additional land from
your neighboring city-state, and how much you wish to put in storage.

Of course, if you have a bad harvest or if rats overrun your grain storage
bins, you may have to sell land in order to get enough grain to keep your peo-
ple from starving, or to plant the land for the coming year. Unfortunately,
disasters always seem to strike, forcing you to sell land, when the price is at
an all-time low; but that’s not any different from the real world.

Most people start to play this game with noble ambitions. However, before
long, they start longing for a plague to trim their growing population. Or they
deliberately starve some people to keep things in balance (gosh, maybe these
zero population growth people have something, after all!).

Over the years, this game more than any other, has spawned a host of look-
alikes, extensions, and modifications. Indeed, several manufacturers have
taken my original with no changes whatsoever, put it in a fancy box, and
charged a handsome price for it. Accept no imitations! Here is the original
game (with the dialog shortened slightly) for you to run on your computer.

If you want to experiment with changes, here are some suggestions. In the
existing game, plagues randomly occur 15% of the time; lower this to 10% or
5%. People now require a fixed amount of food; vary this amount slightly
from year to year. Permit the construction of a rat-proof grain bin, but this
must cost a fair amount. Introduce a mining industry as well as agriculture.
How about fishing or tourism? Let your imagination run wild. Experiment!
Have fun!

132

% print chr8(l4) rem suitch lower case

10 print chr$(14?);"Try to sovern ancient Sumeria for 18 vears. "

30 di=Q:pim@

40 z=0:pw95:gw2B00 he3000: emh~g
50 y=3:amh/y:inG:qs]

€0 d=0

70 printizmz+!

8@ pPrint " Hammurabi: Year";z
99 print d;"Starved,";i;"Born"
100 pup+i

110 1f 9X@ then 140

120 psint(p/2)

130 print " Horrible Pladue!™
140 print " PoPolation =";p

150 Print " You own”;a’"zcres which Produced”iy;”
180 print " Rats ate" e;"bushels.”
190 print s;"bushels stored.":Print
200 1if z=11 then 840

210 e=int(10Mrnd(1)) ysc+i?

220 print "Land ="y, "bushels/acre"
230 intut "Acres to buv";q

250 1f 40 then 810

260 if yka(=g then 290

279 Sosub 739

2680 goto 230

298 {f 9=Q then 320

300 amp+q:sws-y¥q:ceP

310 9oto 360

320 {nPut "Acres to sell";q

330 if 9¢0 then B10

340 1if a<la then 370

3%0 gosub 760

360 9oto 320

370 amp-q:gwst+yid c=@

360 pPrint

390 input “Bushels for feed";q
408 1f <0 then 810

410 if q{ms then 440

420 9osub 730

430 9oto 390

440 gws-q:cwi

430 pPrint

460 inPut "Acres to seed":d:if d=d then 570
470 if d<@ then 810

460 1f d{=athen 500

490 P0to 460

%500 if int(d/2){=s then 3308

S10 sosub 730

320 9oto 460

$30 1f dC10Mp then 360

540 Print "Not encuSh Peokle”
530 doto 460

560 smg~int(d/2)

370 Sosub 790

$60 ywc:hudity iemd

390 Qosub 790

600 if int(c/2){c/2 then 620
620 s=g~e+h

£30 sosub 790

640 imint(cH(20%a+s)/P/100+1)
630 c=int(q/20)

660 amint(1ON(2Mrnd(1)-.3))

133

bushels per acre.”

670
680
690
700
710
720
730
750
760
780
790
800
810
840
230
870
860
910
920
230
940
950
960
970
930
990

ifpdc then 60

dep-c:if d>.45% then 710

pim((z-10p 1 +aM100/P) /2

puc:dindi+d goto 70

print:Print d;"PeoPle starved!"

Print "You are imPeached.":g9oto 1030

Print "Think afain. You have Just”;s;"bushels”

return

print "Think afain., VYou owun only";a;"acres”

return

emint(rnd(1¥S)+1

return

print "Hammurabi: 1 can’t do that. Get yourself another steward!':g9oto 1030
Print "In 1@ years";pi;"%"

Print "starved Per year, R total of";dl;"died!"

1=a/p

Print "You started with 10 acres/person and ended with";1;"acres/Person.”
Print

if P1>33 then 7208

if 147 then 720

if £1>10 then 950

1f 1<9 then 9590

if P13 then 101Q

if 1<10then 1010

print "Fantastic performance!":9oto 1030

print "Very heavy handed! Peorle are rebelling!":aoto 1030

181e print "Not bad. but could be somewhat beter."
1030 print:print "So long for now."
1035Q end

Try to sovern ancient Sumeria for 12 vears.

Hammurabi: Year 1
0 Starved, S Born
PoPolation = 100
You own 1000 acres which Produced 3 bushels Per acre.
Rats ate 200 bushels.
2800 bushels stored.
Land = 20 bushels/acre
Acres to buy? @
Acres to sell? 0

Bushels for feed? 1500
ficres to seed? 500

Hammurabi: Year 2
25 Starved, 7 Born
Porolation = 82
You own 1000 acres which Produced 3 bushels Per acre.
Rats ate @ bushels.
2530 bushels stored.
Land = 23 bushels/acre
Acres to buy? @
Acres to sell? @

Bushels for feed? 13500

134

Acres to seed? 300

Hammurabl: Year 3
? Starved, & Born
Porolation = 83
You own 1080 acres which Produced 2 bushels Per acre.
Rats ate 2 bushels.
1800 bushels stored.
Land = 24 bushels/acre
Acres to buy? @
Acres to sell? 202

Bushels for feed? 1500
ficres to seed? 500

Hammurabi: Year 4
8 Starved. 6 Born
Horrible Plaque!
PoPolation = 42
You own 800 acres which Produced 4 bushels Per acre.
Rats ate @ bushels.
6832 bushels stored.
Land = 20 bushels/acre
Rcres to buy? @
ficres to sell? @

Bushels for feed? 2000

Acres to seed? 800
Not enoush PeoPle
ficres to seed? 500
Not enoush PeoPle
Acres to seed? 300

Hammurabi: Year S

@ Starved, 27 Born

Popolation = 67

You own 800 acres which Produced { bushels Per acre.
Rats ate O bushels.

5000 bushels stored.
Land = 20 bushels/acre
Acres to buy? @
Rcres to sell? 20

Bushels for feed? 2000

Acres to seed? 5002

Hammurabi: Year 6

@ Starved, 9 Born

Porolation = 76

You own 788 acres which pProduced 2 bushels Per acre.
Rats ate O bushels.

4130 bushels stored.
Land = 20 bushels/acre
Reres to buy? @
Reres to sell? 60

Bushels for feed? 23500

135

fAcres to seed? 300

Hammurabi: Year 7
@ Starved. 8 Born
Popolation = 84
You own 782 acres uhich Produced 2 bushels Per acre.
Rats ate @ bushels,
4002 bushels stored.
Land = 22 bushels/acre
Acres to buv? @
Acres to sell? @

Bushels for feed? 2000

Acres to seed? 600
Acres to seed? 30

Hammurabi: Year 8

@ Starved, 6 Born

PopPolation = 99

You own 702 acres which Produced 3 bushels per acre.
Rats ate O bushels,

2075 bushels stored.

Land = 21 bushels/acre
Acres to buy? @
Acres to sell? 300

Bushels for feed? 3000
Acres to seed? 300

Hammurabl: Year 9

@ Starved, S Born

PoPolation = 9%

You own 400 acres which Produced 1 bushels Per acre,
Rats ate O bushels.

5323 bushels stored.

Land = 18 bushels/acre

Acres to buy? @

fcres to sell? 400
Think again. You own only 480 acres
Acres to sell? 40

Bushels for feed? 2000

Acres to seed? 500
Acres to seed? 300

Hammurabl: Year 10

@ Starved, 7 Born

PoPolation = 102

You own 360 acres which Produced 2 bushels per acre.
Rats ate @ bushels.

4693 bushels stored.

Land = 19 bushels/acre
ficres to buy? 100

Bushels for feed? 0

Acres to seed? @
182 PeoPle starved!

You are imPeached.

So long for now.

136

— n | B

(EJ}IA:JE a9 J

o,

“Rats! A bacterium just ate the new micro-mini computer.”

138

References

The magazine referred to in the text is:

® Creative Computing. This is the leading magazine of software and applica-
tions for all small computers. It carries articles, tutorials, how-to applications,
and extensive in-depth evaluations.

Books referred to in the text include:

® Computers in Mathematics: A Sourcebook of Ideas. Hundreds of classroom-
tested ideas for using computers to learn about mathematics.

® Computers in Science and Social Studies. Scores of simulation programs in
biology, ecology, physics and management of real world systems.

All of these books and magazines are available from Creative Computing.
Write or call for the current price:

Creative Computing

39 E. Hanover Ave.

Morris Plains, NJ 07950

(800) 631-8112

In NJ (201) 540-0445

139

Notes

140

