

THE EASY

GUIDE TO YOUR

COMMODORE 64

THE EASY

GUIDE TO YOUR

COMMODORE 64®

JOSEPH KASCMER

Berkeley • Paris • Diisseldorf

Cover art by Sato Yamamoto

Book design by Ingrid Owen

Commodore 64, VIC-20, and Datassette are trademarks of Commodore Business

Machines, Inc.

CP/M is a registered trademark of Digital Research, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However,

SYBEX assumes no responsibility for its use, nor for any infringements ofpatents or other

rights ofthird parties which would result. Manufacturers reserve the right to change speci
fications at any time without notice.

Copyright©1983 SYBEX Inc. World Rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without the prior agreement
and written permission of the publisher.

Library of Congress Card Number: 83-40232

ISBN 0-89588-126-8

Printed in the United States ofAmerica

10 987654321

ToJ. A, Kubokawa, a researcher andphotographer

with apassimfor quality.

CONTENTS

Acknowledgements ix

Preface x

1 COMING INTO POWER 1

Master and Servant Meet 1

Setting Up the Computer 1

Control from the Keyboard 4

2 VIDEO PRINTING 10

Screen Control 10

Video Printing 13

3 PLANS AND PROGRAMS 19

Scheduling Commands 19

Stand-ins For Numbers 23

Numerical Predictions 25

Commands in Groups 27

DECISION MAKING BY COMPUTER 29

Usingjudgement 29

Simulations 31

PROGRAM CONTROL 35

A Programed s Kit ofCommands 35

Commands for Moving Among Statements 40

Repeating Within Limits 42

HANDLING WORDS AND

INFORMATION 50

Strings: Words from the Computer 50

Inside Information 57

The Clock Inside 63

Outside Contact 64

/ ECONOMY CLASS STORAGE—TAPES 79

Using Programs on Cassette Tapes 73

Facts and Files on Tape 76

8 HIGH SPEED STORAGE—DISKS 79

A Marriage ofMachines 79

Using Prerecorded Disks 82

Programs from Computer to Disk 87

Using More Than One Disk Drive 91

Facts and Files on Disk 93

BUILDING AND REBUILDING

PROGRAMS 96

Adding Program Parts 96

Rebuilding Borrowed Programs 102

10 THE INSIDE STORY 112

A Step Past the Translators 112

What Is the Commodore 64? 116

Expanding the Computer 117

APPENDICES 120

A Special-Purpose Commands 120

B Jargon Phrase Guide 123

Index 128

IX

ACKNOWLEDGEMENTS

Thanks to James Compton for his editing and to those in the editorial

and production departments at Sybex who were active in turning my

manuscript into this book.

Special thanks to Heidi Miller for preparing the index and to Bill Mlotok

for bringing his technical knowledge, classroom experience, and good sense

to a valuable review of the book's content.

Also thanks to Paul Losness of PC Computers in El Cerrito, CA, for

providing information.

The poetry on page 11 is by Philip James Bailey, from his Festus. The

verse on pages 12-13 is from Robert W. Service's "The Law of the

Yukon."

PREFACE

This book is about controlling your personal computer. In it you will

discover how you can achieve control over a computer in a few days. Jar

gon and theories of computer science don't help in this aim, and in this

book you won't be burdened with them. To direct the computer as an

extension of your own mind, you need no special background in mathe

matics or bent for programming. In fact, you can control a computerjust

as easily as you do an automobile or typewriter. As you learn die essen

tials, the operation becomes simpler.

If you have a particular use for the Commodore 64, or if you're inter

ested in finding out about control of a personal computer, this book is for

you.

Because you can use a computer in different ways, you can approach

this book from more than one direction:

Chapter 1 is a brief introduction telling where the controls are, how to

plug your computer system together, and what buttons to push and not to

push. No matter what you plan to use your computer for, a run through

this chapter will put you at ease with the box in front ofyou.

Ifyou plan to use only prerecorded programs and wish to avoid writing

computer directions yourself, you can skip ahead to Chapter 7 if the pro

grams are on cassette tape, or to Chapter 8 if they are on disks. And if

you'd like to make full use of the programs on disks, read the second part

of Chapter 9. Since the Commodore 64 isn't yet as well supplied with

commercial software as some older personal computers, you may not

want to limit yourself to these chapters.

If you'd like to write your own directions to the computer, you should

read Chapters 2,3, 4, 5 and 6, and also the first part ofChapter 9.

The most optional chapter ofthe book is Chapter 10. Ifyou'd like more

XI

control over the Commodore 64 than is provided through the BASIC

commands, or have an interest in how the computer works and what else

can be done with a more customized computer, read Chapter 10. It will

help you to understand the machine and to expand your abilities with it.

For using the Commodore 64, however, it's not essential.

The chapters concentrate on the commands and operations most useful

to the general reader. You'll find other available commands built into the

Commodore 64 listed in AppendixA according to their type and use.

In the interest of clarity and ease of comprehension, jargon has been

avoided throughout the chapters ofthis book. However, you may encoun

ter other computer users, salespersons or books lapsing into the dialect.

Appendix B can help make them intelligible to you.

A decade before the first Commodore 64 was built, the idea of a "per

sonal computer" with such capabilities was unheard of. Its current avail

ability is a measure of the changes brought about by the technology

developed in the intervening years. More changes lie ahead, and in learn

ing to control a computer, you are taking a first step toward preparing for

those changes.

Editor's Note

To get the most out ofthis book, you should read it with your computer

in front of you, set up and connected to a video monitor or TV set as

described in Chapter 1. As each new command, group of commands, or

sample program is presented, type it in exactly asprinted to see the results on

your screen. Be sure to type in each character that you see: letters, num

bers, punctuation marks, and spaces. (In typeset program lines, the space

equivalent to one stroke of the space bar on your keyboard will vary

slightly, but it will always be approximately equal to the space between

words in this sentence.) The spaces are not absolutely essential; any pro

gram will run without them, but you will find the screen display much

easier to read ifyou include them.

After you type in a sample program, and before you run it, check what

you have typed against the book. Ifyou find you have made a mistake, go

back and correct it. (You'll see how to do that in Chapter 2.) The pro

grams have all been carefully tested, and will run as described if entered

correctly.

Finally, you will see that the Commodore 64's command words (or

"reserved" words) have been set in boldface type. Boldfacing is simply a

typographical convention, meant to call your attention to these words and

help you to remember them. You will not see this effect on your screen,

and you need not try to reproduce it.

MASTERAND SERVANT MEET

Facing a computer for the first time, people often feel powerless over

the machine—and for a good reason. After all, when it comes to com

puters, knowledge is power, and we all start off ignorant.

A worker of incredible speed and unimaginable precision, the computer

is nonetheless a completely obedient servant. It only needs directions, stated

in terms it was built to recognize. You can command the Commodore 64

with a vocabulary no larger than that understood by a highly-trained

canine. A computer following your commands can choose among alterna

tives, organize information, search for facts and patterns, and control

devices. It can be ordered to begin any duty in response to a single word or

by the triggering ofa single event.

No computer is all-powerful or all-knowing, and there are limits to the

operation of any machine. But those limits arise from the design and

speed ofthe computer and the size of its memory.

Although you can gain control ofthe Commodore 64 in a short time, to

do so, you must first learn to become its master. Through this book you'll

find a clear way to dojust that.

SETTING UP THE COMPUTER

The Commodore 64 computer can be set up by anyone who can posi

tion a typewriter and hook up a television. It can work anywhere a type

writer might, in any place undisturbed by strong vibrations, or extremes

of temperature, dust, or humidity. In fact, the Commodore 64 will work

THEEASYGUIDE TO YOUR COMMODORE 64

in most places where its operator is comfortable. A typical set-up is

shown in Figure 1.1. The television (or video monitor) you'll use for a

display screen can sit anywhere reached by the cable from the computer.

You can prepare the Commodore 64 for use by connecting only two

electrical cords, one for power and one for the television or monitor. One

end ofeach cord plugs into the computer. On the right side ofthe Commo

dore 64, shown in Figure 1.2, you'll see a switch marked ON, and a circu

lar jack next to the label POWER. Into that jack you can plug the

sleeve-like end ofthe power cord. With the switch turned to OFF, you can plug

the three-pronged end ofthe power cord into a wall outlet to complete the

power connection.

The connection to a television is just as simple. Near the center of the

computer's back panel, and next to a small switch, you'll find a small,

projecting metal jack, which takes the televison cable. The cable has the

same post-in-a-sleeve metal phono plug at each end. One end plugs into

the metal television jack at the back of the computer; the other end fits

into a jack on a small box that allows you to switch the monitor between

television reception and computer display. From that box (known as a

"switch box") come wire leads that you can attach to the television in

place of the vhf antenna leads. If you next connect the vhf leads to the

other side of the switch box, you can switch between television reception

Figure 1.1: A typical Commodore 64 computer set-up.

COMINGINTO POWER

and computer display. Figure 1.3 shows the system connected for com

puter use only.

The final adjustments include setting your television tuner to either

channel 3 or channel 4, whichever one is not used for broadcast in your

Figure 1.2: Power connection to the computer.

Figure 1.3: Connections between computer and television.

4 THEEASYGUIDE TO YOUR COMMODORE 64

area. Also set the channel on the computer. If channel 4 is unused, slide

the small, recessed switch at the back of the computer (next to the metal

television jack) toward the jack. If it's channel 3, slide it away from the

jack.

Now that the connection between computer and television is complete,

you can use the computer by setting the switch on the box to COM

PUTER. To use the television for tv reception, slide the switch to TELE

VISION.

If you use a video monitor, a different cable—one ending in a five-pin

plug at the computer end and a phono plug at the monitor end—connects

to a flat, circular videojack at the back ofthe computer, next to the televi

sion jack, as shown in Figure 1.4.

Once connected to a television or monitor, the computer before you is

part of a fully operational system that can display on the screen whatever

you type.

CONTROL FROM THE KEYBOARD

All you need to command the computer sits before you. The keyboard

is laid out like a typewriter's, but has a few extra keys that give you more

control than is possible with a typewriter.

Before turning on power to the computer, consider a simple, comforting

fact: Nothing you can do from the keyboard will damage the computer.

With some ofthe commands you'll find in this book, you can change the

screen display, the contents of the computer's active memory, or even the

Figure 1.4: The video monitorjack.

COMINGINTOPOWER

way the computer works, but when you turn the power to the Commo

dore 64 off and then on again, you wipe dean the changes you've made.

The computer then greets you in readiness, all previous keyboard manip

ulations forgotten.

The single most useful bit ofadvice while you're learning to operate the

computer from the keyboard is this: If something interests you, try it. The

worst that can happen will be the loss of some command, information or

calculation. In the earliest stages, while you're experimenting, such a loss

is part oflearning to control the beast. No matter what happens, the com

puter will emerge from human keyboard error or curiosity completely

undamaged.

When you switch on first the monitor or television, then the computer,

printing will appear on the screen. Across the top, if all is connected and

working properly, three lines will be printed as light letters on a dark

screen, as in Figure 1.5.

The Cursor

At the upper left ofthe screen you will see the word READY, and below

that a character-sized flashing square; these are signals from the computer

**** C0MK0D0RE 84 8ASIC U2 ****

S4K RAM SVSTEM 38911 8ASIC 8YTES FUZE

REAOV.

Figure 1,5: Display on the screen after the computer isfirst turned on.

THEEASYGUIDE TO YOUR COMMODORE 64

that it's ready to read whatever you type from the keyboard. The flashing

square marks where the next character from the keyboard will appear on

the screen, and is known as the cursor.

The Commodore 64 is designed to display immediately what's typed

from the keyboard, and will print light blue letters on a dark blue screen as

you type them. The word READY is a signal from the computer that it's

prepared to accept a command. But whether you type one ofthe scores of

commands the Commodore 64 can act on or a line ofpoetry, your typing

will appear immediately on the screen. And as you type, the computer

waits for a signal from you that will tell it to act on the command you've

just typed.

The RETURN Key

You signal the computer to act on a typed command by pressing the

RETURN key. If the command is no more than two lines long and the

cursor is on one of those lines, the computer will compare the typed com

mand with a set of built-in directions, and take action. But if you merrily

type along without pressing the RETURN key, the computer will follow

directions that tell it to simply display characters on the video screen.

The SHIFT and C= Keys

Like a typewriter, the Commodore 64 can display both uppercase and

lowercase letters. But unlike a typewriter, it can also display certain graph

ics symbols. These are the small boxed designs on the front ofmost ofthe

keys. When you first switch on power to the Commodore 64, the com

puter is automatically readied to display the uppercase of any letter key

that you press. Press a number key and the number will be displayed.

Press a key with punctuation and that mark will be displayed. By pressing

certain combinations of keys, you can also type the graphics designs

shown on the front of each key. If you hold down the SHIFT key while

pressing a key with graphics symbols, the symbol on the right of the key

will be displayed. Hold down the C = key (or "Commodore" key), next

to the SHIFT key, while pressing a key, and the symbol on the left of the

key will be displayed.

Each time you turn on power to the computer, it is automatically set to

recognize keystrokes in the uppercase-graphics mode. You can switch it

into another keystroke mode by pressing down the SHIFT and C = keys

together once, and then releasing them. Once this is done, the computer

treats a solitary keystroke as a signal to display a lowercase character.

Pressing the SHIFT key and a letter key will now produce an uppercase

COMINGINTO POWER

character, and pressing the C = key and a graphics symbol key will pro

duce the character shown on the left ofthat key, as it did before.

You switch out of this lowercase-and-uppercase mode and back to the

uppercase-and-graphics mode by pressing SHIFT and C = again. In

fact, each time you press the SHIFT and C = keys together you switch the

computer from one display mode to the other. Any typing already on the

screen will also change when the computer is switched from one display to

the other. Together, the SHIFT and C = keys act as your switch to control

the display from the computer.

The SHIFT LOCK key can be set to either of two positions. When

pressed down and allowed to click into a lowered position, its effect is the

same as holding down the SHIFT key. Pressed again, the SHIFT LOCK

key will click into a raised position, and there is no such effect.

Moving the Cursor: the UP/DOWN and RIGHT/LEFT keys

Treating the screen of the Commodore 64 like the video equivalent of

a sheet of paper in a typewriter, you can type on it anywhere within its

preset margins. With die two arrow keys in the lower-right corner of the

keyboard, you can move the flashing cursor to any location on the screen,

and whatever you type will appear at that point. When you press it alone,

the key marked with up-and-down arrows (we'll call this the CURSOR

UP/DOWN key) moves the cursor down on the screen. Likewise, the

key marked with right-and-left arrows (we'll call this one CURSOR

RIGHT/LEFT) moves the cursor to the right. Ifheld down, both ofthese

keys continue this cursor movement until released. When either the

SHIFT, SHIFT LOCK or C = key is held down while the CURSOR

UP/DOWN key is pressed, the computer moves the cursor up the screen.

Likewise, the CURSOR RIGHT/LEFT key moves the cursor to the left

when it's used in combination with any ofthose three keys. Once the cur

sor is at the bottom of the screen, the down arrow cranks up all the typed

lines like printed lines on an endless roll ofpaper being fed through a type

writer.

Inserting, Deleting, and Clearing: INST/DEL and CLR/HOME

Two other keys allow you to control the display further. The key in the

upper-right corner of the keyboard marked INST DEL serves two func

tions. It can insert or delete. When pressed by itself, it directs the cursor to

erase and close up one space to the left of the cursor. When pressed while

the SHIFT key is held down, it directs the computer to open a space to the

left of the cursor and move the cursor there, so another character can be

8 THEEASYGUIDE TO YOUR COMMODORE 64

typed. Ifyou hold down this key in either mode ofoperation, it will repeat

the effect until you release it.

The key marked CLR/HOME, next to it, works in two ways also. You

can use it to direct the computer to send the cursor "home," to

the upper-left corner. Or, pressing SHIFT and that key together

(SHIFT-CLR/HOME), you can direct the computer to clear the screen

and send the cursor up to that corner.

More Keys for Control

The three keys marked RUN STOP, CONTROL, and RESTORE

can be used to alter the computer's actions when it's under the control ofa

program ofcommands.

The four rightmost keys, marked fl f2, f3 f4, f5 f6, and f7 f8, can each

be called on by programs to control the computer in specially pro

grammed ways.

RETURN Revisited

By sending a signal to the computer to act on what you've typed at the

keyboard, the RETURN key works as your messenger in routing key

board statements into the translator ofthe Commodore 64. When you press

the RETURN key after typing something in response to a READY

prompt, the computer's translator compares what you've sent with the

vocabulary of words built into it. If the form of your typed statement

matches a command, the translator passes the orders on to the processor

part ofthe computer, which takes action according to built-in directions.

You can move the cursor anywhere around the screen and type any

thing you like. If you press the RETURN key and the translator doesn't

match your instructions with its vocabulary, the computer will signal you

that there is a mismatch. In the Commodore 64 this signal takes the form,

"PSYNTAX ERROR". This type of "error" reply from the computer

simply means there has been a momentary lapse in commmunication.

("Syntax" refers to the exact form or sequence in which the computer

expects commands to be given.) In any case, the RETURN key is one

you'll find useful when you're ready to give commands to the computer.

Summary ofKeyboard Operations

Each key has an effect (prints a character or sends a command), and

some have several different effects when used in combination. You can

acquire programs (sets of commands) that will change the effect of any or

COMINGINTO POWER

all of the keys. Pressing any key simply provides a signal to the computer,

which responds to that signal by printing a character or taking some pre

planned action. All the keys are shown in Figure 1.6.

Whether you are using prerecorded commands (from tapes or disks, as

explained in Chapters 7 and 8) or direct commands, you ultimately con

trol the Commodore 64 through the keyboard. The keyboard serves as

reins and bridle to the computer and any devices attached to it.

Figure 1.6: The Commodore 64 keyboard.

Johann Gutenburg set the standard for printing five hundred years

ago, and it really hasn't changed much until recently. In fact, only the

introduction ofthe computer in the last few years has had a major impact.

Typesetting by computer puts the printed page on a screen before it goes

on paper. With your Commodore 64, you can create screen displays con

trolled by command.

SCREEN CONTROL

In simply relaying your keystrokes to the video screen, your Commo

dore 64 draws upon none of its real capabilities. With commands match

ing those to which it responds, however, you can direct the computer in

preplanned displays. To some commands, the computer reacts instantly

when you send them with a press of the RETURN key. Among these

"immediate" commands are those which enable you to fashion the screen

display.

You can fill the screen with any characters you like by typing on and on

from the keyboard without sending the computer a recognizable com

mand. If you type more than a screenful, the computer will move the

entire display up one line to make room for the most recent line, and lose

the topmost line from the screen.

You can direct the Commodore 64 with single keystroke commands as

well as typed word commands. Pressing the SHIFT and CLR/HOME

keys at the same time, for instance, directs the computer to clear the

VIDEO PRINTING 11

screen of all printing and to move the flashing cursor to the upper left cor

ner. When given this command, the computer presents a blank screen,

regardless ofwhat was typed there before. Ifyou wax poetic, for instance,

and type onto the screen something like the lines in Figure 2.1, you can

remove what you've typed at once by doing the following:

(press SHIFT and CLR/HOME)

Directed by this keystroke command, the computer erases all printing,

leaving a blank screen with the cursor flashing in the upper-left corner—

the video equivalent ofa fresh sheet ofpaper and poised pen.

When you type keyboard characters, the computer sends them to the

screen as light-colored dot formations on a dark background. It answers

you in the same way, with a light-on-dark display it chooses automatically.

There are, however, alternative ways ofpresenting text on the screen, use

ful in varying the display or calling attention to particular parts oftext.

If you want dark characters to appear, each on its own light-colored

background, you can direct the Commodore 64 to print them that way

with the keystroke command:

(press CTRL and 9)

and everything that follows on the screen will be printed in what is called

Figure 2.1: Onepossible screen display.

12 THEEASYGUIDE TO YOUR COMMODORE 64

the "reverse-video" mode. The CTRL-9 command controls the com

puter like a switch, so that until some other command is sent to change the

screen display (or the RETURN key is pressed), all new printing on the

screen will appear as dark-on-light characters. Characters typed before

the CTRL-9 keypress command was sent remain as light-on-dark, the

"normal" display mode the computer always presents automatically, until

otherwise directed. The poet Robert W. Service, giving the CTRL-9

command at the beginning ofa verse, would have seen a screen like that in

Figure 2.2.

You can switch the computer back into the normal light-on-dark dis

play mode with the keystroke command:

(press CTRL and 0)

which directs the computer to print light-on-dark every character typed

after that command is sent. The same poet, advancing through his poem

after pressing CTRL and 0, would see the screen display shown in Fig

ure 2.3.

You can also create multicolored displays of text. Using the keys num

bered 1 through 8 with the CTRL key, you can choose different colors for

characters printed on the screen. To get yellow letters, for instance, you

OF THE
ES IT PLAI

THIS IS THE LAM
AND EUEfi SHE HA
SEND HOT VOUR F
SEHO HE VOUR ST

R0

Figure 2.2: the effect ofthe CTRL-9command:

VIDEO PRINTING 13

SENO Mf
STRONG

HEN." MHO ARE GRIT TO THE CORE;
SWIFT AS THE PANTHER IN TRIUMPH,
FIERCE AS THE BEAR IN OEFEAT,
SIRED OF A BULLDOG PARENT,
STEELED IN THE FURNACE HEAT.

Figure 2.3: The effect ofthe CTRL-0command.

can press together the CTRL and 8 keys:

(press CTRL and 8)

If the computer is in a light-on-dark display mode, all characters typed

after the CTRL-8 command will appear as light yellow letters on a dark

blue screen. If the command for reverse character display is given,

CTRL-9, the display will be dark blue letters, each on its own yellow

block. You can switch the character display into other colors by pressing

the CTRL key together with any of the other number keys. When you

press the C = key and one of the numbered keys, the computer will dis

play even more colors.

VIDEO PRINTING

The Commodore 64, like any computer worth its circuits, can do more

than display your keystrokes on a video screen. In fact, much ofthe Com

modore 64's computing power lies in the built-in operations it works on

furiously at your command, without giving so much as a clue to what it's

doing. The simplest example can be seen with elementary arithmetic,

which the Commodore 64 works on automatically and unseen when so

14 THEEASYGUIDE TO YOUR COMMODORE 64

directed. The familiar calculator functions ofaddition, subtraction, multi

plication, and division are commanded from the keyboard with the sym

bols + , - , *, and /. Ifyou direct the computer to multiply - 2 and 4, by

typing:

-2*4

you won't see the result, just a PSYNTAX ERROR reply and another

READY prompt. To see the results ofthat multiplication, you must add a

command.

The PRINT Command

The command that directs the computer to display the results of

arithmetic operations on the screen is PRINT. It can be used with an

"operator" command like the multiplication sign, *, to display one ofthe

computer's internal operations. You type this useful command first,

before the operation you'd like displayed, like this:

PRINT-2*4

As used here, the PRINT command directs the computer to display the

result ofthe multiplication that follows it. After sending this command by

pressing the RETURN key, you'd see the value — 8 on the screen and a

new READY prompt below that, signalling the computer's readiness for

another command, as shown in Figure 2.4.

You can put the PRINT command into service for any combination of

arithmetic commands according to the rules of algebra, to operate your

sophisticated Commodore 64 as a simple calculator, with entries like this

one:

PRINT 9+ 8-7*6/5

The computer automatically follows a predetermined order of operations

in interpreting arithmetic expressions like the above. First multiplication,

then division, and finally addition and subtraction are carried out, in this

case to give the result 8.6 on screen. To change this built-in sequence of

operations, parentheses are used to direct the computer to work out the

values inside them first, like this:

PRINT (9 + 8-7)*6/5

for a result that will appear, below the PRINT statement, as 12.

But the PRINT command's usefulness goes beyond simply displaying

mathematical manipulations (all of which are listed in Appendix A).

VIDEO PRINTING 15

Figure 2.4: The effect ofthe PRINTcommand.

PRINT is a command you can use often. As well as applying it to direct

some internal operation onto the screen, you can use it to express a senti

ment, a thought, or a fact on the screen in the midst of some other com

puter action. The PRINT command is your typist.

You can direct the computer to print on the screen nearly anything you

type in quotation marks following the PRINT command. For example:

PRINT "So glad to be here."

The computer's response after you press the RETURN key will be the

words,

So glad to be here.

on the line following the command.

Words and numbers can be combined in a PRINT statement. For

instance, you can make the statement:

PRINT "The winning number is..." 30

and see the computer reply:

The winning number is... 30

16 THEEASYGUIDE TO YOUR COMMODORE 64

You can even slip a calculation into a printed sentence, like this:

PRINT 20 "or" 30 "is more than I'm willing to pay. But" 10+5

"sounds right."

for the display from the computer:

20 or 30 is more than I'm willing to pay. But 15 sounds right.

Keystroke Commands in the PRINT Statement

You can load a PRINT statement with keystroke commands, enclosing

them within quotation marks, and the computer won't perform them

until you press the RETURN key to send the entire PRINT command.

One PRINT statement can thus hold directions to do several things. For

instance, you can instruct the computer to clear the screen, switch the dis

play to "reverse type" (dark-on-light characters), switch it to yellow, then

print a phrase, switch to white, and finally print another phrase, all with a

command like the following:

PRINT "(press SHIFT-HOME)(press CTRL and 9) (press CTRL and 8) 11

t TAKE IT(press CURSOR UP/DOWN) (press CURSOR UP/DOWN)

(press CTRL and 2)FROM THE TOR"

TAB—Arranging the Screen Display

Ifyou give a command from the keyboard, like SHIFT-CLR/HOME,

within quotes in a PRINT statement, the computer will record that com

mand in a coded way, in this case with a heart symbol, but will not carry it

out until the RETURN key is pressed. You can use this to delay to tailor a

display with the PRINT command. Once you realize that the computer

handles text on the screen as a grid of 40 columns by 25 rows, you can

arrange displays to suit the eye. A handy little command used within a

PRINT statement directs the computer to tab (or space over to a specified

column) before actually printing on the screen. The form is TAB(), where

the columns are numbered, like a typewriter's, from left to right, the left

most as 0 and the rightmost as 39. You can add the TAB command before

the item to be printed, like this:

PRINT "HEY!" TAB(15) "LOOK" TAB(30) "ATTHIS -"

The computer acts on this statement by reading it across as a series of

commands, and prints:

HEY! LOOK AT THIS«-

VIDEO PRINTING 17

If a command is already displayed on the screen you can repeat it by

moving the cursor (with the CURSOR UP/DOWN key) to the screen

row in which that command is found. If you press the RETURN key

then, you will again send the command for the computer to act on. You

can even alter a displayed command, and then send it by pressing the

RETURN key.

You could, for instance, move the cursor back up the screen to the

PRINT command described above, using the SHIFT and CURSOR

UP/DOWN keys. Using the CURSOR RIGHT/LEFT key to move the

cursor horizontally, and the SHIFT and INST/DEL keys to insert spaces,

you can change the statement. One way to change the statement would be

so that the display read:

HEY! TAKE A LOOK AT THIS «-

To do this you insert the words TAKE A within the second set of quotes.

You can do this by placing the cursor over the letter L in the word LOOK,

and there inserting seven spaces, for the words TAKE A and the blank

space between them. To insert the spaces, you just press the SHIFT and

INST/DEL keys seven times together.

(press SHIFT and INST/DEL)(press SHIFT and INST/DEL)(press

SHIFT and INST/DEL)(press SHIFT and INST/DEL)(press SHIFT and

INST/DEL) (press SHIFT and INST/DEL)(press SHIFT and INST/DEL)

Then you can make your insertion:

TAKE (press SPACE BAR) A

The command that remains after these changes is:

PRINT "HEY!" TAB(15) "TAKE A LOOK" TAB(30) "ATTHIS«-"

Ifyou press the RETURN key now, you'll see a changed display result:

HEY! TAKE A LOOK AT THIS «-

You can use such an approach to send any command from the screen

into the computer for action. Ifthe command statement takes up two lines

on the screen, you can send it by positioning the cursor anywhere on

either of the lines, and then pressing the RETURN key.

18 THEEASYGUIDE TO YOUR COMMODORE 64

More Commands.

Two punctuation marks can be used as shorthand commands within a

PRINT statement. Commas typed between items in a PRINT command

will direct the computer to space the items four across the screen, as

though following a succession of TAB(2), TAB(12), TAB(22), and

TAB(32) commands. Semicolons typed between items will separate them

in the statement, but not in the printing. Also, the computer automati

cally adds a space before and after numbers that it prints.

The computer and its screen provide a more controllable display than

the familiar typewriter and paper. You can direct color displays, and even

a rapid succession of displays by implanting screen-clearing commands

between displays.

By using still more variable commands, you can guide the servile com

puter in one direction or another. By using commands in combination,

you can even send it off to do your bidding on its own.

SCHEDULINGCOMMANDS

The computer, long regarded as an awesome accumulator of informa

tion and a secret keeper of files, is basically forgetful. That is, it's built to

act on commands, and then automatically leave them behind to ready

itselffor more commands. Human beings often work much the same way,

returning to dimly-remembered locations only by the grace of street

addresses we recall.

In its own way, the computer can return to "addresses" held in its

memory. Ifcommands wait at such addresses, it will then act on them as if

you had just sent them. You can provide such addresses by starting each

group ofcommands with a number.

Placed at the beginning of a group of commands, a number tells the

computer to retain those commands as part of a program, possibly to be

used again. For example, to mark a statement of display commands in

this way, you could send the following command:

10 PRINT "(press SHIFT and CLR/HOME)" TAB(12) "NUMBERS AND

THEIR USES"

You'll notice, when you press the RETURN key after typing a num

bered statement like this, that the computer replies with a flashing cursor,

without acting on the commands. Actually, the statement is sent into stor

age in the computer's memory, where it is kept on file by number. Here,

20 THEEASYGUIDE TO YOUR COMMODORE 64

the commands will be held as line number 10 until you type the command

that tells the Commodore 64 to proceed with them. That command is:

RUN

which directs the computer to translate and act on the numbered state

ments in its memory, in numeric order. As the only numbered line of

commands in memory in this case, line 10 will be acted on command-by-

command. The computer automatically holds numbered commands in

memory, even after acting on them, so you can tell the computer to carry

out the commands of line 10 as many times as you like by sending the

command RUN each time.

Although commands may reside unseen in the computer's memory,

you can display them on the screen with a simple command. If you send

the command

LIST

the computer will respond by printing the entire contents of its program

memory—in this case, line 10.

You can send another set ofcommands for the computer to act on after

line 10 by labeling the statement with a higher number, like this:

20 PRINT "(press CTRL and 9) (press CURSOR UP/DOWN) THIS

LINE WILL BE REMOVED."

The computer now has two lines in its memory and, when sent the

command:

RUN

will start with the lower-numbered statement, 10, translate and carry out

each command, and then translate and carry out the commands of state

ment 20.

You can direct the computer, with a series of numbered statements, to

switch among different screen printing displays to fashion a result like that

produced by these additional statements:

30 PRINT "(press CTRL and 8) FOR YOUR INFORMATION, YOU ARE

NOW PROGRAMMING."

40 PRINT "PROGRAM (press C = and 7) ENDS HERE"

If, after sending these statements to the computer, you give the command

RUN, you'll see a display of four statements appearing one after another

with a final result like Figure 3.1.

Statement lines 10, 20, 30, and 40 make up a program that can direct

PLANSANDPROGRAMS 21

ARE HOW PftQGftfl

MIMG.
PROGRAM ENDS HERE

REAOV.

Figure 3.1: The result ofrunning aprogram ofdisplay commands,

the computer, each time you issue the RUN command, to produce the

same printing display. Change the statements in the program and you

change its results. For instance, the reverse-video row that declares:

THIS LINE WILL BE REMOVED.

will be absent from the screen during a program run if you erase line 20,

in which you ordered its printing. To erase a line from the computer's pro

gram memory, you can simply type the line number and press the

RETURN key:

20

The computer stands ready to accept a new statement, and prepares to

store a set of commands under the number 20 when you do this. When

you send only the number, it replaces the former statement under this

number with the new, blank statement. Since a blank statement gives no

instruction, line 20 ceases to exist in the program memory.

When you RUN the program, you'll find the reverse-video text pro

duced by line 20 absent. When you LIST the program, you'll find only

lines 10, 30, and 40 remaining in memory, as illustrated in Figure 3.2.

22 THEEASYGUIDE TO YOUR COMMODORE 64

Figure 3.2: A program listing after one line has been deleted.

The computer follows this simple rule in handling program lines: The

contents of a newly-sent numbered line replace the previous contents of

the same number. You can add a new statement as line 20 like this:

20 PRINT "t ft"

to include three arrows in the display after the line

NUMBERS AND THEIR USES

is printed.

The computer carries out numbered statements sequentially, according

to any numbering scheme you devise (of positive, whole numbers up to

63,999). It will follow a program beginning at any number moving up the

sequence of numbers, regardless of gaps in numbering between them.

Numbering by tens is a handy approach to programming that leaves

room between statements to add any program lines that occur to you as

afterthoughts or refinements.

The computer retains numbered statement lines in its program mem

ory until you switch off the power, or remove particular lines by typing

PLANSANDPROGRAMS 23

their line numbers, or command the computer to erase them all. You can

direct this erasure by sending the simple command:

NEW

On receiving this command, the computer prepares for a new program by

erasing all program lines from its memory. If you write a new program

and don't clear out the old program from memory, old program line num

bers not replaced by new ones will tag along from the original program,

giving directions within the new program you may not have planned.

STAND-INS FORNUMBERS

Numbers, you've no doubt noticed, are as useful within commands as

they are in marking program lines. As much as the commands them

selves, numerical values help control the computer's operations. A change

in the value of a number changes the action of the Commodore 64 in, for

example, the directions given by a TAB command or the multiplication

ordered with an asterisk (*) command.

A single number can be passed around within a program by the com

puter to be used in different commands, ifyou use a symbol that stands for

the number you'd like acted on in the commands that act on it. If you

instruct the computer early in the program that a symbol is standing in for

a number, the computer will substitute the number at each command in

which it subsequently encounters that symbol, and then act on it.

The handiest symbol to use as a stand-in for a number is a letter. You

can use the letter in all commands where you would otherwise have used

the number. For example, if you were considering text placement on a

screen, you might put such a substitute in a TAB command within a pro

gram, like this:

20 PRINT "(press SHIFT and CLR/HOME)"

30 PRINT TAB(A) "HOW DOES THIS LOOK?"

The letter A substitutes for a number in the TAB command here. If you

sent the RUN command to the computer for this two-line program with

out first assigning a value to A, it would follow built-in directions and

replace the letter A with the value zero.

The Assignment Statement

The command by which you give a value to a symbol is known as the

"assignment statement." It is represented by an equal sign (=), and to

24 THEEASYGUIDE TO YOUR COMMODORE 64

direct the computer to substitute a value of 12 for A in this program, you

could send the command:

10 A = 12

When you RUN this three-line program, the result will be the words

"HOW DOES THIS LOOK?" printed beginning at column 12.

Having so named a number used in the program, you can change the

operation ofthe program without changing the line that directs that oper

ation. Change the value ofA in line 10, like this:

10 A = 20

and the computer will print at column 20. Used in this way, the letter A

acts as a variable symbol that can stand for whatever number you specify

with an equal sign.

You can use a variable in as many commands in your program as you

want. Ifyou add the command:

25 PRINT "COLUMN A"

to the program, the computer will respond when you RUN the program

by printing

COLUMN 20

Then it will print the question starting at column 20 below that line.

Again, if you change the value ofA and then give the command RUN,

the computer will position the printing accordingly, by column number:

10 A = 5

A variable letter like A can be used any number of times in a program

to stand in for a number. In this program you can use it to try out different

screen-printing placements by retyping only the single short program line

10. In more complex programs, the effect of changing a variable's value

by changing an assignment command can be profound.

The assignment command can be translated as a direction to the com

puter to work internally to replace the symbol on the left of the equal sign

(wherever that symbol is encountered) with the numeric value on the right

of the sign.

PLANSANDPROGRAMS 25

NUMERICAL PREDICTIONS

The computer can act on more than one symbolic variable in a pro

gram, if you include an assignment statement for each. This capability

gives you enormous power in writing programs to analyze or predict vari

ous situations. If you can describe a situation with numbers, you can

direct the computer to simulate the situation with any or all of its aspects

changed. You can, for instance, compare the results of different salary

offers, or the filling of reservoirs behind different dams.

A prediction ofthe filling ofa dam or your bank account could be made

by forming a numerical model ofthe factors known to be at work. Then,

sending values for these factors to the computer with assignment state

ments, you can see what the model predicts as a result. You can easily

predict the amount ofwater in a reservoir or the amount ofmoney in your

account after, say, nine months, ifyou know the amount already there and

the average monthly rate at which more accumulates. You can direct the

computer to print these values and then to print the calculation ofthe total

amount nine months later with the following program. (Be sure to send

the NEW command to clear the last program from memory before typing

this one.) In it, the original amount is symbolized by the letter A, and the

monthly rate of accumulation by the letter B:

NEW

30 PRINT "(press SHIFT and CLR/HOME)"

40 PRINT "STARTING WITH" A

50 PRINT "AND GAINING" B "EACH MONTH"

60 PRINT "YOU'LL HAVE" A + (B*9) "AFTER 9 MONTHS."

Ifyou command the computer to RUN this program now, it will auto

matically substitute zero for the variables A and B. But if you assign val

ues for the amount present and the rate of accumulation, the computer

will display those values and, through the directions in program line 60,

print a prediction of the future amount. You can give values to the varia

bles with the program lines:

10 A = 2200

20 B = 355

The computer will run the complete program with 2200 as the starting

amount (gallons of water, or dollars) and 355 as the monthly increase, to

produce the display shown in Figure 3.3.

26 THEEASYGUIDE TO YOUR COMMODORE 64

Figure 3.3: The results ofapredictionprogram.

You can, of course, change the simulation by changing the values

assigned in lines 10 and 20, and so make predictions for different circum

stances. This program was written to produce a prediction for nine

months, but it can be altered by replacing the specific value 9 with a vari

able, through which you can produce a prediction for any number of

months. To do this, you can modify line 60, which produces the display

and calculation. You can assign the variable C to the number ofmonths:

60 PRINT "YOU'LL HAVE" A+(B*C) "AFTER" C " MONTHS."

By adding another assignment command, you can specify another length

oftime, say 15 months:

25 C = 15

When you run the program through the computer now, it will display the

original amount of 2200, and predict an increase of 355 each month, over

a period of 15 months.

You can direct the computer to substitute one variable letter for

another, or for an "expression," consisting of variables and operators. In

COMINGINTOPOWER 27

this program if you wanted a shorthand way of naming the final amount

predicted, you could rename that amount, so far represented by the value

ofA + (B X C), in a separate statement, calling it F:

27 F = A + (B*C)

Now that the final value has a simple name, you can order the calculation

and display of the difference between the original and final values, A and

F, with this simple statement:

70 PRINT "THE GAIN IS" F-A

You could then streamline the program's appearance a bit with a substitu

tion in line 60:

60 PRINT "YOU'LL HAVE" F "AFTER" C "MONTHS."

You can again change the details of this model by changing the values in

lines 10, 20, and 25.

Although we have used only whole numbers so far, the computer is also

designed to work with decimal numbers. It can take values stated in fine

detail—for example, A = 2200.35. It can also handle fractions if they're

treated as divisions. The value for 10 and 3/4 months, for example, would

be stated as C = 10 4- 3/4.

COMMANDS IN GROUPS

Commands work perfectly well one to a numbered program line. But

you can also combine several together for convenience or for ease of

planning.

The three assignment statements from the previous program:

10 A = 220

20 B = 355

25 C = 15

can be grouped under a single program line number, ifyou prefer. Ifcom

mands are separated from each other by colons, the computer will act on

28 THEEASYGUIDE TO YOUR COMMODORE 64

each command in a grouped set one at a time, as though each were on its

own numbered line. You could replace those three lines with a single line,

like this:

10 A = 2200:B = 355:C = 15

And then erase the two now-redundant lines by sending empty line num

bers with the RETURN key:

20

25

The new line number 10, holding a group ofcommands, then replaces the

earlier lines 10, 20, and 25. The computer will hold the same information

in its memory and carry out the program commands exactly the same

way. You can group as many commands in a single program line as will fit

in the 80 characters of space the computer recognizes for command

entries.

Although both methods of grouping commands produce the same

results when a program is run, you may prefer one to the other. Within a

program written with one command to a statement line, you can more

easily find problems that call for rewriting or alteration—the accidental

misspelling ofa command leading to a "?SYNTAXERROR" reply dur

ing a program run, for example. On the other hand, grouping several

commands to a line number may be an easier way to compose a program

from multiple command statements. Either way, the choice is yours.

USING JUDGEMENT

Like a vigilant sentry, you can watch over your computer, deciding

when you would like certain commands repeated, or values changed, or

when you'd like to interrupt a program run. But that means you're

attending to the computer rather than having it attend to you.

Fortunately, such vigilance isn't necessary. Your decisions can be

reflected within a program, so that when the computer encounters specific

conditions you've described, it will take the action you've directed. The

Commodore 64 can examine a numeric comparison (that is, a statement

that one value is equal or not equal to, or greater or less than, another

value), and "evaluate" it as either true or false. Ifthe statement is true, the

instruction that immediately follows will be executed. Ifnot, the computer

will skip over that instruction and proceed to the next numbered line.

The command that allows this decision-making is the IF-THEN state

ment, which takes much the same form as the "if... then" conditional

statement in everyday English: "Ifit's raining now, then go by car." Ifthe

statement is true, then take the action named. (If not, then don't.) The

computer command looks like this:

IF (comparison) THEN (instruction)

We'll see some specific examples along the way.

You can use the IF-THEN command in a new program to evaluate a

sum of three numbers represented in the following way:

10 5:B = 8:C =

30 THEEASYGUIDE TO YOUR COMMODORE 64

20 T=A + B + C

You can then arrange for the computer to display a statement ifthe sum is

100, with the command:

30 IF T= 100 THEN PRINT "A SUM OFA HUNDRED"

which will instruct the computer to print the statement only when the con

dition T = 100 occurs.

When this program is run through the Commodore 64, the quotation

will be printed. If line 10 is changed so that the values add to something

else, the computer will skip past THEN and its PRINT command, in this

case to the program's end.

On encountering an IF-THEN statement, the computer follows built-

in directions to evaluate the condition stated to the right of the word IE

When that condition is true, the computer follows the command to the

right ofthe word THEN. When it is false, the computer skips to the next

program line.

You can direct the computer in this decision-making process through

any mathematical relation it is built to understand. The following change

to the program, for instance, tests the numbers of guests arriving in

groups at a gathering:

30 IF T > 100 THEN PRINT "THE ROOM IS GOING TO BE

CROWDED"

Here, the test is not whether T is equal to a particular value, but whether it

is greater than the value.

When it encounters a number after the word THEN, the computer

translates the number as a direction to carry on with the program from the

commands in that line number. Thus, besides instantly following a com

mand in the IF-THEN statement, the computer can be sent to another

part ofthe program by line number, as in the following program:

NEW

10 A=20:B = 15:C = 9

20 T= A + B + C

30 PRINT "(press SHIFT and CLR/HOME) WITH GROUPS

OF"A"AND"B"AND"C"THE ROOM WILL HAVE'T

"PEOPLE IN IT"

40 IF T> 75 THEN 100

50 PRINT "(press CURSOR UP/DOWN) NO PROBLEM

ACCOMMODATING THAT MANY "

60 END

DECISION-MAKINGBYCOMPUTER 31

100 PRINT "THAT'S MORE THAN THE ROOM WILL

HOLD!"

Using the values assigned in line 10, the computer will print the quota

tions in lines 30 and 50, then stop carrying out commands on reaching the

END statement. It will skip past the command that would redirect it to

line 100 from line 40: THEN 100. If you change line 10 so that the sum

exceeds 75:

10A=19:B = 23:C = 37

and run the program again, the computer will carry out the command

after THEN and skip past lines 50 and 60 to carry out the PRINT state

ment ofline 100.

To direct the Commodore 64 to a line number from an IF-THEN

statement, you can also include the optional command word GOTO. The

following revision ofline 40:

40 IF T> 75 THEN GOT0100

produces the same results as its predecessor, but may be a little easier to

read and understand.

In directing the computer forward through a program according to val

ues it encounters, or directing it to some immediate command within an

IF-THEN statement, you can change the way the computer executes a

program. By directing the computer backward to an earlier line number

from an IF-THEN statement, you can make it repeat earlier commands,

with variations ifyou like.

SIMULATIONS

An IF-THEN statement with a line number is like a finger pointing

backward or forward. This ability to point to different courses of action

can be especially useful in simulating different scenarios. You can apply it,

for instance, to the problem of filling a party room with guests arriving in

groups without exceeding the room's capacity.

In a situation like this, there are three values to consider: the capacity of

the room, which you can call the variable C; the number of guests at the

party, which you can call G; and the rate at which new guests arrive each

trip—call this R. If you want to know how many trips will fill, but not

crowd, the party, you can use an IF-THEN statement to instruct the com

puter to consider trip after trip, and then signal you when the simulated

trip that fills the room finally occurs.

You can begin this new program with a statement defining the room

32 THEEASYGUIDE TO YOUR COMMODORE 64

size, the number of guests at the simulation's beginning, and the rate of

new arrivals:

NEW

10 C = 200:G = 20:R = 6

The computer will prepare the screen and display the available room from

these commands:

20 PRINT "(press SHIFT and CLR/HOME)"..

30 PRINT "AFTER" N'TRIPS" G "PRESENT & ROOM FOR" C - G

In line 30, the variable N will serve as a counter for the number of trips

through which the program has directed the computer. You make N a

counter and keep G, the number of guests, up to date with these

commands:

40 N = N + 1:G = G + R

The crucial command is the one that directs the computer either to con

tinue or to stop considering trips:

50 IFG<CTHEN30

This line instructs the computer to either return to the sequence at line 30

(ifG is less than C) or continue to the final line, which signals you that a

limit has been reached:

60 PRINT:PRINT " FILLED AFTER TRIP" N '

When you run it, this program will direct the computer to repeat the

quotation in line 30 with different values until the room's limit is reached.

Figure 4.1 shows the steps that the program run takes.

First, the computer stores the values for C, G, and R (stated in line 10)

in its memory, then clears the screen and positions the cursor for the

PRINT statement in line 30. When that statement is first encountered,

the value ofN has been automatically set at zero. This represents the con

dition ofthe room before the first trip of newcomers:

AFTER 0 TRIPS 20 PRESENT & ROOM FOR 180

Encountering line 40, the computer considers trip number 1, which

increases the number of guests to 26. Then, at line 50, it compares the

number ofguests to the room's capacity and, finding on this first pass that

the number is smaller, it follows the IF-THEN direction to line 30. Acting

DECISION-MAKINGBYCOMPUTER 33

60
AFTER

54
AFTER

48
AFTER

42
AFTER

36
AFTER

30
AFTER

24
AFTER

18
AFTER

12
AFTER

6

21

22

23

24

25

26

27

28

29

FILLED

TRIPS

TRIPS

TRIPS

TRIPS

TRIPS

TRIPS

TRIPS

TRIPS

PRESENT & ROOM FOR

PRESENT £ ROOM FOR

PRESENT & ROOM FOR

PRESENT & ROOM FOR

PRESENT & ROOM FOR

PRESENT & ROOM FOR

PRESENT & ROOM FOR

PRESENT

PRESENT

& ROOM FOR

& ROOM FOR

AFTER TRIP tt 30 ♦>♦-«■♦*-

tEAOV.

Figure 4.1: The outcome ofa simulationprogram.

again on line 30, the computer displays the values of N and G after that

first trip:

AFTER 1 TRIPS 26 PRESENT & ROOM FOR 174

Blind to its poor grammar, the computer goes on to consider the second

trip at line 40, and repeats the process. It prints the same statement at each

trip until the pass at which the number of guests reaches the capacity,

when N is 30. On encountering the IF-THEN command at that point,

the computer advances to line 60, printing the message that the room

would be filled after that trip.

You can add a handy feature to this program by directing it to display

the conditions you stated in line 10:

70 LIST 10

This command will print line 10, as in Figure 4.2. You can now retype the

line to reflect a larger room, C, a different number of guests already

present, G, or a different rate of arrival, R.

Under the direction of an IF-THEN command sending it backward,

the computer conjures its repetitive powers. Acting under other com

mands, the computer can be sent in any direction to yet other commands,

34 THEEASYGUIDE TO YOUR COMMODORE 64

54
AFTER 22

43
AFTER 23

42
AFTER 24

36
AFTER 25

30
AFTER 26

24
AFTER 27

18
AFTER 29

12

TRIPS

TRIPS

TRIPS

TRIPS

PRESENT & ROOM FORl

PRESENT & ROOM FOR

PRESENT & ROOM FOR

PRESEMT & ROOM FOR

PRESENT & ROOM FOR

PRESENT & ROOM FOR

PRESEMT & ROOM FOR

PRESENT & ROOM FOR

FILLED AFTER TRIP H 30

18 C=2Q0 : G=20 : R=6

EAOY.

Figure 4.2: A simulationprogram that displays the conditions which directed it.

from one program line to another. Complex routes can be formed

between program statements, each of which asks the computer to do

something different.

A servile machine, the computer can accept and obey scores of com

mands. It will act on them in its own dull-witted but meticulous way. With

these commands, you can put the machine to work on tasks you might

otherwise find too tedious or repetitive, too nitpicking or precise, too long

or time-consuming. When so commanded in a language it recognizes,

your computer can repeat a given task endlessly or as often as you say. It

can handle words or numbers, tearing them apart or delicately assem

bling them, it can carry out the most cumbersome calculations, or it can

quickly produce screen displays of a complexity that would otherwise be

possible only by days ofhand-work.

A PROGRAMMER'S KIT OF COMMANDS

Human beings are imperfect: we change our minds, we make mis

takes, and we are prone to forget. The programs we devise are subject to

our interesting and imperfect nature, and allow for this nature, you can

mark, stop, and restart the programs you use. You can borrow useful

statements of commands from other programs, and tinker them into the

shape you want.

REM: A Programmer's Notebook

Ifyou put together many programs, you'll find handy a command that

marks program lines without affecting the computer's operation. That

command is REM, which stands for "remark." You can appreciate its

usefulness by considering the following graphics program, which directs

36 THEEASYGUIDE TO YOUR COMMODORE 64

the drawing ofa checkered pattern like that shown in Figure 5.1. The pat

tern is made by first drawing vertical lines in white in even-numbered

columns (in program lines 20 through 60), and then slicing through them

with horizontal lines ofblack (in lines 70 through 120). Notice that line 70

uses the CLR/HOME key without SHIFT, to send the cursor "home"

without clearing the screen.

NEW

10 PRINT "(press SHIFT and CLR/HOME)"

20 A = 0

30 PRINT TAB(A) "(press C= and +)(press SHIFT and CURSOR

UP/DOWN)"

40 A = A + 2:IFA<25THEN30

50 PRINT

60 B = B + 1 :IFB<20THEN20

70 PRINT "(press CLR/HOME)"

80 M = 0

90 PRINT TAB(M) "(press SPACE BAR)(press SHIFT and CURSOR

UP/DOWN)"

100 M = M + 1:IFM<25THEN90

110 PRINT "(press CURSOR UP/DOWN)"

120 V = V + 2:IFV<20THEN80

What this program does is not immediately obvious to anyone reading

it. Instead of running the program through the computer each time you

wish to see what it does, you can identify it with a labeling "remark" line,

which, as a note to whoever reads the program, is not acted on by the

computer. To so mark this program, add a line that starts with REM:

5 REM A PROGRAM FOR THE COMMODORE 64 THAT MAKES A

CHECKERED PATTERN.

When the computer encounters this REM line in a program, it takes

the command REM to mean: "Move on to the next program line; what

follows is a remark for the person reading this program." Although a pro

gram may make perfect sense to you when you type it, a few weeks later—

or sometimes a shocking few minutes later—it may seem nothing but a

baffling assortment ofcommands unless you've tagged it with a note.

Since the REM command can be put anywhere in a program, you can

describe sections or individual command lines of a program if you like.

For instance, in the case of the checkered program, you can add notes

before the statements that direct the computer to produce the vertical lines,

PROGRAMCONTROL 37

S S S S S

S S il; S S

S H S S

S S S

£ $ $ s a $ s $ a * s a

&&*&*$»$as* a

S S S S :j $ S ?: S S * S

5.1: A checkeredpatternproduced by aprogram.

and also before the statements that produce the horizontal lines:

15 REM THE NEXT FIVE PROGRAM STATEMENTS DRAW

VERTICAL LINES IN CHARACTER COLOR

65 REM THE NEXT SIX PROGRAM STATEMENTS DRAW

HORIZONTAL LINES IN BACKGROUND COLOR

A program marked in this way will be easier to identify and alter, later.

REM statements are subject to the same 80-character length limit as other

program statements; line 65 is as long as a REM line can be.

Interrupting a Program Run

While this program is running, you might decide you'd like a slightly

different pattern. To stop the program in mid-stride, you can use any of

three commands. The planned way is to include a command to that effect

within the program itself. The program command that will interrupt a

run is STOP. You can strategically include it to stop the program run after

the vertical lines have been drawn by program statements 20 through 60,

like this:

65 STOP

38 THEEASYGUIDE TO YOUR COMMODORE 64

If you run the program with this additional line, the computer will stop

following program commands on encountering the statement, and will

inform you that a forced break in the run has been ordered, with the reply:

BREAK IN 65

The STOP command differs from the END command only in that the

computer replies with a message. STOP can be paraphrased as: "Print

BREAK IN and this line number, and wait for directions from the

keyboard."

An advantage of the STOP command is that you can, at your conve

nience, command the computer to proceed with the program run, by

sending the command:

CONT

which can be paraphrased "Continue carrying out commands at the pro

gram line following the interruption." Ofcourse, if the STOP command

is removed from a program (here by removing line 65), the program will

run straight through without pause.

The second way to stop a running program is directly from the key

board, with the command that mimics the STOP command in an imme

diate, unplanned way. To stop a program at any point in its operation,

press the RUN STOP key. After receiving this keystroke command, the

computer will reply with the "BREAK IN" messsage. Once stopped in a

program run with the RUN STOP command, the computer will also

resume carrying out program commands when sent the CONT com

mand. The STOP command, implanted in a program, and the RUN

STOP command, sent from the keyboard, both affect the computer's

operation in the same way.

You can use either one to stop the computer at line 50 of the current

program, just after the bottom edges ofthe vertical lines have been drawn,

to consider varying the pattern. One way to change the display is to select

another character or color for the rows drawn by lines 70 through 120.

Even a black-and-white screen will show changes in shadings among

colors.

Now that you've interrupted the program... Interrupting a program

can sometimes give you ideas for interesting vairiations. For example, you

can change program line 120 so as to draw columns of spaces only as far

down as row 18:

120 V = V + 2:IFV<18THEN80

PROGRAMCONTROL 39

You can create horizontal rows of circles with this revision:

90 PRINT TAB(M) "(press SHIFT and W) (press SHIFT and CURSOR

UP/DOWN)"

Ofcourse, you can keep revising until the pattern is one you like. Perhaps

this revision ofprogram lines 80 and 100 will add the finishing touch:

80 M = 5

100 M = M + 2:IFM<20THEN90

These three changes will produce a program that displays the pattern of

lines and circles shown in Figure 5.2 when run.

The RUN STOP-RESTORE Command

The third and most intrusive way of stopping a running program

directs the computer to leave the program completely. The program is

retained in memory, but no "marker" is left in the run. To stop a program

run with this emergency-brake command, which operates from the key

board, you press the RUN STOP and RESTORE keys together. Since

the computer forgets its place in the program, the CONT command isn't

a useful way to pick up the sequence again in this case.

Figure 5.2: The result ofrevising theprogram thatproduced Figure 5.1.

40 THEEASYGUIDE TO YOUR COMMODORE 64

You can usually slow a program, or any response of the computer, by

pressing the CTRL key and holding it down. When you release it the

computer returns to normal speed.

We've now seen the full set of commands you have for restructuring

existing programs in the BASIC language. There are more commands for

building the programs themselves.

COMMANDS FOR MOVINGAMONG STATEMENTS

The GOTO Command

We've seen some commands that direct the Commodore 64 outside its

usual course through higher line numbers in a program; there are still

more. One, GOTO, is even simpler in action than the IF-THEN com

mand. We've already used it in a version of that command, IF-THEN-

GOTO. You can also use the GOTO command by itself, to direct the

computer back to some earlier statement in a program, again and again,

creating an unending bop of computer action. Ideal for repetitious tasks,

this sort of loop can be stopped only with one of the three program-

stopping methods described in the previous section.

The following program will, ifyou let it run, command the computer to

produce an "endless" multiplication and division table. (Actually, you

would eventually reach a number greater than the Commodore 64 can

handle, and get an OVERFLOW ERROR message.) In line 10 the

number to be multiplied and divided is set at five.

NEW

10 A = 5

20 PRINT "(press SHIFT and HOME) -THE NUMBER"

A" "

30 PRINT "N" TAB(5) "MULTIPLIED BY N" TAB(22) "DIVIDED BY N"

40 PRINT

50 N = N + 1

60 PRINT N TAB(10) A*N TAB(25) A/N

70 GOTO 40

The final command, in line 70, directs the repetition of the program

from line 40 on. Without that GOTO direction, the program would sim

ply run three rows ofprinting—the heading from line 20, the subheading

from line 30 and the first pass at the counter number N (when it's raised

from zero to one), the multiplication ofA X N and division of A/N from

line 60. When the computer finishes with the commands of line 60 and

PROGRAMCONTROL 41

translates the command GOTO 40 on line 70, however, it jumps back

into the sequence at line 40. Thereafter it automatically follows increasing

line numbers until it again encounters line 70, which directs it out of

sequence to line 40 again. Each time the computer performs line 50

(N = N 4-1), the "counter," a new value is applied to the printing, multi

plication and division ofline 60.

The untiring computer will perform the commands between program

lines 40 and 70 again and again until you stop it with a RUN STOP or

RUN STOP-RESTORE command from the keyboard (or, of course,

switch off power).

Although you can also direct the computer to skip forward through the

program to a higher-numbered line, there's no advantage in doing so,

since the commands of intervening statements would be missed forever.

While a second GOTO command could send the computer back to an

earlier line that had been skipped, that method ofprogramming offers no

control that couldn't be achieved more simply by a single GOTO com

mand controlling the type ofrepeating loop seen above.

In this program, you can assign any value to A in line 10, and then

observe the resulting calculated values as they appear on the screen if

you're looking for a particular value. If you'd like to know when, for

instance, the division drops below some value, a variation of the GOTO

command can direct the computer to do that looking for you. This com

mand is fairly rigidly structured, but easy to use once you understand its

format. Through the ON-GOTO command, the computer is directed to

compare variable symbols with a built-in number range, then is sent to a

program line. It works much like an IF-THEN-GOTO statement, except

that the condition in the first half of the command is preset to numerical

ranges: 1 or greater but less than 2, 2 or greater but less than 3, and so on.

The directions in the GOTO half of the command point to line numbers

you arrange according to those preset ranges.

Ifyou wanted the computer to signal you when the value ofthe division

A/N, for instance, falls below two, three, and four you could add a com

mand to do that after line 60, like this:

65 ON A/N GOTO 100,200,300

which directs the computer to evaluate A/N, compare it with the built-in

ranges and then to proceed with the appropriate program line—100, 200,

or 300—according to that value. In this case, you can put PRINT state

ments starting at program lines 100, 200, and 300 to alert you to the val

ues produced by earlier lines of the program and A/N. If you had no

interest in values less than two, for instance, you could give the following

42 THEEASYGUIDE TO YOUR COMMODORE 64

commands to signal and stop the program:

100 PRINT TAB(20) "VALUE BELOW TWO"

110 STOP

which will print "VALUE BELOWTWO" in the A/N column, and then

stop the computer with the message "BREAK IN 110."

Likewise, if you wanted the computer to continue the program run

and merely signal you when the value A/N slipped below four and then

again below three, you could add statements starting at 300 and 200,

respectively:

300 PRINT TAB(20) "(press CONTROL and G)(press CONTROL and

G) VALUE BELOW FOUR"

310 GOTO 40

and

200 PRINT TAB(20) "(press CONTROL and G)

(press CONTROL and G) VALUE BELOW THREE"

210 GOTO 40

During the execution of this program, each of these pairs of statements

signals the appearance of the value you're looking for, then directs the

computer back into the multiplication-division-printing loop at line 40.

You can use the ON-GOTO command to search out and act on spe

cific values. By putting variables into a form that falls within the rather

particular value ranges of the first half of this command, you can direct

the computer into diversions and exits from normal sequential program

runs.

You can specify action on any number of ranges. Directions to line

numbers, each matched to a particular range, can be used to send the

computer to work on many more statements. The ON-GOTO command

follows this plan: each line number listed after the word GOTO corre

sponds in step to progressively rising ranges of the value of the variable

after the word ON.

You could use a statement like:

ON A/N GOTO 100,200,300,400,500

and so on, to cover larger and larger values ofA/N.

REPEATINGWITHIN LIMITS

You may want to repeat a useful set ofcommands, perhaps not endlessly

PROGRAMCONTROL 43

(as done by the GOTO statement), nor conditionally (as done by the

IF-THEN statement), but simply for a specific number of times. The

Commodore 64 will respond to a pair of commands that do this. One

counts off the repetitions, the other directs the computer back to the first

command. These commands are FOR and NEXT. You can slip them in,

one before a stretch of statements you'd like repeated, the other after.

Here's a program to which you can add this pair of commands in a

variety ofways to produce a variety of displays. It directs the computer to

draw an arrow shape.

NEW

10 PRINT "(press SHIFT and CLR/HOME)"

20 X = 5

30 PRINT TAB(X)" (press SHIFT and M)"

40 PRINT TAB(X)" (press SHIFT and Z)"

50 PRINT TAB(X)" (press SHIFT and N)"

Through the value you type forX as a column number in line 20, you can

locate the arrow drawn by the directions in lines 30, 40 and 50 in any hori

zontal position. Now, to draw the arrow several times at different places,

the computer needs directions to repeat lines 30, 40, and 50 for different

values of X, so that the same pattern is plotted from differing starting

points.

You can give these directions with the first statement of the counting

pair. In this statement you state a starting value, an ending value, and

(optionally) the size ofthejumps the computer should make in going from

one value to the other. In this graphics program, you can specify a column

number represented by X, to be changed at each pass so that the arrow

will be drawn at each of several places along a single row, spaced 8

columns apart, with the statement:

25 FOR X = 1 TO 30 STEP 8

The other member of this command pair will automatically direct the

computer back to the program line on which the FOR-TO-STEP com

mand is found:

55 NEXTX

To direct the computer to put each subsequent arrow on the same hori

zontal line as the one previously drawn, you can add a statement that

sends the cursor back up to the line on which it began. Such a statement

would take the form:

44 THEEASYGUIDE TO YOUR COMMODORE 64

27 PRINT "(press SHIFT and CURSOR UP/DOWN) (press SHIFT and

CURSOR UP/DOWN) (press SHIFT and CURSOR UP/DOWN)

(press SHIFT and CURSOR UP/DOWN)"

When you run this program, all commands located between the FOR-

TO-STEP and NEXT statements at lines 25 and 55 will be repeated until

the limit set after the word TO is reached, as in Figure 5.3.

In this case, lines 30, 40, and 50 (the drawing commands), and line 27

(the row-positioning command), are repeated. The computer will begin

drawing at each of four locations along a single row at the top of the

screen. The first arrow starts from the position set by a TAB of 1, and the

last at a TAB of 25. The value ofX = 1 assigned in the FOR-TO-STEP

statement replaces the initial one from line 20, and each successive value

ofX replaces the one before it.

Using the FOR-TO-STEP, NEXT command pair, now you have a

program that draws a row of arrows. With smother pair of FOR-TO-

STEP, NEXT commands ranging over values of Y, you can expand the

program to draw a similar group of arrows at more rows, and to fill the

screen with them. To repeat the first row of arrows, the second pair of

commands should bracket the statements that draw the row, including the

FOR-TO-STEP and NEXT pair for the values ofX. Thus, the arrows at

Figure 5.3: A row ofrepeated arrows drawn byprogram.

PROGRAMCONTROL 45

each X location can be drawn for different Y locations (rows). To direct

the computer down to draw another row you can use a command that

moves the cursor like this:

24 PRINT "(press CURSOR UP/DOWN) (press CURSOR UP/DOWN)

(press CURSOR UP/ DOWN) (press CURSOR UP/DOWN)"

And to direct the computer to repeat the drawing at four descending rows,

you can add another pair of repeating commands, like this:

22 FORY = 1TO4

60 NEXTY

When it encounters a FOR-TO command without the STEP part, the

computer assumes a "default" STEP value of 1. The program now in

memory directs the computer to repeat the commands that produced the

first row of arrows, to measure down four lines from the first row and

draw a row of arrows, then move down another four lines and draw

another row of arrows, and so on until a fourth row has been reached.

Then the computer stops drawing, and four rows of four arrows each fill

the screen, as shown in Figure 5.4.

Figure 5.4: Filling the screen with arrows by altering theprogram ofFigure 5.3.

46 THEEASYGUIDE TO YOUR COMMODORE 64

Since the effect of line 20 (which assigned a value to X) has been can

celled by line 25, you can drop that statement as excess baggage:

20

(If you LIST the program now, you'll see the nested pairs of FOR-TO-

STEP and NEXT commands as they appear in Figure 5.5.) The first

NEXT statement, at line 55, directs the computer to take action on line

25, where the value ofX is changed.

The computer can actually distinguish one NEXT statement's direc

tions from another's even if you don't label each NEXT statement with

the variable from its FOR-TO-STEP line; lines 55 and 60 could also have

been written as:

55 NEXT

60 NEXT

However, you can keep track of the FOR-TO-STEP, NEXT groupings

more easily if you do label them.

You can envision the X FOR-TO-STEP, NEXT loop as "nested"

inside the Y FOR-TO-STEP, NEXT loop. When one loop is nested

within another in a program, the commands in the inner loop are carried

out first, as many times as detailed in the FOR-TO-STEP command, at

the first value ofthe outer loop, then through the second value ofthe outer

loop, and so on.

Here's a summary ofhow the computer is directed by this program:

In line 10, the screen is cleared and the cursor is positioned at the upper

left corner. In line 22, the computer prepares to substitute a value of 1 for

each Y it encounters. In line 24, the cursor is sent down four lines in prep

aration for drawing. In line 25 the computer prepares to substitute the

value 1 for each X. In line 27 the cursor is moved up four vertical rows.

The effects of the vertical movement in program lines 24 and 27 come

particularly into play in positioning arrows drawn one after smother. In

lines 30, 40, and 50, the substitutions are made, and the resulting print

characters are drawn from the TAB(l) location. That produces the first

arrow on the screen.

From line 55, the computer is sent back to the FOR-TO-STEP state

ment ofline 25, where the value 8 is added to the last X, and the new value

ofX is substituted in lines 30, 40, and 50. The computer draws the second

arrow from column number 9 ofthe first row.

When it next encounters line 55, the computer is sent again to the

FOR-TO-STEP statement in line 25, and the process repeats with a value

PROGRAMCONTROL 47

10 PRINT'LT

22 FOR V=l TO 4
24 PRlNTlKJttUi11
25 FOR X=iTO 30
27 print'ott^'
30 print tabcx)11
*0 print tab(x)11
50 print ta8(x)"
55 NEXT X
60 NEXT V
READV.

30 STEP 8

Figure 5.5: Theprogram thatJills the screen with arrows.

ofX equal to 17 substituted in the TAB commands.

This goes on until the value of 30 for X is passed. That happens after

the fourth arrow is drawn, when the NEXTX statement ofline 55 passes

the computer on to the following line, number 60. Line 60 sends the com

puter to the FOR-TO-STEP statement at line 22, where 1 is added to the

value of Y. With Y= 2, the computer then moves to line 24, which sends

the cursor down four rows.

Then, encountering the FOR-TO-STEP statement of line 25, the

computer resets the value ofX to 1, and proceeds to line 27. This state

ment keeps each set offour arrows ofvarying TAB(X) values on the same

row. Without it, the computer would automatically advance to the next

print line after drawing each arrow at each TAB(X) position, and each

arrow would appear separately on a different row.

Running through the commands oflines 25 through 55 as it did before,

the computer draws a second row of arrows, identical to the first, but

below it. After the last arrow of this second row has been drawn and X

exceeds 30, the computer is sent on to the NEXT statement, dropping

through line 55 to line 60, which sends it to line 22.

The FOR-TO-STEP, NEXTY statements ofline 22 and 60 then keep

the computer busy on the third, and finally the fourth, rows of arrows

until the X and Y values (30 and 4) have both been passed. Thus, you are

48 THEEASYGUIDE TO YOUR COMMODORE 64

left with a screen full of four rows of four arrows each.

As you might suspect, if two nested loops of FOR-TO-STEP, NEXT

statements can be heaped together into the computer, then three or more

are also possible. With the Commodore 64's print graphics, you can use

this feature to create moving images ofchanging colors.

In any program, a loop controls all the statements contained within that

loop, including any number of other loops. If commands are added that

print blank spaces over an arrowjust before another arrow is drawn on the

screen, the first arrow will appear to be erased, and the second arrow will

appear by itselfuntil it, too, is drawn over, disappearing from the screen to

be replaced by the next. The result is an elementary form of animation.

To direct the computer to draw over each arrow in turn, you can add a

set of three statements, within the X FOR-TO-STEP loop, that print

spaces over each arrow, like this:

52 PRINT TAB(X) "(press SPACE BAR 8 times)"

53 PRINT TAB(X) "(press SPACE BAR 8 times)"

54 PRINT TAB(X) "(press SPACE BAR 8 times)"

To position the blank printing back on the same row on which the arrow

was drawn, you can add a cursor-positioning statement before it, like this:

51 PRINT "(press SHIFT and CURSOR UP/DOWN 3 times)"

When you run the program now, the results will be as before, except that

immediately after each arrow appears it will disappear and the next arrow

will be drawn. The result will be an arrow racing from left to right across

one row after another.

Another clever use ofthe FOR/NEXT loop is worth noting, as it adds a

delay, which can be useful in any program in which you would like to

allow time for someone to view the program's effects. You might have

already noticed that the computer, incomprehensibly fast though it is,

does take a perceptible time to do things. The more complex or compli

cated the task, the longer it takes. Knowing this, you can use such a delay

to your advantage, by controlling it. You can add a loop containing no

real active command. And though there may be no command to repeat in

such a loop, the computer will go dutifully through it, taking time to trans

late and process the FOR-TO-STEP and NEXT commands.

To slow the animation program, then, you can add an empty loop

(known as a "timing loop") after the blank-space-positioning line, like
this:

51 PRINT "(press SHIFT and CURSOR UP/DOWN) (press SHIFT and

PROGRAMCONTROL 49

CURSOR UP/DOWN) (press SHIFT and CURSOR UP/DOWN)

(press SHIFT and CURSOR UP/DOWN)": FOR T = 1 TO 200:

NEXTT

Once again, the STEP part of the command is optional—if you leave it

off, as is done here, the computer automatically takes steps of 1.

In this program, the computer pauses briefly before each erasure as it

runs senselessly through its empty loop. This type of FOR-TO, NEXT

statement can be inserted anywhere in a program to slow or freeze

advancing action.

By judiciously removing statements, you can sometimes create effects

quite different from the original program. For instance, by removing the

Y FOR-TO, NEXT loop and the accompanying positioning command

from this program, you can create a display that shows an arrow descend

ing diagonally across the screen. Removing lines 22, 27,and 60, like this:

22

27

60

will produce such a program.

By its nature, the computer understands how to handle numbers—they

direct all its operations, and order commands. But even though it is blind

to their meanings, the Commodore 64—with a bit of programming

help—can handle words and information in any typed form, treating and

even generating them at your direction. Your computer can accept infor

mation in several ways, and even stop in the middle of a program run to

get it. Words, numbers and graphics symbols can all be objects ofmanipu

lations you direct.

STRINGS: WORDS FROM THE COMPUTER

In much the same way as it handles numbers, the Commodore 64 can

handle words and keyboard characters. It can print them, and it can take

them apart and piece them together. Ofcourse, as human beings, we have

an edge over the computer, since we each understand about 40,000 more

words than the Commodore 64's meager vocabulary ofless than a hundred

commands. But, like a blind newstand vendor who can handle magazines

he can't read, the Commodore 64 can handle thousands of words it will

never understand.

Although the computer can treat keyboard characters—words, num

bers, and other symbols—in various complex ways, it groups these sym

bols into only two categories. When the computer encounters a set of

words and symbols enclosed in quotation marks, it treats that group of

characters like a busload of passengers, to be carried about as you, the

tour leader, direct. But characters typed without surrounding quotes are

HANDLING WORDSANDINFORMATION 51

interpreted as commands, from which the computer takes directions, just

as a cab driver picks up passengers from a street corner and takes direc

tions from them.

A group of characters enclosed in quotes is known as a siring. Variable

symbols can be used to stand in for strings, just as they do for numbers.

The Commodore 64 recognizes the equal sign as a command assigning a

variable to words as well as to numbers. It recognizes these strings by a

"tagged" variable symbol. A variable intended for a string is marked with

a dollar sign ($), signifying a string of characters, rather than a numeric

variable. Since the computer treats spaces as characters, a group ofwords

separated by spaces will be treated as one long word-string by the Com

modore 64.

You can command the computer to substitute a sentence (or any group

of characters) wherever it encounters a string variable in a program

statement:

NEW

10 A$ = "WORDS WITHOUTTHOUGHTS NEVER TO

HEAVEN GO."

You can then use the string variable, A$, in place of the string itselfwhen

you give subsequent commands:

20 PRINT A$

Encountering line 20 when this briefprogram is run, the computer prints

Shakespeare's words on the screen, just as it would print a number

assigned to a numeric variable.

Combining Strings: The Plus Sign

Although strings possess none of the numeric characteristics that the

computer was built to work with, they can nevertheless be objects ofcalcu

lation and manipulation. Using string variables, you can order the com

puter to combine strings, cut them or derive numeric values from them.

The computer treats string variables in combination much as it treats

numbers in addition. In this case, the final result will be a longer string

rather than a larger number. To add strings to each other, you use the plus

sign (+) as a command to the computer to produce a new string, a combi

nation ofthe strings on either side of the plus sign.

52 THEEASYGUIDE TO YOUR COMMODORE 64

Adding two more strings to this program, you can prepare the com

puter to combine them, by assigning them to string variables:

12 B$ = "WILLIAM SHAKESPEARE"

14 C$ = "HAMLET, ACT III, SCENE 3"

To see these strings printed in combination, you can retype line 20 as:

20 PRINT A$ + B$ + C$

When the program is run, the computer will respond with the display

shown in Figure 6.1.

Counting Characters In Strings: LEN

You can extract a numeric value from a string with a command that

counts the number of characters, including spaces, within it. Such a

command can be useful in any program that manipulates strings. The

command that directs the computer to count characters takes the form

LEN(). In a program, you can assign a string length value to a numeric

variable with an instruction like this new version of line 20:

20 A = LEN(A$)

Figure 6.1: The effect ofaprogram that adds word-strings.

HANDLING WORDSANDINFORMATION 53

This line can be paraphrased as "Set the value of the numeric variable A

equal to the number of characters in the string A$." It directs the com

puter to substitute the number of characters in string A$ wherever it

encounters the symbolA in a program run. You can then use this value in

another statement, like this:

30 PRINT "A QUOTE" A " CHARACTERS LONG BY " B$

and also add a statement to display the quotation itself after spacing a

couple of rows:

40 PRINT: PRINT:PRINT A$

Taking Strings Apart: LEFT$, RIGHT$, and MID$

Three commands tell the computer to pick characters from within

strings. Using them, you can take apart words or groups of characters,

and rebuild them according to your own preferred patterns. The three

string-slicing commands are similar in form and each cuts out a segment

from the string.

One of these commands, LEFT$, instructs the computer to slice off a

given number of characters from the left of a string. Characters are

counted from the left quotation mark. If you wanted a new string, called

D$, formed from the first five characters of the quote here, you would

name and direct its formation with the command:

40 D$ = LEFT$(A$>5)

You could then display the new string with the command:

50 PRINT D$

When the program is run it produces the display shown in Figure 6.2.

You can create new strings of increasing length (up to the full length of

A$) out of the original string, by including the LEFTS command in a

FOR loop with a counter variable:

35 FORI = 1TOA

40 D$ = LEFT$(A$,I)

60 NEXT I

The program now "brackets" the string-cutting statement ofline 40 and

the PRINT command at line 50 in a FOR-TO-NEXT loop that counts

from 1 to the full length of the original quotation. When the program is

run, the computer will print one row after another; each one begins with

54 THEEASYGUIDE TO YOUR COMMODORE 64

Figure 6.2: The effect ofthe string-slicing commandLEFT$.

the first character ofthe string and is one character longer than its prede

cessor. When the last cycle is reached (when I = A), D$ will be assigned

the value of LEFT$(A$,A), which is the full length ofA$. D$ will be the

same as A$, and the last line printed will be the entire quote, as shown in

Figure 6.3.

By adding another statement, you can cite the source ofthe quotation:

70 PRINT C$

You can make this program into a test of recognition by slowing printing

with an empty FOR-TO-NEXT loop, like this:

38 FOR T =1 TO 500: NEXT T

Now, with any quotation assigned to A$, you can run the program, stop

ping it from the keyboard with a RUN STOP keystroke command and

advancing it with the CONT command.

The second string-slicing command, RIGHT$, directs the computer to

count offand slice sections of strings from the right. Our current program

will print sections of A$ counted from the last letter of the string, if the

HANDLING WORDSAND INFORMATION 55

WORDS
WORDS
WORDS
WORDS
WORDS
WORDS
WORDS
WORDS

WORDS
WORDS

WORDS
WORDS
WORDS
WORDS
WORDS
WORDS

WORDS
Q

WORDS
0.

Ml 1HUU1

UITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT
WITHOUT

WITHOUT

WITHOUT

1 HUUtin lo

THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS
THOUGHTS

THOUGHTS

THOUGHTS

NE
NEU
NEUE
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER
NEUER

NEUER

NEUER

T

TO
TO
TO
TO
TO
TO
TO

TO

TO

TO

H

HE
HEA
HEAU

HEAUE
HEAUEN
HEAUEN
HEAUEN &

HEAUEN &

HEAUEN G

IREAOY

Figure 6.3: The effect ofaprogram that generates increasingly longer strings

from the LEFTScommand.

following right-slicing command takes the place of the left-slicing one in

line 40:

40 D$ = RIGHT$(A$,I)

Driven by the same FOR loop, the computer will now print each line one

character longer than its predecessor, but it will start from the right quote

mark, as shown in Figure 6.4.

The third string-slicing command, MID$, directs the computer to snip

a section from the center ofa string. To use this command, you include the

name ofthe string from which a section is to be excised, the leftmost char

acter's position (as counted from the left side of the string), and the num

ber ofcharacters (to be counted and cut to the right). The command takes

the form MID$(A$,s,n), where s is the starting point, and n is the number

ofcharacters in the section. If, for instance, you were to cut the eight-letter

word THOUGHTS, which begins sixteen spaces from the left quote,

from the quotation of line 10, the excising command would be

MID$(A$,16,8). If you insert this command in place of the other string-

cutters, again at line 40, the computer will produce another list of strings,

56 THEEASYGUIDE TO YOUR COMMODORE 64

IUGHTS NEVER TO HEAUEH GO.
HOUGHTS HEUER TO HEAUEH GO.
THOUGHTS HEUER TO HErtUEH GO.
THOUGHTS HEUER TO HEAUEH GO.

T THOUGHTS HEUER TO HEAUEH GO.
UT THOUGHTS HEUER TO HEAUEH GO.
OUT THOUGHTS HEUER TO HEAUEH GO.
HOUT THOUGHTS HEUER TO HEAUEH GO.
THOUT THOUGHTS HEUER TO HEAUEH GO.
ITHOUT THOUGHTS HEUER TO HEAUEH GO.
WITHOUT THOUGHTS HEUER TO HEAUEH GO.
WITHOUT THOUGHTS HEUER TO HEAUEH GO.

S WITHOUT THOUGHTS NEUER TO HEAUEH GO.
OS WITHOUT THOUGHTS NEUER TO HEAUEH GO.
RDS WITHOUT THOUGHTS HEUER TO HEAUEH GO.

ORDS WITHOUT THOUGHTS HEUER TO HEAUEH GO

WOROS WITHOUT THOUGHTS HEUER TO HEAUEH 6

^HAMLET, ACT III, SCEHE 3

Figure 6.4: The effect ofaprogram thatgenerates increasingly longer strings

from the RIGHTScommand.

this time growing outward from the middle of the original string, A$, in

both directions.

To use the MID$ command to produce strings growing symmetrically

from the middle of the original string, however, requires a twist of

arithmetic. You can control the length of the string with the variable I,

which is given value by the FOR-TO-NEXT statement, as it was in the

LEFT$ and RIGHTS commands. The computer finds the middle ofthe

string A$ by dividing its total length (as found in line 20: A = LEN(A$))

in half: by A/2. The computer finds halfthe number ofcharacters, I, to be

printed at each pass, by 1/2. Halfofthe characters will be printed from the

right side, and half from the left of the center. Since the leftmost character

of a string is numbered 1, the left boundary can be specified as A/2 - 1/2

-I- 1. Thus, you can direct the computer with the MID$ command to pro

duce strings from the middle of the original quote, A$, with the following

command at line 40:

40 D$ = MID$(A$, A/2-1/2 + 1,1)

A list of symmetrically growing strings will be printed, as in Figure 6.5.

HANDLING WORDSANDINFORMATION 57

THQUT THOUGHTS NEVER TO HE
ITHQUT THOUGHTS NEVER TO HE
ITHOUT THOUGHTS NEVER TO HE*
WITHOUT THOUGHTS NEVER TO HE*
WITHOUT THOUGHTS NEVER TO HEAV
WITHOUT THOUGHTS NEVER TO HEAU
WITHOUT THOUGHTS NEVER TO HEAVE

S WITHOUT THOUGHTS NEVER TO HEAUE
S WITHOUT THOUGHTS NEVER TO HEAVEN
DS UITHOUT THOUGHTS NEVER TO HEAVEN
OS WITHOUT THOUGHTS NEVER TO HEAVEN
RDS WITHOUT THOUGHTS NEVER TO HEAVEN
ROS WITHOUT THOUGHTS NEVER TO HEAVEN G
OROS WITHOUT TH0U6HTS NEVER TO HEAVEN 6
OROS WITHOUT THOUGHTS NEVER TO HEAVEN Gi

WORDS WITHOUT THOUGHTS NEVER TO HEAVEN I

WORDS WITHOUT THOU6HTS NEVER TO HEAVEN I

HAMLET, ACT III, SCENE 3

REAOV.

Figure 6.5: The effect ofaprogram thatgenerates increasingly longer strings

from theMID$ command.

INSIDE INFORMATION

Like versatile actors within a play, variable symbols for numbers and

characters can play many changing roles within a program. The equal

sign directs these variables into their respective roles of the moment. But

the Commodore 64 recognizes another way of assigning values to varia

bles, which is somewhat the way a stage company's actors are given their

assignments—together. You can assign values to several variables at once

with a pair ofcommands, DATA and READ, in which you list the values

to be sent to the computer, and the variables to which they are assigned,

respectively. Any number of values can be sent to the computer with the

command that handles the information list, DATA. You can use it to send

the values of a string and two numbers, CHOKEBERRY, 15, and 30,

with the following command:

NEW

10 DATACHOKEBERRY,15,30

58 THEEASYGUIDE TO YOUR COMMODORE 64

Then use the command that makes the assignments from the list ofvalues,

READ, to assign those values to the variables N$, A, and B, respectively,

with this command:

20 READN$,A,B

You can now use these assignments, which are the equivalent of the com

mands:

N$ =CHOKEBERRY

A= 15

B = 30

in a PRINT statement like this one:

30 PRINT N$ "AFTER" A "MONTHS"

Now add lines 10, 20, and 30 to a set ofcommands in which one value, B,

is used to control a PRINT display:

12 PRINT "(press SHIFT and CLR/HOME)"

40 FORX = 1TOB

50 PRINT TAB(X) "(press C = and +)"

60 PRINT "(press SHIFT and CURSOR UP/DOWN) (press SHIFT

and CURSOR UP/DOWN)"

70 NEXTX

The above lines direct the computer to draw a horizontal bar of a length

corresponding to the value ofB given in the DATA statement ofline 10.

Running this program as it is, you'll see the heading:

CHOKEBERRYAFTER 15 MONTHS

and below it a horizontal bar, 30 columns long.

These two information-handling commands, one forming an informa

tion list, the other drawing from that list, can be used anywhere within a

program. One command need not precede the other. If you place a

READ statement before a DATA statement, the computer will seek out

the DATA statement when it encounters READ, and make the assign

ment ofvalues to the variables. Because it makes substitutions each time it

encounters a READ statement, you can use a loop to command the com

puter to substitute several sets ofvalues taken from a DATA statement for

a single set ofvariables listed in its accompanying READ statement.

HANDLING WORDSANDINFORMATION 59

The program just run can be modified to handle a group of values,

acting on each group, then returning to the READ statement for new

assignments for the variables. You can easily add more names and values

to the DATA statement:

10 DATA CHOKEBERRY,15>30,VETCH,25,14,BEARDWORT,17,27,

CHICKWEED,9,21, THYME.11,25

But if you run the program now, the computer will respond as before,

printing only the information about the chokeberry, since it acts on the

READ statement only once. To direct it through the READ statement

enough times to substitute a variable for each three-piece set of informa

tion in the DATA statement, you can add a FOR-TO, NEXT pair of

commands to repeat lines 20 through 70:

17 FORI = 1TO5

80 NEXT I

By including the READ-DATA commands in a FOR loop, you can

direct the computer to introduce different values from the DATA state

ment into any often-used series of commands. To slow the plotting and

printing pace, you can add an empty loop before the computer moves to

another set of values:

75 FORT=1 TO2500: NEXTT

Finally, because the loop of lines 17 to 80 includes cursor controls,

which present a normal line return after each bar is drawn, a blank

PRINT statement must be added:

25 PRINT

When you run this program, the computer clears the screen and moves

the cursor to the top left corner. It then assigns to the variables N$, A, and

B the first three values in the DATA statement, CHOKEBERRY, 15,

and 30, respectively. It next prints the statement from line 30, and then

follows the directions for drawing the horizontal bar. After running

through the empty FOR-TO, NEXTloop in line 75, the computer is next

sent back from line 80 to the READ statement at line 20, which assigns to

the variables N$, A and B the next three values in the DATA statement

(VETCH,25,33) and repeats the printing, plotting, and pausing. The

NEXT command in line 80 once again sends the computer back through

60 THEEASYGUIDE TO YOUR COMMODORE 64

^HGKE8ERRY AFTER 15 MONTHS

JETCH AFTER 25 MONTHS

BEARDUORT AFTER 17 MONTHS

CHICKWEED AFTER 9 MONTH

THYHE AFTER 11 MONTH

READY

Figure 6.6: Bargraphproduced by using READandDATA statements in a

FOR loop.

the READ statement and another set of values. This process continues

until the final run through the FOR-TO, NEXT loop, when the last val

ues of the DATA statement are assigned and the display of Figure 6.6 is

completed.

Besides making new assignments for variables, the DATA, READ and

FOR-TO, NEXT program structures can be used to put a different

name, tagged by a number, on each value in a DATA statement. With a

FOR-TO, NEXT loop you can direct the computer to number each vari

able at passes through the loop. To name the variables so that each now

matches a single value, you can change line 20 to read:

20 READN$(I),A(I),B(I)

which will number the variables. On the first pass through the loop, when

1=1, the three variables N$(l), A(l), and B(l) will be assigned to

CHOKEBERRY, 15, and 30. On the second pass, when I = 2, the three

variables N$(2), A(2), and B(2) will be named to represent VETCH, 25,

and 33. The computer repeats this process until the last pass, when N$(5),

A(5), and B(5) are named and assigned.

You'll now have seven sets of second-named, or subscripted, variables.

HANDLING WORDSANDINFORMATION 61

You can direct the computer to bring them into a program statement by

number, with these lines:

35 PRINT N$(l)" AFTER" A(l) "MONTHS"

45 FORX = 1TOI

The resulting program will produce the same results as its unsub-

scripted predecessor. But the advantage is that you can direct the com

puter to use these numerically-named variables in various ways,

according to numbers calculated or assigned in other program statements.

You can, for instance, direct the tabular printing ofthe plants' names and

performances over time. Now the subscripted variables, A(I) and B(I),

come in handy in a combination ofPRINT and FOR-TO, NEXT state

ments, which will display all the information:

85 PRINT

90 FORI = 1TO5

100 PRINT N$(I)"GREW TO " B(l) "AFTER " A(l) "MONTHS "

110 NEXTI

The program will now direct first the printing and bar graphs as it did

before, then the printing ofa list of the plants' performances, as shown in

Figure 6.7.

If you have a use for variables with more than a single numeric tag

each, you can add more tags. The variables N$(I,J), A(IJ), and B(IJ)

could be named by wrapping another FOR-TO, NEXT loop, one that

counts with the variable J, around the I loops. The numbers for J could

stand for the watering interval ofeach plant, for example, and could range

from 1 to 3. You can use several loops in this way to instruct the computer

to name a series of variables in the form N$(I,J,K,L,M), in which

I would be a code number for the plant, J might be its watering period,

K the amount, L the amount of fertilizer, and M the time allowed, for

example.

Each loop ofFOR-TO, NEXT statements that you use to assign values

to subscripted variable names multiplies the number of variables. Each

DATA statement ought to contain as many values as requested by the

accompanying READ statement. When the computer encounters a

READ command asking for more information than is provided by a

DATA command, it will stop the program and print the message:

OUT OF DATA ERROR

62 THEEASYGUIDE TO YOUR COMMODORE 64

:H0KE8ERRV AFTER 15 MONTHS

IETCH AFTER 25 MONTHS

BEARDWORT AFTER 17 MONTHS

CHICKWEED AFTER 9 MONTHS

THVhE AFTER 11 MONTHS

m

CH0KE8ERRY GREW TO 30 AFTER 15 MONTHS
UETCH GREW TO 14 AFTER 25 MONTHS
BEARDWORT GREW TO 27 AFTER 17 MONTHS
CHICKWEED GREW TO 21 AFTER 9 MONTHS
THVME GREW TO 25 AFTER 11 MONTHS

Figure 6.7: Another use ofthe DATA andREAD valuesfrom theprogram that

produced Figure 6.6.

When the computer first encounters a subscripted variable that is

not numbered, it automatically sets aside space for as many as eleven

numerically tagged variables that might later be produced. In this way, it

reserves places in its voluminous memory for each of the assignments—

A(l)= , A(2)= , and so on—that your program might generate from

DATA and READ commands. The eleven variables will be numbered 0

through 10, for each set of subscripts. Thus, whenever the computer

encounters a variable A(I), it reserves space for the variables A(0), A(l),

and so on to A(10).

If you want the computer to handle variables numbered outside this

range, you can direct it to put aside space for them. With the DIM com

mand, you name the variable, and give the subscript the highest number

you would like to allow for. To reserve space for the variables N$(0)

through N$(50), for instance, you can send the command:

DIM N$(50)

HANDLING WORDSANDINFORMATION 63

For example, if you're considering fifty people who can each work one

of three different shifts, and you wish to reserve space for all possible

arrangements of names, times, and performances, the variables resulting

could take any of the forms between N$(l,l), A(l,l), B(l,l) and

N$(50,3), A(50,3), B(50,3). You can use the DIM command to save

space for all of these variables and values by sending the directions:

DIM N$C5OV3), 4(^,5), B(50,3)

in a statement at the beginning of the program. On encountering this

command, the computer will set aside an "array" ofspaces in its memory,

starting with N$(0,0) and ending with N$(50,3). No space problems will

befall a program that runs without using all the spaces set aside by a DIM

statement, but the program that tries to crowd in variables without

reservations—an N$(51,3), for example—will be stopped in its tracks by

an intolerant computer, with the reply:

? BAD SUBSCRIPT ERROR IN (line number)

THE CLOCK INSIDE

Whenever you switch on the computer, even ifyou don't touch the key

board, the Commodore 64 secretly busies itself, keeping time. An inter

nal, electronic dock begins running the instant power is switched on, and

runs as long as the power is uninterrupted.

The time, in the form of a six-digit number representing hours, min

utes and seconds, can be read by directing the computer to display its

value. That value is stored, and continually updated, under the name

TIME$. To check it at any moment you can give the command:

PRINT TIME$

The dollar sign in TIME$ indicates that the computer stores this value,

though numeric, as a string variable, like a word. You can turn the com

puter into a displaying clock with this short program:

NEW

10 PRINT"(pressCLR/HOME)n

20 PRINT TIMES

30 GOT010

which, when run, will show the seconds ticking by at the top ofthe screen.

64 THEEASYGUIDE TO YOUR COMMODORE 64

You can include in a program an IF-THEN comparison that directs the

computer to check the value ofTIME$ (which can also be written as TI$)

and act when it reaches a certain value. Such a statement might take the

form:

IF TIME$ = "013520" THEN PRINT "YOUR TIME IS UP" : STOP

which, when encountered by the computer one hour, thirty-five minutes,

and twenty seconds after the power is switched on, will declare on the

screen YOUR TIME IS UP and stop the program run.

You can also adjust the clock, setting it to the current time much

like any other. For instance, you could synchronize the computer's clock

with one that gave the time as high noon, with this simple assignment

statement:

TIME$ = "120000"

OUTSIDE CONTACT

Even while it's working on the commands of a program, the Commo

dore 64 is not entirely blind to what's happening out there where you are.

It can respond to directions more subtle and informative than the throt

tling interruption you give it by pressing RUN STOP or switching offthe

power. But the computer, unimaginative and servile, has to be pointed in

the right direction before it can know what you have to tell it.

The INPUT Command

You can add a command to a program so that the computer will stop,

take the information you have for it, and then proceed with the run using

what you provided. That command is INPUT. So commanded, the com

puter can interact with a person at the keyboard or with devices to which it

is connected. The INPUT command directs the computer to "prime

itself" by setting aside one or more variables, and then "siphon" the val

ues typed at the keyboard. It then proceeds with the program, substituting

those values as though it were responding to an assignment command or a

pair ofDATA, READ commands.

Using a simple form ofthe INPUT command, you can direct the com

puter to tell you that it's waiting for information, and then take what you

type in (with a press ofthe RETURN key) and include it in the program.

HANDLING WORDSANDINFORMATION 65

The command takes the form of a simple request for a variable's value.

You can use it to direct, for example, an instant doubling of whatever

number you send from the keyboard in this short program:

NEW

10 INPUT A

20 PRINT A*

The statement, INPUT A, directs the computer to print a question mark

on the screen as a signal to you that it's waiting for a reply from the key

board. Ifyou do nothing, the computer will remain frozen in its operation

at line 10, waiting. If you type a number, say 537, and then press the

RETURN key, the computer receives that number, makes the assign

ment A = 537, and then carries out the commands on the next line. In

this case, the multiplication 537 X 2 is printed on the next row as 1074.

The INPUT command translates as: "Print a question mark, then take

the next value sent from the keyboard, and substitute it for the variable in

the statements that follow." The INPUT command can also direct the

computer to act on strings in the same way, as in this short program:

10 INPUT A$

20 PRINT A$ + A$ + A$

which will stammer three times whatever you send.

Like DATA and READ, a single INPUT command can be used to

direct the computer to act on both strings and numbers, as in this program:

10 INPUT A$, A

20 PRINT TAB(A)A$

Ifyou run this program, and then respond with:

FROM THE KEYBOARD, 20

the computer will then print the words FROM THE KEYBOARD

beginning at column 20.

You can use the INPUT command like the DATA and READ com

mands, typing values after the question mark (as after a DATA com

mand) and setting variables for assignment after the INPUT command

(as after a READ command). There is a difference, however: using an

INPUT statement, you can send new values during each program run

without changing a line of the program.

66 THEEASYGUIDE TO YOUR COMMODORE 64

A second form of the INPUT command allows you to direct the

computer in a convenient way, by condensing two commands into one.

This form of the command directs printing on the screen, in place of the

simple question mark, before waiting for a reply from the keyboard. You

can use it by typing, after the word INPUT and within quotes, a question

or statement you'd like displayed, followed by a semicolon to separate the

variables you're directing die computer to ask for.

After sending a NEW command to clear the last program from mem

ory, you can build a program from this form of the INPUT command,

starting with:

10 INPUT "WHAT'S THE CODE PLEASE ? ";A$

which directs the computer to print your question, "WHAT'S THE

CODE PLEASE ?", and then wait for a string that can be substituted for

A$. This form of the INPUT statement, although it's more graceful, is

exactly equivalent to the following commands:

10 PRINT "WHAT'S THE CODE PLEASE": INPUT A$

By adding a conditional (IF-THEN) statement, you can program the

computer's printed responses to vary according to your "password"

replies from the keyboard. You can arrange a program so that the com

puter encounters a conditional IF-THEN command after an INPUT

command has pulled keyboard information into the program to be used in

other commands. Doing this, you can make the program a two-way

exchange ofinformation, an interactive conversation with your computer.

To build such a program from the current INPUT statement, line 10,

you can add an IF-THEN command and two possible responses, like this:

20 IFA$= "THE ANCIENT MARINER SENT ME" THEN 40

30 PRINT: PRINT" IDONT TALK WITH STRANGERS.": GOT010

40 PRINT: PRINT" OK. I'LL TALK TO YOU. THIS COMPUTER

RUNS ON A 6510 CHIP."

50 PRINT "I'M JUST AN INTERPRETER FOR THE PROCESSOR

CHIP THAT REALLY RUNS THE"

60 PRINT "SHOWAROUND HERE. WHEN YOU GIVE COMMANDS

IT'S THE 6510 CHIP THAT"

70 PRINT "MAKES THINGS HAPPEN."

When you run a program like the above, the computer is directed to take

a value (or in this case a string of characters) from the keyboard, and then

compare that value with another and act according to the comparison.

HANDLING WORDSANDINFORMATION 67

The INPUT commcind takes the string sent from the keyboard and

assigns it to A$. The IF-THEN command compares it against the origi

nal string. If there is no match, the next command, line 30, directs a

rebuff, "I DON'T TALK WITH STRANGERS", and sends the com

puter to act on the INPUT statement at line 10, which again asks,

"WHAT'S THE CODE PLEASE ?"

When the reply sent from the keyboard (and assigned to A$) makes the

IF condition true, the computer is sent by the THEN commcind to line

40, to PRINT the computer's inner secrets, after which the program

ends. When reply after reply from the keyboard doesn't match the condi

tion of the IF-THEN statement, however, the computer is trapped in the

loop oflines 10 through 30 through 10, printing the rebuffand requesting

the password over and over. The Commodore 64 is particularly stubborn

with INPUT statements. Most other programs can be stopped with the

RUN STOP command. Not so with programs waiting for a reply to an

INPUT command. To stop such a program, you must use the firmer

RUN STOP-RESTORE command, which directs the computer to stop

the program run and retain the program in its memory.

The GET Command

You determine the computer's actions, ofcourse, when you write a pro

gram, but you can also make the action depend on the result ofa numeric

calculation or on some other value given to the processor through some

external device. There is another command, born of the same need for

information as the INPUT command, that directs the computer in a similar,

but terser, manner: GET. With it, you can command the Commodore 64

to act on a key pressed at the keyboard, without waiting for the RETURN

key. It directs immediate substitutions and can order values for several

variables at once, but it prints no message in quotes, or question mark.

The main limitation ofthis command is that it takes only one character—

number or string—for each variable.

You can use the command in a program of its own, like this:

NEW

5 PRINT "(press SHIFT and CLR/HOME)"

10 GETA$

20 PRINT "(press CLR/HOME)" A$

30 GOT010

68 THEEASYGUIDE TO YOUR COMMODORE 64

When this short program is run through the Commodore 64, the

computer assigns the first key pressed to the variable A$, then moves the

cursor to the upper-left corner of the screen, and prints the character of

whichever key is pressed. If more than a single key is pressed, as in this

reply:

TO ERR IS HUMAN

the computer will take the first letter typed, T, and display it. Then,

because of the GOTO command at line 30, the computer will return to

lines 10 and 20 to read and display each letter as it's typed, one at a time.

The letters will replace each other in the corner immediately, since the

computer reads much faster than any person can type. In fact, to use

GET, you will always have to put it into a loop to make it repeat contin

ually. Unlike INPUT, a single GET command will not wait long enough

for you to input even a single character. To see this for yourself, delete line

30 and try the program again.

The features that make the GET command either useful or bother

some, depending on your point ofview, are two: it directs the computer to

ignore anything more than the variable it's set to assign, and it acts with

out waiting for the RETURN key to be pressed.

The ASC Command

Each key provides information to the computer each time it is pressed.

That information travels as a numeric code, on which the computer takes

some action: relaying the letter Z to the screen display (press Z), or stop

ping a program in progress (press RUN STOP), for example. You can see

the number each key sends by using a command that directs the reading

ofeach key numerically. That command is ASC(" "), and it produces the

code number of the first character of the string typed in parentheses. For

instance, ASC("Z") is 90. You can use the GET statement in a program

that will display the code number ofeach key as you press it, like this one:

NEW

10 GETA$:IFA$=""THEN10

20 PRINT A$TAB(5)ASC(A$)

30 GOT010

When you run this program, the character and the code number of each

key you press will be printed on the screen as you press it.

HANDLING WORDSANDINFORMATION 69

Line 10 directs the computer to search for the next key pressed. Ifnone

is pressed during the instant it takes to perform a single GET operation,

then A$ has no value (A$ = "") and the computer is sent back to search

again. When a key is pressed, A$ is given a value and the computer moves

to line 20, where it's directed to print the key pressed and then, spacing

over, the numeric code. Line 30 restarts the process.

As this program runs, you'll find that each keystroke combination

(except the RUN STOP and RESTORE keys, which actually stop the

operation of the program) produces a code number. In fact, four keys will

show a code number each, but no value. These four, marked f1 f2, f3 f4,

f5 f6, and f7 f8, are known asjunction keys, and they were put on the key

board not to affect the screen display, but to serve as programmable

switches you can use to signal the computer while keeping the other, dis

play keys free for use.

If you press fl, you'll see that it corresponds to the code 133, and that

SHIFT-fl (which you can think of as f2) corresponds to 137. Knowing

this, you can use any ofthe function keys as a trigger for some action while

a program is running. By adding the following statements to the program

above, you can direct the computer to break out of the loop and take

smother action:

25 IFASC(A$) = 133THEN40

40 PRINT "(press SHIFT and CLR/HOME)" TIME$

You can use other keystrokes in similar ways. For example, to make

further use ofthe function key you can add:

27 IFASC(A$) = 137THEN50

50 PRINT "NOW YOU'VE DONE IT!"

60 GOTO 50

The PEEK Command

The Commodore 64 can reach beyond the keyboard for information to

act on. It does this through its circuitry, but you need not call an electrician

or take out a soldering gun. In fact, ifyou plug a pair ofgame paddles into

the side ofthe Commodore 64 at the jack marked CONTROL PORT 1,

shown in Figure 6.8, you can open another line ofinformation.

The Commodore 64 has the ability to electronically sense the positions of

70 THEEASYGUIDE TO YOUR COMMODORE 64

Figure 6.8: CONTROL PORT1, the game-paddle socket.

the paddles or joystick, and to interpret those positions as numbers, from

0 to 255. You can direct the computer to take values from the paddle posi

tions, for example, with the commands that introduce them into a pro

gram, PEEK(54297) and PEEK(54298). Then, acting as if those values

had been assigned in any ofthe other ways already seen, the computer can

treat them as it could any other value. The computer can read one

numeric value from each paddle. Using the PEEK command to read the

electrical status of a paddle, you can direct the computer to assign that

value to a variable, which can then be acted on in the program.

The PEEK commands can be used in a statement like the one below,

which assigns the value ofeach ofthe paddles to the variables X and Y:

NEW

10 X = PEEK(54297):Y = PEEK(54298)

The commands PEEK(54297) AND PEEK(54298) each translate as:

"Generate a number from the electrical value of the paddle. When the

paddle is turned completely counterclockwise, the value is 0; when it

is clockwise, the value is 255; generate values in between according to

position."

HANDLING WORDSANDINFORMATION 71

The statement in line 10 prepares the computer to substitute the value

from one paddle for the variable X, and the value from the other paddle

for variable Y. You can find out which is which by trying them with a pro

gram like the one that follows. You can add printing, screen-clearing, and

positioning statements, and a repeating loop command, like this:

5 PRINT"(pressCLR/HOME)"

20 PRINT TAB(10)XTAB(20)Y

30 GOT010

When you run this program, the paddles feed in values through the

PEEK commands. Program line 20 directs the computer to print the

value ofeach paddle's position near the top ofthe screen. Incidentally, val

ues below 100 will appear in three digits, as 990, 980, etc., on the screen.

You can add a statement to erase the previous value and so keep only

the current value displayed, like this:

15 PRINT "(press SHIFT and CLR/HOME)"

On encountering the GOTO statement, the computer is directed back

to the command that assigns the paddle values to variables. Thus, the val

ues printed on the screen keep pace with the current paddle positions.

As this program is run, the values you see on the screen are generated

from a physical device acting as an extension of the computer. This is the

essence of computer monitoring.

You can use these values within a programjust as you'd use values gen

erated or supplied within it. With two so easily manipulated values, you

can set in motion all kinds of action. For instance, you can draw directly

with the paddles by derivingTAB and vertical spacing values from paddle

positions. Building from program line 10 again, you can use the following

program to do that:

1 PRINT "(press SHIFT and CLR/HOME)"

5 PRINT "(press CLR/HOME)"

10 X = PEEK(54297): Y = PEEK(54298)

20 H = 30/255*X:V = 20/255*Y

30 FORI = 1TOV:PRINT:NEXTI

40 PRINT TAB(H) "(press SHIFT and Q)"

50 GOTO

72 THEEASYGUIDE TO YOUR COMMODORE 64

The assignment commands of line 20 scale the values taken from the

paddles to the dimensions of the screen. The loop formed by the com

mands of line 30 carries out a spacing function according to the value of

one ofthe paddles.

USING PROGRAMSWITH CASSETTE TAPES

People travel across country by both airplane and bus. One way is

faster and costs more; the other is less convenient and slower, but is rela

tively inexpensive. The same sort of choice is available when it comes to

storing and using programs and information files, both pre-packaged and

your own. A disk system will move programs and information more

quickly; a cassette tape system more slowly but at a much lower cost.

You can put your programs on common cassette recording tape

through a Commodore cassette recorder. This is a specially-wired tape

recorder (called aDATASSETTE™) that plugs into the back ofthe Com

modore 64, as shown in Figure 7.1. By operating it according to the

instructions that appear on the screen whenever you use the recorder, you

can store anything that resides in the computer's program memory on

inexpensive cassette tapes.

The Commodore 64 recognizes simple commands for transferring pro

grams to and from cassette tape. What's required on your part is a bit of

button-punching on the recorder as on-screen directions guide you.

You can use the cassette tape in the same way as if you were recording

speech or music. To make full use of a cassette tape, make sure

the recording-protect notches at the edge of the cassette case are covered

or blocked, and that the tape has been rewound to the beginning, but

shows the dull brown tape through the window at the business-end of the

cassette.

Slide the cassette into the plastic tracks ofthe recorder's lid. Then close

74 THEEASYGUIDE TO YOUR COMMODORE 64

Figure 7.1: The connection between the computer and the cassette recorder.

the lid and you're ready to use the tape for program storage. The power to

drive the recorder comes from the computer itself. You can use the

counter to keep track of where your programs are by making a note of

program and number, just as you might on any tape recorder. This is a

good idea, since the tape system of storage won't automatically make a

directory of programs contained on the tape. The programs will instead

be treated much like a series of short songs or speeches recorded one after

another through a microphone.

The procedure for recording a program is fairly direct. If you have a

program in the computer's memory that you want to save under the

name ENCHANTMENT, for example, you can give the command:

SAVE"ENCHANTMENT"

The computer will respond, in turn, with the prompt:

PRESS RECORD & PLAY ON TAPE

Ifyou then press those two keys on the recorder together,the computer will

quickly respond with:

OK

SAVING ENCHANTMENT

The screen will be blanked, the tape recorder's motor will turn, and a red

light on the recorder will light. When the computer has finished recording

the program, it will return the display screen and present a READY

prompt and a flashing cursor. At this point, unless you want to save

another program on tape, you can press the STOP key on the recorder.

The program now resides in two places—on the tape and in the com

puter's memory.

ECONOMY-CLASSSTORAGE—TAPES 75

You can bring a program from tape into computer memoryjust as sim

ply. The computer will search an entire tape for that program by name

and will load it when it's found. You can load the program ENCHANT

MENT back into the computer from any point on the tape before the

location of the program by giving the command:

LOAD"ENCHANTMENT"

The computer will respond with directions for you:

PRESS PLAY ON TAPE

When you do this the computer will respond quickly with:

OK

SEARCHING FOR ENCHANTMENT

If any programs precede ENCHANTMENT on the tape, the com

puter will blank the screen and then pause at each one it encounters, print

ing the message

FOUND program name

but it will continue its search for ENCHANTMENT. If, for instance,

programs named AGGRAVATION, CHALLENGE, and OBSTA

CLES were recorded on the tape before it, the computer would blank the

screen as it searched, and list each program it encountered, until it found

the one you asked for. You would then press the C = key to actually load

the program into memory. Incidentally, each time the computer stops the

tape at a program in its search, you can load that program instead of the

one you sent it off searching for, by pressing the C = key.

If you let the computer finish the search, it will eventually load

ENCHANTMENT when it finds it. You would see this display finally:

FOUND AGGRAVATION

FOUND CHALLENGE

FOUND OBSTACLES

FOUND ENCHANTMENT

LOADING

READY

That is the computer's way of telling you it encountered, but passed over,

three other programs before locating the program ENCHANTMENT

and loading it into its memory.

Incidentally, it's best not to "overlap" program names. The computer

76 THEEASYGUIDE TO YOUR COMMODORE 64

will stop at any program name that contains, within its first few charac

ters, the name of the program being searched for. This would happen if

you saved an additional program on the same tape, this one under the

name ENCHANT, and then, after rewinding the tape to its beginning,

commanded the computer to LOAD "ENCHANT". Finding the letters

ENCHANT in the program name ENCHANTMENT, the computer

would stop and load ENCHANTMENT.

You can use the searching ability of the Commodore 64 to generate a

directory of the programs on a tape. By directing the computer to search

for a program you know it won't find, you will put it through its searching

and printing routine. Ifyou send a command like

LOAD "ZZZ"

for a tape that has no such program, the computer will pause and print on

screen the name ofeach program it encounters before reaching the end of

the tape.

FACTS AND FILES ON TAPE

Although programs come and go on cassette tape, they're really no

more than directions for operating the computer. Sometimes you may

want to store and find information—addresses, names of places, people,

orjust bare facts. You can direct the tape-computer system to take in items

typed on the keyboard and store them as an information file.

Since the computer has no convenient set ofdirections for working with

information files (as it does with programs), you'll need a program that

tells it what to do. The one that follows uses three new commands—

OPEN, PRINT, and CLOSE—which control the flow of information

between tape and computer.

100 REM A PROGRAM THAT CREATES FILES ON TAPE

110 DIM A$(100): INPUT'NAME OF FILE";F$

120 OPEN 1,1,2, F$

130 INPUT A$(l)

140 "IF A$(l) = "CLOSE FILE" THEN 170

150 PRINT#1,A$(I)

160 1 = 1 + 1 : GOT0130

170 CLOSE 1

You can use this program in the following way. First, send the command:

RUN

ECONOMY-CLASSSTORAGE—TAPES 77

The computer will respond with the question:

NAME OF FILE?

If you then type in a name of your choosing, say WORMS, and press

RETURN, the computer will prompt you to ready the tape recorder:

PRESS RECORD & PLAY ON TAPE

Then, after you've done so, the screen will go blank, the recorder's red

light will glow, and the tape will turn. At this point the computer is direct

ing the name WORMS onto the tape as a file name. When this has hap

pened, the screen will reappear with printing and the new lines:

OK

The question mark is a prompt from the computer for the first item in the

file. If you type an item, like NIGHT CRAWLER, and then press the

RETURN key, the computer will prompt you for the next item with

another question mark:

If you type another item, say SILKWORM, and send it with the

RETURN key, the question-mark prompt will again appear. This

program can accept 100 items. (Line 110 created an "array" of 100 vari

ables for answers.) You can send item after item until you've put in the

number you want. At that point, you just reply to the question-mark

prompt with CLOSE FILE, and the computer will encode the entire list

of items on the tape.

The screen will go blank, the red light on the recorder will come on, and

the tape will turn. When the last item has been loaded, the tape will stop and

the READYprompt will appear on the screen. Your list will be on the tape.

You can put any number of files on the tape this way, one after the

other. Of course, encoded as they are, these files are of little use to you.

But with another program to direct the tape system, you can pull the items

out of a file and display them on the screen. The following program will

retrieve a file by name from tape and list each item on the screen.

200 REM A PROGRAM THAT RETRIEVES A FILE FROM TAPE

210 DIMA$(100)

220 INPUTNAME OF FILE"; F$

230 OPEN 1,1,0,F$

240 INPUT#1,A$(I)

78 THEEASYGUIDE TO YOUR COMMODORE 64

250 PRINTITAB(5)A$(I)

260 1 = 1 + 1

270 IF ST> 64 THEN 240

280 CLOSE 1

Notice the INPUT command in line 240. This command is a variant

form of INPUT, used to read items from tape or disk memory instead of

from the keyboard.

When you run this program to see the items of a tape file, such as the

WORMS file we've created, you'll see the question:

NAME OF FILE?

Once you type the name of the file you're looking for, and press

RETURN, the computer will give you directions to operate the recorder:

PRESS PLAY ON TAPE

After you do that, the screen will go blank and the tape will turn until the

file name and the items have been found. If you run the program when

the tape is wound to its beginning and the file is at the end ofthe tape, the

computer will search over each name until it finds the name you

requested. (If the name is contained within a longer file name, the com

puter will retrieve that file instead ofthe one you requested. For example,

the file HAPPENCHANCE, if encountered first, would be retrieved if

the file HAPPEN was requested.) Finally the tape will stop, and the com

puter will display the number assigned to each item in the list, and the

item itself, as it prints a list on the screen.

You can use these programs separately to store and gather files with

tape, and you can incorporate them into your own programs, as long as

your programs assign variables to items in the form A$(I).

Soon after its appearance, a gallant and effective Pony Express yielded

its service ofthe growing frontier to the faster and technologically superior

telegraph. Likewise, in many computer applications, the tape storage sys

tem we discussed in Chapter 7 is giving way to a new system. A technolog

ical improvement over the tape system of storage, a disk system offers a

speed of access that can be important when frequent exchanges of pro

grams and information must be made between computer and storage

medium.

A MARRIAGE OF MACHINES

A disk system operates under the electrical and logical control of the

Commodore 64 as an extension of the computer's own memory, a ware

house ofprograms and information. Each element ofthis system provides

more than twice the memory capacity ofthe Commodore 64, which is 64

kilobytes. With a disk storage system, you can put aside and use again

your own programs and other programs already written for the Commo

dore 64.

More complex than the cassette tape system, the disk storage system

works through a box about the size of the computer that contains its own

circuitry and small memory. Working under the computer's direction,

this disk drive magnetically encodes programs and information onto the

thin plastic circles known as disks, each contained loosely within a square

plastic envelope.

These disks are coated with a magnetically-sensitive material and

80 THEEASYGUIDE TO YOUR COMMODORE 64

respond like recording tape to an electromagnetic device that scans their

surfaces inside the disk-drive box. The disk drive includes a motor for

spinning the disks within their envelopes, phonograph-style. Since these

disks can be run in a drive one at a time, and then removed and replaced

by other disks, they form an interchangeable and unlimited set of reposi

tories for programs and information passing to or from the computer.

Figure 8.1 shows a disk drive and some disks.

Once connected to the computer electrically, the disk system also

responds to commands that aren't part of the vocabulary of the Commo

dore 64. Through these commands, you can direct the computer to put

aside a program or information from its memory on a disk and to pull

from a disk into its memory.

The Commodore 64, which communicates with one disk at a time, will

accommodate five disk drives, but you can handle most disk uses conve

niently with only two. In fact, a single disk drive will suffice for most disk

uses, although less conveniently, at times requiring more inserting and

withdrawing ofdisks on your part.

The disk system and the computer can exchange control of each other

interactively. Your commands can direct the computer to a particular disk

drive (if more than one is installed) and to a particular program or file on

the disk in the drive. In converse fashion, a program directing the

Figure 8.1: A disk drive and some typical disks.

HIGHSPEED STORAGE—DISKS 81

computer's action from a disk can guide it to carry out commands or

sequences just as you would from the keyboard.

Each program or information file brought out from a disk is first fed

into the computer's memory before any action is taken on it. The infor

mation makes its way between disk drive and memory by means ofa sim

ple electrical cable.

Each disk drive contains the circuitry for running its motor and moving

the magnetic drive head. In fact, the disk drive has its own small parcel of

memory space for retaining programs and information, and its own

power supply as well.

You won't need an electrician to connect things. Here's what to do:

First, turn off the power to the computer. With the power off, you can't

damage the machine. The cord packed with the disk drive has a metal

sleeve at each end, surrounding six pins. Plug one end ofthis cord into the

back of the drive box, into the jack just above the fiise. You then plug the

other end into the round jack furthest from the power light at the back of

the computer. The final connection to make is the 3-pronged power cord.

Plug the boxy end into the the back ofthe disk drive, and the standard end

into a power outlet. The connections are shown in Figure 8.2.

After you switch on first the disk drive power (at the rear of the drive

box), then the computer power, the electrical connection between com

puter and disk drive system is complete. You can position the parts of the

system—computer, disk drives and monitor or television—wherever the

wires will reach.

DISKDRIVE
POWER CORD

CABLEPLL

Figure 8.2: The connection between computer and disk drive.

82 THEEASYGUIDE TO YOUR COMMODORE 64

USING PRERECORDED DISKS

First, a word about how to treat disks. Like paper, disks come in two

forms, blank and written on. You can copy recorded disks, write on blank

parts ofrecorded disks, and write over, or erase, parts of recorded disks.

You can also protect the contents of a disk, as you might put written

paper in a binder so that it won't be unexpectedly written on. The square

envelope around the disk protects the magnetic writing from erasure or

alteration in the drive if that envelope is completely sealed around all

edges and lacks a cut-out notch, called a write-enable notch. If such a notch

is exposed on an envelope, as illustrated in Figure 8.3, the disk drive will

be switched out of a reading-only mode of operation. You can then direct

the computer to record your typing on the disk.

You can "freeze" all the programs and information on a disk bearing

such a notch, by covering that notch with a sturdy piece of foil tape, which

is usually provided with blank disks. When the mechanisms of the disk

drive sense that this space is covered, the drive will be switched to the read

only mode.

As their nearly total enclosure suggests, disks are fairly fragile. Even

when a disk has endured some mishap with no visible damage, its

magnetically-sensitive surface may have been damaged. Magnetic fields,

extremes of temperature (those outside our comfort range), bending or

Figure 8.3: The write-enable notch ofa disk.

HIGHSPEED STORAGE—DISKS 83

folding, and contamination by dirt, dust, skin oils, and the like are all haz

ards. Information and programs recorded on the disk surface in invisible

magnetic patterns can be cripplingly altered by an imperceptible scratch

or contamination. Hidden in its envelope, nearly all of the disk is pro

tected from contamination at any one time; you can handle the envelope

without concern. But the drive head reads where the disk surface itself

peeks through an oval slot, and through that slot can pass dust and con

taminants as well.

You can easily avoid common disk problems by taking two simple pre

cautions: Always remove disks from the drive before turning off the disk

drive or the computer; and always mark labels for disks before you stick

them onto the disk envelopes.

The disk and its plastic envelope are stored in a paper jacket, which

doesn't quite cover the envelope. This paper sleeve shields the otherwise

exposed disk surface at the oval cutout when it's out of the drive.

The magnetic head in the disk drive, recording and reading along a

short track, makes contact with the disk through the envelope slot while

the disk itself is spinning inside the envelope. Because the disk envelope is

square and two-sided, there are eight possible ways to put it into the drive.

Only one way will position the disk correctly.

The drive head is in the rear half of the drive, so the slotted end of the

disk envelope goes in first. One side of the disk envelope is unlabeled and

relatively unfinished-looking; the other side is labeled and smooth. If this

labeled side faces the little door at the front of the drive, the magnetic side

of the disk will face the drive head.

Thus, you insert the disk into an empty, opened drive box like this: slot

in first, labeled side facing the door. Then all you do is slide the disk gently

all the way in, until it catches in the recess. You can then push down on the

drive door until it catches to close over the center of the opening.

You remove the disk by pushing the door until it's pulled up by spring

action. The disk itself will slide halfway out of the drive box under the

same spring action.

Inserting a disk in a drive box and closing the door physically completes

the computer-disk system. But unless it's given the special commands that

direct the disk drive, the system is about as useful as an illiterate librarian.

Even when it is physically and electrically connected with a disk system,

the computer must still be told what to do with this apparatus.

The computer can respond to your disk commands, as well as to the

BASIC programming commands built into it. Disk directions automati

cally compile a listing of programs and file information as they are put

onto the disk. The TEST/DEMO disk, supplied with Commodore disk

84 THEEASYGUIDE TO YOUR COMMODORE 64

drives, holds several programs already, though it's not nearly filled. We'll

use the TEST/DEMO disk to get started. You can command a listing of

the programs on that (or any other) disk, and the computer will respond

with a display showing the name given to the disk and a listing of its pro

grams and files. Each is preceded by a number indicating the amount of

space it occupies on the disk.

You can direct the computer to display this list with the command:

LOAD "$", 8

The computer will respond with a message on the screen, and the disk

drive's red light will glow as a signal that the drive is in operation. You can

also take this glowing red light as a reminder not to remove the disk at this

time.

If the computer-and-disk-drive system doesn't recognize the disk com

mand sent to it, the red light on the drive will flash, as a signal that the last

disk command hasn't been carried out. The system will subsequently

accept any command it recognizes and then extinguish the light after per

forming the command.

Ifyou've sent the command above, the message you'll see is:

SEARCHING FOR $

The dollar sign, $, is a shorthand name for the directory. Once the direc

tory is found, the computer will reply with the message:

LOADING

That means the computer is copying information from the disk (in this

case, the directory listing) into its own memory. When the computer has

finished copying, it will display the familiar signal:

READY

You can then direct the computer to print on-screen the directory just

loaded, with the command:

LIST

The screen will fill with a list like that shown in Figure 8.4.

A directory listing can have more items than will fit on a single screen.

HIGHSPEED STORAGE—DISKS 85

LIST

5 "HOH PART TWO11
4 '"UlC-Ze WEDGE"
i "C-64 WEDGE"
4 "DOS 5. I11
Ii "COPY/ALL"
3 "PRINTER TEST"
4 "DISK ADOR CHANGE"
4 "DIR"
6 "UIEU BAff1
4 "CHECK DISK"
14 "DISPLAV T&S"
9 "PERFORMANCE TEST"
5 "SEQUENTIAL FILE"
13 "RANDOM FIAL"
1 "SEQ TEST FILE "
557 BLOCKS FUZE.
REAOV.

PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
PRG
SEQ

Figure 8.4: The TEST/DEMO disk directory.

The Commodore 64 will display the entire listing by "scrolling" the first

items ofthe list up and off the screen to make room for later items printed

after the first screenful. Once it has displayed the final item of the direc

tory, the computer signals its readiness for your next command with the

READY prompt. You can stop the listing at any point with the RUN

STOP keypress command.

You control the disk drive through the computer with commands given

in the same form as the LOAD command above. The computer will rec

ognize these commands if they each follow the pattern: first the com

mand, then the name of the program in quotes, then a comma, then the

number 8, which opens a path to the drive connected to the computer.

These commands increase in complexity as you order more complex

tasks. However, one ofthe programs on the TEST/DEMO disk can sim

plify the commands you give to operate the disk drive. After you've

directed the computer to load and then run this program, the Commo

dore 64 will respond to either those rather cumbersome disk commands

it's built to act on, or another, shorthand set of symbolic commands. The

directions for these shorthand commands are stored in an area ofthe com

puter memory apart from the usual program memory, so you can use

them over and over without interfering with the programs or files you put

in the computer.

86 THEEASYGUIDE TO YOUR COMMODORE 64

You'll find this program listed in the diectory under the name C-64

WEDGE. The C-64 WEDGE program will control the disk drive so that

a set ofdirections corresponding to these shorthand commands is stored in

the "reserved" part of the computer's memory. These directions will

respond to your shorthand disk commands, and will remain in memory

even after the command NEW erases whatever program you've put into

memory.

With the TEST/DEMO disk in the drive, you can put the C-64

WEDGE program into effect by directing the computer to load it:

LOAD "C-64 WEDGE",8

Once the computer has completed its search and loaded the program into

memory, you'll see the familiar READY prompt. You can then direct the

computer to run the program, and put the directions for its shorthand

commands aside in memory, by commanding:

RUN

As the program runs you'll see a three-line display oftitle and credits, after

which the familiar READY prompt appears as a signal that disk direc

tions for the shorthand commands are available in memory.

The computer will now respond to either set ofcommands. The longer,

more cumbersome commands are always available from the computer.

The shorthand C-64 WEDGE commands are there whenever you load

and run that program from the TEST/DEMO disk.

Since you may be using either type ofcommand, both are shown in the

explanations that follow, although you may prefer to use the WEDGE

commands for convenience. The longer commands are shown here in

italics as alternatives.

You can now load and list the directory with a single command:

@$

which gives the same directions as:

LOAD "$",8

LIST

You can run the first program ofthe TEST/DEMO disk, a display pro

gram called HOWTO USE, with the WEDGE and program commands:

/HOW TO USE

RUN

The slash symbol, /, serves here as an abbreviated form ofthe command

HIGHSPEED STORAGE—DISKS 87

LOAD. You could get the same results with the standard disk commands:

LOAD "HOW TO USE",8

RUN

As this program runs, you'll see a description of the programs on the

TEST/DEMO disk and directions on their use. You can stop the display

as you could any program, by pressing the RUN STOP key.

The / and LOAD commands each direct the computer to erase its pro

gram memory and to copy onto it a program from the disk. Their effect is

like typing NEW and a program. (You can use another symbolic com

mand, %, to run programs written in the machine's own numeric lan

guage, not in BASIC.)

The WEDGE program contains directions that allow you to give both

the LOAD and the RUN command together, in an even more abbrevi

ated form. It takes the form t, and can be used to give the same results as

above, though more quickly. You am direct the computer to immediately

begin acting on the commands ofa program from the disk drive by giving

that single command. If you want the computer to find, load, and run a

program like HOW TO USE on the TEST DEMO, you can give the

command:

t HOWTO USE

The computer will then skip a line and signal you with the statement:

SEARCHING FOR HOWTO USE

Then smother line will tell you the computer is bringing the program into

its memory:

LOADING

After this, the computer will immediately begin carrying out the com

mands of the program. In this case, it displays the screen titled DISK

ETTE INSTRUCTIONS.

The / , @ , and t commands are all you need to use prerecorded disks

operating under the directions of the TEST/DEMO WEDGE

commands.

PROGRAMS FROM COMPUTER TO DISK

You can record programs and information on any disk that has a recog

nized magnetic pattern etched onto it. A disk in the drive without this pat

tern is as useless to you using the computer as a bare desk to a writer with a

88 THEEASYGUIDE TO YOUR COMMODORE 64

pen. With them, the disk is like a blank sheet oflined paper, lying ready on

the desktop.

You can direct this magnetic etching of a disk with a single command

from the WEDGE program. In the process, you will erase any informa

tion already on the disk, and put on it a sectioned pattern, in which pro

grams and information can be stored. At the same time, the disk will be

given a name. The computer-disk system also looks for a two-character

code on each disk as it is first scanned. You can provide this code within

the same simple command.

To prepare a disk this way, giving it the name THE FIRST, and the

code Al, you can send the following command:

@N:THE FIRST.A1

or

OPEN 15,8,15

then

PRINT #15,"N0:THEFIRST,A1"

CLOSE 15,8,15

The computer will take control ofthe disk drive, and you'll hear the sound

ofmagnetic formatting (like fabric tearing) for several moments. When all

is quiet again and the red disk drive light goes off, the disk has been "ini

tialized," and is at your service. The newly-prepared disk can hold pro

gram and information files, just as the TEST/DEMO disk can. You can

selectively put useful programs from another Commodore 64 disk (like

the TEST/DEMO disk) onto any initialized diskette.

To record a program on a disk, you first type it into the computer. Any

program will do—the Hamlet quotation from Chapter 6, or one of your

own invention. You can type in a program you'd like to store on disk, just

as you would before running it, or you can load a program from another

disk or from a cassette tape. You can, of course, run the program to see

that the computer does what you want with it, and make any necessary

changes. When you've got the program as you like it in memory, every

thing is ready for the disk command that will preserve it outside the

computer.

All that remains is for you to name the program. The disk directions tell

the computer to handle names up to 16 characters long. Ifyou want to call

your program COLD STORAGE, for example, you can direct the com

puter to store it under that name by the command:

HIGHSPEED STORAGE—DISKS 89

♦- COLD STORAGE

or

SAVE "COLD STORAGE", 8

The disk drive will make its fabric-tearing sounds. When the commo

tion stops and the red light goes off, the program exists in two places.

Magnetically encoded, it's on the disk. And as before, it's in the com

puter's program memory. It hasn't moved, it's been copied.

If you type LIST, the program statements will appear on the screen.

You can type NEW to erase the program memory and still run the pro

gram, this time from the disk, with the command:

t COLD STORAGE

or

LOAD "COLD STORAGE", 8

then

RUN

It will then be freshly loaded into the program memory of the com

puter. You can remove the disk, turn off the computer, send the disk

round-trip to Chicago ifyou like, and—on its return—put that disk in the

drive box, turn on the computer and type:

t COLD STORAGE

or

LOAD "COLD STORAGE", 8

then

RUN

and the program will manifest itself.

The computer was quietly following another disk direction when you

commanded «- COLD STORAGE. It put the name of the program,

preceded by a number indicating the amount of space it takes, on the

directory. Ifyou now send the directory command:

@$

or

LOAD "$",8

90 THEEASYGUIDE TO YOUR COMMODORE 64

then

LIST

at the end ofthe directory, you'll see:

(a number like 2) COLD STORAGE PRG

You can change the name of a program with another disk command.

Directed by this command, the computer looks for the program under the

first name listed, then substitutes for it the second name.

To change the name of the program COLD STORAGE to STOW-

AV\WY, for example, you can send the command:

@R:STOWAWAY = COLD STORAGE

or

OPEN 15,8,15

then

PRINT #15, "R0:STOWAWAY= COLD STORAGE

CLOSE 15,8,15

So directed by the RENAME command, the computer changes only that

program's name, leaving the program itselfand its position in the CATA

LOG unaffected.

There's no need to clutter a disk with a program you no longer want.

To erase a program once and for all, you can give a command like this:

@S:STOWAWAY

or

OPEN 15,8,15

then

PRINT #75, "S0:STOWAWAY"

The computer, under disk directions, will operate the drive to find the

program, erase it entirely, and remove its name from the directory.

You can move programs individually from one disk to another using

the commands that load (/), save (*-), and delete (@S:). First you load

the program from one disk into the computer's memory, then save it by

sending it from the program memory to another disk, and finally delete it

from the disk on which it originated.

To move a program like STOWWVi\Y from one disk to another using a

HIGHSPEED STORAGE—DISKS 91

one-drive system, you can first bring it into the computer's program

memory:

/STOWAWAY

then remove its disk from the drive, insert a second disk—one equipped

with its own magnetic etching—and send the command:

^STOWAWAY

then reinsert the original disk and have it erased with the command:

@S:STOWAWAY

Through the save, load, delete, and rename disk commands, you can

juggle and reshape programs on disks quite freely. Any mag

netically-prepared disk can hold program and information files, just as the

TEST/DEMO disk can. You can selectively put useful programs from

another Commodore 64 disk (like the TEST/DEMO disk) on any initial

ized diskette.

You could copy a program like SEQUENTIAL FILE, for instance,

with the command:

/SEQUENTIAL FILE

or

LOAD "SEQUENTIAL FILE", 8

Then, replacing the TEST/DEMO disk with an initialized one on

which you'd like to store the program SEQUENTIAL FILE, you could

give the command:

- SEQUENTIAL FILE

and the computer would duplicate that program on the disk you had ini

tialized.

Using this procedure, you can duplicate selectively and move programs

around your diskettes as you find useful. In particular, you can copy the

information- and file-handling program of SEQUENTIAL FILE onto a

disk that will be used for a special purpose, like holding information files.

USING MORE THAN ONE DISK DRIVE

Just as several disks can serve you as a reservoir ofprograms and infor

mation, several disk drives expand the number of pathways for items

moving in and out of the computer memory. With two drives, for

92 THEEASYGUIDE TO YOUR COMMODORE 64

instance, you can load programs from, or store them on, the disks in

either drive.

To connect a second drive to the system, simply take the six-pronged

cord that comes with the drive, and plug one end into the socket over the

fuse holder on the second drive; then plug the other end into the socket

remaining on the drive you've already connected directly to the computer.

The electrical connection will then run from the computer directly to one

drive, and from that drive to the second drive. The power cord from the

second drive connects to an outlet in the same way as for the first drive.

The computer can now communicate with either drive. If you turn on

the computer and either one ofthe drives, leaving the other turned off, the

computer will carry out the commands described above to operate the

drive which is powered.

If you switched on both drives and gave a command, like that to load

the directory, the computer would be stymied. Without instructions for

which of the two disk drives to search for the directory, it may arbitrarily

choose one or the other, or it may lock up, giving you the message that it's

searching for the directory, $, when in fact it's not controlling either drive.

In that case, you'd have lost control of the computer by sending it off to

make a decision for which it hadn't been programmed.

The key to avoiding this problem is to realize that built-in directions tell

the computer that each drive is identified by the same number. This

device number is automatically set at 8, and you can see it in a command

like LOAD "$",8. Any drive connected to the computer, directly or

through another drive, is identified by this number automatically. But the

computer can be directed to label any drive with a number of your own

choosing through commands that re-label each drive. These commands

are number-laden and abstruse, and involve setting up command chan

nels and files, but you don't need to understand the details of how they

work to use them.

To change the device number by which a connected disk drive will be

called from the computer, here's what you can do. First, switch off each

drive except the one you wish to renumber.

Send the following statement (with the RETURN key, of course):

OPEN 15,8,15

Then send this statement, ifyou want the disk drive to be numbered 9, for

example:

PRINT #15,"M-W"CHR$(119)CHR$(0)CHR$(9 + 32)CHR$(9 + 64)

HIGHSPEED STORAGE—DISKS 93

If you wish to renumber another drive, switch it on and repeat the com

mands above, substituting smother number for 9 in the last two sets of

parentheses. If, for instance, you wish to label another drive as 22, you

can turn it on and follow this sequence:

OPEN 15,8,15

PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2)CHR$(22 + 32)

CHR$(22 + 64)

The device number you assign to each disk drive will then be recognized

by the computer until it is again changed, or until power is switched off.

Since the Wedge commands assume a drive numbered 8, they will be

effective only for the drive automatically given that number, or for one

assigned that number. If numbers 8 and 9 are assigned to two drives, for

example, you can use the long form ofthe disk commands to control each

of the drives, and the Wedge commands to control drive 8.

You could copy a program from one disk in drive 8, for instance, to

another in drive 9 with a sequence ofcommands like this. First type

LOAD "SEQUENTIAL FILE",8

then wait for the READY prompt, and type

SAVE "SEQUENTIAL FILE",9

FACTS AND FILES ON DISK

Programs are useful enough, but let's face it, what you really want the

computer to do is handle information—data, facts, figures, names,

addresses, times, places, quantities, descriptions.

Any information that can be typed can be put on a disk. You can store it

under a name on the directory listing and bring it out through the com

puter to the screen. You can direct the computer to work on it, manipulat

ing it according to program statements.

Like files in a cabinet, information on a disk is at your disposal to pull

out for reading, or to use in programs in place of DATA and INPUT

statements. However, the computer needs more detailed directions for

putting information that's not organized as a program on disk, and for

pulling that information back into its memory.

One of the programs on the TEST/DEMO disk handles information

files on disk. It has two functional parts. One part directs the computer to

put keyboard information on an initialized disk; the other part directs it to

read information from a disk.

More elaborate programs, which direct the computer in complex

94 THEEASYGUIDE TO YOUR COMMODORE 64

manipulations of information files, are commercially available on prere

corded disks. If so inclined, you can write some yourselfby building from

the TEST/DEMO disk file program. It provides a set of commands that

direct the computer in information transfers.

In carrying information files—also known as textfiles—to and from a

disk, the Commodore 64 treats them just as it treats strings of words in a

program. Whether you direct numbers, words, commands, or declara

tions of emotion into these text files, the computer will treat them as sim

ply a group of characters.

You can use the file program without studying how it works. You can

also list the program and strip away all but the essential file features to

fashion a streamlined sequence offile-handling statements. This sequence

can then be added to other programs for manipulating information and

perhaps making new files, ifyou like.

The program that directs the computer in forming information files is

listed on the TEST/DEMO disk as SEQUENTIAL FILE. You can use it

most easily if you first copy it onto a disk you've "initialized" with a

magnetically-etched pattern. Then, when you command:

t SEQUENTIAL FILE

or

LOAD "SEQUENTIAL FILE",8

RUN

the computer clears the screen and prints descriptions and directions for

the program's use. At this point you can ignore the first couple oflines and

follow the directions after them, ENTER A WORD, COMMA, NUM

BER. Ifyou want to enter, as first on the list, the name AMBROSE and

the number 1, you can then type after the prompt A$,B:

AMBROSES

and then send it to the computer by pressing the RETURN key. You can

then send another name and number similarly:

BRET.357

and a third name and number:

MARK.2

If you'd like the list to contain just these three items, you can signal the

HIGHSPEED STORAGE—DISKS 95

computer to close the list with the response:

END

sent by a press ofthe RETURN key. A pair ofquestion marks will appear

as a prompt. If you press the RETURN key again, the computer, acting

under the SEQUENTIAL FILE program's commands, will take it as a

signal that you've finished the file. Following the directions from the sec

ond part of this program, the Commodore 64 will print the line, READ

SEQTEST FILE. At this point, SEQTEST FILE is the name the pro

gram has given to the list ofitems you've typed. Finally, the computer will

print on-screen the list of items and numbers.

You'll find, after running the SEQUENTIAL FILE program, that the

computer has added the file to the end of the directory listing under the

name SEQTEST FILE. The file listing appears as:

1 "SEQTESTFILE" SEQ

The file information has been copied item-by-item into the computer

from the disk, as though in response to keyboard typing after an INPUT

statement, and is still present on the disk.

A program can have a rather uncertain existence. It can be run repeat

edly, performing the same function each time, or altered to fit different

occasions. The clever and creative way to use your computer is not to

write a new program for each new project, but rather to adapt and build

from programs and parts of programs that have proven their usefulness.

How much easier it is to start with groups ofcommands whose effects are

known than to begin each project facing a blank screen!

ADDINGPROGRAM PARTS

You can direct the Commodore 64 to piece together programs (or parts

of programs) you find particularly useful or interesting. Program parts

can be added within the computer's memory. You can do this even ifyou

understand little more than the connections among programs or program

parts. To create your own style of programming, you can call on ready-

made, often-used statement sequences. Using such an approach, you can

take sequences you're confident of, and splice them into a program you

design to take advantage ofeach part.

For example, to display a name at the bottom center ofthe screen, you

can direct the computer with this two-line program:

NEW

10 DATA BONAPARTE THE AMBITIOUS

1000 READ A$: PRINT "(press SHIFT and CLR/HOME)"A$

BUILDINGAND REBUILDINGPROGRAMS 97

You can use the screen-clearing, positioning and printing features of line

1000 again, by directing the computer to carry out the commands of that

line for other names (i.e., other values of A$). The pair of commands,

GOSUB and RETURN, that direct the computer to line 1000 and back

can be added to the program, with these statements:

20 GOSUB 1000

1010 RETURN

A third statement, END, will stop the computer from acting on line 1000

again. It can be placed anywhere before line 1000, like this:

100 END

On encountering the GOSUB command, the computer skips any inter

vening lines of statements and acts on line 1000 immediately. Then, in

normal sequence, it performs the commands ofany lines that follow 1000.

When the computer encounters the command RETURN, it's directed

back toward the GOSUB statement and the line immediately after it.

Having carried out the commands between line 1000 and the RETURN

statement, the computer resumes the sequence at line 100, which directs it

to stop.

The GOSUB command can be translated as: "Mark the line number

of this statement in your memory, then carry out the commands begin

ning at the line number indicated." The RETURN command translates

as: "Return to the marker made by the GOSUB command that sent you,

and then continue action with the next line number following it."

Using this pair ofcommands, you can direct the computer to a group of

statements anywhere in the program. The GOSUB command can be

used several times in a program to direct the computer to a group of state

ments, as in the following sequence:

10 DATA BONAPARTE THE AMBITIOUS

14 GOSUB 1000

20 DATA ALBERT THE UNDERRATED

24 GOSUB 1000

30 DATA MELVILLE THE MAGNIFICENT

34 GOSUB 1000

100 END

At each place where it appears, the GOSUB 1000 command directs the

computer to act on line 1000 and any lines that follow it. The RETURN

statement directs it back to the main sequence of DATA and GOSUB

98 THEEASYGUIDE TO YOUR COMMODORE 64

statements. Ifyou add an empty loop to line 1000, to delay the change of

displays:

1000 FORT= 1 TO500:NEXTT: READA$:PRINT

"(press SHIFT and CLR/HOME)" A$

and then run this program, you'll see the name given in each DATA state

ment printed at the top left corner ofthe screen, one after another.

You can direct the computer to act on any number of command

groups—known as subroutines—in any order. You can add a graphing

function to this program with another group ofcommands:

2000 N$= "(press SHIFT and W)"

2010 FORI = 1TO6

2020 READA(I)

2030 PRINT "(press CLR/HOME)"

2040 Y = 23-A(I):X = 5*I

2050 FOR V = 1 TO Y: PRINT "(press CURSOR UP/DOWN)" ;:

NEXTV

2060 PRINT TAB(X)N$

2070 NEXT I

2080 PRINT "(press CLR/HOME)" : RETURN

This group ofcommands will direct the computer to READ values from a

DATA statement, and then, by a little arithmetic manipulation ofX and

Y values, to plot those values.

You can now make further use of the GOSUB command. If you

expand the DATA statements in lines 10, 20 and 30, you can put the com

mands starting at line 2000 to work on those values:

10 DATA BONAR^RTE THE AMBITIOUS, 5.5,7,11,17,9,1

20 DATA ALBERT THE UNDERRATED, 2,3,16,17,18,19

30 DATA MELVILLE THE MAGNIFICENT, 5,10,7,15,17,12

These values could stand for yearly weights, or productivity, or size of

vocabulary, for instance.

To direct the computer to the graphing subroutine you can add, after

each ofthe GOSUB 1000 printing commands, a GOSUB 2000 command:

18 GOSUB 2000

28 GOSUB 2000

38 GOSUB 2000

When run, this program will direct the computer first to print the name,
then to plot the corresponding set ofnumbers.

BUILDINGANDREBUILDINGPROGRAMS 99

Because it sends the computer to another line number, a GOSUB com

mand can be used within one subroutine to direct the computer to

another. In such a case, the computer will pass through the first group of

commands to the second. Encountering the RETURN command of the

second group, it will be sent back to the first group. When it encounters

the RETURN command of the first group, it will be sent back to the

main program sequence.

Using the GOSUB-RETURN command pair in this way, you can add

subtleties and complexities to programs in a simple, "modular" fashion.

For example, you can enhance the graphing feature of this program by

adding grid lines against which to compare each of the plots. A sequence

of commands that will do this could be grouped as two subroutines, one

that draws vertical lines starting at line 3000:

3000 PRINT "(press CLR/HOME) (press CURSOR UP/DOWN)"

3010 FORV=1TO20

3020 FOR I =0 TO 39 STEP 5

3030 PRINT TAB(I) "(press C= and G)(press SHIFT and CURSOR

UP/DOWN) (press SHIFT and CURSOR UP/DOWN)

(press SHIFT and CURSOR UP/DOWN)"

3040 NEXTI

3050 PRINT

3060 NEXTV

3070 RETURN

and another sequence of commands that draws horizontal lines and a

number scale, starting at line 4000:

4000 PRINT "(press CLR/HOME) (press CURSOR UP/DOWN) (press

CURSOR UP/DOWN)"

4010 FORY = 0TO20STEP5

4020 FORX = 3TO35

4030 PRINT 20 - Y TAB(X) "(press C = and @) (press SHIFT and

CURSOR UP/DOWN)"

4040 NEXTX

4050 IF Y= 20 THEN 4070

4060 FOR S = 1 TO 5: PRINT: NEXT S

4070 NEXTY

4080 RETURN

You can direct the computer to draw the grid, just after it reads the values

100 THEEASYGUIDE TO YOUR COMMODORE 64

from directions in the subroutine beginning at line 1000, by adding this

statement:

1007 GOSUB 3000: GOSUB 4000

When you run this program, first the screen will clear and the name

"BONAPARTE THE AMBITIOUS" will appear at the top. Then the

computer will draw grid lines. Next it will plot the values from the first

DATA statement, as shown in Figure 9.1. The screen will clear again, and

the process will begin for the values from the next DATA statement. It will

continue until each set ofvalues from the three DATA statements has been

handled, and the computer stops at the last display.

The computer acts on GOSUB and RETURN commands in pairs. If

it encounters a RETURN statement without having first encountered a

GOSUB statement, it will follow its built-in directions to signal you with

an error message:

RETURN WITHOUT GOSUB ERROR IN (line number)

This problem would result from the computer's usual progress through

higher line numbers to a high-numbered subroutine. You can avoid it by

putting an END or STOP statement after the main sequence but before

the first of the subroutine statements. In this case, we've put an END at

line 100.

Figure 9.1: A plot created byfour subroutines.

BUILDINGAND REBUILDINGPROGRAMS 101

Like the GOTO command, GOSUB directs the computer to the line

number listed in the command. You can use a variation of the GOSUB-

RETURN command pair to direct the computer, in a conditional way, in

and out ofthe main sequence of statements. Just as an ON-GOTO com

mand directs the computer to depart from the normal sequence on certain

numeric conditions, so an ON-GOSUB command directs the computer

to particular subroutines. You can use this command to direct the com

puter to one of several command groups, from which it will later be sent

back to resume the main sequence again.

The ON-GOSUB statement can be used in the plotting program, for

instance, to selectively draw parts of the grid pattern against which the

information will be graphed. One group of commands, like those begin

ning at line 3000, can direct the computer to draw vertical lines. Another

group, like those beginning at line 4000, can direct the drawing of hori

zontal lines.

By changing program line 1007 to a statement whose directions to the

computer are conditional you can, according to the choice made during

each program run, either use or pass over the subroutines beginning at

3000 or 4000, or a new one at line 5000. This subroutine produces the full

grid, by sending the computer to draw vertical, then horizontal, lines.

The full grid could be drawn through these statements:

5000 GOSUB 4000

5010 GOSUB 3000

5020 RETURN

The command that sends the computer to each of those subroutines, on

certain values of the variable D, is:

1007 ON D GOSUB 3000,4000,5000

This directs the computer like the ON-GOTO command, comparing the

value ofthe variable with the ON-GOSUB command's built-in ranges of

value: one or greater but less than two, and so on. You can instruct the

computer to request the value of D, by adding a prompt and an INPUT

statement, like these:

1005 PRINT "PRESS THE NUMBER OF THE DISPLAY YOU'D LIKE:"

1006 INPUT "1-VERTICAL; 2-HORIZONTAL; 3-FULLGRID";D

Running the program, you'll see the INPUT request at the top of the

screen. If a choice in the range 1, 2, or 3 is sent, the computer will first

draw the graph lines according to choice, then plot the values from the

DATA statement. Ifa choice outside the range is typed, the computer will

102 THEEASYGUIDE TO YOUR COMMODORE 64

simply move to the next program line and no graph lines will be printed;

the DATA values will be plotted on an unlined screen.

You can build a library of useful subroutines, giving each ofthem high

line numbers to avoid interference with a lower-numbered main

sequence. In fact, your main program can sometimes be nothing more

than a series of requests for subroutines, along with, perhaps, some

INPUT or DATA sequences. In assembling such a program, the only ele

ments that must match are variables that are common to the subroutines

and are acted on in each subroutine. You can be sure of this match by

checking to see that a given variable name stands for the same quantity

wherever it is used. The main sequence of such a program could be as

simple as:

10 GOSUB1000

20 GOSUB2000

30 GOSUB3000

100 END

The final statement, END, stops the computer from running on to the

subroutines that follow. Following this structure, you can save yourself

work by taking advantage ofsubroutines already written by you or some

one else, to build programs giving you greater control over your com

puter. You can concentrate on arranging existing elements, rather than on

writing detailed program commands.

REBUILDINGBORROWED PROGRAMS

Not all useful programs are created in the plodding process of adding

one command after another. You can borrow from existing programs,

alter them to suit your needs, and so make use of the original program

ming effort that went into those programs. By borrowing a disk

program—for example, the SEQUENTIAL FILE program of the

TEXT/DEMO disk—you can use its disk-handling abilities in programs

ofyour own.

The SEQUENTIAL FILE program, which actually performs two dis

tinct file-handling tasks, making information files on disks and then read

ing them, can be tailored into two separate parts for use in your programs.

Many of its statements do nothing more than describe the program func

tions, and can be removed. By elimination of those commands that you

don't need, you can trim a bit of excess from the original.

BUILDINGAND REBUILDINGPROGRAMS 103

You need not understand all the details of the program to make use

of it and its parts. For instance, if you look at the entire listing of

SEQUENTIAL FILE, a screenful at a time, you can see that the pro

gram is divided into four parts, each separated by the notes of a group of

REM statements.

The first group ofREM statements, numbered 1 through 6, describes

the function of the program that follows, AN EXAMPLE READ &

WRITE A SEQUENTIAL DATA FILE. The statements that follow

that group of remarks, lines 10 through 95 (shown in Figure 9.2), hold

commands common to both functions ofthe program.

The next group of remarks, numbered 100 through 105, describes

rather tersely the part of the program that directs the formation of a disk

file, WRITE SEQTEST FILE. Those statements occupy lines 110

through 160. (See Figure 9.3.)

The remarks from lines 200 through 205 describe the statements, lines

206 through 420, that direct the reading into the computer ofinformation

from the file, SEQ TEST FILE, produced by the first half of the pro

gram, READ SEQTEST FILE. (See Figure 9.4.)

Finally, the notes in lines 1000 to 1006 describe a sequence of contin

gency commands in a subroutine, statements 1010 through 1060, that will

1 REM
2 »EM * EXAMPLE
3 REM * READ & WRITE
4 REM * A SEQUENTIAL
5 REM * DATA FILE
6 REM aw************

18 PRINT'^ifclMJINITI

28 0IMA$<25>
38 0IMB<25)
49 Q£ML,
68 GQSUB it)&8
78 CR$=CHR$(I3)
88 PRINT
98 PKINT1i L!URIT
95 PRINT

URITE SEQ TEST FILE1

Figure 9.2: The statements ofthe SEQUENTIAL FILEprogram thatprepare

the computer to handle afile.

104 THEEASYGUIDE TO YOUR COMMODORE 64

100 REM xxxxxxxxxxxxx

191 RErt *
192 RErt * WRITE SEQ
103 REM * TEST FILE
104 REM *
105 REM xxxxxxxxxxxxx

110 0PEN2,8.2.il00SEQ TEST FILE ,S,W"
115 G0SU8 1000 ,
117 PRINT"ENTER A W0R0. COMtth, MUM8ER'
118 PRIHTMENTER WORD '£*£>' TO STOP1'

140 PRIHTt*2.A$ll,IISTR$(B)CR$;
145 G0SU8 1&80
150 GOTO 120
160 CLOSE 2

Figure 9.3: The statements ofthe SEQUENTIAL FILEprogram that send

information to a diskfile.

REM
REM *
REM » READ SEQ
REM * TEST FILE
REM »
REM ***
PRINT
PRINT" READ SEQ TEST FILE"
PRINT
0PEH2,8.2"8:SEQ TEST FILE ,S,R'

2,
RS=ST
60SU8 1889
PPRINTrt$<I).B(I)
IFR S = 64 TI4EN 388
IF RSO8 THEN 438
1 11 11
GOTO 228
CLOSE 2

REAOV

Figure 9.4: The statements ofthe SEQUENTIAL FILEprogram that take
informationjrom a diskfile.

BUILDINGAND REBUILDINGPROGRAMS 105

Figure 9,4, continued.

display a code for problems that might develop from unrecognized com

mands between the computer and disk drive, READ THE ERROR

CHANNEL. (See Figure 9.5.)

To cut out that part ofthe program that creates the file in the first place,

you really only need the lines up to 160, and the subroutine from line 1010

on. You can begin to tailor this program to your file-making needs by

deleting the program lines between 200 and 410. You do that, you recall,

by sending each line number with the RETURN key:

200

201

400

410

The program remaining in the computer's memory will prompt you to

form a disk file of up to 25 word-number combinations, which it will

name SEQTEST FILE. It's a program that has several statements in

excess of those that actually direct this function. You can trim off excess

statements by deleting the remarks of lines 1 through 6, the redundant

106 THEEASYGUIDE TO YOUR COMMODORE 64

1088 REM xxxxxxxxxxxx

1881 REM *
1882 REM * READ
1883 REM * THE ERROR
1084 REM * CHANNEL
1085 REM *
1086 REM xxxxxxxxxxxx

1018 INPUTttl5,EN.EH$,ET,ES

113 HISia
1850 CLOSE 2
1860 END
REflOY.

Figure 9.5: The statements ofthe SEQUENTIAL FILEprogram that act on

a diskproblem.

PRINT statement of line 10, and the remarks and spacing of lines 95

through 105. (Keep in mind, however, that you or another user might

later appreciate having the REM lines preserved.)

The program that remains after this trimming will direct the computer

to form a disk file through your interaction. If you run it more than once

to create different files, however, it will give each set of data the same

name, SEQTEST FILE. By altering two statements, you can modify the

program to assign a name ofyour choosing to each file you create with this

program.

At line 110 is the statement that names the file to be put on disk. You

can make it more general by simply changing the part that names the file

to a variable. To do this requires the kind ofaddition that you can perform

on word strings using a plus sign. Using the variable F$ to represent the

file name, you can replace line 110 with the statement:

110 OPEN 2,8,2,"@0:" + F$ + ",S,W"

Now the program directs the computer to give each file the name assigned

to the variable F$. You can make this assignment when the program is

run, if you include a statement that asks you for a file name. An INPUT

BUILDINGAND REBUILDINGPROGRAMS 107

statement in place of the PRINT statement ofline 90 would do that:

90 INPUT "NAME OF FILE TO BE MADE"; F$

Now the computer holds a versatile program that can create disk file

after disk file in response to your entries, and can assign to each a different

name. Using this program you can create many files, each of which will

be listed by name on the directory ofthe disk it is stored on.

The resulting program you'll see on sending the command LIST (as

shown in Figure 9.6), is trimmed and to the point. It will direct the com

puter to ask you for the name of a file you wish to produce, and then,

through the prompts of its INPUT statement, will collect and finally send

to the disk drive the elements you supply from the keyboard.

You can save this program as it is, by putting it on a disk on which

you'd like to store files. You might put it there under the name MAKE

FILE, for instance:

^■MAKEFILE

or

SAVE "MAKE FILE",8

On the other hand, you can include this program in a larger program, if

you like, or make some further adjustments to it.

As it was orginally written, the file-handing program reserves space for

only 26 entries. Lines 20 and 30 make this allocation:

20 DIMA$(25)

30 DIMB(25)

You can extend the number ofelements to be put in the files you create, by

modifying those statements to reserve more space in computer memory. If

you wanted to reserve room for 100 items, for instance, you could simply

send new statements to reserve space:

20 DIMA$(100)

30 DIM B(100)

Likewise, the format of the items entered can be changed by changing

the INPUT statement ofline 120 to accept any number ofitems.

By the same thoughtful tailoring, you can produce a file-reading pro

gram from another part of the SEQUENTIAL FILE program. In this

case, you load the SEQUENTIAL FILE program into the computer

108 THEEASYGUIDE TO YOUR COMMODORE 64

20 0itfA$(25)
38 0IK8C25)
48 OPENiS.a.IS/'IO"
68 G0SU8 1000
70 CRS=CHR>(13)

18 INPUTMHrthE OF PILE TO BE MAOE";F$
IliO OPEN 2.8.2/llia:" + F$+I\S,W'i

If? PRIHT-ENTER rtHORO. COHHA. NUI««-
118 PRIHT"E«TER WORD 't«0' TO STOP11
128 IHPUTllrt$i.8ll;A$J8

140 PRIHTtt2,A$",llSTR$(B)CR$;

Figure 9.6: A tailoredfile-writingprogram, derivedfrom the SEQUENTIAL

FILE diskprogram.

58 GOTO 128
188 CLOSE 2
178 EHD
1880 REM mxx
1018 INPUTHI

038 PRINT1'
1048 PRIMTE

[10'SO CLOSE 2
1060 END
■EADY.

[ERROR ON DISK1
$;ET;ES

Figure 9.6, continued.

BUILDINGAND REBUILDINGPROGRAMS 109

memory and begin trimming it to that single function. Again, lines 1

through 10 can be dropped:

1

2

10

Lines 70 through 206, which direct file formation, can also be dropped:

70

80

206

Statements 1001 through 1006, which are simply remarks, can be

dropped as excess baggage, too:

1001

1002

1003

1004

1005

1006

As it stands now the program will direct the computer to find and read

into memory the items from a file on disk, named SEQTEST FILE. By

changing two statements, you can tailor the program to ask you for the file

name, and then to find that file by name. The line that directs the com

puter to search the file for SEQTEST FILE, line 210, can be changed so

as to direct it to search out a file of any name, stored under the variable

F$, like this:

210 OPEN 2,8,2,"0:" + F$ + ",S,R"

You can direct the computer to ask you for a file name, with the statement:

207 INPUT "NAME OF FILE TO BE FOUND"; F$

The program now in memory (Figure 9.7) will search a disk for the file

110 THEEASYGUIDE TO YOUR COMMODORE 64

20 DIM ASCIOG)
30 DIM B(IGO)
49 0PEN15c8.i5,M[0M
60 G0SU8 1000
207 IHPUT"NAME OF FILE TO 8E FOUNO "
210 OPEN 2.8.2Jllfl:ll*F$ + ",S,R11
215 G0SU8 10(30
220 INPUTtt2,A$<I),B(I)
224 RS=ST
225 G0SU8 1000
230 PRIHTA$(I).B(I)
240 IFR S=64 TlHEH 300

RErtOV

Figure 9.7: A tailoredfile-readingprogram, derivedfrom the SEQUENTIAL

FILE diskprogram.

250 IF RSOO THEM 400
260 1=1*1
270 GOTO 220
300 CLOSE 2

400 PRflHTII8A0LOISKllSTftTUS|JISUI
410 CLOSE 2
^420 EMD
1000 REM x*xxxxxxx:<xx

1010 INPUTNL5,EH,EH$.ET,ES

1030 PRINT-'llMJERROR OM OISK"
11040 PRINTEJCTM$,ET;ES
1050 CLOSE 2
.1060 END
RErtOV.

Figure 9.7, continued.

BUILDINGAND REBUILDINGPROGRAMS 111

that you name in response to the computer's query, and then print out

each element ofthe file as directed by line 230:

PRINT A$(I),B(I)

You can use this program to search for and list files, or you can further

alter it to use those elements in different ways. You can add any statements

you desire, so long as they take into account the form of the variables in

the INPUT and allied statements. Conversely, you can change these vari

ables to match your program ifyou like.

This approach to program tailoring can be used whenever you want the

computer to act on information it receives from a disk file. By eliminating

statements you find to be superfluous, you can streamline and adapt any

prerecorded program the computer will list.

To the person who has gained facility in using programs and com

mands, the computer is not the unmanageable contraption it often first

appeared. Even though by learning to control the Commodore 64 you can

gain an understanding ofthe logic behind the machine, many of its possi

bilities lie buried in its memory and design. There are ways these secrets

can be uncovered; you can go further into the computer without finding

yourself elbow-deep in microchips and tangled wires. More commands

will lead you into the maze ofnumber codes that direct the computer. An

assortment ofextra circuitry will make the Commodore 64 into something

more than the machine it was built to be. And a look inside will reveal the

guts ofa personal computer undreamed ofjust a few years ago.

A STEP PAST THE TRANSLATOR

The computer's translator acts as a bridge between you and the processor,

which directs the flow of information through the computer's circuits.

These circuits are etched on microchips, like the one shown in Figure

10.1. The processor and the information reservoirs (the "memory chips")

sit quite apart from each other in the computer. The computer's memory

has been organized so that each piece ofinformation is stored according to

a number, which represents the location of that data. Although the pro

cessor may change the information in a memory location, that numbered

location continues to exist, regardless ofthe value contained in it—a fixed

address with changing tenants.

THEINSIDESTORY 113

'■■ '■■'■~W;-"~fmPl

ft:,,
Sti

jRgwne i0. 2: <4n encased microchip ofthe type used in all microcomputers.

The PEEK and POKE Commands

Although it expects commands in the computer language BASIC, the

computer can also be directed to internal addresses. You can alter the

computer's automatic responses by changing numeric values in these

locations. One command will direct values into memory locations, cir

cumventing the usual translating process.

Developing a mastery of the computer's own numeric language is a

study, demanding and tedious, to which other books are devoted. Unless

you have a passion for giving your computer directions that go beyond

language commands like those in BASIC, it's a study not recommended.

The computer's numeric language is also expressed in a vocabulary of

character codes, consisting ofnumbers and letters. These codes can repre

sent every possible memory location and value in the usable memory of

the Commodore 64. In this numeric language, you can send the com

puter to a particular memory location, A65E for example, where a set of

directions for the SHIFT-HOME keystroke command tell the computer

to clear the screen and position the cursor.

Programs of these encoded directions can form seemingly endless

lists that blur the vision and dull the wits of all but the most determined

114 THEEASYGUIDE TO YOUR COMMODORE 64

enthusiasts. This system ofnotation is known as hexadecimal.

Fortunately, there is an easier way. There is a command available in

BASIC that uses the more familiar decimal numbers. You can use it to

change the computer's built-in drections to other directions you specify.

This command is POKE, which sends the computer to a numbered loca

tion, where the numeric value you direct is changed.

To see how the command can be useful, consider an example of

changing the screen display. The Commodore 64 automatically prints

characters in light blue on a dark blue background surrounded by a light

blue border. This screen display is determined by values copied into the

active memory from the built-in unchanging memory every time you

turn the power on. By changing the values in these active memory loca

tions, you can change the printing pattern on the screen. One location sets

the color of the window, another the color ofthe border.

The computer follows its own built-in directions in setting the back

ground and border colors. By changing those directions, you can form

displays of any color combinations. To do that, you can use the POKE

command, which slips past the translator to talk more directly with the

processor. You can command the processor to set a new color for the back

ground by directing it to put another value in memory location 53281,

where a screen color value for dark blue is automatically stored. If you

want the color to be black, code number 0, you can use the command:

POKE 53281,0

This POKE command translates as: "Seek out memory location number

53281 and store the value of0 at that address."

You can likewise direct the processor to set the border of the display to

black. The processor looks for directions for this part of the display at

memory address number 53280. You can use the command:

POKE 53280,0

In combination, these two commands and the values within them

(background color 0, and border color 0) direct the computer to present a

black background for the entire screen. They let you effectively seize con

trol from the built-in automatic directions, and so switch the computer

into a mode of operation tailored to your special needs. Any of the Com

modore 64's 65,536 available memory locations will be opened by the

POKE command for your new values.

As a tool for "customizing" and replanning the computer's performance,

the POKE command in a program gives you absolute control, directing the

computer to carry out changes before advancing to the next line.

THEINSIDESTORY 115

You can use the PEEK command, which we discussed in Chapter 6, to

look at the value in any memory location. It will direct the computer first

to seek the numbered address you have given, as the POKE command

does, but then to examine the value there and leave it unchanged. The

value can then be used as part of some other command. For example, the

computer finds the paddle-position values at memory locations 54297 and

54298, so a statement like:

PRINT PEEK(54297) TAB(20) PEEK(54298)

will display these values on screen. This combination ofcommands directs

the computer in two stages, one command after the other. The PEEK

commands send the processor to find the values, which the PRINT com

mand then displays.

You will find the PEEK command most useful if you become familiar

with the memory locations used by the processor to store directions. As

the computer is sent commands to carry out, the values in memory loca

tions change. With the PEEK command, you can see what those values

are at any point, or use them to further direct the computer.

Some memory locations hold two values instead ofjust one. For these

locations, a more complex form ofthe PEEK command is needed, to pry

one value from another. These more complex forms require a detailed

knowledge ofthe organization ofthe memory, and we won't discuss them

here.

You can also use the memory-invading POKE and PEEK commands

within programs, as you would other commands.

The SYS Command

Another command, SYS, sends the computer to specific memory loca

tions, where it finds the directions that make each BASIC command

work. For instance, the directions for the keystroke command RUN

STOP-RESTORE begin at location A65E. You can send the computer

to that location, where it will begin carrying out those directions, with the

command:

SYSA65E

Driven by a SYS command, the computer will go to directions at any

location in its memory. At some of these are automatically stored the little

numeric subroutines that serve as directions for other BASIC commands.

You can store your own machine-language routines at others. If you do

that, keep in mind that the address marks the beginning ofa routine. If, with a

116 THEEASYGUIDE TO YOUR COMMODORE 64

SYS statement, you send the computer to an address in the middle ofone of

these sequences ofdirections, the results may be mangled. But after gaining

some familiarity with these locations, you can avoid such surprises.

WHAT IS THE COMMODORE 64?

The Commodore 64 is based on Commodore's latest version of one of

the microcircuitry chips that launched the personal computer. The circuit

that gives the Commodore 64 its operating character is the 6510 processor.

The 6510 is directed by same built-in instructions as its predecessor, the

6502, a processor chip found in the earlier VIC-20, Apple II, and Atari

computers.

In fact, the same programs written in the BASIC computer language

for the VIC-20 can be used in the Commodore 64, provided they don't

refer through POKE, PEEK, and SYS commands to the different mem

ory addresses in each, or to differences in screen display (the VIC-20 has a

screen 22 columns wide by 24 rows deep). Furthermore, since the BASIC

language consists of essentially the same elements in different computers,

programs written for one computer can sometimes be adapted so as to be

used in another.

As processor and internal foreman, the 6510 chip controls the flow of

information through the other chips. A single circuit-board holds most of

the electronics in the Commodore 64. On this board sit eight other chips,

apart from the processor, as shown in Figure 10.2. Each of these chips

holds 8192 (or 8K) locations of memory, which can be either occupied or

empty according to the processor's directions. These eight chips together

hold the Commodore 64's total adjustable memory of 65,536, or 64K

locations.

Two other chips in this computer each perform special tasks. To one,

the VIC chip, is given the duty of handling fine-point graphics and pro

grammed illustrations, known as "sprites." These sprites, once stored in

the computer's memory, can be positioned anywhere on the screen and

made to interact with each other. Another chip handles the production of

sound by the computer; with it, synthesized music and sound effects can
be created.

To make use ofeither ofthese chips requires either elaborate program

ming ofmemory locations or the use of commercially prepared programs

THEINSIDESTORY 117

Figure 10.2: Theprocessor and memory ofthe Commodore 64.

that translate simplified keyboard commands or paddle or joystick move

ments into changes in these memory locations.

EXPANDING THE COMPUTER

Your Commodore 64 wasn't finished at the factory. Look at the empty

connector slot, sockets, and card at the back and power-switch side, and

you'll see this. You can finish construction by adding circuitry cartridges

and plugging in cables until the machine before you more closely matches

your needs.

Some of the cartridges—containing "cards" packed with electronics—

can change the way your Commodore 64 works. One crowds 80 charac

ters of type on a video screen where only 40 would fit before. Another

cartridge adds a different processor and its attendant chips, and so grafts a

second computer into the the Commodore 64. Still another sends infor

mation and programs out from the computer into telephone lines and dis

tant receivers. Some cables and circuitry route the screen display to

printers, which can turn the video screen images into print on paper.

And, of course, there are game cartridges.

The equipment you add to the computer can be combined to produce a

computer system ofyour own preference. The 80-column cartridge is one

of several links to word processing, a puffed-up phrase that simply means

moving words around in a computer's memory, instead of on a sheet of

paper.

Another link in the chain, a set of directions for word-processing com

mands, comes most conveniently on disk in the form of commercially

118 THEEASYGUIDE TO YOUR COMMODORE 64

available word-processing programs. If the words so processed are to

eventually take physical form as ink on paper, a printer will be at the end

of the chain. The link that completes the connection between printer and

computer takes the form of a cable—and, depending on the printer, an

extra bit of circuitry attached to that cable. These circuits act as gateways

between printer and computer.

The Commodore 64 operates under the directions built into its 6510

processor chip, by taking commands and programs that "speak to" that

chip. Another processor chip, the popular Z80, has been well provided

with available programs. By plugging in a cartridge containing the Z80

and its entourage of circuits, you can put a second processor into the

Commodore 64. This one can use the Commodore 64's memory and can

take commands from the keyboard or disk. A Commodore 64 so

equipped can be switched back and forth between the resident 6510 chip

and the Z80 chip, to run programs written for either processor. In effect,

you'll be switching between two computers in one box.

The 6510 chip processes commands and information according to

directions contained in the Commodore 64's permanent memory.

Another set of directions for controlling processors (known as an "operat

ing system") is often fed into chips that accept it, like the Z80, from a disk.

This system is known by the acronym CP/M® and, as a tool for control

ling the processor's operation, has become very popular. In fact, many

programs written on different machines using the CP/M operating sys

tem are transferable from one type of computer to another with no or few

revisions. With a Z80 cartridge installed in the Commodore 64, you can

load CP/M into the computer. For the Commodore 64, CP/M is pack

aged as a card containing a Z80 chip, along with a diskette.

Another cartridge, the modem, plugs into the Commodore 64 and

forms a link to telephone lines. With a modem installed, your computer

becomes an electronic teletype, connecting you to people and data banks

in ways that were once the exclusive privilege of large corporations and

governments.

Perhaps the most promising feature of a personal computer like the

Commodore 64, however, is the adaptability ofits masterto the possibilities

of this newly-arrived tool. The computer is a means to an end; once

you've learned to direct it, you can use it as an extension of your own

interests and ideas. You need not study the electronics or logic ofthe chips

that direct the machine to realize your own capabilities in using it. Rather,

you will add one capability to another, to build a truly personal computer

system, one that is directed by your own human intelligence.

The built-in vocabulary of the Commodore 64 includes commands of

more specialized usefulness than those presented in the preceding chap

ters. These commands mostly involve mathematics and number treat

ment. Many of them are grouped below according to function. An

underline indicates where you can (and usually must) include a number

or variable in each command.

Mathematical and Trigonometric

ABS (): Turns a negative number positive, leaves positive number

unchanged.

ATN (): Gives the trigonometric value arctangent of a number

given in radians.

COS (): Gives the trigonometric value cosine ofa number given in

radians.

EXP (): Gives the value of e, 2.7182818, raised to the power of a

number.

INT (): Gives the value of rounding down to the nearest integer

number.

LOG (): Gives the logarithm of a number.

RND (): Gives a random value between 0 and 1.0, regardless of

number.

APPENDIXA: SPECIAL PURPOSE COMMANDS 121

SGN (): Gives the sign of a number: — 1 if number is negative,

+ 1 if positive, 0 if 0.

SIN (): Gives the trigonometric value sine of a number given in

radians.

SQR (): Gives the square root ofa number.

TAN (): Gives the trigonometric value tangent of a number given

in radians.

* : Raises the number before it to the power of the number
after it.

E : Multiplies the number before it by 10 to the power of the
number after it.

FN (): Gives a number according to the mathematical relation

established with a DEF command. See DEF FN. FN Z(A), FN Z(B)

and FN Z(5), for example, each call on the same relation set as FN

DEF FN () = : Defines a function; that is, it establishes a math

ematical equivalence between the variable in parentheses and the

mathematic relation after the equal sign. For example, DEF FN

X(A) = A+ B establishes a function FN X(), which adds the value

ofB to the value or variable in parentheses.

Comparisons

Comparison operators produce values that correspond to the truth or

falsehood of the statement made with them. When the statement is true, a

value of — 1 is given; when it's false, a value of0. As their name implies, the

kind ofstatement these operators make is always a comparison ofvalues.

> : (Greater than) Gives a value of - 1 if the number before it

is greater than the number after it, 0 if otherwise.

< : (Less than) Gives a value of — 1 ifthe number before it is less

than the number after it, 0 if otherwise.

= : (Equal to) Gives a value of — 1 if the number before it is the

same as the number after it, 0 if otherwise.

<> or > < : (Not equal to) Gives a value of - 1 if the

number before it is not the same as the number after it, 0 if it is.

122 THEEASYGUIDE TO YOUR COMMODORE 64

> = or = < : (Greater than or equal to) Gives a value of

— 1 ifthe number before it is greater than or equal to the number after

it, 0 if it isless.

<= or = < : (Less than or equal to) Gives a value of — 1 if

the number before it is less than or equal to the number after it, 0 if it's

greater.

Logic (Boolean)

AND: Gives a value of 1 if the number or relation before it and

the one after it are both greater than 0, 0 if one is 0.

OR: Gives a value of 1 if either the number or relation before it

or the one after it is 1 and the other is 1 or 0, 0 if they are both 0.

NOT_: Gives a value equal to the number or relation plus 1, multi

plied by — 1.

Other

ASC (" "): Gives a code number, called the ASCII code, for the

first character ofthe string of characters.

CLR: "Clears" all the variables in a program; replaces their values

withO.

STR$: Directs the computer to treat a number as a string charac

ter, instead of a numeric value.

VAL $: Directs the computer to treat a numeric string character as

a number.

Jargon is the curse ofthe specialized, and every specialty has its jargon.

You will encounter computerjargon among enthusiasts, salespeople, and

programmers. Jargon speakers, who are often more knowledgeable, can

provide useful information not obtainable from speakers of the mother

tongue. The phrase guide that follows can help in making their dialect

intelligible.

Applications program: A set of commands, usually available on disk,

that directs the computer in performing some task whose results appear in

a recognizable form outside the computer's memory.

Back-up: Not directions given to a truck driver, but a copy kept in case

the item in use should fail. A back-up copy ofa disk can be kept, or a back

up copy of a file or program can be kept in another form or on the same

disk.

Bit: Not the past tense of bite, but the smallest piece of information the

computer can handle. A bit always has a value of either 0 or 1.

Boot a Disk: Not an act ofaggravation, but the act of sending directions

that operate a disk system into the computer from a disk in a drive. (You

boot the disk before sending disk commands to the computer.)

BootDOS: See Boot a Disk.

Buffer: A specially controlled memory that will hold data or commands

being moved between the computer and other electronic devices. It's use

ful when the rate of flow out of one is greater than the rate into the other,

124 THEEASYGUIDE TO YOUR COMMODORE 64

like a reservoir collecting a river's waters faster than it lets them through

flood gates.

Bug: Not a crawling six-legged creature, but any unplanned response

that interferes with the expected operation ofa machine. The term usually

refers to an unplanned command problem within a computer program.

Byte: The basic package of information sent through the computer cir

cuits, in which each ofeight bits has a value ofeither 0 or 1. Each memory

location in the Commodore 64 holds one byte.

COBOL: A programming language in widespread use in business since

before the rise of smaller, personal computers.

Copy-protected: Describes a program on a disk that includes directions

designed to thwart any efforts to copy that program onto another disk.

CPU: Central Processing Unit, the processor in the computer.

Crash: In a program run, what happens when the computer stops act

ing on program commands suddenly, in an unplanned way, usually

because of directions the computer can't follow.

Data-baseManager: Not a baseball coach, but a program that organizes

information according to a preset plan.

Default ("dear Brutus, lies not in our stars but in ourselves"): That

value chosen automatically by the computer when a choice is not made by

the computer user.

Enter: To send data or instructions into the computer, usually from the

keyboard, and followed by a subsequent press of the RETURN key.

Error: Any command or data given to the computer that it is incapable

of acting on.

Escape Sequence: The use of keyboard typing to stop the running of a

program or part of a program.

Fatal Crash: A crash that results in the loss of program commands or

valuable information from computer memory.

Firmware: Those directions stored in built-in memory that can't be

changed from the keyboard. (Compare with hardware and software.)

Format: To etch a magnetic pattern onto a disk, so that programs and

data can be stored on it.

APPENDIXB:JARGONPHRASE GUIDE 125

FORTRAN: A computer programming language used by scientists

and engineers since the days ofpunch cards.

Function: A command that manipulates values, often in some unseen

way. The commands 4-, — , *, and / represent arithmetic functions.

Hardware: The physical parts of a computer system, as opposed to the

directions and values stored in it. (Compare withfirmware and software.)

Hex: Not a witch's curse, but an abbreviation for hexadecimal, a way of

representing numbers by a hybrid of the first six (hence hex) letters of the

alphabet and the ten (hence decimal) numerals.

High-level Language: Not the King's English, but a set of commands

that direct the computer in relatively complicated ways to perform a com

plex task with a single command. BASIC is a high-level language.

Housekeeping: Not dusting and mopping, but the chores done by the

computer user, or the computer itself, to operate a system or a program.

Initialize: To format a disk and add an initial program of commands

that will be automatically run by the computer when the disk is first

scanned.

Instruction: Any command or direction given to the computer.

Interface: As a noun, the circuitry that serves as electronic connection to

the computer, or a method ofcommands that connects different logic sys

tems. As a verb, to connect.

I/O: The flow of data or commands to and from the computer, from

Input/Output.

K: When referring to the number of memory locations, an amount

roughly equal to a thousand (its exact value is 1024). 64 K is equal to

65,536.

Logo: A programming language designed for ease of use and learning,

often a child's introduction to computers.

Loop: A series of commands through which a computer is directed

repeatedly.

Low-level Language: Not locker room talk, but a set of commands that

direct the computer in relatively unsophisticated ways, requiring several

commands to direct a complex task.

Machine language: The codes for memory locations particular to any

computer.

126 THEEASYGUIDE TO YOUR COMMODORE 64

Menu: Not a selection of entrees at a restaurant, but a list of choices

given in a program, from which its user selects different operations. Pro

grams using them are called menu-driven.

Microcomputer: A computer built around a microprocessor. The Com

modore 64 is a microcomputer.

Microprocessor: The electronic circuitry chip that controls the rest ofthe

computer. The 6510 chip is the Commodore 64 computer's micropro

cessor.

Mini-Floppy Diskette: The formal name for the type of disk, 5V* inches

across and flexible, used with the Commodore 64 and most other personal

computers.

MMU: (Memory Management Unit) The part of the computer that

organizes the flow of information into different parts of memory accord

ing to a preset pattern.

Modem: A device that couples a computer to telephone lines.

Parallel: Travelling concurrently, as in the way data or command

impulses can be sent from a computer through a set of parallel wires.

(Contrast with serial.)

Pascal: A computer programming language that is particularly popular

in academic circles.

PC Board: (Printed-Circuit Board) A hard plastic or fiber board on

which strips of bonded foil serve as electrical pathways in place of wires,

and on which electronics are seated.

Peripheral: Any device attached to a computer that controls it, or is con

trolled by it.

Pixel: Not a mincing dwarf, but the smallest dot a computer can control

on a video screen.

PowerfulLanguage: Not epithets, but a set ofcommands, each ofwhich

can give directions that would require several commands in a "weaker"

language.

Powerful Program: A program that does a lot with little prompting or

control by its user.

RAM: An acronym for Random-Access Memory, the computer mem

ory locations whose values can be changed from the keyboard.

APPENDIXB:JARGONPHRASE GUIDE 127

Read: To draw information from an encoded form, such as a disk.

Return a Value: What the computer does when it displays, on screen or

printer, numbers or characters in response to commands.

ROM: An acronym for Read-Only Memory, the computer memory

locations with values fixed in manufacture. It provides all the computer's

built-in directions.

Serial: One after another, as in the way data or command impulses can

be sent from a computer through a single wire. (Contrast with parallel.)

Software: The directions, such as those available as programs on disk,

that can be added to and removed from the computer system, as opposed

to its physical, fixed parts. (Compare \A\hfirrnxvaxeand hardware.)

Spreadsheet: Not bed linen hanging to dry, but a visual system of orga

nizing and calculating data, often business or financial, in rows and

columns. Several such systems are available as programs on disks.

Utility: Not the gas company, but a program that directs the computer

in performing some internal task, like moving data about its memory.

Write: To put information in a form in which it can be stored and then

retrieved, as in to write to a disk.

Write-enable Notch: A section of the disk envelope that, when uncov

ered, allows the disk drive to add or alter information on the disk.

Write-protection: The physical feature of a disk that prevents it from

having information added or altered. The absence of, or taping over of, a

notch on the disk envelope results in write-protection.

INDEX

Adding information to programs,

57-63

Adding program parts, 96-102

Adding strings, 51-52

Altering disk programs, 102-111

Animation, 48

Arithmetic, 13-14

Assignment commands, 23-24

Automating decision making, 29-31

BASIC, 113

Blank statement, 21

Catalog, 90

Cassette tapes, 73-78

Changing modes, 7

Chips, microcircuitry, 116

Clearing the screen, 10-11

Clock, 63

Commands

assignment, 23

conditional, 29

direct, 9

display

comma, 18

semicolon, 18

keypress, 1-5

machine language, 115

prerecorded, 9

series of, 27-28

Conditional command, 29

IF-THEN, 29

Connecting a second drive, 92

Connections, computer to television,

2-4

Counting string lengths, 52-53

CP/M, 118

operating system, 118

C-64 WEDGE disk commands, 86

Cursor, 5-7

Cutting strings, 53-57

DATA, 57-62

Databanks, 118

Decimal code, 114

Decision making, automating, 29-31

Delay (time), 48-49

DIM, 62-63

Disks, 79

formatting of, 88

initializing of, 88

inserting, 83

prerecorded, 82

programs, altering of, 102-111

TEST/DEMO, 84, 85

vulnerability of, 82-83

Disk commands, 83-84

C-64 WEDGE, 86

%,87

t,87

Delete (@S:), 90

Save, 89

Diskdrive, 79-81

Disk program, erasing of, 90

Disk system, 79-81

Drawing arrows, 43-49

Drive head, magnetic, 83

Electronic combination lock, 69-71

Empty loop, 54

END, 97

Erasing commands, 21, 23

Erasing a disk program, 90

File

sequential, 94-95, 102

File, cont.

text, 94

Formatting a disk, 88

FOR-NEXT loop, 43-49

nested, 46

GET, 67-68

129

GOSUB, 96-101

GOTO, 40-41

Grid, 16

Information, adding to files, 57-63

Information (text) files, 94-95

Initializing a disk, 88

Input, 64-66

Input loop, stopping of, 67

Interactive program, 66

Keyboard, 4, 8-9

Keys

arrow, 7

return, 6, 8

RUN STOP, 8

CONTROL, 8

RESTORE, 8

CLR HOME, 7-8

INSTDEL, 7-8

SHIFT, 6-7

SHIFT LOCK, 6-7

C=,6-7

LEFTS, 53-54

LEN, 52

Line editing, 17

LIST, 20

LOADor(/),84

Loop

FOR-NEXT, 43-49

nested, 46

input, stopping of, 67

Lowercase, 6

Machine language commands, 115

Magnetic drive head, 83

Memory, 28, 114-16

locations, 113

Microcircuitry chips, 116

MID$, 55-57

Modes, changing of, 7

Name length, 88

Nested FOR-TO-NEXT loops, 46

NEW, 23

Numbering, 22

Number substitutes, 23-24

Numeric model, 25

ON-GOTO, 41-42

Outside contact, 64

Paddle use, 69-72

drawing, 71-72

PEEK, 115

PRINT, 14-17

Processor, 112

Program, 8-9

interactive, 66

lines, replacing of, 22

parts, adding of, 96-102

removing of, 23

renaming of, 90

restarting, 38

slowing of, 40

stopping of, 37-40

Program building, 99

Programmer's commands

CONT, 38

REM, 35-37

STOP, 37-39

Prompt, Ready, 6

POKE, 114

Power to the computer, 1-4

Punctuation as display commands

comma, 18

semicolon, 18

READ, 57-62

Removing programs, 23

RENAME, 90

Renaming programs, 90

Repeating within limits, 42

Replacing program lines, 22

Reserving space for variables, 62-63

Restarting a program, 38

Return, 6, 8

130

Reusing variables, 61

Reverse video, 12

RIGHTS, 54-55

RUN, 20-21

Screen

clearing of, 10-11

control, 10

SEQUENTIAL FILE program,

94-95, 102

Series ofcommands, 27-28

Slowing a program, 40

Stopping a program, 37-39

Stopping an input loop, 67

Strings, 50-52

adding strings, 51-52

counting string lengths, 52-53

cutting strings, 53-57

searching for, 84

Subroutines, 98

Subscripted variables, 60-63

Switch box, 2

Syntax error, 8

SYS, 115-116

Tab,16,18

TEST/DEMO disk, 84, 85-87

Text files, 94-95

Time delay, 48-49

Translator, 8

Uppercase, 6

Variable, 24

reserving space for, 62-63

reusing of, 61

subscripted, 60-63

Video monitor:

jack, 3-4

position of, 1-2

Vulnerability of disks, 82-83

Word manipulations,51-57

Word processing, 117

Write-enable notch, 82

Z80 cartridge, 118

The SYBEX Library

FOR YOUR COMMODORE 64IVIC-20

THE COMMODORE 64™/VIC-20™ BASIC HANDBOOK
by Douglas Hergert, 144 pp., Ref. 0-116

A complete listing with descriptions and instructive examples of each of the

Commodore 64 BASIC keywords and functions. A handy reference guide,

organized like a dictionary.

INTRODUCTION TO COMPUTERS

DON'T (or How to Care for Your Computer)
by Rodnay Zaks 214 pp., 100 illustr., Ref. 0-065

The correct way to handle and care for all elements of a computer system,

including what to do when something doesn't work.

YOUR FIRST COMPUTER
by Rodnay Zaks 258 pp., 150 illustr., Ref. 0-045

The most popular introduction to small computers and their peripherals: what
they do and how to buy one.

INTERNATIONAL MICROCOMPUTER DICTIONARY
120 pp., Ref. 0-067

All the definitions and acronyms of microcomputer jargon defined in a handy

pocket-size edition. Includes translations of the most popular terms into ten

languages.

FOR A COMPLETE CATALOG

OF OUR PUBLICATIONS

U.S.A.

SYBEX, Inc. FRANCE GERMANY

2344 Sixth Street SYBEX SYBEX-VERLAG

Berkeley, 4 Place Felix-Eboue Heyestr. 22

California 94710 75583 Paris Cedex 12 4000 Diisseldorf 12

Tel: (800)227-2346 France West Germany

(415)848-8233 Tel: 1/347-30-20 Tel: (0211)287066

Telex: 336311 Telex: 211801 Telex: 08 588163

