_@H

_ THEEASY GUIDE TO YOUR

THE EASY
GUIDE TO YOUR
COMMODORE 64

THE EASY
GUIDE TO YOUR
COMMODORE 64

JOSEPH KASCMER

ISY}B? Berkeley ¢ Paris « Diisseldorf
\7s

Cover art by Sato Yamamoto
Book design by Ingrid Owen

Commodore 64, VIC-20, and Datassette are trademarks of Commodore Business
Machines, Inc.
CP/M is a registered trademark of Digital Research, Inc.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However,
SYBEX assumes no responsibility for its use, nor for any infringements of patents or other
rights of third parties which would result. Manufacturers reserve the right to change speci-
fications at any time without notice.

Copyright ©1983 SYBEX Inc. World Rights reserved. No part of this publication may
be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without the prior agreement
and written permission of the publisher.

Library of Congress Card Number: 83-40232
ISBN 0-89588-126-8

Printed in the United States of America
10987654321

To J. A. Kubokawa, a researcher and photographer
with a passion for quality.

CONTENTS

Acknowledgements ix
Preface x

1 COMINGINTOPOWER 1

Master and Servant Meet 1
Setting Up the Computer 1
Control from the Keyboard 4

92 VIDEOPRINTING 10

Screen Control 10
Video Printing 13

3 PLANSANDPROGRAMS 19

Scheduling Commands 19
Stand-Ins For Numbers 23
Numerical Predictions 25
Commands in Groups 27

DECISION MAKING BY COMPUTER 29

Using Judgement 29
Simulations 31

PROGRAM CONTROL 35

A Programer’s Kit of Commands 35
Commands for Moving Among Statements 40
Repeating Within Limits 42

HANDLING WORDS AND
INFORMATION 50

Strings: Words from the Computer 50
Inside Information 57

The Clock Inside 63

Outside Contact 64

ECONOMY CLASS STORAGE—TAPES

Using Programs on Cassette Tapes 73
Facts and Fileson Tape 76

HIGH SPEED STORAGE—DISKS 79

A Marriage of Machines 79

Using Prerecorded Disks 82
Programs from Computer to Disk 87
Using More Than One Disk Drive 91
Facts and Fileson Disk 93

79

10

Index

BUILDING AND REBUILDING
PROGRAMS 96

Adding Program Parts 96
Rebuilding Borrowed Programs 102

THE INSIDE STORY 112
A Step Past the Translators 112

What Is the Commodore 64? 116
Expanding the Computer 117

APPENDICES 120

A Special-Purpose Commands 120
B Jargon Phrase Guide 123

128

ACKNOWLEDGEMENTS

Thanks to James Compton for his editing and to those in the editorial
and production departments at Sybex who were active in turning my
manuscript into this book.

Special thanks to Heidi Miller for preparing the index and to Bill Mlotok
for bringing his technical knowledge, classroom experience, and good sense
to a valuable review of the book’s content.

Also thanks to Paul Losness of PC Computers in El Cerrito, CA, for
providing information.

The poetry on page 11 is by Philip James Bailey, from his Festus. The
verse on pages 12-13 is from Robert W. Service’s “The Law of the
Yukon.”

PREFACE

This book is about controlling your personal computer. In it you will
discover how you can achieve control over a computer in a few days. Jar-
gon and theories of computer science don’t help in this aim, and in this
book you won’t be burdened with them. To direct the computer as an
extension of your own mind, you need no special background in mathe-
matics or bent for programming. In fact, you can control a computer just
as easily as you do an automobile or typewriter. As you learn the essen-
tials, the operation becomes simpler.

If you have a particular use for the Commodore 64, or if you’re inter-
ested in finding out about control of a personal computer, this book is for
you.

Because you can use a computer in different ways, you can approach
this book from more than one direction:

Chapter 1 is a brief introduction telling where the controls are, how to
plug your computer system together, and what buttons to push and not to
push. No matter what you plan to use your computer for, a run through
this.chapter will put you at ease with the box in front of you.

If you plan to use only prerecorded programs and wish to avoid writing
computer directions yourself, you can skip ahead to Chapter 7 if the pro-
grams are on cassette tape, or to Chapter 8 if they are on disks. And if
you’d like to make full use of the programs on disks, read the second part
of Chapter 9. Since the Commodore 64 isn’t yet as well supplied with
commercial software as some older personal computers, you may not
want to limit yourself to these chapters.

If you’d like to write your own directions to the computer, you should
read Chapters 2, 3, 4, 5 and 6, and also the first part of Chapter 9.

"The most optional chapter of the book is Chapter 10. If you’d like more

control over the Commodore 64 than is provided through the BASIC
commands, or have an interest in how the computer works and what else
can be done with a more customized computer, read Chapter 10. It will
help you to understand the machine and to expand your abilities with it.
For using the Commodore 64, however, it’s not essential.

The chapters concentrate on the commands and operations most useful
to the general reader. You’ll find other available commands built into the
Commodore 64 listed in Appendix A according to their type and use.

In the interest of clarity and ease of comprehension, jargon has been
avoided throughout the chapters of this book. However, you may encoun-
ter other computer users, salespersons or books lapsing into the dialect.
Appendix B can help make them intelligible to you.

A decade before the first Commodore 64 was built, the idea of a “per-
sonal computer” with such capabilities was unheard of. Its current avail-
ability is a measure of the changes brought about by the technology
developed in the intervening years. More changes lie ahead, and in learn-
ing to control a computer, you are taking a first step toward preparing for
those changes.

Editor’s Note

To get the most out of this book, you should read it with your computer
in front of you, set up and connected to a video monitor or TV set as
described in Chapter 1. As each new command, group of commands, or
sample program is presented, type it in exactly as printed to see the results on
your screen. Be sure to type in each character that you see: letters, num-
bers, punctuation marks, and spaces. (In typeset program lines, the space
equivalent to one stroke of the space bar on your keyboard will vary
slightly, but it will always be approximately equal to the space between
words in this sentence.) The spaces are not absolutely essential; any pro-
gram will run without them, but you will find the screen display much
easier to read if you include them.

After you type in a sample program, and before you run it, check what
you have typed against the book. If you find you have made a mistake, go
back and correct it. (You’ll see how to do that in Chapter 2.) The pro-
grams have all been carefully tested, and will run as described if entered
correctly.

Finally, you will see that the Commodore 64’s command words (or
“reserved”’ words) have been set in boldface type. Boldfacing is simply a
typographical convention, meant to call your attention to these words and
help you to remember them. You will not see this effect on your screen,
and you need not try to reproduce it.

MASTER AND SERVANT MEET

Facing a computer for the first time, people often feel powerless over
the machine—and for a good reason. After all, when it comes to com-
puters, knowledge is power, and we all start off ignorant.

A worker of incredible speed and unimaginable precision, the computer
is nonetheless a completely obedient servant. It only needs directions, stated
in terms it was built to recognize. You can command the Commodore 64
with a vocabulary no larger than that understood by a highly-trained
canine. A computer following your commands can choose among alterna-
tives, organize information, search for facts and patterns, and control
devices. It can be ordered to begin any duty in response to a single word or
by the triggering of a single event.

No computer is all-powerful or all-knowing, and there are limits to the
operation of any machine. But those limits arise from the design and
speed of the computer and the size of its memory.

Although you can gain control of the Commodore 64 in a short time, to
do so, you must first learn to become its master. Through this book you’ll
find a clear way to do just that.

SETTING UP THE COMPUTER

The Commodore 64 computer can be set up by anyone who can posi-
tion a typewriter and hook up a television. It can work anywhere a type-
writer might, in any place undisturbed by strong vibrations, or extremes
of temperature, dust, or humidity. In fact, the Commodore 64 will work

THE EASY GUIDE TO YOUR COMMODORE 64

in most places where its operator is comfortable. A typical set-up is
shown in Figure 1.1. The television (or video monitor) you’ll use for a
display screen can sit anywhere reached by the cable from the computer.

You can prepare the Commodore 64 for use by connecting only two
electrical cords, one for power and one for the television or monitor. One
end of each cord plugs into the computer. On the right side of the Commo-
dore 64, shown in Figure 1.2, you’ll see a switch marked ON, and a circu-
lar jack next to the label POWER. Into that jack you can plug the
sleeve-like end of the power cord. With the switch turned to OFF, you can plug
the three-pronged end of the power cord into a wall outlet to complete the
power connection.

The connection to a television is just as simple. Near the center of the
computer’s back panel, and next to a small switch, you'll find a small,
projecting metal jack, which takes the televison cable. The cable has the
same post-in-a-sleeve metal phono plug at each end. One end plugs into
the metal television jack at the back of the computer; the other end fits
into a jack on a small box that allows you to switch the monitor between
television reception and computer display. From that box (known as a
“switch box””) come wire leads that you can attach to the television in
place of the vhf antenna leads. If you next connect the vhf leads to the
other side of the switch box, you can switch between television reception

Figure 1.1: A typical Commodore 64 computer set-up.

COMING INTO POWER

and computer display. Figure 1.3 shows the system connected for com-
puter use only.

The final adjustments include setting your television tuner to either
channel 3 or channel 4, whichever one is not used for broadcast in your

CONTROL CONTROL
PORT 1

PORT 2

Figure 1.3: Connections between computer and television.

4

THE EASY GUIDE TO YOUR COMMODORE 64

area. Also set the channel on the computer. If channel 4 is unused, slide
the small, recessed switch at the back of the computer (next to the metal
television jack) toward the jack. If it’s channel 3, slide it away from the
jack.
Now that the connection between computer and television is complete,
you can use the computer by setting the switch on the box to COM-
PUTER. To use the television for tv reception, slide the switch to TELE-
VISION.

If you use a video monitor, a different cable—one ending in a five-pin
plug at the computer end and a phono plug at the monitor end—connects
to a flat, circular video jack at the back of the computer, next to the televi-
sion jack, as shown in Figure 1.4.

Once connected to a television or monitor, the computer before you is
part of a fully operational system that can display on the screen whatever

you type.

CONTROL FROM THE KEYBOARD

All you need to command the computer sits before you. The keyboard
is laid out like a typewriter’s, but has a few extra keys that give you more
control than is possible with a typewriter.

Before turning on power to the computer, consider a simple, comforting
fact: Nothing you can do from the keyboard will damage the computer.
With some of the commands you’ll find in this book, you can change the
screen display, the contents of the computer’s active memory, or even the

Figure 1.4: The video monitor jack.

COMING INTO POWER

way the computer works, but when you turn the power to the Commo-
dore 64 off and then on again, you wipe clean the changes you’ve made.
The computer then greets you in readiness, all previous keyboard manip-
ulations forgotten.

The single most useful bit of advice while you’re learning to operate the
computer from the keyboard is this: If something interests you, try it. The
worst that can happen will be the loss of some command, information or
calculation. In the earliest stages, while you’re experimenting, such a loss
is part of learning to control the beast. No matter what happens, the com-
puter will emerge from human keyboard error or curiosity completely
undamaged.

When you switch on first the monitor or television, then the computer,
printing will appear on the screen. Across the top, if all is connected and
working properly, three lines will be printed as light letters on a dark
screen, as in Figure 1.5.

The Cursor

At the upper left of the screen you will see the word READY, and below
that a character-sized flashing square; these are signals from the computer

et COMHODORE §4 BASIC U2 w66t
54X RAH SYSTEHM 38911 8ASIC 8YTES FREE
READY.

Figure 1.5: Display on the screen after the computer is first turned on.

6

THE EASY GUIDE TO YOUR COMMODORE 64

that it’s ready to read whatever you type from the keyboard. The flashing
square marks where the next character from the keyboard will appear on
the screen, and is known as the cursor.

The Commodore 64 is designed to display immediately what’s typed
from the keyboard, and will print light blue letters on a dark blue screen as
you type them. The word READY is a signal from the computer that it’s
prepared to accept a command. But whether you type one of the scores of
commands the Commodore 64 can act on or a line of poetry, your typing
will appear immediately on the screen. And as you type, the computer
waits for a signal from you that will tell it to act on the command you’ve

just typed.

The RETURN Key

You signal the computer to act on a typed command by pressing the
RETURN key. If the command is no more than two lines long and the
cursor is on one of those lines, the computer will compare the typed com-
mand with a set of built-in directions, and take action. But if you merrily
type along without pressing the RETURN key, the computer will follow
directions that tell it to simply display characters on the video screen.

The SHIFT and C = Keys

Like a typewriter, the Commodore 64 can display both uppercase and
lowercase letters. But unlike a typewriter, it can also display certain graph-
ics symbols. These are the small boxed designs on the front of most of the
keys. When you first switch on power to the Commodore 64, the com-
puter is automatically readied to display the uppercase of any letter key
that you press. Press a number key and the number will be displayed.
Press a key with punctuation and that mark will be displayed. By pressing
certain combinations of keys, you can also type the graphics designs
shown on the front of each key. If you hold down the SHIFT key while
pressing a key with graphics symbols, the symbol on the right of the key
will be displayed. Hold down the C = key (or “Commodore” key), next
to the SHIFT key, while pressing a key, and the symbol on the left of the
key will be displayed.

Each time you turn on power to the computer, it is automatically set to
recognize keystrokes in the uppercase-graphics mode. You can switch it
into another keystroke mode by pressing down the SHIFT and C = keys
together once, and then releasing them. Once this is done, the computer
treats a solitary keystroke as a signal to display a lowercase character.
Pressing the SHIFT key and a letter key will now produce an uppercase

COMING INTO POWER

character, and pressing the C = key and a graphics symbol key will pro-
duce the character shown on the left of that key, as it did before.

You switch out of this lowercase-and-uppercase mode and back to the
uppercase-and-graphics mode by pressing SHIFT and C= again. In
fact, each time you press the SHIFT and C = keys together you switch the
computer from one display mode to the other. Any typing already on the
screen will also change when the computer is switched from one display to
the other. Together, the SHIFT and C = keys act as your switch to control
the display from the computer.

The SHIFT LOCK key can be set to either of two positions. When
pressed down and allowed to click into a lowered position, its effect is the
same as holding down the SHIFT key. Pressed again, the SHIFT LOCK
key will click into a raised position, and there is no such effect.

Moving the Cursor: the UP/DOWN and RIGHT/LEFT keys

Treating the screen of the Commodore 64 like the video equivalent of
a sheet of paper in a typewriter, you can type on it anywhere within its
preset margins. With the two arrow keys in the lower-right corner of the
keyboard, you can move the flashing cursor to any location on the screen,
and whatever you type will appear at that point. When you press it alone,
the key marked with up-and-down arrows (we’ll call this the CURSOR
UP/DOWN key) moves the cursor down on the screen. Likewise, the
key marked with right-and-left arrows (we’ll call this one CURSOR
RIGHT/LEFT) moves the cursor to the right. If held down, both of these
keys continue this cursor movement until released. When either the
SHIFT, SHIFT LOCK or C= key is held down while the CURSOR
UP/DOWN key is pressed, the computer moves the cursor up the screen.
Likewise, the CURSOR RIGHT/LEFT key moves the cursor to the left
when it’s used in combination with any of those three keys. Once the cur-
sor is at the bottom of the screen, the down arrow cranks up all the typed
lines like printed lines on an endless roll of paper being fed through a type-
writer.

Inserting, Deleting, and Clearing: INST/DEL and CLR/HOME

Two other keys allow you to control the display further. The key in the
upper-right corner of the keyboard marked INST DEL serves two func-
tions. It can insert or delete. When pressed by itself, it directs the cursor to
erase and close up one space to the left of the cursor. When pressed while
the SHIFT key is held down, it directs the computer to open a space to the
left of the cursor and move the cursor there, so another character can be

8

THE EASY GUIDE TO YOUR COMMODORE 64

typed. If you hold down this key in either mode of operation, it will repeat
the effect until you release it.

The key marked CLR/HOME, next to it, works in two ways also. You
can use it to direct the computer to send the cursor “home,” to
the upper-left corner. Or, pressing SHIFT and that key together
(SHIFT-CLR/HOME), you can direct the computer to clear the screen
and send the cursor up to that corner.

More Keys for Control

The three keys marked RUN STOP, CONTROL, and RESTORE
can be used to alter the computer’s actions when it’s under the control of a
program of commands.

The four rightmost keys, marked f1 {2, f3 f4, f5 {6, and {7 f8, can each
be called on by programs to control the computer in specially pro-
grammed ways.

RETURN Revisited

By sending a signal to the computer to act on what you’ve typed at the
keyboard, the RETURN key works as your messenger in routing key-
board statements into the transiator of the Commodore 64. When you press
the RETURN key after typing something in response to a READY
prompt, the computer’s translator compares what you’ve sent with the
vocabulary of words built into it. If the form of your typed statement
matches a command, the translator passes the orders on to the processor
part of the computer, which takes action according to built-in directions.

You can move the cursor anywhere around the screen and type any-
thing you like. If you press the RETURN key and the translator doesn’t
match your instructions with its vocabulary, the computer will signal you
that there is a mismatch. In the Commodore 64 this signal takes the form,
“?SYNTAX ERROR?”. This type of “error” reply from the computer
simply means there has been a momentary lapse in commmunication.
(“Syntax” refers to the exact form or sequence in which the computer
expects commands to be given.) In any case, the RETURN key is one
you’ll find useful when you’re ready to give commands to the computer.

Summary of Keyboard Operations

Each key has an effect (prints a character or sends a command), and
some have several different effects when used in combination. You can
acquire programs (sets of commands) that will change the effect of any or

COMING INTO POWER

all of the keys. Pressing any key simply provides a signal to the computer,
which responds to that signal by printing a character or taking some pre-
planned action. All the keys are shown in Figure 1.6.

Whether you are using prerecorded commands (from tapes or disks, as
explained in Chapters 7 and 8) or direct commands, you ultimately con-
trol the Commodore 64 through the keyboard. The keyboard serves as
reins and bridle to the computer and any devices attached to it.

Ll et e

Figure 1.6: The Commodore 64 keyboard.

Johann Gutenburg set the standard for printing five hundred years
ago, and it really hasn’t changed much until recently. In fact, only the
introduction of the computer in the last few years has had a major impact.
Typesetting by computer puts the printed page on a screen before it goes
on paper. With your Commodore 64, you can create screen displays con-
trolled by command.

SCREEN CONTROL

In simply relaying your keystrokes to the video screen, your Commo-
dore 64 draws upon none of its real capabilities. With commands match-
ing those to which it responds, however, you can direct the computer in
preplanned displays. To some commands, the computer reacts instantly
when you send them with a press of the RETURN key. Among these
“immediate” commands are those which enable you to fashion the screen
display.

You can fill the screen with any characters you like by typing on and on
from the keyboard without sending the computer a recognizable com-
mand. If you type more than a screenful, the computer will move the
entire display up one line to make room for the most recent line, and lose
the topmost line from the screen.

You can direct the Commodore 64 with single keystroke commands as
well as typed word commands. Pressing the SHIFT and CLR/HOME
keys at the same time, for instance, directs the computer to clear the

VIDEO PRINTING

screen of all printing and to move the flashing cursor to the upper left cor-
ner. When given this command, the computer presents a blank screen,
regardless of what was typed there before. If you wax poetic, for instance,
and type onto the screen something like the lines in Figure 2.1, you can
remove what you’ve typed at once by doing the following:

(press SHIFT and CLR/HOME)

Directed by this keystroke command, the computer erases all printing,
leaving a blank screen with the cursor flashing in the upper-left corner—
the video equivalent of a fresh sheet of paper and poised pen.

When you type keyboard characters, the computer sends them to the
screen as light-colored dot formations on a dark background. It answers
you in the same way, with a light-on-dark display it chooses automatically.
There are, however, alternative ways of presenting text on the screen, use-
ful in varying the display or calling attention to particular parts of text.

If you want dark characters to appear, each on its own light-colored
background, you can direct the Commodore 64 to print them that way
with the keystroke command:

(press CTRL and 9)
and everything that follows on the screen will be printed in what is called

Figure 2.1: One possible screen display.

11

12

THE EASY GUIDE TO YOUR COMMODORE 64

the “reverse-video” mode. The CTRL-9 command controls the com-
puter like a switch, so that until some other command is sent to change the
screen display (or the RETURN key is pressed), all new printing on the
screen will appear as dark-on-light characters. Characters typed before
the CTRL-9 keypress command was sent remain as light-on-dark, the
“normal” display mode the computer always presents automatically, until
otherwise directed. The poet Robert W. Service, giving the CTRL-9
command at the beginning of a verse, would have seen a screen like that in
Figure 2.2.

You can switch the computer back into the normal light-on-dark dis-
play mode with the keystroke command:

(press CTRL and 0)

which directs the computer to print light-on-dark every character typed
after that command is sent. The same poet, advancing through his poem
after pressing CTRL and 0, would see the screen display shown in Fig-
ure 2.3.

You can also create multicolored displays of text. Using the keys num-
bered 1 through 8 with the CTRL key, you can choose different colors for
characters printed on the screen. To get yellow letters, for instance, you

 Figure 2.2: The effect of the CTRL-9 command.

VIDEO PRINTING

Figure 2.3: The effect of the CTRL-0 command.
can press together the CTRL and 8 keys:

(press CTRL and 8)

If the computer is in a light-on-dark display mode, all characters typed
after the CTRL-8 command will appear as light yellow letters on a dark
blue screen. If the command for reverse character display is given,
CTRL-9, the display will be dark blue letters, each on its own yellow
block. You can switch the character display into other colors by pressing
the CTRL key together with any of the other number keys. When you
press the C= key and one of the numbered keys, the computer will dis-
play even more colors.

VIDEO PRINTING

The Commodore 64, like any computer worth its circuits, can do more
than display your keystrokes on a video screen. In fact, much of the Com-
modore 64’s computing power lies in the built-in operations it works on
furiously at your command, without giving so much as a clue to what it’s
doing. The simplest example can be seen with elementary arithmetic,
which the Commodore 64 works on automatically and unseen when so

13

14

THE EASY GUIDE TO YOUR COMMODORE 64

directed. The familiar calculator functions of addition, subtraction, multi-
plication, and division are commanded from the keyboard with the sym-
bols +, —, *, and /. If you direct the computer to multiply — 2 and 4, by

typing:
- 2«4

you won'’t see the result, just a ’SYNTAX ERROR reply and another
READY prompt. To see the results of that multiplication, you must add a
command.

The PRINT Command

The command that directs the computer to display the results of
arithmetic operations on the screen is PRINT. It can be used with an
“operator” command like the multiplication sign, *, to display one of the
computer’s internal operations. You type this useful command first,
before the operation you’d like displayed, like this:

PRINT -2+4

As used here, the PRINT command directs the computer to display the
result of the multiplication that follows it. After sending this command by
pressing the RETURN key, you’d see the value — 8 on the screen and a
new READY prompt below that, signalling the computer’s readiness for
another command, as shown in Figure 2.4.

You can put the PRINT command into service for any combination of
arithmetic commands according to the rules of algebra, to operate your
sophisticated Commodore 64 as a simple calculator, with entries like this
one:

PRINT 9 +8-7+6/5

The computer automatically follows a predetermined order of operations
in interpreting arithmetic expressions like the above. First multiplication,
then division, and finally addition and subtraction are carried out, in this
case to give the result 8.6 on screen. To change this built-in sequence of
operations, parentheses are used to direct the computer to work out the
values inside them first, like this:

PRINT (9 +8~-7)+6/5

for a result that will appear, below the PRINT statement, as 12.
But the PRINT command’s usefulness goes beyond simply displaying
mathematical manipulations (all of which are listed in Appendix A).

VIDEO PRINTING

Figure 2.4: The effect of the PRINT command.

PRINT is a command you can use often. As well as applying it to direct
some internal operation onto the screen, you can use it to express a senti-
ment, a thought, or a fact on the screen in the midst of some other com-
puter action. The PRINT command is your typist.

You can direct the computer to print on the screen nearly anything you
type in quotation marks following the PRINT command. For example:

PRINT “So glad to be here.”

The computer’s response after you press the RETURN key will be the
words,

So glad to be here.

on the line following the command.
Words and numbers can be combined in a PRINT statement. For
instance, you can make the statement:

PRINT “The winning number is. . .” 30
and see the computer reply:

The winning numberis. . . 30

15

16 THE EASY GUIDE TO YOUR COMMODORE 64

You can even slip a calculation into a printed sentence, like this:

PRINT 20 “or” 30 “is more than I'm willing to pay. But” 10+5
“sounds right.”

for the display from the computer:
20 or 30 is more than I'm willing to pay. But 15 sounds right.

Keystroke Commands in the PRINT Statement

You can load a PRINT statement with keystroke commands, enclosing
them within quotation marks, and the computer won’t perform them
until you press the RETURN key to send the entire PRIN'T command.
One PRINT statement can thus hold directions to do several things. For
instance, you can instruct the computer to clear the screen, switch the dis-
play to “reverse type” (dark-on-light characters), switch it to yellow, then
print a phrase, switch to white, and finally print another phrase, all with a
command like the following:

PRINT “(press SHIF -HOME)(press CTRL and 9) (press CTRL and 8) 1 ¢
TAKE IT(press CURSOR UP/DOWN) (press CURSOR UP/DOWN)
(press CTRL and 2)FROM THE TOP”

TAB—Arranging the Screen Display

If you give a command from the keyboard, like SHIFT-CLR/HOME,
within quotes in a PRINT statement, the computer will record that com-
mand in a coded way, in this case with a heart symbol, but will not carry it
out until the RETURN key is pressed. You can use this to delay to tailor a
display with the PRINT command. Once you realize that the computer
handles text on the screen as a grid of 40 columns by 25 rows, you can
arrange displays to suit the eye. A handy little command used within a
PRINT statement directs the computer to b (or space over to a specified
column) before actually printing on the screen. The form is TAB(), where
the columns are numbered, like a typewriter’s, from left to right, the left-
most as 0 and the rightmost as 39. You can add the TAB command before
the item to be printed, like this:

PRINT “HEY!” TAB(15) “LOOK” TAB(30) “AT THIS «”

The computer acts on this statement by reading it across as a series of
commands, and prints:

HEY! LOOK AT THIS <

VIDEO PRINTING 17

If a command is already displayed on the screen you can repeat it by
moving the cursor (with the CURSOR UP/DOWN key) to the screen
row in which that command is found. If you press the RETURN key
then, you will again send the command for the computer to act on. You
can even alter a displayed command, and then send it by pressing the
RETURN key.

You could, for instance, move the cursor back up the screen to the
PRINT command described above, using the SHIFT and CURSOR
UP/DOWN keys. Using the CURSOR RIGHT/LEFT key to move the
cursor horizontally, and the SHIFT and INST/DEL keys to insert spaces,
you can change the statement. One way to change the statement would be
so that the display read:

HEY! TAKE ALOOK AT THIS «

To do this you insert the words TAKE A within the second set of quotes.
You can do this by placing the cursor over the letter L in the word LOOK,
and there inserting seven spaces, for the words TAKE A and the blank
space between them. To insert the spaces, you just press the SHIFT and
INST/DEL keys seven times together.

(press SHIF T and INST/DEL)(press SHIF T and INST/DEL)(press
SHIFT and INST/DEL)(press SHIF T and INST/DEL)(press SHIF T and
INST/DEL) (press SHIF T and INST/DEL)(press SHIF T and INST/DEL)
Then you can make your insertion:
TAKE (press SPACE BAR) A
The command that remains after these changes is:
PRINT “HEY!” TAB(15) “TAKE A LOOK” TAB(30) “AT THIS <~
If you press the RETURN key now, you’ll see a changed display result:
HEY! TAKE A LOOK AT THIS <
You can use such an approach to send any command from the screen
into the computer for action. If the command statement takes up two lines

on the screen, you can send it by positioning the cursor anywhere on
either of the lines, and then pressing the RETURN key.

18

THE EASY GUIDE TO YOUR COMMODORE 6%

More Commands. ..

Two punctuation marks can be used as shorthand commands within a
PRINT statement. Commas typed between items in a PRINT command
will direct the computer to space the items four across the screen, as
though following a succession of TAB(2), TAB(12), TAB(22), and
TAB(32) commands. Semicolons typed between items will separate them
in the statement, but not in the printing. Also, the computer automati-
cally adds a space before and after numbers that it prints.

The computer and its screen provide a more controllable display than
the familiar typewriter and paper. You can direct color displays, and even
a rapid succession of displays by implanting screen-clearing commands
between displays.

By using still more variable commands, you can guide the servile com-
puter in one direction or another. By using commands in combination,
you can even send it off to do your bidding on its own.

SCHEDULING COMMANDS

'The computer, long regarded as an awesome accumulator of informa-
tion and a secret keeper of files, is basically forgetful. That s, it’s built to
act on commands, and then automatically leave them behind to ready
itself for more commands. Human beings often work much the same way;,
returning to dimly-remembered locations only by the grace of street
addresses we recall.

In its own way, the computer can return to “addresses” held in its
memory. If commands wait at such addresses, it will then act on them as if
you had just sent them. You can provide such addresses by starting each
group of commands with a number.

Placed at the beginning of a group of commands, a number tells the
computer to retain those commands as part of a program, possibly to be
used again. For example, to mark a statement of display commands in
this way, you could send the following command:

10 PRINT “(press SHIFT and CLR/HOME)” TAB(12) “NUMBERS AND
THEIR USES”

You’ll notice, when you press the RETURN key after typing a num-
bered statement like this, that the computer replies with a flashing cursor,
without acting on the commands. Actually, the statement is sent into stor-
age in the computer’s memory, where it is kept on file by number. Here,

20

THE EASY GUIDE TO YOUR COMMODORE 64

the commands will be held as line number 10 until you type the command
that tells the Commodore 64 to proceed with them. That command is:

RUN

which directs the computer to translate and act on the numbered state-
ments in its memory, in numeric order. As the only numbered line of
commands in memory in this case, line 10 will be acted on command-by-
command. The computer automatically holds numbered commands in
memory, even after acting on them, so you can tell the computer to carry

" out the commands of line 10 as many times as you like by sending the

command RUN each time.

Although commands may reside unseen in the computer’s memory,
you can display them on the screen with a simple command. If you send
the command

LIST

the computer will respond by printing the entire contents of its program
memory—in this case, line 10.

You can send another set of commands for the computer to act on after
line 10 by labeling the statement with a higher number, like this:

20 PRINT “(press CTRL and 9) (press CURSOR UP/DOWN) THIS
LINE WILL BE REMOVED.”

The computer now has two lines in its memory and, when sent the
command:

RUN

will start with the lower-numbered statement, 10, translate and carry out
each command, and then translate and carry out the commands of state-
ment 20.

You can direct the computer, with a series of numbered statements, to
switch among different screen printing displays to fashion a result like that
produced by these additional statements:

30 PRINT “(press CTRL and 8) FOR YOUR INFORMATION, YOU ARE
NOW PROGRAMMING.”
40 PRINT “PROGRAM (press C= and 7) ENDS HERE"

If, after sending these statements to the computer, you give the command
RUN, you'’ll see a display of four statements appearing one after another
with a final result like Figure 3.1.

Statement lines 10, 20, 30, and 40 make up a program that can direct

PLANS AND PROGRAMS

I .
RIMING .
PROGRAM ENDS HERE.

READY .

Figure 3.1: The result of running a program of display commands.

the computer, each time you issue the RUN command, to produce the
same printing display. Change the statements in the program and you
change its results. For instance, the reverse-video row that declares:

THIS LINE WILL BE REMOVED.

will be absent from the screen during a program run if you erase line 20,
in which you ordered its printing. To erase a line from the computer’s pro-
gram memory, you can simply type the line number and press the
RETURN key:

20

The computer stands ready to accept a new statement, and prepares to
store a set of commands under the number 20 when you do this. When
you send only the number, it replaces the former statement under this
number with the new, blank statement. Since a blank statement gives no
instruction, line 20 ceases to exist in the program memory.

When you RUN the program, you’ll find the reverse-video text pro-
duced by line 20 absent. When you LIST the program, you’ll find only
lines 10, 30, and 40 remaining in memory, as illustrated in Figure 3.2.

21

22 THE EASY GUIDE TO YOUR COMMODORE 64

B : D
OUR INFORHATION, YOU ARE NOH PROGRA

A ENDS HERE.

Figure 3.2: A program listing after one line has been deleted.

The computer follows this simple rule in handling program lines: The
contents of a newly-sent numbered line replace the previous contents of
the same number. You can add a new statement as line 20 like this:

20 PRINT “t 414"
to include three arrows in the display after the line
NUMBERS AND THEIR USES

is printed.

The computer carries out numbered statements sequentially, according
to any numbering scheme you devise (of positive, whole numbers up to
63,999). It will follow a program beginning at any number moving up the
sequence of numbers, regardless of gaps in numbering between them.
Numbering by tens is a handy approach to programming that leaves
room between statements to add any program lines that occur to you as
afterthoughts or refinements.

The computer retains numbered statement lines in its program mem-
ory until you switch off the power, or remove particular lines by typing

PLANS AND PROGRAMS

their line numbers, or command the computer to erase them all. You can
direct this erasure by sending the simple command:

NEW

On receiving this command, the computer prepares for a new program by
erasing all program lines from its memory. If you write a new program
and don’t clear out the old program from memory, old program line num-
bers not replaced by new ones will tag along from the original program,
giving directions within the new program you may not have planned.

STAND-INS FOR NUMBERS

Numbers, you’ve no doubt noticed, are as useful within commands as
they are in marking program lines. As much as the commands them-
selves, numerical values help control the computer’s operations. A change
in the value of a number changes the action of the Commodore 64 in, for
example, the directions given by a TAB command or the multiplication
ordered with an asterisk (*) command.

A single number can be passed around within a program by the com-
puter to be used in different commands, if you use a symbol that stands for
the number you’d like acted on in the commands that act on it. If you
instruct the computer early in the program that a symbol is standing in for
a number, the computer will substitute the number at each command in
which it subsequently encounters that symbol, and then act on it.

The handiest symbol to use as a stand-in for a number is a letter. You
can use the letter in all commands where you would otherwise have used
the number. For example, if you were considering text placement on a
screen, you might put such a substitute in a TAB command within a pro-
gram, like this:

20 PRINT “(press SHIFT and CLR/HOME)”
30 PRINT TAB(A) “"HOW DOES THIS LOOK?”

The letter A substitutes for a number in the TAB command here. If you
sent the RUN command to the computer for this two-line program with-
out first assigning a value to A, it would follow built-in directions and
replace the letter A with the value zero.

The Assignment Statement

The command by which you give a value to a symbol is known as the
“assignment statement.” It is represented by an equal sign (=), and to

23

24

THE EASY GUIDE TO YOUR COMMODORE 64

direct the computer to substitute a value of 12 for A in this program, you
could send the command:

10 A=12

When you RUN this three-line program, the result will be the words
“HOW DOES THIS LOOK?” printed beginning at column 12.

Having so named a number used in the program, you can change the
operation of the program without changing the line that directs that oper-
ation. Change the value of A in line 10, like this:

10 A=20

and the computer will print at column 20. Used in this way, the letter A
acts as a vanable symbol that can stand for whatever number you specify
with an equal sign.

You can use a variable in as many commands in your program as you
want. If you add the command:

25 PRINT “COLUMN A’

to the program, the computer will respond when you RUN the program
by printing

COLUMN 20

Then it will print the question starting at column 20 below that line.
Again, if you change the value of A and then give the command RUN,
the computer will position the printing accordingly, by column number:

10 A=5

A variable letter like A can be used any number of times in a program
to stand in for a number. In this program you can use it to try out different
screen-printing placements by retyping only the single short program line
10. In more complex programs, the effect of changing a variable’s value
by changing an assignment command can be profound.

The assignment command can be translated as a direction to the com-
puter to work internally to replace the symbol on the left of the equal sign
(wherever that symbol is encountered) with the numeric value on the right
of the sign.

PLANS AND PROGRAMS

NUMERICAL PREDICTIONS

The computer can act on more than one symbolic variable in a pro-
gram, if you include an assignment statement for each. This capability
gives you enormous power in writing programs to analyze or predict vari-
ous situations. If you can describe a situation with numbers, you can
direct the computer to simulate the situation with any or all of its aspects
changed. You can, for instance, compare the results of different salary
offers, or the filling of reservoirs behind different dams.

A prediction of the filling of a dam or your bank account could be made
by forming a numerical model of the factors known to be at work. Then,
sending values for these factors to the computer with assignment state-
ments, you can see what the model predicts as a result. You can easily
predict the amount of water in a reservoir or the amount of money in your
account after, say, nine months, if you know the amount already there and
the average monthly rate at which more accumulates. You can direct the
computer to print these values and then to print the calculation of the total
amount nine months later with the following program. (Be sure to send
the NEW command to clear the last program from memory before typing
this one.) In it, the original amount is symbolized by the letter A, and the
monthly rate of accumulation by the letter B:

NEW

30 PRINT “(press SHIFT and CLR/HOME)”

40 PRINT “STARTING WITH" A

50 PRINT “AND GAINING” B “EACH MONTH"

60 PRINT “YOU'LL HAVE” A + (B+9) “AFTER 9 MONTHS.”

If you command the computer to RUN this program now, it will auto-
matically substitute zero for the variables A and B. But if you assign val-
ues for the amount present and the rate of accumulation, the computer
will display those values and, through the directions in program line 60,
print a prediction of the future amount. You can give values to the varia-
bles with the program lines:

10 A=2200
20 B=355

The computer will run the complete program with 2200 as the starting
amount (gallons of water, or dollars) and 355 as the monthly increase, to
produce the display shown in Figure 3.3.

25

26

THE EASY GUIDE TO YOUR COMMODORE 64

Figure 3.3: The results of a prediction program.

You can, of course, change the simulation by changing the values
assigned in lines 10 and 20, and so make predictions for different circum-
stances. This program was written to produce a prediction for nine
months, but it can be altered by replacing the specific value 9 with a vari-
able, through which you can produce a prediction for any number of
months. To do this, you can modify line 60, which produces the display
and calculation. You can assign the variable C to the number of months:

60 PRINT “YOU'LL HAVE” A +(B+C) “AFTER” C “ MONTHS.”

By adding another assignment command, you can specify another length
of time, say 15 months:

25 C=15

When you run the program through the computer now, it will display the
original amount of 2200, and predict an increase of 355 each month, over
a period of 15 months.

You can direct the computer to substitute one variable letter for
another, or for an “expression,” consisting of variables and operators. In

COMING INTO POWER

this program if you wanted a shorthand way of naming the final amount
predicted, you could rename that amount, so far represented by the value
of A+ (B x C), in a separate statement, calling it F:

27 F=A+(B+C)

Now that the final value has a simple name, you can order the calculation
and display of the difference between the original and final values, A and
F, with this simple statement:

70 PRINT “THE GAIN IS” F-A

You could then streamline the program’s appearance a bit with a substitu-
tion in line 60:

60 PRINT “YOU'LL HAVE” F “AFTER” C “MONTHS.”

You can again change the details of this model by changing the values in
lines 10, 20, and 25.

Although we have used only whole numbers so far, the computer is also
designed to work with decimal numbers. It can take values stated in fine
detail—for example, A = 2200.35. It can also handle fractions if they’re
treated as divisions. The value for 10 and 3/4 months, for example, would
be statedasC = 10 + 3/4.

COMMANDS IN GROUPS

Commands work perfectly well one to a numbered program line. But
you can also combine several together for convenience or for ease of
planning.

The three assignment statements from the previous program:

10 A=220
20 B=355
25 C=15

can be grouped under a single program line number, if you prefer. If com-
mands are separated from each other by colons, the computer will act on

27

28

THE EASY GUIDE TO YOUR COMMODORE 64

each command in a grouped set one at a time, as though each were on its
own numbered line. You could replace those three lines with a single line,
like this:

10 A=2200:B=355:C=15

And then erase the two now-redundant lines by sending empty line num-
bers with the RETURN key:

20
25

The new line number 10, holding a group of commands, then replaces the
earlier lines 10, 20, and 25. The computer will hold the same information
in its memory and carry out the program commands exactly the same
way. You can group as many commands in a single program line as will fit
in the 80 characters of space the computer recognizes for command
entries.

Although both methods of grouping commands produce the same
results when a program is run, you may prefer one to the other. Within a
program written with one command to a statement line, you can more
easily find problems that call for rewriting or alteration—the accidental
misspelling of a command leading to a “?’SYNTAX ERROR” reply dur-
ing a program run, for example. On the other hand, grouping several
commands to a line number may be an easier way to compose a program
from multiple command statements. Either way, the choice is yours.

USING JUDGEMENT

Like a vigilant sentry, you can watch over your computer, deciding
when you would like certain commands repeated, or values changed, or
when you’d like to interrupt a program run. But that means you’re
attending to the computer rather than having it attend to you.

Fortunately, such vigilance isn’t necessary. Your decisions can be
reflected within a program, so that when the computer encounters specific
conditions you’ve described, it will take the action you’ve directed. The
Commodore 64 can examine a numeric comparison (that is, a statement
that one value is equal or not equal to, or greater or less than, another
value), and “evaluate” it as either true or false. If the statement is true, the
instruction that immediately follows will be executed. If not, the computer
will skip over that instruction and proceed to the next numbered line.

The command that allows this decision-making is the IF-THEN state-
ment, which takes much the same form as the “if . . . then” conditional
statement in everyday English: “Ifit’s raining now, then go by car.” Ifthe
statement is true, then take the action named. (If not, then don’t.) The
computer command looks like this:

IF (comparison) THEN (instruction)

We’ll see some specific examples along the way.
You can use the IFF-THEN command in a new program to evaluate a
sum of three numbers represented in the following way:

10 A=5:B=8:C=87

30

THE EASY GUIDE TO YOUR COMMODORE 64

20 T=A+B+C

You can then arrange for the computer to display a statement if the sum is
100, with the command:

30 IF T=100 THEN PRINT “A SUM OF A HUNDRED"

which will instruct the computer to print the statement only when the con-
dition T'= 100 occurs.

When this program is run through the Commodore 64, the quotation
will be printed. If line 10 is changed so that the values add to something
else, the computer will skip past THEN and its PRINT command, in this
case to the program’s end.

On encountering an IF-THEN statement, the computer follows built-
in directions to evaluate the condition stated to the right of the word IF.
When that condition is true, the computer follows the command to the
right of the word THEN. When it is false, the computer skips to the next
program line.

You can direct the computer in this decision-making process through
any mathematical relation it is built to understand. The following change
to the program, for instance, tests the numbers of guests arriving in
groups at a gathering:

30 IFT> 100 THEN PRINT “THE ROOM IS GOING TO BE
CROWDED”

Here, the test is not whether T is equal t a particular value, but whether it
is greater than the value.

When it encounters a number after the word THEN, the computer
translates the number as a direction to carry on with the program from the
commands in that line number. Thus, besides instantly following a com-
mand in the IF-THEN statement, the computer can be sent to another
part of the program by line number, as in the following program:

NEW

10 A=20:B=15:C=9

20 T=A+B+C

30 PRINT “(press SHIFT and CLR/HOME) WITH GROUPS
OF”A"“AND”B"AND”C“THE ROOM WILL HAVE"T
“PEOPLEIN IT”

40 IFT > 75 THEN 100

50 PRINT “(press CURSOR UP/DOWN) NO PROBLEM
ACCOMMODATING THAT MANY ”

60 END

DECISION-MAKING BY COMPUTER

100 PRINT “THAT’S MORE THAN THE ROOM WILL
HOLD!”

Using the values assigned in line 10, the computer will print the quota-
tions in lines 30 and 50, then stop carrying out commands on reaching the
END statement. It will skip past the command that would redirect it to
line 100 from line 40: THEN 100. If you change line 10 so that the sum
exceeds 75:

10A=19:B=23:€=37

and run the program again, the computer will carry out the command
after THEN and skip past lines 50 and 60 to carry out the PRINT state-
ment of line 100.

To direct the Commodore 64 to a line number from an IF-THEN
statement, you can also include the optional command word GOTO. The
following revision of line 40:

40 IFT> 75 THEN GOTO 100

produces the same results as its predecessor, but may be a little easier to
read and understand.

In directing the computer forward through a program according to val-
ues it encounters, or directing it to some immediate command within an
IF-THEN statement, you can change the way the computer executes a
program. By directing the computer backward to an earlier line number
from an IF-THEN statement, you can make it repeat earlier commands,
with variations if you like.

SIMULATIONS

An IF-THEN statement with a line number is like a finger pointing
backward or forward. This ability to point to different courses of action
can be especially useful in simulating different scenarios. You can apply it,
for instance, to the problem of fi]lmg a party room with guests arriving in
groups without exceeding the room’s capacity.

In a situation like this, there are three values to consider: the capacity of
the room, which you can call the variable C; the number of guests at the
party, which you can call G; and the rate at which new guests arrive each
trip—call this R. If you want to know how many trips will fill, but not
crowd, the party, you can use an IF-THEN statement to instruct the com-
puter to consider trip after trip, and then signal you when the simulated
trip that fills the room finally occurs.

You can begin this new program with a statement defining the room

31

32

THE EASY GUIDE TO YOUR COMMODORE 64

size, the number of guests at the simulation’s beginning, and the rate of
new arrivals:

NEW
10 C=200:G=20:R=6

The computer will prepare the screen and display the available room from
these commands:

20 PRINT “(press SHIFT and CLR/HOME)” ,
30 PRINT “AFTER” N“TRIPS” G “PRESENT & ROOMFOR” C-G

In line 30, the variable N will serve as a counter for the number of trips
through which the program has directed the computer. You make N a
counter and keep G, the number of guests, up to date with these
commands:

40 N=N+1:G=G+R

The crucial command is the one that directs the computer either to con-
tinue or to stop considering trips:

50 IFG<C THEN 30

This line instructs the computer to either return to the sequence at line 30
(if G is less than C) or continue to the final line, which signals you that a
limit has been reached:

60 PRINT:PRINT “----- FILLEDAFTERTRIP” N < < < < <«

When you run it, this program will direct the computer to repeat the
quotation in line 30 with different values until the room’s limit is reached.
Figure 4.1 shows the steps that the program run takes.

First, the computer stores the values for C, G, and R (stated in line 10)
in its memory, then clears the screen and positions the cursor for the
PRINT statement in line 30. When that statement is first encountered,
the value of N has been automatically set at zero. This represents the con-
dition of the room before the first trip of newcomers:

AFTER 0 TRIPS 20 PRESENT & ROOM FOR 180

Encountering line 40, the computer considers trip number 1, which
increases the number of guests to 26. Then, at line 50, it compares the
number of guests to the room’s capacity and, finding on this first pass that
the number is smaller, it follows the IF-THEN direction to line 30. Acting

DECISION-MAKING BY COMPUTER

TRIPS 145 PRESENT
TRIPS 132 PRESENT
TRIPS 1358 PRESENT
TRIPS 164 PRESENT
TRIPS 170 PRESENT
TRIPS 176 PRESENT
TRIPS 132 PRESENT
TRIPS 1893 PRESENT
TRIPS 194 PRESENT

ROOH
ROOH
ROOH
ROOH
ROOH
ROOH
ROOH
ROOH
ROGH

&
&
&
&
&
&
&
&
&

-~-FILLED AFTER TRIP H 30 etete
REAOY.

Figure 4.1: The outcome of a simulation program.

again on line 30, the computer displays the values of N and G after that
first trip:

AFTER 1 TRIPS 26 PRESENT & ROOM FOR 174

Blind to its poor grammar, the computer goes on to consider the second
trip at line 40, and repeats the process. It prints the same statement at each
trip until the pass at which the number of guests reaches the capacity,
when N is 30. On encountering the IF-THEN command at that point,
the computer advances to line 60, printing the message that the room
would be filled after that trip.

You can add a handy feature to this program by directing it to display
the conditions you stated in line 10:

70 LIST10

This command will print line 10, as in Figure 4.2. You can now retype the
line to reflect a larger room, C, a different number of guests already
present, G, or a different rate of arrival, R.

Under the direction of an IF-THEN command sending it backward,
the computer conjures its repetitive powers. Acting under other com-
mands, the computer can be sent in any direction to yet other commands,

33

34 THE EASY GUIDE TO YOUR COMMODORE 6%

TRIPS 132 PRESENT
TRIPS 133 PRESENT
TRIPS 164 PRESENT
TRIPS 170 PRESENT
TRIPS 176 PRESENT
TRIPS 182 PRESENT
TRIPS 133 PRESENT
TRIPS 194 PRESENT

ROOQH
ROOH
RAAGH
ROOH
RaOH
ROAH
ROOH
ROOH

&
&
&
&
&
&
&
&

AFTER TRIP H 30 etete
6=28 : R=§6

Figure 4.2: A simulation program that displays the conditions which directed it.

from one program line to another. Complex routes can be formed
between program statements, each of which asks the computer to do
something different.

A servile machine, the computer can accept and obey scores of com-
mands. It will act on them in its own dull-witted but meticulous way. With
these commands, you can put the machine to work on tasks you might
otherwise find too tedious or repetitive, too nitpicking or precise, too long
or time-consuming. When so commanded in a language it recognizes,
your computer can repeat a given task endlessly or as often as you say. It
can handle words or numbers, tearing them apart or delicately assem-
bling them, it can carry out the most cumbersome calculations, or it can
quickly produce screen displays of a complexity that would otherwise be
possible only by days of hand-work.

A PROGRAMMER’S KIT OF COMMANDS

Human beings are imperfect: we change our minds, we make mis-
takes, and we are prone to forget. The programs we devise are subject to
our interesting and imperfect nature, and allow for this nature, you can
mark, stop, and restart the programs you use. You can borrow useful
statements of commands from other programs, and tinker them into the
shape you want.

REM: A Programmer’s Notebook

If you put together many programs, you'll find handy a command that
marks program lines without affecting the computer’s operation. That
command is REM, which stands for “remark.” You can appreciate its
usefulness by considering the following graphics program, which directs

36

THE EASY GUIDE TO YOUR COMMODORE 64

the drawing of a checkered pattern like that shown in Figure 5.1. The pat-
tern is made by first drawing vertical lines in white in even-numbered
columns (in program lines 20 through 60), and then slicing through them
with horizontal lines of black (in lines 70 through 120). Notice that line 70
uses the CLR/HOME key without SHIFT, to send the cursor “home”

without clearing the screen.

NEW
10 PRINT “(press SHIFT and CLR/HOME)”
20 A=0
30 PRINT TAB(A) “(press C= and +)(press SHIFT and CURSOR
UP/DOWN)”
40 A=A+2:IFA<25THEN 30
50 PRINT
60 B=B+1:IFB<20 THEN 20
70 PRINT “(press CLR/HOME)”
80 M=0
90 PRINT TAB(M) “(press SPACE BAR)(press SHIFT and CURSOR
UP/DOWN)”
100 M=M+1:IF M<25 THEN 90
110 PRINT “(press CURSOR UP/DOWN)”
120 V=V +2:IFV<20 THEN 80

What this program does is not immediately obvious to anyone reading
it. Instead of running the program through the computer each time you
wish to see what it does, you can identify it with a labeling “remark” line,
which, as a note to whoever reads the program, is not acted on by the
computer. To so mark this program, add a line that starts with REM:

5 REM A PROGRAM FOR THE COMMODORE 64 THAT MAKES A
CHECKERED PATTERN.

When the computer encounters this REM line in a program, it takes
the command REM to mean: “Move on to the next program line; what
follows is a remark for the person reading this program.” Although a pro-
gram may make perfect sense to you when you type it, a few weeks later—
or sometimes a shocking few minutes later—it may seem nothing but a
baffling assortment of commands unless you’ve tagged it with a note.

Since the REM command can be put anywhere in a program, you can
describe sections or individual command lines of a program if you like.
For instance, in the case of the checkered program, you can add notes
before the statements that direct the computer to produce the vertical lines,

PROGRAM CONTROL

= K %

o
BN R TR

R R
e 2
R R
R R
2 %
b2 %
e R
b %
R R
-3

VYRR SR
VRN
R ERERRERE
E- I A -

R R

m
>
(=4
-

Figure 5.1: A checkered pattern produced by a program.
and also before the statements that produce the horizontal lines:

15 REM THE NEXT FIVE PROGRAM STATEMENTS DRAW
VERTICAL LINES IN CHARACTER COLOR

65 REM THE NEXT SIX PROGRAM STATEMENTS DRAW
HORIZONTAL LINES IN BACKGROUND COLOR

A program marked in this way will be easier to identify and alter, later.
REM statements are subject to the same 80-character length limit as other
program statements; line 65 is as long as a REM line can be.

Interrupting a Program Run

While this program is running, you might decide you’d like a slightly
different pattern. To stop the program in mid-stride, you can use any of
three commands. The planned way is to include a command to that effect
within the program itself. The program command that will interrupt a
run is STOP. You can strategically include it to stop the program run after
the vertical lines have been drawn by program statements 20 through 60,
like this:

65 STOP

37

38

THE EASY GUIDE TO YOUR COMMODORE 64

If you run the program with this additional line, the computer will stop
following program commands on encountering the statement, and will
inform you that a forced break in the run has been ordered, with the reply:

BREAKIN 65

The STOP command differs from the END command only in that the
computer replies with a message. STOP can be paraphrased as: “Print
BREAK IN and this line number, and wait for directions from the
keyboard.”

An advantage of the STOP command is that you can, at your conve-
nience, command the computer to proceed with the program run, by
sending the command:

CONT

which can be paraphrased “Continue carrying out commands at the pro-
gram line following the interruption.” Of course, if the STOP command
is removed from a program (here by removing line 65), the program will
run straight through without pause.

The second way to stop a running program is directly from the key-
board, with the command that mimics the STOP command in an imme-
diate, unplanned way. To stop a program at any point in its operation,
press the RUN STOP key. After receiving this keystroke command, the
computer will reply with the “BREAK IN” messsage. Once stopped in a
program run with the RUN STOP command, the computer will also
resume carrying out program commands when sent the CONT com-
mand. The STOP command, implanted in a program, and the RUN
STOP command, sent from the keyboard, both affect the computer’s
operation in the same way.

You can use either one to stop the computer at line 50 of the current
program, just after the bottom edges of the vertical lines have been drawn,
to consider varying the pattern. One way to change the display is to select
another character or color for the rows drawn by lines 70 through 120.
Even a black-and-white screen will show changes in shadings among
colors.

Now that you’ve interrupted the program. .. Interrupting a program
can sometimes give you ideas for interesting variations. For example, you
can change program line 120 so as to draw columns of spaces only as far
down as row 18:

120 V=V +2:IFV< 18 THEN 80

PROGRAM CONTROL

You can create horizontal rows of circles with this revision:

90 PRINT TAB(M) “(press SHIFT and W) (press SHIFT and CURSOR
UP/DOWN)”

Of course, you can keep revising until the pattern is one you like. Perhaps
this revision of program lines 80 and 100 will add the finishing touch:

80 M=5
100 M=M+2:IF M<20 THEN 90

These three changes will produce a program that displays the pattern of
lines and circles shown in Figure 5.2 when run.

The RUN STOP-RESTORE Command

The third and most intrusive way of stopping a running program
directs the computer to leave the program completely. The program is
retained in memory, but no “marker” is left in the run. To stop a program
run with this emergency-brake command, which operates from the key-
board, you press the RUN STOP and RESTORE keys together. Since
the computer forgets its place in the program, the CONT command isn’t
a useful way to pick up the sequence again in this case.

Figure 5.2: The result of revising the program that produced Figure 5.1.

39

40

THE EASY GUIDE TO YOUR COMMODORE 64

You can usually slow a program, or any response of the computer, by
pressing the CTRL key and holding it down. When you release it the
computer returns to normal speed.

We’ve now seen the full set of commands you have for restructuring
existing programs in the BASIC language. There are more commands for
building the programs themselves.

COMMANDS FOR MOVING AMONG STATEMENTS

The GOTO Command

We’ve seen some commands that direct the Commodore 64 outside its
usual course through higher line numbers in a program; there are still
more. One, GOTO, is even simpler in action than the IF-THEN com-
mand. We’ve already used it in a version of that command, IF-THEN-
GOTO. You can also use the GOTO command by itself, to direct the
computer back to some earlier statement in a program, again and again,
creating an unending loop of computer action. Ideal for repetitious tasks,
this sort of loop can be stopped only with one of the three program-
stopping methods described in the previous section.

The following program will, if you let it run, command the computer to
produce an “endless” multiplication and division table. (Actually, you
would eventually reach a number greater than the Commodore 64 can
handle, and get an OVERFLOW ERROR message.) In line 10 the
number to be multiplied and divided is set at five.

NEW
10 A=5
20 PRINT “(press SHIFT and HOME) ------------ THE NUMBER”

30 PRINT “N” TAB(5) “MULTIPLIED BY N” TAB(22) “DIVIDED BY N”
40 PRINT

50 N=N+1

60 PRINT N TAB(10) A~N TAB(25) A/N

70 GOTO 40

The final command, in line 70, directs the repetition of the program
from line 40 on. Without that GOTO direction, the program would sim-
ply run three rows of printing—the heading from line 20, the subheading
from line 30 and the first pass at the counter number N (when it’s raised
from zero to one), the multiplication of A X N and division of A/N from
line 60. When the computer finishes with the commands of line 60 and

PROGRAM CONTROL

translates the command GOTO 40 on line 70, however, it jumps back
into the sequence at line 40. Thereafter it automatically follows increasing
line numbers until it again encounters line 70, which directs it out of
sequence to line 40 again. Each time the computer performs line 50
(N=N+1), the “counter,” a new value is applied to the printing, multi-
plication and division of line 60.

The untiring computer will perform the commands between program
lines 40 and 70 again and again until you stop it with a RUN STOP or
RUN STOP-RESTORE command from the keyboard (or, of course,
switch off power).

Although you can also direct the computer to skip forward through the
program to a higher-numbered line, there’s no advantage in doing so,
since the commands of intervening statements would be missed forever.
While a second GOTO command could send the computer back to an
earlier line that had been skipped, that method of programming offers no
control that couldn’t be achieved more simply by a single GOTO com-
mand controlling the type of repeating loop seen above.

In this program, you can assign any value to A in line 10, and then
observe the resulting calculated values as they appear on the screen if
you’re looking for a particular value. If you’d like to know when, for
instance, the division drops below some value, a variation of the GOTO
command can direct the computer to do that looking for you. This com-
mand is fairly rigidly structured, but easy to use once you understand its
format. Through the ON-GOTO command, the computer is directed to
compare variable symbols with a built-in number range, then is sent to a
program line. It works much like an IF-THEN-GOTO statement, except
that the condition in the first half of the command is preset to numerical
ranges: 1 or greater but less than 2, 2 or greater but less than 3, and so on.
The directions in the GOTO half of the command point to line numbers
you arrange according to those preset ranges.

If you wanted the computer to signal you when the value of the division
A/N, for instance, falls below two, three, and four you could add a com-
mand to do that after line 60, like this:

65 ON A/N GOTO 100,200,300

which directs the computer to evaluate A/N, compare it with the built-in
ranges and then to proceed with the appropriate program line—100, 200,
or 300—according to that value. In this case, you can put PRINT state-
ments starting at program lines 100, 200, and 300 to alert you to the val-
ues produced by earlier lines of the program and A/N. If you had no
interest in values less than two, for instance, you could give the following

41

42

THE EASY GUIDE TO YOUR COMMODORE 64

commands to signal and stop the program:

100 PRINT TAB(20) “VALUE BELOW TWO"
110 STOP

which will print “VALUE BELOW TWO?” in the A/N column, and then
stop the computer with the message “BREAK IN 110.”

Likewise, if you wanted the computer to continue the program run
and merely signal you when the value A/N slipped below four and then
again below three, you could add statements starting at 300 and 200,
respectively:

300 PRINT TAB(20) “(press CONTROL and G)(press CONTROL and
G) VALUE BELOW FOUR”
310 GOTO 40

and

200 PRINT TAB(20) “(press CONTROL and G)
(press CONTROL and G) VALUE BELOW THREE”
210 GOTO 40

During the execution of this program, each of these pairs of statements
signals the appearance of the value you’re looking for, then directs the
computer back into the multiplication-division-printing loop at line 40.

You can use the ON-GOTO command to search out and act on spe-
cific values. By putting variables into a form that falls within the rather
particular value ranges of the first half of this command, you can direct
the computer into diversions and exits from normal sequential program
runs.

You can specify action on any number of ranges. Directions to line
numbers, each matched to a particular range, can be used to send the
computer to work on many more statements. The ON-GOTO command
follows this plan: each line number listed after the word GOTO corre-
sponds in step to progressively rising ranges of the value of the variable
after the word ON.

You could use a statement like:

ON A/N GOTO 100, 200, 300, 400, 500

and so on, to cover larger and larger values of A/N.

REPEATING WITHIN LIMITS

You may want to repeat a useful set of commands, perhaps not endlessly

PROGRAM CONTROL

(as done by the GOTO statement), nor conditionally (as done by the
IF-THEN statement), but simply for a specific number of times. The
Commodore 64 will respond to a pair of commands that do this. One
counts off the repetitions, the other directs the computer back to the first
command. These commands are FOR and NEXT. You can slip them in,
one before a stretch of statements you’d like repeated, the other after.

Here’s a program to which you can add this pair of commands in a
variety of ways to produce a variety of displays. It directs the computer to
draw an arrow shape.

NEW

10 PRINT “(press SHIFT and CLR/HOME)”

20 X=5

30 PRINT TAB(X)" (press SHIFT and M) "
40 PRINT TAB(X)"------- ~(press SHIFT and 2)”
50 PRINT TAB(X)“ (press SHIFT and N) ”

Through the value you type for X as a column number in line 20, you can
locate the arrow drawn by the directions in lines 30, 40 and 50 in any hori-
zontal position. Now, to draw the arrow several times at different places,
the computer needs directions to repeat lines 30, 40, and 50 for different
values of X, so that the same pattern is plotted from differing starting
points.

You can give these directions with the first statement of the counting
pair. In this statement you state a starting value, an ending value, and
(optionally) the size of the jumps the computer should make in going from
one value to the other. In this graphics program, you can specify a column
number represented by X, to be changed at each pass so that the arrow
will be drawn at each of several places along a single row, spaced 8
columns apart, with the statement:

25 FORX=1TO30STEP 8

The other member of this command pair will autdmatica]ly direct the
computer back to the program line on which the FOR-TO-STEP com-
mand is found:

55 NEXT X

To direct the computer to put each subsequent arrow on the same hori-
zontal line as the one previously drawn, you can add a statement that
sends the cursor back up to the line on which it began. Such a statement
would take the form:

43

44

THE EASY GUIDE TO YOUR COMMODORE 6%

27 PRINT “(press SHIFT and CURSOR UP/DOWN) (press SHIFT and
CURSOR UP/DOWN) (press SHIFT and CURSOR UP/DOWN)
(press SHIFT and CURSOR UP/DOWN)”

When you run this program, all commands located between the FOR-
TO-STEP and NEXT statements at lines 25 and 55 will be repeated until
the limit set after the word TO is reached, as in Figure 5.3.

In this case, lines 30, 40, and 50 (the drawing commands), and line 27
(the row-positioning command), are repeated. The computer will begin
drawing at each of four locations along a single row at the top of the
screen. The first arrow starts from the position set by a TAB of 1, and the
last at a TAB of 25. The value of X =1 assigned in the FOR-TO-STEP
statement replaces the initial one from line 20, and each successive value
of X replaces the one before it.

Using the FOR-TO-STEP, NEXT command pair, now you have a
program that draws a row of arrows. With another pair of FOR-TO-
STEP, NEXT commands ranging over values of Y, you can expand the
program to draw a similar group of arrows at more rows, and to fill the
screen with them. To repeat the first row of arrows, the second pair of
commands should bracket the statements that draw the row, including the
FOR-TO-STEP and NEXT pair for the values of X. Thus, the arrows at

Figure 5.3: A row of repeated arrows drawn by program.

PROGRAM CONTROL

each X location can be drawn for different Y locations (rows). To direct
the computer down to draw another row you can use a command that
moves the cursor like this:

24 PRINT “(press CURSOR UP/DOWN) (press CURSOR UP/DOWN)
(press CURSOR UP/ DOWN) (press CURSOR UP/DOWN)”

And to direct the computer to repeat the drawing at four descending rows,
you can add another pair of repeating commands, like this:

22 FORY=1TO4
60 NEXTY

When it encounters a FOR-TO command without the STEP part, the
computer assumes a “default” STEP value of 1. The program now in
memory directs the computer to repeat the commands that produced the
first row of arrows, to measure down four lines from the first row and
draw a row of arrows, then move down another four lines and draw
another row of arrows, and so on until a fourth row has been reached.
Then the computer stops drawing, and four rows of four arrows each fill
the screen, as shown in Figure 5.4.

Figure 5.4: Filling the screen with arrows by altering the program of Figure 5.3.

45

46

THE EASY GUIDE TO YOUR COMMODORE 64

Since the effect of line 20 (which assigned a value to X) has been can-
celled by line 25, you can drop that statement as excess baggage:

20

(If you LIST the program now, you’ll see the nested pairs of FOR-TO-
STEP and NEXT commands as they appear in Figure 5.5.) The first
NEXT statement, at line 55, directs the computer to take action on line
25, where the value of X is changed.

The computer can actually distinguish one NEXT statement’s direc-
tions from another’s even if you don’t label each NEXT statement with
the variable from its FOR-TO-STEDP line; lines 55 and 60 could also have
been written as:

55 NEXT
60 NEXT

However, you can keep track of the FOR-TO-STEP, NEXT groupings
more easily if you do label them.

You can envision the X FOR-TO-STEP, NEXT loop as “nested”
inside the Y FOR-TO-STEP, NEXT loop. When one loop is nested
within another in a program, the commands in the inner loop are carried
out first, as many times as detailed in the FOR-TO-STEP command, at
the first value of the outer loop, then through the second value of the outer
loop, and so on.

Here’s a summary of how the computer is directed by this program:

Inline 10, the screen is cleared and the cursor is positioned at the upper
left corner. In line 22, the computer prepares to substitute a value of 1 for
each Y it encounters. In line 24, the cursor is sent down four lines in prep-
aration for drawing. In line 25 the computer prepares to substitute the
value 1 for each X. In line 27 the cursor is moved up four vertical rows.
The effects of the vertical movement in program lines 24 and 27 come
particularly into play in positioning arrows drawn one after another. In
lines 30, 40, and 50, the substitutions are made, and the resulting print
characters are drawn from the TAB(1) location. That produces the first
arrow on the screen.

From line 55, the computer is sent back to the FOR-TO-STEP state-
ment of line 25, where the value 8 is added to the last X, and the new value
of X is substituted in lines 30, 40, and 50. The computer draws the second
arrow from column number 9 of the first row.

When it next encounters line 55, the computer is sent again to the
FOR-TO-STEP statement in line 25, and the process repeats with a value

PROGRAM CONTROL

0
)
2
4
9
T
0
0
0
3
0
3

©OXX0VUVVOMOVMXTV

CMMBBVBWORQ I X
0 D Dt gyt g 2O et 2O (N e

>

Figure 5.5: The program that fills the screen with arrows.

of X equal to 17 substituted in the TAB commands.

This goes on until the value of 30 for X is passed. That happens after
the fourth arrow is drawn, when the NEXT X statement of line 55 passes
the computer on to the following line, number 60. Line 60 sends the com-
puter to the FOR-TO-STEP statement at line 22, where 1 is added to the
value of Y. With Y = 2, the computer then moves to line 24, which sends
the cursor down four rows. »

Then, encountering the FOR-TO-STEP statement of line 25, the
computer resets the value of X to 1, and proceeds to line 27. This state-
ment keeps each set of four arrows of varying TAB(X) values on the same
row. Without it, the computer would automatically advance to the next
print line after drawing each arrow at each TAB(X) position, and each
arrow would appear separately on a different row.

Running through the commands of lines 25 through 55 as it did before,
the computer draws a second row of arrows, identical to the first, but
below it. After the last arrow of this second row has been drawn and X
exceeds 30, the computer is sent on to the NEXT statement, dropping
through line 55 to line 60, which sends it to line 22.

The FOR-TO-STEP, NEXT Y statements of line 22 and 60 then keep
the computer busy on the third, and finally the fourth, rows of arrows
until the X and Y values (30 and 4) have both been passed. Thus, you are

47

48

THE EASY GUIDE TO YOUR COMMODORE 6%

left with a screen full of four rows of four arrows each.

As you might suspect, if two nested loops of FOR-TO-STEF, NEXT
statements can be heaped together into the computer, then three or more
are also possible. With the Commodore 64’s print graphics, you can use
this feature to create moving images of changing colors.

In any program, a loop controls all the statements contained within that
loop, including any number of other loops. If commands are added that
print blank spaces over an arrow just before another arrow is drawn on the
screen, the first arrow will appear to be erased, and the second arrow will
appear by itself until it, too, is drawn over, disappearing from the screen to
be replaced by the next. The result is an elementary form of animation.

To direct the computer to draw over each arrow in turn, you can add a
set of three statements, within the X FOR-TO-STEP loop, that print
spaces over each arrow, like this:

52 PRINT TAB(X) “(press SPACE BAR 8 times)”
53 PRINT TAB(X) “(press SPACE BAR 8 times)”
54 PRINT TAB(X) “(press SPACE BAR 8 times)”

To position the blank printing back on the same row on which the arrow
was drawn, you can add a cursor-positioning statement before it, like this:

51 PRINT “(press SHIFT and CURSOR UP/DOWN 3 times)”

When you run the program now, the results will be as before, except that
immediately after each arrow appears it will disappear and the next arrow
will be drawn. The result will be an arrow racing from left to right across
one row after another.

Another clever use of the FOR/NEXT loop is worth noting, as it adds a
delay, which can be useful in any program in which you would like to
allow time for someone to view the program’s effects. You might have
already noticed that the computer, incomprehensibly fast though it is,
does take a perceptible time to do things. The more complex or compli-
cated the task, the longer it takes. Knowing this, you can use such a delay
to your advantage, by controlling it. You can add a loop containing no
real active command. And though there may be no command to repeat in
such aloop, the computer will go dutifully through it, taking time to trans-
late and process the FOR-TO-STEP and NEXT commands.

To slow the animation program, then, you can add an empty loop
ginown as a “timing loop”) after the blank-space-positioning line, like

is:

51 PRINT “(press SHIFT and CURSOR UP/DOWN) (press SHIFT and

PROGRAM CONTROL

CURSOR UP/DOWN) (press SHIFT and CURSOR UP/DOWN)
(press SHIFT and CURSOR UP/DOWN)” : FOR T =1 TO 200:
NEXT T

Once again, the STEP part of the command is optional—if you leave it
off, as is done here, the computer automatically takes steps of 1.

In this program, the computer pauses briefly before each erasure as it
runs senselessly through its empty loop. This type of FOR-TO, NEXT
statement can be inserted anywhere in a program to slow or freeze
advancing action.

By judiciously removing statements, you can sometimes create effects
quite different from the original program. For instance, by removing the
Y FOR-TO, NEXT loop and the accompanying positioning command
from this program, you can create a display that shows an arrow descend-
ing diagonally across the screen. Removing lines 22, 27,and 60, like this:

22
27
60

will produce such a program.

49

By its nature, the computer understands how to handle numbers—they
direct all its operations, and order commands. But even though it is blind
to their meanings, the Commodore 64—with a bit of programming
help—can handle words and information in any typed form, treating and
even generating them at your direction. Your computer can accept infor-
mation in several ways, and even stop in the middle of a program run to
get it. Words, numbers and graphics symbols can all be objects of manipu-
lations you direct.

STRINGS: WORDS FROM THE COMPUTER

In much the same way as it handles numbers, the Commodore 64 can
handle words and keyboard characters. It can print them, and it can take
them apart and piece them together. Of course, as human beings, we have
an edge over the computer, since we each understand about 40,000 more
words than the Commodore 64’s meager vocabulary of less than a hundred
commands. But, like a blind newstand vendor who can handle magazines
he can’t read, the Commodore 64 can handle thousands of words it will
never understand.

Although the computer can treat keyboard characters—words, num-
bers, and other symbols—in various complex ways, it groups these sym-
bols into only two categories. When the computer encounters a set of
words and symbols enclosed in quotation marks, it treats that group of
characters like a busload of passengers, to be carried about as you, the
tour leader, direct. But characters typed without surrounding quotes are

HANDLING WORDS AND INFORMATION

interpreted as commands, from which the computer takes directions, just
as a cab driver picks up passengers from a street corner and takes direc-
tions from them.

A group of characters enclosed in quotes is known as a string. Variable
symbols can be used to stand in for strings, just as they do for numbers.
The Commodore 64 recognizes the equal sign as a command assigning a
variable to words as well as to numbers. It recognizes these strings by a
“tagged” variable symbol. A variable intended for a string is marked with
a dollar sign ($), signifying a string of characters, rather than a numeric
variable. Since the computer treats spaces as characters, a group of words
separated by spaces will be treated as one long word-string by the Com-
modore 64.

You can command the computer to substitute a sentence (or any group
of characters) wherever it encounters a string variable in a program
statement:

NEW
10 A$="WORDS WITHOUT THOUGHTS NEVER TO
HEAVEN GO.”

You can then use the string variable, A$, in place of the string itself when
you give subsequent commands:

20 PRINT A$

Encountering line 20 when this brief program is run, the computer prints
Shakespeare’s words on the screen, just as it would print a number
assigned to a numeric variable.

Combining Strings: The Plus Sign

Although strings possess none of the numeric characteristics that the
computer was built to work with, they can nevertheless be objects of calcu-
lation and manipulation. Using string variables, you can order the com-
puter to combine strings, cut them or derive numeric values from them.

The computer treats string variables in combination much as it treats
numbers in addition. In this case, the final result will be a longer string
rather than a larger number. To add strings to each other, you use the plus
sign (+) as a command to the computer to produce a new string, a combi-
nation of the strings on either side of the plus sign.

51

52

THE EASY GUIDE TO YOUR COMMODORE 64

Adding two more strings to this program, you can prepare the com-
puter to combine them, by assigning them to string variables:

12 B$="WILLIAM SHAKESPEARE”
14 C$="HAMLET, ACT lil, SCENE 3"

To see these strings printed in combination, you can retype line 20 as:
20 PRINT A$ + B$ + C$

When the program is run, the computer will respond with the display
shown in Figure 6.1.

Counting Characters In Strings: LEN

You can extract a numeric value from a string with a command that
counts the number of characters, including spaces, within it. Such a
command can be useful in any program that manipulates strings. The
command that directs the computer to count characters takes the form
LEN(). In a program, you can assign a string length value to a numeric
variable with an instruction like this new version of line 20:

20 A = LEN(A$)

Figure 6. 1: The effect of a program that adds word-strings.

HANDLING WORDS AND INFORMATION 53

This line can be paraphrased as “Set the value of the numeric variable A
equal to the number of characters in the string A$.” It directs the com-
puter to substitute the number of characters in string A$ wherever it
encounters the symbol A in a program run. You can then use this value in
another statement, like this:

30 PRINT “AQUOTE” A “ CHARACTERS LONG BY " B$

and also add a statement to display the quo